UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

COORDINACIÓN DE ESTUDIOS DE POSGRADO

INSTITUTO DE INVESTIGACIONES EN MATEMÁTICAS APLICADAS

Y EN SISTEMAS

RELACIÓN ENTRE LA INCIDENCIA DELICTIVA Y LA POBREZA, DESIGUALDAD Y SEGURIDAD PÚBLICA EN MÉXICO, 2012-2014

"EL USO DE UN MODELO DE CORRELACIÓN CANÓNICA"

TESINA PARA OBTENER EL GRADO DE ESPECIALISTA EN ESTADÍSTICA APLICADA

PRESENTA

CÉSAR ALEJANDRO ORTIZ PEÑA

DIRECTORA DE TESINA

M. EN C. LETICIA EUGENIA GRACIA-MEDRANO VALDELAMAR

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Índice

Tema	Pág
I Introducción	1
II Objetivo del estudio	3
III La Seguridad pública en México	3
IV La pobreza, la desigualdad y la exclusión social en México	4
V Investigaciones	6
VI Datos (selección de variables)	8
VII Análisis descriptivo	14
VIII Modelos de correlación canónica (teoría)	26
IX Hipótesis del modelo	31
X Supuestos del modelo	31
 XI Aplicación del Análisis de Correlación Canónica 2012 XI.1 Evaluación del modelo completo y coeficientes de correlación canónica XI.2 Coeficientes canónicos brutos y errores estándar XI.3 Interpretación de funciones canónicas (pesos canónicos, scores, análisis de correlación, cargas canónicas y cargas canónicas cruzadas) 	33 33 35 36
 XII Aplicación del Análisis de Correlación Canónica 2014 XII.1 Evaluación del modelo completo y coeficientes de correlación canónica XII.2 Coeficientes canónicos brutos y errores estándar XII.3 Interpretación de funciones canónicas (pesos canónicos, scores, análisis de correlación, cargas canónicas y cargas canónicas cruzadas) 	47 47 49
XIII Análisis de conglomerados	57
XIV Conclusión	67
XV Apéndices Apéndice I (Matriz de varianza-covarianza) Apéndice II (Otros coeficientes del análisis de correlación canónica)	72 73 77
XVI Anexos estadísticos Anexo I Anexo II Anexo III	80 81 84 90
XVII Bibliografía	93

I.- Introducción

El presente estudio tiene como objetivo determinar, mediante un análisis de correlación canónica, si existe una relación entre dos grupos de variables, por un lado, el grupo referente a la incidencia delictiva tanto del fuero común como del federal y, por el otro, el conjunto de predictores relacionados con la pobreza, la desigualdad y la seguridad pública en México.

Cabe señalar que el análisis de correlación canónica fue inventado por Harold Hotelling en 1935, y se utiliza para estudiar, precisamente, la relación entre dos conjuntos de variables. Se aplica en investigaciones de temas diversos como aquellos relacionados con medios de comunicación, estudios de percepción, de patrones psicológicos, de aptitudes, etc.

Sin embargo, este método no es tan común y, citando a Robert M. Thorndike, la mayoría de los estudios encontrados de 1971 al año 2000, dejaban mucho que desear en cuanto a la aplicación de la metodología de correlación canónica; sin embargo, la técnica puede ser utilizada en varios tópicos.

importante mencionar que, a lo largo del documento, se explicarán detalladamente los conceptos teóricos y prácticos de este método, tales como: la evaluación del modelo, las variables canónicas y sus valores (scores), los coeficientes de correlación canónica, los pesos canónicos estandarizados), las cargas canónicas (coeficientes de adecuación), y las cargas canónicas cruzadas (coeficiente de redundancia).

Este trabajo abarca los años 2012 y 2014, <u>aunque no es un estudio comparativo</u>, debido a que son dos modelos diferentes los que explican -de mejor forma- la relación entre los dos grupos de variables en cada uno de estos años. Sin embargo, en donde es posible, sí se hace referencia a cuestiones comparativas.

Ahora bien, al revisar algunas publicaciones se encontraron que existen varios estudios sobre la relación entre la delincuencia con la pobreza y desigualdad, cuyas conclusiones son variadas, aunque en la mayoría de los casos analizados, el desempleo y el nivel de ingresos son los dos factores que más se asocian con los índices delictivos; sin embargo, también hay quien afirma que esta relación es, simplemente, inexistente. Un hallazgo importante en la revisión bibliográfica, fue el hecho de que no existen patrones bien definidos que determinen esta relación a través del tiempo.

Es pertinente señalar que fueron muy pocos los estudios encontrados que utilizaban el análisis de correlación canónica.

En México los temas de *pobreza y delincuencia* son graves, cifras del año 2012 señalan que el 45.5% de los mexicanos vivía en situación de pobreza, la cual se incrementó a 46.2% en 2014. Por su parte, es a partir de año 2000 que los índices delictivos vinieron al alza, siendo el *robo* el delito más común en este país. Cabe mencionar que, en 2014, se cometieron casi un millón setecientos mil delitos, tanto del fuero común como del federal.

A lo largo de este trabajo se corrieron muchos modelos con el método de correlación canónica y se utilizaron todas las variables que se presentan en el Anexo II de este documento; sin embargo, para 2012, casi ninguna de las variables relacionadas con las carencias socioeconómicas ni con la desigualdad

tuvieron una relación positiva con la incidencia delictiva. De hecho, entre todos los predictores, solo el desempleo cumplió con esta condición, mientras que, dentro del grupo de las variables de delincuencia, únicamente el secuestro tuvo una relación positiva con todas las variables del grupo de pobreza, desigualdad y seguridad pública. El resto de las relaciones fueron negativas.

Por su parte, en 2014, el desempleo, la prevalencia de corrupción y la deserción en educación media superior tuvieron una relación positiva con el robo común, con los delitos Contra la Salud, con los delitos contra la Ley General de Salud y con los delitos de Otras Leyes y Códigos. Por otro lado, las variables de rezago educativo y del porcentaje de personas con ingresos menores a la línea de bienestar señalan una relación positiva con el robo en carretera y con los delitos contra la Ley Federal contra la Delincuencia Organizada (LFCDO); y viceversa. De igual forma, el resto de las relaciones fueron negativas.

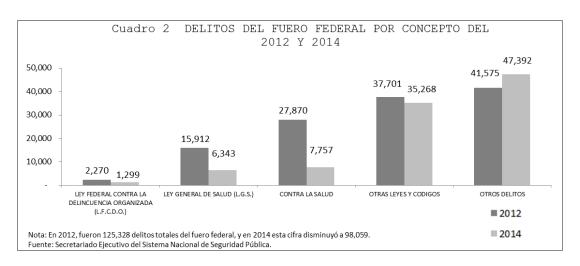
Lo anterior, significa -exclusivamente- que con la información disponible de 2012 y 2014, con la forma de utilizar la misma y con el método seleccionado, se llegó a las conclusiones mencionadas. No obstante, estudios más detallados, inclusive para cada una de las entidades federativas del país podrían arrojar otros resultados.

II.- Objetivo del estudio

Determinar si existe relación entre la incidencia delictiva del fuero común y del federal con la pobreza, la desigualdad y la seguridad pública.

En este estudio de corte transversal se pretende mostrar, de una forma descriptiva, la relación que existía en 2012 y 2014, entre el grupo de variables relacionadas con la incidencia delictiva y el grupo de variables relacionadas con la pobreza, desigualdad y algunas variables relativas a la seguridad pública.

III.- La seguridad pública en México


El Plan Nacional de Desarrollo (PND) 2013-2018, señala que la seguridad pública es una asignatura pendiente. Lo que antes eran solo delitos relacionados con el comercio ilegal y el robo en zonas muy focalizadas del país, se transformó en los últimos años. Específicamente, a partir del 2000, se registró un inusitado crecimiento en el número de delitos (del fuero común) de alto impacto como el secuestro, la extorsión y los robos (incluidos los de las instituciones bancarias).

Cuadro 1 DELITOS DEL FUERO COMÚN POR MODALIDAD										
TIPO DE DELITO	2000 2012		2014	VAR% 00-12	VAR% 12-14					
DELITOS PATRIMONIALES (INCLUYE EXTORSIÓN)	200,654	239,981	217,512	19.6%	-9.4%					
DELITOS SEXUALES (VIOLACIÓN)	13,066	14,566	12,638	11.5%	-13.2%					
HOMICIDIOS	32,018	38,224	32,631	19.4%	-14.6%					
LESIONES	256,437		194,114	-19.1%	-6.4%					
OTROS DELITOS	353,730	493,175	518,096	39.4%	5.1%					
PRIV. DE LA LIBERTAD (SECUESTRO)	591	1,418	1,395	139.9%	-1.6%					
ROBO COMÚN	510,873	699,872	602,276	37.0%	-13.9%					
ROBO DE GANADO (ABIGEATO)	ND	6,134	8,286	ND	35.1%					
ROBO EN CARRETERAS	ND	3,450	2,366	ND	-31.4%					
ROBO EN INSTITUCIONES BANCARIAS	345	748	1017	116.8%	36.0%					
Total general	1,367,714	1,704,915	1,590,331	24.7%	-6.7%					

Fuente: Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública

Particularmente, la delincuencia organizada incrementó su distribución de droga a nivel nacional y expandió sus áreas de operación hacia otras actividades, tales como la trata de personas, la extorsión de negocios lícitos y el secuestro. Estos grupos delictivos han emprendido acciones agresivas de reclutamiento en comunidades de bajos recursos. Lo anterior, aunado a que encontraron corporaciones policiales poco estructuradas, capacitadas y profesionalizadas, propició el fortalecimiento y la penetración de las organizaciones criminales en algunas regiones del país.

Si bien es cierto que de 2012 a 2014, hubo una disminución en los delitos del fuero común y del fuero federal en 6.7% y 21.7%, respectivamente, la cifras aún son altas, por lo cual aportar algunos elementos que contribuyan a generar políticas públicas en contra de la delincuencia e inseguridad en México es de suma importancia.

Por otra parte, el mismo PND 2013-2018 destaca que el Instituto Nacional de Estadística y Geografía (INEGI), con base en la Encuesta Nacional de Victimización y Percepción sobre Seguridad Pública (ENVIPE) 2012, estimó que en 2011 el 58% de la población de 18 años y más consideró a la inseguridad como su principal preocupación.

Cabe señalar que una consulta pública realizada por la Presidencia de la República para la elaboración del Plan en cuestión, indica que los mexicanos consideran que la medida más efectiva para prevenir la delincuencia es ampliar las oportunidades de estudio y empleo de la juventud y otros grupos vulnerables.

IV.- La pobreza, la desigualdad y la exclusión social en México

El PND 2013-2018 establece que la desigualdad y la pobreza generan frustración en amplios segmentos de la población, erosionan la cohesión social y *abren el camino al conflicto y la violación de la ley*, con graves consecuencias para la paz pública, la fortaleza de las instituciones, así como para el desarrollo sostenible del país.

De acuerdo con el Consejo Nacional de Evaluación de la Política de Desarrollo Social (CONEVAL) se considera pobre a una persona que tenga al menos una carencia social y un ingreso menor al valor de la línea de bienestar. En 2012, existían 53.3 millones de mexicanos en pobreza, misma que aumentó para 2014 en 2 millones de personas (55.3); de éstas 11.4 millones vivían en pobreza extrema.

Ahora bien, si se toma en cuenta a la población que por lo menos tiene una carencia social, la cifra llega a 86.8 millones de mexicanos, aunque estos 31.5 millones de personas adicionales a los 55.3 mencionados, no se consideran pobres, porque su ingreso es igual o superior al valor de la línea de bienestar.

Cuadro 3 Medición de la pobreza, Estados Unidos Mexicanos, 2014 Porcentaje, número de personas y carencias promedio por indicador de pobreza, 2010-2014

	Estados Unidos Mexicanos									
Indicadores	Porcen	taje	Millones de	personas	Carencias promedio					
	2012	2014	2012	2014	2012	2014				
Pobreza										
Población en situación de pobreza	45.5	46.2	53.3	55.3	2.4	2.3				
Población en situación de pobreza moderada	35.7	36.6	41.8	43.9	2.0	1.9				
Población en situación de pobreza extrema	9.8	9.5	11.5	11.4	3.7	3.6				
Población vulnerable por carencias sociales	28.6	26.3	33.5	31.5	1.8	1.8				
Población vulnerable por ingresos	6.2	7.1	7.2	8.5	0.0	0.0				
Población no pobre y no vulnerable	19.8	20.5	23.2	24.6	0.0	0.0				
Privación social										
Población con al menos una carencia social	74.1	72.4	86.9	86.8	2.2	2.1				
Población con al menos tres carencias sociales	23.9	22.1	28.1	26.5	3.5	3.5				
Indicadores de carencia social										
Rezago educativo	19.2	18.7	22.6	22.4	2.9	2.8				
Carencia por acceso a los servicios de salud	21.5	18.2	25.3	21.8	2.8	2.8				
Carencia por acceso a la seguridad social	61.2	58.5	71.8	70.1	2.3	2.3				
Carencia por calidad y espacios en la vivienda	13.6	12.3	15.9	14.8	3.4	3.3				
Carencia por acceso a los servicios básicos en la vivienda	21.2	21.2	24.9	25.4	3.2	3.1				
Carencia por acceso a la alimentación	23.3	23.4	27.4	28.0	2.9	2.8				
Bienestar										
Población con ingreso inferior a la línea de bienestar mínimo	20.0	20.6	23.5	24.6	2.5	2.5				
Población con ingreso inferior a la línea de bienestar	51.6	53.2	60.6	63.8	2.1	2.0				

Fuente: Consejo Nacional de Evaluación de la Política de Desarrollo Social con base en el MCS-ENIGH 2012 y 2014.

Con respecto a los índices de desigualdad, en 2012 el coeficiente de Gini era de 0.498 y en 2014 empeora llegando a 0.503, dicho coeficiente mide - principalmente- la desigualdad del ingreso; es un número que se sitúa entre 0 y 1, donde cero es una perfecta igualdad y uno todo lo contrario.

Para 2014, la razón de ingreso entre la población pobre extrema y la población no pobre y no vulnerable era de 4.2 veces. Por su parte, la relación de los ingresos corrientes por persona entre el 10% de la población más rica y el 10% más pobre fue de casi 30 a 1. Con relación a 2012 la mejoría de estos indicadores fue insignificante.

Es importante señalar, que el índice de pobreza se obtiene de la combinación de las variables de carencia social y de ingreso. En este estudio, para 2012, se utilizó la variable de pobreza mientras que, para 2014, se utilizaron algunas de las variables de carencia social y de ingreso. Estos predictores de pobreza y desigualdad se unieron a otras variables de seguridad pública para conformar uno de los dos grupos de variables (grupo II), como se verá más adelante.

V.- Investigaciones

Se revisaron algunos estudios, que se comentan a continuación, que pretenden explicar los factores que determinan la incidencia delictiva, sobre todo cuando estos factores se relacionan con variables de pobreza y desigualdad. Sin embargo, son pocas las investigaciones encontradas sobre este tema que utilizan el método de correlación canónica¹, como el que se expondrá más adelante para el caso de México.

Una investigación del 2007 denominada: "Desigualdad y Delincuencia: Una Aplicación para España", incluye un cuadro que concentra una revisión de estudios sobre desigualdad e índices de criminalidad. Los resultados de estos son variados, por ejemplo: de 1990 a 1998 se encontró que en 70 regiones de Rusia la educación afectaba negativamente a la tasa de criminalidad, y que la desempleo y los bajos niveles de desigualdad, el ingresos afectaban positivamente el nivel de violencia; así mismo mencionan que en varios países2 con mayor desigualdad de ingresos y menores gastos sociales tienen tasas más altas de delincuencia. En Alemania, durante un estudio de panel de 3 años, se confirmó un efecto positivo entre la desigualdad y la pobreza sobre la criminalidad (principalmente cuando se trataba de delincuentes residentes del país y no foráneos); en otra investigación también de Alemania, se demostró que ser joven y desempleado aumenta la probabilidad de delinquir. En Sudáfrica la y el desempleo aparecen como variables significativas para describir crímenes violentos. En general, el estudio menciona investigaciones hechas en Francia, Estados Unidos, Rusia, Reino Unido y Japón, los factores que más se asocian a la criminalidad (en sus diferentes modalidades) son el desempleo y la desigualdad de ingresos. Sobre la revisión empírica realizada por los autores del estudio en cuestión, señalan que los resultados sobre desigualdad y delincuencia van cambiando según el país, la época, el tipo de delito y la técnica econométrica utilizada.

Ahora bien, en cuanto a la conclusión del propio ensayo "Desigualdad y Delincuencia: Una Aplicación para España", cuyo objetivo fue construir un modelo de determinantes de la tasa de delincuencia el cual se obtuvo para dos periodos de tiempo, el primero de 1972 a 1987 y el segundo de 1988 a 2004, se concluyó que en el primer periodo la tasa de desempleo y el nivel de ingreso per cápita tenían una relación significativa y positiva con la delincuencia, mientras que la tasa de esclarecimiento y el porcentaje de población urbana resultaron significativos pero con signo negativo. Por su parte, para el segundo periodo los resultados fueron opuestos ya que la tasa de desempleo y el nivel de ingreso per cápita tenían una relación significativa pero negativa, y la tasa de población urbana fue significativa y positiva. Posteriormente, desagregaron el estudio por regiones detectando que la desigualdad tenía una relación significativa positiva con la delincuencia; no obstante, los autores señalan una falta de confianza en las estadísticas utilizadas; así como, en las metodologías llevadas a cabo para producirlas.

¹ Robert M. Thorndike señala que al hacer una investigación de estudios de varios años relacionados con el tema de correlación canónica, la metodología de muchos de estos dejaba mucho que desear, pero que; sin embargo, el campo de estudio para utilizar este método es amplio.

 $^{^{2}}$ No se especifican cuales países, aunque citan la fuente.

Por otra parte, en el estudio <u>"¿Pobreza = Delito? Los factores socioeconómicos del crimen y el derecho humano a la seguridad pública"</u> de José Antonio Ortega Sánchez; el autor señala que <u>"el principal hallazgo de la investigación</u>, es que no se validó la hipótesis central de que los factores socioeconómicos son determinantes decisivos o importantes del delito en México (como en realidad tampoco lo son en ninguna otra parte del mundo)". Ortega Sánchez establece una serie de hipótesis sobre los factores asociados con la incidencia delictiva y concluye que -prácticamente- ninguna se corrobora. Cabe señalar que la metodología estadística utilizada en esta investigación es la de correlaciones entre dos variables, donde una de ellas siempre es el delito.

Un estudio más de México llamado <u>Pobreza e inseguridad el viejo debate entre</u> <u>desarrollo y depresión: Un enfoque empírico</u>, menciona que la inseguridad se explica principalmente por la desigualdad medida por el índice de Gini.

En un reporte de la Oficina de las Naciones Unidas contra la Droga y el Delito, llamado <u>Monitoring the Impact of Economic on Crime</u>, el cual fue producto del análisis de información de 50 países se encontró que, en la mayoría de los países, los cambios en los factores económicos se asociaron con cambios en la delincuencia, y mencionan que sí se observan 'picos' de crimen durante la época de crisis como lo fue en 2008-2009. El informe reconoce además que los cambios económicos no son el único factor que puede afectar los niveles de delincuencia. Otros factores incluyen la presencia de pandillas juveniles; la disponibilidad de armas; el nivel de protección de las posibles víctimas; el consumo de drogas y alcohol; y la eficacia de la actividad de aplicación de la ley. No obstante lo anterior, se señala que el análisis no *prueba* la existencia de relaciones entre los factores económicos y la delincuencia; sin embargo, proporciona fuertes indicios de que ciertas asociaciones están presentes.

En cuanto a estudios relacionados con delincuencia y pobreza utilizando el método de correlación canónica, existe una tesis de maestría de la Universidad de Sudáfrica, de 2015, denominada Canonical Correlation Analysis of Aggravated Robbery and Poverty in Limpopo Province, cuyo objetivo era determinar la relación entre la pobreza y el robo agravado mediante dos grupos de variables, el de pobreza que incluía: género, situación laboral, estado civil, raza, edad y nivel de estudios; y el de robo agravado que consideraba: robo a casa, robo a banco, robo en calle, robo de auto/camión, secuestro, robo de dinero en efectivo "en tránsito" y robo a negocios. El autor concluye que existe una correlación de la pobreza y robo agravado en la provincia de Limpopo con coeficiente de correlación canónica de 0.219. Menciona que fue notable que el género, la situación laboral y estado civil, se identificaran como los principales componentes de la pobreza que se asocian con el robo agravado en la provincia mencionada.

Finalmente, se encontró un estudio denominado, <u>Canonical Correlation Analysis</u> <u>of Poverty and Literacy Levels in Ekiti State, Nigeria.</u> La investigación asume que la alfabetización tiene una influencia directa sobre el nivel de pobreza; es decir, la primera determina la segunda. No se profundizará más en este estudio ya que en él, no se considera el tema de la delincuencia.

En suma, entre los estudios citados se puede señalar que las conclusiones de estos son variadas, aunque se observa que en la mayoría de los casos sí existe

asociación entre pobreza y delincuencia, aunque en ocasiones de forma positiva y en otras de manera negativa. Sin embargo, no hay un patrón contundente, sobre todo si se consideran series de tiempo en ellas. Por otra parte, para ciertos autores esta relación es simplemente inexistente.

VI.- Datos (selección de variables)

Los datos utilizados para este estudio provienen de varias fuentes oficiales que publican información en Internet. Éstas son, el Consejo Nacional de Evaluación de la Política de Desarrollo Social (Coneval), el Instituto Nacional de Estadística y Geografía (INEGI), el Consejo Nacional de Población (CONAPO), el Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública (que es un Órgano Administrativo Desconcentrado de la Secretaría de Gobernación), el Instituto Nacional para la Evaluación de la Educación (INEE), y la Secretaría de Educación Pública (SEP).

Luego de un análisis previo con todas las variables que se muestran en el Anexo I, se seleccionaron un número reducido de ellas para llevar a cabo la correlación canónica para cada año de referencia.

Se quitaron variables debido a que existía multicolinealidad entre ellas o porque no eran significativas, ya sea en la construcción de una variable canónica o en las cargas canónicas simples y cruzadas (estos términos se explicarán más adelante).

En las siguientes tablas se muestran las variables de este análisis para los dos años de estudio, dentro del grupo I se ubican las variables de incidencia delictiva tanto del fuero común como del federal. Por su parte, en el grupo II están las variables de pobreza y desigualdad (incluidas las de delitos sin denunciar, la de prevalencia de corrupción y el índice de policías en las entidades federativas).

Cuadro 4.- Año 2012

Cuadio 4 Allo 2012							
Grupo I	Grupo II						
Incidencia delictiva en delitos	Pobreza, (transformada en logaritmos)						
patrimoniales, (transformada en							
logaritmos)							
Incidencia delictiva en robos,	Coeficiente de Gini, (transformada en						
(transformada en logaritmos)	logaritmos)						
Incidencia delictiva en secuestros,	Desempleo, (variable original)						
(transformada en logaritmos)							
Incidencia delictiva en delitos contra	Delitos sin denunciar, (transformada en						
la Ley General de Salud, (transformada	logaritmos)						
en logaritmos)							
Incidencia delictiva en otros delitos	Índice de policía por cada mil habitantes,						
del fuero federal, (transformada en (transformada en logaritmos)							
logaritmos)							

Cuadro 5.- Año 2014

Cuadio 3:- Alio 2014							
Grupo I	Grupo II						
Incidencia delictiva en robos, Desempleo, (variable original)							
(transformada en logaritmos)							
Incidencia delictiva en robo a	Tasa de prevalencia de corrupción,						
carreteras, (variable original)	(transformada en logaritmos)						
Incidencia delictiva por delitos contra	Rezago Educativo, (variable original)						
la Salud, (variable original)							
Incidencia delictiva en delitos contra	Porcentaje de Población con ingreso inferior						
la Ley General de Salud, (variable	a la línea de bienestar, (transformada en						
original)	logaritmos)						
Incidencia delictiva en la Ley Federal	Deserción en media superior, (variable						
contra la Delincuencia Organizada del	original)						
fuero federal, (variable original)							
Incidencia delictiva de otras leyes y							
códigos, (transformada en logaritmos)							

Las definiciones que a continuación se presentan fueron obtenidas del INEGI y del Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública.

<u>Incidencia Delictiva del Fuero Común:</u> Se refiere a la aplicación territorial de las leyes de las entidades federativas cuando se comete algún delito, en función de lo que se tenga tipificado en el respectivo código penal estatal.

- 1. Delitos patrimoniales: En esta modalidad se agrupan los delitos de:
 - a. Abuso de confianza: Disponer para sí o para otra persona de una cantidad de dinero, de un documento o de cualquier cosa ajena, que implique obligación, liberación o transmisión de derecho y con lo cual se obtiene la tenencia, pero no la pertenencia.
 - b. Daño en propiedad ajena: Este tipo de delito es aquel que se comete por un individuo, por cualquier medio y que éste cause un daño, destrucción o deterioro de un bien ajeno.
 - c. Despojo: Ocupar un bien inmueble propio o ajeno, sin derecho a hacerlo, mediante el empleo de la violencia, el engaño o la furtividad, o bien ejercita un derecho real que no le correspondía.
 - d. Extorsión: Consiste en la obtención de un lucro causando un perjuicio patrimonial a la víctima, al obligarla mediante el uso de la fuerza física o moral, a hacer, tolerar o dejar de hacer algo.
 - e. Fraude: Obtener ilícitamente una cosa o alcanzar un lucro indebido para sí o para otro, engañando o aprovechándose del error o la ignorancia de la víctima.

Nombre de las variables: LDPAT 12.

- 2. Robo común: Es un delito contra el patrimonio, consistente en el apoderamiento de bienes ajenos, sin el consentimiento del dueño, (nombre de las variables: LROBO 12 y LROBO 14).
- 3. Privación de la libertad (secuestro): Es un delito contra la libertad personal, que se presenta cuando la persona es privada de su libertad contra su voluntad, con el fin de obtener rescate, algún beneficio económico o causar un daño, (nombre de la variable: LSECU 12).
- 4. Robo en carreteras: Es un delito contra el patrimonio, consistente en el apoderamiento de bienes ajenos, sin el consentimiento del dueño, cuyo acto se realiza en una carretera (nombre de la variable: RCARR 14).

Incidencia Delictiva del Fuero Federal: Se refiere a la aplicación territorial de las leyes federales cuando se comete un delito; es decir, cuando se comete un delito en territorio federal, o cuando se encuentra tipificado en ordenamientos como el Código Penal Federal o la Ley Federal contra la Delincuencia Organizada.

- 5. Delitos establecidos en la Ley General de Salud: Se refiere a los delitos en la modalidad de narcomenudeo y a otros delitos establecidos en esta Ley, (nombre de las variables: LLGS 12 y LGS 14).
- 6. Otros delitos del orden federal: En este rubro se agrupan los delitos cometidos por servidores públicos; contra el ambiente y la gestión ambiental; contra la integridad corporal; electorales; de derechos de autor; falsedad; otros delitos del Código Penal Federal; patrimoniales y de vías de comunicación y correspondencia, (nombre de la variable: LOD 12).
- 7. Delitos del Código Penal Federal (Contra la Salud): Conductas que se relacionan con los estupefacientes, psicotrópicos y demás sustancias previstos en los artículos 237, 245, fracciones I, II Y III y 248 de la Ley General de Salud, que constituyen un problema grave para la salud pública (nombre de la variable: CS 14).
- 8. Delitos establecidos en la Ley Federal contra la Delincuencia Organizada: Cuando tres o más personas se organicen de hecho para realizar, en forma permanente o reiterada, conductas que por sí o unidas a otras, tienen como fin o resultado cometer alguno o algunos de los delitos siguientes, serán sancionadas por ese solo hecho, como miembros de la delincuencia organizada. Los delitos son: terrorismo; acopio y tráfico de armas; tráfico de indocumentados; corrupción de personas menores de dieciocho años de edad o de personas que no tienen capacidad para comprender el significado del hecho o de personas que no tienen capacidad para resistir lo previsto en el artículo 201; pornografía de personas menores de dieciocho años de edad o de personas que no tienen capacidad para comprender el significado del hecho o de personas que no tienen capacidad para resistir lo previsto en el artículo 202; turismo sexual en contra de personas menores de dieciocho años de edad o de personas que no tienen capacidad para comprender el significado del hecho o de personas que no tiene capacidad para resistir lo previsto en los artículos 203 y 203 Bis; lenocinio de personas menores de dieciocho años de edad o de personas que no tienen capacidad para comprender el significado del hecho o de personas que no tienen capacidad para resistir lo previsto en el artículo 204; asalto, previsto en los artículos 286 y 287; tráfico de menores o personas que no tienen capacidad para comprender el significado del hecho, previsto en el artículo 366 Ter, y robo de vehículos, previsto en los artículos 376 377 del Código Penal Federal, o en las disposiciones correspondientes de las legislaciones penales estatales o del Distrito Federal; delitos en materia de trata de personas; así como las conductas previstas en los artículos 9, 10, 11, 17 y 18 de la Ley General para Prevenir y Sancionar los Delitos en Materia de Secuestro, Reglamentaria de

la fracción XXI del artículo 73 de la Constitución Política de los Estados Unidos Mexicanos, (nombre de la variable: LFCDO 14).

9. Delitos de otras leyes y códigos: Se refieren a los delitos establecidos en: Código Fiscal de La Federación; Ley de la Propiedad Industrial; Ley de Migración; Ley de Vías Generales de Comunicación; Ley Federal de Armas de Fuego y Explosivos; Ley Federal del Derecho de Autor; Leyes de Instituciones de Crédito, Inversión, Fianzas y Seguros y Otras Leyes Especiales, (nombre de la variable: LOLC 14).

Nota 1: Los índices de incidencia delictiva tanto del fuero común como del federal, se obtienen de dividir el número de casos de un determinado delito entre la población de un estado de la República por cien mil. Es decir, el valor de estas variables es sobre cada 100 mil habitantes.

A continuación, se señalan las variables referentes a pobreza y desigualdad (y se incluyen las variables de seguridad mencionadas).

Las definiciones que se señalan a continuación fueron obtenidas del CONEVAL y del INEGI.

- 10. Pobreza: Una persona se encuentra en situación de pobreza cuando tiene al menos una carencia social (en los seis indicadores de rezago educativo, acceso a servicios de salud, acceso a la seguridad social, calidad y espacios de la vivienda, servicios básicos en la vivienda y acceso a la alimentación) y su ingreso es insuficiente para adquirir los bienes y servicios que requiere para satisfacer sus necesidades alimentarias y no alimentarias. Cabe señalar que se analizaron, además, otras variables para representar pobreza y desigualdad, entre ellas: analfabetismo, grado promedio de escolaridad, desempleo y deserción en Educación Media Superior, (nombre de la variable: LPobreza_12). La pobreza está medida en porcentaje de personas.
- 11. Desempleo: Personas que, no estando ocupadas en la semana de referencia, buscaron activamente incorporarse a alguna actividad económica en algún momento del último mes transcurrido. El dato se obtuvo promediando los 4 trimestres del 2012 y 2014 de las series desestacionalizadas de la tasa de desocupación total trimestral según entidad federativa, (nombre de la variable: Desempleo 12 y LDesempleo 14).
- 12. Coeficiente de Gini: Es una medida de la desigualdad ideada por el estadístico italiano Corrado Gini. Normalmente se utiliza para medir la desigualdad en los ingresos, dentro de un país. El coeficiente de Gini es un número entre 0 y 1, en donde "cero" se corresponde con la perfecta igualdad (todos tienen los mismos ingresos) y donde el valor "uno" se corresponde con la perfecta desigualdad (una persona tiene todos los ingresos y los demás ninguno). El nombre de la variable es LGini_12.
- 13. Rezago educativo: De acuerdo con la Norma de Escolaridad Obligatoria del Estado Mexicano se considera con carencia por rezago educativo a la población que cumpla los siguientes criterios: tiene 3 a 15 años,

no cuenta con la educación básica obligatoria y no asiste a un centro de educación formal, o tiene 16 años o más, nació antes de 1982 y no cuenta con el nivel de educación obligatoria vigente en el momento en que debía haberla cursado (primaria completa), o, tiene 16 años o más, nació a partir de 1982 y no cuenta con el nivel de educación obligatoria (secundaria completa, nombre de la variable: R Edu 14).

- 14. Línea de Bienestar: Permite identificar a la población que no cuenta con los recursos suficientes para adquirir los bienes y servicios que requiere para satisfacer sus necesidades básicas (alimentarias y no alimentarias), (nombre de la variable: C_Ing_14).
- 15. Deserción en media superior: Se refiere al número estimado de alumnos que abandonan la escuela entre ciclos escolares consecutivos antes de concluir el nivel educativo de referencia (en este caso media superior), por cada cien alumnos matriculados al inicio del ciclo escolar, (nombre de la variable: Desercion 14).

Aunque los siguientes indicadores no podrían considerarse dentro del grupo de variables de pobreza y desigualdad, se decidió incluirlos por la relación que tienen con la delincuencia. Para efectos de esta tesina, los siguientes tres indicadores serán catalogados como de seguridad pública.

- 16. Delitos sin denunciar³: Es el porcentaje de delitos que no fueron denunciados ante el Ministerio Público con respecto al total de delitos ocurridos (nombre de la variable: LNodenun_12). Para propósitos del modelo, se promediaron los porcentajes de los delitos no denunciados, en cada entidad federativa.
- 17. Prevalencia de corrupción: Población que tuvo contacto con un servidor público y vivió una experiencia de corrupción, se calcula por cada 100 mil habitantes, aunque para los motivos de este estudio se transformó en proporción. El nombre de la variable: LPreCorr_13, cabe señalar que esta variable solo está disponible para el año 2013.
- 18. Índice de policía por cada mil habitantes por entidad federativa: Se refiere al personal policial en gobiernos estatales y municipales, (nombre de la variable: LPOL 12).

Policía estatal: Es el cuerpo de seguridad pública integrado por diversas unidades y agrupamientos adscritos a la Secretaría de Seguridad Pública de la Entidad Federativa que corresponda, el cual tiene por objeto la vigilancia, la defensa social y la prevención de los delitos.

Policía Municipal: Es el cuerpo de seguridad pública que tiene por objeto la vigilancia, la defensa social y la prevención de los delitos en un determinado municipio de una entidad federativa.

³ La denuncia es una comunicación formal que hace una persona a la autoridad competente de la posible comisión de un delito. Estos datos, se obtuvieron de la Encuesta Nacional de Victimización y Percepción sobre Seguridad Pública 2013, que contiene datos de 2012.

Cabe señalar que esta variable fue tomada del Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública. Si bien el INEGI publica anualmente el Censo Nacional de Gobierno, Seguridad Pública y Sistema Penitenciario Estatales, las cifras del personal de seguridad eran poco creíbles, por mencionar un ejemplo del 2014, el D.F. tenía 5.5 veces más policías que el Estado de México (es decir, 71,430 efectivos más), mientras que en las del Secretariado el D.F. tienen solamente 10,750 elementos más que el Estado de México. Además, que la cifra total de policías del Secretariado es el doble que las del Censo.

Nota 2: Las variables de este grupo se incluyen en el modelo en forma de proporción, con excepción del dato del índice de policías que está dado por cada mil habitantes; es decir, se obtiene dividiendo el total de personal policial de un estado de la República entre la población total de dicha entidad por mil.

Nota 3: Las variables que fueron trasformadas en logaritmos, tienen una letra "L", al principio.

