

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN CIENCIAS DE LA TIERRA CENTRO DE GEOCIENCIAS

CARACTERIZACIÓN DEL LÍMITE ESTE DEL TERRENO GUERRERO MEDIANTE ISOTOPÍA DE HF Y GEOCRONOLOGÍA U-PB EN ZIRCONES DETRÍTICOS

TESIS

QUE PARA OPTAR POR EL GRADO DE: DOCTORA EN CIENCIAS DE LA TIERRA

PRESENTA: BERLAINE ORTEGA FLORES

DIRECTOR DE TESIS: **Dr. Luigi Augusto Solari** Centro de Geociencias

Juriquilla, Querétaro, Enero 2017.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

DECLARACIÓN DE ÉTICA ACADÉMICA

Declaro conocer el Código de Ética de la Universidad Nacional Autónoma de México, plasmado en la Legislación Universitaria. Con base en las definiciones de integridad y honestidad ahí especificadas, aseguro mediante mi firma al calce que el presente trabajo es original y enteramente de mi autoría. Todas las citas de, o referencias a, la obra de otros autores aparecen debida y adecuadamente señaladas, así como acreditadas mediante los recursos editoriales convencionales.

A mi familia Por estar siempre conmigo y por apoyarme en cualquier decisión

AGRADECIMIENTOS

Al Consejo Nacional de Ciencia y Tecnología (CONACYT) por el soporte económico, con el número de registro: 173912, que me brindó durante los cuatro años del doctorado.

Al Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica de la UNAM (PAPIIT-DGAPA) dentro de los proyectos IN100911 y IN102414, a través de los cuales obtuve los recursos económicos para desarrollar mi trabajo de investigación.

Un especial agradecimiento a mi asesor, el Dr. Luigi A. Solari por guiarme, por ofrecerme autonomía en mis ideas y por su constante ayuda en la interpretación de los datos. Agradezco también la disponibilidad de su tiempo para cualquier discusión, por confiar en mí y por su enorme paciencia.

A las personas que revisaron esta tesis: Dra. Elena Centeno García, Dr. Timothy F. Lawton, Dr. Michelangelo Martini y Dr. Peter Schaaf, les agradezco sus observaciones, comentarios y sugerencias que sin duda contribuyeron a mejorar este trabajo.

A las personas que estuvieron pendientes de mis avances durante mi estancia en el posgrado: Dr. Michelangelo Martini y Dr. Felipe de Jesús Escalona Alcázar.

Al técnico, el Dr. Carlos Ortega Obregón por su ayuda y asistencia técnica en los análisis de zircones en el Laboratorio de Estudios Isotópicos del Centro de Geociencias.

Al técnico Juan Tomás Vázquez Ramírez por su apoyo en la preparación de secciones delgadas en el taller de laminación.

Al técnico Manuel Albarrán Murillo por su asistencia en la separación y concentrado de minerales en el taller de molienda.

Agradezco especialmente a la Sra. Marta Pereda Miranda por facilitarme la vida y apoyarme en la realización de los trámites del posgrado cada semestre...hasta el final del camino.

A Armando Ramírez Morán y Asucena Ortega Correa por su apoyo y asistencia en los trámites académicos y administrativos, respectivamente.

Finalmente, quiero agradecer, de manera muy especial, a todas aquellas personitas que hicieron agradable mi estancia en el posgrado del Centro de Geociencias, tanto en la convivencia diaria como en los deportes, pero sobre todo a aquellas que siempre estuvieron incondicionalmente apoyándome y me ofrecieron su amistad sincera.

CONTENIDO

RESUMEN

ABSTRACT

1.

2.

5.1.1. Continente mesozoico mexicano

5.1.1.1. Sucesiones detríticas triásicas

5.1.2. Terreno Guerrero

5.1.1.3. Sucesiones detríticas del Cretácico Superior

5.1.1.2. Sucesiones detríticas del Jurásico Superior-Cretácico Inferior

3.

4.

5.

	INTRODUCCIÓN	5
	ANTECEDENTES	9
2.1	Marco geológico regional del terreno Guerrero	9
	2.1.1. Subterreno Tahue	11
	2.1.2. Subterreno Guanajuato	11
	2.1.3. Subterreno Zihuatanejo	12
	2.1.4. Subterreno Arcelia	13
	2.1.5. Subterreno Teloloapan	13
2.2	Modelos propuestos sobre el origen del terreno Guerrero	14
	2.2.1. Escenario alóctono	16
	2.2.2. Escenario para-autóctono	17
2.3	Basamento pre-Jurásico Tardío del terreno Guerrero	18
	2.3.1. Grupo Río Fuerte	18
	2.3.2. Gneis Francisco	19
	2.3.3. Formación Zacatecas	20
	2.3.4. Complejo Arteaga	21
	2.3.5. Esquisto Yelapa	23
	2.3.6. Complejo Las Ollas	23
	2.3.7. Complejo Placeres	24
	2.3.8. Esquisto Tejupilco	25
2.4	2.3.9. Intrusivos jurasicos	26
2.4	Marco geologico de la cuenca de Arperos	26
	2.4.1. Estratigrana general de la cuenca de Arperos	27
25	2.4.2. Geoquímica de las sucesiones cretacicas de la cuenca de Arperos	28
2.3	2.5.1 Opyraquia	30
	2.5.1. Odragula 2.5.2. Terrano Mixteen	30
	2.5.2. Terreno Volana	35
		55
	MÉTODOS	36
3.1	Petrografía y conteo de puntos en rocas detríticas	36
3.2	Geocronología U-Pb en zircones detríticos por LA-ICPMS	37
3.3	Aplicación de la geocronología U-Pb en estudios de procedencia de sedimentos	42
3.4	Isotopía de Hf en zircones detríticos por LA-MC-ICPMS	44
3.5	Aplicación de la isotopía de Hf en análisis de procedencia sedimentaria	47
	LOCALIZACIÓN DEL ÁREA DE ESTUDIO	50
4.1	Dominio continental-Oaxaguia	51
	4.1.1. Estratigrafía del área de Tolimán	51
	4.1.2. Estratigrafía del área de Mineral de Pozos	56
	4.1.3. Compilación de la estratigrafía del área de Sierra de los Cuarzos	58
4.2	Dominio oceánico-Terreno Guerrero	62
	4.2.1. Estratigrafía del área de Zacatecas	62
	4.2.2. Compilación de la estratigrafía del área de Guanajuato	67
	4.2.3. Compilación de la estratigrafía del área de Valle de Bravo	72
	RESULTADOS	76
5.1	Petrografía y componentes detríticos de las sucesiones sedimentarias	76

Página

1

3

78

79

81

84 85

		5.1.2.1. Sucesiones detríticas triásicas	85
		5.1.2.2. Sucesiones del Jurásico Medio-Superior	87
		5.1.2.3. Sucesiones detríticas del Jurásico Superior-Cretácico Inferior	88
		5 1 2 4 Sucesiones detríticas del Cretácico Superior	89
	52	Geocronología por el método Uranio-Plomo (U-Pb) en zircones detríticos	89
	0	5.2.1 Continente mesozoico mexicano	89
		5.2.1.1 Sucesiones detríticas triásicas	89
		5.2.1.1. Succesiones detriticas del Jurásico Superior-Cretácico Inferior	94
		5.2.1.2. Succisiones detríficas del Cretácico Superior	00
		5.2.7.5.5000510105 del titudo del Cicatecas)	101
		5.2.2. Terreno Guerrero (area de Zacatecas)	101
		5.2.2.1. Succesiones detríticas dal Jurísicas Madio Superior	101
		5.2.2.2. Succesiones detriticas del Jurásico Nuculo-Superior	103
		5.2.2.5. Succesiones detriticas del Julasico Superior-Cictacico Interior	107
		5.2.2.4. Sucesiones dell'incas del Cietacico Superior	100
		5.2.3. Terreno Guerrero (area de Guanajuaro)	110
		5.2.3.1. Succesiones definicas del jurasico Superior	110
		5.2.3.2. Sucesiones definicas del jurasico Superior-Cretacico Interior	112
	5.3	Isótopos de Hf en zircones detríticos	114
		5.3.1. Continente mesozoico mexicano	114
		5.3.1.1. Sucesiones detríticas triásicas	114
		5.3.1.2. Sucesiones detríticas del Jurásico Superior	116
		5.3.1.3. Sucesiones detríticas del Jurásico Superior-Cretácico Inferior	116
		5.3.2. Terreno Guerrero	119
		5.3.2.1. Sucesiones detríticas triásicas	119
		5.3.2.2. Sucesiones detríticas del Jurásico Medio-Superior	120
		5.3.2.3. Sucesiones detríticas del Jurásico Superior-Cretácico Inferior	122
		5.3.3. Sucesiones detríticas post-Cretácico Temprano	124
6		DISCUSIÓN	126
0.	61	Procedencia de zircones detríticos con hase en edades U-Ph	120
	0.1	6.1.1. Zircones paleonroterozoicos (2500-1650 Ma)	120
	•	6.1.2. Zircones dal Paleoproterozoicos (2500-1050 Ma)	120
		6.1.3. Zircones del Mesoproterozoico tardío. Neoproterozoico temprano (1250.000 Ma)	120
		6.1.4. Zircones del Neoproterozoico tardía Ordovícico (750.450 Ma)	131
		6.1.5. Zircones del Dermo Triácico (200.210 Me)	133
		6.1.5. Zircones del Fernio-Triasico (500-210 Ma)	120
		6.1.7. Zincones del Jurásico Temprano-Jurásico Medio (200-100 Ma)	13/
		6.1.7. Zircones del Jurasico Tardio-Cretacico Temprano (159-114)	138
		6.1.8. Zircones del Cretacico Temprano tardio (113-105 Ma)	139
		6.1.9. Zircones del Albiano-Cenomaniano (104-90 Ma)	140
	6.2	Firmas isotópicas y rocas fuente	140
		6.2.1. Continente mesozoico mexicano	141
		6.2.1.1. Sucesiones detríticas triásicas	140
		6.2.1.2. Sucesiones detríticas jurásicas	144
		6.2.1.3. Sucesiones detríticas del Jurásico Superior – Cretácico Inferior	145
		6.2.2. Terreno Guerrero	146
		6.2.2.1. Sucesiones detríticas triásicas	146
		6.2.2.2. Sucesiones detríticas jurásicas	149
		6.2.2.3. Sucesiones detríticas del Jurásico Superior-Cretácico Inferior	150
		6.2.2.4. Sucesiones detríticas post-acreción	152
	6.3	Magmas juveniles v reciclaje cortical	154
	6.4	Implicaciones tectónicas en la evolución del margen occidental continental del paleo- Pacífico Mexicano	159
7		CONCLUSIONES	165
1.		CONCLUSIONES REFERENCIAS	105
		ANEYOS	10/
		AMEAOD	

RESUMEN

El origen de las sucesiones volcaniclásticas del margen occidental de México, área que actualmente corresponde con lo que se considera como Terreno Guerrero, ha llevado a proponer diferentes escenarios tectónicos, que básicamente pueden resumirse en dos modelos de evolución: uno de ellos sugiere al Terreno Guerrero como un arco volcánico alóctono, desarrollado sobre un sustrato oceánico que, posteriormente, fue acrecionado al núcleo continental de México. El otro modelo propone al Terreno Guerrero como un arco paraautóctono; es decir, que inicialmente se desarrolló sobre el continente y subsecuentemente fue separado de éste, debido a la expansión de la cuenca de tras-arco (Cuenca de Arperos). La interposición de la Cuenca de Arperos desconectó sedimentológicamente a las sucesiones del arco de la influencia de detritos de procedencia continental. Con base en la petrografía, geocronología U-Pb e isotopía de Hf en sucesiones volcaniclásticas y detríticas del Terreno Guerrero y del margen occidental del núcleo continental mexicano, en este trabajo se aportan nuevas evidencias de que el arco Guerrero se desarrolló inicialmente sobre un basamento pre-Jurásico Tardío, que consiste en sucesiones volcaniclásticas del Jurásico Medio y sucesiones siliciclásticas triásicas que fueron depositadas en la margen occidental de Pangea ecuatorial. No hay evidencia de vulcanismo activo durante el depósito de las sucesiones siliciclásticas triásicas, por lo que se interpreta que no se había desarrollado una zona de subducción o que la misma estaba lejos de la zona de depósito. A partir del Jurásico Temprano, el margen occidental del núcleo continental mexicano actuó como un margen activo, en el cual se desarrolló un arco volcánico continental durante el Jurásico Temprano-Medio y otro arco durante el Jurásico Tardío-Cretácico Temprano. Sin embargo, el arco volcánico del Jurásico Tardío-Cretácico Temprano fue separado del margen continental, lo que dio lugar a la formación progresiva de una cuenca oceánica. En esta cuenca oceánica se depositaron detritos tanto de procedencia continental, en su margen noreste, como detritos derivados del arco, en su margen suroeste. A su vez, nueva corteza oceánica fue agregada en su sustrato y depósitos marinos profundos fueron mezclados con magmas juveniles de composición básica-intermedia. Al mismo tiempo en que se extendía la cuenca de Arperos, también se generó magmatismo félsico en el interior del continente, a lo largo de la margen noreste de la cuenca, posiblemente asociado a esta fase extensional. El cambio en el ángulo de subducción en la placa oceánica del paleo-Pacífico propició el cierre de la cuenca oceánica de Arperos, por lo que el arco, previamente separado, fue nuevamente acrecionado al margen continental dejando una zona de sutura, donde las unidades

asociadas a la apertura de la cuenca fueron exhumadas, deformadas y agregadas tectónicamente al continente.

Los isótopos de Hf, en combinación con la geocronología de U-Pb en zircones indican que, en la mayor parte del Mesozoico, la corteza continental fue reciclada durante los episodios magmáticos, donde la asimilación cortical de fuentes paleozoicas y proterozoicas persistió, incluso durante la actividad del arco Guerrero. Las firmas isotópicas muestran un arreglo vertical en sus valores de ɛHf indicando que, si bien se produjeron magmas juveniles, hubo mayormente retrabajo del basamento pre-Jurásico Tardío. Adicionalmente, la mayor parte de estos magmas juveniles fueron generados durante la etapa extensional del arco Guerrero y de la cuenca de Arperos. Finalmente, el material que fue acrecionado al margen occidental del núcleo continental mexicano comprende una mezcla de material reciclado del mismo continente, con menor proporción de material juvenil o corteza nueva.

ABSTRACT

The origin of the volcaniclastic successions of western Mexico, an area that now corresponds to what is considered the Guerrero terrane, permits a discussion of different tectonic scenarios, which basically can be summarized in two tectonic-evolutionary models: the first suggests that the Guerrero terrane was an allochthonous volcanic arc, developed and evolved above oceanic substrate, and subsequently accreted to the continental mainland. The other tectonic model proposes that the Guerrero terrane was a para-autochthonous volcanic arc, developed on continental crust, which was rifted during the extensional phase of the back-arc basin (Arperos Basin), and then re-incorporated into continental nuclear Mexico. The interposed Arperos Basin separated the arc successions from the continental detritus influence. Based on petrography, geochronology and Hf isotope analysis in volcaniclastic and detrital successions of the Guerrero terrane and western Mexican mainland, this work provides new evidence to that the Late Jurassic-Early Cretaceous Guerrero arc was built above pre- Late Jurassic basement. This basement consists of Lower to Middle Jurassic volcaniclastic and Late Triassic siliciclastic successions, which were deposited along the western margin of equatorial Pangea. There are no evidences of an active volcanism stage during the deposition of the Upper Triassic siliciclastic successions, which is either interpreted as the lack of activity of a subduction complex or, if there was, it was distant from the area of deposition. From the Early Jurassic, the western margin of continental nuclear Mexico became an active margin in which an Early-Middle Jurassic continental volcanic arc developed, whereas another continental arc was formed during the Late Jurassic-Early Cretaceous. However, the Late Jurassic-Early Creatceous volcanic arc was rifted from the continental margin during progressive seafloor spreading of the back-arc Arperos Basin. Within this oceanic basin, continent sourced sediments were deposited along its northeastern margin, whereas arc-derived detritus deposited along its southwestern margin. During this time, new oceanic crust was added to the basin substrate, and marine and deepwater sediments were mixed with juvenile magmas, which were mainly mafic in composition. The extensional phase of the Arperos Basin was coeval with felsic magmatism that occurred within the continent, along the northeastern margin of Arperos Basin. This magmatism was possibly related to the extensional processes of the Arperos Basin. A change in the subduction angle of the paleo-Pacific oceanic plate caused the closure of the Arperos Basin, where the previously rifted and drifted Guerrero arc was accreted back to the continental margin, forming a suture zone. This suture belt consists of basin-related assemblages, which were exhumed, deformed and, finally, tectonically attached to the continent.

The Hf isotopes, combined with U-Pb zircon geochronology, indicate that during most of the Mesozoic the continental crust was recycled by several magmatic episodes, where crustal assimilation of Paleozoic and Proterozoic sources was a dominant process, even during the activity of the Guerrero arc. The isotopic signatures show a vertical arrangement of ϵ Hf values, indicating that, although there were juvenile magmas, reworking of the pre-Late Jurassic basement also ocurred. Additionally, most of the juvenile magmas were formed during the extensional stage of the Guerrero arc and the Arperos Basin. Finally, the material accreted to continental nuclear Mexico constitutes a mixure of recycled continental sources, with a reduced proportion of juvenile crust.

1. INTRODUCCIÓN

La acreción de terrenos es uno de los procesos principales involucrados en el desarrollo o crecimiento de corteza continental (Cawood et al., 2009; Stern y Scoll, 2010). Estos procesos pueden incluir arcos volcánicos, prismas acrecionales, melanges, sedimentos de tras-arco, ofiolitas, montes marinos, sedimentos tipo flysh y plutones graníticos post-acreción, que son añadidos tectónicamente sobre la margen continental (Cawood et al., 2006; Tetreault y Buiter, 2014). En este contexto, la porción occidental de México (Figura 1), la cual forma parte de la Cordillera Norteamericana, ocupa una posición paleogeográfica clave para el estudio de procesos de acreción relacionados a zonas de subducción. Esta área, que durante su evolución estuvo relacionada con el cratón proterozoico de Laurencia, al norte, el margen transcurrente mesozoico del Golfo de México con su cubierta sedimentaria mesozoica en su lado este, y los complejos de arcos submarinos cretácicos, del terreno Guerrero, en su lado oeste (Campa and Coney, 1983; Tardy et al., 1992; Centeno-García y Silva-Romo, 1997; Freydier et al., 2000; Dickinson y Lawton, 2001; Talavera-Mendoza et al., 2007), indica una historia que incluyó procesos compresionales y extensionales, asociados a una zona de subducción durante el Mesozoico. El margen *rifteado* de Laurencia fue modificado por colisión de corteza continental (Gondwana y Oaxaquia) durante la orogenia Marathon-Ouachita en el Paleozoico Tardío (Ortega-Gutiérrez et al., 1995; Dickinson and Lawton, 2001; Bartolini and Mickus, 2001; Keppie et al., 2003; Trainor et al., 2011), mientras que los terrenos cordilleranos, entre los cuales se incluye el terreno Guerrero, fueron acrecionados a lo largo del margen oeste del cratón norteamericano durante el Mesozoico.

Durante el Mesozoico, eventos tectónicos mayores dieron como resultado dos ambientes tectónicos; uno de ellos está relacionado con el rompimiento de Pangea y la subsecuente apertura del Golfo de México, cuyo registro tectono-estratigráfico es reconocido en los terrenos Sierra Madre y Mixteca, los cuales conformaron el margen continental paleo-Pacífico de México; y el otro está asociado a un margen convergente paleo-Pacífico caracterizado por la acreción de terrenos cordilleranos, que en el oeste de México, está representado por sucesiones volcánicas y volcaniclásticas del terreno Guerrero. La estratigrafía del núcleo continental Mexicano incluye un basamento metamórfico proterozoico con su cubierta sedimentaria paleozoica y mesozoica (siliciclástica y carbonatada) del terreno Sierra Madre y por rocas paleozoicas polideformadas sobreyacidas por rocas sedimentarias mesozoicas del terreno Mixteca (Ortega-Gutiérrez, 1978, Ortega-Gutiérrez, 1981; Campa y Coney, 1983; Ruiz, et al., 1988; Barboza-Gudiño et al., 2011;

Trainor et al., 2011). El terreno Guerrero, en contraste, muestra unidades estratigráficas composicionalmente distintas y relativamente más jóvenes que aquellas del núcleo continental mexicano (Talavera-Mendoza y Guerrero-Suástegui, 2000; Elias-Herrera et al., 2000; Talavera-Mendoza et al., 2007; Centeno-García et al., 2008; 2011).

Figura 1. Mapa de localización indicando los principales elementos tectónicos mencionados en el texto. Se muestra el límite entre los terrenos Guerrero, Oaxaquia y Mixteca (Campa y Coney, 1983; Ortega-Gutiérrez et al., 1995) y la distribución de rocas siliciclásticas triásicas incluidas en los abanicos submarinos.

Las relaciones estratigráficas entre los sedimentos derivados de fuentes volcánicas del terreno Guerrero y sedimentos siliciclásticos derivados de fuentes continentales del margen paleopacífico han sido mejor documentados al sur del Cinturón Volcánico Trans-Mexicano (CVTM), donde las relaciones de contacto entre el terreno Guerrero y el terreno Mixteca están relativamente bien expuestas (Elías-Herrera y Ortega-Gutiérrez, 1998; Elias-Herrera et al., 2000; Ortíz-Hernández et al., 2003; Centeno-García, 2005; Talavera-Mendoza et al., 2007; Levresse et al., 2007; Martini et al., 2014; Silva-Romo et al., 2015). Inmediatamente al norte del CVTM, la zona de sutura entre el terreno Guerrero y el terreno Sierra Madre ha sido caracterizada en términos de composición y procedencia de estratos (Lapierre et al., 1992; Freydier et al., 1996; 1997; 2000; Martini et al., 2009; 2011; 2012; 2013). Más al norte, el contacto entre estos dominios estratigráficos está mayormente cubierto por rocas volcánicas cenozoicas. Sin embargo, exposiciones aisladas de rocas volcanosedimentarias y siliciclásticas, generalmente han sido correlacionadas con ensambles petro-tectónicos similares del extremo sur del terreno Guerrero (Tardy et al., 1992; Centeno-García et al. 1993; Centeno-García y Silva-Romo, 1997; Silva-Romo et al., 2000; Escalona-Alcázar et al., 2009; Ortega-Flores et al., 2016).

Eventualmente, unidades siliclásticas del Triásico Superior se han considerado como el basamento que subyace a las sucesiones volcanosedimentarias intra-oceánicas cretácicas del actual oeste de México, donde se incluye el terreno Guerrero y la cuenca de Arperos. Estas sucesiones siliciclásticas han sido interpretadas como parte de un sistema de abanicos submarinos desarrollado a lo largo del margen occidental de Pangea. Estos abanicos fueron alimentados por grandes sistemas fluviales, los cuales transportaron sedimentos suministrados por fuentes continentales (Centeno-García y Silva-Romo, 1997; Silva-Romo et al., 2000; Barboza-Gudiño et al., 2010; Miller et al., 2013; Ortega-Flores et al., 2014; Silva-Romo et al., 2015). En el margen paleo-Pacífico de Pangea ecuatorial, los sistemas de drenaje conformado por los ríos El Alamar y La Mora transportaron detritos hacia el oeste de fuentes peri Laurencia/Gondwánicas y Gondwana/Sudamericanas para alimentar a los abanicos submarinos triásicos Potosino y Tolimán, respectivamente, los cuales se localizan en el centro de México (Figura 1). Al sur del CVTM, los depósitos siliciclásticos submarinos del Triásico Superior están representados por el Complejo Arteaga, en el cual son incluidas las rocas metamórficas de bajo grado tales como los Esquistos Arteaga, Río Placeres, Tzizio y parte de Tejupilco (Centeno-García et al., 1993; Elias-Herrera et al., 2000; Talavera-Mendoza et al., 2007; Martini et al., 2009; 2014). Rocas similares en edad (Burckhardt, 1906; Ortega-Flores et al., 2016) y composición al basamento del sur del terreno Guerrero, han sido reportadas hacia la porción central de México, en el área de Zacatecas, y se han interpretado también como parte del basamento del terreno Guerrero (Centeno-García y Silva-Romo, 1997; Ortega-Flores et al., 2016).

Si bien, la acreción del terreno Guerrero al núcleo continental de México fue durante el Mesozoico, el origen de este terreno es debatido en dos corrientes de pensamiento. Por un lado,

existen modelos paleogeográficos donde se le considera como una entidad tectónica exótica o alóctona (Lapierre et al., 1992; Tardy et al., 1992; Freydier et al., 1996; Dickinson y Lawton, 2001; Talavera-Mendoza et al., 2007), y contrariamente, hay modelos que sugieren que este terreno es una porción desprendida del continente, como el resultado de procesos extensionales en la placa superior de la zona de subducción, derivando en la oceanización de una cuenca de tras-arco (Elías-Herrera y Ortega-Gutiérrez, 1998, Elías-Herrera et al., 2000; Cabral-Cano et al., 2000; Centeno-García et al., 2008; 2011; Martini et al., 2011; 2012; 2014).

Para aportar datos consistentes con cualquiera de estas dos hipótesis acerca del origen del terreno Guerrero, en este trabajo se caracterizaron cronológica y composicionalmente unidades volcanosedimentarias del terreno Guerrero y de su basamento, y se compararon con las sucesiones detríticas del margen continental. Para determinar la procedencia de detritos se llevó a cabo, además de la metodología clásica como petrografía y conteo de componentes detríticos en areniscas, el análisis geocronológico en zircones detríticos por el método U-Pb, para determinar las máximas edades de depósito de las unidades detríticas. Para constreñir la procedencia sedimentaria de una manera más robusta, se hicieron análisis isotópicos de Hf por la técnica LA-MC-ICPMS (Laser Ablation - Multi-Collector- Inductively Coupled Plasma - Mass Spectrometer). Los análisis isotópicos Lu-Hf en zircones detríticos son una herramienta muy útil para establecer y caracterizar fuentes cristalinas potenciales de procedencia en las reconstrucciones paleogeográficas. Si el terreno Guerrero fue un elemento tectono-estratigráfico alóctono al margen continental paleo-Pacífico, entonces mostraría, en sus unidades estratigráficas, rasgos distintivos como edad, composición, características químicas y deformación, contrastantes con aquellas del núcleo continental, antes de su acreción a éste. Si, por el contrario, el terreno Guerrero estuvo ligado al continente durante el Mesozoico, estas características se compartirían en ambos elementos tectónicos.

2. ANTECEDENTES

2.1 Marco geológico regional del Terreno Guerrero

El terreno Guerrero (Figura 2) fue definido por Campa y Coney (1983) y posteriormente descrito como terreno Náhuatl por Sedlock et al. (1993). Constituye la tercera parte de la porción suroccidental del actual continente mexicano, y forma parte del cinturón cordillerano del cratón de Norteamérica. Es un elemento tectonoestratigráfico que incluye sucesiones volcanogénicas del Jurásico Superior-Cretácico Inferior con afinidad de arco intra-oceánico y sucesiones volcanosedimentarias asociadas a cuencas extensionales. Su estructura interna, tal como sus sucesiones estratigráficas y su posterior deformación, ha sido objeto de varios estudios. Sin embargo, su origen y su evolución geológica aún es materia de discusión. Las sucesiones volcánicas y volcanosedimentarias del arco Guerrero sobreyacen a un basamento pre-Jurásico Tardío que aparentemente es heterogéneo en edad y composición y adicionalmente ha experimentado deformación previa al depósito de las sucesiones del arco (Centeno-García et al., 2008; Centeno-García, 2016). Con base a las características de su basamento a la edad y a la estratigrafía propia del arco, el terreno Guerrero ha sido considerado como un terreno compuesto (Campa y Coney, 1983; Dickinson y Lawton, 2001; Centeno-García, 2005; Centeno-García et al., 2008).

Figura 2. Terrenos tectono-estratigráficos de México. (a) división de acuerdo a Campa y Coney (1983) y (b) división de acuerdo a Sedlock et al. (1993).

Al norte del Cinturón Volcánico Trans-Mexicano (CVTM), las exposiciones de las sucesiones estratigráficas del terreno Guerrero han sido divididas en dos subterrenos: Tahue, Zihuatanejo y Guanajuato (Centeno-García, 2005; Centeno-García et al., 2008; 2011). Al sur del CVTM, el segmento sur del terreno Guerrero, de acuerdo a sus características estratigráficas y a la

composición de su basamento, ha sido dividido en: Zihuatanejo, Arcelia y Teloloapan (Campa y Coney, 1983; Guerrero, 1993; Talavera-Mendoza et al., 1995; Centeno-García et al., 2008; 2011). Las características geológicas de cada subterreno (Figura 3) serán brevemente descritas en los párrafos siguientes.

Figura 3. Ubicación del terreno Guerrero y su división en subterrenos, de acuerdo a Campa y Coney, 1993; Talavera-Mendoza et al., 1995; Centeno-García, 2005; Centeno-García et al., 2008; 2011. Se muestran las columnas estratigráficas generalizadas para cada subterreno: a) Tahue (Mullan, 1978; Keppie et al., 2006; Vega-Granillo et al., 2011; 2013), b) Zihuatanejo (Talavera-Mendoza et al., 2007, c) Zacatecas (Escalona-Alcázar et al., 2009; Ortega-Flores et al., 2016), d) Guanajuato (Martini et al., 2011), e) Arcelia (Talavera-Mendoza et al., 2007; Martini et al., 2014), f) Teloloapan (Elías-Herrera et al., 2000; Talavera-Mendoza et al., 2007). Exposiciones del basamento pre-Jurásico Tardío del terreno Guerrero también son indicadas.

2.1.1. Subterreno Tahue

Este subterreno fue considerado por Sedlock et al. (1993) como un terreno adyacente al terreno Guerrero. Posteriormente fue interpretado como parte del terreno Guerrero, debido a la presencia de rocas jurásico-cretácicas con afinidad a arco. Específicamente, las sucesiones volcanosedimentarias de esta área fueron asignadas a un ambiente de cuenca adyancente a un arco volcánico intra-oceánico (Lapierre et al., 1992; Freydier et al., 1996; Centeno-García et al., 2008). El subterreno Tahue comprende la porción nor-occidental del terreno Guerrero (Figura 3). El basamento de este subterreno está representado por el complejo metamórfico El Fuerte (Figura 3a), un ensamble de arcos de isla Ordovícico, deformado y metamorfizado en facies esquistos verdes, sobreyacido por turbiditas marinas del Pensilvánico-Pérmico, un ortogneis fechado en zircones por el método U-Pb, con edad del Triásico Tardío (Keppie et al., 2006a), cubiertas por rocas volcanosedimentarias del arco Guerrero (Berriasiano) e intrusionadas por cuerpos máficos y ultramáficos cretácicos. Su límite con el Terreno Cortés no está definido con detalle, sus límites este y sur con el terreno El Parral y el subterreno Zihuatanejo (Centeno-García et al., 2008), respectivamente, están cubiertos por rocas volcánicas cenozoicas.

2.1.2. Subterreno Guanajuato

El subterreno Guanajuato comprende la porción este-central del terreno Guerrero (Figura 3). La estratigrafía de este subterreno corresponde a rocas del Titoniano-Hauteriviano que incluye lavas almohadilladas en la base y una secuencia volcanosedimentaria compuesta de lutita negra, radiolarita, caliza pelágica, arenisca y conglomerado (Figura 3b), cubierta discordantemente por calizas, margas y lutitas del Cretácico Superior (Ortíz-Hernández et al., 1992; 2003; Martini et al., 2011). No se han reportado rocas más viejas del Jurásico Tardío que sugieran un basamento pre-arco en este subterreno, por lo que se ha interpretado como el remanente de una cuenca oceánica entre el arco de Guanajuato con subducción hacia el este y el margen continental cratónico, cuyo cierre originó una importante zona de sutura entre el Terreno Guerrero y el Terreno Sierra Madre (Freydier et al., 1996; 1997; 2000; Martini et al., 2011). También se le considera como remanentes de montes marinos de intraplaca derivado del vulcanismo de un hot spot (Ortíz-Hernández et al., 2003). La naturaleza del límite de este subterreno con el Terreno Sierra Madre, en los pocos afloramientos observados, es a través de cabalgadura con cima al este (Dávila-Alcocer y Martínez-Reyes, 1987), donde se sobrepone a rocas del Cretácico Inferior. Una descripción más detallada se presenta en la sección 2.4 de este trabajo, referente a la cuenca de Arperos.

2.1.3. Subterreno Zihuatanejo

El subterreno Zihuatanejo cubre la mayor área del terreno Guerrero. Comprende la porción occidental y central del terreno Guerrero (Figura 3). Se extiende por la costa pacífica y más al norte del Cinturón Volcánico Mexicano, en el área de Zacatecas (Centeno-García et al., 2008; 2011). En el sector sur y sureste, el subterreno Zihuatanejo consiste de cuatro ensambles litológicos principales: el Complejo Arteaga, la secuencia volcanosedimentaria Zihuatanejo, la secuencia sedimentaria Huetamo y el Complejo Las Ollas (Figura 3c) (Talavera-Mendoza, 2000; Talavera-Mendoza et al., 2007). El Complejo Arteaga, que constituye el basamento de este subterreno, consiste de una secuencia muy deformada y metamorfizada en facies esquistos verdes a facies anfibolita (Talavera-Mendoza et al., 2007) de lutita negra, arenisca, pedernal, lavas almohadilladas y bloques de caliza. Se le ha asignado una edad con base a radiolarios, del Triásico Medio-Triásico Tardío, aunque edades obtenidas por el método K/Ar en metapelitas (194-168 Ma, Grajales y López, 1984), alcanzan hasta el Jurásico Temprano. Los basaltos almohadillados muestran características geoquímicas e isotópicas de dorsal meso-oceánica (MORB). De acuerdo con Centeno-García et al. (2011), el Complejo Arteaga fue intrusionado por plutones graníticos jurásicos (granitoides Tumbiscatío y Macías, de 163 ± 3 Ma) y del Cretácico Inferior (granitoide El Pedregoso, de 105 Ma \pm 4 Ma). La secuencia Zihuatanejo está asociada a arcos volcánicos (Centeno-García et al., 2008), la constituyen rocas volcánicas riolíticas-andesíticas intercaladas con conglomerado volcaniclásticos, areniscas y lentes de caliza. Descansan discordantemente sobre el Complejo Arteaga. Las características composicionales de las rocas volcánicas (shoshoníticas a calco-alcalinas) muestran un arco de islas maduro (Talavera-Mendoza y Guerrero-Suástegui, 2000). La secuencia Huetamo, consta de aproximadamente 4500 m de rocas predominantemente sedimentarias del Titoniano-Cenomaniano (Talavera-Mendoza y Guerrero-Suástegui, 2000); (Talavera-Mendoza et al., 2007). Considerando las lavas almohadilladas que se restringen a la base de la columna, la secuencia está constituida por conglomerado, arenisca, lutita, turbiditas volcaniclásticas y calizas arrecifales. Se infiere que esta secuencia sobreyace de manera discordante a rocas metamórficas del Complejo Arteaga (Elías-Herrera, 2004 [tesis de doctorado]). El Complejo Las Ollas correponde con un mélange que involucra bloques de caliza, pedernal, cuarcita, basaltos almohadillados, gabro, ultramáficos parcial y completamente serpentinizados y bloques con esquistos azules. Se interpreta que el ensamble Las Ollas representa un complejo de subducción con vergencia hacia el oeste, se le ha asignado una edad probable del Cretácico Temprano. Los gabros, basaltos y anfibolitas muestran firmas isotópicas características de arcos de isla toleíticos (Talavera-Mendoza y Guerrero-Suástegui, 2000; Talavera-Mendoza et al., 2007). En el sector central-este consiste de un basamento triásico conformado por las rocas siliciclásticas de la Formación Zacatecas (Figura 3d), sobrerayacido tectónicamente por rocas volcaniclásticas jurásicas asociadas a arco continental y éstas, a su vez, sobreyacidas tectónicamente por una sucesión jurásico-cretácica de lavas almohadilladas, lavas masivas, radiolaritas, areniscas, lutitas pelágicas y tobas (Escalona-Alcázar et al., 2009; 2014; Ortega-Flores et al., 2016).

2.1.4 Subterreno Arcelia

Este subterreno se localiza en el sector sureste del terreno Guerrero (Figura 3). Estratigráficamente (Figura 3e), consiste de aproximadamente 2000 m de lavas basálticas almohadilladas, rocas ultramáficas (gabros serpentinizados), radiolaritas, en la parte superior de esta secuencia se intercalan calizas arrecifales (Elías-Herrera et al., 2000). Se encuentran intensamente deformadas y tienen metamorfismo de bajo grado en facies esquisto verde (Elías-Herrera et al., 2000; Talavera-Mendoza et al., 2007; Centeno-García et al., 2008). La edad de estas sucesiones volcanosedimentarias con base a determinaciones paleontológicas, así como por dataciones isotópicas por ⁴⁰Ar/³⁹Ar en rocas magmáticas, es del Albiano-Cenomaniano (Elías-Herrera et al., 2000; Talavera-Mendoza et al., 2007), para la porción sur se obtuvo una edad de 132 Ma (Valanginiano) en zircones del batolito Tuzantla por el método U/Pb (Garza-González, 2007 [tesis de doctorado]). Las características geoquímicas e isotópicas de los basaltos del subterreno Arcelia indican una serie de arco de islas toleítico y otra serie de trasarco, que es el magmatismo menos evolucionado de todas las sucesiones de arco del Terreno Guerrero (Talavera-Mendoza et al., 2007; Centeno-García et al., 2008; Mortensen et al., 2008). El límite oriental de este subterreno con el subterreno Teloloapan se sobrepone a través de una cabalgadura laramídica de bajo ángulo al subterreno Teloloapan (Talavera-Mendoza y Guerrero-Suástegui, 2000; Talavera-Mendoza et al., 2007), su contacto occidental con el subterreno Zihuatanejo es desconocido, aunque también infieren una cabalgadura mayor con cima hacia el este (Talavera-Mendoza y Guerrero-Suástegui, 2000). Al igual que el subterreno Guanajuato, el subterreno Arcelia ha sido considerado como parte de una misma cuenca (Freydier et al., 1996; Martini et al., 2014), por lo que se hace una descripción más detallada en la sección 2.4 de este trabajo, referente a la cuenca de Arperos.

2.1.5. Subterreno Teloloapan

El subterreno Teloloapan corresponde con el ensamble litotectónico suroriental del terreno Guerrero (Figura 3). Está constituido por una secuencia volcanosedimentaria (Figura 3f) de aproximadamente 3000 m de espesor, compuesta por lavas masivas y lavas almohadilladas con intercalaciones de rocas sedimentarias, cuyas facies se van profundizando hacia el oeste (Centeno-García et al., 2008). Los niveles superiores las lavas se intercalan con flujos de detritos y caliza (de aguas someras). La sucesión de arco de isla submarino es cubierta concordantemente por grauvacas y lutitas tobáceas hacia el occidente y por calizas arrecifales del Aptiano superior. La composición calco-alcalina de las rocas volcánicas se le considera propia de arco de islas maduro (Talavera-Mendoza et al., 2007; Centeno-García et al., 2008). Algunos autores (Talavera-Mendoza et al., 2007; Centeno-García et al., 2008) señalan que la naturaleza del basamento del Subterreno Teloloapan se desconoce, sin embargo, Elías-Herrera et al. (2000) y Elías-Herrera (2004) consideran que sí hay un basamento pre-Jurásico Tardío por debajo de las sucesiones de arco y que podría corresponder con las rocas triásico-jurásicas del esquisto Tejupilco. A través de fechamientos U-Pb (186 Ma) en zircones contenidos en xenolitos de ortogneises estos últimos autores han determinado que por debajo de esta secuencia volcanosedimentaria existe corteza continental que bien pudiera ser el basamento sobre el que se depositaron estas sucesiones volcanosedimentarias de arco. Las rocas del subterreno Teloloapan se encuentran intensamente deformadas y presentan metamorfismo en facies esquistos verdes (Elías-Herrera, 2004; Talavera-Mendoza et al., 2007; Mortensen et al., 2008). En su límite este, el subterreno Teloloapan cabalga a la Plataforma Guerrero-Morelos del Terreno Mixteco. En su límite oeste, el subterreno Teloloapan es cabalgado por el Terreno Arcelia, mientras que al norte es cubierto por las rocas de la Faja Volcánica Mexicana.

2.2. Modelos propuestos para explicar el origen del terreno Guerrero

Para explicar el origen de las sucesiones tectono-estratigráficas del terreno Guerrero existen varios modelos paleogeográficos y tectónicos que, de acuerdo a la información disponible en su momento, básicamente han considerado dos escenarios posibles (Figura 4): aquellos donde ocurre la acreción de arcos intra-oceánicos que se desarrollaron lejos del continente, separados por una o varias cuencas o aquellos donde la dinámica de una sola zona de subducción pudo haber evolucionado de un régimen continental a un dominio oceánico para después acrecionarse al continente.

Figura 4. Modelos paleogeográficos del terreno Guerrero y la cuenca de Arperos propuestos por diferentes autores. (a) Tardy et al., 1992; Lapierre et al., 1992, (b) Freydier et al, 1996; Ortiz-Hernández et al., 2003, (c) Dickinson y Lawton, (d) Talavera-Mendoza et al., 2007. En estos modelos se sugiere un escenario alóctono para el terreno Guerrero, sin conexión directa al margen continental. (e) Elías-Herrera y Ortega-Gutiérrez, 1998, Elías-Herrera et al., 2000; Cabral-Cano et al., 2000; Centeno-García et al., 2008; 2011; Martini et al., 2011; 2012; 2014. En este modelo, el terreno Guerrero está vinculado con el márgen continental y la cuenca de Arperos se considera como una cuenca de trasco. Abreviaciones: NA; Norte América, AF; África, SA; Sudamérica, GM; Golfo de México, Ch; bloque de Chortis, Coah; bloque de Coahuila, Oax; bloque de Oaxaca, Yuc; bloque de Yucatán, Cab; Caborca, Tam; bloque Tampico, DS; bloque del Sur, Ac; Complejo Acatlán.

2.2.1. Escenario alóctono

Ciertos autores sugieren que la historia inicial del terreno Guerrero no tuvo una conexión directa con el margen continental paleo-Pacífico (Lapierre et al., 1992; Tardy et al., 1992; 1994; Freydier et al., 1996; 2000 Dickinson y Lawton, 2001; Ortíz-Hernández et al., 1992; 2003). En estos modelos, el terreno Guerrero es considerado como un arco intra-oceánico, alóctono, sin influencia del cratón de Norteamérica y de completo dominio pacífico (Figuras 4a). La existencia del arco estaría ligada a la subducción, hacia el oeste, del margen occidental de una cuenca marginal con sustrato oceánico, interpuesta entre el continente y el arco (Lapierre et al., 1992; Tardy et al., 1992; 1994). La cuenca marginal, llamada cuenca de Arperos tendría sedimentos de aguas profundas y eventualmente recibiría detritos del continente, pero ello no influiría en las sucesiones estratigráficas del arco. Una variante a este modelo, considerada a partir de las características geoquímicas de las rocas en la cuenca de Arperos, sugiere la existencia de un punto caliente, asociado a una pluma del manto (Figura 4b), con lo cual se explicaría la presencia de lavas o montes marinos derivados de magmas más alcalinos (Freydier et al., 1996; 2000).

Otro modelo que contempla al terreno Guerrero como una porción alóctona, fue propuesto por Dickinson y Lawton (2001). En su interpretación, sugieren una placa oceánica como el sustrato de la cuenca de Arperos, la cual separa al arco Guerrero del margen continental (Figura 4c). Esta placa oceánica, llamada placa Mezcalera, tendría subducción con doble vergencia; la subducción hacia el occidente, bajo la placa del Pacífico, resultaría en el desarrollo del arco Guerrero, mientras que la subducción bajo el continente daría lugar a magmatismo de margen continental, durante todo el Jurásico. El consumo de la placa Mezcalera, permitiría la acreción del arco Guerrero al margen continental paleo-Pacífico en el Cretácico Temprano, al mismo tiempo que la placa del Pacífico tendría subducción con vergencia al este, bajo el margen continental.

El terreno Guerrero también ha sido interpretado como un sistema de arcos intra-oceánicos, periféricos al margen pacífico mexicano (Figura 4d) (Talavera-Mendoza y Guerrero-Suástegui, 2000; Centeno-García, 2005; Talavera-Mendoza et al., 2007). El modelo multi-arco incluye cuatro arcos construidos sobre basamentos heterogéneos, separados por cuencas oceánicas y no necesariamente con relación directa al margen continental. De este a oeste, el arco Taxco fue construido directamente sobre el margen continental y estuvo separado del arco Teloloapan por una cuenca con sustrato oceánico. Ambos márgenes de esta cuenca estarían en subducción. La

subducción al este estaría relacionada al arco Taxco y la subducción al oeste resultaría en el desarrollo del arco Teloloapan. A su vez, el arco Teloloapan estaría separado del arco Zihuatanejo por una amplia cuenca, la cuenca de Huetamo (Talavera-Mendoza y Guerrero-Suástegui, 2000), con posible sustrato oceánico al este y continental al oeste. Bajo el margen oeste, la subducción de la placa del Pacífico daría lugar al arco de Zihuatanejo. El arco Zihuatanejo y la cuenca de Huetamo estarían desconectadas sedimentológicamente del continente. Posteriormente, cuando la cuenca ubicada entre los arcos Taxco y Teloloapan se cierra, se crea una zona nueva zona de subducción con vergencia al este y se desarrolla el arco Arcelia, aparentemente el más joven en sus sucesiones estratigráficas.

2.2.2. Escenario para-autóctono

Otros modelos tectónicos, en los cuales la naturaleza del basamento sobre el cual sobreyacen las sucesiones de arco intra-oceánicas es considerada una parte clave en la evolución del margen paleo-Pacífico, sugieren un origen más complejo ligado al margen continental (Elías-Herrera y Ortega-Gutiérrez, 1998, Elías-Herrera et al., 2000; Cabral-Cano et al., 2000; Centeno-García et al., 2008; 2011; Martini et al., 2011; 2012; 2014). En este escenario, la placa de Farallón con subducción hacia el este, bajo el flanco occidental de Norteamérica, habría sido la causa del desarrollo de un arco, inicialmente sobre el continente (Figura 4e). El eventual retroceso de la placa de Farallón podría haber controlado la migración del arco hacia el oeste y, por otro lado, haber iniciado un proceso de adelgazamiento y de extensión en la placa sobreyacente, tanto en el arco como en la zona de tras-arco, en este caso, la cuenca de Arperos. La extensión progresiva de la cuenca generó expansión del piso oceánico, mientras que el arco se alejaba del dominio continental, al tiempo que la sedimentación con afinidad oceánica fue dominante. En este contexto, la cuenca de Arperos actuó como una barrera sedimentológica entre el continente y el arco, pues los detritos procedentes de fuentes continentales solo influyeron en la margen noreste de la cuenca, mientras que su margen occidental tuvo una mayor influencia de fuentes volcanogénicas. A su vez, en el sustrato de esta cuenca se llegó a desarrollar, parcialmente, corteza oceánica, en tanto que las sucesiones del arco fueron depositadas sobre un basamento metasedimentario de origen continental (Elías-Herrera y Ortega-Gutiérrez, 1998; Martini et al., 2012; Valencia et al., 2013). Un posible cambio en el ángulo de subducción pudo haber cesado la expansión en la cuenca y subsecuentemente haber provocado el cierre de ésta y la progresiva acreción del arco Guerrero al continente, dejando una zona de sutura. El terreno Guerrero entonces estaría conformado por las sucesiones submarinas de arco depositadas sobre un basamento de origen continental, mientras que las sucesiones de la cuenca de tras-arco habrían sido depositadas parcialmente sobre piso oceánico (Martini et al., 2011; 2012; 2014).

2.3. Basamento pre-Jurásico Tardío del terreno Guerrero

Es de suma importancia establecer la relación entre las sucesiones del Jurásico Tardío-Cretácico Temprano, del arco Guerrero y las rocas sobre las cuales fue construido dicho arco volcánico. La naturaleza, composición y características tectono-estratigráficas del "*basamento*" pre-Jurásico Tardío son fundamentales para determinar el origen y la evolución geológica del terreno Guerrero y su posible conexión con el margen continental paleo-Pacífico mexicano, al cual se acrecionó. Varias exposiciones de rocas pre-Jurásico Tardío han sido reportadas a través de la superficie que ocupa el terreno Guerrero (Figura 3), la mayor parte de ellas muestran deformación previa al desarrollo del arco volcánico. De norte a sur, se encuentran: el Grupo Río Fuerte y Gneis Francisco, Formación Zacatecas, el Complejo Arteaga (Esquisto Yelapa), Complejo Placeres, Complejo Las Ollas, Esquisto Tejupilco y algunos intrusivos jurásicos.

Sector norte

2.3.1 Grupo Río Fuerte

El Grupo Río Fuerte (Mullan, 1978), incluye a las rocas más viejas sobre las cuales sobreyacen las sucesiones asociadas al arco Jurásico tardío-Cretácico Temprano del extremo norte del terreno Guerrero, que corresponde con el subterreno Tahue (Sedlock et al., 1993; Centeno-García, 2005). Éste consiste en rocas metasedimentarias y metavolcánicas en facies esquistos verdes, de edad paleozoica. El Grupo Río Fuerte incluye a las formaciones Río Fuerte, Corral Falso y Topaco. La Formación Topaco consiste, hacia la base, de meta-conglomerado con clastos de rocas volcánicas y metasedimentarias, rocas piroclásticas, lavas riolíticas y lavas andesíticas (Mullan, 1978; Vega-Granillo et al., 2011). Hacia la parte superior de la formación hay tobas andesíticas principalmente y conglomerado. Las formaciones Corral Falso y Río Fuerte consisten en una secuencia monótona de lutitas grafíticas, limolitas finamente laminadas y areniscas de grano fino (Mullan, 1978). Debido a que las características litológicas son muy similares entre estas dos formaciones, Vega-Granillo et al. (2008; 2011) las agruparon en una sola unidad y la asignaron a la Formación Río Fuerte. Aunque el Grupo Río Fuerte había sido considerado de edad Paleozoica, fechamientos por U-Pb en zircones de rocas detríticas y de rocas ígneas intrusivas (Vega-Granillo et al., 2008) indican que solo la Formación Río Fuerte es

de edad Ordovícico Medio-Tardío (508-453 Ma). Esta unidad es intrusionada por el granito Cubampo de 151 ± 3 Ma y diques-*sills* aplíticos (considerados como parte de la Formación Topaco por Mullan, 1978), que reportan una edad de 155 ± 4 Ma (Figura 3a). Por otro lado, la Formación Topaco contiene, en su parte basal, conglomerados con clastos de granito, en los cuales se obtuvo una edad de 151 ± 4 Ma, por lo que esta formación fue asignada al Jurásico Tardío? (Vega-Granillo et al., 2008) y no al Paleozoico como había sido considerada en estudios previos.

2.3.2. Gneis Francisco

El Gneis Francisco aflora en la sierra de Francisco, en la región de El Fuerte Sinaloa (Figura 3a). Consiste en una mezcla bandeada de gneis félsico y gneis máfico y algo de gneis pelítico, con migmatización. En ocasiones, los intervalos de gneis máfico llegan a ser ricos en epidota (Mullan, 1978; Keppie et al., 2006a). Petrográficamente son descritos como una suite bimodal de gneis de anfibolita y gneis de biotita. Sin embargo, el gneis de anfibolita puede contener algo de biotita y el gneis de biotita puede contener algo de anfíbol, o bien, puede haber proporciones transicionales entre ambos gneises. Geoquímicamente, son rocas compatibles con un origen volcánico. Las facies de anfibolita se interpretan como toleítas relacionadas a rifts, con interacción con fluidos de subducción, mientras que las facies félsicas están asociadas a riolitas de rift ejectadas en un ambiente de supra-subducción. El protolito de este gneis ha sido interpretado ya sea como una sucesión volcanosedimentaria intercalada con flujos félsicos y máficos o bien como una unidad sedimentaria intrusionada por diques máficos y félsicos (Keppie et al., 2006a). Geocronología U-Pb en rocas félsicas (Keppie et al., 2006a) entregaron una edad de 206 Ma considerada como la edad del protolito, mientras que la edad de un evento metamórfico, con base en edades U-Pb en titanitas, se propone que ocurrió en el Cretácico (112-98 Ma). Sin embargo, datos recientes de geocronología U-Pb en zircones, en rocas del Gneis Francisco (Vega-Granillo et al., 2013), indican que los intervalos sedimentarios de este Gneis tienen una edad máxima de depósito de 509 ± 29 Ma (Cámbrico Medio), mientras que los intervalos ígneos entregan una edad de cristalización bastante más joven, de 248 ± 28 Ma (Triásico). Por su parte, una fracción de anfibolita fechada por K-Ar en anfibol, dio una edad de 67 ± 5 Ma, lo cual podría reflejar pérdida de Ar y por lo tanto se interpreta como la edad de enfriamiento (Vega-Granillo et al., 2013).

Sector central

2.3.3. Formación Zacatecas

Hacia la parte central del terreno Guerrero, rocas del pre-Jurásico Tardío que constituyen el basamento del las sucesiones asociadas al arco constan de dos unidades: una unidad predominantemente siliciclástica del Triásico Superior y otra volcaniclástica de carácter continental del Jurásico Medio (Figura 3d) (Centeno-García et al., 1993; Centeno-García y Silva-Romo, 1997; Silva-Romo et al., 2000; Centeno-García, 2005). Los depósitos siliciclásticos, que son de origen continental pero que fueron depositados en un medio marino, son referidos en la literatura con diferentes nombres (Formación Taray, Formación Zacatecas, Filita La Pimienta, Formación El Bote o Formación La Ballena Ranson et al., 1982; Monod y Calvet, 1992; Silva-Romo et al., 2000). Dado que estas rocas fueron descritas principalmente en el área de Zacatecas (Burckhardt, 1906; Gutiérrez-Amador, 1908; McGehee, 1976; Ranson et al., 1982; Monod y Calvet, 1992; Escalona-Alcázar et al., 2009; 2014) y es sobre esta área donde se tienen las exposiciones más orientales del terreno Guerrero, al menos en esta zona serán referidas como Formación Zacatecas. Como otras unidades triásicas del centro y suroeste de México (Complejo El Chilar, Complejo Arteaga, Formación El Alamar y Formación La Ballena), la Formación Zacatecas también ha sido considerada como una porción de un sistema de abanicos submarinos (abanico Potosino y abanico Tolimán), formados en el margen oeste de Pangea ecuatorial a finales del Triásico (Centeno-García y Silva Romo, 1997; Silva-Romo et al., 2000; Barboza-Gudiño et al., 2008; 2010; Ortega-Flores et al., 2014). En este ambiente submarino, detritos siliciclásticos de procedencia continental, posiblemente derivados de fuentes cratónicas, fueron depositados sobre una corteza oceánica (Centeno-García et al., 1993; Centeno-García y Silva-Romo, 1997; Centeno-García et al., 2008). Esto se ha sugerido debido a que se han encontrado bloques exóticos de pedernal con radiolarios y lavas almohadilladas dentro de lo que parece ser un prisma de acreción (Centeno-García et al., 1993; Centeno-García et al., 2005; Centeno-García et al., 2008) de un arco del Jurásico Temprano. Varias formaciones triásicas que integran este sistema de abanicos submarinos fueron involucradas en este prisma de acreción, donde forman parte de la matriz de un melange. Adicionalmente, se han documentado dos fases de deformación en las unidades del pre-Jurásico Tardío (Ranson et al., 1982; Centeno-García y Silva-Romo, 1997; Centeno-García et al., 2008; Ortega-Flores et al., 2016), previas al depósito de las sucesiones del arco del Jurásico Tardío-Cretácico Temprano y que podrían estar relacionadas a la acreción de este arco del Jurásico Temprano (Centeno-García et al., 2008).

La Formación Zacatecas tiene pequeñas exposiciones al oeste de la Ciudad de Zacatecas y también ha sido cortada por barrenos al occidente de esta localidad (Yta, 2003). Consiste en una

sucesión turbidítica que alterna areniscas ricas en cuarzo, de grano fino y medio, con lutitas finamente laminadas. Esta sucesión siliciclástica puede incluir lavas almohadilladas y algunos lentes de caliza (Ranson et al., 1982; Monod y Calvet, 1992; Centeno-García y Silva-Romo, 1997), aunque el contacto entre ellas es por cizalla. Las rocas de la Formación Zacatecas registran metamorfismo de bajo grado en facies esquistos verdes, desarrollando una foliación penetrativa. Los intervalos de fílita muestran aspecto sedoso debido al desarrollo de sericita y muscovita, mientras que las capas de cuarcita muestran foliación espaciada. Se han reportado fragmentos de fósiles como bivalvos y crinoides en las porciones arenosas de esta formación (McGehee, 1976). Por su parte, Burckhardt (1906) colectó fósiles de amonitas, con base a lo cual, le asigno a esta formación una edad del Triásico Tardío. Geoquímicamente las lavas incluidas en la Formación Zacatecas tienen patrones de tierras raras similares a aquellos basaltos tipo N-MORB o basaltos de arcos de isla primitivos. Isótopos de Nd en estas lavas dan valores positivos ENd = +6.81 a +7.45. Las rocas siliciclásticas entregan un valor ENd negativo de -7.08, lo cual indica la procedencia de una fuente más evolucionada (Centeno-García y Silva-Romo, 1997).

2.3.4. Complejo Arteaga

El Complejo Arteaga es considerado como el basamento que subyace en gran parte a las sucesiones del terreno Guerrero, sobre todo en el subterreno Zihuatanejo (Figura 3c). El Complejo Arteaga, inicialmente descrito como Esquisto Arteaga o como una secuencia volcanosedimentaria metamorfizada del Triásico (Campa et al., 1982), consiste en varias unidades litológicas (Centeno-García, 1994; Centeno-García et al., 2003), con cambios laterales de facies, muy deformadas y metamorfizadas. Rocas siliciclásticas con características petrográficas y geocronológicas muy similares, tales como Esquisto Río Placeres, el Esquisto Tejupilco y el Esquisto Yelapa, han sido consideradas como parte de este mismo complejo (Centeno-García et al., 2008; Valencia et al., 2013). Las unidades incluidas en el Complejo Arteaga y algunas características geoquímicas se describen a continuación de acuerdo con Centeno-García et al. (1993); Centeno-García, (1994) y Centeno-García et al. (2003).

Litofacies Varales

Esta unidad consiste en una secuencia rítmica de lutitas negras y areniscas predominantemente de grano fino a medio, ricas en cuarzo, con ocasionales estratos muy delgados de pedernal negro, intercalado con rocas de la litofacies Jaltomate. Escasos lentes de conglomerado están intercalados en esta sucesión. Los intervalos de arenisca a veces llegan a ser predominantes sobre

las lutitas, pero también hay intervalos donde las lutitas son más abundantes que las areniscas, aunque esto último es menos común. Esta litofacies muestra estructuras como estratificación con gradación normal, escasos pliegues sin-sedimentarios, estratificación cruzada y autobrechas originadas por corrientes de turbidez. Contiene también restos de carbón y microfósiles como radiolarios y foraminíferos, frecuentemente recristalizados. Algunos olistolitos calcáreos recristalizados se encuentran en forma de bloques dentro de esta litofacies. De acuerdo a la composición modal de las areniscas de la litofacies Varales, se ha considerado que derivan de un cinturón de pliegues y cabalgaduras levantado o bien de un cinturón de sutura por colisión, con cierta influencia de fuentes cratónicas. La edad máxima de depósito de la litofacies Varales obtenida a partir de fechamientos en zircones detríticos es de aproximadamente 260 Ma, aunque puede extenderse hasta el Triásico Tardío. Valores iniciales de ENd, en areniscas y lutitas de esta litofacies, varían de -6.2 a -7.2, indicando que fueron derivadas de una fuente continental evolucionada.

Litofacies Jaltomate

Esta litofacies incluye lutitas y areniscas ricas en matriz, de grano muy fino y de color verdoso, intercaladas con ocasionales horizontes de caliza. Tiene como componentes primarios minerales arcillosos, feldespato potásico, plagioclasa, calcita y cuarzo. Cuando los contactos no están cizallados, esta litofacies cambia transicionalmente a la litofacies Varales. Esta litofacies está intensamente deformada, por lo que la foliación puede estar bien desarrollada. Presenta metamorfísmo en facies esquistos verdes y contiene minerales secundarios como clorita, epidota, sericita y actinolita. Dado a su estructura en forma de bloques, esta litofacies tiene un espesor muy variable de pocos metros hasta 900 metros.

Litofacies Charapo

Consiste básicamente en lavas almohadilladas tholeíiticas, con escaso olivino y bloques de lava masiva de hasta 100 metros de espesor. Minerales secundarios, derivados de la alteración y metamorfismo, son epidota, clorita y leucóxeno. Los intersticios de las lavas pueden estar rellenos de pedernal o calcita. Las firmas isotópicas de las lavas almohadilladas tienen afinidad con lavas MORB, mientras que los patrones de tierras raras indican lavas tipo N-MORB. Las lavas afaníticas y diabasas tienen patrones de REE más abundantes que las lavas almohadilladas, pero aún así son afines con lavas MORB. Los valores iniciales de ENd varían de +8.6 a +10.9, cercanas a N-MORB.

Litofacies Las Juntas

Esta litofacies consiste en cuerpos aislados de intrusivos gabroicos-dioríticos foliados, su tamaño puede variar de decenas de metros hasta 800 metros. Su mineralogía consiste en anfibol, plagioclasa, cuarzo, titanita y óxidos. Estos intrusivos muestran deformación intensa, metamorfismo y foliación bien desarrollada. Los minerales asociados con el metamorfismo o alteración hidrotermal son hornblenda, esfena, tremolita y actinolita. En algunas partes el metamorfismo es más alto y hay serpentinización hasta en un 80% del total de la roca. La abundancia de REE en estos gabros, es muy baja. Muestran empobrecimiento en LREE (light rare earth elements, por sus siglas en inglés) y patrones planos de HREE (heavy rare earth elements, por sus siglas en inglés). Los valores iniciales de ENd son positivos, de +7.2 a +7.3. Una edad de 180 \pm 6 Ma fue obtenida por el método U-Pb.

Litofacies Bocana

Consiste en bloques de pedernal verde claro, caliza y granito foliado. Los bloques de pedernal pueden llegar a tener hasta 50 metros de diámetro y frecuentemente se encuentran cizallados, plegados y fracturados. Esta litofacies se intercala con la litofacies Varales. Radiolarios encontrados en estos pedernales indican una posible edad mesozoica. El patrón de REE sugiere afinidad con la corteza continental superior y un origen no volcánico.

2.3.5. Esquisto Yalepa

En el área de Puerto Vallarta, cerca de la localidad de Yelapa (Figura 3), Valencia et al. (2013) reportaron una sucesión de esquistos de mica, cuarzofeldespáticos cuya edad máxima de depósito fue obtenida a partir del fechamiento de zircones por el método U-Pb en 246.6 \pm 7.2 Ma. Esta unidad metamórfica es comparada composicional y cronológicamente con las rocas del Complejo Arteaga y es considerada como el basamento del Bloque de Jalisco (Bissig et al., 2008; Valencia et al., 2013).

Sector sur

2.3.6. Complejo Las Ollas

El complejo Las Ollas aflora entre las localidades de Las Ollas y Camalotito, a lo largo de la costa del estado de Guerrero. Consiste en bloques de metabasalto, metadolerita y metagabro, volcánicos ultramáficos, anfibolita, esquistos azules, caliza, pedernal y cuarcita dentro de una matriz turbidítica rica en cuarzo o una matriz serpentinizada (Talavera-Mendoza et al., 1995;

Talavera-Mendoza, 2000; Talavera-Mendoza y Guerrero-Suástegui, 2000). Los bloques varían de en sus dimensiones desde 10 centímetros hasta 250 metros de diámetro. Este complejo, el cual se ha interpretado como un complejo de subducción, cuya polaridad es considerada hacia el este (Talavera-Mendoza et al., 1995) se encuentra muy deformado y está formado por escamas tectónicas limitadas por fallas, donde los bloques exóticos son envueltos en una matriz flyshoide altamente cizallada, en estructura de *melange* (Talavera-Mendoza et al., 1995; Centeno-García et al., 2003). Algunos bloques con asociación mineral anfíbol azul-lawsonita- tremolita- clorita con Mg- mica blanca- albita-cuarzo, fueron recristalizados en facies de esquistos azules bajo condiciones de alta presión y baja temperatura, durante el proceso de subducción. Los gabros del Complejo Las Ollas varían desde acumulados gabroicos hasta gabros estratificados y gabros masivos. La mayoría de los bloques ígneos y aquellos metamórficos de protolitos ígneos, muestran características químicas isotópicas de toleitas de arcos de islas; tienen bajos contenidos de TiO₂ y Zr, alta relación (LFSE/HFSE)_N y baja relación La_N/Yb_N. Valores de ENd son positivos y varían de +7.9 a +8.0. La edad obtenida para algunos metagabros por los métodos $^{40}\text{Ar-}^{39}\text{Ar}$ y K-Ar varía de 112 \pm 3 a 96.3 \pm 2.5 Ma. Las turbiditas que forman la matriz del Complejo Las Ollas son areniscas de grano medio, ricas en cuarzo y muscovita detrítica, son derivadas posiblemente de un cinturón orogénico o de un basamento cristalino (Talavera-Mendoza et al., 2007). Zircones detríticos de esta unidad, fechados por el método U-Pb, entregan una edad máxima de depósito del Devónico Tardío (375 Ma).

2.3.7. Complejo Placeres

Esta unidad, referida como Formación Río Placeres por Pantoja-Alor (1990) o como Formación Pinzán Morado (Campa y Ramírez, 1979; Talavera-Mendoza y Guerrero-Suástegui, 2000), está expuesta al sur de la ciudad de Altamirano, es una sucesión siliciclástica turbidítica que constituye el basamento del subterreno Huetamo (Centeno-García, 1994). Sus características litológicas son muy similares a la litofacies Varales del Complejo Arteaga. Consiste en lutitas grises a moradas, interestratificadas con areniscas ricas en cuarzo y pedernal negro, con escasas intercalaciones de tobas verdosas y calizas negras recristalizadas. Contiene bloques de lavas basálticas masivas y caliza recristalizada. Esta sucesión turbidítica se encuentra altamente deformada y cizallada. Así mismo presenta metamorfismo en facies esquistos verdes y foliación bien desarrollada (Centeno-García, 1994; Martini et al., 2009). Estas rocas han sido correlacionadas con la litofacies Varales del Complejo Arteaga y con el esquisto que aflora en el núcleo del anticlinal de Tzitzio (Talavera-Mendoza et al., 2007; Centeno-García et al., 2008). Talavera-Mendoza et al. (2007) y Martini et al. (2009) reportaron una edad máxima de depósito del Triásico (247-257 Ma, respectivamente) para las metaturbiditas del área de Tzitzio, obtenida por geocronología U-Pb en zircones detríticos. Las características petrográficas de las turbiditas del Complejo Placeres sugieren que fueron derivadas de un basamento levantado, con poca influencia de fuentes volcánicas félsicas (Talavera-Mendoza et al., 2007).

2.3.8. Esquisto Tejupilco

Rocas pre-cretácicas que afloran principalmente al oriente y norte de la localidad de Tejupilco (Figuras 3e, 3f), fueron descritas como una secuencia, de más de 2000 m de espesor, de rocas metamórficas en facies de esquistos verdes de protolito sedimentario predominantemente y de rocas volcánicas. La fracción metasedimentaria consiste de filitas y esquistos carbonosos, filitas y esquistos sericíticos, pizarra negra, cuarcita y escasos horizontes de caliza arcillosa recristalizada y algunos bloques de cuarcita (Elías-Herrera y Sánchez-Zavala, 1990; Elías-Herrera y Ortega Gutiérrez, 1998; Elías-Herrera et al., 2000; Elías-Herrera, 2004). La parte metavolcánica incluye cuerpos lenticulares, que varían en tamaño de un metro a decenas de metros, de esquisto verde (metavolcaniclásticos basálticos, andesíticos y dacíticos) y metatoba riolítica. El espesor de paquetes metavolcánicos se incrementa hacia la cima de esta sucesión. Las relaciones de contacto de la base del Esquisto Tejupilco no afloran, mientras que se encuentra sobreyacido, estructuralmente, por rocas volcanosedimentarias del arco Guerrero o por rocas cenozoicas. Los intervalos metasedimentarios fueron correlacionados con el Esquisto Taxco, que afloran en los alrededores de la ciudad de Taxco, mientras que los metavolcánicos fueron considerados como parte del esquisto verde-Taxco Viejo (Fries, 1960), que está expuesto al oriente de la localidad Taxco Viejo. Sin embargo, fechamientos en zircones por el método U-Pb, en los esquistos Taxco y Taxco El Viejo, indican que la edad del protolito de estas rocas varía entre 137.1 \pm 0.9 Ma y 135.6 \pm 1.4 Ma (Campa-Uranga et al., 2012). Una edad de 189 \pm 1.9 Ma, mediante el método U-Pb, fue obtenida en zircones de un granito que intrusiona al Esquisto Tejupilco. Esta edad fue interpretada como edad de cristalización. Con base en estas relaciones, se infirió una edad del Triásico Tardío-Jurásico Temprano? para el Esquisto Tejupilco (Elías-Herrera et al., 2000). Por su parte Martini et al. (2009), con base en geocronología U-Pb en zircones, reportan una edad máxima de depósito del Pérmico Tardío (257 Ma) en los metasedimentos del Esquisto Tejupilco. Las características geoquímicas de los metavolcánicos del Esquisto Tejupilco muestran un enriquecimiento en LREE, de naturaleza calci-alcalina, que junto con un valor de ENd= -2.5 en las meta-riolitas, indican afinidad con margen continental activa o un arco de islas evolucionado, con substrato continental (Elías-Herrera y Ortega-Gutiérrez, 1998; Elías-Herrera, 2004).

2.3.9. Intrusivos jurásicos

Varios intrusivos han sido reportados principalmente al oeste del terreno Guerrero (Figura 3), los cuales se encuentran distribuidos desde la península de Baja California hasta el suroeste mexicano. La composición de estas rocas es predominantemente granodiorítica a granítica (Schaaf et al., 2000; Pérez-Venzor, 2012; Cuéllar-Cárdenas et al., 2012; Pompa-Mera et al., 2013; Valencia et al., 2013) y comúnmente están afectados por metamorfismo o presentan deformación. La edad de cristalización de estos intrusivos, obtenida a partir del fechamiento de zircones por el método U-Pb, varía entre ~180 a ~155 Ma (Elías-Herrera et al., 2000; Valencia et al., 2006; Centeno-García et al., 2011; Cuéllar-Cárdenas et al., 2012; Pompa-Mera et al., 2013; Valencia et al., 2013).

2.4 Marco geológico de la cuenca de Arperos

La cuenca de Arperos es considerada como un elemento tectónico interpuesta entre el arco volcánico Guerrero y el margen continental paleo-pacífico mexicano. Como algunos autores lo han sugerido (Elías-Herrera y Ortega Gutiérrez, 1998; Elías-Herrera et al., 2000; Martni et al., 2011; 2012; 2014), las heterogeneidades en la composición de las sucesiones volcanosedimentarias de la cuenca de Arperos podrían ser mejor explicadas si ésta última es considerada como una cuenca de tras-arco. Datos petrográficos, geoquímicos y estructurales en estudios recientes (Centeno-García et al., 2008; Martni et al., 2009; 2010; 2011; 2012; 2014), parecen tener consistencia con un modelo de cuenca de tras-arco para la cuenca de Arperos (Elías-Herrera y Ortega-Gutiérrez, 1998) y sugieren la evolución compleja de un solo arco (Centeno-García et al., 2008; 2011). Tenga un origen ligado al margen continental paleo-Pacífico mexicano o una historia diferente, lo cierto es que tanto la apertura como el cierre de la cuenca de Arperos tuvo implicaciones importantes en la historia de sedimentación del terreno Guerrero.

2.4.1 Estratigrafía general de la cuenca de Arperos

La acreción del terreno Guerrero al margen continental mexicano, a finales del Cretácico Temprano, está relacionada directamente con el cierre de la cuenca de Arperos. Remanentes de rocas intra-oceánicas de esta cuenca están expuestos, de manera aislada, a lo largo de una zona de sutura, desde el norte del estado de Sinaloa hasta el suroeste del estado de Guerrero (Tardy et al., 1992; 1994, Centeno-García et al., 1993; Freydier et al 1996; 2000; Dickinson y Lawton, 2001). La cuenca de Arperos está constituida por sedimentación pelágica y rocas ígneas máficas

y ultramáficas predominantemente (Ortiz-Hernández et al., 2003). En su margen suroeste los detritos tienen afinidad con el arco Guerrero, mientras que su lado noreste, se caracteriza por tener influencia del margen continental (Freydier et al., 1996; Martini et al., 2011; 2014). De norte a sur, estas exposiciones de la cuenca de Arperos, se describen brevemente a continuación.

El extremo norte de la cuenca de Arperos fue mayormente cubierto por rocas volcánicas cenozoicas. Sin embargo, se han reportado, al norte del subterreno Tahue, en la localidad de Porohui (Figura 3), aislados afloramientos de rocas considerados incialmente parte de una secuencia ofiolítica de la cuenca de Arperos (Ortega-Gutiérrez et al., 1979; Lapierre et al., 1992; Tardy et al., 1994). Las sucesiones vocanoclásticas de esta área incluyen basaltos, brechas, hialoclastitas y tobas, sobreyacidas por una sucesión de carbonatos pelágicos e intrusionadas por gabros y doleritas. De acuerdo con Freydier et al. (1995) y Gastil et al. (1999), las lavas muestran afinidades geoquímicas de basaltos MORB y OIB, pero las rocas volcánicas de esta sucesión tienen un carácter geoquímico más evolucionado. Debido a las características geoquímicas de estas rocas ígneas y su realación estratigráfica con las sucesiones sedimentarias pelágicas y con el basamento pre-jurásico, al cual sobreyacen, algunos autores (Centeno-García et al., 2008), señalan que estas sucesiones volcanosedimentarias no son consistentes con un ambiente tectónico de cuenca y más bien corresponderían con sucesiones de arco.

Hacia la parte central de la zona de sutura, en el área entre las localidades de Fresnillo y Zacatecas, rocas volcano-plutónicas y sedimentarias de composición máfica están expuestas en afloramientos aislados (Figura 3). Este segmento de la zona de sutura es considerado parte del subterreno Zihuatanejo (Centeno-García, 2005; Centeno-García et al., 2008; 2011). En la localidad de la Borda, al norte de la ciudad de Zacatecas, esta sucesión consiste en rocas intrusivas dioríticas, sills y diques máficos, lavas de estructura masiva y lavas almohadilladas de composición basáltica y andesítica, las cuales se intercalan con areniscas volcánicas de grano fino, toba, pedernal verde y lutitas negras con pedernal (Centeno-García y Silva Romo, 1997; Escalona-Alcázar et al., 2009; 2014). Una secuencia similar, asignada a la Formación Chilitos (de Cserna, 1976) ha sido reportada en la localidad de Fresnillo, la cual consiste en lavas almohadilladas basálticas y andesíticas intercaladas con depósitos tipo *flysh* y pedernal con radiolarios. Así mismo, hacia la localidad El Saucito (Figura 3), consiste de lavas basálticas masivas y almohadilladas intercaladas calizas pelágicas y pedernal con radiolarios.

Varios autores (Monod y Calvet, 1992; Tardy et al., 1992; Lapierre et al., 1992, Freydier et al., 1996) consideraron a las rocas de la región de Zacatecas como una sucesión oceánica con un mismo origen que las rocas del área de Guanajuato. La zona de la sierra de Guanajuato ha sido incluida en el subterreno Guanajuato (Centeno García, 2005; Centeno-García et al., 2008; 2011). En esta área están expuestas las unidades representativas de la cuenca de Arperos, las cuales han sido descritas en detalle por Martini et al. (2011; 2012). Las sucesiones sedimentarias están constituidas por turbiditas cuarzosas de la Formación La Esperanza, las cuales cambian gradualmente a caliza micrítica de la Formación Valenciana. Las unidades volcanosedimentarias consisten en lavas almohadilladas, hialoclastitas, radiolaritas y lutitas con pedernal de la Formación Arperos y turbiditas volcanoclásticas de la Formación Cuestecita (Martini et al., 2011; 2012).

En el extremo sur de la zona de sutura (Figura 3), exposiciones representativas de la cuenca de Arperos han sido reportadas al suroeste de Valle de Bravo y al oeste de la localidad de Tejupilco (Elías-Herrera y Sánchez-Zavala, 1990; Elías-Herrera et al., 2000; Talavera-Mendoza y Guerrero-Suástegui, 2000; Freydier et al., 1996; Martini et al., 2014), región que está incluida en el subterreno Arcelia-Palmar Chico (Talavera-Mendoza et al., 1993; Talavera-Mendoza y Guerrero-Suástegui, 2000). Las rocas que representan a la cuenca de Arperos consisten en dos ensambles petrotectónicos referidos como ensamble Santo Tomás-Tejupilco y ensamble Arcelia (Martini et al 2014). El ensamble Santo Tomás-Tejupilco consiste en areniscas ricas en cuarzo, mientras que el ensamble Arcelia incluye lavas almohadilladas y masivas de composición basáltica, brechas basálticas y hialoclastitas, las cuales son sobreyacidas concordantemente por areniscas volcaniclásticas y guerrero-Suástegui, 2000; Martini et al., 2014). Las lavas basálticas almohadilladas del área de Arcelia-Palmar Chico fueron fechadas por el método ⁴⁰Ar-³⁹Ar y se obtuvieron edades de 103.1 ± 1.3 y 93.6 ± 0.6 Ma (Elías-Herrera et al., 2000).

2.4.2 Geoquímica de las sucesiones cretácicas de la cuenca de Arperos

En la localidad de Porohui, Freydier et al. (1996) determinaron que las lavas basálticas de esta región sugieren una mezcla de fuentes del manto, debido a que la relación Zr/Nb varía de 12.5 a 18. De acuerdo con Wilson (1989), la relación Zr/Nb en basaltos N-MORB debe ser mayor a 30, mientras que la relación Zr/Nb en los basaltos tipo OIB es menor de 10. De esta manera, las lavas basálticas de Porohui estarían indicando cierta influencia de N-MORB (Freydier et al., 2000). Sin embargo, la isotopía de Nd_(T=110) entrega valores positivos (+7), lo cual corresponde

con el campo de los OIB (Ocean Island Basalts). Por su parte Gastil et al. (1999), con base en análisis de elementos mayores y en los patrones de tierras raras, sugieren que los basaltos de esta zona son típicos MORB.

Respecto al área de Guanajuato, las relaciones isotópicas de Sr son más altas en los basaltos almohadillados y en las doleritas que en los gabros y diques doleríticos. Una vez más, las relaciones isotópicas constantes de Nd respecto a las relaciones isotópicas variables de Sr, sugieren que hubo influencia de sedimentos en las fuentes del magma de las rocas de Guanajuato o que hubo una contaminación en el magma, por la introducción de agua marina durante la subducción. Adicionalmente, las relaciones isotópicas de Nd en lavas y doleritas están muy cercanas entre sí, lo que indica que estas dos rocas son cogenéticas. En la localidad tipo Arperos, Freydier et al. (1996; 2000), obtuvieron concentraciones moderadas de elementos mayores (MgO, Cr y Ni) y altas concentraciones de Ti (Ortiz-Hernández et al, 2003), por lo cual las asignan a lavas diferenciadas. Las lavas de la localidad tipo Arperos tienen relación Zr/Nb menor a 10 y ENd_(T=110)+6, como lavas tipo OIB, mientras que aquellas de la localidad de Corrales, 30 km al SE de Arperos, tienen una relación Zr/Nb mayor a 30 y ENd(T=110) entre +8 y +11, características de lavas N-MORB. Estos mismos autores, en la química de sedimentos de la localidad tipo Arperos, encuentran que hacia la base de las sucesiones son químicamente similares a los basaltos OIT (Oceanic Island Tholeiites), con ENd(T=110) de +7. En sedimentos interestratificados con lavas almohadilladas, en la parte media de las sucesiones volcanosedimentarias, ENd (T=110) es de ~+9, mientras que hacia la parte superior de las sucesiones de Arperos, ENd (T=110) es de +1.3, lo cual podría explicarse en la evolución de esta cuenca con el tiempo (Freydier et al., 2000).

Hacia el extremo sur de la cuenca de Arperos, en el área Arcelia-Palmar Chico, los basaltos y doleritas muestran afinidad con basaltos tipo OIA (Oceanic Island Alkali), aunque algunas lavas también se aproximan a basaltos tipo OIT (Freydier et al., 1996). La relación Zr/Nb es de 14.2, lo cual indica una mezcla de fuentes del magma. El valor de $\text{ENd}_{(T=110)}$ es positivo (+6 a +6.9) para algunas lavas toleíticas y grafican en el campo de los basaltos tipo OIB (Talavera-Mendoza y Guerrero-Suástegui, 2000). Los análisis químicos de unas lutitas tobáceas, tomadas en la base de la secuencia volcanosedimentaria del área de Valle de Bravo, entregan anomalías positivas de Ce, bajos contenidos de Th y valores de $\text{ENd}_{(T=110)}$ de +1 a +9. Estas características sugieren un cambio en las fuentes de aporte de sedimentos, de más primitivas a más evolucionadas (Freydier et al., 2000). Por su parte, Elías-Herrera y Ortega-Gutiérrez (1998) determinaron que las rocas de
la secuencia volcánica correspondiente a la cuenca de Arperos, muestran afinidad con basaltos tipo OIA, con variaciones a IAT (Island Arc Tholeiites), mientras que un diagrama Zr/Y *vs.* Zr, quedan dentro del campo de WPB (Within Plate Basalts). Señala, además, que con base en la relación Zr/Nb, mayor a 10, el ambiente tectónico en que se desarrollaron estas rocas, tendría más afinidad con una cuenca de tras-arco, donde material enriquecido del manto y el manto empobrecido pueden tener distintos grados de fusión parcial (Elías-Herrera y Ortega-Gutiérrez, 1998) y no con una cuenca oceánica con una dorsal asísmica como lo indican Freydier et al. (1996; 2000).

2.5. Terrenos adyacentes al terreno Guerrero

Los bloques corticales a los cuales se acrecionó el terreno Guerrero, muestran historias tanto tectónicas como sedimentarias distintas a las sucesiones de arco del terreno Guerrero y están limitados por fallas mayores (Figura 5). De acuerdo a diversos autores, los terrenos tectono-estratigráficos que limitan con el terreno Guerrero son los siguientes:

2.5.1 Oaxaquia

El bloque Oaxaquia (Ortega-Gutiérrez et al., 1995) incluye al terreno Sierra Madre, el cual fue inicialmente definido por Campa y Coney (1983) y posteriormente referido como terreno Guachichil por Sedlock et al. (1993) o bloque Tampico por Dickinson y Lawton (2001). Subyace a través de fallas de cabalgadura al segmento central del terreno Guerrero. Su extremo sur está cubierto discordantemente por rocas volcánicas del Cinturón Volcánico Trans-Mexicano. Su margen oriental sobreyace por medio de cabalgaduras a rocas clásticas paleógenas (Campa y Coney, 1983; Sedlock et al., 1993). Oaxaquia incluye un basamento cristalino de edad proterozoica y afinidad *grenvilliana* (Ortega-Gutiérrez et al., 1995). Este bloque cortical formó parte de un cinturón orogénico, el cual fue el resultado de varios eventos de acreción sucedidos durante el Meso-Neoproterozoico (~1.35- 1 Ga), para formar Rodinia (Hoffman, 1991; Thomas, 2006; Li et al., 2008). Sobre este basamento cristalino de Oaxaquia sobreyacen en contacto tectónico rocas metasedimentarias paleozoicas y una considerable cubierta sedimentaria deformada dominantemente carbonatada y en menor proporción clástica del Mesozoico.

Figura 5. Geología general del terreno Guerrero y de los terrenos adyacentes Oaxaquia, Mixteca y Xolapa (Modificado de Ortega-Gutiérrez et al., 1992; 2014). Terrenos tectonoestratigráficos de acuerdo a Campa y Coney (1983).

El bloque Oaxaquia, cuya extensión se ha inferido por afloramientos aislados y xenolitos transportados a la superficie por rocas más jóvenes, definió el núcleo continental mesozoico del este de México. Está formado por cuatro macizos cristalinos que incluyen el Gneis Novillo, Gneis Huiznopala, Gneis Guichicovi y el Complejo Oaxaqueño (Ortega-Gutiérrez et al., 1995; Keppie et al., 2003). El Gneis Novillo derivó de dos protolitos ígneos emplazados y

metamorfizados en facies de granulita durante la orogenia Grenvilliana (Cameron et al., 2004; Trainor et al., 2011; Schulze et al., 2004; Schulze, 2011). Este ortogneis consiste de dos suites metamórficas: una que incluye metagranitos migmatíticos emplazados durante 1235-1115 Ma y otra que incluye metagabros anortosíticos y anortosita-mangerita-charnoquita-granito emplazados durante 1035 a 1010 Ma. Previamente al metamorfismo de facies granulita, ambas suites fueron intrusionadas por dikes máficos con edad de 990 ± 5 Ma (Trainor et al., 2011). El Gneis Huiznopala incluye paragneis calcosilicatado rico en grafito y mármol, paragneis rico en granate, ortogneis gabroico, granítico, charnoquítico y tonalítico. Los protolitos ígneos fueron emplazados durante ~1200 - ~1150 Ma, mientras que la edad del metamorfismo a facies granulita se considera entre 995-980 Ma (Lawlor, 1999). El Gneis Guichicovi consiste principalmente en paragneis calcosilicatado rico en grafito y ortogneis charnoquítico, anortosítico, tonalítico, gabroico y granítico (Weber et al., 1997). Una edad de emplazamiento de 1.23 ± 0.04 Ga, en un gneis granítico, ha sido reportada por Weber y Köhler (1999), mientras que el metamorfismo en facies granulita es considerado a ~990 Ma (Weber y Hecht, 2003). El Complejo Oaxaqueño está compuesto por dos suites metamórficas (Keppie et al., 2003; Solari et al., 2003). La suite inferior incluye ortogneises anortosíticos, mangeríticos, charnoquíticos, gabroicos y dioríticos, cuya edad de emplazamiento es de ~ 1.012 Ga e intrusionan a un gneis migmatítico de más de 1.35 Ga, migmatizado a ~1100 Ma. La suite metamórfica superior consiste en paragneis cuazofeldespático, calcosilicatado y grafíticos, intrusionados por charnoquita, sienita y gabro, cuya edad de emplazamiento varía de 1130 a 1230 Ma (Keppie et al., 2003). Ambas suites fueron afectadas por metamorfismo en facies granulita entre 990 \pm 4 y ~1004 Ma (Solari et al., 2003).

Rocas sedimentarias paleozoicas del Silúrico, sobreyaciendo a los gneis Novillo y Huiznopala del bloque Oaxaquia, han sido reportadas por Stewart et al. (1999). Así mismo, rocas sedimentarias y volcánicas con metamorfísmo en facies esquistos verdes están estructuralmente yuxtapuestas al basamento cristalino proterozoico de Oaxaquia. Éstas últimas, referidas como Esquisto Granjeno, han sido correlacionadas con las rocas meta volcano-sedimentarias encontradas en el Complejo Acatlán del terreno Mixteca (Barboza-Gudiño et al., 2011). El Esquisto Granjeno comprende rocas metasedimentarias pelíticas y metavolcaniclásticas polideformadas, con bloques de serpentinita y de gabro (Nance et al., 2007; Barboza-Gudiño et al., 2011). Una edad máxima de depósito del Silúrico Temprano (435 Ma) fue asignada al protolito de este ensamble metamórfico, mientras que la edad de metamorfismo fue considerada entre 370 y 270 Ma (Barboza-Gudiño et al., 2011). Las rocas metamórficas paleozoicas

subyacen discordantemente a rocas triásico-jurásicas siliciclásticas y volcaniclásticas continentales y marinas, asociadas al rompimiento de Pangea y a la apertura del Golfo de México. Los depósitos triásicos registran la influencia de sedimentos derivados de un arco volcánico continental del Permo-Triásico (Torres et al., 1999), mientras que las sucesiones volcaniclásticas jurásicas indican vulcanismo de arco continental durante el período 185-163 Ma (Barboza-Gudiño et al., 2008; Rubio-Cisneros y Lawton, 2011). Las sucesiones silisiclásticas y volcanogénicas subyacen a rocas carbonatadas de facies de plataforma y de cuenca, de edad cretácica. La cubierta sedimentaria mesozoica fue deformada y exhumada durante el Cretácico.

2.5.2. Terreno Mixteca

El terreno Mixteca fue definido por Campa y Coney (1983) y posteriormente referido como terreno Mixteco por Sedlock et al. (1993) e incluido en el bloque del Sur (Dickinson y Lawton, 2001). El margen occidental de este terreno subyace a través de un sistema de fallas de cabalgadura de bajo ángulo (sistema de fallas Teloloapan, Campa y Coney, 1983; Cabral-Cano et al., 2000) al extremo sureste del terreno Guerrero (Figura 5). Su margen oriental es yuxtapuesto al Complejo Oaxaqueño a través de una falla de transpresión, la falla Caltepec (Elías-Herrera y Ortega-Gutiérrez, 2002). Al norte, el terreno Mixteca es cubierto discordantemente por rocas volcánicas cenozoicas del Cinturón Volcánico Mexicano. Al sur, está yuxtapuesto a las rocas plutónicas y metamórficas del Cretácico-Paleógeno del terreno Xolapa, a través del sistema de fallas sinestrales Chacalapa-La Venta (Tolson, 2005, Solari et al., 2007; Pérez-Gutiérrez et al., 2009). El terreno Mixteca consiste en dos suites metamórficas del Paleozoico Inferior, polideformadas, tectónicamente yuxtapuestas (Campa y Coney, 1983; Sedlock et al., 1993; Keppie, 2006b; Keppie et al., 2008), las cuales están sobrevacidas por una sucesión de rocas sedimentarias continentales y marinas y rocas volcánicas del Jurásico Medio y por una sucesión de depósitos carbonatados del Cretácico. Las rocas metamórficas paleozoicas del terreno Mixteca fueron agrupadas dentro del Complejo Acatlán (Ortega-Gutiérrez, 1978, Ortega-Gutiérrez, 1981), el cual incluye dos suites metamórficas; una de bajo grado, la suite Petlalcingo y otra de alto grado, la suite Piaxtla (Keppie et al., 2004a; Talavera-Mendoza et al., 2005). La suite Petlalcingo, inicialmente considerada del Cámbrico-Ordovícico (Ortega-Gutiérrez et al., 1978), incluye migmatitas de la Formación Magdalena, esquistos de biotita de la Formación Chazumba y cuarcitas y filitas conteniendo bloques de lavas almohadilladas de la Formación Cosoltepec. Respecto a la edad de estas unidades, la Formación Cosoltepec se mantiene en el Ordovícico y fue excluída del Grupo Petlalcingo, mientras que el resto del Grupo Petlalcingo fue

asignado al rango Permo?-Jurásico y fue reinterpretado como el Complejo Ayú, cuya deformación y metamorfismo, se ha sugerido, se llevó a cabo durante el Jurásico Medio (Keppie et al., 2004b; Helbig et al., 2012). El Grupo Petlalcingo fue intrusionado por diques jurásicos de 171-168 (Helbig et al., 2012) y está en contacto con las rocas del Complejo Acatlán a través de una zona de cizalla. Por su parte, el Grupo Piaxtla incluye rocas de afinidad oceánica, tales como cuerpos máficos-ultramáficos, rocas metasedimentarias y migmatitas de la Formación Xayacatlán y granitoides eclogitizados (Granitoides Esperanza). El Grupo Piaxtla ha sido asignado al rango de edad del Ordovícico Temprano-Medio. La suite Piaxtla se sobrepone tectónicamente a la suite Petlalcingo mediante estructuras de cabalgadura con cima al noroeste, las cuales han sido doblemente plegadas (Meza-Figueroa et al., 2003). Una unidad del Permo-Carbonífero, asociada a arco, se encuentra sobrepuesta o yuxtapuesta tectónicamente a las dos suites metamórficas, la Formación Tecomate (Keppie et al., 2004a; Morales-Gámez et al., 2009; Kirsch et al., 2012). Esta formación es una unidad metamórfica en facies esquistos verdes que consiste de areniscas, lutitas, conglomerados con clastos de rocas plutónicas, horizontes de mármol, lavas máficas, tobas y ceniza volcánica. La formación Tecomate fue afectada por dos episodios magmáticos a 306 ± 2 y 289 ± 2 Ma, por lo que el depósito de esta unidad ha sido ligada a la actividad de un arco continental (Kirsch et al., 2012), asociado al cierre de un océano durante la amalgamación de Pangea. La exhumación del Complejo Ayú tuvo lugar en el Jurásico Medio-Tardío, durante un régimen extensional, asociado a la extensión del arco Nazas. Depósitos continentales y fluviales del Jurásico Medio-Superior (formaciones Piedra Hueca, Otlaltepec, Tecomazúchil y Chimeco) se encuentran sobreyaciendo discordantemente a las sucesiones deformadas y metamorfizadas del terreno Mixteca, y éstas a su vez están sobreyacidas por carbonatos de plataforma cretácicos.

2.5.3. Terreno Xolapa

Rocas del terreno Xolapa fueron descritas inicialmente por de Cserna (1965). Posteriormente este bloque cortical fue definido como terreno Xolapa por Campa y Coney (1983) y subsecuentemente referido como terreno Chatino por Sedlock et al. (1993). El terreno Xolapa limita al norte a través del sistema de fallas sinestrales Chacalapa- La Venta (Tolson, 2005; 2007) con los terrenos Mixteca, Juchatengo, Oaxaca y Juárez y con el extremo sur del terreno Guerrero. La margen sur del terreno Xolapa se extiende a lo largo de las costas del sur de México. Este terreno comprende un basamento conformado por el Complejo metamórfico Xolapa, el cual es intrusionado por plutones de composición diorítica a granitica del Oligoceno-Mioceno (Morán-Zenteno, 1993; Schaaf et al., 1995; Herrmann et al., 1994; Ducea et al., 2004;

Solari et al., 2007) y por diques félsicos de composición riolítica, traquítica y sienítica así como diques máficos andesíticos (Ortega-Gutiérrez, 1981; Alaníz-Álvarez y Ortega-Gutiérrez, 1988; Morán-Zenteno et al., 1996). Prácticamente no hay cubierta sedimentaria sobre las rocas metamórficas e ígneas del Complejo Xolapa, y las únicas rocas de esta naturaleza conforman una estrecha cuña acrecional en la zona de trinchera actual, cuyos sedimentos más antiguos son de 20 Ma. El Complejo Xolapa (Ortega-Gutiérrez, 1981; Alaniz-Álvarez y Ortega-Gutiérrez, 1988) está conformado por ortogneises que incluyen metatonalitas, metagranitos, metagranodioritas de edad proterozoica (1.3-1.0 Ga, Herrmann et al., 1994) y paleozoica, y paragneises que incluyen esquistos de mica-granate-biotita, cuarcitas, metagrauvacas, del Jurásico Temprano (199-179 Ma). Estas rocas han sido afectadas por el emplazamiento de rocas ígneas durante el Jurásico-Cretácico Temprano (178 ± 1 Ma, 129 Ma) (Ducea et al., 2004; Solari et al., 2007; Pérez-Gutiérrez et al., 2009b). Paragneises de mármol y rocas calco-silicatadas del Cretácico Tardío también han sido incluidas en el Complejo Xolapa (Talavera Mendoza et al., 2013). Ambos, ortogneises y paragneises, fueron afectados por metamorfismo de alto grado, deformación y migmatización durante el Cretácico Temprano (Solari et al., 2007), Cretácico Temprano-Eoceno (Pérez-Gutiérrez et al., 2009b) o Cretácico Tardío-Paleógeno Temprano (Herrmann et al., 1994; Morán-Zenteno et al., 1996; Talavera-Mendoza et al., 2013). Estos últimos autores sugieren que hubo dos etapas tectonotérmicas, una entre 64-59 Ma que derivó en metamorfismo y migmatización y otra a los 34 Ma, que puede estar asociada al emplazamiento de plutones calco-alcalinos del Eoceno-Oligoceno (Schaaf et al., 1995; Ducea et al., 2004; Morán-Zenteno et al., 2007; Solari et al., 2007). El terreno Xolapa es considerado como el remanente de las raíces de un arco magmático continental, con actividad durante el Jurásico-Cretácico y con posible relación, en tiempo, con el terreno Guerrero (Herrmann et al., 1994; Schaaf et al., 1995; Morán-Zenteno et al., 1996; Ducea et al., 2004; Pérez-Gutiérrez et al., 2009b; Talavera-Mendoza et al., 2013). Talavera-Mendoza et al. (2013) interpretan, con base a estudios de procedencia, que las sucesiones jurásicas de paragneis tienen posibles fuentes de aporte en las rocas del terreno Mixteca, Oaxaca y el Macizo de Chiapas, mientras que los paragneises del Cretácico Tardío tienen fuentes similares, pero adicionalmente incluyen al terreno Guerrero y las mismas rocas plutónicas jurásico-cretácicas del complejo Xolapa como fuentes potenciales.

3. MÉTODOS

Para realizar este trabajo se llevaron a cabo actividades básicas de campo que incluyeron la cartografía de las unidades litológicas, medición de estructuras geológicas y muestreo en sucesiones clásticas y volcaniclásticas, en áreas comprendidas a lo largo del cinturón de sutura de la cuenca de Arperos y aquellas incluidas en el terreno Guerrero y los terrenos adyacentes. Actividades de laboratorio incluyeron la petrografía y caracterización composicional de las sucesiones volcaniclásticas y clásticas y análisis geocronológicos e isotópicos de zircones detríticos.

3.1. Petrografía y conteo de puntos en rocas detríticas

Para caracterizar las fuentes de procedencia de los detritos y el marco tectónico en que los sedimentos fueron incorporados en las sucesiones detríticas, se analizaron las características petrográficas de 32 secciones delgadas de rocas, tanto del terreno Guerrero como del terreno Sierra Madre, incluyendo aquellas en las que se realizaron análisis geocronológicos por U-Pb. El conteo de 400 puntos por muestra se llevó a cabo utilizando el método Gazzi-Dickinson (Gazzi, 1966; Dickinson, 1970) para obtener los modos composicionales de los constituyentes mayores detríticos, tales como cuarzo, feldespatos y líticos. Con este método, los granos del tamaño de la arena (0.0625 mm), incluidos en un lítico de mayor tamaño o en un grano de cuarzo policristalino, son identificados y considerados como granos minerales independientes y, de esta manera, se minimiza la dependencia composicional en el tamaño de grano (Ingersoll et al., 1984; Zuffa, 1985). El conteo de puntos, se llevó a cabo en secciones delgadas con una mitad previamente teñida por una solución saturada de cobaltonitrito, con el fin de identificar rápidamente a los feldespatos potásicos. Los parámetros de identificación (Dickinson, 1970; Graham et al., 1976; Ingersoll y Suczek, 1979) de cada muestra fueron recalculados o normalizados a un 100% y posteriormente graficados en un diagrama ternario. Para clasificar las sucesiones detríticas y mostrar las diferencias en su composición, se utilizó el diagrama QFL (Cuarzo- Feldespatos - Líticos, Folk, 1974) y para asociar su procedencia con algún ambiente tectónico, se utilizaron los diagramas QtFL (Cuarzo total-Feldespatos-Líticos) y QmFLt (Cuarzo monocristalino-Feldespatos-Líticos totales) con los campos propuestos por Dickinson (1985) y el diagrama LmLvLs (Ingersoll y Suczek, 1979), para determinar el carácter de los componentes policristalinos.

3.2. Geocronología U-Pb en zircones detríticos por LA-ICPMS

Un total de 23 muestras, incluidas las áreas de Tolimán (10), Mineral de Pozos (1), Zacatecas (6), Arteaga (2), Charcas (1) y Guanajuato (3) fueron analizadas para obtener edades máximas de depósito en zircones detríticos. Adicionalmente, se colectó una muestra ígnea en el área de Tolimán para determinar su edad de cristalización y consecuentemente obtener la edad deposicional de la unidad con la cual se interestratifica.

3.2.1. Procesado de las muestras

Las muestras detríticas seleccionadas consistieron en areniscas siliclásticas y volcaniclásticas de grano fino a grueso. El peso de las muestras procesadas varía de los ca. 1.5 kg, en muestras siliciclásticas y de hasta 5 kg, en muestras volcaniclásticas.

En el taller de molienda y separación mineral del Centro de Geociencias, se procedió a triturar las muestras con una prensa hidráulica, hasta alcanzar un tamaño de grano menor a 500 micrómetros. Una vez obtenido este tamaño de grano fueron sucesivamente procesadas con el fin de concentrar la fracción de minerales pesados, la cual es menor al 2% en una muestra de arenisca. Para este proceso se utilizó, generalmente, una mesa Wilfley. Sin embargo, debido a que en algunas muestras, sobre todo las muestras volcaniclásticas, la abundancia de zircones es baja, se procedió empleando una batea manual que, aunque más lenta, permite un control más estricto sobre la calidad de los concentrados pesados. Posteriormente, el concentrado de minerales pesados fue lavado con acetona, secado y observado bajo un microscopio binocular. Algunas muestras, donde los minerales magnéticos eran abundantes, fueron pasadas por un separador magnético (Frantz), mientras que en otras, que estaban exentas de minerales magnéticos, se procedió a la selección de los zircones directamente del concentrado.

Los granos de zircón de cada muestra fueron seleccionados cuidadosamente bajo un microscopio binocular, empleando tanto la luz incidente como la reflejada. Se seleccionaron aleatoriamente 150 zircones por muestra y se colocaron en una cinta biadesiva, previamente pegada en un vidrio cuadrado de $\sim 6x6$ cm. Se montaron de 3 a 5 muestras en una única probeta (un anillo plástico de 2.5 cm de diámetro). Posteriormente la probeta se rellenó con resina epóxica (Struers Epofíx), misma que se dejó endurecer una noche. El cilindro obtenido se desbastó por medio de papel lija (# 800, 1500, y 3000) hasta exponer una superfície lo más cercana posible a la mitad ecuatorial de los zircones.

Antes de los análisis in situ por ablación láser, las superficies pulidas de los granos de zircón fueron fotografiadas en catodoluminiscencia (CL) por medio del empleo de un luminoscopio ELM-3R (Marshall, 1988). También se obtuvieron imágenes de luz reflejada utilizando un microscopio estereoscópico convencional marca Olympus. Las imágenes de catodoluminiscencia y luz reflejada fueron obtenidas con el propósito de caracterizar la estructura interna de los zircones y elegir los sitios potenciales para los análisis de U-Pb, observando el zoneamiento relacionado a los cambios de composición química para poder detectar posibles inclusiones, sobrecrecimientos metamórficos o herencias que cambiarían el sentido de la interpretación de los datos analíticos.

Una vez realizada la sesión de fotografía, se procedió a preparar las secuencias analíticas. Se seleccionaron los puntos más idóneos para el fechamiento, observando las imágenes de catodoluminiscencia y la homogeneidad de los granos de zircón. Haciendo hincapié al diámetro de ablasión del láser que se empleará para U-Pb (23 µm) y considerando un área homogénea en la que se realizará, posteriormente, el análisis para Hf, con un spot de 44 µm. En las secuencias analíticas preparadas con un software especializado, se interdispersaron un estándar de vidrio (NIST 610), y dos estándares naturales de zircón, uno primario (91500, Wiedenbeck et al., 1995) y uno secundario (Plešovice, Sláma et al., 2008) que sirvieron para recalcular relaciones isotópicas, concentraciones y, por ende, las edades.

3.2.2. Análisis por U-Pb

Los análisis isotópicos de U-Pb en zircones fueron realizados utilizando la técnica de ablación láser (LA-ICP-MS). En la actualidad, está técnica de microanálisis y fechamientos tiene la ventaja de permitir hacer mediciones isotópicas de alta precisión y rapidez para obtener relaciones isotópicas, edades y concentraciones geoquímicas *in situ*, directamente en minerales u otro material geológico.

El Laboratorio de Estudios Isotópicos (LEI) del Centro de Geociencias (Figura 6), cuenta con un sistema de ablación láser modelo Resolution M50 de la marca "Resonetics" compuesto por un láser LPX 220 tipo excímero de 193 nm de longitud de onda, que utiliza una mezcla de fluoruro de argón (ArF) para generar la pulsación. Éste se acopla a diferentes espectrómetros de masas (ICP-MS) tanto de tipo cuadrupolo, como de multicolección, dependiendo del tipo de estudio a realizarse. En este trabajo se empleó un espectrómetro cuadrupolar para fechamientos U-Pb,

siguiendo la metodología para los análisis isotópicos U(Th)-Pb en zircones, descrita por Solari et al. (2010a). Para las determinaciones isotópicas de Hf se utilizó el mismo laser, esta vez conctado a un multicolector de plasma Neptune Plus.

Figura 6. Equipo del Laboratorio de Estudios Isotópicos del Centro de Geociencias, en el cual se llevaron a cabo los análisis de los zircones detríticos tanto para la geocronología U-Pb como para isótopos de Hf.

Previo a la medición isotópica, las superficies de las probetas, previamente preparadas, se limpiaron con HNO3 1M, con la finalidad de eliminar o minimizar cualquier posible contaminación por la presencia de Pb común en la superficie de los cristales. La ablación láser se realizó en una celda de nueva generación de doble volumen que puede alojar hasta 4 probetas, una de las cuales tiene montados los estándares a utilizarse, y las otras tres las muestras. Cada día, y previamente a los análisis del material desconocido (zircones) las condiciones del equipo y los flujos de gas fueron optimizados por medio de análisis de un vidrio estándar (NIST SRM 612). Los cristales de zircón fueron ablacionados dentro de esta celda en una atmósfera de He, la cual proporcionó una condición óptima para el proceso (Eggins et al., 1998; Kosler and Sylvester, 2003). El haz del láser incide sobre la superficie del cristal en el punto previamente seleccionado, con una densidad de energía de ~6 J/cm2 y a una tasa de repetición de 5 Hz,

creando un hoyo provocado por la volatilización de un área del zircón (spot o punto de análisis) de 23 μ m de diámetro y de ~15 μ m de profundidad, con lo cual se obtiene un total de ~30 ng de masa ablacionada durante cada análisis. La ablación se lleva a cabo por 30 segundos con el fin de minimizar la profundidad del hoyo de ablación y, de la misma manera, el fraccionamiento elemental. Posteriormente, el material ablacionado (vaporizado) es evacuado de la celda de ablación y transportado al espectrómetro de masas en un flujo de He (700 ml/min) que se mezcla con N2 (ca. 3 ml/min) y con Ar para después ser analizado.

En el caso de los análisis en zircones, la secuencia típica de medición por ablación láser en el LEI, inicia con el análisis de dos muestras de referencia certificada (vidrios estándar NIST SRM 610), seguido por cinco análisis del estándar de zircón primario, 3 del secundario, y finalmente cinco zircones de edad desconocida. Posteriormente se hace una medición de los estándares cada cinco mediciones en zircones desconocidos. El experimento finaliza con dos zircones estándar para poder realizar la corrección por fraccionamiento de masa y deriva instrumental (e.g., Jackson et al., 2004; Gehrels et al., 2008; Solari et al., 2010a). Los análisis del vidrio NIST son utilizados para calcular las concentraciones correctas de U y Th, además de las otras concentraciones de elementos traza y tierras raras medidas durante cada análisis, mientras que los análisis del estándar de zircón 91500 son usados para recalcular las relaciones isotópicas.

La calibración de los datos y correcciones por deriva instrumental ("drift") fueron basadas en los estándares de zircón 91500 que tiene una edad conocida de 1063.4 \pm 0.6 Ma (Wiedenbeck et al., 1995). Los datos isotópicos fueron adquiridos utilizando el software analítico Thermo Qtegra con resolución temporal, permitiendo que las relaciones isotópicas sean calculadas de los datos adquiridos en un intervalo de tiempo específico.

Durante el análisis de cada zircón, fueron determinados los isótopos de interés principal para el fechamiento U-Pb como ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²³²Th y ²³⁸U, además de otros isótopos importantes como ²⁹Si, ³¹P, ⁴⁹Ti, ⁸⁹Y, ⁹¹Zr, REE's y ¹⁷⁹Hf. Por ejemplo, el silicio y el zirconio son usados como elementos estándar internos para la cuantificación del contenido de elementos traza, considerando su concentración estequiométrica en el zircón, mientras que elementos como el P, Ti e Y, además de las tierras raras, son monitoreados como indicadores de la posible presencia de inclusiones dentro de los zircones (ej., monacita, apatito o titanita), las cuales podrían modificar las relaciones U(Th)-Pb del zircón y proporcionar edades equívocas y mediciones

erróneas como en el caso de la presencia de Pb común. Los mismos elementos se pueden utilizar para obtener indicaciones petrogenéticas sobre las condiciones de cristalización del zircón. Debido a que el trabajo analítico requiere de una precisa y sistemática reducción de los datos, cálculo de edades y concentraciones elementales de los zircones analizados, en el LEI se utiliza actualmente el software Iolite, consistente en una serie de instrucciones para la reducción de datos analíticos, el cálculo de edades y error, así como su propagación (Paton et al., 2010; 2011; Petrus y Kamber, 2012). En el caso de que una corrección de Pb sea requerida, y dada la precisión limitada de la medición del ²⁰⁴Pb por medio de un cuadrupolo, se emplea la macro algebraica de Andersen (2002), así como implementada por Petrus y Kamber (2012).

Los archivos exportados de Iolite fueron procesados en una macro ("in house") de Excel desarrollada en el LEI, la cual permite al operador ordenar automáticamente los datos y generar una tabla de datos lista para publicarse con las relaciones isotópicas y edades; la concentración de elementos traza y mayores medidas en los zircones analizados también se despliegan, para desde estos poder producir un diagrama de REE normalizado a condrita con los datos obtenidos. Generalmente se aplican una serie de filtros a los datos obtenidos:

a) Se filtran por discordancia, es decir, se eliminan esos análisis que tienen un comportamiento discordante, con una discordancia afuera del límite -5% < x < 30%, en donde la discordancia se calcula como:

Discordancia= 1-(Edad ²⁰⁶Pb/²³⁸U /Edad ²⁰⁷Pb/²⁰⁶Pb)*100

b) Se filtra por el tamaño de error: si el error analítico de la edad obtenida (edad 206 Pb/ 238 U) es mayor al 5% (1SE), para edades > 30 Ma, o bien al 7% (1SE) para edades < 30 Ma, entonces ese análisis se elimina

c) Se hace un filtrado para concentraciones anómalas de P, Ti, LREE como La, Pr, o bien concentraciones elevadas de U, generalmente > 2000 ppm, ya que estos factores podrían indicar la presencia de inclusiones, o bien la posible pérdida de Pb, función del daño de la red cristalina del zircón. Estas anomalías no producen la eliminación automática de los análisis, pero son factores que son considerados al momento de la interpretación.

Los diagramas de concordia y los diagramas de probabilidad de densidades fueron graficados usando el programa computacional Isoplot 3.76 y DensityPlotter 7.2("add in" para Excel, Ludwig, 2008; Vermeesch, 2012).

3.3. Aplicación de la geocronología U-Pb en zircones detríticos para estudios de procedencia de sedimentos

El término "procedencia" en estudios sedimentarios incluye todos los factores asociados a la producción de detritos, con especial énfasis a la composición de las rocas fuente (Weltje y von Eynatten, 2004). Adicionalmente a la caracterización de los componentes mayores de una roca detrítica, el análisis de la fracción mineral densa (>2.85 g/cm³) en sedimentos clásticos, específicamente los zircones detríticos, proveen una herramienta útil para las correlaciones estratigráficas, la identificación de la fuente de sedimentos y la reconstrucción de la historia de transporte y dispersión de los sedimentos (Fedo et al., 2003; Webster et al., 2003). El zircón es un mineral accesorio que se puede encontrar en una amplia gama de rocas. Durante su formación incorpora cantidades modestas de Uranio (U) y Torio (Th) dentro de la estructura del cristal y excluye al Plomo (Pb). Sin embargo, con el tiempo el U y Th decaen a un estado estable, causando la acumulación de Pb radiogénico que es la base para la determinación exacta y precisa de la edad isotópica del zircón (Scherer et al., 2007). Lo que hace al zircón un geocronómetro único es que es un mineral refractario, duro, que puede permanecer intacto si su roca huésped es metamorfizada, fundida o intemperizada mecánicamente. Además las tasas de difusión para muchos elementos en el zircón son extremadamente bajas, de esta manera el zircón retiene la edad y otra información isotópica.

El zircón es un mineral relativamente abundante en areniscas y, debido a su alta resistencia a la abrasión física y química, puede registrar varios ciclos de sedimentación o de metamorfismo moderado. La edad obtenida en un zircón es interpretada como la edad de cristalización de su roca fuente (Andersen, 2005). De esta manera, una roca detrítica conteniendo zircones de diferentes edades implicaría múltiples fuentes cristalinas yuxtapuestas, una mezcla entre sedimentos derivados de fuentes primarias y de fuentes secundarias, o bien, distintos episodios de magmatismo en una misma localidad (Hawkesworth et al., 2009; Thomas, 2011), factores que, en su conjunto, determinarían la rutas del sistema de drenaje desde las rocas fuentes hasta el sitio de depósito.

La geocronología U-Pb en zircones detríticos tiene, entre sus aplicaciones, i) las correlaciones sedimentarias, ii) estudios de procedencia, iii) determinación de las edades de cristalización del zircón que se traduce como la edad máxima de depósito de su roca huésped y, iv) cuando se conoce la fuente de procedencia, la determinación de las edades y características de las rocas fuente (Gehrels, 2012). Todos estos parámetros son herramientas útiles en las reconstrucciones paleogeográficas y tectónicas (Gehrels y Dickinson, 1995; Thomas, 2011; Cawood, et al., 2012).

Dado que las edades de zircones detríticos no pueden ser interpretadas en forma individual, en estudios de procedencia se caracterizan por poblaciones de edades de zircones. Una población de zircones consiste en edades U-Pb que están definidas por un episodio tectono-magmático, dentro de un rango con límites inferior y superior (Andersen, 2005). A diferencia de una población, un grupo de zircones está definido por sus características comunes (color, forma, redondez, etc.) y no necesariamente corresponden a granos de la misma edad (Gehrels, 2012). La cantidad de poblaciones de zircones y la proporción en que estén presentes en una roca sedimentaria, son parámetros que están intrínsecamente relacionados con la diversidad y la fertilidad de las rocas fuente. En este contexto, si una población se encuentra en abundancia en menos del 5% en una muestra, es necesario el análisis de al menos 100 granos de zircón para que esa población pueda ser detectada (Vermeesch, 2004; Andersen, 2005; Gehrels, 2012).

Cada población de edades de zircones detríticos no solo representa la influencia de determinadas fuentes de aporte, sino también el ambiente tectónico dominante al momento del depósito de los sedimentos. De acuerdo con Cawood et al. (2012), los patrones de distribuciones de edades U-Pb de zircones detríticos definen picos de edades de cristalización con eventos de máxima generación de magmas. De esta manera, una población de edades cercanas a la edad de depósito estaría indicando un ambiente tectónico con actividad magmática contemporánea o ligeramente más antigua al depósito, donde los granos de zircón proceden mayormente de una fuente primaria (Thomas, 2011), tales como aquellas cuencas asociadas a márgenes convergentes (trinchera, cuenca de ante-arco, cuenca de tras-arco). Los escasos zircones de poblaciones de edades más viejas indicarían la historia temprana de la cuenca. Por otra parte, la presencia de poblaciones de edades mayormente viejas, muy alejadas de la edad de depósito, sugieren cuencas asociadas a un ambiente tectónico extensional o de colisión continental (Hawkesworth et al., 2009), donde el volumen de magma y la cantidad de zircones es mucho menor que en márgenes convergentes, mientras que el reciclaje de fuentes secundarias es mayor.

3.4. Isotopía de Hf en zircones detríticos por LA-MC-ICPMS

Los análisis isotópicos de Hf en zircones detríticos fueron realizados en el Laboratorio de Estudios Isotópicos (LEI), del Centro de Geociencias, utilizando la técnica de ablación láser (LA-MC-ICP-MS). El mismo sistema de ablación láser utilizado para el análisis U-Pb en zircones (descrito en el apartado 3.2.2), fue acoplado a un espectrómetro de masas de multicolección, Neptune Plus. El Neptune Plus está equipado con 9 detectores Faraday y una base con amplificadores, uno de 1E10 Ω , uno de 1E12 Ω y ocho de 1E11 Ω . Éstos últimos se usaron para la colección estática de ¹⁷²Yb, ¹⁷³Yb, ¹⁷⁵Lu, ¹⁷⁶Hf–Lu–Yb, ¹⁷⁷Hf, ¹⁷⁸Hf, ¹⁷⁹Hf y ¹⁸⁰Hf. Cada ablación se lleva a cabo por 60 s, empleando una tasa de repetición de 5 Hz, una densidad de energía de 6 J/cm², creando un agujero de 44 µm y ~12 µm de profundidad en el punto donde previamente se hizo el agujero para análisis U-Pb (Xia et al., 2011). Posteriormente, el material ablacionado (vaporizado) es evacuado de la celda de ablación y transportado al espectrómetro de masas en un flujo de He (700 ml/min) que se mezcla con N2 (ca. 10 ml/min) y con Ar para después ser analizado.

Los blancos de gas fueron medidos previamente al disparo del láser, y después restados de la señal principal durante la reducción de datos. Se ha demostrado que tanto la resolución espacial y la precisión de los análisis *in situ* de Hf por LA-MC-ICPMS usando un diámetro de ablación de 40-60 µm son útiles para interpretaciones petrogenéticas adecuadas, incluso si el material analizado es mínimo (Woodhead et al., 2004; Hawkesworth y Kemp 2006; Gerdes and Zeh 2009; Cecil et al., 2011). Los factores más importantes que deben ser controlados para obtener datos significativos son la forma en que el fraccionamiento isotópico y las interferencias son monitoreados y corregidos. Las correcciones por interferencia isobárica son especialmente críticas dado que el ¹⁷⁶Yb y ¹⁷⁶Lu constituyen generalmente del 0.5 al 5% del ¹⁷⁶Hf presente. El valor del fraccionamiento isotópico del Hf (βHf) es diferente al βYb y βLu y, por lo tanto, no puede usarse para corregir el fraccionamiento isotópico de esas especies. Para el Lu, la existencia de un isótopo libre de interferencias isobáricas, ¹⁷⁵Lu, no permite calcular un propio factor de corrección por fraccionamiento isotópico. En este caso, se midió el ¹⁷⁵Lu y se utilizó la relación $^{176}Lu/^{175}Lu = 0.02656$ (BlichertToft et al., 1997), junto con β Yb, asumiendo que el Lu se fracciona similar a Yb. Para el Yb se midieron ¹⁷²Yb, ¹⁷³Yb, los dos isótopos más abundantes, y se utilizó la relación 176 Yb/ 173 Yb = 0.79618 (Chu et al., 2002) para estimar los otros isótopos de Hf. Los valores para normalizar fueron 179 Hf/ 177 Hf = 0.7325 (Patchett y Tatsumoto, 1981) y la relación 172 Yb/ 173 Yb = 1.35274 (Chu et al. 2002). Se ha reportado que el método de la determinación *in situ* de BYb funciona bien cuando la señal más baja de Yb excede los 50 mV (Gerdes y Zeh 2009; Cecil et al., 2011). En nuestro caso, estos valores exceden por mucho, debido a que el Neptune Plus mejoró la interfase que, una vez que se emplean los conos de alta sensibilidad, proveen una señal total de Hf de más de 20 V, y una señal de ¹⁷³Yb, la más baja, de más de 200 mV. Un parámetro significativo usado para probar la efectividad de nuestras correcciones de interferencia en zircones desconocidos, es analizar tanto zircones estándar bien caracterizados como desconocidos, a los cuales se les aplica la misma corrección. Se ha documentado que los zircones naturales tienen una relación ¹⁷⁶Yb/¹⁷⁷Hf en un rango de ~0 hasta aproximadamente 0.25 (Belousova et al., 2010; Fisher et al., 2011), y por lo tanto, la corrección de interferencia cubre efectivamente ese rango. Para simular diferentes concentraciones de Yb, y por lo tanto diferentes relaciones de ¹⁷⁶Yb/¹⁷⁷Hf, se usaron zircones estándar sintéticos de Fisher et al. (2011), los cuales fueron artificialmente dopados con cantidades variables de REEs, en un rango entre cero (zircón 0 no dopado) hasta 0.35 (zircón 4). Éstos ofrecen un rango más amplio que lo que generalmente se observa en zircones naturales y zircones estándar, los cuales raramente exceden el 0.1 (Fisher et al., 2011). Los mismos zircones estándar sintéticos fueron medidos entre los zircones desconocidos y fueron usados para calcular un factor de normalización al valor de 0.282139, el cual es después aplicado a los desconocidos. En general, los valores absolutos de nuestras relaciones isotópicas 176 Yb/ 177 Hf está entre ±0.000025 (2 SE). Todos los zircones estándar (91500, Temora, Plesŏvice, R33, FC01) que se analizaron indican que la relación ¹⁷⁶Hf/¹⁷⁷Hf coincide con sus respectivos valores aceptados.

Los datos isotópicos fueron adquiridos utilizando el software que controla el Neptune Plus, y los recálculos y correcciones se hicieron afuera de línea, utilizando el software Iolite, que consiste en una serie de instrucciones para la reducción de datos analíticos, el cálculo de relaciones isotópicas y errores, así como su propagación (Paton et al., 2010; 2011). Los archivos exportados de Iolite fueron procesados y graficados en unas hojas de Excel desarrolladas en el LEI, en las cuales se hicieron los recálculos de las relaciones medidas a la edad de cristalización.

La relación ¹⁷⁶Hf/¹⁷⁷Hf, recalculada a la edad de cristalización del zircón, se obtiene del valor medido ¹⁷⁶Hf/¹⁷⁷Hf, y del valor medido ¹⁷⁶Lu/¹⁷⁷Hf, utilizando la constante de decaimiento del ¹⁷⁶Lu ($\lambda = 1.867e^{-11}$) de Scherer et al. (2001) y Söderlund et al. (2004). También se requiere la edad de cristalización de los zircones, misma que se obtuvo previamente por geocronología U-Pb.

La ecuación que se emplea para el cálculo de la relación ¹⁷⁶Hf/¹⁷⁷Hf a la edad de cristalización es:

$$(^{176}\text{Hf}/^{177}\text{Hf})_{t} = (^{176}\text{Hf}/^{177}\text{Hf})_{0} - (^{176}\text{Lu}/^{177}\text{Hf})_{0} * (e^{\lambda t} - 1)$$

De la misma manera, el parámetro Épsilon ($EHf_{(t)}$) se calcula con base en la normalización relativa al valor de referencia (normalmente, el CHUR, Reservorio Uniforme Condrítico, por sus siglas en inglés, utilizando los valores publicados por Bouvier et al., 2008):

$$\mathcal{E}Hf_{(t)} = \{ [(^{176}Hf/^{177}Hf)_t / (^{176}Hf/^{177}Hf)_{tCHUR}] - 1 \} * 10^4$$

(¹⁷⁶Hf/¹⁷⁷Hf)t_{CHUR} = 0.282785 - 0.0336 (e^{\lambda t}-1)
Donde: (¹⁷⁶Hf/¹⁷⁷Hf)_{0CHUR} = 0.282785 y (¹⁷⁶Lu/¹⁷⁷Hf)_{0CHUR} = 0.0336 (Bouvier et al., 2008)

Cálculo de edades modelo (Hf T_{DM}):

Para saber en que tiempo se separó la fuente cortical (ya sea de una roca ígnea o de una roca sedimentaria) del manto, se usan las edades modelo. La edad modelo determina el momento de la diferenciación manto-corteza y se calcula referida al Manto Empobrecido (Depleted Mantle)

Hf
$$\mathbf{T}_{\mathbf{DM}} = 1/\lambda * \ln \{ [(^{176}\text{Hf}/^{177}\text{Hf})_{\text{muestra}} - (^{176}\text{Hf}/^{177}\text{Hf})_{\text{DM}}] / [(^{176}\text{Lu}/^{177}\text{Hf})_{\text{muestra}} - (^{176}\text{Lu}/^{177}\text{Hf})_{\text{DM}}] + 1 \}$$

Para calcular edades modelo se asume que:

La relación de isótopo padre al isótopo hijo (Lu/Hf), cambie en los procesos involucrados en la generación de nueva corteza y que no sea fraccionada posteriormente, por procesos de re-fusión, erosión y sedimentación entre la corteza continental. De esta manera, se puede estimar la relación padre/hijo del material cortical fuente y usarse para calcular el tiempo en que la porción de la nueva corteza fue extraída del manto. Por lo tanto, se asume un valor promedio del material fuente, igual al promedio de la corteza continental, cuyo valor de $^{176}Lu/^{177}Hf = 0.015$ ha sido propuesto por Griffin et al. (2004) con base en valores reportados para rocas plutónicas (Vervoort y Patchett, 1996) y por rocas sedimentarias (Vervoort et al., 1999).

3.5. Aplicación de la isotopía de Hf en análisis de procedencia sedimentaria

Una de las grandes ventajas para utilizar el mineral de zircón en estudios como trazadores isotópicos consiste en que, dado que el Lu es una tierra rara pesada y el Hf es un elemento de alto potencial iónico, la relación Lu/Hf es altamente particionado en el zircón durante los procesos magmáticos, cosa que no sucede, por ejemplo, con el sistema isotópico Sm-Nd. El Hf es un elemento que fácilmente es incorporado en la red cristalina del zircón y puede sustituir al zirconio, por lo tanto, puede constituir algunas veces hasta el 1% (10,000 ppm) en el zircón (Kinny y Maas, 2003; Hoskin y Schaltegger, 2003; Vervoort, 2014). Esta característica permite utilizar instrumentación que detecte a nivel de ppm incluso en mediciones *in situ* como se hace con el equipo de ablasión láser, donde se puede controlar el diámetro y profundidad del área analizada.

Debido a que gran parte de la corteza granítica está cubierta por sedimentos, no se puede tener acceso al muestreo *in situ* de corteza continental. Los sedimentos derivados de la erosión de la corteza, proveen importante información acerca de su evolución. Sin embargo, muchos de ellos son susceptibles a la alteración por procesos de intemperismo, episodios térmicos o metamórficos. Para abordar estos problemas, los zircones detríticos son una gran herramienta.

La erosión que producen los grandes ríos que drenan la corteza continental, expuesta sobre áreas extensas, hace posible la generación de detritos a partir de fuentes primarias o a través del reciclaje de fuentes que han experimentado varios ciclos de erosión antes de ser transportados por los ríos para, finalmente, formar parte de las rocas areniscas. El reciclaje sedimentario prolongado resulta en una eficiente mezcla de sedimentos derivados de varias fuentes de roca, incluyendo las partes de la corteza granítica que son actualmente inaccesibles. El zircón, que es un mineral accesorio y puede concentrarse en la fracción gruesa de rocas detríticas, puede ser fechado de forma precisa por isótopos U-Pb y es muy adecuado para estudios isotópicos. Debido a que puede retener la información isotópica primaria a través de procesos sedimentarios y metamórficos. En consecuencia, la integración de edades U-Pb con datos isotópicos de Hf en zircones detríticos puede ser la mejor manera de evaluar los cambios seculares de los isótopos radiogénicos en granitoides a escala continental.

Para determinar la procedencia de un zircón, hay tres factores que deben considerarse (Fedo et al., 2003; Thomas, 2011):

- El zircón es un mineral accesorio abundante en rocas graníticas y en rocas volcánicas intermedias-ácidas que dominan la corteza superior, por lo que este tipo de rocas son las fuentes más probables originales de los zircones detríticos en las areniscas o rocas sedimentarias.
- Considerando la topografía de la corteza continental al presente, hay una tendencia en la corteza joven a ser elevada en cadenas montañosas, mientras que la corteza vieja es generalmente de topografía plana. Esto podría tender a sesgar la erosión de rocas ígneas jóvenes más que rocas antiguas dentro del ciclo sedimentario.
- Las rocas sedimentarias son las más abundantes en la superficie continental y son más fácilmente disgregadas por el intemperismo y la erosión que una roca ígnea; por lo tanto, la tasa de reciclaje sedimentario es más rápido que la erosión de basamentos ígneos, especialmente por la topografía plana de rocas antiguas.

De acuerdo con esto, es más lógico esperar que los zircones en areniscas de rocas sedimentarias, hayan sido preferentemente derivados de rocas sedimentarias antiguas (reciclaje sedimentario) y rocas graníticas contemporáneas jóvenes (de primer ciclo) y es, talvez, menos probable encontrar zircones de primer ciclo de rocas ígneas antiguas.

La combinación de estudios de U-Pb y Lu-Hf en zircones detríticos permite la distinción entre los granos que tienen la misma edad de cristalización pero fueron formados en dominios corticales que fueron separados del manto a diferentes tiempos, lo cual es complementado usando edades de residencia cortical Lu-Hf determinadas en granos individuales. Se asume que un valor ¹⁷⁶Lu/¹⁷⁶Hf de corteza continental félsica para trazar la evolución de la fuente cortical al tiempo del valor inicial ¹⁷⁶Lu/¹⁷⁶Hf del zircón al punto de intersección con la curva del manto empobrecido (DM). Este enfoque ha sido aplicado a numerosos sistemas sedimentarios, incluyendo sistemas de ríos actuales y granitos derivados de corteza y gneises. Cuando se aplica a sedimentos, tales edades de residencia no corresponden a eventos que forman la corteza actual si los sedimentos tiempos. Tales mezclas ocurren durante el reciclaje sedimentario. El zircón formado por fusión de tales sedimentos, tendrán composiciones isotópicas de Hf que representan

la mezcla de varios dominios corticales evolucionados y su edad modelo o edad de residencia cortical no necesariamente corresponde a eventos formadores de corteza reales.

Por convención, las composiciones isotópicas son expresadas como desviaciones (en partes por 10,000) de aquellas del valor condrítico (CHUR, por sus siglas en inglés), cuyos valores Lu/Hf y ¹⁷⁶Hf/¹⁷⁷Hf se asume que representan los valores de la composición global de la Tierra silicatada (BSE). La notación para estas desviaciones en algún tiempo t en el paso es $\mathcal{E}Hf_{(t)}$). Los valores negativos de ¹⁷⁶Hf/¹⁷⁷Hf ($\mathcal{E}_{Hf} < 0$) son evidencia de retrabajo cortical. Una mezcla de magmas derivados del manto y derivados de la corteza se puede detectar en las variaciones de las composiciones isotópicas de Hf y la abundancia de los elementos traza en las poblaciones de zircones (Belousova et al., 2006). También es posible determinar si las muestras corticales fueron formadas por la fusión del manto empobrecido o de la corteza, o de la combinación de ambos. Si es el último caso, las rocas de la misma edad y de la misma localidad formarían un arreglo vertical.

4. LOCALIZACIÓN DEL ÁREA DE ESTUDIO

Para fines de caracterización de sedimentos y estudios de procedencia, el área de estudio, comprende la zona limítrofe entre dos dominios tectono-estratigráficos; uno predominantemente siliciclástico y continental, el cual es estudiado a través de las áreas de Tolimán, Mineral de Pozos y Sierra de los Cuarzos, y el otro volcano-plutónico y oceánico que está representado por las áreas de Zacatecas, Guanajuato y Valle de Bravo (Figura 7).

Figura 7. Localización de las áreas de estudio y de áreas donde únicamente se colectaron muetsras de las exposiciones representativas entre el dominio oceánico del terreno Guerrero y del dominio del continente mesozoico mexicano.

4.1. Dominio continental-Oaxaquia

En este dominio tectónico se han reportado rocas de basamento cristalino metamórfico y plutónico, de edad proterozoica, subyaciendo a rocas metamórficas y sedimentarias paleozoicas, las cuales han sido ampliamente cubiertas por rocas mesozoicas sedimentarias continentales y marinas.

4.1.1. Estratigrafía del área de Tolimán

En esta área de estudio, la sucesión sedimentaria es tanto estratigráficamente como espacialmente heterogénea, la cual consiste en rocas siliciclásticas, volcaniclásticas y carbonatadas. El área de Tolimán se localiza al oeste de Oaxaquia (Figura 7), su estratigrafía consiste, en orden estratigráfico ascendente, en rocas siliciclásticas del Complejo El Chilar, rocas volcaniclásticas de la Formación San Juan de la Rosa (Dávila-Alcocer et al., 2009) y rocas carbonatadas de las formaciones Peña Azul, Tamaulipas y Soyatal (Carrillo-Martínez y Monroy-Audelo, 1988) (Figuras 8 y 9). Las sucesiones mesozoicas son sobreyacidas discordantemente por rocas volcánicas cenozoicas del Cinturón Volcánico Trans-Mexicano (CVTM).

Complejo El Chilar

El Complejo El Chilar aflora en el núcleo del anticlinal El Chilar y al suroeste del área de estudio (Figura 8). Consiste predominantemente en una sucesión turbidítica que incluye cuarcitas intercaladas con filitas, algunos lentes de conglomerado y un bloque de pedernal que contiene a su vez fragmentos de lava de composición básica (Dávila-Alcocer et al., 2013). Los intervalos de cuarcita contienen estructuras primarias como estratificación cruzada, laminación planar y escasos túneles hechos por organismos. Los intervalos de filita presentan foliación bien desarrollada, definida por pequeños minerales de mica blanca. Las rocas del Complejo El Chilar han experimentado metamorfismo en facies esquistos verdes. Muestran, además, deformación que incluye dos generaciones de pliegues, cabalgaduras y zonas de cizalla (Fitz-Díaz et al., 2012), que deriva en una fábrica anastomosada en la cual los bloques de cuarcita generalmente son embebidos en intervalos filíticos.

Figura 8. Mapa geológico del área de Tolimán en el cual se muestran la distribución de las unidades litológicas, estructuras mayores y zonas de muestreo para el presente trabajo (Ortega-Flores et al., 2014).

El Complejo El Chilar ha sido considerado como parte de un ensamble de edad paleozoica o triásica (Segerstrom, 1961), o como parte de la Formación San Juan de la Rosa (Carrillo-Martínez, 1988; 1989), o como parte de la Formación Las Trancas, la cual aflora al este del área (Segerstrom, 1961; Núñez, 2007). Datos más recientes indican que el Complejo El Chilar y la Formación San Juan de la Rosa difieren en edad, origen y composición (Dávila-Alcocer y

Centeno-García, 2006; Dávila-Alcocer et al., 2009; Dávila-Alcocer et al., 2013; Ortega-Flores et al., 2014). Los sedimentos que conforman el Complejo El Chilar son de procedencia continental, pero el basamento sobre el cual se depositaron es de origen desconocido. Las rocas del Complejo El Chilar podrían haber sido incorporadas, después de su depósito, en un prisma de acreción asociado a una zona de subducción, como lo sugieren el contenido de radiolaritas y bloques de composición máfica de afinidad oceánica (Centeno-García, 2005; Dávila-Alcocer et al., 2013).

Figura 9. Columna estratigráfica generalizada del área de Tolimán donde se muestran los niveles estratigráfico-estructurales en los cuales se tomaron las muestras para isotopía de Hf

Formación San Juan de la Rosa

La Formación San Juan de la Rosa, la cual sobreyace discordantemente al Complejo El Chilar, es una sucesión volcaniclástica de ~440 m de espesor (Figura 10), depositada en un ambiente submarino. La porción basal de esta formación es un intervalo dominantemente siliciclástico y epiclástico que contiene debris flow y slumps con fragmentos de arenisca y algunos bloques de basaltos similares a aquellos reportados en el Complejo El Chilar (Dávila-Alcocer et al., 2013). Le sobreyacen una sucesión volcaniclástica proximal a media, dominada por depósitos de debris flow matriz-soportados, slumps con abundantes intraclastos matriz-soportados, areniscas masivas y gradadas, y depósitos de corrientes de turbidez de baja densidad con laminación planar y convoluta, rizaduras y estructuras de escape de fluidos. La parte media de la sección estratigráfica incluye conglomerado clasto-soportado monomíctico con clastos de riolita, conglomerados clasto-soportados polimícticos con clastos volcánicos y volcanoclásticos (riolita, toba, lutita y arenisca). Hacia la parte superior de la sección, las facies hemipelágicas son dominantes. Esta facies consiste en lutitas negras de finamente laminadas a masivas, además de mudstone con calciesferas, finamente laminado. La parte más superior del intervalo volcanoclástico está mezclado con lavas riolíticas, lo que resulta en estructuras peperíticas, indicando la interacción de los flujos de lava con sedimentos húmedos, inconsolidados. La Formación volcaniclástica San Juan de la Rosa gradúa verticalmente a la Formación Peña Azul, y puede ser parcialmente correlacionada con las calciturbiditas de aguas profundas de la Formación Las Trancas de la cuenca de Zimapán, ubicada al este del área.

Formación Las Trancas

La Formación Las Trancas está ampliamente expuesta en la cuenca de Zimapán, adyacente al área de Tolimán. Consiste en una alternancia de margas, limolitas y areniscas volcaniclásticas de grano fino a grueso. Hacia el oeste, esta formación contiene algunos depósitos de *debris flow* y *slumps*, los cuales son poco comunes hacia el este de la cuenca, donde las facies de lutitas calcáreas son dominantes. Segerstrom (1961) reportó una edad, con base en amonitas, con rango del Tithoniano tardío al Hauteriviano tardío-Barremiano. Por su parte, González-Arreola y Carrillo-Martínez (1986) reportaron amonitas en la parte más superior de esta formación, de posible edad Barremiano, lo cual la hace correlativa con la Formación San Juan de la Rosa y con la parte inferior de la Formación Peña Azul.

Formación Peña Azul

La Formación Peña Azul, una sucesión de carbonatos que sobreyace transicionalmente a la Formación San Juan de la Rosa a lo largo del flanco este del anticlinal El Chilar, consiste de

calciturbiditas, depósitos de *debris flow* y brechas compuestas por bloques contenidos en una matriz de grano fino, en la parte inferior de la columna. Los clastos son angulares y variables en tamaño, y fueron derivados de calciturbiditas laminadas y caliza micrítica. Estratigráficamente arriba, sobreyacen depósitos de caliza masiva con geometría lenticular y discontinuidad lateral, los cuales tienen impresiones de bivalvos. La parte superior de la Formación Peña Azul consiste en caliza y caliza arcillosa bien estratificada cuyos espesores varían de 25 a 30 cm. De acuerdo a Carrillo-Martínez (1989), esta formación cambia transicionalmente a la Formación Tamaulipas, una sucesión carbonatada. Las formaciones Peña Azul y Tamaulipas son indiferenciadas en el mapa geológico del anticlinal El Chilar (Figura 8). Con base en su contenido de amonitas, se le asignó una edad del Neocomiano (Carrillo-Martínez, 1989). La Formación Las Trancas (Carrillo-Martínez, 1981; Fitz-Díaz et al., 2012), mientras que la Formación Tamaulipas es la facies de cuenca equivalente a las rocas carbonatadas de plataforma de la Formación El Doctor (Suter, 1987). Las formaciones Peña Azul y Tamaulipas subyacen discordantemente, y están localmente cabalgando a la Formación Soyatal.

Formación Soyatal

La Formación Soyatal aflora en el flanco este del anticlinal El Chilar y consiste en areniscas, lutitas, margas y caliza micrítica. Esta formación está afectada por plegamiento intenso. Los pliegues son principalmente cerrados con clivaje de plano axial bien desarrollado. La Formación Soyatal ha sido interpretada como una sucesión turbidítica sin-orogénica, derivada del levantamiento y erosión de sucesiones carbonatadas más viejas durante el incipiente desarrollo del Cinturón de Pliegues y Cabalgaduras del este de México (Hernández-Jáuregui, 1997; Fitz-Díaz et al., 2012). Se le ha asignado una edad del Turoniano medio-Santoniano temprano con base a su contenido de microfósiles (Carrillo-Bravo, 1971; Hernández-Jáuregui, 1997), lo cual la hace parcialmente correlativa con la Formación Caracol de México central (Santamaría et al, 1990).

4.1.2. Estratigrafía del área de Mineral de Pozos

El área de Mineral de Pozos se localiza en el centro de México, 80 km al noroeste del área de Tolimán (Figura 7). En esta área la estratigrafía mesozoica está representada por dos unidades sedimentarias cretácicas que son sobreyacidas por rocas sedimentarias y volcánicas cenozoicas. La sucesión mesozoica consiste de dos unidades que informalmente son referidas como Caliza La Luz y Arenisca Mineral de Pozos (Figuras 11 y 12).

Figura 11. Mapa geológico del área de Mineral de Pozos en el cual se muestran la distribución de las unidades litológicas, estructuras mayores y zonas de muestreo para el presente trabajo (Ortega-Flores et al., 2014).

Figura 12. Columna estratigráfica generalizada del área Mineral de Pozos. Se muestra el nivel estratigráfico aproximado del sitio de muestreo para isotopía de Hf (Ortega-Flores et al., 2014).

Caliza La Luz

La Caliza La Luz está expuesta en los alrededores del poblado de Mineral de Pozos (Figura 11). Consiste en ~100 m de caliza dolomítica masiva con bandas de pedernal e intervalos subordinados de caliza laminada (Figura 12). Los intervalos de caliza laminada están plegados y foliados, mientras que las calizas más competentes no presentan tal deformación. Esta sucesión marina ha sido considerada de edad albiana (Carrillo-Chávez et al., 2012) o del Aptiano temprano-Albiano temprano (Servicio Geológico Mexicano, 1998), lo cual la hace correlativa con las formaciones El Doctor y Tamaulipas del este del área. La Caliza La Luz sobreyace a través de una falla de cabalgadura a la Arenisca Mineral de Pozos.

Arenisca Mineral de Pozos

La Arenisca Mineral de Pozos está ampliamente expuesta en los alrededores del poblado de Mineral de Pozos, donde incluye dos sucesiones estratigráficas. El intervalo inferior consiste en areniscas y tobas que alternan con delgados estratos de lutita laminada (Figura 12). El intervalo superior consiste en ~70 m de caliza de estratificación delgada, intercalada con estratos de lutitas y bandas de pedernal. Las superficies de contacto primarias entre los estratos han sido obliteradas por cizallamiento, plegamiento y alteración hidrotermal. La Arenisca Mineral de Pozos subyace a la Caliza La Luz a través de una superficie de cabalgadura. Su exposición es debido a la erosión del bloque superior que propició una ventana tectónica o estructura *klippe*. La sucesión de areniscas y lutitas ha sido interpretada del Jurásico Tardío-Cretácico Temprano en edad (Carrillo-Chávez et al., 2012); con base en bioestratigrafía se le asignó una edad del Berriasiano – Aptiano temprano (Servicio Geológico Mexicano, 1998), indicando una posible correlación con la Formación San Juan de la Rosa del área de Tolimán.

4.1.3. Compilación de la estratigrafía del área de Sierra de los Cuarzos

Al sur del área de Mineral de Pozos y al oeste del área de Tolimán, exposiciones de rocas mesozoicas, del margen continental, han sido reportadas entre los límites de los estados de Querétaro y Guanajuato, en el área de Sierra de los Cuarzos (Figura 7) (Palacios-García, 2013; Palacios-García y Martini, 2014). La estratigrafía del área de la Sierra de los Cuarzos consiste en tres unidades sedimentarias mesozoicas que incluye a las formaciones Sierra de Los Cuarzos, Pelones y Españita (Figura 13).

Figura 13. Mapa geológico del área de Sierra de los Cuarzos (Tomado de Palacios-García y Martini, 2014) donde muestra la distribución de las unidades litológicas, estructuras mayores y la ubicación de las muestras consideradas para isotopía de Hf para el presente trabajo.

Formación Sierra de Los Cuarzos

La Formación Sierra de los Cuarzos (Palacios-García, 2013; Palacios-García y Martini, 2014) está ampliamente expuesta inmediatamente al oeste de la localidad Charape de los Pelones, donde incluye predominantemente areniscas con abundante cuarzo y con ciertos componentes volcanogénicos. Con base en observaciones detalladas en sus características litológicas, Palacios-García (2013) y Palacios-García y Martini (2014), identificaron tres miembros para esta formación (Figura 14). El miembro A, el cual corresponde con el intervalo estratigráficamente más bajo de la Formación Sierra de los Cuarzos, consiste en arenisca rica en cuarzo, intercalada con limolita, lutita y, localmente, calcarenita. Frecuentemente, muestra estructuras primarias sinsedimentarias, tales como pliegues y brechas, asociadas a procesos de depósito de *slumps* o movimientos en masa. Otras estructuras como laminación cuando estos depósitos aún estaban poco consolidados. Adicionalmente, se identificaron fallas normales sin-sedimentarias en

diferentes niveles estratigráficos. El Miembro B consiste en arenisca matriz-soportada, volcaniclástica, de grano grueso y de gradación inversa, y conglomerado de grano fino a medio soportado por una matriz arenosa. Los intervalos de conglomerado incluyen clastos que varían entre 10 y 20 cm de diámetro de arenisca rica en cuarzo, toba félsica, roca volcánica máfica, caliza y pedernal negro. El Miembro C, el cual constituye la parte superior de la Formación Sierra de los Cuarzos, consiste predominantemente en turbiditas calcáreas alternando con areniscas y lutitas ricas en cuarzo. Ocasionalmente, lavas basálticas se intercalan con los sedimentos de este miembro, o se incorporan dentro de éstos, resultando en una textura peperítica.

SQB-168

Una edad máxima de depósito de 155.9 ± 1.4 Ma, fue obtenida a partir de geocronología U-Pb en zircones detríticos (Palacios-García y Martini, 2014), por lo que puede ser correlacionada con las formaciones La Esperanza y Valenciana del área de Guanajuato (Martini et al., 2011). La Formación Sierra de los Cuarzos subvace a través de una zona de cizalla subhorizontal a la Formación Pelones.

Formación Pelones

La Formación Pelones (Palacios-García, 2013) está expuesta en restringidos listones con tendencia este-oeste, hacia el noroeste y suroeste del área de Sierra de los Cuarzos y al oeste de la localidad El Patolito de la misma área. Esta formación consiste en areniscas, lutitas, escaso conglomerado y subordinada brecha intraformacional. Hacia la base de la formación predomina la arenisca con laminación plano-paralela, interestratificada con lutitas. Algunas estructuras en forma de flama se desarrollan en la interfase arenisca-lutita, sugiriendo flujos de grano. También es posible observar, de manera local, algunos estratos de areniscas con *boudinage*. Hacia los niveles intermedios de la Formación Pelones predomina la arenisca de estructura masiva, conteniendo esporádicos clastos de radiolarita, basalto y arenisca. Ocasionalmente, aparecen algunos niveles de conglomerados matriz- o clasto-soportados, mal clasificados, que incluyen fragmentos angulosos a sub-redondeados de rocas volcánicas félsica y máfica, filita, esquisto y radiolarita, los cuales varían en diámetro entre 2 y 10 cm. Algunas brechas intraformacionales, compuestas de clastos de arenisca con matriz de lutita, también se presentan en este nivel de la columna, sugiriendo depósitos por deslizamientos súbitos o tipo slump. Hacia la cima de la formación, el dominio de lutitas sobre estratos de arenisca es frecuente, a la vez que aumenta el contenido de lentes de arenisca y otros intraclastos en la lutita masiva.

A partir de geocronología U-Pb en zircones detríticos (Palacios-García, 2013 y Palacios-García y Martini, 2014), se obtuvieron edades máximas de depósito de 127.8 \pm 0.8 y 133.6 \pm 1.1 Ma, ubicando el depósito de esta unidad en el Aptiano tardío. Palacios-García y Martini (2014) sugieren que esta unidad registra la acreción del terreno Guerrero al continente mexicano para finales del Cretácico Tardío, posterior a lo cual prevaleció el depósito de sedimentos carbonatados de la Formación Españita. La Formación Pelones subyace a través de una zona de cizalla, con cima al SW, a la Formación Españita.

Formación Españita

La Formación Españita (Palacios-García, 2013) está ampliamente expuesta en las inmediaciones de la localidad Charape de los Pelones y al oeste de la localidad El Chupadero (Figura 13). Consiste en una alternancia rítmica de caliza detrítica, marga, lutita y radiolarita. Los estratos de caliza generalmente no exceden los 15 centímetros de espesor, mientras que el espesor de los estratos de lutitas, margas y radiolarita es menor a 10 centímetros. Tanto los estratos de caliza como las bandas de pedernal frecuentemente presentan *boudinage* y han sido afectadas por

recristalización. El espesor mínimo de esta formación ha sido estimado en 100 metros (Palacios-García, 2013). Su edad ha sido estimada, con base en el contenido de foraminíferos, al menos para el intervalo inferior, en el Cenomaniano tardío-Turoniano temprano (Martini et al., 2016).

4.2 Dominio oceánico-terreno Guerrero

En este dominio paleogeográfico se consideran aquellos depósitos que tuvieron lugar lejos del margen continental paleo-Pacífico mexicano, y que estuvieron influenciados por la dinámica de la placa pacífica durante el Mesozoico. Uno de los aspectos más importantes de esta región es la naturaleza y el origen del basamento pre-Mesozoico, dado que las rocas más antiguas expuestas en el actual margen continental son de edad triásica.

4.2.1. Estratigrafía del área de Zacatecas

Esta área de estudio se localiza en el flanco oeste de la Sierra de Zacatecas, el cual constituye un alto tectónico que está limitado por dos fallas normales mayores cenozoicas (Nieto-Samaniego et al., 1999; Aranda-Gómez et al., 2007; Tristán-González et al., 2012). Cuatro unidades litoestratigráficas mesozoicas están expuestas en esta área; dos de ellas predominantemente siliciclásticas y dos de carácter volcanogénico (Figuras 15 y 16).

