
UNIVERSIDAD NACIONAL AUTÓNOMA 
                     DE MÉXICO

CENTRO DE CIENCIAS 
GENÓMICAS

Functional Effects of Haplotype-Specific
Open Chromatin Features in the MHC Region

T E S I S
QUE PARA OBTENER EL TÍTULO DE:

LICENCIADA EN CIENCIAS GENÓMICAS 

PRESENTA:

MARISOL ÁLVAREZ MARTÍNEZ

Tutora:
DRA. GOSIA TRYNKA

2016

usuario
Texto escrito a máquina

usuario
Texto escrito a máquina
CUERNAVACA, MORELOS



 

UNAM – Dirección General de Bibliotecas 

Tesis Digitales 

Restricciones de uso 
  

DERECHOS RESERVADOS © 

PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL 
  

Todo el material contenido en esta tesis esta protegido por la Ley Federal 
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). 

El uso de imágenes, fragmentos de videos, y demás material que sea 
objeto de protección de los derechos de autor, será exclusivamente para 
fines educativos e informativos y deberá citar la fuente donde la obtuvo 
mencionando el autor o autores. Cualquier uso distinto como el lucro, 
reproducción, edición o modificación, será perseguido y sancionado por el 
respectivo titular de los Derechos de Autor. 

 

  

 



 

 

 

 

 

 

 

 

 

A quien la lea 

  



ABSTRACT 
 
Next generation sequencing analyses are designed for haploid genomes, which bear           

no representation of genetic variation. Thus, highly polymorphic loci have not been            

comprehensively investigated using high-throughput approaches, mainly due to read         

mapping biases. Here we provide a more accurate and extensive description of the             

open chromatin landscape of the MHC region by analysing the alternative loci of this              

genomic location. We propose a methodological framework that makes use of the            

variation aware aligner Bwakit and is able to integrate its output with established             

data resources and software designed for haploid genomes. By using this approach            

we reveal haplotypic differences in open chromatin and gene expression within the            

MHC class I and class II regions. 
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I. INTRODUCTION 

 
The vast majority of bioinformatic analyses assume a haploid and “linear” reference            

assembly model ​(Church ​et al​ . 2015)​, which represents the consensus genomic           

sequence of a species with no representation of variation whatsoever. Accepting           

such paradigm in the MHC region, the most polymorphic genomic location, will lead             

to biological information loss; however, the significance of this loss is unknown.            

Throughout this thesis we aim to explore, at different molecular levels, the answer of              

this interrogation. While doing so we explore and characterise the utility of the             

variation aware aligner Bwakit ​(Li 2016)​, and unravel haplotype-specific open          

chromatin regions; mainly near the ​HLA-DRB1​  gene. 

 

This thesis is organised as follows, section II is dedicated to genetic variation             

and its representation in the reference assembly; likewise, an insight into the            

genetics of the MHC region is presented. Sections III, IV, and V describe in detail the                

goals of the project and the datasets analysed. In section VI, we examine the              

disparity between the annotated gene features in several assembled MHC          

haplotypes and highlight their relevance for functional next generation sequencing          

analyses . Next, in sections VII and VIII we evaluate a non-conventional read             

mapping software, a variation aware aligner. There are no current publications using            

the Bwakit; accordingly, we assessed its biases and integrated it into a pipeline for              

querying open-chromatin in polymorphic regions. In section IX we explore the           

functional implications at transcriptome level of the open chromatin regions that differ            

between the most scrutinised MHC haplotypes to date. 

 

In section X we summarise the findings presented, as well we reflect on the              

limitations of our approach and offer some perspectives for the future developments            

in the MHC field. Furthermore, we discuss how the new sequencing technologies            

could aid in a deeper characterisation of this important genomic region.  
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II. THEORETICAL BACKGROUND 

 

II.1. Reference Assemblies and Modern Bioinformatic Caveats 
 

II.1.1 The Human Genome Project 

 

The Human Genome Project (HGP) provided a high-quality reference assembly that           

allowed us to read the manuscript of nature to understand human life, from its              

organization to its origins and diversity. With it, the field of genomics had grown              

without precedents in the last decade. The first reference assembly was created out             

of the collapsed sequences from over 50 individuals. Each chromosome was           

represented in a “linear” haplotypic sequence, with a minuscule representation of           

sequence or structural variation. The most frequent errors in this assembly were due             

to complex structural variation, which hindered the overlap between clones ​(Church           

et al.​  2015)​. 

 

II.1.2 The Genome Reference Consortium and modern assemblies 

 

In 2007 the administration of the reference assemblies changed to the Genome            

Reference Consortium (GRC); with it a new model of assemblies was proposed and             

GRCh37 was the first implementation of it. In this new design the addition of              

“alternative loci” was made in regions housing complex structural variation and           

extensive polymorphism. The alternative loci are aligned to the haploid primary           

assembly and provide alternative sequences to highly diverse regions; having as an            

outcome neither a completely haploid or diploid assembly ​(Church ​et al. 2015;            

Church ​et al. 2011) ​. The newest implementation of the human reference assembly,            

GRCh38, represents 2.6 Mb more of novel sequence in alternative loci compared to             

GRCh37; nevertheless, not even in the newest assembly the alternative loci provide            

a complete catalogue of variation, they just represent an immediate solution to the             

lack of diversity represented in the primary assembly ​(Church ​et al.​  2015)​. 
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Besides the alternative loci there are sequences whose location in a           

chromosome is not known, they are defined as unlocalized sequences/contigs. On           

the other hand, the term unplaced sequence/contig refers to those sequences whose            

location nor chromosome of origin is known ​(Church et al. 2011) ​. The relevance of              

taking in consideration the alternative loci in next generation sequencing (NGS)           

analyses has become increasingly relevant as they can lead to off-target sequence            

alignments; and consequently errors in variant calling, underestimation of gene          

expression, etc. In fact when simulating reads from the alternative loci and            

re-mapping them only to the primary reference assembly 75% of them will map             

incorrectly ​(Church ​et al. 2015; Church ​et al. 2011) ​. Such was the effect of off-target               

alignments that the Simons Genome Diversity Project generated a set of decoy            

sequences to lessen the bias. The decoy sequences comprise a set of sequences             

absent from the reference assembly GRCh38 but present in the assemblies of some             

of their samples, their main usage has been to minimize alignment errors ​(Mallick et              

al. 2016) ​. In this document the primary reference assembly, refers to the haploid             

sequence that constitutes the chromosomes; on the contrary the extended reference           

assembly is the name assigned to the set of sequences comprising the primary             

assembly reference plus the alternative, unplaced, unlocalized, and decoy         

sequences and loci. 

 

II.1.3 Bioinformatic hindrances to analysing alternative loci 

 

The vast majority of bioinformatic algorithms and reporting formats were developed           

having in mind a linear haplotypic assembly model, therefore, they expect           

sequencing reads and genetic features to be localised in a single location in the              

reference assembly. As a matter of fact, several aligners penalize multimapping           

reads under the assumption that their location cannot be resolved due to paralogy;             

consequently, if the alternative loci are added carelessly, the alignment software is            

unable to distinguish between duplication arising from paralogy from allelic          

duplication introduced by the alternative loci ​(Church ​et al.​  2015)​. 
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II.1.4 Biological importance of alternative loci 

 

The existence of alternative loci is well documented, especially in the field of             

Population Genomics. For example, Li ​et al​ . recovered ~5 Mb of alternative loci             

absent from the HGP primary assembly; additionally, they could annotate coding           

regions in those alternative loci. Two thirds of those genes actually belonged to             

families of hypervariable genes such as mucins, olfactory receptors, HLA genes, etc            

(R. Li ​et al. 2010) ​. Although higher levels of variation in these genes are appreciated               

between populations, the diversity across individuals of the same population is           

striking as well. The relevance of analysing the alternative loci and, therefore,            

development of computational tools is clear in disease association studies. In fact,            

the genomic region associated with most of immune mediated diseases is the major             

histocompatibility complex (MHC) region, which harbours the highly polymorphic         

human leukocyte antigen (HLA) genes ​(Traherne ​et al. 2006; Carapito,          

Radosavljevic, and Bahram 2016) ​. 

 

II.2 The Major Histocompatibility Complex (MHC) Region 

 
The MHC region is located in the short arm of chromosome 6, comprising almost 4               

Mb and ~0.6% out of the total number of genes in the human genome, making it the                 

most gene-dense region ​(Trowsdale and Knight 2013; Carapito, Radosavljevic, and          

Bahram 2016)​. It is recognised as one of the most important genetic locations due to               

its association with numerous autoimmune disorders, susceptibility to infectious         

diseases, and its determining role in organ transplant compatibility ​(Traherne ​et al​ .            

2006; Carapito, Radosavljevic, and Bahram 2016)​. The most prominent genes          

located inside the MHC region are the human leukocyte antigen (HLA) genes which             

are in responsible for antigen presentation, a process that consists of presenting            

small peptides to T cells, determining whether or not to initiate an immune response.              

