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Introducción

Dado un anillo asociativo con uno R podemos considerar su categóıa de
módulos R-Mod que consiste de todos los R-módulos izquierdos y de todos
los R-morfismos entre ellos.La estructura multiplicativa de R lo hace tanto
R-módulo izquierdo como derecho. Entonces cuando estudiamos la categoŕıa
R-Mod se espera obtener mucha información del anillo.

Muchas definiciones en anillos vienen de definiciones dadas en sus módulos,
por ejemplo: Se dice que un anillo R es semisimple si lo es como R-módulo
sobre si mismo. Pero hay definiciones en anillos que no están dadas en
módulos.

Lo que se quiere hacer en este trabajo es tomar ciertas definiciones en
anillos que no vienen de definiciones en módulos y trasladarlas al contexto
de módulos, ésto para generalizar resultados en teoŕıa de anillos. Entonces,
si queremos tratar a un módulo como un anillo debemos cambiar un poco
nuestro ambiente de trabajo.

En [31] se define y se describe la categoŕıa σ[M ] o catrgoŕıa de Wisbauer
donde M es un R-módulo izquierdo. Esta categoŕıa es la subcategoŕıa plena
de R-Mod que consiste de todos R-módulos M-subgenerados. La categoŕıa
σ[M ] es una categoŕıa de Grothendieck, es decir, es completa, cocompleta,
siempre existe un generador, existen cápsulas inyectivas, etcétera. Entonces,
σ[M ] es una categoŕıa que se comporta muy similar a R-Mod.

La categoŕıa σ[M ] es más general que R-Mod en el sentido de que si
ponemos R = M , entonces σ[M ] = R-Mod. Si se leen cuidadosamente
muchas definiciones de anillos nos podemos dar cuenta que éstas se pueden
interpretar en términos de morfismos; esta observación es la que nos permite
generalizar a módulos esas definiciones. Por ejemplo, también en [31] se
pueden encontrar definiciones como V -anillo, anillo regular, anillo coherente,
etcétera presentadas en términos de módulos.

Muchas otras definiciones en anillos están ligadas a la estructura mul-

I



II

tiplicatva del anillo. Una de éstas es, por ejemplo nilpotencia. Otra es el
concepto de primitud el cual inspira mucho de este trabajo.

Trabajando con anillos asociativos con uno, no necesariamente conmu-
tativos, tenemos ideales izquierdos, derechos y bilaterales. En este trabajo
se entenderá por ideal un ideal bilateral y en otro caso se especificará de qué
lado estamos tomando los ideales. Desde nuestros cursos de licenciatura esta-
mos en contacto con el concepto de elemento primo en diferentes estructuras.
Recordemos que un ideal P de un anillo R es un ideal primo si siempre que
IJ ≤ P con I y J ideales de R entonces I ≤ P o J ≤ P . Podemos ver que
esta definición está basada en el producto del anillo R.

Muchos autores han tratado de definir submódulos primos para gen-
eralizar ideales primos, por ejemplo, [9], [30] , [3] and [22]. La definición
con la que vamos a trabajar es la que fue dada en [22]. En ese art́ıculo los
autores definen un producto de un submódulo totalmente invariante de un
módulo dado con cualquier R-módulo. Este producto es descrito usando un
prerradical llamado α (ver [21]) que se define como sigue:

Dado un submódulo totalmente invariante N ≤M y un R-módulo X

αMN (X) =
∑
{f(N)|f : M → X}

Si N y L son submódulos totalmente invariantes de un módulo M su
producto se define como

KML = αMK (L)

También en [22] se muestra que si I y J son ideales de un anillo R en-
tonces IJ = IRJ . Aśı, con este producto, ellos definen módulos y submódulos
primos y semiprimos en la manera obvia.

Ha habido mucho trabajo desde que esta definición fue dada, hay art́ıculos
que generalizan resultados clásicos tales como correspondencia local de Gabriel
[7], dimension de Krull para módulos [8] y módulos noetherianos totalmente
acotados (FBN) [6].

En esta tesis queremos continuar en esta ĺınea de investigación y prin-
cipalmente tratar de encontrar el análogo de anillos semiprimos de Goldie
izquierdos y del famoso Teorema de Goldie en el contexto de módulos.

El Teorema de Goldie dice que un anillo R tiene anillo clásico de co-
cientes izquierdo semisimple artiniano si y sólo si R es un anillo semiprimo
con dimensión uniforme finita y satisface ACC en anuladores izquierdos. Wis-
bauer en [32, Teorema 11.6] prueba una versión del Teorema de Goldie en
términos de módulos. Para un módulo retractable M con S = EndR(M)
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las siguientes condiciones son equivalentes: 1. M es no M -singular con
dimensión uniforme finita y S es semiprimo, 2. M es no M -singular con
dimensión uniforme finita y para cada N ≤e M existe un monomorfismo
M → N , 3. EndR(M̂) es semisimple artiniano y es el anillo clásico de co-

cientes izquierdo de S, aqúı M̂ denota la cápsula M -inyectiva de M . Por
otro lado, en [13], los autores estudian cuándo el anillo de endomorfismos de
un módulo semiproyectivo es un anillo semiprimo de Goldie.

Para obtener una definición de módulo de Goldie que extienda la definición
clásica de anillo de Goldie izquierdo, introducimos qué significa que un módulo
satisfaga la condicion de cadena ascendente en anuladores izquierdos. Un an-
ulador izquierdo en M es un submódulo de la forma AX =

⋂
f∈X Ker(f) para

algún X ⊆ EndR(M). Esta definición con M = R es la definición usual de
anulador izquierdo.

Entonces, un R-módulo M es un módulo de Goldie si M satisface ACC
en anuladores izquierdos y tiene dimensión uniforme finita. En el Caṕıtulo
4 se prueban unas caracterizaciones de módulos semiprimos de Goldie (Teo-
rema 4.1.10, Teorema 4.1.25 y Corolario 4.1.26) que generalizan el Teorema
de Goldie y extienden a los resultados presentados en [32, Teorema 11.6]
y [13, Corolario 2.7].

Esta tesis está organizada en cuatro caṕıtulos y un apéndice. El primer
caṕıtulo es el material necesario para la comprenćıon de los demás caṕıtulos.
En el apéndice se dan resultados generales de una estructura ordenada lla-
mada casi-cuantal que serán aplicados en las secciones 2.3 y 2.4.

El caṕıtulo 2 está dedicado al estudio de submódulos primos y semipri-
mos. En las secciones 2.1 y 2.2 se presentan resultados generales de módulos
semiprimos. En las siguientes dos secciones 2.3 y 2.4 se desarrolla una ge-
neralización de submódulos primos que da como consecuencia que el conjunto
de submódulos semiprimos sea un marco.

En el caṕıtulo 3, se dan varios resultados relacionados a módulos que
satisfacen ACC en anuladores izquierdos. Este caṕıtulo es importante porque
muchos resultados referemtes a la estructura de los módulos semiprimos de
Goldie estarán basados en este caṕıtulo.

En el caṕıtulo 4, se encuentran los principales resultados de esta tesis que
generalizan el Teorema de Goldie. En la sección 4.2, se dan unas descomposi-
ciones de la cápsula M -inyectiva de M cuando M un módulo semiprimo de
Goldie. Estas descompocisiones están dadas en términos de los submódulos
primos mı́nimos de M . También en esta sección se presentan algunos ejem-
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plos de módulos semiprimos de Goldie.



Introduction

Given an associative ring R with unitary element we can consider its
Module category R-Mod consisting of all left R-modules and the R-homomor-
phisms. The multiplicative structure on R makes it both left and right R-
module, so when we study the category R-Mod, we expect to get much
information of the ring through its modules.

Many definitions on rings come from definitions on its modules, for ex-
ample: It is said a ring R is semisimple if it is semisimple as R-module over
itself. But there are definitions on rings that they are not given on modules.

What we want to do in this work is to deal with some definitions given
on rings but that do not come from modules and translate them to modules
in order to generalize results on ring theory. So, if we want to treat a module
as a ring we have to change our place of work a few.

In [31] is defined and described the category σ[M ] or Wisbauer’s category
where M is a left R-module. This new category is the full subcategory
of R-Mod consisting of all R-modules M-subgenerated. The category σ[M ]
is a Grothendieck category so it is complete, co-complete, always exists a
generator, exist injective hulls, etc. Then σ[M ] is a category that looks like
R-Mod in some way.

The category σ[M ] is more general than R-Mod in the sense that if we
put R = M then σ[M ] = R-Mod. If we read carefully many definitions on
a ring we can realize that those definitions can be interpreted in terms of
morphisms; this observation lets us to be able to generalize those definitions
to modules. For example, also in [31] can be found definitions like: V -rings,
regular rings, coherent rings,.... etc. all in terms of modules.

Others definitions on rings are very related to the multiplicative struc-
ture of the ring. One of these is, for example nil-potency. Other is primeness,
and is this condition what inspire much of this thesis.

When we work in an associative ring with unitary element, no necessary
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commutative, we have left, right and bilateral ideals. In this work we will
mean ideal for a two-sided ideal and in other case the side will be written.
Since undergraduated studies we are in contact with definitions of prime
elements in some structures. Remember that an ideal P is a prime ideal if
whenever IJ ≤ P with I, J ideals of R then I ≤ P or J ≤ P . So, we can see
that this definition is totally based on the product of the ring R.

Many authors have tried to define prime submodules in order to gener-
alize prime ideals, for example: [9], [30] , [3] and [22]. The definition we will
work with is that given in [22]. In this paper the authors define a product
of fully invariant submodules of a given module M and any R-module. This
product is described using a preradical called α (see [21]) that is defined as:

Given N ≤M a fully invariant submodule and X an R-module

αMN (X) =
∑
{f(N)|f : M → X}

Hence, if N and L are fully invariant submodules of M their product is
defined as:

KML = αMK (L)

Also in [22] is noticed that if I and J are ideals of a ringR then IJ = IRJ .
Hence, with this product, they define prime and semiprime submodules and
modules in the obvious way.

Much work have been done since this definition was given, there are
papers which generalize classical results concern to primeness such as local
Gabriel correspondence [7], Krull dimension for modules [8] and fully bounded
noetherian (FBN) modules [6].

In this work, we want to keep this line and try to find the module
theoretic analogous of semiprime left Goldie ring and the famous Goldie’s
Theorem principally.

Goldie’s Theorem states that a ring R has a semisimple artinian classical
left quotient ring if and only if R is a semiprime ring with finite uniform
dimension and satisfies ACC on left annihilators. Wisbauer proves in [32,
Theorem 11.6] a version of Goldie’s Theorem in terms of modules. For a
retractable R-module M with S = EndR(M) the following conditions are
equivalent: 1. M is non M -singular with finite uniform dimension and S
is semiprime, 2. M is non M -singular with finite uniform dimension and
for every N ≤e M there exists a monomorphism M → N , 3. EndR(M̂) is

semisimple left artinian and it is the classical left quotient ring of S, here M̂
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denotes the M -injective hull of M . Also, in [13] the authors study when the
endomorphism ring of a semiprojective module is a semiprime Goldie ring.

In order to have a definition of Goldie Module such that it extends
the classical definition of left Goldie ring, it is introduced what ascending
chain condition (ACC) on left annihilators means on a module. A left an-
nihilator in M is a submodule of the form AX =

⋂
f∈X Ker(f) for some

X ⊆ EndR(M). This definition with R = M is the usual concept of left
annihilator.

So, an R-module M is a Goldie module if M satisfies ACC on left
annihilators and has finite uniform dimension. In chapter 4 are proved some
characterizations of semiprime Goldie modules (Theorem 4.1.10, Theorem
4.1.25 and Corollary 4.1.26 ) which generalize the Goldie’s Theorem and
extend [32, Theorem 11.6] and [13, Corollary 2.7].

This thesis is organized in four chapters and one appendix. First chapter
is the general background for the following chapters. In the appendix A is
given general results in an ordered structure called quasi-quantale which will
be applied in sections 2.3 and 2.4.

Chapter 2 is concern to study prime and semiprime submodules. In sec-
tions 2.1 and 2.2 are given general results about semiprime modules. In next
two section 2.3 and 2.4 is developed a generalization of prime submodules
that gives as consequence that the set of semiprime submodules is a frame.

In Chapter 3, are presented many results on modules which satisfy ACC
on left annihilators. This chapter is very important because when we talk
about the structure of semiprime Goldie modules many results will be sup-
ported on this chapter.

In Chapter 4, are presented the main theorems of this thesis that gener-
alize Goldie’s Theorem. In Section 4.2, it is presented some decompositions
of the M -injective hull of M with M a semiprime Goldie module. These
decompositions are given in terms of the minimal prime in M submodules.
Also, in this section are presented some examples of semiprime Goldie mod-
ules.
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Chapter 1

Preliminaries

As it was mentioned in the Introduction, in this chapter some back-
ground will be developed for the understanding of this thesis. Also it will
presented the general notation that will be used.

By a ring R we will mean an associative ring with unitary element and
all R-modules will be unitary. We will work with left R-modules and the
morphism will be written from the left. Given two R-modules M and N , the
set of homomorphism frome M to N is denoted by HomR(M,N) and the
endomorphism ring of a module M by EndR(M)

Let M be an R-module. If N is a submodule of M it will be denoted by
N ≤ M ; if m ∈ M the cyclic submodule generated by m is denoted by Rm.
Recall that N ≤M is essential if N ∩L 6= 0 for all 0 6= L ≤M , and I denote
it by N ≤e M . On the other hand, N ≤ M is fully invariant , denoted by
N ≤fi M if for all f ∈ EndR(M), f(N) ≤ N . General knowledge of module
theory is assumed and the reader is referred to [14], [1] and [28].

Given an R-module M , it is well known that

Λ(M) = {N ≤M}

is a complete lattice (see [28, Chapter III]) where the order is given by the
inclusion, the suprema is the sum of submodules and the infima is the inter-
section. If we consider

Λfi(M) = {N ∈ Λ(M)|N ≤fi M}

then it is a complete sub-lattice of Λ(M).
As it was said in the Introduction, we will work on the category σ[M ].

For this let us remember some definitions:

3



4 Chapter 1. Preliminaries

Definition 1.0.1. Let M , N be R-modules. It is said that N is M -generated
if N is a homomorphic image of a direct sum of copies of M . In other words,
there exist a set X and an epimorphism M (X) → N . Now, an R-module L
is M-subgenerated if L can be embedded in an M -generated module.

If M is fixed and L is any R-module then L contains a largest M -
generated submodule called the trace of M in L and is denoted by trM(L).
This submodule is defined as follows

trM(L) =
∑
{f(M)|f ∈ HomR(M,L)}

Definition 1.0.2. Let M be an R-module. The category σ[M ] is the full
subcategory of R-Mod consisting of all R-modules M -subgenerated.

Given M , the category σ[M ] is closed under submodules, direct sums
and factor modules, in other words, it is a pre-torsion class. In [31] is proved
that σ[M ] is a Grothendieck category, in particular σ[M ] has products and
every module in σ[M ] has an injective hull. Since σ[M ] always have a gen-
erator, given {Ni}I a family in σ[M ] its product is described as

[M ]∏
I

Ni = trG(
∏
I

Ni)

where
∏

I Ni is the product in R-Mod and G is a generator of σ[M ]. If
N ∈ σ[M ] its injective hull in σ[M ] or its M -injective hull is described as

N̂ = trM(E(N))

where E(N) is the injective hull of N in R-Mod. For the proof of the universal
properties of this objects and for a general background of σ[M ] see [31].

Other definition that has a principal roll in this work is the concept of
singularity. Recall that an R-module K is singular if annl(x) ≤e R for all
x ∈ K, here annl(x) is the left annihilator of x in R. In the context of σ[M ]
we have the following definition:

Definition 1.0.3. Let N be an R-module in σ[M ]. It is said that N is
M -singular if there exists a short exact sequence in σ[M ]

0→ K → L→ N → 0

such that K ≤e L.
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Now, we can see the next

Proposition 1.0.4. Let N be an R-module. Then N is singular if and only
if N is R-singular.

Let S be the subclass of σ[M ] consisting of all M -singular modules in
σ[M ]. GivenN in σ[M ], N has a largestM -singular submodule Z(N) defined
as

Z(N) =
∑
{trZ(N)|Z ∈ S}

If Z(N) = 0 then we say that N is non M-singular.

Remark 1.0.5. Note that if σ[X] ⊆ σ[Y ] and N in σ[X] is non Y -singular
then N is non X-singular.

For more information about the class S and M -singular modules see [32].
Recall that a pair of non-empty classes τ = (T ,F) of R-modules is a

torsion theory if it satisfies the following:

1. HomR(T, F ) = 0 for all T ∈ T and for all F ∈ F .

2. If HomR(M,F ) = 0 for all F ∈ F , then M ∈ T .

3. If HomR(T,N) = 0 for all T ∈ T , then N ∈ F .

If in addition T is closed under submodules then we say that τ is a hereditary
torsion theory .

If τ = (T ,F) is a hereditary torsion theory, then T is closed under
submodules, factor modules, direct sums, and extensions, and F is closed
under submodules, products, injective hulls and extensions; T is called the
torsion class and F the torsion-free class. The class of hereditary torsion
theories in R-Mod is denoted by R-tors. In [11] it is proved that R-tors is a
set, moreover it is a frame. Let us recall the definition of frame:

Definition 1.0.6. Let A be a complete lattice. It is said that A is a frame
if the following distributive law holds:(∨

X
)
∧ a =

∨
{x ∧ a|x ∈ X}

For all X ⊆ A and all a ∈ A.
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R-tors is a frame with the order given by the inclusion of torsion classes.
The infima is given by the intersection. If C is any class of R-modules then
there exist the least hereditary torsion theory such that C is contained in the
torsion class and the greatest hereditary torsion theory where C is contained
in the torsion-free class, these classes are denoted by ξ(C) and χ(C) respec-
tively. The hereditary torsion theory ξ(C) is call the hereditary torsion theory
generated by C and χ(C) is called the hereditary torsion theory cogenerated
by C. For more details in hereditary torsion theories in R-Mod see [11].

In [32] is proved that a hereditary torsion theory ρ in σ[M ] is just ρ =
τ ∩ σ[M ] for some τ ∈ R-tors. So, if M -tors denotes the set of hereditary
torsion theories in σ[M ] then it is frame. The torsion theory generated and
cogenerated by a class of modules in σ[M ] will be denoted as the case of
R-tors.



Chapter 2

Primeness and Semiprimeness

2.1 Prime and Semiprime Modules

One of the study lines in general algebra is the study of prime objects,
since the antiques Greeks until now. Our first encounter with primeness is,
maybe, the prime numbers. These prime numbers take us to The Fundamen-
tal Theorem of Arithmetic showing themselves as the fundamental particles
of arithmetic.

