

UNIVERSIDAD NACIONAL AUTÓNOMA DE MEXICO PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS MATEMÁTICAS Y DE LA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA

ÁLGEBRAS TUBULARES JACOBIANAS

TESIS

QUE PARA OPTAR POR EL GRADO DE: DOCTOR EN CIENCIAS

PRESENTA: RAÚL GONZÁLEZ SILVA

Director de Tesis: Dr. Christof Geiss Hahn Instituto de Matemáticas, UNAM

Comité Tutorial Dr. Raymundo Bautista Ramos Centro de Investigación en Matemáticas Dr. Octavio Mendoza Hernández Instituto de Matemáticas, UNAM

Ciudad Universitaria, Cd, Mx. agosto 2016

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Índice general

In	trodu	cción	1
1.	Care	cajes con potenciales y álgebras de conglomerado.	5
	1.1.	Álgebras Jacobianas.	5
	1.2.	Mutaciones de carcajes con potencial.	8
	1.3.	Representaciones de QP's y sus mutaciones	10
	1.4.	<i>F</i> -polinomios y <i>g</i> -vectores	13
	1.5.	Álgebras de conglomerado	15
	1.6.	<i>F</i> -polinomios y álgebras de conglomerado.	21
	1.7.	F-polinomios y mutaciones de $QP's$	27
2.	Álge	ebras tubulares y cubiertas de Galois	31
	2.1.	Matriz de Cartan	31
	2.2.	Extensiones y coextensiones en un punto	32
	2.3.	Tubos estables y álgebras mansas ocultas	33
	2.4.	Álgebras Tubulares	35
	2.5.	Álgebras iteradamente tubulares	36
	2.6.	Cubiertas de Galois	37
3.	Cub	iertas de Galois de Álgebras Jacobianas	39
	3.1.	Un isomorfismo: $\mathscr{P}'(Q,S) \cong \mathscr{P}(Q,S)$	39
	3.2.	QP's y sus cubiertas de Galois.	40
		3.2.1. Caso $(2,2,2,2,\lambda)$	40
		3.2.2. Caso (3,3,3)	43
		3.2.3. Caso (4,4,2)	46
		3.2.4. Caso (6,3,2)	50
	3.3.	Cubiertas de Galois y álgebras iteradamente tubulares.	54
		3.3.1. Prueba del tipo tubular $(2,2,2,2,\lambda)$	55
		3.3.2. Prueba del tipo tubular $(3,3,3)$	57
		3.3.3. Prueba del tipo tubular $(4,4,2)$	62
		3.3.4. Prueba del tipo tubular $(6,3,2)$	69
		3.3.5. Conclusiones:	76
	3.4.	Regiones tubulares.	80

4.	Tipo tubular: $(2,2,2,2,\lambda)$	81								
	4.1. Mutaciones del carcaj con potencial.4.2. Mutaciones de representaciones									
	4.3. Cálculo de algunos ejemplos	89								
5.	5. Mutaciones del QP de tipo $(2,2,2,2,\lambda)$.									
Bi	bliografía	105								

Introducción

Las álgebras de conglomerado fueron introducidos por Fomin y Zelevinsky en [13] alrededor de 2001 como una herramienta combinatoria para estudiar cuestiones relacionadas con positividad total y bases canónicas duales en teoría de Lie. Al poco tiempo se descubrió que el mismo tipo de estructuras aparece en muchas áreas de matemáticas, aparentemente no relacionados. Nos limitamos aquí a mencionar brevemente algunos ejemplos: dinámica de ondas en aguas de poco profundidad [22], [23], teoría de Teichmüller superior [11], invariantes de Donaldson-Thomas no conmutativas [24], [25] y el artículo panorámico [20], teorías de campos cuantizados [1], y representaciones de carcajes con relaciones [6] y el artículo panorámico [21].

Cabe destacar que en los 15 años desde su descubrimiento en 2001, se han subido al servidor arXiv casi 800 preprints relacionados con álgebras de conglomerado, ver el portal sobre álgebras de conglomerado de S. Fomin http://www.math.lsa.umich.edu/ fomin/cluster.html.

En particular, la conexión entre representaciones de carcajes con relaciones y álgebras de conglomerado antisimétricas resultó muy fructífera. Por ejemplo, el estudio de álgebras Jacobianas y sus mutaciones en [5] permitió a Derksen-Weyman-Zelevinsky demostrar en [6] muchas conjeturas de una naturaleza aparentemente combinatoria sobre álgebras de conglomerado en el caso antisimétrico.

Recordemos que las álgebras de conglomerado de tipo finito son aquellas que tienen un número finito de variables de conglomerado. Estas fueron clasificadas por Fomin y Zelevinsky en [14] en términos de diagramas de Dynkin. Cabe mencionar que en el caso finito las variables de conglomerado están parametrizadas por raíces casi positivas. En el caso antisimétrico, Caldero y Keller descubrieron la estrecha conexión con representaciones de carcajes de tipo Dynkin y lograron así demostrar varias conjeturas de Fomin y Zelevinsky en este caso (tipo finito y antisimétrico). Para esta conexión la siguiente observación, aparentemente ingenua, es crucial: las matrices antisimétricas están en correspondencia natural con los carcajes sin 2-ciclos orientados. Usaremos esta correspondencia en lo siguiente muchas veces.

El siguiente caso a estudiar son las álgebras de conglomerado finitas bajo mutación. Esto significa que la parte principal de su matriz de intercambio se encuentra en una clase de mutación con un número finito de elementos. Obviamente todas las matrices antisimetrizables de tamaño 2×2 pertenecen a esta clase. Felikson, Shapiro y Tumarkin lograron una clasificación completa: en [9] para el caso antisimétrico y en [10] para el caso general. Recordemos brevemente el resultado para el caso antisimétrico y conexo de rango mayor a tres: salvo 11 clases de mutación excepcionales, este caso está cubierto precisamente por las matrices que provienen de triangulaciones etiquetadas de superficies orientables con puntos marcados [12]. Los casos excepcionales son esencialmente ligados a los diagramas de Dynkin de tipo E: son las clases de mutación de tipo E_q (tipo finito), $\tilde{E}_{6,7,8}$ (tipo afín), $E_{6,7,8}^{(1,1)}$ (tipo elíptico) más dos carcajes excepcionales X₆ y X₇. En [19] se exploró la relación entre álgebras de conglomerado finitas bajo mutación y el tipo de representación de los carcajes correspondientes con un potencial no degenerado, o en otras palabras con las álgebras Jacobianas son mansas si y solamente si la matriz antisimétrica es finita bajo mutación. Además en este caso el potencial no degenerado es único salvo equivalencia derecha débil, salvo unas pocas excepciones. El presente trabajo es una contribución importante a este resultado.

Se analizan a fondo los carcajes con potencial asociados a las clases de mutación $E_{6,7,8}^{(1,1)}$ y $D_4^{(1,1)}$ correspondientes a sistemas de raíces de tipo elíptico. Estos cuatro casos están estrechamente ligados a las álgebras tubulares de Ringel y no encajan en un esquema general. En los primeros tres casos es muy fácil de ver que para cada carcaj en una de estas clases de mutación hay un único potencial no degenerado salvo equivalencia derecha, [19, Lem. 9.5]. Verificamos explícitamente para un representante en cada una de estas tres clases, que el álgebra Jacobiano correspondiente tiene una cubierta de Galois que es iteradamente tubular en el sentido de de la Peña y Tomé [7] de tipo tubular (3,3,3), (4,4,2) y (6,3,2) respectivamente. Consecuentemente estas álgebras son mansas y obtenemos un cuadro preciso de su carcaj de Auslander-Reiten. En el caso $D_4^{(1,1)}$, que corresponde a las triangulaciones de una esfera con cuatro pinchaduras, existe una familia de un parámetro de potenciales no degenerados. Estudiamos a detalle cómo se comportan estos potenciales bajo mutación, y verificamos nuevamente que las álgebras Jacobianas correspondientes permiten una cubierta de Galois que es iteradamente tubular, de tipo (2,2,2,2) en este caso. Es notable que así cubramos de cierta forma los cuatro tipos de álgebras de tipo tubular descubiertos por Ringel.

En el Capítulo 1 presentamos los conceptos y resultados príncipales de carcajes con potencial y álgebras de conglomerado que necesitaremos en este trabajo. Iniciamos con el concepto de álgebra completa y potenciales para poder hablar de carcajes con potencial. Definimos las representaciones de carcajes con potencial y sus mutaciones, y presentamos el Lema [6, Lema 5.2] que establece el comportamiento entre las representaciones de carcajes con potencial y las mutaciones de éstos. Siguiendo a [6] definimos los *F*-polinomios y *g*-vectores asociados a las representaciones de carcajes con potencial. En la sección 1.4 definimos las álgebras de conglomerado, y los *F*-polinomios y *g*-vectores de variables de conglomerado. Por último, presentamos el Teorema [6, Teorema 5.1] que relaciona estos dos conceptos y calculamos algunos ejemplos.

En el Capítulo 2 presentamos lo referente a álgebras tubulares. Comenzamos con la matriz de Cartan, forma bilineal de Ringel, forma cuadrática de Euler y

transformación de Coxeter. En la sección 1.5 presentamos el Teorema [26, Teorema 3.2], que establece la estructura del carcaj de Auslander-Reiten de un álgebra tubular. En la sección 2.5, de [7], presentamos el concepto de álgebra iteradamente tubular y el Teorema [7, Teorema 2.3] que demuestra que estas álgebras son de tipo de representación manso. En la sección 2.6 introducimos las cubiertas de Galois de una *k*-categoría ([17]) y presentamos un Teorema de Dowbor-Skowronski [8] en donde dan condiciones para poder concluir que una *k*-categoría es mansa a partir de que su cubierta de Galois es mansa y viceversa.

En el Capítulo 3 estudiamos cuatro álgebras Jacobianas asociadas a cuatro carcajes con potencial. Estos carcajes son representantes de las tres clases de mutación de tipo elíptico $E_q^{(1,1)}$, q = 6,7,8 y $D_4^{(1,1)}$ ([3]). En la sección 3.1 presentamos el Lema 3.1, que en nuestra situación nos da un isomorfismo entre el "álgebra Jacobiana simplificada" (Sección 3.1) y el álgebra Jacobiana, definida por Derksen-Weyman-Zelevinski [5]. En la sección 3.2 comprobamos que las álgebras Jacobianas de cada uno de estos 4 carcajes con potenciales son álgebras de dimensión finita y encontramos la cubierta de Galois de cada una de éstas. En la sección 3.3 probamos que estas cubiertas de Galois son álgebras iteradamente tubulares (en el sentido de [7]) y por tanto de tipo de representación manso (Proposición 2.2). Por último, por el Teorema 2.2, concluimos que las álgebras Jacobianas son de tipo de representación manso y describimos la estructura del carcaj de Auslander-Reiten de éstas. Presentamos estos resultados en [18].

En el Capítulo 4 estudiamos el comportamiento de ciertas parejas de mutaciones en el carcaj de tipo $(2,2,2,2,\lambda)$, con $\lambda \notin k \setminus \{0,1\}$. Encontramos fórmulas que describen la relación entre los *F*-polinomios de representaciones de este carcaj con potencial y la mutación de éstos. Estas fórmulas simplifican el calculo de los *F*-polinomios. En la última sección de este capítulo presentamos algunos cálculos, para ejemplificar la utilidad de estas fórmulas.

En el Capítulo 5 comprobamos, con un cálculo explícito, que el carcaj con potencial de tipo $(2,2,2,2,\lambda)$ es de tipo de mutación finito. En este caso, ya sabíamos que el carcaj es de tipo de mutación finito, pero al aplicar las mutaciones regresamos al mismo carcaj pero con un paramétro distinto. Lo interesante está en que sólo hay un número finito de estos potenciales. ÍNDICE GENERAL

Carcajes con potenciales y álgebras de conglomerado.

1.1. Álgebras Jacobianas.

En esta sección revisaremos brevemente la definición de álgebras Jacobianas, carcajes con potencial y mutaciones de carcajes con potencial. Aunque la fuente original de estos conceptos es [5], usaremos el enfoque y la notación de [19].

Un *carcaj* es un cuádruplo $Q := (Q_0, Q_1, s, t)$ en donde Q_0 y Q_1 son conjuntos finitos y s y t son funciones de Q_0 a Q_1 . A los elementos de Q_0 los llamaremos vértices y a los elementos de Q_1 , flechas. Dado $\alpha \in Q_1$, $s(\alpha)$ y $t(\alpha)$ son el vértice inicial y final de α , respectivamente, esto es, podemos visualizar a α de la siguiente manera: $t(\alpha) \xleftarrow{\alpha} s(\alpha)$. En adelante, para referirnos a un carcaj sólo nos referiremos a Q, en vez de mencionar el cuádruplo.

Un *camino* en Q, es una sucesión de flechas $\alpha_1 \alpha_2 \dots \alpha_n$, en donde $s(\alpha_i) = t(\alpha_{i+1})$, para toda $i = 1, 2, \dots, n-1$. Diremos que $\alpha_1 \alpha_2 \dots \alpha_n$ es un *camino de longitud n*, y que $s(\alpha_1 \alpha_2 \dots \alpha_n) = s(\alpha_n)$ y $t(\alpha_1 \alpha_2 \dots \alpha_n) = t(\alpha_1)$. Asociado a cada vértice $i \in Q_0$ tenemos, por definición, el *camino trivial*, e_i , que es un camino de longitud cero que cumple: $s(e_i) = t(e_i) = i$. Un *ciclo* de longitud *n* en Q, es un camino $\alpha_1 \alpha_2 \dots \alpha_n$ tal que $t(\alpha_1) = s(\alpha_n)$. Un carcaj es *acíclico* si no tiene ciclos y es 2-*acíclico* sino contiene ciclos de longitud 2.

La \mathbb{C} -álgebra de caminos de Q, $\mathbb{C}Q$, es la \mathbb{C} -álgebra que como \mathbb{C} -espacio vectorial tiene una base indexada por todos los caminos de Q y en donde la multiplicación de los vectores base está dada por concatenación, es decir, si $\alpha_1 \alpha_2 \dots \alpha_n$ y $\beta_1\beta_2\ldots\beta_m$ son dos caminos en Q, entonces

$$(\alpha_1 \alpha_2 \dots \alpha_n)(\beta_1 \beta_2 \dots \beta_m) := \begin{cases} 0 & \text{si } s(\alpha_n) \neq t(\beta_1); \\ \alpha_1 \alpha_2 \dots \alpha_n \beta_1 \beta_2 \dots \beta_m & \text{si } s(\alpha_n) = t(\beta_1) \end{cases}$$

Ahora definiremos el *álgebra completa de caminos* de Q, $\mathbb{C}\langle\langle Q \rangle\rangle$. Para cada $m \in \mathbb{N}$, sea $\mathbb{C}Q_m$ el \mathbb{C} -espacio vectorial cuya base está indexada por el conjunto de los caminos de longitud m de Q. Como \mathbb{C} -espacio vectorial

$$\mathbb{C}\langle\!\langle Q
angle\!
angle = \prod_{m \geq 0} \mathbb{C} Q_m$$

en donde la multiplicación de $\mathbb{C}Q$ se extiende de forma natural a la multiplicación de $\mathbb{C}\langle\langle Q \rangle\rangle$.

Por último, para definir el álgebra completa, nos hace falta definir la topología. Sea

$$\mathfrak{m}:=\prod_{m\geq 1}\mathbb{C}Q_m$$

el ideal generado por las flechas en $\mathbb{C}\langle\langle Q \rangle\rangle$. Las potencias de *m* están dadas por:

$$\mathfrak{m}^n := \prod_{m \ge n} \mathbb{C} Q_m$$

En $\mathbb{C}\langle\langle Q \rangle\rangle$ definimos la *topología* m-*ádica*, esto es, las potencias de m forman un sistema básico de vecindades abiertas del 0. Además, la cerradura de un subconjunto $U \subseteq \mathbb{C}\langle\langle Q \rangle\rangle$, está dada por

$$\overline{U} := \bigcap_{n \ge 0} (U + \mathfrak{m}^n)$$

Sea $\mathbb{C}\langle\langle Q \rangle\rangle_{cyc}$ la completación del subespacio de $\mathbb{C}\langle\langle Q \rangle\rangle$ generado por todos los ciclos en Q. Un *potencial* en Q, es un elemento de $\mathbb{C}\langle\langle Q \rangle\rangle_{cyc}$, es decir, S, es una combinación lineal (posiblemente infinita) de ciclos en Q. Consideraremos a los potenciales salvo *equivalencia cíclica*, esto es: decimos que dos potenciales S y S' son cíclicamente equivalentes si S - S' yace en la cerradura del espacio generado por todos los elementos de la forma $\alpha_1 \dots \alpha_d - \alpha_2 \dots \alpha_d \alpha_1$, donde $\alpha_1 \dots \alpha_d$ es un ciclo.

Decimos que el par (Q,S) es un *carcaj con potencial* o simplemente QP, si satisface las siguientes condiciones:

- El carcaj Q no tiene lazos;
- No hay dos ciclos cíclicamente equivalentes que aparezcan en la descomposición de S.

En caso de que el carcaj Q sea 2-acíclico, diremos que el carcaj con potencial (Q, S) es 2-acíclico.

Para cada $a \in Q_1$, Derksen, Weyman y Zelevinsky [5, Definición. 3.1], definieron un mapeo lineal y continuo $\partial_a : \mathbb{C}\langle\langle Q \rangle\rangle_{cyc} \to \mathbb{C}\langle\langle Q \rangle\rangle$, llamado la *derivada cíclica*, que actua en ciclos de la siguiente manera:

$$\partial_a(\alpha_1\alpha_2\ldots\alpha_n)=\sum_{p:\alpha_p=a}\alpha_{p+1}\ldots\alpha_d\alpha_1\ldots\alpha_{p-1}$$

Análogamente, para $a, b \in Q_1$ tales que s(a) = t(b) se define otro mapeo lineal y continuo, que actúa en ciclos de la siguiente manera:

$$\partial_{b,a}(\alpha_1\alpha_2\ldots\alpha_n) = \sum_{p:\alpha_{p-1}=b,\alpha_p=a} \alpha_{p+1}\ldots\alpha_d\alpha_1\ldots\alpha_{p-2}$$

El *ideal Jacobiano* asociado al potencial *S*, $\mathscr{J}(S)$, es por definición la cerradura del ideal en $\mathbb{C}\langle\langle Q \rangle\rangle$ generado por los elementos de la forma $\partial_a(S)$, para toda $a \in Q_1$.

El álgebra Jacobiana de S, denotada por $\mathscr{P}(Q,S)$, es el álgebra cociente:

$$\mathscr{P}(Q,S) := \mathbb{C}\langle\!\langle Q \rangle\!\rangle / \mathscr{J}(S)$$

En [5, Proposición. 3.3], prueban que si S y S' son cíclicamente equivalentes entonces $\mathcal{J}(S) = \mathcal{J}(S')$ y $\mathcal{P}(Q,S) \cong \mathcal{P}(Q,S')$.

Dado un carcaj Q, sea $R := R_Q$ la subálgebra semisimple de $\mathbb{C}\langle\langle Q \rangle\rangle$ generada por los elementos idempotentes e_1, e_2, \ldots, e_n de $\mathbb{C}\langle\langle Q \rangle\rangle$ y $A := A_Q$ el R-bimódulo cuya base está identificada con los elementos de Q_1 . A través de la inclusión canónica $R \to \mathbb{C}\langle\langle Q \rangle\rangle$, se puede considerar a $\mathbb{C}\langle\langle Q \rangle\rangle$ como R-álgebra (en un abuso de lenguaje ya que R no está en el centro de $\mathbb{C}\langle\langle Q \rangle\rangle$). De [5, Proposición. 2.4] tenemos la siguiente

Proposición 1.1. Sean $Q \ y \ Q'$ carcajes con el mismo conjunto de vértices, $A := A_Q$ y $A' := A'_{Q'}$. Entonces todo par $(\varphi^{(1)}, \varphi^{(2)})$ de homomorfismos de R-bimódulos, $\varphi^{(1)} : A \to A' \ y \ \varphi^{(2)} : A \to \mathfrak{m}(Q')^2$ se extiende de una única manera a un homomorfismo continuo de R-álgebras $\varphi : \mathbb{C}\langle\langle Q \rangle\rangle \to \mathbb{C}\langle\langle Q' \rangle\rangle$ tal que $\varphi|_A = \varphi^{(1)} + \varphi^{(2)}$. Además, φ es un R-isomorfismo de álgebras si y sólo si $\varphi^{(1)}$ es un isomorfismo de *R*-bimódulos.

Ejemplo 1.1. El siguiente carcaj es un ejemplo de un carcaj con potencial.

$$Q: \quad 2 \underbrace{c}_{e} \underbrace{b}_{d} 4 \quad S = cba + deb$$

Este carcaj con potencial nos servirá para ejemplificar los conceptos.

Ejemplo 1.2. Las derivadas cíclicas del potencial S, del Ejemplo 1.1, son:

$$\partial_a(S) = cb, \ \partial_b(S) = ac + de, \ \partial_c(S) = ba, \ \partial_d(S) = eb \ y \ \partial_e(S) = bd.$$

1.2. Mutaciones de carcajes con potencial.

En [5], Derksen, Weyman y Zelevinsky definen la mutación de un carcaj con potencial. Para poder dar la definición primero debemos de hablar de equivalencias derechas y premutaciones.

Sean (Q, S) y (Q', S') dos carcajes con potencial tales que Q y Q' tienen el mismo conjunto de vértices, es decir, tenemos que $R := R_Q = R_{Q'}$. Diremos que un isomorfismo $\psi : \mathbb{C}\langle\langle Q \rangle\rangle \to \mathbb{C}\langle\langle Q' \rangle\rangle$ de R-álgebras es una *equivalencia derecha*, si $\psi(S)$ y S' son cíclicamente equivalentes. En este caso diremos que (Q, S) y (Q', S') son equivalentes derechos y escribimos $\psi : (Q, S) \to (Q', S')$.

En particular, de [5, Proposición. 3.3, Proposición 3.7], si $\psi : (Q,S) \to (Q',S')$ es una equivalencia derecha, entonces $\mathscr{P}(Q,S) \cong \mathscr{P}(Q',S')$.

Ejemplo 1.3. Consideremos el siguiente carcaj Q y los potenciales S_1 y S_2 :

Tenemos que los carcajes con potencial (Q, S_1) y (Q, S_2) son equivalentes derechos. La equivalencia derecha $\psi : (Q, S_1) \rightarrow (Q, S_2)$ está definida de la siguiente manera:

$$\Psi(x) = \begin{cases} b - gh, & \text{si } x = b \\ f - de, & \text{si } x = f \\ x, & \text{en otro caso} \end{cases}$$

Si (Q,S) y (Q',S') son dos carcajes con potencial con el mismo conjunto de vértices, podemos considerar su suma directa, $(Q,S) \oplus (Q',S')$ [5, Sección. 4.1].

Dado un carcaj con potencial (Q, S), sea $S^{(2)} \in A^2$ la componente homogenea de grado 2 de S. Diremos que:

- a) (Q,S) es trivial si $S = S^{(2)}$ y $\partial S = A$;
- b) (Q,S) es *reducido* si $S^{(2)} = 0$.

De [5, Proposición. 4.5], tenemos la siguiente:

Proposición 1.2. Sean (Q,S) y (Q',S') carcajes con potencial con el mismo conjunto de vértices tales que (Q',S') es un carcaj trivial. Entonces las álgebras Jacobianas asociadas a (Q,S) y a $(Q,S) \oplus (Q',S')$ son isomorfas.

Para el carcaj con potencial (Q, S), en [5, Sección 4] definen la parte trivial y la parte reducida, como los *R*-bimódulos dados por:

$$A_{triv} = \partial S^{(2)}, \qquad A_{red} = A/\partial S^{(2)}$$

Los bimódulos A_{triv} y A_{red} definen carcajes con potenciales: (Q_{triv}, S_{triv}) y (Q_{red}, S_{red}) respectivamente [5, Sección 4]. En este caso, (Q_{triv}, S_{triv}) es trivial y (Q_{red}, S_{red}) reducido. De [5, Teorema. 4.6] tenemos el siguiente resultado fundamental:

Teorema 1.1. [Spliting Theorem]

Para cada carcaj con potencial (Q,S) existe un carcaj con potencia trivial (Q_{triv}, S_{triv}) y un carcaj con potencial reducido (Q_{red}, S_{red}) , tales que (Q,S) es equivalente derecho del carcaj con potencial $(Q_{triv}, S_{triv}) \oplus (Q_{red}, S_{red})$.

Al carcaj con potencial (Q_{triv}, S_{triv}) se le conoce como la parte trivial de (Q, S) mientras que el carcaj con potencial (Q_{red}, S_{red}) es la parte reducida.

Observación 1.1. Dado que el carcaj con potencial (Q_{triv}, S_{triv}) es trivial, de la Proposición 1.2 tenemos que $\mathscr{P}(Q,S) \cong \mathscr{P}(Q_{red}, S_{red})$.

Ejemplo 1.4. Del Ejemplo 1.3 consideremos el carcaj con el potencial S_2 . En este caso, la parte trivial y reducida se ven de la siguiente manera:

Observación 1.2. *En general no es tan fácil encontrar la parte trivial y reducida de un carcaj con potencial como en el ejemplo anterior.*

Con lo anterior, ya podemos dar la definición de mutación de un carcaj con potencial. Para esto, sea (Q,S) un carcaj con potencial y *k* un vértice de *Q* que no pertenece a ningún 2-ciclo de *Q*. La *premutación de* (Q,S) *en k*, $\tilde{\mu}_k(Q,S) =: (\tilde{Q}, \tilde{S})$ es un carcaj con potencial definido a partir de (Q,S) por los siguientes pasos:

- 1) Sea $Q_{2,k} := \{(\beta, \alpha) \in Q_1^2 | s(\beta) = k = t(\alpha)\}$. Para cada par $(\beta, \alpha) \in Q_{2,k}$ se añade una nueva flecha, $[\beta\alpha]$, tal que $s([\beta\alpha]) = s(\alpha)$ y $t([\beta\alpha]) = t(\beta)$.
- 2) Cada flecha $\alpha \in Q_1$ que comienza o termina en *k*, es reemplazada por una nueva flecha α^* , en la dirección opuesta.
- 3) Definimos

$$\tilde{S} := [S] + \Delta_k(Q)$$

en donde, [S] se obtiene de S al reemplazar cada sucesión de flechas $\beta \alpha \in Q_{2,k}$ por $[\beta \alpha]_+$.

$$\Delta_k(Q) := \sum_{t(lpha)=k=s(eta)} [eta lpha] lpha^* eta^*$$

De esta manera queda definida la premutación $\tilde{\mu}_k(Q,S)$ del carcaj con potencial (Q,S) en k.

Por último, definimos *la mutación de* (Q,S) *en k*, $\mu_k(Q,S)$, como la parte reducida del carcaj con potencial $\tilde{\mu}_k(Q,S)$.

Observación 1.3. La mutación de carcajes con potencial está definida hasta equivalencia derecha.

