

Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

ANÁLISIS DE ÍNDICES DE TRANSPARENCIA ATMOSFÉRICA PARA ZONAS ESPECÍFICAS DE LA REPÚBLICA MEXICANA

T E S I S

QUE PARA OBTENER EL TÍTULO DE:

Físico

PRESENTA:

RENÉ ALEJANDRO RIVAS ROBLES

DR. DAVID RIVEROS ROSAS

MÉXICO D.F.

2016

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Agradecimientos

A mi madre por estar siempre en mi vida y ser un ejemplo de coraje y determinación.

A mi padre por su ejemplo profesional y todo el apoyo que siempre me brindó.

A mi hermana por su cariño infinito.

Al Dr. David Riveros Rosas por aceptarme en su proyecto, por su paciencia y por todos los conocimientos que me otorgó.

A todos mis sinodales que con su sapiencia completaron este trabajo. En particular le agradezco al profesor Andrés Porta por darle pies y cabeza a mi tesis, y por hacerme notar que la mejor redacción es aquella que se complica menos.

A la Universidad Nacional Autónoma de México por toda la educación de calidad y todo el apoyo económico que me ha brindado.

A Melissa que me acompañó desde antes de que este proyecto comenzara y que ahora ya no sabría cómo seguir sin ella.

A Juan Nepomuceno y a Guille oO Gnomo por su amistad incondicional y su fino sentido del humor.

A Santiago por acompañarme (y ayudarme) prácticamente en toda la carrera y por todas las ocasiones que nos recibió en su casa para estudiar.

A Mario y a Chimal por formar parte de esta aventura y por todas las historias que pasamos juntos.

A Lalo Agua y a Gustavo por ser el mejor grupo de estudio para el propedéutico del PCF.

A los Bosones y a las Palomas Ticas, por mantener el deporte presente a lo largo de mi carrera; así como a Silvia por todo el apoyo que siempre nos dio y por su sincera amistad.

Índice general

\mathbf{A}_{i}	imientos				
Li	ista de símbolos y términos				
\mathbf{R}	esumen	IX			
1.	Interacción Radiación solar-atmósfera terrestre	1			
	1.1. Motivación del uso de Energía Solar	1			
	1.2. Geometría Tierra-Sol	4			
	1.3. El Sol	5			
	1.4. Irradiancia solar	7			
	1.4.1. Constante solar	7			
	1.4.2. Radiación de cuerpo negro	9			
	1.5. La atmósfera terrestre	11			
	1.6. Atenuación de la Radiación Solar	12			
	1.6.1. Absorción	12			
	1.6.2. Difusión	13			
	1.7. Instrumentos de medición	16			
	1.7.1. Piranómetro	16			
	1.7.2. Pirheliómetro	18			
	1.8. Modelos de Evaluación	19			
	1.8.1. El Modelo <i>Heliosat</i>	21			
	1.9. ITD e ITM	23			

VI ÍNDICE GENERAL

2.	Datos y métodos de agrupamiento 25					
	2.1.	Datos Solarimétricos en México	25			
	2.2.	Regionalización con ISODATA	29			
	2.3.	Coeficientes de Correlación	31			
		2.3.1. Correlación de Pearson	31			
		2.3.2. Correlación de Spearman	32			
	2.4.	Análisis de Cluster	32			
		2.4.1. Distancias	32			
		2.4.2. Algoritmos	33			
		2.4.3. El método de Ward	34			
_	3.5					
3.	Met	zodología y Resultados	37			
	3.1.	Programas utilizados	37			
	3.2.	ITD's e ITM's	40			
	3.3.	Clasificación de las estaciones por ISODATA	42			
	3.4.	Clasificación de las estaciones por Pearson y Spearman	48			
	3.5.	Clasificación de las estaciones por Análisis de Cluster	53			
4.	Con	nparación de las clasificaciones y Conclusiones	59			
	4.1.	Comparación de los métodos de agrupamiento	59			
	4.2.	Conclusiones	61			
		4.2.1. Trabajo a futuro	62			
Aı	Apéndice A. Coeficientes de Correlación de Pearson 63					
Aı	Apéndice B. Coeficientes de Correlación de Spearman 6					
\mathbf{Bi}	Bibliografía 71					

Lista de símbolos y términos

- Albedo. Es la razón de la radiación reflejada en una superficie con respecto a la radiación que incide.
- Ángulo cenital θ . Es el ángulo que forma el sol con una línea perpendicular a la superficie en un punto en particular.
- Ángulo azimutal (φ) . Es el ángulo que forma la proyección del vector posición del Sol con una línea orientada hacia el Sur.
- Ángulo diario $\Gamma = 2\pi \frac{J_d-1}{365}$. Es el ángulo que forma la Tierra con el Sol en el plano de la eclíptica a lo largo de su movimiento de traslación.
- Cuenta digital. Intensidad de la luz obtenida en un determinado pixel para una imagen.
- Día Juliano o día del año J_d . Se asigna al numerar cada uno de los días del año del 1 al 365 empezando con el 1° de enero y terminando el 31 de diciembre
- Distancia promedio Tierra-Sol $r_0 = 1.5 \times 10^8 \text{ km}$
- Factor de corrección por la excentricidad $\epsilon = \left(\frac{r_0}{r}\right)^2$
- Huso horario o longitud local. Cada una de las 24 zonas en las que se divide el planeta para obtener la hora local a partir del tiempo universal coordinado (UTC).
- Irradiancia solar F. Es la densidad de flujo energético que emite el Sol
- Índice de nubosidad n(i, j, f, j). Es la razón entre el número de cuentas digitales del punto (i, j) en la fecha f y hora j obtenidas de alguna imagen de satélite y el número de cuentas digitales obtenidas para el punto (i, j) del mapa de cielo claro.
- Índice de transparencia atmosférica K_T . Es la razón entre la irradiancia que incide en la atmósfera con la irradiancia que llega a la superficie de manera perpendicular.
- Índice de transparencia diario ITD. Es el promedio de los K_T 's correspondientes a un mismo día para un determinado punto.
- Índice de transparencia mensual ITM. Es el promedio de los ITD's correspondientes a un mismo mes para un determinado punto.
- Irradiancia o densidad de flujo de energía. Es la energía por unidad de tiempo por unidad de área o la potencia por unidad de área que emite un cuerpo o que incide en determinada superficie.

- Irradiancia monocromática o densidad de flujo energético monocromático. Es la irradiancia que incide en o emite un cuerpo en una determinada región por longitud de onda.
- Constante solar $I_{cs} = 1367 \text{ W/m}^2$. Es el promedio de la irradiancia solar que incide en la atmósfera a lo largo del año.
- Irradiancia extraterrestre $I_e = I_{cs} \epsilon$. Es la irradiancia solar que incide en la atmósfera terrestre como función del día Juliano.
- Irradiancia horizontal extraterrestre $I_{he} = I_{cs} \epsilon \cos(\theta)$. Es la irradiancia solar que incide en la atmósfera terrestre como función del día Juliano y es perpendicular a la superficie.
- Irradiancia directa G_b . Es la irradiancia que proviene directamente del Sol.
- Irradiancia difusa G_d . Es la irradiancia que llega a la superficie después de haber colisionado con algún objeto en la atmósfera.
- Irradiancia global o irradiancia horizontal a nivel de superficie I_{hs} . Es la suma de la irradiancia directa más la irradiancia difusa.
- Radiancia espectral emitida por un cuerpo negro B_{ν}
- Radio Solar $r_s = 6.96 \times 10^5 \text{ km}$

Resumen

En 1986, Cano et al.[5] elaboraron un método estadístico para determinar la radiación solar a nivel de superficie, basado en la relación lineal que existe entre el índice de nubosidad y el índice de transparencia atmosférica.

El índice de transparencia atmosférica es un valor que se obtiene de comparar la radiación solar que llega al planeta antes de atravesar la atmósfera con la radiación que incide en la superficie de la Tierra después de haber atravesado la atmósfera. Formalmente el índice de transparencia atmosférica se define como:

$$K_T(i,j) = \frac{I_{hs}(i,j)}{I_{cs} \epsilon \cos(\theta)} = \frac{I_{hs}(i,j)}{I_{cs} [1 + 0.033 \cos(2\pi J_d/365.25)] \cos(\theta)}$$

donde $I_{hs}(i,j)$ es la irradiancia solar horizontal a nivel de superficie medida, J_d es el día juliano, y θ es el ángulo cenital que forma el Sol con la normal en el momento de la medición. Actualmente en la sección de Radiación Solar del Instituto de Geofísica se está aplicando el método de Cano para estimar la radiación solar en la República Mexicana.

El trabajo de esta tesis consistió primeramente en obtener los índices de transparencia atmosférica para cada una de las 35 ¹ Estaciones Meteorológicas Automáticas del SMN (ver tabla 2.1) propuestas en el artículo [22] (las cuales son estaciones seleccionadas por la calidad de sus datos, adecuada calibración y colocación) para cada uno de los valores de irradiancia medidos por las EMA's durante un periodo de 3 años consecutivos, el cual varía para cada estación y se encuentra entre los años de 1990 y 2001.

Por otro lado, en [3] se elaboró con la técnica ISODATA una regionalización del país en base a parámetros físicos. La hipótesis del trabajo es que existe una alta correlación entre los índices de transparencia atmosférica entre las estaciones pertenecientes a una misma región, de las regiones obtenidas en dicho artículo.

El objetivo principal de esta tesis fue comprobar dicha hipótesis y después elaborar una regionalización² de la República Mexicana que tuviera índices de transparencia similares. Cabe mencionar que, en México, este trabajo no se ha hecho antes por ninguna institución ni pública ni privada.

¹En realidad fueron seleccionadas 36 estaciones, sin embargo, la estación de Tezontle ubicada en la Ciudad de México se descartó, debido a que la contaminación de esta ciudad no nos permite hacer una interpolación con las regiones aledañas.

²Más que una regionalización se hizo una clasificación de las 35 estaciones y queda como trabajo a futuro elaborar la regionalización. Este asunto se aborda en las conclusiones.

X RESUMEN

Para comprobar dicha hipótesis se elaboraron y analizaron gráficas con los ITD's de todas las estaciones de una misma región para cada región, con lo cual se pudo hacer una comparación cuantitativa de los ITD's. También se elaboró una tabla con los ITM's promedio de todas las estaciones de una misma región para cada región para cada mes, así como una tabla con las respectivas desviaciones estándar de dichos ITM's, con lo cual se verificó cuantitativamente la alta o baja correlación entre los índices de transparencia de las estaciones de cada región. Se obtuvo, en efecto, una alta correlación entre estaciones de una misma región. La máxima desviación promedio se obtuvo para la región 1 y fue de 0.0433 mientras que la desviación estándar promedio del total de las 35 estaciones fue de 0.0667.

Después se elaborarion 2 clasificaciones de las 35 estaciones utilizando un método diferente para cada clasificación, uno "manual" y otro automático. Para el primero se obtuvieron los índices de correlación de Pearson y de Spearman de los ITM's de cada una de las estaciones con todas las demás. Con base en estos coeficientes se clasificaron, una por una, cada una de las 35 estaciones en 5 regiones, en donde las estaciones de una misma región tuvieran una alta correlación. Se elaboraron las mismas graficas y tablas que con la regionalización obtenida por ISODATA pero con con la nueva regionalización. La desviación promedio máxima fue 0.0510 correspondiente a la región Este.

Finalmente para la segunda clasificación se aplicó el análisis de Cluster. Este análisis se usa para obtener regiones (o clusters) de objetos multivariados midiendo la distancias o similitudes entre sus objetos. Existen distintos tipos de análisis de Cluster, en este trabajo se aplicó el método de Ward por ser el método donde las regiones son lo más homogéneas posibles. Aplicando dicho análisis a los ITM's se obtuvo una nueva clasificación, muy similar a la obtenida por el análisis de correlación anterior. Se elaboraron las mismas gráficas y tablas que en la clasificación anterior. La región con mayor desviación estándar fue nuevamente la región Este con un valor de 0.0419.

Capítulo 1

Interacción Radiación solar-atmósfera terrestre

Este capítulo abarca muy brevemente el marco teórico correspondiente a la radiación solar en sí y su interacción con la atmósfera terrestre. Primeramente se incluye una sección que motiva el uso de la energía solar, lo cual fue el origen de este trabajo. Después se incluye una sección con los principales ángulos para el estudio de la trayectoria solar en su paso aparente por la bóveda celeste que serán necesarios para el desarrollo de esta tesis.

Una vez definida esta información se inicia la descripción del Sol, fuente de la radiación que nos aportará información de la transparencia atmosférica. Se definirán los conceptos de irradiancia solar y sus unidades, constante solar, irradiancia solar extraterrestre, e irradiancia horizontal, así como el factor de corrección de la irradiancia por la excentricidad de la trayectoria terrestre a lo largo del Sol. Se hablará del concepto de Cuerpo Negro y de la similitud de la radiación de éste último con la radiación solar.

Después se describe la atmósfera terrestre, su composición química y su cambio de temperatura en función de la altura. Se describen los principales procesos de atenuación de la radiación solar a su paso por la atmósfera terrestre debidos a la absorción y a la difusión, describiendo qué moléculas son las responsables de dicha atenuación y en qué rango del espectro se encuentra su campo de acción. Se describen los instrumentos de medición usados para determinar la irradiancia solar a nivel de superficie tanto global como directa. Finalmente se describe la clasificación de los tipos de modelos de evaluación clásica de la radiación solar. Se describe el modelo Heliosat elaborado por Cano et al. en 1986 el cual utiliza los índices de transparencia atmosférica para estimar la radiación solar a nivel de superficie.

1.1. Motivación del uso de Energía Solar

El continuo crecimiento de la población a nivel mundial, así como la rápida disminución de los combustibles fósiles ha generado la necesidad de la investigación, planeamiento e implementación de fuentes de energía alternativas. A nivel mundial, la industria solar térmica ha ido en aumento. Cabe destacar el crecimiento en la eficiencia que han tenido los páneles fotovoltaicos como se muestra en la figura 1.1

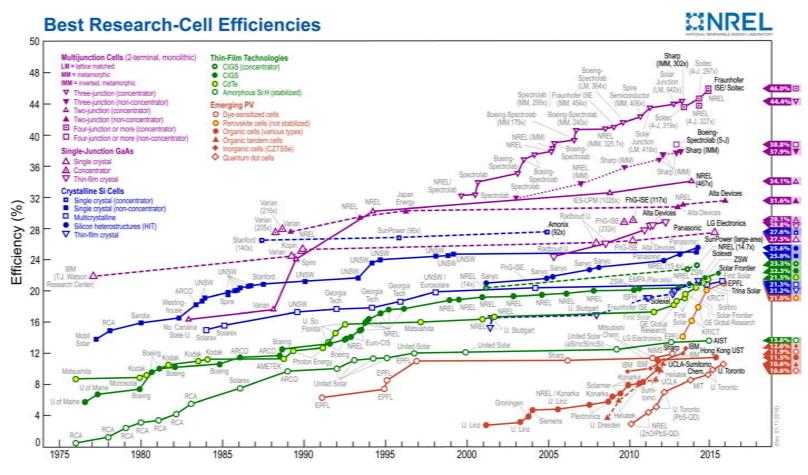


Figura 1.1: Aumento en la eficiencia de los páneles fotovoltaicos del año 1976 al 2010. [18]

El potencial solar en nuestro país se encuentra entre los más altos del mundo al estar ubicado en la franja comprendida entre los ± 40 grados de latitud como puede observarse en la figura 1.2. En la figura, nuestro país aparece como uno de los más adecuados para la instalación de plantas de concentración solar para la generación de electricidad.

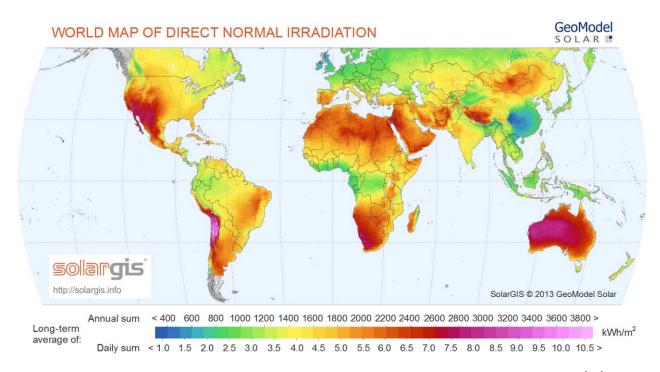


Figura 1.2: Mapa de distribución de densidad de energía solar directa en todo el mundo. [10]

Este potencial estimado requiere validarse con información solarimétrica confiable, medida en superficie. En México se cuenta con diversas redes de medición de parámetros meteorológicos y algunas de ellas incluyen al menos un sensor de radiación solar global. El Servicio meteorológico Nacional (SMN) cuenta con redes de medición solar a lo largo de todo el país. En particular la red de estaciones meteorológicas automáticas (EMA's) cuanta actualmente con 187 estaciones distribuidas en todo el país (figura 1.3) y cada estación cuenta con un piranómetro para la medición de la radiación solar global horizontal. Sin embargo, esta red se instaló para satisfacer necesidades de información hidrometeorológica y no con criterios para estaciones solarimétricas, lo cual limita la utilidad de los datos de radiación solar. Por otro lado, como se ha constatado en [?], el mantenimiento de los piranómetros no ha sido el más adecuado.

Si bien en la actualidad la energía solar (así como la energía eólica, geotérmica) se usa poco en comparación con los hidrocarburos (petróleo, gas natural, carbón) incluso con la hidroelectricidad y la energía nuclear[13],[4], debido a los argumentos anteriores y a otros más, resulta de suma importancia contar con información solarimétrica confiable que permita una correcta elaboración de políticas públicas en este sentido así como para la planeación de proyectos solares en el sector privado.

Figura 1.3: Mapa de las Estaciones de Monitoreo Automático del SMN existentes hasta el 2011.

1.2. Geometría Tierra-Sol

La Tierra tiene una órbita elíptica alrededor del Sol de 365.256 días de duración de un ciclo completo. [17] El Sol se ubica en uno de los focos de dicha elipse. El perihelio es el punto en el que la Tierra se encuentra más cerca del Sol y el afelio el momento en el que se encuentra más lejos. La distancia promedio entre el Sol y la Tierra es de 1.5×10^8 km. La Tierra presenta un movimiento de traslación alrededor del Sol y un movimiento de rotación sobre su eje. El plano en el que se encuentra la órbita de la Tierra se llama plano de la eclíptica. El eje de rotación de la Tierra está inclinado 23.5° con respecto a este plano. Esta inclinación es la causa de las estaciones del año.

Para empezar con el estudio de la geometría Tierra-Sol, tenemos que situarnos en un determinado punto de la superficie terrestre. Un observador situado en un punto fijo observará que el Sol se mueve alrededor de él. A la línea que dibuja el Sol a su paso por la bóveda celeste se denomina trayectoria solar, ver figura 1.4. Al ángulo que forma la trayectoria solar con la trayectoria que el Sol dibuja cuando sale exactamente por el ecuador se denomina ángulo de declinación. Al ángulo que genera el Sol a lo largo de su trayectoria solar se denomina ángulo horario, siendo -90° el ángulo horario al amanecer, 0° al momento en el que el sol pasa por el meridiano local, y 90° en la puesta del Sol. El ángulo cenital (θ) es el ángulo que forma el vector posición del Sol (con el origen en el punto donde el observador está situado) con una línea normal a la superficie en el punto del observador. Cuando el ángulo cenital es cero, se dice que el Sol se encuentra en el cenit. El ángulo azimutal (φ) es el ángulo que forma la proyección del vector posición del Sol en la superficie con una línea orientada hacia el Sur. Los ángulos anteriormente mencionados dependen del punto de observación en cuestión.

1.3. EL SOL 5

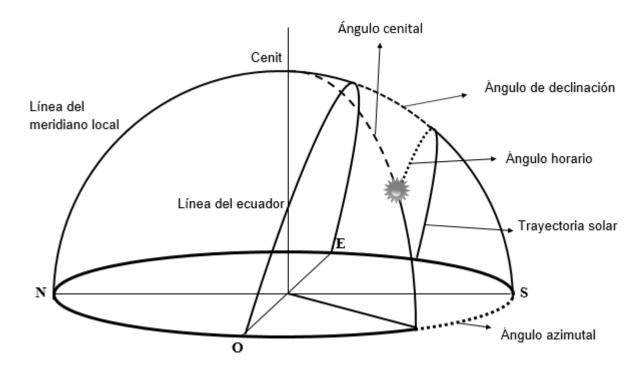


Figura 1.4: Principales ángulos y líneas para el estudio de la trayectoria solar en su trayectoria aparente por la bóveda celeste.

A lo largo de este trabajo, siempre que se haga referencia a un ángulo θ o φ , nos referiremos al ángulo cenital o azimutal respectivamente.

1.3. El Sol

El Sol es una estrella típica del universo formada hace 4.6 mil millones de años. Es una esfera gaseosa de 7×10^5 Km de radio visible y 2×10^{30} Kg de masa; es una masa promedio en comparación con las demás estrellas pero su tamaño está por debajo del promedio. Está compuesta principalmente por Hidrógeno 90 % y Helio 10 % [16], su composición se calcula a partir de su espectro de radiación proveniente de la fotósfera y cromósfera, pero se piensa que esta composición es representativa de todo el Sol a excepción del núcleo [6]. Su temperatura decrece de 15 × 10⁶ K en el núcleo a 5,800 K en la superficie, [6] igualmente sucede con la densidad que cae de 150 g cm⁻³ a 10^{-7} g cm⁻³ [16]. Su estructura se muestra en la figura 1.5.

En él se llevan a cabo reacciones nucleares de fusión de Hidrógeno que se transforma en Helio, en las cuales el Sol pierde 5 toneladas de masa por segundo, la cual se libera en forma de energía electromagnética de acuerdo a la ecuación de Einstein $E=mc^2$. Sin embargo se estima que únicamente el 5% de la masa solar se ha convertido de H a He a lo largo de su vida [16]. Por esta razón se considera al Sol como una fuente de energía inagotable.

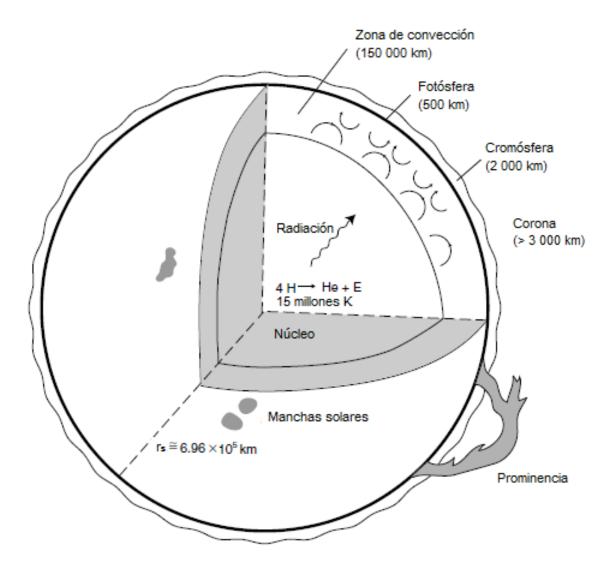


Figura 1.5: Estructura en capas del Sol. [16]

El ciclo de fusión del Hidrógeno para formar Helio [6] es el siguiente:

$${}_{1}^{1}H + {}_{1}^{1}H \rightarrow {}_{1}^{2}H + e^{+} + \nu \tag{1.1}$$

$${}^{1}_{1}H + {}^{2}_{1}H \rightarrow {}^{3}_{2}H + \gamma \tag{1.2}$$

$${}_{2}^{3}He + {}_{2}^{3}He \rightarrow {}_{2}^{4}He + 2{}_{1}^{1}H$$
 (1.3)

donde ν es un neutrino y γ es un fotón. La radiación que alcanza la Tierra proviene principalmente de la fotósfera, la capa más externa y delgada del Sol (500 Km) y sus temperaturas van desde 8000 K en su parte más interna hasta 4000 K en la zona más externa.

Una característica importante del Sol es la presencia de manchas solares que se presentan en la fotósfera. Son zonas obscuras que se encuentran a menor temperatura (4000 K) que el resto de la fotósfera (6000 K) y que presentan un ciclo en cuanto al número de manchas. Cada 11 años hay un máximo de número de manchas solares así como cada 11 años hay un mínimo. [1] Están fuertemente relacionadas con el campo magnético del Sol. Existe la suposición de que dichas manchas están relacionadas con la temperatura global del planeta Tierra, sin embargo dicha hipótesis se ha estudiado y no se ha podido obtener una conclusión satisfactoria como se puede ver en [24].

1.4. Irradiancia solar

La irradiancia o densidad de flujo de energía I es la energía por unidad de tiempo por unidad de área o la potencia por unidad de área que emite un cuerpo o que incide en determinada superficie. Por otro lado la irradiancia monocromática o densidad de flujo energético monocromático es la irradiancia que incide en o emite un cuerpo en una determinada región por longitud de onda.

1.4.1. Constante solar

La irradiancia solar que incide en la Tierra no es un valor constante, depende de la distancia Tierra-Sol, así como de las variaciones de radiación emitida por parte del Sol. Sin embargo, resulta útil considerar un valor promedio. La constante solar I_{cs} es el promedio de la irradiancia que incide en la atmósfera. La podemos definir en términos de la densidad de flujo energético que emite el Sol y la distancia promedio Tierra-Sol r_0 .

Sea F la densidad de flujo energético emitido por el Sol. Además sea I_{cs} la densidad de flujo de energía que incide en la Tierra a una distancia r_0 . Por conservación de la Energía tenemos que:

$$F4\pi r_s^2 = I_{cs}4\pi r_0^2 (1.4)$$

donde r_s es el radio del sol y r_0 es la distancia promedio Tierra-Sol¹.

Por lo tanto, la constante solar es:

$$I_{cs} = F \left(\frac{r_s}{r_0}\right)^2 \tag{1.5}$$

La NASA a partir de medidas realizadas entre 1968 y 1971 propuso el valor de 1353 $\rm W/m^2$. El Centro Radiológico Mundial (World Radiation Center) ha medido desde 1979 los valores de la irradiancia solar total. Los valores medidos se observan en la figura 1.6. En 1981, a partir de mediciones del Centro Radiológico Mundial (WRC) la Organización Meteorológica Mundial (WMO) adopta el valor de 1367 $\rm W/m^2$.

 $r_s = 6.96 \times 10^5$ km y $r_0 = 1.5 \times 10^8$ km. Más precisamente: $r_0 = 1.49598 \times 10^8$ km. Esta distancia se usa como unidad de longitud en mediciones astronómicas y es llamada precisamente: *unidad astronómica* (ua).

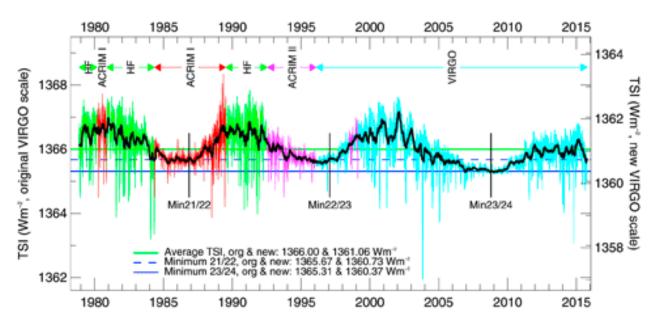


Figura 1.6: Gráfica de las medidas de la irradiancia solar diaria. Los diferentes colores se refieren a mediciones originadas con distintos experimentos.[27]

Sin embargo, la irradiancia solar que incide en la atmósfera para un determinado día es $I_e = F\left(\frac{r_s}{r}\right)^2$ donde r es la distancia del Sol a la Tierra en ese día. Es decir, $I_e = I_{cs} \left(\frac{r_0}{r}\right)^2$. El término $\epsilon = \left(\frac{r_0}{r}\right)^2$ se denomina factor de corrección por la excentricidad.

