

### UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA ENERGÍA – PROCESOS Y USO EFICIENTE DE ENERGÍA

ANÁLISIS DE FACTIBILIDAD DEL SISTEMA DE ENFRIAMIENTO DE UNA PLANTA GEOTÉRMICA CBEI DE 10 kW, CON BASE A UN AEROCONDENSADOR O CONDENSACIÓN CON AGUA DE MAR

TESIS

QUE PARA OPTAR POR EL GRADO DE: MAESTRO EN INGENIERÍA

PRESENTA: BAIRON URIEL RUSSELL TEJEDA

TUTOR PRINCIPAL DR. GABRIEL LEÓN DE LOS SANTOS FACULTAD DE INGENIERÍA

MÉXICO, D.F. ENERO 2016



Universidad Nacional Autónoma de México



UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

#### DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

#### JURADO ASIGNADO:

Presidente:

Dr. Salinas Vázquez Martín

Secretario:

M. en I. Sánchez Cifuentes Augusto

Vocal:

Dr. León De Los Santos Gabriel

1<sup>er</sup> Suplente:

Dr. Vicente y Rodríguez William

2<sup>do</sup> Suplente:

M. en I. Aviña Jiménez Héctor Miguel

Lugar donde se realizó la tesis:

Torre de Ingeniería, UNAM.

**TUTOR DE TESIS:** 

NOMBRE

FIRMA

# Contenido

| 1 | An  | teced   | lentes                                       | 1  |
|---|-----|---------|----------------------------------------------|----|
|   | 1.1 | Ene     | rgía geotérmica                              | 1  |
|   | 1.2 | La g    | geotermia en México                          | 3  |
|   | 1.3 | Тіро    | o de sistemas geo-térmicos                   | 5  |
|   | 1.3 | .1      | Vapor Dominante                              | 5  |
|   | 1.3 | .2      | Sistemas geotérmicos de agua caliente        | 8  |
|   | 1.3 | .3      | Roca seca caliente (HDR)                     | 9  |
|   | 1.3 | .4      | Sistemas geo-presurizados                    | 10 |
|   | 1.3 | .5      | Sistemas magmáticos                          | 11 |
|   | 1.4 | Ger     | neración Geo-termoeléctrica                  | 11 |
|   | 1.4 | .1      | Ciclo a Contrapresión                        | 12 |
|   | 1.4 | .2      | Ciclo a Condensación                         | 13 |
|   | 1.4 | .3      | Ciclo de evaporación instantánea             | 14 |
|   | 1.4 | .4      | Ciclo Binario                                | 14 |
|   | 1.5 | Sist    | emas de enfriamiento                         | 16 |
|   | 1.5 | .1      | Estanque de enfriamiento                     | 16 |
|   | 1.5 | .2      | Estanque de aspersión                        | 17 |
|   | 1.5 | .3      | Torre atmosférica (tiro natural)             | 17 |
|   | 1.5 | .4      | Torres hiperbólicas (tiro natural)           | 19 |
|   | 1.5 | .5      | Torre de tiro mecánico                       | 20 |
|   | 1.5 | .6      | Enfriadores secos                            | 24 |
|   | 1.6 | Gru     | po iiDEA                                     | 25 |
|   | 1.7 | Con     | nclusión                                     | 26 |
| 2 | Ma  | arco te | eórico-conceptual                            | 27 |
|   | 2.1 | Cicl    | o binario de evaporación instantánea-iiDEA   | 27 |
|   | 2.1 | 1       | Termodinámica del proceso de conversión-CBEI | 29 |
|   | 2.1 | 2       | Eficiencia de utilización                    | 34 |
|   | 2.2 | Aer     | ocondensador                                 | 35 |
|   | 2.3 | Con     | densador de Contacto Indirecto               | 41 |
|   | 2.3 | .1      | Coeficiente global de transferencia de calor | 42 |

|   | 2.3 | 3.2     | Coeficientes de transferencia de calor                       | 44 |
|---|-----|---------|--------------------------------------------------------------|----|
|   | 2.3 | 3.3     | Cálculos hidráulicos                                         | 48 |
|   | 2.4 | Cor     | nclusión                                                     | 51 |
| 3 | An  | alisis  | y optimización del CBEI                                      | 52 |
|   | 3.1 | Aná     | álisis termodinámico del CBEI                                | 52 |
|   | 3.1 | 1.1     | Temperatura de separación óptima: Una aproximada formulación | 53 |
|   | 3.1 | 1.2     | Temperatura de separación óptima II                          | 56 |
|   | 3.1 | 1.3     | Análisis de primera y segunda ley de termodinámica           | 59 |
|   | 3.2 | Aná     | álisis de sensibilidad                                       | 63 |
|   | 3.2 | 2.1     | Fracción de Vapor vs Calor Disipado                          | 65 |
|   | 3.2 | 2.2     | Carga térmica vs generación eléctrica                        | 66 |
|   | 3.3 | Cor     | nclusiones                                                   | 68 |
| 4 | An  | alisis  | de factibilidad técnica CBEI-Aerocodensador                  | 69 |
|   | 4.1 | Esq     | uema de planta propuesto                                     | 69 |
|   | 4.2 | Мо      | delado y simulación de balance de masa y energía             | 70 |
|   | 4.3 | Cor     | nparación de parámetros e indicadores de desempeño           | 71 |
|   | 4.3 | 3.1     | Comportamiento con cambios de carga                          | 73 |
|   | 4.3 | 3.2     | Comportamiento con cambios en condiciones del medio ambiente | 75 |
|   | 4.4 | Cor     | nclusión                                                     | 77 |
| 5 | An  | alisis  | de factibilidad CBEI-Condensador de Contacto I.              | 78 |
|   | 5.1 | Esq     | uema de planta propuesto                                     | 78 |
|   | 5.2 | Мо      | delación y simulación de balance de masa y energía           | 79 |
|   | 5.3 | Cor     | nparación de parámetros e indicadores de desempeño           | 80 |
|   | 5.3 | 3.1     | Comportamiento con cambios de carga                          | 82 |
|   | 5.3 | 3.2     | Comportamiento con cambios en condiciones del medio ambiente | 84 |
|   | 5.4 | Cor     | nclusión                                                     | 87 |
| 6 | An  | alisis  | Económico                                                    | 88 |
|   | 6.1 | Cas     | o 1: Aerocondensador                                         | 89 |
|   | 6.2 | Cas     | o 2: Intercambiador de tubo y coraza                         | 92 |
| 7 | An  | alisis  | de Resultados y Conclusiones                                 | 97 |
| 8 | Bib | oliogra | afía                                                         | 99 |

| Apéndice A                                                |     |  |
|-----------------------------------------------------------|-----|--|
| Gradiente Adiabático Seco (Dry Adiabatic Lapse Rate-DALR) |     |  |
| Apéndice B (Aeroenfriador)                                |     |  |
| Hoja de especificación API                                |     |  |
| Geometría de intercambio                                  |     |  |
| Detalles de ventilador                                    |     |  |
| Detalles de tubos                                         |     |  |
| Válvulas y cabezales                                      |     |  |
| Planos                                                    |     |  |
| Perfil de temperatura                                     |     |  |
| Apéndice C (Condensador de Contacto Indirecto)            |     |  |
| Hoja de especificación TEMA                               |     |  |
| Geometría de intercambio                                  | 110 |  |
| Tubos                                                     | 111 |  |
| Baffles                                                   | 111 |  |
| Haz de tubos (Bundle)                                     | 112 |  |
| Planos                                                    | 112 |  |
| Costos y peso                                             | 114 |  |
| Perfiles de temperaturas                                  | 115 |  |
| Apéndice D (Detalle de análisis económico)                | 116 |  |
| Aerocondensador                                           | 116 |  |
| Condensador de Contacto Directo                           | 118 |  |

| Ilustración 1—1 Modelo conceptual de un sistema de vapor geotérmico                     | 7    |
|-----------------------------------------------------------------------------------------|------|
| Ilustración 1—2 Modelo conceptual de un sistema de agua caliente                        | 9    |
| Ilustración 1—3 Esquema ideal de un sistema HDR                                         | 10   |
| Ilustración 1—4 Configuración de un Ciclo a Contrapresión                               | 13   |
| Ilustración 1—5 Configuración de un Ciclo a Condensación                                | 14   |
| Ilustración 1—6 Configuración de un Ciclo Binario                                       | 15   |
| Ilustración 1—7 Torre spray                                                             | 19   |
| Ilustración 1—8 Estación eléctrica Marnham, Enero 1958                                  | 20   |
| Ilustración 1—9 Torre de tiro forzado con intercambiador de calor auxiliar              | 21   |
| Ilustración 1—10 Torre de tiro forzado de seis celdas en la "Centrale du FESC", Francia | 22   |
| Ilustración 1—11 Torre de tiro inducido a contra flujo                                  | 23   |
| Ilustración 1—12 Torre a flujo cruzado                                                  | 24   |
| Ilustración 2—1 Diagrama CBEI                                                           | 28   |
| Ilustración 2—2 Diagrama de flujo base de CBEI                                          | 29   |
| Ilustración 2—3 Diagrama T-s del agua                                                   | 30   |
| Ilustración 2—4 Condensador de contacto directo                                         | 33   |
| Ilustración 2—5 Intercambiador de calor enfriado por aire de tiro forzado               | 36   |
| Ilustración 2—6 Sección de un intercambiador double-tube                                | 42   |
| Ilustración 2-7 Transferencia de calor en flujo por tubería                             | 45   |
| Ilustración 2—8 Correlación para el coeficiente Shell-Side                              | 47   |
| Ilustración 2—9 Factor de Fricción Shell-Side                                           | 50   |
| Ilustración 3—1 Diagrama de proceso y estados CBEI                                      | 54   |
| Ilustración 3—2 Flujos de masa en separador (a la izquierda) y mezclador (a la derecha) | )-60 |
| Ilustración 3—3 Balance general de masa y energía CBEI                                  | 64   |
| Ilustración 4—1 Propuesta de sistema CBEI-Aerocondensador                               | 69   |
| Ilustración 4–2 Balance de masa y energía CBEI-Aerocondensador                          | 70   |
| Ilustración 5—1 Propuesta CBEI-Condensación con agua de mar                             | 78   |

| Gráfica 1-1 Capacidad Geo-termoeléctrica instalada en México al 2013        | 4  |
|-----------------------------------------------------------------------------|----|
| Gráfica 3-1 Diagrama de estados Ts-CBEI                                     | 56 |
| Gráfica 3-2 Potencia Específica vs Temperatura de Separación                | 58 |
| Gráfica 3-3 Eficiencias de 1ra. y 2da. Ley vs T. de separación              | 62 |
| Gráfica 3-4 Curva de enfriamiento del Isopentano                            | 65 |
| Gráfica 3-5 Curva carga térmica-Potencia neta                               | 67 |
| Gráfica 4-1Curva de enfriamiento CBEI-Aeroenfriador                         | 71 |
| Gráfica 4-2 Curva de calentamiento CBEI-Aerocondensador                     | 72 |
| Gráfica 4-3 Potencia del ventilador vs flujo másico de isopentano           | 73 |
| Gráfica 4-4 Potencia neta vs flujo másico de isopentano                     | 74 |
| Gráfica 4-5 Potencia neta del ventilador vs flujo másico de aire de entrada | 75 |
| Gráfica 4-6 Potencia neta vs flujo másico de aire                           | 76 |
|                                                                             |    |

| Gráfica 5-1 Balance de masa CBEI-Intercambiador de tubo y coraza     | 79 |
|----------------------------------------------------------------------|----|
| Gráfica 5-2 Curva de enfriamiento CBEI-Condensador de tubo y coraza  | 80 |
| Gráfica 5-3 Curva de calentamiento CBEI-Condensador de tubo y coraza | 82 |
| Gráfica 5-4 Potencia de bombeo vs flujo másico de isopentano         | 83 |
| Gráfica 5-5 Potencia neta vs flujo másico de isopentano              | 84 |
| Gráfica 5-6 Potencia de bombeo vs flujo másico de agua de mar        | 85 |
| Gráfica 5-7 Potencia neta vs flujo másico de agua de mar             | 86 |
| Gráfica 6-1 Valor Presente Acumulado                                 | 90 |
| Gráfica 6-2 Tasa Interna de Retorno [TIR]                            | 91 |
| Gráfica 6-3Valor presente neto acumulado                             | 95 |
| Gráfica 6-4 Tasa interna de retorno                                  | 95 |

| Tabla 1-1 Comparativa de sistemas de enfriamiento                            | 16  |
|------------------------------------------------------------------------------|-----|
| Tabla 3-1 Propiedades del recurso geotérmico                                 | 53  |
| Tabla 3-2 Condiciones de operación del CBEI                                  | 53  |
| Tabla 3-3 Tabla de resultados generales                                      | 57  |
| Tabla 3-4 Tabla de resultados locales                                        | 57  |
| Tabla 3-5 Propiedades de cada uno de los estados termodinámicos              | 63  |
| Tabla 6-1 Tarifa 3 según la CFE                                              | 89  |
| Tabla 6-2 Ahorros mensuales correspondientes al CBEI 10 kW                   | 89  |
| Tabla 6-3 Costos de equipo y operación                                       | 90  |
| Tabla 6-4 Correlaciones de costo capital para capacidades de equipos típicas | 92  |
| Tabla 6-5 Factores de costo capital                                          | 93  |
| Tabla 6-6 Costos de operación mensual                                        | 94  |
| Tabla 0-1 Valores corrientes                                                 | 116 |
| Tabla 0-2 Valores presentes                                                  | 117 |
| Tabla 0-3 Valores corrientes                                                 | 118 |
| Tabla 0-4 Valores presentes                                                  | 119 |

#### **Objetivo General**

• Proponer y analizar un sistema de enfriamiento para un Ciclo Binario de Evaporación Instantánea (CBEI), analizando la opción de aerocondensador y condensador enfriado con agua de mar, especificando condiciones de operación óptimas y determinando los principales parámetros de desempeño del sistema de enfriamiento y del ciclo. Con el fin de evaluar los principales indicadores económicos de rentabilidad.

#### **Objetivo Particular**

- Conocer el funcionamiento del ciclo y su balance.
- Conocer los diferentes sistemas de enfriamiento.
- Analizar el desempeño CBEI-Aerocondensador.
- Analizar el desempeño del sistema CBEI-Condensador enfriado con agua marina.
- Analizar el resultado económico y de operación del CBEI con aerocondensador y condensador marino.

# **1** Antecedentes

El primer capítulo de antecedentes presenta, de forma introductoria, una breve historia sobre la energía geotérmica. Desde sus primeras manifestaciones identificadas y utilizadas por el hombre hasta el desarrollo del primer dispositivo capaz de aprovechar el recurso geotérmico para la generación eléctrica. Los países líderes en el desarrollo de tecnología capaz de utilizar éste tipo de energía y el estatus a nivel mundial.

Posteriormente, se hace un recorrido de la situación actual de la energía geotérmica en México, enumerándose las principales plantas de generación eléctrica que están distribuidas a lo largo y ancho del territorio nacional. Enseguida se describen las principales tecnologías (ciclo de potencia de vapor, binario y mejorado) que son utilizadas para la transformación de la energía geotérmica en energía eléctrica.

Cada uno de los escenarios tecnológicos es aplicado a los diferentes sistemas o yacimientos geotérmicos de acuerdo a las características propias de cada uno de ellos. Estos pueden ser desde yacimientos de vapor dominante y de agua caliente hasta sistemas de roca seca caliente (HDR).

Finalmente, se describen los sistemas de enfriamiento que son utilizados a nivel mundial en todos los ciclos de generación eléctrica independientemente del tipo de recurso energético que utilicen. Esta amplia variedad es presentada desde torres de enfriamiento que utilizan aire o agua como medio de enfriamiento, lagos que funcionan como estanques y aerocondensadores.

Completando un panorama general que va desde la historia de la energía geotérmica hasta las principales tecnología sutilizadas para su aprovechamiento.

### 1.1 Energía geotérmica.

A pesar de que los manantiales termales han sido utilizados durante siglos para propósitos de balneología, el uso del calor de la tierra como fuente de energía comenzó en el siglo veinte cuando se generó electricidad por primera vez a partir del vapor geotérmico en 1904 en Larderello, Italia. Para 1913 ya contaban con una planta de 12.5 MW en continua operación. La difusión de la tecnología a otras partes del mundo fue bastante lenta durante la primera mitad del siglo veinte, siendo confinada prácticamente en Italia. Más tarde, el interés en el desarrollo de esta tecnología comenzó a intensificarse en Nueva Zelanda, Estados Unidos de América y Japón, donde plantas de generación eléctrica fueron comisionadas en 1958, 1960 y 1961, respectivamente. Aunque el agua geotérmica comenzó a ser usada a gran escala para servicio de calefacción de distritos municipales en Islandia en 1930, la producción de electricidad en gran magnitud a partir del vapor comenzó en 1969. Su utilización ha aumentado rápidamente durante las últimas tres décadas, principalmente en Filipinas, Estados Unidos, Italia, Nueva Zelanda, Islandia, Costa Rica, El Salvador y Rusia. El desarrollo de la energía geotérmica registró una tasa de crecimiento máxima del 22.5 %

por 5 años entre 1980 y 1990 y una significativamente más pequeña del 16.7% entre 1990 y 2000 (Huttrer, 2001).

Las fuentes geotérmicas varían ampliamente de una región a otra, dependiendo de la temperatura y profundidad de la fuente, la geología y de la existencia de mantos acuíferos subterráneos. Existen, predominantemente, dos tipos: de alta temperatura (>200 °C) encontrados en regiones volcánicas y archipiélagos, y de mediana a baja temperatura (50-200°C) las cuales se encuentran extensivamente en la mayoría de las áreas continentales. El tipo de fuente Geotérmica determina el método de su utilización. Fuentes de alta temperatura (vapor seco/liquido caliente) pueden ser lucrativamente utilizadas para la generación de energía eléctrica, mientras que las fuentes de mediana a baja temperatura (agua tibia a caliente) son apropiadas para usos directos. Sin embargo, con el desarrollo de la tecnología moderna, aún las fuentes de mediana temperatura (~100 °C) están siendo utilizadas para la generación eléctrica mediante ciclos binarios. La mayoría del uso directo de las fuentes geotérmicas de baja temperatura (50 – 100 °C) es para calefacción en edificios o distritos de países fríos. El agua geotérmica es bombeada a través de un intercambiador de calor, donde transfiere su energía a los sistemas de suplemento de agua de la ciudad. Un segundo intercambiador transfiere el calor al sistema de calefacción del edificio. Otro uso directo muy común es acondicionamiento de espacios mediante bombas de calor geotérmicas, las cuales utilizan la temperatura relativamente estable a una distancia de pocos metros de profundidad en la tierra. Dichas bombas circulan agua u otros fluidos a través de tuberías enterradas en un "loop" continuo. En invierno, la diferencia de temperaturas entre el interior de la tierra y el aire atmosférico frio genera la transferencia de calor a través de los tubos hacia el fluido de circulación para posteriormente ser transferido hacia el edificio proporcionándole calefacción. En verano, el fluido circulante colecta calor del edificio a través de los tubos transportándolo hacia la tierra, acondicionando el edificio. En otra de sus aplicaciones, agua geotérmica de baja temperatura es bombeada debajo de los caminos y aceras en Klamath Falls, Oregon para evitar si congelamiento en invierno. En muchos países en desarrollo, con falta de combustibles fósiles convencionales, existen altos potenciales de recurso geotérmico. Por ejemplo en el Tibet, donde los combustibles fósiles no son fácilmente disponibles, el campo geotérmico Nagqu provee de una fuente energética para la población local con la ayuda de una planta de ciclo binario de 1MWe construida en 1993. En algunos países como Estados Unidos de América, la energía geotérmica no sustituirá a los combustibles fósiles como la mayor fuente energética, pero contribuiría significantemente a los requerimientos energéticos de la nación.