It can be defined prime element in others rings not just in Z, and gen-
eralizing this idea we can take it to ideals of a commutative ring. So, let
us recall the definitions of prime element and prime ideal in a commutative
ring:

Definition 2.1.1. Let R be a commutative ring and 1 6= p ∈ R. It is said p
is prime if whenever p|ab with a, b ∈ R then p|a or p|b.

If we suppose R is a principal ideal domain (PID) then this definition is
equivalent, in terms of ideals, to the following:

p ∈ R is prime if whenever ab ∈ Rp with a, b ∈ R then a ∈ Rp or b ∈ Rp.

So, we can generalize the definition of prime to prime ideal.

Definition 2.1.2. Let R be a commutative ring and P be a proper ideal of
R. P is a prime ideal if whenever ab ∈ P with a, b ∈ R then a ∈ P or b ∈ P .
The set of prime ideals of R is called the spectrum of R and it is denoted by
Spec(R).

7



8 Chapter 2. Primeness and Semiprimeness

With this definitions we have

Proposition 2.1.3. Let R be a commutative ring and P be an ideal of R.

• P is a prime ideal if and only if R/P is a integral domain.

• P is a maximal ideal if and only if R/P is a field.

• Every maximal ideal is a prime ideal.

Last proposition ensures that every commutative ring contains a prime
ideal.

For a commutative ring we have the next equivalence

Proposition 2.1.4. Let P be an ideal in a commutative ring R. Then P
is a prime ideal if and only if for every ideals I, J ≤ P such that IJ ≤ P
implies I ≤ P or J ≤ P .

Proof. ⇒. Let I, J be ideals of R such that IJ ≤ P . Suppose that I � P ,
so there exists a ∈ I but a /∈ P . Let b ∈ J then ab ∈ P , since a /∈ P then
b ∈ P . Thus J ≤ P .

⇐. Let a, b ∈ R such that ab ∈ P . Since R is commutative RaRb ≤ P .
Then, by hypothesis Ra ≤ P or Rb ≤ P . Thus a ∈ P or b ∈ P .

For an arbitrary ring, the definition of prime ideal is a little different.
Here is an example of why:

Example 2.1.5. Consider the ring R = M2(K) consisting of all 2×2 square
matrices with coefficients in a field K. It is known that R is a simple ring,
so 0 is the only maximal two-sided ideal.

In the commutative case, by Proposition 2.1.3 every maximal ideal is
a prime ideal but here 0 does not satisfies the condition of definition 2.1.2
because (

1 0
0 0

)(
0 0
1 0

)
= 0

Let us give the definition of prime ideal in the general case:

Definition 2.1.6. Let R be a ring and P a proper ideal. P is a prime ideal
if whenever IJ ≤ P for I, J ideals of R then I ≤ P or J ≤ P . As in the
commutative case, the the set of prime ideals of R will be called spectrum
and denoted by Spec(R).



2.1. Prime and Semiprime Modules 9

Notice, by Proposition 2.1.4, that in the commutative case Definition
2.1.2 and Definition 2.1.6 are equivalent.

Remark 2.1.7. Let R be a ring. IfM is a maximal ideal thenM is a prime
ideal. In fact, suppose that I and J are ideals which are not contained in
M, soM+ I = R =M+J . Hence R = (M+ I)(M+J) =M+ IJ . Thus
IJ is not contained in M.

Now, I would like to take the notion of prime ideal to submodules of an
R-module. Before this, let us examine the product of ideals.

Recall that for every R-module M there exists an isomorphism

M ∼= HomR(R,M)

So, every subset X ⊆ R can be identified as a subset of EndR(R). Then
if a, b ∈ R the product ab can be viewed as the evaluation ( · b)(a) where
( · b) is the morphism multiply by b from the right.

If I and J are left ideals of R the elements of IJ are finite sums of the
form

∑
aibi with ai ∈ I and bi ∈ J , hence∑

aibi =
∑

( · bi)(ai)

where ( · bi) : R→ J is the R-morphism multiplication by bi. Then

IJ =
∑
{f(I)|f : R→ J}

Other thing that we have to consider is that: in Definition 2.1.6 I and
J are ideals, i.e. two-sided ideals, if we want to translate the notion of prime
ideal we need to work with the analogous, in a module, of two-sided ideal.

Definition 2.1.8. Let M be an R-module and N ≤ M . The submodule N
is fully invariant in M if f(N) ≤ N for all f ∈ EndR(M).

Then, a left ideal of R is fully invariant if and only if it is a two-sided
ideal.

With all this in mind, we can define a product of submodules of a given
module. Next definition appeared first in [4].

Definition 2.1.9. Let M be an R-module and K, L submodules of M . The
product of K with L in M is defined as

KML =
∑
{f(K)|f ∈ HomR(M,L)}
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Remark 2.1.10. Notice that this product can be defined for K ≤ M and
an R-module X as follows:

KMX =
∑
{f(K)|f : M → X}

Recall the definition of a preradical on a ring R:

Definition 2.1.11. A preradical ρ on a ring R is a subfunctor of the identity
functor on R-Mod, i.e., for all R-module M , ρ(M) ≤M and for all morphism
f : M → N , ρ(f) = f |ρ(M) : ρ(M)→ ρ(N).

Remark 2.1.12. If K ≤M and X is an R-module, then KM is a preradical.
Following [21], if K ≤fi M and X is an R-module the preradical alpha is
defined as:

αMK (X) =
∑
{f(K)|f : M → X}

So, when K ≤fi M , KM = αMK ( ).
In [22], given two fully invariant submodules K, L of M their product

in M is defined as KL := αMK (L).

This product satisfies the following properties:

Lemma 2.1.13. Let M be an R-module and K,K ′ ≤M . Then:

1. If K ⊆ K ′ then KMX ⊆ K ′MX for every module X.

2. If X is a left module and Y ⊆ X then KMY ⊆ KMX.

3. KMX ⊆ X for every module X.

4. KMX = 0 if and only if f(K) = 0 for all f ∈ HomR(M,X).

5. 0MX = 0, for every module X.

6. Let {Xi | i ∈ I} be a family of submodules of M then
∑

i∈I (KMXi) ⊆
KM

(∑
i∈I Xi

)
.

7.
(∑

i∈I Ki

)
M
N =

∑
i∈I KiMN for every family of submodules {Ki | i ∈

I} of M .

8. If {Xi|i ∈ I} is a non empty family of R-modules then KM(
⊕

i∈I Xi) =⊕
i∈I(KMXi).
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Proof. For 1,2,3,4,5 and 8 see [7, Proposition 1.3].
6. Let {Xi|i ∈ I} be a family of submodules of M . Since Xi ≤

∑
i∈I Xi,

by (2 ) of this proposition (KMXi) ⊆ KM

(∑
i∈I Xi

)
. Thus

∑
i∈I

(KMXi) ⊆ KM

(∑
i∈I

Xi

)
7. Let {Ki|i ∈ I} be a family the submodules of M . Then(∑

i∈I

Ki

)
M

N =
∑{(∑

i∈I

Ki

)
|f ∈ HomR(M,N)

}

=
∑{∑

i∈I

f (Ki) |f ∈ HomR(M,N)

}
=
∑
i∈I

∑
{f(Ki)|f ∈ HomR(M,N)}

=
∑
i∈I

(KiMN)

Example 2.1.14 (The equality in 2.1.13.(6 ) is not true in general.). Let
R = Z and p a prime number. If M = Q, K = Q, X = Z(p) = {a

b
∈ Q|p - b}

and Y = { a
pn
∈ Q|n ∈ N}, then X + Y = Q, KMX = QMZ(p) = 0 and

KMY = QMY = 0. On the other hand, KM(X + Y ) = QMQ = Q. Thus
KM(X + Y ) * (KMX) + (KMY ). Notice that Q is not projective in σ[Q] =
Z−Mod.

At this point, I want to recall some lattice-theoretical definitions.

Definition 2.1.15. Let Q be a complete lattice, Q is a quantale if Q has a
binary associative operation · : Q×Q→ Q such that

l
(∨

X
)
r =

∨
{lxr | x ∈ X}

holds for all l, r ∈ Q and X ⊆ Q.

Definition 2.1.16. A lattice A is meet-continuous if

a ∧ (
∨

X) =
∨
{a ∧ x | x ∈ X}

for all a ∈ A and X ⊆ A any directed set.
A is modular if (a∨ c)∧ b = a∨ (c∧ b), for all a, b, c ∈ A such that a ≤ b.
A is an idiom if A is a meet-continuous and modular lattice.
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For general theory of these lattices see [18], [28] and [26].

Remark 2.1.17. Notice that if I, J ≤ R then IJ = IRJ . We know, that
the product of (left) ideals is associative and if {Ii}Γ is a non empty family
of left ideals and J ≤ R then

(
∑

Γ

Ii)J =
∑

Γ

(IiJ)

and
J(
∑

Γ

Ii) =
∑

Γ

(JIi)

That is, the lattice of left ideals of R, Λ(R) is a quantale.
For an R-module M , the lattice Λ(M) is an idiom (see [28, Chapter III]).

By Example 2.1.14, Λ(M) is not a quantale in general. In fact, next example
shows M is not always associative. To make this product associative we
need and extra hypothesis: M is projective in σ[M ].

Example 2.1.18. Consider Z the additive group of integers and Q the ad-
ditive group of rational numbers, then 0 = (Z Q Z )QQ 6= Z Q (Z QQ) = Q.

Lemma 2.1.19. Suppose M is projective in σ[M ]. Then

1. The product −M− : Λ(M)× Λ(M)→ Λ(M) is associative.

2. KM

(∑
i∈I Xi

)
=
∑

i (KMXi) for every directed family of submodules
{Xi | i ∈ I} of M .

Proof. 1. See [3, Proposition 5.6].
2. Let {Xi|i ∈ I} be a directed family of submodules of M . Let∑

j∈J fj(kj) ∈ KM

(∑
i∈I Xi

)
, with fj : M →

∑
i∈I Xi. Since M is projective

in σ[M ] for each fj there exist gij : M → Xi such that
∑

i∈I gij(kj) = fj(kj),
that is, the following diagram commutes

M

fj
��

⊕
gij

xx⊕
i∈I Xi

// //
∑

i∈I Xi

Then ∑
j∈J

fj(kj) =
∑
j∈J

∑
i∈I

gij(kj) ∈
∑

Xij
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Since this sum is finite and {Xi|i ∈ I} is directed, there exists l ∈ I such
that

∑
Xij ⊆ Xl. Thus∑

j∈J

fj(kj) =
∑
j∈J

∑
i∈I

gij(kj) ∈ KMXl ⊆
∑
i∈I

(KMXi)

The other contention follows from 2.1.13.(6).

Definition 2.1.20. Let A be a complete lattice. A is a quasi-quantale if
A has an associative product A × A → A such that for all directed subsets
X, Y ⊆ A and a ∈ A:

(
∨

X)a =
∨
{xa | x ∈ X}

a(
∨

Y ) =
∨
{ay | y ∈ Y }

We say that A is a left (resp. right, resp. bilateral) quasi-quantale if there
exists e ∈ A such that e(a) = a (resp. (a)e = a, resp. e(a) = a = (a)e) for
all a ∈ A.

This definition generalize both quantales and idioms. Note that by
Lemma 2.1.19 Λ(M) is a quasi-quantale whenM is projective in σ[M ]. Quasi-
quantales are treated in Apendix A.

Next definition extends Definition 2.1.6, it is one of the fundamental
concepts in this work and was given first in [22].

Definition 2.1.21. Let M be an R-module. A proper fully invariant sub-
module N < M is a prime submodule in M if for any fully invariant sub-
modules K,L ≤ M such that KML ≤ N , then K ≤ N or L ≤ N . We say
that M is a prime module if 0 is a prime submodule.

Notice that if when M = R then the prime ideals are the prime sub-
modules in R.

Remark 2.1.22. The set of prime submodules in M will be called the spec-
trum of M and denoted by Spec(Λfi(M)). The notation is because in section
2.3 we will mention other spectra associated to M .

Next proposition characterizes prime submodules of a module M pro-
jective in σ[M ].



14 Chapter 2. Primeness and Semiprimeness

Proposition 2.1.23. Let M be projective in σ[M ] and P a fully invariant
submodule of M . The following conditions are equivalent:

1. P is prime in M .

2. For any submodules K, L of M such that KML ≤ P , then K ≤ P or
L ≤ P .

3. For any submodules K, L of M containing P and such that KML ≤ P ,
then K = P or L = P .

4. M/P is a prime module.

Proof. 1⇒ 2. It follows from [7, 1.11].
2⇒ 3. It is clear.
3⇒ 1. Suppose that K, L are submodules of M such that KML ≤ P .
We claim that KM(L+P ) ≤ P . Since KML ≤ L ∩ P , by [3, Proposition

5.5] KM(L/L ∩ P ) = 0 so KM(L+ P/P ) = 0. Thus KM(L+ P ) ≤ P .
On the other hand,

(K + P )M(L+ P ) = KM(L+ P ) + PM(L+ P ) ≤ P

because P is fully invariant in M .
Then, by hypothesis K+P = P or L+P = P , hence K ≤ P or L ≤ P .
1⇔ 4. It follows from [22, Proposition 18].

Proposition 2.1.24. Let M be an R-module. If M has at least one prime
submodule then M has at least one minimal prime submodule.

Proof. Let P ≤M be a prime submodule. Consider Γ = {Q ≤ P |Q is prime}.
This family is not empty because P ∈ Γ. Let C = {Qi} be a descending
chain in Γ. Let N,K ≤ M be fully invariant submodules of M such that
NMK ≤

⋂
C. Suppose that N �

⋂
C. Then there exists Qj such that

N � Qj and N � Ql for all Ql ≤ Qj. Therefore K ≤ Ql for all Ql ≤ Qj, and
since C is a chain then K ≤

⋂
C. Therefore

⋂
C ∈ Γ. By Zorn’s Lemma Γ

has minimal elements.

Proposition 2.1.3.(3 ) says that every maximal ideal is a prime ideal.
In general, for an R-module it is not true that a maximal fully invariant
submodule is prime. See [7, Example 1.12, Proposition 1.13].
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If R is a commutative ring, then P < R is a prime ideal if and only
if R − P is a multiplicative set. When R is not commutative R − P is not
necessarily multiplicative but P is a prime ideal if and only if the complement
of P , R − P is an m-system [17, Corollary 10.4]. Recall that an m-system
is a nonempty subset B of a ring R such that for all b, b′ ∈ B there exists
r ∈ R such that brb′ ∈ B.

The last definition can be translate to the context of modules.

Definition 2.1.25. Let M be an R-module. A subset B ⊆ M is an M-m-
system if for all b, b′ ∈ B there exists a morphism f : M → Rb′ such that
f(b) ∈ B.

Remark 2.1.26. Note that if R is a ring and B ⊆ R, then B is an m-system
if and only if B is an R-m-system.

Proposition 2.1.27. Let M be projective in σ[M ]. Let P ≤ M be a fully
invariant submodule of M . Then P is prime in M if and only if M − P is
an M-m-system.

Proof. ⇒. Suppose that P is prime in M and let a, b ∈ M − P . Since
a, b /∈ P , by Proposition 2.1.23 RaMRb * P , so there exists f : M → Rb
such that f(a) /∈ P . Thus M − P is a M -m-system.

⇐. Let a, b ∈ M . Suppose that RaMRb ≤ P .If Ra � P and Rb � P
then there exists r, t ∈ R such that rb, ta ∈ M − P . Since M − P is an
M -m-system there exists f : M → R(rb) such that f(ta) ∈ S. Hence
R(ta)MR(rb) � P but R(ta)MR(rb) ≤ RaMRb ≤ P . Contradiction.

Proposition 2.1.28. Suppose M is projective in σ[M ]. Let B ⊂ M be an
M-m-system. If P is a fully invariant submodule of M maximal with the
property P ∩B = ∅, then P is prime in M .

Proof. Let K and L be fully invariant submodules of M with P ≤ K and
P ≤ L such that KML ≤ P . Suppose that P 6= K and L 6= P . By
maximality of P there exist a ∈ K and b ∈ L such that a, b ∈ B. Then
there exists f : M → Rb with f(a) ∈ B, so RaMRb � P . Contradiction. By
Proposition 2.1.23.(3 ) P is prime in M .

If R is a commutative ring and I is an ideal of R the radical of I,
√
I is

defined as √
I = {r ∈ R|rn ∈ I for some n ∈ N}
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And it can be proved that
√
I =

⋂
{P ∈ Spec(R)|I ≤ P}

In the non-commutative case the definition of the radical of an ideal is
a little different.

Definition 2.1.29. Let I be an ideal of a ring R. The radical of I is defined
as √

I = {r ∈ R| every m− system containing r meets I}

It is easy to see that
√
I ⊆ {r ∈ R|rn ∈ I for some n ∈ N}. What is not

clear to see is if
√
I is an ideal or not but we have next Theorem [17, Theorem

10.7]

Theorem 2.1.30. For any ring R and any ideal I ≤ R,
√
I equals the

intersection of all the prime ideals containing I. In particular
√
I is an ideal

of R.

Now, we can put the definition and theorem analogous to Definition
2.1.29 and Theorem 2.1.30 on modules

Definition 2.1.31. Let N be a fully invariant submodule of M . The radical
of N in M is

√
N = {b ∈M |Every M −m− system containing b intersects N}

Proposition 2.1.32. Let M be projective in σ[M ]. Let N a fully invariant
submodule of M , then

√
N =

⋂
{P ∈ Spec(Λfi(M))|N ⊆ P}

Proof. Suppose that b /∈
√
N , so there exists an M -m-system B such that

b ∈ B and N ∩B = ∅. By Zorn’s Lemma there exists P ≤M fully invariant
such thatN ≤ P and P is maximal with respect to P∩B = ∅. By Proposition
2.1.28 P is prime in M . Hence b /∈

⋂
{P ∈ Spec(Λfi(M))|N ⊆ P}.

Now, if b /∈
⋂
{P ∈ Spec(Λfi(M))|N ⊆ P}, there exists P prime in M

containing N such that b /∈ P . So b ∈ M − P and M − P is a m-system by
Proposition 2.1.27. Since N ≤ P then N ∩ (M − P ) = ∅, so s /∈

√
N .

Definition 2.1.33. Let M be an R-module. The lowest radical of M is
defined as Nil∗(M) =

√
0.
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Definition 2.1.34. Let M be an R-module. A proper fully invariant sub-
module N < M is a semiprime submodule in M if for any fully invariant
submodule K ≤M such that KMK ≤ N , then K ≤ N . We say that M is a
semiprime module if 0 is a semiprime submodule.

Example 2.1.35. Let N be a fully invariant submodule of M . Then
√
N is

a semiprime submodule in M by Proposition 2.1.32.