Ejemplo 1.5. Consideremos el carcaj con potencial del Ejemplo 1.1. Al realizar la premutación en 1, obtenemos el carcaj con potencial $\tilde{\mu}_1(Q,S) = (\tilde{Q},\tilde{S})$, donde:

$$\tilde{Q}: \quad 2 \underbrace{[ac]}_{e} \overset{b}{\xrightarrow{b}}_{d} 4 \quad \tilde{S} = b[ac] + deb + [ac]c^*a^*$$

Este carcaj con potencial es el mismo del Ejemplo 1.3 (basta poner $f = [ac], g = c^*, h = a^*$), entonces es equivalente derecho del carcaj con potencial (ver Ejemplo 1.3):

$$\tilde{Q}: 2 \xrightarrow{c^* [ac]}_{e} 4 \quad \tilde{S}' = b[ac] + dec^* a^*$$

y la parte reducida de éste (ver Ejemplo 1.4) es:

Es decir, el carcaj con potencial de arriba es la mutación de (Q,S) en 1, $\mu_1(Q,S) = (\tilde{Q}_{red}, \tilde{S}_{red})$.

1.3. Representaciones de QP's y sus mutaciones.

En [5], Derksen, Weyman y Zelevinsky además extendieron la noción de mutación a las representaciones de carcajes con potenciales. En esta sección revisaremos brevemente la noción de representación de un carcaj con potencial, para después presentar la definición de mutación de representaciones.

Sea (Q, S) un carcaj con potencial. Una *representación* de (Q, S) es un $\mathscr{P}(Q, S)$ módulo de dimensión finita M. Una manera alternativa de definirlo, es decir que $M = (M(i)_{i \in Q_0}, M(\alpha)_{\alpha \in Q_1})$ es una representación del carcaj Q (ver [2, Sección 3.1]) que se anula por el ideal \mathfrak{m}^N , para cierta $N \gg 0$, y por todas las derivadas cíclicas de S.

Ejemplo 1.6. Consideremos el carcaj con potencial (Q, S) del Ejemplo 1.1. Las derivadas cíclicas del potencial S = cba + deb son: $\partial_a(S) = cb$, $\partial_b(S) = ac + de$, $\partial_c(S) = ba$, $\partial_d(S) = be$ y $\partial_e(S) = bd$. Una representación de este QP es M:

en donde M(a) = [1], M(b) = [0], M(c) = [1], M(d) = [-1] y M(e) = [1]. Es una representación porque se anula por el ideal m³ y por las derivadas cíclicas, como se comprueba a continuación: M(c)M(b) = 0, M(a)M(c) + M(d)M(e) = 0, M(b)M(a) = 0, M(b)M(e) = 0 y M(b)M(d) = 0.

Sea un carcaj con potencial (Q, S). Para un vértice arbitrario k de Q definimos los siguientes subespacios:

• $M(k_{in}) := \bigoplus_{\alpha \in Q_1: t(\alpha) = k} M(s(\alpha)),$

•
$$M(k_{out}) := \bigoplus_{\beta \in Q_1: s(\beta) = k} M(t(\beta))$$

y las funciones lineales:

• $M(\alpha_k): M(k_{in}) \to M(k)$, definida por $(m_{\alpha})_{\alpha \in Q_1: t(\alpha) = k} \mapsto \sum_{\alpha \in Q_1: t(\alpha) = k} M(\alpha)(m_{\alpha})$

•
$$M(\beta_k): M(k) \to M(k_{out})$$
, definida por $m \mapsto \left(M(\beta)(m)\right)_{\beta \in Q_1: s(\beta) = k}$

•
$$M(\gamma_k) : M(k_{out}) \to M(k_{in})$$
, definida por
 $(m_\beta)_{\beta \in Q_1: s(\beta) = k} \mapsto \left(\sum_{\beta \in Q_1: s(\beta) = k} M(\partial_{\beta, \alpha}(S))(m_\beta)\right)_{\alpha \in Q_1: t(\alpha) = k}$

Figura 1.1:

Estas definiciones dan lugar al diagrama de la Figura 1.1:

Con lo anterior ya estamos listos para definir la mutación de representaciones. Si *M* es una representación de (Q, S), en [5] definen una representación, $\tilde{\mu}_k(M) := \overline{M}$ del carcaj con potencial $\tilde{\mu}_k(Q, S)$.

Considerando el diagrama de la Figura 1.1, escojemos funciones lineales

- $\rho_{\alpha}: M(k_{in}) \to \ker M(\alpha_k)$, tal que $\rho_{\alpha}i_{\alpha} = id_{\ker M(\alpha_k)}$, donde i_{α} es la inclusión, y;
- $\rho_{\gamma}: M(k_{out}) \to \ker M(\gamma_k)$, tal que $\rho_{\gamma} i_{\gamma} = i d_{\ker M(\gamma_k)}$, donde i_{γ} es la inclusión

La representación $\overline{M} := \overline{\mu}_k(M)$ está definida de la siguiente manera. Para cada $i \in \tilde{Q}$ definimos:

$$\bar{M}(i) = \begin{cases} M(i), & \text{si } i \neq k \\ \ker \left(M(\gamma_k) \right) / \operatorname{Im} \left(M(\beta_k) \right) \oplus \ker \left(M(\alpha_k) \right), & \text{si } i = k. \end{cases}$$

ahora definimos los morfismos:

- $\overline{M}([\beta \alpha]) = M(\beta)M(\alpha)$ para todo $(\beta, \alpha) \in Q_{2,k}$;
- $\overline{M}(\gamma) = M(\gamma)$ si $\gamma \in Q_1 \cap \tilde{Q}_1$;
- $\bar{M}(\alpha_k) = \begin{pmatrix} p \circ \rho_{\gamma} \\ \rho_{\alpha} \circ M(\gamma_k) \end{pmatrix} : \bar{M}(k_{in}) \to \bar{M}(k), \text{ donde } \bar{M}(k_{in}) = M(k_{out}) \text{ y}$ $p : \ker(M(\gamma_k)) \to \ker(M(\gamma_k)) / \operatorname{Im}(M(\alpha_k)) \text{ es la proyección canónica.}$
- $\bar{M}(\beta_k) = (0, i_{\alpha}) : \bar{M}(k) \to \bar{M}(k_{out})$, en donde $\bar{M}(k_{out}) = M(k_{in})$.

Por último, para definir $M' := \mu_k(M)$, la representación del carcaj con potencial $\mu_k(Q,S)$, obtenida a partir de mutar la representación M en la dirección k, necesitamos la equivalencia derecha $\varphi : (\tilde{Q}_{red}, \tilde{S}_{red}) \to (\tilde{Q}, \tilde{S})$ (Teorema 1.1): Así, en [5, Observación 10.3] definen: $M' := {}^{\varphi} \overline{M}$. En donde:

- a) $M'(i) := \overline{M}(i)$, para toda $i \in (\tilde{Q}_{red})_0$
- b) $M'(\alpha) := \overline{M}(\varphi(\alpha))$, para toda $\alpha \in (\tilde{Q}_{red})_1$.

Ejemplo 1.7. Consideremos la representación del Ejemplo 1.6. Para el vértice *k* = 1, tenemos:

 $M(1) = \mathbb{C}, M(1_{in}) = \mathbb{C}, M(1_{out}) = \mathbb{C}, M(\alpha_1) = [1], M(\beta_1) = [1] \ y \ M(\gamma_1) = [0].$

Así, tenemos el diagrama:

Con esto, calculamos:

$$\ker \gamma_1 = \mathbb{C}, \operatorname{Im} \beta_1 = \mathbb{C} \ y \ \ker \alpha_1 = 0.$$

Así, $\bar{M}(1) = \ker \gamma_1 / \operatorname{Im} \beta_1 \oplus \ker \alpha_1 = \mathbb{C}/\mathbb{C} \oplus 0 = 0.$ Los morfismos: $a^* : M(1_{out}) \to \bar{M}(1) \ y \ c^* : M(1_{in}) \to \bar{M}(1)$ son iguales a [0] y el morfismo [ac] : $M(1_{in}) \to M(1_{out})$ es igual al morfismo [1]. Es decir, tenemos:

1.4. *F*-polinomios y *g*-vectores.

Las nociones de F-polinomios y **g**-vectores fueron introducidas en [15] como herramientas combinatorias para estudiar de forma eficiente las álgebras de conglomerado con coeficientes. En [5] se definieron conceptos cercanamente relacionados, pero en términos de representaciones de carcajes con potencial. En esta sección revisaremos estos conceptos siguiendo a [5] y en las secciones posterioes revisaremos el enfoque de [15]. Sea (Q, S) un carcaj con potencial en *n* vértices de tal manera que estos están en correspondencia con el conjunto $\{1, 2, ..., n\}$. Para cada representación *M* de (Q, S) su vector dimensión, denotado por d_M , es:

 $d_M = \left(\dim M(1), \dim M(2), \dots, \dim M(n)\right)$

De la definición se sigue que $d_M \in \mathbb{Z}^n$. Para cada vector $e = (e_1, e_2, ..., e_n) \in \mathbb{N}^n$, definimos:

 $\operatorname{Gr}_{e}(M) := \{N \text{ subrepresentación } \operatorname{de} M | \operatorname{dim} N = e\}$

Este conjunto recibe el nombre de Grassmanniano de subrepresentaciones de *M* con vector dimensión *e*. En realidad, $\operatorname{Gr}_e(M)$ es una variedad proyectiva, [5, Sección 1], lo cual se prueba observando que es una subvariedad cerrada del producto de Grassmannianas $\prod_{i=1}^{n} \operatorname{Gr}_{e_i} M(i)$.

Denotamos por $\chi(\text{Gr}_e(M))$, a la *característica de Euler-Poincaré* [16, Sección 4.5]. Está definida como la suma alternante de las dimensiones de los grupos de cohomología singular con coeficientes racionales y soporte compacto. Algunas de las propiedades básicas de ésta son:

- $\chi(\mathbb{C}^n) = 1;$
- es aditiva sobre unión ajena de conjuntos constructibles.

En [6, Sec 1] para cada representación M se define un polinomio F_M con coeficientes enteros, $F_M \in \mathbb{Z}[u_1, u_2, \dots, u_n]$, de la siguiente manera:

$$F_M(u_1, u_2, \dots, u_n) := \sum_e \chi \left(\operatorname{Gr}_e(M) \right) \prod_{i=1}^n u^{e(i)}$$

Decimos que F_M es el F-polinomio de M. También en [6, Sección 1], definen un vector con entradas enteras, $g_M = (g_1, g_2, \dots, g_n) \in \mathbb{Z}^n$, dado por:

$$g_k := \dim \ker \gamma_k - \dim M(k).$$

Este vector recibe el nombre de *g*-vector.

Ejemplo 1.8. Calcularemos el F-polinomio de la representación M del Ejemplo 1.6: el vector dimensión de M es (1,1,1,1). Los vectores dimensión de todas sus subrepresentaciones son:

$$(0,0,0,0), (0,0,0,1), (0,0,1,1), (0,1,0,1), (0,1,1,1) y (1,1,1,1)$$

Ahora, la característica de Euler de cada una las Grassmannianas es igual a uno, esto porque cada una de estas Grassmanianas consiste de un solo punto [16, Sección 4.5]. Con esto, el F-polinomio asociado a M es:

$$F_M(u_1, u_2, u_3, u_4) := 1 + u_4 + u_3u_4 + u_2u_4 + u_2u_3u_4 + u_1u_2u_3u_4.$$

Ahora calculemos g_M , el *g*-vector asociado a *M*. Del Ejemplo 1.7 tenemos que para el vértice 1: dim ker $\gamma_1 = 1$ y como dim M(1) = 1, entonces $g_1 = 0$.

Para el vértice 2, $M(2_{out}) = \mathbb{C}^2$, $M(2_{in}) = \mathbb{C}$ y $\gamma_2 = [11]$. Por lo tanto dim ker $\gamma_2 = 1$ y como dim M(2) = 1, entonces, $g_2 = 0$.

Para el vértice 3, $\gamma_3 = [0]$. Así, dim ker $\gamma_3 = 1$ y como dim M(3) = 1, entonces, $g_3 = 0$.

Por último, para el vértice 4, $M(4_{out}) = \mathbb{C}$, $M(2_{in}) = \mathbb{C}^2$ y $\gamma_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Por lo tanto dim ker $\gamma_4 = 0$ y como dim M(4) = 1, entonces, $g_4 = -1$. Con lo anterior, se sigue que $g_M = (0,0,0,-1)$.

1.5. Álgebras de conglomerado.

Ahora introducimos la noción de álgebra de conglomerado, necesaria para entender la importancia de los F-polinomios y g-vectores. La definición de álgebra de conglomerado requiere varios conceptos previos que iremos revisando poco a poco y de manera muy breve. En este caso utilizaremos el enfoque de [15].

Un *semicampo* es una terna $(\mathbb{P}, \cdot, \oplus)$, donde \mathbb{P} es un conjunto con dos operaciones binarias: $\cdot y \oplus$, y se satisfacen las siguientes propiedades:

- I) (\mathbb{P}, \cdot) es un grupo abeliano,
- II) (\mathbb{P}, \oplus) es un semigrupo conmutativo,
- III) La operación binaria ⊕, llamada suma auxiliar, es distributiva con respecto al producto ·.
- **Ejemplo 1.9.** *a)* (El semicampo Universal) Por $\mathbb{Q}(u_1, \ldots, u_n)$ denotamos al campo de fracciones $\mathbb{Q}[u_1, \ldots, u_n]$. Denotamos por $\mathbb{Q}_{sf}(u_1, \ldots, u_n)$ al subconjunto de $\mathbb{Q}(u_1, \ldots, u_n)$ de las fracciones que se pueden escribir de tal manera que tanto el numerador como el numerador no tengan susbtracciones. La terna $(\mathbb{Q}_{sf}(u_1, \ldots, u_n), \cdot, +)$ es un semicampo, en donde $\cdot y +$ son las operaciones usuales de $\mathbb{Q}_{sf}(u_1, \ldots, u_n)$.

En ocasiones no es tan claro cuando una fracción pertenece a $\mathbb{Q}_{sf}(u_1, \dots, u_n)$. Por ejemplo, $u^2 - u + 1 = \frac{u^3 + 1}{u + 1} \in \mathbb{Q}_{sf}(u)$.

b) (El semicampo tropical) Sea *J* un conjunto finito de índices y $\text{Trop}(u_j : j \in J)$ el grupo libre abeliano (escrito multiplicativamente) generado por u_j , $j \in J$. Definimos la suma auxiliar, \oplus , de la siguiente manera:

$$\prod_j u_j^{a_j} \oplus \prod_j u_j^{b_j} := \prod_j u_j^{\min(a_j, b_j)}$$

Con estas operaciones, $\operatorname{Trop}(u_j : j \in J)$ es un semicampo.

Observación 1.4. Si $(\mathbb{P}, \cdot, \oplus)$ es un semicampo, de [13, sección 5] se sabe que el grupo (\mathbb{P}, \cdot) es un grupo libre de torsión, de esto se sigue que su anillo de grupo, \mathbb{ZP} , es un dominio entero.

En el caso de que el semicampo sea un semicampo tropical, se tiene que su anillo de grupo es el anillo de polinomios de Laurent en las variables u_1, \ldots, u_n .

Como campo ambiente para el álgebra de conglomerado \mathscr{A} , consideraremos a $\mathscr{F} \cong \mathbb{QP}(u_1, \dots, u_n)$.

Definición 1.1. *Una Y*-semilla etiquetada *en el semicampo* \mathcal{P} , *es una pareja* (\mathbf{y} ,B), *donde:*

- $\mathbf{y} = (y_1, \dots, y_n)$ es una *n*-ada de elementos del semicampo \mathbb{P} .
- $B = (b_{ij})$ es una matriz entera de tamaño $n \times n$, la cual es antisimétrica.

Una semilla etiquetada en \mathscr{F} , es una terna $(\mathbf{x}, \mathbf{y}, B)$, donde:

- (**y**,*B*) es una *Y*-semilla etiquetada y;
- $\mathbf{x} = (x_1, \dots, x_n)$ es una *n*-ada de elementos de \mathscr{F} , los cuales forman un conjunto libre generador, es decir, $\mathscr{F} \cong \mathbb{QP}(x_1, \dots, x_n)$.

En la semilla $(\mathbf{x}, \mathbf{y}, B)$, nos referiremos a: \mathbf{x} como el *conglomerado*, a \mathbf{y} como los *coeficientes* y a B como la *matriz de intercambio*.

En lo que sigue utilizaremos la siguiente notación:

$$[x]_{+} := \max(x, 0)$$

$$sgn(x) := \begin{cases} -1 & \text{si } x < 0\\ 0 & \text{si } x = 0\\ x & \text{si } x > 0 \end{cases}$$
$$[1,n] := \{1,2,\dots,n\}$$

Definición 1.2. (*Mutación de semillas*) Sean $(\mathbf{x}, \mathbf{y}, B)$ una semilla etiquetada en \mathscr{F} y $k \in [1, n]$. La mutación de semillas en dirección k, denotada por μ_k , transforma la semilla $(\mathbf{x}, \mathbf{y}, B)$ en la semilla $\mu_k(\mathbf{x}, \mathbf{y}, B) = (\mathbf{x}', \mathbf{y}', B')$, donde:

a) Las entradas de la matriz $B' = (b'_{ij})$ están dadas por:

$$b'_{ij} = \begin{cases} -b_{ij} & \text{si } i = k \text{ o } j = k;\\ b_{ij} + sgn(b_{ik})[b_{ik}b_{kj}]_+ & \text{en otro caso.} \end{cases}$$
(1.5.1)

b) Los coeficientes $\mathbf{y}' = (y'_1, \dots, y'_n)$ están dados por:

$$y'_{j} = \begin{cases} y_{k}^{-1} & \text{si } j = k; \\ y_{j} y_{k}^{[b_{kj}]_{+}} (y_{k} \oplus 1)^{-b_{kj}} & \text{en otro caso.} \end{cases}$$
(1.5.2)

c) El conglomerado $\mathbf{x}' = (x'_1, \dots, x'_n)$ está dado por:

- Si $j \neq k$ entonces $x'_j = x_j$;
- Si j = k, entonces:

$$x'_{j} = \frac{y_{k} \prod x_{i}^{[b_{i}k]_{+}} + \prod x_{i}^{[-b_{i}k]_{+}}}{(y_{k} \oplus 1)x_{k}}$$
(1.5.3)

A la fórmula 1.5.3 se le denomina relación de intercambio.

Observación 1.5. La mutación de semillas es involutiva, esto es, $\mu_k(\mathbf{x}', \mathbf{y}', B') = (\mathbf{x}, \mathbf{y}, B)$.

Denotamos por \mathbb{T}_n , al *árbol n-regular*. Para cada vértice de \mathbb{T}_n , enumeramos las aristas adyacentes con éste del 1 a *n*, de tal manera que no haya dos aristas coincidentes en un vértice con el mismo número. Por $t \neq t'$ denotaremos que los vértices *t* y *t'* son adyacentes y que la arista que los une tiene la etiqueta *k*.

Ejemplo 1.10. En la figura 1.3 tenemos el árbol 3-regular:

Figura 1.2: \mathbb{T}_3

Un *patrón de conglomerado* es una asignación de una semilla etiquetada $\Sigma_t = (\mathbf{x}_t, \mathbf{y}_t, B_t)$ a cada vértice $t \in \mathbb{T}_n$, de tal forma si $t \perp t'$, entonces las semillas Σ_t y $\Sigma_{t'}$ se obtienen una de otra, a través de la mutación μ_k en dirección k.

Observación 1.6. A los elementos de la semilla Σ_t los escribiremos de la siguiente forma:

Dado un patrón de conglomerado, denotamos por:

$$\boldsymbol{\chi} := \bigcup_{t \in \mathbb{T}_n} \mathbf{x}_t = \{ x_{i;t} | t \in \mathbb{T}_n, 1 \le i \le n \},\$$

a la unión de todos los conglomerados. A los elementos $x_{i;t} \in \chi$ les llamaremos variables de conglomerado. El *álgebra de conglomerado* \mathscr{A} asociada con el patrón de conglomerado es la \mathbb{ZP} -subálgebra de \mathscr{F} generada por todas las variables de conglomerado, es decir, $\mathscr{A} := \mathbb{ZP}[\chi]$.

Ejemplo 1.11. Sea n = 3, y una semilla etiquetada $(\mathbf{x}_0, \mathbf{y}_0, B^0)$ donde:

$$B^{0} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}, \mathbf{x}_{0} = (x_{1}, x_{2}, x_{3}) \ \mathbf{y} \ \mathbf{y}_{0} = (y_{1}, y_{2}, y_{3})$$

En el cuadro 1.1 calculamos 14 semillas: variables de conglomerado, los coeficientes y las matrices de intercambio. Estas son todas las semillas salvo permutación, por ejemplo; siguiendo la numeración de 1.3, las semillas correspondientes a los vértices t_7 y t_{11} son la misma, salvo permutación. Para entender mejor cómo están relacionadas estas semillas y el porqué de la numeración en el cuadro 1.1 consideramos el diagrama de la Figura 1.3:

B_t		\mathbf{y}_t			\mathbf{X}_{f}	
y1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0		<i>y</i> 2	<i>y</i> 3	¹ x	X2	x3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{\sqrt{2}}{2}$	$\frac{22y_1}{1\oplus 1}$	<i>y</i> 3	$\frac{y_1+x_2}{(y_1\oplus 1)x_1}$	Х2	x3
$\begin{bmatrix} 0 & -1 & 0 \\ 0 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \xrightarrow{Y_1} \frac{Y_{2Y_1}(Y_1)}{Y_1}$	$\frac{y_2y_1(}{y_1}$	$\frac{y_3\oplus 1)}{\oplus 1}$	$\frac{1}{y_3}$	$\frac{y_1+x_2}{(y_1\oplus 1)x_1}$	Х2	$\frac{y_3x_2+1}{(y_3\oplus 1)x_3}$
$ \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} $ y_1 $y_2(y_3$	y2(y3	⊕ 1)	$\frac{1}{y_3}$	١x	Х2	$\frac{y_3x_2+1}{(y_3\oplus 1)x_3}$
$ \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & -1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix} $ $y_1(y_2 \oplus 1) $ $\frac{1}{y_2}$	$\frac{1}{y_2}$		$\frac{y_3y_2}{y_2\oplus 1}$	l <i>x</i>	$\frac{y_2 x_1 + x_3}{(y_2 \oplus 1) x_2}$	x_3
$\begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{y_2} y_1 \oplus y_1 \oplus 1 \xrightarrow{y_1 \oplus y_1} y_2 y_1 \oplus 1$	$\frac{y_1 \oplus}{y_2 y_1}$	-1	$\frac{y_3y_2y_1}{y_2y_1\oplus y_1\oplus 1}$	$\frac{y_1+x_2}{(y_1\oplus 1)x_1}$	$\frac{y_2y_1x_1+y_1x_3+x_3x_2}{(y_2y_1\oplus y_1\oplus y_1\oplus 1)x_2x_1}$	x_3
$\begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \\ 1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \xrightarrow{(y_3 \oplus 1)y_2} \underbrace{ \begin{array}{c} y_1 \oplus \\ y_1 \oplus y_2 y_1 \oplus y_2 y_1 \oplus y_1 \\ y_3 + 1 \end{bmatrix}}_{(y_3 \oplus 1)}$	$y_1 \oplus y_1 \oplus y_$	$\frac{1}{(y_2y_1)}$	$\frac{y_3y_2y_1\oplus y_2y_1\oplus y_2}{(y_1\oplus 1)y_3}$	$\frac{y_1+x_2}{(y_1\oplus 1)x_1}$	$\frac{y_3y_2y_1x_2x_1+y_2y_1x_1+y_1x_3+x_3x_2}{(y_3y_2y_1\oplus y_2y_1\oplus y_2y_1\oplus y_1\oplus 1)x_3x_2x_1}$	$\frac{y_3x_2+1}{(y_3\oplus 1)x_3}$
$\left[\begin{array}{cccc} 0 & -1 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array}\right] \qquad y_1(y_3y_2 \oplus y_2 \oplus 1) \qquad \frac{1}{y_2(y_3 \oplus 1)}$	(1) $\frac{1}{y_2(y_3 \in \mathbb{C})}$	θ 1)	$\frac{y_3y_2\oplus y_2\oplus 1}{y_3}$	Ix	$\frac{y_3y_2x_2x_1+y_2x_1+x_3}{(y_3y_2\oplus y_2\oplus y_2\oplus 1)x_3x_2}$	$\frac{y_3x_2+1}{(y_3\oplus 1)x_3}$

Cuadro 1.1: Semillas del tipo A_3 .

	$\frac{y_2 x_1 + x_3}{(y_2 \oplus 1) x_2}$	$\frac{y_2 x_1 + x_3}{(y_2 \oplus 1) x_2}$	$\frac{y_2y_1x_1+y_1x_3+x_3x_2}{(y_2y_1\oplus y_1\oplus 1)x_2x_1}$	$\frac{y_3 y_2 x_2 x_1 + y_2 x_1 + x_3}{(y_3 y_2 \oplus y_2 \oplus y_2 \oplus 1) x_3 x_2}$	$\frac{y_2x_1+x_3}{(y_2\oplus 1)x_2}$	$\frac{y_2x_1+x_3}{(y_2\oplus 1)x_2}$
Xr	x_1 $\frac{y_3y_2x_2x_1+y_2x_1+x_3}{(v_3v_0 + v_1 \oplus v_1)x_3x_2}$	$\frac{y_2y_1x_1+y_1x_3+x_3x_2}{(y_2y_1\oplus y_1\oplus 1)x_2x_1}$	$\frac{y_1 + x_2}{(y_1 \oplus 1)x_1}$ $\frac{y_1 + x_2}{(y_1 \oplus 1)x_1}$ $\frac{y_3 y_2 y_1 x_2 x_1 + y_2 y_1 x_1 + y_1 x_3 + x_3 x_2}{(y_1 + y_2 y_1 \oplus y_2 y_1 \oplus y_1 + y_1 x_3 + x_1 x_2 + x_1 + y_1 + y_2 + y_2 + y_1 + y_1 + y_1 + y_2 + y_2 + y_1 $	$\frac{y_3y_2y_1x_2x_1+y_2y_1x_1+y_1x_3+x_3x_2}{(y_3)^2y_1\oplus y_2y_1\oplus y_2y_1\oplus y_1\oplus 1)x_3x_2x_1}$	$\frac{y_2y_1x_1 + y_1 + x_3 + x_3 x_2}{(y_2y_1 \oplus y_1 \oplus y_1 \oplus 1) + x_2x_1}$ $\frac{y_3y_2y_1 + x_2x_1 + y_2y_1 + x_1 + y_1 + x_3 + x_3 x_2}{(y_3)^2y_1 \oplus y_2y_1 \oplus y_1 \oplus y_1 \oplus y_1 + y_1 + x_3 + x$	$\frac{y_3y_2y_1x_2x_1+y_2y_1x_1+y_1x_3+x_3x_2}{(y_3y_2y_1\oplus y_2y_1\oplus y_2y_1\oplus y_1\oplus x_1)x_3x_2x_1}$
	$\frac{y_3}{y_2\oplus y_2\oplus 1}$	$\frac{y_2y_1\oplus y_1\oplus 1}{y_2}$	$\frac{(y_1\oplus 1)y_3}{y_3y_2y_1\oplus y_2y_1\oplus y_1\oplus 1}$	$\frac{y_3y_2y_1\oplus y_2y_1\oplus y_1\oplus 1}{(y_3\oplus 1)y_2}$	$\frac{y_2y_1\oplus y_1\oplus 1}{y_2}$	$\frac{y_3}{y_3y_2\oplus y_2\oplus 1}$
B_t \mathbf{y}_t	$(y_2\oplus y_2\oplus y_1)_1$	$\frac{1}{(y_2\oplus 1)y_1}$ $\frac{y_3y_2y_1}{y_2y_1\oplus 1}$	$\frac{y_2}{y_2y_1\oplus y_1\oplus 1}$	$\frac{1}{(y_3y_2\oplus y_2\oplus 1)y_1}$ $\frac{y_3y_2\oplus y_2\oplus 1}{y_3}$	$\frac{y_3y_2}{(y_3y_2y_1\oplus y_2y_1\oplus y_1\oplus 1)(y_2\oplus 1)}$	$\frac{1}{(y_3y_2\oplus y_2\oplus 1)y_1}$ $\frac{(y_3y_2y_1\oplus y_2y_1\oplus y_1\oplus 1)(y_2\oplus 1)}{y_3y_2}$
			0 - 0	0 - 0 0 0		
	0 0 1 - - - 0 0 - - 0 0 0 0 0 0 0 0 0 0	[0 0] [0 0] [0 0] [0 0]	$\begin{bmatrix} 0 & -1 \\ -1 & 0 \\ 0 & -1 \\ 0 & 0 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}$	0 -1 0 -1 0 -1 0 -1 0 0	$\begin{bmatrix} 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$	0 0 0 -1 -1 -1 -1 -1 0 -1 1 0
t	9	r	10	21	17	14

1.5. ÁLGEBRAS DE CONGLOMERADO.