Aunque la energía geotérmica ha sido utilizada para la generación eléctrica por casi nueve décadas y la tecnología para su explotación comercial ha mejorado desde los pasados veinte años, la fácil disponibilidad de los combustibles fósiles tales como el petróleo, gas natural y carbón a precio relativamente bajos, no propicia un rápido desarrollo de la industria

geotérmica. La situación ha cambiado dramáticamente hace unos pocos años. Los precios internacionales del petróleo se han ido casi al doble, resultando en un mejor mercado para la energía geotérmica. Además, el mundo ha sido alertado sobre el incremento de las concentraciones atmosféricas de gases de efecto invernadero tales como dióxido de carbono, metano y óxido nitroso mediante escenarios de impactos potenciales para la sociedad dentro de algunos años. Ha habido un crecimiento en el conocimiento sobre la pequeña fracción de contaminación atmosférica generada por la energía geotérmica en comparación con los combustibles fósiles tales como el petróleo y carbón. El mejor ejemplo lo tenemos en Islandia, donde la energía geotérmica representa alrededor del 50% del total de la energía primaria y el 86% de la calefacción, resultando en un medio ambiente limpio y mejorando la calidad de vida (Fridleifsson, 2001). Hoy en día, además de ser usado en al menos 21 países para generar electricidad, sumando alrededor de 8000 MWe (Huttrer, 2001), la energía geotérmica es usada en 58 países en usos directos (calefacción y refrigeración, balnearios, piscicultura y propósitos industriales y agrícolas) con alrededor de 15,000 MWt (Lund & Freeston, 2001). Las Filipinas, la cual tuvo el segundo lugar en capacidad de generación geotérmica instalada (~1900 MWe) después de Estados Unidos (~2200 MWe) en el año 2000, obtiene del 22-27% de sus reguerimientos eléctricos actuales del vapor geotérmico. En Estados Unidos, el cual es el mayor consumidor energético en el mundo, la energía geotérmica equivale al 0.4% de su producción energética promedio<sup>1</sup>. Está estimado que la generación eléctrica a nivel mundial mediante fuentes geotérmicas podría incrementar diez veces más con los niveles de tecnología actual. Muchos otros países están activamente explorando y evaluando sus recursos geotérmicos para obtener sus requerimientos energéticos y contribuir con las necesidades mundiales. Obviamente, el uso futuro del recurso geotérmico dependerá en gran medida de la superación de barreras técnicas ambas en producción y utilización, y su viabilidad económica comparada con las otras fuentes de energía. La voluntad política de los gobernadores en la promoción de las fuentes energéticas como una alternativa ambientalmente aceptable, también jugará un rol muy importante.

### 1.2 La geotermia en México

De acuerdo a la Asociación Geotérmica Mexicana, México ocupó el cuarto lugar en capacidad geo-termoeléctrica instalada a finales del 2013, después de Indonesia. De los campos geotérmicos identificados, cuatro se encuentran actualmente bajo explotación con una capacidad total instalada de 1017.4 MW netos, lo que representa casi el 2% de la capacidad eléctrica total del país operada por la Comisión Federal de Electricidad (CFE) para el denominado servicio público de energía eléctrica. La CFE tiene identificado otro campo más, aunque a la fecha no opera ninguna planta en este. Tales campos son los siguientes:

<sup>&</sup>lt;sup>1</sup> (Huttrer, 2001)

*Cerro Prieto, B.C.,* con 720 MW de capacidad neta, constituida por cuatro unidades de 110 MW cada una, cuatro unidades de 37.5 MW cada una, una unidad de baja presión de 30 MW y cuatro unidades más de 25 MW cada una. Todas las unidades son a condensación, de un solo flasheo, excepto las de 37.5 MW que son de doble flasheo. Las cuatro unidades más antiguas de 37.5 MW cada una se encuentran actualmente fuera de operación, y por lo tanto la capacidad operativa (o capacidad efectiva) del campo es de 570 MW.

Los Azufres, Mich., con 194 MW de capacidad neta, constituida por cinco unidades a condensación de flasheo sencillo (una de 50 MW y cuatro de 26.5 MW cada una), siete unidades a contrapresión de 5 MW cada una y dos unidades de ciclo binario de 1.5 MW cada una. A la fecha estas dos unidades de ciclo binario están fuera de servicio, con lo que la capacidad operativa es de 191 MW. Adicionalmente, desde enero de 2013 se encuentra en construcción otra unidad de 50 MW, en lo que se conoce como el proyecto Los Azufres III. Esta unidad está programada para entrar en operación en enero de 2015.



Gráfica 1-1 Capacidad Geo-termoeléctrica instalada en México al 2013<sup>2</sup>

Los Humeros, Pue., con 93.4 MW de capacidad instalada, integrada por ocho unidades a contrapresión de 5 MW cada una y dos unidades a condensación de 26.7 MW cada una. Sin embargo, cinco de las unidades de 5 MW no se encuentran en operación continua, sino que se utilizan como respaldo cuando alguna otra debe salir a mantenimiento, con lo cual la capacidad operativa o efectiva del campo es de 68.4 MW. Se encuentra en construcción una

<sup>&</sup>lt;sup>2</sup> Datos de la Asociación Geotérmica Mexicana

unidad adicional de 26.7 MW brutos, estando programada su entrada en operación comercial en el año 2016.

Las Tres Vírgenes, B.C.S., con 10 MW de capacidad constituida por dos unidades a condensación (flasheo simple) de 5 MW cada una.

*Cerritos Colorados, Jal.,* sin plantas en operación pero con varios pozos perforados y un potencial evaluado por la CFE en 75 MW.

Los Azufres, Los Humeros y Cerritos Colorados se encuentran en diferentes porciones de la Faja Volcánica Mexicana, mientras que Cerro Prieto y Las Tres Vírgenes se localizan en la península de Baja California.

### 1.3 Tipo de sistemas geo-térmicos

Los elementos esenciales para la existencia de un sistema geo-térmico son (1) una gran fuente de calor, (2) un reservorio permeable, y (3) una barrera para mantener el calor acumulado. Las diferentes condiciones geológicas dan como resultado una variedad de sistemas geo-térmicos. Consecuentemente, todos los campos geo-térmicos difieren unos de otros. Sin embargo, dependiendo de ciertas características en común, estos pueden ser ampliamente clasificados en las siguientes categorías.

- i. Vapor dominante
- ii. Agua caliente
- iii. Geo-presurizados
- iv. Roca seca caliente (HDR)
- v. Magmáticos

### **1.3.1 Vapor Dominante**

La mayoría de los campos geotérmicos actualmente explotados contienen agua a alta presión, y temperaturas mayores a 100 °C. Cuando ésta agua es extraída a la superficie de la tierra, la presión es reducida considerablemente. Generando enormes cantidades de vapor, de tal modo que una mezcla de agua y vapor saturado es producida. La relación vapor/líquido varía de un sitio a otro. Algunos de los mejores campos geotérmicos conocidos, tales como Cerro Prieto (México), Wairakei (Nueva Zelanda), Reykjavik (Islandia), Salton Sea (E.U.A) y Otaka (Japón), pertenecen a ésta categoría. Debido a las características del vapor generado, dichos campos geotérmicos son conocidos como campos de vapor húmedo. Existen algunos otros importantes como Larderello (Italia) y Los Geysers (E.U.A) los cuales producen vapor sobre calentado sin ningún fluido asociado. Éste último tipo de campos son conocidos como de vapor seco.

Los requerimientos básicos de los campos geotérmicos de vapor dominante, tipo húmedo o seco, incluyen suministros adecuados de agua además de los tres requisitos antes mencionados. La ilustración 1-1 muestra una representación esquemática del modelo de un campo de vapor dominante.

#### Fuente de Calor

El hecho de que los campos geotérmicos de vapor dominante estén situados en regiones de reciente volcanismo, ha verificado que el magma es su fuente energética. Intrusiones de magma de altas temperaturas (500 – 1000 °C) a pocos o muchos kilómetros dentro de la superficie de la tierra, permite que el calor sea acumulado. Las discontinuidades en rocas compactas pesadas podrían proveer de un canal para que el magma alcance la superficie.

#### Reservorio y suministro de agua

Con el fin de formar un reservorio de calor, las intrusiones magmáticas deberían encontrar estratos de agua porosos y permeables llenos de agua. Dentro del reservorio, corrientes convectivas de agua caliente y/o vapor son generadas, promoviendo un excelente intercambio de calor. Una variedad de rocas han sido encontradas para constituir reservorios adecuados. En Larderello (Italia), piedra caliza y dolomita fracturadas; en los Geysers (E.U.A), grauvaca o roca detrítica fisurada; en Wairakei (Nueva Zelanda) piedra pómez y roca volcánica; y en Cierro Prieto (México) arenas deltaicas. Buenos reservorios podrían también ser formados en discontinuidades geológicas y límites de formación, siempre y cuando sean permeables y tengan buena continuidad hidráulica y suministro de agua.



Ilustración 1—1 Modelo conceptual de un sistema de vapor geotérmico<sup>3</sup>

El origen de los fluidos geotérmicos ha sido debatido en el pasado. Además de un origen meteórico, teorías magmáticas han sido sugeridas. Sin embargo, recientes estudios isotópicos realizados en campos geotérmicos han mostrado que al menos el 90% del agua geotérmica tiene un origen meteórico. Los acuíferos permeables que forman el reservorio deberán, por lo tanto, tener continuidad hidráulica con grandes áreas de recargas de agua de lluvia para tener disponible un constante suministro. Algunos de los campos geotérmicos, tales como Larderello en Italia, cuentan con áreas de recargas fácilmente

<sup>&</sup>lt;sup>3</sup> (Gupta & Roy, 2007)

identificables. El terreno del depósito permeable, consiste en piedra caliza y dolomita Mesozoica, y protuberancias rocosas que proporcionan un fácil acceso al agua superficial.

### Capa sello

Una capa de roca impermeable o una capa de roca con baja permeabilidad, delimitando el reservorio, es necesario para evitar el escape de los fluidos calientes mediante convección. Por otro, lado la pérdida de calor mediante la conducción no es evitada por dicha capa. Sin embargo, la cantidad de calor por conducción es mucho menor que la que podría ser perdida por convección. Dado que el vulcanismo es asociado con movimientos tectónicos causando fisuras, una capa de roca ideal impermeable sin fisuras no será encontrada en ningún lado.

### **1.3.2** Sistemas geotérmicos de agua caliente

En campos geotérmicos de agua caliente, flujos convectivos de agua transportan el calor desde la base del reservorio hacia la parte superior. Dichas corrientes convectivas podrían ser generadas por el calor absorbido mediante la conducción en rocas calientes. La geología de los campos geotérmicos de agua caliente es muy similar a la de un sistema acuático subterráneo ordinario. La diferencia entre este tipo de campos y el de vapor dominante es el hecho de que, los campos geotérmicos de agua caliente son caracterizados por ser la fase líquida la que controla la presión en el reservorio. Típicamente, la temperatura de los reservorios de agua caliente varían de 60 a 100 °C a profundidades que van de 1500 a 3000 m. La ilustración 1.2 es una representación esquemática de un campo de agua caliente y la curva de referencia representa la variación del punto de ebullición del agua pura con respecto a la profundidad. Como se muestra en dicha figura, un campo geotérmico de agua caliente y la profundidad del acuífero son adecuados para mantener una circulación convectiva. Dependiendo de la temperatura, química y de la estructura del reservorio, los sistemas de agua caliente han sido clasificados en muchos subsistemas (White, 1974).

Sistemas de baja a moderada temperatura (50 – 150 °C); con una composición química del agua similar a la de acuíferos subterráneos.

Sistemas caracterizados por la presencia de agua parcialmente no meteórica.

Sistemas caracterizados por la presencia de salmuera de muy alta salinidad. La química puede variar considerablemente de un campo a otro.

Sistemas caracterizados por la presencia de una capa sello natural. Campos geotérmicos de Cerro Prieto (México) y Santon Sea (California) tienen capas de rocas constituidas por sedimentos de baja permeabilidad y granos finos.

Sistemas caracterizados por la creación de su propias capas sellos mediante alteraciones químicas y disminuciones repentinas de temperaturas.



*Ilustración* 1–2 *Modelo conceptual de un sistema de agua caliente*<sup>4</sup>

### 1.3.3 Roca seca caliente (HDR)

Existen muchos prospectos geotérmicos que tienen alta temperatura pero no cuentan con fluidos en la formación o la permeabilidad es muy baja para apoyar el desarrollo comercial. Estos sistemas pueden ser "mejorados" manipulando los depósitos mediante fractura hidráulica. Un pozo de inyección es perforado hacia la formación a una profundidad conveniente. Agua fría es inyectada a altas presiones para abrir fracturas existentes o crear nuevas. Una vez que la formación alcanza un estado de volumen y permeabilidad suficiente, otro pozo (o pozos) es perforado hasta alcanzar el nuevo "reservorio" formado. Idealmente un *loop* es así creado por el cual agua fría es bombeada a través del pozo de inyección y

<sup>&</sup>lt;sup>4</sup> (Gupta & Roy, 2007)

enviada a la superficie a través del pozo de producción después de ser calentada por la formación artificialmente fracturada. El concepto ideal de un sistema HDR es ilustrado en la siguiente ilustración.



Ilustración 1−3 Esquema ideal de un sistema HDR<sup>5</sup>

### 1.3.4 Sistemas geo-presurizados

A través del Oeste y Norte de la costa del Golfo de México, existe una poderosa fuente energética conocida como "Geo-presión". Durante la perforación de petróleo y gas en las áreas costeras sedimentarias de Texas y Luisiana, fluidos han sido encontrados con presiones mayores a la hidrostática y muy cercanas a la Litostática. La presión hidrostática incrementa con la profundidad en proporción al peso del agua a una razón de alrededor de 0.465 lbf/in<sup>2</sup> por pie. Sin embargo en formaciones dónde el fluido juega un rol de soporte en el mantenimiento de la estructura del reservorio, el peso del solido sobrecargado es aproximadamente el doble del gradiente, acercándose al valor litostático de 1.0 lbf/in<sup>2</sup> por pie.

Los reservorios geo-presurizados fueron formados a lo largo de la Costa del Golfo a través de la deposición continua de sedimentos que crearon un sobrepeso en los estratos subyacentes. Periódicamente, hundimientos ocurrieron causando compactación en las capas de rocas. Dichos hundimientos también resultaron en fallas que pueden aislar elementos de formación los cuales están sobrecargados sin ser capaces de liberar dicha carga, lo que se traduce en niveles de presión que excede a la hidrostática.

<sup>&</sup>lt;sup>5</sup> (DiPippo, 2012)

Los sistemas geo-presurizados están caracterizados por tres importantes propiedades que los hacen potencialmente atractivos para la explotación geotérmica: (1) alta presión, (2) alta temperatura, y (3) metano disuelto. La primera propiedad permite el uso de una turbina hidráulica para extraer la energía mecánica almacenada en forma de alta presión; la segunda permite el uso de un motor térmico de algún tipo para extraer la energía térmica; y la última propiedad puede ser utilizada para la combustión del gas en sitio para generación eléctrica o para mejorar económicamente la venta de un proyecto de desarrollo.

### 1.3.5 Sistemas magmáticos

Magma, el material de roca fundida de origen natural es un líquido viscoso caliente, el cual mantiene su fluidez hasta la solidificación. Puede contener gases y partículas de materiales solidos tales como cristales y fragmentos de rocas. Sin embargo, la movilidad del magma no es muy afectada hasta que el contenido de roca solida es muy grande. Normalmente, el magma cristaliza para formar rocas ígneas a temperaturas variadas, dependiendo de la composición y presión, de 600 a 1400 °C. En su sitio de formación, el magma es más ligero que el material a su alrededor, y en consecuencia tiende a subir bajo estas condiciones. Eventualmente, el magma o solidifica o forma reservorios en algún sitio bajo la superficie, o es expulsada en erupciones.

El concepto consiste en perforar un pozo hacía la fuente magmática, construir un sistema de inyección, y bombear agua fría a alta presión. El agua fría solidificará el fluido magmático en una sustancia cristalina que deberá fracturarse bajo los esfuerzos térmicos producidos. Si el agua puede ser extraída a la superficie mientras se hace pasar a través de las fallas, podría alcanzar la superficie a alta temperatura lista para ser usada en una planta de generación tipo Rankine.

La extracción de energía térmica de este tipo de sistemas mediante éste método fue evaluado durante 1980 a través de la perforación de la corteza solidificada del lago de lava todavía fundido en el cráter de *Kilauea Iki* en la isla de Hawái, el cual tenía una temperatura de aproximadamente 1000 ° C. De hecho, 105 m de núcleo se obtuvieron de la zona de fusión y varios experimentos se realizaron para comprender el mecanismo de extracción de energía de un cuerpo de lava. Sin embargo, hasta la fecha, la tecnología necesaria no ha sido desarrollada para recuperar energía en forma de calor del magma.

### 1.4 Generación Geo-termoeléctrica

Las tecnologías de aprovechamiento de los recursos geotérmicos dependen del nivel térmico disponible y del tipo de fluido existente en el yacimiento. En los yacimientos de alta temperatura se produce electricidad mediante una diversidad de ciclos termodinámicos en función de las características del fluido: ciclo directo con o sin condensación, ciclo semidirecto con flash en una o varias etapas y condensación, ciclos binarios utilizando agua o algún fluido de bajo punto de ebullición. Existen diversas configuraciones de centrales geo-termoeléctricas en función de las condiciones en las que se encuentra el recurso así como de los elementos que las constituyen operando de acuerdo a los siguientes ciclos.

- i. Ciclo a Contrapresión.
- ii. Ciclo a Condensación.
- iii. Ciclo de Ciclo Binario.

#### 1.4.1 Ciclo a Contrapresión

Este tipo de ciclo es empleado en yacimientos de vapor dominante. En este caso el vapor saturado o ligeramente sobrecalentado se obtiene en la superficie, donde a través de una válvula es llevado a la presión de separación (cabe señalar que esta presión de separación depende directamente de la presión del yacimiento), con ello el vapor seco del pozo, o previa separación de agua si es vapor húmedo, se envía a la turbina y luego se descarga a la atmósfera.

Las turbinas a contrapresión con descarga libre a la atmósfera, a diferencia de las turbinas a condensación, se pueden usar cuando las primeras medidas de los fluidos geotérmicos registran un contenido alto de gases incondensables (es decir mayor de 10 a 12% en peso en el vapor de entrada a la turbina) o en todos los casos donde tiene que explorarse un campo, aún con baja eficiencia.

En este tipo de centrales el vapor utilizado en la turbina se descarga directamente a la atmósfera provocando que la eficiencia de la central disminuya.

Es el más simple y económico de todos los ciclos geotérmicos. Su rendimiento es bajo, el consumo varía entre 20 y 30 kg de vapor/kWh, principalmente por el hecho de que la turbina descarga directamente a la atmósfera, pero se adapta bien para plantas de pequeña capacidad. Se han desarrollado unidades de turbina/generador simples y compactas, cuyos modelos para capacidades más limitadas se pueden transportar completamente ensambladas (con peso total entre 50 a 80 toneladas) y pueden ser instaladas a boca de pozo sin necesidad de construir casa de máquinas.



Ilustración 1—4 Configuración de un Ciclo a Contrapresión<sup>6</sup>

#### 1.4.2 Ciclo a Condensación

En todas las grandes plantas geotérmicas el vapor es utilizado para alimentar turbinas a condensación y una gran fracción de la generación entre 1/2 a 2/3 es desarrollada por debajo de la presión atmosférica.

En yacimientos geotérmicos dominados por líquido, los pozos generalmente producen una mezcla de agua y vapor en la superficie. Esto se debe a que el fluido del yacimiento sufre un proceso de ebullición en el interior del pozo, causado por la caída de la presión a lo largo de la tubería.