We know that an ideal I is semiprime if and only if I =
√
I. See [17,

Theorem 10.11]. Also in modules there is an analogous theorem

Proposition 2.1.36. Let M be projective in σ[M ] and N a fully invariant
submodule of M . The following conditions are equivalent:

1. N is semiprime in M .

2. For any submodule K of M , KMK ≤ N implies K ≤ N .

3. For any submodule K ≤ M containing N such that KMK ≤ N , then
K = N .

4. M/N is a semiprime module.

5. If m ∈M is such that RmMRm ≤ N , then m ∈ N .

6. N =
√
N .

Proof. 1 ⇒ 2. Let K ≤ M such that KMK ≤ N . Consider the submodule
KMM of M . This is the minimal fully invariant submodule of M which
contains K and KMX = (KMM)MX for every module X. Hence by Lemma
2.1.13

KMK = (KMM)MK ≤ ((KMM)MK)MM) ≤ NMM

Since N is a fully invariant submodule of M then NMM = N and by [3,
Proposition 5.5] (KMM)M(KMM) = ((KMM)MK)MM) ≤ N . Since N is
semiprime in M , KMM ≤ N . Hence K ≤ N .

2⇒ 3. It is clear.
3⇒ 1. The proof is analogous to the proof of Proposition 2.1.23.
1⇔ 4. By [23].
2⇒ 5. By hypothesis.
5⇒ 6. Since N is proper in M , let m0 ∈M \N . Then Rm0MRm0 � N .

Now, let 0 6= m1 ∈ Rm0MRm0 but m1 /∈ N Then Rm1MRm1 � N and



18 Chapter 2. Primeness and Semiprimeness

Rm1MRm1 ≤ Rm0MRm0. We obtain a sequence of non-zero elements of M ,
{m0,m1, ...} such that mi /∈ N for all i and Rmi+1MRmi+1 ≤ RmiMRmi.

By Zorn’s Lemma there exists a fully invariant submodule P of M with
N ≤ P , maximal with the property that mi /∈ P for all i .

We claim P is a prime submodule. Indeed, let K and L submodules of
M containing P properly. Since P < K and P < L, then there exists mi and
mj such that mi ∈ K and mj ∈ L. Suppose i ≤ j, then RmiMRmi ≤ K and
by construction mj ∈ RmiMRmi and thus mj ∈ K. If we put k = max{i, j},
then mk ∈ K and mk ∈ L. Hence, RmkMRmk ≤ KML, and so KML � P .
By Proposition 2.1.23.(3 ), P is prime in M .

6⇒ 1. It is clear.

Remark 2.1.37. Note that by the proof of Proposition 2.1.36 if M is projec-
tive in σ[M ] and semiprime then M has prime submodules, so by Proposition
2.1.24 M has minimal prime submodules.

Minimal prime submodules will be crucial for developing Chapters 3 and
4.

Corollary 2.1.38. Let 0 6= M be a semiprime module and projective in
σ[M ]. Then

0 =
⋂
{P ≤M |P is a minimal prime in M}

Proof. Let x ∈
⋂
{P ≤ M |P is a minimal prime in M} and Q ≤ M be a

prime submodule in M . By Proposition 2.1.24 there exists a minimal prime
submodule P such that P ≤ Q then x ∈ Q and x is in the intersection of all
primes in M . By Proposition 2.1.36, x = 0.

As in the case of prime submodules, semiprime submodules can be char-
acterized by their complement.

Recall that a subset A of a ring R is an n-system if for any a ∈ A there
exists r ∈ R such that ara ∈ A. Then an ideal I ≤ R is semiprime if and
only if R− P is an n-system. See [17, pag. 157]

Definition 2.1.39. Let M be an R-module. A subset A ⊆ M is an M-n-
system if for any a ∈ A there exists a morphism f : M → Ra such that
f(a) ∈ A.

Proposition 2.1.40. Suppose that M is projective in σ[M ]. Let N ≤ M a
fully invariant submodule of M . Then N is semiprime in M if and only if
M −N is an M-n-system.
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Proof. The proof is analogous to proof that Proposition 2.1.27.

We can find (semi)prime submodules in terms of their morphisms, as
the following proposition shows.

Proposition 2.1.41. Let S := EndR(M) and assume that M generates
all its submodules. If N is a fully invariant submodule of M such that
HomR(M,N) is a prime (semiprime) ideal of S, then N is prime (semiprime)
in M .

Proof. Let K and L be fully invariant submodules of M such that KML ≤ N .
Put I = HomR(M,L) and J = HomR(M,K). Let m ∈ M and

∑
figi ∈

IJ . Since gi ∈ J and gi(m) ∈ K then
∑
fi(gi(m)) ∈ KML ≤ N . Hence

IJ ≤ HomR(M,N). Since HomR(M,N) is prime (semiprime) in S, then
I ≤ HomR(M,N) or J ≤ HomR(M,N). Hence trM(L) := Hom(M,L)M ≤
N or trM(K) ≤ N and since M generates all its submodules then trM(L) =
L ≤ N or trM(K) = K ≤ N . Thus N is a prime (semiprime) submodule.

Following [15] we give the next:

Definition 2.1.42. A module M is retractable if HomR(M,N) 6= 0 for all
0 6= N ≤M .

Notice that if M generates all its submodules then M is retractable.

Corollary 2.1.43. Let S := EndR(M) with M retractable. If S is a prime
(semiprime) ring then M is prime (semiprime).

Proof. Let K and L be fully invariant submodules of M such that KML = 0.
Since HomR(M, 0) is a prime (semiprime) ideal of S then by the proof of
Proposition 2.1.41, trM(K) = 0 or trM(L) = 0. Since M is retractable,
K = 0 or L = 0. Hence 0 is prime (semiprime) in M . Thus M is prime
(semiprime).

Lemma 2.1.44. Let M be projective in σ[M ]. If M is semiprime then M
is retractable.

Proof. Let N ≤ M and suppose HomR(M,N) = 0. So MMN = 0 but
NMN ⊆MMN = 0. Since M is semiprime then N = 0.

To end this section, I shall show a characterization of semiprime artinian
modules.
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Lemma 2.1.45. Let M be an R-module and N a minimal submodule of M .
Then NMN = 0 or N is a direct summand of M .

Proof. Suppose that NMN 6= 0. Then there exists f : M → N such that
f(N) 6= 0. Since 0 6= f(M) ≤ N and N is a minimal submodule, f(M) = N .
On the other hand, Ker(f)∩N ≤ N , since f(N) 6= 0 then Ker(f)∩N = 0.
We have that M/Ker(f) ∼= N and since N is a minimal submodule, then
Ker(f) is a maximal submodule of M . Thus Ker(f)⊕N = M .

Corollary 2.1.46. Let M be a retractable module. If N is a minimal sub-
module in a semiprime module M , then N is a direct summand.

Proof. Since M is semiprime, NMN 6= 0.

Theorem 2.1.47. The following conditions are equivalent for a retractable
R-module M :

1. M is semisimple and left artinian.

2. M is semiprime and left artinian.

3. M is semiprime and satisfies the descending chain condition, DCC, on
cyclic submodules and direct summands.

Proof. 1⇒ 2 : If M is semisimple, then it is semiprime.
2⇒ 3 : Since M is left artinian, then it satisfies DCC on cyclic submod-

ules and direct summands.
3 ⇒ 1 : Since M satisfies DCC on cyclic submodules, there exists a

minimal submodule K1 of M . By Corollary 2.1.46, M = K1 ⊕ L1. Now
there exists a minimal submodule K2 of L1 such that L1 = K2 ⊕ L2. With
this process we obtain a descending chain of direct summands, which is finite
by hypothesis, say L1 ⊇ L2 ⊇ L3 ⊇ ... ⊇ Lm. Since Lm is simple and
M = K1 ⊕K2 ⊕ ...⊕Km ⊕ Lm, then M is semisimple.

Now, if M is semisimple and satisfies DCC on direct summands then M
is artinian.

2.2 Annihilator Submodules

In this section some particular submodules called annihilator submodules
will be studied. Here we will focus on annihilator submodules of a semiprime
module. So let us start with the definition of annihilator in our context.
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Definition 2.2.1. Let K ∈ σ[M ]. The annihilator of K in M is the sub-
module of M defined as

AnnM(K) =
⋂
{Ker(f)|f ∈ HomR(M,K)}

This submodule was first defined in [3]. It can be shown that AnnM(K)
is the greatest submodule of M such that AnnM(K)MK = 0.

When N ≤M it is possible to define a right annihilator in M , in other
words the greatest submodule AnnrM(N) of M such that NMAnn

r
M(N) = 0.

Definition 2.2.2. LetM be anR-module andN ≤M . The right annihilator
of N in M is defined as

AnnrM(N) =
∑
{L ≤M |NML = 0}

Proposition 2.2.3. Let M be projective in σ[M ] and N ≤ M . AnnrM(N)
is a fully invariant submodule of M and is the greatest submodule of M such
that NMAnn

r
M(N) = 0.

Proof. Let {Li}I be the family of submodules of M such that NMLi = 0.
Note that if NMLi = 0, then NM(LiMM) = 0 because the product is associa-
tive. Hence, without lost of generality we can assume that every Li is fully
invariant. Then AnnrM(N) is a fully invariant submodule of M .

Now, by Lemma 2.1.13.(8 ) 0 =
⊕

I(NMLi) = NM(
⊕

I Li). Since M is

projective in σ[M ], NM(
⊕
I Li
A

) = 0 for every A ≤
⊕

I Li by [3, Proposition
5.5]. Thus NMAnn

r
M(N) = 0.

The following lemma shows that, when M is a semiprime module pro-
jective in σ[M ] and N ≤ M , there is no distinction between AnnM(N) and
AnnrM(N).

Lemma 2.2.4. Let M be semiprime and projective in σ[M ]. Let N,L ≤M .
If LMN = 0, then NML = 0 and L ∩N = 0.

Proof. Since LMN = 0, then

0 = NM(LMN)ML = (NML)M(NML).

Hence NML = 0 .
Now, since L ∩N ≤ L and L ∩N ≤ N , then

(L ∩N)M(L ∩N) ≤ LMN = 0.

Thus L ∩N = 0
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Corollary 2.2.5. Let M be semiprime and projective in σ[M ]. If N ≤ M ,
then NMAnnM(N) = 0. This implies that AnnM(N) = AnnrM(N).

Now we can define the submodules we are interested in.

Definition 2.2.6. Let M be an R-module and N < M . We say N is an
annihilator submodule if N = AnnM(K) for some 0 6= K ≤M .

Proposition 2.2.7. Let M be semiprime and projective in σ[M ] and N ≤
M . Then N is an annihilator submodule if and only if N = AnnM(AnnM(N)).

Proof. ⇒: By Lemma 2.2.4 N ≤ AnnM(AnnM(N)).
There exists K ≤M such that N = AnnM(K), hence

KMN = KMAnnM(K) = 0

and thus K ≤ AnnM(N). Therefore,

AnnM(AnnM(N)) ≤ AnnM(K) = N

It follows that N = AnnM(AnnM(N)).

Proposition 2.2.8. Let M be projective in σ[M ] and semiprime. If N ≤
M then AnnM(N) is the greatest fully invariant submodule of M such that
AnnM(N) ∩ N = 0. Moreover, N ⊕ AnnM(N) intersects all fully invariant
submodules of M .

Proof. Let L ≤M be a fully invariant pseudocomplement of N in M . Then

LMN ≤ L ∩N = 0

Thus L ≤ AnnM(N). By Lemma 2.2.4 AnnM(N) ∩ N = 0. Thus L =
AnnM(N).

By Remark 2.1.37 if M is projective in σ[M ] and semiprime then M has
minimal primes. In this case, the annihilator in M can be described in terms
of minimal primes.

Proposition 2.2.9. Let M be projective in σ[M ] and a semiprime module.
Let N ≤ M and J be the set of all minimal prime submodules of M which
does not contain N . Then AnnM(N) =

⋂
{P |P ∈ J}.



2.2. Annihilator Submodules 23

Proof. Put K =
⋂
{P |P ∈ J}. Any element in K∩N is in the intersection of

all minimal prime submodules of M which is zero by Corollary 2.1.38. Then
K ∩N = 0. Since K is fully invariant in M , K ≤ AnnM(N) by Proposition
2.2.8. Now, let P ∈ J . Since AnnM(N)MN = 0 ≤ P and N � P , then
AnnM(N) ≤ K.

Next proposition says that some annihilator submodules are minimal
primes.

Proposition 2.2.10. Let M be projective in σ[M ] and semiprime. The
following conditions are equivalent for N ≤M :

1. N is a maximal annihilator submodule.

2. N is an annihilator submodule and is a minimal prime submodule.

3. N is prime in M and N is an annihilator submodule.

Proof. 1 ⇒ 2 : Let K ≤ M such that N = AnnM(K). Let L,H ≤ M be
fully invariant submodules of M such that LMH ≤ N . Assume H � N .
Then 0 6= HMK. Hence AnnM(K) ≤ AnnM(HMK), but since AnnM(K) is
a maximal annihilator submodule, then AnnM(K) = AnnM(HMK).

Since M is projective in σ[M ], by [3, Proposition 5.5] we have that

LM(HM(HMK)) = (LMH)M(HMK) ≤ NM(HMK) = 0

Now, since HM(HMK) ≤ HMK, then

AnnM(K) = AnnM(HMK) ≤ AnnM(HM(HMK))

Therefore AnnM(HMK) = AnnM(HM(HMK)). Thus L ≤ AnnM(K) = N .
Now, let P ≤ M be a prime submodule of M such that P < N . We

have that NMK = 0 ≤ P . So K ≤ P < N . Hence KMK = 0. Thus K = 0,
a contradiction. It follows that N is a minimal prime submodule of M .

2⇒ 3 : By hypothesis.
3⇒ 1 : Suppose N < K with K an annihilator submodule. Then

AnnM(K)MK = 0 ≤ N

Since N is prime in M , then AnnM(K) ≤ N < K. By Proposition 2.2.8
AnnM(K) ∩ K = 0, hence AnnM(K) = 0. Since K is an annihilator sub-
module, by Proposition 2.2.7, K = AnnM(AnnM(K)) = AnnM(0), a contra-
diction.
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Proposition 2.2.11. Let M be projective in σ[M ] and semiprime. For N ≤
M , if N = AnnM(U) with U ≤M a uniform submodule, then N is a maximal
annihilator submodule.

Proof. Suppose that N < K with K an annihilator submodule in M . Since
N = AnnM(U) by Proposition 2.2.8, K∩U 6= 0. By hypothesis U is uniform
and thus K ∩ U ≤e U . Then

(K ∩ U)⊕ AnnM(U) ≤e U ⊕ AnnM(U)

Now, notice that if L ≤fi M , by Proposition 2.2.8 (U ⊕AnnM(U)) ∩ L 6= 0.
So 0 6= ((K ∩ U) ⊕ AnnM(U)) ∩ L ≤ K. Therefore, K ∩ L 6= 0 and K
intersects all fully invariant submodules of M . Since K∩AnnM(K) = 0 and
AnnM(K) ≤fi M , then AnnM(K) = 0. Thus, K = AnnM(AnnM(K)) =
AnnM(0), a contradiction.

Next proposition will be applied in the main theorem (Theorem 2.4.10)
of Section 2.4.

Proposition 2.2.12. Let M be projective in σ[M ] and semiprime with finite
uniform dimension. Then:

1. M has finitely many minimal prime submodules.

2. The number of annihilator submodules is finite.

3. M satisfies ACC on annihilator submodules.

Proof. 1 : Let U1, .., Un be uniform submodules of M such that U1⊕...⊕Un ≤e
M . By Propositions 2.2.10 and 2.2.11, Pi := AnnM(Ui) is a minimal prime
submodule in M for each 1 ≤ i ≤ n.

By Proposition 2.2.8, (U1 ⊕ ... ⊕ Un) ∩ AnnM(U1 ⊕ ...⊕ Un) = 0 and
P1 ∩ ... ∩ Pn ≤ AnnM(U1 ⊕ ...⊕ Un) = 0.

Now, if P is a minimal prime submodule of M , then

P1MP2M ...MPn ≤ P1 ∩ ... ∩ Pn = 0 ≤ P

Hence, there exists j such that Pj ≤ P . Thus P = Pj for some 1 ≤ j ≤ n.
2 : By Lemma 2.2.9.
3 : It is clear by 2.
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2.3 Large Primes

In this section, it will be given a generalization of prime submodules de-
fined in Definition 2.1.21. This generalization was motivated by the commu-
tative case when maximal ideals are prime and as consequence the Jacobson
Radical is a semiprime ideal.

In the general context, left sided maximal ideals are not prime but it is
well known that the Jacobson Radical is a semiprime ideal (Two sided) and
there are examples of rings R where Rad(RR) 6= Rad(RRR). So, we want
to extend Spec(Λfi(M)) in a such way that the maximal submodules are
included.

In [22, Proposition 18] it is proved the following.

Proposition 2.3.1. Suppose M is quasi-projective and let N ∈ Λfi(M).
Then N is prime in M if and only if M/N is a prime module.

In the converse of this proposition it is not used that N ∈ Λfi(M). So,
we can write the following result.

Proposition 2.3.2. Let M be quasi-projective and N ≤ M . If M/N is a
prime module then for any L,K ∈ Λfi(M) such that LMK ≤ N , it follows
that L ≤ N or K ≤ N .

Proposition 2.3.3. Let M be projective in σ[M ]. If N,L ∈ Λfi(M), then
NML ∈ Λfi(M) and hence the product −M− is well restricted in Λfi(M).
Moreover Λfi(M) is a right subquasi-quantale of Λ(M).

Proof. Let N,L ∈ Λfi(M) and g : M →M . Then

g(NML) = g
(∑

{f(N)|f ∈ HomR(M,L)}
)

=
∑
{gf(N)|f ∈ HomR(M,L)}

Since L ∈ Λfi(M), gf ∈ HomR(M,L). Hence

g(NML) ⊆ NML.

Now, if N ∈ Λfi(M) then

NMM =
∑
{f(N)|f ∈ HomR(M,M)} ⊆ N,

but N = IdM(N) ≤ NMM . Hence NMM = N . Thus Λfi(M) is a right
quasi-quantale.
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Following Definition A.1.17 we can re-write Proposition 2.3.2 as if M/N
is a prime module with M projective in σ[M ] then N is a prime relative to
Λfi(M).

Definition 2.3.4. The prime elements of Λ(M) relatives to Λfi(M) will be
called large primes of M . The set of large primes of M will be denoted by
LgSpec(M) and is called The Large Spectrum of M .

Remark 2.3.5. Let M be projective in σ[M ]. Then

1. Spec(Λfi(M)) ⊆ LgSpec(M).

2. If M is a maximal submodule of M then M∈ LgSpec(M).

3. If Rad(M) 6= M then it is semiprime in M .

4. Nil∗(M) ≤ Rad(M).

Proof. 1. It is clear.
2. Let M be a maximal submodule of M . Since M is maximal, M/M

is a simple module. Hence M/M is a prime module. By Proposition 2.3.2,
M is a large prime.

3. By definition of large prime.
4. Since every maximal submodule is a large prime submodule, Rad(M)

is semiprime inM . So Rad(M) is an intersection of elements of Spec(Λfi(M))
by Proposition 2.1.36. This implies that Nil∗(M) ≤ Rad(M).

