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1 Introduccion

1.1 Ecuacion Estacionaria de Schrodinger

En este trabajo demostramos la existencia de un tipo particular de soluciones, llamadas
estados fundamentales, para la ecuacién dada de la siguiente manera:

—Au+V(x)u=a(z) [uf?u, ue HY(RY), (1.1)

donde H'(R") es el espacio de Sobolev usual, y suponemos 2 < p < 2* (2* = 2N/(N —2)
para N > 3, 2* = co para N = 1,2) y a,V € L®(RY). Por ahora entenderemos los
estados fundamentales como soluciones de minima energia, més adelante precisaremos
el significado de esto. En nuestra busqueda de estados fundamentales haremos uso de
métodos variacionales. Nos interesan los casos en los cuales a y V' no tienen un limite
global al infinito, es decir, limjg| o0 a(x) y limpy|00 V(2) no existen.

El tipo de ecuaciones que trabajamos son un subconjunto de las llamadas ecuaciones
estacionarias de Schrodinger no lineales, cuya forma general es la siguiente:

~Au+V(z)u= f(z,u), uec H(RY). (1.2)

Usualmente nos referimos a f como el término no lineal de la ecuacion.

En el capitulo 2 de esta tesis daremos algunas definiciones y conceptos propios de las
técnicas variacionales que utilizaremos, e introduciremos buena parte de la notacion que
utilizaremos a lo largo de este trabajo. En el capitulo 3 expondremos el resultado de
Concentracion Compacta que hemos obtenido para el caso donde los limites globales de
a'y V no existen e inf V' > 0. En el capitulo 4 utilizaremos estos resultados para obtener
la existencia de estados fundamentales en tres situaciones distintas. El capitulo 5 esta
dedicado a exponer aplicaciones del resultado obtenido, dando una idea de que tanto
este resultado expande la geometria que a y V pueden tener. El capitulo 6 trata sobre
las preguntas que quedan abiertas, y resultados que siguen la direccién de lo que hemos
hecho.

1.2 Antecedentes

Expondremos ahora un poco acerca de la ecuacion de Schrodinger y de los resultados
presentes en la literatura sobre el tema. Consideremos la ecuacion de Schrodinger no
lineal

i%—\f—A‘I/jL(V(a:)jLw)\I'—a(xH\IJ]p2\11:0, (1.3)



donde ¢ = v/—1. Un tipo particular de soluciones para esta ecuacién son las llamadas
ondas estacionarias, las cuales son soluciones de la forma

U (x,t) = u(z)e™. (1.4)

Puede verificarse que una onda estacionaria es solucién de (1.3) siy s6lo si u es solucién

de la ecuacién (1.1). De manera similar, considerando la ecuacién no lineal de Klein-
Gordon

i AW 2 P=2\y _

5z + (V(z) + )V —a(x) [TF7 T =0,
podemos ver que la bisqueda de ondas estacionarias nos lleva de nuevo a la ecuaciéon
(1.1). Esta relacion con las ecuaciones de Schrodinger y Klein-Gordon hace que la
ecuaciéon que estudiamos, ademaés de generar interés matemaéatico por las técnicas que la
busqueda de sus soluciones lleva a desarrollar, presente también un interés de aspecto
fisico.
La principal dificultad al buscar soluciones de la ecuacién (1.1) proviene de la no com-
pacidad del encaje H'(RY) — LP(RY), lo cual impide el uso de condiciones de Palais-
Smale y de Cerami. En el caso en el cual a y V son funciones constantes es de mucha
importancia el articulo [5], en cuya bibliografia pueden encontrarse otros articulos que
también han estudiado esta situacion.
También el caso no auténomo ha sido abordado, bajo diversas hipotesis. En los articulos
[20,47] se trabaja con funciones V,a radialmente simétricas, lo cual permite recuperar
compacidad al considerar el subespacio radialmente simétrico H}(RY) c H*(RY). Otro
acercamiento a este problema ha sido imponer hipdtesis sobre V' y a bajo las cuales
se tiene de nuevo la compacidad del encaje H!(RY) — LP(RY), en ocasiones susti-
tuyendo H'(RY) por algin espacio con peso. A grandes rasgos, estas hipdtesis son que
lim|y 00 V() = 00, limsupy, o a(r) <06 quea™ € LY(RY) para alguna ¢ > 0 apropi-
ada. Este método lo podemos encontrar en [2,16,17,19,22-24, 26, 28, 34, 39, 42,43, 45]
Otra técnica que ha sido utilizada es reemplazar el lado derecho de (1.1) por una funcién
f(z,u) linealmente asintdtica en u [35,52].
Aparte de las técnicas mencionadas arriba, otro método frecuentemente utilizado es el de
asociar a la ecuacion original un problema limite, pidiendo como hipétesis que el limite
puntual de @ y V exista cuando |z| — oo, para aplicar argumentos de Concentracién
Compacta [3,4,6-8,10-14, 18, 20, 24, 25, 29, 30, 32, 36, 47,49, 50]. Una variante de este
método es suponer periodicidad, a veces en un sentido asintético, de V' y a con respecto
a x [21,28,30,31,38,44, 46, 51].
Antes de comenzar a explicar qué distingue a los resultados expuestos en esta tesis de
los encontrados en la literatura ya existente hace falta mencionar otro articulo. Como se
puede ver, los métodos anteriores buscan restaurar compacidad mediante la eleccién de
hipétesis adecuadas. En el caso no periddico el tinico resultado que conocemos donde no
se asume la existencia de limites para V' y a cuando |z| — oo es [9], en el cual se demues-
tra la existencia de un estado fundamental cuando a = 1 y essinf V' > 0. Los resultados
que nosotros probamos aqui se suman a los de dicho articulo al tampoco suponer la
existencia de limites para V' y a, la mayor diferencia siendo que las hipotesis impuestas



a V en [9] no son lo suficientemente explicitas para ser verificadas directamente, salvo
en [9, Teorema 1.3], donde la solucién encontrada no es un estado fundamental.

La otra caracteristica importante de nuestros resultados tiene que ver con el signo de
a. Convencionalmente, la ecuaciéon (1.1) es llamada linealmente indefinida si V' cam-
bia de signo, y superlinealmente indefinida si a cambia de signo. Los resultados de
existencia para el problema superlinealmente indefinido, ya sea linealmente indefinido o
no, son vastos [14,16-19,22-24, 26,29, 34, 42,45], pero hasta ahora todos ellos requieren
que, en algun sentido, a no cambie de signo cerca de infinito, por ejemplo pidiendo que
lim sup 00 a(z) < 0 6 liminfl, o a(x) > 0. De una manera mds general, muchos
autores piden que a’ 6 a~ pertenezcan a un espacio LY adecuado. Nosotros hemos re-
movido estas hipdtesis, permitiendo que tanto V' como a puedan cambiar de signo cerca
de infinito.

Para finalizar esta introduccién queremos comentar que una de las razones por las cuales
el caso en el cual a puede cambiar de signo ha recibido méas atencién recientemente tiene
que ver con el desarrollo en diseno de materiales. En el articulo [1] podemos encontrar
una situacién en la cual a no sélo puede cambiar de signo, sino que es bastante flexible
en la forma que puede tomar. Este ejemplo trata, a grandes rasgos, de la propagacion
de luz monocromatica a través de fibras épticas. En dicha situacién la funciéon a rep-
resenta una propiedad del medio de propagacion, en el caso de la fibra optica el indice
de refraccién. Dado el potencial actual de construir materiales dentro de un gran rango
de propiedades prescritas, tenemos considerable libertad en la elecciéon de las hipotesis
para a.



2 Variational Framework

As we have said before we have used variational methods in our research, so now we will
start by presenting some definitions and concepts related to these methods. First, for
all a,V € L™, with V' > 0, define the functional

Iy (u) := %/(\Vu\z + Vu?)dx — % /a(x) lu|” da.

1 1
=5 lull = [ ato) lup e

Usually, when the global limits of V' and a exist, one omits the subindex in the previous
definition, and refer to the functional related to the original equation only as I, while
the functional corresponding to the limit problem is denoted by I,,. Since in our case
we don’t have a unique limit problem we need a more flexible notation, therefore the
necessity of the subindex making explicit the potencial and the function a of every limit
functional.

We can adapt the arguments of [48, Proposicién 1.12] to see that Iy, € C?*(H'(RY))
and

Iy (u)v = /(VUVU + Vuv — a(x) |ul > w)dz, (2.1)

Iy, (u)[v, w] = /(Vva + Vow — (p — Da(z) [ulP 7> vw)dz. (2.2)

Notice that I§,,(u)v can be obtained multiplying equation (1.1) by v and integrating
over RY. Since this happens, we have that the critical points of Iy, are weak solutions
of (1.1).