In order to bind a wide variety of peptides, these genes are evolutionarily selected to               

be highly polymorphic; actually they are the most polymorphic genes in the entire             

genome. Functional HLA genes code for the glycoproteins that form the MHC protein             
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complex, which is formed by an α-chain and a β-chain ​(Marsh, Parham, and Barber              

2000) ​. The HLA genes classify the MHC region in three subregions: class I, II, and III                

(figure 1A). 

 

Figure 1. ​A) Depicts the organization of the HLA and Complement genes inside the MHC region, as well                  
as the location of reported indels (shaded regions) ​(Norman ​et al. 2015)​. B) shows a detailed                
representation of the location of the class II HLA genes, in this figure the haplotype with the associated                  
antigen “DR52” is represented. C) Examples of structural variants located in the DR region. Figure               
adapted from ​(Marsh, Parham, and Barber 2000) ​ and ​(Norman ​et al.​  2015)​. 
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II.2.1 MHC Class I region 

 

The HLA class I functional genes: ​HLA-A, -B, -C, -E, -F, and -G are located in the                 

MHC class I subregion, along with ~50 other genes unrelated to antigen presentation             

and HLA class I pseudogenes: ​HLA-H, -J, -K, and -L​ . A 50 kilobase deletion              

encompassing HLA-H has been reported in this region. MIC and HFE gene families,             

also located in this subregion, are class I-like genes involved in immune surveillance.             

While all the class I genes code for the α-chain, the complementary β-chain is              

located in chromosome 15 ​(Marsh, Parham, and Barber 2000)​. 

 

II.2.2 MHC Class II region 

 

HLA class II genes are classified in five isotypes: ​HLA-DM, -DO, -DP, -DQ, and -DR​ .               

Each of these isotypes has at least one gene coding for an α-chain and another for                

the β-chain. The pseudogenes that locate in this region include: ​HLA-DQB3,           

HLA-DPA2, HLA-DPB2, HLA-DRB2​ , and ​HLA-DRB9​ . The complexity of class II          

genes can be highlighted by the HLA-DR isotype, as the quantity of functional genes              

and pseudogenes present in the region varies between individuals (figure 1C). The            

functional genes ​HLA-DRB5, -DRB4, -DRB3 might be deleted or present in some            

haplotypes in a mutually exclusive manner; the same goes for the pseudogenes            

HLA-DRB2, -DRB6, -DRB7, -DRB8​ . The indels that harbour these “optional”          

HLA-DR isotypes are always located between ​HLA-DRB1​ and the pseudogene          

HLA-DRB9​ (Deakin ​et al. 2006) ​. There are few other non-HLA genes in this region,              

also with functions related to antigen presentation ​(Marsh, Parham, and Barber           

2000) ​. 

 

II.2.3 MHC Class III region 

 

MHC class III region is the most gene dense region, spans 700 kb, and is localized                

in between class I and class II regions. Although it does not contain HLA-genes it               

houses several genes involved in innate immunity along with other non-immune           

genes. MHC class III region is conserved across species, although gene-content           

8 



 

may vary slightly especially in highly specialized immune genes ​(Deakin et al. 2006;             

Trowsdale and Knight 2013) ​ .  

  

It is intuitive that the MHC region is the most disease-associated region due to              

its high levels of polymorphism and quantity of genes ​(Trowsdale and Knight 2013)​.             

The allele count for each of the HLA “classical” alleles goes above a thousand              

according to the IPD-IMGT/HLA database ​(Robinson ​et al. 2015) ​; furthermore,          

linkage disequilibrium (LD) is high among these genes, consequently, the MHC           

region contains haplotypic blocks with reported functional consequences ​(Traherne         

et al. 2006; Vandiedonck ​et al. 2011) ​. Although the high variability and LD are              

hallmarks of the HLA genes, these characteristics are not unique to these genes, as              

they have been reported in the MHC class III region as well ​(Vandiedonck ​et al.               

2011; Yau​ et al.​  2016)​.  

 

Beyond the functional genomics analyses, there is a methodological barrier to           

analysing the MHC region, it cannot be properly studied with conventional           

genome-wide analyses, as the available methods do not take in consideration its            

variability. Thus, results from international efforts that characterise in a          

high-throughput manner the epigenome (ENCODE project ​(Kellis et al. 2014) ​),          

variation (1000 Genomes Project ​(Auton ​et al. 2015) ​), transcriptome (GTEx ​(GTEx           

Consortium 2015) ​) lack adequate accuracy in the MHC region. 

 

II.2.4 The MHC Haplotype Project 

 

Circa 2008 the completion of the sequencing, assembly, and annotation of eight            

MHC haplotypes of the homozygous cell lines: PGF, COX, QBL, MANN, APD, DBB,             

MCF, and SSTO the MHC Haplotype Project claimed to generate a comprehensive            

variation map of the MHC region for Europeans ​(Horton ​et al. 2008) ​. The PGF              

haplotype is the one embedded in the human primary reference assembly in            

chromosome 6, the rest are considered alternative loci for MHC region and span ~4              

Mb each. When comparing PGF, COX, and QBL haplotypes it was shown that the              

majority of variants fell in intergenic regions, with a high variation in repetitive             
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elements, and most of the coding variants fell in the HLA genes as expected              

(Traherne et al. 2006) ​. The MHC Haplotype Project foresaw that the characterization            

of these haplotypes would provide a framework and a helpful resource for studying             

the MHC region ​(Horton et al. 2008) ​. Nevertheless, the appropriate handling of all             

haplotypes in bioinformatic pipelines has not been established and most of the            

efforts from the GWAS and organ transplant community have focused on           

characterising variation in the classical HLA genes only ​(Carapito, Radosavljevic,          

and Bahram 2016)​. Establishing computational methods for analysing the         

non-coding regions of the MHC region will be essential for its complete            

understanding and, therefore, aid in the disentangling of the molecular mechanisms           

behind autoimmune disorders.  
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Iii. hYPOTHESIS AND  MAIN 

OBJECTIVE OF THE PROJECT  

 
The MHC region is one of the most polymorphic loci in the human genome, with a                

great density of genetic variants it is not feasible to be represented solely as a               

primary reference genome. Consequently, the MHC region has not been extensively           

explored through next-generation sequencing analyses. In this project we assessed          

how genetic variation in the MHC impacts gene expression regulation assessed           

through the chromatin accessibility profiles. 

 

Iv. PARTICULAR OBJECTIVES OF THE 

PROJECT 

 
1. Assess the completeness of the primary reference assembly (PGF haplotype)          

in comparison to other Caucasian MHC haplotypes.  

2. Evaluate the Bwakit, the variation aware version of the BWA-MEM aligner, for            

querying the epigenome within the MHC region. 

3. Identification of haplotype-specific open chromatin features in the MHC         

region. 

4. Describe haplotype-specific functional effects in the MHC region at gene          

expression level. 
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V. SAMPLES AND dATASETS 

ANALYSED  
 

We analysed open chromatin profiles from assay for transposase         

accessible-chromatin followed by whole genome sequencing (ATAC-seq) generated        

from 24 lymphoblastoid cell lines (LCL) derived from British individuals ​(Kumasaka,           

Knights, and Gaffney 2016)​. Genotype data for these samples was available through            

the 1000 Genomes Project ​(Auton ​et al. 2015) and transcriptome data from the             

Geuvadis Project ​(Lappalainen ​et al​ . 2013)​.  

 

V.1 Genetic Divergence From the Primary Reference Assembly 
 

The haplotype of the PGF cell line is present in the primary reference assembly and               

we first sought to characterise how well the PGF haplotype represents each of our              

samples, and identify those that can benefit more from the usage of variation aware              

aligners. To do so, we defined the “genetic divergence score” (GDS), which is a              

quantitative measure of genetic distance between a sample and PGF haplotype. It            

takes advantage of the genotypes provided by the 1000 Genomes Project in a way              

that each variant can be a “reference” or an “alternative” allele, depending if the              

locus in question has the same nucleotide sequence than the primary reference            

assembly, in this case PGF, or not. The genetic divergence score is calculated in a               

bin-wise manner as follows: 

DS (Bin ) )G x = 1
2N ∑

N

i=0
(ai + bi  

 

Where ​a and ​b are boolean variables, each acquiring the value of 1 when the               

alternative allele is present for variant ​i in the first (​a​ ) and second (​b​ ) haplotypes of                

the diploid sample under analysis. The genotypes were queried as part of the 1000              

12 



 

Genomes project ​(Auton ​et al. 2015) ​. ​N represents the size of the bin, in this case it                 

comprises a thousand variants. 

 

Figure 2 provides a visual representation of the genetic divergence score for            

20 of our samples. As expected, the highest divergence scores are achieved in and              

near the most polymorphic HLA genes, and it varies extensively between samples,            

even though they come from the same population. It can be appreciated that for 17               

out of 20 samples the use of alternative loci will be beneficial for an in-depth analysis                

of the MHC region. Additionally, we can conclude that each sample consists of a set               

of personalized variants​. 