Formación Zacatecas

La Formación Zacatecas está expuesta es pequeños afloramientos a lo largo del arroyo El Bote (también conocido como arroyo Talamantes o La Pimienta). Inicialmente las rocas siliciclásticas deformadas, expuestas al oeste de la ciudad de Zacatecas fueron descritas de manera informal por Burckhardt (1906) como rocas marinas, metamórficas del Triásico. En sus descripciones hace referencia a una unidad compuesta por dos miembros: el miembro inferior incluye pizarras sericíticas negras, conglomerado y cuarcita, y se caracteriza por la ausencia de fósiles; el miembro superior, incluye pizarras silíceas, negras, intercaladas con cuarcitas, areniscas con bivalvos y amonites de edad triásica (Gutiérrez-Amador, 1908). Adicionalmente, rocas verdes y tobas también fueron incluidas en este miembro. Con base en las diferencias estratigráficas y composición litológica, autores subsecuentes subdividieron a la Formación Zacatecas *sensu* Burckhardt, en tres o más unidades estratigráficas. McGehee (1976) propuso cinco unidades estratigráficas para la secuencia metamórfica del oeste de Zacatecas, con base en la geometría y en la composición de las rocas, donde sugirió edades deposicionales decrecientes hacia el oeste. Ranson et al. (1982) refirieron a las rocas metamórficas como Filita La Pimienta, y las dividieron

en siete unidades estratigráficas de acuerdo a sus características estructurales y composicionales. Monod y Calvet (1992) propusieron la reorganización de las unidades triásicas del oeste de Zacatecas y las dividieron en tres unidades tectonoestratigráficas: la Formación La Pimienta, la cual incluye tobas y areniscas volcaniclásticas; la Formación El Bote, caracterizada por la alternancia de cuarcita y filitas y la Formación El Ahogado, que consiste en cuarcita y pizarra fosilífera negra.

Figura 15. Mapa geológico del área de Zacatecas donde muestra la distribución de las unidades litológicas, estructuras mayores y zonas de muestreo para el presente trabajo (Ortega-Flores et al., 2016).

Ortega-Flores et al. (2016) consideraron a la Formación Zacatecas, la cual está pobremente expuesta en el arroyo El Bote (Figura 15), como una sucesión de pizarras que varían de gris oscuro a negro y filitas gris lustroso, intercaladas con cuarcita gris o café y subordinado metaconglomerado. Los intervalos de filita, los cuales predominan sobre los de cuarcita, exhiben planos de foliación bien definidos, como resultado del crecimiento de sericita y muscovita, mientras que los intervalos de cuarcita muestran, localmente, apariencia bandeada. Los estratos de cuarcita generalmente no exceden los 15 centímetros de espesor. La granulometría de la fracción psamítica varía de grano fino a medio. Algunas estructuras primarias tales como

estratificación y laminación son, localmente, preservadas. Además de mostrar metamorfismo en facies de esquistos verdes, estas rocas han sido afectadas por una significativa deformación tectónica, lo cual dificulta determinar la polaridad y el espesor original de la sucesión, como también las relaciones estratigráficas con la unidad sobreyacente. Sin embargo, es posible identificar cambios en la composición de la Formación Zacatecas que permiten separarla, de otras unidades litoestratigráficas.

Figura 16. Columna estratigráfica generalizada del área de Zacatecas donde se muestran los niveles estratigráfico-estructurales en los cuales se tomaron las muestras para isotopía de Hf (Ortega-Flores et al., 2016)

Con base en el contenido de amonites (*Juvavites* sp., *Sirenites* sp., *Clionites* sp. y *Trachynoceras* sp.), a las rocas metamórficas del oeste de Zacatecas se les asignó una edad deposicional del Triásico (Burckhardt, 1906). Sin embargo, debido a la pobre conservación de estos fósiles y a la complejidad estructural del área, esta edad paleontológica fue considerada controversial. Escalona-Alcázar et al. (2009) reportaron una edad del Cretácico Temprano, obtenida a partir de geocronología U-Pb en zircones detríticos de una muestra localizada cerca de la localidad La Pimienta, y que consideraron como parte de la Formación Zacatecas. Sin embargo, esta unidad

no corresponde a la misma unidad metamórfica descrita por Burckhardt (1906). Ortega-Flores et al. (2016) sugirieron una edad máxima de depósito de 222.6 \pm 2.4 Ma, con base en geocronología U-Pb en zircones detríticos, considerando la sobreposición de edades de por lo menos tres granos de zircón jóvenes concordantes de acuerdo con Dickinson y Gehrels (2009).

Las características composicionales y estructurales de la Formación Zacatecas del terreno Guerrero sugieren una posible correlación con las rocas del Triásico Superior de la Formación La Ballena del terreno Sierra Madre, y con las rocas metamórficas del Complejo Arteaga y Placeres del terreno Guerrero (Centeno-García et al., 1993; Centeno-García y Silva-Romo, 1997; Silva-Romo et al., 2000; Centeno-García et al., 2008).

Fomación La Pimienta

La Formación La Pimienta fue propuesta por Monod y Calvet (1992) como una unidad deformada y con metamorfismo en facies esquistos verdes. Consiste en meta-areniscas volcaniclásticas que varían de grano fino a grueso, las cuales afloran al este de la localidad La Pimienta y sobre los arroyos El Álamo y El Bote. Esta unidad fue considerada como un miembro inferior de la Formación Zacatecas.

La Formación La Pimienta está expuesta a lo largo de un área NE-SW, que incluye al arroyo El Bote. Consiste en meta-arenisca de grano fino gris y café con planos de foliación bien desarrollados, intercalados con gruesos intervalos de meta-areniscas verdosas, de granulometría media a gruesa, cuyos estratos varían de 20 a 30 centímetros de espesor. Estructuralmente arriba, esta sucesión incluye lutita rítmicamente intercalada con meta-arenisca café en estratos de menos de 10 centímetros, sobreyacida por un intervalo de aproximadamente siete metros de toba alterada y tres metros de conglomerado de clastos sub-redondeados y moderadamente clasificados. Los clastos en el conglomerado son predominantemente de meta-arenisca y en menos proporción de cuarzo. Las rocas de la Formación La Pimienta están afectadas por metamorfismo en facies de esquistos verdes, deformación tectónica y, localmente, por alteración hidrotermal.

Anteriormente, esta sucesión, había sido considerada como parte de la Formación Zacatecas y por lo tanto se le asignaba una posible edad triásica. Sin embargo, con base en su carácter composicional con influencia volcánica, y a edades obtenidas por geocronología U-Pb en zircones detríticos (Ortega-Flores et al., 2016), se puede diferenciar de la Formación Zacatecas.
Se obtuvo una máxima edad deposicional de 166 ± 1.5 Ma, de un grupo de edades concordantes que se sobreponen entre sí. La Formación La Pimienta es correlativa en composición y edad con las areniscas volcaniclásticas de la Formación Nazas del arco continental del Triásico más tardío-Jurásico Medio, expuestas en el terreno Sierra Madre (Barboza-Gudiño et al., 1998; Silva-Romo et al., 2000; Barboza-Gudiño et al., 2008; Lawton y Molina-Garza, 2014).

Complejo Vulcanosedimentario Las Pilas

Rocas predominantemente volcánicas e hipabisales, expuestas al sureste y noreste del área de estudio (Figura 15), fueron inicialmente reportadas por Burckhardt (1906) y Gutiérrez-Amador (1908). Estos autores las refirieron como diabasas y las consideraron de edad triásica. Otros autores reportaron estas rocas como Diorita Las Pilas (Ransom et al., 1982) o como microdiorita Zacatecas (Ponce y Clark, 1988). Centeno-García y Silva-Romo (1997) incluyeron a estas rocas en una sucesión volcánica y volcaniclástica que llamaron Formación La Borda. Más tarde, Escalona-Alcázar et al. (2009; 2014), describieron en detalle a esta sucesión volcanosedimentaria refiriéndola como Complejo Vulcanosedimentario Las Pilas (CVSLP) y la incluyeron dentro del Grupo Zacatecas.

El CVSLP consiste en rocas ígneas intrusivas y extrusivas. Las rocas plutónicas incluyen intrusivos dioríticos, *sills* y diques máficos, los cuales son similares en composición pero difieren en la abundancia de fenocristales de plagioclasa, clinopiroxeno, olivino y escaso cuarzo, contenidos en una matriz cripto- o micro-cristalina (Escalona-Alcázar et al., 2009). Las rocas volcánicas, las cuales comparten la misma mineralogía que las rocas intrusivas, incluyen predominantemente andesitas y basaltos de estructura masiva o almohadillada. Estas rocas extrusivas se intercalan con areniscas volcaniclásticas verdes, ricas en matriz, tobas, radiolaritas, lutitas y caliza pelágica (Centeno-García y Silva-Romo, 1997). El CVSLP ha sido afectado por alteración hidrotermal, resultando en la formación de minerales tales como epidota, clorita, sericita y calcita, que reemplazan selectiva o pervasivamente al mineral original. Adicionalmente, estas rocas exhiben metamorfismo de bajo grado en facies esquistos verdes, el cual es más evidente en las facies pelíticas, donde los planos de foliación están bien definidos por el crecimiento de sericita resultando en una apariencia pizarrosa.

Edades máximas de depósito de 132 Ma y 153 ± 2 Ma, obtenidas a partir de geocronología U-Pb en zircones detríticos (Escalona-Alcázar et al., 2009; 2014; Ortega-Flores et al., 2016), sugieren que el depósito del CVSLP se llevó a cabo del Jurásico más tardío al Cretácico Temprano. Esta

sucesión volcanosedimentaria ha sido correlacionada con las rocas volcaniclásticas de la Formación Chilitos, expuestas en el área de Fresnillo, y con las lavas masivas y almohadilladas del área de la localidad El Saucito, las cuales se consideran como las exposiciones más orientales del terreno Guerrero (Centeno-García y Silva Romo, 1997; Mortensen et al., 2008). El CVSLP también comparte similitudes en edad y composición con rocas volcaniclásticas de la cuenca de Arperos en el área de Guanajuato, donde han sido caracterizadas por Martini et al. (2011; 2012), y con la sucesión volcanosedimentaria del área de Arcelia (Martini et al., 2014).

Filita La Escondida

La Filita La Escondida es un nombre informal asignado a una sucesión de rocas foliadas que están expuestas al oeste del área de estudio (Figura 15). Estas rocas metamórficas fueron inicialmente consideradas parte de las rocas triásicas de la Formación Zacatecas (Burckhardt, 1906; Ranson et al., 1982; Monod y Calvet, 1992). Esta sucesión consiste en estratos delgados a medios de una alternancia monótona de meta-areniscas de grano fino a medio intercaladas con filitas grisáceas. Esta unidad siliciclástica exhibe planos de foliación subhorizontal con rumbo NW-SE, que están definidos por el desarrollo de sericita y muscovita. Los planos de foliación son cortados por planos de cizalla subparalelos a la foliación.

Ortega-Flores et al. (2016) le asignaron una edad máxima de depósito de 109 ± 2.5 Ma, obtenida a partir de zircones detríticos, por lo que se le considera post-Aptiana.

4.2.2. Compilación de la estratigrafía del área de Guanajuato

El área de Guanajuato (localidades Arperos y La Esperanza) se localiza aproximadamente 80 km al oeste de las áreas de Mineral de Pozos y Sierra de los Cuarzos, en el sureste de la Sierra de Guanajuato. La Sierra de Guanajuato es un alto estructural limitado al sur por la falla normal El Bajío (Aranda et al., 1989) y al sureste por el sistema de fallas normales del graben de La Sauceda (Alaniz-Álvarez et al., 2002). En la Sierra de Guanajuato se han reportado unidades metamórficas mesozoicas que han sido consideradas como parte de la zona de sutura entre el terreno Guerrero y el margen occidental de Oaxaquia (Figura 7).

La Sierra de Guanajuato es una de las áreas donde las sucesiones volcanosedimentarias mesozoicas están bien expuestas, por lo que se han llevado a cabo diversos estudios enfocados en el carácter estructural, composicional o relativo a la génesis de estas rocas (Lapierre et al., 1992; Ortiz-Hernández et al., 1992; Tardy et al., 1994; Freydier et al., 2000; Ortiz-Hernández et

al., 2003; Mortensen et al., 2008; Martini et al., 2011; 2012). De acuerdo a estudios realizados en la última década (Martini et al., 2011; 2012), donde se integra la información disponible de estudios previos, el sureste de la Sierra de Guanajuato se caracteriza por sucesiones mesozoicas metavolcanosedimentarias submarinas asociadas con un arco volcánico (Figura 17). A pesar de la intensa deformación que registran estas sucesiones mesozoicas, se han diferenciado dos ensambles petrotectónicos; uno de ellos corresponde con rocas asociadas al arco magmático, mientras que, el segundo corresponde con unidades volcánicas y volcaniclásticas que representan una cuenca de tras-arco (Martini et al., 2011; 2012).

Área de Arperos

El ensamble tectonoestratigráfico representativo del arco volcano-magmático incluye al Complejo Intrusivo Tuna Manza y a las rocas volcaniclásticas de la Formación El Paxtle (Figuras 17a y 18).

Figura 17. Geología del sureste de la Sierra de Guanajuato (Tomada de Martini et al., 2011; 2012). a, área de Arperos; b, área de Esperanza. Se muestra la distribución de las unidades litológicas, estructuras mayores y la ubicación de las muestras consideradas para isotopía de Hf para el presente trabajo.

Figura 18. Columnas estratigráficas para el sureste de la Sierra de Guanjuato. Se muestra el nivel estratigráfico aproximado del sitio de muestreo para isotopía de Hf. (Martini et al., 2011; 2012)

Complejo Intrusivo Tuna Manza

Unidades intrusivas mesozoicas, reportadas inicialmente como Unidad Ultramáfica San Juan de Otates, Diorita Tuna Mansa, Tonalita Cerro Pelón y Complejo Filoniano Santa Ana (Martínez-Reves, 1992; Lapierre et al., 1992; Ortíz-Hernández et al., 1992) fueron agrupadas en el Complejo Intrusivo Tuna Manza (Martini et al., 2011). El Complejo Intrusivo Tuna Manza está expuesto entre las localidades de Tuna Manza y El Jitomatal, en el área de Arperos, y entre las localidades La Valenciana y Santa Ana, en el área La Esperanza. Estas rocas plutónicas incluyen gabro estratificado, diorita, wehrlita, dolerita y tonalita, que a su vez son intrusionados por enjambres de diques doleríticos y basálticos (Lapierre et al., 1992; Ortiz-Hernández et al., 1992; Martini et al., 2011). De acuerdo con Ortiz-Hernández et al. (1992), la diorita es rica en hornblenda y biotita y puede contener enclaves de clinopiroxenita. Lapierre et al. (1992) y Ortíz-Hernández et al. (1992) reportaron edades que varían de 157 a 120 Ma, obtenidas en hornblendas de diorita y tonalita, por el método K-Ar. Por su parte Martini et al. (2011), determinaron una edad de 144.0 \pm 1.4 Ma en zircones de tonalita, por el método U-Pb, la cual consideran es la edad de emplazamiento. Edades relativamente más jóvenes (110-100 Ma), similares a los reportados por Villanueva-Lascurain et al. (2016), han sido reportadas en rocas gabróicas que intrusionan a rocas ultramáficas en el área de La Angostura, ~5 km al noroeste de la localidad de Arperos (Lapierre et al., 1992; Stein et al., 1994). El Complejo Intrusivo Tuna Manza sobreyace a través de una cabalgadura a la Formación El Paxtle.

Formación El Paxtle

Rocas volcánicas que consisten en lavas masivas y lavas almohadilladas, intercaladas con sedimentos pelágicos, fueron referidas como Unidad Basáltica La Luz por Ortiz-Hernández et al. (1992) y Lapierre et al. (1992). Posteriormente, Martini et al. (2011) la refirió como Formación El Paxtle, tomando el nombre de la localidad donde se presentan los mejores afloramientos. La Formación El Paxtle está expuesta hacia el este del área de Arperos (Figura 17a). Consiste en más de 1000 m de espesor predominantemente de lavas almohadilladas, hialoclastitas, lavas basálticas de estructura masiva, intercaladas con tobas y brechas basálticas, y escasa radiolarita, caliza micrítica, lutita y arenisca volcaniclástica. La Formación El Paxtle ha sido afectada por metamorfismo en facies de esquistos verdes. Con base en su composición, predominantemente máfica, y a la escasez de cuarzo en las sucesiones de la Formación El Paxtle, Martini et al. (2011) consideran que bien podría estar relacionada genéticamente con el Complejo Intrusivo Tuna Manza y tener una edad similar. Por su parte, Hernández-Ortíz et al (1992) reportan una edad de 108.4 \pm 6.2 Ma obtenida en roca total por el método K-Ar en lavas basálticas. La Formación El Paxtle sobreyace a través de cabalgadura a las sucesiones volcanosedimentarias de la Formación Arperos.

Formación Arperos

La Formación Arperos, nombre informal asignado por Chiodi et al. (1988), consiste en una sucesión de rocas volcánicas y volcaniclásticas ampliamente distribuidas al sureste de la Sierra de Guanajuato (Ortiz-Hernández et al., 1992; Lapierre et al., 1992; Tardy et al., 1994; Ortiz-Hernández et al., 2003; Martini et al., 2011). Posteriormente, Martini et al. (2012a; 2012b), con base en sus características estructurales, dividieron a la Fomación Arperos en dos unidades; la Formación Arperos y la Formación Cuestecita (Figura 18). Rocas de la Formación Arperos están expuestas sobre el arroyo El Salto, al SSW de la localidad de Arperos (Figura 17a). Esta formación consiste en lavas almohadilladas, hialocastita, radiolarita, lutita y escasa arenisca volcaniclástica. Areniscas de la Formación Arperos entregaron una edad máxima de depósito de 132-133 Ma en zircones detríticos, por el método U-Pb (Martini et al., 2012b). La Formación Arperos subyace a través de fallas de cabalgadura a la Formación Cuestecita.

Formación Cuestecita

Turbiditas volcaniclásticas que habían sido consideradas como la parte superior de la Formación Arperos (Ortíz-Hernández et al., 1992; Lapierrre et al., 1992; Martini et al., 2011), fueron caracterizadas como una unidad distinta por Martini et al. (2012b). La Formación Cuestecita es un nombre informal propuesto por Martini et al (2012b), para designar a una sucesión de turbiditas volcaniclásticas ampliamente distribuida en la parte central y norte del área de Arperos. Esta unidad consiste predominantemente en una sucesión turbidítica volcaniclástica finamente estratificada y laminada. Está afectada por deformación y metamorfismo en facies de esquistos verdes. Similarmente a la Formación Arperos, las turbiditas volcaniclásticas de Formación Cuestecita entregan una edad máxima de depósito de 132 Ma en zircones detríticos, por el método U-Pb (Martini et al., 2011; 2012b).

Área La Esperanza

Formación Esperanza

La Formación Esperanza, nombre asignado para una sucesión volcaniclástica de rocas ricas en cuarzo, deformadas y metamorfizadas, está expuesta en los alrededores de la presa La Esperanza, de donde toma su nombre (Figura 17b) (Echegoyen-Sánchez, 1978). Inicialmente, La Formación Esperanza fue considerada como una sucesión que incluía lutitas negras, conglomerado, areniscas ricas en cuarzo, pedernal, intervalos de roca volcánica de composición riodacítica y riolítica y caliza hacia la parte superior de la columna (Ortiz-Hernández et al., 1992).Por su parte, Martini et al. (2011; 2012a; 2012b) dividieron a esta sucesión volcanosedimentaria en dos unidades; la Formación Esperanza y la Formación Valenciana (Figura 18). La Formación Esperanza consiste, hacia la parte inferior de la columna, de estratos delgados de arenisca de grano fino a grueso que alternan con lutita, limolita y escasos lentes de conglomerado. Los intervalos de conglomerado son masivos hacia la parte media de la columna, y se intercalan con cuarcita, filita, lutita finamente laminada y pedernal. Diques félsicos cortan y, a la vez, se inyectan en los sedimentos de la sucesión silisiclástica, generando estructuras peperíticas y, algunas veces, de rompecabezas. La parte superior de la columna de la Formación Esperanza consiste en lava riolítica y dacítica, intercalada con toba riolítica y arenisca volcaniclástica. La lava puede incluir algunos xenolitos de filita, cuarcita y lutita. Martini et al. (2011) reportan una edad de cristalización 150.7 ± 0.8 Ma para un dique de composición dacítica que intrusiona a la sucesión volcanosedimentaria, obtenida en zircones detríticos por el método U-Pb. Lavas de composición riolítica de los niveles estratigráficamente superiores de la columna de la

Formación Esperanza indican una edad de cristalización de 145.4 ± 1.1 Ma. Por otro lado, las edades más jóvenes obtenidas en zircones detríticos de una arenisca rica en cuarzo se encuentran en un rango de entre 200-180 Ma, por lo que (Martini et al. (2011) consideran que el depósito de esta unidad se llevó a cabo durante el Titoniano donde hubo volcanismo ácido contemporáneo. La Formación La Esperanza subyace en contacto concordante a la Formación Valenciana, aunque también se sobrepone a ésta a través de fallas de cabalgadura. Rocas del Complejo Intrusivo Tuna Manza se encuentran cabalgando a la sucesión volcanosedimentaria Esperanza.

Formación Valenciana

La Formación Valenciana es un nombre informal asignado por Martini et al. (2011) para referir a una sucesión de caliza micrítica que está expuesta en las proximidades de la presa La Esperanza, al norte de la localidad Valenciana. Esta unidad, consiste en una alternancia de caliza micrítica finamente laminada, limolita y lutita, y ocasionalmente, depósitos de flujos de detritos (Ortiz-Hernández et al., 1992; Martini et al., 2011; 2012a; 2012b). Algunas estructuras primarias tales como estratificación cruzada, rellenos de canal y laminación se pueden observar en esta formación. El depósito de esta unidad se considera se llevó a cabo durante el Cretácico Inferior. La Formación Valenciana sobreyace de manera concordante a la Formación Esperanza. En algunas localidades, la Formación Esperanza sobreyace, a través de contacto por cabalgadura, a las calizas micríticas de la Formación Valenciana.

4.2.3. Compilación de la estratigrafía del área de Valle de Bravo

El área Valle de Bravo se localiza en el extremo sureste del terreno Guerrero (Figura 7). Esta área ha sido considerada como una continuación de la zona de sutura de la cuenca de Arperos con el margen continental paleo-Pacífico (Tardy et al., 1992; 1994; Freydier et al., 1996; Martini et al., 2014). Las sucesiones metavolcano-sedimentarias submarinas que afloran en esta área tienen afinidad a secuencias de arco volcánico y cuenca de tras-arco de un ambiente submarino (Freydier et al., 1997; Elías-Herrera y Ortega-Gutiérrez, 1998; Talavera-Mendoza y Guerrero-Suástegui, 2000; Elías-Herrera et al., 2000; Talavera-Mendoza et al., 2007; Martini et al., 2014), similarmente a las reportadas en las áreas de Guanajuato y Zacatecas. Estudios realizados a detalle, relativos a la composición, edad y estructura en estas sucesiones submarinas sugieren una correlación con unidades similares del margen sureste del terreno Guerrero. Unidades petrotectónicas referidas como Suite Metamórfica Tejupilco y Grupo Arcelia-Palmar Chico (Elías-Herrera et al., 2000) en el sur del terreno Guerrero, fueron caracterizadas por Martini et

al., (2014), en el área de Santo Tomás (Figura 19), donde se pueden reconocer tres ensambles petro-tectónicos (Figura 20) afectados por metamorfismo y tectónica compresiva.

Figura 19. Mapa geológico del área de Valle de Bravo (Tomado de Martini et al., 2014), donde se muestra la distribución de las unidades litológicas, estructuras mayores y la ubicación de las muestras consideradas para isotopía de Hf para el presente trabajo.

Figura 20. Columnas estratigráficas del área de Valle de Bravo. Se muestra el nivel estructural aproximado del sitio de muestreo para isotopía de Hf. (Martini et al., 2014)

Ensamble Palmar-Chico

Este ensamble está expuesto hacia el oeste y norte del área de estudio (Figura19). Consiste en basalto tanto de estructura masiva como almohadillada, hialoclastita, toba basáltica, andesita, pedernal, areniscas, lutitas, escasa lava y diques de composición riolítica. Toda la sucesión volcano-clástica ha sido afectada por metamorfismo de facies esquistos verdes. Los diques riolíticos intrusionan a la meta-arenisca, filita y a la toba riolítica, y localmente, muestran estructuras peperíticas cuando parte de sus bordes se inyectan en los sedimentos. La relación que guardan estas rocas con las sucesiones volcaniclásticas máficas, indican que hubo volcanismo

félsico y máfico más o menos contemporáneo. Zircones separados de un dique félsico del ensamble Palmar Chico, entregaron una edad de 129.5 \pm 2.2 Ma, por el método U-Pb, la cual es considerada la edad de emplazamiento (Martini et al., 2014) y, posiblemente, cercana a la edad de depósito de este ensamble. Dos fases de acortamiento fueron reportadas para el ensamble Palmar Chico; la primera con dirección al NE y la segunda con cima al SW. Las sucesiones del ensamble Palmar Chico sobreyacen, a través de contacto tectónico por cabalgadura, a las rocas del ensamble Santo Tomás-Tejupilco.

Ensamble Santo Tomás-Tejupilco

Este ensamble petrotectónico aflora en la parte centro-sur y noreste del área. Consiste en esquisto calcáreo, filita alternando con escasas areniscas siliciclásticas y basaltos de estructura almohadillada. Estructuras primarias localmente preservadas, tales como laminación ondulada, presentes en el esquisto calcáreo, sugieren un ambiente de depósito submarino (Martini et al., 2014). Las rocas del ensamble Santo-Tomás-Tejupilco muestran metamorfismo en facies de esquistos verdes. Zircones obtenidos de areniscas silicilásticas de tres niveles estructurales de este ensamble, entregaron edades máximas de depósito de 125.3 ± 1.4 , 120.7 ± 5.2 y 124.4 ± 2.1 Ma, respectivamente (Martini et al., 2014). Similarmente al ensamble Palmar Chico, el ensamble Santo Tomás-Tejupilco muestra dos fases de deformación compresiva; la primera con cima al NE y la segunda, con cima al SW. El ensamble Santo-Tomás-Tejupilco subyace por contacto tectónico de cabalgadura al ensamble Ojo de Agua.

Ensamble Ojo de Agua

El Ensamble Ojo de Agua está expuesto en la parte centro-norte del área, está limitado por fallas de cabalgadura y fallas normales. Este ensamble consiste en una alternancia de arenisca, conglomerado y lutita afectado por metamorfismo de bajo grado de facies esquistos verdes. Zircones separados de dos intervalos de arenisca, y fechados por el método U-Pb, sugieren una edad máxima de depósito de 119.2 ± 2.0 , en un nivel estratigráfico inferior y de 117.9 ± 1.1 Ma (Martini et al., 2014), en un nivel estratigráfico superior. El ensamble Ojo de Agua presenta dos fases de deformación compresiva; la primera con cima al noreste y la segunda con cima al suroeste. Este ensamble es sobreyacido tectónicamente por el ensamble Palmar Chico y es subyacido, tectónicamente, por el ensamble Santo Tomás Tejupilco.

5. RESULTADOS

5.1. Petrografía y componentes detríticos de las sucesiones sedimentarias

Areniscas siliciclásticas y volcaniclásticas de las sucesiones sedimentarias de las áreas de interés, fueron caracaterizadas con base en sus componentes detríticos mayores, con el objetivo de determinar la naturaleza de sus áreas o rocas fuente. También se caracterizaron algunas muestras localizadas fuera de las áreas cartografiadas, pero dentro de los límites tectónicos de interés, con fines comparativos. Algunas de estas sucesiones sedimentarias ya han sido previamente caracterizadas por diversos autores. Los parámetros usados para indicar la composición de estos componentes detríticos se indican en la tabla 1, mientras que los principales componentes detríticos normalizados se muestran en la tabla 2.

Clave	Definición
Qm	Cuarzo monocristalino
Qp	Cuarzo policristalino
Qc	Pedernal
К	Feldespato potásico
Р	Plagioclasa
Lmf	Cuarzo foliado-granos de mica metamórfica
Lmp	Cuarzo poligonal- granos de mica metamórfica
Lmv	Granos metavolcánicos con epidota y /o clorita
Lss	Granos líticos sedimentarios: limolita, argilita, granos fosfáticos
Lsc	Granos sedimentarios carbonatados
Lvf	Granos líticos volcánicos felsíticos
Lvl	Granos líticos volcánicos basálticos
Lvm	Granos líticos volcánicos microlíticos
Lvt	Granos líticos volcánicos tobáceos y vítreos
Qt	Granos de cuarzo totales (=Qm+Qpq+Qc)
F	Feldespatos totales (=K+P)
Lm	Granos metamórficos totales (=Lmf+Lmp+Lmv)
Lv	Granos volcánicos totales (=Lvf+Lvl+Lvm+Lvt)
Ls	Granos sedimentarios totales (=Lss+Lsc)
L	Granos líticos inestables totales (=Lm+Ls+Lv)
Qp	Cuarzo policristalino total (Qp+Qc)
Lt	Granos líticos totales (L+Qp)

Tabla 1 . Parámetros utili	idos en e	l conteo a	le puntos
----------------------------	-----------	------------	-----------

Parámetros recalculados

QtFL	$Qt=100Qt/(Qt+F+L) \qquad F=100F/(Qt+F+L) \qquad L=100L/(Qt+F+L)$
QmFLt	Qm = 100Qm/(Qm + F + Lt) F = 100F/(Qm + F + Lt) Lt = 100Lt/(Qm + F + Lt)
LmLvLs	Lm=100Lm/(Lm+Lv+Ls) Lv=100Lv/(Lm+Lv+Ls) Ls=100Ls(Lm+Lv+Ls)

		Are	eniscas o	lel Con	tinente	Mesozo	ico Me	xicano				e e
	Coordenadas (UTM WGS84)		QtFL%			QmFLt%			LmLvLs%			
Muestra	X	Y	Qt	F	L	Qm	F	Lt	Lm	Lv	Ls	•
Complejo El	l Chilar											
T11-01* T11-03* T11-06* T11-09* T11-10* T11-11	411677 411856 418122 419532 419532 401573	2307638 2309532 2304623 2297528 2297528 2296076	70 60 66 61 61 72	28 36 34 38 39 28	2 4 0 1 0 0	67 55 65 60 61 70	28 36 34 38 39 28	5 9 1 2 0 2	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	stior
Formación I	La Ballena	i										Supe
LB-1b LB-3a LB-4	221499 222649 224650	2485885 2485517 2485587	90 98 96	7 2 4	3 0 0	65 70 77	7 2 4	28 28 19	NA NA NA	NA NA NA	NA NA NA	Triásico
Formación (Charcas											
CH14-1*			87	7	6	80	7	13	NA	NA	NA	
Formación S	San Juan o	le la Rosa										
T11-04* T12-04 T12-14a	420201 419244 414986	2311868 2299724 2299188	23 13.8 23	2 0.2 0.2	75 86 76.8	23 13.8 23	2 0.2 0.2	75 86 76.8	0 0 0	100 100 97	0 0 3	ico Inferior
Formación I	las Tranc	as										táci
08LT02 08LT03 T13-03*	449719 449719 450543	2311055 2311055 2310435	27 35 40	33 9 31	40 56 29	27 34 38	33 9 31	40 57 31	0 1 1	99 94 80	1 5 19	superior-Cre
Formación I	Peña Azul	ĺ									;	00
T11-05*	418249	2306945	13	61	26	13	61	26	0	100	0	Jurás
Arenisca Mi	neral de I	ozos										•
MP-01 MP-06*	345382 349185	2348261 2343621	58 34	33 40	9 26	57 32	33 40	10 28	0 4	82 56	18 40	Cretácico Superior

Tabla 2. Resultados del conteo de puntos normalizado para las sucesiones sedimentarias del continente mesozoico mexicano y del terreno Guerrero

			Are	niscas	del terr	eno Gue	rrero					
	Coordenadas (UTM WGS84)		QtFL%		QmFLt%			LmLvLs%				
Muestra	Х	Y	Qt	F	L	Qm	F	Lt	Lm	Lv	Ls	-
Formación 2	Zacatecas											
Z12-04* Z12-05* Z12-06* Z13-01 Z13-13 Z13-14	745010 745051 745036 744441 745030 744949	2521299 2522135 2522038 2522074 2522045 2521979	99 95 97 100 94 92	1 5 3 0 5 6	0 0 0 1 2	43 82 69 53 72 60	1 5 3 0 5 6	56 13 28 47 23 34	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	Superior
Complejo A Ar-3*	rteaga 789529	2015025	99	1	0	61	0	39	NA	NA	NA	Triásico S
Placeres 23*	293350	2021257	100	0	0	61	0	39	NA	NA	NA	
Formación l	La Pimien	ta										
Z12-02* Z13-02 Z13-03 Z13-05 Z13-06 Z13-06 Z13-07 Z13-08a Z13-08b	745010 744545 744563 744714 744807 744857 744947 744947	2521299 2522057 2522040 2521897 2521820 2521814 2521828 2521828	31 62 59 86 94 88 86 61	0 6 30 10 4 9 7 4	69 32 11 4 2 3 7 35	13 51 57 65 76 73 70 60	0 6 30 10 4 8 7 4	87 43 13 25 20 19 23 36	28 28	66 68	6 4	Jurásico Superior
Complejo V Pilas Z12-10	ulcanosed 750132	imentario 2521940	Las 18	42	40	18	42	40				Cretácico Inferior

Tabla 2. Resultados del conteo de puntos normalizado para las sucesiones sedimentarias del continente mesozoico mexicano y del terreno Guerrero (continuación)

*Muestras en las que se realizó geocronología U-Pb

5.1.1 Continente mesozoico mexicano

Diecinueve muestras de areniscas mesozoicas; diez del Triásico, siete del Jurásico Superior-Cretáico Inferior y dos del Cretácico Superior (Tabla 2), fueron colectadas para el conteo de componentes detríticos. Estas areniscas son comparadas con otras areniscas similares en edad y composición del centro de México que, aunque están fuera de las áreas cartografiadas, son de gran importancia para la posterior interpretación en su distribución.

5.1.1.1 Sucesiones detríticas triásicas

Las areniscas triásicas incluyen muestras del Complejo El Chilar, Formación La Ballena y La Formación Charcas. Su distribución geográfica y sus diagramas de componentes detríticos se muestran en la figura 21.

Figura 21. Diagramas ternarios que muestran los modos detríticos de distintas formaciones triásicas del continente mesozoico mexicano. Los campos composicionales en el diagrama QFL (a) son tomados de Folk (1974) y los campos de procedencia en los diagramas QtFL (b) y QmFL (c) son tomados de Dickinson (1985).

Complejo El Chilar

Texturalmente, las areniscas del Complejo El Chilar (Figura 22a), son moderadamente clasificadas, compuestas de granos de diámetro medio a grueso, subredondeados. De acuerdo a su abundancia relativa de componentes detríticos mayores (Qt₆₀₋₇₂F₂₈₋₃₉L₁₋₄), las areniscas del Complejo El Chilar se clasifican como arcosas (Folk, 1974, Figura 21a). Los granos como principales contiyuyentes de la roca incluyen, en orden decreciente, cuarzo monocristalino, feldespato potásico (ortoclasa y microclina), plagioclasas, cuarzo policristalino, pedernal y

fragmentos líticos sedimentarios y metamórficos (Figuras 21b y c). Los minerales pesados más abundantes son zircón, apatito y rutilo. Los granos contituyentes principales están soportados por una matriz de cuarzo finamente cristalino y arcillas, la cual ha sido parcialmente modificada por procesos diagenéticos y por metamorfismo de bajo grado.

Figura 22. Fotomicrografías de las sucesiones de arenisca siliciclásticas triásicas. a. Complejo El Chilar, b. Formación La Ballena, c. Formación Charcas, del continente mesozoico mexicano y d. Formación Zacatecas, e. Complejo Arteaga, f. Complejo Placeres, del terreno Guerrero. Qm, cuarzo monocristalino; Qp, cuarzo policristalino, Fk, feldespato potásico; Pg, plagioclasa; Mv, muscovita; Cl, clorita; Lm, lítico metamórfico.

Formación La Ballena

Las areniscas de la Formación La Ballena son moderadamente clasificadas, compuestas de granos de diámetro medio a grueso, subredondeados a redondeados (Figura 22b). De acuerdo a su abundancia relativa de componentes clásticos mayores (Qt₉₀₋₉₈F₄₋₇, L₀₋₃), estas areniscas se clasifican como cuarzoarenitas (Folk, 1974, Figura 21a). Los principales granos constituyentes, en orden decreciente, consisten en cuarzo monocristalino, cuarzo policristalino y feldespatos. También se identificaron granos líticos escasos de arenisca, lutita y esquisto. Los granos de cuarzo monocristallino, generalmente exhiben extinción ondulosa, mientras que algunos feldespatos son parcial o completamente alterados por minerales arcillosos. Como minerales secundarios hay desarrollo de muscovita, clorita y minerales opacos.

Formación Charcas

Las areniscas de la Formación Charcas consisten en granos que varían en diámetro de medio a grueso, regularmente clasificados, de regular a bien seleccionados, subangulosos y subredondeados (Figura 22c). Con base en sus abundancias relativas de componentes detríticos (Qt₈₇F₇L₆), se clasifican como subarcosas (Folk, 1974, Figura 21a). Los constituyentes principales incluyen, en orden decreciente, cuarzo monocristalino, feldespato potásico, plagioclasa, líticos metamórficos que consisten en cuarcita y esquisto y líticos sedimentarios tales como arenisca y lutita, soportados por matriz parcialmente alterada a arcillas. Minerales accesorios tales como muscovita, zircón y opacos, son comunes.

5.1.1.2 Sucesiones detríticas del Jurásico Superior-Cretácico Inferior

Formación San Juan de la Rosa

Las areniscas volcaniclásticas de la Formación San Juan de la Rosa varían de pobre a moderadamente clasificadas, con granos angulares a subangulares, de tamaño que varía de fino a grueso. De acuerdo a sus abundancias relativas de sus componentes detríticos ($Qt_{13-23}F_{0.2-2}L_{75-86}$), éstas se clasifican como litarenitas (Folk, 1974, Figura 23a). Los componentes detríticos incluyen, en orden decreciente, granos líticos volcánicos vítricos, cuarzo monocristalino, feldespato potásico, subordinados líticos metamórficos y sedimentarios y raramente granos de cuarzo policristalino y plagioclasa (Figuras 23 b y c). Los clastos están contenidos en una matriz compuesta por minerales de alteración de granos y minerales inestables y fragmentos líticos. Los granos líticos volcánicos consisten en piroclásticos y epiclásticos (granos sin-volcánicos

rápidamente resedimentados, McPhie et al., 1993), considerados así como granos neovolcánicos (Critelli y Ingersoll, 1995). La mayoría de los feldespatos potásicos están parcialmente alterados a arcillas (Figura 24a), mientras que los granos de cuarzo, localmente exhiben bordes bien definidos por el crecimiento de cemento de sericita. Los constituyentes principales de estas areniscas están contenidos en una matriz mayormente alterada a minerales arcillosos, tales como sericita, clorita que, localmente están alineados sobre los planos de foliación.

Figura 23. Diagramas ternarios que muestran los modos detríticos de distintas formaciones del Jurásico-Cretácico Inferior del continente mesozoico mexicano. Los campos composicionales en el diagrama QFL (a) son tomados de Folk (1974), los campos de procedencia en los diagramas QtFL (b) y QmFL (c) son tomados de Dickinson (1985) y los campos de procedencia en el diagrama LmLvLs (d) son tomados de Ingersoll y Suczek (1979).

Figura 24. Fotomicrografías de las sucesiones de arenisca volcaniclástica del Cretácico Inferior. a. Formación San Juan de la Rosa, b. Formación Peña Azul y c. Formación Las Trancas, del continente mesozoico mexicano; d. Formación Cuestecita, e y f. Complejo Vulcanosedimentario Las Pilas, del terreno Guerrero. Qz, cuarzo; Fk, feldespato potásico; Pg, plagioclasa; Lvf, lítico volcánico felsítico; Lvm, lítico volcánico microlítico; Lv, lítico volcánico; Lm, lítico metamórfico; Ca, calcita; Sc, sericita.

Formación Peña Azul

Las areniscas de la base de la Formación Peña Azul consisten en granos subangulosos, pobremente clasificados, de tamaño medio a grueso, contenidos en un cemento u ortomatriz de

calcita (Dickinson, 1970). Con base en sus componentes detríticos ($Qt_{13}F_{61}L_{26}$), estas areniscas se clasifican como arcosas líticas (Folk, 1974, Figura 23a). Los modos detríticos incluyen, en orden de abundancia, plagioclasa, líticos volcánicos vítricos, cuarzo monocristalino y subordinados granos líticos sedimentarios (Figuras 23 b y c). Los granos más gruesos están contenidos en una matriz de sericita y clorita, de fábrica anastomosada (Figura 24b). Los feldespatos muestran abundante alteración a arcillas. La mayoría de los feldespatos alcalinos y las plagioclasas ricas en calcio muestran maclado tipo *tablero de ajedréz* o no muestran maclas, indicando total o parcial albitización (Walker, 1984).

Formación Las Trancas

Areniscas de la parte superior de la Formación Las Trancas son similares, en composición, a las areniscas de la base de la Formación Peña Azul. Estas consisten en granos subangulosos, pobre a regularmente clasificados, que varían en en diámetro de medio a grueso. De acuerdo a su abundancia relativa de componentes mayores ($Qt_{27.40}F_{10-33}L_{30-56}$) se clasifican como arcosas líticas o litarenitas feldespáticas (Folk, 1974, Figura 23). Sus principales constituyentes son, en orden decreciente, cuarzo monocristalino, líticos volcánicos vítricos y felsíticos, feldespatos alcalinos, plagioclasas, líticos sedimentarios carbonatados y siliciclásticos, líticos metamórficos y cuarzo policristalino (Figura 23 b y c). Los granos constituyentes principales están contenidos en cemento de calcita espática (Figura 24c). El cementante se ha desarrollado de manera pervasiva entre los espacios intergranulares, pero también es común verlo remplazando parcialmente algunos componentes, tales como feldespatos.

5.1.1.3 Sucesiones detríticas del Cretácico Superior

Arenisca Mineral de Pozos

La arenisca Mineral de Pozos incluye granos que varían de diámetro fino a medio, angulosos y subangulosos, regularmente seleccionados. De acuerdo a sus componentes detríticos mayores (Qt₃₄₋₅₈F₃₃₋₄₀L₉₋₂₆), varían de arcosas a arcosas líticas (Folk, 1974, Figura 23). Esta arenisca consiste, en orden decreciente, en cuarzo monocristalino, plagioclasa, feldespato potásico, líticos volcánicos, líticos sedimentarios, y escasos líticos metamórficos, contenidos en una ortomatriz constituida por clorita.

5.1.2 Terreno Guerrero

Diecisiete muestras; ocho del Triásico, ocho del Jurásico Superior y una del Cretáico Inferior, fueron colectadas en las sucesiones detríticas siliciclásticas y volcaniclásticas del terreno Guerrero (Tabla 2). Estas areniscas son comparadas con unidades similares en edad y composición distribuidas dentro de los límites de este terreno.

5.1.2.1. Sucesiones detríticas triásicas

Las areniscas triásicas incluyen a la Formación Zacatecas, el Complejo Arteaga y el Complejo Placeres. Su distribución geográfica y sus diagramas de componentes detríticos se muestran en la figura 25

Figura 25. Diagramas ternarios que muestran los modos detríticos de distintas formaciones triásicas y jurásicas expuestas en el terreno Guerrero. Los campos composicionales en el diagrama QFL (a) son tomados de Folk (1974) y los campos de procedencia en los diagramas QtFL (b) y QmFL (c) son tomados de Dickinson (1985).

Formación Zacatecas

Texturalmente, las areniscas de la Formación Zacatecas consisten en granos de diámetro fino a medio, moderadamente clasificados, subredondeados. Con base en las abundancias relativas de sus componentes detríticos principales (Qt₉₂₋₁₀₀F₀₋₆L₀₋₂), estas areniscas se clasifican como cuarzarenitas (Folk, 1974, Figura 25a). Están constituidas, en orden decreciente, por cuarzo monocristalino, cuarzo policristalino, pedernal, y feldespatos. Granos líticos subordinados de

arenisca, lutita y de rocas metamórficas también fueron identificados (Figuras 25b yc). Los granos de cuarzo monocristalino generalmente muestran extinción ondulosa y bordes parcialmente disueltos (Figura 22d). Los feldespatos potásicos y plagioclasas se muestran parcialmente reemplazados por sericita. Estas areniscas exhiben metamorfismo de bajo grado, por lo que es común encontrar a los constituyentes principales orientados en una manera preferente, paralela a los planos de foliación. El desarrollo de muscovita y de agregados de minerales arcillosos entre los planos de foliación, es frecuente. Minerales accesorios como magnetita y zircones también fueron identificados.

Complejo Arteaga

El Complejo Arteaga consiste en areniscas de grano medio, moderadamente clasificadas, bien seleccionadas. Los granos frecuentemente exhiben bordes con disolución, mostrando una apariencia angulosa. Con base en la abundancia de sus componentes detríticos principales $(Qt_{99}F_1L_0)$, estas areniscas se clasifican como cuarzarenitas (Folk., 1974, Figura 25a). En orden de abudancia decreciente, incluyen granos de cuarzo monocristalino principalmente, pedernal y cuarzo policristalino, escasa plagioclasa y microclina (Figura 22e). Los granos de cuarzo muestran extinción ligeramente ondulosa y están acomodados preferentemente entre dominios de minerales arcillosos, los cuales muestran parcialmente alteración a minerales opacos. La mayor parte de la matriz de estas areniscas ha sido alterada a minerales fibrosos verdosos, que crecen también alrededor de los granos de cuarzo. En la fracción accesoria hay presencia de muscovita, zircón, magnetita e hidróxidos.

Complejo Placeres

Texturalmente, las areniscas del Complejo Placeres, consiste en granos de diámetro fino a medio, moderadamente clasificado, bien seleccionado. Los granos de cuarzo muestran bordes suturados, identados. Con base en su contenido de componentes detríticos mayores ($Qt_{100}F_0L_0$), esta rocas se clasifican como cuarzarenitas (Folk, 1974, Figura 25 a). Estas areniscas incluyen, en orden de abundancia decreciente, cuarzo monocristalino y cuarzo policristalino (Figuras 25 b y c). Los granos de cuarzo muestran extinción ondulosa y generalmente están orientados paralelamente a los planos de foliación (Figura 22 f). Los planos de foliación comúnmente exhiben el desarrollo de minerales arcillosos. Similarmente minerales arcillosos autigénicos se han desarrollado en forma de agregados, aparentemente sustituyendo en algunos espacios intergranulares.

5.1.2.2. Sucesiones detríticas del Jurásico Medio-Superior

Formación La Pimienta

Las areniscas de la Formación La Pimienta (Figura 25) muestran textura de grano medio a grueso, subredondeados a redondeados, pobremente a regularmente clasificados y moderadamente seleccionados. Por su abundancia relativa en componentes detríticos mayores (Qt₃₁₋₉₄F₄₋₃₀L₂₋₆₉), estas areniscas pueden clasificarse en un rango de subarcosas, arcosas líticas y litarenitas (Folk, 1974, Figura 25a). Las areniscas de la Formación La Pimienta están compuestas, en orden de abundancia decreciente, por cuarzos monocristalino, fragmentos líticos volcánicos y plagioclasas, cuarzo policristalino, líticos metamórficos y líticos sedimentarios (Figura 26). Los fragmentos líticos volcánicos incluyen líticos volcánicos microlíticos y líticos volcánicos felsíticos, parcialmente alterados a minerales arcillosos. Algunos granos de cuarzo monocristalino exhiben extinción ligeramente recta, fracturas y bahías de asimilación, sugiriendo un origen volcánico. Minerales como muscovita, biotita, anfíboles, zircón, y opacos están presentes en la fracción accesoria de estas areniscas.

Figura 26. Fotomicrografías de las sucesiones de arenisca volcaniclástica de la Formación La Pimienta del terreno Guerrero. Qm, cuarzo monocristalino; Qp, cuarzo policristalino; Fk, feldespato potásico; Pg, plagioclasa; Lvf, lítico volcánico felsítico; Lvm, lítico volcánico microlítico; Cl, clorita; Lm, lítico metamórfico; Ca, calcita; Ep, epidota; Sc, sericita.

5.1.2.3. Sucesiones detríticas del Jurásico Superior-Cretácico Inferior

Complejo Vulcanosedimentario Las Pilas (CVSLP)

Las areniscas del CVSLP muestran textura de grano fino a medio, angulosos a subangulosos, moderadamente clasificados y mal seleccionados. Composicionalmente, en orden de abundancia decreciente, estas areniscas consisten en fragmentos líticos volcánicos, cuarzo monocristalino, plagioclasa, subordinado cuarzo policristalino. Los líticos volcánicos muestran parcial o total reemplazamiento por minerales arcillosos, lo cual dificulta la discriminación entre la composición de estos granos. Sin embargo, algunos fragmentos volcánicos tipo *lathwork* y microlíticos fueron identificados (Figuras 24e, f). Los granos constituyentes mayores están soportados por una matriz autigénica u ortomatriz, compuesta, en gran parte, por minerales arcillosos (Figura 27). Debido a la alteración que presentan, estas areniscas volcaniclásticas fueron excluidas del análisis de modos detríticos para evitar sesgo en términos de procedencia y únicamente en una muestra fueron considerados sus componentes mayores (Figura 27).

Figura 27. Diagramas ternarios que muestran los modos detríticos de distintas formaciones del Jurásico Superior-Cretácico Inferior del terreno Guerrero. Los campos composicionales en el diagrama QFL (a) son tomados de Folk (1974), los campos de procedencia en los diagramas QtFL (b) y QmFL (c) son tomados de Dickinson (1985).

5.1.2.4. Sucesiones detríticas del Cretácico Superior

Filita La Escondida

La Filita La Escondida consiste de dominios de cuarzo de grano fino a medio y dominios de cuarzo de grano muy fino. La fracción más fina de cuarcita, consiste en cuarzo monocristalino subredondeado, elongado, contenido en una ortomatriz que consiste en micas blancas, tales como agregados de sericita y muscovita, biotita y minerales opacos, los cuales definen los planos de foliación. La fracción más de grano más grueso consiste dominantemente en cuarzo monocristalino subredondeado y escasa muscovita, y está parcialmente cementada y reemplazada por calcita espática. Minerales opacos, tales como magnetita, ilmenita y otros óxidos están presentes en la componente accesoria.

5.2. Geocronología por el método Uranio-Plomo (U-Pb) en zircones detríticos

Con la finalidad de tener un buen control estratigráfico en las unidades sedimentarias, de las cuales se caracterizaron sus componentes detríticos, se hicieron análisis geocronológicos en granos de zircón de varias muestras colectadas en cada una de las áreas de interés, tanto en unidades detríticas del continente mesozoico mexicano como del terreno Guerrero. La tabla de coordenadas de ubicación de las muestras colectadas y los resultados se muestra en el anexo 1.

5.2.1. Continente mesozoico mexicano

5.2.1.1 Sucesiones detríticas triásicas

Complejo El Chilar

Seis muestras (T11-01, T11-03, T11-06, T11-09, T11-10 y T11-11) en areniscas siliciclásticas ricas en cuarzo, con metamorfismo de bajo grado, fueron colectadas en el Complejo El Chilar, el cual está expuesto en el área de Tolimán (Figura 8). Se analizaron 100 granos de zircón para cada muestra, de los cuales el número de granos que entregaron edades aceptables, es variable entre una muestra y otra. La mayoría de los zircones analizados contienen núcleos heredados y muestran, además, zoneamiento concéntrico. Comúnmente son rosáceos, ámbar o amarillentos y escasamente incoloros. La morfología de estos zircones incluye, comúnmente, cristales anhedrales a subhedrales debido al transporte pero también algunos conservan facetas bien definidas. La relación Th/U es predominantemente mayor a 0.01, sugiriendo un origen

magmático (Rubatto, 2002) (Figura 28a), aunque el uso de este criterio para discriminar zircones magmáticos de zircones metamórficos, debe ser considerado con cautela, como señalan Harley et al. (2007). En este caso, los patrones de tierras raras (REE) normalizados a condrita (Figura 28b), obtenidos en los zircones estudiados durante los análisis LA-ICP-MS, soportan su procedencia ígnea, enriquecidos en tierras raras pesadas en comparación con los zircones de origen metamórfico (Skublov et al., 2012).

Figura 28. Diagrama de la relación Torio/Uranio (Th/U) versus Edad (Ma) para los zircones analizados en el Complejo El Chilar y la Formación Charcas, del continente mesozoico mexicano (a) y para la Formación Zacatecas y el Complejo Arteaga y Placeres, del terreno Guerrero (c). Patrón de tierras raras, normalizado a condrita, para los zircones analizados en el Complejo El Chilar y la Formación Charcas del continente mesozoico mexicano (b) y para la Formación Zacatecas y los Complejos Arteaga y Placeres, del terreno Guerrero (d). Para comparar el comportamiento de las tierras raras entre zircones de origen ígneo y zircones de origen metamórfico, se muestra el patrón de tierras raras de zircones eclogíticos de distintos complejos metamórficos (tomado de Skublov et al., 2012).

La muestra T11-01 fue colectada en el flanco occidental del anticlinal El Chilar, corresponde con una arenisca de grano medio a grueso. Esta muestra entregó 95 granos de zircón con edades concordantes en un rango de 1898 a 243 Ma (Figura 29a). La muestra T11-03, se colectó en el flanco occidental del anticlinal El Chilar, la cual consiste en una arenisca de grano grueso, con 91 granos de zircón concordantes, que varían en un rango de edad de 1407 a 244 Ma. La Muestra T11-06, colectada en el flanco oriental del anticlinal El Chilar, consiste en una arenisca de grano

medio que arrojó 87 edades aceptables en un rango que varía de 1702 a 250 Ma. Las muestras T11-09 y T11-10, que fueron colectadas en el núcleo del anticlinal El Chilar, entregan 98 y 88 granos de zircón concordantes, respectivamente. El rango de edad de estas muestras varía de 1696 a 255 Ma y de 2117 a 264 Ma, respectivamente. Finalmente, la muestra T11-11, fue colectada inmediatamente al occidente de la localidad de Peña de Bernal, arrojó edades concordantes en un rango de 2505 a 244 Ma. La edad máxima de depósito (MED) del Complejo El Chilar fue calculada a partir de los tres zircones más jóvenes concordantes y traslapados entre sí (Gehrels et al., 2008) en 243.7 \pm 1.1 Ma, con desviación ponderada (MSWD) de 0.33, n=3 (Figura 29b).

La muestra T11-11 tiene un amplio rango de edades del Paleoproterozoico tardío al Mesoproterozoico medio (1650-1300 Ma), con un pico prominente de 1530 Ma (Figura 30). Esta

población constituye el 58% del total de zircones analizados para la muestra T11-11, pero se encuentra en menos del 10% para las muestras restantes del Complejo El Chilar. Una segunda población abundante en todas las muestras, con un rango de 1250 Ma a 900 Ma, constituye aproximadamente el 47% del total de los zircones analizados en todas las muestras, excepto en la muestra T11-11, donde constituye el 34%. Esta población del Mesoproterozoico Medio-Neoproterozoico temprano tiene varios picos, sin embargo los más repetitivos están en ~1180 Ma, ~1000 Ma y ~950 Ma. Una tercera población, observada en todas las muestras, tiene un rango de 700-450 Ma, con tres picos principales a ~ 575 Ma, ~530 Ma y ~465 Ma. Esta población del Neoproterozoico Tardío-Ordovíco es la menos abundante en todas las muestras, donde constituye menos del 15% del total de los granos analizados, excepto para la muestra T11-09, la cual contiene 21% de zircones con edades en este rango. La población de zircones con edades más jóvenes tiene un rango de 300 a 210 Ma. Esta población Permo-Triásica, representa, en promedio, entre 20-30% del total de granos analizados para cada una de las muestras del Complejo El Chilar. En este rango de edades se tienen picos principales a ~260 y ~285 Ma, excepto para la muestra T11-11, donde esta población constituye apenas el 3% y cuyo pico está localizado a 248 Ma.

Formación Charcas

La muestra CH14-1 fue colectada en una arenisca de grano grueso, rica en cuarzo. Los zircones separados de esta muestra presentan tamaños que varían entre 150 a 80 micras y son principalmente amarillentos, incoloros y rosáceos. La morfología varía de subhedral, para la mayoría de los granos, a anhedral o de bordes redondeados. Los cristales son prismáticos, medianamente elongados, con una razon de elongación de 3:1 a 1.5:1. La imagen de catodolumiscencia muestra que muchos de los zircones, presentan núcleos heredados y desarrollan zoneamiento concéntrico a partir del núcleo del xenocristal.

Se analizaron 100 granos de zircon para la muestra CH14-1, de los cuales 99 entregaron edades concordantes a ligeramente discordantes en un rango de 2293 ± 38 Ma a 221 ± 3.6 (Figura 29). La relación Th/U es mayor a 0.01 (Figura 27a), sugiriendo un origen magmático (Rubatto, 2002, mientras que los patrones de tierras raras (REE) normalizados a condrita (Figura 28b), obtenidos en los zircones estudiados durante los análisis LA-ICP-MS, soportan su procedencia ígnea (Harley et al., 2007). A partir de las edades 206 Pb/ 238 U de los tres granos más jóvenes de zircones concordantes traslapados entre sí, se obtuvo una edad máxima de depósito de 225 \pm 9 Ma, con MSWD de 3, n=3.

Figura 30. Curvas de estimador de densidad de Kernel (Kernel density estimator; KDE, curva negra) y de densidad de probabilidad (Probability density plots; PDP, curva sombreada en morado) para las poblaciones de zircones detríticos de las sucesiones triásicas del continente mesozoico mexicano. Las poblaciones de zircones se muestran en barras sombreadas. Los números indican la edad, en Ma, de los principales picos. Los círculos abiertos indican la edad para cada grano de zircón.

En el diagrama de distribución de edades (Figura 30), la muestra CH14-1, incluye cuatro poblaciones principales. Los zircones con edad mayor a 1650 Ma solo representan el 1% del total de granos analizados. La población del Paleoproterozoico Tardío- Mesoproterozoico Medio (1650-1300 Ma) incluye cuatro zircones dispersos y no forman ningún pico en las edades. La segunda población corresponde con zircones del Mesoproterozoico Medio-Neoproterozoico Temprano (1250 Ma-900 Ma), que representan el 29% del total analizado. Esta población forma dos picos prominentes a 1125 Ma y 1006 Ma. La tercera población de zircones incluye edades del Neoproterozoico Tardío-Ordovícico (700-450 Ma) y representa el 8% del total analizado. Las edades de esta población forman dos picos pequeños a 528 Ma y 475 Ma. La cuarta población de zircones que incluye edades Permo-Triásicas (300 Ma-210 Ma), es la más joven y la más abundante. Esta población representa el 50% del total de los granos analizados y forma un único pico prominente a 262 Ma.

5.2.1.2 Sucesiones detríticas del Jurásico Superior-Cretácico Inferior

Formación San Juan de la Rosa

Tres muestras (T11-04, T11-07 y T12-10) fueron colectadas en una sucesión volcaniclástica de la Formación San Juan de la Rosa en el área de Tolimán. La muestra T11-04 fue colectada aproximadamente en la parte media de la columna estratigráfica, mientras que las muestras T11-07 y T12-10 se colectaron en los niveles superiores de la columna estratigráfica. El tamaño de los zircones varía de 60 a 120 micras, son principalmente incoloros, aunque algunos tienen tonalidades amarillentas o rosáceas. Los zircones de la Formación San Juan de la Rosa muestran una morfología prismática con elongación variable de 4:1 a 2:1, comúnmente euhedrales y los que muestran bordes redondeados, son escasos. Otra característica común, es que frecuentemente se encuentran rotos. Las imágenes de catodoluminiscencia muestran que los granos de zircón tienen principalmente zonamiento concéntrico a ligeramente oscilatorio alrededor de los núcleos de los xenocristales.

La relación Th/U es mayor a 0.01 (Figura 30a), sugiriendo un origen magmático (Rubatto, 2002, mientras que los patrones de tierras raras (REE) normalizados a condrita (Figura 31b), obtenidos en los zircones estudiados durante los análisis LA-ICP-MS, soportan su procedencia ígnea (Harley et al., 2007).

Figura 31. (a) Diagrama de la relación Torio/Uranio (Th/U) versus Edad (Ma) y (b) Patrón de tierras raras, normalizado a condrita, para los zircones analizados en las formaciones San Juan de la Rosa, Peña Azul y Las Trancas y la Arenisca Mineral de Pozos, del continente mesozoico mexicano. Para comparar el comportamiento de las tierras raras entre zircones de origen ígneo y zircones de origen metamórfico, se muestra el patrón de tierras raras de zircones eclogíticos de distintos complejos metamórficos (tomado de Skublov et al., 2012).

La muestra T11-04, fue colectada en el flanco oriental del anticlinal El Chilar. Esta consiste en una arenisca volcaniclástica de grano grueso. En esta muestra, se analizaron 100 granos de zircón, de los cuales 96 zircones entregaron edades concordantes en un rango variable de 1454 \pm 31 Ma a 134 \pm 1 Ma (Figura 32). A partir de las edades ²⁰⁶Pb/²³⁸U de los seis zircones más jóvenes, concordantes y traslapados entre sí, se obtuvo una edad máxima de depósito de 137 \pm 0.4 Ma, con MSWD=0.9. La muestra T11-07 fue colectada en el flanco oriental del anticlinal El Chilar y consiste en una arenisca volcaniclástica de grano medio. Se analizaron 100 granos de zircón en esta muestra, de los cuales 94 entregaron edades concordantes y traslapados entre sí. La muestra T12-10, fue colectada en el flanco oriental del anticlinal El Chilar, consiste en una lava de composición riolítica, que está parcialmente mezclada con los sedimentos. Se analizaron 20 granos de esta muestra, de los cuales 11 zircones entregaron edades aceptables en un rango poco variable desde 144 \pm 2 a 134 \pm 0.9 Ma y un zircón heredado con edad de 1253 \pm 52 Ma. Un promedio ponderado de 36 \pm 2 Ma, se define de un grupo de 7 zircones.

En el diagrama de distribución de edades (Figura 33), la muestra T11-04 incluye principalmente cinco poblaciones de zircones. La población más antigua, que representa el 9% del total de los granos analizados, tiene un rango de edades del Mesoproterozoico Medio al Neoproterozoico Temprano (1250 Ma-900 Ma) con pequeños picos de edad a 1094 Ma y 1008 Ma. La segunda población de zircones incluye edades del Neoproterozoico Tardío al Ordovíco (700 Ma-450 Ma) y constituye el 6% del total de la muestra. Esta población forma un pequeño pico a 467 Ma. Una tercera población, que representa el 6% del total de la muestra presenta un rango de edades

variables del Pérmico al Triásico (300 Ma-210 Ma) y define un pico pequeño a 284 Ma. La cuarta población de zircones, que representa el 19% del total de zircones analizados, comprende edades del Jurásico Temprano al Jurásico Medio (200 Ma-160 Ma) y define dos picos importantes a 188 Ma y 174 Ma. La quinta población, la cual constituye el 54 % del total de la muestra T11-04 y representa el 100 % de la muestra T11-07, se encuentra en un rango de edades del Jurásico Tardío al Cretácico Temprano (159 Ma a 114 Ma), es la población más abundante y la más joven. Esta población de zircones define un pico prominente a 139 Ma en la muestra T11-04 y un pico a 137 Ma en la muestra T11-07.

Formación Peña Azul

Una muestra de la Formación Peña Azul (T11-05) fue colectada en la base de una sucesión de areniscas volcaniclásticas y carbonatadas. Los zircones separados de esta muestra tienen tamaño variable de 60 a 130 micras, son predominantemente incoloros y escasamente de tonos amarillentos. La morfología de estos zircones es prismática, de moderados a bien elongados a

razón de 3:1 a 2:1, son principalmente euhedrales y en menor proporción subhedrales o redondeados. Las imágenes de catodoluminscencia exhiben zircones con zonamiento concéntrico y con zonamiento en sectores, ligeramente oscilatoria. Escasos granos de zircón, también poseen núcleos heredados, a partir de los cuales se desarrolla zonamiento concéntrico. Otra característica frecuente, es que los zircones se presentan rotos.

La relación Th/U es mayor a 0.01 (Figura 30a), sugiriendo un origen magmático (Rubatto, 2002, mientras que los patrones de tierras raras (REE) normalizados a condrita (Figura 31b), obtenidos en los zircones estudiados durante los análisis LA-ICP-MS, soportan su procedencia ígnea, como lo suegieren Harley et al. (2007).

Se analizaron 100 granos de zircon para la muestra T11-05, de los cuales 95% entregaron edades concordantes a ligeramente discordantes en un rango de 1140 \pm 10 Ma a 126 \pm 2 (Figura 32). A partir de las edades ²⁰⁶Pb/²³⁸U de los cuatro zircones más jóvenes, concordantes y traslapados entre sí, se obtuvo una edad máxima de depósito de 129.8 \pm 0.6 Ma, con MSWD=0.8.

En el diagrama de distribución de edades (Figura 33), la muestra T11-05, contiene cuatro poblaciones de zircones. La población de zircones más antigua, consituye el 4% del total analizado, comprende del Mesoproterozoico Medio al Neoproterozoico Temprano (1250 Ma-900 Ma), formando un incipiente pico a 1032 Ma. Una segunda población, que constituye el 6%, tiene un rango de edad desde Pérmico hasta el Triásico (300 Ma-210 Ma) y define un pico pequeño a 284 Ma. La tercera población está compuesta por tres granos de zircón del Jurásico Temprano-Medio (200 Ma-160 Ma) con un pequeño pico a 173 Ma. Finalmente la cuarta población de zircones, es la más abundante y la más joven, representa el 87% del total de los granos analizados. Las edades de esta población comprenden del Jurásico Tardío al Cretácico Temprano (159 Ma-114 Ma) y definen un pico muy prominente a 136 Ma.

Formación Las Trancas

Dos muestras (08LT02 y T13-03) fueron colectadas de sucesión de areniscas volcaniclásticas, ligeramente carbonatadas de la Formación Las Trancas. La muestra 08LT02 fue tomada en el del nivel superior de la columna, mientras que la muestra T13-03 fue colectada aproximadamente en la parte media de la columna de esta formación. El tamaño de los zircones varía de 100 a 150 micras, son predominantemente incoloros, aunque algunos tienen tonalidades amarillentas. Los zircones de la Formación Las Trancas tienen una morfología prismática, con moderada a buena

elongación a razón de 5:1 a 3:1, comúnmente los cristales son euhedrales y escasamente presentan bordes redondeados. Frecuentemente, los zircones de la Formación Las Trancas se muestran rotos o incompletos. Las imágenes de catodoluminiscencia exhiben granos de zircón principalmente con zonamiento concéntrico o con parches homogéneos. También es posible ver núcleos heredados alrededor de los cuales se desarrolla zonamiento concéntrico.

Figura 33. Curvas de estimador de densidad de Kernel (Kernel density estimator; KDE, curva negra) y de densidad de probabilidad (Probability density plots; PDP, curva sombreada en verde) para las poblaciones de zircones detríticos de las formaciones San Juan de la Rosa (T11-04 y T11-07), Peña Azul (T11-05), Las Trancas (T13-03 y 08LT02) y la Arenisca Mineral de Pozos (MP6), del continente mesozoico mexicano. Las poblaciones de zircones se muestran en barras sombreadas. Los números indican la edad, en Ma, de los principales⁻ picos. Los círculos abiertos indican la edad para cada grano de zircón. (a). Todos los zircones, (b). Zircones con edades menores a 200 Ma.

Se analizaron 100 granos de zircón para cada muestra. La muestra 08LT02 fue analizada en el Laboratorio Laserchron, de la Universidad de Arizona y entregó 100 edades aceptables en un rango de 1273 ± 37 a 116 ± 2 (Figura 32). Se calculó una máxima edad de depósito de 127.2 ± 0.4 Ma con MSWD = 1.09, n=40. La muestra T13-03, entregó 73 edades aceptables de los 100 zircones analizados. Esta muestra contiene edades en un rango de 1283 ± 47 Ma a 121 ± 2 Ma. La edad máxima de depósito calculada con los cuatro zircones más jóvenes, concordantes y traslapados entre sí, es de 124.5 ± 1 , con MSWD=0.3. La relación Th/U es > 0.01 para todos los zircones analizados (Figura 31a), mientras que los patrones geoquímicos de las tierras raras indican un origen magmático (Figura 31b).

En el diagrama de distribución de edades (Figura 33a), la Formación Las Trancas exhibe cuatro poblaciones de zircones. La población más antigua, comprende del Mesoproterozoico Medio al Neoproterozoico Temprano (1250 Ma a 900 Ma), la cual representa el 10% para la muestra T13-03 y el 21% para la muestra 08LT02, donde define dos picos pequeños a 1045 Ma y 1030 Ma. La segunda población de zircones incluye edades del Neoproterozoico Tardío al Ordovícico (700 Ma-450 Ma) y está representada por solo tres granos en cada una de las muestras y no define ningún pico importante. La tercera población incluye edades en un rango Permo-Triásico (300 Ma-210 Ma) y representa 5% en la muestra 08LT02, con un pico de edad de 284 Ma, mientras que la muestra T13-03 solo tiene un zircón en este rango de edad. La cuarta población (Figura 33b), que es la más abundante y la más joven en ambas muestras, contituye el 85% para la muestra T13-03 y define un pico a 133 Ma. Esta población representa el 68% para la muestra 08LT02, donde define un pico más joven, a 128 Ma.

5.2.1.3 Sucesiones detríticas del Cretácico Superior

Arenisca Mineral de Pozos

Una muestra (MP-6) fue colectada en el nivel estratigráfico superior de una sucesión de areniscas verdosas de grano medio, rica en cuarzo, de la Arenisca Mineral de Pozos. Los zircones varían de 60 a 120 micras en tamaño, son de color predominantemente amarillentos e incoloros. Son comúnmente subhedrales, de forma prismática, de poco a medianamente elongados a razón de 3:1 a 2:1, y son escasos los granos equantes. Las imágenes de cátodoluminiscencia muestran zircones con zonamiento concéntrico y zoneamiento en parches, sobre todo en los cristales más elongados. Es común observar algunos zircones con xenocristales heredados, alrededor de los cuales se desarrolla zonamiento concéntrico.

Figura 34. Diagramas de Tera-Wasserburg, donde se muestran los resultados de los análisis por U-Pb en zircones detríticos de la Arenisca Mineral de Pozos. b), diagrama de Wetherill donde se muestran los zircones con edades mayores a 900 Ma. c), Imágenes de catodoluminiscencia de algunos zircones fechados. Los círculos indican el punto donde se hizo el análisis.

Se analizaron 100 granos de zircón en la muestra MP-6, de los cuales 81% entregaron edades aceptables. La relación Th/U es > 0.1 para la mayoría de los zircones analizados (Figura 31a), mientras que los patrones geoquímicos de las tierras raras, normalizados a condrita, indican un origen magmático (Figura 31b). La muestra MP-6 incluye zircones cuya edad varía de 1681 ± 45 Ma a 91 ± 1 Ma (Figura 34). La edad máxima de depósito fue calculada con los tres granos de zircón más jóvenes, concordantes y traslapados entre sí a 91.6 ± 0.5 Ma, con MSWD de 1.3.

En el diagrama de distribución de las edades (Figuras 33a, b), la muestra MP-6, exhibe siete poblaciones de zircones con edades del Paleoproterozoico al Cretácico Tardío. La población más antigua del Paleoproterozoico Tardío-Mesoproterozoico Medio (650 Ma-1300 Ma), está constituida por siete granos de zircón, los cuales representan el 9% del total analizado y definen un pequeño pico a 1627 Ma. Otra población de edades del Mesoproterozoico Medio-Neoproterozoico Temprano (1250 Ma-900 Ma) incluyen 5 granos de zircón y representan el 6% del total analizado. Esta población no define ningún pico. Una tercera población, constituida por

tres zircones dispersos en el rango Neoproterozoico Tardío-Ordovícico (700 Ma-450 Ma), representa el 4% del total analizado y no define ningún pico. La cuarta población, que comprende del Pérmico al Triásico (300 Ma-210 Ma) y representa el 14% del total analizado, contiene un pico a 260 Ma. Una población con edades del Jurásico Temprano-Jurásico Medio (200 Ma-160 Ma), contiene solo tres granos de zircón que no definen ninguna edad pico. Otra población importante con edades del Jurásico Tardío-Cretácico Temprano (159 Ma-114 Ma), contiene el 9% del total de granos analizados. Esta población define dos picos a 144 Ma y 128 Ma. La población de zircones más joven y la más abundante contiene edades del Albiano-Turoniano (104 Ma-90 Ma), representando el 55% del total de los zircones analizados. Esta población define un pico prominente a 96 Ma.

5.2.2. Terreno Guerrero (área de Zacatecas)

5.2.2.1 Sucesiones detríticas triásicas

De las unidades más antiguas que forman parte del basamento del Terreno Guerrero, se colectaron tres muestras de la Formación Zacatecas (Z12-04, Z12-05 y Z12-06) y dos muestras del Complejo Arteaga (Ar-3 y 23) para su fechamiento por U-Pb en zircones detríticos.

Formación Zacatecas

Las muestras de la Formación Zacatecas (Z12-04, Z12-05 y Z12-06) fueron colectadas sobre el arroyo El Bote, al oeste de la ciudad de Zacatecas (Figura 15). Estas muestras consisten en arenisca de grano medio a grueso, ricas en cuarzo. Los zircones varían de 60 a 200 micras en tamaño, son rosáceos, incoloros y de tonalidades ámbar. Son comúnmente subhedrales a redondeados, de forma prismática, de poca a medianamente elongada a razón de 2:1 a 1.5:1. Las imágenes de cátodoluminiscencia muestran zircones con zonamiento concéntrico y zoneamiento oscilatorio. Comúnmente se pueden observar algunos zircones con núcleos de xenocristales que indican una componente heredada.

Se analizaron 100 granos de zircón para cada una de las muestras, de los cuales el número de granos de zircón que entregaron edades aceptables es variable entre una muestra y otra. La relación Th/U es mayor a 0.01, sugiriendo un origen magmático (Rubatto, 2002) (Figura 28c), mientras que los patrones de tierras raras (REE) normalizados a condrita (Figura 28d), obtenidos en los zircones estudiados durante los análisis LA-ICP-MS, indican su procedencia magmática (Harley et al., 2007). En la muestra Z12-04, 93 granos de zircón entregaron edades concordantes
a ligeramente discordantes (Figura 35), en un rango variable de 2906 Ma \pm 33 a 221 \pm 4 Ma. La edad máxima de depósito fue calculada con los tres granos de zircón más jóvenes, concordantes y traslapados entre sí a 222.6 \pm 2.4 Ma, con MSWD de 0.7 (Figura 35a). La muestra Z12-05 entregó 96 edades concordantes a ligeramente discordantes, por debajo de la concordia, que varían en un rango de 1433 \pm 31 Ma a 228 \pm 4. Esta muestra no define un grupo de por lo menos tres zircones jóvenes, por lo que no se pudo estimar la edad máxima deposicional. Sin embargo, la edad del grano de zircón más joven y concordante es de 228 \pm 4 Ma (Figura 35b). La muestra Z12-06, entregó 93 edades concordantes a ligeramente discordantes en un rango variable de 2670 \pm 52 Ma a 236 \pm 6.5 Ma. Esta última es la edad del grano de zircón más joven y concordante (Figura 35c).

Figura 35. Diagramas de Wetherill donde se muestran los resultados U-Pb de los zircones detríticos analizados para la Formación Zacatecas (Z12-04, Z12-05 and Z12-06) y el Complejo Arteaga (Ar-3 and 23). Los errores de las elipses son a 2σ . (a), (b), (c), (d) y (e). Diagramas de concordia de Wetherill para zircones con edades más jóvenes que 500 Ma.

En el diagrama de distribución de las edades (Figura 36), las muestras de la Formación Zacatecas contienen poblaciones similares, variando en el porcentaje. La muestra Z12-04 exhibe 7 granos de zircón con edades mayores a 1650 Ma, mientras que zircones con esta edad están ausentes en la muestra Z12-05 y solo dos granos están incluidos en la muestra Z12-06. Una población del Paleoproterozoico Tardío- Mesoproterozoico Medio (1650 Ma-1300 Ma) constituye el 7% en la muestra Z12-04, el 4% para la muestra Z12-05 y el 4% para la muestra Z12-06. Esta población de zircones define pequeños picos a 1494 Ma y 1421 Ma. Otra población de zircones que alcanza un rango del Mesoproterozoico Medio al Neoproterozoico Temprano (1250 Ma-900 Ma), representa el 18% del total analizado para la muestra Z12-04, el 60% para la muestra Z12-05 y el

65% para la muestra Z12-06. Esta población define cuatro picos principales a ~1190 Ma, ~1100 Ma, ~1060 Ma y ~980 Ma. Una segunda población de zircones que comprende del Neoproterozoico Tardío al Ordovícico (700 Ma-450 Ma) y representa el 17% para la muestra Z12-04, el 12% para la muestra Z12-05 y el 16% para la muestra Z12-06. Con este rango de edad se definen tres picos principales a ~650 Ma, ~550 Ma, ~470 Ma. La población de zircones más joven incluye edades en el rango Permo-Triásico (300 Ma-210 Ma) y representa el 32% para la muestra Z12-04, el 8% para la muestra Z12-05 y el 5% para la muestra Z12-06, donde se define un pico a 265 Ma, 273 Ma y 296 Ma, respectivamente.

Complejo Arteaga

Dos muestras (Ar-3 y 23) fueron colectadas en las sucesiones siliciclásticas del Complejo Arteaga. La muestra Ar-3 fue tomada aproximadamente 15 kilómetros al sur de la localidad de Arteaga (Figura 7). Esta muestra consiste en una cuarzoarenita de grano medio. Los zircones separados de esta muestra tienen un tamaño variable de 50 a 100 micras. Son principalmente incoloros, de tonalidades ámbar y escasamente rosáceos. Su morfología es prismática, con elongación a razón de 1.5:1 a 1:1, y presentan, comúnmente, bordes redondeados, aunque algunos son subhedrales. Las imágenes de cátodoluminiscencia exhiben zircones con zoneamiento por sectores, liegeramente oscilatorio y zonamiento concéntrico alrededor de xenocristales heredados (Corfu et al., 2003). 100 granos de zircón fueron analizados, 89 de los cuales produjeron edades aceptables. La relación Th/U es mayor a 0.01 (Figura 27a), sugiriendo un origen magmático (Rubatto, 2002, mientras que los patrones de tierras raras (REE) normalizados a condrita (Figura 28b), obtenidos en los zircones estudiados durante los análisis LA-ICP-MS, soportan su procedencia ígnea, como lo sugieren Harley et al. (2007). El rango de edades de los zircones analizados varía de 2120 \pm 27 Ma a 253 \pm 4 Ma. Ésta última edad es la edad del zircón más joven concordante.

En el diagrama de distribución de las edades (Figura 36), la muestra Ar-3 exhibe principalmente cuatro poblaciones de zircones. Los granos de zircón con edades más antiguas, están dispersos en un rango de 2120 Ma a1650 Ma, y representan el 9% del total analizado. Otra población del Paleoproterozoico Tardío-Mesoproterozoico Medio (1650 Ma-1300 Ma) constituye el 8% del total y define un pico pequeño a 1534 Ma. Una segunda población de edades del Mesoproterozoico Medio al Neoproterozoico Temprano (1250-900 Ma), representan el 30% del total analizado y define dos picos importantes a 1090 Ma y 914 Ma. La tercera población comprende edades con un rango del Neoproterozoico Tardío al Ordovícico (700-450 Ma) y

constituye el 30% del total. Esta población exhibe tres picos importantes a 660 Ma, ~550 Ma y ~470 Ma. La población más joven, incluye granos de zircón con edades en el rango Permo-Triásico (300-210 Ma), representa apenas el 4% y contiene un pico pequeño a 252 Ma.

Figura 36. Curvas de estimador de densidad de Kernel (Kernel density estimator; KDE, curva negra) y de densidad de probabilidad (Probability density plots; PDP, curva sombreada en morado) para las poblaciones de zircones detríticos de las sucesiones triásicas del terreno Guerrero. Las poblaciones de zircones se muestran en barras sombreadas. Los números indican la edad, en Ma, de los principales picos. Los círculos abiertos indican la edad para cada grano de zircón.

La muestra 23 fue colectada aproximadamente 6 km al noroeste del poblado de Placeres (Figura 7). Consiste en una cuarzoarenita de grano medio. Los zircones separados de esta muestra son de tamaño variable entre 50 y 150 micras. Morfológicamente son prismáticos a equantes, algunos muestran facetas subredondeadas a redondeadas y son escasos los que tienen forma euhedral. Su elongación varía de baja a moderada, a razon de 3:1 a 1:1. Las imágenes de

cátodoluminiscencia muestran zoneamiento oscilatorio y zonamiento concéntrico alrededor de núcleos de xenocristales (Corfu et al., 2003) o zonamiento en parches.

De los 100 granos analizados, 91 zircones produjeron edades concordantes a ligeramente discordantes. La relación Th/U, mayor a 0.01 para todos los zircones (Rubatto et al., 2002), y los patrones de comportamiento de las tierras raras (REE), normalizados a condrita (Harley et al., 2007), sugieren una procedencia ígnea. Las edades, de los 91 zircones fechados para la muestras 23, presentan un rango de 2058 \pm 27 a 211 \pm 4 Ma. Con base en un grupo de las tres elipses con edades más jóvenes, concordantes y traslapadas entre sí, se determinó la edad máxima de depósito a 221 \pm 3 Ma.

En el diagrama de distribución de las edades (Figura 36), la muestra 23, exhibe tres poblaciones principales. El 3% de los granos de zircón tienen edades mayores a 1650 Ma y el 1% está incluido en el rango del Paleoproterozoico Tardío al Mesoproterozoico Medio (1650-1300 Ma). La población más antigua incuye zircones con edades en el rango del Mesoproterozoico Medio al Neoproterozoico Temprano (1250-900 Ma), representa el 30% del total analizado y define tres picos principales a ~1160 Ma, ~1070 Ma y ~1000 Ma. Una segunda población, que incluye el 18% del total, comprende del Neoproterozoico Tardío al Ordovícico (700-450 Ma), y presenta un pico a 490 Ma. La tercera población es la más abundante y contiene a los zircones con edades más jóvenes en el rango Permo-Triásico (300-210 Ma). Esta población, representa el 40% del total de los granos analizados y define un único pico a 253 Ma.

5.2.2.2. Sucesiones detríticas del Jurásico Medio-Superior

Formación La Pimienta

La muestra Z12-02 fue colectada en las inmediaciones del Cerro El Gato, al oeste de la ciudad de Zacatecas (Figura 15). Esta muestra consiste en una litarenita de grano medio. Los zircones varían de 70 a 150 micras en tamaño y son dominantemente incoloros o muestran tonalidades ligeramente ámbar. Su morfología es comúnmente prismática, subhedrales, euhedrales y escasos redondeados. Presentan una elongación moderada, a razón de 3:1 a 2:1, aunque algunos cristales se encuentran rotos. Las imágenes de cátodoluminiscencia exhiben zonamiento concéntrico y oscilatorio alrededor de núcleos xenocrísticos (Corfu et al., 2003).

Se analizaron 100 granos de zircón, de los cuales 91 produjeron edades aceptables. Todos los granos de zircón analizados tienen una relación Th/U mayor a 0.01 (Figura 37a), mientras que el comportamiento geoquímico de las tierras raras (REE), normalizadas a condrita, también sugieren un origen magmático (Figura 37b). Las edades obtenidas para los 91 zircones, tienen un rango de 1250 ± 46 Ma a 162 ± 3 Ma (Figura 38). Además, contiene un grano de zircón ligeramente discordante, con edad de 150 Ma. Los tres zircones de los más jóvenes forman un grupo, con elipses que se traslapan entre sí y son concordantes. De este grupo de zircones se obtuvo una edad máxima de depósito de 166 ± 1.5 Ma, con MSWD = 0.44 (Figura 38a).

Figura 37. (a) Diagrama de la relación Torio/Uranio (Th/U) versus Edad (Ma) y (b) Patrón de tierras raras, normalizado a condrita, para los zircones analizados en las formaciones Esperanza, La Pimienta, Cuestecita y del Complejo Volcanosedimentario Las Pilas (CVSLP) y la Filita La Escondida, del terreno Guerrero. Para comparar el comportamiento de las tierras raras entre zircones de origen ígneo y zircones de origen metamórfico, se muestra el patrón de tierras raras de zircones eclogíticos de distintos complejos metamórficos (tomado de Skublov et al., 2012).

La muestra Z12-02, exhibe, en el diagrama de distribución de edades relativas (Figura 39), cuatro poblaciones de zircones principales. La población más antigua que comprende del Mesoproterozoico Medio al Neoproterozoico Temprano (1250-900 Ma), representa el 17% del total analizado y contiene un pico pequeño a ~1050 Ma. Una segunda población, menos abundante, incluye edades del Neoproterozoico Tardío al Ordovícico (700-450 Ma), el 7% del total, definiendo un pico a ~480 Ma. La tercera población, incluye granos con edades del Permo-Triásico (300-210Ma) y representa el 14% de la muestra. Esta población contiene dos picos importantes a 296 Ma y 253 Ma. La cuarta población (Figura 39b), contiene a los zircones con edades más jóvenes y es también, la más notable. Esta población comprende un rango de edades del Jurásico Temprano-Medio (200-160 Ma) y representa el 50% del total analizado, incluye dos picos prominentes a 176 Ma y 170 Ma.

Figura 38. Diagramas de concordia de Wetherill de los análisis por U-Pb para la Formación La Pimienta (Z12-02), El Complejo Vulcanosedimentario Las Pilas (CVSLP; Z12-09) y la Filita La Escondida (Z12-08), del área de Zacatecas. Los recuadros con los diagramas de Tera–Wasserburg muestran a aquellos zircones con edades menores a 450 Ma. Se muestran, también, los grupos de zircones de donde se obtuvieron las edades máximas de depósito (EMD).

5.2.2.3 Sucesiones detríticas del Jurásico Superior-Cretácico Inferior

Complejo Volcanosedimentario Las Pilas

La muestra Z12-09 fue colectada en las cercanía de la localidad Picones, al suroeste de la ciudad de Zacatecas (Figura 15). Ésta consiste de una arenisca volcanoclástica de grano medio. Los zircones separados de esta muestra varían en tamaño de 60 a 150 micras, son dominantemente incoloros. Su morfología es comúnmente prismática, con cristales euhedrales a subhedrales. Tienen una elongación a razón de 3:1 a 2:1. En imágenes de cátodoluminiscencia los zircones de la muestra Z12-09 exhiben dominantemente zonamiento concéntrico y, más escasamente, zonamiento por sectores y zonamiento ligeramente oscilatorio alrededor de núcleos xenocrísticos (Corfu et al., 2003).

Se analizaron 100 granos de esta muestra, 93 de los cuales entregaron edades concordantes a ligeramente discordantes. La relación Th/U es mayor a 0.01 (Figura 36a), sugiriendo un origen magmático (Rubatto, 2002), mientras que los patrones de tierras raras (REE) normalizados a

condrita (Figura 37b), obtenidos en los zircones estudiados durante los análisis LA-ICP-MS, soportan su procedencia ígnea (Harley et al. (2007). Las edades obtenidas comprenden un amplio espectro, desde 1335 \pm 51 Ma a 150 \pm 5 Ma. Un grupo de siete zircones con las edades más jóvenes, concordantes y traslapados a 2 σ , entregan una edad máxima de depósito (EMD) de 153 \pm 2 Ma, con MSWD=0.48 (Figura 38b).

En el diagrama de distribución de edades (Figura 39), la muestra Z12-09, contiene principalmente cinco poblaciones de zircones. Un solo grano de zircón está incluido en el rango 1650-1300 Ma. La población más antigua está definida por edades que tienen un rango del Mesoproterozoico Medio al Neoproterozoico Temprano (1250-900 Ma) y constituye el 20% del total. Esta población contiene dos picos pequeños a ~1150 Ma y a ~1030 Ma. Una segunda población definida por edades del Neproterozoico Tardío al Ordovícico (700-450 Ma), incluye de manera subordinada el 4% del total de los zircones y no define ningún pico importante. La tercera población contiene zircones con edades en el rango Permo-Triásico (300-210 Ma) y representa el 7% del total, definiendo un pequeño pico a 277 Ma. La cuarta población, consiste en zircones que tienen un rango de edad del Jurásico Temprano al Jurásico Medio (200-160 Ma), es la más abundante e incluye el 45% del total de los granos analizados (Figura 39b). Esta población contiene un pico a 171 Ma y un pico prominente a 163 Ma. La población más joven, que representa el 18%, incluye granos que varían en edad del Jurásico Tardío al Cretácico Temprano (159-114 Ma) y define un pequeño pico a 157 Ma.

5.2.2.4. Sucesiones detríticas del Cretácico Superior

Filita La Escondida

La muestra Z12-08 fue colectada al oeste de la ciudad de Zacatecas (Figura 15). Consiste en una arenisca rica en cuarzo, de grano fino a medio. Esta muestra contiene zircones que varían de 60 a 120 micras en tamaño, son dominantemente incoloros, aunque presenta escasos granos de zircón en tonos rosáceos o amarillentos. Su morfología es mayormente prismática, con mediana elongación que varía a razón de 1.5:1 a 3:1. Los cristales muestran facetas euhedrales a subredondeadas y es común encontrarlos rotos. En cátodoluminiscencia, muestran zonamiento dominantemente concéntrico homogéneo a ligeramente oscilatorio y escasamente zonamiento por sectores alrededor de núcleos de xenocristales heredados (Corfu et al., 2003).

Figura 39. Curvas de estimador de densidad de Kernel (Kernel density estimator; KDE, curva negra) y de densidad de probabilidad (Probability density plots; PDP, curva sombreada en verde) para las poblaciones de zircones detríticos de la Formación La Pimienta (Z12-02), El Complejo Vulcanosedimentario Las Pilas (CVSLP; Z12-09) y la Filita La Escondida (Z12-08), del área de Zacatecas del terreno Guerrero. Las poblaciones de zircones se muestran en barras sombreadas. Los números indican la edad, en Ma, de los principales picos. Los círculos abiertos indican la edad para cada grano de zircón. (a). Todos los zircones, (b). Zircones con edades menores a 200 Ma.

Se analizaron 100 granos de zircón para la muestra Z12-08, de los cuales 92 entregaron edades aceptables. La relación Th/U es mayor a 0.01, sugiriendo un origen magmático (Rubatto, 2002) (Figura 37a), mientras que los patrones de tierras raras (REE), normalizados a condrita (Figura 37b), obtenidos en los zircones analizados, también soportan su procedencia ígnea (Harley et al., 2007). Las edades de los zircones se distribuyen en un rango de 2082 ± 28 a 108 ± 4 (Figura 38). El grupo de tres zircones más jóvenes, concordantes y traslapados a 2σ , entregaron una edad máxima de depósito de 109 ± 2.5 Ma, con MSWD = 0.31 (Figura 38c).

La muestra Z12-08, en el diagrama de distribución de edades (Figura 39), incluye principalmente cuatro poblaciones de zircones. Cuatro granos de zircón están incluídos en aquellos con edades mayores a 1650 Ma, mientras que escasos tres granos están dispersos en el rango entre 1650 a 1300 Ma. Una población significante incluye edades en un rango del Mesoproterozoico Medio al Neoproterozoico Temprano (1250-900 Ma), lo cual representa el 21% del total analizado. Una

segunda población, también importante, comprende edades del Neoproterozoico Tardío al Ordovício (700-450 Ma) y representa el 18% del total analizado. Esta población contiene dos picos pequeños a ~550 Ma y ~460 Ma. Los granos de zircones con edades Permo-Triásicas así como aquellos incluidos en el rango del Jurásico Temprano al Jurásico Medio, son subordinados y constituyen el 2 y 1%, respectivamente. La tercera población importante, incluye granos con edades del Jurásico Tardío al Cretácico Temprano (159-114 Ma) y corresponde con el 27% del total. Esta población define cuatro picos prominentes a 158 Ma, 137 Ma, 130 Ma y 117 Ma. Una cuarta población, compuesta por los zircones de edad más joven, comprende de 113 a 105 Ma y constituye el 4%. Ésta genera un pico pequeño a 109 Ma.

5.2.3 Terreno Guerrero (área de Guanajuato)

5.2.3.1 Sucesiones detríticas del Jurásico Superior

Formación Esperanza

La Formación Esperanza fue previamente fechada por Martini et al. (2011). Sin embargo, en este trabajo, se colectó una nueva muestra para tener un mejor control de los zircones a los que posteriormente se les haría isotopía de Hf. La muestra GTO14-1 fue colectada aproximadamente a 2 km al noreste de la localidad de Santa Ana (Figura 17b). Esta muestra consiste en una arenisca de grano medio, rica en cuarzo. Los zircones separados de esta muestra varían de 50 a 120 micras en tamaño, son dominantemente incoloros y subordinados en tonos amarillentos y rosáceos. Morfológicamente son prismáticos, con moderada elongación a razón de 1.5:1 a 3:1. Los cristales son predominantemente subhedrales y redondeados y escasamente hay algunos euhedrales, los cuales son los más elongados. Las imágenes de cátodoluminiscencia muestran zonamiento concéntrico homogéneo a ligeramente oscilatorio alrededor de algunos de xenocristales heredados. También es posible ver, aunque de manera subordinada, algunos cristales con zoneamiento en sectores (Corfu et al., 2003).

Se analizaron 100 granos de zircón, mismos que entregan edades concordantes a ligeramente discordantes. La relación Th/U es mayor a 0.01, lo cual sugiere un origen magmático (Rubatto et al., 2002). Por su parte, el patrón de tierras raras (REE), normalizadas a condrita, también soportan su procedencia ígnea (Harley et al., 2007). El rango de edades de los zircones fechados incluye desde 2071 ± 35 Ma a 199 ± 3 Ma (Figura 40). Los zircones con edades más jóvenes no

forman un grupo de edades similares, por lo que no fue posible establecer la edad máxima de depósito. Sin embargo, el grano de zircón más jóven y concordante es de 199 Ma (Figura 40a).

En el diagrama de distribución de edades (Figura 41), la muestra GTO14-1, exhibe principalmente cuatro poblaciones de zircones. Los granos de zircón con edades mayores a 1650 Ma, son subordinados y constituyen solo el 4%. La población más antigua contiene edades en el rango del Paleoproterozoico Tardío-Mesoproterozoico Temprano (1650-1300 Ma) corresponde con el 9% de total y define un pequeño pico a 1600 Ma. La segunda población, que es una de las más abundantes, incluye edades del Mesoproterozoico Medio al Neoproterozoico Temprano (1250-900 Ma). Esta población constituye el 36% del total analizado y contiene dos picos importantes a 1150 Ma y 1020 Ma. La tercera población, es la segunda más abundante, incluye edades en el rango del Neoproterozoico Tardío al Ordovícico (700-450 Ma) y representa el 32% del total analizado. Esta población de zircones define tres pico principales a ~640 Ma, 560 y ~450 Ma. La población más joven, incluye zircones con edades del Permo-Triásico (300-210 Ma). Esta población representa el 11% del total analizado y contiene un pico bien definido a 253 Ma.

Figura 41. Curvas de estimador de densidad de Kernel (Kernel density estimator; KDE, curva negra) y de densidad de probabilidad (Probability density plots; PDP, curva sombreada en verde) para las poblaciones de zircones detríticos de las formaciones Esperanza (GTO14-1) y Cuestecita (SL-45 y SL-67), del área de Guanajuato del terreno Guerrero. Las poblaciones de zircones se muestran en barras sombreadas. Los números indican la edad, en Ma, de los principales picos. Los círculos abiertos indican la edad para cada grano de zircón. (a). Todos los zircones, (b). Zircones con edades menores a 200 Ma.

5.2.3.2 Sucesiones detríticas del Jurásico Superior-Cretácico Temprano

Formación Cuestecita

Al igual que la Formación La Esperanza, la Formación Cuestecita fue previamente fechada por Martini et al. (2011) como Formación Arperos y posteriormente fue diferenciada como Formación Cuestecita (Martini et al., 2012). En este trabajo se volvieron a fechar esas muestras de la Formación Cuestecita, donde posteriormente se haría isotopía de Hf. Dos muestras de la Formación Cuestecita fueron colectadas en el área de Guanajuato (Figura 17b). La muestra SL-45 se tomó a menos de un kilómetro, al norte de la localidad Cuestecita, mientras que la muestra SL-67 se colectó aproximadamente a 1.5 kilómetros al noroeste de la localidad La Yerbabuena. Ambas muestras consisten en areniscas volcaniclásticas de grano medio a grueso. El tamaño de los zircones es variable de 40 a 90 micras y son mayormente incoloros y escasos en tonos ámbar y rosáceos. Su morfología es prismática, con elongación mediana a razon de 1.5:1 a 3:1. La mayoría de los granos son euhedrales a subhedrales, aunque se pueden ver también granos redondeados, poco elongados a razón de 1:1. En imágenes de cátodoluminiscencia muestran zonamiento concéntrico, ligeramente oscilatorio, como también se pueden ver homogéneos (Corfu et al., 2003). En la muestra SL-45 se analizaron 35 granos, 32 de los cuales entregaron edades aceptables, mientras que en la muestra SL-67 se analizaron 77 granos de zircón, de los cuales 69 produjeron edades concordantes a ligeramente discordantes. La relación Th/U es superior a 0.01 en ambas muestras (Figura 37a), lo que indica un origen magmático (Rubatto et al., 2002). Por otra parte, el patrón de tierras raras (REE), normalizadas a condrita (Figura 37b), también indica su origen magmático (Harley et al., 2007). El rango de edades es de 1473 \pm 39 Ma a 120 \pm 3, para la muestra SL-45, y de 2069 \pm 62 Ma a 122 \pm 6 Ma para la muestra SL-67 (Figura 40). Las edades máximas de depósito, calculadas a partir de los tres granos de zircón más jóvenes, concordantes y traslapados a 2 σ , son de 128 \pm 1.5 Ma, con MSWD = 0.25 y n=4, para la muestra SL-45 (Figura 40b), y de 124 \pm 1.5 Ma, con MSWD = 0.6 y n=3, para la muestra SL-67 (Figura 40c).

En el diagrama de distribución de las edades (Figura 41), las muestras de la Formación Cuestecita contienen ciertas poblaciones de zircones que pueden estar presentes en una u otra muestra. La muestra SL-45 tiene un grano de zircón en el rango 1650-1300 Ma, dos granos en el rango 700-450 Ma y cuatro granos de zircón en el rango 300-210 Ma que hacen un pico pequeño a 251 Ma. Los zircones con edades comprendidas entre el Jurásico Temprano-Medio, representan el 16% de los 32 granos analizados y definen un pico a 160 Ma. La población más notable está contituida por 18 granos de zircón, lo cual representa el 56% del total de la muestra. Está población contiene dos picos importantes a 136 Ma y 128 Ma. Por su parte en la muestra SL-47, estas poblaciones están con mayor abundancia. Solo un grano de zircón está incluido en el rango del Paleoproterozoico Tardío-Mesoproterozoico Temprano (1650-1300 Ma). Una población notable incluye zircones con edades en el rango del Mesoproterozoico Tardío-Neoproterozoico Temprano (1250-900 Ma) y representa el 20% del total analizado. Esta población contiene dos picos a ~1210 Ma y a ~1050 Ma. Una segunda población importante, está compuesta por zircones de edades que tienen un rango del Neoproterozoico Tardío al Ordovícico (700-450 Ma) y constituye el 19% del total. Esta población contiene dos picos de edades a ~560 y ~460 Ma. Zircones con edades en el rango Permo-Triásico representan una población con el 9% y definen dos pequeños picos a 255 Ma y 210 Ma. La población que incluye granos de zircón con edades del Jurásico Temprano-Medio (200-160 Ma) constituye el 12% y define un pico importante a 163 Ma. La población de zircones con edades más jóvenes, comprende el rango del Jurásico Tardío al Cretácico Temprano (159-114 Ma), es la más abundante, con el 38% del total analizado. Esta población contiene dos picos prominentes a 140 Ma y 133 Ma.

5.3. Isótopos de Hf en zircones detríticos

Para caracterizar la zona limítrofe entre el terreno Guerrero y el continente mesozoico mexicano, se consideraron las edades U-Pb y los isótopos de Hf. Se seleccionaron muestras detríticas ya sea de sucesiones del continente mesozoico mexicano como del terreno Guerrero, donde previamente se realizaron fechamientos por U-Pb. Algunas muestras habían sido fechadas por U-Pb previamente por otros autores (ej. Martini et al., 2011; 2012; 2014, Palacios-García y Martini, 2014). De cada muestra, se seleccionó un determinado número de zircones representativos de cada población, con una edad estadísticamente significativa, para aquellos que pasaran el filtro de tamaño, discordancia y el error inherente al análisis. Los datos de Hf se graficaron con los valores de EHf(t) de cada grano de zircón *versus* su edad obtenida previamente por U-Pb. Los resultados obtenidos para todas las muestras se presentan en el anexo 2.

5.3.1. Continente Mesozoico Mexicano

5.3.1.1. Sucesiones detríticas triásicas

Dos muestras del Complejo El Chilar entregan cuatro poblaciones de zircones detríticos. Tres poblaciones son dominantes; 1650-1300 Ma, 1250-900 Ma y 300-210 Ma y una población menos abundante contiene granos de zircón de 700-450 Ma (Figura 42). Zircones del Paleoproterozoico medio son subordinados. La muestra de la Formación Charcas se caracteriza por una población de zircones dominante a 300-210 Ma y tres poblaciones subordinadas a 1650-1300 Ma, 1250-1900 Ma y 700-450 Ma. Al igual que en las sucesiones del Complejo El Chilar, los granos de zircón con edades del Paleoproterzoico medio, en la Formación Charcas, están ausentes o son subordinados (Figura 42).

Los datos de ϵ Hf_(t) reflejan, de manera general, un comportamiento similar en ambas formaciones. Los valores de Hf involucran desde una componente juvenil hasta una muy evolucionada (ϵ Hf_(t) +12 a ϵ Hf_(t) -15). La población de zircones de 1650 a 1300 Ma, para ambas formaciones triásicas, aunque tiene algunos valores muy cercanos al manto empobrecido (ϵ Hf_(t) +12 a +7), tiene predominantemente una componente intermedia con ϵ Hf_(t) +5 a +2. Los granos de zircón con rango de edad de 1250 a 900 Ma, presentan valores de ϵ Hf_(t) mayormente intermedios (ϵ Hf_(t) +5 a +2), para las dos formaciones. La población de zircones incluida en el rango 700-450 Ma, tiene una composición evolucionada (ϵ Hf_(t) -7 a 0), para las dos formaciones.

Los granos de zircón de edades Permo-Triásica (300-210 Ma), tienen mayoritariamente un componente intermedio (ϵ Hf_(t) +10 a +3) y uno evolucionado (ϵ Hf_(t) de +2 a -17).

Figura 42. Diagrama de evolución de ϵ Hf (t) versus Edad U-Pb (Ma), para rocas siliciclásticas triásicas del continente mesozoico mexicano. Cada valor ϵ Hf tiene su barra de error a 2σ . Las curvas sombreadas, en la parte inferior, corresponden con la curva de estimador de Kernel, normalizadas. Los parámetros de referencia son: Manto empobrecido (DM), calculado con ¹⁷⁶Hf/^{A77}Hf₀=0.28325 y ¹⁷⁶Lu/^{A77}Hf₀=0.0384 (Blichert-Toft and Albarède, 1997); Reservorio uniforme condrítico (CHUR), calculado usando ¹⁷⁶Hf/^{A77}Hf₀=0.282785 y ¹⁷⁶Lu/^{A77}Hf₀=0.0336 (Bouvier et al., 2008). La línea de evolución cortical es de acuerdo a ¹⁷⁶Lu/^{A77}Hf_c = 0.015 (Griffin et al., 2002). Las líneas grises punteadas separan campos de magma juvenil (con valores de 0-5 unidades de ϵ Hf, por debajo de la línea del DM) y evolucionado (con valores mayores a 12 unidades de ϵ Hf, por debajo de la línea del DM) (Bahlburg et al., 2011). También se muestran las posibles trayectorias; una de evolución cortical (flechas grises diagonales) y otra de mezcla entre dos componentes (barras amarillas verticales). En el recuadro se muestran los valores de ϵ Hf para zircones con edades U-Pb, menores a 500 Ma.

Cinco episodios de reciclaje cortical pueden verse a 3200-3050, 2600-2250, 2200-1850, 1850-1570 y 1550-1150 Ma (barras diagonales grises). Las barras verticales amarillas muestran que hubo mezcla de reciclaje de corteza juvenil e intermedia a 1600-1450 Ma, de corteza intermedia y evolucionada a 1400-1300 Ma, 1200-1000 Ma y 950-900 Ma y de corteza juvenil, intermedia y mayormente evolucionada a 300-200 Ma.

5.3.1.2. Sucesiones detríticas del Jurásico Superior

Dos muestras de la Formación Sierra de los Cuarzos contienen tres poblaciones dominantes de zircones a 1650-1300 Ma y 200-160 Ma (Figura 43). Granos de zircón subordinados, están distribuidos en un amplio rango desde 1200 a 200 Ma. Los valores de ϵ Hf_(t) varían desde composiciones intermedias hasta evolucionadas (Figura 43). Los zircones con edades en el rango 1650-1300 Ma, 200-160 Ma, se caracterizan por tener una composición dominantemente intermedia (ϵ Hf_(t) +7 a +2) a ligeramente evolucionada (ϵ Hf_(t) -3 a 0). Otras poblaciones subordinadas con zircones en el rango 700-450 Ma y 300-210 Ma tienen valores de ϵ Hf_(t) muy variables desde ϵ Hf_(t) +10 hasta ϵ Hf_(t) -12, mientras que los zircones de 1250-900 Ma, registran únicamente una fuente de composición más evolucionada (ϵ Hf_(t) -10 a 0).

Cuatro episodios de refusión cortical pueden verse en la trayectoria de las barras diagonales grises; una originada en el Paleoproterozoico (2300-1600 Ma), una segunda en el Mesoproterozoico (1450-1200 Ma), otra en el Mesoproterozoico-Neoproterozoico (1100-900 Ma) y una más en el Neoproterozoico (850-750 Ma). Las barras verticales amarillas indican que hubo mezcla de componentes tanto juveniles, intermedias y evolucionadas a 700-650 Ma, ~550 Ma y 300-200 Ma, y mezcla de corteza de composición intermedia a poco evolucionada a 1550-1300 Ma y 200-145Ma.

5.3.1.3. Sucesiones detríticas del Jurásico Superior-Cretácico Inferior

Las sucesiones volcaniclásticas del área de Tolimán (Formaciones San Juan de la Rosa, Peña Azul y Las Trancas), muestran cuatro poblaciones de zircones (Figura 44). Estas sucesiones se caracterizan por tener una población de zircones dominante a 159-114 Ma y una segunda población también importante, con granos zircón de 1250-900 Ma. Dos poblaciones subordinadas, con edades en el rango 300-210 Ma y 200-160 Ma están presentes en las Formaciones San Juan de la Rosa y Peña Azul, pero están ausentes en la Formación Las Trancas. La población de zircones comprendida entre 1250-900 Ma tiene una composición de

dominantemente intermedia a poco evolucionada ($\epsilon Hf_{(t)} + 5 a - 2$) para las tres formaciones. Zircones con edades entre 700-450 Ma, tienen una componente intermedia a evolucionada ($\epsilon Hf_{(t)} + 2 a - 5$), mientras que aquellos con edades entre 300-210 Ma, muestran valores de $\epsilon Hf_{(t)} de + 4 a - 3$ para la Formación San Juan de la Rosa y valores de $\epsilon Hf_{(t)} de 0 a - 5$ para la Formación Peña Azul. Los zircones incluidos en la población de rango de 200 a160 Ma tiene composición intermedia a evolucionada ($\epsilon Hf_{(t)} + 4 a - 15$). Los zircones con edades más jóvenes, comprendidas entre 159-114 Ma, muestran un amplio rango de composición, desde intermedia hasta evolucionada ($\epsilon Hf_{(t)} + 10 a - 5$), para la Formación San Juan de la Rosa a predominantemente evolucionada ($\epsilon Hf_{(t)} + 2 a - 5$), para las formaciones Peña Azul y Las Trancas.

Figura 43. Diagrama de evolución de eHf (t) versus Edad U-Pb (Ma) para sucesiones cuarzosas del Jurásico Tardío del continente mesozoico mexicano. (Los parámetros usados para las líneas de referencia son los mismos que en la Figura 42). La Formación Sierra de los Cuarzos fue fechada por U-Pb por Palacios-García y Martini (2014).

Figura 44. Diagrama de evolución de ɛHf (t) versus Edad U-Pb (Ma) para sucesiones vulcanoclásticas del Jurásico Tardío-Cretácico Temprano del continente mesozoico mexicano. (Los parámetros usados para las líneas de referencia son los mismos que en la Figura 42).

Cuatro episodios de reciclaje cortical definen una trayectoria de evolución a 2200-2000, 1850-1550, 1500-1100 y 1000-850 Ma. Los arreglos verticales de granos de zircón (indicados por las barras verticales amarillas) indican una mezcla entre componentes intermedios y poco evolucionados en zircones en el rango de edad de 1250-900 Ma y 300-210 Ma, y una mezcla entre componentes más juveniles, intermedios y evolucionados, para la población de zircones más joven. (159-114 Ma).

5.3.2. Terreno Guerrero

5.3.2.1. Sucesiones detríticas triásicas

Tres muestras de la Formación Zacatecas y dos muestras del Complejo Arteaga entregan cuatro poblaciones de zircones. Tres poblaciones son dominantes; 1250-900 Ma, 700-450 Ma y 300-210 Ma y una población, menos abundante, contiene granos de zircón de 1650-1300 Ma (Figura 45). En general, los zircones del Paleoproterozoico son escasos para estas sucesiones detríticas. Los datos de ϵ Hf_(t) reflejan, de manera amplia, que los zircones de la Formación Zacatecas incorporan una componente ligeramente menos evolucionada que los del Complejo Arteaga (Figura 45). La población de zircones de 1650 a 1300 Ma, para ambas sucesiones triásicas, tiene principalmente una composición que varía de juvenil (ϵ Hf_(t) +10 a +7) a intermedia (ϵ Hf_(t) +5 a +2) y hasta con una componente más evolucionada (ϵ Hf_(t) -6 a 0) para el Complejo Arteaga. Los granos de zircón con rango de edad de 1250 a 900 Ma, son predominantemente de composición intermedia (ϵ Hf_(t) 0 a +7), para las dos sucesiones. La población de zircones incluida en el rango 700-450 Ma, tiene un rango composicional desde intermedio a muy evolucionado (ϵ Hf_(t) +5 a - 15). Los granos de zircón de edades Permo-Triásicas (300-210 Ma) son altamente variables en composición, desde intermedia, con valores (ϵ Hf_(t) +10, hasta muy evolucionada, con ϵ Hf_(t) de -20.

Los datos de Hf también sugieren seis episodios de producción de corteza que originan las trayectorias de evolución cortical, originados a 3550-3400, 3100-2850, 2650-2150, 2100-1550, 1500-1250 y 1200-900 Ma. Los arreglos verticales de los granos de zircón indican que en la población de zircones más antigua (1650-1300 Ma) hubo una mezcla de un componente juvenil, uno intermedio y otro un poco más evolucionado, mientras que en la población de 1250-900 Ma, la mezcla de componentes corticales no fue tan grande, predominando la composición intermedia. Los tres arreglos verticales más jóvenes: ~700-500 Ma, 470-400 Ma y 300-210 Ma registran una mezcla de componentes intermedios a muy evolucionados.

Figura 45. Diagrama de evolución de eHf (t) versus Edad U-Pb (Ma), para sucesiones siliciclásticas del triásicas del terreno Guerrero. (Los parámetros usados para las líneas de referencia son los mismos que en la Figura 42).

5.3.2.2. Sucesiones detríticas del Jurásico Medio-Jurásico Superior

Una muestra de la Formación Esperanza y una muestra de la Formación La Pimienta, entregaron cuatro poblaciones de zircones. La población más antigua, solo presente en la Formación La Esperanza, la constituyen granos subordinados con edades en el rango 1650-1300 Ma (Figura 46). Otras tres poblaciones de 1250-900 Ma, 700-450 Ma y 300-210 Ma están contenidas en ambas formaciones. Una población más joven, 200-160 Ma, solo está presente en la Formación La Pimienta. Los datos de Hf (Figura 46), indican que los zircones incluidos en la población más antigua tiene valores positivos de ϵ Hf_(t). La población de 1250-900 Ma es predominantemente de

composición intermedia (ϵ Hf_(t) +8 a +3), mientras que las tres poblaciones más jóvenes (750-400, 300-210 y 200-160 Ma), tienen mayoritariamente, valores de ϵ Hf_(t) desde +7 hasta -10.

Figura 46. Diagrama de evolución de *EHf* (t) versus Edad U-Pb (Ma), para sucesiones cuarzosas del Jurásico Medio-Tardío del terreno Guerrero. (Los parámetros usados para las líneas de referencia son los mismos que en la Figura 42).

Cinco episodios de adición cortical definen la trayectoria de evolución: el más antiguo se desarrolló en el Arqueano, a ca. 3350-3200 Ma, dos más en el Paleoproterozoico a 2550-2150 y 2050-1600, otro en el Mesoproterozoico a ca. 1550-1250 Ma y otro más a ca. 1200-900 Ma. Los arreglos verticales indican mezcla de componentes mayormente intermedios a poco evolucionados paras las poblaciones de 1250-900, 700-450 y 200-160 Ma, mientras que para la

población de zircones de 300-210 Ma, los valores composicionales son más variables, de intermedios a muy evolucionados.

5.3.2.3. Sucesiones detríticas del Jurásico Superior-Cretácico Inferior

Una muestra del Ensamble Santo Tomás-Tejupilco, una muestra del Ensamble Ojo de Agua, dos muestras de la Formación Cuestecita y una muestra del Complejo Volcanosedimentario Las Pilas (CVSLP), entregaron principalmente de cuatro a cinco poblaciones de zircones (Figura 47). Las poblaciones de zircón con edades de 1250-900 Ma y 300-210 Ma, sólo están presentes en la Formación Cuestecita y en el Complejo Volcanosedimentario Las Pilas, mientras que las poblaciones de zircones con edades de 700-450 Ma y 200-160 Ma, aunque de manera subordinada, están en las cuatro unidades volcaniclásticas. La población más joven (159-114 Ma) está incluida en los ensambles Santo Tomás-Tejupilco y Ojo de Agua y en la Formación Cuestecita.

Los datos de Hf indican que la población de zircones más antigua (1250-900 Ma) tiene una componente intermedia, con valores de ϵ Hf_(t) que varían de +8 a 0, mientras que para las poblaciones de 700-450 y 300-210 Ma, el rango de ϵ Hf_(t) es mayormente de 4 a -10, de composición intermedia a evolcionada. Para la población de zircones de 200-160 Ma, ϵ Hf_(t) tiene un rango más amplio que varía de ϵ Hf_(t) +7 a ϵ Hf_(t) -7. La población de zircones más joven tiene mezcla de componentes juveniles hasta muy evolucionados, con valores de ϵ Hf_(t) -15).

Se definen cinco episodios de adición de corteza al continente, los cuales registran la trayectoria de evolución cortical. Los dos más antiguos se originaron en el Arqueano a ca. 3250-3100 Ma y 2750-2650 Ma, otro en el Paleoproterozoico-Mesoproterozoico a ca. 2050-1500 Ma, otro en el Mesoproterozoico a ca. 1450-1150 Ma y uno Neoproterozoico a ca. 1000-600 Ma. Los arreglos verticales de granos de zircón, registran que los zircones contenidos en la población más antigua, tienes poca mezcla de componentes, siendo mayormente de composición intermedia. Las poblaciones de 700-450, 300-210 y 200-160 Ma, mezclan componentes tanto intermedios como evolucionados, mientras que en la población más jóven presenta una mezcla tanto de componentes juveniles, intermedios y evolucionados.

Figura 47. Diagrama de evolución de eHf (t) versus Edad U-Pb (Ma), para sucesiones vulcanoclásticas del Jurásico Tardío-Cretácico Temprano del terreno Guerrero (Los parámetros usados para las líneas de referencia son los mismos que en la Figura 42). El Ensamble Santo Tomás-Tejupilco y elEnsamble Ojo de Agua, fueron fechados por U-Pb, previamente por Martini et al. (2014). La Formación Cuestecita, auquue fue fechada por U-Pb, previamente por Martini et al. (2011; 2012), se volvió a analizar en este trabajo.

5.3.3. Sucesiones detríticas post-Cretácico Temprano

Una muestra de la Formación Pelones, otra de la Filita La Escondida y otra más de la Arenisca Mineral de Pozos, entregaron siete poblaciones de zircones. La población de granos de zircón más antigua de 1650-1300 Ma está presente en la Arenisca Mineral de Pozos, mientras que para la Formación Pelones y la Filita La Escondida se tienen uno y dos granos, repectivamente. La población en el rango 1250-900 Ma está incluida en la Filita La Escondida y la Arenisca Mineral de Pozos. La población de zircones con edades de 700-450 Ma, sólo está registrada en la Filita La Escondida y la población de 300-210, únicamente está incluida ne la Arenisca Mineral de Pozos. Zircones con edades en el rango 200-160 Ma y 159-114 Ma están presentes en las tres unidades cretácicas. La población más joven (104-90 Ma) está contenida en la Arenisca Mineral de Pozos.

La composición isotópica de Hf de estas muestras indican que tanto los zircones de las población 1650-1300 Ma como la de 1250-900 Ma, tienen composición dominantemente intermedia, con valores de ϵ Hf_(t) de +7 a +2 (Figura 48). Por otro lado, las poblaciones contenidas en los rangos 700-450 y 300-210 Ma, tienen una componente evolucionada, con valores de ϵ Hf_(t) de -1 a -9. La población de 200-160 Ma, incorpora un componente cortical intermedio y otro evolucionado, con valores de ϵ Hf_(t) +5 a -10. La población de 159 a 114 Ma es dominantemente de composición intermedia, con ϵ Hf_(t) +9 a 0. Los zircones inlcuidos en la población más joven se caracterizan por tener desde componentes intermedios a evolucionados, con con ϵ Hf_(t) +9 a -8.

Se definen cuatro episodios de refusión cortical iniciados a ca. 2750-2350, 2000-1400, 1350-1100 y 1000-700 Ma. Los arreglos verticales de los zircones registran retrabajamiento mayormente de corteza intermedia y posiblemente corteza evolucionada para las poblaciones más antiguas de 1650-1300 y 1250-900 Ma. En otras poblaciones tales como las de 700-450, 300-210 y 200-160 Ma, no presentan mucha mezcla de componentes, siendo principalmente corteza evolucionada. Las poblaciones más jóvenes (159-114 y 104-90 Ma) son las que registran una mayor mezcla de componentes desde intermedia a evolucionada, en igual proporción.

Figura 48. Diagrama de evolución de ɛHf (t) versus Edad U-Pb (Ma), para las sucesiones post-Cretácico Temprano . (Los parámetros usados para las líneas de referencia son iguales que en la Figura 42). La Formación Pelones fue fechada por U-Pb, previamente por Palacios-García y Martini (2014).

6. DISCUSIÓN

6.1. Procedencia de zircones detríticos con base en edades U-Pb

Para poder establecer la relación entre los componentes detríticos principales de las unidades sedimentarias que se analizaron en el presente trabajo, y sus fuentes de suministro, ya sea como provincias ígneas primarias o como sucesiones sedimentarias recicladas o retrabajadas, es conveniente discutir el origen de las distintas poblaciones de zircones. Cada población de zircones registra, de manera indirecta, el evento tectono-magmático y la distribución paleogeográfica de su roca fuente. Adicionalmente, la presencia o ausencia de alguna población es un parámetro que podría sugerir el ambiente tectónico y el tiempo en el cual se llevó a cabo el depósito de la unidad sedimentaria que la contiene. En este sentido, cada rango de edad referente a una determinada población tiene su significado geológico.

6.1.1. Zircones paleoproterozoicos (2500-1650 Ma)

Como también lo indican otras unidades triásicas reportadas en el centro y noreste de México (Barboza-Gudiño et al., 2010), los zircones paleoproterozoicos, son poco comunes en la mayoría de las muestras o simplemente están ausentes. Aunque estadísticamente son pocos granos de zircón con estas edades, de cualquier manera indican la incorporación de detritos de fuentes muy antiguas. El basamento paleoproterozoico está presente en las provincias ígneas del cratón amazónico, al noroeste de Gondwana (Tassinari y Macambira, 1999; Geraldes et al., 2000; Cordani et al., 2009), mismas que pudieron haber sido la fuente inicial de estos granos de zircón, para el tiempo en que Pangea estaba integrada (Figura 49). Otra posibilidad es que estos granos de zircón pudieron ser derivados del retrabajo de rocas clásticas más jóvenes, paleozoicas (Esquisto Granjeno o el Complejo Aclatlán), tales como aquellas reportadas al noreste de México (Nance et al., 2007; Barboza-Gudiño et al., 2011).

6.1.2. Zircones del Paleoproterozoico tardío-Mesoproterozoico medio (1650-1300 Ma)

Esta población de zircones es una de las más antiguas, incluida en las sucesiones triásicas específicamente en una porción del Complejo El Chilar (Figura 50). También se ecuentra de manera subordinada en todas las muestras de arenisca de esta unidad y ha sido reportada en areniscas jurásicas, ricas en cuarzo, de la Formación Sierra de los Cuarzos (Palacios-García y Martini, 2014) y en otras unidades triásicas, tales como las areniscas del Complejo Arteaga del área de Placeres (Ortega-Flores et al., 2016) y las de Real de Catorce (Barboza-Gudiño et al.,

2010), que contienen granos en cantidades limitadas. Tanto en el Complejo El Chilar y la Formación Sierra de los Cuarzos esta población es dominante y define picos entre 1520-1540 Ma.

Figura 49. (a), Configuración de Pangea en el Triásico Tardío donde se muestra, de manera esquemática, la dirección del drenaje principal del oeste de Pangea (Adaptado de Stampfli et al., 2013; Miller et al., 2013; Gehrels et al., 2014). (b), Distribuición de bloques peri-gondwánicos en el margen oeste de Pangea ecuatorial (Ruiz, et al., 1999; Alemán y Ramos, 2000; Elías-Herrera y Ortega-Gutiérrez, 2002; Cediel et al., 2003; Keppie, 2004; Weber et al., 2007).

Gran parte de las sucesiones siliciclásticas del centro y noreste de México, depositadas durante el Triásico, forman parte de un sistema de depósito de abanico submarino, conocido como abanico

Potosino, cuyos sedimentos fueron derivados de fuentes continentales, principalmente cratónicas (Centeno-García y Silva-Romo, 1997; Silva-Romo et al., 2000; Centeno-García, 2005). El desarrollo de este abanico subamarino tendría lugar al oeste del margen paleo-Pacífico de México, similarmente a muchos detritos silicilásticos, que fueron depositados en el margen oeste de Pangea, durante el Triásico (Miller et al., 2013). Muchas sucesiones siliciclásticas triásicas, distribuidas en las márgenes del continente mesozoico mexicano, entregan comúnmente tres poblaciones de zircones, representativas de episodios magmáticos del Mesoproterozoico tardío, Neoproterozoico y Permo-Triásico (Elías-Herrera et al., 2000; Talavera-Mendoza et al., 2007; Martini et al., 2009; Barboza-Gudiño et al., 2010; Centeno- García et al., 2011), muy similar al Complejo El Chilar. Sin embargo, ninguna de ellas contiene una población bien definida y abundante en zircones con edades de 1650-1300 Ma. Esto podría deberse a la compleja red del drenaje que alimentaba la cuenca, o bien, a la presencia de una fuente de suministro muy local. Las sucesiones triásicas del Plateau de Colorado (Dickinson et al., 2007; Dickinson y Gehrels, 2008; Dickinson et al., 2010), así como las unidades triásicas en el SW de Estados Unidos (Formación Chinle) y unidades en Sonora en el bloque sur de la megacizalla Mojave-Sonora (González-León et al., 2009; Riggs et al., 2012), contienen zircones paleoproterozoicos y mesoproterozoicos (Figura 50), posiblemente derivados de las provincias Mazatzal y Yavapai, de Laurencia, pero los zircones con edades de ~1530 Ma están ausentes, por lo tanto, el suroeste de Laurencia queda excluido como una posible fuente.

Las unidades detríticas paleozoicas en el Bloque Maya (Formación Santa Rosa y Unidad Jocote en el Macizo de Chiapas y Unidad Baldy, en las Montanas Maya de Belice), contienen zircones del Mesoproterozoico temprano que definen picos importantes entre 1540-1520 Ma, con fuente potencial en la provincia Rio-Juruena del cratón amazónico (Weber et al., 2006; 2008; 2009; Martens et al., 2010). Aunque es posible que el bloque Maya haya sido una fuente de aporte para el Complejo El Chilar, esta procedencia también estaría registrada en las sucesiones triásicas del centro y noreste de México. Sin embargo, éstas últimas no contienen esta población de zircones. Las rocas metasedimentarias del Complejo Acatlán, el cual estuvo adyacente a Oaxaquia en el Triásico Tardío (Keppie et al., 2004a; Nance et al., 2006; Weber et al., 2008), y el Esquisto Granjeno del Anticlinorio Huizachal-Peregrina, contienen esta población de manera subordinada, comúnmente menos del 10% (Ruiz et al., 2004b; Talavera-Mendoza et al., 2005; Nance et al., 2007; Barboza-Gudiño et al., 2011; Helbig et al., 2012; Silva-Romo et al., 2015), por lo tanto es poco probable que estas unidades sean las rocas fuente. Por otra parte, en las unidades paleozoicas que sobreyacen al Complejo Oaxaqueño, en el extremo sur del bloque Oaxaquia,

tampoco se han reportado zircones con este rango de edad (Gillis et al., 2005), por lo que estas rocas no son una fuente viable.

Algunas reconstrucciones paleogeográficas para el Permo-Triásico (Ruiz et al., 1999; Dickinson y Lawton, 2001; Elías-Herrera y Ortega-Gutiérrez, 2002; Keppie, 2004; Weber et al., 2007; Martini y Ortega-Gutiérrez, 2016) posicionan al bloque Oaxaquia como adyacente tanto al terreno Mérida como a terrenos equivalentes del norte de los Andes Colombianos, del noroeste de Gondwana (Alemán y Ramos, 2000; Ciedel et al., 2003). Las unidades detríticas paleozoicas de estos terrenos (Dugarte-Newman, 2012; van der Lelij et al., 2016) reciclan abundantes granos de zircón procedentes de la provincia Río Negro-Juruena, del cratón amazónico (Figura 51). Esta provincia ígnea de Amazonia contiene grandes volúmenes de rocas intrusivas, emplazadas a ~1570-1530 Ma (Tassinari y Macambira, 1999; Geraldes et al., 2004; Murphy et al., 2004; Ruiz et al., 2004a; Tohver et al., 2004; Bettencourt et al., 2010). En este contexto, es altamente probable que esta población de zircones incluida en escasas sucesiones triásicas del centro de México, tengan una fuente de aporte en rocas paleozoicas de estos terrenos andinos, o bien, los detritos pudieron haber sido derivados directamente de la provincia Rio Negro Juruena, del oeste de Amazonia.

La inclusión de esta población de zircones, de 1650-1300 Ma, en las sucesiones jurásicas de la Formación Sierra de los Cuarzos (Palacios-García y Martini, 2014), donde es igualmente abundante, sugiere una mayor probabilidad de que las rocas del Complejo El Chilar hayan sido parte de las fuentes de aporte para esta unidad jurásica. Esto se infiere por el alto contenido de cuarzo en la Formación Sierra de los Cuarzos y por la relativa cercanía que existe entre estas dos sucesiones sedimentarias. Adicionalmente El Complejo El Chilar debió estar expuesto a este tiempo, dado que no le sobreyace ningún depósito hasta el Jurásico Tardío (Formación San Juan de la Rosa).

Figura 50. Histogramas y curvas KDE de diferentes sucesiones detríticas triásicas de México. Referencias (Ref.): (1) Talavera-Mendoza et al., 2005; (2) Talavera-Mendoza et al., 2007; (3) Barajas-Nigoche et al., 2008; (4) Venegas-Rodríguez et al., 2009; (5) González-León et al., 2009; (6) Pérez-Gutiérrez et al., 2009a; (7) Martini et al., 2009; (8) Barboza-Gudiño et al., 2010; (9) Helbig et al., 2012; (10) Ortega-Flores et al., 2014; (11) Silva-Romo et al., 2015; (12) Ortega-Flores et al., 2016; (13) Este trabajo.

Figura 51. Histogramas y curvas KDE de diferentes sucesiones detríticas e intrusivos paleozoicas de bloques peri-gondwánicos. En algunos bloques Andinos se muestran los principales picos de intrusivos triásicos. Referencias (Ref.): (1) Gillis et al., 2005; (2) Talavera-Mendoza et al., 2005; (3) Weber et al., 2006; (4) Vega-Granillo et al., 2008; (5) Weber et al., 2009; (6) Martens et al., 2010; (7) Barboza-Gudiño et al., 2011; (8) Dugarte-Neuman, 2012; (9) Cochrane et al., 2014; (11) van der Lelij et al., 2016.

6.1.3. Zircones del Mesoproterozoico tardío-Neoproterozoico temprano (1250-900 Ma)

Esta población es una de las más abundantes y persistentes en muchas unidades sedimentarias. Zircones con este rango de edades representan eventos orogénicos con episodios magmáticos, metamórficos y de acreción, asociados al ensamble del continente Rodinia (Hoffman, 1991; Dalziel, 1994; Tohver et al., 2004; Rino et al., 2008). Algunos de estos cinturones orogénicos que se desarrollaron alrededor de grandes cratones, tales como Laurencia, Amazonia y Báltica, fueron fragmentados y acrecionados a otras piezas corticales por orogenias posteriores (ej. Brasiliana, Pan-Africana y Marathon-Ouachita), dejando una nueva configuración, en la que uno de estos segmentos, el microcontinente Oaxaquia (Ortega-Gutiérrez et al., 1995), formó parte del basamento cristalino del este de México, después del Paleozoico tardío. El microcontinente Oaxaquia está representado por bloques de basamento de edad grenvilliana, distribuidos al este y sur de México, tales como Gneis Novillo, Gneis Huiznopala, Complejo Guichicovi y Complejo Oaxaqueño (Ortega-Gutiérrez et al., 1995; Keppie et al., 2003; Solari et al., 2003; 2004; Cameron et al., 2004; Weber et al., 2010; 2011; Trainor et al., 2011; Weber et al., 2014). El Gneis Novillo registra magmatismo con emplazamiento de granito, gabro-anortosita y anfibolita a ca. 1235-1115 Ma y ca. 1035-1010 Ma y una fase de metamorfismo en facies granulita a ~990 Ma (Cameron et al., 2004). El Gneis Huiznopala registra magmatismo a ca. 1200-1150 Ma, una etapa de emplazamiento de anortosita-gabro y una fase de metamorfismo en facies granulita a ca. 1000 Ma (Lawlor et al., 1999; Weber et al., 2014). El Complejo Guichicovi contiene magmatismo de arco a ca. 1250-1200 y 1178 Ma, y fue afectado por metamorfismo en facies granulita a 990-970 Ma (Ruiz et al., 1999; Weber y Köhler, 1999; Weber et al., 2014). El Complejo Oaxaqueño registra magmatismo de arco a 1210 y 1179 Ma (Weber et al., 2014), un episodio de migmatización a 1100 Ma y una fase de metamorfismo a 980-990 Ma (Keppie et al., 2001; Solari et al., 2003; 2004; Weber et al., 2010).

La población de zircones contenida en este rango de edad, define un pico a ca. 1185 Ma en el Complejo El Chilar, la Formación Zacatecas y el Complejo Arteaga y un pico de 1215 en la Formación Charcas (Figura 50). Un segundo pico entre 1060-1080 Ma puede verse en la Formación Zacatecas y el Complejo Arteaga y en tres muestras del Complejo El Chilar (Figura 30), pero no está definido en la Formación Charcas. El pico más joven es a 990-1000 Ma y está incluido en el Complejo El Chilar, el Complejo Arteaga y la Formación Charcas, pero pobremente definido en la Formación Zacatecas. Tanto el pico de edad más viejo (1180 Ma) como el más joven (~990 Ma) están presentes en todos los bloques de Oaxaquia, mientras que el pico intermedio (1060-1080 Ma) no está definido. Sin embargo, algunos zircones con edad en este rango han sido reportados en el Complejo Oaxaqueño (Solari et al., 2014) y una cantidad muy limitada en los gneises Huiznopala y Novillo (Lawlor et al., 1999; Cameron et al., 2004).

Considerando que las unidades detríticas permo-triásicas del Complejo Acatlán (Formaciones Olinalá, Chazumba y Magdalena) y del Complejo Oaxaqueño (Formación Tiñú) incluyen granos de esta edad y, que tanto el Complejo Acatlán como el Complejo Oaxaqueño estuvieron adyacentes a este tiempo (Elías-Herrera y Ortega-Gutiérrez, 2002; Keppie, 2004), es muy probable que éstos hayan sido la fuente de aporte de esta población de zircones en las sucesiones del Complejo Arteaga y de la Formación Zacatecas y posiblemente, en parte también para el

Complejo El Chilar. Por su parte, la Formación Charcas tuvo fuentes de aporte más afines a los bloques del norte de Oaxaquia (Gneis Novillo o Gneis Huiznopala) y del Bloque Maya, similar a las sucesiones triásicas del noreste de México reportadas por Barboza-Gudiño et al. (2010), donde se ha documentado que unidades sedimentarias del Triásico Superior –Jurásico Medio (Formaciones Huizachal y Huayacocotla) fueron depositadas directamente sobre el Gneis Huiznopala (Ochoa-Camarillo et al., 1998; Ortega-Flores, 2011), sugiriendo que este bloque de Oaxaquia estuvo expuesto durante este tiempo.

La presencia de zircones grenvillianos en las sucesiones jurásicas y cretácicas, en general, no es tan abundante. Sin embargo, algunas unidades contienen importante cantidad de granos de esta edad, lo cual sugiere que pudieron derivarse del reciclaje de unidades sedimentarias tanto paleozoicas como triásicas. Habría que considerar, por otra parte, que posiblemente las fuentes de aporte pudieron estar cubiertas por detritos volcanosedimentarios, al menos para la margen occidental paleo-pacífica de México, mientras que para el oriente mucho fue cubierto por aguas marinas.

6.1.4. Zircones del Neoproterozoico tardío-Ordovícico (700-450 Ma)

Esta población está incluida en todas las sucesiones siliciclásticas triásicas y se encuentra de manera subordinada en unidades detríticas jurásicas y cretácicas. Aunque su abundancia es menor que la población de zircones de edad *grenvilliana*, también es una población importante en las rocas mesozoicas. Se caracteriza por ser relativamente más abundante en las sucesiones del terreno Guerrero, tales como el Complejo Arteaga, las formaciones Zacatecas y Esperanza y la Filita La Escondida, mientras que disminuye en las formaciones Charcas y el Complejo El Chilar del continente mesozoico mexicano. Los zircones en este rango de edad, representan un evento importante, tal como la orogenia Brasiliana-Panafricana, para formar el continente de Gondwana. Estos cinturones orogénicos se desarrollaron en tres episodios durante 900-450 Ma, donde incluyen un período de acreción entre 650-500 Ma, un período magmático a ca. 570 Ma, y un episodio final de reseteo térmico a 450 Ma (Guimarães et al., 2004; Rino et al., 2008). Todos estos episodios precedieron el ensamble de Laurencia y Gondwana para formar Pangea y quedaron registrados en algunos bloques peri-gondwánicos.

Varios bloques pequeños tanto de corteza continental como fragmentos de arco juvenil, fueron añadidos al oeste, norte y este de Gondwana durante su ensamble final. El Bloque Maya (Bloque Yucatán-Chiapas, Dickinson y Lawton, 2001), Chortís, Oaxaquia (Murphy et al., 2004) y

Suwannee (Florida) (Mueller et al., 1994; Pollock et al., 2012; Keppie et al., 2011), contienen parte de estos terrenos peri-gondwánicos. El magmatismo generado durante el ensamble de Gondwana, es registrado por un clasto de granito de la cubierta sedimentaria del Bloque de Coahuila, en donde los zircones entregaron edades de cristalización de ca. 580 Ma. Este magmatismo pudo haberse originado por la fusión o asimilación de basamento grenvilliano (Lopez et al., 2001). Por otro lado, en el Bloque Maya (Figura 52), se ha reportado magmatismo a 410-400 Ma, en Belice (Martens et al., 2010), ca. 490-415 Ma y 460-400 Ma en Guatemala (Ortega-Obregón et al., 2008; Solari et al., 2010b) y ca. 480-450 Ma en Chiapas (Estrada-Carmona et al., 2012). Magmatismo con edad entre 480-440 Ma, es relativamente abundante en el Complejo Acatlán (Sánchez-Zavala et al., 2004; Talavera-Mendoza et al., 2005, Miller et al., 2007; Keppie et al., 2008), pero no se ha reportado en el Complejo Oaxaqueño. Por otro lado, al noroeste del terreno Guerrero o bloque Sonobari (Campa y Coney, 1983), también se ha reportado una edad de 430 Ma en rocas intrusivas (Vega-Granillo et al., 2012). El magmatismo del Neoproterozoico solo se ha identificado en el Gneis Novillo, donde se obtuvo una edad de ~546 Ma (Keppie et al., 2006b).

En las sucesiones triásicas del Complejo Arteaga y la Formación Zacatecas se definen picos de edad desde 650 a 470 Ma, siendo el pico más importante el de 470 Ma. Con base en lo expuesto anteriormente, es muy probable que los intrusivos ordovícicos del Complejo Acatlán (Figura 52) sean la fuente directa de zircones con esta edad, mientras que los picos más viejos pueden derivar del reciclaje de rocas metasedimentarias del Complejo Acatlán (Formaciones Xayacatlán o Cosoltepec), o bien podrían derivar de rocas paleozoicas del terreno Mérida-Bloque Caparo o de los Andes Colombianos, donde zircones en el rango de edad 650-520 Ma, son relativamente abundantes (Figura 50). En las sucesiones triásicas del centro y noreste de México la población Panafricana de zircones se ve notablemente reducida. Esto se debe, posiblemente, a que sus fuentes intrusivos con edades de 480-400 Ma, los cuales pueden ser una fuente de zircones en este rango de edad, mientras que los zircones más viejos (600-530 Ma), pudieran ser reciclados de su cubierta metasedimentaria paleozoica, tal como la Formación Santa Rosa, donde la población Pan Africana es dominante.

Figura 52. Compilación de edades U-Pb (excepto 10 y 13) en intrusivos paleozoicos, triásicos y jurásicos. (1) Lopez, 1997; (2) Elías-Herrera et al., 2000; (3) López et al., 2001; (4) Solari et al., 2001; (5) Sánchez-Zavala et al., 2004; (6) Montrella, 2004; (7) Talavera-Mendoza et al., 2005; (8) Dowe et al., 2005; (9) Keppie et al., 2006a; (10) Keppie et al., 2006c; (11) Weber et al., 2007; (12) Miller et al., 2007; (13) Solé et al., 2007; (14) Weber et al., 2008; (15) Vega-Granillo et al., 2008; (16) Keppie et al., 2008; (17) Ortega-Obregón et al., 2008; (18) Solari et al., 2010b; (19) Solari et al., 2011; (20) Centeno-García et al., 2011; (21) Cuéllar-Cárdenas et al., 2012; (22) Weber et al., 2012; (23) Estrada-Carmona et al., 2012; (24) Kirsch et al., 2012; (25) Vega-Granillo et al., 2012; (26) Valencia et al., 2013; (27) Pompa-Mera et al., 2013, (28) Vega-Granillo et al., 2013; (29) Ortega-Obregón et al., 2014.

6.1.5. Zircones del Permo-Triásico (300-210 Ma)

Esta población permo-triásica es una de las dos más sobresalientes, además de la población *grenvilliana*, en las sucesiones triásicas. Sin embargo, al igual que la población *grenvilliana*, la población de zircones permo-triásica persiste en algunas sucesiones detríticas jurásicas y cretácicas, aunque de forma reducida. Zircones de este rango de edad son característicos en las sucesiones siliciclásticas y metasedimentarias del centro y norte de México (Figura 50), incluyendo las areniscas del Grupo Antimonio, del noroeste de Sonora (González-León et al., 2009) y en el Gneis Francisco, en el bloque Sonobari (Keppie et al., 2006a).

Los zircones en el rango de edad permo-triásica generalmente se han interpretado como procedentes del magmatismo de un arco continental, el cual se desarrolló en la margen oeste de Pangea, previo a su fragmentación. Este cinturón magmático se ha identificado desde el suroeste de Laurencia hasta el margen occidental de Sudamérica (Torres et al., 1999; Cochrane et al., 2014). Se considera que este arco continental estuvo activo en el período 306-232 Ma (Pindell y Dewey, 1982; Torres et al., 1999; Dickinson y Lawton, 2001; Kirsch et al., 2012). Al noroeste de México, en el bloque de Caborca, se han reportado granitoides con edades en un rango de 284-221 Ma (Arvizu et al., 2009) y se han interpretado como una extensión del arco Permo-Triásico del este de México. Hacia el centro-norte de México, Jones et al. (1995) reportaron la edad de un plutón del bloque de Coahuila en 220 Ma por el método Rb-Sr. En el bloque Maya, en Guatemala (Figura 52), se han reportado rocas intrusivas con edades que varían de 226 a 214 Ma. (Solari et al., 2011) y de edad pérmica (272 Ma), en el Macizo de Chiapas (Weber et al., 2007). Granitoides pérmicos son relativamente abundantes en el Complejo Oaxaqueño (Solari et al., 2001; Ortega-Obregón et al., 2014) y también se encuentran en el Complejo Acatlán (Kirsch et al., 2012).

Tanto en los complejos El Chilar y Arteaga y las formaciones Charcas y Zacatecas, el pico predominante lo definen zircones de edad pérmica, dado que son los más abundantes. El Complejo El Chilar contiene zircones predominantemente pérmicos que definen una edad pico a 280 Ma, la Formación Zacatecas contiene un pico a 270 Ma y el Complejo Arteaga y la Formación Charcas incluyen un pico de 260 Ma (Figura 50). En este sentido, se puede interpretar que tanto la Formación Charcas como el Complejo Arteaga tuvieron una fuente de aporte más joven que el Complejo El Chilar y la Formación Zacatecas. Granitos con edades triásicas del bloque de Coahuila pudieron ser una fuente local para la Formación Charcas y para las

sucesiones de Sierra de Catorce, reportadas por Barboza-Gudiño et al. (2010), mientras que el influjo de estos zircones disminuye hacia la Formación Zacatecas, al igual que hacia la Formación La Ballena, fechada por Barboza-Gudiño et al. (2012). Sin embargo, la Formación El Alamar, del área de Novillo, incluye abundantes zircones triásicos que pudieron ser derivados de intrusivos triásicos locales de esa área (Barboza-Gudiño et al., 2010) y que también pudieron ser la fuente para la Formación Charcas. Por otro lado es posible que para el Complejo Arteaga, específicamente en el área de Placeres, haya habido exposición de intrusivos triásicos que ahora no estén expuestos. El Complejo El Chilar, por su parte, contiene mayormente zircones pérmicos que pudieron derivar tanto del Complejo Acatlán, tales como las formaciones Chazumba y La Mora (Helbig et al., 2012; Silva-Romo et al., 2015).

6.1.6. Zircones del Jurásico Temprano-Jurásico Medio (200-160 Ma)

Algunas sucesiones detríticas del Jurásico tardío y del Cretácico, ya sean del continente mesozoico mexicano o del terreno Guerrero, contienen esta población de zircones que, aunque no es abundante, representa un evento plutónico-volcánico casi continuo al oeste de Pangea. Zircones en este rango de edad podrían haberse formado ya sea por magmatismo extensional, que resultó del rompimiento de Pangea y apertura del Golfo de México (Barboza-Gudiño et al., 1998; Dickinson, 2009; Stern y Dickinson, 2010) o bien por magmatismo asociado a subducción activa, desarollado a lo largo de la margen continental paleopacífica (Barboza-Gudiño et al., 1998; 2008). Una provincia ígnea del Jurásico Inferior-Medio se ha documentado en diversos trabajos, desde el suroeste de Laurencia (Haxel et al., 2005; Mauel et al., 2011), pasando por el centro-norte de México (Pantoja-Alor, 1972; Barboza-Gudiño et al., 1998; Silva-Romo et al., 2000; Barboza-Gudiño et al., 2008; Barboza-Gudiño, 2012; Zavala-Mosiváis et al., 2012; Lawton y Molina-Garza, 2014), noreste de México (Rubio-Cisneros y Lawton, 2011) hasta el Macizo de Chiapas (Godínez-Urban et al., 2011). Dickinson y Lawton (2001), infirieron la presencia de un arco magmático continental al que nombraron arco Nazas, el cual pudo máxima actividad entre 200-165 Ma, para después disminuir hasta 150 Ma (Lawton et al., 2010; Lawton y Molina-Garza, 2014). Por su parte Martini y Ortega-Gutiérrez (2016) sugieren que esta provincia ígnea del Jurásico Inferior-Medio estuvo asociada tanto a extensión intracontinental, como consecuencia de la separación de Norteamérica y Sudamérica, y a la subducción de la margen del Pacífico, donde se desarrolló un arco volcánico, cuya raíz podría estar representada por todas las rocas plutónicas de esta edad (Figura 52), dispersas a lo largo de la margen del Pacífico.
En las sucesiones detríticas del continente mesozoico mexicano, los zircones que representan este evento magmático están incluidos en las formaciones San Juan de la Rosa y Peña Azul, del Cretácico Inferior, donde se definen pequeños picos de 173 y 188 Ma. Esta población de zircones pudo derivarse de fuentes volcaniclásticas cercanas, tales como las que se describen en el área de Novillo y que contienen abundantes zircones jurásicos en un rango de 194-159 Ma (Rubio-Cisneros et al., 2011), o bien, podrían tener un área fuente más local, como las rocas volcaniclásticas de la Formación Cahuasas, del anticlinorio de Huayacocotla. En el terreno Guerrero, en el área de Zacatecas, la Formación La Pimienta del Jurásico Medio-Tardío? contiene abundantes zircones de esta población, con picos entre 170-176 Ma (Figura 39), mientras que las sucesiones del Complejo Vulcanosedimentario Las Pilas, contienen un pico prominente a 163 Ma, similar a la Formación Cuestecita, del área de Guanajuato (Figura 41). La abundancia de zircones con edades en el rango de 180-170 Ma, en la Formación La Pimienta, sugiere una fuente local, como las que se reportan en el área de Catorce (Barboza-Gudiño et al., 2004), o bien que esta unidad haya sido contemporanea al vulcanismo. Los granos de zircon con edades más jóvenes pudieron ser derivadas de rocas eruptivas o sus equivalentes plutónicos similares a los granitos del área de las Islas Marías o Tumbiscatío (Figura 52), del terreno Guerrero en los cuales se han reportado edades U-Pb de 163 Ma (Centeno-García et al., 2008; Centeno-García et al., 2011; Pompa-Mera et al., 2013).

6.1.7. Zircones del Jurásico Tardío-Cretácico Temprano (159-114 Ma)

Muchas de las sucesiones detríticas cretácicas, depositadas en el paleo-Pacífico mexicano, incluyen abundantes componentes volcánicos. La composición de estos intervalos volcánicos para las unidades del centro-sur de México es predominantemente félsica, mientras que las unidades volcaniclásticas del occidente de México, tienen composición dominantemente máfica. Sin embargo, a pesar de que ambos dominios difieren en su composición, ambos comparten, en gran parte, la temporalidad.

Un cinturón de rocas volcaniclásticas ácidas, del Jurásico más tardío-Cretácico Temprano, se ha documentado por diversos estudios, a lo largo del margen continental paleo-Pacífico. Este período de vulcanismo está registrado entre 150-125 Ma, con máximos entre 137-127 Ma (Fitz-Díaz et al., 2001; Dávila-Alcocer et al., 2009; Mendoza-Rosales et al., 2010; Martini et al., 2011; Campa-Uranga et al., 2012; Mendoza-Rosales et al., 2013; Abascal-Hernández, 2014; Sierra-Rojas y Molina-Garza, 2014; Ortega-Flores et al., 2014; Palacios-García y Martini; 2014;

Martini et al., 2014; Sierra-Rojas et al., 2016). Las sucesiones volcaniclásticas del Jurásico Tardío y del Cretácico, tales como las formaciones Esperanza, San Juan de la Rosa, Peña Azul y Las Trancas (Figura 33b), contienen esta población de zircones, indicando que fueron depositadas cuando este vulcanismo estuvo activo, mientras que la Arenisca Mineral de Pozos, del Cretácico Tardío, incluye componentes reciclados de estas unidades.

Por otro lado, la margen occidental del continente mesozoico mexicano se caracteriza por tener sucesiones volcaniclásticas y rocas plutónicas dominantemente de composición máficaintermedia. Una gran parte de los depósitos está asociada con el episodio de vulcanismo submarino activo, como lo indica la abundancia de componentes volcánicos depositados in situ. El origen de este episodio magmático-eruptivo está relacionado al desarrollo de un arco a lo largo de la margen del paleo-Pacífico mexicano, en cuya evolución dio origen a la oceanización de la cuenca de trasarco. El período de actividad máxima de este arco, ha sido considerado en un rango del Jurásico Tardío al Cretácico Temprano. En las etapas tempranas de extensión de la cuenca de tras-arco (152-145 Ma) hubo magmatismo félsico, mientras que entre ~140-125 Ma dominó el magmatismo de composición máfica-intermedia. El tiempo de emplazamiento de rocas plutónicas de 132±1.5-131±1 Ma, al suroeste del poblado de Valle de Bravo (Garza-González, 2007) y de 144±1.5 Ma, en el área de Guanajuato (Martini et al., 2011), y de la actividad volcánica, está registrado en unidades volcaniclásticas contemporáneas a este arco volcánico entre 144-127 Ma. Con base en este escenario, la población de zircones con este rango de edad que está incluida en el Complejo Vulcanosedimentario Las Pilas del área de Zacatecas, la Formación Cuestecita y las unidades correlativas en el área de Guanajuato y Arcelia, del terreno Guerrero, tienen su origen en este arco volcánico. Las unidades más jóvenes del área de Zacatecas, como la Filita La Escondida, incorpora detritos reciclados de las unidades inferiores, tanto del terreno Guerrero como del núcleo continental mexicano.