En la superficie, el vapor y agua geotérmica se separan por medio de un equipo denominado separador centrífugo, el agua es reinyectada nuevamente al subsuelo mientras que el vapor es conducido a través de una red de tuberías hasta la central geotérmica, dónde la presión y energía calorífica, es convertida en energía mecánica al hacer girar la turbina, que a su vez mueve el generador convirtiendo la energía mecánica en energía eléctrica.

El vapor geotérmico, después de haber cumplido con la función de activar la turbina se condensa nuevamente y es reinyectado al subsuelo para ser convertido en calor que podría ser extraído nuevamente.

Las plantas a condensación son más complejas que las de contrapresión, necesitan atención más especializada e incluyen considerables niveles de provisión de agua de circulación y una planta auxiliar, pero indudablemente son mucho más eficientes que las plantas a contrapresión.

<sup>&</sup>lt;sup>6</sup> Grupo iiDEA (Instituto de Ingeniería, Desalación y Energías Alternas)

La potencia de las unidades geotérmicas está determinada principalmente por las características del campo geotérmico. Gracias al descubrimiento de campos de mayor potencia, así como de avances graduales en los métodos de perforación y transporte de fluidos, ha sido posible desarrollar unidades desde 15-25 MW hasta llegar a unidades de 35-55 MW.



Ilustración 1—5 Configuración de un Ciclo a Condensación<sup>7</sup>

### 1.4.3 Ciclo de evaporación instantánea

En los campos húmedos es posible extraer una muy buena cantidad de energía adicional del agua líquida caliente, separada previamente de la mezcla agua-vapor del pozo, haciéndola pasar por un recipiente de evaporación instantánea que trabaje a presión mayor que aquella a la que se admite el vapor principal de la turbina.

El vapor así producido puede hacerse pasar luego por varias etapas de menor presión de la o las unidades motrices primarias, tal configuración es la del ciclo con doble evaporación instantánea. En teoría, puede obtenerse la máxima producción de energía del agua caliente del recipiente de evaporación instantánea trabaja a una temperatura que sea aproximadamente el promedio de la del agua caliente recolectada y la del condensador. La fracción del agua caliente no evaporada se dirige luego a la tubería de desecho y se le da algún uso industrial o de otra clase.

### 1.4.4 Ciclo Binario

Las plantas de ciclo binario son apropiadas para la explotación de los sistemas geotérmicos de líquido que no están a la temperatura suficientemente como para producir una

<sup>&</sup>lt;sup>7</sup>Grupo iiDEA (Instituto de Ingeniería, Desalación y Energías Alternas)

importante evaporación del fluido geotérmico o para utilizar el calor contenido en los fluidos de desecho de las plantas de separación de vapor.

La aplicabilidad del ciclo Rankine con fluido orgánico se puede fijar entre los 90°C y 180°C. Con temperaturas mayores de 180°C resulta más conveniente la aplicación de un ciclo de vapor obtenido por evaporación del fluido geotérmico.

En estas plantas, el calor que se obtiene del fluido geotérmico se transmite por medio de un intercambiador de calor a un fluido de trabajo secundario con un menor punto de ebullición (por lo general es un refrigerante). El fluido de trabajo se expande en una turbina, se condensa y se calienta en otro ciclo. Existen unidades de 1 a 25 MW.

Actualmente existen en el mundo una capacidad instalada de aproximadamente 300 MW en este tipo de plantas.



Ilustración 1—6 Configuración de un Ciclo Binario<sup>8</sup>

Se pueden destacar las siguientes ventajas:

- Para cada aplicación es posible elegir un fluido de trabajo que permita una buena eficiencia de la turbina.
- Las partes en contacto con el fluido geotérmico son todas estáticas, haciendo fácil su inspección y menos crítica su eventual constitución.

<sup>&</sup>lt;sup>8</sup> Grupo iiDEA (Instituto de Ingeniería, Desalación y Energías Alternas)

• El circuito de fluido de trabajo es cuidadosamente sellado para evitar pérdidas, resultando en una mayor duración, sin necesidad de continuos controles y correcciones que son típicos de las turbinas de vapor de agua.

### **1.5** Sistemas de enfriamiento

Una torre de enfriamiento es un dispositivo cerrado para el enfriamiento evaporativo del agua mediante el contacto con aire. Esto es obtenido parcialmente por un intercambio de calor latente resultado de la evaporación de una fracción del agua de circulación y por otra parte por una transferencia de calor sensible. Esta definición será llevada más allá, en la que se incluya otros métodos de enfriamiento de agua tales como estanques y aero-enfriadores:

Estos dispositivos pueden ser clasificados de la siguiente forma:

- I. Estanques
  - a) De enfriamiento,
  - b) De aspersión.
- II. Atmosférica
  - a) Spray filled,
  - b) Wood filled.
- III. Torres hiperbólicas (Tiro Natural)
  - a) Tiro forzado
  - b) Tiro Inducido
    - i. Contra flujo
    - ii. Flujo Cruzado

Una comparación del área requerida por varios sistemas de enfriamiento con la misma carga de calor se muestra a continuación:

| Sistema de enfriamiento        | Área/Carga de Calor |
|--------------------------------|---------------------|
| Estanques de enfriamiento      | 1000                |
| Estanques de aspersión         | 50                  |
| Torre atmosférica-Spray filled | 15                  |
| Torre atmosférica-Wood filled  | 4                   |
| Tiro mecánico a contra flujo   | 1.5                 |
| Tiro mecánico a flujo cruzado  | 1-2                 |

Tabla 1-1 Comparativa de sistemas de enfriamiento<sup>9</sup>

#### **1.5.1 Estanque de enfriamiento**

Un estanque de enfriamiento es el método más simple y barato para enfriar agua, pero también es el más ineficiente. Este consiste en un estanque relativamente largo en el cual

<sup>&</sup>lt;sup>9</sup> (SPX Cooling Technologies, Inc, 2009)

el enfriamiento se lleva a cabo por el contacto con aire en la superficie. El agua enfriada es extraída por un extremo del estanque y el agua caliente depositada por otro. Un estanque de enfriamiento tiene las siguientes ventajas.

- 1. Puede ser construida a un costo relativamente bajo construyendo un dique de 6 a 8 pies de alturas sobre el nivel la tierra;
- 2. Puede operar por largos periodos sin agua de repuesto;
- En casos donde la contaminación del agua pudiera ocurrir, los estanques funcionan como un depósito de retención donde el contaminante puede ser detectado y removido;

Mientras que sus desventajas son:

- Baja tasa de transferencia de calor: de acuerdo a Kent<sup>10</sup> el calor disipado de un estanque promedia de 3 ½ BTU (British Thermal Unit, 10 BTU/h ~ 2.9 Watts) por hora por pie cuadrado de superficie por cada grado de diferencia de temperatura (agua de la superficie y aire).
- 2. Gran tamaño es necesario: el área de un estanque de enfriamiento será veinte veces el de un estanque de aspersión equivalente en carga térmica y de 500 a 1000 veces el tamaño de una torre de enfriamiento de tiro inducido a flujo cruzado.

### 1.5.2 Estanque de aspersión

Un estanque de aspersión es un estanque con un sistema de rocío localizado a una altura de entre 6 y 8 pies por encima del estanque natural o artificial. Una cerca tipo persiana sobre el lado del estanque a sotavento evita que el agua sea transportada por el viento fuera del área de interés. Aunque más compacta que un estanque de enfriamiento, éste tiene algunas desventajas:

- 1. Desempeño limitado debido a que el tiempo de contacto entre el agua aspersada y el aire antes de alcanzar la superficie del estanque es comparativamente limitada;
- 2. Altas pérdidas de agua, en ciertos periodos del año durante vientos fuertes, se propicia la corrosión mediante el arrastre de gotas;
- 3. Al estar abiertos a la atmósfera, los estanques se vuelven colectores de materia externa la cual contamina el agua.

### 1.5.3 Torre atmosférica (tiro natural)

Es una torre en la cual el movimiento del aire a través de la torre es dependiente únicamente de las condiciones atmosféricas. Los vientos generalmente soplan en una dirección casi horizontal y el agua, debido a la gravedad, cae verticalmente. De tal modo que, en una torre atmosférica, el flujo de aire es transversal al flujo del agua. La torre atmosférica tiene algunas ventajas como:

<sup>&</sup>lt;sup>10</sup> (Kent, 1938)

- 1. No partes mecánicas;
- 2. Bajo costo de mantenimiento;
- 3. No recirculación del aire de enfriamiento;
- 4. Largos periodos de vida sin complicaciones;
- 5. La temperatura promedio del agua fría será más baja que la de una torre de tiro mecánico diseñada para las mismas condiciones de servicio dado que la velocidad del viento de diseño es generalmente inferior a la media.

#### Desventajas:

- 1. Una gran longitud de la torre es requerida debida a su construcción estrecha;
- 2. Alto costo inicial (similar al costo de una torre de tiro mecánico);
- 3. Alta potencia de bombeo;
- 4. Localización en un área despejada;
- 5. La temperatura de agua enfriada fluctúa con los cambios con la dirección y velocidad del viento;
- 6. Su orientación deberá ser la del viento dominante;
- 7. Un buen anclaje es requerido para evitar levantamientos o hasta su volcadura durante temporadas de fuertes vientos.

### 1.5.3.1 Torre de aspersión

Una torre de aspersión (*spray filled tower*) es dependiente únicamente de válvulas aspersoras para la atomización del agua. Su diseño simula un sistema de aspersión con válvulas elevadas y entradas de aire tipo persiana. Este tipo de torres de enfriamiento son apropiadas para refrigeración a pequeña escala debido a su operación libre de problemas inherentes sin o con la mínima atención, sin embargo, presenta las siguientes desventajas:

- La aproximación a la temperatura de bulbo húmedo será siempre igual o mayor que el rango de la torre; excepto cuando temperaturas de agua caliente relativamente altas son alcanzadas (mayores a 130 °F), es en este caso cuando la aproximación puede ser, y frecuentemente lo es, substancialmente menor que el rango de la torre;
- 2. La atomización del agua requiere grandes presiones de bombeo que en una torre con relleno de madera;
- 3. Las válvulas tienden a obstruirse, desbalanceando el sistema de distribución;
- 4. Altas pérdidas del agua de enfriamiento en temporada de vientos fuertes.



### 1.5.3.2 Con relleno de madera

Este tipo de torre de enfriamiento contiene deflectores para incrementar la separación del agua y proveer de superficie húmeda adicional. El agua de enfriamiento cae de nivel a nivel en forma de gotas y el aire pasa a través de los *louvres* para después recorrer la torre verticalmente hasta el exterior.

#### **1.5.4** Torres hiperbólicas (tiro natural)

En torre hiperbólica o de chimenea de tiro natural el aire es inducido por la estructura de la torre en forma de chimenea. Chimeneas de hasta 340 pies de alto y con diámetros de 270 pies han sido construidas (Ilustración 1.8). El tiro generado en la torre es el resultado de un número de complicados efectos inter-relacionados: la diferencia de presión del aire atmosférico debido a la altura de la chimenea, los diferenciales de velocidad del viento, la diferencia de temperatura del aire calentado por el agua y por un incremento en la volubilidad debido a la vaporización. Debido a la variabilidad de algunos de estos factores las torres de tipo chimenea son complicadas de diseñar. En ciertas circunstancias presenta diferentes ventajas sobre las torres de tiro mecánico, de hecho no es fácil definir cuando un tipo es más preferible que el otro. Sus principales ventajas son las siguientes:

- Los efectos de enfriamiento producidos son similares a los generados por una torre de enfriamiento de tiro mecánico sin las partes mecánicas ni la potencia eléctrica requerida por éstas últimas;
- 2. Costos de mantenimiento prácticamente nulos;
- 3. Prácticamente no presentan problemas de funcionamiento;
- 4. Son capaces de enfriar enormes cargas de agua;
- 5. La corriente de aire es en la dirección opuesta a la dirección del agua estando en contacto el aire más frío con el agua de menor temperatura lo que asegura una menor perdida en eficiencia.

<sup>&</sup>lt;sup>11</sup> (SPX Cooling Technologies, Inc, 2009)



Ilustración 1—8 Estación eléctrica Marnham, Enero 1958<sup>12</sup>

Las principales desventajas son las siguientes:

- 1. La resistencia al flujo de aire debe ser mantenida el mínimo;
- 2. Es necesario una gran altura para generar el tiro natural;
- 3. El agua caliente a la entrada deberá ser mantenida a mayor temperatura que la de bulbo seco del aire;
- 4. Un control exacto de la temperatura de salida del agua es complicado de lograr.

#### 1.5.5 Torre de tiro mecánico

Las torres de tiro mecánico utilizan uno o más ventiladores para inducir el movimiento del aire a través de la torre. Dichos ventiladores son una parte integral de su estructura, lo que facilita al diseñador un control absoluto sobre el suministro de aire. Precisas cantidades de aire y apropiadas velocidades pueden ser seleccionadas sin restricción. No hay factores limitantes de la resistencia del aire en la torre ni de velocidad o dirección del viento.

Ventajas:

- 1. Control de la temperatura del agua fría;
- 2. La superficie terrestre requerida para su construcción es pequeña;
- 3. En general requieren de pequeñas cargas de bombeo;
- 4. Su localización no está restringida a condiciones atmosféricas;

<sup>&</sup>lt;sup>12</sup> (Gupta & Roy, 2007)

- 5. Mayor aproximación y rangos mayores de enfriamiento son posibles;
- 6. El costo es menor que para una torre chimenea de tiro natural

#### Desventajas:

- 1. Gasto eléctrico considerable para el funcionamiento de los ventiladores;
- 2. Sujeto de fallas mecánicas;
- 3. Costos de mantenimiento altos;
- 4. Altos costos de operación;
- 5. Su desempeño varía con la intensidad del viento: en ciertos rangos de velocidad la recirculación del aire disminuye el desempeño de la torre por lo que es necesario alcanzar una velocidad crítica, después de ésta el desempeño mejora, debido a la disminución de la recirculación;

#### 1.5.5.1 De tiro forzado

En esta configuración uno o más ventiladores son localizados en la entrada del aire (Ilustración 1.9). Las principales ventajas son las siguientes:

1. Las vibraciones son reducidas al mínimo ya que el equipo mecánico está cerca de la tierra y sobre una base sólida;



2. Es significativamente más eficiente que una de tiro inducido.

Ilustración 1-9 Torre de tiro forzado con intercambiador de calor auxiliar<sup>13</sup>

Desventajas:

- 1. El aire saturado y caliente es sujeto de recirculación en las áreas de baja presión;
- 2. Tendencia a la formación de escarcha en las salidas de los ventiladores durante su operación en inverno;

<sup>&</sup>lt;sup>13</sup> (Energy Engineering, 2015)

3. Tamaño de los ventiladores limitados (12 pies o menos) lo que implica una mayor cantidad de ventiladores y motores.

Young y Agnon reportaron un novedoso método usando una torre de enfriamiento en conjunto con un intercambiador de calor auxiliar para pre-enfriar el agua a una temperatura menor que la temperatura de bulbo húmedo del aire ambiente.



Ilustración 1—10 Torre de tiro forzado de seis celdas en la "Centrale du FESC", Francia<sup>14</sup>

### 1.5.5.2 De tiro inducido

A diferencia de las torres de tiro forzado, los ventiladores en las torres de tiro inducido están localizados en la salida del aire de la torre. De acuerdo a la dirección del flujo de aire, se clasifican en dos tipos:

### A contra flujo

El movimiento del aire a través del relleno es vertical (Ilustración 1-11). Lo que da como ventaja que el agua más fría este en contacto con el aire más seco y que el agua más caliente este en contacto con el aire más húmedo, obteniendo el máximo desempeño, las desventajas son las siguientes:

- 1. Un área restringida de *louvres* en la base con altas velocidades de aire a la entrada incrementa la potencia de los ventiladores;
- 2. La distribución de las velocidades del aire a través del relleno no es uniforme con muy poco movimiento cerca de las paredes y en el centro de la torre;
- 3. Alta potencia de bombeo es necesaria debido a su altura;

<sup>&</sup>lt;sup>14</sup> (SPX Cooling Technologies, Inc, 2009)

- 4. Capacidad de carga de agua limitada;
- 5. El sistema de distribución de agua caliente es prácticamente inaccesible para su mantenimiento;
- 6. Altas velocidades de aire a la entrada puede succionar partículas dañinas para la planta.



*Ilustración 1—11 Torre de tiro inducido a contra flujo*<sup>15</sup>

#### A flujo cruzado

En una torre de enfriamiento de tiro inducido a flujo cruzado, el aire fluye horizontalmente mientras el agua cae perpendicular a la corriente de aire, como se muestra en la ilustración 1-12. Las principales ventajas de este dispositivo son las siguientes:

- 1. Baja potencia de bombeo;
- 2. Baja caída de presión estática;
- 3. Arreglo conveniente del sistema de distribución.
- 4. Es posible el mantenimiento del sistema de operación mientras la torre esta en operación;
- 5. La altura del relleno es prácticamente la misma que la de la torre;
- 6. Mayor superficie de enfriamiento de relleno por píe cúbico de la torre;
- 7. Diámetros mayores de ventiladores pueden ser usados, así que menos celdas son requeridas para una capacidad dada.

<sup>&</sup>lt;sup>15</sup> (SPX Cooling Technologies, Inc, 2009)



Ilustración 1—12 Torre a flujo cruzado<sup>16</sup>

Las desventajas de una torre de enfriamiento de flujo cruzado consisten principalmente en:

- 1. Es complicado mantener los orificios del sistema de distribución libres de algas y desechos que comúnmente son colectados en el sistema;
- 2. El suministro de agua en su totalidad está expuesto al aire el cual acelera el crecimiento de algas;
- 3. Un esencial factor de corrección de flujo cruzado es necesario ser aplicado, particularmente cuando rangos grandes y una mayor aproximación de desempeño son requeridas. En tales casos y para algunas potencias de bombeo, una torre de flujo cruzado podría necesitar una mayor área de construcción, y una mayor potencia en los ventiladores que en una torre a contraflujo.

#### **1.5.6 Enfriadores secos**

Es un sistema de enfriamiento de fluidos por medio de tubos generalmente aletados, forzando o induciendo el aire atmosférico a través ésta sección de tubos, mientras el fluido a enfriar pasa por dentro del banco de tubos provocando su enfriamiento. Al no estar en contacto directo con la corriente de aire, no pertenecen a los sistemas evaporativos a diferencias de todos los tipos de torres de enfriamiento antes mencionadas. Algunas de sus principales ventajas son las siguientes:

- 1. Puede ser usado donde el fluido a ser enfriado está a alta temperatura;
- El uso del aire como fluido de enfriamiento, elimina problemas del agua como disponibilidad, tratamientos químicos, corrosión, riesgo de congelamiento y ensuciamiento;
- 3. No hay límite superior al cual el aire pueda ser calentado.

Las desventajas son:

<sup>&</sup>lt;sup>16</sup> (SPX Cooling Technologies, Inc, 2009)

- 1. Normalmente un enfriador seco (*dry cooler*) es menos económico que una torre de enfriamiento del tipo evaporativo ordinaria.
- 2. El calor específico del aire es cuatro veces menos que el del agua;
- 3. Costos de mantenimiento altos del sistema de intercambio de calor.

### 1.6 Grupo iiDEA

El instituto de Ingeniería de la UNAM en el año 2005 acogió administrativamente el cuarto de los megaproyectos multidisciplinarios de mediano y largo alcance denominados IMPULSA (Programa de Investigación Multidisciplinaria de Proyectos Universitarios de Liderazgo y Superación Académica) los cuales fueron creados por la Coordinación Científica de la UNAM. El proyecto IMPULSA IV tenía como objetivo proponer y desarrollar investigación dirigida a abordar, de forma integral, la desalación de agua de mar por medio de energía renovable. El proyecto IMPULSA IV tuvo una vida de 5 años en los cuales se generaron ideas, recursos humanos, conocimientos y algunos desarrollos teóricos del aprovechamiento de las energías renovables para la desalación de agua de mar.