 

 
Figure 2. ​The Genetic Divergence Score was calculated per sample and represented as a heatmap.               
The highest values of the GDS are achieved in the genes HLA-A, -C, -B, -DRB, -DQB1 as expected.  
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vi. Mhc REGION ASSESSED AT THE 

GENE FEATURES LEVEL 

 

VI.1 Contrasts Between MHC Haplotypes at Gene Content Level 
 

The aim of genome annotation is to identify functional elements. GENCODE           

annotations have stood out for their high quality by merging ENSEMBL and            

HAVANA annotations, this includes a manual annotation step ​(Aken ​et al. 2016) ​.            

There have been differences reported in gene content between MHC haplotypes in            

previous HAVANA releases ​(Horton ​et al. 2008) ​. We reassessed these differences in            

the newest version to date of GENCODE, release 25 ​(Harrow ​et al. 2012) ​. The              

purpose of this analysis is to offer a better grasp on the biases that are encountered                

when just the primary reference assembly (PGF haplotype) is analysed. To do so,             

we retrieve genes that are putatively affected by the highly polymorphic nature of the              

MHC region.  

 

VI.1.1 Method: Comparison at gene features level 

 

The annotations used for the MHC haplotypes were taken from GENCODE ​(Harrow            

et al. 2012) release 25 for GRCh38.p7; the GFF file used was the “Comprehensive              

gene annotation” encompassing all the reference chromosomes, scaffolds and         

alternative loci. We defined in PGF the coordinates chr6:28702185-33451429 as the           

MHC region; and analyzed the following MHC alternative loci: COX, APD, DBB,            

MANN, SSTO, QBL, and MCF. The comparison of genetic features was done at             

gene symbol level, given that gene identifiers differ between alternative loci, as            

annotated by Ensembl release 85 ​(Aken ​et al. 2016) ​. The final list of genes absent               

from PGF was subjected to manual curation. 
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VI.1.2 Results:  Comparison at gene features level 

 

Unsurprisingly, we observe that PGF has the highest quantity of unique genes out of              

all MHC alternative loci (figure 3A), as a consequence of being included in the              

primary reference assembly, ​ergo is more subjected to genome-wide analyses.          

Meaning as well that further refinement of gene annotation needs to be done in the               

MHC alternative loci. There are a few functional protein-coding genes absent from            

PGF as noted in figure 3C, in which known genes such as ​HLA-DRB3​ and              

HLA-DRB4​ are included. Nevertheless, processed transcripts are the most frequent          

biotype absent from PGF. 
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Figure 3. ​A) Venn diagram denoting the comparison of gene symbols annotated to five assembled MHC                

haplotypes: PGF, MANN, QBL, COX, and SSTO. B) Genes present in the alternative haplotypes of the                

MHC region but absent from the PGF haplotype; size and color correspond to frequency between the                

alternative MHC haplotypes. Genes with dashed margins (​LINC00533, C6orf214, and NCRNA00171​ )           

have synonym genes in PGF but with different biotype C) Gene biotype counts of the genes that are not                   

represented in PGF; biotypes were recovered from Ensembl ​(Aken ​et al.​  2016)​. 

 

VI.2 Expression Levels of Genes Absent from PGF 

 
The aim of identifying genes absent from PGF is to highlight the importance of taking               

in consideration the alternative loci of the MHC region for genomic analysis.            

Pseudogenes, repeats, and polymorphic genes possess a challenge for genome          

annotation pipelines ​(Pei ​et al. 2012; Aken ​et al. 2016) ​, all abundant in the MHC               

region; therefore, we do not expect that all genetic features missing from PGF are              

completely accurate. The quantification of gene expression of these features can           

provide validation of their existence, relevance, and putative functionality. 

 

VI.2.1 Method: Estimating gene expression from genetic features absent from          

PGF 

 

The measurement of genetic features absent from PGF cannot be made in a             

straightforward manner given that polymorphic genes are included in this analysis           

(figure 3B), ​e.g. HLA-DRB3​ and HLA-DRB4​ . Further, the ​HLA-DRB2​ , ​-DRB3​ ,          

-DRB4​ , ​-DRB5​ , etc. genes are present in more than one haplotype, and with             

different alleles. The information about which of these genes and alleles are present             

in our 24 LCL samples is not available; thus, we cannot use the variation aware               

aligners available for RNA-seq data, as they expect just one true alternative allele             

(Wu and Nacu 2010) ​. 

 

Nevertheless, the main source of bias is the high polymorphism of           

HLA-DRB1​ . In the case when the alleles of a sample are quite divergent from the               

ones of PGF, during the alignment process the reads belonging to ​HLA-DRB1​ would             
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not be mapping, or would mismap to some other HLA-DRB isotypes, consequently            

overestimating them. To overcome this bias we obtained from ​(Gourraud ​et al.            

2014) the alleles for ​HLA-A, -B, -C, -DRB1, -DQB1 for each of our samples              

analysed. This led us to design a personalized reference assembly and           

transcriptome for each of our samples, allowing us to decrease the biases originating             

from the most polymorphic genes in the MHC region. The nucleotide sequences            

coding for the peptide of each HLA gene and allele were retrieved from the              

IMGT/HLA database ​(Robinson ​et al. 2015) and added to the pertinent reference            

assembly of each sample, the GTF file was modified to include such sequences as              

well. The base reference transcriptome used was the “comprehensive annotation” of           

GENCODE release 25, which includes all the transcripts of the alternative loci. 

  

When the allele of a gene could not be completely resolved for a sample and               

included more than one option in the data set of ​(Gourraud et al. 2014) ​, a preliminary                

read mapping round was made with a reference assembly that included all possible             

allele sequences; the alignment was made with Tophat ​(Trapnell ​et al. 2012) in             

junction with Bowtie2 software ​(Langmead and Salzberg 2012) allowing         

multi-mapping of reads. The total concordant alignments were quantified for all the            

alleles tested. The most mapped allele was the one included in the personalized             

reference transcriptome. 

 

Tophat and Bowtie2 were used once again to align to the personalized            

reference transcriptome allowing multi-mapping. Multi-mapping was allowed so        

reads mapping to genes present in more than one MHC alternative loci would not get               

discarded. Finally, the transcripts per million (TPM) values for each gene were            

retrieved by adapting the formula from ​(B. Li and Dewey 2011)​ in the following way: 

 

PM ( )T n = ln
X ·10n

6 1
Y   

Y = ∑
N

i
li
xi
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Where ​Y will calculate the library size normalising factor; ​N is the total amount of               

genes in the transcriptome, ​X is the count of concordant reads mapping to a given               

gene , and ​l​  represents the effective length of the gene. 

  

The genes absent from PGF were retrieved from the analysis described in            

section VI.1. When these genes appeared in more than one MHC alternative loci the              

highest TPM value among the alternative loci was taken. With this algorithm we do              

not aim to recover a sensitive measure of gene-expression, only an approximate that             

will  point out whether a gene is expressed or not.  

 

VI.2.2 Results: Estimating gene expression from genetic features absent from          

PGF  

 

By measuring the expression of the genes retrieved as missing from PGF, we can              

curate false-positive results such as ​NCRNA00171 which is expressed in all           

samples, a highly unlikely scenario for a gene not included in the primary reference              

assembly. Although this gene symbol is not present in PGF, we can find its name               

listed as a synonym for ​ZNRD1ASP,​ but these gene symbols are registered with a              

different biotype, this could be a consequence of not analysing the alternative loci as              

thoroughly as the PGF haplotype. On the other hand, ​DASS-23B5.1 appears to be             

expressed in all samples and is not a synonym name for any gene in PGF. The fact                 

that the latter gene is shown as expressed might be a side effect of misaligned               

sequenced reads given that this gene is annotated as a processed pseudogene. 

 

Between the genes that would be worthy of experimental validation we can            

find: ​XXbac-BPG254F23.6, CR847794.1, CR759815.1, and ​C4B_2 genes.       

XXbac-BPG254F23.6 is annotated as a “processed transcript” and maps to the           

position of ​HLA-DQB1​ , no further data is available. ​C4B_2 is involved in the             

complement system and is known to be a copy number variant that may also affect               

the length of the gene ​(Chung ​et al. 2002) ​. On the other hand, ​CR847794.1 and               

CR759815.1 seem to be the same gene, their TPMs are very similar, and both are               

annotated as protein coding by Ensembl. From the functional genes ​HLA-DRB3​ and            
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HLA-DBR4​ we retrieved a non-suspicious pattern of gene expression, as there are            

only a couple of samples expressing them. Further, the sample HG00104 do not             

express any of them, behaviour expected according to ​(Gourraud ​et al. 2014)            

genotype data. Such inference can be made because the sample HG00104 shares            

the same ​HLA-DRB1​ and ​HLA-DQB1​ alleles with PGF, which comprises a well            

conserved haplotypic block that does not contain ​HLA-DRB3​ nor ​-DRB4​ (​ Traherne et            

al. 2006)​ . The rest of the expressed genes retrieved are more challenging to analyse              

as they are mostly pseudogenes and snRNAs. 