En el Anexo I se enlistan todas las variables que se analizaron para el ajuste del modelo de correlación canónica, aunque muchas de ellas no se utilizaron; no obstante, esta información puede ser de interés para el lector de este documento. También se incluye la clasificación de los delitos del fuero común y federal que se publica en el Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública

En el Anexo II se encuentran la mayoría de las variables analizadas de ambos años, ordenadas de mayor a menor por entidad federativa. En el caso de tres variables: Porcentaje de percepción sobre la frecuencia con la que se castiga a los delincuentes, Tasa de prevalencia de corrupción por cada 100 mil habitantes y Tasa de incidencia de corrupción por cada 100 mil habitantes, los datos aparecen únicamente para el año 2013.

VII. - Análisis Descriptivo

El Cuadro 6 muestra los resultados de las variables consideradas en este trabajo para el año 2012; por su parte, en el Cuadro 7 se encuentran las cifras correspondientes al año 2014. En esta sección las variables se presentan en su forma original; no obstante, como se mencionó, en los modelos algunas variables serán transformadas en logaritmos.

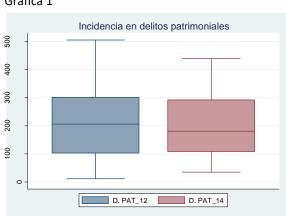
Cuadro 6 Información Estadística, 2012

			r Estadistica, 2	-		
Variable	Obs	Mean	Std. Dev.	Min	Max	
DPAT_12	32	220.3545	133.1814	11.42692	505.8624	
ROBO_12	32	617.101	375.6789	45.01514	1900.876	
SECU_12	32	1.289031	1.286294	.049	5	
LGS_12	32	13.77432	21.25123	.0285755	81.39096	
OD_12	32	34.64736	20.98824	13.34424	122.6258	
Pobreza_12	32	.4488787	.1262637	.2324679	.7468734	
Nodenun_12	32	.8515625	.0370796	.77	.92	
Gini_12	32	.4834451	.02787	.4199736	.534682	
Desempleo_12	32	.0478711	.0139639	.021475	.065368	
POL_12	32	3.215625	1.526985	2	10.7	

Cuadro 7 Información Estadística, 2014

Variable	Obs	Mean	Std. Dev.	Min	Max	
ROBO_14	32	518.8829	340.4493	73.59056	1577.48	
RCARR_14	32	2.731181	6.268176	.0060172	29.58842	
CS_14	32	7.394608	6.965254	.4759531	32.18709	
LGS_14	32	6.326307	15.03482	.0285492	86.01945	
LFCDO_14	32	1.135502	1.18546	.0478123	4.624976	
OLC_14	32	30.3083	16.43392	11.33491	81.65082	
Desempleo_14	32	.0468729	.0120876	.0195979	.0658043	
PreCorr_13	32	.1008503	.0359642	.0507548	.1798738	
R_Edu_14	32	.184375	.052728	.09	.31	
C_Ing_14	32	.5159375	.1210667	.3	.79	
Desercion_14	32	.1321781	.0415397	.0257	.2028	

A continuación, se muestra un análisis descriptivo por cada una de las variables que intervienen en el modelo. Se compararán los dos años relacionados con este estudio, aunque *no* todas las variables serán utilizadas en los modelos.


Aunque en Correlación Canónica no hay diferencia entre variables dependientes e independientes, ya que un grupo puede explicar al otro, lo cierto es que hay investigadores como *David Garson*, *Alissa Sherry y Robin Henson*, *entre otros*, que normalmente diferencian a los grupos de variables entre dependientes e independientes (predictor), ya que de ante mano saben qué desean explicar.

Grupo de variables "I" 2012 y 2014

Delitos Patrimoniales

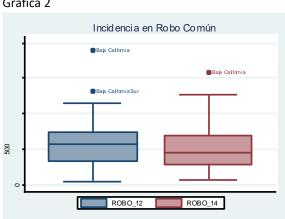
Durante el 2012, el promedio de delitos patrimoniales en México fue de 220.3 casos por cada 100 mil habitantes. El coeficiente de variación⁴ es alto con un 60%, lo que muestra heterogeneidad entre las entidades federativas.

Como se observa en la siguiente gráfica⁵, no hay outliers; sin embargo, Quintana Roo y Baja California Sur son los estados con más incidencia de este tipo, llegando a 506 y 505 delitos por cada 100 mil habitantes; el estado con menor incidencia en este tipo de delito es Campeche, con solamente 11.4.

Gráfica 1

Los delitos patrimoniales representan el 14.08% del total de delitos del fuero común. Dentro de esta modalidad delictiva, el daño en propiedad ajena es el que tiene mayor participación con un 51%, seguido por el fraude con un 27.4%.

Por su parte, en 2014 la incidencia promedio de delitos patrimoniales bajó a 194.5. Baja California Sur, Yucatán y Quintana Roo seguían siendo los estados con mayores casos y, en contra posición, Campeche con el menor número de eventos, aunque este último aumentó de 11.4 en 2012 a 34.8 en 2014 casos por cada mil habitantes. Al igual que en 2012, el daño en propiedad ajena es el que tiene mayor participación con un 49.9%, seguido por el fraude con un 28.3%.


Robo común

⁴ En estadística, cuando se desea hacer referencia a la relación entre el tamaño de la media y la variabilidad de la variable, se utiliza el coeficiente de variación C.V. A mayor valor del coeficiente de variación mayor heterogeneidad de los valores de la variable; y a menor C.V., mayor homogeneidad en los valores de la variable.

⁵ El diagrama de caja es una representación gráfica de la distribución de datos, señalando donde caen la mayoría de los valores, y de éstos, cuales difieren considerablemente de la norma "valores atípicos". Estos últimos son los puntos que rebasan los límites inferior y superior (llamados bigotes).

El robo es el delito del fuero común que tiene mayor incidencia tanto en 2012 como en el 2014. Para el primer año, 617.1 personas sufrieron este delito por cada 100 mil habitantes. Su desviación estándar de 375.7 es más de la mitad de su media, por lo que existen diferencias notables entre los estados de la República. El robo representó el 41% de los delitos del fuero común en este año.

En este mismo año, los tres estados con mayor incidencia en robo común son Baja California, Baja California Sur y Morelos, con 1,901, 1,314 y 1,141, respectivamente por cada 100 mil habitantes; en otras palabras, en Baja California, casi dos de cada 100 personas fue víctima de robo durante el 2012. En el otro extremo se encuentran los estados de Campeche y Chiapas con índices de 45 y 140.1, respectivamente. En la gráfica se observa como las dos Baja Californias rebasan por mucho el promedio nacional. Los robos más frecuentes son sin violencia, principalmente en vehículos, casa habitación y los clasificados en el rubro de "otros robos".

Gráfica 2

Para el 2014, la incidencia en robos baja aproximadamente en 16%, al situarse en a 519 en promedio, con una desviación estándar de 340. La variabilidad entre los estados de la República aumentó. Para este año el robo representó el 38% de los delitos del fuero común. Las entidades con mayor incidencia nuevamente fueron Baja California, Baja California Sur y Morelos con 1,577, 1,264 y 1,027, respectivamente por cada 100 mil habitantes; mientras Campeche y Nayarit, los de menor número de casos con 73.6 y 118.6, respectivamente.

que el 2012, los robos más frecuentes son sin violencia, principalmente en vehículos, casa habitación y sobre todo los clasificados en el rubro de "otros robos".

Privación de la libertad (secuestro)

El promedio de secuestros en el 2012 fue de 1.3 personas por cada 100 mil, hubo 1,418 casos en todo el país. Los estados que se observan en la gráfica muestran los índices más altos, siendo Morelos el mayor con cinco personas por cada 100 mil. Aguascalientes, Baja California Sur y Yucatán tuvieron cero secuestros.

Gráfica 3

Por otra parte, para 2014 el promedio se mantuvo -prácticamente- igual al reducirse solo a 1.2 personas por cada 100 mil, hubo 1,395 casos en todo el país, es decir, 23 menos que dos años antes. En 2014, son cuatro los estados que aparecen como "outliers": Tamaulipas, Morelos, Tabasco y Guerrero se ubican con el mayor número de casos. En contraste, solo Yucatán no tuvo secuestros en 2014.

Delitos establecidos en la Ley General de Salud (LGS)

Para 2012, el promedio de incidencia de este delito del fuero federal fue de 13.77 casos por cada 100 mil habitantes. Hay cuatro estados con cifras atípicas, siendo Baja California Sur y Guanajuato los más altos con 81.4 y 80 casos por cada 100 mil habitantes, respectivamente. Curiosamente Tamaulipas y Guerreo que se caracterizan por su inseguridad, no presentaron ningún evento de esta naturaleza. El 90% de los casos en esta modalidad son por *narcomenudeo*.

Gráfica 4

En 2014, este delito disminuye en más de la mitad, para ese año solo existían 6.3 casos por cada 100 mil habitantes, aunque con mayor heterogeneidad entre los estados de la República. Para 2014, Baja California aparece de forma alarmante con 86 casos por cada 100 mil, seguido por Sonora y Tlaxcala; mientras que Tamaulipas y Guerrero siguen siendo las entidades con índices más bajos. La modalidad de narcomenudeo disminuye de 90 a 86.5%, en dos años.

Cabe resaltar que los datos de ambos años fluctúan considerablemente, ya que los estados que aparecen como outliers -por sus porcentajes elevados- en 2012, para 2014 muestran cifras menores a seis casos por cada 100 mil. Por su parte,

es de llamar la atención Baja California, ya que mientras en 2012 tenía una incidencia de 7.8, ésta pasó a ser de 86 como ya se mencionó.

Otros delitos del orden federal

Durante 2012, se presentaron en promedio 34.6 delitos de esta naturaleza por cada 100 mil habitantes, su desviación estándar es de 20.9 por lo que existe heterogeneidad entre estados. Las entidades con mayores delitos de este tipo son el Distrito Federal, que muestra un dato atípico muy por encima del resto, y Baja California con incidencias de 122.6 y 74.3, respectivamente. En contra parte, San Luis Potosí solo presentó 13.3 casos por cada 100 mil personas.

En esta clasificación se encuentran la mayoría de delitos del fuero federal con un 33% y, dentro de éstos, los patrimoniales son los más comunes con un 42.5% de los 41,575 totales.

Para 2014, los otros delitos del orden federal aumentaron en cinco por ciento, al ubicarse el promedio en 38.1 por cada 100 mil y una desviación de 18.8. En este año son dos las entidades con datos atípicos, el Distrito Federal (111.5) y Tamaulipas (78.4). Chiapas se ubica en el sentido opuesto con 19.3 casos por cada 100 mil.

Robo en carreteras

Para 2014, el promedio de incidencia de este delito fue de 2.7 por cada 100 mil habitantes, con un coeficiente de variación de 2.3 (230%), lo que significa que existe mucha heterogeneidad entre las entidades federativas. Tlaxcala y Guerrero, son los estados que muestran los mayores índices con 29.5 y 21.4, respectivamente. Mientras que nueve estados no presentan ninguno de estos casos.

El 78% de los eventos son con violencia, y corresponden -principalmente- a delitos clasificados como "otros casos", seguido por los robos a camiones de carga, autobuses de pasajeros y vehículos particulares.

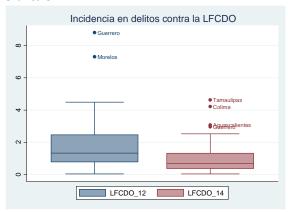
Gráfica 6

Para 2014, el robo en carreteras tuvo una incidencia de 2.7, bajó con respecto a 2012 en un 31.4%. Tlaxcala y Guerrero siguen siendo, por mucho, los estados más peligrosos en este delito. Al igual que en 2012, nueve estados no presentan ninguno caso.

Delitos del Código Penal Federal (Contra la Salud)

En 2012, había 23.8 caso por cada 100 mil habitantes en promedio. Baja California y Sonora son los dos estados con más casos, con índices de 205 y 62.2, respectivamente. Por su parte, el Estado de México y Veracruz presentan las cifras menores con 1 y 1.2, respectivamente.

Gráfica 7

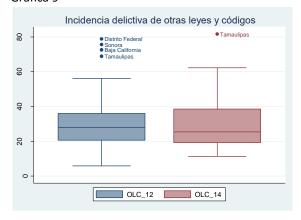


En 2014, hubo 7.4 caso por cada 100 mil habitantes en promedio, se observa una caída muy marcada de 72.1% con respecto a 2012, ya que de 27,870 casos baja a 7,757. Sonora y Baja California son los dos estados con más casos, con índices de 32.2 y 20, respectivamente. Por su parte, Tlaxcala y Tabasco presentan las cifras menores con 0.5 y 0.7, respectivamente. Más del 52% de los eventos se debió a posesión de estupefacientes, psicotrópicos y demás sustancias prohibidas.

Delitos establecidos en la Ley Federal contra la Delincuencia Organizada

En 2012 había una incidencia de 2.0 en promedio por cada 100 mil. Guerrero (8.8) y Morelos (7.3) tenían los niveles más altos, mientras que Yucatán y Chiapas los menores.

Gráfica 8

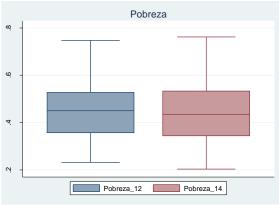

Para 2014, el promedio de incidencias de este delito disminuyó casi a la mitad, ya que fue de 1.1 por cada 100 mil y con una desviación de 1.8. Tamaulipas y Colima muestran los niveles más altos con 4.6 y 4.2, respectivamente, en contraste Tlaxcala y Yucatán los más bajos. Como se observa en la gráfica anterior, mientras en 2012, había dos estados con datos atípicos, en 2014 fueron cuatro, aunque con valores más pequeños.

Incidencia delictiva de otras leyes y códigos

En 2014, el promedio de la incidencia de este delito fue de 30.3, con un coeficiente de variación relativamente alto de 54%, es decir existe heterogeneidad entre entidades federativas. Tamaulipas y Baja California muestran los índices más altos, con 81.7 y 62.2, respectivamente; mientras que Puebla y Tabasco tienen los índices menores con 11.3 y 11.4, respectivamente. Casi el 50% de estos delitos se deben a infracciones contra la Ley Federal de Armas de Fuego y Explosivos (L.F.A.F.E).

Dos años antes, este delito tenía una incidencia ligeramente superior de 32.0, siendo el Distrito Federal y Sonora los estados con mayor incidencia, y Yucatán el de menos. Solo que, en 2012, cuatro estados mostraban datos atípicos, mientras que, en 2014 solo Tamaulipas, en donde la incidencia pasa de 68.8 a 81.7 por cada 100 mil habitantes.

Gráfica 9



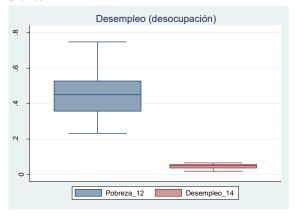
Grupo de variables "II" 2012

Pobreza

Para el año 2012, el 45.5% de los mexicanos en promedio vivía en pobreza, y 9.8% en pobreza extrema. Chiapas y Guerrero tienen los índices más altos con el 75% y 70% de su población en esta situación, respectivamente. Mientras que Nuevo León (23%), Coahuila (28%) y el Distrito Federal (29%), muestran los porcentajes menores. En 2014, este índice -prácticamente- permaneció igual, siendo Chiapas (76%), Oaxaca (67%), Guerrero (65%) y Puebla (65%) los estados con mayores índices de pobreza, y Nuevo León la entidad con el menor índice (20%).

Gráfica 10

Desempleo

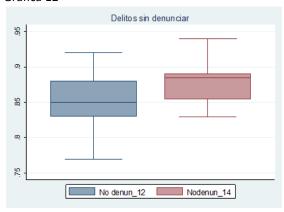

Esta es la única variable del grupo II que se repite, debido a su significancia, en los modelos de ambos años.

La tasa de desempleo promedio en 2012 fue de 4.8%, el cuarto trimestre es donde hubo mayor desocupación en ese año con un 5.0% promedio. Curiosamente, considerando sus niveles de pobreza, los estados que muestran las tasas más bajas de desocupación (menores al 3%) son Campeche, Guerreo, Chiapas y Oaxaca, mientras que las más altas Tamaulipas y Chihuahua, ambos con 6.5%.

Es posible que la población de los estados de la República con menor desempleo, acepten cualquier tipo de trabajo, aunque sean mal pagados y, por esta razón, la tasa de desocupación sea baja.

La tasa de desempleo promedio en 2014 fue de 4.68%, ligeramente más baja que en 2012; es decir, mejoró. El Distrito Federal y Tabasco muestran los porcentajes más altos con 6.5% y 6.5%, respectivamente. Mientras que nuevamente Guerrero muestra el porcentaje más bajo (2.0%), seguido ahora por Yucatán (2.7%).

Gráfica 11

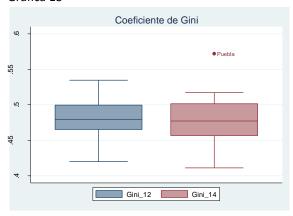

Delitos sin denunciar

El promedio de este indicador a nivel nacional es del 85.1%. La entidad federativa donde hay menos porcentaje de denuncias es Guerrero con un 92%, mientras que Colima y Baja California son los estados que realizan el mayor porcentaje de éstas. El coeficiente de variación es del 4.4%, por lo que existe homogeneidad entre los estados de la República.

Si el número de las 3.4 millones de denuncias de un total de 27.7 millones de delitos ocurridos es extremadamente bajo; peor aún es el hecho que de estos 3.4 millones solo el 65% tuvo una averiguación previa por parte de las autoridades competentes; es decir, solo el ocho por ciento del total de delitos.

Para 2014, este porcentaje empeoró al aumentar a 88%. Coahuila e Hidalgo se ubicaron como las entidades que más denuncian, mientras que Guerrero y San Luis Potosí fueron los estados con el menor porcentaje de denuncias. Aunque Coahuila es el mejor ubicado en todo el país, su porcentaje en sí, es muy malo (83%).

Gráfica 12

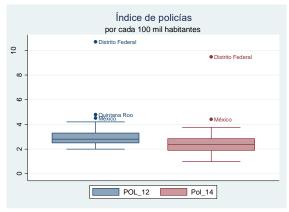

Coeficiente de Gini

El coeficiente nacional es del 49.8% (48.3 en promedio). El coeficiente de variación es de 4.3% por lo que se puede decir que los estados son muy parecidos en cuanto a este índice. La cifra más alta la muestra Chiapas con 53.5%, mientras que la más baja la tiene Tlaxcala con un 42%.

Para 2014, este coeficiente aumentó a 50.3%, lo que significa que existe más desigualdad en el país. Puebla, se ubica en la peor posición con un dato

atípico de 57.2%; por su parte, Tlaxcala, nuevamente, obtiene el índice más bajo con 41%.

Gráfica 13


Índice de policía por cada mil habitantes

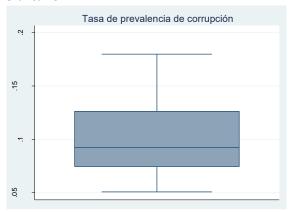
En primer término, hay que señalar que es la única variable del grupo II que no está en términos porcentuales. Ahora bien, en 2012, existían 422,309 policías dedicados a la seguridad pública en los estados y municipios de México. En promedio había 3.2 policías por cada mil habitantes, el coeficiente de variación es relativamente alto entre los estados con un 0.47, ya que mientras en el D.F. hay más de 10.7 elementos en estas labores por cada mil habitantes, en 20 entidades del país esta relación es menor a tres.

Aunque esta variable no resultó significativa para 2014, cabe hacer mención que existe una caída drástica en el número de elementos policiales en más de 54 mil en solo dos años, cuya cifra es de 368,039 efectivos reportados para 2014.

Chihuahua, Sonora, el Distrito Federal, Quintaran Roo y Tamaulipas son los que más reducen su índice de policía por cada mil habitantes en estos dos años.

Gráfica 14

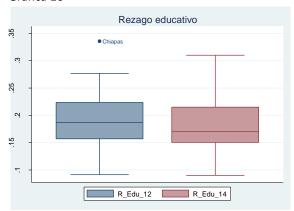
Grupo de variables "II" 2014


Desempleo

Véase "Desempleo", dentro del tema de variables del grupo II del año 2012.

Tasa de prevalencia de corrupción

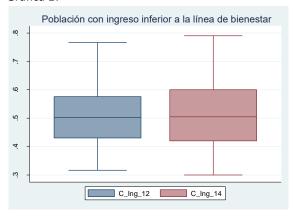
Este indicador solo se tiene para 2013, se ubicó en un promedio del 10% (12.1% es el valor nacional), la desviación estándar es de 3.5. San Luis Potosí y el Distrito Federal muestran los índices más altos con 18%, mientras que Sonora y Guerreo los más bajos con 5 y 6%, respectivamente.


Gráfica 15

Rezago Educativo

EN 2014, el rezago educativo es considerablemente alto ya que llega al 18%; Chiapas, Veracruz y Michoacán presentan tasas del 31% para el primer estado (dato atípico) y de 28% para los dos últimos. En contraposición el Distrito Federal y Nuevo León muestran las menores índices. Cabe señalar que hubo una ligera mejoría de poco menos de un punto porcentual con respecto a 2012, en ese año los estados con mayor rezago fueron: Chiapas (34%), Oaxaca (28%) y Guerrero (27%); mientras que de nueva cuenta el Distrito Federal fue el mejor ubicado con 9%

Gráfica 16

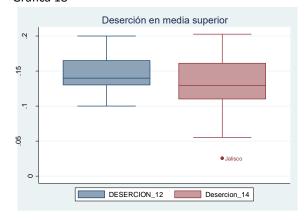

Porcentaje de Población con ingreso inferior a la línea de bienestar

En promedio, para 2014 el 51.5% de los mexicanos presentaba un *ingreso inferior* a la línea de bienestar, siendo Chiapas, Puebla, Oaxaca y Guerreo los estados con los índices más altos, particularmente Chiapas con el 80% de su población en esta situación. Por su parte, los estados con menores índices son Nuevo León y Baja California, con 30 y 35%, respectivamente.

De acuerdo con estimaciones del CONEVAL, en 2014 la línea de ingreso de bienestar fue de 1,627.4 pesos al mes -en promedio- para las zonas rurales, y de 2,558.4 pesos mensuales -en promedio- para las zonas urbanas.

En 2012, el promedio de mexicanos con un *ingreso inferior a la línea de bienestar* era ligeramente mejor con un 51%. Chiapas (77%), Guerreo (72%) y Puebla (69%) se ubicaban con los peores porcentajes, mientras que Nuevo León (32%) y Sonora (34%) con los mejores.

Gráfica 17



Deserción en educación media superior

Este es uno de los problemas del sector educativo en México, para 2014 la deserción fue de 13.2% en promedio para todos los estados, y su desviación estándar de 4.1%, lo que muestra cierta homogeneidad entre las entidades; no obstante, existen estados como Morelos que tiene una tasa de 20.3%, en contraparte Jalisco tiene solo 2.6% de abandono escolar (dato atípico).

Por su parte, en 2012, había sido 2 puntos porcentuales más alto que en 2014, al ubicarse en 15% la deserción total de este nivel. En 2012, el Distrito Federal mostró el indicador más alto con un 20% y Nayarit el más bajo con un 10%.

Gráfica 18

VIII. - Modelos de correlación canónica (teoría)

El análisis de correlaciones canónicas fue inventado por Harold Hotelling en 1935.

En general, la correlación canónica se utiliza cuando un conjunto de variables multivariantes puede dividirse en dos grupos homogéneos, y se desea estudiar la relación entre ambos conjuntos de variable (Daniel Peña, 2002).

En correlación canónica no hay distinción entre variables dependientes e independientes, los dos grupos pueden fungir como ambas. Aunque para los propósitos de este estudio, nos interesa que el grupo de variables II (pobreza y seguridad) explique al grupo de variables I (delincuencia).

Para explicar parte de la teoría de Correlación Canónica, como se verá a continuación, se utilizó el texto de *Análisis de Datos Multivariantes de Daniel Peña*, en la mayoría de los segmentos se transcribe lo mencionado en ese libro.

Supongamos que disponemos de un conjunto de datos de $\bf n$ individuos y $\bf k$ variables, que pueden subdividirse en dos grupos, llamémosles $\bf X$ al primer grupo (que contiene "p" variables) y, $\bf Y$ al segundo (que contiene "q" variables"), de tal forma que p+q = k.

Por lo que la matriz \mathbf{X} estará dada por n x p (que contiene los "p" primeras variables de los n elementos), de igual forma \mathbf{Y} estaría dada por n x q. Lo que se pretende hacer para medir la relación entre ambos conjuntos, es buscar una combinación lineal⁶ de las "p" primeras variables que tenga la máxima correlación con una combinación lineal de las "q" segundas variables.

De tal forma que la siguiente expresión es una combinación lineal del primer grupo:

$$U = X\alpha = \sum_{i=1}^{p} \alpha_i x_i$$

Y para el segundo grupo se tiene una combinación lineal de:

$$V = Y\beta = \sum_{j=1}^{q} \beta_j y_j$$

Como se mencionó, se desea encontrar los vectores α y β , tales que las nuevas variables U y V tengan máxima correlación. La combinación de variables se llama **variables canónicas (también conocidas como funciones canónicas)**, a lo largo del texto se mencionarán indistintamente.

A continuación, se presentarán algunos pasos de la demostración de la primera variable canónica.

⁶ Una combinación lineal es una expresión matemática que consiste en la suma entre pares de elementos, de determinados conjuntos, multiplicados entre sí.

Si se tiene un vector \underline{x} que es "px1" con E(x)=0 y $Var(x)=S_{11}$, y un vector \underline{y} que es "qx1" con E(y)=0 y $Var(y)=S_{22}$, de tal forma que las variables están medidas en desviaciones a la media. Entonces la matriz de covarianzas⁷ para el conjunto de variables es:

$$Sxy = E\left(\left[\begin{pmatrix} x \\ y \end{pmatrix}\right] [x'y']\right) = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix}$$

Se pretende encontrar dos vectores α y β , que definan dos nuevas variables escalares, $\text{U}=\alpha'\text{x}$, $\text{V}=\beta'\text{y}$, con máxima correlación. El coeficiente de correlación entre U y V es:

$$\rho(UV) = \frac{E[\alpha'xy'\beta]}{E[\alpha'xx'\alpha]^{1/2}[\beta'yy'\beta]^{1/2}}$$

que se puede escribir:

$$\rho = \frac{\alpha' S_{12} \beta}{[\alpha' S_{11} \alpha]^{1/2} [\beta' S_{22} \beta]^{1/2}}$$

cuya función objetivo es maximizar8:

$$\rho^{2} = \frac{(\alpha' S_{12} \beta)^{2}}{[\alpha' S_{11} \alpha] [\beta' S_{22} \beta]}$$

Introduciendo las restricciones de varianza unitaria mediante multiplicadores de Lagrange, la función a maximizar es:

$$M = (\alpha' S_{12} \beta)^2 - \lambda (\alpha' S_{11} \alpha - 1) - \mu (\beta' S_{22} \beta - 1)$$

Derivando, respecto a los vectores de coeficientes y escribiendo los resultados como vector columna, utilizando que $S_{12}^{'}=S_{21}$:

$$\frac{\delta M}{\delta \alpha} = 2S_{12}\beta - 2\lambda S_{11}\alpha,$$

$$\frac{\delta M}{\delta \beta} = 2S_{21}\alpha - 2\mu S_{22}\beta.$$

Igualando a cero estas ecuaciones se obtiene

$$S_{12}\beta = \lambda S_{11}\alpha$$

$$S_{21}\alpha = \mu S_{22}\beta$$

⁷ En el Apéndice I se explica –brevemente- la estructura de la matriz de varianza-covarianza.

⁸ Para maximizar se impuso la condición de varianzas unitarias: $Var(U)=lpha'S_{11}lpha=1$, y $Var(V)=Var(U)=eta'S_{22}eta=1$

Para resolver este sistema, multipliquemos la primera ecuación por α' y la segunda por β' y utilicemos las igualdades de las varianzas unitarias. Entonces:

$$\alpha' S_{12} \beta = \lambda \alpha' S_{11} \alpha = \lambda$$

$$\beta' S_{21} \alpha = \mu \beta' S_{22} \beta = \mu$$
,

y como $\lambda = \alpha' S_{11} \beta = \beta' S_{21} \alpha = \mu$, se concluye con el sistema:

$$S_{12}\beta = \lambda S_{11}\alpha$$

$$S_{21}\alpha = \lambda S_{22}\beta$$

Despejando β de la segunda ecuación, $\beta = \lambda^{-1} S_{22}^{-1} S_{21} \alpha$, y sustituyendo en la primera:

$$S_{12}\left(\lambda^{-1}S_{22}^{-1}S_{21}\right)\alpha=\lambda S_{11}\alpha$$
, que conduce a:

$$(\,S_{11}^{-1}S_{12}S_{22}^{-1}S_{21})\alpha=\lambda^2\alpha$$

Por lo tanto, se tiene que α es el vector propio ligado al valor propio λ^2 de la matriz cuadrada de dimensión p:

$$A_{pxp} = S_{11}^{-1} S_{12} S_{22}^{-1} S_{21}$$

Análogamente, se obtiene que β , es el vector propio ligado al valor propio λ^2 de la matriz

$$B_{axa} = S_{22}^{-1} S_{21} S_{11}^{-1} S_{12}$$

Se puede determinar que $\lambda^2=\mu^2=\rho^2$ es el cuadrado del coeficiente de correlación entre las variables canónicas U, V por lo que se tomará el vector propio ligado al mayor valor propio.

En resumen, se busca:

- 1.- Construir las dos matrices cuadradas de dimensiones p y q, A y B definidas $(A_{pxp} \ y \ B_{qxq})$. El vector propio asociado a su máximo valor propio (que es el mismo en ambas) proporciona las variables canónicas.
- 2.- Este mayor valor propio de ambas matrices es el cuadrado del coeficiente de correlación entre las variables canónicas.

De las ecuaciones $S_{12}\beta=\lambda S_{11}\alpha$, $S_{21}\alpha=\lambda S_{22}\beta$, antes mencionadas resulta:

$$\alpha = S_{11}^{-1} S_{12} \beta \lambda^{-1}$$

$$\beta = S_{22}^{-1} S_{21} \alpha \lambda^{-1}$$

Por lo que solo se necesita obtener vectores propios de una de las matrices. Conocido el vector α se puede obtener el vector β con $\beta=S_{22}^{-1}\,S_{21}\,\alpha\lambda^{-1}$ y análogamente, conociendo β se obtiene α con $\alpha=S_{11}^{-1}\,S_{12}\,\beta\lambda^{-1}$. Además, con $(S_{11}^{-1}S_{12}S_{22}^{-1}S_{21})\alpha=\lambda^2\alpha$, se puede obtener que $S_{12}\,S_{22}^{-1}S_{21}\,\alpha=\lambda^2S_{11}\,\alpha$ y multiplicando por α' , e imponiendo la condición de variable unitaria, se tiene que

$$\lambda^2 = \alpha' S_{12} S_{22}^{-1} S_{21} \alpha$$

Lo anterior indica que el coeficiente de correlación canónica, λ^2 , es el cuadrado del coeficiente de correlación múltiple entre la variable $U=\alpha'x$, y las variables V. Las covarianzas entre U & y, están dadas por el vector $S_{21}\alpha$ y las correlaciones por $D_{22}^{-1/2}S_{21}\alpha$, donde D_{22} es una matriz diagonal que contiene las varianzas de las variables y. Entonces el coeficiente de correlación múltiple es:

$$\rho^{2} = r_{12}R_{22}^{-1}r_{12} = \left(\alpha'S_{12}D_{22}^{-\frac{1}{2}}\right)(D_{22}S_{22}^{-1}D_{22})\left(D_{22}^{-\frac{1}{2}}S_{21}\alpha\right) = \lambda^{2}$$

La relación anterior, tal vez, puede ser la única significativa o podrían encontrase más combinaciones de variables que no estén correlacionadas con las anteriores y que tengan correlación máxima, y así sucesivamente (interesados en la demostración, ver Análisis de Datos Multivariantes, Daniel Peña, 2002, págs. 481 a 483). Puede haber tantas combinaciones como el número de variables del grupo que tenga menos de éstas. Si solo una de las combinaciones resulta ser significativa, se dice que la relación entre ambos conjuntos se da en una dimensión (en una línea recta).

Propiedades de las variables y correlaciones canónicas:

- 1. Las variables canónicas son indicadores de los dos conjuntos de variables que se definen por pares, con la condición de máxima correlación.
- 2. Los coeficientes de las variables canónicas son los vectores propios ligados al mismo valor propio de las matrices $S_{ii}^{-1/2}S_{ij}S_{jj}^{-1}S_{ji}$, para i=1,2 e $i\neq j$.
- 3. Si $\alpha_i x$ es una variable canónica, también lo es $-\alpha_i x$, y los signos de las variables canónicas suelen tomarse de manera que las correlaciones entre las variables canónicas α x y β y sean positivas.
- 4. Las correlaciones canónicas λ_i^2 , son el cuadrado del coeficiente de correlación entre las dos variables canónicas correspondientes.
- 5. Las correlaciones canónicas son invariantes ante transformaciones lineales de las variables.
- 6. La primera correlación canónica λ_1^2 , es mayor o igual que el mayor coeficiente de correlación simple al cuadrado entre una variable de cada conjunto.
- 7. El coeficiente de correlación canónica λ_i^2 es el coeficiente de determinación en una regresión múltiple con respuesta la variable $V_i = \beta_i^{'} y$, y las variables explicativas las X´s.

Coeficientes canónicos (demostración):

Los vectores α y β , antes señalados son los "pesos" canónicos brutos o coeficientes canónicos. Es necesario estandarizar estos "pesos" debido a que las variables originales de los grupos comúnmente están dadas en distintas unidades de medida. Estos pesos estandarizados son parte de la ecuación lineal para crear las variables canónicas; es decir, se utilizan para evaluar la

contribución relativa de una variable en la correlación canónica⁹. Posteriormente, se detallará más sobre estos coeficientes.

Ahora bien, a continuación, se muestra una breve demostración:

Si se tiene que:

$$U_i = \alpha_i^{'} X = \begin{bmatrix} \alpha_{i1}, \alpha_{i2,...} & \alpha_{ip} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

y aplicando la fórmula $Z=\frac{X-\mu}{s}$, donde la $s=\sqrt{Var(X)}$, para estandarizar o tipificar una variable en una distribución normal con media cero y desviación estándar 1; es decir, N(0,1).

Entonces, si a la U_i antes descrita, la multiplicamos y dividimos por "s", tendríamos que:

$$U_i = s_1 \alpha_{i1} \left(\frac{X_1}{s_1} \right) + s_1 \alpha_{i2} \left(\frac{X_2}{s_2} \right) + \dots + s_p \alpha_{ip} \left(\frac{X_p}{s_p} \right)$$

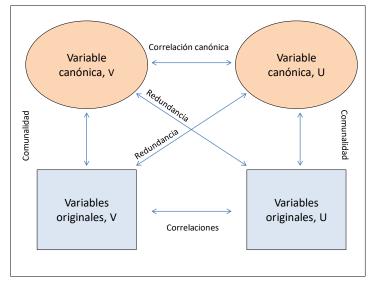
y como E(X)=0, entonces tendríamos una variable estandarizada X^* , por lo que:

$$U_i = s_1 \alpha_{i1} X_1^* + s_2 \alpha_{i2} X_2^* \dots + s_p \alpha_{ip} X_p^*$$

lo que significa que el vector de pesos estandarizados para crear la variable U_i , estaría dado por:

$$\left[s_1\alpha_{i1},s_2\alpha_{i2},\ldots,s_p\alpha_{ip}\right]$$

En otras palabras, si se dividen los pesos brutos entre los pesos estandarizados, se obtendría que:


$$\frac{\left[\alpha_{i1}, \alpha_{i2}, \dots, \alpha_{ip}\right]}{\left[s_{1}\alpha_{i1}, s_{2}\alpha_{i2}, \dots, s_{p}\alpha_{ip}\right]} = \frac{1}{s_{1}}, \frac{1}{s_{2}}, \dots, \frac{1}{s_{p}}$$

En el Apéndice II se demuestran brevemente otros coeficientes del análisis canónico, como los son los coeficientes de *comunalidad*, *adecuación* y redundancia.

