
 
 

 

UNIVERSIDAD NACIONAL AUTÓNOMA DE MEXICO 
PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS MATEMÁTICAS Y 

DE LA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA 
 
 
 
 
 

ADELIC AHLFORS-BERS THEORY 
 
 
 
 

TESIS 
QUE PARA OPTAR POR EL GRADO DE: 

DOCTOR EN CIENCIAS 
 
 
 
 

PRESENTA: 
JUAN MANUEL BURGOS 

 
 
 
 

TUTOR PRINCIPAL: 
DR. ALBERTO VERJOVSKY SOLÁ 

INSTITUTO DE MATEMÁTICAS UNAM-UNIDAD CUERNAVACA 
 
 

MIEMBROS DEL COMITÉ TUTOR: 
DR.WILSON ZUÑIGA 

DEPARTAMENTO DE MATEMÁTICAS CINVESTAV-UNIDAD QUERÉTARO 
 

DR.TIMOTHY GENDRON 
INSTITUTO DE MATEMÁTICAS UNAM-UNIDAD CUERNAVACA 

 
MÉXICO, CUERNAVACA, 18 DE MARZO DE 2016. 



 

UNAM – Dirección General de Bibliotecas 

Tesis Digitales 

Restricciones de uso 
  

DERECHOS RESERVADOS © 

PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL 
  

Todo el material contenido en esta tesis esta protegido por la Ley Federal 
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). 

El uso de imágenes, fragmentos de videos, y demás material que sea 
objeto de protección de los derechos de autor, será exclusivamente para 
fines educativos e informativos y deberá citar la fuente donde la obtuvo 
mencionando el autor o autores. Cualquier uso distinto como el lucro, 
reproducción, edición o modificación, será perseguido y sancionado por el 
respectivo titular de los Derechos de Autor. 

 

  

 





To my parents.





Acknowledgments

Thank to all the people who directly or indirectly contributed to the achievement of this
thesis would be an insurmountable task. Although I am grateful to many people and
institutions, I will name here only some.

I am grateful to CONACYT for the full time scholarship. It made me concentrate
fully on my work and accomplish this goal.

I am also grateful to the UNAM, undoubtedly one of Mexico’s prides, who received
me and gave me such a fine education.

I thank Mexico for its wonderful people, places, food and opportunities.

I thank Uruguay, a piece of my heart, for all the education it gave me among other
great things.

I appreciate very much the secretaries, Maŕıa Inés, Lućıa, Teresa and Elizabeth for
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Introduction

The present work is a generalization of Ahlfors-Bers theory to the algebraic solenoid C∗Q
defined as the following inverse limit: Consider the inverse system of coverings { pn,m :
C∗ → C∗ }n,m≥1,n|m where pn,m(z) = zm/n and C∗ is the punctured plane. Then,

C∗Q := lim
pn←−

C∗

with canonical projections πn. Along the same lines we define the adelic Riemann sphere
ĈQ as the inverse limit of branched coverings pn,m : Ĉ → Ĉ where Ĉ is the Riemann
sphere and the adelic solenoid S1

Q as the inverse limit of coverings pn,m : S1 → S1.

The functoriality of the construction implies the inclusion S1
Q ⊂ C∗Q ⊂ ĈQ such that

ĈQ = C∗Q ∪ {0,∞} where
0 = [(0, 0, 0 . . .)]

∞ = [(∞,∞,∞, . . .)]
are cusps (cone over the adelic solenoid) and C∗Q is laminated by densely immersed leaves

νa : C → C∗ where a ∈ Ẑ, the adelic completion of integers. The algebraic solenoid can
also be seen as a non trivial fiber bundle π1 : C∗Q → C∗ with fiber the adelic completion

of integers Ẑ and also as a laminated Lie group with unit:

1 = [(1, 1, 1, . . .)]

Definition 0.0.1. A homeomorphism h of ĈQ is leaf preserving quasiconformal if it fixes

0,∞ and ha is quasiconformal for every a ∈ Ẑ such that the following diagram commutes:

C ha //

νa
��

C
νa
��

C∗Q
h // C∗Q

Definition 0.0.2. We say that µ ∈ L∞(C∗Q) is horizontal if ν∗a(µ) ∈ L∞(C) for every

a ∈ Ẑ. We denote the subspace horizontal elements by L∞,hor(C∗Q).

Definition 0.0.3. Consider µ ∈ L∞,hor(C∗Q)1; i.e. ||µ||∞ < 1. A leaf preserving quasi-

conformal map h of ĈQ is a solution of the µ-Beltrami equation if ha is a solution of the
(νa)

∗(µ)-Beltrami equation:
∂z̄ha = (νa)

∗(µ) ∂zha
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in the distributional sense for every a ∈ Ẑ and the following diagram commutes for every
a ∈ Ẑ:

C ha //

νa
��

C
νa
��

C∗Q
h // C∗Q

Remark 0.0.1. Consider µ ∈ L∞,hor(C∗Q)1 such that there is a leaf preserving quasiconfor-
mal solution to the µ-Beltrami equation. Because the map a 7→ ha is continuous and the
relation:

(νa)
∗(µ) =

∂z̄ha
∂zha

we have that the map a 7→ (νa)
∗(µ) is continuous. This is a necessary condition for

the existence of Beltrami solutions. Beltrami differentials satisfying this property will be
called vertical continuous and the space of them will be denoted by Lvert∞ (C∗Q).

We look for vertical continuous Beltrami differentials µ ∈ Lvert∞,hor(C∗Q)1 such that there
is a leaf preserving quasiconformal solution to the µ-Beltrami equation; i.e. Beltrami
differentials such that the Ahlfors-Bers theorem holds. There is an obvious set of Beltrami
differentials satisfying this property: Define the periodic adelic Beltrami differentials :

Per =
⋃
n∈N

Pern

such that Pern = π∗n
(
L∞(C∗)1

)
. See that

Per1 ⊂ Per2 ⊂ Per3 . . . ⊂ Per

If µ ∈ Per then there is a natural n and a Beltrami differential µn ∈ L∞(C∗)1 such that
µ = π∗n(µn). Consider the unique quasiconformal map fn of the µn-Beltrami equation
such that fn fixes 0, 1,∞. There is a leaf preserving map f such that f(1Q) = 1 and the
following diagram commutes:

Ĉ fn //

πn
��

Ĉ
πn
��

ĈQ
f // ĈQ

Then, f is the leaf preserving quasiconformal solution to the µ-Beltrami equation such
that f fixes 0, 1,∞.

Not every Beltrami differential µ ∈ Lvert∞,hor(C∗Q)1 admits a leaf preserving quasiconfor-
mal solution to the µ-Beltrami equation. In fact, there is a continuous complex function
µ : C∗Q → C such that ||µ||∞ < 1 and:

ν∗0(µ)(z) =
1
2e

∑+∞
n=1

[
cos(x/n!)− 2iy

n!
sin(x/n!)

]
e
− y2

n!2

2n!

1 + 1
2e

∑+∞
n=1

[
cos(x/n!) + 2iy

n!
sin(x/n!)

]
e
− y2

n!2

2n!

dz̄

dz

2



where z = x + iy. However, there is no leaf preserving quasiconformal solution to the
µ-Beltrami equation.

It turns out that another condition is needed to assure the existence of Beltrami
solutions. We introduce the renormalization maps In:

Definition 0.0.4. Consider the normalized Haar measure η on Ẑ and the induced measure
on the fibers π−1

1 (x) ' Ẑ. We define the n-th renormalization map as the linear operator
In : Lvert∞ (C∗Q)→ Lvert∞ (C∗Q) such that:

In(µ)(x) = n

∫
π−1
n (πn(x))

dη µ

Lema 0.0.1. Consider µ ∈ Lvert∞ (C∗Q). Then, the sequence
(
In(µ)

)
n∈N converges uni-

formly to µ respect to the divisibility net.

By definition, for every natural n there is µn ∈ L∞(C∗) such that In(µ) = π∗n(µn). In
particular, we have that:

InteriorPer
∞

= Lvert∞,hor(C∗Q)1

Because not every Beltrami differential µ ∈ Lvert∞,hor(C∗Q)1 admits a leaf preserving qua-
siconformal solution to the µ-Beltrami (example above), it is natural to ask for a finer
topology T such that:

Bel(CQ) = InteriorPer
T

is a set of Beltrami differentials admitting Beltrami solutions.

Definition 0.0.5. Consider a cofinal totally ordered divisibility subsystem S = (nj)j∈N.
We define the renormalized metric:

||µ||Ren,S = n1 ||In1(µ)||∞ +
∞∑
j=1

nj+1 ||Inj+1
(µ)− Inj(µ)||∞ <∞

Definition 0.0.6. We define the space of adelic Beltrami differentials BelS as follows:

BelS = InteriorPer
S ⊂ Lvert∞,hor(C∗Q)

where the closure is respect to metric topology induced by the metric || · ||Ren,S .

In particular, the adelic Beltrami differentials are the elements of Lvert∞,hor(C∗Q) with
finite renormalized metric. The following is the adelic Ahlfors-Bers Theorem and it is the
main result of the thesis:

Theorem 0.0.2. Consider a cofinal totally ordered divisibility subsystem S. For every
adelic Beltrami differential µ ∈ BelS there is a unique quasiconformal leaf preserving
solution f : ĈQ → ĈQ to the µ-Beltrami equation such that f fixes 0, 1,∞.
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Consider the adelic hyperbolic space HQ = π−1
1 (D(0, 1)) with boundary the adelic

solenoid S1
Q = π−1

1 (S1). Define the space of Beltrami differentials BelS(HQ) as those
differentials µ ∈ BelS(C∗Q) such that:

µ(z) = µ(1/z̄)
( z̄
z

)2

By the adelic Ahlfors-Bers Theorem, there is a unique leaf preserving quasiconformal
solution fµ to the µ-Beltrami equation such that fµ fixes 0, 1,∞ and:

fµ(1/z̄) =
1

fµ(z)

In particular, the solenoid S1
Q and hence HQ are invariant under fµ. Define the following

equivalence relation on BelS(HQ): µ ∼ η if fµ|S1
Q

= f η|S1
Q
. The universal Teichmüller

space is defined as the quotient:

B : BelS(HQ)→ TS(1) = BelS(HQ)/ ∼

with the quotient topology induced by (BelS(HQ), || · ||S).

Definition 0.0.7. A leaf preserving homeomorphism f : S1
Q → S1

Q is quasisymmetric if
for every leaf νa the map fa = ν−1

a ◦ f ◦ νa is quasisymmetric. Denote the space of these
quasisymmetric maps by QS(S1

Q) and by QS(S1
Q)1 the subspace of those maps fixing 1.

We have an injective map Φ : TS(1) → QS(S1
Q)1 such that µ 7→ fµ|S1 . Denote by

QSS(S1
Q)1 the image of Φ. See that Diffm(S1

Q) ⊂ QS(S1
Q) for every m = 1, 2, . . .∞.

Define DiffmS (S1
Q)1 = QSS(S1

Q)1 ∩Diffm(S1
Q) for every m = 1, 2, . . .∞.

In particular we have the Nag-Verjovsky map:

ι : Diff∞S (S1
Q)1 ↪→ TS(1)

There is a complex structure on TS(1) induced by the complex structure on BelS(HQ):
µ 7→ iµ.

Consider the tangent space at the identity TidDiff
∞(S1

Q)1 of C∞-vector fields v such
that:

ν∗(v)(x) =
∑
q∈Q

aqe
iqx

where a−q = aq and a0 = 0. Define an (a priori) almost complex structure Ĵ such that:

ν∗(Ĵv) =
∑
q∈Q

−i sg(q)aqe
iqx

and translate it by conjugation with the adjoint map Ad to the whole tangent bundle
T Diff∞(S1

Q)1.

Consider a prime number p and define the inverse system P =
(
pn
)
n∈N. Consider the

p-adic solenoid S1
p . The following is the second major result of the thesis:

4



Theorem 0.0.3. The p-adic Nag-Verjovsky map is differentiable analytic.

The present work was born in the spirit of connecting Teichmüller theory with the
adelic world. Besides the intrinsic beauty of this idea, this connection seems promising in
future applications both in Mathematics and Theoretical Physics. In fact, S.Mochizuki
[Mo] claims having proved the ABC conjecture in his formidable theory of p-adic and
inter universal Teichmüller theory. The p-adic Teichmüller space proposed here is by far
a more humble and down to earth version.

Concerning Dynamical systems theory, D.Sullivan [Su] studies the linking between univer-
salities of Milnor-Thurston, Feigenbaum’s (quantitative) and Ahlfors-Bers. As he points
out, S1

2×S1 (his second example) is the basic solenoidal surface required in the dynamical
theory of Feigenbaum’s Universality [Fe]. Here S1

2 is the 2-adic solenoid. We hope that
the theory of adelic Beltrami differentials developed in this work shed some new light on
these universalities.

In theoretical physics, one of the main problems of string theory is the lack of an exact
theory. Actually, the theory is formulated as an asymptotic perturbative series from the
very beginning [Na3] [Ne]. As an attempt to solution, Bowick and Rajeev [BR1], [BR2]
propose a theory based on the Kähler geometry of the homogeneous space Diff(S1)/S1.
This space was studied before by Kirillov [KY],[Ki]. At the end of that paper, they
comment: “...It is of interest to know the relation between the universal Teichmüller space
with which they work and Diff(S1)/S1”. An important contribution in this direction
was given by S.Nag and A.Verjovsky in [NV] where they find an analytic isometric map:

ι : Diff+(S1)/Möb ↪→ Homeo+
qs(S

1)/Möb ' T (1)

where the left hand side is seen as a Virasoro coadjoint orbit. In accordance with R.Bowen
and his result on the quasicircles Hausdorff dimension [Bo], at the end of [NV] it is shown
that this map is transverse to any Teichmüller space of genus g ≥ 2 Riemann surfaces:
ι t Tg = T (G) where

∑
g = ∆/G is a Riemann surface of genus g ≥ 2 and ∆ is the

hyperbolic disk.

In this sense, our work generalizes the Nag-Verjovsky map taking the solenoid S1
∞ and

the hyperbolic punctured disk ∆∗∞ (in Sullivan’s notation, example four in [Su]) instead
of their classical non laminated analogs. In fact, this was the guiding star of this work.

We briefly comment on the structure of this thesis, chapter description and results
obtained: Chapter 1 introduces the adelic solenoid and the algebraic adelic solenoid. We
will see them in three different ways:

� The algebraic solenoid is a topological group that fibers over the punctured complex
plane with fiber the adelic completion of the integers Ẑ. We have the following short
exact sequence in the category of groups:

0 // Ẑ φ // C∗Q
π1 // C∗ // 1

This is Lemma 1.1.4.

5



� The algebraic solenoid is a topological space foliated by complex plane leaves. We
have the following short exact sequence in the category of groups:

0 // Z ι // Ẑ× C exp // C∗Q // 1

This is Lemma 1.1.7.

� The algebraic solenoid is the complex dynamical suspension of the shift T : Ẑ→ Ẑ
such that T (x) = x+ 1.

As far as the author knows, the rest of the thesis is completely original. Given a continuous
map on the algebraic solenoid f : C∗Q → C∗Q we develop the homotopic invariant deg(f) ∈
Q. This invariant is the extension of the classical degree in the following sense: For every
continuous map f : C∗ → C∗ there is a unique continuous baseleaf preserving map f̂ such
that:

C∗Q
π1

��

f̂ // C∗Q
π1

��
C∗ f // C∗

and deg(f) = deg(f̂).

This is corollary 1.4.2. Following these ideas in the analytic category, we prove the Picard
theorem for the adelic Riemann sphere ĈQ:

Pic(ĈQ) ' (Q,+)

This is Proposition 1.4.5.

Chapter 2 develops the Renormalization technique to the adelic solenoid. This is
the main tool we are going to use later in the construction of structures and objects on
the solenoid. The first application of it gives Corollary 2.2.3: For every C∞ function
f : S1

Q → C its Pontryagin series converges in the C∞-topology.

Chapter 3 is the heart of the thesis. It begins with an introduction, the definition of
the adelic Riemann sphere and a series of preliminary technical Lemmas. Among these
we have:

Hol(ĈQ) ' C
The next section is a careful discussion of adelic Beltrami differentials mentioned before.
The following section is devoted to the Ahlfors-Bers Theorem proof where the previous
Renormalization technique is strongly used. The chapter ends with the infinitesimal
counterpart.

Chapter 4 starts describing different equivalent Teichmüller models. This is a straight-
forward generalization of the classical models. The relation with Sullivan’s work is de-
scribed in Proposition 4.1.1: There is a canonical continuous injective map

TS(1) ↪→ TSullivan(∆∗∞)

where S is a cofinal totally ordered divisibility sequence. After that, we immediately
specialize in the p-adic case and prove the p-adic version of the Nag-Verjovsky map
mentioned before.

6



Chapter 1

Adelic solenoid

1.1 Adelic solenoid

In what follows we will identify the group U(1) with the unit circle S1 = {z ∈ C : |z| = 1}
and the finite cyclic group Z/nZ with the group of nth roots of unity in S1.

By covering space theory, for any integer n ≥ 1, it is defined the unbranched covering
space of degree n, pn : S1 → S1 given by z 7−→ zn. If n,m ∈ Z+ and n divides m, then
there exists a covering map pn,m : S1 → S1 such that pn◦pn,m = pm where pn,m(z) = zm/n.
We also denote with the same letters the restriction of pn and pn,m to the nth roots of
unity. In particular we have the relation:

pn,m ◦ pm,l = pn,l

This defines an inverse system of covering spaces
(
S1, pn,m

)
n,m≥1,n|m whose inverse limit

is the universal one–dimensional solenoid or adelic solenoid

S1
Q := lim

pn←−
S1.

Thus S1
Q consists of sequences (zn)n∈N, z∈S1 which are compatible with pn i.e. pn,m(zm) = zn

if n divides m.

The canonical projections of the inverse limit are the functions S1
Q

πn→ S1 defined by

πn

(
(zj)j∈N

)
= zn. Each πn is an epimorphism. In particular each πn is a character which

determines a locally trivial Ẑ–bundle structure where the group

Ẑ := lim
pn←−

Z/mZ

is the profinite completion of Z, which is a compact, perfect and totally disconnected
Abelian topological group homeomorphic to the Cantor set. Being Ẑ the profinite com-
pletion of Z, it admits a canonical inclusion of Z ⊂ Ẑ whose image is dense. We have an

inclusion Ẑ φ→ S1
Q and a short exact sequence 0→ Ẑ φ→ S1

Q
π1→ S1 → 1.

7



The solenoid S1
Q can also be realized as the orbit space of the Q-bundle structure

Q ↪→ A → A/Q, where A is the adèle group of the rational numbers which is a locally
compact Abelian group, Q is a discrete subgroup of A and A/Q ∼= S1

Q is a compact Abelian
group (see [RV]). From this perspective, A/Q can be seen as the inverse limit whose n–th
component corresponds to the unique covering of degree n ≥ 1 of S1

Q. The solenoid S1
Q

is also called the algebraic universal covering space of the circle S1. The Grothendieck
Galois group of the covering is Ẑ, the algebraic fundamental group of S1

Q.

By considering the properly discontinuously free action of Z on Ẑ× R given by

n · (x, t) = (x+ n, t− n), (n ∈ Z, x ∈ Ẑ, t ∈ R)

The solenoid S1
Q is identified with the orbit space Ẑ ×Z R. Here, Z is acting on R by

covering transformations and on Ẑ by translations. The path–connected component of
the identity element 1 ∈ S1

Q is called the baseleaf [Od] and will be denoted by RBL.

Clearly, RBL is the image of {0} × R under the canonical projection exp : Ẑ × R → S1
Q

defined below and it is a densely embedded copy of R.

Hence S1
Q is a compact, connected, Abelian topological group and also a one-dimensional

lamination where each “leaf” is a simply connected one-dimensional manifold, homeomor-
phic to the universal covering space R of S1, and a typical “transversal” is isomorphic to
the Cantor group Ẑ. The solenoid S1

Q also has a leafwise C∞ Riemannian metric (i.e.,
C∞ along the leaves) which renders each leaf isometric to the real line with its standard
metric dx. So, it makes sense to speak of a rigid translation along the leaves. The leaves
also have a natural order equivalent to the order of the real line hence also an orientation.

Summarizing the above discussion we have the commutative diagram:

S1
Q = limS1 // . . . S1 pm,n // S1 // . . . S1

Ẑ = limZ/nZ
?�
φ

OO

// . . .Z/nZ
?�

l 7→e2πil/n

OO

pm,n // Z/mZ
?�

l 7→e2πil/m

OO

// . . . {0}
?�

0 7→1

OO

where Ẑ is the adelic profinite completion of the integers and the image of the group
monomorphism φ : (Ẑ,+) → (S1

Q, ·) is the principal fiber. We notice that πn(x) = πn(y)

implies πn(y−1x) = 1 and therefore y−1x = φ(a) where a ∈ nẐ for some n ∈ Z ⊂ Ẑ.

Lema 1.1.1. The following is a short exact sequence:

0 // Ẑ φ // S1
Q

π1 // S1 // 1

and we have the commutative diagram:

8



0 // Ẑ φ // S1
Q

π1 // S1 // 1

0 // nẐ
?�

OO

φ // S1
Q

πn //

=

OO

S1 //

pn

OO

1

Proof:

� By definition the following diagram commutes:

S1
Q

π1 // S1

Ẑ
?�
φ

OO

// {0}
?�

0 7→1

OO

In particular π1 ◦ φ = 1 and Im(φ) ⊂ Ker(π1). Suppose that π1(x) = 1. Then

x = (. . . , an, . . . , am, . . . 1) = (. . . , e2πibn/n, . . . , e2πibm/m, . . . 1) = φ(y)

such that y = (. . . , bn, . . . , bm, . . . 0). We have proved that Ker(π1) ⊂ Im(φ). Be-
cause π1 is an epimorphism and φ is a monomorphism we have the first item.

� For the second item, the second exact sequence follows exactly from the same ar-
guments as the first. Because π1 = zn ◦ πn, we have the right commutative square.
The left square is trivial (diagram chasing).

�

We define the principal baseleaf as the image of the monomorphism ν : R → S1
Q

defined as follows:

S1
Q = limS1 // . . . S1 pm,n // S1 // . . . S1

R
?�

ν

OO

= // . . .R
t 7→eit/n

OO

= // R
t 7→eit/m

OO

= // . . .R

t 7→eit

OO

In particular, the inmersion ν is a group morphism such that ν(2πx) = φ(x) for every
integer x. Define:

exp : Ẑ× R→ S1
Q

such that exp(a, θ) = φ(a).ν(θ).

Lema 1.1.2. We have the short exact sequence:

0 // Z ι // Ẑ× R exp // S1
Q

// 1

such that ι(a) = (a,−2πa).
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Proof: exp is epimorphism: Consider x ∈ S1
Q and a ∈ R such that eia = π1(x).

Because π1 ◦ ν = eiθ we have that π1(ν(a)) = eia = π1(x); i.e. π1(ν(a)−1x) = 1. By
Lemma 1.1.4 there is an adelic integer b ∈ Ẑ such that φ(b) = ν(a)−1x; i.e. x = φ(b)ν(a) =
exp(b, a).

Ker(exp): Suppose that exp(a, θ) = φ(a)ν(θ) = 1. Then φ(a) = ν(−θ) and composing
with π1 we have 1 = e−iθ and θ = 2πk for some integer k. Then

1 = exp(a, 2πk) = φ(a)ν(2πk) = φ(a)φ(k) = φ(a+ k)

Because φ is monomorphism we have that a + k = 0. We conclude that a is an integer
and θ = −2πa �

Corollary 1.1.3. � π1 : S1
Q → S1 is a fiber bundle with fiber isomorphic to Ẑ and

monodromy the shift T (x) = x+ 1.

� exp is a local homeomorphism.

� Restricted to a leaf, π1 is a local homeomorphism.

