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1 Introduction

It is well known that Black-Scholes-Merton (1973) model is not the most appropriate way to price European
options. For example, assumptions like constant volatility and continuous trajectories of the underlying asset
price contribute that the option price of this model cannot be consistent with the option price given by the
market in the real world.

Brigo and Mercurio (2000) proposed a new method based on the assumption that the density of the under-
lying asset price S of a financial instrument can be expressed as the weighted average of densities of some prices
S1, ..., Sm, where each Si is driven by a known diffusion process under the risk-neutral measure Q. We will see
later that this procedure can be considered as the first step to construct models that do the least departure
from the lognormal world employed in the Black-Scholes-Merton model. Moreover, the mixture-diffusion SDE
models that arise from this method are still analytically tractable to put in practice, and able to fit more general
volatility models.

In this work we will follow the ideas given by Brigo (2002), and we will give some details of his results. In
the first part of this work, given a mixture of probability densities, we will provide the necessary tools to define
a candidate diffusion process whose marginal law follows the same evolution. In section 2, we shall see the
particular case of mixture of Gaussian densities. In section 3, we will present diffusion processes whose marginal
densities are mixtures of lognormal densities; possible solutions and algorithms to the volatility smile problem
in mathematical finance; and differences between local volatility models and stochastic volatility models under
terminal and instantaneous correlation criteria.

Throughout this work, unless otherwise stated, we shall work on a filtered probability space (Ω,F , (Ft), Q)
whose filtration (Ft)t≥0 satisfies the usual conditions (see Karatzas and Shreve, 2014), and we shall assume
that our risky asset price process S under the risk-neutral measure Q is positive and continuous. Following the
ideas of Brigo (2002), let us then start by assuming that the risky asset price S under the risk-neutral measure
is driven by a stochastic differential equation (SDE)

dSt = ft(St)dt+ σt(St)dWt, (1)

of diffusion type, with S0 = s0 deterministic initial condition; and W = (Wt)t≥0 a standard Brownian motion.
We also assume

(A1) The stochastic differential equation (1) with diffusion and drift coefficients f and σ respectively, and initial
condition s0, admits a unique strong solution whose support is assumed to be the interval (a,∞) at all
instants of time.

In order to describe the evolution of the distribution of probability of the price, we assume:

(A2) The unique solution St to the SDE (1) admits a density pt which is absolutely continuous with respect to
the Lebesgue measure and satisfies the Fokker-Planck equation:

∂pt
∂t

= −∂(ftpt)

∂x
+

1

2

∂2(σ2
t pt)

∂x2
,

where pt(x) := p(t, x), ft(x) := f(t, x), and σt(x) := σ(t, x).

Now, let us assume that the information we have about each Si is described by a basic parametric family of
densities, say

D = {p(·|θ) : θ ∈ Θ},
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with Θ ⊂ Rd open, d a positive integer; and all of its densities share the same support (a,∞). Now, we are led
to consider a particular collection of mixtures of elements of this family. So let us define for each fixed vector
λ = (λ1, ...λm) of strictly positive weights with

∑m
j=1 λj = 1, the set

M(D, λ) := {λ1p(·|θ1) + · · ·+ λmp(·|θm) : θ1, ...θm ∈ Θ}.

Now, we are interested in finding conditions under which the density of S under the risk-neutral measure is
the weighted average of known densities of some prices Si. To do this we will introduce and solve the Problem
1.1 presented by Brigo (2002).

Problem 1.1 (Brigo, 2002). Let be given a drift ft(·) and a mixture family M(D, λ) of densities p(·|θ) with
support (a,∞), and satisfying

lim
s↓a

ft(s)p(s|θ) = 0, for all t ≥ 0, θ ∈ Θ.(A3)

Let Σ(f, s0) denote the set of all diffusion coefficients σf such that the related SDE (1) satisfies the assumptions
(A1) and (A2), and such that

lim
s↓a

(σft (s))2p(s|θ) = 0, lim
s↓a

∂
(

(σft (s))2p(s|θ)
)

∂s
= 0,(A4)

for all t ≥ 0, θ ∈ Θ.

Assume the set Σ(f, s0) to be non-empty. Then, given a curve t 7→
∑m
i=1 λip(·|θi(t)) in M(D, λ) (where

t 7→ θi(t) are C1-curves in the parameter space Θ), find a diffusion coefficient in Σ(f, s0) whose related SDE
(1) has solution with density pt(·) =

∑m
i=1 λip(·|θi(t)).

Let us first give an introductory motivation to the Problem 1.1. Consider the scenario where we have partial
information about the dynamics of S. For example, suppose that we know the drift ft(·) = f(t, ·) and the
weights λi of each one of the densities p(·|θi(t)) of the prices Si, then the solution to Problem 1.1 allow us
to find a diffusion coefficient σf such that the curve t 7→ pt of densities of S matches with the given curve
t 7→

∑m
i=1 λip(·|θi(t)).

Proposition 1.2 (Brigo, 2002). Under assumptions and notation of Problem 1.1, consider the stochastic dif-
ferential equation

dSt = ft(St)dt+ σft (St)dWt S0 = s0 (2)

(σft (s))2 =
2∑m

i=1 λip(s|θi(t))

[∫ s

a

(∫ x

a

m∑
i=1

λi
∂p(y|θi(t))

∂t
dy

)
dx+

∫ s

a

ft(x)
m∑
i=1

λip(x|θi(t))dx

]
.

If σf ∈ Σ(f, s0), then the solution to the SDE (2) solves the Problem 1.1, and pSt
(s) =

∑m
i=1 λip(s|θi(t)) for

t ≥ 0.

Proof. As already mentioned by Brigo and Mercurio (2000), by assuming the hypothesis of Problem 1.1 this
proof will be finished once we have proved that qt(s) :=

∑m
i=1 λip(·|θi(t)) satisfies the Fokker-Plank equation

with f and σf as in (2). We can do this by solving the Fokker-Planck equation with respect to σ. Thus, by
using (A3), (A4), and integrating twice (with respect to x) the equation

∂qt
∂t

= −∂(ftqt)

∂x
+

1

2

∂2(σ2
t qt)

∂x2
,
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we get ∫ s

a

∫ x

a

m∑
i=1

λi
∂p(y|θi(t))

∂t
dydx = −

∫ s

a

ft(x)
m∑
i=1

λip(x|θi(t))dx+
1

2
σ2
t (s)

m∑
i=1

λip(s|θi(t)),

Therefore, the only candidate σ for which its associated SDE (1) satisfies the conditions (A1), (A2), (A3), and
(A4) with density qt(·) and drift f , must be equal to σf as in (2).

We shall use a particular case of the above proposition.

Corollary 1.3 (Brigo, 2002). Under assumptions and notations of the previous proposition, if the basic densities
p(·|θi(t)) evolving in M(D, λ) are respectively the marginal densities of a family of (instrumental) SDEs

dSit = f it (S
i
t)dt+ σitdWt, Si0 = s0, pSi

t
(s) := p(s|θi(t)), i = 1, ...,m

all satisfying the assumptions (A1), (A2), (A3), and σi ∈ Σ(f i, s0), then the solution to the Problem 1.1 takes
the form

(σft (s))2 =

m∑
i=1

Λit(s)(σ
i
t(s))

2 +
2
∑m
i=1 λi

∫ s
a

(ft(x)− f it (x))p(x|θi(t))dx∑m
j=1 λip(s|θi(t))

, Λit(s) :=
λip(s|θi(t))∑m
i=1 λip(s|θi(t))

. (3)

If f satisfies

ft(s) =

m∑
i=1

Λit(s)f
i
t (s) (4)

then the second term in the right side of (σf )2 in (3) vanishes, and then the squared diffusion and drift coefficients
of our final SDE are “Λ-mixtures” of the squared diffusion and drift coefficients of the instrumental processes.