 

In conclusion, the extent of the polymorphism that the MHC region hosts            

exceeds allelic variation (only within genes), and goes up to the introduction/removal            

of functional genes and pseudogenes between haplotypes. A median of four protein            

coding genes in the alternative MHC haplotypes are missing in the primary reference             

assembly, from which ​HLA-DRB3, -DRB4​ , ​CR847794.1, CR759815.1,​ and ​C4B_2         

are retrieved in the gene expression analysis (figure 4). Furthermore, a median of 24              

genetic features annotated in the alternative MHC haplotypes are not present in            

PGF. Thus, the biological context does vary between MHC haplotypes and needs to             

be retrieved for an in-depth analysis of regulatory regions within this polymorphic            

genomic location. Most read aligners cannot manage high amounts of variation with            

minimum or no ​a priori knowledge, they mostly depend on genotype availability ​(Wu             

and Nacu 2010) ; or seek to integrate haplotypes into a joint space that is not yet                 

suitable to be integrated in downstream analysis ​(Huang, Popic, and Batzoglou           

2013; Dilthey ​et al. 2016) ​, like peak calling and gene annotation. In the next section,               

we explore the Bwakit software that tackles read-mapping biases by integrating           

known alternative loci while mapping and can be integrated with already established            

NGS analyses with minor adjustments. 
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Figure 4. ​Heatmap of TPMs recovered from the gene features absent from the PGF haplotype, as                

retrieved in section VI.1. Given that the genes analysed vary between MHC haplotypes, a              

heterogeneous behaviour of expression is expected. The gene symbols that reflect such behaviour are              

marked with an arrow. On the other hand, some genes recover positive and uniform TPMs, this can be                  

explained by errors in gene annotation or due to read mapping problems that several pseudogenes               

suffer from. 
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VII. USAGE OF VARIATION AWARE 

ALIGNERS FOR QUERYING THE 

EPIGENOME OF THE MHC REGION 

 

VII.1 Read Mapping in Highly Polymorphic Loci 
 

Read mapping is the process of aligning reads resulting from a sequencing run to a               

reference assembly to infer their genomic location. There is a broad range of             

available software to perform this task. However, software packages vary in speed            

and accuracy and their performance deteriorates in the presence of genetic variation            

(Lunter and Goodson 2011)​. High amounts of polymorphism generate a bias towards            

the reference allele, causing reads to be mapped to a wrong location, or not mapped               

at all; given that read mapping is the first step in any NGS analysis workflow, its                

accuracy impacts on the final results. For example, Brandt ​et al​ . reported a total of               

18.6% incorrect genotype calls at the HLA genes in the 1000 Genomes Project (1kG              

Project) Phase I data, the hypothesised underlying cause was a mapping bias            

towards the PGF HLA alleles ​(Brandt ​et al. 2015) ​. Few aligners have been created to               

deal with alternative alleles ( ​(Buchkovich ​et al. 2015; Huang, Popic, and Batzoglou             

2013; Dilthey ​et al​ . 2016) ), most of them relying on available genotype data at an                

individual or population level, which is retrieved by interrogating a primary reference            

assembly. When dealing with minimal or absent structural variation these strategies           

are pertinent; nonetheless, for genomic locations where high density of          

polymorphism is a hallmark it may yield incomplete and misleading results. Novel            

approaches create graph structures to integrate variation information contained in          

the alternative loci and genotypes ​(Dilthey ​et al. 2016) ​; nevertheless, the coordinate            

system they manage is not compatible with available software and data resources            

for genomes. 
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VII.1.1 Method: The Bwakit 
 

The Bwakit software package based on BWA-MEM, both developed by Heng Li ​(Li             

2013) ​, is a read aligner that queries consciously and discriminately both reference            

and alternative loci/contigs (Alt-Ctgs) in a single run with no genotype data required.             

This makes it suitable to query genomic regions that span several megabases, have             

more than one alternative loci present in GRCh38 and do not have accurate             

genotype calls available, such as the MHC region. It could also be implemented to              

cases where genotypes are available and variation is less frequent, but sensitivity            

and specificity against other approaches under this scenario has not yet been            

assessed. 

 

Initially, Bwakit maps the reads using the BWA-MEM software to the primary            

reference assembly plus the Alt-Ctgs. During this mapping process a read may have             

multiple hits (matches against the input sequence); BWA-MEM will tag a hit as an              

alternative (Alt-Hit) or not alternative hit (non-Alt-Hit) depending if the sequence           

where a read matched is part of an Alt-Ctg or not. The mapping quality (mapQ) of a                 

non-Alt-Hit will be calculated considering all non-Alt-Hits for the read in question (the             

same as if no Alt-Ctgs were supplied) and the best non-Alt-Hit will be considered the               

“primary alignment” of the read. The mapQ of an Alt-Hit will be calculated             

considering both non-Alt-Hits and Alt-Hits for the read, and will be considered as a              

supplementary alignment (SAM flag 0x800); only when the read has solely Alt-Hits it             

will be considered as the primary alignment ​(Li 2016)​. BWA-MEM will output a SAM              

file with the best hits for a read (one primary alignment and, if existent, one               

supplementary alignment). If there were more viable hits they will be included as an              

XA tag in the primary alignment. 

 

A second step is carried out to recalculate the mapQs of reads with both              

non-Alt-Hits and Alt-Hits ​(Li 2016)​. This step relies on the fact that coordinates in              

Alt-Ctg (Alt-Pos) have a corresponding coordinate assigned into the primary          

assembly (Chr-Pos), information stored as an alignment in a SAM file with the             

extension “.fa.alt” and is provided by the Bwakit. When re-estimating the mapQs for             
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primary and supplementary alignments of a given read, the Alt-Pos of Alt-Hits are             

lifted over to the primary assembly to obtain a Chr-Pos; at this point all the hits are in                  

the same coordinate system (same start of contig), making them comparable and            

may be assessed if the multiple hits have a concordant Chr-Pos. Then, hits are              

grouped by their Chr-Pos, hits with overlapping positions belong to the same group.             

A group mapQ is assigned (the highest mapQ among the hits belonging to the              

group), and all the hits that do not belong to the group with the highest mapQ will be                  

assigned a mapQ of zero. The mapQ of all the hits belonging to the group with the                 

highest mapQ will be:  

 

apQ 6 X[0] [1])m  =  * ( − X  

 

Where ​X is an array sorted decreasingly and containing the mapQ of each group.              

When a read has both primary and supplementary alignments, the output goes as             

follows:  

1) one line for the primary alignment (mapQ recalculated) with the additional            

hits in the XA tag 

2) one line with the supplementary alignment (mapQ recalculated) 

3) if present, Alt-hits belonging to the group with the highest mapQ 

 

The benefit of using this algorithm is clear when a read has multiple hits with               

discordant Chr-Pos and the most accurate hit position needs to be retrieved. In             

figure 5 the following example is provided: a read has four hits which can be grouped                

into two groups. The blue alignment is the first line in the output SAM file, present as                 

the primary alignment; a mapQ of 0 is assigned to this alignment as it does not                

belong to the group of the read with the highest mapQ. The second line will be the                 

best supplementary alignment, red, with a mapQ recalculated and bigger than 0, as             

it belongs to the group with the highest mapQ. Given that the yellow hit is grouped                

with the red hit, the yellow hit is outputted in the third line. The previously described                

mapQ recomputing algorithm is available in Heng Li’s Github web-page:          

https://github.com/lh3/bwa/blob/master/bwakit/bwa-postalt.js under the name of     

bwa-postalt.js. 
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Figure 5. ​Example of the mapQ recalculating algorithm of Bwakit, in this particular case when               
alignments with two different Chr-Pos occur. Figure taken from ​(Li 2016)  
 

VII.1.2 Method: Processing the output of Bwakit 

 

Bwakit will output all the hits of the group with the highest mapQ and all with the                 

same mapQ, so this cannot be accepted as the final output when we are interested               

in the supplementary alignments. Taking advantage of the order of the output SAM             

file by bwa.kit, the primary alignment and the first supplementary alignment were            

kept for further processing; this was achieved by modifying Heng Li’s javascript code             

“bwa-postalt.js”. Further filtering was done using ​samtools view​ (Li ​et al.​ 2009) to             

remove unmapped reads and only selecting alignments when both read pairs           

mapped concordantly; to reduce memory usage reads mapping to mitochondrial          

DNA (~%50 of ATAC-seq reads) were removed. To further resolve a read’s            

alignment, a python script was developed. This script compares the mapQ and the             

editing distance of the primary and supplementary alignments and decides which           

one is the best using these metrics, if there is no best both alignments are kept.  
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VII.2 Using Variation Aware Aligner Bwakit to Query the  

Open Chromatin Landscape of the MHC Region 
 

VII.2.1 Method: Input data for Bwakit 

 

Data analysed were ATAC-seq pair-end reads belonging to 24 lymphoblastoid cell           

lines (LCLs) ​(Kumasaka, Knights, and Gaffney 2016)​. Further quality control (QC)           

was done with ​Trimmomatic ​(Bolger, Lohse, and Usadel 2014) by trimming bases            

with a phred score < 35, keeping reads with a minimum length of 50bp, and when                

both pairs remain after the QC. 