Let M be an R-module. For each N ∈ Λfi(M), there are two distin-
guished preradicals, αMN (we have already mentioned it) and ωMN , which are
defined as follow:

αMN (L):=
∑
{f(N) | f ∈ HomR(M,L)}

and
ωMN (L):=

⋂
{f−1(N) | f ∈ HomR(L,M)},

for each L ∈ R-Mod.

Remark 2.3.6. [21, Proposition 5]. If N is a fully invariant submodule of
M, then the following conditions are satisfied.

1. The preradicals αMN and ωMN have the property that αMN (M) = N and
ωMN (M) = N respectively.
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2. The class {r ∈ R− pr | r(M) = N} is precisely the interval [αMN , ω
M
N ].

The reader can find more properties of these preradicals in [21], [22], [23]
and [20, Proposition 1.3].

Definition 2.3.7. Let M and P be R-modules such that P ≤M. Define

ηMP : R−Mod→ R−Mod

ηMP (L) :=
⋂
{f−1(P )|f ∈ HomR(L,M)},

for each L ∈ R-Mod.

It is clear that ηMP is a preradical. Also, it is clear that ηMP (M) ≤ P.
When P ∈ Λfi(M), it follows that P = ηMP (M). And in this case, ωMP = ηMP .

Remark 2.3.8. Let M be an R-module.

1. If P,Q ≤M satisfy that P ≤ Q, then ηMP � ηMQ .

2. If r ∈ R− pr and P ≤M satisfy that r(M) ≤ ηMP (M), then

r � ωMr(M) � ηMP � ωMηMP (M).

Proposition 2.3.9. Let M ∈ R-Mod and P ≤M. If ηMP is a prime preradical
i.e. ηMP ∈ Spec(R− pr) and ηMP (M) 6= M, then ηMP (M) ∈ Spec(Λfi(M)).
Moreover, ηMP (M) is the largest element in Spec(Λfi(M)) which is contained
in P.

Proof. LetN,L ∈ Λfi(M) such thatNML ≤ ηMP (M). This is, (αMN ·αML )(M) ≤
ηMP (M). By Remark 2.3.8.1 it follows that αMN ·αML � ηMP . Since ηMP is a prime
preradical, we get αMN � ηMP or αML � ηMP . Thus, N ≤ ηMP (M) or L ≤ ηMP (M).
Therefore, ηMP (M) ∈ Spec(Λfi(M)).

Finally, let K ∈ Λfi(M) be a prime submodule of M such that K ≤ P.
Then, ωMK � ηMP . Thus, applying M in the last inequality we obtain K =
ωMK (M) ≤ ηMP (M) ≤ P.

From now on, M will be assumed projective in σ[M ], in order to
have that Λfi(M) is a right subquasi-quantale of Λ(M).
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Proposition 2.3.10. Let M and P be R-modules such that P ≤ M. Then,
the following conditions are equivalent.

1. P is a large prime submodule of M.

2. ηMP is a prime preradical.

Proof. 1 ⇒ 2. From the hypothesis, it is clear that P 6= M. So, ηMP 6= 1.
Let r, s ∈ R − pr such that r · s � ηMP . Evaluating this in M and using [22,
Proposition 14 (2)], we obtain r(M)Ms(M) ≤ ηMP (M). Thus, r(M)Ms(M) ≤
ηMP (M) ≤ P. so, by hypothesis, it follows that r(M) ≤ P or s(M) ≤ P.
And by Proposition 2.3.9, ηMP (M) is the largest fully invariant submodule
of M which is contained in P. Hence, r(M) ≤ ηMP (M) or s(M) ≤ ηMP (M).
Consequently, r � ηMP or s � ηMP .

2⇒ 1. By hypothesis, ηMP is a prime preradical, so in particular P < M.
Let N,L ∈ Λfi(M) such that NML = αMN (L) ≤ P. Notice that NML =
αMN (L) = (αMN ·αML )(M). Then, αMN ·αML � ωMNML. Thus, by Remark 2.3.8.2 we
get αMN ·αML � ηMP . Since ηMP is prime, then αMN � ηMP or αML � ηMP . Applying
M we obtain N = αMN (M) ≤ ηMP (M) ≤ P or L = αML (M) ≤ ηMP (M) ≤ P.
By Remark 2.3.8.2, we conclude that r � ηMP or s � ηMP . Hence, ηMP is a
prime preradical.

Corollary 2.3.11. If P is a large prime submodule of M, then ηMP (M) is
the largest element in Spec(Λfi(M)) which is contained in P.

Proof. It follows from Propositions 2.3.9 and 2.3.10.

We have that LgSpec(M) is a topological space by Proposition A.1.19.

Proposition 2.3.12. Let M be projective in σ[M ]. Then Spec(Λfi(M)) is
a dense subspace of LgSpec(M)

Proof. Let U(N) 6= ∅ be an open set of LgSpec(M) such that

U(N) ∩ Spec(Λfi(M)) = ∅.

Thus, the elements of U(N) are not fully invariant. Let P ∈ U(N). By
Corollary 2.3.11, there exists Q ∈ Spec(Λfi(M)) such that Q ⊆ P , which is
a contradiction. Thus U(N) = ∅. So, Spec(Λfi(M)) is dense in LgSpec(M).
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2.4 The Frame of Semiprime Submodules

Given an R-module M projective in σ[M ], the large spectrum of M

LgSpec(M) = {P ∈ Λfi(M)|P is large prime in M}

is a topological space with open subsets

U(N) = {P ∈ LgSpec(M)|N * P}

with N ∈ Λfi(M). The closed subsets are given by

ν(N) = {P ∈ LgSpec(M)|N ⊆ P}

with N ∈ Λfi(M).
Let O(LgSpec(M)) be the frame of open subsets of LgSpec(M). Then

we have a morphism of
∨

-semilattices

U : Λfi(M)→ O(LgSpec(M))

given by U(N) = {P ∈ LgSpec(M) | N * P}.
This morphism has a right adjunct U∗ : O(LgSpec(M))→ Λfi(M) given

by

U∗(A) =
∑
{K ∈ Λfi(M) | U(K) ⊆ A}.

Proposition 2.4.1. Let N ∈ Λfi(M). Then (U∗ ◦ U)(N) is the largest fully
invariant submodule of M contained in

⋂
P∈V(N) P.

Proof. It follows by Proposition A.1.21.

Remark 2.4.2. Note that if {Pi}I is a family of large prime submodules of
M , then

⋂
I Pi is not necessary a fully invariant submodule of M but

⋂
I Pi

satisfies the property that for every L ∈ Λfi(M) such that LML ≤
⋂
I Pi

then L ≤
⋂
I Pi.

Proposition 2.4.3. Let µ = U∗ ◦ U be as in Proposition 2.4.1. Let N ∈
Λfi(M) then, µ(N) = N if and only if N is semiprime in M or N = M .

Proof. Suppose that µ(N) = N and let L ∈ Λfi(M) such that LML ≤ N .
We have that µ(N) ≤

⋂
P∈V(N) P , so LML ≤

⋂
P∈V(N) P . By Remark 2.4.2,
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L ≤
⋂
P∈V(N) P . Since L is a fully invariant submodule of M , by Proposition

2.4.1 L ≤ µ(N). Thus µ(N) is semiprime in M .
Now suppose that N is semiprime in M . By Proposition 2.1.36,

N =
⋂
{Q | N ≤ Q Q ∈ Spec(Λfi(M))}.

Since Spec(Λfi(M))⊆LgSpec(M), then⋂
P∈V(N)

P ⊆
⋂
{Q ∈ Spec(Λfi(M)) | N ≤ Q} = N.

This implies that N = µ(N).

Corollary 2.4.4. The closure operator µ : Λfi(M) → Λfi(M) is a multi-
plicative pre-nucleus.

Proof. By Theorem A.1.22.

Remark 2.4.5. By definition µ is a closure operator and by Corollary 2.4.4
µ is a pre-nucleus then, µ is a nucleus in Λfi(M).

Proposition 2.4.6. Let M be an R-module and define

SP (M) = {N ∈ Λfi(M) | N is semiprime } ∪ {M}.

Then SP (M) is a frame. Moreover, SP (M) ∼= O(LgSpec(M)) canonically
as frames.

Proof. By Proposition 2.4.3, Λfi(M)µ = SP (M). Since µ is a multiplicative
nucleus then SP (M) is a frame by Corollary A.1.14.

Definition 2.4.7. Let L be a lattice. An element 1 6= p ∈ L is called
∧-irreducible if whenever x ∧ y ≤ p for any x, y ∈ L then x ≤ p or y ≤ p.

Given a frame F, its points is the set

pt(F ) = {p ∈ F | p is ∧ -irreducible}

Proposition 2.4.8. Let M be an R-module. Then pt(SP (M)) = Spec(Λfi(M))
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Proof. It is clear that Spec(Λfi(M)) ⊆ pt(SP (M)). Now, let P ∈ pt(SP (M))
and N,L ∈ Λfi(M) such that NML ≤ P . By Proposition 2.4.4,

µ(N) ∩ µ(L) = µ(N ∩ L) = µ(NML) ≤ µ(P ) = P.

Since µ(N), µ(L) ∈ SP (M) then N ≤ µ(N) ≤ P or L ≤ µ(L) ≤ P .

Definition 2.4.9. Let F be a frame. It is said that F is spatial if it is
isomorphic to O(X) for some topological space X. If each quotient frame of
F is spatial, it is said that F is totally spatial .

For more information see [25] and [24].

Theorem 2.4.10. Let M be projective in σ[M ]. Suppose that for every fully
invariant submodule N ≤ M , the factor module M/N has finite uniform
dimension. Then, the frame SP (M) is totally spatial.

Proof. Let N ∈ SP (M). By [29, Lemma 9] M/N is projective in σ[M/N ].
Since N is semiprime in M then M/N is a semiprime module (Definition
2.1.34) by Proposition 2.1.36. By hypothesis M/N has finite uniform dimen-
sion, so by Proposition 2.2.12 Spec(Λfi(M/N)) has finitely many minimal
elements (P1/N), ..., (Pn/N) such that 0 = P1/N ∩ ... ∩ Pn/N .

Since Pi/N ∈ Spec(Λfi(M/N)) then M/Pi ∼= M/N
Pi/N

is a prime module.

Thus, by Proposition 2.1.23, Pi ∈ Spec(Λfi(M)) for all 1 ≤ i ≤ n. Moreover,
N = P1 ∩ ... ∩ Pn. Since this intersection is finite, we can assume that it is
irredundant. Thus by [18, Theorem 3.4], SP (M) is totally spatial.

For the definition of Krull dimension of a module M see [8].

Corollary 2.4.11. Let M be projective in σ[M ]. If M has Krull dimension,
then SP (M) is totally spatial.

Proof. If M has Krull dimension then every factor module M/N so does.
Now, if M/N has Krull dimension, by [8, Proposition 2.9] M/N has finite
uniform dimension. So by Theorem 2.4.10 SP (M) is totally spatial.

Definition 2.4.12. A module M is coatomic if every submodule is contained
in a maximal submodule of M .

Example 2.4.13. 1. Every finitely generated and every semisimple mod-
ule is coatomic.
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2. Semiperfect modules are coatomic.

3. If R is a left perfect ring, every left R-module is coatomic. (see [12])

If
Max(M) = {M < M | M is a maximal submodule },

we have that Max(M) ⊆ LgSpec(M). Notice that Max(M) is a subspace
of LgSpec(M).

Suppose that M is coatomic. Then we have the adjunction

Λfi(M)
m ..
O(Max(M))

m∗
mm

defined as
m(N) = {M ∈Max(M) | N *M},

and
m∗(A) =

∑
{K ∈ Λfi(M) | m(K) ⊆ A}.

This adjunction can be factorized as

Λfi(M)
U ..

m

""

O(LgSpec(M))
U∗

mm

I

��
O(Max(M))

m∗

bb

I∗

LL
,

where I : O(LgSpec(M))→ O(Max(M)) is given by I(A) = A ∩Max(M).
Following the proof of Proposition A.1.21, (m∗ ◦ m)(N) is the largest

fully invariant submodule contained in⋂
M∈V(N)∩Max(M)

M

Then
(m∗ ◦m)(0) =

⋂
M∈Max(M)

M = Rad(M)
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Note that the proof of Theorem A.1.22 can be applied to τ := m∗ ◦m,
so τ is a multiplicative nucleus. Hence R(M) := Λfi(M)τ is a frame by
Corollary A.1.14. Moreover, R(M) is a subframe of SP (M).

Definition 2.4.14. Let M be an R-module. M is co-semisimple if every
simple module in σ[M ] is M -injective.

If M = RR, this is the definition of a left V -ring .

The following characterization of co-semisimple modules is given in [31,
23.1].

Proposition 2.4.15. For an R-module M the following statements are equiv-
alent:

1. M is co-semisimple.

2. Any proper submodule of M is an intersection of maximal submodules.

Corollary 2.4.16. Let M be a co-semisimple module. Then Λfi(M) is a
frame.

Proof. Since M is co-semisimple then SP (M) = Λfi(M).

Following [19], an R-module M is called duo if every submodule is a
fully invariant submodule.

Corollary 2.4.17. Let M be a duo co-semisimple module then Λ(M) is a
frame.

Proof. In this case Λ(M) = Λfi(M).
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Chapter 3

Modules satisfying ACC on left
Annihilators

3.1 ACC on left Annihilators

In this section, it will be introduced the concept of left annihilator in
terms of an R-module. It will be studied the modules which satisfy ascending
chain condition (ACC) on left annihilators.

The following definition was given first in [8].

Definition 3.1.1. Let M be an R-module. We call left annihilator in M a
submodule which has the form

AX =
⋂
{Ker(f)|f ∈ X}

for some X ⊆ EndR(M).

Definition 3.1.2. Let M be an R-module and N a fully invariant submodule
of M . We define the powers of N as:

1. N0 = 0

2. N1 = N

3. Nm = NMN
m−1

We say that N is nilpotent if there exists n > 0 such that Nn = 0.

35
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Proposition 3.1.3. Let M be projective in σ[M ]. If M satisfies ACC on
left annihilators, then Z(M) is nilpotent.

Proof. Consider the descending chain

Z(M) ≥ Z(M)2 ≥ Z(M)3 ≥ ...

Then, we have the ascending chain

AnnM(Z(M)) ≤ AnnM(Z(M)2) ≤ AnnM(Z(M)3) ≤ ...

Since M satisfies ACC on left annihilators, there exists n ≥ 0 such that
AnnM(Z(M)n) = AnnM(Z(M)n+1).

Suppose that Z(M)n+2 6= 0 i.e. Z(M)2
MZ(M)n 6= 0, so

0 6= Z(M)2
MZ

n =
∑
{f(Z(M))|f : M → Z(M)}MZ(M)n

=
∑
{f(Z(M))MZ(M)n|f : M → Z(M)}

then there exists f : M → Z(M) such that f(M)MZ(M)n 6= 0. Con-
sider the set

Γ = {Ker(f)|f : M → Z(M) f(M)MZ(M)n 6= 0}

By hypothesis Γ has maximal elements, let f : M → Z(M) such that Ker(f)
is a maximal element in Γ.

Let h : M → Z(M), by [5, Proposition 2.5] Ker(h) ≤e M , so Ker(h) ∩
f(M) 6= 0 i.e. there exists 0 6= f(m) such that h(f(m)) = 0. Then Ker(f) <
Ker(h ◦ f). SinceKer(f) is a maximal element in Γ then h(f(M))MZ(M)n =
0. Thus, h(f(M))MZ(M)n = 0 for all h : M → Z(M). Hence

0 = (f(M)MZ(M))MZ(M)n = f(M)MZ(M)n+1

so, f(M) ≤ AnnM(Z(M)) = AnnM(Z(M)n), this is a contradiction. Thus
Z(M)n+2 = 0.

Corollary 3.1.4. Let M be projective in σ [M ] and S = EndR (M). If M
satisfies ACC on left annihilators, then the ideal ∆ = {f ∈ S|Ker(f) ≤e M}
is nilpotent.
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Proof. Notice that if N,L ≤M then

HomR(M,L)HomR(M,N) ≤ HomR(M,NML)

so for all k ≥ 0, HomR(M,N)k ≤ HomR(M,Nk).
Note that ∆M ≤ Z(M) and ∆ ⊆ HomR (M,∆M), so for all n ≥ 0

∆n ⊆ HomR (M,∆M)n ⊆ HomR (M,Z (M))n ⊆ HomR (M,Z (M)n)

By Proposition 3.1.3 Z(M) is nilpotent, so there exists m > 0 such that
∆m = 0. Thus ∆ is nilpotent.

Corollary 3.1.5. Let M be projective in σ [M ] and S = EndR (M). Suppose
that M satisfies ACC on left annihilators. If I is an ideal of S such that
∩f∈I ker f ≤e M , then I is nilpotent.

Proof. Since ∩f∈I ker f ≤e M , then ker f ≤e M for all f ∈ I. Thus I ≤ ∆.
By Corollary 3.1.4 we have that ∆ is nilpotent. So I is nilpotent

Corollary 3.1.6. Let M be projective in σ [M ] and S = EndR (M). If M is
retractable and satisfies ACC on left annihilators, then Zr (S) is nilpotent,
where Zr (S) is the right singular ideal of S.

Proof. We claim that Zr (S) ≤ ∆.
Let α ∈ Zr (S), then there exists an essential right ideal I of S such

that αI = 0. Hence α

(∑
g∈I

g (M)

)
= 0. Now let 0 6= N ≤ M . Since M

is retractable, then there exists a non zero morphism β : M → N . Thus
βS ∩ I 6= 0. So there exists h ∈ S such that 0 6= β ◦ h ∈ I. Hence
0 6= (β ◦ h) (M) ≤ N ∩

∑
g∈I

g (M). Thus
∑
g∈I

g (M) ≤e M which implies

Kerα ≤e M . Therefore Zr (S) ≤ ∆.
The result follows from Corollary 3.1.4.

In a ring R there are weaker concepts of nilpotency. Let us remember
one of them.

Definition 3.1.7. Let R be a ring and I a proper left ideal. It is said I is
left T -nilpotent if for any sequence a1, a2, ... ∈ I there exists n > 0 such that
a1a2 · · · an = 0
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This definition can be generalized, in our context, as follows.

Definition 3.1.8. Let M be an R-module. A proper submodule N of M is
TM -nilpotent if for every sequence f1, f2, ..., fn, ... ∈ HomR (M,N) and any
a ∈ N , there exists n ≥ 1 such that fnfn−1...f1 (a) = 0.

Remark 3.1.9. Let I be a left ideal of a ring R. Then I is left T -nilpotent
if and only if I is TR-nilpotent.