The functional Iy, is commonly called the energy functional. As we mentioned before,
we are interested in finding least energy solutions. Formally speaking we want to prove
that there are nontrivial weak solutions uy, of (1.1) such that Iy ,(dy,) = ¢y, where

¢ = inf{Iyq(u) | I, (u) = 0,u € H'(RY)\ {0}}.

These solutions are the so called ground states.
In order to do this we will make use of the Nehari Manifold, Ny, which is defined as

Nvog={u#0]| I (u)u=0}.

We also define cy,, := infyy,, Iv,.- By convention, cy,, := oo if Ny, =@.
Since every nonzero critical point belongs to Ny,,, a minimum of Iy, on Ny, is a ground
state, as we will show below. This is the main reason for using the Nehari manifold. We



now give an outline of the method that we will follow. The first thing we want is for
Ny, to be a natural constraint:

2.1 Definition We say that the manifold Ny, C H*(RY) is a natural constraint for
Ivq if every critical point of Iva|n,,, is also a critical point of Iy,

Usually this property is proved defining Ny, as the inverse image of a suitable oper-
ator (refer to the proof of Lemma 2.6). If we also prove that Iyq|a;,, has a minimum,
then the existence of a ground state for (1.1) follows. A common way to achieve this
involves the Palais-Smale condition:

2.2 Definition A sequence (u,) € H'(RY) is called a Palais-Smale sequence for Iy,
if (Iva(un)) is bounded and Iy, ,(u,) — 0. If also Iya(un) — ¢, we say that (u,) is a
(PS).-sequence for ILy,.

2.3 Definition We say that Iy, satisfies the Palais-Smale condition (or (PS).-condition),
if every Palais Smale sequence for Iy, (or, respectively, every (PS).-sequence) has a
convergent subsequence.

We are going to construct a minimizing Palais-Smale sequence for Iy ,|as,, using Eke-
land’s Variational Principle, which is valid in C'-manifolds. Since in our particular
situation Iy, is a C? functional, and observing the way in which the Nehari manifold is
defined, Ekeland’s Variational Principle is valid under our hypothesis. The sequence we
obtain in this way is a Palais-Smale sequence for Iy,4|ss,,, but it can be proved that is
also a Palais-Smale sequence for the unrestricted functional Iy,.

In a recent paper [37], Noris and Verzini studied the Nehari Manifold in a very general
setting. From this paper we will use Theorem 2.8. The next is a particular version of
that theorem, adapted to our situation.

2.4 Definition Define Ey = (H*(RY), |||,/)-

By convention, if Ny, \ My, = @ then infm\/\fv’a Iy, = .
2.5 Theorem Assume that
i) cva € R, infm\vaa Iva > cyg.
Also assume that for some 0 < § < §" we have, for all u € Ny,
i) |lully =6,
i) =1, (u)[u, u] = 6 |lully,

and every u € Ny, with Iyv,(u) < ¢y, + 1 satisfies



w) I}, (uv| <& |vlly, and |1, (w) v, w]| <& ||v]ly, [[w] for all v,w € Ey.

Then there exists a (PS)CV’E -sequence for Iy, and Ny, is a natural constraint for Iy,

(and a C*-manifold).

Proof. This result follows from the proof of [37, Theorem 2.8], with V™ = {0}, & (u) = u
and A = HY(RY) \ {0}. One of the conditions of this Theorem is for the Palais-Smale
condition to hold for Iy, at the level ¢y, but the rest of the hypotheses and [37, Corollary

2.4] are enough to conclude our result.
O

Observe that if Iy, satisfies the conditions of Theorem 2.5, and Iy,4|rs,, achieves its
minimum, then ¢y, = ¢y, since all critical points of Iy, are contained in Ny,.

We are going to check the hypothesis of this theorem for equation (1.1), assuming
at # 0, where a* := max{#a,0}. Once this is done, we will be ready to search for
a minimizer. One idea that has proved very useful in the case of unbounded domains
is Lions” Concentration Compactness Principle. Since our hypotheses will be different
than the ones usually assumed (in fact we are going to work with weak*-convergence in-
stead of pointwise convergence) we are going to obtain a weaker version of the standard
Splitting Lemma, but this will be sufficient to prove the existence of a ground state.
The only article we have found that uses weak™-convergence in a similar way is [35], in
which a nonresonant asymptotically linear problem is studied, but there concentration
compactness is not used.

2.1 The Nehari Manifold

In the next Lemmas we will establish conditions that assure that a,V € L* satisfy the
hypotheses of Theorem 2.5.

2.6 Lemma For all a,V € L*™ we have that Ny, is closed and that there exists v > 0
that only depends on p, a positive lower bound for essinfV and an upper bound for
esssup a such that

inf > .
uel/r&V’GHUHV 7y

Proof. It can be verified that the operator G : Ey — R defined by G(u) = Iy, ,(u)u is of
class C', and that Ny, = G71(0) \ {0}.

To simplify the notation write o := esssupa, and S := essinf V. By hypothesis g > 0.
We will also denote by [ the constant function taking that value. Let

u
C,:= sup | |p,
weby\{0y Ul



which is well defined because of the continuity of the embedding Esz — LP.
Let u € Ny,. Since DIy,(u)u = 0 we have

2 2
g = V= = = Yp )
[l < lull alul” < [ alul” < Cpor|lull
RN RN

and so we have

L\
(=) <l <l

from where we obtain the result.

[
2.7 Lemma cy, > 0 for all a,V € L*.
Proof. For all u € Ny, we have
1 2 1 1 1 2 1 1
tow) =l = 3 [l = (53 ) bl = (5-3) aag 1l
The last inequality and the Lemma 2.6 imply the result.
[

Denote by |E| the Lebesgue measure of a measurable subset E of RY. Also, if X is
a normed space, denote 51X := {x € X | ||z|| = 1}. The next characterization will be
useful in various places:

2.8 Lemma For any u € L™ it holds true that

ess sup u = sup {/ up | p € S1L', > O} (2.3)
RN

and
essinfu:inf{/ up | (pESlLl,QOZO}. (2.4)
RN

Proof. Denote by c the right hand side of (2.3). If ¢ € S; L' and ¢ > 0 then

/ up < esssupu/ (p = esssup u.
RN RN

Therefore, ¢ < esssupu. To show the inverse inequality, first fix some R > 0 and
r € RY. For any Lebesgue-measurable subset £ C Bgr(x) we find

)=
El g Jew !EI

where x g denotes the characteristic function of E. From [40, Theorem 1.40] it follows
that u(z) < c a.e. in Br(x). Covering RY with countably many balls Bg(z) we obtain
u(r) < cae. in RY ie., esssupu < c. This proves (2.3).

Since essinfu = — esssup —u we only need to apply (2.3) to —u to obtain (2.4).



Until now we have not discarded the possibility that cy, = co. In the next lemma we
do this.

2.9 Lemma For all a € L™ such that a™ # 0 we have that Ny, is non-empty.

Proof. From a®™ # 0 we obtain esssupa > 0, and Lemma 2.8 yields ¢» € S;L!' such
that ¢ > 0 and [ai > 0. Approximating ¢ suitably in L' we obtain ¢; € C
such that [ap; > 0 and ¢; > 0, and from here we can find ¢ € H'(R") such that
[ a(z)|el’ > 0. Define the auxiliary function h : R — R given by h(t) = Iy4(typ), so
that h'(t) = Iy ,(te)e. Notice that

Foaltol = (ol — [ ala) ltol™ (o)
— bl — / afz) ol

We can verify that under our hypotheses h has a unique positive critical point ¢y, and
by the linearity of the derivative we also have I, ,(tow)(tow) = 0, hence top € Ny, and
Ny, is non-empty.

m

We are now in position to prove the main result of this chapter.

2.10 Lemma If a € L™ satisfies a* # 0 in L then there exists a (PS)., ,-sequence
for Ivo and Ny, is a natural constraint (and a C*-manifold).

Proof. To prove this proposition we will check that the conditions of Theorem 2.5 are
satisfied.

(i) holds because of Lemmas 2.6, 2.7 and 2.9.

Using Lemma 2.6, we can choose dg such that (ii) holds, with &y in place of d.

Define 0 < § = min(dg, p — 2). To prove (iii) observe that for all u € Ny, we have

Fa(wlu.d = [ully = (= 1) [ a(o) u
= [lully — (o= 1) [Jully,
= —(p—2) Jully -
Now only (iv) remains to be verified.
Notice that u € Ny, and Iv,(u) < ¢, v + 1 imply that ||Jul|,, is bounded:
Foulaju=0 = Julfy = [ ala)af

1 1

— erat 12 fval) = (33 Il

10



Hence, using Sobolev embeddings,
(u,v)y, — /a(x) ulP~% uv
< Ju ol + | f ato) la*uo

—1
< el ol + lall / 1 o

-1
< lully llvlly + llall || lul” ||ﬁ [oll,,

[1va(u)o] =

-1
= [lully llolly + llallo el [,

< My |jully -
In a similar way we can find M, such that Iy, (u)[v,w] < Ma|v|, [[w],. Choosing

0" = max(26, My, M) all the required inequalities hold.
O

11



3 Concentration Compactness
Principle

Throughout this chapter we will assume a,V € L, at # 0 in L™ and inf V" > 0.

