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Abstract
En este trabajo se presenta un sistema experimental para medir espectros de fluorescencia espon-

tánea generada a partir de la excitación de dos fotones 5𝑆1/2 → 5𝑃3/2 → 5𝐷5/2 en átomos fríos en
una trampa magneto-óptica (MOT). Estos espectros se obtienen como función de la desintonía de
la segunda excitación con respecto a la resonancia atómica, y muestran la estructura hiperfina del
multiplete 5𝐷5/2. También se presenta un modelo basado en la evolución temporal de la matriz de
densidad de un sistema atómico multinivel interactuando con múltiples componentes de radiación,
y se usa para calcular espectros teóricos utilizando los parámetros experimentales como entradas.
Los espectros experimentales y teóricos obtenidos en un rango de parámetros coinciden dentro del
error experimental. Gracias a este buen acuerdo, la inspección cuidadosa de los resultados obtenidos
mediante el análisis teórico permite extraer información detallada tanto de la dinámica atómica
como de la variación de los parámetros experimentales, como la amplitud del campo eléctrico y la
desintonía. Estas variaciones de los parámetros experimentales están más allá de la resolución de lo
que los errores asociados a los aparatos de medición permiten. A partir de este análisis es posible
separar diferentes componentes del ancho de las líneas espectrales y usar el ancho Doppler para
estimar la temperatura de la nube atómica.
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Abstract
An experimental system to measure spontaneous fluorescence spectra generated as a result of

the 5𝑆1/2 → 5𝑃3/2 → 5𝐷5/2 two-photon excitation in rubidium atoms in a magneto-optical trap
(MOT) is presented. These spectra are obtained as a function of the second-excitation detuning
respect o the atomic resonance, and exhibit the hyperfine structure of the 5𝐷5/2 multiplet. A
theoretical model based on the time evolution of the density matrix of a multilevel atomic system
interacting with multiple radiation components is presented and used to calculate theoretical spectra
with the experiment parameters as input. The experimental and theoretical spectra are obtained
through a range of parameters and found to agree to within experimental error. Thanks to this good
agreement, a careful inspection of the results obtained through the theoretical analysis allows detailed
information to be extracted about both the atomic dynamics and the variation of experimental
parameters like the electric field amplitude and the detuning. This variations of the experimental
parameters are beyond the resolution that the errors associated to the measurement apparatus allow.
This analysis allows different components of the spectral linewidths to be separated, and to use the
Doppler width to estimate the temperature of atomic cloud.
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Chapter 1

Introduction

1.1 Previous Developments

Spectroscopy, the study of light absorption and emission by matter (and specially its depen-

dance on the frequency of the radiation field) has been at the forefront of atomic physics since the

fluorescence spectrum of hydrogen was first observed in the XIX century [22, 74]. This was before

even the existence of atoms had been well established by Einstein in his 1905 article on Brownian

motion [18]. The study of the fluorescence spectra of elements led to the development in 1913 of the

Bohr model [51,52], which was the first approximation to a quantum theory of atoms.

Through the XX century fluorescence and absorption spectroscopy was used to discover and even-

tually explain the fine and hyperfine structure of atoms. In particular, the invention of the laser in

1958 [62], and the subsequent development of single-mode and narrow-linewidth lasers provided the

tools for developing high-precision laser spectroscopy techniques for atomic and molecular vapours

beyond the Doppler broadening limit relying on ingenious techniques such as saturated absorption

by counter-propagating pump and probe beams [28, 67]. These experiments were later used to de-

velop laser frequency stabilization techniques [11]. Spectroscopies based on polarization-dependant

non-linearities [73] and stabilization techniques based on them [50] followed.

Before these high-precision methods were established however, Autler and Townes discovered

the splitting of spectral lines in carbonyl sulfide (OCS) due to the interaction with intense and

rapidly varying radio-frequency electromagnetic fields [4]. It is now well known that this effect,

called Autler-Townes Splitting (ATS), is a dynamic Stark effect by the electromagnetic field.

Another important effect was theoretically predicted in [29] after noticing that the dressed states

produced by ATS were analogous to auto ionizing Fano states that had previously been observed

to exhibit destructive interference. The interference between excitation paths to dressed states were

predicted to inhibit the first order susceptibility while enhancing the third order susceptibility of
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optically thick media. This phenomenon, known as Electromagnetically Induced Transparency (EIT)

was first observed in strontium [8]. These are coherent effects in the sense that their description

requires the preservation of information in the phases between state amplitudes. In other words, these

are quantum phenomena, and require a state vector or density matrix treatment. The distinction

and interpretation of ATS and EIT is developed theoretically in [20] and experimentally in [77].

The discovery of EIT together with high-precision spectroscopy prompted a cascade of experi-

ments, theory developments and applications of two-photon spectroscopies for alkali atoms spanning

from the early 1990s to this day. Early examples include the use of a single 778 nm laser to non-

resonantly excite the 5𝑆1/2 → 5𝑃3/2 → 5𝐷5/2 transition in rubidium [57], and more complete and

practical theoretical descriptions of EIT [23,24]. Applications include slow light [75], absolute optical

frequency measurement [40,68], and frequency up-conversion [1, 43].

One of the configurations studied throughout this period has been fluorescence spectroscopy of

the 5𝑆1/2 → 5𝑃3/2 → 5𝐷5/2 two-photon transition driven by two close-to-resonant laser fields. An

easy to detect fluorescence wavelength commonly measured in these experiments is the visible 420

nm from the 6𝑃3/2 → 5𝑆1/2 decay. The spontaneous fluorescence of this transition was used to study

the broadening effects of collisions due to different atomic densities [27]. In contrast, the stimulated

emission was used to produce spectra of the 5𝑃3/2 multiplet [59]. A combined measurement of

absorption and spontaneous fluorescence was developed in [39]. All of these two-photon experiments

were performed in room-temperature vapour cells.

Trapping devices based on the electromagnetic interaction of charged particles (such as the Paul

trap [49] and the Penning trap [42], [48]) were developed as early 1946 and 1959. However, trapping

neutral species was not achieved until much later. The cooling of neutral sodium atoms by the

optical molasses technique was first demonstrated in 1985 [15], and the first example of an optical

dipole trap by an intensely focused laser shortly after [14]. The most widely adopted trap for neutral

atoms employs both optical and magnetic fields and is known as the magneto-optical trap (MOT),

first demonstrated in 1987 [54]. The MOT has the advantage of not being very sensitive to errors in

the power balancing of counter-propagating beams or their polarization. Another advantage is that

they are capable of easily cooling and trapping of the order of 106 atoms directly from a vapour at

room temperature and reach temperatures below 1 mK. The use of low cost diode lasers is also a

common reason of choice for this method for some alkali atoms [63].

Using cold atoms to measure spectroscopic phenomena allows a better control of the internal and

movement states of atoms, and the corresponding spectroscopies do not directly require the room-

temperature sub-Doppler techniques mentioned above. Early examples of this approach include the

1997 studies by Catalioti et al [12,13] on cesium lambda and ladder systems observing ATS and EIT.

The first of these involve the use of a high power pump laser to obtain extreme ATS that resolves

the various magnetic level paths through their different ATS couplings. EIT in a rubidium lambda
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system was reported shortly after in [35].

The 2005 study [40] of the 5𝑆1/2 → 5𝑃3/2 → 5𝑃5/2 in cold rubidium atoms through 420 nm spon-

taneous fluorescence is particularly close to this thesis. This work measures the absolute frequencies

of transitions using a frequency comb. The 2015 study [35] makes use of this same spectroscopy to

measure effective Rabi frequencies associated to the field that couples the first step excitation.

1.2 Contribution

The Cold Atoms Laboratory of the Institute for Nuclear Science (LAF-ICN) has studied this

transition both through absorption and spontaneous fluorescence and observed both EIT and ATS

as described in [39]. Mastering this experiments is a requirement to complete a three photon spec-

troscopy 5𝑆1/2 → 5𝑃3/2 → 5𝐷5/2 → 𝑁𝑃𝐽 , 𝑁𝐹𝐽 aimed at high-N Rydberg states. A review of the

properties of Rydberg atoms (and in particular cold Rydberg atoms) and their applications can be

found in [38], and recent work in this direction in the LAF-ICN is detailed in [31].

An extensive characterization of the MOT in the LAF-ICN is made in [61]. The next natural step

in this direction is to implement a spectroscopy of the 5𝑆1/2 → 5𝑃3/2 → 5𝐷5/2 two-photon

transition in cold rubidium atoms, and this is the objective of this thesis.

All previously reported cold atom spectroscopies have been realized in the absence of all MOT

optical and magnetic fields. This requires the use of elaborate time sequences to cool and trap

atoms, release them, perform measurements in time lapses of the order of 𝜇s, and record the results.

A much simpler scheme with the MOT fields in continuous operation is developed in this thesis,

with spectroscopies realized in approximately 160 ms. The main reason to turn off the MOT fields

in previous studies is that the theoretical treatment of the excitations (particularly for the coherent

phenomena of interest) is more complicated in the presence of the many fields the MOT requires.

In this thesis, the density matrix dynamics of the complete hyperfine and magnetic structure of

the rubidium atom states participating in these processes is calculated according to optical Bloch

equations. To the best of my knowledge this extensive calculation has never been done before,

and neither has the corresponding generalized theory been published. Related software has been

developed for smaller systems [56], and it is my intention to similarly release my implementation for

public use.

1.3 On this thesis

Chapter 2 develops the theory of generalized optical Bloch equations from first principles. These

are the dynamic equations of the density matrix of an arbitrary number of atomic states driven

by an arbitrary number of classical light fields. Optical Bloch equations are well suited to describe

8



coherent phenomena in atomic physics while considering the spontaneous decay of excited states

without a more complicated quantum electrodynamic treatment. In other words, they are the

simplest equations that can describe the spectra that concern this thesis. Two simple examples are

presented: the two level system, that is useful in describing the cooling mechanism; and the three

level ladder system that is the simplest system that can qualitatively describe the spectra in this

thesis.

Chapter 3 deals with the application of these equations to rubidium. The hyperfine structure of

the atomic states is obtained from a combination of theory and experiment. The light-atom interac-

tion hamiltonian is calculated from measurements of the life times of the fine-structure multiplets,

as well as the decay rates among pairs of magnetic states (the branching ratios in magnetic detail).

The calculation of theoretical fluorescence spectra is also explained in this chapter.

A description of the physics underlying the magneto-optical trap is given in chapter 4 from the

point of view of optical Bloch equations. The optical molasses technique, the Doppler cooling limit,

and the role of the magnetic field are explained and the propper configuration of all components is

presented.

The experimental realization of the 5𝑆1/2 → 5𝑃3/2 → 5𝐷5/2 two-photon spectroscopy in cold

atoms is described in chapter 5. The MOT is used to cool and trap both 85Rb and 87Rb, and a probe

beam is used to produce the second step excitation. The excited states in 5𝐷5/2 spontaneously decay

to 6𝑃3/2 states, and the fluorescence from the decay 6𝑃3/2 → 5𝑆1/2 is recorded in a photomultiplier

tube as a function of the frequency of the probe beam. All measurements performed are explained

in detail, as well as the experimental errors associated to these measurements and how they are used

to complete the parameters that the optical Bloch equations require.

The physical quantities obtained in chapters 3 and 5 are then introduced to the equations derived

in chapter 2. The software and hardware used to solve these equations is described in chapter 6.

Approximations to reduce the complexity of the equations are presented and justified. A procedure

to fit the model to the experimental data is presented, and an error associated to the fit is defined.

The combined experimental and theoretical results are discussed in chapter 7. The power and

detuning of the first step transition are varied to observe the dependance of the spectra on those

parameters. Two models are used to describe the resulting spectra: the three level ladder system

derived in chapter 2, and the model describing the complete structure of the atom. The spectra

obtained from the numerical simulations are compared to the experimental spectra, and a theoretical

interpretation of the variations of the spectra is given using the model.

Lastly, conclusions and perspectives for future work are presented in chapter 8.
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Chapter 2

Optical Bloch Equations

The purpose of this chapter is to develop the dynamic equations for the quantum state of a

generic alkali atom as described by the density matrix 𝜌 of the internal states. The Hamiltonian

that describes the interaction between the atom and electromagnetic fields is derived, followed by the

equations it induces from the Liouville-von Neumann equation under several useful approximations.

The dissipation Lindblad terms are also derived for spontaneous decay. This results in generalized

optical Bloch equations. The equations for two simple systems of interest are obtained explicitly and

examined.

2.1 The Interaction Hamiltonian

Let us consider a hydrogen-like atom whose nucleus (together with the filled orbitals) has mass

𝑚𝑛 and position 𝑟⃗𝑛 with respect to an arbitrary origin and the electron has mass 𝑚𝑒 and position

𝑟⃗𝑒. The position 𝑅⃗ of the centre of mass and the position 𝑟⃗ of the electron relative to the nucleus

are

𝑅⃗ =
𝑚𝑛𝑟⃗𝑛 +𝑚𝑒𝑟⃗𝑒
𝑚𝑛 +𝑚𝑒

, 𝑟⃗ = 𝑟⃗𝑒 − 𝑟⃗𝑛.

and conversely

𝑟⃗𝑛 = 𝑅⃗− 𝑚𝑒

𝑚𝑒 +𝑚𝑛
𝑟⃗, 𝑟⃗𝑒 = 𝑅⃗+

𝑚𝑛

𝑚𝑒 +𝑚𝑛
𝑟⃗.

This can be written as a coordinate transformation 𝑞𝑖
′

=
∑︀

𝑖 Λ𝑖′

𝑖 𝑞
𝑖 and 𝑞𝑖 =

∑︀
𝑖′ Λ𝑖

𝑖′𝑞
𝑖′ . Where the

components of the direct and inverse transformation are respectively

Λ𝑖′

𝑖 =

⎛⎝ 𝑚𝑛

𝑚𝑛+𝑚𝑒

𝑚𝑒

𝑚𝑛+𝑚𝑒

−1 1

⎞⎠ , Λ𝑖
𝑖′ =

⎛⎝ 1 − 𝑚𝑒

𝑚𝑛+𝑚𝑒

1 𝑚𝑛

𝑚𝑛+𝑚𝑒

⎞⎠ .
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The classical Lagrangian of this system (without external electromagnetic fields) can be expressed

in these coordinate systems in the following way

𝐿0 =
𝑚𝑛

˙⃗𝑟2𝑛
2

+
𝑚𝑒

˙⃗𝑟2𝑒
2

− 𝑉 (𝑟⃗𝑛, 𝑟⃗𝑒) =
𝑀

˙⃗
𝑅2

2
+
𝜇 ˙⃗𝑟2

2
− 𝑉 (𝑟⃗),

where 𝑀 = 𝑚𝑛 + 𝑚𝑒 is the total mass of the atom, 𝜇 = 𝑚𝑛𝑚𝑒/(𝑚𝑛 + 𝑚𝑒) is the reduced mass,

and 𝑉 (𝑟⃗𝑛, 𝑟⃗𝑒) = 𝑉 (𝑟⃗) is the interaction potential between the nucleus and the outer electron. The

generalized momenta in each coordinate system are 𝑝𝑖 ≡ 𝜕𝐿0/𝜕𝑞
𝑖, that is

𝑝𝑛 = 𝑚𝑛
˙⃗𝑟𝑛, 𝑝𝑒 = 𝑚𝑒

˙⃗𝑟𝑒, 𝑃 = 𝑀
˙⃗
𝑅, 𝑝 = 𝜇 ˙⃗𝑟.

The relation between generalized momenta in the different coordinates are 𝑝𝑖′ =
∑︀

𝑖 Λ𝑖
𝑖′𝑝𝑖 and

𝑝𝑖 =
∑︀

𝑖′ Λ𝑖′

𝑖 𝑝𝑖′ , that is

𝑃 = 𝑝𝑛 + 𝑝𝑒, 𝑝 =
𝑚𝑒

𝑚𝑛 +𝑚𝑒
𝑝𝑛 +

𝑚𝑛

𝑚𝑛 +𝑚𝑒
𝑝𝑒,

𝑝𝑛 =
𝑚𝑛

𝑚𝑛 +𝑚𝑒
𝑃 − 𝑝, 𝑝𝑒 =

𝑚𝑒

𝑚𝑛 +𝑚𝑒
𝑃 + 𝑝.

The corresponding Hamiltonian can be calculated as 𝐻0 =
∑︀

𝑖 𝑞
𝑖𝑝𝑖 − 𝐿0(𝑝𝑖, 𝑞

𝑖)

𝐻0 =
𝑝2𝑛

2𝑚𝑛
+

𝑝2𝑒
2𝑚𝑒

+ 𝑉 (𝑟⃗𝑛, 𝑟⃗𝑒) =
𝑃 2

2𝑀
+
𝑝2

2𝜇
+ 𝑉 (𝑟⃗).

The classical prescription to obtain the Hamiltonian of a charged particle is to replace 𝐻 → 𝐻+ 𝑞𝜑,

and 𝑝 → 𝑝 − 𝑞𝐴⃗ where 𝜑 and 𝐴⃗ are the scalar and vector potentials respectively. This is known

as [?] schleich2011quantum and it also works in quantum mechanics. Promoting the Hamiltonian

to a linear operator acting on the Hilbert space of the quantum system (all of these operators are

denoted with a circumflex̂︀), we obtain the Hamiltonian operator of our quantum system.

𝐻̂ =
(̂⃗︀𝑝𝑛 − 𝑒

̂︀
𝐴(𝑟⃗𝑛, 𝑡))

2

2𝑚𝑛
+

(̂⃗︀𝑝𝑒 + 𝑒
̂︀
𝐴(𝑟⃗𝑒, 𝑡))

2

2𝑚𝑒
+ 𝑉 (𝑟⃗𝑛, 𝑟⃗𝑒) − 𝑒𝜑(𝑟⃗𝑛) + 𝑒𝜑(𝑟⃗𝑒)

=
̂⃗︀𝑝2𝑛

2𝑚𝑛
− 𝑒̂⃗︀𝑝𝑛 · ̂︀𝐴(𝑟⃗𝑛) + 𝑒

̂︀
𝐴(𝑟⃗𝑛) · ̂⃗︀𝑝𝑛

2𝑚𝑛
+
𝑒2
̂︀
𝐴(𝑟⃗𝑛)2

2𝑚𝑛
− 𝑒𝜑(𝑟⃗𝑛)

+
̂⃗︀𝑝2𝑒

2𝑚𝑒
+
𝑒̂⃗︀𝑝𝑒 · ̂︀𝐴(𝑟⃗𝑒) + 𝑒

̂︀
𝐴(𝑟⃗𝑒) · ̂⃗︀𝑝𝑒

2𝑚𝑒
+
𝑒2
̂︀
𝐴(𝑟⃗𝑒)

2

2𝑚𝑒
+ 𝑒𝜑(𝑟⃗𝑒) + 𝑉 (𝑟⃗𝑛, 𝑟⃗𝑒)

In the Coulomb gauge ∇ · 𝐴⃗ = 0 and in the absence of sources 𝜑 = 0, and therefore ̂⃗︀𝑝 · (
̂︀
𝐴𝜓) =

𝜓(̂⃗︀𝑝 · ̂︀𝐴) +
̂︀
𝐴 · (̂⃗︀𝑝𝜓) =

̂︀
𝐴 · (̂⃗︀𝑝𝜓), that is ̂⃗︀𝑝 · ̂︀𝐴(𝑟⃗) =

̂︀
𝐴(𝑟⃗) · ̂⃗︀𝑝. The terms with ̂︀𝐴2

are proportional to

𝑒2 = 4𝜋𝜀0~𝑐𝛼, where 𝛼 is the fine-structure constant. In Plank units this is 𝑒2 = 𝛼 ≃ 1/137, which
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allows us to dismiss these terms, and therefore the Hamiltonian is reduced to

𝐻̂ ≃
̂⃗︀𝑝2𝑛

2𝑚𝑛
+
̂⃗︀𝑝2𝑒

2𝑚𝑒
+ 𝑉 (𝑟⃗𝑛, 𝑟⃗𝑒) −

𝑒
̂︀
𝐴(𝑟⃗𝑛) · ̂⃗︀𝑝𝑛
𝑚𝑛

+
𝑒
̂︀
𝐴(𝑟⃗𝑒) · ̂⃗︀𝑝𝑒
𝑚𝑒

.

The term with ̂︀𝐴(𝑟⃗𝑛) · ̂⃗︀𝑝𝑛 is proportional to 1/𝑚𝑛, and the term with ̂︀𝐴(𝑟⃗𝑒) · ̂⃗︀𝑝𝑒 is proportional to

1/𝑚𝑒. In table 2.1 the ratios between these factors are shown for alkali atoms.

𝑚𝑒/𝑚𝑛 𝑀 (kg)
H 5.4452 × 10−4 1.6738×10−27

Li 7.9052 × 10−5 1.1524×10−26

Na 2.3862 × 10−5 3.8176×10−26

K 1.4030 × 10−5 6.4928×10−26

Rb 6.4184 × 10−6 1.4192×10−25

Cs 4.1274 × 10−6 2.2070×10−25

Fr 2.4597 × 10−6 3.7034×10−25

Table 2.1: Mass ratios for alkali atoms.

If the variations of the field are small through the extension of the atom (which is of the order

of 1nm) then ̂︀
𝐴(𝑟⃗𝑛) and ̂︀

𝐴(𝑟⃗𝑒) are of the same order of magnitude. If we replace the velocities

𝑣⃗cm ≡ 𝑃/𝑀 and 𝑣⃗rel ≡ 𝑝/𝜇 of the mass centre and the relative distance in the momenta we obtain

𝑝𝑛
𝑚𝑛

=
1

𝑚𝑛

(︂
𝑚𝑛

𝑚𝑛 +𝑚𝑒
𝑃 − 𝑝

)︂
= 𝑣⃗cm − 𝑣⃗rel

𝑚𝑒

𝑚𝑛 +𝑚𝑒
≃ 𝑣⃗cm

𝑝𝑒
𝑚𝑒

=
1

𝑚𝑒

(︂
𝑚𝑒

𝑚𝑛 +𝑚𝑒
𝑃 + 𝑝

)︂
= 𝑣⃗cm + 𝑣⃗rel

𝑚𝑛

𝑚𝑛 +𝑚𝑒
≃ 𝑣⃗rel

Where approximations have been made considering the mass ratios and the fact that at room

temperature 𝑣⃗cm ≈ 300𝑚/𝑠, while 𝑣⃗rel is comparable to the speed of light. This way the term̂︀
𝐴(𝑟⃗𝑛) · ̂⃗︀𝑝𝑛/𝑚𝑛 is much smaller than ̂︀𝐴(𝑟⃗𝑒) · ̂⃗︀𝑝𝑒/𝑚𝑒, and we can write the Hamiltonian as

𝐻̂ ≃
̂⃗︀𝑝2𝑛

2𝑚𝑛
+
̂⃗︀𝑝2𝑒

2𝑚𝑒
+ 𝑉 (𝑟⃗𝑛, 𝑟⃗𝑒) +

𝑒
̂︀
𝐴(𝑟⃗𝑒) · ̂⃗︀𝑝𝑒
𝑚𝑒

=
̂⃗︀
𝑃

2

2𝑀
+
̂⃗︀𝑝2
2𝜇

+ 𝑉 (𝑟⃗) +
𝑒
̂︀
𝐴(𝑟⃗𝑒) ·

̂⃗︀
𝑃

𝑀
+
𝑒
̂︀
𝐴(𝑟⃗𝑒) · ̂⃗︀𝑝
𝑚𝑒

.

Once more, since 𝑀 ≫ 𝑚𝑒 we get

𝐻̂ ≃
̂⃗︀
𝑃

2

2𝑀
+
̂⃗︀𝑝2
2𝜇

+ 𝑉 (𝑟⃗) +
𝑒
̂︀
𝐴(𝑟⃗𝑒) · ̂⃗︀𝑝
𝑚𝑒

= 𝐻̂0 +
𝑒
̂︀
𝐴(𝑟⃗𝑒) · ̂⃗︀𝑝
𝑚𝑒

.
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2.1.1 Multipole Expansion

For a completely general vector potential, taking the Fourier transform [33]

𝐴⃗(𝑟⃗𝑒, 𝑡) =

∫︁ ̃︀
𝐴(𝑘⃗, 𝑡)𝑒𝑖𝑘⃗·𝑟⃗𝑒𝑑3𝑘

=

∫︁ ̃︀
𝐴(𝑘⃗, 𝑡)𝑒𝑖𝑘⃗·𝑅⃗𝑒𝑖𝑘⃗·𝑟⃗

𝜇
𝑚𝑒 𝑑3𝑘

=

∫︁ ̃︀
𝐴(𝑘⃗, 𝑡)𝑒𝑖𝑘⃗·𝑅⃗

[︃ ∞∑︁
𝑛=0

1

𝑛!

(︂
𝜇

𝑚𝑒
𝑖𝑘⃗ · 𝑟⃗

)︂𝑛
]︃
𝑑3𝑘

=

∫︁ ̃︀
𝐴(𝑘⃗, 𝑡)𝑒𝑖𝑘⃗·𝑅⃗

[︃ ∞∑︁
𝑛=0

1

𝑛!

(︂
𝜇

𝑚𝑒
𝑖(𝑘𝑥𝑥+ 𝑘𝑦𝑦 + 𝑘𝑧𝑧)

)︂𝑛
]︃
𝑑3𝑘

=

∫︁ ̃︀
𝐴(𝑘⃗, 𝑡)𝑒𝑖𝑘⃗·𝑅⃗

⎡⎢⎢⎢⎢⎢⎣
∞∑︁

𝑛=0

1

𝑛!

𝜇𝑛

𝑚𝑛
𝑒

𝑖𝑛

⎛⎜⎜⎜⎜⎜⎝
∑︁
𝑖, 𝑗, 𝑘

𝑎 + 𝑏 + 𝑐 = 𝑛

𝑛!

𝑎!𝑏!𝑐!
(𝑘𝑥𝑥)𝑎(𝑘𝑦𝑦)𝑏(𝑘𝑧𝑧)

𝑐

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦ 𝑑3𝑘

=

∞∑︁
𝑛=0

𝜇𝑛

𝑚𝑛
𝑒

∑︁
𝑎, 𝑏, 𝑐

𝑎 + 𝑏 + 𝑐 = 𝑛

𝑥𝑎𝑦𝑏𝑧𝑐

𝑎!𝑏!𝑐!

∫︁
𝑖𝑛𝑘𝑎𝑥𝑘

𝑏
𝑦𝑘

𝑐
𝑧
̃︀
𝐴(𝑘⃗, 𝑡)𝑒𝑖𝑘⃗·𝑅⃗𝑑3𝑘.

For an infinitely differentiable function 𝑓(𝑥), the Fourier transform of the derivatives satisfies̃︂𝑓 (𝑛)(𝑘) = (𝑖𝑘)𝑛𝑓(𝑘), therefore
𝜕𝑛𝑓(𝑥)

𝜕𝑥𝑛
=

∫︁
(𝑖𝑘)𝑛𝑓(𝑘)𝑒𝑖𝑘𝑥𝑑𝑘.

Applying this to the vector field we get

𝐴⃗(𝑟⃗𝑒, 𝑡) =

∞∑︁
𝑛=0

𝜇𝑛

𝑚𝑛
𝑒

∑︁
𝑎, 𝑏, 𝑐

𝑎 + 𝑏 + 𝑐 = 𝑛

𝑥𝑎𝑦𝑏𝑧𝑐

𝑎!𝑏!𝑐!

𝜕𝑛

𝜕𝑋𝑎𝜕𝑌 𝑏𝜕𝑍𝑐
𝐴⃗(𝑅⃗, 𝑡)

The first few terms of this series are

𝐴⃗0 = 𝐴⃗(𝑅⃗, 𝑡)

𝐴⃗1 =
𝜇

𝑚𝑒

[︂
𝑥̂
𝜕

𝜕𝑋
𝐴⃗(𝑅⃗, 𝑡) + 𝑦

𝜕

𝜕𝑌
𝐴⃗(𝑅⃗, 𝑡) + 𝑧

𝜕

𝜕𝑍
𝐴⃗(𝑅⃗, 𝑡)

]︂
=

𝜇

𝑚𝑒

3∑︁
𝑗=1

𝑟𝑗
𝜕

𝜕𝑅𝑗
𝐴⃗(𝑅⃗, 𝑡)

𝐴⃗2 =
𝜇2

𝑚2
𝑒

[︂
𝑥2

2

𝜕2

𝜕𝑋2
𝐴⃗(𝑅⃗, 𝑡) +

𝑦2

2

𝜕2

𝜕𝑌 2
𝐴⃗(𝑅⃗, 𝑡) +

𝑧2

2

𝜕2

𝜕𝑍2
𝐴⃗(𝑅⃗, 𝑡)

+𝑦𝑧
𝜕2

𝜕𝑌 𝜕𝑍
𝐴⃗(𝑅⃗, 𝑡) + 𝑥𝑧

𝜕2

𝜕𝑋𝜕𝑍
𝐴⃗(𝑅⃗, 𝑡) + 𝑥𝑦

𝜕2

𝜕𝑋𝜕𝑌
𝐴⃗(𝑅⃗, 𝑡)

]︂
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In this work I will develop the time evolution equations of the system approximating 𝐴⃗(𝑟⃗𝑒, 𝑡) ≃ 𝐴⃗0 =

𝐴⃗(𝑅⃗, 𝑡). This is known as the electric-dipole approximation. In this way, the Hamiltonian becomes

𝐻̂ ≃
̂⃗︀
𝑃

2

2𝑀
+
̂⃗︀𝑝2
2𝜇

+
𝑒𝐴⃗(𝑅⃗, 𝑡) · ̂⃗︀𝑝

𝑚𝑒
.

We can write the interaction Hamiltonian in terms of the ̂⃗︀𝑟 operator instead of the ̂⃗︀𝑝 operator

considering that

̂⃗︀𝑝 =
1

𝑖~
[̂⃗︀𝑟, ̂⃗︀𝑝]̂⃗︀𝑝 =

1

2𝑖~
[̂⃗︀𝑟, ̂⃗︀𝑝2] =

𝜇

𝑖~

[︃̂⃗︀𝑟, ̂⃗︀𝑝2
2𝜇

]︃
=

𝜇

𝑖~

⎡⎣̂⃗︀𝑟, ̂⃗︀𝑝2
2𝜇

+
̂⃗︀
𝑃

2

2𝑀
+ 𝑉0(𝑟⃗)

⎤⎦ =
𝑖𝜇

~
[𝐻̂0, ̂⃗︀𝑟],

where the fact that 𝑃 and 𝑉0 commute with ̂⃗︀𝑟 has been used.