� S1
Q is the dynamical suspension of the shift T (x) = x+ 1.

� S1
Q is foliated by dense R-leaves.

Proof:

� If diam(U) < 2π then U is a trivializing neighborhood of S1.

� Z acts as translations by ι(Z) and because ι(Z) is discrete in Ẑ × R then Z acts
proper and discontinuously. We conclude that exp is a local homeomorphism.

� By definition π1 is an open continuous epimorphism. Restricted to a leaf and a
trivializing neighborhood π1 is one to one.

� (x, 2π) + ι(1) = (x+ 1, 0) so (x, 2π) ∼ (x+ 1, 0).

� The foliation Ẑ×R is invariant under translations by ι(a) for every integer a hence
it induces a foliation in the solenoid. Z is dense in its profinite completion Ẑ and so
is every coset of Ẑ/Z. By the preceding item, we have that every R-leaf is dense in
the solenoid.

�

Geometrically, the structure of the fiber is the disjoint union:

π−1
1 (x) =

⊔
yn=x

π−1
n (y)

As an example, consider the subsystem ni = 2i and the diadic solenoid S1
2 with fiber

Z2, the diadic profinite completion of the integers. The diadic solenoid is illustrated in
Figure 1.1.

10



Figure 1.1: Diadic solenoid

Tensoring the adelic solenoid with the group C∗ we get the algebraic solenoid C∗Q:

C∗Q = limC∗ // · · ·C∗ pm,n // C∗ // · · ·C∗

Ẑ = limZ/nZ
?�
φ

OO

// · · ·Z/nZ
?�
l 7→e2πil/n

OO

pm,n // Z/mZ
?�
l 7→e2πil/m

OO

// · · · {0}
?�

0 7→1

OO

All the properties discussed before are shared by the algebraic solenoid with the natural
extensions and the proofs are verbatim. For clarity purposes we mention them once again
for the algebraic solenoid:

Lema 1.1.4. The following is a short exact sequence:

0 // Ẑ φ // C∗Q
π1 // C∗ // 1

and we have the commutative diagram:

0 // Ẑ φ // C∗Q
π1 // C∗ // 1

0 // nẐ
?�

OO

φ // C∗Q
πn //

=

OO

C∗ //

zn

OO

1

We define the principal baseleaf ν : C→ C∗Q as follows:

C∗Q = limC∗ // . . .C∗
pm,n // C∗ // . . .C∗

C
?�

ν

OO

= // . . .C
eiz/n

OO

= // C
eiz/m

OO

= // . . .C
eiz

OO

In particular, the inmersion ν is a group morphism such that ν(2πx) = φ(x) for every
integer x. Define:

exp : Ẑ× C→ C∗Q

11



such that exp(a, z) = φ(a).ν(z).

Lema 1.1.5. We have the short exact sequence:

0 // Z ι // Ẑ× C exp // C∗Q // 1 (1.1)

such that ι(a) = (a,−2πa).

Corollary 1.1.6. � π1 : C∗Q → C∗ is a fiber bundle with fiber isomorphic to Ẑ and
monodromy the shift T (x) = x+ 1.

� exp is a local homeomorphism.

� Restricted to a leaf, π1 is a local homeomorphism.

� C∗Q is the complex dynamical suspension of the shift T (x) = x+ 1.

� C∗Q is foliated by dense C-leaves.

Because ν(2πx) = φ(x) for every integer x, we have the equivalent descriptions:

0 // nZ ι // nẐ× C exp // C∗Q // 1

for every natural n. These are the appropriate descriptions to lift the homeomorphisms
zp/q:

Lema 1.1.7. We have the commutative diagram:

0 // qZ ι //

p/q

��

qẐ× C exp //

p/q
��

C∗Q //

zp/q

��

1

0 // pZ ι // pẐ× C exp // C∗Q // 1

such that ι(a) = (a,−2πa).

Remark 1.1.1. Because zn = zn and the conjugation has a continuous extension to the
Riemann sphere z̄ : Ĉ→ Ĉ, there is a homeomorphism:

z̄ : ĈQ → ĈQ

such that πn(x̄) = πn(x) for every x ∈ ĈQ. Because z̄ = z−1 on S1 this relation extends
to the solenoid S1

Q and by continuity we have that the composition:

1/z̄ : ĈQ → ĈQ

is a leaf preserving homeomorphism fixing 0, 1,∞.
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As defined by D. Sullivan [Su]: A two dimensional solenoid is hyperbolic if every leaf is
conformaly covered by the disk.

Corollary 1.1.8. Consider the solenoid HQ = π−1
1 (∆∗) where ∆∗ is the open unit circle

minus the origin. Then HQ is a hyperbolic solenoid.

Proof: By equation (1.1) we have the covering exp : Ẑ × U → Hq where U is the
hyperbolic upper half plane. �

1.2 Continuous maps and degree theory

The following lemmas and propositions tell us how continuity properties of solenoidal
maps are related to limit periodic properties of their restriction on the baseleaf. For
pedagogical reasons, we introduce the notion of limit periodic as a particular case of
almost periodic functions.

Definition 1.2.1. A subset A ⊂ R is relatively dense if there is a real number L > 0
such that [x, x+ L] ∩ A 6= ∅ for every x ∈ R.

The following definition is due to Harald Bohr in 1924 [Bo]:

Definition 1.2.2. A function f : R → C is almost periodic if for every ε > 0 there is a
relatively dense subset A ⊂ R such that:

|f(x+ 2πt)− f(x)| < ε

for every x ∈ R and t ∈ A.

There is a beautiful discussion of almost periodic functions in the context of construc-
tive mathematics in [Br]. Restricting the reletively dense subsets to be of the form NZ
for some natural N we have:

Definition 1.2.3. A function f : R → C is limit periodic if for every ε > 0 there is a
natural number N such that:

|f(x+ 2πn)− f(x)| < ε

for every x ∈ R and n ∈ NZ.

An interesting discussion relating limit periodic functions, solenoids and adding ma-
chines can be found in [Be]. The following generalization is the appropriate one needed
for our subsequent theory:

Definition 1.2.4. A function f : C → C is limit periodic respect to x if for every ε > 0
and compact set K ⊂ R there is a natural number N such that:

|f(z + 2πn)− f(z)| < ε

for every z ∈ R× iK and n ∈ NZ.
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Lema 1.2.1. � Consider a limit periodic function f : R→ C. Then the map f ◦2π :
Z → C is uniformly continuous respect to the relative adelic topology on Z. In
particular, the map extends uniquely to a continuous map on Ẑ.

� Consider a continuous limit periodic respect to x function f : C → C. Then the
map h : Z×C→ C such that h(n, z) = f(z+2πn) extends uniquely to a continuous
map on Ẑ× C.

Proof:

� Consider an ε > 0. There is a natural N such that

|f(x+ 2πn)− f(x)| < ε

for every x ∈ R and n � N . In particular, if n−m ∈ NZ then

|f(2πn)− f(2πm)| = |f(2πm+ 2π(n−m))− f(2πm)| < ε

� Consider a compact set K ⊂ R and the map l : Z → C(R × K,C) such that
l(n)(z) = h(n, z). Consider an ε > 0. There is a natural N such that

|f(z + 2πn)− f(z)| < ε

for every z ∈ R×K and n � N . In particular, if n−m ∈ NZ then

|f(z + 2πn)− f(z + 2πm)| = |f(z + 2πm+ 2π(n−m))− f(z + 2πm)| < ε

for every z ∈ R×K; i.e. l is uniformly continuous

||l(n)− l(m)||∞ < ε

hence there is a unique continuous extension l̂ : Ẑ→ C(R×K,C). Finally, we have
the unique continuous extension ĥ such that ĥ(a, z) = l̂(a)(z). Because the real line
is σ-compact and continuity is a local property, we have the result.

�

The following Lemma justifies the name of limit periodic maps.

Lema 1.2.2. � For every limit periodic map f : R → C there is a sequence (fn)n∈N
such that fn is 2πn-periodic and (fn) converges pointwise to f respect to the divisi-
bility net.

� A map f : R → C is continuous limit periodic respect to x if and only if there
is a sequence (fn)n∈N of continuous maps such that fn is 2πn-periodic respect to x
and (fn) uniformly converges to f in bands R×K where K ⊂ R is a compact set,
respect to the divisibility net. Moreover, the sequence (fn)n∈N can be assumed to be
equicontinuous.
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Proof:

� Consider F : Z×R→ C such that F (n, x) = f(x+2πn). Because f is limit periodic,
by Lemma 1.2.1 for every x ∈ R the function F ( , x) is uniformly continuous hence
there is an extension F̂ : Ẑ×R→ C such that for every x ∈ R the extension F̂ ( , x) is
continuous on the compact Ẑ. Consider the inverse limit morphisms πn : Ẑ→ Z/nZ
and define

fn(x) = n

∫
Ker(πn)

da F̂ (a, x)

where da denotes the normalized Haar measure on the compact abelian group Ẑ.
See that that for every x ∈ R the extension F̂ ( , x) is integrable for it is continuous.

Consider the shift T : Ẑ → Ẑ such that T (a) = a + 1. Because the Haar measure
is invariant under the shift, T n is an automorphism of Ker(πn) and F̂ (T (a), x) =
F̂ (a+ 1, x) = F̂ (a, x+ 2π) we have that fn is 2πn-periodic:

fn(x+ 2πn) = n

∫
Ker(πn)

da F̂ (a, x+ 2πn) = n

∫
Ker(πn)

da F̂ (T n(a), x) = fn(x)

Finally, for every ε > 0 and every x ∈ R there is a natural Nε,x such that for every

n � N we have F̂ (nẐ, x) ⊂ U(F̂ (0, x), ε). In particular,

|f(x)− fn(x)| ≤ n

∫
Ker(πn)

da |F̂ (0, x)− F̂ (a, x)| < ε

for every n � N .

� Consider F : Z×C→ C such that F (n, z) = f(z+2πn). Because f is limit periodic
respect to x, by Lemma 1.2.1 there is a unique continuous extension F̂ : Ẑ×C→ C
of F . Consider the inverse limit morphisms πn : Ẑ→ Z/nZ and define

fn(z) = n

∫
Ker(πn)

da F̂ (a, z)

where da denotes the normalized Haar measure on the compact abelian group Ẑ.
Again, see that that for every z ∈ C the extension F̂ ( , z) is integrable for it is
continuous.

Because F (n+ 1, z) = F (n, z + 2π) and F̂ is the continuous extension, we have the
relation F̂ (a+ 1, x) = F̂ (a, x+ 2π) hence there is a continuous function f̂ such that:

C∗Q
f̂

&&Ẑ× C F̂ //

exp

OO

C

C
f

77

?�

OO
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Consider the annulus Dr,R where r and R denote the inner and outer radius re-

spectively. Because the solenoid S1
Q × [a, b] ' π−1

1 (Dr,R) is compact, f̂ is uniformly

continuous there hence F̂ is uniformly continuous. Then,for every ε > 0 there is
a δε > 0 and a natural Nε such that F̂ (N Ẑ × U(z, δ)) ⊂ U(F̂ (0, z), ε) for every
z ∈ R× [a, b]. In particular,

|f(z)− fn(z)| ≤ n

∫
Ker(πn)

da |F̂ (0, z)− F̂ (a, z)| < ε

for every n � N and every z ∈ R × [a, b]; i.e. (fn)n∈N uniformly converges to f in
bands R×K where K ⊂ R is a compact set, respect to the divisibility net. By the
same argument as before, fn is 2πn-periodic.

Let’s see that the family on functions fn is equicontinuous. Define the continuous
function g : Ẑ × C2 → R such that g(a, z, w) = |F̂ (a, z) − F̂ (a, w)|. Let ε > 0 and
z ∈ R. Then Ẑ×∆ ⊂ g−1(U(0; ε)) where ∆ ⊂ C2 is the diagonal and because Ẑ is
compact, there is a δ > 0 such that Ẑ × U((z, z); δ) ⊂ g−1(U(0; ε)). In particular,
for every w ∈ C such that |z−w| < δ we have g(a, z, w) < ε for every a ∈ Ẑ. Then,

|fn(z)− fn(w)| ≤ n

∫
Ker(πn)

da |F̂ (a, z)− F̂ (a, w)| < ε

if |z − w| < δ for every natural n.

Conversely, consider a compact set K ⊂ R and let ε > 0. There is a natural N such
that n � N implies ||f − fn||∞ < ε/2 on the band R×K. Define T : C → C such
that T (z) = z + 2π. Because fn = fn ◦ T n we have:

||f − f ◦ T n||∞ = ||(f − fn)− (f ◦ T n − fn ◦ T n)||∞
≤ ||f − fn||∞ + ||f ◦ T n − fn ◦ T n||∞ = 2||f − fn||∞ < ε

for every n � N ; i.e. f is limit periodic respect to x. Because every fn is continuous
and the convergence is uniform on compact sets, we have that f is continuous.

�

The first item of the above Lemma is surprising for a non-continuous limit periodic
could be quite bizarre. However, it can always be approximated by periodic functions.

Definition 1.2.5. Define the baseleaf topology on C as the topology such that ν : CBL →
C∗Q is an embedding (instead of just an inmersion) and denote the this new topological
space as CBL. The baseleaf topology on R is defined analogously and will be denoted as
RBL.

Because of the relation πm ◦ ν = eiz/n and the fact that, by definition, the topology of
C∗Q is the coarser topology such that every πm is continuous, we have that the following
sets

U = U ′ + 2πmZ
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where U ′ ⊂ C is a usual open set and m is a natural number, constitute a basis for the
baseleaf topology. In particular, we have the homeomorphism:

CBL ' RBL × R (1.2)

Another form of the above homeomorphism is the following one:

C∗Q ' S1
Q × R

Remark 1.2.1. The space CBL is not a topological vector space for the vector space
action of R or C with the usual topologies is not continuous. However, (CBL,+) is a
topological group. Because (C∗, ·) is a complete topological group and the inverse limit
of such groups is again a complete topological group, the algebraic solenoid (C∗Q, ·) is also
a complete topological group. Because ν : CBL ↪→ C∗Q is a dense embedding we conclude
that the topological completion of (CBL,+) is the algebraic solenoid (C∗Q, ·):

(CBL,+) ' (C∗Q, ·)

as topological groups. A similar discussion holds for the solenoid and RBL. It is interesting
to see that formulating the problem backwards is much more difficult:

Question: Given the topological group (RBL,+) with the explicit topology described before,
what is its completion?

Answer: The adelic solenoid.

Lema 1.2.3. Consider a continuous baseleaf preserving function f : C∗Q → C∗Q. Then,
there is a unique rational number q and a unique continuous limit periodic respect to x
function h such that f0(z) = qz + h(z) where f0 is defined by the commutative diagram:

C∗Q
f // C∗Q

C f0 //
?�

ν

OO

C
?�

ν

OO

Proof: Endow C with the baseleaf topology. We have the commutative diagram:

C∗Q
f // C∗Q

CBL
f0 //

?�

ν

OO

CBL

?�

ν

OO

Let’s see that f0 : CBL → CBL is continuous. Consider an open set U ⊂ CBL. There
is an open set U ′ ⊂ C∗Q such that U = ν−1(U ′). Because f−1

0 (U) = ν−1(f−1(U ′) and ν is

continuous, we have that f−1
0 (U) is open.

Remark 1.2.2. Because the baseleaf topology is coarser than the usual one, every con-
nected subset in the usual sense is also connected in the baseleaf sense.
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Consider an annulus Dr,R where r and R denote the inner and outer radius respectively.
Because S1

Q × [a, b] ' π−1
1 (Dr,R) is compact and f is continuous, the restrictions of f and

therefore f0 are uniformly continuous; i.e for every ε > 0 and natural λ there is a real
number δε,λ > 0 and a natural number Nε,λ such that

f0(z + 2πNZ + U(0, δ)) ⊂ f0(z) + 2πλZ + U(0, ε) (1.3)

for every z ∈ R× [a, b].

Define gm such that gm(z) = f0(z + 2πNm) − f0(z) for every integer m. Consider
ε < π/2. We will prove that there is an integer kε,λ such that gm(R× [a, b]) ⊂ U(2πkm, ε)
for every integer m. We will prove it in the following steps:

� Base case: Because g1 is continuous and RBL × [a, b] is connected by remark 1.2.2,
there is an integer k such that g1(R× [a, b]) ⊂ U(2πk, ε).

� Induction step: Suppose that gm(R× [a, b]) ⊂ U(2πkm, ε) for every natural m ≤M .
Because gM+1(z) = gM(z+2πN)+g1(z) and the inductive hypothesis, we have that
gM+1(R × [a, b]) ⊂ U(2πk(M + 1), π). By equation (1.3) we have gm(R × [a, b]) ⊂
2πZ + U(0, ε) for every integer m. Then,

gM+1(R× [a, b]) ⊂ U(2πk(M + 1), π) ∩ (2πZ + U(0, ε)) = U(2πk(M + 1), ε)

� Trivial case: g0(R× [a, b]) = {0} ⊂ U(0, ε).

� Negative integers: g−m(R× [a, b]) = −gm(R× [a, b]) ⊂ −U(2πkm, ε) = U(2πkm, ε)
for every natural m.

We have proved a stronger version of equation (1.3): For every ε > 0 and natural
number λ such that ε < π/2 there is a real number δε,λ > 0, a natural number Nε,λ and
an integer kε,λ such that

f0(z + 2πNm+ U(0, δ)) ⊂ f0(z) + 2πkm+ U(0, ε) (1.4)

for every z ∈ R× [a, b] an every integer m.

Let’s see that the quotient kε,λ/Nε,λ is independent of the ε and λ chosen. Consider
another 0 < ε′ < π/2 and λ′. There is a real number δ′ε′,λ′ > 0 such that δ′ < δ, a natural
number N ′ε′,λ′ and an integer k′ε′,λ′ such that

f0(z + 2πN ′m′ + U(0, δ′)) ⊂ f0(z) + 2πk′m′ + U(0, ε′) (1.5)

for every z ∈ R × [a, b] an every integer m′. Choose m and m′ such that N ′m′ = Nm.
Then,

∅ 6= f0(2πN ′m′ + U(0, δ′)) ⊂ (f0(0) + 2πk.m+ U(0, ε)) ∩ (f0(0) + 2πk′.m′ + U(0, ε′))

and because ε, ε′ < π/2 we have that k.m = k′.m′ hence k/N = k′/N ′. Denote this
ε, λ-independent rational by q.
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In particular, because the compact [a, b] was arbitrary, we have proved that

f0(z) = qz + h(z)

where h is continuous limit periodic respect to x: Because f0 is continuous we have that h
is continuous. It rest to show that it is limit periodic respect to x. Because we proved that
the rational q was ε, λ-independent, equation (1.4) reads as follows: For every compact
set K ⊂ R and real number ε > 0 there is a real number δK,ε > 0 and a natural number
NK,ε such that:

h(z + 2πNm)− h(z) = f0(z + 2πNm)− f0(z)− 2πq Nm ∈ U(0, ε)

for every z ∈ R× [a, b] and every integer m. This proves the claim.

Moreover, this decomposition is unique for a linear limit periodic function must be
zero. �

Corollary 1.2.4. For every uniformly continuous map f : RBL → CBL there is a unique
rational number q and a unique continuous limit periodic function h such that f(x) =
qx + h(x). In particular, f is continuous respect to the usual topologies; i.e. f : R → C
is continuous.

Proof: Because f is uniformly continuous it extends continuously to the completions
and by remark 1.2.1 we have the commutative diagram:

S1
Q

f̂ // C∗Q

RBL
f //

?�

ν

OO

CBL

?�

ν

OO

By Lemma 1.2.3, we have the result. �

Definition 1.2.6. The rational number q of the above lemma will be called the degree
of f and will be denoted deg(f).

A continuous map f : C∗Q → C∗Q can be assumed to be baseleaf preserving just by
multiplying it by f(1)−1. The following proposition gives the converse of Lemma 1.2.3.

Proposition 1.2.5. There is a continuous (holomorphic) baseleaf preserving map f :
C∗Q → C∗Q if and only if there is a continuous (holomorphic) limit periodic respect to x
map g such that the following diagram commutes:

C∗Q
f // C∗Q

C deg(f)z+g(z) //
?�

ν

OO

C
?�

ν

OO

where deg(f) ∈ Q is the degree of f .
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Proof: By Lemma 1.2.3 there is such g. If f is holomorphic then it is holomorphic
on every leaf. In particular it is holomorphic on the baseleaf and we have that g is
holomorphic.

For the converse, suppose that deg(f) = p/q such that p and q are coprime natural
numbers. Define F : qZ× C→ pZ× C such that F (qn, z) = (pn, fn(z)) where

fn(z) = f0(z + 2πqn)− 2πpn =
p

q
z + g(z + 2πqn) (1.6)

for every integer n. Because g is continuous limit periodic respect to x, by Lemma 1.2.1
function h : qZ × C → C such that h(n, z) = g(z + 2πn) admits a unique continuous
extension ĥ : qẐ× C→ C such that ĥ(a, z + 2πq) = ĥ(a + q, z). Then, there is a unique
continuous extension F̂ : qẐ× C→ pẐ× C of F such that

F̂ (qa, z) = (pa,
p

q
z + ĥ(qa, z))

and satisfies the same structural condition as F :

F̂ (qa, z + 2πq) = F̂ (q(a+ 1), z) + (−p, 2πp)

By Lemma 1.1.7, there is a continuous map f such that the following diagram commutes:

C∗Q
f // C∗Q

qẐ× C F̂ //

exp

OO

pẐ× C

exp

OO

C (p/q)z+g(z) //
?�

OO

C
?�

OO

Let a ∈ qẐ and consider a sequence of integers (ni)i∈N such that (q.ni) converges to a. If f0

is holomorphic then by equation (1.6) fni is holomorphic for every natural i. By Lemma
1.2.1 the sequence of continuous maps (fni) converges uniformly to F̂ (a, ) on compact
sets hence F̂ (a, ) is holomorphic for every fni is holomorphic. Then f is holomorphic on
every leaf and by remark 1.3.1 we conclude that f is holomorphic.

�

We have proved that for every uniformly continuous map f : RBL → RBL there is
a unique rational number q and a continuous limit periodic map h such that f(x) =
qx+ h(x). In particular, every uniformly continuous map f : RBL → R is limit periodic.
Because the baseleaf topology is coarser than the usual topology, we have the natural
inclusion

Cunif (RBL,R) ↪→ Cunif (RBL,RBL)

with cokernel the rational numbers. We have proved the following topological character-
ization of the rational numbers:

Cunif (RBL,RBL)/Cunif (RBL,R) ' Q
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Lema 1.2.6. Consider a pair of continuous (holomorphic) baseleaf preserving maps f, g :
C∗Q → C∗Q. Then, f and g are homotopic (conformal isotopic) if and only if deg(f) =
deg(g).

Proof: There is a continuous map H : [0, 1] × C∗Q → C∗Q such that H(0, ) = f and

H(1, ) = g. By Lemma 1.2.5 there is a unique map Ĥ : [0, 1]× CBL → CBL such that:

[0, 1]× C∗Q
H // C∗Q

[0, 1]× CBL
Ĥ //

?�

id×ν
OO

CBL

?�

ν

OO

where Ĥ(t, z) = q(t)z + h(t, z). Let’s see that Ĥ is continuous. Consider an open set
U ⊂ CBL. There is an open set U ′ ⊂ C∗Q such that U = ν−1(U ′). Because Ĥ−1(U) =

(id× ν)−1(H−1(U ′) and id× ν is continuous, we have that Ĥ−1(U) is open. We conclude
that Ĥ is continuous. In particular, the function q : [0, 1]→ Q is continuous and because Q
is totally disconnected we have that q is constant hence q(0) = q(1); i.e. deg(f) = deg(g).