Proof. We substitute the Fokker-Planck instrumental equations

∂p(s|θi(t))
∂t

= −∂(f it (s)p(s|θi(t))
∂s

+
1

2

∂2[(σit(s))
2p(s|θi(t))]
∂s2

in the equation (2) for (σft )2. Thus, using (A3) and (A4), we get

(σft (s))2 =
2∑m

i=1 λip(s|θi(t))

[∫ s

a

(
m∑
i=1

−λif it (x)p(x|θi(t))

)
dx

+
m∑
j=1

λj(σ
j
t (s))

2p(s|θj(t))
2

+

∫ s

a

ft(x)
m∑
i=1

λip(x|θi(t))dx

 .
By straightforward calculations, we obtain the result.

The above problem could have been generalized by considering a generic density evolution t 7→ qt. In such
case, and using analogous assumptions to (A3) and (A4), the diffusion coefficient would be

(σft (s))2 =
2

qt(s)

[∫ s

a

(∫ x

a

∂qt(y)

∂t
dy

)
dx+

∫ s

a

ft(x)qt(x)dx

]
.

In the next sections, we shall see some implications of the above results related to the normal parametric
family case and to mathematical finance. Although throughout this work we will make use of the assumptions
made in this part, we will make explicit description of the cases where we can lighten some assumptions in order
to get more useful results.
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2 Diffusions whose densities follow mixtures of normal distributions

As already noticed by Brigo and Mercurio (2000), before late 90s no explicit rigorous attempts had been made
to design time-continuous diffusion models whose densities were mixtures of normals or lognormals. Although
there were some empirical works like (Ritchey, 1990) and (Guo, 1998) among others, the first theoretical point
of view was due to Brigo and Mercurio.

This subject can be motivated in the sense that simplest generalization outside from the Gaussian world
could begin by the use of mixtures of normal densities, at least in mathematical finance this subject can be
relevant. In fact, as already mentioned by some authors, e.g. (Hull, 2012), financial instruments such as options
have no volatility constant, nor do they have continuous price changes, then lognormal distributions are not the
ideal way to price options. As a result, the use of other type of tools is needed to have a better explanation and
prediction of option prices fluctuations.

We then begin by considering the case of the normal family

D := {pN (m,v2) : m, v ∈ R}, a = −∞,

and suppose we have some λ-mixture of normals given, t 7→
∑m
i=1 λipN (mi(t),v2i (t)). Now, we want to find a

diffusion process such that its density matches the previous mixture. Under certain conditions this problem is
tractable. Our aim is to connect each result to show a procedure of how to apply this theory in practice and
providing an additional support to the Problem 1.1. Because of that, we shall show a particular tractable case.
Consider the instrumental SDEs

dSit = µi(t)dt+ σi(t)dWt, mi(t) :=

∫ t

0

µi(l)dl, v2
i (t) :=

∫ t

0

(σi(l))
2dl,

for i = 1, ...,m, with null initial conditions. As a first step, we will verify that they satisfy the conditions (A1),
(A2), and (A3). In fact, we know that each above instrumental SDE satisfies the Lipschitz condition (see Rogers
and Williams, 2000, p. 128) and Sit ∼ N (mi(t), v

2
i (t)) (see Appendix A), then the condition (A1) holds. Now,

by straightforward calculations we can verify

∂pt(s)

∂t
=

∂

∂t

exp

{
− (s−m(t))2

2v2
i (t)

}
√
v2
i (t)2π



=

−σ2
i (t) exp

{
− (s−m(t))2

2v2
i (t)

}
2v3
i (t)
√

2π
+

exp

{
− (s−m(t))2

2v2
i (t)

}
√
v2
i (t)2π

[
2(s−m(t))µi(t)

2v2
i (t)

+
(s−mi(t))

2σ2
i (t)

2v4
i (t)

]
= exp

{
− (s−m(t))2

2v2
i (t)

}[
−σ2

i (t)

2v3
i (t)
√

2π
+

(s−mi(t))µi(t)√
2πv3

i (t)
+

(s−mi(t))
2σ2
i (t)

2v5
i (t)
√

2π

]
,

and

− ∂

∂s
(µi(t)pt(s)) +

1

2

∂2

∂s2

(
σ2
i (t)pt(s)

)

=

µi(t)(s−mi(t)) exp

{
− (s−m(t))2

2v2
i (t)

}
v3
i (t)
√

2π

+
1

2
σ2
i (t)

− exp

{
− (s−m(t))2

2v2
i (t)

}
v3
i (t)
√

2π
+

(s−mi(t))
2 exp

{
− (s−m(t))2

2v2
i (t)

}
v5
i (t)
√

2π

 ,
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then the Fokker-Planck equation is satisfied and therefore (A2) holds. Finally, (A3) follows immediately from
the definition Sit ∼ N (mi(t), v

2
i (t)) when s → −∞. Now, by applying Corollary 1.3, we get that the drift and

squared diffusion coefficient satisfies

ft(s) =
m∑
i=1

Λit(s)µi(t), (σft (s))2 =
m∑
i=1

Λit(s)σ
2
i (t), Λit(s) =

λipN (mi(t),v2i (t))(s)∑m
j=1 λjpN (mj(t),v2j (t))(s)

(5)

Given (5), we will look for some conditions on µi’s and σi’s that allow us to get the assumptions (A1) and
(A2) for our final SDE (1) associated to f and σf . One alternative to get strong solutions to the SDE (1) is
via local Lipschitz property of its drift and diffusion coefficients. This can be consulted in the Theorem 12.1 in
Section V.12 of (Rogers and Williams, 2000).

Theorem 2.1 (SDE whose marginal law follows a given normal mixture; Brigo, 2002). Consider a
SDE

dSt = ft(St)dt+ σft (Yt)dWt, S0 = s0 (6)

with drift and diffusion coefficients f and σf as in (5), where the σ′is and µ′is are at least C1 times functions.
Assume that µi(t) = µ̄ and σi(t) = σ̄ on an initial interval [0, ε) with ε > 0; and each σi is bounded away from
zero, that is, σi(t) > K > 0 for all i and t. Then the considered SDE admits a unique strong solution whose
marginal density is a λ-normal mixture

pSt =

m∑
i=1

λipN (mi(t),v2i (t)).

Proof. Let us consider t 7→ σi(t)
′s and t 7→ µi(t)

′s to be at least C1. Since the initial condition is zero, we may
have problems of regular behavior of f and σf when (t, y)→ (0, 0). We avoid this problem by considering each
σi to be bounded away from zero, and setting µi(t) = µ̄ and σi(t) = σ̄ for each i = 1, ...,m and t ∈ [0, ε) with
ε > 0.

From the given assumptions, we get Λit(s) = λi on [0, ε), and 0 ≤ Λit(s) ≤ 1 for all t and s, and thus, f
and σf are bounded on intervals of the form [0, T ]. By the previously mentioned, we can easily verify that
f and (σf )2 are C1 in both t and s, and moreover the σi’s are also C1 because they are bounded away from
zero. Therefore, f and σf are locally Lipschitz, and now we can apply the Theorem 12.1 in Section V.12 of
(Rogers and Williams, 2000) to conclude that our final SDE with drift and diffusion coefficients f and σf as in
(5) admits a unique strong solution.