Proof. ⇒. Let f1, f2, ..., fn, ... ∈ HomR (R, I) be a sequence and a0 ∈ I.
Each fi has the form fi = ( · ai) with ai ∈ I for all i > 0. Hence, we have a
sequence a0, a1, a2, ... ∈ I. Since I is left T -nilpotent there exists n > 0 such
that a0a1 · · · an−1an = 0, but this can be seen as

( · an)( · an−1) · · · ( · a1)(a0) = 0

= fnfn−1 · · · f1(a0)

Thus I is TR-nilpotent.
⇐. It is analogous.

Proposition 3.1.10. Let M be projective in σ [M ] and retractable. Suppose
that M satisfies ACC on left annihilators. If N ≤ M is TM -nilpotent, then
N is nilpotent.

Proof. Suppose N ≤ M is TM -nilpotent. Consider the chain N ⊇ N2 ⊇
N3 ⊇ ... Then we have the ascending chain AnnM (N) ≤ AnnM (N2) ≤
AnnM (N3) ≤ ...

Since M satisfies ACC on left annihilators, there exists k ≥ 1 such that

AnnM
(
Nk
)

= AnnM
(
Nk+1

)
= AnnM

(
Nk+2

)
...

Let L = Nk. If L2 = LML 6= 0, then there exist f : M → L and a ∈ L ≤ N
such that f (a) 6= 0. Hence (Ra)M L 6= 0. If (Ra)M (LML) = 0, then Ra ≤
AnnM (L2) = AnnM (L). Contradiction. Thus (Ra)M (LML) 6= 0. Since
(Ra)M L =

∑
{f (Ra) | f : M → L}, then there exists f1 : M → L such that

f1 (Ra)M L 6= 0. So (Rf1 (a))M L 6= 0. This implies that (Rf1 (a)M L)M L 6=
0. So there exists f2 : M → L such that f2 (Rf1 (a))M L 6= 0, and then
Rf2 (f1 (a))M L 6= 0. Continuing in this way, we have thatRfnfn−1...f1 (a)M L 6=
0 for all n ≥ 1. Hence fnfn−1...f1 (a) 6= 0 for all n ≥ 1, contradiction. Hence
L2 = 0. So N is nilpotent.



3.2. Semiprime Modules satisfying ACC on left Annihilators 39

3.2 Semiprime Modules satisfying ACC on

left Annihilators

In this section it will be proved two theorems that will show some of the
semiprime module structure when these satisfy ACC on left annihilators.

One of the fundamental facts in this section is that every semiprime
module with ACC on left annihilators has finitely many minimal prime sub-
modules. With this, we will be able to make a bijective correspondence
between minimal primes and some indecomposable injective modules.

Let us start with one of the theorems mentioned.

Theorem 3.2.1. Let M be projective in σ [M ] and a semiprime module. If
M satisfies ACC on left annihilators, then:

1. M has finitely many minimal prime in M submodules.

2. If P1, P2,..., Pn are the distinct minimal prime in M submodules, then
P1∩ P2 ∩ ... ∩ Pn = 0.

3. If P ≤M is prime in M , then P is a minimal prime in M if and only
if P is an annihilator submodule.

Proof. 1. We will call ”prime annihilator” a such annihilator submodule
which is prime in M .

We shall first show that every annihilator submodule of M contains a
finite product of prime annihilators. Suppose not. By hypothesis there is
an annihilator submodule N which is maximal with respect to not contain
a finite product of prime annihilators. In particular N is not prime in M .
Thus by Proposition 2.1.36 there are fully invariant submodules L and K of
M such that N < L, N < K and LMK ≤ N . Since AnnM (N)M N =
0, then AnnM (N)M (LMK) = 0. Since M is projective in σ [M ], then
(AnnM (N)M L)

M
K = 0. Therefore K ≤ AnnM (AnnM (N)M L).

Remember that when M is semiprime AnnrM(L) = AnnM(L) for all
L ≤M . Corollary 2.2.5.

We claim that LM [AnnM (AnnM (N)M L)] ≤ N .
We have that [AnnM (N)M L]M [AnnM (AnnM (N)M L)] = 0, then σ [M ],

then AnnM (N)M (LM [AnnM (AnnM (N)M L)]) = 0. Hence

LM [AnnM (AnnM (N)M L)] ≤ AnnM (AnnM (N))
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Since N is an annihilator submodule, by Proposition 2.2.7

LM [AnnM (AnnM (N)M L)] ≤ N

Let K ′ = [AnnM (AnnM (N)M L)] then LMK
′ ≤ N and N < K ′.

In an analogous way, it can be proved that L ≤ AnnM [K ′MAnnM (N)] =
L′ and L′MK

′ ≤ N . Therefore K ′ and L′ are annihilator submodules such
that N < K ′, N < L′, and L′MK

′ ≤ N . So L′ and K ′ contain a finite
product of prime annihilators. Hence N contains a finite product of prime
annihilator. Contradiction. Thus every annihilator submodule of M contains
a finite product of prime annihilators.

Since 0 = AnnM (M), there exist prime annihilators P1, P2,..., Pn such
that (P1)M (P2)M · · ·M Pn = 0. If Q is a minimal prime in M , then (P1)M
(P2)M ... M (Pn) = 0 ≤ Q. So there exists Pj ≤ Q for some 0 ≤ j ≤
n. Then Pj = Q. Thus, the minimal prime in M submodules are some
of {P1, P2, ... , Pn}. Moreover each Pi is an annihilator submodule for all
0 ≤ i ≤ n.

2. Let P1, ..., Pn be the minimal prime in M submodules. Since P1∩ ...∩
Pn ≤ Pi for all 1 ≤ i ≤ n then [P1 ∩ P2∩, ...,∩Pn]n ≤ (P1)M (P2)M ...M (Pn) =
0. Since M is semiprime P1 ∩ P2∩, ...,∩Pn = 0.

3. By (1) each minimal prime is an annihilator submodule. The converse
is by Proposition 2.2.10.

Note that if M does not satisfy ACC on left annihilators, Theorem 3.2.1
is not true. In order to see this, consider de following example:

Example 3.2.2. Let R be a ring such that {Si}i∈I is an infinite family of
non isomorphic simple R-modules and let M =

⊕
i∈I Si. It is clear that M

is projective in σ [M ]. Now let N ≤ M such that NMN = 0. Since M is
semisimple then N = 0. Thus M is a semiprime module.

We claim that M does not satisfy ACC on left annihilators. In fact,
let L be a submodule of M , then there exists K such that M = K ⊕ L.
If π : M → K is the canonical projection, then Ker(π) = L. Thus each
submodule of M is the kernel of a morphism. Hence M does not satisfy
ACC on left annihilators. Now since Si � Sj, then Si is a minimal prime in
M . So M has infinitely many minimal prime submodules in M .

Next definition was given in [7].
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Definition 3.2.3. Let N ∈ σ[M ]. A proper fully invariant submodule K
of M is said to be associated to N if there exists 0 6= L ≤ N such that
AnnM(L′) = K for all non zero submodules L′ ≤ L.

If M is projective in σ[M ] and P ≤M is associated to N ∈ σ[M ], then
by [7, Lemma 1.16] P is prime in M .

Given N ∈ σ[M ], the set of submodules of M associated to N is denoted
by AssM(N).

Remark 3.2.4. Let M be projective in σ[M ] and semirpime. Let U ≤ M
be a uniform submodule. By Proposition 2.2.11 and Proposition 2.2.10,
AnnM(U) = P is a minimal prime in M . By [7, Proposition 4.4] AssM(U) =
{P}. Moreover AssM(U ′) = P for all 0 6= U ′ ≤ U .

Lemma 3.2.5. Let M be semiprime and projective in σ[M ]. Suppose that
M satisfies ACC on left annihilators. If P is a minimal prime in M and
AnnM (P ) = L, then P = AnnM (L′) for all 0 6= L′ ≤ L. Moreover

AssM(L̂) = AssM(L) = {P}.

Proof. By Theorem 3.2.1 P is an annihilator submodule, then

P = AnnM (AnnM (P )) = AnnM (L)

by Proposition 2.2.7. Let 0 6= L′ ≤ L and AnnM (L′) = K. Thus P =
AnnM (L) ⊆ AnnM (L′) = K. Suppose P < K. Since P is prime in M and
AnnM (K)M K = 0 ≤ P then AnnM (K) ≤ P . So AnnM (K) ≤ K. Thus
AnnM (K) = 0 by Lemma 2.2.4.

Since K is an annihilator submodule

K = AnnM (AnnM (K)) = AnnM (0) = M

Thus M = K = AnnM (L′). By Lemma 2.1.44 L′ = 0. Contradiction.
Therefore P = K = AnnM (L′).

Proposition 3.2.6. Let M be semiprime and projective in σ[M ]. Suppose
that M satisfies ACC on left annihilators. If P1, P2, ..., Pn are the minimal
prime in M submodules then {N1, N2, ...Nn} is an independent family, where
Ni = AnnM (Pi) for 1 ≤ i ≤ n.
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Proof. By induction on n. If n = 1 it is obvious.
Suppose that {N1, N2, ..., Nn−1} is an independent family. If

(N1 ⊕N2 ⊕ ...⊕Nn−1) ∩Nn 6= 0

there exists x ∈ Nn such that Rx ∼= N ′i ≤ Ni for some 1 ≤ i ≤ n − 1
by [10, 2.3.3 Projection Argument]. By Lemma 3.2.5 Pn = AnnM (Rx) =
AnnM (N ′i) = AnnM (Ni) = Pi. Contradiction. Therefore

(N1 ⊕N2 ⊕ ...⊕Nn−1) ∩Nn = 0

.

Lemma 3.2.7. Let M be projective in σ[M ] and semiprime. Suppose that
M satisfies ACC on left annihilators and P1, ..., Pn are the minimal prime
in M submodules. If Ni = AnnM(Pi) for each 1 ≤ i ≤ n then Ni is a
pseudocomplement of

⊕
j 6=i
Nj.

Proof. It is enough to prove that N1 is a pseudocomplemet of
⊕n

i=2 Ni. Let
L ≤ M such that L ∩ (

⊕n
i=2Ni) = 0 and N1 ≤ L. Since

⊕n
i=2 Ni is a

fully invariant submodule then (
⊕n

i=2Ni)ML ≤ (
⊕n

i=2Ni) ∩ L = 0. Since
NiML ≤ (

⊕n
i=2Ni)M L = 0 then

⊕n
i=2 (NiML) = 0. Hence NiML = 0 for all

2 ≤ i ≤ n. So, by Proposition 2.2.8 and Theorem 3.2.1, L ≤ AnnM(Ni) =
AnnM(AnnM(Pi)) = Pi for all 2 ≤ i ≤ n. Then L ≤

⋂n
i=2 Pi = AnnM(P1) =

N1. Thus L = N1.

Corollary 3.2.8. Let M be semiprime and projective in σ[M ]. Suppose that
M satisfies ACC on left annihilators. If P1, P2, ..., Pn are the minimal prime
in M submodules, then N̂1 ⊕ N̂2 ⊕ ...⊕ N̂n = M̂ , where Ni = AnnM (Pi) for
1 ≤ i ≤ n.

Proof. By Lemma 3.2.7
⊕n

i=1Ni ≤e M . So we have the result.

Proposition 3.2.9. Let M be semiprime and projective in σ[M ]. Suppose
that M satisfies ACC on left annihilators. If P1, P2, ..., Pn are the minimal
prime in M submodules and Ni = AnnM (Pi) has finite uniform dimension
for each 1 ≤ i ≤ n, then M has finite uniform dimension.

Proof. By Lemma 3.2.7 N1⊕N2⊕ ...⊕Nn ≤e M . Since Ni has finite uniform
dimension for each 1 ≤ i ≤ n, then M has finite uniform dimension.



3.2. Semiprime Modules satisfying ACC on left Annihilators 43

Remark 3.2.10. Let M be projective in σ[M ] and semiprime. Suppose that
M satisfies ACC on left annihilators. Note that if M has only one minimal
prime, then by Theorem 3.2.1.2 it has to be zero.

Lemma 3.2.11. Let M be semiprime and projective in σ[M ]. Suppose that
M satisfies ACC on left annihilators. If P1, P2, ..., Pn are the minimal prime
in M submodules, with n > 1 and Pi has finite uniform dimension for each
1 ≤ i ≤ n, then M has finite uniform dimension.

Proof. By Proposition 2.2.9 AnnM (Pi) = ∩
i6=j
Pj. Hence AnnM (Pi) has fi-

nite uniform dimension. So by Proposition 3.2.8 we have that M has finite
uniform dimension.

Now, we want to establish a correspondence between minimal prime
submodules of a module M and some indecomposable injective modules.
These injective modules will be torsion free for a particular torsion theory in
σ[M ]. For general concepts and results in torsion theories in σ[M ] see [32].

Definition 3.2.12. Let τ be a hereditary torsion theory in σ[M ]. A module
C ∈ σ[M ] is called τ -cocritical if C is τ -torsion free and every proper factor
module of C is τ -torsion. See [11].

Remark 3.2.13. Notice that every τ -cocritical module is uniform.

Lemma 3.2.14. Let M be an R-module. If C ∈ σ [M ] is χ (M)-cocritical,
then there are submodules C ′ ≤ C and M ′ ≤ M such that C ′ is isomorphic
to M ′.

Proof. Since C is χ (M)-cocritical, then C is χ(M)-torsion free, this implies

that HomR

(
C, M̂

)
6= 0. So there exists 0 6= f : C → M̂ . Since C is χ (M)-

cocritical and M ≤e M̂ , then there exists C ′ ≤ C such that C ′ embeds in M .
Hence, there exists M ′ ≤M such that C ′ ∼= M ′.

Remark 3.2.15. If C ∈ σ [M ] is χ (M)-cocritical, then by Lemma 3.2.14
there are C ′ ≤ C and M ′ ≤ M such that C ′ ∼= M ′. Hence M ′ is a uni-
form module, then AssM(C ′) = AssM (M ′) = {P}. Since C ′ ≤e C, then
AssM (C) = {P}.
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Remark 3.2.16. Let τg be the hereditary torsion theory generated by the
M -singular modules in σ [M ]. If M is non M -singular, then τg = χ (M). In
fact, if M is non M -singular, then τg ≤ χ (M). Now if τg < χ (M), then
there exists a χ(M)-torsion module 0 6= N such that N is τg-torsion free.

Thus HomR

(
N, M̂

)
= 0. By [32, Proposition 10.2] N is M -singular. Thus

N ∈ Tτg a contradiction. So τg = χ (M).

Let SpecMin (M) denote the set of minimal prime in M submodules and
Eτ (M) a complete set of representatives of isomorphism classes of indecom-
posable τ -torsion free injective modules in σ [M ].

Theorem 3.2.17. Let M be semiprime and projective in σ[M ]. If M sat-
isfies ACC on left annihilators and each 0 6= N ≤ M contains an uniform
submodule, then there is a bijective correspondence between Eχ(M) (M) and
SpecMin (M).

Proof. Since M is semiprime and M satisfies ACC on left annihilators then,
by [8, Proposition 3.4] M is non M -singular. Thus by Remark 3.2.16 τg =
χ (M). Let E ∈ E

χ(M)
(M). Since E is a uniform χ(M)-torsion free module

then it is χ (M)-cocritical. By Remark 3.2.15 AssM (E) = {P} with P ∈
SpecMin (M), so we define

Ψ : Eχ(M) (M)→ SpecMin (M)

as Ψ (E) = P .
We claim that Ψ is bijective. Suppose that Ψ (E1) = Ψ (E2) = P .

Since E1 and E2 are χ (M)-cocritical by Lemma 3.2.14 there exist C ′1 ≤ E1,
C ′2 ≤ E2 and M1,M2 ≤ M such that C ′1

∼= M1 and C ′2
∼= M2. Hence, by

Remark 3.2.15 AnnM (C ′1) = AnnM (M1) = P = AnnM (M2) = AnnM (C ′2).
Consider (M1 + P ) /P and (M2 + P ) /P . By [7, Proposition 2.2 and

Proposition 2.7] χ ((M1 + P ) /P ) = χ (M/P ) = χ ((M2 + P ) /P ). Since
AnnM (M1) = AnnM (M2) = P , by Lemma 2.2.4 M1∩P = 0 and M2∩P = 0.
Therefore (M1 + P ) /P ∼= M1 and (M2 + P ) /P ∼= M2. Thus χ (M1) =

χ (M/P ) = χ (M2), In particular HomR

(
M1, M̂2

)
6= 0. Since M1 and M2

are τg-cocritical, then there exists N1 ≤ M1 such that N1 ↪→ M2. Since M1

and M2 are uniform modules, M̂1
∼= N̂1

∼= M̂2. Thus E1 = Ĉ ′1
∼= M̂1

∼= M̂2
∼=

Ĉ ′2 = E2. So Ψ is injective.
Now let P ∈ SpecMin (M). Since M satisfies ACC on left annihilators,

then by Theorem 3.2.1 P = AnnM (N) for some 0 6= N ≤M . By hypothesis
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there exists a uniform module U such that U ≤ N . Thus P = AnnM (N) ≤
AnnM (U). By Proposition 2.2.11 and Proposition 2.2.10 P = AnnM (U).

Moreover AssM (U) = {P} = AssM

(
Û
)

. Since M is χ(M)-torsion free and

U is uniform, then Û ∈ Eχ(M) (M). Thus Ψ
(
Û
)

= P .

Corollary 3.2.18. Let R be a semiprime ring satisfying ACC on left an-
nihilators. Suppose that each left ideal 0 6= I contains a uniform left ideal.
Then there is a bijective correspondence between the set of representatives of
isomorphism classes of indecomposable non singular injective R-modules and
the set of minimal prime ideals of R.

Note that in last Corollary the condition that every non zero left ideal
contains a uniform left ideal is necessary. In order to see this, consider the
following example:

Example 3.2.19. Let R be a ring such that R is a right Ore domain but not
left (see [28, pag. 53]). In [11] is proved that there are not χ (R)-cocritical
left R-modules. Since R is a domain, R is non singular. Thus χ (R) = τg.
Moreover R is a prime ring and R clearly satisfies ACC on left annihilators.
On the other hand if U is a uniform τg-torsion free module, then U is τg-
cocritical, but this is not possible. Thus there are no uniform τg-torsion free
modules. Hence Eτg (R) = ∅. Since R is a domain, SpecMin (R) = {0}.
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Chapter 4

Goldie Modules

This chapter is the main part of this thesis. Here, it will be presented
the concept of Goldie module as a generalization of Goldie ring.

In the first section we will develop the tools about semiprime Goldie
modules in order to prove a generalization of Goldie’s Theorem.

Second section is concerned to study the structure of semiprime Goldie
modules.

In this two section, it will be applied the previous results about semiprime
modules and modules which satisfy ACC on left annihilators.

4.1 Semiprime Goldie Modules

Recall that an element c in a ring R is left regular (resp. right regular)
if whenever ca = 0 with a ∈ R implies a = 0 (resp. if ac = 0 implies a = 0).
An element c ∈ R is said to be regular if it is both left and right regular.

Since this section is concerned to show some generalizations of Goldie’s
Theorem, I include it here for reader’s convenience. This version of Goldie’s
Theorem was taken from [16, Theorem 11.13].