Conversely, there is a rational q = deg(f) = deg(g) such that:

C∗Q
f // C∗Q C∗Q

g // C∗Q

CBL
qz+h(z) //

?�

ν

OO

CBL

?�

ν

OO

CBL
qz+l(z) //

?�

ν

OO

CBL

?�

ν

OO

where h and l are continuous (holomorphic) limit periodic respect to x. Because every
linear combination of continuous (holomorphic) limit periodic functions respect to x is
continuous (holomorphic) limit periodic respect to x, the map Ĥ : [0, 1] × CBL → CBL

such that Ĥ(t, z) = qz+(1− t)h(z)+ tl(z) is continuous (such that Ĥ(t, ) is holomorphic
for every t). An almost verbatim construction to the one given in Proposition 1.2.5 gives
a continuous map H such that:

[0, 1]× C∗Q
H // C∗Q

[0, 1]× CBL
Ĥ //

?�

id×ν
OO

CBL

?�

ν

OO

Then f and g are homotopic. If f and g are holomorphic, by Proposition 1.2.5 H(t, ) is
holomorphic for every t hence H is a conformal isotopic. �

Corollary 1.2.7. For every baseleaf preserving continuous (holomorphic) map f : C∗Q →
C∗Q there is a unique rational number q such that f is homotopic (conformal isotopic) to
zq. In particular, every character of the group C∗Q is of the form zq for some rational
number q.
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Proposition 1.2.8. There is a continuous (holomorphic) map f : C∗Q → C such that:

C∗Q
f // C

C
g

>>

?�

ν

OO

if and only if g is continuous (holomorphic) limit periodic respect to x.

Proof: Almost verbatim to 1.2.5 with deg(f) = 0. �

The following Lemma shows that degree zero functions map all the solenoid to only
one leaf.

Lema 1.2.9. Consider a continuous (holomorphic) baseleaf preserving map f : C∗Q → C∗Q.
There is a continuous (holomorphic) map g such that:

C∗Q

g
!!

f // C∗Q

C
?�

ν

OO

if and only if deg(f) = 0.

Proof: By proposition 1.2.8 there is a limit periodic respect to x continuous (holo-
morphic) map h : C → C such that h = g ◦ ν. Then f ◦ ν = ν ◦ g ◦ ν = ν ◦ h and by
Lemma 1.2.5 we have that deg(f) = 0.

Conversely, if deg(f) = 0 by proposition 1.2.5 there is a limit periodic respect to x
continuous (holomorphic) map h : C → C such that f ◦ ν = ν ◦ h. By proposition 1.2.8
there is a continuous (holomorphic) map g such that h = g ◦ ν:

C∗Q
f //

g

&&

C∗Q

C h //
?�

ν

OO

C
?�

ν

OO

Then, f ◦ ν = ν ◦ h = ν ◦ g ◦ ν. Because the maps are continuous and the image of ν is
dense embedding, we have that f = ν ◦ g. �

Corollary 1.2.10. Consider a continuous (holomorphic) baseleaf preserving map f :
C∗Q → C∗Q. There is a continuous (holomorphic) map g : C∗Q → C such that f = zdeg(f).(ν◦
g) where ν is the baseleaf.

1.3 Differentiable structure and derivatives

Now we discuss the differentiable structure and derivatives.

22



Definition 1.3.1. Because restricted to a leaf π1 is a local homeomorphism, we define the
complex and differentiable structure of every leaf of the algebraic solenoid as the pullback
of the respective structures of C∗ by π1 : C∗Q → C∗.

Remark 1.3.1. Because π1 is a group morphism, for every a ∈ Ker(π1) ' Ẑ we have
π1(a.ν(z)) = eiz

C∗Q
π1 // C∗

C
?�

a.ν

OO

eiz

>>

hence the complex and differential structures induced by π1 and a.ν on the leaves coincide
for eiz is holomorphic. In particular, a function is holomorphic on C∗Q if and only if it is
holomorphic on every leaf.

Thinking the leaves a.ν : C → C∗Q as coordinate charts, we have the following defini-
tion:

Definition 1.3.2. Consider a continuous map f : C∗Q → C∗Q. There exist the derivative

∂iz∂
j
z̄f : C∗Q → C if it is continuous and

C∗Q
f // C∗Q C∗Q

∂iz∂
j
z̄f // C

C fa //
?�

a.ν

OO

C
?�
b.ν

OO

C
∂iz∂

j
z̄fa

88

?�

a.ν

OO

for every a ∈ Ker(π1); i.e. for every leaf. We say that f is of class Cn if there exist ∂iz∂
j
z̄f

for every i, j > 0 such that i + j ≤ n. We say that f is of class C∞ if there exist ∂iz∂
j
z̄f

for every i, j > 0.

Proposition 1.3.1. Consider a continuous baseleaf preserving map f : C∗Q → C∗Q such
that:

C∗Q
f // C∗Q

C deg(f)z+g(z) //
?�

ν

OO

C
?�

ν

OO

Then, the continuous derivative ∂iz∂
j
z̄f exists if and only if ∂iz∂

j
z̄g exists and is continuous

limit periodic respect to x. In particular, f is Cn if and only if ∂iz∂
j
z̄g exists and is

continuous limit periodic respect to x for every i, j ≥ 0 such that i+ j ≤ n.

Proof: By definition, there are continuous maps ∂iz∂
j
z̄f : C∗Q → C for every i, j > 0

and i+ j ≤ n such that:
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C∗Q
f // C∗Q C∗Q

∂iz∂
j
z̄f // C

C fa //
?�

a.ν

OO

C
?�
b.ν

OO

C
∂iz∂

j
z̄fa

88

?�

a.ν

OO

for every a ∈ Ker(π1); i.e. for every leaf. In particular, it is verified for the baseleaf
(a = 0) and by Lemma 1.2.8 the functions ∂iz∂

j
z̄g : C∗Q → C are continuous limit periodic

respect to x for every i, j > 0 and i+ j ≤ n

Conversely, suppose that ∂zg is continuous limit periodic respect to x and deg(f) = p/q
such that p and q are coprime natural numbers. In the proof of proposition 1.2.5 we
constructed the commutative diagram:

C∗Q
f // C∗Q

qẐ× C F̂ //

exp

OO

pẐ× C

exp

OO

C (p/q)z+g(z) //
?�

OO

C
?�

OO

Define Fz : qZ× C→ C such that

Fz(qn, z) = ∂zf0(z + 2πqn) =
p

q
+ ∂zg(z + 2πqn)

for every integer n. Because ∂zf0 is continuous limit periodic respect to x, by Lemma 1.2.1
there is a unique continuous extension F̂z : qẐ×C→ C of Fz such that F̂z(a, z + 2πq) =
F̂z(a+q, z). By Lemma 1.1.7, there is a continuous map fz such that the following diagram
commutes:

C∗Q
fz // C

qẐ× C F̂z //

exp

OO

C

=

OO

C ∂zf0 //
?�

OO

C

=

OO

Let a ∈ qẐ and consider a sequence of integers (ni)i∈N such that (q.ni) converges to
a. Because F̂ (ni, ) converges uniformly to F̂ (a, ) on compact sets and ∂zF̂ (ni, ) =
(0, F̂z(ni, )) converges uniformly to (0, F̂z(a, )) on compact sets we conclude that

∂zF̂ (a, ) = (0, F̂z(a, ))

and it is continuous limit periodic respect to x. We have proved that there exist the
partial derivative ∂zf = fz.
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In the case that f0 is of class Cm such that m = 1, 2, . . .∞, an analogous inductive
argument shows that there exist the all the other continuous partial derivatives of f ; i.e.
f is of class Cm. �

We have a completely analogous proposition for functions with almost verbatim proof:

Proposition 1.3.2. Consider a continuous function f : C∗Q → C such that:

C∗Q
f // C

C

g

55

?�

ν

OO

Then, the continuous derivative ∂iz∂
j
z̄f exists if and only if ∂iz∂

j
z̄g exists and is continuous

limit periodic respect to x. In particular, f is Cn if and only if ∂iz∂
j
z̄g exists and is

continuous limit periodic respect to x for every i, j ≥ 0 such that i+ j ≤ n.

We have an improved version of Lemma 1.2.6:

Lema 1.3.3. Consider a pair of Cn baseleaf preserving maps f, g : C∗Q → C∗Q. Then, f
and g are Cn-isotopic if and only if deg(f) = deg(g).

Proof: Almost verbatim to the proof of Lemma 1.2.6. �

1.4 Picard theorem

Proposition 1.4.1. There is a continuous (holomorphic) map f : C∗Q → C∗ such that:

C∗Q
f // C∗

C qz+g(z) //
?�

ν

OO

C
eiz

OO

if and only if g is continuous (holomorphic) limit periodic respect to x and q is a rational
number.

Proof: Almost verbatim to the proof in Lemma 1.2.5. �

Definition 1.4.1. We will call the above rational number the degree of f and denote it
by deg(f). The following corollary justifies this notation:

The following corollary justifies this notation:

Corollary 1.4.2. For every continuous (holomorphic) map f : C∗Q → C∗ there is a unique

continuous (holomorphic) baseleaf preserving map f̂ such that:
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C∗Q
π1

��
C∗Q

f̂
>>

f // C∗

and deg(f) = deg(f̂).

Proof: By proposition 1.4.1, there is a unique rational number q = deg(f) and a
continuous (holomorphic) limit periodic respect to x map g such that:

C∗Q
f // C∗

C qz+g(z) //
?�

ν

OO

C
eiz

OO

By proposition 1.2.5, there is a unique baseleaf preserving continuous (holomorphic) map
f̂ of degree q such that:

C∗Q
f̂ // C∗Q

π1 // C∗

C qz+g(z) //
?�

ν

OO

C
?�

ν

OO

eiz

>>

Then π1 ◦ f̂ ◦ ν = f ◦ ν and because the image of ν is dense and the maps are continuous
we have that π1 ◦ f̂ = f . �

The following corollary shows the relation of the degree introduced here with the
classical degree:

Corollary 1.4.3. For every continuous (holomorphic) map f : C∗ → C∗ there is a unique
continuous (holomorphic) baseleaf preserving map f̂ such that:

C∗Q
π1

��

f̂ // C∗Q
π1

��
C f // C

and deg(f) = deg(f̂).

Proof: Because the map π1 is holomorphic and the degree is multiplicative under
composition we have that f ◦π1 is a continuous (holomorphic) map with the same degree
as f ; i.e.
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C∗Q
π1 // C f // C

C z //
?�

ν

OO

C deg(f)z+g(z) //

eiz

OO

C
eiz

OO

where deg(f) is an integer and g is a continuous (holomorphic) map periodic respect to
x. Then deg(f) = deg(f ◦ π1). By the previous corollary there is a unique continuous
(holomorphic) baseleaf preserving map f̂ such that:

C∗Q
π1

��

f̂ //

!!

C∗Q
π1

��
C f // C

and deg(f) = deg(f ◦ π1) = deg(f̂). �

Lema 1.4.4. Consider a pair of continuous (holomorphic) maps f, g : C∗Q → C∗. Then,
f and g are homotopic (conformal isotopic) if and only if deg(f) = deg(g).

Proof: Almost verbatim to the proof of Lemma 1.2.6. �

Proposition 1.4.5. Pic(ĈQ) ' (Q,+)

Proof: Consider a complex holomorphic line bundle L over ĈQ. Claim: The open

sets U = ĈQ−{0} and V = ĈQ−{∞} constitute a trivializing cover: We only prove that
V = CQ is trivializing for the other case is completely similar. Consider a holomorphic
function f : CQ → C∗. In particular, its restriction to C∗Q is holomorphic and by Lemma
1.4.1 there is a map h such that:

C∗Q
f // C∗

C h(z)=deg(f)z+g(z) //
?�

ν

OO

C
eiz

OO

Restricted to the real line, h has the form:

h(x) = deg(f)x+
∑
q∈Q

aqe
iqx

and because h is holomorphic we have:

h(z) = deg(f)z +
∑
q∈Q

aqe
iqz

In particular, its imaginary part is the following:

Im(h(z)) = deg(f)y +
∑
q∈Q

[Re(aq) sin(qx) + Im(aq) cos(qx)] e−qy
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Because f has a continuous extension at zero such that f(0) ∈ C∗ and |f(ν(z))| =
|eih(z)| = e−Im(h(z)), the limit of Im(h) when y tends to +∞ must be finite for every x.
We conclude that deg(f) = 0 and aq = 0 for every q < 0; i.e.

f(z) = ei
∑
q≥0 aqz

q

Define the conformal isotopy:
ft(z) = eit

∑
q≥0 aqz

q

We have proved that every holomorphic function f : CQ → C∗ is conformal isotopic to a
constant function and we have the claim.

Then, the bundle L is determined by its holomorphic clutching function f : C∗Q → C∗
and by Lemma 1.4.4 there is a unique rational number q such that f is conformal isotopic
to zq hence L is isomorphic to the complex holomorphic line bundle O(q) with clutching
function the character zq. Because O(p)⊗O(q) ' O(p+ q), the result follows. �

Remark 1.4.1. It is tempting to argue just that U and V are contractible hence trvializing
but this is true in the continuous category and we ere in the holomorphic one.

Proposition 1.4.6. There is a natural group monomorphism π̂∗1 : Pic(Ĉ) ↪→ Pic(ĈQ).

Proof: For every complex line bundle π : L→ Ĉ we have its pullback:

π̂∗1(L)

π′
��

// L

π
��

ĈQ
π̂1 // Ĉ

and because π̂1 is onto we have that π̂∗1 is a monomorphism: Take the trivializing cover
U = Ĉ− {∞} and V = Ĉ− {0} of the Riemann sphere Ĉ. For every clutching function
f : C∗ → C∗ the clutching function of the pullback of its associated bundle respect to the
trivializing cover U ′ = ĈQ − {∞} and V ′ = ĈQ − {0} is f ◦ π1. Then the pullback π̂1 is
injective for every pair of clutching functions such that f ◦ π1 = g ◦ π1 we have f = g.
Because the tensor product of bundles with clutching functions f and g has the clutching
function f.g, the pullback π̂∗1 is a group morphism for (f.g) ◦ π1 = (f ◦ π1).(g ◦ π1); i.e.

π̂∗1(L⊗ L′) ' π̂∗1(L)⊗ π̂∗1(L′)

By general theory, if L ' L′ then π̂∗1(L) ' π̂∗1(L′). �
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Chapter 2

Renormalization

2.1 Renormalization

Definition 2.1.1. We say that µ ∈ Lvert∞ (C∗Q) is vertical integrable if µ ∈ L∞(C∗Q) and

(Fx)
∗(µ) ∈ L∞(Ẑ) for almost every fiber Fx : Z ↪→ CQ (i.e. for almost every x ∈ C∗).

Definition 2.1.2. Consider the normalized Haar measure η on Ẑ and the induced measure
on the fibers π−1

1 (x). We define the n-th renormalization map as the linear operator
In : Lvert∞ (C∗Q)→ Lvert∞ (C∗Q) such that:

In(µ)(x) = n

∫
π−1
n (πn(x))

dη µ

The n-th renormalization map is the average respect the n-th level πn : C∗Q → C∗ of
the algebraic solenoid renormalized such that its operator norm be one; i.e. ||In||∞ = 1.

This is illustrated for the diadic solenoid in Figure 2.1.

Remark 2.1.1. See that, by definition, In(µ) factors through πn; i.e. there is a µ̂n ∈
 L∞(C∗) such that:

C∗Q
In(µ) //

πn
��

C

C
+ �

ν

88

eiz/n // C∗
µ̂n

88

In particular, In(µ)0 = In(µ) ◦ ν = µ̂n ◦ eiz/n is 2πn-periodic respect to x.

Definition 2.1.3. Consider the left action m : Ẑ→ Aut(C∗Q) such that m(a)(x) = φ(a)x.

We say that µ ∈ L∞(C∗Q) is uniformly vertical L∞-continuous if the map Ẑ → L∞(C∗Q)
such that (a→ µ ◦m(a)) is continuous at zero.

Because π1 ◦ φ = 1 we have π1 ◦ma = id for every a ∈ Ẑ. This way ma : π−1
1 (x) →

π−1
1 (x) for every x ∈ C∗ and a ∈ Ẑ; i.e. the fibers are invariant under the action ma for
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Figure 2.1: Van Dantzig-Vietoris solenoid

every a ∈ Ẑ. To get a feel of this notion of continuity, see that every uniform continuous
function is L∞-continuous. For a less trivial example, see that the Dirichlet function
(D(x) = 1 if x is rational and D(x) = 0 if x is irrational) is L∞-continuous. On the
contrary, the Heaviside or step function (H(x) = 1 if x ≥ 1 and H(x) = 0 if x < 0) is not
L∞-continuous.

Lema 2.1.1. If µ ∈ Lvert∞ (C∗Q) is uniformly vertical L∞-continuous then In(µ) converges
uniformly to µ respect to the divisibility net.

Proof: Consider ε > 0. There is a natural N such that n � N implies ||µ−µ◦ma||∞ <
ε for every a ∈ nẐ. Then, for every x where µ is defined we have:

|µ(x)− In(µ)(x)| ≤ n

∫
π−1
n (πn(x))

dy |µ(x)− µ(y)| < ε

because y ∈ π−1
n (πn(x)) implies y−1x = φ(a) such that a ∈ nẐ and then |µ(x)− µ(y)| < ε

for every y ∈ π−1
n (πn(x)). This implies ||µ− In(µ)||∞ < ε for every n � N . �

Corollary 2.1.2. Consider a uniformly vertical L∞-continuous µ ∈ Lvert∞ (C∗Q). Then,

for almost every fiber Fx : Ẑ → C∗Q of the fiber bundle π1 : C∗Q → C∗ the pullback

F ∗x (µ) : Ẑ→ C can be represented by a continuous function.

Proof: For every natural n and almost every fiber Fx : Ẑ→ C∗Q the map F ∗x (In(µ)) is
locally constant (See remark 4.2.1). In particular they are continuous and by the previous
Lemma they converge uniformly to F ∗x (µ) and we have the result. �

The above corollary can be written in the following way:

Definition 2.1.4. We say µ ∈ Per(CQ) if there is some natural n and µn ∈ L∞(C) such
that µ = π∗n(µn).

Corollary 2.1.3. Per
∞

= Lvert∞ (C∗Q)

Lema 2.1.4. � If f : C∗Q → C is continuous then the family of functions In(f) is
equicontinuous and the sequence (In(f))n∈N converges uniformly to f on compact
sets.
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� If f : C∗Q → C is Cm then In(f) is Cm and (In(f))n∈N converges to f in the
Cm-topology on compact sets.

Proof:

� An analogous construction to the one given in the proof of Lemma 1.2.2 gives the
commutative diagram:

C∗Q
f // C

Ẑ× C F //

exp

OO

C

=

OO

C f0 //
?�

OO

C

=

OO

such that F is continuous, F (n, z) = f0(z+ 2πn) and F (a+ 1, z) = F (a, z+ 2π) for
every integer n, z ∈ C and a ∈ Ẑ. Define the function In(F ) such that:

In(F )(a, z) = n

∫
π−1
n (πn(a))

db F (b, z)

Because of the relation:

In(F )(a, z + 2π) = n

∫
π−1
n (πn(a))

dη F (b, z + 2π) = n

∫
π−1
n (πn(a))

dη F (b+ 1, z)

= n

∫
π−1
n (πn(a))+1

dη F (b, z) = n

∫
π−1
n (πn(a+1))

dη F (b, z)

= In(F )(a+ 1, z)

there is a function conjugated to F by the exp map. It is clear that this map is
In(f) and we have the commutative diagram:

C∗Q
In(f) // C

qẐ× C In(F ) //

exp

OO

C

=

OO

C In(f)0 //
?�

OO

C

=

OO

where In(f)0 = In(F )(0, ):

In(f)0(z) = n

∫
Ker(πn)

db F (b, z)

See that these maps coincide with the maps defined in the proof of Lemma 1.2.2
and by the same proof we have that they are periodic respect to x and equicontin-
uous. By Proposition 1.2.8, the family of functions In(f) is equicontinuous and the
sequence (In(f))n∈N converges uniformly to f on compact sets.
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� Suppose that there is a continuous derivative ∂zf such that:

C∗Q
f // C C∗Q

∂zf // C

C
f0

55

?�

ν

OO

C
∂zf0

55

?�

ν

OO

Claim: ∂z(In(f)0) = In(∂zf)0.

An analogous construction to the one given in the proof of Lemma 1.2.2 and Propo-
sition 1.3.1 gives the commutative diagrams:

C∗Q
f // C C∗Q

∂zf // C

Ẑ× C F //

exp

OO

C

=

OO

Ẑ× C ∂zF //

exp

OO

C

=

OO

C f0 //
?�

OO

C

=

OO

C ∂z(f0)=(∂zf)0 //
?�

OO

C

=

OO

such that F and ∂zF are continuous, F (n, z) = f0(z+2πn), F (a+1, z) = F (a, z+2π)
and analogous relations for ∂zF for every n ∈ Z, z ∈ C and a ∈ Ẑ. In the same way
as before, we have the commutative diagrams:

C∗Q
In(f) // C C∗Q

In(∂zf) // C C∗Q
∂zIn(f) // C

Ẑ× C In(F ) //

exp

OO

C

=

OO

Ẑ× C In(∂zF ) //

exp

OO

C

=

OO

Ẑ× C ∂zIn(F ) //

exp

OO

C

=

OO

C In(f)0 //
?�

OO

C

=

OO

C In(∂zf)0 //
?�

OO

C

=

OO

C ∂z(In(f)0) //
?�

OO

C

=

OO

It only rest to show that ∂zIn(F ) = In(∂zF ): Because ∂zF is continuous we can
interchange the integral and the derivative:

∂zIn(F )(a, z) = n ∂z

∫
π−1
n (πn(a))

dη F (b, z) = n

∫
π−1
n (πn(a))

dη ∂zF (b, z) = In(∂zF )(a, z)

and this proves the claim.

Because ∂z(In(f)0) = In(∂zf)0 by the above item these functions are periodic
respect to x and equicontinuous. By Proposition 1.3.2 and the above item, the
equicontinuous derivatives ∂zIn(f) exists and

∂zIn(f) = In(∂zf)

Finally, by the above item again and the last relation, the sequence (∂zIn(f))n∈N
converges uniformly to ∂zf on compact sets.
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An inductive argument shows that the result holds for every derivative of order less
than or equal to m and we have the result.

�

2.2 Pontryagin series

To motivate the following discussion, recall the proof of uniform convergence of the Fourier
series of a C1 function: Consider the Fourier series

f(z) =
∑
i∈Z

aiz
i

such that the series a priori converges in L2. However, by the Cauchy-Schwarz inequality:

∑
i∈Z

|ai| ≤ |a0|+

(
2
∑
i∈N

1

i2

)1/2(∑
i∈Z

|iai|2
)1/2

= |a0|+
π√
3
||f ′||2 <∞

and by the Weierstrass M -test we have that the Fourier series actually converges uni-
formly.

When we try to reproduce the above argument to a C1 function on the solenoid it
breaks down for: ∑

q∈Q+

1

q2
= lim

n

∑
q∈ 1

n
N

1

q2
= lim

n
n2π

2

6
=∞

Definition 2.2.1. If m divides n (m|n), define the linear operator Rm,n : C(S1,C) →
C(S1,C) such that

Rm,n(f)(x) = m/n
∑

yn/m=x

f(y)

If l|m|n then Rl,m ◦ Rm,n = Rl,n and R defines an inverse system of complex vector

spaces over the divisibility net with inverse limit the complex vector space
(

lim
←
C(S1,C), pn

)
.

Consider the inverse limit morphisms πn : S1
Q → S1. By remark 2.1.1 the functions In(f)

factor through πn:

S1
Q

In(f) //

πn
��

C

S1
f̂n

88

such that:

f̂n(x) = n

∫
π−1
n (x)

daf(a)
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If m|n, by definition π
n/m
n = πm hence:⊔

yn/m=x

π−1
n (y) = π−1

m (x)

for every x ∈ S1. Then,

Rm,n(f̂n)(x) = m/n
∑

yn/m=x

n

∫
π−1
n (y)

da f(a) = m

∫
π−1
m (x)

da f(a) = f̂m(x)

for every x ∈ S1; i.e. Rm,n ◦ f̂n = f̂m. We have a natural linear morphism I : C(S1
Q,C)→

lim
←
C(S1,C) such that I(f) = (f̂n)n∈N. Actually it a monomorphism:

Lema 2.2.1. � The linear morphism I is a monomorphism; i.e. I : C(S1
Q,C) ↪→

lim
←
C(S1,C).