Spencer [26] desarrolló una expresión para obtener ϵ que depende del ángulo diario ². Dicha expresión es un tanto compleja, sin embargo, una forma más compacta para calcular el factor de corrección es la empleada por Duffie y Beckman: [8]

$$\epsilon = 1 + 0.033 \cos(2\pi J_d/365.25) \tag{1.6}$$

donde J_d es el día del año o día Juliano (se asigna al numerar cada uno de los días del año del 1 al 365 empezando con el 1° de enero y terminando el 31 de diciembre). Esta forma de calcular el factor de corrección se emplea en cálculos para aplicaciones tecnológicas. La irradiancia extraterrestre es entonces $I_e = I_{cs}$ ϵ

La irradiancia horizontal se define como la irradiancia que incide normalmente (u ortogonalmente) en un plano tangente a la superficie. De esta manera la irradiancia horizontal extraterrestre es:

$$I_{he} = I_{cs} \epsilon \cos(\theta) \tag{1.7}$$

 $^{^2}$ El ángulo diario es el ángulo que forma la Tierra con el Sol en el plano de la eclíptica a lo largo de su movimiento de traslación, $\Gamma=2\pi\frac{J_d-1}{365}$

1.4.2. Radiación de cuerpo negro

Un cuerpo negro es aquel objeto que absorbe toda la radiación del espectro electromagnético y que a su vez la emite totalmente. De esta manera su temperatura permanece en equilibrio.

En 1900 Max Planck propuso que los átomos que conforman las paredes del cuerpo negro se comportan como osciladores con frecuencia de oscilación ν y publicó una fórmula teórica [16] que describe la radiancia espectral³ emitida por un cuerpo negro a una temperatura determinada en escala absoluta:

$$B_{\nu}(T) = \frac{2h\nu^3}{c^2(e^{h\nu/KT-1})} \tag{1.8}$$

donde $h=6.626\times 10^{-34}$ J sec y $K=1.3806\times 10^{-23}$ J deg $^{-1}$ son las constantes de Planck y Boltzmann respectivamente.

Expresada en términos de la longitud de onda⁴:

$$B_{\lambda}(T) = \frac{2hc^3}{\lambda^5 (e^{hc/K\lambda T - 1})} \tag{1.9}$$

Podemos integrar la ecuación anterior a lo largo de todas las longitudes de onda:

$$B(T) = \int_0^\infty B_\lambda(T) \ d\lambda = \int_0^\infty \frac{2hc^3}{\lambda^5 (e^{hc/K\lambda T - 1})} \ d\lambda \tag{1.10}$$

de donde se obtiene que:

$$B(T) = \frac{2\pi^4 K^4}{15c^2 h^3} T^4 \tag{1.11}$$

La irradiancia en un hemisferio completo⁵ viene dada por:

$$I(T) = \int_{\Omega} B(T) cos(\theta) \ d\Omega = B(T) \int_{\Omega} cos(\theta) \ d\Omega = \pi B(T) \eqno(1.12)$$

donde $cos(\theta)d\Omega$ se refiere al área efectiva en la que incide la radiación. La B(T) sale de la integral puesto que la radiación de cuerpo negro es isotrópica. [16]

De esta manera la irradiancia es:

$$I(T) = \sigma T^4 \tag{1.13}$$

La ecuación anterior es la ley de Stefan-Boltzman, donde $\sigma=\frac{2\pi^5K^4}{15c^2h^3}$ es la constante de Stefan-Boltzmann.

 $^{^3}$ Las magnitudes son $Energía/(tiempo \cdot \acute{a}rea \cdot \acute{a}ngulo s\'{o}lido \cdot frecuencia)$

⁴Las magnitudes son $Energía/(tiempo \cdot \acute{a}rea \cdot \acute{a}ngulo s\'{o}lido \cdot distancia)$

⁵Como la integral es sobre un hemisferio el ángulo cenital varía de 0 a $\pi/2$

Se puede aproximar con alto nivel de precisión el espectro solar con el espectro de cuerpo negro como se aprecia en la figura 1.7.

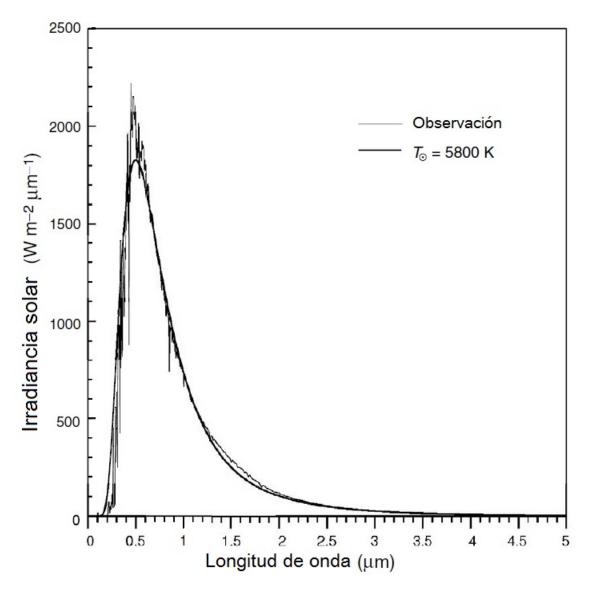


Figura 1.7: Espectro solar comparado con el espectro de cuerpo negro a 5800°K. [16]

Si se supone que la radiación emitida por el sol corresponde a la del cuerpo negro se puede calcular su temperatura de acuerdo a la Ley de Stefan-Boltzmann y a la ecuación 1.5.

$$T^4 = F/\sigma = I_{cs} \left(\frac{r_0}{r_s}\right)^2 \frac{1}{\sigma} \tag{1.14}$$

donde r_0 es la distancia promedio Tierra-Sol, r_s es el radio solar y I_{cs} es la constante solar medida. También se puede obtener el valor de esta temperatura con el método de mínimos cuadrados.

1.5. La atmósfera terrestre

La radiación Solar incide en la atmósfera aportando luz y calor, generando con esto, la energía necesaria para que se realicen los ciclos del carbono y del agua y dando así, origen al resto de formas de energía natural. Es decir, toda la actividad atmosférica tiene como fuente energética al Sol. [28]

Es de suma importancia tener conocimiento de la composición y estructura de la atmósfera para poder establecer las causas de la atenuación de la radiación solar en su paso a través de ella. La figura 1.8 muestra las capas de la atmósfera.

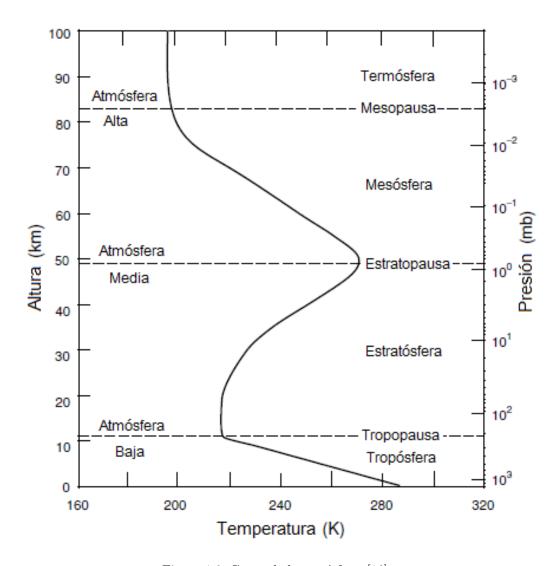


Figura 1.8: Capas de la atmósfera. [16]

En la figura 1.8 se puede ver el cambio de temperatura en las distintas capas. En la tropósfera decrece de 288°K a 220°K debido al transporte convectivo de energía mientras que en la estratósfera se mantiene constante 20 km para luego ascender nuevamente hasta 270°K. La temperatura en la mesósfera vuelve a decrecer en una altura de 50 a 85 km hasta que por encima de la mesopausa la temperatura asciende por muchos kilómetros hasta 2000°K. [16]

La tabla 1.1 muestra los principales gases atmosféricos que permanecen en una proporción, más o menos constante.

Componente	Porcentaje (%)
Nitrógeno (N ₂)	78.084
Oxígeno (O_2)	20.948
Argón (Ar)	0.934
Vapor de agua (H ₂ O)	0.04
Dióxido de Carbono (CO ₂)	0.036
Neón (Ne)	18.18×10^{-4}
Ozono (O ₃)	12×10^{-4}

Tabla 1.1: Composición de la atmósfera. El N2, el O2 y el Ar constituyen un 99.96 % de la atmósfera. [16]

Sin embargo, existen otros gases cuyo porcentaje depende mucho de la latitud, de la temporada del año, la orografía, los ciclos naturales y la vida del ser humano. Tal es el caso del vapor de agua H_2O y del ozono O_3 , los cuales son muy importantes en el proceso de atenuación de la radiación como se verá en las siguientes secciones. Todo el vapor de agua, nubes y precipitación se encuentra en la tropósfera mientras que el ozono se localiza en la estratósfera así como delgadas capas de aerosoles.

1.6. Atenuación de la Radiación Solar

La radiación al incidir en la atmósfera sufre pérdidas de energía debido a absorción y difusión que sufre la radiación por parte de las moléculas de la atmósfera y los aerosoles.

1.6.1. Absorción

Una molécula puede absorber un fotón de energía $h\nu$. Cuando se da la absorción pueden suceder 3 fenómenos. La molécula puede alcanzar un estado excitado, en el cual puede vibrar o rotar. Si el fotón es suficientemente energético, puede remover al electrón de la última capa de la molécula, donde la energía necesaria para llevar a cabo este proceso (si la molécula se encuentra en su estado base) se llama potencial de ionización. Por último la molécula puede disociarse, es decir, los átomos que constituyen la molécula se pueden separar. La energía necesaria se llama potencial de disociación.

Es importante definir que una banda de absorción es un rango de longitudes de onda, frecuencias o energía en el que la absorción es importante en la transición de estados moleculares.

El proceso de absorción de radiación en la atmósfera en la región UV es particularmente importante, pues debido a esto se llevan a cabo varios procesos fotoquímicos en la parte alta y media de la atmósfera. Las bandas de absorción del N_2 en el ultravioleta van de 145 a 112 nm, y se conocen como bandas de Lyman-Birge-Hopfiel. También se observa disociación e ionización del N_2 en longitudes de onda menores a 80 nm y de 100 a 85 su espectro de absorción tiene varias zonas picudas o máximos de absorción. Aún cuando el N_2 es la molécula más abundante en la atmósfera, el porcentaje de absorción por parte de la misma no es muy significativo. Las principales moléculas que absorben radiación UV son el oxígeno molecular y el ozono como se puede ver en la tabla 1.2.

Longitud de Onda (nm)	Molécula que absorbe	Región atmosférica
100 - 175	${\rm O_2}$ Shumann-Runge continuum ${\rm O_2}$ 1216 línea Lymann α	termósfera/mesósfera
175 - 200	O ₂ bandas Shumann-Runge	mesósfera
200 - 242	${\rm O_2~Herzberg~continuum,~O_3~banda~de}$ Hartley	estratósfera
242 - 310	O_3 banda Hartley, formación $O(^1D)$	estratósfera
310 - 400	O_3 bandas de Huggins; formación $O(^1D)$	estratósfera/tropósfera
400 - 850	O_3 bandas de Chappuis	tropósfera

Tabla 1.2: Regiones de absorción espectral importantes para procesos fotoquímicos. [16]

En la región visible e infrarroja el O_2 tiene bandas rojas e infrarrojas respectivamente que producen transiciones vibracionales y rotacionales. Sin embargo, dichas bandas como veremos más adelante, comparadas con la difusión de Rayleigh son débiles.

Por su parte, el vapor de agua tiene varias bandas de absorción que sí son importantes. Las nubes cubren regularmente más del 50 % del cielo. Existen varios isótopos de la molécula de las cuales podemos destacar HH 16 O, HH 18 O, HD 16 O y HD 18 O. Estas moléculas tienen bandas que absorben una cantidad importante de flujo solar en el infrarrojo cercano extendiéndose hasta las $6.25\mu m$ que es donde está centrada la banda ν_2 que es importante en transferencia térmica radiactiva infrarroja y aplicaciones de sensores. También tiene bandas en la región visible cuya contribución a la absorción es considerablemente menor.

La molécula del CO_2 tiene una banda centrada en $2.7\mu m$ que se traslapa con la banda $2.7\mu m$ del H_2 del agua contribuyendo a la absorción de flujo solar en la parte baja de la estratósfera. Sin embargo en esa misma capa el CO_2 emite radiación infrarroja. El resto de las moléculas tienen una contribución despreciable en la absorción.

1.6.2. Difusión

La difusión o esparcimiento es el fenómeno de la desviación de la trayectoria original de la radiación debida a la colisión con partículas. Se clasifica en dos tipos dependiendo del tamaño de las partículas que difunden la luz: la difusión de Rayleigh y la difusión de Mie. Es muy común referirse a ellas como dispersión de Rayleigh y dispersión de Mie, sin embargo, la dispersión de la luz es el fenómeno en el cual la luz blanca se separa en sus distintos colores dependiendo de su longitud de onda al atravesar algún medio material. Por tanto, es preferible evitar el término dispersión en el sentido de colisiones de fotones con partículas para evitar confusiones. Sin embargo, también podemos considerar a la dispersión de la luz como un tipo de difusión de la luz, pues ésta se desvía de su trayectoria original debido a la colisión con el objeto que la dispersa.

Difusión de Rayleigh

Se puede decir que la descripción más simple de la difusión de la luz es la de Rayleigh. Ésta se refiere al esparcimiento que sufre la radiación debido a las partículas cuyo radio es mucho menor que la longitud de onda incidente, es decir, cuando $2\pi a/\lambda \ll 1$ donde a es el radio de la partícula. Por ende, la difusión de Rayleigh se refiere a aquella propiciada por moléculas.

La difusión de Rayleigh [16] establece que:

$$I = \frac{I_0}{r^2} \alpha^2 \left(\frac{2\pi}{\lambda}\right)^4 \frac{1 + \cos^2(\Theta)}{2} \tag{1.15}$$

donde I es la intensidad de la luz no polarizada dispersada, I_0 es la intensidad incidente, r es la distancia de la partícula al observador, α es la polarizabilidad⁶, λ la longitud de onda de la radiación incidente y Θ es el ángulo de dispersión. Note la relación de $I \sim 1/\lambda^4$ de aquí que la intensidad de dispersión en el azul sea mayor que la del resto y por tanto el cielo se vea azul. Los efectos de la dispersión de Rayleigh en el espectro solar se aprecian en la figura 1.9.

Esta fórmula considera a las moléculas como isotrópicas. En la realidad las moléculas son anisotrópicas lo cual reduce el grado de polarización lineal. Por otro lado sólo considera una colisión.

Difusión de Lorenz-Mie

La difusión de Lorenz-Mie se aplica a objetos de mayor volumen. Es una solución de las ecuaciones de Maxwell que describe la dispersión de una onda electromagnética plana por una esfera homogénea, es una serie infinita de armónicos esféricos en forma vectorial. Esta descripción se puede ampliar a la difusión de partículas con diversas geometrías como cristales de hielo o aerosoles. Se puede mostrar [16] que la intensidad en función de la dirección es:

$$I(\Theta) = I_0 \left(\frac{\sigma_s}{r^2}\right) \frac{P(\Theta)}{4\pi} \tag{1.16}$$

donde σ_s es la sección eficaz de la dispersión, σ_s/r^2 es el ángulo sólido efectivo y P se refiere a la función de fase normalizada. La solución de Lorenz y Mie está dada por:

$$\frac{\sigma_s}{\pi a^2} = c_1 x^4 (1 + c_2 x^2 + c_3 x^4 + \dots)$$
 (1.17)

Cabe mencionar que hace falta tomar en cuenta que la superficie terrestre también refleja la luz que incide en ella y por ende los procesos de dispersión aumentan.

 $^{^6}$ Es la tendencia de una partícula a moverse de su posición original debida al campo eléctrico, viene de la relación $\mathbf{p}=\alpha\mathbf{E}$

Podemos resumir las principales atenuaciones de la radiación solar en la figura 1.9.

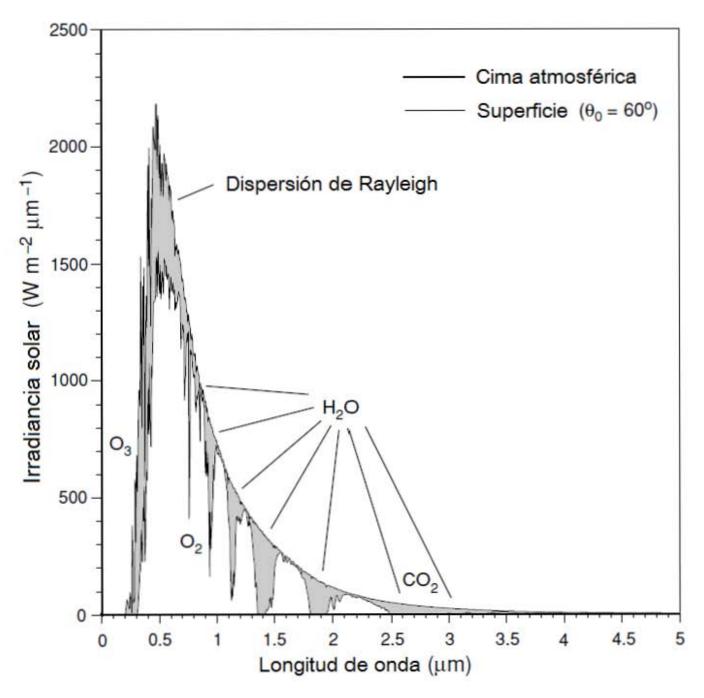


Figura 1.9: Comparación del espectro solar fuera de la atmósfera y en la superficie. Esta imagen resume los procesos de atenuación de la radiación solar debidos a la absorción de la radiación por parte del O_3 , O_2 , los isótopos del vapor de agua y el $CO_2[16]$

1.7. Instrumentos de medición

La radiación incidente en la superficie proviene ya sea directamente del sol o después de dispersarse en la atmósfera. La primera se llama **radiación directa** mientras que la segunda se llama **radiación difusa**. La suma de la radiación directa y difusa se llama **radiación global** (figura 1.10). Existen instrumentos específicos para medir los distintos tipos de radiación.

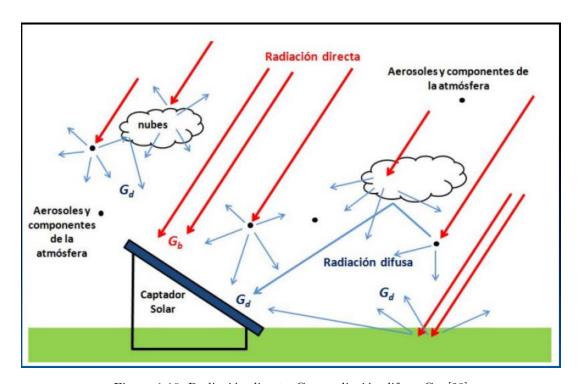


Figura 1.10: Radiación directa G_b y radiación difusa G_d . [23]

1.7.1. Piranómetro

Es el instrumento para medir la radiación solar global. Consiste de un sensor protegido por un domo de vidrio puesto en una base que disipa calor. La estructura de un piranómetro se muestra en la figura 1.11.

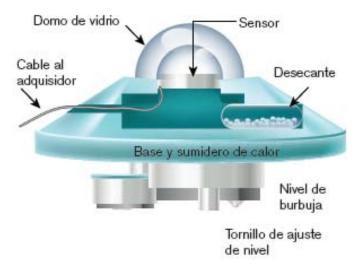


Figura 1.11: Esquema de un piranómetro. [23]

Prácticamente todos los sensores de los piranómetros consisten en una termopila. Una termopila utiliza el efecto Seebeck para su funcionamiento. Consideremos un termopar que consiste de dos metales distintos unidos en sus extremos y cada una de esas uniones están a distinta temperatura. Debido a esta diferencia de temperatura se genera una diferencia de potencial entre las uniones y por lo tanto una corriente entre los metales. Éste es el efecto Seebeck. Una termopila es un conjunto de termopares conectados en serie. Ver figura 1.12.

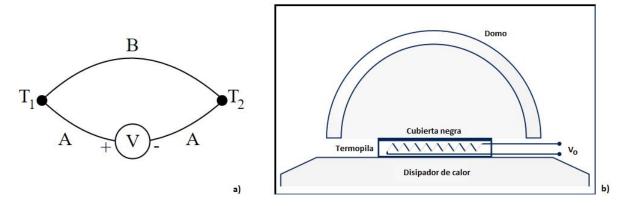


Figura 1.12: a) Circuito que muestra el efecto Seebeck. b)Termopila protegida por un domo de vidrio en un piranómetro. La cubierta negra es la unión caliente mientras que el disipador de calor es la unión fría. [14]

En los últimos años los piranómetros de mayor rendimiento utilizan un elemento Peltier. Este consiste en sustituir los metales de la termopila por semiconductores. Cuando la radiación incide en ellos generan una corriente la cual después se transforma en calor (efecto Peltier) transfiriéndose éste a la capa metálica superior y así aumentando la respuesta del piranómetro. Ver figura 1.13.

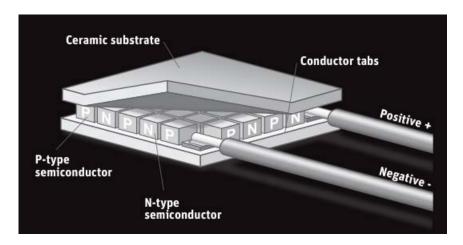


Figura 1.13: Esquema del sensor de un piranómetro con elemento Peltier. La capa metálica superior cubierta de negro absorbe prácticamente todo el espectro solar y se calienta. Ésta se encuentra aislada eléctricamente de la termopila que se encuentra por debajo más no térmicamente. Lo mismo sucede con la capa metálica fría que se encuentra en el inferior. La diferencia de temperaturas de las capas metálicas produce una corriente proporcional a la misma. [14]

El rango espectral de un piranómetro varía de modelo a modelo pero puede alcanzar un rango de 285 a 2800nm como el modelo CMP11 de Kipp&Zonen. La respuesta espectral de un piranómetro con un sensor de termopila comparada con un sensor de semiconductor se muestra en la figura 1.14.

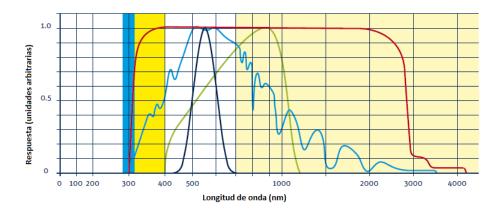


Figura 1.14: Respuesta espectral de los sensores de un piranómetro. La región azul corresponde a la radiación UVB, la amarilla a la UVA, la blanca a la visible, el color carne al infrarrojo cercano. La línea azul corresponde a la radiación solar incidente en la Tierra a nivel de superficie, la negra a la sensibilidad del ojo humano, la verde a la sensibilidad de una celda de un semiconductor y la roja a la respuesta de una termopila. [15]

Un piranómetro también puede medir la radiación difusa si se tapa la zona central donde los rayos provienen directamente del Sol.

1.7.2. Pirheliómetro

Este instrumento mide la radiación solar directa, figura 1.15. El sensor se orienta siempre perpendicularmente a la dirección de los rayos del Sol mediante un sistema de seguimiento.

Figura 1.15: Pirheliómetro de tubo.

El sensor se coloca dentro de un cañón de aproximadamente 30 cm de largo. En el cañón se colocan una serie de diafragmas para que sólo entre radiación con un ángulo de 5 grados y así medir sólamente la radiación del disco solar y una pequeña corona circular del cielo. Ver figura 1.16.

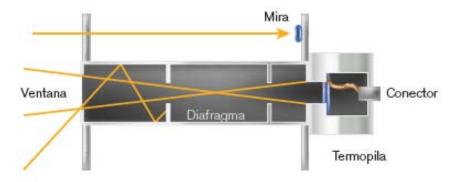


Figura 1.16: Esquema del tubo de un pirheliómetro. [23]

El mecanismo de seguimiento hacia el sol es un dispositivo auxiliar y se conoce como montaje ecuatorial.

Figura 1.17: Montaje ecuatorial de un pirheliómetro.

1.8. Modelos de Evaluación

En los últimos años se ha visto un desarrollo importante en la tecnología solar. Lo anterior hace que el conocimiento del potencial del recurso solar sea fundamental. Por otro lado resulta muy difícil a la vez que muy costoso tener una red de medición con la precisión requerida. Es por tanto que los modelos de evaluación solar son una buena opción para tener conocimiento de dicho recurso.

Clásicamente la radiación se estima usando el valor de alguna estación cercana (distancia menor a 10 km) siempre y cuando el terreno sea llano. También se pueden interpolar valores siempre y cuando la red de estaciones tenga una densidad considerable y dependiendo de las características del terreno, la distancia entre una estación a otra está entre los 20 y los 50 km. Si en el modelo de interpolación se toman en cuenta características topográficas del terreno la distancia entre estaciones puede llegar hasta los 100 km.[20] Hoy en día, la metodología más extendida e internacionalmente reconocida para estimar la radiación solar es el tratamiento de imágenes de satélites geoestacionarios. Esta metodología es la que recomienda la Organización Meteorológica Mundial [21].

Un satélite es un cuerpo que orbita alrededor de otro. Existen satélites naturales y artificiales. Los artificiales podemos dividirlos en satélites de observación o meteorológicos y satélites de comunicaciones. Los satélites meteorológicos están dotados de sensores y se dedican a la toma de datos y al envío de éstos a la Tierra. Existen 2 tipos de satélites meteorológicos, los geoestacionarios y los polares.

• Satélites Polares

Son aquellos que tienen un movimiento de traslación alrededor de la Tierra y por tanto no mantienen fijo su campo de visión. Su órbita pasa por encima (o muy cerca) de los polos. Ofrecen mejor resolución que los geoestacionarios debido a que su órbita se encuentra a 850 km.

• Satélites Geoestacionarios

A diferencia de los polares los geoestacionarios se mueven con el mismo movimiento de rotación y traslación de la Tierra, por lo cual siempre ven la misma región de la Tierra. Se encuentran en la órbita geoestacionaria a altitudes de 35 880 km. Ésta es el lugar geométrico de los puntos donde la fuerzas de atracción gravitacional se anulan con la fuerza centrífuga. Se distribuyen varios satélites geoestacionarios a lo largo de esta órbita de manera que con el campo de visión que tiene cada satélite de la Tierra se cubra la totalidad del área terrestre, figura 1.18.

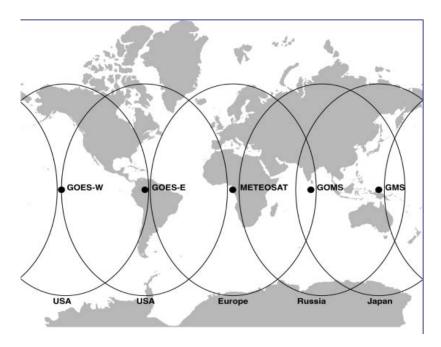


Figura 1.18: Principales satélites geoestacionarios alrededor del mundo.

El conjunto de satélites que en su campo de visión tienen al continente americano son los satélites GOES (Geostarionary Operational Environmental Satellite). Los satélites que aún se encuentran en operación son el GOES 12, GOES 13, GOES 14 y GOES 15 y son operados por E.E.U.U. Estos satélites toman imágenes de su campo de visión cada 30 minutos.

Con las imágenes generadas por los satélites es posible desarrollar modelos para la estimación de la radiación solar. Éstos modelos pueden clasificarse en 2 tipos:

Modelos físicos

Están basados en consideraciones físicas que permiten que los intercambios de energía radiante que tienen lugar dentro del sistema Tierra-atmósfera se representen explícitamente. Consideran principalmente los coeficientes de dispersión y absorción atmosféricos así como condiciones orográficas del terreno. Estos modelos no requieren de mediciones solares a nivel de superficie pero precisan información meteorológica u orográfica complementaria.