3.1 The Limit Problem.

The Concentration Compactness Principle, in its usual form, involves a limit problem,
which is an equation that behaves in a similar way to the original equation at infinity.
More precisely, the limit problem of (1.1) when a,, = lim, ,,, a and V,, = lim, .., V are
well defined is given by

—Au+ Voot = aso [ul" " u, (3.1)

so its set of solutions is invariant under translations. In the cases we have studied, where
at least one of the limits involved does not exist, one must be more careful at the moment
of choosing the limit problem. In order to explain the next ideas more clearly we are
going to focus on the first situation we studied when we started this research, namely
the case of N = 1, and which we generalized in the first of the examples included in this
work. We are not giving here the full list of hypotheses, but for this section’s purposes
it is enough to assume that V =1,lim; . _a =1 and lim;_,.ca = —1.

When we make the choice of the limit problem we must keep in mind the idea behind
the Concentration Compactness Principle. When we pass from bounded domains to
unbounded domains we lose compacity, because of the invariance of the solutions men-
tioned before: the original problem and the limit problem are similar near infinity, so in a
sequence whose elements can be seen as a solution of the limit problem being translated
at infinity, these elements behave more and more like solutions of the original problem,
but the sequence does not converge.

Assume that a sequence is minimizing for the energy functional restricted to Ny,. In
our case, in which V' is constant, it makes sense to expect that the translations forming
this sequences take place in the direction in which a takes larger values. Taking this into
account, we choose as the limit problem the equation

—Au+u=|u?u, (3.2)

with the corresponding functional
1 1
Eat) =5 ([ 19u s uas) = flar,

12



the Nehari manifold
Nooo = {ue H'R)\ {0} | [I  (w)u =0},

and the energy level
Cooo = inf I ().

ueEN_

What we prove in this case was that cy, < c_s, which in turn helped us to prove that
the Concentration Compactness Principle, or a version of it, still holds in this situation,
so our election of limit problem was an adequate one. After this example we started
working in more complicated ones, until we established the more general splitting lemma
that will be exposed in the next section.

3.2 Concentration Compactness Principle Theorem for
the Strongly Definite Case

3.1 Definition Fory € RN we define the translation operator T, on spaces of functions
on RN by
(7 f)(x) == f(z —y).

uv

RN
uv

RN

We endow P and Q with the weak*-Topology, where we identify L> with the dual of L.
We also define the sets

3.2 Definition Define the sets

Pi={uel®|¥weBL: < laloo} = Blal, L

Q:i={ueL*|VweBL: S Vi) = B, L™

Ap = {r,a|y e RV} C P,
Ag ={r,V |y eR"} C Q,
considered with the topology induced by P and by Q, respectively and
Bp = A_p \ Ap C P,
BQ = .A_Q \ .AQ C Q.

Since B, L™ is the polar of B;L' in L™, using [41, Theorems 3.15 and 3.16] it can be
proved that the topological spaces P and Q are compact metrizable spaces.

3.3 Definition We define the positive constant functions Vi, = esssup V' and Vi =
essinf V.

13



3.4 Lemma If (u,) C By and (y,) C RY are such that 7_,, u, — ug in Ey then

I vy a(Tegatin) = I vie ) o(Toy, U — wo) — I, v, (o) = 0(1) (3.3)

and
D[T_ynV,T_yna(T—ynun> - D[T_ynV,T_yna(T—ynun —ug) — DI | vr . (uo) = o(1). (3.4
Proof. We have

'[Tfyn‘/nyyna(T_ynun) - ITfynV,TfynO/(T_ynun — Up) — ]r,ynv,r,yna(uo)

- ]Va(un) - IVa(un - Tynuo) - IV,a(Tynu0>

= 5 (lually = lem = 700l = 0]
([t = [ ot 0 [ ato) b0l
%( V| —/yv Tynuo)ﬁ—/\v%uoy?)

w3 ([rend - [V - nar - [vim.e)
—%(/ﬁuM%W—/w@www%mW—/Mthmﬁ.

As we can see in the proof of [48, Lemma 1.32] (Brézis-Lieb Lemma) 7_, u, — ug

implies, after passing to a subsequence
[ o) b = = 0l = 1)
< Nl ll? = i = 73,001 = 7, 00F)

N e e L
=o(1).

In a similar way we can see that
[V 0 = (o= ol = ()| = o)

Denote ((u,v)) := [ VuVu for u,v € H'. Then

(T Uy Ty n)) — ((T—y U — U0, Ty, U — o)) — (w0, o))
=2 ((7—y, Un, uo)) — 2 ((uo, uo))
=o(1).

14



Combining these facts we obtain (3.3).
Now, let v € Ey. We have:

|D[T—ynVT—yn (Tfy’ﬂun) - D[T—ynv;T—yna(Tfynun - U/O)U - D[T—yn‘/ﬂ-—yna(uo)v’

= |D1lv,o(un)7y,v — DIy (wy — 7y, u0) 7y, 0 — DIy o(7y,10) Ty, 0]

\/ )l a0 = [ o) i = 000 (i = 31017,
/()mwd Tty

< / la ()] “un|p_2 U, — [y — Tynu0|p_2 (Un — Ty U0) — |Tynu0’p_2 Tynuol |Tyn/U|

—2 —2 —2
< ||a||oo H|un|p Uy, — U — 7_ynu0|p (Un — Ty, u0) — |Tynu0|p TynUOHLp%I vl e -

Using [48, Lemma 8.1] we deduce (3.4) from the above inequality.
O]

3.5 Lemma Let (y,) € RY and V* € L™ such that 7_,,V Y V*. Then, for allu € Ey

2 4 o(1).

2
lull7,, v = llul

Proof. First we will prove that V* > 0. Let ¢ € S;L', o > 0.

/V*gpz lim [ (7—,, V)

n—oo

= lim [ V(7,¢)

> essinf V,

where in the last step we used (2.4). Using the inequality obtained and (2.4) again we
obtain essinf V* > essinf V, and from here V* > essinf V' > 0. Now we have

Jull v = [ 1Val+ [ v
:/]Vu|2+/V*u2+o(1)

2 4 o(1).

= [|ul
[l

3.6 Definition If (u,) C Ey then we say that (DIy,(uy)) vanishes in EY, (the dual of
By ) if
DI, v, a(Ta,tn) =0

for every sequence (z,,) C RY.
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3.7 Lemma Let (u,) C Ey, (y,) C RY and a*,V* € L* be such that (DI, v (u,))
vanishes in EY,, 7_y u, — uy in By, 7, a ™ @ and Ty, V = v Define v, =
Uy — Ty, Uo- Then, after passing to a subsequence,

[V,a(vn) = [V,a(un) - [V*,a* (U()) + 0(1)7 (35)
lunlly, = lloally = lluolly- (3.6)
DIy« o (ug) = 0 (3.7)

and (DIy4(vy,)) vanishes in E.
Proof. Since 7_,,a N a*, 7,V 5 V* it holds true that

IV*,a* (U(]) - ITfynV,T,yna(u(ﬂ + 0(1)

Combining this with (3.3) we obtain (3.5).
Observe that, as in Lemma 3.4

2 2
[vnlly = llun — TynUOHV
2 2

= llunlly = 2 (un, 7y, o)y, + [I7y, uolly

= [|unlly = 7y uolly, +o(1),
so Lemma 3.5 gives (3.6).
Now we will prove that ug is a critical point of Iy« ,«. To simplify the notation we write
flu) = ]u\p_Q u. Let v € Ey. By the definition of weak* convergence, [7_,, Vuov —
[ V*uov and [ 7y, af(uo)v — [ a*f(up)v. Also, since 7_, u, — uo in L7 and L ., we
have that (7_,, u,)v — wov and f(7_,,un)v — f(up)v in L', so we can use arguments
similar to those of Lemma 3.4 to obtain

DIy g (ug)(v) = /VUOVU + /(T_ynV)uov - /RN(T_%a)f(uo)v +o(1)
= /V(Tynun)Vv + /(TynV)(Tynun>U - /RN (T_y,a) f(T—y,u)v + o(1)

== D['LynV,T,yna(T—ynun)U + 0(1)

=o(1),
where we have used that (DIy,,(u,)) vanishes in E},. Since v was arbitrarily chosen in
Ey, ug is a critical point of Iy« 4«.