En el año 2010, el Instituto de Ingeniería de la UNAM adoptó algunos de los proyectos desarrollados para dar un término adecuado y acorde al objetivo de los proyectos IMPULSA.

Posteriormente, en el año 2013, el Instituto de Ingeniería crea el grupo iiDEA (Instituto de Ingeniería Desalación y Energías Alternas), el cual toma algunos de los objetivos del grupo IMPULSA IV añadiendo la fabricación de prototipos que materialicen los desarrollos teóricos.

Actualmente, los investigadores de la UNAM estudian diversas formas de desalar agua de mar, generar electricidad y deshidratador alimentos con energía alterna o renovable; solar, eólica y geotérmica. Uno de los principales proyectos es un innovador ciclo binario geotérmico denominado "*Ciclo Binario de Evaporación Instantánea*" el cual será descrito a detalle como objeto de estudio de éste proyecto de tesis.

### 1.7 Conclusión

En éste primer capítulo se presentó la situación actual de la geotermia en México, a nivel país y dentro de un marco global. Destacando que, después de Indonesia, México se ubica en el cuarto lugar en generación eléctrica con geotermia de alta entalpía a nivel mundial. Mostrando, de forma categórica, el alto potencial geotérmico con el que se cuenta. Sin embargo, la explotación de la energía geotérmica de mediana a baja entalpía no es para nada representativa de acuerdo al potencial existente. La mayor parte de ésta energía es de uso turístico, en hoteles y balneología principalmente.

El constante crecimiento poblacional y en consecuencia, el aumento de la demanda energética, nos conduce al consumo de recursos que, a pesar de su disponibilidad, no están siendo explotados en su totalidad. En el caso particular de la energía geotérmica en México, existe una gran cantidad de puntos que han sido explorados y caracterizados como recursos geotérmicos de mediana y baja entalpía, los cuales no son explotados por la Comisión Federal de Electricidad (CFE) al no ser del potencial requerido para su comercialización. Por lo tanto, proyectos de generación eléctrica de baja escala, salen a luz en un gran campo de oportunidad que debe ser explorado.

En este sentido y dentro de la gama de ciclos de generación geo-termoeléctrica, los ciclos binarios representan la vía más factible para el aprovechamiento de éste recurso. De aquí la importancia del desarrollo de tecnología que se capaz de satisfacer las demandas energéticas de lugares que no cuentan con el acceso a la red eléctrica. Sistemas modulares, fáciles de transportar, capaces de generar en sitio y habilitados para su interconexión en serie y de mayor eficiencia, son una gama de características que Ciclo Binario de Evaporación Instantánea propone con su tecnología.

En una segunda sección, se presentaron los principales sistemas de enfriamiento empleados en las plantas geo-termoeléctricas, su principio de funcionamiento, características principales, ventajas y desventaja. La conclusión a destacar es que, cada uno de los recursos geotérmicos son particularmente especiales y que ninguno es similar a otro, por lo tanto, cada uno de sus sistemas de enfriamiento tendrán éstas mismas cualidades. La elección de uno u otro dependerá, en esencia, de las condiciones ambientales y de operación y fundamentalmente, de la disposición de agua como fluido de enfriamiento. Siendo así que, para zonas secas los sistemas de enfriamiento con aire es la única opción, ya dependiendo de la disposición y capacidad de generación, se puede hacer un análisis de sensibilidad y determinar que configuración y medio de enfriamiento conviene utilizar.

# 2 Marco teórico-conceptual

El establecimiento de un marco teórico conceptual sólido es fundamental para el desarrollo de un análisis integral de cualquier fenómeno que sea sujeto de estudio. En éste segundo capítulo, se iniciará con una descripción detallada del Ciclo Binario de Evaporación Instantánea (CBEI), como parte de los objetivos particulares, es necesario describir y conocer el principio de funcionamiento del ciclo en general, enumerando sus ventajas y desventajas. Las ecuaciones que rigen el comportamiento de las bombas, intercambiadores de calor, turbinas y demás equipos son descritos cada uno de los procesos que son realizados por los equipos mediante un diagrama temperatura contra entropía Ts.

Una vez que se establecen las relaciones que nos dan parámetros de medición de desempeño del Ciclo; trabajo de expansión calor requerido o de entrada, calor de desecho, etc., se desarrolla un análisis para determinar la eficiencia de utilización o de segunda ley de la Termodinámica, la cual nos da una idea más exacta sobre el aprovechamiento real del recurso energético.

El siguiente paso es desarrollar la teoría de cada uno de los sistemas de enfriamiento que serán acoplados al Ciclo y poder determinar, finalmente, el desempeño global del sistema con cada una de las propuestas.

El primer desarrollo presentado es el correspondiente al Aeroenfriador, el cual es del tipo de tiro forzado. La teoría presentada fue desarrollada por *Kröger*<sup>17</sup>, la cual es descrita en múltiples artículos y publicaciones.

Finalmente, se presentan las ecuaciones y correlaciones termodinámicas y de transferencia de calor propias para los condensadores de tubo y coraza, la metodología para determinar el área requerida de transferencia de calor y las perdidas hidráulicas es también detallada.

### 2.1 Ciclo binario de evaporación instantánea-iiDEA

Uno de los principales inconvenientes que presenta el ciclo binario tradicional es que el evaporador y el calentador, al estar en contacto directo con el agua geotérmica, sufren severos problemas químicos, como corrosión y la presencia de incrustaciones, por lo que tienen que ser sometidos a un mantenimiento constante, el cual resulta complicado y muy costoso. Aunado a esto, la eficiencia de tales equipos es baja por lo que el tamaño de las unidades debe ser mucho mayor.

Una variante del ciclo binario fue desarrollada en el proyecto iiDEA (antes IMPULSA IV) del Instituto de Ingeniería de la UNAM. A esta variante se le denominó CBEI (Ciclo Binario de Evaporación Instantánea). El CBEI resulta de la sustitución del evaporador por un intercambiador de calor de placas líquido-líquido, en el cual el agua geotérmica cede su

<sup>&</sup>lt;sup>17</sup> (Kröger, 2004)
energía al fluido secundario hasta elevar su temperatura hasta la saturación. Posteriormente para poder lograr el cambio de fase, el fluido de trabajo se hace pasar a través de una válvula de estrangulamiento (placa orificio) donde disminuye su presión y, en consecuencia, parte de éste se evapora instantáneamente (evaporación flash). El vapor generado en ésta estrangulación se conduce a un separador tipo ciclón, donde se aprovecha la diferencia de densidades entre las dos fases del fluido, para poder separar el líquido del vapor. El vapor separado entra a una turbina donde se expande, realizando trabajo, enseguida se envía a un condensador para llevarse de nuevo a la fase líquida. Finalmente, el fluido separado y el condensado se dirigen a un mezclador para después ser bombeado e iniciar nuevamente el proceso.



Ilustración 2—1 Diagrama CBEI<sup>18</sup>

La ventaja que presenta este sistema es que disminuye los costos de mantenimiento de los equipos ya que, únicamente el intercambiador de calor de placas entrará en contacto directo con el fluido geotérmico. Además, otro beneficio del CBEI es que al sustituir el intercambiador de calor de tubo y coraza por uno de placas, la eficiencia en la generación de vapor se incrementa, debido a que se alcanzan mejores acercamientos entre los fluidos y las perdidas en el intercambio de calor son bajas, lo cual es sumamente importante en el aprovechamiento de la energía geotérmica. Asimismo, el espacio ocupado por tales

<sup>&</sup>lt;sup>18</sup> Grupo iiDEA (Instituto de Ingeniería, Desalación y Energías Alternas)

intercambiadores es menor y su mantenimiento es más sencillo, en comparación con los tubulares, en caso de requerir una mayor área de transferencia de calor bastaría con agregar más láminas.

En este nuevo sistema con evaporación instantánea, y con la intención de reducir el espacio total de la planta, se puede considerar el uso de una turbina de alta velocidad (de entre 10000 y 20000 rpm) lo que permitiría una considerable reducción de su diámetro. El separador empleado es de tipo ciclónico, con el cual se logra la separación de incluso el 99.99% del líquido.<sup>19</sup>

## 2.1.1 Termodinámica del proceso de conversión-CBEI

El Ciclo Binario de Evaporación Instantánea opera bajo el mismo principio de los ORC's (Organic Rankine Cycle) considerando las respectivas desviaciones de un ciclo Rankine ideal. Al análisis presentado se basa en principios termodinámicos fundamentales, el principio de conservación de energía (1ra. Ley de Termodinámica) y el principio de conservación de masa. La bomba, el intercambiador de calor de placas, la turbina y el condensador son dispositivos de flujo estacionario, por lo tanto los procesos que conforman el CBEI pueden ser analizados como procesos de flujo estacionario. Por lo general, los cambios en la energía cinética y potencial del vapor son pequeños en relación con los términos de trabajo y de transferencia de calor, de manera que son insignificantes. A continuación se presenta el flujo de diagrama base del cual se partirá para realizar el análisis térmico.



Ilustración 2—2 Diagrama de flujo base de CBEI<sup>20</sup>

<sup>&</sup>lt;sup>19</sup> (Armstead, 1993)

<sup>&</sup>lt;sup>20</sup> iiDEA (Instituto de Ingeniería-Desalación y Energías Alternas)

#### Diagrama de proceso Temperatura-entropía

Los procesos a los cuales es sometido el fluido de trabajo son mejor visualizados en un diagrama de estado termodinámico en el cual la temperatura del fluido es graficado en la ordenada y la entropía específica en la abscisa. Un diagrama T-s para la planta mostrada anteriormente se presenta en la ilustración 2-2.

#### Proceso de flasheo

La secuencia de procesos inicia con el fluido de trabajo bajo presión en el estado 1, cerca de la curva de saturación. Éste proceso es modelado como isoentálpico, ya que ocurre continuamente, de forma espontánea, esencialmente adiabático y sin trabajo involucrado. Los cambios en la energía cinética y potencial no son considerados en éste proceso de cambio de fase.

Así, podemos escribir (de acuerdo al diagrama T-s):

$$h_1 = h_2 \tag{2-1}$$



Ilustración 2—3 Diagrama T-s del agua<sup>21</sup>

<sup>&</sup>lt;sup>21</sup> (DiPippo, 2012)

#### Proceso de separación.

El proceso de separación es modelado a presión constante una vez que el flasheo ha sido realizado. La calidad o fracción seca, *x*, de la mezcla que se forma después del flash, estado 2, puede ser obtenida de:

$$x_2 = \frac{h_2 - h_3}{h_4 - h_3} \tag{2-2}$$

Dicha ecuación determina la fracción de gas de la mezcla que se conduce a la turbina por unidad de flujo de masa total del separador ("*h*" es la entalpía correspondiente a cada estado)

#### Proceso de expansión en la turbina

El trabajo producido por la turbina por unidad de masa de gas fluyendo, está dado por:

$$w_t = h_4 - h_5$$
 (2-3)

Asumiendo que no existen perdidas de calor y considerando mínimos los cambios en energía cinética y potencial de los fluidos que entran y salen de la turbina. El trabajo máximo posible sería generado si la turbina operara adiabática e irreversiblemente, es decir, iso-entrópicamente. El proceso mostrado en el diagrama anterior de 4-5s es el proceso ideal. Definiendo la eficiencia iso-entrópica de la turbina,  $\eta_t$ , como la relación del trabajo real entre el trabajo iso-entrópico, obtenemos:

$$\eta_t = \frac{h_4 - h_5}{h_4 - h_{5s}} \tag{2-4}$$

La potencia generada por la turbina se calcula con la siguiente relación:

$$\dot{W}_t = \dot{m}_s w_t = x_2 \dot{m}_{total} w_t \tag{2-5}$$

Donde:

$$\dot{m}_s = flujo \ masico \ hacia \ la \ turbina \ [rac{kg}{s}]$$
  
 $w_t = potenica \ de \ la \ turbina \ por \ unidad \ de \ masa$   
 $x_2 = calidad \ de \ la \ mezcla \ [Adimensional]$ 

La ecuación anterior representa la potencia mecánica bruta, para obtener la potencia eléctrica bruta es necesario multiplicarla por la eficiencia del generador eléctrico, esto es:

$$\dot{W}_e = \eta_g \dot{W}_t \tag{2-6}$$

Los requerimientos energéticos auxiliares de la planta deben ser sustraídos de ésta ecuación para obtener la potencia neta. Estas cargas llamadas "parásitos" engloban la potencia de bombeo, la energía de los ventiladores de las torres de enfriamiento y la estación de iluminación.

Se debe reconocer que la eficiencia isentrópica de una turbina es afectada por la cantidad de humedad presente durante el proceso de expansión, entre mayor sea la humedad, menor será la eficiencia. Éste efecto puede ser cuantificado usando la conocida como *regla de Baunmann* (Baumann, 1921), la cual enuncia que un 1% en la humedad promedio causa una caída de presión de un 1% en la turbina.

#### Proceso de condensación

Para un condensador de superficie, la 1ra. Ley de Termodinámica conduce a la siguiente ecuación que relaciona el flujo requerido de agua de enfriamiento,  $\dot{m}_{cw}$ , y el flujo de vapor,  $x_2\dot{m}_{total}$ :

$$\dot{m}_{cw} = x_2 \dot{m}_{total} \left[ \frac{h_5 - h_6}{\bar{c} \Delta T} \right]$$
(2-7)

Dónde  $\bar{c}$  es calor específico del agua de enfriamiento asumido constante (4.2 kJ/kg K) y  $\Delta$ T es el incremento de la temperatura del agua de enfriamiento mientras pasa a través del condensador.

Para un condensador de contacto directo, la ecuación apropiada es:

$$\dot{m}_{cw} = x_2 \dot{m}_{total} \left[ \frac{h_5 - h_6}{\overline{c}(T_6 - T_{cw})} \right]$$
 (2-8)



Ilustración 2–4 Condensador de contacto directo<sup>22</sup>

Bomba A (q=0 y considerando eficiencias isentrópicas).

$$\eta_{P-A} = \frac{(h_{1s} - h_9)}{(h_1 - h_9)} \tag{2-9}$$

$$\dot{w}_{P-A} = \dot{m}_1 \frac{w_s}{\eta_{P-A}}$$
(2-10)

**Intercambiador de calor de placas** (w=0). Una de las consideraciones para el análisis termodinámico es que el fluido de trabajo sale como líquido saturado no sobrecalentado como normalmente sucede en las plantas típicas.

$$\dot{q}_{geo} = \dot{m}_1 (h_2 - h_1)$$
 (2-11)

Bomba B (q=0 y considerando eficiencias isentrópicas).

$$\eta_{P-B} = \frac{(h_{7s} - h_6)}{(h_7 - h_6)} \tag{2-12}$$

$$\dot{w}_{P-A} = \dot{m}_6 \frac{w_s}{\eta_{P-B}}$$
 (2-13)

<sup>&</sup>lt;sup>22</sup> (DiPippo, 2012)

Las ecuaciones de gobierno presentadas son usadas con las propiedades del fluido de trabajo, del agua y mezcla del aire, para determinar cada uno de los estados termodinámicos y flujos másicos necesarios para las condiciones de diseño.

Para cualquier ciclo de generación eléctrica, la primera ley de termodinámica dice que, el calor neto agregado al ciclo deberá ser igual al trabajo neto producido, o en términos de potencia térmica y mecánica:

$$\dot{Q}_{in} - \dot{Q}_o = \dot{W}_e$$

La eficiencia térmica puede ser definida,  $\eta_{th}$ , como sigue:

$$\eta_{th} = \frac{\dot{W_e}}{\dot{Q}_{in}}$$

Las plantas geotérmicas binarias convencionales presentan eficiencias térmicas que van de 10 a 13%.

Las plantas de ciclo combinado (de gas y de vapor) que utilizan combustibles fósiles, tienen eficiencias térmicas típicas de 50 – 55 %, plantas de carbón del 35 – 40% y plantas nucleares eficiencias del 33 – 35%. De esta forma, el flujo de calor descargado por unidad de potencia generada para estos tres tipos de plantas es, en promedio, 0.9, 1.7 y 1.9, respectivamente, mientras que para una planta binaria geotérmica típica la descarga de calor de desecho es de 7.7 unidades por unidad de potencia producida. Así, una planta binaria geotérmica de 50 MWe deberá tener un sistema de enfriamiento 8.5 más grande en capacidad de enfriamiento que el de una planta de ciclo combinado de la misma capacidad.

La conclusión general cualitativa respecto a la dimensión de los sistemas de enfriamiento de las plantas que utilizan flasheo en comparación a una planta convencional es la misma que para una planta binaria, la dimensión de los sistemas de enfriamiento es mayor para la misma potencia eléctrica generada.

## 2.1.2 Eficiencia de utilización

Finalmente, el desempeño global de la planta puede ser determinada mediante la Segunda Ley de la termodinámica comparando la potencia real de salida contra la potencia máxima teórica que podría ser producida de un fluido geotérmico dado. Esto involucra la determinación del flujo de exergía hacía la planta debido al fluido geotérmico. La exergía específica, *e*, de un fluido que tiene una presión, *P*, y una temperatura, *T*, en presencia de una presión y temperatura ambiental,  $P_0$  y  $T_0$ , está dada por:

$$e = h(T, P) - h(T_0, P_0) - T_0[s(T, P) - s(T_0, P_0)$$
(2-14)

Cuando esta última ecuación es multiplicada por el flujo másico geotérmico total de entrada, obtenemos la potencia máxima teórica o la potencia exergética, esto es:

$$\dot{E} = \dot{m}_{total} e \tag{2-15}$$

La relación entre la potencia y la potencia exergética es definida como eficiencia de utilización o eficiencia de Segunda Ley de la planta:

$$\eta_{II} = \frac{\dot{W}_{net}}{\dot{E}} \tag{2-16}$$

Todos los tipos de plantas de potencia pueden ser comparadas respecto a la eficiencia de utilización, sin importar la fuente primaria de energía –ya sea carbón, petróleo, nuclear, biomasa, hidráulica, solar, geotérmica, etc. Dichas plantas pueden ser diseñadas para maximizar  $\eta_{II}$  cuando el valor de la energía primaria (o exergía) es un factor significante en la economía de la operación.

# 2.2 Aerocondensador

La mayoría de los procesos industriales requieren del retiro de calor de desecho de baja calidad. En particular, las plantas de generación eléctrica de vapor rechazan calor a aproximadamente el doble de la velocidad a la que la electricidad es generada.

Por mucho tiempo, diseñadores encontraron en el enfriamiento evaporativo y de un paso un medio efectivo para el rechazo de calor residual a bajo costo. Sin embargo, los escases de agua y las estrictas regulaciones ambientales forzaron a los diseñadores a considerar el enfriamiento con aire, o sistemas secos de enfriamiento, como ellos lo llaman. Mientras que el desempeño de los sistemas húmedos de enfriamiento depende de la temperatura de bulbo húmedo, el desempeño de un enfriador con aire está determinado por la temperatura de bulbo seco del aire. La temperatura de bulbo seco es mayor que la temperatura de bulbo húmedo y experimente más cambios dramáticos durante el día a lo largo de todo el año.

Aunque el costo capital de un sistema de enfriamiento industrial con aire es mayor que uno enfriado con agua, este no siempre será el caso. El costo del suministro apropiado del agua de enfriamiento y otros gastos de funcionamiento pueden ser tales que la primer opción sea más rentable durante la vida útil proyectada de la planta. Dependiendo de la aplicación o del proceso, otras consideraciones incrementan su importancia. En zonas áridas donde existe insuficiencia de agua o no esté disponible, el aire es el único método efectivo como enfriamiento.

La predicción del desempeño de un sistema de enfriamiento con aire se basa en las ecuaciones fundamentales de conservación, conocidas como ecuación de momentum y

ecuaciones de energía (transferencia de calor). Estas ecuaciones son derivadas utilizando leyes físicas y principios de ingeniería.