Modelos estadísticos

Están basados en una o más relaciones entre las medidas piranométricas de la radiación solar y el valor de la cuenta digital, es decir, la intensidad por pixel obtenida en la imagen del satélite. La principal ventaja de estos modelos es su simplicidad. Se usa el valor de la cuenta digital del satélite directamente, es decir, no se requiere hacer la conversión a irradiancia solar, además de que no precisan de información meteorológica complementaria. La desventaja, sin embargo, es que requieren mediciones de radiación solar a nivel de superficie. No hay garantía de que los coeficientes de la regresión tengan los mismos valores en otras áreas. [21]

1.8.1. El Modelo *Heliosat*

En 1986, Cano et al[5] elaboraron un método estadístico para el cálculo de la radiación solar global basado en la relación lineal que existe entre el índice de nubosidad y el índice de transparencia. Este método usa imágenes de satélites meteorológicos geoestacionarios, así como información solarimétrica a nivel de superficie, como sucede con los métodos estadísticos.

El proceso de este método comienza con la elaboración de un mapa de referencia de albedo de cielo claro. El albedo es la razón de la radiación reflejada en una superficie con respecto a la radiación que incide. Entendemos por cielo claro un cielo libre de nubes. El mapa de referencia se construye a partir de las imágenes del satélite, (en el caso del artículo de Cano el Meteosat), tomando el número de cuentas digitales para cada punto geográfico (i,j), el cual se actualiza diariamente.

De la comparación del mapa de referencia (cielo claro) con las imágenes de satélite se obtiene el índice de nubosidad n(i, j, f, h) para el punto (i, j), el cual es la razón entre el número de cuentas digitales del punto (i, j) en la fecha f y hora h obtenidas de la imagen de satélite y el número de cuentas digitales obtenidas para el punto (i, j) en el mapa de referencia, es decir, el mapa de cielo claro. Y con ellos se elabora el mapa de índices de nubosidad.

El índice de transparencia (global transmission factor) se define como:

$$K_T(i,j) = I_{hs}(i,j)/I_{he}(i,j)$$
 (1.18)

donde $I_{hs}(i,j)$ es la irradiancia horizontal global a nivel de superficie y $I_{he}(i,j)$ es la irradiancia horizontal global incidente en la atmósfera o irradiancia horizontal extraterrestre. Se puede ver que este valor va de 0 a 1 en el caso de que la atmósfera absorba o disperse toda la radiación o sea completamente transparente respectivamente. Sustituyendo el valor para $I_{he}(i,j)$ obtenido en la ecuación 1.7, se obtiene:

$$K_T(i,j) = \frac{I_{hs}(i,j)}{I_{cs} \epsilon \cos(\theta)}$$
(1.19)

Lo que se plantea en este método es que existe una relación lineal entre el índice de nubosidad y el índice de transparencia:

$$K_T = a(i, j)n(i, j) + b(i, j)$$
 (1.20)

donde n(i,j) corresponde al índice de nubosidad.

Si se tienen un conjunto de K_T correspondientes a un determinado periodo para un punto determinado (i,j) se realiza una gráfica comparando los K_T con los índices de nubosidad y se procede a hacer el ajuste lineal, obteniendo así los coeficientes a(i,j) y b(i,j). Posteriormente, mediante alguna técnica de interpolación estadística se obtiene una gráfica en la cual la región a modelar se encuentra dividida en subregiones cada una de las cuales tiene asociada un par de coeficientes a y b. Es importante recalcar que para todo punto (i,j) se puede obtener un índice de nubosidad n(i,j) puesto que las imágenes de satélite abarcan toda la región.

De esta manera para cada punto (i, j) para el cual se quiera conocer el valor de la irradiancia a nivel de superficie, basta con sustituir en la ecuación 1.20 el valor de n(i, j) y a(i, j) y b(i, j) correspondientes a dicho punto y obtener así el índice de transparencia $K_T(i, j)$. De esta manera de acuerdo a la ecuación 1.18 la irradiancia a nivel de superficie es:

$$I_{hs}(i,j) = K_T(i,j) \cdot I_{he}(i,j)$$
 (1.21)

Hecho esto se procede a obtener los promedios horarios $G_h(i,j)$ y mensuales $G_m(i,j)$. La relación lineal entre el índice de nubosidad y el indice de transparencia no depende del mes del año mas sí de la hora del día [7].

Existen nuevas versiones del modelo *Heliosat*, a saber el *Heliosat-2*, *Heliosat-3*, *Heliosat-4*, así como el *Meteostat*, en los que en lugar de usar cuentas digitales usan radiancias calibradas, lo cual permite introducir modelos de procesos físicos. En ellos se prescinde de información solarimétrica a nivel de superficie reemplazándola con ciertos parámetros físicos como el índice de turbidez de Linke (*Heliosat-2*) y otros.

1.9. ITD E ITM 23

1.9. ITD e ITM

El *índice de transparencia diario* (ITD) se define como el promedio de los índices de transparencia para un determinado lugar (i, j) correspondientes a un mismo día, cuando el ángulo cenital $\theta < 90$. El *índice de transparencia mensual* (ITM) se define como el promedio de los ITD's correspondientes a un mismo mes.

En este trabajo se trabajó con datos de estaciones en un rango de 3 años. Por lo tanto para cada día del año se tenían 3 ITD's. La *media trienal* de los ITD's es justamente el promedio de cada uno de los 3 valores para cada día. Análogamente se tienen tres valores de ITM para cada mes. La media trienal de los ITM's es el promedio de cada uno de éstos 3 valores.

Para fines prácticos nos referiremos a estos valores simplemente como ITD e ITM en lugar de hablar de la media trienal del ITD y la media trienal del ITM.

Capítulo 2

Datos y métodos de agrupamiento

En este capítulo se describe primeramente la situación de las Estaciones de Monitoreo Automático (EMA's) del SMN de México, de las cuales se obtuvieron los datos de radiación solar. Se menciona el arículo [22] en el cual se seleccionaron las estaciones más adecuadas para el tratamiento de su información y los criterios de selección de dichas estaciones.

Después se aborda la regionalización de la República Mexicana obtenida en [3], en la cual se obtuvieron 6 distintas regiones con características físicas, orográficas y climatológicas similares. Se recuerda que la hipótesis de esta tesis es la existencia de una alta correlación entre los índices de transparencia de estaciones pertenecientes a una misma región de las mencionadas anteriormente.

Se definen los coeficientes de correlación de Pearson y Spearman, se menciona las características que deben tener los datos para poder calcularlos y que tengan sentido, lo que significa cada uno, así como el significado de obtener valores negativos. Con estos coeficientes se elaborará una primera clasificación de los ITM's

Finalmente se describe muy brevemente el análisis de cluster como un análisis de objetos multivariados que obtiene regiones con características similares, su clasificación y el método de Ward que será idoneo para realizar la segunda clasificación de los ITM's

2.1. Datos Solarimétricos en México

El Servicio Meteorológico Nacional de México (SMNM) es el organismo público encargado de proveer información meteorológica en nuestro país. Pertenece a la Comisión Nacional del Agua que a su vez pertenece a la Secretaría del Medio Ambiente y Recursos Naturales. Dicho organismo cuenta con una red de observación de superficie que actualmente cuenta con 276 estaciones meteorológicas de las cuales 87 pertenecen a las Estaciones Sinópticas Meteorológicas Automáticas (ESIMEs) y 189 a las Estaciones de Monitoreo Automático (EMAs). [25]

Una ESIME es un conjunto de dispositivos electrónicos que realizan mediciones de las variables meteorológicas de manera automática. Se encuentran ubicadas exclusivamente en los observatorios meteorológicos. Generan una base de datos y un mensaje sinóptico, es decir, un reporte generado simultáneamente en todos los observatorios meteorológicos cada tres horas.[25] Las variables que miden son:

- Velocidad del viento
- Dirección del viento
- Presión atmosférica
- Temperatura y humedad relativa
- Radiación solar
- Precipitación
- Temperatura a 10 cm de la superficie

Estas estaciones existen desde hace décadas sin embargo su funcionamiento es muy deficiente. La CONAGUA solicitó el apoyo y asistencia técnica de la OMM (Organización Meteorológica Mundial) para la realización de un diagnóstico del SMNM y diseño de un plan estratégico de desarrollo de lo cual se derivó el *Proyecto de Modernización del Servicio Meteorológico Nacional de México* en el cual se refieren a las ESIME's:

"En 1996 la red sinóptica de superficie del SMNM estaba constituida por 72 observatorios sinópticos de los que solamente estaban plenamente operativos 13 de ellos. A finales de 2003, la red se amplió hasta llegar a un total de 79 de los que solamente 31 cumplían regularmente su programa de observación. Esto era debido fundamentalmente a la falta de personal en la mayoría de de los observatorios unido a un bajo nivel de formación del personal existente, a los fallos en los sistemas de comunicaciones y a un mantenimiento y calibración de los equipos inadecuados. En la actualidad la red sinóptica de superficie la componen 79 observatorios distribuidos por todo el territorio nacional. No se tiene información sobre los criterios a partir de los cuales se realizó la selección de los emplazamientos de los observatorios, pero en un primer análisis su distribución no parece ajustarse muy adecuadamente a las recomendaciones de la OMM en cuanto las características climáticas del país, a la superficie de la que son representativos los observatorios y a la orografía de las diferentes regiones...

...Existe un grave problema de calibración de la instrumentación de los observatorios ya que no se cuenta con laboratorios de calibración ni existe un plan de calibración en el SMN. Los patrones de referencia no se calibran desde hace un elevado número de años (en algún caso del orden de 15 años)." [9]

Las EMA's surgen de un proyecto iniciado en 1988 para generar nueva información de manera automática, pues en ese entonces las ESIME's no funcionaban de manera automática. Las EMA's registran datos cada minuto pero elaboran promedios cada 10 min y envían la información cada hora o cada 3 horas. La concentración de la información de las estaciones de la red se realiza a través del satélite GOES.

Las EMA's miden los mismos parámetros que las ESIME's a excepción de la temperatura del suelo. Existen 2 tipos de estructuas:

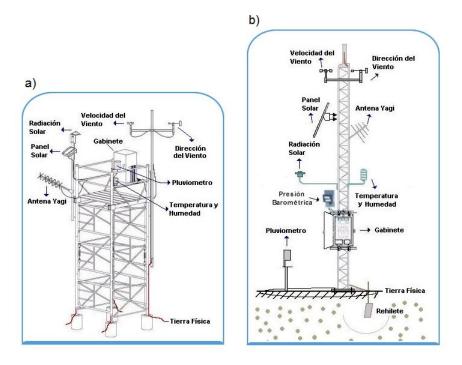


Figura 2.1: a) Estructura de tipo andamio. b) Estructura de torre central. [25]

En el artículo [22] (Riveros-Rosas D. et al) se realizó una validación de los datos de una base de datos de un total de 136 estaciones de monitoreo automático, de las cuales se tenían registros de datos en un periodo de al menos 3 años en un periodo de 1998 al 2011. Finalmente se obtuvo un total de 36 estaciones cuyos datos se consideraron como confiables en base a los siguientes criterios:

- comportamiento aceptable de valores de máximos y mínimos de acuerdo a la altitud de la estación, desechándose valores superiores a $1000~\rm W/m^2$ para altitudes bajas y de $1300~\rm W/m^2$ para altitudes superiores a los $1000~\rm msnm$.
- no se identificaron errores en el proceso de adquisición de datos.
- comportamiento aceptable de acuerdo a la temporada del año y a su ubicación geográfica
- no se encontraron sombras sistemáticas en los datos debidas a edificios o árboles.

La ubicación y las coordenadas geográficas de las 36 estaciones se muestran en la figura 2.2 y en la tabla 2.1 respectivamente.

No.	Nombre	Estado	Longitud	Latitud	Altitud
1	BAHÍA DE LOS ÁNGELES	Baja California	-113.560	28.896	10
2	MEXICALI	Baja California	-115.291	32.667	50
3	SAN QUINTÍN	Baja California	-115.937	30.532	32
4	CD. CONSTITUCIÓN	Baja California Sur	-111.663	25.010	28
5	SANTA ROSALÍA	Baja California Sur	-112.274	27.338	53
6	BAHÍA DE KINO	Sonora	-111.137	28.750	160
7	ALTAMIRA	Tamaulipas	-97.959	22.388	3
8	SAN LUIS RÍO COLORADO	Sonora	-114.798	32.424	39
9	VENUSTIANO CARRANZA	Coahuila	-100.617	27.519	264
10	PRESA EL CUCHILLO	Nuevo León	-99.321	25.733	134
11	MATAMOROS	Tamaulipas	-97.519	25.886	4
12	CIUDAD CUAUHTÉMOC	Chihuahua	-106.839	28.397	2100
13	CHINIPAS	Chihuahua	-108.536	27.393	431
14	MAGUARICHI	Chihuahua	-107.994	27.858	1663
15	URIQUE	Chihuahua	-107.917	27.216	577
16	CUATRO CIÉNEGAS	Coahuila	-102.038	26.990	725
17	SAN JUAN DE GUADALUPE	Durango	-102.774	24.631	1531
18	ÁLAMOS	Sonora	-108.938	27.022	409
19	NOGALES	Sonora	-110.914	31.298	1275
20	CAMPECHE	Campeche	-90.507	19.836	11
21	CD. DEL CARMEN	Campeche	-91.823	18.648	8
22	MONCLOVA	Campeche	-90.821	18.057	100
23	YOHALTUM	Campeche	-90.311	19.014	80
24	CHETUMAL	Quintana Roo	-88.328	18.501	14
25	CD. ALEMÁN	Veracruz	-96.098	18.189	107
26	DZILAM	Yucatán	-88.904	21.391	2
27	TLAPA DE COMONFORT	Guerrero	-98.563	17.549	1060
28	PRESA ALLENDE	Guanajuato	-100.825	20.848	1915
29	PACHUCA	Hidalgo	-98.714	20.097	2423
30	JOCOTEPEC	Jalisco	-103.416	20.283	1506
31	TIZAPÁN	Jalisco	-103.044	20.169	1503
32	ANGAMACUTIRO	Michoacán	-101.723	20.125	1730
33	PUERTO ÁNGEL	Oaxaca	-96.497	15.671	91
34	U.T. TECAMACHALCO	Puebla	-97.722	18.866	2047
35	ZACATECAS	Zacatecas	-102.506	22.747	2270
36	TEZONTLE	Distrito Federal	-99.100	19.385	2358

Tabla 2.1: Coordenadas geográficas de las 36 estaciones seleccionadas en el artículo: "Analysis of a solarimetric database for Mexico and comparison with the CSR model." [22]

Figura 2.2: Mapa de las 36 estaciones con datos más confiables seleccionadas en: "Analysis of a solarimetric database for Mexico and comparison with the CSR model." [22]

2.2. Regionalización con ISODATA

ISODATA (Iterative Self-Organizing Data Analysis Technique) es un método de clasificación estadístico multivariado propuesto por Geoffrey H. Ball y David J. Hall en 1965. [2]. En el 2004 William Hargrove lo aplicó en un ambiente de sistemas de información geográfica que se orienta a definir clases comunes o similares presentes en un conjunto de datos (clusters) de diferentes características.

Las entradas al modelo son una serie de mapas de los diferentes elementos y factores físico-geográficos. El método se basa en la correlación múltiple de los diferentes elementos a partir de los cuales se encuentran grupos estadísticamente similares. [2]

En [3] elaborado por la sección de Radiación Solar del Instituto de Geofísica, se lleva a cabo una regionalización de la República Mexicana usando este método, obteniéndose así 6 zonas las cuales se muestran en la figura 2.3.

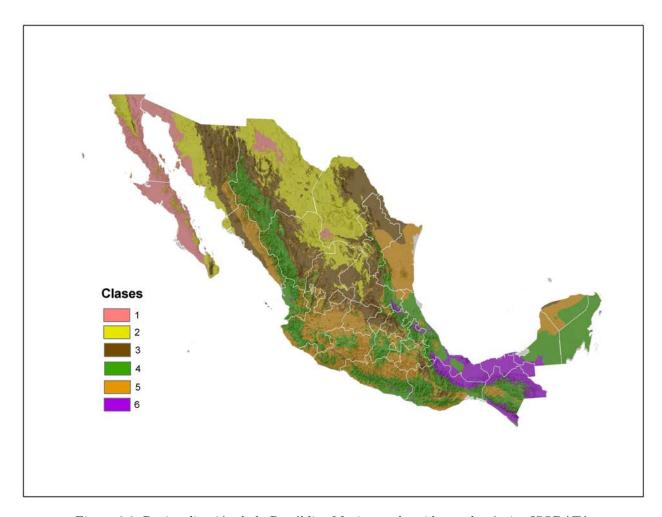


Figura 2.3: Regionalización de la República Mexicana obtenida con la técnica ISODATA

Sin embargo, la región 4 se dividió en 2 separándose la zona sureste de dicha región en región 4-Sureste y la otra parte será el restante de la región original. Análogamente sucedió con la región 5 separándose en 3 zonas: Región 5-Norte, Región 5-Centro-Pacífico y región 5-Sureste.

Finalmente del conjunto de datos solarimétricos de las 36 estaciones mencionadas en la sección anterior se elaboró un análisis por cada una de las distintas regiones de los valores de irradiancia global diaria, obteniéndose según se puede verificar [3], una alta correlación de las estaciones correspondientes a una misma región.

Cabe destacar que de las 36 estaciones se descartaron Ciudad Alemán y Tezontle. La primera porque era la única estación de la región 6 y no se podía correlacionar con ninguna otra y Tezontle debido a que ésta se encontraba en el D.F. y debido a la contaminación de la atmósfera resulta poco confiable hacer una correlación con dicha estación.

2.3. Coeficientes de Correlación

Dadas un par de variables, una independiente x y una dependiente y, las cuales se deben relacionar de manera lineal (de acuerdo a alguna teoría científica o a cierta relación de causalidad) se puede encontrar la recta que más se ajusta al conjunto de puntos mediante el método de mínimos cuadrados. Para medir la proporción de la variación total en y se define el coeficiente de determinación r^2 de la siguiente manera: [11]

$$r^{2} = \frac{\left(\sum (x_{i} - \overline{x})(y_{i} - \overline{y})\right)^{2}}{\sum (x_{i} - \overline{x})^{2} \sum (y_{i} - \overline{y})^{2}}$$

$$(2.1)$$

2.3.1. Correlación de Pearson

Sin embargo, en el análisis de correlación, el objetivo principal es medir el grado de asociación entre dos variables independientes. Para dicho efecto se define el coeficiente de correlación r, [11] conocido también como el coeficiente de correlación de Pearson pues fue Karl Pearson (1857-1936) quien lo introdujo. Es una medida de la linealidad de dos variables independientes, se define como $r = \pm \sqrt{r^2}$, es decir:

$$r = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}$$
(2.2)

Se puede probar¹ que:

$$r = \frac{\sum x_i y_i - n\overline{x} \,\overline{y}}{\sqrt{(\sum x_i^2 - n\overline{x}^2)(\sum y_i^2 - n\overline{y}^2)}}$$
(2.3)

El coeficiene de correlación de Pearson está muy relacionado matemáticamente con r^2 pero conceptualmente es muy diferente pues el coeficiente de determinación mide la variación entre una variable dependiente y otra independiente, mientras que el coeficiente de correlación de Pearson mide el grado de asociación entre variables independientes. Podemos destacar lo siguiente:

- 1. r puede ser < 0, en cuyo caso significa que si x crece entonces y decrece y si x decrece entonces y crece.
- 2. r puede ser > 0 donde si x crece entonces y también y viceversa.
- 3. $-1 \le r \le 1$ donde si r=1 entonces tenemos una correlación total positiva, si r=-1 tenemos una correlación total negativa y si r=0 entonces las variables x y y no están relacionadas en absoluto.
- 4. Si la relación entre x y y no es lineal, el coeficiente de correlación de Pearson no tiene sentido.

¹viendo que los numeradores y denominadores de las ecuaciones 2.2 y 2.3 coinciden [19]

2.3.2. Correlación de Spearman

Por otro lado, el coeficiente de correlación de Spearman se define como: [11]

$$\rho = \frac{6\sum d_i^2}{n(n^2 - 1)} \tag{2.4}$$

donde $d_i = r(x_i) - r(y_i)$, es decir, la diferencia de los rangos. El rango es la numeración las variables x_i de menor a mayor, a saber, si x_3 es el quinto valor más pequeño de las x_i , entonces $r(x_3) = 5$.

Del coeficiente de correlación de Spearman podemos notar lo siguiente:

- 1. Para calcular ρ no se hace uso de los valores x_i ni y_i , sino únicamente de los rangos que son un indicador del crecimiento o decrecimiento de las variables. Es por eso que el coeficiente de correlación de Spearman mide principalmente el crecimiento o decrecimiento del conjunto de datos.
- 2. Igual que el coeficiente de Pearson, $-1 \le \rho \le 1$ donde -1 significa que el conjunto de datos se puede modelar perfectamente con una función monótona decreciente, 1 significa que el conjunto de datos se puede modelar perfectamente con una función monótona creciente.
- 3. Por lo anterior no es necesario que la relación entre las variables x y y sea lineal para que ρ sea 1 o -1, simplemente basa que los puntos se ajusten a una línea que sea la gráfica de una función monótona creciente o decreciente respectivamente.

En ocasiones resulta útil calcular ambos coeficientes de correlación r y ρ puesto que nos dan información estadística diferente acerca del conjunto de datos. Puesto que una $\rho \approx 1$ pero una $r \ll 1$ nos indica que si una variable crece la otra también crece, mas el crecimiento no es de manera lineal.

2.4. Análisis de Cluster

El análisis de Cluster es un conjunto de herramientas para construir grupos (clusters) con propiedades homogéneas de objetos multivariados que pertenecen a muestras heterogéneas. Dados n objetos con m variables, se tiene una matriz $\chi_{n\times m}$, donde los n renglones son los n objetos con sus m variables, como nuestra información de entrada para el análisis. [12]

2.4.1. Distancias

Para crear los grupos se necesita calcular la proximidad o la distancia entre sus objetos. Existen diversas formas de calcular la distancia entre ellos, la más común es usar las L_r -normas:

$$d_{ij} = ||x_i - x_j||_r = \{\sum_k |x_{ik} - x_{jk}|^r\}^{1/r}$$
(2.5)

donde x_{ik} es la k-ésima variable del objeto i. Si r=2 entonces la distancia es la euclidiana. Las L_r -normas se usan cuando las variables están en la misma escala, si no lo están, se tiene que realizar una estandarización con una matriz A del ajuste de la métrica:

$$d_{ij}^2 = ||x_i - x_j||_A = (x_i - x_j)^T A (x_i - x_j)$$
(2.6)

Dependiendo de la naturaleza de los datos es la matriz métrica A que se usará para calcular la distancia. Una matriz métrica usual es aquella que tiene la varianza de las k-ésimas entradas en las diagonales y ceros fuera de ella. Con las distancias entre los n objetos se crea la matriz de distancias:

$$D_{n \times n} = \begin{pmatrix} d_{11} & d_{12} & \cdots & d_{1n} \\ d_{21} & \ddots & & & \\ \vdots & & & & \\ d_{n1} & d_{n2} & \cdots & d_{nn} \end{pmatrix}$$
(2.7)

donde d_{ij} es la distancia del objeto i al objeto j, por lo tanto, dicha matriz es simétrica. En ocasiones en lugar de calcular la distancia se calcula la similitud entre los objetos. Los objetos dentro de un mismo grupo o cluster tendrán una similitud alta entre ellos mientras que tendrán una disimilitud alta con objetos de otros clusters.

2.4.2. Algoritmos

Los algoritmos para realizar el análisis de cluster se dividen en 2: jerárquicos y los de partición. Dentro de los jerárquicos se tienen dos tipos. El primer tipo es el aglomerativo, es aquel que comienza con la máxima partición posible (es decir, comienza con tantos grupos como objetos se quieren clasificar) y de ahí empieza a unir grupos. El segundo tipo de algoritmo jerárquico es el divisor y hace lo contrario, empieza con un solo grupo en el que se incluyen todos los objetos y de ahí se va dividiendo. Los algoritmos no jerárquicos realizan una partición de los objetos en grupos y de ahí se van moviendo los objetos de un grupo a otro hasta encontrar grupos con propiedades homogéneas.[12]

La diferencia entre los algoritmos jerárquicos o de partición es que los algoritmos de participación pueden intercambiar en cualquier momento sus elementos mientras que en los jerárquicos, si un grupo ya se creó ya no se puede dividir, o si ya se unió, ya no se puede volver a dividir.

Los algoritmos jerárquicos aglomerativos operan de la siguiente manera:

- 1. Se crean tantos clusters como objetos hay en la muestra.
- 2. Se obtienen las distancias entre los n clusters.
- 3. Se encuentra el par de objetos P y Q cuya distancia entre ellos es menor que cualquier otra distancia entre los demás objetos y se forma un nuevo cluster con dichos objetos A = P, Q.
- 4. Se calculan nuevamente las distancias entre los n-1 clusters.
- 5. Nuevamente se encuentra el par de clusters tales que su distancia es menor a todas las demás y dicho par se une para formar un nuevo cluster.

6. Se aplica este proceso hasta tener un solo cluster con todos los objetos en él.

Sin embargo este proceso se puede detener en cualquier momento para obtener el número de clusters deseado. Para calcular la distancia entre un grupo P y otro Q + R se utiliza la siguiente relación:

$$d(P,Q+R) = \delta_1 d(P,Q) + \delta_2 d(P,R) + \delta_3 d(Q,R) + \delta_4 |d(P,Q) - d(P,R)|$$
(2.8)

donde las δ 's son factores de peso que dependen del método que se esté usando.

Los métodos aglomerativos tienen una representación gráfica de este proceso llamado dendo-grama este gráfico consiste en un enramado donde cada rama corresponde a algún cluster, además el eje x corresponde a la distancia entre sus elementos, mientras que el eje y corresponde al paso que se va efectuando en el proceso del análisis. Ver figura 2.4

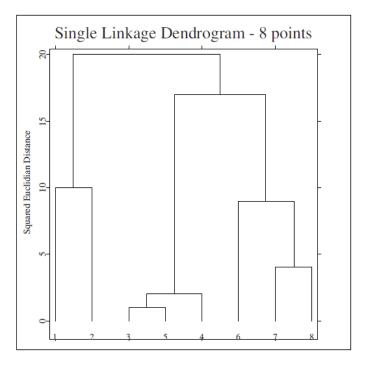


Figura 2.4: Ejemplo de un dendograma de una muestra de 8 elementos.

2.4.3. El método de Ward

Dentro de los métodos aglomerativos el método de Ward es aquel en el que las variaciones de los objetos dentro de cada cluster son las menores posibles y por tanto, este método arroja los grupos más homogéneos posibles. Este método es el que se usó en este trabajo. A continuación se muestran las fórmulas y factores que utiliza este método. [12]

La distancia que utiliza éste método es:

$$d(P,Q) = \frac{n_P n_Q}{n_P + n_Q} d^2(P,Q)$$
 (2.9)

Se define la inercia de un grupo R como en la ecuación 2.10

$$I_R = \frac{1}{n_R} \sum_{i=1}^{n_R} d^2(x_i, \bar{x}_R)$$
 (2.10)

donde n_R es el número de elementos en el grupo R y \bar{x}_R es el valor promedio de sus elementos. La inercia de un grupo es la medida de heterogeneidad existente dentro de él. Se puede probar que la distancia definida en la ecuación 2.9 es el incremento de inercia cuando los grupos P y Q se unen.

Los factores de peso que se introducen en la ecuación 2.8 para el método de Ward son:

$$\delta_1 = \frac{n_P n_Q}{n_P + n_Q + n_R} \ \delta_2 = \frac{n_P n_R}{n_P + n_Q + n_R} \ \delta_3 = -\frac{n_P}{n_P + n_Q + n_R} \ \delta_4 = 0 \tag{2.11}$$

Capítulo 3

Metodología y Resultados

Este capítulo menciona y describe cada uno de los programas que se utilizaron para el análisis de datos. Se describe la metodología empleada para la obtención de ITD's e ITM's. Se muestra en la gráfica correspondiente la clasificación de las estaciones de acuerdo a la regionalización obtenida con ISODATA así como a las clasificaciones elaboradas con los coeficientes de correlación y con el análisis de cluster. Se muestran las gráficas de las distintas regiones con los ITD's comentando el comportamiento de las estaciones dentro de cada región. Finalmente se muestran las tablas con los valores promedio y las desviaciones estándar de dichos índices.