To prove that (DIy,(v,)) vanishes in E}, suppose that (z,) C RY and v € Ey. If
DI, v, o(Tz,vn)v — 0 were not true we could pass to a subsequence such that

Ten

liminf | DI, v, o(Ts,vn)v] > 0 (3.8)

n—oo

and such that either |z, +y,| — oo or x, + y, — —& for some ¢ € RY. In the
first case it would follow that 7, _, v — 0 in Ey, then 7, _, v — 0 in L” and
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hence f(ug)T_s,—y,v — 0 in L'. Tt also can be proved (again as in Lemma 3.4) that
(T—z,—y. 0, u0), = 0(1). Therefore,

D]T*ynvﬂ—*yna<u0>7—_3~7n_ynv = 0(1) (39)
Using (3.4), (3.9), and the fact that (DIy,,(u,)) vanishes in E}, we would obtain

DI,

Tn

V,Tzna(Ta:nvn)v - D]T,ynV,Tfyna(T—ynvn)T—xn—ynv
=Dl v, o(Toy,tn)T—zp—y, 0 — DI vir  a(to)T—z,—y, v+ 0(1)
=DI, v, oT—y,Un)T—z,—y,v + 0(1)
- D]TznV,Txna(Txnun)'U + 0(1)
= o(1),

in contradiction with (3.8). In the second case we would obtain, using that translation
is continuous in Ey and in L? for ¢ C [1,00), (3.4), the fact that (DI, ,(u,)) vanishes in
E},, and the fact that ug is a critical point of Iy« .+, that

DI, v a(Ta,vn)v = DL vie o7y, v0)Te0 + 0(1)
=DI, v, o(Ty,n)Te0 — DI v o(uo)Tev + o(1)
=-DI. , v, olto)Tev 4 o(1)
= —DIy+ g (ug)Tev + 0(1)
= o(1),
contradicting (3.8). We have therefore proved that (DIy ,(v,)) vanishes in Ef .
[l

3.8 Definition A sequence (u,) € Ev is said to vanish if 7_,, u, — 0 in Ey for every
sequence (y,) C RY.

2

If (u,) vanishes in the above sense then (u,,) is bounded in Ey and 7_,, u, — 0in L,

for every sequence (y,) C RY. Hence

lim sup / lup|? = 0
N0 4eRN J Br(x)

is satisfied for every R > 0 and Lions’ Vanishing Lemma [33, Lemma I.1] implies that
u, — 0 in LY for every g € (2,2%).

In the proof of Lemma 3.5 we have already seen that Vi, < V*. In a similar way it
can also be seen that a* < esssup a. Using this facts and Lemma 2.6 we derive the next
corollary.

3.9 Corollary There exists C' > 0 such that, for all u € Ny« o« \ {0}, where 7_,,a N
> (C.
v Z

and 7,V YV in L for some sequence (y,), we have ||u
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Using Lemma 3.7 we can now prove the Splitting Lemma in the case when there is no
global limit for V' and a at infinity. In the statement one can observe the changes that
equations with many limit problems imply, and how every one of those limit problems
can be involved in the splitting of the sequence.

3.10 Lemma (Splitting Lemma.) Let (u,) be a Palais-Smale sequence for Iy, at the
level ¢ € R. Then either u, — 0 in Ey or, after passing to a subsequence, there are
k € N, sequences (yi), C RN, functions Vi, a' € L™, and functions u' € Ey \ {0}
(i=1,...,k) such that each u" is a critical point of Iy 4i, and such that the following hold

true: i
Uy — Z Tau| =0, (3.10)
i=1 »
k
¢> ) Tyiw(u'), (3.11)
i=1
T_yi@ Y d, Ty V N 7e (3.12)
and ' '
|yZL—yZL| — o0 (i # j,n — 00). (3.13)

Proof. Since (u,) is a (PS)-sequence for Iy, it is bounded in Ey and (DI,(u,)) vanishes
in B

If (uy,) vanishes then [u,|, — 0. Since DIyq(un)(un) = o(1), also [u,|[,, — 0.

If (u,) does not vanish then, by definition, there exists u' € Fy \ {0} and a sequence
(ys) € RY such that, after passing to a subsequence and writing ), := u,, 7_,p u}, — u'.

By the compactness of Q and P we may also assume that 7_,1 V' Y V! and T_y1a Y q!

in L>. Now we define u2 := u}, — rpu', so 7_,pu? — 0. Lemma 3.7 assures that

Ivﬂ(ui) — Ivﬂ(ui) — I\/l’al (ul),
lanlly =l ]l = el
valﬂl(ul) =0

and (DIy,(u?)) vanishes in Ej,. If (u2) vanishes, then |u2| — 0 and hence

7l

nip
1 1

|un — TyilU |p — 0.

Otherwise, there exist V2 a* € L™, u? € Ey \ {0}, and a sequence (y2) C R" such

that, after passing to a subsequence, 7_,2V 5ve, T_ 20 % a2 and T_y%ui — 2. Since
2 1 2

T_yrty — 0, [y — yn| — 0o, . o

Proceeding in this way, inductively we obtain sequences (y), functions V* a* € L*, and
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functions u’ € Ey \ {0}, for i = 1,2, 3, ... By Corollary 3.9 there is C' > 0, independent
of 4, such that ||u’||,,, > C. For every j we have

J
0 < [ug ™ = lual® = 3 [l

=1

2
v To(1),

so by the lower positive bound for |[u‘|,, and since (u,) is bounded in Ey the process
must stop after a finite number of iterations. Therefore, there is k € N such that (uf*1)
vanishes,

up ™|, =0, (3.14)

and (3.10) holds true.
Similarly, we have

k
- /N a ‘uﬁ+1|p < Iyo(uf™) = Iy o (uy,) — Z Iyi qi (u') + o(1),
R i=1

so (3.11) is a consequence of (3.14) and of ¢ = lim,, 0 Lv,o(Un).
The remaining properties (3.12) and (3.13) were already proved along the way.

19



4 Existence Of Ground States In
Three General Situations

In this chapter we will still assume a,V € L, a™ # 0 in L™ and inf V" > 0. We will
give additional hypothesis in each of the sections dedicated to prove the existence of a
ground state.

4.1 Technical Lemmas

Now that the Splitting Lemma has been established, we will use it to prove the existence
of a ground state. As a previous step we will establish a inequality between some energy
levels, following the ideas of [15]. The three cases we are going to study are: a does not
have a global limit but V does, the opposite case, and the case when neither V nor a
have a global limit at infinity. By the nature of the hypotheses we are going to require,
these three cases need to be treated individually, but we have isolated some technical
lemmas that will help us in all three general situations.

It is usual in the case when the global limits at infinity exist that, in order to simplify
calculations, one assumes that these global limits are 1 in both cases. The general result
follows from this through a rescaling of the problem. In our case, when in some sense
there are different limits in different directions, we can not make use of this simplifi-
cation. Instead, we will make the rescaling explicit to show how the value of the limit
affects the energy levels of the limit problems.

From here on we identify any constant b € R with the constant function b € L.

4.1 Lemma Let C1,Cy > 0. Then u is a ground state of I if and only if w(x) =
(C1/Cy) Y P=2)y (C’fx) is a ground state for Ic, ¢,, and

2

1\ @2 2 2N
Ioy o (w) = A (Cr)r2" 2 11 (u).

Proof. Let u € E, w as defined above and v (x) := v(:p/CI%) for every v € E. We have
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Dlg, o,(w)(v) = /VwVv—l—/Clwv—/C’g lw|P~* wo
St (1N
= /Cl (02) Vu <C’1 x) Vou(x)dz
i) " u <C’1%x> v(x)dx

i) " u (Cléx) e u C%x) v(z)dx

i) ( [ vu@Tu@ds+ [ @@ - [ u@P? uw@d

1 Ny 1 P%Q
20522+<_> DI, (u)(vy).

From here we deduce that u is a critical point of I;; if and only if w is a critical point
of I, ¢, The equation about the energy levels is proved in a similar fashion, and from

there we conclude the lemma.
O]

It is well known that there exists a ground state wu , positive on all of RY and ra-
dially symmetric, for the equation whose weak solutions are critical points of I; ; (this
can be checked in [27] and [32]). Define, for all Cy,Cy > 0, the function uc, o, ==

1
(C1/C) Y P2y 4 (Cf x) By Lemma 4.1, we have that uc, ¢, is a ground state of the

functional I¢, ¢,. By Lemma 2.10 we have that N¢, ¢, is a natural constraint. It follows
2
~ (p—2) 2 4 2-N
that cc,,c, = Coyc. = Loy, (uChCQ) = (C%) ’ (Cl>p_2+ : Il,l(”)'

Now, for fixed € € (0, 1), define a cut-off function x € C®(R") with 0 < x < 1, x(z) =
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Lif |z] <1—¢, and x(z) =0 if || > 1. For u € Ey and R > 0 define u € Ey by
u(w) = x () ulo)
for all z € RY. Observe that

u® = u e By (4.1)

as R — oo.
From ( [15, Lemma 2]) we obtain:

4.2 Lemma For 0 < e <1 and Cy,Cy > 0 we have, as R — oo,

1
2 —9(1—e)C2
[ Vuenelt =9 o, = 0000

Y

and )
/ [ucy o | dz = O(e™* )
|z[>R
for all s > 0.
Proof. Observe that

uf, c,(2) = x () ucrca(@)

Using this and [15, Lemma 2] we obtain the result.
O]

In the next lemmas we ask a* and V* to be positive constants for uy« .« to be well
defined.