Definition 4.1.1. Let R be a ring. It is said that R is a left Goldie ring if
R has finite uniform dimension and has ACC on left annihilators.

Theorem 4.1.2 (Goldie’s Theorem). For any ring R the following are equiv-
alent:

1. R has a semisimple classical left quotient ring.

47
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2. R is semiprime left Goldie.

3. R is semiprime with finite uniform dimension and has ACC on left
annihilators of elements.

4. R is semiprime, left nonsingular with finite uniform dimension.

5. For any left ideal I of R, I ≤e R if and only if I contains a regular
element.

Notice that if c ∈ R is a left regular element and I ≤ R is a left ideal
such that if c ∈ I, then there exists a monomorphism from Rc ∼= R to I.

The following definition was taken from [27].

Definition 4.1.3. Let M be an R-module. M is essentially compressible if
for every essential submodule N ≤e M there exists a monomorphism M →
N .

Lemma 4.1.4. Suppose that M is projective in σ[M ]. If N ∈ σ[M ] is
essentially compressible, then AnnM(N) is a semiprime submodule of M .

Proof. Let L ≤ M be a fully invariant submodule of M such that LML ≤
AnnM(N). Put

Γ = {K ≤ N |LMK = 0}

Then Γ 6= ∅ and by Zorn’s Lemma there exists a maximal independent family
{Ki}I in Γ. Notice that

⊕
I Ki ∈ Γ because

LM
⊕
I

Ki =
⊕
I

LMKi = 0

Let 0 6= A ≤ N be a submodule. Since (LML)MA = 0 then LMA ∈ Γ.
If LMA = 0 then A ∈ Γ and A∩

⊕
I Ki 6= 0 because {Ki}I is a maximal

independent family in Γ.
Now, if LMA 6= 0 we also have (LMA)∩

⊕
I Ki 6= 0 and (LMA)∩

⊕
I Ki ≤

A ∩
⊕

I Ki. Thus
⊕

I Ki ≤e N .
By hypothesis there exists a monomorphism θ : N →

⊕
I Ki. Then

θ(LMN) ≤ LM
⊕
I

Ki = 0

and hence LMN = 0. Thus L ≤ AnnM(N).
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Proposition 4.1.5. Let M be projective in σ[M ]. If N ∈ σ[M ] is an M-
singular module, then Ker(f) ≤e M for all f ∈ HomR(M,N).

Proof. Let f ∈ HomR(M,N). Since N is M -singular, there exists an exact
sequence

0 // K i // L π // N // 0

in σ[M ] with K ≤e L. Since M is projective in σ[M ], there exists f̂ : M → L
such that πf̂ = f :

M

f
��

f̂

~~
L

π // N // 0

As K ≤e L, then f̂−1(K) ≤e M . Then

f(f̂−1(K)) = π(f̂(f̂−1(K))) ≤ π(K) = 0.

Therefore, f̂−1(K) ≤ Ker(f) and hence Ker(f) ≤e M .

Proposition 4.1.6. Let M be projective in σ[M ]. If M is essentially com-
pressible then M is non M-singular.

Proof. Suppose Z(M) 6= 0. If Z(M) ≤e M , then there exists a monomor-
phism θ : M → Z(M), by Proposition 4.1.5 Kerθ ≤e M , a contradiction.
Therefore Z(M) has a pseudocomplement K in M and thus Z(M)⊕K ≤e
M . Hence, there exists a monomorphism θ : M → Z(M)⊕K. Let π :
Z(M) ⊕K → Z(M) be the canonical projection, then Ker(πθ) ≤e M and
so Ker(πθ) = θ−1(Kerπ) = θ−1(K) ≤e M . But Z(M) ∩ θ−1(K) = 0, a
contradiction. Thus Z(M) = 0.

Lemma 4.1.7. Let M be an R-module with finite uniform dimension. Then,
for every monomorphism f : M →M , Im(f) ≤e M .

Proof. Let f : M →M be a monomrfism. If the uniform dimension of M is
n, (Udim(M) = n) and there exists K ≤ M such that f(M) ∩K = 0, then
Udim(f(M)⊕K) ≤ n+ 1, a contradiction.

Next definition is the principal concept in this chapter

Definition 4.1.8. LetM be anR-module. We say thatM is a Goldie module
if it satisfies ACC on left annihilators and has finite uniform dimension.
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Example 4.1.9. • Every left Goldie ring is a Goldie module over itself.

• Every finite direct sum of simple modules is a Goldie module.

• Every noetherian module is a Goldie module.

Now, it will be presented a Goldie’s Theorem version in the context of
σ[M ].

Theorem 4.1.10. Let M be projective in σ[M ] with finite uniform dimen-
sion. The following conditions are equivalent:

1. M is semiprime and non M-singular

2. M is semiprime and satisfies ACC on left annihilators

3. Let N ≤M , then N ≤e M if and only if there exists a monomorphism
f : M → N .

Proof. 1⇒ 2 : Since M is non M -singular and has finite uniform dimension
then, by [8, Proposition 3.6] M satisfies ACC left on annihilators. This proves
2.

2 ⇒ 3 : Let N ≤ M . Suppose that N ≤e M . Since M is semiprime
with uniform dimension and satisfies ACC on left annihilators, then M is
essentially compressible by [8, Proposition 3.13]. Now, if f : M → N is a
monomorphism then N ≤e M by Lemma 4.1.7.

3⇒ 1 : It follows from Lemma 4.1.4 and Proposition 4.1.6.

Remark 4.1.11. In [8, Proposition 3.13] M should be a generator of σ[M ],
but by Lemma 2.1.44 this hypothesis is not necessary.

Definition 4.1.12. Let M be an R-module. A submodule V ≤M is mono-
form if whenever f : V →M then f = 0 or f is a monomorphism.

M has enough monoforms if every submodule ofM contains a monoform.

Corollary 4.1.13. Let M be projective in σ[M ] and semiprime. Then, M
has finite uniform dimension and enough monoforms if and only if M is a
Goldie module.

Proof. ⇒: Since M is semiprime with finite uniform dimension and enough
monoforms, then M is non M -singular by [8, Proposition 3.8] By Theorem
4.1.10, M is a Goldie module.
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⇐: If M is a Goldie module, M has finite uniform dimension and by
Theorem 4.1.10 M is non M -singular. Hence the uniform submodules of M
are monoform. Since M has finite uniform dimension every submodule of M
contains a uniform, hence every submodule contains a monoform.

For the definition of M -Gabriel dimension see [7] section 4.

Corollary 4.1.14. Let M be projective in σ[M ] with finite uniform dimen-
sion. If M is a semiprime module and has M-Gabriel dimension, then M is
a Goldie module.

Proof. Let N ≤ M . Since M has M -Gabriel dimension, by [7, Lemma 4.2],
N contains a cocritical submodule L. Then L is monoform. By Corollary
4.1.13 M is a Goldie module.

For definition of Krull dimension of modules see [8]

Corollary 4.1.15. Let M be projective in σ[M ] and semiprime with Krull
dimension. Then M is a semiprime Goldie module.

Proof. Since M has Krull dimension, M has finite uniform dimension and
enough monoforms. By Proposition 4.1.13 M is a Goldie module.

Next propositions give some descriptions of the M -singular submodule.

Proposition 4.1.16. Suppose that M is progenerator of σ[M ]. Let N ∈
σ[M ], then

Z(N) =
∑
{f(M)|f : M → N ker(f) ≤e M}.

Proof. By definition of M -singular module, it is clear that
∑
{f(M)|f : M →

N ker(f) ≤e M} ≤ Z(N). Now, let n ∈ Z(N) and consider Rn ≤ Z(N).
Since Rn ∈ σ[M ] there exists a natural number t and an epimorphism ρ :
M t → Rn. Suppose that (m1, ..,mt) is such that ρ(m1, ...,mt) = n. If ji :
M → M t are the inclusions (i = 1, ..., t), then by Proposition 4.1.5 Ker(ρ ◦
ji) ≤e M . Thus, n =

∑t
i=1 ρ ◦ ji(mi) ∈

∑
{f(M)|f : M → N ker(f) ≤e

M}.

Remark 4.1.17. Let M be an R-module and consider τg ∈M − tors. If M
is non M -singular, by Remark 3.2.13 χ(M) = τg. Let tτg be the preradical
associated to τg. Then

tτg(N) =
∑
{S ≤ N |S ∈ Tτg} =

∑
{S ≤ N |S is M − singular} = Z(N).
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Proposition 4.1.18. Suppose M is progenerator of σ[M ]. If M is semiprime
Goldie, then

Z(N) =
∑

f(M)

where the sum is over the f : M → N such that there exists a monomorphism
α ∈ EndR(M) with α(M) ≤e M and fα = 0.

Proof. Let N ∈ σ[M ]. By Proposition 4.1.16

Z(N) =
∑
{f(M)|f : M → N ker(f) ≤e M}.

If f : M → N with Ker(f) ≤e M , by Theorem 4.1.10 there exists a
monomorphism α : M → Ker(f). We have that fα = 0 and by Lemma
4.1.7 α(M) ≤e (M).

Let f : M → N be such that there exists α : M →M with fα = 0 and
α(M) ≤e (M). Then α(M) ≤ Ker(f). Therefore Ker(f) ≤e (M).

Remark 4.1.19. Let R be a ring such that R-Mod has an infinite set of
non-isomorphic simples modules. Consider M =

⊕
I Si, I an infinite set,

such that Si is a simple module for all i ∈ I and with Si � Sj if i 6= j.
This module does not have finite uniform dimension and, in M -tors, τg = χ.
Then, if N ∈ σ[M ]

tτg(N) = Z(N) =
∑

f(M)

where the sum is over the f : M → N such that there exists a monomorphism
α ∈ EndR(M) with α(M) ≤e M and fα = 0.

Some authors have studied generalizations of Goldie’s Theorem in the
context of modules. They have used different methods and made different
assumptions. For example, see [30] and [32].

Now, I want to unify these different versions. So, let us give some
definitions used by the other authors.

The following definition appears in [2].

Definition 4.1.20. A module M is weakly compressible if for any nonzero
submodule N of M , there exists f : M → N such that f ◦ f 6= 0.

Remark 4.1.21. Notice that if M is weakly compressible then M is a
semiprime module. The converse holds if M is projective in σ[M ].

Next definition was taken from [13].
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Definition 4.1.22. A moduleM is a semiprojective module if I = Hom(M, IM)
for any cyclic right ideal I of EndR(M).

For other characterizations of semiprojective modules see [31].

Proposition 4.1.23. Let M be projective in σ[M ] and retractable. Then,
S := EndR(M) is semiprime if and only if M is semiprime.

Proof. ⇒: Corollary 2.1.43.
⇐: If M is semiprime, since M is projective in σ[M ] then M is weakly

compressible and semiprojective. Then, by [13, Theorem 2.6] S is semiprime.

Lemma 4.1.24. Let M be projective in σ[M ] and retractable. M is non
M-singular if and only if HomR(M/N,M) = 0 for all N ≤e M .

Proof. ⇒: If N ≤e M then M/N is M -singular, then HomR(M/N,M) = 0.
⇐: Suppose Z(M) 6= 0. Since M is retractable there exists 0 6= f :

M → Z(M). By Proposition 4.1.7 Ker(f) ≤e M , so there exists a non zero
morphism form M/Ker(f)→M .

For a retractable R-module M , [32, 11.6] gives necessary and sufficient

conditions in order to T := EndR(M̂) being semisimple, left artinian, and be-
ing the classical left quotient ring of S = EndR(M). Also, in [13, Corollary
2.7], the authors give necessary and sufficient conditions for a semiprojec-
tive module M in order to S is a semiprime right Goldie ring. We give an
extension of these results.

Theorem 4.1.25. Let M be projective in σ[M ], S = EndR(M) and T =

EndR(M̂). The following conditions are equivalent:

1. M is a semiprime Goldie module.

2. T is semisimple right artinian and is the classical right quotient ring
of S.

3. S is a semiprime right Goldie ring.

4. M is weakly compressible with finite uniform dimension, and for all
N ≤e M , HomR(M/N,M) = 0 .
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Proof. 1 ⇒ 2 : By Proposition 4.1.23, S is a semiprime ring. Since M is
a Goldie module, then M is non M -singular with finite uniform dimension,
hence by [31, Proposition 11.6], T is right semisimple and is the classical
right quotient ring of S.

2⇒ 3 : By [16, Theorem 11.13], S is a semiprime right Goldie ring .
3⇒ 4 : By [13, Corollary 2.7].
4 ⇒ 1 : Since M is weakly compressible then M is semiprime. By

Lemma 4.1.24 M is non M -singular. Thus, by Theorem 4.1.10 M is a Goldie
module.

Corollary 4.1.26. Let M be projective in σ[M ], S = EndR(M) and T =

EndR(M̂). The following conditions are equivalent:

1. M is a prime Goldie module.

2. T is simple right artinian and is the classical right quotient ring of S.

3. S is a prime right Goldie ring.

4. Given nonzero submodules N , K of M there exists a morphism f :
M → N such that K * Ker(f). M has finite uniform dimension and
for all N ≤e M , Hom(M/N,M) = 0.

Proof. 1 ⇒ 2 : By Proposition 4.1.25, S is a semiprime ring and T is right
semisimple and the classical right quotient ring of S. Let 0 6= I ≤ T be
an ideal. Since T is semisimple, there exits an ideal J ≤ T such that T =
I ⊕ J . Put M1 = IM̂ and M2 = JM̂ . Then M1 and M2 are fully invariant
submodules of M̂ and M1 ∩ M2 = 0 since I ∩ J = 0. Consider M1 ∩ M
and M2 ∩M . If f ∈ S, then there exists f̂ ∈ T such that f = f̂ |M . Let
x ∈ M1 ∩M . Then f(x) = f̂(x) ∈ M1 ∩M since M1 is a fully invariant

submodule of M̂ . Thus M1 ∩M is a fully invariant submodule of M . In the
same way, M2 ∩M is fully invariant in M . Since (M1 ∩M)∩ (M2 ∩M) = 0,
then (M1 ∩M)M(M2 ∩M) = 0. Hence M1 ∩M = 0 or M2 ∩M = 0 because

M is prime. On the other hand, M ≤e M̂ and so M1 = 0 or M2 = 0. Since
0 6= I, then M2 = 0. Thus J = 0, and it follows that T is a simple ring.

2⇒ 3 : By [16, Corollary 11.16], S is a prime right Goldie ring.
3 ⇒ 4 : Let N , K be nonzero submodules of M , if K ⊆ Ker(f) for all

f : M → N then 0 = HomR(M,N)Hom(M,K) ≤ S. Then HomR(M,N) =
0 or HomR(M,K) = 0. By retractability, N = 0 or K = 0, a contradiction.

4⇒ 1 : It is clear.
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4.2 On the Structure of Goldie Modules

In this section will be proved some results about the structure of semiprime
Goldie modules. In fact, many assertions concern to give decompositions of
the M -injective hull of a semiprime Goldie module M .

For a good develop of the theory in this section we need to do the
following convention:

Notation: Let X be an R-module and K ∈ σ[X]. We will denote by
E[X](K) the injective hull of K in σ[X]. When X = K we write E[X](X) =

X̂.
Since a Goldie module satisfies ACC on left annihilators, let us start

with some consequences of the results in Chapter 3.

Theorem 4.2.1. Let M be semiprime and projective in σ[M ]. Suppose that
M is a Goldie Module and P1, P2, ..., Pn are the minimal prime in M sub-
modules. If Ni = AnnM (Pi) for 1 ≤ i ≤ n, then there exist indecomposable

injective modules E1, E2, ... , En such that M̂ ∼= Ek1
1 ⊕ Ek2

2 ⊕ ...⊕ Ekn
n and

AssM (Ei) = {Pi}.

Proof. Since Ni has finite uniform dimension, then there are uniform sub-
modules Ui1 , Ui2 , ... , Uiki of Ni, such that Ui1 ⊕Ui2 ⊕ ...⊕Uiki ≤e Ni. Thus

E[M ](Ui1) ⊕ E[M ](Ui2) ⊕ ... ⊕ E[M ](Uiki ) = E[M ](Ni). Now by Lemma 3.2.5

AnnM
(
Uij
)

= Pi for all 1 ≤ j ≤ ki. Thus AssM
(
Uij
)

= AssM
(
E[M ](Uij)

)
=

{Pi} for all 1 ≤ j ≤ ki. Hence, by Theorem 3.2.17 Ei = E[M ](Ui1)
∼=

E[M ](Ui2)
∼= .... ∼= E[M ](Uiki ). So E[M ](Ni) ∼= Eki

i for 1 ≤ i ≤ n. Therefore,

by Corollary 3.2.8 M̂ ∼= Ek1
1 ⊕ Ek2

2 ⊕ ...⊕ Ekn
n .

Notice that Ei � Ej for i 6= j.

Proposition 4.2.2. Let M be semiprime and projective in σ[M ]. Suppose
that M is a Goldie Module and P1, P2, ..., Pn are the minimal prime in M
submodules, then E[M ](Ni) is a fully invariant submodule of M̂ where Ni =
AnnM (Pi) for 1 ≤ i ≤ n.

Proof. We claim that HomR

(
E[M ](Ni), E

[M ](Nj)
)

= 0 if i 6= j. By the proof

of Theorem 4.2.4 we have that E[M ](Ui1) ⊕ E[M ](Ui2) ⊕ ... ⊕ E[M ](Uiki ) =

E[M ](Ni) where Ui1 , Ui2 , ... , Uiki are uniform submodules of Ni; analogously

E[M ](Uj1)⊕E[M ](Uj2)⊕ ...⊕E[M ](Ujkj ) = E[M ](Nj) where Uj1 , Uij2 , ... , Ujkj
are uniform submodules of Nj. Let 0 6= f ∈ HomR

(
E[M ](Ni), E

[M ](Nj)
)
,
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then there exist ir and jt such that the restriction f |E[M ](Uir ) : E[M ](Uir) →
E[M ](Ujt) is non-zero.

Since M is a semiprime Goldie module, it is non M -singular, so M̂
is non M -singular. This implies that f |E[M ](Uir ) is a monomorphism, so

AssM
(
E[M ](Uir)

)
= AssM

(
E[M ](Ujt)

)
. But

AssM
(
E[M ](Uir)

)
= AssM

(
E[M ](Ni)

)
= Pi

and
AssM

(
E[M ](Ujt)

)
= AssM

(
E[M ](Nj)

)
= Pj

Contradiction. Thus HomR

(
E[M ](Ni), E

[M ](Nj)
)

= 0.

Now let g : M̂ → M̂ , by Corollary 3.2.8 M̂ = E[M ](N1)⊕ ...⊕E[M ](Nn).
SinceHomR

(
E[M ](Ni), E

[M ](Nj)
)

= 0 for i 6= j, then g
(
E[M ](Ni)

)
≤ E[M ](Ni).