From now on we will use the base |𝑖⟩ of the eigenstates of the 𝐻̂0 Hamiltonian (with eigenvalues

~𝜔𝑖). We will limit the number of eigenstates to𝑁𝑒 and consider any unused states not to contriubute

to the overall state |𝜓⟩ at any time. Using this basis to calculate the matrix elements of the

Hamiltonian, we get

𝐻𝑖𝑗 = ⟨𝑖|𝐻̂0|𝑗⟩ +
𝑖𝑒𝜇

𝑚𝑒~
𝐴⃗(𝑅⃗, 𝑡) · ⟨𝑖|[𝐻̂0, ̂⃗︀𝑟]|𝑗⟩

= ~𝜔𝑖𝛿𝑖𝑗 +
𝑖𝑒𝜇

𝑚𝑒~
𝐴⃗(𝑅⃗, 𝑡) · ⟨𝑖|𝐻̂0

̂⃗︀𝑟 − ̂⃗︀𝑟𝐻̂0|𝑗⟩

= ~𝜔𝑖𝛿𝑖𝑗 +
𝑖𝑒𝜇

𝑚𝑒~
𝐴⃗(𝑅⃗, 𝑡) ·

[︁
~𝜔𝑖⟨𝑖|̂⃗︀𝑟|𝑗⟩ − ~𝜔𝑗⟨𝑖|̂⃗︀𝑟|𝑗⟩]︁

= ~𝜔𝑖𝛿𝑖𝑗 +
𝑖𝑒𝜇

𝑚𝑒
𝐴⃗(𝑅⃗, 𝑡) · ⟨𝑖|̂⃗︀𝑟|𝑗⟩𝜔𝑖𝑗 .

Where we have defined 𝜔𝑖𝑗 ≡ 𝜔𝑖 − 𝜔𝑗 . If we take the Fourier transform of the vector potential we

get

𝐴⃗0 = 𝐴⃗(𝑅⃗, 𝑡)

=

∫︁
𝐴⃗(𝑅⃗, 𝜔)𝑒𝑖𝜔𝑡𝑑𝜔

=

∫︁ 0

−∞
𝐴⃗0(𝑅⃗, 𝜔)𝑒𝑖𝜔𝑡𝑑𝜔 +

∫︁ ∞

0

𝐴⃗0(𝑅⃗, 𝜔)𝑒𝑖𝜔𝑡𝑑𝜔

=

∫︁ ∞

0

𝐴⃗0(𝑅⃗,−𝜔′)𝑒−𝑖𝜔′𝑡𝑑𝜔′ +

∫︁ ∞

0

𝐴⃗0(𝑅⃗, 𝜔)𝑒𝑖𝜔𝑡𝑑𝜔

=

∫︁ ∞

0

[𝐴⃗0(𝑅⃗,−𝜔)𝑒−𝑖𝜔𝑡 + 𝐴⃗0(𝑅⃗, 𝜔)𝑒𝑖𝜔𝑡]𝑑𝜔

=

∫︁ ∞

0

[𝐴⃗
(+)
𝑅𝜔 𝑒

−𝑖𝜔𝑡 + 𝐴⃗
(−)
𝑅𝜔 𝑒

𝑖𝜔𝑡]𝑑𝜔

= 𝐴⃗(+)(𝑅⃗, 𝑡) + 𝐴⃗(−)(𝑅⃗, 𝑡).

14



Here we have defined the positive and negative frequency components of the vector potential 𝐴⃗(±)
𝑅𝜔 ≡

𝐴⃗(𝑅⃗,∓𝜔). Since 𝐴⃗ must be a real quantity, necessarily 𝐴⃗
(±)*
𝑅𝜔 = 𝐴⃗

(∓)
𝑅𝜔 . From this potential the

electric field can be calculated as

𝐸⃗(𝑅⃗, 𝑡) = −𝜕𝑡𝐴⃗0

=

∫︁ ∞

0

[𝑖𝜔𝐴⃗
(+)
𝑅𝜔 𝑒

−𝑖𝜔𝑡 − 𝑖𝜔𝐴⃗
(−)
𝑅𝜔 𝑒

𝑖𝜔𝑡]𝑑𝜔

≡
∫︁ ∞

0

[𝐸⃗
(+)
𝑅𝜔 𝑒

−𝑖𝜔𝑡 + 𝐸⃗
(−)
𝑅𝜔 𝑒

𝑖𝜔𝑡]𝑑𝜔

= 𝐸⃗(+)(𝑅⃗, 𝑡) + 𝐸⃗(−)(𝑅⃗, 𝑡),

which implies that

𝐸⃗
(±)
𝑅𝜔 ≡ ±𝑖𝜔𝐴⃗(±)

𝑅𝜔 ⇒ 𝐴⃗
(±)
𝑅𝜔 = ± 1

𝑖𝜔
𝐸⃗

(±)
𝑅𝜔 .

And therefore 𝐸⃗(±)*
𝑅𝜔 = ∓𝑖𝜔𝐴⃗(∓)

𝑅𝜔 = 𝐸⃗
(∓)
𝑅𝜔 . The components of the Hamiltonian can thus be written

in terms of the electric field as

𝐻𝑖𝑗 = ~𝜔𝑖𝛿𝑖𝑗 +
𝑖𝑒𝜇

𝑚𝑒

[︂∫︁ ∞

0

[𝐴⃗
(+)
𝑅𝜔 𝑒

−𝑖𝜔𝑡 + 𝐴⃗
(−)
𝑅𝜔 𝑒

𝑖𝜔𝑡]𝑑𝜔

]︂
· ⟨𝑖|̂⃗︀𝑟|𝑗⟩𝜔𝑖𝑗 (2.1)

= ~𝜔𝑖𝛿𝑖𝑗 +
𝑒𝜇

𝑚𝑒

[︂∫︁ ∞

0

1

𝜔
[𝐸⃗

(+)
𝑅𝜔 𝑒

−𝑖𝜔𝑡 − 𝐸⃗
(−)
𝑅𝜔 𝑒

𝑖𝜔𝑡]𝑑𝜔

]︂
· ⟨𝑖|̂⃗︀𝑟|𝑗⟩𝜔𝑖𝑗

In the cases of our interest the resonant frequencies 𝜔𝑖𝑗 are of the order of 1014 Hz and the detunings

of the field frequencies 𝜔 with respect to 𝜔𝑖𝑗 are at most of 108 Hz, in other words |𝜔𝑖𝑗 |/𝜔 ≃ 1.

However, it is important to notice that 𝜔𝑖𝑗 = −𝜔𝑗𝑖, and therefore

𝜔𝑖𝑗

𝜔
≃ 𝜀𝑖𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 𝑖 > 𝑗

−1 if 𝑖 < 𝑗

0 if 𝑖 = 𝑗

.

If we also take 𝜇/𝑚𝑒 ≃ 1 we get

𝐻𝑖𝑗 = ~𝜔𝑖𝛿𝑖𝑗 + 𝑒

[︂∫︁ ∞

0

[𝐸⃗
(+)
𝑅𝜔 𝑒

−𝑖𝜔𝑡 − 𝐸⃗
(−)
𝑅𝜔 𝑒

𝑖𝜔𝑡]𝑑𝜔

]︂
· ⟨𝑖|̂⃗︀𝑟|𝑗⟩𝜀𝑖𝑗 . (2.2)

Since 𝐸⃗(±)*
𝑅𝜔 = 𝐸⃗

(∓)
𝑅𝜔 it follows that the integral in 2.2 is a purely imaginary vector, and since ̂⃗︀𝑟 is

hermitian, and 𝜀𝑖𝑗 is antisymmetric, it follows that 𝐻𝑖𝑗 is hermitian as expected. Apart from a

relative phase between the positive and negative frequency components, this Hamiltonian is

𝐻𝑖𝑗 = ~𝜔𝑖𝛿𝑖𝑗 + 𝑒

[︂∫︁ ∞

0

[𝐸⃗
(+)
𝑅𝜔 𝑒

−𝑖𝜔𝑡 + 𝐸⃗
(−)
𝑅𝜔 𝑒

𝑖𝜔𝑡]𝑑𝜔

]︂
· ⟨𝑖|̂⃗︀𝑟|𝑗⟩ = ~𝜔𝑖𝛿𝑖𝑗 + 𝑒𝐸⃗(𝑅⃗, 𝑡) · ⟨𝑖|̂⃗︀𝑟|𝑗⟩.

We can ignore this relative phase since it is only relevant at time scales comparable to the optical
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frequencies, in which it is significantly different if the electric field varies for instance as a sine or

as a cosine. We are interested in frequency scales of the order of 108 Hz however. This last term

is now the usual Hamiltonian found in literature (often without a derivation) as the interaction

Hamiltonian between an atom and an electric dipole radiation field.

2.2 Time Evolution Equations

2.2.1 The Rotating Wave Approximation

The electric field can be decomposed in positive and negative frequency terms 𝐸⃗𝑙(±) (see appendix

A). The ̂⃗︀𝑟 operator can be similarly decomposed. In the interaction picture

̂⃗︀𝑟𝐼 = exp(𝑖𝐻̂0𝑡/~)̂⃗︀𝑟 exp(−𝑖𝐻̂0𝑡/~) =

(︃∑︁
𝑖

𝑒𝑖𝜔𝑖𝑡|𝑖⟩⟨𝑖|

)︃̂⃗︀𝑟
⎛⎝∑︁

𝑗

𝑒−𝑖𝜔𝑗𝑡|𝑗⟩⟨𝑗|

⎞⎠ =
∑︁
𝑖𝑗

𝑒𝑖𝜔𝑖𝑗𝑡𝑟⃗𝑖𝑗 |𝑖⟩⟨𝑗|.

If we assume that the 𝜔𝑖 are ordered it follows that 𝜔𝑖𝑗 ≥ 0 if 𝑖 > 𝑗 and vice-versa. It is therefore

possible to separate ̂⃗︀𝑟𝐼 in positive and negative frequency components as

̂⃗︀𝑟𝐼 =
∑︁
𝑖<𝑗

𝑒−𝑖𝜔𝑗𝑖 𝑟⃗𝑖𝑗 |𝑖⟩⟨𝑗| +
∑︁
𝑖>𝑗

𝑒𝑖𝜔𝑖𝑗 𝑟⃗𝑖𝑗 |𝑖⟩⟨𝑗| = ̂⃗︀𝑟(+)

𝐼 + ̂⃗︀𝑟(−)

𝐼 .

The interaction Hamiltonian in the interaction picture can be rewritten as

−𝑒𝐸⃗(𝑅⃗, 𝑡) · ̂⃗︀𝑟𝐼 = −𝑒
∑︁
𝑙

[𝐸⃗𝑙(+)(𝑅⃗, 𝑡) · ̂⃗︀𝑟(+)

𝐼 + 𝐸⃗𝑙(−)(𝑅⃗, 𝑡) · ̂⃗︀𝑟(−)

𝐼 + 𝐸⃗𝑙(+)(𝑅⃗, 𝑡) · ̂⃗︀𝑟(−)

𝐼 + 𝐸⃗𝑙(−)(𝑅⃗, 𝑡) · ̂⃗︀𝑟(+)

𝐼 ],

and here it can be seen that the time dependance of the terms 𝐸⃗𝑙(±)(𝑅⃗, 𝑡) · ̂⃗︀𝑟(±)

𝐼 will have summed

frequencies ∓𝜔𝑙 ∓𝜔𝑖𝑗 , while the time dependance of the terms 𝐸⃗𝑙(±)(𝑅⃗, 𝑡) · ̂⃗︀𝑟(∓)

𝐼 will have subtracted

frequencies ∓𝜔𝑙 ± 𝜔𝑖𝑗 . In our case, the summed frequencies will be of the order of THz, while the

subtracted frequencies (the laser detunings) will be of the order of MHz. Since we are interested in

examining the course-grained time variation of the states of the atom, we will eliminate the faster

summed frequencies. This way the Hamiltonian is reduced to

−𝑒𝐸⃗(𝑅⃗, 𝑡) · ̂⃗︀𝑟𝐼 = −𝑒[𝐸⃗(+)(𝑅⃗, 𝑡) · ̂⃗︀𝑟(−)

𝐼 + 𝐸⃗(−)(𝑅⃗, 𝑡) · ̂⃗︀𝑟(+)

𝐼 ].

This approximation is known as the rotating wave approximation (RWA) [?]. Going back to the

Schrödinger picture, the ̂⃗︀𝑟 operator is decomposed as

̂⃗︀𝑟 =
∑︁
𝑖<𝑗

𝑟⃗𝑖𝑗 |𝑖⟩⟨𝑗| +
∑︁
𝑖>𝑗

𝑟⃗𝑖𝑗 |𝑖⟩⟨𝑗| = ̂⃗︀𝑟(+)
+ ̂⃗︀𝑟(−)

.
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The complete Hamiltonian becomes

𝐻̂ = 𝐻̂0 − 𝑒[𝐸⃗(+)(𝑅⃗, 𝑡) · ̂⃗︀𝑟(−)
+ 𝐸⃗(−)(𝑅⃗, 𝑡) · ̂⃗︀𝑟(+)

].

The matrix elements of this Hamiltonian are

𝐻𝑖𝑗 = ~𝜔𝑖𝛿𝑖𝑗 − 𝑒(𝐸⃗(−) · 𝑟⃗(+)
𝑖𝑗 + 𝐸⃗(+) · 𝑟⃗(−)

𝑖𝑗 )

= ~𝜔𝑖𝛿𝑖𝑗 − 𝑒
∑︀

𝑙(𝑒
𝑖𝜔𝑙𝑡𝐸⃗

𝑙(−)
0 · 𝑟⃗(+)

𝑖𝑗 + 𝑒−𝑖𝜔𝑙𝑡𝐸⃗
𝑙(+)
0 · 𝑟⃗(−)

𝑖𝑗 )

= ~𝜔𝑖𝛿𝑖𝑗 − 𝑒
∑︀

𝑙

(︂
𝛿

𝑖<𝑗
𝑒𝑖𝜔

𝑙𝑡𝐸⃗
𝑙(−)
0 · 𝑟⃗𝑖𝑗 + 𝛿

𝑖>𝑗
𝑒−𝑖𝜔𝑙𝑡𝐸⃗

𝑙(+)
0 · 𝑟⃗𝑖𝑗

)︂
= ~𝜔𝑖𝛿𝑖𝑗 − 𝑒

∑︀
𝑙𝐸

𝑙
0

(︂
𝛿

𝑖<𝑗
𝑒𝑖𝜔

𝑙𝑡𝜀⃗𝑙(−) · 𝑟⃗𝑖𝑗 + 𝛿
𝑖>𝑗
𝑒−𝑖𝜔𝑙𝑡𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑗

)︂ (2.3)

where 𝛿
𝑖>𝑗

is a symbol similar to Kronecker’s delta that is 1 if 𝑖 > 𝑗 and 0 otherwise. The polarization

vectors 𝜀⃗𝑙(±) are defined in appendix A.

The dot products in this expression can be calculated directly from A.1 using the Cartesian base

with the usual form of the dot product. However, as mentioned before, we will prefer the helicity

basis for the calculation of the matrix elements of 𝑟⃗𝑖𝑗 . The dot product in this base is

𝜀⃗𝑙(±) · 𝑟⃗𝑖𝑗 =

1∑︁
𝑝=−1

(−1)𝑝𝑇 1
−𝑝(𝜀⃗𝑙(±))𝑇 1

𝑝 (𝑟⃗𝑖𝑗) ≡
1∑︁

𝑝=−1

(−1)𝑝𝑌
𝑙(±)
−𝑝 𝑟𝑝𝑖𝑗 , (2.4)

where 𝑟𝑝𝑖𝑗 ≡ 𝑇 1
𝑝 (𝑟⃗𝑖𝑗) is the 𝑝 component of 𝑟⃗𝑖𝑗 in the helicity basis, and 𝑌 𝑙(±)

𝑝 are the coefficients of

𝜀⃗𝑙(±) in the helicity basis, also defined in appendix A.

2.2.2 The Rotating Frame

If the Hamiltonian 2.3 is used to calculate the time evolution equations of the density matrix 𝜌

they will have an explicit time dependance. The derivatives 𝜌̇𝑖𝑗 will have a time dependance 𝑒𝑖𝜔
𝑙𝑡

multiplying each term with 𝜌𝑖𝑗 . In other words, there is no value of 𝑡 for which all the 𝜌̇𝑖𝑗 become

zero, and therefore the density matrix never reaches a steady state. To calculate the dynamics it

would be extremely useful to make a variable change that eliminates the explicit time dependance of

the equations, so the equations reduce to a system of first-order differential equations with constant

coefficients. The general theory for this kind of equations is much simpler than that for variable

coefficients (which is what we have so far).

This can be achieved by making a phase transformation |𝜓⟩ =
∑︀

𝑖 𝑐𝑖(𝑡)|𝑖⟩ =
∑︀

𝑖 𝑒
𝑖𝜃𝑖𝑡𝑐𝑖(𝑡)|𝑖⟩.
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Introducing this into Schrödinger’s equation for our Hamiltonian we get

𝑖~𝜕𝑡|𝜓⟩ = 𝐻̂|𝜓⟩

𝑖~
∑︁
𝑖

(𝑒𝑖𝜃𝑖𝑡 ˙̃𝑐𝑖 + 𝑖𝜃𝑖𝑒
𝑖𝜃𝑖𝑡𝑐𝑖)|𝑖⟩ =

∑︁
𝑖𝑎

𝐻𝑖𝑎|𝑖⟩⟨𝑎|

⎛⎝∑︁
𝑗

𝑒𝑖𝜃𝑗𝑡𝑐𝑗 |𝑗⟩

⎞⎠
~
∑︁
𝑖

(𝑖𝑒𝑖𝜃𝑖𝑡 ˙̃𝑐𝑖 − 𝜃𝑖𝑒
𝑖𝜃𝑖𝑡𝑐𝑖)|𝑖⟩ =

∑︁
𝑖𝑎𝑗

𝐻𝑖𝑎𝑒
𝑖𝜃𝑗𝑡𝑐𝑗 |𝑖⟩⟨𝑎||𝑗⟩

=
∑︁
𝑖𝑗

𝐻𝑖𝑗𝑒
𝑖𝜃𝑗𝑡𝑐𝑗 |𝑖⟩

multiplying by 𝑒−𝑖𝜃𝑖𝑡⟨𝑖| and adding ~𝜃𝑖𝑐𝑖 we get

𝑖~ ˙̃𝑐𝑖 = ~𝜃𝑖𝑐𝑖 +
∑︁
𝑗

𝐻𝑖𝑗𝑒
𝑖(𝜃𝑗−𝜃𝑖)𝑡𝑐𝑗 ,

and substituting the Hamiltonian 2.3 these equations become

𝑖~ ˙̃𝑐𝑖 =
∑︁
𝑗

[︃
~𝜔𝑖𝛿𝑖𝑗 − 𝑒

∑︁
𝑙

𝐸𝑙
0

(︂
𝛿

𝑖<𝑗
𝑒𝑖𝜔

𝑙𝑡𝜀⃗𝑙(−) · 𝑟⃗𝑖𝑗 + 𝛿
𝑖>𝑗
𝑒−𝑖𝜔𝑙𝑡𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑗

)︂]︃
𝑒𝑖(𝜃𝑗−𝜃𝑖)𝑡𝑐𝑗 .

+ ~𝜃𝑖𝑐𝑖

= −𝑒
∑︁
𝑗

∑︁
𝑙

𝐸𝑙
0

(︂
𝛿

𝑖<𝑗
𝑒𝑖(𝜔

𝑙+𝜃𝑗−𝜃𝑖)𝑡𝜀⃗𝑙(−) · 𝑟⃗𝑖𝑗 + 𝛿
𝑖>𝑗
𝑒−𝑖(𝜔𝑙+𝜃𝑖−𝜃𝑗)𝑡𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑗

)︂
𝑐𝑗 .

+ ~(𝜔𝑖 + 𝜃𝑖)𝑐𝑖.

Here we can see that the conditions to eliminate the explicit time dependance are

𝜔𝑙 + 𝜃𝑗 − 𝜃𝑖 = 0 ∀ 𝑖 < 𝑗 & ∀ 𝑙.

Notice that equations 𝜔𝑙+𝜃𝑖−𝜗𝑗 = 0 with 𝑖 > 𝑗 are equivalent. These are 𝑁𝑙𝑁𝑒(𝑁𝑒−1)/2 equations,

which in general are impossible to solve for the 𝑁𝑒 phase changes 𝜃𝑖.

There is hope though. The selection rules couple only some pairs of states, making the ̂⃗︀𝑟 operator

very sparse (in the matrix sense). If a component 𝑟⃗𝑖𝑗 equals zero the 𝑁𝑙 terms 𝑒𝑖(𝜔
𝑙+𝜃𝑗−𝜃𝑖)𝑡𝜀⃗𝑙(±) · 𝑟⃗𝑖𝑗

in Schrödingers’ equations are zero, and the equations 𝜔𝑙 + 𝜃𝑗 − 𝜃𝑖 = 0 are not necessary. This

way the number of equations is reduced to 𝐷(̂⃗︀𝑟)𝑁𝑙𝑁𝑒(𝑁𝑒 − 1)/2 where 𝐷(̂⃗︀𝑟) is the density of the ̂⃗︀𝑟
operator (in the matrix sense).

We can also make the approximation (very realistic in the cases of interest) of assuming that

each transition is driven only by one of the 𝑁𝑙 radiation fields, or at least not by all of them. In

each component of the Hamiltonian there are 𝑁𝑙 terms corresponding to the excitation produced by

each field on the 𝑖, 𝑗 transition. We can define 𝐿𝑖𝑗 as the set of fields that are considered to excite
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the 𝑖, 𝑗 transition. Therefore the Hamiltonian becomes

𝐻𝑖𝑗 = ~𝜔𝑖𝛿𝑖𝑗 − 𝑒
∑︁
𝑙∈𝐿𝑖𝑗

𝐸𝑙
0

(︂
𝛿

𝑖<𝑗
𝑒𝑖𝜔

𝑙𝑡𝜀⃗𝑙(−) · 𝑟⃗𝑖𝑗 + 𝛿
𝑖>𝑗
𝑒−𝑖𝜔𝑙𝑡𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑗

)︂

and the necessary conditions are reduced to

𝜔𝑙 + 𝜃𝑗 − 𝜃𝑖 = 0 ∀𝑖 | 𝑖 < 𝑗, 𝑟⃗𝑖𝑗 ̸= 0 & ∀ 𝑙 ∈ 𝐿𝑖𝑗 .

If this system of equations has at least one solution, then replacing any of them in Schrödinger’s

equation leads to

𝑖~ ˙̃𝑐𝑖 = ~(𝜔𝑖 + 𝜃𝑖)𝑐𝑖 − 𝑒
∑︁
𝑗

∑︁
𝑙∈𝐿𝑖𝑗

𝐸𝑙
0

(︂
𝛿

𝑖<𝑗
𝜀⃗𝑙(−) · 𝑟⃗𝑖𝑗 + 𝛿

𝑖>𝑗
𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑗

)︂
𝑐𝑗

=
∑︁
𝑗

⎡⎣~(𝜔𝑖 + 𝜃𝑖)𝛿𝑖𝑗 − 𝑒
∑︁
𝑙∈𝐿𝑖𝑗

𝐸𝑙
0

(︂
𝛿

𝑖<𝑗
𝜀⃗𝑙(−) · 𝑟⃗𝑖𝑗 + 𝛿

𝑖>𝑗
𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑗

)︂⎤⎦ 𝑐𝑗 .
This equations have no explicit time dependance. For a two level system, if the state |𝜓⟩ is repre-

sented by a Bloch vector, this transformation is equivalent to changing the Bloch vector to a frame

that rotates with frequency 𝜔1 − 𝜔21, this is why this technique is known as going to the rotating

frame. This is the Schrödinger equation corresponding to an effective Hamiltonian whose matrix

elements are

𝐻̃𝑖𝑗 = ~(𝜔𝑖 + 𝜃𝑖)𝛿𝑖𝑗 − 𝑒
∑︁
𝑙∈𝐿𝑖𝑗

𝐸𝑙
0

(︂
𝛿

𝑖<𝑗
𝜀⃗𝑙(−) · 𝑟⃗𝑖𝑗 + 𝛿

𝑖>𝑗
𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑗

)︂
. (2.5)

The tildẽ︀has been added here to denote an effective operator in the rotating frame. This should

not be confused with similar notation in other sources where the tilde denotes operators in the

interaction picture (both uses are common).

We can now use this Hamiltonian to derive the explicit form of the time evolution equations of
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the density matrix for the components of an effective density matrix 𝜌𝑖𝑗 = 𝑒−𝑖(𝜃𝑖−𝜃𝑗)𝑡𝜌𝑖𝑗 .

˙̃𝜌𝑖𝑗 =
𝑖

~
∑︁
𝑘

[𝜌𝑖𝑘𝐻̃𝑘𝑗 − 𝐻̃𝑖𝑘𝜌𝑘𝑗 ]

= − 𝑖𝑒
~
∑︁
𝑘

⎡⎣𝜌𝑖𝑘 ∑︁
𝑙∈𝐿𝑘𝑗

𝐸𝑙
0

(︂
𝛿

𝑘<𝑗
𝜀⃗𝑙(−) · 𝑟⃗𝑘𝑗 + 𝛿

𝑘>𝑗
𝜀⃗𝑙(+) · 𝑟⃗𝑘𝑗

)︂

−
∑︁
𝑙∈𝐿𝑖𝑘

𝐸𝑙
0

(︂
𝛿

𝑖<𝑘
𝜀⃗𝑙(−) · 𝑟⃗𝑖𝑘 + 𝛿

𝑖>𝑘
𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑘

)︂
𝜌𝑘𝑗

]︃

+
𝑖

~
∑︁
𝑘

[𝜌𝑖𝑘~(𝜔𝑘 + 𝜃𝑘)𝛿𝑘𝑗 − ~(𝜔𝑖 + 𝜃𝑖)𝛿𝑖𝑘𝜌𝑘𝑗 ]

=
𝑖𝑒

~
∑︁
𝑘

[︃∑︁
𝑙∈𝐿𝑖𝑘

𝐸𝑙
0

(︂
𝛿

𝑖<𝑘
𝜀⃗𝑙(−) · 𝑟⃗𝑖𝑘 + 𝛿

𝑖>𝑘
𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑘

)︂
𝜌𝑘𝑗

−
∑︁
𝑙∈𝐿𝑘𝑗

𝐸𝑙
0

(︂
𝛿

𝑘<𝑗
𝜀⃗𝑙(−) · 𝑟⃗𝑘𝑗 + 𝛿

𝑘>𝑗
𝜀⃗𝑙(+) · 𝑟⃗𝑘𝑗

)︂
𝜌𝑖𝑘

⎤⎦
+ 𝑖[𝜃𝑗 − 𝜃𝑖 − 𝜔𝑖𝑗 ]𝜌𝑖𝑗

2.2.3 Spontaneous Decay

Because of the interaction of the atom with the vacuum of the surrounding elecromagnetic field,

each state |𝑖⟩ has a decay frequency 𝛾𝑖𝑗 towards the |𝑗⟩ state. Since each |𝑖⟩ → |𝑗⟩ decay implies loss

of population in |𝑖⟩ and gain in |𝑗⟩, it follows that 𝛾𝑖𝑗 = −𝛾𝑗𝑖. Each of these decays is described in

the equations by a Lindblad operator

˙̂𝜌 =
𝑖

~
[𝜌, 𝐻̂] +

∑︁
𝑎>𝑏

𝛾𝑎𝑏ℒ(𝜎̂𝑎𝑏)𝜌
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where

𝛾𝑎𝑏ℒ(𝜎̂𝑎𝑏)𝜌 = 𝛾𝑎𝑏ℒ (|𝑏⟩⟨𝑎|) 𝜌

= 𝛾𝑎𝑏

[︂
|𝑏⟩⟨𝑎|𝜌|𝑎⟩⟨𝑏| − 1

2
[|𝑎⟩⟨𝑏|𝑏⟩⟨𝑎|𝜌+ 𝜌|𝑎⟩⟨𝑏|𝑏⟩⟨𝑎|]

]︂
= 𝛾𝑎𝑏

[︃
|𝑏⟩⟨𝑎|

∑︁
𝑐𝑑

𝜌𝑐𝑑|𝑐⟩⟨𝑑||𝑎⟩⟨𝑏| −
1

2

[︃
|𝑎⟩⟨𝑏|𝑏⟩⟨𝑎|

∑︁
𝑐𝑑

𝜌𝑐𝑑|𝑐⟩⟨𝑑| +
∑︁
𝑐𝑑

𝜌𝑐𝑑|𝑐⟩⟨𝑑||𝑎⟩⟨𝑏|𝑏⟩⟨𝑎|

]︃]︃

=
∑︁
𝑐𝑑

𝛾𝑎𝑏

[︂
𝜌𝑐𝑑|𝑏⟩⟨𝑎||𝑐⟩⟨𝑑||𝑎⟩⟨𝑏| −

1

2
[𝜌𝑐𝑑|𝑎⟩⟨𝑏|𝑏⟩⟨𝑎||𝑐⟩⟨𝑑| + 𝜌𝑐𝑑|𝑐⟩⟨𝑑||𝑎⟩⟨𝑏|𝑏⟩⟨𝑎|]

]︂
=
∑︁
𝑐𝑑

𝛾𝑎𝑏

[︂
𝜌𝑐𝑑𝛿𝑎𝑐𝛿𝑑𝑎|𝑏⟩⟨𝑏| −

1

2
[𝜌𝑐𝑑𝛿𝑎𝑐|𝑎⟩⟨𝑑| + 𝜌𝑐𝑑𝛿𝑑𝑎|𝑐⟩⟨𝑎|]

]︂

= 𝛾𝑎𝑏

[︃
𝜌𝑎𝑎|𝑏⟩⟨𝑏| −

1

2

[︃∑︁
𝑑

𝜌𝑎𝑑|𝑎⟩⟨𝑑| +
∑︁
𝑐

𝜌𝑐𝑎|𝑐⟩⟨𝑎|

]︃]︃

= 𝛾𝑎𝑏

⎡⎣𝜌𝑎𝑎 (|𝑏⟩⟨𝑏| − |𝑎⟩⟨𝑎|) − 1

2

⎡⎣∑︁
𝑑̸=𝑎

𝜌𝑎𝑑|𝑎⟩⟨𝑑| +
∑︁
𝑐̸=𝑎

𝜌𝑐𝑎|𝑐⟩⟨𝑎|

⎤⎦⎤⎦ .
The matrix elements of the equations corresponding to each decay are

⟨𝑖|𝛾𝑎𝑏ℒ(𝜎̂𝑎𝑏)𝜌|𝑗⟩ = 𝛾𝑎𝑏

⎡⎣𝜌𝑎𝑎 (⟨𝑖|𝑏⟩⟨𝑏|𝑗⟩ − ⟨𝑖|𝑎⟩⟨𝑎|𝑗⟩) − 1

2

⎡⎣∑︁
𝑑̸=𝑎

𝜌𝑎𝑑⟨𝑖|𝑎⟩⟨𝑑|𝑗⟩ +
∑︁
𝑐 ̸=𝑎

𝜌𝑐𝑎⟨𝑖|𝑐⟩⟨𝑎|𝑗⟩

⎤⎦⎤⎦
= 𝛾𝑎𝑏

⎡⎣𝜌𝑎𝑎(𝛿𝑖𝑏𝛿𝑏𝑗 − 𝛿𝑖𝑎𝛿𝑎𝑗) −
1

2

⎡⎣∑︁
𝑑̸=𝑎

𝜌𝑎𝑑𝛿𝑖𝑎𝛿𝑑𝑗 +
∑︁
𝑐̸=𝑎

𝜌𝑐𝑎𝛿𝑖𝑐𝛿𝑎𝑗

⎤⎦⎤⎦ ,
so the equations become

˙̃𝜌𝑖𝑗 = 𝑖𝑒
~

[︂∑︀
𝑘

∑︀
𝑙∈𝐿𝑖𝑘

𝐸𝑙
0

(︂
𝛿

𝑘>𝑗

(︂
𝛿

𝑘>𝑖
𝜀⃗𝑙(−) · 𝑟⃗𝑖𝑘 + 𝛿

𝑘<𝑖
𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑘

)︂
𝜌𝑘𝑗 + 𝛿

𝑘<𝑗
(𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑘)𝜌*𝑗𝑘

)︂
−
∑︀

𝑘

∑︀
𝑙∈𝐿𝑘𝑗

𝐸𝑙
0

(︂
𝛿

𝑘<𝑖

(︂
𝛿

𝑘<𝑗
𝜀⃗𝑙(−) · 𝑟⃗𝑘𝑗 + 𝛿

𝑘>𝑗
𝜀⃗𝑙(+) · 𝑟⃗𝑘𝑗

)︂
𝜌𝑖𝑘 + 𝛿

𝑘>𝑖
(𝜀⃗𝑙(+) · 𝑟⃗𝑘𝑗)𝜌*𝑘𝑖

)︂
+
∑︀

𝑙∈𝐿𝑖𝑗
𝐸𝑙

0(𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑗𝜌𝑗𝑗 − 𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑗𝜌𝑖𝑖)
]︁

+𝑖Θ𝑖𝑗𝜌𝑖𝑗

+
∑︀

𝑎>𝑏 𝛾𝑎𝑏

[︁
𝜌𝑎𝑎(𝛿𝑖𝑏𝛿𝑏𝑗 − 𝛿𝑖𝑎𝛿𝑎𝑗) − 1

2

[︁∑︀
𝑑̸=𝑎 𝜌𝑎𝑑𝛿𝑖𝑎𝛿𝑑𝑗 +

∑︀
𝑐̸=𝑎 𝜌𝑐𝑎𝛿𝑖𝑐𝛿𝑎𝑗

]︁]︁
(2.6)

with 𝑖 > 𝑗. Here we have defined Θ𝑖𝑗 ≡ 𝜃𝑗 − 𝜃𝑖 − 𝜔𝑖𝑗 . This is the only part of the equations in

which optical frequencies appear. Whenever possible this will be expressed in terms of detunings

𝛿𝑙𝑖𝑗 ≡ 𝜔𝑙 − 𝜔𝑖𝑗 . The detuning knobs 𝛿𝑙 are defined as the 𝛿𝑙𝑖𝑗 for the smallest 𝜔𝑖𝑗 such that field 𝑙

couples the |𝑖⟩ → |𝑗⟩ transition.