4.3 Lemma Let g, : RT U {0} — R be a sequence of continuous functions such that,
for all t € RT U {0}, we have g,(t) — go(t) for some continuous function gy. Assume
that each g, achieves a unique global maximum in some t, € RT, for alln € NU{0}.
Moreover, assume that each g, is strictly increasing in [0,t,] and strictly decreasing in
[tn,00). Also assume that go(0) = 0, limy_,o. go(t) = —o0 and go(te) > 0. Then there
exists K' € N and ry > rog > 0 such that

go(to)
2

gn(t) <

for alln > K',t € [0,70] U [r1, 00).
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Proof. First we will prove that t,, — t3. We do this by contradiction. If the convergence
does not hold then we can find € > 0 and a subsequence of (t,),, denoted in the same
way, such that either t,, < tg — ¢ for all n or t,, > tg + ¢ for all n. For now we assume
the first case.
Since t,, < to — &, we have that each g, is decreasing in the interval [ty — ¢,to]. Using
the pointwise convergence we can find Ny, for every 6 > 0, such that n > Ny implies
gn(to) > go(to) — 0. These two facts, combined with the pointwise convergence for every
t € [to — &, to], imply go(t) > go(to) — & for every t € [tg — €,to]. Since this is valid for
every 0 > 0 we have go(t) > go(to) for t € [ty — &,1], which is a contradiction. The
second case can be treated in a similar manner.
We have proved t, — to. Using this we can find K/ such that n > K7 implies ¢, €
(%0, 3%) In particular, this implies that all the functions g, with n > K are strictly
increasing in [0, t9/2] and strictly decreasing in [3ty/2, 00).
Because of the continuity of gy we can find t{; > 0 such that go(t) < go(to)/4 for all
t € 10,t;]. Define tj = min{ty/2,t;}. Using pointwise convergence we can find K7 such
that n > K implies g,,(t)) < go(to)/2. So, if we define K = max{ K7, K} we have that
n > K implies g,(t) < go(to)/2 for all t € [0, t].
In a similar way we can find K% and ¢} such that n > K implies g,(t) < go(to)/2 for
all t € [t],00), and from here we deduce the result.

O

4.4 Lemma Let (y,) C RN and 7,V N V*1_y.a N a*, where V* and a* are positive
constants. Then there are K' € N and t; > ty > 0 such that

Cy/* a*
Iy a(t(ry,uift 00)) < =55 (4.2)

for alln > K'/t € [0,t] U [t1,00).

Proof. Define h,(t) := Iwa(t(Tynu‘Ijﬁ,a*)) and ho(t) = Iy« o+ (tuy= o+). We are going to
prove that some subsequence of (h,),en satisfies the hypotheses of Lemma 4.3. Using
Lemma 4.2 and the w*-convergence we see that

lim Iy, (t(Tynu{@?@* )

n—oo
. 1 2 1 1
= lim (§/|Vt(7'ynu§1}’a*) + 5/‘/(‘%)(75(7'%%52,&*))2 — 5/&@) |t (Ty, up o)
A 1 Ry, 2 1 Ry, 2 1 R, P
:JE& 5 {Vtuv*’a* + 3 (T—y, V) (tuy )" — , (T_y, @) }tuv*,a*

1 1 1
:i / |thV*’a* 2 + 5/‘/*(25)(75"&‘/*,&*)2 — g/a* |tUV*’a* P

:IV* a* (tuV* ,a* )7

)

so we have the pointwise convergence h,(t) — h(t). Next we will prove that there is
K’ € N such that for all n > K’ there exists t,, > 0 with the property that h,, is strictly
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increasing in [0, t,] and strictly decreasing in [t,,, 00). For this notice that V' > 0 implies
that [ |V (7, uf ,.) g JV(@)((ry,uf 4+))* > 0. On the other hand we have

lim ( / a(z) | (1, uff .. p)

n—o0

:/a* |U/V*,a* b

>0,

p
so, for some K, we have that n > K’ implies [ a(z) |(7,, )| > 0, and we can define

V*
t, as the unique positive critical point of h,. Defining g, = hg'_11, for n € N and
go = hg we can apply Lemma 4.3 to obtain the result.

]

The technique used in the following lemma is well known, see, e.g. [20]:

4.5 Lemma Let aq,ay € L™ be such that a1 > ay a.e., and let Vi, Vo € L™ be such that
0 < Vi <V, ae. Then, for all nontrivial critical points w of Iy, q,, it holds true that
Iy, ay (1) > Cvy 0y If in addition ay # ag or Vi # Va then the obtained inequality is strict.

2
|MM=/@WW

so it follows [ ay |u|” > [as|ul’ > 0, and we can define

1
p -2
ri= (_fa2|u| >p <1

Jay ul’ -
b SVilu?\72
S Valuf® ’

&(NAujé
[Valuf

Proof. We have
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and w(z) := rtu(sz). We have

val,al(wxw):/wwm/vluﬂ—/al wl?

r2t? r2t? rPtp
— SN2/|VU|2+S—N Viu? — A lul?

22 1

Y A R
2t2

_ (/|w| +/Vu —/ |u|p)

,
= SN DIVZ az( )(u
= 07
SO w € NV1,a1-
We can verify directly, using 2 < p < 2%, that ﬁ — % > 0. Using this and 0 < V; < V4
we obtain fr < 1, and from here we deduce S’ﬁi - (S’ﬁ—i) <t?;;2> =25 <1 It
follows that
1 p
Vl,a1 |V | + Viw _}_) aa |w|
2t2 PP
= Vu Viu® — — P
o 2/| Pl [ =25 [

r2t? 1 rp=2
e e
2t2 1
_ (/|V|+ /%u——/aQ\u|p>

- SN QIV2,112 (u)

< IVz,az( )7

which implies ¢y, 4, < Iy, 0, ().
If we have a; > ag or Vi < V5 then r < 1 or ;—IPV < 1, so we can conclude cy, 4, <

IV1,a1 (w) < [V2,a2 (U)
]

4.6 Lemma Let (y,) € RY be such that w*lim7_, V = V* and w*lim7_, a = a* are
positive constants. Then there is M > 0 such that n > M implies that t [Tynuv* } €
Ny, for some t > 0.

Proof. Defining h,, as in Lemma 4.4 we have h/ (t) = D[Va(trynuv* a*)(Tynugﬁ ). As
we have seen in the proof of that lemma there exists M € N such that, for every
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n > M, there exists t, > 0 such that h/(t,) = 0, which implies 0 = ¢,h/,(t,) =

DIV7a(tnTynu§’:,a*)(tnTynugﬁ,a*), and we obtain ¢, [Tynugﬁ,a*} € Nva

m
We conclude this section with some definitions.
4.7 Definition We define
@ 1= sup esssup u.
ueBp
and B
V := inf essinfu.
UEBQ
By convention, @ := —o0 if Bp = @ and V := 0o if Bo = @.
4.2 First General Situation
In this situation assume a = 1, so @ = —o0o (a could be any positive constant, but we

choose 1 to simplify the notation). Denote Iy, := Iy;. Assume the next set of hypotheses:

(V1) Either (i) V is constant or (ii) V <V and V # V or (iii) there exist v € (0, 27%),
sequences (2,) C RY and (R,) C R, and a non-negative measurable function s on
RY with |[{z € RY | k(z) > 0}| > 0 such that R, — oo, whlim, oo 7,V =V
and V(z) <V — k(z — z,)e” "% holds true for all n and = € Bg, (2,).

(V2) inf V > 0.

Observe that (V1) implies 0 < 1 — 7/275 < 1. We will use this in the proof of
Proposition 4.8. Our next results have the purpose of prove an inequality between some
energy levels that, together with the Concentration Compactness Principle, will imply
the existence of a ground state.

4.8 Proposition In case (iii) of (V1) there is K € N and D > 0 such that

Iv(t(rznug")) < ¢ — De

foralln > K, t > 0.