Considere el intercambiador de calor enfriado con aire de tiro forzado que se muestra en la ilustración. El intercambiador de calor consiste en un haz de tubos aletados localizados horizontalmente por encima de los ventiladores. El fluido de proceso entra a los tubos a una temperatura  $T_{pi}$ , mientras que el aire ambiente fluye a través de las superficies aletadas, una barrera corta viento (windwall) de altura  $H_w$  podría ser instalada para reducir la recirculación de las columnas de aire caliente.



Ilustración 2—5 Intercambiador de calor enfriado por aire de tiro forzado<sup>23</sup>

La cantidad de calor transferido a la corriente de aire por el fluido de proceso puede ser expresado como:

$$Q = m_a C_{pa} (T_{a6} - T_{a5}) = m_p C_{pp} (T_{pi} - T_{po})$$
(2-17)

Donde el subíndice "p" hace referencia al fluido de proceso (process fluid). La velocidad de transferencia de calor también puede ser expresada en términos de la efectividad del intercambiador de calor:

$$Q = eC_{min}(T_{pi} - T_{a5})$$
(2-18)

<sup>&</sup>lt;sup>23</sup> (Kröger, 2004)

Donde  $C_{min}$  = es el menor de  $m_a C_{pa}$  y  $m_p C_{pp}$ .

La efectividad "*e*" depende de la geometría y patrones de flujo de los fluidos a través del intercambiador de calor. Además, la efectividad será influenciada por la turbulencia aguas arriba del aire y la distribución de los flujos.

La temperatura aproximada del aire a la entrada del intercambiador de calor de acuerdo a (Kröger, 2004) es:

$$T_{a5} = T_{a1} + \frac{P_F}{m_a C_{pa1}} - \frac{gH_5}{C_{pa1}} = T_{a1} + \frac{P_F}{m_a C_{pa1}} - 0.00975H_5$$
(2-19)

En esta ecuación, es asumido que la energía cinética del aire entrando al intercambiador de calor es mínima y que la altura media del intercambiador de calor sobre el nivel de la tierra  $H_5 \approx H_{6.}$ 

En la práctica y en ciertos casos, la ecuación de arrastre para este tipo de intercambiador es obtenida relacionando solo la curva de desempeño del ventilador y las características del flujo a través del intercambiador. Las propiedades termo-físicas del aire son evaluadas a las condiciones ambientes al nivel de la tierra.

Aunque esto podría darnos valores útiles para algunos casos, serios errores han sido cometidos en otros diseños. El aumento de la competitividad y los altos costos del sistema generalmente justifican el análisis más detallado que sigue.

Un ventilador adecuado debe suministrar la corriente de aire eficientemente para garantizar la tasa de transferencia de calor deseada. Con el fin de lograr esto, una serie de resistencias de flujo deben ser consideradas.

El primer estado considera que el aire ambiente (1) se encuentra prácticamente estático, acelera y pasa a través de los soportes del intercambiador de calor (2) antes de alcanzar la sección del ventilador (3), donde obstáculos aguas arriba tales como soportes estructurales o protecciones (mallas) podrían estar localizados, generando pérdidas antes de entrar al sistema de intercambio de calor (5) hasta salir en (6). Bajo las consideraciones anteriores, se encontró una expresión para la diferencia de presiones entre las secciones (1) y (7).

$$p_{a1} - p_{a7} = p_{a1}A + B - C + D + p_{a6}E + \alpha_{e7} \left(\frac{m_a}{A_{fr}}\right)^2 / (2\rho_{a7})$$
(2-20)

Donde:

 $A = \left[1 - \left(1 - \frac{0.00975H_6}{T_{a1}}\right)^{3.5}\right]$ 

$$B = \frac{K_{ts} \left(\frac{m_a}{A_2}\right)^2}{2\rho_{a2}} + \frac{K_{Fsi} \left(\frac{m_a}{A_c}\right)^2}{2\rho_{a3}} + \frac{K_{up} \left(\frac{m_a}{A_3}\right)^2}{2\rho_{a3}}$$
$$C = \left[\Delta p_{Fs} + \frac{\alpha_{eF} \left(\frac{m_a}{A_c}\right)^2}{2\rho_{a4}}\right]$$
$$D = \frac{K_{pl} \left(\frac{m_a}{A_c}\right)^2}{2\rho_{a4}} + \frac{K_{do} \left(\frac{m_a}{A_4}\right)^2}{2\rho_{a4}} + \frac{K_{he} \left(\frac{m_a}{A_{fr}}\right)^2}{2\rho_{a56}}$$
$$E = \left[1 - \left\{1 - \frac{0.00975(H_7 - H_6)}{T_{a6}}\right\}^{3.5}\right]$$

Donde la velocidad es remplazada por el flujo másico y el área correspondiente. En casos donde se tienen uno o más ventiladores es necesario considerar las pérdidas de distorsión y separación de flujos que son causadas por el mismo sistema.

El coeficiente de pérdidas debido a los soportes del intercambiador de calor puede ser expresada como:

$$K_{ts} = C_{Dts} L_{ts} d_{ts} n_{ts} / A_2 \tag{2-21}$$

La forma de la cubierta del ventilador a la entrada es tomada en consideración con el factor  $K_{Fsi,}$  así como también las pérdidas aguas arriba y aguas abajo con los coeficientes  $K_{up}$  (Upstream) y  $K_{do}$  (downstream), los cuales están en función del área.

$$K_{up} = 2\Delta p_{up}(\rho v^2) = \frac{2\rho\Delta p_{up}}{\left(\frac{m_a}{A_e}\right)^2} = f\left(\frac{x}{d_c}, \frac{A_{ob}}{\eta_\eta}\right)$$
(2-22)

$$K_{do} = 2\Delta p_{do}(\rho v^2) = \frac{2\rho\Delta p_{do}}{\left(\frac{m_a}{A_e}\right)^2} = f\left(\frac{x}{d_c}, \frac{A_{ob}}{A_c}\right)$$
(2-23)

$$A_3 = A_4 = A_e = A_c - A_h$$

Donde  $A_c$  es el área de la cubierta del ventilador y  $A_h$  es el área de la sección transversal central.

Las características de desempeño del ventilador incorporadas en el término  $\Delta P_{Fsi}$  son obtenidos de los Test de instalación estándar. Sin embargo, análisis sobre los sistemas de intercambio de calor enfriados con aire sugieren que, además de la pérdida de energía cinética a la salida del ventilador existe perdida en la cámara (*plenum chamber*). Ésta pérdida puede ser expresada en términos del coeficiente K<sub>pl</sub>.Por lo que es conveniente combinar las características del ventilador y su cámara (plenum chamber) como sigue:

$$-\left[\Delta p_{Fs} + \frac{\alpha_{eF} \left(\frac{m_a}{A_c}\right)^2}{2\rho_{a4}}\right] + \frac{K_{pl} \left(\frac{m_a}{A_c}\right)^2}{2\rho_{a4}} \approx -[K_{Fs} + (\alpha_{eF} - K_{pl})] + (m_a/A_c)^2/2\rho_{a3} \quad (2-24)$$

$$-[K_{Fs} + (\alpha_{eF} - K_{pl})] + (m_a/A_c)^2/2\rho_{a3} = -(K_{Fs} + K_{rec})\left(\frac{m_a}{A_c}\right)^2/2\rho_{a3}$$
(2-25)

Donde  $\alpha_{eF}$  es el factor de corrección de distribución de la velocidad de la energía cinética. El coeficiente de presión estática del ventilador está definido como:

$$K_{FS} = \frac{2\Delta p_{FS} \rho_{a3}}{\left(\frac{m_a}{A_c}\right)^2}$$
(2-26)

 $A_c$  es el área de le sección transversal,  $\Delta p_{Fs}$  y  $K_{rec}$  se evalúan de acuerdo a las siguientes expresiones:

$$\Delta p_{Fs} + \frac{K_{rec}\rho v_F^2}{2} = \frac{K_{he}\rho v_{he}^2}{2} + \frac{\alpha_e \rho v_{he}^2}{2}$$
(2-27)

$$K_{rec} = \alpha_{eF} - K_{pl} \tag{2-28}$$

Si la distribución de temperatura del aire ambiente es de acuerdo al gradiente adiabático seco (Dry Adiabatic Lapse Rate-DALR)<sup>24</sup>, la diferencia de presiones entre los estados (1) y (8) puede ser expresado con la siguiente ecuación.

$$(p_{a1} - p_{a8}) = (p_{a1} - p_{a7}) = (p_{a1} - p_{a6}) + (p_{a6} - p_{a7})$$
(2-29)

<sup>&</sup>lt;sup>24</sup> Ver apéndice A

$$(p_{a1} - p_{a6}) + (p_{a6} - p_{a7}) \approx p_a F + p_{a6} G$$
(2-30)

Tomando en cuenta que la temperatura ambiente a la elevación (6) es considerada a ser aproximadamente igual a  $T_{a1}$  y donde:

$$F = \left[1 - \left(1 - \frac{0.00975H_6}{T_{a1}}\right)^{3.5}\right]$$
$$G = 1 - \left\{1 - \frac{0.00975(H_7 - H_6)}{T_{a1}}\right\}^{3.5}$$

Aunque la distribución de temperatura al de nivel de la tierra generalmente se desvía considerablemente de la DALR, el error introducido por esta asunción es pequeño.

Sustituyendo la ecuación 2-22 en la ecuación 2-12, y usando las ecuaciones 2-16 y 2-17, para encontrar la ecuación de arrastre del intercambiador de calor de tiro forzado enfriado por aire mostrado en la ilustración 2.3.

$$p_{a6}H \approx p_{a6}I = J + K \tag{2-31}$$

$$\begin{split} H &= \left\{ 1 - \frac{0.00975(H_7 - H_6)}{T_{a6}} \right\}^{3.5} - \left\{ 1 - \frac{0.00975(H_7 - H_6)}{T_{a1}} \right\}^{3.5} \\ I &= \left\{ 1 - \frac{0.00975(H_7 - H_6)}{T_{a6}} \right\}^{3.5} - \left\{ 1 - \frac{0.00975(H_7 - H_6)}{T_{a1}} \right\}^{3.5} \\ J &= \frac{K_{ts} \left(\frac{m_a}{A_2}\right)^2}{2\rho_{a1}} + \frac{K_{Fsi} \left(\frac{m_a}{A_c}\right)^2}{2\rho_{a3}} + \frac{K_{up} \left(\frac{m_a}{A_e}\right)^2}{2\rho_{a3}} \\ K &= -\frac{(K_{Fs} + K_{rec}) \left(\frac{m_a}{A_c}\right)^2}{2\rho_{a3}} + \frac{K_{do} \left(\frac{m_a}{A_e}\right)^2}{2\rho_{a3}} + \frac{K_{he} \left(\frac{m_a}{A_{fr}}\right)^2}{2\rho_{a56}} + \frac{\alpha_{e6} \left(\frac{m_a}{A_{fr}}\right)^2}{2\rho_{a6}} \\ \end{split}$$

Para lo cual las siguientes consideraciones fueron hechas:

 $p_{a6} \approx p_{a1}$  $H_8 = H_7$  $p_{a2} \approx p_{a1}$  $p_{a4} \approx p_{a3}$  $p_{a7} \approx p_{a6}$ 

Las pérdidas por fricción entre (6) y (7) son insignificantes y el factor de energía cinética  $\alpha_{e6} \approx \alpha_{e7}$ .

Para un gradiente adiabático seco, la temperatura del aire aproximada en la sección (3) es

$$T_{a3} = T_{a1} - 0.00975H_3 - \frac{\alpha_{eF} v_F^2}{2c_{pa}} \approx T_{a1} - 0.00975H_3 - \frac{v_F^2}{c_{pa}}$$
(2-32)

$$T_{a3} \approx T_{a1} - 0.00975H_3 \tag{2-33}$$

El segundo y tercer término del lado derecho de esta ecuación son de un orden de magnitud menor que la temperatura absoluta. Debido a la magnitud pequeña del factor de corrección de velocidad, la energía cinética es insignificante en (3) y puede ser aproximada de esta forma.

La densidad aproximada del aire correspondiente a esta elevación es

$$\rho_{a3} \approx \frac{p_{a1}}{RT_{a3}} \tag{2-34}$$

La densidad aproximada del aire inmediatamente antes del intercambiador de calor es

$$\rho_{a5} \approx \frac{p_{a1}}{RT_{a5}} \tag{2-35}$$

Una ecuación similar determina la densidad del aire inmediatamente después del intercambiador de calor a una temperatura  $T_{a6}$ .

La densidad media a través del intercambiador de calor está dada por

$$\rho_{a56} \approx \frac{2p_{a1}}{R(T_{a5} + T_{a6})}$$
(2-36)

En todas las ecuaciones anteriores, la propiedades termo físicas del aire seco son normalmente usadas debido a que la influencia del vapor de agua es insignificante.

## 2.3 Condensador de Contacto Indirecto

Además de la generación eléctrica, los condensadores son usados en una variedad de operaciones de procesos petroquímicos, incluyendo destilación y refrigeración. Prácticamente cada columna de destilación utiliza un condensador para licuefacción total o parcial de las corrientes de vapor, proporcionando de ese modo el reflujo para la columna y (a menudo) una corriente de producto líquido. En operaciones de refrigeración,

condensadores son usados para licuar el vapor de refrigerantes a alta presión a la salida del compresor. En cada uno de estos procesos, una constante disposición de agua de enfriamiento es requerida, factor determinante para la implementación de éste tipo de sistemas.

El análisis térmico de un intercambiador de calor de tubo y coraza es similar al de uno de doble tubo en el cual un coeficiente global de transferencia de calor es calculado a partir de coeficientes de película individuales,  $h_i$  y  $h_0$ . Sin embargo, debido a que los patrones de flujo en un intercambiador de tubo y coraza difieren en cuanto al segundo tipo de intercambiador, el cálculo de dichos coeficientes también será diferente. El coeficiente *shell-side* presenta la mayor dificultad debido a la complejidad del flujo en la coraza. Además, si el intercambiador de calor es multi-pasos, la diferencia de temperaturas media logarítmica LMTD debe ser usada (*Log Mean Temperature Difference*).

## 2.3.1 Coeficiente global de transferencia de calor

Considere el siguiente diagrama para el análisis de transferencia de calor. El calor es transferido por convección del fluido caliente a la pared del tubo interior, por convección a través de la pared, y finalmente por convección de la pared interna del tubo al fluido frío.



Ilustración 2—6 Sección de un intercambiador double-tube

La fuerza que produce la transferencia de calor es la diferencia de temperaturas entre las corrientes frías y calientes. Para describir este proceso en general, un coeficiente global de transferencia de calor U es definido por:

$$q = UA\Delta T_m \tag{2-37}$$

El área de transferencia de calor, *A*, es el área de la superficie del tubo interno, y puede ser calculado con el diámetro interior o exterior. En la práctica, sin embargo, el diámetro externo es comúnmente usado, de tal modo que:

$$A = A_0 = \pi D_0 L$$
 (2-38)

La diferencia de temperaturas, $\Delta T_m$ , es la diferencia de temperaturas media entre las dos corrientes de fluidos. Ha sido demostrado que cuando U es independiente de la posición a lo largo del intercambiador,  $\Delta T_m$  es la diferencia de temperaturas media logarítmica, es decir:

$$\Delta T_m = \Delta T_{ln} = \frac{\Delta T_2 - \Delta T_1}{\ln(\Delta T_2 / \Delta T_1)}$$
(2-39)

Dónde  $\Delta T_1$  y  $\Delta T_2$  son las diferencias de las temperaturas a la entrada y a la salida del intercambiador en cualquiera de las configuraciones, a contra flujo o en paralelo. De acuerdo a la ecuación 2-31, la resistencia térmica es:

$$R_{th} = \frac{1}{UA} \tag{2-40}$$

Sin embargo, dicha resistencia está conformada por tres resistencias en serie, específicamente, resistencia convectiva entre el fluido caliente y la pared exterior del tubo interior, la resistencia conductiva de la pared del tubo, y la resistencia convectiva entre la pared interior y el flujo frío. Esto es;

$$\frac{1}{UA_o} = \frac{1}{h_i A_i} + \frac{\ln(D_o/D_i)}{2\pi kL} + \frac{1}{h_o A_o}$$
(2-41)

Donde  $h_i$  y  $h_o$  son los coeficientes de transferencia de calor para los flujos internos y externos respectivamente, y  $A_i$  es el área de la superficie del tubo interior respecto a su diámetro interno, es decir;

$$A_i = \pi D_i L \tag{2-42}$$

Mediante la manipulación de las dos ecuaciones anteriores podemos llegar a la siguiente relación:

$$U = \left(\frac{D_o}{h_i D_i} + \frac{D_o \ln(D_o/D_i)}{2k} + \frac{1}{h_o}\right)^{-1}$$
(2-43)

La ecuación anterior es correcta cuando el intercambiador de calor es nuevo y las superficies de transferencia están limpias. Con la mayoría de los fluidos, sin embargo, una capa de suciedad o incrustaciones se formará en la superficie de transferencia de calor después de un determinado periodo de tiempo. Este proceso es llamado *fouling* y resulta en la disminución del desempeño del intercambiador de calor debido a las resistencias térmicas generadas por dichas capas. *Fouling* es tomado en cuenta por medio de factores determinados empíricamente,  $R_{Di}$  y  $R_{Do}$ , los cuales representan las resistencias térmicas

de las capas formadas sobre la superficie interna y externa del tubo multiplicados por las correspondientes áreas. Es decir, para la capa de ensuciamiento interna:

$$R_{Dth} = \frac{R_{Di}}{A_i} \tag{2-44}$$

Agregando estás dos resistencias a la ecuación del coeficiente global, obtenemos la siguiente relación:

$$U_D = \left(\frac{D_o}{h_i D_i} + \frac{D_o \ln(D_o/D_i)}{2k} + \frac{1}{h_o} + \frac{R_{Di} D_o}{D_i} + R_{Do}\right)^{-1}$$
(2-45)

Donde  $U_D$  es el coeficiente global de transferencia de calor después de que el *fouling* ya ha ocurrido. Los factores de *fouling* deben ser considerados de tal modo que el intercambiador éste operando durante un tiempo razonable antes de requerir limpieza. Debe ser notado, que el efecto del *fouling* en la ecuación anterior es reducir el valor del coeficiente global de transferencia de calor incrementando, por tanto, el área de transferencia necesaria.

Los factores de *fouling* son mejor determinados de la experiencia con unidades o servicios similares. Cuando tal información no está disponible, la tabulación más completa de dichos factores es la desarrollada por TEMA (*Tubular Exchanger Manufacturers Association*) (TEMA, 1999).

## 2.3.2 Coeficientes de transferencia de calor

En el cálculo del coeficiente *Tube-Side*,  $h_i$ , se asume que todos los tubos en el intercambiador de calor están expuestos a las mismas condiciones térmicas e hidráulicas. En consecuencia, el valor de  $h_i$  es el mismo para todos los tubos y el cálculo puede ser hecho para un solo tubo.

Debido a la gran importancia práctica de la transferencia de calor en tubos y ductos, un gran número de correlaciones para calcular los coeficientes de transferencia de calor de éste tipo de flujo han sido propuestas. Las correlaciones presentadas a continuación se adecúan a la mayoría de las aplicaciones de los procesos de transferencia de calor y cada una de ellas son específicas para cada uno de los tres regímenes de flujo: laminar, en transición y turbulento. La situación física descrita por dichas correlaciones es mostrada en la ilustración 2-7. El fluido entra a la temperatura promediada de la sección transversal  $T_{b1}$  y sale a una temperatura promedio  $T_{b2}$  (el subíndice "b" viene del inglés *bulk*). La temperatura de la pared del tubo es  $T_{w1}$  a la entrada y  $T_{w2}$  a la salida. El fluido es calentado o enfriado mientras este fluye a través del tubo, dependiendo si la temperatura de la pared es mayor o menor que la temperatura del fluido.