21



2.2.4 Reduction of the number of variables

We can make a few important simplifications to make the calculations more efficient. Firstly,

since 𝜌𝑖𝑗 = 𝜌*𝑗𝑖 then ˙̃𝜌𝑖𝑗 = ˙̃𝜌*𝑗𝑖, so we can use only the equations ˙̃𝜌𝑖𝑗 with 𝑖 ≥ 𝑗 expressing them

purely in terms of the 𝜌𝑖𝑗 with 𝑖 ≥ 𝑗

˙̃𝜌𝑖𝑗 = 𝑖𝑒
~

[︂∑︀
𝑘

∑︀
𝑙∈𝐿𝑖𝑘

𝐸𝑙
0

(︂
𝛿

𝑘>𝑗

(︂
𝛿

𝑘>𝑖
𝜀⃗𝑙(−) · 𝑟⃗𝑖𝑘 + 𝛿

𝑘<𝑖
𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑘

)︂
𝜌𝑘𝑗 + 𝛿

𝑘<𝑗
(𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑘)𝜌*𝑗𝑘

)︂
−
∑︀

𝑘

∑︀
𝑙∈𝐿𝑘𝑗

𝐸𝑙
0

(︂
𝛿

𝑘<𝑖

(︂
𝛿

𝑘<𝑗
𝜀⃗𝑙(−) · 𝑟⃗𝑘𝑗 + 𝛿

𝑘>𝑗
𝜀⃗𝑙(+) · 𝑟⃗𝑘𝑗

)︂
𝜌𝑖𝑘 + 𝛿

𝑘>𝑖
(𝜀⃗𝑙(+) · 𝑟⃗𝑘𝑗)𝜌*𝑘𝑖

)︂
+
∑︀

𝑙∈𝐿𝑖𝑗
𝐸𝑙

0(𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑗𝜌𝑗𝑗 − 𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑗𝜌𝑖𝑖)
]︁

+𝑖Θ𝑖𝑗𝜌𝑖𝑗

+
∑︀

𝑎>𝑏 𝛾𝑎𝑏

[︁
𝜌𝑎𝑎(𝛿𝑖𝑏𝛿𝑏𝑗 − 𝛿𝑖𝑎𝛿𝑎𝑗) − 1

2

[︁∑︀
𝑑̸=𝑎 𝜌𝑎𝑑𝛿𝑖𝑎𝛿𝑑𝑗 +

∑︀
𝑐̸=𝑎 𝜌𝑐𝑎𝛿𝑖𝑐𝛿𝑎𝑗

]︁]︁
.

(2.7)

Secondly, the trace of the density matrix is normalized to 1, therefore we can avoid calculating one of

the equations along the diagonal of ˙̃𝜌𝑖𝑗 . We choose 𝜌11 = 1 −
∑︀𝑁𝑒

𝑘=2 𝜌𝑘𝑘. To implement this formula

in programming it is convenient to use an exception for the terms that depend on 𝜌11. These terms

are in equations ˙̃𝜌𝑖1 with 𝑖 ̸= 1, shown in blue in 2.7.

Since the populations are always real, we are thus left with

𝑁𝜌 ≡ 𝑁2
𝑒 − 1

real numbers to characterize the density matrix, instead of all 2𝑁2
𝑒 real and imaginary parts of the

matrix elements.

2.3 The Steady State

Solving these optical Bloch equations one obtains the time evolution of the density matrix.

However, in the present work the detailed time evolution of the density matrix is not necessary.

Instead, the atoms are given enough time to reach a state in which ˙̃𝜌𝑖𝑗 = 0, known as the steady

state. Under typical experimental conditions the steady state is reached in times comparable to the

inverse (2𝜋 ·667 KHz)−1 ≈ 238 ns. Therefore, under variations of experimental conditions that occur

in time scales longer than this, the density matrix can be considered to always be in a steady state.

Furthermore, although the equations in the form obtained so far may be used to calculate time

evolution by integrating numerically (for instance with Runge-Kutta methods) this is far from the

best approach. Instead, both the time evolution and the steady state can be calculated with methods

far more reliable and efficient that exploit the linearity of the equations to attack the problem with

advanced software for linear algebra.

Given arbitrary initial conditions the density matrix will evolve according to equations 2.7 until
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it reaches the steady state. Since all the terms in these equations depend at most linearly in some

𝜌𝑎𝑏, this defines a system of linear equations. If one were not to replace 𝜌11 = 1−
∑︀𝑁𝑙

𝑖=2 𝜌𝑖𝑖 all of the

terms would be linear in some 𝜌𝑎𝑏, but the 1 in this substitution gives rise to terms that have no

dependance on density matrix components. If we now think of the density matrix as a vector in a

vector space whose dimension is the number of independent real components of the density matrix

(𝑁𝜌 ≡ 𝑁2
𝑒 − 1) the equations can be seen to be of the form

−̇→̃
𝜌= 𝐴

−→̃
𝜌 − 𝑏⃗, (2.8)

where 𝐴 is a matrix whose components are the coefficients of the linear combinations of 𝜌𝑎𝑏 in the

equations and 𝑏⃗ is a vector whose components are the independent terms in each equation (if any).

The equations in the steady state are therefore

𝐴
−→̃
𝜌 = 𝑏⃗.

Thus the steady state can be found by solving this system of linear algebraic equations. However,

the challenge now is to produce the 𝐴 matrix and the 𝑏⃗ vector from the experimental parameters

𝐸𝑙
0, 𝛿

𝑙, 𝜔𝑖𝑗 , 𝛾𝑖𝑗 and 𝑟𝑝𝑖𝑗 .

To write the system of equations in matrix form some order for the components must be estab-

lished. We will define an index 𝜇(𝑖, 𝑗) in the following way

𝜇 = 1, 2, . . . 𝑁𝑒 − 1⏟  ⏞  
Populations

, 𝑁𝑒, . . .
𝑁2

𝑒 +𝑁𝑒

2
− 1⏟  ⏞  

Real parts of coherences

,
𝑁2

𝑒 +𝑁𝑒

2
, . . . 𝑁2

𝑒 − 1⏟  ⏞  
Imaginary parts of coherences

to label the components of the density matrix in the following way

1. The first 𝑁𝑒 − 1 indices correspond to the populations 𝜌22, . . . 𝜌𝑁𝑒𝑁𝑒
.

2. The next 𝑁𝑒(𝑁𝑒−1)
2 indices correspond to the real parts of the coherences 𝜌𝑖𝑗 with 𝑖 > 𝑗 ordered

by columns left to right and in descending order.

3. The next 𝑁𝑒(𝑁𝑒−1)
2 indices correspond to the imaginary parts of coherences 𝜌𝑖𝑗 with 𝑖 > 𝑗

ordered in the same way.

This way, 𝜇 can be calculated as

𝜇(𝑖, 𝑗, 𝑠) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑖− 1 if𝑖 = 𝑗

𝑖− 𝑗 +
∑︀𝑗−1

𝑘=1(𝑁𝑒 − 𝑘) if𝑖 ̸= 𝑗 & 𝑠 = +1

𝑁𝑒(𝑁𝑒 − 1)/2 + 𝑖− 𝑗 +
∑︀𝑗−1

𝑘=1(𝑁𝑒 − 𝑘) if𝑖 ̸= 𝑗 & 𝑠 = −1

Once established this correspondence the functions 𝑖(𝜇) and 𝑗(𝜇) are also defined. Also, to simplify
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the notation, we will define a part operator that extracts the real or imaginary part of a complex

number

Pa(𝑠, 𝑧) =

⎧⎨⎩ ℜe(𝑧) if𝑠 = +1

ℑm(𝑧) if𝑠 = −1
.

A detailed derivation of the independent vector is given in appendix C that results in

𝑏𝜈(𝑖,1,𝑠) = −𝑠 𝑒
~
∑︁
𝑙∈𝐿𝑖1

𝐸𝑙
0Pa(−𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑖1) (2.9)

The components of the 𝐴 operator can be obtained from

˙̃𝜌𝜇(𝑖,𝑗,𝑠) = 𝑠𝑒
~
[︀∑︀

𝑘

∑︀
𝑙∈𝐿𝑘𝑗

𝐸𝑙
0

(︂
𝛿

𝑘<𝑖
𝛿

𝑘<𝑗
(Pa(−𝑠, 𝜀⃗𝑙(−) · 𝑟⃗𝑘𝑗)𝜌𝜈(𝑖,𝑘,1) + 𝑠Pa(𝑠, 𝜀⃗𝑙(−) · 𝑟⃗𝑘𝑗)𝜌𝜈(𝑖,𝑘,−1))

+ 𝛿
𝑘<𝑖

𝛿
𝑘>𝑗

(Pa(−𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑘𝑗)𝜌𝜈(𝑖,𝑘,1) + 𝑠Pa(𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑘𝑗)𝜌𝜈(𝑖,𝑘,−1))

+ 𝛿
𝑘>𝑖

(Pa(−𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑘𝑗)𝜌𝜈(𝑘,𝑖,1) − 𝑠Pa(𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑘𝑗)𝜌𝜈(𝑘,𝑖,−1))

)︂
−
∑︀

𝑙∈𝐿𝑖𝑘
𝐸𝑙

0

(︂
𝛿

𝑘>𝑗
𝛿

𝑘>𝑖
(Pa(−𝑠, 𝜀⃗𝑙(−) · 𝑟⃗𝑖𝑘)𝜌𝜈(𝑘,𝑗,1) + 𝑠Pa(𝑠, 𝜀⃗𝑙(−) · 𝑟⃗𝑖𝑘)𝜌𝜈(𝑘,𝑗,−1))

+ 𝛿
𝑘>𝑗

𝛿
𝑘<𝑖

(Pa(−𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑘)𝜌𝜈(𝑘,𝑗,1) + 𝑠Pa(𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑘)𝜌𝜈(𝑘,𝑗,−1))

+ 𝛿
𝑘<𝑗

(Pa(−𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑘)𝜌𝜈(𝑗,𝑘,1) − 𝑠Pa(𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑘)𝜌𝜈(𝑗,𝑘,−1))

)︂
+
∑︀

𝑙∈𝐿𝑖𝑗
𝐸𝑙

0Pa(−𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑗)(𝜌𝜈(𝑖,𝑖) − 𝜌𝜈(𝑗,𝑗))
]︁

−𝑠Θ𝑖𝑗𝜌𝜈(𝑖,𝑗,−𝑠) −
𝛾𝑖𝑗

2 𝜌𝜈(𝑖,𝑗,𝑠)

+
∑︀

𝑎>𝑏 𝛾𝑎𝑏

[︁
(𝛿𝑖𝑏𝛿𝑏𝑗 − 𝛿𝑖𝑎𝛿𝑎𝑗)𝜌𝜈(𝑎,𝑎,𝑠) − 1

2

[︁∑︀
𝑑 ̸=𝑎 𝛿𝑖𝑎𝛿𝑑𝑗𝜌𝜈(𝑎,𝑑,𝑠) +

∑︀
𝑐 ̸=𝑎 𝛿𝑖𝑐𝛿𝑎𝑗𝜌(𝑐,𝑎,𝑠)

]︁]︁
.

(2.10)

which is also derived in detail in appendix C.

2.4 The Two Level System

The simplest version of these equations is that for a two level system coupled by a single radiation

field. In other words 𝑁𝑒 = 2, 𝑁𝑙 = 1. Assuming that the light is taken to be linearly polarized along

the 𝑧 axis, the effective Hamiltonian as given by 2.5 is

̂︀𝐻 =

⎛⎝ ~(𝜔1 + 𝜔1) 1
2𝑒𝐸

1
0𝑟012

1
2𝑒𝐸

1
0𝑟021 ~𝜔2

⎞⎠ .

We can change the zero of our energy without changing any of the physics by subtracting ~(𝜔1+𝜔1)𝐼2

from this Hamiltonian (with 𝐼2 the 2 × 2 identity matrix). We define a generalized Rabi frequency

as

Ω𝑙𝑖𝑗 =
𝑒

~
𝐸⃗𝑙

0 · 𝑟⃗𝑖𝑗 ,

24



so we can take Ω1 = 𝑒𝐸1
0𝑟021/~ and rewrite the Hamiltonian more conveniently as

̂︀𝐻 = ~

⎛⎝ 0 1
2Ω1

1
2Ω1 −𝛿1

⎞⎠
Laser fields will be labelled with superindices and subindices somewhat interchangeably in this

section and the next. If we now consider a decay frequency 𝛾 = 𝛾21 from the higher state, the time

evolution equations in their matrix form as described in section 2.3

˙⃗𝜌 =

⎛⎜⎜⎜⎝
−𝛾 0 −Ω1

0 −𝛾
2 −𝛿1

Ω1 𝛿1 𝛾
2

⎞⎟⎟⎟⎠ 𝜌⃗−

⎛⎜⎜⎜⎝
0

0

Ω1

2

⎞⎟⎟⎟⎠ .

which are found in many textbooks [44], [21] written in slightly different terms, often called the

optical Bloch equations. The steady state for this equations is

𝜌⃗ =

⎛⎜⎜⎜⎝
𝜌22

ℜe𝜌21
ℑm𝜌21

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
2Ω1𝛿1

(2Ω2
1+𝛾2+4𝛿21)

Ω2
1

(2Ω2
1+𝛾2+4𝛿21)

−Ω1𝛾
(2Ω2

1+𝛾2+4𝛿21)

⎞⎟⎟⎟⎠ .

which will be of use in chapter 4. Figure 2-1a) shows the dependance of 𝜌22 on the Rabi frequency Ω1.

As the power increases, the population in the excited state grows, and in resonance it asymptotically

approaches 1/2. The full width at half maximum (FWHM) is shown as horizontal bars. It can be

easily shown that FWHM =
√︀

2Ω2
1 + 𝛾2. It can be seen that this grows with power, which is known

as power broadening.

Figure 2-1b) shows the real part of 𝜌21 with dashed lines and the imaginary part as solid lines

of the same colour. The imaginary part is proportional to the absorption coefficient of the atomic

medium, and the real part is the electric susceptibility [47].

2.5 The Three Level Ladder System

Another less trivial example that will be of use in this thesis as a simple approximation to the

experimental spectroscopy described in chapter 5 is the three level ladder system. This system is

dicussed in detail in [76]. Consider this same two level system, with one more state with energy

higher than the other two. This third state is coupled by a second laser field to the higher energy

lower state. This particular choice of coupling leaves levels 1-3 decoupled (𝑟⃗13 = 𝑟⃗31 = 0), which

defines the ladder system, as opposed to the lambda and V systems that leave levels 1-2 and 2-3

decoupled respectively. This three configurations are sometimes called Ξ,Λ, 𝑉 respectively, since
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Figure 2-1: The overall tendency of the density matrix for 𝛾 = 6. a) The excited state population 𝜌22 b)
The real part of the coherence 𝜌21 in dashed lines and the imaginary part of the coherence 𝜌21 in dashed
lines.

those characters somehow depict the couplings [23].

These are the most simple systems for which eliminating the explicit time dependance from the

equations is not trivial. For the Ladder system it is necessary to approximate field 1 as coupling

only levels 1-2, and field 2 as coupling only levels 2-3. In other words, it is necessary to consider

𝐿𝑖𝑗 =

⎛⎜⎜⎜⎝
{} {1} {}

{1} {} {2}

{} {2} {}

⎞⎟⎟⎟⎠
in expression 2.5 for the effective Hamiltonian. With this consideration, and taking both fields to

be linearly polarized along the 𝑧 axis the effective Hamiltonian is

̂︀𝐻 =

⎛⎜⎜⎜⎝
~(𝜔1 + 𝜔1 + 𝜔2) 1

2𝑒𝐸
1
0𝑟012 0

1
2𝑒𝐸

1
0𝑟021 ~(𝜔2 + 𝜔2) 1

2𝑒𝐸
2
0𝑟023

0 1
2𝑒𝐸

2
0𝑟032 ~𝜔3

⎞⎟⎟⎟⎠ .

Substracting ~(𝜔1 +𝜔1 +𝜔2)𝐼3 (with 𝐼3 the 3×3 identity matrix) and defining Ω1 = 𝑒𝐸1
0𝑟021/~ and

Ω2 = 𝑒𝐸2
0𝑟032/~ the Hamiltonian becomes

̂︀𝐻 = ~

⎛⎜⎜⎜⎝
0 1

2Ω1 0

1
2Ω1 −𝛿1 1

2Ω2

0 1
2Ω2 −𝛿1 − 𝛿2

⎞⎟⎟⎟⎠ . (2.11)

where 𝛿1 = 𝜔1 − 𝜔2 + 𝜔1 and 𝛿2 = 𝜔2 − 𝜔3 + 𝜔2. Considering decay frequencies 𝛾21 and 𝛾32 we get
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the following optical Bloch equations in matrix form

˙⃗𝜌 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝛾21 𝛾32 0 0 0 −Ω1 0 Ω2

0 −𝛾32 0 0 0 0 0 −Ω2

0 0 −𝛾21

2 0 0 −𝛿1 Ω2

2 0

0 0 0 −𝛾32 0 Ω2

2 −𝛿1 − 𝛿2 −Ω1

2

0 0 0 0 −𝛾21+𝛾32

2 0 −Ω1

2 −𝛿2

Ω1
Ω1

2 𝛿1 −Ω2

2 0 −𝛾21 0 0

0 0 −Ω2

2 𝛿1 + 𝛿2 Ω1

2 0 −𝛾32 0

−Ω2

2
Ω2

2 0 Ω1

2 𝛿2 0 0 −𝛾21+𝛾32

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌22

𝜌33

ℜe𝜌21
ℜe𝜌31
ℜe𝜌32
ℑm𝜌21
ℑm𝜌31
ℑm𝜌32

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

0

0

1
2Ω1

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The steady state solution of this equations has complicated expressions, and they will not be shown

here.

2.5.1 Autler-Townes Splitting

Let us separate the Hamiltonian 2.11 in three parts

̂︀𝐻 = ̂︀𝐻0+ ̂︀𝐻1+ ̂︀𝐻2 = ~

⎛⎜⎜⎜⎝
0 0 0

0 𝜔2 − 𝜔1 0

0 0 𝜔3 − 𝜔1

⎞⎟⎟⎟⎠+~

⎛⎜⎜⎜⎝
0 1

2Ω1 0

1
2Ω1 −𝜔1 0

0 0 −𝜔1

⎞⎟⎟⎟⎠+~

⎛⎜⎜⎜⎝
0 0 0

0 0 1
2Ω2

0 1
2Ω2 −𝜔2

⎞⎟⎟⎟⎠
associated with the atom, the first field and the second field respectively. We may thus consider

the second field to be a perturbation (not necessarily small) to a Hamiltonian ̂︀𝐻 ′

0 = ̂︀𝐻0 + ̂︀𝐻1. The

energies of the eigenstates of this Hamiltonian (that the 𝜔2 frequency will probe) are

𝐸− = ~

(︃
−𝛿1 −

√︀
Ω2

1 + 𝛿21
2

)︃
, 𝐸+ = ~

(︃
−𝛿1 +

√︀
Ω2

1 + 𝛿21
2

)︃
, 𝐸3 = −~(𝜔1−𝜔3+𝜔1) = ~(𝜔32−𝛿1).

Figure 2-2a shows the overall dependance of these eigenvalues. For a given Ω1 the detuning 𝛿1 > 0

leads to a negative 𝐸− and zero 𝐸+, and the converse for 𝛿1 < 0 (very high 𝐸+ and zero 𝐸−). The

corresponding eigenvectors are

|−⟩ =

⎛⎜⎜⎜⎜⎜⎝
Ω2

1

2
(︁
Ω2

1+𝛿21−𝛿1
√

Ω2
1+𝛿21

)︁
−Ω1

(︁
𝛿1−

√
Ω2

1+𝛿21

)︁
2
(︁
Ω2

1+𝛿21−𝛿1
√

Ω2
1+𝛿21

)︁
0

⎞⎟⎟⎟⎟⎟⎠ , |+⟩ =

⎛⎜⎜⎜⎜⎜⎝
Ω2

1

2
(︁
Ω2

1+𝛿21+𝛿1
√

Ω2
1+𝛿21

)︁
−Ω1

(︁
𝛿1+

√
Ω2

1+𝛿21

)︁
2
(︁
Ω2

1+𝛿21+𝛿1
√

Ω2
1+𝛿21

)︁
0

⎞⎟⎟⎟⎟⎟⎠ , |3⟩ =

⎛⎜⎜⎜⎝
0

0

1

⎞⎟⎟⎟⎠ .
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These |±⟩ are called Autler-Townes doublets [65]. This means that the second field will be resonant

with transitions |±⟩ → |3⟩ when

𝜔2 = 𝜔2
± = (𝐸3 − 𝐸±)/~ = 𝜔32 − 𝛿1 −

−𝛿1 ±
√︀

Ω2
1 + 𝛿21

2
= 𝜔32 −

𝛿1
2

∓
√︀

Ω2
1 + 𝛿21
2

subtracting 𝜔32 from this equation gives us what the detunings 𝛿2 must be

𝛿2± = −𝛿1
2

∓
√︀

Ω2
1 + 𝛿21
2

.

The more intuitive picture that the second field is in resonance when 𝜔2 = 𝜔3 − 𝜔2 (𝛿2 = 0) is thus

valid when 𝛿1 = Ω1 = 0. This is a good approximation in many cases in spectroscopy, but in this

thesis the dependance of spectra on these parameters will be explored.
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Figure 2-2: The overall tendency of spectra for 𝛾21 = 6, 𝛾32 = 1, Ω2 = 5.

In figure 2-2b) 𝜌33 in the steady state is shown for various parameter combinations. At this point

𝜌33 will be regarded directly as a spectrum, this will be justified in section 3.3. For each of these

spectra the position of each peak as predicted above is shown as a point. Notice that the |+⟩ → |3⟩

peak has the smallest resonant frequency, and thus will appear to the left of the |−⟩ → |3⟩ peak. As

the power (represented by Ω1) grows, the peak becomes higher and at some point it splits into two

peaks. This is known as Autler-Townes Splitting or the AC Stark effect (ATS).

Figure 2-3a) shows how ATS behaves when 𝛿1 < 0. As the power increases, the peak grows, but

instead of being split, it develops a shoulder that eventually becomes a second peak. The peaks start

with different heights, and as power goes up they become more symmetric.

On figure 2-3b) the dependance on 𝛿1 is examined leaving Ω1 unchanged. At zero detuning

both peaks are of the same height, and as it increases the |−⟩ → |3⟩ peak becomes higher and the

|+⟩ → |3⟩ peak becomes smaller. Also, the midpoint of the peaks is displaced and is always at
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Figure 2-3: The overall tendency of spectra for 𝛾21 = 6, 𝛾32 = 1, Ω2 = 5.

(𝛿2+ + 𝛿2−)/2 = −𝛿1/2 just as the theory shows.

29



Chapter 3

The Rubidium Atom

The previous chapter dealt with a generic hydrogen-like atom, however the quantities that de-

scribe the atom: energy levels 𝜔𝑖, the transition frequencies 𝜔𝑖𝑗 , the matrix elements of the dipole

operator 𝑒𝑟𝑝𝑖𝑗 , and the decay frequencies 𝛾𝑖𝑗 were not specified. These quantities are calculated

from various other measured quantities.

In order to refer to individual atomic states, a mixed notation will be used from now on. In

the previous chapter a single index 𝑖 (or 𝑗) was used to label the states according to their energy.

Since the atom has a structure that is better described by quantum numbers, quantum numbers

|𝑁𝑖𝐿𝑖𝑆𝑖𝐽𝑖𝐼𝑖𝐹𝑖𝑀𝑖⟩ will be used to make reference to this structure while keeping in mind a global 𝑖

index.

3.1 Atomic Structure

Since the rubidium atom has all the lower shells filled and only a single valence electron, as a

first approximation it can be treated as hydrogen-like system. In other words, interactions of the

electrons in the lower shells with the radiation fields will not be considered. The states can be

labelled using quantum numbers of the valence electron only

|𝜓⟩atom = |𝑁,𝐿, 𝑆, 𝐽, 𝐼, 𝐹,𝑀𝐹 ⟩.

For alkali atoms 𝑆 is always 1
2 , so from now on it will not be shown explicitly in Dirac notation

unless it is needed. The nuclear angular momentum 𝐼 = 5/2, (3/2) for 85 Rb (87 Rb) will also be left

implicit in most cases from now on. Other quantum numbers may also be ignored when states are

referenced collectively.

States are commonly abbreviated using Russel-Saunders notation, which states first 𝑁2𝑆+1, then

𝐿 in spectroscopic notation 𝐿 = 𝑆, 𝑃,𝐷, 𝐹,𝐺, . . . ≡ 0, 1, 2, 3, 4, . . . followed by 𝐽 as a subindex [37].
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For instance, the ground state of rubidium is

|𝑁 = 5, 𝐿 = 0, 𝑆 =
1

2
, 𝐽 =

1

2
⟩ = 52𝑆1/2.

However, the superindex will not be shown from now on, since it is always 2 for alkali atoms.

The energy of these states may be calculated numerically from first principles, but this is outside

the scope of this thesis. Instead, we will directly use experimental data to model the atomic struc-

ture. The spin-orbit interaction Hamiltonian breaks the degeneration of |𝑁,𝐿⟩ states and produces

different energies for |𝑁,𝐿, 𝐽⟩ that are known as the fine structure. These values are taken from [60].

The coupling with the nucleus spin further breaks degeneration and produces the hyperfine

structure through the Hamiltonian [16] [3] [5] [25]

𝐻̂hfs = 𝐴hfs

−→
𝐼 ·

−→
𝐽 +𝐵hfs

3(
−→
𝐼 ·

−→
𝐽 )2 + 3

2 (
−→
𝐼 ·

−→
𝐽 ) − 𝐼(𝐼 + 1)𝐽(𝐽 + 1)

2𝐼(2𝐼 − 1)𝐽(2𝐽 − 1)
+ . . .

Where 𝐴hfs and 𝐵hfs are respectively known as the magnetic dipole constant and the electric

quadrupole constant for a particular fine structure energy level and isotope. This Hamiltonian

produces energy shifts

∆𝐸hfs = 𝐴hfs𝐾 +𝐵hfs

3
2𝐾(𝐾 + 1) − 2𝐼(𝐼 + 1)𝐽(𝐽 + 1)

2𝐼(2𝐼 − 1)𝐽(2𝐽 − 1)
+ . . .

where

𝐾 = 𝐹 (𝐹 + 1) − 𝐼(𝐼 + 1) − 𝐽(𝐽 + 1).

The values of 𝐴hfs and 𝐵hfs are taken from [60] and [3]. In this manner the energy ~𝜔𝑖 of each

|𝑁𝑖, 𝐿𝑖, 𝐽𝑖, 𝐼𝑖, 𝐹𝑖⟩ can be calculated. The structure of 85 Rb (87 Rb) is shown in figure 3-1 (3-2).