It is well known that the diffusion coefficient of a diffusion process that models the price of the underlying
asset of an option is associated with its volatility. Therefore, it is natural to ask for types of relations between
the process itself and its diffusion coefficient. Nowadays, some of the ways that are used in practice to measure
relations between the process itself and its diffusion coefficient are the terminal correlation and the instantaneous
correlation, which are also used as a tool to help to price financial instruments whose payoffs depend on the
joint realizations of several prices or rates; for example, basket options, spread options, etc., (see Rebonato,
2005, Section 5.1).

There are some ways to introduce the concept of instantaneous correlation (see for instance Munk, 2015;
Rebonato, 2005). Here we use the notation used by Brigo (2002) that gives some intuition to the reader
unfamiliar with this concept. We recall the quadratic variation of a (Ft, Q)-continuous semimartingale M as
the increasing process 〈M,M〉 ≡ 〈M〉 such that for every t ≥ 0 and every sequence (∆n) of subdivisions of [0, t]
with |∆n| → 0,

〈M,M〉t = Q− lim
|∆n|→0

T∆n , T∆n
t :=

∑
i

(Mti+1
−Mti)

2.
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Other concept related to the previous one is the covariation of two (Ft, Q)-continuous semimartingales M and
N . This is the increasing process 〈M,N〉 such that for every t ≥ 0 and every sequence (∆n) of subdivisions of
[0, t] with |∆n| → 0,

〈M,N〉t = Q− lim
|∆n|→0

T̃∆n , T̃∆n
t :=

∑
i

(Mti+1
−Mti)(Nti+1

−Nti).

In this work we will use the notation Corrt and Covt respectively for correlation and covariance, both conditional
in the information available at time t. Given these concepts, a natural way to get information about changes
on infinitesimal periods of time between (Mt)t≥0 and (Nt)t≥0 is via instantaneous correlation

Corrt(dMt, dNt) =
d〈M·, N·〉t√
d〈M·〉t

√
d〈N·〉t

,

where this concept has sense for well-behaving and strictly positive processes 〈M〉 and 〈N〉. In some sense, this
criteria give us some information about linear behavior on instantaneous periods of time. For example, if (Mt)t≥0

and (Nt)t≥0 are well-behaving semimartingales with Nt = λMt and λ 6= 0, we get Corrt(dMt, dNt) = sgn(λ).
Moreover, if they are independent, their instantaneous correlation is zero.

Let us calculate the terminal correlation and instantaneous correlation of SDE (6). We recall σft (St) =
σf (t, St), then using Itô’s formula with σ := σf and the vector semimartingale (It, St)≥0 we get

σt(St) =

∫ t

0

(
D1σl(Sl) + (D2σl(Sl))fl(Sl) +

1

2
(D22σl(Sl))σ

2
l (Sl)

)
dl +

∫ t

0

(D2σl(Sl))σl(Sl)dWl,

where It(w) ≡ t, and Di denotes the partial derivative with respect to the ith coordinate. Thus

Corrt(dSt, dσt(St)) =
d〈S., σ.(S.)〉t√
d〈S.〉t

√
d〈σ.(S.)〉t

=
(D2σt(Yt))σ

2
t (St)dt√

σ2
t (St)dt

√
[(D2σt(St))σt(St)]2dt

= 1.

However, the results are different for the terminal correlation. By using (5) and St ∼
∑m
i=1 λipN (mi(t),v2i (t)),

we get

Cov(St, σ
2
t (St)) = E[Stσ

2
t (St)]− E[St]E[σ2

t (St)] =
m∑
i=1

λimi(t)σ
2
i (t)−

(
m∑
i=1

λimi(t)

)(
m∑
i=1

λiσ
2
i (t)

)
Now consider the case µi(·) = µ(·) for all i, and correspondingly mi(·) = m(·) for all i where m(t) :=

∫ t
0
µ(l)dl.

Then, we get ft(s) = µ(t) for all s, and the terminal correlation at time t is zero

Corr(St, σ
2
t (St)) = Cov(St, σ

2
t (St)) = 0

In this case we conclude that the instantaneous changes of the process itself and the instantaneous changes of
its diffusion coefficient are perfectly positive correlated, whereas their terminal correlation at any time is zero,
even when the time t is close to zero. Moreover, as we shall see later, the correlation between St and its average
square diffusion

∫ t
0
σ2
l (Sl)dl is again zero

Corr

(
St,

∫ t

0

σ2
l (Sl)dl

)
= 0.

From the Theorem 2.1, we can get examples of mixtures of distributions of parametric families not necessary
normal. For example, if we consider S the process given by Theorem 2.1, then applying Itô’s formula to
Yt := exp(St) we get

dYt =

(
Ytft(ln(Yt)) +

1

2
Ytσ

2
t (ln(Yt))

)
dt+ Ytσt(ln(Yt))dWt, Y0 = 1,

and by standard procedure, we conclude that pYt
(y) = pSt

(ln(y))/y. Thus, Yt is distributed as a mixture of
lognormals.
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3 The smile phenomenon in option pricing

In this part, we will see some aspects of the smile problem in mathematical finance and explain a possible
solution to them via the use of diffusions whose densities are λ-mixture lognormals.

3.1 The smile problem and implied distribution

The smile problem can be seen, especially for European options, as all the consequences that arise of the
development and use of volatility smile curves (implied volatility vs strike price curves) to construct the (implied)
densities of the underlying assets as a supporting tool to price options.

In order to introduce the smile problem in a more accurate way, let us first give some basic concepts of
mathematical finance. In the common discrete-time financial scenario where we consider a market with two
assets Bt and St, where Bt is the riskless asset(numéraire) satisfying Bt = (1+r)Bt−1, and St is the risky asset;
we say that a contingent claim (pay-off of an option) CT is attainable, if we can find a self-financing portfolio
strategy ξt := (ξ0

t , ξ
1
t ) (predictable process) such that the portfolio value Vt := ξt · (Bt, St) satisfies VT = CT ,

and the difference between its values at time t+ 1 and t equals

Vt+1 − Vt = ξt+1 · (Bt+1, St+1)− ξt · (Bt, St)
= ξt+1 · (Bt+1, St+1)− ξt+1 · (Bt, St) = ξ0

t+1(Bt+1 −Bt) + ξ1
t+1(St+1 − St). (7)

These portfolio value processes are useful to price financial instruments. In fact, under the assumption of
a complete market without arbitrage opportunities, we can find a unique risk-neutral measure (martingale
measure) Q that allow us to calculate the unique arbitrage-free price EQ[(1 + r)−TCT ] at time t = 0 of the
contingent claim CT with maturity T (see for instance Shreve, 2004).

As we might expect from (7), the continuous time scenario should be

dVt = ξ0
t dBt + ξ1

t dSt

where (Bt)t∈[0,T ] and (St)t∈[0,T ] should follow dynamics of the type

dBt = r(t)Btdt, dSt = r(t)Stdt+ vtStdWt,

where (Wt)t∈[0,T ] is a standard Brownian motion; and the process (ξt)t∈[0,T ] is adapted with respect to the
filtration Ft = σ(Sl, l ≤ t) = σ(Wl, l ≤ t). Fortunately, the time-continuous scenario shares similar results
from the discrete-time model. In fact, under complete markets, Harrison and Pliska (1981) established that the
unique arbitrage-free price at time t for a contingent claim CT ∈ L2(Q) is given by Πt(CT ) = BtEQ[CT /BT |Ft]
where Q is the risk-neutral measure such that (St/Bt)t∈[0,T ] is (Ft, Q)-martingale.