3.1. Programas utilizados

Se elaboró la programación para el procesamiento de datos en el entorno Matlab (R2010b y R2015a). Los programas utilizados para la elaboración de esta tesis fueron los siguientes:

- ajustehora.m Cambia la hora y fecha de todos los datos de un archivo de la hora universal a la hora local.
- trans36v3.m Obtiene los índices de transparencia de todos los datos del archivo y los promedia y exporta a un archivo .csv. El sufijo v3 se debe a que este programa es una versión mejorada del programa trans36.m que a su vez es una versión diferente de trans36v2.m. Obtiene la media trienal del índice de transparencia diario y mensual.
- Busca_ema.m Consiste en una base de datos de todas las EMA's que existen (o existieron) así como de las coordenadas geográficas en las que se encuentra (latitud, longitud, altitud), el estado al que pertenecen, así como la fecha de inicio de operación y la longitud local o huso horario de dicha estación. Los datos de las EMA's que aún están en funcionamiento se obtuvieron de la página del SMN [25], y los de aquellas que ya no se encuentran en funcionamiento se obtuvieron del artículo citado correspondiente en [22].
- sun_position.m Creado por Vincent Roy en 2004 en base al algoritmo de Reda y Andreas llamado "Solar Position Algorithm". Obtiene el ángulo cenital y azimutal del Sol en un determinado lugar y momento. Se le ingresan como entrada las coordenadas geográficas (longitud,

latitud y altitud), el uso horario correspondientes a la ubicación del punto por determinar, así como la fecha y hora del momento en el que se quieran obtener dichos ángulos.

- DiaJuliano.m Recibe como argumentos de entrada el día y el mes de cada dato y arroja como salida el día Juliano
- correla_pearson.m Crea una tabla con los coeficientes de correlación de Pearson de cada una de las variables con todas las demás. Crea otra tabla con dichos coeficientes pero para cada variable están ordenados de mayor a menor.
- correla_spearman.m Crea una tabla con los coeficientes de correlación de Spearman de cada una de las variables con todas las demás. Crea otra tabla con dichos coeficientes pero para cada variable están ordenados de mayor a menor.
- Cluster.R Elaborado por el prof. Héctor Estévez, quien labora en el observatorio de Radiación Solar del IGF. Crea una clasificación de las variables de entrada dependiendo de la "distancia" que existe entre ellas utilizando el método de Ward. El número de grupos que habrá en la clasificación lo definirá el usuario.

Los datos solarimétricos de cada una de las estaciones se encuentran en un archivo .csv (comma separated values), un archivo por estación, el cual contiene la fecha, hora e irradiancia a nivel de superficie tomada cada 10 minutos. El periodo en el que se tomaron los datos varía para cada estación sin embargo todos están comprendidos entre 1999 y 2011. Además para cada una de las 36 estaciones seleccionadas en [22] se tomaron 3 años continuos de operación, comprendidos entre 1999 y 2011.

Sin embargo algunos archivos no contenían la hora local sino la hora universal (la hora correspondiente a la longitud 0, es decir, en el meridiano de Greenwich). Se verificó qué estaciones contenían la hora universal y para todas ellas se usó el programa *ajustehora.m* que creó un archivo de salida con la misma información pero con el cambio de hora universal a hora local.

Para la obtención de los índices de transparencia se elaboraró el programa *trans36v3.m*. Este programa obtiene los índices de transparencia de una estación meteorológica determinada, por tanto se tiene que correr una vez por cada estación (si todo sale bien). Los datos de entrada que se ingresan son el nombre de la estación de la cual se quiera obtener dichos índices y el nombre del archivo que los contiene. Las acciones realizadas por *trans36v3.m* son las siguientes:

- Primeramente se llama como subprograma a Busca_ema.m para tener la información geográfica necesaria de la estación correspondiente, ingresándole a éste último como dato de entrada el nombre de la estación.
- 2. Después se abre el archivo indicado como entrada a trans36v3.m para empezar con el procesamiento de datos. Se le ordena al programa leer cada uno de los datos hasta el final del archivo.
- 3. Claramente si nos encontramos en cualquier hora de la noche (Si el ángulo cenital θ del Sol en dicho instante es $> 90^{\circ}$) el índice de transparencia es 0 y no nos aporta información de la transparencia atmosférica. Por lo tanto, necesitamos obtener el ángulo cenital del Sol en el momento de cada medición para poder descartar los datos de la noche. Para dicho efecto se usó el programa $sun_position.m$. Para cada dato, dicho programa se corre ingresándole la

longitud, latitud y el uso horario correspondientes a la ubicación del punto a determinar, así como la fecha y hora, como datos de entrada. El programa arroja como salida los ángulos cenital y azimutal del Sol para dicho punto en dicho momento.

- 4. Si $\theta \geq 90^\circ$ entonces se salta al siguiente dato, si $\theta < 90^\circ$ se procede a calcular el día Juliano correspondiente a dicha medición porque será necesario tenerlo para calcular el índice de transparencia. Para obtener el día Juliano se hace uso del programa DiaJuliano.m.
- 5. Hecho esto, si $\theta < 90^{\circ}$ se calcula el índice de transparencia con la ecuación 3.1:

$$K_T(i,j) = \frac{I_{hs}(i,j)}{I_{cs} \epsilon \cos(\theta)} = \frac{I_{hs}(i,j)}{I_{cs} [1 + 0.033 \cos(2\pi J_d/365.25)] \cos(\theta)}$$
(3.1)

donde I_{hs} es la irradiancia horizontal a nivel de superficie, es decir, es el valor medido de irradiancia de dicha estación en determinada hora, ubicado en el archivo de entrada, I_{cs} es la constante solar = 1367W/m^2 , J_d es el día Juliano y θ es el ángulo cenital que forma el Sol con la normal a la superficie para dicho dato.

- 6. Cuando se termina la lectura del archivo de entrada, se han obtenido todos los índices de transparencia de cada uno de los datos, tomados cada 10 minutos durante 3 años. Con ellos se calculó el índice de transparencia promedio diario para cada día.
- 7. Dado que tenemos 3 valores de índice de transparencia diario para cada día (uno por cada año de operación), se calculó el promedio de estos 3 índices diarios obteniéndose así la *media trienal del índice de transparencia promedio diario*. Sin embargo, como ya se mencionó en la sección 1.9 nos referiremos a ellos simplemente como ITD's (índices de transparencia diarios).
- 8. También se obtuvieron las *medias trienales de los índices de transparencia mensuales* con el mismo procedimiento que para la media trienal del índice diario. Análogamente nos referiremos a ellas como ITM's (índices de transparencia mensuales).
- 9. Toda la información correspondiente se exporta en una tabla también en un archivo .csv.

Por lo anterior, se tiene un archivo con los ITD's e ITM's para cada estación. Se creó el archivo *indicesmensuales.csv* que contiene una tabla con los ITM's de todas las estaciones

¹En realidad se descartaron los datos con ángulo cenital mayor a 87 grados, esto con la finalidad de evitar errores en la información y no llegar a considerar datos nocturnos.

3.2. ITD's e ITM's

Los ITM's	de las 3	5 estaciones	se muestran	en la tabla 3.1	1
TOO IIII	uc rab o	oottonon c	oc mucoutan	CII Ia tabia o	L .

\ Mes Estación	1	2	3	4	5	6	7	8	9	10	11	12	Pro- medio
Altamira	0.445	0.455	0.490	0.497	0.537	0.543	0.548	0.538	0.499	0.508	0.458	0.434	0.496
Bahía Kino	0.515	0.433 0.581	0.430 0.638	0.437 0.639	0.673	0.635	0.545 0.585	0.593	0.455	0.564	0.433	0.494	0.490
B. Ángeles	0.665	0.640	0.695	0.743	0.784	0.755	0.703	0.693	0.654	0.650	0.641	0.631	0.688
Cd. Const.	0.629	0.592	0.621	0.745 0.646	0.699	0.668	0.660	0.649	0.054 0.598	0.618	0.644	0.631	0.638
Mexicali	0.612	0.603	0.635	0.734	0.033 0.745	0.736	0.710	0.683	0.666	0.635	0.606	0.607	0.664
R. Colorado	0.607	0.583	0.604	0.601	0.596	0.787	0.710	0.541	0.574	0.584	0.578	0.536	0.579
San Quintín	0.619	0.582	0.652	0.705	0.615	0.630	0.648	0.632	0.608	0.569	0.590	0.622	0.623
Sta. Rosalía	0.639	0.625	0.672	0.677	0.719	0.678	0.626	0.651	0.632	0.641	0.648	0.649	0.655
Matamoros	0.417	0.403	0.433	0.486	0.533	0.549	0.611	0.546	0.535	0.479	0.435	0.409	0.486
Psa. Cuchillo	0.417	0.468	0.495	0.490	0.558	0.543	0.618	0.608	0.562	0.473	0.480	0.446	0.519
V. Carranza	0.573	0.562	0.580	0.561	0.523	0.601	0.559	0.580	0.497	0.562	0.566	0.485	0.554
Cuauhtémoc	0.649	0.695	0.687	0.678	0.637	0.552	0.502	0.521	0.499	0.623	0.686	0.663	0.616
Chinipas	0.586	0.580	0.601	0.599	0.652	0.587	0.540	0.554	0.588	0.574	0.581	0.609	0.588
Maguarichi	0.653	0.633	0.672	0.646	0.664	0.511	0.461	0.523	0.562	0.636	0.653	0.662	0.606
Urique	0.605	0.597	0.632	0.676	0.653	0.541	0.490	0.540	0.535	0.579	0.585	0.599	0.586
Sn. Juan Gpe	0.648	0.659	0.642	0.649	0.620	0.616	0.553	0.563	0.531	0.634	0.670	0.666	0.621
CuatroCiene.	0.627	0.640	0.620	0.602	0.588	0.602	0.551	0.591	0.540	0.622	0.657	0.646	0.607
Álamos	0.669	0.579	0.682	0.660	0.720	0.618	0.574	0.630	0.625	0.633	0.664	0.671	0.644
Nogales	0.637	0.631	0.686	0.679	0.671	0.632	0.478	0.541	0.610	0.647	0.674	0.600	0.624
Cd. Alemán	0.412	0.404	0.506	0.503	0.460	0.481	0.514	0.473	0.439	0.427	0.426	0.418	0.455
Cd. Carmen	0.533	0.545	0.572	0.587	0.563	0.558	0.621	0.584	0.522	0.537	0.557	0.506	0.557
Chetumal	0.530	0.544	0.588	0.617	0.547	0.492	0.548	0.515	0.498	0.500	0.526	0.502	0.534
Monclova	0.466	0.483	0.517	0.517	0.474	0.439	0.505	0.528	0.515	0.511	0.500	0.472	0.494
Yohaltum	0.508	0.523	0.552	0.545	0.526	0.466	0.476	0.479	0.487	0.519	0.532	0.519	0.511
Campeche	0.561	0.533	0.589	0.593	0.554	0.502	0.552	0.547	0.519	0.551	0.546	0.485	0.544
Dzilam	0.528	0.546	0.593	0.578	0.568	0.494	0.530	0.572	0.540	0.565	0.567	0.557	0.553
Angamacutiro	0.597	0.623	0.662	0.614	0.584	0.527	0.527	0.551	0.507	0.560	0.594	0.573	0.577
Jocotepec	0.643	0.619	0.663	0.616	0.549	0.497	0.434	0.532	0.540	0.588	0.640	0.600	0.577
Pachuca	0.615	0.614	0.633	0.622	0.592	0.519	0.537	0.569	0.511	0.575	0.591	0.599	0.581
Psa. Allende	0.570	0.592	0.634	0.617	0.551	0.523	0.528	0.566	0.514	0.571	0.571	0.559	0.566
Pto Ángel	0.660	0.640	0.621	0.575	0.518	0.483	0.529	0.529	0.448	0.596	0.630	0.634	0.572
Tizapan	0.632	0.607	0.663	0.639	0.572	0.535	0.398	0.518	0.537	0.575	0.632	0.589	0.575
Tlapa	0.568	0.606	0.622	0.575	0.518	0.486	0.471	0.491	0.466	0.565	0.618	0.597	0.549
UNITEC	0.653	0.619	0.648	0.608	0.540	0.527	0.551	0.526	0.482	0.577	0.620	0.620	0.581
Zacatecas	0.599	0.618	0.665	0.577	0.541	0.518	0.550	0.553	0.519	0.564	0.598	0.585	0.574

Tabla 3.1: Índice de transparencia atmosférica mensual de cada una de las 35 estaciones.

Los índices de transparencia se obtuvieron como se describió en la metodología obteniéndose valores promedios diarios mensuales entre 0.398 y 0.784. Se observa que las estaciones con mayor índice de transparencia son: Bahía de los Ángeles (0.688), Mexicali (0.664), Sta. Rosalía (0.655) y Ciudad Constitución (0.638). La causa es que están ubicadas en zonas de clima seco y por ende baja nubosidad, así como baja contaminación.

Aquellas con menor índice de transparencia son Cd. Alemán (0.455), Matamoros (0.486), Monclova (0.494) y Altamira (0.496). Esto se debe a la alta humedad y nubosidad que existe en estas ciudades. También en el caso de Altamira y Matamoros a que son estaciones que se encuentran ubicadas prácticamente a nivel del mar (a 3 y 4 msnm respectivamente) y que por tanto, la radiación tiene que recorrer una mayor distancia para llegar a la superficie de la Tierra.

3.2. ITD'S E ITM'S 41

La gráfica con todos los índices de transparencia de todas las estaciones se muestra en la figura 3.1.

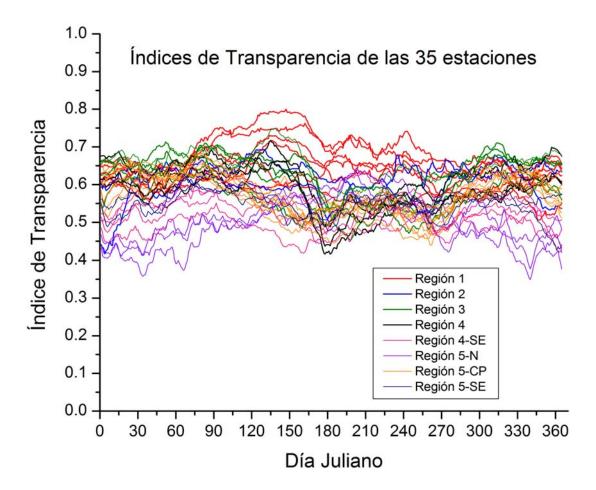


Figura 3.1: Índices de transparencia diarios de las 35 estaciones. En realidad el valor que se grafica en cada día es el promedio móvil de 30 días, es decir, el promedio del índice de transparencia correspondiente a dicho día con los índices de los 15 días anteriores y posteriores. Esto con la finalidad de evitar picos o saltos abruptos y poder observar el comportamiento general de cada estación más fácilmente

3.3. Clasificación de las estaciones por ISODATA

Se clasificaron las 35 estaciones de acuerdo a la región correspondiente de acuerdo con la regionalización obtenida en [3] con la técnica ISODATA. Se elaboró una gráfica por región con los ITD's de las estaciones pertenecientes a una misma región. También se elaboró una tabla por región, con los ITM's de estaciones de una misma región, y se obtuvo el promedio de todas las estaciones para cada mes así como sus respectivas desviaciones estándar. Con dichos promedios se elaboró una sola tabla en la que se encuentran todas las regiones (tabla 3.2) y otra tabla con las desviaciones estándar de cada región (tabla 3.3).

En la figura 3.2 podemos ver la clasificación de las estaciones de acuerdo a la regionalización obtenida con ISODATA mostrada en la figura 2.3. La región 6 únicamente contenía una estación, la de Cd. Alemán, por tanto no se tomó en cuenta dicha región puesto que no había con quién compararla.

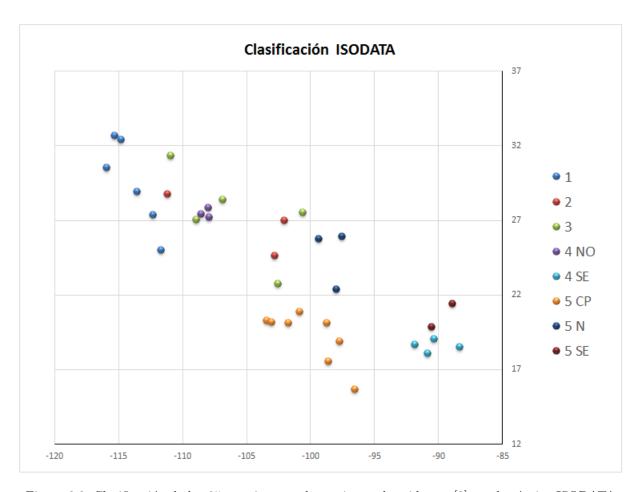


Figura 3.2: Clasificación de las 35 estaciones en las regiones obtenidas en [3] con la técnica ISODATA

A continuación se muestran los índices de transparencia diarios graficados en la región correspondiente de acuerdo a las regiones propuestas en [3].

La región 1 se encuentra en el noroeste del país. Las estaciones correlacionan bien a excepción de R. Colorado y San Quintín alrededor del mes de mayo en donde el resto de las estaciones tienen un aumento en la transparencia atmosférica mientras que ésta no lo tiene. Con lo anterior podemos notar que la temporada de lluvias, que tradicionalmente, en la zona centro del país comienza en mayo y se extiende unos meses más, en la zona norte del país no es así, puesto que si así fuera, las nubes disminuirían la transparencia atmosférica.

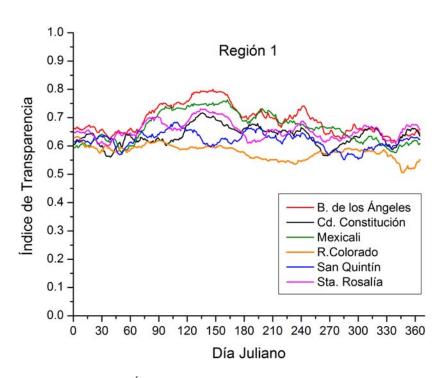


Figura 3.3: Índices de transparencia para la Región 1.

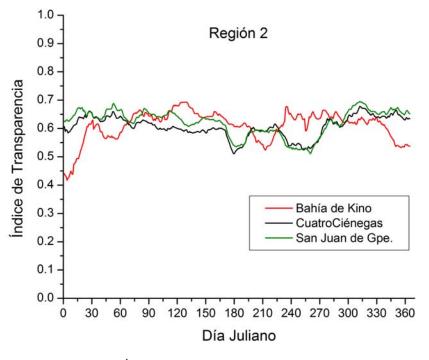


Figura 3.4: Índices de transparencia para la Región 2.

En particular Cuatrociénegas y San Juan de Guadalupe presentan una alta correlación, sin embargo, no es así con Bahía Kino. En la figura 2.2 se puede ver la localización de estas estaciones y se observa que Cuatrociénegas (en Coahuila) está relativamente cerca de San Juan de Guadalupe (en Durango) comparada con la distancia que existe entre éstas y Bahía Kino (en Hermosillo, Sonora).

La correlación de la región 3 es alta, sin embargo, la estación de Zacatecas presenta una disminución en la transparencia desde finales del mes de marzo, la cual también presentan el resto de las estaciones pero en menor medida que en el mes de mayo tiene un aumento en la transparencia.

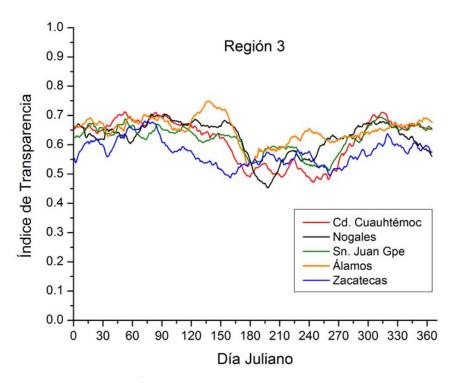


Figura 3.5: Índices de transparencia para la Región 3.

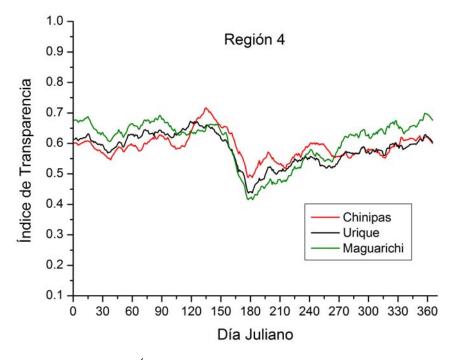


Figura 3.6: Índices de transparencia para la Región 4.

La correlación de estas 3 estaciones es muy alta. Geográficamente están muy cerca, las 3 están en el suroeste de Chihuahua. Se observa en los meses de mayo y junio una caída muy pronunciada en la transparencia atmosférica en donde alcanzan un mínimo y luego ésta asciende hasta el fin de año donde alcanza los valores que tenía en un principio.

Nuevamente la correlación de estas 3 estaciones es alta y debido a su ubicación geográfica podemos inferir que la transparencia atmosférica así como la irradiancia global en el estado de Tamaulipas tiene pocas variaciones.

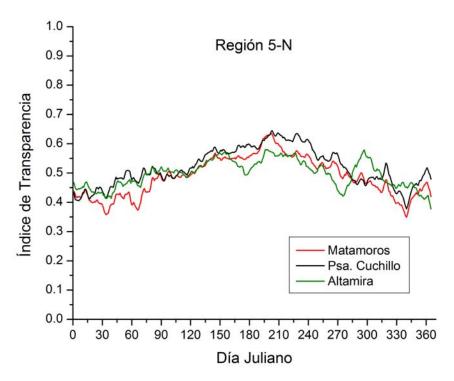


Figura 3.7: Índices de transparencia para la Región 5-N.

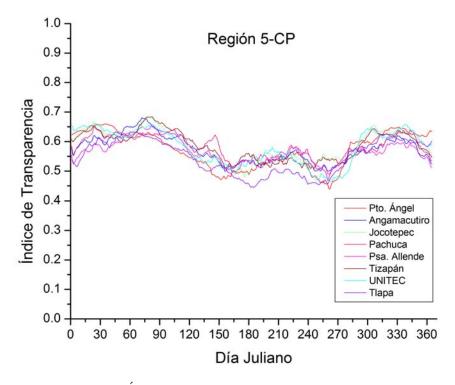


Figura 3.8: Índices de transparencia para la Región 5-CP.

La correlación de estas estaciones que se encuentran en el centro del país o en la costa del pacífico es bastante alta, siendo que son 8 estaciones. Se puede observar claramente que la transparencia alcanza un máximo en el mes de marzo a partir de ahí desciende hasta alcanzar el mínimo a principios de junio en donde asciende nuevamente. Se observa otro valle a finales de septiembre.

La correlación de la región 4-SE es alta, salvo porque Cd. del Carmen presenta mayor transparencia que Yohaltum y Monclova que correlacionan muy bien. A finales del mes de septiembre todas las estaciones confluyen prácticamente a un punto.

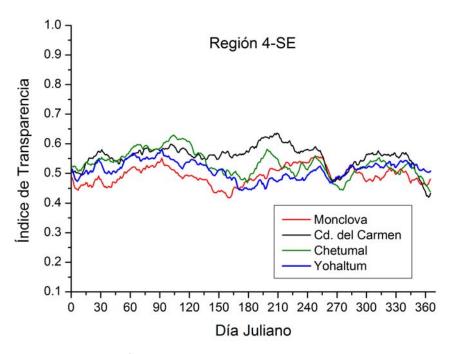


Figura 3.9: Índices de transparencia para la Región 4-SE.

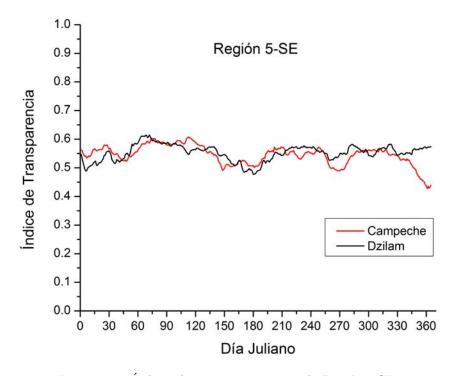


Figura 3.10: Índices de transparencia para la Región 5-SE.

La correlación de estas 2 estaciones es alta, presentan un valle en el mes de junio y otro en septiembre. De las gráficas anteriores podemos observar que, en general, el comportamiento en estaciones de una misma región es muy similar, es decir, existe una alta correlación entre ellas. Esto se puede verificar más fácilmente si comparamos una gráfica con otra. En particular en las regiones 4, 4-SE, 5-N, 5-CP, 5-SE podemos ver que los índices presentan una alta correlación.

Por otro lado, también es cierto que varias de las regiones anteriores contienen pocas estaciones. Las regiones 2, 4 y 5-N contienen 3 estaciones, y en la región 5-SE son dos estaciones únicamente. Desde luego entre más regiones tenga nuestra regionalización, menor será la cantidad de estaciones por región y mayor será la correlación entre sus valores de transparencia y menor su desviación estándar.

En las tablas 3.2 y 3.3 se presentan los promedios y desviaciones estándar $(\times 10^{-1})^2$ de cada mes para las estaciones ubicados en cada una de las regiones.

\ Mes Región	1	2	3	4	5	6	7	8	9	10	11	12	Promedio
1	0.629	0.604	0.647	0.684	0.693	0.676	0.651	0.642	0.622	0.616	0.618	0.613	0.641
2	0.597	0.627	0.633	0.630	0.627	0.618	0.563	0.582	0.576	0.607	0.647	0.634	0.612
3	0.640	0.636	0.672	0.649	0.638	0.587	0.531	0.562	0.557	0.620	0.658	0.637	0.616
4	0.615	0.603	0.635	0.640	0.656	0.546	0.497	0.539	0.562	0.596	0.606	0.623	0.593
4-SE	0.509	0.524	0.557	0.567	0.528	0.489	0.538	0.527	0.506	0.517	0.529	0.500	0.524
5-N	0.433	0.442	0.473	0.491	0.543	0.558	0.592	0.564	0.532	0.490	0.458	0.430	0.500
5-CP	0.617	0.615	0.643	0.608	0.553	0.512	0.497	0.535	0.501	0.576	0.612	0.596	0.572
5-SE	0.545	0.540	0.591	0.586	0.561	0.498	0.541	0.560	0.530	0.558	0.557	0.521	0.549
Promedio	0.573	0.574	0.607	0.607	0.600	0.560	0.551	0.564	0.548	0.573	0.586	0.569	0.576

Tabla 3.2: Promedios mensuales de cada una de las regiones propuestas en [3]. El último renglón es el promedio mensual de cada una de las regiones.

\ Mes Región	1	2	3	4	5	6	7	8	9	10	11	12	Promedio
1	0.213	0.237	0.343	0.544	0.737	0.632	0.564	0.542	0.350	0.328	0.304	0.404	0.433
2	0.715	0.407	0.117	0.248	0.429	0.166	0.191	0.168	0.697	0.374	0.299	0.388	0.350
3	0.259	0.436	0.192	0.420	0.662	0.495	0.398	0.413	0.568	0.326	0.347	0.411	0.411
4	0.345	0.271	0.356	0.388	0.067	0.383	0.400	0.155	0.265	0.344	0.405	0.339	0.310
4-SE	0.309	0.290	0.306	0.443	0.388	0.510	0.630	0.436	0.159	0.156	0.234	0.199	0.338
5-N	0.143	0.344	0.344	0.056	0.134	0.204	0.386	0.383	0.316	0.155	0.225	0.189	0.240
5-CP	0.360	0.141	0.181	0.224	0.280	0.203	0.559	0.260	0.328	0.116	0.241	0.239	0.261
5-SE	0.233	0.092	0.028	0.106	0.099	0.057	0.156	0.177	0.148	0.099	0.148	0.509	0.154
Promedio	0.322	0.277	0.233	0.304	0.350	0.331	0.410	0.317	0.354	0.237	0.275	0.335	0.312

Tabla 3.3: Desviaciones estándar de cada una de las regiones propuestas en [3]. Los valores son $\times 10^{-1}$. La última columna corresponde al promedio de las desviaciones de cada uno de los meses así como el último renglón el promedio mensual de todas las regiones.