Each hyperfine multiplet is shown labelled by the corresponding 𝐹 . The frequency differences

between hyperfine levels are indicated between them (in absolute frequency). Whenever possible,

this differences are shown with distances in proportion.

The Autler-Townes splitting from the high intensity of the field driving the transition 5𝑆1/2𝐹 =

3(2) → 5𝑃3/2𝐹 = 4(3) is shown schematically as split levels displaced by −𝛿1/2 as explained in

section 2.5.1.

The excitations driven by the laser fields of the experiment described in 5 are shown as arrows.

The transitions allowed by the electric dipole selection rules (derived in appendix F) are shown as

wavy lines connecting fine-structure multiplets. The light from the spontaneous decay shown in

purple has a wavelength of 420 nm. Other spontaneous decays of importance are shown in red, and

the rest in gray to indicate that they occur.

From these energies, the 𝜔𝑖𝑗 = 𝜔𝑖−𝜔𝑗 matrix required by the theory derived in chapter 2 can be
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Figure 3-1: The hyperfine structure of 85Rb. Each hyperfine multiplet is shown labelled by the corresponding
𝐹 . The frequency differences between hyperfine levels are indicated between them (in absolute frequency).
Whenever possible, this differences are shown with distances in proportion. The excitations driven by
the laser fields of the experiment described in are shown as arrows; the cooling laser coupling the states
5𝑆1/2𝐹 = 3 → 5𝑃3/2𝐹 = 4 (with detuning −𝛿1), the repump laser coupling states 5𝑆1/2𝐹 = 2 → 5𝑃3/2𝐹 = 3,
and the probe laser coupling states 5𝑃3/2𝐹 = 4 → 5𝑃3/2𝐹 = 5, 4, 3. When ATS is present, the 5𝑃3/2𝐹 = 4
multiplet is split into |±⟩ states. This doublet states are coupled by the probe laser to the 5𝐷5/2 multiplet.
Spontaneous decays are shown as wavy lines, the repump spontaneous decay 5𝑃3/2𝐹 = 3 → 5𝑆1/2𝐹 = 3
is shown in red, as is the return decay 5𝐷5/2 → 5𝑃3/2. The 420 nm spontaneous decay detected by the
photomultiplier tubes is shown in purple.
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Figure 3-2: The hyperfine structure of 85Rb. Each hyperfine multiplet is shown labelled by the corresponding
𝐹 . The frequency differences between hyperfine levels are indicated between them (in absolute frequency).
Whenever possible, this differences are shown with distances in proportion. The excitations driven by
the laser fields of the experiment described in are shown as arrows; the cooling laser coupling the states
5𝑆1/2𝐹 = 2 → 5𝑃3/2𝐹 = 3 (with detuning −𝛿1), the repump laser coupling states 5𝑆1/2𝐹 = 1 → 5𝑃3/2𝐹 = 2,
and the probe laser coupling states 5𝑃3/2𝐹 = 3 → 5𝑃3/2𝐹 = 4, 3, 2. When ATS is present, the 5𝑃3/2𝐹 = 3
multiplet is split into |±⟩ states. This doublet states are coupled by the probe laser to the 5𝐷5/2 multiplet.
Spontaneous decays are shown as wavy lines, the repump spontaneous decay 5𝑃3/2𝐹 = 2 → 5𝑆1/2𝐹 = 2
is shown in red, as is the return decay 5𝐷5/2 → 5𝑃3/2. The 420 nm spontaneous decay detected by the
photomultiplier tubes is shown in purple.
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calculated. The full 𝜔𝑖𝑗 matrix is shown in figure 3-3 (3-4) for 85 Rb (87 Rb). In these matrices red

lines have been traced to separate fine structure states, and blue lines to separate hyperfine states.

Blocks of similar colour correspond to transitions of similar resonant frequencies. In particular, the

two-photon transition

5𝑆1/2 → 5𝑃3/2 → 5𝐷5/2

is the focus of this thesis, and the steps are resonant at 780.2414 nm and 775.9786 nm.
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Figure 3-3: The transition frequencies 𝜔𝑖𝑗 for 85 Rb in rad /𝑠.
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Figure 3-4: The transition frequencies 𝜔𝑖𝑗 for 87 Rb in rad /𝑠.

35



3.2 Derived quantities

However, not all transitions shown in figures 3-3 and 3-4 are allowed by the electric dipole

Hamiltonian derived in chapter 2. The transition |𝑖⟩ → |𝑗⟩ is allowed only if the corresponding

matrix element of the interaction Hamiltonian 𝑒𝐸⃗ · ̂⃗︀𝑟 is non-zero. We will calculate these matrix

elements in the helicity basis to exploit the symmetries of Wigner symbols.

In appendix D the matrix elements of the dipole operator are reduced to the following expression

⟨𝑁𝑖𝐿𝑖𝐽𝑖𝐹𝑖𝑀𝑖|𝑇 1
𝑝 (̂⃗︀𝑟)|𝑁𝑗𝐿𝑗𝐽𝑗𝐹𝑗𝑀𝑗⟩ = (−1)𝐹𝑖−𝑀𝑖+𝐽𝑖+𝐼+𝐹𝑗+1

√︀
(2𝐹𝑗 + 1)(2𝐹𝑖 + 1)

×

⎛⎝ 𝐹𝑖 1 𝐹𝑗

−𝑀𝑖 𝑝 𝑀𝑗

⎞⎠⎧⎨⎩ 𝐽𝑖 𝐹𝑖 𝐼

𝐹𝑗 𝐽𝑗 1

⎫⎬⎭ (𝑁𝑖𝐿𝑖𝐽𝑖||𝑇 1(̂⃗︀𝑟)||𝑁𝑗𝐿𝑗𝐽𝑗)

(3.1)

where

⎛⎝ 𝐹𝑖 1 𝐹𝑗

−𝑀𝑖 𝑝 𝑀𝑗

⎞⎠,

⎧⎨⎩ 𝐽𝑖 𝐹𝑖 𝐼

𝐹𝑗 𝐽𝑗 1

⎫⎬⎭, and (𝑁𝑖𝐿𝑖𝐽𝑖||𝑇 1(̂⃗︀𝑟)||𝑁𝑗𝐿𝑗𝐽𝑗) are a Wigner 3-j symbol,

a Wigner 6-j symbol, and the reduced matrix element among fine states. These are also defined in

appendix D.

In the calculation of these matrix elements it is very important to consider that the reduced matrix

elements are not symmetric under exchange of their arguments, but rather follow the symmetry

relation [17]

(𝑁𝑖𝐿𝑖𝐽𝑖||𝑇 1(̂⃗︀𝑟)||𝑁𝑗𝐿𝑗𝐽𝑗) = (−1)𝐽𝑖−𝐽𝑗 (𝑁𝑗𝐿𝑗𝐽𝑗 ||𝑇 1(̂⃗︀𝑟)||𝑁𝑖𝐿𝑖𝐽𝑖)
*, (3.2)

although they will be taken to be real in this thesis.

The reduced matrix elements can be calculated from the decay rates Γ𝑖𝑗 among fine multiplets

(𝑁𝑖𝐿𝑖𝐽𝑖||𝑇 1(
−→
𝑟 )||𝑁𝑗𝐿𝑗𝐽𝑗) =

(︃
3𝜋~𝑐3𝜀0
𝜔3
𝑖𝑗𝑒

2
(2𝐽𝑖 + 1)Γ𝑖𝑗

)︃1/2

. (3.3)

For a detailed derivation of this formula see appendix E.

Replacing 3.1 and 3.3 in E.1 the decay frequencies can be calculated as

𝛾𝑖𝑗 =
𝜔3

𝑖𝑗𝑒
2

3𝜋~𝑐3𝜀0
∑︀

𝑝

⃒⃒⃒
⟨𝑁𝑖𝐿𝑖𝐽𝑖𝐹𝑖𝑀𝑖|𝑇 1

𝑝 (̂⃗︀𝑟)|𝑁𝑗𝐿𝑗𝐽𝑗𝐹𝑗𝑀𝑗⟩
⃒⃒⃒2

=
𝜔3

𝑖𝑗𝑒
2

3𝜋~𝑐3𝜀0 (2𝐹𝑗 + 1)(2𝐹𝑖 + 1)

⎧⎨⎩ 𝐽𝑖 𝐹𝑖 𝐼

𝐹𝑗 𝐽𝑗 1

⎫⎬⎭
2

|(𝑁𝑖𝐿𝑖𝐽𝑖||𝑇 1(̂⃗︀𝑟)||𝑁𝑗𝐿𝑗𝐽𝑗)|2
∑︀

𝑝

⎛⎝ 𝐹𝑖 1 𝐹𝑗

−𝑀𝑖 𝑝 𝑀𝑗

⎞⎠2

= Γ𝑖𝑗(2𝐽𝑖 + 1)(2𝐹𝑗 + 1)(2𝐹𝑖 + 1)

⎧⎨⎩ 𝐽𝑖 𝐹𝑖 𝐼

𝐹𝑗 𝐽𝑗 1

⎫⎬⎭
2∑︀

𝑝

⎛⎝ 𝐹𝑖 1 𝐹𝑗

−𝑀𝑖 𝑝 𝑀𝑗

⎞⎠2

.

(3.4)

The Γ𝑖𝑗 for rubidium and their reference to experiments or calculations are listed in table 3.1

The measurements cited are for total decay rates Γ𝑖, however the branching ratios (the ratios to
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Γ𝑖𝑗/2𝜋 5𝑆1/2 5𝑃1/2 5𝑃3/2 4𝐷5/2 4𝐷3/2 6𝑆1/2 6𝑃3/2 5𝐷5/2 Γ𝑖/2𝜋 Ref
5𝑆1/2 × −5.746 −6.065 × × × −0.299 × ×
5𝑃1/2 5.746 × × × −1.5 −1.746 × × 5.746 [66]
5𝑃3/2 6.065 × × −1.7 −0.3 −1.746 × −0.493802 6.065 [66]
4𝐷5/2 × × 1.7 × × × −0.0286 × 1.7 [58]
4𝐷3/2 × 1.5 0.3 × × × −0.2574 × 1.5 [58]
6𝑆1/2 × 1.746 1.746 × × × −0.715 × 3.492 [26]
6𝑃3/2 0.299 × × 0.0286 0.2574 0.715 × −0.173498 1.3 [70]
5𝐷5/2 × × 0.493802 × × × 0.173498 × 0.6673 [64]

Table 3.1: Total decay frequencies Γ𝑖𝑗/2𝜋 and Γ𝑖/2𝜋 for all involved multiplets in MHz.

which Γ𝑖 is divided into Γ𝑖𝑗) are calculated in [58]. Notice that since 3.3 does not contain reference

to 𝐹 quantum numbers (and therefore to nuclear angular momentum coupling), these numbers are

the same for both isotopes, as are the reduced matrix elements (𝑁𝑖𝐿𝑖𝐽𝑖||𝑇 1(̂⃗︀𝑟)||𝑁𝑗𝐿𝑗𝐽𝑗).

The places marked with a × are forbidden under electric-dipole rules (see appendix F) but not

necessarily zero. In this thesis however, they will be neglected.

We can thus obtain the reduced matrix elements from Γ𝑖𝑗 through 3.3 and 3.2, and are shown

in table 3.2.

(𝑁𝑖𝐿𝑖𝐽𝑖||𝑇 1(̂⃗︀𝑟)||𝑁𝑗𝐿𝑗𝐽𝑗) 5𝑆1/2 5𝑃1/2 5𝑃3/2 4𝐷5/2 4𝐷3/2 6𝑆1/2 6𝑃3/2 5𝐷5/2

5𝑆1/2 × 4.231 −8.453 × × × −0.7421 ×
5𝑃1/2 4.231 × × × −10.935 5.012 × ×
5𝑃3/2 8.453 × × −13.027 3.648 −3.718 × −2.537
4𝐷5/2 × × 13.027 × × × −1.645 ×
4𝐷3/2 × 10.935 3.648 × × × 6.045 ×
6𝑆1/2 × 5.012 3.718 × × × −19.019 ×
6𝑃3/2 0.7421 × × 1.645 6.045 19.019 × −26.343
5𝐷5/2 × × 2.537 × × × 26.343 ×

Table 3.2: Reduced matrix elements (𝑁𝑖𝐿𝑖𝐽𝑖||𝑇 1(̂⃗︀𝑟)||𝑁𝑗𝐿𝑗𝐽𝑗) in Bohr radii (𝑎0 = 5.2917721067(12) ×
10−11𝑚).

And 𝛾𝑖𝑗 are calculated from Γ𝑖𝑗 through 3.4. The complete matrix 𝛾𝑖𝑗 is shown in figure 3-5

(3-6) for 85 Rb (87 Rb). These matrices show which transitions are allowed by the electric dipole

approximation as inherited to 𝛾𝑖𝑗 by 6j symbols in 3.4.

The matrix elements 𝑟𝑝𝑖𝑗 can be calculated from reduced matrix elements through 3.1. The

matrix elements are shown in figures 3-7, 3-8, 3-9 (3-10, 3-11, 3-12) for 85 Rb (87 Rb). These matrices

carry further information about the relation of transitions to the light polarization. According to

2.4 the component −𝑝 of the electric field (represented by 𝑌 𝑙(±)
−𝑝 ) couples only with 𝑟𝑝𝑖𝑗 . Examining

A.2 we can see that 𝐸⃗𝑙 can be decomposed in three terms corresponding to light linearly polarized

along the 𝑧 axis (𝑝 = 0) and circularly polarized light of either hand in the 𝑥-𝑦 plane (𝑝 = ±1).

Therefore 𝑟𝑝𝑖𝑗 shows the coupling of these polarizations to the |𝑖⟩ → |𝑗⟩ transitions.
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Figure 3-5: The decay frequencies 𝛾𝑖𝑗 for 85 Rb in rad /𝑠.

Linearly polarized light (𝑝 = 0) can only drive transitions with 𝑀𝐹𝑖
−𝑀𝐹𝑗

= 0. While circularly

polarized light (𝑝 = ±1) can only drive transitions with 𝑀𝐹𝑖
−𝑀𝐹𝑗

= ∓1 (for 𝑖 > 𝑗). This 𝑀𝐹

distinction is inherited to 𝑟𝑝𝑖𝑗 by the 3j symbols in 3.1.
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Figure 3-6: The decay frequencies 𝛾𝑖𝑗 for 87 Rb in rad /𝑠.
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Figure 3-7: The matrix elements of the dipole operator 𝑟−1𝑖𝑗 for 85 Rb in Bohr radii.
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Figure 3-8: The matrix elements of the dipole operator 𝑟0𝑖𝑗 for 85 Rb in Bohr radii.
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Figure 3-9: The matrix elements of the dipole operator 𝑟1𝑖𝑗 for 85 Rb in Bohr radii.
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Figure 3-10: The matrix elements of the dipole operator 𝑟−1𝑖𝑗 for 87 Rb in Bohr radii.
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Figure 3-11: The matrix elements of the dipole operator 𝑟0𝑖𝑗 for 87 Rb in Bohr radii.
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Figure 3-12: The matrix elements of the dipole operator 𝑟1𝑖𝑗 for 87 Rb in Bohr radii.
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3.3 Fluorescence spectra

We need a way to calculate the power carried by the spontaneous fluorescence. In particular, we

are interested in the spontaneous decay from the transition 6𝑃3/2 → 5𝑆1/2. Each state |𝑖⟩ in 6𝑃3/2

decays to states |𝑗⟩ in 5𝑆1/2 at a rate 𝛾𝑖𝑗 with each decay carrying energy ~𝜔𝑖𝑗 . The total power is

thus

𝑃𝜑 = 𝑁
∑︁
𝑖𝑗

~𝜔𝑖𝑗𝛾𝑖𝑗𝜌𝑖𝑖

where 𝑖 is an index that runs over the states 6𝑃3/2 and 𝑗 over the states 5𝑆1/2 and 𝑁 is the number

of atoms that form the statistical ensemble 𝜌 (or approximately the number of atoms trapped). This

can be seen as an observable 𝑃𝜑 in quantum mechanics

𝑃𝜑 = Tr[𝑃𝜑𝜌] = Tr

⎡⎣⎛⎝∑︁
𝑖𝑗

𝑁~𝜔𝑖𝑗𝛾𝑖𝑗 |𝑖⟩⟨𝑖|

⎞⎠ 𝜌

⎤⎦
On another side, if each 𝜔𝑖𝑗 is considered approximately equal, we can define the number of photons

per atom per second as

𝜑 =
∑︁
𝑖𝑗

𝛾𝑖𝑗𝜌𝑖𝑖. (3.5)

3.4 Broadening

Up to this point we have considered the atom to be driven by strictly monochromatic fields

of frequencies 𝜔𝑙, and described the calculation of the density matrix 𝜌(𝑡, 𝜔𝑙) associated with this

frequencies. However in practice the laser emission spectra have a certain frequency distribution

𝑓(𝜔) = 𝑔(𝜔−𝜔𝑙) around this central value. Therefore the density matrix is a statistical ensemble of

density matrices associated with each frequency weighed by this (normalized) frequency distribution

𝜌(𝑡) =

∫︁ ∞

−∞
𝜌(𝑡, 𝜔)𝑓(𝜔)𝑑𝜔 =

∫︁ ∞

−∞
𝜌(𝑡, 𝜔)𝑔(𝜔 − 𝜔𝑙)𝑑𝜔.

If the zero-centred distribution 𝑔 are even (𝑔(𝜔) = 𝑔(−𝜔)) as is the case of laser sources with

Gaussian distributions, then this is simply the convolution 𝜌(𝑡, 𝜔)⊕ 𝑔(𝜔) of the density matrix with

the zero-centred frequency distribution, so we do not need to calculate many density matrix solutions

to get a weighed density matrix. Instead, numerically calculating the convolution, for instance with

a Gaussian distribution, is computationally very cheap through a fast Fourier transform.

Also, other broadening components such as the Doppler effect due to the velocity distribution

of the atoms can be considered in this manner. Since the cloud of cold rubidium atoms that is

examined in this thesis is a dilute gas, the broadening due to collisions between atoms will not be

considered explicitly here. Notice that the broadening effects discussed here do not account for all
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the width of the atomic transition lines, but rather to broadening additional to the natural widths

𝛾𝑖𝑗 and to power broadening.

The convolution is associative (𝑓(𝜔)⊕𝑔1(𝜔))⊕𝑔2(𝜔) = 𝑓(𝜔)⊕(𝑔1(𝜔)⊕𝑔2(𝜔)), and the convolution

of two Gaussian distributions with standard deviations 𝜎1, 𝜎2 is another Gaussian distribution with

standard deviation 𝜎 =
√︀
𝜎2
1 + 𝜎2

2 .

Thus we can consider all broadening effects using a single convolution with an effective Gaussian

frequency distribution with standard deviation

𝜎eff =

√︃∑︁
𝑙

(𝜎𝑙
𝑇 )2 + (𝜎𝑙)2 =

√︁
(𝜎𝑇 )2 + 𝜎2

lasers

due to each of the laser linewidths 𝜎𝑙 and to the standard deviation 𝜎𝑇 due to the Doppler effect. This

Doppler broadening is due to a Maxwell-Boltzman velocity distribution for atoms with temperature

𝑇

𝑓(𝑣) =

(︂
𝑀

2𝜋𝑘𝐵𝑇

)︂1/2

exp

(︂
− 𝑀𝑣2

2𝑘𝐵𝑇

)︂
,

where 𝑣 is the atom velocity along the direction of a beam. The Doppler frequency shift (in the

non-relativistic limit) is 𝜔𝑙
𝐷 = 𝜔𝑙𝑣/𝑐 = 𝑘𝑙𝑣. The effective frequency has a distribution

𝑓(𝜔𝑙
𝐷) =

(︂
𝑀(𝜔𝑙)2

2𝜋𝑘𝐵𝑇𝑐2

)︂1/2

exp

(︂
− 𝑚𝑐2

2𝑘𝐵𝑇 (𝜔𝑙)2
(𝜔𝑙

𝐷)2
)︂
,

which has a standard deviation

𝜎𝑙
𝑇 =

𝜔𝑙

𝑐

√︂
𝑘𝐵𝑇

𝑀
.

For a Gaussian distribution with standard deviation 𝜎, the full width at half maximum (FWHM) is

2
√︀

2 log(2)𝜎, therefore the FWHM from each laser is

FWHM𝑙
𝑇 =

2𝜔𝑙

𝑐

√︂
2 log(2)𝑘𝐵𝑇

𝑀
.

and the effective total widening FWHM is

FWHMeff =

√︃∑︁
𝑙

(FWHM𝑙
𝑇 )2 + (FWHM𝑙)2 =

√︃∑︁
𝑙

8 log(2)(𝜔𝑙)2

𝑐2𝑀
𝑘𝐵𝑇 + (FWHM𝑙)2

and therefore

𝑇 =
𝑐2𝑀

8 log(2)𝑘𝐵
∑︀

𝑙(𝜔
𝑙)2

[︃
FWHM2

eff −
∑︁
𝑙

(FWHM𝑙)2

]︃
(3.6)

which allows the temperature of the atoms to be estimated from the effective broadening if the

widths FWHM𝑙 of each laser are known.
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Chapter 4

The Magneto-Optical Trap

In this chapter the principles behind the operation of a Magneto-Optical Trap are described. For

the sake of simplicity we will consider a two level system (described in section 2.4) to illustrate the

physical phenomena involved.

For circularly polarized light 𝜎+ propagating in the direction 𝑧 of the quantization axis the

polarization vectors 𝜀⃗𝑙(±) = 𝑒∓, whose only non-zero helicity-basis components are 𝑌 𝑙±
∓1 = 1/2 (see

appendix A). The effective Hamiltonian 2.5 couples states |𝑖⟩ and |𝑗⟩ through 𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑗 only if 𝑖 > 𝑗

and through 𝜀⃗𝑙(−) · 𝑟⃗𝑖𝑗 only if 𝑖 < 𝑗. Therefore, the only couplings are 𝑟1𝑖𝑗/2 for 𝑖 > 𝑗 and 𝑟−1𝑖𝑗/2

for 𝑖 < 𝑗.

Examining figures 3-9, 3-7, 3-12, and 3-10 it can be seen that these couplings always correspond

to transitions |𝐹,𝑀⟩ → |𝐹 + 1,𝑀 + 1⟩. In other words, circularly polarized light only induces

transitions in one direction of the magnetic projections of angular momentum. It is said that it

produces optical pumping .

In particular, if the circular light is resonant to the 5𝑆1/2𝐹 = 3(2) → 5𝑃3/2𝐹 = 4(2) transition

of 85Rb (87Rb), the result is that all the population is pumped to the extreme 𝑀 states 5𝑆1/2𝐹 =

𝑀 = 3(2) and 5𝑃3/2𝐹 = 𝑀 = 4(3) states; which results in the effective two-state system that we

will consider in this chapter. The transition between these states is known as the cycling transition

because electric dipole transition rules (see appendix F) determine that for radiation resonant to

them atoms are periodically excited and lowered to these states (at the Rabi frequency of the effective

two-state system).

4.1 Optical Molasses

Each photon that is absorbed by the atom receives momentum ~𝑘 = ~𝜔/𝑐, since this occurs at

a rate 𝛾𝜌22 [21], and force is the rate of momentum transfer, the force light with detuning 𝛿 exerts
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on the atom is

𝐹 (𝛿) = −~𝜔1

𝑐

𝛾Ω2

2Ω2 + 𝛾2 + 4𝛿2
,

(see section 2.4). However, if the atom has a velocity 𝑣 opposed to the direction of the beam the

Doppler effect will shift the frequency by 𝜔1𝑣/𝑐 so the force becomes

𝐹 (𝑣, 𝛿) = −~(𝜔1 + 𝜔1𝑣/𝑐)

𝑐

𝛾Ω2

2Ω2 + 𝛾2 + 4(𝜔1 + 𝜔1𝑣/𝑐− 𝜔21)2
.

This is maximal for 𝑣 = 𝑣𝑐 = −(𝜔1−𝜔21)𝑐/𝜔1 = −𝛿𝑐/𝜔1, which means that the beam pushes atoms

velocity-selectively. The atoms are always pushed in the direction of the beam regardless of the

velocity they have. However, atoms that move at this optimal velocity have a stronger interaction

with the light. In particular, if 𝛿 < 0 (that is if the laser beam is red-detuned from the atomic

transition) atoms moving against the beam are slowed down at a maximal rate, while those moving

in the direction of the beam gain speed, but at a much lesser rate.

The optical molasses technique exploits this velocity selectivity by using three pairs of counter-

propagating beams in orthogonal directions as shown by the blue arrows in figure 4-1. If the beams

are produced by the same source they have the same detuning 𝛿 < 0. In the region in which all

beams intersect, for all 𝑥, 𝑦, 𝑧 components of the velocity of the atom there is always a beam that

propagates in the direction opposite to the movement and thus slows it down. The interaction with

this opposing beam is enhanced by the detuning, while the interaction with the beam propagating

in the same direction as the atom is reduced by the detuning. In this way, the average speed and

kinetic energy of a collection of atoms that are strongly resonant with the red detuned light is

reduced, therefore lowering the temperature of this velocity selected collection of atoms.

Let us consider the force exerted on an atom with velocity 𝑣𝑧 by one such pair of counter-

propagating beams along the 𝑧 axis. For small 𝑣𝑧

𝐹𝑧 = 𝐹 (𝑣𝑧, 𝛿) − 𝐹 (−𝑣𝑧, 𝛿)

= 𝐹 (0, 𝛿) + ( 𝜕𝐹
𝜕𝑣𝑧

|𝑣=0)𝑣𝑧 − [𝐹 (0, 𝛿) − ( 𝜕𝐹
𝜕𝑣𝑧

|𝑣=0)𝑣𝑧]

= 2( 𝜕𝐹
𝜕𝑣𝑧

|𝑣=0)𝑣𝑧

= 2~Ω2𝛾(8𝛿𝜔21−2Ω2+4𝛿2−𝛾)(𝜔21+𝛿)
(2Ω2+𝛾2+4𝛿2)2𝑐2 𝑣𝑧

This last expression has eight terms involving 𝛿,Ω, 𝛾, and 𝜔21 in their numerators. All of these

frequencies are of the order of MHz for rubidium and experimental arrangements of our current

interest, with the exception of 𝜔21 that is of the order of THz, thus the largest term by far is the

one proportional to 𝜔2
21, so

𝐹𝑧 ≃ 16~Ω2𝛾𝛿𝜔2
21

(2Ω2 + 𝛾2 + 4𝛿2)2𝑐2
𝑣𝑧 ≃ 16~Ω2𝛾𝛿𝜔2

21

(𝛾2 + 4𝛿2)2𝑐2
𝑣𝑧 = −𝛼𝑣𝑧 = 𝑀𝑣̇𝑧, (4.1)
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Figure 4-1: The cooling (repump) beams are shown here as blue (red) arrows along with the direction of
their polarizations required for the MOT to work. These polarizations are specific to the direction of the
currents indicated in the coils. The horizontally polarized probe beam is shown in green.

where the term with Ω2 in the denominator has been neglected by assuming the intensity of the beam

to be low. This is helpful in simplifying the theory, but it should be noted that this simple analysis

is not valid for intensities above saturation, because the forces do not act separately. Instead, a

rigorous analysis requires the calculation of the electric-dipole force from the standing wave that the

two beams produce together [21].

Equation 4.1 is the equation for a particle in a viscous medium with damping 𝛼 (assuming 𝛿 < 0),
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and for this reason the region in which the six beams intersect is known as an optical molasses.

The forces that optical molasses exert on an atom under typical conditions for rubidium are

shown in figure 4-2. The Force that each beam exerts are shown separately, as well as their sum.

The 𝑣𝑐 = 𝛿𝑐/𝜔1 is the capture velocity , that is the velocity threshold that the optical molasses are

able to cool down (the force at this velocity is shown as two crosses).

Notice that we take care to speak about velocity and not speed despite the fact that atoms with

|𝑣| < 𝑣𝑐 are slowed down. In an room-temperature vapour, like those commonly used in magneto-

optical traps, optical molasses cool down atoms with a Maxwell-Boltzmann velocity distribution.

10 5 0 5 10
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0.5

0.0
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F
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/

)
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F(v,δ)
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F(v,δ)−F(−v,δ)
−αv

Figure 4-2: The forces exerted on an atom as functions of the velocity of the atom 𝑣. The force exerted
by a beam propagating in the −𝑧 direction is shown as a dotted line, the force of a beam propagating in
the 𝑧 direction is shown as a dot-and-dash line, and the sum of these forces as a solid line. The linear
approximation of optical molasses (see equation 4.1) is shown as a dashed line. The capture velocity is
indicated in both directions with crosses. This curves correspond to 𝛾 = 2𝜋6.065 MHz, 𝜔21 = 2𝜋384 THz,
and 𝛿 = −𝛾/2, that correspond to rubidium.

The linear approximation of this force is also shown in 4-2, and it should be noted that for very

slow atoms, there is also only a small force. Equation 4.1 suggests that atoms inside this linear

region would reach zero velocity, but a new effect arises to prevent this for slow atoms.

4.2 Doppler Cooling Limit

Thus far we have considered only the force that radiation exerts over the atoms when photons

are absorbed, however spontaneous emission must also preserve total linear momentum. While

spontaneous emission is not generally isotropic, it is equally likely in opposite directions [32]. This

means that over time, the kicks given to the atom by spontaneous emission cancel out.

However, absorption and emission occur at random times. Assuming a Poissonian statistic, the
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average number of scattering events within time 𝑡 is 𝛾𝜌22𝑡. Each of these scattering events kick the

atom in a random direction giving it an additional recoil velocity 𝑣𝑟 = ~𝑘/𝑀 = ~𝜔1/𝑐𝑀 . This is

5.983 mm/s for rubidium. If a photon is emitted with an angle 𝜃 respect to the 𝑧 axis, it will add to

the spread of the mean square velocity along the 𝑧 axis by ∆(𝑣2𝑧)𝑠𝑝𝑜𝑛𝑡 = (𝑧 · 𝑣𝑟𝑟)2 = 𝑐𝑜𝑠2(𝜃)𝑣2𝑟 . The

average over solid angle is ⟨∆(𝑣2𝑧)𝑠𝑝𝑜𝑛𝑡⟩ = ⟨𝑐𝑜𝑠2𝜃⟩𝑣2𝑟 = 𝜂𝑣2𝑟 . And since this events happen at a rate

𝛾𝜌22 it follows that spontaneous emission contributes to the change of the average square velocity at

a rate 𝜂𝑣2𝑟𝛾𝜌22. In a similar manner, the variations in time of the absorption events contribute with

𝑣2𝑟𝛾𝜌22 (since all absorptions of a beam along 𝑧 occur along 𝑧). On the other hand, from equation

4.1 it follows that

𝑣𝑧𝐹𝑧 = 𝑣𝑧
𝑑𝑃𝑧

𝑑𝑡
= 𝑀𝑣𝑧

𝑑𝑣𝑧
𝑑𝑡

=
𝑑

𝑑𝑡
(
1

2
𝑀𝑣2𝑧) =

𝑑𝐾

𝑑𝑡
= −𝛼𝑣2𝑧

where 𝐾 is the kinetic energy and 𝑃𝑧 is the momentum of the atom in the 𝑧 direction. Taking

the average over time and adding contributions from absorption and spontaneous emission for two

beams counter propagating along the 𝑧 axis.