In the context of the Black-Scholes-Merton setup, we can deduce from the results given in Appendix B that
the dynamics of S under the risk-neutral measure Q can be assumed to be of the form

dSt = r(t)Stdt+ v(t)StdWt, S0 = s0, t ∈ [0, T ]; (8)

where s0 is a positive constant value; r and v are well-behaving and strictly positive functions (see also Elliott
and Kopp, 2006, Section 7.5). By Itô’s lemma applied to ln(St), we get

ln(St) = ln(S0) +

∫ t

0

(
r(s)− v2(s)

2

)
ds+

∫ t

0

v(s)dWs;

and using
∫ t

0
v(s)dWs ∼ N

(
0,
∫ t

0
v2(s)ds

)
, we conclude

9



ln

(
St
S0

)
∼ N

(
R(0, t)− 1

2
V 2(t), V 2(t)

)
, R(b, t) :=

∫ t

0

r(s)ds, V 2(t) :=

∫ t

0

v2(s)ds. (9)

When a = 0, we shall write R(t) instead of R(0, t). Now, we have the tools to compute the arbitrage-free price
at time t = 0 (the initial investment) for a contingent claim CT ∈ L2(Q) that is Π0(CT ) = B0EQ[CT /BT |F0] =
EQ[CT /BT ].

In the case of a European call option Ct = f(ST ) = (ST −K)+ where K is the strike price, and T is the
maturity of the option, the discounted pay off (the initial investment) is calculated by using the formula of
arbitrage-free price at time t = 0 with the lognormal distribution given by (9). This procedure drive us to the
famous Black-Scholes-Merton (1973) call option formula, which we denote by “BSCall” and whose expression
is given by

EQ[(ST −K)+/BT ] = BSCall(S0,K, T,R(T ), V (T )).

According to the formula, the (average) volatility V (T )/
√
T is a quantity that does not depend on K. In fact,

the volatility of the option is a characteristic of the stock S, and it has nothing to do with the contract itself.

Following the previously mentioned if we have two market prices of European call options denoted by
MKTCall(S0,K1, T ) and MKTCall(S0,K2, T ) with the same maturity but with different strike prices K1 and
K2, we should have a single volatility parameter V (T ) such that

MKTCall(S0,K1, T ) = BSCal(S0,K1, T,R(T ), V (T ))

MKTCall(S0,K2, T ) = BSCal(S0,K2, T,R(T ), V (T ))

Unfortunately, this does not happen in the real world. What one really sees is that two different volatilities
V (K1, T ) and V (K2, T ) are required to match the previous equations:

MKTCall(S0,K1, T ) = BSCal(S0,K1, T,R(T ), V (T,K1))

MKTCall(S0,K2, T ) = BSCal(S0,K2, T,R(T ), V (T,K2))

This problem leads us to use different (average) implied volatilities V (T,K)/
√
T for European options depending

on the option strike K. If Black-Scholes-Merton model were consistent with respect to the strike prices, the
volatility smile K 7→ VMKT(T,K)/

√
T should be flat rather than the “smiley” ones that traders are used to.

Now, we shall see how volatility smiles are used to calculate implied distributions PSTj
that are useful

tools to study price fluctuations; and we will close this section showing some problems that arise of the use of
interpolation to calculate the implied distribution, as often happens in practice.

Let us then consider (as in the real world happens) that the market only quote some strikes Ki’s and
maturities Tj ’s. One mathematical intuitive idea consists in doing interpolation in the points (K,V (Tj ,K)) for
each maturity Tj and thereby obtaining curves of the form K 7→ V (Tj ,K) and

K 7→ BSCall(S0,K, Tj , V (Tj ,K)).

This procedure does not give any financial insight about the dynamics of St. However, in practice, it is
accustomed to use the idea given by Breeden and Litzenberger (1978) assuming that the arbitrage-free price
equation of Harrison and Pliska holds for each MKTCall(S0,Ki, Tj), and thus

BSCall(S0,Ki, Tj , V (Tj ,Ki)) = MKTCall(S0,Ki, Tj) = e−
∫ Tj
0 r(l)dlEQ[(STj

−Ki)
+]

= e−
∫ Tj
0 r(l)dl

∫ ∞
Ki

(y −Ki)pSTj
(y)dy, (10)
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where pSTj
is the risk-neutral density of the stock price at maturity time Tj . Now, differentiating two times

with respect to K (see also Hull, 2012) , we obtain

pSTj
(K) ≈ e

∫ Tj
0 r(l)dl ∂

2BSCall(S0,K, Tj , V (Tj ,K))

∂K2
.

Although this method is easy to use and is in some way coherent, there are some problems. Here we mention
some of them:

1. This method assumes that there are option prices for many strikes to make coherent the idea of using
interpolation and extrapolation methods. Unfortunately this does not happen in practice.

2. Using the second order derivative approximation may increase even little errors of price options (see for
instance Bedoui and Hamdi, 2010).

From these last problems, we might wonder what kind of dynamics that provides us mathematical and financial
insight, and alternative to (8), do the densities pST1

, pST2
, ... come from?

3.2 Local and stochastic volatility models

We will look for a partial solution to the volatility smile problem mentioned at the end of subsection 3.1. To do
this, we will look for an alternative SDE whose density resembles the density of the SDE (8), and whose prices
matches the prices quoted by the market for the different maturities and strikes Ki’s and Tj ’s.

Let us then begin considering an alternative model

dSt = r(t)Stdt+ σ(t, St)StdWt S0 = s0 (11)

where σ can be either a deterministic function of St, in which case the model will be called a local volatility
model, or σ can have randomness by its own, i.e. driven by a SDE

d(ξ2
t ) = b(t, ξ2

t )dt+ χ(t, ξ2
t )dZt, ξt := σ(t, St),

in which case the model will be called a stochastic volatility model; and where Z is a standard Brownian motion
satisfying

Covt(dZt, dWt) = d〈W,Z〉t = ρdt.

Although the instantaneous correlation for stochastic volatility models is

Corrt(dSt, dσ
2(t, St)) =

σ(t, St)Stχ(t, ξ2
t )ρdt√

σ2(t, St)S2
t dt
√
χ2(t, ξ2

t )dt
= ρ,

whereas for local volatility models is

Corrt(dSt, σ
2(t, St)) =

(D2σ
2(t, St))(σ(t, St)St)

2dt√
(σ(t, St)St)2dt

√
(D2σ2(t, St))2σ2(t, St)S2

t dt
= 1,

this does not imply that stochastic volatility models are superior to local volatility models. In fact, this
superiority does not appear when we consider terminal correlations, as we shall see later. There are some
problems such as the computational complexity and the difficulty of fitting parameters to the current prices of
vanilla options that arise in practice in stochastic volatility models (Gatheral and Lynch, 2002). Therefore, we
shall focus on deterministic σ’s flexible enough for practical purposes.