� (gn) = I(f) if and only if (gn ◦ πn)n∈N converges uniformly to f .

Proof:

� Consider a pair of functions f1, f2 ∈ C(S1
Q,C) such that I(f1) = I(f2) = (gn). By

definition In(f1) = In(f2) = gn ◦ πn and because of Lemma 2.1.4 f1 = f2 for the
sequence (In(fi))n∈N uniformly converges to fi and the limit is unique.

� By definition In(f) = gn ◦ πn and because of Lemma 2.1.4 (gn ◦ πn)n∈N converges
uniformly to f . For the converse, consider a natural n and let ε > 0. There is a
natural N ≥ n such that ||f − gN ◦ πN ||∞ < ε. Because IN(gN ◦ πN) = gN ◦ πN and
||IN ||∞ = 1 we have ||In(f) − gN ◦ πN ||∞ < ε hence ||f̂N − gN ||∞ < ε. By the fact
that ||Rn,N ||∞ = 1 we have ||f̂n − gn||∞ < ε and because ε > 0 was arbitrary we

conclude that f̂n = gn.

�

Proposition 2.2.2. For every Cm+1 function f : S1
Q → C such that m ≥ 0 its Pontryagin

series converges in the Cm-topology.

Proof: Let’s see how the operator Rm,n acts on monomials:

Rm,n(zλn/m)(x) = m/n
∑

yn/m=x

yλn/m = m/n
∑

yn/m=x

xλ = xλ

for every x ∈ S1 hence Rm,n(zλn/m) = zλ. Consider a natural r such that 1 ≤ r ≤
(n/m) − 1. Choose a solution y′ of the equation yn/m = x. The set of points y/y′ such
that yn/m = x is the set of (n/m)-th roots of unity. If r|(n/m) then the set of points
(y/y′)r such that yn/m = x is the set of (n/mr)-th roots of unity otherwise the set of
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points is the set of (n/m)-th roots of unity as before. Either way, because the sum of all
k-th roots of unity is zero for arbitrary k, we have that:∑

yn/m=x

yr = y′r
∑

yn/m=x

(y/y′)r = 0

Then, for every x ∈ S1 we have:

Rm,n(zλn/m+r)(x) =
m

n

∑
yn/m=x

yλn/m+r =
m

n
xλ

∑
yn/m=x

yr = 0

hence Rm,n(zλn/m+r) = 0 for r = 1, 2, . . . (n/m)− 1.

By remark 2.1.1 and Lemma 2.1.4, In(f)0 is Cm+1 and 2πn-periodic hence its Fourier
series converges in the Cm-topology; i.e. we have that:

In(f)(z) =
∑
q∈ 1

n
Z

a(n)
q zq

and it converges in the Cm-topology for every natural n.

Claim: The coefficients a
(n)
q are independent of n.

In particular we have that:

f̂n(z) =
∑
i∈Z

a
(n)
i/nz

i

and it converges in the Cm-topology for every natural n and because the linear operator
Rm,n is bounded (i.e. continuous, actually ||Rm,n|| = 1) we have:

f̂m(z) = Rm,n(f̂n)(z) = Rm,n

(∑
i∈Z

a
(n)
i/nz

i

)
=
∑
i∈Z

a
(n)
i/nRm,n(zi) =

∑
i∈Z

a
(n)
i/mz

i

On the other hand:
f̂m(z) =

∑
i∈Z

a
(m)
i/mz

i

and because the Fourier series is unique we have the identity a
(m)
i/m = a

(n)
i/m for every pair

of naturals m,n such that m|n and every integer i. We proved the claim.

Then, there are coefficients aq ∈ C indexed on the rationals such that:

In(f)(z) =
∑
q∈ 1

n
Z

aqz
q

and it converges in the Cm-topology for every natural n. By Lemma 2.1.4, the sequence
(In(f))n∈N converges to f in the Cm+1-topology and we conclude that:

f(z) =
∑
q∈Q

aqz
q

and the series converges in the Cm-topology. Because the solenoid is compact, in particular
it also converges in L2 and because the Potryagin series is unique, we have the result. �
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Corollary 2.2.3. For every C∞ function f : S1
Q → C its Pontryagin series converges in

the C∞-topology.

Remark 2.2.1. Actually we have proved that the renormalization maps acts in the follow-
ing way:

In

(∑
q∈Q

aqz
q

)
=
∑
q∈ 1

n
Z

aqz
q

where the series converges at least uniformly.

Corollary 2.2.4. The linear operator In : Lp(S
1
Q,C) → Lp(S

1
Q,C) has operator norm

||In||p = 1 for every 1 ≤ p ≤ ∞.

Proof: We already have the result for p = ∞. Because the operator In acts as a
projection on modes, by Proposition 2.2.2 we have that, restricted to the C1 functions,
the linear operator In : C1(S1

Q,C) → C1(S1
Q,C) has operator norm ||In||p = 1 for every

p > 1. Because C1(S1
Q,C) is dense in Lp(S

1
Q,C) for every p > 1, there is a unique extension

of In with the same norm. �

Now, with these new tools at hand, we are able to tackle the problem we discuss at
the beginning as a motivation.

Lema 2.2.5. Every C1 function on the solenoid has a L1 Pontryagin transform.

Proof: Consider a C1 function f with its Pontryagin series:

f(z) =
∑
q∈Q

aqz
q

and its derivative along the solenoid f ′:

f(z) =
∑
q∈Q

q aqz
q

For every natural n consider the 2π-periodic function In(f)◦ν ◦(n ) and its Fourier series:

In(f)(ν(nx)) =
∑
j∈Z

bje
ijx

and see that its derivative respect to x coincides with In(f ′) ◦ ν ◦ (n ):

In(f ′)(ν(nx)) =
∑
j∈Z

j bje
ijx

Because aj/n = bj for every integer j, by Cauchy-Schwartz and Parseval identity we have:

∑
q∈ 1

n
Z

|aq| =
∑
j∈Z

|bj| ≤ |b0|+

(
2
∑
j∈N

1

j2

)1/2(∑
j∈Z

|j bj|2
)1/2
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∑
q∈ 1

n
Z

|aq| =
∑
j∈Z

|bj| ≤ |b0|+

(
2
∑
j∈N

1

j2

)1/2(∑
j∈Z

|j bj|2
)1/2

= |a0|+
π√
3
||In(f ′) ◦ ν ◦ (n )||2

= . . .

A simple direct calculation shows that ||In(f ′) ◦ ν ◦ (n )||2 = ||In(f ′)||2 and because
||In||2 = 1 by the previous corollary we have:

. . . = |a0|+
π√
3
||In(f ′)||2

≤ |a0|+
π√
3
||f ′||2

Taking the limit on the left hand side we finally have:∑
q∈Q

|aq| ≤ |a0|+
π√
3
||f ′||2

�

Remark 2.2.2. Because the solenoid has unit area by definition, the last useful identity
can be written as:

||f ||∞ ≤
∑
q∈Q

|aq| ≤ |a0|+
π√
3
||f ′||∞
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Chapter 3

Ahlfors-Bers theory

3.1 Introduction and Preliminaries

We define the adelic Riemann sphere ĈQ as the inverse limit of the ramified coverings:

ĈQ = lim Ĉ // . . . Ĉ
pm,n // Ĉ // . . . Ĉ

C∗Q = limC∗ //
?�

OO

. . .C∗
pm,n //

?�

OO

C∗ //
?�

OO

. . .C∗
?�

OO

with the natural inverse limit maps π̂n : ĈQ → Ĉ where Ĉ is the Riemann sphere. We

have the canonical inclusion C∗Q ↪→ ĈQ and the new points:

∞ = [(. . . ,∞,∞,∞)]

0 = [(. . . , 0, 0, 0)]

Because these are the inverse limit of the ramification points, their topological nature is
quite different from the other points. They are cusps. In particular, every homeomorphism
of ĈQ must fix these new points or permute them. In the following theory, this fixation
will be a constraint of the theory and no longer a choice as in the classical theory.

Now we turn to the question of whether continuous maps and differentials on the algebraic
solenoid C∗Q can be extended to the adelic sphere ĈQ.

Lema 3.1.1. Consider a continuous (holomorphic) map f and a continuous (holomor-
phic) function limit periodic respect to x function g such that:

C∗Q
f // C

C
g

>>

?�

ν

OO

Then:
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� f can be continuously extended to CQ if and only if there is a complex number a
such that:

lim
y→+∞

||a− g|Im(z)≥y ||∞ = 0

Moreover, the extension is f(0) = a.

� f can be continuously extended to C∗Q∪{∞} if and only if there is a complex number
b such that:

lim
y→−∞

||b− g|Im(z)≤y ||∞ = 0

Moreover, the extension is f(∞) = b.

Proof: We prove the first item for the second one is completely analogous. It a simple
calculus exercise to see that the extension f(0) = a is continuous if and only if:

lim
r→0
||a− f ||π1(x)|≤r ||∞ = 0

Because f is continuous and the image of the baseleaf ν is dense, the above condition is
equivalent to the one in the statement for π1 ◦ ν(z) = eiz hence |π1(ν(z))| ≤ r if and only
if Im(z) ≥ −ln(r) and we have the result. �

Lema 3.1.2. Consider a differential µ ∈ C(C∗Q)dπ1 ⊗ (dπ1)−1 and a differential η ∈
C(C)dz̄⊗ (dz)−1 such that η = ν∗(µ) where ν is the baseleaf. Then, as a function µ has a
continuous extension to the whole adelic sphere ĈQ if and only if there are constants a, b
such that:

lim
y→+∞

||a.e2i Re(z) + η|Im(z)≥y ||∞ = 0

lim
y→−∞

||b.e2i Re(z) + η|Im(z)≤y ||∞ = 0

Moreover, as a function the extension is µ(0) = a and µ(∞) = b.

Proof: If µ(x) = f(x)dπ1 ⊗ (dπ1)−1 then η(z) = ν∗(µ)(z) = f ◦ ν(z)(−e−2i Re(z))dz̄ ⊗
(dz)−1. Because taking the pullback of the differentials only adds a phase −e−2i Re(z) of
unit norm, by Lemma 3.1.1 we have the result. �

Lema 3.1.3. Consider a continuous (holomorphic) baseleaf preserving map f : C∗Q → C∗Q
such that deg(f) 6= 0 and a continuous (holomorphic) limit periodic respect to x map g
such that the following diagram commutes:

C∗Q
f // C∗Q

C deg(f)z+g(z) //
?�

ν

OO

C
?�

ν

OO

If ||Im(g)||∞ < ∞ then f has a continuous extension fixing 0,∞ to the whole adelic
sphere ĈQ.
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Proof: Define M and m such that m ≤ Im(g(z)) ≤ M for every z ∈ C. Because
Im(deg(f)z + g(z)) > y if Im(z) > (y−m)/deg(f) we have that f is continuous at zero.
Analogously, because Im(deg(f)z + g(z)) < y if Im(z) < (y −M)/deg(f) we have that
f is continuous at ∞. �

By Lemma 1.2.9, the degree zero case in the above Lemma is Lemma 3.1.1.

Lema 3.1.4. Hol(ĈQ) ' C

Proof: Consider a holomorphic function f : ĈQ → C. Its restriction to the solenoid
(equator) is:

f(ν(x)) =
∑
q∈Q

aqe
iqx

and because it is holomorphic we have:

f(ν(z)) =
∑
q∈Q

aqe
iqz =

∑
q∈Q

aqe
iqxe−qy

Because f is continuous on the adelic sphere ĈQ, by Lemma 3.1.1 aq = 0 for every non
zero rational q; i.e. f = a0. �

Let’s see how a homeomorphism permute leaves. Consider a homeomorphism h : C∗Q →
C∗Q homotopic to zp/q. Because exp is a local homeomorphism, there is a homeomorphism

ĥ : qẐ× C→ pẐ× C such that

qẐ× C ĥ //

exp

��

pẐ× C
exp

��
C∗Q

h // C∗Q

with the structural condition:

ĥ(a+ q, z) = ĥ(a, z + 2πq) + (p,−2πp)

for every a ∈ qẐ and z ∈ C.

Because Ẑ is totally disconnected, ĥ maps leaves to leaves; i.e. there are homeomor-
phisms s : Ẑ → Ẑ and fa : C → C such that ĥ(a, z) = (s(a), fa(z)). The structural
condition implies s(a + q) = s(a) + p for every a ∈ qẐ. In particular we have that
s(qn) = s(0) + pn for every integer n and because s is continuous we have:

s(qa) = s(0) + pa

for every a ∈ Ẑ. We have proved the following lemma:

Lema 3.1.5. Consider a homeomorphism h : C∗Q → C∗Q homotopic to zp/q and a homeo-

morphism ĥ : qẐ× C→ pẐ× C such that
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qẐ× C ĥ //

exp

��

pẐ× C
exp

��
C∗Q

h // C∗Q

where ĥ(a, z) = (s(a), fa(z)). Then, there is λ ∈ pẐ such that

s(qa) = λ+ pa

Corollary 3.1.6. A homeomorphism is leaf preserving if and only if it is homotopic to
the identity.

Proof: Under the notation of the above Lemma, if h is leaf preserving then s(a) = a+λ
such that λ is now an integer. In particular, deg(h) = 1 and by Lemma 1.2.6 h is
homotopic to z. For the converse, z is leaf preserving and because the space of leaves Ẑ/Z
is totally disconnected h is leaf preserving too. �

Since we want to build a theory of continuous deformations of the identity, the above
corollary shows that we only need leaf preserving homeomorphisms in our theory.

Definition 3.1.1. A leaf preserving homeomorphism h of ĈQ is quasiconformal if it fixes

0,∞ and ha is quasiconformal for every a ∈ Ẑ such that

Ẑ× C ĥ //

exp

��

Ẑ× C
exp

��
C∗Q

h // C∗Q

where ĥ(a, z) = (a, ha(z)); i.e. h restricted to every leaf is quasiconformal.

Definition 3.1.2. We say µ ∈ Per is a periodic adelic differential if there is some natural
n and differential µn ∈ L∞(C) dz̄ ⊗ (dz)−1 such that µ = π∗n(µn). We say that µ is
a periodic Beltrami adelic differential if µ ∈ Per and ||µ||∞ < 1. We denote these
differentials as Per1.

The importance of the periodic adelic Beltami differentials is that they trivially have a
quasiconformal solution to the respective Beltrami equation: Consider the periodic adelic
Beltrami differential µ = π∗n(µn) and the quasiconformal solution fn to the µn-Beltrami
equation fixing 0, 1,∞. Define the leaf and orientation preserving homeomorphism f such
that:

ĈQ
f //

πn
��

ĈQ

πn
��

Ĉ fn // Ĉ
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Then, f is the quasiconformal solution to the µ-Beltrami equation. At this point, it is
natural to ask for a topology T such that the interior of the closure of these Beltrami
differentials constitute new Beltrami differentials for which there exist quasiconformal
solutions to their respective Beltrami equations; i.e.:

Bel(CQ) = InteriorPer1
T

The first natural guess would be the metric topology T∞ but this won’t do for:

InteriorPer1
∞

= Lvert∞ (C∗Q)1

and there are L∞-vertical Beltrami differentials µ for which there is no solution to its
Beltrami equation (See example 3.3.1).

The rest of the chapter is devoted to this problem and we will find a family of complete
metric topologies TRen,S solving it. However, the optimality of these solutions remains an
open problem.

3.2 Adelic Beltrami differentials

In what follows, we will make the following abuse of notation:

Remark 3.2.1. Every leaf νa : C ↪→ C∗Q is a translation surface modeled on π1 and we will

consider differentials in the space L∞(C∗Q) dπ1⊗ (dπ1)−1. In particular, see that the space

of Beltrami differentials L∞(C) dz ⊗ (dz)−1 embeds in this space via π∗1 for:

π∗1(µ dz ⊗ (dz)−1) = µ ◦ π1 π∗1(dz)⊗ (π∗1(dz))−1 = µ ◦ π1 dπ1 ⊗ (dπ1)−1

In pursuit to ease the notation we will make the following abuse of notation: Unless
confusion, in what follows we will write a differential µ dπ1 ⊗ (dπ1)−1 just as µ and
identify L∞(C∗Q) dπ1⊗ (dπ1)−1 with L∞(C∗Q); i.e. we will use the same notation to denote
the differential and the function. Unless explicitly written, the context will make clear
which one we are using.

Definition 3.2.1. An adelic differential is an element µ ∈ L∞(CQ) such that:

� µ is vertical and horizontal essentially bounded; i.e. ν∗a(µ) ∈ L∞(C) for every leaf
νa and F ∗(µ) ∈ L∞(Ẑ) for every fiber F : Ẑ ↪→ CQ.

� µ is vertical L∞-continuous; i.e. µ ∈ Lvert∞ (C∗Q)

� There is a cofinal totally ordered divisibility subsystem S = (nj)j∈N such that the
following series converge:

∞∑
j=1

nj+1 ||Inj+1
(µ)− Inj(µ)||∞ <∞
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We will call the above series as an S-renormalized average series. The set of adelic
differentials with a convergent S-renormalized average series will be denoted by RenS .
For every µ ∈ RenS we define its renormalized norm as:

||µ||Ren,S = n1 ||In1(µ)||∞ +
∞∑
j=1

nj+1 ||Inj+1
(µ)− Inj(µ)||∞ <∞

such that S = (nj)j∈N. An adelic Beltrami differential is an adelic differential µ such that
||µ||∞ < 1 and the set of adelic Beltrami differentials with convergent S-renormalized
average series will be denoted by BelS(CQ).

Remark 3.2.2. Is clear that (RenS , || · ||Ren,S) is a metric space.

Definition 3.2.2. Define the vector subspaces of adelic differentials:

Pern = π∗n(L∞(C))

for every natural n. See that Perm ⊂ Pern if m|n. Consider a cofinal totally ordered
divisibility subsystem S = (nj)j∈N. Then,

PerS =
⋃
j

Pernj ⊂ RenS

The space of periodic adelic Beltrami differentials PerS,1 is the set of periodic adelic
differentials µ ∈ PerS such that ||µ||∞ < 1:

PerS,1 ⊂ BelS(CQ)

Lema 3.2.1. � The canonical inclusion (RenS , ||·||Ren,S) ↪→ Lvert∞ (C∗Q) is continuous.
However, its inverse is not. In particular, BelS(CQ) ⊂ RenS is open.

� PerS
Ren,S

= RenS . In particular, PerS,1 ⊂ BelS(CQ) is a dense subset.

� BelS(CQ) is closed under multiplication by functions λ ∈ L∞(CQ) such that ||λ||∞ ≤
1. In particular, BelS(CQ) is star shaped respect to zero.

Proof:

� By Lemma 2.1.1 we have:

µ = In1(µ) +
∞∑
j=1

(Inj+1
(µ)− Inj(µ))

Then:

||µ||∞ ≤ ||In1(µ)||∞ +
∞∑
j=1

||Inj+1
(µ)− Inj(µ)||∞

≤ n1 ||In1(µ)||∞ +
∞∑
j=1

nj+1 ||Inj+1
(µ)− Inj(µ)||∞ = ||µ||Ren,S
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and we have that the inclusion is continuous. Let’s see that the inverse is not:
Consider µn such that:

ν∗(µn)(z) =
ei

x
n!

n!
e−

y2

n!2
dz̄

dz

where ν is the baseleaf and z = x + iy. By Lemma 3.1.2 they are continuous in
ĈQ hence uniformly continuous in C∗Q. In particular µn ∈ Lvert∞ (C∗Q) and because
||µn||Ren,S = 1 we have that µn ∈ RenS for every n. However, ||µn||∞ = 1/n! tends
to zero where S = (n!)n∈N.

� For every ε > 0 there is a natural I such that:

∞∑
j=I

nj+1 ||Inj+1
(µ)− Inj(µ)||∞ < ε

Because of the fact:

Inj ◦ InI (µ) =

{
Inj(µ) j < I
InI (µ) j ≥ I

we have:

(Inj+1
(µ)− Inj+1

(InI (µ)))− (Inj(µ)− Inj(InI (µ))) =

{
Inj+1

(µ)− Inj(µ) j ≥ I
0 j < I

then:

||µ− InI (µ)||Ren,S =
∞∑
j=I

nj+1 ||Inj+1
(µ)− Inj(µ)||∞ < ε

and we have that Per(CQ)
Ren

= BelS(CQ) for every Ini(µ) is a periodic S- adelic
Beltrami differential.

� Is clear from the definition that ||λ.µ||Ren,S ≤ ||µ||Ren,S for every λ ∈ L∞(CQ) such
that ||λ||∞ ≤ 1 and S-adelic Beltrami differential µ.

�

Proposition 3.2.2. BelS(CQ) is a Banach manifold modeled on RenS , || · ||Ren,S).

Proof: By the previous Lemma, BelS(CQ) ⊂ RenS is an open set and it only rest
to show that (RenS , || · ||Ren,S) is complete. Consider a Cauchy sequence (µn)n∈N in
(RenS , || · ||Ren,S). Again by the previous Lemma, the inclusion is continuous and (µn)n∈N
is a Cauchy sequence in (Lvert∞ (C∗Q), || · ||∞). Because this space is complete, there is a
unique µ ∈ Lvert∞ (C∗Q) such that the sequence converges to it respect to the || · ||∞ norm.
Because the norm || · ||Ren,S is a series of positive terms we can interchange the limit and
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series and we have:

lim
n
||µn − µm||Ren,S

= lim
n

(
n1 ||In1(µn − µm)||∞ +

∞∑
j=1

nj+1 ||Inj+1
(µn − µm)− Inj(µn − µm)||∞

)

= n1 lim
n
||In1(µn − µm)||∞ +

∞∑
j=1

nj+1 lim
n
||Inj+1

(µn − µm)− Inj(µn − µm)||∞

= n1 ||In1(µ− µm)||∞ +
∞∑
j=1

nj+1 ||Inj+1
(µ− µm)− Inj(µ− µm)||∞

= ||µ− µm||Ren,S

where we have used that In are bounded linear operators respect to the || · ||∞ norm. By
the same argument and the fact that (µn)n∈N is a Cauchy sequence we have:

lim
m
||µ− µm||Ren,S = 0

and we conclude that µ ∈ RenS and it is the limit of the Cauchy sequence. �

3.3 Ahlfors-Bers theorem

Definition 3.3.1. Consider an adelic Beltrami differential µ. A quasiconformal map of
ĈQ is a solution of the Beltrami equation with coefficient µ (the µ-Beltrami equation) if
ha is a solution of the (νa)

∗(µ)-Beltrami equation

∂z̄ha = (νa)
∗(µ) ∂zha

in the distributional sense for every a ∈ Ẑ where νa = exp(a, ) : C ↪→ ĈQ is a leaf and

Ẑ× C ĥ //

exp

��

Ẑ× C
exp

��
C∗Q

h // C∗Q

where ĥ(a, z) = (a, ha(z)).

The following is the adelic version of Ahlfors-Bers theorem:

Theorem 3.3.1. For every adelic Beltrami differential µ there is a unique quasiconformal
leaf preserving solution f : ĈQ → ĈQ to the µ-Beltrami equation such that f fixes 0, 1,∞.

Remark 3.3.1. If f is a solution to the µ-Beltrami equation then µ must be uniformly
vertical continuous for µ = ∂z̄f/∂zf . This is why we ask for the L∞-vertical continuous
condition in the adelic differential definition (See corollary 2.1.2).
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Before presenting the proof of the adelic version of the Ahlfors-Bers theorem, it is
important or at least pedagogical to describe some problems within and understand the
capricious nature of the adelic Beltrami differential definition.