Cuadro 1.2: Semillas del tipo A_3 .

Figura 1.3: Asociahedro de tipo A_3

En caso de que el semicampo \mathbb{P} usado para definir un álgebra de conglomerado, sea un semicampo tropical, diremos que el álgebra de conglomerado es de *tipo geométrico*.

Diremos que un patrón de conglomerado (o un álgebra de conglomerado) tiene *coeficientes principales* en el vértice t_0 , si:

$$\mathbb{P} = \operatorname{Trop}(y_1, \dots, y_n) \text{ y } \mathbf{y}_{t_0} = (y_1, \dots, y_n).$$

Observación 1.7. Para patrones o álgebras de conglomerado de tipo geométrico, resulta conveniente denotar a los generadores de \mathbb{P} por $x_{n+1}, x_{n+2}, \ldots, x_m$, es decir, $\mathbb{P} = \text{Trop}(x_{n+1}, x_{n+2}, \ldots, x_m)$. Ya que los coeficientes $y_{1;t}, \ldots, y_{n;t}$ de cada semilla $\sigma_t = (\mathbf{x}_t, \mathbf{y}_t, B_t)$ son monomios de Laurent en $x_{n+1}, x_{n+2}, \ldots, x_m$, se definen enteros $b_{i,j}^t$, para cada $j \in [1, n]$ y n < i < m, por:

$$y_{j;t} = \prod_{i=n+1}^m x_i^{b_{ij}^t}$$

Con esto, podemos incluir a la matriz B_t como una submatriz de una matriz de tamaño $m \times n$:

$$\tilde{B}_t = (b_{ij}^t), (1 \le i \le m, 1 \le j \le n)$$

en donde los elementos de la matriz b_{ij}^t con i > n codifican los coeficientes $y_j = y_{j;t}$.

Si el álgebra de conglomerado es de coeficientes principales en el vértice t_0 , con semilla inicial $\sigma_{t_0}(\mathbf{x}_0, \mathbf{y}_0, \mathbf{B}^0)$, la matriz \tilde{B}^0 , es de tamaño $2n \times n$; en la parte superior tenemos la matriz B^0 y en la parte de abajo la matriz identidad I_n .

1.6. *F*-polinomios y álgebras de conglomerado.

En la sección 1.4 definimos los *F*-polinomios y *g*-vectores asociados a representaciones de carcajes con potenciales. Ahora definiremos estos conceptos asociados a un álgebra de conglomerado. De [15, Teorema 3.7], si consideramos B^0 una matriz de intercambio, el Teorema 1.2 nos da una fórmula que expresa cualquier variable de conglomerado de cualquier álgebra de conglomerado (con B^0 como matriz de intercambio) en términos del álgebra de conglomerado con coeficientes principales que tiene a B^0 como matriz de intercambio. Para llegar a esto es necesario revisar algunos conceptos previos.

Sea $\mathscr{A}(B^0)$ el álgebra de conglomerado con coeficientes principales en el vértice t_0 , definido por la semilla inicial:

$$\begin{aligned} \mathbf{x}_{t_0} &= (x_1, \dots, x_n) \\ \mathbf{y}_{t_0} &= (y_1, \dots, y_n) \\ B_{t_0} &= B^0 &= (b_{ij}^0) \end{aligned}$$
 (1.6.1)

Por ser de coeficientes principales, $\mathbb{P} = \text{Trop}(y_1, \ldots, y_n)$ y las relaciones de intercambio de 1.5.3 son monomios en y_1, \ldots, y_n . Iterando estas relaciones de intercambio, cada variable de conglomerado se puede expresar (de manera única) como una función racional en x_1, \ldots, x_n y y_1, \ldots, y_n , dada por una expresión sin substracciones. Denotamos a esta expresión por:

$$X_{\ell;t} = X_{\ell;t}^{B^0;t_0} \in \mathbb{Q}_{sf}(x_1, \dots, x_n; y_1, \dots, y_n)$$

Sea $F_{\ell;t} = F_{\ell;t}^{B^0;t_0} \in \mathbb{Q}_{sf}(y_1, \dots, y_n)$ la función racional que se obtiene de $X_{\ell;t}$ al hacer $x_j = 1$, para $j = 1, 2, \dots, n$. Es decir:

$$F_{\ell;t} = X_{\ell;t}(1, \dots, 1; y_1, \dots, y_n)$$

Observación 1.8. A estos polinomios se les denomina F-polinomios asociados al álgebra de conglomerado.

Ejemplo 1.12. *Para t*₀, *tenemos:*

$$X_{\ell;t_0} = x_\ell$$
 y $F_{\ell;t_0} = 1$ para toda ℓ

Si $t_0 \stackrel{k}{\leftarrow} t_1$, entonces las únicas expresiones que cambian son $X_{k;t_1}$ y $F_{k;t_1}$:

$$X_{k;t_1} = \frac{y_k \prod x_i^{[b_i^0 k]_+} + \prod x_i^{[-b_i^0 k]_+}}{x_k}, \quad F_{k;t_1} = y_k + 1$$

Ejemplo 1.13. Sea n = 3, $B^0 = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$ $y \mathbb{P} = \operatorname{Trop}(y_1, y_2, y_3)$. En este

caso, las fórmulas del cuadro 1.1 y cuadro 1.2 se simplifican. En los cuadros 1.3 y 1.4 tenemos a las funciones racionales $X_{\ell,t}$ y $F_{\ell;t}$ para $1 \le \ell \le 3$. La última columna será explicada hasta el Ejemplo 1.16.

g 3;t	0	0 1	0 -1	0 -1	0 1	0 1	0	0 -1
$\mathbf{g}_{2;t}$	0 - 0	0 - 0	0 - 0	$\begin{bmatrix} 0\\ 1\\ 0 \end{bmatrix}$	0 -1	$\begin{bmatrix} -1\\0\\1\end{bmatrix}$	$\begin{bmatrix} 0\\ -1 \end{bmatrix}$	0 -1 0
$\mathbf{g}_{1:t}$	[1] 0	$\begin{bmatrix} -1\\ 0 \end{bmatrix}$	-10	$\begin{bmatrix} 1\\0\\0\end{bmatrix}$	[0 0	-10	$\begin{bmatrix} -1\\1\\0\end{bmatrix}$	[1 0 0
$F_{3;t}$	1	1	$y_{3} + 1$	$y_{3} + 1$	1	1	$y_{3} + 1$	$y_{3} + 1$
$F_{2;t}$	-	-	-	1	$y_2 + 1$	$y_{2}y_{1} + y_{1} + 1$	$y_3y_2y_1 + y_2y_1 + y_1 + 1$	y3y2 + y2 + 1
$F_{1;t}$	y1 +1		$y_1 + 1$	1	1	$y_1 + 1$	$y_1 + 1$	-
$X_{3;t}$	<i>x</i> 3	X ₃	$\frac{y_3x_2+1}{x_3}$	$\frac{y_3x_2+1}{x_3}$	X ₃	<i>x</i> 3	$\frac{y_3x_2+1}{x_3}$	$\frac{y_3x_2+1}{x_3}$
$X_{2;t}$	Х2	x2	Х2	x2	$\frac{y_2 x_1 + x_3}{x_2}$	$\frac{y_2y_1x_1+y_1x_3+x_3x_2}{x_2x_1}$	$\frac{y_3y_2y_1x_2x_1 + y_2y_1x_1 + y_1x_3 + x_3x_2}{x_3x_2x_1}$	$\frac{y_3y_2x_2x_1+y_2x_1+x_3}{x_3x_2}$
$X_{1;t}$	l _X	$\frac{y_1 + x_2}{x_1}$	$\frac{y_1 + x_2}{x_1}$	l _X	I _X	$\frac{y_1 + x_2}{x_1}$	$\frac{y_1 + x_2}{x_1}$	lx
	уз	у3	<u>y</u> 3	$\frac{1}{y_3}$	y3y2	<i>y</i> 3 <i>y</i> 2 <i>y</i> 1	$\frac{1}{y_3}$	$\frac{1}{y_3}$
\mathbf{y}_t	y2 y2y1		<i>y</i> 2 <i>y</i> 1	y_2	$\frac{1}{y_2y_1}$		$\frac{1}{y_2y_1}$	$\frac{1}{y_2}$
	<i>y</i> 1	$\frac{y_1}{y_1}$	$\frac{y_1}{1}$	у1	<i>y</i> 1	372	<i>y</i> 2	<i>y</i> 1
B_t	1 0 - 1 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	- 0 0 0 - 0 0 0	-1 - 0 - 1 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0	1 0 0 0 1 0 0 0 0 0 1 0 0 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 -1 0 -1 -1 0 -1 -1 0 -1	
	0 0 - 0	0-0-00	0-0-00	0 0 - 0	0 0 0	0 - 0 0 - 0	0 0	<u>p - o - o o</u>
t	0	-	Ś	з	7	4	13	6

1.6. F-POLINOMIOS Y ÁLGEBRAS DE CONGLOMERADO.

Cuadro 1.3: Tipo A_3 , funciones racionales $X_{\ell,t}$ y $F_{\ell;t}$. 23

											· · · · · · · · · · · · · · · · · · ·	
g 3;t	$\begin{bmatrix} 0\\ -1\\ 0 \end{bmatrix}$		0		$\begin{bmatrix} 0\\ 1 \end{bmatrix}$		$\begin{bmatrix} 0\\ -1 \end{bmatrix}$		$\begin{bmatrix} -1\\0\\0 \end{bmatrix}$		0 -1 0	
g 2;t			$\begin{bmatrix} 0\\ -1\\ \end{bmatrix}$		$\begin{bmatrix} -1\\0\\1\end{bmatrix}$		0		$\begin{bmatrix} 0\\ 1 \end{bmatrix}$			
$\mathbf{g}_{1;t}$	- 00		$\begin{bmatrix} -1\\0\\1\end{bmatrix}$		$\begin{bmatrix} -1\\ 0 \end{bmatrix}$		$\begin{bmatrix} -1\\0\\0 \end{bmatrix}$		[-] 1		- <u>1</u> 0	
$F_{3;t}$												
$F_{2;t}$	y2 + 1		y2 + 1		$y_2y_1 + y_1 + 1$		$y_3y_2 + y_2 + 1$		$y_2 + 1$		$y_2 + 1$	
$F_{1;t}$	-	$y_3y_2 + y_2 + 1$	$y_2y_1 + y_1 + 1$	x_3	$y_1 + 1$	$y_3y_2y_1 + y_2y_1 + y_1 + 1$	$y_3y_2y_1 + y_2y_1 + y_1 + 1$	$y_3 + 1$	$y_2y_1 + y_1 + 1$	$y_3y_2y_1 + y_2y_1 + y_1 + 1$	$y_3y_2y_1 + y_2y_1 + y_1 + 1$	$y_3y_2 + y_2 + 1$
$X_{3;t}$												
$X_{2;t}$	$\frac{y_2x_1 + x_3}{x_2}$		$\frac{y_2 x_1 + x_3}{x_2}$		$\frac{y_2y_1x_1+y_1x_3+x_3x_2}{x_2x_1}$		$\frac{y_3y_2x_2x_1+y_2x_1+x_3}{x_3x_2}$		$\frac{y_2x_1 + x_3}{x_2}$		$\frac{y_2x_1 + x_3}{x_2}$	
$X_{1;t}$	l <i>x</i>	$\frac{y_3y_2x_2x_1+y_2x_1+x_3}{x_3x_2}$	$\frac{y_2y_1x_1 + y_1x_3 + x_3x_2}{x_2x_1}$	x_3	$\frac{y_1 + x_2}{x_1}$	$\frac{y_3y_2y_1x_2x_1 + y_2y_1x_1 + y_1x_3 + x_3x_2}{x_3x_2x_1}$	$\frac{y_3y_2y_1x_2x_1+y_2y_1x_1+y_1x_3+x_3x_2}{x_3x_2x_1}$	$\frac{y_3x_2+1}{x_3}$	$\frac{y_2y_1x_1+y_1x_3+x_3x_2}{x_2x_1}$	$\frac{y_3y_2y_1x_2x_1 + y_2y_1x_1 + y_1x_3 + x_3x_2}{x_3x_2x_1}$	$\frac{y_3y_2y_1x_2x_1+y_2y_1x_1+y_1x_3+x_3x_2}{x_3x_2x_1}$	$\frac{y_3y_2x_2x_1+y_2x_1+x_3}{x_3x_2}$
	<i>y</i> 3		$\frac{1}{y_2}$		уз		$\frac{1}{y_2}$		$\frac{1}{y_2}$		<i>y</i> 3	
\mathbf{y}_t	у1	$\frac{1}{y_3y_2}$	$\frac{1}{y_1}$	$y_{3}y_{2}y_{1}$	<i>y</i> 2	$\frac{1}{y_3y_2y_1}$	$\frac{1}{y_1}$	$\frac{1}{2}$	<i>y</i> 3 <i>y</i> 2	$\frac{1}{y_3y_2y_1}$	<u>yı</u> 1	$\frac{1}{y_3y_2}$
3_{t}		1			1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0		0-000-	[]- 0	- 0 0 0		0 0	
	2000	ı	0 0 0 0		0-00-0		070700	2	0770		007700	2
t	9		7		10	24	21		17		14	
	L		L			4			ι		l	

1.6. F-POLINOMIOS Y ÁLGEBRAS DE CONGLOMERADO.

Cuadro 1.4: Tipo A_3 , funciones racionales $X_{\ell,t}$ y $F_{\ell;t}$.

De [13, Teorema. 3.1] tenemos el siguiente:

Teorema 1.2. (Fenómeno de Laurent) El álgebra de conglomerado \mathscr{A} asociada con la semilla $(\mathbf{x}, \mathbf{y}, B)$ está contenida en el anillo de polinomios de Laurent $\mathbb{ZP}[x^{\pm}].$

En el caso de que $\mathbb{P} = \text{Trop}(y_1, \dots, y_n)$ se tiene la siguiente ([15, Proposición. 3.6]):

Proposición 1.3. Sea $\mathscr{A}(B^0)$ el álgebra de conglomerado con coeficientes principales en el vértice t_0 , con la semilla inicial dada por 1.6.1. Entonces:

$$\mathcal{A} = \mathbb{Z}[x_1^{\pm}, \dots, x_n^{\pm}; y_1, \dots, y_n]$$
$$X_{\ell;t} \in \mathbb{Z}[x_1^{\pm}, \dots, x_n^{\pm}; y_1, \dots, y_n]$$
$$F_{\ell;t} \in \mathbb{Z}[y_1, \dots, y_n]$$

Si *F* es una expresión racional, en varias variables, sin substracciones en \mathbb{Q} , \mathbb{P} un semicampo y u_1, u_2, \ldots, u_ℓ , son algunos elementos de \mathbb{P} , denotaremos por $F|_{\mathbb{P}}(u_1, \ldots, u_\ell)$ a la valuación de *F* en u_1, \ldots, u_ℓ .

Por ejemplo, si $F(u_1, u_2) = u_1^2 - u_1 u_2 + u_2^2 \in \mathbb{Q}_{sf}(u_1, u_2)$ y $\mathbb{P} = \text{Trop}(y_1, y_2)$, entonces $F|_{\mathbb{P}}(y_1, y_2) = \frac{y_1^3 \oplus y_2^3}{y_1 \oplus y_2} = 1$.

Teorema 1.3. Sea \mathscr{A} el álgebra de conglomerado sobre un semicampo arbitrario \mathbb{P} , con una semilla en el vértice inicial t_0 , dada por 1.6.1. Entonces las variables de conglomerado de \mathscr{A} se pueden expresar de la siguiente manera:

$$x_{\ell;t} = \frac{X_{\ell,t}^{B^{0};t_{0}}|\mathscr{F}(x_{1},\dots,x_{n};y_{1},\dots,y_{n})}{F_{\ell,t}^{B^{0};t_{0}}|_{\mathbb{P}}(y_{1},\dots,y_{n})}$$
(1.6.2)

Ejemplo 1.14. Para obtener las variables de conglomerado de la tabla 1.1 a partir de la tabla 1.3, solamente hay que reemplazar el signo + por el signo \oplus de la quinta columna y dividir cada término de la cuarta columna por su contraparte de la quinta columna.

El resultado anterior nos expresa las variables de conglomerado en términos de los polinomios $F_{\ell;t}$, pero hasta ahora no tenemos una manera de calcular estos polinomios. De [15, Proposición 5.1] tenemos la siguiente:

Proposición 1.4. Sea $t \mapsto \tilde{B}_t = (b_{ij}^t)$ $(t \in \mathbb{T}_n)$ una familia de matrices de tamaño $2n \times n$ asociados con el álgebra de conglomerado $\mathscr{A}(B^0)$, esto es, \tilde{B}_t es la matriz de la observación 1.7 y $\tilde{B}'_t = \mu_k(\tilde{B}_t)$ si $t \not = t'$. Entonces los polinomios $F_{\ell;t} = F_{\ell;t}^{B^0;t_0}(y_1, \dots, y_n)$ están determinados por las condiciones iniciales:

$$F_{\ell:t_0} = 1, (\ell = 1, \dots, n) \tag{1.6.3}$$

y sujetos a las siguientes relaciones:

- Si $\ell \neq k$ entonces $F_{\ell;t'} = F_{\ell;t}$;
- Si $\ell = k$ entonces:

$$F_{k;t'} = \frac{\prod_{j=1}^{n} y_j^{[b'_{n+j,k}]_+} \prod_{i=1}^{n} F_{i;t}^{[b'_{ik}]_+} + \prod_{j=1}^{n} y_j^{[-b'_{n+j,k}]_+} \prod_{i=1}^{n} F_{i;t}^{[-b'_{ik}]_+}}{F_{k;t}} \quad (1.6.4)$$

para cada arista t k t', tal que t yace en el único camino de t₀ a t' en \mathbb{T}_n .

Proposición 1.5. *Cada polinomio de Laurent* $X_{\ell;t}^{B^0;t_0}$ *es homogéneo con respecto a la* \mathbb{Z}^n -graduación en $\mathbb{Z}[x_1^{\pm}, \ldots, x_n^{\pm}; y_1, \ldots, y_n]$ definida por:

$$\deg(x_i) = e_i, \deg(y_i) = -b_j^c$$

donde e_1, e_2, \ldots, e_n es la base estándar de \mathbb{Z}^n y b_i^0 es la j-ésima columna de B^0 .

Ejemplo 1.15. Del cuadro 1.3 y cuadro 1.4, tenemos las siguientes graduaciones:

$$\deg (X_{1;5}) = \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \quad \deg (X_{2;4}) = \begin{bmatrix} -1\\0\\1 \end{bmatrix}, \quad \deg (X_{3;17}) = \begin{bmatrix} -1\\0\\0 \end{bmatrix}$$

Observación 1.9. Bajo esta graduación, el álgebra de conglomerado $\mathscr{A}(B^0)$ es una \mathbb{Z}^n -subálgebra graduada de $\mathbb{Z}[x_1^{\pm}, \ldots, x_n^{\pm}; y_1, \ldots, y_n]$. Todas las variables de conglomerado de $\mathscr{A}(B^0)$ son elementos homogéneos ([15, Corolario 6.2]).

Definición 1.3. Con la notación de la Proposición 1.5, definimos los siguientes vectores:

$$\mathbf{g}_{\ell;t} = \mathbf{g}_{\ell;t}^{B^0;t_0} = \begin{bmatrix} \mathfrak{g}_1 \\ \vdots \\ \mathfrak{g}_n \end{bmatrix} = \deg\left(X_{\ell;t}^{B^0;t_0}\right) \in \mathbb{Z}^n.$$

A estos vectores se les llama g-vectores asociados al álgebra de conglomerado.

Ejemplo 1.16. En la última columna de los cuadros 1.3 y 1.4, se muestran los **g**-vectores del tipo A_3 .

Para presentar el siguiente Corolario, que es una reinterpretación del Teorema 1.2, necesitamos la siguiente notación:

$$\hat{y}_j := y_j \prod_i x_i^{b_{ij}^0}$$

Corolario 1.1. Las variables de conglomerado de cualquier álgebra de conglomerado $\mathscr{A}(\mathbf{x}_0, \mathbf{y}_0, B^0)$ se pueden expresar en términos de la semilla definida en 1.6.1, por la siguiente fórmula:

$$x_{\ell;t} = \frac{F_{\ell,t}^{B^{0};t_{0}}|\mathscr{F}(\hat{y}_{1},\dots,\hat{y}_{n})}{F_{\ell,t}^{B^{0};t_{0}}|_{\mathbb{P}}(y_{1},\dots,y_{n})} x_{1}^{\mathfrak{g}_{1}}\cdots x_{n}^{\mathfrak{g}_{n}}$$

Análoga a la Proposición 1.4 para calcular los polinomios $F_{\ell;t}$, tenemos la siguiente ([15, Proposición 6.6]):

Proposición 1.6. En los términos de la Proposición 1.4, los **g**-vectores $\mathbf{g}_{\ell;t} = \mathbf{g}_{\ell;t}^{B^0;t_0}$ están determinados de manera única por las siguientes condiciones iniciales:

$$\mathbf{g}_{\ell:t_0} = e_{\ell}(\ell = 1, \dots, n) \tag{1.6.5}$$

y sujetos a las siguientes relaciones:

- Si $\ell \neq k$ entonces $\mathbf{g}_{\ell;t'} = \mathbf{g}_{\ell;t}$;
- Si $\ell = k$ entonces:

$$\mathbf{g}_{k;t'} = -\mathbf{g}_{k;t} + \sum_{i=1}^{n} [b_{ik}^{t}]_{+} \mathbf{g}_{i;t} - \sum_{j=1}^{n} [b_{n+j,k}^{t}]_{+} b_{j}^{0}, \qquad (1.6.6)$$

para cada arista t * t', tal que t yace en el único camino de t₀ a t' en \mathbb{T}_n y por b_i^0 denotamos a la j-ésima columna de B^0 .

Observación 1.10. En esta sección, dada un álgebra de conglomerado, $\mathscr{A}(\mathbf{x}, \mathbf{y}, B)$, se definieron los polinomios $F_{\ell;t}^{B;t_0}$ y los vectores $\mathbf{g}_{\ell;t}^{B;t_0}$. Éstos se pueden calcular (por su definición) a partir de los coeficientes principales, y sirven para calcular las variables de álgebras de conglomerado con coeficientes arbitrarios.

En [6, sección 5] construyen una representación M de un carcaj con potencial no degenerado (Q,S), de tal manera que $\mathbf{g}_m = \mathbf{g}_{\ell;t}^{B;t_0}$ y $F_M = F_{\ell;t}^{B;t_0}$, (ver [6, Teorema 5.1]).

1.7. F-polinomios y mutaciones de QP's.

De las secciones anteriores sabemos que si M es una representación de (Q,S)entonces $M' := \mu_k(M)$ es una representación de $\mu_k(Q,S)$. De [6, Lema 5.2], tenemos cómo se relacionan los F-polinomios F_M y $F_{M'}$, es decir, una manera de calcular uno en términos del otro. En este sección revisaremos dicha relación. Para esto primero introduciremos dos conceptos necesarios y después presentaremos este lema, que es fundamental para el presente trabajo.

Consideremos (Q, S) un carcaj con potencial 2-acíclico, con *n* vértices. Asociado a (Q, S) tenemos una matriz antisimétrica, $B_Q \in \mathbb{M}_{n \times n}(\mathbb{Z})$. Para cada $i \neq j$, $1 \leq i, j \leq n$, la entrada $b_{i,j}$ de la matriz B_Q está definida por:

 $b_{i,j} := #$ de flechas del vértice *j* al vértice *i* - # de flechas del vértice *i* al vértice *j*.

Para cada representación M del carcaj (Q,S), definiremos un vector, \mathbf{h}_M . Este vector tiene entradas enteras, es decir, $\mathbf{h}_M = (h_1, h_2, \dots, h_n) \in \mathbb{Z}^n$, con:

$$h_k := -\dim \ker M(\beta_k)$$

y en donde $M(\beta_k)$ es el morfismo definido en la sección 1.3.