11



Now, given the specification that our alternative model is of local volatility, a problem we face is finding
additional features that our alternative dynamics (11) should have in order to allow us to construct densities as
similar as possible to the true densities pST1

, pST2
, ... derived from the dynamics (8). This will be done by fitting

the prices of our alternative model (11) to the prices of the market for the different maturities Tj ’s and strikes

Ki’s, and trying that the curves K 7→ V (T,K)/
√
T of our alternative model resemble the volatility smiles given

by the market. The procedure is illustrated as follows:

1. Find the risk-neutral measure Q of the dynamics (11).

2. For each pair of (Tj ,Ki) compute the prices given by the model (11)

Π(Tj ,Ki) = e−
∫ Tj
0 r(l)dlEQ((STj

−Ki)
+),

and solve the equation
BSCall(S0,Ki, Tj , R(Tj), V (Tj ,Ki)) = Π(Tj ,Ki)

for V (Tj ,Ki).

3. Calculate the (average) implied volatilities V (Tj ,Ki)/
√
Tj for each pair (Tj ,Ki).

Since the dynamics of our alternative model (11) are not lognormal, the curves K 7→ V (Tj ,K) are not necessary
flat. A possible solution to this problem is finding a diffusion σ in (11) flexible enough that allows the implied
volatilities V (Tj ,Ki)/

√
Tj of the alternative model to be as close as possible to the market implied volatilities

V MKT(Tj ,Ki)/
√
Tj . As might be expected, the problem appears when we need to calibrate a large number of

points. For example, if we consider the CEV model σ(t, St) = ηSγt in (Cox, 1975), it has only the parameters
γ and η, so its fitting capabilities are very limited. Therefore, λ-mixtures can be a useful tool instead of using
methods that require interpolation and another techniques that may disturb data.

3.3 Local volatility lognormal mixture diffusion dynamics

Following the ideas suggested at the end of Subsection 3.2, we are interested in finding SDEs (11) whose densities
follow mixtures of lognormal densities. One way to do this is via Corollary 1.3. Therefore, let us consider m
instrumental processes of the Black-Scholes-Merton model

Sit = r(t)Sitdt+ vi(t)S
i
tdWt, Si0 = s0 (12)

associated to the SDE (11) with vi(t)’s and r(t) well-behaving and strictly positive functions, and drift coefficient
f(t, s) = r(t)s. In order to use the Corollary 1.3, let us first verify that the assumptions (A1), (A2) and (A3)
hold for each instrumental SDE (12). Since the drift and diffusion coefficients of (12) are locally Lipschitz, these
SDEs have unique strong solutions, and moreover we deduce from (9) that their solutions are of the form

Sit = s0 exp

{∫ t

0

(
r(l)− v2

i (l)

2

)
+

∫ t

0

vi(l)dWl

}
, ln(Sit/S

i
0) ∼ N

(
R(t)− V 2

i (t)

2
, V 2
i

)
.

Hence the condition (A1) holds. For (A2), we can verify after lengthy computations

∂pSi
t
(y)

∂t
= exp

{
−(ln(y)−R(t) + V 2

i (t)/2− ln(s0))2

2V 2
i (t)

}[
− v2

i (t)

2yV 3
i (t)
√

2π

+

(
ln(y)−R(t) + V 2

i (t)/2− ln(s0)
)

(r(t)− v2
i (t)/2)

yV 3
i

√
2π

+
v2
i (t)(ln(y)−R(t) + V 2

i (t)/2− ln(s0))2

2yV 5
i (t)
√

2π

]
,
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− ∂pSt
(y)r(t)y

∂y
= exp

{
−(ln(y)−R(t) + V 2

i (t)/2− ln(s0))2

2V 2
i (t)

}
×
[
r(t)(ln(y)−R(t) + V 2

i (t)/2− ln(s0))

yV 3
i (t)
√

2π

]
,

and

1

2

∂2

∂y2

yv
2
i (t) exp

{
−(ln(y)−R(t) + V 2

i (t)/2− ln(s0))2

2V 2
i (t)

}
Vi(t)

√
2π


= exp

{
−(ln(y)−R(t) + V 2

i (t)/2− ln(s0))2

2V 2
i (t)

}[
−
(
ln(y)−R(t) + V 2

i (t)/2− ln(s0)
)
v2
i (t)

2yV 3
i

√
2π

+
v2
i (t)(ln(y)−R(t) + V 2

i (t)/2− ln(s0))2

2yV 5
t (t)
√

2π
− v2

i (t)

2yV 3
i (t)
√

2π

]
.

As a result, for each i = 1, ...,m, the respective Fokker-Planck equation holds, and therefore (A2) is satisfied.
Finally, we can see condition (A3) follows immediately by the definition of the lognormal density of Sti . Now,
if we assume conditions of Corollary 1.3 hold for SDE (11) and (12), we get

σ2
mix(t, s)s2 := (σft (s))2 = s2

m∑
i=1

Λi(t, s)v
2
i (t), Λi(t, s) =

λipN (ln s0+R(t)−V 2
i (t)/2,V 2

i (t))(ln s)∑m
j=1 λjpN (ln s0+R(t)−V 2

j (t)/2,V 2
j (t))(ln s)

.

Brigo and Mercurio (2000) showed that under conditions similar to those mentioned in Theorem 2.1 for the
time functions t 7→ σi(t)’s, the final SDE

dSt = r(t)Stdt+ σmix(t, St)StdWt (13)

has a unique strong solution whose marginal density is given by the mixture of lognormals densities of the
instrumental SDEs (12). Therefore, we assume from now on that our SDE (13) with diffusion σmix(t, s)s, drift
f(r, s) = r(t)s, and instrumental SDEs (12) satisfies the conditions of Corollary 1.3.

For our SDE (13), we confirm again the result Corrt(dSt, dσ
2
mix(t, St)) = 1. In fact, by using Itô’s lemma we

get

σ2
mix(t, St) =

∫ t

0

(
D1σ

2
mix(l, Sl) + (D2σ

2
mix(l, Sl))r(l)Sl +

1

2
(D22σ

2
mix(l, Sl))σ

2
mix(l, Sl)S

2
l

)
dl

+

∫ t

0

(D2σ
2
mix(l, Sl))σmix(l, Sl)SldWl,

thus

Corrt(dSt, dσ
2
mix(t, St)) =

(D2σ
2(t, St))σ

2
mix(t, St)S

2
t dt√

σ2
mix(t, St)S2

t dt
√

(D2σ2(t, St))2σ2
mix(t, St)S2

t dt
= 1.

Although there is perfect positive instantaneous correlation, Brigo (2002) showed that under terminal correlation
criteria the results are completely different.

Theorem 3.1 (Brigo, 2002). Consider the random variable

v̄(T ) :=

∫ T

0

σ2
mix(t, St)dt,

with v̄(T )/T being the “average percentage variance” of the process (St)t∈[0,T ]. Then

Corr(σ2
mix(T, ST ), ST ) = 0, and Corr(v̄(T ), ST ) = 0. (14)
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Proof. We first notice that Corr(σ2
mix(T, ST ), ST ) = 0 is equivalent to

E[σ2
mix(T, ST )ST ]− E[σ2

mix(T, ST )]E[ST ] = 0.

This last equation is verified by the results:

E[σ2
mix(T, ST )ST ] =

∫ ∞
0

m∑
i=1

Λi(T, s)v
2
i (T )spST

(s)ds =

∫ ∞
0

m∑
i=1

Λi(T, s)v
2
i (T )s

 m∑
j=1

λjpSj
T

(s)

 ds

=

∫ ∞
0

m∑
i=1

sλiv
2
i (T )pSi

T
(s)ds = s0e

∫ T
0
r(l)dl

m∑
i=1

λiv
2
i (T ),

E[ST ] = s0e
∫ T
0
r(l)dl, and E[σ2

mix(T, ST )] =
∑m
i=1 λiv

2
i (T ).