𝑑

𝑑𝑡
(
1

2
𝑀𝑣2𝑧) =

1

2
𝑀(2𝜂𝛾𝜌22𝑣

2
𝑟 + 2𝛾𝜌22𝑣

2
𝑟) − 𝛼𝑣2𝑧

However, the counter propagating beams along the 𝑥 and 𝑦 axes contribute further spontaneous

emissions along the 𝑧 direction (but none from absorption). Therefore the 𝜂 becomes 3𝜂. In a

symmetrical light field, random variations from the relative phases between the beams make the

emission isotropic [21], 𝜂 = 1
3 so the equation becomes

𝑑

𝑑𝑡
(
1

2
𝑀𝑣2𝑧) = 2𝑀𝛾𝜌22𝑣

2
𝑟 − 𝛼𝑣2𝑧 . (4.2)

This can be easily solved, and converges to 𝑣2𝑧 = 2𝑀𝛾𝜌22

𝛼 𝑣2𝑟 . In other words, atoms reach a terminal

velocity 𝑣∞ (along the 𝑧 axis)

𝑣∞ =

√︂
2𝑀𝛾𝜌22

𝛼
𝑣𝑟 ≃ 𝜔1

𝜔21

√︃
~(4𝛿2 + 𝛾221)

−8𝑀𝛿

where the ≃ indicates that low intensities have been assumed. According to the equipartition

theorem, this average kinetic energy is related to the temperature by

1

2
𝑘𝐵𝑇 =

1

2
𝑀𝑣2𝑧 =

𝑀2𝛾𝜌22
𝛼

𝑣2𝑟 ⇒ 𝑇 = −~(𝜔1)2(4𝛿2 + 𝛾2)

16𝑘𝐵𝛿𝜔21
,

where 𝑘𝐵 is the Boltzmann constant, and low intensities have once again been assumed. This is a
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function of 𝛿, and it has a minimum at

𝛿crit = −𝛾
2
, 𝑇min =

~𝛾(𝜔1)2

2𝑘𝐵𝜔2
21

≃ ~𝛾
2𝑘𝐵

.

For rubidium, we effectively have 𝛾 = 2𝜋 6.065 MHz and the critical detuning is 𝛿crit = 2𝜋3.0325

MHz, and the Doppler cooling limit limit is 𝑇min = 145.537𝜇K. For 𝛿 = 𝛿crit the capture velocity is

𝑣𝑐 = 2.366 m/s (as shown in figure 4-2) and the terminal velocity is 𝑣∞ = 0.118 m/s.

4.3 Quadrupole magnetic field

The optical molasses technique is used to slow down atoms that come into the region where the

six beams intersect. Atoms cooled in this way quickly reach the terminal velocity deducted in the

previous section, but they eventually leave the optical molasses region. In order to trap the atoms

so they do not leave the intersection of the beams, a force is needed that depends on the position

of the atoms in addition to the velocity-dependant damping force. One way to achieve this is by

spatially tuning the atomic resonance.

This is achieved by introducing a quadrupole magnetic field centred in the region of intersection,

usually produced by a pair of coils in anti-Helmholtz configuration as shown in figure 4-1. The figure

is slightly misleading in that the anti-Helmholtz configuration has the distance between the parallel

coils equal to their radii. This ideal configuration produces the greatest gradient of the magnetic

field, but it is not critical. Often greater distances are necessary because of the size of the vacuum

chamber or other spacial constraints (although not as large as the figure suggests). The necessary

gradient can be achieved simply by increasing the current in the coils. Typical MOTs function with

approximately 15-5 G/cm [61].

Figure 4-3a shows the shape of the magnetic field lines from the quadrupole coils. The field is

zero at the origin as shown by the grey lines and has increases linearly around that point. If the

region in which the six beams intersect is made to coincide with this zero of magnetic field, the atoms

that are slightly away from the origin will experience a Zeeman splitting 𝛿𝑀𝐹
of their magnetic states

|𝑀𝐹 ⟩. If an atom has some displacement 𝑧 along the 𝑧 axis, the Zeeman splitting will be

∆𝐸|𝐹𝑀𝐹 ⟩ = 𝜇𝐵𝑔𝐹𝑀𝐹𝐵𝑧.

where 𝜇𝐵 = 𝑒~
2𝑚𝑒

is the Bohr magneton (see section 6.5 for a detailed calculation of the hyperfine

g-factor 𝑔𝐹 ). Since the light is red-detuned this means that atoms must be slightly displaced from

the origin so that the frequency-displaced energy levels allow them to absorb the cooling beam.

The beam with direction ±𝑧 is prepared with circular polarization 𝜎± so it couples the lower states

|𝐹,𝑀 = ±𝐹 ⟩ to the upper states |𝐹 + 1,𝑀 = ±𝐹 ± 1⟩ as shown in figure 4-3b.
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Figure 4-3: (a) The magnetic field lines produced by the anti-Helmholtz coils. (b) The position-dependant
Zeeman splitting of cycling transition states for 87Rb. Two counter-propagating beams of opposite circular
polarizations induce a position-dependant force imbalance that pushes atoms towards the center of the trap.
Notice that the energies are not to scale, since the Zeeman splittings are much smaller than the optical
frequencies.

Along the 𝑥̂ or 𝑦 axes the appropriate quantization axes are ±𝑥̂ and ±𝑦 as given by the direction

of the magnetic field (the field is axially symmetric) as shown in figure 4-3a. The polarization of

the beams along these axes are also set so that the Zeeman effect selects the beam opposed to the

displacement of the atom and the atoms are optically pumped to analogous extreme states. The

appropiate polarizations are shown in figure 4-1 as well as the direction of currents that will produce

the appropiate trapping magnetic field.

4.4 Repump beam

Up to this point it would seem that if the cooling beams have their frequency locked with negative

detuning, atoms would be trapped in a cooling cycle between these extreme states. However, for
85Rb (87Rb) quantum mechanics allow a small fraction of excitations to go from |5𝑆1/2, 𝐹 = 3(2)⟩ to

|5𝑃3/2, 𝐹 = 3(2)⟩. This non-resonant absorption is known as Raman scattering. The probability of

Raman scattering decreases quickly with the detuning. The |5𝑆1/2, 𝐹 = 3(2)⟩ → |5𝑃3/2, 𝐹 = 4(3)⟩

and |5𝑆1/2, 𝐹 = 3(2)⟩ → |5𝑃3/2, 𝐹 = 3(2)⟩ transitions are separated by 120.9 MHz (266.6 MHz).

Atoms that reach the |5𝑃3/2, 𝐹 = 3(2)⟩ state can decay back to the |5𝑆1/2, 𝐹 = 3(2)⟩ but they

can also decay to |5𝑆1/2, 𝐹 = 2(1)⟩. This dark state is 3035 MHz (6834 MHz) away from the upper

hyperfine level of the 5𝑆1/2 multiplet, and therefore atoms that fall there have a near zero probability

of going back into the cooling cycle. In order to continue the cooling of these atoms, a repump beam
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is introduced locked to the transition from |5𝑆1/2, 𝐹 = 2(1)⟩ to |5𝑃3/2, 𝐹 = 3(2)⟩. In this way, atoms

that fall to the dark state are taken to |5𝑃3/2, 𝐹 = 3(2)⟩ and are given a new chance to decay to

|5𝑆1/2, 𝐹 = 3(2)⟩, and get back to the cycling transition to be further cooled or go back to the dark

state and be repumped again.
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Chapter 5

Experimental setup

A scheme of the experimental setup is shown in figure 5-1. Either 85Rb or 87Rb is trapped and

cooled in the MOT using cooling and repump lasers as shown. The cooling, repump, and reference

lasers in the experiment are extended cavity diode lasers (ECDLs). The cooling laser is a commercial

New-Focus Vortex-7000/6013 ECDL, and both the repump and reference laser were built in the Cold

Atoms Laboratory of the Instituto de Ciencias Nucleares (LAF-ICN). The probe beam is produced

by a commercial M-Squared SolsTis-1600-SRX-F titanium-sapphire laser (TiSap).

5.1 Frequency Locking

The two-photon spectroscopy is realized by keeping a constant frequency of the first-step tran-

sition, and varying the frequency of the second-step transition across the hyperfine structure of the

5𝐷5/2 multiplet. Thus, we need to be able to lock the frequency of the lasers that will induce the

first step transition.

The cooling, repump, and reference lasers frequency-locked through a polarization spectroscopy

as described in [50]. For each laser, this spectroscopy consists of a weak probe beam counter-

propagating with a strong pump beam in a room temperature rubidium vapour. The pump beam is

circularly polarized and excites atoms to ∆𝑀𝐹 = 1 transitions only (it produces optical pumping).

This gives rise to a medium in which orthogonal linear polarization components of the weak and

linearly polarized probe beam are absorbed differently (a birefringent medium). After propagating

through this medium, the state of polarization of the probe beam is divided in orthogonal linear

polarizations by a polarizing beam splitter and analysed by two different photodiodes. Thus, it

is possible to simultaneously measure the absorption of both polarizations. The difference between

these two signals has the shape of the derivative of a Lorentzian profile in the position of each atomic

resonance that are known as dispersion curves.

Despite the Doppler broadening, this curves are visible to within hyperfine resolution because the
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Figure 5-1: The experimental setup. The cooling laser (with amplitude 𝐸1
0 and frequency 𝜔1), the repump

laser (with amplitude 𝐸2
0 and frequency 𝜔2), and the reference laser (with amplitude 𝐸ref

0 and frequency
𝜔ref) are shown here with their frequency locking spectroscopy implicit. The cooling and repump beams
are mixed in a polarizing beam splitter and then split into three orthogonal counter-propagating pairs of
beams with polarizations as indicated in figure 4-1. The probe beam is sent through the atomic cloud to
induce the second-step excitation controlling the probe frequency 𝜔3 using the PXI module. The resulting
spontaneous fluorescence is recorded using a photomultiplier tube (PMT1). The reference and probe beams
are introduced to a room-temperature cell with rubidium vapour. An acousto-optic modulator (AOM) is
used to produce a second, frequency-shifted beam which is also introduced to the cell. This beams produce
the calibration spectroscopy (recorded with another photomultiplier tube PMT2). The cooling and reference
beams are mixed and pointed at a fast photodiode (FPD) and the relative detuning 𝜔1 − 𝜔ref = 𝛿1 − 𝛿ref

is measured using a spectrum analyser (SA). The power of the cooling and repump beams is measured
by deflecting a small portion of the power to a power-meter (PM1), and the power of the probe beam is
measured with another power-meter (PM2).

pump laser saturates the vapour, and thus only allows the probe field to be absorbed by atoms that

are precisely in resonance at zero velocity. A side effect of this velocity selectivity, is that the Doppler

effect at frequencies that are at the mid-point of two atomic transitions are also velocity-selected,

giving rise to a dispersion curve at each of these mid-points. These are known as crossovers.

The dispersion curves of the ECDLs are shown in figure 5-2. For a sufficiently strong transition

or crossover, these signals exhibit a region of linear dependance on frequency, or in this case, with

the electronic signal that controls the lasing frequency. This signal can be either a voltage applied

to a piezoelectric that modulates the size of the extended cavity, or the current going through the

laser diode.

These linear signals are used to drive a proportional-integral-derivative controller (PID) to es-

tablish a control loop feedback mechanism that uses the dispersion signal to correct displacements

of the dispersion curve relative to a set point along the curve. In figure 5-2 the approximate position

of setpoints are shown as crosses for each laser. According to the analysis in [45] the setpoints in
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Figure 5-2: The dispersion curves used in frequency locking a) of the cooling and reference lasers for 85Rb a)
of the cooling and reference lasers for 87Rb c) of the repump laser for 85Rb d) of the repump laser for 87Rb.
In all spectra, the position of atomic transitions are shown as green vertical lines, and crossovers are shown
as purple vertical lines. The approximate position of the frequency setpoint for the PID locks is shown in
each spectrum with a cross.

a) and b) correspond to transitions 5𝑆1/2𝐹 = 3(2) → 5𝑃3/2𝐹
′ = 4(3) in 85Rb (87Rb); and setpoints

in c) and d) correspond to the crossovers between transitions 5𝑆1/2𝐹 = 2(1) → 5𝑃3/2𝐹
′ = 2(1) and

5𝑆1/2𝐹 = 2(1) → 5𝑃3/2𝐹
′ = 3(2).

5.2 Capturing Fluorescence

The cooling and repump ECDLs are used to cool atoms inside a magneto-optical trap (as shown

in figure 5-1). A second excitation to the 5𝐷5/2 multiplet is induced with the TiSap. The atoms

that reach the 5𝐷5/2 multiplet spontaneously decay to the 6𝑃3/2 multiplet emitting 5233.11 nm

photons, and from there to the 6𝑆1/2, 4𝐷3/2, 4𝐷5/2, 5𝑆1/2 multiplets. The decay to the ground

multiplet produces 420.29 nm photons (which are in the visible spectrum) collected using a pair of
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lenses and directed to a photomultiplier tube (PMT1). This is an Electron Tubes-9783B, 30 mm

photomultiplier tube which is powered by a Pacific Instruments model 110 high-voltage source.

However, since the atoms are inside a steel vacuum chamber, most of this spontaneous fluores-

cence is lost in the walls of the chamber. Only the photons that go through the windows of the

chamber can be collected from the outside. The vacuum chamber poses a problem, since it is not

possible for instance to place a screen inside the chamber to verify that the collecting lens is focused

on the cloud. The presence of necessary optical components in the table is also cumbersome, since

the collecting lens must be placed as closely to the cloud as possible to collect the largest possible

amount of fluorescence.
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Figure 5-3: a) A view of the geometrical constraints in the 𝑥 − 𝑦 plane. The atomic cloud (at the origin)
produces spontaneous fluorescence through the vacuum chamber window (shown in pale blue). The lens
(shown as a purple line) must be placed within this fluorescence cone (shown in black) orthogonal to a
sphere (shown in blue) with radius equal to the focal length of the lens. This mus be done without blocking
the cooling beam (shown in red). The solid angle captured by the lens is indicated with dotted purple lines.
b) A 3D view of the solid angle that the lens captures. A cap of the sphere of radius equal to the focal length
is shown together with the solid angle that the window lets out of te vacuum chamber (shown in black).
The solid angle captured by the lens is shown in purple.

The circular windows of the chamber place the restriction that the lens must be within the cone
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with vertex in the centre of the trap that is generated by the circumference of the window as sketched

in figure 5-3. The radius of the window is shown as a clear blue line, and the cone as a black diagonal

line. The condition for the cloud to be in focus is that the lens is placed tangent to a sphere with

radius equal to the focal length (10 cm) shown as a blue circle. Another restriction is that the lens

must not intersect the counter-propagating cooling beams shown in red that go through the window

(otherwise there will be no trapped atoms). Furthermore, the edge of the metallic tube that holds

in place the lens (shown in black) must not obstruct the cooling beams either.

A program was made to calculate the range of positions relative to the centre of the trap that

satisfy these geometric conditions. Two biconcave lenses were fixed inside a metallic tube, the

collecting lens with focal length 10 cm and the second with focal length 5 cm. The tube was fixed

to a 3-micrometer traslation stage, that allows the position of the collecting lens to be controlled

with a precision of 0.001 inches. Knowing the position of the traslation stage relative to the vacuum

chamber, the solutions of the geometric problem were introduced trough the micrometers to place

the lens. A set of plumbs were used to align the tube respect to the centre of the chamber, thus

fulfilling all necessary conditions. The resulting solid angle is 0.398 % of a sphere.

The light collected by the first length is collimated inside the tube, and the second lens focuses

it on the cathode of the photomultiplier tube. The current produced in the cathode is then directed

to a current to a Keitheley-428 current-to-voltage amplifier with gain 105 V/A and a filter rise-time

of 300 𝜇𝑠. The amplification was chosen to obtain the maximum signal without overloading the

amplifier, and the filter rise-time to suppress the noise without distorting the signal.

5.3 Data Acquisition

The overall process of recording spectra is shown schematically in figure 5-4. Using a LabView,

the following program was implemented:

1. The user specifies five parameters: the number data points 𝑁 that the spectra will have, the

time step between each data point 𝑑𝑡, the amplitude 𝐴 of a triangular voltage signal (from

now on the sweep signal), an offset Off for the sweep signal, a number of spectra to average

over 𝑁av to produce a single final spectrum.

2. The values of 𝑁, 𝑑𝑡, 𝐴,Off are used to calculate two lists of numbers 𝑡, sweep of length 𝑁 that

comprise the execution times of each data point and their corresponding value of sweep signal.

3. Zero-valued cache lists of numbers PMT1 and PMT2 of length 𝑁are created.

4. A for loop of 𝑁av iterations is started.

5. The 𝑡 and sweep signals are fed to a data-synchronization routine denoted R&W in figure

5-4 that for each time step sends the corresponding sweep voltage to the piezoelectric that
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Figure 5-4: A schematic of the data acquisition system. Parameter provided by the user are shown in blue:
the time-step between frequency variation steps 𝑑𝑡, the number of steps 𝑁 , the offset given to the sweep
signal Off, the amplitude of the sweep signal 𝐴, and the number of spectra to average over 𝑁av. These
parameters are used to prepare the sweep signal and the time steps 𝑡 as lists of floating-point numbers. Two
cache lists PMT1, PMT1are created to store the averages. A for loop with 𝑁av iterations is started, and in
each iteration a read & write routine sends the sweep signal to the reference cavity of the TiSap laser, and
simultaneously records the voltage from both photomultiplier tubes. The numeric values of these recorded
voltages are added to the caches. When the for loop ends the numeric values in the cache are divided by
𝑁av to produce the average in each entry. The results are saved to a text file containing four columns with
the values of 𝑡, sweep, PMT1, PMT2 (in that order).

controls the length of the reference cavity of the TiSap (thus varying the emission frequency),

and simultaneously reads the value of voltage returned by the current-to-voltage amplifier of

both PMTs.

6. Once all 𝑁 steps are executed, add the readings of the PMTs to PMT1 and PMT2.

7. If less than 𝑁av iterations have been performed go to step 5, or else continue.

8. Divide PMT1 and PMT2 by 𝑁av

9. Save 𝑡, sweep, PMT1 and PMT2 to disk.

This program is ran inside a while loop, so changing the values of 𝑁, 𝑑𝑡, 𝐴,Off, 𝑁av allows the

user to repeat chosen spectroscopies in real time. Measurements in this thesis were performed with

𝑁av = 100, 𝑁 = 1000, 𝑑𝑡 = 1𝜇s and the other values were chosen according to what the hyperfine

structure required from the sweep signal to be well visualized.
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5.4 Calibration spectroscopy

The PMT1 data form spectra of the voltage produced by the current-to-voltage amplifier as a

function of the voltage of the sweep signal. In order to transform the sweep signal into a frequency

scale an auxiliary reference laser is frequency locked with another PID feedback controller to the

5𝑆1/2 𝐹 = 2(3) → 5𝑃3/2 𝐹 = 3(4) transition for 87Rb (85Rb). This beam is then directed to a

room temperature cell with rubidium vapour. A portion of the probe beam used in the MOT is also

directed to the cell (in the opposite direction). The combined beams produce the same excitation

and decay scheme taking place in the MOT. The resulting 420 nm spontaneous fluorescence is

recorded in a Hamamatsu H7827 photomultiplier tube (PMT2) whose signal is recorded by the PXI

in synchrony with the sweep signal.
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Figure 5-5: The data recorded by the photomultiplier tube in the cell spectroscopy are shown in blue. Six
Voigt profiles are fitted to the peaks, as shown. The frequency difference between the highest peaks is given
by the radio-frequency from the driver that controls the AOM, and the voltage difference is extracted from
the Voigt fits.

The spectrum obtained in the cell is taken at low 𝐸ref
0 , 𝐸3

0 , so that 𝐸1
0 can be varied to observe the

effect in the MOT spectra. The cell spectra show well defined peaks to which Voigt profiles can be

fitted to find their centres. The probe beam is sent through an acousto-optic modulator (AOM), that

is used to produce a frequency-displaced beam which is sent co-propagating with the original beam.

The frequency difference between the modulated beam and the original is given by a radio-frequency

driver. In this way, if the sweep signal is of sufficient amplitude the three peaks of the 5𝐷5/2 multiplet

are visible at two different voltage values. The relationship between voltage and frequency is known

to be very linear in this voltage interval because the voltage differences between the other two pairs
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of peaks are 0.143784𝑉 ± 2.9 × 10−6𝑉, 0.14405𝑉 ± 5.3 × 10−5𝑉, 0.1441𝑉 ± 1.1 × 10−4𝑉 . The ratio

of the frequency and voltage differences between the two highest peaks 2363± 13 MHz/V is used to

transform the voltage scale into an absolute frequency scale as shown in figure 5-5. The frequency

difference between the 5𝑃3/2𝐹 = 3 → 5𝐷5/2𝐹 = 4, 2 peaks is 51.77 MHz in 87Rb, the error of

measuring this frequency difference using this calibration is 297 kHz.

5.5 Relative detuning

The cooling laser can be locked to different frequencies in a range of about 8 MHz (while still

having enough detuning to cool and trap atoms) using different setpoints along the dispersion curve

with the PID controller [61]. However, this does not give information about the exact detuning from

the transition of interest. In order to get this information, the reference beam is mixed with that of

the cooling laser, which is locked at the same transition (with a certain redshift). The mixed beam

is pointed to a fast photodiode (FPD) whose voltage signal is fed to a spectrum analyser (SA) that

returns the frequency spectrum of this beat signal shown in figure 5-6. Since the reference laser and

the cooling laser are locked at different frequencies, this spectrum shows a peak at the frequency

difference 𝜔1 − 𝜔ref = 𝛿1 − 𝛿ref . Assuming that the reference laser has a constant frequency this

measurement allows the 𝛿1 detuning to be varied in a controlled manner.

The approximate setpoints of the frequency locks are shown in 5-2. The setpoints of the cooling

and reference lasers were taken as apart as possible in order to obtain a frequency difference as

large as possible. At small differences, the peak becomes mixed with the zero-frequency peak in the

Fourier transform.
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Figure 5-6: Beat of the reference and cooling lasers.
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Since a beat of the two lasers was recorded only for each data series (but not for each recorded

spectrum), and the value of 𝛿𝑟𝑒𝑓 − 𝛿1 was taken by examining the frequency spectrum of the beat

singal directly at the spectrum analyser screen, the error of the relative detuning measurement is

taken as the half width at half maximum (HWHM) of the beat signal shown in figure 5-6 (2.47

MHz).

This beat allows the spectral width of the lasers to be estimated by taking them to be approxi-

mately of the same width. This is reasonable given that they are all ECDLs of similar architecture

and diodes. Hence FWHM1 = FWHM2 = (4.94 ± 0.14 MHz)/
√

2 = 3.4 ± 0.1 MHz.

5.6 Electric field measurement

The power of the cooling and repump beams is measured using a power-meter (PM) that receives

a faint beam reflected on a beam splitter. The power of the probe beam is measured by another

power-meter placed at the other side of the atomic cloud. The power of of these beams is varied using

a half-wave plate to rotate their initially linear polarizations and using a polarizing beamsplitter to

select horizontal polarization.

The combined cooling and repump beams go through quarter-wave plates with a diameter of

1/2’ to produce the polarization that the MOT requires. These plates obstruct most of the laser

light of the previously expanded Gaussian beam. The diameter of the power-meter is smaller than

these beams (9 ±0.02 mm). The error of the power measurement is taken as the variation of the

reading of power which is about 5 in the third digit of the reading. This corresponds to 0.5 % of the

power measurements. The widths of these beams are previously increased through a pair of lenses,

this means that only the central part of the originally Gaussian beam is present in the MOT. Since

the spatial variation of the intensity is not taken into account, and it is relatively homogeneous,

it is appropiate to dismiss this variations and calculate the amplitude of the electric field treating

the beam as having a top-hat intensity distribution. Hence the electric field amplitude is calculated

through B.1. The corresponding error is propagated from the measurements of the power and the

diameter of the detector. The light that is not contained in the detector has no effect in the value

of the electric field as long as the variations of intensity are ignored.

The probe beam is introduced without any obstruction to the atomic cloud, so that electric field

amplitude must be calculated through B.2. In order to measure the width of this beam a photograph

(shown in figure 5-7a) was taken. The beam is directed to a perpendicular sheet of millimetric

paper. A photograph of the millimetric paper 5-7b allows a pixel-to-millimeter correspondance to

be calculated. A 2D Gaussian distribution of the form
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Figure 5-7: The steps in the determination of the size of the probe beam. a) The photograph of the beam.
b) The photograph of the millimetric paper indicting two pixels separated by 10 mm. c) The photograph
with the saturated pixels indicated in red, and the pixels to be fitted delimitated by blue lines. The detector
is shown as a green circle for comparison.d) The resulting fit. e) The summed columns. f) The summed
rows.
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is fitted to the values of each pixel in the photograph, with pixels with a value above certain threshold

not being considered as shown in red in 5-7c. This allows the tilt 𝜃 of the beam in the photograph

to be accounted for. The corresponding Gaussian distribution is shown in 5-7d. The fit returns

𝜎𝑥 = 2.14 ± 0.10 mm and 𝜎𝑦 = 1.67 ± 0.10 mm as the standard deviations in rotated axis.

The picture is then rotated by the angle 𝜃 about the blue point indicted in figure 5-7c, and the

pixel values of columns and rows are added to produce the profiles shown in figures 5-7e and 5-7f

respectively. A Gaussian fit with the same 𝜎𝑥 and 𝜎𝑦 is shown.
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Chapter 6

Numerical Simulation

The purpose of developing the theory in chapters 2 and 3 is to solve optical Bloch equations that

simulate the spectroscopy described in chapter 4. A Python 2.7 program was written that receives

as input the quantities calculated in chapter 3 (namely a set of states |𝑖⟩, resonant frequencies 𝜔𝑖𝑗 ,

matrix elements of the dipole operator 𝑟𝑝𝑖𝑗 , and decay frequencies 𝛾𝑖𝑗). From these quantities it uses

equations 2.10 and 2.9 to produce Fortran 90 code to calculate explicitly each non-zero element 𝐴𝜇𝜈

of the evolution operator and the independent vector 𝑏𝜈 .

The Fortran expressions for each 𝐴𝜇𝜈 and 𝑏𝜈 are explicitly in terms of arbitrary 𝐸𝑙
0 and 𝛿𝑙. The

code is next compiled using the gfortran compiler from the GNU Compiler Collection [19]. The

resulting binary file is then called using a Python interface through which values of 𝐸𝑙
0 and 𝛿𝑙 are

specified. With these user-given parameters, the Fortran program then solves the equations for the

steady state using LAPACK (Linear Algebra Package) [2]. To calculate spectra the user selects a 𝛿𝑙

to be swept (𝛿3 in our case), a variation range and a number of points to be solved.

The solutions of these systems of equations are complete 𝜌𝜈 for each point of interest. When all

of these have been calculated for a spectrum, the Fortran program saves the results to a NetCDF

(Network Common Data Form) binary file [55], [10]. This file is then read by a Python interface

and the density matrices can then be used to calculate the spontaneous fluorescence using equation

3.5. The NetCDF protocol for binary encryption was chosen to make the fastest and most memory-

efficient communication between the Python and Fortran sides of this process. Using text files is

approximately 23 times slower, and can take even more time than it takes LAPACK to solve the

equations.

These spectra are then convolved with a Gaussian distribution to account for all broadening

effects (except power broadening, which is contained in the solutions to Bloch equations), including

the laser emission widths and the Doppler effect as explained in section 3.4. The convolution

is calculated in Python using the NumPy library [69]. This library implements the convolution
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through a fast Fourier transform, and the time this takes is negligible compared to the solution of

the equations.

Since all this process, from producing the code of the equations to their solution, interfacing and

calculating the fluorescence spectra are done in a highly efficient way, I have creatively named this

software package “FAST Atomic Spectroscopy from Theory” (FAST).

6.1 Approximations to the complete problem

This name can be misleading, however. The complete problem includes all states from all the

multiplets shown in figures 3-1 and 3-2. For 85Rb (87Rb) this means solving optical Bloch equations

that have 𝑁𝑒 = 180 (120) states, leading to 𝑁𝜌 = 32399 (14399) equations. FAST can solve

this problems, and is characterized using processor cores Intel R○ Xeon R○ E5-2690 v3 at 2.60GHz

clock frequency and RAM memories of 2GB. The characterization is shown in table 6.1. However,

calculating theoretical spectra involves finding a solution to the equations for approximately 500

experimental data points from an experimental spectrum. Each of these points takes approximately

5030 s (445 s).

The aim of this thesis is not just to reproduce the measured spectra using experimental pa-

rameters, but to fit theoretical spectra to the experimental data in order to provide insight of the

details of the physical processes occurring during the spectroscopy across a range of parameters.

This fitting would take months to years using the complete problems so some compromise must be

made between physical accuracy and time of computation.

One obvious shortcut is using solutions to a reduced number of states to calculate the fluorescence

spectra. For instance, one could exclude multiplets 4𝐷3/2 and 4𝐷5/2 from the calculation. These

states recieve less than 6 % of the 0.6673 MHz of spontaneous decay from 5𝐷5/2. Ignoring their role

would still produce in principle reasonably realistic results. From this reduced problem we could

still use 3.5 to calculate the spontaneous fluorescence. While the values calculated in this way might

correlate well with those of the complete problem, the populations in 6𝑃3/2 will be higher because

of the absence of other relevant states. This will lead to higher-than-real values of fluorescence.