Ejemplo 1.17. *Para el carcaj con potencial del Ejemplo 1.1, la matriz antisimétrica asociada es:*

$$B := \begin{pmatrix} 0 & 1 & 0 & -1 \\ -1 & 0 & -1 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & -1 & 1 & 0 \end{pmatrix}$$

y para la representación de este QP (Ejemplo 1.6), el vector \mathbf{h}_M es:

$$\mathbf{h}_M := (0, 0, 0, -1)$$

De [6, Lema 5.2], tenemos el siguiente resultado, que describe el comportamiento de los F-polinomios con respecto a la mutación de representaciones de carcajes con potencial:

Lema 1.1. Sea (Q,S) un carcaj con potencial no degenerado, M una representación de (Q,S) y $\overline{M} := \mu_k(M)$, para alguna $k \in Q_0$. Sea h_k (respectivamente h'_k) la k-ésima componente del vector \mathbf{h}_M (respectivamente $\mathbf{h}'_{\overline{M}}$). Además supongamos que $t_0 \stackrel{k}{=} t_1 \in \mathbb{T}_n$. Entonces:

a) Los **g**-vectores $\mathbf{g}_{\ell;t}^{B;t_0} = (\mathfrak{g}_1, \dots, \mathfrak{g}_n)$ y $\mathbf{g}_{\ell;t'}^{B;t'} = (\mathfrak{g}'_1, \dots, \mathfrak{g}'_n)$ se relacionan de la siguiente manera:

$$\mathfrak{g}_{j}' = \begin{cases} -\mathfrak{g}_{k} & si \ j = k;\\ \mathfrak{g}_{j} + [b_{jk}]_{+} \mathfrak{g}_{k} - b_{jk}h_{k} & si \ j \neq k. \end{cases}$$
(1.7.1)

además de que satisfacen la relación:

$$\mathfrak{g}_k := h_k - h'_k$$

b) Los F-polinomios F_M y $F_{\overline{M}}$ se relacionan de la siguiente manera:

$$(y_k+1)^{h_k}F_M(y_1,\ldots,y_n) = (y'_k+1)^{h'_k}F_{\bar{M}}(y'_1,\ldots,y'_n)$$
(1.7.2)

Ejemplo 1.18. Del Ejemplo 1.7, tenemos el siguiente diagrama:

En el Ejemplo 1.8 calculamos el F-polinomio:

 $F_N(y_1, y_2, y_3, y_4) = 1 + y_4 + y_1y_4 + y_3y_4 + y_1y_3y_4 + y_1y_2y_3y_4$

Ahora vamos a calcularlo pero usando el Lema 1.1. Las subrepresentaciones de \bar{N} son:

$$(0,0,0,0), (0,0,0,1), (0,0,1,1) \ y \ (0,1,1,1).$$

De aquí que:

 $F_{\bar{N}}(u_1, u_2, u_3, u_4) = 1 + u_4 + u_3 u_4 + u_2 u_3 u_4$

el g-vector asociado a N, es:

$$\mathbf{g}_N = (0, 0, 0, -1)$$

y su **h**-vector asociado es:

$$\mathbf{h}_N = (0, 0, 0, -1)$$

Del inciso a) del Lema 1.1, se tiene $g_1 = h_1 - h'_1$. Por lo tanto, $h'_1 = 0$. Usamos la matriz B, obtenida en el Ejemplo 1.17, para mutar en la dirección k = 1 y así obtener los coeficientes:

$$y'_1 = \frac{1}{y_1}, \quad y'_2 = \frac{y_1 y_2}{1 + y_1}, \quad y'_3 = y_3, \quad y'_4 = y_4(1 + y_1)$$

del Lema 1.1 tenemos la siguiente igualdad:

$$F_N(y_1, y_2, y_3, y_4) = F_{\bar{N}}\left(\frac{1}{y_1}, \frac{y_1y_2}{1+y_1}, y_3, y_4(1+y_1)\right)$$

entonces:

$$F_N(y_1, y_2, y_3, y_4) = 1 + y_4(1 + y_1) + y_3y_4(1 + y_1) + \left(\frac{y_1y_2}{1 + y_1}\right)y_3y_4(1 + y_1)$$

= 1 + y_4 + y_1y_4 + y_3y_4 + y_1y_3y_4 + y_1y_2y_3y_4

que coincide con el F-polinomio que habíamos calculado.

1.7. F-POLINOMIOS Y MUTACIONES DE QP'S.

Álgebras tubulares y cubiertas de Galois

En este capítulo revisaremos brevemente los conceptos y resultados sobre álgebras tubulares y cubiertas de Galois que ocupamos en el presente trabajo. La referencia original para revisar lo relativo a las álgebras tubulares es [26], sin embargo, para un enfoque más accesible se puede revisar [2], [27] y [28], que es una trilogía sobre la teoría de representaciones de álgebras. Al inicio de cada seccón pondremos la referencia de cada tema.

2.1. Matriz de Cartan

Sea *k* un campo algebraicamente cerrado y *A* un *k*-álgebra básica de dimensión finita. En este trabajo por *A*-módulo, entenderemos *A*-módulo a izquierda de dimensión finita, salvo que se indique lo contrario, (ver [2, Sección III.3])

Sean $\{e_1, e_2, ..., e_n\}$ un sistema completo de idempotentes ortogonales primitivos [2, Sección I.4] y *M* un *A*-módulo. Bajo estas hipótesis tenemos que *Me_i* tiene estructura de *k*-espacio vectorial. Entonces definimos $\underline{\dim}(M) := (\underline{\dim}_k(Me_i))_{i=1,...,n}$. La *matriz de Cartan* de *A*, es la matriz dada por:

$$C_A = \begin{pmatrix} c_{11} & \dots & c_{1n} \\ \vdots & \ddots & \vdots \\ c_{n1} & \dots & c_{nn} \end{pmatrix} \in \mathbb{M}_{n \times n}(\mathbb{Z})$$

donde $c_{ji} := \dim_k e_j A e_i$, para i, j = 1, ..., n.

En este caso, las columnas de la matriz de Cartan corresponden a los vectores de dimensión de los *A*-módulos proyectivos inescindibles.

Bajo nuestras hipótesis, el grupo de Grothendieck de A, $K_0(A)$, es isomorfo a \mathbb{Z}^n [26, Sección 2.4]. Si además pedimos que A sea un álgebra de dimensión global finita ([2, Sección A.4]), entonces su matriz de Cartan C_A , es invertible [26, página 70] y por esto, induce una \mathbb{Z} -forma bilineal $\langle -, - \rangle$ en $K_0(A)$, dada por:

$$\langle x, y \rangle = x^t C_A^{-t} y$$

A esta forma bilineal se le llama *forma bilineal de Ringel* y tiene la siguiente interpretación homológica:

Lema 2.1. Si X, Y son A-módulos tales que X es de dimensión proyectiva finita ó Y es de dimensión inyectiva finita, entonces:

$$\langle \underline{\dim} X, \underline{\dim} Y \rangle = \sum_{i \ge 0} (-1)^i \operatorname{Ext}_A^i(X, Y)$$

Definimos la *característica de Euler asociada al álgebra* A , χ_A , dada por

$$\chi_A(x) = \langle x, x \rangle.$$

Por último, si *A* es de dimensión global finita , la *matriz de Coxeter* de *A* es la matriz $\Phi = -C_A^t C_A^{-1}$ y a su acción en $K_0(A)$ le llamamos la *transformación de Coxeter*.

2.2. Extensiones y coextensiones en un punto

Dada A una k-álgebra y X un A-módulo la *extensión en un punto* de A, A[X], es el álgebra de matrices:

$$A[X] := \begin{bmatrix} A & {}_{A}X_{k} \\ 0 & k \end{bmatrix}$$

con la suma ordinaria de matrices y multiplicación:

$$\begin{bmatrix} a & x \\ 0 & c \end{bmatrix} \begin{bmatrix} a' & x' \\ 0 & c' \end{bmatrix} = \begin{bmatrix} aa' & ax' + xc' \\ 0 & cc' \end{bmatrix}$$

En términos de carcajes, el carcaj $Q_{A[X]}$ se obtiene del carcaj Q_A , al agregar un nuevo vértice y algunas flechas (se puede leer de $\underline{\dim X}/(\operatorname{rad} X)$) que van del nuevo vértice al carcaj Q_A . Graficamente:

La *coextensión en punto* de A, [X]A, es el álgebra de matrices:

$$[X]A := \begin{bmatrix} k & DX \\ 0 & A \end{bmatrix}$$

donde $DX = \text{Hom}_k(_kX_A, k)$. En este caso, el carcaj $Q_{[X]A}$ tiene la siguiente estructura:

2.3. Tubos estables y álgebras mansas ocultas

El concepto de álgebra tubular juega un papel central en este trabajo. Para poder definirlo necesitamos los conceptos de tubo estable y de álgebra mansa oculta [26, Sección 4.3].

Una componente conexa T en el carcaj de Auslander-Reiten de mod-A de la forma:

es un *tubo estable* si existe $n \in \mathbb{N}$ tal que $x_i^j = x_{i+n}^j$ para toda $j \in \mathbb{N}$, y para toda $i \in \mathbb{Z}$ (ver [26, página 113]). En este caso decimos que el *rango* de *T* es el mínimo $d \in \mathbb{N}$ tal que $x_i^j = x_{i+d}^j$ para toda $j \in \mathbb{N}$, y para toda $i \in \mathbb{Z}$. Decimos que los *B*-módulos correspondientes a los vértices de la forma x_i^0 $i \in \mathbb{Z}$, son *módulos simples regulares*.

Una componente conexa del carcaj de Auslander-Reiten de mod-*A*, se dice que es *regular* si no contiene módulos poryectivos o inyectivos. Un módulo inescindible se dice que es un *módulo regular* si pertenece a una componente conexa del carcaj de Auslander-Reiten de mod-*A*.

Ahora, supongamos que *A* es una *k*-álgebra mansa, básica, conexa, hereditaria y de tipo de representación-infinita.

Observación 2.1. Estos conceptos se pueden revisar en: mansa en [28, Sección. XIX.3], en [2]: básica en la Sección I.6, hereditaria en la Sección VII.1, conexa y tipo de representación-infinita en la Sección I.4.

Sea *T* un *A*-módulo izquierdo, preproyectivo e inclinante [26, Sección 4.1] o [2, Sección VI.2]. En este caso decimos que el álgebra $B := \text{End}_{(A}T)$ es una *álgebra mansa oculta*. En [26, Sección A.2] hay una lista de las álgebras mansas ocultas.

En este caso, gl. dim $(B) \le 2$. Esto nos implica que la matriz C_B^{-t} codifica las flechas y relaciones mínimas de *B*, de la siguiente manera: la entrada $(C_B^{-t})_{i,j}$ es igual al número de relaciones que comienzan en *j* y terminan en *i* menos el número de flechas que comienzan en *j*.

El carcaj de Auslander-Reiten de B-mod tiene la siguiente estructura:

En donde P es la componente preproyectiva, Q la componente preinyectiva y R son los B-módulos regulares [26, Sección 4.3].

Considerando a la forma cuadrática de *B* y $x \in K_0(B) \cong \mathbb{Z}^n$. Diremos que:

a) x es una raíz de χ_B , si $\chi_B(x) = 1$;

b) x es un vector radical de χ_B , si $\langle x, y \rangle + \langle y, x \rangle = 0$ para toda y.

Se puede probar que el conjunto de vectores radicales de χ_B es un grupo y al rango de este grupo le llamamos el *corango* de χ_B [2, Sección VII.3].

Proposición 2.1. Sea B un álgebra mansa oculta, entonces:

a) χ_B tiene corango 1;

b) Si h es el único vector radical positivo mínimo de $K_0(B)$ con $h = \underline{\dim}R$ (para R un B-módulo regular inescindible) entonces los B-módulos regulares inescindibles son aquellos B-módulos inescindibles M tales que $\langle h, \underline{\dim}M \rangle = 0$.

c) $\underline{\dim}(\tau M) = (\underline{\dim}M)\Phi$, para cualquier B-módulo regular inescindible, donde τ es la traslación de AR.

d) Un B-módulo regular inescindible M, es simple regular si $\sum_{i=0}^{n-1} (\underline{\dim} \tau^i M) = h$, donde n es el τ -periodo de M.

Para a) y b) ver [26, Teorema 4.3 (3)]. El inciso c) se sigue de [26, Teorema 2.4 (4)] ya que los A-módulos regulares con A un álgebra mansa oculta tienen dimensión proyectiva igual a 1 [26, Teorema 3.1(5)]. d) se sigue del correspondiente resultado para módulos regulares sobre álgebras hereditarias al aplicar teoría de inclinación.

2.4. Álgebras Tubulares

Un *álgebra tubular* es una extensión de tipo tubular (2,2,2,2), (3,3,3), (4,4,2)o (6,3,2) ([26, páginas 171-174]) de un álgebra mansa oculta [26, página 230].

Observación 2.2. Se sabe que toda algebra tubular tiene dimensión global igual a 2, [28, Teorema 3.20].

Sean $\mathbb{T} \in \{(2,2,2,2), (3,3,3), (4,4,2), (6,3,2)\}$ y *A* un álgebra tubular de tipo \mathbb{T} . Por definición, sabemos que *A* es una extensión de un álgebra mansa oculta A_0 . Por otro lado, en [26, página 270] se prueba que toda álgebra tubular es un álgebra cotubular. Lo que nos dice que el álgebra *A* también es una coextensión de un álgebra mansa oculta A_{∞} . [26, páginas 268-269].

Sean h_o y h_∞ los vectores radicales positivos de $K_0(A_0)$ y $K_0(A_\infty)$ respectivamente. Para cada A-módulo inescindible definimos:

$$\operatorname{indice}(M) = -\frac{\langle h_0, \underline{\dim}M \rangle_A}{\langle h_\infty, \underline{\dim}M \rangle_A} \in \mathbb{Q} \cup \{\infty\}$$

Para cada $\gamma \in \mathbb{Q}_{>0}$, definimos la clase de *A*-módulos \mathscr{T}_{γ} como la clase dada por todos aquellos *A*-módulos inescindibles cuyo índice es igual a γ . Las clases \mathscr{T}_{γ} resultan ser una \mathbb{P}_1k -familia tubular (ver [26, página 181]) estable de tipo tubular, [26, Teorema 5.2 (2)].

El siguiente teorema ([26, Teorema 5.2 (4)]) describe la estructura de A-mod.

Teorema 2.1 (Ringel). Sea A un álgebra tubular de tipo tubular \mathbb{T} . Entonces el carcaj de Auslander-Reiten de A tiene las siguientes componentes: una componente preproyectiva P_0 (la misma de A_0), para cada $\gamma \in \mathbb{Q}_0^{\infty} := \{r \in \mathbb{Q} | 0 \leq r\} \cup \{\infty\}$ una \mathbb{P}_1k -familia tubular separadora (ver [26, Sección 3.1]) \mathcal{T}_{γ} , las cuales, a excepción de \mathbb{T}_0 y \mathbb{T}_{∞} , son estables de tipo tubular \mathbb{T} , y por último, una componente preinyectiva Q_{∞} (que coincide con la de A_{∞}).

Gráficamente el carcaj de Auslander-Reiten se ve de la siguiente manera:

En este diagrama no hay morfismos no cero que vayan de derecha a izquierda. Además, para cualesquiera dos módulos inescindibles X y Y tales que Hom $(X,Y) \neq 0$, se tiene que X y Y pertenecen a la misma componente o $X \in P_0$ y $Y \notin P_0$, o $X \notin Q_{\infty}$, o $X \in \mathscr{T}_{\gamma}$, $Y \in \mathscr{T}_{\delta}$ y $\gamma < \delta$.

2.5. Algebras iteradamente tubulares

En esta sección revisaremos el concepto de álgebra iteradamente tubular introducido por De la Peña y Tomé, y presentaremos una proposición muy importante para el presente trabajo. Para ahondar en el tema revisar [7].

Sea $\Lambda = KQ/I$ un K-álgebra básica de dimensión finita, vista como un álgebra de caminos módulo un ideal admisible. Diremos que $\Lambda' \subset \Lambda$ es una *subálgebra convexa*, si para algún subconjunto convexo $I \subset Q_0$ y $e = \sum_{i \in I} e_i$ se tiene que $\Lambda' = e\Lambda e$.

Ahora supongamos que Λ tiene las subálgebras convexas $\Lambda_1, \Lambda_2, \dots, \Lambda_m$ y A_1, A_2, \dots, A_m tales que satisfacen las siguientes condiciones:

- a) Λ_i es un álgebra tubular para cada i = 1, 2, ..., m.
- b) $A_i \subset \Lambda_{i-1} \cap \Lambda_i$ es un álgebra mansa oculta para cada i = 1, 2, ..., m.
- c) Λ_{i-1} es una coextensión tubular de A_i y Λ_i es una extensión tubular de A_i . Es decir, $\Lambda_{i-1} = \sum_{j=1}^{s_i} [E_{i,j}^-]A_i$ y $\Lambda_{i-1} = A_i [E_{i,j}^+]_{j=1}^{t_i}$, esto para cada i = 1, 2, ..., m, con E_{i}^{\pm} "ray-módulo".
- d) $\Lambda = \Lambda_1 + \Lambda_2 + \ldots + \Lambda_m$
- e) Si R es un Λ -módulo inescindible entonces:
 - si *R* no es módulo proyectivo-inyectivo el supp(*R*) está contenido en algún Λ_i.
 - Si *R* es un módulo proyectivo-inyectivo, entonces supp (*R*/soc(*R*)) está contenido en algún Λ_i.

Cumpliéndose estas condiciones, de [7], se dice que Λ es un álgebra *iteradamente tubular*.

En esta situación, consideremos lo siguiente. Sean $A_0 \subset \Lambda_1$ y $A_{m+1} \subset \Lambda_m$ subálgebras convexas y mansas ocultas tales que $\Lambda_1 = A_0[E_{0,j}^+]_{j=1}^{t_0}$ es una extensión tubular y $\Lambda_m = \sum_{j=1}^{s_{m+1}} [E_{m+1,j}^-]A_{m+1}$ una coextensión tubular. Sea $S \subset \Lambda$ el ideal generado por el soclo de los Λ -módulos inescindibles que son proyectivos-inyectivos. De [7, Proposición 8], tenemos la siguiente descripción de (Λ/S)-mod:

 $(\Lambda/S) \operatorname{-mod} = \mathscr{P}_0 \vee \mathscr{T}_0[E_{0,j}^+]_{j=1}^{t_0} \vee \\ \bigvee_{i=1}^m \left(\bigvee_{\gamma \in \mathbb{Q}_{>0}} \mathscr{T}_{i,\gamma} \vee {}^{s_i}_{j=1}[E_{i,j}^-] \mathscr{T}_i[E_{i,j}^+]_{j=1}^{t_i} \right) \vee {}^{s_{m+1}}_{j=1}[E_{m+1,j}^-] \mathscr{T}_{m+1} \vee \mathscr{Q}_{m+1} \\ \text{en donde:}$

- en uonue.
- \mathscr{P}_0 es la componente preproyectiva de A_0 ,
- \mathscr{T}_i es la familia tubular separadora de A_i , para i = 1, 2, ..., m + 1,
- $\mathcal{T}_{i,\gamma}$ es la familia tubular separadora con índice γ de Λ_i , para i = 1, 2, ..., m y

• \mathcal{Q}_{m+1} es la componente preinyectiva de A_{m+1} .

De [26, Sección 2] se deriva la información más detallada. En particular, Λ es mansa de crecimiento exponencial y el soporte de cualquier módulo inescindible está contenido en $\Lambda_i + \Lambda_{i+1}$ para alguna *i*.

De [7] tenemos la siguiente proposición que será muy importante más adelante.

Proposición 2.2. Si Λ es un álgebra iteradamente tubular entonces Λ es un álgebra mansa.

2.6. Cubiertas de Galois

En esta sección utilizaremos el enfoque funtorial a la teoría de representaciones [17].

Consideraremos a las *K*-álgebras como *K*-categorías localmente acotadas. Esto es, si *B* es una *K*-álgebra básica de dimensión finita, con $1_B = e_1 + e_2 + ... + e_n$ una descomposición de la unidad de *B* en idempotentes ortogonales primitivos, identificaremos a *B* con una categoría con objetos $\{1, 2, ..., n\}$ y cuyos espacios de morfismos están dados por $B(i, j) = e_j B e_i$. De acuerdo a esta identificación, los *B*-módulos a izquierda corresponden a funtores *K*-lineales de *B* a la categoría de *K*-espacios vectoriales.

Dada una *K*-álgebra básica *A* y un grupo *G* que actúa libremente en *A* a través de *K*-automorfismos lineales, denotaremos por A/G a la categoría de órbitas. Bajo estas condiciones, la proyección canónica $F : A \rightarrow A/G$ es por definición una *cubierta de Galois*, [17, Sección 3]. Asociado a *F*, se tiene el funtor "push down" $F_{\lambda} : \text{mod}A \rightarrow \text{mod}(A/G)$, dado por :

$$(F_{\lambda}M)(a) = \bigoplus_{x \in F^{-1}(a)} M(x)$$

para cada objeto a en A/G y la acción obvia en morfismos.

Una forma de construir cubiertas de Galois que utilizaremos más adelante es la siguiente: supongamos que la *K*-categoría básica localmente acotada *B* está \mathbb{Z} graduada, es decir, $B(x,y) = \bigoplus_{k \in \mathbb{Z}} B(x,y)_k$ y para cada $f \in B(x,y)_k$ y $g \in B(x,y)_l$ se tiene que $g \circ f \in B(x,y)_{k+l}$. Así podemos definir una categoría \tilde{B} cuyos objetos son $obj(\tilde{B}) := obj(B) \times \mathbb{Z}$ y $\tilde{B}((x,k),(y,l)) := B(x,y)_{l-k}$. Con esta definición, \mathbb{Z} actúa libremente sobre \tilde{B} a través de traslaciones. En los objetos esta acción está dada por $g \cdot (x,k) := (x,g+k)$. Con esto podemos identificar la categoría de órbitas \tilde{B}/\mathbb{Z} con B. La proyección canónica es así identificada con el funtor $F : \tilde{B} \to B$, que manda (x,k) a x y $\tilde{B}((x,k),(y,l))$ a $B(x,y)_{l-k} \subset B(x,y)$.

Para todo A-módulo M, denotaremos por supp M al soporte de M, esto es, la subcategoría plena de A formada por todos los objetos x tales que $M(x) \neq 0$. Para cada objeto x en A, denotaremos por A_x a la subcategoría plena de A que consiste de todos los objetos de supp M, donde M es cualquier módulo inescindible con x

en supp*M*. Diremos que *A* es *localmente de soporte finito* si para cada objeto *x* en *A*, el número de objetos de A_x es finito.

De [8] tenemos el siguiente:

Teorema 2.2 (Dowbor-Skowronski). Sea A una K-categoría localmente de soporte finito y G un grupo abeliano libre que actúa libremente sobre A. Supongamos que la acción inducida de G en las isoclases de A-módulos inescindibles finitamente generados es libre. Entonces A/G es localmente de soporte finito y el funtor "push down" F_{λ} : mod $A \rightarrow \text{mod}(A/G)$ induce una biyección entre las G-órbitas de isoclases de objetos inescindibles en mod A y las isoclases de objetos inescindibles en mod(A/G). En particular, A es mansa si y sólo si A/G lo es.

Observación 2.3. Una observación importante sobre el teorema anterior es que el enunciado que aparece en [8] es mucho más general. Aquí lo escribimos en una forma más adecuada para este trabajo.

3 Cubiertas de Galois de Álgebras Jacobianas

En este capítulo estudiaremos 4 álgebras Jacobianas asociadas a 4 carcajes con potencial. Estos 4 carcajes son representantes de las tres clases de mutación de tipo elíptico $E_q^{(1,1)}$, q = 6,7,8 y $D_4^{(1,1)}$ ([3]). Además los potenciales de estos 4 carcajes son no degenerados.

En la primera sección veremos un lema que nos da un isomorfismo entre *el* álgebra Jacobiana simplificada y $\mathscr{P}(Q,S)$. En la segunda sección presentaremos los carcajes con potencial, veremos que las correspondientes álgebras Jacobianas falsas son de dimensión finita y presentaremos sus cubiertas de Galois. En la segunda sección veremos que estas cubiertas son álgebras iteradamente tubulares en el sentido de De la Peña-Tomé [7], el cuál es uno de los resultados principales de este trabajo. Para la última sección discutimos la estructura del carcaj de Auslander-Reiten de estas cubiertas.

En los 4 casos pasa lo siguiente: el *álgebra Jacobiana simplificada* $\mathscr{P}'(Q,S) := kQ/\langle \partial_{\alpha}S | \alpha \in Q_1 \rangle$ es de dimensión finita (para cualquier campo algebraicamente cerrado *k*), y como $\mathscr{P}'(Q,S) \cong \mathscr{P}(Q,S)$, entonces $\mathscr{P}(Q,S)$ es de dimensión finita. Hay que notar que $\mathscr{P}'(Q,S)$ no coincide con la definición de $\mathscr{P}(Q,S)$, el isomorfismo se da porque en todos los casos el ideal $\langle \langle \partial_*S \rangle \rangle$ es un ideal admisible (Lema 3.1).

3.1. Un isomorfismo: $\mathscr{P}'(Q,S) \cong \mathscr{P}(Q,S)$

Sea $S \in kQ_{cyc}$ un potencial finito. Denotamos por $\langle \partial_* S \rangle$ al ideal de kQ generado por el conjunto $\{\partial_\alpha S | \alpha \in Q_1\}$. Similarmente, denotamos por $\langle \langle \partial_* S \rangle \rangle$ al ideal de \widehat{kQ}

generado por el mismo conjunto.

Se tiene que, bajo la inclusión natural $kQ \hookrightarrow \widehat{kQ}$,

$$\langle \partial_* S \rangle = \langle \langle \partial_* S \rangle \rangle \cap kQ$$

y de esta igualdad tenemos un homomorfismo inyectivo de álgebras:

$$kQ/\langle \partial_*S \rangle \longrightarrow \hat{kQ}/\langle \langle \partial_*S \rangle \rangle$$
 (3.1.1)

Lema 3.1. Si $\langle \partial_* S \rangle \subset kQ$ es un ideal admisible, entonces el homomorfismo en 3.1.1 induce un isomorfismo $kQ/\langle \partial_* S \rangle \rightarrow \mathscr{P}(Q,S)$.

Demostración. Denotamos por kQ_+ al ideal de kQ generado por las flechas del carcaj Q y por $\widehat{kQ_+} := \operatorname{rad} \widehat{kQ}$.

Como por hipótesis S es un ideal admisible entonces $(kQ_+)^m \subset \langle \partial_*S \rangle$ para algún $m \ge 2$ y de esto se sigue:

$$(kQ_{+})^{m} = (\widehat{kQ_{+}})^{m} \cap kQ \qquad \text{y} \qquad (\widehat{kQ_{+}})^{m} \subseteq \langle\!\langle \partial_{*}S \rangle\!\rangle \tag{3.1.2}$$

Notemos que $(\widehat{kQ_+})^m$ está generado por los caminos de longitud *m*. En esta situación, basta probar que el homomorfismo 3.1.1 es suprayectivo.

La suprayectividad de este homomorfismo se sigue de 3.1.2, debido a que $\widehat{kQ}/\langle\!\langle\partial_*S\rangle\!\rangle$ es el *k*-generado del conjunto $\{p+\langle\!\langle\partial_*S\rangle\!\rangle|p\in kQ$ camino tal que $\ell(p) < m\}$.

Este lema nos da el isomorfismo $\mathscr{P}'(Q,S) \cong \mathscr{P}(Q,S)$.

3.2. QP's y sus cubiertas de Galois.

3.2.1. Caso $(2, 2, 2, 2, \lambda)$

Consideremos el siguiente carcaj con potencial, en donde $\lambda \in k \setminus \{0, 1\}$:

Observación 3.1. Para el caso $\lambda = 1$, $\mathscr{P}'(Q^{(1)}, S^{(1)})$ es de dimensión infinita, y para $\lambda = 0$, $\mathscr{P}'(Q^{(1)}, S^{(1)})$ no es tubular.