Ilustración 2-7 Transferencia de calor en flujo por tubería

Para el coeficiente de transferencia de calor *tube-side h*<sub>i</sub>, las ecuaciones de Seider-Tate (Tate & Sieder, 1936) y Hausen son usadas de acuerdo a las siguientes condiciones:

Para  $Re \ge 10^4$ ,

$$Nu = 0.023 Re^{0.8} Pr^{1/3} (\mu/\mu_w)^{0.14}$$
 (2-46)

Para 2100 < *Re* < 10<sup>4</sup>,

$$Nu = 0.116 \left( Re^{\frac{2}{3}} - 125 \right) Pr^{\frac{1}{3}} (\mu/\mu_w)^{0.14} \left[ 1 + (D/L)^{\frac{2}{3}} \right]$$
(2-47)

Para *Re* ≤ 2100,

$$Nu = 1.86 \left( RePrD/L \right)^{1/3} \left( \mu/\mu_w \right)^{0.14}$$
 (2-48)

Una ecuación alternativa para los regímenes de flujo en transición y turbulentos ha sido propuesta por Gnielinski (Gnielinski, 1988):

Para 2100 < Re < 10<sup>6</sup> y 0.6 < Pr < 2000,

$$Nu = \frac{(f/8) (Re - 1000)Pr}{1 + 12.7\sqrt{f/8} (Pr^{2/3} - 1)} [1 + (D/L)^{2/3}]$$
(2-49)

Donde,

 $Nu \equiv Numero \ de \ Nusselt \equiv hD/k$  $Re \equiv Numero \ de \ Reynolds \equiv DV\rho/\mu$  $Pr \equiv Numero \ de \ Prandl \equiv C_p\mu/k$  D = diámetro interno

V = velocidad promedio del fluido

 $C_p, \mu, \rho, k = Propiedades del fluido evaluadas a la temperatura promedio del fluido$ 

 $\mu_w = viscocidad \ del \ fluido \ evaluada \ a \ la \ temperatura \ promedio \ de \ pared$ 

Las temperaturas promedio de fluido (Bulk) y de pared (Wall) están determinadas por las siguientes ecuaciones:

$$T_{b,ave} = \frac{T_{b1} + T_{b2}}{2} \tag{2-50}$$

$$T_{w,ave} = \frac{T_{w1} + T_{w2}}{2} \tag{2-51}$$

El número de Reynolds en estas correlaciones es calculado usando el flujo másico por tubo:

$$\dot{m}_{per\ tube} = \frac{\dot{m}_t n_p}{n_t} \tag{2-52}$$

Dónde

 $\dot{m}_t = flujo \ masico \ total$  $n_p = n \ imero \ de \ pasos \ (Tube - Side)$  $n_t = n \ imero \ de \ tubos$ 

El coeficiente *Shell-Side* de transferencia de calor, $h_o$ , es calculado utilizando la siguiente ecuación ajustada al gráfico del factor Colburn modificado  $(j_H)$ , contra el número de Reynolds *Shell-Side* presentado en la siguiente figura. Todos los símbolos mostrados son también definidos.

$$j_H = 0.5(1 + B/d_s)(0.08Re^{0.6821} + 0.7Re^{0.1772})$$
(2-53)



Ilustración 2—8 Correlación para el coeficiente Shell-Side<sup>25</sup>

El gráfico es válido para deflectores segmentados simples con un corte del 20%, los cuales están dentro del rango típicamente utilizado en la práctica. Además de estar basados en los estándares TEMA para espaciamientos tubo-deflector y deflector-coraza. Para usar la figura mostrada, uno simplemente lee  $j_H$  del gráfico y calcula  $h_o$  a partir de:

$$h_o = j_H \left(\frac{k}{D_e}\right) P r^{1/3} \left(\frac{\mu}{\mu_w}\right)^{0.14}$$
 (2-54)

Dónde:

- B = espaciamiento entre deflectores
- $d_s = diámetro interno de la coraza$
- $D_e = diámetro equivalente$

El número de Reynolds en la ecuación 2-46 es calculado utilizando el diámetro equivalente y el área de flujo dado en gráfico anterior.

<sup>&</sup>lt;sup>25</sup> (Kent, 1938)

#### 2.3.3 Cálculos hidráulicos

La caída de presión debido a la fricción en los tubos está dada por la siguiente ecuación, la cual considera la longitud de los tubos y el número de pasos.

$$\Delta P_f = \frac{f n_p L G^2}{7.50 x 10^{12} D_i s \emptyset}$$
(2-55)

Donde:

 $f = factor \ de \ fricción \ de \ Darcy \ [Adimensional]$   $L = longitud \ del \ tubo \ [ft]$   $G = flujo \ másico \ \left[\frac{lbm}{h} * ft^2\right]$   $D_i = diámetro \ interno \ [ft]$   $s = densidad \ relativa \ [Adimensional]$   $\phi = factor \ de \ corrección \ de \ viscocidad \ [Adimensional]$   $= (\mu/\mu_w)^{0.14} \ para \ flujo \ turbulento$   $= (\mu/\mu_w)^{0.25} \ para \ flujo \ laminar$ 

De acuerdo a lo anterior,  $\Delta P_f \propto psi$  (Unidades inglesas son utilizadas en el planteamiento de éstas ecuaciones). El factor, según el caso que se tenga, está dado por:

Flujo laminar:

$$f = \frac{64}{Re} \tag{2-56}$$

Para flujo turbulento, en intercambiadores de calor de tubo y coraza comerciales, la siguiente ecuación puede ser usada para Re  $\geq$  3000:

$$f = 0.4137 R e^{-0.2585} \tag{2-57}$$

El fluido *Tube-Side* experimenta una contracción súbita cuando entra a los tubos del cabezal y una expansión repentina a la salida del lado opuesto. Las pérdidas de presión asociadas pueden ser calculadas usando formulas hidráulicas estándares (Henry, 1988) que dependen del diámetro, el ángulo y del *layout*.

Por otro lado, la caída de presión *Shell-Side* por coraza, excluyendo perdidas en las boquillas, es calculada utilizando la siguiente expresión:

$$\Delta P_f = \frac{f G^2 d_s(n_b + 1)}{7.5 x 10^{12} d_e s \phi} \tag{2-58}$$

Donde

$$G = flujo \ m\acute{a}sico = \dot{m}/a_s \ \left[\frac{lbm}{hft^2}\right]$$

$$a_s =$$
área del flujo a través del haz de tubos [ $ft^2$ ]

$$= d_s C' B / 144 P_T$$

 $d_s = diámetro interno de la coraza (in)$ 

$$C' = espaciemiento (Gap) [in]$$

- B = espaciamiento de bafles [in]
- $P_T = pitch \ de \ tubo \ [in]; reemplazado por para layouts \ de \ tubos \ de \ 45^\circ$
- $n_b = n$ úmero de bafles

 $d_e = diámetro equivalente de la ilustración 2.6 [in]$ 

 $s = gravedad \ espec{i} fica \ del \ fluido$ 

 $\Delta P_f = caída \ de \ presión \ [psi]$ 

El factor de fricción Shell-Side es dado en la siguiente figura en forma dimensional. Para usarlo en la ecuación anterior, los valores de esta figura deben ser multiplicados por el factor 144, el cual es incluido en la fórmula de interpolación lineal.

$$f = 144 \left[ f_1 - 1.25 \left( 1 - \frac{B}{d_s} \right) (f_1 - f_2) \right]$$
(2-59)

Donde,

$$f_1 = factor de fricción de gráfico para \frac{B}{d_s} = 1.0$$

$$f_2 = factor de fricción de gráfico para  $\frac{B}{d_s} = 0.2$$$

Curvas aproximadas se ajustan a  $f_1$  y  $f_2$  de acuerdo a las siguientes relaciones, con  $d_s$  en pulgadas.



Ilustración 2—9 Factor de Fricción Shell-Side<sup>26</sup>

Para  $Re \ge 1000$ ,

$$f_1 = (0.0076 + 0.000166d_s)Re^{-0.125} (8 \le d_s \le 42)$$
 (2-60)

$$f_1 = (0.0016 + 5.8 x \, 10^{-5} d_s) Re^{-0.157} (8 \le d_s \le 23.25)$$
(2-61)

Para *Re* < 1000,

$$f_1 = \exp[0.092(\ln Re)^2 - 1.48 \ln Re - 0.000526 d_s^2 + 0.0478 d_s - 0.338]$$
(2-62)  
(8 \le d\_s \le 42)

$$f_1 = \exp[0.123(\ln Re)^2 - 1.78\ln Re - 0.00132 d_s^2 + 0.0678d_s - 1.34]$$
(2-63)  
(8 \le d\_s \le 23.25)

<sup>26</sup> (Kent, 1938)

# 2.4 Conclusión

Existen diversos sistemas de enfriamiento, cada uno de ellos utilizados específicamente para una aplicación. La particularidad de cada uno de estos sistemas depende de un amplio rango de variables como son, el tipo de proceso (químico, de generación eléctrica, refrigeración, calefacción), las condiciones de operación y ambientales, los recursos existentes en el sitio (árido, con el nivel de disponibilidad de agua), entre otras.

La elección de los sistemas de enfriamiento de contacto directo e indirecto, en nuestro estudio de caso, se derivó de los dos posibles escenarios que pueden presentarse. En el primero de ellos (condensación por contacto directo, aeroenfriador) se consideró un sitio en el cual el agua disponible es tal, que no puede ser utilizada como medio de enfriamiento. Por otro lado, si el Ciclo Binario de Evaporación Instantánea es instalado en zonas costeras, la disposición del recurso marino como medio de enfriamiento es una gran alternativa, por lo que, un condensador de contacto indirecto (de tubo y coraza) resulta conveniente. Por tales motivos, es necesario considerar todas las variables posibles en los modelos físicomatemáticos, de acuerdo a cada uno de los casos que se establecieron y obtener con ello, una aproximación lo suficientemente confiable al desempeño real que nos permite predecir adecuadamente el desempeño del CBEI acoplado a uno u otro sistema de enfriamiento.

Por todo lo anterior, un análisis total del Ciclo Binario de Evaporación Instantánea es necesario. Predecir el comportamiento del Ciclo de manera independiente nos da un parámetro de medición de desempeño con cada uno de los sistemas de enfriamiento propuestos, de ahí la importancia de establecer cada una de las relaciones y ecuaciones de los fenómenos presentes que formen una base sólida de análisis.

# 3 Análisis y optimización del CBEI

En el capítulo 1 se describió la situación actual de la geotermia a nivel mundial y local como un panorama general que posiciona a México entre los primeros lugares. Posteriormente, se presentaron los principales Ciclos de Generación Geo-termoeléctricos, su principio de funcionamiento y campos de aplicación. Como parte final del capítulo, se enlistaron los sistemas de enfriamiento de mayor aplicación en las centrales de generación eléctrica.

En el capítulo 2 se presentó a detalle los principios físicos que rigen el funcionamiento de dos sistemas de enfriamiento en particular, los cuales fueron seleccionados de acuerdo a las características del sitio elegido donde se realizarán las pruebas y la capacidad de generación eléctrica, aero-enfriador e intercambiador de tubo y coraza.

En ésta tercer capítulo se desarrollaran los análisis térmicos, balances de masa y energía adecuados para caracterizar el comportamiento del Ciclo Binario de Evaporación Instantánea, en primer lugar, considerando un caso base con el que se determinaran las propiedades termodinámicos del ciclo acuerdo a condiciones de operación preestablecidas. Mediante un análisis de sensibilidad y de segunda ley (eficiencia de utilización) se calcularán las condiciones óptimas de operación para una producción de 10 kW. Una vez optimizado el CBEI, se determinará la carga térmica que debe ser expulsa al ambiente. Posteriormente se desarrollarán los análisis del CBEI con cada uno de los sistemas seleccionados variando parámetros ambientales y factores propios de cada uno de los equipos que repercuten directamente sobre su desempeño. Es importante mencionar que, para cada uno de los casos de estudio, se utilizará el software ASPEN PLUS, el cual es una herramienta ampliamente utilizada en la simulación de procesos industriales petroquímicos, destilación, refrigeración y de ciclos de generación eléctrica.

# 3.1 Análisis termodinámico del CBEI

En ésta sección, se analizará el problema de la selección de condiciones de separación que permitirán el mejor desempeño global de la planta en términos de generación eléctrica, condiciones que, además, determinan las eficiencias del ciclo (primera y segunda ley de la termodinámica). En primer lugar se desarrollará una formulación aproximada para el cálculo de la temperatura óptima de separación y posteriormente se continuará con un análisis más complejo con el fin de tener más de una fuente de resultados que puedan dar un mayor grado seguridad. En ambos casos se consideraran las siguientes propiedades del recurso geotérmico y condiciones de operación del CBEI.

| Recurso Geotérmico              |  |  |  |  |  |  |
|---------------------------------|--|--|--|--|--|--|
| Clasificación Líquido Dominante |  |  |  |  |  |  |
| 150                             |  |  |  |  |  |  |
| 4.76                            |  |  |  |  |  |  |
|                                 |  |  |  |  |  |  |

Tabla 3-1 Propiedades del recurso geotérmico

| Condiciones de operación del CBEI           |                  |  |  |  |  |  |  |  |
|---------------------------------------------|------------------|--|--|--|--|--|--|--|
| Acercamiento del ICP [°C]                   | 3                |  |  |  |  |  |  |  |
| Estado 1                                    | Líquido Saturado |  |  |  |  |  |  |  |
| Temperatura Estado 1 [°C]                   | 147              |  |  |  |  |  |  |  |
| Eficiencia Isentrópica Turbina              | 85 %             |  |  |  |  |  |  |  |
| Eficiencia Mecánica Turbina                 | 95 %             |  |  |  |  |  |  |  |
| Temperatura Estado 6 [°C]                   | 50               |  |  |  |  |  |  |  |
| Presión de Condensación <sup>27</sup> [Bar] | 2.06             |  |  |  |  |  |  |  |
| Eficiencia Isentrópica Bombas               | 82 %             |  |  |  |  |  |  |  |
| Fluido de Trabajo                           | Isopentano       |  |  |  |  |  |  |  |

Tabla 3-2 Condiciones de operación del CBEI

#### 3.1.1 Temperatura de separación óptima: Una aproximada formulación<sup>28</sup>

Esta derivación es basa en el diagrama de proceso mostrado en la ilustración 3-1. El objetivo es determinar la temperatura del separador,  $T_2$  (= $T_3$ = $T_4$ ), que maximice la producción de trabajo específico, w, de la planta. Consideraremos únicamente el trabajo de la turbina omitiendo demandas de bombeo o cualquier otra carga parásito.

El trabajo específico por unidad de masa del fluido de trabajo es:

$$w = x_2(h_4 - h_5) \tag{3-1}$$

Para una primera aproximación,

$$h_1 - h_6 \approx c(T_1 - T_6)$$
 (3-2)

Υ

$$h_3 - h_6 \approx c(T_3 - T_6)$$
 (3-3)

<sup>&</sup>lt;sup>27</sup> (Franco & Villani)

<sup>&</sup>lt;sup>28</sup> (DiPippo, 2012)



Ilustración 3—1 Diagrama de proceso y estados CBEI<sup>29</sup>

Asumiendo que *c*, el calor específico promedio para el líquido saturado, es constante entre los estados 1 y 6. Es conveniente para esta derivación establecer arbitrariamente la entalpía como cero en el estado 6:

$$h_6 \equiv 0$$
 (Dato referencia)

Así,

$$h_1 = c(T_1 - T_6) = h_2 \tag{3-4}$$

Y

$$h_3 = c(T_3 - T_6) \tag{3-5}$$

De la definición de calor latente de evaporación, se sigue que

$$h_4 - h_3 = h_{fg} \tag{3-6}$$

Adoptando la notación de subíndices de las tablas de vapor "*fg*" para el calor latente se tiene que:

$$h_4 = h_3 + h_{fg} = c(T_3 - T_6) + h_{fg}$$
(3-7)

<sup>&</sup>lt;sup>29</sup> AspenPLUS®

Invocando una aproximación poco conocida, específicamente,

$$h_{4-}h_3 \approx h_5 - h_6$$
 (3-8)

Para el rango de temperaturas típicas de sistemas geotérmicos, esta aproximación es buena con un margen del 1.5%. Note que el estado real a la salida de la turbina 5 es usado en las ecuaciones anteriores, no el estado isentrópico ideal 5s. Por lo tanto, se sigue que:

$$h_{fg} \approx h_5 - h_6 \approx h_5 \tag{3-9}$$

Ahora podemos expresar la calidad del separador, x<sub>2</sub>, de la siguiente forma:

$$x_2 = \frac{h_2 - h_3}{h_{fg}} = \frac{c(T_1 - T_6) - c(T_3 - T_6)}{h_{fg}} = \frac{c(T_1 - T_3)}{h_{fg}}$$
(3-10)

El calor específico puede ahora ser expresado con la siguiente función:

$$w = \frac{c}{h_{fg}}(T_1 - T_3)(h_4 - h_5) = \frac{c^2}{h_{fg}}(T_1 - T_3)(T_3 - T_6)$$
(3-11)

Es necesario solo diferenciar ésta expresión con respecto a  $T_3$ , igualar el resultado a cero, y resolver para  $T_3$ , una aplicación típica del cálculo diferencial. Al realizar la derivación, simplificamos la tarea asumiendo que el multiplicador,  $c^2/h_{fg}$ , es una constante. Ésta aproximación es aceptable para éste propósito. La derivación resultante es:

$$\frac{dw}{dT_3} = (T_1 - T_3)(1) + (T_3 - T_6)(-1) = T_1 - T_3 - T_3 + T_6 = 0$$
(3-12)

Resolviendo para  $T_3$ , se obtiene que valor óptimo de temperatura es dado aproximadamente por:

$$T_{3,opt} = \frac{T_1 + T_6}{2} \tag{3-13}$$

Debido a que esta regla indica que el rango de temperatura entre el reservorio y el condensador es el promedio, algunas veces es llamada la regla "Equal-Temperature-Split". Ésta aproximación es aplicable a todas las plantas flash sin importar el número de flasheos. Para una planta doublé-flash. La regla dice: (1) la diferencia de temperaturas entre el reservorio y el primer flash es igual a (2) la temperatura entre el primer flash y el segundo, y también es igual a (3) la diferencia de temperatura entre el segundo flash y el condensador.

# 3.1.2 Temperatura de separación óptima II

¿Cuál es la temperatura de separación que debería ser elegida para maximizar el trabajo de la turbina? Para resolver este problema, asumiremos que el arreglo de las tuberías entre el intercambiador de calor de placas y el separador es tal, que no existen perdidas de presión entre ellos. Además, omitiremos cualquier otra pérdida de presión asociada con la transmisión del vapor separado hacia la turbina. No es difícil anexar éstas pérdidas, sin embargo, la metodología se hace más evidente ignorando estos términos.

Las ecuaciones antes planteadas serán utilizadas para los procesos de flasheo, separación, y expansión en la turbina. Se determinará el trabajo de la turbina para un rango de presiones de separación considerando como límite superior la presión de saturación del isopentano a 147 °C [17.75 Bar] y como límite inferior la presión a la salida de la turbina [presión de condensación, 2.06 Bar]. Los cálculos son independientes del flujo másico, lo que conducirá a resultados en kW/ (kg/s). La REFPROP del Instituto Nacional de Estándares y tecnología (National Institute of Standards and Technology, NIST) será utilizada para el cálculo de las propiedades termodinámicas del agua (fluido geotérmico), considerada como agua pura; y del isopentano (fluido de trabajo). Además se utilizará como apoyo un diagrama de estados Ts correspondiente al Ciclo Binario de Evaporación Instantánea.