85Rb 87Rb
States Comp 𝑁𝑒 𝑡w 𝑡c 𝑡r 𝑁𝑒 𝑡w 𝑡c 𝑡r

5𝑆1/2 5𝑃3/2 5𝐷5/2 74 % 72 22.0 32.8 21.5 48 7.88 10.0 2.01
5𝑆1/2 5𝑃3/2 6𝑃3/2 5𝐷5/2 80 % 96 40.4 56.3 122 64 13.5 16.4 10.6
5𝑆1/2 5𝑃1/2 5𝑃3/2 4𝐷5/2 100 % 180 163 4615 5030 120 50.6 64.9 445
4𝐷3/2 6𝑆1/2 6𝑃3/2 5𝐷5/2

Table 6.1: For both simplified and complete problems, and for each isotope the number of states in 𝑁𝑒,
the number of equations 𝑁𝜌, the time required to write the Fortran code 𝑡w, to compile it 𝑡c, and to run it
for one point of a spectrum 𝑡r are shown in seconds. The completeness of each problems is defined as the
fraction of the 0.6673 MHz of spontaneous decay from 5𝐷5/2 that is taken into account.
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The most extreme version of this simplification scheme is to solve only for the 5𝑆1/2, 5𝑃3/2, 5𝐷5/2

multiplets. In this case formula 3.5 cannot be applied, since there is no 6𝑃3/2 multiplet to sum over.

However, since it can only come from spontaneous decay, the population in 6𝑃3/2 can intuitively be

thought of as being proportional to that in 5𝐷5/2. The sum of the populations in 5𝐷5/2 is taken as

a measure of fluorescence and compared to the fluorescence calculated from the complete problem

as shown in figure 6-1.
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Figure 6-1: The fluorescence calculated through formula 3.5 using all of the states in figures 3-1 and 3-2 is
shown in the vertical axis. The horizontal axis shows the sum of the populations in the 5𝐷5/2 multiplet
calculated using only the states in the 5𝑆1/2, 5𝑃3/2, 5𝐷5/2 multiplets.

A very strong correlation coefficient𝑅2 = 0.999957 (𝑅2 = 0.999953) is found between fluorescence

and this sum of populations for 85Rb (87Rb). This linear relation can then be used to calculate the

fluorescence while solving only for the reduced problem. 8-core processors with the characteristics

mentioned above are used to calculate solutions in parallel computation, allowing the calculation of

fluorescence spectra in about 16 min (2 min).

6.2 Fitting to the experiment

In order to reproduce the measured spectra the experimental parameters 𝐸𝑙
0 and 𝛿𝑙 have been

obtained in chapter 4. However, we are still missing the value of 𝛿1ref that is used to calculate

variations of 𝛿1. The emission linewidth of the lasers is also unaccounted experimentally, as is the

temperature of the atomic cloud. In order to get an estimation of these parameters the model will

be used to fit theoretical spectra to the experimental data.

A fitting process could in principle be performed for any experimental parameters that may be

of interest, that are unknown or that are relatively uncertain. In this thesis the reference detuning

𝛿1ref and the effective broadening standard deviation 𝜎eff will be fitted to the experimental spectra.

We measure spectra varying the power of the cooling beams (directly related to 𝐸1
0) and the cooling
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detuning 𝛿1. We will also fit this parameters in order to compare how their measured values (and

errors) might differ from those obtained by fitting the model to the data.

For a given experimental spectrum with 𝑁 data points we calculate a theoretical spectrum from

some values of the fitting parameters (𝜎eff , 𝐸
1
0 , 𝛿

1
ref , 𝛿

1). The highest point of this experimental

spectrum is used to rescale the experimental data, and calculate the reduced chi squared

𝜒2
red =

1

𝑁 − 4 − 1

𝑁∑︁
𝑗

(𝜑(𝛿3𝑗 ;𝜎eff , 𝐸
1
0 , 𝛿

1
ref , 𝛿

1) − 𝑦𝑗)
2

where 𝜑 is the fluorescence calculated from the model (equation 3.5) and 𝑦𝑗 is the rescaled

experimental data point corresponding to 𝛿3𝑗 . This objective function is minimized over parameter

space using the Nelder-Mead polygon method as implemented in the SciPy library for Python [34].

When this converges to a minimum in parameter space we obtain a theoretical estimation of the

experimental parameters that are being fitted.

6.3 Goodness of fit error estimation

Some measure of the error of this estimation is needed. The most strict procedure would be to

take into account the experimental errors of all measurements that are done to feed the numerical

values that the model uses. This includes the measurement of atomic energy levels, half-lives, laser

powers, detunings, polarizations and imperfections in the geometry of the MOT setup. This errors

must then be propagated through all the calculation process including the solution of the Bloch

equations. This approach is completely impractical, so a heuristic alternative will be used instead.

If all measurements 𝑋⃗ are treated as Gaussian random variables, it can be demonstrated [53] that

𝜒2
red(𝑋⃗) is also a random variable whose probability distribution gives rise to a covariance matrix

among the parameters 𝑋⃗ given by

COV = (H)−1𝜒2
red =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕2𝜒2
red

𝜕𝑋2
1

𝜕2𝜒2
red

𝜕𝑋1 𝜕𝑋2
· · · 𝜕2𝜒2

red

𝜕𝑋1 𝜕𝑋𝑛

𝜕2𝜒2
red

𝜕𝑋2 𝜕𝑋1

𝜕2𝜒2
red

𝜕𝑋2
2

· · · 𝜕2𝜒2
red

𝜕𝑋2 𝜕𝑋𝑛

...
...

. . .
...

𝜕2𝜒2
red

𝜕𝑋𝑛 𝜕𝑋1

𝜕2𝜒2
red

𝜕𝑋𝑛 𝜕𝑋2
· · · 𝜕2𝜒2

red

𝜕𝑋2
𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

𝜒2
red,

where H is the Hessian matrix in parameter space at the convergence point. In our case we cal-

culate it only for the four fitting parameters for which 𝜒2
red is readily available, and not for all the

measurements mentioned before. The derivatives in this matrix are calculated numerically using

second order centred finite difference approximations [9]. The diagonal elements of this matrix are
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variances for each parameter, and their square roots are taken as their theoretical errors.

6.4 Spatial dependance of the density matrix

It is also important to note that this numerical simulation is done considering only the atoms that

are precisely at the centre of the MOT. In reality, the atomic cloud has a diameter of approximately

1 mm, and atoms in different positions contribute differently to the fluorescence captured by the

PMT.

Firstly, the magnetic field 𝐵⃗(𝑅⃗) of the MOT establishes a preferential quantization axis for

the density matrix along the direction of the magnetic field 𝑏̂(𝑅⃗) = 𝐵⃗(𝑅⃗)/|𝐵⃗(𝑅⃗)|. In each point,

equations in chapter 2 must be solved rotating the light fields so they are oriented correctly with

respect to the preferential axis. This 𝜌(𝑅⃗) solutions must then be added to produce an effective

density matrix

𝜌eff =

∫︀
𝑉cloud

[𝑈̂(𝑅⃗)𝜌(𝑅⃗)𝑈̂†(𝑅⃗)]𝜚(𝑅⃗)𝑑𝑉∫︀
𝑉cloud

𝜚(𝑅⃗)𝑑𝑉
,

where 𝜚(𝑅⃗) is the density of the atomic cloud. Notice that 𝜌(𝑅⃗) are not simply added together, but

rather they must be transformed by a rotation matrix 𝑈̂(𝑅⃗) that takes it from the basis of ˆ⃗
𝐹 · 𝑏̂(𝑅⃗)

eigenvectors to the basis of ˆ⃗
𝐹 · 𝑧 eigenvectors (see [7], [17]).

Secondly, the fields have been taken as plane waves throughout this thesis, however, if we consider

their Gaussian structure 𝐸⃗𝑙(𝑅⃗) the calculation becomes

𝜌eff =

∫︀
𝑉cloud

[𝑈̂(𝑅⃗)𝜌(𝑅⃗, 𝐸⃗𝑙(𝑅⃗))𝑈̂†(𝑅⃗)]𝜚(𝑅⃗)𝑑𝑉∫︀
𝑉cloud

𝜚(𝑅⃗)𝑑𝑉
.

Also, the presence of a magnetic field produces a Zeeman shift in every point of the cloud (except

in the center), thus

𝜌eff =

∫︀
𝑉cloud

[𝑈̂(𝑅⃗)𝜌(𝑅⃗, 𝐸⃗𝑙(𝑅⃗), 𝐵⃗(𝑅⃗))𝑈̂†(𝑅⃗)]𝜚(𝑅⃗)𝑑𝑉∫︀
𝑉cloud

𝜚(𝑅⃗)𝑑𝑉
.

Furthermore, the position of the lens that collects the fluorescence makes atoms that are more or

less in focus contribute more or less to the registered signal, and there may also be defects in the

alignment of the beams and the magnetic field.

These integrals cannot be calculated except at great computational cost (and there is no math-

ematical trick available as in section 3.4). Hence all of these spatial details have been neglected in

this thesis, and 𝜌 has been calculated only at the center of the MOT using 𝑧 as the quantization

axis and without any Zeeman shift.
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6.5 Zeeman Shift

It is still important to know what might be an upper bound of the effects of the Zeeman shift

in the calculation. If this shift is relatively small compared to the hyperfine structure, then the

interaction Hamiltonian between the static field 𝐵⃗(𝑅⃗) = 𝐵𝑧𝑧 is [36]

𝐻̂𝐵 =
𝜇𝐵

~
𝑔𝐹𝐵𝑧𝐹𝑧,

where 𝐹𝑧 is the total angular momentum operator in the 𝑧 direction, 𝜇𝐵 is the Bohr magneton,

and 𝑔𝐹 is the hyperfine Landé 𝑔-factor, given by

𝑔𝐹 = 𝑔𝐽
𝐹 (𝐹 + 1) − 𝐼(𝐼 + 1) + 𝐽(𝐽 + 1)

2𝐹 (𝐹 + 1)
+ 𝑔𝐼

𝐹 (𝐹 + 1) + 𝐼(𝐼 + 1) − 𝐽(𝐽 + 1)

2𝐹 (𝐹 + 1)
,

where 𝑔𝐽 is the Landé factor

𝑔𝐽 = 𝑔𝐿
𝐽(𝐽 + 1) − 𝑆(𝑆 + 1) + 𝐿(𝐿+ 1)

2𝐽(𝐽 + 1)
+ 𝑔𝑆

𝐽(𝐽 + 1) + 𝑆(𝑆 + 1) − 𝐿(𝐿+ 1)

2𝐽(𝐽 + 1)
.

The quantity 𝑔𝐿 is the electron orbital 𝑔-factor, given by 𝑔𝐿 = 1−𝑚𝑒/𝑚𝑛 = 0.99999354 [6]. The

electron spin 𝑔-factor 𝑔𝑆 has been measured to great precision as 𝑔𝑆 = 2.00231930436182(52) (2014

CODATA recommended value). The nuclear spin 𝑔-factor 𝑔𝐼 = −0.00029364000(60) for 85Rb and

𝑔𝐼 = −0.0009951414(10) for 87Rb [3]. The energy levels split according to

∆𝐸|𝐹𝑀𝐹 ⟩ = 𝜇𝐵𝑔𝐹𝑀𝐹𝐵𝑧.

The splitting in this weak-field regime is known as the Zeeman splitting, and the corresponding

differences between energy levels are known as Zeeman shifts.

According to the characterization [61] the atomic cloud is approximately 1 mm in diameter, and

the magnetic field gradient 𝜕𝑧𝐵𝑧 = 7.5 G/cm = 0.075 T/m. This means that at the border of the

atomic cloud (where the magnetic field is most intense), the field is approximately 3.75 × 10−5 T =

0.375 G.

∆𝐸|𝐹𝑖𝑀𝐹𝑖
⟩ − ∆𝐸|𝐹𝑗𝑀𝐹𝑗

⟩ (MHz)
|𝑖⟩ |𝑗⟩ 85Rb 87Rb

5𝑃3/2 𝐹 = 4(3) 𝑀𝐹 = 𝐹 5𝑆1/2 𝐹 = 3(2) 𝑀𝐹 = 𝐹 0.52 0.52
5𝐷5/2 𝐹 = 5(4) 𝑀𝐹 = 𝐹 5𝑃3/2 𝐹 = 4(3) 𝑀𝐹 = 𝐹 0.52 0.52
5𝐷5/2 𝐹 = 4(3) 𝑀𝐹 = 𝐹 5𝑃3/2 𝐹 = 4(3) 𝑀𝐹 = 𝐹 0.20 0.28
5𝐷5/2 𝐹 = 3(2) 𝑀𝐹 = 𝐹 5𝑃3/2 𝐹 = 4(3) 𝑀𝐹 = 𝐹 -0.10 0.10

Table 6.2: The Zeeman shifts for the main transitions of interest for both isotopes.

The main transitions of our interest, for 85Rb (87Rb), are the cyclic transition 5𝑆1/2𝐹 = 3(2) →
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5𝑃3/2𝐹 = 4(3), and the three allowed transitions to the 5𝐷 multiplet 5𝑃3/2𝐹 = 4(3) → 5𝐷5/2𝐹 =

5, 4, 5(4, 3, 2). Table 6.2 shows the Zeeman shift of each of these lines for both isotopes. For the

cyclic transition, the shift is about 10 times smaller than the linewidth of 6.065 MHz, and three

orders of magnitude smaller than the 120 MHz (266 MHz) of the distance between hyperfine levels.

For the second-step transitions, the shifts are one order of magnitude smaller than the 9.3 MHz and

8.9 MHz between hyperfine levels of 85Rb, and two orders of magnitude smaller than the 28.8 MHz

and 22.9 MHz between hyperfine levels of 87Rb.

These are the greatest shifts within the cloud, corresponding to the borders, and hence to the

least-dense regions. This means that the error in the position of peaks due to neglecting the spatial

dependance of the magnetic field is about 0.5 MHz. However, since the contribution of atoms to the

effective density matrix is weighed by the density at each point of the cloud, this is an upper bound.
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Chapter 7

Results

I now present the results for both isotopes. Fluorescence spectra from the experiment described

in chapter 5 obtained varying the electric field amplitude 𝐸1
0 are examined. The power of the cooling

beam is varied so as to take constant-size steps of 𝐸1
0 . Secondly, the detuning of the first excitation

is varied taking constant steps of the relative detuning 𝛿1 − 𝛿1ref .

For each of these variations and for both isotopes the following analysis is presented. The voltage-

to-frequency calibration is obtained from the AOM as described in chapter 5. A few representative

spectra are shown to illustrate their general behaviour. Voigt distributions are fitted to the data and

the variation on the position, relative heights, and widths of the peaks is examined. The tendencies

are compared with the simplified three level theory developed in subsection 2.5.1.

Next, the multilevel model is compared with the data using the quantities calculated in chapter

3 for the rubidium atom. The tendencies of the fitted parameters are presented in this chapter as

functions of experimental parameters.

Lastly, the results of the simplified and multilevel models are compared.

7.1 Power Variation of the First-step Beam

7.1.1 Simple Model

Figures 7-1 (7-2) show representative spectra for a range of values of 𝐸1
0 for 85Rb (87Rb). The

spectra obtained in the cell using the reference laser are also shown together with the Voigt fits used

to obtain the frequency calibration. The residues of these fits are shown below each spectra and

although for a few points of the cell fit they are as high as 15 % of the height of the spectra, typically

they are below 2 % for both the cell and MOT fits.

The transitions 5𝑃3/2𝐹 = 4(3) → 5𝐷5/2𝐹 = 5, 4, 3(4, 3, 2) as given by the literature cited in

chapter 3 are indicated with black lines for the cell spectroscopies. The calibration is obtained
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Figure 7-1: Spectra for different values of 𝐸1
0 in 85Rb. Hyperfine transitions of 5𝑃3/2 → 5𝐷5/2 are indicated

for the cell spectroscopy. The residues of Voigt fits for both spectroscopies are shown.

through the voltage-to-frequency correspondance described in section 5.4. The first peak is set to

zero frequency, but the correspondance of the second and third peaks to the frequencies stated in

the literature serves as confirmation of them.

The spectra in MOT show Autler-Townes splitting even at the lowest intensities. In particular,

the first peak is split into the transitions |±⟩ → 5𝐷5/2𝐹 = 5(4) which are clearly visible for both

isotopes. At high power the Autler-Townes pairs corresponding to each of the hyperfine transitions
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Figure 7-2: Spectra for different values of 𝐸1
0 in 87Rb. Hyperfine transitions of 5𝑃3/2 → 5𝐷5/2 are indicated

for the cell spectroscopy. The residues of Voigt fits for both spectroscopies are shown.

become so separate that different pairs overlap, and the peaks are difficult to distinguish.

Varying the intensity of the cooling beam produces changes in the fluorescence of each of the

trapped atoms as driven by 𝐸1
0 through the theory developed in chapter 2. However, this beam also

plays a role in determining the number of trapped atoms. Therefore, without a reliable measurement

of the number of trapped atoms, the signal from the PMT (shown in the vertical axis of these spectra)

has no physically clear meaning. For this reason, their maxima have been rescaled to 10 so as to
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compare the relative heights of the peaks which are shown in figure 7-3.
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Figure 7-3: The relative heights of the Voigt peaks fitted to the spectra for all values of 𝐸1
0 .

As the intensity is increased the Autler-Townes pair is further split, and their relative heights

become more symmetric. This matches the theory developed in subsection 2.5.1. These tendency

graphs have experimental data in the horizontal axis and fitted parameters in the vertical axis.

Vertical error bars are derived through the numerical approximation described in section 6.3.

The variation in the position of the peaks is shown in figure 7-4. As the intensity is increased the

Autler-Townes splitting increases as expected. The mid point between the Autler-Townes pairs is

indicated and with blue red and purple horizontal lines for each Autler-Townes pair (that is where

the naked transition must be). An average for the position of this naked transition is taken for the

main peak and used to deduce the position of the others using the known hyperfine separation. The

fact that the midpoints for the second Autler-Townes pair 87Rb do not coincide with this can be

attributed to the overlaping of peaks, which makes difficult the precise localization of peaks.

For the main peaks the frequency difference between the peaks is shown as a function of 𝐸1
0 in fig-

ure 7-5. According to theory this difference should be ∆𝜈 =
√︀

(Ω1)2 + (𝛿1)2 =
√︀

(𝑒℘21/ℎ)2(𝐸1
0)2 + (𝛿1)2

for some effective Rabi frequency Ω1. This expression is fitted to the data for values of ℘21 and 𝛿1.

The fitted curves match closely the data, and the values obtained for 𝛿1 are in the range of 0-14

MHz expected from the characterization of the MOT in [61]. Remarkably, the values of ℘21 are very

close to half the 8.453 𝑎0 calculated in chapter 3 as the reduced matrix element of the 5𝑆1/2 → 5𝑃3/2

transition. If one considers the atom to be purely in the cooling cycle from equation 3.1 it can be

seen that for 85Rb (87Rb) the only relevant coupling will be that for 𝐽𝑖 = 3/2, 𝐹𝑖 = 𝑀𝑖 = 4(3), 𝐽𝑗 =

1/2𝐹𝑗 = 𝑀𝑗 = 3(2), 𝑝 = 1.

For both isotopes

⟨𝑁𝑖𝐿𝑖𝐽𝑖𝐹𝑖𝑀𝑖|𝑇 1
𝑝 (̂⃗︀𝑟)|𝑁𝑗𝐿𝑗𝐽𝑗𝐹𝑗𝑀𝑗⟩ =

1

2
(𝑁𝑖𝐿𝑖𝐽𝑖||𝑇 1(̂⃗︀𝑟)||𝑁𝑗𝐿𝑗𝐽𝑗),
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Figure 7-4: The centres of the Voigt peaks fitted to the spectra for all values of 𝐸1
0 .

which explains the fact that the effective matrix element is half the reduced matrix element in the

simplified model.
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Figure 7-5: The frequency difference between the two main Voigt peaks for all values of 𝐸1
0 .

The FWHM of the Voigt profiles are shown in figure 7-6 and exhibit a clear linear tendency. At

higher intensity there is higher broadening, which is attributable to the rising of temperature caused

by the transference of momentum, and the Doppler effect broadening associated with it. This is

consistent with the experimental findings in [71] and [72] where the temperature of the atomic cloud

has been measured to increase with the intensity of the cooling beam.

Notice that all these fitted quantities are shown here with the error bars calculated from the

inverse Hessian matrix as described in section 6.3, but in many cases they are very small. This

happens when the Voigt fits are very good, but this may be only a lower bound of the error bars.
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Figure 7-6: The FWHM of the Voigt peaks fitted to the spectra for all values of 𝐸1
0 .

7.1.2 Multilevel model

Figures 7-7 (7-8) show the same spectra already shown for the simplified analysis 𝐸1
0 for 85Rb

(87Rb) using now the multilevel model as described in chapters 3 and 6.

We can see good agreement between the multilevel model and the experimental data. The

residues of the theoretical spectra relative to the experimental data are shown below each spectrum

and they are at most 7.14 % of the total height of the spectra.

At high intensity the Autler-Townes peaks show many other peaks within them. This can

be attributed to the multitude of polarization components driving the transitions and the differ-

ences between their couplings. Each channel splits according to different Rabi frequencies given

by their respective couplings 𝑟𝑝𝑖𝑗 . Previous studies have resolved this 𝑀𝐹 -specific Autler-Townes

splitting [13,41,46]. For instance, for 85Rb (87Rb) in the highest Autler-Townes peak the 𝑀 -specific

excitations |𝐹 = 4,𝑀 = 4(3)⟩ → |𝐹 = 5,𝑀 = 5(4)⟩, |𝐹 = 4,𝑀 = 3(2)⟩ → |𝐹 = 5,𝑀 = 4(3)⟩,

|𝐹 = 4,𝑀 = 3(2)⟩ → |𝐹 = 5,𝑀 = 3(2)⟩ can be distinguished from left to right.

Furthermore, in figure 7-9 the imaginary parts of the coherences for these transitions are shown

for three different choices of 𝑀𝑖,𝑀𝑗 . The fluorescence has been rescaled to show the correlation

with coherences. It can be seen that the different peaks in the fluorescence correspond to various

excitation paths visible in the coherences. The broadening from the convolution hides this multi-

channel splitting, resulting in theoretical spectra that very closely match the measured data. This

shows that the detailed theoretical analysis developed in this work allows the different contributions

of the excitation paths to be resolved.

At low intensity there is some discrepancy between the relative heights of the peaks. This is

attributable to several effects. Firstly, not all model-parameters are fitted, importantly the MOT

beams are taken to be perfectly circular, so any defect in their polarization is not taken into account.
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Figure 7-7: Spectra for different values of 𝐸1
0 in 85Rb.

Also, the quantization axis is taken to be precisely the 𝑧 axis as shown in figure 4-1. However,

the probe beam (although it is taken at a constant and low power) breaks the symmetry of the

effective polarization of the atoms. Therefore, the proper quantization axis is slightly different than

𝑧.

In addition to this, the magnetic field of the MOT contributes differently to the polarization

at different points of the atomic cloud. A more complete calculation would have to consider the

different contributions of different points of the cloud using rotations of the quantization axis as
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Figure 7-8: Spectra for different values of 𝐸1
0 in 87Rb.

dictated by the MOT magnetic field, with each contribution weighted by the local density of the

cloud. Since this level of detail of the properties of the cloud is very difficult to measure, all the

atoms are taken to be at the centre of the cloud using the 𝑧 axis as the quantization axis.

It is also noticeable that the relative height discrepancies are greater for 85Rb than for 87Rb. One

way to explain this is that the frequency differences between hyperfine states in 85Rb are significantly

smaller than those in 87Rb. This means that errors in the voltage-to-frequency callibration of the

former are more important. A smaller frequency-to-voltage ratio leads to peaks that are closer to
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Figure 7-9: The imaginary parts of the coherences for 85Rb (87Rb) from transitions 5𝑃3/2𝐹 = 4(3) →
5𝐷5/2𝐹 = 5(4) are shown for three different choices of 𝑀𝑖,𝑀𝑗 .

each other. This means that the optimization process leads to higher values of 𝐸1
0 . This in turn

exaggerates the Autler-Townes splitting and when the convolution joins the split peaks they show

with smaller heights.

Vertical error bars are derived through the numerical approximation described in section 6.3.

Horizontal error bars are obtained by propagating the error from direct measurements as described

in chapter 5.

The tendencies of the fitted values of the detuning of the reference laser 𝛿1ref are shown in figure

7-10. They show no clear tendency outside the error bars, which is consistent with a well-stabilized

frequency for the reference laser. Noticeably, the error bars are larger at lower powers. When the

power of the cooling beam decreases, there are less atoms able to contribute to the spectra and there

is a lower signal. This leads to a smaller signal-to-noise ratio and therefore to greater error bars.
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Figure 7-10: The fitted values of the detuning of the reference laser 𝛿1ref on the left for 85Rb and on the right
for 87Rb.
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Figure 7-11: The fitted values of the detuning of the cooling laser 𝛿1 on the left for 85Rb and on the right
for 87Rb.

The fits for 𝛿1 are shown in figure 7-11 together with the experimental values as deduced from

the values 𝛿1ref obtained from the fits. The fitted and measured values do match for 85Rb within

experimental and theoretical error bars. For 87Rb they do not lie within the error bars calculated

from the fit. However, they are within the 4.9 MHz error associated to the measurement of 𝛿1 − 𝛿1ref

through the beat. This experimental error is shown as a green shade. Also, this is a small error

compared to the 120 MHz (266 MHz) between the 𝐹 = 3(2) and 𝐹 = 2(1) hyperfine levels of the

5𝑃3/2 multiplet for 85Rb (87Rb).

The data points correspond to spectra that were measured in order of increasing power, and

so the variation of detuning for 87Rb, is attributable to a drift in the frequency lock of the laser

throughout the five to six hours that the data acquisition lasted. This indicates that the analysis

using the multilevel model gives information about the conditions of measurement that are beyond

the precision with which the experimental parameters could be determined.
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Figure 7-12: The fitted values of 𝐸1
0 on the left for 85Rb and on the right for 87Rb.
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The values fitted for the electric field amplitude 𝐸1
0 are shown in figure 7-12. The measured and

theoretical values of 𝐸1
0 match to within both experimental and theoretical error bars, although there

is a systematic underestimation of the measured values. This is attributable to not capturing all of

the beam light in the power-meter. Noticeably, the error bars (obtained as explained in subsection

5.6 and section 6.3) are of similar magnitude, meaning that the fitting procedure could be used to

estimate the electric field amplitude with a precision similar to that of the measurements.
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Figure 7-13: The experimental values 𝛿1 in the horizontal axis, and the fitted values of the FWHM that is
convolved with the theoretical spectra. A second order polynomial is fitted to the data, and the corresponding
minima are shown as green points (with their corresponding errors).

The broadening FWHMeff obtained from the model are shown in figure 7-13 and (like those

obtained by the Voigt fit) exhibit a clear tendency. Notice that these are the FWHMs associated

to each gaussian distribution convolved with each of the spectrum obtained from the equations for

monochromatic light and static atoms. In other words, these are purely the widths from broadening

effects (but not power broadening), while those presented in the previous subsection are the complete

widths of the peaks. For this reason they should not be expected to coincide, but only that the

complete width is larger (as is indeed the case).

The complete widths obtained in the previous section are shown in figure 7-13 as red points for

comparison. It is also possible to calculate the difference between these two widths to obtain the

width component corresponding to natural widths and power broadening (shown in green).

At lower intensity the multilevel model shows an increase of broadening and there is a beam

intensity with a minimum broadening. This may be explained by the presence of two opposing

effects as described in section 4.2. On one side, higher intensity leads to higher momentum transfer

to the atoms and therefore to higher temperatures. On the other side, very low intensities reduce

the Rabi frequency of the cooling mechanism.

This shows that the analysis using the multilevel model allows us to identify the optimal intensity

of the cooling beams to achieve the lowest temperature in the atomic cloud. In order to find this
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optimal intensity a second order polynomial is fitted to the data (shown as red lines). The coefficients

of these fits are then used to find the minimum, and the corresponding error bars are obtained

propagating the error from the fits (shown as a green dot with thick error bars). Remarkably, the

fits for 85Rb (87Rb) agree on the smallest broadening FWHM 6.06 MHz ± 1.27 MHz (6.64 MHz ±

0.71 MHz), and the corresponding the electric field amplitude 170.7 Vm−1±51.6 Vm−1 (168 Vm−1±

18.9 Vm−1).

The coincidence of the minimal widths is attributable to the fact that both clouds are cooled by

the same beam, that is, by radiation with the same line width. Since both isotopes have the same

reduced matrix element, and the atoms are effectively in the cyclic transition their coupling to the

light is effectively the same, and therefore they are cooled to the same temperature.

This temperature can be calculated through equation 3.6. The widths of the cooling and pump

lasers are obtained from the beat shown in 5.5 by assuming that the reference, cooling and repump

lasers have the same width. This assumption is based on the fact that they are all ECDLs of

similar arquitecture and diodes. Hence FWHM1 = FWHM2 = (4.94 MHz ± 0.147 MHz)/
√

2 =

3.4 MHz ± 0.104 MHz. The width of the probe beam is approximately 50 kHz (as indicated by the

manufactor), and so is practically negligible.

In this manner, the minimum temperatures for 85Rb (87Rb) are calculated to be 346 𝜇K ± 437 𝜇K

(555 𝜇K ± 269 𝜇K). Although the errors in these quantities are relatively large, they coincide with

the characterization of the MOT [61] made in the LAF-ICN that shows temperatures in the range of

250− 1600 𝜇K. These temperatures however, are significantly above those obtained in [72] and [71]

which are in the range of 10 − 300 𝜇K.

7.2 Detuning Variation of the First-step Beam

7.2.1 Simple Model

Figures 7-14 (7-15) show representative spectra for a range of values of 𝛿1− 𝛿1ref for 85Rb (87Rb).

These were obtained with a measured electric field amplitude of 128 ± 52 V/m.The residues of this

fits are shown below each spectra and although for a few points of the cell fit they are as high as 15

% of the height of the spectra, typically they are below 2 % for both the cell and MOT fits. These

spectra also show Autler-Townes splitting in all the data series.

Each hyperfine transition is shown as indicated by the literature cited in section 3 The spectra

in MOT show Autler-Townes splitting for all detunings. The first peak is split into the transitions

|±⟩ → 5𝐷5/2𝐹 = 5(4) which are clearly visible for both isotopes. For large detunings the Autler-

Townes pairs corresponding to each of the hyperfine transitions become so separate that different

pairs overlap, and the peaks are difficult to distinguish.