Ahora veamos que $\langle \partial_* S_{\lambda}^{(1)} \rangle \subset kQ^{(1)}$ es un ideal admisible. Para ésto necesitamos calcular primero todas las derivadas cíclicas de $S_{\lambda}^{(1)}$:

$$\begin{aligned} \partial_a(S_{\lambda}^{(1)}) &= \lambda bc - fi, \quad \partial_b(S_{\lambda}^{(1)}) = \lambda ca - he, \quad \partial_c(S_{\lambda}^{(1)}) = \lambda ab - dg, \\ \partial_d(S_{\lambda}^{(1)}) &= ki - gc, \qquad \partial_e(S_{\lambda}^{(1)}) = fl - bh, \qquad \partial_f(S_{\lambda}^{(1)}) = le - ia, \\ \partial_g(S_{\lambda}^{(1)}) &= hj - cd, \qquad \partial_h(S_{\lambda}^{(1)}) = jg - eb, \qquad \partial_i(S_{\lambda}^{(1)}) = dk - af, \\ \partial_j(S_{\lambda}^{(1)}) &= gh - kl, \qquad \partial_k(S_{\lambda}^{(1)}) = id - lj, \qquad \partial_l(S_{\lambda}^{(1)}) = ef - jk. \end{aligned}$$

$$(3.2.1)$$

Figura 3.1:

Estas derivadas cíclicas generan al ideal Jacobiano falso $\mathscr{J}'(S_{\lambda}^{(1)})$, es decir, que las derivadas cíclicas nos inducen relaciones en el álgebra Jacobiana. Usando estas relaciones, calcularemos todos los caminos no triviales para ver que el álgebra Jacobiana correspondiente es de dimensión finita.

Caminos que comienzan en el vértice 1:

Caminos de longitud 1: c e i.

Caminos de longitud 2: *bc*, *gc*, *fi* e *ki*.

En este caso, por la relación inducida por la derivada cíclica $\partial_a(S_{\lambda}^{(1)})$, tenemos que $\lambda bc = fi$. Además, por la relación inducida por la derivada cíclica $\partial_d(S_{\lambda}^{(1)})$, tenemos que gc = ki.

Caminos de longitud 3: $\lambda abc = afi$, $\lambda ebc = efi$, dgc = dki, y jgc = jki. De la relación inducida por la derivada cíclica $\partial_c(S^{(1)}_{\lambda})$, tenemos que: $\lambda abc =$ afi = dgc = dki. Veamos que los caminos $\lambda ebc = efi$ y jgc = jki se anulan en el ideal Jacobiano. De la relación inducida por la derivada cíclica $\partial_h(S^{(1)}_{\lambda})$, tenemos que: $\lambda jgc = \lambda ebc = efi$. De la relación inducida por la derivada cíclica $\partial_l(S_{\lambda}^{(1)})$, se tiene que: $jki = efi = \lambda ebc$. De las igualdades anteriores se tiene que $\lambda jgc = jki$ y de la relación inducida por la derivada cíclica $\partial_d(S^{(1)}_{\lambda})$, se sigue que: $\lambda jki = jki$ y como $\lambda \neq 0, 1$, esto nos dice que jki = 0 y entonces el camino $\lambda ebc = efi = 0$. Por otro lado, para ver que el camino jgc = jki se anula en la álgebra Jacobiana, utilizando la relación inducida por la derivada cíclica $\partial_l(S^{(1)}_{\lambda})$, tenemos que: jgc = jki = efi. Utilizando la relación inducida por la derivada cíclica $\partial_a(S^{(1)}_{\lambda})$, tenemos que $jgc = jki = efi = \lambda ebc$. Por último, usamos la relación inducida por la derivada cíclica $\partial_h(S_{\lambda}^{(1)})$, y llegamos a que $jgc = jki = efi = \lambda ebc = \lambda jgc$, de donde concluímos que: $jgc = \lambda jgc$. Debido a que $\lambda \neq 0, 1$, entonces jgc = 0. En resumen, solamente tenemos un camino de longitud 3: $\lambda abc =$ afi = dgc = dki.

Caminos de longitud 4: $\lambda cabc = cafi = cdgc = cdki$ y $\lambda iabc = iafi = idgc = idki$.

De la relación inducida por la derivada cíclica $\partial_b(S^{(1)}_{\lambda})$, tenemos que: $\lambda cabc =$

hebc y como ya vimos que el camino de longitud 3 *ebc* se anula entonces $\lambda cabc = cafi = cdgc = cdki = hebc = 0$. Por otro lado, de la relación inducida por la derivada cíclica $\partial_f(S_{\lambda}^{(1)})$, tenemos que $\lambda iabc = \lambda lebc$ y como el camino ebc = 0, entonces tenemos que $\lambda iabc = iafi = idgc = idki = \lambda lebc = 0$.

Por lo tanto, todo camino que comienza en el vértice 1 de longitud mayor a 3 se anula. Además, los únicos caminos de longitud 3 que no se anulan son los ciclos.

Caminos que comienzan en el vértice 2:

Caminos de longitud 1: $h \in l$.

Caminos de longitud 2: *bh*, *gh*, *fl* e *kl*.

En este caso, de la relación inducida por la derivada cíclica $\partial_e(S_{\lambda}^{(1)})$ tenemos que bh = fl. Por otro lado, de la relación inducida por la derivada cíclica $\partial_j(S_{\lambda}^{(1)})$, tenemos que gh = kl.

Caminos de longitud 3: abh = afl, ebh = efl, dgh = dkl y jgh = jkl.

Debido a la relación inducida por la derivada cíclica $\partial_i(S_{\lambda}^{(1)})$ tenemos que abh = afl = dkl = dgh y de la relación inducida por la derivada cíclica $\partial_c(S_{\lambda}^{(1)})$ se sigue que: $abh = afl = dkl = dgh = \lambda abh$, es decir, $abh = \lambda abh$. Debido a que $\lambda \neq 0, 1$, entonces abh = 0. Por otro lado, de la relación inducida por la derivada cíclica $\partial_l(S_{\lambda}^{(1)})$ tenemos que: efl = jkl, es decir, ebh = efl = jgh = jkl

Caminos de longitud 4: hebh = hefl = hjgh = hjkl y lebh = lefl = ljgh = ljkl.

De la relación inducida por la derivada cíclica $\partial_b(S_{\lambda}^{(1)})$, tenemos que $hebh = \lambda cabh$ y cómo ya habíamos visto que abh = 0, entonces hebh = hefl = hjgh = hjkl = 0. Por otro lado, de la relación inducida por la derivada cíclica $\partial_f(S_{\lambda}^{(1)})$, se sigue que lebh = iabh y entonces lebh = lefl = ljgh = ljkl = 0.

Por lo tanto, todo camino que comienza en el vértice 2 de longitud mayor a 3 pertenece a $\langle \partial_* S \rangle$. Además, los únicos caminos de longitud 3 que no se anulan son los ciclos.

 El caso de los vértices 3 y 5 son análogos al caso del vértice 1 y el caso de los vértices 4 y 6 son análogos al caso del vértice 2.

Con lo anterior, hemos visto que solamente hay un número finito de caminos no cero, esto nos dice que el álgebra Jacobiana simplificada $\mathscr{P}'(Q^{(1)}, S^{(1)}_{\lambda})$, asociada al carcaj con potencial de la Figura 3.1 es de dimensión finita. Por el Lema 3.1, tenemos que entonces $\mathscr{P}(Q^{(1)}, S^{(1)}_{\lambda})$ es de dimensión finita.

Con los cálculos que acabamos de realizar, podemos dar explicitamente los vectores de dimensión de los módulos proyectivos inescindibles asociados a cada uno de los vértices:

$P_1 =$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 0 & 1 & 1 \\ 2 & 1 & 1 \end{array},$	$P_3 = \frac{1}{1}$	2 0	$\begin{array}{c} 1 \\ 1 \end{array},$
$P_4 =$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	y <i>P</i> ₆ =	1 1	$1 0 \\ 1 2$

Observación 3.2. En la figura de arriba, marcamos con negro el vértice que corresponde al top de este módulo.

Para poder estudiar mejor la categoría de representaciones del carcaj con potencial de la Figura 3.1, definimos una \mathbb{Z} -graduación en $Q_1^{(1)}$, dada por:

$$\deg(x) = \begin{cases} 1, & \text{si } x = c, h, i, l \\ 0, & \text{en otro caso.} \end{cases}$$

Esta \mathbb{Z} -graduación induce una \mathbb{Z} -graduación en el álgebra completa de caminos $\mathbb{C}\langle\langle Q_2 \rangle\rangle$. Con respecto a esta \mathbb{Z} -graduación, el potencial $S_{\lambda}^{(1)}$ es homogeneo, así como las derivadas ciclicas en (3.2.1). En particular el álgebra Jacobiana $\mathscr{P}(Q^{(1)}, S_{\lambda}^{(1)})$ es tambien \mathbb{Z} -graduada. Esto nos permite considerar la cubierta de Galois correspondiente:

Observación 3.3. *En la figura de arriba todos los cuadrados conmutan, posiblemente por un factor* λ *.*

3.2.2. Caso (3,3,3)

Consideremos el siguiente carcaj con potencial:

Ahora veamos que $\langle \partial_* S^{(2)} \rangle \subset kQ^{(2)}$ es un ideal admisible. Para ésto necesitamos calcular primero todas las derivadas cíclicas de $S^{(2)}$:

$$\begin{array}{ll} \partial_a(S^{(2)}) = bc, & \partial_b(S^{(2)}) = ca - jk, & \partial_c(S^{(2)}) = ab, \\ \partial_d(S^{(2)}) = ef, & \partial_e(S^{(2)}) = fd - jl, & \partial_f(S^{(2)}) = de, \\ \partial_g(S^{(2)}) = -ih, & \partial_h(S^{(2)}) = -gi, & \partial_i(S^{(2)}) = jm - hg, \\ \partial_j(S^{(2)}) = mi - kb - le, & \partial_k(S^{(2)}) = -bj, & \partial_l(S^{(2)}) = -ej, \\ \partial_m(S^{(2)}) = ij & \end{array}$$
(3.2.2)

$$S^{(2)} = abc + def - gih - jle - jkb + jml$$

Figura 3.2:

Estas derivadas cíclicas generan a $\langle \partial_* S^{(2)} \rangle \subset kQ$, es decir, que las derivadas cíclicas nos inducen relaciones en el álgebra Jacobiana. Usando estas relaciones, calcularemos todos los caminos no triviales para ver que el álgebra Jacobiana correspondiente es de dimensión finita.

Caminos que comienzan en el vértice 1:

Caminos de longitud 1: j.

Caminos de longitud 2: *bj*, *ej* e *ij*.

Por las relaciones, tenemos que bj = 0, ej = 0 e ij = 0.

Por lo tanto, todo camino que comienza en el vértice 1 de longitud mayor a 1 pertenece a $\langle \partial_* S^{(2)} \rangle$.

Caminos que comienzan en el vértice 2:

Caminos de longitud 1: *a* y *k*.

Caminos de longitud 2: ca y jk. Por las relaciones inducidas por las derivadas cíclicas, tenemos que en realidad ca = jk.

Caminos de longitud 3: bca = bjk, eca = ejk y ica = ijk. En este caso bca = bjk = 0, porque de la derivada cíclica $\partial_a(S^{(2)})$, tenemos que bc = 0. El camino eca = ejk = 0, porque de la derivada cíclica $\partial_l(S^{(2)})$, tenemos que -ej = 0. Por último, ica = ijk = 0 porque de la derivada cíclica $\partial_m(S^{(2)})$, tenemos que ij = 0.

Por lo tanto, todo camino que comienza en el vértice 2 de longitud mayor a 2 pertenece a $\langle \partial_* S^{(2)} \rangle$.

• El caso de los vértices 3 y 4 es análogo al del vértice 2.

Caminos que comienzan en el vértice 5:

Caminos de longitud 1: *b*, *e* y *i*. Caminos de longitud 2: *ab*, *kb*, *de*, *le*, *gi* y *mi*. De $\partial_c(S^{(2)})$, $\partial_f(S^{(2)})$ y $\partial_h(S^{(2)})$ tenemos que ab = 0, de = 0 y gi = 0. Por $\partial_j(S^{(2)})$, tenemos que mi = kb + le, es decir, podemos considerar que solo hay 2 caminos de longitud 2, que no pertenece a $\langle \partial_* S^{(2)} \rangle$, n; *kb* y *le*.

Caminos de longitud 3: *jkb* y *jle*. De la derivada cíclica $\partial_b(S^{(2)})$, tenemos que *jkb* = *cab* y de $\partial_c(S^{(2)})$, tenemos: *jkb* = *cab* = 0. De la derivada cíclica $\partial_e(S^{(2)})$, tenemos que *jle* = *fde* y de $\partial_f(S^{(2)})$, tenemos: *jle* = *fde* = 0.

Por lo tanto, todo camino que comienza en el vértice 5 de longitud mayor a 2 pertenece a $\langle \partial_* S \rangle$.

• Caminos que comienzan en el vértice 6:

Caminos de longitud 1: c.

Caminos de longitud 2: *bc*, *ec* e *ic*. Por $\partial_a(S^{(2)})$, *bc* = 0.

Caminos de longitud 3: *lec*, *mic*. De la derivada $c\partial_j(S^{(2)})$ y del hecho de que bc = 0, tenemos que: *lec* = *mic*, es decir, solamente hay una camino de longitud 3.

Caminos de longitud 4: jlec = jmic. De la derivada cíclica $\partial_i(S^{(2)})$ tenemos que jlec = jmic = hgic y de la derivada cíclica $\partial_h(S^{(2)})$ se tiene que: jlec = jmic = hgic = 0.

Por lo tanto, todo camino que comienza en el vértice 6 de longitud mayor a 3 pertenece a $\langle \partial_* S^{(2)} \rangle$.

• El caso de los vértices 7 y 8 es análogo al del vértice 6.

Hemos visto que todos los caminos con longitud mayor a 3 pertenecen a $\langle \partial_* S^{(2)} \rangle$, esto nos dice que el álgebra Jacobiana asociada al carcaj con potencial de la Figura 3.2, $\mathscr{P}(Q^{(2)}, S^{(2)})$, es isomorfa al álgebra de dimensión finita $kQ^{(2)}/\langle \partial_* S^{(2)} \rangle$ por el Lema 3.1.

Con los cálculos que acabamos de realizar podemos dar, explícitamente, los vectores de dimensión de los módulos proyectivos inescindibles asociados a cada uno de los vértices:

Observación 3.4. *En la figura de arriba, marcamos con negro el vértice que corresponde al top de este módulo.*

Para poder estudiar mejor la categoría de representaciones del carcaj con potencial de la Figura 3.2, definimos una \mathbb{Z} -graduación en $Q_1^{(2)}$, dada por:

$$\deg(x) = \begin{cases} 1, & \text{si } x = a, d, g, j \\ 0, & \text{en otro caso} \end{cases}$$

3.2. QP'S Y SUS CUBIERTAS DE GALOIS.

Esta \mathbb{Z} -graduación induce una \mathbb{Z} -graduación en el álgebra completa de caminos $\mathbb{C}\langle\langle Q^{(2)} \rangle\rangle$. Con respecto a esta \mathbb{Z} -graduación, el potencial $S^{(2)}$ es homogéneo, así como las derivadas cíclicas en (3.2.2). En particular el álgebra Jacobiana $\mathscr{P}(Q^{(2)}, S^{(2)})$ es también \mathbb{Z} -graduada. Esto nos permite considerar la cubierta de Galois correspondiente:

Observación 3.5. En la figura de arriba las líneas punteadas indican relaciones cero, relaciones de conmutatividad ó una suma alternante de 3 que es cero. Además de estas relaciones, tenemos que todos los cuadrados conmutan.

3.2.3. Caso (4,4,2)

Consideremos el siguiente carcaj con potencial:

Figura 3.3:

Ahora veamos que $\langle \partial_* S^{(3)} \rangle k Q^{(3)}$ es un ideal admisible. Para ésto necesitamos calcular todas las derivadas cíclicas de $S^{(3)}$:

$$\begin{aligned} \partial_{a}(S^{(3)}) &= bc, & \partial_{b}(S^{(3)}) &= ca, & \partial_{c}(S^{(3)}) &= ab - ef, \\ \partial_{d}(S^{(3)}) &= eh, & \partial_{e}(S^{(3)}) &= hd - fc, & \partial_{f}(S^{(3)}) &= gi - ce, \\ \partial_{g}(S^{(3)}) &= if, & \partial_{h}(S^{(3)}) &= de - jk, & \partial_{i}(S^{(3)}) &= fg - lm, \\ \partial_{j}(S^{(3)}) &= -kh, & \partial_{k}(S^{(3)}) &= ln - hj, & \partial_{l}(S^{(3)}) &= nk - mi, \\ \partial_{m}(S^{(3)}) &= -il & \partial_{n}(S^{(3)}) &= kl - op & \partial_{o}(S^{(3)}) &= -pn \\ \partial_{p}(S^{(3)}) &= -no \end{aligned}$$
(3.2.3)

Estas derivadas cíclicas generan a $\langle \partial_* S^{(3)} \rangle \subset kQ^{(3)}$, es decir, que las derivadas cíclicas nos inducen relaciones en el álgebra Jacobiana. Usando estas relaciones, calcularemos todos los caminos no triviales para ver que el álgebra Jacobiana correspondiente es de dimensión finita.

• Caminos que comienzan en el vértice 1:

Caminos de longitud 1: *h* Caminos de longitud 2: *eh ih* y *kh*. En este caso, *eh* = 0 y *kh* = 0 por las relaciones que inducen las derivadas cíclicas $\partial_d(S^{(3)})$ y $\partial_j(S^{(3)})$. Caminos de longitud 3: *gih* e *mih*. De la derivada cíclica $\partial_f(S^{(3)})$, se sigue que: *gih* = *ceh* y de la derivada cíclica $\partial_d(S^{(3)})$ tenemos *gih* = *ceh* = 0.

Por lo tanto, todo camino que comienza en el vértice 1 de longitud mayor a 2 pertenece a $\langle \partial_* S \rangle$.

Caminos que comienzan en el vértice 2:

Caminos de longitud 1: d y c.

Caminos de longitud 2: hd, bc y fc.

En este caso, bc = 0 por la relación que induce la derivada cíclica $\partial_a(S^{(3)})$. Por otro lado, tenemos que hd = fc por la relación que induce la derivada cíclica $\partial_e(S^{(3)})$.

Caminos de longitud 3: ehd = efc, khd = kfc y ihd = ifc.

En este caso, se tiene que ehd = efc = 0 (respectivamente khd = kfc = 0y ihd = ifc = 0) usando las relaciones inducidas por las derivadas cíclicas $\partial_d(S^{(3)})$, (respectivamente $\partial_j(S^{(3)})$ y $\partial_g(S^{(3)})$).

Por lo tanto, todo camino que comienza en el vértice 2 de longitud mayor a 2 pertenece a $\langle \partial_* S^{(3)} \rangle$.

- El caso del vértice 3 es análogo al del vértice 2.
- Caminos que comienzan en el vértice 4: Caminos de longitud 1: a.

Caminos de longitud 2: ca y da.

En este caso, ca = 0 por la relación que induce la derivada cíclica $\partial_b(S^{(3)})$. Caminos de longitud 3: *hda*.

Tenemos que hda = fca por la relación inducida por la derivada cíclica $\partial_e(S^{(3)})$, luego usando la relación que induce la derivada cíclica $\partial_b(S^{(3)})$, tenemos hda = fca = 0.

Por lo tanto, todo camino que comienza en el vértice 4 de longitud mayor a 2 pertenece a $\langle \partial_* S^{(3)} \rangle$.

 Caminos que comienzan en el vértice 5: Caminos de longitud 1: *e*, *k* e *i*. Caminos de longitud 2: *ce*, *de*, *jk*, *nk*, *gi* y *mi*. De las relaciones inducidas por las derivadas cíclicas $\partial_f(S^{(3)})$, $\partial_h(S^{(3)})$ y $\partial_b(S^{(3)})$ tenemos que ce = gi, de = jk y nk = mi.

Caminos de longitud 3: bce = bgi, fce = fgi, hde = hjk, lnk = lmi y pnk = pmi.

En este caso, bce = bgi = 0 por la relación que induce la derivada cíclica $\partial_a(S^{(3)})$. Por otro lado, usando la relación que induce la derivada cíclica $\partial_e(S^{(3)})$ tenemos que fce = fgi = hde = hjk, y usando la relación inducida por la derivada cíclica $\partial_k(S^{(3)})$ tenemos que fce = fgi = hde = hjk = lnk = lmi. Por último, de la relación inducida por la derivada cíclica $\partial_o(S^{(3)})$ se tiene que pnk = pmi = 0. En resumen, solamente tenemos un camino no cero, de longitud 3; fce = fgi = hde = hjk = lnk = lmi.

Caminos de longitud 4: efce = efgi = ehde = ehjk = elnk = elmi, kfce = kfgi = khde = khjk = klnk = klmi e ifce = ifgi = ihde = ihjk = ilnk = ilmi. En este caso, efce = efgi = ehde = ehjk = elnk = elmi = 0 porque de la relación inducida por la derivada cíclica $\partial_d(S^{(3)})$ se sigue que ehde = 0. Además kfce = kfgi = khde = khjk = klnk = klmi = 0 porque de la relación inducida por la derivada cíclica $\partial_j(S^{(3)})$ se sigue que khjk = 0. Por último, ifce = ifgi = ihde = ihjk = ilnk = ilmi = 0 porque de la relación inducida por la derivada cíclica $\partial_j(S^{(3)})$ se sigue que khjk = 0. Por último, ifce = ifgi = ihde = ihjk = ilnk = ilmi = 0 porque de la relación inducida por la derivada cíclica $\partial_m(S^{(3)})$ se sigue que ilnk = 0.

Por lo tanto, todo camino que comienza en el vértice 5 de longitud mayor a 3 pertenece a $\langle \partial_* S^{(3)} \rangle$.

• El caso del vértice 6 es análogo al del vértice 4.

Caminos que comienzan en el vértice 7:

Caminos de longitud 1: $b ext{ y } f$.

Caminos de longitud 2: *ab*, *ef*, *kf* e *if*.

De la relación inducida por la derivada cíclica $\partial_c(S^{(3)})$, podemos deducir que ab = ef. Además de la relación inducida por la derivada cíclica $\partial_g(S^{(3)})$ tenemos que if = 0. En resumen, solamente tenemos dos caminos de longitud 2; ab = ef y kf.

Caminos de longitud 3: cab = cef, dab = def, jkf y nkf.

De la relación inducida por la derivada cíclica $\partial_b(S^{(3)})$, se sigue que cab = cef = 0. De la relación inducida por la derivada cíclica $\partial_h(S^{(3)})$, se sigue que dab = def = jkf. Por último, por la relación inducida por la derivada cíclica $\partial_l(S^{(3)})$, se tiene que: nkf = mif y de la derivada cíclica $\partial_g(S^{(3)})$, tenemos que nkf = mif = 0. En resumen, solamente tenemos un camino de longitud 3: dab = def = jkf.

Caminos de longitud 4: hdab = hdef = hjkf.

De la relación inducida por la derivada cíclica $\partial_e(S^{(3)})$, se sigue que hdab = fcab y de la relación inducida por la derivada cíclica $\partial_b(S^{(3)})$, tenemos que hdab = fcab = 0.

Por lo tanto, todo camino que comienza en el vértice 7 de longitud mayor a 3 pertenece a $\langle \partial_* S^{(3)} \rangle$.

- El caso del vértice 8 es análogo al del vértice 7.
- Caminos que comienzan en el vértice 9:

Caminos de longitud 1: g y m.

Caminos de longitud 2: bg, fg, lm y pm.

De la relación inducida por la derivada cíclica $\partial_i(S^{(3)})$, se sigue que fg = lm. Caminos de longitud 3: *abg*, efg = elm, kfg = klm, ifg = ilm y *opm*.

De la relación inducida por la derivada cíclica $\partial_c(S^{(3)})$, se sigue que abg = efg = elm. De la relación inducida por la derivada cíclica $\partial_n(S^{(3)})$, se sigue que kfg = klm = opm. De la relación inducida por la derivada cíclica $\partial_g(S^{(3)})$, se sigue que ifg = ilm = 0. En resumen, tenemos dos caminos de longitud 3: abg = efg = elm y kfg = klm = opm.

Caminos de longitud 4: cabg = cefg = celm, dabg = defg = delm, jkfg = jklm = jopm y nkfg = nklm = nopm.

De la relación inducida por la derivada cíclica $\partial_b(S^{(3)})$, se sigue que cabg = 0. De la relación inducida por la derivada cíclica $\partial_h(S^{(3)})$, se sigue que defg = jkfg y por lo tanto, dabg = defg = delm = jkfg = jklm = jopm. De la relación inducida por la derivada cíclica $\partial_p(S^{(3)})$, se sigue que nkfg = nklm = nopm = 0. En resumen, solamente hay un camino no cero de longitud 4: dabg = defg = delm = jkfg = jklm = jopm.

Caminos de longitud 5: hdabg = hdefg = hdelm = hjkfg = hjklm = hjopm. De la relación inducida por la derivada cíclica $\partial_e(S^{(3)})$, se sigue que hdabg = fcabg y por la derivada cíclica $\partial_b(S^{(3)})$ tenemos que hdabg = fcabg = 0.

Por lo tanto, todo camino que comienza en el vértice 9 de longitud mayor a 4 pertenece a $\langle \partial_* S^{(3)} \rangle$.

Hemos visto que todos los caminos de longitud mayor a 4 pertenecen a $\langle \partial_* S^{(3)} \rangle$, esto nos dice que el álgebra Jacobiana asociada al carcaj con potencial de la Figura 3.3, $\mathscr{P}(Q^{(3)}, S^{(3)})$, es isomorfa al álgebra de dimensión finita de $\langle \partial_* S^{(3)} \rangle$, esto por el Lema 3.1.

Con los cálculos que acabamos de realizar podemos dar, explícitamente, los vectores de dimensión de los módulos proyectivos inescindibles asociados a cada uno de los vértices:

Observación 3.6. En la figura de arriba, marcamos con negro el vértice que corresponde al top de este módulo.

Para poder estudiar mejor la categoría de representaciones del carcaj con potencial de la Figura 3.3, definimos una \mathbb{Z} -graduación en $Q_1^{(3)}$, dada por:

$$\deg(x) = \begin{cases} 1, & \text{si } x = c, h, i, n \\ 0, & \text{en otro caso.} \end{cases}$$

Esta \mathbb{Z} -graduación induce una \mathbb{Z} -graduación en el álgebra completa de caminos $\mathbb{C}\langle\langle Q^{(3)} \rangle\rangle$. Con respecto a esta \mathbb{Z} -graduación, el potencial $S^{(3)}$ es homogéneo, así como las derivadas cíclicas en (3.2.3). En particular el álgebra Jacobiana $\mathscr{P}(Q^{(3)}, S^{(3)})$ es también \mathbb{Z} -graduada. Esto nos permite considerar su cubierta de Galois correspondiente:

Observación 3.7. En la figura de arriba, las líneas punteadas indican relaciones cero. Además de las relaciones cero, tenemos que todos los cuadrados conmutan.

3.2.4. Caso (6,3,2)

Consideremos el siguiente carcaj con potencial:

Ahora veamos que $\langle \partial_* S^{(4)} \rangle \subset kQ^{(4)}$ es un ideal admisible. Para ésto necesitamos calcular todas las derivadas cíclicas de $S^{(4)}$:

$$\begin{array}{ll} \partial_{a}(S^{(4)}) = cd, & \partial_{b}(S^{(4)}) = -ce, & \partial_{c}(S^{(4)}) = da - eb, \\ \partial_{d}(S^{(4)}) = ac, & \partial_{e}(S^{(4)}) = fg - bc, & \partial_{f}(S^{(4)}) = ge, \\ \partial_{g}(S^{(4)}) = ef - hi, & \partial_{h}(S^{(4)}) = -ig, & \partial_{i}(S^{(4)}) = kl - gh, \\ \partial_{j}(S^{(4)}) = -km, & \partial_{k}(S^{(4)}) = li - mj, & \partial_{l}(S^{(4)}) = ik, \\ \partial_{m}(S^{(4)}) = no - jk & \partial_{n}(S^{(4)}) = om & \partial_{o}(S^{(4)}) = mn - pq, \\ \partial_{p}(S^{(4)}) = -qo & \partial_{q}(S^{(4)}) = -op \end{array}$$

$$(3.2.4)$$

Figura 3.4:

Estas derivadas cíclicas generan a $\langle \partial_* S^{(4)} \rangle \subset kQ^{(4)}$, es decir, que las derivadas cíclicas nos inducen relaciones en el álgebra Jacobiana. Usando estas relaciones, calcularemos todos los caminos no triviales para ver que el álgebra Jacobiana correspondiente es de dimensión finita.