Finalmente, más adelante se explicará todo esto de forma práctica. La siguiente imagen muestra un resumen muy general del análisis de correlación canónica.

⁹ Se obtienen los valores (scores) de multiplicar los pesos estandarizados por las variables originales estandarizadas, esto en cada grupo.

Análisis de Correlación Canónica

Gráfica con base en la publicada en GLM Multivariate, MANOVA & Canonical Correlation.

IX.- Hipótesis del modelo

H₀ = La correlación entre los dos grupos de variables es cero.

H₁ = La correlación entre los dos grupos de variables es diferente de cero.

X.- Supuestos del modelo

El estudio es de índole descriptivo y no predictivo por lo cual no se detallarán a profundidad los supuestos del modelo. Cabe señalar, que todos los artículos relacionados con la correlación canónica que fueron revisados, mencionan los supuestos, pero en general ninguno profundiza en ellos.

No obstante lo anterior, es pertinente mencionar lo siguiente:

✓ De acuerdo con Alissa Sherry y Robin K. Henson, en su artículo "Conducting and Interpreting Canonical Correlation Analysis in Personality Research: A User - Friendly Primer", la <u>normalidad multivariada</u> es probablemente el supuesto más importante. Supone que todas las variables y todas las combinaciones lineales estén normalmente distribuidas. Es un supuesto difícil de cumplir, y los datos de este estudio no son la excepción.

Sin embargo, el supuesto es importante solo para corroborar si se rechaza o no la hipótesis nula. Como se mostrará más adelante las correlaciones canónicas tanto de 2012 como de 2014 son superiores al 0.88 en su primera combinación lineal, y por arriba de 0.55 en su segunda combinación, lo que hace suponer que la correlación entre los dos grupos de variables es diferente de cero. Esto mismo, se corroborará con cuatro pruebas que se señalarán próximamente (aunque estas pruebas no serían tan contundentes, si no existiera la normalidad).

✓ Como se comentó, se decidió dejar las variables seleccionadas de todas las entidades federativas en los modelos, con el fin de describir al país por completo; a pesar de que algunos son valores atípicos y su permanencia ocasiona que no se cumplan por completo varios supuestos.

No obstante, a continuación, se señalan algunos hallazgos sobre los supuestos:

- Se detectaron pocas entidades federativas con valores atípicos, un caso especial fue Baja California en 2014.
- De acuerdo con el método del Factor de Inflación de Varianza (FIV) y observando las correlaciones entre variables no se detectó multicolinealidad.
- Al correr regresiones entre pares de variables de los dos grupos, se obtuvieron los residuales estandarizados contra los valores ajustados (predichos), y al graficarlos no se observaron patrones definidos por lo que no se observó heteroscedasticidad.
- Al graficar los mismos residuales estandarizados que fueron mencionados en el punto anterior, se observó que la mayoría de las variables cumplían con el supuesto de linealidad, aunque en ciertos casos no se cumplía.

XI.- Aplicación del Análisis de Correlación Canónica para 2012¹⁰

XI.1 Evaluación del modelo completo y coeficientes de correlación canónica

Los datos que a continuación se presentan contienen las variables de los dos grupos que se pretenden asociar, éstas variables se seleccionaron porque resultaban ser significativas y cumplían en buena medida con los supuestos del modelo antes mencionados, que, aunque no se detallan, sí se evaluaron.

C_{1}	ıad	lrم	a
ı.ı	140	II ()	4

Entidad	LROBO_12	LDPAT_12	LSECU_12	LLGS_12	LOD_12	LF	obreza_12	LGini_	12	LN o denun_12	Desempleo_12	LP O L_12
Aguascalientes	6.84	5.80	- 2.30	1.55	3.00	-	0.97	- 0	.74	- 0.16	0.06	0.88
Baja California	7.55	5.72	- 0.11	2.05	4.31	-	1.20	- 0	.77	- 0.25	0.06	1.10
Baja California Sur	7.18	6.22	- 2.30	4.40	3.81	-	1.20	- ().71	- 0.24	0.05	1.44
Campeche	3.81	2.44	- 1.20	0.84	3.85	-	0.81	- 0	.63	- 0.22	0.02	1.03
Chiapas	4.94	4.19	- 1.20	1.75	2.97	-	0.29	- 0	.63	- 0.17	0.02	0.92
Chihuahua	6.46	5.69	0.41	3.05	3.55	-	1.04	- 0	.69	- 0.20	0.06	1.25
Coahuila	6.65	5.74	- 0.22	1.86	3.35	-	1.28	- 0	.77	- 0.17	0.06	0.88
Colima	6.83	4.56	- 0.11	1.07	3.75	-	1.07	- ().81	- 0.26	0.04	1.31
Distrito Federal	6.90	5.87	- 0.36	0.36	4.81	-	1.24	- 0	.78	- 0.11	0.06	2.37
Durango	6.52	5.65	1.06	1.35	3.47	-	0.69	- 0	.70	- 0.17	0.06	0.92
Guanajuato	6.31	5.58	- 1.61	4.38	3.05	-	0.81	- 0	.77	- 0.11	0.06	0.74
Guerrero	6.01	4.72	1.55	- 3.56	3.16	-	0.36	- 0	.63	- 0.08	0.02	1.06
Hidalgo	5.79	5.04	- 0.22	- 1.38	3.78	-	0.64	- 0	.73	- 0.13	0.05	1.06
Jalisco	6.10	5.38	- 0.11	4.06	3.28	-	0.92	- 0	.75	- 0.14	0.05	0.99
Michoacán	5.94	4.67	1.10	1.00	3.20	-	0.61	- 0	.75	- 0.13	0.04	0.88
Morelos	7.04	5.92	1.61	2.91	3.40	-	0.79	- 0	.84	- 0.13	0.04	1.19
M éxico	6.44	4.76	- 0.22	0.65	3.01	-	0.79	- 0	.75	- 0.13	0.06	1.50
Nayarit	5.23	4.59	0.64	1.90	3.80	-	0.74	- 0	.70	- 0.17	0.06	1.19
Nuevo León	6.31	4.34	0.26	1.44	3.09	-	1.46	- 0	.72	- 0.11	0.06	0.92
Oaxaca	5.64	5.45	0.34	2.27	3.09	-	0.48	- 0	.67	- 0.13	0.03	1.13
Puebla	6.49	5.50	- 0.69	- 0.76	2.74	-	0.44	- 0	.72	- 0.14	0.04	0.88
Querétaro	6.51	5.24	- 0.92	3.02	3.24	-	1.00	- 0	.69	- 0.16	0.05	0.69
Quintana Roo	6.89	6.23	0.10	1.91	3.83	-	0.95	- 0	.74	- 0.17	0.04	1.57
San Luis Potosí	5.74	5.58	- 0.11	1.73	2.59	-	0.68	- ().71	- 0.11	0.03	1.16
Sinaloa	6.35	4.55	0.10	2.49	3.46	-	1.01	- 0	.76	- 0.14	0.05	1.03
Sonora	6.12	5.12	- 1.61	3.62	3.72	-	1.23	- 0	.74	- 0.20	0.06	1.03
Tabasco	6.51	5.60	0.92	1.69	3.37	-	0.70	- 0	.66	- 0.20	0.06	1.41
Tamaulipas	6.54	4.33	1.28	- 3.53	4.10	-	0.96	- 0	.76	- 0.14	0.07	0.74
Tlaxcala	5.72	4.02	- 1.61	2.95	3.54	-	0.55	- 0	.87	- 0.16	0.06	1.03
Veracruz	5.85	5.27	0.18	2.01	3.37	-	0.64	- ().71	- 0.17	0.03	0.99
Yucatán	5.83	6.20	- 3.02	1.67	2.85	-	0.72	- 0	.77	- 0.20	0.03	1.16
Zacatecas	6.23	5.20	-	- 0.02	2.98	-	0.61	- 0	.64	- 0.17	0.06	0.96

¹⁰ Para la explicación de esta sección se basó en dos fuentes: Multivariate Data Analysis, Pearson Prentice Hall Publishing and GLM Multivariate, Manova and Canonical Correlation.

Con ayuda del paquete estadístico se obtienen los coeficientes de correlación canónica¹¹ y se determina si los dos grupos de variables están relacionados. Para esto se pueden llevar a cabo cuatro pruebas de significancia estadística utilizadas en el Análisis Multivariado de Varianza (MANOVA). Estas son: la prueba de Roy; la prueba de Lawley y Hotelling; la prueba de Pillai´s y la prueba de relación de posibilidades de Wilks lambda, se considera a esta última como la más potente¹². Aunque cuando existen violaciones de normalidad y/u homocedasticidad es preferible utilizar la prueba de Pillai´s.

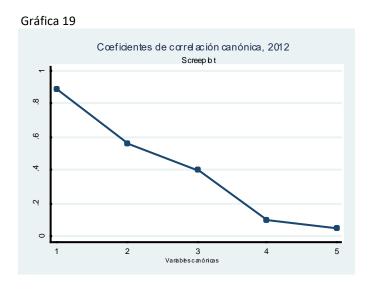
Cuadro 10 Canonical correlation	ons:				
0.8924 0.5632 0.4004	0.1029 0.0	552			
Tests of significance of	all canonica	l corre	lations		
	Statistic	df1	df2	F	Prob>F
Wilks' lambda	.115143	25	83.2283	2.6280	0.0005 a
Pillai's trace	1.28754	25	130	1.8034	0.0180 a
Lawley-Hotelling trace	4.58087	25	102	3.7380	0.0000 a
Roy's largest root	3.91164	5	26	20.3405	0.0000 u
e = exact, a = approxima	ite, u = upper	bound	on F		

Como se observa, todas las pruebas son significativas a un nivel de significancia de 0.05, lo que confirma que los dos grupos de variables están relacionados y se rechaza la hipótesis nula. No obstante, cabe señalar que como se muestra en el análisis descriptivo, hay algunas variables marginales con asimetría, por lo que el valor de "Prob>F o pvalue" seguramente es mayor al reportado en estas cuatro pruebas y, es probable, que no se cumpla la normalidad; aunque como se mencionó también, este estudio es de carácter descriptivo únicamente.

Ahora bien, el coeficiente de correlación canónica es la correlación entre las dos variables canónicas (que denotaremos con la letra ${\bf U}$ para la primera variable y con ${\bf V}$ para la segunda, en cada una de las cinco funciones canónicas posibles, que a su vez representan las dimensiones en que las variables canónicas pueden estar relacionadas).

La tabla anterior muestra cinco correlaciones canónicas (una por cada función), siendo siempre la primera la que explica el mayor porcentaje de la relación, en

¹¹ Para obtener las variables canónicas y los coeficientes de correlación canónica es necesario calcular, primero, los coeficientes brutos y estandarizados; así como los valores (scores) de las variables canónicas antes mencionados. Estos temas se abordarán más adelante.


 $^{^{12}}$ De acuerdo con Richard I. Levin, "la potencia de la prueba es la probabilidad de rechazar la hipótesis nula cuando es falsa; es decir, es una medida de la eficacia con que funciona una prueba de hipótesis. Se representa como $1-\beta$, y lo ideal sería que fuera lo más grande posible". Ahora bien, se han hecho demostraciones que cuando los datos se distribuyen normalmente, la potencia mencionada es mayor con la prueba Wilks' lambda.

Por otra parte, como lo mencionan Sherry y Henson, la λ de Wilks tiene una propiedad útil que representa la cantidad de varianza que no se comparte entre los conjuntos de variables. En otras palabras, al tomar el valor de 1 - λ , se determina la proporción "aproximada" de la varianza compartida entre los conjuntos de variables a través de todas las funciones canónicas.

este caso es de **0.8924**. Se puede mencionar que es un porcentaje muy significativo si se considera que por "regla arbitraria" todo número arriba de 0.30 es importante, ya que este último explica aproximadamente el 10% de la varianza. Por otra parte, este valor elevado al cuadrado de **0.7964**, representa el porcentaje de varianza de una variable canónica que es explicado por la otra.

Al realizar el análisis de reducción de dimensiones, se observó que solo la primera función canónica resultó ser significativa (es unidimensional).

La siguiente gráfica "scree plot", muestra los coeficientes de correlación.

XI.2 Coeficientes canónicos brutos y errores estándar

Siguiendo con el punto anterior, el vector propio correspondiente a cada valor propio¹³ -obtenido de las matrices de los dos grupos de variables- se transforma en los coeficientes que especifican la combinación lineal que hará una variable canónica.

En otras palabras, los coeficientes canónicos brutos representan las ponderaciones de cada variable original utilizadas para crear las variables canónicas en cada dimensión, y se interpretan como las "betas" en el análisis de regresión múltiple. No obstante lo anterior, al tener unidades de medición diferentes en los dos grupos originales de variables, no consideraremos esta interpretación de los coeficientes para el análisis, salvo para demostrar que los 10 coeficientes "brutos" son significativos.

A continuación, se muestran brevemente los coeficientes canónicos brutos de la primera función canónica que fue la única significativa:

¹³ Los autovalores de dichas matrices representan el porcentaje de varianza que se "traslapa" entre los pares de variables canónicas. La raíz cuadrada de los autovalores representa un aproximado de las correlaciones canónicas, solo cuando todas las funciones canónicas posibles tengan una relación perfecta.

Cuadro 11 Linear combinations for canonical correlations				Number of obs = 32				
1	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]		
+								
u1								
LDPAT_12	.4099224	.1958461	2.09	0.045	.0104916	.8093532		
LROBO_12	-1.081743	.2188397	-4.94	0.000	-1.52807	6354167		
LSECU_12	.2558022	.0974247	2.63	0.013	.0571033	.4545011		
LLGS_12	1787883	.0605925	-2.95	0.006	3023674	0552092		
LOD_12	-1.174492	.2277674	-5.16	0.000	-1.639026	7099569		
+								
v1								
LPobreza_12	1.427346	.4578474	3.12	0.004	.4935601	2.361132		
LNodenun_12	7.975287	2.364859	3.37	0.002	3.152124	12.79845		
LGini_12	5.7176	1.888248	3.03	0.005	1.866493	9.568706		
Desempleo_12	-20.14717	8.881063	-2.27	0.030	-38.26021	-2.034119		
LPOL_12	7378458	.32407	-2.28	0.030	-1.398791	0769007		

Solo por señalar un ejemplo, la interpretación del coeficiente de la variable "desempleo" se interpretaría en que un incremento de una unidad en esta variable disminuiría la variable canónica (V1) en 20.1. Los errores estándar¹⁴ de la tabla son los asociados a los coeficientes, y se utilizan para medir si los coeficientes son significativos, utilizando la prueba t. Como se observan todos los *P-value* son menores a .05, por lo que las variables de los dos grupos resultan ser significativas a este nivel de significancia.

XI.3 Interpretación de funciones canónicas

Se deben examinar e interpretar las funciones o variables canónicas para determinar la importancia relativa de cada una de las variables brutas u originales en las relaciones canónicas. Comúnmente se utilizan tres métodos para esta interpretación¹⁵: 1) pesos canónicos (coeficientes estandarizados); 2) cargas canónicas (correlaciones de estructura), y 3) las cargas canónicas cruzadas.

Pesos canónicos (coeficientes estandarizados)

A diferencia de los coeficientes canónicos brutos, estos coeficientes estandarizados se utilizan cuando las variables difieren en escala o desviación estándar, ya que estas diferencias en magnitud o desviación son controladas.

¹⁴ El error estándar es la desviación estándar de la distribución muestral de un estadístico.1 El término se refiere también a una estimación de la desviación estándar, derivada de una muestra particular usada para computar la estimación.

¹⁵ Mencionado en "Multivariate Data Analysis, Pearson Prentice Hall Publishing".

Como se mencionó, los coeficientes canónicos son los coeficientes estandarizados en la ecuación lineal de variables, los cuales crean las funciones canónicas. Asimismo, se utilizan para evaluar la contribución relativa que tiene una variable original en una función canónica.

Ahora bien, éste es un enfoque tradicional para interpretar las funciones canónicas, el cual implica examinar el signo y la magnitud del *peso canónico* asignado a cada variable original en su variable canónica. Entre más grande el peso mayor la contribución de la variable original a la variable canónica.

Como también se señala en la publicación "A Supplement to Multivariate Data Analysis, Pearson Prentice Hall Publishing", esta técnica está sujeta a las mismas críticas de las betas en una regresión. Un pequeño peso puede significar o bien que su variable correspondiente es irrelevante para determinar una relación o que ha quedado parcialmente fuera de la relación debido a un alto grado de multicolinealidad. En este sentido, en correlación canónica, los pesos canónicos son típicamente inestables, al menos que la colinealidad sea mínima, ya que si ésta es baja se podría asegurar que un pequeño peso puede asegurar que un variable es irrelevante.

Las siguientes tablas muestran los pesos canónicos de la función canónica 1, en sus dos grupos:

Cuadro 12

Standardized coefficients for the first variable set

LDPAT_12 | 0.3254

LROBO 12 | -0.7689

LSECU 12 | 0.2921

LLGS 12 | -0.3350

LOD 12 | -0.5556

Las variables que sufrieron algún tipo de transformación (en este caso logarítmica) se interpretan de forma especial, como se explica en el siguiente cuadro. Cabe señalar que los coeficientes estandarizados siguen siendo significativos.

Interpretación de variables logarítmicas.

Como señalan, Arce y Mahía, los logaritmos modifican conceptualmente el propio significado (e interpretación) de los parámetros obtenidos. La interpretación de los parámetros de un modelo de regresión, por ejemplo, es cercana al concepto de "elasticidad" entre ambas variables ("y" y "x") o, dicho de otro modo, la magnitud del cambio porcentual en "y" ante una variación del 1% en la variable "x". En los casos en los que se combinan niveles y logaritmos, la interpretación de la variable en logaritmos se hace en cambios "porcentuales" en tanto que los cambios en las variables en niveles se expresan como "cambios en las unidades originales de esas variables".

En la siguiente tabla se resume esa interpretación (Arce y Mahía, 2012):

Cuadro 13

Especificación	Expresión	Interpretación de \hat{eta}_2
Nivel-Nivel	$y_i = \beta_1 + \beta_2 x_{2i} + u_i$	Incremento de unidades en "y" cuando aumenta 1 unidad la
		"X" (ambas en sus unidades de medida originales)
Log-nivel	$\log(y_i) = \beta_1 + \beta_2 x_{2i} + u_i$	$\hat{\beta}_2 * 100$ = incremento
		porcentual de "y" cuando aumenta una unidad la "X"
Nivel-log	$y_i = \beta_1 + \beta_2 \log(x_{2i}) + u_i$	$\hat{\beta}_2 / 100_{\text{=incremento en}}$
		unidades de "y" cuando
		aumenta un 1% la "X"
Log-Log	$\log(y_i) = \beta_1 + \beta_2 \log(x_{2i}) + u_i$	Incremento porcentual de "y" cuando aumenta un 1% la "X"

Con base en lo anterior, veamos las interpretaciones:

Grupo I

- 1. Un incremento de uno por ciento en los delitos patrimoniales impacta en un aumento de 0.3254 en la puntuación de U1.
- 2. Un incremento de uno por ciento en el *robo* impacta en una disminución de 0.7689 en la puntuación de U1.
- 3. Un incremento de uno por ciento en el *secuestro impacta en* un aumento de 0.2921 en la puntuación de U1.
- 4. Un incremento de uno por ciento en los delitos contra la Ley general de Salud (narcomenudeo) impacta en una disminución de 0.3350 en la puntuación de U1.
- 5. Un incremento de uno por ciento en los *otros delitos del orden federal* impacta en una disminución de 0.5556 en la puntuación de U1.

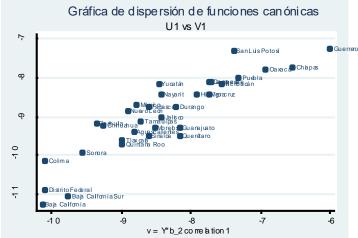
Grupo II

- 6. Un incremento de uno por ciento en la *pobreza* conduce a un aumento de 0.4081 en la puntuación de V1.
- 7. Un incremento de uno por ciento de los *delitos no denunciados* conduce a un aumento de 0.3503 en la puntuación de V1.
- 8. Un incremento de uno por ciento en el *coeficiente de Gini* conduce a un aumento de 0.3305 en la puntuación de V1.
- 9. Un incremento de una unidad del *desempleo* impacta en una disminución de 0.2813 en la puntuación de V1.
- 10. Un incremento de uno por ciento en el *número de policías por cada mil habitantes* impacta en una disminución de 0.2329 en la puntuación de V1.

Dado que este análisis es inestable¹⁶, debido a que puede haber mucha variabilidad de una muestra a otra, tampoco será tomado en cuenta para el análisis de correlación canónica, a diferencia de las cargas canónicas simples y cruzadas, las cuales se describirán más adelante. Sin embargo, se reitera que estos coeficientes estandarizados son un factor indispensable para calcular los scores que se explican a continuación.

Valores de las variables canónicas (scores)

Los valores o scores de las variables canónicas se obtienen de multiplicar los coeficientes canónicos estandarizados mencionados, por los valores de los casos también estandarizados.


¹⁶ La inestabilidad ocurre porque los procedimientos computacionales en el análisis canónico, permiten que los pesos maximicen la correlación canónica de una muestra de variables dependientes e independientes. Por lo que se debe ser cuidadoso, al utilizar los pesos canónicos estandarizados para la interpretación de resultados, (Thorndike).

Cuadro 14

		SCORE	S 2012			
Entidad	U1	V1	Entidad	ı	U1	V1
Aguascalientes	- 9.407	- 8.818	Morelos	- 9	9.296 -	8.521
Baja California	- 11.274	- 10.133	Nayarit	- 8	8.420 -	8.425
Baja California Sur	- 11.064	- 9.760	Nuevo León	- 8	8.864 -	8.904
Campeche	- 8.096	- 7.720	Oa xa ca	- 7	7.820 -	6.920
Chiapas	- 7.735	- 6.532	Puebla	- 8	8.025 -	7.318
Chihuahua	- 9.258	- 9.254	Querétaro	- 9	9.482 -	8.168
Coahuila	- 9.160	- 9.365	Quintana Roo	- 9	9.718 -	8.979
Colima	- 10.139	- 10.095	San Luis Potosí	- 7	7.301 -	7.381
Distrito Federal	- 10.865	- 10.088	Sinaloa	- 9	9.489 -	8.616
Durango	- 8.775	- 8.210	Sonora	- 9	9.953 -	9.546
Guanajuato	- 9.316	- 8.168	Tabasco	- 8	8.769 -	8.614
Guerrero	- 7.244	- 6.002	Tamaulipas	- 9	9.151 -	8.715
Hidalgo	- 8.457	- 7.915	Tlaxcala	- 9	9.631 -	8.989
Jalisco	- 9.007	- 8.413	Veracruz	- 8	8.433 -	7.744
México	- 8.725	- 8.777	Yucatán	- 8	8.180 -	8.460
Michoacán	- 8.163	- 7.573	Zacatecas	- 8	8.109 -	7.749

Obsérvese en la siguiente gráfica como se da la relación de los valores de las dos variables canónicas en una línea recta. En esta gráfica se observa linealidad.

Gráfica 14

Cabe señalar que en el punto XIII de este documento, se muestra un agrupamiento por conglomerados (clusters) de las entidades federativas con el fin de detectar si existe un patrón de agrupamiento y/o si los "clusters" tienen alguna relación con la forma en que están dispersas las entidades federativas en la gráfica anterior.

Análisis de correlación

Antes de explicar las cargas canónicas simples y cruzadas, que son los otros dos métodos para interpretar las variables canónicas, se analizará brevemente la correlación de las variables dentro de su grupo y entre grupos.

Cuadro 15.- Correlations for variable list 1

	LDPAT_12	LROBO_12	LSECU_12	LLGS_12	LOD_12
LDPAT 12	1.0000				
LROBO 12	0.7052	1.0000			
LSECU 12	-0.0832	0.1169	1.0000		
LLGS 12	0.2915	0.1015	-0.4093	1.0000	
LOD_12	-0.0577	0.2322	0.1345	-0.0713	1.0000

En el primero grupo de variables transformadas en logaritmos, la correlación más alta se encuentra entre los delitos patrimoniales y los robos con 0.7052, seguido por la de delitos contra la Ley General de Salud (narcomenudeo) que se correlaciona de forma negativa con el secuestro con un 0.4093. Por lo que muestran los datos, en los estados que más se dedican al secuestro no realizan narcomenudeo.

Cuadro 16 Correlatio	ons for variab	le list 2				
	LPobr~12	LNode~12	LGini_12	Desem~12	LPOL_12	
	+					
LPobreza_12	1.0000					
LNodenun_12	0.2650	1.0000				
LGini_12	0.3502	-0.0294	1.0000			
Desempleo_12	-0.5769	-0.1006	-0.3499	1.0000		
LPOL_12	-0.2276	-0.0462	-0.1505	0.1023	1.0000	

En el grupo II, existe una correlación negativa considerable entre la pobreza y el desempleo de 0.5769; de igual forma la correlación de la pobreza con el coeficiente de Gini es de 0.3502 en sentido positivo. Por su parte, el coeficiente de Gini muestra una correlación negativa con el desempleo de 0.3499.

Finalmente, en la siguiente tabla se muestran las correlaciones cruzadas entre ambos grupos.

El robo muestra tres correlaciones significativas con las variables del grupo II. A diferencia de lo que podría suponerse, solo la correlación con el desempleo pareciera ser "razonable".

Los delitos en contra de la LGS y los otros delitos de orden federal siguen el mismo patrón que el robo en relación con las variables del grupo II.

Los delitos patrimoniales tienen una correlación positiva con el desempleo y con los delitos no denunciados, aunque esta última es extremadamente baja.

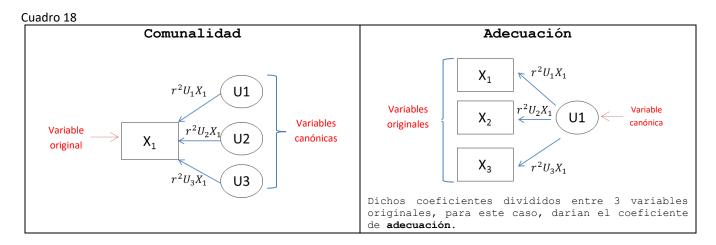
El secuestro, según los datos, es la única variable que se comporta de forma en que la mayoría hubiera pensado, ya que tiene una correlación positiva con las variables de pobreza, desigualdad y denuncia; así como, una correlación negativa con el desempleo. Solo la correlación con el índice de policías parece extraña, ya que a mayor número de policías por habitante mayor secuestro.

Cargas canónicas (coeficientes estructurales)

El vector de estas cargas se obtiene del vector de pesos estandarizados y la matriz de correlaciones entre las variables de un mismo grupo.

Como lo explica David Garson, estas cargas representan la correlación de la variable canónica con las variables originales de su propio grupo. Es decir, cada coeficiente estructural elevado al cuadrado indica la contribución hecha por una determinada variable original en la conformación de la variable canónica del grupo al que pertenece. Por regla arbitraria todo valor arriba de 0.3 es considerado importante.

Las cargas canónicas se utilizan para tres propósitos:


- 1. Para interpretar las variables canónicas (como se mencionó).
- 2. Para calcular la <u>varianza</u> explicada de una variable original: el coeficiente estructural al cuadrado que se señaló anteriormente, también es el porcentaje de varianza que comparte la variable canónica con una variable original de su grupo. A la suma de las correlaciones estructurales al cuadrado de una variable original en las diferentes

variables canónicas se le llama <u>coeficiente de comunalidad¹⁷</u>, y representa que tanto de las varianzas de la(s) variable(s) original(es) es reproducible por las variables canónicas.

En matrices de correlaciones cuadradas la suma de los coeficientes de comunalidad de una variable original en cada función canónica es uno (la suma de estos "unos" representan la comunalidad total). Si la matriz no es cuadrada, la suma de los coeficientes de comunalidad de una variable original en cada función canónica diferirá de uno, en el grupo con mayor número de variables; sin embargo, la comunalidad total será la misma en ambos grupos.

3. Para calcular la varianza explicada de un grupo de variables originales: la suma de las correlaciones estructurales al cuadrado de las variables originales de una variable canónica determinada dividida entre el número total de variables de ese grupo, se le conoce como <u>coeficiente de adecuación</u>, en otras palabras, es el porcentaje promedio de varianza que comparte una variable canónica y las variables originales de su grupo. Es decir, mide qué tan bien (calidad de ajuste) la variable canónica representa la varianza original de las variables.

A continuación, se muestra un resumen gráfico:

El siguiente cuadro muestra los coeficientes estructurales de los dos grupos de variables de la primera función canónica, que fue la única significativa.

¹⁷Es decir, por ejemplo:

Cuadro 19

Canonical loadings for variabl	e list 1	Canonical loadings for variable list 2					
Grupo I	Comunalidad Grupo (I) ²	1	Carg. Can. Grupo I	_			
LDPAT_12 -0.3068 LROBO_12 -0.6683 LSECU_12 0.2376 LLGS_12 -0.3982 LOD_12 -0.6896	0.0941 0.4466 0.0565 0.1586 0.4755	LPobreza_12 LNodenun_12 LGini_12 Desempleo_12 LPOL_12	0.8320 0.4879 0.5966 -0.6915	0.6922 0.2380 0.3559 0.4782 0.1768			
Coeficiente de adecuación ¹⁸	(0.2463)	Coeficiente de ade	cuación	(0.3882)			

- 1. En el Grupo I, las cargas canónicas de casi todas las variables originales son explicadas de forma significativa por la variable canónica U1 (por "regla arbitraria" todo número alrededor de 0.30 es importante, ya que explica aproximadamente un 10% de la varianza), la mejor explicada fue otros delitos del orden federal; después el robo; luego los delitos contra la LGS (narcomenudeo) y, finalmente, los delitos patrimoniales y el secuestro (este último por debajo del .30 o por debajo del .06 de la varianza). En este caso, como solo la primera función canónica fue significativa, se considera solamente el coeficiente de comunalidad¹⁹ de U1; es decir, el primer coeficiente estructural al cuadrado del Grupo (I)² de cada variable original. El coeficiente de adecuación para U1 es de 24.6%.
- 2. Por su parte en el grupo II, todas las variables son explicadas de forma significativa por la variable canónica V1, la pobreza es la que mejor fue explicada por V1, seguida por el desempleo, el coeficiente de Gini, los delitos no denunciados y el índice de policías. El coeficiente de adecuación para V1 es de 38.8%.

Cargas canónicas cruzadas

Consisten en correlacionar cada una de las variables originales del grupo I, observadas directamente con el valor teórico canónico del grupo II, y viceversa. De esta manera, las cargas cruzadas proporcionan una medida más directa de las relaciones entre las variables del grupo I y del II, eliminando un paso intermedio incluido en las cargas convencionales (Badii, M.H., J. Castillo, K. Cortez, A. Wong y P. Villalpando, 2007).

Lo anterior se resume con el término $\underline{coeficiente}$ de $\underline{redundancia^{20}}$, que muestra el porcentaje de la varianza total de las variables originales de un grupo explicada por la variable canónica del otro grupo (siempre habrá dos coeficientes de redundancia por cada función canónica). Entre más grande sea el índice mayor su capacidad para predecir, este valor es similar al coeficiente de determinación o R^2 de la regresión múltiple.

¹⁸ Promedio obtenido de la suma de las cargas canónicas al cuadrado dividido entre 5 variables, tanto para el grupo I como para el II.

¹⁹ En caso de que más de una función canónica fuera significativa, las correlaciones estructurales al cuadrado de las funciones significativas se sumarían para obtener el coeficiente de comunalidad.

 $^{^{20}}$ Índice propuesto por Stewart and Love (1968).

Cuadro 20

Cuaulo 20							
Correlation between variable	list 1 and	Correlation between variable list 2 and					
canonical variates from	list 2	canonical variates from list 1					
Carg. Can. Grupo I	Comunalidad Grupo (I) ²		Comunalidad Grupo (I) ²				
LDPAT 12 -0.2738	0.0750	LPobreza 12 0.7424	0.5512				
LROBO 12 -0.5964	0.3557	LNodenun 12 0.4354	0.1896				
LSECU 12 0.2120	0.0449	LGini 12 0.5324	0.2834				
LLGS 12 -0.3553	0.1262	Desempleo 12 -0.6171	0.3808				
LOD_12 -0.6154	0.3787	LPOL_12 -0.3752	0.1408				
Coeficiente de redundancia		Coeficiente de redundancia					
Promedio	(0.1961)	Promedio	(0.3092)				

Considerando el cuadro anterior, la variable canónica U1 explica, prácticamente, el 20% de la varianza de las variables del grupo II. La variable canónica V1 explica el 31% de la varianza de las variables originales del grupo I.

Finalmente, se interpretan los signos de las cargas canónicas cruzadas. Como se señala en la tabla anterior, la mayoría de las variables son significativas considerando que tienen un valor superior a 0.3 (salvo delitos patrimoniales y secuestro).

Como se apreciaba desde el análisis de correlaciones, los resultados son extraños a lo que se supondría.

Sin considerar el secuestro, la única variable del grupo II que tendría una relación directa con las variables del grupo I es el **desempleo**, es decir, a mayor desempleo mayor incidencia delictiva y viceversa; las demás variables del grupo II también tienen una fuerte relación con las del I, solo que en sentido opuesto. Es curioso pensar que, a mayor pobreza, a mayor desigualdad, a mayores casos de no denuncia y a menor número de policías por 1000 habitantes, los índices de delincuencia (salvo secuestro) disminuyen, y viceversa. Es raro, pero es lo que señalan los datos.

El secuestro es el único delito con una relación directa con la pobreza, la desigualdad, las no denuncias y el índice de policías. Sin embargo, con el desempleo su relación es negativa; es decir, el secuestro no se ocasiona por una falta de empleo en los estados que registran este delito.

> Tabla del Análisis de Redundancia del paquete Stata

Los coeficientes señalados anteriormente con varias operaciones que se hicieron de forma manual, los calcula el paquete "Stata" de forma directa:

Cuadro 21

Canonical redundancy analysis for canonical correlation 1

Canonical correlation coefficient 0.8924
Squared canonical correlation coefficient 0.7964

own opposite
Proportion of standardized variance variate variate of u variables with ... 0.2463 0.1961 of v variables with ... 0.3882 0.3092

Adecuación Redundancia

XII. - Aplicación del Análisis de Correlación Canónica para 2014

XII.1 Evaluación del modelo completo y coeficientes de correlación canónica

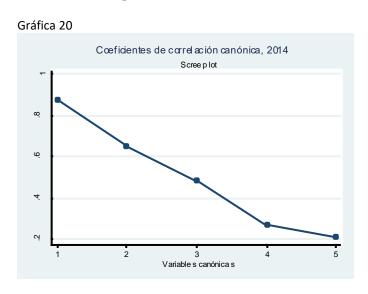
Dado que en la sección anterior se explicaron los términos conceptuales, en ésta se explicarán los resultados directamente.

Este modelo difiere del anterior, ya que el del 2012 no se ajustaba con los datos de 2014. Asimismo, es importante señalar que el grupo I se integra por seis variables y el grupo II por cinco.