Proof. First, notice that from Lemma 4.4 we have

lim Iv(t(Tznugn)) = I (tuy)

n—oo

for all ¢t > 0. Using Lemma 4.4, we can choose ng € N and t; >ty > 0 such that

Iy (t(rsuf)) < 2

< (4.3)
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for all n > ng,t € [0, o] U [t1, 00).
Observe that

2
V‘ SRR
/IR{N (i)

< / V(rap)|?
RN

:/ T*ZnV’uV|2
]RN

= / T_ZnV|’LLV|2—|—/ 7,V |ur|” .
lzll<Rn |z]|>Rn

Passing to a subsequence we may assume that (R,) is an increasing sequence. Since uyr
is positive we may take ng large enough such that

C ::/ K |ug|? > 0.
lzl<Rng

It follows for n > ng that

[ eVl s [ e g

|z| <R

< / V fugl? — e A / b Jup?
RN lz)| <Rnyg

§/ V ug | — Ce™7En,
RN

and Lemma 4.2 implies
/ (122, V) ‘“V‘Q < HVHOO/ |u7|2 dr < O(e’QV?R").
l|lz[|>Rn llz||>Rn

From the above inequalities we deduce

/R V@)

R
Tz, uV”

2 o _1
< / V 2 — Ce1Re 4 O(e~2V 2 Fin). (4.4)
RN
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From (4.4), Lemma 4.2 and ¢ € [ty, t;] it follows, for n > ng,
]V (tTZnUVn)

:/ 2+/V( )t2 (7. P /)t 7. ul

__1
< [ [Vugl? + 202 4 g / Vlupf? = #0e 7 4202 ) — o [ fult
RN

V(tr,, uy" )

p

1 _ _1
:t2/‘Vuv|2—|—t20(€2(1€)V2R”)—|—t2/ V’uV’2_tZC€7Rn+t20<e2V2Rn)_tp/|u|p
RN
+t /|u /‘ R"
1
:t2/\VuV| +t20(e—2(1‘5)VQR")+t2/
RN
+tp/ (lug? = uf
lz[|>(1—¢)Rn

1 1
StQ/\VuVF+t20(e—2<1—5)v2Rn)+t2/ V |ug)? — 2Ce " n 4 20(e7 2V R —tp/yuyp

RN
o [ ue”
l[z]|>(1—¢) Ry

1 o _1
tQ/\VuVFH%O(eM5>V2Rn)+t2/ V ug|* — t2Ce™En 4 20(e72V 7 R —tp/yuyp
RN

+ ug”
]| >(1—€) R
1 _ _1
t2/\wv]2+t§0(e2<1EW"’R")H?/ V ug|” — t2Ce™En 4 20(e72V 7 R —tp/yuyp
RN

—1
+ O PV Hiny

1
V |ug|* — t2Ce™En 4 120(e 2V R )—tp/|u|p

1 1 1
= Iy (tug) + 20(e 21V By _ 2061 4 20(e72V 2 Bn) 4 2O PI-)V 2 )
1
< g4 O(e 207V En)y _ 207 Fn,
(4.5)

Choosing € € (0,1 —~/(2V?)) we can find D such that the conclusion holds.

4.9 Corollary In cases (ii) and (iii) of (V1) we have ¢y < ¢

Proof. 1f (ii) happens Lemma 4.5 implies that ¢y < ¢ because [y has a ground state.
If (iii) happens, the result follows from Lemma 4.6 and Proposition 4.8.
O

4.10 Lemma Assume (ii) or (iii) of (V1). Let V* € Bg. If u* is a nontrivial critical
point of Iy then cy < Iy«(u*) holds.
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Proof. By the definition of Bg we have V' < V*, so Lemma 4.5 implies ¢z < Iy« (u*). To
conclude we use Corollary 4.9.
]

4.11 Theorem There exists a ground state u for Iy .

Proof. In case (i) of (A1) we have that uy is the ground state of Iy, and there is nothing
else to do. Assume we are in the case (ii) or (iii). By Lemma 2.10 there exists a (PS).,-
sequence (u,,) for Iy, and we are in a position to use Lemma 3.10. It cannot happen that
u, — 0 since Iy (u,) — cy > 0 (2.7). Therefore, there exist k& € N, functions V' € Ag
and nontrivial critical points u’ of I such that

k
> Iy (uf) < ey (4.6)
i=1
Since the functions u’ are nontrivial critical points of Iy we have

Iyi(u') = Iyi(u') — %wa(ui)(uf) = (% - %) ||| > 0.

By Lemma 4.10 each V* belongs to Ag and is a translate of V. Hence Iy:(u') > ¢y for
every i. This implies that £ = 1 and that a translate of u! is a ground state of Iy .
[

4.3 Second General Situation

Now we assume V' = 1, and denote [, := [} ,.

Denote by a® := max{0, =a} the positive and negative parts of a. We introduce the
following condition:

(A1) Either (i) @ < 0 or (ii) @ > @ or (iii) there exist v € (0, 2), sequences (z,) C RY and

(R,) C R, and a non-negative measurable function x on RN with [{z € RY | k(z) > 0}| >

0 such that R, — oo, w*lim, ,o 7_.,a = @ and a(z) > @+ x(z — 2,)e 7% holds
true for all n and « € Bg, (2,).

(A2) a™ # 0 as an element of L.

We are going to assume that a satisfies the previous conditions.

The outline of this section is similar to that of the last one, but we need to use other
steps to adjust for the new hypotheses.

4.12 Proposition In case (iii) of (A) there is K € N and D > 0 such that
I (t(1,, uf)) < cg — De 7%

foralln > Kt > 0.
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Proof. Using Lemma 4.4, we can choose K’ € N and t; > tq > 0 such that

I (t(7., ul)) < (4.7)

5

for all n > K’ t € [0,t0] U [t1,00).
Passing to a subsequence we may assume that (R,) in an increasing sequence. Using
(A) and the positivity of ug choose n; > ng such that

C:= / rub > 0.
| <(1—&) Rny
From Lemma 4.2 we have, for n > ny,

[La@eadPar= [ yaluld

RN [
> [ (e

| <Rn

> a/ |'U/a‘p dz
IIJTHS(l—S)Rn

+ e_WR"/ K |ug|” dz

2| <(1—) Rny (4.8)

> 5/ |ug|? dz + O(e P12
RN

+ e~ Hn / K |ug|” dx
=l <(1—€)Rn,

>a / ugl? dir 4+ O (1))
RN

P dx

+ Ce 1,
Using this and Lemma 4.2 again, this implies for ¢ € [tg, ;] and n > ny,

Tzn’uf

/ !V rd )+ [l = [ ate) ko)l
t2 / [Vual? + £20(e21-R0) 4 2 / - / a(@) ()P (49

< Ii(tug) + t20(e 2079y L PO (e7PU=E)Fny _ 4bCe=7Hn
< cq+ O(e 2079y g 1En,

For our election of € we can deduce the existence of D such that the conclusion holds.
O]

4.13 Corollary We have ¢, < cz.
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Proof. We consider the three cases from condition (A) separately. If (i) @ < 0 then
cg = 0o. Since a™ # 0, ¢, < oo and there is nothing to prove. Therefore we may assume
for the remaining cases that @ > 0. If (ii) @ > @ then a # @ since Bp # &. Moreover,
Lemma 4.5 implies that ¢, < ¢z because Iz has a ground state. The remaining case
follows from Lemma 4.6 and Proposition 4.12.

]

4.14 Lemma Let a* € Bp. If u* is a nontrivial critical point of I« then ¢, < I+ (u*)
holds.

Proof. By the definition of Bp we have @ > a*, so Lemma 4.5 implies ¢z < I,«(u). To
conclude we use Corollary 4.13.
O

4.15 Theorem There exists a ground state u for I,.

Proof. By Lemma 2.10 there exists a (PS),,-sequence (u,) for I, we are in a position
to use Lemma 3.10. It cannot ha_ppen that w, — 0 since I,(u,) — ¢, > 0. Therefore,
there exist k € N, functions a’ € Ap and nontrivial critical points u® of I,: such that

k
> L (') < cq (4.10)

k=1
Since the functions «! are nontrivial critical points of I,; we have

. , 1 L 1 1 »
Ii(u')=1,(u")— -DIi(u')(u')=(=——|[u] > 0.
() = () ~ DL = (3= 1) o]
By Lemma 4.14 each a' belongs to Ap and is a translate of a. Hence I,:(u') > ¢, for

every . This implies that £ = 1 and that a translate of u' is a ground state of I,,.
m

4.4 Third General Situation

The different cases of conditions (V1) and (A1) can be combined to obtain existence of
ground states. In this section we concentrate in one of these combination of hypotheses.
The rest of the combinations can be proved with ideas used in this section.