Gráfica 3-1 Diagrama de estados Ts-CBEI

El rango de temperaturas correspondientes a los límites de presiones establecidas anteriormente va desde los 50 (2.055 Bar) hasta los 140°C (15.72 Bar), con un incremento de 5°C. Los cálculos de cada uno de los estados termodinámicos del ciclo fueron realizados en su totalidad, sin embargo, dada la extensión de los mismos, se optó por exponer los más

| Tsep [°C] | Psep [Bar] | Calidad [X2] | h4 [kJ/kg] | h5 [kJ/kg] | w [kW /kg/s] |
|-----------|------------|--------------|------------|------------|--------------|
| 50        | 2.05511304 | 0.82419367   | 377.420298 | 2.05511304 | 2.5373E-09   |
| 55        | 2.37491554 | 0.79751965   | 385.213872 | 2.37491554 | 3.41015437   |
| 60        | 2.73125463 | 0.76994295   | 393.032037 | 2.73125463 | 6.51672387   |
| 65        | 3.12672439 | 0.74140246   | 400.869012 | 3.12672439 | 9.31770107   |
| 70        | 3.56398011 | 0.71182837   | 408.718554 | 3.56398011 | 11.809629    |
| 75        | 4.0457372  | 0.6811407    | 416.573871 | 4.0457372  | 13.9875107   |
| 80        | 4.57477095 | 0.64924741   | 424.427532 | 4.57477095 | 15.8446701   |
| 85        | 5.15391749 | 0.61604203   | 432.271345 | 5.15391749 | 17.372565    |
| 90        | 5.78607583 | 0.5814007    | 440.096218 | 5.78607583 | 18.5605379   |
| 100       | 7.22136079 | 0.50720396   | 455.647212 | 7.22136079 | 19.8614351   |
| 105       | 8.03063926 | 0.46727376   | 463.348889 | 8.03063926 | 19.9389541   |
| 110       | 8.90524921 | 0.4251431    | 470.982134 | 8.90524921 | 19.6044042   |
| 115       | 9.84849221 | 0.38051471   | 478.529742 | 9.84849221 | 18.8289012   |
| 120       | 10.863784  | 0.3330229    | 485.971611 | 10.863784  | 17.5769046   |
| 125       | 11.9546735 | 0.28221125   | 493.283994 | 11.9546735 | 15.8042437   |
| 130       | 13.1248673 | 0.22750064   | 500.43846  | 13.1248673 | 13.4553      |
| 135       | 14.3782611 | 0.16814175   | 507.400457 | 14.3782611 | 10.4588724   |
| 140       | 15.7189803 | 0.10314264   | 514.127252 | 15.7189803 | 6.72191634   |

representativos para los propósitos planteados en la siguiente tabla mostrada a continuación.

Tabla 3-3 Tabla de resultados generales<sup>30</sup>

Mediante una rápida inspección es fácil identificar que las temperaturas de separación entre las cuales se encuentra la presión óptima para el flasheo son 100 y 105. Mediante un análisis concentrado en ese rango de temperaturas se determina el dato buscado. El cual corresponde a una temperatura de 103.4 °C y una presión de saturación de 7.765 Bar.

| Tsep [°C] | Psep [Bar] | Calidad    | h4 [kJ/kg] | h5 [kJ/kg] | w [kW /kg/s] |
|-----------|------------|------------|------------|------------|--------------|
| 102       | 7.53743943 | 0.49147925 | 458.735095 | 418.16314  | 19.940274    |
| 103       | 7.69926952 | 0.48349515 | 460.275549 | 419.001162 | 19.955966    |
| 103.2     | 7.73194206 | 0.48188835 | 460.583346 | 419.16881  | 19.9571826   |
| 103.4     | 7.76471727 | 0.48027819 | 460.891043 | 419.336469 | 19.957755    |
| 103.6     | 7.79759533 | 0.47866464 | 461.198638 | 419.50414  | 19.9576816   |
| 103.8     | 7.83057647 | 0.47704769 | 461.506131 | 419.671821 | 19.9569609   |
| 104       | 7.86366087 | 0.47542733 | 461.813521 | 419.839512 | 19.9555913   |
| 104.2     | 7.89684876 | 0.47380355 | 462.120807 | 420.00721  | 19.9535713   |
| 104.4     | 7.93014034 | 0.47217631 | 462.427987 | 420.174916 | 19.9508992   |
| 104.6     | 7.96353581 | 0.47054561 | 462.735062 | 420.342629 | 19.9475734   |
| 104.8     | 7.99703538 | 0.46891144 | 463.042029 | 420.510347 | 19.9435922   |
| 105       | 8.03063926 | 0.46727376 | 463.348889 | 420.678069 | 19.9389541   |

Tabla 3-4 Tabla de resultados locales<sup>31</sup>

<sup>&</sup>lt;sup>30</sup> Autor

<sup>&</sup>lt;sup>31</sup> Autor

La potencia óptima específica es alrededor de 20 kW (19.9577) por cada kg/s del flujo total de isopentano del CBEI. Note que la temperatura óptima de separación es cercana a la temperatura promedio entre el intercambiador de calor de placas y el condensador, 98.5 °C [(147+50)/2 = 98.5]. Esta simple relación ("Rule of Thumb"), definida detalladamente en la sección anterior, puede ser usada como una primera aproximación para determinar la mejor temperatura de separación sin la necesidad de recurrir a cálculos más finos y extensos.



Gráfica 3-2 Potencia Específica vs Temperatura de Separación

Una vez que han sido determinadas las condiciones óptimas del separador que permiten la mayor generación de potencia, es posible manipular el flujo másico y en consecuencia controlar la misma producción. Para lo cual resulta conveniente realizar una regresión polinomial de tal grado que se acerque lo suficiente a nuestra curva de producción y la describa con un alto grado de exactitud. Para este caso en particular, el polinomio resultante es de grado 3:

$$\frac{w}{\dot{m}} = -40.237 + 0.8768T + 9 \times 10^{-7}T^2 - 3 \times 10^{-5}T^3$$
 (3-14)

Dicha ecuación resulta práctica para determinar el flujo másico necesario para una producción de 10 kW (objetivo particular de esta tesis). Un punto importante que nunca se debe olvidar es que éste análisis se realizó sin tomar en cuenta las demandas de las bombas

1 y 2 (generación bruta), las cuales deben ser consideradas para obtener la producción neta requerida.

## 3.1.3 Análisis de primera y segunda ley de termodinámica

La primera ley de la termodinámica dice que el calor neto agregado al ciclo debe ser igual al trabajo neto producido, o en términos de calor y trabajo mecánico:

$$\dot{Q}_{in} - \dot{Q}_o = \dot{W}_e \tag{3-15}$$

De lo anterior surge la definición de eficiencia térmica,  $\eta_{th}$ , matemáticamente:

$$\eta_{th} = \frac{\dot{W}_e}{\dot{Q}_{in}} \tag{3-16}$$

De manera general, ésta ecuación nos da la relación entre el resultado obtenido en un proceso y lo que se requirió para obtenerlo. Para realizar un análisis que se salga de lo particular, el trabajo y el calor serán considerados por unidad de flujo másico, es decir, en kW/ (kg/s).

En primer lugar es importante determinar los estados que están involucrados en los procesos de adición de calor y generación de trabajo, que de acuerdo a la ecuación anterior, son los datos necesarios para determinar la eficiencia térmica. Siguiendo el diagrama Ts del CBEI, se concluye que esos datos son (1) y (9) correspondientes a la entrada y salida del flujo de trabajo y (4) y (5) para el caso de la turbina. Debido a que las condiciones de intercambio de calor con el recurso geotérmico son fijas, se espera que el estado a la salida del intercambiador de calor de placa permanezca constante (Estado 1). Por otro lado, los demás estados involucrados (4), (5) y (9) están directa o indirectamente influenciados por los cambios en las condiciones de separación. Por lo cual, el rango anteriormente analizado de temperaturas será sujeto de estudio en esta sección.

| Tsep [°C] | h4 [kJ/kg] | h5 [kJ/kg] | h9 [kJ/kg] | w [kW /kg/s] | Qin [kW/kg/s] | Ef. [%] |
|-----------|------------|------------|------------|--------------|---------------|---------|
| 50        | 377.4203   | 377.4203   | 55.412082  | 2.5368E-09   | 264.826478    | 1E-09   |
| 55        | 385.2139   | 380.9379   | 57.865     | 3.41015437   | 262.3735603   | 1.3     |
| 60        | 393.032    | 384.5681   | 61.018468  | 6.51672387   | 259.2200921   | 2.514   |
| 65        | 400.869    | 388.3013   | 64.920275  | 9.31770107   | 255.3182849   | 3.649   |
| 70        | 408.7186   | 392.128    | 69.622848  | 11.809629    | 250.6157123   | 4.712   |
| 75        | 416.5739   | 396.0385   | 75.184054  | 13.9875107   | 245.054506    | 5.708   |
| 80        | 424.4275   | 400.0229   | 81.668192  | 15.8446701   | 238.5703681   | 6.642   |
| 85        | 432.2713   | 404.0711   | 89.14721   | 17.372565    | 231.0913501   | 7.518   |
| 90        | 440.0962   | 408.1724   | 97.702234  | 18.5605379   | 222.5363258   | 8.34    |
| 100       | 455.6472   | 416.4885   | 118.42282  | 19.8614351   | 201.8157383   | 9.841   |
| 105       | 463.3489   | 420.6781   | 130.81681  | 19.9389541   | 189.4217541   | 10.53   |
| 110       | 470.9821   | 424.8697   | 144.75107  | 19.6044042   | 175.4874882   | 11.17   |
| 115       | 478.5297   | 429.047    | 160.39591  | 18.8289012   | 159.8426488   | 11.78   |

| 120 | 485.9716 | 433.1917 | 177.956   | 17.5769046 | 142.2825603 | 12.35 |
|-----|----------|----------|-----------|------------|-------------|-------|
|     |          |          |           |            |             |       |
| 125 | 493.284  | 437.2825 | 197.68115 | 15.8042437 | 122.5574101 | 12.9  |
| 130 | 500.4385 | 441.2944 | 219.88161 | 13.4553    | 100.3569461 | 13.41 |
| 135 | 507.4005 | 445.1977 | 244.95051 | 10.4588724 | 75.28804649 | 13.89 |
| 140 | 514.1273 | 448.9562 | 273.39769 | 6.72191634 | 46.84087237 | 14.35 |

Algo importante a mencionar, es que, para el cálculo del estado (9) fue necesario caracterizar el ciclo totalmente. Mediante la consideración de procesos y eficiencias isentrópicas cada uno de los estados restantes fue calculado. En el caso especial del (8), fue necesario realizar el siguiente análisis para eliminar cualquier flujo másico involucrado dejándolo solo en términos de la calidad.



Ilustración 3–2 Flujos de masa en separador (a la izquierda) y mezclador (a la derecha)<sup>32</sup>

Los flujos másicos (3) y (7) están en función de la calidad y del flujo másico del estado (2), que a su vez es el mismo que el flujo másico del estado (8), esto es:

$$\dot{m}_3 = (1 - x)\dot{m}_8 \tag{3-17}$$

$$\dot{m}_7 = (x)\dot{m}_8$$
 (3-18)

Aplicando un balance de masa y energía,

$$\dot{m}_8 h_8 = \dot{m}_3 h_3 + \dot{m}_7 h_7 \tag{3-19}$$

<sup>&</sup>lt;sup>32</sup> Autor®

Sustituyendo  $\dot{m}_3$  y  $\dot{m}_7$  en función de  $\dot{m}_8$ ,

$$\dot{m}_8 h_8 = (1-x)\dot{m}_8 h_3 + (x)\dot{m}_8 h_7 \tag{3-20}$$

Finalmente, al eliminar el flujo másico (8), obtenemos una relación para calcular la entalpía de ese estado en función únicamente de la calidad y de las entalpías (3) y (7):

$$h_8 = (1 - x)h_3 + (x)h_7 \tag{3-21}$$

Por otro lado, mediante la eficiencia de utilización o segunda ley de la termodinámica es posible determinar el desempeño global de la planta. En éste caso y de forma general se compara la potencia real de salida contra la potencia máxima teórica que podría ser producida de un fluido geotérmico dado. Esto involucra la determinación del flujo de exergía hacía la planta debido al fluido geotérmico. La exergía específica, *e*, de un fluido que tiene una presión, *P*, y una temperatura, *T*, en presencia de una presión y temperatura ambiental,  $P_0$  y  $T_0$ , está dada por:

$$e = \frac{\dot{E}}{\dot{m}} = h(T, P) - h(T_0, P_0) - T_0[s(T, P) - s(T_0, P_0)]$$
(3-22)

La relación entre la potencia y la potencia exergética es definida como eficiencia de utilización o eficiencia de Segunda Ley de la planta:

$$\eta_{II} = \frac{W_{net}}{\dot{E}} \tag{3-23}$$

Para determinar la potencia máxima, que en teoría podría ser producida, es necesario, además de las condiciones de del recurso geotérmico, establecer las condiciones del marco teórico de referencia ( $T_0 = 25 \ ^{\circ}C \ y \ P_0 = 1 \ Bar$ ).

$$e = \frac{\dot{E}}{\dot{m}} = h_{sat}(150 \,^{\circ}C) - h(25^{\circ}C, 1 \,^{Bar}) - T_0[s_{sat}(150 \,^{\circ}C) - s(25 \,^{\circ}C, 1 \,^{Bar})]$$
$$e = 86.8 \, kW/(kg/s)$$



Gráfica 3-3 Eficiencias de 1ra. y 2da. Ley vs T. de separación

Al depender directamente de las condiciones del recurso geotérmico, el trabajo máximo teórico es constante. Mientras que el trabajo producido dado las condiciones del ciclo depende directamente de las condiciones de separación, es variable. Por lo tanto, la eficiencia de segunda ley es máxima cuando se optimiza el trabajo producido, esto es, a una temperatura de separación de 103.4 °C con un valor del 23%.

Si se analiza el trabajo producido y el calor cedido por el recurso geotérmico, un par de conclusiones resultan convenientes mencionar. El trabajo presenta un comportamiento parabólico. Un máximo de vapor es producido cuando se llega al límite inferior de presión de separación, sin embargo, dado que esta presión es muy cercana a la de condensación, el trabajo de expansión producido es mínimo. En el otro extremo, cuando la presión de separación está en el límite superior (cercana a la de saturación del estado 1), el trabajo de expansión podría ser mayor dada las diferencias de presiones con el condensador, sin embargo, el flujo másico de vapor generado es mínimo y en consecuencia el trabajo producido. El máximo trabajo es obtenido entre un balance de estas condiciones, presión de separación y de condensación. Por otro lado, a medida que la temperatura de separación es mayor, la temperatura del estado (8) (salida del mezclador) es incrementada de acuerdo a su balance de masa.

Por lo tanto, una menor cantidad de calor es necesario para elevar la temperatura en el intercambiador de calor y llevar al fluido de trabajo a un estado de saturación. Lo que explica una disminución de la demanda térmica con respecto al aumento de temperatura en el separador. Dichas condiciones definen el incremento de la eficiencia térmica, que muestra la gráfica anterior siendo igual al 10.3 % para las condiciones óptimas.

# 3.2 Análisis de sensibilidad

Una vez establecidas las condiciones óptimas de operación del Ciclo Binario de Evaporación Instantánea es necesario determinar la carga térmica que ambos sistemas de enfriamiento deben disipar al ambiente sujetos a la máxima condición de producción eléctrica.

Por lo anterior, balances de masa y energía deben ser aplicados a cada uno de los equipos del CBEI y determinar uno a uno los estados termodinámicos describiendo en su totalidad el sistema. A partir de este momento es cuando se utilizará el Software AspenPlus como herramienta de análisis.

| Heat and Material Balance Table |           |            |            |            |            |            |            |            |            |            |            |            |
|---------------------------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Stream ID                       |           | 1          | 2          | 3          | 4          | 5          | 6          | 7          | 8          | 9          | GEO-0      | GEO-I      |
| From                            |           | ICP        | PLACA      | SEP        | SEP        | TURBINA    | CONDEN     | BOMBA2     | MEZCL      | BOMBA1     | ICP        |            |
| То                              |           | PLACA      | SEP        | MEZCL      | TURBINA    | CONDEN     | BOMBA2     | MEZCL      | BOMBA1     | ICP        |            | ICP        |
| Phase                           |           | LIQUID     | MIXED      | LIQUID     | VAPOR      | VAPOR      | LIQUID     | LIQUID     | LIQUID     | LIQUID     | LIQUID     | LIQUID     |
| Substream: MIXED                |           |            |            |            |            |            |            |            |            |            |            |            |
| Mole Flow                       | kmol/sec  |            |            |            |            |            |            |            |            |            |            |            |
| WATER                           |           | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | .0388559   | .0388559   |
| 2-MET-01                        |           | 8.03878E-3 | 8.03878E-3 | 4.04077E-3 | 3.99800E-3 | 3.99800E-3 | 3.99800E-3 | 3.99800E-3 | 8.03878E-3 | 8.03878E-3 | 0.0        | 0.0        |
| Total Flow                      | kmol/sec  | 8.03878E-3 | 8.03878E-3 | 4.04077E-3 | 3.99800E-3 | 3.99800E-3 | 3.99800E-3 | 3.99800E-3 | 8.03878E-3 | 8.03878E-3 | .0388559   | .0388559   |
| Total Flow                      | kg/sec    | .5800000   | .5800000   | .2915429   | .2884571   | .2884571   | .2884571   | .2884571   | .5800000   | .5800000   | .7000000   | .7000000   |
| Total Flow                      | cum/sec   | 1.33712E-3 | .0137619   | 5.45351E-4 | .0132165   | .0530441   | 4.67650E-4 | 4.66731E-4 | 1.00214E-3 | 9.96796E-4 | 8.86155E-4 | 9.21320E-4 |
| Temperature                     | С         | 147.0000   | 103.4359   | 103.4359   | 103.4359   | 73.68617   | 50.18036   | 50.52741   | 78.30138   | 79.06556   | 114.2135   | 150.0000   |
| Pressure                        | bar       | 17.75000   | 7.765000   | 7.765000   | 7.765000   | 2.055000   | 2.055000   | 7.765000   | 7.765000   | 17.75000   | 4.683847   | 4.683847   |
| Vapor Frac                      |           | 0.0        | .4973398   | 0.0        | 1.000000   | 1.000000   | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        |
| Liquid Frac                     |           | 1.000000   | .5026602   | 1.000000   | 0.0        | 0.0        | 1.000000   | 1.000000   | 1.000000   | 1.000000   | 1.000000   | 1.000000   |
| Solid Frac                      |           | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        | 0.0        |
| Enthalpy                        | kJ/kmol   | -1.5483E+5 | -1.5483E+5 | -1.6465E+5 | -1.4491E+5 | -1.4792E+5 | -1.7468E+5 | -1.7460E+5 | -1.6960E+5 | -1.6945E+5 | -2.8026E+5 | -2.7724E+5 |
| Enthalpy                        | kJ/kg     | -2145.973  | -2145.973  | -2282.062  | -2008.429  | -2050.200  | -2421.026  | -2419.897  | -2350.613  | -2348.509  | -15556.72  | -15388.91  |
| Enthalpy                        | kW        | -1244.664  | -1244.664  | -665.3189  | -579.3455  | -591.3948  | -698.3620  | -698.0364  | -1363.355  | -1362.135  | -10889.71  | -10772.24  |
| Entropy                         | kJ/kmol-K | -485.5241  | -483.7053  | -509.7786  | -457.3531  | -455.8110  | -538,2175  | -538,1720  | -523,3639  | -523,2853  | -146.2304  | -138.7671  |
| Entropy                         | kJ/kg-K   | -6.729344  | -6.704136  | -7.065511  | -6.338895  | -6.317522  | -7.459673  | -7.459042  | -7.253803  | -7.252713  | -8.117018  | -7.702745  |
| Density                         | kmol/cum  | 6.012007   | .5841319   | 7.409492   | .3024993   | .0753712   | 8.549136   | 8.565974   | 8.021583   | 8.064618   | 43.84777   | 42.17419   |
| Density                         | kg/cum    | 433.7680   | 42.14528   | 534.5969   | 21.82541   | 5.438053   | 616.8225   | 618.0374   | 578.7595   | 581.8644   | 789.9298   | 759.7798   |
| Average MW                      |           | 72,15028   | 72,15028   | 72,15028   | 72,15028   | 72,15028   | 72,15028   | 72.15028   | 72.15028   | 72,15028   | 18.01528   | 18.01528   |
| Liq Vol 60F                     | cum/sec   | 9.31051E-4 | 9.31051E-4 | 4.68002E-4 | 4.63049E-4 | 4.63049E-4 | 4.63049E-4 | 4.63049E-4 | 9.31051E-4 | 9.31051E-4 | 7.01349E-4 | 7.01349E-4 |

Tabla 3-5 Propiedades de cada uno de los estados termodinámicos<sup>33</sup>

La tabla anterior muestra a detalle cada una de las propiedades de los estados termodinámicos especificados en el diagrama de planta general de la sección anterior. Las propiedades descritas van desde el flujo másico, volumétrico y molar hasta temperatura, presión, fracción de vapor, entropía, entalpía. Para determinar la totalidad de las propiedades basta con conocer dos. Una forma más visual y representativa es mostrada en el siguiente diagrama, en el cual se han seleccionado la temperatura, presión y flujo másico a las entradas y salidas de los equipos con etiquetas que respetan éste orden de la parte superior a la inferior.