As in section 7.1, varying the frequency of the cooling beam changes both the fluorescence per
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Figure 7-14: Spectra for different values of 𝛿1 − 𝛿1ref in 85Rb. Hyperfine transitions of 5𝑃3/2 → 5𝐷5/2 are
indicated for the cell spectroscopy. The residues of Voigt fits for both spectroscopies are shown.

atom and the number of trapped atoms. The data have been rescaled to 10 in order to better

compare the relative heights of the peaks shown in figure 7-16. Voigt profiles are fitted both to

the reference spectra used to produce the frequency calibration and for the spectra obtained in the

MOT. Once again, the tendency graphs have experimental data in the horizontal axis and fitted

parameters in the vertical axis (and error bars are obtained accordingly).
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Figure 7-15: Spectra for different values of 𝛿1 − 𝛿1ref in 87Rb. Hyperfine transitions of 5𝑃3/2 → 5𝐷5/2 are
indicated for the cell spectroscopy. The residues of Voigt fits for both spectroscopies are shown.

As the (negative) detuning is increased the Autler-Townes pairs become more separate in fre-

quency, and their relative heights become less symmetric. This matches the theory developed in

subsection 2.5.1.

The variation in the position of the peaks is shown in figure 7-17. As the detuning is increased,

the Autler-Townes splitting increases as expected. In this data series, however, there is no way

to obtain a fit of
√︀

(Ω1)2 + (𝛿1)2 since there is no measurement of the cooling detuning 𝛿1 or the
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Figure 7-16: The relative heights of the Voigt peaks fitted to the spectra for all values of 𝛿1 − 𝛿1ref .

reference laser detuning 𝛿1𝑟𝑒𝑓 , but rather of 𝛿1 − 𝛿1ref . Despite this reservation, whatever the actual

values of 𝛿1 are, the difference between levels must still be linear at high values of 𝛿1 − 𝛿1ref if the

value of 𝛿1ref is relatively stable.
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Figure 7-17: The centres of the Voigt peaks fitted to the spectra for all values of 𝛿1 − 𝛿1ref .

The FWHM of the Voigt profiles are shown in figure 7-19, and for 87Rb they show a clear

tendency to decrease as the (negative) detuning increases. This can be easily explained from lower

temperatures for greater detunings. However, 85Rb does not show a clear tendency. Because of the

greater proximity of hyperfine transitions in this isotope, various excitation paths overlap, which

reduces the sensibility of the cooling process to detuning variations.

As in the previous section, these fitted quantities are shown here with error bars that are con-

siderably small in many cases and may be only a lower bound.

85



14 12 10 8 6 4 2 0

δ1 −δ 1
ref (MHz)

8

10

12

14

16

18

20

22

∆
ν

(M
H

z)

Ω1 =9.97 MHz ± 0.65MHz

√
(Ω1 )2 +(δ1 −δ 1

ref)
2

16 14 12 10 8 6 4 2 0

δ1 −δ 1
ref (MHz)

10

12

14

16

18

20

22

∆
ν

(M
H

z)

Ω1 =11.0 MHz ± 0.36MHz

√
(Ω1 )2 +(δ1 −δ 1

ref)
2

Figure 7-18: The frequency difference between the two main Voigt peaks for all values of 𝛿1 − 𝛿1ref .
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Figure 7-19: The FWHM of the Voigt peaks fitted to the spectra for all values of 𝛿1 − 𝛿1ref .
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7.2.2 Multilevel Model

Figures 7-20 (7-21) show representative spectra for a range of values of 𝛿1− 𝛿1ref for 85Rb (87Rb).

The residues of the theoretical spectra relative to the experimental data are shown below each

spectrum and they are at most 9.75 % of the total height of the spectra.

As the (negative) detuning is increased the Autler-Townes pairs become more separate in fre-

quency, and their relative heights become less symmetric. This matches the theory developed in

chapter 2. The variation of the detuning is noticeable in the position of the undressed transitions

shown in red.

It can be seen that for 87Rb some spectra fit well in the area between the highest peaks and the

next ones. This is because a Voigt profile cannot always be fitted for |+⟩ → |𝐹 = 4⟩ Autler-Townes

peak, but when it is possible, the fit improves.

Discrepancies between experimental and theoretical spectra can be explained in similar ways

as those for intensity variation. The polarization is taken as exactly circular and exactly linear as

shown in figure 4-1. A different combination of polarizations will lead to a different distribution of

populations of the 5𝑃3/2. In particular, the optical pumping will be less efficient and states other

than those in the cyclic transition will contribute more, leading to higher peaks in the 5𝑃3/2𝐹 =

4(3) → 5𝐷5/2𝐹
′ = 4, 3(3, 2) transitions for 85Rb (87Rb).

Another source of error is that an effective quantization axis is used based on the symmetry of

the radiation and magnetic fields in the MOT. This symmetry is broken by the probe field. Local

variations across the atomic cloud of the atom polarization, the atom density, the intensity of the

light fields, and the Zeeman shifts as explained in section 6.4.

A bias of the optimization process to fit the main peak 5𝑃3/2𝐹 = 4(3) → 5𝐷5/2𝐹
′ = 5(4)

for 85Rb (87Rb) also introduces error. The Autler-Townes pair of this peak has a greater number

of data points, and therefore the optimization process prioritizes the fitting of this pair of peaks.

Furthermore, since these peaks are higher, the residues from these data points are larger than those

for the smaller peaks, further increasing the bias of the optimization. This also explains why the

residues are slightly larger for the smaller peaks.

A more detailed simulation taking into account these details could be done, resulting in better

fits, however the current approximation seems enough to obtain the desired insight. The time needed

to complete this optimization is about 3 days (18 hours) for 85Rb (87Rb).

The tendencies of the fitted values of 𝛿1ref are shown in figure 7-22. As in the previous section, the

tendency graphs have experimental data in the horizontal axis and fitted parameters in the vertical

axis (and error bars are obtained accordingly). The fits for 85Rb appear constant within the error

bars, however, for 87Rb there is a jump corresponding to a point during the data acquisition in

which the lock of the reference laser was lost and then recovered (at a different frequency shown in

green). Both frequency locks are shown with different colours. Apart from this jump, there is no
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Figure 7-20: Spectra for different values of 𝛿1 in 85Rb.

clear tendency within the error bars for 87Rb either. Again, the error bars are larger at lower powers

as expected. Notice however, that this does not imply that the measurement of relative detunings

is less precise, only that the estimation from the model is affected by lower signal-to-noise ratios.

The fits for 𝛿1 are shown in figure 7-23. The horizontal axis shows the experimental measurement

obtained from the measurement of the relative detuning and the theoretical estimation of 𝛿1ref , and

the vertical axis shows the theoretical estimation of 𝛿1 from the fits. A perfect match between

these would correspond to points along a line at 45∘ from the horizontal axis (shown in green).
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Figure 7-21: Spectra for different values of 𝛿1 in 87Rb.

There is very good correspondance between experimental and theoretical spectra for both isotopes.

Noticeably, the theoretical error bars are significantly smaller than the experimental ones, thus

providing a more precise estimation of the actual value of 𝛿1.

The fitted values of 𝐸1
0 are shown in figure 7-24. There is a clear trend showing a reduction in

light intensity that should not be correlated with the detuning. However, this can be explained as

a drift in the output power of the laser during the time that the data acquisition lasted (several

hours). The experimental error of the determination of the electric field amplitude is shown as a
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Figure 7-22: The fitted values of 𝛿1ref on the left for 85Rb and on the right for 87Rb. Points that were taken
before a jump in the frequency lock are shown in green for 87Rb.
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Figure 7-23: The horizontal axis shows the experimental values obtained from the direct measurement of
𝛿1 − 𝛿1ref and the fitted values of 𝛿1ref . The vertical axis shows the fitted values of 𝛿1 on the left for 85Rb and
on the right for 87Rb.

green shadow. The theoretical estimations are contained within this error, and exhibit the drift

that could not be detected with the power-meter. Thus we can consider the fitting procedure as an

alternative method to detect small changes in the output power of lasers.

The FWHM obtained from the model are shown in figure 7-25 and exhibit a clear tendency

for 87Rb. A greater (negative) detuning produces a smaller FWHM, which is attributable to lower

temperatures. This analysis shows the same minimum FWHM (approximately 6 to 6.5 MHz) as the

analysis from the variation of 𝐸1
0 .

Once again, it should be noted that these are the FWHMs associated to each gaussian distribution

convolved with each of the spectrum obtained from the equations for monochromatic light and static

atoms. In other words, these are purely the widths from broadening effects, while those presented

in the previous subsection are the complete widths of the peaks. For this reason they should not be
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Figure 7-24: The fitted values of 𝐸1
0 on the left for 85Rb and on the right for 87Rb.
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Figure 7-25: The experimental values 𝛿1 in the horizontal axis, and the fitted values of the FWHM that is
convolved with the theoretical spectra.

expected to coincide, but only that the complete width is larger (as is indeed the case).

Although the fitted broadening FWHM for 85Rb do not show a clear tendency, they do seem to

indicate lower broadening for greater detunings. This lack of an overall tendency is also consistent

with the analysis with Voigt profiles, and can be explained by the non-resonant mixing of hyperfine

transitions.

The simplified model was used to produce an estimation of an effective Rabi frequency Ω1 at

zero detuning without taking into account the detuning of the reference laser 𝛿1ref . The estimation

of this number from the multilevel model will be taken into account to make a new estimation of

Ω1. For 85Rb (87Rb) the average value of 𝛿1ref was 2.2682 MHz (2.2667 MHz). This values are used

to calculate 𝛿1 and with this shifted x axis a new fit is made and shown in figure 7-26.

This new value of Ω1 is now used together with the estimation of 𝐸1
0 from the complete model:

222.3860 V/m (228.4725 V/m) to calculate the effective coupling constant ℘21 = ℎΩ1

𝑒𝐸0
. This gives
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Figure 7-26: The simplified model fitted to the Autler-Townes splitting using the 𝛿1ref from the complete
model.

4.0578 𝑎0 ± 0.3036 𝑎0 (4.2725 𝑎0 ± 0.2032 𝑎0) which is very close to the result obtained from the

simple model and to half the value of the reduced matrix element of the 5𝑆1/2 → 5𝑃3/2 transition

(8.453 𝑎0).
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Chapter 8

Conclusions

The generalized Optical Bloch Equations developed in this thesis can be used to explain fluores-

cence spectra of rubidium atoms with different degrees of detail ranging from an effective simplified

three level model to a complete model including the full hyperfine and magnetic structure.

These models can be used in a wide variety of experimental conditions, including non-resonant

frequencies and intensity above saturation.

The spectra produced from the complete model accurately reproduce experimental data with

relative errors that are most 9.75 % although for most data points this is better than 2 %.

Experimental uncertainties are comparable in magnitude to the confidence intervals derived from

the theoretical analysis. But the later ones seem to provide more information regarding the wide

variety of physical processes occurring in the experiment.

Theoretical spectra from the complete model provide insight about physical quantities other-

wise not directly available from the spectra, such as precise detuning, intensity, and temperature

variations.

This insight includes separating power broadening from broadening contributions from the Doppler

effect and laser widths. Power broadening can further be decomposed in the huge variety of transi-

tions between magnetic states that contribute to the lines measured in the experiment.

An estimation of the temperature of the atomic cloud can be obtained through this separation

of broadening contributions.

Variations of the intensity of the beams can be estimated through this method beyond what the

precision of the power-meters allow.

If only the states in the 5𝑆1/2, 5𝑃3/2, 5𝐷5/2 multiplets are taken into account, this theoretical

analysis can be done with common computing equipment in the range of minutes to several days.

This simplified model produces results that correlate with those of the complete model with a

correlation coefficient 𝑅2 = 0.999957 (0.999953) for 85Rb (87Rb).
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The detailed analysis including magnetic states allows the different contributions of each excita-

tion path to be resolved.

The dependance of the heights and positions of Autler-Townes pairs vary according to what the

simplified model qualitatively predicts.

The effective matrix element obtained from the simplified model is approximately half the cor-

responding reduced matrix element, and this can be explained purely in terms of Wigner symbols

derived from angular momentum theory.

8.1 Perspectives

Using the software developed in this thesis to opens a window to exploring spectroscopies before

building complicated experiments, or buying expensive equipment.

Optimizing the experimental parameters from theory to make a three photon spectroscopy aimed

at Rydberg atoms.

Recording spectra from electric quadrupole transitions.

Developing the terms from the electric quadrupolar Hamiltonian and include the calculations.

Using the dipolar transitions in this thesis to calibrate the voltage to fluorescence correspondance

of the PMT.

Using the model to fit the reduced matrix element of the quadrupolar transitions to the measured

fluorescence.

Using the fitted reduced matrix element to calculate the quadrupolar decay frequency.

Giving structure to 𝐸⃗(𝑅⃗) to explore effects of structured light beams on the spectra. In particular

beams with additional orbital angular momentum such as Bessel beams.

Describing the photons themselves developing a generalized Jaynes-Cummings model, and ap-

plying this to Cavity Quantum Electrodynamics.
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Appendix A

Electric Field

For simplicity we will consider the electric field as a linear combination of 𝑁𝑙 plane waves,

𝐸⃗0(𝑅⃗, 𝑡) =
∑︀

𝑙 𝐸⃗
𝑙(𝑅⃗, 𝑡) produced by 𝑁𝑙 lasers with arbitrary polarizations, orientations and inten-

sities. In this thesis indices spanning the 𝑁𝑙 laser fields will be superindices unless explicitly noted

for typesetting convenience. Each component of radiation will be taken to have the form

𝐸⃗𝑙(𝑅⃗, 𝑡) = 𝑅𝛼𝑙𝜃𝑙𝜑𝑙

𝐸𝑙
0(𝑅⃗)

2
(⃗𝜖𝑙(+)𝑒−𝑖𝜔𝑙𝑡 + 𝜖⃗𝑙(−)𝑒𝑖𝜔

𝑙𝑡) = 𝑅𝛼𝑙𝜃𝑙𝜑𝑙𝐸𝑙
0(𝑅⃗)

⎛⎜⎜⎜⎝
cos(𝜔𝑙𝑡) cos(2𝛽𝑙)

sin(𝜔𝑙𝑡) sin(2𝛽𝑙)

0

⎞⎟⎟⎟⎠ (A.1)

where 𝜖⃗𝑙(+) = 𝜖⃗𝑙(−) are unitary vectors that contain information about the polarization having the

form

𝜖⃗𝑙(+) =

⎛⎜⎜⎜⎝
cos(2𝛽𝑙)

𝑖 sin(2𝛽𝑙)

0

⎞⎟⎟⎟⎠ , 𝜖⃗𝑙(−) =

⎛⎜⎜⎜⎝
cos(2𝛽𝑙)

−𝑖 sin(2𝛽𝑙)

0

⎞⎟⎟⎟⎠ .

in the Cartesian base, and 𝑅𝛼𝑙𝜃𝑙𝜑𝑙 is a rotation represented by matrices

𝑅𝛼𝑙𝜃𝑙𝜑𝑙 =

⎛⎜⎜⎜⎝
cos𝜑𝑙 − sin𝜑𝑙 0

sin𝜑𝑙 cos𝜑𝑙 0

0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

cos 𝜃𝑙 0 sin 𝜃𝑙

0 1 0

− sin 𝜃𝑙 0 cos 𝜃𝑙

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

cos 2𝛼𝑙 − sin 2𝛼𝑙 0

sin 2𝛼𝑙 cos 2𝛼𝑙 0

0 0 1

⎞⎟⎟⎟⎠ ,

in the same Cartesian base. This particular form to specify the orientation of the electric field

has been chosen so that 𝜑𝑙, 𝜃𝑙 are angles in spherical coordiantes such that 𝑘⃗𝑙 = 𝑘𝑙(cos𝜑𝑙 sin 𝜃𝑙𝑥̂ +

sin𝜑𝑙 sin 𝜃𝑙𝑦 + cos 𝜃𝑙𝑧) is the wave vector of the plane wave, and so that 𝛼𝑙 describes the effect of

half-wave plate and 𝛽𝑙 the effect of a quarter-wave plate.
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We can express the electric field more compactly as

𝐸⃗𝑙(𝑅⃗, 𝑡) =
𝐸𝑙

0(𝑅⃗)

2
(𝜀⃗𝑙(+)𝑒−𝑖𝜔𝑙𝑡 + 𝜀⃗𝑙(−)𝑒𝑖𝜔

𝑙𝑡)

where

𝜀⃗𝑙(±) ≡ 𝑅𝛼𝑙𝜃𝑙𝜑𝑙 𝜖⃗𝑙(±).

In the following treatment of evolution equations we will need to compute at many points the

quantity 𝑟 · 𝜀⃗𝑙(±). This dot product may be computed in the usual manner using the components

of both vectors in the Cartesian basis, however, the matrix elements of the 𝑟 operator are easier to

calculate in the so-called helicity basis

𝑒−1 =
𝑥̂+ 𝑖𝑦√

2
, 𝑒0 = 𝑧, 𝑒+1 =

𝑥̂− 𝑖𝑦√
2
.

The components of 𝜀⃗𝑙(±) in the Cartesian base will be denoted by 𝑋 𝑙(±)
𝑞 and in the helicity basis by

𝑌
𝑙(±)
𝑞

𝐸⃗𝑙(𝑅⃗, 𝑡) =
𝐸𝑙

0(𝑅⃗)
2 (𝜀⃗𝑙(+)𝑒−𝑖𝜔𝑙𝑡 + 𝜀⃗𝑙(−)𝑒𝑖𝜔

𝑙𝑡)

=
𝐸𝑙

0(𝑅⃗)
2

∑︀3
𝑘=1[𝑋

𝑙(+)
𝑘 𝑒−𝑖𝜔𝑙𝑡 +𝑋

𝑙(−)
𝑘 𝑒𝑖𝜔

𝑙𝑡]𝑥̂𝑘

=
𝐸𝑙

0(𝑅⃗)
2

∑︀1
𝑞=−1[𝑌

𝑙(+)
𝑞 𝑒−𝑖𝜔𝑙𝑡 + 𝑌

𝑙(−)
𝑞 𝑒𝑖𝜔

𝑙𝑡]𝑒𝑞

(A.2)
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Appendix B

Power and the Electric Field

In the laboratory the power of beams is measured instead of the amplitude of the electric fields,

therefore we need some way to estimate this electric field using power measurements and the char-

acteristics of the cross section of the beams. According to the Poynting theorem the change in the

electromagnetic energy density in a given volume is

𝑑𝑢

𝑑𝑡
=

𝑑

𝑑𝑡

[︃
𝜀0|𝐸⃗|2

2
+

|𝐵⃗|2

2𝜇0

]︃
= −(∇ · 𝑆⃗ + 𝐽 · 𝐸⃗)

where 𝑆⃗ = 𝐸⃗ × 𝐵⃗/𝜇0 is the Poynting vector. Assuming that the light propagates in vacuum 𝐽 = 0.

Integrating over the volume inside a cylindrical surface oriented along the beam’s optical path we

get
𝑑

𝑑𝑡

∫︁
𝑉

𝑢𝑑𝑉 = −
∫︁
𝑉

∇ · 𝑆⃗ = −
∫︁
𝛿𝑉

𝑆⃗ · 𝑑𝐴⃗

In this calculation the general orientation of the fields is not of interest, and we can take 𝑘 = 𝑧

without loss of generality. In the vacuum 𝐵⃗ = 1
𝑐𝑘 × 𝐸⃗, therefore in our example

𝐸⃗ = 𝐸𝑙
0(𝑅⃗)

⎛⎜⎜⎜⎝
cos(𝜔𝑙𝑡) cos(2𝛽𝑙)

sin(𝜔𝑙𝑡) sin(2𝛽𝑙)

0

⎞⎟⎟⎟⎠ , 𝐵⃗ =
𝐸𝑙

0(𝑅⃗)

𝑐

⎛⎜⎜⎜⎝
− sin(𝜔𝑙𝑡) sin(2𝛽𝑙)

cos(𝜔𝑙𝑡) cos(2𝛽𝑙)

0

⎞⎟⎟⎟⎠ .

Therefore the Poynting vector is

𝑆⃗ =
𝐸𝑙

0(𝑅⃗)

𝑐𝜇0
[cos2(𝜔𝑙𝑡) cos2(2𝛽𝑙) + sin2(𝜔𝑙𝑡) sin2(2𝛽𝑙)]𝑧
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Since 𝑆⃗ is in the 𝑧 direction only the integrals on over the bases of the cylindricl surface are nonzero,

so ∫︁
𝛿𝑉

𝑆⃗ · 𝑑𝐴⃗ =

∫︁
in

𝑆⃗ · 𝑧𝑑𝑎−
∫︁
out

𝑆⃗ · 𝑧𝑑𝑎 = 0

The power going into the cylinder is the same as the one that goes out, and it can be identified as

𝑃 (𝑡, 𝑧) =

∫︁
in

𝑆⃗ · 𝑧𝑑𝑎

Although we have used plane waves here, in the laboratory the beams have some intensity distribu-

tion through their cross section that goes to zero with the radial distance 𝜌. If we take 𝑧 = 0 over

the out surface we have

𝑃 (𝑡) =
𝐸𝑙

0(𝑅⃗)

𝑐𝜇0
[cos2(𝜔𝑙𝑡) cos2(2𝛽𝑙) + sin2(𝜔𝑙𝑡) sin2(2𝛽𝑙)]

∫︁
in

𝐷(𝜌)𝑑𝐴.

Where 𝐷(𝜌) is some intensity distribution. Taking a time average 𝑃 = 𝜔
2𝜋

∫︀ 2𝜋/𝜔

0
𝑃 (𝑡)𝑑𝑡 we get

𝑃 =
𝐸𝑙

0(𝑅⃗)

2𝑐𝜇0

∫︁
in

𝐷(𝜌)𝑑𝐴.

As a first approximation we can assume that the intensity distribution is constant within a radius

𝜌 = 𝑎 and zero outside. In this case (known as a top hat beam) the integral becomes

𝑃 (𝑡) =
𝜋𝐸2

0

2𝑐𝜇0
𝑎2 ⇒ 𝐸0 =

√︂
2𝑐𝜇0𝑃

𝜋𝑎2
=
√︀

2𝑐𝜇0𝐼 =

√︂
2𝐼

𝜀0𝑐
, (B.1)

where we have introduced the average intensity 𝐼 = 𝑃/𝜋𝑎2.

However, common laboratory beams are usually cannot be considered to have uniform intensity in

this way. Another approximation is to use a Gaussian intensity distribution with some astigmatism

so it has standard deviations 𝜎𝑥 and 𝜎𝑦,

𝑃 =
𝐸2

0

2𝑐𝜇0

∫︁
R2

exp

(︂
− 𝑥2

2𝜎2
𝑥

− 𝑦2

2𝜎2
𝑦

)︂
𝑑𝐴 =

2𝜋𝜎𝑥𝜎𝑦𝐸
2
0

𝑐𝜇0
⇒ 𝐸𝑙

0 =

√︃
𝑐𝜇0𝑃 𝑙

4𝜋𝜎𝑙
𝑥𝜎

𝑙
𝑦

. (B.2)

There is extensive literature about gaussian beams (for instance [30]) and this is only an approxi-

mation to the magnitude of the electric field.
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Appendix C

Explicit Matrix Form of Optical

Bloch Equations

C.1 Independent Vector

In equations 2.7 the only terms proportional to 𝜌11 will come from the sum of the terms shown

in blue
˙̃𝜌𝑖1 = − 𝑖𝑒

~
∑︁
𝑙∈𝐿𝑖1

𝐸𝑙
0𝜀⃗

𝑙(+) · 𝑟⃗𝑖1𝜌11 + . . .

We replace here 𝜌11 = 1 −
∑︀𝑁𝑒

𝑛=2 𝜌𝑛𝑛 and we get

˙̃𝜌𝑖1 = − 𝑖𝑒
~
(︀∑︀

𝑙∈𝐿𝑖1
𝐸𝑙

0𝜀⃗
𝑙(+) · 𝑟⃗𝑖1

)︀ (︁
1 −

∑︀𝑁𝑒

𝑛=2 𝜌𝑛𝑛

)︁
+ . . .

= −
[︀
𝑖𝑒
~
∑︀

𝑙∈𝐿𝑖1
𝐸𝑙

0𝜀⃗
𝑙(+) · 𝑟⃗𝑖1

]︀
+
[︀
𝑖𝑒
~
∑︀

𝑙∈𝐿𝑖1
𝐸𝑙

0𝜀⃗
𝑙(+) · 𝑟⃗𝑖1

]︀∑︀𝑁𝑒

𝑛=2 𝜌𝑛𝑛 + . . .

so that the quantities in the first bracket are independent on any 𝜌𝑎𝑏, and are precisely the compo-

nents of the independent vector (with a minus sign). Using the part operator defined in chapter 2

we can see that

𝑏𝜈(𝑖,1,𝑠) = Pa
(︀
𝑠, 𝑖𝑒~

∑︀
𝑙∈𝐿𝑖1

𝐸𝑙
0𝜀⃗

𝑙(+) · 𝑟⃗𝑖1
)︀

= 𝑒
~
∑︀

𝑙∈𝐿𝑖1
𝐸𝑙

0Pa(𝑠, 𝑖𝜀⃗𝑙(+) · 𝑟⃗𝑖1)

= −𝑠 𝑒
~
∑︀

𝑙∈𝐿𝑖1
𝐸𝑙

0Pa(−𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑖1)

=

⎧⎨⎩ − 𝑒
~
∑︀

𝑙∈𝐿𝑖1
𝐸𝑙

0ℑm(𝜀⃗𝑙(+) · 𝑟⃗𝑖1) if𝑠 = +1

+ 𝑒
~
∑︀

𝑙∈𝐿𝑖1
𝐸𝑙

0ℜe(𝜀⃗𝑙(+) · 𝑟⃗𝑖1) if𝑠 = −1

, (C.1)

which is to say that the only 𝑏𝜈 that can be non-zero are those for 𝜈(𝑖, 1, 𝑠) with 2 ≤ 𝑖 ≤ 𝑁𝑒.
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C.2 Evolution Operator

We will now calculate the components 𝐴𝜇𝜈 of the evolution operator (sometimes called superop-

erator) using the new indices

˙̃𝜌𝜇(𝑖,𝑗,𝑠) = 𝐴𝜇(𝑖,𝑗,𝑠)𝜈(𝑎,𝑏,𝑟)𝜌𝜈(𝑎,𝑏,𝑟) = 𝑏𝜈(𝑖,1,𝑠).