6.1.8. Zircones del Cretácico Temprano tardío (113-105 Ma)

Esta población de zircones está incluida en areniscas de la Filita La Escondida del área de Zacatecas, donde define un pequeño pico a 109 Ma. Rocas volcaniclásticas del Albiano, así como intrusivos dentro de este rango de edad (105±4 Ma), se han reportado hacia el oeste y centro del terreno Guerrero, donde los granos de zircón definen un pico a ~109 Ma (Centeno-García et al., 2011). Estas sucesiones volcaniclásticas han sido asociadas con el arco Zihuatanejo, del terreno Guerrero (Talavera-Mendoza et al., 2007; Martini et al., 2010; Centeno-García et al., 2011). En este contexto, la reducida población de zircones albianos contenidos en

la Filita La Escondida, tienen como fuente potencial a las unidades volcaniclásticas del terreno Guerrero o unidades correlativas que actualmente pudieran estar cubiertas por las rocas volcánicas del Cenozoico.

6.1.9. Zircones del Albiano-Cenomaniano (104-90 Ma)

Esta población de zircones es abundante en la arenisca Mineral de Pozos, del centro de México. Los zircones en este rango de edad definen un pico prominente a 96 Ma. La arenisca Mineral de Pozos tiene algunos intervalos de tobas, mientras que la fracción volcanoclástica contiene también clastos carbonatados y fragmentos angulares de tobas retrabajados, lo cual sugiere una fuente cercana. La presencia de tobas en estas areniscas indica actividad volcánica durante el Cenomaniano. Rocas con litología y poblaciones de zircones (~98 Ma) similares, han sido reportadas al oeste del terreno Guerrero, y se interpretan como parte de un arco magmático del Cenomaniano (Centeno-García et al., 2011). Es muy probable, por lo tanto, que esta población de zircones haya derivado de esta etapa de vulcanismo del terreno Guerrero.

6.2 Firmas isotópicas y rocas fuente

El basamento detrítico triásico, sobre el que posteriormente fueron depositados sedimentos principalmente vulcanoclásticos del Jurásico-Cretácico, registra de manera indirecta la distribución de bloques corticales en el margen occidental de Pangea ecuatorial. Los valores de la isotopía de Hf, obtenidos en este trabajo, comparados con otros valores isotópicos de Hf reportados para diversos componentes ígneos y detríticos, tanto de bloques perigondwánicos, como de Laurencia y Gondwana, permiten correlacionar o discriminar las fuentes que pudieron aportar detritos a estas sucesiones triásicas del continente paleo-Pacífico.

En las reconstrucciones paleogeográficas propuestas para la configuración de Pangea (Figura 49), durante el Triásico, varios bloques continentales tales como Bloque de Coahuila, Bloque Sonobari, Bloque Maya, Bloque Florida, Bloque Oaxaquia, Bloque Chortis, el cinturón metamórfico del Complejo Acatlán-Granjeno y algunos terrenos andinos, tales como Bloques Mérida y Caparo, de los Andes Venezolanos y algunos bloques de los Andes Colombianos (Santander, Santa Marta y Garzón) son posicionados entre el noroeste de Gondwana y el sureste de Laurencia (Ruiz, et al., 1999; Alemán y Ramos, 2000; Elías-Herrera y Ortega-Gutiérrez, 2002; Cediel et al., 2003; Keppie, 2004; Weber et al., 2007). Por lo tanto, es de esperarse que

alguno de estos bloques haya sido la fuente de aporte de detritos para los depósitos del oeste de Pangea ecuatorial.

6.2.1. Continente Mesozoico Mexicano

6.2.1.1. Sucesiones detríticas triásicas

En general, las sucesiones triásicas del continente mesozoico mexicano incluyen un mayor porcentaje de feldespatos (20-40%) que sus equivalentes del terreno Guerrero, las cuales son más enriquecidas en cuarzo (Figuras 21 y 25) y son también de granulometría más fina. Los zircones incluidos en La Formación Charcas y en el Complejo El Chilar, muestran un comportamiento similar en sus firmas isotópicas, sugiriendo que comparten gran parte de sus fuentes de aporte. Escasos zircones del Paleoproterozoico temprano, con valores de Hf positivos, fueron derivados de una fuente mesoarqueana (3150-3000 Ma) (Figura 53). Aquellos zircones procedentes de las provincias tectónicas de Rondonia-San Ignacio y Río Negro-Juruena (con ε Hf de -5 a +10), están presentes mayormente en las areniscas del Complejo El Chilar y son escasos en las areniscas de la Formación Charcas. Aunque las composiciones isotópicas son esencialmente las mismas que en los zircones reportados para el Cratón Amazónico (Pepper et al., 2016; Augustsson et al., 2016), no necesariamente implica que se hayan derivado directamente de esta fuente. Considerando que otras unidades detríticas paleozoicas, tales como la unidad Jocote en el Macizo de Chiapas del Bloque Maya (Estrada-Carmona et al., 2012) o las unidades detríticas que son parte de los bloques del NW de Sudamérica (Dugarte-Neuman, 2012), también contienen abundantes zircones de estas dos provincias de Amazonia, bien pueden ser consideradas como posibles fuentes de detritos.

Los zircones que representan el cinturón *grenvilliano*, entre 1200-950 Ma, tienen valores de ɛHf predominantemente entre -2 a +10, pero se extienden a valores más evolucionados en los zircones del Complejo El Chilar. Es difícil discriminar entre los campos de fuentes potenciales de la misma edad. Sin embargo, los campos propuestos por Weber et al. (2010) para Oaxaquia, así como los campos definidos para su equivalente ciclo orogénico, *Sunsás* (Pepper et al., 2016; Augustsson et al., 2016), en Sudamérica, donde queda incluida la gran mayoría de los zircones del Complejo El Chilar y la Formación Charcas. Esto es consistente si consideramos que tanto Oaxaquia como bloques de Sudamérica estuvieron adyacentes en el Triásico, y por lo tanto ambas fuentes pudieron contribuir con detritos de forma directa o a través de reciclaje.

Figura 53. Valores de ɛHf de las sucesiones detríticas triásicas del continente mesozoico mexicano. Se comparan con los campos definidos con valores de ɛHf de terrenos peri-gondwánicos de México, bloques Andinos, provincias de Amazonia y algunas áreas de Laurencia.

Una característica notoria es la ausencia o escasa presencia de zircones de 850-750 Ma en ambas unidades triásicas, lo cual es también una condición para el sur de Oaxaquia (Bloque Oaxaqueño). Esto indica que no hubo una fuente disponible con suficientes granos de zircón de esta edad, que representan al arco Goiás del centro de Brasil (Pimentel y Fuck, 1992). Los escasos granos de zircón, asociados con el evento Panafricano-Brasiliano (450-650 Ma), son mayormente de valores negativos de ε Hf (0 a -5). Los granos con edades entre 570-530 Ma muestran firmas isotópicas comparables con aquellos de Avalonia (Pollock et al., 2015), un arco volcánico ubicado al norte de Gondwana y posiblemente adyacente a los bloques de Yucatán y Oaxaquia a finales del Neoproterozoico (Dalziel, 1997; Murphy et al., 2004; Keppie, 2004; Keppie et al., 2006c; 2011). Los zircones ordovícicos, contenidos en ambas unidades triásicas y que están asociados al magmatismo de la fase final del ensamble de Gondwana (Keppie et al., 2008; Miller et al., 2007), tienen valores de EHf negativos (-3 a -7), similares a los que muestran los intrusivos ordovícicos del Complejo Acatlán (Juárez, 2016 [Tesis de Licenciatura, en proceso]). Finalmente, los zircones permo-triásicos se pueden dividir en tres grupos: i) un grupo con ε Hf de +12 a +8, ii) un segundo con ε Hf de +7 a +4 y iii) con ε Hf de +3 a -9. Aunque estos tres grupos de esta población de zircones son relativamente más jóvenes en la Formación Charcas (250-230 Ma) y más antiguos en el Complejo El Chilar (270 Ma), tienen firmas isotópicas bastante parecidas. Fuentes ígneas triásicas están representadas por escasos intrusivos en el Bloque Maya, Bloque de Coahuila, Sonobari, Chihuahua y al suroeste de Laurencia (Lopez, 1997; Arvizu et al., 2011; Solari et al., 2011; Vega-Granillo et al., 2013), siendo más abundante en los bloques peri-Gondwánicos andinos (Cochrane et al., 2014; van der Lelij et al., 2016). Por el contrario, rocas ígneas pérmicas son abundantes en el Complejo Acatlán, o bien están intrusionando al Complejo Oaxaqueño y al Bloque Maya (Weber et al., 2007; Kirsch et al., 2012; Ortega-Obregón et al., 2014). Las firmas isotópicas del primer grupo (ε Hf (t) +12 a +8), aunque al momento no se han reportado rocas ígneas con esas características, son originadas a partir de una fuente juvenil panafricana, o bien, de sedimentos derivados de esa corteza. El segundo grupo (ε Hf(t) +7 a +4), comparte ciertos valores de ε Hf con intrusivos pérmicos, moderadamente juveniles de la margen sur del Complejo Oaxaqueño (Ortega-Obregón et al., 2014), pero con fuente precursora en rocas del arco Goiás (Matteini et al., 2010). El tercer grupo (EHf de +3 a -9), el más evolucionado, muestra firmas isotópicas similares a los intrusivos pérmicos de los Andes Colombianos (Cochrane et al., 2014; Pepper et al., 2016), pero también con intrusivos del Complejo Oaxaqueño (Ortega-Obregón et al., 2014). Los zircones de este grupo indican refusión de corteza grenvilliana y del cratón de Amazonia.

6.2.1.2. Sucesiones detríticas jurásicas

En la Formación Sierra de los Cuarzos se vuelven a reciclar zircones con edades y firmas isotópicas de ϵ Hf(t) de las provincias tectónicas Río Negro-Juruena y Rondonia-San Ignacio, así como escasos zircones de edad *grenvilliana*, del evento Panafricano-Brasiliano y del arco Permo-Triásico (Figura 54). En el centro de México, hasta lo que ahora se ha documentado, solo el Complejo El Chilar contiene abundantes zircones del cratón de Amazonia. En este contexto, es altamente probable que los zircones pre-Jurásicos de la Formación Sierra de los Cuarzos, tengan una fuente local y hayan sido derivados, principalmente, de las sucesiones triásicas del Complejo El Chilar, aunque no es descartable que otras fuentes pudieran aportar detritos en menor cantidad.

Figura 54. Valores de ɛHf de las sucesiones detríticas jurásicas del continente mesozoico mexicano. Se comparan con los campos definidos con valores de ɛHf de terrenos peri-gondwánicos de México, bloques Andinos, provincias de Amazonia y algunas áreas de Laurencia. Los campos de referencia son igual que en la figura 53.

La mayor parte de los zircones de la Formación Sierra de los Cuarzos son de edad jurásica (~170-150 Ma). Los valores de ϵ Hf(t) son esencialmente positivos, con ϵ Hf(t) de 0 a +6 y raros granos de zircón con valores negativos ϵ Hf(t) de -3 hasta altamente evolucionados (ϵ Hf(t) de -12). Los valores positivos de ϵ Hf(t) (de 0 a +6), sugieren que estos zircones jurásicos

cristalizaron de magmas que resultaron de la fusión parcial de corteza meso-neoproterozoica (1100-800 Ma) o de componentes derivados de esa corteza. Los valores negativos indican que hubo contaminación de una fuente mesoproterozoica (1250 Ma), asociada con detritos del basamento grenvilliano, mientras que los valores más negativos (, sugieren el reciclaje de una corteza paleoproterozoica (1900 Ma) que incluye parte del basamento a las provincias tectónicas del cratón de Amazonia.

6.2.1.3. Sucesiones detríticas del Jurásico Superior-Cretácico Inferior

Las formaciones San Juan de la Rosa, Peña Azul y Las Trancas son de naturaleza volcaniclástica. Las tres unidades contienen zircones de edad *grenvilliana*, cuya fuente potencial es el Complejo El Chilar, el cual subyace a estas unidades. Escasos zircones con afinidad al arco Goiás y de la orogenia Panafricana-Brasiliana también son reincorporados, principalmente en la Formación San Juan de la Rosa (Figura 55). Zircones permo-triásicos, con valores de ϵ Hf(t) predominantemente negativos (-0.5 a -5) y escasos con valores de ϵ Hf(t) positivos (+2 a +4), son más abundantes en las formaciones San Juan de la Rosa y Peña Azul que en la Formación Las Trancas. Así mismo, granos de zircón jurásicos con firma isotópica de ϵ Hf(t)= +0.2 a -15 solo están presentes en las formaciones San Juan de la Rosa y Peña Azul. Sus firmas isotópicas registran el reciclaje de una fuente mesoproterozoica (1500-1200 Ma). Estos granos jurásicos pudieron ser derivados de las unidades volcaniclásticas jurásicas del noreste de México.

Las tres unidades volcaniclásticas, registran una etapa de vulcanismo contemporáneo al depósito de los sedimentos, como lo indica la abundancia de zircones magmáticos del Cretácico Inferior, además de la composición de sus granos líticos. Todos los zircones cretácicos de la Formación San Juan de la Rosa tienen valores de ϵ Hf(t) positivos (de +8 a +2), lo cual implica la presencia de una fuente neoproterozoica (900-600 Ma) en el magma del que cristalizaron estos zircones. Por su parte, las formaciones Peña Azul y Las Trancas muestran dos grupos de zircones cretácicos con firmas isotópicas muy similares; uno de ellos tiene valores de ϵ Hf(t) positivos (de +3 a+1), compartiendo parcialmente con la Formación San Juan de la Rosa, mientras que otro grupo tiene valores de ϵ Hf(t) negativos (de -0.5 a -5). El primer grupo de zircones indica que cristalizaron a partir de un magma con asimilación de un componente cortical grenvilliano (1000-900 Ma). El segundo grupo, que muestra valores de ϵ Hf(t) evolucionados, indica que el magmatismo cretácico involucró una fuente cortical mesoproterozoica (1400-1200 Ma) o detritos retrabajados de esa corteza.

Figura 55. Valores de ɛHf de las sucesiones detríticas cretácicas del continente mesozoico mexicano. Se comparan con los campos definidos con valores de ɛHf de terrenos peri-gondwánicos de México, bloques Andinos, provincias de Amazonia y algunas áreas de Laurencia. Los campos de referencia son igual que en la figura 53.

6.2.2. Terreno Guerrero

6.2.2.1. Sucesiones detríticas triásicas

El Complejo Arteaga y la Formación Zacatecas muestran en general algunos zircones con firmas isotópicas ligeramente más evolucionadas que la Formación Charcas y el Complejo El Chilar, en casi todas sus poblaciones (Figura 56). Tres granos de zircón arqueanos y uno del Paleoproterozoico más temprano tienen su fuente precursora en corteza arqueana de la provincia de Amazonia Central (Tassinari y Macambira, 1999). Escasos zircones entre 2000-1800 Ma tienen ɛHf de +5 a -2, similares a las firmas isotópicas de zircones de la provincia tectónica Ventuari-Tapajos reportadas por McGee et al. (2015) y Pepper et al. (2016). Los zircones derivados de las provincias tectónicas Rio Negro-Juruena y Rondonia-San Ignacio, son escasos en comparación con el Complejo El Chilar. Debido a la poca abundancia de zircones con edades mayores a 1.3 Ga, las fuentes potenciales podrían ser las sucesiones paleozoicas del Complejo Acatlán o las del Bloque Maya.

Los granos de edad *grenvilliana* muestran valores de ε Hf(t) predominante positivos, con un grupo de cuatro zircones con valores de ε Hf(t) más evolucionados. En la concentración dominante, predominan los zircones con firmas isotópicas similares al campo de Oaxaquia *típica*, más que Oaxaquia *continental*, sugeridos por Weber et al (2010), aunque algunos valores más positivos (ε Hf(t) +9 a +7) son comparables con aquellos valores reportados para zircones del cinturón orogénico Sunsás, de Sudamérica (Augustsson et al., 2016). A diferencia del Complejo El Chilar, los escasos zircones de 950 Ma muestran valores predominantemente positivos (ε Hf(t) de 0 a +6), lo cual refleja su origen en el reciclaje de una fuente grenvilliana, más que de las provincias del Cratón de Amazonia.

Figura 56. Valores de *E*Hf de las sucesiones detríticas triásicas del terreno Guerrero. Se comparan con los campos definidos con valores de *E*Hf de terrenos peri-gondwánicos de México, bloques Andinos, provincias de Amazonia y algunas áreas de Laurencia. Los campos de referencia son igual que en la figura 53.

La presencia de zircones con edades entre 900-700 Ma es notable en estas unidades del terreno Guerrero, la gran mayoría con valores de ϵ Hf(t) negativos, comparables con las firmas evolucionadas reportadas para zircones del arco Goiás (Matteini et al., 2010; Ganade de Araújo

et al., 2014). Zircones con esta edad son escasos en las unidades detríticas paleozoicas de los bloques Maya y Oaxaquia y de los bloques andinos en Sudamérica, por lo que se interpreta no fueron la fuente de estos granos de zircón. Por otra parte, en las rocas paleozoicas del Complejo Acatlán no hay granos suficientes como para que éstas pudieran ser la fuente. Sin embargo, en las rocas triásicas del Complejo Acatlán (formaciones Chazumba y La Mora, Talavera-Mendoza et al., 2005; Helbig et al., 2012; Silva-Romo et al., 2015), son relativamente abundantes. Esto indica que, tanto las rocas triásicas del terreno Guerrero y las del Complejo Acatlán pudieron compartir una fuente de aporte de granos de zircón en este rango de edad. Una fuente plausible pudo ser el Bloque Sonobari, donde las rocas detríticas ordovícicas contienen abundantes granos de zircón de esta edad (Vega-Granillo et al., 2008). La historia tectónica de este bloque es poco conocida. Sin embargo, en un contexto paleogeográfico para el final del ensamble de Pangea, pudo estar localizado cerca del Bloque de Coahuila y del Complejo Acatlán (Vega-Granillo et al., 2012; Helbig et al., 2012). Adicionalmente se ha reportado magmatismo triásico (206 Ma), asociado a un arco continental extensional, que indica que el Bloque Sonobari estuvo localizado al sur del suroeste de Laurencia en este tiempo (Keppie et al., 2006a).

Los zircones asociados al evento orogénico Panafricano-Brasiliano muestran valores altamente variables de ϵ Hf(t) entre +5 a -20, y son más abundantes que en el Complejo El Chilar y la Formación Charcas. Los zircones con edades entre 600-530 Ma tienen firmas isotópicas similares a los zircones de Avalonia (Pollock et al., 2015; Henderson et al., 2016). Los zircones ordovícico-silúricos son todos con valores de ϵ Hf(t) negativos (-0.5 a -14), indicando que evolucionaron a partir de fuentes mesoproterozoicas-paleoproterozoicas. Aunque en sus firmas isotópicas tienen algo de similitud con las de los zircones de esta edad en intrusivos del Complejo Acatlán y Bloque Maya (Juárez, 2016, en proceso), no es conclusivo que estas áreas hayan sido sus fuentes de aporte. Los zircones con valores más evolucionados son mayormente similares a los de los bloques andinos (Pepper et al., 2016) y posiblemente hayan derivado de estos bloques.

Los zircones permo-triásicos tienen un espectro de edad desde 300 hasta 220 Ma, con valores de ϵ Hf(t) de +10 a -17. Los valores más juveniles (+10 a +5), predominantemente de la Formación Zacatecas, evolucionaron a partir de una corteza Panafricana-Brasiliana, mientras que aquellos zircones con valores de ϵ Hf(t) de +4 a +1 fueron originados a través del reciclaje de corteza meso-neo proterozoica (1200-900 Ma). Los granos de zircón con valores de ϵ Hf(t) altamente negativos (de -12 a -17) sugieren que éstos cristalizaron a partir de magmas que asimilaron una

componente paleoproterozoica, tales como las provincias del cratón de Amazonia. Las firmas isotópicas de los zircones permo-triásicos se ajustan parcialmente a intrusivos pérmicos del Complejo Oaxaqueño (Ortega-Obregón et al., 2014), sobre todo los que tienen valores de ϵ Hf(t) de +2 a -5, aunque bien pueden derivar de fuentes más lejanas, tales como los bloques andinos, donde los intrusivos tanto pérmicos como triásicos alcanzan valores de ϵ Hf más negativos (Cochrane et al., 2014; Pepper et al., 2016). Los bloques de Sonobari y Coahuila son también potenciales fuentes locales en los que se han reportado magmatismo triásico (López, 1997; Keppie et al., 2006a).

6.2.2.2. Sucesiones detríticas jurásicas

Similarmente a la Formación Sierra de los Cuarzos, las formaciones La Pimienta y Esperanza, también reciclan parte del basamento triásico sobre el cual fueron depositadas (Figura 57). La Formación Esperanza contiene escasos zircones con firmas isotópicas que indican su procedencia de las provincias Rondonia-San Ignacio y Río Negro Juruena del cratón de Amazonia, mientras que la Formación La Pimienta no los contiene. Probablemente esto se deba a que, parte de los detritos de la Formación Esperanza, igual que en la Formación Sierra de los Cuarzos del continente mesozoico mexicano, sean derivados del Complejo El Chilar. Zircones con edades *grenvillianas*, mayormente con valores de ϵ Hf(t) positivos (de +9 a +2), están presentes en ambas unidades jurásicas, lo cual sugiere reciclaje del basamento triásico, tanto de la Formación Zacatecas, Complejo Arteaga y de las sucesiones detríticas triásicas del centro de México (Barboza-Gudiño et al., 2010).

Un grupo de zircones del Ordovícico con firmas isotópicas de ϵ Hf(t) -3 a -6, similares a intrusivos del Complejo Acatlán, son incorporados en las dos formaciones. Otro grupo de zircones silúricos con valores menos evolucionados de ϵ Hf(t) (+3 a -2), posiblemente deriven directa o indirectamente del Bloque Sonobari, donde rocas de esta edad han sido documentadas (Vega-Granillo et al., 2012). Tanto la Formación Esperanza como la Formación La Pimienta contienen zircones permo-triásicos, con valores de ϵ Hf(t) de +5 a -17. Los valores más evolucionados se encuentran en la Formación La Pimienta, con fuente potencial en el Complejo Arteaga.

A pesar de que las dos formaciones son de edad jurásica, el contenido de zircones jurásicos en la Formación Esperanza es relativamente reducido, si se compara con la Formación La Pimienta. Los escasos granos de zircón en la Formación Esperanza tienen εHf(t) negativo (-7), mientras

que los zircones jurásicos de la Formación La Pimienta tienen un rango de valores de ϵ Hf(t) bastante variable (+4 a -20). Esto indica que, aunque tuvieron la misma fuente de aporte de detritos de un arco continental jurásico, éste arco se formó sobre un basamento heterogéneo. Los valores positivos de ϵ Hf(t), en los zircones de la Formación La Pimienta, indican la participación de una corteza de 1200-900 Ma. Por su parte, los valores negativos de ϵ Hf(t), que incluyen a la Formación Esperanza, sugieren la participación de una fuente precursora de 1600-1200 Ma y registran mayor reciclaje de fuentes tales como basamento de edad *grenvilliana* y, en menor cantidad, de las provincias del cratón de Amazonia.

Figura 57. Valores de ɛHf de las sucesiones detríticas jurásicas del terreno Guerrero. Se comparan con los campos definidos con valores de ɛHf de terrenos peri-gondwánicos de México, bloques Andinos, provincias de Amazonia y algunas áreas de Laurencia. Los campos de referencia son igual que en la figura 53.

6.2.2.3. Sucesiones detríticas del Jurásico Superior-Cretácico Inferior

Las formaciones jurásico-cretácicas del terreno Guerrero, asociadas con la apertura de la cuenca de Arperos, en la zona de tras-arco, registran tanto reciclaje de componentes evolucionadas como la entrada de magma juvenil (Figura 58). Las unidades volcaniclásticas de las áreas Valle de Bravo (Ensambles Santo Tomás-Tejupilco y Ojo de Agua), Guanajuato (Formación Cuestecita) y Zacatecas (Complejo Vulcanosedimentario Las Pilas) representan la evolución de ambos márgenes de la cuenca de Arperos. El Complejo Vulcanosedimentario Las Pilas, la Formación

Cuestecita y el Ensamble Ojo de Agua contienen zircones grenvillianos, reciclados muy probablemente del basamento triásico, mientras que el Ensamble Santo-Tomás Tejupilco contiene escasos granos Arqueanos y Paleoproterozoicos, y los granos grenvillianos están ausentes. Sin embargo, todas estas unidades cretácicas incorporan detritos de fuentes panafricanas-brasilianas, incluyendo granos del Ordovícico-Silúrico, en mayor cantidad que las unidades volcaniclásticas cretácicas del continente mesozoico de México. Esto indica que la mayor parte de los zircones heredados proceden del reciclaje de fuentes triásicas tales como el Complejo Arteaga, La Formación Zacatecas y las unidades jurásicas que les sobreyacen. Un pequeño grupo de zircones permo-triásicos, con ε Hf(t) de +10 a -10, están presentes en el Complejo Volcanosedimentario Las Pilas y en la Formación Cuestecita, indicando nuevamente la influencia de fuentes Permo-triásicas. Granos de zircones jurásicos entre 200-160 Ma tienen valores de ϵ Hf(t) negativos (de -0.7 a -8) para la Formación Cuestecita y los ensambles Ojo de Agua y Santo Tomás Tejupilco. En contraste, el Complejo Vulcanosedimentario Las Pilas, donde los granos de esta edad tienen valores de ε Hf(t) de +4 a -6, indicando claramente que estos granos fueron reciclados de la Formación La Pimienta, a la cual sobreyace. Granos de zircón del Jurásico entre 159-145 Ma siguen teniendo firmas isotópicas predominantemente negativas en los ensambles Ojo de Agua y Santo Tomás-Tejupilco, mientras que en el Complejo Vulcanosedimentario Las Pilas son exclusivamente positivas (+6 a +1.7), lo cual sugiere que el magma de donde cristalizaron estos zircones fue contaminado por una fuente neoproterozoica (950-700 Ma), asociada al arco Goiás.

En lo que se refiere a los valores de ϵ Hf(t) en zircones originados a partir de magmatismo cretácico, La Formación Cuestecita y los ensambles Santo-Tomás Tejupilco y Ojo de Agua, tienen predominantemente valores positivos y escasos granos tienen valores más evolucionados. Un grupo de zircones con ϵ Hf(t) altamente positivo (+14) , sugiere la entrada de una fuente juvenil, sin contaminación cortical. Otro grupo de zircones, tienen un arreglo vertical con ϵ Hf(t)= +11 a +0.6, indicando una mezcla de fuentes juveniles (<600 Ma) y una componente neoproterozoica (1000-600 Ma) o detritos derivados de basamento grenville, del arco Goiás y del evento pan-africano-brasiliano, predominantemente. Los zircones cretácicos con firmas isotópicas más evolucionadas (ϵ Hf(t) de -2 a -13) indican el reciclaje cortical de fuentes paleomesoproterozoicas, a través de los detritos retrabajados procedentes de las provincias de Amazonia y del basamento grenvilliano que forma el núcleo continental cristalino de México.

Figura 58. Valores de ɛHf de las sucesiones detríticas cretácicas del terreno Guerrero. Se comparan con los campos definidos con valores de ɛHf de terrenos peri-gondwánicos de México, bloques Andinos, provincias de Amazonia y algunas áreas de Laurencia. Los campos de referencia son igual que en la figura 53.

6.2.2.4. Sucesiones detríticas post-acreción

Las unidades que se depositaron después del cierre de la cuenca de Arperos y de la sucesiva acreción del arco Guerrero (Filita La Escondida, Formación Pelones y Arenisca Mineral de Pozos) incorporaron detritos de fuentes continentales retrabajadas así como de rocas más jóvenes asociadas al arco (Figura 59). La Filita La Escondida, del área de Zacatecas, claramente reincorpora detritos derivados de las unidades triásicas y jurásicas tales como El Complejo Arteaga, las formaciones Zacatecas y La Pimienta, donde zircones *grenvillianos* y panafricanos son relativamente abundantes. Así mismo los zircones jurásicos contenidos en la Filita La Escondida tienen valores de ε Hf(t) predominantemente negativos (de -0.5 a -6), similares a los de la Formación La Pimienta. Los zircones del Cretácico Inferior incluidos en la Filita La Escondida tienen valores de ε Hf(t) = +9 a +1.5, que indican su procedencia de fuentes juveniles, similares a la de los zircones del Jurásico Superior incluidos en el Complejo Volcanosedimentario Las Pilas. Otra posibilidad, es que estos zircones del Cretácico Inferior deriven de otras unidades volcaniclásticas locales del terreno Guerrero, que actualmente estén sepultadas.

Figura 59. Valores de ɛHf de las sucesiones detríticas post-acreción del terreno Guerrero al continente mesozoico mexicano. Se comparan con los campos definidos con valores de ɛHf de terrenos peri-gondwánicos de México, bloques Andinos, provincias de Amazonia y algunas áreas de Laurencia. Los campos de referencia son igual que en la figura 53.

Las Formación Pelones y la Arenisca Mineral de Pozos, ubicadas al este de la zona de sutura de Arperos reciclaron parte de las unidades subyacentes pero también de sucesiones volcaniclásticas asociadas al arco. En el caso de la Formación Pelones, mucho de sus detritos fueron derivados de la Formación Sierra de los Cuarzos, como lo sugiere la escasez de granos proterozoicos y paleozoicos y la presencia de granos jurásicos (200-146 Ma), con firma ϵ Hf(t) de +5 a +0.5, distinguibles de las Formaciones Esperanza y La Pimienta, donde los granos de esta edad tienen predominantemente valores de ϵ Hf(t) negativos. Los zircones cretácicos, presentes en la Formación con ϵ Hf(t)= +7. Estos valores de ϵ Hf(t) son más afines con una procedencia de unidades volcaniclásticas cretácicas del área de Guanajuato del terreno Guerrero, más que de las sucesiones volcaniclásticas cretácicas tales como San Juan de la Rosa, Peña Azul o Las Trancas, donde se tiene un *gap* en valores de ϵ Hf(t) en el rango +2 a -1.

Por su parte, la Arenisca Mineral de Pozos, del Cretácico Superior, registra la exposición de fuentes relativamente más antiguas del lado continental, al este, pero también una etapa de vulcanismo en el Cenomaniano, al oeste. Esta arenisca contiene algunos granos de zircones

proterozoicos, permo-triásicos, jurásicos y escasos granos del Cretácico Inferior, posiblemente reciclados de las sucesiones triásicas del Complejo El Chilar y de las unidades del Cretácico Inferior como San Juan de la Rosa o Peña Azul. Los escasos zircones jurásicos tienen valores de ϵ Hf(t) negativos (de -5 a -10), mientras que los zircones del Cretácico inferior tienen valores de ϵ Hf(t) altamente variables (+9 a -5), muy similares a los de las formaciones cretácicas del área de Tolimán. La abundancia de zircones del Cretácico Superior, con ϵ Hf(t) = +9 a -7, indican que los zircones de esta edad se originaron a partir de magmas que asimilaron tanto una componente neoproterozoica como otra mesoproterozoicas. Detritos derivados de esas fuentes se pueden encontrar, tanto en el basamento del terreno Guerrero, como en el continente Mesozoico Mexicano.

6.3. Magmas juveniles y reciclaje cortical

En el nuevo margen continental, ahora formado por la acreción de sucesiones dominantemente volcaniclásticas del terreno Guerrero, el proceso de adición de material juvenil o el de incorporación de material retrabajado durante los eventos magmáticos involucrados desde principios del Mesozoico, hasta finales del Cretácico Temprano, queda registrado por las firmas isotópicas de Hf en las sucesiones detríticas consideradas en este trabajo (Figura 60). Las firmas isotópicas y las edades modelo de Hf de los zircones detríticos, evidencian la naturaleza de las rocas fuente involucradas en los procesos magmáticos para cada tiempo determinado, desde el ensamble de Pangea, su subsecuente fragmentación, hasta el desarrollo del arco volcánico del Jurásico Tardío-Cretácico Temprano, en el margen paleo-Pacífico.

Está bien documentado que durante el ensamble de Pangea, varios bloques corticales (mayormente de afinidad gondwánica) quedaron "atrapados" entre Laurencia y Gondwana, en lo que se conoce como Pangea ecuatorial. Durante el Permo-Triásico, se desarrolló un arco volcánico continental en la margen occidental de Pangea, que incluyó a Pangea ecuatorial. En Pangea ecuatorial, el arco volcánico continental se desarrolló sobre bloques corticales de diferente edad y procedencia. Por lo tanto, los zircones cristalizados a partir de la fusión de estas fuentes evidencian la edad del basamento que produjo el magmatimo. En las sucesiones triásicas tanto del terreno Guerrero como del continente mesozoico mexicano, predominan los zircones pérmicos sobre los triásicos. Sin embargo, en ambos episodios magmáticos se involucran también componentes proterozoicas (Figura 60a).

Figura 60. Diagramas de Edad U-Pb versus eHf(t) para los zircones de todas las unidades detríticas distribuidas en el límite entre el terreno Guerrero y la margen occidental del paleo-Pacífico mexicano. En los tres diagramas (izquierda) se muestra que los zircones permo-triásicos, jurásicos y cretácicos entregan valores de eHf(t) desde negativos hasta positivos, indicando una mezcla de componentes corticales tanto juveniles como muy evolucionados. Los histogramas con las edades modelo ($T_{DM C}$, Hf) para los granos de zircones a) Permo-Triásicos, b) Jurásicos y c) Cretácicos muestran que, durante los episodios magmáticos de estos tres períodos, se involucraron predominantemente componentes proterozoicas.

Los zircones permo-triásicos muestran un arreglo vertical, que indica que hay mezcla de material moderadamente juvenil y una componente evolucionada. Los zircones con edades modelo T_{DMc} >1300 Ma indican que se derivaron de fuentes precursoras relacionadas a las provincias magmáticas del cratón de Amazonia (Rio Negro-Juruena y Rondonia-San Ignacio). Estas provincias magmáticas (Tassinari y Macambira, 1999) fueron arcos magmáticos juveniles, posiblemente asociados al ensamble de Nuna (Cawood et al., 2013; Condie et al., 2014; Geraldes et al., 2015). En este contexto, estas fuentes precursoras han sido recicladas continuamente. Las edades modelo T_{DMc} =1250-900 Ma indican la participación de una corteza de edad mesoneoproterozoica, relacionada a los cinturones orogénicos del ensamble de Rodinia. La gran mayoría de los zircones permo-triásicos fueron derivados a partir del retrabajo de este tipo de basamento de edad grenvilliana, lo cual implica que el arco magmático permo-triásico se formó principalmente sobre una corteza de esta edad. Otros zircones, con edades modelo entre 900-800 Ma, se formaron a partir de fuentes relacionadas al arco Goiás, un arco precolisional a la formación de Gondwana (Geraldes et al., 2015). Finalmente, zircones principalmente pérmicos, con edades modelo entre 800-500 Ma fueron derivados de una fuente asociada a los cinturones orogénicos del evento Pan-Africano-Brasiliano, resultado del cierre de océanos y del ensamble de Gondwana. Esta fuente panafricana-brasiliana es la que ha tenido menos retrabajo cortical, por lo cual los zircones tienen valores de ε Hf(t) altamente positivos.

En resumen, el 44% de los granos de zircón permo-triásicos considerados en este trabajo indica que provienen del retrabajo de una corteza afín a las provincias de Amazonia, 35% de ellos derivan de corteza Grenville, 15% de corteza panafricana-brasiliana y 6% de una fuente relacionada al arco Goiás. Es decir, el 70% del material añadido por el magmatismo del arco fue principalmente por el reciclaje de corteza preexistente más que la producción de material moderadamente juvenil y escasamente juvenil, contribuyendo con el 30% (De acuerdo con Bahlburg et al., 2011). Para confirmar que realmente, la mayor parte de estos zircones se derivaron por asimilación de corteza antigua y no por cristalización fraccionada, se graficaron la relación Yb/Hf *versus* ε Hf(t) (Figura 61). De acuerdo con Spencer et al. (2015) durante la cristalización fraccionada, el Hf se incorpora al zircón, dejando en el magma padre al Yb, por lo que la relación Yb/Hf va aumentando en éste, mientras que ε Hf(t) no es afectado y se mantiene constante, mientras que cuando hay asimilación cortical, la relación de isótopos de Hf disminuirá, por lo que ε Hf(t) también decrecerá y la relación Yb/Hf se mantendrá constante. En este contexto, los zircones permo-triásicos indican que hubo asimilación de corteza más antigua.

En el Jurásico, la separación de Pangea, propició el desplazamiento y reacomodo de bloques corticales. Mientras que en la margen paleo-pacífica se desarrolló una nueva zona de subducción, que dio lugar a un arco volcánico continental durante el Jurásico Temprano-Medio, en el área continental había magmatismo y vulcanismo generado en un ambiente transtensional, como el resultado del *rifting* de Pangea (Martini y Ortega-Gutiérrez, 2016). En este contexto, los zircones del Jurásico Temprano-Medio, que fueron incorporados en las sucesiones jurásicas, tienen como fuentes de suministro a las sucesiones volcaniclásticas de la provincia transtensional intracontinental, más que del arco volcánico.

Figura 61. Diagrama de la relación Yb/Hf versus eHf, para los zircones detríticos con edades desde el Pérmico hasta el Cretácico Superior. Se muestran las trayectorias de influjo del manto, cristalización fraccionada y contaminación cortical (de acuerdo con Spencer et al., 2015). Los zircones que sugieren cristalización fraccionada se señalan en las elipses amarillas; los zircones que están asociados a la participación de material del manto se indican en las elipses rosadas, mientras que aquellos zircones asociados a la adición de corteza vieja se

Los valores de ɛHf(t) en los zircones del Jurásico tienen un arreglo vertical que sugiere mezcla de fuentes moderadamente juveniles hasta fuentes muy evolucionadas. Algunos zircones fueron generados a partir de la asimilación de material cortical del Paleo-Mesoproterozoico, con edades modelo que varían entre 2400-1280 Ma (Figura 60b). Estas edades son consistentes con fuentes tales como las provincias Río Negro-Juruena y principalmente de Rondonia-San Ignacio, del

cratón de Amazonia. La mayor parte de los zircones asociados al magmatismo del Jurásico Temprano-Medio y los escasos zircones del Jurásico Tardío, se originaron a partir del retrabajamiento de corteza *grenvilliana* o detritos derivados de esa corteza. Durante el Jurásico Temprano-Medio, la mayor parte del magmatismo se derivó de fuentes evolucionadas, por lo que la adición de material moderadamente juvenil fue escasa. En el diagrama de la figura 61, se muestra que la mayoría de estos zircones representan asimilación cortical y solo dos granos con valores de ϵ Hf(t) negativos podrían deberse a cristalización fraccionada.

Durante el Jurásico Tardío y el Cretácico Temprano, el margen occidental continuó como un margen activo, mientras que en el interior del continente había vulcanismo asociado con procesos extensivos. El magmatismo generado en ambos ambientes, indica que hubo asimilación de componentes evolucionadas pero también generación de material juvenil. En el interior del continente, una cantidad considerable (44%) de zircones más evolucionados (Figura 60c), muestran edades modelo T_{DMe} = 1450-1250 Ma, indicando que el magma de donde cristalizaron asimiló una componente mesoproterozoica, con afinidad a las provincias de Amazonia. Otro grupo abundante de estos zircones cretácicos (29%), tienen edades modelo T_{DMe} = 1250-900 Ma, sugiriendo retrabajo extensivo de fuentes *grenvillianas*, mientras que, en menor cantidad (22%), zircones con edades modelo T_{DMe} = 900-750 Ma, indican que detritos de rocas procedentes del arco magmático Goiás y escaso material asociado al evento Pan-Africano-Brasiliano (5%), fueron también retrabajados en el Cretácico Temprano, dando lugar a zircones con firmas isotópicas moderadamente juveniles. Durante este período de magmatismo, el reciclaje de fuentes corticales antiguas contribuyó con un 85%, mientras que el 15% restante generó magmas moderadamente juveniles (Bahlburg et al., 2011).

Por otro lado, los zircones del magmatismo del Cretácico asociado al arco Guerrero tiene un espectro más amplio de edades modelo, desde fuentes precursoras paleoproterozoicas hasta fuentes juveniles. Escasos granos de zircón (8%) proceden del reciclaje de fuentes paleoproterozoicas con T_{DMc} = 1980-1920 Ma, asociadas con el magmatismo de las provincias del cratón de Amazonia (Tassinari y Macambira, 1999). Los zircones con T_{DMc} = 1250-900 Ma, son relativamente abundantes (30%) y registran que el magmatismo cretácico del terreno Guerrero involucró detritos de afinidad *grenvilliana*. Al igual que los zircones cretácicos del interior del continente, una cantidad considerable (21%) de zircones cretácicos del arco Guerrero registran reciclaje de detritos asociados al arco Goiás. También, es evidente que el reciclaje de detritos relacionados con los cinturones orogénicos del ciclo Pan-Africano-Brasiliano es

abundante. A diferencia de los zircones cretácicos del interior del continente, la contaminación por componentes panafricanas, con $T_{DMc} = 750-450$, en los zircones procedentes del terreno Guerrero, es dominante (34%), por lo que la producción de magma moderadamente juvenil, es abundante. Así mismo, edades modelo $T_{DMc} < 350$ Ma (7%), representarían la entrada de material muy juvenil, con firmas isotópicas cercanas al manto. Es muy probable que zircones con estas edades modelo registren el adelgazamiento cortical y la apertura de la cuenca de Arperos, donde pudo ascender magma rápidamente, prácticamente sin asimilación cortical. Sin embargo, también es posible, que este material haya sido parcialmente contaminado por el basamento permo-triásico y que detritos de esta edad sean la fuente directa de estos magmas. Durante el magmatismo asociado al arco y a la extensión de la zona de tras-arco, hubo retrabajo cortical en un 40%, mientras que el 60 % corresponden con generación de corteza moderadamente juvenil (Bahlburg et al., 2011).

6.4. Implicaciones tectónicas en la evolución del margen occidental continental del paleo-Pacífico Mexicano

Integrando toda la información disponible, a partir del análisis de las sucesiones detríticas mesozoicas, es posible sugerir la historia evolutiva del margen occidental de lo que fue el núcleo continental de México, desde su integración, durante el ensamble de Pangea, hasta el desarrollo de los complejos de subducción, que persistieron durante todo el Mesozoico.

Debido a que el occidente de México está dominado por complejos intrusivos de composición básica-intermedia y sucesiones volcanosedimentarias cogenéticas, depositadas en un ambiente marino (Campa y Coney, 1983; Centeno-García y Silva-Romo 1997; Centeno-García et al., 2005; 2008; Martini et al., 2009; 2011; Centeno-García et al., 2011; Martini et al., 2014), una sucesión estratigráfica que difiere al Cretácico Inferior del continente Mesozoico Mexicano, para explicar su origen, se han manejado básicamente dos escenarios, los cuales se han tratado en la sección 2.2., del presente trabajo.

Un escenario alóctono, donde estas sucesiones volcanosedimentarias no tendrían relación alguna con el margen occidental del continente Mesozoico Mexicano, implicaría que el basamento sobre el cual se desarrolló el arco volcánico, es decir el arco Guerrero, no compartiría características tectónicas, sedimentológicas y geoquímicas con la margen continental. Sin embargo, muchas evidencias indican que las sucesiones del arco Guerrero, así como el basamento sobre el cual se

desarrolló, comparten varias características con el dominio continental, que favorecen o confirman un escenario para-autóctono.

El basamento del pre-Jurásico Tardío fue el punto clave en la evolución de la margen occidental del paleo-Pacífico. La presencia de este basamento se ha documentado en algunas áreas aisladas, por debajo de las sucesiones del arco Guerrero. Durante el Triásico Tardío, se depositaron principalmente unidades siliciclásticas en las márgenes occidentales de los bloques corticales ensamblados en el Permo-Triásico (Figura 62a). Estas unidades siliciclásticas fueron alimentadas por fuentes distales y locales, las cuales eran conformadas por un basamento cristalino neoproterozoico o paleoproterozoico con sus correspondientes cubiertas sedimentarias e intrusivos paleozoicos (Figura 62b). En este contexto, los detritos del Complejo Arteaga y la Formación Zacatecas fueron depósitos en zonas distales, en una cuenca profunda y tuvieron mayor transporte, como lo evidencia el tamaño pequeño de los componentes detríticos y su composición predominantemente cuarzosa (granos de cuarzo monocristalino y pedernal). Sin embargo, fuentes más locales pudieron también aportar detritos, como lo sugieren la edad y las firmas isotópicas de Hf en los zircones y la escasa presencia de granos líticos metamórficos. Las fuentes potenciales para las unidades siliciclásticas del terreno Guerrero pudieron ser el Complejo Acatlán, el Bloque Maya, Bloque de Coahuila y Bloque Sonobari. Por su parte, el Complejo el Chilar y la Formación Charcas, aunque son ricas en cuarzo, contienen también una importante cantidad de feldespatos potásicos y los granos líticos metamórficos son más comunes que en sus equivalentes del terreno Guerrero, lo cual sugiere que tuvieron menos transporte y que fueron alimentadas predominantemente por fuentes locales. Sus fuentes potenciales más cercanas pudieron ser el Complejo Acatlán, Bloque Oaxaqueño, Macizo de Chiapas y posiblemente los bloques Andinos.

Subsecuentemente, el desarrollo del arco continental en el Jurásico Temprano- Medio, sobre las sucesiones siliciclásticas triásicas, quedó registrado en aislados afloramientos de intrusivos a lo largo de las costas del margen occidental del paleo-Pacífico, como lo refieren Martini y Ortega Gutiérrez (2016), mientras que en el interior del continente, el magmatismo de la misma edad estuvo asociado a procesos de *rifting*. Las unidades detríticas del Jurásico Medio-Jurásico Tardío más temprano incorporan detritos derivados de este período de actividad magmática, pero también persiste el aporte detrítico del continente, sobre todo de fuentes permo-triásicas locales, como lo indica la presencia de granos de cuarzo y zircones con firmas isotópicas de Hf, similares a las reportadas en las rocas triásicas. Existen algunas evidencias que sugieren que tanto las rocas

siliciclásticas como las rocas volcaniclásticas del Jurásico Temprano-Medio, fueron deformadas y exhumadas antes del Oxfordiano, como lo indican, además de las relaciones estructurales (Centeno-García, 2005; Ortega-Flores et al., 2016), la presencia de zircones permo-triásicos y jurásicos, relativamente abundante en unidades detríticas del Jurásico Tardío (Martini et al., 2011; 2012; Palacios-García y Martini, 2014; Ortega-Flores et al., 2016).

Figura 62. a). Reconstrucción paleogeográfica del Triásico Tardío para Pangea ecuatorial. La posición de los bloques peri-gondwánicos de acuerdo con Elías-Herrera y Ortega-Gutiérrez et al. (2002), Keppie et al. (2003; 2004), Steiner (2005); Weber et al. (2007); Vega-Granillo et al. (2012). En cada bloque se muestra la edad del magmatismo. b). Esquema ilustrativo para el depósito de las sucesiones triásicas en el margen occidental de Pangea ecuatorial, donde se indican sus fuentes potenciales de aporte de detritos.

Sobre estas unidades previamente deformadas se desarrollaría, posteriormente, el arco del Jurásico Tardío-Cretácico Temprano, inicialmente continental y que progresivamente iría

evolucionando a un dominio oceánico. El arco Guerrero, cuya actividad magmática aparentemente inició en el Jurásico Tardío, y en cuyo período magmático asimiló tanto contaminantes de procedencia *grenvilliana* como panafricana-brasilianas, como lo indican zircones detríticos de entre 160-145 Ma de edad, tuvo una evolución compleja. Si bien, en sus inicios, el arco estuvo ligado a la margen continental, a principios del Cretácico Temprano, el retroceso de la placa en subducción, propició la atenuación y extensión en la zona del arco y trasarco de la placa continental (Figura 63a). De esta manera, la cuenca formada en la zona de trasarco (cuenca de Arperos) fue evolucionando a una cuenca oceánica, permitiendo el ascenso de magmas juveniles y desconectando por completo al arco del resto del continente. Durante esta etapa, el margen noreste de la cuenca de Arperos, tuvo influjo de detritos derivados de las áreas continentales, mientras que el margen suroeste estuvo dominado, sedimentológicamente, por detritos procedentes del arco volcánico (Martini et al., 2011; 2012; 2014).

Sin embargo, debido a la edad y a la naturaleza continental de las rocas del basamento sobre el que se desarrolló el arco, algunos detritos más antiguos pudieron desprenderse durante los episodios eruptivos y depositarse en esta margen de la cuenca de Arperos. De la misma manera, los zircones del Cretácico Temprano derivados del magmatismo del arco, muestran valores evolucionados de ɛHf, mientras que sus edades modelo indican que tuvieron fuentes precursoras *grenvillianas*, panafricanas-brasilianas, y escasa contribución de detritos derivados de corteza paleoproterozoica, confirmando su relación con el margen continental antes de la apertura de la cuenca de Arperos. Por su parte, el magmatismo relacionado a la zona de extensión de la cuenca de Arperos, fue mayormente juvenil.

Por otro lado, el magmatismo félsico, del Cretácico Inferior, que se generó en la margen noreste de cuenca de Aperos, en el interior del continente, podría estar ligado a esta etapa de extensión del complejo de subducción Guerrero-Arperos. Existen algunas evidencias, tales como estructuras de extensión sinsedimentarias, en unidades como San Juan de la Rosa y otras unidades tales como las formaciones Zicapa y Atzompa, en el extremo sur de la cuenca de Arperos. Aunque éstas últimas unidades volcaniclásticas han sido asociadas a extensión en la zona de tras-arco de un arco continental (Sierra-Rojas y Molina-Garza, 2014; Sierra-Rojas et al., 2016).

Figura 63. Interpretación tectono-estratigráfica de la evolución del margen occidental de continente mesozoico mexicano durante el Cretácico Temprano. a). La extensión progresiva en la cuenca de tras-arco, origina la apertura de la cuenca de Arperos, mientras el arco se desconecta del resto del continente. b). A finales del Cretácico Temprano, se cierra la cuenca de Arperos y tanto las sucesiones de arco como las de cuenca, son acrecionadas al continente.

Para finales del Cretácico Temprano (Figura 63b), muchos factores pudieron iniciar el cierre de la cuenca de Arperos, entre los que pueden figurar la velocidad de subducción de la placa oceánica debajo del arco Guerrero, la edad y temperatura de de la placa en subducción o un cambio en el ángulo de subducción. Se ha documentado que el cierre de esta cuenca y la colisión del arco Guerrero se llevó a cabo en el Aptiano-Albiano (Martini et al., 2011; 2014; 2016), mientras que para el Cenomaniano tardío-Turoniano temprano otro evento de acortamiento involucró a las sucesiones del arco Guerrero (Martini et al., 2016). Para este tiempo, la inversión de la cuenca de Arperos y el acercamiento de las sucesiones de arco hacia el continente, permitieron que el drenaje, ahora predominantemente con dirección al este, incorporara detritos juveniles, derivados del arco y de la cuenca de Arperos, así como detritos de unidades más

antiguas, exhumadas durante la acreción. Además de las evidencias estratigráficas y estructurales, las unidades post-acreción incluyen componentes modales de ambos dominios y también queda registrado en las poblaciones de zircones, ya que se incrementa el número de granos de zircón de poblaciones más antiguas, indicando que el basamento, en este caso el Complejo Arteaga y la Formación Zacatecas, fueron fuentes de aporte.

7. CONCLUSIONES

El ensamble de Pangea, durante el Triásico, originó la formación de gran parte del núcleo continental de México. A lo largo de la margen occidental de este nuevo micro-continente, en un período aparentemente pasivo, se depositaron sucesiones siliciclásticas, con detritos que fueron derivados principalmente de bloques continentales peri-Gondwánicos, de Pangea ecuatorial, como lo indican su composición detrítica y sus firmas isotópicas de Hf. Los sedimentos siliciclásticos derivados del continente fueron depositados en un ambiente oceánico, en forma de abanicos submarinos. En este contexto, el Complejo El Chilar y las formaciones la Ballena y Charcas representan facies más proximales al margen continental, mientras que el Complejo Arteaga y la Formación Zacatecas sugieren facies más distales.

A partir del Jurásico Temprano, la margen occidental de continente mesozoico mexicano evolucionó como un margen convergente. El desarrollo de un arco continental, cuyas raíces quedaron registradas por aislados cuerpos intrusivos a lo largo de la margen continental occidental, tuvo lugar a la vez que Pangea comenzó a separarse y varios bloques corticales fueron desplazados y rotados hasta principios del Jurásico Tardío. Las cuencas de depósito formadas durante este período de tiempo, recibieron detritos de fuentes locales asociadas al arco continental y detritos derivados del magmatismo desarrollado en el interior del continente, como lo registran las unidades jurásicas. Adicionalmente, aunque de forma limitada, las rocas pre-existentes también fueron recicladas, sobre todo el basamento triásico.

Para el Jurásico Tardío-Cretácico Temprano, el margen occidental del continente Mesozoico Mexicano continuó como un margen activo. Como resultado posiblemente del retroceso de la placa en subdución, el arco volcánico Guerrero, inicialmente formado sobre un basamento de origen continental, desarrolló extensión en su zona de arco y tras-arco, propiciando la formación de la cuenca oceánica de Arperos que actuó como barrera sedimentológica entre el arco y el continente. Esta cuenca tuvo parcialmente un sustrato oceánico. En el margen noreste se depositaron sucesiones volcaniclásticas con influencia continental y algunos depósitos de carbonatos, en las partes más someras, mientras que en el margen suroeste de la cuenca se depositaron principalmente sucesiones volcanogénicas derivadas del arco. Sin embargo, en las áreas cercanas a la zona de expansión de la cuenca hubo depósitos de origen marino profundo y emisión de lavas de composición máfica sobre el eje de la zona de expansión. La dominante

presencia de líticos volcánicos máficos en las unidades volcaniclásticas asociadas al arco Guerrero y a la cuenca de tras-arco Arperos, así como las firmas isotópicas de Hf en los zircones, que muestran un carácter de primitivo a evolucionado, sugieren una mezcla en los componentes de los magmas, por lo tanto se favorece el modelo del arco Guerrero como para-autóctono.

A finales del Cretácico Temprano (Aptiano-Albiano), el cambio del ángulo de subducción de más profundo a somero, del slab paleo-Pacífico, provocó el cierre de la cuenca de Arperos e inherentemente su inversión topográfica y estructural. La zona de sutura de la cuenca de Arperos derivó en el levantamiento y erosión de las sucesiones volcanogénicas y de sucesiones más antiguas, del basamento, por lo que las sucesiones pos-acreción contienen una mezcla de fuentes derivadas del arco y de la Cuenca de Aperos como de fuentes continentales, como lo indican sus componentes detríticos y la edad y composición isotópica de los zircones de estas unidades.

En todos estos procesos sedimentarios y en los períodos magmáticos asociados al desarrollo de los arcos mesozoicos, muchos de los detritos continentales fueron reciclados, mientras que el retrabajo cortical de fuentes paleozoicas y proterozoicas fue un proceso dominante. En este sentido, la adición de corteza continental en la margen occidental de México se debe más a reciclaje de componentes corticales viejos que a la generación de corteza juvenil.

REFERENCIAS

Abascal-Hernández, G. 2014. Estratigrafía de secuencias del SW de la Plataforma de Actopan del Cretácico Inferior. Universidad Nacional Autónoma de México. [Tesis de maestría], 172 p.

Alaniz-Álvarez, S., y Ortega-Gutiérrez, F. 1988. Constituye el Complejo Xolapa realmente las raíces de un arco?. Unión Geofísica Mexicana, Colima, GEOS. Número Extraordinario. Epoca 2. FQIT 15/57.

Alaniz-Álvarez, S. A., Nieto-Samaniego, A. F., Orozco-Esquivel, T., Vasallo, L. F., y Xu, S. 2002. El sistema de fallas Taxco-San Miguel de Allende: Implicaciones en la deformación posteocénica del centro de México. Boletín de la Sociedad Geológica Mexicana. Tomo LV, No. 1. p. 12-29.

Alemán, A., y Ramos, V.A. 2000. The northern Andes. *en* Cordani, U.G., Milani, E.J., Thomaz Filho, A., Campos, D.A. *Eds.* Tectonic Evolution of South America. 31st International Geological Congress. Río de Janeiro, p. 453-480.

Andersen T. 2002. Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology. v. 192, p. 59-79

Andersen, T. 2005. Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chemical Geology. v. 216, p. 249-270.

Aranda-Gómez, J. J., Aranda-Gómez, J. M., y Nieto-Samaniego, A. F. 1989, Consideraciones acerca de la evolución tectónica durante el Cenozoico de la Sierra de Guanajuato y la parte meridional de la Mesa Central. Revista de la Universidad Nacional Autónoma de México, Instituto de Geología. v. 8, p. 33-46.

Arvizu-Gutiérrez H. E. y Iriondo A. 2011. Estudios isotópicos de Hf en zircones de granitoides pérmicos en el NW de México: Evidencia de mezcla de magmas generados a partir de la fusión de múltiples fuentes corticales. Revista Mexicana Ciencias Geológicas. v. 28, p. 493–518.

Arvizu-Gutiérrez, H., Iriondo, A., Izaguirre, A., Chávez-Cabello, G., Kamenov, G. D., Solís-Pichardo, G., Foster, D. A. y Lozano Santa Cruz, R. 2009. Rocas graníticas pérmicas en la Sierra Pinta en el NW de Sonora, México: Magmatismo de subducción asociado al inicio del margen continental activo del SW de Norte América: Revista Mexicana de Ciencias Geológicas. v. 26, p. 709–728.

Augustsson, C., Willner, A. P., Rüsing, T., Niemeyer, H., Gerdes, A., Adams, C. J., y Miller, H. 2016. The crustal evolution of South America from a zircon Hf-isotope Perspective. Terra Nova. v. 28, p. 128–137.

Bahlburg, H., Vervoort, J. D., DuFrane, S. A., Carlotto, V., Reimann, C., Cárdenas, J. 2011. The U-Pb and Hf isotope evidence of detrital zircons of the Ordovician Ollantaytambo Formation, southern Peru, and the Ordovician provenance and paleogeography of southern Peru and northern Bolivia. Journal of South American Earth Sciences. v. 32, p. 196-209.

Barboza-Gudiño, J. R. 2012. Sedimentary Tectonics and Stratigraphy: The Early Mesozoic

Record in Central to Northeastern Mexico, en Stratigraphic Analysis of Layered Deposits. *eds.* Ö. Elitok, p. 255-278. ISBN: 978-953-51-0578-7.

Barboza-Gudiño, R., Tristán-González, M., y Torres-Hernández, R. 1998. The Late Triassic-Early Jurassic active continental margin of western North America in northeastern Mexico. Geofísica Internacional. v. 37, p. 283-292.

Barboza-Gudiño, J. R., Hoppe, M., Gómez-Anguiano, M., y Martínez-Macías, P.R., 2004, Aportaciones para la interpretación estratigráfica y estructural de la porción noroccidental de la Sierra de Catorce, San Luis Potosí, México. Revista Mexicana de Ciencias Geológicas. v. 21, p. 299-319.

Barboza-Gudiño, J. R., Orozco-Esquivel, M.T., Gómez-Anguiano, M., y Zavala-Monsivais, A. 2008. The Early Mesozoic volcanic arc of western North America in northeastern Mexico. Journal of South American Earth Sciences. v. 25. p. 49–63.

Barboza-Gudiño, J. R., Zavala-Monsiváis, A., Venegas-Rodríguez, G., y Barajas-Nigoche, L.D. 2010. Late Triassic stratigraphy and facies from northeastern Mexico: Tectonic setting and provenance. Geosphere, v. 6, p. 621–640.

Barboza-Gudiño, J. R., Ramírez-Fernández, J. A., Torres-Sánchez, S. A., y Valencia, V.A. 2011. Geocronología de zircones detríticos de diferentes localidades del Esquisto Granjeno en el noreste de México. Boletín de la Sociedad Geológica Mexicana. v. 63, p. 201-216.

Bartolini, C., y Mickus, K. 2001, Tectonic Blocks, Magmatic Arcs, and Ocean Terrains: A Preliminary Interpretation Based on Gravity, Outcrop, and Subsurface Data, Northeast-central Mexico, en C. Bartolini, R.T. Butler, and A. Cantú Chapa, *eds*. The Western Gulf of Mexico Basin. Tectonics, Sedimentary Basins, and Petroleum Systems. American Association of Petroleum Geologists, Memoir 75, p. 29-43.

Bettencourt, J. S., Leite, W. B., Jr., Ruiz, A. S., Matos, R., Payolla, B. L., y Tosdal, R.M. 2010. The Rondonian-San Ignacio Province in the SW Amazonian Craton: An overview. Journal of South American Earth Sciences. v. 29, p. 28–46, doi: 10.1016/j.jsames.2009.08.006.

Belousova, E. A., Griffin, W. L. y O'Reilly, S. Y. 2006. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples f eastern Australian granitoids. Journal of Petrology. v. 47. p. 329–353.

Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., Begg, G. C., O'Reilly, S.Y., y Pearson, N.J. 2010. The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos. v.119, p. 457-466.

Bissig, T., Mortensen, J. K., Tosdal., R. M., y Hall, B. V. 2008. The Rhyolite-Hosted Volcanogenic Massive Sulfide District of Cuale, Guerrero Terrane, West-Central Mexico: Silver-Rich, Base Metal Mineralization Emplaced in a Shallow Marine Continental Margin Setting. Economic Geology. v. 103, pp. 141–159

Blichert-Toft, J. y Albarède, F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters. v. 148, p. 243-258.

Bouvier, A., Vervoort, J., y Patchett, J. 2008. The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters. v. 273, p.8–57.

Burckhardt, C. 1906. Sobre el descubrimiento del Triásico marino en Zacatecas. Boletín de la Sociedad Geológica Mexicana. v. 2, p. 43-45.

Cabral-Cano, E., Lang, H. R., y Harrison, C. G. A. 2000. Stratigraphic assessment of the Arcelia-Teloloapan area, southern Mexico: implications for southern Mexico's post-Neocomian tectonic evolution. Journal of South American Earth Sciences, v. 13, p. 443-457.

Cameron, K. L., Lopez, R., Ortega-Gutiérrez, F., Solari, L. A., Keppie, J. D., y Schulze, C. 2004. U-Pb constraints and Pb isotopic compositions of leached feldspars: Constraints on the origin and evolution of Grenvillian rocks from eastern and southern Mexico, *en* Tollo, R. P., Corriveau, L., McLelland, J., y Bartholomew, M. J., *eds.* Proterozoic tectonic evolution of the Grenville Orogen in North America. Geological Society of America Memoir 197, p. 755–770.

Campa-Uranga, M. F., y Ramírez, J. 1979. La Evolución Geológica y la Metalogénesis del Noroccidente de Guerrero. Universidad Autónoma de Guerrero, Serie Técnico-Científica 1, 101 p.

Campa-Uranga, M. F., y Coney, P. J., 1983. Tectono-stratigraphic terranes and mineral resource distributions in Mexico. Canadian Journal of Earth Sciences. v. 20, p. 1040-1051.

Campa-Uranga, M. F., Torres-de León, R., Iriondo, A. y Premo, W. R. 2012 Caracterización geológica de los ensambles metamórficos de Taxco y Taxco el Viejo, Guerrero, México. Boletín de la Sociedad Geológica Mexicana. v. 64, p. 369-385.

Carrillo-Bravo, J. 1971. La plataforma Valles-San Luis Potosí: Boletín de la Asociación Mexicana de Geólogos Petroleros. v. 23. 106 p.

Carrillo-Chávez, A., Levresse, G., y Martínez-Reyes, J. 2012. Field guide for the historical mining site of Mineral de Pozos, Guanajuato, east-central Mexico, *en* Aranda-Gomez, J.J., Tolson, G., and Molina-Garza, R.S. *eds*. The southern Cordillera and Beyond: Geological Society of America, Field guide 25, p. 39-44.

Carrillo-Martínez, M. 1981. Contribución al estudio geológico del macizo calcáreo El Doctor, Querétaro. Revista de la Universidad Nacional Autónoma de México. v. 5, p. 25-29.

Carrillo-Martínez, M. y Monroy-Audelo, E. 1988. Resumen de la geología del área de San Antonio Bernal, estado de Querétaro. Revista de la Universidad Nacional Autónoma de México. v. 7, p. 119-122.

Carrillo-Martínez, M. 1989. Estratigrafía y tectónica de la parte centro-oriental del estado de Querétaro. Revista de la Universidad Nacional Autónoma de México. v. 8, p. 188-193.

Cawood, P. A., Kröner, A., y Pisarevsky, S. 2006. Precambrian plate tectonics: Criteria and evidence. GSA Today. v.16, p. 4–11, doi:10.1130/GSAT01607.1.

Cawood, P. A., Kröner, A., Collins, W. J., Kusky, T. M., Mooney, W. D., y Windley, B. F., 2009. Accretionary orogens through Earth history *en* Cawood, P. A., and Kröner, A., *eds*. Earth Accretionary Systems in Space and Time. Geological Society of London Special Publication 318, p. 1–36.

Cawood, P. A., Hawkesworth, C. J., Dhuime, B. 2013. The continental record and the generation of continental crust. The Geological Society of America Bulletin. v. 125, p. 14-32.

Cecil, M. R., Gehrels, G., Ducea, M. N., y Patchett, P. J. 2011. U-Pb-Hf characterization of the central Coast Mountains batholith: Implications for petrogenesis and crustal architecture: Lithosphere. v. 3, p. 247-260.

Cediel, F., Shaw, R. P., Caceres, C. 2003. Tectonic assembly of the northern Andean Block, *en* Bartolini, C., Buffler, T., Blickwede, J. *Eds*. The Circum-Gulf of Mexico and Caribbean: Hydrocarbon Habitats, Basin Formation, and Plate Tectonics. AAPG Memoir. v. 79, p. 815-848.

Centeno-García, E. 1994. Tectonic evolution of the Guerrero terrane, western Mexico. The University of Arizona [tesis de doctorado].

Centeno-García, E., 2005, Review of Upper Paleozoic and Lower Mesozoic stratigraphy and depositional environments of central and west Mexico: constraints on terrane analysis and paleogeography *en* Anderson, T. H., Nourse, J. A., Mc Kee, J. W., and Steiner, M. B., eds., The Mojave-Sonora megashear hypothesis: Development, assessment, and alternatives. Geological Society of America Special Papers. v. 393, p. 233-258.

Centeno-García, E. 2016. Mesozoic tectono-magmatic evolution of Mexico: An overview. Ore Geology Reviews. v.81, p. 1035-1052.

Centeno-García, E., y Silva-Romo, G. 1997. Petrogenesis and tectonic evolution of central Mexico Turing Triassic-Jurassic time. Revista Mexicana de Ciencias Geológicas. v. 14, p. 244-260.

Centeno-García, E., Ruíz, J., Coney, P. J., Patchett, P. J., y Ortega-Gutiérrez, F. 1993. Guerrero Terrane of Mexico: Its role in the southern Cordillera from new geochemical data. Geology. v. 21, p. 419-22.

Centeno-García, E., Corona-Chavez, P., Talavera-Mendoza, O., y Iriondo, A. 2003. Geology and tectonic evolution of the Western Guerrero terrane—A transect from Puerto Vallarta to Zihuatanejo, México, *en* Alcayde, M., and Gómez-Caballero, A., eds., Geologic Transects across Cordilleran México. Guidebook for Field Trips of the 99th GSA Cordilleran Section Meeting: Universidad Nacional Autónoma de México, Instituto de Geología Publicación Especial 1, p. 201–228.

Centeno-Garcia, E., Gehrels, G., Diaz-Salgado, C., y Talavera-Mendoza, O. 2005. Zircon provenance of Triassic (Paleozoic?) turbidites from central and western Mexico: Implications for the early evolution of the Guerrero Arc. Geological Society of America, 101st Cordilleran Section Annual Meeting, Abstracts with Programs, v. 37, p. 12.

Centeno-García, E., Guerrero-Suastegui, M., y Talavera-Mendoza, O. 2008. The Guerrero Composite Terrane of western Mexico: Collision and subsequent rifting in a supra-subduction

zone, *en* Draut, A., Clift, P.D., and Scholl, D.W., eds., Formation and Applications of the Sedimentary Record in Arc Collision Zones. Geological Society of America Special Paper 436, p. 279–308.

Centeno-García, E., Busby, C., Busby, M., y Gehrels, G. 2011. Evolution of the Guerrero composite terrane along the Mexican margin, from extensional fringing arc to contractional continental arc. Geological Society of America Bulletin. v. 123, p. 1776-1797.

Chu, N. C., Taylor, R. N., Chavagnac, V., Nesbitt, R. W., Boella, R.M, Milton, J. A, German, C. R, Bayon, G., y Burton, K. 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry. v.17, p.1567–1574.

Cochrane, R., Spikings, R., Gerdes, A., Ulianov, A., Mora, A., Villagómez, D., Putlitz, B. y Chiaradia, M. 2014. Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea. Lithos. v. 190–191, p. 383–402.

Condie, K. C. 2014. Growth of continental crust: a balance between preservation and recycling. Mineralogical Magazine. v. 78. p. 623–637.

Corfu, F., Hanchar, J. M., Hoskin, P. W. O. y Kinny, P. 2003. Atlas of zircon textures. *en Zircon*. J. M. Hanchar & P. W. O. Hoskin. *eds*. Reviews in mineralogy and geochemistry. v. 53. p. 469-500.

Cordani, U. G., Teixeira, W., D'Agrella-Filho, M. S., Trindade, R. I. 2009. The position of the Amazon Craton in Supercontinents. Gondwana Research. v. 115, p. 396–407.

Critelli, S., y Ingersoll, R. V. 1995. Interpretation of neovolcanic versus palaeovolcanic sand grains: an example from Miocene deep-marine sandstone of the Topanga Group (Southern California). v. 42, p. 783-804.

Cuéllar-Cárdenas, M., Nieto-Samaniego, A. F., Levresse, G., Alaniz-Álvarez, S. A., Solari, L., Ortega-Obregón, C., y López-Martínez, M. 2012. Límites temporales de la deformación por acortamiento Laramide en el centro de México. Revista Mexicana de Ciencias Geológicas, v. 29, pp. 179-203.

Dalziel, I. W. D. 1994. Precambrian Scotland as a LaurentiaeGondwana link: origin and significance of cratonic promontories. Geology. v. 22, p. 589-592.

Dalziel, I. W. D. 1997. Neoproterozoic–Paleozoic geography and tectonics: review, hypothesis, environmental speculation. The Geological Society of American Bulletin. v. 109 p. 16-42.

Dávila-Alcocer, V. M., y Martínez-Reyes, J. 1987. Una edad cretácica para las rocas basales de la Sierra de Guanajuato. Simposio sobre la Geología de la Sierra de Guanajuato, Programa y Resúmenes. Universidad Nacional Autónoma de México. Instituto de Geología. p. 19–20.

Dávila-Alcocer, V., y Centeno-García, E. 2006. Stratigraphy of Toliman region, Queretaro State, central Mexico and its role in the evolution of the continental margin and terrane accretion: 102nd Annual Meeting of the Cordilleran Section, GSA, 81st Annual Meeting of the Pacific

Section. American Association of Petroleum Geologists and the Western Regional Meeting of the Alaska Section. SPE.

Dávila-Alcocer, V., Centeno-García, E, Valencia, V., y Fitz-Díaz, E. 2009. Una nueva interpretación de la estratigrafía de la región de Tolimán, Estado de Querétaro. Boletín de la Sociedad Geológica Mexicana. v. 61, p. 491-497.

Dávila-Alcocer, V., Centeno-García, E., y Meriggi, L. 2013. Caracterización y ambiente tectónico de las rocas máficas del Complejo El Chilar: evidencias de un prisma de acreción pre-Jurásico Tardío en el Centro de México. Boletín de la Sociedad Geológica Mexicana. v. 65, p. 83-98.

de Cserna, Z. 1965. Reconocimiento geológico en la Sierra Madre del Sur de México, entre Chilpancingo y Acapulco, Estado de Guerrero: Universidad Nacional Autónoma de México. Instituto de Geología. Boletín. v 62. 77 p.

de Cserna, Z. 1976. Geology of the Fresnillo area, Zacatecas, Mexico. Geological Society of America Bulletin. v. 87, p. 1191-1199.

Dickinson, W. R. 1970. Interpreting detrital modes of graywacke and arkose: Journal of Sedimentary Research, v. 40, p. 695-707.

Dickinson, W. R. 1985. Interpreting provenance relations from detrital modes of sandstone, *en* G. G. Zuffa, *eds*. Provenance of arenites, NATO Advanced Study Institute Series. Dordrecht, Reidel, p. 333-361.

Dickinson, W. R. 2009. The Gulf of Mexico and the southern margin of Laurentia; Geology. v. 37, p. 479–480.

Dickinson, W. R., y Lawton, T. F. 2001. Carboniferous to Cretaceous assembly and fragmentation of Mexico: Geological Society of America Bulletin. v. 113, p. 1142–1160.

Dickinson, W. R., y Gehrels, G. E. 2008. U-Pb Ages of Detrital Zircons in Relation to Paleogeography: Triassic Paleodrainage Networks and Sediment Dispersal Across Southwest Laurentia. Journal of Sedimentary Research. v. 78, p. 745-764.

Dickinson, W. R., y Gehrels, G. E., 2009, Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database: Earth and Planetary Science Letters. v. 288, p. 115–125.

Dickinson, W. R., Gehrels, G. E., y Stern, R. J. 2010. Late Triassic Texas uplift preceding Jurassic opening of the Gulf of Mexico. Evidence from U-Pb ages of detrital zircons: Geosphere. v. 6, p. 641-662.

Dickinson, W. R., Gehrels, G. E., Fox, J. D., Stair, K. N., Anderson, C. E., Ojha, J., Brown, R. A., Norton, M. B., Riggs, N.R., y Lehman, T.M. 2007. Sediment dispersal in Triassic fluvial systems of southwest Laurentia: insights from ages detrital zircons. Geological Society of America Abstracts with Programs. v. 39, p. 235.

Ducea, M. N., Gehrels, G. E., Shoemaker, S., Ruiz, J. y Valencia, V. A. 2004. Geological evolution of the Xolapa Complex, Southern Mexico. Evidence from U-Pb zircon geochronology. Geological Society of America Bulletin. v. 116, p.1016-1025.

Dugarte-Neuman, J. H. 2012. Provenance and tectonic evolution of the pre-Mesozoic Caparo block and Merida terrane in the venezuelan Andes. The University of Georgia. [Tesis de maestría].

Echegoyén-Sánchez, J. 1978. Yacimientos minerales de la Sierra de Arperos y Comanja, Estado de Guanajuato. Geomimet. v. 93, p. 44–73.

Eggins, S. M., Kinsley, L. P. J., y Shelley, J. M. G. 1998. Deposition and element fractionation processes during atmospheric pressure laser ablation sampling for analysis by ICP-MS. Applied Surface Science. v. 127, p. 278-286.

Elías-Herrera, M., 2004. Geología precenozoica de la región de Tejupilco, estado de México, y sus implicaciones tectónicas. México, D.F. Universidad Nacional Autónoma de México [tesis de doctorado], 201 p.

Elías-Herrera, M., y Sánchez-Zavala, J. L. 1990. Tectonic implications of a mylonitic granite in the lower structural levels of the Tierra Caliente Complex (Guerrero terrane), southern Mexico. Universidad Nacional Autónoma de México. Instituto de Geología. Revista. v. 9. p. 113-125.

Elías-Herrera, M., y Ortega-Gutiérrez, F. 1998. The Early Cretaceous Arperos oceanic basin (western Mexico). Geochemical evidence for an aseismic ridge formed near a spreading center-Comment. Tectonophysics. v. 292, p. 321–326.

Elías-Herrera, M. y Ortega-Gutiérrez, F. 2002. Caltepec fault zone: An Early Permian dextral transpressional boundary between the Proterozoic Oaxacan and Paleozoic Acatlán complexes, southern Mexico, and regional tectonic implications. Tectonics. v. 21, pp. 1-18.

Elías-Herrera, M., Sánchez-Zavala, J. L., y Macias-Romo, C. 2000. Geologic and geochronologic data from the Guerrero terrane in the Tejupilco area, southern Mexico: new constraints on its tectonic interpretation. Journal of South American Earth Sciences. v. 13, p. 355-375.

Escalona-Alcázar, F. J., Delgado-Argote, L. A., Weber, B., Núñez-Peña, E. P., Valencia, V. A., y Ortiz-Acevedo, O. 2009. Kinematics and U-Pb dating of detrital zircons from the Sierra de Zacatecas, Mexico. Revista Mexicana de Ciencias Geológicas. v. 26, p. 48-64.

Escalona-Alcázar, F. J., Delgado-Argote, L. A., Nebel, O., Velasco-Tapia, F., Weber, B., y Núñez-Peña, E. P. 2014. Maturing arc signatures monitored by trace element and Hf isotope systematics in the Early Cretaceous Zacatecas Volcanic Field, Mexico. The Journal of Geology. v. 122, p. 549-566.

Estrada-Carmona, J., Weber, B., Martens, U., and López-Martínez, M. 2012. Petrogenesis of Ordovician magmatic rocks in the southern Chiapas Massif Complex: relations with the early Palaeozoic magmatic belts of northwestern Gondwana. International Geology Review. v. 54, p. 1918–1943.
Fedo, C. M., Sircombe, K. N., y Rainbird, R. H. 2003. Detrital zircon analysis of the Sedimentary Record. *in* Hanchar, J. M. y Hoskin, P. W. O. *eds*. Reviews in mineralogy and geochemistry. v. 53. p. 277-303.

Fisher, C. M., Hanchar, J. M., Samson, S.D., Dhuime, B., Blichert-Toft, J., Vervoort, J. D., Lam, R. 2011. Synthetic zircon doped with hafnium and rare earth elements: a reference material for in situ hafnium isotope analysis. Chemical Geology. v. 286, p. 32–47.

Fitz-Díaz, E. 2001. Evolución estructural del sinclinorio de Zacango en el límite oriental de la Plataforma Guerrero Morelos: Guerrero, México [Tesis de Licenciatura]. Instituto Politécnico Nacional, 103 p.

Fitz-Díaz, E., Tolson, G., Hudleston, P., Bolaños-Rodríguez, D., Ortega-Flores, B., y Vásquez-Serrano, A. 2012. The role of folding in the development of the Mexican fold-and-thrust Belt: Geosphere. v. 8, p. 931-949.

Folk, R.L. 1974. Petrology of Sedimentary Rocks: Austin, Texas, Hemphill Publishing Company, 182 p.

Freydier, C., Martinez, R., Lapierre, H., Tardy, M., y Coulon, C. 1996. The Early Cretaceous Arperos oceanic basin (westernMexico): geochemical evidence for an aseismic ridge formed near a spreading center. Tectonophysics. v. 259, p. 343–67.

Freydier, C., Lapierre, H., Briqueu, L., Tardy, M., Coulon, Ch., y Martínez, J. 1997. Volcaniclastic sequences with continental affinities within the Late Jurassic – Early Cretaceous Guerrero intra-oceanic arc terrane (western Mexico). The Journal of Geology. v. 105, p.483-502.

Freydier, C., Lapierre, H., Ruiz, J., Terry, M., Martínez, R.J., y Coulon, C. 2000. The Early Cretaceous Arperos basin: an oceanic domain dividing the Guerrero arc from nuclear Mexico evidenced by geochemistry of the lavas and sediments. Journal of South American Earth Sciences v. 13, p. 325-336.

Fries, C. Jr. 1960. Geología del Estado de Morelos y de Partes Adyacentes de México y Guerrero, Región Central Meridional de México. Universidad Nacional Autónoma de México. Instituto de Geología. Boletín 60. 236p.

Ganade de Araujo, C. E., Cordani, U. G., Weinberg, R. F., Basei, M. A. S., Amstrong, R., Sato, K. 2014. Tracing Neoproterozoic subduction in the Borborema Province (NE-Brazil): Clues from UPb geochronology and Sr-Nd-Hf-O isotopes on granitoids and migmatites. Lithos. v. 202-203, p. 167-189.

Gärtner, A., Villeneuve, m., Linnemann, U., Gerdes, A., Youbi, N., y Hofmann, M. 2016. Similar crustal evolution in the western units of the Adrar Souttouf Massif (Moroccan Sahara) and the Avalonian terranes: Insights from Hf isotope data. Tectonophysics. v. 681, p. 305–317.

Garza-González, 2007. Metalogenia del pórfido de cobre de Tiámaro, Estado de Michoacán. México, D.F. Universidad Nacional Autónoma de México [tesis de doctorado], 258 p.

Gastil, G., Rector, R., Hazelton, G., Al-Riyami, R., Hanes, J., Farrar, E., Böhnel, H., Ortega-Rivera, A., y Garcia-Guzman, J. 1999. Late Cretaceous pillow basalt, siliceous tuff and calcturbidite near Porohui, norther Sinaloa, Mexico. Geological Society of America, Special Paper, 340. p. 145-150.

Gazzi, P. 1966. Le arenarie del flysch sopracretaceo dell'Appennino modenese; correlazioni con il flysch di Monghidoro. Mineralogica e Petrográfica Acta. v.12, p. 69-97.

Gehrels, G. 2012. Detrital Zircon U-Pb Geochronology: Current Methods and New Opportunities, *in* Busby, C. y Azor, A. *Eds*. Tectonics of Sedimentary Basins: Recent Advances, DOI: 10.1002/9781444347166.ch2.

Gehrels, G. E., y Dickinson, W. R. 1995. Detrital zircon provenance of Cambrian to Triassic miogeoclinal and eugeoclinal strata in Nevada. American Journal of Science, v. 295, p. 18–48.

Gehrels, G. E., Valencia, V. A., y Ruiz, J. 2008. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochemistry, Geophysics, Geosystems. v. 9, p. 1-13.

Geraldes, M. C., Teixeira, W. y Heilbron, M. 2004. Lithospheric versus asthenospheric source of the SW Amazonian craton A-types granites: the role of the Paleo-and Mesoproterozoic accretionary belts for their coeval continental suites. Episodes. v. 27, p. 185–189.

Geraldes, M. C., Dias-Tavares, A., Costa-Dos Santos, A. 2015. An Overview of the Amazonian Craton Evolution: Insights for Paleocontinental Reconstruction. International Journal of Geosciences. v. 6. p. 1060-1076.

Gerdes A., y Zeh, A. 2009. Zircon formation versus zircon alteration – New insights from combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chemical Geology. v. 261, p. 230–243.

Gillis, R. J., Gehrels, G. E., Ruiz, J., Flores de Dios-González, L. A., 2005. Detrital zircons provenance of Cambrian–Ordovician and Carboniferous strata of the Oaxaca terrane, southern México. Sedimentary Geology. v. 182, p. 87–100.

Godínez-Urban, A., Lawton, T. F., Molina-Garza, R. S., Iriondo, A., Weber, B., y López Martínez, M. 2011. Jurassic volcanic and sedimentary rocks of the La Silla and Todos Santos Formations, Chiapas: Record of Nazas arc magmatism and rift-basin formation prior to opening of the Gulf of Mexico. Geosphere. v. 7, p. 121-144.

González-Arreola, C. y Carrillo-Martínez, M. 1986. Amonitas del Jurásico Superior (Tithoniano Superior) y del Cretácico Inferior (Auteriviano-Barremiano) del área de San Joaquín-Vizarrón, Estado de Querétaro. Revista Mexicana de Ciencias Geológicas. v. 6, p. 171-177.

González-León, C. M., Valencia, V. A., Lawton, T. F., Amato, J. M., Gehrels, G. E., Leggett, W. J., Montijo-Contreras, O., yFernández, M. A. 2009. The lower Mesozoic record of detrital zircon U-Pb geochronology of Sonora, México, and its paleogeographic implications. Revista Mexicana de Ciencias Geológicas. v. 26, p. 301-314.

Graham, S. A., Ingersoll, R. V., y Dickinson, W. R. 1976. Common provenance for lithic grains in Carboniferous sandstones from Ouachita Mountains and Black Warrior Basin. Journal of Sedimentary Petrology. v. 46, p. 620-632.

Grajales, M. y López, M. 1984. Estudio petrogenético de las rocas ígneas y metamórficas en el Prospecto Tomatlán-Guerrero Jalisco: Mexico, D. F. Instituto Mexicano del Petróleo. Subdirección de Tecnología y Exploración, Proyecto C-1160.

Griffin, W. L., Belousova, E. A., Shee, S. R., Pearson, N. J., y O'Reilly, S. Y. 2004. Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambrian Research. v. 131, p. 231–282.

Guerrero, M., Talavera, O., Ramírez, J., Rodríguez, J., 1993. Estratigrafía y características de depósito del conjunto petrotectónico de Teloloapan, Terreno Guerrero, Mexico, *en* Proceedings of the First Circum-Pacific and Circum-Atlantic Terrane Conference, Guanajuato. Mexico. p. 61-63.

Guimarães, I. P., Da Silva Filho, A. F., Almeida, C. M., Van Scmus, W. R., Araújo, J. M. M., Melos, S. C., y Melo, E. B.2004. Brasiliano (Pan-African) granitic magmatism in the Pajeú-Paraíba belt, Northeast Brazil: an isotopic and geochronological approach. Precambrian Research. v. 135, p. 23-53.

Gutiérrez-Amador, M. 1908. Las capas Cárnicas de Zacatecas. Boletín de la Sociedad Geológica Mexicana. v. 4, p. 29-35.

Harley, S. L., Kelly, N. M., y Möller A. 2007. Zircon behaviour and the thermal histories of mountain chains. Elements, v. 3, p. 25–30.

Hawkesworth, C. J. y Kemp, A. I. S. 2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology. v. 226, p. 144-162.

Hawkesworth, C., Cawood, P., Kemp, T., Storey, C., y Dhuime, B. 2009. A Matter of Preservation. Science, v. 323, p. 49–50.

Haxel, G.B., Wright, J.E., Riggs, N.R., Tosdal, R.M., y May, D.J. 2005. Middle Jurassic Topawa Group, Baboquivari Mountains, south-central Arizona: Volcanic and sedimentary record of deep basins within the Jurassic magmatic arc, *en* Anderson, T. H., Nourse, J. A., McKee, J. W., y Steiner, M. B. *eds.* The Mojave-Sonora Megashear Hypothesis: Development, Assessment, and Alternatives: Geological Society of America Special Paper 393, p. 329–357, doi: 10.1130/2005.2393(12).

Helbig, M., Keppie, J. D., Murphy, B., y Solari, L. A. 2012. U–Pb geochronological constraints on the Triassic–Jurassic Ayú Complex, southern Mexico: Derivation from the western margin of Pangea-A. Gondwana Research. v. 22, p. 910-927.

Henderson, B. J., Collins, W. J., Murphy, J. B., Gutierrez-Alonso, G., y Handa, M. 2016. Gondwanan basement terranes of the Variscan–Appalachian orogen: Baltican, Saharan and West African hafnium isotopic fingerprints in Avalonia, Iberia and the Armorican Terranes. Tectonophysics. V. 681, p. 278-304.

Herrmann, U. R., Nelson, B. K., y Ratschbacher, L. 1994. The origin of a terrane: U/Pb zircon geochronology and tectonic evolution of the Xolapa complex (southern Mexico). Tectonics. v. 13, p. 455-474.

Hernández-Jáuregui, R. 1997. Sedimentación Sintectónica de la Formación Soyatal (Turoniano Medio-Campaniano) y Modelado Cinemático de la Cuenca de Flexura de Maconí, Querétaro [tesis de maestría]. Instituto Politécnico Nacional, 94 p.

Hoffman, P. F. 1991. Did the breakout of Laurentia turn Gondwanaland inside-out?. Science. v. 252, p. 1409–1412.

Ingersoll, R.V., y Suczek, C. A. 1979. Petrology and provenance of neogene sand from Nicobar and Bengal fans, DSDP sites 211 and 218. Journal of Sedimentary Petrology. v. 49, p. 1217-1228.

Ingersoll, R.V., Bullard, T. F., Ford, T. L., Grimm, J. P., y Pickle, J.D., 1984, The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point counting method: Journal of Sedimentary Petrology, v. 54, p. 103–116.

Jackson, S. E., Pearson, N. J., Griffin, W. L., y Belousova, E. A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geololgy. v. 211, p. 47–69.

Juárez-Zúñiga, S. 2016. Geocronología U-Pb e isotopía de Hf en granitos del Paleozoico Inferior: implicaciones tectónicas para la evolución del océano Rheico. [Tesis de Licenciatura]. Universidad Nacional Autónoma de México. 73 p.

Keppie, J. D. 2004. Terranes of Mexico revisited: A 1.3 billion year odyssey: International Geology Review. v. 46, p. 765-794.

Keppie, J. D., Dostal, J., Ortega-Gutiérrez, F., y Lopez, R. 2001. A Grenvillian arc on the margin of Amazonia: evidence from the southern Oaxacan Complex, southern Mexico. Precambrian Research. v. 112, p. 165-181.

Keppie, J. D., Dostal, J., Cameron, K. L., Solari, L. A., Ortega-Gutiérrez, F., y Lopez, R. 2003. Geochronology and geochemistry of Grenvillian igneous suites in the northern Oaxacan Complex, southern Mexico: tectonic implications. Precambrian Research, v. 120, p. 365-389.

Keppie, J. D., Sandberg, C. A., Miller, B. V., Sánchez-Zavala, J. L., Nance, R. D., y Poole, F. G. 2004a. Implications of latest Pennsylvanian to Middle Permian paleontological and U-Pb SHRIMP data from the Tecomate Formation to re-dating tectonothermal events in the Acatlán Complex, southern Mexico. International Geology Review. v. 46. p. 745–753.

Keppie, J. D., Nance, D., Dostal, J., Ortega-Rivera, A., Miller, B.V., Fox, D., Muise, J., Powell, J. T., Mumma, S.A. and Lee, J. W. K. 2004b. Mid-Jurassic Tectonothermal Event Superposed on a Paleozoic Geological Record in the Acatlán Complex of Southern Mexico: Hotspot Activity During the Breakup of Pangea. Gondwana Research. v. 7, p. 238–260.

Keppie, J. D., Dostal, J., Miller, B. V., Ortega-Rivera, A., Roldán-Quintana, J., y Lee, J. W. K. 2006a. Geochronology and Geochemistry of the Francisco Gneiss: Triassic Continental Rift Tholeites on the Mexican Margin of Pangea Metamorphosed and Exhumed in a Tertiary Core Complex. International Geology Review. v. 48, p. 1-16.

Keppie, J. D., Nance, R. D., Fernández-Suárez, J., Storey, C. D., Jeffries, T. E., y Murphy, J.B. 2006b. Detrital zircon data from the eastern Mixteca terrane, southern Mexico: evidence for an Ordovician-Mississippian continental rise and a Permo-Triassic clastic wedge adjacent to Oaxaquia. International Geology Review. v. 48, p. 97–111

Keppie, J. D., Dostal, J., Nance, R. D., Miller, B. V., Ortega-Rivera, A. y Lee, J. K. W. 2006c. Circa Ma plume-related dykes in the ~1Ga Novillo Gneiss (east-central) Mexico: Evidence for the initial separation of Avalonia. Precambrian Research. v. 147, p. 342-353.

Keppie, J. D., Dostal, J., Miller, B. V., Ramos-Arias, M. A., Morales-Gámez, M., Nance, R. D., Murphy, J. B., Ortega-Rivera, A., Lee, J.W.K., Housh, T., y Cooper, P. 2008. Ordovician earliest Silurian rift tholeiites in the Acatlán Complex, Southern Mexico: evidence of rifting on the southern margin of the Rheic Ocean. Tectonophysics. v. 461, p. 130–156.

Keppie, J. D., Murphy, J. B., Nance, R. D. y Dostal, J. 2011. Mesoproterozoic Oaxaquia-type basement in peri-Gondwanan terranes of Mexico, the Appalachians, and Europe: TDM age constraints on extent and significance. International Geology Review. v. 54, p. 313-324.

Kirsch, M., Keppie, D. J., Murphy, B., y Solari, L. 2012. Permian–Carboniferous arc magmatism and basin evolution along the western margin of Pangea: Geochemical and geochronological evidence from the eastern Acatlán Complex, southern Mexico: Geological Society of America Bulletin. v. 124, p. 1607-1628.

Kosler, J. y Sylvester, P. J. 2003. Present trends and the future of zircon in geochronology: Laser ablation ICPMS. *in* Hanchar, J. M. y Hoskin, P. W. O. *eds*. Reviews in mineralogy and geochemistry. v. 53. p. 243-275.

Lapierre, H., Ortiz, H. E., Abouchami, N. V., Monod, O., Coulon, C., y Zimmermann, J. L. 1992. A crustal section of an intra-oceanic island arc: The Late Jurassic±Early Cretaceous Guanajuato magmatic sequence (central Mexico). Earth and Planetary Sciences Letters. v. 108, p. 61-77.

Lawlor, P. J., Ortega-Gutiérrez, F., Cameron, K.L., Ochoa-Camarillo, H., López, R., y Sampson, D. A. 1999. U–Pb geochronology, geochemistry, and provenance of the Grenvillian Huiznopala Gneiss of Eastern Mexico. Precambrian Research. v. 94, p. 73-99.

Lawton, T. F. y Molina-Garza, R. 2014. U-Pb geochronology of the type Nazas Formation and superjacent strata, northeastern Durango, Mexico: Implications of a Jurassic age for continentalarc magmatism in north-central Mexico. Geological Society of America Bulletin, doi: 10.1130/B30827.1.

Lawton, T. F., Barboza-Gudiño, R., González-León, C. M., Gray, G. G., Iriondo, A., Leggett, W. J., Peryam, T. C., y Rubio-Cisneros, I. I. 2010. Latest Triassic-Middle Jurassic Age of Cordilleran Nazas arc in Mexico indicated by U-PB detrital zircon and volcanic-rock ages: Geological Society of America Abstracts with Programs, v. 42, p. 345.

Levresse, G., Tritlla, J., Deloule, E., y Pinto-Linares, P. 2007. Is there a Grenvillian basement in the Guerrero-Morelos Platform of Mexico?. Geologica Acta. v. 5, 167-75.

Li, Z.X., Bogdanova, S.V., Collin, A.S., Davidson, A., De Waele, B., Ernst, R. E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karltrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., and Vernikovsky, V., 2008, Assembly, configuration, and break-up history of Rodinia: A synthesis: Precambrian Research, v. 160, p. 179-210.

Lopez, R., 1997. The pre-Jurassic geotectonic evolution of the Coahuila terrane, northwestern Mexico: Grenville basement, a late Paleozoic arc, Triassic plutonism, and the events south of the Ouachita suture. University of California, (Tesis de doctorado] p. 147p.

Lopez, R., Cameron, K. L., yJones, N.W. 2001. Evidence for Paleoproterozoic, Grenvillian and Pan-African and Gondwanan crust beneath northeastern Mexico: Precambrian Research. v. 107, p. 195-214.

Ludwig, K. 2008. Manual for Isoplot 3.7. Berkeley Geochronology Center, Special Publication 4, rev. p. 77.

Mantilla-Figueroa, L. C., Bissig, T., Cottle, J. M., Hart, C. J. R. 2012. Remains of early Ordovician mantle-derived magmatism in the Santander Massif (Colombian Eastern Cordillera). Journal of South American Earth Sciences. v. 38, p. 1-12.

Mantilla-Figueroa, L. C., García-Ramírez, C. A., y Valencia, V. A. 2016. Nuevas evidencias que soportan la escisión de la formación Silgará y propuesta de un nuevo marco estratigráfico para el basamento metamórfico del Macizo de Santander (Cordillera Oriental de Colombia). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. v. 155, p. 320-336.

Marshall, D. J. 1988. Cathodoluminescence of geological materials. Unwin Hyman, 181 p.

Martens, U., Weber B., y Valencia, V.A. 2010. U/Pb geochronology of Devonian and older Paleozoic beds in the southeastern Maya block, Central America: Its affinity with peri-Gondwanan terranes. Geological Society of America Bulletin. v. 122, p. 815-829.

Martínez-Reyes, J. 1992. Mapa geológico de la Sierra de Guanajuato con resumen de la geología de la Sierra de Guanajuato. Universidad Nacional Autónoma de México. Instituto de Geología, DF. Cartas Geológicas y Mineras 8.

Martini, M. y Ortega-Gutiérrez, F. 2016. Tectono-stratigraphic evolution of eastern Mexico during the break-up of Pangea: A review. Earth-Science Reviews. http://dx.doi.org/10.1016/j.earscirev.2016.06.013

Martini, M., Solari, L. y Camprubí, A. 2013. Kinematics of the Guerrero terrane accretion in the Sierra de Guanajuato, central Mexico: new insights for the structural evolution of arc–continent collisional zones. International Geology Review. v. 55, p. 574-589.

Martini, M., Solari, L., y López-Martínez, M. 2014. Correlating the Arperos Basin from Guanajuato, central Mexico, to Santo Tomás, southern Mexico: Implications for the paleogeography and origin of the Guerrero terrane. Geosphere. v. 10, p. 1385-1401.

Martini, M., Ferrari, L., López-Martínez, M., Cerca-Martínez, M., Valencia, V., y Serrano-Durán, L. 2009. Cretaceous-Eocene magmatism and Laramide deformation in southwestern Mexico: No role for terrane accretion. Geological Society of America Memoirs. v. 204, p. 151-182.

Martini, M., Ferrari, L., López-Martínez, M., y Valencia, V. 2010 Stratigraphic redefinition of the Zihuatanejo area, southwestern Mexico. Revista Mexicana de Ciencias Geológicas. v. 27, p. 412-430.

Martini, M., Mori, L., Solari, L., y Centeno-García, E., 2011, Sandstone provenance of the Arperos Basin (Sierra de Guanajuato, central Mexico): Late Jurassic–Early Cretaceous back-arc spreading as the foundation of the Guerrero terrane. Journal of Geology. v. 119, p. 597–617.

Martini, M., Fitz, E., Solari, L., Camprubí, A., Hudleston, P. J., Lawton, T.F., Tolson, G., y Centeno-García, E. 2012. The Late Cretaceous fold-thrust belt in the Peña de Bernal-Tamazunchale area and its possible relationship to the accretion of the Guerrero Terrane, *en* Aranda-Gómez, J J., Tolson, G., y Molina-Garza, R. S., *eds.* The Southern Cordillera and Beyond: Geological Society of America Field Guide, v. 25, p. 19–38.

Matteini M, Junges S. L., Dantas E. L., Pimentel, M. M, Buhn, B. 2010. In situ zircon U–Pb and Lu–Hf isotope systematic on magmatic rocks: insights on the crustal evolution of the Neoproterozoic Goiás Magmatic Arc, Brasília belt, Central Brazil. Gondwana Research. v. 17, p. 1–12. doi:10.1016/j.gr.2009.05.008.

Mauel, D. J., Lawton, T. F., González-León, C. M., Amato, J. M., Iriondo, A., y Amato, J.M. 2011. Stratigraphy and age of Upper Jurassic strata in north-central Sonora, Mexico: Southwestern Laurentian record of crustal extension and tectonic transition. Geosphere. v. 7, p. 390–414, doi: 10.1130/GES00600.1.

McGee, B., Collins, A., Trindade, R. I. F., y Payne, J. 2015. Age and provenance of the Cryogenian to Cambrian passive margin to foreland basin sequence of the northern Paraguay Belt, Brazil. Geological Society of America Bulletin. v. 127, p. 76-86.

McGehee, R. V. 1976. Las rocas metamórficas del Arroyo La Pimienta, Zacatecas, Zac. Boletín de la Sociedad Geológica Mexicana. v. 37, p. 1-10.

McPhie, J., Doyle, M., Allen, R. 1993. Volcanic textures: a guide to the interpretation of textures in volcanics Rocks: Centre for ore deposit and exploration studies, University of Tasmania, 196p.

Mendoza-Rosales, C. C., Centeno-García, E., Silva-Romo, G., Campos-Madrigal, E., Bernal, J. P. 2010. Barremian rift-related turbidites and alkaline volcanism in southern Mexico and their role in the opening of the Gulf of Mexico. Earth and Planetary Science Letters. v. 295, p. 419–434.

Mendoza-Rosales, C. C., Silva-Romo, G., Centeno-García, E., Campos-Madrigal, E., Rodríguez-Otero, M. 2013. La Formación Chivillas en Tehuacán, Puebla, México: definición, análisis de facies y procedencia. Boletín de la Sociedad Geológica Mexicana. v. 65, p. 457-480.

Mesa-Figueroa, D., Ruiz, J., Talavera-Mendoza, O., VOrtega-Gutiérrez, F. 2003. Tectonometamorphic evolution of the Acatlan Complex eclogites (southern Mexico). Canadian Journal of Earth Sciences. v. p. 27-44.

Miller, E. L., Soloviev, A.V., Prokopiev, A.V., Toro, J., Harris, D., Kuzmichev, A. B., y Gehrels, G. E. 2013. Triassic river systems and the paleo-Pacific margin of northwestern Pangea. Gondwana Research. v. 23, p. 1631–45.

Miller, B. V., Dostal, J., Keppie, J. D., Nance, R. D., Ortega-Rivera, A. y Lee, J. W. K. 2007. Ordovician calc-alkaline granitoids in the Acatla'n Complex, southern Mexico: geochemical and geochronological data and implications for the tectonics of the Gondwanan margin of the Rheic Ocean, *en* Linnemann, U., Nance, R. D., Zulaf, G. y Kraft, P. eds. The Evolution of the Rheic Ocean: From Avalonian–Cadomian active margin to Alleghenian–Variscan collision. Geological Society of America Special Paper, v. 423, p. 465–475.

Monod, O. y Calvet. P. 1992. Structural and stratigraphic re-interpretation of the Triassic units near Zacatecas (Zac.), Central Mexico: Evidence of a Laramide nappe pile. Zentralblatt für Geologie und Paläontologie, Teil I v. 6, p. 1533-1544.

Montrella, J. J. 2004. Geology of Isla Cerralvo, Baja California Sur, Mexico. San Diego State University. [Tesis de Maestría]. 115 p.

Morales-Gámez, M., Keppie, J. D., Lee, J. W. K., y Ortega-Rivera, A. 2009. Palaeozoic structures in the Xayacatlán area, Acatlán Complex, southern Mexico: transtensional rift- and subduction-related deformation along the margin of Oaxaquia. International Geology Review. v 51, p. 279–303.

Morán-Zenteno, D. J. 1993. Southern Mixteco and Northern Xolapa terranes, *en* F. Ortega-Gutiérrez, E. Centeno-García, D. J. Morán-Zenteno y A. Gómez-Caballero *eds*. Terrane geology of southern Mexico: México, Universidad Nacional Autónoma de México, Instituto de Geología, pp. 34–45.

Morán-Zenteno, D., Corona-Chávez, P., y Tolson, G. 1996. Uplift and subduction erosion in southwestern Mexico since the Oligocene: Pluton geobarometry constraints. Earth and Planetary Science Letters. v 141, p. 51-66.

Morán-Zenteno, D. J., Cerca, M., Keppie, J. D. 2007. The Cenozoic tectonic and magmatic evolution of southwestern México: Advances and problems of interpretation, *en* S. A. Alaniz-Álvarez, y A. F. Nieto-Samaniego *eds*. Geology of México: Celebrating the Centenary of the Geological Society of México. Geological Society of America Special Paper 422, p. 71–91.

Mortensen, J. K., Hall, B. V., Bissig, T., Friedman, R. M., Danielson, T., Oliver, J., Rhys, D. A., Ross, K. V., y Gabites J. E. 2008. Age and paleotectonic setting of volcanogenic massive sulphide deposits in the Guerrero terrane of Central Mexico: constraints from U-Pb age and Pb isotope studies. Economic Geologists. v. 103, p. 117–40.

Mullan, H. S. 1978. Evolution of the Nevadan orogen in northwestern Mexico. Geological Society of America Bulletin. v. 89, p. 1175-1188.

Mueller, P. A., Kamenov, G., D., Heatherington, A. L., y Richards, J. 2008. Crustal Evolution in the Southern Appalachian Orogen: Evidence from Hf Isotopes in Detrital Zircons. The Journal of Geology. v. 116, p. 414–422.

Murphy, J. B., Pisarevsky, S. A., Nance, R.D., y Keppie, J. D., 2004, Neoproterozoic-Early Paleozoic evolution of per-Gondwanan terranes: implications for Laurentia-Gondwana connections. International Journal of Earth Sciences. v. 93, p. 659-682.

Nance, R. D., Miller, B. V., Keppie, J. D., Murphy, J. B., y Dostal, J. 2006. Acatlán Complex, southern Mexico: Record spanning the assembly and breakup of Pangea. Geology. v. 34, p. 857-860.

Nance, R. D., Fernández-Suárez, J., Keppie, J. D., Storey, C., y Jeffries, T. 2007. Provenance of the Granjeno Schist, Ciudad Victoria, México: Detrital zircon U-Pb age constraints and implications for the Paleozoic paleogeography of the Rheic Ocean: Geological Society of America Special Papers, v. 423, p. 453-464.

Nieto-Samaniego, A. F., Ferrari, L., Alaniz-Álvarez, S. A., Labarthe-Hernández, G., y Rosas-Elguera, J. 1999. Variation of Cenozoic extension and volcanism across the southern Sierra Madre Occidental volcanic province, Mexico. Geological Society of America Bulletin. v. 111, p. 347–363.

Núñez, M. A. 2007. Inclusiones fluidas y metalogenia del depósito epitermal Ag-Au del Distrito San Martín Mpio. Colón, Qro [tesis de maestría]. Universidad Nacional Autónoma de México, 166p.

Ochoa-Camarillo, H. R., Buitrón, B. E., and Silva-Pineda, A. 1998. Contribución al conocimiento de la bioestratigrafía, paleoecología y tectónica del Jurásico (anticlinorio de Huayacocotla) en la región de Molango, Hidalgo, México. Revista Mexicana de Ciencias Geológicas. v. 15, p. 57-63.

Ortega-Flores, B. 2011. Deformación por acortamiento en la Plataforma Valles-San Luis Potosí y en la cuenca Tampico-Misantla; porción externa del cinturón de pliegues y cabalgaduras mexicano. Universidad Nacional Autónoma de México. [Tesis de maestría]. 104p.

Ortega-Flores, B., Solari, L., Lawton, T. F., y Ortega-Obregón, C. 2014. Detrital-zircon record of major Middle Triassic–Early Cretaceous provenance shift, central Mexico: demise of Gondwanan continental fluvial systems and onset of back-arc volcanism and sedimentation. International Geology Review. v. 56, p. 237-261.

Ortega-Flores, B., Solari, L. A., y Escalona-Alcázar, F. J. 2016. The Mesozoic successions of western Sierra de Zacatecas, Central Mexico: provenance and tectonic implications. Geological Magazine. v. 153, p. 696-717.

Ortega-Gutiérrez, F., Elías-Herrera, M., Morán-Zenteno, D. J., Solari, L., Luna-González, L., y Schaaf, P. 2014. A review of batholiths and other plutonic intrusions of Mexico. Gondwana Research. v. 26, pp. 834-868.

Ortega-Gutiérrez, F. 1978. Estratigrafía del Complejo Acatlán en la Mixteca Baja, estados de Puebla y Oaxaca. Revista del Instituto de Geología, Universidad Nacional Autónoma de México. v. 2, p. 112–131.

Ortega-Gutiérrez, F. 1981. Metamorphic belts of southern Mexico and their tectonic significance. Geofísica Internacional. v. 20, p.177-202.

Ortega-Gutiérrez, F., Ruiz, J., y Centeno-García, E. 1995. Oaxaquia, a Proterozoic microcontinent accreted to North America during the late Paleozoic: Geology. v. 23, p. 1127–1130.

Ortega-Gutiérrez, F., Prieto-Vélez, R., Zúñiga, Y. y Flores, S. 1979. Una secuencia volcanoplutónica sedimentaria cretácica en el Norte de Sinaloa. ¿Un complejo ofiolítico?. Universidad Nacional Autónoma de México. Instituto de Geología. Revista. v. 3, p. 1-8.

Ortega-Gutiérrez, F., Mitre-Salazar, L.M., Roldán-Quintana, J., Aranda-Gómez, J., Morán-Zenteno, D., Alaníz-Álvarez, S., and Nieto-Samaniego, A., 1992, Carta Geológica de la República Mexicana: Instituto de Geología-UNAM-Consejo de Recursos Minerales.

Ortega-Obregón, C., Solari L. A., Keppie, J. D., Ortega-Gutiérrez, F., Solé, J., y Morán-Ical, S. 2008. Middle – Late Ordovician magmatism and Late Cretaceous collision in the southern Maya block, Rabinal – Salamá area, central Guatemala: implications for North America-Caribbean plate tectonics. Geological Society of America Bulletin. v. 120, p. 556–570.

Ortega-Obregón, C., Solari, L. A., Gómez-Tuena, A., Elías-Herrera, M., Ortega-Gutiérrez, F., Macías-Romo, C. 2014. Permian–Carboniferous arc magmatism in southern Mexico: U–Pb dating, trace element and Hf isotopic evidence on zircons of earliest subduction beneath the western margin of Gondwana. International Journal of Earth Sciences. v. 103, p. 1287-1300.

Ortíz-Hernández, L. E., Chiodi, M., Lapierre, H., Monod, O., y Calvet, P. 1992. El arco intraoceánico alóctono (Cretácico Inferior) de Guanajuato-características petrográficas, geoquímicas, estructurales e isotópicas del complejo filonianao y de las lavas basálticas asociadas, implicaciones geodinámicas. Universidad Nacional Autónoma de México, Instituto de Geología, Revista. v. 9, p. 126–145.

Ortiz-Hernández, L. E., Acevedo-Sandoval, O. A. y Flores- Castro, K. 2003. Early Cretaceous intraplate seamounts from Guanajuato, central Mexico: geochemical and mineralogical data. Revista Mexicana de Ciencias Geológicas. v 20, 27-40.

Palacios-García, B. 2013. Análisis petro-tectónico de la sucesión mesozoica de la Sierra de los Cuarzos, centro de México: Reconocimiento de un depósito sintectónico relacionado a la acreción del terreno Guerrero. [Tesis de maestría]. Universidad Nacional Autónoma de México. 144p.

Palacios-García, N. B. y Martini, M. 2014. From back-arc rifting to arc accretion: the Late Jurassic–Early Cretaceous evolution of the Guerrero terrane recorded by a major provenance change in sandstones from the Sierra de los Cuarzos area, central Mexico. International Geology Review. v. 56, p.1377-94.

Pantoja-Alor, J. 1972. La Formación Nazas del Levantamiento de Villa Juárez, Estado de Durango. Memorias de la Segunda Convención Nacional de la Sociedad Geológica Mexicana, 25-31.

Pantoja-Alór, J. 1990. Redefinición de las unidades estratigráficas de la secuencia mesozoica de la región Huetamo-Cd. Altamirano, estados de Michoacán y Guerrero, *en* Convención Geológica Nacional. Sociedad Geológica Mexicana Memoir 10. Puebla, México, p. 121–123.

Patchett, P. J., y Tatsumoto, M. 1981. Lu/Hf in chondritess and definition of chondritic Hafnium growth. Abstract. Lunar and Planetary Institute. XII, P. 822-824. Abstract.

Paton, C., Woodhead, J. D., Hellstrom, J. C., Hergt, J. M., Greig, A., y Maas, R. 2010. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochemistry Geophysics Geosystems. v.11, p. 1-36.

Paton, C., Hellstrom, J., Paul, B., Woodhead, J., y Hergt, J. 2011. Iolite: freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. v. 26, p. 2508–2518.

Pepper, M., Gehrels, G., Pullen, A., Ibañez-Mejia, M., Ward, K. M., y Kapp, P. 2016. Magmatic history and crustal genesis of western South America: Constraints from U-Pb ages and Hf isotopes of detrital zircons in modern rivers. Geosphere. v. 12, p. doi: 10.1130/GES01315.1.

Pérez-Gutiérrez, R., Solari, L. A., Gómez-Tuena, A. y Valencia, V. A. 2009a. El terreno Cuicateco: ¿cuenca oceánica con infl uencia de subducción del Cretácico Superior en el sur de México? Nuevos datos estructurales, geoquímicos y geocronológicos. Revista Mexicana de Ciencias Geológicas. v. 26, p. 222-242

Pérez-Gutiérrez, R., Solari, L. A., Gómez-Tuena, A., y Martens, U. 2009b. Mesozoic geologic evolution of the Xolapa migmatitic complex north of Acapulco, southern Mexico: implications for paleogeographic reconstructions. Revista Mexicana de Ciencias Geológicas. v. 26, p. 201-221.

Pérez-Venzor, J. A. 2012. Estudio geológico-geoquímico del borde oriental del Bloque de Los Cabos Baja California Sur, México. [Tesis doctoral]. Universidad Nacional Autónoma de México, 297p.

Petrus, J. A., y Kamber, B.S. 2012. VizualAge: a novel approach to laser ablation ICP–MS U–Pb geochronology data reduction. Geostandars y Geoanalytical Research. v.36, p. 247–270.

Pimentel, M. M. y Fuck. R. A. 1992. Neoproterozoic crustal accretion in central Brazil. Geology. v.20, p. 375-379.

Pindell, J., y Dewey, J. F., 1982. Permo-Triassic reconstruction of western Pangea and the evolution of the Gulf of Mexico/Caribbean region. Tectonics, v. 1, p. 179-211.

Pollock, J. C., Hibbard, J. P., y van Staal, C. R. 2012. A paleogeographical review of the peri-Gondwanan realm of the Appalachian orogen. Canadian Journal of Earth Sciences. v. 49, p. 259-288.

Pollock, J. C., Sylvester, P. J., y Barr, S. M. 2015. Lu–Hf zircon and Sm–Nd whole-rock isotope constraints on the extent of juvenile arc crust in Avalonia: examples from Newfoundland and Nova Scotia, Canada. Canadian Journal of Earth Sciences. v. 52, p. 161–181.

Pompa-Mera, V., Schaaf, P., Hernández-Treviño, T., Weber, B., Solís-Pichardo, G., y Villanueva-Lascurain, D., Layer, P. 2013. Geology, geochronology, and geochemistry of Isla María Madre, Nayarit, Mexico. Revista Mexicana De Ciencias Geológicas. v. 30, p. 1–23.

Ponce, B. F., y Clark, K. F. 1988. The Zacatecas mining district: A Tertiary caldera complex associated with precious and base metal mineralization. Economic Geology. v. 83, p. 1668-82

Ranson, W. A., Fernández, L. A., SimmonS Jr., W. B., y Enciso-De La Vega, S. 1982. Petrology of the metamorphic rocks of Zacatecas, Zac., Mexico. Boletín de la Sociedad Geológica Mexicana. Tomo XLIII, p. 37-59

Riggs, N. R, Reynolds, S. J., Lindner, P. J., Howell, E. R., Barth, A. P., Parker, W. G., y Walker, J. D. 2013. The Early Mesozoic Cordilleran arc and Late Triassic paleotopography: The detrital record in Upper Triassic sedimentary successions on and off the Colorado Plateau. Geosphere. DOI: 10.1130/GES00860.1.

Rino, S., Kon, Y., Sato, W., Maruyama, S., Santosh, M., y Zhao, D., 2008, The Grenvillian and Pan-African orogens: World's largest orogenies through geologic time, and their implications on the origin of superplume. Gondwana Research. v. 14, p. 51-72.

Rubatto, D. 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chemical Geology. v. 184, p. 123–138.

Rubio-Cisneros, I. I., y Lawton, T. F. 2011. Detrital zircon U-Pb ages of sandstones in continental red beds at Valle de Huizachal, Tamaulipas, NE Mexico: Record of Early-Middle Jurassic arc volcanism and transition to crustal extension. Geosphere, v. 7, p. 159-170.

Ruiz, J., Patchett, P. J., y Ortega-Gutiérrez, F. 1988. Proterozoic and Phanerozoic basement terranes of Mexico from Nd isotopic studies. Geological Society of America Bulletin. v. 100, p. 274-81.

Ruiz, J., Talavera-Mendoza, O., y Gehrels, G. 2004a. Correlation Paleozoic and Proterozoic terranes of southern Mexico with the northern Andes based on U-Pb geochronology of detrital zircons. Geos, v. 24, p. 295.

Ruiz, A. S., Geraldes, M. C., Matos, J. B., Teixeira, W., Van Schmus, W. R., y Schmitt, R., S. 2004b. The 1590-1520 Ma Cachoeirinha magmatic arc and its tectonic implications for the Mesoproterozoic SW Amazonian craton crustal evolution. An. Acad. Bras. Ciênc.v. 76, p. 807-824.

Ruiz, J., Tosdal, R. M., Restrepo, P. A., Murillo-Muñetón, G. 1999. Pb isotope evidence for Colombia–southern Mexico connections in the Proterozoic. Geological Society of America Special Papers. v. 336, p. 183–197.

Sánchez-Zavala, J. L., Ortega-Gutiérrez, F., Keppie, J. D., Jenner, G. A., Belousova, E. y Macías-Romo, C. 2004. Ordovician and Mesoproterozoic zircons from Tecomate Formation and Esperanza granitoids, Acatlán Complex, southern Mexico: Local provenance in Acatlán and Oaxacan complexes. International Geology Review. v. 46, p. 1005-1021.

Santamaría, O. D. Arenas, P. R., Escamilla, H. A. 1990. Normalización de la nomenclatura estratigráfica de las cuencas Mesozoicas de México. (Etapa 1: Zona Norte. Cretácico). Instituto Mexicano del Petróleo (inédito).

Schaaf, P., Böhnel, H., y Pérez-Venzor, J. A. 2000. Pre-Miocene palaeogeography of the Los Cabos Block, Baja California Sur: geochronological and palaeomagnetic constraints. Tectonophysics. v. 318, pp. 53–69

Scherer, E., Münker, C., y Mezger, K. 2001. Calibration of the Lutetium-Hafnium clock. Science. v. 293, p. 683-687.

Scherer, E. E., Whitehouse, M. J., y Münker, C. 2007. Zircon as a Monitor of Crustal Growth. Elements. v. 3, p. 19-24.

Schulze, C. 2011. Petrología y geoquímica de las rocas del área de Pluma Hidalgo, Oaxaca e implicaciones tectónicas para el Proterozoico de Oaxaquia. [Tesis doctoral] Universidad Autónoma Nacional de México, 311 pp.

Schulze, C. H., Keppie, J. D., Ortega-Rivera, A., Ortega-Gutiérrez F., Lee, J. K. W. 2004. Mid-Tertiary cooling ages in the Precambrian Oaxacan Complex of southern Mexico: indication of exhumation and inland arc migration. Revista Mexicana de Ciencias Geológicas. v. 21, pp. 203-211.

Sedlock, R. L., Ortega-Gutiérrez, F., y Speed, R. C. 1993. Tectonostratigraphic terranes and tectonic evolution of Mexico. Geological Society of America Special Paper 278, p. 1-153.

Segerstrom, K. 1961. Estratigrafía del área de Bernal-Jalpan, Estado de Querétaro: Asociación Mexicana de Geólogos Petroleros. v. 13, p. 183-206.

Servicio Geológico Mexicano. 1998. Carta-Geológico-Minera F14C45, escala 1:5000, Mineral de Pozos, Guanajuato.

Sierra-Rojas, M. I., y Molina-Garza, R. S. 2014. La Formación Zicapa del sur de México: revisión estratigráfica, sedimentología y ambientes sedimentarios. Revista Mexicana de Ciencias Geológicas. v. 3, p. 1174–1189.

Sierra-Rojas, M. I., Molina-Garza, R. S., y Lawton, T. F. 2016. The Lower Cretaceous Atzompa Formation in south-central Mexico: Record of evolution from extension back-arc basin margin to carbonate platform. Journal of Sedimentary Research. v. 86, p.1-31. DOI: http://dx.doi.org/10.2110/jsr.2016.45

Silva-Romo, G., Arellano-Gil, J., Mendoza-Rosales, C., y Nieto-Obregón, J. 2000. A submarine fan in the Mesa Central, Mexico. Journal of South American Earth Sciences. v.13, p. 429-442.

Silva-Romo, G., Mendoza-Rosales, C. C., Campos-Madrigal, E., Centeno-García, E., y Peralta-Salazar, R. 2015. Early Mesozoic Southern Mexico–Amazonian connection based on U–Pb ages from detrital zircons: The La Mora Paleo-River in the Mixteca Terrane and its paleogeographic and tectonic implications. Gondwana Research. v. 28, p. 689-701.

Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., y Whitehouse, M.J. 2008. Plešovice zircon -A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology. v. 249, p.1-35.

Söderlun, U., Patchett, P. J., Vervoort, J. D., y Isachsen, C. E. 2004. The ¹⁷⁶Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters. v. 219, p. 311-324.

Solari, L., Dostal, J., Ortega-Gutiérrez, F., y Keppie, J. D. 2001. The 275 Ma arc-related La Carbonera stock in the Northern Oaxacan Complex of southern Mexico: U-Pb geochronology and geochemistry. Revista Mexicana de Ciencias Geológicas. v. 18, p. 149-161.

Solari, L., Keppie, J. D., Ortega-Gutiérrez, F., Cameron, K., Lopez, R., yHames, W. 2003. 990 and 1100 Ma Grenvillian tectonothermal events in the northern Oaxacan Complex, southern Mexico: roots of an orogen. Tectonophysics. v. 365, p. 257–282.

Solari, L. A., Keppie, J. D., Ortega-Gutiérrez, F., Cameron, K. L., Lopez, R. 2004. \sim 990 Ma peak granulitic metamorphism and amalgamation of Oaxaquia, Mexico: U – Pb zircon geochronological and common Pb isotopic. Revista Mexicana de Ciencias Geológicas. v. 21. p. 212-225.

Solari, L. A., Torres de León, R., Hernández Pineda, G., Solé, J., Solí-Pichardo, G., y Hernández-Treviño, T. 2007. Tectonic significance of Cretaceous-Tertiary magmatic and structural evolution of the northern margin of the Xolapa Complex, Tierra Colorada area, southern Mexico. Geological Society of America Bulletin. v. 119, p. 1265-1279.

Solari, L. A., Gómez-Tuena, A., Bernal, J. P., Pérez-Arvízu, O., Tanner, M. 2010a. U-Pb Zircon Geochronology with an Integrated LA-ICP-MS Microanalytical Workstation: Achievements in Precision and Accuracy. Geostandards and Geoanalytical Research. v. 34, p. 5-18.

Solari, L., Ortega-Gutiérrez, F., Elías-Herrera, M., Gómez-Tuena, A., y Schaaf, P. 2010b. Refining the age of magmatism in the Altos Cuchumatanes, western Guatemala, by LA–ICPMS, and tectonic implications. International Geology Review. v. 52, p. 977–998.

Solari, L. A., Gómez-Tuena, A., Ortega-Gutiérrez, F., y Ortega-Obregón, C. 2011. The Chuacús metamorphic complex, central Guatemala: Geochronological and geochemical constraints on its Paleozoic–Mesozoic evolution. Geologica Acta. v. 9, p. 1–21

Solari, L. A., Ortega-Gutiérrez, F., Elías-Herrera, M., Ortega-Obregón, C., Macías-Romo, C. y Reyes-Salas, M. 2014. Detrital provenance of the Grenvillian Oaxacan Complex, southern Mexico: a zircon perspective. International Journal of Earth Sciences. v. 103, p. 1301–1315.

Solé, J., Salinas, J. C., González-Torres, E. y Cendejas-Cruz, J. E. 2007. Edades K/Ar de 54 rocas ígneas y metamórficas del occidente, centro y sur de México. Revista Mexicana de Ciencias Geológicas. v. 24, p. 104-119.

Spencer, C. J., Cawood, P. A., Hawkesworth, C. J., Prave, A. R. Roberts, N. M. W., Horstwood, M. S. A., Whitehouse, M, J. 2015. Generation and preservation of continental crust in the Grenville Orogeny. Geoscience Frontiers. v. 6, p. 357-372.

Stampfli, G. M., Hochard, C., Vérard, C., Wilhem, C., y vonRaumer, J. 2013. The formation of Pangea. Tectonophysics. v. 593, p. 1-19.

Stein, G., Lapierre, H., Monod, O., Zimmermann, J. L., Vidal, R. 1994. Petrology of Some Mexican Mesozoic-Cenozoic Plutons: Sources and Tectonic Environments. Journal of South American Earth Sciences. v. 7, p.1-7.

Stern, R. J., y Dickinson, W. R. 2010. The Gulf of Mexico is a Jurassic backarc basin: Geosphere. v. 6, p. 739–754.

Stern, R. J., y Scholl, D. W. 2010. Yin and yang of continental crust creation and destruction by plate tectonic processes. International Geology Review. v. 52, p. 1–31, doi:10.1080/00206810903332322.

Suter, M. 1987. Structural traverse across the Sierra Madre Oriental fold-thrust belt in eastcentral Mexico. Geological Society of America Bulletin. v. 98, p. 249-264.

Stewart, J. H., Blodgett, R. B., Boucot, A. J., Carter, J. L., and Lopez, R. 1999. Exotic Paleozoic strata of Gondwanan provenance near Ciudad Victoria, Tamaulipas, Mexico, *en* Ramos, V. A., and Keppie, J. D., *eds*. Laurentia-Gondwana connections before Pangea: Geological Society of America Special Paper 336, p. 227–252.

Talavera-Mendoza, O. 2000. Mélanges in southern Mexico: geochemistry and metamorphism of Las Ollas complex (Guerrero terrane). Canadian Journal of Earth Sciences. v. 37, p. 1309-1320.

Talavera-Mendoza, O., y Guerrero-Suastegui. M. 2000. Geochemistry and isotopic composition of the Guerrero Terrane (western Mexico): Implications for the tectonomagmatic evolution of southwestern North America during the Late Mesozoic. Journal of South American Earth Sciences. v 13, p. 297–324.

Talavera-Mendoza, O., Ramírez-Espinosa, J., y Guerrero-Suástegui, M. 1993. Geochemical evolution of the Guerrero Terrane - Example of a Late Mesozoic multi-arc system: Proceedings of the First Circum-Pacific and Circum-Altantic Terrane Conference, Guanajuato, Mexico. Universidad Nacional Autónoma de México. Instituto de Geología. p. 150-152.

Talavera, O., Ramírez, J., y Guerrero, M. 1995. Petrology and geochemistry of the Teloloapan Subterrane: a Lower Cretaceous evolved intra-oceanic island arc. Geofísica Internacional. v. 34, p. 3-22.

Talavera-Mendoza, O., Ruiz, J., Gehrels, G. E., Meza-Figueroa, D. M., Vega-Granillo, R., y Campa-Uranga, M. F. 2005. U-Pb geochronology of the Acatlán Complex and implications for the Paleozoic paleogeography and tectonic evolution of southern Mexico. Earth and Planetary Science Letters. v. 235, p. 682-699.

Talavera-Mendoza, O., Ruiz, J., Gehrels, G. E., y Valencia, V. A. 2007. Detrital zircon U/Pb geochronology of southern Guerrero and western Mixteca arc successions (southern Mexico): New insights for the tectonic evolution of southwestern North America during the late Mesozoic: Geological Society of America Bulletin. v. 119, p. 1052–1065.

Talavera-Mendoza, O., Ruiz, J., Corona-Chávez, P., Gehrels, G. E., Sarmiento-Villagrana, A., García-Díaz, J. L., y Salgado-Souto, S. A. 2013. Origin and provenance of basement metasedimentary rocks from the Xolapa Complex: New constraints on the Chortis-southern Mexico connection. Journal Earth and Planetary Science Letters. v. 369-370, p. 188-199.

Tardy, M., Lapierre, H., Bourdier, J. L., Coulon, C., Ortíz-Hernández, L. E., y Yta, M. 1992. Intraoceanic setting of the western Mexico Guerrero terrane-Implications for the Pacific-Tethys geodynamic relationships during the Cretaceous. Revista del Instituto de Geología, v. 10, p. 118-128.

Tardy, M., Lapierre, H., Freydier, C., Coulon, C., Gill, J., Mercier de Lepinay, B., Beck, C., Martínez, J., Talavera Mendoza, O., Ortiz, E., Stein, G., y Yta, M. 1994. The Guerrero suspect terrane (western México) and coeval arc terranes (the Greater Antilles and the western Cordillera of Colombie): A late Mesozoic intra-oceanic arc accreted during Late Cretaceous. Tectonophysics. v. 230, p. 49–73,

Tassinari, C. C. G., y Macambira. M. J. B., 1999, Geochronological provinces of the Amazonian Craton: Episodes. v. 22, p. 174-182.

Tetreault, J. L., y Buiter, S. J. H. 2014. Future accreted terranes: a compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments. Solid Earth. v 5, p. 1243–1275.

Thomas, W. A. 2006. Tectonic inheritance at a continental margin. GSA Today. v. 16, p. 4-11.

Thomas, W. A. 2011. Detrital-zircon geochronology and sedimentary provenance. Lithosphere. v. 3, p. 304-308.

Tohver, E., Bettencourt, J. S., Tosdal, R., Mezger, W. B., Leite, W. B., y Payolla, B. L. 2004. Terrane transfer during the Grenville orogeny: tracing the Amazonian ancestry of southern Appalachian basement through Pb and Nd isotopes. Earth and Planetary Science Letters. v. 228, p.161–176.

Tolson, G. 2005. La falla Chacalapa en el sur de Oaxaca. Boletín de la Sociedad Geológica Mexicana. v. 57, p. 111–122.

Tolson, G. 2007. The Chacalapa fault, southern Oaxaca, México. The Geological Society of America, Special Paper. v. 422, p. 343-357.

Torres, R., Ruiz, J., y Patchett, P. J. 1999. Permo-Triassic continental arc in eastern Mexico: Tectonic implications for recontructions of southern North America: Geological Society of America Special paper v. 340, p. 191-196.

Trainor, R. J., Nance, R. D., y Keppie, J. D. 2011. Tectonothermal history of the Mesoproterozoic Novillo Gneis of eastern Mexico: support for coherent Oaxaquia microcontinent. Revista Mexicana de Ciencias Geológicas. v. 28, p. 580-592.

Tristán-González M., Torres-Hernández, J. R., Labarthe-Hernández, G., Aguillón-Robles, A. y Yza-Guzmán, R. 2012. Control estructural para el emplazamiento de vetas y domos félsicos en el distrito minero de Zacatecas, México. Boletín de la Sociedad Geológica Mexicana. v. 64, p. 353-367.

Valencia, V. A., Barra, F., Weber, B., Ruiz, J., Gehrels, G., Chesley, J., y Lopez-Martínez, M. 2006. Re–Os and U–Pb geochronology of the El Arco porphyry copper deposit, Baja California

Mexico: Implications for the Jurassic tectonic setting. Journal of South American Earth Sciences. v. 22, pp. 39-51.

Valencia, V. A., Righter, K., Rosas-Elguera, J., López-Martínez, M., y Grove, M. 2013. The age and composition of the pre-Cenozoic basement of the Jalisco Block: implications for and relation to the Guerrero composite terrane. Contributions to Mineralogy and Petrology. v. 166, pp. 801-824.

van der Lelij, R., Spikings, R., y Mora, A. 2016. Thermochronology and Tectonics of the Mérida Andes and the Santander Massif, NW South America. LITHOS. doi: 10.1016/j.lithos.2016.01.006

Vega-Granillo, R., Salgado-Souto, S., Herrera-Urbina, S., Valencia, V., Ruiz, J., Meza-Figueroa, D., y Talavera-Mendoza, O. 2008. U-Pb detrital zircon data of the Rio Fuerte Formation (NW Mexico): its peri-Gondwanan provenance and exotic nature in relation to southwestern North America. Journal South American Earth Sciences. v. 26, p. 343-354.

Vega-Granillo, R., Salgado Souto S., Herrera Urbina S., Valencia Gómez, V., y Vidal-Solano, J. R. 2011. Metamorphism and deformation in the El Fuerte region: their role in the tectonic evolution of NW Mexico. Revista Mexicana de Ciencias Geológicas. v 28, p. 10-23.

Vega-Granillo, R., Vidal-Solano, J. R., y Herrera-Urbina, S. 2012. Island arc tholeiites of Early Silurian, Late Jurassic and Late Cretaceous ages in the El Fuerte region, northwestern Mexico. Revista Mexicana de Ciencias Geológicas. v. 29, p.492-513.

Vega-Granillo, R., Vidal-Solano, J. R., Solari, L., López-Martínez, M., Gómez-Juárez, D. S., y Herrera-Urbina, S. 2013. Geochemical and geochronological constraints on the geologic evolution of the western Sonobari Complex, northwestern México. Geologica Acta. v. 11, p. 44 - 463.

Vermeesch, P. 2004. How many grains are needed for a provenance study?. Earth and Planetary Science Letters. v. 224, p. 441 – 451

Vervoort, J. D. y Blichert-Toft, J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta. v. 63, p. 533–566.

Vervoort, J. D., Patchett, P. J., Gehrels, G.E., y Nutman, A. P. 1996. Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature. v. 379, p. 624–627.

Villanueva-Lascurain, D., Solís-Pichardo, G., Schaaf, P., Hernández-Treviño, T., Salazar-Juárez, J., y Corona-Chávez, P. 2016. Age and origin of the gabbros in the Jilotlán pluton, Jalisco: primitive magmatic rocks in the southern part of the Guerrero terrane. Revista Mexicana de Ciencias Geológicas. v. 33, p. 136-156.

Walker, T. R. 1984. Diagenetic albitization of potassium feldspar in arkosic sandstones: Journal of Sedimentary Petrology. v. 54, p. 3-16.

Weber, B., y Köhler, H. 1999. Sm–Nd, Rb–Sr and U–Pb geochronology of a Grenville Terrane in Southern Mexico: origin and geologic history of the Guichicovi Complex. Precambrian Research. v. 96, p. 245-262.

Weber, B., y Hecht, L. 2003. Petrology and geochemistry of metaigneous rocks from a Grenvillian basement fragment in the Maya block: the Guichicovi Complex, Oaxaca, southern Mexico. Precambrian Research. v. 124, p. 41-67.

Weber, B., y Schulze, C. H. 2014. Early Mesoproterozoic (>1.4 Ga) ages from granulite basement inliers of SE Mexico and their implications on the Oaxaquia concept – Evidence from U-Pb and Lu-Hf isotopes on zircon. Revista Mexicana de Ciencias Geológicas. v. 31, p. 377-394.

Weber, B., Morán-Zenteno, D. J., Söllner, F. y Köhler, H. 1997. Magmatic and metamorphic evolution of the Grenville-Age Guichicovi Complex in southern Mexico. Seventh Annual V. M. Goldschmidt Conference.

Weber, B., Schaaf, P., Valencia, V. A., Iriondo, A., y Ortega-Gutiérrez, F. 2006. Provenance ages of late Paleozoic sandstone (Santa Rosa Formation) from the Maya block, SE Mexico. Implications on the tectonic evolution of western Pangea. Revista Mexicana de Ciencias Geológicas. v. 23, p. 262–276.

Weber, B., Iriondo, A., Premo, W. R., Hecht, L., Schaaf, P. 2007. New insights into the history and origin of the southern Maya block, SE México: U-SHRIMP zircon geochronology from metamorphic rocks of the Chiapas massif. International Journal of Earth Sciences (Geologische Rundschau) v. 96, p. 253–269.

Weber, B., Valencia, V. A., Schaaf, P., Pompa-Mera, V., Ruiz, J. 2008. Signi!cance of provenance ages from the Chiapas Massif complex (SE Mexico): rede!ning the Paleozoic basement of the Maya block and its evolution in a peri-Gondwanan realm. Journal of Geology. v.116, p. 619–639.

Weber, B., Valencia, V., Schaaf, P., y Ortega-Gutiérrez, F. 2009. Detrital zircon ages from the Lower Santa Rosa Formation, Chiapas: implications on regional Paleozoic stratigraphy. Revista Mexicana de Ciencias Geológicas. v. 26, p. 260-276.

Weber, B., Scherer, E. E., Schulze, C., Valencia, V. A., Montecinos, P., Mezger, K., Ruiz, J. 2010. U–Pb and Lu–Hf isotope systematics of lower crust from central-southern Mexico – Geodynamic significance of Oaxaquia in a Rodinia Realm. Precambrian Research. v. 182, p. 149-162.

Weber, B., Scherer, E. E., Mezger, K., Ruiz, J. 2011. Evolution of the lower crust from S. Mexico: constraints from Lu–Hf isotopes and U–Pb ages in zircon: Goldschmidt 2011 abstracts, Mineralogical Magazine. v. 75, p. 2137.

Weber, B., Scherer, E. E., Martens, U. K., Mezger, K. 2012. Where did the lower Paleozoic rocks of Yucatan come from? A U–Pb, Lu–Hf, and Sm–Nd isotope study. Chemical Geology. v. 312-313, p. 1-17.

Webster, I., Ford, P., Robson, B., Margvelashvili N. & Parslow J. 2003. Conceptual models of the hydrodynamics, fine sediment dynamics, biogeochemistry and primary production in the

Fitzroy estuary. Technical Report 8. Cooperative Research Centre for Coastal Zone. Estuary and Waterway Management, Brisbane.

Weltje, G. J., y von Eynatten, H. 2004. Quantitative provenance analysis of sediments: review and outlook. Sedimentary Geology. v. 171, p. 1-11.

Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W., Meier, M., Oberli, F., Von Quadt, A., Roddick, J., y Spiegel, W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, Trace element and REE Analyses. Geostandard Newsletter. v.19, p. 1–23.

Wilson, M. 1989. Igneous Petrogenesis: A Global Tectonic Approach. Chapman and Hall, London, 466 pp.

Woodhead, J., Hergt, J., Shelley, M., Eggins, S., y Kemp, R. 2004. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chemical Geology. v. 209, p. 121–135.

Xia, X., Sun, M., Geng, H., Sun, Y., Wang, y., Zhao, G. 2011. Quasi simultaneous determination of U-Pb and Hf isotope compositions of zircon by excimer laser-ablation multi-collector ICPMS. Journal of Analytical Atomic Spectrometry. v. 26, p. 1868-1871.

Yta, M., Moreno-Tovar, R., Cardona-Patiño, F., y Córdoba-Méndez, D. A. 2003. Contribución a la definición de superposición de eventos metalogénicos en el yacimiento de Francisco I. Madero. Revista Mexicana de Ciencias Geológicas. v. 20, p. 124-132.

Zavala-Monsiváis, A., Barboza-Gudiño, J. R., Velasco-Tapia, F., y García-Arreola, M. E. 2012. Sucesión volcánica Jurásica en el área de Charcas, San Luis Potosí: Contribución al entendimiento del Arco Nazas en el noreste de México. Boletín de la Sociedad Geológica Mexicana. v. 64, p. 277-93.

Zuffa, G. G. 1985. Optical analyses of arenitas: influence of methodology of compositional results, *en* Provenance of arenites (eds G. G. Zuffa) p. 165-189. The Netherlands, Dordrecht, Reidel.