Cuadro 22

Entidad	RCARR 14	CS 14	TECDO 14	T.CS 14	T.POBO 14	TOTIC 14	P Edu 14	Desergion 14	LDesempleo 14	L.ProCorr 13	T.C	Tng 14
Aquascalientes	0.55	10.47	3.07	3.70	6.59	3.63	0.14	0.12		_		0.82
Baja California	0.03	20.04	0.73	86.02	7.36	4.13	0.14	0.12				1.05
Baja California Sur		15.92	0.73	5.80	7.14	3.17	0.15	0.19				1.03
Campeche	2.68	4.47	0.34	3.13	4.30	2.95	0.13	0.11				0.73
Chiapas	2.53	4.47	0.34	4.74	4.30	2.95	0.19	0.13				0.73
Chihuahua	0.03	9.42	1.23	4.44	6.08	3.45	0.17	0.17				0.78
Coahuila	0.03	5.20	0.72	1.71	6.39	3.43	0.17	0.17				0.78
Colima	2.95	10.27	4.22	2.39	6.24	4.01	0.13	0.19				0.89
Distrito Federal	0.01	4.57	2.02	1.62	6.87	3.95	0.18	0.10				1.02
	1.26	4.37	0.11	0.23	6.47	3.95	0.09	0.12				0.62
Durango Guanajuato	0.02	5.69	0.11	1.70	6.35	3.31	0.16	0.19				0.62
-	21.46	7.81	2.96	0.11	5.92	3.03	0.21	0.15				0.80
Guerrero Hidalgo	4.89	2.15	1.06	0.11	5.76	2.70	0.27	0.13				0.39
Jalisco	0.65	12.31	0.60	1.01	5.76	3.67	0.19	0.17				0.84
México			0.00					0.03				
	0.01	1.25	2.37	0.64	6.24	2.62	0.15	0.15				0.53
Michoacán Morelos	0.88	14.22	2.53	2.28 4.53	5.90 6.93	3.52 3.66	0.28	0.13				0.46
			0.50				0.17	0.20				0.53
Nayarit Nuevo León	1.17	4.16	0.80	2.00	4.78 5.71	3.06	0.17	0.06				0.76
	0.36	3.83										1.20
Oaxaca	6.75	4.19	0.43	6.02	5.54	3.65	0.27	0.14				0.37
Puebla	3.83	0.88	0.31	0.86	6.18	2.43	0.23	0.10				0.36
Querétaro	0.05	5.12	0.46	2.84	6.71	3.23	0.16	0.13				0.87
Quintana Roo	0.46	3.27		7.78	6.69	3.14	0.15					0.87
San Luis Potosí	1.80	4.51	0.29	2.24	5.08	3.35	0.18	0.11				0.56
Sinaloa	0.03	15.45	1.42	5.51	6.08	3.72	0.19					0.78
Sonora	0.03	32.19	0.73	17.94	5.89	3.99	0.12	0.15				0.99
Tabasco	0.04	0.68	0.93	4.53	6.59	2.44	0.17	0.13				0.65
Tamaulipas	1.57	17.07	4.62	0.03	6.22	4.40	0.16	0.13				0.71
Tlaxcala	29.59	0.48	0.08	14.04	5.66	2.69	0.15	0.13				0.40
Veracruz	1.29	0.95	0.65	4.60	5.41	2.90	0.28	0.08				0.46
Yucatán	0.05	2.01	0.05	5.93	4.91	2.47	0.22	0.13				0.63
Zacatecas	0.51	7.29	0.32	0.70	6.15	3.06	0.22	0.11	- 3.05	- 2.18	-	0.51

Nuevamente se obtiene el coeficiente de correlación canónica y se determina si los dos grupos de variables están relacionados.


Cuadro 23 Canonical correlations: **0.8802** 0.6508 0.4819 0.2685 0.2112 ______ Tests of significance of all canonical correlations Statistic df1 df2 F Prob>F Wilks' lambda .0883447 30 86 2.3915 **0.0009** a Pillai's trace 1.5474 30 125 1.8674 **0.0092** a **0.0000** a Lawley-Hotelling trace 4.60226 30 97 2.9761 **0.0000** u Roy's largest root 3.44039 6 25 14.3349 ______ e = exact, a = approximate, u = upper bound on F

Como se observa, todas las pruebas son significativas a un nivel de significancia de 0.05, lo que confirma que los dos grupos de variables están relacionados y se rechaza la hipótesis nula.

La tabla anterior muestra cinco correlaciones canónicas, nuevamente nos enfocaremos solo en la primera que es de 0.8802. Este valor elevado al cuadrado es de 0.7748, lo que representa el porcentaje de varianza de una variable canónica que es explicado por la otra.

Al realizar el análisis de reducción de dimensiones, nuevamente, resultó que solo la primera función canónica resultó ser significativa (unidimensional).

La siguiente gráfica "scree plot", muestra los coeficientes de correlación.

XII.2 Coeficientes canónicos brutos y errores estándar

A continuación, se muestran los resultados de la primera función canónica que fue la única significativa:

Cuadro 24

Linear combinat:	inear combinations for canonical correlations Number of obs = 32									
	Coef.	Std. Err.	÷	P> +	[95% Conf.	Intervall				
	00011	oca. Ell.		17 0	[300 00111.					
u1										
LROBO_14	7773326	.1750373	-4.44	0.000	-1.134323	4203418				
RCARR_14	.0706099	.0188286	3.75	0.001	.0322087	.1090111				
CS_14	.0638703	.0226045	2.83	0.008	.0177682	.1099724				
LGS_14	0226843	.0090028	-2.52	0.017	0410457	0043229				
LFCDO_14	.3569462	.1268525	2.81	0.008	.0982288	.6156636				
LOLC_14	9434898	.3659366	-2.58	0.015	-1.689822	1971572_				
v1										
LDesempleo_14	-2.835004	.5530856	-5.13	0.000	-3.963029	-1.706978				
LPreCorr_13	-2.017079	.3337299	-6.04	0.000	-2.697726	-1.336433				
R_Edu_14	-20.89639	4.397757	-4.75	0.000	-29.86568	-11.92711				
LC_Ing_14	4.495681	.788391	5.70	0.000	2.887747	6.103615				
Desercion_14	-12.34221	2.760789	-4.47	0.000	-17.97288	-6.711544				

No obstante lo anterior, y al igual que en 2012, al tener unidades de medición diferentes en los dos grupos originales de variables, no consideraremos esta interpretación de los coeficientes en nuestro análisis, salvo para demostrar que las 11 variables "brutas" son significativas.

XII.3 Interpretación de funciones canónicas

Pesos canónicos (coeficientes estandarizados)

Las siguientes tablas muestran los pesos canónicos de la función canónica 1, en sus dos grupos:

Cuadro 25 Standardized coefficients for the first variable set LROBO_14 | -0.5496 RCARR 14 | 0.4426 CS 14 | 0.4449 LGS 14 | -0.3411 LFCDO 14 | 0.4231 LOLC 14 | -0.4814 ______ Standardized coefficients for the second variable set -----LDesemple~14 | -0.8407 LPreCorr 13 | -0.7061 R_Edu_14 | -1.1018 LC_Ing_14 | 1.0725 Desercion 14 | -0.5127

Estos coeficientes estandarizados siguen siendo significativos. Veamos las interpretaciones:

Grupo I

- 1. Un incremento de uno por ciento en el *robo común* impacta en una disminución de 0.5496 en la puntuación de U1.
- 2. Un incremento de una unidad del *robo en carreteras* impacta en un aumento de 0.4426 en la puntuación de U1.
- 3. Un incremento de una unidad en los delitos Contra la Salud impacta en un aumento de 0.4449 en la puntuación de U1.
- 4. Un incremento de una unidad en los delitos contra la Ley General de Salud impacta en una disminución de 0.3411 en la puntuación de U1.
- 5. Un incremento de una unidad en los delitos contra la Ley Federal contra la Delincuencia Organizada impacta en un aumento de 0.4231 en la puntuación de U1.
- 6. Un incremento de uno por ciento en los delitos de Otras Leyes y Códigos impacta en una disminución de 0.4814 en la puntuación de U1.

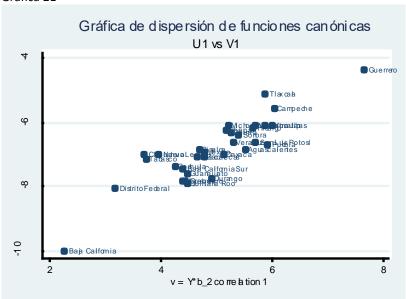
Grupo II

- 7. Un incremento de uno por ciento en el *desempleo* conduce a una disminución de 0.8407 en la puntuación de V1.
- 8. Un incremento de uno por ciento en la *prevalencia de corrupción* conduce a una disminución de 0.7061 en la puntuación de V1.
- 9. Un incremento de una unidad en el *rezago educativo* impacta en una disminución de 1.1018 en la puntuación de V1.

- 10. Un incremento de uno por ciento en *la población* con *ingresos inferiores a la línea de bienestar* conduce a un aumento de 1.0725 en la puntuación de V1.
- 11. Un incremento de una unidad en la deserción de educación media superior impacta en una disminución de 0.5127 en la puntuación de V1.

Sin embargo, dado que este análisis es inestable, sobre todo en casos donde puede haber posible multicolinealidad, tampoco será tomado en cuenta para el análisis y nos enfocaremos en los siguientes dos métodos.

Valores de las variables canónicas (scores)


A diferencia del 2012, los valores de la variable canónica V1 son positivos:

Cuadro 26

		SCORE	S 2014			
Entidad	U1	V1	Entidad		U1	V1
Aguascalientes	- 6.825	5.517	Morelos	-	6.933	4.779
Baja California	- 10.031	2.278	Nayarit	-	6.121	5.693
Baja California Sur	- 7.453	4.408	Nuevo León	-	6.989	3.962
Campeche	- 5.602	6.021	Oaxaca	-	6.989	5.122
Chiapas	- 6.219	5.157	Puebla	-	6.674	5.925
Chihuahua	- 7.040	3.716	Querétaro	-	7.837	4.447
Coahuila	- 7.412	4.248	Quintana Roo	-	7.893	4.464
Colima	- 6.319	5.261	San Luis Potosí	-	6.644	5.709
Distrito Federal	- 8.091	3.192	Sinaloa	-	6.866	4.691
Durango	- 7.746	4.902	Sonora	-	6.437	5.402
Guanajuato	- 7.582	4.475	Tabasco	-	7.146	3.741
Guerrero	- 4.388	7.663	Tamaulipas	-	6.140	5.882
Hidalgo	- 6.193	5.655	Tlaxcala	-	5.112	5.879
Jalisco	- 7.092	4.632	Veracruz	-	6.662	5.300
México	- 6.139	5.216	Yucatán	-	6.135	5.976
Michoacán	- 7.801	4.385	Zacatecas	-	7.072	4.766

De igual forma que en 2012, obsérvese en la siguiente gráfica como se da la relación de los valores de las dos variables canónicas en una línea recta, teniendo a Baja California y Guerrero en los extremos, alejados del resto de las observaciones.

Gráfica 21

Análisis de correlación

Antes de explicar las cargas canónicas, se analizará brevemente la correlación de las variables dentro de su grupo y entre grupos para el modelo de 2014.

Cuadro 27									
Correlations for variable list 1									
	LROBO_14	RCARR_14	CS_14	LGS_14	LFCDO_14	LOLC_14			
LROBO_14	1.0000								
RCARR 14	-0.1864	1.0000							
CS 14	0.2517	-0.2067	1.0000						
LGS 14	0.3138	-0.0086	0.4102	1.0000					
LFCDO 14	0.2760	0.0352	0.2910	-0.1231	1.0000				
LOLC_14	0.3551	-0.2436	0.6937	0.3037	0.5623	1.0000			

En el primero grupo de variables enfocadas en la incidencia delictiva, los delitos de otras leyes y códigos son los que muestran una alta correlación con la mayoría de las variables (robo común, delitos contra la salud, delitos contra la Ley General de Salud y con los delitos contra la Ley Federal contra la Delincuencia Organizada); seguido por la correlación de los delitos de la Ley General de Salud con el robo común y con los delitos contra la salud.

En el grupo II, existe una correlación positiva de 0.7793 entre el rezago educativo con la población que tiene ingresos inferiores a la línea de bienestar; así como, una correlación negativa de 0.7402 entre el rezago educativo y el desempleo, este último es probable que pueda atribuirse a que la población menos instruida acepte cualquier tipo de empleo.

Desercion 14 | -0.0907 -0.0933 -0.1145 0.0220 1.0000

Al igual que en 2012, destaca que el *desempleo* se correlacione negativamente con casi todas las demás variables de este grupo (excepto con la prevalecía de corrupción).

Finalmente, en la siguiente tabla se muestran las correlaciones cruzadas entre ambos grupos.

Cuadro 29 Correlation	adro 29 Correlations between variable lists 1 and 2						
I	LROBO_14	RCARR_14	CS_14	LGS_14	LFCDO_14	LOLC_14	
+							
LDesemple~14	0.5924	-0.3173	0.2026	0.1476	0.0152	0.2395	
LPreCorr_13	0.1084	-0.0294	-0.4283	0.0925	-0.3103	-0.1405	
R_Edu_14	-0.4445	0.1882	-0.2031	-0.1564	-0.0659	-0.2901	
LC_Ing_14	-0.3909	0.4345	-0.4586	-0.2941	-0.1076	-0.4733	
Desercion_14	0.1864	0.0555	-0.0323	0.2668	-0.0035	0.0202	

El robo común muestra tres correlaciones significativas con las variables del grupo II. Parecieran ser razonables las correlaciones con el desempleo principalmente y, con la prevalencia de corrupción y la deserción en media superior, en menor magnitud.

El robo en carreteras tiene dos correlaciones importantes tanto con el desempleo como con la población que tiene ingresos inferiores a la línea de bienestar, aunque la primera es contraria a lo que podría suponerse.

Los delitos contra la salud se correlacionan, negativamente, con la prevalencia de corrupción y con la población que tiene ingresos inferiores a la línea de bienestar, lo cual es extraño.

Los delitos en contra de la LGS no muestran correlaciones importantes.

Finalmente, los delitos contra la Ley Federal contra la Delincuencia Organizada y los delitos de Otras Leyes y Códigos se correlacionan significativamente con prevalencia de corrupción y con la población que tiene ingresos inferiores a la línea de bienestar, pero en sentido opuesto a lo que se pudiera esperar.

Cargas canónicas (coeficientes estructurales)

El siguiente cuadro muestra los coeficientes estructurales de los dos grupos de variables.

Cuadro 30

Canonical loadings for variable list 1	Canonical loadings for variable list 2
Carg. Can. Comunalidad Grupo I Grupo (I) ²	Carg. Can. Comunalidad Grupo II Grupo (II) ²
LROBO_14 -0.6812	LDesempleo_14 -0.6079
Coeficiente de adecuación (0.2107)	Coeficiente de adecuación (0.2195)

- 1. En el Grupo I, las cargas canónicas de cuatro de las seis variables originales fueron explicadas de forma significativa por la variable canónica U1, aunque las otras dos también lo hacen en menor magnitud. La variable más explicada es el robo común, después el robo en carretera; luego los delitos contra la LGS (narcomenudeo); seguido por los delitos de otras leyes y códigos; y, finalmente los delitos contra la delincuencia organizada y aquellos contra la salud (estos últimos por debajo del .30, con una varianza explicada de 0.0353 y 0.0184). El coeficiente de comunidad es el coeficiente estructural al cuadrado (I)² en cada variable original, por su parte el coeficiente de adecuación para U1 es de 21.1%.
- 2. Por su parte en el grupo II, la mayoría de las variables fueron explicadas de forma significativa por la variable canónica V1, el desempleo es la mejor explicada por V1, seguida por la variable de población con ingresos inferiores a la línea de pobreza, el rezago educativo, la prevalencia de corrupción y -finalmente- en menor magnitud la deserción en educación media superior. El coeficiente de adecuación para V1 es de 21.95%.

Cargas canónicas cruzadas

Finalmente, se interpretan los signos de las cargas canónicas cruzadas. Como se señala en la siguiente tabla la mayoría de las variables son significativas, considerando que tienen una carga canónica superior a 0.30 (salvo los delitos: contra la salud, contra la delincuencia organizada; así como, la deserción escolar, que tienen -0.1194 y 0.1654).

Cuadro 31

Correlation between variable list 1 and canonical variates from list 2			Correlation between variable list 2 and canonical variates from list 1	
	Carg. Can. Grupo I	Comunalidad Grupo (I) ²	Carg. Can.	Comunalidad Grupo (I) ²
CS_14 LGS_14 LFCDO_14	-0.5996 0.5178 -0.1194 -0.4692	0.3595 0.2681 0.0143 0.2201 0.0274 0.0903	LDesempleo_14 -0.5351 LPreCorr_13 -0.3584 R_Edu_14 0.4024 LC_Ing_14 0.4857 Desercion_14 -0.1944	0.1285 0.1619 0.2359
Coeficiente de rec Promedio	dundancia	(0.1633)	Coeficiente de redundancia Promedio	(0.1701)

Existen tres variables del Grupo II que tendrían una relación directa con cuatro de las variables del Grupo I, siendo el desempleo y la prevalencia de corrupción las más importante, es decir, a mayor desempleo y/o prevalencia de corrupción mayores son: el robo común, los delitos contra la salud, contra la LGS y contra otras leyes y códigos; y viceversa. La deserción en educación media superior también tiene una relación directa con estas variables del grupo I, aunque con valor muy bajo. Particularmente, en el caso del robo común tiene sentido la relación con el desempleo y la prevalencia de corrupción, ya que pudiese ser un evento temporal y que las personas se atreven a hacerlo porque sienten que nada les va a pasar.

Es interesante observar que el desempleo no está ligado directa y positivamente a los delitos contra la Ley Federal contra la Delincuencia Organizada; es decir, los estados donde se dedican a estas actividades ilícitas no son por causa del desempleo, sino como ya se mencionó por los ingresos.

Por otra parte, las variables de rezago educativo y del porcentaje de personas con ingresos menores a la línea de bienestar señalan una relación directa con el robo en carretera y con los delitos contra la Ley Federal contra la Delincuencia Organizada (LFCDO); y viceversa. En otras palabras, los delitos contra la LFCDO están vinculados a los muy bajos ingresos de las personas, que en 2014 fueron 63.8 millones de mexicanos.

En suma, la variable canónica U1 explica el 16.3% de la varianza de las variables del grupo II. Y la variable canónica V1 explica el 17% de la varianza de las variables originales del grupo I. El modelo de 2014 es menos potente para predecir que el del 2012. Como se apreciaba desde el análisis de correlaciones, los resultados son extraños a lo que se supondría.

> Tabla del Análisis de Redundancia del paquete Stata

Los coeficientes señalados anteriormente con varias operaciones que se hicieron de forma manual, los calcula el paquete "Stata" de forma directa:

Cuadro 32

Canonical redundancy analysis for canonical correlation 1

Canonical correlation coefficient 0.8802

Squared canonical correlation coefficient 0.7748

own opposite

Proportion of standardized variance variate variate of u variables with ... 0.2107 0.1633

of v variables with ... 0.2195 0.1701

Adecuación Redundancia

XIII. - Análisis de conglomerados

El análisis de conglomerados (clusters), también llamado análisis de taxonomía o de segmentación tiene por objeto agrupar elementos en grupos homogéneos en función de las similitudes entre ellos.

Uno de los tipos de conglomerados es el *jerárquico*, el cual parte de una matriz de *distancias o similaridades* entre los elementos de la muestra y construyen una jerarquía basada en una *distancia*, (Daniel Peña, 2002).

La distancia más común para datos continuos es la euclídea, también llamada métrica, que es la distancia entre dos observaciones, cuya fórmula es $d_E(P_1,P_2,)=\sqrt{(y_{1i}-y_{1j})^2+(y_{2i}-y_{2j})^2+..+(y_{pi}-y_{pj})^2}$). Cabe señalar que uno de los problemas de la distancia euclídea es que depende de las variables con los valores más grandes.

Relación entre clusters y variables canónicas

Ahora bien, veamos si el análisis de conglomerados tiene alguna similitud con los valores de las funciones canónicas U1 y V1. Es importante recordar que los "valores o scores canónicos", surgen de multiplicar los coeficientes canónicos estandarizados de una variable por los "valores estandarizados" de los casos que se tengan, y luego sumar estos valores. Por lo que las variables del modelo se estandarizan, no importando que éstas hayan estado transformadas en logaritmos previamente.

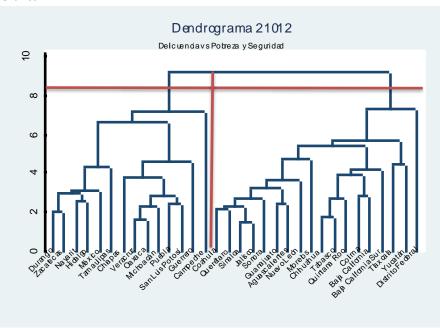
Para demostrar lo anterior utilizaremos el método de conglomerado, conocido como <u>vecino más lejano o liga completa</u>, en el cual la distancia entre los dos nuevos grupos es la mayor de las distancias entre grupos antes de la fusión; es decir: d(C:AB) = máx (dCA, dCB).

Se seleccionó este método, porque lo que se pretende es encontrar grupos con comportamientos definidos en cuanto a la asociación de las variables de delito y las variables de pobreza y seguridad. Con este método de <u>vecino más lejano o liga completa</u>, se observa una distinción "general" entre el comportamiento de los estados del norte en comparación con los del sur. Además, de dar como resultado, para los dos años, grupos más "particionados" y no "elongados" como los que se obtenían al utilizar el resto de los métodos²¹.

Explicación para conformar conglomerados (método de liga completa)

²¹ Como lo señala W. J. Krzanowski: el método de la liga completa, los de promedios y el de agrupación de centroides conducen a agrupaciones más esféricas que presentan alta afinidad interna, mientras que el método de la liga sencilla muestra conglomerados más elongados, en el que pueden producirse pares de unidades muy disímiles.

Para 2012


1. Se análisis corre el de *cluster* con las variables originales estandarizadas, las variables del modelo LDPAT 12, son: LROBO 12, LLGS 12, LOD 12, LPobreza 12, LNodenun 12, LGini 12, Desempleo 12, y LPOL 12. Posteriormente, en el paquete Stata, se calculan los coeficientes de aglomeración, los cuales indican el punto de corte en el eje de las Y´s, en los cuales las entidades federativas están unidas a un cluster, mediante una barra horizontal en el dendrograma.

Cuadro 33

Entidad	Coeficiente	Entidad	Coeficiente	Entidad	Coeficiente
Aguascalientes	3.28	Guerrero	3.17	Quintana Roo	3.71
Baja California	4.13	Hidalgo	2.79	San Luis Potos	2.40
Baja California Sur	5.69	Jalisco	2.67	Sinaloa	4.73
Campeche	4.61	Michoacán	3.85	Sonora	2.65
Chiapas	2.56	Morelos	3.94	Tabasco	4.52
Chihuahua	2.42	México	2.94	Tamaulipas	7.14
Coahuila	2.18	Nayarit	4.39	Tlaxcala	7.35
Colima	2.78	Nuevo León	5.43	Ve ra cruz	6.68
Distrito Federal	2.25	Oa xa ca	9.25	Yucatán	
Durango	1.98	Puebla	1.64	Zacatecas	2.32
Guanajuato	1.51	Querétaro	1.72		

2. Se diseña el dendrograma.

Gráfica 22

A simple vista pareciera que la distancia más larga se da en la parte más alta, y serían dos clusters los que agrupan los casos, y que se parten entre Campeche y Coahuila.

3. Se selecciona número de clusters

Como se observa en el dendrograma, a partir de Coahuila se forma un segundo grupo. Para verificar el número óptimo de clusters, se utilizó el índice de Duda/Hart.

Duda-Hart es una regla de "interrupción o corte" para obtener el número de conglomerados óptimos.

Para explicar estar regla, nos basamos en el libro $Pattern\ classification\ de\ Duda,\ Hart\ y\ Stork,$ que dice lo siguiente: suponemos que tenemos un grupo D de n individuos, y en donde tenemos que decir, justificadamente, si existe o no más de un clúster.

Suponen además que, en la hipótesis nula, todos los individuos se distribuyen normalmente, con media μ y matriz de covarianza $\sigma^2 I$. Si la hipótesis fuera cierta, varios clústeres encontrados tendrían que haberse formado por casualidad y cualquier cambio observado en la suma al cuadrado del error $J_e(1)$ sería una variable aleatoria, ya que depende de un individuo seleccionada:

$$J_e(1) = \sum_{x \in D} ||x - m||^2$$
,

Donde m^{22} es la media de todos los individuos en el conjunto de datos. Bajo la hipótesis nula, la distribución de $J_e(1)$ es, aproximadamente, normal con media $nd\sigma^2$ y varianza $nd\sigma^4$.

Suponiendo, ahora que se parte el grupo de muestras en dos subgrupos D_1 y D_2 , minimizando $J_e(2)$, donde:

$$J_e(2) = \sum_{i=1}^{2} \sum_{x \in D_i} ||x - m_i||^2$$
,

 m_1 sigue siendo la media de los individuos en \mathcal{D}_i . Bajo la hipótesis nula esa partición es espuria, pero, no obstante, resulta que el valor de $J_e(2)$ es más pequeño que $J_e(1)$. Si conocemos la distribución de la muestra para $J_e(2)$, podemos determinar qué tan pequeña $J_e(2)$, habría sido antes de haber abandonado la hipótesis nula de un solo clúster.

Como no hay una forma analítica de hacerlo, podemos determinar -una sub óptima- manera para dividir con un hiperplano a través de la media de la muestra. Para una "n" grande, se puede demostrar que la suma de errores al cuadrado para esta partición es -aproximadamente- normal con media $n\left(d-\frac{2}{\pi}\right)\sigma^2$ y varianza $2n\left(d-\frac{8}{\pi^2}\right)\sigma^4$. El resultado avala lo que se pensaba, que $J_e(2)$ es más pequeño que $J_e(1)$, debido a que la media de $J_e(2)$ de la partición "sub óptima" $n\left(d-\frac{2}{\pi}\right)\sigma^2$ es menor que la media de $J_e(1)$ $nd\sigma^2$.

Para ser considerado significativo, la reducción en la suma del error al cuadrado tiene que ser más grande que ese valor. Podemos obtener un valor aproximado de $J_e(2)$, asumiendo la normalidad, y estimando σ^2 de acuerdo a:

$$\hat{\sigma}^2 = \frac{1}{nd} \sum_{x \in D} ||x - m||^2 = \frac{1}{nd} J_e(1)$$

El resultado final puede señalar que se rechaza la hipótesis nula en un determinado nivel de significancia si:

$$\frac{J_e(2)}{J_e(1)} < 1 - \frac{2}{\pi d} - \alpha \sqrt{\frac{2(1 - \frac{8}{\pi^2 d})}{nd}}$$

donde α es determinado por: p=100 $\int_{\alpha}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-u^2} du = 50(1-\text{erf}(\frac{\alpha}{\sqrt{2})})$

y erf es la función del error estándar, que nos ayuda a determinar si se justifica o no hacer particiones adicionales. Y esta prueba se repite en todos los conglomerados mencionados.

Para el paquete Stata, se debe encontrar uno de los valores más grandes de $J_e(2)/J_e(1)$ que, a su vez, corresponde a un valor pequeño del estadístico "pseudo Tcuadrado" y, donde, además, a este último le debe seguir un valor mucho mayor a él.

Los resultados que arrojó el paquete fueron los siguientes:

²² La media de cada conglomerado se calcula: $m_i = \frac{1}{n_i} \sum_{x \in D_i} x$

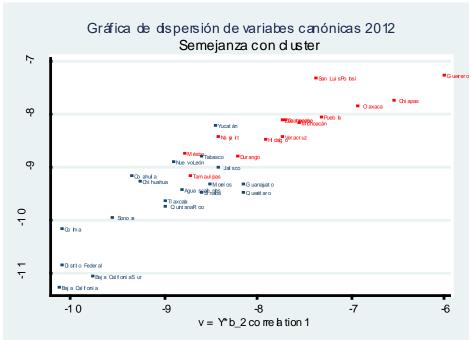
Cuadro 34

	Duda/Hart			
Number of clusters	Je (2) / Je (1)	pseudo T-squared		
1 2 3	0.8015 0.7959 0.7320	7.43 4.10 4.39		

El segundo cluster muestra un valor alto del índice Duda-Hart Je(2)/Je(1) y un valor bajo del índice pseud Tcuadrado, el tercer cluster baja Je(2)/Je(1) y sube pseud Tcuadrado, por lo que se debe de detener en el segundo conglomerado

Cabe señalar que aunque el primer conglomerado tiene el valor más alto de Je(2)/Je(1), su pseud Tcuadrado también es alto, por lo que se descarta como punto de corte.

Considerando lo anterior, la siguiente tabla muestra los estados de la República según su cluster de pertenencia.


Cuadro 35

Entidad	Cluster	Entidad	Cluster
Campeche	1	Aguascalientes	2
Chiapas	1	Baja California	2
Durango	1	Baja California Sur	2
Guerrero	1	Chihuahua	2
Hidalgo	1	Coahuila	2
México	1	Colima	2
Michoacán	1	Distrito Federal	2
Nayarit	1	Guanajuato	2
Oaxaca	1	Jalisco	2
Puebla	1	Morelos	2
San Luis Potosí	1	Nuevo León	2
Tamaulipas	1	Querétaro	2
Veracruz	1	Quintana Roo	2
Zacatecas	1	Sinaloa	2
		Sonora	2
		Tabasco	2
		Tlaxcala	2
		Yucatán	2

En la siguiente gráfica de dispersión de las variables canónicas se muestran desglosados por colores 23 los dos *clusters*, es evidente que hay dos grupos bien definidos.

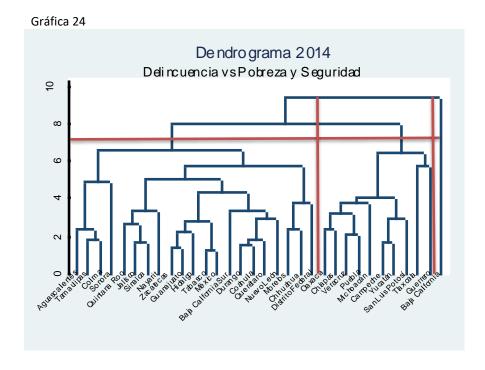
²³ Cluster 1 de color rojo y cluster 2 de azul.

Gráfica 23

- ✓ Se observa cómo las variables del grupo II tienen como referencia el eje horizontal, mientras que el grupo de los delitos está en el eje vertical. Se ven los dos *clusters* bien definidos, salvo algunos casos como el Estado de México y Tamaulipas que se cargan un poco a la izquierda debido a que son estados con índices de pobreza y/o seguridad por debajo de la media.
- ✓ En la parte superior derecha se ubican estados con altos índices de pobreza y desigualdad (coeficiente de Gini). En esa misma posición se encuentran las entidades federativas con el desempleo más bajo; esto último es debido, probablemente, a que son estados donde aceptan los empleos más mal pagados.
- \checkmark En contra posición al punto anterior, en el área inferior izquierda se ubican los estados con menor pobreza, desigualdad y con mayor desempleo (aunque esta última no es tan exacta).
- ✓ En la parte inferior izquierda se muestran estados con altos índices de robo; un hecho similar sucede con los estados que tienen elevados niveles de delitos contra la Ley General de Salud; Otros delitos y delitos patrimoniales (aunque esta última no es tan contundente). Por su parte, los estados con menos robos están del lado superior derecho.
- \checkmark Las ubicaciones de los estados relacionados con el secuestro no muestran un patrón definido.

A continuación, se muestra un mapa de México, en el cual se colorean los dos grupos de entidades federativas. Los grupos se distribuyen entre los del norte y los del centro-sur. Yucatán, Quintana Roo y Tabasco se asemejan a los estados del norte.

Cuadro 36


Para 2014

1. Se corre el análisis de *cluster* con las variables originales *estandarizadas*, las variables del modelo son: LROBO_14, RCARR_14, CS_14, LGS_14, LFCDO_14, LOLC_14, LDesempleo_14, LPreCorr_13, R_Edu_14, LC_Ing_14, Desercion_14, y posteriormente se calculan los *coeficientes de aglomeración*.

Cuadro 37

Entidad	Coeficiente	Entidad	Coeficiente	Entidad	Coeficiente
Aguascalientes	2.42	Guerrero	1.72	Quintana Roo	1.73
Baja California		Hidalgo	2.98	San Luis Potosí	4.06
Baja California Sur	2.29	Jalisco	3.37	Sinaloa	1.32
Campeche	2.03	Michoacán	5.70	Sonora	3.75
Chiapas	3.28	Morelos	6.57	Tabasco	1.71
Chihuahua	2.71	México	4.99	Tamaulipas	1.74
Coahuila	2.41	Nayarit	1.47	Tlaxcala	3.78
Colima	5.76	Nuevo León	3.35	Veracruz	6.51
Distrito Federal	4.41	Oa xa ca	2.39	Yucatán	2.87
Durango	2.81	Puebla	9.50	Zacatecas	4.86
Guanajuato	1.23	Querétaro	8.02		

2. Se diseña el dendrograma.

En este caso la frontera entre 2 y 3 clusters es reducida. En la gráfica anterior se hizo una disección de 3 clusters con la línea roja.

3. Se selecciona número de clusters

Como se observa a partir de Oaxaca se forma un segundo grupo, y Baja California solo quedaría como un tercero. En caso de que se decidiera por solo dos conglomerados, uno sería Baja California y el otro el resto del país.

Para verificar el numero óptimo de clúster, veamos nuevamente el índice de Duda/Hart.

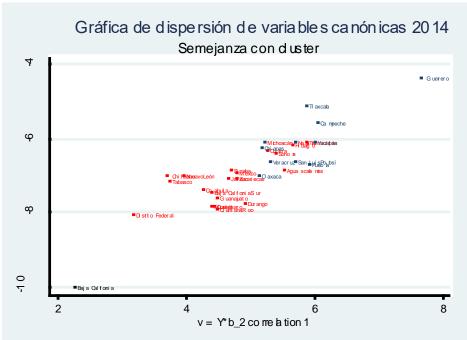
Cuadro 38

	Duda/Hart		
Number of clusters	Je(2)/Je(1)	pseudo T-squared	
1	0.8674	4.59	
2	0.7590	9.21	
3	0.7473	6.43	

En este caso el método muestra que se debería quedar en un cluster, ya que tiene el valor más alto de Je(2)/Je(1) y el valor bajo del índice pseud Tcuadrado.

No obstante, al ver el dendrograma se observa que se puede dividir el dos o tres conglomerados (que sean más particionados y no elongados). Son tan cerrados los valores de esta prueba que, finalmente, se decidió dejar tres conglomerados, ya que los valores de Je(2)/Je(1) son muy similares entre el segundo y tercero; sin embargo, el valor pseud Tcuadrado es más pequeño en el tercer conglomerado.

Considerando lo anterior, la siguiente tabla muestra los estados de la República según su cluster de pertenencia.


Cuadro 39

Entidad	Cluster	Entidad	Cluster
Aguascalientes	1	Campeche	2
Baja California Sur	1	Chiapas	2
Chihuahua	1	Guerrero	2
Coahuila	1	Michoacán	2
Colima	1	Oaxaca	2
Distrito Federal	1	Puebla	2
Durango	1	San Luis Potosí	2
Guanajuato	1	Tlaxcala	2
Hidalgo	1	Veracruz	2
Jalisco	1	Yucatán	2
México	1	Entidad	Cluster
Morelos	1	Baja California	3
Nayarit	1		
1 -	1		
Nuevo León	1		
Nuevo León	1		
Nuevo León Querétaro	1		
Nuevo León Querétaro Quintana Roo	1 1		
Nuevo León Querétaro Quintana Roo Sinaloa	1 1 1		
Nuevo León Querétaro Quintana Roo Sinaloa Sonora	1 1 1 1		

En la siguiente gráfica de dispersión de las variables canónicas se muestran desglosados por colores 24 los tres clusters.