• Caminos que comienzan en el vértice 1:

Caminos de longitud 1: e.

Caminos de longitud 2: ce y ge.

De la relación inducida por la derivada cíclica $\partial_b(S^{(4)})$, se sigue que ce = 0 y de la relación inducida por la derivada cíclica $\partial_f(S^{(4)})$, se sigue que ge = 0.

Por lo tanto, todo camino que comienza en el vértice 1 de longitud mayor a 1 pertenece a $\langle \partial_* S^{(4)} \rangle$.

• El caso del vértice 2 es análogo al del vértice 1.

Caminos que comienzan en el vértice 3:

Caminos de longitud 1: *a* y *b*.

Caminos de longitud 2: da y eb.

De la relación inducida por la derivada cíclica $\partial_c(S^{(4)})$, se sigue que da = eb. Caminos de longitud 3: cda = ceb y gda = geb.

De la relación inducida por la derivada cíclica $\partial_b(S^{(4)})$, se sigue que cda = ceb = 0. De la relación inducida por la derivada cíclica $\partial_f(S^{(4)})$, se sigue que gda = geb = 0.

Por lo tanto, todo camino que comienza en el vértice 3 de longitud mayor a 2 pertenece a $\langle \partial_* S^{(4)} \rangle$.

Caminos que comienzan en el vértice 4:

Caminos de longitud 1: f, i y j. Caminos de longitud 2: ef, hi, li y mj. De la relación inducida por la derivada cíclica $\partial_g(S^{(4)})$, se sigue que ef = hiy de la relación inducida por la derivada cíclica $\partial_k(S^{(4)})$, se sigue que li = mj. Caminos de longitud 3: cef = chi, gef = ghi, kli = kmj y oli = omj. De la relación inducida por la derivada cíclica $\partial_b(S^{(4)})$, se sigue que cef = chi = 0. De la relación inducida por la derivada cíclica $\partial_f(S^{(4)})$, se sigue que gef = ghi = 0. De la relación inducida por la derivada cíclica $\partial_j(S^{(4)})$, se sigue que kli = kmj = 0. De la relación inducida por la derivada cíclica $\partial_j(S^{(4)})$, se sigue que kli = kmj = 0. De la relación inducida por la derivada cíclica $\partial_n(S^{(4)})$, se sigue que oli = omj = 0.

Por lo tanto, todo camino que comienza en el vértice 4 de longitud mayor a 2 pertenece a $\langle \partial_* S^{(4)} \rangle$.

- El caso del vértice 5 es análogo al del vértice 3.
- Caminos que comienzan en el vértice 6:

Caminos de longitud 1: c y g.

Caminos de longitud 2: *ac*, *bc*, *fg*, *ig* y *jg*.

De la relación inducida por la derivada cíclica $\partial_d(S^{(4)})$, se sigue que ac = 0. De la relación inducida por la derivada cíclica $\partial_e(S^{(4)})$, se sigue que bc = fg. De la relación inducida por la derivada cíclica $\partial_h(S^{(4)})$, se sigue que ig = 0. En resumen, hay dos caminos de longitud 2: bc = fg y jg.

Caminos de longitud 3: ebc = efg y mjg.

En este caso, de la relación inducida por la derivada cíclica $\partial_c(S^{(4)})$ se sigue que dac = ebc = efg y de la relación inducida por la derivada cíclica $\partial_d(S^{(4)})$ tenemos que dac = ebc = efg = 0. Por otro lado, la relación inducida por la derivada cíclica $\partial_k(S^{(4)})$ tenemos que: mjg = lig y de la relación inducida por la derivada cíclica $\partial_h(S^{(4)})$ tenemos que mjg = lig = 0.

Por lo tanto, todo camino que comienza en el vértice 6 de longitud mayor a 2 pertenece a $\langle \partial_* S^{(4)} \rangle$.

- El caso del vértice 7 es análogo al del vértice 6.
- Caminos que comienzan en el vértice 8:

Caminos de longitud 1: d.

Caminos de longitud 2: cd y gd.

En este caso, de la relación inducida por la derivada cíclica $\partial_a(S^{(4)})$ se sigue que cd = 0.

Caminos de longitud 3: fgd, igd y jgd.

De la relación inducida por la derivada cíclica $\partial_e(S^{(4)})$ tenemos que fgd = bcd y de la relación inducida por la derivada cíclica $\partial_a(S^{(4)})$ tenemos fgd = bcd = 0. Además, igd = 0 por la relación inducida por la derivada cíclica $\partial_h(S^{(4)})$. En resumen, solamente hay un camino no cero de longitud 3: jgd. Caminos de longitud 4: mjgd.

En este caso, de la relación inducida por la derivada cíclica $\partial_k(S^{(4)})$ se sigue que mjgd = ligd y de la relación inducida por la derivada cíclica $\partial_h(S^{(4)})$ tenemos mjgd = ligd = 0.

Por lo tanto, todo camino que comienza en el vértice 8 de longitud mayor a 3 pertenece a $\langle \partial_* S^{(4)} \rangle$.

Caminos que comienzan en el vértice 9:
 Caminos de longitud 1: h y l.

Caminos de longitud 2: ch, gh, kl y ol.

En este caso, de la relación inducida por la derivada cíclica $\partial_i(S^{(4)})$ se sigue que gh = kl.

Caminos de longitud 3: ach, bch, fgh = fkl, jgh = jkl, nol y qol.

De la relación inducida por la derivada cíclica $\partial_d(S^{(4)})$ tenemos que ach = 0. De la relación inducida por la derivada cíclica $\partial_e(S^{(4)})$ se sigue que bch = fgh = fkl. De la relación inducida por la derivada cíclica $\partial_m(S^{(4)})$ se sigue que jgh = jkl = nol. Por último, qol = 0 esto por la relación inducida por la derivada cíclica $\partial_p(S^{(4)})$. En resumen, tenemos dos caminos de longitud 3: bch = fgh = fkl y jgh = jkl = nol.

Caminos de longitud 4: ebch = efgh = efkl y mjgh = mjkl = mnol.

De la relación inducida por la derivada cíclica $\partial_c(S^{(4)})$ tenemos que *ebch* = *dach* y de la relación inducida por la derivada cíclica $\partial_c(S^{(4)})$, se tiene que *ebch* = *dach* = 0. De la relación inducida por la derivada cíclica $\partial_k(S^{(4)})$ tenemos que *mjgh* = *ligh* y de la relación inducida por la derivada cíclica $\partial_h(S^{(4)})$, se tiene que *mjgh* = *ligh* = 0.

Por lo tanto, todo camino que comienza en el vértice 9 de longitud mayor a 3 pertenece a $\langle \partial_* S^{(4)} \rangle$.

• El caso del vértice 10 es análogo al del vértice 8.

Hemos visto que todos los caminos con longitud mayor a 3 pertenecen a $\langle \partial_* S^{(4)} \rangle$, esto nos dice que el álgebra Jacobiana asociada al carcaj con potencial de la Figura 3.4, $\mathscr{P}(Q^{(4)}, S^{(4)})$, es isomorfa al álgebra de dimensión finita $\langle \partial_* S^{(4)} \rangle$, esto por el Lema 3.1.

Con los cálculos que acabamos de realizar podemos dar, explícitamente, los vectores de dimensión de los módulos proyectivos inescindibles asociados a cada uno de los vértices:

Observación 3.8. En la figura de arriba, marcamos con negro el vértice que corresponde al top de este módulo.

Para poder estudiar mejor la categoría de representaciones del carcaj con potencial de la Figura 3.4, definimos una \mathbb{Z} -graduación en $Q_1^{(4)}$, dada por:

$$\deg(x) = \begin{cases} 1, & \text{si } x = a, e, i, m, q \\ 0, & \text{en otro caso.} \end{cases}$$

Esta \mathbb{Z} -graduación induce una \mathbb{Z} -graduación en el álgebra completa de caminos $\mathbb{C}\langle\langle Q^{(4)} \rangle\rangle$. Con respecto a esta \mathbb{Z} -graduación, el potencial $S^{(4)}$ es homogéneo, así como las derivadas cíclicas en (3.2.4). En particular el álgebra Jacobiana $\mathscr{P}(Q^{(4)}, S^{(4)})$ es también \mathbb{Z} -graduada. Esto nos permite considerar su cubierta de Galois correspondiente:

Observación 3.9. En la figura de arriba, las líneas punteadas indican relaciones cero. Además de las relaciones cero, tenemos que todos los cuadrados conmutan.

3.3. Cubiertas de Galois y álgebras iteradamente tubulares.

Ahora probaremos que las cubiertas de Galois de las álgebras Jacobianas que presentamos en la sección anterior son álgebras iteradamente tubulares. Por lo largo de la demostración, dividiremos la prueba en subsecciones, una por cada caso.

Proposición 3.1. Las cubiertas de Galois asociadas a los casos $(2,2,2,2,\lambda)$, (3,3,3), (4,4,2) y (6,3,2), son álgebras iteradamente tubulares (en el sentido de la Peña-Tomé [7]).

3.3.1. Prueba del tipo tubular $(2, 2, 2, 2, \lambda)$

Para probar que esta cubierta es un álgebra iteradamente tubular consideremos la siguiente subcategoría mansa oculta de tipo tubular (2,2), revisar [26, páginas 365–366]:

Figura 3.5:

La forma cuadrática χ y la transformación de Coxeter Φ asociadas a la Figura 3.7 están dadas por las siguientes matrices:

$$\chi = \begin{bmatrix} 2 & 0 & -1 & -1 \\ 0 & 2 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ -1 & -1 & 0 & 2 \end{bmatrix} \quad \Phi = \begin{bmatrix} -1 & 0 & 1 & 1 \\ 0 & -1 & 1 & 1 \\ -1 & -1 & 1 & 2 \\ -1 & -1 & 2 & 1 \end{bmatrix}$$

Consideremos un módulo inescindible cuyo vector dimensión es:

$$u_1 = \begin{array}{c} 1 & 1 \\ 1 & 1 \end{array} \tag{3.3.1}$$

Si aplicamos la transformación de Coxeter, tenemos:

$$\Phi \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{array}{ccc} 1 & 1 \\ 1 & 1 \end{array}; \quad h_1 = \begin{array}{ccc} 1 & 1 \\ 1 & 1 \end{array}$$

Observación 3.10. En este caso, hay una familia de módulos inescindibles con este vector dimensión.

En donde h_1 es un generador del radical de la forma cuadrática del carcaj en la Figura 3.5. Debido a que la suma de la Φ -órbita del módulo con vector dimensión en 3.3.1 es igual a h_1 , por la Proposición 2.1, este módulo es simple regular en un tubo de rango 1. Después de aplicar la extensión en un punto con este módulo obtenemos, por [26], la siguiente álgebra tubular de tipo (2,2,2):

Observación 3.11. En la Figura 3.6 todos los cuadrados conmutan, posiblemente por un factor λ .

La forma cuadrática y la transformación de Coxeter asociadas a la Figura 3.6 están dadas por las siguientes matrices:

Figura 3.6:

	2	0	-1	-1	1		$\left[-1\right]$	0	1	1	-1]
	0	2	-1	-1	1		0	-1	1	1	-1
$\chi =$	-1	-1	2	0	-1	$\Phi =$	-1	-1	1	2	-1
	-1	-1	0	2	-1		-1	-1	2	1	-1
	1	1	-1	-1	2		[-1]	-1	1	1	-1

Consideremos el módulo cuyo vector de dimensión es:

$$u_2 = \begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 \end{array} \tag{3.3.2}$$

Si aplicamos la transformación de Coxeter, tenemos:

$$\Phi\begin{pmatrix}1 & 1 & 0\\ 1 & 1\end{pmatrix} = \begin{array}{ccc}1 & 1 & 0\\ 1 & 1\end{array}; \quad h_2 = \begin{array}{cccc}1 & 1 & 0\\ 1 & 1\end{array}$$

En donde h_2 es un generador del radical de la forma cuadrática del carcaj en la Figura 3.6. Debido a que la suma de la Φ -órbita del módulo con vector dimensión en 3.3.2 es igual a h_2 , por la Proposición 2.1, este módulo es simple regular en un tubo de rango 1. Después de aplicar la extensión en un punto con este módulo obtenemos, por [26], la siguiente álgebra tubular de tipo (2,2,2,2):

Observación 3.12. *En la Figura 3.6 todos los cuadrados conmutan, posiblemente por un factor* λ *.*

En la Figura de arriba encontramos la misma subcategoría de tipo tubular (2,2) que en la Figura 3.5. Con esto, esta cubierta de Galois es un álgebra iteradamente tubular, en el sentido de De la Peña-Tomé [7].

3.3.2. Prueba del tipo tubular (3,3,3)

Para probar que esta cubierta es un álgebra iteradamente tubular consideremos la siguiente subcategoría mansa oculta de tipo \widetilde{D}_4 , que es de tipo tubular (2,2,2), ver [26, páginas 365–366]:

Figura 3.7:

En la Figura 3.7, la línea punteada representa una suma alternante de 3 elementos igual a 0. La forma cuadrática χ y la transformación de Coxeter Φ asociadas a la Figura 3.7 están dadas por las siguientes matrices:

	[2	-1	-1	-1	1]			[-1	1	1	1	-1]	
	-1	2	0	0	-1			-1	0	1	1	0	
$\chi =$	-1	0	2	0	-1	,	$\Phi =$	-1	1	0	1	0	
	-1	0	0	2	-1			-1	1	1	0	0	
	[1	-1	-1	-1	2			$\lfloor -2 \rfloor$	1	1	1	0	

Consideramos los siguientes módulos inescindibles con vectores de dimensión:

Observación 3.13. Los módulos inescindibles con estos vectores de dimensión son únicos.

Si aplicamos la transformación de Coxeter, tenemos:

$$\Phi\begin{pmatrix} 0\\1\\1&1\\1 \end{pmatrix} = \begin{array}{c}1\\0&0\\0&0\\1\end{array}, \quad \Phi\begin{pmatrix} 1\\0\\0&0\\0 \end{pmatrix} = \begin{array}{c}1\\1&1\\1 \end{pmatrix} = \begin{array}{c}0\\0&0\\0\\0\end{array}, \quad \Phi\begin{pmatrix} 0\\1\\0&0\\0 \end{pmatrix} = \begin{array}{c}1\\1&1\\1\end{array};$$

$$\Phi\begin{pmatrix}1\\1\\1\\0\end{pmatrix} = \begin{pmatrix}0&&&\\0&0\\1\end{pmatrix} = \begin{pmatrix}0\\0\\0\\0\\1\end{pmatrix} = \begin{pmatrix}1&&&1\\1&&\\1&\\0&&1\end{pmatrix} = \begin{pmatrix}1&&&&1\\1&&&\\1&&\\0&&&&1\end{pmatrix}$$

Observación 3.14. En estas condiciones tenemos que la transformación de Coxeter coincide con la traslación de Auslander-Reiten.

En donde h_3 es un generador del radical de la forma cuadrática del carcaj en la Figura 3.7. Debido a que la suma de las Φ -órbitas de los módulos con vectores dimensión en 3.3.3 es igual a h_3 , por la Proposición 2.1, estos módulos son simples regulares en diferentes tubos de rango 2. Después de aplicar las extensiones en un punto con estos módulos obtenemos, por [26], la siguiente álgebra tubular de tipo (3,3,3):

En la figura de arriba, encontramos la siguiente subcategoría mansa oculta de tipo \widetilde{E}_6 , la cual es de tipo tubular (3,3,2), ver [26, páginas 365–366]

Figura 3.8:

La forma cuadrática y la transformación de Coxeter asociadas a la Figura 3.8 están dadas por las siguientes matrices:

$$\chi = \begin{bmatrix} 2 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 2 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 2 & -1 & 0 & 0 & 1 \\ -1 & -1 & -1 & 2 & -1 & -1 & -1 \\ 1 & 0 & 0 & -1 & 2 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 2 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 2 \end{bmatrix}$$

$$\Phi = \begin{bmatrix} -1 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 1 \\ -1 & -1 & -1 & 2 & 0 & 0 & 0 \\ 0 & -1 & -1 & 1 & 0 & 0 & 0 \\ -1 & 0 & -1 & 1 & 0 & 0 & 0 \\ -1 & -1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

En la subcategoría dada por 3.8, consideramos el siguiente módulo simple con vector de dimensión:

$$\begin{array}{cccc}
0 & 0 \\
0 & 0 \\
1 \\
0 & 0
\end{array}$$
(3.3.4)

Si aplicamos la transformación de Coxeter, tenemos:

En donde h_4 es un generador del radical de la forma cuadrática del carcaj con relaciones en la Figura 3.8. Debido a que la suma de las Φ -órbitas de los módulos con vectores dimensión en 3.3.3 es igual a h_4 , por la Proposición 2.1, este módulo es simple regular en un tubo de rango 2. Después de aplicar la extensión en un punto con este módulo obtenemos, por [26], la siguiente álgebra tubular de tipo (3,3,3):

En la figura de arriba, encontramos la siguiente subcategoría mansa oculta de tipo \widetilde{D}_4 , la cual es de tipo tubular (2,2,2), ver [26, páginas 365–366]

La forma cuadrática y la transformación de Coxeter asociadas a la Figura 3.9 están dadas por las siguientes matrices:

$$\chi = \begin{bmatrix} 2 & -1 & -1 & -1 & 1 \\ -1 & 2 & 0 & 0 & 0 \\ -1 & 0 & 2 & 0 & 0 \\ -1 & 0 & 0 & 2 & 0 \\ -1 & 0 & 0 & 0 & 2 \end{bmatrix}, \quad \Phi = \begin{bmatrix} -1 & 1 & 1 & 1 & 1 \\ -1 & 0 & 1 & 1 & 1 \\ -1 & 1 & 0 & 1 & 1 \\ -1 & 1 & 1 & 0 & 1 \\ -1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Figura 3.9:

Consideramos los siguientes módulos con vectores de dimensión:

Si aplicamos la transformación de Coxeter, tenemos:

En donde h_5 es un generador del radical de la forma cuadrática del carcaj en la Figura 3.9. Debido a que la suma de las Φ -órbitas de los módulos con vectores dimensión en 3.3.5 es igual a h_5 , por la Proposición 2.1, estos módulos son simples regulares en diferentes tubos de rango 2. Después de aplicar las extensiones en un punto con estos módulos obtenemos, por [26], la siguiente álgebra tubular de tipo (3,3,3):

En la figura de arriba, encontramos la siguiente subcategoría mansa oculta de tipo \widetilde{E}_6 , la cual es de tipo tubular (3,3,2), ver [26, páginas 365–366]

La forma cuadrática y la transformación de Coxeter asociadas a la Figura 3.10 están dadas por las siguientes matrices:

χ =	$\begin{bmatrix} 2 \\ 0 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ 2 \\ 0 \\ -1 \\ 0 \\ 1 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 2 \\ -1 \\ 0 \\ 0 \\ 1 \end{array}$	-1 -1 -1 2 -1 -1 -1	$ \begin{array}{c} 1 \\ 0 \\ -1 \\ 2 \\ 0 \\ 0 \\ 0 \end{array} $		0 1 0 -1 0 2 0	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ 2 \end{array} $	
4) =	$ \begin{bmatrix} -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \end{bmatrix} $	$\begin{array}{c} 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ -1 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ -1 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{array}$	1 0 1 1 1 1	0 1 0 1 1 1 1	0 0 1 1 1 1 1 1	

Ahora consideramos el siguiente módulo con vector dimensión:

$$\begin{array}{cccc}
0 & 1 \\
0 & 1 \\
2 & , \\
0 & 1
\end{array}$$
(3.3.6)

Si aplicamos la transformación de Coxeter, tenemos:

$$\Phi\begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 2 \\ 0 & 1 \end{pmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

3.3. CUBIERTAS DE GALOIS Y ÁLGEBRAS ITERADAMENTE TUBULARES.

En donde h_6 es un generador del radical de la forma cuadrática del carcaj en la Figura 3.10. Debido a que la suma de la Φ -órbita del módulo con vector dimensión en 3.3.6 es igual a h_6 , por la Proposición 2.1, este módulo es simple regular en un tubo de rango 2. Después de aplicar la extensión en un punto con este módulo obtenemos, por [26], la siguiente álgebra tubular de tipo (3,3,3):

En la figura de arriba, encontramos la misma subcategoría mansa oculta de tipo tubular (2,2,2,2) de la Figura 3.7. Con esto, esta cubierta de Galois es un álgebra iteradamente tubular, en el sentido de De la Peña-Tomé [7].

3.3.3. Prueba del tipo tubular (4,4,2)

Consideremos la siguiente álgebra mansa oculta, la cual es de tipo tubular (4,2,2), [26, páginas 365–366]:

Figura 3.11:

La forma cuadrática y la transformación de Coxeter asociadas a la Figura 3.11 están dadas por las siguientes matrices:

$$\chi = \begin{bmatrix} 2 & 0 & -1 & -1 & 0 & 1 & 0 \\ 0 & 2 & 0 & -1 & -1 & 0 & 1 \\ -1 & 0 & 2 & 0 & 0 & -1 & 0 \\ -1 & -1 & 0 & 2 & 0 & -1 & -1 \\ 0 & -1 & 0 & 0 & 2 & 0 & -1 \\ 1 & 0 & -1 & -1 & 0 & 2 & 0 \\ 0 & 1 & 0 & -1 & -1 & 0 & 2 \end{bmatrix}$$

$$\Phi = \begin{bmatrix} -1 & 0 & 1 & 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 & 1 & 0 & -1 \\ -1 & 0 & 0 & 1 & 0 & 0 & 0 \\ -1 & -1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 \\ -1 & -1 & 0 & 1 & 1 & 0 & 0 \\ -1 & -1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Consideramos los siguientes módulos con vectores de dimensión:

Si aplicamos la transformación de Coxeter, tenemos que:

En donde h_7 es un generador del radical de la forma cuadrática del carcaj en la Figura 3.11. Debido a que la suma de las Φ -órbitas de los módulos con vector dimensión en 3.3.7 es igual a h_7 , por la Proposición 2.1, estos módulos son simples regulares en diferentes tubos de rango 2. Después de aplicar las extensiónes en un punto con estos módulos obtenemos, por [26], la siguiente álgebra tubular de tipo (4,4,2):

En la figura de arriba encontramos la siguiente subcategoría mansa oculta, la cual es de tipo tubular (3,3,2), ver [26, páginas 365–366]:

La forma cuadrática y la transformación de Coxeter asociadas a la Figura 3.12 están dadas por las siguientes matrices:

Figura 3.12:

$$\chi = \begin{bmatrix} 2 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 2 & 0 & -1 & -1 & 1 & -1 \\ 0 & 0 & 2 & 0 & -1 & 0 & 0 \\ -1 & -1 & 0 & 2 & 0 & -1 & 0 \\ 0 & -1 & -1 & 0 & 2 & -1 & 0 \\ 0 & 1 & 0 & -1 & -1 & 2 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 2 \end{bmatrix},$$

$$\Phi = \begin{bmatrix} -1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 1 & -1 & 1 \\ 0 & 0 & -1 & 0 & 1 & 1 & 0 & 1 \\ 0 & -1 & -1 & 1 & 1 & 0 & 1 \\ 0 & -1 & -1 & 1 & 1 & 0 & 1 \\ 0 & -1 & 0 & 1 & 1 & -1 & 0 \end{bmatrix}$$

Consideramos los siguientes módulos con vectores de dimensión:

Si aplicamos la transformación de Coxeter, tenemos que:

$$\Phi \begin{pmatrix} 0 & & \\ 1 & & \\ 1 & 0 & 1 \\ 0 & & \\ 0 & & \\ 0 & & \\ \end{pmatrix} \begin{pmatrix} 1 & & & \\ 1 & & \\ 1 & 1 & 0 \\ 1 & & \\ 0 & & \\ \end{pmatrix} \begin{pmatrix} 1 & & \\ 1 & & \\ 1 & 1 & 0 \\ 1 & & \\ 0 & & \\ 1 & & \\ 0 & & \\ 1$$

$$\Phi \begin{pmatrix} 0 & & \\ 0 & & \\ 1 & & \\$$

En donde h_8 es un generador del radical de la forma cuadrática del carcaj de la Figura 3.12. Debido a que la suma de las Φ -órbitas de los módulos con vector dimensión en 3.3.8 es igual a h_8 , por la Proposición 2.1, estos módulos son simple regulares en diferentes tubos de rango 3. Después de aplicar las extensiones en un punto con estos módulos obtenemos, por [26], la siguiente álgebra tubular de tipo (4,4,2):

En la figura de arriba encontramos la siguiente subcategoría mansa oculta, la cual es de tipo tubular (3,3), ver [26, páginas 365–366]:

La forma cuadrática y la transformación de Coxeter asociadas a la Figura 3.13 están dadas por las siguientes matrices:

$$\chi = \begin{bmatrix} 2 & 0 & -1 & 0 & -1 & 0 \\ 0 & 2 & -1 & 0 & 0 & -1 \\ -1 & -1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & -1 & -1 \\ -1 & 0 & 0 & -1 & 2 & 0 \\ 0 & -1 & 0 & -1 & 0 & 2 \end{bmatrix}, \quad \Phi = \begin{bmatrix} -1 & 0 & 1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \\ -1 & -1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & -1 & 1 & 1 \\ -1 & 0 & 1 & -1 & 1 & 1 \\ 0 & -1 & 1 & -1 & 1 & 1 \end{bmatrix}$$

Figura 3.13:

Consideramos los siguientes módulos con vectores de dimensión:

$$u_{1} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & v_{1} = \begin{bmatrix} 0 & 1 & y & w_{1} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & y & 0 \end{bmatrix}$$
(3.3.9)

Si aplicamos la transformación de Coxeter tenemos que:

En donde h_9 es un generador del radical de la forma cuadrática del carcaj en la Figura 3.13. Debido a que la suma de las Φ -órbitas de los módulos con vector dimensión en 3.3.9 es igual a h_9 , por la Proposición 2.1, el módulo con vector dimensión u_1 es simple regular en un tubo de rango 1 y los módulos con vector de dimensión v_1 y w_1 en 3.3.9 son simples regulares en diferentes tubos de rango 3. Después de aplicar las extensiones en un punto con estos módulos obtenemos, por [26], la siguiente álgebra tubular de tipo (4,4,2):

En la figura de arriba encontramos la siguiente subcategoría mansa oculta, la cual es de tipo tubular (3,3,2), ver [26, páginas 365–366]:

La forma cuadrática y la transformación de Coxeter asociadas a la Figura 3.14 están dadas por las siguientes matrices:

$$\chi = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 2 & -1 & -1 & 0 & 1 & 0 \\ 0 & -1 & 2 & 0 & -1 & -1 & 0 \\ 0 & -1 & 0 & 2 & 0 & -1 & -1 \\ 0 & 0 & -1 & 0 & 2 & 0 & 0 \\ -1 & 1 & -1 & -1 & 0 & 2 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 2 \end{bmatrix}$$
$$\Phi = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & -1 & 1 & 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 1 & 1 & 1 \\ 0 & -1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Consideramos los siguientes módulos con vectores de dimensión:

$$u_{1} = 0 \quad 1 \quad 1 \quad y \quad v_{1} = 0 \quad 1 \quad 1 \quad (3.3.10)$$

$$1 \quad 1 \quad 0 \quad 1$$

Si aplicamos la transformación de Coxeter, tenemos que:

$$\Phi \begin{pmatrix} 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 \end{pmatrix} = 1 \quad 0 \quad 1, \quad \Phi \begin{pmatrix} 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 \end{pmatrix} = 0 \quad 0 \quad 0, \quad 0 \\ 1 & 0 & 1 \\ 0 & 0 \end{pmatrix} = 0 \quad 1 \quad 1; \quad \Phi \begin{pmatrix} 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 \end{pmatrix} = 1 \quad 0 \quad 1, \quad 0 \\ \Phi \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} = 0 \quad 0 \quad 1, \quad \Phi \begin{pmatrix} 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 \end{pmatrix} = 0 \quad 1, \quad 0 \\ \Phi \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \end{pmatrix} = 0 \quad 1 \quad 1, \quad 0 \\ 0 & 0 & 0 \\ 0 & 0 \end{pmatrix} = 0 \quad 1 \quad 1, \quad 0 \\ 1 \quad 0 \\ 0 \quad 0 \end{pmatrix} = 0 \quad 1 \quad 1, \quad 0 \\ 1 \quad 0 \\ 1 \quad 0 \\ 0 \quad 0 \end{pmatrix} = 0 \quad 1 \quad 1, \quad 0 \\ 1 \quad 0 \\ 1 \quad 0 \\ 0 \quad 0 \end{pmatrix} = 0 \quad 1 \quad 1, \quad 0 \\ 1 \quad 0 \\ 1 \quad 0 \\ 1 \quad 0 \\ 1 \quad 0 \\ 0 \quad 0 \\ 1 \quad 0 \\ 1$$

En donde h_{10} es un generador del radical de la forma cuadrática del carcaj en la Figura 3.14. Debido a que la suma de las Φ -órbitas de los módulos con vector dimensión en 3.3.10 es igual a h_{10} , por la Proposición 2.1, los módulos son simples regulares en diferentes tubos de rango 3. Después de aplicar las extensiones en un punto con estos módulos obtenemos, por [26], la siguiente álgebra tubular de tipo tubular (4,4,2):

En la figura de arriba encontramos la misma subcategoría mansa oculta de tipo tubular (4,2,2) qué en la Figura 3.14. Con esto tenemos que la cubierta de Galois asociada al caso (4,4,2) es un álgebra iteradamente tubular, en el sentido de de la Peña-Tomé [7].