ANEXO 1. Geocronología U-Pb de las áreas de Tolimán y Mineral de Pozos

T11-01	Comple	io Fl Chil	ar	x 411677	y 2307638	8																						
111-01	Comple	jo Ei Cilli	aı	4110/7	2507050	5	CORRE	CTED RAT	TIOS						CORRE	СТЕІ	D AGES (N	Ma)										
	U (ppm)	U (ppm) Th Th/U 2 (ppm) Th/U F		207Рb/206 Рb	±1s	207РЬ/23 U	³⁵ ±1s	206Pb/23 U	8 ±1s	208Pb/23 Th	2 ±1s	Rho	206Pb/ U	238 ±1s	207Pb/23 5U	3 ±1s	207Pb/2 Pb	06 ±1s	208Pb/2 Th	³² ±1s	Best ag (Ma)	e ±1s	% disc	238U/20 Pb	⁹⁶ 1s	207Pb/20 Pb	⁶ 1s	rTW
7. 1 7.11 01 000	261	01	0.22	0.07724	0.00121	1.0056	0.0265	0.10(22	0.0012	0.05.482	0.00115	0.20	1101	7		10	1120	20	1070	22	1120	20.0	0.0	5.07	0.027	0.07724	0.00121	0.00017
Zircon_1_111_01_008 Zircon_100_125	261	91 73	0.33	0.07734	0.00131	1.9856	0.0365	0.18623	0.0013	0.05482	0.00115	0.39	274	2	284	12	371	30 61	1079	22	274	30.0	0.9	5.37 22.994	0.037	0.07734	0.00131	-0.00017
Zircon 11 020	114	53	0.43	0.06021	0.00169	0.62079	0.01846	0.07495	0.00075	0.02243	0.00054	0.33	466	4	490	12	611	54	448	11	466	4.0	4.9	13.342	0.134	0.06021	0.00169	-0.000087
Zircon_12_021	77	48	0.58	0.05985	0.00186	0.61631	0.02027	0.07528	0.00083	0.02314	0.00065	0.33	468	5	488	13	598	60	462	13	468	5.0	4.1	13.284	0.146	0.05985	0.00186	-0.000095
Zircon_14_023	108	41	0.35	0.07099	0.00128	1.6343	0.03128	0.16728	0.00109	0.05014	0.00115	0.34	997	6	984	12	957	33	989	22	997	6.0	-1.3	5.978	0.039	0.07099	0.00128	-0.000147
Zircon_15_024	168	147	0.82	0.05371	0.00215	0.33119	0.01374	0.04487	0.00049	0.01368	0.00031	0.26	283	3	290	10	359	81	275	6	283	3.0	2.4	22.287	0.243	0.05371	0.00215	-0.000073
Zircon_16_026	526	286	0.51	0.05162	0.00108	0.27330	0.00636	0.03837	0.00038	0.01171	0.00028	0.44	243	2	245	5	269	45	235	20	243	2.0	0.8	26.062	0.258	0.05162	0.00108	-0.000028
Zircon 18 028	192	64	0.24	0.08043	0.00141	2.2332	0.04346	0.20194	0.00110	0.05861	0.00103	0.34	1186	8	1192	14	1208	32	1151	20	1208	32.0	0.5	4.952	0.044	0.08043	0.00141	-0.000195
Zircon_19_029	205	43	0.20	0.0797	0.00135	2.3478	0.04316	0.21398	0.0015	0.0602	0.00132	0.39	1250	8	1227	13	1190	33	1182	25	1190	33.0	-1.9	4.673	0.033	0.0797	0.00135	-0.0002
Zircon_2_009	59	34	0.54	0.0658	0.00257	0.7525	0.0303	0.08378	0.00084	0.02631	0.00068	0.24	519	5	570	18	800	81	525	13	519	5.0	8.9	11.936	0.12	0.0658	0.00257	-0.000162
Zircon_20_030	127	81	0.60	0.05898	0.00189	0.33932	0.01138	0.04209	0.00042	0.01366	0.00042	0.3	266	3	297	9	566	70	274	8	266	3.0	10.4	23.759	0.237	0.05898	0.00189	-0.000058
Zircon_21_032 Zircon_22_032	411	156	0.36	0.07882	0.00118	2.139	0.03505	0.1972	0.0013	0.05755	0.00115	0.41	1160	7	1162	11	1168	30	1131	22	1168	30.0	0.2	5.071	0.033	0.07882	0.00118	-0.000155
Zircon 24 035	409	204	0.47	0.05345	0.0015	0.33541	0.01045	0.04576	0.00038	0.01431	0.000114	0.28	288	2	294	8	348	67	287	8	288	2.0	2.0	21.853	0.181	0.05345	0.0015	-0.000193
Zircon_25_036	530	335	0.59	0.05188	0.00109	0.29448	0.00655	0.0412	0.0003	0.01252	0.00025	0.33	260	2	262	5	280	48	251	5	260	2.0	0.8	24.272	0.177	0.05188	0.00109	-0.000032
Zircon_26_038	348	228	0.61	0.05183	0.00124	0.29994	0.00771	0.04208	0.00039	0.01308	0.00027	0.37	266	2	266	6	278	55	263	5	266	2.0	0.0	23.764	0.22	0.05183	0.00124	-0.000037
Zircon_27_039	161	75	0.43	0.05304	0.00154	0.32868	0.01008	0.04518	0.00045	0.01432	0.00034	0.32	285	3	289	8	331	66	287	7	285	3.0	1.4	22.134	0.22	0.05304	0.00154	-0.000049
Zircon_28_040	266	130	0.46	0.05349	0.00139	0.31567	0.00861	0.04294	0.00035	0.01325	0.00029	0.3	271	2	279	7	350	59	266	6	271	2.0	2.9	23.288	0.19	0.05349	0.00139	-0.000045
Zircon_29_041 Zircon_3_010	135	84 47	0.58	0.05242	0.00178	0.32637	0.01177	0.04538	0.00054	0.01468	0.0004	0.34	286	3	287	9	304 1174	37	295	8	286	3.0	0.3	22.036	0.262	0.05242	0.00178	-0.000059
Zircon 30 042	247	59	0.22	0.08165	0.00122	2.3431	0.03849	0.20832	0.00174	0.05974	0.00123	0.42	1220	7	1225	12	1237	29	1173	23	1237	29.0	0.4	4.8	0.032	0.08165	0.00122	-0.000195
Zircon_31_044	229	120	0.49	0.0718	0.00115	1.6112	0.02868	0.16285	0.00127	0.04924	0.00103	0.44	973	7	975	11	980	33	972	20	973	7.0	0.2	6.141	0.048	0.0718	0.00115	-0.000116
Zircon_32_045	232	128	0.51	0.06252	0.00131	0.87542	0.01958	0.10193	0.00078	0.03169	0.00063	0.35	626	5	639	11	692	45	631	12	626	5.0	2.0	9.811	0.075	0.06252	0.00131	-0.000097
Zircon_33_046	95	39	0.38	0.08311	0.00166	2.2953	0.04856	0.19984	0.00138	0.05537	0.00188	0.33	1174	7	1211	15	1272	39	1089	36	1272	39.0	3.1	5.004	0.035	0.08311	0.00166	-0.00024
Zircon_34_047	204	107	0.49	0.07521	0.00135	1.4874	0.03138	0.1431	0.00157	0.03175	0.0007	0.53	862	9	925	13	1074	36	632	14	862	9.0	6.8	6.988	0.077	0.07521	0.00135	-0.000111
Zircon_35_048 Zircon_36_050	159	68 40	0.40	0.08429	0.00143	2.6321	0.04957	0.22678	0.00184	0.06615	0.00139	0.43	1318	10 9	1092	14	1299	55 40	1295	26	1299	33.0 40.0	-0.6	4.41 5.325	0.036	0.08429	0.00143	-0.000208
Zircon 37 051	76	48	0.59	0.05408	0.00227	0.32554	0.01431	0.04379	0.00057	0.01306	0.00039	0.4	276	4	286	11	374	95	262	8	276	4.0	3.5	22.836	0.297	0.05408	0.00227	-0.000074
Zircon_38_052	57	77	1.25	0.11615	0.00221	5.3312	0.11185	0.33473	0.00298	0.09436	0.00189	0.42	1861	14	1874	18	1898	34	1823	35	1898	34.0	0.7	2.987	0.027	0.11615	0.00221	-0.000464
Zircon_39_053	306	191	0.59	0.05336	0.002	0.33515	0.01443	0.04556	0.00046	0.01427	0.00013	0.35	287	3	293	11	344	85	286	3	287	3.0	2.0	21.951	0.221	0.05336	0.002	-0.000262
Zircon_4_011	179	382	2.00	0.06001	0.00156	0.80416	0.02207	0.09757	0.00086	0.02937	0.00059	0.32	600	5	599	12	604	56	585	12	600	5.0	-0.2	10.249	0.09	0.06001	0.00156	-0.000109
Zircon_40_054	251	55 56	0.21	0.06/58	0.00128	1.0192	0.02346	0.10955	0.00142	0.03266	0.00078	0.57	6/0	8	714	12	856	39	650 272	15	6/0	8.0	6.2	9.128	0.118	0.06758	0.00128	-0.000076
Zircon_41_056 Zircon_42_057	80 75	34	0.66	0.05867	0.00233	0.34391	0.01436	0.04267	0.00051	0.0136	0.00057	0.28	209	4	329	13	555 716	88 92	275	11	269	3.0 4.0	10.5	23.430	0.28	0.05867	0.00233	-0.000075
Zircon_43_058	94	60	0.59	0.05517	0.0021	0.34377	0.0136	0.04543	0.0005	0.01407	0.00038	0.27	286	3	300	10	419	85	282	8	286	3.0	4.7	22.012	0.242	0.05517	0.0021	-0.00007
Zircon_44_059	297	142	0.45	0.06024	0.00133	0.70713	0.01651	0.08537	0.00067	0.02583	0.00054	0.33	528	4	543	10	612	48	515	11	528	4.0	2.8	11.714	0.092	0.06024	0.00133	-0.000076
Zircon_45_060	205	63	0.29	0.08006	0.00128	2.2616	0.03996	0.20525	0.00154	0.05966	0.00125	0.43	1203	8	1200	12	1198	31	1171	24	1198	31.0	-0.3	4.872	0.037	0.08006	0.00128	-0.000168
Zircon_46_062	62	41	0.63	0.05703	0.00309	0.34819	0.0212	0.04428	0.00058	0.01376	0.00016	0.29	279	4	303	16	493	121	276	3	279	4.0	7.9	22.582	0.297	0.05703	0.00309	-0.000391
Zircon_47_063 Zircon_48_064	526	580 67	1.03	0.05312	0.00122	0.30392	0.00739	0.04161	0.00033	0.01257	0.00024	0.33	263	2	269	10	334 224	52 76	252	2	263	2.0	2.2	24.033	0.191	0.05312	0.00122	-0.000037
Zircon 49 065	168	141	0.52	0.05366	0.00132	0.333397	0.01251	0.04858	0.00048	0.01448	0.00036	0.20	318	3	321	8	357	55	324	7	318	3.0	0.9	19.763	0.197	0.05366	0.00132	-0.000051
Zircon_50_066	277	207	0.70	0.10427	0.00156	4.2049	0.06857	0.29285	0.00187	0.08322	0.00158	0.4	1656	9	1675	13	1701	25	1616	29	1701	25.0	1.1	3.415	0.022	0.10427	0.00156	-0.000311
Zircon_51_068	313	168	0.50	0.05413	0.00141	0.34091	0.00924	0.04574	0.00035	0.01362	0.00031	0.28	288	2	298	7	376	53	273	6	288	2.0	3.4	21.863	0.167	0.05413	0.00141	-0.000047
Zircon_52_069	152	39	0.24	0.07353	0.00132	1.6055	0.0326	0.15922	0.0015	0.05399	0.0013	0.47	952	8	972	13	1029	33	1063	25	952	8.0	2.1	6.281	0.059	0.07353	0.00132	-0.000129
Zircon_53_070 Zircon_54_071	46	18	0.36	0.06807	0.00177	1.4872	0.04138	0.15893	0.00157	0.0473	0.00142	0.36	951 410	9	925	17	871	49	934	27	951 410	9.0	-2.8	6.292	0.062	0.06807	0.00177	-0.000195
Zircon_55_072	230 54	33 22	0.20	0.05592	0.00129	2 0167	0.0124	0.06711	0.00046	0.02046	0.00047	0.28	419	9	425	8 18	1090	47	409 1146	28	419	3.0 45.0	-1.8	5 163	0.102	0.05592	0.00129	-0.000062
Zircon_56_074	65	62	0.90	0.08556	0.00171	2.3708	0.05134	0.20066	0.00167	0.06182	0.00124	0.38	1179	9	1234	15	1328	35	1212	24	1328	35.0	4.5	4.984	0.041	0.08556	0.00171	-0.00023
Zircon_57_075	214	66	0.29	0.08093	0.00129	2.3434	0.04121	0.21012	0.00153	0.05912	0.00124	0.42	1229	8	1226	13	1220	28	1161	24	1220	28.0	-0.2	4.759	0.035	0.08093	0.00129	-0.000181
Zircon_58_076	426	89	0.20	0.07378	0.00111	1.7437	0.02909	0.17164	0.00125	0.05083	0.00102	0.43	1021	7	1025	11	1035	28	1002	20	1035	28.0	0.4	5.826	0.042	0.07378	0.00111	-0.000117
Zircon_59_077	532	117	0.21	0.07064	0.00106	1.6228	0.02679	0.16677	0.00115	0.04929	0.00108	0.42	994	6	979	10	947	28	972	21	994	6.0	-1.5	5.996	0.041	0.07064	0.00106	-0.000113
Zircon_6_014 Zircon_61_079	506	47 306	0.37	0.07218	0.00144	1.6743	0.03553	0.16859	0.0012	0.0499	0.00115	0.34	282	3	999 283	13	208	37	984 296	22	1004	7.0	-0.5	5.932 22.381	0.042	0.07218	0.00144	-0.000176
Zircon 64 082	252	208	0.77	0.05371	0.00287	0.32192	0.0189	0.04347	0.00043	0.0136	0.00013	0.43	274	3	283	15	359	111	273	3	232	3.0	3.2	22.301	0.233	0.05371	0.00287	-0.00043
Zircon_65_083	226	28	0.11	0.07301	0.00117	1.7166	0.02984	0.1705	0.00116	0.05444	0.00131	0.39	1015	6	1015	11	1014	29	1071	25	1014	29.0	0.0	5.865	0.04	0.07301	0.00117	-0.00013
Zircon_66_085	337	75	0.21	0.07622	0.0013	1.9142	0.03512	0.18246	0.00126	0.05419	0.00114	0.37	1080	7	1086	12	1101	31	1067	22	1101	31.0	0.6	5.481	0.038	0.07622	0.0013	-0.000154
Zircon_67_086	480	58	0.11	0.07266	0.00109	1.6147	0.02753	0.16138	0.00131	0.05532	0.00144	0.48	964	7	976	11	1004	30	1088	28	964	7.0	1.2	6.197	0.05	0.07266	0.00109	-0.000104
Zircon_69_088	774	87	0.10	0.08031	0.00112	2.1698	0.03531	0.19621	0.00163	0.04877	0.00176	0.52	1155	9	1171	11	1205	27	962	34	1205	27.0	1.4	5.097	0.042	0.08031	0.00112	-0.000128
Zircon_7_015	295	101	0.32	0.08073	0.00129	2.2784	0.04056	0.20515	0.0016	0.05949	0.00119	0.44	1203	9	1206	13	1215	31	1168	23	1215	31.0	0.2	4.8/4	0.038	0.08073	0.00129	-0.000167
Zircon 71 091	111	36	0.28	0.06151	0.00134	0.79595	0.02346	0.09365	0.000228	0.02988	0.000131	0.32	577	5	595	13	657	55	595	16	577	5.0	-4.0	4.393	0.044	0.06151	0.00134	-0.000172
Zircon_72_092	249	103	0.39	0.07925	0.00127	2.127	0.03844	0.19511	0.00164	0.05886	0.00129	0.46	1149	9	1158	12	1178	31	1156	25	1178	31.0	0.8	5.125	0.043	0.07925	0.00127	-0.000148
Zircon_74_094	212	76	0.33	0.07313	0.00132	1.7277	0.03389	0.17165	0.00134	0.04843	0.00107	0.39	1021	7	1019	13	1018	36	956	21	1018	36.0	-0.2	5.826	0.045	0.07313	0.00132	-0.000144
Zircon_75_095	143	39	0.26	0.08142	0.00138	2.2796	0.04191	0.20352	0.00142	0.06038	0.00127	0.39	1194	8	1206	13	1232	32	1185	24	1232	32.0	1.0	4.914	0.034	0.08142	0.00138	-0.000195
Zircon_76_097	118	50	0.40	0.05373	0.00156	0.29827	0.00925	0.04062	0.00045	0.01272	0.00034	0.35	257	3	265	7	360	64	255	7	257	3.0	3.0	24.618	0.273	0.05373	0.00156	-0.000042
zircon_//_098	221	110	0.45	0.07646	0.0013	2.0328	0.03777	0.1929	0.00145	0.05836	0.00117	0.4	1137	8	1127	13	1107	33	1146	22	1107	35.0	-0.9	5.184	0.039	0.07646	0.0013	-0.000162

Zircon_78_099	109	32	0.27	0.07809	0.00141	2.1233	0.0414	0.19729	0.00148	0.05646	0.00136	0.38	1161	8	1156	13	1149	35	1110	26	1149	35.0	-0.4	5.069	0.038	0.07809	0.00141	-0.000179
Zircon_79_100	209	128	0.57	0.07847	0.00133	2.108	0.03934	0.19509	0.0015	0.05487	0.00104	0.42	1149	8	1151	13	1159	33	1080	20	1159	33.0	0.2	5.126	0.039	0.07847	0.00133	-0.000173
Zircon_8_016	515	132	0.24	0.08028	0.00112	2.3448	0.03713	0.21216	0.00157	0.06161	0.00117	0.47	1240	8	1226	11	1204	27	1208	22	1204	27.0	-1.1	4.713	0.035	0.08028	0.00112	-0.000147
Zircon_80_101	168	112	0.63	0.07889	0.00142	2.0581	0.04037	0.18968	0.00148	0.05572	0.00111	0.4	1120	8	1135	13	1169	35	1096	21	1169	35.0	1.3	5.272	0.041	0.07889	0.00142	-0.000176
Zircon_81_103	123	44	0.34	0.05524	0.0021	0.37245	0.01458	0.04904	0.00046	0.01573	0.00042	0.24	309	3	321	11	422	83	315	8	309	3.0	3.7	20.392	0.191	0.05524	0.0021	-0.00008
Zircon_82_104	155	63	0.38	0.08264	0.00132	2.4488	0.04287	0.21474	0.00152	0.0624	0.00131	0.41	1254	8	1257	13	1261	30	1223	25	1261	30.0	0.2	4.657	0.033	0.08264	0.00132	-0.000189
Zircon_84_106	120	58	0.45	0.07919	0.0015	2.1092	0.04308	0.19339	0.00145	0.05739	0.00138	0.37	1140	8	1152	14	1177	37	1128	26	1177	37.0	1.0	5.171	0.039	0.07919	0.0015	-0.000204
Zircon_85_107	160	57	0.34	0.08451	0.00161	2.6006	0.05351	0.22373	0.00177	0.06389	0.00141	0.38	1302	9	1301	15	1304	36	1252	27	1304	36.0	-0.1	4.47	0.035	0.08451	0.00161	-0.000233
Zircon_86_109	120	58	0.46	0.05306	0.0017	0.34896	0.01155	0.04777	0.00041	0.01429	0.00037	0.25	301	3	304	9	331	71	287	7	301	3.0	1.0	20.934	0.18	0.05306	0.0017	-0.000059
Zircon_87_110	346	75	0.20	0.06555	0.00111	1.0834	0.02074	0.11973	0.00105	0.03884	0.00085	0.47	729	6	745	10	792	34	770	17	729	6.0	2.1	8.352	0.073	0.06555	0.00111	-0.000084
Zircon_88_111	152	36	0.22	0.07357	0.00132	1.676	0.03322	0.16569	0.00138	0.04979	0.00115	0.42	988	8	999	13	1030	34	982	22	1030	34.0	1.1	6.035	0.05	0.07357	0.00132	-0.000143
Zircon_89_112	210	194	0.87	0.0527	0.00137	0.31482	0.00856	0.04344	0.00035	0.01354	0.00027	0.29	274	2	278	7	316	56	272	5	274	2.0	1.4	23.02	0.185	0.0527	0.00137	-0.000043
Zircon_9_017	174	60	0.32	0.07107	0.00128	1.6119	0.03188	0.16481	0.00135	0.04852	0.00102	0.41	983	7	975	12	959	35	958	20	983	7.0	-0.8	6.068	0.05	0.07107	0.00128	-0.000135
Zircon_90_113	420	120	0.27	0.07904	0.00126	2.1181	0.03627	0.19459	0.00119	0.05346	0.00112	0.37	1146	6	1155	12	1173	30	1053	21	1173	30.0	0.8	5.139	0.031	0.07904	0.00126	-0.000175
Zircon_91_115	236	114	0.45	0.0531	0.00195	0.32591	0.01372	0.04452	0.0005	0.01395	0.00015	0.37	281	3	286	11	333	79	280	3	281	3.0	1.7	22.463	0.252	0.0531	0.00195	-0.000191
Zircon_92_116	79	32	0.38	0.07334	0.00176	1.7027	0.04313	0.16864	0.00137	0.04953	0.00119	0.32	1005	8	1010	16	1023	46	977	23	1023	46.0	0.5	5.93	0.048	0.07334	0.00176	-0.000212
Zircon_93_117	174	54	0.29	0.07294	0.00139	1.6606	0.03392	0.1651	0.00124	0.04915	0.00103	0.36	985	7	994	13	1012	36	970	20	985	7.0	0.9	6.057	0.045	0.07294	0.00139	-0.00015
Zircon_94_118	124	90	0.68	0.05438	0.00207	0.32913	0.01302	0.04417	0.00049	0.01369	0.00037	0.27	279	3	289	10	387	81	275	7	279	3.0	3.5	22.64	0.251	0.05438	0.00207	-0.000066
Zircon_95_119	142	98	0.64	0.07398	0.00126	1.448	0.02759	0.14224	0.00122	0.04173	0.00088	0.45	857	7	909	11	1041	32	826	17	857	7.0	5.7	7.03	0.06	0.07398	0.00126	-0.000109
Zircon_96_121	53	65	1.14	0.07313	0.00205	1.4233	0.04208	0.14148	0.00134	0.04277	0.00094	0.32	853	8	899	18	1018	54	847	18	853	8.0	5.1	7.068	0.067	0.07313	0.00205	-0.000205
Zircon_97_122	106	24	0.21	0.07063	0.0017	1.3689	0.03554	0.13953	0.00138	0.04348	0.00113	0.37	842	8	876	15	947	47	860	22	842	8.0	3.9	7.167	0.071	0.07063	0.0017	-0.000154
Zircon_98_123	259	124	0.45	0.05297	0.00117	0.32904	0.00778	0.0451	0.00039	0.01457	0.00034	0.36	284	2	289	6	328	47	292	7	284	2.0	1.7	22.173	0.192	0.05297	0.00117	-0.000034
Zircon_99_124	119	49	0.39	0.05523	0.00149	0.3609	0.01039	0.04751	0.00048	0.01533	0.00046	0.35	299	3	313	8	422	57	308	9	299	3.0	4.5	21.048	0.213	0.05523	0.00149	-0.000049
Zircon_10_018	353	72	0.19	0.0773	0.00116	1.9862	0.0334	0.18623	0.00142	0.05128	0.00103	0.45	1101	8	1111	11	1129	28	1011	20	1129	28.0	0.9	5.37	0.041	0.0773	0.00116	-0.000131
Zircon_23_034	578	148	0.24	0.08911	0.00134	2.9335	0.04868	0.23865	0.00169	0.08393	0.00168	0.42	1380	9	1391	13	1407	27	1629	31	1407	27.0	0.8	4.19	0.03	0.08911	0.00134	-0.000199
Zircon_62_080	415	205	0.46	0.05536	0.00177	0.32225	0.01101	0.04234	0.00051	0.01412	0.00032	0.35	267	3	284	8	427	67	283	6	267	3.0	6.0	23.618	0.284	0.05536	0.00177	-0.000052
Zircon_73_093	262	58	0.21	0.0826	0.00157	2.6661	0.05664	0.23414	0.00222	0.06566	0.00177	0.45	1356	12	1319	16	1260	33	1285	34	1260	33.0	-2.8	4.271	0.04	0.0826	0.00157	-0.000228
Zircon_83_105	104	77	0.69	0.05058	0.00263	0.30942	0.01651	0.04446	0.00053	0.01362	0.00034	0.22	280	3	274	13	222	106	273	7	280	3.0	-2.2	22.492	0.268	0.05058	0.00263	-0.000094

T11-03	x Complejo El Chilar 411856						CORRE	CTED RAT	105						CORRE	CTEL	D AGES (M	a)										
	U (ppm)	Th (ppm)	Th/U	207Pb/206 Pb	±1s	207Рb/23 U	⁵ ±1s	206Pb/23 U	⁸ ±1s	208Pb/23 Th	² ±1s	Rho	206Pb/2. U	³⁸ ±1s	207Pb/2. 5U	³ ±1s	207РЬ/200 РЬ	±1s	208Pb/23 Th	² ±1s	Best ag (Ma)	e ±1s	% disc	238U/2 Pb	⁰⁶ 1s	207Pb/206 Pb	1s	rTW
Zircon_02_009	110	42	0.37	0.07667	0.00209	1.79221	0.05404	0.16954	0.00136	0.05093	0.00041	0.34	1010	7	1043	20	1113	53	1004	8	1010	7	3.2	5.898	0.047	0.07667	0.00209	-0.000602
Zircon 03 010	204	48	0.23	0.07208	0.00123	1.5756	0.02909	0.15897	0.00114	0.04678	0.00103	0.38	951	6	961	11	988	34	924	20	951	6	1.0	6.29	0.045	0.07208	0.00123	-0.000126
Zircon 04 011	178	44	0.24	0.07229	0.00116	1.6301	0.02828	0.16417	0.0011	0.04722	0.00099	0.38	980	6	982	11	994	31	933	19	980	6	0.2	6.091	0.041	0.07229	0.00116	-0.000123
Zircon 05 012	164	53	0.31	0.07236	0.0013	1.6665	0.03201	0.16726	0.00112	0.04914	0.00103	0.35	997	6	996	12	996	35	970	20	997	6	-0.1	5.979	0.04	0.07236	0.0013	-0.000155
Zircon 06 014	175	63	0.34	0.07391	0.00118	1.7221	0.02987	0.16943	0.00114	0.04922	0.00103	0.39	1009	6	1017	11	1039	31	971	20	1009	6	0.8	5.902	0.04	0.07391	0.00118	-0.000135
Zircon 07 015	160	37	0.22	0.08195	0.00131	2,4399	0.04196	0.21654	0.00136	0.06174	0.0013	0.37	1264	7	1254	12	1244	30	1211	25	1244	30	-0.8	4.618	0.029	0.08195	0.00131	-0.000197
Zircon 09 017	94	37	0.38	0.07318	0.00132	1.6503	0.03199	0.16401	0.00118	0.05008	0.0011	0.37	979	7	990	12	1019	35	988	21	979	7	1.1	6.097	0.044	0.07318	0.00132	-0.000143
Zircon 100 126	725	343	0.45	0.08782	0.00114	2.789	0.03982	0.23069	0.00136	0.0696	0.00132	0.42	1338	7	1353	11	1379	24	1360	25	1379	24	1.1	4.335	0.026	0.08782	0.00114	-0.000172
Zircon 11 020	538	146	0.26	0.08912	0.00116	2 8812	0.04137	0.23509	0.00143	0.0771	0.00132	0.42	1361	7	1377	11	1407	24	1500	27	1407	24	1.2	4 254	0.026	0.08912	0.00116	-0.000172
Zircon 12 021	111	27	0.23	0.07173	0.00143	1.6555	0.03525	0.16811	0.00123	0.05195	0.0013	0.35	1002	7	992	13	978	30	1024	25	1002	7	-1.0	5 948	0.044	0.07173	0.00143	-0.000174
Zircon 13 022	112	48	0.42	0.07197	0.00145	1.6692	0.03844	0.16821	0.00114	0.05092	0.00112	0.35	1002	6	997	15	985	43	1004	22	1002	6	-0.5	5 945	0.04	0.07197	0.00158	-0.000204
Zircon 15 024	164	49	0.28	0.07035	0.00127	1.475	0.02843	0.15236	0.00105	0.04406	0.00093	0.35	914	6	920	12	939	36	871	18	914	6	0.7	6 5 6 3	0.045	0.07035	0.00127	-0.000129
Zircon 16 026	313	122	0.20	0.07096	0.00127	1.475	0.02045	0.15250	0.00117	0.04400	0.00095	0.33	1000	6	987	10	956	29	963	19	1000	6	-13	5.962	0.042	0.07096	0.00127	-0.000129
Zircon 17 027	61	23	0.37	0.07362	0.00160	1.7411	0.04251	0.17195	0.00141	0.04877	0.000000	0.45	1023	8	1024	16	1031	45	962	21	1023	8	0.1	5.816	0.042	0.07362	0.00169	-0.000110
Zircon 18 028	119	33	0.27	0.07214	0.00137	1.6558	0.03388	0.16701	0.00127	0.04077	0.00109	0.37	996	7	992	13	990	37	982	21	996	7	-0.4	5 988	0.046	0.07214	0.00137	-0.00021
Zircon 10 020	153	74	0.46	0.07085	0.00136	2 1896	0.04017	0.10000	0.00127	0.05807	0.00116	0.37	1170	7	1178	13	1103	32	1141	21	1170	7	0.7	5.023	0.035	0.07985	0.00136	0.000135
Zircon 20,030	126	14	0.40	0.07147	0.00130	1.6485	0.03024	0.15505	0.00137	0.03807	0.00110	0.37	007	6	080	12	071	34	050	10	007	6	0.7	5.025	0.035	0.07147	0.00130	0.000132
Zircon 21 032	79	30	0.35	0.07254	0.00122	1.7211	0.03024	0.17246	0.00113	0.04814	0.00101	0.37	1026	8	1016	14	1001	30	990	20	1026	8	-0.8	5 708	0.041	0.07254	0.00122	0.000132
Zircon 22 033	143	53	0.46	0.072344	0.00145	1.7211	0.03707	0.171240	0.00153	0.05177	0.00100	0.37	1020	8	1020	12	1026	33	1020	20	1020	8	-1.0	5 830	0.040	0.07344	0.00145	0.00017
Zircon_22_035	250	117	0.30	0.07344	0.00125	1.7515	0.03322	0.1/12/	0.00132	0.03177	0.00109	0.40	1019	0	000	11	088	21	058	19	1019	0	0.1	5.037	0.032	0.07344	0.00125	-0.000129
Zircon_25_034 Zircon_24_025	239	117	0.43	0.07208	0.00113	2 2842	0.02933	0.10872	0.0012	0.04855	0.00092	0.41	1005	6	1207	10	1162	25	1220	22	1005	6	-0.0	1741	0.042	0.07208	0.00113	-0.000129
Zircon_24_033	955	408	0.42	0.07611	0.00102	2.2042	0.03233	0.21092	0.00118	0.0032	0.00114	0.4	1022	0	1207	16	1002	23	052	22	1022	0	-2.2	5 9 2 1	0.027	0.07611	0.00102	-0.000144
Zircon_25_030	4.5	23	0.49	0.07078	0.00175	1.7991	0.04312	0.1/1/6	0.00172	0.04827	0.00110	0.4	074	2	1045	10	1098	20	955	22	074	2	2.2	6.122	0.038	0.07078	0.00175	-0.000197
Zircon_20_038	212	101	0.03	0.07078	0.00099	1.39	0.02428	0.16505	0.00099	0.0480	0.00102	0.4	9/4	5	1019	10	1080	20	939	20	9/4	5	-0.8	6.049	0.037	0.07078	0.00099	-0.000108
Zircon_27_059	212	260	0.46	0.07370	0.00130	1.725	0.05295	0.16355	0.00100	0.04944	0.00099	0.54	980	6	1018	12	1089	22	973	19	980	0	3.1	0.048	0.039	0.07376	0.00130	-0.000105
Zircon_28_040	/33	209	0.55	0.07393	0.00117	1.03099	0.03177	0.10230	0.00104	0.04905	0.0005	0.45	9/1	0	992	12	1059	22	907	0	9/1	0	2.1	0.152	0.039	0.07393	0.00117	-0.00030
Zircon_29_041	517	50	0.13	0.07969	0.00112	2.2381	0.05525	0.203	0.00146	0.03927	0.00124	0.45	1191	0	1195	10	1189	28	1104	24	1191	0	0.2	4.920	0.055	0.07969	0.00112	-0.000133
Zircon_30_042	16/	58	0.33	0.08203	0.00123	2.5057	0.04042	0.20414	0.00186	0.0615	0.00135	0.52	1198	10	1213	12	1240	50	1206	26	1246	30	1.2	4.899	0.045	0.08203	0.00123	-0.000141
Zircon_51_044	64	19	0.29	0.07251	0.00174	1.0094	0.04239	0.1674	0.00139	0.03238	0.00120	0.55	998	0	997	10	1000	50	1032	24	998	0	-0.1	5.974	0.05	0.07251	0.00174	-0.000207
Zircon_32_045	57	10	0.27	0.07415	0.00195	1.67638	0.04948	0.16396	0.00134	0.04943	0.00041	0.33	979	/	1000	19	1046	54	975	8	979	/	2.1	6.099	0.05	0.07415	0.00195	-0.000568
Zircon_34_047	682	280	0.39	0.08444	0.0011	2.5214	0.03632	0.21664	0.00134	0.06358	0.00114	0.43	1264	1	1278	10	1303	26	1246	22	1303	26	1.1	4.616	0.029	0.08444	0.0011	-0.000149
Zircon_35_048	648	48	0.07	0.07666	0.00107	1.9492	0.02992	0.18441	0.00116	0.05807	0.00151	0.42	1091	6	1098	10	1112	28	1141	29	1091	6	0.6	5.423	0.034	0.07666	0.00107	-0.000131
Zircon_36_050	391	99	0.24	0.07911	0.00111	2.2145	0.03373	0.20324	0.00122	0.05911	0.00118	0.39	1193	7	1186	11	1175	28	1161	23	1193	7	-0.6	4.92	0.03	0.07911	0.00111	-0.000145
Zircon_37_051	279	147	0.51	0.08659	0.00113	2.6538	0.03931	0.22271	0.00158	0.06648	0.00126	0.47	1296	8	1316	11	1351	26	1301	24	1351	26	1.5	4.49	0.032	0.08659	0.00113	-0.000145
Zircon_38_052	132	36	0.26	0.07243	0.00203	1.6914	0.0489	0.17007	0.00122	0.05257	0.00121	0.25	1012	7	1005	18	998	58	1036	23	1012	7	-0.7	5.88	0.042	0.07243	0.00203	-0.000264
Zircon_39_053	210	137	0.63	0.07809	0.00117	2.0109	0.03206	0.18706	0.00101	0.05515	0.00105	0.34	1105	5	1119	11	1149	30	1085	20	1105	5	1.3	5.346	0.029	0.07809	0.00117	-0.000156
Zircon_40_054	269	58	0.21	0.0724	0.00101	1.677	0.02568	0.16807	0.00104	0.05056	0.00101	0.41	1001	6	1000	10	997	29	997	19	1001	6	-0.1	5.95	0.037	0.0724	0.00101	-0.000115
Zircon_41_056	228	82	0.34	0.0719	0.00115	1.6617	0.02864	0.16774	0.00107	0.04985	0.00105	0.37	1000	6	994	11	983	33	983	20	1000	6	-0.6	5.962	0.038	0.0719	0.00115	-0.000132
Zircon_42_057	120	65	0.52	0.07265	0.00131	1.6725	0.03212	0.16728	0.00112	0.04941	0.00099	0.34	997	6	998	12	1004	37	975	19	997	6	0.1	5.978	0.04	0.07265	0.00131	-0.000149
Zircon_44_059	167	53	0.30	0.07285	0.00124	1.5788	0.02885	0.15715	0.00105	0.04602	0.00101	0.36	941	6	962	11	1010	35	909	20	941	6	2.2	6.363	0.043	0.07285	0.00124	-0.000132

Zircon_45_060	561	93	0.16	0.0764	0.00099	2.0353	0.02897	0.19339	0.00112	0.05718	0.00114	0.41	1140	6	1127	10	1106	26	1124	22	1140	6	-1.2	5.171	0.03	0.0764	0.00099	-0.000128
Zircon_46_062	147	43	0.28	0.07335	0.00139	1.704	0.03422	0.16871	0.0011	0.05003	0.0011	0.33	1005	6	1010	13	1024	39	987	21	1005	6	0.5	5.927	0.039	0.07335	0.00139	-0.000173
Zircon_48_064	230	62	0.26	0.08235	0.00115	2.3749	0.03636	0.20888	0.0013	0.06133	0.00129	0.41	1223	7	1235	11	1254	28	1203	25	1254	28	1.0	4.787	0.03	0.08235	0.00115	-0.000159
Zircon_49_065	243	86	0.34	0.08149	0.00122	2.4197	0.039	0.21559	0.00127	0.06505	0.00124	0.37	1259	7	1248	12	1233	30	1274	24	1233	30	-0.9	4.638	0.027	0.08149	0.00122	-0.000184
Zircon_50_066	219	79	0.34	0.07224	0.00108	1.737	0.02806	0.17429	0.00105	0.05416	0.00114	0.38	1036	6	1022	10	993	31	1066	22	1036	6	-1.4	5.738	0.035	0.07224	0.00108	-0.000131
Zircon_51_068	188	51	0.26	0.07251	0.00123	1.7119	0.03141	0.17146	0.00118	0.05094	0.00107	0.38	1020	6	1013	12	1000	35	1004	21	1020	6	-0.7	5.832	0.04	0.07251	0.00123	-0.000146
Zircon_52_069	88	26	0.28	0.07583	0.00159	1.7791	0.03922	0.17093	0.00115	0.05068	0.00122	0.31	1017	6	1038	14	1091	43	999	23	1017	6	2.0	5.85	0.039	0.07583	0.00159	-0.000202
Zircon_53_070	90	54	0.58	0.07483	0.0015	1.7941	0.03784	0.17424	0.00117	0.05205	0.00104	0.31	1035	6	1043	14	1064	41	1026	20	1035	6	0.8	5.739	0.039	0.07483	0.0015	-0.000181
Zircon_55_072	253	282	1.07	0.07236	0.00116	1.4226	0.02431	0.14274	0.00086	0.04534	0.00086	0.35	860	5	898	10	996	33	896	17	860	5	4.2	7.006	0.042	0.07236	0.00116	-0.000111
Zircon_56_074	461	115	0.24	0.0728	0.00102	1.653	0.02492	0.16489	0.00092	0.04831	0.00092	0.37	984	5	991	10	1008	29	954	18	984	5	0.7	6.065	0.034	0.0728	0.00102	-0.000114
Zircon_57_075	153	67	0.42	0.07756	0.00132	2.017	0.03678	0.18903	0.00125	0.05544	0.00111	0.36	1116	7	1121	12	1136	34	1091	21	1116	7	0.4	5.29	0.035	0.07756	0.00132	-0.000168
Zircon 58 076	84	27	0.31	0.07253	0.00145	1.6529	0.03476	0.1659	0.00108	0.05149	0.00118	0.31	989	6	991	13	1001	41	1015	23	989	6	0.2	6.028	0.039	0.07253	0.00145	-0.000175
Zircon_59_077	533	124	0.22	0.0739	0.00106	1.7545	0.03071	0.17219	0.00116	0.05193	0.00034	0.46	1024	6	1029	11	1039	29	1023	7	1024	6	0.5	5.808	0.039	0.0739	0.00106	-0.000268
Zircon 60 078	210	99	0.45	0.07126	0.00114	1.6859	0.02912	0.17166	0.00112	0.05028	0.00096	0.38	1021	6	1003	11	965	33	992	18	1021	6	-1.8	5.825	0.038	0.07126	0.00114	-0.000131
Zircon 61 080	319	148	0.44	0.07225	0.00116	1.705	0.02945	0.17147	0.00111	0.05136	0.00098	0.37	1020	6	1010	11	993	33	1012	19	1020	6	-1.0	5.832	0.038	0.07225	0.00116	-0.00013
Zircon 62 081	86	23	0.25	0.07437	0.00164	1.7704	0.04144	0.17298	0.00138	0.05822	0.00175	0.34	1029	8	1035	15	1052	45	1144	33	1029	8	0.6	5.781	0.046	0.07437	0.00164	-0.000194
Zircon 64 083	676	380	0.54	0.08332	0.00108	2.3827	0.04381	0.20727	0.00269	0.06134	0.00129	0.71	1214	14	1237	13	1277	26	1203	25	1277	26	1.9	4.825	0.063	0.08332	0.00108	-0.000095
Zircon 65 084	351	106	0.29	0.08108	0.00125	2.24481	0.04255	0.20079	0.00147	0.05995	0.00043	0.45	1180	8	1195	13	1223	31	1177	8	1223	31	1.3	4.98	0.036	0.08108	0.00125	-0.000379
Zircon 67 087	102	32	0.30	0.07194	0.00137	1.7029	0.03472	0.17199	0.00127	0.05191	0.00109	0.36	1023	7	1010	13	984	39	1023	21	1023	7	-1.3	5.814	0.043	0.07194	0.00137	-0.000157
Zircon 68 088	259	103	0.38	0.07147	0.00107	1.659	0.02693	0.1686	0.00105	0.04949	0.00099	0.39	1004	6	993	10	971	31	976	19	1004	6	-1.1	5.931	0.037	0.07147	0.00107	-0.000122
Zircon 69 089	813	40	0.05	0.07812	0.00102	2.1464	0.03047	0.19925	0.00114	0.06298	0.00139	0.39	1171	6	1164	10	1150	26	1234	26	1171	6	-0.6	5.019	0.029	0.07812	0.00102	-0.000126
Zircon 70 090	309	18	0.06	0.05838	0.00099	0.65726	0.01274	0.08166	0.00058	0.0253	0.0002	0.4	506	3	513	8	544	38	505	4	506	3	1.4	12.246	0.086	0.05838	0.00099	-0.000092
Zircon 71 092	97	30	0.30	0.07519	0.0015	1 7532	0.03692	0 16934	0.00112	0.05389	0.00129	0.32	1008	6	1028	14	1074	41	1061	25	1008	6	19	5 905	0.039	0.07519	0.0015	-0.000189
Zircon 72 093	148	62	0.41	0.07493	0.0012	1.8163	0.03144	0.17628	0.00112	0.05417	0.00108	0.38	1047	6	1051	11	1067	33	1066	21	1047	6	0.4	5.673	0.037	0.07493	0.0012	-0.000141
Zircon 73 094	236	74	0.30	0.07218	0.00115	1 7373	0.02969	0 17456	0.00105	0.05236	0.00099	0.36	1037	6	1022	11	991	33	1032	19	1037	6	-15	5 729	0.034	0.07218	0.00115	-0.000146
Zircon 74 095	95	23	0.24	0.07359	0.0014	1.6952	0.03399	0 16724	0.00107	0.0494	0.00104	0.32	997	6	1007	13	1030	39	975	20	997	6	1.0	5 979	0.038	0.07359	0.0014	-0.000166
Zircon 75 096	300	77	0.25	0.07236	0.00109	1.6771	0.02755	0.1682	0.00113	0.05248	0.00115	0.32	1002	6	1000	10	996	31	1034	22	1002	6	-0.2	5 945	0.04	0.07236	0.00109	-0.000113
Zircon 76 098	252	66	0.25	0.07124	0.00107	1 7298	0.02788	0.17628	0.00104	0.0563	0.00118	0.4	1047	6	1020	10	964	31	1107	23	1047	6	-2.6	5 673	0.033	0.07124	0.00107	-0.000127
Zircon 77 099	312	121	0.37	0.082	0.00115	2 3349	0.02700	0.20677	0.00143	0.06238	0.00125	0.44	1212	8	1223	11	1246	28	1223	24	1246	28	0.9	4 836	0.033	0.082	0.00115	-0.000127
Zircon 78 100	156	10	0.04	0.08033	0.00113	2.3347	0.03304	0.20657	0.00145	0.05577	0.00129	0.44	1212	7	1208	10	1240	26	1007	27	1205	26	0.2	4.830	0.035	0.08033	0.00113	0.00014
Zircon 79 101	4.50	62	0.37	0.03035	0.00104	1 7039	0.03304	0.17225	0.0015	0.05416	0.00139	0.44	1024	6	1010	11	979	33	1066	22	1024	6	-0.2	5 806	0.036	0.03035	0.00104	-0.000133
Zircon 80 102	396	209	0.51	0.0785	0.00115	2 0761	0.02224	0.19204	0.00136	0.05495	0.00104	0.50	1132	7	1141	11	1160	28	1081	20	1132	7	0.8	5 207	0.037	0.0785	0.00113	-0.000135
Zircon 81 104	203	70	0.33	0.07833	0.00141	2.0701	0.03257	0.19204	0.00112	0.05959	0.00125	0.45	1174	6	1167	13	1155	36	1170	24	1174	6	0.6	5.005	0.028	0.07833	0.00141	0.000207
Zircon 83 106	102	58	0.35	0.07383	0.00141	1.6806	0.04004	0.15575	0.00112	0.05939	0.00125	0.36	001	6	1005	11	1037	33	001	24	001	6	1.4	6.02	0.028	0.07383	0.00141	0.000138
Zircon 84 107	104	34	0.29	0.07321	0.00110	1.6942	0.02895	0.1681	0.00101	0.05025	0.00100	0.30	1002	7	1005	13	1020	39	1004	20	1002	7	0.4	5.949	0.037	0.07321	0.00118	-0.000158
Zircon 85 108	104	61	0.32	0.07321	0.00139	1.6532	0.03401	0.16755	0.00120	0.03091	0.00122	0.37	000	6	001	12	077	35	086	20	0002	6	0.4	5.968	0.045	0.07321	0.00139	0.000139
Zircon 86 110	196	130	0.50	0.05575	0.00122	0.55782	0.03009	0.107302	0.00109	0.04997	0.00105	0.35	454	3	450	8	112	50	450	10	154	3	-0.8	13 714	0.039	0.07109	0.00122	0.0000159
Zircon 87 111	102	23	0.07	0.05575	0.00123	1 7076	0.0129	0.17338	0.000002	0.0225	0.0005	0.3	1031	10	1011	17	975	50	1105	30	1031	10	2.0	5 768	0.058	0.07163	0.00123	0.000002
Zircon 88 112	178	32	0.17	0.07174	0.00172	1.7070	0.04508	0.17558	0.00191	0.05101	0.00117	0.42	002	6	086	10	070	31	1006	23	002	6	-2.0	6.014	0.004	0.07174	0.00172	0.000117
Zircon 80 113	00	22	0.22	0.06936	0.00100	1.0419	0.02039	0.10027	0.00101	0.03101	0.00117	0.37	992 801	6	805	13	000	42	052	23	992 801	6	-0.0	6746	0.057	0.06036	0.00108	0.000138
Zircon_09_113	99	23	0.22	0.00950	0.00135	1.414	0.0303	0.14325	0.00114	0.05259	0.00110	0.35	1000	7	1000	14	1002	42	1055	24	1000	7	0.4	5.061	0.032	0.00930	0.00135	0.000138
Zircon 92 117	181	47	0.25	0.07202	0.00145	1.0775	0.05577	0.10770	0.00124	0.05338	0.00123	0.55	1000	°	1000	14	1123	41	1072	0	1075	0	1.5	5 5 1 1	0.044	0.07202	0.00143	-0.000173
Zircon_92_117	124	62	0.25	0.07700	0.00171	1.92000	0.03117	0.1726	0.00102	0.05016	0.00049	0.40	1075	7	000	12	028	25	080	20	1075	7	2.2	5.76	0.049	0.07700	0.00171	0.000127
Zircon_93_118	154	44	0.45	0.00998	0.00119	1.0752	0.0308	0.1730	0.00122	0.05010	0.00103	0.56	1032	2	1025	12	920	22	1016	20	1032	6	-5.5	5.70	0.04	0.00998	0.00119	-0.000137
Zircon_94_119 Zircon_05_120	130	44 50	0.27	0.07481	0.0012	1.7702	0.03064	0.17194	0.00115	0.05157	0.00108	0.38	1025	6	1055	12	1005	25	1010	21	1025	6	1.2	5.810	0.058	0.07481	0.0012	-0.000136
Zircon_95_120	(2)	20	0.32	0.07130	0.00122	1.0001	0.02933	0.10501	0.00114	0.04895	0.00098	0.57	973	0	973	12	1017	35	900	19	973	0	0.0	6.022	0.045	0.07130	0.00122	-0.00013
Zircon_90_122	175	120	0.44	0.07512	0.00101	1.0/32	0.0394	0.10000	0.00139	0.04800	0.00122	0.55	990	0	778	13	1017	45	300	24	390	0	0.8	0.022 5.020	0.05	0.0771	0.00101	-0.000183
Zircon_9/_125	1/5	139	0.77	0.0777	0.00123	2.1043	0.03683	0.19846	0.00141	0.0595/	0.00113	0.41	110/	8	1150	12	1124	32	11/0	22	110/	0	-1.5	5.039	0.036	0.077562	0.00123	-0.000163
Zircon_98_124	140	95	0.62	0.07177	0.00136	1./390	0.03367	0.16964	0.0011	0.05554	0.00101	0.54	1010	0	1051	12	1085	51	1050	19	1010	0	2.0	5.895	0.038	0.07177	0.00136	-0.000164
Zircon_99_125	152	23	0.10	0.0/1//	0.00122	1.0198	0.02942	0.104	0.00105	0.04874	0.00117	0.35	9/9	0	9/8	11	9/9	55	962	23	9/9	0	-0.1	0.098	0.039	0.0/1//	0.00122	-0.000138
Zircon_01_111-03_008	832	208	0.00	0.05162	0.00098	0.27412	0.00559	0.03854	0.00029	0.0119	0.00024	0.37	244	2	240	4	269	44	239	5	244	2	0.8	25.947	0.195	0.05162	0.00098	-0.000025
Zircon_54_0/1	306	284	0.89	0.05127	0.00113	0.32086	0.0076	0.04541	0.0004	0.01416	0.00027	0.37	286	2	283	6	253	52	284	5	286	2	-1.1	22.022	0.194	0.05127	0.00113	-0.000034
Zircon_63_082	149	14	0.09	0.05387	0.00145	0.31043	0.00882	0.04187	0.00037	0.01502	0.00084	0.32	264	2	275	7	366	62	301	17	264	2	4.0	23.883	0.211	0.05387	0.00145	-0.000046

Complejo El Chilar	x 418122	y 2304623	CORRECTED RATIOS
Th	207Pb/206	207Pb/235	206Pb/238

T11-06

	U (ppm)	Th (ppm)	Th/U	207Рb/206 Рb	±1s	207Pb/23 U	⁵ ±1s	206Pb/23 U	⁸ ±1s	208Pb/232 Th	² ±1s	Rho	206Pb/2. U	³⁸ ±1s	207РЬ/2 5U	³ ±1s	207РЬ/20 РЬ	6 ±1s	208Pb/23 Th	² ±1s	Best age (Ma)	e ±1s	% disc	238U/20 Pb	⁶ 1s	207Pb/200 Pb	1s	rTW
T 1 TH 0 6 000	200		0.00	0.051.15	0.00100	0.05500	0.01020	0.05010	0.00055	0.01.100	0.00024	0.00			200		2.62		200	,	21.6	2.0		10.001		0.051.15	0.00100	0.0000.17
Zircon_1_111_06_008	200	161	0.69	0.05147	0.00139	0.35593	0.01038	0.05019	0.00055	0.01492	0.00031	0.38	316	3	309	8	262	59	299	6	316	3.0	-2.3	19.924	0.218	0.05147	0.00139	-0.000047
Zircon_10_018	448	252	0.48	0.05215	0.0011	0.32018	0.00724	0.04447	0.00037	0.01381	0.00029	0.36	280	2	282	6	292	46	277	6	280	2.0	0.7	22.487	0.187	0.05215	0.0011	-0.000032
Zircon_11_020	551	253	0.39	0.08169	0.00106	2.4172	0.03702	0.2144	0.00174	0.06251	0.00113	0.53	1252	9	1248	11	1238	24	1226	21	1238	24.0	-0.3	4.664	0.038	0.08169	0.00106	-0.000127
Zircon_12_021	337	80	0.20	0.0743	0.00097	1.8486	0.03271	0.18005	0.00216	0.05163	0.00093	0.68	1067	12	1063	12	1050	25	1018	18	1050	25.0	-0.4	5.554	0.067	0.0743	0.00097	-0.000075
Zircon_13_022	1063	305	0.24	0.08177	0.00098	2.0297	0.0277	0.1801	0.00117	0.05208	0.00089	0.48	1068	6	1126	9	1240	22	1026	17	1240	22.0	5.2	5.552	0.036	0.08177	0.00098	-0.000106
Zircon_14_023	387	103	0.23	0.08179	0.00106	2.3663	0.03494	0.20958	0.00147	0.06151	0.00117	0.48	1227	8	1232	11	1240	24	1207	22	1240	24.0	0.4	4.771	0.033	0.08179	0.00106	-0.000135
Zircon_15_024	318	42	0.11	0.07099	0.00106	1.4355	0.02758	0.14653	0.00176	0.04495	0.00108	0.63	881	10	904	11	957	29	889	21	881	10.0	2.5	6.825	0.082	0.07099	0.00106	-0.000076
Zircon_16_025	498	232	0.40	0.08877	0.00115	3.1251	0.04556	0.2551	0.00168	0.07304	0.00124	0.46	1465	9	1439	11	1399	24	1425	23	1399	24.0	-1.8	3.92	0.026	0.08877	0.00115	-0.000186
Zircon_17_026	191	43	0.19	0.06881	0.00124	0.88163	0.01709	0.09287	0.00067	0.02243	0.00047	0.37	572	4	642	9	893	36	448	9	572	4.0	10.9	10.768	0.078	0.06881	0.00124	-0.000077
Zircon_18_027	137	103	0.64	0.07144	0.0015	1.5263	0.03518	0.15496	0.00147	0.04513	0.00086	0.41	929	8	941	14	970	41	892	17	929	8.0	1.3	6.453	0.061	0.07144	0.0015	-0.000151
Zircon_19_028	170	93	0.46	0.05902	0.0013	0.70321	0.01659	0.08662	0.00074	0.02548	0.00056	0.36	536	4	541	10	568	46	509	11	536	4.0	0.9	11.545	0.099	0.05902	0.0013	-0.000076
Zircon_2_009	374	116	0.26	0.06297	0.00101	0.92804	0.01856	0.10669	0.00128	0.03157	0.00069	0.6	653	7	667	10	707	33	628	14	653	7.0	2.1	9.373	0.112	0.06297	0.00101	-0.000053
Zircon_20_029	419	97	0.20	0.08021	0.00104	2.2485	0.04296	0.203	0.00284	0.06166	0.00111	0.73	1191	15	1196	13	1202	24	1209	21	1202	24.0	0.4	4.926	0.069	0.08021	0.00104	-0.000084
Zircon_21_030	364	181	0.42	0.083	0.00116	2.4298	0.03782	0.21217	0.00144	0.05624	0.00096	0.44	1240	8	1251	11	1269	26	1106	18	1269	26.0	0.9	4.713	0.032	0.083	0.00116	-0.000157
Zircon_22_031	1477	923	0.53	0.05269	0.00084	0.3099	0.00574	0.04258	0.0004	0.01326	0.00021	0.51	269	2	274	4	315	35	266	4	269	2.0	1.8	23.485	0.221	0.05269	0.00084	-0.000021

CORRECTED AGES (Ma)

Zircon_23_032	106	69	0.55	0.05731	0.00183	0.31478	0.01055	0.04	0.0004	0.01271	0.00032	0.3	253	2	278	8	504	67	255	6	253	2.0	9.0	25	0.25	0.05731	0.00183	-0.000055
Zircon_24_033	239	221	0.79	0.05689	0.00154	0.33539	0.00948	0.04286	0.00036	0.01336	0.00025	0.29	271	2	294	7	487	57	268	5	271	2.0	7.8	23.332	0.196	0.05689	0.00154	-0.000046
Zircon_25_034	295	112	0.32	0.0807	0.00113	2.2525	0.03506	0.20223	0.00138	0.06217	0.00112	0.44	1187	7	1198	11	1214	26	1219	21	1214	26.0	0.9	4.945	0.034	0.0807	0.00113	-0.000142
Zircon_26_036	467	212	0.39	0.07818	0.00102	2.1774	0.03236	0.20191	0.00145	0.05818	0.00099	0.48	1186	8	1174	10	1151	25	1143	19	1151	25.0	-1.0	4.953	0.036	0.07818	0.00102	-0.000119
Zircon_27_037	335	235	0.60	0.05538	0.00255	0.30215	0.0157	0.03957	0.00041	0.01234	0.00011	0.24	250	3	268	12	427	101	248	2	250	3.0	6.7	25.27	0.265	0.05538	0.00255	-0.000338
Zircon_28_038	121	48	0.33	0.08085	0.00137	2.2205	0.04201	0.19943	0.00166	0.05733	0.00103	0.44	1172	9	1188	13	1218	33	1127	20	1218	33.0	1.3	5.014	0.042	0.08085	0.00137	-0.000174
Zircon_29_039	624	113	0.15	0.07827	0.00102	2.0478	0.03053	0.18952	0.00138	0.05648	0.00102	0.49	1119	7	1132	10	1154	25		20	1154	25.0	1.1	5.276	0.038	0.07827	0.00102	-0.000112
Zircon_3_010	137	88	0.55	0.054	0.00173	0.31894	0.0109	0.04292	0.00052	0.01319	0.0003	0.35	2/1	3	281	8	3/1	/1 .	265	6	2/1	3.0	5.0	23.299	0.282	0.054	0.00173	-0.00005
Zircon_30_040 Zircon_31_042	381	108	0.24	0.07695	0.00132	1.70023	0.03/25	0.16024	0.00134	0.04812	0.00039	0.47	958	6	1009	14	1120 919	33	450 520	8	628	33.0 6.0	5.1	0.241	0.052	0.07695	0.00132	-0.000387
Zircon_31_042	166	164	0.12	0.00038	0.00110	0.95209	0.02099	0.10409	0.00094	0.03178	0.00028	0.47	277	2	272	7	262	65	552 774	5	277	2.0	1.5	2007	0.087	0.00038	0.00110	-0.000181
Zircon 33 044	58	17	0.84	0.05147	0.00149	1 3673	0.00938	0.04589	0.00039	0.01505	0.00020	0.3	277	2	275	15	202	47 0	2/4	20	277	2.0	-1.5	6 764	0.202	0.05147	0.00149	-0.000051
Zircon 34 045	321	186	0.25	0.05501	0.00134	0.56327	0.03429	0.07431	0.00148	0.04382	0.00105	0.41	462	4	454	7	413	30	144	8	462	4.0	-1.8	13 457	0.114	0.05501	0.00134	-0.000133
Zircon 35 046	181	89	0.42	0.05899	0.00153	0.36657	0.01021	0.04495	0.00045	0.01464	0.00037	0.45	283	3	317	8	567	55	294	7	283	3.0	10.7	22 247	0.223	0.05899	0.00055	-0.000048
Zircon 36 048	268	265	0.84	0.05873	0.00256	0.3752	0.01908	0.04633	0.00049	0.01435	0.00012	0.31	292	3	323	14	557	94	288	2	292	3.0	9.6	21.582	0.228	0.05873	0.00256	-0.000463
Zircon 37 049	549	273	0.42	0.05758	0.00086	0.61708	0.01029	0.0776	0.00057	0.02425	0.00039	0.44	482	3	488	6	514	32	484	8	482	3.0	1.2	12.887	0.095	0.05758	0.00086	-0.000042
Zircon_38_050	727	659	0.77	0.05999	0.00078	0.70509	0.01103	0.0853	0.00074	0.02402	0.00048	0.56	528	4	542	7	603	27	480	9	528	4.0	2.6	11.723	0.102	0.05999	0.00078	-0.000036
Zircon_39_051	42	25	0.51	0.08111	0.00243	2.0373	0.06423	0.18271	0.00177	0.05675	0.00114	0.31	1082	10	1128	21	1224	58	1116	22	1224	58.0	4.1	5.473	0.053	0.08111	0.00243	-0.00033
Zircon_4_011	898	13	0.01	0.07251	0.00094	1.8139	0.02661	0.18131	0.00123	0.06643	0.00186	0.47	1074	7	1050	10	1000	26	1300	35	1000	26.0	-2.3	5.515	0.037	0.07251	0.00094	-0.000106
Zircon_42_054	494	115	0.20	0.0744	0.00104	1.7262	0.02766	0.16819	0.00131	0.05009	0.00085	0.49	1002	7	1018	10	1052	27	988	16	1052	27.0	1.6	5.946	0.046	0.0744	0.00104	-0.000104
Zircon_43_055	329	255	0.66	0.05394	0.00203	0.31614	0.01358	0.04251	0.00042	0.01329	0.00012	0.33	268	3	279	10	369	80	267	2	268	3.0	3.9	23.526	0.235	0.05394	0.00203	-0.00024
Zircon_44_056	97	57	0.50	0.05395	0.00226	0.33974	0.01612	0.04567	0.00054	0.01428	0.00016	0.31	288	3	297	12	369	90	287	3	288	3.0	3.0	21.895	0.261	0.05395	0.00226	-0.000232
Zircon_45_057	228	180	0.67	0.05273	0.00116	0.31401	0.00741	0.04319	0.00037	0.01348	0.00028	0.36	273	2	277	6	317	47 3	271	6	273	2.0	1.4	23.154	0.198	0.05273	0.00116	-0.000034
Zircon_46_059	351	325	0.79	0.05261	0.00121	0.30826	0.00745	0.04246	0.00031	0.0134	0.00025	0.31	268	2	273	6	312	50	269	5	268	2.0	1.8	23.552	0.172	0.05261	0.00121	-0.000039
Zircon_47_060	386	108	0.24	0.07809	0.00109	2.1035	0.03256	0.19538	0.00129	0.05791	0.00098	0.43	1150	7	1150	11	1149	26	1138	19	1149	26.0	0.0	5.118	0.034	0.07809	0.00109	-0.000139
Zircon_48_061	151	153	0.86	0.07488	0.00127	1.8911	0.03506	0.18303	0.00135	0.05433	0.00092	0.4	1084	7	1078	12	1065	32	1069	18	1065	32.0	-0.6	5.464	0.04	0.07488	0.00127	-0.000157
Zircon_49_062	233	162	0.59	0.05433	0.00125	0.3472	0.00845	0.04637	0.00037	0.01438	0.00027	0.33	292	2	303	6	385	49	289	5	292	2.0	3.6	21.566	0.172	0.05433	0.00125	-0.000041
Zircon_5_012	288	35	0.10	0.07537	0.00151	1.9279	0.04401	0.18511	0.00204	0.05525	0.00155	0.48	1095	11	1091	15	1078	38	1087	30	1078	38.0	-0.4	5.402	0.06	0.07537	0.00151	-0.000162
Zircon_50_063	62	39	0.54	0.07081	0.00198	1.497	0.04407	0.15362	0.0014	0.04642	0.00102	0.31	921	8	929	18	952	54) 17	20	921	8.0	0.9	6.51	0.059	0.07081	0.00198	-0.000224
Zircon_51_065	83	46	0.47	0.05562	0.0035	0.35451	0.02433	0.04623	0.00062	0.0144	0.00019	0.28	291	4	308	18	437	134	289	4	291	4.0	5.5	21.632	0.288	0.05562	0.0035	-0.00043
Zircon_53_06/	347	137	0.34	0.05326	0.00128	0.30182	0.00768	0.04112	0.00035	0.01388	0.00032	0.33	260	2	268	6	540	52 .	279	6	260	2.0	3.0	24.319	0.207	0.05326	0.00128	-0.000036
Zircon_55_068	228	280	0.90	0.05920	0.00100	0.01884	0.0182	0.07554	0.00008	0.02228	0.00042	0.5	409	4	489	11	201	28 4	145 270	0 5	409	4.0	4.1	15.258	0.119	0.05920	0.00100	-0.000091
Zircon_57_0/1 Zircon_58_072	124	269	1.70	0.05810	0.00114	0.55594	0.00738	0.04449	0.00058	0.01389	0.00025	0.39	281	2	295	12	527	44 . 54 ·	219	5 10	281	2.0	4.1	10.572	0.192	0.05447	0.00114	-0.000036
Zircon 6 014	124	36	0.18	0.03819	0.00131	1 6631	0.02071	0.09439	0.0008	0.02878	0.00049	0.32	992	7	995	12	1002	36	1001	21	992	7.0	-1.9	6.014	0.089	0.03819	0.00131	-0.000107
Zircon 60 074	971	454	0.40	0.05985	0.00078	0.76873	0.01469	0.09347	0.00120	0.02914	0.00052	0.73	576	8	579	8	598	28	581	10	576	8.0	0.5	10 699	0.15	0.05985	0.00078	-0.000028
Zircon 62 077	110	41	0.32	0.05848	0.0014	0.38816	0.01025	0.04807	0.00053	0.01548	0.00042	0.42	303	3	333	7	548	52	310	8	303	3.0	9.0	20.803	0.229	0.05848	0.0014	-0.000044
Zircon 63 078	359	5	0.01	0.07542	0.00106	1.8263	0.02875	0.17513	0.00126	0.09523	0.00371	0.45	1040	7	1055	10	1080	28	1839	68	1080	28.0	1.4	5.71	0.041	0.07542	0.00106	-0.00011
Zircon_64_079	210	219	0.89	0.05204	0.00141	0.3335	0.00941	0.04642	0.00038	0.01459	0.00028	0.28	293	2	292	7	287	62	293	6	293	2.0	-0.3	21.542	0.176	0.05204	0.00141	-0.000046
Zircon_65_080	141	197	1.19	0.07191	0.00115	1.8095	0.03386	0.1824	0.00177	0.05162	0.00088	0.52	1080	10	1049	12	983	33	1017	17	983	33.0	-3.0	5.482	0.053	0.07191	0.00115	-0.000118
Zircon_66_082	210	102	0.41	0.05425	0.00136	0.3271	0.00881	0.0438	0.00044	0.01454	0.00032	0.37	276	3	287	7	381	56	292	6	276	3.0	3.8	22.831	0.229	0.05425	0.00136	-0.000039
Zircon_67_083	153	136	0.76	0.05302	0.0029	0.31416	0.01896	0.04297	0.00045	0.01347	0.00013	0.27	271	3	277	15	330	124	270	3	271	3.0	2.2	23.271	0.245	0.05302	0.0029	-0.000459
Zircon_69_085	298	85	0.24	0.07541	0.00113	1.8116	0.02962	0.17404	0.00113	0.05137	0.00092	0.4	1034	6	1050	11	1079	30	1013	18	1079	30.0	1.5	5.746	0.037	0.07541	0.00113	-0.000131
Zircon_7_015	394	274	0.59	0.05367	0.00097	0.33098	0.00682	0.04471	0.00045	0.01403	0.00025	0.48	282	3	290	5	357	41	282	5	282	3.0	2.8	22.366	0.225	0.05367	0.00097	-0.000024
Zircon_70_086	118	91	0.66	0.1043	0.00277	4.02603	0.12697	0.27996	0.00234	0.0814	0.00069	0.49	1591	12	1639	26	1702	49	1582	13	1702	49.0	2.9	3.572	0.03	0.1043	0.00277	-0.002153
Zircon_71_088	264	247	0.80	0.05384	0.00251	0.31846	0.01663	0.0429	0.00041	0.01342	0.00011	0.31	271	3	281	13	364	105	269	2	271	3.0	3.6	23.31	0.225	0.05384	0.00251	-0.000405
Zircon_72_089	1411	140	0.08	0.05267	0.00079	0.31284	0.0051	0.04304	0.00028	0.01457	0.00029	0.39	272	2	276	4	315	34 :	292	6	272	2.0	1.4	23.234	0.151	0.05267	0.00079	-0.000022
Zircon_/3_090 Zircon_74_001	102	101	0.17	0.08315	0.00119	2.43025	0.04572	0.21197	0.00165	0.06512	0.00048	0.52	1239	9	1252	13	12/5	28	1237	9 20	12/5	28.0	1.0	4./18	0.037	0.08315	0.00119	-0.000332
Zircon_75_002	195	93	0.41	0.08073	0.00129	2.1045	0.03645	0.15434	0.0015	0.05852	0.00103	0.44	040	5	041	12	041	27	1000	20	040	50	2.1	6 260	0.04	0.08075	0.00129	-0.000139
Zircon 76 094	306	142	0.01	0.07045	0.00092	2 3761	0.02135	0.157	0.00094	0.06125	0.00194	0.41	1218	8	1235	12	1264	28	1202	20	1264	28.0	1.4	4 807	0.033	0.07045	0.00092	-0.000089
Zircon 77 095	165	50	0.40	0.07195	0.00132	1 50967	0.03437	0.15218	0.00122	0.04604	0.00035	0.4	913	7	934	14	985	35	910	7	913	7.0	2.2	6 571	0.053	0.07195	0.00132	-0.000351
Zircon 78 096	340	193	0.48	0.07539	0.00113	1.8297	0.02984	0.17587	0.00112	0.05294	0.0009	0.39	1044	6	1056	11	1079	27	1043	17	1079	27.0	1.1	5.686	0.037	0.07539	0.00113	-0.000131
Zircon 79 097	146	65	0.38	0.05766	0.00173	0.58412	0.01815	0.07367	0.0006	0.02353	0.00047	0.26	458	4	467	12	517	60	470	9	458	4.0	1.9	13.574	0.111	0.05766	0.00173	-0.000096
Zircon 8 016	333	218	0.56	0.05294	0.00106	0.32012	0.00683	0.04381	0.00032	0.01339	0.00024	0.35	276	2	282	5	326	42	269	5	276	2.0	2.1	22.826	0.167	0.05294	0.00106	-0.000033
Zircon_80_098	520	51	0.08	0.06232	0.001	0.8577	0.0155	0.09969	0.00084	0.02672	0.00091	0.46	613	5	629	8	685	31	533	18	613	5.0	2.5	10.031	0.085	0.06232	0.001	-0.000058
Zircon_81_100	484	337	0.59	0.0535	0.00102	0.35242	0.00728	0.04772	0.00039	0.01508	0.00027	0.39	301	2	307	5	350	39	303	5	301	2.0	2.0	20.956	0.171	0.0535	0.00102	-0.00003
Zircon_83_102	319	46	0.12	0.07298	0.00102	1.6564	0.02557	0.16455	0.00107	0.04946	0.00094	0.42	982	6	992	10	1013	26	976	18	982	6.0	1.0	6.077	0.04	0.07298	0.00102	-0.000109
Zircon_84_103	107	34	0.27	0.07149	0.00143	1.5176	0.03335	0.15458	0.00141	0.04835	0.00106	0.41	927	8	938	13	971	37	954	20	927	8.0	1.2	6.469	0.059	0.07149	0.00143	-0.000141
Zircon_85_104	583	327	0.48	0.10176	0.00122	4.1258	0.0586	0.2936	0.00223	0.08671	0.00147	0.54	1659	11	1659	12	1656	20	1681	27	1656	20.0	0.0	3.406	0.026	0.10176	0.00122	-0.000199
Zircon_88_107	105	40	0.33	0.06902	0.00117	1.44	0.02712	0.15128	0.00123	0.04648	0.00093	0.44	908	7	906	11	899	32	918	18	908	7.0	-0.2	6.61	0.054	0.06902	0.00117	-0.000114
Zircon_9_017	205	97	0.40	0.07772	0.00117	2.0622	0.04523	0.19234	0.00308	0.05837	0.00123	0.73	1134	17	1136	15	1140	27	1147	23	1140	27.0	0.2	5.199	0.083	0.07772	0.00117	-0.000087
Zircon_90_108	44	24	0.46	0.06967	0.00217	1.42353	0.05138	0.14818	0.00142	0.04499	0.0004	0.34	891	8	899	22	919	59	389	8	891	8.0	0.9	6.748	0.065	0.06967	0.00217	-0.000751
Zircon_91_110	185	125	0.58	0.05133	0.00144	0.32146	0.00949	0.04547	0.00043	0.01447	0.00029	0.31	287	3	283	7	256	59 3	290	6	287	3.0	-1.4	21.993	0.208	0.05133	0.00144	-0.000045
Zircon_92_111	160	40	0.21	0.07887	0.00126	2.192	0.03819	0.20148	0.00139	0.06122	0.0011	0.4	1183	7	1179	12	1169	29	1201	21	1169	29.0	-0.3	4.963	0.034	0.07887	0.00126	-0.000169
Zircon_95_112 Zircon_04_112	586	212	0.47	0.05288	0.00111	0.35887	0.00803	0.0492	0.00038	0.01526	0.00029	0.35	510	2	511	6	524 1255	44 22	000	0	510	2.0	0.5	20.525	0.157	0.05288	0.00111	-0.000038
Zircon 05 114	108	48	0.47	0.0824	0.00148	2.3313	0.04333	0.20772	0.00145	0.063193	0.00124	0.37	1217	0	1250	14	1235	32	1213	24 25	1233	32.0	1.1	4.814	0.054	0.0824	0.00148	-0.000217
Zircon 97 116	105	40 56	0.39	0.00110	0.0017	3 9865	0.05100	0.20331	0.00175	0.00218	0.00151	0.56	1195	9	1631	13	1670	24	1217	20	1670	24.0	2.0	4.717	0.042	0.1025	0.0017	-0.000238
Zircon 68 084	673	105	0.13	0.09532	0.00124	3.3266	0.05885	0.25306	0.00304	0.06007	0.00102	0.68	1454	16	1487	14	1534	24	1179	21	1534	23.0	2.0	3.952	0.047	0.09532	0.00174	-0.000237
Zircon 82 101	146	47	0.27	0.07497	0.00183	1.81544	0.04862	0.17562	0.0013	0.05288	0.00043	0.32	1043	7	1051	18	1068	45	1042	8	1068	45.0	0.8	5.694	0.042	0.07497	0.00183	-0.000463
Zircon 87 106	104	33	0.27	0.05739	0.00281	0.40264	0.02031	0.05082	0.00061	0.01769	0.0006	0.24	320	4	344	15	507	100	354	12	320	4.0	7.0	19.677	0.236	0.05739	0.00281	-0.000114
																-					-							

T11-09	Comple	ejo El Chil	ar	x 419532	y 2297528	8	CODDE	стер рал	201						COPP	FCTEI	DACES (M(a)										
	U (ppm	Th (ppm)	Th/U	207Pb/206 Pb	5 ±1s	207РЬ/23 U	65 ±1s	206Pb/23 U	8 ±1s	208Pb/23 Th	⁵² ±1s	Rho	206Pb/2 U	238 ±1s	207Pb/2 5U	23 ±1s	207Pb/2 Pb	206 ±1s	208Pb/2 Th	±1s	Best ag (Ma)	e ±1s	% disc	238U/20 Pb	⁾⁶ 1s	207Pb/206 Pb	1s	rTW
Zircon_100_104	267	97	0.31	0.08021	0.00096	2.1878	0.02996	0.19801	0.00131	0.06033	0.00078	0.49	1165	7	1177	10	1202	22	1184	15	1202	22.0	1.0	5.05	0.033	0.08021	0.00096	-0.00011
Zircon_101_106	217	68	0.27	0.0797	0.00112	2.1807	0.03313	0.19871	0.00117	0.05897	0.00094	0.38	1168	6	1175	11	1190	26	1158	18	1190	26.0	0.6	5.032	0.03	0.0797	0.00112	-0.00014
Zircon_102_107	219	104	0.41	0.07271	0.00116	1.6731	0.02902	0.16719	0.00112	0.04994	0.0007	0.39	997	6	998	11	1006	30	985	13	1006	30.0	0.1	5.981	0.04	0.07271	0.00116	-0.00013
Zircon_103_108 Zircon_104_100	230	91 70	0.34	0.07364	0.00125	1.8805	0.03608	0.18566	0.00165	0.05288	0.00085	0.47	1098	9	1074	13	612	32	1042 540	16	1032	32.0	-2.2	5.386	0.048	0.07364	0.00125	-0.00014
Zircon 105 110	175	180	0.38	0.05838	0.00127	0.3409	0.01359	0.04262	0.00039	0.01339	0.00049	0.3	269	2	298	8	544	42 61	269	5	269	2.0	9.7	23.463	0.082	0.05838	0.00127	-0.00007
Zircon_106_112	760	253	0.29	0.08051	0.00097	2.2354	0.02999	0.20125	0.00121	0.05767	0.00075	0.44	1182	6	1192	9	1210	22	1133	14	1210	22.0	0.8	4.969	0.03	0.08051	0.00097	-0.00011
Zircon_107_113	274	181	0.57	0.06118	0.00098	0.71597	0.01271	0.08514	0.00066	0.02682	0.00043	0.43	527	4	548	8	646	32	535	8	527	4.0	3.8	11.745	0.091	0.06118	0.00098	-0.00005
Zircon_108_114	417	268	0.56	0.0538	0.00108	0.32733	0.00704	0.04423	0.00035	0.01392	0.00019	0.36	279	2	288	5	363	42	279	4	279	2.0	3.1	22.609	0.179	0.0538	0.00108	-0.00003
Zircon_109_115	400	257	0.55	0.05293	0.00101	0.32711	0.00673	0.04494	0.00036	0.01401	0.00022	0.37	283	2	287	5	326	41	281	4	283	2.0	1.4	22.252	0.178	0.05293	0.00101	-0.00002
Zircon_112_119	402	108	0.15	0.03908	0.00089	1 5399	0.01171	0.08859	0.00033	0.02158	0.0005	0.57	922	10	946	12	370 986	29	432 940	10	922	5.0 10.0	2.5	6 504	0.07	0.03908	0.00089	-0.00003
Zircon 113 120	246	52	0.18	0.0803	0.00104	2.3398	0.03523	0.21131	0.00161	0.05875	0.00093	0.51	1236	9	1224	11	1204	24	1154	18	1204	24.0	-1.0	4.732	0.036	0.0803	0.00100	-0.00012
Zircon_114_121	171	46	0.23	0.07867	0.00118	2.1615	0.03654	0.19979	0.00156	0.05944	0.00083	0.46	1174	8	1169	12	1164	28	1167	16	1164	28.0	-0.4	5.005	0.039	0.07867	0.00118	-0.00014
Zircon_115_122	455	310	0.59	0.05242	0.0011	0.33136	0.00757	0.0459	0.00041	0.01486	0.00025	0.4	289	3	291	6	304	46	298	5	289	3.0	0.7	21.786	0.195	0.05242	0.0011	-0.00003
Zircon_116_124	732	100	0.12	0.07984	0.00096	2.2231	0.03619	0.20211	0.00222	0.06196	0.00093	0.67	1187	12	1188	11	1193	23	1215	18	1193	23.0	0.1	4.948	0.054	0.07984	0.00096	-0.00008
Zircon_117_125 Zircon_118_126	191	102	0.46	0.05738	0.00126	0.6055	0.01422	0.07668	0.00063	0.0234	0.0004	0.35	476	4	481	9	506	46	468	8	476	4.0	1.0	13.041	0.107	0.05738	0.00126	-0.00006
Zircon 119 127	1240	444	0.03	0.00094	0.00110	1 7277	0.01393	0.0791	0.00073	0.02439	0.00037	0.43	1015	7	1019	8	1029	19	487 990	13	1029	4.0	4.7	5 865	0.042	0.00094	0.00110	-0.00005
Zircon 120 T11 09 128	157	67	0.37	0.05319	0.00197	0.34127	0.01317	0.04668	0.00051	0.01383	0.00028	0.28	294	3	298	10	337	80	278	6	294	3.0	1.3	21.422	0.234	0.05319	0.00197	-0.00006
Zircon_20_T11_09_008	291	68	0.20	0.0768	0.00108	2.0418	0.03135	0.19307	0.00122	0.05893	0.00082	0.4	1138	7	1130	10	1116	27	1157	16	1116	27.0	-0.7	5.179	0.033	0.0768	0.00108	-0.00012
Zircon_21_010	272	230	0.73	0.07378	0.00155	1.5751	0.03734	0.1557	0.00171	0.04897	0.00073	0.46	933	10	960	15	1035	41	966	14	933	10.0	2.8	6.423	0.071	0.07378	0.00155	-0.00014
Zircon_22_011	558	308	0.48	0.07294	0.00095	1.6649	0.02652	0.16571	0.00152	0.04951	0.00084	0.58	988	8	995	10	1012	25	977	16	988	8.0	0.7	6.035	0.055	0.07294	0.00095	-0.00008
Zircon_23_012 Zircon_24_013	296	47	0.26	0.08025	0.00112	2.2377	0.03513	0.20231	0.00144	0.0595	0.00089	0.46	1188	7	1077	11	1203	26	1039	17	1203	26.0	0.4	4.943	0.035	0.08025	0.00112	-0.00014
Zircon 25 014	797	150	0.16	0.06371	0.00076	1.0705	0.01743	0.12192	0.00134	0.03706	0.00063	0.68	742	8	739	9	732	24	736	14	742	8.0	-0.4	8.202	0.042	0.06371	0.00076	-0.00004
Zircon_26_016	195	49	0.21	0.07875	0.00165	1.547	0.03482	0.14295	0.00116	0.04284	0.00103	0.37	861	7	949	14	1166	39	848	20	1166	39.0	9.3	6.995	0.057	0.07875	0.00165	-0.00016
Zircon_27_017	151	120	0.69	0.05672	0.00187	0.35457	0.013	0.04508	0.00072	0.01422	0.00044	0.44	284	4	308	10	481	69	285	9	284	4.0	7.8	22.183	0.354	0.05672	0.00187	-0.00005
Zircon_28_018	49	37	0.66	0.07247	0.00203	1.533	0.04558	0.15381	0.00154	0.04609	0.00083	0.34	922	9	944	18	999	54	911	16	922	9.0	2.3	6.502	0.065	0.07247	0.00203	-0.00021
Zircon_29_019 Zircon_30_020	551 421	57	0.09	0.07029	0.00155	1.40132	0.04848	0.1446	0.00319	0.04386	0.00095	0.74	8/1	18	889	20	937	43	868	18	8/1	18.0	2.0	6.916 5.877	0.153	0.07029	0.00155	-0.00020
Zircon 31 022	210	33	0.28	0.07203	0.00144	2.3222	0.02440	0.2109	0.00205	0.04921	0.00009	0.37	1234	11	1219	15	1196	33	1189	22	1196	33.0	-0.9	4.742	0.048	0.07203	0.00144	-0.00017
Zircon_32_023	-481	-144	0.26	0.07261	0.00182	1.5811	0.0461	0.15846	0.00238	0.04636	0.00107	0.51	948	13	963	18	1003	48	916	21	948	13.0	1.6	6.311	0.095	0.07261	0.00182	-0.00016
Zircon_33_024	212	136	0.55	0.05158	0.00139	0.31831	0.00899	0.04493	0.00037	0.01374	0.00022	0.3	283	2	281	7	267	58	276	4	283	2.0	-0.7	22.257	0.183	0.05158	0.00139	-0.00004
Zircon_34_025	256	107	0.36	0.07161	0.00115	1.6657	0.03889	0.16929	0.00288	0.05214	0.00089	0.73	1008	16	996	15	975	31	1027	17	1008	16.0	-1.2	5.907	0.1	0.07161	0.00115	-0.00007
Zircon_35_026	282	140	0.43	0.05304	0.00138	0.33028	0.009	0.04527	0.00037	0.01416	0.00023	0.3	285	2	290	7	331	56	284	5	285	2.0	1.7	22.09	0.181	0.05304	0.00138	-0.00004
Zircon_36_028	365 74	54	0.80	0.10394	0.00135	4.5981	0.0705	0.30396	0.00285	0.0872	0.00115	0.58	286	6	337	15	717	107	293	21	286	22.0 6.0	-0.5	22.036	0.05	0.10394	0.00135	-0.00021
Zircon 38 030	132	39	0.26	0.05817	0.00163	0.69916	0.02044	0.08695	0.00073	0.02692	0.00054	0.29	537	4	538	12	536	58	537	11	537	4.0	0.2	11.501	0.097	0.05817	0.00163	-0.00010
Zircon_39_031	1197	139	0.10	0.06211	0.00081	0.85988	0.01581	0.10032	0.0013	0.03212	0.00074	0.7	616	8	630	9	678	26	639	14	616	8.0	2.2	9.968	0.129	0.06211	0.00081	-0.00003
Zircon_40_032	83	57	0.59	0.05709	0.00223	0.3466	0.01404	0.04432	0.00049	0.01356	0.00034	0.26	280	3	302	11	495	81	272	7	280	3.0	7.3	22.563	0.249	0.05709	0.00223	-0.00007
Zircon_41_034	90	14	0.14	0.0535	0.00273	0.33831	0.01772	0.04646	0.00056	0.01321	0.00077	0.23	293	3	296	13	350	110	265	15	293	3.0	1.0	21.524	0.259	0.0535	0.00273	-0.00009
Zircon_42_035 Zircon_43_036	517	94 13	0.16	0.07128	0.00114	1.8369	0.03674	0.18/41	0.00225	0.05191	0.00099	0.6	622	12	1059 644	13	965 720	31 27	610	19	965	31.0	-4.5	0.860	0.064	0.07128	0.00114	-0.00010
Zircon 44 037	165	84	0.02	0.00333	0.00085	0.88499	0.01295	0.10133	0.00038	0.0311	0.00023	0.42	291	2	303	8	395	62	301	7	291	2.0	3.4 4.0	21 622	0.008	0.00333	0.00085	-0.00005
Zircon_46_040	766	197	0.22	0.07055	0.00085	1.5067	0.02132	0.15514	0.00116	0.04635	0.00065	0.52	930	6	933	9	944	23	916	13	930	6.0	0.3	6.446	0.048	0.07055	0.00085	-0.00007
Zircon_48_042	174	157	0.77	0.05345	0.00107	0.30816	0.00665	0.04186	0.00034	0.01288	0.00018	0.37	264	2	273	5	348	43	259	4	264	2.0	3.3	23.889	0.194	0.05345	0.00107	-0.00003
Zircon_49_043	486	315	0.56	0.05252	0.0011	0.32284	0.00734	0.04466	0.00039	0.01438	0.00023	0.39	282	2	284	6	308	45	289	5	282	2.0	0.7	22.391	0.196	0.05252	0.0011	-0.00003
Zircon_50_044 Zircon_51_046	498	203	0.35	0.0737	0.00081	1.7293	0.02167	0.17038	0.00102	0.05258	0.00068	0.48	1014	6	1019	8	1033	21	1036	13	1033	21.0	0.5	5.869	0.035	0.0737	0.00081	-0.00008
Zircon 52 047	197	84	0.45	0.07085	0.00099	2 3202	0.02400	0.10495	0.00102	0.04927	0.00088	0.41	1239	8	1218	10	1182	27	1233	12	⁹⁶⁴ 1182	24.0	-1.0	4.72	0.037	0.07085	0.00099	-0.00010
Zircon 53 048	648	534	0.71	0.05391	0.00237	0.29895	0.01421	0.0404	0.00073	0.0133	0.00035	0.38	255	5	266	11	367	95	267	7	255	5.0	4.1	24.752	0.447	0.05391	0.00237	-0.00006
Zircon_54_049	219	110	0.43	0.0517	0.00166	0.31962	0.01138	0.04483	0.00037	0.01409	0.00011	0.26	283	2	282	9	272	70	283	2	283	2.0	-0.4	22.304	0.184	0.0517	0.00166	-0.00016
Zircon_55_050	103	65	0.55	0.06147	0.0026	0.36935	0.01801	0.04358	0.00056	0.01342	0.00016	0.32	275	3	319	13	656	87	269	3	275	3.0	13.8	22.948	0.293	0.06147	0.0026	-0.00026
Zircon_56_052	98	40	0.35	0.05984	0.00286	0.38255	0.02117	0.04637	0.00082	0.01432	0.00024	0.35	292	5	329	16	598	99	287	5	292	5.0	11.2	21.567	0.38	0.05984	0.00286	-0.00021
Zircon_57_053 Zircon_58_054	336 510	30 186	0.08	0.06583	0.00151	1.0368	0.02965	0.11062	0.00188	0.03145	0.00072	0.6	6/6	11	122	15	801	45	626	14	6/6	20.0	6.4 1.2	9.04 5.01	0.154	0.06583	0.00151	-0.00008
Zircon 59 055	578	494	0.74	0.05259	0.00095	0.32402	0.00658	0.04484	0.00042	0.01351	0.00078	0.46	283	3	285	5	311	38	271	4	283	3.0	0.7	22.302	0.209	0.05259	0.00085	-0.00002
Zircon_60_056	489	76	0.13	0.07288	0.00095	1.8527	0.0279	0.18454	0.0014	0.05462	0.00082	0.5	1092	8	1064	10	1011	24	1075	16	1011	24.0	-2.6	5.419	0.041	0.07288	0.00095	-0.00009
Zircon_61_058	435	277	0.55	0.05525	0.00133	0.35383	0.00894	0.04649	0.00037	0.01431	0.00027	0.3	293	2	308	7	422	50	287	5	293	2.0	4.9	21.51	0.171	0.05525	0.00133	-0.00004
Zircon_62_059	168	127	0.65	0.0593	0.00113	0.84584	0.0171	0.10364	0.00072	0.0302	0.00042	0.33	636	4	622	9	578	38	601	8	636	4.0	-2.3	9.649	0.067	0.0593	0.00113	-0.00007
Zircon_63_060	413	158	0.33	0.08122	0.00097	2.3681	0.03389	0.21171	0.00165	0.06212	0.00081	0.55	1238	9	1233	10	1227	22	1218	15	1227	22.0	-0.4	4.723	0.037	0.08122	0.00097	-0.00011
Zircon_64_061 Zircon_65_062	217 156	108	0.45	0.07923	0.00103	2.1944	0.03142	0.20104	0.00121	0.06002	0.0009	0.42	1181	6 7	11/9	10	11/8	24	11/8	17	1178	24.0	-0.2 1.4	4.974 5 100	0.03	0.07923	0.00103	-0.00013
Zircon 66 064	619	270	0.34	0.08148	0.000128	2.3834	0.0323	0.21213	0.00121	0.06157	0.00094	0.30	1240	7	1238	12	1233	29	1208	15	1200	22.0	-0.2	4.714	0.032	0.08148	0.00098	-0.00017
Zircon_67_065	510	176	0.30	0.0671	0.00334	0.87841	0.0466	0.09495	0.00081	0.02895	0.00029	0.24	585	5	640	25	841	97	577	6	585	5.0	8.6	10.532	0.09	0.0671	0.00334	-0.00088
Zircon_68_066	538	74	0.12	0.07056	0.00085	1.5656	0.02122	0.16092	0.00101	0.04802	0.00072	0.46	962	6	957	8	945	23	948	14	962	6.0	-0.5	6.214	0.039	0.07056	0.00085	-0.0008
Zircon_69_067	115	55	0.41	0.07443	0.00119	1.669	0.02942	0.16297	0.00121	0.04844	0.00078	0.42	973	7	997	11	1053	30	956	15	1053	30.0	2.4	6.136	0.046	0.07443	0.00119	-0.00012

Zircon_70_068	159	46	0.25	0.05987	0.00162	0.73351	0.02699	0.08702	0.00218	0.02396	0.00057	0.68	538	13	559	16	599	54	479	11	538	13.0	3.8	11.492	0.288	0.05987	0.00162	-0.00006
Zircon_71_070	586	337	0.50	0.07459	0.0009	1.7782	0.02402	0.17323	0.00107	0.0506	0.00066	0.45	1030	6	1038	9	1057	22	998	13	1057	22.0	0.8	5.773	0.036	0.07459	0.0009	-0.000092
Zircon_72_071	199	72	0.31	0.05741	0.00121	0.62642	0.01417	0.07933	0.00067	0.0268	0.00046	0.36	492	4	494	9	507	43	535	9	492	4.0	0.4	12.606	0.106	0.05741	0.00121	-0.000062
Zircon_73_072	14	28	1.72	0.07626	0.00419	0.98918	0.05694	0.09499	0.00161	0.02937	0.00079	0.3	585	9	698	29	1102	103	585	16	585	9.0	16.2	10.527	0.178	0.07626	0.00419	-0.0003
Zircon_74_073	287	76	0.23	0.07946	0.00103	2.3181	0.03349	0.21178	0.00133	0.06325	0.00095	0.44	1238	7	1218	10	1184	22	1240	18	1184	22.0	-1.6	4.722	0.03	0.07946	0.00103	-0.000141
Zircon_76_076	214	361	1.45	0.06134	0.00104	0.79542	0.01468	0.09415	0.00068	0.02741	0.00036	0.4	580	4	594	8	651	32	547	7	580	4.0	2.4	10.621	0.077	0.06134	0.00104	-0.000066
Zircon_77_077	93	59	0.56	0.08045	0.00129	2.2256	0.04032	0.20086	0.00171	0.0613	0.00086	0.47	1180	9	1189	13	1208	28	1203	16	1208	28.0	0.8	4.979	0.042	0.08045	0.00129	-0.000152
Zircon_78_078	890	47	0.05	0.07284	0.00087	1.8898	0.03485	0.18774	0.00263	0.05718	0.00091	0.76	1109	14	1078	12	1010	21	1124	17	1010	21.0	-2.9	5.327	0.075	0.07284	0.00087	-0.000061
Zircon_79_079	233	154	0.57	0.08082	0.00097	2.22	0.0303	0.19953	0.0013	0.05977	0.0009	0.48	1173	7	1187	10	1217	21	1173	17	1217	21.0	1.2	5.012	0.033	0.08082	0.00097	-0.000114
Zircon_80_080	448	156	0.30	0.06093	0.00079	0.87424	0.01241	0.10371	0.00059	0.03082	0.0004	0.41	636	3	638	7	637	24	614	8	636	3.0	0.3	9.642	0.055	0.06093	0.00079	-0.000055
Zircon_81_082	1115	323	0.25	0.0849	0.00093	2.613	0.03274	0.22331	0.00134	0.06621	0.00086	0.49	1299	7	1304	9	1313	19	1296	16	1313	19.0	0.4	4.478	0.027	0.0849	0.00093	-0.000127
Zircon_82_083	253	18	0.06	0.09744	0.00136	4.0658	0.08644	0.30236	0.00484	0.08203	0.00213	0.75	1703	24	1647	17	1576	23	1594	40	1576	23.0	-3.4	3.307	0.053	0.09744	0.00136	-0.000156
Zircon_83_084	142	56	0.34	0.0781	0.00109	2.1291	0.03314	0.19777	0.00134	0.05712	0.00091	0.44	1163	7	1158	11	1149	24	1123	17	1149	24.0	-0.4	5.056	0.034	0.0781	0.00109	-0.00014
Zircon_84_085	62	103	1.44	0.06142	0.00203	0.76662	0.02639	0.0904	0.00089	0.02714	0.00041	0.28	558	5	578	15	654	62	541	8	558	5.0	3.5	11.062	0.109	0.06142	0.00203	-0.000132
Zircon_85_086	37	20	0.46	0.07199	0.0018	1.6044	0.04285	0.16172	0.00152	0.04853	0.00102	0.35	966	8	972	17	986	45	958	20	966	8.0	0.6	6.184	0.058	0.07199	0.0018	-0.000201
Zircon_86_088	460	156	0.29	0.05953	0.00089	0.78935	0.01278	0.09619	0.00059	0.02951	0.00047	0.38	592	3	591	7	587	28	588	9	592	3.0	-0.2	10.396	0.064	0.05953	0.00089	-0.000059
Zircon_87_089	63	23	0.32	0.0813	0.00179	2.182	0.05154	0.19528	0.00168	0.06035	0.00127	0.36	1150	9	1175	16	1229	38	1184	24	1229	38.0	2.1	5.121	0.044	0.0813	0.00179	-0.000236
Zircon_88_090	261	193	0.64	0.05372	0.00227	0.30072	0.01376	0.0406	0.00033	0.0127	0.0001	0.26	257	2	267	11	359	84	255	2	257	2.0	3.7	24.631	0.199	0.05372	0.00227	-0.000266
Zircon_89_091	135	83	0.53	0.07184	0.00136	1.8226	0.03848	0.18436	0.0017	0.05329	0.00085	0.44	1091	9	1054	14	981	34	1049	16	981	34.0	-3.5	5.424	0.05	0.07184	0.00136	-0.000161
Zircon_90_092	517	233	0.39	0.05911	0.00089	0.65445	0.01067	0.08048	0.00052	0.02522	0.00033	0.38	499	3	511	7	571	29	503	7	499	3.0	2.3	12.425	0.08	0.05911	0.00089	-0.000044
Zircon_91_094	450	359	0.69	0.05794	0.00437	0.34848	0.02698	0.04362	0.00043	0.01353	0.00017	0.12	275	3	304	20	527	147	272	3	275	3.0	9.5	22.924	0.224	0.05794	0.00437	-0.000373
Zircon_92_095	127	62	0.42	0.0718	0.00179	1.1117	0.03185	0.11196	0.00157	0.03429	0.00069	0.49	684	9	759	15	980	47	681	13	684	9.0	9.9	8.932	0.125	0.0718	0.00179	-0.000119
Zircon_93_096	198	52	0.23	0.08061	0.00105	2.3578	0.03599	0.21221	0.0017	0.06044	0.00103	0.52	1241	9	1230	11	1212	24	1186	20	1212	24.0	-0.9	4.712	0.038	0.08061	0.00105	-0.000122
Zircon_94_097	101	57	0.48	0.08802	0.00123	2.8945	0.04682	0.23914	0.00194	0.07074	0.00134	0.5	1382	10	1380	12	1383	25	1382	25	1383	25.0	-0.1	4.182	0.034	0.08802	0.00123	-0.000171
Zircon_95_098	109	152	1.20	0.07691	0.00131	1.7877	0.03329	0.16883	0.00128	0.0502	0.00065	0.4	1006	7	1041	12	1119	32	990	13	1119	32.0	3.4	5.923	0.045	0.07691	0.00131	-0.000142
Zircon_96_100	57	51	0.77	0.07455	0.00209	1.5412	0.04636	0.15061	0.00166	0.04669	0.00089	0.36	904	9	947	19	1056	53	922	17	904	9.0	4.5	6.64	0.073	0.07455	0.00209	-0.00021
Zircon_97_101	346	52	0.13	0.06127	0.00113	0.83347	0.01705	0.09866	0.00068	0.03039	0.00022	0.42	607	4	616	9	649	37	605	4	607	4.0	1.5	10.136	0.07	0.06127	0.00113	-0.000122
Zircon_98_102	472	186	0.34	0.07985	0.00096	2.2506	0.03664	0.20443	0.00225	0.05938	0.00095	0.67	1199	12	1197	11	1193	22	1166	18	1193	22.0	-0.2	4.892	0.054	0.07985	0.00096	-0.000085
Zircon_99_103	366	50	0.12	0.07719	0.00093	2.0403	0.02855	0.19162	0.00138	0.05606	0.00084	0.51	1130	7	1129	10	1126	22	1102	16	1126	22.0	-0.1	5.219	0.038	0.07719	0.00093	-0.000098
Zircon_47_041	92	46	0.43	0.05577	0.00212	0.32534	0.01287	0.0424	0.00047	0.0134	0.00039	0.28	268	3	286	10	443	79	269	8	268	3.0	6.3	23.585	0.261	0.05577	0.00212	-0.000066

T11-10	Comple	ejo El Chi	lar	x 419532	y 2297528	8																						
							CORRE	CTED RAT	IOS						CORR	ECTE	D AGES (N	Aa)										
	U (ppm	Th (ppm)	Th/U	207Pb/206 Pb	±1s	207Рb/23 U	5 ±1s	206Pb/23 U	8 _{±1s}	208Pb/23 Th	² ±1s	Rho	206РЬ/2 U	.38 ±1s	207Pb/ 5U	23 ±1s	207РЬ/20 РЪ	06 ±1s	208Pb/2 Th	32 ±1s	Best aş (Ma)	ge ±1s	% disc	238U/20 Pb	⁰⁶ 1s	207Pb/20 Pb	⁵ 1s	rTW
Zircon_1_T11_10_008	195	55	0.24	0.08225	0.00148	2.3699	0.04649	0.20903	0.00163	0.06262	0.00131	0.4	1224	9	1234	14	1251	35	1228	25	1251	35.0	0.8	4.784	0.037	0.08225	0.00148	-0.00020
Zircon_10_017	232	173	0.63	0.05379	0.00161	0.32636	0.01017	0.04397	0.00037	0.01384	0.00025	0.28	277	2	287	8	362	68	278	5	277	2.0	3.5	22.743	0.191	0.05379	0.00161	-0.00005
Zircon_100_122	295	123	0.35	0.07268	0.00116	1.381	0.0239	0.1377	0.00091	0.03997	0.00068	0.39	832	5	881	10	1005	33	792	13	832	5.0	5.6	7.262	0.048	0.07268	0.00116	-0.00010
Zircon_11_019	504	102	0.17	0.07671	0.00107	2.1541	0.03256	0.20361	0.00116	0.05885	0.00088	0.39	1195	6	1166	10	1114	28	1156	17	1114	28.0	-2.5	4.911	0.028	0.07671	0.00107	-0.00015
Zircon_12_020	134	40	0.25	0.07718	0.00139	2.1207	0.04037	0.19924	0.00124	0.05958	0.00119	0.32	1171	7	1156	13	1126	36	1170	23	1126	36.0	-1.3	5.019	0.031	0.07718	0.00139	-0.00019
Zircon_13_021	190	194	0.86	0.05425	0.00195	0.32917	0.01213	0.04399	0.00034	0.01343	0.00026	0.22	278	2	289	9	381	81	270	5	278	2.0	3.8	22.732	0.176	0.05425	0.00195	-0.00007
Zircon_14_022	322	172	0.45	0.08009	0.0012	2.0487	0.03374	0.18565	0.00126	0.05545	0.001	0.42	1098	7	1132	11	1199	30	1091	19	1199	30.0	3.0	5.386	0.037	0.08009	0.0012	-0.00014
Zircon_15_023	117	60	0.43	0.0565	0.00276	0.36462	0.02055	0.0468	0.00072	0.01456	0.00021	0.37	295	4	316	15	472	108	292	4	295	4.0	6.6	21.367	0.328	0.0565	0.00276	-0.00028
Zircon_16_025	311	321	0.87	0.05706	0.00137	0.6131	0.01553	0.07789	0.00063	0.02415	0.00046	0.32	484	4	486	10	494	53	482	9	484	4.0	0.4	12.839	0.104	0.05706	0.00137	-0.00007
Zircon_17_026	93	36	0.33	0.05152	0.00206	0.33977	0.01419	0.04824	0.00058	0.01608	0.00058	0.29	304	4	297	11	264	92	322	12	304	4.0	-2.4	20.73	0.249	0.05152	0.00206	-0.00007
Zircon_18_027	84	102	1.02	0.05328	0.00293	0.30483	0.01723	0.04177	0.00054	0.01358	0.00031	0.23	264	3	270	13	341	124	273	6	264	3.0	2.2	23.941	0.31	0.05328	0.00293	-0.00009
Zircon_20_029	616	92	0.12	0.07916	0.00103	2.1883	0.0308	0.20049	0.00108	0.06012	0.00114	0.38	1178	6	1177	10	1176	26	1180	22	1176	26.0	-0.1	4.988	0.027	0.07916	0.00103	-0.00013
Zircon_21_031	109	31	0.24	0.07212	0.00195	1.5716	0.0471	0.15864	0.00206	0.04916	0.00108	0.43	949	11	959	19	989	55	970	21	949	11.0	1.0	6.304	0.082	0.07212	0.00195	-0.00019
Zircon_22_032	207	98	0.40	0.12816	0.00167	6.7178	0.09951	0.38033	0.0027	0.10635	0.0016	0.48	2078	13	2075	13	2073	23	2043	29	2073	23.0	-0.1	2.629	0.019	0.12816	0.00167	-0.00037
Zircon_23_033	98	42	0.36	0.0754	0.00143	1.8474	0.03809	0.17782	0.00142	0.04808	0.00101	0.39	1055	8	1063	14	1079	38	949	19	1079	38.0	0.8	5.624	0.045	0.0754	0.00143	-0.00017
Zircon_24_034	77	34	0.37	0.09159	0.00333	2.54932	0.10576	0.20188	0.0023	0.0595	0.00065	0.38	1185	12	1286	30	1459	69	1168	12	1459	69.0	7.9	4.953	0.056	0.09159	0.00333	-0.00135
Zircon_25_035	156	125	0.67	0.07014	0.0014	1.5212	0.03194	0.15714	0.00101	0.04682	0.00075	0.31	941	6	939	13	932	41	925	14	941	6.0	-0.2	6.364	0.041	0.07014	0.0014	-0.00016
Zircon_27_038	156	61	0.33	0.07411	0.00133	1.8213	0.03545	0.17823	0.00132	0.05429	0.00109	0.39	1057	7	1053	13	1044	35	1069	21	1044	35.0	-0.4	5.611	0.042	0.07411	0.00133	-0.00016
Zircon_28_039	174	105	0.51	0.05468	0.00197	0.35487	0.01313	0.04702	0.0004	0.01485	0.0003	0.23	296	2	308	10	399	78	298	6	296	2.0	3.9	21.268	0.181	0.05468	0.00197	-0.00007
Zircon_29_040	102	46	0.38	0.06318	0.00177	0.88561	0.02594	0.10187	0.00088	0.03108	0.00068	0.29	625	5	644	14	714	57	619	13	625	5.0	3.0	9.816	0.085	0.06318	0.00177	-0.00013
Zircon_3_009	401	177	0.37	0.05428	0.00168	0.33337	0.01067	0.04458	0.00036	0.01411	0.0003	0.25	281	2	292	8	383	67	283	6	281	2.0	3.8	22.432	0.181	0.05428	0.00168	-0.00005
Zircon_31_043	310	262	0.71	0.05025	0.00156	0.31015	0.0101	0.04485	0.00045	0.0136	0.00027	0.3	283	3	274	8	207	69	273	5	283	3.0	-3.3	22.297	0.224	0.05025	0.00156	-0.00004
Zircon_32_044	223	174	0.65	0.11292	0.00158	5.1431	0.0796	0.33048	0.00218	0.09374	0.00131	0.43	1841	11	1843	13	1847	24	1811	24	1847	24.0	0.1	3.026	0.02	0.11292	0.00158	-0.00033
Zircon_33_045	277	160	0.49	0.06882	0.00169	1.44104	0.04152	0.15186	0.00128	0.04617	0.00037	0.45	911	7	906	17	893	49	912	7	911	7.0	-0.6	6.585	0.056	0.06882	0.00169	-0.00053
Zircon_34_046	144	89	0.52	0.058	0.00203	0.38597	0.01395	0.04855	0.00044	0.01557	0.00031	0.25	306	3	331	10	530	74	312	6	306	3.0	7.6	20.597	0.187	0.058	0.00203	-0.00007
Zircon_36_049	257	302	0.99	0.05377	0.00134	0.34152	0.00896	0.04623	0.00037	0.01441	0.00027	0.31	291	2	298	7	361	54	289	5	291	2.0	2.3	21.631	0.173	0.05377	0.00134	-0.00004
Zircon_37_050	1276	84	0.05	0.13139	0.00153	6.79288	0.08616	0.37496	0.00197	0.10651	0.00058	0.41	2053	9	2085	11	2117	20	2046	11	2117	20.0	1.5	2.667	0.014	0.13139	0.00153	-0.00032
Zircon_38_051	189	127	0.56	0.05491	0.00148	0.35915	0.01008	0.04754	0.00037	0.01485	0.00031	0.28	299	2	312	8	409	58	298	6	299	2.0	4.2	21.035	0.164	0.05491	0.00148	-0.00005
Zircon_39_052	276	45	0.14	0.07837	0.00118	2.0737	0.03738	0.19188	0.00192	0.0584	0.00117	0.55	1132	10	1140	12	1156	29	1147	22	1156	29.0	0.7	5.212	0.052	0.07837	0.00118	-0.00011
Zircon_40_053	137	93	0.57	0.07439	0.00141	1.7406	0.03595	0.16991	0.00138	0.05082	0.00076	0.4	1012	8	1024	13	1052	37	1002	15	1052	37.0	1.2	5.885	0.048	0.07439	0.00141	-0.00016
Zircon_41_055	1377	1042	0.63	0.08507	0.00111	2.6398	0.04266	0.22515	0.00216	0.06521	0.00091	0.59	1309	11	1312	12	1317	24	1277	17	1317	24.0	0.2	4.441	0.043	0.08507	0.00111	-0.00012
Zircon_42_056	387	105	0.23	0.07897	0.00118	2.1929	0.04212	0.19986	0.0024	0.06108	0.0011	0.63	1175	13	1179	13	1171	28	1198	21	1171	28.0	0.3	5.004	0.06	0.07897	0.00118	-0.00011
Zircon_43_057	154	50	0.27	0.07936	0.00135	2.1636	0.03938	0.19781	0.00129	0.05778	0.00104	0.36	1164	7	1169	13	1181	32	1135	20	1181	32.0	0.4	5.055	0.033	0.07936	0.00135	-0.00018
Zircon_45_059	338	137	0.34	0.07816	0.00125	2.0902	0.03634	0.19395	0.00132	0.05734	0.00092	0.39	1143	7	1146	12	1151	30	1127	18	1151	30.0	0.3	5.156	0.035	0.07816	0.00125	-0.00016
Zircon_46_061	678	375	0.46	0.05476	0.00088	0.56371	0.00982	0.07469	0.00052	0.02257	0.00036	0.39	464	3	454	6	402	35	451	7	464	3.0	-2.2	13.389	0.093	0.05476	0.00088	-0.00004
Zircon_47_062	92	51	0.46	0.05665	0.00266	0.3876	0.0188	0.04964	0.0006	0.01459	0.0005	0.25	312	4	333	14	478	101	293	10	312	4.0	6.3	20.145	0.243	0.05665	0.00266	-0.00010
Zircon_48_063	358	56	0.13	0.077	0.00115	2.1204	0.03944	0.199	0.00219	0.05925	0.00113	0.6	1170	12	1155	13	1121	29	1163	22	1121	29.0	-1.3	5.025	0.055	0.077	0.00115	-0.00011

Zircon_49_064	345	117	0.28	0.07311	0.00102	1.6666	0.02552	0.16501	0.00102	0.05025	0.0009	0.41	985	6	996	10	1017	27	991	17	1017	27.0	1.1	6.06	0.037	0.07311	0.00102	-0.000114
Zircon_5_011	140	91	0.55	0.06046	0.00151	0.7045	0.01843	0.0845	0.00065	0.02593	0.00054	0.3	523	4	541	11	620	52	517	11	523	4.0	3.3	11.834	0.091	0.06046	0.00151	-0.000096
Zircon_50_065	222	122	0.46	0.07095	0.00121	1.5165	0.02771	0.15511	0.00104	0.04619	0.00074	0.36	930	6	937	11	956	33	913	14	930	6.0	0.7	6.447	0.043	0.07095	0.00121	-0.000123
Zircon_51_067	487	224	0.39	0.05106	0.00133	0.33239	0.00911	0.0473	0.00041	0.01514	0.00035	0.31	298	3	291	7	244	58	304	7	298	3.0	-2.4	21.142	0.183	0.05106	0.00133	-0.000044
Zircon_52_068	268	216	0.68	0.07479	0.00112	1.8121	0.02955	0.17576	0.00112	0.05244	0.00079	0.4	1044	6	1050	11	1063	29	1033	15	1063	29.0	0.6	5.69	0.036	0.07479	0.00112	-0.000133
Zircon_53_069	102	45	0.37	0.07893	0.0015	2.1053	0.0434	0.19378	0.00155	0.05672	0.00108	0.39	1142	8	1151	14	1170	36	1115	21	1170	36.0	0.8	5.16	0.041	0.07893	0.0015	-0.000193
Zircon_54_070	91	49	0.45	0.05689	0.00228	0.38455	0.01606	0.04934	0.00059	0.0156	0.00034	0.28	310	4	330	12	487	86	313	7	310	4.0	6.1	20.268	0.242	0.05689	0.00228	-0.000082
Zircon_55_071	432	82	0.16	0.07922	0.00119	1.8136	0.03118	0.16555	0.00139	0.04923	0.00098	0.49	988	8	1050	11	1178	29	971	19	1178	29.0	5.9	6.04	0.051	0.07922	0.00119	-0.000114
Zircon_56_073	1393	115	0.07	0.0712	0.00093	1.4911	0.02174	0.15193	0.001	0.04521	0.00077	0.44	912	6	927	9	963	26	894	15	912	6.0	1.6	6.582	0.043	0.0712	0.00093	-0.000084
Zircon_57_074	315	152	0.40	0.0594	0.00113	0.75657	0.01554	0.09242	0.00072	0.02912	0.00047	0.38	570	4	572	9	582	40	580	9	570	4.0	0.3	10.82	0.084	0.0594	0.00113	-0.000069
Zircon_58_075	479	326	0.57	0.05504	0.00213	0.33469	0.01449	0.0441	0.00043	0.01376	0.00012	0.32	278	3	293	11	414	84	276	2	278	3.0	5.1	22.674	0.219	0.05504	0.00213	-0.000236
Zircon_6_013	470	95	0.17	0.07462	0.00127	1.8644	0.03387	0.18123	0.00116	0.0512	0.00092	0.35	1074	6	1069	12	1058	33	1009	18	1058	33.0	-0.5	5.518	0.035	0.07462	0.00127	-0.000157
Zircon_60_076	1182	290	0.21	0.07792	0.00101	2.145	0.03177	0.19918	0.00141	0.04364	0.0007	0.48	1171	8	1163	10	1145	25	863	14	1145	25.0	-0.7	5.021	0.036	0.07792	0.00101	-0.000123
Zircon_62_078	204	15	0.06	0.07985	0.00128	2.374	0.04215	0.21557	0.00166	0.06638	0.00192	0.43	1258	9	1235	13	1193	30	1299	36	1193	30.0	-1.9	4.639	0.036	0.07985	0.00128	-0.00017
Zircon_63_079	301	190	0.53	0.05148	0.00118	0.31904	0.00777	0.04499	0.00036	0.01397	0.00029	0.34	284	2	281	6	262	51	280	6	284	2.0	-1.1	22.227	0.178	0.05148	0.00118	-0.00004
Zircon_64_080	753	290	0.32	0.05735	0.00086	0.66477	0.01067	0.08404	0.00048	0.02581	0.00039	0.36	520	3	518	7	505	32	515	8	520	3.0	-0.4	11.899	0.068	0.05735	0.00086	-0.00005
Zircon_67_083	50	54	0.89	0.06839	0.00675	0.40739	0.04547	0.04321	0.00105	0.01314	0.00029	0.35	273	6	347	33	880	203	264	6	273	6.0	21.3	23.145	0.563	0.06839	0.00675	-0.000839
Zircon_68_084	436	183	0.35	0.07988	0.00112	2.3612	0.03596	0.21417	0.00129	0.06127	0.00092	0.39	1251	7	1231	11	1194	27	1202	18	1194	27.0	-1.6	4.669	0.028	0.07988	0.00112	-0.000154
Zircon_69_085	324	70	0.18	0.07457	0.00119	1.9332	0.03985	0.18801	0.00244	0.0553	0.00116	0.63	1111	13	1093	14	1057	31	1088	22	1057	31.0	-1.6	5.319	0.069	0.07457	0.00119	-0.000109
Zircon_7_014	132	55	0.35	0.05564	0.00223	0.37613	0.01582	0.04919	0.00064	0.01594	0.00043	0.3	310	4	324	12	438	86	320	9	310	4.0	4.3	20.329	0.265	0.05564	0.00223	-0.000077
Zircon_70_086	585	75	0.11	0.05844	0.00105	0.71924	0.01438	0.08887	0.00077	0.03133	0.00075	0.44	549	5	550	8	546	38	624	15	549	5.0	0.2	11.252	0.097	0.05844	0.00105	-0.00006
Zircon 71 088	174	61	0.29	0.07989	0.00144	2.2186	0.04301	0.20158	0.00145	0.05933	0.00107	0.37	1184	8	1187	14	1194	34	1165	20	1194	34.0	0.3	4.961	0.036	0.07989	0.00144	-0.000194
Zircon 72 089	67	42	0.53	0.05579	0.00318	0.36152	0.02114	0.04737	0.00062	0.01413	0.00045	0.22	298	4	313	16	444	123	284	9	298	4.0	4.8	21.11	0.276	0.05579	0.00318	-0.00012
Zircon 73 090	20	22	0.95	0.08165	0.00359	1.8975	0.08654	0.17026	0.00204	0.05005	0.0011	0.27	1014	11	1080	30	1237	83	987	21	1237	83.0	6.1	5.873	0.07	0.08165	0.00359	-0.000475
Zircon 74 091	216	88	0.34	0.05331	0.00144	0.33257	0.0093	0.04533	0.00033	0.01431	0.00029	0.26	286	2	292	7	342	59	287	6	286	2.0	2.1	22.06	0.161	0.05331	0.00144	-0.00005
Zircon 75 092	69	24	0.30	0.07743	0.00194	1.8985	0.05032	0.17748	0.00156	0.05314	0.00143	0.33	1053	9	1081	18	1132	48	1047	27	1132	48.0	2.6	5.634	0.05	0.07743	0.00194	-0.000238
Zircon 76 094	188	133	0.59	0.07186	0.00165	1.6402	0.03903	0.16564	0.00101	0.04803	0.00082	0.26	988	6	986	15	982	45	948	16	988	6.0	-0.2	6.037	0.037	0.07186	0.00165	-0.000218
Zircon 77 095	194	55	0.24	0.07221	0.0013	1.556	0.02973	0.15648	0.001	0.04727	0.00085	0.33	937	6	953	12	992	35	934	16	937	6.0	1.7	6.391	0.041	0.07221	0.0013	-0.000144
Zircon 78 096	389	299	0.64	0.05147	0.00149	0.32455	0.00985	0.04576	0.00041	0.01404	0.00025	0.3	288	3	285	8	262	64	282	5	288	3.0	-1.1	21.853	0.196	0.05147	0.00149	-0.000052
Zircon 79 097	160	309	1.61	0.07526	0.00151	1.5756	0.03299	0.15212	0.00094	0.04575	0.00064	0.29	913	5	961	13	1075	39	904	12	913	5.0	5.0	6.574	0.041	0.07526	0.00151	-0.000162
Zircon 8 015	448	102	0.19	0.07267	0.00116	1.5966	0.02821	0.15961	0.0012	0.04832	0.00082	0.43	955	7	969	11	1005	31	954	16	955	7.0	1.4	6.265	0.047	0.07267	0.00116	-0.000119
Zircon 80 098	1068	88	0.07	0.07432	0.00105	1.41334	0.04537	0.13793	0.00364	0.04158	0.00109	0.89	833	21	895	19	1050	27	823	21	833	21.0	6.9	7.25	0.191	0.07432	0.00105	-0.000089
Zircon 82 101	146	90	0.51	0.05688	0.00171	0.34167	0.01068	0.04356	0.00038	0.01339	0.00032	0.27	275	2	298	8	487	64	269	6	275	2.0	7.7	22.957	0.2	0.05688	0.00171	-0.000054
Zircon 83 102	1633	53	0.03	0.05812	0.00076	0.70137	0.00993	0.08751	0.00049	0.02604	0.0006	0.38	541	3	540	6	534	29	520	12	541	3.0	-0.2	11.427	0.064	0.05812	0.00076	-0.000041
Zircon_84_103	127	30	0.20	0.09491	0.0014	3.37287	0.07026	0.25775	0.00323	0.07568	0.00093	0.66	1478	17	1498	16	1526	28	1475	18	1526	28.0	1.3	3.88	0.049	0.09491	0.0014	-0.000296
Zircon 85 104	58	20	0.28	0.07791	0.00179	1.8517	0.04503	0.17262	0.00136	0.05432	0.00147	0.33	1027	7	1064	16	1145	46	1069	28	1145	46.0	3.5	5.793	0.046	0.07791	0.00179	-0.000225
Zircon_86_106	919	1025	0.94	0.05725	0.00143	0.35691	0.00928	0.0452	0.00032	0.01433	0.00024	0.28	285	2	310	7	501	56	288	5	285	2.0	8.1	22.124	0.157	0.05725	0.00143	-0.00005
Zircon_87_107	156	78	0.42	0.1101	0.00165	4.9485	0.0807	0.32592	0.00209	0.09244	0.00148	0.39	1819	10	1811	14	1801	28	1787	27	1801	28.0	-0.4	3.068	0.02	0.1101	0.00165	-0.000357
Zircon_88_108	205	110	0.45	0.0556	0.00172	0.33322	0.01078	0.04349	0.0004	0.01376	0.00033	0.29	274	2	292	8	436	70	276	7	274	2.0	6.2	22.994	0.211	0.0556	0.00172	-0.000058
Zircon 89 109	468	350	0.63	0.05245	0.0011	0.30562	0.00679	0.04236	0.00031	0.01322	0.00021	0.33	267	2	271	5	305	49	265	4	267	2.0	1.5	23.607	0.173	0.05245	0.0011	-0.000033
Zircon 9 016	396	82	0.17	0.06872	0.00113	0.96617	0.01967	0.10197	0.00098	0.03101	0.00029	0.54	626	6	686	10	890	35	617	6	626	6.0	8.7	9.807	0.094	0.06872	0.00113	-0.000113
Zircon 90 110	400	295	0.62	0.05629	0.00141	0.3307	0.00864	0.04281	0.00033	0.01344	0.00023	0.28	270	2	290	7	464	56	270	5	270	2.0	6.9	23.359	0.18	0.05629	0.00141	-0.000042
Zircon 91 112	331	328	0.83	0.10104	0.00141	3.9294	0.06583	0.28203	0.00259	0.08234	0.00115	0.55	1602	13	1620	14	1643	26	1599	21	1643	26.0	1.1	3.546	0.033	0.10104	0.00141	-0.00022
Zircon 92 113	219	87	0.33	0.07262	0.00123	1.6655	0.03136	0.16654	0.00135	0.04998	0.00095	0.44	993	7	995	12	1003	35	986	18	993	7.0	0.2	6.005	0.049	0.07262	0.00123	-0.000133
Zircon 93 114	178	204	0.96	0.07641	0.00122	1.9304	0.03334	0.18286	0.00119	0.05456	0.00076	0.38	1083	6	1092	12	1106	32	1074	15	1106	32.0	0.8	5.469	0.036	0.07641	0.00122	-0.000153
Zircon 94 115	338	97	0.24	0.07999	0.00128	2.1411	0.03698	0.19417	0.00126	0.05673	0.00108	0.38	1144	7	1162	12	1197	32	1115	21	1197	32.0	1.5	5.15	0.033	0.07999	0.00128	-0.000168
Zircon 95 116	340	67	0.16	0.07154	0.00107	1.6039	0.02585	0.16238	0.00096	0.04694	0.00084	0.37	970	5	972	10	973	31	927	16	970	5.0	0.2	6.158	0.036	0.07154	0.00107	-0.000121
Zircon 96 118	282	195	0.58	0.05424	0.00168	0.36447	0.01182	0.04886	0.00046	0.01546	0.00031	0.3	308	3	316	9	381	71	310	6	308	3.0	2.5	20.467	0.193	0.05424	0.00168	-0.000063
Zircon 97 119	163	130	0.67	0.07078	0.0012	1.4895	0.02738	0.15275	0.00107	0.04645	0.00074	0.39	916	6	926	11	951	35	918	14	916	6.0	1.1	6.547	0.046	0.07078	0.0012	-0.000126
Zircon 98 120	143	79	0.46	0.0721	0.00108	1.5968	0.02671	0.16084	0.00119	0.04891	0.00073	0.45	961	7	969	10	989	31	965	14	961	7.0	0.8	6.217	0.046	0.0721	0.00108	-0.000109
Zircon 99 121	63	25	0.34	0.08179	0.00155	2.2745	0.04621	0.20132	0.00145	0.06078	0.00128	0.36	1182	8	1204	14	1240	38	1193	24	1240	38.0	1.8	4.967	0.036	0.08179	0.00155	-0.000222
	00	20	0.0 .	0.00177	5.00155	2.27.10	5.0.021	0.20102	5.001.0	5.00070	5.00120	5.50		0	120.	• •		50				20.0	1.0		5.050		5.00100	5.000222

T11-11	El Chi	lar Comp	lex	x 401573	y 2296076	6																						
							CORRE	CTED RAT	TIOS							CO	RRECT	ED AGE	S (Ma)									
	U (ppn	n) Th (pp	m) Th/U	207Pb/200	5F±1s	207Pb/23	5L±1s	206Pb/23	81 ±1s	208Pb/23	2T±1s	Rho	206Pb/2	2381±1s	207Pb/	/235 ±1s	207Pb/	206P±1s	208Pb/2	32 ±1s	Best ag	e (±1s	% disc	238U/20	611s	207Pb/20	5F 1s	rTW
Ziroon 1 T11 11 008	010	102	0.20	0.00261	0.00102	2 2024	0.04516	0.26257	0.00107	0.07524	0.00008	0.56	1502	10	1502	10	1500	21	1466	19	1500	21.0	0.0	2 800	0.020	0.00261	0.00102	0.000142
Zircon_1_0_018	220	192	0.20	0.09301	0.00103	2.0724	0.04510	0.20237	0.00197	0.07524	0.00098	0.30	1624	10	1620	10	1600	21	1400	22	1600	21.0	0.0	2 166	0.029	0.09301	0.00103	-0.000142
Zircon_10_018	440	05	0.24	0.09987	0.0015	0.72921	0.03884	0.20035	0.00203	0.08552	0.0012	0.40	571	2	561	7	526	23	547	10	571	25.0	-0.5	10 802	0.025	0.09987	0.0015	-0.00022
Zircon_100_126	185	87	0.17	0.0579	0.00081	2 2480	0.0115	0.09257	0.00057	0.02/41	0.00049	0.41	3/1	3	1460	14	320 1525	27	547 1456	20	3/1	27.0	-1.8	10.805	0.067	0.0579	0.00081	-0.00005
Zircon_12_020	165	21	0.39	0.09555	0.00133	2.0064	0.03785	0.24741	0.00272	0.07407	0.00105	0.02	1425	7	11409	14	1333	20	1430	20	1333	27.0	1.0	5 222	0.044	0.09555	0.00133	-0.000102
Zircon_12_021	217	100	0.44	0.07908	0.00119	2.0904	0.0347	0.19109	0.00134	0.03732	0.00081	0.42	1412	7	140	10	11/4	22	1401	10	11/4	22.0	1.0	1.092	0.037	0.07908	0.00119	-0.00014
Zircon_13_022	217	109	0.42	0.09216	0.00111	5.10/4	0.04155	0.24489	0.00144	0.07175	0.001	0.43	1412		1435	10	14/1	23	1401	19	14/1	23.0	1.0	4.083	0.024	0.09216	0.00111	-0.000165
Zircon_14_023	/19	346	0.40	0.06236	0.00069	0.95816	0.01215	0.11141	0.0007	0.03341	0.0004	0.49	681	4	682	6	686	24	664	8	681	4.0	0.1	8.976	0.056	0.06236	0.00069	-0.000042
Zircon_15_024	566	184	0.27	0.07851	0.00094	2.1956	0.03039	0.20233	0.0014	0.05755	0.00069	0.5	1188	8	1180	10	1160	24	1131	13	1160	24.0	-0.7	4.942	0.034	0.07851	0.00094	-0.000111
Zircon_16_026	297	366	1.03	0.08949	0.00116	2.8879	0.05109	0.23345	0.0028	0.07114	0.00092	0.68	1353	15	1379	13	1415	25	1389	17	1415	25.0	1.9	4.284	0.051	0.08949	0.00116	-0.00012
Zircon_17_027	85	14	0.13	0.05477	0.00192	0.31854	0.01157	0.04241	0.00041	0.01543	0.00062	0.26	268	3	281	9	403	80	309	12	268	3.0	4.6	23.579	0.228	0.05477	0.00192	-0.000061
Zircon_18_028	367	128	0.29	0.09344	0.00103	3.3707	0.0711	0.26147	0.00471	0.07448	0.00149	0.85	1497	24	1498	17	1497	21	1452	28	1497	21.0	0.1	3.825	0.069	0.09344	0.00103	-0.000074
Zircon_19_029	585	108	0.15	0.08976	0.00106	2.9079	0.05438	0.23497	0.00279	0.0694	0.00081	0.71	1360	15	1384	14	1420	23	1356	15	1420	23.0	1.7	4.256	0.05	0.08976	0.00106	-0.000239
Zircon_2_009	156	237	1.28	0.09609	0.00115	3.5899	0.05024	0.27109	0.00195	0.07559	0.00091	0.52	1546	10	1547	11	1550	23	1473	17	1550	23.0	0.1	3.689	0.027	0.09609	0.00115	-0.00018
Zircon 20 030	127	95	0.63	0.07384	0.00111	1.7842	0.02953	0.17519	0.00123	0.0507	0.00061	0.42	1041	7	1040	11	1037	31	1000	12	1037	31.0	-0.1	5.708	0.04	0.07384	0.00111	-0.00012
Zircon 21 032	765	269	0.29	0.09675	0.00097	3.3651	0.03777	0.25208	0.00129	0.06841	0.00082	0.45	1449	7	1496	9	1562	19	1337	16	1562	19.0	3.1	3.967	0.02	0.09675	0.00097	-0.000145
Zircon 22 033	189	150	0.67	0.07546	0.00128	1.7967	0.03638	0.17016	0.00187	0.05244	0.001	0.55	1013	10	1044	13	1081	35	1033	19	1081	35.0	3.0	5.877	0.065	0.07546	0.00128	-0.00012
Zircon 23 034	789	284	0.30	0.09223	0.00138	3.023	0.0507	0.2317	0.00174	0.0678	0.00115	0.45	1343	9	1413	13	1472	29	1326	22	1472	29.0	5.0	4.316	0.032	0.09223	0.00138	-0.000201
Zircon_24_035	287	187	0.54	0.09175	0.00128	3.1454	0.06009	0.24663	0.00321	0.0711	0.00107	0.68	1421	17	1444	15	1462	27	1388	20	1462	27.0	1.6	4.055	0.053	0.09175	0.00128	-0.000139

Zircon_25_036	756	429	0.48	0.05334	0.00091	0.28314	0.00536	0.03862	0.00032	0.01203	0.00018	0.43	244	2	253	4	343	39	242	4	244	2.0	3.6	25.893	0.215	0.05334	0.00091	-0.000022
Zircon_26_038	116	47	0.34	0.05507	0.00237	0.29939	0.01329	0.03952	0.00043	0.01219	0.00027	0.25	250	3	266	10	415	94	245	5	250	3.0	6.0	25.304	0.275	0.05507	0.00237	-0.000073
Zircon_27_039	26	13	0.42	0.07552	0.00219	1.7351	0.05382	0.16757	0.00184	0.05114	0.00123	0.35	999	10	1022	20	1082	57	1008	24	1082	57.0	2.3	5.968	0.066	0.07552	0.00219	-0.000255
Zircon_28_040	109	50	0.38	0.09923	0.00129	3.6305	0.05293	0.26556	0.00175	0.07792	0.00117	0.45	1518	9	1556	12	1610	24	1517	22	1610	24.0	2.4	3.766	0.025	0.09923	0.00129	-0.000211
Zircon_29_041	66	60	0.76	0.09086	0.00136	3.1298	0.05092	0.25002	0.00158	0.07941	0.00127	0.39	1439	8	1440	13	1444	28	1545	24	1444	28.0	0.1	4	0.025	0.09086	0.00136	-0.000229
Zircon_3_010	140	80	0.48	0.09576	0.00124	3.3491	0.04913	0.25399	0.00173	0.07681	0.001	0.47	1459	9	1493	11	1543	24	1496	19	1543	24.0	2.3	3.937	0.027	0.09576	0.00124	-0.000195
Zircon_30_042	273	105	0.32	0.09548	0.00105	3.5467	0.04444	0.26913	0.00161	0.08634	0.00104	0.48	1536	8	1538	10	1538	20	1674	19	1538	20.0	0.1	3.716	0.022	0.09548	0.00105	-0.00017
Zircon_31_044	435	76	0.15	0.07258	0.00087	1.7568	0.02373	0.17536	0.00109	0.0497	0.00084	0.46	1042	6	1030	9	1002	24	980	16	1002	24.0	-1.2	5.703	0.035	0.07258	0.00087	-0.000093
Zircon_32_045	292	167	0.48	0.093/1	0.00122	3.4475	0.06586	0.26699	0.00374	0.07297	0.00088	0.73	1526	19	1515	15	1502	24	1424	17	1502	24.0	-0.7	3.745	0.052	0.093/1	0.00122	-0.000127
Zircon_55_046 Zircon_24_047	527	1/0	0.44	0.03902	0.00094	0.82419	0.01450	0.10155	0.0007	0.03000	0.0004	0.41	1002	4	1122	0	208 1106	21	010	8 26	1106	4.0	-2.1	9.847 5.412	0.008	0.05902	0.00094	-0.000000
Zircon 25 049	552	26	0.23	0.07995	0.00088	2.0332	0.03619	0.104/0	0.00277	0.04905	0.00134	0.61	1252	21	1412	21	1452	21	1222	20	1452	21.0	3.5	1 284	0.081	0.07995	0.00088	-0.0000000
Zircon 36 050	806	212	0.44	0.0915	0.00192	3.0173	0.03731	0.23542	0.00397	0.00707	0.00129	0.03	1421	9	1412	9	1396	19	1325	17	1396	19.0	-0.7	4.264	0.075	0.0915	0.00192	-0.000212
Zircon 37 051	167	57	0.22	0.10057	0.00121	3 8685	0.05225	0.27925	0.00173	0.08075	0.00113	0.45	1588	9	1607	11	1635	22	1570	21	1635	22.0	12	3 581	0.022	0 10057	0.00121	-0.000202
Zircon 38 052	42	31	0.62	0.10016	0.0016	3.6489	0.06463	0.26385	0.00201	0.07861	0.00118	0.43	1510	10	1560	14	1627	29	1530	22	1627	29.0	3.2	3.79	0.029	0.10016	0.0016	-0.000269
Zircon 39 053	41	52	1.07	0.09278	0.00195	2.7731	0.06438	0.21688	0.00215	0.06627	0.00119	0.42	1265	11	1348	17	1483	39	1297	23	1483	39.0	6.2	4.611	0.046	0.09278	0.00195	-0.000265
Zircon_4_011	498	116	0.20	0.07481	0.00097	1.8039	0.02568	0.1745	0.00101	0.05077	0.00061	0.41	1037	6	1047	9	1063	25	1001	12	1063	25.0	1.0	5.731	0.033	0.07481	0.00097	-0.000113
Zircon_41_056	466	110	0.20	0.08622	0.00112	2.7804	0.05519	0.23109	0.00347	0.06881	0.0011	0.76	1340	18	1350	15	1343	25	1345	21	1343	25.0	0.7	4.327	0.065	0.08622	0.00112	-0.000096
Zircon_42_057	245	29	0.10	0.07161	0.001	1.6973	0.02613	0.17218	0.0011	0.05161	0.00124	0.42	1024	6	1008	10	975	28	1017	24	1024	6.0	-1.6	5.808	0.037	0.07161	0.001	-0.000114
Zircon_44_059	163	32	0.16	0.09521	0.00124	3.5227	0.05651	0.26904	0.00253	0.08078	0.00129	0.58	1536	13	1532	13	1532	24	1570	24	1532	24.0	-0.3	3.717	0.035	0.09521	0.00124	-0.000168
Zircon_45_060	684	242	0.30	0.07768	0.00085	1.7697	0.03436	0.1654	0.00265	0.04264	0.00098	0.83	987	15	1034	13	1139	21	844	19	1139	21.0	4.5	6.046	0.097	0.07768	0.00085	-0.000044
Zircon_46_062	60	29	0.41	0.08515	0.0017	2.531	0.06179	0.21594	0.00302	0.0681	0.00136	0.58	1260	16	1281	18	1319	38	1332	26	1319	38.0	1.6	4.631	0.065	0.08515	0.0017	-0.000194
Zircon_47_063	28	18	0.53	0.09106	0.00355	2.5239	0.10113	0.20363	0.00187	0.07379	0.00266	0.23	1195	10	1279	29	1448	73	1439	50	1448	73.0	6.6	4.911	0.045	0.09106	0.00355	-0.000579
Zircon_48_064	202	85	0.35	0.07221	0.00116	1.6324	0.02871	0.16398	0.0012	0.04933	0.00074	0.41	979	7	983	11	992	32	973	14	979	7.0	0.4	6.098	0.045	0.07221	0.00116	-0.000117
Zircon_49_065	194	36	0.16	0.07218	0.00108	1.5864	0.02581	0.15876	0.001	0.05668	0.00142	0.39	950	6	965	10	991	30	1114	27	950	6.0	1.6	6.299	0.04	0.07218	0.00108	-0.000117
Zircon_5_012	4//	239	0.42	0.09034	0.0009	2.9829	0.03448	0.23923	0.00139	0.06909	0.0009	0.51	1383	7	1403	9	1433	19	1350	17	1433	19.0	1.4	4.18	0.024	0.09034	0.0009	-0.000126
Zircon_50_066	468	188	0.34	0.0918/	0.00101	3.207	0.03944	0.25322	0.00139	0.07334	0.00088	0.45	1455	7	1459	10	1465	20	1431	17	1465	20.0	0.3	3.949	0.022	0.09187	0.00101	-0.00016
Zircon_51_068	1246	60	0.04	0.07465	0.00082	1.8058	0.02545	0.17544	0.00121	0.05368	0.00123	0.53	1042		1048	8	1059	22	1057	12	1059	22.0	0.6	5.7	0.039	0.07465	0.00082	-0.00008
Zircon_52_069	1020	84 112	0.29	0.07477	0.00097	2 9141	0.02547	0.17271	0.00104	0.05125	0.00067	0.42	1602	10	1058	9	1062	23	1010	21	1002	25.0	1.1	2544	0.035	0.07477	0.00097	-0.000108
Zircon 55 072	1194	162	0.09	0.09770	0.00098	3.6978	0.047	0.28219	0.00203	0.08207	0.00113	0.58	1549	11	1571	10	1592	18	1537	21	1592	18.0	-0.4	3.544	0.023	0.09770	0.00098	-0.00014
Zircon 56 074	605	366	0.51	0.09851	0.00097	3 8908	0.0473	0.27155	0.0022	0.08135	0.00119	0.04	1549	8	1612	10	1606	20	1581	17	1606	20.0	-0.2	3.51	0.03	0.09801	0.00097	-0.000127
Zircon 57 075	169	64	0.32	0.12579	0.00138	6 6999	0.0846	0.38628	0.00239	0.1088	0.00163	0.47	2106	11	2073	11	2040	19	2087	30	2040	19.0	-1.6	2 589	0.016	0.12579	0.00138	-0.000319
Zircon 58 076	220	85	0.32	0.07995	0.00112	2.2308	0.03575	0.19936	0.00156	0.06247	0.001	0.49	1172	8	1191	11	1196	27	1225	19	1196	27.0	1.6	5.016	0.039	0.07995	0.00112	-0.000129
Zircon 59 077	129	102	0.66	0.07496	0.00135	1.7403	0.03864	0.16663	0.00217	0.04819	0.00092	0.58	994	12	1024	14	1067	35	951	18	1067	35.0	2.9	6.001	0.078	0.07496	0.00135	-0.000114
Zircon_6_014	395	327	0.69	0.06079	0.00097	0.79962	0.0139	0.0954	0.00065	0.02935	0.00038	0.4	587	4	597	8	632	34	585	7	587	4.0	1.7	10.482	0.071	0.06079	0.00097	-0.000063
Zircon_61_080	1045	144	0.11	0.08666	0.00087	2.5669	0.03048	0.21482	0.00137	0.06225	0.00087	0.53	1254	7	1291	9	1353	19	1221	17	1353	19.0	2.9	4.655	0.03	0.08666	0.00087	-0.000101
Zircon_62_081	725	276	0.32	0.09041	0.0009	2.9048	0.03734	0.23228	0.0019	0.06632	0.0008	0.63	1346	10	1383	10	1434	19	1298	15	1434	19.0	2.7	4.305	0.035	0.09041	0.0009	-0.000097
Zircon_63_082	64	40	0.53	0.07861	0.00149	2.0513	0.04504	0.18804	0.00207	0.05302	0.0009	0.5	1111	11	1133	15	1162	37	1044	17	1162	37.0	1.9	5.318	0.059	0.07861	0.00149	-0.000164
Zircon_64_083	286	227	0.66	0.09516	0.00105	3.5681	0.04633	0.27215	0.00188	0.07561	0.00091	0.53	1552	10	1542	10	1531	20	1473	17	1531	20.0	-0.6	3.674	0.025	0.09516	0.00105	-0.000154
Zircon_65_084	261	56	0.18	0.09799	0.00108	3.65	0.04505	0.27038	0.00151	0.08583	0.00137	0.45	1543	8	1561	10	1586	20	1664	26	1586	20.0	1.2	3.698	0.021	0.09799	0.00108	-0.000177
Zircon_67_087	65	17	0.21	0.08486	0.00153	2.6818	0.05385	0.22883	0.00204	0.06722	0.00134	0.44	1328	11	1323	15	1312	34	1315	25	1312	34.0	-0.4	4.37	0.039	0.08486	0.00153	-0.000214
Zircon_68_088	164	64	0.33	0.07243	0.00094	1.7272	0.02534	0.17303	0.00118	0.0508	0.00071	0.47	1029	6	1019	9	998	26	1002	14	998	26.0	-1.0	5.779	0.039	0.07243	0.00094	-0.000099
Zircon_69_089	166	25	0.12	0.08477	0.00186	2.3419	0.06808	0.19616	0.00373	0.05869	0.00158	0.66	1155	20	1225	21	1310	42	1153	30	1310	42.0	5.7	5.098	0.097	0.08477	0.00186	-0.000169
Zircon_7_015	43	16	0.32	0.08199	0.0023	2.121	0.06737	0.18901	0.00284	0.05894	0.00124	0.47	1116	15	1156	22	1245	54	1158	24	1245	54.0	3.5	5.291	0.079	0.08199	0.0023	-0.000255
Zircon_/0_090	171	165	0.81	0.16474	0.00165	9.5635	0.13257	0.42043	0.00404	0.12104	0.00194	0.69	2262	18	2394	13	2505	16	2309	35	2505	16.0	5.5	2.379	0.023	0.16474	0.00165	-0.000292
Zircon_/1_092	451	207	0.38	0.10001	0.0011	3.9949	0.05274	0.29002	0.00212	0.0855	0.0012	0.55	1642	11	1633	11	1624	19	1658	22	1624	19.0	-0.6	3.448	0.025	0.10001	0.0011	-0.00017
Zircon_/2_093 Zircon_72_004	206	88	0.36	0.07015	0.00098	2.2566	0.02493	0.15839	0.00131	0.046	0.00064	0.51	948	/	943	10	933	27	1422	12	948	/.0	-0.5	0.314	0.052	0.07015	0.00098	-0.000091
Zircon 74 095	117	52	0.21	0.09170	0.00092	2 8551	0.03902	0.23733	0.0017	0.07290	0.00095	0.55	14//	9 16	1471	9	1333	20	1425	22	1402	20.0	-0.4	3.003 4 170	0.020	0.09170	0.00092	0.000123
Zircon 75 096	450	110	0.37	0.03370	0.00137	1.6169	0.02538	0.2595	0.00114	0.05116	0.00115	0.05	960	6	977	10	1001	29	1008	15	960	60	17	6.226	0.034	0.07254	0.00107	-0.000158
Zircon 76 098	701	259	0.31	0.07294	0.00111	1 8144	0.03346	0.16723	0.00201	0.04592	0.00083	0.44	997	11	1051	12	1171	26	907	16	1171	26.0	5.1	5.98	0.072	0.07894	0.00111	-0.000097
Zircon 77 099	199	84	0.35	0.10019	0.0012	3.8768	0.06311	0.28035	0.00308	0.08083	0.00121	0.68	1593	16	1609	13	1628	20	1571	23	1628	21.0	1.0	3.567	0.039	0.10019	0.0012	-0.00015
Zircon 78 100	964	566	0.49	0.09845	0.00098	3.7544	0.0531	0.27657	0.00277	0.07838	0.00094	0.71	1574	14	1583	11	1595	17	1525	18	1595	17.0	0.6	3.616	0.036	0.09845	0.00098	-0.000114
Zircon_79_101	234	58	0.21	0.07579	0.00121	1.8936	0.03263	0.18095	0.00116	0.05679	0.00108	0.38	1072	6	1079	11	1090	30	1116	21	1090	30.0	0.6	5.526	0.035	0.07579	0.00121	-0.000151
Zircon_8_016	123	83	0.56	0.07139	0.00143	1.5241	0.03245	0.1552	0.00113	0.04604	0.00078	0.34	930	6	940	13	969	38	910	15	930	6.0	1.1	6.443	0.047	0.07139	0.00143	-0.000153
Zircon_80_102	181	61	0.28	0.08904	0.00125	2.7792	0.04338	0.22644	0.00156	0.06617	0.00099	0.44	1316	8	1350	12	1405	25	1295	19	1405	25.0	2.5	4.416	0.03	0.08904	0.00125	-0.000173
Zircon_81_104	76	66	0.73	0.10231	0.00174	4.1261	0.0757	0.29298	0.00202	0.08677	0.00121	0.38	1656	10	1659	15	1666	29	1682	23	1666	29.0	0.2	3.413	0.024	0.10231	0.00174	-0.000342
Zircon_82_105	267	129	0.40	0.09995	0.0011	4.1785	0.05611	0.30287	0.00233	0.08399	0.00101	0.57	1706	12	1670	11	1623	19	1630	19	1623	19.0	-2.2	3.302	0.025	0.09995	0.0011	-0.000174
Zircon_83_106	249	172	0.58	0.05819	0.00111	0.58141	0.01192	0.0728	0.00056	0.02321	0.00035	0.37	453	3	465	8	537	39	464	7	453	3.0	2.6	13.736	0.106	0.05819	0.00111	-0.000052
Zircon_84_107	78	24	0.26	0.08702	0.00139	2.7392	0.05478	0.22784	0.00273	0.07064	0.00127	0.6	1323	14	1339	15	1361	29	1380	24	1361	29.0	1.2	4.389	0.053	0.08702	0.00139	-0.000161
Zircon_85_108	179	116	0.54	0.09711	0.00117	4.0046	0.06031	0.29906	0.00272	0.08302	0.00108	0.6	1687	13	1635	12	1569	21	1612	20	1569	21.0	-3.2	3.344	0.03	0.09711	0.00117	-0.00017
Zircon_86_110	503	171	0.28	0.09453	0.00104	3.5125	0.04883	0.26847	0.00228	0.07804	0.00101	0.61	1533	12	1530	11	1519	19	1519	19	1519	19.0	-0.2	3.725	0.032	0.09453	0.00104	-0.000138
Zircon_87_111	154	46	0.25	0.07575	0.00114	1.6943	0.02826	0.1628	0.00119	0.04937	0.00089	0.43	972	7	1006	11	1088	28	974	17	1088	28.0	3.4	6.143	0.045	0.07575	0.00114	-0.000112
Zircon_88_112	34	34	0.83	0.07766	0.00271	1.9973	0.08314	0.18652	0.00221	0.05595	0.0006	0.43	1103	12	1115	28	1138	65	1100	11	1138	65.0	1.1	5.361	0.064	0.07766	0.00271	-0.001229
Zircon_89_113	223	70	0.26	0.0736	0.00118	1.7798	0.03029	0.17555	0.00102	0.05199	0.00073	0.34	1043	6	1038	11	1031	30	1024	14	1031	30.0	-0.5	5.696	0.033	0.0736	0.00118	-0.000141
Zircon_9_017	121	30 20	0.21	0.08126	0.00349	2.0/16	0.12081	0.23607	0.0033	0.07104	0.00163	0.51	1300	17	1521	33 15	1228	80	158/	31 21	1228	80.0	-5.4	4.256	0.059	0.08126	0.00349	-0.00061
Zircon_90_114 Zircon_01_116	91 761	37 286	0.55	0.07532	0.00151	2.1344	0.04779	0.20/8/	0.002	0.03/31	0.00109	0.43	1421	11	1100	15	1077	38	1120	21	10//	38.0 21.0	-4.4	4.811	0.040	0.07552	0.00151	-0.000192
Zircon 93 119	104	380 73	0.45	0.0939	0.00115	3.5109	0.00572	0.24839	0.00373	0.07029	0.00135	0.78	1451	19	1485	15	1513	21	13/3	29	1540	21.0	3.0 -1.0	4.025	0.00	0.0939	0.00115	-0.0001
Zircon 94 119	226	194	0.59	0.09425	0.0017	3 5271	0.0/131	0.27210	0.00245	0.07786	0.000113	0.44	1547	8	1533	10	1515	19	1515	17	1515	19.0	-0.9	3 686	0.033	0.09432	0.0017	-0.000281
Zircon 95 120	220	75	0.72	0.09432	0.00104	3 8152	0.04450	0.27131	0.00169	0.07780	0.00093	0.48	1598	9	1596	10	1593	19	1617	20	1593	19.0	-0.9	3 555	0.022	0.09432	0.00104	-0.000103
Zircon 96 122	1049	176	0.14	0.09544	0.00093	3.6141	0.0422	0.27422	0.00178	0.08048	0.00121	0.55	1562	9	1553	9	1537	17	1565	23	1537	17.0	-0.6	3.647	0.021	0.09544	0.00093	-0.000132
Zircon 97 123	352	502	1.19	0.07955	0.00095	2.2653	0.02928	0.20639	0.00099	0.0603	0.00066	0.38	1210	5	1202	9	1186	22	1183	13	1186	22.0	-0.7	4.845	0.023	0.07955	0.00095	-0.00014
Zircon 98 124	679	294	0.36	0.07254	0.00073	1.6774	0.01898	0.16768	0.00089	0.04929	0.00059	0.46	999	5	1000	7	1001	19	972	11	999	5.0	0.1	5.964	0.032	0.07254	0.00073	-0.00007
Zircon_99_125	223	15	0.06	0.07076	0.00113	1.5347	0.02656	0.15749	0.00104	0.05808	0.00134	0.39	943	6	944	11	950	31	1141	26	943	6.0	0.1	6.35	0.042	0.07076	0.00113	-0.000121