We assume the next hypotheses:

(AV1) There exist v € (0, ZV%), sequences (z,) C RN and (R,) C R, and a non-negative
measurable function x; on RY with [{z € RY | x1(z) > 0}| > 0 such that R,, — oo,
wH-lim, oo 7_-,V =V and V(z) <V — ki(z — 2,)e " holds true for all n and
x € Bg, (zn).

(AV2) infV > 0.
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(AV3) There exist a non-negative measurable function £, on RV with |{z € RY | ky(z) > 0}| >
0 such that w*-lim, o, 7_.,a = @ and a(x) > @ + ko(z — 2,)e 7% holds true for
all n and x € Bg, (2,).

(AV4) a™ # 0 as an element of L>.

(AV5) For every (y,), we either have, after passing to a subsequence, that (w*-lim,, o 7, V, w*-lim,,_,oo 7
BoxBp or there is ¢ € RY such that w*-lim,,, 7,V = 7V and w*-lim,,_,o, 7,0 =
TeQ.

4.16 Proposition There is K € N and D > 0 such that

foralln > K,t > 0.

Proof. Just as in propositions 4.8 and 4.12 we have for n > n;

[ v
and

[, e atz]

From (4.11),(4.12) and Lemma 4.2 it follows, for t € [to, 1] and n > nq,

IVa (t<7_zn Ugn—))

/‘Vthn U )2

Ton ug"

dl’ S / V }UV,EF - C’le_”R" + O( 2V2 Rn ) (411)
RN

1
dx > E/ ’uvﬁ‘p dz + O(e PA=V 7 By 4 e 7Bn, (4.12)
RN

._\

(4.13)
Choosing € € (0,1 — v/2V?) we can conclude the result.
O
4.17 Corollary We have cy, < Cva
Proof. This follows from Lemma 4.6 and Proposition 4.16.
O
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4.18 Lemma Let a* € Bp and V* € Bg. If u* is a nontrivial critical point of Iy« -
then cyq < Iy o (u*) holds.

Proof. By the definition of Bp and Bg we have @ > a* and V < V*, so Lemma 4.5
implies ¢y ; < Iy« o+(u). To conclude we use Corollary 4.17.
O

4.19 Theorem There exists a ground state @ for Iy,.

Proof. Again, we use Lemma 2.10 followed by Lemma 3.10. It cannot happen that u, —
0 since Iyv4(u,) — cvq > 0. Therefore, there exist k& € N, functions a' € Ap, V' € Ag
and nontrivial critical points u’ of Iy, such that

k
> Iyiw (') < ey (4.14)
=1

Since the functions u’ are nontrivial critical points of Iy , we have Iy 4i(u’) > cyi 40 > 0.
By Lemma 4.18 and hypothesis (AV5) for each i there is & such that ¢’ = 7¢,a and
Vi = 7.,V. Hence Iyigi(u’) > cy, for every i. This implies that & = 1 and that a
translate of u! is a ground state of Iy,,.

]
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5 Examples

5.1 Tools for the Construction of Examples

For a € L denote
a:= lim €SS Sup a|rnN Br-
R—o0 ‘ \

5.1 Lemma If (A1) is satisfied with @ replaced by a then (the original condition) (A1)
is satisfied.

Proof. 1f Bp = @ then @ = —oco and (A) is satisfied. Assume therefore that Bp # @. In
particular, a is not constant. We claim that

a<a. (5.1)

To see this, suppose that b € Bp. There is (x,) C RY such that 7, a Yeob If ()
contained a bounded subsequence then, after passing to a subsequence, there would exist
¢ € RY such that z, — £ and 7,,a N 1ea € Ap. This follows from weak*-continuity
of translation in L, which in turn is a consequence of continuity of translation on L.
On the other hand, since P is metrizable, 7za = b & Ap, a contradiction. Therefore
|z, — 0.

Given € > 0, by Lemma 2.8 there is ¢ € S; L' such that ¢ > 0 and

/ by > esssup b — E.
RN 2

Take 1) € C2° such that ¢ >0 and

Set ¢ := 1)/ ‘@Z))l Observe that

5=, =W [9], =], = 19], =1, = |17, = veb] < fo =

17
SO e
—Y < —=
|§0 ¢|1 = 2’b|oo

and ¢ € S;L' N O satisfies 1) > 0. We obtain

/bw—/ bso—/ b(w—w)Z/ bp = |blo [ = ¢ly > esssupb —e.
RN RN RN RN
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Suppose that suppy C Bgr. Then
esssupb — e < / by
RN

= lim (Te, @)V

n—oo RN

n—oo

< lim esssup (a/|BR(—zn))/ (0
Br

< lim esssup <a|RN\B‘x ‘ R)
n—o00 ni=

~

= a.

Letting € — 0 this yields esssup b < a and hence (5.1).

We now consider the three subcases of (A1), under the assumption Bp # @. In case (i)
we obtain from (5.1) that @ < a < 0. In case (ii) (5.1) implies @ < @ < a. And in case
(iii) there is a sequence (z,) C RY such that 7_. a % @, i.e., @ € Ap. Since a is not
constant, @ € Bp. Therefore a < @, which implies together with (5.1) that @ = @. In

conclusion, the original condition (A1) is satisfied, with @ instead of a.
O

5.2 Lemma Suppose that k,l € N and that (A1) is satisfied for a € L=(R¥). Define
a REXR =R by d(z,y) == alx). Then (A1) is satisfied for a’ € L=(RF x RY).

Proof. Define the linear operator I' : RE* — RE**E' by (T (2, y) := u(x). Suppose that
a € L®(R*) and set @’ := I'a. Moreover, define by A% and Bj the corresponding sets
for ', and define @ correspondingly.
We claim that

I restricts to a bijection Bp — Bp. (5.2)

Clearly T is injective. We show first that ' := I'b € B), if b € Bp. There is (z,) C RF

such that 7, a “S b, Since b & Ap, |z,| — oo (see the proof of Lemma 5.1). For any
© € L*(R*) the function

:L’H/ o(z,y)dy
]Rl

is in L'(R*), by Fubini’s Theorem. We obtain
| aodte= [ (ma@s ey
Rk+l Rk+l

_ /IR (ra)(0) /R ol y)dyda
-/ b(z) /Rl o(z,y)dydz

= / bo.
RE+
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Hence 7(,, 0)a’ Yl and b € A_% If b € A% were true, there would exist (zg,y0) € R¥!
such that 7(z, )0 = @’. For all (z,y) € R*" this would imply

b(z — o) = V' (x — 20,y — %0) = d'(x,y) = a(x)

and therefore 7,,,b = a. But this would contradict b € Ap. Therefore b’ € Bj. We have
shown that I'(Bp) C Bj.
To show surjectivity, suppose that ¥ € Bjy. There is a sequence ((z,,y,)) C R

such that 7(z, 4,.)a’ Y b, As before, |(Zn, Yn)| — oo since V' ¢ A%. Moreover, since

a'(z,y) = a(x) for all (x,y), we can assume that y, = 0 for all n, so 7z, 0)a’ % b and
|x,| — 0.
Suppose that (z*,y), (z*,y') € R*! are Lebesgue points of &'. We have

T(0,y— y)b =w" —nh_{n T(any— y)a =w" —nh_{n T(wn O)CL =10,

Therefore

1ok _
bes) lli%ufsr/ )

_15%181/ a7
= lim — /

r—>0|B| (z* y)

_b’(

Since the complement of the set of Lebesgue points of b’ has zero measure, this shows
that o' is independent of the second argument and that there is b € L* such that o' = I'b.
We need to show that b € Bp. Suppose that ¢ € L'(RF). Pick any ¢ € L'(R!) such
that [ = 1. Then the map ¥ given by J(z,y) := p(z)(y) is in L'(R*), by Tonelli’s

Iheorem. Moneovel
R zn @) Tz, @ dyd.

_ / (7m0 )0
Rk+l
— b9

RE+!

= / be.
Rk

Hence b € Ap. If b belonged to Ap then clearly b would belong to A%, a contradiction.
Therefore b € Bp and we have proved (5.2).

We now consider a number of cases. If Bp = @ then By, =['(B) = @ and @ = —o0 < 0,
that is, a’ satisfies (A1). We therefore assume now that Bp # &. It follows that

@ = sup esssupb = sup esssupI'b = sup esssupb = a.
b’eB;D beBp beBp
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In case (Al)(i) we obtain @ = @ < 0. In case (A1)(ii) we have @ < a. This implies
@ =a < a. And in case (A1)(iii) there are sequences (z,) C R* and R,, — oo such that

T_2,0 s @ and
Vo € By, (2,) : a(x) > @+ k(x — 2,)e "

Put 2, := (2,,0) and define k' := T'k. Asin (5.3) 7_.. d’ Y a. If (z,y) € By(z]) then
x € Bf, (z,) and hence

d(z,y) = a(z) >a+ k(x — z,)e " =@ + K ((z,y) — 2)e .