3.3.4. Prueba del tipo tubular (6,3,2).

Consideremos la siguiente álgebra mansa oculta, la cual es de tipo tubular (4,2,2), [26, páginas 365–366]:

Figura 3.15:

La forma cuadrática y la transformación de Coxeter asociadas a la Figura 3.15 están dadas por las siguientes matrices:

$$\chi = \begin{bmatrix} 2 & 0 & -1 & -1 & 0 & 1 & 0 \\ 0 & 2 & 0 & -1 & -1 & 0 & 1 \\ -1 & 0 & 2 & 0 & 0 & -1 & 0 \\ -1 & -1 & 0 & 2 & 0 & -1 & -1 \\ 0 & -1 & 0 & 0 & 2 & 0 & -1 \\ 1 & 0 & -1 & -1 & 0 & 2 & 0 \\ 0 & 1 & 0 & -1 & -1 & 0 & 2 \end{bmatrix},$$
$$\Phi = \begin{bmatrix} -1 & 0 & 1 & 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 & 1 & 0 & -1 \\ -1 & 0 & 0 & 1 & 0 & 0 & 0 \\ -1 & -1 & 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

Consideremos los módulos cuyos vectores de dimensión son:

$$u_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & y & w_{1} = & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$
(3.3.11)

Si aplicamos la transformación de Coxeter, tenemos que:

En donde el vector h_{11} es un generador del radical de la forma cuadrática del carcaj de la Figura 3.15. Debido a que la suma de las Φ -órbitas de los módulos con vector dimensión en 3.3.11 es igual a h_{11} , por la Proposición 2.1, el módulo con vector dimensión u_1 es simple regular en un tubo de rango 2 y los módulos con vectores de dimensión v_1 y w_1 son simples regulares en el mismo tubo de rango 4. Después de aplicar extensiones en un punto con estos módulos obtenemos, por [26], la siguiente álgebra tubular de tipo tubular (6,3,2):

En la figura de arriba encontramos la siguiente subcategoría mansa oculta, la cual es de tipo tubular (4,3,2), [26, páginas 365–366]:

La forma cuadrática y la transformación de Coxeter asociadas a la Figura 3.16 están dadas por las siguientes matrices:

Figura 3.16:

$$\chi = \begin{bmatrix} 2 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & -1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 2 & 0 & -1 & 0 & 0 & 1 \\ -1 & -1 & 0 & 2 & 0 & -1 & -1 & 0 \\ 0 & -1 & -1 & 0 & 2 & 0 & -1 & -1 \\ 1 & 0 & 0 & -1 & 0 & 2 & 0 & 0 \\ 0 & 1 & 0 & -1 & -1 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 & 0 & 2 \end{bmatrix}$$
$$\Phi = \begin{bmatrix} -1 & 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Consideramos los módulos cuyos vectores de dimensión son:

Si aplicamos la transformación de Coxeter, tenemos que:

$$\Phi \begin{pmatrix} 0 & 0 \\ 1 \\ 0 & 0 \\ 0 \\ 0 & 0 \end{pmatrix} = \begin{array}{ccc} 1 & 0 \\ 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{array} = \begin{array}{ccc} 0 & 0 \\ 1 \\ 1 & 1 \\ 0 & 1 \end{array} = \begin{array}{ccc} 0 & 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \end{array} = \begin{array}{ccc} 0 & 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{array} = \begin{array}{ccc} 0 & 0 \\ 0 \\ 0 \\ 0 \end{array}$$

$$\Phi\begin{pmatrix} 0 & 0 \\ 0 \\ 0 \\ 1 \\ 0 & 0 \end{pmatrix} \stackrel{\begin{subarray}{c} 0 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix} \stackrel{\begin{subarray}{c} 0 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix} \stackrel{\begin{subarray}{c} 0 & 0 \\ 0$$

En donde el vector h_{12} es un generador del radical de la forma cuadrática asociada a la Figura 3.16. Debido a que la suma de las Φ -órbitas de los módulos con vector dimensión en 3.3.12 es igual a h_{12} , por la Proposición 2.1, los módulos con vector de dimensión en (3.3.12) son simples regulares en el mismo tubo de rango 4. Después de aplicar extensiones en un punto con estos módulos obtenemos, por [26], la siguiente álgebra tubular de tipo tubular (6,3,2):

En la figura de arriba encontramos la siguiente subcategoría mansa oculta, la cual es de tipo tubular (4,2,2), ver [26, páginas 365–366]:

Figura 3.17:

La forma cuadrática y la transformación de Coxeter asociadas a la Figura 3.17 están dadas por las siguientes matrices:

$$\chi = \begin{bmatrix} 2 & 0 & -1 & -1 & 0 & -1 & 0 \\ 0 & 2 & 0 & -1 & -1 & 0 & -1 \\ -1 & 0 & 2 & 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & 2 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 2 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$
$$\Phi = \begin{bmatrix} -1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 & 1 & 0 & 1 \\ -1 & 0 & 0 & 1 & 0 & 1 & 0 \\ -1 & -1 & 1 & 1 & 1 & 1 & 1 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

Consideramos los siguientes módulos cuyos vectores de dimensión son:

$$u_{1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & v_{1} = \begin{bmatrix} 0 & y & w_{1} = \\ 0 & 0 & 1 \end{bmatrix}$$
(3.3.13)
(3.3.13)

Si aplicamos la transformación de Coxeter, tenemos que:

$$\Phi \begin{pmatrix} 0 & \\ 1 & 1 \\ 1 & \\ 1 & 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 1 \\ 1 & 0 \\ 0 &$$

$$h_{13} = \begin{array}{ccc} 1 \\ 2 & 1 \\ 2 \\ 2 & 1 \\ 1 \end{array}$$

En donde el vector h_{13} es un generador del radical de la forma cuadrática asociada al carcaj de la Figura 3.17. Debido a que la suma de las Φ -órbitas de los módulos con vector dimensión en 3.3.13 es igual a h_{12} , por la Proposición 2.1, el módulo cuyo vector de dimensión es u_1 (en 3.3.13) es simple regular en un tubo de rango 2 y los módulos con vectores de dimensión v_1 y w_1 son simples regulares en el mismo tubo de rango 4. Después de aplicar extensiones en un punto con estos módulos obtenemos, por [26], la siguiente álgebra tubular de tipo tubular (6,3,2):

En la figura de arriba encontramos la siguiente subcategoría mansa oculta, la cual es de tipo tubular (4,3,2), ver [26, páginas 365–366]:

Figura 3.18:

La forma cuadrática y la transformación de Coxeter asociadas a la Figura 3.18 están dadas por las siguientes matrices:

$$\chi = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 2 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 & -1 & -1 \\ -1 & 0 & 0 & -1 & 0 & 2 & 0 & 0 \\ 0 & -1 & 0 & -1 & -1 & 0 & 2 & 0 \\ 0 & 0 & -1 & 0 & -1 & 0 & 0 & 2 \end{bmatrix}$$

$$\Phi = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 1 & 1 \\ -1 & 0 & 0 & -1 & 0 & 1 & 1 & 0 \\ 0 & -1 & 0 & -1 & -1 & 1 & 2 & 1 \\ 0 & 0 & -1 & 0 & -1 & 0 & 1 & 1 \end{bmatrix}$$

Consideramos los módulos cuyos vectores de dimensión son:

Si aplicamos la transformación de Coxeter, tenemos que:

En donde el vector h_{14} es un generador del radical de la forma cuadrática asociada al carcaj de la Figura 3.18. Debido a que la suma de las Φ -órbitas de los módulos con vector dimensión en 3.3.14 es igual a h_{14} , por la Proposición 2.1, los módulos con vector de dimensión en (3.3.14) son simples regulares en el mismo tubo de rango 4. Después de aplicar extensiones en un punto con estos módulos obtenemos, la siguiente álgebra tubular de tipo tubular (6,3,2):

En la figura de arriba encontramos la misma subcategoría mansa oculta de tipo tubular (4,2,2) que en la Figura 3.15. Con esto tenemos que la cubierta de Galois asociada al caso (6,3,2) es un álgebra iteradamente tubular, en el sentido de de la Peña-Tomé [7].

3.3.5. Conclusiones:

Con lo visto en las subsecciones anteriores, hemos demostrado que las cubiertas de Galois asociadas a los carcajes con potencial de las Figuras 3.1, 3.2, 3.3 y 3.4 son álgebras iteradamente tubulares.

Por la Proposición 2.2 ([7]), tenemos el siguiente:

Corolario 3.1. *Estas álgebras iteradamente tubulares son de tipo de representación manso.*

Por último, del Teorema 2.2 ([8]), podemos concluir que:

Corolario 3.2. Las álgebras Jacobianas asociadas a estos carcajes con potencial son de tipo de representación manso.

Como estas cubiertas de Galois son álgebras iteradamente tubulares, sabemos que su carcaj de Auslander-Reiten está formado por familias de tubos. Ya que estas cubiertas se pueden ir construyendo por extensiones y coextensiones en un punto, no todos los tubos son estables. De hecho, en cada caso sabemos cómo son las familias de tubos.

En los tres casos de $(2,2,2,2,\lambda)$, encontramos que dos de los tubos de rango 2 tienen la siguiente estructura:

En el caso (3,3,3), uno o los tres tubos de rango 3 tienen la siguiente estructura:

En el caso (4,4,2), se tiene que los dos tubos de rango 4 son de la forma:

o un tubo de rango 4 es estable y el otro es de la forma:

Y el tubo de rango 2 es estable o de la forma:

Por último, en el caso (6,3,2), se tiene que el tubo de rango 6 es de la forma:

y el tubo de rango 3 es estable o de la forma:

3.4. Regiones tubulares.

De la sección anterior, sabemos que hay módulos (no todos) cuyo soporte está en algún tubo estable. Considerando aquellos módulos cuyo soporte está en un tubo estable (es decir, un tubo que no tiene módulos inyectivos-proyectivos) podemos encontrar ciertas regiones de interés en nuestro análisis. A estas regiones les llamamos *regiones tubulares*.

En el caso $(2,2,2,2,\lambda)$, su cubierta de Galois tiene esencialmente tres regiones tubulares que utilizaremos en el capítulo 4. En la siguiente figura presentamos estas regiones tubulares:

Región tubular 1

Región tubular 2

Región tubular 3

Τipo tubular: (2,2,2,2,λ)

En este capítulo nos restringiremos a un álgebra de conglomerado de tipo tubular $(2,2,2,2,\lambda)$, con $\lambda \neq 0,1$. Primero veremos cómo se comporta bajo ciertas composiciones de mutaciones, para después usar esto y encontrar fórmulas que nos describan el comportamiento de las representaciones inescindibles y sus *F*polinomios bajo estas mutaciones.

4.1. Mutaciones del carcaj con potencial.

Consideremos el siguiente carcaj Q con potencial S:

$$\begin{split} S &= \lambda f_{11}g_{11}h_{11} - f_{12}g_{21}h_{11} + f_{11}g_{12}h_{21} - f_{12}g_{22}h_{21} \\ &+ f_{21}g_{11}h_{12} - f_{22}g_{21}h_{12} + f_{21}g_{12}h_{22} - f_{22}g_{22}h_{22} \end{split}$$

Figura 4.1:

La matriz antisimétrica asociada a este carcaj $B := B_Q$, (sección 1.7) es:

$$B = \begin{pmatrix} 0 & 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 1 & -1 & -1 \\ -1 & -1 & 0 & 0 & 1 & 1 \\ -1 & -1 & 0 & 0 & 1 & 1 \\ 1 & 1 & -1 & -1 & 0 & 0 \\ 1 & 1 & -1 & -1 & 0 & 0 \end{pmatrix}$$

Denotaremos por $\mu_{\overline{u}}$ (respectivamente $\mu_{\overline{v}}$ y $\mu_{\overline{w}}$) a la composición de mutaciones: $\mu_{u_2}\mu_{u_1}$ (respectivamente $\mu_{v_2}\mu_{v_1}$ y $\mu_{w_2}\mu_{w_1}$).

Lema 4.1. Sea $\overline{x} \in {\overline{u}, \overline{v}, \overline{w}}$. Entonces $\mu_{\overline{x}}(Q, S)$ y (Q, S) son equivalentes derechos.

Demostración. Por simetría es suficiente estudiar el caso x = u. Primero aplicaremos la mutación μ_{u_1} al carcaj con potencial (Q, S). De [5], al aplicar la premutación $\tilde{\mu}_{u_1}$ el siguiente carcaj Q':

en donde $i := [g_{11}h_{11}], j := [g_{11}h_{12}], k := [g_{21}h_{11}], l := [g_{21}h_{12}]$ y, denotando $S' := \mu_{u_1}(S)$, tenemos:

$$S' = \lambda f_{11}[g_{11}h_{11}] - f_{12}[g_{21}h_{11}] + f_{11}g_{12}h_{21} - f_{12}g_{22}h_{21} + f_{21}[g_{11}h_{12}] - f_{22}[g_{21}h_{12}] + f_{21}g_{12}h_{22} - f_{22}g_{22}h_{22} + [g_{11}h_{11}]h_{11}^*g_{11}^* + [g_{21}h_{11}]h_{11}^*g_{21}^* + [g_{11}h_{12}]h_{12}^*g_{11}^* + [g_{21}h_{12}]h_{12}^*g_{21}^*$$

Para poder aplicar la mutación μ_{u_2} , necesitamos que este carcaj con potencial sea un carcaj reducido [5]. De acuerdo a [5, Teorema 4.6], podemos encontrar una descomposición de la forma: $(Q', S') = (Q'_{red}, S'_{red}) \oplus (Q'_{triv}, S'_{triv})$.

Con este fin, definimos el automorfismo de álgebras φ_1 dado por:

 $\begin{aligned} \boldsymbol{\varphi}_1(f_{11}) &= f_{11} - \frac{1}{\lambda} h_{11}^* g_{11}^*, \quad \boldsymbol{\varphi}_1(f_{12}) = f_{12} + h_{11}^* g_{21}^*, \\ \boldsymbol{\varphi}_1(f_{21}) &= f_{21} - h_{12}^* g_{11}^*, \quad \boldsymbol{\varphi}_1(f_{22}) = f_{22} + h_{12}^* g_{21}^*, \end{aligned}$

y como la identidad en las demás flechas. Con esto tenemos:

$$\begin{aligned} \varphi_{1}(S') &= \lambda f_{11}[g_{11}h_{11}] - f_{12}[g_{21}h_{11}] + f_{21}[g_{11}h_{12}] - f_{22}[g_{21}h_{12}] \\ &+ f_{11}g_{12}h_{21} - f_{12}g_{22}h_{21} + f_{21}g_{12}h_{22} - f_{22}g_{22}h_{22} \\ &- \frac{1}{\lambda}h_{11}^{*}g_{11}^{*}g_{12}h_{21} - h_{11}^{*}g_{21}^{*}g_{22}h_{21} - h_{12}^{*}g_{11}^{*}g_{12}h_{22} - h_{12}^{*}g_{21}^{*}g_{22}h_{22} \end{aligned}$$

Debido a que este potencial el carcaj con potencial no es reducido, definimos el siguiente automorfismo de álgebras φ_2 dado por:

$$\begin{aligned} \varphi_2([g_{11}h_{11}]) &= [g_{11}h_{11}] - \frac{1}{\lambda}g_{12}h_{21}, \quad \varphi_2([g_{21}h_{11}]) = [g_{21}h_{11}] - g_{22}h_{21}, \\ \varphi_2([g_{11}h_{12}]) &= [g_{11}h_{12}] - g_{12}h_{22}, \quad \varphi_2([g_{21}h_{12}]) = [g_{21}h_{12}] - g_{22}h_{22}, \end{aligned}$$

y como la identidad en las demás flechas. Denotamos $S'' = \varphi_1(S')$ y con esto tenemos que:

$$\varphi_2(S'') = \lambda f_{11}[g_{11}h_{11}] - f_{12}[g_{21}h_{11}] + f_{21}[g_{11}h_{12}] - f_{22}[g_{21}h_{12}] \\ - \frac{1}{\lambda} h_{11}^* g_{11}^* g_{12}h_{21} - h_{11}^* g_{21}^* g_{22}h_{21} - h_{12}^* g_{11}^* g_{12}h_{22} - h_{12}^* g_{21}^* g_{22}h_{22}$$

Al final, tenemos que la mutación μ_{u_1} nos da:

Figura 4.2:

en donde el carcaj Q'_{red} es el de la derecha y el potencial $S_1 := S'_{red} = \frac{1}{\lambda} h_{11}^* g_{11}^* g_{12} h_{21} + h_{11}^* g_{21}^* g_{22} h_{21} + h_{12}^* g_{11}^* g_{12} h_{22} + h_{12}^* g_{21}^* g_{22} h_{22}.$ Ahora aplicamos la mutación μ_{u_2} :

en donde $m := [g_{12}h_{21}], n := [g_{12}h_{22}], o := [g_{22}h_{21}], p := [g_{22}h_{22}]$ y $S''' := \mu_{u_2}(S_1)$ es igual a:

$$S_{2} = \frac{1}{\lambda} h_{11}^{*} g_{11}^{*} [g_{12}h_{21}] + h_{11}^{*} g_{21}^{*} [g_{22}h_{21}] + h_{12}^{*} g_{11}^{*} [g_{12}h_{22}] + h_{12}^{*} g_{21}^{*} [g_{22}h_{22}] + [g_{12}h_{21}] h_{21}^{*} g_{12}^{*} + [g_{22}h_{21}] h_{21}^{*} g_{22}^{*} + [g_{12}h_{22}] h_{22}^{*} g_{12}^{*} + [g_{22}h_{22}] h_{22}^{*} g_{22}^{*}$$

Si utilizamos la equivalencia derecha φ_3 dada por:

$$\varphi_3(h_{12}^*) = -h_{12}^* \text{ y } \varphi_3(h_{22}^*) = -h_{22}^*$$

y como la identidad en las demás flechas, tenemos:

$$\begin{split} \mathbf{S}_{2} &:= \varphi_{3}(S''') = \quad (\frac{1}{\lambda})h_{11}^{*}g_{11}^{*}[g_{12}h_{21}] - h_{12}^{*}g_{11}^{*}[g_{12}h_{22}] + h_{21}^{*}g_{12}^{*}[g_{12}h_{21}] \\ &\quad -\mathbf{h}_{22}^{*}g_{12}^{*}[g_{12}h_{22}] + h_{11}^{*}g_{21}^{*}[g_{22}h_{21}] - h_{12}^{*}g_{21}^{*}[g_{22}h_{22}] \\ &\quad +\mathbf{h}_{21}^{*}g_{22}^{*}[g_{22}h_{21}] - h_{22}^{*}g_{22}^{*}[g_{22}h_{22}] \end{split}$$

Debido a que en este caso el potencial es reducido al final tenemos que la composición de mutaciones $\mu_{\overline{u}}$ nos da:

4.2. Mutaciones de representaciones

De acuerdo a lo visto en la sección anterior, si M es una representación del carcaj (Q,S) (4.1), $\mu_{\overline{x}}(M)$ es una representación del mismo carcaj, para $\overline{x} \in {\overline{u}, \overline{v}, \overline{w}}$. El siguiente lema nos describe el comportamiento de las representaciones inescindibles bajo estas mutaciones: determina el vector dimensión, la región tubular (3.4) y la inclinación de $\mu_{\overline{x}}(M)$, todo en términos de M, entre otras cosas.

Lema 4.2. Sea *M* una representación inescindible del carcaj con potencial (Q, S) que solo tiene soporte en la región tubular 1. Si le aplicamos la composición de mutaciones $\mu_{\overline{u}}$ obtenemos:

a) Sea $\overline{M} := \mu_{\overline{u}}(M)$. \overline{M} es una representación inescindible de (Q,S) con soporte en la región tubular 3. Además, su vector dimensión se expresa en términos del vector dimensión de M, de la siguiente manera:

- b) Si M tiene pendiente $\frac{p}{q}$ [26, Sección 5.1] (con respecto a la región tubular 1) entonces la pendiente de \overline{M} es $\frac{p}{q+p}$ (con respecto a la región tubular 3).
- c) Los F-polinomios asociados a M y \overline{M} están relacionados de la siguiente manera:

$$F_{\mathcal{M}}(\mathscr{Y}) = y_{u_1}^a y_{u_2}^b \left(\frac{y_{u_1}}{1+y_{u_1}}\right)^{g_1} \left(\frac{y_{u_2}}{1+y_{u_2}}\right)^{g_2} F_{\overline{\mathcal{M}}}(\overline{\mathscr{Y}})$$
(4.2.1)

donde $\mathscr{Y} = (y_{u_1}, y_{u_2}, y_{v_1}, y_{v_2}, y_{w_1}, y_{w_2}) \ y \ \overline{\mathscr{Y}}$ es la Y-semilla $\overline{\mathscr{Y}} = (\overline{y}_{u_1}, \overline{y}_{u_2}, \overline{y}_{v_1}, \overline{y}_{v_2}, \overline{y}_{w_1}, \overline{y}_{w_2}) \ con \ \overline{y}_x = \mu_{\overline{u}}(y_x).$

Demostración. a) Sea M una representación de (Q,S), cuyo soporte solamente está en la región tubular 1. Consideremos que el vector dimensión de M está dado por la figura de arriba. De esto se sigue que $a \neq 0$ o $b \neq 0$. Supongamos que $a \neq 0$. Denotamos por $M' := \mu_{u_1}(M)$.

Para calcular la mutación μ_{u_1} , debemos considerar el siguiente diagrama (sección 1.3):

Del hecho que *M* es una representación inescindible de la región tubular 1, se sigue que $M(\beta_1) = 0$. De aquí que:

$$\ker M(\beta_1) = k^a \neq 0 \text{ (porque } a \neq 0\text{)}$$
$$\operatorname{Im} M(\beta_1) = 0$$

Ya que ker $M(\beta_1) \neq 0$, de [6, Lema 8.3] se tiene que Im $M(\beta_1) = \text{ker}M(\gamma_1)$. Por otro lado, la Im $M(\alpha_1) = k^a$, de lo contrario la representación *M* no sería inescindible. Esto nos dice que dim ker $M(\alpha_1) = c + d - a$.

De la sección 1.3, tenemos:

$$M'(1) := \left(\ker(M(\gamma_1)) / \operatorname{Im}(M(\beta_1)) \right) \oplus \ker(M(\alpha_1))$$

De acuerdo a lo visto arriba, esto nos dice que:

$$\dim M'(1) = c + d - a.$$

Para calcular $\overline{M} := \mu_{u_2}(M')$ debemos tener en cuenta que la representación M' es una representación del siguiente carcaj con potencial :

Figura 4.3:

en donde los morfismos $M'(g_{22}) = 0$ y $M'(g_{12}) = 0$. Los morfismos $M'(g_{11}^*)$, $M'(g_{21}^*)$, $M'(h_{11}^*)$ y $M'(h_{12}^*)$ no tienen que ser calculados, sólo nos interesará saber que:

$$\begin{pmatrix} M'(h_{11}^*) \\ M'(h_{12}^*) \end{pmatrix} \cdot \begin{pmatrix} M'(g_{11}^*) & M'(g_{21}^*) \end{pmatrix} = M(\gamma_1)$$
(4.2.2)

Para calcular $\overline{M} = \mu_{u_2}(M')$ consideremos el siguiente diagrama:

De 4.2.2, se tiene ker $M'(\gamma_2) = \text{ker } M(\gamma_1) = 0$ y así $(\text{ker}(M'(\gamma_2))/\text{Im}(M'(\beta_2))) = 0.$

Por otro lado, $\text{Im}M'(\alpha_2) = k^b$, de lo contrario M' no sería una representación inescindible. Por lo tanto, dim ker $(M'(\alpha_2)) = c + d - b$. Es decir, de

$$\overline{M}(2) = \left(\operatorname{ker}(M'(\gamma_2)) / \operatorname{Im}(M'(\beta_3)) \right) \oplus \operatorname{ker}(M'(\alpha_2))$$

se tiene: dim $\overline{M}(2) = c + d - b$. Por lo tanto, el vector dimensión de \overline{M} es

b) La pendiente de *M* es:

$$-\frac{(a+b) - (c+d)}{(c+d) - (e+f)} = \frac{p}{q}$$

Y la pendiente de \overline{M} es: (c+d) - ((c+d-a)+(c+d-b))

$$-\frac{(c+d)-((c+d-a)+(c+d-b))}{((c+d-a)+(c+d-b))-(e+f)} = -\frac{(a+b)-(c+d)}{((c+d)-(e+f))+((c+d)-(a+b))} = \frac{p}{q+p}$$

c) Consideremos el siguiente diagrama:

Por definición, $h_1 = -\dim M(\beta_1) = -a$ y $\mathfrak{g}_1 = \ker (M(\gamma_1)) - a$. Por el Lema 1.1, $\mathfrak{g}_1 = h_1 - h'_1$. Por lo tanto:

$$h_1' = h_1 - \mathfrak{g}_1 = -a - \mathfrak{g}_1$$

Del Lema 1.1 tenemos:

$$(1+y_{u_1})^{-a}F_M(\mathscr{Y}) = (1+y'_{u_1})^{-a-\mathfrak{g}_1}F_{M'}(\mathscr{Y}')$$
(4.2.3)

En donde \mathscr{Y}' son los coeficientes de la *Y*-semilla $\mu_1(\mathscr{Y}, B)$.