$ \begin{array}{ $	T11-04 Fm. San Juan d	le la Rosa			x 420201	y 231186	8	CORRE	CTED RAT	108						CORR	ECTEI	DAGES	(Ma)										
Jack Jal Jal <th></th> <th>U (ppm)</th> <th>Th (ppm)</th> <th>Th/U</th> <th>207Pb/206 Pb</th> <th>±1s</th> <th>207Рb/23 U</th> <th>35 ±1s</th> <th>206Pb/23 U</th> <th>8 ±1s</th> <th>208Pb/23 Th</th> <th>³² ±1s</th> <th>Rho</th> <th>206Pb/2 U</th> <th>238 ±1</th> <th>s 207Pb/ 5U</th> <th>23 ±1s</th> <th>207Pb 9 Pb</th> <th>b/206 ±1s</th> <th>208Pb Th</th> <th>/232 ±1s</th> <th>Best aş (Ma)</th> <th>ge ±1s</th> <th>% disc</th> <th>238U/20 Pb</th> <th>¹⁶ 1s</th> <th>207РЬ/200 РЬ</th> <th>5 1s</th> <th>rTW</th>		U (ppm)	Th (ppm)	Th/U	207Pb/206 Pb	±1s	207Рb/23 U	35 ±1s	206Pb/23 U	8 ±1s	208Pb/23 Th	³² ±1s	Rho	206Pb/2 U	238 ±1	s 207Pb/ 5U	23 ±1s	207Pb 9 Pb	b/206 ±1s	208Pb Th	/232 ±1s	Best aş (Ma)	ge ±1s	% disc	238U/20 Pb	¹⁶ 1s	207РЬ/200 РЬ	5 1s	rTW
J J J J J J <	Zircon_01_T11-04_008	383	38	0.09	0.05769	0.00279	0.22179	0.01106	0.02788	0.0003	0.00865	0.00015	0.25	177	2	203	9	518	107	174	3	177	2	12.8	35.866	0.391	0.05769	0.00279	-0.00007.
J J	Zircon_02_009	343	220	0.56	0.05381	0.00113	0.34307	0.00787	0.04629	0.00043	0.01388	0.00026	0.4	292	3	299	6	363	47	279	5	292	3	2.3	21.603	0.201	0.05381	0.00113	-0.000034
Jame Jame Jame Jame Ja	Zircon_03_010	287	120	0.37	0.04942	0.00153	0.15326	0.00498	0.02261	0.00022	0.00717	0.00016	0.3	144	1	145	4	168	72	144	3	144	1	0.7	44.228	0.43	0.04942	0.00153	-0.00002
desc. desc. bit bit< bi	Zircon_04_011	288	141	0.43	0.0509	0.00158	0.15211	0.005	0.02182	0.00024	0.00634	0.00016	0.33	139	2	144	4	236	71	128	3	139	2	3.5	45.83	0.504	0.0509	0.00158	-0.000024
Cond. Q, Cit 2 1 1 1 2 2 1 1 1 <th< td=""><td>Zircon_06_014 Zircon_07_015</td><td>693</td><td>465</td><td>0.59</td><td>0.05199</td><td>0.00125</td><td>0.21406</td><td>0.00542</td><td>0.02997</td><td>0.00024</td><td>0.00914</td><td>0.00017</td><td>0.31</td><td>190</td><td>2</td><td>197</td><td>5</td><td>285</td><td>55</td><td>184</td><td>3</td><td>190</td><td>2</td><td>3.6</td><td>33.367</td><td>0.267</td><td>0.05199</td><td>0.00125</td><td>-0.00002</td></th<>	Zircon_06_014 Zircon_07_015	693	465	0.59	0.05199	0.00125	0.21406	0.00542	0.02997	0.00024	0.00914	0.00017	0.31	190	2	197	5	285	55	184	3	190	2	3.6	33.367	0.267	0.05199	0.00125	-0.00002
Term 10 S S S S <td>Zircon_07_013 Zircon_09_017</td> <td>209</td> <td>15</td> <td>0.11</td> <td>0.05201</td> <td>0.00120</td> <td>0.21558</td> <td>0.00347</td> <td>0.0298</td> <td>0.00024</td> <td>0.00989</td> <td>0.00031</td> <td>0.35</td> <td>189</td> <td>2</td> <td>202</td> <td>6</td> <td>378</td> <td>72</td> <td>199</td> <td>2</td> <td>187</td> <td>2</td> <td>4.5</td> <td>33,969</td> <td>0.27</td> <td>0.05201</td> <td>0.00120</td> <td>-0.00002</td>	Zircon_07_013 Zircon_09_017	209	15	0.11	0.05201	0.00120	0.21558	0.00347	0.0298	0.00024	0.00989	0.00031	0.35	189	2	202	6	378	72	199	2	187	2	4.5	33,969	0.27	0.05201	0.00120	-0.00002
Term 10 400 0 0.014 0.0034 0.024 0.0034 0.015 0.010 0.0104 0.	Zircon 10 018	55	24	0.38	0.06416	0.00436	0.20508	0.01473	0.02318	0.00034	0.0071	0.00011	0.24	148	2	189	12	747	147	143	2	148	2	21.7	43.139	0.633	0.06416	0.00436	-0.00016
Zach Zach <thzach< th=""> Zach Zach Za</thzach<>	Zircon_100_126	469	78	0.15	0.05911	0.00168	0.22445	0.00733	0.02754	0.00034	0.00852	0.00012	0.46	175	2	206	6	571	62	171	2	175	2	15.0	36.312	0.442	0.05911	0.00168	-0.000052
Zames, 12 O D D D <th< td=""><td>Zircon_11_020</td><td>470</td><td>255</td><td>0.47</td><td>0.05467</td><td>0.00126</td><td>0.17169</td><td>0.00426</td><td>0.0229</td><td>0.00021</td><td>0.00822</td><td>0.00016</td><td>0.37</td><td>146</td><td>1</td><td>161</td><td>4</td><td>399</td><td>52</td><td>165</td><td>3</td><td>146</td><td>1</td><td>9.3</td><td>43.668</td><td>0.4</td><td>0.05467</td><td>0.00126</td><td>-0.00002</td></th<>	Zircon_11_020	470	255	0.47	0.05467	0.00126	0.17169	0.00426	0.0229	0.00021	0.00822	0.00016	0.37	146	1	161	4	399	52	165	3	146	1	9.3	43.668	0.4	0.05467	0.00126	-0.00002
2 2 3 1	Zircon_13_022	367	159	0.38	0.05354	0.00182	0.16209	0.00626	0.02196	0.00025	0.00687	0.00007	0.37	140	2	153	5	352	77	138	2	140	2	8.5	45.546	0.509	0.05354	0.00182	-0.00007
Jame	Zircon_15_024	387	195	0.44	0.05066	0.00122	0.14948	0.00386	0.02145	0.00021	0.00666	0.00014	0.36	137	1	141	3	225	56	134	3	137	1	2.8	46.62	0.456	0.05066	0.00122	-0.00001
main bit main	Zircon_16_026	106	102	0.84	0.05327	0.00202	0.22803	0.00909	0.03108	0.00037	0.00853	0.0002	0.31	197	2	209	8	340	86	172	4	197	2	5.7	32.175	0.383	0.05327	0.00202	-0.00004
max 100 100 0.00 0.0	Zircon_17_027	94	33 80	0.51	0.06692	0.00501	0.20058	0.00937	0.02265	0.00025	0.00758	0.00026	0.24	144	2	207	0	835 430	93	263	5	144	2	24.0 5.1	44.15 22.346	0.487	0.06692	0.00501	-0.000054
Zucz.Z100 540 160 0.01 0.0250 0.0000 0.01 0.0200 0.0100 0.0100 0.0100	Zircon 19 029	98	104	0.75	0.07166	0.0024	1 64096	0.06658	0.16608	0.00044	0.01312	0.0003	0.28	990	10	986	26	430 976	69	991	9	990	10	-0.4	6.021	0.22	0.05544	0.00135	-0.00000
zeen 2 9 9 9 9	Zircon_20_030	360	168	0.41	0.05254	0.00189	0.16131	0.00641	0.02227	0.00022	0.00699	0.00007	0.31	142	1	152	6	309	82	141	1	142	1	6.6	44.911	0.437	0.05254	0.00189	-0.00008
Jeene J. elit Que Que Que Que <th< td=""><td>Zircon_21_032</td><td>598</td><td>97</td><td>0.14</td><td>0.05704</td><td>0.00171</td><td>0.46471</td><td>0.0275</td><td>0.05811</td><td>0.00296</td><td>0.01758</td><td>0.00163</td><td>0.86</td><td>364</td><td>18</td><td>388</td><td>19</td><td>493</td><td>66</td><td>352</td><td>32</td><td>364</td><td>18</td><td>6.2</td><td>17.209</td><td>0.877</td><td>0.05704</td><td>0.00171</td><td>-0.00002</td></th<>	Zircon_21_032	598	97	0.14	0.05704	0.00171	0.46471	0.0275	0.05811	0.00296	0.01758	0.00163	0.86	364	18	388	19	493	66	352	32	364	18	6.2	17.209	0.877	0.05704	0.00171	-0.00002
Jack Jack Jack Jack J	Zircon_22_033	92	31	0.30	0.06023	0.00333	0.18759	0.01122	0.02259	0.00034	0.00697	0.00011	0.31	144	2	175	10	612	121	140	2	144	2	17.7	44.27	0.674	0.06023	0.00333	-0.00011
Zucz J B B B B B B B B B B B B D S L S L D B D B D B D <thd< th=""> D D D</thd<>	Zircon_23_034	118	75	0.56	0.0545	0.00163	0.33802	0.01069	0.04502	0.00045	0.0133	0.00035	0.33	284	3	296	8	392	67	267	7	284	3	4.1	22.212	0.222	0.0545	0.00163	-0.00005
2 1	Zircon_24_035	60	26	0.38	0.06793	0.00374	0.21033	0.01205	0.02258	0.00036	0.00742	0.00033	0.28	144	2	194	10	866	116	149	7	144	2	25.8	44.287	0.706	0.06793	0.00374	-0.00006
Jame Jame <th< td=""><td>Zircon_25_036</td><td>233</td><td>124</td><td>0.47</td><td>0.05677</td><td>0.00176</td><td>0.34541</td><td>0.01105</td><td>0.04414</td><td>0.00035</td><td>0.01431</td><td>0.00036</td><td>0.25</td><td>278</td><td>2</td><td>301</td><td>8</td><td>483</td><td>69</td><td>287</td><td>6</td><td>278</td><td>2</td><td>7.6</td><td>22.655</td><td>0.18</td><td>0.056//</td><td>0.00176</td><td>-0.00006</td></th<>	Zircon_25_036	233	124	0.47	0.05677	0.00176	0.34541	0.01105	0.04414	0.00035	0.01431	0.00036	0.25	278	2	301	8	483	69	287	6	278	2	7.6	22.655	0.18	0.056//	0.00176	-0.00006
Zamo, 3, Dir. 4 61 22 0.29 0.07942 0.0794 0.0794 </td <td>Zircon 27 039</td> <td>480</td> <td>234</td> <td>0.11</td> <td>0.05346</td> <td>0.00148</td> <td>0.20877</td> <td>0.00009</td> <td>0.02801</td> <td>0.00023</td> <td>0.00683</td> <td>0.00029</td> <td>0.29</td> <td>140</td> <td>1</td> <td>153</td> <td>3</td> <td>348</td> <td>52</td> <td>174</td> <td>3</td> <td>140</td> <td>1</td> <td>85</td> <td>45 558</td> <td>0.281</td> <td>0.05302</td> <td>0.00148</td> <td>-0.00003</td>	Zircon 27 039	480	234	0.11	0.05346	0.00148	0.20877	0.00009	0.02801	0.00023	0.00683	0.00029	0.29	140	1	153	3	348	52	174	3	140	1	85	45 558	0.281	0.05302	0.00148	-0.00003
Zaron, 3, 10, 4 452 914 0.80 0.0518 0.0098 0.2028 0.0009 0.0009 0.0009 0.0009 0.0009 <td>Zircon 30 042</td> <td>681</td> <td>225</td> <td>0.29</td> <td>0.07042</td> <td>0.00092</td> <td>1.4213</td> <td>0.02147</td> <td>0.14653</td> <td>0.00113</td> <td>0.04228</td> <td>0.00072</td> <td>0.5</td> <td>881</td> <td>6</td> <td>898</td> <td>9</td> <td>941</td> <td>27</td> <td>837</td> <td>14</td> <td>881</td> <td>6</td> <td>1.9</td> <td>6.825</td> <td>0.053</td> <td>0.07042</td> <td>0.00092</td> <td>-0.000074</td>	Zircon 30 042	681	225	0.29	0.07042	0.00092	1.4213	0.02147	0.14653	0.00113	0.04228	0.00072	0.5	881	6	898	9	941	27	837	14	881	6	1.9	6.825	0.053	0.07042	0.00092	-0.000074
Zaces 3.2.06 32 27 0.09 0.031 0.013 <th< td=""><td>Zircon_31_044</td><td>426</td><td>184</td><td>0.38</td><td>0.05185</td><td>0.0014</td><td>0.21312</td><td>0.00605</td><td>0.02983</td><td>0.00026</td><td>0.00901</td><td>0.00022</td><td>0.31</td><td>189</td><td>2</td><td>196</td><td>5</td><td>279</td><td>62</td><td>181</td><td>4</td><td>189</td><td>2</td><td>3.6</td><td>33.523</td><td>0.292</td><td>0.05185</td><td>0.0014</td><td>-0.00003</td></th<>	Zircon_31_044	426	184	0.38	0.05185	0.0014	0.21312	0.00605	0.02983	0.00026	0.00901	0.00022	0.31	189	2	196	5	279	62	181	4	189	2	3.6	33.523	0.292	0.05185	0.0014	-0.00003
Zucos 3.0.64 100 45 0.35 0.721 0.0075 1.78 0.056 0.0721 0.0075 0.076 0.079 0.076 0.079 0.076 0.079 0.076 0.079 0.076 0.079 0.076 0.079 0.076 0.079 0.076 0.079 0.076 0.079 0.076 0.079 0.076 0.079 0.076 0.079 0.076 0.079 0.076 0.077 0.076 0.077 0.076 0.077 0.076 0.077 0.078 0.077 0.078 0.077 0.078 0.077 0.078 0.077 0.078 0.077 0.078 0.077 0.078 0.077 0.078 0.077 0.078 0.077 0.078 0.077 0.078 0.077 0.078 0.077 0.078 0.078 0.078 0.077 0.078 0.078 0.079 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078	Zircon_32_045	352	277	0.69	0.05303	0.00159	0.15728	0.00493	0.02166	0.00019	0.00679	0.00014	0.29	138	1	148	4	330	68	137	3	138	1	6.8	46.168	0.405	0.05303	0.00159	-0.00002
Zarona, 3, 64, 647 212 68 0.23 0.0973 0.00979 0.00979 0.0070 0.1 10 2 5 10 1 10 2 5 10 1 10 2 10	Zircon_33_046	100	45	0.39	0.07212	0.00137	1.6933	0.03605	0.17011	0.00163	0.05341	0.00118	0.45	1013	9	1006	14	989	39	1052	23	1013	9	-0.7	5.879	0.056	0.07212	0.00137	-0.000144
Zarona, 20, 108 29 9 0 0.03 0.0238 0.0038 0.0338 0.0338 0.0338 0.0338 0.0338 0.0338 0.0338 0.0039 0.0338 0.0039 0.0338 0.0039 0.0338 0.0039 0.0338 0.0039 0.0338 0.0039 0.0338 0.0039 0.0338 0.0039 0.0338 0.0039 0.0338 0.0039 0.0338 0.0039 0.0338 0.0039 0.0338 0.0039 0.0338 0.0039 0.0338 0.0039 0.0338 0.0039 0.0338 0.0039 0.0338 0.0039 0.0338 0.00313 0.0338 0.00313	Zircon_34_047	242	68	0.25	0.07321	0.00095	1.7324	0.02635	0.17127	0.00135	0.05079	0.00096	0.52	1019	7	1021	10	1020	26	1001	18	1019	7	0.2	5.839	0.046	0.07321	0.00095	-0.00009
Zama, Z. D00 25 91 0.00 0.0000 0.0010 0.0017 0.0014 0.0002 0.0017 0.0014 0.0017 0.0014 0.0017 0.0014 0.0017 0.0014 0.0017 0.0014	Zircon_35_048	239	97 50	0.35	0.05298	0.00205	0.16296	0.00687	0.02231	0.00022	0.00699	0.00007	0.3	142	1	153	6	328	88	141	1	142	1	7.2	44.824	0.451	0.05298	0.00205	-0.00008
zeros.g. 0933 684 15 16 0.3777 00138 0.4272 00138 0.0278 0.0079 6.83 16 5.83 3.83 6 6 0.01 15.85 0.0008 0.00078 0.00078 0.00079 0.00079 0.0017 0.00179 0.00179 0.012 17.8 0.51 12.1 16 7.8 15.1 14 20 6 303 2 0.03 0.0018 0.00085 0.00005 0.00075 0.00027 0.22 16 1	Zircon_36_050	95 755	39 152	0.54	0.06882	0.00337	0.21822	0.01112	0.0251	0.00052	0.00742	0.00022	0.28	952	6	200	9	895 948	27	946	4	952	6	-0.1	45.29 6.284	0.043	0.06882	0.00337	-0.00006
Zirona, 40:04 84 25 0.26 0.08031 0.0136 0.0136 0.0136 0.0035 0.0136 0.0136 0.0136 0.0136 0.0035 0.0035 0.0035 0.0007 0.0236 0.0007 0.0236 0.0007 0.0236 0.0007 0.0236 0.0007 0.0236 0.0007 0.0236 0.0007 0.0236 0.0007 0.0236 0.0007 0.0236 0.0007 0.0236 0.0007 0.0236 0.0007 0.0248 0.0007 0.0248 0.00077 0.0248 0.00077 0.0248 0.00077 0.0248 0.00077 0.0248 0.00077 0.0248 0.00077 0.0348 0.00078 0.037 0.37 0.37 0.38 0.00077 0.0108 0.00078 0.37 1.4 0.3 0.366 0.00071 0.0007 0.00078 0.31 0.01078 0.00078 0.31 0.01078 0.00078 0.31 0.01078 0.00078 0.31 0.01078 0.0007 0.31 0.00078 0.017 0.31	Zircon 39 053	683	126	0.16	0.05757	0.00138	0.43722	0.01443	0.05508	0.00094	0.01709	0.00029	0.68	346	6	368	10	514	53	343	6	346	6	6.0	18.156	0.31	0.05757	0.00138	-0.00009
zironal diable y <t< td=""><td>Zircon 40 054</td><td>84</td><td>25</td><td>0.26</td><td>0.06031</td><td>0.00336</td><td>0.18662</td><td>0.01096</td><td>0.02244</td><td>0.00027</td><td>0.00693</td><td>0.00009</td><td>0.25</td><td>143</td><td>2</td><td>174</td><td>9</td><td>615</td><td>122</td><td>140</td><td>2</td><td>143</td><td>2</td><td>17.8</td><td>44.557</td><td>0.544</td><td>0.06031</td><td>0.00336</td><td>-0.00011</td></t<>	Zircon 40 054	84	25	0.26	0.06031	0.00336	0.18662	0.01096	0.02244	0.00027	0.00693	0.00009	0.25	143	2	174	9	615	122	140	2	143	2	17.8	44.557	0.544	0.06031	0.00336	-0.00011
Zicond. 2, 267 191 100 0.46 0.0877 0.0021 0.0023 0.0013<	Zircon_41_056	429	150	0.31	0.05259	0.00095	0.34819	0.00692	0.04813	0.0004	0.01446	0.00029	0.42	303	2	303	5	311	41	290	6	303	2	0.0	20.777	0.173	0.05259	0.00095	-0.000029
Zicon. 43.058 60 39 0.57 0.06467 0.00452 0.00253 0.00043 0.0127 0.2 1.4 2 1.63 1.43 1.83 1.4 2 1.63 1.43 0.807 0.0079 0.00071 0.00454 0.00009 0.0003 0.27 1.51 0 1.44 2 1.53 1.4 3 1.55 1.4 3 1.55 1.4 3 1.55 1.72 0.00140 0.00082 0.00142 0.00003 0.217 1.16 1.4 4 2.35 1.4 3 1.55 1.72 1.6 0.00082 0.00143 0.00082 0.00018 0.22 1.16 1.4 4 1.43 2 1.4	Zircon_42_057	191	100	0.46	0.05474	0.00241	0.17156	0.00774	0.02293	0.00023	0.00735	0.00021	0.22	146	1	161	7	402	95	148	4	146	1	9.3	43.611	0.437	0.05474	0.00241	-0.000042
Zircon_44,059 329 320 0.85 0.0848 0.0019 0.00199 0.00193 0.0019 0.0013 0.17 0.17 0.141 0.0119 0.0013 0.21 10 0.5 0.0017 0.0017 0.0017 0.0013 0.21 10 10 14 1 14 3 13 5 13.5 1 3.5 1.3 <td>Zircon_43_058</td> <td>60</td> <td>39</td> <td>0.57</td> <td>0.06077</td> <td>0.00468</td> <td>0.18468</td> <td>0.01452</td> <td>0.02253</td> <td>0.00036</td> <td>0.00684</td> <td>0.00027</td> <td>0.2</td> <td>144</td> <td>2</td> <td>172</td> <td>12</td> <td>631</td> <td>162</td> <td>138</td> <td>5</td> <td>144</td> <td>2</td> <td>16.3</td> <td>44.385</td> <td>0.709</td> <td>0.06077</td> <td>0.00468</td> <td>-0.00008</td>	Zircon_43_058	60	39	0.57	0.06077	0.00468	0.18468	0.01452	0.02253	0.00036	0.00684	0.00027	0.2	144	2	172	12	631	162	138	5	144	2	16.3	44.385	0.709	0.06077	0.00468	-0.00008
Laron. 45.0 4.57 2.99 0.51 0.05102 0.0112 0.0481 0.00083 0.0012 1.53 1 3.	Zircon_44_059	329	320	0.85	0.05464	0.00109	0.38048	0.00825	0.05069	0.00043	0.01593	0.00029	0.39	319	3	327	6	398	43	319	6	319	3	2.4	19.728	0.167	0.05464	0.00109	-0.00003
Line Line <thline< th=""> Line Line <thl< td=""><td>Zircon_45_060 Zircon_46_062</td><td>457</td><td>299</td><td>0.57</td><td>0.05079</td><td>0.00127</td><td>0.14811</td><td>0.00385</td><td>0.02118</td><td>0.00015</td><td>0.00665</td><td>0.00013</td><td>0.27</td><td>135.1</td><td>0.9</td><td>140</td><td>3</td><td>231</td><td>55 62</td><td>134</td><td>3</td><td>135</td><td>1</td><td>3.5 4.1</td><td>47.214</td><td>0.334</td><td>0.05079</td><td>0.00127</td><td>-0.00002</td></thl<></thline<>	Zircon_45_060 Zircon_46_062	457	299	0.57	0.05079	0.00127	0.14811	0.00385	0.02118	0.00015	0.00665	0.00013	0.27	135.1	0.9	140	3	231	55 62	134	3	135	1	3.5 4.1	47.214	0.334	0.05079	0.00127	-0.00002
Taron. 48. 04 125 48 0.44 0.0572 0.00272 0.02185 0.00076 0.0270 0.0078 0.00076 0.0218 0.00076 0.0218 0.00076 0.0078 0.00076 0.0218 0.00076 0.0078 0.00076 0.218 0.00077 0.00078 0.00076 0.0078 0.00076 0.0078 0.00076 0.0078 0.00076 0.0078 0.00076 0.0078 0.00076 0.0078 0.00076 0.0078 0.00076 0.0078 0.00076 0.0078 0.00076 0.0078 0.00076 0.0078 0.00076 0.0078 0.00076 0.0071 0.00061 0.227 0.018 0.00066 0.0071 0.00071	Zircon 47 063	415	27	0.31	0.05082	0.00142	0.13433	0.00455	0.02202	0.0002	0.00764	0.00018	0.32	140	2	140	11	634	140	142	7	140	2	4.1	45.415	0.412	0.05082	0.00142	-0.00002
Ziron, 49 065 17 0.45 0.0013 0.0003 0.0007 0.0007 0.0007 0.0003 0.00013 0.00000 Ziron, 51.09 15 120 0.77 0.0075 0.0075 0.0013 0.00006 0.0071 0.00010 0.215 0.0014 0.00006 0.0213 0.00006 0.0213 0.00006 0.0213 0.00016 0.0213 0.00006 0.0213 0.00016 0.0213 0.00016 0.0013 0.00016 0.0013 0.00016 0.0013 0.00016 0.0014 0.0016 0.0014 0.00016 0.0014 0.0013 0.00016 0.0013 0.0014 0.00016 0.0014 0.0013 0.0014 0.0014 0.0014 0.0015 0.0014 0.0014 0.0013 0.0014 0.0013 0.0014 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0013 0.0014 0.0014 0.0013 0.0014 0.0013 0.0014 0.0013 0.0014 0.0013 0.00	Zircon 48 064	125	48	0.34	0.05672	0.00216	0.16873	0.00672	0.02185	0.00026	0.00704	0.00026	0.29	139	2	158	6	481	81	143	5	139	2	12.0	45.767	0.545	0.05672	0.00216	-0.000034
Zircon, 51_068 151 77 0.0565 0.00768 0.1572 0.02578 0.00041 0.0006 0.0279 1.48 1.48 1.0 1.2 1.44 3 2.7 4.149 0.793 0.00568 0.00169 0.02586 0.00026 0.0238 0.00026 0.0238 0.00160 0.238 1.48 1.0 1.56 1.4 1.8 2.2 1.88 2.2 1.88 2.2 1.88 2.2 1.88 2.2 1.88 2.2 1.88 2.2 1.88 2.2 1.88 2.2 1.85 1.41 1.2 1.48 4.4 1.8 2.2 1.88 2.2 1.88 2.2 1.88 2.2 1.88 2.2 1.85 1.41 1.2 1.44 3.2 2.48 1.8 1.41 1.4 2.2 1.88 2.2 1.88 2.2 1.89 2.2 1.83 1.44 3.2 2.2 1.81 1.41 1.42 1.33 2.2 1.83 1.44 <td>Zircon_49_065</td> <td>424</td> <td>122</td> <td>0.25</td> <td>0.05104</td> <td>0.00133</td> <td>0.16368</td> <td>0.00476</td> <td>0.02327</td> <td>0.0003</td> <td>0.00704</td> <td>0.0002</td> <td>0.44</td> <td>148</td> <td>2</td> <td>154</td> <td>4</td> <td>243</td> <td>58</td> <td>142</td> <td>4</td> <td>148</td> <td>2</td> <td>3.9</td> <td>42.974</td> <td>0.554</td> <td>0.05104</td> <td>0.00133</td> <td>-0.000019</td>	Zircon_49_065	424	122	0.25	0.05104	0.00133	0.16368	0.00476	0.02327	0.0003	0.00704	0.0002	0.44	148	2	154	4	243	58	142	4	148	2	3.9	42.974	0.554	0.05104	0.00133	-0.000019
Zircon, 32,069 136 120 0.77 0.0572 0.00143 0.5406 0.00169 0.02246 0.00069 0.02246 0.00019 0.00214 0.0011 0.518 2 208 7 431 74 186 2 186 2 188 2 183 14 184 2 183 114 114 2 183 11 1140 2 183 11 183 2 183 11 143 2 183 11 143 14	Zircon_51_068	151	77	0.45	0.05065	0.00768	0.15722	0.02598	0.02251	0.0004	0.0071	0.00061	0.29	144	3	148	23	225	300	143	12	144	3	2.7	44.419	0.793	0.05065	0.00768	-0.001129
$ \begin{array}{c} 2 \ rccon_5 3 \ Orbot orbit $	Zircon_52_069	136	120	0.77	0.0572	0.00143	0.54006	0.01454	0.06865	0.00069	0.02284	0.00096	0.37	428	4	438	10	499	53	456	19	428	4	2.3	14.567	0.146	0.0572	0.00143	-0.00006
Zircon_5_0/71 153 48 0.017 0.00146 0.0007 0.00248 0.00017 0.00014 0.00017 0.000024 0.00017 0.000024 0.00017 0.00012 0.00014 0.00017 0.000024 0.00017 0.00014 0.00017 0.00024 0.00017 0.00024 0.00017 0.00024 0.00017 0.00133 0.00024 0.00024 0.00017 0.00133 0.00024 0.00017 0.00133 0.00024 0.00024 0.00017 0.0133 0.00024 0.00017 0.0133 0.00014 0.00002 0.00014 0.00017 0.00022 0.00041 0.00014 0.00002 0.00014 0.00014 0.00002 0.00014 0.00014 0.000014 <td>Zircon_53_070</td> <td>200</td> <td>40</td> <td>0.18</td> <td>0.05546</td> <td>0.00191</td> <td>0.22676</td> <td>0.00891</td> <td>0.02965</td> <td>0.00034</td> <td>0.00924</td> <td>0.00011</td> <td>0.35</td> <td>188</td> <td>2</td> <td>208</td> <td>7</td> <td>431</td> <td>74</td> <td>186</td> <td>2</td> <td>188</td> <td>2</td> <td>9.6</td> <td>33.724</td> <td>0.385</td> <td>0.05546</td> <td>0.00191</td> <td>-0.00010</td>	Zircon_53_070	200	40	0.18	0.05546	0.00191	0.22676	0.00891	0.02965	0.00034	0.00924	0.00011	0.35	188	2	208	7	431	74	186	2	188	2	9.6	33.724	0.385	0.05546	0.00191	-0.00010
$ \begin{array}{c} \lambda_{11} \lambda_{21} \lambda_{21} \lambda_{31} \lambda$	Zircon_54_0/1 Zircon_55_072	347	116	0.29	0.05146	0.0017	0.15567	0.00531	0.02208	0.00019	0.00/34	0.00018	0.25	141	1	147	5	261	73	148	4	141	1	4.1	45.29	0.39	0.05146	0.0017	-0.00002
Zircon_57_075 395 228 0.50 0.00141 0.15509 0.0044 0.02176 0.00015 0.31 139 1 146 4 273 59 125 3 139 1 4.8 45.956 0.422 0.05173 0.0014 0.00016 0.0015 0.31 139 1 146 4 273 59 125 3 139 1 4.8 45.956 0.422 0.00170 0.00016 0.0016 0.016 0.16 11 1100 27 1173 72 198 44 1067 11 140 4 235 139 1 4.8 45.956 0.422 0.0016 0.0016 0.016 0.16 11 1100 27 1173 72 198 1 14 4 235 139 1 4.4 4.30 4.4303 4.30 0.423 0.0016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.	Zircon_55_072 Zircon_56_074	393	48 224	0.27	0.05595	0.00229	0.16644	0.00707	0.02182	0.00024	0.00697	0.00023	0.27	224	3	248	6	450	87 49	268	5	224	3	97	45.85	0.304	0.05595	0.00229	-0.00004
Zircon_58_076 18 4 0.18 0.07905 0.003 1.9535 0.07728 0.1803 0.00129 0.02582 0.007 11 100 27 1173 72 1098 44 1067 11 3.0 5.555 0.061 0.07905 0.0014 0.07905 0.0021 0.00688 0.00020 0.00688 0.0016 0.3 143 1 143 1 4.0 4.4404 0.05065 0.00138 0.15766 0.00448 0.00688 0.00016 0.3 143 1 143 1 4.0 4.4404 0.05365 0.0016 0.0022 0.00015 0.3 143 1 149 4 225 53 139 1 6.7 45.77 0.423 0.00507 0.0002 0.0061 0.0033 0.141 2 176 5 16 7 141 2 19.9 45.10 0.0571 0.0023 0.0017 0.0024 0.0011 0.33 141 2 176	Zircon 57 075	395	228	0.50	0.05173	0.0014	0.15509	0.00441	0.02176	0.0002	0.00619	0.00015	0.31	139	1	146	4	273	59	125	3	139	1	4.8	45.956	0.422	0.05173	0.0014	-0.00002
Zircon_59_077 388 211 0.47 0.05065 0.0012 0.15568 0.0002 0.00227 0.00016 0.36 142 1 147 4 225 53 139 3 142 1 3.4 44.903 0.423 0.05065 0.00122 0.000017 0.0138 0.1576 0.00018 0.0002 0.00015 0.33 143 1 149 4 235 60 137 3 133 1 4.0 44.464 0.0507 0.0018 0.0017 0.0183 0.1576 0.0002 0.0002 0.00015 0.28 143 1 149 4 235 70 137 3 13 1 4.0 44.464 70.0033 0.0077 0.0002 0.0081 0.0002 0.0016 0.0023 0.28 114 2 16 316 76 16 7 141 2 19 3 143 1 142 17 14 2 100 114 14 2 176 9 706 156 162 2 143 1 <td>Zircon_58_076</td> <td>18</td> <td>4</td> <td>0.18</td> <td>0.07905</td> <td>0.003</td> <td>1.9535</td> <td>0.07728</td> <td>0.18003</td> <td>0.00198</td> <td>0.05582</td> <td>0.00229</td> <td>0.28</td> <td>1067</td> <td>11</td> <td>1100</td> <td>27</td> <td>1173</td> <td>72</td> <td>1098</td> <td>44</td> <td>1067</td> <td>11</td> <td>3.0</td> <td>5.555</td> <td>0.061</td> <td>0.07905</td> <td>0.003</td> <td>-0.00041</td>	Zircon_58_076	18	4	0.18	0.07905	0.003	1.9535	0.07728	0.18003	0.00198	0.05582	0.00229	0.28	1067	11	1100	27	1173	72	1098	44	1067	11	3.0	5.555	0.061	0.07905	0.003	-0.00041
$ \frac{1}{2 \text{Ircon} 60 078 } 499 \\ 201 0.35 0.0507 0.0013 0.1576 0.0048 0.0224 0.0022 0.0062 0.0015 0.3 143 1 149 4 239 60 139 3 143 1 4.0 44.464 0.392 0.0507 0.0013 0.00002 \\ 2 \text{Ircon} 61 083 176 0.33 176 0.33 176 0.33 176 0.33 176 0.33 176 0.0013 0.0237 0.0013 0.0002 0.0061 0.0001 0.00002 \\ 2 \text{Ircon} 62 081 222 21 0.08 0.0527 0.0013 0.1946 0.0032 0.0277 0.0024 0.0003 0.0009 0.27 170 0.2 181 6 316 76 169 2 170 2 61. 37.33 0.3 1 6.7 45.977 0.033 0.0527 0.0013 0.00002 \\ 2 \text{Ircon} 62 082 87 28 0.28 0.023 0.0312 0.1947 0.0013 0.0021 0.0003 0.0217 0.0013 0.0003 0.021 0.0003 0.28 141 2 16 9 76 169 2 16 14 2 19.9 45.106 0.73 0.033 0.0521 0.0018 0.00009 \\ 2 \text{Ircon} 62 084 645 29 0.4 0.0518 0.0019 0.1497 0.0033 0.0219 0.0016 0.0066 0.0011 0.3 14 1 12 2 10 4 32 19 46 16 2 134 1 5.6 47.462 0.53 0.0518 0.0018 0.0016 0.0016 0.00061 \\ 2 \text{Ircon} 66 086 185 118 0.56 0.0109 0.1299 0.0033 0.28 0.0161 0.00061 0.39 200 2 201 4 221 46 324 12 20 2 0.5 3.106 0.28 0.0518 0.0018 0.0016 0.00001 \\ 2 \text{Ircon} 66 086 185 118 0.56 0.0771 0.0128 0.0049 0.0354 0.0029 0.0014 0.0055 0.0017 0.4 1093 8 112 12 190 30 1108 20 1093 8 2.8 5.41 0.021 0.0556 0.0016 0.00016 0.00001 \\ 2 \text{Ircon} 66 086 185 119 61 0.45 0.0027 0.0947 0.0054 0.0054 0.0024 0.0031 0.0071 0.69 680 15 686 15 0.9 89.3 0.158 0.0018 0.0071 0.0023 0.0033 0.20 15.0 0.0018 0.0001 0.00016 0.00002 \\ 2 \text{Ircon} 60 089 73 34 0.40 0.0645 0.0027 0.1954 0.0054 0.0025 0.00029 0.0033 0.22 153 2 185 8 76 1 93 143 6 148 7 153 2 15.9 41.53 0.56 0.0549 0.0023 0.0028 0.0003 0.0063 0.0003 0.0063 0.0003 0.22 153 2 182 12 583 148 148 7 153 2 15.9 41.53 0.56 0.0549 0.0027 0.00045 0.0029 0.0003 0.0003 0.0003 0.0003 0.22 153 2 182 12 583 148 148 7 153 2 15.9 41.53 0.56 0.0549 0.0023 0.0029 0.0003 0.0003 0.0003 0.22 153 2 182 12 583 148 148 7 153 2 15.9 41.53 0.56 0.0549 0.0023 0.0029 0.0003 0.0003 0.22 153 2 182 12 583 148 148 7 153 2 15.9 41.53 0.56 0.0549 0.0023 0.0004 0.0005 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.$	Zircon_59_077	388	211	0.47	0.05065	0.00122	0.15568	0.00402	0.02227	0.00021	0.00689	0.00016	0.36	142	1	147	4	225	53	139	3	142	1	3.4	44.903	0.423	0.05065	0.00122	-0.00001
$ \begin{array}{c} 2ircon_{61} 080 & 358 & 176 & 0.43 & 0.0537 & 0.0017 & 0.158 & 0.0022 & 0.00228 & 0.0017 & 0.0022 & 0.00681 & 0.00015 & 0.28 & 139 & 1 & 149 & 5 & 332 & 70 & 137 & 3 & 139 & 1 & 6.7 & 45.977 & 0.423 & 0.05307 & 0.0017 & 0.00025 \\ 2ircon_{62} 081 & 222 & 21 & 0.08 & 0.05271 & 0.0018 & 0.01947 & 0.0072 & 0.0027 & 0.00081 & 0.0009 & 0.27 & 170 & 2 & 181 & 6 & 316 & 76 & 169 & 2 & 170 & 2 & 6.1 & 37.332 & 0.373 & 0.0718 & 0.00027 \\ 2ircon_{63} 082 & 87 & 28 & 0.28 & 0.06293 & 0.0013 & 0.1897 & 0.0105 & 0.02217 & 0.00033 & 0.00724 & 0.0033 & 0.028 & 141 & 2 & 176 & 9 & 706 & 105 & 146 & 7 & 141 & 2 & 19.9 & 45.106 & 0.617 & 0.0629 & 0.0032 \\ 2ircon_{65} 084 & 645 & 29 & 0.04 & 0.0556 & 0.0016 & 0.1892 & 0.0049 & 0.0016 & 0.00626 & 0.0011 & 0.33 & 134 & 1 & 142 & 3 & 279 & 46 & 126 & 2 & 134 & 1 & 5.6 & 47.642 & 0.363 & 0.05186 & 0.0019 & 0.00012 \\ 2ircon_{60} 086 & 185 & 118 & 0.56 & 0.07971 & 0.00128 & 0.0028 & 0.01614 & 0.00028 & 0.0101 & 0.33 & 134 & 1 & 142 & 3 & 279 & 46 & 126 & 2 & 134 & 1 & 5.6 & 47.642 & 0.363 & 0.05186 & 0.0010 & 0.00012 & 0.00001 \\ 2ircon_{60} 086 & 185 & 118 & 0.56 & 0.07971 & 0.00128 & 0.0027 & 0.0048 & 0.0028 & 0.0011 & 0.39 & 8 & 1125 & 12 & 190 & 30 & 1108 & 20 & 193 & 8 & 2.8 & 5.411 & 0.028 & 0.0014 & 0.00014 & 0.00014 \\ 2ircon_{60} 086 & 119 & 61 & 0.45 & 0.0629 & 0.0027 & 0.0954 & 0.0028 & 0.0713 & 0.00078 & 0.0003 & 0.$	Zircon_60_078	499	201	0.35	0.05097	0.00138	0.15796	0.00448	0.02249	0.0002	0.00692	0.00015	0.3	143	1	149	4	239	60	139	3	143	1	4.0	44.464	0.395	0.05097	0.00138	-0.00002
$ \begin{array}{c} 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	Zircon_61_080	358	176	0.43	0.05307	0.0017	0.1582	0.00528	0.02175	0.0002	0.00681	0.00015	0.28	139	1	149	5	332	70	137	3	139	1	6.7	45.977	0.423	0.05307	0.0017	-0.000029
$ \begin{array}{c} 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	Zircon_62_081	222	21	0.08	0.05271	0.00183	0.19467	0.00732	0.02679	0.00027	0.0084	0.00009	0.27	170	2	181	6	316	76	169	2	170	2	6.1	37.332	0.378	0.05271	0.00183	-0.00006
$ \begin{array}{c} 2\pi \cos \left(-5 - 084 \\ 2\pi \cos \left(-5 - 084 \right) \right) \right) \\ \begin{array}{c} 2\pi \cos \left(-5 - 084 \\ 2\pi \cos \left(-5 - 084 \\ 2\pi \cos \left(-5 - 084 \\ 2\pi \cos \left(-5 - 084 \right) \right) \right) \\ \begin{array}{c} 2\pi \cos \left(-5 - 084 \\ 2\pi \cos \left(-5 - 084 \\ 2\pi \cos \left(-5 - 084 \right) \right) \\ \begin{array}{c} 2\pi \cos \left(-5 - 084 \\ 2\pi \cos \left(-5 - 084 \right) \right) \\ \begin{array}{c} 2\pi \cos \left(-5 - 084 \\ 2\pi \cos \left(-5 - 084 \right) \right) \\ \begin{array}{c} 2\pi \cos \left(-5 - 084 \\ 2\pi \cos \left(-5 - 084 \right) \right) \\ \begin{array}{c} 2\pi \cos \left(-5 - 084 \\ 2\pi \cos \left(-5 - 084 \right) \right) \\ \begin{array}{c} 2\pi \cos \left(-5 - 084 \\ 2\pi \cos \left(-5 - 084 \right) \right) \\ \begin{array}{c} 2\pi \cos \left(-5 - 084 \\ 2\pi \cos \left(-5 - 084 \right) \right) \\ \begin{array}{c} 2\pi \cos \left(-5 - 084 \\ 2\pi \cos \left(-5 - 084 \right) \right) \\ \begin{array}{c} 2\pi \cos \left(-5 - 084 \\ 2\pi \cos \left(-5 - 084 \right) \right) \\ \begin{array}{c} 2\pi \cos \left(-5 - 084 \\ 2\pi \cos \left(-5 - 084 \right) \right) \\ \begin{array}{c} 2\pi \cos \left(-5 - 084 \\ 2\pi \cos \left(-5 - 084 \right) \right) \\ \begin{array}{c} 2\pi \cos \left(-5 - 084 \\ 2\pi \cos \left(-5 - 084 \right) \right) \\ \begin{array}{c} 2\pi \cos \left(-5 - 084 \\ 2\pi \cos \left(-5 - 084 \right) \right) \\ \begin{array}{c} 2\pi \cos \left(-5 - 084 \right) \\ \begin{array}{c} 2\pi \cos $	Zircon_63_082	87 669	28 569	0.28	0.06295	0.00521	0.18907	0.01005	0.02217	0.00035	0.00724	0.00033	0.28	141	2	1/0	3	270	105	140	2	141	1	19.9	45.100	0.071	0.06295	0.00521	-0.000034
$ \begin{array}{c} 1000 \\ 10000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ $	Zircon 65 084	645	29	0.04	0.05056	0.00109	0.21892	0.00334	0.02099	0.00010	0.00020	0.00011	0.35	200	2	201	4	279	40	324	12	200	2	0.5	31 706	0.303	0.05056	0.00105	-0.00001
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zircon 66 086	185	118	0.56	0.07971	0.00128	2.027	0.03626	0.18482	0.00148	0.05635	0.00107	0.44	1093	8	1125	12	1190	30	1108	20	1093	8	2.8	5.411	0.043	0.07971	0.00128	-0.00014
Zircon_69_089 73 34 0.40 0.06459 0.00297 0.19954 0.0025 0.00029 0.00028 0.027 143 2 185 8 761 93 143 6 143 2 22.7 44.44 0.573 0.06459 0.00297 0.000954 0.00297 0.000954 0.00297 0.00018 0.00297 143 2 185 8 761 93 143 6 143 2 22.7 44.444 0.573 0.06459 0.00297 0.000954 0.00297 0.000053 0.0216 0.00023 0.0221 153 2 182 18 148 7 153 2 15.9 41.563 0.656 0.594 0.0019 0.000053 0.00033 0.023 0.0033 0.023 0.023 0.00133 0.00133 0.25 150 2 164 8 2 117 10.0 1 153 2 8.5 4.3 1 136 1 156 1.55 0.596 0.596 0.0018 0.0019 1161 144 5 284	Zircon_68_088	119	61	0.45	0.06292	0.00237	0.96478	0.05378	0.1112	0.00261	0.03415	0.00071	0.69	680	15	686	28	706	77	679	14	680	15	0.9	8.993	0.211	0.06292	0.00237	-0.000632
Zircon_70_090 73 25 0.29 0.0542 0.00416 0.1973 0.01405 0.00038 0.00733 0.0003 0.22 153 2 182 148 148 7 153 2 15,6 41,653 0.656 0.05942 0.0016 -0.00046 Zircon_71_092 120 34 0.25 0.0551 0.0029 0.1757 0.0017 0.0218 0.0003 0.0233 0.0003 0.25 150 2 164 8 425 117 140 7 153 2 8.5 42.589 0.0594 0.0018 0.00095 0.00005 0.00033 0.25 150 2 164 8 42.54 103 1 150 2 8.5 42.589 0.596 0.0518 0.00095 0.00018 0.29 166 1 144 5 284 80 135 1 16 1 5.6 46.74 0.41 0.0518 0.0018 0.0018 0.0018 0.0018 0.0018 0.011 114 5 142 4 140 1 1	Zircon_69_089	73	34	0.40	0.06459	0.00297	0.19954	0.00954	0.0225	0.00029	0.00708	0.00028	0.27	143	2	185	8	761	93	143	6	143	2	22.7	44.444	0.573	0.06459	0.00297	-0.000052
Zircon_71_092 120 34 0.25 0.05531 0.00299 0.17571 0.0098 0.0248 0.00033 0.00633 0.25 150 2 164 8 425 117 140 7 150 2 8.5 42.589 0.599 0.0531 0.00299 -0.00005531 Zircon_72_093 302 97 0.28 0.05188 0.0188 0.1527 0.00617 0.00129 0.00069 0.00006 0.29 136 1 144 5 284 80 135 1 136 1 5.6 46.974 0.441 0.05188 0.00188 0.00188 0.00029 0.00021 0.00029 0.00018 0.37 140 1 151 4 331 15 1 16 1 7.6 46.974 0.414 0.05188 0.0018 0.00029 0.00018 0.37 140 1 11 4 331 15 136 1 7.3 45.43 0.444 0.0518 0.0188 0.00019 0.00018 0.37 140 1 151 4 331 </td <td>Zircon_70_090</td> <td>73</td> <td>25</td> <td>0.29</td> <td>0.05942</td> <td>0.00416</td> <td>0.19573</td> <td>0.01405</td> <td>0.02406</td> <td>0.00038</td> <td>0.00733</td> <td>0.00033</td> <td>0.22</td> <td>153</td> <td>2</td> <td>182</td> <td>12</td> <td>583</td> <td>148</td> <td>148</td> <td>7</td> <td>153</td> <td>2</td> <td>15.9</td> <td>41.563</td> <td>0.656</td> <td>0.05942</td> <td>0.00416</td> <td>-0.00008</td>	Zircon_70_090	73	25	0.29	0.05942	0.00416	0.19573	0.01405	0.02406	0.00038	0.00733	0.00033	0.22	153	2	182	12	583	148	148	7	153	2	15.9	41.563	0.656	0.05942	0.00416	-0.00008
Zircon_/z_093 302 97 0.28 0.05198 0.00188 0.1527 0.00017 0.00021 0.00006 0.29 136 1 144 5 284 80 135 1 136 1 5.6 46.974 0.41 0.05198 0.00188 0.00188 0.00009 Zircon_73_094 337 157 0.41 0.05305 0.00133 0.0422 0.00020 0.00022 0.00018 0.37 140 1 151 4 331 55 14 16 1 7.3 45.434 0.441 0.05198 0.00188 0.00019 Zircon_74_095 271 52 0.17 0.05669 0.00145 0.57903 0.0188 0.07407 0.00092 0.0203 0.56 461 6 461 6 6 6.6 13.5 0.167 0.0569 0.00145 0.00018 0.37 188 1 144 6 249 86 137 1 188 1 4.2 46.148 0.457 0.0569 0.00145 0.00019 2.000019 2.00019 2.0	Zircon_71_092	120	34	0.25	0.05531	0.00299	0.17571	0.0098	0.02348	0.00033	0.00693	0.00033	0.25	150	2	164	8	425	117	140	7	150	2	8.5	42.589	0.599	0.05531	0.00299	-0.000052
Zircon_74_095 271 52 0.17 0.41 0.05309 0.00145 0.57903 0.0183 0.07407 0.00092 0.02203 0.00018 0.56 461 6 464 12 480 54 460 6 461 6 0.6 13.5 0.167 0.05669 0.00145 -0.00019 Zircon_74_095 368 174 0.41 0.05119 0.00201 0.15293 0.00681 0.02167 0.00092 0.02303 0.0003 0.56 461 6 464 12 480 54 460 6 461 7 138 1 4.2 46.148 0.457 0.0510 0.00145 -0.00019	Zircon_72_093	302	9/	0.28	0.05198	0.00188	0.15257	0.00617	0.02129	0.0002	0.00669	0.00006	0.29	136	1	144	5	284	80	135	1	136	1	5.6	46.974	0.441	0.05205	0.00188	-0.000094
Zircon 7, 096 368 174 0.41 0.05119 0.00201 0.15293 0.0068 0.02167 0.00021 0.00682 0.033 138 1 144 6 249 86 137 1 138 1 4.2 46.148 0.457 0.05119 0.00210 -0.00012	Zircon 74 095	271	52	0.41	0.05505	0.00133	0.10050	0.00452	0.02201	0.00022	0.00700	0.00018	0.57	461	1	464	4	480	53 54	142 460	4	461	6	0.6	45.454	0.454	0.05505	0.00133	-0.000019
	Zircon_75_096	368	174	0.41	0.05119	0.00201	0.15293	0.00681	0.02167	0.00021	0.00682	0.00006	0.33	138	1	144	6	249	86	137	1	138	1	4.2	46.148	0.457	0.05119	0.00201	-0.000120

Zircon_76_098	142	50	0.31	0.05849	0.00413	0.18022	0.01398	0.02235	0.0003	0.00692	0.00011	0.31	142	2	168	12	548	150	139	2	142	2	15.5	44.749	0.611	0.05849	0.00413	-0.000312
Zircon_77_099	439	345	0.69	0.05128	0.00133	0.20511	0.00564	0.02908	0.00026	0.00995	0.00024	0.33	185	2	189	5	253	57	200	5	185	2	2.1	34.388	0.307	0.05128	0.00133	-0.000029
Zircon_78_100	325	187	0.50	0.06058	0.00319	0.19444	0.01167	0.02328	0.0003	0.00718	0.00009	0.36	148	2	180	10	624	110	145	2	148	2	17.8	42.957	0.546	0.06058	0.00319	-0.000239
Zircon_79_101	346	123	0.31	0.05671	0.00219	0.17127	0.00739	0.0219	0.00021	0.00681	0.00007	0.29	140	1	161	6	480	82	137	1	140	1	13.0	45.653	0.442	0.05671	0.00219	-0.000119
Zircon_80_102	379	80	0.18	0.05377	0.00196	0.21171	0.00844	0.02856	0.00027	0.00894	0.00008	0.26	182	2	195	7	361	79	180	2	182	2	6.7	35.015	0.329	0.05377	0.00196	-0.000106
Zircon_81_104	364	31	0.08	0.05229	0.00141	0.21013	0.00595	0.02917	0.00025	0.01065	0.00042	0.31	185	2	194	5	298	59	214	8	185	2	4.6	34.282	0.294	0.05229	0.00141	-0.00003
Zircon_82_105	144	117	0.71	0.05809	0.00238	0.17364	0.00737	0.02178	0.00024	0.00661	0.00015	0.26	139	2	163	6	533	86	133	3	139	2	14.7	45.914	0.506	0.05809	0.00238	-0.00004
Zircon_83_106	664	610	0.80	0.05171	0.00093	0.1947	0.0038	0.02738	0.00021	0.00797	0.00014	0.39	174	1	181	3	273	39	160	3	174	1	3.9	36.523	0.28	0.05171	0.00093	-0.000016
Zircon_84_107	596	38	0.06	0.05942	0.00111	0.4372	0.00972	0.05336	0.00047	0.0165	0.00024	0.46	335	3	368	7	583	39	331	5	335	3	9.0	18.741	0.165	0.05942	0.00111	-0.000074
Zircon_85_108	285	55	0.17	0.06523	0.00273	0.24697	0.01131	0.02746	0.00034	0.0084	0.0001	0.27	175	2	224	9	782	85	169	2	175	2	21.9	36.416	0.447	0.06523	0.00273	-0.000114
Zircon_86_110	227	94	0.36	0.05347	0.00212	0.16165	0.00729	0.02193	0.00023	0.00686	0.00007	0.31	140	1	152	6	349	86	138	1	140	1	7.9	45.607	0.488	0.05347	0.00212	-0.000119
Zircon_87_111	106	61	0.50	0.06327	0.00291	0.19234	0.0091	0.02236	0.00025	0.00695	0.00022	0.23	143	2	179	8	717	94	140	4	143	2	20.1	44.723	0.5	0.06327	0.00291	-0.000051
Zircon_88_112	142	65	0.40	0.05802	0.00215	0.23978	0.00933	0.0301	0.00036	0.00978	0.00028	0.31	191	2	218	8	531	78	197	6	191	2	12.4	33.223	0.397	0.05802	0.00215	-0.000047
Zircon_89_113	242	91	0.33	0.05741	0.00206	0.17227	0.00694	0.02176	0.00021	0.00676	0.00006	0.27	139	1	161	6	507	76	136	1	139	1	13.7	45.947	0.447	0.05741	0.00206	-0.000101
Zircon_90_114	97	61	0.55	0.06111	0.00269	0.18161	0.00844	0.02169	0.00033	0.00675	0.00022	0.32	138	2	169	7	643	91	136	4	138	2	18.3	46.104	0.701	0.06111	0.00269	-0.00004
Zircon_91_116	91	43	0.42	0.05796	0.00429	0.17841	0.01489	0.02232	0.00038	0.00692	0.00011	0.35	142	2	167	13	528	157	139	2	142	2	15.0	44.793	0.764	0.05796	0.00429	-0.000305
Zircon_92_117	333	146	0.38	0.05105	0.00168	0.15126	0.00519	0.02158	0.0002	0.00647	0.00018	0.28	138	1	143	5	243	73	130	4	138	1	3.5	46.339	0.429	0.05105	0.00168	-0.000029
Zircon_93_118	293	178	0.53	0.05149	0.00219	0.15967	0.00775	0.02249	0.00025	0.00707	0.00007	0.28	143	2	150	7	263	93	142	1	143	2	4.7	44.463	0.494	0.05149	0.00219	-0.00014
Zircon_94_119	159	54	0.30	0.05635	0.00334	0.17382	0.01147	0.02237	0.00032	0.00696	0.0001	0.32	143	2	163	10	466	131	140	2	143	2	12.3	44.701	0.634	0.05635	0.00334	-0.000197
Zircon_95_120	111	45	0.36	0.05164	0.00258	0.16155	0.00839	0.02312	0.00032	0.00707	0.00025	0.27	147	2	152	7	270	112	142	5	147	2	3.3	43.253	0.599	0.05164	0.00258	-0.000047
Zircon_96_122	470	38	0.07	0.06249	0.00106	0.66702	0.01272	0.07741	0.00051	0.02379	0.00022	0.42	481	3	519	8	691	36	475	4	481	3	7.3	12.918	0.086	0.06249	0.00106	-0.000091
Zircon_97_123	504	52	0.09	0.04836	0.00121	0.19754	0.00526	0.02976	0.00027	0.01021	0.00042	0.34	189	2	183	4	117	57	205	8	189	2	-3.3	33.602	0.305	0.04836	0.00121	-0.000025
Zircon_98_124	89	29	0.29	0.06085	0.00377	0.19605	0.01246	0.0232	0.00032	0.00784	0.00043	0.22	148	2	182	11	634	133	158	9	148	2	18.7	43.103	0.595	0.06085	0.00377	-0.000073
Zircon_99_125	442	360	0.71	0.07116	0.00199	0.21169	0.00621	0.02142	0.00019	0.00583	0.00015	0.3	137	1	195	5	962	56	117	3	137	1	29.7	46.685	0.414	0.07116	0.00199	-0.000031
Zircon_28_040	442	37	0.07	0.07236	0.00114	1.45581	0.02761	0.14592	0.0013	0.04411	0.0004	0.51	878	7	912	11	996	32	873	8	878	7	3.7	6.853	0.061	0.07236	0.00114	-0.000144
Zircon_29_041	290	88	0.27	0.07814	0.00109	2.0734	0.03333	0.19259	0.00152	0.05727	0.00109	0.5	1135	8	1140	11	1150	27	1126	21	1135	8	0.4	5.192	0.041	0.07814	0.00109	-0.000126
Zircon_38_052	44	9	0.19	0.07946	0.00215	2.0557	0.06452	0.18619	0.00298	0.05374	0.00199	0.51	1101	16	1134	21	1184	53	1058	38	1101	16	2.9	5.371	0.086	0.07946	0.00215	-0.000225
Zircon_50_066	219	65	0.26	0.0726	0.00123	1.6212	0.03046	0.16132	0.00129	0.04768	0.00091	0.43	964	7	978	12	1003	34	941	18	964	7	1.4	6.199	0.05	0.0726	0.00123	-0.00013
Zircon_67_087	316	109	0.30	0.09137	0.00152	3.02845	0.0623	0.2404	0.00206	0.07087	0.00059	0.52	1389	11	1415	16	1454	31	1384	11	1454	31	1.8	4.16	0.036	0.09137	0.00152	-0.000495

T11-07 Fm. San Juan o	de la Rosa			x 420011	y 229870	5	CORRE	CTED RAT	105						CORRE	CTEI	D AGES (M:	a)										
	U (ppm)	Th (ppm)	Th/U	207Pb/206 Pb	±1s	207РЬ/23 U	5 ±1s	206Pb/23 U	8 ±1s	208Pb/23 Th	2 ±1s	Rho	206Pb/2. U	³⁸ ±1s	207РЬ/2 5U	3 ±1s	207Pb/206 Pb	5 ±1s	208Pb/2 Th	³² ±1s	Best age (Ma)	±1s	% disc	238U/20 Pb	⁶ 1s	207РЬ/206 РЬ	1s	rTW
Zircon 1 T11 07 008	389	155	0.33	0.05137	0.00159	0.14884	0.00484	0.02098	0.00021	0.00677	0.00016	0.31	134	1	141	4	257	69	136	3	134	1.0	5.0	47.664	0.477	0.05137	0.00159	-0.000024
Zircon 10 018	349	206	0.49	0.05518	0.00182	0.16284	0.00562	0.02141	0.00021	0.00762	0.00018	0.29	137	1	153	5	420	71	153	4	137	1.0	10.5	46.707	0.458	0.05518	0.00182	-0.000031
Zircon 100 126	171	58	0.29	0.05006	0.0022	0.1471	0.00714	0.02131	0.00026	0.00673	0.00009	0.31	136	2	139	6	198	98	135	2	136	2.0	2.2	46.923	0.569	0.05006	0.0022	-0.000088
Zircon 11 020	535	295	0.46	0.05254	0.00193	0.15653	0.0065	0.02161	0.00021	0.00678	0.00006	0.35	138	1	148	6	309	81	137	1	138	1.0	6.8	46.277	0.459	0.05254	0.00193	-0.000103
Zircon 12 021	246	126	0.43	0.05069	0.00167	0.1499	0.00517	0.02139	0.00021	0.00656	0.00018	0.3	136	1	142	5	227	74	132	4	136	1.0	4.2	46.751	0.459	0.05069	0.00167	-0.000028
Zircon 13 022	181	84	0.39	0.04871	0.00324	0.14427	0.01037	0.02148	0.00029	0.0068	0.00028	0.27	137	2	137	9	134	144	137	6	137	2.0	0.0	46.551	0.631	0.04871	0.00324	-0.000166
Zircon 14 023	317	142	0.38	0.05287	0.00201	0.16225	0.00693	0.02226	0.00026	0.00698	0.00008	0.33	142	2	153	6	323	84	141	2	142	2.0	7.2	44.931	0.525	0.05287	0.00201	-0.000082
Zircon 15 024	312	161	0.43	0.04779	0.00186	0.14041	0.00561	0.02147	0.00018	0.00616	0.00014	0.23	137	1	133	5	89	83	124	3	137	1.0	-3.0	46.577	0.39	0.04779	0.00186	-0.000036
Zircon 16 026	950	638	0.56	0.04928	0.00094	0.14861	0.00313	0.02185	0.0002	0.00654	0.00012	0.42	139	1	141	3	161	43	132	2	139	1.0	1.4	45,767	0.419	0.04928	0.00094	-0.000012
Zircon 17 027	252	82	0.27	0.05286	0.00222	0.15619	0.00687	0.02161	0.00028	0.00692	0.00021	0.3	138	2	147	6	323	93	139	4	138	2.0	6.1	46.275	0.6	0.05286	0.00222	-0.000036
Zircon 18 028	416	182	0.37	0.04947	0.00183	0.14614	0.00557	0.02157	0.0002	0.0067	0.00018	0.24	138	1	138	5	170	82	135	4	138	1.0	0.0	46.361	0.43	0.04947	0.00183	-0.00003
Zircon 19 029	141	68	0.40	0.05094	0.00178	0.14809	0.00543	0.0211	0.00023	0.00668	0.00017	0.3	135	1	140	5	238	78	135	3	135	1.0	3.6	47.393	0.517	0.05094	0.00178	-0.000028
Zircon 2 009	715	415	0.49	0.05043	0.00116	0.15016	0.00364	0.02158	0.00016	0.0066	0.00014	0.32	138	1	142	3	215	52	133	3	138	1.0	2.8	46.339	0.344	0.05043	0.00116	-0.000019
Zircon 20 030	116	47	0.34	0.05054	0.00197	0.1591	0.00638	0.02287	0.00021	0.00749	0.0002	0.23	146	1	150	6	220	87	151	4	146	1.0	2.7	43.725	0.402	0.05054	0.00197	-0.000037
Zircon 21 032	319	122	0.32	0.05007	0.00145	0.15273	0.00465	0.0222	0.00021	0.00718	0.00019	0.31	142	1	144	4	198	65	145	4	142	1.0	1.4	45.045	0.426	0.05007	0.00145	-0.000023
Zircon 22 033	291	130	0.38	0.05357	0.00155	0.16498	0.00518	0.02234	0.00027	0.00738	0.00018	0.39	142	2	155	5	353	63	149	4	142	2.0	8.4	44.763	0.541	0.05357	0.00155	-0.000023
Zircon_23_034	263	102	0.33	0.05275	0.00185	0.15968	0.00586	0.02191	0.00024	0.00709	0.00021	0.29	140	2	150	5	318	78	143	4	140	2.0	6.7	45.641	0.5	0.05275	0.00185	-0.000029
Zircon 24 035	211	75	0.30	0.05333	0.00208	0.15903	0.0064	0.02179	0.00022	0.00727	0.00023	0.25	139	1	150	6	343	86	146	5	139	1.0	7.3	45.893	0.463	0.05333	0.00208	-0.000034
Zircon 25 036	156	95	0.51	0.05715	0.00312	0.1688	0.01004	0.02142	0.00028	0.00665	0.00009	0.27	137	2	158	9	497	118	134	2	137	2.0	13.3	46.681	0.604	0.05715	0.00312	-0.000141
Zircon_26_038	479	228	0.40	0.0508	0.00158	0.14926	0.00513	0.02131	0.00018	0.00671	0.00006	0.28	136	1	141	5	232	69	135	1	136	1.0	3.5	46.929	0.392	0.0508	0.00158	-0.000065
Zircon_27_039	231	79	0.29	0.05072	0.00157	0.15032	0.0049	0.02161	0.00022	0.00731	0.0002	0.31	138	1	142	4	228	69	147	4	138	1.0	2.8	46.275	0.471	0.05072	0.00157	-0.000025
Zircon 28 040	374	152	0.34	0.04927	0.00138	0.148	0.00431	0.02178	0.00018	0.00681	0.00016	0.27	139	1	140	4	161	63	137	3	139	1.0	0.7	45.914	0.379	0.04927	0.00138	-0.000021
Zircon 29 041	379	136	0.30	0.05299	0.00177	0.15427	0.00565	0.02112	0.00018	0.00662	0.00006	0.27	135	1	146	5	328	80	133	1	135	1.0	7.5	47.357	0.4	0.05299	0.00177	-0.000076
Zircon_3_010	205	68	0.28	0.05131	0.00224	0.159	0.00759	0.02248	0.00023	0.00707	0.00008	0.27	143	1	150	7	255	106	142	2	143	1.0	4.7	44.494	0.465	0.05131	0.00224	-0.000109
Zircon_30_042	1400	412	0.25	0.05229	0.00168	0.15342	0.00539	0.02128	0.00015	0.00668	0.00006	0.34	135.7	0.9	145	5	298	77	135	1	136	0.9	6.4	46.993	0.331	0.05229	0.00168	-0.000089
Zircon_31_044	253	96	0.32	0.04998	0.0016	0.1494	0.00506	0.02178	0.00024	0.00693	0.00019	0.33	139	2	141	4	194	78	140	4	139	2.0	1.4	45.914	0.506	0.04998	0.0016	-0.000025
Zircon_32_045	258	129	0.42	0.04943	0.00133	0.14993	0.00424	0.022	0.00019	0.00679	0.00015	0.31	140	1	142	4	168	66	137	3	140	1.0	1.4	45.455	0.393	0.04943	0.00133	-0.000022
Zircon_33_046	200	93	0.39	0.05367	0.00222	0.1603	0.0073	0.02166	0.00021	0.00678	0.00006	0.28	138	1	151	6	357	98	137	1	138	1.0	8.6	46.161	0.448	0.05367	0.00222	-0.000119
Zircon_34_047	842	640	0.64	0.05472	0.0012	0.15857	0.00368	0.02106	0.00016	0.00681	0.00012	0.33	134	1	149	3	401	52	137	2	134	1.0	10.1	47.483	0.361	0.05472	0.0012	-0.000018
Zircon 35 048	325	106	0.27	0.05309	0.00181	0.15374	0.0054	0.02115	0.00018	0.00728	0.00019	0.24	135	1	145	5	333	82	147	4	135	1.0	6.9	47.281	0.402	0.05309	0.00181	-0.00003
Zircon_36_050	328	153	0.39	0.05165	0.00176	0.15096	0.00539	0.02134	0.00023	0.00677	0.00017	0.3	136	1	143	5	270	82	136	3	136	1.0	4.9	46.86	0.505	0.05165	0.00176	-0.000027
Zircon_37_051	316	146	0.39	0.0527	0.00158	0.15669	0.00494	0.02158	0.00021	0.00699	0.00016	0.31	138	1	148	4	316	72	141	3	138	1.0	6.8	46.339	0.451	0.0527	0.00158	-0.000025
Zircon 38 052	323	172	0.45	0.05006	0.0016	0.14602	0.00482	0.02123	0.00017	0.00656	0.00014	0.25	135	1	138	4	198	78	132	3	135	1.0	2.2	47.103	0.377	0.05006	0.0016	-0.000028
Zircon 39 053	256	94	0.31	0.05186	0.00202	0.1523	0.00617	0.02124	0.00023	0.00685	0.00021	0.28	135	1	144	5	279	94	138	4	135	1.0	6.3	47.081	0.51	0.05186	0.00202	-0.000034
Zircon_4_011	197	84	0.36	0.05362	0.00188	0.16335	0.00599	0.02226	0.00024	0.00677	0.0002	0.29	142	2	154	5	355	84	136	4	142	2.0	7.8	44.924	0.484	0.05362	0.00188	-0.000031
Zircon_40_054	471	191	0.34	0.04901	0.00132	0.14928	0.0043	0.02207	0.00022	0.00706	0.00017	0.35	141	1	141	4	148	67	142	3	141	1.0	0.0	45.31	0.452	0.04901	0.00132	-0.000021
Zircon_41_056	405	204	0.42	0.05263	0.00169	0.15777	0.00565	0.02174	0.00017	0.00682	0.00005	0.29	139	1	149	5	313	77	137	1	139	1.0	6.7	45.994	0.366	0.05263	0.00169	-0.000092
Zircon_42_057	196	59	0.25	0.05012	0.00196	0.14856	0.00623	0.0215	0.0002	0.00678	0.00007	0.25	137	1	141	6	201	87	137	1	137	1.0	2.8	46.515	0.432	0.05012	0.00196	-0.000075

7. 42.059	150	5.4	0.20	0.05251	0.00266	0.12004	0.01202	0.00000	0.00020	0.00722	0.00015	0.21	1.40	~	150		200	1.5.4	1.47	-	1.40	2.0	6.2	10.057	0 702	0.05251	0.00266	0.000102
Zircon_43_058	150	54	0.30	0.05251	0.00366	0.16894	0.01282	0.02333	0.00038	0.00732	0.00015	0.31	149	2	159	11	308	154	147	3	149	2.0	6.3	42.857	0.702	0.05251	0.00366	-0.000182
Zircon_44_059	352	116	0.28	0.0511	0.00219	0.15164	0.00702	0.02152	0.00021	0.00678	0.00007	0.26	137	1	143	6	245	96	136	1	137	1.0	4.2	46.463	0.457	0.0511	0.00219	-0.000095
Zircon_45_060	263	113	0.36	0.04971	0.00171	0.14443	0.00549	0.02107	0.00018	0.00666	0.00006	0.31	134	1	137	5	182	77	134	1	134	1.0	2.2	47.459	0.413	0.04971	0.00171	-0.00008
Zircon_47_063	198	86	0.36	0.04802	0.00182	0.14577	0.00577	0.02216	0.00024	0.00676	0.00016	0.29	141	2	138	5	100	82	136	3	141	2.0	-2.2	45.126	0.489	0.04802	0.00182	-0.000033
Zircon_48_064	1031	490	0.40	0.04921	0.00084	0.15097	0.0028	0.02224	0.00016	0.007	0.00012	0.39	142	1	143	2	158	39	141	2	142	1.0	0.7	44.964	0.323	0.04921	0.00084	-0.000013
Zircon_49_065	124	41	0.28	0.05274	0.00206	0.16045	0.0065	0.02223	0.00024	0.00717	0.00024	0.27	142	2	151	6	318	87	144	5	142	2.0	6.0	44.984	0.486	0.05274	0.00206	-0.000035
Zircon 5 012	421	215	0.43	0.04909	0.00108	0.14205	0.00342	0.02097	0.0002	0.00653	0.00014	0.41	134	1	135	3	152	50	132	3	134	1.0	0.7	47.687	0.455	0.04909	0.00108	-0.000016
Zircon 50 066	319	173	0.46	0.04625	0.00153	0.13768	0.0047	0.02154	0.00019	0.00657	0.00015	0.25	137	1	131	4	11	64	132	3	137	1.0	-4.6	46.425	0.41	0.04625	0.00153	-0.000024
Zircon 51 068	1001	380	0.32	0.05127	0.00082	0.15088	0.00263	0.02138	0.00015	0.00677	0.00013	0.4	136.4	0.9	143	2	253	36	136	3	136	0.9	4.6	46 773	0.328	0.05127	0.00082	-0.000011
Zircon 52 069	379	157	0.35	0.03127	0.00131	0.14812	0.00424	0.022130	0.00015	0.00741	0.00019	0.34	141	1	140	4	128	60	149	4	141	1.0	-0.7	45 208	0.320	0.03127	0.00131	-0.000011
Zircon_52_00)	220	205	0.52	0.04000	0.00119	0.1421	0.00278	0.02212	0.00021	0.00741	0.00012	0.21	141	1	126	2	50	52	129	2	141	1.0	27	45 208	0.429	0.04702	0.00118	0.000017
Ziicoli_55_070	330	205	0.32	0.04702	0.00118	0.1431	0.00378	0.02212	0.00019	0.00087	0.00013	0.31	141	1	1.40	5	200	52	120	3	141	1.0	-3.7	45.208	0.300	0.04702	0.00118	-0.000017
Zircon_54_0/1	210	84	0.34	0.05285	0.00164	0.13804	0.0031	0.02176	0.00019	0.00686	0.00018	0.27	139	1	149	4	322	09	138	4	139	1.0	0.7	45.956	0.401	0.05285	0.00164	-0.000028
Zircon_55_072	323	124	0.32	0.04963	0.00159	0.1498	0.00496	0.02198	0.00019	0.00648	0.00017	0.25	140	1	142	4	1/8	12	131	3	140	1.0	1.4	45.496	0.393	0.04963	0.00159	-0.000026
Zircon_56_074	308	109	0.30	0.04872	0.00136	0.14428	0.00425	0.02156	0.0002	0.00682	0.0002	0.32	138	1	137	4	134	63	137	4	138	1.0	-0.7	46.382	0.43	0.04872	0.00136	-0.000022
Zircon_57_075	381	183	0.40	0.05066	0.00127	0.1471	0.00383	0.02105	0.00015	0.00665	0.00014	0.27	134.3	0.9	139	3	225	57	134	3	134	0.9	3.4	47.506	0.339	0.05066	0.00127	-0.00002
Zircon_58_076	317	111	0.29	0.05043	0.00161	0.15172	0.00525	0.02182	0.0002	0.00688	0.00007	0.29	139	1	143	5	215	73	139	1	139	1.0	2.8	45.828	0.424	0.05043	0.00161	-0.000048
Zircon_59_077	283	138	0.41	0.05315	0.0017	0.16021	0.00537	0.02191	0.00022	0.00707	0.00019	0.3	140	1	151	5	335	71	142	4	140	1.0	7.3	45.641	0.458	0.05315	0.0017	-0.000027
Zircon_6_014	702	457	0.55	0.04784	0.0011	0.13925	0.00338	0.02109	0.00016	0.00659	0.00012	0.32	135	1	132	3	91	52	133	2	135	1.0	-2.3	47.416	0.36	0.04784	0.0011	-0.000017
Zircon_60_078	392	192	0.41	0.05245	0.00152	0.15668	0.00486	0.02169	0.00024	0.00674	0.00014	0.36	138	2	148	4	305	65	136	3	138	2.0	6.8	46.104	0.51	0.05245	0.00152	-0.000023
Zircon_61_080	289	141	0.41	0.05371	0.00213	0.15778	0.00678	0.02131	0.00022	0.00667	0.00007	0.28	136	1	149	6	359	88	134	1	136	1.0	8.7	46.937	0.477	0.05371	0.00213	-0.00008
Zircon 62 081	385	237	0.52	0.05301	0.00159	0.15722	0.00492	0.02161	0.00019	0.00697	0.00015	0.29	138	1	148	4	329	67	140	3	138	1.0	6.8	46.275	0.407	0.05301	0.00159	-0.000026
Zircon 63 082	399	220	0.46	0.04956	0.00134	0.14374	0.00408	0.02108	0.00019	0.00673	0.00012	0.3	134	1	136	4	174	62	136	2	134	1.0	1.5	47.438	0.428	0.04956	0.00134	-0.000019
Zircon 64 083	300	144	0.40	0.0557	0.00255	0.16076	0.00778	0.02093	0.00021	0.00652	0.00007	0.23	134	1	151	7	440	101	131	1	134	1.0	11.3	47.772	0.473	0.0557	0.00255	-0.000089
Zircon 65 084	259	81	0.26	0.05067	0.00167	0.15335	0.00523	0.02207	0.00019	0.00706	0.0002	0.26	141	1	145	5	226	75	142	4	141	1.0	2.8	45.31	0.39	0.05067	0.00167	-0.000029
Zircon 67 087	343	181	0.44	0.04928	0.00148	0 1429	0.00447	0.02107	0.00019	0.00678	0.00014	0.28	134	1	136	4	161	68	137	3	134	1.0	15	47 461	0.428	0.04928	0.00148	-0.000022
Zircon 68 088	125	37	0.25	0.05289	0.00243	0.15326	0.00725	0.02125	0.00023	0.00766	0.00038	0.24	136	1	145	6	324	103	154	8	136	1.0	6.2	47.059	0.509	0.05289	0.00243	-0.000043
Zircon_60_080	125	275	0.50	0.05101	0.00138	0.15342	0.00/25	0.02125	0.00025	0.00760	0.00013	0.32	130	1	145	4	241	61	135	3	130	1.0	4.1	47.057	0.307	0.05209	0.00138	0.000071
Zircon 7 015	338	192	0.48	0.05509	0.00100	0.15042	0.00417	0.02105	0.0002	0.00688	0.00019	0.26	136	1	152	5	416	75	139	4	136	1.0	10.5	46 992	0.464	0.05509	0.00204	-0.000021
Zircon 70 000	316	130	0.34	0.05205	0.00167	0.1500/2	0.00503	0.02126	0.00021	0.00672	0.00017	0.20	134	1	1/3	4	288	67	135	3	134	1.0	63	40.772	0.451	0.05205	0.00167	0.000034
Zircon_70_090	159	220	0.44	0.05205	0.00107	0.13094	0.00303	0.02100	0.0002	0.00072	0.00017	0.27	125	1	140	4	200	50	120	2	125	1.0	2.0	47.405	0.4.01	0.05205	0.00107	0.000024
Zircon_72_004	438	110	0.44	0.05048	0.00141	0.14081	0.00433	0.02114	0.0002	0.00039	0.00012	0.33	135	1	139	4	217	54	149	4	135	1.0	4.1	47.504	0.446	0.05048	0.00141	-0.000023
Zircon_75_094	307	204	0.50	0.03113	0.00133	0.13551	0.00427	0.02213	0.00019	0.00755	0.00021	0.32	141	1	14/	4	102	54	140	4	141	1.0	4.1	40.147	0.387	0.03113	0.00133	-0.000022
Zircon_74_095	000	394	0.50	0.04808	0.00149	0.13685	0.00477	0.02064	0.00018	0.00655	0.00008	0.20	152	1	150	4	105	64	152	2	152	1.0	-1.5	48.458	0.415	0.04808	0.00149	-0.000069
Zircon_/5_096	3//	180	0.40	0.05023	0.00126	0.14864	0.00393	0.02149	0.00018	0.0069	0.00014	0.32	15/	1	141	3	206	55	139	3	137	1.0	2.8	46.535	0.39	0.05023	0.00126	-0.000019
Zircon_/6_098	566	298	0.44	0.05006	0.0011	0.150/9	0.00357	0.02188	0.00019	0.00702	0.00014	0.37	140	1	143	3	198	46	141	3	140	1.0	2.1	45.704	0.397	0.05006	0.0011	-0.000017
Zircon_77_099	243	100	0.35	0.04868	0.00175	0.14765	0.0055	0.02211	0.00021	0.00757	0.0002	0.26	141	1	140	5	132	75	152	4	141	1.0	-0.7	45.228	0.43	0.04868	0.00175	-0.000031
Zircon_79_101	218	96	0.37	0.05288	0.00196	0.15286	0.0058	0.02109	0.00018	0.00718	0.00019	0.21	135	1	144	5	324	77	145	4	135	1.0	6.3	47.416	0.405	0.05288	0.00196	-0.000031
Zircon_8_016	359	133	0.31	0.05061	0.00127	0.15375	0.00412	0.02201	0.00021	0.0074	0.00017	0.35	140	1	145	4	223	53	149	3	140	1.0	3.4	45.434	0.433	0.05061	0.00127	-0.000019
Zircon_80_102	65	22	0.29	0.05057	0.00369	0.15768	0.01189	0.02273	0.00043	0.00681	0.0004	0.25	145	3	149	10	221	150	137	8	145	3.0	2.7	43.995	0.832	0.05057	0.00369	-0.000065
Zircon_81_104	786	247	0.26	0.0504	0.00116	0.15454	0.00394	0.02226	0.00024	0.00734	0.00015	0.43	142	2	146	3	213	48	148	3	142	2.0	2.7	44.924	0.484	0.0504	0.00116	-0.000017
Zircon_82_105	163	55	0.28	0.05149	0.00185	0.1632	0.00625	0.023	0.0003	0.00752	0.00025	0.35	147	2	154	5	263	75	151	5	147	2.0	4.5	43.478	0.567	0.05149	0.00185	-0.000031
Zircon_83_106	306	169	0.46	0.0505	0.00136	0.14925	0.00424	0.02141	0.00019	0.00666	0.00015	0.32	137	1	141	4	218	57	134	3	137	1.0	2.8	46.707	0.414	0.0505	0.00136	-0.000022
Zircon_84_107	256	98	0.32	0.05198	0.00194	0.15262	0.00628	0.02129	0.00021	0.00669	0.00007	0.29	136	1	144	6	285	78	135	1	136	1.0	5.6	46.962	0.472	0.05198	0.00194	-0.000081
Zircon_86_110	328	158	0.40	0.05321	0.00321	0.15493	0.00984	0.02112	0.00021	0.00662	0.00008	0.18	135	1	146	9	338	127	133	2	135	1.0	7.5	47.353	0.477	0.05321	0.00321	-0.00016
Zircon_87_111	257	76	0.25	0.05076	0.00147	0.15073	0.00459	0.02154	0.0002	0.00685	0.00019	0.31	137	1	143	4	230	61	138	4	137	1.0	4.2	46.425	0.431	0.05076	0.00147	-0.000024
Zircon_88_112	256	129	0.42	0.05432	0.00163	0.16103	0.00515	0.02164	0.00024	0.00714	0.00019	0.35	138	2	152	5	384	62	144	4	138	2.0	9.2	46.211	0.513	0.05432	0.00163	-0.000024
Zircon 89 113	555	283	0.43	0.04968	0.00129	0.14473	0.004	0.02114	0.0002	0.00656	0.00014	0.34	135	1	137	4	180	56	132	3	135	1.0	1.5	47.304	0.448	0.04968	0.00129	-0.000019
Zircon 9 017	216	75	0.29	0.05134	0.00175	0.15368	0.00541	0.02182	0.0002	0.00676	0.0002	0.25	139	1	145	5	256	72	136	4	139	1.0	4.1	45.83	0.42	0.05134	0.00175	-0.000028
Zircon 90 114	446	192	0.36	0.05421	0.00238	0.1581	0.00775	0.02115	0.00023	0.00661	0.00008	0.35	135	1	149	7	380	91	133	2	135	1.0	9.4	47.276	0.517	0.05421	0.00238	-0.000125
Zircon 91 116	301	127	0.35	0.05187	0.00171	0.15354	0.00524	0.02143	0.00019	0.00658	0.00019	0.26	137	1	145	5	280	69	133	4	137	1.0	5.5	46.664	0.414	0.05187	0.00171	-0.000028
Zircon 92 117	115	52	0.38	0.0549	0.00271	0 1642	0.00881	0.02169	0.00025	0.00677	0.00008	0.24	138	2	154	8	408	102	136	2	138	2.0	10.4	46 102	0.535	0.0549	0.00271	-0.00012
Zircon 93 118	326	155	0.40	0.05201	0.0014	0 15156	0.00429	0.02118	0.00018	0.00686	0.00016	0.31	135	1	143	4	286	57	138	3	135	1.0	56	47 214	0.401	0.05201	0.0014	-0.000023
Zircon 94 119	788	386	0.41	0.04952	0.00014	0.15103	0.00345	0.022118	0.00018	0.00685	0.00012	0.48	141	2	143	3	173	43	138	2	141	2.0	1.4	45 086	0.488	0.04952	0.0000	-0.000014
Zircon 95 120	875	872	0.41	0.04952	0.00265	0.15056	0.00343	0.02218	0.00024	0.00673	0.00012	0.23	136	1	142	8	244	100	136	1	136	1.0	4.2	46 775	0.469	0.05108	0.00265	-0.00014
Zircon 06 122	340	133	0.32	0.05322	0.00205	0.15484	0.00587	0.02130	0.00021	0.00772	0.00007	0.25	135	1	144	5	239	109	146	5	135	1.0	7.5	47.214	0.401	0.05108	0.00205	0.000133
Zircon 07 122	247	135	0.52	0.05522	0.00197	0.15126	0.00514	0.02118	0.00018	0.00723	0.00025	0.22	133	1	140	5	220	70	140	2	135	1.0	2.5	46 206	0.401	0.05322	0.00197	-0.000032
Zircon 08 124	280	145	0.44	0.05066	0.00160	0.15120	0.00514	0.0210	0.0001/	0.00677	0.00013	0.24	138	1	145	5	223	/0	130	3	138	1.0	5.5 5.4	40.290	0.304	0.05162	0.00160	-0.00005
ZIICOII_98_124	101	80	0.45	0.05103	0.00169	0.13775	0.00582	0.02216	0.0002	0.00097	0.00006	0.51	141	1	149	3	209	09	140	1	141	1.0	5.4	45.154	0.409	0.05165	0.00109	-0.000085

T12-10 Fm. San Juan o	le la Rosa			x 419532	y 2297528	8	CORREC	CTED RAT	IOS						CORRE	сты	D AGES (M	a)										
	U (ppm)	Th (ppm)	Th/U	207РЬ/200 РЬ	5 ±1s	207Рb/23 U	5 ±1s	206Рb/23 U	⁸ ±1s	208Pb/23 Th	² ±1s	Rho	206Pb/23 U	³⁸ ±1s	207Pb/2 5U	³ ±1s	207Pb/200 Pb	5 ±1s	208Pb/23 Th	³² ±1s	Best ag (Ma)	e ±1s	% disc	238U/20 Pb	⁶ 1s	207Pb/200 Pb	1s	rTW
Zircon_101_T1210_128	510	301	0.46	0.05024	0.00146	0.14786	0.00446	0.02138	0.00018	0.00653	0.00026	0.27	136	1	140	4	206	65	132	5	136	1.0	2.9	46.773	0.394	0.05024	0.00146	-0.000022
Zircon_102_129	623	451	0.57	0.04841	0.00126	0.14218	0.00396	0.02129	0.00021	0.0066	0.00026	0.36	136	1	135	4	119	58	133	5	136	1.0	-0.7	46.97	0.463	0.04841	0.00126	-0.000019
Zircon_104_131	637	485	0.60	0.04878	0.00122	0.149	0.00386	0.02211	0.00015	0.00657	0.00026	0.26	141	0.9	141	3	137	56	132	5	141	0.9	0.0	45.228	0.307	0.04878	0.00122	-0.00002
Zircon_105_132	345	202	0.46	0.0509	0.00168	0.15576	0.00542	0.02216	0.00024	0.00675	0.00029	0.32	141	2	147	5	236	74	136	6	141	2.0	4.1	45.126	0.489	0.0509	0.00168	-0.000028
Zircon_106_134	995	902	0.71	0.04861	0.00092	0.14451	0.00296	0.02152	0.00016	0.00638	0.00024	0.38	137	1	137	3	129	43	129	5	137	1.0	0.0	46.468	0.345	0.04861	0.00092	-0.000015
Zircon_107_135	671	432	0.50	0.04967	0.00119	0.1435	0.0036	0.02094	0.00015	0.00611	0.00024	0.3	133.6	0.9	136	3	180	54	123	5	134	0.9	1.8	47.755	0.342	0.04967	0.00119	-0.00002
Zircon_108_136	488	353	0.57	0.05087	0.00127	0.15232	0.00422	0.02164	0.00026	0.00636	0.00025	0.43	138	2	144	4	235	54	128	5	138	2.0	4.2	46.211	0.555	0.05087	0.00127	-0.000017
Zircon_110_138	355	210	0.46	0.05072	0.00162	0.15811	0.00535	0.02255	0.00025	0.00696	0.00029	0.33	144	2	149	5	228	70	140	6	144	2.0	3.4	44.346	0.492	0.05072	0.00162	-0.000026
Zircon_111_140	571	445	0.61	0.05353	0.00161	0.1582	0.00496	0.02144	0.0002	0.00673	0.00027	0.28	137	1	149	4	351	64	136	5	137	1.0	8.1	46.642	0.435	0.05353	0.00161	-0.000023
Zircon_112_141	41	17	0.33	0.08233	0.00231	2.3623	0.0697	0.20803	0.00193	0.05855	0.00246	0.31	1218	10	1231	21	1253	52	1150	47	1253	52.0	1.1	4.807	0.045	0.08233	0.00231	-0.000338
Zircon_113_142	893	807	0.71	0.04965	0.00124	0.15053	0.00405	0.02193	0.00022	0.00663	0.00027	0.37	140	1	142	4	179	55	134	5	140	1.0	1.4	45.6	0.457	0.04965	0.00124	-0.000018

550

217

324

Zircon_73_094 Zircon_74_095 49

120

0.23

0.37

0.05458 0.00203 0.34398 0.01456 0.04571 0.0006 0.01427 0.0002 0.39

0.04969 0.00215 0.14828 0.00686 0.02164 0.00019 0.00684 0.0001 0.23

T11.05 Em Boño Ami				x /182/0	y 2306044	5																						
111-05 Fill. Fella AZul	410243	200034	5	CORRE	CTED RAT	TIOS						CORRE	ECTEI	D AGES (M	a)													
	U (ppm)	Th (ppm)	Th/U	207Pb/206 Pb	±1s	207РЬ/23 U	5 ±1s	206Pb/23 U	³⁸ ±1s	208Pb/23 Th	² ±1s	Rho	206Pb/2 U	238 ±1s	207РЬ/2 5U	23 ±1s	207РЬ/20 РЬ	6 ±1s	208Pb/ Th	232 ±1s	Best age (Ma)	±1s	% disc	238U/20 Pb	⁶ 1s	207Pb/200 Pb	5 1s	rTW
Zircon 04 011	436	283	0.65	0.05353	0.00091	0.29082	0.00537	0.03953	0.00028	0.01247	0.00022	0.39	250	2	259	4	351	37	250	4	250	2	3.5	25,297	0.179	0.05353	0.00091	-0.000025
Zircon 05 012	398	34	0.09	0.05614	0.00112	0.30227	0.00712	0.03905	0.00037	0.01216	0.00013	0.43	247	2	268	6	458	42	244	3	247	2	7.8	25.607	0.245	0.05614	0.00112	-0.000049
Zircon_06_014	107	39	0.37	0.0635	0.00368	0.18701	0.0112	0.0217	0.00033	0.00703	0.00031	0.25	138	2	174	10	725	119	142	6	138	2	20.7	46.083	0.701	0.0635	0.00368	-0.000061
Zircon_07_015	389	138	0.35	0.05115	0.00151	0.1559	0.00525	0.0221	0.00019	0.00696	0.00006	0.3	141	1	147	5	248	66	140	1	141	1	4.1	45.242	0.391	0.05115	0.00151	-0.000074
Zircon_08_016	80	29	0.37	0.06537	0.00431	0.19526	0.01317	0.02207	0.00031	0.00705	0.00028	0.21	141	2	181	11	786	135	142	6	141	2	22.1	45.31	0.636	0.06537	0.00431	-0.000078
Zircon_09_017	145	54	0.37	0.05575	0.00503	0.16472	0.01607	0.02143	0.00031	0.00667	0.00013	0.25	137	2	155	14	443	189	134	3	137	2	11.6	46.67	0.665	0.05575	0.00503	-0.000424
Zircon_10_018	1793	555	0.31	0.05019	0.0008	0.14916	0.00261	0.02159	0.00015	0.00693	0.00013	0.41	137.7	0.9	141	2	204	34	140	3	138	1	2.3	46.318	0.322	0.05019	0.0008	-0.000012
Zircon_100_126	301	143	0.48	0.0504	0.00217	0.14453	0.00689	0.0208	0.00021	0.00656	0.00007	0.26	133	1	137	6	214	93	132	1	133	1	2.9	48.08	0.49	0.0504	0.00217	-0.000114
Zircon 14 023	57	221	0.29	0.05392	0.00108	0.13348	0.00333	0.02105	0.00010	0.00772	0.00024	0.35	134	2	147	5 16	500	42	135	3	134	2	0.0 17 1	47.300	0.301	0.05988	0.00108	-0.000010
Zircon 15 024	734	271	0.37	0.05212	0.00000	0.15412	0.00404	0.02154	0.00017	0.00693	0.00015	0.31	137	1	146	4	291	53	140	3	137	1	62	46 425	0.366	0.05212	0.0013	-0.00000021
Zircon 16 026	122	52	0.43	0.05819	0.00396	0.16996	0.01244	0.02118	0.00028	0.00657	0.00009	0.24	135	2	159	11	537	140	132	2	135	2	15.1	47.207	0.618	0.05819	0.00396	-0.000223
Zircon_17_027	102	50	0.49	0.06389	0.00383	0.18954	0.01172	0.02166	0.00032	0.00709	0.0003	0.25	138	2	176	10	738	119	143	6	138	2	21.6	46.168	0.682	0.06389	0.00383	-0.000067
Zircon_18_028	114	58	0.50	0.05798	0.00438	0.17215	0.01411	0.02153	0.00031	0.00668	0.0001	0.27	137	2	161	12	529	156	135	2	137	2	14.9	46.437	0.675	0.05798	0.00438	-0.00028
Zircon_19_029	1186	312	0.26	0.05085	0.00097	0.14972	0.00306	0.02147	0.00016	0.00731	0.00015	0.36	137	1	142	3	234	41	147	3	137	1	3.5	46.577	0.347	0.05085	0.00097	-0.000014
Zircon_20_030	1227	442	0.36	0.05069	0.00112	0.1442	0.00331	0.0207	0.00014	0.00644	0.00012	0.27	132.1	0.9	137	3	227	47	130	2	132	1	3.6	48.309	0.327	0.05069	0.00112	-0.000015
Zircon_22_033	90	30	0.33	0.05458	0.0036	0.16097	0.01136	0.02139	0.00031	0.00668	0.00011	0.23	136	2	152	10	395	138	135	2	136	2	10.5	46.748	0.677	0.05458	0.0036	-0.00015
Zircon_23_034 Zircon_24_035	18//	215	0.35	0.0493	0.00089	0.13/18	0.00379	0.02013	0.00042	0.00627	0.00012	0.76	128	3	131	3	162	39 50	120	2	128	5	2.5	49.677	0.341	0.0493	0.00089	-0.000007
Zircon 25 036	197	128	0.51	0.04783	0.0011	0.14237	0.00344	0.02107	0.00010	0.00091	0.00014	0.3	130	1	145	5	92 400	81	129	3	130	1	10.3	40.147	0.341	0.04785	0.0011	-0.000017
Zircon 27 039	666	105	0.16	0.05109	0.00102	0.19843	0.00423	0.02824	0.0002	0.00928	0.00045	0.35	180	1	184	4	245	43	187	9	180	1	2.2	35.411	0.263	0.05109	0.00102	-0.00002
Zircon 28 040	121	44	0.36	0.04741	0.00198	0.13373	0.0064	0.02046	0.00029	0.0065	0.00022	0.34	131	2	127	6	70	83	131	4	131	2	-3.1	48.878	0.699	0.04741	0.00198	-0.000068
Zircon_29_041	532	383	0.72	0.0521	0.00178	0.26989	0.01054	0.03757	0.00031	0.0118	0.00008	0.36	238	2	243	8	290	73	237	2	238	2	2.1	26.614	0.219	0.0521	0.00178	-0.000224
Zircon_30_042	65	27	0.42	0.06317	0.00486	0.18599	0.01467	0.02168	0.00037	0.00669	0.00037	0.22	138	2	173	13	714	154	135	7	138	2	20.2	46.125	0.787	0.06317	0.00486	-0.000087
Zircon_31_044	151	75	0.50	0.06176	0.00315	0.17845	0.00935	0.02115	0.00025	0.0067	0.00021	0.23	135	2	167	8	666	102	135	4	135	2	19.2	47.281	0.559	0.06176	0.00315	-0.000054
Zircon_32_045	233	141	0.61	0.04653	0.00193	0.13622	0.00622	0.02123	0.00021	0.00676	0.0002	0.28	135	1	130	6	25	80	136	4	135	1	-3.8	47.095	0.457	0.04653	0.00193	-0.000094
Zircon_33_046	71	37	0.51	0.06144	0.00418	0.17482	0.0121	0.0212	0.00028	0.00695	0.0003	0.18	135	2	164	10	655	137	140	6	135	2	17.7	47.17	0.623	0.06144	0.00418	-0.00007
Zircon_35_048	2422	120	0.30	0.04911	0.00079	0.1398	0.0024	0.02071	0.00013	0.0068	0.00012	0.35	132.1	0.8	133	2	153	35	137	2	132	1	0.7	48.286	0.303	0.04911	0.00079	-0.00001
Zircon 38 052	332	40	0.35	0.0512	0.00458	0.1721	0.01491	0.02182	0.00035	0.00078	0.00013	0.32	145	2	152	8	268	106	137	2	139	2	4.6	43.828	0.744	0.0516	0.00438	-0.000203
Zircon 39 053	1523	424	0.28	0.04899	0.00083	0.1439	0.00263	0.02134	0.00014	0.0068	0.00013	0.38	136.1	0.9	137	2	147	37	137	3	136	1	0.7	46.86	0.307	0.04899	0.00083	-0.0000140
Zircon 40 054	144	47	0.33	0.05223	0.00313	0.15397	0.00994	0.02131	0.00027	0.00671	0.00011	0.26	136	2	145	9	295	127	135	2	136	2	6.2	46.77	0.59	0.05223	0.00313	-0.000153
Zircon_41_056	135	47	0.35	0.05132	0.00282	0.15836	0.00903	0.02241	0.00034	0.00727	0.00036	0.27	143	2	149	8	255	117	146	7	143	2	4.0	44.623	0.677	0.05132	0.00282	-0.000048
Zircon_42_057	432	169	0.39	0.05142	0.00159	0.15086	0.00483	0.02137	0.00017	0.0066	0.00016	0.26	136	1	143	4	260	66	133	3	136	1	4.9	46.795	0.372	0.05142	0.00159	-0.000028
Zircon_43_058	304	132	0.43	0.0524	0.00168	0.14836	0.00495	0.02056	0.0002	0.00659	0.00016	0.28	131	1	140	4	303	68	133	3	131	1	6.4	48.638	0.473	0.0524	0.00168	-0.000024
Zircon_44_059	177	102	0.58	0.05238	0.00321	0.1501	0.01005	0.02078	0.00027	0.00652	0.00009	0.23	133	2	142	9	302	130	131	2	133	2	6.3	48.113	0.623	0.05238	0.00321	-0.000182
Zircon_45_060	382	146	0.38	0.05389	0.00156	0.15446	0.00465	0.02087	0.00017	0.00679	0.00018	0.27	133	1	146	4	366	61	137	4	133	1	8.9	47.916	0.39	0.05389	0.00156	-0.000025
Zircon_46_062	538	202	0.38	0.0532	0.00144	0.15998	0.00458	0.02193	0.00021	0.00689	0.00018	0.33	140	1	151	4	337	57	139	4	140	1	7.3	45.6	0.437	0.0532	0.00144	-0.000021
Zircon_47_065 Zircon_48_064	1013	376	0.07	0.05147	0.00144	0.18952	0.0033	0.02085	0.00021	0.0096	0.00038	0.27	171	1	1/6	3	202 400	50	195	3	171	1	2.8	37.272 47.778	0.292	0.05469	0.00144	-0.000029
Zircon 49 065	152	81	0.53	0.05672	0.00286	0.16738	0.00937	0.02095	0.00026	0.00751	0.00007	0.27	137	2	157	8	481	104	134	2	137	2	12.7	46 727	0.562	0.05672	0.00286	-0.000158
Zircon 50 066	195	98	0.50	0.05308	0.0048	0.15545	0.01505	0.02124	0.00029	0.00666	0.00016	0.26	135	2	147	13	332	191	134	3	135	2	8.2	47.082	0.652	0.05308	0.0048	-0.000367
Zircon_51_068	103	37	0.36	0.06442	0.00411	0.19017	0.01312	0.02141	0.00031	0.00656	0.0001	0.27	137	2	177	11	755	126	132	2	137	2	22.6	46.708	0.682	0.06442	0.00411	-0.000184
Zircon_52_069	414	122	0.30	0.05199	0.00146	0.14561	0.00432	0.02039	0.0002	0.00673	0.00019	0.32	130	1	138	4	285	60	136	4	130	1	5.8	49.044	0.481	0.05199	0.00146	-0.00002
Zircon_53_070	208	118	0.57	0.05268	0.00286	0.1553	0.00935	0.02138	0.00028	0.00671	0.00009	0.26	136	2	147	8	315	115	135	2	136	2	7.5	46.773	0.608	0.05268	0.00286	-0.000157
Zircon_54_071	436	249	0.57	0.0488	0.00146	0.14005	0.00434	0.02095	0.00016	0.00675	0.00014	0.26	134	1	133	4	138	65	136	3	134	1	-0.8	47.733	0.365	0.0488	0.00146	-0.000026
Zircon_55_072	272	116	0.43	0.05156	0.00211	0.15444	0.007	0.02172	0.00022	0.00683	0.00007	0.27	139	1	146	6	266	88	138	1	139	1	4.8	46.033	0.467	0.05156	0.00211	-0.000107
Zircon_56_074	84	35 75	0.41	0.05996	0.00445	0.17036	0.01414	0.02061	0.00042	0.00636	0.00012	0.33	202	3	212	12	602 277	151	128	2	202	3	18.1	48.529	0.985	0.05996	0.00445	-0.000202
Zircon 58 076	326	290	0.24	0.05509	0.00114	0.55991	0.008	0.04813	0.00033	0.01620	0.00042	0.32	134	1	148	5	416	75	134	3	134	1	9.5	47 733	0.131	0.05509	0.00114	-0.000038
Zircon 59 077	167	67	0.40	0.05614	0.00236	0.16031	0.00696	0.02095	0.00023	0.00687	0.00026	0.25	133	1	151	6	458	87	138	5	133	1	11.9	47.962	0.529	0.05614	0.00236	-0.000032
Zircon 60 078	180	70	0.39	0.05416	0.00333	0.16193	0.01069	0.02168	0.00027	0.00678	0.00009	0.23	138	2	152	9	378	130	137	2	138	2	9.2	46.12	0.579	0.05416	0.00333	-0.000165
Zircon_61_080	203	158	0.78	0.06262	0.00344	0.17071	0.00978	0.01978	0.00032	0.00593	0.00018	0.28	126	2	160	8	695	119	120	4	126	2	21.3	50.556	0.818	0.06262	0.00344	-0.000051
Zircon_62_081	648	301	0.47	0.04897	0.00118	0.14805	0.00391	0.02196	0.00024	0.00679	0.00014	0.41	140	2	140	3	146	56	137	3	140	2	0.0	45.537	0.498	0.04897	0.00118	-0.000016
Zircon_63_082	278	134	0.48	0.05026	0.00215	0.14455	0.00683	0.02086	0.00021	0.00658	0.00008	0.32	133	1	137	6	207	98	133	2	133	1	2.9	47.937	0.48	0.05026	0.00215	-0.000116
Zircon_64_083	778	952	1.23	0.05207	0.00094	0.30868	0.00601	0.04317	0.00032	0.01339	0.00023	0.37	272	2	273	5	288	41	269	5	272	2	0.4	23.164	0.172	0.05207	0.00094	-0.000026
Zircon_65_084	1449	540	0.37	0.05035	0.00081	0.14582	0.00255	0.02103	0.00015	0.00696	0.00013	0.39	134.2	0.9	138	2	211	37	140	3	134	1	2.8	47.551	0.339	0.05035	0.00081	-0.00001
Zircon_6/_08/	454	162	0.37	0.05362	0.0015	0.16179	0.00472	0.02184	0.00018	0.00697	0.00017	0.28	139	1	152	4	333 663	04	140	3	139	1	8.0	45./88	0.577	0.05362	0.0015	-0.000025
Zircon 69 080	224	42	0.59	0.00108	0.00278	0.1/049	0.00827	0.0208	0.00027	0.00081	0.00031	0.27	135	2	105	12	236	98 179	13/	0	133	2	19.4	48.077	0.624	0.00108	0.00278	-0.000043
Zircon 70 090	125	77	0.61	0.0545	0.00306	0.16254	0.0107	0.02103	0.00039	0.00676	0.00018	0.29	134	2	153	9	392	128	136	2	134	2	9.8	46,235	0.637	0.0545	0.00398	-0.000234
Zircon 71 092	391	253	0.65	0.05498	0.00176	0.15957	0.00534	0.02105	0.00021	0.00688	0.00018	0.29	135	1	150	5	411	72	139	4	135	1	10.0	47.17	0.467	0.05498	0.00176	-0.000027
Zircon_72_093	92	33	0.36	0.0506	0.00253	0.14598	0.00762	0.02116	0.00032	0.00688	0.00038	0.29	135	2	138	7	223	115	139	8	135	2	2.2	47.259	0.715	0.0506	0.00253	-0.000039

288

138

4 300

1 140

11 395

6 181

84 286

100 138

4 288 4

2 138 1 4.0

1.4

21.878 0.287 0.05458

46.21 0.397 0.04969

0.00203 -0.000146

Zircon_75_096	349	139	0.40	0.05327	0.00176	0.15547	0.00534	0.02128	0.0002	0.00661	0.00017	0.27	136	1	147	5	340	75	133	3	136	1	7.5	46.992	0.442	0.05327	0.00176	-0.000028
Zircon_77_099	113	48	0.42	0.05226	0.00293	0.155	0.00891	0.02174	0.00028	0.00714	0.00024	0.22	139	2	146	8	297	128	144	5	139	2	4.8	45.998	0.592	0.05226	0.00293	-0.00005
Zircon_78_100	576	155	0.27	0.05148	0.00134	0.14653	0.004	0.02071	0.00017	0.00717	0.00018	0.3	132	1	139	4	262	60	144	4	132	1	5.0	48.286	0.396	0.05148	0.00134	-0.00002
Zircon_79_101	380	223	0.59	0.04962	0.00258	0.14269	0.00803	0.02086	0.00019	0.00659	0.0001	0.25	133	1	135	7	177	118	133	2	133	1	1.5	47.95	0.443	0.04962	0.00258	-0.00017
Zircon_81_104	117	43	0.37	0.06029	0.00289	0.17832	0.00892	0.02172	0.0003	0.0071	0.00029	0.29	139	2	167	8	614	105	143	6	139	2	16.8	46.041	0.636	0.06029	0.00289	-0.00005
Zircon_82_105	669	268	0.40	0.04953	0.00148	0.1405	0.00464	0.02057	0.00016	0.0065	0.00005	0.27	131	1	133	4	173	70	131	1	131	1	1.5	48.607	0.389	0.04953	0.00148	-0.00006
Zircon_83_106	221	81	0.37	0.05225	0.00237	0.14537	0.00735	0.02018	0.00025	0.00634	0.00008	0.33	129	2	138	7	296	104	128	2	129	2	6.5	49.558	0.607	0.05225	0.00237	-0.000101
Zircon_84_107	52	20	0.38	0.05706	0.00514	0.16085	0.0148	0.02101	0.0004	0.0071	0.00054	0.2	134	3	151	13	494	204	143	11	134	3	11.3	47.596	0.906	0.05706	0.00514	-0.000086
Zircon_85_108	200	106	0.53	0.04835	0.0036	0.14496	0.01169	0.02174	0.00028	0.00689	0.0003	0.28	139	2	137	10	117	166	139	6	139	2	-1.5	45.992	0.601	0.04835	0.0036	-0.000242
Zircon_86_110	49	20	0.41	0.06415	0.00476	0.20039	0.01649	0.02266	0.00043	0.00694	0.00013	0.34	144	3	185	14	747	161	140	3	144	3	22.2	44.139	0.836	0.06415	0.00476	-0.000246
Zircon_87_111	1959	653	0.33	0.05026	0.00085	0.14752	0.00277	0.02134	0.00017	0.00705	0.00013	0.43	136	1	140	2	207	39	142	3	136	1	2.9	46.86	0.373	0.05026	0.00085	-0.000012
Zircon_88_112	143	84	0.59	0.04824	0.00266	0.14484	0.00881	0.02178	0.0003	0.0069	0.00019	0.23	139	2	137	8	111	122	139	4	139	2	-1.5	45.923	0.636	0.04824	0.00266	-0.000122
Zircon_89_113	140	52	0.37	0.05915	0.00325	0.17154	0.00969	0.02123	0.00028	0.00688	0.00028	0.23	135	2	161	8	573	122	139	6	135	2	16.1	47.103	0.621	0.05915	0.00325	-0.000054
Zircon_90_114	88	36	0.41	0.06045	0.00369	0.17715	0.01113	0.02189	0.00033	0.00628	0.0003	0.24	140	2	166	10	620	135	127	6	140	2	15.7	45.683	0.689	0.06045	0.00369	-0.000062
Zircon_92_117	364	141	0.39	0.05333	0.00149	0.15393	0.00452	0.02092	0.00018	0.0068	0.00015	0.31	133	1	145	4	343	64	137	3	133	1	8.3	47.801	0.411	0.05333	0.00149	-0.000025
Zircon_93_118	149	49	0.33	0.05752	0.00271	0.17742	0.00913	0.02237	0.00028	0.00694	0.00009	0.29	143	2	166	8	511	105	140	2	143	2	13.9	44.697	0.551	0.05752	0.00271	-0.000112
Zircon_94_119	159	65	0.41	0.05303	0.00217	0.15947	0.00691	0.02186	0.00031	0.00735	0.00022	0.33	139	2	150	6	330	94	148	4	139	2	7.3	45.746	0.649	0.05303	0.00217	-0.000034
Zircon_95_120	211	96	0.46	0.0588	0.00218	0.17076	0.00654	0.02117	0.00021	0.00673	0.0002	0.25	135	1	160	6	560	82	136	4	135	1	15.6	47.237	0.469	0.0588	0.00218	-0.000034
Zircon_96_122	105	45	0.43	0.054	0.00308	0.16208	0.00964	0.02193	0.00037	0.00715	0.00032	0.28	140	2	153	8	371	130	144	6	140	2	8.5	45.6	0.769	0.054	0.00308	-0.00005
Zircon_97_123	589	311	0.53	0.05071	0.00179	0.15067	0.00613	0.02155	0.00023	0.00679	0.00007	0.33	137	1	143	5	228	82	137	1	137	1	4.2	46.407	0.496	0.05071	0.00179	-0.00009
Zircon_98_124	85	30	0.35	0.05529	0.0026	0.17926	0.00902	0.02376	0.00043	0.0074	0.00039	0.36	151	3	167	8	424	106	149	8	151	3	9.6	42.088	0.762	0.05529	0.0026	-0.000042
Zircon_99_125	401	99	0.25	0.05054	0.00136	0.15113	0.00441	0.02173	0.00024	0.00691	0.00025	0.39	139	2	143	4	220	63	139	5	139	2	2.8	46.019	0.508	0.05054	0.00136	-0.000021
Zircon_01_T11-05_008	38	14	0.35	0.06507	0.00712	0.19683	0.02291	0.02194	0.00044	0.00671	0.00017	0.28	140	3	182	19	777	241	135	3	140	3	23.1	45.583	0.908	0.06507	0.00712	-0.000393
Zircon_02_009	79	34	0.42	0.05095	0.0058	0.15624	0.01906	0.02224	0.0004	0.007	0.0005	0.34	142	3	147	17	239	243	141	10	142	3	3.4	44.963	0.811	0.05095	0.0058	-0.000413
Zircon_03_010	632	30	0.05	0.05156	0.00124	0.19587	0.00491	0.02755	0.00021	0.00866	0.00008	0.29	175	1	182	4	266	54	174	2	175	1	3.8	36.297	0.277	0.05156	0.00124	-0.000022
Zircon_11_020	81	34	0.42	0.07396	0.00205	1.75456	0.06024	0.17205	0.00231	0.05189	0.00066	0.48	1023	13	1029	22	1040	55	1022	13	1023	13	0.6	5.812	0.078	0.07396	0.00205	-0.000543
Zircon_12_021	379	101	0.27	0.07886	0.00132	1.90979	0.04129	0.17563	0.00191	0.0526	0.00056	0.53	1043	10	1085	14	1169	32	1036	11	1043	10	3.9	5.694	0.062	0.07886	0.00132	-0.000236
Zircon_26_038	445	76	0.17	0.07764	0.00116	2.0167	0.03347	0.18899	0.00134	0.06319	0.0012	0.44	1116	7	1121	11	1138	29	1238	23	1116	7	0.4	5.291	0.038	0.07764	0.00116	-0.000144
Zircon_34_047	65	26	0.41	0.05655	0.00917	0.16891	0.02899	0.02166	0.00056	0.00674	0.00041	0.31	138	4	158	25	474	332	136	8	138	4	12.7	46.161	1.2	0.05655	0.00917	-0.00054
Zircon_37_051	171	75	0.44	0.07624	0.00137	2.0277	0.04099	0.19353	0.00178	0.05858	0.00105	0.46	1140	10	1125	14	1101	35	1151	20	1140	10	-1.3	5.167	0.048	0.07624	0.00137	-0.000165

x y 349185 2343621

MP-6 Arenisca Mineral de Pozos

		-					CORRE	CTED RAT	IOS						CORRE	ECTEI	D AGES (Ma)										
	U (ppm) Th (ppm)	Th/U	207Pb/200 Pb	⁶ ±1s	207Pb/23 U	5 ±1s	206Pb/23 U	⁸ ±1s	208Pb/23 Th	² ±1s	Rho	206Рb/2 U	238 ±1s	207РЬ/2 5U	²³ ±1s	207РЬ/2 РЬ	206 ±1s	208Pb/2 Th	³² ±1s	Best ag (Ma)	e ±1s	% disc	238U/20 РЬ	⁶ 1s	207Pb/206 Pb	1s	rTW
Zircon 01 MP-6 008	242	91	0.30	0.05719	0.00289	0.12248	0.00668	0.01553	0.00018	0.00482	0.00006	0.23	99	1	117	6	499	106	97	1	99	1.0	15.4	64.376	0.729	0.05719	0.00289	-0.00009
Zircon 02 009	270	131	0.38	0.0535	0.00273	0.10563	0.00551	0.01432	0.00016	0.00477	0.00021	0.21	92	1	102	5	350	111	96	4	92	1.0	9.8	69.832	0.78	0.0535	0.00273	-0.00003
Zircon 04 011	253	96	0.30	0.05405	0.00216	0.16581	0.00714	0.02254	0.00036	0.00792	0.00036	0.37	144	2	156	6	373	87	159	7	144	2.0	7.7	44.366	0.709	0.05405	0.00216	-0.000033
Zircon_05_012	24	11	0.35	0.1031	0.00258	3.7533	0.10106	0.26473	0.00265	0.08042	0.0037	0.37	1514	14	1583	22	1681	45	1563	69	1681	45.0	4.4	3.777	0.038	0.1031	0.00258	-0.000456
Zircon_06_014	181	66	0.29	0.05666	0.00256	0.34178	0.01613	0.04375	0.00037	0.0136	0.00013	0.24	276	2	299	12	478	97	273	3	276	2.0	7.7	22.859	0.195	0.05666	0.00256	-0.000186
Zircon_07_015	232	151	0.51	0.05066	0.00394	0.11057	0.00915	0.01583	0.00022	0.00499	0.00013	0.25	101	1	106	8	226	169	101	3	101	1.0	4.7	63.176	0.864	0.05066	0.00394	-0.000157
Zircon_08_016	335	121	0.28	0.05747	0.00513	0.12247	0.01102	0.01546	0.0002	0.0048	0.00011	0.13	99	1	117	10	510	192	97	2	99	1.0	15.4	64.699	0.818	0.05747	0.00513	-0.000048
Zircon_09_017	370	173	0.37	0.04929	0.00222	0.09644	0.00449	0.01419	0.00017	0.00448	0.00019	0.25	91	1	93	4	162	99	90	4	91	1.0	2.2	70.472	0.844	0.04929	0.00222	-0.000024
Zircon_10_018	143	69	0.38	0.05137	0.00293	0.10838	0.00655	0.01548	0.00031	0.0045	0.00029	0.33	99	2	104	6	257	125	91	6	99	2.0	4.8	64.599	1.294	0.05137	0.00293	-0.000032
Zircon_11_020	286	180	0.49	0.05445	0.00147	0.29641	0.00853	0.03939	0.00039	0.01202	0.00049	0.35	249	2	264	7	390	57	242	10	249	2.0	5.7	25.387	0.251	0.05445	0.00147	-0.000041
Zircon_12_021	115	59	0.40	0.059	0.0023	0.3098	0.01247	0.03809	0.00038	0.01145	0.00048	0.25	241	2	274	10	567	80	230	10	241	2.0	12.0	26.254	0.262	0.059	0.0023	-0.000068
Zircon_13_022	255	109	0.33	0.05049	0.00282	0.10202	0.0062	0.01466	0.00019	0.00462	0.00008	0.28	94	1	99	6	218	117	93	2	94	1.0	5.1	68.233	0.905	0.05049	0.00282	-0.000085
Zircon_14_023	186	64	0.27	0.06127	0.00306	0.1231	0.00639	0.01453	0.0002	0.00422	0.00027	0.27	93	1	118	6	649	98	85	5	93	1.0	21.2	68.823	0.947	0.06127	0.00306	-0.000035
Zircon_15_024	292	171	0.46	0.05398	0.00336	0.31345	0.02183	0.04211	0.00065	0.01317	0.00019	0.39	266	4	277	17	370	129	264	4	266	4.0	4.0	23.746	0.365	0.05398	0.00336	-0.000372
Zircon_16_026	101	89	0.69	0.10033	0.00161	4.1921	0.07801	0.30273	0.00288	0.08445	0.00321	0.51	1705	14	1672	15	1630	27	1639	60	1630	27.0	-2.0	3.303	0.031	0.10033	0.00161	-0.000271
Zircon_18_028	94	45	0.38	0.05556	0.00422	0.11172	0.00865	0.01477	0.00022	0.00541	0.00031	0.19	95	1	108	8	435	155	109	6	95	1.0	12.0	67.705	1.008	0.05556	0.00422	-0.000052
Zircon_19_029	235	106	0.35	0.06057	0.0026	0.12351	0.00548	0.01483	0.00016	0.00476	0.00023	0.25	95	1	118	5	624	85	96	5	95	1.0	19.5	67.431	0.728	0.06057	0.0026	-0.000032
Zircon_20_030	231	128	0.43	0.05285	0.00248	0.10784	0.00523	0.01494	0.00018	0.0047	0.00021	0.25	96	1	104	5	322	98	95	4	96	1.0	7.7	66.934	0.806	0.05285	0.00248	-0.000029
Zircon_21_032	140	113	0.63	0.05715	0.00349	0.11868	0.00746	0.01519	0.00023	0.00486	0.00022	0.24	97	1	114	7	497	124	98	4	97	1.0	14.9	65.833	0.997	0.05715	0.00349	-0.000041
Zircon_23_034	653	233	0.28	0.05045	0.00195	0.10429	0.00432	0.01499	0.00011	0.00473	0.00004	0.26	95.9	0.7	101	4	216	82	95.3	0.8	96	0.7	5.0	66.698	0.499	0.05045	0.00195	-0.000071
Zircon_24_035	293	105	0.28	0.05208	0.00187	0.10541	0.00397	0.01465	0.00016	0.00453	0.00021	0.3	94	1	102	4	289	75	91	4	94	1.0	7.8	68.259	0.745	0.05208	0.00187	-0.000022
Zircon_25_036	340	254	0.58	0.0516	0.00217	0.10414	0.0045	0.01473	0.00015	0.00446	0.00019	0.23	94.3	1	101	4	268	88	90	4	94	1.0	6.6	67.889	0.691	0.0516	0.00217	-0.000024
Zircon_26_038	288	131	0.36	0.05784	0.00324	0.11661	0.00705	0.01462	0.00015	0.00454	0.00005	0.3	93.6	1	112	6	524	113	91.5	0.9	94	1.0	16.4	68.388	0.717	0.05784	0.00324	-0.000139
Zircon_27_039	633	436	0.54	0.05265	0.00111	0.29465	0.00699	0.04055	0.00045	0.0119	0.00049	0.46	256	3	262	5	314	44	239	10	256	3.0	2.3	24.661	0.274	0.05265	0.00111	-0.000026
Zircon_28_040	330	139	0.33	0.05405	0.002	0.10841	0.00415	0.01466	0.00015	0.00504	0.00039	0.26	93.8	1	105	4	373	76	102	8	94	1.0	10.7	68.213	0.698	0.05405	0.002	-0.000021
Zircon_29_041	42	17	0.33	0.0846	0.00195	2.4695	0.06164	0.21189	0.00206	0.06191	0.0026	0.38	1239	11	1263	18	1306	41	1214	49	1306	41.0	1.9	4.719	0.046	0.0846	0.00195	-0.000267
Zircon_30_042	329	139	0.33	0.04727	0.00184	0.09689	0.00393	0.01492	0.00016	0.00453	0.00021	0.28	95	1	94	4	63	76	91	4	95	1.0	-1.1	67.024	0.719	0.04727	0.00184	-0.000023
Zircon_31_044	424	400	0.74	0.05153	0.00139	0.18811	0.00535	0.02647	0.00024	0.00801	0.00031	0.32	168	2	175	5	265	57	161	6	168	2.0	4.0	37.779	0.343	0.05153	0.00139	-0.000026
Zircon_32_045	275	108	0.31	0.05168	0.00165	0.117	0.00404	0.01632	0.00021	0.00556	0.00025	0.38	104	1	112	4	271	67	112	5	104	1.0	7.1	61.275	0.788	0.05168	0.00165	-0.000019
Zircon_33_046	231	127	0.43	0.05814	0.00335	0.11894	0.00768	0.01484	0.0002	0.0046	0.00006	0.34	95	1	114	7	535	117	93	1	95	1.0	16.7	67.397	0.902	0.05814	0.00335	-0.000151
Zircon_34_047	131	55	0.33	0.06116	0.00408	0.17576	0.01309	0.02084	0.00035	0.00642	0.0001	0.34	133	2	164	11	645	133	129	2	133	2.0	18.9	47.98	0.799	0.06116	0.00408	-0.000219
Zircon_35_048	272	110	0.32	0.0518	0.00238	0.11083	0.0053	0.01553	0.0002	0.00486	0.00023	0.28	99	1	107	5	277	97	98	5	99	1.0	7.5	64.392	0.829	0.0518	0.00238	-0.000029
Zircon_37_051	265	154	0.46	0.05498	0.00231	0.12652	0.00553	0.01694	0.0002	0.00571	0.00029	0.28	108	1	121	5	411	86	115	6	108	1.0	10.7	59.032	0.697	0.05498	0.00231	-0.000031
Zircon_38_052	225	197	0.69	0.05039	0.00267	0.10842	0.00592	0.01573	0.0002	0.00469	0.00022	0.24	101	1	105	5	213	110	95	4	101	1.0	3.8	63.573	0.808	0.05039	0.00267	-0.000035
Zircon_39_053	192	125	0.51	0.07967	0.00127	2.2097	0.03983	0.20068	0.00167	0.05729	0.00223	0.47	1179	9	1184	13	1189	29	1126	43	1189	29.0	0.4	4.983	0.041	0.07967	0.00127	-0.000158
Zircon_41_056	173	83	0.38	0.05054	0.00278	0.10344	0.0059	0.01492	0.00022	0.0043	0.00026	0.26	95	1	100	5	220	114	87	5	95	1.0	5.0	67.024	0.988	0.05054	0.00278	-0.000033
Zircon_42_057	518	223	0.34	0.05344	0.00176	0.10676	0.00367	0.0145	0.00014	0.00482	0.00022	0.29	92.8	0.9	103	3	348	68	97	4	93	0.9	9.9	68.966	0.666	0.05344	0.00176	-0.00002

Zircon_44_059	115	107	0.73	0.06087	0.00475	0.12492	0.01	0.01495	0.00027	0.0049	0.00026	0.22	96	2	120	9	635	165	99	5	96	2.0	20.0	66.89	1.208	0.06087	0.00475	-0.000056
Zircon_45_060	335	657	1.54	0.05886	0.00171	0.20477	0.00619	0.02522	0.00021	0.00757	0.0003	0.28	161	1	189	5	562	62	152	6	161	1.0	14.8	39.651	0.33	0.05886	0.00171	-0.000033
Zircon_46_062	496	344	0.54	0.06045	0.00218	0.11853	0.00458	0.01427	0.0002	0.00469	0.00021	0.36	91	1	114	4	620	76	95	4	91	1.0	20.2	70.077	0.982	0.06045	0.00218	-0.000021
Zircon_47_063	250	117	0.37	0.04992	0.0022	0.10378	0.00468	0.01508	0.00015	0.00465	0.00022	0.21	96.5	1	100	4	191	98	94	4	97	1.0	3.5	66.313	0.66	0.04992	0.0022	-0.000025
Zircon_49_065	98	55	0.44	0.06121	0.00416	0.13121	0.00926	0.01579	0.0003	0.00523	0.00031	0.27	101	2	125	8	647	143	105	6	101	2.0	19.2	63.331	1.203	0.06121	0.00416	-0.00005
Zircon_50_066	363	197	0.43	0.05489	0.0022	0.11369	0.00472	0.01501	0.00017	0.00494	0.00022	0.26	96	1	109	4	408	87	100	4	96	1.0	11.9	66.622	0.755	0.05489	0.0022	-0.000023
Zircon_51_068	93	49	0.41	0.05493	0.00368	0.1137	0.00781	0.01499	0.00022	0.00459	0.00027	0.22	96	1	109	7	409	147	93	5	96	1.0	11.9	66.711	0.979	0.05493	0.00368	-0.000046
Zircon_53_070	255	103	0.32	0.05674	0.00227	0.11716	0.00493	0.0152	0.0002	0.00481	0.00022	0.31	97	1	112	4	481	86	97	4	97	1.0	13.4	65.789	0.866	0.05674	0.00227	-0.000025
Zircon_55_072	295	191	0.51	0.05219	0.00198	0.1129	0.00447	0.01583	0.00017	0.00515	0.00022	0.29	101	1	109	4	294	84	104	4	101	1.0	7.3	63.171	0.678	0.05219	0.00198	-0.000026
Zircon_56_074	166	94	0.44	0.05338	0.00283	0.11649	0.00652	0.01605	0.00029	0.00441	0.00021	0.32	103	2	112	6	345	117	89	4	103	2.0	8.0	62.305	1.126	0.05338	0.00283	-0.000032
Zircon_57_075	111	16	0.11	0.07403	0.00133	1.7479	0.03518	0.17072	0.00154	0.04982	0.00224	0.45	1016	8	1026	13	1042	35	983	43	1042	35.0	1.0	5.858	0.053	0.07403	0.00133	-0.000142
Zircon_58_076	134	100	0.58	0.06036	0.00532	0.27724	0.02629	0.03331	0.00052	0.01028	0.00016	0.24	211	3	248	21	617	181	207	3	211	3.0	14.9	30.02	0.464	0.06036	0.00532	-0.000562
Zircon_59_077	210	157	0.59	0.04853	0.00272	0.10133	0.00583	0.01522	0.0002	0.00453	0.00021	0.23	97	1	98	5	125	118	91	4	97	1.0	1.0	65.703	0.863	0.04853	0.00272	-0.000032
Zircon_60_078	220	106	0.38	0.0602	0.00481	0.12408	0.01073	0.01495	0.00026	0.00461	0.00008	0.3	96	2	119	10	611	163	93	2	96	2.0	19.3	66.903	1.148	0.0602	0.00481	-0.000173
Zircon_62_081	502	290	0.45	0.05039	0.00171	0.10545	0.00392	0.01512	0.00023	0.00499	0.00022	0.41	97	1	102	4	213	73	101	4	97	1.0	4.9	66.138	1.006	0.05039	0.00171	-0.000017
Zircon_63_082	837	174	0.16	0.04901	0.00113	0.13448	0.0033	0.01989	0.00017	0.00446	0.0002	0.34	127	1	128	3	148	51	90	4	127	1.0	0.8	50.277	0.43	0.04901	0.00113	-0.000015
Zircon_65_084	105	193	1.44	0.06475	0.00188	0.6343	0.01967	0.07177	0.00079	0.02117	0.00083	0.35	447	5	499	12	766	57	423	16	447	5.0	10.4	13.933	0.153	0.06475	0.00188	-0.000091
Zircon_68_088	36	34	0.75	0.07695	0.00246	1.7283	0.05789	0.16267	0.00161	0.04691	0.00188	0.3	972	9	1019	22	1120	60	927	36	1120	60.0	4.6	6.147	0.061	0.07695	0.00246	-0.0003
Zircon_69_089	293	189	0.51	0.05336	0.00128	0.31184	0.00805	0.04229	0.0004	0.01261	0.0005	0.37	267	2	276	6	344	51	253	10	267	2.0	3.3	23.646	0.224	0.05336	0.00128	-0.000037
Zircon_70_090	145	69	0.37	0.06076	0.00404	0.28846	0.02168	0.03443	0.00077	0.01062	0.00023	0.34	218	5	257	17	631	135	213	5	218	5.0	15.2	29.041	0.647	0.06076	0.00404	-0.000233
Zircon_71_092	135	149	0.87	0.06235	0.00162	0.76546	0.02161	0.08894	0.00098	0.02706	0.00106	0.39	549	6	577	12	686	52	540	21	549	6.0	4.9	11.244	0.124	0.06235	0.00162	-0.000096
Zircon_72_093	85	37	0.34	0.06303	0.00472	0.17654	0.01445	0.02031	0.00043	0.00624	0.00013	0.3	130	3	165	12	709	151	126	3	130	3.0	21.2	49.23	1.033	0.06303	0.00472	-0.000161
Zircon_73_094	245	119	0.38	0.05808	0.00357	0.12234	0.00835	0.01528	0.00024	0.00474	0.00007	0.38	98	2	117	8	533	127	96	1	98	2.0	16.2	65.457	1.042	0.05808	0.00357	-0.000122
Zircon_75_096	385	404	0.82	0.05293	0.00148	0.18482	0.00536	0.02532	0.00019	0.00748	0.00029	0.27	161	1	172	5	326	60	151	6	161	1.0	6.4	39.494	0.296	0.05293	0.00148	-0.00003
Zircon_76_098	229	179	0.61	0.06117	0.00165	0.35925	0.01093	0.04283	0.0006	0.01306	0.00055	0.46	270	4	312	8	645	54	262	11	270	4.0	13.5	23.348	0.327	0.06117	0.00165	-0.000043
Zircon_77_099	186	73	0.31	0.05416	0.00265	0.10747	0.00542	0.0144	0.00017	0.00432	0.00021	0.24	92	1	104	5	378	107	87	4	92	1.0	11.5	69.444	0.82	0.05416	0.00265	-0.000032
Zircon_78_100	233	70	0.24	0.05219	0.0025	0.10854	0.00532	0.01506	0.00015	0.00416	0.0002	0.21	96.4	1	105	5	294	106	84	4	96	1.0	8.2	66.401	0.661	0.05219	0.0025	-0.000032
Zircon_/9_101	162	88	0.43	0.0541	0.00287	0.12085	0.00662	0.01617	0.00023	0.004/4	0.00022	0.25	103	1	116	6	3/5	116	96	4	103	1.0	11.2	61.843	0.88	0.0541	0.00287	-0.000034
Zircon_80_102	219	65	0.23	0.05563	0.00228	0.15178	0.00648	0.02009	0.00024	0.00642	0.0003	0.28	128	2	143	6	438	88	129	6	128	2.0	10.5	49.776	0.595	0.05563	0.00228	-0.000034
Zircon_81_104	138	49	0.28	0.07286	0.00131	1.6917	0.03389	0.16/9/	0.00148	0.04792	0.00192	0.44	1001	8	1005	13	1010	35	946	3/	1010	35.0	0.4	5.953	0.052	0.07286	0.00131	-0.000138
Zircon_82_105	220	125	0.45	0.05952	0.00386	0.12227	0.00875	0.01495	0.0002	0.00462	0.00000	0.20	90	1	117	0	5/9	104	95	1	90	1.0	17.9	60.89	0.897	0.05952	0.00386	-0.000101
Zircon_85_106	212	104	0.38	0.05845	0.00286	0.129	0.00657	0.01011	0.00025	0.00554	0.00027	0.28	105	1	125	0	247	104	112	5	105	1.0	10.5	62.075 52.210	0.880	0.05845	0.00280	-0.000054
Zircon_84_10/	150	28	0.54	0.05111	0.00236	0.1559	0.00095	0.01915	0.00027	0.00556	0.00029	0.20	122	2	128	10	240	111	112	0	122	2.0	4.7	12 720	0.750	0.05111	0.00236	-0.000055
Zircon_85_108	208	139	0.41	0.0396	0.00226	2 7 4 2	0.05081	0.0785	0.00255	0.0255	0.00125	0.62	487	25	1590	19	1604	25	400	24 57	487	25.0	2.0	2 666	0.581	0.0396	0.00220	-0.000088
Zircon 88 112	151	112	0.00	0.09892	0.00138	0.20250	0.06555	0.27270	0.00491	0.00554	0.00501	0.79	1355	2.5	197	22	754	25	1205	2	145	2.5.0	22.5	42 814	0.000	0.09692	0.00138	-0.000131
Zircon 80 112	131	6	0.39	0.00438	0.00770	2 217	0.02009	0.02262	0.00041	0.00099	0.00015	0.21	145	15	10/	24	1562	52	141	3 70	145	52.0	46	45.014	0.795	0.00438	0.00770	-0.000033
Zircon 02 117	13	11	0.30	0.09073	0.00281	1 8/51	0.10090	0.2415	0.0029	0.00723	0.0037	0.38	1018	12	1062	24	1163	54	1066	10	1163	54.0	4.0	5 8/3	0.05	0.09075	0.00281	0.000443
Zircon_92_117	269	06	0.27	0.0521	0.0022	0.11297	0.00036	0.17114	0.00222	0.00476	0.00233	0.42	1010	12	1002	20	222	24	1000	45	100	1.0	9.1	62 909	0.070	0.07805	0.0022	0.000244
Zircon 94 119	208 654	201	0.25	0.05011	0.00131	0.11507	0.00430	0.01567	0.0002	0.00470	0.00023	0.34	100 2	0.8	105	3	200	50	90	4	100	0.8	4.6	63.816	0.520	0.05011	0.00131	0.000022
Zircon 05 120	244	110	0.35	0.05011	0.0013	0.10078	0.00297	0.01307	0.00013	0.00462	0.00019	0.31	214	3	257	5 15	200	134	200	3	214	3.0	4.0	20.672	0.329	0.05011	0.0013	-0.000015
Zircon 96 122	126	116	0.38	0.0553	0.00388	0.20749	0.01955	0.0337	0.00043	0.01037	0.00015	0.29	214	2	237	11	424	95	243	10	256	2.0	6.6	29.072	0.370	0.0553	0.00388	-0.000339
Zircon 97 122	101	68	0.53	0.10023	0.0016	4 0684	0.07278	0.2943	0.00235	0.08155	0.0031	0.45	1663	12	1648	15	1628	29	1585	58	1628	29.0	-0.9	3 398	0.027	0.10023	0.00258	-0.00070
Zircon 99 125	189	147	0.55	0.10023	0.00152	4 1142	0.06994	0.2945	0.00235	0.08000	0.00304	0.45	1659	12	1657	1.0	1653	27	1557	57	1653	27.0	-0.9	3 407	0.027	0.10025	0.00152	-0.000298
Zitcon_99_123	169	14/	0.01	0.10158	0.00152	4.1142	0.00994	0.29349	0.00255	0.03009	0.00504	0.47	1039	12	1057	14	1055	27	1557	51	1055	27.0	-0.1	5.407	0.027	0.10158	0.00152	-0.000272

ANEXO 1. Geocronología U-Pb del área de Charcas

						ISOT	OPE RAT	TIOS ²								CORRE	CTED AGES	(Ma)			
																			Best age		
Sample	$U(ppm)^{1}$	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2SE %	²⁰⁷ Pb/ ²³⁵ U	±2SE %	²⁰⁶ Pb/ ²³⁸ U	±2SE %	²⁰⁸ Pb/ ²³² Th	±2SE %	Rho	²⁰⁶ Pb/ ²³⁸ U	±2SE	²⁰⁷ Pb/ ²³⁵ U	±2SE	²⁰⁷ Pb/ ²⁰⁶ Pb	±2SE	(Ma)	±2SE	Disc %
Zircon-001_CH14-1	784	48.1	0.06	0.0561	0.0022	0.551	0.021	0.0708	0.0011	0.0235	0.0015	-0.20862	441	6.7	445	14	462	54	441	7	0.90
Zircon-002	118.5	36.2	0.31	0.0525	0.0048	0.302	0.026	0.0423	0.0011	0.0134	0.0011	-0.15938	266.8	6.6	265	20	510	110	267	7	-0.68
Zircon-003	83.8	76.8	0.92	0.0693	0.0031	1.647	0.07	0.1675	0.0033	0.0511	0.0029	0.4968	998	18	986	28	902	64	998	18	-1.22
Zircon-004	312.6	289.5	0.93	0.0518	0.0027	0.28	0.013	0.0396	0.0008	0.01255	0.0007	0.10597	250.4	5	251	10	301	59	250	5	0.24
Zircon-005	372	130.2	0.35	0.0527	0.0028	0.286	0.015	0.03963	0.00082	0.01313	0.00077	0.55596	250.5	5.1	255	12	361	65	251	5	1.76
Zircon-006	232	44	0.19	0.0658	0.0027	1.405	0.064	0.1493	0.0029	0.0478	0.0027	0.71161	897	17	888	27	800	50	897	17	-1.01
Zircon-007	114.2	31.4	0.27	0.054	0.0047	0.34	0.027	0.0468	0.0013	0.0154	0.0012	-0.10092	294.9	7.9	298	22	501	92	295	8	1.04
Zircon-008	114.9	50	0.44	0.0946	0.0039	3.57	0.15	0.2737	0.0048	0.0756	0.0041	0.080348	1559	24	1540	33	1520	48	1520	48	-1.23
Zircon-009	90.6	19.37	0.21	0.058	0.0037	0.669	0.042	0.0838	0.0019	0.0262	0.0022	0.18398	519	11	521	27	557	78	519	11	0.38
Zircon-010	212	64.6	0.30	0.0735	0.0032	1.391	0.073	0.1455	0.0029	0.0443	0.0024	0.10275	876	16	883	29	1026	52	876	16	0.79
Zircon-011	124	72.4	0.58	0.0604	0.0059	0.316	0.036	0.0414	0.0012	0.0139	0.0011	-0.098993	261.3	7.1	277	26	660	110	261	7	5.67
Zircon-012	258	65.7	0.25	0.0497	0.0028	0.301	0.016	0.04301	0.00086	0.01392	0.00092	0.0085716	271.4	5.3	266	12	256	58	271	5	-2.03
Zircon-013	89.4	65.4	0.73	0.0712	0.0039	1.67	0.11	0.1703	0.0034	0.0504	0.003	0.35039	1013	19	988	42	955	75	1013	19	-2.53
Zircon-014	327	152.2	0.47	0.0586	0.0054	0.309	0.038	0.03998	0.00084	0.0146	0.0014	0.28375	252.7	5.2	272	27	540	160	253	5	7.10
Zircon-015	213.1	79.1	0.37	0.0714	0.003	1.68	0.065	0.169	0.0026	0.0502	0.0027	-0.019654	1006	14	999	24	963	51	1006	14	-0.70
Zircon-016	661	438	0.66	0.0502	0.0022	0.314	0.013	0.0442	0.00069	0.01355	0.00072	-0.1413	278.8	4.3	277	10	224	59	279	4	-0.65
Zircon-017	520	262	0.50	0.0525	0.0032	0.306	0.026	0.0435	0.0011	0.0145	0.0013	0.66608	274.3	6.7	270	19	308	82	274	7	-1.59
Zircon-018	272	274	1.01	0.0551	0.0032	0.315	0.019	0.0428	0.00087	0.01379	0.00079	0.069163	270.2	5.3	277	14	452	56	270	5	2.45
Zircon-019	144.4	77.5	0.54	0.0734	0.0032	1.96	0.081	0.1877	0.003	0.0525	0.0029	0.12196	1109	16	1099	30	1019	45	1019	45	-0.91
Zircon-020	87.2	18.6	0.21	0.0558	0.0054	0.366	0.035	0.0496	0.0016	0.0179	0.0019	-0.042687	311.7	9.8	314	25	480	100	312	10	0.73
Zircon-021	180.9	61.2	0.34	0.0794	0.0032	2.226	0.087	0.204	0.0032	0.06	0.0033	0.018516	1197	17	1191	26	1180	48	1180	48	-0.50
Zircon-022	54.7	69.5	1.27	0.0809	0.0042	2.42	0.12	0.218	0.0048	0.0584	0.0031	0.11676	1271	25	1242	38	1206	59	1206	59	-2.33
Zircon-023	187.8	125.2	0.67	0.0508	0.0038	0.28	0.021	0.0402	0.001	0.01286	0.0008	0.054881	254	6.2	249	16	365	72	254	6	-2.01
Zircon-024	202.9	137.6	0.68	0.0521	0.0033	0.291	0.018	0.04074	0.0008	0.01205	0.00071	-0.08189	257.4	5	259	14	360	63	257	5	0.62
Zircon-025	147.6	61.6	0.42	0.076	0.0033	1.731	0.071	0.1705	0.0029	0.0522	0.0029	-0.11026	1015	16	1019	26	1090	51	1090	51	0.39
Zircon-026	141.3	59.5	0.42	0.053	0.0042	0.308	0.025	0.0417	0.001	0.01326	0.00091	0.063127	263.3	6.3	270	20	469	75	263	6	2.48
Zircon-027	167.8	114.8	0.68	0.055	0.01	0.314	0.079	0.0425	0.0011	0.0133	0.0014	-0.32011	268.2	7.1	276	36	470	200	268	7	2.83
Zircon-028	89.6	21.3	0.24	0.0745	0.0038	1.688	0.095	0.1676	0.0039	0.05	0.0032	0.42428	998	22	997	36	1048	50	1048	50	-0.10
Zircon-029	319	119	0.37	0.0536	0.0028	0.346	0.017	0.04685	0.00093	0.01452	0.00085	-0.051485	295.1	5.7	301	13	367	64	295	6	1.96
Zircon-030	87.7	44.7	0.51	0.0511	0.0057	0.261	0.027	0.0378	0.0013	0.01153	0.00096	-0.14464	238.8	8.1	233	21	461	85	239	8	-2.49
Zircon-031	586	551	0.94	0.0518	0.0026	0.287	0.014	0.04015	0.00066	0.01259	0.00066	0.17124	253.8	4.1	256	11	279	59	254	4	0.86
Zircon-032	260.8	242	0.93	0.0548	0.0032	0.289	0.017	0.0399	0.00076	0.01217	0.00066	0.068117	252.2	4.7	257	14	426	74	252	5	1.87
Zircon-033	66.7	25.11	0.38	0.0544	0.0051	0.35	0.033	0.0466	0.0012	0.0136	0.0013	0.10442	293.3	7.4	301	25	494	84	293	7	2.56
Zircon-034	295	230	0.78	0.0518	0.0032	0.292	0.019	0.04035	0.00073	0.01253	0.0007	-0.30374	255	4.5	259	15	340	64	255	5	1.54
Zircon-035	141.5	75.2	0.53	0.0518	0.0033	0.336	0.021	0.0471	0.0011	0.01447	0.0009	0.030115	296.7	6.6	293	16	376	65	297	7	-1.26
Zircon-036	233.3	122.7	0.53	0.0525	0.0039	0.297	0.02	0.04134	0.00094	0.01295	0.00074	-0.46801	261.1	5.8	263	15	370	84	261	6	0.72
Zircon-037	186.7	130.3	0.70	0.0499	0.0031	0.291	0.019	0.04208	0.00097	0.01327	0.00082	0.3584	265.7	6	258	15	317	70	266	6	-2.98
Zircon-038	272.3	153.6	0.56	0.0537	0.0026	0.58	0.026	0.0751	0.0014	0.0221	0.0013	0.30529	466.7	8.1	463	18	354	70	467	8	-0.80
Zircon-039	355	92.3	0.26	0.0734	0.003	1.688	0.094	0.1675	0.0032	0.0501	0.0028	0.75109	998	17	999	34	1019	55	1019	55	0.10
Zircon-040	641	31.2	0.05	0.0832	0.0031	2.61	0.1	0.2239	0.004	0.0669	0.004	0.71262	1302	21	1301	29	1271	43	1271	43	-0.08
Zircon-041	248.5	83.7	0.34	0.0532	0.0029	0.357	0.018	0.049	0.00093	0.0157	0.001	0.016359	308.4	5.7	309	13	369	69	308	6	0.19
Zircon-042	119.4	33.4	0.28	0.0539	0.0043	0.357	0.027	0.0492	0.0012	0.0155	0.0013	-0.074555	309.4	7.4	312	21	432	76	309	7	0.83
Zircon-043	186	57.6	0.31	0.0536	0.0034	0.34	0.02	0.0464	0.0011	0.01519	0.00099	-0.14141	292.3	6.5	296	15	370	59	292	7	1.25
Zircon-044	68.2	23.74	0.35	0.0772	0.0038	2.17	0.11	0.2014	0.0038	0.0602	0.0039	0.10599	1190	21	1167	35	1124	52	1124	52	-1.97
Zircon-045	132.3	46.3	0.35	0.0506	0.0043	0.296	0.024	0.04292	0.00095	0.0131	0.0011	-0.11996	270.9	5.9	261	19	399	78	271	6	-3.79
Zircon-046	340	180	0.53	0.0793	0.003	2.279	0.085	0.205	0.0033	0.058	0.003	0.11942	1202	18	1204	27	1176	41	1176	41	0.17
Zircon-047	226	130	0.58	0.0523	0.0033	0.308	0.02	0.04268	0.00099	0.01353	0.00081	0.054472	269.4	6.1	272	16	387	83	269	6	0.96
Zircon-048	85.2	22.52	0.26	0.0523	0.0047	0.331	0.028	0.0467	0.0014	0.0146	0.0015	0.048965	294	8.3	287	22	356	64	294	8	-2.44
Zircon-049	10.28	2	0.19	0.084	0.011	1.75	0.23	0.1629	0.0077	0.0725	0.0094	-0.054734	972	42	984	83	1210	140	1210	140	1.22
Zircon-050	130	18.5	0.14	0.086	0.0035	3	0.15	0.2485	0.0061	0.0718	0.0045	0.62828	1430	31	1405	37	1336	51	1336	51	-1.78
Zircon-051	167.8	111.2	0.66	0.0515	0.0034	0.27	0.016	0.03819	0.00096	0.0119	0.00077	-0.069188	241.6	6	242	12	348	65	242	6	0.17

Zircon-052	61.9	72.4	1.17	0.0518	0.0053	0.307	0.032	0.0436	0.0013	0.0136	0.001	-0.17538	274.9	8.1	268	25	474	90	275	8	-2.57
Zircon-053	74.4	20.3	0.27	0.0562	0.0051	0.379	0.036	0.0507	0.0017	0.0161	0.0016	0.10337	319	11	322	26	559	94	319	11	0.93
Zircon-054	319	104.3	0.33	0.0566	0.0025	0.689	0.028	0.0868	0.0015	0.0269	0.0016	0.20463	536.5	9.1	531	17	476	54	537	9	-1.04
Zircon-055	395	253	0.64	0.0514	0.0026	0.288	0.015	0.04097	0.00083	0.01313	0.00075	0.13854	258.8	5.1	256	12	273	53	259	5	-1.09
Zircon-056	323	77	0.24	0.0514	0.0028	0.324	0.017	0.0461	0.00079	0.01434	0.00094	-0.077985	290.6	4.9	284	13	316	62	291	5	-2.32
Zircon-057	327	200	0.61	0.0537	0.0029	0.307	0.02	0.0424	0.0011	0.01334	0.00085	0.66836	267.8	6.6	271	15	369	70	268	7	1.18
Zircon-058	263	189.7	0.72	0.052	0.0033	0.289	0.017	0.04066	0.00082	0.01249	0.00069	-0.12474	256.9	5.1	257	13	329	68	257	5	0.04
Zircon-059	312	154.7	0.50	0.0502	0.0028	0.287	0.017	0.04154	0.00078	0.01284	0.00073	0.16669	262.4	4.8	255	14	257	56	262	5	-2.90
Zircon-060	84.4	24.47	0.29	0.0857	0.0039	2.78	0.14	0.236	0.0047	0.0725	0.0045	0.3055	1365	25	1346	37	1321	62	1321	62	-1.41
Zircon-061	123.4	79.4	0.64	0.089	0.0036	2.91	0.12	0.2368	0.0042	0.069	0.0036	-0.10761	1370	22	1382	31	1401	46	1401	46	0.87
Zircon-062	475	258	0.54	0.0515	0.0025	0.245	0.011	0.03501	0.00057	0.01109	0.00064	-0.27408	221.8	3.6	222.1	8.9	291	55	222	4	0.14
Zircon-063	517	14.1	0.03	0.0523	0.0026	0.325	0.023	0.0455	0.0011	0.0123	0.0017	0.66898	286.5	7.1	284	17	297	65	287	7	-0.88
Zircon-064	83.1	49	0.59	0.0766	0.0035	1.982	0.092	0.1882	0.0036	0.0553	0.0031	0.33008	1111	20	1106	31	1114	49	1114	49	-0.45
Zircon-065	92.8	50.4	0.54	0.0715	0.0034	1.551	0.072	0.1563	0.0031	0.0465	0.0027	0.031847	936	17	948	28	974	47	936	17	1.27
Zircon-066	146	40.6	0.28	0.0532	0.0045	0.344	0.03	0.046	0.0012	0.0146	0.0012	-0.040951	289.7	7.2	297	22	401	94	290	7	2.46
Zircon-067	223.1	157.6	0.71	0.0496	0.0034	0.28	0.019	0.04015	0.00076	0.01247	0.00072	-0.17269	253.7	4.7	249	15	289	75	254	5	-1.89
Zircon-068	292.3	140.7	0.48	0.0531	0.0034	0.291	0.02	0.04008	0.00082	0.01259	0.00075	-0.039066	253.3	5.1	258	15	395	76	253	5	1.82
Zircon-069	403	115.8	0.29	0.0652	0.0027	0.896	0.04	0.1053	0.0018	0.03	0.0017	0.53301	646	11	648	21	775	43	646	11	0.31
Zircon-070	251	121.8	0.49	0.0527	0.003	0.303	0.018	0.04272	0.0008	0.0132	0.00078	0.045511	269.7	4.9	268	14	372	77	270	5	-0.63
Zircon-071	278	64	0.23	0.0526	0.0029	0.347	0.018	0.04785	0.00088	0.01466	0.00095	0.038222	301.3	5.4	302	13	333	67	301	5	0.23
Zircon-072	114.4	62.3	0.54	0.0684	0.0059	0.368	0.035	0.0406	0.001	0.0154	0.0011	-0.10005	256.4	6.4	315	25	830	120	256	6	18.60
Zircon-073	158.4	96.4	0.61	0.1456	0.0055	8.17	0.32	0.4148	0.0065	0.117	0.006	0.21964	2237	29	2248	37	2293	38	2293	38	0.49
Zircon-074	133.6	36.5	0.27	0.0523	0.0041	0.318	0.025	0.04419	0.00097	0.0145	0.0012	0.062269	278.7	6	282	20	368	73	279	6	1.17
Zircon-075	275.5	73.9	0.27	0.0722	0.0029	1.581	0.071	0.1616	0.0025	0.047	0.0026	-0.15246	966	14	961	27	1004	54	966	14	-0.52
Zircon-076	126.7	66.1	0.52	0.0719	0.0034	1.648	0.074	0.1659	0.0028	0.0503	0.0027	-0.13924	990	16	986	28	975	51	990	16	-0.41
Zircon-077	123.6	47.1	0.38	0.0703	0.0034	1.67	0.085	0.1691	0.0039	0.0484	0.0032	0.3488	1007	22	993	33	950	64	1007	22	-1.41
Zircon-078	291.4	63.1	0.22	0.0755	0.0029	1.929	0.074	0.1851	0.0036	0.0555	0.0031	0.14324	1095	19	1089	26	1086	41	1086	41	-0.55
Zircon-079	281	59.5	0.21	0.0553	0.0026	0.596	0.026	0.0771	0.0014	0.0241	0.0015	-0.090422	478.7	8.1	474	17	428	55	479	8	-0.99
Zircon-080	123.5	27.1	0.22	0.0732	0.0035	1.73	0.11	0.1729	0.004	0.0526	0.0034	0.61272	1028	22	1020	39	1015	63	1015	63	-0.78
Zircon-081	110.2	56.9	0.52	0.0586	0.0038	0.635	0.072	0.0798	0.0051	0.0242	0.0016	0.32654	495	30	496	42	542	90	495	30	0.20
Zircon-082	345	32.03	0.09	0.051	0.0027	0.33	0.016	0.04679	0.00093	0.0147	0.0011	-0.013688	294.8	5.7	289	12	278	52	295	6	-2.01
Zircon-083	58.7	21.9	0.37	0.0693	0.0032	1.91	0.095	0.1894	0.0038	0.0533	0.0034	0.21799	1118	20	1087	34	933	56	933	56	-2.85
Zircon-084	80.5	62.5	0.78	0.0506	0.0056	0.253	0.028	0.0358	0.001	0.01124	0.00087	0.060525	226.8	6.3	225	22	414	81	227	6	-0.80
Zircon-085	274	119.9	0.44	0.0503	0.003	0.303	0.018	0.04363	0.00089	0.01367	0.00087	0.039605	275.3	5.5	268	14	278	67	275	6	-2.72
Zircon-086	254	145	0.57	0.0537	0.003	0.355	0.02	0.0483	0.001	0.0151	0.001	0.19131	304.1	6.2	308	14	351	74	304	6	1.27
Zircon-087	116.9	74.7	0.64	0.069	0.0033	1.59	0.075	0.164	0.0029	0.0489	0.0027	-0.047371	979	16	963	30	895	50	979	16	-1.66
Zircon-088	25.3	15.56	0.62	0.0758	0.0051	2.02	0.13	0.1934	0.0052	0.0565	0.004	0.22119	1139	28	1111	44	1066	79	1066	79	-2.52
Zircon-089	20.57	93.2	4.53	0.0814	0.0066	2.34	0.18	0.2099	0.0058	0.0596	0.0032	-0.066241	1227	31	1206	56	1230	82	1230	82	-1.74
Zircon-090	37.2	16.72	0.45	0.0734	0.0047	1.7	0.11	0.1677	0.004	0.0541	0.0035	0.15411	999	22	998	42	1009	66	1009	66	-0.10
Zircon-091	273.1	248.4	0.91	0.0534	0.0028	0.302	0.016	0.04104	0.00081	0.01214	0.00066	0.074659	259.2	5	267	12	335	48	259	5	2.92
Zircon-092	36.9	11.77	0.32	0.0692	0.0049	1.61	0.1	0.1687	0.0042	0.053	0.0045	-0.36135	1004	23	965	37	894	72	1004	23	-4.04
Zircon-093	570	77.1	0.14	0.0571	0.0022	0.728	0.03	0.0898	0.0014	0.0271	0.0016	0.28413	554.4	8.1	554	17	492	57	554	8	-0.07
Zircon-094	47.6	111.8	2.35	0.0776	0.0045	2.09	0.13	0.1934	0.005	0.0563	0.0029	0.28609	1139	27	1138	42	1128	63	1128	63	-0.09
Zircon-095	37.7	4.63	0.12	0.0782	0.0047	2.26	0.11	0.2067	0.0056	0.0615	0.0069	0.019055	1210	30	1194	35	1138	67	1138	67	-1.34
Zircon-096	268.9	83.2	0.31	0.0524	0.0025	0.341	0.016	0.04721	0.00086	0.01431	0.00094	0.011908	297.3	5.3	298	12	322	69	297	5	0.23
Zircon-097	107.5	44.9	0.42	0.0593	0.0042	0.456	0.035	0.06	0.0014	0.0241	0.0015	-0.077444	375.7	8.3	380	23	586	98	376	8	1.13
Zircon-098	313	78.2	0.25	0.0507	0.0028	0.311	0.016	0.04348	0.00099	0.01236	0.00082	0.19124	274.4	6.1	274	12	257	45	274	6	-0.15
Zircon-099	185	35.8	0.19	0.052	0.0037	0.35	0.032	0.0492	0.0012	0.0156	0.0014	0.32735	309.5	7.6	303	24	340	110	310	8	-2.15
Zircon-100	335	212.2	0.63	0.0494	0.0028	0.249	0.013	0.03611	0.0007	0.01097	0.00062	0.10278	228.6	4.3	225	11	261	56	229	4	-1.60

1: U and Th concentrations are calculated employing NIST 610 as external calibrant and SiO2 as internal standard; See also Paton et al., 2011.

2: Isotope ratios are corrected for background, downhole fractionation and instrumental drift using annealed 91500 as bracketing standard. 2 standard error uncertainties are propagated according to Paton et al., 2010.

207Pb/206Pb ratios, ages and errors are calculated according to Petrus and Kamber, 2012.

Analyzed spots were 23 micrometers, using an analytical protocol modified from Solari et al., 2010.

Data measured employing a Thermo ICAP Qc ICPMS coupled to a Resonetics, Resolution M050 excimer laser workstation.