 

The reference assembly for the ATAC-seq reads was the extended          

GRCh38.p7 plus an extra set of sequences provided by Bwakit in the file             

hs38DH-extra.fa ​(Li 2016)​, which includes decoys retrieved by GenBank ​(Benson ​et           

al. 2013) and the Simons Genome Diversity Project (SGDP) ​(Mallick ​et al. 2016) ​,             

and the HLA-alleles retrieved from the IMGT/HLA database version 3.18.0          

(Robinson ​et al.​  2015)​. 

 

VII.2.2 Result: Analysis of Bwakit alignments 

 

In addition to the Alt-Ctgs, the Bwakit also includes a set of “decoy sequences”,              

which comprises structural variants that are highly variable in presence, serve to            

hinder reads from mapping inaccurately into the reference assembly ​(Mallick ​et al.            

2016) ​. To prove that BWA-MEM is factual while assigning mapQs to the            

supplementary alignments Figure 6A shows the mapQ assigned to the          

supplementary alignments. The mapQ distribution of the reads mapping to the decoy            

sequences is below our acceptance threshold for reliable alignments (mapQ >= 30).            

On the other hand the distribution for the alignments to the Alt-MHC-Hap is above it,               

and centered in the maximum value, which is 60. Although the Alt-MHC-Hap and the              

decoy sequences comprise structural variants and polymorphism absent from the          

reference assembly, the Alt-MHC-Hap contain sequences that are popular amongst          
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British individuals, therefore with higher similarity to our samples, while the decoy            

sequences provide a more global set of sequences and not thoroughly           

characterised.  

 

Finally. we also assessed the location of the reads mapping in MHC-Alt-Hap.            

Figures 6B and 6C represent the number of alignments in a 10 kb bin located within                

the MHC region. A strong enrichment of reads mapping to an Alt-MHC-Hap was             

detected in MHC class II for most samples, accompanied by a gap formed by the               

absence of reads mapping to PGF, as depicted in figure 6B for sample HG00099.              

For a sample less genetically divergent from PGF (refer to figure 2), such as              

HG00097, the gap in PGF is absent, and a pileup of reads near MHC class II has a                  

weaker depth. We therefore concluded, that the Bwakit is sensitive to polymorphic            

regions, as further explored in this thesis. 
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Figure 6. ​A) Box plot depiction of the mapQs assigned to the supplementary alignments, as defined by                 
the Bwakit; specifically of the alignments done to the alternative loci of the MHC region and the                 
sequences annotated as decoy by the SGDP. The decoy sequences represent recently discovered             
alternative loci recovered by the assembly of multiethnic genomes; while the alternative loci of MHC               
represent the most frequent MHC haplotypes in Caucasians. As expected the sequencing reads align              
better to sequences pertaining to Caucasian population. B) and C) represent the read counts falling into                
each of the thoroughly characterised MHC haplotypes. Shaded regions represent MHC class I and class               
II regions. In B) the sample HG00099 is genetically divergent to PGF, thus, several gaps are noted in the                   
x-axis and a pileup of reads mapping to QBL haplotype is appreciated. Sample HG00097 in C) is less                  
divergent to PGF as it can be noted by the absence of gaps in the x-axis and weaker read pile-ups in the                      
alternative loci of the MHC. 
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VIIi. BIASES OF VARIATION AWARE 

ALIGNERS FOR QUERYING THE 

EPIGENOME OF THE MHC REGION 

 

VIII.1 Assessing Biases During Peak-Calling in the MHC Region 

 
To ensure that the reads aligning to the MHC-Alt-Hap were not randomly distributed             

and followed the distribution expected from ATAC-seq reads, the MACS2 software           

(Zhang ​et al​ . 2008) was used. MACS2 uses a Poisson based model with a dynamic               

parameter which captures biases (chromatin structure, sequencing bias, etc.) inλlocal           

a locus specific manner ​(Zhang ​et al​ . 2008) ​. Given that a Poisson distribution             

underlies ChIP-seq and ATAC-seq tags, a level of statistical significance can be            

assigned to a peak through a ​p​ -value, and if corrected for multiple-testing a ​q​ -value. 

 

VIII.1.1 Mehtod: Further processing of Bwakit output for MACS2 

 

During the read mapping process the output from the Bwakit is processed as             

described in the previous section; however further quality control is needed before            

running MACS2. At this stage we keep only the concordant alignments with a mapQ              

greater than 29 (the maximum being 60) and eliminated the supplementary           

alignment flag (0x800) out of the Alt-MHC-Hap in order to be compatible with             

MACS2 restrictions.  

 

VIII.1.2 Results: Bwakit biases during peak calling 

 

We tested whether the peaks called at MHC-Alt-Hap (hereafter referred as           

Alt-Peaks) possessed certain biases compared to the peaks called at PGF           

(PGF-Peaks). The variables tested were peak length, fold-enrichment of the peak,           

and the ​q-value​ . For all the metrics tested the Alt-Peaks are of lower quality than the                

PGF-Peaks, in fold-enrichment the difference between the median(Alt-Peaks) and         
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the median(PGF-Peaks) is of -0.301, the q-values are less significant with           

equal to -1.933, and the peaks are shorter resulting in thelog (qval)  Δ 10             

of -115.99 (for all, the ​p-value​ <.015 using a Mann-Whitney U test);(length(peak))  Δ            

the metric that is more affected is the length of the peaks, nevertheless, we do               

retrieve good quality peaks as they are not skewed towards the minimum            

acceptance threshold for peak-calling (qval(peak)<=.01 in this analysis), as shown in           

figure 7.  

 

Additionally, it can be noted from figure 7 that the proportion of ATAC-seq             

peaks within the Alt-MHC-Hap is smaller than the proportion of peaks in PGF, this is               

due to the fact that only when the sequence underlying an Alt-Peak is polymorphic              

from PGF sequence an Alt-Peak will be called. To assess this in more detail, a               

modified version of the genetic divergence score was defined, the “peak divergence            

score”. The peak divergence score (PDS) defines the deviation of a sample from the              

PGF haplotype and is specific to analysed samples. It is defined as follows: 

DS (Bin ) (a )P z = 1
X ∑

X

s=1

1
2M ∑

M

i=0
s,i + bs,i  

 

Where ​X is equal to the number of analysed samples; ​M represents the total              

of variants genotyped by 1000 Genomes project in​ ; ​a and ​b are boolean        in  B z       

variables that are equal to 1 when the variant ​i in sample ​s has the alternative allele                 

in haplotype 1 or 2, respectively, and each bin comprises of 500 bp. As shown in                

figure 8 no Alt-Peaks are called in a bin when the PDS is equal to 0; there is a weak                    

negative correlation of ​r = -0.12 (​p-val​ <0.003) between peak count of PGF-Peaks             

and PDS. A statistically insignificant correlation is made in the opposite direction for             

Alt-Peaks, ​r​ =0.145 (​p-val<0.25​ ). Both correlations behave as expected, as the           

amount of polymorphism increases, the PGF haplotype will be mapped less as it             

does not represent correctly the underlying sequence; on the other hand, an            

Alt-MHC-Hap can represent the sequence better than PGF, thus, the reads align to             

it. 
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Figure 7. ​Box plot depiction of q-values (A), fold enrichment (B), and peak length (C) for each peak                  
called by MACS2 software, the color of each dot represents the MHC haplotype from where the peak                 
was called. For all metrics the Alternative Peaks were of lesser quality; nevertheless, not skewed               
towards quality control thresholds. 
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When correlating the PDS with the median ​q-value of the peaks in a bin, for               

PGF-peaks there is a weak negative correlation of ​r = -0.1 with a ​p-value​ <0.018. In               

Alt-Peaks a stronger and significant negative correlation is obtained, ​r = -0.378 with a              

p-value​ <0.002. The later result is unexpected, given that if a sequencing read will not              

map to PGF due to sequence divergence, then the read will map to an Alt-MHC-Hap.               