To show Corr(v(T ), ST ) = 0, we begin by applying Itô’s lemma to the product of semimartingales v̄(t)St,

d(v̄(t)St) = Stσ
2
mix(t, St)dt+ r(t)Stv̄(t)dt+ v̄(t)σmix(t, St)StdWt. (15)

Since

E

[〈∫ ·
0

v̄(t)σmix(t, St)StdWt

〉
T

]
= E

[∫ T

0

(v̄(t)σmix(t, St)St)
2
dt

]

=

∫ T

0

E
[
(v̄(t)σmix(t, St)St)

2
]
dt

≤
∫ T

0

E

( m∑
i=1

∫ t

0

v2
i (l)dl

)2( m∑
i=1

v2
i (t)

)
S2
t

 dt
=

∫ T

0

(
m∑
i=1

∫ t

0

v2
i (l)dl

)2( m∑
i=1

v2
i (t)

)
m∑
j=1

λjE
[(
Sit
)2]

dt

=

∫ T

0

m∑
j=1

(
m∑
i=1

∫ t

0

v2
i (l)dl

)2( m∑
i=1

v2
i (t)

)
λje

V 2
i (t)s2

0e
2
∫ t
0
r(l)dldt <∞,

we conclude from the results given in Appendix A that (
∫ ·

0
v̄(l)σmix(l, Sl)SldWl) is a martingale in [0, T ]. Thus,

by taking expectations in (15) and using Fubini’s theorem, we get

dE[v̄(t)St] = E[Stσ
2
mix(t, St)]dt+ r(t)E[v̄(t)St]dt.

Let us now set At := E[Stσ
2
mix(t, St)] and Ct := E[v̄(t)St]. Thus, the above equation can be rewritten

Ċt = r(t)Ct +At,

whose solution is Ct = e
∫ t
0
r(s)ds

∫ t
0
e−

∫ l
0
r(u)duAldl. By Fubini’s theorem, we conclude

E[v̄(T )] =

∫ T

0

E[σ2
mix(l, Sl)]dl =

∫ T

0

m∑
i=1

λiv
2
i (l)dl =

∫ T

0

s−1
0 e−

∫ l
0
r(u)duAldl.

Now, by using E[ST ] = s0e
∫ T
0
r(u)du and Cov(v̄(T ), ST ) = E[v̄(T )ST ]−E[v̄(T )]E[ST ], we conclude Corr(v̄(T ), ST ) =

0.
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Although we know that these types of criteria are not a good a measure of dependence outside the Gaussian
world, they are interesting results by themselves. In fact, we found examples of two processes for which their
respective infinitesimal increments are perfect positive correlated, but at each time they have zero terminal
correlation, even when the time T is close to zero.

Let us now set apart the results of correlation and return to understanding why λ-mixture dynamics may be
needed in pricing options. As we mentioned at the beginning of this work, one of the reasons λ-mixture dynamics
may be appealed in pricing options is when we can consider the price of an option as a linear combination of
prices of underlying assets that are driven by known instrumental processes that are tractable. In the case of
pricing a call option leaded by λ-mixture of lognormal dynamics, we get

Π(T,K) = e−
∫ T
0
r(l)dlEQ[(ST −K)+] = e−

∫ T
0
r(l)dl

∫ ∞
K

(s−K)
m∑
i=1

λipSi
T

(s)ds

=
m∑
i=1

λie
−

∫ T
0
r(l)dl

∫ ∞
K

(s−K)pSi
T

(s)ds =
m∑
i=1

λiBSCall(S0,K, T,R(T ), Vi(T ))

This is appreciated by traders, who usually prefer departures from the lognormal distribution and the corre-
sponding Black-Scholes-Merton formula. Brigo (2002) observed that other equally important consequences of
using λ-mixtures of lognormal dynamics is that the number m of instrumental processes chosen in order to get
better capabilities to calibrate is arbitrary, and these dynamics can price options analytically. In fact, when one
runs an optimization to find the Vi’s and λi’s that best reproduce the prices of the market, the target function
of the optimization can be found in a closed form making not necessary the use of methods like Monte Carlo
simulation, trees, etc.

3.4 Uncertain volatility geometric Brownian motion

This last part is dedicated to find some relations between stochastic volatility models and local volatility models
when one works with λ-mixture diffusion processes.

It is known (Brigo, 2002; Gatheral and Lynch, 2002) that every stochastic volatility model has a local
volatility version that features the same marginal distributions in time and thus the same initial prices for all
vanilla options such as European options. We may wonder if λ-lognormal mixture dynamics (13) are the local
version of some stochastic volatility model. Brigo (2002) showed that the answer is affirmative. In fact, by
considering the uncertain volatility model

dSt = r(t)Stdt+ ξtStdWt, S0 = s0, ξt =


t 7→ v1(t), with probability λ1

...

t 7→ vm(t), with probability λm

, (16)

with well-behaving, strictly positive functions vi’s such that vi(t) = v̄ on [0, ε] for all i, and ξ independent of
W , we get that the process S conditional on each value of ξ has the same behavior as the Black-Scholes-Merton
model. In fact, we can verify by using Itô’s lemma for ln(St) and then conclude that (16) has solution of the
form

St = S0 exp

{∫ t

0

(
r(l)− ξ2

l

2

)
dl +

∫ t

0

ξldWl

}
.

To make some remarks about the conditional transition density of the model (16), let us denote Si the process
that solves SDE (16) with ξ ≡ vi, and set the function fA(X,Y ) := 1{XY ∈A} where X and Y are random
variables, and A ∈ BR.
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For the case t > ε > u, we get

E[St ∈ A|Su] = E

[
m∑
i=1

1{ξ=vi}1{Si
t∈A}

∣∣∣∣∣Su
]

= E

[
m∑
i=1

1{ξ=vi}fA(Siu, S
i
t/S

i
u)

∣∣∣∣∣Su
]

=
m∑
i=1

Q(ξ = vi)

∫
A

f(Siu, l)dp(Si
t/S

i
u)(l) =

m∑
i=1

λi

∫
A

exp


−
(

ln(l)−
∫ t
u

(
r(z)− v2

i (z)

2

)
dz − ln(Siu)

)2

2
∫ t
u
v2
i (z)dz


l
(∫ t

u
v2
i (z)dz

)1/2√
2π

dl,

therefore, we conclude

Q (St ∈ A|Su = y) =
m∑
i=1

λiQ (St ∈ A|Su = y, ξ = vi) , pSt|Su
(x|y) =

m∑
i=1

λipSt|Su,ξ(x|y, vi).

In other words, the conditional transition density of the uncertain volatility model (16) is a mixture of lognormals
transition densities. Now, if we condition on an instant u > ε, including the information of the value vi taken
by ξ at the time ε < u, information that is contained in the trajectory of S up to time u > ε, we then get the
conditional transition density between u and t is a lognormal density characterized by the relevant vi.

For the particular case u = 0, we get that this model has the same marginal as the lognormal mixture diffusion
seen in (13), but we get market incompleteness. Market incompleteness and the details of the construction of the
model (16) are showed in the following result that is a consequence of the results presented by Fabio Mercurio
in (Brigo et al., 2004).