							CORRECTE	ED RATIOS								CORI	RECTED	AGES ((Ma)									
	U (ppm)	Th (ppm)	Th/U	207РЬ/2 06РЬ	±1s	207РЬ/2 35U	±1s	206Рb/238 U	±1s	208Pb/23 2Th	±1s	Rho	206Pb/2 38U	±1s	207РЬ/2 35U	±1s	207РЬ/2 06РЬ	±1s	208Pb/23 2Th ±1	E s a (N	est ge : /Ia)	±1s	% disc	238U/20 6Pb	1s	207Pb/206 Pb	1s	rTW
Formación La	s Trancas																											
Zircon_001_T	1 307.7	92.3	0.30	0.0674	0.0028	0.18243	0.00817	0.01963	0.00026	0.00598	0.00008	0.27	125	2	170	7	850	87	121	2	125	2	26.5	50.945	0.684	0.0674	0.0028	-0.000058
Zircon_002	223.5	57.8	0.26	0.0727	0.00175	1.639	0.039	0.1653	0.0021	0.0484	0.00165	0.25	986	12	985	15	1006	49	955 3	32	986	12	-0.1	6.05	0.077	0.0727	0.00175	0.000021
Zircon_005	238.8	35.8	0.15	0.0707	0.0033	1.102	0.0435	0.1137	0.0046	0.0145	0.0017	0.32	694	27	754	21	949	96	291 3	34	694	27	8.0	8.795	0.356	0.0707	0.0033	0.000227
Zircon_006	966	323	0.33	0.0569	0.0019	0.162	0.0055	0.02091	0.00027	0.00661	0.00024	0.23	133	2	152	5	488	74	133	5	133	2	12.5	47.824	0.618	0.0569	0.0019	-0.000009
Zircon_007	1860	700	0.38	0.0521	0.00185	0.144	0.007	0.0208	0.00039	0.0065	0.00027	0.8	133	2	137	6	290	82	131	5	133	2	2.9	48.077	0.901	0.0521	0.00185	-0.000089
Zircon_008	2380	871	0.37	0.0559	0.0047	0.157	0.0115	0.02085	0.00027	0.008	0.00055	-0.81	133	2	148	10	448	189	161 1	1	133	2	10.1	47.962	0.621	0.0559	0.0047	0.000406
Zircon_010	137.5	42.3	0.31	0.0836	0.002	2.35	0.06	0.2038	0.0027	0.0558	0.0021	0.38	1196	14	1228	18	1283	47	1097 4	-0	1283	47	2.6	4.907	0.065	0.0836	0.002	-0.00009
Zircon_011	865.1	562	0.65	0.06309	0.00411	0.17104	0.01247	0.01966	0.00029	0.00604	0.00008	0.33	126	2	160	11	711	140	122	2	126	2	21.3	50.854	0.751	0.06309	0.00411	-0.000253
Zircon_012	515	120.2	0.23	0.06336	0.00204	0.18112	0.00623	0.02073	0.00025	0.00636	0.00008	0.24	132	2	169	5	120	66	128	2	132	2	21.9	48.231	0.585	0.06336	0.00204	-0.00003
Zircon_013	1/3	/3.1	0.42	0.0809	0.0019	2.23	0.055	0.2024	0.00285	0.0569	0.002	0.37	1188	15	1191	1/	1219	45	272 1	4	252	45	0.3	4.941	0.07	0.0809	0.0019	-0.000029
Zircon_014	739	262	0.12	0.0555	0.00145	0.299	0.0075	0.0398	0.00005	0.0180	0.0007	0.26	124	4	200	4	432	50 64	121	4	124	4	21.9	23.120	0.41	0.0555	0.00145	0.000014
Zircon_016	158	502	0.50	0.0075	0.00213	2.00	0.005	0.01941	0.00023	0.00399	0.00021	-0.07	124	83	1146	67	1082	54	1082 11	4 5	1082	54	24.0	4 902	0.004	0.0075	0.00213	0.000023
Zircon_017	665	297.1	0.40	0.0553	0.0021	0 1523	0.205	0.204	0.0003	0.055	0.00023	0.98	131	2	140	4	424	62	129	5	131	2	9.0	48 709	0.712	0.0755	0.0021	-0.000743
Zircon 018	371	145.4	0.39	0.0628	0.0010	0.1525	0.0095	0.02055	0.00035	0.00688	0.00023	0.16	133	2	166	8	701	110	139	6	133	2	19.9	48 146	0.811	0.0555	0.0010	-0.000013
Zircon 019	324.4	177.5	0.55	0.0715	0.0022	0.209	0.006	0.02135	0.00031	0.00694	0.00026	0.11	136	2	193	5	972	60	140	5	136	2	29.5	46.838	0.68	0.0715	0.0022	0.000013
Zircon 020	532	272.7	0.51	0.0703	0.00325	0.205	0.0095	0.02167	0.00033	0.00686	0.0003	0.17	138	2	189	8	937	91	138	6	138	2	27.0	46.147	0.703	0.0703	0.00325	-0.000014
Zircon 021	322	144	0.45	0.0697	0.00275	0.203	0.008	0.02131	0.0003	0.00612	0.00025	0.18	136	2	188	7	920	78	123	5	136	2	27.7	46.926	0.661	0.0697	0.00275	-0.000008
Zircon 023	630	280	0.44	0.0555	0.00155	0.1573	0.0042	0.02086	0.00028	0.00611	0.00022	0.16	133	2	148	4	432	60	123	4	133	2	10.1	47.939	0.643	0.0555	0.00155	0.000006
Zircon_024	216	65.2	0.30	0.07072	0.00305	0.20025	0.01025	0.02054	0.00031	0.00622	0.00009	0.44	131	2	185	9	949	85	125	2	131	2	29.2	48.692	0.744	0.07072	0.00305	-0.000135
Zircon_026	443	183.6	0.41	0.05681	0.00249	0.16649	0.0086	0.02125	0.00033	0.00661	0.0001	0.31	136	2	156	7	484	93	133	2	136	2	12.8	47.051	0.729	0.05681	0.00249	-0.000109
Zircon_027	284.5	125.6	0.44	0.0709	0.00295	0.205	0.0085	0.02132	0.00031	0.00685	0.00026	0.17	136	2	189	7	955	82	138	5	136	2	28.0	46.904	0.682	0.0709	0.00295	-0.000008
Zircon_028	661	237	0.36	0.0518	0.0015	0.1475	0.00405	0.02061	0.00027	0.00635	0.00023	0.12	132	2	140	4	277	64	128	5	132	2	5.7	48.52	0.636	0.0518	0.0015	0.000007
Zircon_029	930	318	0.34	0.05927	0.0022	0.16966	0.00726	0.02076	0.00027	0.00642	0.00008	0.27	132	2	159	6	577	78	129	2	132	2	17.0	48.17	0.616	0.05927	0.0022	-0.000083
Zircon_030	853	439	0.51	0.0618	0.00185	0.165	0.00485	0.02014	0.00027	0.00621	0.00024	0.19	129	2	155	4	667	62	125	5	129	2	16.8	49.652	0.666	0.0618	0.00185	0.000002
Zircon_031	375	112.2	0.30	0.0698	0.0023	0.195	0.0065	0.02075	0.00028	0.00689	0.00029	0.23	132	2	181	6	922	65	139	6	132	2	27.1	48.193	0.65	0.0698	0.0023	-0.000008
Zircon_032	334.8	152.3	0.45	0.0624	0.0024	0.184	0.007	0.02142	0.00028	0.00678	0.00027	0.14	137	2	171	6	688	79	137	5	137	2	19.9	46.685	0.61	0.0624	0.0024	-0.000003
Zircon_033	204.8	68.6	0.33	0.06229	0.00307	0.18298	0.00997	0.02131	0.00033	0.00655	0.0001	0.15	136	2	171	9	684	101	132	2	136	2	20.5	46.937	0.72	0.06229	0.00307	-0.000098
Zircon_034	672	304.6	0.45	0.0707	0.00155	1.461	0.032	0.1513	0.0018	0.036	0.0012	0.27	908	10	914	13	949	43	715 2	23	908	10	0.7	6.609	0.079	0.0707	0.00155	0.000011
Zircon_035	308.4	119.3	0.39	0.06843	0.00274	0.19619	0.00835	0.02079	0.00029	0.00633	0.00009	-0.07	133	2	182	7	882	80	127	2	133	2	26.9	48.094	0.667	0.06843	0.00274	-0.000043
Zircon_037	409	143.8	0.35	0.06144	0.0025	0.18632	0.00858	0.02199	0.00035	0.00677	0.00011	0.13	140	2	173	7	655	84	136	2	140	2	19.1	45.47	0.717	0.06144	0.0025	-0.000067
Zircon_038	577	209.3	0.36	0.0639	0.00195	0.186	0.0055	0.02121	0.00029	0.00681	0.00027	0.16	135	2	173	5	738	62	137	5	135	2	22.0	47.148	0.645	0.0639	0.00195	0.000005
Zircon_039	377.3	202	0.54	0.05486	0.00341	0.15763	0.01096	0.02084	0.00033	0.0065	0.0001	0.18	133	2	149	10	407	135	131	2	133	2	10.7	47.986	0.752	0.05486	0.00341	-0.000176
Zircon_040	326.4	132.1	0.40	0.06963	0.00284	0.21013	0.00954	0.02189	0.00032	0.00665	0.0001	0.08	140	2	194	8	918	81	134	2	140	2	27.8	45.69	0.67	0.06963	0.00284	-0.000077
Zircon_044	972	108.7	0.51	0.0486	0.0014	0.1425	0.00435	0.02084	0.00029	0.00629	0.00022	0.35	133	2	155	4	129	65	127	4	133	2	1.5	47.985	0.008	0.0486	0.0014	-0.00001
Zircon_047	181.5	108.7	0.40	0.0085	0.0054	0.177	0.0095	0.02039	0.00051	0.00672	0.00031	0.4	130	2	105	32	036	350	133	0	127	2	21.2	49.044 50.106	1 703	0.0085	0.0054	-0.000084
Zircon_052	101.5	103.2	0.00	0.0505	0.00215	0.19355	0.05815	0.01990	0.00071	0.00005	0.0002	0.05	127	2	1/5	52	218	95	134	4	132	2	29.1	48 263	0.652	0.0505	0.00215	0.000024
Zircon_053	153	49.9	0.33	0.0778	0.00195	1 863	0.0465	0.1725	0.00215	0.0491	0.0017	0.24	1026	12	1068	16	1142	48	969 3	13	1142	48	3.9	5 797	0.072	0.0778	0.00195	0.0000024
Zircon 054	33.2	15.5	0.47	0.0748	0.00215	1.005	0.06	0.1726	0.00213	0.0515	0.0019	0.51	1026	16	1045	22	1063	56	1015 3	17	1063	56	1.8	5 794	0.101	0.0748	0.00215	-0.000194
Zircon 055	233	105	0.45	0.067	0.0065	0.193	0.0235	0.0203	0.00055	0.00676	0.00045	0.93	130	3	179	20	838	197	136	9	130	3	27.4	49.261	1.335	0.067	0.0065	-0.000657
Zircon 056	167.7	104.7	0.62	0.0764	0.00215	1.168	0.0375	0.1105	0.00235	0.0151	0.0008	0.51	676	14	786	18	1106	54	303 1	6	676	14	14.0	9.05	0.192	0.0764	0.00215	-0.000028
Zircon 057	480	199.5	0.42	0.0589	0.00205	0.171	0.0055	0.0208	0.00028	0.00622	0.00025	0.01	133	2	160	5	563	73	125	5	133	2	16.9	48.077	0.647	0.0589	0.00205	0.000016
Zircon_059	384	238	0.62	0.064	0.0022	0.188	0.0065	0.02117	0.0003	0.00597	0.00027	0.22	135	2	175	6	742	70	120	5	135	2	22.9	47.237	0.669	0.064	0.0022	-0.000006
Zircon_63	343	132	0.38	0.0522	0.0019	0.153	0.0055	0.02088	0.00028	0.00639	0.00024	0.15	133	2	145	5	294	80	129	5	133	2	8.3	47.893	0.642	0.0522	0.0019	-0.000001
Zircon_64	2585	700.6	0.27	0.0491	0.00115	0.1411	0.00335	0.02063	0.00025	0.00632	0.00022	0.28	132	2	134	3	153	53	127	4	132	2	1.5	48.473	0.587	0.0491	0.00115	-0.000001
Zircon_65	285	134.7	0.47	0.0634	0.0022	0.189	0.0065	0.02084	0.00029	0.00669	0.00025	0.18	133	2	176	6	722	71	135	5	133	2	24.4	47.985	0.668	0.0634	0.0022	-0.000002
Zircon_066	159	60.9	0.38	0.07005	0.00336	0.21099	0.01106	0.02184	0.00035	0.00663	0.00011	0.03	139	2	194	9	930	95	134	2	139	2	28.4	45.78	0.738	0.07005	0.00336	-0.000083
Zircon_070	609	218.4	0.36	0.05445	0.00205	0.15293	0.00652	0.02037	0.00028	0.00636	0.00009	0.14	130	2	144	6	390	81	128	2	130	2	9.7	49.091	0.665	0.05445	0.00205	-0.000061
Zircon_071	1598	440	0.28	0.0514	0.00135	0.1483	0.0038	0.02061	0.00027	0.00623	0.00023	0.21	132	2	140	3	259	58	126	5	132	2	5.7	48.52	0.636	0.0514	0.00135	0.000003
Zircon_073	174.7	105.5	0.60	0.0666	0.0036	0.199	0.0115	0.02116	0.00033	0.00605	0.0003	0.37	135	2	184	10	825	109	122	6	135	2	26.6	47.259	0.737	0.0666	0.0036	-0.000089
Zircon_074	326	177	0.54	0.0574	0.00185	0.166	0.005	0.02061	0.00028	0.00645	0.00023	0.06	132	2	156	4	507	68	130	5	132	2	15.4	48.52	0.659	0.0574	0.00185	0.000011
Zircon_075	342	107	0.31	0.0713	0.00195	0.88	0.0345	0.0882	0.00275	0.027	0.00135	0.72	545	16	641	19	966	54	538 2	27	545	16	15.0	11.338	0.354	0.0713	0.00195	-0.000027
Zircon_077	1550	442	0.29	0.0563	0.00175	0.166	0.005	0.02114	0.00026	0.00698	0.00037	0.12	135	2	156	4	464	63	141	7	135	2	13.5	47.304	0.582	0.0563	0.00175	0.000004
Zircon_078	865	358	0.41	0.0534	0.00225	0.16	0.0075	0.02161	0.00041	0.00667	0.00032	0.44	138	3	151	7	346	88	134	6	138	3	8.6	46.275	0.878	0.0534	0.00225	-0.000037
Zircon_079	259	135.9	0.52	0.0605	0.00205	0.187	0.006	0.02195	0.00033	0.00676	0.00027	0.11	140	2	174	5	622	67	136	5	140	2	19.5	45.558	0.685	0.0605	0.00205	0.00001
Zircon_080	344	156	0.45	0.0577	0.00195	0.159	0.005	0.01946	0.00026	0.00634	0.00023	0.03	124	2	150	4	518	68	128	5	124	2	17.3	51.387	0.687	0.0577	0.00195	0.000013
------------	-------	-------	------	---------	---------	---------	---------	---------	---------	---------	---------	-------	-----	---	-----	---	-----	-----	-----	---	-----	---	------	--------	-------	---------	---------	-----------
Zircon_082	406.2	224.9	0.55	0.0655	0.0024	0.206	0.0075	0.02176	0.00028	0.00718	0.00033	0.16	139	2	190	6	790	70	145	7	139	2	26.8	45.956	0.591	0.0655	0.0024	-0.000005
Zircon_084	182	55.6	0.31	0.0677	0.0029	0.188	0.0075	0.02065	0.00028	0.0061	0.00029	-0.06	132	2	175	6	859	82	123	6	132	2	24.6	48.426	0.657	0.0677	0.0029	0.000028
Zircon_085	352.2	119.1	0.34	0.0669	0.00265	0.198	0.0075	0.0206	0.0003	0.00665	0.00032	0.07	131	2	183	6	835	76	134	6	131	2	28.4	48.544	0.707	0.0669	0.00265	0.00001
Zircon_086	350	91.8	0.26	0.0558	0.00315	0.159	0.0095	0.0204	0.0003	0.00688	0.00044	0.34	130	2	150	8	444	115	139	9	130	2	13.3	49.02	0.721	0.0558	0.00315	-0.000078
Zircon_088	326	146.6	0.45	0.0575	0.00205	0.162	0.006	0.02009	0.00026	0.00614	0.00023	0.28	128	2	152	5	511	72	124	5	128	2	15.8	49.776	0.644	0.0575	0.00205	-0.000019
Zircon_089	128	49.9	0.39	0.06805	0.00358	0.20119	0.01098	0.02144	0.00036	0.00653	0.00012	-0.05	137	2	186	9	870	100	131	2	137	2	26.3	46.639	0.786	0.06805	0.00358	-0.000044
Zircon_090	260	108.1	0.42	0.05067	0.00257	0.14404	0.00816	0.02062	0.00031	0.0065	0.00011	0.22	132	2	137	7	226	107	131	2	132	2	3.6	48.503	0.726	0.05067	0.00257	-0.000095
Zircon_091	378	198.6	0.53	0.06627	0.00332	0.18587	0.01078	0.02034	0.00035	0.00621	0.0001	0.33	130	2	173	9	815	96	125	2	130	2	24.9	49.159	0.834	0.06627	0.00332	-0.00013
Zircon_092	1837	604	0.33	0.0483	0.0013	0.1277	0.0035	0.0189	0.00024	0.00592	0.00022	0.27	121	2	122	3	114	57	119	4	121	2	0.8	52.91	0.672	0.0483	0.0013	-0.000003
Zircon_093	731	390	0.53	0.0514	0.00135	0.1478	0.00365	0.02049	0.00026	0.00616	0.00021	0.13	131	2	140	3	259	55	124	4	131	2	6.4	48.804	0.619	0.0514	0.00135	0.000007
Zircon_094	184.1	62	0.34	0.0617	0.00285	0.182	0.008	0.02119	0.0003	0.00692	0.00029		135	2	170	7	664	91	139	6	135	2	20.6	47.192	0.668	0.0617	0.00285	0.000019
Zircon_095	843	519.2	0.62	0.0523	0.0014	0.1549	0.0042	0.02097	0.00027	0.00643	0.00024	0.26	134	2	146	4	299	56	130	5	134	2	8.2	47.687	0.614	0.0523	0.0014	-0.000002
Zircon_096	481	276	0.57	0.0521	0.0017	0.151	0.0055	0.02088	0.0003	0.00666	0.00023	0.45	133	2	143	5	290	68	134	5	133	2	7.0	47.893	0.688	0.0521	0.0017	-0.000029
Zircon_097	2542	855	0.34	0.0497	0.0015	0.1448	0.0045	0.02085	0.00025	0.00681	0.00027	0.27	133	2	137	4	181	64	137	5	133	2	2.9	47.962	0.575	0.0497	0.0015	-0.00001
Zircon_098	172	81.7	0.48	0.0698	0.0027	0.204	0.007	0.02079	0.00034	0.00658	0.00028	-0.05	133	2	189	6	922	73	133	6	133	2	29.6	48.1	0.787	0.0698	0.0027	0.000029
Zircon_099	194	80.2	0.41	0.04815	0.00231	0.13032	0.00671	0.01963	0.0003	0.00623	0.00018	-0.01	125	2	124	6	107	97	125	4	125	2	-0.8	50.944	0.777	0.04815	0.00231	-0.000045

						ISO	FOPE RAT	IOS^2								CORRE	ECTED .	AGES (N	/Ia)		
Sample	U (ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ P b	±2SE %	²⁰⁷ Pb/ ²³⁵ U	±2SE %	²⁰⁶ Pb/ ²³⁸ U	±2SE %	²⁰⁸ Pb/ ²³² Th	±2SE %	Rho	²⁰⁶ Pb/ ² ³⁸ U	±2SE	²⁰⁷ Pb/ ² ³⁵ U	±2SE	²⁰⁷ Pb/ ² ⁰⁶ Pb	±2SE	Best age (Ma)	±2SE	Disc %
Fm. Cuestecita SL-67																					
Zircon-001 SL-67	326	233	0.7147	0.0511	0.0031	0.18	0.011	0.02563	0.00057	0.00874	0.00046	0.12854	163.1	3.6	168.2	9	308	93	163	4	3.03
Zircon-002	260	213	0.8192	0.0516	0.0044	0.16	0.014	0.02203	0.00041	0.00743	0.00045	0.14517	140.5	2.6	150	12	545	82	141	3	6.33
Zircon-004	223	152	0.6816	0.0736	0.0038	0.918	0.047	0.0901	0.0018	0.0323	0.0016	-0.089877	556	10	659	24	1038	67	556	10	15.63
Zircon-005	992	859	0.8659	0.0504	0.0023	0.1561	0.0074	0.02268	0.00042	0.0073	0.00034	0.37709	144.6	2.7	148.4	6.5	258	52	145	3	2.56
Zircon-006	111.8	47.3	0.4231	0.0557	0.0065	0.153	0.017	0.02008	0.00062	0.00773	0.0007	-0.022632	128.1	3.9	146	14	580	130	128	4	12.26
Zircon-007	568	510	0.8979	0.0526	0.0032	0.235	0.015	0.03268	0.00065	0.01041	0.00058	-0.10364	207.3	4	216	12	327	80	207	4	4.03
Zircon-008	187.5	114.3	0.6096	0.0501	0.0036	0.14	0.011	0.02011	0.00048	0.00596	0.00039	0.074683	128.3	3.1	132.5	9.7	295	69	128	3	3.17
Zircon-009	242	103.4	0.4273	0.054	0.0048	0.191	0.017	0.02552	0.00069	0.00799	0.00072	0.25344	162.5	4.3	177	14	386	88	163	4	8.19
Zircon-010	91.9	26.1	0.284	0.0781	0.0035	1.922	0.094	0.1813	0.0033	0.0621	0.0038	0.21587	1074	18	1090	32	1135	45	1135	45	1.47
Zircon-011	312	100.9	0.3234	0.0723	0.0026	1.742	0.071	0.173	0.0027	0.0527	0.0025	0.40235	1029	15	1023	26	1000	37	1000	37	-0.59
Zircon-012	659	242	0.3672	0.0525	0.0024	0.245	0.012	0.03364	0.00072	0.01079	0.00063	0.23452	213.3	4.5	222	10	301	61	213	5	3.92
Zircon-013	165.2	141.1	0.8541	0.0493	0.0056	0.129	0.016	0.01934	0.00057	0.00673	0.00048	0.1455	123.5	3.6	122	14	580	120	124	4	-1.23
Zircon-015	147.5	95	0.6441	0.0547	0.0056	0.158	0.016	0.02104	0.00054	0.00731	0.00053	-0.49811	134.2	3.4	148	14	670	100	134	3	9.32
Zircon-016	659	725	1.1002	0.049	0.0024	0.1388	0.0078	0.02047	0.00036	0.00655	0.00031	0.16715	130.7	2.3	131.8	6.9	223	73	131	2	0.83
Zircon-017	389	133.1	0.3422	0.0775	0.0028	2.07	0.085	0.1935	0.0029	0.0583	0.0028	0.21158	1140	16	1138	28	1134	46	1134	46	-0.18
Zircon-018	592	282	0.4764	0.0527	0.0033	0.214	0.013	0.02992	0.0006	0.00974	0.00056	-0.19046	190.1	3.7	198	11	371	64	190	4	3.99
Zircon-019	213	122.3	0.5742	0.0638	0.0054	0.181	0.016	0.02113	0.00064	0.00888	0.0005	0.10573	134.8	4	168	13	671	79	135	4	19.76
Zircon-020	138.3	84.5	0.611	0.0468	0.0056	0.129	0.016	0.02084	0.00064	0.0065	0.00049	-0.005703	133	4.1	125	14	435	76	133	4	-6.40
Zircon-021	324	80.1	0.2472	0.0589	0.0023	0.749	0.033	0.0921	0.0015	0.0277	0.0015	0.32762	567.7	9.1	567	19	582	51	568	9	-0.12
Zircon-022	84	48.1	0.5726	0.0639	0.0032	0.988	0.052	0.1125	0.0021	0.0334	0.0018	0.034111	687	12	696	27	716	74	687	12	1.29
Zircon-023	222	126.4	0.5694	0.0585	0.0025	0.75	0.04	0.0922	0.0027	0.0289	0.0018	0.68919	568	16	567	24	562	63	568	16	-0.18
Zircon-024	530	280	0.5283	0.0562	0.0031	0.192	0.012	0.02489	0.00045	0.00856	0.00045	0.38391	158.5	2.8	178.1	9.8	513	64	159	3	11.01
Zircon-025	96.1	30.5	0.3174	0.0871	0.0036	2.93	0.13	0.2414	0.0052	0.0769	0.0041	0.14283	1394	27	1389	33	1371	61	1371	61	-0.36
Zircon-026	141	140.1	0.9936	0.0616	0.0046	0.34	0.026	0.03954	0.00093	0.0131	0.00083	-0.024764	250	5.8	296	18	726	84	250	6	15.54
Zircon-027	408	267	0.6544	0.0472	0.0032	0.125	0.0088	0.0193	0.00041	0.00611	0.00034	0.034262	123.2	2.6	120.5	8.3	350	98	123	3	-2.24
Zircon-028	648	98.4	0.1519	0.1194	0.0038	5.16	0.22	0.3127	0.0069	0.126	0.013	0.61396	1754	35	1846	42	1946	64	1946	64	4.98
Zircon-029	142	109	0.7676	0.0522	0.0058	0.149	0.016	0.02137	0.00065	0.00678	0.00046	-0.0090903	136.3	4.1	140	14	531	95	136	4	2.64
Zircon-032	404	205	0 5074	0.0531	0.0022	0.371	0.016	0.04978	0.00085	0.01601	0.00077	0 18138	313.2	5.2	320	13	382	59	313	5	2.13
Zircon-033	163.4	129	0 7895	0.0734	0.003	1 707	0.074	0 1676	0.0028	0.0508	0.0024	0.038656	999	16	1013	29	1053	46	1053	46	1 38
Zircon-034	156.4	73.1	0.4674	0.0471	0.0048	0.144	0.015	0.0222	0.00058	0.00703	0.00058	0.0962	141.6	3.7	136	13	375	78	142	4	-4.12
Zircon-035	160.9	42.4	0 2635	0.0753	0.0031	1 751	0.081	0.1683	0.0029	0.0535	0.0028	0.063188	1004	16	1025	30	1079	47	1079	47	2.05
Zircon-038	211.6	17.3	0.0818	0.0554	0.0026	0.577	0.029	0.0737	0.0014	0.0255	0.0022	0 27442	458.4	83	461	19	465	52	458	8	0.56
Zircon-040	183	107	0 5847	0.0523	0.0055	0.143	0.015	0.01987	0.00063	0.00652	0.00051	0.05532	126.8	4	135	13	570	110	127	4	6.07
Zircon-041	122.6	72.6	0.5922	0.0475	0.0049	0.142	0.016	0.02122	0.00066	0.00648	0.00057	0.13791	135.3	42	134	14	500	100	135	4	-0.97
Zircon-042	244.7	236.1	0.9649	0.0761	0.0028	1 995	0.085	0 1897	0.0031	0.0562	0.0026	0.20002	1120	17	1112	29	1105	44	1105	44	-0.72
Zircon-043	338	165	0.4882	0.0585	0.0042	0.207	0.005	0.02578	0.00051	0.00893	0.00058	0.030336	164.1	32	191	13	580	110	164	3	14.08
Zircon-044	137	47.1	0.3438	0.0814	0.0033	2 32	0.11	0 2093	0.0038	0.0656	0.0035	0 37393	1225	20	1221	33	1219	57	1219	57	-0.33
Zircon-045	48 7	20.9	0.4292	0.0491	0.0082	0.126	0.022	0.01904	0.00092	0.0050	0.0011	0.058855	121.5	5.8	1221	20	800	180	1212	6	1.22
Zircon-046	1156	204.8	0.1772	0.0491	0.0021	0.126	0.0022	0.02555	0.000/1	0.00796	0.00045	0.069345	162.6	2.6	164.9	7.4	222	56	163	3	1.22
Zircon-047	733	402	0.5484	0.0428	0.0021	0.1765	0.0005	0.02155	0.00041	0.00790	0.00045	-0 19841	137.5	3.2	148	19	360	200	138	3	7.09
Zircon-048	670	522	0.7791	0.0325	0.0028	0.1469	0.0024	0.02139	0.00041	0.00698	0.00035	-0.0056683	135.2	2.6	140.8	7.6	296	45	135	3	3.98
Zircon-049	80.1	12	0 5243	0.0710	0.0020	1 502	0.003	0.1623	0.0051	0.0428	0.0025	0.08994	960	2.0	96/	37	003	50	969	29	-0.52
Zircon-050	564	42 177 /	0 3145	0.0533	0.0034	0 305	0.035	0.04184	0.00074	0.01263	0.0025	-0.031567	264.2	29 46	270	13	340	45	264	5	2 15
Zircon-051	190.2	118 /	0.6225	0.0555	0.0028	0.303	0.017	0.03343	0.00074	0.01205	0.00065	-0.17033	204.2	4.0	210	15	361		212	5	2.15
Zircon-053	150.2	206	0.4479	0.0498	0.0021	0.1466	0.007	0.02120	0.00075	0.00656	0.00039	-0.28441	135.9	2.5	138.7	87	200	62	136	3	2.50
21001-000	400	200	0.7770	0.0498	0.0051	0.1400	0.0097	0.02129	0.0004	0.00050	0.00058	-0.20441	155.6	2.5	150.7	0.7	270	02	150	5	2.09

ANEXO 1. Geocronología U-Pb del área de Guanajuato

Zircon-054	226	57.9	0.2562	0.0803	0.0028	2.325	0.092	0.2093	0.0033	0.0614	0.003	0.1367	1225	18	1219	28	1209	37	1209	37	-0.49
Zircon-055	78.3	41.7	0.5326	0.0616	0.0034	0.698	0.046	0.0817	0.0017	0.0243	0.0016	0.22497	505.9	9.9	534	27	672	76	506	10	5.26
Zircon-056	151.8	114.7	0.7556	0.0576	0.0037	0.21	0.015	0.02638	0.00067	0.0086	0.00053	0.098166	167.8	4.2	193	12	517	90	168	4	13.06
Zircon-057	116.4	52.2	0.4485	0.1279	0.0045	6.69	0.27	0.3777	0.006	0.107	0.0051	0.11839	2065	28	2070	35	2069	42	2069	42	0.24
Zircon-058	874	170.5	0.1951	0.0557	0.002	0.57	0.024	0.0741	0.0011	0.0235	0.0012	-0.034508	460.7	6.8	457	15	434	47	461	7	-0.81
Zircon-059	154.3	78	0.5055	0.0534	0.003	0.297	0.017	0.04058	0.00086	0.0122	0.00077	-0.22422	256.4	5.3	264	13	403	59	256	5	2.88
Zircon-060	328	201.5	0.6143	0.0522	0.0037	0.149	0.011	0.02076	0.00043	0.00621	0.00038	-0.14135	132.5	2.7	140.3	9.7	422	86	133	3	5.56
Zircon-061	223	77.9	0.3493	0.0536	0.0038	0.184	0.013	0.02565	0.00051	0.00837	0.00058	-0.12404	163.3	3.2	173	11	346	89	163	3	5.61
Zircon-062	87.9	39.9	0.4539	0.058	0.0052	0.413	0.037	0.0544	0.0014	0.0196	0.0017	0.25882	341.2	8.6	348	26	478	96	341	9	1.95
Zircon-063	395	100.2	0.2537	0.074	0.0026	1.858	0.076	0.1804	0.003	0.0531	0.0027	0.29497	1069	16	1065	26	1044	33	1044	33	-0.38
Zircon-064	102.8	57.7	0.5613	0.0559	0.0078	0.2	0.03	0.02612	0.00084	0.0088	0.001	0.15829	166.2	5.3	184	24	480	170	166	5	9.67
Zircon-065	622	203	0.3264	0.0755	0.0025	1.846	0.074	0.1781	0.0027	0.0512	0.0025	-0.063633	1057	15	1062	26	1074	45	1074	45	0.47
Zircon-066	648	699	1.0787	0.0568	0.0029	0.1522	0.0082	0.0196	0.00038	0.00603	0.0003	0.0083729	125.1	2.4	143.7	7.2	500	56	125	2	12.94
Zircon-067	110	76.2	0.6927	0.0537	0.0041	0.255	0.019	0.0348	0.0011	0.01058	0.00067	-0.30796	220.6	7	229	15	451	75	221	7	3.67
Zircon-068	1057	741	0.701	0.0485	0.0022	0.1382	0.0064	0.02062	0.00038	0.0063	0.00031	-0.030543	131.5	2.4	131.3	5.8	199	43	132	2	-0.15
Zircon-069	208	146.6	0.7048	0.0524	0.0046	0.163	0.015	0.02219	0.00062	0.00726	0.00051	-0.10697	141.5	3.9	152	13	488	94	142	4	6.91
Zircon-070	63.4	29.7	0.4685	0.0736	0.0034	1.792	0.088	0.1774	0.0037	0.0529	0.0032	0.28859	1052	20	1040	32	1033	49	1033	49	-1.15
Zircon-071	170	92	0.5412	0.0793	0.0033	2.27	0.11	0.2074	0.0038	0.0638	0.0036	0.3608	1215	20	1201	33	1179	51	1179	51	-1.17
Zircon-072	92.6	36.2	0.3909	0.0712	0.0034	1.651	0.085	0.1671	0.0031	0.0483	0.0026	0.17567	996	17	987	33	950	47	996	17	-0.91
Zircon-073	196.6	65.6	0.3337	0.0557	0.005	0.147	0.013	0.02038	0.00051	0.00731	0.00063	0.19542	130.1	3.2	142	12	524	94	130	3	8.38
Zircon-074	349	170.7	0.4891	0.0594	0.0026	0.61	0.031	0.0755	0.0013	0.0245	0.0013	0.49884	469.1	7.8	483	20	588	55	469	8	2.88
Zircon-075	151	83.9	0.5556	0.0498	0.0044	0.155	0.015	0.0223	0.00069	0.00813	0.00066	-0.12022	142.2	4.3	145	13	610	140	142	4	1.93
Zircon-076	113.6	175	1.5405	0.0626	0.0036	0.978	0.078	0.1122	0.0039	0.0344	0.0021	0.59533	688	22	692	39	720	86	688	22	0.58
Zircon-077_SL-67	144	27.6	0.1917	0.0477	0.0045	0.136	0.012	0.02047	0.00057	0.00671	0.00071	0.20458	130.6	3.6	131	11	345	98	131	4	0.31

Formación Cuestecita SL-45

Zircon-078_SL-45	106.2	43.1	0.4058	0.0525	0.0066	0.151	0.017	0.02127	0.0007	0.00748	0.00062	-0.031322	135.6	4.4	142	15	775	90	136	4	4.51
Zircon-079	97.3	19.58	0.2012	0.0747	0.0038	1.724	0.09	0.167	0.0031	0.0549	0.0035	0.092128	995	17	1018	35	1052	65	1052	65	2.26
Zircon-080	205.1	64.5	0.3145	0.0512	0.0045	0.193	0.017	0.02768	0.00064	0.00866	0.00061	-0.19491	176	4	178	14	434	99	176	4	1.12
Zircon-081	563	283	0.5027	0.0496	0.003	0.128	0.0079	0.01875	0.00035	0.00633	0.00035	0.10106	119.8	2.2	123.1	6.8	260	61	120	2	2.68
Zircon-082	383	194	0.5065	0.0522	0.0031	0.1464	0.009	0.02023	0.0005	0.00761	0.0005	0.18367	129.1	3.2	138.4	8	308	57	129	3	6.72
Zircon-083	289	185	0.6401	0.0541	0.0041	0.156	0.012	0.02133	0.00057	0.00722	0.00044	-0.18317	136	3.6	146.7	9.9	501	88	136	4	7.29
Zircon-084	311	99.1	0.3186	0.051	0.003	0.181	0.011	0.02544	0.00053	0.00794	0.00061	-0.011688	162	3.3	168.4	9.5	274	65	162	3	3.80
Zircon-085	263	228	0.8669	0.0522	0.0038	0.156	0.011	0.02189	0.00047	0.0068	0.00039	-0.041281	139.6	2.9	146.5	9.7	458	80	140	3	4.71
Zircon-086	262.6	111.3	0.4238	0.0515	0.0032	0.238	0.016	0.03344	0.00069	0.01126	0.0007	0.14047	212	4.3	216	13	316	60	212	4	1.85
Zircon-087	321	191.2	0.5956	0.0918	0.0031	3.28	0.13	0.2589	0.0041	0.0792	0.0037	0.20576	1484	21	1479	30	1463	39	1463	39	-0.34
Zircon-088	1147	675	0.5885	0.054	0.0026	0.1638	0.0078	0.02153	0.00058	0.0075	0.00042	0.26984	137.3	3.7	153.9	6.9	409	64	137	4	10.79
Zircon-089	380	252	0.6632	0.0462	0.0028	0.136	0.0084	0.02101	0.00045	0.00663	0.00038	0.024147	134	2.9	129.2	7.5	274	66	134	3	-3.72
Zircon-090	131.5	47.2	0.3589	0.054	0.0054	0.189	0.018	0.02604	0.00067	0.00909	0.00066	-0.36639	165.7	4.2	174	16	560	100	166	4	4.77
Zircon-091	222.6	165.4	0.743	0.0548	0.0043	0.153	0.012	0.02002	0.00053	0.00652	0.0004	-0.10175	127.8	3.3	144	10	445	75	128	3	11.25
Zircon-092	250	69	0.276	0.0602	0.0069	0.351	0.031	0.0419	0.0014	0.0127	0.0022	0.23897	264.3	8.4	305	22	630	150	264	8	13.34
Zircon-093	263	142.4	0.5414	0.0494	0.0036	0.175	0.013	0.02526	0.00055	0.00834	0.00051	-0.16599	160.8	3.5	163	11	353	76	161	4	1.35
Zircon-094	307	110.7	0.3606	0.0524	0.0035	0.147	0.01	0.02	0.00043	0.00663	0.00043	-0.15274	127.7	2.7	138.6	9.1	392	77	128	3	7.86
Zircon-095	362	274	0.7569	0.0589	0.0039	0.18	0.012	0.02201	0.00052	0.00758	0.00054	0.23443	140.3	3.3	168	11	515	83	140	3	16.49
Zircon-096	360	206	0.5722	0.0628	0.0025	0.924	0.041	0.1079	0.0019	0.0347	0.0016	0.2986	661	11	667	21	715	49	661	11	0.90
Zircon-097	287.1	219.4	0.7642	0.0556	0.0048	0.156	0.015	0.02023	0.00052	0.00628	0.00049	0.25333	129.1	3.3	147	13	460	110	129	3	12.18
Zircon-098	421	277.3	0.6587	0.0667	0.0031	0.374	0.019	0.03981	0.00082	0.0154	0.00073	0.090304	251.6	5.1	325	14	862	48	252	5	22.58
Zircon-099	369	301	0.8157	0.0522	0.0031	0.283	0.017	0.03938	0.00077	0.01241	0.00068	-0.0033953	249	4.7	252	14	322	62	249	5	1.19
Zircon-100	271	132	0.4871	0.0733	0.0026	1.651	0.071	0.166	0.0035	0.0533	0.0025	0.74194	990	20	990	29	1017	42	1017	42	0.00
Zircon-101	188	152	0.8085	0.0579	0.0054	0.17	0.017	0.02123	0.0007	0.00672	0.00043	0.087799	135.4	4.4	158	15	710	120	135	4	14.30
Zircon101	597	432	0.7236	0.0585	0.0031	0.1527	0.0093	0.01872	0.0004	0.00643	0.00034	0.51568	119.5	2.5	144	8.2	533	82	120	3	17.01
Zircon102	394	232	0.5888	0.0537	0.0036	0.155	0.011	0.02129	0.00053	0.00728	0.00039	0.27783	135.8	3.3	147	10	371	73	136	3	7.62

Zircon103	115.8	68.3	0.5898	0.0654	0.0063	0.192	0.019	0.02133	0.00065	0.00797	0.00066	0.080076	136	4.1	177	16	920	170	136	4	23.16
Zircon105	127.1	83.9	0.6601	0.0631	0.0077	0.181	0.023	0.02105	0.00063	0.00761	0.00068	0.13503	134.3	4	169	19	820	150	134	4	20.53
Zircon106	338	154.1	0.4559	0.0635	0.0027	0.67	0.029	0.0763	0.0014	0.0256	0.0013	-0.041437	474	8.5	522	19	707	46	474	9	9.20
Zircon107	105.2	58.7	0.558	0.0583	0.0064	0.173	0.018	0.02197	0.00066	0.00723	0.00061	-0.089171	140.1	4.2	161	16	670	110	140	4	12.98
Zircon108	252	204	0.8095	0.0521	0.0044	0.18	0.015	0.02513	0.00059	0.00734	0.00038	0.030915	160	3.7	167	13	424	72	160	4	4.19
Zircon109	110.7	56.8	0.5131	0.0578	0.007	0.174	0.021	0.02169	0.00064	0.00715	0.00068	-0.068565	138.3	4	163	18	740	130	138	4	15.15

1: U and Th concentrations are calculated employing NIST 610 as external calibrant and SiO2 as internal standard; See also Paton et al., 2011.

2: Isotope ratios are corrected for background, downhole fractionation and instrumental drift using annealed 91500 as bracketing standard. 2 standard error uncertainties are propagated according to Paton et al., 2010.

207Pb/206Pb ratios, ages and errors are calculated according to Petrus and Kamber, 2012.

Analyzed spots were 23 micrometers, using an analytical protocol modified from Solari et al., 2010.

Data measured employing a Thermo ICAP Qc ICPMS coupled to a Resonetics, Resolution M050 excimer laser workstation.

Formación Esperanza GTO14-1

						ISOT	OPE RATI	IOS^2							(CORRE	CTED A	GES (M	la)		
Sample	U (ppm) ¹	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁰ Pb	±2SE %	²⁰⁷ Pb/ ²³⁵ U	±2SE %	²⁰⁶ Pb/ ²³⁸ U	±2SE %	²⁰⁸ Pb/ ²³² Th	±2SE %	Rho	²⁰⁰ Pb/ ²⁵⁸ l	±2SE ′	'Pb/2551	±2SE	'Pb/ ²⁰⁶ F	±2SE 3	est age (M	a ±2SE	Disc %
Zircon-001_Gto14-1	573	126.8	0.22	0.059	0.0026	0.618	0.035	0.0758	0.0027	0.0256	0.00130	-0.051838	471	17	488	24	554	62	471	17	3.48
Zircon-002	513	59.1	0.12	0.0545	0.0041	0.58	0.04	0.0777	0.0021	0.02135	0.00095	0.34911	482	12	463	24	386	70	482	12	-4.10
Zircon-003	106	55.3	0.52	0.0799	0.0034	2.307	0.095	0.2104	0.0033	0.0649	0.00220	0.10953	1231	17	1212	30	1189	51	1189	51	-1.57
Zircon-004	363	126.5	0.35	0.0506	0.0026	0.28	0.013	0.0403	0.00059	0.01246	0.00054	-0.20212	254.7	3.6	250	11	259	61	255	4	-1.88
Zircon-005	130.5	86.6	0.66	0.128	0.0047	6.62	0.24	0.3757	0.0047	0.106	0.00340	0.27154	2056	22	2061	29	2071	35	2071	35	0.24
Zircon-006	253.2	96.8	0.38	0.0671	0.0029	1.059	0.046	0.1155	0.0017	0.0376	0.00180	-0.043201	704.7	9.8	732	19	821	57	705	10	3.73
Zircon-007	229	155.2	0.68	0.0585	0.0028	0.617	0.028	0.0768	0.0014	0.02386	0.00092	0.077138	477.2	8.4	487	18	555	46	477	8	2.01
Zircon-008	392	51	0.13	0.0691	0.0026	1.38	0.056	0.1458	0.0028	0.0439	0.00230	0.12484	877	16	880	25	906	49	877	16	0.34
Zircon-009	216.2	148.7	0.69	0.0544	0.0034	0.307	0.023	0.0413	0.0011	0.0129	0.00150	0.22601	261.1	6.8	271	17	390	72	261	7	3.65
Zircon-010	70	52	0.74	0.0936	0.0042	3.42	0.14	0.2644	0.0065	0.0791	0.00280	0.016124	1511	33	1506	32	1509	72	1509	72	-0.33
Zircon-011	490	102	0.21	0.0548	0.0023	0.538	0.024	0.0713	0.0018	0.0243	0.00110	0.52709	444	11	436	16	401	47	444	11	-1.83
Zircon-012	69.8	51.2	0.73	0.058	0.0056	0.734	0.07	0.0931	0.002	0.0302	0.00160	0.061371	574	12	556	39	530	130	574	12	-3.24
Zircon-013	60.4	6.28	0.10	0.0768	0.0036	1.93	0.11	0.1825	0.0058	0.0578	0.00480	0.36743	1081	31	1092	37	1111	53	1111	53	1.01
Zircon-014	100.6	35.6	0.35	0.0743	0.0035	1.785	0.079	0.175	0.0025	0.0544	0.00230	-0.14341	1040	14	1037	28	1039	60	1039	60	-0.29
Zircon-015	257.8	242	0.94	0.0516	0.0033	0.232	0.015	0.03273	0.00082	0.01066	0.00043	0.23669	207.6	5.1	213	13	377	74	208	5	2.54
Zircon-016	351	152.7	0.44	0.056	0.0026	0.55	0.026	0.0713	0.001	0.02184	0.00083	0.21774	443.8	6.3	444	17	456	60	444	6	0.05
Zircon-017	103.3	65.6	0.64	0.0588	0.0033	0.58	0.032	0.0719	0.0012	0.022	0.00110	-0.20032	447.6	7	463	20	558	59	448	7	3.33
Zircon-018	108	42.3	0.39	0.0725	0.0032	1.693	0.074	0.1698	0.0025	0.0508	0.00220	0.22994	1011	14	1004	28	997	43	997	43	-0.70
Zircon-019	171.8	103.7	0.60	0.0535	0.0054	0.293	0.034	0.03969	0.00096	0.0125	0.00110	0.17675	250.9	5.9	260	27	350	160	251	6	3.50
Zircon-020	428	491	1.15	0.0563	0.0024	0.545	0.023	0.0704	0.0011	0.02241	0.00080	0.41958	438.5	6.6	441	15	460	51	439	7	0.57
Zircon-021	416	471	1.13	0.0526	0.0031	0.226	0.014	0.03127	0.00048	0.00985	0.00035	-0.11419	198.5	3	207	11	326	72	199	3	4.11
Zircon-022	78.2	29.23	0.37	0.0695	0.0037	1.496	0.077	0.1568	0.0027	0.0466	0.00220	0.082542	939	15	925	31	906	62	939	15	-1.51
Zircon-023	82.4	54.5	0.66	0.0795	0.0037	2.038	0.089	0.1884	0.0035	0.0616	0.00240	-0.00044309	1113	19	1126	31	1174	63	1174	63	1.15
Zircon-024	140.2	111.4	0.79	0.051	0.004	0.287	0.021	0.04065	0.00096	0.01247	0.00056	-0.015169	256.8	6	254	17	395	88	257	6	-1.10
Zircon-025	67.5	111	1.64	0.056	0.0041	0.558	0.043	0.0715	0.0016	0.02174	0.00084	0.10627	445.3	9.7	451	30	583	87	445	10	1.26
Zircon-026	75.5	26.8	0.35	0.0746	0.0035	1.748	0.078	0.171	0.0028	0.0514	0.00280	0.11424	1017	16	1024	29	1025	53	1025	53	0.68
Zircon-027	180.7	93.2	0.52	0.1035	0.0039	4.24	0.23	0.297	0.012	0.0923	0.00280	0.58898	1678	60	1680	53	1692	49	1692	49	0.12
Zircon-028	211.2	99	0.47	0.0991	0.0037	3.89	0.17	0.286	0.0076	0.0813	0.00320	0.31874	1621	39	1611	39	1606	48	1606	48	-0.62
Zircon-029	243	103.6	0.43	0.073	0.0029	1.817	0.073	0.1821	0.0025	0.0536	0.00180	0.43522	1078	14	1051	27	1014	41	1014	41	-2.57
Zircon-030	545	210	0.39	0.056	0.0023	0.581	0.023	0.07562	0.00097	0.02384	0.00084	0.089104	469.9	5.8	464	15	448	38	470	6	-1.27
Zircon-031	976	182	0.19	0.0557	0.0022	0.577	0.021	0.07535	0.00084	0.02217	0.00078	-0.27514	468.3	5	462	14	444	46	468	5	-1.36
Zircon-032	106.1	23.2	0.22	0.0793	0.0033	2.219	0.095	0.2036	0.003	0.0657	0.00310	0.34482	1194	16	1184	30	1177	51	1177	51	-0.84
Zircon-033	160	39.6	0.25	0.0808	0.0033	2.36	0.11	0.2151	0.0043	0.0645	0.00270	0.11127	1256	23	1230	31	1214	45	1214	45	-2.11

Zircon-034	181.9	72.4	0.40	0.0784	0.003	2.116	0.078	0.1971	0.0025	0.0589	0.00220	0.28493	1159	14	1153	26	1159	44	1159	44	-0.52
Zircon-035	248	16.4	0.07	0.0556	0.0027	0.572	0.027	0.0751	0.0011	0.0255	0.00150	-0.13871	466.8	6.8	458	17	439	63	467	7	-1.92
Zircon-036	145.3	49.1	0.34	0.0628	0.0029	0.905	0.04	0.1054	0.0017	0.0347	0.00150	0.22098	646	10	653	23	695	60	646	10	1.07
Zircon-037	203.7	114.1	0.56	0.061	0.0028	0.843	0.039	0.1007	0.0014	0.0307	0.00110	0.15699	618.5	8.4	619	21	638	57	619	8	0.08
Zircon-038	224.3	188	0.84	0.0575	0.0029	0.611	0.03	0.0775	0.0012	0.024	0.00085	0.076379	481.4	7.2	483	19	516	59	481	7	0.33
Zircon-039	285.6	86.8	0.30	0.0851	0.0032	2.6	0.092	0.2226	0.0026	0.0653	0.00220	0.093996	1296	14	1300	26	1314	40	1314	40	0.31
Zircon-040	821	168	0.20	0.0776	0.0028	1.997	0.073	0.188	0.0021	0.0577	0.00170	0.68799	1110	12	1113	24	1137	43	1137	43	0.27
Zircon-041	218	26.94	0.12	0.0556	0.003	0.554	0.027	0.0728	0.0013	0.0231	0.00140	-0.019201	452.8	77	446	18	426	64	453	8	-1.52
Zircon-042	49	15.03	0.31	0.0806	0.0042	2 31	0.12	0.2089	0.0073	0.0633	0.00390	0 42389	1221	39	1207	39	1199	66	1199	66	-1.16
Zircon-043	62.1	49.8	0.80	0.0611	0.0056	0.662	0.054	0.0772	0.0017	0.0263	0.00120	0.083945	479.5	99	510	33	718	91	480	10	5.98
Zircon-044	82.8	25 52	0.31	0.0743	0.0038	1 757	0.089	0.1721	0.0031	0.0587	0.00340	0 2744	1023	17	1025	33	1039	69	1039	69	0.20
Zircon-045	538	375	0.70	0.057	0.0024	0.557	0.023	0.07149	0.00097	0.02276	0.000340	0.21952	445.1	5.8	449	15	487	45	445	6	0.20
Zircon-046	203.3	40.7	0.20	0.074	0.0024	1.74	0.33	0 1722	0.0057	0.057	0.03200	0.082974	1024	30	1022	81	1040	150	1040	150	-0.20
Zircon-047	365	312	0.85	0.0585	0.0028	0.575	0.025	0.0729	0.0007	0.02415	0.00088	-0.60204	453.6	62	461	16	571	61	154	6	1.61
Zircon 048	310	56.0	0.85	0.0585	0.0028	0.575	0.023	0.0723	0.001	0.02413	0.00088	-0.00204	455.0	0.2	258	14	371	71	252	5	1.01
Zircon 040	48.0	21.0	0.16	0.0520	0.0032	0.29	0.018	0.04003	0.00081	0.01484	0.00091	0.25715	1182	20	1165	25	1122	65	1122	5	1.74
Zircon-049	40.9	150.2	0.45	0.0785	0.004	2.10	0.11	0.2012	0.0050	0.004	0.00320	-0.13333	255.1	20	254	15	222	50	255	5	-1.40
Zircon-050	194	158.5	0.82	0.0515	0.0035	0.280	0.019	0.04037	0.0008	0.01268	0.00050	0.077931	255.1	10	254	15	323	28	255	5	-0.45
Zircon-051	445	58.2	0.15	0.0749	0.0029	1.892	0.08	0.1842	0.0055	0.0604	0.00220	0.50882	1090	18	1077	27	1000	42	1066	42	-1.21
Zircon-052	418	509	1.22	0.0564	0.0027	0.529	0.023	0.0683	0.001	0.02077	0.00066	-0.038398	426.1	6.2	431	16	464	51	426	6	1.14
Zircon-053	120.7	52.5	0.43	0.0811	0.0036	2.253	0.094	0.2022	0.003	0.0637	0.00250	-0.12682	1187	16	1195	29	1220	28	1220	58	0.67
Zircon-054	411	215.1	0.52	0.0707	0.0028	1.537	0.057	0.1574	0.002	0.0481	0.00150	-0.099297	942	11	944	23	965	38	942	11	0.21
Zircon-055	8/3	44.4	0.05	0.0723	0.0029	1.7	0.12	0.1722	0.0066	0.0561	0.00240	0.54179	1024	36	1009	39	994	60	994	60	-1.49
Zircon-056	130.2	59.3	0.46	0.078	0.0033	2.032	0.08	0.1895	0.0029	0.0592	0.00260	0.064403	1119	16	1125	27	1144	44	1144	44	0.53
Zircon-057	261	26.87	0.10	0.0612	0.0025	0.953	0.037	0.1129	0.0014	0.0341	0.00190	-0.12662	689.5	8.1	679	19	640	51	690	8	-1.55
Zircon-058	105.6	34.4	0.33	0.0531	0.0047	0.323	0.026	0.0446	0.0011	0.0131	0.00130	-0.19862	281.4	6.9	281	20	527	83	281	7	-0.14
Zircon-059	291.9	101.2	0.35	0.0709	0.0028	1.359	0.052	0.14	0.0021	0.0493	0.00170	0.46788	844	12	870	23	949	37	844	12	2.99
Zircon-060	118.7	95.7	0.81	0.0787	0.0035	2.078	0.094	0.1915	0.0026	0.0592	0.00210	0.38686	1130	14	1138	29	1161	53	1161	53	0.70
Zircon-061	85.8	60.7	0.71	0.0725	0.0032	1.719	0.075	0.171	0.0026	0.0519	0.00200	0.25685	1017	14	1013	28	1001	47	1001	47	-0.39
Zircon-062	260.9	181	0.69	0.1255	0.0043	6.47	0.22	0.3723	0.0042	0.1058	0.00310	0.39344	2040	20	2041	30	2035	34	2035	34	0.05
Zircon-063	209	76.4	0.37	0.0954	0.0035	3.59	0.13	0.2725	0.0047	0.0795	0.00280	0.51583	1553	24	1547	30	1534	30	1534	30	-0.39
Zircon-064	183.3	55.3	0.30	0.051	0.0033	0.292	0.019	0.04142	0.00088	0.01238	0.00085	0.15252	261.6	5.4	259	15	294	60	262	5	-1.00
Zircon-065	164.5	37.3	0.23	0.0584	0.0033	0.69	0.039	0.0844	0.0014	0.0261	0.00130	0.25617	522.6	8.3	530	23	568	77	523	8	1.40
Zircon-066	126.4	61.7	0.49	0.0757	0.0034	1.929	0.089	0.1842	0.0043	0.0587	0.00260	0.16439	1090	24	1088	32	1074	47	1074	47	-0.18
Zircon-067	106.1	43	0.41	0.0585	0.0037	0.64	0.12	0.0806	0.0073	0.0267	0.00230	0.36623	499	42	502	54	523	81	499	42	0.60
Zircon-068	916	499	0.54	0.0562	0.0021	0.572	0.022	0.07307	0.00086	0.0225	0.00081	0.26235	454.6	5.1	459	14	457	48	455	5	0.96
Zircon-069	88	46	0.52	0.0597	0.0035	0.886	0.051	0.1067	0.002	0.0334	0.00160	0.19233	653	12	641	28	580	78	653	12	-1.87
Zircon-070	297.3	58.6	0.20	0.0591	0.0026	0.753	0.033	0.0909	0.0012	0.028	0.00140	0.093165	560.7	7.1	569	19	578	57	561	7	1.46
Zircon-071	277.7	200.5	0.72	0.0549	0.0026	0.507	0.022	0.0661	0.0013	0.02041	0.00076	-0.048248	412.3	8	416	15	428	69	412	8	0.89
Zircon-072	142.5	102.3	0.72	0.0558	0.003	0.566	0.031	0.0728	0.0017	0.02218	0.00078	0.35212	453	10	454	20	436	55	453	10	0.22
Zircon-073	167.9	114.1	0.68	0.0858	0.0032	2.73	0.1	0.2283	0.0034	0.0685	0.00230	0.45563	1326	18	1334	28	1331	35	1331	35	0.60
Zircon-074	71.8	58.1	0.81	0.086	0.0043	2.71	0.14	0.2261	0.0036	0.0674	0.00240	0.406	1314	19	1325	37	1333	51	1333	51	0.83
Zircon-075	191	66.8	0.35	0.0587	0.0027	0.729	0.035	0.089	0.0018	0.0276	0.00140	0.40592	550	10	554	20	555	59	550	10	0.72
Zircon-076	403	155.5	0.39	0.098	0.0034	3.88	0.13	0.284	0.003	0.0804	0.00240	0.34086	1611	15	1610	28	1588	40	1588	40	-0.06
Zircon-077	211.7	82.9	0.39	0.078	0.0032	2.135	0.084	0.1968	0.0032	0.0552	0.00190	0.39085	1158	17	1159	28	1144	49	1144	49	0.09
Zircon-078	161.4	28.79	0.18	0.0584	0.0035	0.674	0.039	0.083	0.0014	0.0271	0.00180	0.0053621	514	8.3	520	23	558	69	514	8	1.15
Zircon-079	151	54.5	0.36	0.0734	0.0032	1.721	0.074	0.1683	0.0027	0.0493	0.00190	0.22696	1003	15	1014	28	1023	52	1023	52	1.08
Zircon-080	345	124.8	0.36	0.0759	0.0028	1.947	0.071	0.1851	0.0032	0.0607	0.00200	0.3621	1095	18	1097	25	1092	35	1092	35	0.18
Zircon-081	230	56	0.24	0.0804	0.003	2.382	0.091	0.2129	0.0034	0.0623	0.00250	0.51834	1244	18	1236	27	1210	31	1210	31	-0.65
Zircon-082	446	63.9	0.14	0.079	0.0029	2.208	0.081	0.2009	0.0028	0.0625	0.00220	0.45378	1180	15	1183	25	1173	38	1173	38	0.25
Zircon-083	165.2	94.8	0.57	0.0775	0.003	2.139	0.086	0.1981	0.0028	0.0576	0.00200	0.4771	1165	15	1159	28	1132	36	1132	36	-0.52
Zircon-084	261	36.8	0.14	0.0786	0.003	2.195	0.083	0.2008	0.0025	0.0599	0.00270	0.34383	1180	13	1178	27	1159	45	1159	45	-0.17
Zircon-085	109.7	68 2	0.62	0.0587	0.0037	0.752	0.044	0.0927	0.0017	0.0288	0.00120	-0.12174	571.4	9.7	566	26	554	75	571	10	-0.95
Zircon-086	456	281.2	0.62	0.0994	0.0035	3.96	0.13	0.2875	0.003	0.0823	0.00250	0.2087	1629	15	1627	29	1615	34	1615	34	-0.12
Zircon-087	52.7	33 73	0.64	0 1034	0.0041	4 24	0.17	0.296	0.0045	0.0906	0.00370	0 54832	1671	23	1684	35	1686	39	1686	39	0.77
	52.1	20.15	0.04	0.1054	0.0071	7.47	0.17	0.270	0.0045	0.0700	0.00070	0.04002	10/1	20	1004	55	. 500	57	1000	~/	0.77

Zircon-088	97.7	47.8	0.49	0.0756	0.0033	1.908	0.085	0.1821	0.0037	0.0556	0.00290	0.39902	1078	20	1081	29	1083	44	1083	44	0.28
Zircon-089	84.5	53.2	0.63	0.0546	0.0058	0.303	0.029	0.0404	0.0012	0.01299	0.00077	-0.052727	255.4	7.4	265	23	495	94	255	7	3.62
Zircon-090	221	51.3	0.23	0.0836	0.0031	2.62	0.11	0.226	0.0052	0.0621	0.00280	0.56888	1313	27	1304	31	1282	49	1282	49	-0.69
Zircon-091	23.6	5.15	0.22	0.0832	0.0063	2.56	0.27	0.224	0.013	0.068	0.01800	0.24471	1300	68	1275	71	1254	90	1254	90	-1.96
Zircon-092	142.1	30.6	0.22	0.052	0.004	0.316	0.023	0.0443	0.0011	0.0129	0.00110	-0.0010408	279.5	6.7	277	18	386	68	280	7	-0.90
Zircon-093	427	251	0.59	0.0574	0.0032	0.322	0.017	0.04086	0.00076	0.01337	0.00046	0.24197	258.1	4.7	283	13	515	74	258	5	8.80
Zircon-094	228.9	130.2	0.57	0.0573	0.0028	0.616	0.029	0.0791	0.0014	0.0237	0.00096	0.22161	490.4	8.1	486	18	492	68	490	8	-0.91
Zircon-095	315	60.4	0.19	0.0618	0.0026	0.912	0.042	0.1067	0.0022	0.0328	0.00150	0.19572	653	13	657	22	663	46	653	13	0.61
Zircon-096	103.2	439	4.25	0.0933	0.0039	3.33	0.13	0.2595	0.004	0.0731	0.00210	0.10771	1487	20	1486	31	1493	41	1493	41	-0.07
Zircon-097	153.9	54.7	0.36	0.0735	0.0032	1.717	0.072	0.1698	0.0026	0.0495	0.00200	0.10889	1011	14	1013	27	1018	60	1018	60	0.20
Zircon-098	174.8	62.9	0.36	0.0746	0.0035	1.729	0.073	0.1691	0.0024	0.05	0.00180	0.23061	1007	13	1017	27	1054	50	1054	50	0.98
Zircon-099	117	4.6	0.04	0.0819	0.0037	2.4	0.13	0.2123	0.0069	0.176	0.01500	0.42552	1241	37	1238	39	1248	41	1248	41	-0.24
Zircon-100	374	109.8	0.29	0.0612	0.0026	0.888	0.036	0.1056	0.0013	0.0315	0.00120	-0.01492	647.4	7.6	644	19	644	56	647	8	-0.53

1: U and Th concentrations are calculated employing NIST 610 as external calibrant and SiO2 as internal standard; See also Paton et al., 2011.

2: Isotope ratios are corrected for background, downhole fractionation and instrumental drift using annealed 91500 as bracketing standard. 2 standard error uncertainties are propagated according to Paton et al., 2010.

207Pb/206Pb ratios, ages and errors are calculated according to Petrus and Kamber, 2012.

Analyzed spots were 23 micrometers, using an analytical protocol modified from Solari et al., 2010.

Data measured employing a Thermo ICAP Qc ICPMS coupled to a Resonetics, Resolution M050 excimer laser workstation.

ANEXO 1 Geocronología U-Pb del área de Zacatecas-Arteaga

Formación Zacatecas

Z12-04 UTM WGS-84 X: 745010 Y: 2521299

							CORREC	FED RAT	IOS ²					CORRI	ECTED A	GES (I	Ma)		
	$U\left(ppm ight)^{1}$	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁶ Pb/ ² ³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Best age (Ma)	±2s	Disc %
Zircon 001	370	42.5	0.1149	0.1544	0.0076	8.43	0.75	0.401	0.014	0.7278	2173	74	2277	70	2382	71	2382	71	4.57
Zircon_002	444	323	0.7275	0.0506	0.0023	0.294	0.014	0.04186	0.0017	0.19113	264.4	4.5	261	11	247	71	264.4	4.5	-1.30
Zircon_003	130	54.2	0.4169	0.0532	0.0048	0.357	0.031	0.0472	0.0022	0.243985785	297.1	6.2	307	23	416	90	297.1	6.2	3.22
Zircon_004	385	384	0.9974	0.056	0.0023	0.612	0.025	0.0777	0.003	0.00838	482.1	8	484	15	497	43	482.1	8	0.39
Zircon_005	409	268	0.6553	0.0541	0.0024	0.307	0.014	0.04138	0.0017	0.20613	261.4	4.6	271	11	365	63	261.4	4.6	3.54
Zircon_006	274	262	0.9562	0.0522	0.0028	0.29	0.015	0.04039	0.0016	0.032987	255.2	4.8	258	12	349	65	255.2	4.8	1.09
Zircon_007	205.6	90.7	0.4411	0.0535	0.0034	0.309	0.019	0.04189	0.0018	0.318352578	264.5	5.1	276	14	414	72	264.5	5.1	4.17
Zircon_008	209	121.7	0.5823	0.0562	0.0037	0.361	0.024	0.0473	0.0022	0.318005638	297.7	6.3	312	18	459	70	297.7	6.3	4.58
Zircon_009	290	101.8	0.351	0.0528	0.0025	0.362	0.017	0.05037	0.0019	0.2049	316.8	5.4	316	13	300	53	316.8	5.4	-0.25
Zircon_010	408	116.5	0.2855	0.0768	0.0026	1.7	0.058	0.165	0.0067	0.43641	985	15	1008	22	1100	43	1100	43	2.28
Zircon_011	151	91.5	0.606	0.0816	0.0038	2.48	0.18	0.22	0.0081	0.999	1284	88	1267	57	1233	46	1233	46	-1.34
Zircon_012	327	219	0.6697	0.0519	0.0024	0.317	0.015	0.04401	0.0018	0.050893	2/7.6	4.6	279	12	348	80	277.6	4.6	0.50
Zircon_013	198	25.1	0.1208	0.0555	0.003	0.511	0.023	0.0425	0.002	0.36989	207.2	9.5	517	20	300 742	70	207.2	9.5	2.84
Zircon 015	365	192	0.5880	0.0050	0.0034	1.7	0.055	0.1746	0.0038	0.59625	1038	10	1008	20	937	54	1038	9.2	-2.98
Zircon 016	326	192	0.6074	0.0535	0.0024	0.309	0.017	0.04238	0.0012	0.364558754	267.6	5.3	273	13	416	67	267.6	5.3	1.98
Zircon 017	1020	889	0.8716	0.0525	0.002	0.322	0.02	0.0448	0.0019	0.86532	282	14	284	15	303	36	282	14	0.70
Zircon_018	916	368	0.4017	0.0531	0.002	0.365	0.016	0.05011	0.0021	0.67356	315.2	5.7	316	11	313	54	315.2	5.7	0.25
Zircon_019m	194	187	0.9639	0.0605	0.003	0.674	0.036	0.0827	0.0032	0.30485	512	11	522	22	596	61	512	11	1.92
Zircon_020	1378	1490	1.0813	0.0507	0.0034	0.268	0.031	0.03818	0.0016	0.1647	241.6	5.1	241	14	230	110	241.6	5.1	-0.25
Zircon_021	145	40	0.2759	0.0743	0.003	1.742	0.073	0.1714	0.0069	0.39192	1020	15	1023	27	1056	52	1056	52	0.29
Zircon_022	95.1	59.5	0.6257	0.1106	0.004	5.04	0.18	0.3263	0.012	0.077697	1820	27	1824	32	1813	48	1813	48	0.22
Zircon_023	50.8	43.4	0.8543	0.0859	0.0043	2.69	0.13	0.2313	0.0089	0.52061	1341	22	1331	33	1342	58	1342	58	-0.75
Zircon_024	354	121	0.3418	0.0521	0.0032	0.281	0.017	0.03912	0.0017	0.33295	247.3	4.8	251	14	343	59	247.3	4.8	1.47
Zircon_025	370	265	0.7162	0.0718	0.0024	1.598	0.056	0.1637	0.0064	0.12695	977	16	969	22	967	42	977	16	-0.83
Zircon_026	482	40	0.083	0.0651	0.0022	1.12	0.04	0.1249	0.0059	0.41159	759	11	763	19	783	49	759	11	0.52
Zircon_027	279	289	1.0358	0.0811	0.0034	1.359	0.092	0.1221	0.0032	0.1411	/43	35	8/8	30	1203	45	/43	35	15.38
Zircon_028	238	141.6	0.595	0.0558	0.0025	0.58	0.027	0.0754	0.0031	0.25//	468.8	/.5	465	18	469	46	468.8	1.5	-1.25
Zircon 021	226	49.2	0.5055	0.0800	0.0034	2.75	0.005	0.2299	0.0080	0.30908	1334	20	1344	29	1205	45	1304	45	2.27
Zircon 032	776	185	0.3790	0.0841	0.0028	2.85	0.095	0.2419	0.0085	0.29853	1412	20	1406	23	1395	44	1395	44	-0.43
Zircon 033	192	105.8	0.551	0.053	0.0034	0.381	0.027	0.0525	0.0022	0.17739	329.6	6.5	330	20	404	73	329.6	6.5	0.12
Zircon 034	33	2.19	0.0664	0.0688	0.0043	1.61	0.11	0.1696	0.012	0.15836	1010	20	971	42	930	100	1010	20	-4.02
Zircon 036	625	249	0.3984	0.0526	0.0021	0.381	0.015	0.05241	0.0021	0.14777	329.3	5.5	327	11	340	58	329.3	5.5	-0.70
Zircon_037	74.8	47.6	0.6364	0.0542	0.0055	0.301	0.031	0.04046	0.0017	0.26005	255.7	5.8	270	24	543	84	255.7	5.8	5.30
Zircon_038	753	187	0.2483	0.0623	0.0021	1.02	0.035	0.1185	0.0044	0.14241	722	10	714	18	685	35	722	10	-1.12
Zircon_040	169	42.4	0.2509	0.0861	0.0034	2.37	0.12	0.2023	0.01	0.53436	1188	37	1234	36	1337	56	1337	56	3.73
Zircon_041	204	122.8	0.602	0.0547	0.0029	0.558	0.031	0.0735	0.0029	0.21394	457.3	8.2	451	21	432	58	457.3	8.2	-1.40
Zircon_043	338	203	0.6006	0.0518	0.0033	0.245	0.016	0.03485	0.0014	0.29433	220.8	3.9	224	13	256	62	220.8	3.9	1.43
Zircon_044	485	326	0.6722	0.0517	0.0031	0.311	0.018	0.04355	0.0019	0.068704	274.8	5	277	14	296	85	274.8	5	0.79
Zircon_045	142	64.6	0.4549	0.0583	0.0049	0.354	0.038	0.046	0.0028	0.19607	289.8	7.2	315	26	550	110	289.8	7.2	8.00
Zircon_046	19.6	8.58	0.4378	0.0811	0.0063	2.32	0.18	0.2098	0.0085	0.08742	1228	27	1222	56	1240	110	1240	110	-0.49
Zircon_047	193	143	0.7409	0.0565	0.0027	0.66	0.03	0.0849	0.0033	0.466431095	525	11	514	18	48/	62	525	11	-2.14
Zircon_048	320	150	0.4065	0.0966	0.0037	0.59	0.24	0.044	0.0076	0.0000	278	80	470	19	1801	41	1801	41	40.85
Zircon_049	/20	408	0.3007	0.0043	0.0026	0.744	0.031	0.0841	0.0028	0.49314	1024	14	1027	19	1041	/1 50	1041	14	7.80
Zircon_051	215	138.7	0.4289	0.0730	0.0034	2 592	0.085	0.2247	0.0002	0.478595574	1307	21	1297	27	1294	38	1294	38	-0.77
Zircon 052	215	41 7	0.2512	0.0767	0.0029	1.979	0.094	0.1871	0.0068	0.18448	1106	27	1107	27	1122	48	1294	48	0.09
Zircon 053	380	110	0.2895	0.0738	0.0067	0.67	0.16	0.0643	0,0062	0.0191	402	46	515	74	990	130	402	46	21.94
Zircon 054	201	153.4	0.7632	0.0516	0.0031	0.316	0.02	0.04507	0.0017	0.2923	284.2	5.9	283	16	281	61	284.2	5.9	-0.42
Zircon 055	347	106.6	0.3072	0.0482	0.0023	0.325	0.015	0.0487	0.0016	0.060813	306.7	6.4	286	11	181	43	306.7	6.4	-7.24
Zircon_056	244	159	0.6516	0.0743	0.0029	0.886	0.066	0.086	0.0042	0.26027	532	40	643	33	968	52	532	40	17.26
Zircon_058	296	128	0.4324	0.0516	0.0027	0.356	0.018	0.04992	0.0021	0.011263	314	5.6	309	14	302	49	314	5.6	-1.62
Zircon_060	423	65.1	0.1539	0.06	0.0024	0.803	0.037	0.0974	0.0038	0.63437	599	14	597	21	616	59	599	14	-0.34
Zircon_61	95	34.6	0.3642	0.0658	0.0036	1.255	0.08	0.1356	0.0062	0.497464971	820	24	822	34	806	47	820	24	0.24
Zircon_62	358	280	0.7821	0.0603	0.0031	0.341	0.019	0.0421	0.0017	0.36793	265.8	6.8	300	15	575	59	265.8	6.8	11.40

Zircon_63	49.4	25.6 0	0.5182	0.0836	0.0046	2.39	0.14	0.2104	0.0084	0.24123	1230	25	1253	38	1284	73	1284	73	1.84
Zircon_64	164	36.1 0	0.2201	0.0772	0.0028	2.021	0.078	0.1902	0.0075	0.5848	1122	19	1120	26	1123	49	1123	49	-0.18
Zircon_65	339	250 0	0.7375	0.0512	0.0052	0.253	0.025	0.03596	0.0015	0.37833	227.8	4.3	228	20	260	120	227.8	4.3	0.09
Zircon_066	347	121.9 0	0.3513	0.093	0.003	3.34	0.13	0.2601	0.0092	0.71519	1490	35	1492	31	1478	33	1478	33	0.13
Zircon_067	356	250 0	0.7022	0.1098	0.0035	5.13	0.18	0.3328	0.011	0.14565	1852	30	1841	31	1810	37	1810	37	-0.60
Zircon_068	225	187 0	0.8311	0.0545	0.004	0.31	0.021	0.04201	0.0017	0.38376	265.3	5.9	273	16	352	86	265.3	5.9	2.82
Zircon_069	183.3	148.9 0	0.8123	0.0615	0.0028	0.873	0.042	0.1044	0.004	0.20861	640	12	638	22	632	61	640	12	-0.31
Zircon_070	170	109 0	0.6412	0.0538	0.0043	0.311	0.022	0.04257	0.0018	0.30882824	268.7	5.8	274	18	448	77	268.7	5.8	1.93
Zircon_071	499	213 0	0.4269	0.0728	0.0023	1.743	0.056	0.1725	0.006	0.64742	1026	15	1024	21	1000	48	1000	48	-0.20
Zircon_072	592	152 0	0.2568	0.0793	0.0026	2.39	0.08	0.2191	0.0075	0.28831	1277	19	1239	24	1181	46	1181	46	-3.07
Zircon_073	451	187.6	0.416	0.0764	0.0026	1.885	0.065	0.181	0.0065	0.4156	1072	17	1077	23	1096	39	1096	39	0.46
Zircon_074	225	177 0	0.7867	0.0743	0.0092	0.502	0.067	0.0448	0.0029	0.93984	282.5	7.5	376	41	960	190	282.5	7.5	24.87
Zircon_075	593	725 1	1.2226	0.052	0.0027	0.277	0.013	0.03827	0.0014	0.406444092	242.1	4.6	248	11	320	62	242.1	4.6	2.38
Zircon_076	283	136 0	0.4806	0.0531	0.0035	0.329	0.023	0.04457	0.0018	0.53108	281.1	4.8	288	17	373	62	281.1	4.8	2.40
Zircon_077	202.1	73.9 0	0.3657	0.0751	0.0029	1.953	0.073	0.1875	0.007	0.17289	1108	17	1104	25	1087	39	1087	39	-0.36
Zircon_078	147	89.3 0	0.6075	0.0922	0.0033	3.35	0.12	0.2623	0.0094	0.11144	1501	22	1491	30	1458	36	1458	36	-0.67
Zircon_079	640	138 0	0.2156	0.0659	0.0025	0.847	0.04	0.0941	0.0032	0.765090329	580	20	622	22	800	41	580	20	6.75
Zircon_080	743	670 0	0.9017	0.0506	0.002	0.2477	0.0097	0.03537	0.0014	0.2195	224	4.3	224.5	7.9	249	51	224	4.3	0.22
Zircon_081	212	209 0	0.9858	0.0521	0.0033	0.308	0.02	0.04255	0.0017	0.22044	268.6	5.6	271	16	375	71	268.6	5.6	0.89
Zircon_082	1494	208 0	0.1392	0.0738	0.0024	1.046	0.04	0.1015	0.0026	0.79941	623	12	727	19	1035	38	623	12	14.31
Zircon_083	306	435 1	1.4216	0.0579	0.0033	0.634	0.034	0.0795	0.0032	0.3478	493	12	501	21	589	58	493	12	1.60
Zircon_084	577	185 0	0.3206	0.0725	0.0024	1.722	0.058	0.172	0.0063	0.46279	1023	17	1016	22	999	45	999	45	-0.69
Zircon_085	450	161 0	0.3578	0.0731	0.0024	1.725	0.074	0.1722	0.0066	0.79804	1024	23	1017	27	1016	38	1016	38	-0.69
Zircon_086	238	202 0	0.8487	0.056	0.0038	0.29	0.02	0.03893	0.0016	0.297970717	246.2	5	257	16	454	80	246.2	5	4.20
Zircon_087	37.8	11.52 0	0.3048	0.0703	0.005	1.242	0.097	0.1285	0.0045	0.368679048	779	21	815	42	1105	66	779	21	4.42
Zircon_088	200.8	187 0	0.9313	0.1128	0.0037	5.15	0.18	0.333	0.012	0.51754	1853	26	1851	30	1838	26	1838	26	-0.11
Zircon_089	774	590 0	0.7623	0.0551	0.0079	0.492	0.084	0.0649	0.0033	0.54657	405	10	406	47	430	200	405	10	0.25
Zircon_090	960	321 0	0.3344	0.0805	0.0034	1.61	0.16	0.1453	0.007	0.63596	875	48	972	51	1235	67	1235	67	9.98
Zircon_091	2070	212.8 0	0.1028	0.0533	0.0018	0.376	0.013	0.05139	0.0018	0.37093	323	4.7	324.2	9.4	334	37	323	4.7	0.37
Zircon_092	395	11.4 0	0.0289	0.2098	0.0067	16.44	0.64	0.57	0.022	0.48873	2914	48	2903	35	2906	33	2906	33	-0.38
Zircon_093	601	650 1	1.0815	0.0513	0.0027	0.306	0.018	0.0439	0.0021	0.44068	277	11	270	14	322	77	277	11	-2.59
Zircon_094	1750	2160 1	1.2343	0.052	0.0022	0.25	0.011	0.03531	0.0013	0.19464	223.7	4.8	226.2	8.7	269	57	223.7	4.8	1.11
Zircon_095	349	333 0	0.9542	0.0578	0.0028	0.306	0.016	0.0394	0.0017	0.28915	249.2	7.6	270	12	490	69	249.2	7.6	7.70
Zircon_096	365	75 0	0.2055	0.0833	0.003	1.43	0.062	0.1237	0.0043	0.50958	752	19	901	25	1278	43	1278	43	16.54
Zircon_099	571	258 0	0.4518	0.0684	0.0026	0.846	0.051	0.089	0.0052	0.57852	549	24	621	26	886	39	549	24	11.59
Zircon_100	234	459 1	1.9615	0.0593	0.0026	0.719	0.03	0.0884	0.0034	0.35827	545.8	9.5	550	18	617	39	545.8	9.5	0.76

2: 2 sigma uncertainties propagated according to Paton et al., 2010, Geochemistry, Geophysics, Geosystems

207Pb/206Pb ratios, ages and errors are calculated according to Petrus and Kamber, 2012, Geostandards Geoanalytical Research

Analyzed spots were 23 micrometers, using an analytical protocol modified from Solari et al., 2010, Geostandards Geoanalytical Research. Data measured employing a Thermo Xseries QICPMS coupled to a Resonetics, Resolution M050 excimer laser workstation.

Formación Zacatecas

Z12-05	τ	TM WGS-84		X: 745051	Y: 2522135																					
						(ORREC	FED RATI	os							CORRI	ECTED AGES (N	Aa)				1000				
	U (ppm)	Th (ppm) 7	ſħ/U	207Pb/206P b	±1s	207Pb/235 U	±1s	206Pb/23 8U	±1s	208Pb/232Th	±1s	Rho	206Pb/2 38U	±1s	207Pb/2 35U	±1s	207Pb/206Pb	±1s	Best age (Ma)	±1s	% disc	238U/2 06Pb	1s	207Pb/2 06Pb	1s	rTW
Zircon_001	167	39 0	.2335	0.0753	0.00145	1.813	0.0435	0.1766	0.003	0.0508	0.002	0.228	1048	16.5	1053	16	1065	19.5	1065	19.5	0.47483	5.6625	0.0961922	0.0753	0.00145	0.1976.
Zircon_002	96	18 0	.1875	0.0647	0.00205	0.871	0.0395	0.0974	0.00215	0.0318	0.002	0.291	599	12.5	640	20	815	38	599	12.5	6.40625	10.267	0.22663165	0.0647	0.00205	0.1845
Zircon_003	90	41 0	.4556	0.0838	0.00165	2.59	0.065	0.225	0.0037	0.0685	0.003	0.087	1308	19.5	1299	19	1264	27	1264	27	-0.6928	4.4444	0.0730864	0.0838	0.00165	0.25426
Zircon_004	42	36 0	.8571	0.0718	0.0025	1.54	0.06	0.1547	0.0029	0.0478	0.003	0.481	927	16	957	26	990	36.5	927	16	3.1348	6.4641	0.1211762	0.0718	0.0025	0.29596
Zircon_005	44	27 0	.6136	0.0752	0.002	1.84	0.06	0.1745	0.003	0.0532	0.003	0.011	1037	16.5	1069	22.5	1112	35.5	1112	35.5	2.99345	5.7307	0.09852135	0.0752	0.002	0.30597
Zircon_006	77	33 0	.4286	0.0798	0.0019	2.24	0.065	0.2042	0.0035	0.056	0.003	0.366	1198	18.5	1193	20.5	1200	23.5	1200	23.5	-0.4191	4.8972	0.0839376	0.0798	0.0019	0.024628
Zircon_007	112	49 0	.4375	0.078	0.0015	2.11	0.055	0.1943	0.0035	0.0569	0.003	0.423	1144	19	1149	18.5	1172	23.5	1172	23.5	0.43516	5.1467	0.0927091	0.078	0.0015	0.18704
Zircon_008	299	136 0	.4548	0.0584	0.00165	0.563	0.018	0.0715	0.0012	0.0243	0.001	0.366	445	7	453	12.5	556	44	445	7	1.766	13.986	0.2347303	0.0584	0.00165	-0.074814
Zircon_009	243	61	0.251	0.0776	0.0018	1.929	0.046	0.1825	0.00375	0.063	0.007	0.09	1081	20.5	1090	16.5	1118	35.5	1118	35.5	0.82569	5.4795	0.1125915	0.0776	0.0018	0.2490
Zircon_010	143	46 0	.3217	0.0727	0.0014	1.622	0.0415	0.163	0.00275	0.0484	0.002	0.175	973	15.5	978	16	1012	25	973	15.5	0.51125	6.135	0.1035041	0.0727	0.0014	0.31597
Zircon_011	312	48 0	.1538	0.0699	0.00135	1.44	0.036	0.152	0.003	0.0452	0.002	0.251	912	17	905	15	917	24.5	912	17	-0.7735	6.5789	0.12984765	0.0699	0.00135	0.11434
Zircon_012	91	37 0	.4066	0.0792	0.00165	2.16	0.055	0.198	0.0033	0.057	0.003	0.387	1164	18	1172	18.5	1185	30	1185	30	0.68259	5.0505	0.0841751	0.0792	0.00165	0.039414
Zircon_013	410	158 0	.3854	0.0778	0.0013	2.026	0.048	0.1917	0.0031	0.0571	0.003	0.076	1131	16.5	1124	16	1136	18.5	1136	18.5	-0.6228	5.2165	0.0843563	0.0778	0.0013	0.3769
Zircon_014	180	30 0	.1667	0.0756	0.0013	1.89	0.046	0.1831	0.00295	0.0552	0.003	0.182	1084	16	1077	16	1095	16.5	1095	16.5	-0.65	5.4615	0.08799245	0.0756	0.0013	0.15875

Zircon_015	147	106 0.7211	0.0777	0.0016	2.02	0.055	0.1908	0.00365	0.0555	0.003 0.7	03	1126	19.5	1121	18.5	1124	23.5	1124	23.5	-0.446	5.2411	0.10026195	0.0777	0.0016	0.40515
Zircon 016	225	24 0.1067	0.0736	0.0015	1.635	0.0425	0.1644	0.00275	0.0533	0.003 0.2	59	981	15	986	16	1028	26	1028	15	0.5071	6.0827	0.10174875	0.0736	0.0015	0.19557
Zircon 017	342	74 0.2164	0.0768	0.00145	1.923	0.046	0.1836	0.003	0.0562	0.003 0.6	82	1087	16.5	1088	15.5	1123	23.5	1123	23.5	0.09191	5,4466	0.0889971	0.0768	0.00145	-0.4853
Zircon 018	179	44 0.2458	0.0744	0.0014	1.693	0.048	0.168	0.00315	0.0506	0.003 0.6	61	1001	17.5	1011	17.5	1058	20	1058	20	0.98912	5.9524	0.11160715	0.0744	0.0014	0.47126
Zircon 019	154	92 0.5974	0.0622	0.0015	0.868	0.0255	0.1017	0.0018	0.0298	0.001 0.0	77	625	10.5	633	13	688	29	625	10.5	1.26382	9.8328	0.1740326	0.0622	0.0015	0.32508
Zircon 020	646	109 0 1687	0.08	0.0013	2 102	0.0495	0.192	0.00315	0.0633	0.003 0.4	05	1132	17	1149	17	1192	22	1192	22	1 47955	5 2083	0.0854492	0.08	0.0013	0 18741
Zircon_021	197	67 0 3401	0.061	0.00225	0.497	0.0255	0.0592	0.0012	0.0033	0.001 0.0	79	371	7.5	408	15.5	609	41.5	371	7.5	9.06863	16 892	0.3424032	0.061	0.00225	0.080572
Zircon_021	60	26 0 5217	0.0055	0.00225	2.64	0.0255	0.0372	0.0072	0.0227	0.002 0.1	20	1207	20	1211	20	1224	22	1224	22	0.20511	1 1 1 1 6 1	0.0751295	0.001	0.00225	0.000372
Zircon_022	286	30 0.3217 86 0.2007	0.0855	0.00125	2.04	0.07	0.2249	0.0058	0.0071	1E 02 01	39 46	440	20	451	10.5	545	25	1554	23	2 42002	4.4404	0.0751285	0.0855	0.0013	0.20442
ZIICOII_023	280	80 0.3007	0.058	0.00155	0.501	0.010	0.0700	0.0013	0.0194	0.002 0.1	40	440	0	451	10.5	545	25.5	440	0	2.43902	14.104	0.20081383	0.058	0.00155	0.5452
Zircon_024	184	69 0.375	0.0678	0.00155	1.312	0.048	0.1390	0.0038	0.0419	0.002 0.1	/4	845	22	857	22.5	897	27.5	845	22	1.05501	7.1055	0.1949902	0.0078	0.00155	0.1704
Zircon_025	737	244 0.3311	0.0513	0.001	0.251	0.007	0.0359	0.0006	0.0112	6E-04 0.3	49 :	227.6	3.75	227	5.5	235	34	227.6	3.75	-0.2643	27.855	0.46554575	0.0513	0.001	0.031015
Zircon_026	73	17 0.2329	0.0551	0.0021	0.586	0.0225	0.0761	0.0014	0.0234	0.002 0.0	55	473	8.5	466	14.5	553	46	473	8.5	-1.5021	13.141	0.2417457	0.0551	0.0021	0.26803
Zircon_027	293	178 0.6075	0.0771	0.00135	2.041	0.0495	0.1902	0.0031	0.058	0.003 0.2	67	1122	16.5	1129	16.5	1137	19	1137	19	0.62002	5.2576	0.0856921	0.0771	0.00135	0.19353
Zircon_028	169	21 0.1243	0.073	0.0015	1.89	0.075	0.189	0.005	0.0491	0.003 0.6	23	1116	27.5	1073	24.5	1010	24	1010	24	-4.0075	5.291	0.1399737	0.073	0.0015	0.071941
Zircon_030	200	76 0.38	0.0759	0.00135	1.98	0.0475	0.1884	0.00295	0.0551	0.003 0.1	38	1113	16	1108	16	1091	21	1091	21	-0.4513	5.3079	0.08311135	0.0759	0.00135	0.21077
Zircon_031	96	23 0.2396	0.071	0.0015	1.512	0.04	0.1548	0.0035	0.0505	0.002 0.2	69	928	20	934	17.5	961	29.5	928	20	0.6424	6.4599	0.14605825	0.071	0.0015	0.1453
Zircon_032	183	134 0.7322	0.0728	0.0016	1.6	0.05	0.159	0.0035	0.0549	0.003 0.4	16	951	19	969	19.5	1011	22	951	19	1.85759	6.2893	0.1384439	0.0728	0.0016	-0.15133
Zircon_033	152	71 0.4671	0.0771	0.0014	2.01	0.05	0.1877	0.0031	0.057	0.003 0.4	04	1109	16.5	1117	15.5	1157	21.5	1157	21.5	0.7162	5.3277	0.08798995	0.0771	0.0014 ·	-0.073943
Zircon_034	272	26 0.0956	0.0728	0.0013	1.724	0.0415	0.1712	0.0028	0.0507	0.003 0.1	73	1019	15.5	1017	15.5	1013	20	1013	20	-0.1967	5.8411	0.09553235	0.0728	0.0013	0.31565
Zircon_035	91	44 0.4835	0.0576	0.002	0.396	0.0155	0.0497	0.0009	0.0179	9E-04 0.4	63	313	5.5	337	11	594	38.5	313	5.5	7.12166	20.121	0.3643592	0.0576	0.002	0.43983
Zircon_036	80	31 0.3875	0.0738	0.00265	1.63	0.07	0.1611	0.00285	0.0494	0.004 0.4	12	963	16	980	24	1041	38.5	1041	16	1.73469	6.2073	0.109813	0.0738	0.00265	0.35323
Zircon_037	64	24 0.375	0.0797	0.00195	2.15	0.065	0.1956	0.0038	0.0595	0.003 0.3	17	1151	20.5	1172	20	1202	24	1202	24	1.79181	5.1125	0.0993221	0.0797	0.00195	0.25641
Zircon 039	185	66 0.3568	0.0735	0.00145	1.695	0.045	0.1669	0.00275	0.0503	0.003 0.4	64	995	15	1010	16.5	1028	21	1028	21	1.48515	5,9916	0.0987234	0.0735	0.00145	-0.15434
Zircon 040	184	161 0.875	0.0572	0.00385	0.566	0.0385	0.0716	0.00135	0.0215	0.002 0.0	44	446	8	455	21	510	80	446	8	1.97802	13,966	0.2633345	0.0572	0.00385	0.23491
Zircon 041	103	53 0 5146	0.0803	0.0018	2 22	0.065	0.2012	0.0034	0.0615	0.003 0.4	77	1182	18.5	1191	20	1189	19	1189	19	0.75567	4 9702	0.0839891	0.0803	0.0018	0 35317
Zircon 042	211	155 0.7346	0.0529	0.0018	0.368	0.0135	0.0497	0.00085	0.00151	8E-04 04	 66	312	5	317	95	399	34.5	312	5	1 57729	20.121	0 344117	0.0529	0.0018	0 34864
Zircon 043	84	28 0.3333	0.0704	0.0024	0.452	0.0195	0.0462	0.00085	0.0177	0.001 0.1	71	201	5	391	12.5	081	30	201	5	23 622	21.645	0.3082300	0.0704	0.0024	0.073307
Zircon_044	34	28 0.5555	0.0771	0.0024	2.15	0.015	0.1076	0.00085	0.0177	0.001 0.2	25	1166	105	1162	20	1175	27.5	1175	27.5	0.259	5 0607	0.09925795	0.0771	0.0024	0.0755076
Zircon_044	240	21 0.3	0.0772	0.00195	1 721	0.005	0.1970	0.00343	0.0001	0.003 0.0	22	1000	16.5	1022	16.5	1044	27.5	1044	27.5	-0.236	5.0007	0.06633763	0.0772	0.00195	0.33070
ZIICOII_045	240	91 0.3792	0.0732	0.00143	1.721	0.047	0.1077	0.0027	0.0485	0.005 0.1	22	1000	15	1022	10.5	1044	25.5	1044	23.5	2.13204	3.903	0.09000385	0.0752	0.00145	0.20549
Zircon_046	505	380 0.7674	0.0503	0.00115	0.309	0.0085	0.0434	0.0007	0.0131	0E-04 0.0	1/ .	275.8	4.55	275	0.5	230	34	2/5.8	4.35	-0.295	23.041	0.3/1030/	0.0503	0.00115	0.24271
Zircon_047	128	40 0.3125	0.0881	0.00155	2.99	0.115	0.238	0.007	0.0722	0.004 0.2	99	13/4	39	1404	54	1417	23.5	1417	23.5	2.136/5	4.2017	0.12357885	0.0881	0.00155	0.118/4
Zircon_048	105	167 1.5905	0.0586	0.00205	0.658	0.026	0.0784	0.00135	0.0243	0.001 0.5	82	487	8	517	16	613	40.5	487	8	5.80271	12.755	0.21963505	0.0586	0.00205	-0.21848
Zircon_050	200	93 0.465	0.078	0.0016	2.17	0.055	0.1948	0.00325	0.0585	0.003 0.0	48	1147	17.5	1170	18	1155	23.5	1155	23.5	1.96581	5.1335	0.0856457	0.078	0.0016	0.25464
Zircon_051	158	24 0.1519	0.0627	0.00155	0.831	0.0395	0.0925	0.00245	0.0361	0.002 0.5	57	570	14.5	613	19.5	722	32	570	14.5	7.01468	10.811	0.2863404	0.0627	0.00155	0.44497
Zircon_052	84	31 0.369	0.0785	0.00165	2.14	0.055	0.1902	0.0031	0.0614	0.003 0.6	34	1122	16.5	1161	17.5	1190	16	1190	16	3.35917	5.2576	0.0856921	0.0785	0.00165	0.51555
Zircon_053	117	90 0.7692	0.0765	0.00185	2.05	0.06	0.1901	0.00325	0.0543	0.003 0.5	84	1122	17.5	1131	18.5	1071	23	1071	23	0.79576	5.2604	0.089933	0.0765	0.00185	0.3924
Zircon_054	88	133 1.5114	0.0698	0.0021	0.682	0.0235	0.0683	0.0012	0.0229	0.001 0.1	55	426	7.5	526	14	984	43	426	7.5	19.0114	14.641	0.2572408	0.0698	0.0021	0.23734
Zircon_055	249	145 0.5823	0.0609	0.0014	0.589	0.0165	0.0678	0.00115	0.0227	0.001 0.6	05	423	7	470	10.5	658	35	423	7	10	14.749	0.25017185	0.0609	0.0014	0.51772
Zircon_056	787	177 0.2249	0.0753	0.0012	1.72	0.041	0.1632	0.00275	0.0491	0.002 0.7	07	975	15	1016	15	1067	21.5	1067	15	4.03543	6.1275	0.10325055	0.0753	0.0012	0.70649
Zircon_057	192	91 0.474	0.0854	0.00155	2.64	0.065	0.2217	0.00365	0.0652	0.003 0.2	48	1291	19	1315	18	1317	17	1317	17	1.8251	4.5106	0.0742611	0.0854	0.00155	0.16052
Zircon_058	93	38 0.4086	0.0759	0.00155	1.94	0.06	0.1815	0.004	0.0575	0.003 0.7	13	1075	22.5	1102	23	1122	22	1122	22	2.45009	5.5096	0.1214246	0.0759	0.00155	0.47438
Zircon_059	125	36 0.288	0.0789	0.00215	1.88	0.07	0.1704	0.00325	0.0551	0.003 0.5	21	1014	17.5	1071	22.5	1191	33.5	1191	33.5	5.32213	5.8685	0.1119294	0.0789	0.00215	-0.22484
Zircon_060	452	150 0.3319	0.0777	0.00135	2.076	0.049	0.1916	0.00305	0.0544	0.003 0.0	31	1130	16.5	1140	16.5	1127	15	1127	15	0.87719	5.2192	0.08308235	0.0777	0.00135	0.31302
Zircon_61	145	132 0.9103	0.0581	0.0014	0.605	0.019	0.0764	0.0015	0.0226	0.001 0.1	94	475	9	479	12	565	28.5	475	9	0.83507	13.089	0.2569831	0.0581	0.0014	0.17139
Zircon_62	60	14 0.2333	0.0897	0.00205	2.4	0.07	0.1972	0.00415	0.0633	0.004 0.4	84	1160	22	1241	19.5	1433	31	1433	31	6.52699	5.071	0.10671715	0.0897	0.00205	0.061312
Zircon_63	229	72 0.3144	0.072	0.00145	1.636	0.0415	0.1658	0.0029	0.0533	0.003 0.0	47	989	16	983	16	997	23.5	989	16	-0.6104	6.0314	0.1054943	0.072	0.00145	0.38174
Zircon 64	110	111 1.0091	0.0632	0.00175	0.655	0.044	0.0789	0.0031	0.0243	0.002 0.1	98	489	18	510	22.5	605	38.5	489	18	4.11765	12.674	0.49797515	0.0632	0.00175	0.090496
Zircon 65	476	201 0.4223	0.0606	0.00105	0.861	0.0215	0.1034	0.0018	0.0326	0.002 0	43	634	10.5	633	11	641	19.5	634	10.5	-0.158	9.6712	0.1683571	0.0606	0.00105	0.1172
Zircon 066	73	26 0.3562	0.0787	0.0018	2.05	0.06	0.1909	0.00325	0.058	0.003 0.3	99	1126	17.5	1138	21.5	1195	30	1195	30	1.05448	5,2383	0.08918085	0.0787	0.0018	-0.043819
Zircon 067	65	33 0.5077	0.0728	0.00175	1.505	0.046	0.1525	0.00265	0.0494	0.003 0.3	45	915	15	936	17.5	1028	30	915	15	2.24359	6.5574	0.11394785	0.0728	0.00175	-0.038293
Zircon 069	76	29 0.3816	0.0734	0.0015	1.89	0.055	0.1854	0.00355	0.058	0.003 0.6	58	1096	19	1076	19.5	1070	30.5	1070	30.5	-1.8587	5.3937	0.10327825	0.0734	0.0015	0.3457
Zircon 070	120	55 0.4583	0.0805	0.00155	2.08	0.055	0 1919	0.00315	0.0582	0.003 0.6	21	1132	17	1148	17.5	1184	27.5	1184	27.5	1 39373	5 211	0.0855383	0.0805	0.00155	0 33087
Zircon 071	1030	053 0.0252	0.0524	0.0011	0.271	0.0075	0.0383	0.00065	0.0125	6E 04 0.0	07	242.2	4.05	243	6	340	27.0	242.2	4.05	0 32022	26.11	0.44311435	0.0524	0.0011	0.24015
Zircon_072	100	50 0.5	0.0734	0.00165	1.686	0.047	0.1676	0.00005	0.0515	0.003 0.1	83	999	15.5	1001	17.5	1063	28	1063	15.5	0.1998	5 9666	0.09968045	0.0734	0.00165	0.17508
Zircon_072	215	80 0 2721	0.0794	0.00105	2.11	0.047	0.1071	0.00215	0.0515	0.002 0.2	22	1160	17	1152	17.5	1171	16.5	1171	16.5	0.6071	5.0726	0.0910844	0.0794	0.00105	0.12474
Zircon_073	215	80 0.3721	0.0757	0.0014	2.11	0.05	0.1971	0.00315	0.0595	0.003 0.2	22	1002	17	1155	1/	11/1	16.5	11/1	10.5	-0.00/1	5.0736	0.0810844	0.0757	0.0014	0.13474
Zircon_074	194	66 0.3402	0.0757	0.00135	1.8/	0.0465	0.1828	0.00305	0.0567	0.003 0.4	05	1082	10.5	1070	10.5	1084	15.5	1084	15.5	-1.1215	5.4705	0.0912741	0.0757	0.00135	0.081912
Zircon_0/5	191	86 0.4503	0.0779	0.0016	1.96	0.05	0.18/4	0.00315	0.0565	0.003 0.1	27	1107	1/	1104	16.5	1138	25.5	1138	25.5	-0.2/1/	5.3362	0.08969565	0.0779	0.0016	0.29776
Zircon_076	418	109 0.2608	0.0831	0.0043	2.43	0.19	0.2162	0.00475	0.06	0.012 0.1	17	1262	24.5	1262	38.5	1270	65	1270	65	0	4.6253	0.1016207	0.0831	0.0043	-0.39372
Zircon_077	202	102 0.505	0.0767	0.00145	1.96	0.05	0.1864	0.00325	0.0558	0.003 0.4	64	1102	17.5	1099	18	1128	21	1128	21	-0.273	5.3648	0.09353875	0.0767	0.00145 -	-0.020626
Zircon_078	37	34 0.9189	0.0766	0.00225	1.94	0.065	0.1872	0.0035	0.0554	0.003 0.0	58	1106	19	1091	23	1055	36	1055	36	-1.3749	5.3419	0.0998749	0.0766	0.00225	0.2515
Zircon_079	103	141 1.3689	0.0568	0.0022	0.547	0.022	0.0709	0.00125	0.0211	0.001 0.4	38	441	7.5	444	15	515	38	441	7.5	0.67568	14.104	0.24866665	0.0568	0.0022	0.34678
Zircon_080	299	68 0.2274	0.0692	0.00115	1.342	0.031	0.1429	0.00225	0.0432	0.002 0.3	44	861	13	864	12.5	937	21.5	861	13	0.34722	6.9979	0.1101839	0.0692	0.00115	0.041869
Zircon_081	190	28 0.1474	0.0651	0.0024	0.796	0.036	0.0896	0.00165	0.0536	0.003 0.4	07	553	9.5	594	17.5	786	47	553	9.5	6.90236	11.161	0.20552655	0.0651	0.0024	0.49528
Zircon_082	284	27 0.0951	0.0579	0.0012	0.577	0.016	0.0743	0.0013	0.0377	0.003 0.3	84	462	8	465	10	537	25.5	462	8	0.64516	13.459	0.23548635	0.0579	0.0012	0.005078
Zircon_083	125	43 0.344	0.0775	0.00145	2.005	0.0465	0.1896	0.0035	0.0678	0.003 0	46	1119	19	1116	17	1133	26	1133	26	-0.2688	5.2743	0.0973624	0.0775	0.00145	0.010832
Zircon_084	186	42 0.2258	0.0754	0.00145	1.82	0.055	0.1787	0.00375	0.0542	0.003 0.7	75	1059	20.5	1052	21	1085	22.5	1085	22.5	-0.6654	5.596	0.11743085	0.0754	0.00145	-0.21106
Zircon_085	173	169 0.9769	0.0561	0.00145	0.545	0.0195	0.0719	0.0019	0.023	0.002 0.2	05	448	12	444	12.5	475	33	448	12	-0.9009	13.908	0.36753255	0.0561	0.00145	0.4173

Zircon_086	211	114 0.5403	0.072	0.0013	1.547	0.038	0.159	0.0026	0.0502	0.002	0.133	95	51 1	14.5	948	15	99	0 1	5.5	951	14.5	-0.3165	6.2893	0.10284405	0.072	0.0013	0.30913
Zircon_087	208	300 1.4423	0.0545	0.00145	0.439	0.0145	0.0582	0.00115	0.0181	9E-04	0.332	30	54	7	369	10.5	43	4 3	4.5	364	7	1.35501	17.182	0.33950945	0.0545	0.00145	0.10156
Zircon_088	410	126 0.3073	0.0732	0.00125	1.63	0.055	0.1639	0.0044	0.0506	0.002	0.323	93	78	25	980	24.5	106	6 2	5.5	1066	25	0.20408	6.1013	0.1637928	0.0732	0.00125	0.17083
Zircon_089	73	25 0.3425	0.0741	0.00345	0.43	0.021	0.043	0.0008	0.0221	0.001	0.381	271	.3 4	4.85	366	16	112	0	60	271.3	4.85	25.8743	23.256	0.4326663	0.0741	0.00345	0.34484
Zircon_090	95	40 0.4211	0.0818	0.00385	2.16	0.12	0.1967	0.0036	0.062	0.007	0.672	115	57 1	19.5	1165	31.5	123	0	60	1230	60	0.6867	5.0839	0.09304515	0.0818	0.00385	-0.29447
Zircon_091	170	76 0.4471	0.0545	0.002	0.323	0.012	0.0436	0.0008	0.0144	8E-04	0.494	275	.4 4	4.95	283	9	49	7 3	6.5	275.4	4.95	2.68551	22.936	0.42084	0.0545	0.002	0.46029
Zircon_092	143	68 0.4755	0.0779	0.00145	2.04	0.05	0.1932	0.00325	0.057	0.003	0.414	113	38 1	17.5	1132	16	114	8	21	1148	21	-0.53	5.176	0.0870701	0.0779	0.00145	0.17239
Zircon_093	70	58 0.8286	0.0794	0.00175	2.17	0.06	0.1975	0.00335	0.0609	0.003	0.613	110	52	18	1169	19	119	5	25	1195	25	0.5988	5.0633	0.08588365	0.0794	0.00175	0.38707
Zircon_094	484	48 0.0992	0.0578	0.00125	0.55	0.015	0.0708	0.0012	0.0242	0.001	0.171	44	41	7	447	10	51	4 2	8.5	441	7	1.34228	14.124	0.2393948	0.0578	0.00125	0.19527
Zircon_095	352	86 0.2443	0.0826	0.00175	1.538	0.042	0.1361	0.0025	0.0528	0.003	0.568	82	23	14	945	16.5	125	3	23	1253	14	12.9101	7.3475	0.1349658	0.0826	0.00175	0.060427
Zircon_096	193	108 0.5596	0.0786	0.0014	2.09	0.05	0.195	0.0032	0.0602	0.003	0.444	114	48 1	17.5	1144	17.5	116	5	20	1165	20	-0.3497	5.1282	0.08415515	0.0786	0.0014	0.072943
Zircon_097	72	44 0.6111	0.0589	0.0022	0.353	0.0155	0.0429	0.00085	0.0149	7E-04	0.169	27	71	5.5	305	11.5	64	5 4	6.5	271	5.5	11.1475	23.31	0.4618536	0.0589	0.0022	0.19611
Zircon_098	119	60 0.5042	0.058	0.0021	0.61	0.0245	0.0781	0.00135	0.0219	0.001	0.082	48	35	8	491	15.5	52	6 4	1.5	485	8	1.222	12.804	0.22132565	0.058	0.0021	0.11785
Zircon_099	216	160 0.7407	0.0722	0.0014	1.633	0.0415	0.1645	0.0027	0.0492	0.002	0.291	98	32	15	982	16	97	9	18	982	15	0	6.079	0.09977735	0.0722	0.0014	0.14661
Zircon_100	125	20 0.16	0.0773	0.0017	1.89	0.055	0.1796	0.00295	0.0545	0.003	0.236	100	55	16	1082	18	116	9	26	1169	26	1.57116	5.5679	0.0914554	0.0773	0.0017	0.06786

Formación Zacatecas

Z12-06 UTM WGS-84

Z12-06	τ	UTM WGS-8	4	X: 745036	Y: 2522038														
							CORRECT	FED RAT	IOS ²					CORRE	ECTED A	GES (Ma)		
	U (ppm)1	Th (ppm)1	Th/U	²⁰⁷ Pb ^{/206} Pb	±2s abs	²⁰⁷ Pb ^{/235} U	±2s abs	²⁰⁶ Pb ^{/238}	±2s abs	Rho	²⁰⁶ Pb ^{/2}	±2s	²⁰⁷ Pb ^{/235}	±2s	²⁰⁷ Pb ^{/206}	±2s	Best age (Ma)	±2s	Disc
	• (F F)-			10 10		10 0		U			³⁸ U		U		Pb				%
Zircon 001	109	31	0 2844	0.0753	0.0042	1.95	0.13	0 1866	0 0047	0 377813505	1103	26	1097	46	1073	86	1103.0	26	-0.55
Zircon 002	142	30	0.2113	0.0658	0.0036	1.431	0.092	0.1517	0.004	0.56983	911	22	901	40	822	74	911.0	22	-1.11
Zircon 003	547	18	0.0329	0.0755	0.0038	2.21	0.15	0.2105	0.0055	0.009774	1232	29	1184	45	1096	57	1232.0	29	-4.05
Zircon 004	52	5	0.0962	0.0796	0.0056	2	0.16	0.1878	0.0059	0.2222	1109	32	1117	55	1211	81	1109.0	32	0.72
Zircon 005	166	26	0.1566	0.0707	0.0038	1.61	0.11	0.1638	0.0043	0.34428	978	24	973	42	937	70	978.0	24	-0.51
Zircon 006	130	54	0.4154	0.0724	0.0042	1.82	0.12	0.1798	0.0044	0.0047487	1066	24	1051	44	1032	63	1066.0	24	-1.43
Zircon 007	104	46	0.4423	0.0777	0.0043	2.32	0.16	0.2077	0.0074	0.5237	1217	40	1214	53	1132	77	1217.0	40	-0.25
Zircon 008	173	70	0.4046	0.0786	0.0042	2.33	0.15	0.2101	0.0057	0.21052	1229	29	1219	46	1167	44	1229.0	29	-0.82
Zircon 009	517	337	0.6518	0.0732	0.0038	1.68	0.11	0.1673	0.0045	0.53533	997	25	1001	41	1017	62	997.0	25	0.40
Zircon 010	147	87	0.5918	0.077	0.0044	2.18	0.14	0.203	0.0054	0.23108	1191	29	1180	48	1092	66	1191.0	29	-0.93
Zircon 011	511	162	0.317	0.0722	0.0037	1.51	0.1	0.1557	0.004	0.45185	933	22	936	40	986	62	933.0	22	0.32
Zircon 012	76	27	0.3553	0.0806	0.0046	2.5	0.17	0.2203	0.0059	0.0012269	1283	31	1268	50	1252	67	1252.0	67	-1.18
Zircon 013	138	65	0.471	0.0677	0.0042	1.202	0.088	0.1324	0.0043	0.59826	801	25	800	41	848	73	801.0	25	-0.13
Zircon 014	479	172	0.3591	0.0779	0.0039	2.23	0.14	0.2066	0.0054	0.19324	1211	29	1189	44	1125	49	1211.0	29	-1.85
Zircon 015	268	257	0.959	0.0786	0.004	2.21	0.14	0.2031	0.0051	0.04191	1192	27	1184	44	1159	66	1192.0	27	-0.68
Zircon 016	258	67	0.2597	0.0614	0.0034	0.909	0.064	0.1074	0.0033	0.66266	658	19	655	34	653	52	658.0	19	-0.46
Zircon 017	290	57	0.1966	0.0642	0.0036	0.896	0.099	0.1049	0.0059	0.66359	643	37	647	47	742	53	643.0	37	0.62
Zircon 018	579	75	0.1295	0.0769	0.0039	2.04	0.13	0.195	0.0051	0.410414201	1148	28	1130	46	1104	56	1148.0	28	-1.59
Zircon 020	260	97	0.3731	0.0723	0.0039	1.69	0.11	0.1705	0.0044	0.079441	1015	24	1004	43	1002	84	1015.0	24	-1.10
Zircon 021	215	146	0.6791	0.0755	0.004	1.91	0.12	0.1838	0.0045	0.15044	1087	25	1083	45	1070	70	1087.0	25	-0.37
Zircon 022	1404	284	0.2023	0.0743	0.0037	1.78	0.11	0.176	0.0048	0.70597	1045	26	1040	42	1045	74	1045.0	26	-0.48
Zircon 023	479	73	0.1524	0.0929	0.0047	3.33	0.25	0.2734	0.0091	0.53944	1558	45	1487	54	1501	39	1501.0	39	-4.77
Zircon_024	47	20	0.4255	0.0791	0.0063	1.85	0.16	0.1743	0.0049	0.325050201	1035	27	1079	57	1203	77	1035.0	27	4.08
Zircon 025	356	119	0.3343	0.0765	0.004	2	0.13	0.1904	0.0053	0.12049	1123	28	1115	45	1092	72	1123.0	28	-0.72
Zircon_027	282	141	0.5	0.0769	0.0042	2.11	0.14	0.2029	0.005	0.082208	1191	27	1152	43	1133	71	1191.0	27	-3.39
Zircon_028	640	166	0.2594	0.0792	0.004	2.3	0.14	0.212	0.0053	0.017163	1240	28	1212	44	1164	69	1164.0	69	-2.31
Zircon_029	239	128	0.5356	0.0652	0.0051	0.431	0.037	0.05	0.0014	0.10645	314.3	8.7	362	26	790	100	314.3	9	13.18
Zircon_030	741	293	0.3954	0.0774	0.0039	1.97	0.12	0.1868	0.0046	0.5254	1104	25	1105	42	1131	62	1104.0	25	0.09
Zircon_032	167	91	0.5449	0.0775	0.0044	1.88	0.14	0.1776	0.0054	0.69936	1054	30	1070	50	1138	62	1054.0	30	1.50
Zircon_033	511	294	0.5753	0.0752	0.004	2.12	0.14	0.2057	0.0051	0.1518	1206	27	1159	41	1088	63	1206.0	27	-4.06
Zircon_034	142	68	0.4789	0.0783	0.0045	2.18	0.15	0.2002	0.0053	0.026756	1177	28	1173	45	1137	75	1177.0	28	-0.34
Zircon_036	86	68	0.7907	0.0713	0.0048	1.82	0.14	0.1783	0.0052	0.25668	1058	29	1047	50	1047	88	1058.0	29	-1.05
Zircon_037	71	64	0.9014	0.0612	0.008	0.701	0.088	0.0838	0.0027	0.256658169	519	16	546	57	770	150	519.0	16	4.95
Zircon_038	769	497	0.6463	0.0779	0.0039	2.41	0.15	0.2208	0.0056	0.407487923	1286	29	1246	47	1144	68	1144.0	68	-3.21
Zircon_039	625	464	0.7424	0.0793	0.004	2.35	0.15	0.2124	0.0056	0.413057125	1241	31	1226	46	1202	77	1202.0	77	-1.22
Zircon_040	660	250	0.3788	0.0748	0.0039	2.07	0.14	0.1945	0.0055	0.68906	1146	30	1139	48	1081	70	1146.0	30	-0.61
Zircon_041	97	59	0.6082	0.0966	0.0057	3.94	0.29	0.2907	0.0086	0.401931129	1645	43	1620	58	1575	71	1575.0	71	-1.54
Zircon_042	153	44	0.2876	0.0743	0.0046	1.73	0.14	0.1719	0.0064	0.460068146	1022	35	1024	49	1036	89	1022.0	35	0.20
Zircon_043	264	322	1.2197	0.0573	0.0041	0.603	0.049	0.0759	0.0022	0.10786	472	13	477	31	544	78	472.0	13	1.05
Zircon_044	215	154	0.7163	0.073	0.0044	1.81	0.13	0.1784	0.0049	0.21307	1058	27	1047	45	1029	63	1058.0	27	-1.05
Zircon_045	460	772	1.6783	0.0522	0.0043	0.274	0.025	0.0374	0.0011	0.10896	236.9	6.5	247	20	374	95	236.9	7	4.09
Zircon_046	197	74	0.3756	0.0762	0.004	2.08	0.13	0.1937	0.0053	0.31442	1141	29	1140	45	1077	69	1141.0	29	-0.09
Zircon_047	77	41	0.5325	0.0763	0.0048	2.39	0.17	0.2155	0.0056	0.365333697	1258	29	1238	52	1175	66	1175.0	66	-1.62

Zircon_048	262	63 0.2405	0.0758	0.0039	2.1	0.13	0.1966	0.0049	0.4192	1157	26	1146	44	1077	55	1157.0	26	-0.96
Zircon_050	92	35 0.3804	0.0773	0.0043	2.24	0.15	0.2048	0.0053	0.15943	1201	28	1191	48	1147	72	1201.0	28	-0.84
Zircon_051	431	198 0.4594	0.0519	0.003	0.317	0.022	0.0438	0.0011	0.35316	276.5	7.1	279	17	269	71	276.5	7	0.90
Zircon_052	261	77 0.295	0.06	0.0038	0.665	0.058	0.0826	0.0034	0.65113	511	20	517	33	611	82	511.0	20	1.16
Zircon_053	283	174 0.6148	0.0503	0.0036	0.303	0.024	0.0434	0.0011	0.19361	274.1	7	268	18	257	65	274.1	7	-2.28
Zircon 054	101	30 0.297	0.0765	0.0041	2.09	0.14	0.1982	0.0051	0.12514	1165	27	1144	45	1119	69	1165.0	27	-1.84
Zircon_055	188	92 0.4894	0.1168	0.0058	5.51	0.36	0.3428	0.009	0.55513	1900	43	1901	55	1907	62	1907.0	62	0.05
Zircon 056	145	61 0.4207	0.058	0.0041	0.67	0.052	0.0839	0.0023	0.18959	520	14	519	32	600	93	520.0	14	-0.19
Zircon 057	125	42 0.336	0.0595	0.0044	0.739	0.063	0.0896	0.0024	0.29891	553	14	558	37	603	82	553.0	14	0.90
Zircon 058	360	245 0.6806	0.1008	0.0051	4	0.25	0.2878	0.0071	0.32637	1630	36	1634	51	1637	50	1637.0	50	0.24
Zircon 059	114	56 0.4912	0.0572	0.0036	0.678	0.051	0.0839	0.0025	0.38413	520	15	524	31	550	80	520.0	15	0.76
Zircon 61	253	94 0.3715	0.0776	0.004	2.19	0.14	0.2022	0.0052	0.31969	1187	28	1176	45	1140	57	1187.0	28	-0.94
Zircon 62	312	168 0.5385	0.0936	0.0047	3.47	0.22	0.2663	0.0073	0.63896	1522	37	1519	50	1495	72	1495.0	72	-0.20
Zircon 63	198	150 0.7576	0.0711	0.0037	1.61	0.11	0.164	0.0042	0.51933	979	23	977	41	953	80	979.0	23	-0.20
Zircon 64	58	32 0.5517	0.0825	0.0056	2.36	0.17	0.2104	0.0064	0.422276896	1231	33	1233	52	1260	76	1260.0	76	0.16
Zircon 65	261	56 0.2146	0.0775	0.0041	2.18	0.14	0.1991	0.0058	0.33595	1170	31	1173	46	1140	62	1170.0	31	0.26
Zircon 066	92	73 0 7935	0.0732	0.0045	1.63	0.15	0.1589	0.0091	0.084888	951	50	978	65	1000	100	951.0	50	2.76
Zircon 067	264	84 0 3182	0.0796	0.004	2 47	0.15	0.2233	0.0056	0 387147335	1299	30	1263	47	1173	60	1173.0	60	-2.85
Zircon 068	186	61 0 328	0.0729	0.004	1 74	0.10	0.1728	0.0046	0.41022	1027	25	1027	43	1011	64	1027.0	25	0.00
Zircon 069	125	56 0.448	0.0739	0.0041	1.74	0.11	0.1725	0.0040	0 374063401	1027	23	1027	43	1036	67	1027.0	24	0.00
Zircon 070	139	75 0 5396	0.0807	0.0041	2.63	0.12	0.2325	0.0095	0 565591398	1348	50	1307	58	1205	70	1205.0	70	-3.14
Zircon 071	240	135 0.5625	0.0587	0.0036	0.668	0.048	0.0829	0.0024	0 44445	513	14	521	28	559	86	513.0	14	1 54
Zircon 072	338	4 0.0118	0.0566	0.0042	0.63	0.16	0.08	0.012	0.61638	494	68	495	81	510	130	494.0	68	0.20
Zircon 073	317	72 0 2271	0.0579	0.0042	0.563	0.048	0.0708	0.0025	0.58329	441	15	452	29	530	73	441.0	15	2 43
Zircon 074	152	43 0 2829	0.0593	0.0038	0.686	0.052	0.084	0.0024	0.35685	520	14	532	32	571	71	520.0	14	2.15
Zircon 075	440	217 0.4932	0.0779	0.0030	2.000	0.052	0.004	0.0024	0.33732	1191	27	1184	44	1148	55	1191.0	27	-0.59
Zircon 076	252	16 0.0635	0.0588	0.004	0 596	0.14	0.2029	0.003	0.14707	460	18	473	37	563	93	460.0	18	-0.59
Zircon 077	448	112 0.25	0.0774	0.0035	1.07	0.005	0.1856	0.005	0.462476909	1008	33	1106	18	1005	70	1008.0	22	0.72
Zircon 078	71	29 0 4085	0.0796	0.004	2.26	0.14	0.1850	0.0001	0.402470909	1193	30	1201	50	1228	71	1228.0	71	1.42
Zircon 079	514	142 0.2763	0.0774	0.0047	2.20	0.10	0.1802	0.0030	0.12464	1104	27	1110	12	1124	61	1117.0	27	0.18
Zircon 080	108	37 0 1860	0.0695	0.0041	1.62	0.15	0.1692	0.0049	0.23352	1003	22	078	43	011	62	1003.0	22	2.56
Zircon_081	81	37 0.1007	0.0752	0.0042	2.22	0.14	0.2052	0.0054	0.26008	1203	20	1197	49	1078	73	1203.0	20	1.35
Zircon 082	156	17 0 100	0.0752	0.0042	1.25	0.14	0.2052	0.0051	0.20008	1205	29	1073	40	10/0	73	1205.0	29	-1.55
Zircon_083	258	87 0 3372	0.0826	0.0042	2.60	0.15	0.2281	0.0051	0.33713	1324	36	1323	52	1253	66	1253.0	66	0.05
Zircon 085	32	18 0 5625	0.0711	0.0042	1.62	0.13	0.1645	0.0008	0.16898	982	30	971	52	965	79	982.0	30	-0.08
Zircon_086	97	28 0.3218	0.0797	0.0049	2.27	0.15	0.2050	0.0056	0.25056	1207	30	1204	52	1180	64	1207.0	30	0.25
Zircon_087	206	28 0.3218	0.0566	0.0049	0.742	0.048	0.2039	0.0022	0.25050	568	13	565	20	480	63	568.0	13	-0.23
Zircon 088	250	66 0 2508	0.0500	0.0031	2.26	0.15	0.0921	0.0022	0.20550	1104	20	1100	46	1205	63	1104.0	20	-0.55
Zircon 080	234	11 0 1618	0.0802	0.0041	2.20	0.13	0.2055	0.0034	0.24714	082	29	071	40	046	74	082.0	29	1.12
Zircon_000	149	44 0.2072	0.0702	0.0041	1.01	0.11	0.1642	0.0044	0.012712	982	24	007	49	000	66	982.0	24	-1.15
Zircon 091	421	16 0.038	0.0723	0.0039	3.04	0.11	0.1045	0.0041	0.38043	1305	23	1417	42	1420	67	1420.0	23 67	1.71
Zircon_091	421	16 0.2721	0.0712	0.0040	0.496	0.2	0.2410	0.0005	0.72005	200	11	200	20	1040	150	200.0	11	22.56
Zircon_092	43	10 0.3721	0.0712	0.0089	0.460	0.039	0.0491	0.0018	0.3019//9/0	509	20	599	39	1000	130	576.0	20	22.30
Zircon_095	270	4/ 0.7966	0.0692	0.0008	0.800	0.087	0.0934	0.0055	0.351694602	370	20 52	043	44 50	900	52	376.0	20	10.42
Zircon_094	370	100 0.2803	0.1827	0.009	12.57	0.81	0.303	0.012	0.45785	2027	35	2046	39	2070	32	2070.0	32	0.79
Zircon_095	92	20 0.2174	0.0739	0.0044	1.80	0.13	0.1794	0.0045	0.25998	1064	25	1065	45	1057	70	1064.0	25	0.09
Zircon_096	112	21 0.18/5	0.0721	0.0044	1.82	0.12	0.1707	0.0049	0.4105/5244	1058	21	1055	40	1055	33	1058.0	21	-0.28
Zircon_097	84	4 0.04/6	0.0731	0.0049	1.8	0.21	0.1/8/	0.0093	0.67269	1060	50	1042	0/	1040	100	1060.0	50	-1.73
Zircon_098	207	138 0.0007	0.0543	0.0044	0.351	0.032	0.0476	0.0013	0.12331	300	8	304	24	3/0	110	300.0	8	1.32
Zircon_099	157	37 0.2357	0.0589	0.0033	0.623	0.043	0.0779	0.0019	0.063455	485	12	491	26	564	62	485.0	12	1.22
Zircon_100	95	56 0.5895	0.0758	0.0044	1.82	0.14	0.1767	0.0067	0.492925863	1049	37	1052	55	1082	74	1049.0	37	0.29

2: 2 sigma uncertainties propagated according to Paton et al., 2010, Geochemistry, Geophysics, Geosystems

207Pb/206Pb ratios, ages and errors are calculated according to Petrus and Kamber, 2012, Geostandards Geoanalytical Research

Analyzed spots were 23 micrometers, using an analytical protocol modified from Solari et al., 2010, Geostandards Geoanalytical Research.

Data measured employing a Thermo Xseries QICPMS coupled to a Resonetics, Resolution M050 excimer laser workstation.

Complejo Arteaga

Ar-3 UTM WGS-84 X: 789529 Y: 2015025

CORRECTED RATIOS²

	U (ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s	Rho	²⁰⁶ Pb/ ²³⁸	±2s	²⁰⁷ Pb/ ²³⁵	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Best age	±2s	Disc %
								U			abs		0		U				(1914)		
Zircon_001_Arte	263	210	0.80	0.0578	0.002	0.635	0.025	0.0788	0.0015	0.02421	8E-04	0.298	489.1	9	498	16	520	53	489.1	9	1.79
Zircon_002 Zircon_003	217.9	74.5	0.34	0.0607	0.0022	0.886	0.03	0.1058	0.0016	0.03281	9E-04	0.133	648.4	9.2	643 880	16 20	634	34 61	648.4	9 27	-0.84
Zircon 004	137.4	100.2	0.03	0.0743	0.0027	1.855	0.057	0.1805	0.0023	0.0546	0.001	0.079	1069	12	1071	22	1042	44	1042.0	44	0.19
Zircon_005	242	127.8	0.53	0.0792	0.0019	2.249	0.059	0.2053	0.0025	0.0592	0.001	0.383	1204	14	1196	18	1175	28	1175.0	28	-0.67
Zircon_006	401	476	1.19	0.0564	0.0017	0.607	0.017	0.0775	0.0013	0.02374	3E-04	0.161	481.2	8	481	10	470	37	481.2	8	-0.04
Zircon_007	400	290	0.73	0.0576	0.0018	0.725	0.032	0.0903	0.0034	0.0294	0.001	0.432	557	20	556	18	547	41	557.0	20	-0.18
Zircon_008	471	243.7	0.52	0.0682	0.0017	1.025	0.028	0.1093	0.0014	0.03986	7E-04	0.24	668.7 481.6	8.2	716	14	860	29	668.7	8	6.61
Zircon_009 Zircon_010	120.5	58.1 69.9	0.50	0.0594	0.0031	0.631	0.033	0.0776	0.0014	0.0231	7E-04	0.157	481.0	8.5 7.3	495	17	568	68	481.0	7	2.71
Zircon_011	306	124.2	0.41	0.0669	0.0014	1.218	0.027	0.1318	0.0021	0.0397	0.001	0.719	798	12	809	13	850	36	798.0	12	1.36
Zircon_012	139	98.6	0.71	0.0636	0.0023	0.955	0.033	0.1089	0.0015	0.0326	0.001	0.255	666.3	8.5	679	17	731	54	666.3	9	1.87
Zircon_013	313	170.4	0.54	0.074	0.002	1.546	0.08	0.1514	0.0052	0.05582	1E-03	0.017	909	30	948	34	1068	46	909.0	30	4.11
Zircon_014	1185	114.1	0.10	0.0723	0.0013	1.613	0.034	0.1628	0.0023	0.0515	0.001	0.793	972	13	975	13	999	20	972.0	13	0.31
Zircon_015 Zircon_016	507 764	48.2	0.16	0.0744	0.0018	1.839	0.056	0.179	0.0032	0.0551	0.002	0.432	786	11	794	12	823	30 19	786.0	50 11	-0.19
Zircon 017	398	35.2	0.09	0.0591	0.0037	0.764	0.076	0.0935	0.0025	0.0292	0.001	0.445	576	15	576	38	560	110	576.0	15	0.00
Zircon_018	123.6	43.9	0.36	0.0549	0.0048	0.346	0.039	0.0455	0.0018	0.0152	0.001	0.44	287	11	305	30	520	100	287.0	11	5.90
Zircon_019	271	148	0.55	0.0537	0.002	0.374	0.016	0.05062	0.00081	0.01589	5E-04	0.594	318.3	5	325	12	380	34	318.3	5	2.06
Zircon_020	1123	524.9	0.47	0.1017	0.0016	3.399	0.066	0.2416	0.0031	0.0768	0.001	0.597	1395	17	1504	15	1660	17	1660.0	17	7.25
Zircon_021 Zircon_022	407.8	141	0.35	0.0651	0.0016	1.106	0.029	0.1238	0.0015	0.03633	8E-04	0.329	752.4	8.5	756	13	768	34	752.4	9 42	0.48
Zircon 023	620	157.8	0.55	0.0730	0.0032	0.457	0.079	0.1858	0.0034	0.0013	1E-03	0.000	326	10	381	19	723	45	326.0	45	-0.40
Zircon 024	132.4	122.3	0.92	0.0623	0.0031	0.652	0.031	0.076	0.0012	0.02272	7E-04	0.332	472	6.9	508	19	669	56	472.0	7	7.09
Zircon_025	137.5	23	0.17	0.1262	0.0026	6.49	0.21	0.374	0.011	0.1086	0.003	0.126	2049	51	2047	30	2049	18	2049.0	18	-0.10
Zircon_027	267.4	235.2	0.88	0.055	0.002	0.379	0.019	0.0498	0.0013	0.0148	0.001	0.357	313.4	7.9	326	14	346	50	313.4	8	3.87
Zircon_028	211.2	180	0.85	0.0637	0.0024	0.645	0.029	0.0734	0.0011	0.02438	9E-04	0.308	456.7	6.8	504	18	742	48	456.7	7	9.38
Zircon_029	283	76.1	0.27	0.073	0.013	0.68	0.19	0.0709	0.0062	0.03	0.01	0.959	441	37	522	62	1590	170	1590.0	170	15.52
Zircon_032	489	145.5	0.29	0.0848	0.0029	1.075	0.048	0.1425	0.0029	0.0755	0.001	0.00	1098	10	1092	18	1073	20	1073.0	20	-0.55
Zircon 033	847	229.7	0.20	0.0961	0.0015	3.603	0.072	0.2717	0.0038	0.08006	1E-03	0.541	1549	19	1550	16	1540	16	1540.0	16	0.06
Zircon_034	169.8	87.2	0.51	0.0954	0.0019	3.63	0.077	0.2731	0.0037	0.0767	0.002	0.481	1559	19	1555	17	1544	25	1544.0	25	-0.26
Zircon_035	509	129	0.25	0.0611	0.0014	0.848	0.02	0.101	0.0013	0.02949	6E-04	0.003	620.3	7.5	623	11	648	21	620.3	8	0.43
Zircon_036	992	620	0.63	0.0716	0.0013	1.051	0.052	0.1081	0.0048	0.0083	0.002	0.676	662	28	733	24	978	21	662.0	28	9.69
Zircon_037	49.9	8.09	0.16	0.0989	0.0032	2.98	0.11	0.2204	0.0051	0.0663	0.008	0.519	1284	27	1398	29	1611	33	1611.0	33	8.15
Zircon_039	803	236	0.29	0.0667	0.0014	1.085	0.027	0.116	0.0019	0.0336	0.002	0.697	708	23	746 644	13	828	30	708.0 644.0	23	5.09
Zircon 040	154.1	77.9	0.51	0.0765	0.0012	2.3	0.063	0.2098	0.0039	0.0643	0.002	0.503	1228	20	1210	21	1141	38	1141.0	38	-1.49
Zircon_041	314	125	0.40	0.0759	0.0018	1.976	0.042	0.1877	0.0032	0.0566	0.001	0.278	1109	17	1107	14	1091	35	1091.0	35	-0.18
Zircon_042	328.3	286.3	0.87	0.0952	0.0019	3.545	0.08	0.2712	0.005	0.07706	9E-04	0.341	1547	25	1537	18	1527	18	1527.0	18	-0.65
Zircon_043	329	89	0.27	0.0751	0.0017	1.888	0.047	0.1832	0.0029	0.0572	0.002	0.051	1084	16	1077	16	1053	21	1053.0	21	-0.65
Zircon_044	94.7	69.1	0.73	0.0735	0.0025	1.758	0.059	0.1743	0.0028	0.0528	0.001	0.276	1036	15	1036	22	1053	32	1053.0	32	0.00
Zircon_045 Zircon_046	187.6	104	0.55	0.0902	0.0026	3.09	0.15	0.2499	0.0092	0.0844	0.004	0.513	1438	49	743	45	1429	45	1429.0	45	-0.49
Zircon 047	606	392	0.65	0.0753	0.0013	1.765	0.029	0.1701	0.002	0.0535	0.001	0.778	1012	15	1036	15	1079	21	1079.0	21	2.32
Zircon_048	167	109.7	0.66	0.0808	0.002	2.3	0.06	0.2058	0.0025	0.06275	9E-04	0.165	1206	13	1214	18	1214	25	1214.0	25	0.66
Zircon_049	238.1	156.5	0.66	0.0543	0.0034	0.295	0.017	0.04005	0.00071	0.01221	4E-04	0.308	253.1	4.4	262	13	426	80	253.1	4	3.40
Zircon_050	467	372	0.80	0.0778	0.0016	2.096	0.046	0.1956	0.0026	0.05661	6E-04	0.397	1152	14	1147	16	1151	16	1151.0	16	-0.44
Zircon_051	261	180.6	0.69	0.0782	0.0018	1.989	0.05	0.187	0.0027	0.0526	0.001	0.87	1105	14	1111	17	1116	27	1116.0	27	0.54
Zircon_052 Zircon_053	199.7	04.5 291.6	0.52	0.0849	0.002	0.2826	0.004	0.2459	0.005	0.0721	2E-04	0.26	253.2	3.6	252.5	7.6	242	40	253.2	17	-2.98
Zircon 054	107	6.7	0.05	0.0607	0.0013	1.052	0.0095	0.1258	0.0053	0.0596	0.01	0.105	764	30	728	38	599	70	764.0	30	-4.95
Zircon_055	238	119.6	0.50	0.0836	0.0018	2.472	0.064	0.217	0.0045	0.0652	0.001	0.657	1266	24	1266	19	1273	24	1273.0	24	0.00
Zircon_056	305.4	167	0.55	0.0802	0.0016	2.297	0.047	0.2095	0.0028	0.0588	0.002	0.229	1226	15	1211	14	1186	23	1186.0	23	-1.24
Zircon_058	298.9	109.5	0.37	0.0717	0.0016	1.504	0.039	0.1535	0.0024	0.05	0.002	0.356	921	14	932	17	979	35	921.0	14	1.18
Zircon_060	446	253	0.57	0.0563	0.0015	0.508	0.016	0.066	0.0011	0.02035	4E-04	0.385	412	6.5	417	10	479	23	412.0	7	1.20
Zircon_061 Zircon_063	201	9.83	0.08	0.0603	0.0031	0.607	0.068	0.0726	0.0057	0.0342	0.004	0.108	452	34	480 1046	38	607	49 71	452.0	34	5.83
Zircon 064	255	20 71.6	0.09	0.063	0.0045	0.75	0.027	0.0871	0.0015	0.01896	8E-04	0.042	538 5	8.9	567	15	706	44	538.5	9	5.03
Zircon_065	123	95	0.77	0.0763	0.0024	1.827	0.055	0.1749	0.0023	0.0533	0.001	0.091	1039	13	1058	20	1096	39	1096.0	39	1.80
Zircon_066	126	25.5	0.20	0.0659	0.0044	1.019	0.068	0.1144	0.0029	0.0383	0.003	0.293	698	17	711	34	870	70	698.0	17	1.83
Zircon_067	170.1	84	0.49	0.0695	0.0027	1.421	0.051	0.1466	0.0026	0.048	0.002	0.494	882	14	896	22	933	49	882.0	14	1.56
Zircon_068	580	113	0.19	0.0884	0.0019	1.967	0.093	0.164	0.0061	0.0436	0.002	0.827	979	34	1104	34	1389	33	1389.0	33	11.32
Zircon_069	153.1	72.6	0.47	0.0707	0.002	1.454	0.044	0.1497	0.0022	0.0454	0.001	0.441	899	12	910	18	970	28	899.0	12	1.21

Zircon_070	74	22.3	0.30	0.079	0.0034	1.594	0.066	0.1455	0.0056	0.0375	0.005	0.93	876	31	966	26	1117	43	876.0	31	9.32
Zircon_072	402	247	0.61	0.0578	0.0017	0.614	0.017	0.0771	0.0011	0.0233	5E-04	0.226	478.6	6.6	486	11	543	43	478.6	7	1.52
Zircon_073	50.01	6.81	0.14	0.1125	0.004	4.75	0.29	0.307	0.015	0.074	0.018	0.09	1726	79	1774	57	1836	41	1836.0	41	2.71
Zircon_074	234.8	89.6	0.38	0.07	0.0024	1.517	0.052	0.1524	0.0027	0.0518	0.003	0.201	914	15	936	21	1013	38	914.0	15	2.35
Zircon_075	174.1	28.77	0.17	0.0739	0.0025	1.626	0.07	0.1599	0.0034	0.0534	0.006	0.556	956	19	979	26	1035	36	956.0	19	2.35
Zircon_076	732	111	0.15	0.0592	0.0015	0.685	0.02	0.0851	0.0013	0.02889	9E-04	0.501	526.8	7.9	529	12	569	34	526.8	8	0.42
Zircon_077	352	90.3	0.26	0.0563	0.0015	0.541	0.014	0.0696	0.00098	0.02217	6E-04	0.026	433.7	5.9	438.7	9.7	461	38	433.7	6	1.14
Zircon_078	209.1	33	0.16	0.0628	0.0021	0.948	0.036	0.109	0.0025	0.0353	0.002	0.419	667	15	676	19	712	45	667.0	15	1.33
Zircon_079	676	295	0.44	0.0607	0.0012	0.982	0.021	0.1151	0.0015	0.03132	5E-04	0.302	702.4	8.5	694	11	658	28	702.4	9	-1.21
Zircon_081	76.2	72.9	0.96	0.2599	0.0047	23.09	0.46	0.649	0.0088	0.1702	0.004	0.571	3224	35	3230	20	3251	17	3251.0	17	0.19
Zircon_082	206	111.8	0.54	0.0556	0.0028	0.587	0.036	0.0763	0.0022	0.02203	6E-04	0.125	474	13	468	22	444	70	474.0	13	-1.28
Zircon_083	918	666	0.73	0.1316	0.0026	4.1	0.16	0.2261	0.0057	0.09473	1E-03	0.828	1314	30	1653	29	2120	27	2120.0	27	20.51
Zircon_084	410	187	0.46	0.0619	0.0014	0.96	0.023	0.1122	0.0015	0.03607	6E-04	0.262	685.6	8.5	683	12	659	34	685.6	9	-0.38
Zircon_085	244.9	92.8	0.38	0.0762	0.002	1.922	0.05	0.1847	0.0023	0.05438	1E-03	0.123	1093	13	1088	18	1093	24	1093.0	24	-0.46
Zircon_086	184.4	126.2	0.68	0.0592	0.0019	0.741	0.023	0.0905	0.0012	0.02793	7E-04	0.241	558.6	6.8	562	14	577	45	558.6	7	0.60
Zircon_087	304.2	80.1	0.26	0.0847	0.0017	2.432	0.059	0.2105	0.0034	0.0647	0.003	0.666	1231	18	1251	17	1296	28	1296.0	28	1.60
Zircon_088	336.1	90.9	0.27	0.0565	0.0016	0.563	0.016	0.0722	0.001	0.02234	7E-04	0.337	449.7	6.3	453	11	489	34	449.7	6	0.73
Zircon_089	211.8	120.2	0.57	0.0637	0.0026	0.922	0.077	0.1054	0.0049	0.0335	0.001	0.28	646	28	662	36	727	57	646.0	28	2.42
Zircon_090	217.7	189.9	0.87	0.1112	0.0021	4.945	0.096	0.3249	0.0043	0.0934	0.001	0.341	1813	21	1811	17	1816	16	1816.0	16	-0.11
Zircon_091	772	364	0.47	0.0636	0.0013	0.945	0.025	0.1081	0.002	0.0304	0.002	0.383	662	12	675	13	732	18	662.0	12	1.93
Zircon_092	99.2	194	1.96	0.0759	0.0026	1.844	0.058	0.176	0.0028	0.04983	6E-04	0.506	1045	15	1060	20	1116	40	1116.0	40	1.42
Zircon_093	244	98.1	0.40	0.0606	0.002	0.796	0.03	0.0958	0.002	0.02701	9E-04	0.486	590	11	594	16	658	33	590.0	11	0.67
Zircon_094	631	380	0.60	0.1065	0.0018	4.752	0.099	0.3242	0.0049	0.0954	0.001	0.621	1810	24	1776	17	1733	18	1733.0	18	-1.91
Zircon_098	559	261.2	0.47	0.0726	0.0015	1.693	0.056	0.169	0.0043	0.0513	0.001	0.495	1007	24	1006	23	1010	28	1010.0	28	-0.10
Zircon_099	209	52.3	0.25	0.0769	0.0023	1.92	0.13	0.181	0.01	0.0566	0.002	0.595	1070	57	1088	47	1108	36	1108.0	36	1.65

2: 2 sigma uncertainties propagated according to Paton et al., 2010, Geochemistry, Geophysics, Geosystems

207Pb/206Pb ratios, ages and errors are calculated according to Petrus and Kamber, 2012, Geostandards Geoanalytical Research

Analyzed spots were 23 micrometers, using an analytical protocol modified from Solari et al., 2010, Geostandards Geoanalytical Research.

Data measured employing a Thermo Xseries QICPMS coupled to a Resonetics, Resolution M050 excimer laser workstation.

Comple	jo Arteaga			
23	UTM WGS- 84	X: 293350	Y: 2021257	

							CORREC	TED RAT	IOS ²							CORR	ECTED AGES (Ma)			
								²⁰⁶ Pb/ ²³⁸			±2s		²⁰⁶ Pb/ ²³⁸		²⁰⁷ Pb/ ²³⁵				Best age		
	$U\left(ppm ight) ^{1}$	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	U	±2s abs	²⁰⁸ Pb/ ²³² Th	abs	Rho	U	±2s	U	$\pm 2s$	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 2s$	(Ma)	$\pm 2s$	Disc %
Zircon_001_Tzizi	622.2	286.2	0.46	0.0522	0.003	0.241	0.012	0.03366	0.0007	0.01097	5E-04	0.42	213.4	4.4	219	10	249	60	213.4	4	2.56
Zircon_001b	631	210	0.33	0.0546	0.0025	0.331	0.017	0.0438	0.00082	0.01188	9E-04	0.10	276.3	5	290	13	429	53	276.3	5	4.72
Zircon_002	417	192.7	0.46	0.0547	0.0024	0.331	0.014	0.04403	0.00077	0.01368	5E-04	0.07	277.8	4.7	290	11	410	61	277.8	5	4.21
Zircon_003	173	46.6	0.27	0.0784	0.0038	2.23	0.14	0.2068	0.0054	0.0621	0.004	0.68	1212	29	1189	44	1161	50	1161.0	50	-1.93
Zircon_004	193.5	129.9	0.67	0.059	0.0022	0.815	0.032	0.0983	0.0015	0.03194	1E-03	0.12	604.2	8.9	607	19	615	40	604.2	9	0.46
Zircon_005	55.9	25.95	0.46	0.0795	0.0032	1.873	0.074	0.1707	0.0037	0.0532	0.003	0.03	1016	20	1070	26	1210	49	1210.0	49	5.05
Zircon_006	203	66.5	0.33	0.1098	0.0024	4.97	0.12	0.3252	0.0059	0.0946	0.003	0.37	1815	29	1812	21	1799	25	1799.0	25	-0.17
Zircon_007	189	158.6	0.84	0.052	0.0033	0.288	0.015	0.04048	0.00096	0.01281	6E-04	0.46	255.8	6	256	12	427	90	255.8	6	0.08
Zircon_008	97.9	34.4	0.35	0.0736	0.0024	1.713	0.052	0.1716	0.0027	0.0508	0.002	0.52	1021	15	1012	20	1027	37	1027.0	37	-0.89
Zircon_009	307	134.5	0.44	0.0545	0.0031	0.32	0.014	0.04344	0.00097	0.01261	5E-04	0.51	274.1	6	287	13	390	59	274.1	6	4.49
Zircon_010	316	209	0.66	0.0513	0.0026	0.285	0.014	0.04042	0.00069	0.01277	5E-04	0.05	255.5	4.3	254	11	334	51	255.5	4	-0.59
Zircon_011	387	70.8	0.18	0.068	0.0038	0.475	0.033	0.0516	0.0013	0.0158	0.001	0.63	324.1	7.8	394	23	863	60	324.1	8	17.74
Zircon_012	226.7	158.4	0.70	0.0619	0.0016	0.899	0.026	0.1061	0.0016	0.0324	0.001	0.21	650.2	9.4	653	13	657	31	650.2	9	0.43
Zircon_013	322	277	0.86	0.0787	0.0013	2.221	0.037	0.2036	0.0032	0.0596	0.002	0.36	1195	17	1189	12	1163	16	1163.0	16	-0.50
Zircon_014	96.8	29.2	0.30	0.0781	0.0021	2.141	0.053	0.1998	0.0033	0.058	0.002	0.13	1174	18	1161	17	1176	26	1176.0	26	-1.12
Zircon_015	343	100.8	0.29	0.0753	0.0012	1.928	0.033	0.1849	0.0028	0.0528	0.002	0.46	1094	15	1090	11	1079	16	1079.0	16	-0.37
Zircon_016	387	337	0.87	0.0518	0.0021	0.278	0.011	0.03883	0.0008	0.01194	5E-04	0.16	245.6	4.9	248.6	8.9	328	57	245.6	5	1.21
Zircon_017	199	209	1.05	0.0556	0.0056	0.29	0.027	0.03767	0.0009	0.01227	5E-04	0.26	238.4	5.6	257	21	560	140	238.4	6	7.24
Zircon_018	368	144	0.39	0.0687	0.0026	0.746	0.038	0.0799	0.0026	0.0326	0.002	0.73	495	15	565	22	889	39	495.0	15	12.39
Zircon_019	274	122	0.45	0.0552	0.0047	0.262	0.023	0.03464	0.00088	0.01071	5E-04	0.07	219.5	5.5	235	18	450	120	219.5	6	6.60
Zircon_021	178	61.4	0.34	0.1259	0.0027	5.83	0.17	0.3326	0.0084	0.1036	0.004	0.55	1851	41	1949	25	2058	27	2058.0	27	5.03
Zircon_022	144	30.7	0.21	0.0763	0.0036	1.509	0.063	0.1445	0.0027	0.0469	0.002	0.45	870	15	938	24	1131	63	1131.0	63	7.25
Zircon_023	1010	154.2	0.15	0.06274	0.00093	1.018	0.03	0.1171	0.0034	0.041	0.002	0.81	714	20	712	15	688	18	714.0	20	-0.28
Zircon_024	95.9	87.2	0.91	0.0805	0.002	2.344	0.058	0.2111	0.0034	0.0641	0.002	0.34	1237	19	1224	18	1205	29	1205.0	29	-1.06
Zircon_025	306.6	84.2	0.27	0.0787	0.0013	2.155	0.03	0.1973	0.0032	0.0575	0.002	0.16	1161	17	1166.3	9.6	1177	19	1177.0	19	0.45
Zircon 026	268	178.4	0.67	0.0584	0.0047	0.319	0.024	0.0406	0.00078	0.01342	6E-04	0.26	256.5	4.8	280	18	620	110	256.5	5	8.39

Zircon_027	548	122.2	0.22	0.0733	0.0027	1.95	0.043	0.1941	0.0057	0.061	0.003	0.34	1143	31	1098	15	1013	24	1013.0	24	-4.10
Zircon_028	111.1	32.99	0.30	0.0725	0.0051	1.74	0.12	0.1731	0.0028	0.0519	0.003	0.03	1029	16	1022	44	990	100	990.0	100	-0.68
Zircon_029	418	44.5	0.11	0.0613	0.0036	0.875	0.056	0.1024	0.0026	0.0297	0.003	0.29	629	15	635	29	674	62	629.0	15	0.94
Zircon_030	208.1	31.24	0.15	0.073	0.0015	1.548	0.037	0.1538	0.003	0.0491	0.002	0.53	922	17	949	15	1021	28	922.0	17	2.85
Zircon_031	82.4	30.7	0.37	0.0794	0.0048	1.73	0.1	0.1582	0.0029	0.0503	0.003	0.17	947	16	1018	38	1145	61	1145.0	61	6.97
Zircon_032	163.3	191	1.17	0.0559	0.0079	0.282	0.038	0.0367	0.0013	0.01193	6E-04	0.26	232.4	8.1	258	32	500	130	232.4	8	9.92
Zircon_033	335	161	0.48	0.0587	0.0031	0.644	0.035	0.08	0.0019	0.0261	0.001	0.24	496	11	506	21	549	52	496.0	11	1.98
Zircon_034	520	262	0.50	0.0514	0.002	0.2365	0.0091	0.03328	0.00066	0.0107	4E-04	0.15	211.1	4.1	215.3	7.4	282	47	211.1	4	1.95
Zircon_035	112.8	68.8	0.61	0.059	0.0041	0.591	0.037	0.0735	0.0013	0.02266	9E-04	0.28	457.1	7.9	470	24	568	81	457.1	8	2.74
Zircon_037	367	72.9	0.20	0.0524	0.0026	0.29	0.014	0.03988	0.00077	0.0128	8E-04	0.40	252.1	4.8	258	11	345	72	252.1	5	2.29
Zircon_038	207.2	87.6	0.42	0.0574	0.0023	0.6	0.024	0.0752	0.0011	0.024	0.001	0.08	467.7	6.8	476	15	499	44	467.7	7	1.74
Zircon_039	426	415	0.97	0.0528	0.0031	0.294	0.017	0.04037	0.0007	0.01268	5E-04	0.30	255.1	4.3	261	13	356	91	255.1	4	2.26
Zircon_040	114.9	41	0.36	0.0728	0.0026	1.761	0.08	0.1753	0.0043	0.0533	0.002	0.53	1041	24	1033	29	1009	43	1009.0	43	-0.77
Zircon_042	414	213	0.51	0.0506	0.002	0.288	0.012	0.04139	0.00068	0.0132	6E-04	0.17	261.4	4.2	256.9	9.5	271	47	261.4	4	-1.75
Zircon_043	650	80.6	0.12	0.0689	0.0021	0.643	0.034	0.0698	0.0019	0.0337	0.002	0.63	435	12	504	21	865	39	435.0	12	13.69
Zircon_044	187.1	191.2	1.02	0.0517	0.0036	0.262	0.021	0.03629	0.00098	0.01119	4E-04	0.23	229.8	6.1	241	19	380	140	229.8	6	4.65
Zircon_046	480	136	0.28	0.0781	0.0016	1.705	0.051	0.1609	0.0027	0.0547	0.003	0.56	962	15	1010	19	1137	19	1137.0	19	4.75
Zircon_047	119.1	26.3	0.22	0.0741	0.0027	1.753	0.063	0.1693	0.0032	0.055	0.003	0.30	1008	17	1026	23	1072	40	1072.0	40	1.75
Zircon_048	369	91.8	0.25	0.0611	0.0014	0.893	0.019	0.1067	0.0015	0.0319	0.001	0.06	653.7	8.9	648	10	666	28	653.7	9	-0.88
Zircon_050	251	189	0.75	0.0553	0.0038	0.302	0.021	0.0397	0.001	0.01294	6E-04	0.14	250.8	6.4	267	17	439	81	250.8	6	6.07
Zircon_052	408	232	0.57	0.0878	0.0016	2.911	0.06	0.2402	0.0036	0.0711	0.002	0.55	1388	19	1384	16	1378	22	1378.0	22	-0.29
Zircon_053	243	102.7	0.42	0.1187	0.0037	5.69	0.14	0.3458	0.0066	0.095	0.004	0.78	1914	32	1929	21	1943	20	1943.0	20	0.78
Zircon_054	286	379	1.33	0.0535	0.0051	0.283	0.023	0.03968	0.00075	0.01227	5E-04	0.23	250.8	4.6	252	18	435	97	250.8	5	0.48
Zircon_055	191	136.1	0.71	0.0579	0.0026	0.591	0.029	0.0756	0.0022	0.0256	0.001	0.50	470	13	471	18	518	63	470.0	13	0.21
Zircon_056	683	53.9	0.08	0.0801	0.0015	1.962	0.037	0.178	0.0031	0.0421	0.002	0.20	1056	17	1102	13	1192	15	1192.0	15	4.17
Zircon_057	1/4	119	0.68	0.0747	0.0018	1.828	0.046	0.178	0.0026	0.0545	0.002	0.31	1056	14	1054	16	10//	31	10/7.0	31	-0.19
Zircon_058	900	1150	1.28	0.0514	0.0018	0.277	0.011	0.03886	0.00074	0.01245	4E-04	0.28	245.8	4.6	248	8.5	266	44	245.8	5	0.89
Zircon_059	410	323	0.79	0.0525	0.0019	0.286	0.012	0.03971	0.00077	0.01229	5E-04	0.45	251	4.8	255.3	9.8	344	50	251.0	5	1.68
Zircon_060	94	150	1.38	0.0598	0.0030	0.058	0.041	0.08	0.0019	0.0247	0.001	0.06	490	0.2	515	20	572	55	496.0	11	3.09
Zircon_061 Zircon_062	1/6	103	0.59	0.0593	0.0033	0.753	0.044	0.0923	0.0016	0.0299	0.001	0.08	569.1	9.2	208	25	5/3	97	569.1	9	-0.19
Zircon_062	1/2	105	0.00	0.0751	0.0032	1.088	0.078	0.1078	0.0035	0.0535	0.002	0.50	1000	20	1005	30 40	1019	44	1019.0	44	0.50
Zircon 065	192	40.0	0.25	0.0700	0.0042	2 260	0.15	0.1624	0.0037	0.0646	0.008	0.39	1080	20	1201	28	1003	60	1207.0	60	0.00
Zircon 066	402	226.2	0.47	0.0408	0.0034	0.28	0.092	0.2048	0.00037	0.01221	5E 04	0.58	256.8	5.2	250	12	207	65	256.8	5	2 72
Zircon_068	361	204	0.57	0.0518	0.0024	0.28	0.015	0.04004	0.00084	0.01231	6E-04	0.07	250.8	5.9	250	12	386	87	250.8	6	-0.75
Zircon_070	416	117.6	0.28	0.0721	0.0026	1 272	0.017	0.1286	0.00029	0.0364	0.002	0.49	780	17	832	22	992	40	780.0	17	6.25
Zircon_071	347	112.6	0.32	0.0724	0.0014	1.272	0.035	0.1200	0.0029	0.0532	0.002	0.40	1028	15	1014	13	999	20	999.0	20	-1.38
Zircon 073	204.8	179.6	0.88	0.0547	0.0043	0.309	0.021	0.04171	0.00093	0.01278	6E-04	0.33	263.4	57	272	16	412	78	263.4	6	3.16
Zircon 074	536	266.6	0.50	0.0516	0.0028	0.26	0.017	0.03564	0.00082	0.01091	5E-04	0.41	225.7	5.1	234	14	296	62	225.7	5	3.55
Zircon 075	350	71.5	0.20	0.081	0.0017	2.459	0.057	0.2204	0.0033	0.0659	0.003	0.25	1284	17	1264	15	1207	23	1207.0	23	-1.58
Zircon 076	148.3	52.55	0.35	0.0575	0.0051	0.316	0.026	0.0397	0.001	0.0137	0.001	0.31	250.8	6.2	278	21	600	130	250.8	6	9.78
Zircon 077	640	110.9	0.17	0.0623	0.0014	1.062	0.028	0.1241	0.0035	0.0369	0.002	0.63	754	20	734	14	678	22	754.0	20	-2.72
Zircon_078	78.5	17.6	0.22	0.0706	0.0034	1.612	0.066	0.1668	0.0029	0.0517	0.003	0.42	994	16	972	26	951	59	994.0	16	-2.26
Zircon_079	135.9	83	0.61	0.0628	0.0075	0.694	0.076	0.083	0.0018	0.0264	1E-03	0.20	514	11	544	51	700	140	514.0	11	5.51
Zircon_080	168.5	65.4	0.39	0.0745	0.0019	1.88	0.05	0.1828	0.0026	0.0539	0.002	0.46	1082	14	1072	18	1081	27	1081.0	27	-0.93
Zircon_081	416	181	0.44	0.0566	0.0031	0.366	0.019	0.0473	0.0013	0.01516	9E-04	0.53	297.6	8.1	317	14	551	83	297.6	8	6.12
Zircon_082	287	220	0.77	0.0522	0.0026	0.29	0.015	0.0402	0.001	0.01265	5E-04	0.36	254.3	6.3	258	11	378	73	254.3	6	1.43
Zircon_083	57.8	31	0.54	0.079	0.0053	1.89	0.13	0.1741	0.0043	0.0537	0.003	0.01	1035	23	1072	44	1155	80	1155.0	80	3.45
Zircon_084	45.5	13.02	0.29	0.0824	0.0065	1.33	0.11	0.1209	0.0049	0.0468	0.004	0.45	735	28	870	49	1236	59	735.0	28	15.52
Zircon_085	237.2	163.4	0.69	0.052	0.0025	0.283	0.014	0.03979	0.00081	0.01204	5E-04	0.03	251.5	5	253	11	368	52	251.5	5	0.59
Zircon_086	273.6	197.3	0.72	0.0598	0.0047	0.333	0.027	0.03988	0.00087	0.01138	5E-04	0.14	252.1	5.4	295	20	605	92	252.1	5	14.54
Zircon_087	280.5	331	1.18	0.0543	0.004	0.312	0.023	0.0419	0.0012	0.01414	6E-04	0.25	264.7	7.5	275	18	409	86	264.7	8	3.75
Zircon_088	650	301	0.46	0.0571	0.0012	0.603	0.02	0.0779	0.003	0.0223	0.001	0.76	484	18	478	13	500	29	484.0	18	-1.26
Zircon_089	349	245	0.70	0.0545	0.0034	0.333	0.018	0.04489	0.00089	0.01499	5E-04	0.37	283.1	5.5	291	13	421	50	283.1	6	2.71
Zircon_090	206	172	0.83	0.065	0.011	0.318	0.065	0.035	0.0011	0.0122	0.001	0.84	221.5	7.1	273	43	760	260	221.5	7	18.86
Zircon_091	508	341	0.67	0.0514	0.002	0.29	0.012	0.04063	0.00098	0.01401	7E-04	0.40	256.7	6	258.2	9.4	252	47	256.7	6	0.58
Zircon_092	183	49.4	0.27	0.0818	0.0019	2.399	0.056	0.2136	0.0033	0.0626	0.002	0.20	1248	17	1241	17	1243	36	1243.0	36	-0.56
Zircon_093	768	775	1.01	0.0523	0.002	0.251	0.0094	0.03501	0.00066	0.01211	4E-04	0.13	221.8	4.1	227.2	7.6	329	37	221.8	4	2.38
Zircon_094	342	196	0.57	0.057	0.002	0.674	0.025	0.0866	0.0016	0.0253	0.001	0.31	535.4	9.7	523	15	481	53	535.4	10	-2.37
Zircon_095	472	262	0.56	0.0538	0.0017	0.378	0.013	0.05107	0.00098	0.01583	7E-04	0.47	321.1	6	325	9.6	364	38	321.1	6	1.20
Zircon_096	122	26.4	0.22	0.0612	0.0063	0.445	0.038	0.0535	0.0025	0.012	0.002	0.55	336	15	373	27	676	91	336.0	15	9.92
Zircon_097	31.9	22	0.69	0.0647	0.0069	0.799	0.074	0.0923	0.0035	0.0302	0.002	0.02	569	21	590	43	800	100	569.0	21	3.56
Zircon_098	158.7	121.3	0.76	0.0511	0.0023	0.295	0.013	0.04183	0.00094	0.01263	6E-04	0.12	264.1	5.8	262	10	393	85	264.1	6	-0.80
Zircon_099	308	185	0.60	0.0524	0.0033	0.258	0.017	0.03576	0.00073	0.01092	5E-04	0.24	226.5	4.6	232	14	374	70	226.5	5	2.37
Zircon_100	138	117.3	0.85	0.0575	0.0019	0.635	0.027	0.0809	0.0015	0.02372	9E-04	0.29	501.6	9.1	501	16	520	41	501.6	9	-0.12

2: 2 sigma uncertainties propagated according to Paton et al., 2010, Geochemistry, Geophysics, Geosystems

207Pb/206Pb ratios, ages and errors are calculated according to Petrus and Kamber, 2012, Geostandards Geoanalytical Research Analyzed spots were 23 micrometers, using an analytical protocol modified from Solari et al., 2010, Geostandards Geoanalytical Research. Data measured employing a Thermo Xseries QICPMS coupled to a Resonetics, Resolution M050 excimer laser workstation.