Ahora mutamos en dirección 2, para esto consideremos el siguiente diagrama:

Por definición, $h'_2 = -\dim \ker (M(\beta'_2)) = -b$, porque el morfismo $M(\beta'_2)$: $k^b \to k^e \oplus k^f$ es el morfismo 0. Además $\mathfrak{g}'_2 = \ker (M(\gamma'_2)) - b$. Por el Lema 1.1, $\mathfrak{g}'_2 = h'_2 - h''_2$. Por otro lado, de :

$$h_2''=h_2'-\mathfrak{g}_2'=-b-\mathfrak{g}_2'$$

Por otro lado, de

 $\mathfrak{g}_2' = g_2 + [b_{21}']_+ \mathfrak{g}_1 - b_{21}' h_1 = \mathfrak{g}_2$ esto porque $b_{21}' = -b_{21} = 0$ (ver matriz *B*). Entonces $h_2'' = -b - \mathfrak{g}_2$ Del Lema 1.1 tenemos:

$$(1+y_{u_2})^{-b}F_{M'}(\mathscr{Y}') = (1+y_{u_2}'')^{-b-\mathfrak{g}_2}F_{\overline{M}}(\overline{\mathscr{Y}})$$
(4.2.4)

En donde $\overline{\mathscr{Y}}$ son los coeficientes de la *Y*-semilla $\mu_2(\mu_1(\mathscr{Y}, B))$. De 4.2 y 4.2 se tiene:

$$F_{M}(\mathscr{Y}) = y_{u_{1}}^{a} y_{u_{2}}^{b} \left(\frac{y_{u_{1}}}{1+y_{u_{1}}}\right)^{g_{1}} \left(\frac{y_{u_{2}}}{1+y_{u_{2}}}\right)^{g_{2}} F_{\overline{M}}(\overline{\mathscr{Y}})$$

4.3. Cálculo de algunos ejemplos.

En este sección utilizaremos las fórmulas que hemos obtenido para calcular los *F*-polinomios de algunas representaciones inescindibles del carcaj de tipo tubular $(\lambda, 2, 2, 2, 2)$. Para esto utilizaremos mutaciones de representaciones y las fórmulas obtenidas en la sección anterior.

La estrategia es la siguiente: comenzando con una representación inescindible M calcularemos su inclinación y la mutaremos tantas veces como sea necesario hasta llegar a una representación, \overline{M} , que tenga inclinación 1. Calcularemos el F-polinomio asociado a \overline{M} , $F_{\overline{M}}$, para así, por medio de las fórmulas obtenidas, calcular el F-polinomio asociado a M, F_M .

Ejemplo 4.1. Consideremos la siguiente representación inescindible M :

La inclinación de la representación M es:

$$-\frac{1-4}{4-2} = \frac{3}{2}$$

De acuerdo a las fórmulas de mutación 4.2.1 sabemos que si mutamos con $\overline{\mu}_{4,3}$ y después con $\overline{\mu}_{6,5}$ obtenemos:

La representación \overline{M} tiene inclinación:

$$-\frac{0-1}{1-0} = 1$$

Sus subrepresentaciones son:

Por esto, el *F*-polinomio asociado a \overline{M} es:

$$F_{\overline{M}}(U) = 1 + u_2$$
, donde $U = (u_1, u_2, u_3, u_4, u_5, u_6)$.

y su g-vector es:

$$\mathbf{g}_{\overline{M}} = \begin{bmatrix} 0\\ -1\\ 1\\ 1\\ 0\\ 0 \end{bmatrix}$$

De 4.2.1, el *g*-vector de *M*′ es:

$$\mathbf{g}_{\mathcal{M}'} = \begin{bmatrix} 0 \\ -1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

y así, el F-polinomio asociado a la representación M' está dado por

$$F_{M'}(U) = (1+u_6)^0 (1+u_5)^0 F_{\overline{M}}(\overline{U})$$

en donde

$$\overline{U} = \left(u_1(1+u_5)(1+u_6), u_2(1+u_5)(1+u_6), \frac{u_3u_5u_6}{(1+u_5)(1+u_6)}, \frac{u_4u_5u_6}{(1+u_5)(1+u_6)}, \frac{1}{u_5}, \frac{1}{u_6}\right)$$

es decir,

$$F_{M'}(U) = 1 + u_2(1 + u_5)(1 + u_6) = 1 + u_2 + u_2u_5 + u_2u_6 + u_2u_5u_6$$

Por último, de 4.2.1, el *g*-vector de M' es:

$$\mathbf{g}_{M'} = \begin{bmatrix} 0\\ -1\\ -1\\ -1\\ 2\\ 2 \end{bmatrix}$$

y el *F*-polinomio asociado a *M* es

$$F_M(U) = (1+u_3)^{-(-1)}(1+u_4)^{-(-1)}F_{M'}(U')$$

en donde

$$U' = \left(u_1(1+u_3)(1+u_4), u_2(1+u_3)(1+u_4), \frac{1}{u_3}, \frac{1}{u_4}, \frac{u_3u_4u_5}{(1+u_3)(1+u_4)}, \frac{u_3u_4u_6}{(1+u_3)(1+u_4)}, \right)$$

es decir,

$$F_M(U) = (1+u_3)(1+u_4) \left(1+u_2(1+u_3)(1+u_4) + u_2u_3u_4u_5 + u_2u_3u_4u_6 + \frac{u_2u_3^2u_4^2u_5u_6}{(1+u_3)(1+u_4)} \right)$$

que después de hacer todas las cuentas nos queda:

$$F_{M}(U) = 1 + u_{3} + u_{4} + u_{3}u_{4} + u_{2} + 2u_{2}u_{4} + u_{2}u_{4}^{2} + 2u_{2}u_{3} + 4u_{2}u_{3}u_{4} + 2u_{2}u_{3}u_{4}^{2} + u_{2}u_{3}^{2}u_{4}^{2} + u_{2}u_{3}^{2}u_{4}^{2} + u_{2}u_{3}^{2}u_{4}^{2} + u_{2}u_{3}^{2}u_{4}u_{5} + u_{2}u_{3}^{2}u_{4}^{2}u_{5} + u_{2}u_{3}u_{4}u_{6} + u_{2}u_{3}^{2}u_{4}u_{6} + u_{2}u_{3}^{2}u_{4}^{2}u_{6} + u_{2}u_{3}^{2}u_{6} + u_{2}u_{3}^{2}$$

Ejemplo 4.2. Consideremos la siguiente representación inescindible M :

La inclinación de la representación *M* es:

$$-\frac{2-5}{5-3} = \frac{3}{2}$$

De acuerdo a 4.2.1, si mutamos con $\overline{\mu}_{4,3}$ y después con $\overline{\mu}_{6,5}$ obtenemos:

La representación \overline{M} tiene inclinación:

$$-\frac{1-2}{2-1} = 1$$

Sus subrepresentaciones son:

Por esto, el *F*-polinomio asociado a \overline{M} es:

$$F_{\overline{M}}(U) = 1 + u_5 + u_1u_5 + u_2u_5 + u_1u_2u_5 + u_1u_2u_3u_5,$$

en donde $U = (u_1, u_2, u_3, u_4, u_5, u_6)$. y su *g*-vector es:

$$\mathbf{g}_{\overline{M}} = \begin{bmatrix} 0\\0\\0\\1\\-1\\0\end{bmatrix}$$

De 4.2.1, el g-vector de M' es:

$$\mathbf{g}_{\mathcal{M}'} = \begin{bmatrix} -1\\ -1\\ 0\\ 1\\ 1\\ 0 \end{bmatrix}$$

y asi, el F-polinomio asociado a la representación M' está dado por

$$F_{M'}(U) = \left(\frac{u_6}{1+u_6}\right)^0 \left(\frac{u_5}{1+u_5}\right) F_{\overline{M}}(\overline{U})$$

en donde

$$\overline{U} = \left(u_1(1+u_5)(1+u_6), u_2(1+u_5)(1+u_6), \frac{u_3u_5u_6}{(1+u_5)(1+u_6)}, \frac{u_4u_5u_6}{(1+u_5)(1+u_6)}, \frac{1}{u_5}, \frac{1}{u_6}\right)$$

Después de hacer todas las cuentas llegamos a que:

$$F_{M'}(U) = 1 + u_1 + u_2 + u_1u_2 + u_1u_6 + u_2u_6 + u_1u_2u_5 + 2u_1u_2u_6 + u_1u_2u_6^2 + 2u_1u_2u_5u_6 + u_1u_2u_3u_5u_6 + u_1u_2u_5u_6^2 + u_1u_2u_3u_5u_6^2$$

Por último, de 4.2.1, el *g*-vector de *M* es:

$$\mathbf{g}_M = \begin{bmatrix} -1\\ -1\\ 0\\ -1\\ 2\\ 1 \end{bmatrix}$$

y el F-polinomio asociado a M es

$$F_M(U) = (1+u_4)F_{\overline{M}}(U')$$

en donde

$$U' = \left(u_1(1+u_3)(1+u_4), u_2(1+u_3)(1+u_4), \frac{1}{u_3}, \frac{1}{u_4}, \frac{u_3u_4u_5}{(1+u_3)(1+u_4)}, \frac{u_3u_4u_6}{(1+u_3)(1+u_4)}, \right)$$

Después de hacer todas las cuentas nos queda:

$$F_{M}(U) = 1 + u_{1} + u_{2} + u_{4} + u_{1}u_{2} + u_{1}u_{3} + 2u_{1}u_{4} + u_{2}u_{3} + 2u_{2}u_{4} + 2u_{1}u_{2}u_{3} + 3u_{1}u_{2}u_{4} + 2u_{1}u_{3}u_{4} + 2u_{2}u_{3}u_{4} + u_{1}u_{4}^{2} + u_{2}u_{4}^{2} + 6u_{1}u_{2}u_{3}u_{4} + u_{1}u_{3}u_{4}u_{6} + u_{2}u_{3}u_{4}u_{6} + u_{1}u_{2}u_{3}^{2} + 3u_{1}u_{2}u_{4}^{2} + u_{1}u_{3}u_{4}^{2} + u_{2}u_{3}u_{4}^{2} + u_{1}u_{3}u_{4}u_{5} + 2u_{1}u_{2}u_{3}u_{4}u_{6} + 3u_{1}u_{2}u_{3}^{2}u_{4} + 6u_{1}u_{2}u_{3}u_{4}^{2} + u_{1}u_{3}u_{4}^{2}u_{6} + u_{2}u_{3}u_{4}^{2}u_{6} + u_{1}u_{2}u_{3}^{2}u_{4}u_{6} + 2u_{1}u_{2}u_{3}u_{4}^{2}u_{6} + 2u_{1}u_{2}u_{3}u_{4}^{2}u_{6} + 2u_{1}u_{2}u_{3}u_{4}^{2}u_{6} + u_{1}u_{2}u_{3}u_{4}^{3}u_{5} + 2u_{1}u_{2}u_{3}u_{4}^{2}u_{5}u_{6} + u_{1}u_{2}u_{3}^{2}u_{4}^{2}u_{6} + u_{1}u_{2}$$

Ejemplo 4.3. Consideremos la siguiente representación inescindible M :

La inclinación de la representación *M* es:

$$-\frac{3-4}{4-1} = \frac{1}{3}$$

De acuerdo a 4.2.1, si mutamos con $\overline{\mu}_{2,1}$ y $\overline{\mu}_{6,5}$ obtenemos:

De el ejemplo anterior tenemos que el g-vector de M' es:

$$\mathbf{g}_{M'} = \begin{bmatrix} -1\\ -1\\ 0\\ 1\\ 1\\ 0 \end{bmatrix}$$

y el F-polinomio asociado a la representación M' es:

$$F_{M'}(U) = 1 + u_1 + u_2 + u_1 u_2 + u_1 u_6 + u_2 u_6 + u_1 u_2 u_5 + 2u_1 u_2 u_6 + u_1 u_2 u_6^2 + 2u_1 u_2 u_5 u_6 + u_1 u_2 u_3 u_5 u_6 + u_1 u_2 u_5 u_6^2 + u_1 u_2 u_3 u_5 u_6^2$$

De 4.2.1, el *g*-vector de *M* es:

$$\mathbf{g}_M = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ -1 \\ -2 \end{bmatrix}$$

y el F-polinomio asociado a M es

$$F_M(U) = \left(\frac{u_2}{1+u_2}\right) \left(\frac{u_1}{1+u_1}\right) F_{\overline{M}}(U')$$

en donde

$$U' = \left(\frac{1}{u_1}, \frac{1}{u_2}, \frac{u_1 u_2 u_3}{(1+u_1)(1+u_2)}, \frac{u_1 u_2 u_4}{(1+u_1)(1+u_2)}, u_5(1+u_1)(1+u_2), u_6(1+u_1)(1+u_2)\right)$$

Después de hacer todas las cuentas nos queda:

$$F_{M}(U) = 1 + u_{5} + 2u_{6} + u_{1}u_{6} + u_{2}u_{6} + u_{6}^{2} + u_{1}u_{6}^{2} + u_{2}u_{6}^{2} + 2u_{5}u_{6} + u_{1}u_{2}u_{6}^{2} + 2u_{2}u_{5}u_{6} + 2u_{1}u_{5}u_{6} + 2u_{1}u_{2}u_{5}u_{6} + u_{1}u_{2}u_{3}u_{5}u_{6} + u_{5}u_{6}^{2} + 2u_{1}u_{5}u_{6}^{2} + u_{1}^{2}u_{5}u_{6}^{2} + 2u_{2}u_{5}u_{6}^{2} + 4u_{1}u_{2}u_{5}u_{6}^{2} + 2u_{1}^{2}u_{2}u_{5}u_{6}^{2} + u_{2}^{2}u_{5}u_{6}^{2} + 2u_{1}u_{2}^{2}u_{5}u_{6}^{2} + u_{1}^{2}u_{2}^{2}u_{5}u_{6}^{2} + u_{1}u_{2}u_{3}u_{5}u_{6}^{2} + u_{1}^{2}u_{2}u_{3}u_{5}u_{6}^{2} + u_{1}u_{2}^{2}u_{3}u_{5}u_{6}^{2} + u_{1}^{2}u_{2}^{2}u_{3}u_{5}u_{6}^{2}$$

4.3. CÁLCULO DE ALGUNOS EJEMPLOS.

5 Mutaciones del QP de tipo $(2,2,2,2,\lambda)$.

En este capítulo veremos que el carcaj con potencial asociado al tipo tubular $(2,2,2,2;\lambda)$ es de tipo de mutación finita. En este caso en particular, que sea de tipo de mutación finita indica que el potencial no es rígido, esto porque en un principio si bien el carcaj es de tipo de mutación finita podrían aparecer una infinidad de valores de λ .

En lugar de usar el carcaj de la Figura 3.1, utilizaremos el siguiente carcaj con potencial que hace las cuentas más manejables:

Figura 5.1:

Este carcaj con potencial está en la clase de mutación del QP de la figura 3.1, como veremos más adelante.

La idea para mostrar que este QP es de tipo de mutación finita, es hacer una mutación en cada dirección posible, después, de los QP's resultantes, revisar cuáles son equivalentes derechos. Hecho esto, mutaremos los QP's que no sean equivalentes derechos, y repetiremos este proceso hasta que veamos que en todos los

caminos posibles obtenemos QP's equivalentes derechos a los que ya obtuvimos antes.

Para facilitar la notación, denotaremos por $(Q^{(2)}, W^{(2)})$ al QP resultante de aplicar al QP (Q,W) la mutación μ_2 . Así, el QP, $(Q^{(5,4,2)}, W^{(5,4,2)})$ denota al QP $(\mu_5 \circ \mu_4 \circ \mu_2)[(Q,W)]$. Estos carcajes, en general, son diferentes de los carcajes con el mismo nombre que aparecen en el capítulo 3.

En la Figura 5.2, tenemos los QP's que resultan de aplicar al carcaj con potencial, (Q, W), las mutaciones en las direcciones: 1,2,3,4,5 y 6.

De los carcajes con potencial de la Figura 5.2, el carcaj con potencial $(Q^{(1)}, W_{\lambda}^{(1)})$ es equivalente derecho del carcaj con potencial $(Q^{(2)}, W_{\lambda}^{(2)})$; el carcaj con potencial $(Q^{(3)}, W_{\lambda}^{(3)})$ es equivalente derecho del carcaj con potencial $(Q^{(6)}, W_{\lambda}^{(6)})$ y el carcaj con potencial $(Q^{(4)}, W_{\lambda}^{(4)})$ es equivalente derecho del carcaj con potencial con potencial $(Q^{(5)}, W_{\lambda}^{(5)})$.

Debido a esto sólo debemos mutar a los carcajes con potencial $(Q^{(1)}, W_{\lambda}^{(1)})$, $(Q^{(3)}, W_{\lambda}^{(3)})$ y $(Q^{(4)}, W_{\lambda}^{(4)})$ en todas las direcciones, a excepción de 1, 3 y 4, respectivamente.

Observación 5.1. En realidad no tenemos que hacer las mutaciones del carcaj con potencial $(Q^{(4)}, W_{\lambda}^{(4)})$: basta con notar que el carcaj con potencial $(Q^{(4)}, W_{\lambda}^{(4)})$ es equivalente derecho a $(Q^{(3)}, W_{\frac{1}{\lambda}}^{(3)})$. Por esto, al calcular las mutaciones del carcaj con potencial $(Q^{(3)}, W_{\frac{1}{\lambda}}^{(3)})$ tendremos las mutaciones de $(Q^{(4)}, W_{\lambda}^{(4)})$ con tan solo hacer los cambios correspondientes en el potencial.

Mutaciones del carcaj con potencial $(Q^{(1)}, W_{\lambda}^{(1)})$:

En la Figura 5.3 tenemos los carcajes con potencial que resultan de mutar este carcaj con potencial en las direcciones 2,3,4,5 y 6:

En este caso, los carcajes con potencial $(Q^{(3,1)}, W_{\lambda}^{(3,1)})$ y $(Q^{(5,1)}, W_{\lambda}^{(5,1)})$ son equivalentes derechos al carcaj con potencial (Q, W_{λ}) , que es con el que iniciamos (Figura 5.1). Los carcajes con potencial $(Q^{(2,1)}, W_{\lambda}^{(2,1)}), (Q^{(4,1)}, W_{\lambda}^{(4,1)})$ y $(Q^{(6,1)}, W_{\lambda}^{(6,1)})$ son equivalentes derechos al carcaj con potencial $(Q, W_{\frac{1}{\lambda}})$ y por esta razón no es necesario calcular las mutaciones de ninguno de estos carcajes con potencial , en ninguna dirección.

Mutaciones del carcaj con potencial $(Q^{(3)}, W_{\lambda}^{(3)})$:

En la Figura 5.4 tenemos los carcajes con potencial que resultan de mutar al carcaj con potencial $(Q^{(3)}, W_{\lambda}^{(3)})$ en las direcciones: 1, 2, 4, 5 y 6

En este caso el carcaj con potencial $(Q^{(1,3)}, W^{(1,3)})$ es equivalente derecho del carcaj con potencial $(Q^{(4)}, W_{\lambda}^{(4)})$ y el carcaj con potencial $(Q^{(2,3)}, W^{(2,3)})$ es equivalente derecho del carcaj con potencial con potencial $(Q^{(3)}, W_{\lambda}^{(3)})$.

Los carcajes con potencial $(Q^{(5,3)}, W_{\lambda}^{(5,3)})$ y $(Q^{(6,3)}, W_{\lambda}^{(6,3)})$ son equivalentes derechos de los carcajes con potencial $(Q, W_{1-\lambda})$ y $(Q, W_{\frac{\lambda}{\lambda-1}})$. respectivamente.

Por esto, en este caso sólo hay que calcular las mutaciones del carcaj con potencial $(Q^{(4,3)}, W^{(4,3)}_{\frac{1}{2}}).$

Mutaciones del carcaj con potencial $(Q^{(4,3)}, W_{\lambda}^{(4,3)})$: En la Figura 5.5 tenemos los carcajes con potencial que resultan de mutar al carcaj con potencial $(Q^{(4,3)}, W_{\lambda}^{(4,3)})$ en las direcciones: 1, 2, 3, 5 y 6

En este caso los carcajes con potencial $(Q^{(1,4,3)}, W^{(1,4,3)}_{\lambda})$ y $(Q^{(2,4,3)}, W^{(2,4,3)}_{\lambda})$ son equivalentes derechos del carcaj con potencial $(Q^{(4,3)}, W_{\lambda}^{(4,3)})$.

El carcaj con potencial $(Q^{(3,4,3)}, W^{(3,4,3)}_{\lambda})$ es equivalente derecho del carcaj con potencial $(Q^{(3)}, W^{(3)}_{\lambda})$. Por último, los carcajes con potencial $(Q^{(5,4,3)}, W^{(5,4,3)}_{\lambda})$ y $(Q^{(6,4,3)}, W_{\lambda}^{(6,4,3)})$ son equivalentes derechos al carcaj con potencial $(Q^{(3)}, W_{\frac{1}{2}}^{(3)})$.

Por último, en la Figura ??, presentamos una lista completa de los QP's \hat{s} en la clase de mutación de (Q, W_{λ}) , salvo permutación de los vértices:

En la Figura ??, para cada uno de los carcajes, θ toma cada uno de los siguientes valores:

$$\lambda, \frac{1}{\lambda}, 1-\lambda, \frac{1}{1-\lambda}, \frac{\lambda}{\lambda-1}, \frac{\lambda-1}{\lambda}$$

Figura 5.2:

Figura 5.3:

Figura 5.4:

Figura 5.5:

Bibliografía

- M. Alim, S. Cecotti, C. Córdova, S. Espahbodi, A. Rastogi, C. Vafa: N=2 quantum field theories and their BPS quivers. Adv. Theor. Math. Phys. 18 (2014), no. 1, 27–127.
- [2] I. Assem, D. Simson and A. Skowroński: Elements of the Representation Theory of Associative Algebras, Volume 1: Techniques of Representation Theory, London Mathematical Society Student Texts 65, Cambridge University Press, 2006.
- [3] M. Barot, C. Geiß: *Tubular cluster algebras I: categorification.* arXiv, math.RT, Jan 2009.
- [4] Ph. Caldero, B. Keller: *Bernhard From triangulated categories to cluster algebras.* Invent. Math. 172 (2008), no. 1, 169–211.
- [5] H. Derksen, J.Weyman, A. Zelevinsky: *Quivers with potentials and their re*presentations I: Mutations., Selecta Math. 14 (2008), no. 1, 59-119.
- [6] H. Derksen, J. Weyman, and A. Zelevinsky: *Quivers with potentials and their representations II: Applications to cluster algebras.*, J. Amer. Math. Soc. 23 (2010), 749-790.
- [7] J.A. de la Peña, B. Tomé: *Iterated Tubular Algebras*, Journal of Pure and Applied Algebra 64 (1990) North Holand, 303-314.
- [8] P.Dowbor, A. Skowronski: On Galois coverings of tame algebras, Arch. Math. 44 (1985), 522-529.
- [9] A. Felikson, M. Shapiro, P. Tumarkin: *Skew-symmetric cluster algebras of finite mutation type.* J. Eur. Math. Soc. (JEMS) 14 (2012), no. 4, 1135–1180.
- [10] A. Felikson, M. Shapiro, P. Tumarkin: *Cluster algebras of finite mutation type via unfoldings*. Int. Math. Res. Not. IMRN 2012, no. 8, 1768–1804.
- [11] V. Fock, A.B. Goncharov: Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. Inst. Hautes Études Sci. No. 103 (2006), 1–211.
- [12] S. Fomin, M. Shapiro, D. Thurston: *Cluster algebras and triangulated surfaces*. I. Cluster complexes. Acta Math. 201 (2008), no. 1, 83–146.

- [13] S. Fomin, A. Zelevinsky: *Cluster algebras I:Foundations*, J. Amer. Math. Soc. 15 (2002), 497-529.
- [14] S. Fomin, A. Zelevinsky: Cluster algebras. II. Finite type classification. Invent. Math. 154 (2003), no. 1, 63–121
- [15] S. Fomin, A. Zelevinsky: *Cluster algebras IV: Coefficients*, Comp. Math. 143 (2007), 112-164.
- [16] W. Fulton: *Introduction to Toric Varieties*, Ann. of Math. Stud., vol. 131, Princeton University Press, 1993.
- [17] P. Gabriel: *The universal cover of a representation-finite algebra.*, Proc. Puebla 1980, Springer Lect. Notes **903**, 68-105.
- [18] C. Geiß, R. González-Silva: *Tubular Jacobian Algebras*, Algebras and Representation Theory., 18 (2015), 161-181.
- [19] C. Geiß, D. Labardini-Fragoso, J. Schöer: *The Representation Type Of Jacobian Algebras*, Adv. Math. 290 (2016) 364-452.
- [20] B. Keller: On cluster theory and quantum dilogarithm identities. Representations of algebras and related topics, 85–116, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011.
- [21] B. Keller: *Cluster algebras and derived categories*. Derived categories in algebraic geometry, 123–183, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012.
- [22] Y. Kodama, L. Williams: The Deodhar decomposition of the Grassmannian and the regularity of KP solitons. Adv. Math. 244 (2013), 979–1032.
- [23] Y. Kodama, L. Williams: *KP solitons and total positivity for the Grassmannian*. Invent. Math. 198 (2014), no. 3, 637–699.
- [24] M. Kontsevich, Y. Soibelman: Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, 148 p. arXiv:0811.2435 [math.AG]
- [25] M. Kontsevich, Y. Soibelman: Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants. Commun. Number Theory Phys. 5 (2011), no. 2, 231–352.
- [26] C.M. Ringel: *Tame algebras and integral quadratic forms*. Lecture Notes in Mathematics, 1099, Springer-Verlag, Berlin, 1984.
- [27] D. Simson and A. Skowroński: Elements of the Representation Theory of Associative Algebras, Volume 2: Tubes and Concealed Algebras of Euclidean Type, London Mathematical Society Student Texts 71, Cambridge University Press, 2007.

[28] D. Simson and A. Skowroński: Elements of the Representation Theory of Associative Algebras, Volume 3: Representation-Infinite Tilted Algebras, London Mathematical Society Student Texts 72, Cambridge University Press, 2007. BIBLIOGRAFÍA