²Esto con la finalidad de no perder información y mostrar hasta el cuarto orden de magnitud en los decimales sin hacer la tabla más grande.

3.4. Clasificación de las estaciones por Pearson y Spearman

Se obtuvieron los coeficientes de correlación de Pearson y Spearman de todas las estaciones con todas las estaciones usando los ITM's, usando los programas correla_pearson.m y correla_spearman.m respectivamente, a los cuales se introdujo como entrada el archivo *índicesmensuales.csv*. Dichos programas arrojaron como archivo de salida una tabla de 36x36 con dichos coeficientes, así como otra tabla donde viene para cada estación los coeficientes de correlación de el resto de las estaciones ordenadas de mayor a menor. Los valores de correlación de Pearson y Spearman de todas las estaciones se encuentran en el Apéndice A y B respectivamente.

Con las tablas de los coeficientes de correlación ordenadas de mayor a menor se hizo un análisis semicuantitativo para clasificar a las 35 estaciones en grupos donde su desviación estándar fuera pequeña comparada con la desviación estándar de los ITM's de todas las estaciones sin clasificar.

De acuerdo al análisis realizado usando los coeficientes de correlación, se propusieron 5 regiones, a saber: Región Norte, Región Noreste, Región Noreste, Región Centro-Pacífico y Región Sureste. Las estaciones clasificadas se muestran en la figura 3.11.

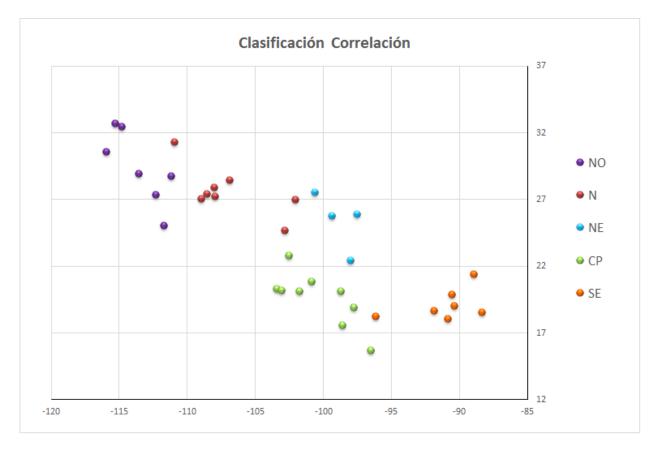


Figura 3.11: Clasificación de las 35 estaciones propuesta en base a los coeficientes de correlación de Pearson y Spearman.

A continuación se muestran las gráficas de dichas regiones:

En general no se puede decir que esta zona presenta una alta correlación en sus índices, en particular la estación Bahía de Kino tiene tres valles que no presentan el resto de las estaciones, así como Río Colorado que en general tiene menor transparencia atmosférica que el resto. Aunque por otro lado fuera de éstas últimas se puede observar cierto comportamiento similar en las estaciones restantes.

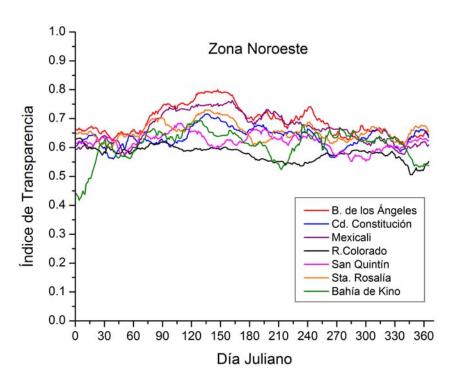


Figura 3.12: Índices de transparencia para la Región Noroeste.

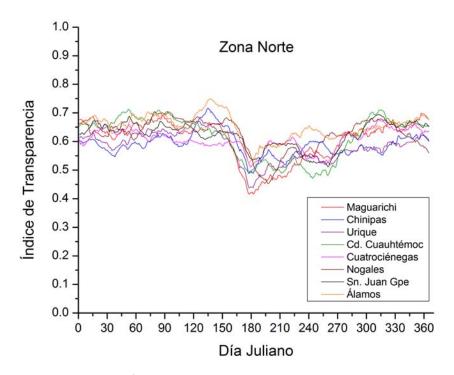


Figura 3.13: Índices de transparencia para la Región Norte.

En general esta región presenta una muy alta correlación en sus índices, con una caída muy pronunciada que empieza en mayo y termina a finales de junio, correspondiente a la temporada de lluvias. Sin embargo, en el mes de noviembre, algunas estaciones presentan una disminución de la transparencia mientras que otras un aumento.

Se presenta una alta correlación a excepción de Venustiano Carranza (principalmente en los primeros 4 meses). Sin embargo, las estaciones restantes forman la región 5-N (figura 3.7) de la sección anterior, en la cual ya se había mencionado la alta correlación existente entre estas tres estaciones.

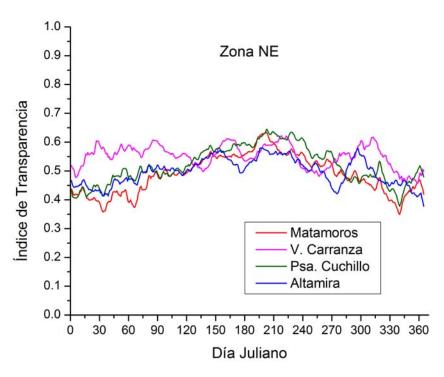


Figura 3.14: Índices de transparencia para la Región Noreste.

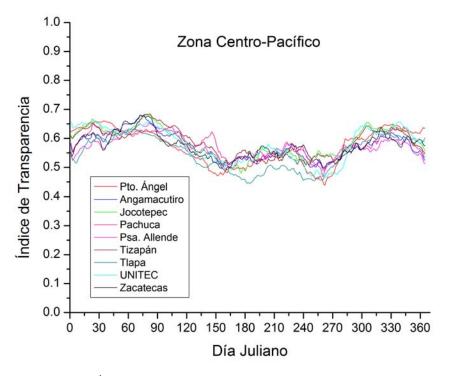


Figura 3.15: Índices de transparencia para la Región Centro-Pacífico.

La correlación de esta región es excelente. Salvo por la estación de Zacatecas es la misma región que la 5-CP de la figura 3.8. Sin embargo, es importante destacar que esta estación de Zacatecas no correlacionaba tan bien en la Región 3 (figura 3.5) que como lo hace en Z-CP.

El comportamiento en los índices (sus pendientes) es muy similar por lo que la correlación se podría considerar alta. La diferencia radica en que hay estaciones más transparentes que otras. Se puede ver la alta correlación que existe entre Cd. del Carmen y Cd. Alemán aún cuando esta última en general tiene menor transparencia.

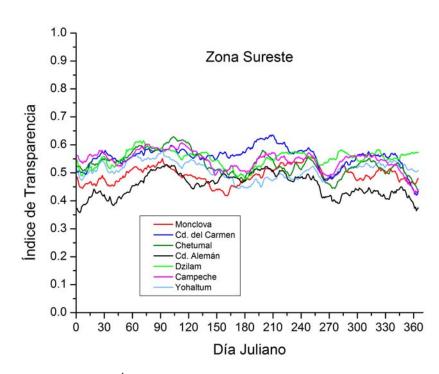


Figura 3.16: Índices de transparencia para la Región Sureste.

Por otro lado, se puede observar el comportamiento que existe entre estaciones de la costa Este de la República Mexicana:

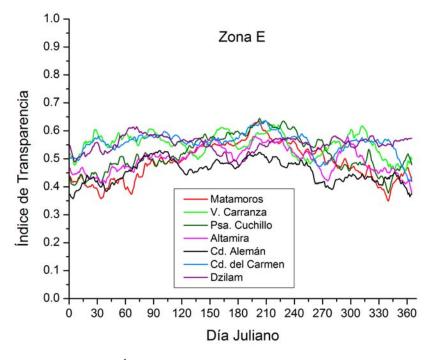


Figura 3.17: Índices de transparencia para la Región Este.

Se pueden apreciar 2 grupos de estaciones con transparencia similar, sobre todo en los primeros dos meses. Uno de ellos es el conformado por V. Carranza (Coahuila), Cd. del Carmen (Campeche) y Dzilam (Yucatán).

También se puede observar que existe una alta correlación entre estaciones que se encuentran en la franja central de la República como lo podemos ver en la figura 3.18.

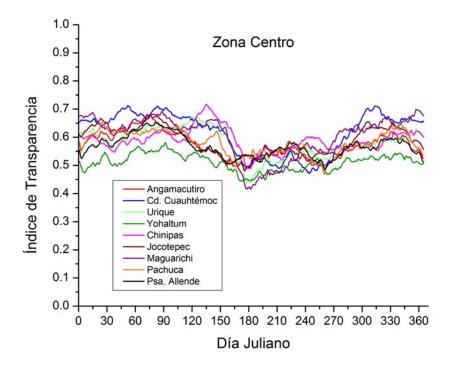


Figura 3.18: Índices de transparencia para la Región Central.

Si bien las estaciones que se presentan en la figura 3.18 tienen latitudes y longitudes muy disimiles, todas se encuentran en una franja que recorre la República en su zona central. Se puede observar que existe alta correlación de dichas estaciones aún cuando existe mayor transparencia atmosférica para unas que para otras.

En general se podría pensar que después de esta clasificación no obtuvimos una disminución en la desviación estándar (la tabla de la desviación estándar de cada región se presenta en la tabla 3.5), sin embargo es muy importante notar el hecho de que en esta nueva clasificación tenemos únicamente 5 regiones (sin tomar en cuenta la Región Este y la Región Central que son una propuesta alterna a la clasificación principal) en comparación con las 8 regiones que se tenían en la regionalización dada por ISODATA. Este hecho implica que tenemos un mayor número de estaciones por región. El hecho de tener menos regiones puede llegar a ser más útil.

Los valores promedio de los índices de transparencia por región así como las desviaciones estándar ($\times 10^{-1}$) se muestran en las tablas 3.4 y 3.5 respectivamente.

\ Mes Región	1	2	3	4	5	6	7	8	9	10	11	12	Promedio
NO	0.612	0.601	0.646	0.678	0.690	0.670	0.641	0.635	0.627	0.609	0.617	0.610	0.636
NE	0.468	0.472	0.500	0.509	0.538	0.569	0.584	0.568	0.523	0.508	0.485	0.444	0.514
N	0.634	0.627	0.653	0.649	0.651	0.582	0.519	0.558	0.561	0.619	0.646	0.640	0.611
SE	0.505	0.511	0.560	0.563	0.527	0.490	0.535	0.528	0.503	0.516	0.522	0.494	0.521
CP	0.615	0.615	0.646	0.605	0.552	0.513	0.503	0.537	0.503	0.575	0.610	0.595	0.572
С	0.603	0.608	0.637	0.624	0.601	0.525	0.499	0.537	0.527	0.581	0.604	0.598	0.579
E	0.478	0.483	0.524	0.529	0.535	0.544	0.572	0.557	0.513	0.509	0.498	0.465	0.517
Promedio	0.559	0.560	0.595	0.594	0.585	0.556	0.550	0.560	0.537	0.559	0.569	0.549	0.564

Tabla 3.4: Promedios mensuales de cada una de las regiones derivadas del análisis de correlación. El último renglón es el promedio mensual de cada una de las regiones.

\ Mes Región	1	2	3	4	5	6	7	8	9	10	11	12	Promedio
NO	0.471	0.233	0.315	0.525	0.677	0.597	0.572	0.528	0.345	0.359	0.278	0.378	0.440
NE	0.711	0.662	0.606	0.353	0.147	0.273	0.356	0.323	0.312	0.380	0.572	0.317	0.418
N	0.273	0.401	0.334	0.323	0.387	0.431	0.411	0.369	0.432	0.271	0.404	0.315	0.362
SE	0.504	0.522	0.358	0.421	0.436	0.366	0.460	0.429	0.329	0.452	0.477	0.431	0.432
CP	0.342	0.132	0.184	0.234	0.265	0.191	0.552	0.250	0.313	0.116	0.230	0.227	0.253
С	0.458	0.460	0.412	0.406	0.522	0.342	0.371	0.278	0.324	0.341	0.472	0.459	0.404
Е	0.652	0.680	0.589	0.445	0.369	0.434	0.446	0.440	0.400	0.500	0.632	0.536	0.510
Promedio	0.460	0.390	0.359	0.371	0.382	0.372	0.470	0.380	0.346	0.316	0.392	0.333	0.381

Tabla 3.5: Desviaciones estándar $\times 10^{-1}$ de cada una de las regiones derivadas del análisis de correlación. La última columna corresponde al promedio de las desviaciones de cada uno de los meses así como el último renglón el promedio mensual de todas las regiones.

3.5. Clasificación de las estaciones por Análisis de Cluster

Usando el programa *Cluster.R* al cual se introdujo como entrada el archivo *índicesmensuales.csv* se obtuvo una nueva clasificación de las estaciones. Dicha clasificación arrojó también 5 regiones. Igualmente como se hizo con la clasificación obtenida con ISODATA y los coeficientes de correlación de Pearson y Spearman se elaboró una gráfica por región con los ITD's de las estaciones pertenecientes a una misma región. También elaboró una tabla por región, con los ITM's de estaciones de una misma región, y se obtuvo el promedio de todas las estaciones para cada mes así como sus respectivas desviaciones estándar. Después se elaboró una tabla con los promedios de cada región (tabla 3.6) y otra con las desviaciones estándar de cada región (tabla 3.7).

El programa *Cluster.R* que realizó el análisis de Cluster determinó las distancias entre los ITM's elaborando un plano de distancias que se muestra en la figura 3.19. Con dichas distancias elaboró un dendograma que se muestra en la figua 3.20.

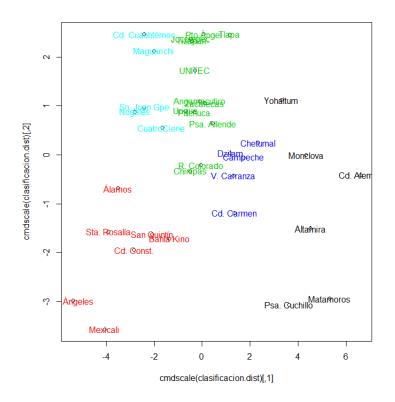


Figura 3.19: Plano de las distancias entre las 35 estaciones obtenidas con el análisis de Cluster.

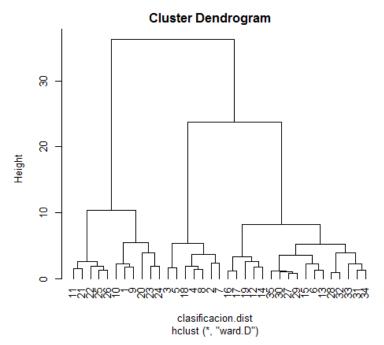


Figura 3.20: Dendograma en el cual se muestran las ramas que elabora el programa *Cluster.R* para realizar la clasificación.

Debido a su ubicación geográfica las regiones se nombraron como sigue: Noroeste, Norte, Centro-Pacífico, Este y Sureste. Las estaciones clasificadas se muestran en la figura 3.21.

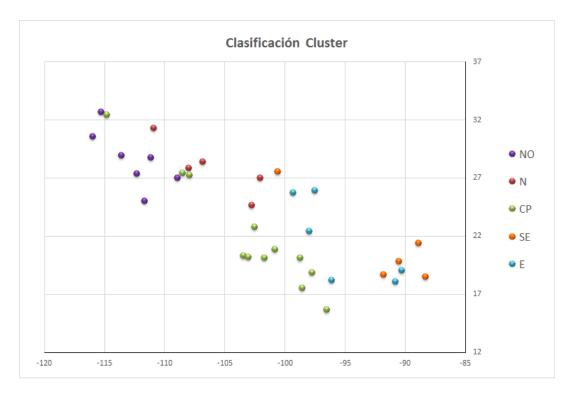


Figura 3.21: Clasificación de las 35 estaciones derivada del análisis de Cluster.

A continuación se muestran las gráficas de dichas regiones:

En general la correlación no es mala. A excepción de B. Kino, el resto de las estaciones presentan un comportamiento similar con una primera caída en la transparencia en febrero para de ahí aumentar. En mayo las estaciones presentan una cresta o un máximo a excepción nuevamente de B. Kino y San Quintín y de ahí empieza a caer. Álamos y B. Kino tienen unos picos en la caída que no tienen el resto de las estaciones.

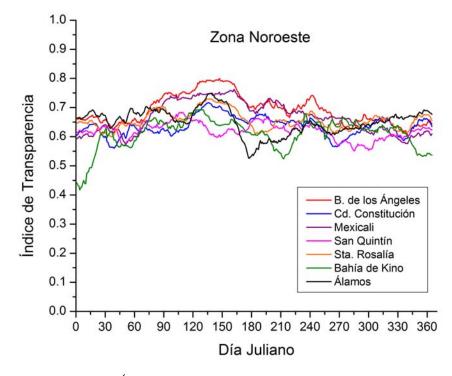


Figura 3.22: Índices de transparencia para la Región Noroeste.

Esta región presenta muy alta correlación en sus índices. A finales de mayo y en junio presenta una caída, en julio la transparencia nuevamente asciende, en agosto y septiembre tiene otra caída y después vuelve a subir.

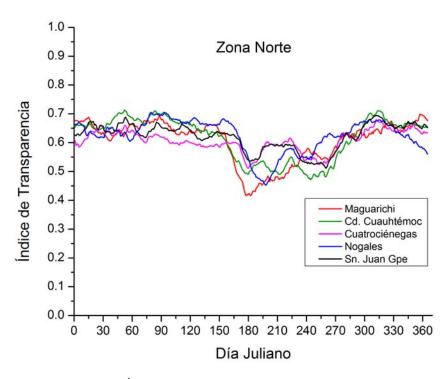


Figura 3.23: Índices de transparencia para la Región Norte.

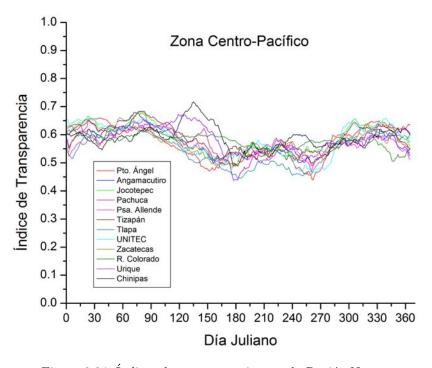


Figura 3.24: Índices de transparencia para la Región Norte.

También esta región presenta muy alta correlación. Es importante destacar el hecho del número de estaciones (12) que se están graficando en la figura 3.24. Tiene un máximo a finales de marzo. A partir de ahí comienza la temporada de lluvias y los índices caen hasta un mínimo a finales de mayo y principios de junio, donde suben nuevamente hasta el próximo valle que se presenta en septiembre, de ahí vuelven a subir hasta un máximo a finales de noviembre.

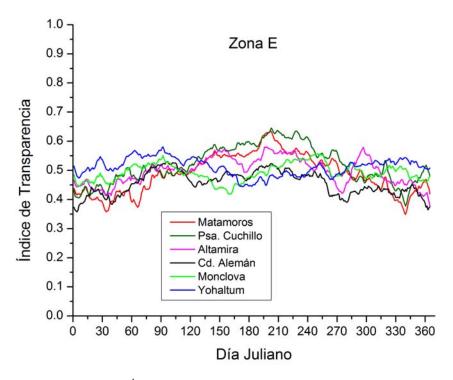


Figura 3.25: Índices de transparencia para la Región Este.

Esta es la región Este, la podemos comparar con la gráfica 3.17 que es la región Este propuesta por la alta correlación que tenían sus coeficientes. Cabe destacar la alta correlación que existe entre Monclova y Yohaltum (ambas se localizan en Campeche), así como entre Matamoros, Psa. el Cuchillo y Altamira (ambas del NE) las cuales tienen menor transparencia atmosférica los primeros 3 meses, de abril a octubre ésta aumenta y en noviembre v diciembre vuelve a ser inferior.

Nuevamente la correlación es alta, sin embargo, llama la atención el caso de la estación Venustiano Carranza, la cual se encuentra en Coahuila. La explicación es la siguiente: en la zona donde se encuentra la estación de Venustiano Carranza existe una gran laguna. El resultado de esta laguna es que el comportamiento de la transparencia atmosférica de dicha estación sea análogo al de las estaciones del Sureste las cuales están prácticamente al lado del mar.

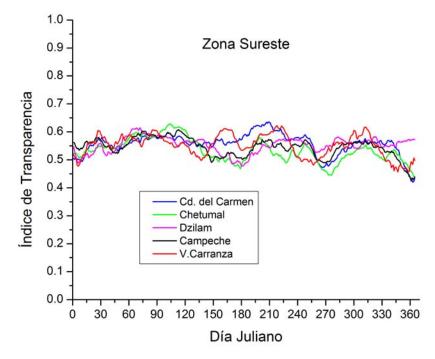


Figura 3.26: Índices de transparencia para la Región Sureste.

Los valores promedio de los ITM's por región así como las desviaciones estándar se muestran en las tablas $3.6~{\rm y}~3.7$ respectivamente.

\ Mes Región	1	2	3	4	5	6	7	8	9	10	11	12	Promedio
NO	0.621	0.600	0.657	0.686	0.708	0.674	0.644	0.647	0.634	0.616	0.629	0.629	0.646
N	0.643	0.652	0.661	0.651	0.636	0.583	0.509	0.548	0.548	0.632	0.668	0.647	0.615
CP	0.611	0.608	0.637	0.610	0.572	0.528	0.509	0.539	0.518	0.576	0.603	0.592	0.575
E	0.447	0.456	0.499	0.506	0.515	0.510	0.545	0.529	0.506	0.488	0.472	0.450	0.494
SE	0.545	0.546	0.584	0.587	0.551	0.529	0.562	0.560	0.515	0.543	0.552	0.507	0.549
Promedio	0.574	0.572	0.608	0.608	0.596	0.565	0.554	0.565	0.544	0.571	0.585	0.565	0.576

Tabla 3.6: Promedios de los ITM's de las estaciones de cada región, para cada una de las regiones derivadas del análisis de Cluster. El último renglón es el promedio mensual de cada una de las regiones.

\ Mes Región	1	2	3	4	5	6	7	8	9	10	11	12	Promedio
NO	0.516	0.239	0.278	0.418	0.538	0.533	0.529	0.338	0.257	0.350	0.266	0.264	0.377
N	0.106	0.267	0.294	0.314	0.338	0.500	0.419	0.295	0.412	0.103	0.133	0.276	0.288
CP	0.304	0.176	0.230	0.289	0.456	0.332	0.507	0.219	0.407	0.103	0.237	0.264	0.294
Е	0.356	0.466	0.391	0.219	0.387	0.556	0.583	0.495	0.423	0.338	0.403	0.405	0.419
SE	0.206	0.104	0.084	0.206	0.176	0.483	0.347	0.288	0.180	0.264	0.170	0.296	0.234
Promedio	0.298	0.250	0.255	0.289	0.379	0.481	0.477	0.327	0.336	0.232	0.242	0.301	0.322

Tabla 3.7: Desviaciones estándar $\times 10^{-1}$ de los ITM's de las estaciones de cada región, para cada una de las regiones derivadas del análisis de Cluster. La última columna corresponde al promedio de las desviaciones de cada uno de los meses así como el último renglón el promedio de todas las regiones de cada mes.

Capítulo 4

Comparación de las clasificaciones y Conclusiones

4.1. Comparación de los métodos de agrupamiento.

Es importante hacer notar que en la clasificación de ISODATA no se hizo directamente con los ITM's sino únicamente con parámetros físicos y orográficos de la República Mexicana, a diferencia de las clasificaciones derivadas del análisis de los coeficientes de correlación y del análisis de Cluster que sí se hicieron directamente con los ITM's.

Algunas regiones obtenidas con el análisis de Cluster son muy similares a unas regiones que se obtuvieron del análisis de sus coeficientes de correlación, razón por la cual merece compararlas. Primeramente, en la región Noroeste, se muestra una mejora en la correlación en la figura 3.22 con respecto a la figura 3.12 correspondientes al análisis de coeficientes de Cluster y de correlación respectivamente. Lo cual se puede ver cuantitativamente si observamos que el promedio de la desviación estándar fue 0.0377 y 0.0440 respectivamente.

Lo mismo sucede con la región Norte, cuyas gráficas son 3.23 y 3.13 de la clasificación de Cluster y de los coeficientes de correlación respectivamente. Cuantitativamente observamos esta mejora con los promedios de las desviaciones estándar que en el caso de la región de Cluster es de 0.0288 mientras que en la región de los coeficientes de correlación es de 0.0362.

La región Noreste de la figura 3.14 no tiene un simil en la clasificación de Cluster por lo que no se tiene con quién compararla, sin embargo, como ya se mencionó, a excepción de la estación V. Carranza las estaciones presentan una alta correlación.

La correlación de la región Centro-Pacífico de la figura 3.24 no mejora con respecto a su símil de la figura 3.15, cuyas desviaciones son 0.0294 y 0.0253 respectivamente. Sin embargo se debe notar que en la región de Cluster se tienen 3 estaciones más: Urique, Chinipas y Río Colorado, un total de 12 estaciones en la región, el cual es un número elevado en comparación con las demás regiones. Las dos primeras estaciones se encontraban en la región Norte de la figura 3.13, en donde no correlacionaban mal con el resto de la región.

La correlación de la región del Sureste de la figura 3.26 sí mejora con respecto a su similar de la

figura 3.16 (desviaciónes estándar promedio de 0.0234 0.0432 respectivamente). Es muy importante destacar que en la región de Cluster, todas las estaciones se encuentran en la costa, como se puede ver en la figura 2.2, a excepción de V. Carranza, que como ya se mencionó se encuentra al lado de una laguna. Esto último resulta muy interesante y nos habla del efecto que tiene una atmósfera marina en la absorción y en la dispersión de la radiación solar.

También en la región Este se nota una mejoría en la correlación si comparamos la figura 3.25 del análisis de Cluster con la figura 3.17 del análisis de correlación. Sus desviaciones estándar son 0.0419 y 0.0510 respectivamente. La diferencia se debe a que en el análisis de Cluster las estaciones de la costa del sureste (junto con V. Carranza) se encuentran separadas en otra región, mientras que en la clasificación de los coeficientes de correlación las estaciones se encuentran en ambas regiones. En realidad La clasificación original obtenida por los coeficientes de correlación no contenía la región Este ni la región Central. Ambas regiones surgieron como una alternativa o como una segunda opción a la primera regionalización para mostrar que también existía una alta correlación en estas zonas.

La tabla 4.1 muestra los promedios de los ITM's de todas las regiones para cada mes para cada método.

\ Mes Región	1	2	3	4	5	6	7	8	9	10	11	12	Promedio
ISODATA	0.573	0.574	0.607	0.607	0.600	0.560	0.551	0.564	0.548	0.573	0.586	0.569	0.576
Correlación	0.559	0.560	0.595	0.594	0.585	0.556	0.550	0.560	0.537	0.559	0.569	0.549	0.564
Cluster	0.574	0.572	0.608	0.608	0.596	0.565	0.554	0.565	0.544	0.571	0.585	0.565	0.576
Todas	0.580	0.578	0.613	0.610	0.596	0.562	0.550	0.563	0.543	0.572	0.588	0.571	0.577

Tabla 4.1: Para cada mes, para cada método de agrupamiento se presenta el promedio de los ITM's de todas las regiones de dicho método de dicho mes. El último renglón corresponde al promedio de los ITM's de las 35 estaciones para cada mes.

Llama la atención que existen meses para los cuales el promedio de los ITM's de cada método de agrupamiento sea menor que el promedio de los ITM's de todas las estaciones, así como también meses donde sucede a la inversa y los promedios de cada método son mayores que el promedio del total de las regiones.

La tabla 4.2 muestra los promedios de las desviaciones estándar de todas las regiones para cada mes para cada método.