X: 745010 Y: 2521299

Formación La Pimienta

UTM WGS-84

Z12-02

						C	CORRECT	FED RAT	IOS							CORR	RECTED AGES (M	fa)				1000				
				207Pb/206P	20	07Pb/235		206Pb/23					206Pb/2	2	207РЬ/2			1	Best age			238U/2		207Pb/2		
	U (ppm)	Th (ppm)	Th/U	b ±1s	U	1 -	:1s	8U	±1s	208Pb/232Th	±1s	Rho	38U ±	-1s .	35U	±1s	207Pb/206Pb ±	-1s (Ma) :	±1s	% disc	06Pb 1	s	06Pb	.s r	rTW
Zircon 001	369) 14	5 0.393	0.0511	0.003	0.186	0.01	0.02664	0.000445	0.008	0.001	0.059	169.5	2.8	173	9	360	85	169.5	2.8	2.02312	37.538	0.6270345	0.0511	0.003	0.15489
Zircon 002	402	17	6 0.4378	0.0507	0.00275	0.178	0.0085	0.02655	0.000435	0.0079	0.001	0.343	168.9	2.75	166	7.5	290	65	168.9	2.75	-1.747	37.665	0.6171065	0.0507	0.00275	0.24836
Zircon 003	474	38	9 0.8207	0.0546	0.0029	0.287	0.0135	0.0401	0.00065	0.0122	0.002	0.085	254	3.95	256	10.5	430	50	254	3.95	0.78125	24.938	0.40422635	0.0546	0.0029	0.22868
Zircon_004	134	6	5 0.4851	0.0543	0.00345	0.193	0.012	0.02778	0.000475	0.009	0.001	0.319	176.6	3	182	10	470	65	176.6	3	2.96703	35.997	0.6155015	0.0543	0.00345	-0.10421
Zircon_005	23	3	6 0.2609	0.0756	0.0044	1.44	0.08	0.1488	0.00255	0.045	0.007	0.219	894	14	903	33.5	1040	85	894	14	0.99668	6.7204	0.11516865	0.0756	0.0044	-0.011567
Zircon_006	178	3 5	0 0.2809	0.0523	0.0025	0.164	0.008	0.0237	0.00055	0.0058	0.001	0.444	150.9	3.5	154	7.5	240	65	150.9	3.5	2.01299	42.194	0.979188	0.0523	0.0025	-0.1156
Zircon_007	313	3 11	3 0.361	0.0577	0.0035	0.204	0.011	0.02775	0.00046	0.0088	0.001	0.202	176.5	2.9	188	9.5	520	70	176.5	2.9	6.11702	36.036	0.597354	0.0577	0.0035	0.033293
Zircon_008	427	5 5	7 0.1335	0.0736	0.0037	1.39	0.065	0.1456	0.0026	0.049	0.008	0.064	876	14.5	885	27.5	1030	55	876	14.5	1.01695	6.8681	0.1226452	0.0736	0.0037	0.54807
Zircon_009	177	4	6 0.2599	0.0523	0.0032	0.18	0.01	0.02617	0.000445	0.0085	0.001	0.306	166.5	2.8	172	8.5	460	75	166.5	2.8	3.19767	38.212	0.6497595	0.0523	0.0032	0.31109
Zircon_010	319) 7.	3 0.2288	0.0746	0.0036	1.87	0.09	0.188	0.0065	0.059	0.007	0.718	1113	37.5	1072	38	1060	70	1060	70	-3.8246	5.3191	0.18390675	0.0746	0.0036	0.97793
Zircon_011	283	3 35	4 1.2509	0.0543	0.0034	0.297	0.017	0.0402	0.0007	0.0115	0.002	0.304	254.1	4.25	262	13	520	75	254.1	4.25	3.01527	24.876	0.4331576	0.0543	0.0034	0.52626
Zircon_012	684	38	2 0.5585	0.0501	0.0026	0.194	0.009	0.02843	0.000455	0.0081	0.001	0.476	180.7	2.85	180	7.5	240	55	180.7	2.85	-0.3889	35.174	0.5629345	0.0501	0.0026	-0.29086
Zircon_013	135	5 10	6 0.7852	0.0735	0.00375	1.76	0.08	0.1756	0.0028	0.05	0.007	0.077	1043	15.5	1028	32.5	1020	80	1020	80	-1.4591	5.6948	0.09080485	0.0735	0.00375	0.1812
Zircon_014	627	25.	3 0.4035	0.053	0.0031	0.191	0.01	0.02664	0.00045	0.0078	0.001	0.323	169.5	2.8	177	8.5	410	55	169.5	2.8	4.23729	37.538	0.63408	0.053	0.0031	0.36022
Zircon_015	289) 11:	3 0.391	0.0528	0.00315	0.196	0.0105	0.02717	0.00047	0.0078	0.001	0.179	172.8	2.95	181	9	480	70	172.8	2.95	4.53039	36.805	0.636676	0.0528	0.00315	0.074459
Zircon_017	170) 7	1 0.4176	0.054	0.008	0.205	0.04	0.0282	0.00065	0.008	0.003	0.108	179	4.15	189	29	410	165	179	4.15	5.29101	35.461	0.8173635	0.054	0.008	0.18832
Zircon_018	6/6) 42 1 20	9 0.6346	0.0501	0.0027	0.183	0.009	0.02684	0.00046	0.0082	0.001	0.252	1/0./	2.85	170	/.5	260	65	1/0.7	2.85	-0.4118	37.258	0.638547	0.0501	0.0027	0.082218
Zircon_019	0.54	- 38	4 0.0057	0.0518	0.00285	0.182	0.009	0.02596	0.000425	0.0075	0.001	0.092	105.2	2.05	1/1	0.5	5 550	22	105.2	2.05	3.39181	38.521	0.030037	0.0518	0.00285	0.090240
Zircon_020	200	. 10	0 0.4548	0.0555	0.0035	0.197	0.0115	0.0275	0.00055	0.0082	0.001	0.314	173.7	3.15	182	9.5	400	/5	1/3./	3.15	4.50044	25.942	0.07065685	0.0533	0.0035	0.52002
Zircon_021 Zircon_023	221) 12	4 0.7045 6 0.3723	0.0529	0.00315	0.195	0.0115	0.0279	0.00035	0.0091	0.001	0.309	177.4	3.5	180	9.5	350	90 60	177.4	3.5	1.44444	35.842	0.7003083	0.0529	0.00315	-0.076012
Zircon 025	231	12	2 0.4460	0.0519	0.00205	0.188	0.01	0.02731	0.000473	0.0070	0.001	0.327	166.0	2 65	160	75	380	70	166.0	2.65	1.30082	38.124	0.6104535	0.0519	0.00205	0.23550
Zircon 026	273) 12.	8 0 3545	0.0506	0.00235	0.18	0.0115	0.02023	0.00042	0.0083	0.001	0.32	176.3	3.3	175	9.5	330	70	176.3	3.3	-0.7429	36 101	0.7168085	0.0522	0.00295	0.052594
Zircon 027	114	, ,, L 3	1 0 2719	0.0542	0.00345	0.100	0.012	0.02803	0.000485	0.0003	0.001	0.20	178.2	3.05	189	9.5	460	65	178.2	3.05	5 71429	35 676	0.617299	0.0542	0.00345	0.05259
Zircon 028	231	6	1 0.2641	0.0495	0.00285	0.179	0.0095	0.02668	0.000445	0.0076	0.001	0.313	170.5	2.8	167	8	260	55	170.5	2.8	-2.0958	37.313	0.61957	0.0495	0.00285	0.41237
Zircon 029	78	3	6 0.4615	0.0558	0.00415	0.201	0.014	0.0272	0.00049	0.0079	0.001	0.259	173	3.1	191	12	710	70	173	3.1	9.42408	36,765	0.6623055	0.0558	0.00415	0.1940
Zircon 030	227	7	7 0.3392	0.0486	0.00285	0.189	0.01	0.02752	0.000475	0.0085	0.001	0.125	175	2.95	175	8.5	230	65	175	2.95	0	36.337	0.6271865	0.0486	0.00285	0.10027
Zircon 031	538	3 32	8 0.6097	0.0482	0.00255	0.184	0.0085	0.02681	0.000435	0.0078	0.001	0.173	170.5	2.7	171	7.5	180	60	170.5	2.7	0.2924	37.3	0.6051955	0.0482	0.00255	0.14857
Zircon_032	1183	3 18	6 0.1572	0.0494	0.0026	0.176	0.0085	0.02536	0.00041	0.0074	0.001	0.574	161.5	2.55	164	7.5	i 190	75	161.5	2.55	1.52439	39.432	0.6375075	0.0494	0.0026	-0.28913
Zircon_034	251	10	5 0.4183	0.0499	0.00295	0.199	0.011	0.02755	0.00048	0.0081	0.001	0.234	175.2	3	183	9.5	250	80	175.2	3	4.2623	36.298	0.632409	0.0499	0.00295	-0.019222
Zircon_035	851	71	5 0.8402	0.0604	0.0031	1.04	0.055	0.12	0.0024	0.035	0.006	0.369	730	14	724	25	620	75	730	14	-0.8287	8.3333	0.16666665	0.0604	0.0031	0.074734
Zircon_036	404	47	8 1.1832	0.0514	0.0033	0.203	0.0115	0.02723	0.00045	0.0073	0.001	0.292	173.2	2.8	187	10	360	65	173.2	2.8	7.37968	36.724	0.6069	0.0514	0.0033	0.27467
Zircon_037	391	32	8 0.8389	0.0484	0.00325	0.19	0.0115	0.02664	0.00048	0.0078	0.001	0.298	169.5	3.05	175	10	390	55	169.5	3.05	3.14286	37.538	0.676352	0.0484	0.00325	0.37944
Zircon_038	787	44	2 0.5616	0.0476	0.0026	0.188	0.0085	0.02687	0.000435	0.0074	0.001	0.358	170.9	2.7	175	7.5	290	60	170.9	2.7	2.34286	37.216	0.6024955	0.0476	0.0026	0.5465
Zircon_039	530) 25	2 0.4755	0.0519	0.0035	0.198	0.013	0.02782	0.00046	0.0089	0.001	0.252	176.9	2.9	182	10.5	420	80	176.9	2.9	2.8022	35.945	0.594352	0.0519	0.0035	0.37277
Zircon_040	849) 43	0 0.5065	0.0496	0.00275	0.194	0.0095	0.0267	0.0005	0.0078	0.001	0.382	170	3.15	179	8	3 250	50	170	3.15	5.02793	37.453	0.7013705	0.0496	0.00275	0.50895
Zircon_041	329	28.	5 0.8663	0.0489	0.0027	0.357	0.0175	0.0509	0.0011	0.0188	0.003	0.275	320	7	308	13.5	180	50	320	7	-3.8961	19.646	0.42457765	0.0489	0.0027	-0.078203
Zircon_042	247	39	8 1.6113	0.0488	0.00375	0.286	0.016	0.0408	0.00105	0.0121	0.002	0.46	258	6.5	259	12.5	390	105	258	6.5	0.3861	24.51	0.630767	0.0488	0.00375	0.42514
Zircon_043	272	2 8	2 0.3015	0.0668	0.0037	1.4	0.08	0.15	0.006	0.042	0.006	0.7	899	34	890	35.5	830	55	899	34	-1.0112	6.6667	0.26666665	0.0668	0.0037	0.63044
Zircon_044	287	13	0 0.453	0.0547	0.0049	0.218	0.024	0.0283	0.00065	0.0082	0.003	0.606	179.6	4	199	18	410	115	179.6	4	9.74874	35.336	0.81159/	0.0547	0.0049	-0.36224
Zircon_045	1/9		/ 0.6536	0.0514	0.00355	0.202	0.0125	0.0279	0.00055	0.0098	0.001	0.319	177.2	5.55	185	10.5	500	65	177.0	3.35	4.21622	35.842	0./065685	0.0514	0.00355	0.45555
Zircon_046	150) 0. I (i	0.42	0.0658	0.00395	0.249	0.013	0.0275	0.0005	0.0096	0.001	0.351	1/3.8	3.3	225	10.5	850	00	175.8	2.5	22.7550	30.03	0.07088	0.0658	0.00395	0.1818
Zircon 049	270	12	8 0.5452 8 0.4741	0.051	0.00295	0.189	0.00	0.02085	0.00044	0.0081	0.001	0.303	168.1	2.15	170	9	330	60	168.1	2.75	2 26744	37.85	0.0112395	0.051	0.00295	0.1899
Zircon 050	270	2 10	8 0.3056	0.0309	0.00285	0.180	0.0095	0.02042	0.000475	0.0079	0.001	0.025	170.3	2	172	85	310	80	170.2	3	0.40036	27 255	0.0005	0.0309	0.00285	0.1890
Zircon 051	213	5 8	6 1 1 3 1 6	0.0519	0.00285	0.184	0.017	0.02077	0.000475	0.0118	0.001	0.223	257	44	256	13.5	390	55	257	44	-0 3906	24 57	0.4225803	0.0490	0.00285	0.33403
Zircon 053	100) 4	8 0.48	0.0627	0.00315	1.038	0.0455	0.1202	0.0019	0.0345	0.005	0.381	731	11	722	23	690	70	731	11	-1 2465	8 3195	0.13150575	0.0627	0.00315	0.11003
Zircon 054	225	5 8	5 0.3778	0.054	0.00305	0.274	0.0145	0.0378	0.0006	0.0118	0.002	0.3	239.1	3.85	249	11	350	70	239.1	3.85	3.9759	26.455	0.41992105	0.054	0.00305	0.29572
Zircon 055	93	3 2	6 0.2796	0.0512	0.00315	0.195	0.011	0.02817	0.000495	0.0079	0.001	0.312	179	3.1	180	9.5	330	55	179	3.1	0.55556	35.499	0.62378	0.0512	0.00315	0.3662
Zircon_056	26	- ;	8 0.3077	0.0747	0.0042	1.82	0.09	0.1759	0.00305	0.054	0.008	0.351	1045	16.5	1045	33	1060	75	1060	75	0	5.685	0.0985753	0.0747	0.0042	0.38104
Zircon_057	205	5 14	7 0.7171	0.0515	0.0038	0.215	0.0175	0.0307	0.00065	0.0097	0.002	0.26	194.8	4.15	197	14	480	85	194.8	4.15	1.11675	32.573	0.6896625	0.0515	0.0038	0.39196
Zircon_058	145	5 4	7 0.3241	0.0561	0.00455	0.217	0.016	0.02698	0.00046	0.0097	0.001	0.087	171.6	2.9	197	13	630	85	171.6	2.9	12.8934	37.064	0.631937	0.0561	0.00455	0.12147
Zircon_059	121	8	6 0.7107	0.0768	0.0038	2.19	0.1	0.2083	0.00385	0.056	0.008	0.287	1220	19.5	1176	34	1130	65	1130	65	-3.7415	4.8008	0.0887324	0.0768	0.0038	-0.095378

Zircon_060	897	877 0.9777	0.0527	0.0027	0.353	0.016	0.0487	0.0008	0.0143	0.002	0.29	306.4	4.95	306	12	300	75	306.4	4.95	-0.1307	20.534	0.3373122	0.0527	0.0027	0.11551
Zircon_61	194	89 0.4588	0.075	0.0195	1.7	0.95	0.171	0.008	0.049	0.013	0.084	1016	43	1020	50	1070	170	1070	170	0.39216	5.848	0.27358845	0.075	0.0195	0.49851
Zircon_62	2040	1433 0.7025	0.0487	0.00255	0.177	0.009	0.02693	0.000485	0.0077	0.001	0.343	171.3	3.05	166	7.5	150	60	171.3	3.05	-3.1928	37.133	0.668758	0.0487	0.00255	-0.02269
Zircon_63	377	185 0.4907	0.0823	0.00415	2.43	0.11	0.2167	0.00355	0.059	0.009	0.296	1265	19	1251	32.5	1250	46.5	1250	46.5	-1.1191	4.6147	0.07559805	0.0823	0.00415	0.24045
Zircon_64	618	338 0.5469	0.0531	0.0029	0.356	0.0175	0.0484	0.0008	0.0137	0.002	0.227	304.4	4.95	308	13	340	65	304.4	4.95	1.16883	20.661	0.34150675	0.0531	0.0029	-0.12848
Zircon_65	654	426 0.6514	0.0509	0.0027	0.282	0.0125	0.0404	0.00065	0.0117	0.002	0.363	255.2	4	252	10.5	280	60	255.2	4	-1.2698	24.752	0.39824525	0.0509	0.0027	0.29822
Zircon_066	553	183 0.3309	0.0731	0.00365	1.87	0.08	0.1826	0.0028	0.052	0.008	0.116	1081	15.5	1070	28	1030	60	1030	60	-1.028	5.4765	0.08397625	0.0731	0.00365	0.13797
Zircon_067	464	226 0.4871	0.0798	0.00395	2.38	0.105	0.2127	0.0035	0.063	0.009	0.69	1243	18.5	1237	31.5	1180	70	1180	70	-0.485	4.7015	0.07736295	0.0798	0.00395	0.033278
Zircon_068	966	815 0.8437	0.053	0.00305	0.365	0.018	0.0496	0.0008	0.0144	0.002	0.327	312	5	316	14	360	90	312	5	1.26582	20.161	0.3251821	0.053	0.00305	0.50662
Zircon_069	1082	394 0.3641	0.0716	0.00355	1.68	0.075	0.1674	0.0026	0.046	0.007	0.287	998	14.5	1000	28	960	55	998	14.5	0.2	5.9737	0.0927817	0.0716	0.00355	0.074919
Zircon_070	836	702 0.8397	0.059	0.006	0.34	0.035	0.0415	0.00075	0.0122	0.003	0.418	261.9	4.55	297	24.5	550	130	261.9	4.55	11.8182	24.096	0.43547685	0.059	0.006	-0.15874
Zircon_071	171	200 1.1696	0.0704	0.0037	1.6	0.1	0.16	0.005	0.046	0.007	0.5	959	28	968	35	950	50	959	28	0.92975	6.25	0.1953125	0.0704	0.0037	0.32951
Zircon_072	55	24 0.4364	0.0762	0.00405	2.12	0.1	0.1942	0.00335	0.057	0.009	0.24	1144	18	1151	32.5	1130	50	1130	50	0.60817	5.1493	0.0888273	0.0762	0.00405	0.30203
Zircon_073	508	167 0.3287	0.0497	0.003	0.2	0.0095	0.02805	0.00046	0.0085	0.001	0.63	178.3	2.9	185	7.5	280	80	178.3	2.9	3.62162	35.651	0.584645	0.0497	0.003	-0.49044
Zircon_074	127	51 0.4016	0.0722	0.00485	1.79	0.12	0.1758	0.00295	0.051	0.009	0.621	1044	16.5	1052	38	1060	100	1060	100	0.76046	5.6883	0.09545185	0.0722	0.00485	-0.41999
Zircon_075	133	43 0.3233	0.0469	0.003	0.181	0.011	0.02738	0.000465	0.0063	0.001	0.24	174.1	2.9	168	9.5	370	65	174.1	2.9	-3.631	36.523	0.6202775	0.0469	0.003	-0.026103
Zircon_076	178	56 0.3146	0.0547	0.00315	0.356	0.018	0.047	0.0008	0.0145	0.002	0.094	296.3	4.8	315	13.5	390	55	296.3	4.8	5.93651	21.277	0.3621548	0.0547	0.00315	0.14312
Zircon_077	146	70 0.4795	0.054	0.0033	0.21	0.0115	0.02782	0.00044	0.0077	0.001	0.386	176.9	2.75	192	9.5	460	75	176.9	2.75	7.86458	35.945	0.5685105	0.054	0.0033	-0.28476
Zircon_079	111	22 0.1982	0.055	0.00295	0.519	0.0265	0.0667	0.0015	0.0206	0.003	0.44	416	9	424	16.5	470	55	416	9	1.88679	14.993	0.33716275	0.055	0.00295	0.48842
Zircon_080	191	185 0.9686	0.0574	0.00295	0.57	0.0265	0.0723	0.00115	0.0201	0.003	0.103	450	7	457	17	530	65	450	7	1.53173	13.831	0.21999925	0.0574	0.00295	0.16471
Zircon_081	54	49 0.9074	0.0685	0.0039	0.662	0.0355	0.0676	0.00125	0.0217	0.003	0.074	422	7.5	512	22	930	65	422	7.5	17.5781	14.793	0.27353735	0.0685	0.0039	0.15862
Zircon_082	21	13 0.619	0.0727	0.0041	1.76	0.09	0.1766	0.00305	0.049	0.007	0.097	1048	17	1022	33.5	1000	75	1000	75	-2.544	5.6625	0.0977954	0.0727	0.0041	0.14278
Zircon_083	288	148 0.5139	0.051	0.00275	0.321	0.0155	0.0459	0.0007	0.0133	0.002	0.314	289	4.45	282	12	270	55	289	4.45	-2.4823	21.786	0.33225585	0.051	0.00275	-0.12008
Zircon_085	176	211 1.1989	0.059	0.00315	0.611	0.0295	0.0775	0.0013	0.0215	0.003	0.036	481	8	483	18.5	570	50	481	8	0.41408	12.903	0.2164412	0.059	0.00315	0.17448
Zircon_086	89	76 0.8539	0.0552	0.0035	0.307	0.018	0.042	0.0007	0.0125	0.002	0.284	265.1	4.25	270	14	480	70	265.1	4.25	1.81481	23.81	0.3968254	0.0552	0.0035	0.29903
Zircon_087	44	21 0.4773	0.0723	0.0037	1.66	0.075	0.1697	0.00265	0.048	0.007	0.294	1011	14.5	991	29	1030	60	1030	60	-2.0182	5.8928	0.09202	0.0723	0.0037	-0.054856
Zircon_088	146	77 0.5274	0.0578	0.0029	0.611	0.0275	0.0794	0.0014	0.0234	0.003	0.373	492	8.5	484	17.5	480	55	492	8.5	-1.6529	12.594	0.22206855	0.0578	0.0029	0.051056
Zircon_089	84	25 0.2976	0.0525	0.00375	0.195	0.013	0.0277	0.0005	0.0081	0.001	0.271	175.9	3.2	180	11	490	65	175.9	3.2	2.27778	36.101	0.651644	0.0525	0.00375	0.2144
Zircon_091	201	52 0.2587	0.0577	0.00295	0.594	0.027	0.0775	0.0012	0.0218	0.003	0.873	481	7.5	472	17.5	490	80	481	7.5	-1.9068	12.903	0.1997919	0.0577	0.00295	-0.71797
Zircon_092	139	30 0.2158	0.0563	0.00335	0.281	0.034	0.0401	0.0027	0.0131	0.003	0.838	258	16.5	251	23.5	480	85	258	16.5	-2.7888	24.938	1.679094	0.0563	0.00335	-0.56306
Zircon_093	104	61 0.5865	0.0626	0.0032	0.812	0.0375	0.0973	0.0016	0.0266	0.004	0.209	599	9.5	605	22	660	60	599	9.5	0.99174	10.277	0.16900295	0.0626	0.0032	0.13203
Zircon_094	81	43 0.5309	0.0527	0.0046	0.353	0.027	0.0478	0.0009	0.0132	0.002	0.246	301	5.5	309	19.5	510	110	301	5.5	2.589	20.921	0.39390065	0.0527	0.0046	0.26198
Zircon_095	95	22 0.2316	0.0793	0.00385	2.01	0.09	0.1915	0.0031	0.059	0.008	0.164	1130	17	1125	31	1140	65	1140	65	-0.4444	5.2219	0.0845326	0.0793	0.00385	0.10702
Zircon_096	343	87 0.2536	0.0698	0.0047	1.44	0.135	0.149	0.005	0.062	0.01	0.453	896	26	905	39	930	95	896	26	0.99448	6.7114	0.2252151	0.0698	0.0047	0.12184
Zircon_097	630	1289 2.046	0.0553	0.0028	0.464	0.021	0.0617	0.0013	0.0226	0.003	0.466	386	8	387	15.5	410	60	386	8	0.2584	16.207	0.3414861	0.0553	0.0028	0.3623
Zircon_098	4853	17912 3.6909	0.0509	0.0027	0.178	0.008	0.02563	0.000405	0.0071	0.001	0.246	163.2	2.55	166	7	250	100	163.2	2.55	1.68675	39.017	0.616535	0.0509	0.0027	0.054517
Zircon_099	341	414 1.2141	0.0541	0.0033	0.344	0.018	0.0465	0.00075	0.0132	0.002	0.308	293.1	4.75	299	14.5	500	60	293.1	4.75	1.97324	21.505	0.3468609	0.0541	0.0033	0.3068
Zircon_100	226	69 0.3053	0.055	0.0032	0.616	0.049	0.0791	0.00335	0.029	0.006	0.565	490	19.5	485	27.5	530	70	490	19.5	-1.0309	12.642	0.5354165	0.055	0.0032	-0.25071

Complejo Vulcanosedimentario Las Pilas

UTM WGS-84

Z12-09		UTM WGS- 84		X: 742342	Y: 2518266														
							CORRECT	FED RAT	OS^2					CORRE	CTED AG	ES (M	fa)		
	$U\left(ppm ight)^{1}$	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁶ Pb/ ² ³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s 2	⁰⁷ Pb/ ²⁰⁶ Pb [±]	2s	Best age (Ma)	$\pm 2s$	Disc %
Zircon_001	595	263	0.442	0.0519	0.0029	0.184	0.012	0.02571	0.00071	0.13002	163.6	4.5	171.4	9.9	293	80	163.6	4.5	4.5508
Zircon_002	538	303	0.5632	0.0514	0.0025	0.183	0.011	0.02606	0.00076	0.485174074	165.9	4.8	170.7	9.1	294	64	165.9	4.8	2.812
Zircon_003	529	494	0.9338	0.0533	0.0026	0.349	0.02	0.0476	0.0013	0.12328	299.8	8.1	305	15	328	51	299.8	8.1	1.7049
Zircon_004	366	112	0.306	0.0601	0.004	0.226	0.018	0.0276	0.0011	0.38356	175.2	7	206	15	604	61	175.2	7	14.951
Zircon_005	84	129	1.5357	0.073	0.01	1.74	0.28	0.1681	0.0062	0.229200306	1001	34	1019	86	990	180	1001	34	1.7664
Zircon_006	195	51	0.2615	0.0823	0.0033	2.46	0.12	0.2159	0.0059	0.34498	1260	31	1260	36	1257	50	1257	50	0
Zircon_007	204	66	0.3235	0.0558	0.0065	0.197	0.021	0.02578	0.00082	0.23878	164.1	5.1	181	18	610	140	164.1	5.1	9.337
Zircon_008	453	128	0.2826	0.051	0.0036	0.18	0.014	0.02584	0.00073	0.013865	164.5	4.6	168	12	345	76	164.5	4.6	2.0833
Zircon_009	107	78	0.729	0.0781	0.0037	2.2	0.12	0.2026	0.0056	0.0043453	1189	30	1180	39	1138	60	1189	30	-0.763
Zircon_010	314	150	0.4777	0.0531	0.0055	0.201	0.022	0.0277	0.001	0.046857	175.9	6.3	186	18	361	94	175.9	6.3	5.4301
Zircon_011	508	149	0.2933	0.0493	0.0026	0.178	0.011	0.02602	0.00072	0.22035	165.6	4.5	166.4	9.6	224	67	165.6	4.5	0.4808
Zircon_012	122	72	0.5902	0.0793	0.0035	2.19	0.12	0.2001	0.0055	0.21626	1176	30	1177	38	1187	41	1176	30	0.085
Zircon_013	68	54	0.7941	0.0833	0.0043	2.43	0.16	0.2113	0.0062	0.066656	1236	33	1256	45	1335	51	1335	51	1.5924
Zircon_014	248	112	0.4516	0.0561	0.0035	0.184	0.012	0.02429	0.00068	0.429257582	154.7	4.3	171	11	421	69	154.7	4.3	9.5322
Zircon_015	431	165	0.3828	0.0505	0.0034	0.19	0.014	0.02735	0.0008	0.396970488	173.9	5	178	12	319	80	173.9	5	2.3034
Zircon_016	664	352	0.5301	0.0506	0.006	0.17	0.024	0.02463	0.00076	0.079999	156.8	4.8	159	19	290	180	156.8	4.8	1.3836
Zircon_017	494	169	0.3421	0.0531	0.0033	0.189	0.013	0.02554	0.00073	0.29012	162.6	4.6	176	11	317	70	162.6	4.6	7.6136
Zircon_018	223	134	0.6009	0.0527	0.0041	0.188	0.017	0.02593	0.00088	0.49611	165	5.5	174	15	459	87	165	5.5	5.1724
Zircon_019	398	153	0.3844	0.0493	0.003	0.174	0.012	0.02561	0.00074	0.418976962	163	4.7	163	10	245	73	163	4.7	0

Zircon_020	135	119 0.8815	0.057	0.0039	0.571	0.043	0.0729	0.002	0.19559	453	12	457	26	442	85	453	12	0.8753
Zircon_021	314	184 0.586	0.0543	0.0031	0.2	0.013	0.02691	0.00077	0.440213818	171.2	4.8	185	11	380	67	171.2	4.8	7.4595
Zircon_022	1717	809 0.4712	0.0496	0.0024	0.1717	0.0097	0.02529	0.00067	0.071352	161	4.2	160.8	8.4	195	54	161	4.2	-0.124
Zircon_023	1163	621 0.534	0.0496	0.0022	0.1728	0.0093	0.02506	0.00066	0.489354581	159.6	4.4	161.8	8	199	49	159.6	4.4	1.3597
Zircon_024	367	188 0.5123	0.051	0.0071	0.182	0.025	0.02578	0.00077	0.217439876	164.1	4.8	171	20	310	210	164.1	4.8	4.0351
Zircon 025	562	190 0.3381	0.0523	0.0031	0.18	0.011	0.02552	0.00069	0.014749	162.4	4.4	169.3	9.8	348	68	162.4	4.4	4.0756
Zircon 026	106	47 0.4434	0.0784	0.0037	2.12	0.12	0.1961	0.0063	0.0080015	1154	34	1156	40	1167	40	1154	34	0.173
Zircon 027	348	130 0.3736	0.0495	0.0032	0.177	0.013	0.0259	0.00075	0.32666	164.8	4.7	165	12	215	55	164.8	4.7	0.1212
Zircon 028	115	62 0.5391	0.0514	0.0058	0.236	0.028	0.0331	0.0011	0.280103582	209.9	6.7	213	24	536	99	209.9	6.7	1.4554
Zircon 029	202	133 0.6584	0.059	0.0047	0.177	0.02	0.02379	0.00097	0 32134	151.6	6.1	165	17	573	86	151.6	6.1	8 1212
Zircon 020	252	153 0.4334	0.0654	0.0088	0.221	0.02	0.02315	0.00097	0.47314	153.8	5.5	202	28	780	100	152.8	5.5	23 861
Zircon_031	473	44 0.003	0.0034	0.0088	2.01	0.057	0.02413	0.00088	0.47314	1111	2.5	1120	20	11/8	150	1111	27	0.8036
Zircon_022	475	44 0.095	0.0781	0.003	0.617	0.045	0.1002	0.003	0.24732	472	14	1120	24	521	45	472	14	0.8050
Zircon_032	102	79 0.5522	0.0385	0.0037	1.77	0.045	0.0701	0.0025	0.052521	473	14	405	20	1122	45	4/3	14	2.4742
Zircon_035	141	245 0.704	0.0774	0.0030	0.10	0.12	0.107	0.0040	0.085307	993	20	1034	50	200	45	993	20	3.7718
Zircon_034	548	245 0.704	0.0498	0.0035	0.18	0.013	0.02623	0.00074	0.390627291	166.9	4.7	108	11	289	75	100.9	4.7	0.0548
Zircon_036	547	189 0.3455	0.0517	0.0032	0.185	0.015	0.02594	0.00072	0.17645	165.1	4.5	172	11	315	/4	165.1	4.5	4.0116
Zircon_037	399	177 0.4436	0.0513	0.0033	0.18	0.014	0.0256	0.00078	0.24536	162.9	4.9	167	12	296	82	162.9	4.9	2.4551
Zircon_038	145	126 0.869	0.0603	0.0033	0.871	0.055	0.1021	0.0034	0.50651	626	21	634	31	663	74	626	21	1.2618
Zircon_040	419	140 0.3341	0.0505	0.0032	0.176	0.012	0.02521	0.00075	0.18878	160.5	4.7	164	10	269	53	160.5	4.7	2.1341
Zircon_041	427	154 0.3607	0.0507	0.0037	0.175	0.013	0.02521	0.00071	0.066537	160.5	4.5	163	11	269	84	160.5	4.5	1.5337
Zircon_042	606	206 0.3399	0.0498	0.0028	0.178	0.011	0.02612	0.00083	0.514200195	166.2	5.2	165.8	9.7	243	68	166.2	5.2	-0.241
Zircon_043	340	250 0.7353	0.0516	0.0041	0.178	0.015	0.02506	0.00073	0.14311	159.6	4.6	166	13	377	82	159.6	4.6	3.8554
Zircon_044	316	119 0.3766	0.0546	0.0036	0.199	0.014	0.02638	0.00074	0.398732806	167.8	4.6	186	12	391	67	167.8	4.6	9.7849
Zircon_045	587	468 0.7973	0.0487	0.0029	0.161	0.01	0.02417	0.00079	0.44227	153.9	5	151.8	8.7	268	61	153.9	5	-1.383
Zircon_046	702	272 0.3875	0.0532	0.0033	0.188	0.013	0.0255	0.0008	0.3196	162.3	5	175	11	294	74	162.3	5	7.2571
Zircon_047	417	198 0.4748	0.0505	0.0035	0.179	0.014	0.02575	0.00074	0.06849	163.9	4.7	167	12	284	82	163.9	4.7	1.8563
Zircon_048	254	78 0.3071	0.0499	0.0044	0.176	0.016	0.02564	0.00073	0.20829	163.2	4.6	172	14	370	95	163.2	4.6	5.1163
Zircon_049	448	259 0.5781	0.0497	0.0029	0.177	0.011	0.02575	0.00077	0.12172	163.9	4.8	164.9	9.9	243	76	163.9	4.8	0.6064
Zircon_050	637	249 0.3909	0.0495	0.0032	0.181	0.014	0.0269	0.00076	0.365268189	171.1	4.8	169	11	248	57	171.1	4.8	-1.243
Zircon 051	242	113 0.4669	0.0557	0.0043	0.334	0.03	0.0446	0.0014	0.040832	281.4	8.8	292	22	434	98	281.4	8.8	3.6301
Zircon 052	160	50 0.3125	0.0715	0.0029	1.629	0.085	0.1641	0.0046	0.26987	980	25	981	33	976	56	980	25	0.1019
Zircon 053	195	46 0.2359	0.0776	0.0032	2.03	0.11	0.1912	0.0062	0.56317	1127	33	1124	36	1140	47	1127	33	-0.267
Zircon 054	365	219 0.6	0.0503	0.0035	0.174	0.013	0.02491	0.00068	0.19166	158.6	4.3	162	11	389	76	158.6	4.3	2.0988
Zircon 055	417	352 0.8441	0.0484	0.0033	0.168	0.012	0.02461	0.00073	0 415278342	156.7	4.6	158	11	167	96	156.7	4.6	0.8228
Zircon 056	27	16 0 5926	0.0741	0.006	1 79	0.15	0.1751	0.005	0.031426	1040	27	1043	54	1011	90	1040	27	0.2876
Zircon 057	496	371 0.748	0.0493	0.0026	0.169	0.01	0.02488	0.00071	0.23164	158.4	4.4	159.3	03	205	60	158.4	4.4	0.565
Zircon 059	188	93 0 4947	0.051	0.0020	0.18	0.039	0.02400	0.00091	0 165942315	161.1	57	167	30	560	150	161.1	57	3 5329
Zircon 61	248	125 0.504	0.0718	0.0031	1 485	0.083	0.1510	0.00071	0.105742515	012	22	024	34	070	42	012	22	1 2087
Zircon_61	240	705 1.0120	0.0/18	0.0051	0.226	0.085	0.1519	0.0042	0.494097083	912	25	924	17	704	42	912	4.6	1.2987
Zircon_02	100	705 1.0129	0.0037	0.0034	1.77	0.022	0.02587	0.00074	0.27942	104.7	4.0	1021	17	1071	50	104.7	4.0	25.057
Zircon_64	278	102 0 2660	0.0747	0.0042	1.//	0.12	0.1724	0.0054	0.47713	1023	20	022	20	028	50	1023	20	0.582
Zircon_04	278	102 0.3009	0.0702	0.0035	0.001	0.1	0.1515	0.0009	0.34674	909	30	922	39	928	59	909	30	1.41
Zircon_65	242	181 0.7479	0.0601	0.0025	0.801	0.041	0.0900	0.0026	0.14203	393	15	397	12	207	52	595	15	0.555
Zircon_066	517	224 0.4355	0.0493	0.0035	0.171	0.014	0.02551	0.00075	0.10972	162.4	4.6	100	12	281	69	162.4	4.0	-1.5
Zircon_06/	/1	// 1.0845	0.0777	0.004	2.06	0.12	0.1911	0.0056	0.044214	112/	30	1138	40	1129	61	112/	30	0.9666
Zircon_069	268	121 0.4515	0.0747	0.0036	1.83	0.13	0.1772	0.0057	0.46501	1051	31	1057	43	1070	75	1051	31	0.5676
Zircon_0/0	284	163 0.5739	0.0608	0.0046	0.211	0.018	0.02457	0.00076	0.099853	156.4	4.8	193	15	680	100	156.4	4.8	18.964
Zircon_071	318	107 0.3365	0.0527	0.0047	0.184	0.017	0.02535	0.00077	0.17001	161.4	4.8	171	15	443	83	161.4	4.8	5.614
Zircon_0/2	175	80 0.4571	0.0494	0.0042	0.305	0.029	0.0435	0.0019	0.29539	275	12	269	22	475	63	275	12	-2.23
Zircon_073	462	396 0.8571	0.0559	0.0026	0.518	0.03	0.0677	0.0021	0.22599	422	13	423	20	433	62	422	13	0.2364
Zircon_074	184	88 0.4783	0.0585	0.0054	0.203	0.02	0.02508	0.00082	0.20395	159.7	5.1	186	17	610	140	159.7	5.1	14.14
Zircon_075	421	294 0.6983	0.0773	0.003	2.13	0.11	0.1998	0.0052	0.41859	1174	28	1157	35	1105	37	1174	28	-1.469
Zircon_076	80	35 0.4375	0.0744	0.0037	1.76	0.11	0.1751	0.0048	0.017961	1040	27	1030	39	1045	67	1040	27	-0.971
Zircon_078	385	431 1.1195	0.049	0.0031	0.179	0.013	0.02626	0.00074	0.021032	167.1	4.7	168	12	286	64	167.1	4.7	0.5357
Zircon_079	522	428 0.8199	0.0521	0.0027	0.232	0.014	0.03314	0.00097	0.16399	210.2	5.7	212	11	265	63	210.2	5.7	0.8491
Zircon_080	276	136 0.4928	0.0517	0.0048	0.181	0.017	0.0257	0.0008	0.092866	163.6	5	168	14	351	76	163.6	5	2.619
Zircon_081	203	98 0.4828	0.0511	0.0034	0.189	0.014	0.02703	0.00089	0.14475	172	5.6	175	12	368	98	172	5.6	1.7143
Zircon_082	408	173 0.424	0.052	0.0036	0.185	0.014	0.02586	0.00074	0.378135013	164.6	4.6	172	11	386	89	164.6	4.6	4.3023
Zircon_083	381	150 0.3937	0.0495	0.0037	0.169	0.013	0.02502	0.00075	0.083594	159.3	4.7	158	12	275	73	159.3	4.7	-0.823
Zircon_084	84	34 0.4048	0.0775	0.0036	1.94	0.11	0.1842	0.0051	0.2382	1090	28	1092	37	1120	54	1090	28	0.1832
Zircon 085	143	127 0.8881	0.0528	0.0033	0.433	0.027	0.0588	0.0017	0.26594	369	11	363	21	373	80	369	11	-1.653
Zircon 086	72	44 0.6111	0.0634	0.0078	0.212	0.03	0.0244	0.0012	0.09482	155.5	7.8	192	25	850	100	155.5	7.8	19.01
Zircon 087	379	117 0.3087	0.052	0.0026	0,181	0.011	0.02614	0.00074	0.465813452	166.3	4.7	168.8	9.4	272	57	166.3	4.7	1.481
Zircon 088	231	208 0.9004	0.0506	0.0036	0.274	0.02	0.0395	0.0012	0.19856	249.8	7.6	245	17	306	96	249.8	7.6	-1.959
Zircon 089	501	200 0 3992	0.0504	0.0029	0.18	0.012	0.02626	0.00075	0 22702	167.1	47	167.8	99	207	56	167.1	47	0.4172
Zircon 090	627	624 0.9952	0.0499	0.0029	0.168	0.012	0.02459	0.00073	0.42799	156.6	4.6	157	13	270	110	156.6	4.6	0.2548
Zircon 091	A72	165 0 3496	0.0688	0.0020	1 17	0.11	0 1 2 4 1	0.0086	0 737088859	754	/18	785	45	885	56	754	48	3 9/10
Zircon 002	201	230 0.2420	0.0000	0.0029	0.162	0.11	0.02250	0.0030	0.157000058	150.2	40	152	17	410	120	150.2	40	1 7647
Zircon_093	271	237 0.0213	0.0501	0.0051	0.105	0.02	0.02359	0.00075	0.21108	150.5	4.7	155	1/	410	150	150.5	·+./	1./04/

Zircon_094	580	227 0.3914	0.0495	0.0031	0.173	0.013	0.02548	0.00071	0.27554	162.2	4.5	163	11	232	68	162.2	4.5	0.4908
Zircon_095	353	102 0.289	0.0487	0.0033	0.173	0.013	0.02585	0.00082	0.30561	164.5	5.1	162	11	295	68	164.5	5.1	-1.543
Zircon_096	406	146 0.3596	0.0626	0.0052	0.213	0.017	0.02475	0.00073	0.34178	157.6	4.6	199	14	700	83	157.6	4.6	20.804
Zircon_097	1136	192 0.169	0.0691	0.0027	1.42	0.07	0.1482	0.0039	0.14227	891	22	897	30	909	45	891	22	0.6689
Zircon_098	225	100 0.4444	0.049	0.0045	0.178	0.017	0.02599	0.00081	0.02804	165.4	5.1	166	15	340	110	165.4	5.1	0.3614
Zircon_099	216	92 0.4259	0.0749	0.0033	1.809	0.098	0.1754	0.0048	0.505154399	1042	26	1048	35	1107	55	1042	26	0.5725
Zircon_100	141	45 0.3191	0.0466	0.0062	0.182	0.026	0.0271	0.001	0.086628	172.7	6.4	171	23	345	97	172.7	6.4	-0.994

2: 2 sigma uncertainties propagated according to Paton et al., 2010, Geochemistry, Geophysics, Geosystems

207Pb/206Pb ratios, ages and errors are calculated according to Petrus and Kamber, 2012, Geostandards Geoanalytical Research

Analyzed spots were 23 micrometers, using an analytical protocol modified from Solari et al., 2010, Geostandards Geoanalytical Research.

Data measured employing a Thermo Xseries QICPMS coupled to a Resonetics, Resolution M050 excimer laser workstation.

Filita La Escondida

Z12-08	ι	JTM WGS-8	4	X: 742034	Y: 2520244														
							CORREC	TED RAT	IOS ²					CORRE	CTED A	GES (Ma)		
	$U\left(ppm ight)^{1}$	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁶ Pb/ ² ³⁸ U	$\pm 2s$	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Best age (Ma)	±2s	Disc %
Zircon_001	96	22	0.2292	0.0618	0.0031	0.865	0.043	0.1004	0.0036	0.721300843	616	21	631	22	742	66	616.0	21	2.38
Zircon_002	81	18	0.2222	0.0814	0.003	2.452	0.082	0.217	0.0074	0.42812	1266	39	1256	25	1235	32	1235.0	32	-0.80
Zircon_003	196	106	0.5408	0.0557	0.0091	0.159	0.028	0.02153	0.00078	0.205726229	137.3	4.9	149	23	430	220	137.3	5	7.85
Zircon_004	763	662	0.8676	0.0487	0.0022	0.1299	0.0059	0.01918	0.00062	0.41282	122.4	3.9	123.9	5.2	173	48	122.4	4	1.21
Zircon_005	135	589	4.363	0.0609	0.0026	0.828	0.033	0.0983	0.003	0.22784	605	18	611	18	581	40	605.0	18	0.98
Zircon_006	519	232	0.447	0.0689	0.0019	1.403	0.037	0.1481	0.0044	0.14022	891	25	890	16	901	40	891.0	25	-0.11
Zircon_007	499	48	0.0962	0.0548	0.0029	0.281	0.038	0.0366	0.003	0.42462	232	19	251	27	492	77	232.0	19	7.57
Zircon_008	89	132	1.4831	0.0665	0.0042	1.058	0.065	0.1156	0.0037	0.520974182	705	21	729	31	816	75	705.0	21	3.29
Zircon_009	250	73	0.292	0.0549	0.0031	0.403	0.022	0.0533	0.0017	0.584257206	335	10	346	15	419	60	335.0	10	3.18
Zircon_010	413	70	0.1695	0.0696	0.0034	1.46	0.23	0.152	0.018	0.73023	910	94	913	68	960	60	910.0	94	0.33
Zircon_011	85	46	0.5412	0.083	0.0032	2.716	0.091	0.2326	0.0071	0.24581	1348	37	1330	25	1250	44	1250.0	44	-1.35
Zircon_012	137	109	0.7956	0.0782	0.0022	2.372	0.054	0.2172	0.0065	0.7692	1267	34	1233	17	1146	40	1146.0	40	-2.76
Zircon_013	102	84	0.8235	0.0825	0.0034	2.334	0.085	0.2057	0.0065	0.0933	1206	35	1224	26	1242	54	1242.0	54	1.47
Zircon_016	196	70	0.3571	0.1076	0.003	4.58	0.11	0.3103	0.0091	0.24504	1742	45	1745	21	1760	35	1760.0	35	0.17
Zircon_017	50	20	0.4	0.0779	0.0041	1.905	0.091	0.1803	0.0059	0.685030444	1069	32	1078	32	1076	68	1069.0	32	0.83
Zircon_019	301	151	0.5017	0.0779	0.0032	2.152	0.097	0.2026	0.0096	0.084448	1189	52	1165	30	1154	55	1189.0	52	-2.06
Zircon_020	783	49	0.0626	0.0483	0.0019	0.1679	0.0058	0.02496	0.00078	0.904633621	158.9	4.9	157.5	4.9	175	42	158.9	5	-0.89
Zircon_021	505	222	0.4396	0.0504	0.0026	0.1283	0.0063	0.01851	0.0006	0.660132232	118.3	3.8	122.4	5.7	308	68	118.3	4	3.35
Zircon_022	46	24	0.5217	0.0636	0.0076	0.447	0.047	0.0529	0.002	0.359570446	332	12	370	34	800	120	332.0	12	10.27
Zircon_023	69	52	0.7536	0.0774	0.0029	2.039	0.089	0.1917	0.0088	0.31493	1130	47	1127	28	1157	44	1130.0	47	-0.27
Zircon_024	224	97	0.433	0.0596	0.0025	0.737	0.029	0.0895	0.0027	0.10022	553	16	559	17	591	42	553.0	16	1.07
Zircon_025	119	68	0.5714	0.0646	0.003	1.107	0.071	0.1224	0.0059	0.010775	744	34	768	38	811	68	744.0	34	3.13
Zircon_026	61	35	0.5738	0.0748	0.0035	1.874	0.074	0.1809	0.0058	0.811946275	1072	31	1074	27	1074	54	1072.0	31	0.19
Zircon_027	95	53	0.5579	0.0888	0.0033	2.535	0.093	0.2108	0.0083	0.3297	1233	44	1279	25	1357	53	1357.0	53	3.60
Zircon_029	432	67	0.1551	0.0588	0.0024	0.729	0.025	0.09	0.0028	0.00014011	555	17	555	16	583	53	555.0	17	0.00
Zircon_030	100	115	1.15	0.121	0.0035	5.86	0.14	0.353	0.011	0.024482	1950	51	1954	21	1972	32	1972.0	32	0.20
Zircon_031	196	71	0.3622	0.0699	0.0023	1.557	0.052	0.16	0.0055	0.31749	957	31	952	21	931	28	957.0	31	-0.53
Zircon_032	95	64	0.6737	0.0832	0.0036	2.408	0.093	0.213	0.0067	0.18327	1244	36	1247	27	1276	54	1276.0	54	0.24
Zircon_033	269	9	0.0335	0.0574	0.0022	0.581	0.051	0.0747	0.0041	0.13719	464	24	467	29	517	60	464.0	24	0.64
Zircon_034	276	133	0.4819	0.0767	0.0021	1.975	0.045	0.1876	0.0056	0.70719	1108	30	1106	15	1116	32	1108.0	30	-0.18
Zircon_035	308	204	0.6623	0.0522	0.0047	0.151	0.012	0.02139	0.00072	0.073433	136.4	4.5	143	11	424	90	136.4	5	4.62
Zircon_036	255	445	1.7451	0.0586	0.0025	0.717	0.034	0.0899	0.0032	0.32794	555	19	548	19	555	56	555.0	19	-1.28
Zircon_037	338	233	0.6893	0.0521	0.0046	0.153	0.013	0.02186	0.00075	0.13586	139.4	4.7	146	12	430	120	139.4	5	4.52
Zircon 039	350	163	0.4657	0.0929	0.0026	3.23	0.16	0.258	0.013	0.42649	1480	69	1468	46	1484	34	1484.0	34	-0.82
Zircon_040	150	33	0.22	0.0709	0.0034	1.349	0.096	0.1412	0.0071	0.12282	851	40	865	38	1029	52	851.0	40	1.62
Zircon 041	118	36	0.3051	0.0633	0.0056	0.881	0.091	0.1036	0.0058	0.13454	635	33	639	50	616	85	635.0	33	0.63
Zircon 042	176	165	0.9375	0.063	0.017	1.03	0.39	0.1217	0.006	0.75585	740	34	720	110	730	260	740.0	34	-2.78
Zircon 043	163	50	0.3067	0.0723	0.0028	1.657	0.056	0.1671	0.0052	0.2368	996	29	994	22	1009	48	996.0	29	-0.20
Zircon 044	22	13	0.5909	0.0769	0.0094	1.66	0.2	0.156	0.0062	0.329871795	934	35	1004	71	1140	130	934.0	35	6.97
Zircon 045	748	227	0.3035	0.0511	0.003	0.171	0.011	0.0249	0.0011	0.68476	158.2	6.8	159.5	9.2	293	53	158.2	7	0.82
Zircon 046	504	352	0.6984	0.058	0.0022	0.636	0.02	0.0799	0.0024	0.12303	495	14	501	13	518	64	495.0	14	1.20
Zircon 047	383	206	0.5379	0.0498	0.0068	0.125	0.016	0.01823	0.00063	0.099505	116.5	4	119	14	460	190	116.5	4	2.10
Zircon 048	274	157	0.573	0.0641	0.0025	1.018	0.036	0.1156	0.0034	0.25763	705	20	711	18	771	44	705.0	20	0.84
Zircon_049	437	294	0.6728	0.0569	0.0032	0.574	0.03	0.0735	0.0022	0.572698413	457	13	460	19	547	77	457.0	13	0.65

Zircon 050	597	1085	1.8174	0.0611	0.0045	0.139	0.011	0.01686	0.00057	0.427208023	107.8	3.6	131.9	9.4	720	100	107.8	4	18.27
Zircon 051	539	421	0.7811	0.0505	0.0023	0.1464	0.0063	0.02107	0.00067	0.738942753	134.4	4.2	138.6	5.5	354	54	134.4	4	3.03
Zircon 052	436	172	0.3945	0.0578	0.0027	0.582	0.026	0.0738	0.0028	0.17288	459	17	465	17	521	43	459.0	17	1.29
Zircon 053	377	383	1.0159	0.0514	0.0045	0.128	0.013	0.01795	0.00073	0.400428541	114.7	4.6	122	11	340	130	114.7	5	5.98
Zircon 054	429	317	0 7389	0.0504	0.0028	0 1494	0.009	0.02181	0.00075	0 18617	139.1	49	141.1	79	302	56	139.1	5	1.42
Zircon_055	871	644	0.7394	0.0484	0.0026	0.1176	0.0097	0.02101	0.00075	0.11853	112.4	3.6	112.8	7.8	259	76	112.4	4	0.35
Zircon 056	494	401	0.8117	0.0637	0.0019	1.087	0.028	0.1233	0.0036	0.25431	750	21	747	14	729	26	750.0	21	-0.40
Zircon_058	154	-60	0.3896	0.0037	0.0013	1.007	0.049	0.0935	0.0045	0.25451	576	26	704	24	1132	36	576.0	26	18.18
Zircon 050	418	285	0.5070	0.0511	0.0032	0.1346	0.0088	0.01068	0.00075	0.31142	125.6	47	128.1	79	243	70	125.6	5	1.05
Zircon 61	180	205	0.0818	0.0732	0.0032	1 770	0.0088	0.01908	0.00075	0.51142	1042	32	1027	21	1001	41	1042.0	32	0.48
Zircon 62	155	48	0.45	0.0732	0.0024	2.071	0.057	0.1755	0.0059	0.54347	1141	22	1128	10	1120	30	1141.0	32	-0.48
Zircon 63	121	40	0.5537	0.0527	0.0022	0.152	0.025	0.1950	0.0001	0.30398	1141	4.8	142	22	500	150	134.0	5	-0.20
Zircon_64	121	244	0.5557	0.0527	0.0034	0.152	0.023	0.021	0.00070	0.10289	606	4.0	607	12	506	26	606.0	17	0.16
Zircon_65	409	150	0.3900	0.0548	0.0017	0.526	0.022	0.0980	0.003	0.942212519	428	17	428	13	126	30	428.0	17	0.10
Zircon_056	07	52	0.4333	0.0548	0.0022	0.520	0.02	0.0007	0.0022	0.192202006	120.4	52	420	20	4.50	220	428.0	15	10.51
Zircon_067	228	200	0.5404	0.058	0.014	0.10	0.055	0.02044	0.00062	0.185595900	130.4	3.2	102	29	424	230	130.4	3	19.31
Zircoii_007	220	200	0.8772	0.0504	0.0044	0.120	0.011	0.01047	0.00005	0.053930	110	4.1	122.2	9.0	424	95	118.0	4	3.44
Zircon_068	370	207	0.7210	0.0503	0.0034	1 222	0.0085	0.02036	0.00066	0.555814472	129.9	4.2	154.4	/.1	517 941	/4	129.9	20	3.33
Zircoii_009	312	121	0.2019	0.0073	0.0022	1.323	0.037	0.1425	0.0052	0.840980009	1020	30	1010	27	071	45	1020.0	20	-0.33
Zircon_070	508	151	1 2265	0.072	0.002	1.705	0.04	0.1/15	0.005	0.26155	1020	28	1010	15	9/1	10	1020.0	28	-0.99
Zircoii_071	147	195	0.7705	0.1070	0.003	4.449	0.094	0.5005	0.0092	0.13319	1723	40	1/21	17	502	10	1/30.0	10	-0.12
Zircon_072	305	255	0.7705	0.0568	0.002	0.576	0.018	0.0743	0.0023	0.10622	462	14	462	12	505	42	462.0	14	0.00
Zircon_0/3	157	04	0.4076	0.0537	0.0048	0.181	0.016	0.02499	0.00088	0.1/61/	159.1	5.6	168	13	361	/4	159.1	6	5.30
Zircon_0/4	2/5	201	0.7309	0.0505	0.0033	0.1479	0.0098	0.02155	0.00072	0.14857	137.5	4.6	141.3	8.6	272	69	137.5	5	2.69
Zircon_075	283	1/3	0.6113	0.0639	0.0074	0.219	0.028	0.0262	0.001	0.2832	166.8	6.4	200	21	670	120	166.8	6	16.60
Zircon_0/6	254	11/	0.4606	0.0515	0.0046	0.129	0.011	0.01848	0.0006	0.380/55608	118	3.8	123	10	393	94	118.0	4	4.07
Zircon_0//	299	205	0.6856	0.0518	0.0043	0.149	0.012	0.02057	0.000/1	0.071057	131.3	4.5	141	10	479	92	131.3	5	6.88
Zircon_0/8	287	159	0.554	0.0525	0.0044	0.14/	0.012	0.02051	0.0007	0.418088737	130.9	4.4	139	11	384	83	130.9	4	5.83
Zircon_0/9	182	98	0.5385	0.0589	0.0021	0.674	0.021	0.084	0.0027	0.46084	520	16	522	13	561	45	520.0	16	0.38
Zircon_080	92	53	0.5761	0.0713	0.0094	0.183	0.024	0.01853	0.0007	0.14172	118.4	4.4	168	20	960	130	118.4	4	29.52
Zircon_081	155	80	0.5161	0.0507	0.0045	0.158	0.015	0.02266	0.00081	0.33712	144.4	5.1	148	13	480	120	144.4	5	2.43
Zircon_082	386	358	0.9275	0.077	0.013	0.93	0.28	0.0859	0.0042	0.84292	531	24	663	69	1120	210	531.0	24	19.91
Zircon_083	548	253	0.4617	0.0491	0.0032	0.1287	0.0083	0.01894	0.00062	0.18855	120.9	3.9	124	7.4	300	59	120.9	4	2.50
Zircon_084	133	60	0.4511	0.0625	0.0052	0.16	0.016	0.0203	0.001	0.492610837	129.5	6.5	163	14	830	82	129.5	7	20.55
Zircon_085	571	394	0.69	0.049	0.0027	0.1549	0.0079	0.02262	0.0008	0.693460475	144.2	5	149.5	6.9	323	44	144.2	5	3.55
Zircon_086	271	99	0.3653	0.0521	0.0036	0.176	0.011	0.02501	0.00082	0.524590164	159.3	5.2	166.9	9.8	450	100	159.3	5	4.55
Zircon_087	628	330	0.5255	0.0541	0.0028	0.1815	0.0091	0.02503	0.00081	0.10895	159.4	5.1	169.2	7.8	349	71	159.4	5	5.79
Zircon_088	839	1305	1.5554	0.0489	0.0027	0.118	0.015	0.0172	0.0016	0.27283	110.2	9.9	113	13	224	89	110.2	10	2.48
Zircon_089	368	333	0.9049	0.0585	0.002	0.576	0.018	0.0735	0.0024	0.20085	457	14	461	12	501	38	457.0	14	0.87
Zircon_090	293	74	0.2526	0.0817	0.0023	2.329	0.052	0.2088	0.0061	0.9232	1222	33	1223	17	1243	37	1243.0	37	0.08
Zircon_091	260	283	1.0885	0.0531	0.0056	0.127	0.014	0.01716	0.00059	0.311896437	109.7	3.7	121	12	500	100	109.7	4	9.34
Zircon_092	174	96	0.5517	0.0731	0.0021	1.711	0.056	0.1717	0.006	0.0088679	1021	33	1021	22	1007	34	1021.0	33	0.00
Zircon_094	1847	834	0.4515	0.0505	0.002	0.1468	0.0058	0.0217	0.0007	0.15282	138.4	4.4	139	5.1	225	52	138.4	4	0.43
Zircon_095	1231	599	0.4866	0.052	0.0017	0.304	0.013	0.0426	0.0019	0.26515	269	12	269.2	9.7	319	42	269.0	12	0.07
Zircon_096	632	214	0.3386	0.0823	0.0021	2.445	0.081	0.2158	0.0081	0.80245	1259	42	1255	23	1260	37	1260.0	37	-0.32
Zircon_097	513	428	0.8343	0.0557	0.0019	0.571	0.02	0.0746	0.0026	0.50359	464	15	458	13	454	47	464.0	15	-1.31
Zircon_098	231	108	0.4675	0.0698	0.0023	1.5	0.043	0.1559	0.0047	0.1802	934	26	932	18	901	38	934.0	26	-0.21
Zircon_099	279	72	0.2581	0.1291	0.0031	6.46	0.13	0.371	0.012	0.71119	2043	53	2039	17	2082	28	2082.0	28	-0.20
Zircon_100	245	174	0.7102	0.0888	0.0022	3.277	0.067	0.2655	0.0079	0.24725	1518	40	1475	15	1406	26	1406.0	26	-2.92

1: U and Th concentrations are calculated employing an external standard zircon as in Paton et al., 2010, Geochemistry, Geophysics, Geosystems. 2: 2 sigma uncertainties propagated according to Paton et al., 2010, Geochemistry, Geophysics, Geosystems

207Pb/206Pb ratios, ages and errors are calculated according to Petrus and Kamber, 2012, Geostandards Geoanalytical Research

2010 2000 Pratos, ages and eros are careful according to recurs and reamon, our constrained commands community for research. Analyzed spots were 23 microweters, using an analytical protocol modified from Solar et al., 2010, Geostandards Geostandytical Research. Data measured employing a Thermo Xseries QICPMS coupled to a Resonetics, Resolution M050 excimer laser workstation.

ANEXO 2. Resultados de los isótopos de Hf

	176Hf/177 Hfstnorm	176Hf/177Hf corr 2SE	176Lu/177Hf corr	176Lu/177Hfc orr 2SE	176Yb/177Hf 1 corr	76Yb/177Hfcc rr 2SE	0 178Hf/177Hf	178Hf/177Hf 2SE	176Hf/177Hft	t (age, Ma)	εHf(0)	±2 sigma	εHf(t)	TDM	TDM C*	TotalHfBe am (V)
Fm. San Juan	de la Rosa															
Sequence 5	0 282709	0.000019	0.00089	0.000016	0.02284	0.00055	1 467249	0.000034	0 282704135	292	-2 687554149	0 671888537	3 637990934	766 9952371	1051 39069	17.85
Sequence 6	0.282831	0.000026	0.0014176	0.0000059	0.03909	0.00024	1 467279	0.000036	0.282827184	144	1.626677511	0.919426419	4 691924592	603 4286597	868 3050186	15.61
Sequence 7	0.282834	0.000021	0.0010219	0.0000068	0.02843	0.00026	1.46728	0.000034	0.282831345	139	1.732765175	0.742613646	4.727813704	592.8245513	862.095552	15.74
Sequence 8	0.282739	0.000062	0.00275	0.000056	0.0797	0.0012	1.467292	0.00008	0.282729228	190	-1.626677511	2.192478385	2.251017913	762.2947589	1059.472684	14.87
Sequence 9	0.282614	0.000029	0.001934	0.00002	0.0555	0.00051	1.467282	0.000034	0.282607164	189	-6.046996835	1.025514083	-2.089567979	926.1144563	1333.330454	17.15
Sequence 10	0.282535	0.000023	0.000866	0.000027	0.02429	0.00092	1 467303	0.000062	0.282531971	187	-8 840638648	0.742613646	-4 794197692	1010 724546	1502 200177	16.5
Sequence 11	0.282808	0.000042	0.00168	0.000062	0.0417	0.0012	1 467344	0.000047	0.282803603	140	0.813338756	1 485227293	3 768756154	640 8767037	923 9130341	10.9
Sequence 12	0.282897	0.000028	0.002026	0.000042	0.0563	0.0014	1.467306	0.000047	0.282891811	137	3.960606114	0.990151529	6.822205526	517.297573	726.9936514	15.14
Sequence 13	0.282625	0.000024	0.0010291	0.0000024	0.030542	0.000093	1.467215	0.00004	0.282621208	197	-5.658008735	0.84870131	-1.41455506	888.3734586	1296.941016	15.44
Sequence 14	0.282641	0.000023	0.000455	0.0000029	0.01279	0.00015	1.467271	0.000041	0.282638598	282	-5.092207861	0.813338756	1.095746295	852.8180568	1204.586238	14.21
Sequence 15	0.282205	0.000023	0.0006607	0.0000089	0.02007	0.00026	1.4673	0.000042	0.282192675	990	-20.51028166	0.813338756	1.222305703	1462.963779	1750.741199	15.01
Sequence 16	0.282938	0.000045	0.001736	0.000039	0.04501	0.00082	1.467399	0.000048	0.282933392	142	5.410470852	1.591314957	8,404369636	453,8675054	629.8426854	13
Sequence 17	0.282544	0.000076	0.002475	0.000072	0.0684	0.002	1.46744	0.0001	0.282527123	364	-8.522375656	2.687554149	-1.017776226	1042.391242	1402.004737	17.19
Sequence 18	0.282546	0.000026	0.000893	0.000024	0.02436	0.00059	1.467272	0.00004	0.282541252	284	-8.451650547	0.919426419	-2.304185471	996.0283906	1420.755142	12.57
Sequence 23	0.282539	0.000048	0.001581	0.000038	0.0438	0.001	1.46744	0.0001	0.282533619	182	-8.699188429	1.69740262	-4.847206855	1024.456179	1501.66072	15.6
Sequence 24	0.282857	0.000027	0.0014313	0.000009	0.03953	0.00041	1.467264	0.000049	0.282853254	140	2.546103931	0.954788974	5.52508507	566.3902974	812.0906129	14.12
Sequence 25	0.282425	0.000027	0.0018	0.00012	0.0507	0.0033	1.467253	0.000039	0.282395251	878	-12.73051965	0.954788974	5.86648919	1193,9309	1371.329661	18.47
Sequence 26	0.282208	0.000019	0.000799	0.000031	0.02291	0.00071	1.467268	0.000031	0.282190888	1135	-20.404194	0.671888537	4.448778378	1464.113567	1662.864535	15.74
Sequence 27	0.282288	0.00003	0.001121	0.000067	0.0328	0.0019	1.467372	0.000039	0.282269409	881	-17.57518963	1.060876638	1.475442147	1364.653082	1649.467368	13.8
Sequence 28	0.282619	0.00006	0.00264	0.00012	0.0743	0.0029	1.467463	0.000085	0.282609668	189	-5.870184062	2.121753275	-2.000969254	936.8795403	1327.738638	10
Sequence 29	0.282797	0.000037	0.002532	0.000029	0.0736	0.0012	1.467273	0.00004	0.282790468	138	0.424350655	1.30841452	3.259611344	672.2310286	954,7191878	13.71
Sequence 30	0.282339	0.000032	0.00112	0.000098	0.0315	0.0025	1.467329	0.000058	0.282317616	1013	-15.77169935	1.131601747	6.171700551	1293.138508	1458.616465	14.44
Sequence 35	0.28223	0.000026	0.0005364	0.0000052	0.01568	0.00011	1.467374	0.000038	0.282219697	1019	-19.6262178	0.919426419	2.837166437	1423,79965	1672.486027	13.31
Sequence 36	0.282826	0.000024	0.000996	0.000013	0.02723	0.00032	1.467296	0.000042	0.282823356	142	1.449864738	0.84870131	4.512003631	603,7449695	878,1895583	15.47
Sequence 37	0.282134	0.000023	0.000628	0.000016	0.0187	0.00037	1.467363	0.000043	0.282122738	952	-23.02102304	0.813338756	-2.116427501	1559,594662	1929.383942	16.7
Sequence 38	0.28216	0.000025	0.00032	0.000012	0.00954	0.00031	1.467303	0.000046	0.282153354	1101	-22.10159662	0.884063865	2.345803633	1511.61959	1767.624283	13.19
Sequence 39	0.282535	0.000023	0.001234	0.000065	0.0347	0.0017	1.467329	0.000044	0.282527999	303	-8.840638648	0.813338756	-2.349174478	1020.637508	1438.368065	16.2
Sequence 40	0.28281	0.000026	0.001405	0.000019	0.03961	0.0005	1.467302	0.000037	0.282806165	146	0.884063865	0.919426419	3.992931371	633.2794486	914.3578142	14.28
Sequence 41	0.282547	0.000026	0.001397	0.000042	0.0387	0.0012	1.467246	0.00004	0.282538655	319	-8.416287993	0.919426419	-1.614929104	1008.047271	1404.570657	13.18
Sequence 42	0.282852	0.000022	0.001676	0.000018	0.04672	0.0005	1.467235	0.000037	0.282847767	135.1	2.369291158	0.777976201	5.221931735	577.3590517	827.5600318	15.33
Sequence 47	0.282821	0.000028	0.001574	0.00003	0.03954	0.00034	1 467296	0.000045	0 28281688	140	1 273051965	0 990151529	4 238425882	620 3560022	894 0328356	13.45
Sequence 48	0.282995	0.000033	0.001873	0.000064	0.0482	0.0022	1 467378	0.00005	0 282989817	148	7 426136464	1 166964302	10 53400792	372 6235631	498 2223107	14.1
Sequence 49	0.282174	0.000019	0.0005251	0.0000051	0.0158	0.00013	1.467253	0.000035	0.282164464	964	-21.60652086	0.671888537	-0.366183111	1500.442155	1829.607761	15.79
Sequence 50	0.282789	0.000027	0.001082	0.00005	0.028	0.0012	1.467278	0.00004	0.282786087	144	0.141450218	0.954788974	3.238181221	657.6116078	960.781134	14.42
Sequence 51	0.282325	0.000027	0.001368	0.00006	0.0409	0.0016	1.467284	0.000045	0.282314025	428	-16.26677511	0.954788974	-7.129169227	1321.453472	1835,15897	14.07
Sequence 52	0.282653	0.000022	0.000558	0.000011	0.01524	0.00035	1.467254	0.000031	0.282651038	188	-4.667857206	0.777976201	-0.559673947	838.402372	1235.911305	14.83
Sequence 53	0.282837	0.000033	0.001709	0.000027	0.04546	0.00097	1.467273	0.000041	0.282832495	141	1.838852839	1.166964302	4.813032032	599.5333227	858.2389173	13.17
Sequence 54	0.282902	0.00003	0.001765	0.000036	0.04442	0.00087	1.467347	0.000039	0.282897414	139	4,137418887	1.060876638	7.064905824	506.3888585	713.0730594	12.31
Sequence 55	0.282869	0.000028	0.002019	0.000052	0.0548	0.0016	1.467275	0.000033	0.282863754	139	2.970454586	0.990151529	5.874233943	558.0097819	789.0469457	14.63
Sequence 56	0.282251	0.000027	0.000825	0.000062	0.022	0.0017	1.467241	0.000036	0.2822344	1067	-18.88360415	0.954788974	4.446998814	1405.438605	1609.419044	11.46
Sequence 57	0.282822	0.000031	0.001487	0.000038	0.0407	0.0012	1.467278	0.000042	0.282818053	142	1.30841452	1.096239192	4.324401385	617.4679251	890.1302148	14.34
Sequence 58	0.28285	0.000025	0.001294	0.000019	0.03315	0.00045	1.467251	0.00004	0.282846541	143	2.298566048	0.884063865	5.354393522	574.3030837	825.3251893	14.86
Sequence 59	0.2828	0.000031	0.001859	0.000025	0.05011	0.00066	1.467336	0.000047	0.282795169	139	0.530438319	1.096239192	3.448170969	655,5823229	943.515455	13.97
Sequence 60	0 28267	0.000036	0.00196	0.00014	0.061	0.005	1 467309	0.000035	0 282663769	170	-4.066693778	1 273051965	-0 510059527	845 8079675	1218 744809	16.56
Sequence 61	0.28281	0.000032	0.001766	0.000012	0.04737	0.00027	1.467256	0.000043	0.282805576	134	0.884063865	1.131601747	3,70502516	639,4828264	923,263619	13.98
Sequence 62	0.28243	0.000022	0.001373	0.000011	0.03722	0.00022	1.467283	0.000036	0.282424864	200	-12.55370688	0.777976201	-8.294064018	1173.237293	1731.960058	18.46
Sequence 63	0.282196	0.000029	0.000986	0.000083	0.0272	0.0026	1.467238	0.000039	0.282175673	1093	-20.82854465	1.025514083	2.955356791	1488.042899	1723.242219	13.40
Sequence 68	0.281887	0 00004	0.000682	0.000016	0.01963	0 00048	1.467306	0.000071	0.281868233	1454	-31.75557402	1.414502184	0.278057459	1901 391607	2173.310225	8.48
Sequence 69	0.282334	0.000032	0.000836	0.000061	0.0238	0.0014	1.467356	0.00006	0.282323319	680	-15,94851212	1.131601747	-1.147125024	1290.438182	1656,583975	14.6
Sequence 70	0.282899	0.000027	0.001236	0.000016	0.02977	0.0006	1.467253	0.000035	0.282895534	150	4.031331223	0.954788974	7.243335599	503,4977085	710.3423251	14.0
Sequence 71	0 28294	0.000027	0.0019233	0.000010	0.0503	0.00049	1 467257	0.000042	0 28293511	136	5 481195962	1.096239192	8 331570328	453 2761766	629 765489	14 45
Sequence 72	0 282827	0.00003	0.001977	0 000034	0.0545	0.0013	1 467285	0.000036	0 282821826	140	1 485227293	1.060876638	4 413357335	618 4585616	882 8995054	14.11
Sequence 72	0.202027	0.00000	0.001777	0.000004	0.0545	0.0015	1.407205	0.0000000	0.202021020	140	1.405221275	1.0000700000		010.4505010	502.0775054	17.11

	176Hf/177 Hfstnorm	176Hf/177Hf 1 corr 2SE	176Lu/177Hf corr	176Lu/177Hfc orr 2SE	176Yb/177Hf 1 corr	76Yb/177Hfco rr 2SE	178Hf/177Hf	178Hf/177Hf 2SE	176Hf/177Hft	t (age, Ma)	εHf(0)	±2 sigma	εHf(t)	TDM	TDM C*	TotalHfBe am (V)
Sequence 73	0.282464	0.000033	0.001395	0.000061	0.0394	0.0014	1.467343	0.000055	0.282451942	461	-11.35138002	1.166964302	-1.508683123	1125.760064	1508.499106	15.6
Sequence 74	0.282831	0.000046	0.001749	0.000024	0.04635	0.00083	1.467339	0.000055	0.282826488	138	1.626677511	1.626677511	4.533760031	608.8539942	873.6659079	10.6
Sequence 79	0.282559	0.000035	0.001854	0.000023	0.05466	0.0007	1.467323	0.00005	0.282552585	185	-7.991937338	1.237689411	-4.109450558	1003.275283	1457.552567	15.71
Sequence 80	0.282807	0.000038	0.001693	0.000024	0.04495	0.00041	1.46734	0.000062	0.282802569	140	0.777976201	1.343777074	3.732179054	642.5441133	926.2393549	10.7
Sequence 81	0.282622	0.000038	0.001888	0.000038	0.0543	0.00097	1.467365	0.000059	0.282615574	182	-5.764096398	1.343777074	-1.947894088	913.4216521	1318.943173	11.53
Sequence 82	0.28261	0.000028	0.0013766	0.0000047	0.03841	0.00022	1.46728	0.000046	0.282605237	185	-6.188447053	0.990151529	-2.24678384	917.9783312	1340.141119	16
Sequence 83	0.282532	0.000033	0.001813	0.000058	0.0526	0.0014	1.467351	0.000066	0.282526101	174	-8.946726312	1.166964302	-5.291204482	1040.941611	1523.391984	15.3
Sequence 84	0.282252	0.000034	0.001646	0.000077	0.0439	0.0018	1.467313	0.000077	0.282246182	189	-18.8482416	1.202326856	-14.86017596	1434.996848	2133.288355	14.5
Em Peño Azul																
Sequence 6	0.282614	0.000025	0.001617	0.000012	0.04834	0.00041	1.467246	0.000031	0.282608708	175	-6.046996835	0.884063865	-2.346604389	918.2011191	1338.66499	22.82
Sequence 7	0.282593	0.00003	0.001075	0.000044	0.0321	0.0012	1.467378	0.000084	0.282590166	141	-6.789610481	1.060876638	-3.759018672	934.6020282	1401.342125	20.5
Sequence 8	0.282636	0.000032	0.001936	0.000019	0.05931	0.00061	1.467349	0.000051	0.282631016	137.7	-5.269020634	1.131601747	-2.38740532	894.3936426	1312.244352	23.8
Sequence 9	0.282177	0.00003	0.0006441	0.0000041	0.01969	0.00022	1.467312	0.000039	0.28216458	1023	-21.50043319	1.060876638	0.974265643	1500.96732	1792.103128	12.85
Sequence 10	0.282156	0.000022	0.0007134	0.000008	0.02023	0.00015	1.467293	0.000033	0.282141972	1043	-22.24304684	0.777976201	0.626331134	1532.701017	1829.495912	19
Sequence 11	0.282597	0.000016	0.0011754	0.000005	0.03611	0.00021	1.467273	0.000033	0.282594056	134	-6.648160263	0.565800873	-3.777110469	931.4448469	1397.05177	21.75
Sequence 12	0.282613	0.000019	0.00101	0.000014	0.03122	0.00058	1.467251	0.000029	0.282610413	137	-6.08235939	0.671888537	-3.131774168	904.8283208	1358.681661	21.25
Sequence 13	0.282615	0.000027	0.001005	0.00001	0.02974	0.0002	1.467273	0.000041	0.282612464	135	-6.01163428	0.954788974	-3.10372298	901.8916067	1355.358868	13.19
Sequence 14	0.282597	0.00003	0.00168	0.000054	0.0508	0.0014	1.46728	0.000035	0.282592697	137	-6.648160263	1.060876638	-3.758444799	944.1324489	1398.202536	14.47
Sequence 15	0.282601	0.000021	0.001082	0.000017	0.03341	0.00069	1.467247	0.000033	0.282598328	132.1	-6.506710045	0.742613646	-3.668231514	923.4910232	1388.712972	21.38
Sequence 16	0.282582	0.000022	0.001439	0.000028	0.04544	0.00079	1.467264	0.000038	0.282578557	128	-7.178598582	0.777976201	-4.458753656	959.3854861	1435.357065	24.34
Sequence 21	0.282199	0.000028	0.001213	0.000029	0.0362	0.0012	1.467424	0.000069	0.282173461	1116	-20.72245699	0.990151529	3.399262895	1492.798485	1713.568978	15.2
Sequence 22	0.282618	0.000027	0.001278	0.000042	0.0378	0.0014	1.46729	0.000036	0.282613698	180	-5.905546617	0.954788974	-2.058781472	904.2123497	1324.387316	17.8
Sequence 23	0.282589	0.000027	0.001024	0.000021	0.02954	0.00057	1.467265	0.000037	0.282586492	131	-6.9310607	0.954788974	-4.111353614	938.9707021	1415.79305	14.7
Sequence 24	0.282571	0.000023	0.00088	0.000015	0.02176	0.00033	1.467305	0.00005	0.282567081	238	-7.567586682	0.813338756	-2.41606325	960.6434452	1392.029826	16.31
Sequence 25	0.282631	0.000027	0.001304	0.000021	0.03951	0.00067	1.467308	0.000041	0.282627709	135	-5.445833407	0.954788974	-2.564443751	886.3816934	1321.323693	13.15
Sequence 26	0.282197	0.000034	0.001002	0.000031	0.0296	0.0013	1.467347	0.000049	0.282175445	1140	-20.7931821	1.202326856	4.014909634	1487.277791	1693.949887	10.64
Sequence 27	0.282608	0.000021	0.0006924	0.0000087	0.02016	0.00034	1.467259	0.000037	0.282606149	143	-6.259172163	0.742613646	-3.149172084	904.2545186	1364.438244	14.01
Sequence 28	0.282623	0.000015	0.0007365	0.0000042	0.02257	0.00017	1.467221	0.000034	0.282621128	136	-5.728733844	0.530438319	-2.775016621	884.3260809	1335.392893	18.76
Sequence 29	0.282602	0.000026	0.0006889	0.0000026	0.02099	0.00014	1.46726	0.000028	0.282600313	131	-6.47134749	0.919426419	-3.622480337	912.5499183	1384.974556	16.11
Sequence 30	0.282621	0.000028	0.001111	0.000011	0.03386	0.00049	1.467267	0.00004	0.282618238	133	-5.799458953	0.990151529	-2.943953463	895.9590996	1343.724302	13.49
Sequence 31	0.282598	0.000025	0.001391	0.000029	0.041	0.00078	1.467252	0.000032	0.282593552	171	-6.612797709	0.884063865	-2.971802693	935.4017108	1374.997275	18
Sequence 32	0.282781	0.000019	0.0004856	0.0000069	0.01244	0.00016	1.467311	0.000037	0.28277982	130	-0.141450218	0.671888537	2.704940514	658.4942317	983.7039699	18.4
Sequence 33	0.282679	0.000031	0.00122	0.000018	0.03702	0.00077	1.467275	0.000038	0.282675898	136	-3.748430787	1.096239192	-0.83759683	816.3354642	1212.971533	13.75
Sequence 34	0.282665	0.000024	0.0011712	0.0000066	0.03513	0.00031	1.467269	0.000035	0.282662066	134	-4.243506551	0.84870131	-1.371368701	835.1076632	1245.170632	16.69
Sequence 39	0.282747	0.000025	0.000866	0.0000093	0.02296	0.00033	1.467301	0.000038	0.28274475	139	-1.343777074	0.884063865	1.664651296	713.0252461	1056.789496	15.69
Sequence 40	0.282504	0.000019	0.000475	0.0000043	0.01336	0.0001	1.467274	0.000041	0.282501305	303	-9.93687784	0.671888537	-3.293784957	1043.355109	1497.818137	19.3
Sequence 41	0.282494	0.00002	0.0007255	0.0000045	0.01876	0.00018	1.467308	0.000039	0.282490306	272	-10.29050339	0.707251092	-4.374546759	1064.164014	1541.709887	15.31
Sequence 42	0.282591	0.000029	0.002022	0.000053	0.063	0.0015	1.467235	0.000039	0.282585927	134.2	-6.860335591	1.025514083	-4.060183626	961.6077482	1415.04978	17.74
Sequence 43	0.282607	0.000033	0.001293	0.000036	0.0395	0.0012	1.467336	0.000037	0.282603761	134	-6.294534717	1.166964302	-3.433/99/62	920.184501	1375.403941	14.08
Sequence 48	0.282635	0.000034	0.001323	0.000057	0.04	0.0019	1.467298	0.000034	0.282631587	138	-5.304383189	1.202326856	-2.360550956	881.1483165	1310.781865	12.74
Sequence 49	0.282596	0.000024	0.00066	0.000015	0.02004	0.0005	1.467294	0.000037	0.282592442	288	-0.083522818	0.848/0131	-0.403000507	920.2280367	1304.01443	14.11
Sequence 50	0.282007	0.000025	0.0009994	0.000007	0.03	0.00037	1.40/33/	0.000038	0.282004555	131	-4.1/2/81442	0.884003805	-1.350140734	828.481015	1241.495404	15.5
Sequence 51	0.282616	0.000032	0.0007205	0.0000033	0.01998	0.0001	1.46/33/	0.000044	0.282614263	129	-5.9/62/1/26	1.131601747	-3.1/351/052	895.7404009	1355.105472	12.51
Sequence 52	0.282661	0.000032	0.001054	0.000046	0.0305	0.0017	1.46/2/3	0.000041	0.282658261	139	-4.384950709	1.131001/4/	-1.394748232	838.1552219	1250.540451	15.85
Complejo El C	hilar															
Sequence 6	0.282206	0.000024	0.000954	0.000016	0.02822	0.00043	1.467311	0.000035	0.282183456	1251	-20.47491911	0.84870131	6.825027387	1472.874779	1605.616449	16.53
Sequence 7	0.282329	0.000027	0.000772	0.000027	0.01949	0.0007	1.467283	0.000039	0.282321425	523	-16.12532489	0.954788974	-4.740001928	1295.217205	1759.366265	17.02
Sequence 8	0.282254	0.000019	0.0004596	0.0000035	0.013057	0.000077	1.467291	0.000035	0.282244831	1058	-18.77751649	0.671888537	4.612512039	1387.950634	1591.957671	17.85
Sequence 9	0.282533	0.000026	0.000949	0.000026	0.0232	0.00076	1.467298	0.000033	0.282528079	277	-8.911363757	0.919426419	-2.926464052	1015.750206	1454.500548	15.87
Sequence 10	0.282171	0.00002	0.0004389	0.0000058	0.0126	0.0002	1.467287	0.000035	0.282161776	1114	-21.71260852	0.707251092	2.939583472	1501.198277	1740.734643	19.56
Sequence 11	0.282164	0.000021	0.000709	0.00002	0.02114	0.00053	1.467244	0.000042	0.282148937	1126	-21.9601464	0.742613646	2.757019607	1521.475533	1761.574503	16.2
Sequence 12	0.282654	0.000022	0.000897	0.000012	0.02566	0.00034	1.467287	0.000033	0.282649332	278	-4.632494651	0.777976201	1.38630283	844.5155486	1183.078529	17.69
Sequence 13	0.282523	0.00002	0.0007432	0.000089	0.0179	0.00029	1.467288	0.000034	0.282518895	295	-9.264989303	0.707251092	-2.849863714	1024.20711	1463.669066	16.7

	176Hf/177 Hfstnorm	176Hf/177Hf corr 2SE	176Lu/177Hf corr	176Lu/177Hfc orr 2SE	176Yb/177Hf 1 corr	76Yb/177Hfco rr 2SE	178Hf/177Hf	178Hf/177Hf 2SE	176Hf/177Hft	t (age, Ma)	εHf(0)	±2 sigma	εHf(t)	TDM	TDM C*	TotalHfBe am (V)
Sequence 14	0.28232	0.000018	0.000968	0.000025	0.02596	0.00066	1.467244	0.000038	0.282311213	484	-16.44358788	0.636525983	-5.975354486	1314.484881	1806.385241	17.33
Sequence 15	0.282895	0.000025	0.001854	0.000076	0.0455	0.0019	1.467258	0.000036	0.282884447	304	3.889881005	0.884063865	10.2865836	517.7777112	637.5036693	17.49
Sequence 16	0.28252	0.000022	0.000532	0.000016	0.01539	0.00052	1.46729	0.000038	0.282517371	264	-9.371076967	0.777976201	-3.595280843	1022.712019	1486.495966	17.03
Sequence 21	0.282204	0.00002	0.000857	0.000023	0.02552	0.00072	1.467283	0.000033	0.282184976	1176	-20.54564422	0.707251092	5.171369483	1471.89711	1649.948475	20.7
Sequence 22	0.282192	0.000019	0.000314	0.000041	0.0096	0.0012	1.467235	0.00003	0.282186387	949	-20.96999487	0.671888537	0.071275322	1467.616146	1790.556971	20.71
Sequence 23	0.281272	0.000021	0.0003595	0.0000023	0.01075	0.000089	1.467311	0.000034	0.281257814	2073	-53.5035451	0.742613646	-7.151159477	2715.075819	3112.919067	16.14
Sequence 24	0.282177	0.000019	0.0005373	0.0000022	0.016045	0.000078	1.467315	0.000037	0.282166066	1079	-21.50043319	0.671888537	2.297039548	1496.792123	1753.394317	17.89
Sequence 25	0.282176	0.000018	0.0005789	0.0000089	0.01724	0.00032	1.467242	0.000032	0.28216574	941	-21.53579575	0.636525983	-0.841414089	1499.792755	1841.287982	20.91
Sequence 26	0.282285	0.000023	0.000849	0.000026	0.02528	0.00085	1.467209	0.00003	0.282268289	1044	-17.6812773	0.813338756	5.12638405	1359.064294	1548.702015	16.08
Sequence 27	0.282869	0.000028	0.002791	0.000097	0.0698	0.0024	1.467307	0.000036	0.282853533	296	2.970454586	0.990151529	9.01389942	570.0432349	712.4711888	16
Sequence 28	0.282547	0.000021	0.0007308	0.0000053	0.01879	0.00015	1.467261	0.000033	0.282543129	283	-8.416287993	0.742613646	-2.260112446	990.3832167	1417.200816	17.3
Sequence 29	0.281649	0.000018	0.0007547	0.0000087	0.02152	0.00025	1.467276	0.000032	0.281622521	1847	-40.17186202	0.636525983	0.581498188	2230.801275	2463.109695	17.9
Sequence 30	0.282841	0.000019	0.0008	0.000011	0.02283	0.00024	1.467242	0.000035	0.282836417	306	1.980303057	0.671888537	8.631628784	579.4817029	744.7624465	18.78
Sequence 31	0.282726	0.000019	0.000655	0.000019	0.0186	0.00055	1.467267	0.000035	0.282722432	291	-2.086390721	0.671888537	4.263109209	738.4655799	1010.940407	19.32
Sequence 32	0.282759	0.000022	0.001304	0.000034	0.03145	0.00088	1.467248	0.00003	0.2827517	299	-0.919426419	0.777976201	5.477451199	704.2902433	940.091248	17.26
Sequence 33	0.282199	0.00002	0.000513	0.00002	0.01557	0.00068	1.467298	0.000037	0.282187808	1156	-20.72245699	0.707251092	4.816936328	1465.591442	1656.367279	15.12
Sequence 34	0.282213	0.000021	0.000719	0.000014	0.02306	0.00055	1.467282	0.000045	0.282198739	1052	-20.22738123	0.742613646	2.842575147	1454.130667	1698.07533	16.66
Sequence 35	0.282106	0.000026	0.001296	0.000017	0.03584	0.00053	1.46/2/1	0.000036	0.282073738	1317	-24.0111/45/	0.919426419	4.438/2421/	1626.48585	1806.906622	16.69
Sequence 40	0.282162	0.000021	0.0006446	0.0000062	0.01934	0.00019	1.467271	0.00004	0.28214/629	1181	-22.0308/151	0.742613646	3.960938276	1521.074080	1729.003905	16.51
Sequence 42	0.282184	0.000021	0.000949	0.000026	0.02783	0.00087	1.467207	0.000032	0.282103380	1151	-21.25289551	0.742013040	3.83/40/110	1505.282828	1/13./10112	10.00
Sequence 45	0.282555	0.000028	0.001688	0.000023	0.05165	0.00093	1.467202	0.000034	0.282540514	404	-8.13338/330	0.990151529	1.080/948/0	1004.508602	1309.381208	18.13
Sequence 44	0.282901	0.000022	0.001002	0.00001	0.02398	0.00021	1.407295	0.000033	0.282893140	1121	4.102030355	0.77976201	0.224454602	497.324118	1251 287051	17.09
Sequence 45	0.28230	0.000021	0.001189	0.000037	0.0339	0.00014	1.467307	0.000037	0.282334855	1017	-13.0290837	0.000151520	10.08261110	1142 805540	1215 42615	10.92
Sequence 40	0.282434	0.000028	0.001492	0.000033	0.04340	0.00094	1.407307	0.000037	0.2824234	1017	-11.70500557	0.990131329	0.441682002	1142.095549	1215.45015	17.08
Sequence 48	0.282159	0.000020	0.00075	0.000040	0.0229	0.0015	1.467248	0.000037	0.282123907	1170	-22.84421027	0.671888537	3 376511767	1534 232818	1757 467866	17.08
Sequence 49	0.282753	0.000012	0.001144	0.000015	0.03146	0.00039	1 467291	0.000032	0.28274636	310	-1 131601747	0.777976201	5 534175142	709 7984497	945 1347152	16.7
Sequence 50	0.282418	0.000022	0.000247	0.000016	0.00748	0.00045	1.467226	0.000037	0 282415357	570	-12 97805753	0.671888537	-0 359931271	1155 4668	1521 323723	17.87
Sequence 51	0.282664	0.000019	0.000247	0.000013	0.01636	0.00036	1.467313	0.000027	0.282660722	278	-4 278869106	0.671888537	1 789310359	824 6294894	1157 571997	18.08
Sequence 52	0.282145	0.000012	0.001566	0.000029	0.04707	0.00081	1.467297	0.000034	0.282111163	1145	-22.63203494	0.777976201	1.849526158	1583,196308	1833.155517	18.88
Sequence 53	0.282438	0.000023	0.0012065	0.0000084	0.03675	0.00034	1.467285	0.000028	0.28242623	520	-12.27080644	0.813338756	-1.096782045	1156.768681	1528.605998	20.3
Sequence 54	0.282125	0.000023	0.000809	0.000015	0.02488	0.00055	1.467284	0.00003	0.282106763	1194	-23,33928603	0.813338756	2.807691756	1579,447844	1811.859802	19.47
Sequence 59	0.282315	0.000023	0.0004492	0.0000074	0.01224	0.00017	1.467276	0.000041	0.282306047	1057	-16.62040066	0.813338756	6.759715703	1303.618716	1456.402777	19.2
Sequence 60	0.282356	0.000031	0.000926	0.000089	0.0281	0.0027	1.467301	0.000033	0.28234646	549	-15.17053592	1.096239192	-3.270613491	1262.796983	1687.575485	18.8
Sequence 61	0.282273	0.000028	0.0009741	0.0000098	0.02932	0.00027	1.467305	0.00003	0.282251042	1194	-18.10562795	0.990151529	7.923442014	1380.289205	1491.640696	13.57
Sequence 62	0.282893	0.000026	0.001715	0.000024	0.04151	0.00052	1.467293	0.000037	0.282883432	298	3.819155896	0.919426419	10.11656735	518.7172916	643.622649	17.14
Sequence 63	0.282593	0.000025	0.000984	0.000054	0.0236	0.0014	1.467293	0.00004	0.282587732	286	-6.789610481	0.884063865	-0.614891898	932.3486381	1315.792557	14.94
Sequence 64	0.282153	0.000026	0.000611	0.000029	0.01791	0.00082	1.467343	0.000036	0.282139949	1132	-22.3491345	0.919426419	2.574694803	1532.738816	1777.678486	13.73
Sequence 65	0.28225	0.000022	0.000517	0.00002	0.01454	0.00058	1.467285	0.000044	0.282240375	988	-18.91896671	0.777976201	2.867554482	1395.536929	1646.229658	17.11
Sequence 66	0.28226	0.000019	0.0004416	0.0000021	0.013155	0.000042	1.467281	0.000034	0.282252207	937	-18.56534116	0.671888537	2.132221039	1379.050345	1652.243987	18.68
Sequence 67	0.282572	0.000029	0.001049	0.000067	0.027	0.0018	1.467281	0.000043	0.282566344	288	-7.532224128	1.025514083	-1.327058301	963.5426664	1362.281793	17.63
Sequence 69	0.282425	0.00002	0.001205	0.000021	0.02962	0.00052	1.467315	0.000036	0.282418797	275	-12.73051965	0.707251092	-6.837934477	1175.039819	1698.639435	17.15
Sequence 70	0.282394	0.000018	0.00007842	0.0000088	0.003237	0.000039	1.467262	0.000037	0.282393204	541	-13.82675885	0.636525983	-1.795067521	1183.259797	1588.827366	20.5
Sequence 71	0.282066	0.000028	0.000573	0.000037	0.0171	0.0011	1.467272	0.000044	0.28204944	1526	-25.42567675	0.990151529	8.3560583	1650.804729	1727.606977	18.8
Sequence 72	0.282311	0.000027	0.0003739	0.0000079	0.01106	0.00028	1.467291	0.000035	0.282302921	1145	-16.76185088	0.954788974	8.64803425	1306.567093	1407.307167	12.43
Sequence 73	0.281795	0.000022	0.0005976	0.0000072	0.01755	0.00025	1.467245	0.000038	0.281774564	1801	-35.00892905	0.777976201	4.919905327	2022.89067	2159.005938	16.88
Sequence 78	0.28249	0.000022	0.001157	0.00003	0.02822	0.00076	1.467262	0.000033	0.282484066	274	-10.4319536	0.777976201	-4.550751652	1082.00837	1554.334832	16.8
Sequence 79	0.282515	0.000033	0.001249	0.000069	0.0317	0.0018	1.467283	0.000044	0.282508758	267	-9.54788974	1.166964302	-3.833144273	1049.328442	1503.788781	20.1
Sequence 80	0.28263	0.000021	0.000849	0.000015	0.02115	0.00037	1.467279	0.000039	0.282625709	270	-5.481195962	0.742613646	0.371930757	877.1320828	1240.979637	16.91
Sequence 81	0.282036	0.000066	0.0014	0.000033	0.0362	0.001	1.467457	0.000077	0.28199239	1643	-26.48655339	2.333928603	9.016669885	1729.192714	1779.223966	6.78
Sequence 82	0.282161	0.000025	0.000381	0.000017	0.01157	0.00057	1.467321	0.000044	0.282153871	993	-22.06623406	0.884063865	-0.085003709	1512.641397	1834.743864	16.57
Sequence 83	0.281851	0.000022	0.000696	0.000015	0.02175	0.00042	1.46728	0.000034	0.281836479	1106	-33.02862599	0.77/976201	-8.774028048	1951.419431	2461.713457	18.69
Sequence 84	0.282173	0.000032	0.001461	0.000065	0.0424	0.0019	1.467308	0.000034	0.282139982	1197	-21.64188341	1.131601747	4.053808691	1539.326206	1736.398048	17.3
Sequence 85	0.282115	0.000024	0.000407	0.000037	0.0124	0.0011	1.46727	0.000035	0.282107562	970	-23.69291158	0.848/0131	-2.246933989	15/6.66/97	1951.556248	17.91
Sequence 86	0.282844	0.000028	0.001505	0.000047	0.0346	0.0013	1.46/291	0.000038	0.282835321	508	2.086390/21	0.990151529	8.63/545424	586.1861506	/45.9642665	14.76
Sequence 8/	0.282111	0.000023	0.0003416	0.000001	0.010499	0.000029	1.467285	0.000038	0.282104816	961	-23.834361/9	0.813338/56	-2.54/936491	15/9.464165	1903.28041	14.87
Sequence 88	0.282149	0.000025	0.000899	0.000012	0.0262	0.00043	1.46/2/3	0.00004	0.28212/945	1240	-22.49058472	0.884063865	4.003901/36	1549.892304	1/35.//3432	15.05

	176Hf/177 Hfstnorm	176Hf/177Hf corr 2SE	176Lu/177Hf corr	176Lu/177Hfc orr 2SE	176Yb/177Hf 1 corr	76Yb/177Hfco rr 2SE	178Hf/177Hf	178Hf/177Hf 2SE	176Hf/177Hft	t (age, Ma)	εHf(0)	±2 sigma	εHf(t)	TDM	TDM C*	TotalHfBe am (V)
Complejo El C	hilar															
Sequence 5	0.281866	0.000028	0.001436	0.000094	0.0432	0.0027	1.467292	0.000031	0.281825216	1500	-32.49818767	0.990151529	-0.195713903	1968.822131	2238.71171	16.72
Sequence 6	0.281913	0.000027	0.001249	0.000061	0.0365	0.002	1.467254	0.000037	0.281876328	1550	-30.8361476	0.954788974	2.763215575	1893.72339	2094.688082	16.02
Sequence 7	0.281908	0.000022	0.0009073	0.000002	0.025735	0.000034	1.467304	0.000034	0.281881483	1543	-31.01296038	0.777976201	2.785704049	1883.659855	2087.782483	14.85
Sequence 8	0.28201	0.000024	0.00146	0.000012	0.04094	0.00039	1.467296	0.000035	0.281980735	1063	-27.40597981	0.84870131	-4.635443889	1768.443681	2172.432616	20.4
Sequence 9	0.282122	0.000035	0.002628	0.000062	0.0814	0.002	1.467297	0.000033	0.282050741	1433	-23.44537369	1.237689411	6.272748232	1662.886265	1784.033687	17.51
Sequence 10	0.281954	0.000032	0.001062	0.000046	0.0322	0.0015	1.467473	0.000033	0.281942297	587	-29.38628287	1.131601747	-16.72878174	1827.592018	2553.111507	13.23
Sequence 11	0.281902	0.000021	0.000808	0.000012	0.02278	0.00037	1.467359	0.000032	0.281887848	930	-31.2251357	0.742613646	-10.93767869	1887.024003	2459.232846	17.6
Sequence 12	0.281/33	0.000021	0.0005188	0.0000053	0.01493	0.0002	1.46/324	0.00003	0.281/1/049	1622	-37.20140743	0.742613646	-1.238248007	2103.1164	2398./0/18	16.12
Sequence 13	0.281800	0.000026	0.001224	0.000035	0.03602	0.00093	1.467258	0.000033	0.281830415	1555	-32.49818/0/	0.919426419	0.790226054	1957.797427	2205.154	14.94
Sequence 15	0.281931	0.00002	0.000649	0.000013	0.01928	0.00037	1.407272	0.000032	0.281930018	1174	-29.49237033	1 166964302	-3.079880327	1755 102694	101/ 280802	17.24
Sequence 16	0.282535	0.000033	0.001333	0.000014	0.0358	0.00032	1.467338	0.000037	0.281580500	681	-8 840638648	1.131601747	5 818586084	1020 311193	1210 007056	11.87
Sequence 17	0.282555	0.000032	0.001222	0.000025	0.03227	0.0012	1.467313	0.000038	0.282517504	1415	-29 10338243	0.954788974	1 687339291	1817 361162	2055 288463	14.32
Sequence 18	0.282492	0.000027	0.001422	0.000023	0.03611	0.00057	1 467264	0.000028	0 282484867	268	-10 3612285	0.884063865	-4 656203539	1086 845462	1556 308872	16.42
Sequence 23	0.281936	0.000044	0.001524	0.000093	0.0459	0.0028	1.467303	0.000036	0.281892805	1497	-30.02280885	1.555952402	2.133796598	1875.349132	2092.032785	16.6
Sequence 24	0.281833	0.000028	0.0008116	0.0000069	0.02352	0.00022	1.467274	0.000036	0.281811196	1420	-33.66515197	0.990151529	-2.5226263	1982.035668	2319.971394	16.12
Sequence 25	0.282199	0.000018	0.0004412	0.0000051	0.01214	0.00016	1.467323	0.000029	0.282190375	1037	-20.72245699	0.636525983	2.205929923	1462.856754	1726.113922	15.72
Sequence 26	0.281956	0.000023	0.0013	0.00004	0.0396	0.0012	1.467286	0.000036	0.28191753	1562	-29.31555776	0.813338756	4.50048061	1836.327144	1996.287787	18.7
Sequence 27	0.281897	0.000024	0.000718	0.000024	0.02085	0.00064	1.467305	0.000036	0.281882362	1081	-31.40194848	0.84870131	-7.714445712	1889.456493	2376.960784	17.56
Sequence 28	0.281987	0.000034	0.00197	0.00003	0.0642	0.001	1.46729	0.000039	0.281932109	1472	-28.21931856	1.202326856	2.956126914	1825.484189	2021.310983	17.1
Sequence 29	0.282026	0.000026	0.001644	0.000055	0.0484	0.0015	1.467319	0.000027	0.281980508	1462	-26.84017893	0.919426419	4.444468908	1754.591738	1920.88039	14.48
Sequence 30	0.282691	0.000025	0.001051	0.000025	0.03023	0.00087	1.467304	0.000029	0.282686201	244	-3.324080132	0.884063865	1.932358923	795.71688	1121.918066	13.98
Sequence 31	0.282507	0.000025	0.001242	0.000015	0.03092	0.00029	1.46732	0.000034	0.282501189	250	-9.830790176	0.884063865	-4.479956148	1060.439517	1531.274082	16.31
Sequence 32	0.282299	0.000023	0.0005508	0.0000076	0.01419	0.00024	1.467263	0.000036	0.28228776	1082	-17.18620153	0.813338756	6.678989919	1329.167523	1481.222656	16.32
Sequence 33	0.282092	0.000034	0.00251	0.0001	0.0724	0.0027	1.467281	0.000043	0.282015407	1610	-24.50625033	1.202326856	9.075537849	1700.892556	1749.344367	11.62
Sequence 34	0.281859	0.000024	0.000702	0.00001	0.01985	0.00031	1.467306	0.000035	0.28183855	1538	-32.74572555	0.84870131	1.147653527	1940.763516	2185.379953	16.52
Sequence 35	0.282267	0.000031	0.0006575	0.0000084	0.01873	0.00035	1.467309	0.000037	0.282254584	1002	-18.31780328	1.096239192	3.688351059	1377.156792	1605.8085	17.4
Sequence 36	0.281993	0.00002	0.001301	0.000012	0.03731	0.00029	1.467302	0.000035	0.281956001	1502	-28.00714324	0.707251092	4.490610062	1784.732417	1949.561737	15.86
Sequence 37	0.282459	0.000023	0.0008135	0.0000047	0.0244	0.00015	1.467322	0.000033	0.282449483	623	-11.5281928	0.813338756	2.038999176	1115.501178	1411.895148	15.28
Sequence 38	0.282136	0.000023	0.001113	0.0000062	0.03346	0.00017	1.467335	0.00003	0.282110868	1196	-22.95029793	0.813338756	2.998735402	1576.794884	1801.508539	17.8
Sequence 39	0.281987	0.000025	0.000875	0.000018	0.0255	0.00066	1.467267	0.000035	0.281962939	1453	-28.21931856	0.884063865	3.615206377	1773.087462	1965.380877	13.17
Sequence 44	0.281989	0.000023	0.000212	0.000009	0.00566	0.00034	1.46/35	0.000039	0.281983402	1396	-28.14859345	0.813338/56	3.038033097	1/40.084001	1956.398973	12.61
Sequence 45	0.281916	0.000021	0.000764	0.000031	0.02095	0.00085	1.46/281	0.000031	0.281892319	1035	-30./3005994	0.742613646	5.281004237	1865.61/5/9	2005.435534	16.3
Sequence 46	0.281849	0.000027	0.000862	0.000033	0.0247	0.00085	1.467211	0.00004	0.28182/113	1024	-33.0993511	0.954/889/4	-3./13040981	1962.644127	2333.581044	14.8
Sequence 47	0.282132	0.000021	0.000287	0.000011	0.00827	0.00033	1.40/311	0.000033	0.28212040	1522	-25.09174813	0.010426410	-0.554170858	1346.370932	18/3./89083	10.3
Sequence 49	0.282276	0.000020	0.001042	0.0000035	0.02050	0.00031	1.467292	0.000048	0.2822013700	1130	-17 99954029	0.84870131	7 250846631	1355 646106	1400 357435	20.12
Sequence 50	0.282270	0.000024	0.0005584	0.0000053	0.01455	0.00014	1.46731	0.000035	0.28220730	1319	-29 24483265	0.954788974	-0 114385905	1798 200665	2091 820001	12.81
Sequence 51	0.282216	0.000027	0.000863	0.000013	0.02573	0.00044	1 467304	0.000031	0.282200081	979	-20 12129356	0.919426419	1 235676678	1455 467893	1741 283247	14.63
Sequence 52	0.282014	0.00002	0.000327	0.000013	0.00997	0.00041	1.467334	0.000028	0.282008148	950	-27.26452959	0.707251092	-6.222498524	1711.201435	2183.053585	15.26
Sequence 53	0.281942	0.000023	0.0002131	0.000004	0.00788	0.00012	1.467321	0.000031	0.281936091	1465	-29.81063352	0.813338756	2.937222936	1803.911344	2016.975325	20.1
Sequence 54	0.282197	0.000026	0.001241	0.000051	0.0365	0.0017	1.467284	0.000034	0.282172219	1059	-20.7931821	0.919426419	2.061351066	1496.711274	1752.421628	16
Sequence 55	0.281653	0.000023	0.000408	0.0000037	0.01132	0.00015	1.467304	0.000037	0.28164483	1062	-40.0304118	0.813338756	-16.56492127	2205.446741	2906.325504	15.77
Sequence 56	0.281908	0.000026	0.001173	0.000016	0.0338	0.00035	1.467374	0.000044	0.281872838	1582	-31.01296038	0.919426419	3.373098135	1896.868802	2082.057656	15.34
Sequence 57	0.281893	0.000026	0.001183	0.000016	0.03283	0.00039	1.467306	0.000044	0.28185731	1592	-31.5433987	0.919426419	3.051442842	1918.201834	2109.885523	14.1
Sequence 58	0.282079	0.000039	0.002571	0.000039	0.0832	0.0015	1.467299	0.000033	0.282000744	1606	-24.96596354	1.379139629	8.463261769	1722.565147	1784.376172	15.57
Sequence 59	0.281987	0.000019	0.0004253	0.0000066	0.01255	0.00012	1.467295	0.000037	0.281978443	1067	-28.21931856	0.671888537	-4.626013056	1752.430145	2174.959593	16.15
Sequence 60	0.281885	0.000031	0.001219	0.000023	0.03381	0.0008	1.467307	0.000032	0.281851923	1434	-31.82629913	1.096239192	-0.75783317	1931.143822	2221.783007	15.69
Sequence 65	0.281982	0.000029	0.000635	0.000037	0.0187	0.0011	1.467302	0.000046	0.281968073	1162	-28.39613134	1.025514083	-2.837301357	1768.86419	2138.033654	12.93
Sequence 66	0.281937	0.000027	0.001225	0.000035	0.0357	0.001	1.467332	0.000041	0.28190148	1531	-29.98744629	0.954788974	3.220323716	1859.132943	2051.36084	14.44
Sequence 67	0.281851	0.000021	0.0007193	0.0000061	0.0199	0.00015	1.467312	0.000032	0.281829383	1586	-33.02862599	0.742613646	1.9226661	1952.604368	2175.111262	16.32
Sequence 68	0.282086	0.000024	0.000576	0.000016	0.01672	0.00052	1.467308	0.000035	0.282071717	1312	-24.71842566	0.84870131	4.252957629	1623.464633	1814.556209	14.79
Sequence 69	0.282152	0.000022	0.0008567	0.0000089	0.0259	0.00019	1.467345	0.000031	0.282135888	998	-22.38449706	0.777976201	-0.609098904	1544.012809	1871.352178	15.21
Sequence 70	0.281195	0.000026	0.001021	0.000013	0.02953	0.00042	1.467308	0.000038	0.281146115	2505	-56.2264618	0.919426419	-1.072005471	2866.595552	3081.451235	12.58

	176Hf/177 Hfstnorm	176Hf/177Hf corr 2SE	176Lu/177Hf corr	176Lu/177Hfc orr 2SE	176Yb/177Hf 1 corr	76Yb/177Hfco rr 2SE	178Hf/177Hf	178Hf/177Hf 2SE	176Hf/177Hft	t (age, Ma)	εHf(0)	±2 sigma	εHf(t)	TDM	TDM C*	TotalHfBe am (V)
Sequence 71	0.282076	0.000023	0.0004888	0.0000089	0.01456	0.00027	1.467318	0.000041	0.282067272	948	-25.0720512	0.813338756	-4.17253301	1633.492007	2054.225341	14.75
Sequence 72	0.281873	0.000019	0.0009447	0.0000069	0.02761	0.00023	1.467303	0.000037	0.281846859	1462	-32.25064979	0.671888537	-0.297303417	1933.805708	2215.212599	17.51
Sequence 73	0.282024	0.000028	0.000958	0.00004	0.0277	0.0012	1.467278	0.000031	0.281999859	1333	-26.91090404	0.990151529	2.183390364	1725.7266	1960.021062	16.4
Sequence 74	0.281903	0.000021	0.000641	0.00003	0.01683	0.00069	1.467282	0.000033	0.281891408	960	-31.18977315	0.742613646	-10.13347057	1877.453135	2432.749537	17.4
Sequence 75	0.282108	0.000025	0.0005922	0.0000078	0.01704	0.00026	1.467308	0.000042	0.28209491	1171	-23.94044946	0.884063865	1.864313853	1593.905033	1852.644032	15.77
Sequence 76	0.28182	0.000025	0.000804	0.000034	0.0229	0.0011	1.467305	0.00004	0.281795698	1595	-34.12486518	0.884063865	0.933644611	1999.487355	2243.39592	14.56
Sequence 77	0.282091	0.000016	0.0000584	0.0000021	0.002093	0.000069	1.467286	0.000033	0.282089799	1090	-24.54161289	0.565800873	-0.156885629	1595.093361	1915.136597	22.8
Sequence 78	0.281976	0.000026	0.000532	0.000048	0.0143	0.0013	1.467267	0.000038	0.28196186	1405	-28.60830666	0.919426419	2.479502738	1772.342315	1998.212633	11.96
Sequence 79	0.282406	0.00003	0.001144	0.000037	0.0337	0.0011	1.467252	0.00004	0.282396284	453	-13.40240819	1.060876638	-3.658022436	1199.854122	1637.234263	17.73
Sequence 80	0.282065	0.000028	0.0006382	0.0000052	0.01872	0.00021	1.467392	0.000052	0.282048576	1361	-25.46103931	0.990151529	4.550464991	1654.986754	1834.625898	14.3
Sequence 81	0.281888	0.000023	0.000815	0.000028	0.0231	0.001	1.467267	0.000032	0.281864556	1519	-31.72021147	0.813338756	1.63521343	1906.626293	2140.245583	18
Sequence 86	0.282155	0.000023	0.0003199	0.0000045	0.00903	0.00019	1.467262	0.000033	0.282148435	1088	-22.27840939	0.813338756	1.876315717	1518.452325	1786.74334	17.16
Sequence 88	0.281972	0.000028	0.0009537	0.000004	0.02754	0.00014	1.467228	0.000036	0.28195152	1138	-28.74975688	0.990151529	-3.969346284	1797.504193	2189.518947	13.66
Sequence 89	0.282243	0.000023	0.000887	0.000011	0.02631	0.00042	1.467285	0.000033	0.282225761	1031	-19.16650459	0.813338756	3.324132827	1418.856313	1651.429502	15.94
Sequence 90	0.281867	0.000023	0.000846	0.000014	0.02464	0.0004	1.46731	0.000035	0.281842729	1515	-32.46282511	0.813338756	0.769114324	1937.067927	2190.759931	15.37
Sequence 95	0.282119	0.000036	0.001797	0.000034	0.05333	0.00092	1.467311	0.000035	0.282064752	1593	-23.55146136	1.273051965	10.43646434	1629.959321	1650.801659	15.73
Sequence 96	0.281936	0.000022	0.001522	0.000045	0.0458	0.0014	1.467298	0.000034	0.281891692	1537	-30.02280885	0.777976201	3.010504583	1875.249187	2069.109805	18.53
Sequence 97	0.282188	0.000024	0.000636	0.000015	0.01801	0.00049	1.467244	0.000029	0.282176026	999	-21.11144509	0.84870131	0.836139646	1485.477099	1781.92528	15.75
Sequence 98	0.282041	0.000024	0.0007017	0.0000044	0.01966	0.00014	1.467245	0.000031	0.282028537	943	-26.30974062	0.84870131	-5.658283006	1690.781633	2142.619015	16.09
Sequence 99	0.281626	0.000018	0.000025	0.000002	0.000875	0.000072	1.467216	0.000031	0.281625732	571	-40.98520077	0.636525983	-28.29625627	2220.045415	3249.330632	21.27
Fm. San Juan	de la Rosa (rio	olita)														
Sequence 85	0.2827852	0.000038	0.003073	0.000086	0.0794	0.0024	1.467389	0.000063	0.282777387	136	0.007072511	1.343777074	2.752399071	700.1217352	985.3852069	15
Sequence 86	0.282865	0.00004	0.002186	0.000093	0.0558	0.0024	1.467439	0.000066	0.282859442	136	2.829004367	1.414502184	5.654952445	566.4238474	800.6693966	15.5
Sequence 87	0.282816	0.000029	0.002401	0.000039	0.06401	0.00097	1.467383	0.000061	0.282809671	141	1.096239192	1.025514083	4.005661777	641.8745072	909.6273895	19.3
Sequence 88	0.282851	0.00004	0.00339	0.00014	0.0904	0.0036	1.467337	0.000053	0.282842064	141	2.333928603	1.414502184	5.151521915	606.9785832	836.6796297	13.73
Sequence 89	0.282853	0.000032	0.002636	0.000031	0.06845	0.00095	1.46733	0.00005	0.282846249	137	2.404653712	1.131601747	5.21051757	591.290259	829.7795498	15.5
Sequence 90	0.282808	0.000028	0.002406	0.000067	0.0607	0.0016	1.467338	0.000058	0.282801991	133.6	0.813338756	0.990151529	3.569306672	653.7246376	931.5816416	17.45
Sequence 91	0.282816	0.000056	0.003108	0.00007	0.0808	0.0018	1.467309	0.000095	0.282807982	138	1.096239192	1.980303057	3.87914264	654.6548295	915.3238456	17.9
Sequence 92	0.282817	0.000044	0.00307	0.0001	0.08	0.0028	1.467309	0.000067	0.282808735	144	1.131601747	1.555952402	4.039332538	652.457313	909.8377207	15.6
Sequence 93	0.282218	0.000025	0.00133	0.000011	0.03472	0.00017	1.467378	0.000048	0.28218652	1253	-20.05056845	0.884063865	6.979254887	1470,742208	1597.536202	15.1
Sequence 94	0.282831	0.000034	0.003978	0.000087	0.1063	0.0025	1.467312	0.000053	0.282820589	140	1.626677511	1.202326856	4.369598297	648.0428155	885.6847208	17.8
Sequence 95	0.282775	0.000033	0.002418	0.000027	0.06226	0.00071	1.467433	0.000071	0.282768898	135	-0.353625546	1.166964302	2.429846111	702.446197	1005.090497	15.1
*																
Arenisca Mine	eral de Pozos															
Sequence 4	0.282826	0.00003	0.0005913	0.0000042	0.013453	0.000044	1.467346	0.000061	0.282824906	99	1.449864738	1.060876638	3.610157209	597.3184523	901.8707934	23.2
Sequence 5	0.282667	0.000028	0.000903	0.000063	0.02	0.0013	1.467376	0.000057	0.282665448	92	-4.172781442	0.990151529	-2.185500945	826.3674423	1263.965253	17.9
Sequence 6	0.281698	0.000032	0.0005676	0.0000043	0.014825	0.00009	1.467296	0.000049	0.281679904	1681	-38.43909684	1.131601747	-1.202025329	2153.396918	2442.69305	15.22
Sequence 7	0.282591	0.000028	0.000656	0.000012	0.01441	0.00024	1.467472	0.000053	0.282587611	276	-6.860335591	0.990151529	-0.842290009	927.1054567	1322.349557	13.8
Sequence 8	0.282954	0.000034	0.001601	0.000039	0.03636	0.00079	1.467407	0.000055	0.282950978	101	5.976271726	1.202326856	8.113865201	429.1118773	616.0899563	15.4
Sequence 9	0.282808	0.00002	0.0005639	0.0000065	0.01286	0.00014	1.467345	0.000041	0.282806957	99	0.813338756	0.707251092	2.975284236	622.0812933	942.2549674	20
Sequence 10	0.282827	0.00002	0.000537	0.000011	0.01321	0.00027	1.467358	0.000035	0.282826087	91	1.485227293	0.707251092	3.474039955	595.0676042	904.2645729	22.3
Sequence 11	0.282802	0.000019	0.0005376	0.0000087	0.01269	0.00018	1.467333	0.000038	0.282801005	99	0.601163428	0.671888537	2.764783238	630.0409524	955.6381854	20.1
Sequence 12	0.282539	0.00002	0.0007601	0.0000064	0.01963	0.00016	1.467315	0.000032	0.282535458	249	-8.699188429	0.707251092	-3.289742421	1002.321244	1455.61714	21.6
Sequence 13	0.282818	0.000029	0.000635	0.000017	0.01493	0.0003	1.467386	0.000062	0.282816885	94	1.166964302	1.025514083	3.21525848	609.224999	923.0781946	21.5
Sequence 14	0.282793	0.00002	0.000579	0.00001	0.01304	0.00027	1.467336	0.00004	0.282791994	93	0.282900437	0.707251092	2.312640359	643.3216229	979.6802477	17.2
Sequence 15	0.282577	0.000017	0.000724	0.000018	0.01675	0.00045	1.467256	0.00004	0.282573396	266	-7.355411355	0.601163428	-1.568354006	948.3216333	1360.366941	21.04
Sequence 16	0.281948	0.000028	0.0008902	0.000007	0.02257	0.0002	1.467315	0.000052	0.281920493	1630	-29.59845819	0.990151529	6.166147414	1827.642846	1946.466597	19.6
Sequence 17	0.282558	0.000026	0.000945	0.000023	0.02535	0.00064	1.467345	0.000036	0.282556181	103	-8.027299892	0.919426419	-5.80586809	980.55197	1500.816295	17.9
Sequence 18	0.282838	0.000022	0.00098	0.000015	0.02204	0.00034	1.467313	0.000034	0.28283626	95	1.874215393	0.777976201	3.922810633	586.5015798	878.8362187	18
Sequence 21	0.282686	0.00002	0.000745	0.000026	0.01765	0.00073	1.467296	0.000032	0.282684677	95	-3.500892905	0.707251092	-1.438676091	796.3056564	1219.075036	21.5
Sequence 22	0.282892	0.00002	0.00131	0.000027	0.02958	0.00069	1.467331	0.00004	0.28288965	96	3.783793341	0.707251092	5.833444837	514.5105783	757.8494735	17.8
Sequence 23	0.282869	0.000019	0.000718	0.000013	0.01858	0.00037	1.467303	0.000029	0.282867699	97	2.970454586	0.671888537	5.079260285	538.8406437	806.7341903	18.74
Sequence 24	0.282818	0.000024	0.000667	0.000022	0.01626	0.00057	1.467378	0.000048	0.282816805	95.9	1.166964302	0.84870131	3.254677745	609.7387312	922.058711	17.9
Sequence 25	0.282834	0.000019	0.000923	0.000031	0.02235	0.00078	1.467255	0.000036	0.282832379	94	1.732765175	0.671888537	3.763284591	591.2687189	888.2072602	18.14

	176Hf/177 Hfstnorm	176Hf/177Hf corr 2SE	176Lu/177Hf corr	176Lu/177Hfc orr 2SE	176Yb/177Hf 1 corr	76Yb/177Hfco rr 2SE	178Hf/177Hf	178Hf/177Hf 2SE	176Hf/177Hft	t (age, Ma)	εHf(0)	±2 sigma	εHf(t)	TDM	TDM C*	TotalHfBe am (V)
Sequence 26	0.282892	0.000027	0.001017	0.000056	0.0239	0.0013	1.467265	0.000056	0.282890208	94.3	3.783793341	0.954788974	5.81537103	510.4971101	757.6666149	23.57
Sequence 27	0.282735	0.000029	0.00085	0.000011	0.01938	0.00021	1.467351	0.000048	0.282733513	93.6	-1.76812773	1.025514083	0.257530157	729.6114916	1110.575739	15.9
Sequence 28	0.282413	0.000021	0.001531	0.000037	0.02879	0.00091	1.467352	0.000037	0.282405665	256	-13.15487031	0.742613646	-7.726119559	1202.364404	1739.602733	19.8
Sequence 29	0.282841	0.000018	0.0006821	0.0000078	0.01531	0.00021	1.467331	0.000037	0.282839804	93.8	1.980303057	0.636525983	4.021483863	577.6800706	871.6133576	21.6
Sequence 30	0.281999	0.000024	0.000763	0.000011	0.02187	0.0004	1.46732	0.000036	0.281980167	1306	-27.79496791	0.84870131	0.869156824	1751.371754	2020.543353	17.8
Sequence 31	0.282824	0.00002	0.000734	0.000013	0.01729	0.00032	1.4673	0.000033	0.282822697	95	1.379139629	0.707251092	3.443076686	602.3811226	909.3682286	20.2
Sequence 32	0.282531	0.000035	0.00255	0.00011	0.0657	0.003	1.467274	0.000058	0.282522989	168	-8.982088866	1.237689411	-5.534782215	1063.595068	1534.063663	18.34
Sequence 33	0.282671	0.000015	0.000983	0.000015	0.02295	0.00032	1.467341	0.000031	0.282669089	104	-4.031331223	0.530438319	-1.789995508	822.4822939	1248.294659	22.1
Sequence 34	0.282647	0.000018	0.00057	0.00002	0.01382	0.00048	1.46735	0.00004	0.282645988	95	-4.880032534	0.636525983	-2.807118485	847.0287572	1305.570988	18.4
Sequence 35	0.282835	0.000022	0.000848	0.000023	0.02089	0.00059	1.467328	0.000033	0.282833431	99	1.76812773	0.777976201	3.911692627	588.6835709	882.6795006	21.8
Sequence 36	0.28297	0.000027	0.001857	0.000058	0.0485	0.0016	1.467313	0.000045	0.282966495	101	6.542072599	0.954788974	8.662702434	408.8377374	580.9671419	19.7
Sequence 37	0.282188	0.000024	0.000934	0.000037	0.0246	0.001	1.467338	0.000037	0.282167035	1189	-21.11144509	0.84870131	4.830993792	1497.128797	1681.499016	17.5
Sequence 42	0.282671	0.000024	0.000696	0.000017	0.01567	0.00038	1.467368	0.000064	0.282669764	95	-4.031331223	0.84870131	-1.966149623	816.269084	1252.431915	19.1
Sequence 43	0.282768	0.000027	0.000764	0.00005	0.0176	0.0011	1.46747	0.000066	0.282766675	92.8	-0.601163428	0.954788974	1.412677789	681.6053759	1036.679204	18.5
Sequence 44	0.282798	0.000017	0.000553	0.000034	0.01475	0.00098	1.467287	0.000032	0.282797008	96	0.45971321	0.601163428	2.556688711	635.8901811	966.5178485	19.64
Sequence 45	0.282818	0.000028	0.001334	0.000028	0.02874	0.00064	1.467322	0.000058	0.282815732	91	1.166964302	0.990151529	3.107778568	620.6476082	927.5654933	22.2
Sequence 46	0.28281	0.000022	0.0004733	0.0000081	0.0107	0.00017	1.467421	0.000037	0.282809147	96.5	0.884063865	0.777976201	2.997147683	617.8118011	938.9075038	17.7
Sequence 47	0.282802	0.000026	0.000466	0.000012	0.01162	0.00036	1.467348	0.000044	0.28280112	101	0.601163428	0.919426419	2.813323782	628.858711	954.1177866	17.1
Sequence 48	0.282811	0.000033	0.0008261	0.0000084	0.01953	0.00025	1.467314	0.000049	0.282809518	96	0.919426419	1.166964302	2.999171361	622.170079	938.387371	20.71
Sequence 49	0.282544	0.000036	0.0006355	0.0000065	0.01637	0.00019	1.467358	0.000056	0.28254286	96	-8.522375656	1.273051965	-6.432549844	992.0838733	1534.825741	17.7
Sequence 50	0.282822	0.000015	0.0005318	0.0000059	0.01197	0.00016	1.46728	0.00003	0.282821036	97	1.30841452	0.530438319	3.428800035	601.9799034	911.843285	22.6
Sequence 51	0.282865	0.00002	0.000932	0.000015	0.02037	0.00034	1.467301	0.000032	0.282863241	101	2.829004367	0.707251092	5.010554301	547.5630227	814.2540/14	21.1
Sequence 53	0.282314	0.000021	0.000597	0.000033	0.01564	0.00096	1.467336	0.000048	0.282302272	1042	-16.65576321	0.742613646	6.285544776	1310.036421	14/4.351864	20.8
Sequence 54	0.282679	0.000031	0.000663	0.000024	0.01636	0.00064	1.467377	0.000063	0.282676383	211	-3.748430787	1.096239192	0.84934486	804.3763329	1164.712262	16.9
Sequence 55	0.282826	0.000029	0.000909	0.000037	0.0233	0.0011	1.467349	0.000064	0.282824352	97	1.449864738	1.025514083	3.546097277	602.3517933	904.3800481	21.3
Sequence 56	0.282946	0.000049	0.0008741	0.0000045	0.019	0.00014	1.46/28/	0.000087	0.282944432	96	5.693371289	1./32/651/5	7.771088353	432.1603639	634.0/40/1/	20.1
Sequence 57	0.282831	0.000022	0.00156	0.000043	0.0375	0.001	1.467289	0.000039	0.282828172	97	1.626677511	0.777976201	3.681210534	605.7479911	895./8194/9	24.6
Sequence 58	0.282578	0.000015	0.0010508	0.0000054	0.02658	0.00013	1.46/282	0.000031	0.2825/5506	127	-7.3200488	0.530438319	-4.588926245	955.136934	1442.782253	25.6
Sequence 61	0.282214	0.000027	0.0013577	0.0000065	0.03644	0.00016	1.467328	0.000043	0.282185311	1120	-20.19201867	0.954788974	3.910224719	1477.45384	1684.755434	20.8
Sequence 62	0.282471	0.000024	0.0010059	0.0000099	0.02236	0.00026	1.4074	0.000044	0.282465973	207	-11.10384214	0.848/0151	-5.34/03530/	1104.340009	1598.926769	19.4
Sequence 63	0.282404	0.000023	0.002104	0.000014	0.05735	0.00037	1.46/353	0.000049	0.282382323	549	-13.4/31333	0.813338/50	-2.000850297	1254.111558	1607.971802	17.8
Sequence 64	0.282841	0.000015	0.00082	0.000043	0.0213	0.0013	1.467294	0.000033	0.282839498	98	1.980303057	0.530438319	4.104051125	5/9./88438/	809.0491203	22.8
Sequence 65	0.282411	0.000022	0.001205	0.000016	0.02991	0.00044	1.467248	0.000033	0.282407372	101	-13.22559542	0.777976201	-9.780478979	1194.759126	1/94.9/2023	22.3
Sequence 66	0.282696	0.000013	0.0004509	0.0000062	0.01014	0.00015	1.467244	0.000028	0.282095225	92	-3.14/20/339	0.45971321	-1.13228/51/	624 0220718	042 4125455	23.7
Sequence 07	0.282809	0.00002	0.0007082	0.0000082	0.02161	0.00018	1.407344	0.000039	0.282807010	102	2 546102021	0.707231092	4 772925274	558 2206582	942.4125450	18.08
Sequence 68	0.282837	0.000019	0.000888	0.000023	0.02101	0.00005	1.407290	0.00003	0.282833291	105	2.340103931	0.0/1666557	4.773633274	1462 256556	1744 52008	10.90
Sequence 09	0.282197	0.000021	0.0003795	0.0000034	0.00977	0.00011	1.407308	0.000037	0.282189770	1010	1 025514082	0.742013040	2 116129172	615 1576272	020 0488208	18.00
Sequence 71	0.282814	0.000024	0.000055	0.000047	0.01507	0.0012	1.407336	0.000042	0.282812823	103	0.495075764	0.84063865	2 738746047	636.0621016	950.9488508	20.8
Sequence 72	0.282059	0.000025	0.000047	0.000017	0.02004	0.0004	1.467207	0.000031	0.282056836	103	6 506710045	0.671888537	0 1/211/051	400 3818378	566 8492036	20.0
Sequence 72	0.282359	0.000015	0.000/45	0.000017	0.03806	0.00040	1.46736	0.000033	0.282345427	122	-15.06444826	1 59131/057	4 696956538	1277 476493	1728 735100	20.4
Sequence 74	0.281833	0.000043	0.001480	0.00002	0.03800	0.00002	1.46737	0.000072	0.281793876	1604	-33 66515107	1.520589847	1 075440747	2006 954799	2241 605458	21.0
Sequence 75	0.281833	0.000043	0.001287	0.000047	0.02924	0.00093	1.40737	0.000070	0.281/938/0	1562	-21 25289531	0.777976201	13 06310/12	1/00/113783	1461 535000	13.2
Sequence 76	0.282151	0.000022	0.000516	0.000014	0.01328	0.00036	1 467328	0.000027	0.282139673	1163	-22 41985961	0.813338756	3 269504495	1531 697606	1758 646815	15.2
Sequence 77	0.282689	0.000023	0.000784	0.000014	0.01326	0.00025	1 467317	0.000035	0.282687535	100	-3 394805241	0.777976201	-1 22647949	792 9163494	1209 542055	18.8
Sequence 82	0.282515	0.000022	0.000784	0.000017	0.0216	0.00023	1.467/30	0.000055	0.282513304	100.2	-9 54788974	0.884063865	-7 38467172	1039 821624	1507 0101/8	17.8
Sequence 83	0.282515	0.000023	0.0002927	0.0000017	0.00821	0.00045	1 467343	0.000052	0.282515504	1628	-41 55100164	0.742613646	-5 220629037	2256 885347	2648 404701	23.8
MP-6_1	0.281931	0.000021	0.001093	0.0000050	0.0287	0.0012	1 467368	0.000049	0.281896742	1653	-30 19962162	0.742613646	5 851519314	1860 988123	1984 217288	21.3
	0.201731	0.000021	0.001093	0.00004	0.0207	0.0012	1.407.508	0.000049	0.2010/0/42	1000	50.17702102	0.742013040	5.051517514	1000.700123	1707.217200	21.3
Fm. La Pimier	ıta															
Sequence 5	0.282569	0.000036	0.002218	0.000037	0.0575	0.001	1.467275	0.000033	0.282561675	176.6	-7.638311792	1.273051965	-3.974859352	998.745601	1442.560965	19.6
Sequence 6	0.282715	0.000026	0.0010119	0.0000091	0.02407	0.00027	1.467235	0.000025	0.282712145	150.9	-2.475378821	0.919426419	0.776114705	761.0044525	1122.422555	18.13
Sequence 7	0.282159	0.000023	0.000806	0.000012	0.02025	0.00031	1.46726	0.000035	0.282155167	254.1	-22.13695917	0.813338756	-16.63171127	1532.269138	2292.977226	15.86
Sequence 8	0.282587	0.000024	0.0007842	0.0000096	0.01904	0.00021	1.467233	0.000031	0.282571923	1020	-7.001785809	0.84870131	15.34395049	935.8352027	884.6393562	15.31
Sequence 9	0.282591	0.000033	0.001603	0.000068	0.041	0.0019	1.467288	0.000028	0.28258582	172.8	-6.860335591	1.166964302	-3.205267344	950.7547207	1391.11627	15.6
Sequence 10	0.282635	0.000022	0.001008	0.000044	0.0245	0.0011	1.467271	0.000027	0.282631782	170.7	-5.304383189	0.777976201	-1.626042945	873.7855111	1289.827358	16.94

	176Hf/177 Hfstnorm	176Hf/177Hf corr 2SE	176Lu/177Hf corr	176Lu/177Hfc orr 2SE	176Yb/177Hf 1 corr	76Yb/177Hfco rr 2SE	178Hf/177Hf	178Hf/177Hf 2SE	176Hf/177Hft	t (age, Ma)	εHf(0)	±2 sigma	εHf(t)	TDM	TDM C*	TotalHfBe am (V)
Sequence 11	0.282783	0.000028	0.001485	0.000015	0.03567	0.00045	1.467266	0.000032	0.282778413	165.2	-0.070725109	0.990151529	3.438668258	673.3440082	964.6483918	15.09
Sequence 12	0.28268	0.000024	0.000874	0.000021	0.0219	0.00048	1.467224	0.000028	0.282677161	173.7	-3.713068232	0.84870131	0.046060006	807.4592222	1186.445472	16.09
Sequence 13	0.282463	0.00003	0.0009581	0.0000061	0.02362	0.0002	1.467267	0.000036	0.282459821	177.4	-11.38674258	1.060876638	-7.560272782	1114.160466	1668.526908	16.27
Sequence 14	0.282585	0.000028	0.001275	0.000039	0.0325	0.0011	1.467311	0.000029	0.282580684	181	-7.072510918	0.990151529	-3.204440403	950.9330604	1397.431928	18.2
Sequence 15	0.28257	0.000037	0.001362	0.000019	0.03506	0.00049	1.467251	0.000045	0.282565749	166.9	-7.602949237	1.30841452	-4.046587053	974.4521398	1439.554594	12.89
Sequence 16	0.282565	0.000023	0.00116	0.000084	0.0291	0.0022	1.46725	0.000028	0.282561204	175	-7.77976201	0.813338756	-4.027135671	976.275995	1444.612323	16.4
Sequence 17	0.282602	0.000025	0.002041	0.000068	0.0531	0.0017	1.467226	0.000023	0.282595493	170.5	-6.47134749	0.884063865	-2.91427916	946.1873465	1370.981058	20.2
Sequence 18	0.282129	0.000016	0.000126	0.00002	0.00298	0.00039	1.467275	0.000028	0.28212862	161.5	-23.19783581	0.565800873	-19.63031588	1546.22872	2408.166132	21.6
Sequence 19	0.282725	0.00004	0.001416	0.000052	0.0346	0.0013	1.467223	0.000037	0.282705569	730	-2.121753275	1.414502184	13.5178662	754.9821904	769.4793286	8.86
Sequence 20	0.282387	0.000023	0.0011377	0.0000038	0.03078	0.00023	1.467225	0.000023	0.26236323	175.2	-7.001783809	1.025514082	-3.28/2/2194	762 0718807	1390.390391	15.05
Sequence 21	0.282718	0.000029	0.001323	0.000040	0.03042	0.00092	1.407233	0.000033	0.282713023	258	-2.309291138	0.84870131	11 39032751	1320 035196	102.754005	16.25
Sequence 22	0.282569	0.000024	0.001093	0.000014	0.02732	0.00042	1.467246	0.00003	0.2825505	899	-7 638311792	0.671888537	11 84243398	968 8989704	1010 397888	15.25
Sequence 24	0.282538	0.000023	0.000966	0.000024	0.02417	0.00064	1.467257	0.000027	0.282534916	170.7	-8.734550984	0.813338756	-5.052769485	1009.186963	1505.838713	14.64
Sequence 25	0.282587	0.000026	0.001131	0.000013	0.03064	0.00044	1.467256	0.000027	0.28258156	257	-7.001785809	0.919426419	-1.48017505	944.4671195	1347.797497	18.3
Sequence 26	0.282549	0.000021	0.00091	0.000012	0.02271	0.00038	1.467256	0.000032	0.282544929	239.1	-8.345562883	0.742613646	-3.175326659	992.2686134	1440.722831	15.74
Sequence 27	0.282228	0.000028	0.0002109	0.0000034	0.00572	0.00012	1.467245	0.000033	0.282223785	1060	-19.69694291	0.990151529	3.911858052	1414.554654	1637.433353	15.5
Sequence 28	0.282608	0.000033	0.00311	0.00028	0.0829	0.0078	1.46723	0.000029	0.282596669	194.8	-6.259172163	1.166964302	-2.331703727	965.6467959	1353.119294	12.77
Sequence 29	0.282166	0.000028	0.000786	0.000029	0.01929	0.00095	1.467279	0.000037	0.282147441	1250	-21.88942129	0.990151529	5.525076475	1521.778125	1686.195175	15
Sequence 30	0.282543	0.000039	0.001477	0.000021	0.03625	0.00057	1.467295	0.000041	0.282534582	304.4	-8.557738211	1.379139629	-2.084991164	1015.90474	1422.819002	14.38
Sequence 31	0.282751	0.000022	0.000927	0.000011	0.01988	0.00027	1.467262	0.000028	0.282746573	255.2	-1.202326856	0.777976201	4.318262917	708.5362811	979.3410904	18.7
Sequence 32	0.282369	0.000025	0.000724	0.000013	0.01881	0.00041	1.467251	0.000028	0.282354943	1030	-14.71082271	0.884063865	7.880217554	1238.049219	1364.581258	17.9
Sequence 33	0.282173	0.000032	0.001179	0.000032	0.02769	0.00071	1.467268	0.000036	0.282146738	1180	-21.64188341	1.131601747	3.906582287	1527.828461	1732.214145	17
Sequence 34	0.282332	0.000023	0.001645	0.00001	0.03916	0.00032	1.46/2/6	0.000029	0.282301062	998	-16.01923/23	0.813338/56	5.244963881	1321.338333	1505.004942	17.2
Sequence 35	0.282087	0.000023	0.000194	0.000029	0.00387	0.00054	1.40/22	0.00003	0.282083495	959	-24.0830031	0.813538/50	-3.348/0039	1522.078602	2011.362446	10.55
Sequence 37	0.282138	0.000021	0.0005387	0.000008	0.01354	0.00021	1.407208	0.000029	0.282624516	178.3	-5 587283625	0.742013040	1 713925101	878 0272128	1301 201872	20.1
Sequence 38	0.282222	0.000021	0.0005148	0.000024	0.01375	0.00017	1.46727	0.000027	0.282217711	1060	-19 69694291	0.813338756	3 69654934	1425 751953	1650 916577	16 32
Sequence 39	0.282596	0.000023	0.0007452	0.0000054	0.01954	0.00019	1.467244	0.000026	0.282591866	296.3	-6.683522818	0.742613646	-0.238720206	922.2923754	1300.078869	16.5
Sequence 40	0.282493	0.000019	0.0006417	0.000005	0.01704	0.00015	1.467266	0.000028	0.282487997	416	-10.32586594	0.671888537	-1.239738948	1063.216169	1456.512421	19.21
Sequence 41	0.282552	0.000022	0.000665	0.000028	0.01674	0.00073	1.467252	0.000029	0.282546389	450	-8.23947522	0.777976201	1.588275571	981.7043281	1304.841941	16.94
Sequence 42	0.282522	0.000034	0.000828	0.000043	0.0222	0.0014	1.467291	0.000045	0.282514531	481	-9.300351857	1.202326856	1.155005882	1027.895236	1356.422599	11.5
Sequence 43	0.282304	0.00002	0.001478	0.000035	0.03513	0.0009	1.467225	0.000026	0.282290361	492	-17.00938876	0.707251092	-6.53436903	1355.053504	1847.513009	20.5
Sequence 44	0.282378	0.000022	0.001799	0.000049	0.0434	0.0013	1.467245	0.000026	0.282361772	481	-14.39255972	0.777976201	-4.252742747	1261.120044	1696.259259	19.2
Sequence 45	0.282337	0.000026	0.000902	0.000013	0.02287	0.00028	1.467313	0.000033	0.282326856	599	-15.84242446	0.919426419	-2.8425314	1288.499126	1699.663105	17.41
Sequence 46	0.282833	0.000021	0.000803	0.000012	0.01828	0.00027	1.467259	0.000028	0.282828475	301	1.69740262	0.742613646	8.238880055	590.8009079	765.8646377	17.45
Sequence 47	0.28222	0.000031	0.0002583	0.0000083	0.00673	0.00027	1.467265	0.00003	0.282214443	1140	-19.97984334	1.096239192	5.397527073	1427.229539	1607.392808	14.6
Sequence 48	0.281935	0.000029	0.001152	0.00003	0.02941	0.0008	1.467302	0.000033	0.281915567	896	-30.0581714	1.025514083	-10.72340406	1858.329697	2419.792863	20.9
Sequence 49	0.28263	0.000029	0.001884	0.000045	0.04676	0.00099	1.46/256	0.000032	0.282616374	386	-5.481195962	1.025514083	2.632909003	901.7851542	1188./31805	16.65
Sequence 50	0.282587	0.000031	0.0019/3	0.000074	0.0507	0.002	1.467248	0.000035	0.282580979	105.2	-7.001785809	1.096239192	-3.590153421	900.1024951	1407.925077	14.31
Sequence 51	0.282004	0.000019	0.000362	0.000019	0.01203	0.00047	1.407248	0.000029	0.282000910	293.1	-4.278809100	0.071888557	2.15525459	823.1388483	1147.012032	17.7
Fm. Zacatecas			_													
Z12-04	0.281004	0.000022	0.00076	0.000033	0.01889	0.00078	1.467259	0.00003	0.280969439	2382	-62.98070973	0.777976201	-10.22481059	3104.342282	3539.200634	18.2
Sequence 58	0.282803	0.000025	0.00057	0.00001	0.01306	0.00036	1.467248	0.00003	0.28279983	297.1	0.636525983	0.884063865	7.138114137	629.1780912	832.938015	19.1
Sequence 59	0.282325	0.000028	0.001512	0.000045	0.0366	0.0015	1.467280	0.000043	0.282311329	482.1	-10.2007/511	1.202226856	-0.013/94/14	1320.348083	1807.316505	17.5
Sequence 61	0.262620	0.000034	0.001101	0.000023	0.02039	0.0008	1.407289	0.000042	0.262620742	255.2	1.449004/38	0.010426410	8 5102561/2	5/8 832269/	710 1680019	13.0
Sequence 62	0.282604	0.000020	0.000922	0.00001	0.02020	0.00047	1.407280	0.000030	0.262659450	204.5	-6 506710045	1 025514083	-0 26253949	944 4677001	1302 674753	14.4
Sequence 63	0.282141	0.000041	0.000606	0.000012	0.01504	0.00024	1.467281	0.000042	0.282126888	1233	-22.77348516	1.449864738	4.409008298	1549.063128	1742.560042	19.07
Sequence 64	0.282676	0.000053	0.000893	0.000012	0.02203	0.00061	1.467236	0.000064	0.28267136	277.6	-3.85451845	1.874215393	2,156807156	813,4915833	1133,989335	8.04
Sequence 65	0.282317	0.000041	0.001967	0.000038	0.05	0.0011	1.467219	0.000041	0.28229949	474.7	-16.54967555	1.449864738	-6.598623863	1354.378291	1838.136399	12.9
Sequence 66	0.282595	0.000042	0.00183	0.00011	0.0468	0.003	1.467259	0.000038	0.282585834	267.6	-6.718885372	1.485227293	-1.092539483	950.8487632	1331.596397	15.22
Sequence 67	0.282658	0.000042	0.00283	0.00012	0.0739	0.0041	1.467264	0.000049	0.282643061	282	-4.491044433	1.485227293	1.253661091	884.105933	1194.597286	18.3
Sequence 68	0.282266	0.000029	0.0002622	0.0000055	0.00673	0.00015	1.467232	0.000036	0.282260779	1056	-18.35316583	1.025514083	5.132431045	1364.431714	1557.780702	11.49