Proposition 3.2. Let (W̃t)t∈[0,T ] be a Brownian motion on a filtered probability space (ΩW̃ ,FW̃T ,FW̃t , P W̃ ); and

let (Ωξ̃,F ξ̃, P ξ̃) be probability space with Ωξ̃ = {w1, ..., wm} and probability measure satisfying P ξ̃(wj) := λj > 0

for j = 1, ...,m. Set the process (ξ̃t)t∈[0,T ] such that ξ̃t(wj) = vj(t) for each j and t ≥ 0, where v1, ..., vm
are continuous, bounded away from zero, strictly positive functions such that vi(t) = v̄ on t ∈ [0, ε) for each
i = 1, ...,m with ε > 0.

Set Ω := Ωξ̃ × ΩW̃ , Ft := F ξ̃ ⊗ FW̃t , P := P ξ̃ ⊗ P W̃ ; and let ξt(w, y) := ξ̃t(w) and Wt(w, y) := W̃t(y) be
defined on (Ω,FT ,Ft, P ). If we define a measure Qξ in (Ω,FT ) by

dQξ

dP
(wj , y) =

pj
λj

for all y ∈ ΩW̃ ,

for each j = 1, ...,m, where p′js are strictly positive with
∑m
i=1 pi = 1; and the process (St)t∈[0,T ] satisfies

dSt = Stµ(t)dt+ StξtdWt S0 = s0;

then there exist a risk-neutral measure Q in (Ω,FT ) associated with (St)t∈[0,T ] and the numéraire Bt = e
∫ t
0
r(u)du

that satisfies

dQ

dP
=
dQξ

dP
exp

{
−1

2

∫ T

0

(
µ(t)− r(t)

ξt

)2

dt−
∫ T

0

(
µ(t)− r(t)

ξt

)
dWt

}
.

Proof. To prove this result, it is enough to show that (St/Bt)t∈[0,T ] is a (Ft, Q)-martingale (see for instance
Harrison and Pliska, 1981; Shreve, 2004; Privault, 2013). We observe that (Wt)t∈[0,T ] and (ξt)t∈[0,T ] are inde-
pendent on (Ω,FT , (Ft), P ). Moreover, (Wt)t∈[0,T ] is a (Ω,FT , (Ft), P )-Brownian motion, and (ξt)t∈[0,T ] has

the same law as (ξ̃t)t∈[0,T ].
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To prove that Q is a measure on FT , it is enough to verify EP [dQ/dP ] = 1. Let us then set

Lt := −
∫ t

0

(
µ(l)− r(l)

ξl

)
dWl, Lit := −

∫ t

0

(
µ(l)− r(l)
vi(l)

)
dWl, Zit := exp

{
Lit −

1

2
〈Li〉t

}
.

The process (Zit)t∈[0,T ] satisfies Zit = 1 +
∫ t

0
ZisdL

i
s. By using Fubini’s theorem and Proposition A.3, we

get EP
[
〈Zi〉T

]
< ∞; therefore (Zit)t∈[0,T ] is martingale (see Appendix A) and then E[Zil ] = 1 for all l ∈

[0, T ]. Finally, we use linear combination of the indicator functions 1{wi}×ΩW̃ and independence to conclude

EP [dQ/dP ] = 1.

Now, by Bayes’ formula (see appendix C), linear combination of the indicator functions 1{wi}×ΩW̃ , and
independence, we conclude

EQ

[
ST e

−
∫ T
0
r(u)du

∣∣∣Ft]

=

EP

[
ST e

−
∫ T
0
r(u)du dQ

dP

∣∣∣∣Ft]
EP

[
dQ

dP

∣∣∣∣Ft]

=

EP

ST e− ∫ T
0
r(u)du dQ

ξ

dP
e
Lt−

1

2
〈L〉t

e
(LT−Lt)−

1

2
〈L〉Tt

∣∣∣∣∣∣Ft


EP

 dQξ
dP

e
LT−

1

2
〈L〉T

∣∣∣∣∣∣Ft


=

Ste
−

∫ t
0
r(u)du dQ

ξ

dP
e
Lt−

1

2
〈L〉t

EP

 ST
St
e−

∫ T
t
r(u)due

(LT−Lt)−
1

2
〈L〉Tt

∣∣∣∣∣∣Ft


dQξ

dP
e
Lt−

1

2
〈L〉t

EP

e(LT−Lt)−
1

2
〈L〉Tt

∣∣∣∣∣∣Ft


=

Ste
−

∫ t
0
r(u)duEP

e
∫ T
t

µ(u)−
ξ2
u

2
−r(u)

du+
∫ T
t
ξudWu

e
(LT−Lt)−

1

2
〈L〉Tt

∣∣∣∣∣∣∣∣Ft


EP

e(LT−Lt)−
1

2
〈L〉Tt

∣∣∣∣∣∣Ft


= Ste
−

∫ t
0
r(u)duEP

e
∫ T
t

ξ2
u − (µ(u)− r(u))

ξu

dWu−
1

2
∫ T
t

ξ2
u − (µ(u)− r(u))

ξu

2

du

∣∣∣∣∣∣∣∣Ft


= Ste
−

∫ t
0
r(u)du

which ends the proof.

From this result the incompleteness of the market follows immediately: for each vector of strictly positive
weights (p1, ..., pm) we can get a risk neutral measure which implies lack of uniqueness of the risk-neutral measure
and therefore market incompleteness.
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Now, we shall see a close relationship between the model (13) and the stochastic volatility mixture dynamics
(16) given by Brigo (2002).

Proposition 3.3. The lognormal mixture diffusion dynamics (13) is the local volatility version of the stochastic
volatility mixture dynamics (16). The two models are linked by the relationship

σ2
mix(t, x) = E[ξ2

t |St = x]

Proof. The proof follows from a variant of the Bayes’ formula:

E[ξ2
t |St = x] = E

[
ξ2
t

m∑
i=1

1{ξ=vi}

∣∣∣∣∣St = x

]
=

m∑
i=1

E
[
ξ2
t 1{ξ=vi}

∣∣St = x
]

=
m∑
i=1

E
[
ξ2
t

∣∣St = x, ξ = vi
]
Q[ξ = vi|St = x] =

m∑
i=1

v2
i (t)Q[ξ = vi|St = x] = σ2

mix(t, x)

since, by Bayes’ formula,

Q[ξ = vi|St = x] =
Q[St ∈ dx|ξ = vi]Q[ξ = vi]

Q[St ∈ dx]
= Λi(t, x).

4 Conclusions

In this work, we were able to get conditions to find a candidate diffusion process whose density follows a given
mixture of probability densities. We derived SDEs admitting strong solutions whose densities evolves as a
mixture of normal densities. We introduced the concept of terminal and instantaneous correlation, and found
some features and differences in the two types of volatility models. In the part of applications, we showed how
the mixture diffusion SDE process can be used to model market smiles. Finally, we showed how local volatility
mixture diffusion processes are able to fit more general more general volatility models.

Appendix A

Throughout this part, all the processes considered are defined on a filtered probability space (Ω,F , (Ft)t≥0, Q)
where (Ft)t≥0 satisfies the usual conditions(see Karatzas and Shreve, 2014). The following results have been
derived from (Meyer, 2000, Section I.9 and III.4) and (Shreve, 2004, Chapter 4).

Proposition A.1. If M is a (Ft, Q)-continuous local martingale with M0 ∈ L2 and 〈M〉T ∈ L1, then M is a
L2-martingale in [0, T ]

Proof. Let (Tn) be a sequence of increasing stopping times that simultaneously reduces M2−〈M〉 and M . Since
M2

0 − 〈M〉0 = M2
0 is integrable, we get M2

t∧Tn
− 〈M〉t∧Tn

is a (Ft, Q)-martingale (for example see Meyer, 2000,
Section I.8). Thus, E[M2

t∧Tn
] ≤ E[M2

0 ] + E[〈M〉T ] <∞ for each n ∈ N and as result (Mt∧Tn)n∈N is uniformly
integrable.