\ Mes Región	1	2	3	4	5	6	7	8	9	10	11	12	Promedio
ISODATA	0.322	0.277	0.233	0.304	0.350	0.331	0.410	0.317	0.354	0.237	0.275	0.335	0.312
Correlación	0.460	0.390	0.359	0.371	0.382	0.372	0.470	0.380	0.346	0.316	0.392	0.333	0.381
Cluster	0.298	0.250	0.255	0.289	0.379	0.481	0.477	0.327	0.336	0.232	0.242	0.301	0.322
Todas	0.747	0.679	0.634	0.650	0.778	0.748	0.696	0.531	0.586	0.531	0.674	0.755	0.667

Tabla 4.2: Para cada mes, para cada método de agrupamiento se presenta el promedio de las desviaciones estándar $(\times 10^{-1})$ de todas las regiones de dicho método de dicho mes. El último renglón corresponde a la desviación estándar de los ITM's de las 35 estaciones para cada mes.

Podemos observar que el método de clasificación que en promedio tiene valores menores en sus desviaciones estándar es la clasificación por ISODATA, seguida del análisis de Cluster y por último la clasificación de los coeficientes de correlación.

4.2. CONCLUSIONES 61

4.2. Conclusiones

• La medición de la radiación solar, además de aportarnos información acerca del recurso solar disponible en una determinada región para su aprovechamiento en distintas tecnologías, también nos da información acerca de cuán transparente o no es la atmósfera en dicha región en determinada época del año.

- Prácticamente la correlación en todas las regiones fue alta o muy alta; la desviación estándar promedio para las clasificaciones de ISODATA, coeficientes de Pearson y Spearman y Cluster fue de 0.0312, 0.0381 y 0.0322 respectivamente, mientras que la desviación estándar promedio de todas las estaciones fue de 0.0667. La región Noroeste fue la que obtuvo una correlación menos alta; siendo en la clasificación de Cluster donde se logró la mejor correlación con una desviación estándar de 0.0377 (figura 3.22).
- El nivel de transparencia atmosférica puede variar mucho aún en estaciones muy cercanas entre sí. Sin embargo, también se mostró que regiones con una gran extensión de terreno (como la región Este que abarca desde Tamaulipas hasta Yucatán o la región central, figura 3.18) pueden tener buenos valores de correlación entre sí.
- Desde luego podemos decir que si se hubiesen tenido más estaciones para analizar y mejor distribuidas a lo largo de la República se hubiese podido realizar un análisis más preciso y confiable de las distintas regiones de transparencia atmosférica. Sin embargo, como se puede constatar en [22] la calidad de los datos no es buena debido a múltiples errores en las mediciones que van desde la mala calibración de los instrumentos, pasando por la mala ubicación de las estaciones (pues algunas presentan sombreado de manera constante) hasta grandes periodos de falta de datos o "huecos".
- La técnica ISODATA es una herramienta poderosa que permite hacer regionalizaciones de determinado territorio debido al número importante de parámetros que toma en cuenta. Prueba de esto se encuentra en [3] así como en este trabajo. Sin embargo, las regiones que arroja pueden contener zonas muy lejanas entre sí (como se puede observar en la figura 2.3. Es por eso que en [3] se decidió dividir la región 4 en 4 Noreste y 4 Sureste y la región 5 en 5 Norte, 5 Centro-Pacífico y 5 Sureste.
- De la tabla 4.2 podemos observar que en general las desviaciones estándar de cada región de la clasificación obtenida por ISODATA son menores que las de las regiones obtenidas por los otros dos métodos, lo cual podría suponer que dicha clasificación sea la más adecuada. Sin embargo, se debe notar que se tienen más regiones en dicha clasificación y por ende menos estaciones por región. Por lo tanto, es lógico dicho resultado. Así pues no podemos decir que dicha clasificación sea más o menos adecuada. El número de regiones que tenga la regionalización, dependerá del objetivo de la misma.
- Las clasificaciones obtenidas por el análisis de los coeficientes de correlación de Pearon y Spearman y por el análisis de Cluster arrojaron regiones muy similares con unas cuantas estaciones de diferencia, lo cual valida ambos métodos.
- Los valores de la desviación estándar de los valores de los ITM's de las clasificaciones de Cluster y de los coeficientes de correlación son similares, sin embargo como se mostró en la sección 4.1 en general las desviaciones son menores en la clasificación de Cluster que en la de los coeficientes de correlación. Por otro lado, es mucho más sencillo realizar la clasificación del

análisis de Cluster que el de los coeficientes puesto que en el primero, únicamente se corre el programa (cuyo proceso tiene una duración de unos cuantos segundos) y la clasificación se arroja instantáneamente. En el caso del análisis de los coeficientes de correlación se corrió un programa para obtener los coeficientes de correlación de Pearson que ordenara para cada estación sus coeficientes de correlación con las demás estaciones de mayor a menor (tabla A) y otro programa para los coeficientes de correlación de Spearman arrojara la tabla (tabla B) que ordenara los índices de la misma manera; y hecho esto se tuvo que analizar uno por uno dichos coeficientes y elaborar la clasificación manualmente.

- Por lo anterior el análisis de Cluster resulta mucho más eficiente y efectivo que el análisis de los coeficientes de correlación de Pearson y Spearman. Sin embargo también resultaría de utilidad contar con dichos coeficientes (los programas que los arrojan también tienen una duración de proceso de unos cuantos segundos) por si por alguna razón se quisiera modificar la clasificación de Cluster de manera manual, como se podría hacer para modificar la región Centro-Pacífico de la clasificación de Cluster, cuyo caso se comentó en la sección anterior.
- Se debe destacar la importancia de la aplicación de la estadística y en particular del análisis multivariado a este tipo de problemas. En partícular el objetivo del análisis de Cluster tiene como objetivo precisamente la clasificación de objetos con características similares. La teoría desarrollada es muy extensa y existe una amplia bibliografía al respecto. La utilidad del análisis multivariado ha sido probada en un gran número de casos en campos que van desde la Física y la Biología hasta la Economía y fenómenos empresariales.

4.2.1. Trabajo a futuro

Resulta de gran utilidad contar con un índice de transparencia para la mañana, medio día y tarde, en vez de un índice diario. Esto nos daría información acerca del comportamiento de la transparencia atmosférica a lo largo del día. Se recomienda la obtención de dichos índices para la continuación de este trabajo.

En realidad, resulta mucho más conveniente elaborar una regionalización de toda la República Mexicana que una clasificación de unas cuantas estaciones. Queda para elaborar en un futuro dicha regionalización, para lo cual, es necesario investigar acerca del método apropiado y elaborar una interpolación de la clasificación de las estaciones, para tener, en efecto, una regionalización de la República Mexicana y saber, dado cualquier punto de la misma, a qué región pertenece.

Apéndice A. Coeficientes de Correlación de Pearson

Tabla A. Correlación de Pearson de las 35 Estaciones Meteorológicas Automáticas. Para cada estación se presentan los coeficientes de correlación de Pearson de dicha estación con el resto de las estaciones ordenados de mayor a menor.

	Altamira		Bahía Kino		Bahía Ángeles		Cd. Const.		Mexicali
Altamira	1	Bahía Kino	1	B. Ángeles	1	Cd. Const.	1	Mexicali	1
Matamoros	0.920	Sta. Rosalía	0.649	Mexicali	0.916	B. Ángeles	0.802	B. Ángeles	0.916
Psa. Cuchillo	0.906	Mexicali	0.582	Sta. Rosalía	0.813	Mexicali	0.723	Altamira	0.835
Mexicali	0.835	B. Ángeles	0.563	Cd. Const.	0.802	Sta. Rosalía	0.707	Matamoros	0.797
B. Ángeles	0.706	Chinipas	0.522	Altamira	0.706	Altamira	0.585	Cd. Const.	0.723
Cd. Alemán	0.698	Cd. Alemán	0.456	Cd. Alemán	0.672	Matamoros	0.532	Psa. Cuchillo	0.713
Cd. Carmen	0.656	Altamira	0.420	Matamoros	0.567	Cd. Carmen	0.483	Cd. Alemán	0.712
Cd. Const.	0.585	Psa. Cuchillo	0.414	Bahía Kino	0.563	Psa. Cuchillo	0.477	Sta. Rosalía	0.599
Bahía Kino	0.420	Matamoros	0.356	San Quintín	0.558	Cd. Alemán	0.471	Bahía Kino	0.582
Sta. Rosalía	0.354	Cd. Const.	0.345	Cd. Carmen	0.535	Álamos	0.382	Cd. Carmen	0.576
V. Carranza	0.296	Álamos	0.308	Psa. Cuchillo	0.518	Bahía Kino	0.345	San Quintín	0.559
San Quintín	0.254	San Quintín	0.305	Chinipas	0.394	San Quintín	0.332	Chetumal	0.231
Monclova	0.147	Nogales	0.302	Chetumal	0.367	Chinipas	0.303	Chinipas	0.168
Campeche	0.137	Chetumal	0.229	R. Colorado	0.346	V. Carranza	0.146	Campeche	0.162
Chetumal	-0.011	Dzilam	0.226	Álamos	0.293	Chetumal	0.100	V. Carranza	0.130
R. Colorado	-0.065	Urique	0.223	Campeche	0.291	Urique	0.083	R. Colorado	0.114
Dzilam	-0.156	Cd. Carmen	0.166	V. Carranza	0.254	Campeche	0.079	Álamos	0.041
Chinipas	-0.175	Yohaltum	0.128	Urique	0.252	R. Colorado	0.008	Urique	-0.012
Álamos	-0.200	R. Colorado	0.122	Nogales	0.112	Nogales	-0.074	Monclova	-0.055
Nogales	-0.373	Monclova	0.109	Angamacutiro	-0.047	Sn. Juan Gpe	-0.075	Nogales	-0.139
Urique	-0.373	Campeche	0.025	Psa. Allende	-0.063	Dzilam	-0.084	Dzilam	-0.172
Psa. Allende	-0.379	Tizapan	0.009	Dzilam	-0.073	Pachuca	-0.136	Psa. Allende	-0.291
Angamacutiro	-0.495	Maguarichi	-0.007	Yohaltum	-0.098	Cd. Cuauht	-0.168	Yohaltum	-0.327
Yohaltum	-0.519	Angamacutiro	-0.056	Pachuca	-0.107	Yohaltum	-0.177	Angamacutiro	-0.362
Pachuca	-0.575	Psa. Allende	-0.073	Tizapan	-0.170	Angamacutiro	-0.178	Pachuca	-0.397
Zacatecas	-0.612	Cd. Cuauht	-0.104	Cd. Cuauht	-0.171	CuatroCiene.	-0.192	Tizapan	-0.444
Tizapan	-0.666	Jocotepec	-0.177	Sn. Juan Gpe	-0.180	Maguarichi	-0.203	Sn. Juan Gpe	-0.455
Sn. Juan Gpe	-0.672	Pachuca	-0.220	Maguarichi	-0.200	Psa. Allende	-0.250	Cd. Cuauht	-0.461
Maguarichi	-0.682	Tlapa	-0.228	Monclova	-0.213	UNITEC	-0.260	Maguarichi	-0.465
Cd. Cuauht	-0.683	Sn. Juan Gpe	-0.229	UNITEC	-0.337	Tizapan	-0.299	UNITEC	-0.606
CuatroCiene.	-0.710	V. Carranza	-0.243	Zacatecas	-0.373	Monclova	-0.305	Zacatecas	-0.634
UNITEC	-0.731	Zacatecas	-0.278	Jocotepec	-0.390	Pto Ángel	-0.339	Jocotepec	-0.642
Tlapa	-0.764	CuatroCiene.	-0.380	CuatroCiene.	-0.406	Tlapa	-0.355	CuatroCiene.	-0.650
Jocotepec	-0.779	UNITEC	-0.469	Tlapa	-0.415	Zacatecas	-0.411	Tlapa	-0.664
Pto Ángel	-0.783	Pto Ángel	-0.611	Pto Ángel	-0.513	Jocotepec	-0.445	Pto Ángel	-0.744

	R. Colorado		San Quintín		Sta. Rosalía		Matamoros		Psa. Cuchillo
R. Colorado	1	San Quintín	1	Sta. Rosalía	1	Matamoros	1	Psa. Cuchillo	1
Nogales	0.734	Cd. Alemán	0.780	B. Ángeles	0.813	Psa. Cuchillo	0.945	Matamoros	0.945
Campeche	0.594	Chetumal	0.690	Chinipas	0.767	Altamira	0.920	Altamira	0.906
Urique	0.584	Mexicali	0.559	Álamos	0.728	Mexicali	0.797	Mexicali	0.713
Tizapan	0.573	B. Ángeles	0.558	Cd. Const.	0.707	Cd. Alemán	0.629	Cd. Alemán	0.618
Angamacutiro	0.509	Cd. Carmen	0.555	Bahía Kino	0.649	Cd. Carmen	0.601	Cd. Carmen	0.608
Chetumal	0.484	Campeche	0.444	Urique	0.602	B. Ángeles	0.567	B. Ángeles	0.518
Yohaltum	0.474	Sta. Rosalía	0.361	Mexicali	0.599	Cd. Const.	0.532	Cd. Const.	0.477
Jocotepec	0.459	Cd. Const.	0.332	Nogales	0.520	Bahía Kino	0.356	Bahía Kino	0.414
Maguarichi	0.458	Bahía Kino	0.305	R. Colorado	0.399	San Quintín	0.270	San Quintín	0.213
Cd. Cuauht	0.455	Psa. Allende	0.301	Cd. Alemán	0.393	Monclova	0.146	Monclova	0.175
Psa. Allende	0.417	Matamoros	0.270	San Quintín	0.361	Sta. Rosalía	0.136	V. Carranza	0.147
Chinipas	0.411	Urique	0.268	Altamira	0.354	V. Carranza	0.084	Sta. Rosalía	0.135
Sta. Rosalía	0.399	Altamira	0.254	Chetumal	0.334	Campeche	-0.020	Campeche	-0.073
Pachuca	0.379	Psa. Cuchillo	0.213	Yohaltum	0.311	Chetumal	-0.123	Chetumal	-0.151
V. Carranza	0.377	Monclova	0.194	Maguarichi	0.308	R. Colorado	-0.247	Dzilam	-0.252
Sn. Juan Gpe	0.353	Angamacutiro	0.171	Tizapan	0.279	Chinipas	-0.294	Chinipas	-0.318
Álamos	0.348	Pachuca	0.167	Dzilam	0.273	Dzilam	-0.312	R. Colorado	-0.334
B. Ángeles	0.346	Dzilam	0.163	Angamacutiro	0.262	Álamos	-0.314	Álamos	-0.345
UNITEC	0.339	Álamos	0.149	Campeche	0.247	Urique	-0.564	Psa. Allende	-0.555
Zacatecas	0.297	V. Carranza	0.142	Cd. Cuauht	0.234	Nogales	-0.585	Nogales	-0.601
Tlapa	0.293	R. Colorado	0.121	Pachuca	0.213	Psa. Allende	-0.613	Urique	-0.606
Pto Ángel	0.169	Yohaltum	0.101	Sn. Juan Gpe	0.197	Yohaltum	-0.683	Angamacutiro	-0.639
Bahía Kino	0.122	UNITEC	0.064	Psa. Allende	0.188	Angamacutiro	-0.718	Zacatecas	-0.654
San Quintín	0.121	Chinipas	0.050	Cd. Carmen	0.163	Pachuca	-0.751	Yohaltum	-0.697
CuatroCiene.	0.120	Zacatecas	0.037	Matamoros	0.136	Zacatecas	-0.762	Pachuca	-0.721
Mexicali	0.114	Tizapan	-0.009	Psa. Cuchillo	0.135	Maguarichi	-0.822	CuatroCiene.	-0.790
Cd. Alemán	0.072	Cd. Cuauht	-0.051	Jocotepec	0.060	UNITEC	-0.824	Tizapan	-0.806
Dzilam	0.050	Nogales	-0.058	V. Carranza	0.053	Sn. Juan Gpe	-0.827	UNITEC	-0.827
Cd. Carmen	0.024	Jocotepec	-0.102	Tlapa	0.008	Tizapan	-0.840	Sn. Juan Gpe	-0.838
Cd. Const.	0.008	Sn. Juan Gpe	-0.109	CuatroCiene.	-0.003	CuatroCiene.	-0.853	Maguarichi	-0.842
Altamira	-0.065	Tlapa	-0.119	UNITEC	-0.070	Cd. Cuauht	-0.854	Cd. Cuauht	-0.844
Monclova	-0.165	Maguarichi	-0.145	Zacatecas	-0.085	Pto Ángel	-0.859	Pto Ángel	-0.848
Matamoros	-0.247	Pto Ángel	-0.166	Pto Ángel	-0.221	Tlapa	-0.907	Tlapa	-0.862
Psa. Cuchillo	-0.334	CuatroCiene.	-0.308	Monclova	-0.226	Jocotepec	-0.914	Jocotepec	-0.872

	V. Carranza		Cd. Cuauht.		Chinipas		Maguarichi		Urique
V. Carranza	1	Cd. Cuauht	1	Chinipas	1	Maguarichi	1	Urique	1
Cd. Carmen	0.522	Tlapa	0.946	Álamos	0.802	Jocotepec	0.892	Maguarichi	0.859
Campeche	0.429	Sn. Juan Gpe	0.941	Sta. Rosalía	0.767	Yohaltum	0.892	Yohaltum	0.859
R. Colorado	0.377	Maguarichi	0.891	Urique	0.752	Tizapan	0.892	Tizapan	0.815
Cd. Alemán	0.343	Yohaltum	0.888	Nogales	0.688	Cd. Cuauht	0.891	Cd. Cuauht	0.815
Psa. Allende	0.307	Pachuca	0.886	Maguarichi	0.676	Urique	0.859	Pachuca	0.809
Altamira	0.296	Angamacutiro	0.881	Tizapan	0.526	Tlapa	0.826	Nogales	0.803
B. Ángeles	0.254	Jocotepec	0.863	Bahía Kino	0.522	Nogales	0.809	Angamacutiro	0.773
Angamacutiro	0.236	Tizapan	0.859	Yohaltum	0.522	Pachuca	0.803	Chinipas	0.752
Zacatecas	0.217	UNITEC	0.852	Cd. Cuauht	0.488	Sn. Juan Gpe	0.782	Álamos	0.722
Chetumal	0.212	CuatroCiene.	0.831	R. Colorado	0.411	Angamacutiro	0.754	Jocotepec	0.721
UNITEC	0.198	Pto Ángel	0.816	Sn. Juan Gpe	0.404	Álamos	0.705	Psa. Allende	0.718
CuatroCiene.	0.179	Urique	0.815	B. Ángeles	0.394	UNITEC	0.683	Sn. Juan Gpe	0.684
Psa. Cuchillo	0.147	Psa. Allende	0.767	Jocotepec	0.366	Chinipas	0.676	Tlapa	0.644
Cd. Const.	0.146	Zacatecas	0.762	Pachuca	0.359	CuatroCiene.	0.674	Chetumal	0.623
San Quintín	0.142	Nogales	0.740	Angamacutiro	0.355	Pto Ángel	0.671	Sta. Rosalía	0.602
Mexicali	0.130	Chinipas	0.488	Cd. Const.	0.303	Psa. Allende	0.645	R. Colorado	0.584
Pto Ángel	0.127	Álamos	0.473	Tlapa	0.267	Zacatecas	0.621	Dzilam	0.577
Sn. Juan Gpe	0.125	Dzilam	0.473	Dzilam	0.265	Dzilam	0.574	UNITEC	0.556
Pachuca	0.102	Chetumal	0.462	Chetumal	0.192	R. Colorado	0.458	Zacatecas	0.480
Matamoros	0.084	R. Colorado	0.455	CuatroCiene.	0.189	Chetumal	0.319	Campeche	0.475
Nogales	0.067	Campeche	0.302	Psa. Allende	0.170	Sta. Rosalía	0.308	CuatroCiene.	0.461
Tizapan	0.066	Sta. Rosalía	0.234	Mexicali	0.168	Campeche	0.267	Pto Ángel	0.452
Tlapa	0.061	V. Carranza	0.040	UNITEC	0.122	Bahía Kino	-0.007	San Quintín	0.268
Sta. Rosalía	0.053	San Quintín	-0.051	Zacatecas	0.063	Monclova	-0.042	B. Ángeles	0.252
Cd. Cuauht	0.040	Bahía Kino	-0.104	San Quintín	0.050	San Quintín	-0.145	Bahía Kino	0.223
Jocotepec	0.027	Monclova	-0.137	Pto Ángel	0.031	B. Ángeles	-0.200	Cd. Const.	0.083
Monclova	-0.035	Cd. Const.	-0.168	Campeche	0.003	Cd. Const.	-0.203	Mexicali	-0.012
Urique	-0.081	B. Ángeles	-0.171	Cd. Alemán	-0.136	V. Carranza	-0.239	Monclova	-0.031
Yohaltum	-0.104	Cd. Carmen	-0.268	Altamira	-0.175	Cd. Alemán	-0.444	Cd. Alemán	-0.064
Dzilam	-0.140	Cd. Alemán	-0.332	Matamoros	-0.294	Mexicali	-0.465	V. Carranza	-0.081
Maguarichi	-0.239	Mexicali	-0.461	Psa. Cuchillo	-0.318	Cd. Carmen	-0.497	Cd. Carmen	-0.160
Álamos	-0.239	Altamira	-0.683	Monclova	-0.358	Altamira	-0.682	Altamira	-0.373
Bahía Kino	-0.243	Psa. Cuchillo	-0.844	Cd. Carmen	-0.385	Matamoros	-0.822	Matamoros	-0.564
Chinipas	-0.421	Matamoros	-0.854	V. Carranza	-0.421	Psa. Cuchillo	-0.842	Psa. Cuchillo	-0.606

Sn. Juan Gpe	en 0.817 In 0.780 Ili 0.712
Cd. Cuauht 0.941 Sn. Juan Gpe 0.926 Chinipas 0.802 Tizapan 0.886 Cd. Carme Cuatro Ciene. 0.926 Tlapa 0.876 Sta. Rosalía 0.728 Maguarichi 0.809 San Quint Tlapa 0.895 Pto Ángel 0.849 Urique 0.722 Urique 0.803 Mexice UNITEC 0.834 Cd. Cuauht 0.831 Maguarichi 0.705 Jocotepec 0.757 Altami Pto Ángel 0.818 UNITEC 0.787 Nogales 0.638 Cd. Cuauht 0.740 B. Ángel Maguarichi 0.782 Jocotepec 0.745 Tizapan 0.594 Yohaltum 0.738 Matamor Tizapan 0.775 Tizapan 0.703 Yohaltum 0.572 R. Colorado 0.734 Psa. Cuchil Pachuca 0.764 Pachuca 0.6675 Jocotepec 0.502 Chinipas 0.688 Chetum Jocotepec 0.762 Maguarichi 0.674<	en 0.817 In 0.780 Ili 0.712
Cuatro Ciene. 0.926 Tlapa 0.876 Sta. Rosalía 0.728 Maguarichi 0.809 San Quint Tlapa 0.895 Pto Ángel 0.849 Urique 0.722 Urique 0.803 Mexica UNITEC 0.834 Cd. Cuauht 0.831 Maguarichi 0.705 Jocotepec 0.757 Altami Pto Ángel 0.818 UNITEC 0.787 Nogales 0.638 Cd. Cuauht 0.740 B. Ángel Maguarichi 0.782 Jocotepec 0.745 Tizapan 0.594 Yohaltum 0.738 Matamor Tizapan 0.775 Tizapan 0.703 Yohaltum 0.572 R. Colorado 0.734 Psa. Cuchil Pachuca 0.764 Pachuca 0.675 Jocotepec 0.502 Chinipas 0.688 Chetum Jocotepec 0.732 Zacatecas 0.647 Pachuca 0.484 Álamos 0.638 Camped	in 0.780 li 0.712
Tlapa	li 0.712
UNITEC 0.834 Cd. Cuauht 0.831 Maguarichi 0.705 Jocotepec 0.757 Altami Pto Ángel 0.818 UNITEC 0.787 Nogales 0.638 Cd. Cuauht 0.740 B. Ángel Maguarichi 0.782 Jocotepec 0.745 Tizapan 0.594 Yohaltum 0.738 Matamor Tizapan 0.775 Tizapan 0.703 Yohaltum 0.572 R. Colorado 0.734 Psa. Cuchil Pachuca 0.764 Pachuca 0.675 Jocotepec 0.502 Chinipas 0.688 Chetum Jocotepec 0.762 Maguarichi 0.674 Dzilam 0.499 Sn. Juan Gpe 0.666 Cd. Cons Angamacutiro 0.732 Zacatecas 0.647 Pachuca 0.484 Álamos 0.638 Camped	
Pto Ángel 0.818 UNITEC 0.787 Nogales 0.638 Cd. Cuauht 0.740 B. Ángel Maguarichi 0.782 Jocotepec 0.745 Tizapan 0.594 Yohaltum 0.738 Matamor Tizapan 0.775 Tizapan 0.703 Yohaltum 0.572 R. Colorado 0.734 Psa. Cuchil Pachuca 0.764 Pachuca 0.675 Jocotepec 0.502 Chinipas 0.688 Chetum Jocotepec 0.762 Maguarichi 0.674 Dzilam 0.499 Sn. Juan Gpe 0.666 Cd. Cons Angamacutiro 0.732 Zacatecas 0.647 Pachuca 0.484 Álamos 0.638 Camped	
Maguarichi 0.782 Jocotepec 0.745 Tizapan 0.594 Yohaltum 0.738 Matamor Tizapan 0.775 Tizapan 0.703 Yohaltum 0.572 R. Colorado 0.734 Psa. Cuchil Pachuca 0.764 Pachuca 0.675 Jocotepec 0.502 Chinipas 0.688 Chetum Jocotepec 0.762 Maguarichi 0.674 Dzilam 0.499 Sn. Juan Gpe 0.666 Cd. Cons Angamacutiro 0.732 Zacatecas 0.647 Pachuca 0.484 Álamos 0.638 Camped	
Tizapan 0.775 Tizapan 0.703 Yohaltum 0.572 R. Colorado 0.734 Psa. Cuchil Pachuca 0.764 Pachuca 0.675 Jocotepec 0.502 Chinipas 0.688 Chetum Jocotepec 0.762 Maguarichi 0.674 Dzilam 0.499 Sn. Juan Gpe 0.666 Cd. Cons Angamacutiro 0.732 Zacatecas 0.647 Pachuca 0.484 Álamos 0.638 Camped	
Pachuca 0.764 Pachuca 0.675 Jocotepec 0.502 Chinipas 0.688 Chetum Jocotepec 0.762 Maguarichi 0.674 Dzilam 0.499 Sn. Juan Gpe 0.666 Cd. Cons Angamacutiro 0.732 Zacatecas 0.647 Pachuca 0.484 Álamos 0.638 Camped	
Jocotepec 0.762 Maguarichi 0.674 Dzilam 0.499 Sn. Juan Ĝpe 0.666 Cd. Cons Angamacutiro 0.732 Zacatecas 0.647 Pachuca 0.484 Álamos 0.638 Camped	
Angamacutiro 0.732 Zacatecas 0.647 Pachuca 0.484 Álamos 0.638 Camped	
	t. 0.471
37 1 14 0 719 A	ne 0.460
Yohaltum 0.713 Angamacutiro 0.635 Cd. Cuauht 0.473 Tlapa 0.621 Bahía Kir	ю 0.456
Urique 0.684 Yohaltum 0.560 Angamacutiro 0.418 Angamacutiro 0.619 Sta. Rosal	ía 0.393
Nogales 0.666 Psa. Allende 0.544 Sn. Juan Gpe 0.406 Psa. Allende 0.536 V. Carrans	
Zacatecas 0.639 Nogales 0.513 Cd. Const. 0.382 Pachuca 0.531 Monclo	
Psa. Allende 0.618 Urique 0.461 Tlapa 0.350 Sta. Rosalía 0.520 Dzila	m 0.129
Álamos 0.406 Álamos 0.285 R. Colorado 0.348 CuatroCiene. 0.513 Psa. Alleno	le 0.115
Chinipas 0.404 Dzilam 0.240 Psa. Allende 0.316 UNITEC 0.424 R. Colorad	lo 0.072
R. Colorado 0.353 Chinipas 0.189 Bahía Kino 0.308 Zacatecas 0.389 Angamacuti:	o -0.027
Chetumal 0.257 V. Carranza 0.179 B. Ángeles 0.293 Dzilam 0.360 Álam	os -0.038
Dzilam 0.254 R. Colorado 0.120 CuatroCiene. 0.285 Pto Ángel 0.325 Uriqu	ie -0.064
Sta. Rosalía 0.197 Chetumal 0.018 UNITEC 0.282 Chetumal 0.305 Yohaltu	m -0.102
V. Carranza 0.125 Sta. Rosalía -0.003 Campeche 0.254 Bahía Kino 0.302 Zacatec.	as -0.102
Campeche 0.100 Campeche -0.047 Chetumal 0.227 Campeche 0.300 Chinip.	as -0.136
Cd. Const0.075	a -0.146
San Quintín -0.109 Monclova -0.279 Pto Ángel 0.200 V. Carranza 0.067 Nogal	es -0.217
B. Ángeles -0.180 San Quintín -0.308 San Quintín 0.149 San Quintín -0.058 UNITE	C -0.234
Bahía Kino -0.229 Bahía Kino -0.380 Mexicali 0.041 Cd. Const0.074 Cd. Cuau	
Cd. Carmen -0.325 Cd. Carmen -0.394 Cd. Alemán -0.038 Mexicali -0.139 Tizapa	
Monclova -0.350 B. Ángeles -0.406 Monclova -0.091 Monclova -0.146 Tla	
Cd. Alemán -0.388 Cd. Alemán -0.525 Altamira -0.200 Cd. Alemán -0.217 Sn. Juan G	
Mexicali -0.455 Mexicali -0.650 V. Carranza -0.239 Cd. Carmen -0.369 Jocotep	
Altamira -0.672 Altamira -0.710 Cd. Carmen -0.251 Altamira -0.373 Pto Ang	
Matamoros -0.827 Psa Cuchillo -0.790 Matamoros -0.314 Matamoros -0.585 Maguaric	
Psa, Cuchillo -0.838 Matamoros -0.853 Psa, Cuchillo -0.345 Psa, Cuchillo -0.601 CuatroCien	