There are two reasons why such correlation might be observed: 1) the PDS is very               

sensitive to the number of variants in a bin.​ For example, there is just one variant in                 

a 500 bp bin and all samples are heterozygous in such position, then the PDS               

equals to 0.5. The issue of such assumption is that high PDS are very unlikely to                

occur, as it is shown in figure 8C. High values of PDS are only frequent in the MHC                  

class I and class II, but these regions are densely genotyped by the 1000 Genomes               

Consortium (supplementary figure 1). Second possibility is that the sequence          

underlying an Alt-Peak is divergent from PGF, but not with multiple Alt-MHC-Hap,            

consequently resulting in read-mapping problems. 
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Figure 8. ​Correlations between the peak divergence score (PDS) and number of peaks called at PGF                
and the alternative loci of MHC (A) and the q-value obtained from the peak calling analysis (B). No                  
peaks were called with a PDS of 0, meaning that in absence of variation no significant amount                 
sequencing reads will map to PGF. C) represents the frequency of PDS values in the MHC                
(chr6:28400000-34000000), class I (chr6:29672223-31357223) and class II (chr6:32432223-33132223)        
regions. The highest PDS scores are achieved in the class II region, and even a shift to a PDS> 0 as the                      
most common value is appreciated, restating the high amounts of polymorphism encountered in the              
class II regions. D) shows the amount of peaks called at certain position in a 500 bp bin among all                    
samples and its PDS. The highest amount of Alternative Peaks is achieved in MHC class II; care should                  
be taken in interpreting the counts of peaks, as in a Chr-Pos more than one peak per sample might be                    
called if the comprised sequence is polymorphic and under balancing selection (traits of the MHC               
region). The size of each dot in figure D is associated with the PDS for a given peak. 
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IX. ThE OPEN CHROMATIN 

LANDSCAPE OF THE MHC REGION 
 

A multicellular organism is comprised of cells with, mostly, identical genetic           

information. The phenotype of a cell will be determined by which transcripts they             

express, protein-coding or not; further, gene expression needs to be adaptable and            

heritable. Epigenetic mechanisms are the key regulators in modulating gene          

expression. The epigenetic mechanisms can be summarised as follows: 1) covalent           

modification of DNA, ​e.g​ . methylation of cytosines is associated with promoter           

repression, 2) covalent modification of histones, e.g. the acetylation of lysine 4 on             

histone H3 (H3K4Ac) is associated with active genes, 3) and non-coding RNAs, ​e.g.             

the long non-coding RNA gene ​Xist is responsible for the X chromosome            

inactivation. ​(Tough et al​ . 2016) ​. Thus, controlling the binding of transcription factors            

in regulatory regions. The transposase-accessible chromatin using sequencing        

(ATAC-seq) is a sensitive method for the interrogation of the open chromatin            

landscape in a cell-type and condition specific manner ​(Buenrostro ​et al​ . 2013) ​.            

Knowing that there are gene content differences between haplotypes, we aimed to            

seek haplotype-specific differences in the open chromatin landscape. Our analytical          

framework allows to call ATAC-seq peaks in the different MHC alternative loci, and             

make their coordinates comparable between each other. 

 

IX.1 Categorising Open Chromatin Features Within the MHC Region 
 

IX.1.1 Method: Lifting-over of Alt-MHC-Hap coordinates to the human primary          

reference assembly GRCh38 

  

To make the peaks called at alternative MHC haplotypes (Alt-MHC-Hap) and PGF            

peaks comparable, a custom script was created to lift-over coordinates from the            

Alt-MHC-Haps to GRCh38. The script works by parsing the CIGAR string of the             

alignment of an Alt-MHC-Hap to GRCh38. In this way it is possible to retrieve              

comparable coordinates, as well as insertions and deletions to PGF.  
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IX.1.2 Method: ATAC-seq peak classification 

 

The Alt-Peaks were classified in the following manner, and in the hierarchy shown in              

figure 9: 

● PGF-Alt Peak​: there is an ATAC-seq peak called at PGF and another            

in an Alt-MHC-Hap within a sample and they overlap in coordinates 

● Alt-Alt Peak​: there are two overlapping ATAC-seq peak called at two           

different Alt-MHC-Hap within a sample. As it was not assigned to the            

PGF-Alt category, this indicates that the PGF haplotype is absent in           

this sample. 

● Recovery Peak​: a list of “PGF consensus peaks” is created. For a            

peak to be included in such a list it must overlap with at least 8 other                

PGF-Peaks located in other samples. This might imply a presence of a            

polymorphic site that is better described in an Alt-MHC-Hap for a given            

sample  

● Insertion Peak​: an Alt-Peak is localized in a genetic location absent           

from PGF and with a minimum length of 150 bp. This is defined by the               

alignment of the Alt-MHC-Hap in question with PGF. 

● Low Recovery Peak​: same as the Recovery Peak classification,         

except that the threshold to be considered as a consensus peak is            

greater or equal to one sample and less than eight samples. 

● Absent from PGF​: the Alt-Peak does not overlap with a PGF-Peak           

called in any of the samples analysed. This could implicate highly           

polymorphic sequence to the PGF haplotype, introducing a binding         

site. 
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Figure 9. ​Alt-Peak categorization. Detailed description in the main text. 
 
 

 

35 



 

IX.1.3 Method: ATAC-seq peak annotation  

 

To obtain a further understanding of the open chromatin landscape within the MHC             

we designed a gene assignment/annotation framework for the ATAC-seq peaks.          

This annotation algorithm will designate to a peak all genes that overlap or are              

downstream an ATAC-seq peak within 6 kb; if no gene was assigned to a peak in                

this first step, then the nearest gene is assigned to it (figure 10C). The              

ChIPpeakAnno package ​(Zhu et al. 2010) within the R software was used to make              

the annotation. The annotation is made in an alternative loci specific manner based             

on the genetic features included in the release 25 of GENCODE ​(Harrow ​et al.              

2012) ​. Finally, each gene was weighted by the frequency of its assignment to             

ATAC-seq Alt-Peaks and represented as a word cloud diagram. 

 

IX.1.3 Result: ATAC-seq peak annotation  

 

The assigned genes are shown in a word cloud graphic in figure 10B, the most                

assigned gene is ​HLA-DRB1 followed by ​TRIM26 and ​MICD​ ; furthermore, genes           

absent from PGF make also an appearance, ​e.g. ​HLA-DRB3 and HLA-DRB4​ .           

Importantly, all Alt-Peaks have a sequence bearing polymorphisms when compared          

to PGF (section XIII); thus, it is not surprising that genes located in highly              

polymorphic regions are assigned to a peak, ​e.g.​  the HLA genes. 
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Figure 10. ​A) Number of Alt-Peaks that fall within each category; the amount of genes vary between                 
samples, as it depends on the genetic divergence score (section V.1) and to the availability of alternative                 
loci. The plot on the top assigns to each peak one category, as defined in figure 9; each bar sums up to                      
the total of Alt-Peaks found in each sample. The plot on the bottom depicts the number of Alt-Peaks per                   
category when one peak is allowed to have more than one category. For the latter the “Low recovery                  
peak” category was not made. B) Genes associated with Alt-Peaks, colour and font size correspond to                
the frequency of association. C) Framework for peak annotation. 1. All genes upstream and overlapping               
a peak within 6 kb are annotated to a given peak; in the example above genes A,B, and C are assigned                     
to the pink peak. 2. If a peak had no gene assigned in 1. the closest gene to the peak is annotated for                       
the peak in question; in this case gene G  is assigned to the orange peak. 
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IX.2 Analysing Haplotype-Specific Effects in the MHC Region 

 
IX.2.1 Result: Functional interpretation of open chromatin features absent from          

PGF 

 

There are six ATAC-seq peaks among all samples falling into sequences not present             

in PGF (figure 10A), to address their functionality we assessed which genes were             

annotated to each of them. Out of the six peaks, only four were assigned a gene in                 

less than 60 bp, for these cases ​HLA-DRB4 a functional DRB gene is annotated.              

The remaining two peaks are annotated to the pseudogene ​RNU1-79P which is near             

HLA-DRB3​ , both absent from PGF. Table 1 gives further information in respect of             

these cases. 

   

ENSEMBL Gene ID Haplotype Start End 

Peak 

Lengt

h 

Sample 
Distance 

to Gene 

Gene 

Symbol 

ENSG00000227826 MANN 3855323 3855531 209 HG00139 -40 HLA-DRB4 

ENSG00000227826 MANN 3855322 3855540 219 HG00249 -44 HLA-DRB4 

ENSG00000227826 MANN 3855348 3855532 185 HG00123 -53 HLA-DRB4 

ENSG00000227826 MANN 3855359 3855519 161 HG00256 -52 HLA-DRB4 

ENSG00000265223 COX 3923945 3924121 177 HG00240 7311 RNU1-79P 

ENSG00000265223 COX 3924000 3924176 177 HG00251 7256 RNU1-79P 

Table 1. ​Description of peaks that are categorised as Insertion peaks. The Alt-MHC-Hap from which               
they were called is described, as well as the coordinated they fall into. 
 