Since Mt∧Tn

a.s−−−−→
n→∞

Mt and (Mt∧Tn
)n∈N is uniformly integrable, we have Mt∧Tn

L1

−−−−→
n→∞

Mt and therefore

Ms = lim
n→∞

Ms∧Tn
= lim
n→∞

E[Mt∧Tn
|Fs] = E[Mt|Fs]

for all 0 ≤ s ≤ t ≤ T
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Proposition A.2. Let M be a (Ft, Q)-continuous local martingale. If E[supl≤t |Ml|] <∞ for each t ≥ 0, then
M is martingale.

Proof. Since M satisfies E[supl≤t |Ml|] < ∞ for each t ≥ 0, we have for each sequence of stopping times (Tn)
that reduces M ,

Mt∧Tn

a.s−−−−→
n→∞

Mt and Mt∧Tm
≤ sup

l≤t
|Ml|

for each m ∈ N. Therefore, Mt∧Tn

L1

−−−−→
n→∞

Mt, and hence Ms = limn→∞Ms∧Tn = limn→∞E[Mt∧Tn |Fs] =

E[Mt|Fs] for each 0 ≤ s ≤ t.

Proposition A.3. Let W = (Wt)t≥0 be a (Ft, Q)-Brownian motion and v a well-behaving, real valued function.

If Mt =
∫ t

0
v(s)dWs, then Mt ∼ N

(
0,
∫ t

0
v2(s)ds

)
for each t ≥ 0.

Proof. We define the Doleans exponential of a process X as

Et(X) := exp

{
Xt −

1

2
〈X〉t

}
.

Let us now set Mt :=
∫ t

0
v(s)dWs and Yt := Et(2M). We know from basic results for L2

Loc processes (see Revuz
and Yor, 1999, Section IV.2) and Itô’s lemma that Y and E2(M) are local martingales; therefore, we can get
an increasing sequence of stopping times (Tn) that simultaneously reduces E2(M) and Y . Now, by the equality
E2
t (M) = Yt exp(〈M〉t), we get E2

t∧Tn
(M) = Yt∧Tn

exp(〈M〉t∧Tn
) ≤ Yt∧Tn

exp(〈M〉t).

Since 〈
∫ ·

0
v(s)dWs〉t =

∫ t
0
v2(s)ds <∞, we get, by using L2-Doob’s maximal inequality, that

E

[
sup
s∈[0,t]

E2
s∧Tn

(M)

]
≤ 4E[E2

t∧Tn
(M)] ≤ 4E[Yt∧Tn

] exp(〈M〉t) = 4E[Y0] exp(〈M〉t) = 4 exp(〈M〉t) <∞.

Because sups∈[0,t] E2
s∧Tn

(M) ↑ sups∈[0,t] E2
s (M) as n → ∞, we obtain E

[
sups∈[0,t] E2

s (M)
]
< 4 exp(〈M〉t) < ∞

and therefore E
[
sups∈[0,t] Es(M)

]
< ∞ for each t ≥ 0. By Proposition A.2, we conclude E(M) is martingale,

and then E[Et(M)] = 1 for all t ≥ 0.

By similar arguments to Proposition A.1 and A.2, we get M is a martingale that, by Itô’s isometry, has
mean 0 and variance

∫ t
0
v2(s)ds for each t ≥ 0. From these results we conclude

E

[
exp

{
λMt −

λ2

2

∫ t

0

v2(s)ds

}]
= 1,

for all λ, and therefore Mt has the same moment-generating function of a normal random variable with mean
0 and variance

∫ t
0
v2(s)ds.

Appendix B

Let (Ω,FT , (Ft), P ) be a filtered probability space where (Ft)t∈[0,T ] satisfies the usual conditions, and consider
the dynamics of the well-behaving, strictly positive risky and riskless assets respectively (St)t∈[0,T ] and (Bt)t∈[0,T ]

on (Ω,FT , (Ft), P ) being given by

dSt = γ(t)Stdt+ v(t)StdWt, dBt = r(t)Btdt,
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where W = (Wt)t∈[0,T ] is a (Ft, P )-Brownian motion. If we set S̃t = St/Bt, then, by applying Itô’s lemma to

the function f(x, y) = xy evaluated on the vector semimartingale (St, e
−

∫ t
0
r(s)ds) we get

dS̃t = −r(t)e−
∫ t
0
r(s)dsStdt+ e−

∫ t
0
r(s)dsdSt = (γ(t)− r(t))S̃tdt+ S̃tv(t)dWt. (17)

Now, we will find the risk-neutral measure by using Girsanov’s theorem. Let us then set

Dt :=
dQ|Ft

dP |Ft

= exp

{
−
∫ t

0

λ(s)dWs −
1

2

∫ t

0

λ2(s)ds

}
,

where λ(s) =
γ(s)− r(s)

v(s)
and Lt = −

∫ t
0
λ(s)dWs. Since Dt satisfies Dt = 1 +

∫ t
0
DsdLs, we get that D is

continuous local martingale. Moreover, by results showed in the proof Proposition A.3, we get E[〈D〉T ] < ∞,
and hence D is a martingale in [0, T ]. Now, by Girsanov’s theorem we have that

W̃t = Wt − 〈W,L〉t = Wt +

∫ t

0

γ(s)− r(s)
v(s)

ds

is a (Ft, Q)-Brownian motion. Then we get from (17):

dS̃t = S̃tv(t)dW̃t, S̃t = S̃0 exp

{∫ t

0

v(s)dW̃s −
1

2

∫ t

0

v2(s)ds

}
,

and therefore S̃ is a (Ft, Q)-martingale in [0, T ] (see proof of Proposition A.3). Finally, if S satisfies dSt =
Stγ(t)dt + v(t)StdWt under the measure P , we get S also satisfies the dSt = Str(t)dt + v(t)StdW̃t under the
measure Q, and the reverse is also true. Moreover the arbitrage-free price does not depend on γ for the case
of European options (see for instance Elliott and Kopp, 2006, Section 7.5). This shows that dynamics of our
risky asset (St)t∈[0,T ] under the risk-neutral measure Q can be assumed to be of the form (8) with numéraire
(Bt)t∈[0,T ] satisfying dynamics of the type dBt = r(t)Btdt.

Appendix C

Proposition C.1. Let (Ω,F) a measurable space endowed with two probability measures P and Q such that
Q� P . Then for any sub σ-algebra G and non-negative random variable X on (Ω,F) we get

EQ[X|G]EP

[
dQ

dP

∣∣∣∣G] = EP

[
X
dQ

dP

∣∣∣∣G] .
Proof. By definition of conditional expectation, it is enough to prove∫

A

EQ[X|G]EP

[
dQ

dP

∣∣∣∣G] dP =

∫
A

EP

[
X
dQ

dP

∣∣∣∣G] dP,
for each A ∈ G . By using Radon-Nikodym’s theorem and basic conditional expectation properties, we get

∫
A

EP

[
X
dQ

dP

∣∣∣∣G] dP =

∫
A

XdQ =

∫
A

dQ

dP
EQ[X|G]dP =

∫
A

EP

[
dQ

dP
EQ[X|G]

∣∣∣∣G] dP
=

∫
A

EQ[X|G]EP

[
dQ

dP

∣∣∣∣G] dP,
which ends the proof.
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