²⁴ Cluster 1 rojo, cluster 2 azul y cluster 3 gris.

Gráfica 25

- ✓ Se observa como las variables del grupo II tienen como referencia el eje horizontal, mientras que el grupo de los delitos está en el eje vertical.
- ✓ Baja California, situada en la parte inferior izquierda, se clasifica como un cluster independiente debido al dato atípico que presenta en los delitos contra la Ley General de Salud (LGS). Asimismo, se ubica entre los primeros dos lugares en: robo, delitos contra la salud, delitos contra otras leyes y códigos y deserción escolar de media superior.
- ✓ Los estados del cluster 2 (parte superior derecha), muestra altos niveles en robo en carreteras, rezago educativo, niveles de ingresos inferiores a la línea de bienestar y bajo desempleo. Por su parte, muestran bajos índices en robo común, en delincuencia organizada (con excepción de Guerrero y Michoacán), en delitos contra otras leyes y códigos y en desempleo.
- ✓ Por eliminación el cluster 1 muestra índices opuestos al conglomerado 2; es decir, altos robos, elevada delincuencia organizada y otros delitos del orden federal. Estos estados se ubican a la izquierda de la gráfica del centro hacia abajo.
- ✓ En deserción escolar y prevalencia de corrupción, el cluster 1, muestra prácticamente los mismos promedios que las entidades federativas del cluster 2, es decir no existe un patrón en ellos.
- ✓ Aunado al punto anterior, las entidades federativas no muestran ningún patrón de ubicación en los delitos contra la salud y contra la Ley General de Salud.

Al igual que en 2012, a continuación, se muestra un mapa de México, en el cual se colorean tres grupos de entidades federativas. En este año es más evidente la diferencia entre los estados del norte y los del sur. Nuevamente, Tabasco y Quintana Roo se asemejan a los estados del norte.

Por su parte, Baja California se distingue del resto por sus valores tan marcados en los extremos en varios de sus indicadores.

Cuadro 40

Finalmente, en el Anexo III se presentan los clusters tanto para 2012 como para 2014, utilizando seis métodos adicionales elaborados mediante el programa STATA. Estos métodos son: vinculación inter-grupos; vinculación intra-grupos; vecino más próximo; agrupación de centroides; agrupación de medianas y el Método Ward.

XIV. - Conclusión

Es razonable suponer que la pobreza y desigualdad son causa de la delincuencia en cualquier país. Las investigaciones que fueron analizadas para este trabajo, en su mayoría, ubican al desempleo y al nivel de ingresos como los dos factores que más se asocian con los índices delictivos. Cabe señalar, que son pocos los trabajos encontrados que usan el método de correlación canónica, cuyo objetivo es estudiar la relación entre dos conjuntos de variables.

Por lo anterior, en el presente estudio se llevó a cabo un análisis de correlación canónica, que determinara la relación que existía en México en los años 2012 y 2014, entre la delincuencia y un grupo de variables de pobreza, desigualdad y seguridad pública. Estos dos conjuntos estuvieron representados por las siguientes variables:

Cuadro 41.- Año 2012

Grupo I	Grupo II
Incidencia delictiva en delitos	Pobreza, (transformada en logaritmos)
patrimoniales, (transformada en	
logaritmos)	
Incidencia delictiva en robos,	Coeficiente de Gini, (transformada en
(transformada en logaritmos)	logaritmos)
Incidencia delictiva en secuestros,	Desempleo, (variable original)
(transformada en logaritmos)	
Incidencia delictiva en delitos contra	Delitos sin denunciar, (transformada en
la Ley General de Salud, (transformada	logaritmos)
en logaritmos)	
Incidencia delictiva en otros delitos	Índice de policía por cada mil habitantes,
del fuero federal, (transformada en	(transformada en logaritmos)
logaritmos)	

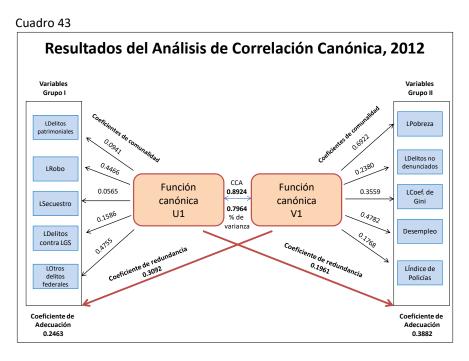
Cuadro 42.- Año 2014

Grupo I	Grupo II
Incidencia delictiva en robos,	Desempleo, (variable original)
(transformada en logaritmos)	
Incidencia delictiva en robo a	Tasa de prevalencia de corrupción,
carreteras, (variable original)	(transformada en logaritmos)
Incidencia delictiva por delitos contra	Rezago Educativo, (variable original)
la Salud, (variable original)	
Incidencia delictiva en delitos contra	Porcentaje de Población con ingreso inferior
la Ley General de Salud, (variable	a la línea de bienestar, (transformada en
original)	logaritmos)
Incidencia delictiva en la Ley Federal	
contra la Delincuencia Organizada del	
fuero federal, (variable original)	Deserción en media superior, (variable
Incidencia delictiva de otras leyes y	original)
códigos, (transformada en logaritmos)	

Aunque no existe distinción entre variables dependientes e independientes, en este caso tenía interés en que el grupo II explicará al grupo I.

Lo que se busca en el análisis de correlación canónica es encontrar una combinación lineal de variables del grupo I que maximice la correlación con una combinación lineal de las variables del grupo II. Puede haber tantas combinaciones lineales, como el número de variables que sea menor en cualquiera de los dos grupos; en este caso cinco.

El resultado de cada combinación lineal trae consigo un eigenvalor, cuya raíz cuadrada determina un coeficiente de correlación. El coeficiente de correlación


canónico es la correlación entre dos variables canónicas y el resultado que surge de elevarlo al cuadrado representa la varianza de una variable canónica que es explicada por la otra.

De todas las cinco combinaciones posibles solo una resultó significativa en el estudio por lo que combinación lineal fue unidimensional; es decir, se representa en una línea recta.

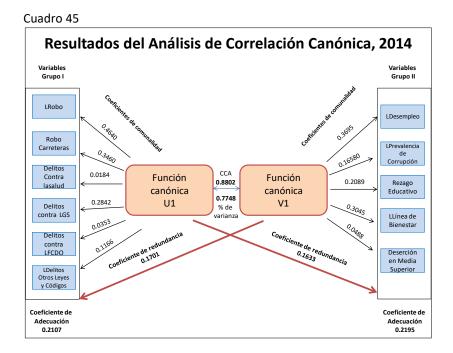
Las formas más comunes de interpretar los coeficientes canónicos son mediante las cargas canónicas y las cargas canónicas cruzadas.

Los siguientes diagramas resumen para 2012 y 2014, los resultados encontrados en el análisis de correlación canónica de este trabajo.

Para 2012:

- 1. El coeficiente de correlación canónica fue alto de 0.8924, lo que representa que el 79.64% de la varianza de una variable canónica que es explicada por la otra.
- 2. Los coeficientes de comunalidad²⁵, que representan que tanto de las varianzas de la(s) variable(s) original(es) es reproducido por las variables canónicas, fue muy significativo para la mayoría de las variables del grupo I que obtuvieron cifras de más del 0.09(con excepción del secuestro), siendo los otros delitos federales la variable en la que más contribuye la función canónica U1; por su parte en el grupo II, todos los predictores obtuvieron valores superiores al 0.17 (siendo la pobreza a quien aporta más la variable canónica V1).
- 3. Los coeficientes de adecuación fueron de 0.2463 para U1 y de 0.3882 para V1, estos valores miden que tan bien la variable canónica representa la varianza original de las variables.

 $^{^{25}}$ Los coeficientes de comunalidad de la imagen se refieren a los de las cargas canónicas simples, y no los de las cargas canónicas cruzadas de la tabla que se muestra más adelante. Lo misma sucede para el caso de 2014.


- 4. El coeficiente de redundancia muestra el porcentaje de la varianza total de las variables originales de un grupo explicada por la variable canónica del otro grupo. Como se observa en la imagen U1 explica el 19.61% de la varianza de las variables originales del grupo II; mientras que V1 explica el 30.92% de la varianza de las variables originales del grupo I. Ambos valores son razonablemente buenos.
- 5. Finalmente, para 2012, como se muestra en la siguiente tabla, al interpretar los signos de las cargas canónicas cruzadas, solo el desempleo se asocia de manera positiva con la incidencia delictiva (salvo el secuestro); es decir a mayor desempleo mayor delincuencia, las demás variables también tienen una relación significativa, pero en sentido opuesto. Por otra parte, aunque tiene una carga canónica menor al 0.30 (que implica un porcentaje de varianza explicada por debajo del 9%), el secuestro es la única variable del grupo I que podría considerarse "razonable", ya que tiene una relación directa y positiva.

Cabe señalar que los signos coinciden con las correlaciones simples del cuadro 15.

Cuadro 44

Cuaulo 44			
Correlation between var	ciable list 1 and	Correlation between variable	list 2 and
canonical variates from list 2		canonical variates from list 1	
Carg. Can. Comunalidad		Carq. Can. Comu	nalidad
Grup	o I Grupo (I) ²	Grupo II Gru	po (II) ²
LDPAT 12 -0.2	738 0.0750	LPobreza 12 0.7424 0	.5512
LROBO 12 -0.5	0.3557	LNodenun 12 0.4354 0	.1896
LSECU 12 0.2	120 0.0449	LGini 12 0.5324 0	.2834
LLGS 12 -0.3	0.1262	Desempleo 12 -0.6171 0	.3808
LOD_12 -0.6	154 0.3787	LPOL_12 -0.3752 0	.1408
Coeficiente de redundanc	 La	Coeficiente de redundancia	
Promedio	(0.1961)	Promedio (0	.3092)

Para 2014:

- 6. El coeficiente de correlación canónica fue alto de 0.8802, lo que representa que el 77.48% de la varianza de una variable canónica es explicada por la otra.
- 7. Los coeficientes de comunalidad, fueron significativos para la mayoría de las variables del grupo I que obtuvieron cifras de más del 0.10 (con excepción de los delitos contra la salud y contra la delincuencia organizada), siendo el robo común, nuevamente, la variable en la que más contribuye la función canónica U1. Por su parte en el grupo II, con excepción de la deserción escolar, los demás predictores obtuvieron valores superiores al 0.10 (siendo la variable desempleo a quien aporta más la variable canónica V1).
- 8. Los coeficientes de adecuación fueron de 0.2107 para U1 y de 0.2195 para V1, inferiores a los obtenidos en el año 2012.
- 9. El coeficiente de redundancia de U1 explica el 16.33% de la varianza de las variables originales del grupo II; mientras que V1 explica el 17.01% de la varianza de las variables originales del grupo I. De igual forma, el valor de estos estimadores es menor a los de 2012.
- 10. Por último, como se muestra en la siguiente tabla²⁶, al interpretar los signos de las cargas canónicas cruzadas, el desempleo, la prevalencia en corrupción y la deserción en media superior se asocian de manera positiva con el robo común, los delitos contra la salud, los delitos contra la LGS y los delitos contra Otras Leyes y Códigos, y viceversa. Por su parte, el rezago educativo y la población con ingresos inferiores a la línea de bienestar se asocian de forma positiva con el robo en carreteras y la delincuencia organizada.

Cuadro 46

Correlation between variable		Correlation between variable	
canonical variates from list	2	canonical variates from list	: 1
Grupo I	Grupo (I) ²	Grupo II	Grupo (II) ²
LROBO 14 -0.5996	0.3595	LDesempleo 14 -0.5351	0.2863
RCARR 14 0.5178	0.2681	LPreCorr 13 -0.3584	0.1285
CS 14 -0.1194	0.0143	R Edu 14 0.4024	0.1619
LGS 14 -0.4692	0.2201	LC Ing 14 0.4857	0.2359
LFCDO 14 0.1654	0.0274	Desercion 14 -0.1944	0.0378
LOLC_14 -0.3005	0.0903	_	
Coeficiente de redundancia		Coeficiente de redundancia	
Promedio	(0.1633)	Promedio	(0.1701)

Cabe señalar que los signos coinciden con las correlaciones simples del cuadro 27.

Por otra parte, en el documento se explica brevemente un análisis por conglomerados de las variables de estos modelos de 2012 y 2014, y de la relación que tienen estos clusters con los valores canónicos.

Existen dos cluster para 2012 y tres para 2014. En los dos años se observa que los estados del norte y del sur se comportan de forma diferente (particularmente, en 2014), salvo algunas excepciones. En los estados del norte existen mejores índices de pobreza y desigualdad, pero peores tasas de incidencia delictiva; por su parte, los estados del sur se comportan de manera opuesta.

Finalmente, se puede concluir que lo que pensaban los mexicanos en cuanto a que "la medida más efectiva para prevenir la delincuencia es ampliar las oportunidades de estudio y empleo de la juventud y otros grupos vulnerables", se cumple con los datos utilizados en este estudio ya que el desempleo y la deserción escolar (aunque ésta de manera marginal) tienen una relación positiva con la incidencia delictiva; lo cual no es el caso para muchos de los predictores utilizados en el análisis de correlación canónica.

XV.- APÉNDICES

I.- Matriz de Varianza-Covarianza²⁷

Una matriz de varianzas-covarianzas es una matriz cuadrada que contiene las varianzas y covarianzas asociadas con diferentes variables. Los elementos de la diagonal de la matriz contienen las varianzas de las variables, mientras que los elementos que se encuentran fuera de la diagonal contienen las covarianzas entre todos los pares posibles de variables.

Estructura:

Sean $X_{1}...$. X_{K} que denotan los K componentes del vector X. De la definición de Var[X], se observa que Var[X] es una matriz $K \times K$, con la siguiente estructura:

$$Var[X] = E \begin{bmatrix} (X_1 - E[X_1]) & (X_1 - E[X_1]) & \dots & (X_1 - E[X_1]) & (X_K - E[X_K]) \\ & & \ddots & & \\ & & (X_K - E[X_K]) & (X_1 - E[X_1]) & \dots & (X_K - E[X_K]) & (X_K - E[X_K]) \end{bmatrix}$$

$$= \begin{bmatrix} E[(X_1 - E[X_1])^2] \dots & E[(X_1 - E[X_1])(X_K - E[X_K])] \\ & \vdots \\ E[(X_K - E[X_K]) & (X_1 - E[X_1])] & \dots & E[(X_K - E[X_K])^2] \end{bmatrix}$$

$$= \begin{bmatrix} Var[X_1] \dots & Cov[X_{1...}X_K] \\ & \cdot \\ & Cov[X_K \mid X_1] \dots & Var[X_K] \end{bmatrix}$$

Por lo tanto, la matriz de covarianza de X es una matriz cuadrada K x K, cuya entrada (i, j) ésima, es igual a la covarianza entre X_i y X_j .

Dado que la $Cov[X_{i...}X_j]$ es igual a $Var[X_i]$ cuando i = j, los elementos de la diagonal de la matriz de covarianza son iguales a las varianzas de los componentes individuales de X.

En suma, la anterior definición equivale a la igualdad matricial:

$$Var[X] = E[(X - E[X])(X - E[X])^T]$$

Por lo tanto, se entiende que esto generaliza a mayores dimensiones el concepto de varianza de una variable aleatoria escalar X, definida como:

$$Var[Y] = E[(Y - E[Y])^2] = E[(Y - E[Y])(Y - E[Y])]$$

Fórmula para el cálculo de la matriz de covarianza

 $^{^{27}}$ Obtenido de la página de internet de "Statlect", que es un libro en línea sobre la teoría de probabilidad y estadísticas matemáticas.

La matriz de covarianza de un vector aleatorio X puede calcularse de la siguiente manera:

$$Var[X] = E[XX'] - E(X)E(X)'$$

Esta fórmula deja claro que la matriz de covarianza existe y está bien definida si el valor esperado del vector E[X] y el segundo momento de la matriz cruzada $E[XX^{'}]$ existe y está bien definido.

Algunos detalles de la matriz de covarianza:

Adición de vectores constantes

Sea $\alpha \in IR^K$ un vector constante de la dimensión K x 1, y $X \in IR^K$ un vector aleatorio, entonces:

$$Var[a + X] = Var(X)$$

Multiplicación por matrices constantes

Sea b una matriz de M x N constante, y $X \in IR^K$ un vector aleatorio, entonces:

$$Var[bX] = bVar(X)b'$$

Transformaciones lineales

Sea $\alpha \in IR^K$ un vector constante, \underline{b} una matriz M x K contante, y X un vector aleatorio K x 1, entonces de la combinación de las propiedades anteriores, tenemos:

$$Var[a + bX] = bVar(X)b'$$

Simetría

La matriz de covarianzas Var[X] es simétrica, ya que es igual a su transpuesta.

$$Var[X]' = E[(X - E(X)(X) - E(X))']'$$

$$= E[((X - E(X)(X) - E(X))')']$$

$$E[(X - E(X))(E(X))']$$

$$Var[X]$$

Positiva semidefinida

La matriz de covarianza Var[X] es una matriz positiva semidefinida, que es, para cada, vector 1 X K $\alpha \in IR^K$:

$$aVar(X)a' \geq 0$$

Esto es obtenido fácilmente utilizando la propiedad de multiplicación de matrices por una constante

$$aVar(X)a' = Var(a(X)) \ge 0$$

Donde la última desigualdad se basa en el hecho de que la varianza es siempre positiva.

Covarianza entre transformaciones lineales

Sea a y b dos vectores constantes de 1 x K, y X un vector aleatorio K x 1, la covarianza entre las dos trasformaciones lineales aX y bX pueden expresarse como una función de la matriz de covarianza:

$$Cov[aX, bX] = a Var(X)b^{'}$$

Covarianza cruzada

El término de matriz de covarianza también se utiliza para referirse a la matriz de covarianzas entre los elementos de dos vectores.

Sea X un vector aleatorio de Kx1 y Y un vector aleatorio de Lx1. La matriz de covarianzas entre X y Y o la matriz cruzada de X y Y es denotada por Cov[X,Y], y definida como:

$$Cov[X,Y] = E[(X - E(X))(Y - E(Y))^{'}]$$

Es una generalización multivariante de la definición de covarianza entre dos variables aleatorias escalares.

Sea $X_1 \dots X_K$ que denota los K componentes del vector X, Y $Y_1 \dots Y_L$ que denota los L componentes del vector Y.

De la definición de covarianza Cov[X,Y], se deduce que la Cov[X,Y] es una matriz KxL con la siguiente estructura:

$$Cov [X,Y] = E \begin{bmatrix} (X_1 - E[X_1]) (Y_1 - E[Y_1]) \dots \dots (X_1 - E[X_1]) (Y_L - E[Y_L]) \\ \vdots \\ (X_K - E[X_K]) (Y_1 - E[Y_1]) \dots \dots (X_K - E[X_K]) (Y_L - E[Y_L]) \end{bmatrix}$$

$$= \begin{bmatrix} E[(X_1 - E[X_1])][(Y_1 - E[Y_1])] \dots & E[(X_1 - E[X_1])(Y_L - E[Y_L])] \\ & & \ddots \\ E[(X_K - E[X_K]) & (Y_1 - E[Y_1])] & \dots & E[(X_K - E[X_K])(Y_L - E[Y_L])] \end{bmatrix}$$

$$\begin{bmatrix} Cov[X_1,Y_1] \dots \dots & Cov[X_{1\dots}Y_L] \\ & \cdot & \\ Cov[X_{K\dots}Y_1] \dots \dots Cov[X_{K\dots}Y_L] \end{bmatrix}$$

Note que la Cov[X,Y] no es la misma que la Cov[Y,X]. De hecho, la Cov[Y,X] es una matriz LxK que es igual a la transpuesta de la Cov[X,Y]:

$$Cov[Y,X] = E[(Y - E(Y))(X - E(X))^{'}]$$

$$= E[(X - E(X))(Y - E(Y))^{'}]^{'}$$

$$= Cov[X,Y]^{'}$$

APÉNDICE II

A continuación, se explican brevemente tres coeficientes del análisis de correlación canónica.

Coeficientes de Comunalidad y Adecuación

Como menciona Robert M. Thorndike, en su artículo "Canonical Correlation Analysis", una combinación lineal está definida por factores de "pesos". Los "pesos" son equivalentes a las betas en regresión múltiple, y reflejan la contribución independiente de cada variable en su función canónica.

Para determinar las relaciones dentro de un mismo grupo, se obtienen las cargas canónicas; es decir, se mostrarán las correlaciones entre las variables originales de un grupo con la función canónica de su propio grupo (carga intraset). Cada variable canónica es definida por un grupo de "pesos" distribuidos en un vector (α para un grupo llamado "X", y β para un grupo llamado "Y"). Por ejemplo, α_1 se refiere al set o vector de "pesos" que definen la primera variable canónica del grupo "X", y β_1 simboliza el vector de "pesos" que define la primera²⁸ variable canónica del grupo "Y". El vector de la carga intraset (función canónica) es obtenida de los "pesos" del vector y de la matriz de correlaciones entre las variables de ese set determinado.

Veamos una breve demostración al respecto:

Para calcular la correlación entre X_1 y U_1 , se usa la relación:

$$cor(\delta X, dx) = \delta^{'} cor(X)d$$
, entonces
$$cor(X_{1}, U_{1}) = cor(1,0,0,...,0)X (\alpha_{11}, \alpha_{12}, ... \alpha_{1p})$$
$$= (1,...,0) cor(X)(\alpha_{11}, \alpha_{12}, ... \alpha_{1p})$$
$$= (r_{11}, r_{12}, ... r_{1p})\alpha = r_{X_{1}U_{1}} = r_{U_{1}X_{1}}$$

Por otra parte, se sabe que al hacer una regresión lineal de X_1 en U_1 , el coeficiente de determinación R^2 coincide con $[\operatorname{cor}(X_1,U_1)]^2$, y esta cantidad es interpretada como el porcentaje de la variación de X_1 que es explicada por U_1^{29} .

Lo mismo se puede hacer para cualquier X_i , con cualquier U_k , y como además $U_i \perp U_j$ para toda $i \neq j$, se tiene que:

$$1 = var(X_1) = \left[cor(X_1, U_1) \right]^2 + \left[cor(X_1, U_2) \right]^2 + \dots + \left[cor(X_1, U_p) \right]^2$$

$$r^2_{U_1, X_1} + r^2_{U_2, X_1} + \dots + r^2_{U_p, X_1} = \sum_{i=1}^p r^2_{U_i, X_1}$$

Cada $\sum_{j=1}^p r^2 u_{j,X_1}$ es conocido como **coeficiente de comunalidad** de X_1 , y así para todas y cada una de las X_i .

²⁸ Existirán tantos como combinaciones lineales significativas existan.

²⁹ La interpretación es simétrica pues la $[cor(U_1, X_1)]^2 = r^2_{U1, X_1}$, que es también el porcentaje de variación de U_1 que es explicado por X_1 .

$$1 = var(X_i) = r^2_{U_1,X_i} + r^2_{U_2,X_i} + r^2_{U_p,X_i}$$

La cantidad $\sum_{i=1}^p r^2_{U_1,X_i}$, representa la contribución que hace U_1 a la variabilidad total = $\sum_{i=1}^p var(X_i)$; y al cociente $\frac{\sum_{i=1}^p r^2_{U_1,X_i}}{p}$ se conoce como **coeficiente de adecuación**.

Para el segundo grupo de variables y justo cuando q > p, ocurre que:

$$1 = var(Y_i) = r^2_{V_1, Y_1} + r^2_{V_2, Y_1} + r^2_{V_p, Y_1}$$

Pues el espacio generado por $Y_1, \dots Y_q$ en \mathbb{R}^q , no puede ser explicado por completo por el espacio generado por $V_1, \dots V_{2,\dots}$ V_p en \mathbb{R}^p .

Coeficiente de Redundancia

Thorndike y Weiss (1968,1970), sugirieron determinar el grado de asociación de los grupos de variables considerando, directamente, las cargas interset (entre grupos). Estas cargas interset al cuadrado dan la proporción de la varianza de cada variable de un grupo que es explicada por la variable canónica del otro, por lo tanto, la media de las cargas interset al cuadrado de un determinado componente es su **redundancia**.

Nos interesa conocer la correlación entre las variables originales $X_1...X_5$ ($X_1...X_p$) y las variables canónicas generadas con $Y_1...Y_5$ ($Y_1...Y_q$); es decir, con $V_1...V_5$.

Considerando que las variables originales están estandarizadas (media cero y varianza la unidad). Si vemos la combinación de la primera variable tenemos que:

$$COR(X_1V_1) = COV(X_1V_1) = E(XY'\beta_1) = E(XY')\beta_1 = R_{XY}\beta_1$$

Se llama coeficiente de redundancia al promedio de $COR(X_1V_1)$ al cuadrado. Es decir, al cuadrado de las correlaciones X y $Y^{'}\beta_1$, dividido entre "p".

$$CR(X_1V_1) = Coeficiente de redundancia (X_1V_1) = \frac{COR(X_1V_1)^2}{p} = \frac{\hat{\beta_1}R_{XY}R_{YX}\hat{\beta_1}}{p}$$

Análogamente,

$$CR(Y_1U_1) = Coeficiente de redundancia (Y_1U_1) = \frac{COR(Y_1U_1)^2}{q} = \frac{\alpha_1^2 R_{YX}R_{XY}\alpha_1}{Q}$$

Por lo que la redundancia total de X es:

$$\sum_{k=1}^{p} CR(X_1 V_k)$$

Y la redundancia total de Y es:

$$\sum_{k=1}^{q} CR(Y_1 U_k)$$

Diferencias entre los pesos y las cargas canónicas para la interpretación

- ✓ Los pesos estandarizados reflejan la contribución de cada variable independientemente con respecto a las funciones canónicas, y no pueden compararse entre funciones canónicas como las cargas.
- ✓ Aunque las variables tengan los mismos pesos en varias funciones, no sabemos en cual contribuyen más.
- ✓ Los pesos aún estandarizados, no están en un rango de cero y uno. Por su parte las cargas están en una frontera de +/- 1, y están estandarizados a través de las funciones canónicas.
- ✓ La correlación entre variables originales afecta los pesos. Ya que una variable puede recibir menor pesos solo porque está altamente correlacionada con otra variable en su grupo; no obstante, que ambas variables tengan altas correlaciones con la función canónica. Esto hace a los pesos muy sensibles en la selección de variables, ya que los pesos pueden variar significativamente si se agrega o se quita una variable. Las cargas por su parte, sufren menos con dichas fluctuaciones.
- \checkmark Los pesos tienen altos errores estándar y son menos estables que las correlaciones.

En general, Thorndike establece que la mayoría de las opiniones están a favor de las cargas canónicas para la interpretación y no de los pesos estandarizados.

XVI.- ANEXOS ESTADÍSTICOS

ANEXO I

Cuadro 47

VARIABLE	NOMBRE DE LAS
AVI/IVADE	VARIABLES EN ANEXO
	II
Violación (p/c 100 mil hab)	VIOL 12 y 14
Homicidio (p/c 100 mil hab)	HOM 12 y 14
Lesión (p/c 100 mil hab)	LES 12 y 14
Robo común (p/c 100 mil hab)	ROBO 12 y 14
Abigeato (robo de ganado) (p/c 100 mil hab)	ABIGEATO 12 y 14
Delitos patrimoniales (p/c 100 mil hab)	
	D. PAT_12 y _14
Otros delitos (p/c 100 mil hab)	OTROS 12 y 14
Privación de la libertad (secuestro) (p/c 100 mil hab)	SECU_12 y _14
Robo en carreteras (p/c 100 mil hab)	R.CARR_12 y _14
Robo en instituciones bancarias (p/c 100 mil hab)	
	R. BANCO_12 y _14
Delitos contra la salud (p/c 100 mil hab)	CS_12_y14
Delitos de la Ley Federal contra la Delincuencia Organizada (L.F.C.D.O.) (p/c 100 mil hab)	LFCDO_12 y _14
Delitos de la Ley General de Salud (L.G.S.) (p/c 100	LGS 12 y 14
mil hab)	перти
Delitos de otras leyes y códigos (p/c 100 mil hab)	OLC 12 y 14
Otros Delitos (p/c 100 mil hab)	OD 12 y 14
Carencia por rezago educativo (%)	R Edu 12 y 14
Carencia por acceso a los servicios de salud (%)	C Salud 12 y 14
Carencia por acceso a la seguridad social (%)	C SS 12 y 14
Carencia por calidad y espacios en la vivienda	C_33_12 y _14 C Vivienda 12 y 14
Carencia por acceso a los servicios básicos en la	C Servicios 12 y 14
vivienda (%)	C_561V1C103_12 y _14
Carencia por acceso a la alimentación (%)	C Alim 12 y 14
Porcentaje de Población con ingreso inferior a la	
línea de bienestar (%)	
Coeficiente de Gini (%)	Gini 12 y 14
Desempleo (desocupación) (%)	Desempleo 12 y 14
Pobreza (%)	Pobreza 12 y 14
Porcentaje de no denuncia (%)	Nodenun_12 y _14
Porcentaje de delitos sin averiguación previa (%)	Sinaveri_12 y _14
Porcentaje de percepción sobre la frecuencia con la	Sincastigo_13 y _13
que se castiga a los delincuentes (suma de algunas	Sincascigo_is y _is
veces o nunca) (%)	
Tasa de prevalencia de corrupción por cada 100 mil	PrevCorr_13 y _13
habitantes	v
Tasa de incidencia de corrupción por cada 100 mil	InciCorr 13 y 13
habitantes	
Grado promedio de escolaridad (ciclo 12-13) (años)	GPE_12_13 y 13_14
Deserción en media superior (ciclo 11-12) (%)	Desercion 11 12
	y 13 14
Analfabetismo (%)	Analf 12 13 y 13 14
PIB per-cápita (pesos)	PIBP 12 y 14
Índice de policía (p/c 1000 habitantes)	POL 12 y POL 14

CLASIFICACIÓN DE LA INCIDENCIA DELICTIVA DEL FUERO COMÚN POR MODALIDAD, TIPO Y SUBTIPO

DELITOS PATRIMONIALES	ROBO COMÚN
ABUSO DE CONFIANZA	CON VIOLENCIA
ABUSO DE CONFIANZA	A CASA HABITACIÓN
DAÑO EN PROPIEDAD AJENA	A NEGOCIO
DAÑO EN PROPIEDAD AJENA	A TRANSEÚNTES
DESPOJO	A TRANSPORTISTAS
CON VIOLENCIA	DE VEHÍCULOS
SIN DATOS	OTROS
SIN VIOLENCIA	SIN DATOS
EXTORSIÓN	SIN VIOLENCIA
EXTORSIÓN	A CASA HABITACIÓN
FRAUDE	A NEGOCIO
FRAUDE	A TRANSEÚNTES
DELITOS SEXUALES (VIOLACIÓN)	A TRANSPORTISTAS
VIOLACIÓN	DE VEHÍCULOS
VIOLACIÓN	OTROS
HOMICIDIOS	SIN DATOS
CULPOSOS	ROBO DE GANADO (ABIGEATO)
CON ARMA BLANCA	ABIGEATO
CON ARMA DE FUEGO	ABIGEATO
OTROS	ROBO EN CARRETERAS
SIN DATOS	CON VIOLENCIA
DOLOSOS	A AUTOBUSES
CON ARMA BLANCA	A CAMIONES DE CARGA
CON ARMA DE FUEGO	A VEHÍCULOS PARTICULARES
OTROS	OTROS
SIN DATOS	SIN DATOS
LESIONES	SIN VIOLENCIA
CULPOSAS	A AUTOBUSES
CON ARMA BLANCA	A CAMIONES DE CARGA
CON ARMA DE FUEGO	A VEHÍCULOS PARTICULARES
OTROS	OTROS
SIN DATOS	SIN DATOS
DOLOSAS	ROBO EN INSTITUCIONES BANCARIAS
CON ARMA BLANCA	CON VIOLENCIA
CON ARMA DE FUEGO	A BANCOS
OTROS	A CASA DE BOLSA
SIN DATOS	A CASA DE CAMBIO
OTROS DELITOS	A EMPRESA DE TRASLADO DE VALORES
AMENAZAS	OTROS
AMENAZAS	SIN DATOS
ESTUPRO	SIN VIOLENCIA
ESTUPRO	A BANCOS
OTROS SEXUALES	A CASA DE BOLSA
OTROS SEXUALES	A CASA DE CAMBIO
RESTO DE LOS DELITOS (OTROS)	A EMPRESA DE TRASLADO DE VALORES
RESTO DE LOS DELITOS (OTROS)	OTROS
PRIV. DE LA LIBERTAD (SECUESTRO)	SIN DATOS
SECUESTRO	
SECUESTRO	

```
LEY FEDERAL CONTRA LA DELINCUENCIA ORGANIZADA (L.F.C.D.O.)
 CONTRA LA SALUD
 OTROS DELITOS PREVISTOS EN LA L.F.C.D.O.
LEY GENERAL DE SALUD (L.G.S.)
CONTRA LA SALUD EN SU MODALIDAD DE NARCOMENUDEO
 OTROS DELITOS PREVISTOS EN LA L.G.S.
CONTRA LA SALUD
 COMERCIO
 OTROS
 POSESIÓN
 PRODUCCIÓN
 SUMINISTRO
 TRÁFICO
 TRANSPORTE
OTRAS LEYES Y CÓDIGOS
 CÓDIGO FISCAL DE LA FEDERACIÓN (C.F.F.)
 LEY DE LA PROPIEDAD INDUSTRIAL (L.P.I.)
 LEY DE MIGRACIÓN
 LEY DE VÍAS GENERALES DE COMUNICACIÓN (L.V.G.C.)
 LEY FEDERAL DE ARMAS DE FUEGO Y EXPLOSIVOS (L.F.A.F.E.)
 LEY FEDERAL DEL DERECHO DE AUTOR (L.F.D.A.)
 LEYES DE INSTITUCIONES DE CRÉDITO, INVERSIÓN, FIANZAS Y SEGUROS
 OTRAS LEYES ESPECIALES
OTROS DELITOS
 COMETIDOS POR SERVIDORES PÚBLICOS
 CONTRA EL AMBIENTE Y LA GESTIÓN AMBIENTAL
 CONTRA LA INTEGRIDAD CORPORAL
 ELECTORALES
 EN MATERIA DE DERECHOS DE AUTOR
 FALSEDAD, TÍTULO DÉCIMO TERCERO
 OTROS DELITOS DEL C.P.F.
 PATRIMONIALES
VÍAS DE COMUNICACIÓN Y CORRESPONDENCIA
```