By Ahlfors-Bers theorem, there is a quasiconformal solution ha for every leaf modulo
postcompositions with affine transformations. In particular, the solutions can be chosen
such that they verify the structural constraint:

ha+1(z) + 2π = ha(z + 2π)

for every z ∈ C and a ∈ Ẑ defining this way a leaf preserving map h : ĈQ → ĈQ fixing
0,∞. However, there is a priori no reason to expect that the resulting map would be
continuous. Is clear that it will be continuous along the leaves but in general not across
them. It’s like drawing a picture separately in every piece of a puzzle and expect that the
we get a clear picture after we put the pieces together. We have decomposed the foliated
object in leaves and solved the problem for each leaf. To assure a continuous solution we
need a global structural constraint.

The natural guess is that imposing some notion of vertical continuity (L∞-vertical
continuity) to the Beltrami differential would give the desired continuity of the solution
across the leaves. Although this is a necessary condition, it is not enough. As the next
example shows, even for a continuous Beltrami differential there is no need to continuity
of the solution across the leaves.

Example 3.3.1. Consider the following function:

µ(z) =
1
2e

∑+∞
n=1

[
cos(x/n!)− 2iy

n!
sin(x/n!)

]
e
− y2

n!2

2n!

1 + 1
2e

∑+∞
n=1

[
cos(x/n!) + 2iy

n!
sin(x/n!)

]
e
− y2

n!2

2n!

dz̄

dz

where z = x+ iy. Let’s see that it is a Beltrami differential; i.e. ||µ||∞ < 1.

Define:

h±(n)(z) =
1

2n!
e±ix/n! (1∓ 2y/n!)

e−
y2

n!2

2

where z = x+ iy. Because ||h±(n)||∞ < 1/2n! and the identity:

h+(n)± h−(n) =

[
cos(x/n!)∓ 2iy

n!
sin(x/n!)

]
e−

y2

n!2

2n!

we have that each term of the sum has supremum norm less than 1/n! hence the supremum
norm of the sum is less than e− 1. We conclude that:

||µ||∞ <
1
2e

(e− 1)

1− 1
2e

(e− 1)
=
e− 1

e+ 1
< 1/2

Because it is limit periodic respect to x and decays to zero when y tends to ±∞, by
Lemmas 1.2.8 and 3.1.2 there is a continuous adelic Beltrami differential µ̂ on C∗Q with
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a continuous extension to the whole adelic sphere ĈQ as a function such that µ = ν∗(µ̂)
where ν is the baseleaf.

However, the quasiconformal solution of the µ-Beltrami equation:

wµ(z) = z +
1

2e

+∞∑
n=1

sin(x/n!)e−
y2

n!2

is not of the type z + g(z) with g limit periodic respect to x and by lemma 1.2.5 it is
not the conjugation of any continuous map of the adelic sphere ĈQ by the baseleaf ν; i.e.
There is no continuous map ŵ such that

C wµ //

ν
��

C
ν
��

ĈQ
ŵ // ĈQ

�

The above example shows that we still need some other global structural condition on
the Beltrami differential to assure the continuity of its solution. This is precisely the con-
vergence of the renormalized average series : There is a cofinal totally ordered divisibility
subsequence S = (nj)j∈N such that the following series converge:

∞∑
j=1

nj+1 ||Inj+1
(µ)− Inj(µ)||∞ <∞ (3.1)

The following definitions and Lemmas are the prelude to the Ahlfors-Bers theorem:

Theorem 3.3.2. Consider k such that 0 ≤ k < 1. Then, there exists a real number
p > 2 only depending on k such that: For every Beltrami differential µ ∈ L∞(C)1 with
||µ||∞ ≤ k and compact support there is a unique quasiconformal map f : C → C such
that f(0) = 0 and fz − 1 ∈ Lp(C) (globally and not merely locally) verifying:

fz̄ = µfz

on C in the sense of distributions.

A map verifying the conditions of the theorem is called a normal quasiconformal solution.
The previous Theorem can be found in [Ah], [IT].

Lema 3.3.3. If f is a normal solution of the µ-Beltrami equation such that µ has compact
support, then there are constants A and p > 2 such that:

|f(ζ)− ζ| ≤ A||µ||∞|ζ|1−2/p

Moreover, the constant A is monotone respect to the area of the µ support and depends
also on p.
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Proof: By general theory [Ah], [IT], there is 2 < p <∞ such that:

f(z) = P (fz̄)(z) + z

where P is the following linear operator on Lp(C):

Ph(ζ) = − 1

π

∫ ∫
C
h(z)

(
1

z − ζ
− 1

z

)
dxdy

for every h ∈ Lp(C) and ζ ∈ C. For any p such that 2 < p <∞ and every h ∈ Lp(C), Ph
is uniformly Hölder continuous with exponent 1− 2/p and verifies Ph(0) = 0. Moreover,
there is a constant Kp depending only on p such that:

|Ph(ζ)| ≤ Kp||h||p|ζ|1−2/p

for every ζ ∈ C. The map µ 7→ fz̄ ∈ Lp(C) from the space of Beltrami differentials with
compact support is Lipschitz continuous; i.e. There is a constant C such that:

||fz̄||p ≤ C||µ||p ≤ C Area(support(µ))1/p||µ||∞

Combining these relations, there is 2 < p <∞ such that:

|f(z)− z| = |P (fz̄)(z)| ≤ Kp||fz̄||p|z|1−2/p

≤
(
KpC Area(support(µ))1/p

)
||µ||∞|z|1−2/p

and we have the Lemma. �

Lema 3.3.4. If f is a normal solution of the µ-Beltrami equation such that µ has compact
support, then there are constants B and p > 2 such that:

|ζ| ≤ B||µ||∞|f(ζ)|1−2/p + |f(z)|

Moreover, the constant B is monotone respect to the area of the µ support and depends
also on p.

Proof: Consider the inverse normal homeomorphism f−1 with Beltrami differential
µf−1 such that:

µf−1 ◦ f = −fz
fz
µ

Then, Hölder’s inequality gives:∫ ∫
C
|µf−1|p dxdy =

∫ ∫
C
|µ|p
(
|fz|2 − |fz̄|2

)
dxdy

≤
∫ ∫

C
|µ|p|fz|2 dxdy =

∫ ∫
C
|µ|p−2|fz̄|2 dxdy

≤
(∫ ∫

C
|µ|p dxdy

) p−2
p
(∫ ∫

C
|fz̄|p dxdy

) 2
p

= ||µ||p−2
p ||fz̄||2p ≤ ||µ||p−2

p

(
C||µ||p

)2
= C2||µ||pp
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and we conclude that:
||µf−1||p ≤ C2/p||µ||p

In the same way as in the previous proof, there is a constant C ′ (actually C ′ = C) such
that:

||(f−1)z̄||p ≤ C ′||µf−1||p ≤ C ′C2/p Area(support(µ))1/p||µ||∞
and proceeding just as in the above Lemma, we have:

|f−1(z)− z| ≤ B||µ||∞|z|1−2/p

such that:
B = KpC

′C2/p Area(support(µ))1/p

Substitution of z = f(ζ) and triangular inequality gives the desired result. �

Consider µ ∈ L∞(C∗Q)1. For every natural n define the Beltrami differential µn ∈
L∞(C∗)1dz ⊗ (dz)−1 such that (Recall remark 3.2.1):

In(µ) dπ1 ⊗ (dπ1)−1 = π∗n(µn)

Consider the quasiconformal normal solution fn : Ĉ → Ĉ of the µn-Beltrami equation
such that f(0) = 0 and fz − 1 ∈ Lp(C), p > 2. If n|L, define the maps f ↑Ln and f̂n such
that:

ĈQ
f̂n //

πL
��

ĈQ

πL
��

Ĉ f↑Ln //

zL/n
��

Ĉ

zL/n
��

Ĉ fn // Ĉ

Lema 3.3.5. � The map f ↑Ln is a quasiconformal normal solution of the µ↑Ln -Beltrami
equation such that µ↑Ln = (zL/n)∗(µn). Moreover, (f ↑Ln )z − 1 ∈ Lp(C) with the same
p > 2 as the one we used for fn.

� The composition of quasiconformal normal maps is a quasiconformal normal map.

Proof:

� Define n′ = L/n. First, let’s see that f ↑Ln is quasiconformal. Indeed, it verifies
Ahlfors quasiconformal definition A [Ah]:

– It is an orientation preserving homeomorphism: Because zn
′

is a covering and
fn is an orientation preserving homeomorphism then f ↑Ln is so.

– It is ACL, absolutely continuous on lines: Because fn is absolutely continuous
respect to any finite length rectifiable curve and the covering is C1 we have
that f ↑Ln is ACL.
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– It has bounded maximal dilatation: Locally, the map z1/n′ is defined outside
zero and we have f ↑Ln = z1/n′ ◦ fn ◦ zn

′
. Then,

∂zf
↑L
n (z) = fn(zn

′
)1/n′−1 ∂zfn(zn

′
) zn

′−1

∂z̄f
↑L
n (z) = fn(zn

′
)1/n′−1 ∂z̄fn(zn

′
) z̄n

′−1

Because ∂z̄fn = µ ∂zfn we have:

∂z̄f
↑L
n =

(
µ ◦ zn′ z̄

n′−1

zn′−1

)
∂zf

↑L
n = µ↑Ln ∂zf

↑L
n

hence f ↑Ln is a solution to the Beltrami equation with Beltrami differential µ↑Ln .
In particular, it has bounded maximal dilatation.

Now, let’s see that it is normal. Consider the normal quasiconformal solution g to
the µ↑Ln -Beltrami equation. Because g and f ↑Ln are quasiconformal solutions of the
same equation and both fix the origin, there is a non zero λ such that g = λf ↑Ln .
Locally it means that:

g(z)n
′
= λfn(zn

′
) (3.2)

for every z ∈ C. Because µ↑Ln has compact support, they are both univalent outside
a disk of sufficiently large radius R and we can write:

fn(z) = z + b0 +
b1

z
+
b2

z2
+ . . .

and an analogous expression for g outside the disk. Substituting these expansions
in equation (3.2) and comparing the leading term we get λ = 1. Because of the
following relation:

||µ↑Ln ||∞ = ||(zn′)∗µn||∞ = ||µn||∞ ≤ k

by Theorem 3.3.2 (f ↑Ln )z − 1 ∈ Lp(C) with the same p > 2 as the one we used for
fn and the claim is proved.

� Consider the quasiconformal normal maps f1 and f2 with respective Beltrami dif-
ferentials µ1 and µ2. Their composition is a quasiconformal map fixing the origin
with Beltrami differential µ with compact support. Consider the quasiconformal
normal solution g to the µ-Beltrami equation. Again, because g and f1 ◦ f2 are
quasiconformal solutions of the same equation and both fix the origin, there is a
non zero λ such that:

g = λf1 ◦ f2 (3.3)

In the same way as before, because µ, µ1 and µ2 have compact support, they are
univalent outside a disk of sufficiently large radius R and we can write:

g(z) = z + b0 +
b1

z
+
b2

z2
+ . . .

and an analogous expressions for f1 and f2 outside the disk. Substituting these
expressions in equation (3.3) and comparing the leading terms we get λ = 1 just as
before. This proves the claim.
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�

Remark 3.3.2. The above Lemma explains why we choose this normalization. The Douady-
Hubbard normalization f(z)− z ∈ O(1/|z|) is easy to work with but doesn’t necessarily
fix the origin and as we said before, this is no longer a choice but a constraint of the new
theory. The normalization f(0) = 1 and f(1) = 1 is compatible with the maps z 7→ zn

of the inverse system. However, it is very difficult to control the growth of the maps in
terms of their respective Beltrami differentials. The above Lemma shows that the chosen
normalization is compatible with the inverse system with the advantage of having some
control on the maps.

If m|n|L define f ↑Ln,m = f ↑Ln ◦ (f ↑Lm )−1. See that f̂n,m = f̂n ◦ f̂−1
m . The quasiconformal

normal map f ↑Ln,m is the solution of the µ↑Ln,m-Beltrami equation such that:

f ∗m(µ↑Ln,m) =
µ↑Ln − µ↑Lm
1− µ↑Ln µ↑Lm

dz ⊗ (dz)−1

where µ↑Ln and µ↑Lm on the right side denote the functions and not the differentials (recall
remark 3.2.1). Because ||In||∞ = 1 for every natural n, we have ||µ↑Ln ||∞ = ||In(µ)||∞ ≤
||µ||∞ for every natural L such that n|L. We also have:

||µ↑Ln,m||∞ ≤
||µ↑Ln − µ↑Lm ||∞

1− ||µ↑Ln ||∞||µ↑Lm ||∞
≤ ||In(µ)− Im(µ)||∞

1− ||µ||2∞
(3.4)

for every m|n|L, where the last step follows from the following calculus:

‖ µ↑Ln − µ↑Lm ‖∞ = ‖ π∗L(µ↑Ln − µ↑Lm ) ‖∞
= ‖ π∗L((zL/n)∗µn − (zL/m)∗µm) ‖∞
= ‖ π∗L((zL/n)∗µn)− π∗L((zL/m)∗µm) ‖∞
= ‖ π∗n(µn)− π∗m(µm) ‖∞
= ‖ In(µ)− Im(µ) ‖∞

See that the right hand side of relation (3.4) doesn’t depend on L.

Lema 3.3.6. Consider a vertical essentially bounded µ ∈ L∞(CQ)1 with compact support.
Suppose there is a subsequence (ni)i∈N of the divisibility net such that:

lim
i→∞
‖ Ini(µ)− Ini−1

(µ) ‖∞= 0

Let L = nJ . There are constants A and A′ such that:

� If i ≤ J then

|πL ◦ f̂ni(x)| ≤ (1 + A||Ini(µ)||∞) max{ 1, |πL(x)| }

|πL ◦ f̂ni(x)| ≤
(
1 + A′||Ini(µ)− Ini−1

(µ)||∞
)
max{ 1, |πL ◦ f̂ni−1

(x)| }
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� If i > J then

|πL ◦ f̂ni(x)| ≤ (1 + A||IL||∞)e
A′
L

∑i−1
j=J nj+1 ||Inj+1 (µ)−Inj (µ)||∞ max{ 1, |πL(x)| }

Proof: By hypothesis, equation (3.4) and the fact that:

||µ↑Lni ||∞ = ||Ini(µ)||∞ ≤ ||µ||∞ < 1

for every natural i, we conclude that:

k = max
{
||µ||∞, ||µ↑Lni ||∞, ||µ

↑L
nj ,nj−1

||∞ such that i, j ∈ N
}
< 1

Hence, by Lemma 3.3.2 we can take the same value p > 2 for all the maps f ↑Lni and f ↑Lni,ni−1
.

Because the supports of all µ↑Lni and µ↑Lni,ni−1
are uniformly bounded:

supp
(
µ↑Lni
)
, supp

(
µ↑Lni,ni−1

)
⊂ π1

(
supp(µ)

)
∪D(0; 1)

by Lemma 3.3.3 we can also take the same constant A for all the maps f ↑Lni and f ↑Lni,ni−1
.

Then we have:

|πL ◦ f̂ni(x)| = |f ↑Lni (πL(x))|
≤ A ||µ↑Lni ||∞ |πL(x)|1−2/p + |πL(x)|
≤ A ||Ini(µ)||∞ |πL(x)|1−2/p + |πL(x)|
≤ (1 + A||Ini(µ)||∞) max{ 1, |πL(x)| }

In particular,
|πL ◦ f̂L(x)| ≤ (1 + A||IL||∞) max{ 1, |πL(x)| } (3.5)

For the second:

|πL ◦ f̂ni,ni−1
(x)| = |f ↑Lni,ni−1

(πL(x))|
≤ A′ ||Ini(µ)− Ini−1

(µ)||∞ |πL(x)|1−2/p + |πL(x)|
≤ (1 + A′ ||Ini(µ)− Ini−1

(µ)||∞) max{ 1, |πL(x)| }

where A′ = A/(1− k2). Because f̂ni = f̂ni,ni−1
◦ f̂ni−1

the result follows.

Finally, for the third assertion we have:

|πnj ◦ f̂nj ,nj−1
(x)| = |fnj ,nj−1

(πnj(x))|
≤ A′ ||Inj(µ)− Inj−1

(µ)||∞ |πnj(x)|1−2/p + |πnj(x)|

≤
(
A′anj
nj

+ 1

)
max{ 1, |πnj(x)| }

where anj = nj ||Inj(µ)− Inj−1
(µ)||∞. Because π

nj/L
nj = πL we have:

|πL ◦ f̂nj ,nj−1
(x)| = |πnj ◦ f̂nj ,nj−1

(x)|nj/L

≤
(
A′anj
nj

+ 1

)nj/L
max{ 1, |πnj(x)| }nj/L

≤ e
A′
L
anj max{ 1, |πL(x)| }
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In particular, because the right hand side of the above equation is greater than or equal
to one, then:

max{ 1, |πL ◦ f̂nj ,nj−1
(x)| } ≤ e

A′
L
anj max{ 1, |πL(x)| } (3.6)

and by the same argument, relation (3.5) implies:

max{ 1, |πL ◦ f̂L(x)| } ≤ (1 + A||IL||∞) max{ 1, |πL(x)| } (3.7)

Because
f̂ni = f̂ni,ni−1

◦ f̂ni−1,ni−2
. . . ◦ f̂nJ+1,nJ ◦ f̂L

induction on relation (3.6) and relation (3.7) imply:

|πL ◦ f̂ni(x)| ≤ max{ 1, |πL ◦ f̂ni(x)| } ≤ (1 + A||IL||∞)e
A′
L

∑i−1
j=J anj+1 max{ 1, |πL(x)| }

and the result follows. �

Corollary 3.3.7. Consider a vertical essentially bounded µ ∈ L∞(CQ)1 with compact
support. If there is a subsequence (ni)i∈N of the divisibility net such that the renormalized
average series converge:

∞∑
j=1

nj+1 ||Inj+1
(µ)− Inj(µ)||∞ <∞

Then, for every natural i ≥ J :

|πL ◦ f̂ni(x)| ≤ (1 + A||IL||∞)e
A′
L

∑∞
j=J nj+1 ||Inj+1 (µ)−Inj (µ)||∞ max{ 1, |πL(x)| }

where L = nJ and A,A′ are constants.

Proof: The convergence of the series implies the hypothesis of the previous Lemma
3.3.6. Taking the limit i→∞ on the right hand side of the relation gives the result. �

Lema 3.3.8. Under the same hypothesis of corollary 3.3.7 above we have:

|πL(x)| ≤ (1 +B||IL||∞)e
B′
L

∑∞
j=J nj+1 ||Inj+1 (µ)−Inj (µ)||∞ max{ 1, |πL ◦ f̂ni(x)| }

for every natural i ≥ J where L = nJ and B,B′ are constants.

Proof: The proof is almost verbatim to the proof of Lemma 3.3.6 with refernce to
Lemma 3.3.4 instead of 3.3.3. �

Lema 3.3.9. Under the same hypothesis of corollary 3.3.7, for every natural L = nJ
there is a constant ML ≥ 1 such that:

|πL ◦ f̂ni+1
(x)− πL ◦ f̂ni(x)| ≤ A′

L
ni+1 ||Ini+1

(µ)− Ini(µ)||∞ ML max{ 1, |πL(x)| }

for every i ≥ J where A′ is a constant.
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Proof: We take the same values of k < 1, p > 2 and constants A and A′ = A/(1− k2)
as those in the proof of Lemma 3.3.6. Denote n = ni and m = ni−1. By Lemma 3.3.3 and
relation (3.4) we have:

|fn,m(πn(x))− πn(x)| ≤ A′ ‖ In(µ)− Im(µ) ‖∞| πn(x) |1−2/p (3.8)

where A′ = A/(1− k2) and ‖ µ ‖∞= k. Define n′ = n/L. Lagrange Theorem implies:

|πL ◦ f̂n,m(x)− πL(x)| = |fn,m(πn(x))n
′ − πL(x)|

≤ n′ |ξ|n′−1 |fn,m(πn(x))− πn(x)| (3.9)

for some ξ in the interior of the segment joining πn ◦ f̂n,m(x) and πn(x). In particular,

|ξ|n′−1 ≤ max{ |πn(x)|, |πn ◦ f̂n,m(x)| }n′−1

= max{ |πL(x)|, |πL ◦ f̂n,m(x)| }1−1/n′ (3.10)

Equations 3.8, 3.9 and 3.10 imply:

|πL ◦ f̂n,m(x)− πL(x)| ≤ A′

L
n ||In(µ)− Im(µ)||∞ . . .

. . .max{ |πL(x)|, |πL ◦ f̂n,m(x)| }1−1/n′ | πL(x) |(1−2/p)1/n′ (3.11)

In particular, because f̂n = f̂n,m ◦ f̂m we have:

|πL ◦ f̂n(x)− πL ◦ f̂m(x)| ≤ A′

L
n ||In(µ)− Im(µ)||∞ . . .

. . .max{ |πL ◦ f̂m(x)|, |πL ◦ f̂n(x)| }1−1/n′ | πL ◦ f̂m(x) |(1−2/p)1/n′ (3.12)

By the previous corollary 3.3.7 there is a constant ML such that:

|πL ◦ f̂ni(x)| ≤ML max{ 1, |πL(x)| } (3.13)

for every i ≥ J where L = nJ . This bound implies:

|πL ◦ f̂ni+1
(x)− πL ◦ f̂ni(x)|

≤ A′

L
ni+1 ||Ini+1

(µ)− Ini(µ)||∞ (ML max{ 1, |πL(x)| })1−2/pn′

≤ A′

L
ni+1 ||Ini+1

(µ)− Ini(µ)||∞ ML max{ 1, |πL(x)| } (3.14)

where we have used that ML max{ 1, |πL(x)| } ≥ 1 and the formula is proved. �

Lema 3.3.10. Under the same hypothesis of corollary 3.3.7 and previous definition of
the maps f̂ni, there is a continuous leaf preserving map f̂ : ĈQ → ĈQ such that (f̂ni)i∈N
converges pointwise to f̂ .
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Proof: For each L = nJ , Lemma 3.3.9 implies that (πL ◦ f̂ni)i∈N is a uniform Cauchy
sequence on compact sets so there is a continuous function gL : CQ → C such that

the sequence (πL ◦ f̂ni)i∈N converges uniformly to gL on compact sets. Consider another

L′ = nJ ′ such that J ′ > J . Because zL
′/L ◦ πL′ ◦ f̂ni = πL ◦ f̂ni for every i ≥ J ′ and the

continuity of zL
′/L we have that zL

′/L ◦ gL′ = gL. By the universal property of inverse
limits there is a unique function f̂ : CQ → CQ such that πni ◦ f̂ = gni for every natural i.

Because every gni is continuous we have that f̂ is continuous and verifies that (πL◦ f̂ni)i≥J
converges uniformly to πL ◦ f̂ on compact sets. In particular, (f̂ni)i∈N converges pointwise

to f̂ .

Let’s see that f̂ is proper: Consider a compact set K ⊂ ĈQ. The compact K is closed

for every compact subset of a Hausdorff space is also compact and because f̂ is continuous,
f̂−1(K) is closed. By Lemma 3.3.8 and the fact that (f̂ni)i∈N converges pointwise to f̂ ,
we have that for every L = nJ there is a constant M ′

L such that:

|πL(x)| ≤M ′
L|πL ◦ f̂(x)|

Choose some natural L = nJ . Define R such that d(0, πL(K)) = R < ∞ for πL is
continuous; i.e. πL(K) is compact. By the above relation we have that

d(0, πL(f̂−1(K))) ≤M ′
LR

and because πL is proper, the closed set f̂−1(K) is contained in the compact π−1
L (D(0;M ′

LR))

hence f̂−1(K) is compact and we have the claim.