Thus E[M ](Ni) is a fully invariant submodule of M̂ .

Theorem 4.2.3. Let M be projective in σ[M ] and a semiprime module.
Suppose that M satisfies ACC on left annihilators. If P1, P2, ..., Pn are the
minimal prime in M submodules then the following conditions are equivalent:

1. M is a Goldie module.

2. Ni = AnnM (Pi) has finite uniform dimension for all 1 ≤ i ≤ n.

Proof. 1⇒ 2. Since M is a Goldie module, M has finite uniform dimension.
So, every Ni has finite uniform dimension.

2⇒ 1. By Proposition 3.2.9, M has finite uniform dimension. Thus M
is a Goldie module.

Corollary 4.2.4. Let R be a semiprime ring such that R satisfies ACC on
left annihilators. If P1, P2, ..., Pn are the minimal prime ideals of R, then the
following conditions are equivalent:

1. R is a left Goldie ring.

2. AnnR (Pi) has finite uniform dimension for each 1 ≤ i ≤ n.

Corollary 4.2.5. Let R be a semiprime ring such that R satisfies ACC on
left annihilators. If P1, P2, ..., Pn are the minimal prime ideals of R, with
n > 1 then the following conditions are equivalent:
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1. R is a left Goldie ring.

2. Pi has finite uniform dimension for each 1 ≤ i ≤ n.

Proof. 1⇒ 2. It is clear.
2 ⇒ 1. By Lemma 3.2.11 R has finite uniform dimension. Thus R is a

left Goldie ring.

Let us prove some lemmas in order to give an other decomposition of
M̂ in terms of factor modules of M .

Lemma 4.2.6. Let M be projective in σ[M ] and semiprime. Suppose that
M satisfies ACC on left annihilators and P1, ..., Pn are the minimal prime
in M submodules. If Ni = AnnM(Pi) for each 1 ≤ i ≤ n then Pi is a
pseudocomplement of Ni which contains

⊕
j 6=i
Nj for all 1 ≤ i ≤ n. Moreover⊕

j 6=i
Nj ≤e Pi for all 1 ≤ i ≤ n.

Proof. Fix 1 ≤ i ≤ n. Let L ≤ M such that Pi ≤ L and L ∩ Ni = 0.
Since Ni is a fully invariant submodule of M then NiML ≤ Ni ∩ L = 0. So
L ≤ AnnM(Ni) = AnnM(AnnM(Pi)) = Pi. Thus L = Pi.

Now by Proposition 2.2.9 we have that Ni = AnnM (Pi) = ∩
i6=j
Pj. Hence

Nj ≤ Pi for all j 6= i. Then
⊕
j 6=i
Nj ≤ Pi and by Lemma 4.2.1,

⊕
j 6=i
Nj ≤e Pi.

Lemma 4.2.7. Let M be projective in σ[M ] and semiprime. Suppose that
M satisfies ACC on annihilators and P1, P2, ..., Pn are the minimal prime in
M submodules. If Ni = AnnM(Pi) for 1 ≤ i ≤ n, then Pi +Ni ≤e M for all
1 ≤ i ≤ n.

Proof. By Lemmas 3.2.7 and 4.2.6, Ni and Pi are pseudocomplements of each
other for all 1 ≤ i ≤ n, thus Ni + Pi = Ni ⊕ Pi ≤e M for all 1 ≤ i ≤ n.

Lemma 4.2.8. Let M be projective in σ[M ] and semiprime. Suppose that
M satisfies ACC on left annihilators and P1, P2, ..., Pn are the minimal prime
in M submodules. If Ni = AnnM (Pi) for 1 ≤ i ≤ n, then

Pi = M ∩
⊕
j 6=i

E[M ](Nj)

for all 1 ≤ i ≤ n.
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Proof. By Corollary 3.2.8 M̂ = E[M ](N1) ⊕ ... ⊕ E[M ](Nn). By Lemma

4.2.7, M̂ = E[M ](Pi) ⊕ E[M ](Ni) for each 1 ≤ i ≤ n, moreover E[M ](Pi) =⊕
j 6=iE

[M ](Nj) by Lemma 4.2.6.

We have that Ni ∩ (M ∩ E[M ](Pi)) = Ni ∩ E[M ](Pi) = 0, since Pi is
pseudocomplement of Ni then Pi = M∩E[M ](Pi). Thus Pi = M∩

⊕
j 6=i
E[M ](Nj)

for all 1 ≤ i ≤ n.

Proposition 4.2.9. Let M be projective in σ[M ] and semiprime. Suppose
that M satisfies ACC on annihilators and P1, P2, ..., Pn are the minimal prime
in M submodules. If Ni = AnnM (Pi) for 1 ≤ i ≤ n, then the morphism

Ψ : M →M/P1 ⊕M/P2 ⊕ ...⊕M/Pn

given by Ψ (m) = (m+ P1,m+ P2,....,m+ Pn) is a monomorphism and

ImΨ ≤e
n⊕
i=1

M/Pi.

Proof. By Corollary 2.1.38 we have that,
n
∩
i=1
Pi = 0. Thus Ψ is a monomor-

phism. Now let 0 6= (m1 + P1,m2 + P2,....,mn + Pn) ∈
n⊕
i=1

M/Pi. By Lemma

4.2.8,
n⊕
i=1

(
Pi + ∩

i6=j
Pj

)
≤e Mn. So there exists r ∈ R such that

0 6= r (m1,m2,....,mn) ∈
n⊕
i=1

(
Pi + ∩

i6=j
Pj

)
Hence rmi ∈ Pi + ∩

i6=j
Pj for 1 ≤ i ≤ n. Thus there exist xi ∈ Pi and

yi ∈ ∩
i6=j
Pj such that rmi = xi + yi for every 1 ≤ i ≤ n. We claim that

r (m1 + P1,m2 + P2,....,mn + Pn) ∈ ImΨ. In fact let m = y1 + y2 + ... + yn,
then

Ψ (m) = (y1 + y2 + ...+ yn + P1, ...., y1 + y2 + ...+ yn + Pn)

= (y1 + P1, ...., yn + Pn) = (rm1 − x1 + P1, ...., rmn − xn + Pn)

= r (m1 + P1, ....,mn + Pn)
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Corollary 4.2.10. Let M be projective in σ[M ] and semiprime. Suppose
that M satisfies ACC on left annihilators and P1, P2, ..., Pn are the minimal
prime in M submodules, then:

1. M̂ ∼= E[M ](M/P1)⊕ E[M ](M/P2)⊕ ...⊕ E[M ](M/Pn).

2. M/Pi has finite uniform dimension for all 0 ≤ i ≤ n, if M is a Goldie
module.

Proof. 1. By Proposition 4.2.9 Ψ is a monomorphism and ImΨ ≤e
n⊕
i=1

M/Pi.

Thus we have the result.
2. Since M is a Goldie module, then M has finite uniform dimension.

By (1 ) we have that M/Pi has finite uniform dimension for all 0 ≤ i ≤ n.

To prove that a module is a Goldie module, with the last corollary it
is enough to prove that every factor module given by a minimal prime is a
Goldie module.

Proposition 4.2.11. Let M be projective in σ[M ] and semiprime. Suppose
that M has finitely many minimal prime submodules P1, P2, ..., Pn. Then M
is a Goldie module if and only if each M/Pi is a Goldie module.

Proof. ⇒. By Corollary 4.2.10.2 if M is a Goldie module then each quotient
M/Pi has finite uniform dimension. Notice that by Proposition 2.2.9

Pi ≤ AnnM(P1 ∩ ... ∩ Pi−1 ∩ Pi+1 ∩ ... ∩ Pn)

Since M has finite uniform dimension, there exists a uniform submodule Ui
of P1 ∩ ...∩ Pi−1 ∩ Pi+1 ∩ ...∩ Pn. So Pi ≤ AnnM(Ui). By Proposition 2.2.11
and Proposition 2.2.10, Pi = AnnM(Ui). Then, there exists a monomorphism
M/Pi → Ui

X and since Ui is non M -singular, then M/Pi is non M -singular.
Thus M/Pi is non (M/Pi)-singular. Since M/Pi is a prime module, by The-
orem 4.1.20 M/Pi is a Goldie module.

⇐. By Corollary 2.1.38 there exists a monomorphism M →
⊕t

i=1 M/Pi.
Since each M/Pi has finite uniform dimension then M has finite uniform
dimension.

Let 0 6= N be a submodule of M . Since there exists a monomorphism
M →

⊕
M/Pi then there exists 1 ≤ i ≤ t and submodules 0 6= K ≤ M/Pi

and 0 6= N ′ ≤ N such that K ∼= N ′. We have that M/Pi is a Goldie module,
thus it has enough monoforms. Hence N ′ has a monoform submodule, that
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is M has enough monoforms, and so by Corollary 4.1.13, M is a Goldie
module.

Lemma 4.2.12. Let M be projective in σ[M ]. If M is a semiprime Goldie
module then so is Mn for all n > 0.

Proof. We have that σ[M ] = σ[Mn]. Then Mn is projective in σ[Mn]. Since
M has finite uniform dimension then so does Mn . By Theorem 4.1.10 M is
essentially compressible, then Mn is essentially compressible by [27, Propo-
sition 1.2]. Thus by Lemma 4.1.7 and Theorem 4.1.10 Mn is a semiprime
Goldie module.

Corollary 4.2.13. Let R be a ring. If R is a semiprime left Goldie ring
then Mn(R) is a semiprime left Goldie ring for all n > 0.

Proof. By Lemma 4.2.12, Rn is a semiprime Goldie module for all n > 0. By
Theorem 4.1.25, EndR(Rn) ∼= Mn(R)op is a semiprime right Goldie ring.

Proposition 4.2.14. Let M be projective in σ[M ]. Suppose that M has
nonzero socle. If M is a prime module and satisfies ACC on left annihilators
then M is semisimple artinian and FI-simple.

Proof. Let 0 6= m ∈ M . Since Soc(M) 6= 0 and M is a prime module then
0 6= Soc(M)MRm ⊆ Soc(M) ∩ Rm. Hence Soc(M) ≤e M . Let U1 be a
minimal submodule of M . By Corollary 2.1.46 U1 is a direct summand, so
M = U1 ⊕ V1. If 0 6= V1, since Soc(M) ≤e M , then there exists a minimal
submodule U2 ≤ V1. Then M = U1 ⊕ U2 ⊕ V2. If V2 6= 0 there exists a
minimal submodule U3 ≤ V3 such that M = U1⊕U2⊕U3⊕ V3. Following in
this way, we get an ascending chain

U1 ≤ U1 ⊕ U2 ≤ U1 ⊕ U2 ⊕ U3 ≤ ...

Notice that U1 ⊕ ...⊕ Ui = Kerf where f is the endomorphism of M given
by

M →M/(U1 ⊕ ...⊕ Ui) ∼= Vi ↪→M

Thus, the last chain is an ascending chain of annihilators, so it must stop in
a finite step. Then M is semisimple artinian.

Suppose that M = U1 ⊕ ...⊕Un. If HomR(Ui, Uj) = 0 then UiMUj = 0,
but M is prime. Thus HomR(Ui, Uj) 6= 0, so Ui ∼= Uj 1 ≤ i, j ≤ n.
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Corollary 4.2.15. Let M be projective in σ[M ]. Suppose M has essential
socle. If M is a semiprime Goldie module then M is semisimple artinian.

Proof. By Proposition 4.2.9 there exists an essential monomorphism Ψ :
M → M/P1 ⊕ · · · ⊕M/Pn where Pi are the minimal prime in M submod-
ules. Hence each M/Pi has nonzero socle and by Proposition 4.2.11 M/Pi is
a Goldie module. Thus M/Pi is semisimple artinian and FI-simple for all
1 ≤ i ≤ n by Proposition 4.2.14. Then M ∼= M/P1 ⊕ · · · ⊕M/Pn and hence
semisimple artinian.

Example 4.2.16. In Z−Mod, a projective module M in σ[M ] is a semiprime
Goldie module if and only if M is semisimple artinian or M is free of finite
rank.

Proof. It is clear that a semisimple artinian module M is projective in σ[M ]
and a semiprime Goldie module and, by Lemma 4.2.12, every free module
of finite rank is a semiprime Goldie module. Now, suppose that ZM is a
semiprime Goldie module and projective in σ[M ]. Recall that in Z-Mod an
indecomposable injective module is isomorphic to Q or Zp∞ for some prime
p.

Let U be an uniform submodule ofM . By definition E[M ](U) = trM(E[Z](U)).
Suppose E[Z](U) ∼= Q, then E[M ](U) ≤ Q. Since Q is FI-simple then

E[M ](U) = Q. This implies that Q ↪→ M̂ ∈ σ[M ]. Hence σ[M ] = Z−Mod.
Since M is projective in σ[M ] = Z−Mod then M is a free module and since
M has finite uniform dimension then it has finite rank.

Let
⊕n

i=1 Ui ≤e M with Ui uniform. If one Ui is a torsion free group
then M is free because above. So, we can suppose that every Ui is a torsion
group. Then, M has essential socle. By Corollary 4.2.15 M is semisimple
artinian.

Proposition 4.2.17. Let M be projective in σ[M ] and semiprime. Suppose
that M is a Goldie module and P1, P2, ..., Pn are the minimal prime in M
submodules, then E[M ](Ni) ∼= E[M ](M/Pi) where Ni = AnnM(Pi). Moreover,
M/Pi contains an essential submodule isomorphic to Ni.

Proof. By [7, Proposition 4.5], AssM(M/Pi) = {Pi}. By Corollary 4.2.10.1

M̂ ∼= E[M ](M/P1)⊕ E[M ](M/P2)⊕ ...⊕ E[M ](M/Pn). Then, following the
proof of Theorem 4.2.1 there exist indecomposable injective modules F1,..,Fn
in σ[M ] and l1, ..., ln ∈ N such that M̂ ∼= F l1

1 ⊕ ...⊕ F ln
n and E[M ](M/Pi) ∼=
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F li
i . By Theorem 4.2.4 M̂ ∼= Ek1

1 ⊕ ...⊕ Ekn
n with E[M ](Ni) ∼= Eki

i and
k1, ..., kn ∈ N. Then by Krull-Remak-Schmidt-Azumaya Theorem, Ei ∼= Fi
and li = ki. Thus E[M ](M/Pi) ∼= E[M ](Ni).

Now, by Lemma 4.2.7, Ni ⊕ Pi ≤e M . Then there is an essential
monomorphism Ni ↪→ M/Pi. In fact, Ni and Pi are pseudocomplements
one of each other.

Lemma 4.2.18. Let M be projective in σ[M ] and semiprime. Suppose that
M is a Goldie Module and P1, P2, ..., Pn are the minimal prime in M sub-
modules. If Ni = AnnM (Pi), then AnnM

(
E[M ](Ni)

)
= Pi for all 1 ≤ i ≤ n.

Proof. Since Ni has finite uniform dimension

E[M ](Ni) = E[M ](Ui1)⊕ ...⊕ E[M ](Uiki )

where Uij is a uniform submodule of Ni. By Lemma 3.2.5, AnnM(Uij) = Pi
for all 1 ≤ j ≤ ki. By Proposition 2.2.11 and Proposition 2.2.10 we have that
AnnM(Uij) = AnnM(EM(Uij)) for all 1 ≤ j ≤ ki. Finally, by [7, Proposition

1.3], AnnM(EM(Ui1) ⊕ ... ⊕ EM(Uiki )) =
⋂ki
j=1 AnnM(EM(Uij)) = Pi. Thus

AnnM
(
EM(Ni)

)
= Pi for all 1 ≤ i ≤ n.

Proposition 4.2.19. Let M be projective in σ[M ] and semiprime. Suppose
that M is a Goldie Module and P1, P2, ..., Pn are the minimal prime in M
submodules, then:

1. HomR(E[M ](M/Pi), E
[M ](M/Pj)) = 0 if i 6= j.

2. If M is also a generator in σ[M ] then E[M ](M/Pi) = M̂/Pi.

Proof. 1. It follows by the proof of Proposition 4.2.2 and Proposition 4.2.17.

2. Since σ[M/Pi] ≤ σ[M ] for every 1 ≤ i ≤ n, then M̂/Pi ≤ E[M ](M/Pi).
It is enough to show that E[M ](M/Pi) ∈ σ[M/Pi].

We claim that PiME
[M ](M/Pi) = 0. If Ni = AnnM(Pi), by Lemma

4.2.18 AnnM(E[M ](Ni)) = Pi. Now, by Proposition 4.2.17, E[M ](Ni) =
E[M ](M/Pi). Thus PiME

[M ](M/Pi) = 0.
By [6, Proposition 1.5] E[M ](M/Pi) ∈ σ[M/Pi].

Notice that, (2 ) of last proposition is false if M is not a semiprime
module.
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Example 4.2.20. Let M = Z4, then M is a Goldie module but it is not
semiprime. 2Z4 is the only minimal prime in M and Z4/2Z4

∼= Z2. We have
that E[Z4](Z4/2Z4) = Z4 but E[Z2](Z4/2Z4) = Z2.

Remark 4.2.21. Note that if M is a Goldie Module then, by 4.2.11, we
have that M/Pi is a Goldie module for every minimal prime Pi submodule.

If Si = EndR (M/Pi) and Ti = EndR(M̂/Pi), then by Corollary 4.1.26,
Ti is a simple right artinian ring and is the classical right ring of quo-
tients of Si. On the other hand, by Proposition 4.2.19, E[M ](M/Pi) =

M̂/Pi. So EndR(E[M ](M/Pi)) ∼= EndR

(
M̂/Pi

)
. Thus EndR(E[M ](M/Pi))

is a simple right artinian ring and is the classical right ring of quotients of
Si. Moreover by Proposition 4.2.19 and Proposition 4.2.17 we have that

EndR(E[M ](M/Pi)) ∼= EndR(E[M ](Ni)) ∼= EndR(M̂/Pi).

Theorem 4.2.22. Let M be progenerator in σ[M ] and semiprime. Suppose
that M is a Goldie Module and P1, P2, ..., Pn are the minimal prime in M
submodules, then

EndR(M̂) ∼= EndR(E[M ](M/P1))× · · · × EndR(E[M ](M/Pn))

where EndR(E[M ](M/Pi)) is a simple right artinian ring and is the classical
ring of quotients of EndR(M/Pi).

Proof. By Corollary 4.2.10,

M̂ ∼= E[M ](M/P1)⊕ E[M ](M/P2)⊕ ...⊕ E[M ](M/Pn)

Then

EndR(M̂) ∼= EndR(E[M ](M/P1)⊕ E[M ](M/P2)⊕ ...⊕ E[M ](M/Pn))

By Proposition 4.2.19, HomR(E[M ](M/Pi), E
[M ](M/Pj)) = 0 if i 6= j, hence

EndR(M̂) ∼= EndR(E[M ](M/P1))× · · · × EndR(E[M ](M/Pn))

The rest follows by Remark 4.2.21.