Fuente: Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública

ANEXO II INFORMACIÓN ESTADÍSTICA

					NFORIVIAC	ION ESTADISTICA					
Entidad	VIOL_12	Entidad	VIOL_14	Entidad	HOM_12	Entidad	HOM_14	Entidad	LES_12	Entidad	LES_14
Quintana Roo	31.0	Quintana Roo	30.4	Guerrero	78.7	Guerrero	61.9	Baja California	324.8	Baja California	314.0
Morelos	22.5	Morelos	23.2	Morelos	77.0	Sinaloa	55.7	Tabasco	322.6	México	280.0
Chihuahua	22.5	Chihuahua	22.5	Sinaloa	71.1	Michoacán	51.8	Aguascalientes	314.0	Aguascalientes	255.6
Tabasco	21.8	Baja California	19.8	Chihuahua	68.9	Morelos	45.3	Quintana Roo	302.4	Tabasco	251.1
Baja California Sur	20.6	Baja California Sur	17.4	Colima	55.3	Tamaulipas	39.1	México	286.7	Yucatán	236.0
Baja California	19.0	Querétaro	17.0	Durango	54.0	Chihuahua	38.7	Morelos	280.0	Morelos	223.7
Colima	18.4	Campeche	16.9	Michoacán	50.9	Guanajuato	37.8	Yucatán	264.1	Quintana Roo	220.3
Campeche	17.5	Tamaulipas	15.6	Quintana Roo	44.4	Oaxaca	35.2	Coahuila	210.6	Guanajuato	219.2
/ucatán	16.6	Hidalgo	15.4	Tamaulipas	44.1	Durango	35.0	Baja California Sur	200.3	Baja California Sur	216.2
Famaulipas	16.3	Durango	15.2	Tlaxcala	41.9	Sonora	33.8	Puebla	197.7	Coahuila	213.8
México	15.7	Chiapas	15.0	Nuevo León	40.9	Baja California	33.6	Guanajuato	195.5	Querétaro	211.1
Chiapas	14.9	Tabasco	14.1	Nayarit	38.3	Chiapas	31.2	Oaxaca	185.7	Nuevo León	176.5
Querétaro	12.9	Yucatán	12.1	Coahuila	37.1	Quintana Roo	30.5	San Luis Potosí	174.3	Hidalgo	165.0
Sonora	12.6	Nuevo León	11.9	Sonora	36.6	Tlaxcala	28.6	Distrito Federal	162.7	Sinaloa	164.4
San Luis Potosí	12.5	México	11.8	Guanajuato	33.0	Hidalgo	26.0	Hidalgo	161.9	Durango	144.3
uebla	12.2	Guanajuato	11.3	Chiapas	31.9	Tabasco	25.0	Sinaloa	161.6	Distrito Federal	141.4
alisco	11.6	Nayarit	9.9	Hidalgo	25.8	Coahuila	24.7	Querétaro	159.3	Tamaulipas	136.8
Aguascalientes	11.3	Guerrero	9.9	Jalisco	25.3	México	24.2	Jalisco	148.4	Oaxaca	130.7
Ourango	11.1	Sonora	9.4	Veracruz	24.4	Colima	21.5	Durango	146.3	Jalisco	128.8
Guerrero	10.0	Michoacán	9.2	Baja California	23.7	Jalisco	21.2	Tamaulipas	141.3	Chihuahua	124.2
/eracruz	9.6	Zacatecas	9.0	México	23.6	Querétaro	20.6	Zacatecas	136.7	Puebla	121.3
Nuevo León	9.6	Aguascalientes	8.6	Puebla	23.2	Nuevo León	19.6	Veracruz	122.6	Zacatecas	115.8
Distrito Federal	9.5	Oaxaca	6.7	Tabasco	22.9	Aguascalientes	18.7	Sonora	114.3	Guerrero	112.3
Michoacán	9.3	Colima	6.3	Zacatecas	22.3	Campeche	16.4	Nuevo León	113.8	San Luis Potosí	92.1
layarit	8.5	Coahuila	6.1	San Luis Potosí	22.0	Distrito Federal	16.3	Guerrero	113.5	Michoacán	91.8
Zacatecas	8.4	Distrito Federal	6.0	Oaxaca	19.7	Nayarit	15.9	Chihuahua	106.4	Sonora	89.8
Hidalgo	8.4	Sinaloa	5.9	Querétaro	17.8	Zacatecas	15.9	Tlaxcala	85.2	Tlaxcala	83.6
Guanajuato	7.6	Puebla	5.5	Distrito Federal	16.8	Baja California Sur	14.7	Colima	77.6	Veracruz	71.0
Coahuila	7.3	San Luis Potosí	5.4	Aguascalientes	15.4	Puebla	14.7	Michoacán	72.5	Colima	66.9
Sinaloa	6.0	Jalisco	5.3	Campeche	14.8	Veracruz	12.7	Nayarit	60.1	Nayarit	51.3
Daxaca	3.6	Veracruz	3.0	Baja California Sur	11.8	San Luis Potosí	11.9	Chiapas	49.9	Chiapas	34.1
Γlaxcala	2.8	Tlaxcala	2.3	Yucatán	10.7	Yucatán	5.0	Campeche	6.7	Campeche	17.2
Promedio	13.2	Promedio	11.8	Promedio	35.1	Promedio	27.6	Promedio	168.7	Promedio	153.1
Nacional	12.4	Nacional	10.6	Nacional	33.7	Nacional	27.3	Nacional	178.1	Nacional	162.1

Entidad	ROBO_12	Entidad	ROBO_14	Entidad	ABIGEATO_12	Entidad	ABIGEATO_14	Entidad	D. PAT_12	Entidad	D. PAT_14
Baja California	1,900.9	Baja California	1,577.5	Tabasco	24.2	Zacatecas	30.3	Quintana Roo	505.9	Baja California Sur	440.1
Baja California Sur	1,314.3	Baja California Sur	1,263.9	Zacatecas	15.8	Tabasco	28.4	Baja California Sur	504.6	Yucatán	390.9
Morelos	1,141.4	Morelos	1,027.2	Aguascalientes	11.0	Aguascalientes	17.5	Yucatán	491.1	Quintana Roo	372.8
Distrito Federal	994.7	Distrito Federal	964.5	Veracruz	9.7	Morelos	15.9	Morelos	372.2	Coahuila	357.1
Quintana Roo	983.7	Querétaro	822.8	Chihuahua	9.4	Coahuila	14.3	Distrito Federal	354.3	Morelos	338.4
Aguascalientes	930.2	Quintana Roo	805.4	Morelos	9.3	Chihuahua	12.5	Aguascalientes	330.2	Distrito Federal	334.2
Colima	921.5	Tabasco	727.8	San Luis Potosí	9.1	Querétaro	12.3	Coahuila	312.1	Aguascalientes	316.0
Coahuila	771.9	Aguascalientes	725.3	Tlaxcala	8.7	Chiapas	11.8	Baja California	305.7	Baja California	295.8
Tamaulipas	690.8	Durango	646.6	Guanajuato	7.8	Tlaxcala	11.1	Chihuahua	297.1	Chihuahua	289.4
Durango	678.3	Coahuila	598.6	Querétaro	7.8	Durango	10.0	Durango	285.1	Guanajuato	249.0
Querétaro	674.4	Guanajuato	575.3	Coahuila	7.7	Guanajuato	9.7	Tabasco	271.6	Querétaro	247.3
Tabasco	670.5	México	514.9	Durango	7.7	Jalisco	9.0	Guanajuato	265.5	Tabasco	216.2
Puebla	655.7	Colima	512.0	Hidalgo	6.6	Oaxaca	7.0	San Luis Potosí	264.3	Puebla	211.8
Chihuahua	638.0	Tamaulipas	504.8	Jalisco	6.2	Veracruz	6.8	Puebla	244.7	Jalisco	206.3
México	627.3	Puebla	481.1	Nayarit	5.7	Nuevo León	6.6	Oaxaca	232.7	Durango	185.5
Sinaloa	572.3	Zacatecas	468.6	Chiapas	5.5	Hidalgo	6.6	Jalisco	217.0	Zacatecas	183.0
Guanajuato	552.0	Sinaloa	436.8	Baja California Sur	4.9	Michoacán	6.5	Veracruz	195.0	Hidalgo	178.3
Nuevo León	550.1	Chihuahua	436.8	Michoacán	4.8	Tamaulipas	5.8	Querétaro	188.5	Nuevo León	146.0
Zacatecas	508.1	Jalisco	397.3	Sinaloa	4.5	San Luis Potosi	5.8	Zacatecas	181.6	Sonora	132.8
Sonora	456.5	Guerrero	370.9	Tamaulipas	4.2	Baja California Sur	5.4	Sonora	168.1	Oaxaca	128.3
Jalisco	447.6	Michoacán	363.8	Puebla	4.2	Yucatán	5.1	Hidalgo	154.1	San Luis Potosí	119.0
Guerrero	406.2	Sonora	361.9	Nuevo León	3.2	Puebla	5.1	México	116.4	Veracruz	115.7
Michoacán	378.9	Hidalgo	317.7	Quintana Roo	2.9	Sinaloa	4.6	Guerrero	112.0	Nayarit	112.0
Veracruz	346.4	Nuevo León	302.6	Sonora	2.7	Sonora	3.6	Michoacán	106.6	Guerrero	109.2
Yucatán	340.5	Tlaxcala	288.0	Yucatán	2.4	Campeche	3.1	Nayarit	98.1	México	107.6
Hidalgo	327.8	Oaxaca	255.2	México	2.3	México	2.6	Colima	95.9	Tamaulipas	86.6
San Luis Potosí	310.5	Veracruz	223.8	Colima	2.2	Nayarit	2.5	Sinaloa	95.0	Michoacán	76.5
Tlaxcala	303.6	San Luis Potosí	161.5	Guerrero	2.1	Quintana Roo	2.2	Nuevo León	77.0	Tlaxcala	71.0
Oaxaca	281.3	Chiapas	144.1	Oaxaca	1.8	Guerrero	1.9	Tamaulipas	76.0	Sinaloa	65.5
Nayarit	186.6	Yucatán	135.5	Campeche	1.0	Colima	1.7	Chiapas	66.0	Colima	62.0
Chiapas	140.1	Nayarit	118.6	Baja California	0.0	Baja California	0.0	Tlaxcala	55.4	Chiapas	46.7
Campeche	45.0	Campeche	73.6	Distrito Federal	0.0	Distrito Federal	0.0	Campeche	11.4	Campeche	34.8
Promedio	617.1	Promedio	518.9	Promedio	6.1	Promedio	8.3	Promedio	220.4	Promedio	194.5
Nacional	597.9	Nacional	503.1	Nacional	5.2	Nacional	6.9	Nacional	205.0	Nacional	181.7

Entidad	OTROS_12	Entidad	OTROS_14	Entidad	SECU_12	Entidad	SECU_14	Entidad	R. CARR_12	Entidad	R. CARR_14
Tabasco	1,504.0	Tabasco	1,306.1	Morelos	5.0	Tamaulipas	7.5	Tlaxcala	24.8	Tlaxcala	29.6
Yucatán	1,168.3	Baja California Sur	1,062.8	Guerrero	4.7	Morelos	6.1	Guerrero	23.5	Guerrero	21.5
Baja California Sur	947.4	Baja California	882.7	Tamaulipas	3.6	Tabasco	4.2	Michoacán	9.6	Oaxaca	6.7
Baja California	689.7	Morelos	876.5	Michoacán	3.0	Guerrero	3.1	Hidalgo	9.5	Hidalgo	4.9
Colima	647.1	Yucatán	715.4	Durango	2.9	Michoacán	1.8	San Luis Potosí	7.4	Puebla	3.8
Morelos	607.7	Chihuahua	669.4	Tabasco	2.5	Veracruz	1.8	Colima	6.7	Colima	3.0
México	596.7	Colima	656.6	Nayarit	1.9	Baja California	1.2	Puebla	5.9	Campeche	2.7
Quintana Roo	576.8	Distrito Federal	562.7	Chihuahua	1.5	México	1.1	Morelos	4.6	Chiapas	2.5
Chihuahua	550.4	Coahuila	541.1	Oaxaca	1.4	Zacatecas	1.0	Tamaulipas	4.2	San Luis Potosí	1.8
Oaxaca	549.7	Quintana Roo	539.4	Nuevo León	1.3	Oaxaca	0.9	Coahuila	3.2	Tamaulipas	1.6
Distrito Federal	470.8	Guanajuato	527.9	Veracruz	1.2	Nuevo León	8.0	Veracruz	3.1	Morelos	1.3
Sonora	426.0	México	505.7	Quintana Roo	1.1	Distrito Federal	0.7	Aguascalientes	2.8	Veracruz	1.3
Durango	410.5	Tamaulipas	475.7	Sinaloa	1.1	Sinaloa	0.7	Nayarit	2.6	Durango	1.3
Guerrero	391.0	Querétaro	449.8	Zacatecas	1.0	Hidalgo	0.6	Chiapas	2.5	Nayarit	1.2
Puebla	382.6	Sonora	446.0	Jalisco	0.9	Durango	0.6	Oaxaca	2.3	Michoacán	0.9
San Luis Potosí	377.0	Guerrero	411.8	San Luis Potosí	0.9	Colima	0.6	Zacatecas	2.0	Jalisco	0.7
Hidalgo	364.9	Hidalgo	404.6	Baja California	0.9	Tlaxcala	0.6	Tabasco	1.5	Aguascalientes	0.6
Coahuila	353.4	Jalisco	398.1	Colima	0.9	Coahuila	0.5	Durango	1.2	Zacatecas	0.5
Guanajuato	332.9	Durango	388.2	Coahuila	8.0	Puebla	0.5	Campeche	0.9	Coahuila	0.5
Aguascalientes	324.7	Sinaloa	331.1	Hidalgo	0.8	San Luis Potosí	0.5	Jalisco	0.8	Quintana Roo	0.5
Jalisco	316.8	Puebla	325.4	México	0.8	Nayarit	0.4	Quintana Roo	0.7	Nuevo León	0.4
Famaulipas	314.9	Aguascalientes	323.0	Distrito Federal	0.7	Querétaro	0.4	Nuevo León	0.4	Baja California Sur	0.1
Querétaro	299.8	Oaxaca	296.2	Puebla	0.5	Quintana Roo	0.4	Baja California Sur	0.0	Querétaro	0.1
Sinaloa	281.2	Nayarit	288.5	Querétaro	0.4	Sonora	0.4	Querétaro	0.0	Yucatán	0.0
/eracruz	279.5	San Luis Potosí	243.3	Campeche	0.3	Jalisco	0.3	Yucatán	0.0	Tabasco	0.0
Nayarit	213.9	Zacatecas	203.9	Chiapas	0.3	Guanajuato	0.3	Sonora	0.0	Sonora	0.0
Zacatecas	163.6	Michoacán	171.5	Tlaxcala	0.2	Campeche	0.2	Sinaloa	0.0	Sinaloa	0.0
Chiapas	146.3	Veracruz	171.0	Sonora	0.2	Chihuahua	0.2	Baja California	0.0	Baja California	0.0
Michoacán	102.2	Chiapas	156.5	Guanajuato	0.2	Chiapas	0.2	Chihuahua	0.0	Chihuahua	0.0
Taxcala	87.5	Nuevo León	133.4	Aguascalientes	0.0	Baja California Sur	0.1	Guanajuato	0.0	Guanajuato	0.0
luevo León	72.6	Tlaxcala	117.4	Baja California Sur	0.0	Aguascalientes	0.1	Distrito Federal	0.0	Distrito Federal	0.0
Campeche	48.4	Campeche	54.2	Yucatán	0.0	Yucatán	0.0	México	0.0	México	0.0
Promedio	437.4	Promedio	457.4	Promedio	1.3	Promedio	1.2	Promedio	3.8	Promedio	2.7
Nacional	421.3	Nacional	432.8	Nacional	1.2	Nacional	1.2	Nacional	3.0	Nacional	2.0

Entidad	R. BANCO_12	Entidad	R. BANCO_14	Entidad	CS_12	Entidad	CS_14	Entidad	LFCDO_12	Entidad	LFCDO_14
Chihuahua	1.9	Chihuahua	3.6	Baja California	205.0	Sonora	32.2	Guerrero	8.8	Tamaulipas	4.6
Sinaloa	1.8	Sinaloa	3.1	Sonora	62.2	Baja California	20.0	Morelos	7.3	Colima	4.2
Morelos	1.5	Quintana Roo	2.4	Distrito Federal	48.3	Tamaulipas	17.1	Coahuila	4.5	Aguascalientes	3.1
México	1.3	Oaxaca	1.8	Jalisco	43.1	Baja California Sur	15.9	Tamaulipas	4.0	Guerrero	3.0
Quintana Roo	1.2	México	1.3	Quintana Roo	42.4	Sinaloa	15.4	Distrito Federal	3.4	Morelos	2.5
Nuevo León	1.0	Tlaxcala	1.2	Sinaloa	38.7	Michoacán	14.2	Aguascalientes	3.4	Michoacán	2.4
Colima	0.9	Michoacán	1.1	Guanajuato	37.8	Jalisco	12.3	Colima	2.9	Distrito Federal	2.0
Oaxaca	8.0	Guerrero	1.0	Tamaulipas	32.9	Aguascalientes	10.5	Michoacán	2.5	Sinaloa	1.4
Jalisco	8.0	Tamaulipas	0.9	Aguascalientes	22.5	Colima	10.3	Zacatecas	2.4	Chihuahua	1.2
Guerrero	0.7	Distrito Federal	0.8	Michoacán	21.6	Chihuahua	9.4	Veracruz	2.3	Hidalgo	1.1
Hidalgo	0.7	Jalisco	0.8	Nuevo León	21.4	Guerrero	7.8	Nuevo León	1.8	Tabasco	0.9
Distrito Federal	0.6	Nuevo León	0.7	Chihuahua	20.3	Zacatecas	7.3	Quintana Roo	1.7	México	0.9
Michoacán	0.5	Coahuila	0.7	Baja California Sur	19.6	Guanajuato	5.7	San Luis Potosí	1.6	Nuevo León	0.8
Tamaulipas	0.4	Morelos	0.6	Durango	18.6	Coahuila	5.2	Nayarit	1.4	Baja California	0.7
Baja California	0.4	Durango	0.6	Colima	17.1	Querétaro	5.1	Hidalgo	1.4	Sonora	0.7
Guanajuato	0.4	Guanajuato	0.6	Guerrero	16.9	Distrito Federal	4.6	México	1.4	Coahuila	0.7
Durango	0.4	Baja California	0.6	Zacatecas	13.1	San Luis Potosí	4.5	Jalisco	1.3	Veracruz	0.7
Zacatecas	0.3	Colima	0.6	Coahuila	11.1	Campeche	4.5	Sinaloa	1.3	Jalisco	0.6
Aguascalientes	0.3	Sonora	0.4	Nayarit	8.2	Durango	4.4	Chihuahua	1.2	Quintana Roo	0.6
San Luis Potosí	0.2	Hidalgo	0.4	Oaxaca	8.2	Oaxaca	4.2	Baja California	1.2	Baja California Sur	0.5
Puebla	0.2	Querétaro	0.4	Chiapas	6.7	Nayarit	4.2	Durango	1.2	Nayarit	0.5
Veracruz	0.2	Puebla	0.2	Tabasco	6.0	Chiapas	4.1	Sonora	1.0	Guanajuato	0.5
Sonora	0.1	Aguascalientes	0.2	Yucatán	5.9	Nuevo León	3.8	Guanajuato	1.0	Querétaro	0.5
Querétaro	0.1	San Luis Potosí	0.1	Morelos	5.6	Quintana Roo	3.3	Campeche	0.9	Oaxaca	0.4
Tlaxcala	0.1	Baja California Sur	0.1	Campeche	5.1	Morelos	2.3	Oaxaca	0.7	Campeche	0.3
Coahuila	0.1	Veracruz	0.1	Tlaxcala	5.0	Hidalgo	2.1	Querétaro	0.6	Zacatecas	0.3
Baja California Sur	0.0	Campeche	0.1	San Luis Potosi	3.9	Yucatán	2.0	Tlaxcala	0.6	Puebla	0.3
Campeche	0.0	Nayarit	0.1	Puebla	3.9	México	1.2	Puebla	0.4	San Luis Potosí	0.3
Chiapas	0.0	Zacatecas	0.1	Querétaro	3.8	Veracruz	1.0	Tabasco	0.4	Chiapas	0.3
Nayarit	0.0	Yucatán	0.0	Hidalgo	3.4	Puebla	0.9	Baja California Sur	0.4	Durango	0.1
Tabasco	0.0	Tabasco	0.0	Veracruz	1.2	Tabasco	0.7	Chiapas	0.3	Tlaxcala	0.1
Yucatán	0.0	Chiapas	0.0	México	1.0	Tlaxcala	0.5	Yucatán	0.0	Yucatán	0.0
Promedio	0.5	Promedio	0.8	Promedio	23.8	Promedio	7.4	Promedio	2.0	Promedio	1.1
Nacional	0.6	Nacional	0.9	Nacional	23.8	Nacional	6.5	Nacional	1.9	Nacional	1.1

Entidad	LGS_12	Entidad	LGS_14	Entidad	OLC_12	Entidad	OLC_14	Entidad	OD_12	Entidad	OD_14
Baja California Sur	81.4	Baja California	86.0	Distrito Federal	78.8	Tamaulipas	81.7	Distrito Federal	122.6	Distrito Federal	111.5
Guanajuato	80.0	Sonora	17.9	Sonora	75.6	Baja California	62.2	Baja California	74.3	Tamaulipas	78.4
Jalisco	58.2	Tlaxcala	14.0	Baja California	72.6	Colima	55.3	Tamaulipas	60.2	Colima	60.1
Sonora	37.3	Quintana Roo	7.8	Tamaulipas	68.8	Sonora	54.2	Campeche	46.9	Baja California	55.3
Chihuahua	21.2	Oaxaca	6.0	Colima	56.2	Distrito Federal	51.9	Quintana Roo	46.1	Sinaloa	52.7
Querétaro	20.5	Yucatán	5.9	Sinaloa	39.7	Sinaloa	41.3	Baja California Sur	45.0	Nayarit	48.5
Tlaxcala	19.2	Baja California Sur	5.8	Guanajuato	37.6	Jalisco	39.3	Nayarit	44.9	Sonora	48.1
Morelos	18.4	Sinaloa	5.5	Oaxaca	36.4	Morelos	38.8	Hidalgo	44.0	Querétaro	45.2
Sinaloa	12.0	Chiapas	4.7	Jalisco	35.5	Oaxaca	38.4	Colima	42.6	Quintana Roo	44.4
Oaxaca	9.6	Veracruz	4.6	Chihuahua	34.6	Aguascalientes	37.7	Sonora	41.3	Hidalgo	40.7
Baja California	7.8	Tabasco	4.5	Morelos	31.8	Michoacán	33.7	Chihuahua	34.7	Veracruz	40.4
Veracruz	7.5	Morelos	4.5	Hidalgo	31.6	Chihuahua	31.5	Tlaxcala	34.4	Campeche	39.5
Quintana Roo	6.7	Chihuahua	4.4	Nuevo León	31.2	San Luis Potosí	28.5	Durango	32.0	Michoacán	39.0
Nayarit	6.7	Aguascalientes	3.7	Michoacán	30.1	Guanajuato	27.7	Sinaloa	31.9	Guanajuato	35.7
Coahuila	6.4	Campeche	3.1	Quintana Roo	28.2	Durango	27.2	Morelos	30.1	Baja California Sur	33.9
Chiapas	5.7	Querétaro	2.8	Aguascalientes	28.0	Nuevo León	25.5	Tabasco	29.1	Jalisco	33.1
San Luis Potosí	5.6	Nuevo León	2.4	Coahuila	28.0	Querétaro	25.3	Veracruz	29.0	Yucatán	31.3
Tabasco	5.4	Colima	2.4	Guerrero	27.1	Coahuila	24.7	Coahuila	28.4	Morelos	29.4
/ucatán	5.3	Michoacán	2.3	Nayarit	25.8	Baja California Sur	23.8	Jalisco	26.7	Chihuahua	29.1
Aguascalientes	4.7	San Luis Potosí	2.2	Querétaro	23.6	Quintana Roo	23.2	Querétaro	25.6	Zacatecas	28.1
Nuevo León	4.2	Nayarit	2.0	Tlaxcala	23.5	Zacatecas	21.4	Michoacán	24.5	México	27.8
Durango	3.9	Coahuila	1.7	Durango	23.2	Nayarit	21.4	Guerrero	23.6	San Luis Potosí	27.4
Colima	2.9	Guanajuato	1.7	Zacatecas	22.1	Guerrero	20.7	Oaxaca	22.1	Durango	27.3
Michoacán	2.7	Distrito Federal	1.6	Baja California Sur	21.1	Chiapas	19.1	Nuevo León	22.0	Tabasco	27.3
Campeche	2.3	Jalisco	1.0	Veracruz	20.2	Campeche	19.1	Guanajuato	21.1	Tlaxcala	25.6
México	1.9	Hidalgo	0.9	San Luis Potosí	18.4	Veracruz	18.2	México	20.3	Oaxaca	25.4
Distrito Federal	1.4	Puebla	0.9	Puebla	17.8	Hidalgo	15.0	Aguascalientes	20.1	Coahuila	25.2
Zacatecas	1.0	Zacatecas	0.7	Chiapas	16.9	Tlaxcala	14.8	Zacatecas	19.8	Guerrero	23.4
Puebla	0.5	México	0.6	Campeche	16.2	México	13.8	Chiapas	19.4	Aguascalientes	23.1
Hidalgo	0.3	Durango	0.2	Tabasco	9.8	Yucatán	11.9	Yucatán	17.2	Nuevo León	22.1
Guerrero	0.0	Guerrero	0.1	México	9.0	Tabasco	11.4	Puebla	15.5	Puebla	21.4
Tamaulipas	0.0	Tamaulipas	0.0	Yucatán	5.8	Puebla	11.3	San Luis Potosí	13.3	Chiapas	19.3
Promedio	13.8	Promedio	6.3	Promedio	32.0	Promedio	30.3	Promedio	34.6	Promedio	38.1
Nacional	13.6	Nacional	5.3	Nacional	32.2	Nacional	29.4	Nacional	35.5	Nacional	39.5