In particular, the extension f̂ : ĈQ → ĈQ such that f̂(∞) = ∞ is continuous and

because f̂ni(∞) = ∞ for every natural i, we have that (f̂ni)i∈N converges pointwise to f̂

on ĈQ. In particular, by definition every f̂ni is leaf preserving and so is f̂ . This finishes
the proof. �

Theorem 3.3.11. For every adelic Beltrami differential µ there is a unique quasiconfor-
mal leaf preserving solution f : ĈQ → ĈQ to the µ-Beltrami equation such that f fixes
0, 1,∞.

Proof: (Uniqueness) Suppose that f and g are quasiconformal solutions to the µ-
Beltrami equation fixing 0, 1,∞. Then, f ◦ g−1 is leaf preserving 1-quasiconformal fixing
0, 1,∞. By Lemmas 1.2.5, 1.2.6 and Corollary 3.1.6 there is a holomorphic limit periodic
respect to x function h such that ν−1◦f ◦g−1◦ν(z) = z+h(z) where ν is the baseleaf. On
the other hand, by Weyl’s Lemma ν−1 ◦ f ◦ g−1 ◦ ν is a holomorphic homeomorphism of
C; i.e. an affine transformation. Because it fixes zero, we have that ν−1 ◦ f ◦ g−1 ◦ ν = id
hence f ◦ g−1 = id and f = g.

(Existence) First suppose that µ has compact support in CQ. Consider an arbitrary leaf

ν : C→ C∗Q ⊂ ĈQ. Under the same notation and definitions as before, by Lemma 3.3.10

there is a continuous baseleaf preserving map f̂ : ĈQ → ĈQ such that (f̂ni)i∈N converges

pointwise to f̂ . By Lemmas 3.3.7 and 3.3.8, actually we have the restriction f̂ : C∗Q → C∗Q
and because f̂ni and f̂ are leaf preserving, the compositions ν−1 ◦ f̂ni ◦ν and ν−1 ◦ f̂ ◦ν are

well defined. Moreover the sequence (ν−1 ◦ f̂ni ◦ ν)i∈N converges pointwise to ν−1 ◦ f̂ ◦ ν.
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Claim: The maps ν−1◦f̂ni◦ν are quasiconformal solutions of the respectives ν∗(Ini(µ))-
Beltrami equations. We have the following diagram:

C∗Q
f̂ni //

πni

��

C∗Q
πni

��

C
eiz/ni

''

//
ν−1◦f̂ni◦ν+ �

ν

88

C
eiz/ni

''

+ �

ν

88

C
fni // C

Because the front, behind , left and right faces commute, the bottom face commutes.
We already know that ν−1 ◦ f̂ni ◦ ν is continuous by Lemma 1.2.5 (or just because it is
conjugated to a continuous function by a covering map). Locally the inverse of the map
eiz/ni exists and we have

∂z

(
ν−1 ◦ f̂ni ◦ ν

)
= ∂z

(
(eiz/ni)−1 ◦ fni ◦ eiz/ni

)
Because ∂zfni ∈ L2,loc(C), by the above identity the same holds for ∂z

(
ν−1 ◦ f̂ni ◦ ν

)
. An

analogous result holds for the other derivative. Finally, ν−1 ◦ f̂ni ◦ ν is the solution of the
Beltrami equation with Beltrami differential

(eiz/ni)∗(µni) = (πni ◦ ν)∗(µni) = (ν)∗(πni)
∗(µni) = (ν)∗(Ini(µ))

This proves the claim.

Define the affine maps Ai(z) = aiz+ bi such that A−1
i ◦ ν−1 ◦ f̂ni ◦ ν is the quasiconfor-

mal solution of the ν∗(Ini(µ))-Beltrami equation fixing 0, 1,∞ (See remark 3.3.3 below).
Concretely:

ai = ν−1 ◦ f̂ni ◦ ν(1)− ν−1 ◦ f̂ni ◦ ν(0)

bi = ν−1 ◦ f̂ni ◦ ν(0)

Because (f̂ni)i∈N converges pointwise to f̂ , the sequence of affine maps (Ai)i∈N converges
locally uniformly to the map A(z) = az + b such that:

a = ν−1 ◦ f̂ ◦ ν(1)− ν−1 ◦ f̂ ◦ ν(0)

b = ν−1 ◦ f̂ ◦ ν(0)

A priori a could be zero. Define the map g as the quasiconformal solution of the ν∗(µ)-
Beltrami equation fixing 0, 1,∞. Because Ini(µ) tends to µ in L∞(CQ) we have that
ν∗(Ini(µ)) tends to ν∗(µ) in L∞(C) and by Lemma 3.3.12 we conclude that:

A−1
i ◦ ν−1 ◦ f̂ni ◦ ν → g

locally uniformly. Then:

ν−1 ◦ f̂ni ◦ ν = Ai ◦ A−1
i ◦ ν−1 ◦ f̂ni ◦ ν → A ◦ g
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and we conclude that:
ν−1 ◦ f̂ ◦ ν = A ◦ g

Because f̂ is continuous and fixes 0,∞ it cannot be constant. In particular a 6= 0 and
we have that ν−1 ◦ f̂ ◦ ν is a quasiconformal solution of the ν∗(µ)-Beltrami equation for
every leaf ν. Finally, f̂ is a homeomorphism for every continuous bijective map between
compact sets is a homeomorphism. We have proved that f̂ is quasiconformal. Multiplying
by f̂(1)−1 we have the quasiconformal solution fixing 0, 1,∞.

Now we remove the hypothesis of the compact support of µ by the standard well known
trick: Define µ1 = µ.χ|π1(z)|≥1 and consider the Möbius inversion γ : ĈQ → ĈQ such that
γ(z) = 1/z. Because γ∗(µ1) has compact support on CQ, by the previous part there is

a unique quasiconformal leaf preserving solution g : ĈQ → ĈQ to the γ∗(µ1)-Beltrami
equation such that g fixes 0, 1,∞. Define f1 such that the following diagram commutes:

ĈQ
g //

γ
��

ĈQ

γ
��

ĈQ
f1 // ĈQ

Claim: The map f1 is the quasiconformal solution of the µ1-Beltrami equation fixing
0, 1,∞: Because γ and g are homeomorphisms fixing 0, 1,∞ so is f1. For every leaf νa we
have the diagram:

C
ν−1
−a◦g◦ν−a //

−z

��

� s

ν−a

&&

C

��

−z

� s

ν−a

&&
ĈQ

g //

γ

��

ĈQ

γ

��

C //� s

νa

&&

ν−1
a ◦f1◦νa C � s

νa

&&
ĈQ

f1 // ĈQ

Because every νa is injective and the left, right, top, bottom and front sides commute we
have that the back face also commutes. By definition ν−1

−a ◦ g ◦ ν−a is a quasiconformal
solution of the ν∗−a ◦ γ∗(µ1)-Beltrami equation so ν−1

a ◦ f1 ◦ νa is a quasiconformal solution
of the (−z)∗ ◦ ν∗−a ◦ γ∗(µ1)-Beltrami equation. We have:

(−z)∗ ◦ ν∗−a ◦ γ∗(µ1) = (γ ◦ ν−a ◦ (−z))∗(µ1) = ν∗a(µ)

and this proves the claim.

Define the adelic differential µ2 such that:

f ∗1 (µ2) =
µ− µ1

1− µµ1

dπ1 ⊗ (dπ1)−1
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where µ and µ1 on the right side denote the functions and not the differentials (recall
remark 3.2.1). Under the same abuse of notation we have:

ν∗a(µ) = (µ ◦ νa) ν∗a(dπ1)⊗ (ν∗a(dπ1))−1

= (µ ◦ νa) d(π1 ◦ νa)⊗ (d(π1 ◦ νa))−1

= (µ ◦ νa) d eiz ⊗ (d eiz)−1

= −e−i(z+z̄)(µ ◦ νa) dz ⊗ (dz)−1 = µa dz ⊗ (dz)−1

and a similar expression and definition for ν∗a(µ1):

ν∗a(µ1) = −e−i(z+z̄)(µ1 ◦ νa) dz ⊗ (dz)−1 = µ1,a dz ⊗ (dz)−1

A similar calculation gives:

(f1 ◦ νa)∗(µ2) = ν∗a(f ∗1 (µ2)) = −e−i(z+z̄)
(
µ− µ1

1− µµ1

)
◦ νa dz ⊗ (dz)−1

=
µa − µ1,a

1− µaµ1,a

dz ⊗ (dz)−1

Because µ2 has compact support on CQ there is a unique quasiconformal leaf preserving
solution f2 to the µ2-Beltrami equation fixing 0, 1,∞. Define the map f = f2 ◦ f1. It is
clearly quasiconformal leaf preserving and fixes 0, 1,∞ for it is the composition of maps
of the same kind. Because:

ν−1
a ◦ f ◦ νa = ν−1

a ◦ f2 ◦ f1 ◦ νa = (ν−1
a ◦ f2 ◦ νa) ◦ (ν−1

a ◦ f1 ◦ νa)

and the following fact:

(ν−1
a ◦ f1 ◦ νa)∗(ν∗a(µ2)) = (f1 ◦ νa)∗(µ2) =

µa − µ1,a

1− µaµ1,a

dz ⊗ (dz)−1

we conclude that ν∗a(µ) = µa dz ⊗ (dz)−1 is the Beltrami differential of ν−1
a ◦ f ◦ νa for

every leaf νa; i.e. f is the unique quasiconformal solution to the µ-Beltrami equation
fixing 0, 1,∞. �

Remark 3.3.3. At first sight it seems there is something terribly wrong in the above proof:
While f̂ fixes 0,∞ and has only one degree of freedom as a solution of the µ-Beltrami
equation, its conjugated map ν−1 ◦ f̂ ◦ ν has two degrees of freedom. Why the conjugated
map has an extra degree of freedom? Let’s see: The conjugated map has the same freedom
as f̂ plus the property of being uniformly limit periodic on horizontal bands. Once this
last property is destroyed by an affine transformation, an extra degree of freedom comes
out.

Remark 3.3.4. We have also proved that:

� The map f̂ in Lemma 3.3.10 is in fact quasiconformal.

� A 1-quasiconformal map of ĈQ fixing 0, 1,∞ is the identity.
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The following Lemma is Proposition 4.36 of [IT]:

Proposition 3.3.12. If µn tends to µ in L∞(C) then fµn tends to fµ locally uniformly.

Lema 3.3.13. Consider adelic Beltrami differentials µn, µ and consider their respective
quasiconformal solutions fn, f of the Beltrami equation fixing 0, 1,∞. If (µn)n∈N converges
to µ in L∞(CQ), then (fn)n∈N converges pointwise to f .

Proof: Because (µn)n∈N converges to µ then (ν∗a(µn))n∈N converges to ν∗a(µ):

||ν∗a(µn)− ν∗a(µ)||∞ ≤ ||ν∗a(µn − µ)||∞ ≤ ||µn − µ||∞ → 0

for ||νa||∞ = 1 for every leaf νa. By Proposition 3.3.12 the quasiconformal maps ν−1
a ◦fn◦νa

converge locally uniformly to ν−1
a ◦ f ◦ νa for every leaf νa. We have the result. �

Corollary 3.3.14. Consider adelic Beltrami differentials µn, µ and consider their respec-
tive quasiconformal solutions fn, f of the Beltrami equation fixing 0, 1,∞. If (µn)n∈N
converges to µ in the Banach space (BelS(CQ), || · ||Ren,S), then (fn)n∈N converges point-
wise to f .

As a final remark, consider the morphism φ : Ẑ × C → S1
Q × S1 given by φ(a, x + iy) =

(exp(a, x), eiy). Because Ker(φ) = Ker(exp) the morphism factors through exp and we
have the commutative diagram:

C∗Q
p // S1

Q × S1

Ẑ× C
exp

bb

φ

99

The deck transformations group of the covering p : C∗Q → S1
Q × S1 is generated by

multiplication of ν(2πi) on the algebraic solenoid where ν is the baseleaf: T (z) = ν(2πi)z
for every z ∈ C∗Q.

Consider a group G acting on the algebraic solenoid C∗Q. Define the space of G-invariant
S-adelic Beltrami differentials BelS(C∗Q; G) as the set of differentials µ ∈ BelS(C∗Q) such
that g∗(µ) = µ for every g ∈ G. In particular, we have an Ahlfors-Bers theory on the
torus S1

Q × S1:

BelS(S1
Q × S1) = BelS(C∗Q; 〈T 〉)

and a Teichmüller space of this adelic torus:

TS(S1
Q × S1) = TS(〈T 〉)

Remark 3.3.5. The 2-adic case of the above construction, S1
2 × S1, is the second example

in [Su]. As it was commented there, this is the basic solenoidal surface required in the
dynamical theory of Feigenbaum’s Universality [Fe]. We hope that our theory of adelic
Beltrami differentials could shed some new light on the link between this univeraslity and
the Ahlfors-Bers one.
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3.4 Infinitesimal deformations

Now we turn the discussion to infinitesimal deformations. We discuss it in the general
case and then apply it to the p-adic case. We need an appropriate notion of ḟ [η] where
η ∈ T0BelS(CQ) = RenS (See remark 3.4.1).

Lema 3.4.1. Consider ν ∈ L∞(C). Then,

ḟ
[
(zk)∗ν

]
= (zk)∗

(
ḟ [ν]

)
for every natural k.

Proof: Consider the quasiconformal solutions fµ(t) and f (zk)∗µ(t) of the µ(t) and
(zk)∗µ(t)-Beltrami equations respectively fixing 0, 1,∞ such that µ(t) = tν+O(t2). Unic-
ity of the solutions imply the following commutative diagram:

C f (zk)∗µ(t)
//

zk

��

C
zk

��
C fµ(t)

// C

Because (zk)∗µ(t) = t (zk)∗ν +O(t2), deriving respect to t gives:

ḟ
[
(zk)∗ν

]
(ζ) = ḟ [ν] (ζk)

1

k ζk−1
= (zk)∗

(
ḟ [ν]

)
(ζ)

for every ζ ∈ C where we have used on the right side that ḟ [ν] is actually a derivation
and not a function. �

The above Lemma motivates the following definition:

Definition 3.4.1. Consider ν ∈ T0BelS(CQ) = RenS . We define:

ḟ [In(ν)] = π∗n

(
ḟ [νn]

)
= (ḟ [νn] ◦ πn). (n πn−1

n )
d

dπ1

for dπ1 = n πn−1
n dπn.

See that ḟ [In(ν)] is continuous on the whole adelic sphere. Now we define ḟ [ν] as the uni-
form limit of its periodic approximations just defined. The following Lemma is Theorem
4.37 in [IT]:

Lema 3.4.2. Consider a family of Beltrami coefficients {µ(t)} depending on a real pa-
rameter t such that:

µ(t) = tη + o(t)

where η ∈ L∞(C). Then,

ḟ [η](ζ) = lim
t→0

fµ(t)(ζ)− ζ
t

60



exists for every ζ ∈ C and the convergence is locally uniform on C. Moreover,

ḟ [η](ζ) = − 1

π

∫ ∫
C
η(z)

ζ(ζ − 1)

z(z − 1)(z − ζ)
dxdy

for every ζ ∈ C.

Lema 3.4.3. Consider ν ∈ T0BelS(CQ) = RenS . There is a continuous derivation ḟ [ν]
such that the sequence of continuous derivations (ḟ [Ini(ν)])i∈N converges uniformly to it
and (ni)i∈N = S.

Proof: Consider ν ∈ T0BelS(CQ) = RenS , the tangent space of the S-adelic Beltrami
differentials at zero. Recall formula (3.4.2). For every x ∈ S1

Q and naturals m,n such that
m|n we have:

|ḟ [In(ν)] (x)− ḟ [Im(ν)] (x)|
= |ḟ [νn] (πn(x))− ḟ

[
(zn/m)∗νm

]
(πn(x))| . |n πn(x)n−1|

≤ n ||νn − (zn/m)∗νm||∞ C

= n ||In(ν)− Im(ν)||∞ C

where we used that |πn(x)| = 1 for every x ∈ S1
Q and the constant C:

C =
1

π
max
ζ∈S1

|
∫ ∫

C

ζ(ζ − 1)

z(z − 1)(z − ζ)
dxdy |

In particular, we have:

||ḟ [Ini(ν)]− ḟ
[
Ini−1

(ν)
]
||∞ ≤ ni ||Ini(ν)− Ini−1

(ν)||∞ C

Because the following renormalized average series converges:

∞∑
i=1

ni+1 ||Ini+1
(µ)− Ini(µ)||∞ <∞ (3.15)

where S = (ni)i∈N is cofinal totally ordered divisibility subsystem under consideration,
the sequence (ḟ [Ini(ν)])i∈N is a Cauchy sequence in the complete space of continuous
derivations with the supremum norm. Then, there is a continuous derivation ḟ [ν] such
that the sequence (ḟ [In(ν)])n∈N converges uniformly to it respect to the divisibility net.
�

Remark 3.4.1. In particular we have the following property: There is a continuous function
g : CQ → C such that g(0) = 0 and

ḟ [η] (z) = g(z)
d

dπ1

for every z ∈ C∗Q. An analogous result holds for the whole adelic sphere. Although the

expression in corollary 3.4.4 below would be the natural definition of ḟ [ν], this approach
makes clear the continuity at zero of the map g previously defined that otherwise would
be difficult to prove.
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Corollary 3.4.4. Consider η ∈ T0BelS(CQ) = RenS . Then,

ν∗(ḟ [η]) =
d

dt
(ν−1 ◦ f tη ◦ ν)

where ν is the baseleaf and the derivative is evaluated at zero.

Proof: Because BelS(CQ) is star shaped and open, there is some ε > 0 such that f t η

is defined for t ∈ [0, ε). The rest of the proof is a calculation. Because everything converge
uniformly on compacts we have:

ν∗(ḟ [η]) = lim
n
ν∗(ḟ [In(η)]) = lim

n
ν∗π∗n(ḟ [ηn])

= lim
n
ν∗π∗n

(
d

dt
f tηn

)
= lim

n
ν∗
(
d

dt
f tIn(η)

)
= lim

n

d

dt
(ν−1 ◦ f tIn(η) ◦ ν) =

d

dt
lim
n

(ν−1 ◦ f tIn(η) ◦ ν)

=
d

dt
(ν−1 ◦ f tη ◦ ν)

where the derivatives are evaluated at zero. �
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Chapter 4

Teichmüller space

4.1 Teichmüller models

Model A: Define the compact HQ = π−1
1 (D(0; 1)) ⊂ CQ and the set BelS(HQ) of S-adelic

Beltrami differentials with support in HQ where S is a cofinal totally ordered divisibility
subsequence. See that the solenoid S1

Q is the boundary of HQ. For every µ ∈ BelS(HQ)
define the extension:

µ̆(z) = µ(1/z̄)
( z̄
z

)2

for every z ∈ CQ such that π1(z) > 1. It is easy to see that µ̆ ∈ BelS(CQ) is actually
an S-adelic Beltrami differential. By theorem 3.3.11 there is a unique quasiconformal
solution fµ to the µ̆-Beltrami equation fixing 0, 1,∞. Because µ̆ = (1/z̄)∗(µ̆) we have
that

fµ(1/z̄) =
1

fµ(z)

By remark 1.1.1, the solenoid S1
Q and hence HQ are invariant under fµ. Define the

following equivalence relation on BelS(HQ): µ ∼A η if fµ|S1
Q

= f η|S1
Q
. The universal

Teichmüller space is defined as the quotient:

B : BelS(HQ)→ TS(1) = BelS(HQ)/ ∼A

with the quotient topology induced by (BelS(HQ), || · ||S). Although we have the usual
group structure µ ? ν = η if fµ ◦ f ν = f η, unfortunately the space BelS(HQ) is not closed
under this product.

The following Lemma shows the relation between this Teichmüller space with the Sulli-
van’s one [Su].

Proposition 4.1.1. We have a continuous canonical injective map:

TS(1) ↪→ TSullivan(∆∗∞)

Proof: In the same way as in the classical case, by Weyl’s Lemma every adelic Beltrami
differential defines a complex structure on every leaf of HQ = ∆∗∞ in Sullivan’s notation
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and we have a map ϑ : BelS(HQ)→ TSullivan(∆∗∞). Because there is a bounded homotopy
respect to the hyperbolic metric between ϑ(µ) and ϑ(η) if and only if fµ|S1

Q
= f η|S1

Q
, there

is an injective map % such that:

BelS(HQ)

B
��

ϑ

))
TS(1) �

� % // TSullivan(∆∗∞)

By the same reason as before and Corollary 3.3.14, ϑ is continuous for pointwise conver-
gence of continuous maps to a continuous map on a compact set (the solenoid S1

Q in our
case) is actually uniform. In particular, if (µn)n∈N converges to µ in the Banach space
(BelS(CQ), || · ||Ren,S), then d(ϑ(µn), ϑ(µ)) tends to zero where d is the Teichmüller metric
defined in [Su]. Because the topology of TS(1) is induced by the one in BelS(HQ), we
have that % is continuous. �

Model B: This is the model of quasisolenoids fixing the unit . Define the compact
H∗Q = π−1

1 (D(0; 1)
c
) ⊂ CQ. Now, define BelS(HQ) as the subspace of those Beltrami

differentials µ ∈ BelS(C∗Q) such that µ = 0 on the complement of the adelic hyperbolic
space H∗Q. Consider the quasiconformal solution fµ to the µ-Beltrami equation fixing
0, 1,∞. See that fµ|H∗Q is univalent on every leaf. In fact, the application of the theory of
univalent functions in Teichmüller theory is one of Bers great accomplishments.

Define the following equivalence relation on BelS(HQ): µ ∼B η if fµ|H∗Q = fη|H∗Q . The
universal Teichmüller space is defined as the quotient:

TS(1) = BelS(HQ)/ ∼B
with the quotient topology induced by (BelS(HQ), || · ||S).

Lema 4.1.2. Consider µ, η ∈ BelS(HQ). Then, fµ|S1
Q

= f η|S1
Q

if and only if fµ|H∗Q =

fη|H∗Q.

Proof: (Modulo technicalities, the proof is almost verbatim as the one in [IT]). Define
the map g : CQ → CQ such that:

g(z) =

{
fµ ◦ (f η)−1(z) z ∈ HQ

z z ∈ H∗Q ∪ S1
Q

The map g is clearly leaf preserving continuous. For every leaf νa, the map ν−1
a ◦ g ◦ νa is

explicitly given by:

ν−1
a ◦ g ◦ νa(z) =

{
ν−1
a ◦ fµ ◦ (f η)−1 ◦ νa(z) Im(z) > 0

z Im(z) ≤ 0

and by definition A it is quasiconformal and we have that g is quasiconformal. The map
(fµ)−1 ◦g ◦fη is 1-quasiconformal and fixes 0, 1,∞ hence by remark 3.3.4 it is the identity.
Then, fµ|H∗Q = fη|H∗Q .

For the converse, by continuity fµ = fη on H∗Q ∪ S1
Q and we have a 1-quasiconformal

map h = fµ ◦ (fµ)−1 ◦ fη ◦ (f η)−1 : HQ → HQ. By the same argument as before, h = id
and we have fµ|S1

Q
= f η|S1

Q
. �
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Corollary 4.1.3. Teichmüller space models A and B are homeomorphic.

Model C: Here we present the quasisymmetric model.

Definition 4.1.1. A leaf preserving homeomorphism f : S1
Q → S1

Q is quasisymmetric if
for every leaf νa the map fa = ν−1

a ◦ f ◦ νa is quasisymmetric. Denote the space of these
quasisymmetric maps by QS(S1

Q).

The following Lemma is the Beurling-Ahlfors Theorem [BA]:

Lema 4.1.4. A real homeomorphism is quasisymmetric if and only if it admits a quasi-
conformal extension to the upper half plane.

The next Lemma is the adelic analog.

Lema 4.1.5. A map on the solenoid S1
Q is quasisymmetric if and only if it admits a

quasiconformal extension to HQ.