Corollary 4.2.23. Let M be progenerator in σ[M ] and semiprime. Suppose

that M is a Goldie Module and let T = EndR(M̂). Then there is a bijective
correspondence between the set of minimal prime in M submodules and a
complete set of isomorphism classes of simple T -Modules.
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Proof. By Theorem 4.2.22

EndR(M̂) ∼= EndR(E[M ](M/P1))× · · · × EndR(E[M ](M/Pn))

Each EndR(E[M ](M/Pi)) is an homogeneous component of T . If H is a
simple T -module, then H ∼= T/L where L is a maximal right ideal of T .
Then H ↪→ EndR(E[M ](M/Pi)) for some 1 ≤ i ≤ n.
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Appendix

A.1 Quasi-Quantales

In this appendix, it will be given a generalization of a quantale. This
new ordered structure will be helpful for studying the complete lattice of
submodules of a module.

Definition A.1.1. Let A be a
∨

-semilattice. A is a quasi-quantale if A has
an associative product A×A→ A such that for all directed subsets X, Y ⊆ A
and a ∈ A:

(
∨

X)a =
∨
{xa | x ∈ X}

a(
∨

Y ) =
∨
{ay | y ∈ Y }

We say A is a left (resp. right, resp. two-sided) quasi-quantale if there exists
e ∈ A such that e(a) = a (resp. (a)e = a, resp. e(a) = a = (a)e) for all
a ∈ A.

Example A.1.2. 1. It is clear that every quantale (Definition 2.1.15) is
a quasi-quantale.

2. If A is a meet-continuous lattice, then A is a bilateral quasi-quantale
with ∧ : A× A→ A. See Definition 2.1.16.

3. Let R-pr be the big lattice of preradicals on R-Mod, where the order
is given by: r, s ∈ R− pr if and only if r(M) ≤ s(M) for all R-module
M . If r, s ∈ R − pr their product is defined as (rs)(M) = r(s(M)),
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for every R-module M . With this product R-pr is a left quasi-quantale
where e is the identity functor. See [21].

4. Let M be projective in σ[M ]. Given N,L ∈ Λ(M) we have the product

NML =
∑
{f(N)|f ∈ HomR(M,L)}.

Then, by Lemma 2.1.13 and Lemma 2.1.19 Λ(M) is a quasi-quantale.

Note that in general, if N ∈ Λ(M)

MMN < N < NMM

So, Λ(M) is not a right, left or bilateral quasi-quantale.

Proposition A.1.3. Let A be a quasi-quantale and x, y, z ∈ A. Then, the
following conditions hold.

1. If x ≤ y, then zx ≤ zy and xz ≤ yz.

2. Moreover, if 1a ≤ a for all a ∈ A, then

(a) xy ≤ y ∧ x1

(b) x0 = 0

Proof. 1. Notice that {x, y} ⊆ A is a directed subset, so zy = z(x ∨ y) =
zx ∨ zy. Thus zx ≤ zy. Analogously, yz = (x ∨ y)z = xz ∨ yz. So xz ≤ yz.

2(a). We have that {y, 1} is directed, so x1 = x(y ∨ 1) = xy ∨ x1. Then
xy ≤ x1. On the other hand, y ≥ 1y = (x ∨ 1)y = xy ∨ 1y = xy ∨ y, then
xy ≤ y. Thus xy ≤ x1 ∧ y.

2(b). By (1), it follows that x0 ≤ x1 ∧ 0 = 0.

Proposition A.1.4. Let A be a quasi-quantale. The following conditions
hold.

1. If x ≤ y and z ≤ v, then xz ≤ yv.

2. xy ∨ xz ≤ x(y ∨ z) and yx ∨ zx ≤ (y ∨ z)x, for all x, y, z ∈ A.

3. If 1a ≤ a for all a ∈ A, then

(a) xx := x2 ≤ x1 and x2 ≤ x, for every x ∈ A.
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(b) (x ∧ y)2 ≤ xy and (x1 ∧ y)2 ≤ xy.

Proof. 1. It follows from Proposition A.1.3.2(a).
2. Since y ≤ y ∨ z, then xy ≤ x(x∨ z). Similarly, z ≤ y ∨ z implies that

xz ≤ x(y ∨ z). Therefore, xy ∨ xz ≤ x(y ∨ z).
3(a). It follows from Proposition A.1.3.2(a).
3(b). Since x∧ y ≤ x and x∧ y ≤ y, by (2 ), we conclude that (x∧ y)2 ≤

xy. On the other hand, since x1∧ y ≤ x1 and x1∧ y ≤ y. By hypothesis, (1 )
and the associativity of the product, we conclude that (x1 ∧ y)2 ≤ (x1)y =
x(1y) ≤ xy.

Proposition A.1.5. Let A be quasi-quantale. Consider the following state-
ments.

1. xy = 0 if and only if x1 ∧ y = 0, for every x, y ∈ A.

2. If x2 = 0, then x = 0, for every x ∈ A.

Then, the condition 1 always implies 2. If in addition, A is a quasi-
quantale which satisfies that 1a ≤ a for all a ∈ A, the two conditions are
equivalent.

Proof. First, we prove that 1 implies 2. Let x ∈ A be such that x2 = 0.
Then, by hypothesis it follows that x = x ∧ x = 0.

Now, suppose that 1a ≤ a for all a ∈ A. It remains to prove that
2 implies 1. Let x, y ∈ A be such that xy = 0. Then, by Proposition
A.1.4.3(b), we have that (x1 ∧ y)2 ≤ xy = 0, so (x1 ∧ y)2 = 0. Hence,
x1∧y = 0. Conversely, suppose that x1∧y = 0. Then, it is immediately that
xy ≤ x1 ∧ y = 0.

Next two lemmas show when a quasi-quantale is a known lattice struc-
ture like a quantale or a meet-continuous lattice.

Lemma A.1.6. Let A be a quasi-quantale which satisfies the following iden-
tities:

a(b ∨ c) = ab ∨ ac

(b ∨ c)a = ba ∨ ca

for all a, b, c ∈ A. Then A is a quantale.



68 Appendix A. Appendix

Proof. Let X ⊆ A. Define Y = {x1 ∨ ... ∨ xn | xi ∈ X}. Then X ⊆ Y , so∨
X ≤

∨
Y and Y is a direct subset of A. Since A is quasi-quantale

a(
∨

Y ) =
∨
{ay | y ∈ Y }.

Every y ∈ Y is of the form y = x1∨ ...∨xn with xi ∈ X. Since x1∨ ...∨xn ≤∨
X then ∨

{ay | y ∈ Y } ≤ a(
∨

X) ≤ a(
∨

Y ),

so

a(
∨

X) =
∨
{ay | y ∈ Y }.

We have that X ⊆ Y , whence
∨
{ax | x ∈ X} ≤

∨
{ay | y ∈ Y }. On the

other hand, by hypothesis

ay = a(x1 ∨ ... ∨ xn) = ax1 ∨ ... ∨ axn ≤
∨
{ax | x ∈ X},

thus
∨
{ay | y ∈ Y } ≤

∨
{ax | x ∈ X}. Hence

a(
∨

X) =
∨
{ax | x ∈ X}

Lemma A.1.7. Let (A,≤,∨, 1) be a complete lattice. Then, A is meet-
continuous if and only if A is a quasi-quantale such that

1. The binary operation in A is commutative.

2. A has an identity , e = 1.

Proof. First, suppose that A is a meet-continuous complete lattice. It is clear
that A with the binary operation ∧ is a quasi-quantale which satisfies 1 and
2.

Conversely, since A is commutative, it follows that 1a = a = a1. This
implies that ab ≤ a ∧ b. Thus ab = a∧b. Therefore, A is meet-continuous.

For studying lattice structures, there is a very appropriated tool.

Definition A.1.8. An inflator on a complete lattice A is a function d : A→
A such that x ≤ d(x) and x ≤ y ⇒ d(x) ≤ d(y).
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Let us denote by I(A) the set of all inflators on A. In fact, I(A) is a
complete lattice with order given by

d ≤ d′ ⇔ d(a) ≤ d′(a)

for all a ∈ A. For a family of inflators {di}I its supremum and infimum are
described as the inflators (∨

I

di

)
(a) =

∨
I

(di(a))

(∧
I

di

)
(a) =

∧
I

(di(a))

for all a ∈ A.
The least and greatest elements of I(A) are the identity d0 of A and the

constant function d̄(a) = 1̄ for all a ∈ A, respectively.
From the definition of inflator, the composition of any two inflators is

again an inflator. Moreover, with the next Lemma, I(A) is a quasi-quantale

Lemma A.1.9. If A is an idiom and d, d′, k are inflators over A, then:

1. If d ≤ d′, then kd ≤ kd′ and dk ≤ d′k.

2. kd′ ∨ kd ≤ k(d′ ∨ d) and k(d′ ∧ d) ≤ kd′ ∧ kd.

3. Moreover, if D ⊆ I(A) is non empty, then:

(a) (
∨
D)k =

∨
{dk | d ∈ D},

(b) (
∧
D)k =

∧
{dk | d ∈ D}.

If D is directed then

(c) k(
∨
D) =

∨
{kd | d ∈ D}

In the inflators theory, there are remarkable kinds of inflators

Definition A.1.10. A pre-nucleus d on A is an inflator such that d(x∧y) =
d(x) ∧ d(y). A Closure Operator is an idempotent inflator. If d is a closure
operator and a pre-nucleus then d is called Nucleus .

Definition A.1.11. Let A be a quasi-quantale. Consider s : A→ A a infla-
tor on A. We say that:
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1. s is contextual stable if s(a)x ≤ s(ax) and y(s(a)) ≤ s(ya) for all
a, x, y ∈ A.

2. s is pre-multiplicative if s(a) ∧ b ≤ s(ab) for all a, b ∈ A.

3. s is multiplicative if s(a) ∧ s(b) = s(ab) for all a, b ∈ A.

4. s is a contextual pre-nucleus if s(a)s(b) ≤ s(ab) for all a, b ∈ A.

5. s is a contextual nucleus if s2 = s and s is a contextual pre-nucleus.

Proposition A.1.12. Let A be a quasi-quantale and j be a contextual nu-
cleus. Then (Aj, ·) is a quasi-quantale. If A is a left quasi-quantale with
identity e then Aj is a left quasi-quantale with identity j(e).

Proof. Let a, b, c ∈ Aj. Consider the following inequalities,

abc ≤ j(ab)c ≤ j(j(ab)c) = j(ab) · c = (a · b) · c (A.1)

j(ab)c = j(ab)j(c) ≤ j(abc) (A.2)

Using (2), we have

(a · b) · c = j(j(ab)c) ≤ j2(abc) = j(abc). (A.3)

By (1), j(abc) ≤ (a · b) · c, and by (3), we have the equality

(a · b) · c ≤ j(abc) ≤ (a · b) · c

Analogously, a · (b · c) = j(abc). Then a · (b · c) = (a · b) · c.

Now, let X ⊆ Aj be a directed subset and a ∈ Aj. Then,

a · (
j∨
X) = j(a

j∨
X) = j(aj(

∨
X)) ≥ a(

∨
X) =

∨
{ax|x ∈ X}.

Notice that j(ax) ≤ j(
∨
{ax | x ∈ X}) for all x ∈ X, so

j(a · (
j∨
X)) ≥ j(

∨
{ax|x ∈ X}) ≥

∨
{j(ax)|x ∈ X}.
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Since j is a nucleus,

a · (
j∨
X) = j(a · (

j∨
X)) ≥ j(

∨
{j(ax) | x ∈ X} =

j∨
{a · x | x ∈ X}.

On the other hand,

j∨
{a · x | x ∈ X} = j(

∨
{j(ax) | x ∈ X}) ≥ j(

∨
{ax | x ∈ X})

= j(a
∨

X) ≥ j(a)j(
∨

X) = a ·
j∨
X

Thus

a ·
j∨
X ≥

j∨
{ax|x ∈ X} ≥ a ·

j∨
X

Hence (Aj, ·) is a quasi-quantale.
Now, suppose that A is a left quasi-quantale. Let a ∈ Aj, then

a = ea ≤ j(e)a ≤ j(j(e)a) = j(j(e)j(a)) ≤ j(ea) = j(a) = a.

So a = j(j(e)a) = j(e) · a. Hence Aj is a left quasi-quantale.

Proposition A.1.13. Let A be a quasi-quantale. Then, for each multiplica-
tive nucleus d on A, the set Ad is a meet-continuous lattice.

Proof. Let X ⊆ Ad be a directed subset and a ∈ Ad. Then,

d((
∨

X) ∧ a) = d((
∨

X)a) = d(
∨
{xa|x ∈ X}) ≤ d(

∨
{d(xa)|x ∈ X})

= d(
∨
{d(x) ∧ d(a)|x ∈ X}) = d(

∨
{x ∧ a|x ∈ X}) ≤ d((

∨
X) ∧ a).

Therefore, d((
∨
X) ∧ a) = d(

∨
{x ∧ a|x ∈ X}). Thus

(
d∨
X) ∧ a = d(

∨
X) ∧ d(a) = d((

∨
X) ∧ a)

= d(
∨
{x ∧ a|x ∈ X}) =

d∨
{x ∧ a|x ∈ X}.
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Corollary A.1.14. Let A be a quasi-quantale. Suppose that for any X ⊆ A
and a ∈ A is satisfied

(
∨

X)a =
∨
{xa | x ∈ X}.

Then, for each multiplicative nucleus d on A, the set Ad is a frame.

Definition A.1.15. Let A be a quasi-quantale. An element 1 6= p ∈ A is
prime if whenever ab ≤ p then a ≤ p or b ≤ p.

Definition A.1.16. Let A be a quasi-quantale and B a sub
∨

-semilattice.
We say that B is a subquasi-quantale of A if

(
∨

X)a =
∨
{xa | x ∈ X}

and
a(
∨

Y ) =
∨
{ay | y ∈ Y },

for all directed subsets X, Y ⊆ B and a ∈ B.

Definition A.1.17. Let A be a quasi-quantale and B a subquasi-quantale
of A. An element 1 6= p ∈ A is a prime element relative to B if whenever
ab ≤ p with a, b ∈ B then a ≤ p or b ≤ p.

It is clear that a prime element in A is a prime element relative to A.
The spectrum relative to B of A is defined as

SpecB(A) = {p ∈ A | p is prime relative to B}

If B = A, then we just write Spec(A).

Lemma A.1.18. Let B be a subquasi-quantale of a quasi-quantale A. Sup-
pose that 0, 1 ∈ B and 1b, b1 ≤ b for all b ∈ B, then:

1. ab ≤ a ∧ b for all a, b ∈ B.

2. Let p ∈ A a prime element relative to B. If a, b ∈ B, then ab ≤ p if
and only if a ≤ p or b ≤ p.

Proof. (1). It follows from Proposition A.1.3.2.(a) that ab ≤ a ∧ 1b. By
hypothesis 1b ≤ b, so ab ≤ a ∧ b.

(2). Let a, b ∈ B and p ∈ A a prime element relative to B. First, if
ab ≤ p, then, by definition, it follows that a ≤ p or b ≤ p.

Conversely, suppose that a ≤ p. By (1), ab ≤ a ∧ b ≤ a, then ab ≤ p.
Analogously if b ≤ p.
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Proposition A.1.19. Let B be a subquasi-quantale of a quasi-quantale A.
Then SpecB(A) is a topological space, where the closed subsets are subsets
given by

V(b) = {p ∈ SpecB(A) | b ≤ p},

with b ∈ B.
In dual form, the open subsets are of the form

U(b) = {p ∈ SpecB(A) | b � p},

with b ∈ B.

Proof. It clear that U(0) = ∅ and U(1) = SpecB(A). Let {bi}I be a family
of elements in B. Then

U(
∨
I

bi) = {p ∈ SpecB(A) |
∨
I

bi � p} =
⋃
I

{p ∈ SpecB(A) | bi � p}

=
⋃
I

U(bi)

Now, let a, b ∈ B. Then, by Lemma A.1.18.(2),

U(ab) = {p ∈ SpecB(A) | ab � p} = {p ∈ SpecB(A) | a � p and b � p}

= ({p ∈ SpecB(A) | a � p}) ∩ ({p′ ∈ SpecB(A) | b � p′}) = U(a) ∩ U(b).

Remark A.1.20. LetO(SpecB(A)) be the frame of open subsets of SpecB(A).
We have an adjunction of

∨
-morphisms

B
U .. O(SpecB(A))
U∗

mm

where U∗ is defined as

U∗(W ) =
∨
{b ∈ B | U(b) ⊆ W}

The composition µ = U∗ ◦ U is a closure operator in B.

Proposition A.1.21. Let b ∈ B. Then µ(b) is the largest element in B such
that µ(b) ≤

∧
{p ∈ SpecB(A) | p ∈ V(b)}.
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Proof. By definition,

µ(b) = U∗(U(b)) =
∨
{c ∈ B | U(c) ⊆ U(b)}

=
∨
{c ∈ B | V(b) ⊆ V(c)} ≤

∧
{p ∈ SpecB(A) | p ∈ V(b)}.

Let x ∈ B such that x ≤ p for all p ∈ V(b), then V(b) ⊆ V(x). Thus,
x ≤

∨
{c ∈ A | V(b) ⊆ V(c)}, whence x ≤ µ(b).

Theorem A.1.22. The closure operator in µ : B → B is a multiplicative
pre-nucleus.

Proof. Let a, b ∈ B. By Lemma A.1.18.(1), ab ≤ a ∧ b. Thus µ(ab) ≤
µ(a) ∧ µ(b).

By Proposition A.1.21,

µ(a) ∧ µ(b)≤(
∧
{q ∈ SpecB(A)|q∈V(a)}) ∧ (

∧
{q′ ∈ SpecB(A) | q′∈V(b)}).

Let p ∈ SpecB(A) such that ab ≤ p, then a ≤ p or b ≤ p. If a ≤ p then,∧
{q ∈ SpecB(A) | q ∈ V(a)}} ≤ p.

Thus, µ(a) ∧ µ(b) ≤ p. Analogously, if b ≤ p then µ(a) ∧ µ(b) ≤ p. Hence

µ(a) ∧ µ(b) ≤
∧
{p ∈ SpecB(A) | p ∈ V(ab)}

By Proposition A.1.21, µ(ab) is the largest element in B less or equal than∧
{p ∈ SpecB(A) | p ∈ V(ab)}, therefore µ(a) ∧ µ(b) ≤ µ(ab). Thus µ is

multiplicative.
Now, since ab ≤ a ∧ b then µ(a) ∧ µ(b) = µ(ab) ≤ µ(a ∧ b). The other

inequality always holds. Thus µ is a pre-nucleus.

Corollary A.1.23. Aµ is an meet-continuous lattice.

Proof. It follows by Proposition A.1.13.
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[22] Francisco Raggi, José Ŕıos, Hugo Rincón, Rogelio Fernández-Alonso,
and Carlos Signoret. Prime and irreducible preradicals. Journal of
Algebra and its Applications, 4(04):451–466, 2005.
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