Chapas 0.44 Chapas 0.31 Puebla coaca 0.39 Methoacin 0.29 Veracruz 0.29 Correct 0.21 Chapas 0.77 Coaraca Guerrero 0.27 Michocadin 0.28 Veracruz 0.29 Verbal 0.21 Puebla 0.70 Oaxaca 0.70 Albaco 0.71 Albaco 0.71 Albaco 0.72 Tabacata 0.70 Michocadin 0.72 Tabacata 0.71 Michocadin 0.72 Tabacata 0.72 Michocadin 0.72 Tabacata 0.72 Tabacata 0.72 Michocadin 0.72 Tabacata 0.72 Michocadin 0.72 Albacata 0	C_SS_14
Generic Output Q27 Michoacían Q28 Verarux Q28 Quebla Q27 Medioca Q28 Chapas Q27 Deabla Verarux Q26 Quarero Q27 México Q25 Chapas Q20 Michoacían Q72 Tabasco Puebla Q24 Puebla Q27 Chiapas Q25 Distito Federal Q20 Hidalgo Q72 Tabasco Puebla Q24 Puebla Q22 Talacaca Q24 Maja Galfornia Q20 Tabasco Q71 Michoaca Veracuta Q22 Candecas Q22 Jalesco Q19 Veracuz Q89 Veracuz Veracuta Q22 Guindan Q19 Guindan Q19 Micro Q89 Veracuz Veracuta Q22 Guindan Q19 Micro Q19 Micro Q19 Micro Sanciacas Q21 Guindan Q19 Auraca Q19 Micro Q19 <	0.83
Michoacián 0.26 Ouxacia 0.27 Medro 0.25 Chiapas 0.21 Ouxacia 0.76 Puebla Veranzuz 0.20 Guerren 2.72 Guerren 0.25 Ouxacia 0.20 Hidalgo 0.72 Tabasco Puebla 0.24 Puebla 0.23 Chiapas 0.25 Distinto Federal 0.20 Hidalgo 0.72 Tabasco Guanajianto 0.24 Yocatán 0.22 Jaisco 0.24 Beja Calfornia 0.19 Tabasco 0.71 Michoacán Yucatán 0.23 Zacatecas 0.22 Jaisco 0.24 Baja Calfornia 0.19 Veracruz 0.76 Medico Zacatecas 0.21 Sinaba 0.19 Baja Calfornia 0.22 Jaisco 0.19 Medico 0.69 Veracruz Zacatecas 0.21 Sinaba 0.19 Morelos 0.12 Medico 0.19 Medico Aleyart 0.19 San Luis Potosi 0.	0.78
Veracruz Q2 8 Guerrero Q2 7 Guerrero Q2 5 Oxaxica Q2 0 Michoacán Q7 2 Tabasco Pueble Q2 4 Puebla Q2 3 Chapas Q2 5 Distrito Federal Q2 0 Hidalgo Q7 2 Tabasco Guanajasto Q2 4 Vacatán Q2 3 Zacatecas Q2 2 Jalisco Q2 4 Baja Calfornia Q1 9 Tabasco Q7 1 Hidalgo Yucatán Q2 1 Guanajaato Q2 1 Distrito Federal Q2 3 Guerrero Q1 9 Veracruz Q9 9 Veracruz Zacatecas Q2 1 Sinaba Q1 9 Baja Calfornia Q2 2 Quirfana Roo Q1 9 Merico Q6 5 Morelos Alladajo Q1 9 Allaco Q1 9 Morelos Q1 9 Morelos Q6 5 Acatecas Nayarit Q1 9 Allaco Q1 9 Tabasco Q1 9 Allaco Q1 9 Morelos Q1 7 Quanajaato Colma	0.78
Puebla 0.24 Puebla 0.23 Chiapas 0.25 Distrito Federal 0.20 Hidalgo 0.72 Taxacala Guanajaato 0.24 Yucafan 0.22 Taxacala 0.24 México 0.20 Tabasco 0.71 Michoach Yucafan 0.23 Zacatecas 0.22 Jalsco 0.24 Baja California 0.19 Veracruz 0.69 Veracruz Zacatecas 0.21 Sinado 0.19 Baja California 0.22 Jalsco 0.19 Morelos 0.65 Morelos Hidalgo 0.19 Morelos 0.22 Quirlana Roo 0.19 Morelos 0.65 Zacatecas 0.63 Zacatecas Nayart 0.19 San Luis Potosi 0.18 Guinajaato 0.21 Hidalgo 0.17 Nayarit 0.63 Zacatecas Nayart 0.19 San Luis Potosi 0.18 Quirlana Roo 0.21 Hidalgo 0.17 San Luis Potosi 0.62 San Luis Potosi	0.75
Guanajuato 0.24 Yucatán 0.22 Taucala 0.24 México 0.20 Tabascio 0.71 Michoacán Yucatán 0.23 Zacatecas 0.22 Jaisco 0.24 Baja Calfornia 0.19 Taucata 0.71 Hidajo San Luis Potosi 0.21 Sinaloa 0.19 Baja Calfornia 0.22 Jaisco 0.19 Móxico 0.65 Morelos Hidalgo 0.21 Hidalgo 0.19 Morelos 0.22 Jaisco 0.19 Mórelos 0.63 Acatecas Nayant 0.19 San Luis Potosi 0.18 Oaxaca 0.21 Tabasco 0.17 Nayant 0.63 Zacatecas Alegación 0.19 Jaisco 0.18 Guanajuato 0.19 Tabasco 0.17 Quanajuato 0.62 Campeche Olima 0.19 Nayant 0.17 Nayant 0.18 Hidalgo 0.19 Morelos 0.17 Quanajuato 0.62 Gampeche	0.73
Yucatian 0.23 Zacatecas 0.22 Jalisco 0.24 Baja Calfornia 0.19 Taxcalea 0.71 Hidalgo San Luis Potosi 0.21 Guanqiato 0.21 Distrito Federal 0.23 Guerrero 0.19 Veracruz 0.69 Veracruz Jacatecas 0.21 Hidalgo 0.19 Morelos 0.22 Jalisco 0.19 México 0.65 Morelos Nayarit 0.19 Campeche 0.19 Morelos 0.21 Hidalgo 0.18 Zacatecas 0.63 México Campeche 0.19 San Luis Potosi 0.18 Quardana 0.21 Hidalgo 0.17 Nayarit 0.63 México Campeche 0.19 Calmacel 0.18 Guanqianto 0.19 Tabasco 0.18 Guanqianto 0.19 Tabasco 0.18 Guanqianto 0.19 Tabasco 0.17 Durango 0.18 Durango 0.18 Alyant 0.17 Durango 0.18 Morelos </td <td>0.72</td>	0.72
San Luis Potosi 0.21 Guanajuato 0.21 Distrito Federal 0.23 Guerrero 0.19 Veracruz 0.69 Veracruz Zacateasa 0.21 Sinaloa 0.19 Baja Calfornia 0.22 Jalsco 0.19 Móxico 0.65 Morelos Hiddigo 0.21 Hidalgo 0.19 Morelos 0.21 Taxcata 0.18 Zacatecas 0.63 México Campeche 0.19 San Luis Potosi 0.18 Ourniana 0.21 Hidalgo 0.17 Nayarit 0.62 San Luis Potosi Alberos 0.19 Jalsco 0.18 Guanajuato 0.19 Tabasco 0.17 San Luis Potosi 0.62 San Luis Potosi Colima 0.19 Nayarit 0.16 Hidalgo 0.19 Morelos 0.17 San Luis Potosi 0.62 Guanajuato Colima 0.19 Nayarit 0.18 Unango 0.18 Durango 0.18 Durango 0.18 Durango 0.18	0.71
Zacatecas 0.21 Sinaba 0.19 Baja California 0.22 Jalisco 0.19 México 0.65 Morelos Nayant 0.19 Campeche 0.19 Morelos 0.21 Hidalgo 0.19 Auriena Roo 0.21 Tlaxcala 0.19 Acatecas 0.63 México Campeche 0.19 San Luis Potosi 0.18 Ouriana Roo 0.21 Tlaxcala 0.17 Nayant 0.63 Campeche Morelos 0.19 Jalisco 0.18 Guanajuato 0.19 Tabasco 0.17 San Luis Potosi 0.62 San Luis Potosi Tabasco 0.19 Nayant 0.17 Nayant 0.17 Campeche 0.61 Nayant Olima 0.18 Chihuahua 0.17 Tabasco 0.18 Nayant 0.18 Vucatán 0.17 Campeche 0.61 Nayant Jalisco 0.18 Morelos 0.17 Darago 0.18 Nayant 0.18 Vucatán	0.69
Hidalgo 0.21 Hidalgo 0.19 Morelos 0.22 Quirtana Roo 0.19 Morelos 0.65 Zacatecas Nayant 0.19 Campeche 0.19 Quirtana Roo 0.21 Hidalgo 0.18 Zacatecas 0.63 México Campeche 0.19 San Luis Potosi 0.18 Oaxaca 0.21 Hidalgo 0.17 Nayarit 0.63 Campeche Norelos 0.19 Jalisco 0.18 Guanajuato 0.19 Tabasco 0.17 Gamujuato 0.62 Gaunajuato 0.63 Gaunajuato 0.64 Gaunajuato 0.65 Gaunaju	0.68
Nayarit 0.19 Campeche 0.19 Quintana Roo 0.21 Tlaxcala 0.18 Zacatecas 0.63 México Campeche 0.19 San Luis Potosí 0.18 Oaxaca 0.21 Hidalgo 0.17 Nayarit 0.83 Campeche Morelos 0.19 Jalisco 0.18 Guanajuato 0.19 Tabasco 0.17 Guanajuato 0.62 San Luis Potosí Colima 0.19 Nayarit 0.19 Morelos 0.17 Campeche 0.61 Nayarit Glinda 0.18 Chituahua 0.17 Tabasco 0.18 Nayarit 0.16 Durango 0.17 Campeche 0.18 Nayarit 0.16 Durango 0.18 Nayarit 0.16 Durango 0.16 Durango 0.18 Nayarit 0.16 Durango 0.16 Durango 0.16 Durango 0.16 Durango 0.16 Durango 0.18 Nuevatán 0.16 San Luis Potosí 0.17 San Luis Potosí <td>0.66</td>	0.66
Campeche 0.19 San Luis Potosi 0.18 Oaxaca 0.21 Hidalgo 0.17 Nayarit 0.63 Campeche Morelos 0.19 Jalisco 0.18 Guanajuato 0.19 Tabasco 0.17 Guanajuato 0.62 San Luis Potosi Tabasco 0.19 Olorima 0.18 Hidalgo 0.19 Morelos 0.17 San Luis Potosi 0.62 Guanajuato Colima 0.19 Nayarit 0.19 Morelos 0.17 Campeche 0.61 Nayarit Sinaloa 0.18 Chinuahua 0.17 Tabasco 0.18 Nayarit 0.16 Vucatán 0.59 Querétaro Jalisco 0.18 Tabasco 0.17 Darango 0.18 Querétaro 0.16 Jalisco 0.57 Colima Querétaro 0.18 Morelos 0.16 Zacatecas 0.17 Guanajuato 0.15 Baja California 0.57 Colima Querétaro 0.18 Jalisco	0.63
Morelos 0.19 Jalisco 0.18 Guanajuato 0.19 Tabasco 0.17 Guanajuato 0.62 San Luis Potosi Tabasco 0.19 Colima 0.18 Hidalgo 0.19 Morelos 0.17 San Luis Potosi 0.62 Guanajuato Colima 0.19 Nayarit 0.17 Nayarit 0.18 Durago 0.17 Campeche 0.61 Nayarit Sinaloa 0.18 O.Thiuahua 0.17 Tabasco 0.18 Nayarit 0.16 Yucatán 0.59 Querétaro Jalisco 0.18 Morelos 0.17 Sonora 0.17 Colman 0.16 Durago 0.58 Yucatán Querétaro 0.18 Morelos 0.17 Sonora 0.17 Gounajuato 0.16 Durago 0.57 Colma Querétaro 0.18 Morelos 0.17 Sonora 0.17 Gounajuato 0.16 Durado Chihuahua 0.16 Sinaloa 0.17	0.61
Tabasco 0.19 Colima 0.18 Hidalgo 0.19 Morelos 0.17 San Luis Potosi 0.62 Guanquato Colima 0.19 Nayarit 0.17 Nayarit 0.18 Durango 0.17 Campeche 0.61 Nayarit Sinaloa 0.18 Chihuahua 0.17 Tabasco 0.18 Nayarit 0.16 Durango 0.59 Querétaro Jalisco 0.18 Morelos 0.17 Durango 0.18 Querétaro 0.16 Durango 0.58 Yucatán Querétaro 0.18 Morelos 0.17 Sonora 0.17 Coahuila 0.16 Querétaro 0.56 Baja California Durango 0.16 Tamaulipas 0.16 Sinaloa 0.17 Guanjuato 0.15 Baja California 0.55 Quiritana Chihuahua 0.16 Darangia 0.16 Sinaloa 0.17 Guanjuato 0.15 Quiritana 0.15 Quiritana 0.16 Ciantana	0.60
Colima 0.19 Nayarit 0.17 Nayarit 0.18 Durango 0.17 Campeche 0.61 Nayarit Sinaloa 0.18 Chihuahua 0.17 Tabasco 0.18 Nayarit 0.16 Yucatán 0.59 Querétaro Jalisco 0.18 Tabasco 0.17 Durango 0.18 Querétaro 0.16 Durango 0.58 Yucatán Quirlana Roo 0.18 Morelos 0.17 Sonora 0.17 Coahuila 0.16 Querétaro 0.57 Colima Querétaro 0.18 Querétaro 0.16 Zacatecas 0.17 Sinaloa 0.15 Quirlana Roo 0.56 Baja California Durango 0.16 Tamaulipas 0.16 Tamaulipas 0.16 Tamaulipas 0.16 Tamaulipas 0.16 México 0.15 Querétaro 0.16 Zacatecas 0.15 Jalisco 0.53 Jalisco Tamaulipas 0.16 Baja California Sur 0.16 Chihua	0.59
Sinaloa 0.18 Chihuahua 0.17 Tabasco 0.18 Nayarit 0.16 Yucatán 0.59 Querétaro Jalisco 0.18 Tabasco 0.17 Durango 0.18 Querétaro 0.16 Durango 0.58 Yucatán Querétaro 0.18 Morelos 0.17 Sonora 0.17 Coahuila 0.16 Querétaro 0.57 Colima Querétaro 0.18 Querétaro 0.16 Zacatecas 0.17 Guanajuato 0.15 Baja California 0.56 Baja California Durango 0.16 Tamaulipas 0.16 Sinaloa 0.17 Sinaloa 0.15 Jalisco 0.54 Durango Tlaxcala 0.16 Baja California 0.15 Yucatán 0.16 Tamaulipas 0.15 Sinaloa 0.53 Jalisco Tamaulipas 0.16 México 0.15 Querétaro 0.16 Chihuahua 0.15 Distrito Federal 0.52 Sinaloa Tamaul	0.58
Jalisco 0.18 Tabasco 0.17 Durango 0.18 Querétaro 0.16 Durango 0.58 Yucatán Quintana Roo 0.18 Morelos 0.17 Sonora 0.17 Coahuila 0.16 Querétaro 0.57 Colima Querétaro 0.18 Querétaro 0.16 Zacatecas 0.17 Guanajuato 0.15 Baja California 0.56 Baja California Durango 0.16 Tamaulipas 0.16 Sinaloa 0.17 Sinaloa 0.15 Jalisco 0.54 Durango Chihuahua 0.16 Durango 0.16 Tamaulipas 0.16 Tamaulipas 0.16 Tamaulipas 0.16 Tamaulipas 0.16 Tamaulipas 0.16 Distrito Federal 0.52 Sinaloa Tamaulipas 0.16 Quintana Roo 0.15 Querétaro 0.16 Chihuahua 0.15 Distrito Federal 0.52 Sinaloa Tamaulipas 0.16 Quintana Roo 0.15 Baja California	0.55
Quintana Roo 0.18 Morelos 0.17 Sonora 0.17 Coahuila 0.16 Querétaro 0.57 Colima Querétaro 0.18 Querétaro 0.16 Zacatecas 0.17 Guanajuato 0.15 Baja California 0.56 Baja California Durango 0.16 Tamaulipas 0.16 Sinaloa 0.17 Sinaloa 0.15 Quintana Roo 0.55 Quintana Roo Chihuahua 0.16 Durango 0.16 Tamaulipas 0.16 Tamaulipas 0.16 Tamaulipas 0.16 Sinaloa 0.15 Jalisco 0.53 Jalisco Baja California Sur 0.16 Baja California Sur 0.16 Chihuahua 0.15 Distrito Federal 0.52 Sinaloa Tamaulipas 0.16 Quintana Roo 0.15 Nuevo León 0.16 Sonora 0.14 Colima 0.51 Baja California Sur México 0.15 Baja California Sur 0.15 Baja California Sur 0.15 Baja California Sur	0.54
Querétaro 0.18 Querétaro 0.16 Zacatecas 0.17 Guanajuato 0.15 Baja California 0.56 Baja California Durango 0.16 Tamaulipas 0.16 Sinaloa 0.17 Sinaloa 0.15 Quintana Roo 0.55 Quintana Roo Chihuahua 0.16 Durango 0.16 Tamaulipas 0.16 Tamaulipas 0.16 Tamaulipas 0.15 Jalisco 0.54 Durango Tamaulipas 0.16 Baja California 0.15 Yucatán 0.16 Chihuahua 0.15 Distrito Federal 0.52 Sinaloa Tamaulipas 0.16 México 0.15 Nuevo León 0.16 Sonora 0.14 Colima 0.51 Baja California Sur México 0.15 Baja California Sur 0.15 Baja California Sur 0.16 Sonora 0.14 Chihuahua 0.51 Distrito Federal Aguascalientes 0.15 Aguascalientes 0.15 Nuevo León 0.14 Chihuahua <t< td=""><td>0.54</td></t<>	0.54
Durango 0.16 Tamaulipas 0.16 Sinaloa 0.17 Sinaloa 0.15 Quintana Roo 0.55 Quintana Roo Chihuahua 0.16 Durango 0.16 Tamaulipas 0.16 Tamaulipas 0.16 Tamaulipas 0.15 Jalisco 0.54 Durango Tlaxcala 0.16 Baja California 0.15 Yucatán 0.16 Zacatecas 0.15 Sinaloa 0.53 Jalisco Baja California Sur 0.16 México 0.15 Querétaro 0.16 Chihuahua 0.15 Distrito Federal 0.52 Sinaloa Tamaulipas 0.16 Quintana Roo 0.15 Nuevo León 0.16 Sonora 0.14 Colima 0.51 Baja California Sur México 0.15 Baja California Sur 0.15 Baja California Sur 0.15 Yucatán 0.14 Chihuahua 0.51 Distrito Federal Aguascalientes 0.15 Aguascalientes 0.15 Nuevo León 0.14 Aguascalientes <t< td=""><td>0.52</td></t<>	0.52
Chihuahua 0.16 Durango 0.16 Tamaulipas 0.16 Tamaulipas 0.16 Tamaulipas 0.16 Tamaulipas 0.16 Tamaulipas 0.15 Jalisco 0.54 Durango Baja California Sur 0.16 Baja California Sur 0.16 México 0.15 Querétaro 0.16 Chihuahua 0.15 Distrito Federal 0.52 Sinaloa Tamaulipas 0.16 Quintana Roo 0.15 Nuevo León 0.16 Sonora 0.14 Colima 0.51 Baja California Sur México 0.15 Baja California Sur 0.15 Baja California Sur 0.15 Yucatán 0.14 Colima 0.51 Distrito Federal Aguascalientes 0.15 Tlaxcala 0.15 Aguascalientes 0.15 Baja California Sur 0.14 Colima 0.14 Chihuahua 0.49 Tamaulipas Baja California 0.15 Aguascalientes 0.15 Nuevo León 0.14 Aguascalientes 0.14 Aguascalientes 0.14	0.52
Tlaxcala 0.16 Baja California 0.15 Yucatán 0.16 Zacatecas 0.15 Sinaloa 0.53 Jalisco Baja California Sur 0.16 México 0.15 Querétaro 0.16 Chihuahua 0.15 Distrito Federal 0.52 Sinaloa Tamaulipas 0.16 Quintana Roo 0.15 Nuevo León 0.16 Sonora 0.14 Colima 0.51 Baja California Sur México 0.15 Baja California Sur 0.15 Baja California Sur 0.14 Tamaulipas 0.51 Distrito Federal Aguascalientes 0.15 Tlaxcala 0.15 Aguascalientes 0.15 Baja California Sur 0.14 Chihuahua 0.49 Tamaulipas Sonora 0.15 Aguascalientes 0.15 Nuevo León 0.14 Aguascalientes 0.14 Chihuahua 0.49 Tamaulipas Sonora 0.14 Coahuila 0.13 Coahuila 0.14 Aguascalientes 0.13 Sonora 0.47 Aguascalie	0.52
Baja California Sur 0.16 México 0.15 Querétaro 0.16 Chihuahua 0.15 Distrito Federal 0.52 Sinaloa Tamaulipas 0.16 Quintana Roo 0.15 Nuevo León 0.16 Sonora 0.14 Colima 0.51 Baja California Sur México 0.15 Baja California Sur 0.15 Baja California Sur 0.15 Yucatán 0.14 Tamaulipas 0.51 Distrito Federal Aguascalientes 0.15 Tiaxcala 0.15 Aguascalientes 0.15 Baja California Sur 0.14 Chihuahua 0.49 Tamaulipas Baja California 0.15 Aguascalientes 0.15 Nuevo León 0.14 Aguascalientes 0.14 Chihuahua 0.19 Aguascalientes 0.14 Aguascalientes 0.14 Aguascalientes 0.14 Aguascalientes 0.14 Aguascalientes 0.13 Sonora 0.47 Aguascalientes Nuevo León 0.13 Sonora 0.12 San Luis Potosí 0.14 Aguascalientes<	0.51
Tamaulipas 0.16 Quintana Roo 0.15 Nuevo León 0.16 Sonora 0.14 Colima 0.51 Baja California Sur México 0.15 Baja California Sur 0.15 Baja California Sur 0.15 Yucatán 0.14 Tamaulipas 0.51 Distrito Federal Aguascalientes 0.15 Tiaxcala 0.15 Aguascalientes 0.15 Baja California Sur 0.14 Chihuahua 0.49 Tamaulipas Baja California 0.15 Aguascalientes 0.15 Nuevo León 0.14 Aguascalientes 0.48 Chihuahua Sonora 0.14 Coahuila 0.13 Coahuila 0.14 Colima 0.13 Sonora 0.47 Aguascalientes Nuevo León 0.13 Sonora 0.12 San Luis Potosí 0.14 Aguascalientes 0.13 Baja California Sur 0.44 Sonora Coahuila 0.13 Nuevo León 0.11 Chihuahua 0.14 Campeche 0.13 Nuevo León 0.37 Co	0.50
México 0.15 Baja California Sur 0.15 Baja California Sur 0.15 Yucatán 0.14 Tamaulipas 0.51 Distrito Federal Aguascalientes 0.15 Tlaxcala 0.15 Aguascalientes 0.15 Baja California Sur 0.14 Chihuahua 0.49 Tamaulipas Baja California 0.15 Aguascalientes 0.14 Colima 0.15 Nuevo León 0.14 Aguascalientes 0.48 Chihuahua Sonora 0.14 Coahuila 0.13 Coahuila 0.14 Colima 0.13 Sonora 0.47 Aguascalientes Vuevo León 0.13 Sonora 0.12 San Luis Potosí 0.14 Aguascalientes 0.13 Baja California Sur 0.44 Sonora Coahuila 0.13 Nuevo León 0.11 Chihuahua 0.14 Aguascalientes 0.13 Nuevo León 0.37 Coahuila Distrito Federal 0.09 Distrito Federal 0.12 San Luis Potosí 0.11 Coahuila 0.34	0.49
Aguascalientes 0.15 Tiaxcala 0.15 Aguascalientes 0.15 Baja California Sur 0.14 Chihuahua 0.49 Tamaulipas Baja California 0.15 Aguascalientes 0.14 Colima 0.15 Nuevo León 0.14 Aguascalientes 0.48 Chihuahua Sonora 0.14 Coahuila 0.13 Coahuila 0.14 Colima 0.13 Sonora 0.47 Aguascalientes Nuevo León 0.13 Sonora 0.12 San Luis Potosí 0.14 Aguascalientes 0.13 Baja California Sur 0.44 Sonora Coahuila 0.13 Nuevo León 0.11 Chihuahua 0.14 Aguascalientes 0.13 Baja California Sur 0.44 Sonora Coahuila 0.13 Nuevo León 0.11 Chihuahua 0.14 Aguascalientes 0.13 Nuevo León 0.37 Coahuila Distrito Federal 0.09 Distrito Federal 0.09 Campeche 0.12 San Luis Potosí 0.11 C	0.47
Baja California 0.15 Aguascalientes 0.14 Colima 0.15 Nuevo León 0.14 Aguascalientes 0.48 Chituahua Sonora 0.14 Coahuila 0.13 Coahuila 0.14 Colima 0.13 Sonora 0.47 Aguascalientes Nuevo León 0.13 Sonora 0.12 San Luis Potosí 0.14 Aguascalientes 0.13 Baja California Sur 0.44 Sonora Coahuila 0.13 Nuevo León 0.11 Chihuahua 0.14 Campeche 0.13 Nuevo León 0.37 Coahuila Distrito Federal 0.09 Distrito Federal 0.09 Campeche 0.12 San Luis Potosí 0.11 Coahuila 0.34 Nuevo León Promedio 0.19 Promedio 0.18 Promedio 0.19 Promedio 0.19 Promedio 0.19 Promedio 0.19 Promedio 0.17 Promedio 0.60 Promedio	0.46
Sonora 0.14 Coahuila 0.13 Coahuila 0.14 Colima 0.13 Sonora 0.47 Aguascalientes Nuevo León 0.13 Sonora 0.12 San Luis Potosí 0.14 Aguascalientes 0.13 Baja California Sur 0.44 Sonora Coahuila 0.13 Nuevo León 0.11 Chihuahua 0.14 Campeche 0.13 Nuevo León 0.37 Coahuila Distrito Federal 0.09 Distrito Federal 0.09 Campeche 0.12 San Luis Potosí 0.11 Coahuila 0.34 Nuevo León Promedio 0.19 Promedio 0.19 Promedio 0.19 Promedio 0.19 Promedio 0.19 Promedio 0.19 Promedio 0.17 Promedio 0.60 Promedio	0.46
Nuevo León 0.13 Sonora 0.12 San Luis Potosí 0.14 Aguascalientes 0.13 Baja California Sur 0.44 Sonora Coahuila 0.13 Nuevo León 0.11 Chihuahua 0.14 Campeche 0.13 Nuevo León 0.37 Coahuila Distrito Federal 0.09 Distrito Federal 0.09 Campeche 0.12 San Luis Potosí 0.11 Coahuila 0.34 Nuevo León Promedio 0.19 Promedio 0.18 Promedio 0.19 Promedio 0.17 Promedio 0.60 Promedio	0.43
Coahuila 0.13 Nuevo León 0.11 Chihuahua 0.14 Campeche 0.13 Nuevo León 0.37 Coahuila Distrito Federal 0.09 Distrito Federal 0.09 Campeche 0.12 San Luis Potosí 0.11 Coahuila 0.34 Nuevo León Promedio 0.19 Promedio 0.18 Promedio 0.19 Promedio 0.17 Promedio 0.60 Promedio	0.43
Distrito Federal 0.09 Distrito Federal 0.09 Campeche 0.12 San Luis Potosí 0.11 Coahuila 0.34 Nuevo León Promedio 0.19 Promedio 0.18 Promedio 0.19 Promedio 0.17 Promedio 0.60 Promedio	0.42
Promedio 0.19 Promedio 0.18 Promedio 0.19 Promedio 0.17 Promedio 0.60 Promedio	0.34
	0.33
Noticed 0.40 Noticed 0.40 Noticed 0.40 Noticed 0.40 Noticed 0.40 Noticed 0.40 Noticed	0.58
Nacional 0.19 Nacional 0.19 Nacional 0.22 Nacional 0.18 Nacional 0.61 Nacional	0.59

Entidad	C_Vivienda_12	Entidad	C_Vivienda_14	Entidad	C_Servicios_12	Entidad	C_Servicios_14	Entidad	C_Alim_12	Entidad	C_Alim_14
Guerrero	0.33	Guerrero	0.33	Guerrero	0.59	Oaxaca	0.61	Guerrero	0.39	Tabasco	0.45
Chiapas	0.29	Chiapas	0.27	Chiapas	0.57	Guerrero	0.58	Tabasco	0.33	Guerrero	0.38
Oaxaca	0.25	Oaxaca	0.25	Oaxaca	0.56	Chiapas	0.58	Michoacán	0.32	Oaxaca	0.36
Michoacán	0.21	Campeche	0.20	Tabasco	0.45	Tabasco	0.44	Oaxaca	0.32	Michoacán	0.35
Yucatán	0.21	Puebla	0.19	Yucatán	0.43	Yucatán	0.40	Morelos	0.31	Hidalgo	0.32
Quintana Roo	0.20	Quintana Roo	0.19	Veracruz	0.39	Veracruz	0.40	Puebla	0.30	Veracruz	0.30
Veracruz	0.20	Yucatán	0.17	Puebla	0.35	Campeche	0.39	Nayarit	0.29	Sinaloa	0.30
Tabasco	0.19	Veracruz	0.17	Campeche	0.33	Puebla	0.31	Guanajuato	0.29	Chiapas	0.28
Puebla	0.19	Baja California Sur	0.17	San Luis Potosí	0.33	San Luis Potosí	0.28	Tlaxcala	0.29	Morelos	0.27
Campeche	0.18	Michoacán	0.15	Michoacán	0.30	Hidalgo	0.27	Veracruz	0.28	Colima	0.26
Morelos	0.15	Morelos	0.13	Hidalgo	0.28	Michoacán	0.27	Sonora	0.26	Sonora	0.25
San Luis Potosí	0.14	Tabasco	0.13	Nayarit	0.20	Morelos	0.25	Sinaloa	0.26	Baja California Sur	0.25
Tlaxcala	0.13	San Luis Potosí	0.11	Morelos	0.19	Quintana Roo	0.18	Yucatán	0.25	Campeche	0.24
Hidalgo	0.13	Colima	0.11	Tlaxcala	0.16	Sinaloa	0.18	Hidalgo	0.25	Nayarit	0.24
Nayarit	0.12	Sinaloa	0.11	Sinaloa	0.16	Nayarit	0.15	Chiapas	0.25	Tlaxcala	0.24
Baja California Sur	0.11	Baja California	0.11	Guanajuato	0.15	Guanajuato	0.15	San Luis Potosí	0.25	Puebla	0.24
Querétaro	0.11	México	0.10	Querétaro	0.15	Querétaro	0.15	Colima	0.22	Quintana Roo	0.23
Tamaulipas	0.11	Sonora	0.10	Quintana Roo	0.15	Zacatecas	0.13	Zacatecas	0.22	Guanajuato	0.23
México	0.10	Nayarit	0.10	Durango	0.13	Durango	0.13	Baja California Sur	0.22	Coahuila	0.22
Sonora	0.10	Guanajuato	0.10	Sonora	0.13	Baja California Sur	0.12	Aguascalientes	0.22	San Luis Potosí	0.22
Sinaloa	0.10	Tlaxcala	0.09	México	0.12	México	0.12	Durango	0.21	Aguascalientes	0.22
Colima	0.10	Hidalgo	0.09	Zacatecas	0.11	Tlaxcala	0.12	Coahuila	0.21	México	0.21
Guanajuato	0.10	Querétaro	0.09	Tamaulipas	0.11	Baja California	0.12	Jalisco	0.21	Durango	0.20
Durango	0.09	Tamaulipas	0.08	Jalisco	0.09	Tamaulipas	0.12	Querétaro	0.20	Tamaulipas	0.20
Jalisco	0.09	Chihuahua	0.08	Colima	0.08	Colima	0.10	Tamaulipas	0.19	Chihuahua	0.19
Baja California	0.08	Jalisco	0.07	Baja California Sur	0.07	Sonora	0.09	Campeche	0.19	Yucatán	0.18
Nuevo León	0.07	Durango	0.06	Coahuila	0.06	Chihuahua	0.08	Quintana Roo	0.19	Baja California	0.17
Distrito Federal	0.06	Distrito Federal	0.05	Chihuahua	0.05	Jalisco	0.07	Chihuahua	0.18	Zacatecas	0.17
Coahuila	0.05	Coahuila	0.05	Baja California	0.04	Coahuila	0.06	México	0.18	Jalisco	0.17
Chihuahua	0.05	Zacatecas	0.05	Aguascalientes	0.03	Nuevo León	0.04	Nuevo León	0.18	Querétaro	0.16
Zacatecas	0.05	Nuevo León	0.05	Nuevo León	0.03	Aguascalientes	0.04	Baja California	0.15	Nuevo León	0.14
Aguascalientes	0.05	Aguascalientes	0.03	Distrito Federal	0.03	Distrito Federal	0.02	Distrito Federal	0.13	Distrito Federal	0.12
Promedio	0.14	Promedio	0.12	Promedio	0.21	Promedio	0.22	Promedio	0.24	Promedio	0.24
Nacional	0.14	Nacional	0.12	Nacional	0.21	Nacional	0.21	Nacional	0.23	Nacional	0.23

Entidad	C_Ing_12	Entidad	C_Ing_14	Entidad	Gini_12	Entidad	Gini_14	Entidad	Desempleo_12	Entidad	Desempleo_14
Chiapas	0.77	Chiapas	0.79	Chiapas	0.535	Puebla	0.572	Tamaulipas	0.065	Distrito Federal	0.066
Guerrero	0.72	Puebla	0.70	Campeche	0.533	Chiapas	0.517	Chihuahua	0.065	Tabasco	0.065
Puebla	0.69	Oaxaca	0.69	Guerrero	0.533	Oaxaca	0.513	Aguascalientes	0.064	Aguascalientes	0.060
Tlaxcala	0.64	Guerrero	0.68	Zacatecas	0.526	Yucatán	0.511	Distrito Federal	0.062	México	0.059
Oaxaca	0.64	Tlaxcala	0.67	Tabasco	0.516	Distrito Federal	0.507	Baja California	0.062	Durango	0.058
Durango	0.61	Michoacán	0.63	Oaxaca	0.511	Zacatecas	0.507	Guanajuato	0.061	Querétaro	0.058
Zacatecas	0.61	Veracruz	0.63	Querétaro	0.503	Hidalgo	0.504	Sonora	0.060	Baja California Sur	0.058
Michoacán	0.58	Zacatecas	0.60	Chihuahua	0.500	Coahuila	0.503	Tabasco	0.060	Nayarit	0.056
San Luis Potosí	0.57	Hidalgo	0.60	Durango	0.499	Campeche	0.500	México	0.060	Baja California	0.056
Veracruz	0.57	México	0.59	Nayarit	0.498	Quintana Roo	0.494	Tlaxcala	0.059	Sonora	0.055
Hidalgo	0.56	Morelos	0.59	Veracruz	0.493	Veracruz	0.490	Durango	0.059	Tlaxcala	0.054
Yucatán	0.55	San Luis Potosí	0.57	Baja California Sur	0.493	Guerrero	0.489	Nuevo León	0.058	Coahuila	0.054
Nayarit	0.54	Guanajuato	0.55	San Luis Potosí	0.492	Querétaro	0.488	Nayarit	0.055	Tamaulipas	0.053
México	0.53	Durango	0.54	Puebla	0.485	Aguascalientes	0.486	Coahuila	0.055	Nuevo León	0.052
Tabasco	0.53	Yucatán	0.53	Nuevo León	0.485	Sinaloa	0.486	Zacatecas	0.055	Jalisco	0.052
Campeche	0.50	Tabasco	0.52	Hidalgo	0.480	Tamaulipas	0.478	Baja California Sur	0.053	Sinaloa	0.052
Morelos	0.50	Tamaulipas	0.49	Aguascalientes	0.479	San Luis Potosí	0.477	Querétaro	0.050	Quintana Roo	0.049
Guanajuato	0.49	Campeche	0.48	Quintana Roo	0.477	Sonora	0.476	Hidalgo	0.050	Guanajuato	0.048
Aguascalientes	0.48	Nayarit	0.47	Sonora	0.477	Nayarit	0.471	Jalisco	0.048	Zacatecas	0.048
Jalisco	0.48	Chihuahua	0.46	Jalisco	0.473	Jalisco	0.468	Sinaloa	0.047	Colima	0.047
Tamaulipas	0.47	Sinaloa	0.46	Michoacán	0.472	Morelos	0.467	Colima	0.044	Hidalgo	0.043
Chihuahua	0.46	Aguascalientes	0.44	México	0.470	México	0.461	Quintana Roo	0.042	Chihuahua	0.042
Quintana Roo	0.45	Jalisco	0.43	Sinaloa	0.466	Chihuahua	0.458	Puebla	0.040	Morelos	0.040
Querétaro	0.43	Quintana Roo	0.42	Tamaulipas	0.466	Colima	0.457	Michoacán	0.037	Puebla	0.039
Sinaloa	0.43	Querétaro	0.42	Baja California	0.465	Tabasco	0.456	Morelos	0.035	Veracruz	0.036
Colima	0.41	Coahuila	0.41	Coahuila	0.464	Baja California Sur	0.454	Veracruz	0.033	Michoacán	0.035
Coahuila	0.41	Colima	0.41	Guanajuato	0.463	Nuevo León	0.453	San Luis Potosí	0.032	Chiapas	0.032
Baja California	0.39	Sonora	0.37	Yucatán	0.461	Michoacán	0.452	Yucatán	0.028	San Luis Potosí	0.031
Baja California Sur	0.38	Baja California Sur	0.36	Distrito Federal	0.457	Guanajuato	0.449	Oaxaca	0.027	Oaxaca	0.029
Distrito Federal	0.35	Distrito Federal	0.36	Colima	0.445	Durango	0.446	Chiapas	0.023	Campeche	0.028
Sonora	0.34	Baja California	0.35	Morelos	0.433	Baja California	0.434	Guerrero	0.022	Yucatán	0.027
Nuevo León	0.32	Nuevo León	0.30	Tlaxcala	0.420	Tlaxcala	0.411	Campeche	0.021	Guerrero	0.020
Promedio	0.51	Promedio	0.52	Promedio	0.483	Promedio	0.479	Promedio	0.048	Promedio	0.047
Nacional	0.52	Nacional	0.53	Nacional	0.498	Nacional	0.503	Nacional	0.049	Nacional	0.048

Entidad	Pobreza_12	Entidad	Pobreza_14	Entidad	No denun_12	Entidad	No denun_14	Entidad	Sinaveri_12	Entidad	Sinaveri_1
Chiapas	0.75	Chiapas	0.76	Guerrero	0.92	Guerrero	0.94	Guerrero	0.96	Hidalgo	0.87
Guerrero	0.70	Oaxaca	0.67	San Luis Potosí	0.90	San Luis Potosí	0.93	Guanajuato	0.94	Sonora	0.88
Puebla	0.64	Guerrero	0.65	Nuevo León	0.90	México	0.91	Michoacán	0.94	Baja California Sur	0.88
Oaxaca	0.62	Puebla	0.65	Guanajuato	0.90	Jalisco	0.91	Jalisco	0.94	Campeche	0.89
Tlaxcala	0.58	Michoacán	0.59	Distrito Federal	0.90	Guanajuato	0.91	México	0.93	Coahuila	0.90
Michoacán	0.54	Tlaxcala	0.59	México	0.88	Yucatán	0.90	Aguascalientes	0.93	Querétaro	0.90
Zacatecas	0.54	Veracruz	0.58	Morelos	0.88	Zacatecas	0.90	Nuevo León	0.93	Colima	0.90
Hidalgo	0.53	Hidalgo	0.54	Oaxaca	0.88	Nayarit	0.89	Hidalgo	0.93	Baja California	0.90
/eracruz	0.53	Zacatecas	0.52	Michoacán	0.88	Oaxaca	0.89	San Luis Potosí	0.93	Tabasco	0.91
San Luis Potosí	0.51	Morelos	0.52	Hidalgo	0.88	Distrito Federal	0.89	Sinaloa	0.93	Chihuahua	0.91
Durango	0.50	México	0.50	Jalisco	0.87	Morelos	0.89	Morelos	0.93	Quintana Roo	0.91
Tabasco	0.50	Tabasco	0.50	Puebla	0.87	Aguascalientes	0.89	Puebla	0.92	Distrito Federal	0.92
/ucatán	0.49	San Luis Potosí	0.49	Tamaulipas	0.87	Durango	0.89	Oaxaca	0.92	Veracruz	0.92
Vayarit	0.48	Guanajuato	0.47	Sinaloa	0.87	Chiapas	0.89	Tamaulipas	0.92	Tamaulipas	0.92
Morelos	0.45	Yucatán	0.46	Aguascalientes	0.85	Michoacán	0.89	Distrito Federal	0.92	Tlaxcala	0.92
∕léxico	0.45	Campeche	0.44	Tlaxcala	0.85	Tamaulipas	0.89	Veracruz	0.92	Sinaloa	0.92
Campeche	0.45	Durango	0.43	Querétaro	0.85	Nuevo León	0.88	Sonora	0.92	Morelos	0.93
Guanajuato	0.44	Nayarit	0.41	Coahuila	0.84	Sinaloa	0.88	Coahuila	0.91	Aguascalientes	0.93
Jalisco	0.40	Sinaloa	0.39	Quintana Roo	0.84	Puebla	0.88	Quintana Roo	0.91	Nuevo León	0.93
Quintana Roo	0.39	Tamaulipas	0.38	Zacatecas	0.84	Tabasco	0.88	Tlaxcala	0.91	Nayarit	0.93
amaulipas	0.38	Quintana Roo	0.36	Nayarit	0.84	Quintana Roo	0.87	Chiapas	0.90	Chiapas	0.93
Aguascalientes	0.38	Jalisco	0.35	Durango	0.84	Chihuahua	0.87	Nayarit	0.90	Puebla	0.93
Querétaro	0.37	Aguascalientes	0.35	Veracruz	0.84	Veracruz	0.86	Durango	0.90	Oaxaca	0.93
Sinaloa	0.36	Chihuahua	0.34	Chiapas	0.84	Tlaxcala	0.86	Zacatecas	0.89	Guanajuato	0.93
Chihuahua	0.35	Colima	0.34	Tabasco	0.82	Baja California	0.85	Yucatán	0.89	Michoacán	0.94
Colima	0.34	Querétaro	0.34	Sonora	0.82	Colima	0.85	Querétaro	0.89	México	0.94
Baja California	0.30	Baja California Sur	0.30	Yucatán	0.82	Querétaro	0.84	Tabasco	0.88	Durango	0.94
Baja California Sur	0.30	Coahuila	0.30	Chihuahua	0.82	Campeche	0.84	Chihuahua	0.85	Yucatán	0.95
Sonora	0.29	Sonora	0.29	Campeche	0.80	Baja California Sur	0.84	Campeche	0.85	Zacatecas	0.95
Distrito Federal	0.29	Baja California	0.29	Baja California Sur	0.79	Sonora	0.83	Baja California	0.85	Jalisco	0.95
Coahuila	0.28	Distrito Federal	0.28	Baja California	0.78	Hidalgo	0.83	Baja California Sur	0.85	Guerrero	0.96
Nuevo León	0.23	Nuevo León	0.20	Colima	0.77	Coahuila	0.83	Colima	0.84	San Luis Potosí	0.96
Promedio	0.45	Promedio	0.45	Promedio	0.85	Promedio	0.88	Promedio	0.91	Promedio	0.92
Nacional	0.46	Nacional	0.46	Nacional	0.87	Nacional	0.89	Nacional	0.92	Nacional	0.93