Proof: Consider a quasisymmetric map f : S1
Q → S1

Q. By almost verbatim Lemmas
1.2.5, 1.2.6 and Corollary 3.1.6, there are limit periodic functions ha : R → R such that
fa(x) = ν−1

a ◦ f ◦ νa(x) = x + ha(x) and ha+1(x) = ha(x + 1) where νa is a leaf. Define
wa : U → U such that:

wa(x+ iy) =
1

2

∫ 1

0

dt [(1 + i)fa(x+ ty) + (1− i)fa(x− ty)] (4.1)

Because every fa is quasisymmetric the map wa is quasiconformal for every leaf νa.

Claim: There is a homeomorphism ŵ of HQ such that wa = ν−1
a ◦ ŵ ◦ νa for every leaf νa.

A direct calculation shows that there are continuous limit periodic maps ga respect to
x such that wa(z) = z + ga(z) and ga+1(z) = ga(z + 2π). By Lemma 1.2.1 there is a
continuous map w : Ẑ × U → Ẑ × U such that w(a, z) = (a, wa(z)) and w(a + 1, z) =
w(a, z + 2π) + (1,−2π). By Lemma 1.1.7 we have a continuous map ŵ such that the
following diagram commutes:

HQ − {0} ŵ // HQ − {0}

Ẑ× U w //

exp

OO

Ẑ× U

exp

OO

U
wa=id+ga //

?�

OO

U
?�

OO

It rest to show that ŵ can be extended to a homeomorphism on HQ. Consider the

continuous extension to the boundary w : Ẑ×R× [0,+∞)→ Ẑ×R× [0,+∞) and define
w(+∞) = +∞. Define the following neighborhood basis at +∞:{

{+∞} ∪ Ẑ× R× (y,+∞) such that y ≥ 0
}
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See that {+∞} ∪ Ẑ × R × [0,+∞) with the above basis at +∞ is compact. Because
every w0 : R × [0,+∞) → R × [0,+∞) is a homeomorphism, for every y ≥ 0 the
preimage of the compact R× [0, y] is a compact set hence there is some y′ ≥ 0 such that
w0(R × (y′,+∞)) ⊂ R × (y,+∞). Because wn(z) = w0(z + 2πn) − 2πn we have that
wn(R× (y′,+∞)) ⊂ R× (y,+∞) for every integer and because the sequence (wn)n ∈ N
converges locally uniformly on horizontal bands respect to the divisibility net, we have
that wa(R× (y′,+∞)) ⊂ R× (y,+∞) for every a ∈ Ẑ taking a bigger y′ if necessary; i.e.
w is continuous at +∞. Then w is a homeomorphism on {+∞}∪ Ẑ×R× [0,+∞) for a
continuous bijective map between compact sets is a homeomorphism. Define exp(+∞) =
0. Is clear that exp : {+∞} ∪ Ẑ × R × [0,+∞) → HQ ∪ S1

Q is continuous hence a
homeomorphism for the same reason as before. Because the following diagram commutes:

HQ ∪ S1
Q

ŵ // HQ ∪ S1
Q

{+∞} ∪ Ẑ× R× [0,+∞) w //

exp

OO

{+∞} ∪ Ẑ× R× [0,+∞)

exp

OO

the map ŵ is a homeomorphism. This proves the claim.

A complete analogous construction to the one before gives the commutative diagram:

ĈQ
ŵ // ĈQ

{+∞,−∞} ∪ Ẑ× C w //

exp

OO

{+∞,−∞} ∪ Ẑ× C

exp

OO

C wa=id+ga //
?�

OO

C
?�

OO

where the maps on the top square are homeomorphisms and every wa is quasiconformal.
By equation (4.1) we have the relation wa(z̄) = wa(z) hence ŵ is a quasiconformal map
fixing 0,∞ such that:

ŵ(1/z̄) =
1

ŵ(z)

In particular, the map ψ : TS(1) → BelS(HQ) such that ψ(f) = µŵ defines a section of
the proyection B: B ◦ ψ = id.

For the converse, consider a map f : S1
Q → S1

Q such that there is a quasiconfor-
mal map ŵ : HQ → HQ with continuous extension f . Because ŵ is a leaf preserving
homeomorphism of HQ then the continuous extension f is so and because ν−1

a ◦ ŵ ◦ νa is
quasiconformal then by Lemma 4.1.4 ν−1

a ◦ f ◦ νa is quasisymmetric for every leaf νa. �

Because the baseleaf ν is a morphism it defines leaf preserving left action ρ : RBL → S1
Q

such that ρ(a)(x) = ν(a)x where a ∈ R and x ∈ S1
Q. This action is the translation

along the leaves. By conjugation, it defines a left action on QS(S1
Q) such that a.f =

ρ(a) ◦ f ◦ ρ(a)−1.
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Consider a cofinal totally ordered divisibility subsequence S and the subspace QSS(S1
Q)

of restrictions of quasiconformal solutions of S-adelic Beltrami differentials. Define the
Teichmüller space TS(1) as the quotient:

TS(1) = QSS(S1
Q)/RBL ' QSS(S1

Q)1

where QSS(S1
Q)1 denote those maps fixing the unit. By the previous Lemma we have:

Corollary 4.1.6. Teichmüller space models B and C are homeomorphic.

4.2 p-adic case

In the same way we defined the adelic (algebraic) solenoid we define the p-adic one S1
p

(C∗p) as the inverse limit of the inverse system zp
n

: S1 → S1( zp
n

: C∗ → C∗). The main
difference is that the Pontryagin dual of the p-adic solenoid S1

p is now the set of characters
zq such that q = m/pn for some integer m and natural n. The fiber of S1

p as a fiber bundle
π1 : S1

p → S1 is now the group of p-adic integers Zp.
Remark 4.2.1. It is worth noting the following fact: Continuous real or complex valued
functions on the p-adic or adelic integers need not to be locally constant. In fact:

� Consider the homeomorphism h between the 2-adic integers and the usual cantor
set such that:

h(a2a2a3 . . .) = 2 · 0.a1a2a3 . . .

where ai denote the 2-adic numerical figures on the left side and the right side is the
corresponding real number in basis three. Because the Cantor set is a subset of the
real line, we have a continuous not locally constant function. In view of the Cantor
set characterization, we have the same example on any perfect, compact and totally
disconnected space.

� The p-adic norm || · ||p on the p-adic integers is continuous and not locally constant
at zero.

� Actually, on any compact space X we have: A continuous function f : X → R is
locally constant if and only if its image is a finite set.

It is worth to note also that the directional derivative is the only one that makes sense
on Zp for every linear map φ : Zp → C is trivial hence every linear action ρ : φ : Zp →
AutC(C) ' C is trivial too. In particular there can be no differential neither derivative,
only directional derivative. Physically, the heuristic reason is that there is no natural
extension of the total order relation of Z to Zp and this can be seen in the following way:
Geometrically, the (oriented) directions through the 0 point are the equivalence classes
of monomorphisms Z ↪→ Zp such that two of them are equivalent if they are non trivial
(positive) integer multiples. Because every linear map m : Z ↪→ Zp is a monomorphism
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if and only if it is of the form m(x) = ax for some a ∈ Z∗p, we have that the space of
directions are points of the projective space:

P (Zp) = Z∗p/Z∗

where the quotient is respect to the multiplicative structures. Because this space is far
from being trivial, we have multiple directions so the directional derivative is the one that
makes sense.

Taking the analogy further, the space of oriented directions, the p-adic version of S1,
can be considered as the boundary of Zp:

∂Zp = Z∗p/Z∗+

and is the double covering of the projective space:

∂Zp → P (Zp)

It seems that the p-adic solenoid S1
p has the boundary ∂Zp × S1 or some dynamical

suspension of ∂Zp with some monodromy map. We wonder whether these ideas connect
to tropical geometry.

In the same way we defined a notion of vertical uniform continuity in L∞ we define
the notion of vertical uniform derivative:

Definition 4.2.1. Recall the left action m : Zp → Aut(C∗p) such that ma(x) = φ(a)x.
We say that µ ∈ L∞(C∗p) has uniformly vertical L∞-derivative dµ/dZp if

dµ

dZp
= lim

a→0

µ ◦ma − µ
||a||p

∈ L∞(C∗Q)

As an example, consider the p-adic integers Zp with its p-adic norm ||·||p. By definition,
the p-adic norm is continuous on this space. Let’s see that it has a directional derivative
at every point. If x 6= 0 then there is some natural number N such that a ∈ NZp imply
||x + a||p = ||x||p hence its derivative is zero at x. However, its directional derivative at
zero is one for every direction. We have proved that the derivative exists and equals the
delta Kronecker:

d ||x||p
dx

= δ0
x

Lema 4.2.1. Consider a vertical L∞-continuous µ ∈ L∞(C∗p) such that there is a converg-
ing S-renormalized average series. Then and dµ/dZp exists along the direction determined
by S and it is zero; i.e:

dµ

dZp

∣∣
S = 0

Proof: There is a subsequence (nj)j∈N of (pn)n∈N such that 3.1 holds. In particular,
the non-renormalized average series converges:

∞∑
j=1

||Inj+1
(µ)− Inj(µ)||∞ <∞
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and because of Lemma 2.1.1 we have:

µ = In1(µ) +
+∞∑
j=1

(Inj+1
(µ)− Inj(µ))

Recall that ma(x) = φ(a)x and φ(a) ∈ Ker(πn) imply πn(φ(a)x) = πn(x) for πn is a group
morphism. Because φ(a) ∈ Ker(πn) if and only if a ∈ nZp, we have that π−1

n (πn(x)) is
invariant under the action ma such that a ∈ nZp. In particular, because the measure is
invariant under ma, we have that In(µ ◦ma) = In(µ) for every a ∈ nZp. Then,

lim
J
nJ ||µ ◦mnJ − µ||∞

= lim
J
nJ ||

+∞∑
j=J

(Inj+1
(µ ◦mnJ )− Inj(µ ◦mnJ ))−

+∞∑
j=J

(Inj+1
(µ)− Inj(µ))||∞

≤ 2 lim
J
nJ

+∞∑
j=J

||Inj+1
(µ)− Inj(µ)||∞

≤ 2 lim
J

+∞∑
j=J

nj+1||Inj+1
(µ)− Inj(µ)||∞ = 0

Finally we have:

dµ

dZp

∣∣
S = lim

J

µ ◦mnJ − µ
||nJ ||p

= lim
J
nJ(µ ◦mnJ − µ) = 0

�

Moreover, we conjecture the following:

Conjecture 1. In the p-adic case, the renormalized average series condition in the adelic
Beltrami differential definition can be substituted by the condition dµ/dZp = 0. We don’t
mean these conditions are equivalent, we mean that the whole theory that follows, in
particular Ahlfors-Bers theorem, holds with this alternative condition.

In what follows, we will take the sequence P = (pn)n∈N0 and in pursuit of alleviating the
notation, when there were no confusion, we will make the following abuses:

� Denote || · ||P = || · ||Ren,P .

� Denote In = Ipn .

� For every complex continuous function f from the solenoid, algebraic solenoid or
the adelic sphere, denote In(f) = In(f ◦ ν) and ||f ||P = ||f ◦ ν||P where ν is the
baseleaf.

� For degree zero maps f , by Lemma 1.2.9 there is a complex function g such that
f = ν ◦ g. Denote ||f ||P = ||g||P .
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� We will omit the notation making reference to orientation an leaf preserving p-
adic solenoidal diffeomorphisms: Diff+

lp (S1
p) = Diff(S1

p). Instead, we will denote
the orientation and leaf preserving p-adic solenoidal Cm-diffeomorphisms fixing the
unit by Diffm(S1

p)1. The same abuses hold for the p-adic solenoidal quasisymmetric
maps QS(S1

p).

Lema 4.2.2. (RenP , || · ||P) is a Banach algebra.

Proof: By Proposition 3.2.2 (RenP , || · ||P) is a Banach space and it rest to proof that

||fg||P ≤ ||f ||P ||g||P

for every f, g ∈ RenP . Denote I−1 = 0. In the p-adic case we have the graded algebra:

PerP =
⊕
j∈N0

Aj

such that A0 = Per1 and Aj = Perpj − Perpj−1 . Moreover, for every f ∈ PerP we have:

f =
∑
n∈N0

(In(f)− In−1(f))

where anly a finite amount of terms in the sum are zero and every one of them satisfy the
property:

In(f)− In−1(f) ∈ An
for every natural n ∈ N0. Consider f, g ∈ PerP . Then fg ∈ PerP and by the argument
above we have:

In(fg)− In−1(fg) =
∑
a+b=n
a,b≥0

(Ia(f)− Ia−1(f)) (Ib(g)− Ib−1(g))

Then,

||fg||P =
∑
n∈N0

pn||In(fg)− In−1(fg)||∞

≤
∑
n∈N0

pn
∑
a+b=n
a,b≥0

||Ia(f)− Ia−1(f)||∞||Ib(g)− Ib−1(g)||∞

=

(∑
n∈N0

pn||In(f)− In−1(f)||∞

)(∑
m∈N0

pm||Im(g)− Im−1(g)||∞

)
= ||f ||P ||g||P

By Lemma 3.2.1 PerP is dense in (RenP , || · ||P) and we have the result. �
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4.3 p-adic Nag-Verjovsky map

Consider p-adic solenoidal orientation and leaf preserving Cm-diffeomorphisms f, g ∈
Diffm(S1

p)1 fixing the unit. Define:

d(f, g)Cm = || d
m

dxm
(ν−1 ◦ f ◦ ν − ν−1 ◦ g ◦ ν)||P

In general, these functions would be just pseudometrics but because of remark 2.2.2 and
the fact that f and g fix the unit (a0 = 0), it is easy to see that:

d(f, g)Ci ≤
(
π√
3

)m−i
d(f, g)Cm

for every m ≥ i ≥ 0. We conclude that the functions considered are actually metrics. In
the case m =∞, the C∞-topology is defined as the one generated by the union of all the
C∞-topologies. In particular, the inclusions Diffn(S1

p)1 ⊂ Diffm(S1
p)1 are continuous

for m ≥ n including m =∞.

Lema 4.3.1. The space Diffm(S1
p)1 is complete for m = 0, 1, 2, . . .∞.

Proof: Consider a Cm-Cauchy sequence (fn)n∈N. By the above relation we have

that the sequence of limit periodic respect to x functions
(
di

dxi
(ν−1 ◦ fn ◦ ν − id)

)
n∈N

is

a Cauchy sequence respect to || · ||P for every 0 ≤ i ≤ m. By Lemma 3.2.2, for every
0 ≤ i ≤ m there is a limit periodic respect to x function gi such that the Cauchy sequence(
di

dxi
(ν−1 ◦ fn ◦ ν − id)

)
n∈N

converges to it respect to || · ||P . In particular, by the first

item of Lemma 3.2.1, the convergence is uniform for every 0 ≤ i ≤ m and we have
gi = di

dxi
g0 for such i. By Lemma 1.2.5 there is a continuous leaf preserving map f such

that ν−1 ◦ f ◦ ν = id + g0 and we conclude that the sequence (fn)n∈N converges to f in
the Cm topology. �

We define the set DiffmP (S1
p)1 of p-adic solenoidal leaf and orientation preserving Cm dif-

feomorphisms f fixing the unit with the property that there is an adelic Beltrami differen-
tial µ ∈ BelP(Hp) such that f = fµ|S1

p
. Because every diffeomorphism y quasisymmetric,

we have the Nag-Verjovsky map [NV]

ι : DiffmP (S1
p)1 ↪→ QSP(S1

p)1 ' TP(1)

See that Diff 0
P(S1

p)1 = QSP(S1
p)1.

Lema 4.3.2. The Nag-Verjovsky map is differentiable for m ≥ 2.

Proof: ι is continuous: Consider diffeomorphisms f, g ∈ DiffmP (S1
p)1 such that f =

fµ|S1
p

and g = f η|S1
p

where µ, η ∈ BelP(Hp). Because (RenP , || · ||P) is a Banach algebra,

for every η ∈ BelP(Hp) such that ||η||P < ||µ||−1
P we have:

f ◦ g−1 = fµ?η
−1|S1

p
∈ DiffmP (S1

p)1
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for:

||µ ? η−1||P = || µ− η
1− µ η

||P ≤
||µ||P + ||η||P
1− ||µ||P ||η||P

<∞

for every m ≥ 0. Hence it is sufficient to prove the continuity at the identity.

Because the inclusions Diffm(S1
p)1 ⊂ Diffn(S1

p)1 are continuous for m ≤ n, it is enough
to prove the result for m = 2. Using the Ahlfors-Beurling extension formula (4.1), given
the C2 diffeomorphism f in Diff 2

P(S1
p)1 such that:

ν−1 ◦ f ◦ ν(x) = x+
∑
q∈Q

aqe
iqx

where a−q = aq and a0 = 0, we have the quasiconformal extension wf such that:

ν−1 ◦ wf ◦ ν(z) = z +
∑
q∈Q

aqe
iqxl(qy)

where z = x+ iy and l is the real function:

l(x) =
sinx

x
− 1− cosx

x

See that the above expression makes explicit the relation w(z̄) = w(z). By Lemma 3.1.2
there is a continuous addelic Beltrami differential µf on the p-adic sphere Ĉp such that:

ν∗(µf )(z) =

∑
q∈Q iq aq e

iqx
(
l(qy)+l′(qy)

2

)
1 +

∑
q∈Q iq aq eiqx

(
l(qy)−l′(qy)

2

)
The above expression is well defined for 1/2|l(x)± l′(x)| < 1 and because the solenoid is
compact and f is a diffeomorphism, there is a constant k > 0 such that:

0 < k ≤ 1 +
∑
q∈Q

iq aqe
iqx

for every x ∈ R. Now we have an explicit expression for the Nag-Verjorvsky map:

BelP(Hp)

B
��

Diff+
P (S1

p)1

ϕ
77

ι // TP(1)

where ϕ(f) = µf and ι(f) = [ϕ(f)] = [µf ]. We claim that (recall the abuse of notation
4.2):

||
∑
q∈Q

iq aq e
iqx

(
l(qy)± l′(qy)

2

)
||P ≤

π√
3
||f ||C2

This is just a calculation. Because:

||
∑
q∈Q

iq aq e
iqx

(
l(qy)± l′(qy)

2

)
||P =

∑
n∈N0

pn||In(. . .)− In−1(. . .)||∞
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and because of the fact 1/2|l(x)± l′(x)| < 1 and remark 2.2.2 for each term we have:

||In(. . .)− In−1(. . .)||∞ ≤
∑

q∈p−nZ
q 6∈p−n+1Z

|qaq| ≤
π√
3
||In(f ′′)− In−1(f ′′)||

hence
|| . . . ||P ≤

π√
3
||f ′′||P =

π√
3
d(id, f)C2

and we have the claim.

In particular, ϕ is continuous at the identity for:

||ϕ(f)||P ≤
||
∑

q∈Q iq aq e
iqx
(
l(qy)+l′(qy)

2

)
||P

1− ||
∑

q∈Q iq aq eiqx
(
l(qy)−l′(qy)

2

)
||P

≤
π√
3
d(id, f)C2

1− π√
3
d(id, f)C2

for f sufficiently close to the identity in the C2 topology. In particular, ι is continuous.

ι is differentiable: Again, by the same argument as before, it is enough to prove it at the
identity. For every degree zero solenoidal map h such that id.h is a C2 diffeomorphism
in Diff 2

P(S1
p)1 (h is a perturbation of the identity in the C2 topology), define the linear

map didϕ such that:

ν∗(didϕ (h))(z) =
∑
q∈Q

iq aq e
iqx

(
l(qy) + l′(qy)

2

)
dz̄

dz

where
ν−1 ◦ h ◦ ν(x) =

∑
q∈Q

aqe
iqx

Actually, didϕ is the differential at the identity for:

||ϕ(id.h)− didϕ(h)||P
d(1, h)C2

≤
(
π√
3

)2
d(1, h)C2

1− π√
3
d(1, h)C2

= o(d(1, h)C2)

This concludes the Lemma for didι = [didϕ]. �

Remark 4.3.1. In the above proof, several different quasiconformal extensions can be
defined with appropriate functions l, for example:

l(x) = e−x
2

This function has the property of decaying to zero when x tends to ±∞, l(0) = 1 and
1/2|l(x)± l′(x)| ≤ 1 for every x ∈ R. Actually, this is the extension used in example 3.3.1.
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From now on we will consider m ≥ 2. We will define complex structures on both ends of
the Nag-Verjovsky map and conclude that it is analytic respect to these structures.

Consider the tangent space at the identity TidDiff
m
P (S1

p)1 of C∞-vector fields v such that:

ν∗(v)(x) =
∑
q∈Q

aqe
iqx

where a−q = aq and a0 = 0. Because of the monomorphism:

didϕid : TidDiff
m
P (S1

p)1 ↪→ T0BelP(Hp) = RenP

these vector fields can be characterized as those for which there is some η ∈ RenP such
that v = ḟ [η].

Define an (a priori) almost complex structure Ĵ such that:

ν∗(Ĵv) =
∑
q∈Q

−i sg(q)aqe
iqx

and translate it by conjugation with the adjoint map Ad to the whole tangent bundle
T DiffmP (S1

p)1. Although DiffmP (S1
p)1 is not a group, this translation of structure can be

done.

On the other hand, the canonical linear complex structure of L∞(Hp) induces a com-
plex structure J on the Banach manifold of solenoidal quasisymmetric maps QSP(S1

p)1.

Theorem 4.3.3. The Nag-Verjovsky map is analytic.

Proof: Consider η ∈ T0BelP(HQ) such that ḟ [η] is a C∞ derivation and its restriction
to the solenoid is determined by:

ν∗(ḟ [η])(x) =
∑
q∈Q

aqe
iqx d

dx

where a−q = aq and a0 = 0. Define the derivation F such that:

F (z) = ḟ [η] + iḟ [iη]

See that F is continuous on the whole adelic sphere (see remark 3.4.1), in particular at
zero. Because of the following fact:

∂ḟ [η] = η

in distributional sense on every leaf where ∂ = dz̄ ∂z̄, we have that ∂z̄F = 0 on every leaf
of HQ in distributional sense. By Weyl’s lemma on every leaf, F is holomorphic on HQ
such that the real part of its continuous extension to the solenoid is the function defining
ḟ [η] respect to d/dπ1. The only derivation F satisfying this property is the continuous
one such that:

ν∗(F )(z) = 2
∑
q>0

aqe
iqz d

dz
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Because the imaginary part of its continuous extension to the solenoid is the function
defining ḟ [iη] respect to d/dπ1, we conclude that:

ν∗(ḟ [iη])(x) =

(
−i
∑
q>0

aqe
iqx + i

∑
q<0

aqe
iqx

)
d

dx

and this proves the result for ḟ [iη] = Ĵ(ḟ [η]). �

Corollary 4.3.4. The automorphism Ĵ defines a complex structure.
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Appendix A

Quasiconformal mappings

A.1 Minkowski inequality and Convolution

The following is the Minkowski inequality:

Theorem A.1.1. Suppose (X,A, µ) and (Y,B, ν) are σ-finite measure spaces. Consider
1 ≤ p <∞ and a measurable complex function F respect to the product space (X×Y,A×
B, µ× ν). Then: ∥∥∥∥∫

X

F (x, y)dµ(x)

∥∥∥∥
Lp(dν)

≤
∫
X

‖F (x, y)‖Lp(dν) dµ(x)

Proof: Without loss of generality we may assume that F is positive real and that both
sides of the inequality are finite taking simple functions approximation if necessary. The
case p = 1 follows directly by Fubini’s Theorem. Consider 1 < p < ∞ and its conjugate
q = p/(p− 1). Define:

G(y) =

(∫
X

F (x, y)dµ(x)

)p−1

We have that G ∈ Lq(Y, ν) for:

||G||Lq(dν) =

∥∥∥∥∥
(∫

X

F (x, y)dµ(x)

)p−1
∥∥∥∥∥
Lp(dν)

=

(∫
Y

(∫
X

F (x, y)dµ(x)

)p
dν(y)

)1/q

=

∥∥∥∥∫
X

F (x, y)dµ(x)

∥∥∥∥p−1

Lp(dν)
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By Fubini’s and Hölder’s Theorems we have:∥∥∥∥∫
X

F (x, y)dµ(x)

∥∥∥∥p
Lp(dν)

=

∫
Y

G(y)

∫
X

F (x, y) dµ(x) dν(y)

=

∫
X

∫
Y

G(y)F (x, y) dν(y) dµ(x)

≤
∫
X

‖G(y)‖Lq(dν)‖F (x, y)‖Lp(dν) dµ(x)

= ‖G‖Lq(dν)

∫
X

‖F (x, y)‖Lp(dν) dµ(x)

Dividing both sides by ||G||Lq(dν) we have the result. �

Remark A.1.1. Taking the countable measure on the set X = {1, 2} we have the classical
Minkowski inequality:

||f + g||p ≤ ||f ||p + ||g||p
Moreover, taking the countable measure on X = N gives:∥∥∑

i∈N

fi
∥∥
p
≤
∑
i∈N

||fi||p

Corollary A.1.2. Consider g ∈ L1(Rn) and f ∈ Lp(Rn) such that 1 ≤ p ≤ ∞. Then,

||f ∗ g||p ≤ ||g||1||f ||p

where:

f ∗ g(x) =

∫
Rn
f(x− y)g(y) d(n)y

is the convolution product.