ENSEMBL Gene ID Haplotype Start End 
Start in 

PGF 

End in 

PGF 
Sample 

Distance 

to Gene 

Gene 

Symbol 

ENSG00000225691 MCF 2616092 2616237 31273378 31273523 HG00258 -1315 HLA-C 

ENSG00000226050 MCF 2616092 2616237 31273378 31273523 HG00258 -2113 USP8P1 

ENSG00000229074 MANN 4017382 4017527 32604619 32604763 HG00258 5589 HLA-DRB1 
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Table 2. ​Description of peaks that are categorised as absent from PGF. The Alt-MHC-Hap from which                

they were called is described. The coordinates in the Alt-MHC-Hap from which the peak was called, as                 

well as the position they were lifted to in PGF. 

 

There are two peaks in the category of peaks “not present in PGF”, both              

coming from the same sample. One of these peaks is annotated with ​HLA-C and              

USP8P1​ , the other is annotated with ​HLA-DRB1​ ; however, these genes are           

annotated by a PGF-Peak in some samples which means that these open chromatin             

features are not exclusive to the MHC-Alt-Hap; furthermore they have been reported            

as enhancers. In ​HLA-C​ , the difference between the Alt-Peak and PGF-Peak lies on             

the distance to the annotated gene, as shown by table S1. For example, while the               

PGF-Peaks lie in a distance minor to -130 bp, the Alt-Peak is -1315 bp of distance to                 

HLA-C. It remains to be tested if these enhancers differ in genetic sequence, if so               

they may house different binding sites for TFs and may have functional consequence             

at transcriptomic level. On the other hand, some PGF-Peaks annotate HLA-DRB1 to            

the same distance as the reported Alt-Peak, this might be to the presence of CNVs               

that differ in both haplotypes. 

 

Furthermore, an estimate of the expression of ​HLA-DRB4​ was assessed          

using the same method as described in the section V1.2.1. As previously stated,             

HLA-DRB4​ is a gene absent from PGF, and it is in proximity of an “Insertion peak”                

located in the MANN haplotype in 4 of 24 samples; therefore, we hypothesized that              

the presence of this open chromatin feature will be an indicator of the expression of               

HLA-DRB4​ . Figure 11 shows the TPMs recovered for the ​HLA-DRB4​ gene present            

in different alternative loci of MHC, plus a control gene ​MS4A1 located in             

chromosome 11; the ​MS4A1​ gene is not highly polymorphic, located outside the            

MHC region and according to the GTEx portal it is only expressed in LCLs among all                

the cell types they queried ​(GTEx Consortium 2015)​. It can be noted that all the               

samples which had the insertion peak express ​HLA-DRB4​ , and nine out of the             

twenty-four samples do not express ​HLA-DRB4​ at all. The remaining eleven samples            

do express ​HLA-DRB4​ and do not have a peak annotated to ​HLA-DRB4​ . Based on              

the TPMs it appears that the ​HLA-DRB4​ expressed for the latter samples is more              
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similar to the allele present in the MCF and SSTO haplotypes; nevertheless the             

reasons why there is no “Insertion Peak” for this samples remains unknown. 

 

 
Figure 11. Heatmap representation for the gene ​HLA-DRB4​ , located between ​HLA-DRB9​ and             
HLA-DRB1​ . Each column represents a different haplotype analysed; the haplotypes MANN, SSTO, and             
MCF were selected given that all of them have a functional ​HLA-DRB4​ gene. The shaded rows in the                  
left-most bar correspond to those samples in which the Insertion peak was called.  
 
IX.2.2 Method: Functional effects of the alternative peaks in the MHC in            

non-HLA genes 

 

Obtaining a quantitative measure of the expression of the highly polymorphic HLA            

genes without an adequate experimental setup cannot be achieved nowadays with           

the NGS analyses available to date. The biggest obstacles for an accurate gene             
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expression quantification are paralogy, polymorphism, and ploidy of the human          

genome. There are two alleles per gene present in a given sample, overestimation of              

TPMs will be highly coupled to resemblance of both alleles, the more alike the higher               

the probability of a read being shared between alleles. Therefore, we sought            

haplotypic differences at transcriptomic levels in non-HLA genes; eliminating the          

biases of high genetic divergence from PGF, paralogy, and ploidy.  

 

We used the RSEM software ​(B. Li and Dewey 2011) to quantify gene             

expression of features included on the reference chromosome as annotated by           

GENCODE 25 ​(Harrow ​et al​ . 2012) ​. All the genes that were annotated by an              

Alt-peak were included in analyses only if they were expressed. A gene was defined              

as expressed if they had a TPM value above 75; eight genes passed these              

thresholds. A sample and its correspondent TPM value for a given gene was             

classified according to the alternative loci where the Alt-Peak was identified;           

furthermore, a classification was made if at least two samples fell in it, otherwise, it               

was discarded from further analysis. 

 

IX.2.2 Result: Functional effects of the haplotypic structure of the MHC in            

non-HLA genes 

 

TRIM26​ , localised in MHC class I region , was the only gene that showed a               

statistically significant differential expression between haplotypes (pval <0.009, with         

a Kruskal-Wallis test). It is noteworthy that most of the genes tested had a small               

sample size which hindered the making of more inferences (figure 12). ​TRIM26 has             

shown to be linked to schizophrenia, along with ​RNF5 and ​HLA-DRB3 ​(de Jong ​et al.               

2012) ​; moreover, ​TRIM26 has shown to have a critical role in the regulation of the               

innate immune response ​(Wang​ et al​ . 2015​; ​Ran ​et al.​  2016)​.  

 

In brief, the analytical framework proposed is able to retrieve haplotype           

specific events such as open chromatin and transcript abundance (of not highly            

polymorphic genes) in alternative loci. No genotype data is required for the analysis,             
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thus, providing an advantage to current proposes available. Further, the same           

methodology can be applied to query covalent modification of DNA and histones. 

 

 
Figure 12. ​In the y-axis the TPM values are plotted for each of the expressed genes that were                  
annotated by an alternative peak. Each TPM value was categorised, in the x-axis, accordingly to the                
haplotypes from which the peaks associated to the gene were called. Differential expression of a gene                
was tested between haplotypes, p-values are indicated between parenthesis next to the gene symbol.  
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x. CONCLUSIONS AND 

PERSPECTIVES 
 

Throughout this thesis we characterised the usage of the variation-aware aligner,           

Bwakit, for querying one of the most polymorphic genomic locations in the human             

genome: the MHC region. The main goal was to uncover open-chromatin features            

not represented in the primary reference assembly and assess their impact on the             

gene expression profiles in 24 lymphoblastoid cell lines. 

 

First, we familiarised the reader with the current status of data availability for             

the MHC region, while highlighting the importance, extent, and consequences of           

polymorphism in this locus. We assessed the dissimilarities between eight MHC           

haplotypes by comparing the gene sets annotated by GENCODE in each of them.             

Even though the highest quantity of differing genes are non-coding, the integration of             

them is of vital importance as they can impact and produce bias and             

misinterpretation. For example, ​(Dilthey ​et al.​ 2016) used population reference graph           

to type HLA alleles; they noted that the omission of the ​HLA-DRB5 gene from their               

analyses resulted in the misalignment of reads to ​HLA-DRB1​ . The assembly and            

annotation of more population inclusive haplotypes is urged to get a better            

understanding of variation within the MHC region. Likewise, The Simons Genome           

Diversity Project assembled genomes from 142 populations from which they          

retrieved several alternative loci, most of them pertaining to the MHC and IgH locus              

(Mallick ​et al​ . 2016)​. Third generation sequencing technologies will play a pivotal role             

in such ambitious task; with the usage of long reads, greater accuracy in assembly of               

haplotypes and HLA allele typing are expected to benefit of these technologies            

(Carapito, Radosavljevic, and Bahram 2016)​.  

 

Knowing that the biological context differs between haplotypes, we         

implemented into our pipeline a variation aware aligner that allowed us to retrieve             

such differences and include them in our analysis, and even integrate it with other              

software implemented for linear haplotypes. The pipeline herein referred to is           
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suitable for ATAC-seq and for ChIP-seq, although data from the latter technique was             

not presented. A remarkable advantage of this pipeline presented is that no            

genotype data is required; however, it is best suited for Caucasian individuals.            

Additionally, we evaluated the biases found in the read mapping and in the             

peak-calling downstream step. In general, reads were aligned only to the alternative            

haplotypes of the MHC when the location mapped underlied polymorphic sites. In            

terms of peak quality, obtained from MACS2 software, the peaks called at the             

alternative haplotypes of MHC were of lesser quality, nevertheless, they did not            

skewed towards quality control thresholds implemented.  