	Cd. Carmen		Chetumal		Monclova		Yohaltum		Campeche
Cd. Carmen	1	Chetumal	1	Monclova	1	Yohaltum	1	Campeche	1
Cd. Carmen Cd. Alemán	0.817	Campeche	0.818	Dzilam	0.695	Maguarichi	0.892	Chetumal	0.818
Altamira	0.656	Psa. Allende	0.738	Campeche	0.539	Cd. Cuauht	0.888	Psa. Allende	0.677
Psa. Cuchillo	0.608	Angamacutiro	0.695	Chetumal	0.359	Angamacutiro	0.867	R. Colorado	0.594
Matamoros	0.601	San Quintín	0.690	Cd. Carmen	0.358	Urique	0.859	Angamacutiro	0.580
Mexicali	0.576	Yohaltum	0.642	Psa. Allende	0.355	Pachuca	0.856	Dzilam	0.574
Campeche	0.569	Pachuca	0.639	Cd. Alemán	0.309	Tlapa	0.849	Cd. Carmen	0.569
San Quintín	0.555	Urique	0.623	Yohaltum	0.237	Psa. Allende	0.830	Monclova	0.539
Chetumal	0.550	Cd. Carmen	0.550	San Quintín	0.194	Jocotepec	0.825	Pachuca	0.538
B. Ángeles	0.535	Dzilam	0.537	Zacatecas	0.185	Tizapan	0.810	Yohaltum	0.537
V. Carranza	0.522	Cd. Alemán	0.533	Psa. Cuchillo	0.175	Dzilam	0.756	Urique	0.475
Cd. Const.	0.483	Zacatecas	0.520	Altamira	0.147	Nogales	0.738	Cd. Alemán	0.460
Monclova	0.358	R. Colorado	0.484	Matamoros	0.146	Zacatecas	0.736	Zacatecas	0.451
Bahía Kino	0.166	Cd. Cuauht	0.462	Bahía Kino	0.109	Sn. Juan Gpe	0.713	San Quintín	0.444
Sta. Rosalía	0.163	UNITEC	0.454	Pachuca	0.102	UNITEC	0.709	V. Carranza	0.429
Psa. Allende	0.133	Tlapa	0.373	Angamacutiro	0.101	Chetumal	0.642	UNITEC	0.358
Dzilam	0.119	B. Ángeles	0.367	Jocotepec	0.085	Pto Ángel	0.640	Jocotepec	0.340
Angamacutiro	0.028	Tizapan	0.360	Tlapa	0.015	Álamos	0.572	Tizapan	0.321
R. Colorado	0.024	Monclova	0.359	Urique	-0.031	CuatroCiene.	0.560	Cd. Cuauht	0.302
Zacatecas	-0.032	Jocotepec	0.338	V. Carranza	-0.035	Campeche	0.537	Nogales	0.300
Pachuca	-0.049	Sta. Rosalía	0.334	Tizapan	-0.040	Chinipas	0.522	B. Ángeles	0.291
Yohltum	-0.126	Maguarichi	0.319	Maguarichi	-0.042	R. Colorado	0.474	Maguarichi	0.267
UNITEC	-0.132	Nogales	0.305	Mexicali	-0.055	Sta. Rosalía	0.311	Tlapa	0.259
Urique	-0.160	Pto Ángel	0.265	Pto Ángel	-0.058	Monclova	0.237	Álamos	0.254
Pto Ángel	-0.239	Sn. Juan Gpe	0.257	UNITEC	-0.090	Bahía Kino	0.128	Sta. Rosalía	0.247
Álamos	-0.251	Mexicali	0.231	Álamos	-0.091	San Quintín	0.101	Pto Ángel	0.232
Cd. Cuauht	-0.268	Bahía Kino	0.229	Cd. Cuauht	-0.137	B. Ángeles	-0.098	Mexicali	0.162
Tlapa	-0.290	Álamos	0.227	Nogales	-0.146	Cd. Alemán	-0.102	Altamira	0.137
Sn. Juan Gpe	-0.325	V. Carranza	0.212	R. Colorado	-0.165	V. Carranza	-0.104	Sn. Juan Gpe	0.100
Nogales	-0.369	Chinipas	0.192	B. Ángeles	-0.213	Cd. Carmen	-0.126	Cd. Const.	0.079
Chinipas	-0.385	Cd. Const.	0.100	Sta. Rosalía	-0.226	Cd. Const.	-0.177	Bahía Kino	0.025
CuatroCiene.	-0.394	CuatroCiene.	0.018	CuatroCiene.	-0.279	Mexicali	-0.327	Chinipas	0.003
Tizapan	-0.433	Altamira	-0.011	Cd. Const.	-0.305	Altamira	-0.519	Matamoros	-0.020
Jocotepec	-0.439	Matamoros	-0.123	Sn. Juan Gpe	-0.350	Matamoros	-0.683	CuatroCiene.	-0.047
Maguarichi	-0.497	Psa. Cuchillo	-0.151	Chinipas	-0.358	Psa. Cuchillo	-0.697	Psa. Cuchillo	-0.073

	Dzilam		Anga- macutiro		Jocotepec		Pachuca		Psa. Allende
Dzilam	1	Angamacutiro	1	Jocotepec	1	Pachuca	1	Psa. Allende	1
Yohaltum	0.756	Pachuca	0.943	Tizapan	0.959	Angamacutiro	0.943	Angamacutiro	0.929
Psa. Allende	0.718	Psa. Allende	0.929	Tlapa	0.893	Psa. Allende	0.894	Pachuca	0.894
Monclova	0.695	Zacatecas	0.904	Maguarichi	0.892	Cd. Cuauht	0.886	Zacatecas	0.846
Pachuca	0.639	Cd. Cuauht	0.881	Cd. Cuauht	0.863	UNITEC	0.867	Yohaltum	0.830
Angamacutiro	0.609	Yohaltum	0.867	Yohaltum	0.825	Yohaltum	0.856	Tlapa	0.789
Urique	0.577	Tlapa	0.857	Pachuca	0.819	Tlapa	0.852	Jocotepec	0.768
Maguarichi	0.574	UNITEC	0.835	Angamacutiro	0.818	Zacatecas	0.840	Cd. Cuauht	0.767
Campeche	0.574	Jocotepec	0.818	UNITEC	0.789	Pto Ángel	0.828	UNITEC	0.751
Chetumal	0.537	Tizapan	0.793	Zacatecas	0.784	Jocotepec	0.819	Chetumal	0.738
Jocotepec	0.535	Urique	0.773	Pto Ángel	0.769	Urique	0.809	Tizapan	0.735
Zacatecas	0.532	Maguarichi	0.754	Psa. Allende	0.768	Maguarichi	0.803	Dzilam	0.718
Tlapa	0.518	Pto Ángel	0.745	Sn. Juan Gpe	0.762	Tizapan	0.766	Urique	0.718
Álamos	0.499	Sn. Juan Gpe	0.732	Nogales	0.757	Sn. Juan Gpe	0.764	Campeche	0.677
Cd. Cuauht	0.473	Chetumal	0.695	CuatroCiene.	0.745	CuatroCiene.	0.675	Pto Ángel	0.670
Tizapan	0.473	CuatroCiene.	0.635	Urique	0.721	Chetumal	0.639	Maguarichi	0.645
Nogales	0.360	Nogales	0.619	Dzilam	0.535	Dzilam	0.639	Sn. Juan Gpe	0.618
Pto Ángel	0.338	Dzilam	0.609	Álamos	0.502	Campeche	0.538	CuatroCiene.	0.544
UNITEC	0.334	Campeche	0.580	R. Colorado	0.459	Nogales	0.531	Nogales	0.536
Sta. Rosalía	0.273	R. Colorado	0.509	Chinipas	0.366	Álamos	0.484	R. Colorado	0.417
Chinipas	0.265	Álamos	0.418	Campeche	0.340	R. Colorado	0.379	Monclova	0.355
Sn. Juan Gpe	0.254	Chinipas	0.355	Chetumal	0.338	Chinipas	0.359	Álamos	0.316
CuatroCiene.	0.240	Sta. Rosalía	0.262	Monclova	0.085	Sta. Rosalía	0.213	V. Carranza	0.307
Bahía Kino	0.226	V. Carranza	0.236	Sta. Rosalía	0.060	San Quintín	0.167	San Quintín	0.301
San Quintín	0.163	San Quintín	0.171	V. Carranza	0.027	V. Carranza	0.102	Sta. Rosalía	0.188
Cd. Alemán	0.129	Monclova	0.101	San Quintín	-0.102	Monclova	0.102	Chinipas	0.170
Cd. Carmen	0.119	Cd. Carmen	0.028	Bahía Kino	-0.177	Cd. Carmen	-0.049	Cd. Carmen	0.133
R. Colorado	0.050	Cd. Alemán	-0.027	B. Ángeles	-0.390	B. Ángeles	-0.107	Cd. Alemán	0.115
B. Ángeles	-0.073	B. Ángeles	-0.047	Cd. Alemán	-0.427	Cd. Const.	-0.136	B. Ángeles	-0.063
Cd. Const.	-0.084	Bahía Kino	-0.056	Cd. Carmen	-0.439	Cd. Alemán	-0.146	Bahía Kino	-0.073
V. Carranza	-0.140	Cd. Const.	-0.178	Cd. Const.	-0.445	Bahía Kino	-0.220	Cd. Const.	-0.250
Altamira	-0.156	Mexicali	-0.362	Mexicali	-0.642	Mexicali	-0.397	Mexicali	-0.291
Mexicali	-0.172	Altamira	-0.495	Altamira	-0.779	Altamira	-0.575	Altamira	-0.379
Psa. Cuchillo	-0.252	Psa. Cuchillo	-0.639	Psa. Cuchillo	-0.872	Psa. Cuchillo	-0.721	Psa. Cuchillo	-0.555
Matamoros	-0.312	Matamoros	-0.718	Matamoros	-0.914	Matamoros	-0.751	Matamoros	-0.613

	Pto Ángel		Tizapan		Tlapa		UNITEC		Zacatecas
Pto Ángel	1	Tizapan	1	Tlapa	1	UNITEC	1	Zacatecas	1
UNITEC	0.954	Jocotepec	0.959	Cd. Cuauht	0.946	Pto Ángel	0.954	Angamacutiro	0.904
Tlapa	0.893	Maguarichi	0.892	UNITEC	0.899	Tlapa	0.899	UNITEC	0.884
CuatroCiene.	0.849	Nogales	0.886	Sn. Juan Gpe	0.895	Zacatecas	0.884	Tlapa	0.868
Zacatecas	0.836	Cd. Cuauht	0.859	Jocotepec	0.893	Pachuca	0.867	Psa. Allende	0.846
Pachuca	0.828	Tlapa	0.823	Pto Ángel	0.893	Cd. Cuauht	0.852	Pachuca	0.840
Sn. Juan Gpe	0.818	Urique	0.815	CuatroCiene.	0.876	Angamacutiro	0.835	Pto Ángel	0.836
Cd. Cuauht	0.816	Yohaltum	0.810	Zacatecas	0.868	Sn. Juan Gpe	0.834	Jocotepec	0.784
Jocotepec	0.769	Angamacutiro	0.793	Angamacutiro	0.857	Jocotepec	0.789	Cd. Cuauht	0.762
Angamacutiro	0.745	Sn. Juan Gpe	0.775	Pachuca	0.852	CuatroCiene.	0.787	Yohaltum	0.736
Maguarichi	0.671	Pachuca	0.766	Yohaltum	0.849	Psa. Allende	0.751	Tizapan	0.665
Psa. Allende	0.670	Psa. Allende	0.735	Maguarichi	0.826	Yohaltum	0.709	CuatroCiene.	0.647
Yohaltum	0.640	CuatroCiene.	0.703	Tizapan	0.823	Tizapan	0.693	Sn. Juan Gpe	0.639
Tizapan	0.627	UNITEC	0.693	Psa. Allende	0.789	Maguarichi	0.683	Maguarichi	0.621
Urique	0.452	Zacatecas	0.665	Urique	0.644	Urique	0.556	Dzilam	0.532
Dzilam	0.338	Pto Ángel	0.627	Nogales	0.621	Chetumal	0.454	Chetumal	0.520
Nogales	0.325	Álamos	0.594	Dzilam	0.518	Nogales	0.424	Urique	0.480
Chetumal	0.265	R. Colorado	0.573	Chetumal	0.373	Campeche	0.358	Campeche	0.451
Campeche	0.232	Chinipas	0.526	Álamos	0.350	R. Colorado	0.339	Nogales	0.389
Álamos	0.200	Dzilam	0.473	R. Colorado	0.293	Dzilam	0.334	R. Colorado	0.297
R. Colorado	0.169	Chetumal	0.360	Chinipas	0.267	Álamos	0.282	V. Carranza	0.217
V. Carranza	0.127	Campeche	0.321	Campeche	0.259	V. Carranza	0.198	Álamos	0.208
Chinipas	0.031	Sta. Rosalía	0.279	V. Carranza	0.061	Chinipas	0.122	Monclova	0.185
Monclova	-0.058	V. Carranza	0.066	Monclova	0.015	San Quintín	0.064	Chinipas	0.063
San Quintín	-0.166	Bahía Kino	0.009	Sta. Rosalía	0.008	Sta. Rosalía	-0.070	San Quintín	0.037
Sta. Rosalía	-0.221	San Quintín	-0.009	San Quintín	-0.119	Monclova	-0.090	Cd. Carmen	-0.032
Cd. Carmen	-0.239	Monclova	-0.040	Bahía Kino	-0.228	Cd. Carmen	-0.132	Sta. Rosalía	-0.085
Cd. Const.	-0.339	B. Ángeles	-0.170	Cd. Carmen	-0.290	Cd. Alemán	-0.234	Cd. Alemán	-0.102
Cd. Alemán	-0.439	Cd. Const.	-0.299	Cd. Const.	-0.355	Cd. Const.	-0.260	Bahía Kino	-0.278
B. Ángeles	-0.513	Cd. Alemán	-0.339	Cd. Alemán	-0.355	B. Ángeles	-0.337	B. Ángeles	-0.373
Bahía Kino	-0.611	Cd. Carmen	-0.433	B. Ángeles	-0.415	Bahía Kino	-0.469	Cd. Const.	-0.411
Mexicali	-0.744	Mexicali	-0.444	Mexicali	-0.664	Mexicali	-0.606	Altamira	-0.612
Altamira	-0.783	Altamira	-0.666	Altamira	-0.764	Altamira	-0.731	Mexicali	-0.634
Psa. Cuchillo	-0.848	Psa. Cuchillo	-0.806	Psa. Cuchillo	-0.862	Matamoros	-0.824	Psa. Cuchillo	-0.654
Matamoros	-0.859	Matamoros	-0.840	Matamoros	-0.907	Psa. Cuchillo	-0.827	Matamoros	-0.762

Apéndice B. Coeficientes de Correlación de Spearman

Tabla B. Coeficientes de Correlación de Spearman de las 35 estaciones. Para cada estación se presentan los coeficientes de correlación de Spearman de dicha estación con el resto de las estaciones ordenados de mayor a menor.

	Altamira		Bahía Kino		Bahía Ángeles		Cd. Const.		Mexicali
Altamira	1	Bahía Kino	1	B. Ángeles	1	Cd. Const.	1	Mexicali	1
Dzilam	0.524	Matamoros	0.392	San Quintín	0.738	Mexicali	0.825	Cd. Const.	0.825
R. Colorado	0.343	Sta. Rosalía	0.385	Maguarichi	0.378	Yohaltum	0.636	Sta. Rosalía	0.587
Cd. Carmen	0.322	Psa. Cuchillo	0.350	Cd. Alemán	0.259	Monclova	0.416	Monclova	0.430
Pto Ángel	0.294	Tizapan	0.273	Psa. Allende	0.140	Tizapan	0.399	Zacatecas	0.259
Jocotepec	0.238	Urique	0.213	Campeche	0.066	Jocotepec	0.378	Urique	0.220
V. Carranza	0.213	Angamacutiro	0.161	CuatroCiene.	0.042	Dzilam	0.329	Yohaltum	0.175
Álamos	0.203	Pachuca	0.140	Nogales	0.007	UNITEC	0.280	Dzilam	0.126
Yohaltum	0.168	CuatroCiene.	0.133	UNITEC	0.000	Sta. Rosalía	0.245	Bahía Kino	0.105
Pachuca	0.133	Mexicali	0.105	Tizapan	-0.014	Sn. Juan Gpe	0.154	Sn. Juan Gpe	0.084
Angamacutiro	0.077	Zacatecas	0.084	Angamacutiro	-0.021	Bahía Kino	0.070	Tizapan	0.049
Monclova	0.052	Cd. Const.	0.070	Sn. Juan Gpe	-0.070	Matamoros	0.014	Cd. Alemán	0.035
Tizapan	-0.014	Cd. Alemán	-0.007	Monclova	-0.115	Pto Ángel	0.014	Jocotepec	0.035
Chetumal	-0.024	Chinipas	-0.021	Álamos	-0.126	Zacatecas	0.007	UNITEC	0.035
Cd. Cuauht	-0.059	Jocotepec	-0.028	Pachuca	-0.126	Tlapa	0.000	Angamacutiro	0.028
CuatroCiene.	-0.112	Sn. Juan Gpe	-0.035	Chinipas	-0.140	Cd. Carmen	-0.007	Pachuca	0.021
Tlapa	-0.119	Campeche	-0.038	Jocotepec	-0.175	Cd. Alemán	-0.035	Campeche	0.004
Sn. Juan Gpe	-0.175	Cd. Carmen	-0.077	Tlapa	-0.175	San Quintín	-0.066	Psa. Allende	-0.021
Campeche	-0.199	Álamos	-0.112	V. Carranza	-0.178	Chetumal	-0.108	CuatroCiene.	-0.035
San Quintín	-0.234	Psa. Allende	-0.112	Dzilam	-0.189	Urique	-0.157	Chinipas	-0.063
UNITEC	-0.280	Yohaltum	-0.133	Cd. Carmen	-0.196	Angamacutiro	-0.161	Tlapa	-0.070
Zacatecas	-0.294	Dzilam	-0.161	R. Colorado	-0.217	Campeche	-0.206	Matamoros	-0.105
Urique	-0.325	R. Colorado	-0.196	Zacatecas	-0.224	Pachuca	-0.238	San Quintín	-0.171
Cd. Alemán	-0.371	UNITEC	-0.210	Urique	-0.241	CuatroCiene.	-0.252	Cd. Carmen	-0.266
B. Ángeles	-0.448	Chetumal	-0.234	Yohaltum	-0.266	Álamos	-0.259	Álamos	-0.308
Matamoros	-0.455	Maguarichi	-0.245	Bahía Kino	-0.315	Psa. Allende	-0.336	Chetumal	-0.360
Psa. Allende	-0.476	V. Carranza	-0.262	Chetumal	-0.339	Psa. Cuchillo	-0.378	Pto Ángel	-0.385
Cd. Const.	-0.497	Tlapa	-0.280	Pto Ángel	-0.385	R. Colorado	-0.399	B. Ángeles	-0.420
Sta. Rosalía	-0.510	B. Ángeles	-0.315	Cd. Const.	-0.413	B. Ángeles	-0.413	R. Colorado	-0.434
Psa. Cuchillo	-0.531	Pto Ángel	-0.392	Mexicali	-0.420	Maguarichi	-0.469	Cd. Cuauht	-0.458
Bahía Kino	-0.587	Cd. Cuauht	-0.402	Altamira	-0.448	Altamira	-0.497	Psa. Cuchillo	-0.483
Nogales	-0.678	San Quintín	-0.409	Cd. Cuauht	-0.458	Chinipas	-0.573	Nogales	-0.524
Chinipas	-0.755	Nogales	-0.483	Sta. Rosalía	-0.497	Cd. Cuauht	-0.689	Maguarichi	-0.601
Maguarichi	-0.769	Monclova	-0.514	Psa. Cuchillo	-0.587	Nogales	-0.832	Altamira	-0.797
Mexicali	-0.797	Altamira	-0.587	Matamoros	-0.972	V. Carranza	-0.976	V. Carranza	-0.822

	R. Colorado		San Quintín		Sta. Rosalía		Matamoros		Psa. Cuchillo
R. Colorado	1	San Quintín	1	Sta. Rosalía	1	Matamoros	1	Psa. Cuchillo	1
Chetumal	0.640	B. Ángeles	0.738	Urique	0.654	Psa. Cuchillo	0.608	Matamoros	0.608
Campeche	0.612	Dzilam	0.192	Mexicali	0.587	Bahía Kino	0.392	Bahía Kino	0.350
Pto Ángel	0.497	Tizapan	0.178	Pachuca	0.538	Pto Ángel	0.357	Chetumal	0.276
Pachuca	0.385	Cd. Alemán	0.157	Angamacutiro	0.517	Chetumal	0.157	V. Carranza	0.052
V. Carranza	0.353	Jocotepec	0.150	Bahía Kino	0.385	R. Colorado	0.119	Pto Ángel	-0.049
Altamira	0.343	Maguarichi	0.136	Zacatecas	0.357	Cd. Const.	0.014	R. Colorado	-0.063
Jocotepec	0.301	Yohaltum	0.101	Campeche	0.339	Sta. Rosalía	-0.049	Maguarichi	-0.119
Angamacutiro	0.287	Monclova	0.098	Monclova	0.311	Tizapan	-0.070	Chinipas	-0.210
Cd. Cuauht	0.269	UNITEC	-0.031	Cd. Alemán	0.294	Campeche	-0.080	Tizapan	-0.217
Matamoros	0.119	Cd. Const.	-0.066	Chinipas	0.287	Yohaltum	-0.084	Yohaltum	-0.287
Yohaltum	0.049	Álamos	-0.066	Psa. Allende	0.252	UNITEC	-0.084	Jocotepec	-0.371
Tizapan	0.028	Campeche	-0.077	Cd. Const.	0.245	Jocotepec	-0.091	Cd. Const.	-0.378
Sn. Juan Gpe	0.021	Pto Ángel	-0.143	Dzilam	0.231	Mexicali	-0.105	Zacatecas	-0.378
Cd. Carmen	0.014	Angamacutiro	-0.150	Álamos	0.210	Zacatecas	-0.210	Nogales	-0.413
Urique	0.010	Chetumal	-0.154	Cd. Cuauht	0.150	Maguarichi	-0.287	San Quintín	-0.430
Zacatecas	-0.056	Nogales	-0.164	CuatroCiene.	0.112	Cd. Cuauht	-0.304	Mexicali	-0.483
Psa. Cuchillo	-0.063	Mexicali	-0.171	Jocotepec	-0.035	Chinipas	-0.308	UNITEC	-0.510
Dzilam	-0.077	Cd. Carmen	-0.192	Matamoros	-0.049	Cd. Carmen	-0.434	Altamira	-0.531
Psa. Allende	-0.098	V. Carranza	-0.196	Sn. Juan Gpe	-0.112	Altamira	-0.455	Sta. Rosalía	-0.531
Tlapa	-0.098	Psa. Allende	-0.199	Tizapan	-0.119	V. Carranza	-0.465	Tlapa	-0.566
UNITEC	-0.133	Chinipas	-0.206	R. Colorado	-0.189	Pachuca	-0.469	Campeche	-0.570
Monclova	-0.157	Altamira	-0.234	Nogales	-0.189	Tlapa	-0.469	Cd. Carmen	-0.573
Nogales	-0.182	Zacatecas	-0.255	UNITEC	-0.259	Psa. Allende	-0.483	B. Ángeles	-0.587
Sta. Rosalía	-0.189	CuatroCiene.	-0.262	Yohaltum	-0.273	Sn. Juan Gpe	-0.490	Cd. Alemán	-0.601
Bahía Kino	-0.196	R. Colorado	-0.269	Tlapa	-0.329	Dzilam	-0.497	Cd. Cuauht	-0.633
Álamos	-0.196	Pachuca	-0.318	San Quintín	-0.395	Angamacutiro	-0.497	CuatroCiene.	-0.636
Cd. Alemán	-0.210	Sta. Rosalía	-0.395	Cd. Carmen	-0.406	Urique	-0.521	Sn. Juan Gpe	-0.671
B. Ángeles	-0.217	Bahía Kino	-0.409	Pto Ángel	-0.476	Nogales	-0.636	Dzilam	-0.685
San Quintín	-0.269	Psa. Cuchillo	-0.430	B. Ángeles	-0.497	Álamos	-0.685	Pachuca	-0.685
Chinipas	-0.315	Urique	-0.497	Altamira	-0.510	Monclova	-0.717	Psa. Allende	-0.699
Maguarichi	-0.343	Sn. Juan Gpe	-0.535	Chetumal	-0.521	San Quintín	-0.724	Angamacutiro	-0.755
Cd. Const.	-0.399	Cd. Cuauht	-0.573	Psa. Cuchillo	-0.531	Cd. Alemán	-0.734	Urique	-0.773
CuatroCiene.	-0.399	Tlapa	-0.584	V. Carranza	-0.535	CuatroCiene.	-0.825	Álamos	-0.881
Mexicali	-0.434	Matamoros	-0.724	Maguarichi	-0.657	B. Ángeles	-0.972	Monclova	-1.017