Proof: The case p =∞ is trivial and the case p = 1 follows by Fubini’s Theorem. Let
1 < p <∞. Because g ∈ L1(Rn) the measure dµ(y) = |g(y)|d(n)y is finite and Minkowski
inequality implies:

||f ∗ g||p ≤
∥∥∥∥∫

Rn
|f(x− y)| |g(y)| d(n)y

∥∥∥∥
Lp(d(n)x)

≤
∫
Rn
||f(x− y)||Lp(d(n)x)|g(y)| d(n)y

= ||g||L1(d(n)x)||f ||Lp(d(n)x)

and this proves the corollary. �

Remark A.1.2. � (L1(Rn), ∗) is a commutative complex Banach algebra.

� Lp(Rn) is a L1(Rn)-module with the convolution action.
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� The above corollary is a particular case of the Young inequality : Consider r, p ≥ 1,
g ∈ Lr(Rn), f ∈ Lp(Rn) and 1 ≤ p ≤ q ≤ ∞ such that:

1

r
+

1

p
= 1 +

1

q

Then,
||f ∗ g||q ≤ ||g||r||f ||p

Respect to the Lp norm, the space of compact support continuous functions C0(Rn) is
dense in the space of simple functions and because the latter is dense in Lp(Rn) we have:

C0(Rn)
p

= Lp(Rn)

A stronger result, Corollary A.2.3, will be proved later in section A.2.

Lema A.1.3. Consider 1 ≤ p < ∞ and f ∈ Lp(Rn). Define Tyf ∈ Lp(Rn) such that
(Tyf)(x) = f(x− y) for every y ∈ Rn. Then, the map y 7→ Tyf is continuous.

Proof: First, assume that f ∈ C0(Rn) and let ε > 0. If f is identically zero then the
claim is trivial. Assume that f is not identically zero. Because f is uniformly continuous
there is a real number δ > 0 such that ||h|| < δ implies:

|f(x− h)− f(x)| < ε Area(support(f) +B(0; δ))−1/p

Then, for every h ∈ Rn such that ||h|| < δ we have:

||Thf − f ||p =

(∫
Rn
|f(x− h)− f(x)|p d(n)x

)1/p

≤ ε

Now consider f ∈ Lp(Rn). There is g ∈ C0(Rn) and a real number δ > 0 such that
||f − g|| < ε/3 and ||h|| < δ implies ||Thg − g||p < ε/3. Thus,

||Thf − f ||p ≤ ||Thf − Thg||p + ||Thg − g||p + ||g − f ||p < ε

because Th is an isometry. �

Lema A.1.4. Consider 1 ≤ p ≤ ∞, f ∈ Lp(Rn) and g ∈ Cm
0 (Rn) such that 0 ≤ m ≤ ∞.

Then f ∗ g ∈ Cm
unif (Rn) ∩ Lp(Rn) and:

Dα(f ∗ g) = f ∗Dαg

for every multi-index α such that |α| < m.

Proof: By Corollary A.1.2 we have f ∗g ∈ Lp(Rn). It rest to show that f ∗g ∈ Cm(Rn).
First consider m = 0. By Hölder’s inequality we have:

|(f ∗ g)(x+ h)− (f ∗ g)(x)| =

∣∣∣∣∫
Rn
f(x+ h− y)g(y) d(n)y −

∫
Rn
f(x− y)g(y) d(n)y

∣∣∣∣
=

∣∣∣∣∫
Rn
f(x− y)g(y + h) d(n)y −

∫
Rn
f(x− y)g(y) d(n)y

∣∣∣∣
=

∣∣∣∣∫
Rn
f(x− y)

(
g(y + h)− g(y)

)
d(n)y

∣∣∣∣
≤ ||f ||p||T−hg − g||q
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and because of the previous Lemma we have the uniform continuity of f ∗ g ∈ Cunif (Rn).

Now consider m = 1 and t > 0. By the mean value Theorem there is c ∈ (0, t) such
that:

|(f ∗ g)(x+ tei)− (f ∗ g)(x)| =

∫
Rn
f(y)

(
g(x+ tei − y)− g(x− y)

)
d(n)y

=

∫
Rn
f(y)

(
g(x+ tei − y)− g(x− y)

)
d(n)y

= t

∫
Rn
f(y)

∂g

∂xi
(x+ cei − y) d(n)y

= t f ∗ ∂g
∂xi

(x+ cei)

Because ∂g/∂xi ∈ C0(Rn) then f ∗ (∂g/∂xi) ∈ Cunif (Rn). We conclude that ∂(f ∗ g)/∂xi
exists and coincides with f ∗(∂g/∂xi). Since i was arbitrary we have that f ∗g ∈ C1

unif (Rn)
and the general case follows by induction. �

A.2 Approximations to the Identity and Weyl’s Lemma

The convolution action of L1(Rn) on Lp(Rn) doesn’t have a unit; i.e. there is no element
δ ∈ L1(Rn) (Dirac delta) such that δ ∗ f = f for every f ∈ Lp(Rn). For this reason we
need to approximate it. For any real function ϕ on Rn and ε > 0 define ϕε such that
ϕε(x) = ε−nϕ(x/ε).

Lema A.2.1. Consider a positive real function ϕ ≥ 0 such that ϕ ∈ L1(R1). Then
||ϕε||1 = ||ϕ||1 for every ε > 0 and:

lim
ε→0

∫
{|x|>δ}

ϕε(x) d(n)x = 0

for every δ > 0.

Proof: The first claim follows from the definition and a change of variables. For the
second, by dominated convergence we have:

lim
k→∞

∫
{|x|>k}

ϕ(x) d(n)x = 0

Then, ∫
{|x|>δ}

ϕε(x) d(n)x = ε−n
∫
{|x|>δ}

ϕ(x/ε) d(n)x =

∫
{|x|>δ/ε}

ϕ(x) d(n)x→ 0

when ε tends to zero. �

Lema A.2.2. Consider a positive real function ϕ ≥ 0 such that ϕ ∈ L1(Rn) and ||ϕ||1 = 1.
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� If f ∈ Lp(Rn) such that 1 ≤ p <∞ then,

lim
ε→0
||f ∗ ϕε − f ||p = 0

� If f ∈ L∞(Rn) then for every continuity point x of f we have:

lim
ε→0

f ∗ ϕε(x) = f(x)

� If f ∈ L∞(Rn) and f is uniformly continuous on a domain D then f ∗ϕε converges
uniformly to f on D when ε tends to zero.

� If f is continuous and ϕ has compact support, then f ∗ ϕε converges to f locally
uniformly when ε tends to zero.

Proof:

� By hypothesis ϕεdy is a probability measure so we can write:

|f ∗ ϕε(x)− f(x)| =
∣∣∣∣∫

Rn

(
f(x− y)− f(x)

)
ϕε(y)dy

∣∣∣∣
and by Minkowski inequality A.1.1 we have:

||f ∗ ϕε − f ||p ≤
∥∥∥∥∫

Rn

∣∣f(x− y)− f(x)
∣∣ϕε(y)dy

∥∥∥∥
p

≤
∫
Rn
||f(x− y)− f(x)||Lp(dx)ϕε(y)dy (A.1)

Let η > 0. Because of Lemma A.1.3 there is a real number δ > 0 such that ||y|| < δ
implies ||Tyf−f ||p < η/2. Proceeding with relation A.1 we have ||f∗ϕε−f ||p ≤ I+II
where:

I =

∫
{||y||<δ}

||f(x− y)− f(x)||Lp(dx)ϕε(y)dy

≤ (η/2)

∫
{||y||<δ}

ϕε(y)dy ≤ η/2

and:

II =

∫
{||y||>δ}

||f(x− y)− f(x)||Lp(dx)ϕε(y)dy

≤ 2||f ||p
∫
{||y||>δ}

ϕε(y)dy

By Lemma A.2.1, there is a real number σ > 0 such that ε < σ implies II ≤ η/2. We
have proved: For every η > 0 there is a real number σ > 0 such that ||f∗ϕε−f ||p ≤ η;
i.e. The limit exists and equals zero.
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� Suppose that x is a continuity point of f . We proceed exactly as before:

|f ∗ ϕε(x)− f(x)| =
∣∣∣∣∫

Rn

(
f(x− y)− f(x)

)
ϕε(y)dy

∣∣∣∣
Let η > 0. There is a real number δ > 0 such that ||y|| < δ implies |f(x−y)−f(x)| <
η/2. Then, |f ∗ ϕε(x)− f(x)| ≤ I + II such that:

I =

∫
{||y||<δ}

|f(x− y)− f(x)|ϕε(y)dy

≤ (η/2)

∫
{||y||<δ}

ϕε(y)dy ≤ η/2

and:

II =

∫
{||y||>δ}

|f(x− y)− f(x)|ϕε(y)dy

≤ 2||f ||∞
∫
{||y||>δ}

ϕε(y)dy

Again, by Lemma A.2.1, there is a real number σ > 0 such that ε < σ implies
II ≤ η/2. We have proved: For every η > 0 there is a real number σ > 0 such that
|f ∗ ϕε(x)− f(x)| ≤ η; i.e. The limit exists and f ∗ ϕε(x) converges to f(x) when ε
tends to zero.

� Almost verbatim to the above item.

� For the final claim, consider a compact set K of Rn and a real number η > 0.
Because f is uniformly continuous on K, there is a real number δ > 0 such that
||y|| < δ implies |f(x−y)−f(x)| < η/2 for every x ∈ K. In the same way as before,
supx∈K |f ∗ ϕε(x)− f(x)| ≤ I + II such that:

I = sup
x∈K

∫
{||y||<δ}

|f(x− y)− f(x)|ϕε(y)dy

≤ (η/2)

∫
{||y||<δ}

ϕε(y)dy ≤ η/2

and:

II = sup
x∈K

∫
{||y||>δ}

|f(x− y)− f(x)|ϕε(y)dy

≤ 2||fχK′||∞
∫
{||y||>δ}

ϕε(y)dy

where K ′ = K + supp(ϕε) = K + ε.supp(ϕ) is a compact set hence ||fχK′ ||∞ <∞.
By Lemma A.2.1, there is a real number σ > 0 such that ε < σ implies II ≤
η/2. We have proved: For every η > 0 there is a real number σ > 0 such that
supx∈K |f ∗ ϕε(x)− f(x)| ≤ η and we have the claim.
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�

Definition A.2.1. Consider a positive real function ϕ ∈ L1(Rn) such that ||ϕ||1 = 1.
The function ε 7→ ϕε is called an approximation to the identity.

Corollary A.2.3. The space C∞0 (Rn) of infinitely differentiable functions with compact
support is dense in Lp(Rn).

Proof: Let f ∈ Lp(Rn) and η > 0. Consider a large enough radius R such that
||fχ||y||>R||p < η/2. Consider also a positive real function ϕ ∈ C∞0 (Rn) such that ||ϕ||1 =
1. By Lemma A.2.2 there is ε > 0 such that ||(fχ||y||≤R) ∗ ϕε − fχ||y||≤R||p < η/2. Define
g = (fχ||y||≤R) ∗ ϕε. We have:

||g − f ||p = ||g − fχ||y||≤R − fχ||y||>R||p ≤ ||g − fχ||y||≤R||p + ||fχ||y||>R||p < η

Because of Lemma A.1.4 and the fact that:

supp(g) ⊂ B(0;R) + supp(ϕε) = B(0;R) + ε.supp(ϕ)

we conclude that g ∈ C∞0 (Rn). �

The following is the space of smooth functions whose derivatives decay to zero faster
than the inverse of any polynomial:

Definition A.2.2. An infinitely differentiable function f is in the Schwartz class S(Rn)
if:

sup
x∈Rn
|xαDβf(x)| <∞

for every pair of multi-indices α, β.

Corollary A.2.4. The Schwartz class is dense in Lp(Rn).

Proof: It follows from the fact that C∞0 (Rn) ⊂ S(Rn) ⊂ Lp(Rn) and Corollary A.2.3.
�

The following is the Weyl’s Lemma:

Lema A.2.5. Let f be a continuous function on a domain D ⊂ C with distributional
derivative fz̄ locally integrable on D. If fz̄ = 0 on D then f is holomorphic on D.

Proof: Consider a positive real function ϕ ∈ C1
0(C) with compact support and ||ϕ||1 =

1. Consider also a compact set K in D. Because ϕ has compact support, there is a real
number σ > 0 such that 0 < ε < σ implies:

K + supp(ϕε) = K + ε.supp(ϕ) ⊂ D

Then, f ∗ ϕε is defined on K for every 0 < ε < σ. By Lemma A.1.4, f ∗ ϕε ∈ C1(K) is
differentiable on K for every 0 < ε < σ. Because ϕ has compact support and fz̄ is the
locally integrable derivative in distributional sense:

(f ∗ ϕε)z̄ = fz̄ ∗ ϕε = 0

on K for every 0 < ε < σ. Hence, f ∗ ϕε is holomorphic on K for every 0 < ε < σ.
By the fourth item of Lemma A.2.2, (f ∗ ϕε)0<ε<σ converge uniformly to f on K when ε
tends to zero. We conclude that f is holomorphic on K and because the compact set was
arbitrary, f is holomorphic on D. �
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A.3 Quasiconformal mappings

This section is almost verbatim to [IT] and [Ah]. We want to consider orientation-
preserving homeomorphisms satisfying the Beltrami equation fz̄ = µfz. Because of this,
f should be at least partially differentiable almost everywhere (a.e.) in the considered
domain. This is guaranteed by assuming that f is ACL: A function f on a planar domain
D is said to be ACL (absolutely continuous on lines) if the following condition holds for
every rectangle R = [a, b] × [c, d] in D whose sides are parallel either to the real axis or
the imaginary axis: As a function of x, f( , y) is absolutely continuous on [a, b] for almost
everfy y ∈ [c, d], and as a function of y, f(x, ) is absolutely continuous on [c, d] for almost
every x ∈ [a, b].

Remark A.3.1. An absolutely continuous function g on an interval I is differentiable at
almost every t ∈ I. Hence, when a function f on a domain D is ACL, the partial
derivatives fz and fz̄ are well defined and finite at almost every z ∈ D. Moreover they
are measurable.

Analytic definition A: Let f be an orientation preserving homeomorphism of a planar
domain D into the complex plane. We say that f is quasiconformal (qc) on D if f satisfies
the following conditions:

� f is ACL on D.

� There is a constant k with 0 ≤ k < 1 such that:

|fz̄| ≤ k|fz|

almost everywhere on D.

Setting K = (k + 1)/(k − 1) we say that f is K − qc on D. We call the infimum of K
such that f is K − qc the maximal dilatation of f and denote it by Kf .

Example 1: A conformal mapping of a domain D is quasiconformal on D such that k = 0
and K = 1. Later we will see that the converse is also true: Every 1-qc map is conformal
(Weyl’s Lemma).

Example 2: An affine mapping f such that f(z) = az + bz̄ + c such that |b| > |a| is
quasiconformal such that k = |b|/|a| and K = (|a|+ |b|)/(|a| − |b|).

Example 3: For a given K define f such that:

f(z) =

{
z z ∈ H

x+ iKy z = x+ iy ∈ C−H
Then f is K − qc.
Remark A.3.2. Define f such that

f(z) =
z

1− |z|2

such that z ∈ ∆. Then f is an orientation preserving diffeomorphism of the unit disk
∆ onto C but not quasiconformal. Actually, there are no quasiconformal mappings of ∆
onto C.
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Remark A.3.3. Let f be a K − qc mapping of a domain D onto another domain D′ and
g be a conformal mapping of D′. Then the composite mapping g ◦ f is K − qc. In fact,
it is easy to see that g ◦ f verifies the definition and that Kg◦f = Kf .

In general, existence of the partial derivatives fz and fz̄ is not enough to guarantee
good properties of f . However, in the case of homeomorphisms we have the following
remarkable result [?]:

Proposition A.3.1. If a homeomorphism f of a domain D into C has the partial deriva-
tives fx and fy a.e. on D, then f is totally differentiable a.e. on D.

Proposition A.3.2. If f is a quasiconformal mapping of a domain D, then the partial
derivatives fz and fz̄ are locally square integrable on D.

Proof: First, we have a completely additive set function A by attaching the area A(E)
of f(E) to every Borel subset E of D. Let Jf be the density function of A with respect
to the two-dimensional Lebesgue measure dxdy. By Lebesgue’s decomposition theorem
we have: ∫ ∫

E

Jf dxdy ≤ A(E)

for every measurable subset E of D. On the other hand, by Proposition A.3.1 we see that
f is totally differentiable at almost z ∈ D, and at such a point z we can show that:

Jf (z) = |fz(z)|2 − |fz̄(z)|2

By the second item of the quasiconformal definition we have:

|fz̄|2 ≤ |fz|2 ≤
1

1− k2
Jf

almost everywhere on D and we have the result. �

Proposition A.3.3. For every quasiconformal mapping f of a domain D, the partial
derivatives fz and fz̄ are coincident with those in the sense of distribution. Namely, for
every element φ of C∞0 (D), the set of all smooth functions on D with compact supports,
it follows that: ∫ ∫

D

fzφ dxdy = −
∫ ∫

D

fφz dxdy∫ ∫
D

fz̄φ dxdy = −
∫ ∫

D

fφz̄ dxdy

Proof: By Proposition A.3.2 and Fubini’s theorem, the left hand side of the above
identities can be rewritten as repeated integrals. Since f is ACL the assertions follows by
integration by parts. �

Noting Propositions A.3.2 and A.3.3 we consider the following alternative definition:

Analytic definition A’: Let f be a homeomorphism of a domain D into C which
preserves orientation. We say that f is quasiconformal on D if the following conditions
hold:
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� The distributional partial derivatives of f with respect to z and z̄ can be represented
by locally integrable functions fz and fz̄, respectively, on D.

� There exists a constant k with 0 ≤ k < 1 such that:

|fz̄| ≤ k|fz|

almost everywhere on D.

Theorem A.3.4. Definitions A and A′ of quasiconformal mappings are equivalent.

Corollary A.3.5. Let g be a conformal mapping of a domain D onto another D′, and f
be a K − qc mapping of D′. Then f ◦ g is a K − qc mapping of D.

Proof: Let w = u+ iv be the variable on D’. By assumption, there exists the distribu-
tional derivatives fw and fw̄ and they are locally integrable on D′. Since φ◦g−1 ∈ C∞0 (D′)
for every φ ∈ C∞0 , there exist the distributional derivatives (f ◦ g)z and (f ◦ g)z̄ and the
coincide with the locally integrable functions (fw ◦ g).g′ and (fw̄ ◦ g).g′ respectively on D.
Moreover:

|(f ◦ g)z̄| ≤ k|(f ◦ g)z|

where k = (K − 1)/(K + 1) and we have the result. �.

Corollary A.3.6. A 1− qc mapping on a domain D is holomorphic on D.

Proof: A 1 − qc mapping mapping f on a domain D verifies fz̄ = 0 on D as a
distribution. By Weyl’s Lemma A.2.5 f is holomorphic on D. �

A.4 Mapping Theorem

The following is the Douady-Hubbard approach to the mapping Theorem.

Definition A.4.1. Consider a Beltrami differential µ ∈ L∞(C)1 with compact support
and the unique quasiconformal solution f to the µ-Beltrami equation such that f(z)−z ∈
O(1/|z|).

Because µ has compact support, it is univalent outside a disk of sufficiently large radius
R and we can write:

f(z) = z +
b1

z
+
b2

z2
+ . . . (A.2)

In particular fz − 1 ∈ L2(C): Because f is quasiconformal we have that fz ∈ L2,loc(C)
and it rest to verify this property at a neighborhood of∞. Equation A.2 implies fz− 1 ∈
O(1/|z|2); i.e. There is a constant C such that |fz(z)− 1| ≤ C/|z|2 for every z ∈ C such
that |z| > R. Then: ∫

|z|>R
|gz(z)− 1|2 ≤

∫ 2π

0

∫ +∞

R

C

r3
dθdr <∞
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and we have the claim.

The following is the Douady-Hubbard [Hu] beautiful proof of existence of Beltrami
equation solutions and analytic dependence in the case Beltrami differentials with compact
support:

Theorem A.4.1. Consider a compact set K ⊂ C and consider the set of Beltrami dif-
ferentials BK(C) ⊂ L∞(C)1 with support contained in K. Then, for every µ ∈ BK(C)
there is a unique DH solution fµ to the µ-Beltrami equation. Moreover, the map µ 7→ fµ

is analytic in BK(C).

Proof: Consider the Fourier transform F : L2(C) → L2(C). For every map f with
distributional partial derivatives on L2 we have the relations:

F(∂zf)(ζ) = 2πζ̄i ∂zF(f)(ζ)

F(∂z̄f)(ζ) = 2πζi ∂z̄F(f)(ζ)

Hence, there is an operator L : L2(C)→ L2(C) such that for every map f with distribu-
tional partial derivatives on L2:

∂zf = L(∂z̄f)

where L is explicitly given by:

F(L(w))(ζ) =
ζ̄

ζ
F(w)(ζ)

for every w ∈ L2(C). Because of the above expression and the fact that the Fourier
transform F is a unitary operator, it follows that L is an isometry; i.e. ||L|| = 1 in
operator norm. Consider µ ∈ BK(C). Then, a DH map f(z) = z + g(z) is a solution of
the µ-Beltrami equation if and only if:

∂z̄g = µ
(
1 + L(∂z̄g)

)
and we have the following functional equation:(

id− µL
)
(∂z̄g) = µ

Because ||µ||∞ < 1 and ||L|| = 1 we have ||µL|| < 1 hence the operator above has an
inverse and we have:

∂z̄g =
(
id− µL

)−1
(µ) = µ+ µL(µ) + µL

(
µL(µ)

)
+ . . .

Because µ has compact support then ∂z̄g has also compact support and the convolution
(πz)−1 ∗∂z̄g is well defined. Because this operator solves the ∂z̄ problem on functions with
compact support: ∂z̄

(
(πz)−1 ∗ h

)
= h, and the fact that this operator acting on compact

support functions gives functions in the O(1/|z|) class, we have the remarkable formula:

g =
1

πz
∗ (∂z̄g) =

1

πz
∗
(
id− µL

)−1
(µ) (A.3)

In particular, the formula above makes clear the analytic dependence in BK(C). �
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Remark A.4.1. The operator L is actually the operator T in [Ah] defined as a singular
integral operator. In the same reference, because the operator P is acting on compact
support functions and we are interested in DH solutions, it takes the form of a convolution
product. Because we are dealing directly with L2, in contrast to the Ahlfors approach the
Calderón-Zigmund Theorem is not needed in this one.
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