 

Next, we assigned a putative functionality to each peak called in the            

alternative haplotypes of the MHC, given that each peak represents an           

open-chromatin feature and, therefore, may have a role in gene expression. Among            

the 24 samples, we called six peaks that fell into a sequence absent from PGF,               

“Insertion Peaks”; these peaks located in a known indel between HLA-DRB9 and            

HLA-DRB​ 1. These six peaks could be divided into two groups: 1) peak associated             

with ​HLA-DRB4 and 2) peak associated with ​HLA-DRB3​ . Out of the 24 samples,             

four had the peak associated with ​HLA-DRB4 and we could recover positive gene             

expression metrics for ​HLA-DRB4 in these samples. Next we assessed if there were             

any differences between gene expression values amongst genes annotated with          

peaks falling into different haplotypes; for the eight genes queried, ​TRIM26​ , showed            

differential expression between haplotypes. This last analysis was limited by the           

small sample size analysed and restricted to genes low in polymorphism; even            

though the HLA genes were the most assigned to an alternative peak. To overcome              

the constraints of querying accurately the expression of polymorphic HLA genes,           

data sets extracted from homozygous cell lines with known types for all HLA genes              

and pseudogenes could be sequenced with third generation machines.  

 

All together, we encourage the development of resources, in the form of data             

and software, to appropriately investigate the MHC region, without disregarding the           

rich biological context it hosts; valuable analyses could benefit ranging from           
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evolution and population genomics, to studying complex traits in association studies.           

After all the main question is: amongst all the variation, which is functional. 
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xII. SUPPLEMENTARY MATERIAL 

 

 
Figure S1. Heatmap of reads (normalised by library size) per 10kb bin. Only reads aligning to PGF                  

with a mapQ greater than 29 are shown. Upper bar shows the quantity of variants queried by the 1000                   

Genomes Project in each bin. 
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GeneID Haplotype Start End Sample 

Distance to 

Gene Gene Symbol 

ENSG00000225691 MCF 2616092 2616237 HG00258 -1315 HLA-C 

ENSG00000204525 PGF 31272003 31272511 HG00253 -127 HLA-C 

ENSG00000204525 PGF 31271993 31272466 HG00249 -100 HLA-C 

ENSG00000204525 PGF 31272101 31272327 HG00139 -84 HLA-C 

ENSG00000204525 PGF 31272125 31272302 HG00240 -84 HLA-C 

ENSG00000204525 PGF 31272099 31272313 HG00133 -76 HLA-C 

ENSG00000204525 PGF 31272083 31272302 HG00260 -62 HLA-C 

ENSG00000204525 PGF 31272100 31272274 HG00134 -57 HLA-C 

ENSG00000204525 PGF 31272101 31272270 HG00110 -56 HLA-C 

ENSG00000204525 PGF 31272004 31272361 HG00257 -52 HLA-C 

ENSG00000204525 PGF 31272066 31272298 HG00123 -52 HLA-C 

ENSG00000204525 PGF 31272002 31272309 HG00160 -26 HLA-C 

ENSG00000204525 PGF 31271884 31272418 HG00097 -21 HLA-C 

ENSG00000204525 PGF 31271945 31272343 HG00235 -14 HLA-C 

ENSG00000204525 PGF 31271933 31272344 HG00236 -8 HLA-C 

ENSG00000204525 PGF 31271866 31272376 HG00251 9 HLA-C 

ENSG00000204525 PGF 31271735 31272454 HG00099 36 HLA-C 

Table S1.1. ​ Peaks annotating gene ​HLA-C, ​ including the Alt-Peak categorised as “Absent from PGF” 

 

 

GeneID Haplotype Start End Sample 

Distance to 

Gene Gene Symbol 

ENSG00000196126 PGF 32589693 32590266 HG00104 -132 HLA-DRB1 

ENSG00000196126 PGF 32589775 32590068 HG00260 -74 HLA-DRB1 

ENSG00000206240 COX 4028582 4028755 HG00259 -16 HLA-DRB1 

ENSG00000196126 PGF 32589701 32589994 HG00124 0 HLA-DRB1 

ENSG00000196126 PGF 32589631 32589911 HG00097 77 HLA-DRB1 

ENSG00000196126 PGF 32589661 32589867 HG00249 84 HLA-DRB1 
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ENSG00000206240 COX 4028401 4028732 HG00252 86 HLA-DRB1 

ENSG00000196126 PGF 32589650 32589863 HG00253 92 HLA-DRB1 

ENSG00000229074 MANN 4022828 4023073 HG00252 93 HLA-DRB1 

ENSG00000229074 MANN 4022804 4023060 HG00139 111 HLA-DRB1 

ENSG00000206306 QBL 3809330 3809677 HG00099 117 HLA-DRB1 

ENSG00000206240 COX 4028366 4028693 HG00099 122 HLA-DRB1 

ENSG00000206306 QBL 3809258 3809732 HG00261 126 HLA-DRB1 

ENSG00000228080 SSTO 4012047 4012390 HG00236 134 HLA-DRB1 

ENSG00000196126 PGF 32589561 32589857 HG00236 139 HLA-DRB1 

ENSG00000228080 SSTO 4012035 4012384 HG00160 142 HLA-DRB1 

ENSG00000206306 QBL 3809307 3809645 HG00251 145 HLA-DRB1 

ENSG00000229074 MANN 4022719 4023048 HG00110 159 HLA-DRB1 

ENSG00000206306 QBL 3809284 3809638 HG00240 160 HLA-DRB1 

ENSG00000229074 MANN 4022792 4022950 HG00256 172 HLA-DRB1 

ENSG00000229074 MANN 4022596 4023132 HG00123 179 HLA-DRB1 

ENSG00000206240 COX 4028376 4028555 HG00235 186 HLA-DRB1 

ENSG00000228080 SSTO 4011948 4012368 HG00260 194 HLA-DRB1 

ENSG00000236884 DBB 3848238 3848661 HG00256 195 HLA-DRB1 

ENSG00000206240 COX 4028254 4028657 HG00251 196 HLA-DRB1 

ENSG00000206306 QBL 3809168 3809682 HG00235 196 HLA-DRB1 

ENSG00000206306 QBL 3809212 3809632 HG00259 199 HLA-DRB1 

ENSG00000206240 COX 4028272 4028630 HG00261 201 HLA-DRB1 

ENSG00000228080 SSTO 4011933 4012358 HG00250 206 HLA-DRB1 

ENSG00000236884 DBB 3848193 3848679 HG00123 209 HLA-DRB1 

ENSG00000236884 DBB 3848279 3848591 HG00110 210 HLA-DRB1 

ENSG00000228080 SSTO 4011819 4012457 HG00110 214 HLA-DRB1 

ENSG00000228080 SSTO 4011873 4012394 HG00258 218 HLA-DRB1 

ENSG00000206240 COX 4028239 4028627 HG00240 219 HLA-DRB1 

ENSG00000228080 SSTO 4012049 4012216 HG00123 220 HLA-DRB1 
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ENSG00000228080 SSTO 4011909 4012352 HG00256 222 HLA-DRB1 

ENSG00000236884 DBB 3848219 3848625 HG00139 223 HLA-DRB1 

ENSG00000206240 COX 4028300 4028537 HG00257 234 HLA-DRB1 

ENSG00000228080 SSTO 4011801 4012426 HG00134 238 HLA-DRB1 

ENSG00000229074 MANN 4022672 4022936 HG00160 239 HLA-DRB1 

ENSG00000228080 SSTO 4011937 4012280 HG00259 244 HLA-DRB1 

ENSG00000236884 DBB 3848229 3848558 HG00160 251 HLA-DRB1 

ENSG00000206306 QBL 3809228 3809502 HG00258 256 HLA-DRB1 

ENSG00000206306 QBL 3809259 3809425 HG00124 279 HLA-DRB1 

ENSG00000228080 SSTO 4011966 4012174 HG00257 282 HLA-DRB1 

ENSG00000228080 SSTO 4011923 4012119 HG00097 331 HLA-DRB1 

ENSG00000228080 SSTO 4011880 4012130 HG00251 347 HLA-DRB1 

ENSG00000228080 SSTO 4011916 4012090 HG00253 349 HLA-DRB1 

ENSG00000228080 SSTO 4011876 4012109 HG00235 360 HLA-DRB1 

ENSG00000206306 QBL 3809156 3809347 HG00257 369 HLA-DRB1 

ENSG00000196126 chr6 32584061 32584607 HG00097 5514 HLA-DRB1 

ENSG00000229074 MANN 4017382 4017527 HG00258 5589 HLA-DRB1 

ENSG00000196126 PGF 32583911 32584573 HG00124 5606 HLA-DRB1 

ENSG00000196126 PGF 32584011 32584462 HG00236 5612 HLA-DRB1 

ENSG00000196126 PGF 32583834 32584601 HG00104 5630 HLA-DRB1 

ENSG00000196126 PGF 32583997 32584204 HG00249 5748 HLA-DRB1 

ENSG00000196126 PGF 32583868 32584136 HG00253 5846 HLA-DRB1 

Table S1.2 Peaks annotating gene ​HLA-DRB1,​ including the Alt-Peak categorised as “Absent from              

PGF” 
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