Entidad	GPE_12	Entidad	GPE_14	Entidad	DESERCION_12	Entidad	DESERCION_14	Entidad	Analf_12	Entidad	Analf_14
Distrito Federal	10.71	Distrito Federal	10.90	Distrito Federal	0.20	Morelos	0.20	Chiapas	0.16	Oaxaca	0.16
Nuevo León	9.95	Nuevo León	10.10	Chihuahua	0.20	Baja California	0.19	Oaxaca	0.16	Chiapas	0.14
Coahuila	9.64	Baja California Sur	9.80	Nuevo León	0.19	Coahuila	0.19	Guerrero	0.15	Guerrero	0.13
Sonora	9.63	Coahuila	9.80	Morelos	0.19	Durango	0.19	Veracruz	0.11	Veracruz	0.10
Baja California Sur	9.58	Sonora	9.80	Coahuila	0.18	Nuevo León	0.18	Hidalgo	0.09	Michoacán	0.08
Aguascalientes	9.44	Aguascalientes	9.70	Yucatán	0.18	Chiapas	0.17	México	0.09	Puebla	0.08
Baja California	9.43	Baja California	9.60	Guanajuato	0.17	Chihuahua	0.17	Puebla	0.09	Yucatán	0.08
Quintana Roo	9.36	Quintana Roo	9.60	Durango	0.17	Hidalgo	0.17	Yucatán	0.09	Hidalgo	0.08
Sinaloa	9.31	Sinaloa	9.50	México	0.16	México	0.15	Campeche	0.07	Tabasco	0.07
Tamaulipas	9.29	Tamaulipas	9.50	Campeche	0.15	Guerrero	0.15	Guanajuato	0.07	Guanajuato	0.06
México	9.26	Colima	9.40	Aguascalientes	0.15	Sonora	0.15	San Luis Potosí	0.07	Campeche	0.06
Colima	9.16	México	9.40	Colima	0.15	Guanajuato	0.15	Michoacán	0.06	San Luis Potosí	0.06
Querétaro	9.16	Querétaro	9.40	Tlaxcala	0.15	Campeche	0.15	Querétaro	0.06	Morelos	0.05
Morelos	9.09	Morelos	9.30	Hidalgo	0.14	Oaxaca	0.14	Tabasco	0.06	Querétaro	0.05
Chihuahua	9.03	Chihuahua	9.20	Baja California	0.14	Querétaro	0.13	Colima	0.05	Nayarit	0.05
Jalisco	8.99	Jalisco	9.20	Guerrero	0.14	Tlaxcala	0.13	Nayarit	0.05	Sinaloa	0.04
Tlaxcala	8.98	Tlaxcala	9.20	Querétaro	0.14	Yucatán	0.13	Tlaxcala	0.05	Zacatecas	0.04
Tabasco	8.88	Campeche	9.10	Zacatecas	0.14	Tamaulipas	0.13	Zacatecas	0.05	Colima	0.04
Nayarit	8.84	Nayarit	9.10	Oaxaca	0.14	Michoacán	0.13	Jalisco	0.04	Tlaxcala	0.04
Durango	8.80	Tabasco	9.10	San Luis Potosí	0.14	Tabasco	0.13	Morelos	0.04	México	0.04
Campeche	8.79	Durango	9.00	Quintana Roo	0.14	Distrito Federal	0.12	Quintana Roo	0.04	Quintana Roo	0.03
San Luis Potosí	8.47	San Luis Potosí	8.70	Sinaloa	0.13	Aguascalientes	0.12	Sinaloa	0.04	Jalisco	0.03
Yucatán	8.46	Yucatán	8.70	Jalisco	0.13	Baja California Sur	0.11	Aguascalientes	0.03	Tamaulipas	0.03
Hidalgo	8.35	Hidalgo	8.60	Chiapas	0.13	Zacatecas	0.11	Baja California Sur	0.03	Chihuahua	0.03
Zacatecas	8.18	Zacatecas	8.50	Tamaulipas	0.13	San Luis Potosí	0.11	Chihuahua	0.03	Baja California Sur	0.03
Puebla	8.17	Puebla	8.40	Sonora	0.12	Puebla	0.10	Durango	0.03	Durango	0.03
Guanajuato	7.96	Guanajuato	8.20	Michoacán	0.12	Colima	0.10	Tamaulipas	0.03	Aguascalientes	0.03
Veracruz	7.87	Veracruz	8.10	Tabasco	0.12	Quintana Roo	0.08	Baja California	0.02	Baja California	0.02
Michoacán	7.61	Michoacán	7.80	Veracruz	0.12	Veracruz	0.08	Coahuila	0.02	Sonora	0.02
Guerrero	7.46	Guerrero	7.70	Baja California Sur	0.11	Sinaloa	0.07	Distrito Federal	0.02	Coahuila	0.02
Oaxaca	7.15	Oaxaca	7.40	Puebla	0.11	Nayarit	0.06	Nuevo León	0.02	Nuevo León	0.02
Chiapas	6.90	Chiapas	7.10	Nayarit	0.10	Jalisco	0.03	Sonora	0.02	Distrito Federal	0.02
Promedio	8.81	Promedio	9.03	Promedio	0.15	Promedio	0.13	Promedio	0.06	Promedio	0.05
Nacional	8.90	Nacional		Nacional	0.14	Nacional	0.13	Nacional	0.06	Nacional	0.06

Entidad	PIBP_12	Entidad	PIBP_14	Entidad	POL_12	Entidad	POL_14	Entidad	Sincastigo_13	Entidad	PreCorr_13
Campeche	890,697.29	Campeche	773,644.84	Distrito Federal	10.74	Distrito Federal	9.48	Distrito Federal	0.94	San Luis Potosí	0.18
Distrito Federal	277,591.12	Distrito Federal	303,610.68	Quintana Roo	4.83	México	4.41	México	0.91	Distrito Federal	0.18
Tabasco	226,918.97	Nuevo León	237,151.27	México	4.46	Baja California Sur	3.76	Morelos	0.87	México	0.16
Nuevo León	221,635.58	Tabasco	217,291.05	Baja California Sur	4.20	Quintana Roo	3.66	Puebla	0.86	Chihuahua	0.15
Coahuila	179,459.70	Coahuila	189,657.57	Tabasco	4.11	Tabasco	3.49	Veracruz	0.86	Quintana Roo	0.14
Baja California Sur	160,718.38	Querétaro	179,310.93	Colima	3.74	Guerrero	3.27	Tabasco	0.85	Tabasco	0.14
Querétaro	159,945.93	Quintana Roo	172,394.23	Chihuahua	3.45	Colima	3.15	Hidalgo	0.84	Jalisco	0.13
Sonora	157,895.22	Sonora	164,093.64	Nayarit	3.31	Morelos	2.88	Quintana Roo	0.83	Tlaxcala	0.13
Quintana Roo	156,920.82	Baja California Sur	162,037.73	Morelos	3.26	Nayarit	2.81	Oaxaca	0.83	Michoacán	0.12
Aguascalientes	132,299.42	Aguascalientes	155,846.34	San Luis Potosí	3.20	Yucatán	2.78	Guanajuato	0.82	Oaxaca	0.12
Tamaulipas	131,099.05	Tamaulipas	141,523.42	Yucatán	3.20	San Luis Potosí	2.76	Jalisco	0.82	Baja California	0.12
Baja California	128,668.83	Colima	137,992.28	Oaxaca	3.07	Sinaloa	2.55	Michoacán	0.81	Zacatecas	0.11
Colima	127,011.60	Jalisco	136,051.50	Baja California	2.99	Hidalgo	2.52	Guerrero	0.81	Puebla	0.11
Jalisco	123,841.34	Baja California	132,536.96	Hidalgo	2.95	Chiapas	2.49	Tlaxcala	0.81	Sinaloa	0.10
Zacatecas	118,019.84	Chihuahua	126,188.35	Guerrero	2.91	Oaxaca	2.44	San Luis Potosí	0.81	Yucatán	0.10
Chihuahua	115,932.24	Yucatán	118,413.33	Sinaloa	2.85	Baja California	2.36	Zacatecas	0.80	Guanajuato	0.09
San Luis Potosí	110,383.82	Guanajuato	118,242.16	Sonora	2.85	Nuevo León	2.36	Baja California	0.80	Veracruz	0.09
Yucatán	108,156.14	Sinaloa	115,320.26	Tlaxcala	2.81	Jalisco	2.33	Aguascalientes	0.79	Campeche	0.08
Sinaloa	107,767.36	San Luis Potosí	114,671.62	Campeche	2.79	Campeche	2.18	Chihuahua	0.79	Chiapas	0.08
Durango	107,646.69	Durango	114,454.07	Veracruz	2.69	Aguascalientes	2.14	Campeche	0.78	Hidalgo	0.08
Veracruz	103,737.51	Zacatecas	106,757.79	Jalisco	2.67	Querétaro	2.13	Sonora	0.77	Coahuila	0.08
Guanajuato	103,428.43	Veracruz	104,017.30	Zacatecas	2.56	Tlaxcala	2.09	Coahuila	0.76	Nayarit	0.08
Morelos	96,069.74	Morelos	99,524.99	Chiapas	2.51	Veracruz	2.07	Durango	0.76	Morelos	0.08
Hidalgo	91,333.49	Hidalgo	97,363.71	Nuevo León	2.50	Michoacán	1.95	Nuevo León	0.76	Durango	0.07
México	86,421.16	México	91,231.57	Durango	2.46	Puebla	1.85	Tamaulipas	0.75	Querétaro	0.07
Nayarit	83,905.11	Nayarit	90,807.41	Aguascalientes	2.44	Guanajuato	1.78	Sinaloa	0.74	Baja California Sur	0.07
Puebla	81,819.69	Michoacán	86,778.06	Puebla	2.44	Chihuahua	1.68	Baja California Sur	0.74	Nuevo León	0.06
Michoacán	77,666.06	Puebla	84,038.52	Coahuila	2.41	Coahuila	1.63	Querétaro	0.74	Aguascalientes	0.06
Tlaxcala	68,747.72	Tlaxcala	72,421.82	Michoacán	2.40	Zacatecas	1.60	Chiapas	0.73	Colima	0.06
Oaxaca	62,660.77	Guerrero	69,384.88	Guanajuato	2.15	Sonora	1.57	Nayarit	0.72	Tamaulipas	0.06
Guerrero	62,435.37	Oaxaca	65,865.38	Tamaulipas	2.09	Durango	1.42	Colima	0.71	Guerrero	0.06
Chiapas	54,194.10	Chiapas	56,138.81	Querétaro	2.03	Tamaulipas	0.98	Yucatán	0.69	Sonora	0.05
Promedio	147,344.64	Promedio	151,086.33	Promedio	3.22	Promedio	2.64	Promedio	0.80	Promedio	0.10
Nacional	129,145.78	Nacional	136,213.93	Nacional	3.61	Nacional	3.07	Nacional	0.83	Nacional	0.12

Entidad Chihuahua Morelos Puebla Quintana Roo Baja California Jalisco San Luis Potosi Guerrero Distrito Federal Guanajuato Oavaca Zacatecas México Coahuila Tlaxcala Michoacán Tabasco Sinaloa Yucatán Nayarit Campeche Veracruz Hidalgo Querétaro Chiapas Tamaulipas Colma Durango Baja California Sur Sonora Nuevo León Aguascalientes	
Morelos Puebla Quintana Roo Baja California Jalisco San Luis Potosi Guerrero Distrito Federal Guanajuato Oaxaca Zacatecas México Coahuila Tlaxcala Michoacán Tabasco Sinaloa Yucatán Nayarit Campeche Veracruz Hidalgo Querétaro Chiapas Tamaulipas Colima Durango Baja California Sur Sonora Nuevo León	InciCorr_13
Puebla Quintana Roo Baja California Jalisco San Luis Potosi Guerrero Distrito Federal Guanajuato Oaxaca Zacatecas México Coahuala Michoacán Tabasco Sinaloa Yucatán Nayarit Campeche Veracruz Hidalgo Querétaro Chiapas Tamaulipas Colima Durango Baja California Sur Sonora Nuevo León	0.44
Quintana Roo Baja California Jalisco San Luis Potosi Guerrero Distrito Federal Guanajuato Oaxaca Zacatecas México Coahuila Tlaxcala Michoacán Tabasco Sinaloa Yucatán Nayarit Campeche Veracruz Hidalgo Querétaro Chiapas Tamaulipas Colima Durango Baja California Sur Sonora Naviro Sanorai	0.42
Baja California Jalisco San Luis Potosi Guerrero Distrito Federal Guanajuato Oaxaca Zacatecas México Coahuila Tlaxcala Michoacán Tabasco Sinaloa Yucatán Nayarit Campeche Veracruz Hidalgo Querétaro Chiapas Tamaulipas Colima Durango Baja California Sur Sonora Nevo León	0.40
Jalisco San Luis Potosi Guerrero Distrito Federal Guanajuato Oaxaca Zacatecas México Coahuila Tlaxcala Michoacán Tabasco Sinaloa Yucatán Nayarit Campeche Veracruz Hidalgo Querétaro Chiapas Tamaulipas Colima Durango Baja California Sur Sonora Nuevo León	0.37
San Luis Potosi Guerrero Distrito Federal Guanajuato Oaxaca Zacatecas México Coahuila Tlaxcala Michoacán Tabasco Sinaloa Yucatán Nayarit Campeche Veracruz Hidalgo Querétaro Chiapas Tamaulipas Colima Durango Baja California Sur Sonora Nuevo León	0.36
Guerrero Distrito Federal Guanajuato Oaxaca Zacatecas México Coahuila Tlaxcala Michoacán Tabasco Sinaloa Yucatia Nayarit Campeche Veracruz Hidalgo Querétaro Chiapas Tamaulipas Colima Durango Baja California Sur Sonora Nuero	0.32
Distrito Federal Guanajuato Oaxaca Zacatecas México Coahuila Tlaxcala Michoacán Tabasco Sinaloa Yucatán Nayarit Campeche Veracruz Hidalgo Querétaro Chiapas Tamaulipas Colima Durango Baja California Sur Sonora Nuevo León	0.32
Guanajuato Oaxaca Zacatecas México Coahuila Tlaxcala Michoacán Tabasco Sinaloa Yucatán Nayarit Campeche Veracruz Hidalgo Querétaro Chiapas Tamaulipas Colima Durango Baja California Sur Sonora Nuevo León	0.31
Oaxaca Zacatecas México Coahuila Tlaxcala Michoacán Tabasco Sinaloa Yucatán Nayant Campeche Veracruz Hidalgo Querétaro Chiapas Tamaulipas Colima Durango Baja California Sur Sonora Nuevo León	0.31
Zacatecas México Coahuila Tlaxcala Michoacán Tabasco Sinaloa Yucatán Nayarit Campeche Veracruz Hidalgo Querétaro Chiapas Tamaulipas Colima Durango Baja California Sur Sonora Nuevo León	0.28
México Coahuila Tlaxcala Michoacán Tabasco Sinaloa Yucatán Nayant Campeche Veracruz Hidalgo Querétaro Chiapas Tamaulipas Colima Durango Baja California Sur Sonora Nuevo León	0.27
Coahuila Tlaxcala Michoacán Tabasco Sinaloa Yucatán Nayarit Campeche Veracruz Hidalgo Querétaro Chiapas Tamaulipas Colima Durango Baja California Sur Sonora Nuevo León	0.27
Tlaxcala Michoacán Tabasco Sinaloa Yucatán Nayarit Campeche Veracruz Hidalgo Querétaro Chiapas Tamaulipas Colima Durango Baja California Sur Sonora Nuevo León	0.25
Michoacán Tabasco Sinaloa Yucatán Nayarit Campeche Veracruz Hidalgo Querétaro Chiapas Tamaulipas Colima Durango Baja California Sur Sonora Nuevo León	0.22
Tabasco Sinaloa Yucatán Nayarit Campeche Veracruz Hidalgo Querétaro Chiapas Tamaulipas Colima Durango Baja California Sur Sonora Nuevo León	0.22
Sinaloa Yucatán Nayarit Campeche Veracruz Hidalgo Querétaro Chiapas Tamaulipas Colma Durango Baja California Sur Sonora Nuevo León	0.21
Yucatán Nayarit Campeche Veracruz Hidalgo Querétaro Chiapas Tamaulipas Colima Durango Baja California Sur Sonora Nuevo León	0.20
Nayarit Campeche Veracruz Hidalgo Querétaro Chiapas Tamaulipas Colima Durango Baja California Sur Sonora Nuevo León	0.20
Campeche Veracruz Hidalgo Querétaro Chiapas Tamaulipas Colima Durango Baja California Sur Sonora Nuevo León	0.19
Veracruz Hidalgo Querétaro Chiapas Tamaulipas Colima Durango Baja California Sur Sonora Nuevo León	0.17
Hidalgo Querétaro Chiapas Tamaulipas Colima Durango Baja California Sur Sonora Nuevo León	0.15
Querétaro Chiapas Tamaulipas Colima Durango Baja California Sur Sonora Nuevo León	0.15
Chiapas Tamaulipas Colima Durango Baja California Sur Sonora Nuevo León	0.13
Tamaulipas Colima Durango Baja California Sur Sonora Nuevo León	0.13
Colima Durango Baja California Sur Sonora Nuevo León	0.11
Durango Baja California Sur Sonora Nuevo León	0.11
Baja California Sur Sonora Nuevo León	0.11
Sonora Nuevo León	0.10
Nuevo León	0.09
	0.09
Aguascalientes	0.09
	0.08
Promedio	0.22
Nacional	0.25

b) El resto de las variables, salvo el grdado promedio de escolaridad, el PIB percápita y los policías, se refieren a porcentajes.

c) El grado promedio de escolaridad está dado en años , el PIB percápita en pesos y el número de policías es por cada mil habitantes.

ANEXO III

Cuadro 50

CONGLOMERADOS DE PERTENENCIA, 2012

001010111110000111111111111111111111111												
Vinculación inte	Vinculación inter-grupos		Agrupación de medianas		Vecino más próximo		Agrupación de cetroides		Vinculación intra-grupos		Método Ward	
Entidad	3 conglomerados	Entidad	3 conglomerados	Entidad	2 conglomerados	Entidad	2 conglomerados	Entidad	2 conglomerados	Entidad	3 conglomerados	
Veracruz	1	Veracruz	1	Veracruz	1	Veracruz	1	Veracruz	1	Veracruz	1	
Jalisco	1	Jalisco	1	Jalisco	1	Jalisco	1	Puebla	1	Michoacán	1	
Michoacán	1	Michoacán	1	Michoacán	1	Michoacán	1	Hidalgo	1	Oaxaca	1	
Sinaloa	1	Sinaloa	1	Sinaloa	1	Sinaloa	1	San Luis Potosí	1	Chihuahua	1	
Sonora	1	Sonora	1	Sonora	1	Sonora	1	Michoacán	1	Durango	1	
Quintana Roo	1	Quintana Roo	1	Quintana Roo	1	Quintana Roo	1	Oaxaca	1	Puebla	1	
Oaxaca	1	Oaxaca	1	Oaxaca	1	Oaxaca	1	Querétaro	1	Hidalgo	1	
Chihuahua	1	Chihuahua	1	Chihuahua	1	Chihuahua	1	Aguascalientes	1	San Luis Potosí	1	
Durango	1	Durango	1	Durango	1	Durango	1	Zacatecas	1	Zacatecas	1	
Querétaro	1	Querétaro	1	Querétaro	1	Querétaro	1	Coahuila	1	Nayarit	1	
Puebla	1	Puebla	1	Puebla	1	Puebla	1	Nayarit	1	Tabasco	1	
Hidalgo	1	Hidalgo	1	Hidalgo	1	Hidalgo	1	Tabasco	1	México	1	
Aguascalientes	1	Aguascalientes	1	Aguascalientes	1	Aguascalientes	1	Jalisco	1	Guerrero	1	
San Luis Potosí	1	San Luis Potosí	1	San Luis Potosí	1	San Luis Potosí	1	Guanajuato	1	Tamaulipas	1	
Zacatecas	1	Zacatecas	1	Zacatecas	1	Zacatecas	1	Baja California	1	Jalisco	2	
Coahuila	1	Coahuila	1	Coahuila	1	Coahuila	1	Baja California Sur	1	Sinaloa	2	
Nayarit	1	Nayarit	1	Chiapas	1	Chiapas	1	Morelos	1	Sonora	2	
Tabasco	1	Tabasco	1	Nayarit	1	Nayarit	1	México	1	Querétaro	2	
Guanajuato	1	Guanajuato	1	Tabasco	1	Tabasco	1	Colima	1	Aguascalientes	2	
Baja California	1	Baja California	1	Guanajuato	1	Guanajuato	1	Nuevo León	1	Coahuila	2	
Baja California Sur	1	Baja California Sur	1	Baja California	1	Baja California	1	Tlaxcala	1	Guanajuato	2	
Morelos	1	Morelos	1	Baja California Sur	1	Baja California Sur	1	Yucatán	1	Nuevo León	2	
México	1	México	1	Morelos	1	Morelos	1	Distrito Federal	1	Tlaxcala	2	
Tamaulipas	1	Guerrero	1	México	1	México	1	Sinaloa	1	Yucatán	2	
Colima	1	Tamaulipas	1	Guerrero	1	Guerrero	1	Sonora	1	Quintana Roo	2	
Nuevo León	1	Colima	1	Tamaulipas	1	Tamaulipas	1	Quintana Roo	1	Baja California	2	
Tlaxcala	1	Nuevo León	1	Colima	1	Colima	1	Chihuahua	1	Baja California Sur	2	
Yucatán	1	Tlaxcala	1	Nuevo León	1	Nuevo León	1	Durango	1	Morelos	2	
Guerrero	1	Yucatán	1	Tlaxcala	1	Tlaxcala	1	Chiapas		Colima	2	
Campeche	2	Chiapas	2	Yucatán	1	Yucatán	1	Guerrero	2	Distrito Federal	2	
Chiapas	2	Campeche	2	Campeche	1	Campeche	1	Tamaulipas	2	Chiapas	3	
Distrito Federal	3	Distrito Federal	3	Distrito Federal	2	Distrito Federal	2	Campeche	2	Campeche	3	

- 1. El único método que se asemeja al utilizado en la demostración (liga completa) fue el de Ward, aunque éste agrupa a los estados de Chiapas y Campeche en un cluster adicional.
- 2. Los métodos de vinculación inter-grupos, vecino más próximo, agrupación de centroides y agrupación de medianas son muy similares entre sí, como se observa en el cuadro anterior; solo que muestran un conglomerado muy grande y otro con tres y, en ocasiones, con una entidad federativa solamente. Por su parte, el método de vinculación intra-grupos, también se asemeja a los anteriores, pero en menor medida. Un aspecto a resaltar es que éste agrupa al Distrito Federal dentro del conglomerado más grande, cuando en los otros cuatro, siempre había estado en el cluster pequeño.

Cuadro 51

CONGLOMERADOS DE PERTENENCIA, 2014

Vinculación int	Vinculación inter-grupos		Vecino más próximo		Agrupación de cetroides		Agrupación de medianas		Vinculación intra-grupos		Método Ward	
Entidad	2 conglomerados	Entidad	2 conglomerados	Entidad	2 conglomerados	Entidad	2 conglomerados	Entidad	3 conglomerados	Entidad	2 conglomerados	
Zacatecas	1	Zacatecas	1	Zacatecas	1	Zacatecas	1	Zacatecas	1	Zacatecas	1	
Hidalgo	1	Hidalgo	1	Hidalgo	1	Hidalgo	1	Hidalgo	1	Hidalgo	1	
Guanajuato	1	Guanajuato	1	Guanajuato	1	Guanajuato	1	Guanajuato	1	Guanajuato	1	
Sinaloa	1	Sinaloa	1	Sinaloa	1	Sinaloa	1	Sinaloa	1	Veracruz	1	
Coahuila	1	Coahuila	1	Coahuila	1	Coahuila	1	Coahuila	1	Puebla	1	
Querétaro	1	Querétaro	1	Querétaro	1	Querétaro	1	Querétaro	1	Michoacán	1	
Aguascalientes	1	Aguascalientes	1	Aguascalientes	1	Aguascalientes	1	Aguascalientes	1	Yucatán	1	
Quintana Roo	1	Quintana Roo	1	Quintana Roo	1	Quintana Roo	1	Quintana Roo	1	Campeche	1	
Veracruz	1	Veracruz	1	Veracruz	1	Veracruz	1	Michoacán	1	Oaxaca	1	
Puebla	1	Puebla	1	Puebla	1	Puebla	1	México	1	Chiapas	1	
Michoacán	1	Michoacán	1	Michoacán	1	Michoacán	1	Chihuahua	1	San Luis Potosí	1	
México	1	México	1	México	1	México	1	Jalisco	1	Guerrero	1	
Chihuahua	1	Chihuahua	1	Chihuahua	1	Chihuahua	1	Colima	1	Tlaxcala	1	
Yucatán	1	Yucatán	1	Yucatán	1	Yucatán	1	Distrito Federal	1	México	2	
Jalisco	1	Jalisco	1	Jalisco	1	Jalisco	1	Baja California Sur	1	Tabasco	2	
Campeche	1	Campeche	1	Campeche	1	Campeche	1	Morelos	1	Sinaloa	2	
Colima	1	Colima	1	Colima	1	Colima	1	Durango	1	Coahuila	2	
Oaxaca	1	Oaxaca	1	Oaxaca	1	Oaxaca	1	Nayarit	1	Querétaro	2	
Distrito Federal	1	Distrito Federal	1	Distrito Federal	1	Distrito Federal	1	Tabasco	1	Aguascalientes	2	
Baja California Sur	1	Baja California Sur	1	Baja California Sur	1	Baja California Sur	1	Tamaulipas	1	Quintana Roo	2	
Morelos	1	Morelos	1	Morelos	1	Morelos	1	Nuevo León	1	Chihuahua	2	
Durango	1	Durango	1	Durango	1	Durango	1	Sonora	1	Jalisco	2	
Nayarit	1	Nayarit	1	Nayarit	1	Nayarit	1	Veracruz	1	Colima	2	
Chiapas	1	Chiapas	1	Chiapas	1	Chiapas	1	Puebla	1	Distrito Federal	2	
San Luis Potosí	1	San Luis Potosí	1	San Luis Potosí	1	San Luis Potosí	1	Yucatán	1	Baja California Sur	2	
Tabasco	1	Tabasco	1	Tabasco	1	Tabasco	1	Campeche	1	Morelos	2	
Tamaulipas	1	Tamaulipas	1	Tamaulipas	1	Tamaulipas		Oaxaca		Durango	2	
Nuevo León	1	Nuevo León	1	Nuevo León	1	Nuevo León	1	Chiapas	1	Nayarit	2	
Sonora	1	Sonora	1	Sonora	1	Sonora	1	San Luis Potosí	1	Tamaulipas	2	
Guerrero	1	Guerrero	1	Guerrero	1	Guerrero	1	Guerrero	2	Nuevo León	2	
Tlaxcala	1	Tlaxcala	1	Tlaxcala	1	Tlaxcala	1	Tlaxcala	2	Sonora	2	
Baja California	2	Baja California	2	Baja California	2	Baja California	2	Baja California	3	Baja California	2	

- 1. Nuevamente, el único método que se asemeja al utilizado en la demostración (liga completa) fue el de Ward, con excepción de tres estados que se intercambian de grupo: Estado de México, Tabasco y Baja California. Aunque, el método de la liga completa tiene tres conglomerados y el de Ward solo dos.
- 2. Asimismo, los métodos de vinculación inter-grupos, vecino más próximo, agrupación de centroides y agrupación de medianas son idénticos, como se observa en el cuadro anterior, aunque el segundo conglomerado es de un solo estado, que es Baja California. Como ya se explicó, en 2014, muestra datos atípicos, sobre todo en los delitos contra la salud. El método de vinculación intra-grupos, también es similar a estos cuatro, solo que adiciona dos estados más en el segundo cluster.

Breves definiciones de los métodos de conglomerados jerárquicos, obtenido del documento "Análisis Conglomerados", escrito por Santiago de la Fuente Fernández de la Universidad Autónoma de Madrid:

- 1. "Vinculación inter-grupos (promedio entre grupos): La distancia entre los grupos es la media aritmética de las distancias existentes entre todos los componentes de cada grupo, considerados dos a dos. Se consiguen grupos con varianzas similares y pequeñas.
- 2. Vinculación intra-grupos (promedio intra-grupos o media ponderada): Es una variante del anterior, aunque en este caso se combinan los grupos buscando que la distancia promedio dentro de cada conglomerado sea la menor posible. Así en lugar de considerar los pares de los elementos que pertenecen a cada uno de los grupos, se consideran todos los pares resultantes en caso de que los dos grupos se uniesen.
- 3. Vecino más próximo (distancias mínimas): Agrupa a los casos que se encuentran a menor distancia. Unidos dos casos, a continuación, se forma el tercer conglomerado buscando la distancia más corta entre los tres elementos. El problema de este método es que suele provocar un efecto línea al unir los casos más cercanos, al tiempo que es muy sensible a la presencia de casos extremos.
- 4. Vecino más lejano (distancias máximas): Similar al vecino más próximo, aunque aquí se procede a unir los casos que se encuentran a mayor distancia, siendo un método más restrictivo que el anterior. Elimina el efecto línea, aunque también es muy sensible a la presencia de casos extremos.
- 5. Agrupación de centroides: La distancia entre dos grupos es la distancia existente entre sus centros de gravedad (centroides). El proceso comienza calculando el centro de gravedad de cada conglomerado, para agrupar los conglomerados cuya distancia entre centroides sea mínima. Tras unir dos conglomerados se calculó el nuevo centro de gravedad y se procede de forma similar. Con este procedimiento se reduce la influencia de casos extremos.
- 6. Agrupación de medianas: Es una variación de la agrupación de centroides, donde no se considera el número de individuos que forman cada uno de los agrupamientos. En el método anterior se calcula el centroide en función del número de individuos de cada conglomerado, de modo que cuando se une un gran conglomerado (por ejemplo 10 casos) con otro muy pequeño (por ejemplo 2 casos), este último apenas varía la situación del centroide inicial. En el método de la mediana no se considera el número de elementos de cada conglomerado, sino el número de conglomerados.
- 7. Método de Ward (o método de pérdida de la inercia mínima): Cuando se unen dos conglomerados, con independencia del método utilizado, la varianza aumenta. El método de Ward une los casos buscando minimizar la varianza dentro de cada grupo. Para ello se calcula, en primer lugar, la media de todas las variables en cada conglomerado. A continuación, se calcula la distancia entre cada caso y la media del conglomerado, sumando después las distancias entre todos los casos. Posteriormente se agrupan los conglomerados que generan menos aumentos en la suma de las distancias dentro de cada conglomerado. Este procedimiento crea grupos homogéneos y con tamaños similares."

XVII.- Bibliografía

1) Publicaciones:

Badii, M.H., Castillo J., Cortez K., Wong A. & Villalpando P., 2007, Análisis de correlación canónica (ACC) e investigación Científica, impreso en México (ISSN 1665-9627).

Canonical Correlation, A Supplement to Multivariate Data Analysis, Multivariate Data Analysis, Pearson Prentice Hall Publishing.

De la Fuente Fernández Santiago, 2011, Análisis Conglomerados, Universidad Autónoma de Madrid.

Dunn W. James and Doeksen A. Gerald, 1997, Canonical Correlation Analysis of Selected Demographic and Health Personnel Variables, Southern Journal of Agricultural Economics.

Ebenezer R. Ogunsakin, Iyaniwura J.O., Canonical Correlation Analysis of Poverty and Literacy Levels in Ekiti State, Nigeria, 2012, Mathematical Theory and Modeling, ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Vol.2, No.6, 2012.

Garson G. David, 2012, Testing Statistical Assumptions, Statistical Associates Publishing, Blue Book Series.

Garson G. David, 2014, Cluster Analysis, Statistical Associates Publishing, Blue Book Series.

Garson G. David, 2015, GLM Multivariate, Manova and Canonical Correlation, Statistical Associates Publishing, Blue Book Series.

Gujarati Damodar N. and Porter Dawn C., (2010); Econometría, McGraw Hill, Quinta Edición.

Johnson Dallas, 1998, Métodos Multivariados Aplicados al Análisis de Datos, Brooks Cole Publishing Company, an ITP Company.

Levin Richard I., (1988), Estadística para Administradores, Prentice Hall, Segunda Edición.

Monitoring the Impact of Economic Crises on Crime, 2012, United Nations Office on Drugs and Crime.

Muñoz de Bustillo Llorente Rafael, Mayoral Fernando Martín, De Pedraza García Pablo, Desigualdad y delincuencia, una Aplicación para España, papeles de trabajo del Instituto de Estudios Fiscales. Serie economía, ISSN 1578-0252, N° 22, 2007, págs. 1-67.

https://www.researchgate.net/publication/28210299 Desigualdad y delincue
ncia una aplicacion para Espana

Ortega Sánchez José Antonio, 2010, ¿POBREZA = DELITO? Los factores socio-económicos del crimen y el derecho humano a la seguridad pública, Comisión de Derechos Humanos del Estado de México.

Panorama Educativo de México 2013, Indicadores del Sistema Educativo Nacional, Educación Básica y Meda Superior. Instituto Nacional para la Evaluación de la Educación.

Duda Richard, Hart Peter and Stork David, 2001, Pattern Classification, Second Edition, JOHN WILEY & SONS, INC.

Peña Daniel, (2002), Análisis de Datos Multivariantes, Mc Graw Hill.

Plan Nacional de Desarrollo, 2013-2018, Gobierno de la República Mexicana.

Rabe-Hesketh Sophia and Everitt Brian, 2004, A Handbook of Statistical Analyses using Stata, Third Edition, CHAPMAN & HALL/CRC a CRC Press Company.

Rwizi Tandanai, 2015, Canonical Correlation Analysis of Aggravated Robbery and Poverty in Limpopo Province, A Dissertation Submitted in Accordance with the Requirements for the Degree of Master of Science in the subject STATISTICS, at the University of South Africa.

Sherry Alissa and Henson K. Robin, 2005, Conducting and Interpreting Canonical Correlation Analysis in Personality Research: A User - Friendly Primer, Journal of Personality Assessment, Lawrence Erlbaum Associates, Inc.

Thompson, Bruce, 1988, Canonical Correlation Analysis: An Explanation with Comments on Correct Practice, Paper presented at the Annual Meeting of the American Educational Research Association (New Orleans, LA, April 5-9, 1988).

Thorndike Robert M., 2000, Canonical Correlation Analysis, Chapter 9, Handbook of Applied Multivariate Statistics and Mathematical Modeling, Academic Press.

Villarespe Verónica, Sánchez Armando y Espíndola Mildred, 2012, Pobreza e Inseguridad el viejo debate entre desarrollo y depresión: Un enfoque empírico, Obra del Acervo de la Biblioteca Jurídica Virtual del Instituto de Investigaciones Jurídicas de la UNAM.

Krzanowski, W. J., 2000, Principles of Multivariate Analysis. A User's Perspective, Oxford Science Publications.

2) Datos:

CONAPO, Proyecciones de la Población 2010-2050. http://www.conapo.gob.mx/es/CONAPO/Proyecciones Datos

Incidencia delictiva del Fuero Común, 2015, Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública.

http://secretariadoejecutivo.gob.mx/incidencia-delictiva/incidenciadelictiva-fuero-comun.php

Incidencia delictiva del Fuero Federal, 2015, Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública.

http://secretariadoejecutivo.gob.mx/incidencia-delictiva/incidenciadelictiva-datos-abiertos.php

INEGI, Encuesta Nacional de Victimización y Percepción sobre Seguridad Pública 2013 (ENVIPE). Tabulados básicos.

http://www3.inegi.org.mx/sistemas/tabuladosbasicos/tabgeneral.aspx?c=336
23&s=est

Medición de la Pobreza (Resultados de Pobreza por Municipio 2010), 2010, Consejo Nacional de Evaluación de la Política de Desarrollo Social (CONEVAL).

http://www.coneval.gob.mx/Medicion/MP/Paginas/Anexo-estad%C3%ADsticomunicipal-2010.aspx

Medición de la Pobreza, 2012, Consejo Nacional de Evaluación de la Política de Desarrollo Social (CONEVAL). Anexo estadístico_entidades_2010-2014.xls

http://www.coneval.gob.mx/Medicion/MP/Paginas/AE pobreza 2014.aspx

Ocupación y Empleo, INEGI,

http://www3.inegi.org.mx/sistemas/temas/default.aspx?s=est&c=25433&t=1

Tasa total: trimestral - serie desestacionalizada - 2012-2015 - entidad federativa

Policías por entidad federativa, 2015, Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública (Policías del 2014) http://www.secretariadoejecutivo.gob.mx/voces-estatales/voces-olicias.php

En el caso del personal policial en gobiernos estatales y municipales para el año 2012, la información fue solicitada ex profeso y proporcionada oficialmente por el Secretariado Ejecutivo del Sistema Nacional de Seguridad Pública. La solicitud se hizo mediante el sistema INFOMEX del Instituto Nacional de Transparencia, Acceso a la Información y Protección de Datos Personales (INAI).

Primer Informe de Labores, 2012-2013, Secretaría de Educación Pública. http://fs.planeacion.sep.gob.mx/informes/labores/2012 2018/1er informe de labores.pdf

Resultados de la Segunda Encuesta Nacional de Calidad e Impacto Gubernamental (ENCIG) 2013, INEGI.

 $\frac{\text{http://www.inegi.org.mx/est/contenidos/proyectos/encuestas/hogares/especiales/encig/2013/doc/encig2014~06.pdf}$

Statlect: libro en línea sobre la teoría de probabilidad y estadísticas matemáticas.

http://www.statlect.com/fundamentals-of-probability/covariance-matrix

- 3) Paquetes Estadísticos:
- 1. Excel
- 2. SPSS
- 3. Stata