	V. Carranza		Cd. Cuauht.		Chinipas		Maguarichi		Urique
V. Carranza	1	Cd. Cuauht	1	Chinipas	1	Maguarichi	1	Urique	1
R. Colorado	0.353	Nogales	0.647	Sta. Rosalía	0.287	UNITEC	0.504	Angamacutiro	0.864
Altamira	0.213	Álamos	0.472	V. Carranza	0.150	Nogales	0.427	Pachuca	0.857
CuatroCiene.	0.164	Angamacutiro	0.444	CuatroCiene.	0.147	B. Ángeles	0.378	Sta. Rosalía	0.654
Chinipas	0.150	Urique	0.441	Nogales	0.091	San Quintín	0.136	Zacatecas	0.535
Chetumal	0.091	Pachuca	0.367	Campeche	0.087	Pto Ángel	0.133	Psa. Allende	0.528
Pachuca	0.073	Psa. Allende	0.276	Urique	0.024	Psa. Allende	0.098	CuatroCiene.	0.521
Psa. Cuchillo	0.052	R. Colorado	0.269	Bahía Kino	-0.021	Cd. Alemán	0.021	Álamos	0.451
Angamacutiro	-0.059	Sta. Rosalía	0.150	Mexicali	-0.063	Cd. Cuauht	-0.004	Cd. Cuauht	0.441
Cd. Carmen	-0.108	Campeche	0.147	Pachuca	-0.091	Tizapan	-0.091	Cd. Alemán	0.339
Nogales	-0.136	Pto Ángel	0.094	Psa. Allende	-0.091	Psa. Cuchillo	-0.119	Campeche	0.308
Campeche	-0.147	UNITEC	0.073	Cd. Cuauht	-0.122	Álamos	-0.126	Mexicali	0.220
Cd. Cuauht	-0.161	Zacatecas	0.052	B. Ángeles	-0.140	Tlapa	-0.224	Bahía Kino	0.213
Urique	-0.175	Cd. Alemán	0.004	San Quintín	-0.206	Bahía Kino	-0.245	Sn. Juan Gpe	0.206
B. Ángeles	-0.178	Maguarichi	-0.004	Psa. Cuchillo	-0.210	Jocotepec	-0.245	Monclova	0.133
San Quintín	-0.196	Altamira	-0.059	Angamacutiro	-0.238	Chetumal	-0.248	Cd. Carmen	0.129
Bahía Kino	-0.262	Jocotepec	-0.066	Zacatecas	-0.294	Matamoros	-0.287	Nogales	0.122
Tizapan	-0.290	Chinipas	-0.122	Matamoros	-0.308	Yohaltum	-0.294	Dzilam	0.122
Jocotepec	-0.311	Dzilam	-0.143	R. Colorado	-0.315	Zacatecas	-0.301	Tlapa	0.031
Dzilam	-0.339	V. Carranza	-0.161	Cd. Alemán	-0.399	R. Colorado	-0.343	Chinipas	0.024
Álamos	-0.367	Cd. Carmen	-0.220	Sn. Juan Gpe	-0.406	Campeche	-0.374	R. Colorado	0.010
Sn. Juan Gpe	-0.381	CuatroCiene.	-0.234	Monclova	-0.451	Cd. Carmen	-0.385	Jocotepec	-0.052
Zacatecas	-0.423	Chetumal	-0.245	Maguarichi	-0.490	Sn. Juan Gpe	-0.392	Tizapan	-0.066
Matamoros	-0.465	Monclova	-0.252	Álamos	-0.538	Angamacutiro	-0.392	UNITEC	-0.080
Pto Ángel	-0.472	Matamoros	-0.304	Cd. Const.	-0.573	Cd. Const.	-0.469	Cd. Const.	-0.157
Yohaltum	-0.493	Tizapan	-0.318	Dzilam	-0.622	Urique	-0.479	V. Carranza	-0.175
Sta. Rosalía	-0.535	Tlapa	-0.325	Tlapa	-0.622	Chinipas	-0.490	B. Ángeles	-0.241
Psa. Allende	-0.563	Sn. Juan Gpe	-0.346	Chetumal	-0.647	CuatroCiene.	-0.580	Altamira	-0.325
Tlapa	-0.570	Bahía Kino	-0.402	Tizapan	-0.741	Mexicali	-0.601	Yohaltum	-0.360
Cd. Alemán	-0.598	B. Ángeles	-0.458	Altamira	-0.755	Dzilam	-0.615	Maguarichi	-0.479
Maguarichi	-0.710	Mexicali	-0.458	Jocotepec	-0.860	Pachuca	-0.615	San Quintín	-0.497
Monclova	-0.713	Yohaltum	-0.465	UNITEC	-0.860	Sta. Rosalía	-0.657	Matamoros	-0.521
Mexicali	-0.822	San Quintín	-0.573	Pto Ángel	-0.909	Monclova	-0.668	Chetumal	-0.559
UNITEC	-0.941	Psa. Cuchillo	-0.633	Cd. Carmen	-0.972	V. Carranza	-0.710	Pto Ángel	-0.563
Cd. Const.	-0.976	Cd. Const.	-0.689	Yohaltum	-1.007	Altamira	-0.769	Psa. Cuchillo	-0.773

	Sn. Juan de Gpe.		Cuatro Ciénegas		Álamos		Nogales		Cd. Alemán
Sn. Juan Gpe	1	CuatroCiene.	1	Álamos	1	Nogales	1	Cd. Alemán	1
Tlapa	0.699	Urique	0.521	Angamacutiro	0.664	Cd. Cuauht	0.647	Angamacutiro	0.469
CuatroCiene.	0.434	Sn. Juan Gpe	0.434	Dzilam	0.587	Maguarichi	0.427	Monclova	0.458
Cd. Carmen	0.210	Pachuca	0.413	Cd. Cuauht	0.472	Álamos	0.168	Álamos	0.406
Pachuca	0.210	Angamacutiro	0.350	Urique	0.451	Urique	0.122	Pachuca	0.406
Urique	0.206	Cd. Carmen	0.301	Pachuca	0.427	Psa. Allende	0.119	Dzilam	0.378
Cd. Const.	0.154	Tlapa	0.224	Jocotepec	0.420	Cd. Alemán	0.105	Urique	0.339
Angamacutiro	0.098	V. Carranza	0.164	Cd. Alemán	0.406	Chinipas	0.091	Psa. Allende	0.336
Monclova	0.094	Chinipas	0.147	Tizapan	0.329	Angamacutiro	0.028	Sta. Rosalía	0.294
UNITEC	0.091	Álamos	0.140	Cd. Carmen	0.308	B. Ángeles	0.007	Zacatecas	0.294
Mexicali	0.084	Bahía Kino	0.133	Sta. Rosalía	0.210	UNITEC	-0.105	B. Ángeles	0.259
Yohaltum	0.084	Psa. Allende	0.126	Altamira	0.203	Pachuca	-0.112	San Quintín	0.157
Campeche	0.066	Zacatecas	0.119	Nogales	0.168	V. Carranza	-0.136	Jocotepec	0.112
Tizapan	0.049	Sta. Rosalía	0.112	UNITEC	0.168	San Quintín	-0.164	Nogales	0.105
R. Colorado	0.021	Dzilam	0.056	CuatroCiene.	0.140	R. Colorado	-0.182	Mexicali	0.035
Psa. Allende	0.007	B. Ángeles	0.042	Monclova	0.094	Sta. Rosalía	-0.189	Maguarichi	0.021
Bahía Kino	-0.035	Mexicali	-0.035	Yohaltum	0.091	Zacatecas	-0.210	Cd. Cuauht	0.004
B. Ángeles	-0.070	Monclova	-0.066	Psa. Allende	0.063	Campeche	-0.269	Bahía Kino	-0.007
Jocotepec	-0.084	Cd. Alemán	-0.070	Zacatecas	0.028	CuatroCiene.	-0.280	Campeche	-0.010
Sta. Rosalía	-0.112	Tizapan	-0.098	San Quintín	-0.066	Chetumal	-0.297	Cd. Const.	-0.035
Cd. Alemán	-0.112	Altamira	-0.112	Pto Ángel	-0.105	Pto Ángel	-0.336	Tizapan	-0.049
Dzilam	-0.112	Campeche	-0.220	Bahía Kino	-0.112	Jocotepec	-0.385	CuatroCiene.	-0.070
Zacatecas	-0.126	Cd. Cuauht	-0.234	B. Ángeles	-0.126	Psa. Cuchillo	-0.413	UNITEC	-0.070
Altamira	-0.175	Cd. Const.	-0.252	Maguarichi	-0.126	Tizapan	-0.448	Yohaltum	-0.098
Chetumal	-0.241	San Quintín	-0.262	Campeche	-0.185	Bahía Kino	-0.483	Tlapa	-0.105
Pto Ángel	-0.252	Nogales	-0.280	R. Colorado	-0.196	Mexicali	-0.524	Sn. Juan Gpe	-0.112
Álamos	-0.259	UNITEC	-0.336	Cd. Const.	-0.259	Dzilam	-0.552	R. Colorado	-0.210
Cd. Cuauht	-0.346	Yohaltum	-0.371	Sn. Juan Gpe	-0.259	Monclova	-0.570	Chetumal	-0.213
V. Carranza	-0.381	Jocotepec	-0.378	Mexicali	-0.308	Tlapa	-0.601	Pto Ángel	-0.329
Maguarichi	-0.392	R. Colorado	-0.399	V. Carranza	-0.367	Sn. Juan Gpe	-0.615	Cd. Carmen	-0.364
Chinipas	-0.406	Maguarichi	-0.580	Tlapa	-0.399	Cd. Carmen	-0.615	Altamira	-0.371
Matamoros	-0.490	Psa. Cuchillo	-0.636	Chetumal	-0.479	Matamoros	-0.636	Chinipas	-0.399
San Quintín	-0.535	Matamoros	-0.825	Chinipas	-0.538	Altamira	-0.678	V. Carranza	-0.598
Nogales	-0.615	Chetumal	-0.836	Matamoros	-0.685	Yohaltum	-0.692	Psa. Cuchillo	-0.601
Psa. Cuchillo	-0.671	Pto Ángel	-0.909	Psa. Cuchillo	-0.881	Cd. Const.	-0.832	Matamoros	-0.734

	Cd. Carmen		Chetumal		Monclova		Yohaltum		Campeche
Cd. Carmen	1	Chetumal	1	Monclova	1	Yohaltum	1	Campeche	1
Tizapan	0.580	R. Colorado	0.640	Dzilam	0.675	Jocotepec	0.860	R. Colorado	0.612
Yohaltum	0.434	Jocotepec	0.472	Cd. Alemán	0.458	Tizapan	0.804	Pachuca	0.542
Jocotepec	0.434	Pto Ángel	0.465	Mexicali	0.430	Cd. Const.	0.636	Angamacutiro	0.472
UNITEC	0.371	Yohaltum	0.409	Cd. Const.	0.416	Dzilam	0.524	Psa. Allende	0.353
Angamacutiro	0.357	Psa. Cuchillo	0.276	Zacatecas	0.332	Pto Ángel	0.462	Sta. Rosalía	0.339
Altamira	0.322	Tizapan	0.248	Pachuca	0.325	Cd. Carmen	0.434	Urique	0.308
Álamos	0.308	Matamoros	0.157	Sta. Rosalía	0.311	Chetumal	0.409	Zacatecas	0.178
Dzilam	0.308	V. Carranza	0.091	Angamacutiro	0.262	UNITEC	0.350	Cd. Cuauht	0.147
CuatroCiene.	0.301	Campeche	-0.014	Psa. Allende	0.199	Mexicali	0.175	Monclova	0.119
Sn. Juan Gpe	0.210	Altamira	-0.024	Tlapa	0.192	Altamira	0.168	Chinipas	0.087
Pachuca	0.196	Cd. Const.	-0.108	Yohaltum	0.164	Monclova	0.164	B. Ángeles	0.066
Urique	0.129	San Quintín	-0.154	Urique	0.133	San Quintín	0.101	Sn. Juan Gpe	0.066
Tlapa	0.105	Dzilam	-0.171	Jocotepec	0.122	Álamos	0.091	Pto Ángel	0.059
Pto Ángel	0.063	Cd. Alemán	-0.213	Campeche	0.119	Sn. Juan Gpe	0.084	Jocotepec	0.045
Zacatecas	0.063	Bahía Kino	-0.234	San Quintín	0.098	R. Colorado	0.049	Mexicali	0.004
R. Colorado	0.014	Sn. Juan Gpe	-0.241	Sn. Juan Gpe	0.094	Angamacutiro	-0.056	Cd. Alemán	-0.010
Cd. Const.	-0.007	Cd. Cuauht	-0.245	Álamos	0.094	Matamoros	-0.084	Chetumal	-0.014
Bahía Kino	-0.077	Maguarichi	-0.248	Altamira	0.052	Cd. Alemán	-0.098	Bahía Kino	-0.038
V. Carranza	-0.108	Pachuca	-0.262	UNITEC	-0.017	Bahía Kino	-0.133	San Quintín	-0.077
Psa. Allende	-0.182	Angamacutiro	-0.269	CuatroCiene.	-0.066	Tlapa	-0.168	Matamoros	-0.080
San Quintín	-0.192	UNITEC	-0.269	B. Ángeles	-0.115	Pachuca	-0.231	UNITEC	-0.087
Monclova	-0.192	Cd. Carmen	-0.276	Pto Ángel	-0.115	B. Ángeles	-0.266	Dzilam	-0.122
B. Ángeles	-0.196	Nogales	-0.297	R. Colorado	-0.157	Sta. Rosalía	-0.273	Tizapan	-0.129
Cd. Cuauht	-0.220	B. Ángeles	-0.339	Cd. Carmen	-0.192	Psa. Cuchillo	-0.287	V. Carranza	-0.147
Campeche	-0.248	Mexicali	-0.360	Tizapan	-0.192	Campeche	-0.290	Tlapa	-0.157
Mexicali	-0.266	Monclova	-0.364	Cd. Cuauht	-0.252	Maguarichi	-0.294	Álamos	-0.185
Chetumal	-0.276	Álamos	-0.479	Chetumal	-0.364	Zacatecas	-0.357	Altamira	-0.199
Cd. Alemán	-0.364	Tlapa	-0.486	Chinipas	-0.451	Urique	-0.360	Cd. Const.	-0.206
Maguarichi	-0.385	Sta. Rosalía	-0.521	Bahía Kino	-0.514	CuatroCiene.	-0.371	CuatroCiene.	-0.220
Sta. Rosalía	-0.406	Urique	-0.559	Nogales	-0.570	Cd. Cuauht	-0.465	Cd. Carmen	-0.248
Matamoros	-0.434	Zacatecas	-0.570	Maguarichi	-0.668	V. Carranza	-0.493	Nogales	-0.269
Psa. Cuchillo	-0.573	Chinipas	-0.647	V. Carranza	-0.713	Nogales	-0.692	Yohaltum	-0.290
Nogales	-0.615	Psa. Allende	-0.801	Matamoros	-0.717	Psa. Allende	-0.692	Maguarichi	-0.374
Chinipas	-0.972	CuatroCiene.	-0.836	Psa. Cuchillo	-1.017	Chinipas	-1.007	Psa. Cuchillo	-0.570

	Dzilam		Anga- macutiro		Jocotepec		Pachuca		Psa. Allende
Dzilam	1	Angamacutiro	1	Jocotepec	1	Pachuca	1	Psa. Allende	1
Monclova	0.675	Pachuca	0.930	Yohaltum	0.860	Angamacutiro	0.930	Zacatecas	0.776
Álamos	0.587	Urique	0.864	Tizapan	0.860	Urique	0.857	Urique	0.528
Jocotepec	0.580	Álamos	0.664	Dzilam	0.580	Zacatecas	0.559	Pachuca	0.497
Altamira	0.524	Sta. Rosalía	0.517	Pto Ángel	0.476	Campeche	0.542	Angamacutiro	0.462
Yohaltum	0.524	Zacatecas	0.504	Chetumal	0.472	Sta. Rosalía	0.538	Tlapa	0.371
Angamacutiro	0.434	Campeche	0.472	Cd. Carmen	0.434	Psa. Allende	0.497	Campeche	0.353
Cd. Alemán	0.378	Cd. Alemán	0.469	Álamos	0.420	Álamos	0.427	Cd. Alemán	0.336
Tizapan	0.371	Psa. Allende	0.462	Cd. Const.	0.378	CuatroCiene.	0.413	Cd. Cuauht	0.276
Pachuca	0.357	Cd. Cuauht	0.444	Angamacutiro	0.336	Cd. Alemán	0.406	UNITEC	0.273
Cd. Const.	0.329	Dzilam	0.434	R. Colorado	0.301	R. Colorado	0.385	Sta. Rosalía	0.252
Cd. Carmen	0.308	Cd. Carmen	0.357	UNITEC	0.287	Cd. Cuauht	0.367	Monclova	0.199
Sta. Rosalía	0.231	CuatroCiene.	0.350	Altamira	0.238	Dzilam	0.357	B. Ángeles	0.140
San Quintín	0.192	Jocotepec	0.336	San Quintín	0.150	Monclova	0.325	CuatroCiene.	0.126
Zacatecas	0.147	R. Colorado	0.287	Monclova	0.122	Sn. Juan Gpe	0.210	Nogales	0.119
Mexicali	0.126	Monclova	0.262	Cd. Alemán	0.112	Cd. Carmen	0.196	Maguarichi	0.098
Urique	0.122	Tizapan	0.224	Pachuca	0.112	Bahía Kino	0.140	Álamos	0.063
Pto Ángel	0.084	Bahía Kino	0.161	Campeche	0.045	Altamira	0.133	Sn. Juan Gpe	0.007
CuatroCiene.	0.056	Sn. Juan Gpe	0.098	Mexicali	0.035	Jocotepec	0.112	Mexicali	-0.021
UNITEC	0.021	Altamira	0.077	Bahía Kino	-0.028	Tlapa	0.098	Chinipas	-0.091
R. Colorado	-0.077	UNITEC	0.042	Sta. Rosalía	-0.035	V. Carranza	0.073	R. Colorado	-0.098
Sn. Juan Gpe	-0.112	Mexicali	0.028	Urique	-0.052	Mexicali	0.021	Bahía Kino	-0.112
Campeche	-0.122	Nogales	0.028	Cd. Cuauht	-0.066	Tizapan	-0.042	Dzilam	-0.154
Tlapa	-0.133	B. Ángeles	-0.021	Sn. Juan Gpe	-0.084	Chinipas	-0.091	Cd. Carmen	-0.182
Cd. Cuauht	-0.143	Yohaltum	-0.056	Matamoros	-0.091	Nogales	-0.112	San Quintín	-0.199
Psa. Allende	-0.154	V. Carranza	-0.059	B. Ángeles	-0.175	B. Ángeles	-0.126	Pto Ángel	-0.273
Bahía Kino	-0.161	Tlapa	-0.077	Maguarichi	-0.245	UNITEC	-0.189	Cd. Const.	-0.336
Chetumal	-0.171	San Quintín	-0.150	Zacatecas	-0.259	Yohaltum	-0.231	Altamira	-0.476
B. Ángeles	-0.189	Cd. Const.	-0.161	V. Carranza	-0.311	Cd. Const.	-0.238	Matamoros	-0.483
V. Carranza	-0.339	Pto Ángel	-0.203	Psa. Cuchillo	-0.371	Chetumal	-0.262	Jocotepec	-0.510
Matamoros	-0.497	Chinipas	-0.238	CuatroCiene.	-0.378	Pto Ángel	-0.294	Tizapan	-0.552
Nogales	-0.552	Chetumal	-0.269	Nogales	-0.385	San Quintín	-0.318	V. Carranza	-0.563
Maguarichi	-0.615	Maguarichi	-0.392	Tlapa	-0.441	Matamoros	-0.469	Yohaltum	-0.692
Chinipas	-0.622	Matamoros	-0.497	Psa. Allende	-0.510	Maguarichi	-0.615	Psa. Cuchillo	-0.699
Psa. Cuchillo	-0.685	Psa. Cuchillo	-0.755	Chinipas	-0.860	Psa. Cuchillo	-0.685	Chetumal	-0.801

	Pto Ángel		Tizapan		Tlapa		UNITEC		Zacatecas
Pto Ángel	1	Tizapan	1	Tlapa	1	UNITEC	1	Zacatecas	1
UNITEC	0.517	Jocotepec	0.860	Sn. Juan Gpe	0.699	Pto Ángel	0.517	Psa. Allende	0.776
R. Colorado	0.497	Yohaltum	0.804	Psa. Allende	0.371	Maguarichi	0.504	Pachuca	0.559
Jocotepec	0.476	Cd. Carmen	0.580	Zacatecas	0.308	Cd. Carmen	0.371	Urique	0.535
Chetumal	0.465	Cd. Const.	0.399	UNITEC	0.266	Yohaltum	0.350	Angamacutiro	0.504
Yohaltum	0.462	Dzilam	0.371	CuatroCiene.	0.224	Tizapan	0.336	Sta. Rosalía	0.357
Matamoros	0.357	UNITEC	0.336	Monclova	0.192	Jocotepec	0.287	Monclova	0.332
Altamira	0.294	Álamos	0.329	Cd. Carmen	0.105	Cd. Const.	0.280	Tlapa	0.308
Tizapan	0.224	Bahía Kino	0.273	Pachuca	0.098	Psa. Allende	0.273	Cd. Alemán	0.294
Maguarichi	0.133	Chetumal	0.248	Urique	0.031	Tlapa	0.266	Mexicali	0.259
Cd. Cuauht	0.094	Angamacutiro	0.224	Cd. Const.	0.000	Álamos	0.168	Campeche	0.178
Dzilam	0.084	Pto Ángel	0.224	Mexicali	-0.070	Zacatecas	0.168	UNITEC	0.168
Cd. Carmen	0.063	San Quintín	0.178	Angamacutiro	-0.077	Sn. Juan Gpe	0.091	Dzilam	0.147
Campeche	0.059	Mexicali	0.049	Pto Ángel	-0.091	Cd. Cuauht	0.073	CuatroCiene.	0.119
Cd. Const.	0.014	Sn. Juan Gpe	0.049	R. Colorado	-0.098	Angamacutiro	0.042	Bahía Kino	0.084
Psa. Cuchillo	-0.049	R. Colorado	0.028	Cd. Alemán	-0.105	Mexicali	0.035	Cd. Carmen	0.063
Tlapa	-0.091	Altamira	-0.014	Altamira	-0.119	Dzilam	0.021	Cd. Cuauht	0.052
Álamos	-0.105	B. Ángeles	-0.014	Dzilam	-0.133	B. Ángeles	0.000	Álamos	0.028
Monclova	-0.115	Pachuca	-0.042	Campeche	-0.157	Monclova	-0.017	Cd. Const.	0.007
San Quintín	-0.143	Cd. Alemán	-0.049	Yohaltum	-0.168	San Quintín	-0.031	R. Colorado	-0.056
Angamacutiro	-0.203	Urique	-0.066	B. Ángeles	-0.175	Cd. Alemán	-0.070	Sn. Juan Gpe	-0.126
Zacatecas	-0.210	Matamoros	-0.070	Maguarichi	-0.224	Urique	-0.080	Matamoros	-0.210
Sn. Juan Gpe	-0.252	Maguarichi	-0.091	Bahía Kino	-0.280	Matamoros	-0.084	Nogales	-0.210
Psa. Allende	-0.273	CuatroCiene.	-0.098	Cd. Cuauht	-0.325	Campeche	-0.087	Pto Ángel	-0.210
Pachuca	-0.294	Sta. Rosalía	-0.119	Sta. Rosalía	-0.329	Nogales	-0.105	B. Ángeles	-0.224
Cd. Alemán	-0.329	Campeche	-0.129	Álamos	-0.399	R. Colorado	-0.133	San Quintín	-0.255
Nogales	-0.336	Monclova	-0.192	Tizapan	-0.399	Pachuca	-0.189	Jocotepec	-0.259
B. Ángeles	-0.385	Psa. Cuchillo	-0.217	Jocotepec	-0.441	Bahía Kino	-0.210	Altamira	-0.294
Mexicali	-0.385	V. Carranza	-0.290	Matamoros	-0.469	Sta. Rosalía	-0.259	Chinipas	-0.294
Bahía Kino	-0.392	Cd. Cuauht	-0.318	Chetumal	-0.486	Chetumal	-0.269	Maguarichi	-0.301
V. Carranza	-0.472	Zacatecas	-0.343	Psa. Cuchillo	-0.566	Altamira	-0.280	Tizapan	-0.343
Sta. Rosalía	-0.476	Tlapa	-0.399	V. Carranza	-0.570	CuatroCiene.	-0.336	Yohaltum	-0.357
Urique	-0.563	Nogales	-0.448	San Quintín	-0.584	Psa. Cuchillo	-0.510	Psa. Cuchillo	-0.378
Chinipas	-0.909	Psa. Allende	-0.552	Nogales	-0.601	Chinipas	-0.860	V. Carranza	-0.423
CuatroCiene.	-0.909	Chinipas	-0.741	Chinipas	-0.622	V. Carranza	-0.941	Chetumal	-0.570

Bibliografía

- [1] Arora Kusumita, Chandrasekhara N. Phani, Nagarajana Nandini, Singha Ankit. Correlations between sunspot numbers, interplanetary parameters and geomagnetic trends over solar cycles 21–23. *Journal of Atmospheric and Solar-Terrestrial Physics*, 114:19–29, July 2014.
- [2] Ball Geoffrey and Hall David. Isodata, a novel method of data analysis and pattern clasification. Technical report, Stanford Research Institute, 1965.
- [3] Bonifaz R., Riveros-Rosas D., Valdes M., Estévez H., Rivas R., Medina. M. A. Analysis of solarimetric information in mexico by regions. *Enviado a Renewable Energy*, marzo 2016.
- [4] British Petroleum. Statistical Review of World Energy, June 2015.
- [5] Cano D. et al. A method for the determination of solar global radiation for metheorological satellite data. *Solar Energy*, 1986.
- [6] Chaisson E. and McMillan S. Astronomy today, volume 53. 2005.
- [7] Diabaté L. Estimating incident solar radiation from images of the earth transmitted by geostationary satellites: The heliosat project. *Solar Energy*, 1988.
- [8] Duffie J. and W. Beckman. Solar Engineering of Thermal Processes. Wiley, 2012.
- [9] García-Legaz M., Labajo Salazar (Agencia Estatal de Meteorología de España, AEMET); Martti Heikinheimo (Finnish Meteorological Institute, FMI); Víctor Magaña (UNAM). Proyecto de Modernización del Servicio Meteorológico Nacional de México., 2010.
- [10] GeoModel Solar. Disponible en www.solargis.info, 2013.
- [11] Gujarati Damodar N, Porter Down C. Econometría. Mc. Graw Hill, 5ta edición edition.
- [12] Härdle W., Simar L. Applied Multivariate Statistical Analysis. Springer, 2ta edición edition.
- [13] International Energy Agency. Key World Energy Statistics, 2014.
- [14] Kipp & Zonen. Principio básico del funcionamiento de un piranómetro. Technical report.
- [15] Kipp & Zonen. Solar Radiation Measurments for Solar Energy Applications. Technical report.
- [16] Liou K. N. An Introduction to Atmospheric Radiation. Elsevier Science, 2nd editio edition, 2002.
- [17] Meeus, J. Astronomical Algorithms. Willmann-Bell, 1998.

72 BIBLIOGRAFÍA

[18] National Renewable Energy Laboratory. Disponible en: http://www.nrel.gov/ncpv/images/efficiency_chart.jpg, 2015.

- [19] Navidi William. Estadística para ingenieros y científicos. McGrawHill Iberoamericana, 2006.
- [20] Ramírez Santiagosa L. Modelos para estimar la radiación solar., volume 3. CIEMAT. Aplicaciones medioambientales de la Energía Solar.
- [21] Ramírez Santiagosa L. Estimación de la Radiación Solar a partir de imágenes de satélite, volume 15. CIEMAT. Aplicaciones medioambientales de la Energía Solar., 2006.
- [22] Riveros-Rosas D., Arancibia-Bulnes C. A., Bonifaz R., Medina M. A., Peón, R., Valdés, M. Analysis of a solarimetric database for Mexico and comparison with the CSR model. *Renewable Energy*, 75:21–29, 2015.
- [23] Riveros-Rosas D., Bonifaz R., Valdés M., Arancibia C. *La Radiación Solar*. Terracota, 1a edition, 2012.
- [24] Scafetta, N. Global temperatures and sunspot numbers. Are they related? Yes, but non linearly. A reply to Gil-Alana et al. (2014). *Physica A: Statistical Mechanics and its Applications*, 413:329–342, nov 2014.
- [25] Servicio Meteorológico Nacional. http://smn.cna.gob.mx/emas/, Abril 2016.
- [26] Spencer J. W. Fourier series representation of the position of the sun. Search, 2(5), 1971.
- [27] World Radiation Center. www.pmodwrc.ch/pmod.php?topic=tsi/composite/SolarConstant, 2015.
- [28] Zarzalejo L.F. Evaluación clásica de la radiación solar., volume 14. CIEMAT. Aplicaciones medioambientales de la Energía Solar.