	176Hf/177 Hfstnorm	176Hf/177Hf 1 corr 2SE	l76Lu/177Hf corr	176Lu/177Hfc orr 2SE	176Yb/177Hf 1 corr	76Yb/177Hfco rr 2SE	178Hf/177Hf	178Hf/177Hf 2SE	176Hf/177Hft	t (age, Ma)	εHf(0)	±2 sigma	εHf(t)	TDM	TDM C*	TotalHfBe am (V)
Sequence 69	0.281735	0.00003	0.000824	0.000012	0.02023	0.00036	1.467281	0.000031	0.281706631	1813	-37.13068232	1.060876638	2.784354644	2117.12441	2300.530176	15.4
Sequence 70	0.28223	0.00006	0.00356	0.00036	0.099	0.012	1.467281	0.000074	0.282139677	1342	-19.6262178	2.121753275	7.348021106	1545.598082	1644.85396	10.33
Sequence 71	0.282597	0.000044	0.002702	0.000057	0.0696	0.0016	1.467223	0.000043	0.282584496	247.3	-6.648160263	1.555952402	-1.592589564	970.9185383	1347.337092	15.06
Sequence 72	0.282158	0.000027	0.001524	0.000062	0.0404	0.0015	1.467262	0.000029	0.282129946	977	-22.17232173	0.954788974	-1.295196046	1563.083383	1897.719866	22.06
Sequence 73	0.282221	0.000022	0.001205	0.000046	0.028	0.0012	1.467283	0.000028	0.282203803	759	-19.94448079	0.777976201	-3.601692075	1461.662932	1871.625502	20.6
Sequence 74	0.282459	0.00002	0.001011	0.000029	0.02232	0.00065	1.467275	0.000025	0.282450112	468.8	-11.5281928	0.707251092	-1.398741583	1121.33234	1507.666303	19.42
Sequence 75	0.282166	0.00003	0.00173	0.00006	0.0424	0.0014	1.467255	0.000035	0.282121378	1364	-21.88942129	1.060876638	7.201372173	1560.38823	1671.439694	15
Sequence 77	0.282155	0.000036	0.001286	0.000089	0.0306	0.0021	1.467253	0.000035	0.282123529	1295	-22.27840939	1.273051965	5.702806072	1557.409375	1710.603816	21.6
Sequence 78	0.282176	0.000031	0.00069	0.000045	0.0184	0.0016	1.467258	0.000028	0.282157793	1395	-21.53579575	1.096239192	9.201498897	1504.149929	1570.78987	18.3
Sequence 79	0.28252	0.000029	0.001792	0.000032	0.03741	0.00073	1.467277	0.00004	0.282508939	329.6	-9.371076967	1.025514083	-2.429838609	1057.56717	1464.137538	17.5
Sequence 80	0.282706	0.000027	0.002333	0.000021	0.05759	0.00054	1.467268	0.00003	0.282691612	329.3	-2.793641813	0.954788974	4.028010046	801.8436987	1055.914697	20.1
Sequence 81	0.282471	0.000032	0.001372	0.000083	0.0411	0.0034	1.467254	0.000036	0.282452381	722	-11.10384214	1.131601747	4.369590918	1115.15198	1342.798271	12.56
Sequence 82	0.282015	0.000032	0.001321	0.000035	0.0381	0.0011	1.467251	0.000044	0.28198161	1337	-27.22916704	1.131601747	1.627399127	1754.932674	1997.742806	19
Sequence 83	0.282466	0.000023	0.001035	0.000014	0.02659	0.00042	1.467262	0.000029	0.282457126	457.3	-11.28065491	0.813338756	-1.40803514	1112.217873	1499.287704	21.1
Sequence 84	0.282594	0.000023	0.001434	0.000015	0.03221	0.00045	1.467254	0.000035	0.282588076	220.8	-6.754247927	0.813338756	-2.056537629	942.1753835	1355.981867	17.71
Sequence 85	0.282747	0.000052	0.001698	0.000059	0.041	0.0016	1.467316	0.000057	0.282738266	274.8	-1.343777074	1.838852839	4.461743631	729.0793444	985.6123392	13
Sequence 86	0.282184	0.000029	0.000906	0.000018	0.02325	0.00053	1.467264	0.000031	0.282162781	1240	-21.25289531	1.025514083	5.841231321	1501.58273	1658.521776	16.1
Sequence 87	0.282563	0.000038	0.00322	0.00011	0.0982	0.0039	1.467223	0.000032	0.282531587	520	-7.850487119	1.343777074	2.633232135	1035.88181	1293.718161	21.4
Sequence 88	0.282206	0.00005	0.000649	0.00003	0.01896	0.00097	1.467388	0.000054	0.282193263	1041	-20.47491911	1.76812773	2.399006174	1461.135883	1717.180384	9.3
Sequence 89	0.282126	0.000029	0.000884	0.000019	0.02178	0.00049	1.467254	0.000035	0.282104383	1294	-23.30392348	1.025514083	5.001003859	1581.173042	1753.667933	21.7
Sequence 90	0.282209	0.000078	0.000679	0.000058	0.0183	0.0017	1.467308	0.00008	0.282194626	1122	-20.36883144	2.758279258	4.285909359	1458.136943	1662.819872	12.3
Sequence 91	0.282238	0.000031	0.000958	0.00002	0.022	0.00044	1.467252	0.000044	0.282217702	1123	-19.34331736	1.096239192	5.126703648	1428.476313	1610.955271	20.3
Sequence 92	0.282698	0.000048	0.001524	0.000039	0.03425	0.00098	1.467266	0.000041	0.282691505	227.8	-3.076542249	1.69740262	1.758783512	795.8304487	1120.244784	10.69
Sequence 93	0.282052	0.00003	0.001031	0.000034	0.02502	0.00076	1.467279	0.000034	0.282023154	1478	-25.92075252	1.060876638	6.323761983	1690.171657	1816.431418	16.6
Sequence 94	0.281658	0.000031	0.001219	0.000037	0.03093	0.00097	1.467308	0.000036	0.281616103	1810	-39.85359902	1.096239192	-0.499231436	2245.648098	2500.566878	15.4
Sequence 95	0.282716	0.000029	0.00087	0.000066	0.0213	0.0019	1.467284	0.000034	0.28271168	265.3	-2.440016267	1.025514083	3.309015585	756.7402471	1051.325732	15.5
Sequence 96	0.282145	0.000036	0.001296	0.000025	0.03517	0.00073	1.467279	0.000038	0.282129421	640	-22.63203494	1.273051965	-8.913155262	1571.843034	2110.134846	13.6
Sequence 97	0.282231	0.000028	0.001023	0.000023	0.02731	0.00067	1.467292	0.00003	0.282211721	1000	-19.59085524	0.990151529	2.123883492	1440.693386	1702.203568	19.5
Sequence 98	0.282806	0.000033	0.002038	0.000029	0.05442	0.00088	1.467257	0.000048	0.282796767	242.1	0.742613646	1.166964302	5.8019936	650.0590287	874.7102327	14.2
Sequence 99	0.282349	0.000024	0.001229	0.000019	0.03173	0.00053	1.467256	0.000032	0.282323804	1087	-15.4180738	0.84870131	8.070224307	1282.818235	1397.724364	16.74
Sequence 100	0.28213	0.000027	0.00133	0.000065	0.0332	0.0016	1.467261	0.000038	0.282093299	1458	-23.16247326	0.954788974	8.354638272	1594.305521	1673.77336	18.52
Sequence 101	0.282476	0.000068	0.002623	0.000071	0.0713	0.0021	1.467305	0.000087	0.282447442	580	-10.92702937	2.404653712	1.000649983	1146.401541	1443.584794	6.62
Sequence 102	0.28282	0.000028	0.00183	0.000075	0.0507	0.0028	1.467256	0.000028	0.282812331	224	1.237689411	0.990151529	5.948924545	626.1210757	851.122368	20.9
Sequence 103	0.282255	0.000037	0.000852	0.000033	0.0223	0.0012	1.467228	0.000048	0.282247122	493	-18.74215393	1.30841452	-8.042706541	1400.877701	1942.421685	14.5
Sequence 104	0.282276	0.000044	0.00267	0.0001	0.0898	0.0058	1.467278	0.000041	0.282225734	999	-17.99954029	1.555952402	2.597853987	1440.550022	1671.756806	14.4
Sequence 105	0.282281	0.000022	0.000369	0.000016	0.0099	0.00047	1.46726	0.000034	0.282275594	779	-17.82272751	0.777976201	-0.60784248	1347.618077	1700.107244	13.46
Sequence 106	0.282585	0.000026	0.001974	0.000026	0.04994	0.00068	1.467233	0.000028	0.28257306	323	-7.072510918	0.919426419	-0.308089325	969.0169902	1325.28562	23.2
Sequence 107	0.28112	0.000033	0.000536	0.000032	0.0141	0.0012	1.467252	0.000041	0.281090116	2906	-58.87865339	1.166964302	6.352311587	2931.368519	2947.043293	25
Sequence 108	0.282592	0.00004	0.001844	0.000031	0.04232	0.00075	1.467313	0.000043	0.282584282	223.7	-6.824973036	1.414502184	-2.126148342	955.5277534	1362.628446	11.2
z12-04_1	0.281879	0.000047	0.000891	0.000022	0.025	0.00063	1.467275	0.00005	0.281869874	545.8	-32.03847446	1.662040066	-20.21621349	1922.821393	2736.303945	14.2
Fm. Zacatecas																
z12-06	0.28228	0.000022	0.0007309	0.0000091	0.018	0.00034	1.467284	0.000029	0.282264793	1103	-17.85809007	0.777976201	6.341728725	1361.788292	1518.983449	17.1
Sequence 115	0.282073	0.000017	0.00013	0.000014	0.00331	0.00034	1.467269	0.000027	0.28207028	1109	-25.17813887	0.601163428	-0.41755965	1622.479879	1946.241413	21
Sequence 116	0.282229	0.000026	0.000774	0.000015	0.01939	0.00038	1.467224	0.000027	0.282213441	1066	-19.66158035	0.919426419	3.681363048	1434.057395	1656.58747	14.88
Sequence 117	0.282141	0.000022	0.0005228	0.000005	0.01295	0.00016	1.467234	0.000029	0.282128985	1217	-22.77348516	0.777976201	4.119076569	1545.709127	1748.070618	18.2
Sequence 118	0.282164	0.000021	0.0005412	0.0000048	0.0137	0.00015	1.467256	0.000024	0.282151831	1191	-21.9601464	0.742613646	4.337424559	1514.826425	1713.943729	17.7
Sequence 119	0.282326	0.000021	0.000594	0.000015	0.01556	0.0004	1.467271	0.000033	0.282315562	933	-16.23141256	0.742613646	4.286821221	1293.340832	1513.981804	19.78
Sequence 120	0.282185	0.000025	0.001074	0.000016	0.02713	0.00044	1.467222	0.00003	0.2821596	1252	-21.21753275	0.884063865	6.001819347	1506.85176	1657.947656	14.66
Sequence 121	0.282295	0.000019	0.000889	0.000015	0.02259	0.00032	1.467242	0.000026	0.282281605	801	-17.32765175	0.671888537	0.10125777	1346.572627	1672.905546	18.32
Sequence 122	0.282167	0.00002	0.000514	0.00002	0.01322	0.00054	1.467256	0.000032	0.282155433	1192	-21.85405874	0.707251092	4.487887243	1509.630828	1705.323507	18.43
Sequence 123	0.282458	0.000025	0.001221	0.000046	0.03123	0.00098	1.467247	0.000026	0.282442908	658	-11.56355535	0.884063865	2.59322462	1129.01043	1404.437819	20
Sequence 124	0.282299	0.000021	0.00068	0.000012	0.01869	0.00033	1.467248	0.00003	0.282290788	643	-17.18620153	0.742613646	-3.131250142	1333.664026	1751.975676	19.1
Sequence 125	0.282072	0.000019	0.000808	0.000021	0.01797	0.00042	1.467271	0.000033	0.282056081	1045	-25.21350142	0.671888537	-2.372769963	1652.677551	2017.900578	17.1
Sequence 128	0.282151	0.000019	0.0007415	0.0000037	0.01839	0.00012	1.46725	0.000029	0.282135558	1104	-22.41985961	0.671888537	1.783039473	1540.738783	1805.124536	21.3
Sequence 129	0.282156	0.000021	0.0004356	0.0000075	0.01136	0.00019	1.46724	0.000029	0.282147343	1054	-22.24304684	0.742613646	1.066170043	1521.643464	1810.661438	17.58

	176Hf/177 Hfstnorm	176Hf/177Hf 1 corr 2SE	l76Lu/177Hf corr	176Lu/177Hfc orr 2SE	176Yb/177Hf 1 corr	76Yb/177Hfco rr 2SE	178Hf/177Hf	178Hf/177Hf 2SE	176Hf/177Hft	t (age, Ma)	εHf(0)	±2 sigma	εHf(t)	TDM	TDM C*	TotalHfBe am (V)
Sequence 130	0.282142	0.00002	0.000504	0.0000038	0.01255	0.0001	1.46729	0.000029	0.282130802	1177	-22.7381226	0.707251092	3.273334388	1543.58004	1769.419545	16.88
Sequence 131	0.282241	0.000023	0.000916	0.000016	0.0243	0.00042	1.467255	0.000032	0.282222726	1058	-19.2372297	0.813338756	3.828971441	1422.72262	1641.050717	17.01
Sequence 132	0.281889	0.000025	0.001189	0.000043	0.0302	0.0011	1.467237	0.00003	0.281853518	1575	-31.68484891	0.884063865	2.526926103	1924.060426	2129.018164	13.48
Sequence 133	0.282106	0.000018	0.000346	0.000029	0.00861	0.00071	1.467257	0.000025	0.282099335	1022	-24.01117457	0.636525983	-1.360928114	1586.476779	1936.96888	19.6
Sequence 134	0.282358	0.000022	0.001296	0.000023	0.03246	0.00056	1.467269	0.000032	0.282346529	472	-15.09981081	0.777976201	-4.993897557	1272.421559	1735.686885	19.1
Sequence 135	0.28227	0.000024	0.000726	0.000014	0.01959	0.00037	1.467267	0.000029	0.282255517	1058	-18.21171561	0.84870131	4.991277223	1375.471944	1568.209846	16.16
Sequence 136	0.282563	0.000024	0.001856	0.000021	0.04185	0.00051	1.467256	0.000031	0.282554773	236.9	-7.850487119	0.84870131	-2.876058414	997.5754445	1420.162803	16.03
Sequence 137	0.282149	0.00002	0.00049	0.000023	0.01249	0.00057	1.467224	0.000032	0.282137889	1201	-22.49058472	0.707251092	4.070610849	1533.40804	1738.498007	18.17
Sequence 138	0.282562	0.000024	0.001275	0.000039	0.02685	0.00083	1.467262	0.000029	0.282555401	276.5	-7.885849674	0.84870131	-1.970858632	983.5223204	1393.916835	16.95
Sequence 139	0.28176	0.000025	0.000769	0.000033	0.0186	0.00079	1.467263	0.000026	0.281732128	1907	-36.24661846	0.884063865	5.858729176	2079.872974	2184.735618	16.1
Sequence 140	0.281931	0.000026	0.001272	0.00005	0.0336	0.0013	1.467265	0.000022	0.281891524	1637	-30.19962162	0.919426419	5.298723158	1869.80544	2005.915156	19.21
Sequence 141	0.282276	0.000027	0.001369	0.000023	0.03389	0.00067	1.467254	0.00003	0.282262644	520	-17.99954029	0.954788974	-6.88828931	1390.590805	1891.281786	16.63
Sequence 142	0.282191	0.000025	0.001078	0.000024	0.0281	0.00066	1.46726	0.000022	0.282166843	1187	-21.00535743	0.884063865	4.778709892	1498.638477	1683.193388	19
Sequence 143	0.281949	0.000024	0.001122	0.000033	0.02903	0.00094	1.467253	0.000032	0.281917242	1495	-29.56309564	0.84870131	2.95508245	1837.426174	2039.48185	18.3
Sequence 144	0.282085	0.00002	0.000208	0.000027	0.00505	0.00059	1.467237	0.000029	0.282081163	979	-24.75378821	0.707251092	-2.978800087	1609.415114	2004.129688	21.6
Sequence 145	0.28216	0.000026	0.000692	0.000014	0.01811	0.00039	1.46725	0.000029	0.282143528	1260	-22.10159662	0.919426419	5.614182287	1526.321659	1688.514837	17.17
Sequence 146	0.28215	0.00002	0.000653	0.00002	0.0163	0.00049	1.467259	0.000022	0.282135579	1170	-22.45522217	0.707251092	3.283504998	1538.556584	1763.278133	18.69
Sequence 147	0.282247	0.000027	0.0007574	0.0000094	0.01971	0.00025	1.467297	0.000029	0.282232337	1027	-19.02505437	0.954788974	3.466536309	1408.491623	1639.366347	16
Sequence 148	0.282129	0.000028	0.0009653	0.000006	0.0241	0.00023	1.467258	0.000032	0.282120056	494	-23.19783581	0.990151529	-12.51863664	1580.389247	2221.560167	16.8
Sequence 149	0.282316	0.000023	0.000601	0.000017	0.01625	0.0003	1.46725	0.000026	0.282310137	520	-16.5850381	0.813338756	-5.206889076	1307.407746	1786.241879	18.3
Sequence 150	0.282175	0.00002	0.000847	0.000022	0.02251	0.00057	1.467237	0.000026	0.282155955	1191	-21.5711583	0.707251092	4.483653135	1511.737205	1704.800353	19.3
Sequence 151	0.282323	0.000024	0.001196	0.000011	0.03086	0.00045	1.467275	0.000029	0.282312684	460	-16.33750022	0.84870131	-6.460624075	1318.228024	1818.13453	18.8
Sequence 152	0.282191	0.000023	0.000597	0.000012	0.01561	0.00028	1.467277	0.000031	0.282178635	1098	-21.00535743	0.813338756	3.17390613	1479.831006	1713.506688	16.2
Sequence 153	0.282198	0.000024	0.000357	0.000019	0.00963	0.00054	1.467254	0.000031	0.282190824	1066	-20.75781954	0.84870131	2.879630735	1461.032815	1706.758333	15.17
Sequence 154	0.282181	0.000026	0.001237	0.000027	0.03051	0.0006	1.467252	0.000027	0.282151721	1253	-21.35898297	0.919426419	5.745211407	1518.972609	16/4./93059	18.5
Sequence 155	0.282274	0.000022	0.000995	0.000023	0.02396	0.00045	1.46/2/2	0.000026	0.282255589	982	-18.0702654	0.777976201	3.270856676	13/9.6550/	1616.248/24	1/./
Sequence 156	0.28219	0.000029	0.000602	0.00004	0.01553	0.00098	1.46/251	0.000033	0.28217628	1207	-21.040/1998	1.025514083	5.568463581	1481.402499	1649.5461/	10.55
Sequence 157	0.282234	0.000031	0.001509	0.000051	0.0373	0.0013	1.46/2/6	0.000038	0.282199984	1194	-19.484/0/58	0.84870121	0.113050025	1455.177972	1605.180548	13.23
Sequence 158	0.282258	0.000024	0.000782	0.00001	0.02055	0.00028	1.467207	0.000026	0.282243531	982	-18.0300002/	0.848/0131	2.84348520	1394.143005	1045.025890	17.55
Sequence 139	0.282289	0.000022	0.000711	0.000037	0.01774	0.00091	1.467264	0.000024	0.2822/38/1	980	-17.33982708	0.777970201	3.944332027	1346.00741	2012 051164	19.2
Sequence 160	0.281938	0.000021	0.0003446	0.0000071	0.00849	0.00019	1.407204	0.000028	0.281948085	1429	-29.24465205	0.742013040	4 727825106	2141.078202	2012.031104	17.02
Sequence 161	0.280933	0.000022	0.0004018	0.0000044	0.010238	0.000091	1.467250	0.00003	0.280934403	2070	-04./154/49	0.777970201	-4.757825100	1216 277204	3432.677061	17.05
Sequence 162	0.282303	0.00002	0.0005505	0.0000043	0.00811	0.00011	1.467201	0.000023	0.282290291	1058	-17.04473131	0.707231092	0.4303830	1510.277204	2040 167404	17.37
Sequence 164	0.282031	0.000022	0.00007	0.000004	0.02503	0.0010	1.407291	0.000028	0.282037008	300	-3 642343123	0.671888537	2 813035/30	809 5720573	1100 000080	17.5
Sequence 165	0.282354	0.000012	0.001104	0.000024	0.02303	0.00001	1.407238	0.000028	0.2823/1065	485	-15 24126103	0.777976201	-4 806168381	1282 36313	1739 653702	21.5
z12.06 1	0.282334	0.000022	0.001422	0.000010	0.03432	0.0021	1.467294	0.000025	0.2822341005	10/0	-19.02505437	1 131601747	3 7//890775	1/10 605881	1639 235792	15.4
212-00_1	0.282247	0.000032	0.001050	0.000085	0.0271	0.0021	1.407294	0.000031	0.282220115	1049	-19.02505457	1.131001747	3.744890775	1417.005881	1039.233792	13.4
Filita La Escon	dida															
z12-08	0.282326	0.000029	0.001161	0.000023	0.02882	0.00052	1.467302	0.000037	0.282312571	616	-16.23141256	1.025514083	-2.966561006	1312.793821	1720.65908	17
Sequence 172	0.282172	0.000031	0.0007707	0.0000065	0.01888	0.00019	1.467268	0.000039	0.282154023	1235	-21.67724596	1.096239192	5.416790773	1512.866121	1681.131554	10.56
Sequence 173	0.28297	0.000021	0.001311	0.000057	0.028	0.0013	1.467259	0.000024	0.282967001	122.4	6.542072599	0.742613646	9.1568451	402.8416719	566.2218728	18.32
Sequence 174	0.281798	0.000018	0.0005577	0.000008	0.01472	0.0002	1.467256	0.000029	0.281791665	605	-34.90284138	0.636525983	-21.65908807	2016.708388	2869.792194	16.6
Sequence 175	0.28241	0.000028	0.002103	0.00004	0.0529	0.001	1.467252	0.000026	0.282400871	232	-13.26095797	0.990151529	-8.430422519	1225.424959	1765.179833	19.64
Sequence 176	0.282298	0.000063	0.001422	0.000043	0.0368	0.0012	1.46712	0.00011	0.282273634	910	-17.22156409	2.227840939	2.28075668	1361.500508	1621.752168	18.2
Sequence 177	0.282119	0.000018	0.0003491	0.0000032	0.008282	0.00007	1.467248	0.000026	0.282110757	1250	-23.55146136	0.636525983	4.224189005	1568.836013	1767.499563	18.63
Sequence 178	0.282158	0.000021	0.000388	0.000016	0.01033	0.00041	1.467256	0.000032	0.282148898	1242	-22.17232173	0.742613646	5.394487213	1517.025399	1688.049987	17
Sequence 179	0.281622	0.000039	0.000603	0.000022	0.01458	0.00056	1.467275	0.000045	0.281601857	1760	-41.12665099	1.379139629	-2.156281068	2258.725145	2563.277385	12.02
Sequence 180	0.282512	0.000021	0.001781	0.000029	0.04624	0.00079	1.467263	0.000026	0.282506709	158.9	-9.653977403	0.742613646	-6.313157113	1068.724101	1575.947027	24.7
Sequence 181	0.282957	0.000017	0.0009709	0.0000093	0.02009	0.0002	1.467228	0.000029	0.282954853	118.3	6.08235939	0.601163428	8.635904428	417.6568214	596.3325105	19.06
Sequence 182	0.282177	0.000021	0.000789	0.00001	0.02069	0.00028	1.467239	0.000027	0.282160178	1130	-21.50043319	0.742613646	3.246389438	1506.669365	1/34.13/41	16.79
Sequence 183	0.282373	0.000027	0.00101	0.000033	0.02675	0.00089	1.467273	0.000028	0.282362518	553	-14.56937249	0.954788974	-2.612314784	1241.811301	1649.43457	17.8
Sequence 184	0.282263	0.000023	0.000846	0.000033	0.02134	0.00071	1.467284	0.000028	0.282251167	1072	-18.4592535	0.813338756	-2.261894118	1389.54004	1776.265936	16.44
Sequence 185	0.282237	0.000023	0.0004983	0.0000074	0.01249	0.0002	1.46/23/	0.000027	0.282226926	10/2	-19.3/86/992	0.813338/56	4.295537841	1412./53364	1622.845821	15.53
Sequence 186	0.2822	0.00003	0.00315	0.00017	0.0884	0.0054	1.46/265	0.000042	0.282119175	1357	-20.08/09444	1.0008/0038	0.903320332	15/2.15918/	1080.789221	12.23
Sequence 187	0.282332	0.00002	0.000527	0.000014	0.01247	0.00033	1.467256	0.000027	0.282326511	555	-16.01923/23	0.707251092	-3.842331315	1282.796133	1/28.040945	19.4

	176Hf/177 Hfstnorm	176Hf/177Hf 1 corr 2SE	176Lu/177Hf corr	176Lu/177Hfc orr 2SE	176Yb/177Hf 1 corr	76Yb/177Hfco rr 2SE	178Hf/177Hf	178Hf/177Hf 2SE	176Hf/177Hft	t (age, Ma)	εHf(0)	±2 sigma	εHf(t)	TDM	TDM C*	TotalHfBe am (V)
Sequence 188	0.28128	0.000025	0.0005893	0.0000076	0.01481	0.00021	1.46725	0.00003	0.281257899	1972	-53.22064466	0.884063865	-9.483597259	2720.393075	3176.135511	17.19
Sequence 189	0.282295	0.000017	0.000801	0.000038	0.0184	0.0012	1.467244	0.000023	0.282288031	464	-17.32765175	0.601163428	-7.243796238	1343.460186	1870.156719	22.1
Sequence 190	0.282212	0.000025	0.000963	0.000036	0.0236	0.001	1.467261	0.000031	0.282191872	1108	-20.26274378	0.884063865	3.870220875	1464.871962	1677.81394	18.7
Sequence 191	0.282829	0.000023	0.001125	0.000038	0.02411	0.0009	1.467234	0.00003	0.282826131	136.4	1.555952402	0.813338756	4.485537291	601.5601167	875.480381	20.4
Sequence 192	0.282071	0.000059	0.002098	0.000028	0.0519	0.0011	1.467315	0.000048	0.282012059	1484	-25.24886398	2.086390721	6.067488756	1711.906895	1837.15384	10.47
Sequence 193	0.282357	0.000021	0.001417	0.000015	0.03231	0.00035	1.46723	0.000024	0.282340101	635	-15.13517336	0.742613646	-1.564725903	1277.949573	1647.65265	22.5
Sequence 194	0.282397	0.000024	0.000573	0.000021	0.01405	0.00058	1.467273	0.000029	0.282389029	740	-13.72067118	0.84870131	2.531228564	1194.404779	1472.65377	17.3
Sequence 195	0.282957	0.000024	0.001129	0.000013	0.02319	0.00039	1.467234	0.000035	0.28295366	158.2	6.08235939	0.84870131	9.48219196	419.4215629	573.6686072	19.97
Sequence 196	0.282322	0.000019	0.000458	0.0000044	0.0121	0.00012	1.46727	0.000029	0.282317748	495	-16.37286278	0.671888537	-5.497642093	1294.272466	1785.039796	20.1
Sequence 197	0.282968	0.000024	0.001264	0.000013	0.02669	0.00028	1.467229	0.000029	0.282965248	116.5	6.47134749	0.84870131	8.963512947	405.1967076	573.9421562	19.37
Sequence 198	0.282201	0.000022	0.000517	0.0000055	0.01338	0.00014	1.467258	0.000023	0.28219415	705	-20.65173188	0.777976201	-5.15944178	1462.992604	1926.820089	17.6
Sequence 199	0.282446	0.00002	0.000242	0.000015	0.00584	0.00038	1.467255	0.000037	0.282443926	457	-11.98790601	0.707251092	-1.881985499	1116.838664	1528.846682	17.1
Sequence 200	0.282824	0.000022	0.0012288	0.0000045	0.02987	0.00013	1.467263	0.000032	0.282820913	134.4	1.379139629	0.777976201	4.256424324	610.3541323	888.4949743	18.2
Sequence 201	0.282412	0.000027	0.00272	0.00014	0.0556	0.003	1.467303	0.000035	0.282388591	459	-13.19023286	0.954788974	-3.796013704	1243.437708	1650.548956	15.4
Sequence 202	0.282937	0.000024	0.000931	0.000031	0.02243	0.00074	1.467266	0.000027	0.282934579	139.1	5.375108298	0.84870131	8.381802098	445.5744136	628.9982867	18.63
Sequence 203	0.282975	0.000025	0.001236	0.000029	0.02599	0.00058	1.467256	0.000033	0.282972404	112.4	6.718885372	0.884063865	9.125372084	394.8790076	560.3413999	15.53
Sequence 204	0.282254	0.00002	0.001131	0.00001	0.03011	0.00031	1.467251	0.000027	0.282238052	750	-18.77751649	0.707251092	-2.591282882	1412.627657	1801.527374	22.2
Sequence 205	0.282947	0.000024	0.000896	0.000015	0.02191	0.00042	1.46722	0.00003	0.282944896	125.6	5.728733844	0.84870131	8.446201989	430.9950033	614.2297249	15.68
Sequence 206	0.282255	0.000022	0.0005965	0.0000052	0.01522	0.00014	1.46726	0.000023	0.282242157	1141	-18.74215393	0.777976201	6.402784666	1391.53161	1545.16175	18.4
Sequence 207	0.282431	0.000042	0.001031	0.0000045	0.0275	0.00014	1.467269	0.000051	0.282419269	606	-12.51834433	1.485227293	0.587059985	1161.212985	1489.933454	8.39
Sequence 208	0.282389	0.000024	0.001073	0.000066	0.0232	0.0015	1.467265	0.000032	0.282380392	428	-14.00357162	0.84870131	-4.780033239	1221.446425	1688.16281	16.38
Sequence 209	0.28293	0.000041	0.001696	0.000075	0.0421	0.0019	1.467281	0.000043	0.282926259	118	5.127570416	1.449864738	7.617814138	464.9496553	661.2093456	13.5
Sequence 210	0.282824	0.000037	0.0016929	0.0000052	0.04205	0.00016	1.467242	0.000053	0.282819889	129.9	1.379139629	1.30841452	4.120079814	618.02669	893.6429414	9.6
Sequence 211	0.282129	0.000025	0.000633	0.000045	0.0147	0.0011	1.467308	0.000032	0.28211683	1020	-23.19783581	0.884063865	-0.786149568	1566.685286	1899.592201	17.4
Sequence 212	0.281658	0.000021	0.00104	0.00002	0.02541	0.00053	1.467272	0.000025	0.281623459	1750	-39.85359902	0.742613646	-1.619411037	2235.110097	2522.438967	16.51
Sequence 213	0.282419	0.000034	0.001671	0.00002	0.04339	0.00038	1.467231	0.000034	0.282404524	462	-12.94269498	1.202326856	-3.164809723	1198.340685	1613.290285	12.68
Sequence 214	0.282676	0.000027	0.001105	0.000027	0.02657	0.00069	1.467279	0.00003	0.282672713	159.1	-3.85451845	0.954788974	-0.436296568	818.0806659	1205.583221	16.47
Sequence 215	0.282752	0.000027	0.001485	0.000023	0.03706	0.00058	1.467276	0.000033	0.282748183	137.5	-1.166964302	0.954788974	1.752719153	717.743176	1050.02925	16.34
Sequence 216	0.282792	0.000029	0.001826	0.000055	0.0438	0.0013	1.467251	0.000031	0.282787532	130.9	0.247537882	1.025514083	2.997761027	666.5665922	965.8018753	13.39
Sequence 217	0.282615	0.000025	0.001169	0.000044	0.03	0.0012	1.467267	0.000026	0.282611518	159.3	-6.01163428	0.884063865	-2.596614692	905.830972	1342.238338	17.7
Sequence 218	0.282637	0.000032	0.001662	0.00005	0.0404	0.0011	1.467316	0.000039	0.282632047	159.4	-5.233658079	1.131601747	-1.86819363	886.3440417	1296.329864	16.2
Sequence 219	0.282371	0.000032	0.002241	0.000081	0.0569	0.0019	1.4673	0.00005	0.282351798	457	-14.6400976	1.131601747	-5.143216134	1286.477363	1733.401376	17.83
Sequence 220	0.28212	0.00002	0.0006988	0.0000073	0.01783	0.0002	1.467277	0.000027	0.282103593	1243	-23.5160988	0.707251092	3.810704758	1581.795555	1787.804497	20.3
Sequence 221	0.282225	0.000024	0.001283	0.000024	0.03273	0.00058	1.467269	0.000029	0.282200309	1021	-19.80303057	0.84870131	2.195298519	1459.076138	1714.218912	19.6
z12-08_1	0.282827	0.000025	0.001174	0.000012	0.02876	0.00037	1.467232	0.000029	0.282823963	138.4	1.485227293	0.884063865	4.453330463	605.192908	879.0997909	16.12

Complejo Volcar	mplejo Volcanosedimentario Las Pilas															
z12-09	0.282614	0.000027	0.0007012	0.0000082	0.01714	0.00017	1.467216	0.000039	0.282610064	299.8	-6.046996835	0.954788974	0.483362383	896.0812064	1257.203938	16.15
Sequence 228	0.282202	0.000023	0.000859	0.000012	0.02195	0.0003	1.467214	0.00003	0.282181602	1257	-20.61636933	0.813338756	6.896027362	1474.750547	1605.91289	18.23
Sequence 229	0.282156	0.000023	0.0007351	0.0000023	0.019555	0.000048	1.467226	0.000031	0.282139499	1189	-22.24304684	0.813338756	3.854670555	1533.571535	1742.543777	15.37
Sequence 230	0.28216	0.000024	0.000719	0.000028	0.01859	0.00073	1.467284	0.000032	0.282144039	1176	-22.10159662	0.84870131	3.719919218	1527.399885	1740.731572	15.45
Sequence 231	0.282024	0.000019	0.0005075	0.0000089	0.01264	0.00024	1.467273	0.000029	0.282011192	1335	-26.91090404	0.671888537	2.630988103	1705.532809	1933.738929	16.32
Sequence 232	0.28265	0.000024	0.001075	0.000018	0.02586	0.00043	1.467272	0.000034	0.282646504	173.9	-4.77394487	0.84870131	-1.034013366	854.1607825	1254.911323	19.14
Sequence 233	0.28274	0.000023	0.001004	0.000011	0.02398	0.00028	1.467258	0.000033	0.282737057	156.8	-1.591314957	0.813338756	1.78866579	725.5310163	1062.836278	18.06
Sequence 234	0.282759	0.000023	0.000914	0.00001	0.02108	0.0002	1.467281	0.000031	0.282756214	163	-0.919426419	0.813338756	2.604400564	697.0103581	1015.91792	16.66
Sequence 235	0.28252	0.00003	0.00077	0.000045	0.0182	0.0011	1.467255	0.000031	0.28251346	453	-9.371076967	1.060876638	0.489824612	1029.118661	1376.461602	14.63
Sequence 236	0.282766	0.000023	0.00171	0.00002	0.04156	0.00048	1.467259	0.000026	0.282760852	161	-0.671888537	0.813338756	2.723940744	701.9471783	1006.762228	19.6
Sequence 237	0.282202	0.000025	0.0005222	0.0000089	0.01284	0.00021	1.467235	0.000032	0.282190627	1154	-20.61636933	0.884063865	4.871416001	1461.814749	1651.380581	15.93
Sequence 238	0.282636	0.00003	0.001523	0.000037	0.03911	0.00096	1.467266	0.000028	0.282631307	164.8	-5.269020634	1.060876638	-1.774187248	884.4592231	1294.593562	16.64
Sequence 239	0.282712	0.000019	0.0008016	0.0000064	0.01742	0.00015	1.467236	0.000028	0.282708853	209.9	-2.581466485	0.671888537	1.973572353	760.9914475	1092.633595	16.94
Sequence 240	0.282217	0.000021	0.001315	0.000019	0.02887	0.00047	1.46728	0.000026	0.282189439	1111	-20.08593101	0.742613646	3.852121056	1471.560596	1681.307541	18.8
Sequence 241	0.282801	0.000026	0.001926	0.000025	0.05163	0.00074	1.467258	0.000031	0.282794989	166.9	0.565800873	0.919426419	4.062925819	655.3286079	926.2953961	15.85
Sequence 242	0.282838	0.00003	0.002009	0.000048	0.0537	0.0013	1.467272	0.000028	0.282832039	158.7	1.874215393	1.060876638	5.190956022	602.9926228	848.0692501	14.87
Sequence 243	0.28184	0.000023	0.0006268	0.0000098	0.01651	0.00029	1.467258	0.000031	0.281832631	626	-33.41761409	0.813338756	-19.73751074	1962.947351	2767.909584	17.36

	176Hf/177	176Hf/177Hf	176Lu/177Hf	176Lu/177Hfc	176Yb/177Hf 1	76Yb/177Hfco	178Hf/177Hf	178Hf/177Hf	176Hf/177Hft	t (age,	cHf(0)	+7 sigma	cHf(t)	TDM	TDM C*	TotalHfBe
	Hfstnorm	corr 2SE	corr	orr 2SE	corr	rr 2SE	1/011/1//11	2SE	1/011/1//1110	Ma)	8111(0)	±2 sigina	EIII(t)	IDM	IDMC	am (V)
Sequence 244	0.282803	0.000026	0.00236	0.000097	0.0618	0.0027	1.467228	0.000031	0.282796209	153.9	0.636525983	0.919426419	3.816619665	660.2356734	931.7653615	14.6
Sequence 245	0.282666	0.000025	0.001544	0.000013	0.03822	0.00034	1.467261	0.000025	0.282661268	163.9	-4.208143996	0.884063865	-0.734322918	842.0580598	1228.174499	15.34
Sequence 246	0.28266	0.000021	0.001076	0.000024	0.02296	0.00046	1.467287	0.000025	0.282654332	281.4	-4.420319324	0.742613646	1.639097975	840.0581493	1169.739308	17.37
Sequence 247	0.282221	0.00005	0.000571	0.00002	0.01281	0.00034	1.467184	0.000046	0.282208858	1127	-19.94448079	1.76812773	4.904061967	1437.491782	1628.055193	7.6
Sequence 248	0.282823	0.000025	0.0018481	0.0000068	0.04804	0.00019	1.467257	0.00003	0.282817585	156.7	1.343777074	0.884063865	4.635134655	622.0841606	881.8877621	14.26
Sequence 249	0.282851	0.000027	0.002035	0.000031	0.05125	0.00089	1.467246	0.000028	0.282844973	158.4	2.333928603	0.954788974	5.641825718	584.4848361	819.1101837	16.89
Sequence 250	0.282235	0.00002	0.000803	0.000011	0.02385	0.00046	1.467272	0.000034	0.28222121	912	-19.44940503	0.707251092	0.468349044	1426.826406	1736.781535	14.55
Sequence 251	0.28218	0.000023	0.00058	0.000024	0.0129	0.00055	1.467235	0.000032	0.282170073	909	-21.39434553	0.813338756	-1.411517886	1494.326992	1851.868764	15.87
Sequence 252	0.282379	0.000027	0.0015323	0.0000024	0.03943	0.000065	1.467193	0.000038	0.282361883	595	-14.35719716	0.954788974	-1.692052076	1250.683673	1624.45006	18.92
Sequence 253	0.282135	0.000027	0.001018	0.00002	0.02655	0.00053	1.467234	0.000029	0.282113353	1127	-22.98566048	0.954788974	1.518206139	1574.237335	1839.699678	14.7
Sequence 254	0.282161	0.000019	0.0011758	0.0000096	0.02687	0.00019	1.467267	0.000033	0.2821377	1051	-22.06623406	0.671888537	0.656330104	1544.477607	1833.891023	17.29
Sequence 255	0.282631	0.000024	0.001205	0.000036	0.02609	0.00087	1.467261	0.000031	0.282626262	210.2	-5.445833407	0.84870131	-0.94172659	884.0418202	1277.355724	16.45
Sequence 256	0.282608	0.000029	0.001095	0.000022	0.02725	0.00058	1.467273	0.00003	0.282604478	172	-6.259172163	1.025514083	-2.56302726	913.9305522	1349.989228	16.29
Sequence 257	0.282755	0.000026	0.001343	0.000026	0.03336	0.00068	1.467263	0.000029	0.282751	159.3	-1.060876638	0.919426419	2.33756187	/10./322624	1029.961834	16.44
Sequence 258	0.28217	0.00002	0.0003747	0.0000066	0.00962	0.00017	1.467246	0.000027	0.282162297	1090	-21./4/9/10/	0.707251092	2.413080422	1500.06856	1/54./81456	19.36
Sequence 259	0.28282	0.000024	0.001487	0.000097	0.035	0.0024	1.467234	0.000027	0.28280972	369	1.237689411	0.848/0131	9.095564856	620.3366447	764.9428041	22.03
Sequence 260	0.282038	0.000024	0.00133	0.000011	0.03122	0.00026	1.467208	0.000029	0.282031/83	249.8	-5.198295525	0.848/0131	0.136264762	8/7.0492605	042 0425716	13.62
Sequence 261	0.2828	0.000043	0.005200	0.000030	0.0879	0.0017	1.407298	0.000039	0.282790437	150.0	2.00581714	1.025514082	5.072545954	552 6012282	945.0425710 770.2000545	15.50
Sequence 202	0.28287	0.000029	0.001528	0.000031	0.04717	0.00089	1.407237	0.000020	0.282500266	162.2	6 718885272	0.010426410	2 280251456	042 1200028	1287 610265	13.4
Sequence 264	0.282393	0.000020	0.001328	0.000023	0.03857	0.00009	1.407243	0.000028	0.282390300	801	-0.7188855572	0.515420415	-3.005/3/773	15/13 / 182/150	1037 215858	26.1
Sequence 265	0.282652	0.000019	0.0006644	0.0000037	0.016328	0.00096	1.467255	0.000022	0 282649945	165.4	-4 703219761	0.671888537	-1 101491398	842 1451647	1252 556664	17.43
Sequence 266	0.2822032	0.000021	0.000733	0.000013	0.01784	0.0003	1 467272	0.000027	0.282256601	1042	-18 17635306	0.742613646	4 666699379	1374 338363	1575 95807	18.71
z12-09_1	0.282508	0.000025	0.0007186	0.0000068	0.01707	0.00017	1.467262	0.000029	0.282505679	172.7	-9.795427622	0.884063865	-6.042564873	1044.458757	1569.617982	15.95
Fm. Las Tranca	15															
T13-03	0.282209	0.000025	0.0005356	0.0000033	0.012602	0.000067	1.467208	0.000037	0.282199049	986	-20.36883144	0.884063865	1.357626797	1452.688902	1739.145966	15.7
_1	0.282287	0.000021	0.0008142	0.0000092	0.01981	0.00024	1.467198	0.000029	0.282276382	694	-17.61055219	0.742613646	-2.494486298	1355.042937	1751.851222	18.04
_2	0.282625	0.000024	0.001271	0.000023	0.0335	0.00066	1.467233	0.000027	0.28262184	133	-5.658008735	0.84870131	-2.816532519	894.1132791	1335.682637	16.6
_3	0.282125	0.000022	0.00073	0.000032	0.0203	0.0012	1.467227	0.000025	0.282107303	1283	-23.33928603	0.777976201	4.853732408	1576.183752	1754.191162	20.23
_4	0.282145	0.000022	0.001061	0.000055	0.027	0.0015	1.467223	0.000028	0.282120576	1219	-22.63203494	0.777976201	3.866421818	1562.093205	1765.428637	19.44
_5	0.282205	0.000025	0.0006257	0.0000096	0.0158	0.00022	1.467223	0.000032	0.282192232	1082	-20.51028166	0.884063865	3.292649695	1461.626589	1693.498926	13.35
_6	0.28262	0.000022	0.001608	0.000017	0.04265	0.00042	1.467226	0.000025	0.282616062	131	-5.834821508	0.777976201	-3.065381292	909.3913516	1349.83349	18.61
_7	0.282633	0.000017	0.0008837	0.0000011	0.023225	0.000037	1.467223	0.000023	0.282630819	132	-5.375108298	0.601163428	-2.521141907	873.723136	1316.258452	23.45
_8	0.282197	0.000021	0.000587	0.000018	0.01558	0.00047	1.467198	0.000025	0.282186964	908	-20.7931821	0.742613646	-0.835586792	1471.176947	1815.136199	16.01
_9	0.282647	0.000039	0.00396	0.00027	0.104	0.01	1.467262	0.000029	0.282637155	133	-4.880032534	1.379139629	-2.274808392	929.6839466	1301.480391	13.71
_10	0.28279	0.000023	0.001234	0.00002	0.02609	0.0005	1.467238	0.000024	0.282786955	132	0.176812773	0.813338756	3.001832491	658.8610572	966.4044276	18.97
_11	0.282217	0.00002	0.000615	0.000012	0.01592	0.00032	1.467239	0.000027	0.282203747	1142	-20.08593101	0.707251092	5.063754148	1444.662994	1629.87783	16.12
_12	0.282183	0.000025	0.0005669	0.0000067	0.01475	0.0002	1.467256	0.000033	0.2821/163/	1063	-21.28825786	0.884063865	2.131444337	1489.686153	1/51.180948	13.97
_13	0.282618	0.000026	0.001851	0.000094	0.0484	0.0026	1.467228	0.00003	0.282613398	133	-5.905546617	0.919426419	-3.115151185	918.26/384/	1354.526864	21.2
_14	0.282602	0.000027	0.005172	0.000047	0.0841	0.0011	1.40/23	0.000022	0.282594175	132	-0.4/134/49	0.954/889/4	-3.81/429890	9/6.289625/	1398.042038	22.4
_15	0.282017	0.000021	0.0011107	0.0000037	0.02927	0.00011	1.407214	0.000029	0.282503488	130	-5.940909171	0.742013040	-3.84166211	901.7457725	1309 569674	19.7
17	0.282604	0.000022	0.001016	0.000032	0.02722	0.00099	1.467216	0.000020	0.282601224	132	-6.400622381	0.707251092	-3 43458613	919 1120981	1378 558276	19.3
_17	0.282612	0.00002	0.0009118	0.000032	0.02356	0.00011	1.467255	0.000020	0.28260975	132	-6 117721944	0.636525983	-3 266425961	903 8828629	1363 294127	20.8
19	0.282601	0.000022	0.001153	0.000054	0.0307	0.0016	1.467237	0.000023	0.282598392	121	-6.506710045	0.777976201	-3.912754623	925.2362588	1395.519055	23.9
20	0.282762	0.000022	0.001348	0.000014	0.03091	0.00033	1.467207	0.000028	0.282758699	131	-0.813338756	0.707251092	1.980084054	700.8409088	1030.5179	16.96
21	0.282792	0.000026	0.001553	0.000014	0.0344	0.00038	1.467211	0.000034	0.28278811	134	0.247537882	0.919426419	3.087182848	661.6583679	962.5461279	17.63
22	0.282768	0.000021	0.0010432	0.0000073	0.02331	0.00015	1.467262	0.000024	0.282765406	133	-0.601163428	0.742613646	2.261840736	686.6670927	1014,194375	18.43
23	0.282627	0.000023	0.002137	0.000041	0.0575	0.0012	1.467247	0.000025	0.282621687	133	-5.587283625	0.813338756	-2.821946191	912.3801585	1336.024324	25.9
	0.282636	0.000029	0.00113	0.000017	0.02812	0.00049	1.467209	0.000033	0.28263336	125	-5.269020634	1.025514083	-2.586946108	875.2086702	1314.973703	14.63
Fm. Zacatecas	0.282172	0.000022	0.00091	0.000011	0.02062	0.00029	1 467211	0.000028	0 282152659	1264	-21 67724596	0 813338756	6 020004094	1514 425659	1665 718015	17 57
212-05	0.2021/2	0.000023	0.00081	0.000011	0.02002	0.00028	1.40/211	0.000028	0.202152050	1204	21.0//24070	0.0100000000	0.027074704	1514.425050	1005./10015	17.57

	176Hf/177 Hfstnorm	176Hf/177Hf corr 2SE	176Lu/177Hf corr	176Lu/177Hfc orr 2SE	176Yb/177Hf 1 corr	76Yb/177Hfco rr 2SE	178Hf/177Hf	178Hf/177Hf 2SE	176Hf/177Hft	t (age, Ma)	εHf(0)	±2 sigma	εHf(t)	TDM	TDM C*	TotalHfBe am (V)
_1	0.282194	0.000023	0.000799	0.000034	0.02036	0.00093	1.467257	0.000027	0.282180051	927	-20.89926976	0.813338756	-0.650930206	1483.515019	1818.4551	15.35
_2	0.282109	0.000022	0.0006387	0.0000037	0.01669	0.00015	1.467257	0.000027	0.282094529	1200	-23.9050869	0.777976201	2.51040488	1594.462035	1835.124765	17.26
_3	0.282199	0.000021	0.00078	0.0000036	0.01982	0.00013	1.467224	0.000023	0.28218228	1136	-20.72245699	0.742613646	4.166328279	1475.851165	1681.327651	19.66
_4	0.282179	0.000025	0.002103	0.000018	0.05544	0.00051	1.467236	0.000032	0.282134402	1124	-21.42970808	0.884063865	2.196281684	1557.559184	1795.025292	17.85
_5	0.282177	0.000019	0.000368	0.000015	0.00954	0.0004	1.467222	0.00003	0.282169869	1028	-21.50043319	0.671888537	1.275063043	1490.220966	1777.233463	16.27
_6	0.282045	0.00002	0.0007408	0.0000061	0.01924	0.00015	1.467217	0.00003	0.282028329	1192	-26.1682904	0.707251092	-0.01888324	1686.99722	1986.404541	18.24
_7	0.282127	0.000022	0.001078	0.000026	0.0285	0.0007	1.467233	0.000034	0.282099814	1334	-23.26856092	0.777976201	5.751509216	1587.87806	1738.355672	13.5
_8	0.282351	0.000022	0.001395	0.000014	0.03356	0.0003	1.467229	0.000025	0.282339493	440	-15.34734869	0.777976201	-5.959223532	1285.678027	1771.294607	17.43
_9	0.282215	0.00003	0.001191	0.000022	0.02779	0.00044	1.467253	0.000032	0.282196107	843	-20.15665612	1.060876638	-1.979994738	1469.524249	1835.844355	16.5
_10	0.282621	0.000024	0.001586	0.000025	0.03782	0.00059	1.467221	0.000031	0.282614246	227.6	-5.799458953	0.84870131	-0.979109043	907.4220136	1293.272684	17.6
_11	0.28232	0.000024	0.00114	0.000018	0.02842	0.00043	1.467206	0.000025	0.282295542	1137	-16.44358788	0.84870131	8.204504536	1320.478632	1428.858788	17.55
_12	0.282109	0.000022	0.0007624	0.0000031	0.019654	0.000094	1.467225	0.000034	0.282093311	1091	-23.9050869	0.777976201	-0.009689889	1599.624925	1906.748002	16.48
_13	0.282172	0.000024	0.0000732	0.0000022	0.002004	0.000084	1.467284	0.000027	0.282170602	1013	-21.67724596	0.84870131	0.961097382	1485.712154	1785.089071	18
_14	0.28254	0.00002	0.001512	0.000021	0.03043	0.00047	1.46723	0.000029	0.282531138	313	-8.663825875	0.707251092	-2.014879033	1021.133508	1425.095392	18.87
_15	0.282182	0.000022	0.0005229	0.0000066	0.01353	0.00015	1.467273	0.000029	0.282170133	1202	-21.32362042	0.777976201	5.236680491	1489.354807	1666.366478	17.47
_17	0.282279	0.000022	0.000598	0.000019	0.01475	0.00046	1.467237	0.000033	0.282274	446	-17.89345262	0.777976201	-8.143281178	1358.442251	1912.392413	16.05
_18	0.28235	0.000021	0.000741	0.000032	0.02073	0.00078	1.467231	0.000028	0.282345671	312	-15.38271125	0.742613646	-8.600359792	1265.000873	1837.5141	14.33
_19	0.28216	0.000031	0.000728	0.000022	0.01844	0.00064	1.467281	0.000039	0.282145671	1044	-22.10159662	1.096239192	0.780119899	1527.759632	1820.680808	17.2
_20	0.282846	0.000034	0.001783	0.000035	0.0462	0.001	1.467258	0.000034	0.282836862	273.8	2.15711583	1.202326856	7.928162355	587.7185732	764.2191959	15.37
_21	0.282088	0.000033	0.001687	0.000018	0.04303	0.00047	1.467242	0.000031	0.282042774	1417	-24.64770055	1.166964302	5.624215026	1669.006323	1811.853281	14.51
_22	0.282478	0.000031	0.000773	0.000022	0.02124	0.00061	1.467221	0.000036	0.28247094	487	-10.85630426	1.096239192	-0.25369664	1087.816807	1449.840927	12.85
_23	0.282118	0.000018	0.000495	0.000012	0.01298	0.00036	1.467265	0.00003	0.282106879	1190	-23.58682391	0.636525983	2.720809015	1576.158801	1814.137484	16.59
_24	0.282182	0.000022	0.0006227	0.0000087	0.01655	0.00025	1.467234	0.000032	0.282169423	1071	-21.32362042	0.777976201	2.234497803	1493.235042	1751.021178	18.23
_25	0.282128	0.000026	0.000891	0.000014	0.02094	0.00031	1.467268	0.000028	0.28210582	1317	-23.23319837	0.919426419	5.5765819	1578.690883	1735.861414	15.02
26	0.282168	0.000021	0.001081	0.000041	0.0286	0.0011	1.467275	0.000029	0.282145014	1127	-21.81869618	0.742613646	2.640633469	1530.84738	1769.631148	16.14
_27	0.282164	0.00003	0.000753	0.000015	0.01724	0.00031	1.467201	0.000035	0.282143582	1433	-21.9601464	1.060876638	9.566455717	1523.228713	1578.089766	17.4
28	0.282283	0.000026	0.00071	0.00002	0.01862	0.00054	1.46721	0.000029	0.282269768	989	-17.7520024	0.919426419	3.931939754	1356.886122	1580.311785	15.81
29	0.282366	0.000032	0.001029	0.00002	0.02374	0.00048	1.467252	0.000032	0.282356563	489	-14.81691037	1.131601747	-4.257951988	1252.237178	1702.797189	13.09
30	0.2825	0.000027	0.000983	0.000048	0.0249	0.0013	1.467286	0.000029	0.282488295	634	-10.07832806	0.954788974	3.660757405	1062,99525	1318.334783	14.6
31	0.282132	0.000018	0.00042	0.000012	0.01088	0.0003	1.46721	0.00003	0.282122524	1195	-23.09174815	0.636525983	3.389287857	1553.915876	1776.338014	18.16
33	0.282648	0.000034	0.001905	0.000047	0.0423	0.0012	1.467246	0.000044	0.282639366	242.2	-4.844669979	1.202326856	0.23512227	876.3170277	1227.92971	17.14
34	0.281737	0.000022	0.000846	0.000059	0.0212	0.0015	1.467233	0.000026	0.281718833	1138	-37.05995721	0.777976201	-12.21881104	2115,598484	2698.374625	18.48
35	0.282182	0.000026	0.000925	0.00001	0.02356	0.00026	1.467216	0.000026	0.282159805	1270	-21.32362042	0.919426419	6.419338707	1505,112864	1646.036765	17.2
36	0.282196	0.000027	0.001091	0.000017	0.02947	0.00045	1 467247	0.000038	0 28217278	1128	-20 82854465	0 954788974	3 647737915	1492 172952	1707 470472	14.87
37	0.282179	0.000023	0.000564	0.000033	0.01471	0.00093	1.467272	0.000028	0.282167781	1055	-21.42970808	0.813338756	1.81328699	1495.080486	1764.783828	16.71
38	0.282212	0.000023	0.0003495	0.0000096	0.00851	0.00021	1 467227	0.000026	0 282206336	861	-20 26274378	0.813338756	-1 211145533	1441 568359	1801 878766	18.98
39	0.282123	0.000025	0.000556	0.000015	0.01455	0.00035	1 467228	0.00003	0 28211723	553	-23 41001114	0 884063865	-11 29704802	1571 790731	2191 117113	20.8
40	0.282331	0.000029	0.000883	0.000012	0.02303	0.00029	1 467231	0.000032	0.282323351	462	-16 05459978	1 025514083	-6.038275957	1296 21622	1793 278526	22.01
41	0.282192	0.000025	0.000828	0.000012	0.02303	0.00025	1 467268	0.000032	0.282174299	1133	-20 96999487	0.919426419	3 815185612	1487 41749	1700 932524	16.4
42	0.282128	0.000022	0.000704	0.000066	0.0182	0.0017	1 467232	0.000027	0.282113594	1085	-23 23319837	0.777976201	0.573127211	1570 973141	1865 718348	20.1
43	0.282193	0.000022	0.000417	0.000025	0.01113	0.00063	1 467231	0.000033	0.28218553	951	-20.93463232	0.813338756	0.086160533	1470 169809	1791 192139	16.9
	0.282704	0.000025	0.001639	0.000029	0.0441	0.00005	1 467273	0.000033	0.282692824	364	-2 864366922	1 202326856	4 846575417	789 6880559	1031 239848	12.28
45	0.282293	0.000017	0.0004982	0.0000083	0.01274	0.0016	1.467246	0.000024	0.282282985	1066	-17 39837686	0.601163428	6 146505025	1335 616445	1502 028581	22.13
	0.282584	0.000017	0.001372	0.0000003	0.0311	0.00020	1.467231	0.000024	0.282576927	275.4	7 107873473	1.025514083	1 233705456	954 823106	1346 579248	15 73
_40	0.282212	0.000022	0.0001372	0.000042	0.01637	0.0011	1.467226	0.000035	0.282108663	11/18	-20 26274378	0.777976201	5 010024053	1451 584302	1637 352772	21.88
	0.282125	0.000022	0.000130	0.0000000	0.01037	0.00010	1.467221	0.000033	0.282176005	1140	22 22028602	0.054788074	2 172282562	1561 0220	1780 88806	21.00
_40	0.282125	0.000027	0.000381	0.00003	0.02475	0.00032	1.407251	0.000028	0.282110404	441	-13 40240819	0.934788974	-3 887094145	1106 557422	1642 278338	20.41
712.05.1	0.282216	0.000028	0.0011828	0.0000055	0.02475	0.00022	1.467200	0.000032	0.202323774	441	16 5850281	0.742612646	6 164606077	1227 620878	1818 005041	10.92
212-03_1	0.282310	0.000021	0.0011858	0.0000082	0.02719	0.00019	1.407209	0.000029	0.282303232	485	-10.3830381	0.742013040	-0.104090977	1327.029878	1818.995041	19.82
Complejo Arte	eaga_Ar-3															
Arteaga	0.282238	0.000068	0.00207	0.000069	0.0532	0.0018	1.467268	0.000055	0.282219011	489.1	-19.34331736	2.404653712	-9.125186848	1471.604302	2006.868462	7.82
Sequence 5	0.282112	0.00003	0.0006373	0.0000067	0.01624	0.00023	1.467252	0.00004	0.282104238	648.4	-23.79899924	1.060876638	-9.616290799	1590.273292	2160.289037	25.5
Sequence 6	0.28217	0.000034	0.000362	0.000016	0.00842	0.00029	1.467248	0.000055	0.282163708	923	-21.74797107	1.202326856	-1.320533181	1499.574668	1857.123749	13.6
Sequence 7	0.282453	0.000036	0.00278	0.00014	0.0727	0.0032	1.467275	0.000039	0.282427912	481.2	-11.74036812	1.273051965	-1.906865893	1185.23946	1549.258904	17.3
Sequence 8	0.282039	0.000036	0.000915	0.000026	0.02443	0.00067	1.467239	0.000044	0.282025266	798	-26.38046572	1.273051965	-9.047437821	1703.019955	2240.490214	12

	176Hf/177 Hfstnorm	176Hf/177Hf corr 2SE	176Lu/177Hf corr	176Lu/177Hfc orr 2SE	176Yb/177Hf 1 corr	76Yb/177Hfco rr 2SE	178Hf/177Hf	178Hf/177Hf 2SE	176Hf/177Hft	t (age, Ma)	εHf(0)	±2 sigma	εHf(t)	TDM	TDM C*	TotalHfBe am (V)
Sequence 9	0.281718	0.000026	0.000119	0.0000044	0.00369	0.00015	1.467265	0.000052	0.281715821	972	-37.73184575	0.919426419	-16.08485101	2101.756967	2808.01392	18.3
Sequence 10	0.282332	0.000023	0.0003625	0.0000067	0.00923	0.00011	1.467256	0.00003	0.282324748	1061	-16.01923723	0.813338756	7.513365322	1277.314076	1412.183116	21
Sequence 11	0.282575	0.000067	0.001206	0.000024	0.03094	0.00052	1.467261	0.000059	0.282568521	287	-7.426136464	2.369291158	-1.272367861	963.3303423	1358.053801	8.56
Sequence 12	0.282536	0.000039	0.001496	0.000055	0.0389	0.0012	1.467315	0.000036	0.282527083	318.3	-8.805276093	1.379139629	-2.040053839	1026.390626	1430.805664	10.82
Sequence 13	0.281669	0.000027	0.00119	0.00011	0.0388	0.0038	1.467234	0.000053	0.281631542	1660	-39.46461092	0.954788974	-3.401003594	2228.747649	2561.593839	14.06
Sequence 14	0.282415	0.000027	0.002039	0.000047	0.0579	0.0013	1.467255	0.000041	0.282402552	326	-13.0841452	0.954788974	-6.275065808	1216.093033	1702.813674	19
Sequence 15	0.282604	0.000048	0.00211	0.000086	0.0606	0.0023	1.467251	0.000049	0.282591618	313.4	-6.400622381	1.69740262	0.134248474	945.0703792	1289.873019	10.04
Sequence 16	0.282285	0.000023	0.000894	0.000013	0.02815	0.0004	1.46726	0.000029	0.28226691	1073	-17.6812773	0.813338756	5.73556236	1360.674372	1533.346889	21.8
Sequence 17	0.281896	0.000035	0.001302	0.000018	0.03725	0.00053	1.467265	0.00005	0.281858022	1540	-31.43/31103	1.237689411	1.884436049	1920.066974	2141.307283	17
Sequence 18	0.28208	0.000037	0.001411	0.000016	0.03802	0.00035	1.467308	0.000042	0.282038734	1544	-24.93060099	1.30841452	8.388822825	1667.973735	1739.837083	16.9
Sequence 19	0.282298	0.000023	0.00144	0.000022	0.04407	0.0005	1.46/2/2	0.000035	0.282280092	662	-17.22156409	0.813338/56	-3.082890217	1362.155216	1/63./36665	21.4
Sequence 20	0.28164	0.00013	0.0012/9	0.000021	0.0526	0.0018	1.46/2/9	0.00018	0.281600947	1611	-40.49012501	4.59/13209/	-5.611251046	2274.101005	2659.137713	3.1 15.70
Sequence 21	0.282319	0.000038	0.001151	0.000024	0.02795	0.00047	1.467216	0.00004	0.282294218	1141	-16.47895044	1.343777074	8.248518899	1322.20071	1429.258906	15.72
Sequence 22	0.28235	0.000031	0.000900	0.000014	0.02083	0.0002	1.467310	0.000047	0.282510122	1091	-10.08990234	1.096239192	0.167661071	1084 087647	2258 1440	20.21
Sequence 24	0.281830	0.00004	0.000948	0.000028	0.02382	0.00009	1.407269	0.000034	0.281808584	1053	-17 85809007	0.742613646	5 428342104	1351 866330	1536 85113	20.31
Sequence 25	0.282003	0.000021	0.0004302	0.000003	0.01873	0.00036	1.467226	0.000055	0.282271048	1420	-27 65351769	1 308/11/52	3 7/0326289	1746 502654	1038 688858	13 5
Sequence 26	0.282005	0.000037	0.0003304	0.0000014	0.01875	0.00020	1 467284	0.000033	0.281061037	727	-25 74393974	1 449864738	-9 682082531	1652 723537	2225 010586	13.56
Sequence 27	0.282792	0.000025	0.00000000	0.000026	0.02526	0.00051	1 467272	0.000033	0.282786823	253.1	0 247537882	0.884063865	5 695562844	653 549607	890 132593	23.03
Sequence 28	0.282131	0.000021	0.0006606	0.0000034	0.015802	0.00006	1 467281	0.000025	0.282116651	1151	-23 1271107	0 742613646	2 180445543	1565 057745	1817 217501	25.05
Sequence 33	0.281798	0.000021	0.000816	0.000017	0.01984	0.00047	1.467235	0.000033	0.28178082	1116	-34.90284138	0.742613646	-10.52036338	2030.309018	2577.017846	16.22
Sequence 34	0.282245	0.00003	0.000785	0.000032	0.0232	0.001	1.467266	0.000021	0.282225834	1292	-19.09577948	1.060876638	9.262707096	1412.285484	1485.224672	19.31
Sequence 35	0.282775	0.000022	0.000889	0.000026	0.02264	0.00056	1.46728	0.000037	0.282770788	253.2	-0.353625546	0.777976201	5.130421732	673,9929027	926.1567352	22.1
Sequence 36	0.28253	0.000021	0.000597	0.000016	0.01131	0.00023	1.467258	0.000028	0.282521423	764	-9.017451421	0.742613646	7.762041579	1010.551739	1161.745161	22.65
Sequence 37	0.282179	0.000037	0.000978	0.00003	0.0259	0.00064	1.467261	0.000046	0.282157103	1186	-21.42970808	1.30841452	4.410591813	1511.389385	1705.429746	15.8
Sequence 38	0.282085	0.000033	0.001284	0.000024	0.03584	0.00081	1.467184	0.000045	0.282062731	921	-24.75378821	1.166964302	-4.943942658	1655.358653	2081.171341	14.76
Sequence 39	0.282275	0.000039	0.0007421	0.0000079	0.02241	0.00032	1.467272	0.000043	0.282268711	452	-18.03490284	1.379139629	-8.196246385	1369.120806	1920.330474	24.4
Sequence 40	0.282588	0.000017	0.0002311	0.000005	0.00601	0.00016	1.467193	0.000027	0.282585665	538.5	-6.966423254	0.601163428	4.96294668	921.0109016	1161.033885	21.91
Sequence 41	0.281823	0.000021	0.0004646	0.000003	0.01307	0.00014	1.467267	0.000022	0.281813395	1096	-34.01877752	0.742613646	-9.819132268	1977.843216	2518.397079	19.59
Sequence 42	0.281798	0.000034	0.001562	0.000038	0.0434	0.0012	1.467261	0.000044	0.281756963	1389	-34.90284138	1.202326856	-5.154405956	2070.639764	2458.201585	19.3
Sequence 43	0.282167	0.000024	0.0005091	0.0000042	0.01508	0.00017	1.467263	0.000027	0.282158383	899	-21.85405874	0.84870131	-2.051764872	1509.438329	1884.005245	22.14
Sequence 44	0.282286	0.000022	0.000506	0.000015	0.01264	0.00031	1.467246	0.000063	0.282281886	433.7	-17.64591474	0.777976201	-8.139274422	1345.537633	1902.643711	25.3
Sequence 45	0.282288	0.000026	0.00158	0.00014	0.0411	0.0032	1.467237	0.000039	0.282268201	667	-17.57518963	0.919426419	-3.391558176	1381.447398	1786.926767	20.3
Sequence 46	0.280798	0.000028	0.001729	0.000027	0.04671	0.00074	1.467255	0.000031	0.280689806	3251	-70.26539597	0.990151529	0.262232942	3466.75294	3588.729256	16.61
Sequence 47	0.282381	0.000025	0.001711	0.000062	0.049	0.0017	1.467272	0.000036	0.282365791	474	-14.28647205	0.884063865	-4.267227913	1253.852286	1691.731738	22.3
Sequence 48	0.281358	0.000033	0.000742	0.000041	0.018	0.001	1.467233	0.000088	0.281328042	2120	-50.4623654	1.166964302	-3.56703321	2625.617522	2931.374563	16.4
Sequence 49	0.282202	0.000028	0.001119	0.000011	0.03223	0.00057	1.467223	0.000043	0.282187585	685.6	-20.61636933	0.990151529	-5.828394298	1484.894287	1953.463935	20.81
Sequence 50	0.281575	0.00003	0.001193	0.000023	0.03292	0.00078	1.467226	0.000042	0.281562493	558.6	-42.78869106	1.060876638	-30.81288789	2358.570058	3392.92994	14.3
Sequence 51	0.281915	0.000019	0.000341	0.000015	0.00994	0.00047	1.467198	0.000025	0.281906648	1296	-30.76542249	0.671888537	-1.96620946	1846.595245	2188.655935	19.8
Sequence 53	0.282489	0.000031	0.00068	0.000015	0.01924	0.00037	1.467246	0.000046	0.282481468	590	-10.46731616	1.096239192	2.430067762	1069.852984	1361.40021	18.2
Arteaga_1	0.281782	0.000038	0.001363	0.000023	0.03628	0.00065	1.467231	0.000053	0.281737179	1733	-35.46864225	1.343777074	2.026726439	2081.98661	2284.324451	14.9
Complejo Arte	aga_23															
Sequence 60	0.282718	0.000029	0.001228	0.000048	0.0296	0.0011	1.4674	0.000042	0.282711614	277.8	-2.369291158	1.025514083	3.585657876	761.1355076	1043.57555	21.4
Sequence 61	0.282041	0.000032	0.000573	0.00003	0.01516	0.00081	1.467294	0.000044	0.282028444	1161	-26.30974062	1.131601747	-0.719589073	1685.118582	2005.720562	12.8
Sequence 62	0.282368	0.000031	0.000736	0.000018	0.02306	0.00054	1.467344	0.000023	0.282359651	604.2	-14.74618526	1.096239192	-1.564484967	1239.82872	1623.622316	17.14
Sequence 63	0.281618	0.000028	0.000861	0.000026	0.02274	0.00076	1.467308	0.000036	0.28158859	1799	-41.26810121	0.990151529	-1.72950571	2279.393923	2567.588172	22.1
Sequence 64	0.282725	0.000022	0.00069	0.000012	0.01979	0.00052	1.467297	0.000028	0.282721697	255.8	-2.121753275	0.77/976201	3.451475159	740.5471465	1034.841298	18.85
Sequence 65	0.282144	0.000022	0.0005501	0.000003	0.016265	0.000082	1.46/3/	0.000029	0.282133351	1027	-22.00/39/49	0.///9/6201	-0.041962221	1542.683408	1858.664/98	17.68
Sequence 66	0.2826/2	0.000027	0.000953	0.000018	0.02382	0.00058	1.46/328	0.000026	0.28266/443	255.5	-3.993968669	0.954/889/4	1.525145126	820.4198286	1150./00/67	17.74
Sequence 6/	0.282779	0.000026	0.001243	0.000083	0.0299	0.0021	1.46/301	0.000022	0.282//328/	245.0	-0.2121/5328	0.919426419	2.049309111	0/4.0/99889	925.34350/1	10.88
Sequence 68	0.28254	0.000021	0.000843	0.000015	0.02582	0.00046	1.40/20	0.000023	0.28253624	238.4	-8.003823875	1.006220102	-3.49830213	1621.025080	1400.31933	19.8/
Sequence 70	0.262096	0.000031	0.000909	0.000003	0.0204	0.0017	1.407271	0.000039	0.282500772	475	-24.274073	0.777076201	-13.37363703	1021.055989	1531 26551	10.7
Sequence 70 Sequence 71	0.282515	0.000022	0.000780	0.000028	0.02083	0.00055	1.467251	0.000025	0.281510785	2063	-44.02638047	1.30841452	1.605007305	2378.692849	2570.1145	19.01

	176Hf/177 Hfstnorm	176Hf/177Hf corr 2SE	176Lu/177Hf corr	176Lu/177Hfc orr 2SE	176Yb/177Hf 1 corr	76Yb/177Hfco rr 2SE	178Hf/177Hf	178Hf/177Hf 2SE	176Hf/177Hft	t (age, Ma)	εHf(0)	±2 sigma	εHf(t)	TDM	TDM C*	TotalHfBe am (V)
Sequence 72	0.282316	0.000026	0.002048	0.000064	0.0603	0.0019	1.467226	0.000025	0.282288517	714	-16.5850381	0.919426419	-1.614540075	1358.79475	1712.382104	17.9
Sequence 73	0.28215	0.000024	0.0009946	0.0000088	0.02824	0.00021	1.467219	0.000033	0.282127902	1177	-22.45522217	0.84870131	3.170509505	1552.40558	1775.841591	21.11
Sequence 74	0.282713	0.000031	0.0009229	0.0000042	0.02424	0.00016	1.467287	0.00004	0.28270857	256.5	-2.546103931	1.096239192	3.002620945	762.0280535	1063.863661	15.89
Sequence 75	0.282096	0.000028	0.00099	0.000052	0.0274	0.0016	1.467257	0.000029	0.282077098	1013	-24.36480011	0.990151529	-2.352967313	1627.271047	1991.702681	17.66
Sequence 76	0.282108	0.000019	0.000427	0.0000043	0.01211	0.0002	1.467256	0.000026	0.282100586	922	-23.94044946	0.671888537	-3.579904699	1587.072537	1997.130381	19.18
Sequence 77	0.282286	0.000038	0.001791	0.000056	0.0488	0.0017	1.467295	0.000032	0.282278212	232.4	-17.64591474	1.343777074	-12.76129461	1392.158303	2035.906134	14.8
Sequence 78	0.282325	0.00003	0.00224	0.00018	0.0623	0.0047	1.467251	0.00003	0.282304161	496	-16.26677511	1.060876638	-5.956248629	1352.921246	1814.487114	17.7
Sequence 79	0.282605	0.00003	0.000997	0.000011	0.02542	0.00035	1.467276	0.000033	0.282601063	211.1	-6.365259826	1.060876638	-1.813192315	915.7796144	1333.081459	20.89
Sequence 80	0.282229	0.000034	0.001107	0.000018	0.03015	0.0006	1.467231	0.000045	0.282219512	457.1	-19.66158035	1.202326856	-9.823688391	1446.691118	2025.694007	18.08
Sequence 81	0.282353	0.000025	0.000438	0.000091	0.0106	0.0021	1.46727	0.00003	0.282350934	252.1	-15.27662358	0.884063865	-9.749556491	1250.886493	1863.166768	18.1
Sequence 82	0.282244	0.000023	0.001402	0.000028	0.03724	0.00058	1.467266	0.000027	0.282231704	467.7	-19.13114203	0.813338756	-9.154908385	1436.93413	1992.213158	17.58
Sequence 83	0.282766	0.000029	0.000526	0.000014	0.01455	0.0003	1.467291	0.000036	0.282763738	229.8	-0.671888537	1.025514083	4.359049272	680.1419481	956.8160351	19.65
Sequence 84	0.282128	0.000042	0.001309	0.000048	0.03217	0.00071	1.467265	0.000091	0.282099916	1137	-23.23319837	1.485227293	1.268994862	1596.219565	1863.087819	16.5
Sequence 89	0.282248	0.000021	0.000506	0.000029	0.01471	0.00084	1.467256	0.000025	0.282241787	653.7	-18.98969182	0.742613646	-4.626050356	1397.891235	1853.712013	25.7
Sequence 90	0.281949	0.00003	0.00188	0.00012	0.0538	0.0036	1.467248	0.000028	0.281900005	1378	-29.56309564	1.060876638	-0.331422151	1874.903492	2151.505419	14.48
Sequence 100	0.281714	0.000053	0.001119	0.000013	0.03008	0.00053	1.467248	0.00006	0.281672662	1943	-37.87329597	1.874215393	4.578570733	2162.532486	2292.336353	11.9
Sequence 91	0.281728	0.000037	0.0011149	0.0000087	0.02942	0.00032	1.467289	0.000046	0.281722767	250.8	-37.3782202	1.30841452	-32.00447786	2142.979997	3234.954471	18.2
Sequence 93	0.282363	0.000035	0.000427	0.00001	0.01276	0.0004	1.467259	0.000079	0.282361036	245.8	-14.92299804	1.237689411	-9.532462126	1236.746817	1844.748745	16
Sequence 95	0.282328	0.000051	0.000823	0.000012	0.02523	0.0003	1.467232	0.000067	0.282323856	269	-16.16068745	1.803490284	-10.33106716	1298.345251	1912.49024	13.93
Sequence 102	0.282322	0.00003	0.000483	0.0000095	0.01497	0.00025	1.467316	0.00004	0.282312953	994	-16.37286278	1.060876638	5.575745184	1295.11559	1481.075763	17.29
Sequence 103	0.28266	0.00005	0.001097	0.000068	0.03	0.0019	1.467388	0.00011	0.282654779	254.3	-4.420319324	1.76812773	1.050297328	840.5273749	1185.817117	22.8
Sequence 104	0.28191	0.000028	0.000497	0.000012	0.01589	0.00041	1.467268	0.000031	0.281903133	735	-30,94223527	0.990151529	-14.79220691	1860.890185	2547.005206	16.65
Sequence 105	0.282493	0.000028	0.000799	0.00002	0.01857	0.0004	1.467201	0.000038	0.282489239	251.5	-10.32586594	0.990151529	-4.869338302	1067.619991	1556.911251	13.15
Sequence 106	0.282127	0.000026	0.001272	0.000032	0.03512	0.00076	1.467252	0.000032	0.282120259	283.1	-23,26856092	0.919426419	-17.22104719	1596.052586	2351.600032	16.02
Sequence 107	0.281982	0.000029	0.0005969	0.000004	0.016856	0.000084	1.46721	0.000033	0.281967986	1243	-28.39613134	1.025514083	-0.998140373	1767.110521	2087.178087	17.49
Sequence 108	0.282913	0.000046	0.001596	0.000068	0.0386	0.0016	1.467246	0.00012	0.282906377	221.8	4.526406988	1.626677511	9.227228749	488.2134863	640.2257805	17.7
Sequence 109	0.282498	0.000035	0.000738	0.000034	0.0184	0.00087	1.467216	0.000082	0.282490586	535.4	-10.14905317	1.237689411	1.527119459	1058,936686	1375.533668	18.43
Sequence 110	0.282832	0.000036	0.002529	0.000078	0.07	0.0021	1.467272	0.000052	0.282816793	321.1	1.662040066	1.273051965	8.27467216	620,5407305	779.4460746	16.25
Sequence 111	0.282389	0.000038	0.000427	0.000016	0.01148	0.00049	1 467231	0.000081	0 28238444	569	-14 00357162	1 343777074	-1 477097914	1200 89827	1590 696386	12.6
Tzitzio_1	0.282753	0.000031	0.001432	0.000044	0.0409	0.0013	1.467232	0.000075	0.282746932	226.5	-1.131601747	1.096239192	3.690831174	715.2913898	996.6771573	22.92
E E																
Fm. Esperanza	0.000515	0.000021	0.001202	0.00001	0.02151	0.00026	1.467015	0.000022	0.000500700	054.7	0.451650547	0.742612646	2 000 120 (70	1004 02277	1 4 42 20 5222	1.5.5
Gto-14	0.282546	0.000021	0.001303	0.00001	0.03151	0.00026	1.46/215	0.000032	0.282539789	254.7	-8.451650547	0.742613646	-3.009430678	1006.93377	1442.395222	15.5
_1	0.281181	0.00002	0.0003857	0.0000044	0.010283	0.000058	1.46/1/3	0.000026	0.281165795	2071	-56./2153/56	0.707251092	-10.466/9831	2838.638671	3312.540004	15.51
_2	0.28237	0.000034	0.002239	0.000038	0.0548	0.001	1.46/23	0.000031	0.282349963	4/7.2	-14.6/546016	1.202326856	-4./5588642/	1287.853093	1724.820264	14.18
_4	0.282117	0.000022	0.001194	0.000021	0.03079	0.00046	1.467193	0.000025	0.282082883	1509	-23.62218647	0.777976201	9.1531108/1	1606.728241	1664.304376	20
_5	0.282476	0.000021	0.001245	0.000032	0.03107	0.0009	1.467161	0.000026	0.282471165	207.6	-10.92702937	0.742613646	-6.486/94362	1104.319196	1624.507078	15.22
_6	0.282507	0.000026	0.001397	0.000031	0.03885	0.00074	1.46/212	0.000026	0.282495377	443.8	-9.830/901/6	0.919426419	-0.356298849	1064.837674	1422.579981	16.14
_/	0.282336	0.00002	0.0006139	0.0000045	0.015669	0.000064	1.46/20/	0.000026	0.282330848	447.6	-15.8///8/01	0.707251092	-6.09516/229	1280.175355	1/85.68419	17.65
_8	0.28248	0.000032	0.001635	0.000014	0.04247	0.00045	1.467181	0.000029	0.282473929	198.5	-10.78557915	1.131601747	-6.591591495	1110.204894	1624.049255	13.63
_9	0.282694	0.000024	0.001171	0.000013	0.02833	0.00027	1.467173	0.000029	0.282688372	256.8	-3.217992468	0.84870131	2.29466853	794.0102307	1108.977585	15.27
_10	0.281828	0.000023	0.001209	0.000029	0.03107	0.00076	1.46/18	0.000025	0.281789198	1692	-33.84196474	0.813338756	2.930464679	2009.759551	2196.154877	18.17
_11	0.282236	0.000023	0.000677	0.000023	0.01777	0.00056	1.46/18/	0.000031	0.282221191	1159	-19.41404247	0.813338756	6.068/43422	1420.740634	1580.321736	16.53
_12	0.282584	0.000027	0.001039	0.000016	0.0237	0.00043	1.467184	0.000028	0.282571933	618.5	-7.107873473	0.954788974	6.273982895	946.387474	1141.061226	14.2
_13	0.282385	0.00002	0.001157	0.00001	0.02957	0.00031	1.467193	0.000032	0.282374554	481.4	-14.14502184	0.707251092	-3.791273436	1229.792509	1667.654127	17.41
_14	0.282169	0.00002	0.001137	0.000031	0.02994	0.00077	1.467216	0.000032	0.282140762	1314	-21.78333363	0.707251092	6.747416432	1531.718512	1660.286553	17.66
_15	0.282266	0.000021	0.001315	0.000021	0.03156	0.00033	1.467194	0.000025	0.282237787	1137	-18.35316583	0.742613646	6.156935618	1402.663495	1557.422764	18.34
_16	0.282291	0.000022	0.000421	0.000011	0.01107	0.00026	1.467184	0.000024	0.282282754	1039	-17.46910197	0.777976201	5.525653817	1335.686244	1519.704447	16.01
_17	0.282571	0.00002	0.001056	0.000044	0.0296	0.0013	1.467208	0.000023	0.282562188	445.1	-7.567586682	0.707251092	2.037771906	965.1303526	1272.631253	17.84
_18	0.282591	0.000023	0.001968	0.000041	0.0492	0.0012	1.467182	0.000025	0.282581605	255.1	-6.860335591	0.813338756	-1.520971818	960.1951399	1348.891733	14.69
_19	0.28253	0.000029	0.00169	0.000013	0.04534	0.00047	1.467245	0.000031	0.282516502	426.1	-9.017451421	1.025514083	-0.004756228	1040.349459	1386.619188	16.38
_20	0.282173	0.000022	0.000722	0.000024	0.01794	0.0005	1.467175	0.000031	0.28216019	942	-21.64188341	0.777976201	-1.01546768	1509.555972	1852.930808	16.12
_21	0.282537	0.000014	0.00009572	0.00000019	0.002611	0.000018	1.467223	0.000021	0.28253576	689.5	-8.769913539	0.495075764	6.590672616	987.8406873	1177.001672	19.83
_22	0.282281	0.000022	0.0006804	0.0000074	0.01837	0.00014	1.467197	0.000024	0.282270194	844	-17.82272751	0.777976201	0.66743447	1358.603628	1671.093378	16.41
_23	0.281823	0.000023	0.000869	0.00002	0.02296	0.00048	1.467216	0.000033	0.281806607	1001	-34.01877752	0.813338756	-12.21151999	1998.761897	2592.41969	15.03
_24	0.281052	0.00002	0.0009235	0.0000032	0.02438	0.00021	1.467161	0.000025	0.281016238	2035	-61.28330711	0.707251092	-16.6127177	3052.736693	3655.7788	20.09

	176Hf/177 Hfstnorm	176Hf/177Hf corr 2SE	176Lu/177Hf corr	176Lu/177Hfc orr 2SE	176Yb/177Hf 1 corr	76Yb/177Hfco rr 2SE	178Hf/177Hf	178Hf/177Hf 2SE	176Hf/177Hft	t (age, Ma)	εHf(0)	±2 sigma	εHf(t)	TDM	TDM C*	TotalHfBe am (V)
_25	0.282076	0.000022	0.00201	0.000046	0.0528	0.0013	1.467192	0.000029	0.282017602	1534	-25.0720512	0.777976201	7.409664753	1700.703445	1793.021762	15.17
_26	0.282454	0.000022	0.001004	0.000011	0.02442	0.00022	1.467203	0.000024	0.282449084	261.6	-11.70500557	0.777976201	-6.065001798	1128.137267	1639.808449	17.5
_27	0.282264	0.00002	0.0007144	0.0000028	0.017717	0.000078	1.467215	0.000027	0.282256482	560.7	-18.42389094	0.707251092	-6.193946523	1383.364857	1879.456451	20.03
_28	0.282189	0.000016	0.000918	0.000023	0.02171	0.00064	1.46719	0.00003	0.282165902	1331	-21.07608254	0.565800873	8.027075587	1495.108914	1593.627016	19.3
_29	0.282049	0.000023	0.0007197	0.0000067	0.01874	0.00024	1.467199	0.000034	0.282030864	1333	-26.02684018	0.813338756	3.283099484	1680.557246	1891.557915	13.66
_30	0.281916	0.000019	0.0008719	0.0000056	0.02298	0.00012	1.467163	0.000024	0.281889763	1588	-30.73005994	0.671888537	4.111403897	1870.888963	2040.966844	19.5
_31	0.282222	0.000021	0.000783	0.000021	0.02059	0.00043	1.467188	0.000027	0.282206901	1023	-19.90911823	0.742613646	2.474302205	1444.098805	1698.335901	16.2
_32	0.282245	0.00002	0.001274	0.0000069	0.03187	0.00035	1.467193	0.000027	0.28221876	1092	-19.09577948	0.707251092	4.460054349	1430.640965	1628.289642	18.63
_33	0.282119	0.000019	0.000688	0.000013	0.01856	0.0004	1.467182	0.000027	0.282103281	1210	-23.55146136	0.671888537	3.048283333	1582.728131	1809.425792	20.2
_34	0.282324	0.000033	0.00187	0.00012	0.0578	0.0053	1.467225	0.000034	0.282282595	1173	-16.30213767	1.166964302	8.564318845	1340.817887	1434.752587	12.6
_35	0.282251	0.00002	0.000558	0.0000033	0.014355	0.000092	1.467224	0.000024	0.282245015	571.4	-18.88360415	0.707251092	-6.359918935	1395.650393	1898.102535	17.28
_36	0.281271	0.000022	0.0004874	0.0000019	0.012894	0.000076	1.467199	0.000032	0.281255414	1686	-53.53890765	0.777976201	-16.15544925	2725.348942	3359.961334	14.5
_37	0.282229	0.000018	0.000729	0.000028	0.01989	0.00076	1.467193	0.000026	0.282211341	1282	-19.66158035	0.636525983	8.520610436	1432.36704	1523.864858	18.78
_38	0.282712	0.000022	0.001056	0.000086	0.0263	0.0021	1.467188	0.000029	0.282706475	279.5	-2.581466485	0.777976201	3.441751946	766.1386787	1054.036933	14.1
_39	0.282327	0.000024	0.001566	0.000019	0.03935	0.00044	1.467203	0.000032	0.282312596	490.4	-16.19605	0.84870131	-5.783053184	1325.632421	1799.321384	16.33
_40	0.282149	0.000018	0.000588	0.000018	0.01509	0.00048	1.467184	0.000028	0.282135139	1248	-22.49058472	0.636525983	5.04324546	1537.325788	1714.746213	18.16
Gto-14_1	0.282567	0.00002	0.001111	0.000012	0.02835	0.00016	1.46718	0.000032	0.28255349	647.4	-7.709036901	0.707251092	6.270920424	972.1836652	1164.030765	16.6
Fm. Charcas																
CH-14	0.282694	0.000023	0.001826	0.000066	0.0449	0.002	1.467183	0.000031	0.282685444	250.4	-3.217992468	0.813338756	2.048285449	808.1233389	1119.580408	14.8
_41	0.282514	0.000024	0.001518	0.000029	0.03703	0.00063	1.467219	0.000027	0.282488364	897	-9.583252294	0.84870131	9.595470807	1058.330589	1151.061664	16.69
_42	0.282772	0.000024	0.001284	0.00004	0.02877	0.00084	1.467177	0.00003	0.282764911	294.9	-0.45971321	0.84870131	5.853357636	685.3947351	912.9682421	15.77
_43	0.281909	0.000022	0.0013087	0.0000073	0.03527	0.00028	1.467175	0.000031	0.281871329	1520	-30.97759782	0.777976201	1.898458243	1902.293042	2124.713249	16.86
_44	0.282426	0.000021	0.000209	0.000012	0.00593	0.00031	1.467172	0.000028	0.282423965	519	-12.6951571	0.742613646	-1.199385895	1143.347713	1534.272891	15.6
_45	0.282222	0.000018	0.0001183	0.0000056	0.00337	0.00013	1.467188	0.000028	0.282220049	876	-19.90911823	0.636525983	-0.38645879	1419.353645	1762.064739	16.23
_46	0.282834	0.000016	0.0004177	0.0000046	0.00831	0.0001	1.46717	0.000023	0.282831878	271.4	1.732765175	0.565800873	7.698218357	583.4454227	776.9889437	21.19
_47	0.282584	0.000027	0.002413	0.000015	0.05782	0.00049	1.46725	0.000033	0.282571611	274.3	-7.107873473	0.954788974	-1.44636448	982.1916574	1359.136111	15.19
_48	0.282749	0.000026	0.001558	0.00004	0.03644	0.00084	1.467214	0.000026	0.282741121	270.2	-1.273051965	0.919426419	4.460079071	723.4589691	982.1069808	15.09
_49	0.282208	0.000018	0.0006009	0.000002	0.014812	0.000079	1.467214	0.000024	0.282196459	1019	-20.404194	0.636525983	2.013501913	1456.543734	1724.018904	21.27
_50	0.282936	0.000021	0.001167	0.000022	0.02477	0.00058	1.467223	0.000034	0.282929189	311.7	5.339745743	0.742613646	12.04194934	449.8134294	531.2925342	18.89
_51	0.282212	0.000019	0.0005889	0.0000059	0.01508	0.00011	1.467214	0.000026	0.282198882	1180	-20.26274378	0.671888537	5.755438926	1450.573123	1616.530462	17.48
_52	0.282274	0.000023	0.000575	0.000016	0.01629	0.00039	1.467193	0.000032	0.282262179	1090	-18.0702654	0.813338756	5.95381496	1364.529181	1533.065122	13.34
_53	0.282953	0.000021	0.000697	0.000017	0.01531	0.00032	1.4672	0.000032	0.282949886	238.8	5.940909171	0.742613646	11.14590386	420.2727821	530.8940722	14.86
_54	0.282908	0.000021	0.001136	0.000026	0.02666	0.00062	1.467206	0.000028	0.282902638	252.2	4.349594215	0.742613646	9.773310904	489.3357789	629.3399679	17.36
_55	0.282645	0.000024	0.000543	0.00003	0.01199	0.00061	1.467174	0.000026	0.282642018	293.3	-4.950757643	0.84870131	1.468989338	849.2146518	1189.808728	14.28
_56	0.282626	0.000023	0.0012907	0.0000098	0.03137	0.00028	1.467225	0.000028	0.282619841	255	-5.62264618	0.813338756	-0.170315326	893.1645235	1263.542379	16.5
_57	0.282879	0.000022	0.000929	0.000015	0.01947	0.00043	1.467209	0.000028	0.28287446	261.1	3.324080132	0.777976201	8.974970614	527.7073617	687.3883817	16.22
_58	0.282386	0.000023	0.001702	0.000052	0.0407	0.0013	1.467221	0.00003	0.282371105	466.7	-14.10965928	0.813338756	-4.242582306	1246.419036	1684.519811	16.62
_59	0.282743	0.000023	0.001461	0.000038	0.03246	0.0008	1.467191	0.000031	0.282734564	308.4	-1.485227293	0.813338756	5.081004497	730.1548849	972.6698599	15.47
_60	0.282061	0.000022	0.0005742	0.0000075	0.01479	0.00015	1.467184	0.000026	0.282048823	1124	-25.60248952	0.777976201	-0.8376559	1657.721041	1984.122763	16.2
_61	0.282777	0.000025	0.001666	0.000035	0.0413	0.00085	1.4672	0.000032	0.282768599	269.4	-0.282900437	0.884063865	5.414527638	685.2789991	920.8226307	16.24
_62	0.282026	0.00002	0.001024	0.00007	0.0265	0.0018	1.467164	0.000028	0.282000137	1336	-26.84017893	0.707251092	2.261701463	1725.950148	1957.506698	15.92
_63	0.282706	0.00002	0.000766	0.000026	0.01763	0.00063	1.467205	0.000027	0.282702537	241.6	-2.793641813	0.707251092	2.456822304	768.6950378	1086.803026	17.38
_64	0.282705	0.000018	0.001015	0.000015	0.02492	0.00041	1.467223	0.000027	0.282698937	319	-2.829004367	0.636525983	4.057073293	775.1902115	1045.988623	19.66
_65	0.282318	0.000022	0.0005287	0.0000058	0.01346	0.00017	1.46719	0.000028	0.282312678	536.5	-16.51431299	0.777976201	-4.747027344	1302.181321	1770.282927	17.3
_66	0.282693	0.00002	0.000907	0.000022	0.01967	0.00044	1.467175	0.000031	0.282688607	258.8	-3.253355022	0.707251092	2.347591157	789.8679926	1107.189404	16.39
_67	0.282551	0.000018	0.00052	0.00002	0.01057	0.00045	1.467168	0.000024	0.282548171	290.6	-8.274837774	0.636525983	-1.912109602	979.3689694	1401.187516	18.1
_68	0.282767	0.00002	0.0006416	0.0000067	0.01489	0.00018	1.467203	0.000027	0.282763784	267.8	-0.636525983	0.707251092	5.2084312	680.8104389	932.6688297	17.89
_69	0.282484	0.000021	0.001051	0.000015	0.02514	0.00058	1.467207	0.000021	0.282478947	256.9	-10.64412893	0.742613646	-5.113145773	1087.400535	1576.413624	18.88
_70	0.282102	0.000023	0.0008569	0.0000093	0.02277	0.0004	1.467161	0.000027	0.282080603	1321	-24.15262479	0.813338756	4.773467523	1613.282972	1789.170315	14.55
_71	0.282161	0.000024	0.00139	0.00001	0.03967	0.00041	1.467221	0.000029	0.282124163	1401	-22.06623406	0.84870131	8.145656933	1553.288092	1641.663742	14.38
_72	0.282606	0.000021	0.0008619	0.0000066	0.01838	0.00013	1.467233	0.000025	0.282602423	221.8	-6.329897272	0.742613646	-1.526655723	911.1088488	1323.325218	16.89
_73	0.282363	0.000017	0.000733	0.0000072	0.01705	0.00019	1.467222	0.000028	0.282359069	286.5	-14.92299804	0.601163428	-8.695000156	1246.677901	1823.763114	19.71
_74	0.282125	0.000016	0.000203	0.000025	0.00572	0.00066	1.467216	0.000028	0.282121421	936	-23.33928603	0.565800873	-2.525019402	1554.749876	1942.359443	17.63
_75	0.282874	0.00002	0.000575	0.000027	0.01257	0.00059	1.467182	0.000023	0.282871274	253.3	3.147267359	0.707251092	8.688125144	529.8036211	699.5466479	18.12

	176Hf/177 Hfstnorm	176Hf/177Hf 1 corr 2SE	176Lu/177Hf corr	176Lu/177Hfc orr 2SE	176Yb/177Hf 1 corr	76Yb/177Hfco rr 2SE	178Hf/177Hf	178Hf/177Hf 2SE	176Hf/177Hft	t (age, Ma)	εHf(0)	±2 sigma	εHf(t)	TDM	TDM C*	TotalHfBe am (V)
_76	0.281213	0.00002	0.0006622	0.000008	0.01754	0.00018	1.46722	0.000032	0.281184035	2293	-55.58993582	0.707251092	-4.667512355	2815.816887	3133.65737	15.12
_77	0.282882	0.000023	0.001101	0.000038	0.02268	0.00077	1.467211	0.000032	0.282876256	278.7	3.430167795	0.813338756	9.43151246	525.8630382	672.1334349	15.58
_78	0.282216	0.00002	0.000521	0.0000038	0.013907	0.000055	1.467242	0.000031	0.282206281	990	-20.12129356	0.707251092	1.704522006	1442.502207	1720.590242	15.58
_79	0.28218	0.000019	0.000489	0.000037	0.01401	0.00096	1.467206	0.000029	0.282170719	1007	-21.39434553	0.671888537	0.829293633	1490.789528	1788.620642	15.29
_80	0.282355	0.000023	0.001964	0.000054	0.0525	0.0014	1.467169	0.000024	0.282337368	478.7	-15.20589847	0.813338756	-5.168141982	1299.774172	1751.788883	19.6
_81	0.282724	0.000018	0.0007381	0.0000053	0.01729	0.00019	1.467213	0.000026	0.282720868	226.8	-2.15711583	0.636525983	2.775379639	742.8890276	1055.014723	17.13
_82	0.282082	0.000024	0.000577	0.000011	0.01414	0.00033	1.467182	0.000031	0.282070401	1066	-24.85987588	0.84870131	-1.38900654	1629.001986	1973.093089	13.37
_83	0.282061	0.000024	0.000609	0.0000027	0.018232	0.000059	1.467141	0.000031	0.282046853	1230	-25.60248952	0.84870131	1.502617793	1659.224159	1921.498961	13.51
_84	0.282443	0.000016	0.0003996	0.0000071	0.01149	0.00015	1.467189	0.000025	0.282438842	554.4	-12.09399367	0.565800873	0.121453733	1125.563155	1478.878408	22.83
_85	0.282191	0.000018	0.0003676	0.0000088	0.00895	0.00016	1.467191	0.000029	0.282183106	1138	-21.00535743	0.636525983	4.241067108	1471.026563	1678.226137	15.8
_86	0.282946	0.000021	0.001605	0.000052	0.0354	0.0014	1.467256	0.000029	0.282937067	297.3	5.693371289	0.742613646	11.99884508	440.7096247	522.6299614	17.68
_87	0.282598	0.00002	0.00083	0.000014	0.01763	0.00035	1.467196	0.000031	0.282592158	375.7	-6.612797709	0.707251092	1.545478964	921.5536412	1249.414254	17.09
CH-14_1	0.282905	0.000022	0.001304	0.000035	0.02875	0.00081	1.467221	0.00003	0.282899423	228.6	4.243506551	0.777976201	9.132871688	495.8336136	651.6288784	16.24
Fm. Cuestecita																
SL-45	0.282798	0.000027	0.000855	0.000014	0.02071	0.00022	1.46717	0.000028	0.282795833	135.6	0.45971321	0.954788974	3.395968417	640.9745951	944,1705998	13.46
88	0.282246	0.000021	0.0002468	0.0000086	0.00693	0.0003	1.467239	0.000027	0.282241105	1052	-19.06041692	0.742613646	4.344287221	1391.252273	1604.04438	16.21
89	0.282451	0.000032	0.002056	0.000025	0.05358	0.00068	1.467175	0.000046	0.282444233	176	-11.81109323	1.131601747	-8.142882728	1164.766987	1703.974972	10.3
90	0.282961	0.000037	0.00521	0.000062	0.1548	0.0016	1.467209	0.000038	0.282949334	119.8	6.223809608	1.30841452	8.474062246	464.3680163	607.8719166	9.64
91	0.283073	0.000024	0.001092	0.000055	0.0246	0.0012	1.467183	0.000028	0.283070365	129.1	10.18441572	0.84870131	12.96226963	253.5121634	327.3209583	16.45
92	0.282889	0.000028	0.001967	0.000061	0.0505	0.0015	1.467184	0.000039	0.282883999	136	3.677705677	0.990151529	6.523605101	528.1109299	745.2650698	13.3
93	0.28266	0.000022	0.0015058	0.000006	0.04179	0.00018	1 467195	0.000031	0 282655439	162	-4 420319324	0 777976201	-0.982826774	849 767206	1242 407295	16.72
94	0.282906	0.00003	0.002077	0.000082	0.0555	0.0021	1 46719	0.000036	0.28290058	139.6	4 278869106	1.060876638	7 190254548	504 8751233	705 5411107	14.03
95	0.282615	0.000024	0.0018807	0.0000098	0.04399	0.00014	1 467198	0.000026	0 282607541	212	-6.01163428	0 84870131	-1 563937096	923 3328052	1318 049752	16.62
96	0.281992	0.000024	0.001004	0.000019	0.02426	0.00044	1 467226	0.000031	0 281964199	1463	-28 04250579	0.84870131	3 888701639	1772 175454	1956 250014	13 59
97	0.28299	0.000021	0.000674	0.0000098	0.01725	0.00034	1.467226	0.000037	0.28298827	137.3	7 249323691	0.990151529	10 24095341	367 8713908	508 5440329	20.42
	0.283008	0.000020	0.000074	0.00000000	0.02881	0.00034	1.467227	0.000039	0.283005237	137.5	7 885849674	0.742613646	10.76764161	346 4112528	472 1623078	17.94
0	0.283008	0.000021	0.001103	0.000012	0.04024	0.00030	1.467217	0.000022	0.283003237	165.7	-11 74036812	0.919426419	-8 235810498	1147 237751	1701 855068	13.26
100	0.282731	0.000020	0.001307	0.000017	0.03158	0.00036	1.467181	0.000032	0.282727634	127.8	-1 909577948	1 414502184	0.810041954	746 2733948	1102 238708	9.36
101	0.282363	0.000024	0.001373	0.000017	0.03592	0.00050	1.467185	0.000029	0.282356208	264.3	-14 92299804	0.84870131	-9 291083718	1267 97326	1843 912997	15 72
102	0.282505	0.000024	0.001573	0.000028	0.04054	0.00007	1.467183	0.000027	0.282536208	160.8	-9.33571///12	1 202326856	-5.930508974	10/0 3/803	1553 360805	11.72
102	0.282020	0.000034	0.0006712	0.000021	0.04004	0.00040	1.467215	0.000034	0.282510551	100.0	6 506710045	0.707251002	0.288822220	207 4447067	561 0525702	16.49
_104	0.282909	0.00002	0.0000712	0.0000073	0.01008	0.0002	1.407213	0.000020	0.282907398	140.3	7 107873473	1 131601747	9.288882239	397.4447007	526 7047021	14.40
105	0.282980	0.000032	0.00231	0.000011	0.011654	0.0027	1.467101	0.00003	0.282979417	661	20 10228242	0.742612646	14 56552402	1797 292694	2476 214076	17.52
106	0.281502	0.000021	0.001065	0.0000031	0.02611	0.000074	1.467166	0.000028	0.281550454	120.1	-4 703219761	0.954788974	-1 927331085	851 1008635	1276 407325	13.3
_107	0.282032	0.000027	0.001005	0.000030	0.02011	0.00085	1.407100	0.000032	0.28204943	240	-4.703219701	0.734788774	-1.927331083	775 4008827	1270.497323	13.5
_107 SL-45_1	0.282103	0.000021	0.000982	0.000005	0.02532	0.00010	1.467183	0.000046	0.282108176	1017	-23.26856092	0.919426419	-1.160844886	1583.863827	1920.597807	13.68
Em. Cuestecita																
SL-67	0.282562	0.000044	0.002843	0.000028	0.07589	0.00091	1.467251	0.000055	0.28255333	163.1	-7.885849674	1.555952402	-4.57049203	1026,480885	1469,599222	11.71
108	0.282805	0.000023	0.001847	0.000043	0.0496	0.0012	1.467197	0.000033	0.282800007	144.6	0.707251092	0.813338756	3.74393359	648.1304209	929.097422	16.43
109	0 28279	0.000026	0.001249	0.000021	0.02968	0.00059	1 467197	0.000031	0 282787005	128.3	0 176812773	0 919426419	2 921256381	659 1254472	968 6282062	15.09
110	0.282196	0.000032	0.000879	0.000026	0.0235	0.00069	1 467183	0.000041	0.282177175	1135	-20 82854465	1 131601747	3 962603017	1483 857633	1693 285731	11.19
111	0.282603	0.000032	0.001262	0.000020	0.03346	0.00057	1.467202	0.000027	0.282597964	213.3	-6 435984936	0.813338756	-1 873804755	925 0934277	1338 618217	17.89
112	0.283008	0.000025	0.000859	0.000041	0.0222	0.001	1 46719	0.000028	0.283006017	123.5	7 885849674	0.919426419	10 56143056	344 1669501	477 0802039	14 32
113	0.282883	0.000020	0.0000000	0.000041	0 10444	0.00072	1 467101	0.000028	0.282873513	120.0	3 46553035	1 096239192	6 034711418	566 4871488	772 2874533	13.32
114	0.2822085	0.000031	0.00003	0.000038	0.02495	0.00072	1 467234	0.000039	0.202073313	1134	-20 404194	0.742613646	4 3272160/1	1469 162734	1669 685033	10.00
115	0.282530	0.000021	0.00095	0.000017	0.02475	0.0004	1.407234	0.000024	0.2621861	190.1	-20.404174	0.919426419	-4 638666664	1016 471467	1494 817245	13.09
_116	0.202339	0.000020	0.001209	0.000024	0.05204	0.0004	1.407104	0.000033	0.202034417	567.7	-13 68530862	0.515420419	-1 188800262	1188 610776	1571 503552	19.10
117	0.202398	0.000017	0.0004314	0.000082	0.011	0.00017	1.40/195	0.00003	0.202393403	501.1	-13.06330603	0.001103428	-1.100099203	1507 594015	2006 255712	10.01
_11/	0.282100	0.000023	0.000931	0.000077	0.0209	0.0022	1.40/213	0.00003	0.282130075	1271	-21.06942129	0.013338/30	-7.303338182	1527.384015	2090.355713	17.39
_118	0.282113	0.000024	0.000/84	0.000017	0.02068	0.00036	1.40/223	0.000033	0.282092673	13/1	-23./0303009	0.000151520	0.3430389/6	1595.001626	1/30.03130/	14.01
_119	0.283015	0.000028	0.00108/4	0.000035	0.02447	0.00012	1.40/1/1	0.000028	0.283012496	125.2	0.13338/330	0.990131329	10.76392323	550.2822802	402.3/080/8	12.83
_120	0.282765	0.000024	0.0010/7	0.000018	0.02/01	0.00049	1.46/218	0.000027	0.282/62256	130.5	-0.707251092	0.848/0131	2.22382347	091.5351818	1019.189468	15.8
_121	0.282692	0.000028	0.002598	0.000043	0.0654	0.001	1.4672	0.00003	0.282676764	313.2	-3.288/1/5/7	0.990151529	3.142862705	828.3616251	1099.401516	15.05

	176Hf/177 Hfstnorm	176Hf/177Hf corr 2SE	176Lu/177Hf corr	176Lu/177Hfc orr 2SE	176Yb/177Hf 1 corr	76Yb/177Hfco rr 2SE	178Hf/177Hf	178Hf/177Hf 2SE	176Hf/177Hft	t (age, Ma)	εHf(0)	±2 sigma	εHf(t)	TDM	TDM C*	TotalHfBe am (V)
_122	0.28226	0.000017	0.000332	0.000017	0.01011	0.00048	1.467202	0.000028	0.282257146	458.4	-18.56534116	0.601163428	-8.462404053	1375.130512	1941.873034	19.42
_123	0.282125	0.000018	0.0006502	0.0000061	0.0174	0.00027	1.467179	0.000026	0.282110033	1219	-23.33928603	0.636525983	3.492553673	1572.900274	1788.774822	16.13
_124	0.283031	0.000034	0.000845	0.00002	0.01773	0.00048	1.467183	0.000043	0.283029081	121.5	8.699188429	1.202326856	11.33272334	311.4360008	426.0049541	8.89
_125	0.282618	0.000023	0.002535	0.000027	0.06821	0.00083	1.467187	0.000026	0.282610293	162.6	-5.905546617	0.813338756	-2.566529523	935.6280585	1342.904498	20.63
_126	0.283101	0.000027	0.00349	0.00016	0.095	0.0052	1.467196	0.000031	0.283092179	135.2	11.17456725	0.954788974	13.86979387	228.1218766	273.7692403	16.8
_127	0.282613	0.000031	0.000943	0.000073	0.0242	0.0019	1.467198	0.00003	0.28260926	212	-6.08235939	1.096239192	-1.50312697	903.2234082	1314.210949	13.87
_128	0.282883	0.000033	0.000675	0.000061	0.0179	0.0018	1.467092	0.000046	0.282881286	135.8	3.46553035	1.166964301	6.423193785	518.5474921	751.5150859	10.3
_129	0.282496	0.000026	0.000789	0.000026	0.02032	0.00084	1.467183	0.000034	0.282488512	505.9	-10.21977828	0.919426419	0.792062494	1063.150767	1398.765413	13.14
_130	0.281233	0.00002	0.0006	0.000014	0.0165	0.0003	1.467183	0.000026	0.28120937	2069	-54.88268473	0.707251092	-8.964914281	2784.405685	3219.95259	17.89
_131	0.282574	0.000022	0.0023497	0.0000059	0.06299	0.00042	1.467187	0.000027	0.282553702	460.7	-7.461499019	0.777976201	2.086818783	995.0687837	1281.749632	18.76
_132	0.282915	0.000019	0.0006646	0.0000011	0.016351	0.000095	1.467235	0.000032	0.282911811	256.4	4.597132097	0.671888537	10.19161719	473.4028592	605.9110225	16.91
_133	0.282941	0.000024	0.000705	0.000013	0.01791	0.00031	1.467233	0.000028	0.282939254	132.5	5.516558516	0.84870131	8.400214694	437.2767906	622.6144061	14.81
_134	0.282547	0.000039	0.002487	0.000023	0.06474	0.00042	1.467169	0.000051	0.282539406	163.3	-8.416287993	1.379139629	-5.058595545	1038.34796	1500.47336	11.08
_135	0.282536	0.000029	0.001566	0.000069	0.037	0.0017	1.467207	0.000033	0.282525992	341.2	-8.805276093	1.025514083	-1.567239882	1028.322592	1418.854721	14.16
_136	0.282528	0.000026	0.001491	0.000013	0.0384	0.00038	1.467143	0.000028	0.282523366	166.2	-9.08817653	0.919426419	-5.561489677	1037.64087	1534.349647	13.31
_137	0.282123	0.000022	0.000732	0.000031	0.01877	0.00063	1.467211	0.000023	0.282108174	1074	-23.41001114	0.777976201	0.131414722	1579.027568	1884.644129	18.64
_138	0.282539	0.000028	0.001641	0.000026	0.03912	0.00072	1.467228	0.000028	0.282532227	220.6	-8.699188429	0.990151529	-4.03692374	1026.112435	1480.603034	15.385
_139	0.282993	0.000021	0.000954	0.000026	0.02495	0.00077	1.467215	0.00003	0.282990655	131.5	7.355411355	0.742613646	10.19615747	366.3509215	506.8287108	17.56
_140	0.282753	0.000022	0.001428	0.00003	0.03256	0.00062	1.467229	0.000035	0.282749223	141.5	-1.131601747	0.777976201	1.878501767	715.2145169	1045.174748	13.1
_141	0.282192	0.000021	0.0004744	0.0000019	0.012108	0.000053	1.46721	0.000024	0.282182762	1033	-20.96999487	0.742613646	1.845398696	1473.738568	1745.514757	17.65
_142	0.282154	0.000022	0.000713	0.000017	0.01788	0.00058	1.467173	0.000029	0.282138131	1179	-22.31377195	0.777976201	3.578691452	1535.447182	1751.917418	16.69
_143	0.282257	0.00002	0.0005895	0.0000053	0.014851	0.000094	1.467199	0.000033	0.282245936	996	-18.67142882	0.707251092	3.245870026	1388.516707	1628.818169	15.76
_144	0.282855	0.000025	0.001601	0.000024	0.04218	0.00087	1.467153	0.000023	0.282850744	142.2	2.475378821	0.884063865	5.485268979	571.8686157	816.3567715	14.45
_145	0.28233	0.000019	0.000633	0.000038	0.0177	0.001	1.467217	0.000027	0.282321817	688	-16.08996234	0.671888537	-1.020322141	1289.122702	1654.881622	19.19
SL-67_1	0.283081	0.000019	0.000729	0.000035	0.01549	0.00088	1.467199	0.000026	0.28307922	130.6	10.46731616	0.671888537	13.30892331	239.7523572	306.2122687	18.14
Fm. Sierra d	e los Cuarzos															
P83a	0.282771	0.000021	0.001378	0.00009	0.0347	0.0026	1.467204	0.000027	0.282766697	167	-0.495075764	0.742613646	3.064292141	688.5521559	989.84442	16.74
_1	0.282796	0.000028	0.001285	0.000033	0.03314	0.00095	1.467166	0.000039	0.282791939	169	0.3889881	0.990151529	4.001795523	651.2073744	931.8296583	14.64
_2	0.282823	0.000028	0.000931	0.000035	0.024	0.0012	1.467228	0.000032	0.282820128	165	1.343777074	0.990151529	4.909898233	606.9438237	870.9130891	19
_4	0.282737	0.000031	0.00175	0.000015	0.04658	0.00064	1.467175	0.000036	0.282731538	166.9	-1.69740262	1.096239192	1.818313765	744.5213885	1068.852111	14.7
_5	0.282857	0.000024	0.001445	0.00002	0.03892	0.00082	1.46719	0.000031	0.282852704	159	2.546103931	0.84870131	5.928678047	566.5991636	801.2994815	17.02
_6	0.282763	0.000022	0.00121	0.000027	0.02844	0.00058	1.467217	0.000037	0.282759199	168	-0.777976201	0.777976201	2.821311303	696.8356062	1006.059219	14.52
_7	0.28281	0.000022	0.001432	0.000017	0.03786	0.0004	1.467198	0.000029	0.282805421	171	0.884063865	0.777976201	4.523270378	633.7392459	900.2291854	17.91
_8	0.282723	0.000022	0.001245	0.000013	0.03221	0.0004	1.467234	0.000026	0.282718109	210	-2.192478385	0.777976201	2.303292418	754.3746784	1071.806166	17.01
_9	0.282745	0.000028	0.002339	0.000052	0.0673	0.0013	1.467185	0.000029	0.282738572	147	-1.414502184	0.990151529	1.62414342	744.8793764	1065.612009	14.01
_10	0.282835	0.000023	0.001499	0.00002	0.03832	0.00073	1.467194	0.000029	0.282830094	175	1.76812773	0.813338756	5.485221347	599.0111488	842.1327058	16.41
_11	0.282732	0.000023	0.0009295	0.0000042	0.02427	0.00024	1.467221	0.000027	0.282729306	155	-1.874215393	0.813338756	1.474435103	735.3789834	1081.359093	16.91
_12	0.282707	0.000028	0.001414	0.000026	0.03926	0.00068	1.467201	0.000036	0.282700332	252	-2.758279258	0.990151529	2.61075146	780.6376421	1085.18663	15.24
_13	0.282601	0.000022	0.000743	0.00001	0.02023	0.00015	1.467202	0.000024	0.282598722	164	-6.506710045	0.777976201	-2.944709723	915.2480954	1367.851029	18.11
_14	0.282743	0.000038	0.001473	0.000042	0.0379	0.0015	1.467208	0.000034	0.282738538	162	-1.485227293	1.343777074	1.956836734	730.3905496	1056.233629	14.36
_16	0.282139	0.000023	0.000606	0.000023	0.0174	0.00059	1.46721	0.000033	0.282131704	641	-22.84421027	0.813338756	-8.809856043	1551.816669	2104.487742	16.17
_17	0.282832	0.000029	0.001783	0.000073	0.0513	0.002	1.467193	0.000031	0.282826866	154	1.662040066	1.025514083	4.903324985	607.9698994	862.695053	13.93
_18	0.28276	0.000026	0.001466	0.000017	0.03795	0.00066	1.467236	0.000027	0.282753279	245	-0.884063865	0.919426419	4.327990754	705.927896	970.7181787	15.82
_19	0.282715	0.000027	0.001848	0.000024	0.05007	0.00073	1.467164	0.00003	0.282709333	164	-2.475378821	0.954788974	0.968219009	778.2860007	1120.478516	16.52
_20	0.28282	0.000023	0.001267	0.000013	0.03331	0.00057	1.467212	0.000026	0.282816067	166	1.237689411	0.813338756	4.78853068	616.6824441	879.4239769	18.75
_21	0.282777	0.000024	0.001145	0.000013	0.02963	0.00031	1.467206	0.000036	0.28277336	170	-0.282900437	0.84870131	3.366816818	675.7557766	972.9752139	16.32
_22	0.282605	0.00002	0.000801	0.0000065	0.02222	0.00021	1.467249	0.000027	0.282602529	165	-6.365259826	0.707251092	-2.787777026	911.0461128	1358.728777	15.82
_23	0.282744	0.000024	0.00153	0.000086	0.04	0.002	1.467212	0.000028	0.282739022	174	-1.449864738	0.84870131	2.241132591	730.0790016	1047.582069	17.09
_24	0.282753	0.000019	0.000965	0.000014	0.02364	0.00034	1.467197	0.000027	0.282743477	526	-1.131601747	0.671888537	10.26959606	706.4267455	814.353367	17.79
_25	0.282826	0.000024	0.001444	0.00005	0.0384	0.0016	1.467228	0.000032	0.282821356	172	1.449864738	0.84870131	5.109246409	611.0222935	863.7185259	16.81
_26	0.28232	0.000023	0.0006515	0.0000097	0.01759	0.00026	1.467202	0.000036	0.282317966	167	-16.44358788	0.813338756	-12.80988355	1303.596695	1988.795205	15.83
_28	0.282749	0.000027	0.001182	0.000041	0.0284	0.0012	1.46722	0.000028	0.282745309	167	-1.273051965	0.954788974	2.307679215	716.1987713	1037.882769	16.5
_29	0.282772	0.00002	0.000881	0.000015	0.02313	0.00048	1.467181	0.00003	0.282769216	169	-0.45971321	0.707251092	3.197940667	678.0791596	982.9210869	17.17
_30	0.282744	0.000024	0.0015733	0.000088	0.04064	0.00023	1.4672	0.000029	0.282739234	162	-1.449864738	0.84870131	1.98146428	730.9315813	1054.67119	15.73
	176Hf/177 Hfstnorm	176Hf/177Hf 1 corr 2SE	l76Lu/177Hf corr	176Lu/177Hfc orr 2SE	176Yb/177Hf 1 corr	76Yb/177Hfco rr 2SE	178Hf/177Hf	178Hf/177Hf 2SE	176Hf/177Hft	t (age, Ma)	εHf(0)	±2 sigma	εHf(t)	TDM	TDM C*	TotalHfBe am (V)
---------------	-----------------------	---------------------------	---------------------	-------------------------	-----------------------	------------------------	-------------	--------------------	--------------	----------------	--------------	-------------	--------------	-------------	-------------	---------------------
_31	0.282723	0.00002	0.001197	0.000023	0.03335	0.00046	1.467196	0.000024	0.282719419	160	-2.192478385	0.707251092	1.235970137	753.4081836	1100.384772	17.33
_32	0.282771	0.000022	0.001284	0.000022	0.03118	0.00063	1.467228	0.000025	0.282767231	157	-0.495075764	0.777976201	2.860530559	686.8194611	994.9562173	17.35
_33	0.282731	0.000024	0.00128	0.000028	0.0309	0.00062	1.467229	0.000027	0.282727171	160	-1.909577948	0.84870131	1.510187232	743.6978556	1082.999377	16.59
P83a_1	0.282748	0.000021	0.001028	0.000025	0.02663	0.00052	1.46721	0.000028	0.282744617	176	-1.30841452	0.742613646	2.48360023	714.6813021	1033.760381	17.46
Fm. Sierra de	los Cuarzos															
SQB-168	0.282705	0.000031	0.001373	0.000042	0.03857	0.00098	1.46719	0.000032	0.282701586	133	-2.829004367	1.096239192	0.004337489	782.6307382	1157.344726	12.2
_34	0.28205	0.000066	0.001684	0.00005	0.0438	0.0016	1.4672	0.000069	0.28200075	1544	-25.99147762	2.333928603	7.040922223	1722.579498	1823.936735	8.94
_35	0.282011	0.000024	0.001456	0.000033	0.03935	0.00087	1.467159	0.00003	0.28197534	1296	-27.37061725	0.84870131	0.470006704	1766.852585	2037.504324	15.45
_36	0.281957	0.000031	0.001055	0.000018	0.02722	0.00056	1.467242	0.000042	0.281928778	1414	-29.2801952	1.096239192	1.511568644	1823.096645	2065.416127	9.21
_37	0.282118	0.000044	0.0004221	0.0000094	0.01138	0.00026	1.46/186	0.000065	0.282110647	925	-23.58682391	1.555952402	-3.155559656	1573.177305	19/3.05356	8.37
_38	0.282038	0.000039	0.000908	0.000012	0.02357	0.00046	1.467191	0.000045	0.282013345	1435	-26.41582828	1.379139629	4.9917/3243	1704.090894	1865.493591	9.56
_39	0.281975	0.000042	0.001088	0.000046	0.0296	0.0012	1.46/143	0.000029	0.281945478	1434	-28.64366922	1.485227293	2.56119/414	1/99./022/4	2015.94556	10.51
_40	0.281899	0.000043	0.001437	0.000025	0.03736	0.00049	1.46/15	0.00004	0.281850559	1559	-31.33122337	1.520589847	2.26/99964	1922.761239	2132.477412	11.18
_41	0.281977	0.00005	0.001044	0.000054	0.0267	0.0015	1.467166	0.000058	0.281949912	13/2	-28.5/294411	1./0812//3	1.301896838	1/94.844589	2045.455402	8.84
_42	0.281894	0.000035	0.00118	0.000023	0.0308	0.00057	1.40/100	0.000041	0.281802015	1400	-51.50805614	1.23/089411	-1.018344039	1910.001501	2215.986222	9.80
_45	0.282073	0.000031	0.000333	0.000012	0.01449	0.00038	1.40/18	0.000031	0.282001191	1303	-23.10/413/0	1.131601747	3.089274947	1030.82094	1004.172772	12.07
_44	0.281995	0.000032	0.001211	0.000024	0.03482	0.00084	1.407203	0.000032	0.28130221	252	-27.93041813	1.131001747	0.882526525	1212 002464	1980.931748	10.12
_45	0.282333	0.00004	0.002494	0.000078	0.0307	0.0014	1.407199	0.000034	0.282347238	1494	22 72597709	1.414502184	-9.882320323	2001 626058	2206 024642	8.76
_40	0.281385	0.000039	0.001134	0.00002	0.02837	0.00032	1.407200	0.000044	0.281759142	2156	-49 50757643	1.485227293	-1.48704248	2578 145514	2836 658828	9.70
48	0.282205	0.000042	0.001031	0.000048	0.0301	0.0019	1.467211	0.000055	0.282181444	1210	-20 51028166	1.025514083	5 819857985	1477 262602	1636 175873	15 31
49	0.281016	0.000022	0.000582	0.000040	0.01412	0.00054	1.467209	0.000039	0.280984697	2806	-62 55635907	1 131601747	0 244089011	3074 099094	3238 623706	14.63
50	0.281933	0.000032	0.000869	0.000042	0.023	0.0011	1.467202	0.000034	0.281910619	1362	-30 12889651	0.84870131	-0.320165051	1847 313192	2138 272978	13.82
51	0.282593	0.000024	0.001738	0.000023	0.04515	0.0007	1.467215	0.000039	0.282576143	517	-6 789610481	1 025514083	4 143378737	951 3542603	1195 970577	17.54
52	0.282286	0.000061	0.000552	0.000069	0.0134	0.0016	1.467176	0.000069	0.282279709	607	-17.64591474	2.15711583	-4.332370955	1347.152589	1799.094262	4.6
53	0.282	0.000025	0.00122	0.000011	0.03526	0.00015	1.467196	0.000024	0.2819672	1421	-27.75960535	0.884063865	3.03461939	1771.152774	1976.28799	15.56
54	0.281937	0.000022	0.001529	0.00002	0.04013	0.00046	1.467212	0.000028	0.281891695	1564	-29,98744629	0.777976201	3.629511806	1874.196331	2051.95991	17.4
55	0.281972	0.000025	0.000268	0.000021	0.00666	0.00059	1.46718	0.000039	0.28196426	1525	-28.74975688	0.884063865	5.310570963	1765.707904	1916.697989	13.41
56	0.281887	0.000024	0.001737	0.000035	0.0571	0.0014	1.467203	0.00003	0.281833193	1634	-31.75557402	0.84870131	3.159473604	1955.118595	2136.275759	16.67
57	0.281997	0.000036	0.001418	0.000032	0.03905	0.00076	1.467216	0.000038	0.281955883	1531	-27.86569302	1.273051965	5.150829793	1784.682309	1931.37725	15.26
_58	0.281764	0.000026	0.001721	0.000062	0.0459	0.0016	1.467205	0.000036	0.281706244	1768	-36.10516824	0.919426419	1.734010203	2127.181631	2329.943361	13.92
59	0.281979	0.000029	0.000987	0.000022	0.02638	0.00065	1.467231	0.000033	0.28195184	1454	-28.502219	1.025514083	3.244313559	1789.386194	1989.230145	14.71
_60	0.281423	0.000031	0.000218	0.000012	0.00651	0.00031	1.467218	0.000039	0.28141438	2077	-48.16379935	1.096239192	-1.495812867	2503.493756	2771.174072	16.7
_61	0.282098	0.000029	0.001396	0.000049	0.0353	0.0011	1.467217	0.000034	0.282055911	1591	-24.294075	1.025514083	10.0767857	1642.046297	1671.700609	14.1
_62	0.282013	0.000027	0.000321	0.000028	0.00915	0.00078	1.467191	0.000041	0.282007622	890	-27.29989214	0.954788974	-7.597082763	1712.298427	2221.762484	12.5
_63	0.282215	0.000036	0.00141	0.000023	0.03466	0.00074	1.467146	0.000048	0.282189983	942	-20.15665612	1.273051965	0.040315349	1478.10564	1787.013802	16.9
_64	0.282104	0.000028	0.001	0.000035	0.02692	0.00094	1.467216	0.000034	0.282083174	1104	-24.08189968	0.990151529	-0.073966776	1616.584299	1920.929602	13.06
_65	0.281939	0.00005	0.0013357	0.0000052	0.03296	0.00012	1.467157	0.000079	0.281898215	1611	-29.91672118	1.76812773	4.939207176	1861.798676	2007.709905	10.15
_66	0.282632	0.000039	0.001075	0.00001	0.02493	0.00027	1.467179	0.000038	0.282617757	705	-5.410470852	1.379139629	9.843998308	879.576335	983.1947638	10.31
_67	0.282078	0.000048	0.001477	0.000069	0.0422	0.0019	1.467112	0.000067	0.282063201	534	-25.0013261	1.69740262	-13.63573181	1673.721308	2321.48217	7.8
_68	0.282051	0.000051	0.002844	0.000083	0.0818	0.0026	1.467208	0.000045	0.281972357	1461	-25.95611507	1.803490284	4.132388993	1776.398096	1939.513284	9.19
_69	0.282163	0.000054	0.001232	0.000042	0.0336	0.0012	1.46716	0.000057	0.282131884	1336	-21.99550896	1.909577948	6.93462055	1543.97936	1665.973132	8.5
_70	0.281947	0.000032	0.001181	0.000032	0.02942	0.00082	1.467196	0.000048	0.281910439	1633	-29.63382075	1.131601747	5.878208023	1843.070331	1966.742684	11.62
_71	0.282098	0.000036	0.001001	0.000039	0.02711	0.00099	1.467201	0.000036	0.282073427	1299	-24.294075	1.273051965	4.017115279	1624.963788	1819.026762	13.4
SQB-168_1	0.282442	0.000049	0.00195	0.000069	0.0581	0.0025	1.467141	0.000057	0.282415869	713	-12.12935622	1.732765175	2.873621671	1174.356101	1429.935179	10.51
Fm. Pelones																
SQT-8	0.282166	0.00002	0.000379	0.000045	0.0109	0.0013	1.467201	0.000027	0.282158656	1028	-21.88942129	0.707251092	0.877621985	1505.714911	1802.056612	19.52
_72	0.282893	0.000036	0.001554	0.000018	0.03803	0.00037	1.467226	0.00003	0.282888933	140	3.819155896	1.273051965	6.787173436	516.461629	731.5912319	11.01
_73	0.282724	0.00003	0.002173	0.000072	0.0609	0.002	1.467231	0.00003	0.282718557	134	-2.15711583	1.060876638	0.626877222	772.1027213	1118.687579	13.79
_74	0.282716	0.000038	0.001336	0.000017	0.03653	0.00033	1.467205	0.000037	0.282712603	136	-2.440016267	1.343777074	0.460781052	766.1868976	1130.772978	12.6
_75	0.282637	0.00003	0.001428	0.000049	0.0361	0.0012	1.467155	0.000033	0.282632728	160	-5.233658079	1.060876638	-1.830737836	880.7801407	1294.430935	12.16
_76	0.28201	0.000021	0.000363	0.0000012	0.009454	0.000054	1.467194	0.000028	0.281999927	1466	-27.40597981	0.742613646	5.224991102	1718.250434	1875.434486	18.13
_77	0.282783	0.000028	0.001811	0.00003	0.0486	0.0011	1.467186	0.000026	0.282777819	153	-0.070725109	0.990151529	3.146052729	679.3054721	973.6852173	13.33

	176Hf/177 Hfstnorm	176Hf/177Hf corr 2SE	176Lu/177Hf corr	176Lu/177Hfc orr 2SE	176Yb/177Hf 1 corr	76Yb/177Hfco rr 2SE	178Hf/177Hf	178Hf/177Hf 2SE	176Hf/177Hft	t (age, Ma)	εHf(0)	±2 sigma	εHf(t)	TDM	TDM C*	TotalHfBe am (V)
_78	0.282673	0.000027	0.000929	0.000013	0.02419	0.00028	1.46723	0.000038	0.282670656	135	-3.960606114	0.954788974	-1.045295198	818.4906289	1225.330232	11.18
_79	0.282732	0.000028	0.001377	0.000018	0.03866	0.00048	1.467194	0.000031	0.282728551	134	-1.874215393	0.990151529	0.980392626	744.2061016	1096.279972	11.53
_80	0.282712	0.000038	0.002053	0.000044	0.05228	0.00086	1.467196	0.000044	0.282706435	145	-2.581466485	1.343777074	0.442816889	787.0002524	1138.933877	10.01
_81	0.282737	0.000024	0.0008467	0.0000039	0.021361	0.000083	1.467202	0.000028	0.282734372	166	-1.69740262	0.84870131	1.898507559	726.73375	1063.061737	15.74
_82	0.282749	0.000036	0.00164	0.000022	0.04545	0.00051	1.467216	0.000032	0.282744738	139	-1.273051965	1.273051965	1.664253726	725.0619046	1056.81472	11.86
_83	0.28269	0.00011	0.002082	0.00005	0.0533	0.0014	1.467258	0.000083	0.282684863	132	-3.359442686	3.889881005	-0.609475137	819.5865638	1195.421921	2.94
_84	0.281996	0.000046	0.001308	0.000051	0.0326	0.0011	1.46723	0.000034	0.2819859	412	-27.90105557	1.626677511	-19.10095814	1780.873431	2565.910217	14.3
_85	0.282738	0.000025	0.0014124	0.0000057	0.0394	0.00014	1.467209	0.000031	0.282734409	136	-1.662040066	0.884063865	1.232121603	736.3441304	1081.880649	13.86
_86	0.282725	0.000023	0.001605	0.00005	0.0448	0.0014	1.467225	0.00003	0.282720559	148	-2.121753275	0.813338756	1.009209867	758.8328656	1105.385718	15.37
_87	0.282727	0.000031	0.001964	0.000027	0.05457	0.00097	1.467204	0.000033	0.282721823	141	-2.051028166	1.096239192	0.898155455	763.3579672	1106.958885	13.82
_88	0.282781	0.000022	0.001001	0.000018	0.02664	0.00032	1.467191	0.000029	0.28277838	140	-0.141450218	0.777976201	2.876532223	667.5127033	980.6300905	17.04
_89	0.282727	0.000035	0.001423	0.000024	0.03775	0.0005	1.467156	0.000036	0.282723222	142	-2.051028166	1.237689411	0.969908649	752.2675544	1103.191505	10.08
_90	0.282778	0.000056	0.002739	0.000085	0.073	0.0022	1.467122	0.000049	0.282770678	143	-0.247537882	1.980303057	2.670830562	704.2806929	996.0457129	6.66
_91	0.282778	0.000036	0.00229	0.000018	0.0628	0.00083	1.46722	0.000036	0.282754148	555	-0.247537882	1.273051965	11.29874673	695.5801213	771.7836046	10.11
_92	0.282735	0.00007	0.002473	0.000051	0.0656	0.0015	1.467231	0.000049	0.28272825	146	-1.76812773	2.475378821	1.236758852	762.3381722	1089.398103	5.34
_93	0.282776	0.000037	0.001398	0.000018	0.03991	0.00058	1.467174	0.000038	0.282772289	142	-0.318262991	1.30841452	2.705568175	681.7762641	993.0565534	8.91
_94	0.282716	0.00003	0.0014847	0.0000062	0.04033	0.00042	1.467239	0.000034	0.282712142	139	-2.440016267	1.060876638	0.511203878	769.2511486	1129.919337	11.27
_95	0.282763	0.000024	0.002713	0.00005	0.0809	0.0013	1.467177	0.000027	0.282756153	135	-0.777976201	0.84870131	1.979033897	725.9856414	1033.712237	15.95
_96	0.282749	0.00002	0.0008688	0.0000026	0.02405	0.00018	1.467246	0.000028	0.28274658	149	-1.273051965	0.707251092	1.951930551	710.2615039	1046.379383	16.3
_97	0.282784	0.000022	0.001349	0.000021	0.03304	0.00044	1.467199	0.000032	0.282779661	172	-0.035362555	0.777976201	3.634260742	669.460185	957.5469172	15.96
_98	0.282803	0.00002	0.001061	0.000021	0.02756	0.00073	1.467195	0.000026	0.282799806	161	0.636525983	0.707251092	4.101937555	637.4026153	919.1870714	16.53
_99	0.282733	0.000021	0.000973	0.000013	0.02356	0.00028	1.467204	0.000024	0.282730198	154	-1.838852839	0.742613646	1.4837364	734.8162552	1079.987807	16.68
_100	0.282818	0.000024	0.0012317	0.0000078	0.03175	0.00036	1.467198	0.000025	0.282814108	169	1.166964302	0.84870131	4.78602264	618.9492037	881.9387213	18.57
Ensamble Sa	anto-Tomás Tej	upilco														
VB11-4	0.28261	0.000026	0.001112	0.000031	0.03423	0.00073	1.467209	0.000037	0.282606859	151.1	-6.188447053	0.919426419	-2.94388663	911.5193642	1357.778753	14.31
_1	0.282912	0.000035	0.002379	0.000022	0.0692	0.0011	1.467231	0.000028	0.282906758	117.9	4.491044433	1.237689411	6.925771114	500.2498374	705.3461666	12.45
_2	0.282896	0.000035	0.003393	0.000079	0.1005	0.0036	1.467197	0.000028	0.282887247	138	3.92524356	1.237689411	6.683006573	538.9114312	736.6658784	13.62
_4	0.28299	0.00002	0.000657	0.00002	0.01919	0.0007	1.467182	0.000027	0.282988432	127.7	7.249323691	0.707251092	10.03290553	367.7062636	514.287933	15.65
_5	0.282768	0.000025	0.00116	0.000018	0.02891	0.0004	1.467212	0.000026	0.282765235	127.5	-0.601163428	0.884063865	2.133424803	688.8069748	1018.046205	16.81
_6	0.281056	0.000026	0.0008972	0.0000059	0.02848	0.00018	1.467236	0.000029	0.281008715	2751	-61.14185689	0.919426419	-0.194416191	3045.258867	3221.8263	15.54
_7	0.282784	0.000042	0.001871	0.000021	0.04853	0.00075	1.46724	0.000063	0.282779121	139.5	-0.035362555	1.485227293	2.891600104	678.9664009	979.2812931	11.8
_8	0.282771	0.000033	0.00207	0.00011	0.0617	0.0033	1.467187	0.000032	0.282765888	132.1	-0.495075764	1.166964302	2.258867116	701.5819099	1013.679192	12.34
_9	0.282548	0.000024	0.0010882	0.0000024	0.03343	0.00023	1.467231	0.00003	0.282544759	159.3	-8.380925438	0.84870131	-4.958231024	998.3728542	1491.059635	15.29
_10	0.282752	0.000027	0.001564	0.000014	0.04469	0.00037	1.467186	0.000028	0.282747918	139.6	-1.166964302	0.954788974	1.790089752	719.2721881	1049.299579	14.93
_11	0.282861	0.000023	0.001282	0.000024	0.03747	0.00051	1.467148	0.000036	0.282858168	118.2	2.687554149	0.813338/56	5.213/355/3	558.4121621	814.8095721	11.91
_12	0.282808	0.000024	0.002071	0.000058	0.0547	0.0012	1.467216	0.000029	0.282803099	126.6	0.813338/56	0.84870131	3.452/3/324	647.7327603	933.5097957	15.73
_13	0.282586	0.000031	0.001392	0.000024	0.03982	0.00058	1.467209	0.000033	0.2825825	134.5	-7.037148364	1.096239192	-4.17474916	952.4910258	1422.502077	14.75
_14	0.282475	0.000032	0.003238	0.00004	0.0932	0.0012	1.46/216	0.00003	0.282465101	103.5	-10.96239192	1.131601/4/	-/.682/25261	1167.726374	1665.477799	15.6
_15	0.282733	0.000042	0.002005	0.000019	0.05988	0.00037	1.46/152	0.00004	0.282728079	131.3	-1.838852859	1.485227293	0.903637995	/55.5060986	1099.037787	11./
_16	0.281532	0.000024	0.001212	0.000035	0.03198	0.00054	1.46/192	0.000038	0.28149039	1808	-44.3092809	0.848/0131	-5.009034945	2418.979742	2//5./51428	12.03
_1/	0.282745	0.000022	0.0008361	0.0000049	0.02475	0.0003	1.46/196	0.000028	0.282/42921	133	-1.414502184	0.777976201	1.4664/4889	/15.2/5469/	1064.672916	15.18
_18	0.282754	0.000027	0.0009679	0.0000064	0.02749	0.00043	1.46/21/	0.000032	0.282/51088	127.8	-1.096239192	0.954788974	1.000884894	/05.0689395	1048.274749	15.8/
_19	0.282909	0.000022	0.001011	0.000018	0.02048	0.00037	1.407101	0.00003	0.282900008	520	18 56524116	0.912229756	7.01550060	401.0432882	1006 057517	15.41
_20	0.28220	0.000023	0.000732	0.000028	0.02288	0.00083	1.407177	0.000029	0.282252721	2626	-18.30334110	0.813338730	1 48080528	2080 270272	2200 801002	13.20
_21	0.281004	0.000023	0.000314	0.0000022	0.008780	0.000074	1.407177	0.00003	0.28104810	2030	14 42702227	0.010426410	1 97900599	1257 062726	1622 824422	15.55
23	0.262577	0.000020	0.001004	0.000026	0.04141	0.0003	1.40722	0.00003	0.262556500	146	-14.42/72227	2 864366022	-1.0/07733584	835 0571092	1101 986560	13.13
24	0.282383	0.000081	0.00270	0.000073	0.0044	0.0010	1.467215	0.000077	0.28237/203	667	-14 21574695	0.671888537	0.36253268	1217 894308	1551 737162	10 67
25	0.282728	0.000019	0.001117	0.000013	0.02082	0.00042	1 467200	0.000031	0.282725413	123.0	-2 015665612	1 237689411	0.644733256	744 7193534	1109 673114	12.02
26	0.282428	0.000033	0.003206	0.000024	0 1033	0.0014	1 467180	0.000043	0 282470806	165.4	-10 7502166	1 096239102	-7 438632425	1160 676985	1651 632050	12.03
27	0.282481	0.000031	0.0016189	0.000053	0.1033	0.0014	1 467241	0.00003	0.282970269	123.4	6 683522818	1.060876638	9 292487401	400 4199263	558 2467101	13.12
28	0.282939	0.000041	0.00288	0.00000000	0.07753	0.00038	1 467172	0.000046	0.282932573	119.4	5 445833407	1 449864738	7 872283824	466 9267475	646 0452562	10.05
29	0.28258	0.000047	0.002128	0.000057	0.0564	0.0016	1.467225	0.000063	0.28257345	164.6	-7.249323691	1.662040066	-3.825335936	980.3439417	1423.831955	8.93
	0.20200															

	176Hf/177 Hfstnorm	176Hf/177Hf corr 2SE	176Lu/177Hf corr	176Lu/177Hfc orr 2SE	176Yb/177Hf 1 corr	76Yb/177Hfco rr 2SE	178Hf/177Hf	178Hf/177Hf 2SE	176Hf/177Hft	t (age, Ma)	εHf(0)	±2 sigma	εHf(t)	TDM	TDM C*	TotalHfBe am (V)
_30	0.282822	0.000028	0.001866	0.000082	0.0448	0.0018	1.467163	0.000033	0.282817406	131.7	1.30841452	0.990151529	4.072298429	623.8363154	898.0951012	11.63
VB11-4_1	0.282882	0.000026	0.001019	0.000012	0.03052	0.00066	1.467198	0.000031	0.282879407	136.1	3.430167795	0.919426419	6.36340563	524.7151224	755.5658727	15.79
Ensamble Oio	de Agua															
VB-5	0.282778	0.000033	0.00152	0.00011	0.0412	0.0035	1.467177	0.000044	0.282774392	127	-0.247537882	1.166964302	2.44618095	681.149383	997.7938284	10.64
_31	0.282937	0.000024	0.000957	0.000026	0.02275	0.00032	1.467182	0.000035	0.28293449	140.3	5.375108298	0.84870131	8.405370334	445.8825312	628.4376284	13.66
_32	0.282341	0.000025	0.001603	0.000047	0.04822	0.0007	1.467188	0.000037	0.282337159	128.2	-15.70097424	0.884063865	-12.99320209	1307.065499	1970.49234	14.1
_33	0.282748	0.00004	0.003179	0.000062	0.0913	0.0026	1.46719	0.00003	0.282739436	144.1	-1.30841452	1.414502184	1.590170334	758.0205367	1065.500497	13.82
_34	0.282806	0.000033	0.0009611	0.0000092	0.02992	0.00043	1.467243	0.000029	0.28280317	157.5	0.742613646	1.166964302	4.142997074	631.4703857	913.8303227	12.96
_35	0.282876	0.000026	0.000976	0.00001	0.02373	0.00027	1.467211	0.000032	0.282873608	131.1	3.217992468	0.919426419	6.046972253	532.6181752	771.8199199	14.61
_36	0.282378	0.000027	0.002114	0.000025	0.0609	0.00092	1.467218	0.000032	0.28237308	124.5	-14.39255972	0.954788974	-11.80475089	1271.938899	1893.474539	15.68
_37	0.282846	0.000025	0.000741	0.000016	0.01994	0.00036	1.46724	0.000035	0.282844395	115.9	2.15711583	0.884063865	4.675391477	571.5432335	847.3048078	13.06
_38	0.282867	0.000026	0.001084	0.000024	0.02822	0.00048	1.467233	0.000029	0.282864057	145.2	2.899729476	0.919426419	6.023007793	546.9405359	784.4349132	14.11
_39	0.282658	0.000032	0.0014956	0.0000092	0.04444	0.00049	1.467228	0.000033	0.282634927	820	-4.491044433	1.131601747	13.04726071	852.391175	871.0755716	10.88
_40	0.282849	0.000026	0.000846	0.000011	0.0207	0.00034	1.467198	0.000027	0.282839438	602	2.263203494	0.919426419	15.37542013	568.8993197	548.8677185	13.39
_41	0.282848	0.000028	0.001226	0.000027	0.03255	0.0009	1.467214	0.00003	0.282845021	130	2.227840939	0.990151529	5.011273018	576.1090808	836.9765529	13.52
_43	0.282831	0.000034	0.002835	0.00007	0.0906	0.0036	1.467174	0.000038	0.282823761	136.6	1.626677511	1.202326856	4.406124654	627.3372807	880.6924489	10.93
_44	0.282862	0.000024	0.001405	0.000021	0.03766	0.00052	1.4672	0.000036	0.282858512	132.8	2.722916704	0.84870131	5.550819457	558.8263123	804.7929406	12.72
_45	0.282756	0.000035	0.002162	0.000032	0.0664	0.0018	1.467191	0.000031	0.282750342	140	-1.025514083	1.237689411	1.88470758	725.228588	1043.608175	12.64
_46	0.28283	0.000031	0.002105	0.00002	0.06444	0.00099	1.467166	0.000033	0.282825168	122.8	1.591314957	1.096239192	4.148829153	616.2506785	886.2453554	11.84
_47	0.28264	0.000027	0.0016575	0.0000046	0.04894	0.00078	1.467206	0.000031	0.282635218	154.3	-5.127570416	0.954788974	-1.869480465	881.9346837	1292.443822	13.44
_48	0.282547	0.000032	0.001971	0.000043	0.0577	0.0024	1.467205	0.000033	0.282541229	156.6	-8.416287993	1.131601747	-5.143161028	1023.779903	1500.604838	11.25
_49	0.282615	0.000024	0.001315	0.000012	0.03965	0.00046	1.467191	0.000032	0.282611726	133.2	-6.01163428	0.84870131	-3.169858611	909.3670368	1358.13373	13.78
_50	0.282909	0.000033	0.001451	0.000033	0.0455	0.0015	1.467221	0.000037	0.282905846	116.3	4.384956769	1.166964302	6.857921261	492.0519958	708.4198513	9.64
_51	0.282933	0.000047	0.003981	0.000021	0.1402	0.0018	1.467152	0.000044	0.282924213	118.1	5.233658079	1.662040066	7.547633853	491.0485083	665.7737057	8.38
_52	0.282807	0.00003	0.001824	0.000031	0.0537	0.0011	1.467194	0.00003	0.282802325	137.1	0.777976201	1.060876638	3.659011434	644.8316413	928.6197181	13.58
_53	0.282919	0.000022	0.0006062	0.0000066	0.01858	0.0004	1.4672	0.000026	0.282917679	116.6	4.738582315	0.777976201	7.28314779	467.0552225	681.4935791	14.91
_54	0.283006	0.000028	0.000665	0.000014	0.01752	0.00056	1.467185	0.000033	0.283004537	117.7	7.815124565	0.990151529	10.37995698	345.22387	484.130652	11.83
_55	0.282109	0.000027	0.001183	0.000043	0.0391	0.0019	1.467218	0.000038	0.282082807	1173	-23.9050869	0.954788974	1.480640409	1617.432505	1878.135377	11.63
_56	0.283088	0.00003	0.002904	0.000039	0.089	0.00072	1.467211	0.000035	0.283081117	126.8	10.71485404	1.060876638	13.29138012	243.8945654	304.3232331	12.75
_57	0.282872	0.000026	0.001207	0.000017	0.03666	0.00082	1.467206	0.000026	0.282869019	132.1	3.076542249	0.919426419	5.906914845	541.612463	781.5387218	13.66
_58	0.282352	0.000025	0.0006177	0.0000058	0.02064	0.00016	1.467207	0.000035	0.282339583	1066	-15.31198614	0.884063865	8.152741706	1258.151447	1375.912007	13.81
_59	0.282534	0.000041	0.001157	0.000044	0.03077	0.00091	1.467201	0.000052	0.282524282	448	-8.876001202	1.449864738	0.760929	1019.958338	1355.464979	12.58
_60	0.282723	0.000039	0.002896	0.000097	0.0946	0.0041	1.467185	0.000034	0.2827149	149.6	-2.192478385	1.379139629	0.84463692	789.1972594	1117.065473	11.74
_61	0.282933	0.000039	0.001664	0.000022	0.04873	0.0007	1.467143	0.000033	0.282928832	134	5.233658079	1.379139629	8.064952184	460.2099318	645.236775	11.85
_62	0.282401	0.000027	0.00095	0.000051	0.0265	0.0011	1.467172	0.000045	0.282391517	532	-13.57922096	0.954788974	-2.056649079	1200.700387	1598.231582	12.5
_63	0.282406	0.000021	0.0008026	0.0000071	0.02618	0.00018	1.467183	0.000027	0.282391287	973	-13.40240819	0.742613646	7.876098113	1189.078991	1319.756213	15.2
_64	0.282128	0.000027	0.0009128	0.0000078	0.02748	0.00029	1.467207	0.000027	0.282105365	1312	-23.23319837	0.954788974	5.446360147	1579.595536	1740.050295	12.31
VB-5_1	0.28238	0.00003	0.001479	0.000034	0.04549	0.00054	1.467193	0.000034	0.282365906	508	-14.32183461	1.060876638	-3.501448656	1247.481745	1670.161232	13.15

TDM C* = crustal model ages (Formula in Weber et al., 2012)

¹⁷⁶ Lu/ ¹⁷⁷ HfCHUR, i	0.0336	Bouvier et al., 2008
¹⁷⁶ Hf/ ¹⁷⁷ HfCHUR, i	0.282785	Bouvier et al., 2008
¹⁷⁶ Lu/ ¹⁷⁷ HfDM	0.0384	Blichert-Toft and Albarède, 1997
¹⁷⁶ Hf/ ¹⁷⁷ HfDM	0.28325	Blichert-Toft and Albarède, 1997
lambda (λ)	1.87E-11	Soderlund et al., 2004
176Lu/177HfC	0.015	Average intermedia crust. (Griffin et al., 2002)