In all cases o’ satisfies (A1). O

5.2 Example 1

For the first example we consider this situation:

(B1) Let A € L™ be a function constant in the last N — 1 coordinates, in other words,
for all y;,yo € RV ! and ¢t € R we have A(t,y;) = A(t, ya).

Define the function a(-) := A(-,0,...,0), so we have a(-) = A(-,y) for all y € RN~L.
Assume a has the next properties:

(B3) There are a € (0,2), So < 0 and M > 0 such that a(t) > (lim,_, ., a(s)) + Me M
for all t < Sj.

The figure represents the behaviour of the function a in this example.

We have the next result:

5.3 Proposition If A satisfies hypotheses (B1) - (B3) then 14 has a ground state.

37



Proof. First, notice that limpg ., esssup apn pyo) = lims a(s). Define z, = Sy — n,
R, = n and k(t) = M5+ for all t € R. For all n and t € Bg, (2,) we have t < Sp, s0
K(t — 2z,)e"Fn = Mea(Sott=Sotn)—an — pre=eltl 5o we can apply Lemma 5.1 to see that
a satisfies (A1) and (A2). Using now Lemma 5.2 and Theorem 4.15 we prove that 4

has a ground state.
O

5.3 Example 2

In this example most of the hypotheses need to be satisfied only in a cone. Denote by
SN=1 the unit sphere in RY. Suppose that there exist ag > 0,29 € SV 1 Ry, Ry > 0,a
with 0 < a < 2 such that, setting

7 = {tr € RN | v € Bg,(20),t > 0}
it holds true that lim, , ,ez a = ag, and
Vo € Z\ Bp, : a(z) > ag+ el

We also ask Ry > § and esssup(a|gv\z) < ao.
The figure shows how the domain Z could look in R?:

5.4 Proposition Under the hypotheses above I, has a ground state.

Proof. We have at # 0 and limp_, €sssup ajgn p0) = ao. We are going to prove that
a satisfies (A1).
By the definition of Z we can construct sequences (z,) and (R,,) such that R, — oo,
III;_:H = Ry and Bg, (2,) C Z \ Bpg,. Define x(v) = e~®I*l and v = a/Ry < 2. We have,
for all n € N and x € By, (2,): k(z — 2,)e " = emallz=zllg=alzll < e=allzll and from
here we obtain a(z) > ag+ k(x — 2,)e 7. So Lemma 5.1 assures that (A1) is satisfied,
and by Theorem 4.15 I, has a ground state.

[
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5.4 Example 3

In the next example a is radially symmetric, so there are already results about the ex-
istence of a radial ground state. However, the radial ground state is not necessarily a
ground state, so Theorem 4.15 gives a better result.

Denote Zy = {x € RV | 0 < ||z|| < 1} and, foralln € N, theset Z; = {z ¢ RV | 2'"! <
|z|| < 2'}. Define a = —1 in Z; for i odd, and a = 14+e2 >, with 0 < < 2, for i even.

5.5 Proposition I, has a ground state.

Proof. We define z, = (221 .30,...,0) and R, = 22®~Y_ It can be proved that
Br, (2n) C Zap, and then we have a(z) = 1+ ¢ 277 = 1 + ¢ 7 50 the result follows
from Lemma 5.1 and Theorem 4.15.

]

5.5 Example 4

In this last example the function a is defined similar to the previous one, but this time
instead of annular domains we consider logarithmic spirals, and a will not be a radial
function. In order to make more clear the shape of the next subset of R?, we first define
it using polar coordinates:

0 0+27
7 ;:{(t69+(1—t) (%)9) |9>0,0<t<1}.

From the definition we can see that, in some sense, Z; is the open set delimited by two
. . 0 0+2m

spirals, one given by r = €, and the other by r = % The elements of Z; are

contained in line segments whose extremal points are elements of the spirals.
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In cartesian coordinates we have

0 0+2r 0 .6+27
Z) = {(COSH |:t60+(1—t) (%)} ,sin 6 {tee—k(l—t) (%)}) |0>00<t< 1}.

We will use the auxiliar function f: R x (0,1) — f(RT x (0,1)) C R? defined as

f(t,0) = (cose [tee +(1—1) (ﬂ)} ,sin {tee +(1—1t) (ﬂ)b .

Observe that f(RT x (0,1)) = Z;. This function is a homeomorphism: the continuity
and surjectivity are clear from the definitions. To prove the injectivity we will use polar
coordinates. Assume that f(61,t1) = f(0s,t2). This implies that 6; = 05 + 2mm for some
m € Z. Without loss of generality we can assume m > 0. Now observe that, if m > 0,
we will have

1 (6o, t2)]] = 26+ (1 — ) (

eg + 692+27r
- 2
< 692+2ﬂ'

S 692+2m7r

< [0, 2l

ey + el t2m
2
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which is a contradiction. We deduce #; = 65, and from here follows t; = t5, so f is in-
jective. To prove that f is an open map consider the base of R™ x (0, 1) whose elements
are the sets of the form (0y,605) X (t1,t3) with (0 < 6 < 05,0 < t; < ta < 1. We use
again polar coordinates (only to make clearer the shape of the set) to write

f((01,92) X (tl,tg)) = {(t@e + (1 — t) (ﬂ) ,9) | 01 <0< 92,t1 <t < tg} ,

which is an open set. We conclude that f is a homeomorphism.

Now define
2n+1)w 2n—1)m
Zp = (G(QH_I)W + (6( ) ;e( ) ) mr)

1 1 2n—1)m 2n+1)m
= (56(2"1)” +3 (6 —;—e ) ,(2n — 1)7?)

(- 2)e (- 2)7) o).

for n € N. The last set is open so we can find R; such that

Br,(21) C f ((g %W) % (0, 1)> .

To simplify the exposition we are not going to find explicitly R;.

Since f is invertible, we can define functions g; : R* — RT g, : R? — (0, 1) such that
F712) = (91(2), g2(2)) for all 2 € R? (this functions will be the projection to the first
and second coordinate, respectively, of f1(z2)).

We are now able to define a. Set a(z) := 1+ e~ (R if 2 ¢ 7, and —1 otherwise. We
will prove that I, has a ground state.

Let R >0, and z € Z; [(R? \ Br(0)). We have, for § = g,(z),t = g2(2)

2

R<||z|]:teg+(1—t)<

0 0427
e’ +e
— R < T < 69+27T

= log(R) — 27 < 6,

50 1+ e~ fe " > a(z) > 1. Taking limit when R — oo we deduce a = 1.
Set R, := 2™ V7R, We will prove that Bg, (z,) C Z; for all n. For this, let z €
Bg, (z,). We have

x Zn
e2(n—1)m e2(n—1)m

|z — 2| < Ry = 2@ V7R, — ‘ <R,
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The polar coordinates of z,/e?™ V7 are

(@n—l)m | (elrtlr—erolr
Zn € + 4
= s T

e2(n—1)m e2(n—1)m

so 7/eX" V7™ ¢ By (21) C Zy, and we can write

T el + eft2r
e?(nfl)ﬂ’ = (tee + (1 - t) (T) ,0)

for some 6 > 0,0 <t < 1. It follows that

2(n—1)m+6 2(n—1)m+6+2m
= (teQ("—“”*@ +(1—1) (e te ) ,9)

2

01 01+2m
_ (t691 (-1 (%) ,91) :

where 61 = 2(n — 1)7 + 6 > 0. We deduce = € Z;, and from here By, (z,) € Z;.
Still assuming = € Bpg, (z,) we have

2/ DT ¢ B () C f ((g 37”) « (0, 1)) |

Using the calculations made before we obtain

cer (- 2)m (o)) <o),

<2n—%)7rR1)

and then
a(z) =14 R > 1 4 > 1 4 e TR,
Defining x = e~ P& =) wo have a(z) > 1+ k(x — 2,)e . and the existence of

a ground state follows from Lemma 5.1 and Theorem 4.15.
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6 Future of this research

There are many problems in which the Concentration Compactness Principle of Lions
has been used to prove existence of solutions, and we think that the variation of the
Splitting Lemma we have presented here can be used to extend some of those results.
Of special interest for us is the strongly indefinite case, in which a does not change sign,
0¢o(—A+V)and dim E((—o0,0)) = oo, where the subspace E((—o0,0)) corresponds
to the spectral decomposition of —A + V' with respect to the negative part of the spec-
trum. In this situation we have found difficulties trying to adapt the ideas of [15], given
that Lemma 4.6 does not hold anymore. Obtaining this result will take us one step
closer to prove the existence of ground states in the double indefinite case, where the
hypoteses about the spectrum of —A 4V are the same as in the strongly indefinite case
but a can change sign.
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