Considering that the part operator satisfies

Pa(𝑠, 𝑖𝑧) =

⎧⎨⎩ ℜe(𝑖𝑧) 𝑠 = 1

ℑm(𝑖𝑧) 𝑠 = −1
=

⎧⎨⎩ −ℑm(𝑧) 𝑠 = 1

+ℜe(𝑧) 𝑠 = −1
= −𝑠Pa(−𝑠, 𝑧),

the real and imaginary parts of the equations

Pa(𝑠, ˙̃𝜌𝑖𝑗) = Pa

⎛⎝𝑠, 𝑖𝑒
~

⎡⎣∑︁
𝑘

∑︁
𝑙∈𝐿𝑖𝑘

𝐸𝑙
0

(︂
𝛿

𝑘>𝑗

(︂
𝛿

𝑘>𝑖
𝜀⃗𝑙(−) · 𝑟⃗𝑖𝑘 + 𝛿

𝑘<𝑖
𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑘

)︂
𝜌𝑘𝑗 + 𝛿

𝑘<𝑗
(𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑘)𝜌*𝑗𝑘

)︂

−
∑︁
𝑘

∑︁
𝑙∈𝐿𝑘𝑗

𝐸𝑙
0

(︂
𝛿

𝑘<𝑖

(︂
𝛿

𝑘<𝑗
𝜀⃗𝑙(−) · 𝑟⃗𝑘𝑗 + 𝛿

𝑘>𝑗
𝜀⃗𝑙(+) · 𝑟⃗𝑘𝑗

)︂
𝜌𝑖𝑘 + 𝛿

𝑘>𝑖
(𝜀⃗𝑙(+) · 𝑟⃗𝑘𝑗)𝜌*𝑘𝑖

)︂

+
∑︁
𝑙∈𝐿𝑖𝑗

𝐸𝑙
0(𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑗)(𝜌𝑗𝑗 − 𝜌𝑖𝑖)

⎤⎦⎞⎠
+ Θ𝑖𝑗Pa(𝑠, 𝑖𝜌𝑖𝑗) −

𝛾𝑖𝑗
2
Pa(𝑠, 𝜌𝑖𝑗)

= −𝑠𝑒
~

⎡⎣∑︁
𝑘

∑︁
𝑙∈𝐿𝑖𝑘

𝐸𝑙
0Pa

(︂
−𝑠, 𝛿

𝑘>𝑗

(︂
𝛿

𝑘>𝑖
𝜀⃗𝑙(−) · 𝑟⃗𝑖𝑘 + 𝛿

𝑘<𝑖
𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑘

)︂
𝜌𝑘𝑗 + 𝛿

𝑘<𝑗
(𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑘)𝜌*𝑗𝑘

)︂

−
∑︁
𝑘

∑︁
𝑙∈𝐿𝑘𝑗

𝐸𝑙
0Pa

(︂
−𝑠, 𝛿

𝑘<𝑖

(︂
𝛿

𝑘<𝑗
𝜀⃗𝑙(−) · 𝑟⃗𝑘𝑗 + 𝛿

𝑘>𝑗
𝜀⃗𝑙(+) · 𝑟⃗𝑘𝑗

)︂
𝜌𝑖𝑘 + 𝛿

𝑘>𝑖
(𝜀⃗𝑙(+) · 𝑟⃗𝑘𝑗)𝜌*𝑘𝑖

)︂

+
∑︁
𝑙∈𝐿𝑖𝑗

𝐸𝑙
0Pa(−𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑗)(𝜌𝑗𝑗 − 𝜌𝑖𝑖)

⎤⎦
− 𝑠Θ𝑖𝑗Pa(−𝑠, 𝜌𝑖𝑗) −

𝛾𝑖𝑗
2
Pa(𝑠, 𝜌𝑖𝑗)

= 𝑠
𝑒

~

[︃∑︁
𝑘

∑︁
𝑙∈𝐿𝑘𝑗

𝐸𝑙
0Pa

(︂
−𝑠, 𝛿

𝑘<𝑖
𝛿

𝑘<𝑗
𝜀⃗𝑙(−) · 𝑟⃗𝑘𝑗𝜌𝑖𝑘 + 𝛿

𝑘<𝑖
𝛿

𝑘>𝑗
𝜀⃗𝑙(+) · 𝑟⃗𝑘𝑗𝜌𝑖𝑘 + 𝛿

𝑘>𝑖
(𝜀⃗𝑙(+) · 𝑟⃗𝑘𝑗)𝜌*𝑘𝑖

)︂

−
∑︁

𝑙∈𝐿𝑖𝑘

𝐸𝑙
0Pa

(︂
−𝑠, 𝛿

𝑘>𝑗
𝛿

𝑘>𝑖
𝜀⃗𝑙(−) · 𝑟⃗𝑖𝑘𝜌𝑘𝑗 + 𝛿

𝑘>𝑗
𝛿

𝑘<𝑖
𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑘𝜌𝑘𝑗 + 𝛿

𝑘<𝑗
(𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑘)𝜌*𝑗𝑘

)︂

+
∑︁
𝑙∈𝐿𝑖𝑗

𝐸𝑙
0Pa(−𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑗)(𝜌𝑖𝑖 − 𝜌𝑗𝑗)

⎤⎦
− 𝑠Θ𝑖𝑗Pa(−𝑠, 𝜌𝑖𝑗) −

𝛾𝑖𝑗
2
Pa(𝑠, 𝜌𝑖𝑗)
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And if we write this in the new notation we get

Pa(𝑠, ˙̃𝜌𝑖𝑗) = 𝑠
𝑒

~

[︃∑︁
𝑘

∑︁
𝑙∈𝐿𝑘𝑗

𝐸𝑙
0

(︂
𝛿

𝑘<𝑖
𝛿

𝑘<𝑗
Pa(−𝑠, (𝜀⃗𝑙(−) · 𝑟⃗𝑘𝑗)(𝜌𝜈(𝑖,𝑘,1) + 𝑖𝜌𝜈(𝑖,𝑘,−1)))

+ 𝛿
𝑘<𝑖

𝛿
𝑘>𝑗

Pa(−𝑠, (𝜀⃗𝑙(+) · 𝑟⃗𝑘𝑗)(𝜌𝜈(𝑖,𝑘,1) + 𝑖𝜌𝜈(𝑖,𝑘,−1)))

+ 𝛿
𝑘>𝑖

Pa(−𝑠, (𝜀⃗𝑙(+) · 𝑟⃗𝑘𝑗)(𝜌𝜈(𝑘,𝑖,1) − 𝑖𝜌𝜈(𝑘,𝑖,−1)))

)︂
−
∑︁

𝑙∈𝐿𝑖𝑘

𝐸𝑙
0

(︂
𝛿

𝑘>𝑗
𝛿

𝑘>𝑖
Pa(−𝑠, (𝜀⃗𝑙(−) · 𝑟⃗𝑖𝑘)(𝜌𝜈(𝑘,𝑗,1) + 𝑖𝜌𝜈(𝑘,𝑗,−1)))

+ 𝛿
𝑘>𝑗

𝛿
𝑘<𝑖

Pa(−𝑠, (𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑘)(𝜌𝜈(𝑘,𝑗,1) + 𝑖𝜌𝜈(𝑘,𝑗,−1)))

+ 𝛿
𝑘<𝑗

Pa(−𝑠, (𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑘)(𝜌𝜈(𝑗,𝑘,1) − 𝑖𝜌𝜈(𝑗,𝑘,−1)))

)︂

+
∑︁
𝑙∈𝐿𝑖𝑗

𝐸𝑙
0Pa(−𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑗)(𝜌𝜈(𝑖,𝑖) − 𝜌𝜈(𝑗,𝑗))

⎤⎦
− 𝑠Θ𝑖𝑗Pa(−𝑠, (𝜌𝜈(𝑖,𝑗,1) + 𝑖𝜌𝜈(𝑖,𝑗,−1))) −

𝛾𝑖𝑗
2
Pa(𝑠, (𝜌𝜈(𝑖,𝑗,1) + 𝑖𝜌𝜈(𝑖,𝑗,−1)))

and considering that

Pa(−𝑠, 𝑖𝑧) =

⎧⎨⎩ ℜe(𝑖𝑧) 𝑠 = −1

ℑm(𝑖𝑧) 𝑠 = +1
=

⎧⎨⎩ ℜe(𝑧) 𝑠 = +1

−ℑm(𝑧) 𝑠 = −1
= 𝑠Pa(𝑠, 𝑧)

we finally get

˙̃𝜌𝜇(𝑖,𝑗,𝑠) = 𝑠𝑒
~
[︀∑︀

𝑘

∑︀
𝑙∈𝐿𝑘𝑗

𝐸𝑙
0

(︂
𝛿

𝑘<𝑖
𝛿

𝑘<𝑗
(Pa(−𝑠, 𝜀⃗𝑙(−) · 𝑟⃗𝑘𝑗)𝜌𝜈(𝑖,𝑘,1) + 𝑠Pa(𝑠, 𝜀⃗𝑙(−) · 𝑟⃗𝑘𝑗)𝜌𝜈(𝑖,𝑘,−1))

+ 𝛿
𝑘<𝑖

𝛿
𝑘>𝑗

(Pa(−𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑘𝑗)𝜌𝜈(𝑖,𝑘,1) + 𝑠Pa(𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑘𝑗)𝜌𝜈(𝑖,𝑘,−1))

+ 𝛿
𝑘>𝑖

(Pa(−𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑘𝑗)𝜌𝜈(𝑘,𝑖,1) − 𝑠Pa(𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑘𝑗)𝜌𝜈(𝑘,𝑖,−1))

)︂
−
∑︀

𝑙∈𝐿𝑖𝑘
𝐸𝑙

0

(︂
𝛿

𝑘>𝑗
𝛿

𝑘>𝑖
(Pa(−𝑠, 𝜀⃗𝑙(−) · 𝑟⃗𝑖𝑘)𝜌𝜈(𝑘,𝑗,1) + 𝑠Pa(𝑠, 𝜀⃗𝑙(−) · 𝑟⃗𝑖𝑘)𝜌𝜈(𝑘,𝑗,−1))

+ 𝛿
𝑘>𝑗

𝛿
𝑘<𝑖

(Pa(−𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑘)𝜌𝜈(𝑘,𝑗,1) + 𝑠Pa(𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑘)𝜌𝜈(𝑘,𝑗,−1))

+ 𝛿
𝑘<𝑗

(Pa(−𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑘)𝜌𝜈(𝑗,𝑘,1) − 𝑠Pa(𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑘)𝜌𝜈(𝑗,𝑘,−1))

)︂
+
∑︀

𝑙∈𝐿𝑖𝑗
𝐸𝑙

0Pa(−𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑖𝑗)(𝜌𝜈(𝑖,𝑖) − 𝜌𝜈(𝑗,𝑗))
]︁

−𝑠Θ𝑖𝑗𝜌𝜈(𝑖,𝑗,−𝑠) −
𝛾𝑖𝑗

2 𝜌𝜈(𝑖,𝑗,𝑠)

+
∑︀

𝑎>𝑏 𝛾𝑎𝑏

[︁
(𝛿𝑖𝑏𝛿𝑏𝑗 − 𝛿𝑖𝑎𝛿𝑎𝑗)𝜌𝜈(𝑎,𝑎,𝑠) − 1

2

[︁∑︀
𝑑 ̸=𝑎 𝛿𝑖𝑎𝛿𝑑𝑗𝜌𝜈(𝑎,𝑑,𝑠) +

∑︀
𝑐 ̸=𝑎 𝛿𝑖𝑐𝛿𝑎𝑗𝜌(𝑐,𝑎,𝑠)

]︁]︁
.

(C.2)

An explicit expression for 𝐴𝜇𝜈 might be obtained from here as was done for the independent

vector, but it is much easier to determine for each 𝜇(𝑖, 𝑗, 𝑠) with 𝑖 > 𝑗 which are the 𝜈(𝑎, 𝑏, 𝑠) that

satisfy the necessary conditions indicated by the 𝛿 symbols and add the corresponding elements to
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𝐴𝜇𝜈 .

One has to consider that this expression is valid for any ˙̃𝜌𝜇(𝑖,𝑗,𝑠) that does not depend on 𝜌11.

In the case where 𝑗 = 1 the second term in the seventh row of 2.10 is proportional to 𝜌11 =

1 −
∑︀𝑁𝑒

𝑛=2 𝜌𝜈(𝑛,𝑛) and that term must be replaced by

˙̃𝜌𝜇(𝑖,1,𝑠) = 𝑠
𝑒

~
∑︁
𝑙∈𝐿𝑖1

𝐸𝑙
0Pa[−𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑖1]

(︃
𝑁𝑒∑︁
𝑛=2

𝜌𝜈(𝑛,𝑛)

)︃
.

That is, one must add 𝑠 𝑒
~
∑︀

𝑙∈𝐿𝑖1
𝐸𝑙

0Pa[−𝑠, 𝜀⃗𝑙(+) · 𝑟⃗𝑖1] in 𝐴𝜇(𝑖,1,𝑠)𝜈(𝑛,𝑛) for each population 𝜌𝜈(𝑛,𝑛)

and each 2 ≤ 𝑖 ≤ 𝑁𝑒.
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Appendix D

Reduction of the dipole operator

The Wigner-Eckhart theorem states that [17]

⟨𝑁𝑖𝐿𝑖𝐽𝑖𝐼𝐹𝑖𝑀𝑖|𝑇 1
𝑝 (̂⃗︀𝑟)|𝑁𝑗𝐿𝑗𝐽𝑗𝐼𝐹𝑗𝑀𝑗⟩ ≡ (−1)𝐹𝑖−𝑀𝑖

⎛⎝ 𝐹𝑖 1 𝐹𝑗

−𝑀𝑖 𝑝 𝑀𝑗

⎞⎠ (𝑁𝑖𝐿𝑖𝐽𝑖𝐼𝐹𝑖||𝑇 1(̂⃗︀𝑟)||𝑁𝑗𝐿𝑗𝐽𝑗𝐼𝐹𝑗)

(D.1)

where (𝐹𝑖||𝑇 1(̂⃗︀𝑟)||𝐹𝑗) ≡ (𝑁𝑖𝐿𝑖𝑆𝐽𝑖𝐼𝐹𝑖||𝑇 1(̂⃗︀𝑟)||𝑁𝑗𝐿𝑗𝑆𝐽𝑗𝐼𝐹𝑗) is the reduced matrix element, and⎛⎝ 𝐹𝑖 1 𝐹𝑗

−𝑀𝑖 𝑝 𝑀𝑗

⎞⎠ is a Wigner 3-j symbol defined [17] as

⎛⎝ 𝑗1 𝑗2 𝑗3

𝑚1 𝑚2 𝑚3

⎞⎠ = (−1)𝑗1−𝑗2−𝑚3(2𝑗2 + 1)−1/2(𝑗1𝑚1𝑗2𝑚2|𝑗1𝑗2𝑗3 −𝑚3)

where (𝑗1𝑚1𝑗2𝑚2|𝑗1𝑗2𝑗3 − 𝑚3) is a Clebsch-Gordan coefficient, defined as the coefficients of an

eigenstate |𝛾𝑗1𝑗2𝑗𝑚⟩ of total angular momentum
−→
𝑗̂ =

−→
𝑗̂ 1 +

−→
𝑗̂ 2 in the decoupled basis

|𝛾𝑗1𝑗2𝑗𝑚⟩ =
∑︁

𝑚1𝑚2

(𝑗1𝑚1𝑗2𝑚2|𝑗1𝑗2𝑗𝑚)|𝛾𝑗1𝑚1𝑗2𝑚2⟩.

These may be computed in general through the formula [17]

(𝑗1𝑚1𝑗2𝑚2|𝑗1𝑗2𝑗𝑚) = 𝛿𝑚1+𝑚2,𝑚

√︃
(2𝑗 + 1)(𝑗1 + 𝑗2 − 𝑗)!(𝑗1 − 𝑗2 + 𝑗)!(−𝑗1 + 𝑗2 + 𝑗)!

(𝑗1 + 𝑗2 + 𝑗 + 1)!

×
√︀

(𝑗1 +𝑚1)!(𝑗1 −𝑚1)!(𝑗2 +𝑚2)!(𝑗2 −𝑚2)!(𝑗 +𝑚)!(𝑗 −𝑚)!

×
∑︁
𝑧

(−1)𝑧
1

(𝑗1 + 𝑗2 − 𝑗 − 𝑧)!(𝑗1 −𝑚1 − 𝑧)!(𝑗2 +𝑚2 − 𝑧)!(𝑗 − 𝑗2 +𝑚1 + 𝑧)!(𝑗 − 𝑗1 −𝑚2 + 𝑧)!

where 𝑧 runs over all values that correspond to positive integer values of the arguments of the

factorials.
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In general if a spherical tensor 𝑇 𝑘(𝐴) of rank 𝑘 acts only on part 1 o in the coupled scheme, it’s

reduced matrix element satisfies [17]

(𝛾𝑗1𝑗2𝑗||𝑇 𝑘(𝐴)||𝛾′𝑗′1𝑗′2𝑗′) = (−1)𝑗1+𝑗′2+𝑗′+𝑘
√︁

(2𝑗′2 + 1)(2𝑗2 + 1)

⎧⎨⎩ 𝑗1 𝑗 𝑗′2

𝑗′ 𝑗′1 𝑘

⎫⎬⎭ (𝛾𝑗1||𝑇 𝑘(𝐴)||𝛾′𝑗′1),

where

⎧⎨⎩ 𝑗1 𝑗 𝑗′2

𝑗′ 𝑗′1 𝑘

⎫⎬⎭ is a 6-j Wigner symbol, defined [17] as

⎧⎨⎩ 𝑗1 𝑗2 𝑗12

𝑗3 𝐽 𝑗23

⎫⎬⎭ = (−1)𝑗1+𝑗2+𝑗3+𝐽 [(2𝑗12 + 1)(2𝑗23 + 1)]−1/2

×
∑︁

𝑚1𝑚2

(𝑗1𝑚1𝑗2𝑚2|𝑗1𝑗2𝑗12𝑚1 +𝑚2)

× (𝑗12𝑚1 +𝑚2𝑗3𝑀 −𝑚1 −𝑚2|𝑗12𝑗3𝐽𝑀)

× (𝑗2𝑚2𝑗3𝑀 −𝑚1 −𝑚3|𝑗2𝑗3𝑗23𝑀 −𝑚1)

× (𝑗1𝑚1𝑗23𝑀 −𝑚1|𝑗1𝑗23𝐽𝑀)

Since the operator
−→
𝑟 acts only on the 𝐿 and 𝐽 parts of the states, but not on the 𝑆 or 𝐼 parts, it

is possible to decouple the 𝑆 and 𝐼 parts in the reduced matrix element. Therefore, our reduced

matrix element is

(𝑁𝑖𝐿𝑖𝐽𝑖𝐼𝐹𝑖||𝑇 1(̂⃗︀𝑟)||𝑁𝑗𝐿𝑗𝐽𝑗𝐼𝐹𝑗) = (−1)𝐽𝑖+𝐼+𝐹𝑗+1
√︁

(2𝐹𝑗 + 1)(2𝐹𝑖 + 1)

⎧⎨⎩ 𝐽𝑖 𝐹𝑖 𝐼

𝐹𝑗 𝐽𝑗 1

⎫⎬⎭
× (𝑁𝑖𝐿𝑖𝐽𝑖||𝑇 1(̂⃗︀𝑟)||𝑁𝑗𝐿𝑗𝐽𝑗),

and the matrix elements are

⟨𝑁𝑖𝐿𝑖𝐽𝑖𝐹𝑖𝑀𝑖|𝑇 1
𝑝 (̂⃗︀𝑟)|𝑁𝑗𝐿𝑗𝐽𝑗𝐹𝑗𝑀𝑗⟩ = (−1)𝐹𝑖−𝑀𝑖+𝐽𝑖+𝐼+𝐹𝑗+1

√︀
(2𝐹𝑗 + 1)(2𝐹𝑖 + 1)

×

⎛⎝ 𝐹𝑖 1 𝐹𝑗

−𝑀𝑖 𝑝 𝑀𝑗

⎞⎠⎧⎨⎩ 𝐽𝑖 𝐹𝑖 𝐼

𝐹𝑗 𝐽𝑗 1

⎫⎬⎭ (𝑁𝑖𝐿𝑖𝐽𝑖||𝑇 1(̂⃗︀𝑟)||𝑁𝑗𝐿𝑗𝐽𝑗)

(D.2)

The reduced matrix elements are not symmetric under exchange of their arguments, but rather

follow the symmetry relation [17]

(𝑁𝑖𝐿𝑖𝐽𝑖||𝑇 1(̂⃗︀𝑟)||𝑁𝑗𝐿𝑗𝐽𝑗) = (−1)𝐽𝑖−𝐽𝑗 (𝑁𝑗𝐿𝑗𝐽𝑗 ||𝑇 1(̂⃗︀𝑟)||𝑁𝑖𝐿𝑖𝐽𝑖)
*, (D.3)

although they will be taken to be real in this thesis.
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Similarly, the 𝐿 and 𝑆 parts can be decoupled as

⟨𝑁𝑖𝐿𝑖𝐽𝑖𝐹𝑖𝑀𝑖|𝑇 1
𝑝 (̂⃗︀𝑟)|𝑁𝑗𝐿𝑗𝐽𝑗𝐹𝑗𝑀𝑗⟩ = 2(−1)𝐹𝑖−𝑀𝑖+𝐽𝑖+𝐼+𝐹𝑗+𝐿𝑖+𝑆𝑗+𝐽𝑗+2

√︁
(2𝐹𝑗 + 1)(2𝐹𝑖 + 1)

×

⎛⎝ 𝐹𝑖 1 𝐹𝑗

−𝑀𝑖 𝑝 𝑀𝑗

⎞⎠⎧⎨⎩ 𝐽𝑖 𝐹𝑖 𝐼

𝐹𝑗 𝐽𝑗 1

⎫⎬⎭
⎧⎨⎩ 𝐿𝑖 𝐽𝑖 1/2

𝐽𝑗 𝐿𝑗 1

⎫⎬⎭
× (𝑁𝑖𝐿𝑖||𝑇 1(̂⃗︀𝑟)||𝑁𝑗𝐿𝑗).

And these reduced matrix elements follow the symmetry relation

(𝑁𝑖𝐿𝑖||𝑇 1(̂⃗︀𝑟)||𝑁𝑗𝐿𝑗) = (−1)𝐿𝑖−𝐿𝑗 (𝑁𝑗𝐿𝑗 ||𝑇 1(̂⃗︀𝑟)||𝑁𝑖𝐿𝑖)
*.
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Appendix E

Calculation of Reduced Matrix

Elements

The reduced matrix elements might be calculated from first principles, but that is outside the

scope of this thesis. Instead we will derive an expression to calculate them from the decay frequencies

of the states. These decay frequencies can be found in the literature, in particular in the references

in table 3.1.

The Einstein 𝐴𝑖𝑗 coefficients connecting magnetic states are the same as the spontaneous decay

frequencies 𝛾𝑖𝑗 mentioned in chapter 2, and they are related to the matrix elements of
−→
𝑟 through [47]

𝛾𝑖𝑗 = 𝐴𝑖𝑗 =
𝜔3
𝑖𝑗𝑒

2

3𝜋~𝑐3𝜀0

∑︁
𝑝

⃒⃒⃒
⟨𝑁𝑖𝐿𝑖𝐽𝑖𝐹𝑖𝑀𝑖|𝑇 1

𝑝 (̂⃗︀𝑟)|𝑁𝑗𝐿𝑗𝐽𝑗𝐹𝑗𝑀𝑗⟩
⃒⃒⃒2
. (E.1)

The reduced matrix elements satisfy [17]

∑︁
𝑚𝑚′

∑︁
𝑝

⃒⃒
⟨𝛾𝑗𝑚|𝑇 1

𝑝 (𝑟⃗)|𝛾′𝑗′𝑚′⟩
⃒⃒2

= (𝑗‖𝑇 1
𝑝 (̂⃗︀𝑟)‖𝑗′),
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therefore

∑︁
𝑀𝑖𝑀𝑗

𝛾𝑖𝑗 =
𝜔3
𝑖𝑗𝑒

2

3𝜋~𝑐3𝜀0

∑︁
𝑀𝑖𝑀𝑗

∑︁
𝑝

⃒⃒⃒
⟨𝑁𝑖𝐿𝑖𝐽𝑖𝐹𝑖𝑀𝑖|𝑇 1

𝑝 (̂⃗︀𝑟)|𝑁𝑗𝐿𝑗𝐽𝑗𝐹𝑗𝑀𝑗⟩
⃒⃒⃒2

=
𝜔3
𝑖𝑗𝑒

2

3𝜋~𝑐3𝜀0
|(𝑁𝑖𝐿𝑖𝐽𝑖𝐼𝐹𝑖||𝑇 1(̂⃗︀𝑟)||𝑁𝑗𝐿𝑗𝐽𝑗𝐼𝐹𝑗)|2

=
𝜔3
𝑖𝑗𝑒

2

3𝜋~𝑐3𝜀0
(2𝐹𝑗 + 1)(2𝐹𝑖 + 1)

⎧⎨⎩ 𝐽𝑖 𝐹𝑖 𝐼

𝐹𝑗 𝐽𝑗 1

⎫⎬⎭
2

|(𝑁𝑖𝐿𝑖𝐽𝑖||𝑇 1(̂⃗︀𝑟)||𝑁𝑗𝐿𝑗𝐽𝑗)|2

∑︁
𝑀𝑗

𝛾𝑖𝑗 =
𝜔3
𝑖𝑗𝑒

2

3𝜋~𝑐3𝜀0
(2𝐹𝑗 + 1)

⎧⎨⎩ 𝐽𝑖 𝐹𝑖 𝐼

𝐹𝑗 𝐽𝑗 1

⎫⎬⎭
2

|(𝑁𝑖𝐿𝑖𝐽𝑖||𝑇 1(̂⃗︀𝑟)||𝑁𝑗𝐿𝑗𝐽𝑗)|2

∑︁
𝐹𝑗𝑀𝑗

𝛾𝑖𝑗 =
𝜔3
𝑖𝑗𝑒

2

3𝜋~𝑐3𝜀0
|(𝑁𝑖𝐿𝑖𝐽𝑖||𝑇 1(̂⃗︀𝑟)||𝑁𝑗𝐿𝑗𝐽𝑗)|2

∑︁
𝐹𝑗

(2𝐹𝑗 + 1)

⎧⎨⎩ 𝐽𝑖 𝐹𝑖 𝐼

𝐹𝑗 𝐽𝑗 1

⎫⎬⎭
2

.

But 6j symbols satisfy [17]

(2𝑗′′ + 1)
∑︁
𝑗

(2𝑗 + 1)

⎧⎨⎩ 𝑗′ 𝑗1 𝑗2

𝑗 𝑗3 𝑗4

⎫⎬⎭
⎧⎨⎩ 𝑗′′ 𝑗1 𝑗2

𝑗 𝑗3 𝑗4

⎫⎬⎭ = 𝛿𝑗′𝑗′′ .

Therefore ∑︁
𝐹𝑗

(2𝐹𝑗 + 1)

⎧⎨⎩ 𝐽𝑖 𝐹𝑖 𝐼

𝐹𝑗 𝐽𝑗 1

⎫⎬⎭
2

=
1

2𝐽𝑖 + 1
,

from which it follows

∑︁
𝐹𝑗𝑀𝑗

𝛾𝑖𝑗 =
𝜔3
𝑖𝑗𝑒

2

3𝜋~𝑐3𝜀0
1

2𝐽𝑖 + 1
|(𝑁𝑖𝐿𝑖𝐽𝑖||𝑇 1(̂⃗︀𝑟)||𝑁𝑗𝐿𝑗𝐽𝑗)|2.

It is important to notice that this sum is not over all 𝐹𝑗 or all 𝑀𝑗 but only over those that are

associated with the reduced matrix element (𝑁𝑖𝐿𝑖𝐽𝑖||𝑇 1(̂⃗︀𝑟)||𝑁𝑗𝐿𝑗𝐽𝑗). Therefore, this sum is not the

total decay frequency Γ𝑖 of a state |𝑖⟩ to any allowed lower transition, but rather, the total decay

frequency Γ𝑖𝑗 to the fine multiplet |𝑁𝑗𝐿𝑗𝐽𝑗⟩. In other words

Γ𝑖𝑗 =
𝜔3
𝑖𝑗𝑒

2

3𝜋~𝑐3𝜀0
1

2𝐽𝑖 + 1
|(𝑁𝑖𝐿𝑖𝐽𝑖||𝑇 1(̂⃗︀𝑟)||𝑁𝑗𝐿𝑗𝐽𝑗)|2, (E.2)

which allows us to obtain the reduced matrix element as

(𝑁𝑖𝐿𝑖𝐽𝑖||𝑇 1(
−→
𝑟 )||𝑁𝑗𝐿𝑗𝐽𝑗) =

(︃
3𝜋~𝑐3𝜀0
𝜔3
𝑖𝑗𝑒

2
(2𝐽𝑖 + 1)Γ𝑖𝑗

)︃1/2

. (E.3)
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Appendix F

Electric-dipole Selection Rules

As seen in appendix D, the matrix elements of the dipole operator can be decoupled as

⟨𝑁𝑖𝐿𝑖𝐽𝑖𝐹𝑖𝑀𝑖|𝑇 1
𝑝 (̂⃗︀𝑟)|𝑁𝑗𝐿𝑗𝐽𝑗𝐹𝑗𝑀𝑗⟩ = 2(−1)𝐹𝑖−𝑀𝑖+𝐽𝑖+𝐼+𝐹𝑗+𝐿𝑖+𝑆𝑗+𝐽𝑗+2

√︁
(2𝐹𝑗 + 1)(2𝐹𝑖 + 1)

×

⎛⎝ 𝐹𝑖 1 𝐹𝑗

−𝑀𝑖 𝑝 𝑀𝑗

⎞⎠⎧⎨⎩ 𝐽𝑖 𝐹𝑖 𝐼

𝐹𝑗 𝐽𝑗 1

⎫⎬⎭
⎧⎨⎩ 𝐿𝑖 𝐽𝑖 1/2

𝐽𝑗 𝐿𝑗 1

⎫⎬⎭
× (𝑁𝑖𝐿𝑖||𝑇 1(̂⃗︀𝑟)||𝑁𝑗𝐿𝑗)

A condition for the 3-j symbol to be non-zero is that the upper row satisfies the triangle condition

|𝐹𝑖 −𝐹𝑗 | ≤ 1 ≤ 𝐹𝑖 +𝐹𝑗 . The first of these inequalities implies the selection rule ∆𝑀 = 0,±1. Since

𝐹 are integer numbers, the second inequality gives the selection rule that if 𝐹𝑖 = 0 then 𝐹𝑗 ≥ 1.

Also, |𝑀𝑖| ≤ 𝐹𝑖 and |𝑀𝑗 | ≤ 𝐹𝑗 .

Another condition for the 3-j symbol to be non-zero is that the lower row satisfies −𝑀𝑖+𝑝+𝑀𝑗 =

0, meaning that light polarization 𝑝 can only induce transitions satisfying 𝑝 = 𝑀𝑖 −𝑀𝑗 .

If all the arguments in the lower row of the 3-j symbol are zero, then it is zero unless the sum of

the arguments of the upper row is an even number. Therefore 𝐹𝑖 + 𝐹𝑗 + 1 must be even, which in

turn implies that ∆𝐹 = ±1. This argument can be summarized by the rule: if 𝑀𝑖 = 𝑀𝑗 = 0 then

∆𝐹 = ±1.

The 6-j symbols are unchanged if the upper and lower arguments of two columns are exchanged.

If we do this for the second and third column of the first 6-j symbol we get

⎧⎨⎩ 𝐽𝑖 𝐽𝑗 1

𝐹𝑗 𝐹𝑖 𝐼

⎫⎬⎭. The

6-j symbol is non-zero only if the upper row satisfies the triangle condition |𝐽𝑖 − 𝐽𝑗 | ≤ 1 ≤ 𝐽𝑖 + 𝐽𝑗 .

The first inequality gives the selection rule ∆𝐽 = 0,±1, and the second inequality is always satisfied

because 𝐽 is always semi-integer.

Exchanging upper and lower arguments in the second 6-j symbol we get

⎧⎨⎩ 𝐿𝑖 𝐿𝑗 1

𝐽𝑗 𝐽𝑖 1/2

⎫⎬⎭,
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from which the selection rule ∆𝐿 = 0,±1 can be similarly deduced. Since 𝐿 takes integer values,

the selection rule: if 𝐿𝑖 = 0 then 𝐿𝑗 ≥ 1 is implied.

Another condition that must be satisfied is that the parity of the wave functions 𝜑𝑖, 𝜑𝑗 of states

|𝑖⟩, |𝑗⟩ must be opposite. This is because the operator ̂⃗︀𝑟 is odd, and if the parity of the wavefunctions

is the same, the matrix element ⟨𝑖|̂⃗︀𝑟|𝑗⟩ =
∫︀
𝜑*𝑖
̂⃗︀𝑟𝜑𝑗𝑑𝑉 is zero. Since the electrons in the closed shells

of alkali atoms have zero contribution to the total angular momentum, it follows that the 𝜑𝑖 are

linear combinations of the form

𝜑𝑖(𝑟, 𝜃, 𝜙) =
∑︁
𝑚

𝑐𝑚𝑌
𝑚
𝐿𝑖

(𝜃, 𝜙),

where 𝑌 𝑚
𝐿𝑖

(𝜃, 𝜙) is a spherical harmonic. In other words there will be no contribution of wavefunctions

with 𝑙 ̸= 𝐿𝑖 from electrons other than the valence electron. The parity of the spherical harmonics is

𝜋(𝑌 𝑚
𝑙 ) = (−1)𝑙, and hence 𝜋(𝜑𝑖) = (−1)𝐿𝑖 = (−1)−𝐿𝑖 . The matrix elements are non-zero only if

𝜋(𝜑𝑖̂⃗︀𝑟𝜑𝑗) = 1 = 𝜋(𝜑𝑖)𝜋(̂⃗︀𝑟)𝜋(𝜑𝑗) = (−1)−𝐿𝑖+1+𝐿𝑗 ,

which implies ∆𝐿 = ±1. The electric dipole selection rules are summarized in table F.1.

∆𝐿 = ±1
∆𝐽 = 0,±1
∆𝐹 = 0,±1
if 𝐹𝑖 = 0 then 𝐹𝑗 ≥ 1
|𝑀𝑖| ≤ 𝐹𝑖 & |𝑀𝑗 | ≤ 𝐹𝑗

if 𝑀𝑖 = 𝑀𝑗 = 0 then ∆𝐹 = ±1
𝑝 = 𝑀𝑖 −𝑀𝑗

Table F.1: Electric dipole selection rules.

Notice that these are all necessary, but not sufficient conditions.
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