Las condiciones del recurso geotérmico a la entrada del intercambiador de calor de placas, tal y como se habían planteado, son de 150 °C a la presión de saturación. El intercambiador de calor de placas es caracterizado con un acercamiento entre los fluidos de entrada

<sup>&</sup>lt;sup>33</sup> AspenPLUS®
(recurso geotérmico) y de salida (fluido de trabajo) de 3°C. Además, no se consideran pérdidas de presión para éste análisis, ni en los equipos ni en las tuberías. A la salida del intercambiador de calor el isopentano es llevado hasta las condiciones de saturación sin ser evaporado a una temperatura de 147 °C. Cualquier disminución en la presión causara la evaporación de una fracción de vapor (evaporación flash). La placa orificio se encarga de regular la caída de presión, la cual ya fue optimizada, y a la vez determina el diámetro de la misma placa.



Ilustración 3—3 Balance general de masa y energía CBEI<sup>34</sup>

Posteriormente un separador de flujo bifásico ciclónico, para el cual se ha usado un modelo adiabático, se encarga de re-direccionar el flujo de vapor y el líquido de la mezcla antes generada. El flujo de vapor acciona una turbina hasta una expansión de 2.055 Bar y una temperatura de 73.69 °C. Dadas estas condiciones y al tipo de curva característica T-s del Isopentano, las propiedades a la salida de la turbina es de sobrecalentamiento. Eficiencias isentrópica del 85 % y mecánica del 92% fueron consideradas para el análisis<sup>35</sup>.

El modelo general del condensador lleva al fluido de trabajo hasta líquido condensado a presión constante y una temperatura de 50°C. El dato importante a considerar es la tasa de transferencia de calor al ambiente, la cual es de 106.97 kW. Como un modelo general, el

<sup>&</sup>lt;sup>34</sup> AspenPLUS®

<sup>&</sup>lt;sup>35</sup> (Li & Lior, 2014)

programa hace el cálculo sin considerar específicamente el tipo de condensador que se utilice (aerocondensador o condensación con agua marina). Estos modelos serán especificados en el software AspenPlus para realizar un análisis detallado y particular. El flujo de calor calculado será entonces un dato de entrada para el dimensionamiento y caracterización de los equipos.

Una vez condensado el fluido es mezclado con el proveniente del separador ciclónico considerando un modelo adiabático alcanzando una temperatura de 78 °C a la salida. Finalmente, el Isopentano es bombeado desde el mezclador hasta el intercambiador de calor de palcas cerrando en su totalidad el CBEI.

#### 3.2.1 Fracción de Vapor vs Calor Disipado

Dado que el modelo general del sistema de condensación no contempla propiedades particulares de un fluido de enfriamiento, agua de mar o aire, no es posible obtener gráficas de calentamiento del fluido de baja temperatura. Sin embargo, para el caso del fluido de trabajo (fluido caliente) se obtuvo la curva fracción de vapor con respecto al calor cedido que describe su proceso de condensación.



<sup>36</sup> AspenPLUS<sup>®</sup>

Debido a que el calor "sale" del sistema de estudio, el programa le asigna, automáticamente, un signo negativo. A la salida de la turbina las propiedades del fluido de trabajo son de sobrecalentamiento, estado el cual el programa le asignara un valor de 1 a la fracción de vapor. A medida que el calor es cedido al ambiente, el fluido baja su temperatura desde los 73.7 °C (correspondientes a la presión de condensación) hasta los 50.18 °C, al no existir cambio de fase el calor básicamente corresponde al calor sensible (alrededor de 13 kW térmicos). Pasando éste umbral conocido como punto de rocío (*Dew Point*) el proceso de condensación adopta un comportamiento lineal con el calor latente iniciando el cambio de fase gaseosa a líquida, hasta llegar a un valor de 106.9 kW térmicos y un estado 100% líquido.

#### 3.2.2 Carga térmica vs generación eléctrica

El siguiente gráfico muestra el comportamiento de la carga térmica a retirar por el condensador con respecto a la generación neta (potencia bruta menos la potencia de las dos bombas del CBEI). Como es de esperarse, a medida que la demanda energética incrementa, la carga térmica exigida al condensador aumenta proporcionalmente, a una tasa de 10.8 kW por cada kW de potencia. Esto se debe a que la generación está controlada por el flujo másico que entra a la turbina y ésta, a su vez, por el flujo másico total. Por lo tanto, si se quiere aumentar la producción es necesario aumentar el flujo másico y, en consecuencia, una mayor cantidad energética debe ser rechazada al ambiente para llegar a la misma condición de líquido saturado a la salida del condensador.



Los dos gráficos anteriores (3-4 y 3-5) describen el comportamiento general de los procesos de condensación y de carga térmica a los que los sistemas particulares que han sido elegidos deben ajustarse bajo sus propias características de operación, fluido de enfriamiento, configuraciones, demandas energéticas, etc. Análisis que serán detallados en las siguientes secciones.

<sup>&</sup>lt;sup>37</sup> AspenPLUS®

### 3.3 Conclusiones

En éste capítulo se describió a detalle el principio de funcionamiento del Ciclo Binario de Evaporación instantánea (CBEI) enfatizando cada una las consideraciones o idealizaciones que fueron tomadas en cuenta. Además, se establecieron las propiedades del recurso geotérmico, fuente de energía, y de las condiciones de operación del CBEI bajo las cuales se realizaron los análisis.

Se formuló un modelo aproximado de temperatura óptima de separación que sirve como una herramienta rápida y sencilla para un primer análisis, arrojando un valor de 98.5 °C.

Se determinó la temperatura óptima de separación mediante un método más sofisticado y complejo de análisis, dando como resultado un valor de 104.3 °C, al cual le corresponde una presión de 7.76 Bar y con el que se determinó que la primera aproximación es aceptable con un margen de error de ±5.56 % aproximadamente.

Mediante un análisis de primera y segunda ley de la termodinámica se calcularon las eficiencias térmicas y de utilización que caracterizan al CBEI sin importa el flujo másico de acuerdo a las condiciones de separación establecidas. Obteniéndose valores de 10.3 % y 23% respectivamente.

Finalmente, se calculó la carga térmica que debe ser retirada por los dos sistemas de enfriamiento elegidos, igual a 107 kW. Además se caracterizaron los procesos de condensación y de demanda térmica que se debe satisfacer.

## 4 Análisis de factibilidad técnica CBEI-Aerocodensador

### 4.1 Esquema de planta propuesto

La primera propuesta de sistema de enfriamiento consiste en un aerocondensador de tiro forzado. El fluido de trabajo (Isopentano) pasará a través de los tubos (Tube-Side) mientras que el aire, el cual se considera seco para el análisis, es forzado (por un ventilador en la parte inferior) a fluir a través del haz de tubos que componen el aeroenfriador.

En éste caso, un factor determinante de diseño son las condiciones atmosféricas, ya que de esto dependerá la temperatura del aire ambiente. Una ventaja de estos tipo de sistemas, además de no requerir agua, es que no dependen de la temperatura de bulbo húmedo como el caso de las torres de enfriamiento húmedas; sin embargo, la temperatura de bulbo seco determinará la tasa de flujo másico de aire requerido para el proceso de enfriamiento, lo que repercute directamente en la potencia y consumo eléctrico del o los ventiladores a utilizar por el aeroenfriador.



Ilustración 4–1 Propuesta de sistema CBEI-Aerocondensador<sup>38</sup>

<sup>&</sup>lt;sup>38</sup> AspenPLUS®

#### 4.2 Modelado y simulación de balance de masa y energía

Una vez completado el sistema propuesto en el software AspenPLUS, se procede a realizar un análisis de masa y energía que corroboren que las condiciones establecidas son las mínimas necesarias para retirar la carga térmica antes calculada correspondiente a una generación de 10 kW. El aire seco, para este primer análisis, se ha considerado a una temperatura de 25 °C, a 1 atmosfera de presión y a un flujo másico de 4.5 kg/s (3.85 m<sup>3</sup>/s). Además, no solo se consideró nitrógeno (78.1 %) y oxígeno (20.9%) en su composición química, sino que también se agregó un 1% de argón. Su densidad bajo estas condiciones es de 1.17 kg/m<sup>3</sup>.



Ilustración 4–2 Balance de masa y energía CBEI-Aerocondensador<sup>39</sup>

La ilustración anterior muestra los resultados de los balances de masa y energía correspondientes al aeroenfriador. Los datos dentro de las elipses son las temperaturas,

<sup>&</sup>lt;sup>39</sup> AspenPLUS®

mientras que los enmarcados en un hexágono corresponden a las presiones. Es importante mencionar que el flujo másico de 4.5 es el mínimo necesario que evita un cruzamiento de temperaturas, esto es, que la temperatura de salida del aire sea mayor que la temperatura de salida del fluido de trabajo.

## 4.3 Comparación de parámetros e indicadores de desempeño

El siguiente gráfico muestra la curva de enfriamiento del fluido de trabajo para el caso específico del aeroenfriador, la cual se ajusta adecuadamente al modelo general obtenido en la sección 3. En ésta caso ya es posible mostrar la curva de calentamiento correspondiente al aire utilizado como medio de enfriamiento.



El gráfico 4-2 muestra el perfil del calor cedido por el fluido caliente con respecto a la temperatura de entrada del aire. Como es de esperarse, a medida que la energía es transferida al fluido de enfriamiento, su temperatura incrementará. La tasa de transferencia

<sup>&</sup>lt;sup>40</sup> AspenPLUS<sup>®</sup>

es calor es lineal, por cada 0.22 °C de aumento de temperatura del fluido de enfriamiento absorberá 1 kW térmico.



Gráfica 4-2 Curva de calentamiento CBEI-Aerocondensador<sup>41</sup>

El hecho de que el flujo másico del aire de enfriamiento evite el cruzamiento de temperatura y por tanto determine su propia temperatura de salida, implica que éste gráfico es exclusivo para el valor antes establecido de 4.5 kg de aire/s.

<sup>&</sup>lt;sup>41</sup> AspenPLUS®

#### 4.3.1 Comportamiento con cambios de carga

Debido a que el único consumo energético de este tipo de sistemas de enfriamiento es la potencia requerida por el ventilador, un análisis de sensibilidad del consumo energético del dispositivo con respecto a la generación eléctrica es necesario. Físicamente, las únicas formas de variar la generación eléctrica de una planta de potencia, son: (1) regulando el flujo másico y, en éste ciclo en particular, (2) variando la presión de separación en la placa orificio. Sin embargo, en el caso de la presión de separación, además de ser más complicado, la presión de separación ya ha sido diseñada con un máximo potencial de aprovechamiento.



Los valores de flujo másico que el ventilador debe satisfacer van desde los 4.5 (mínimo necesario para retirar la carga térmica calculada) hasta los 10 kg/s, éste último valor fue calculado variando la temperatura ambiente. Un punto importante a mencionar es que,

calculado variando la temperatura ambiente. Un punto importante a mencionar es que, dado que la potencia neta depende directamente del fluido de trabajo, basta graficar la potencia del ventilador con respecto al flujo másico sabiendo que, le generación es

<sup>&</sup>lt;sup>42</sup> AspenPLUS<sup>®</sup>

directamente proporcional al flujo de vapor que entra a la turbina y ésta a su vez proporcional al flujo total de isopentano.

A medida que el flujo másico de aire aumenta, la potencia necesaria del ventilador para impulsar esa masa de aire incrementa desde los 0.2 kW aproximadamente hasta casi 3.1 kW.

El caso de la potencia neta generada para diferentes casos de flujos de aire es un punto de análisis un tanto especial. El incremento del flujo de aire garantiza un mayor intercambio de calor, además de una temperatura de salida del aire menor. Sin embargo, a medida que éste flujo es incrementado del mismo modo la potencia del ventilador requerida aumenta, por lo cual es necesario un análisis que nos permita determinar cuál es el flujo másico óptimo, dicho análisis se realizará con una herramienta de AspenPLUS denominada *Aspen Echanger Design and Rating*. Los resultados se muestran en el gráfico 4-4.



<sup>43</sup> AspenPLUS®

Sometido a la máxima potencia de operación y a las diferentes condiciones ambientales, la potencia neta alcanza valores de entre los 7 y los 10 kW.

### 4.3.2 Comportamiento con cambios en condiciones del medio ambiente

El cambio en la temperatura de bulbo seco es un factor importante en la transferencia de calor entre los fluidos. Entre mayor sea la diferencia de temperaturas entre el fluido de trabajo y la entrada del aire ambiente mayor será la tasa de transferencia térmica.



Gráfica 4-5 Potencia neta del ventilador vs flujo másico de aire de entrada<sup>44</sup>

Un incremento en la temperatura demandará una mayor masa de aire para la transferencia de calor que satisfaga las mismas condiciones que con un flujo frío de menor valor. En consecuencia, una mayor cantidad energética deberá ser empleada para efectuar éste trabajo. Dicho comportamiento es perfectamente descrito en el gráfico anterior, en el cual, a una temperatura de 10 °C la demanda energética va de 0.3 a 2.7 kW mientras que para una temperatura de 35 °C el rango se incrementa de 0.4 a 3.5 kW para los mismos valores de flujos másicos.

<sup>&</sup>lt;sup>44</sup> AspenPLUS®



Gráfica 4-6 Potencia neta vs flujo másico de aire<sup>45</sup>

Es importante mencionar que la temperatura ambiente máxima para determinar el flujo másico máximo fue de 40 °C, sin embargo los cambios en la potencia requerida por los ventiladores no presentó variaciones significativas después de los 36 °C, por dicha razón las gráficas alcanzan un límite de 35 °C.

Si el comportamiento de la potencia requerida por el ventilador tiene una pendiente positiva, implica un efecto negativo en la curva de generación y por lo tanto disminución de la misma en la medida que el flujo de aire, además de aumentar, incremente su temperatura. La diferencia de potencia neta puede alcanzar un valor hasta de 0.7 kW para un flujo másico de 10 kg/s a temperaturas de 10 y 35 °C.

<sup>&</sup>lt;sup>45</sup> AspenPLUS®

## 4.4 Conclusión.

El flujo mínimo necesario, a una temperatura atmosférica de 25°C, para satisfacer la carga térmica calculada de 107 kW es de 4.5 kW kg/s (3.85 m<sup>3</sup>/s]. Bajo estas condiciones, el fluido es enfriado a una tasa de 0.22°C por cada kW térmico transferido.

El rango del flujo másico utilizado resultó del análisis térmico, variando temperaturas desde los 10°C hasta los 40°C, sin embargo la potencia requerida por el ventilador no variaba significativamente para un flujo másico de 10 kg/s entre los valores de 35 y 40 °C.

Un comportamiento exponencial describe perfectamente el consumo energético del aerocondensador. A medida que la temperatura del aire ambiente aumenta, la potencia del ventilador para retirar la misma carga térmica incrementa con dicha tenencia.

En consecuencia, el perfil que describe la potencia neta generada es representada por una curva que va disminuyendo (de pendiente negativa) mientras se aumenta el flujo másico de aire y la temperatura ambiente, desde una producción de 9.7 kW hasta 6.4 kW, aproximadamente.

Debido a las condiciones impredecibles de la naturaleza, es importante considerar el desempeño del sistema sometido a las situaciones medioambientales más adversas, por lo cual, si suponemos un máximo de temperatura y el flujo másico correspondiente de 10 kg/s, la potencia máxima capaz de ser generada es de 6.5 kW.

# 5 Análisis de factibilidad CBEI-Condensador de Contacto I.

### 5.1 Esquema de planta propuesto

La segunda propuesta de sistema de enfriamiento consiste en un intercambiador de tubo y coraza. El fluido de trabajo (Isopentano) pasará a través de los tubos (Tube-Side) mientras que el recurso marino de enfriamiento a través de la coraza (Shell-Side).

Para el análisis se considera que la fuente de enfriamiento es agua de mar, por lo cual, es necesario una bomba para enviar el fluido hasta la planta. La potencia de bombeo es un factor importante que repercute directamente en el consumo de auxiliares y, por lo tanto, en la generación eléctrica neta. Además de que es un elemento más a considerar dentro de un análisis económico del proyecto en general.



Ilustración 5–1 Propuesta CBEI-Condensación con agua de mar<sup>46</sup>

<sup>&</sup>lt;sup>46</sup> AspenPLUS®

## 5.2 Modelación y simulación de balance de masa y energía

Una vez que ha sido implementado el sistema en AspenPLUS, se procede a realizar un análisis de masa y energía que corroboren que las condiciones establecidas son las mínimas necesarias para retirar la carga térmica antes calculada. El recurso marino, para este primer análisis, se ha considerado a una temperatura de 25 °C y a 1 atmosfera de presión. Además, se ha considerado un incremento en la presión de la bomba de 0.25 Bar con un flujo másico de 3 kg/s. Dicho dato es el resultado de considerar un rango de distancias de entre 100 y 1000 metros, para tamaños de tuberías de 2 hasta 4 pulgadas, cédula 40.



Gráfica 5-1 Balance de masa CBEI-Intercambiador de tubo y coraza47

Los resultados obtenidos son mostrados en el diagrama de planta anterior. Dado el tamaño sistema se optó por seccionar la imagen dejando de lado la bomba de recirculación, el intercambio dador de calor de placa (junto con el recurso geotérmico) y la placa orificio. La

<sup>&</sup>lt;sup>47</sup> AspenPLUS<sup>®</sup>

temperatura de descarga del agua de enfriamiento es de 32.92 °C y la potencia requerida es alrededor de 0.2 kilowatts.

## 5.3 Comparación de parámetros e indicadores de desempeño

Al igual que en la propuesta anterior, como un medio de corroborar que el modelo de estudio se ajusta al general, es necesario obtener las curvas de enfriamiento del fluido de trabajo y de incremento de temperatura del fluido de enfriamiento que, a diferencia del caso anterior, es agua de mar.



Gráfica 5-2 Curva de enfriamiento CBEI-Condensador de tubo y coraza48

De acuerdo a la teoría de transferencia de calor, los perfiles *"Fracción de vapor vs Calor cedido"* del modelo general, el de la propuesta *aerocondensador* y éste último, deben ser prácticamente iguales, ya que el proceso de condensación del fluido de trabajo está en función de la temperatura y éste último del calor cedido al fluido de refrigeración. El cual, no involucra el medio o la forma de transferencia energética.

<sup>&</sup>lt;sup>48</sup> AspenPLUS<sup>®</sup>

En lo que respecta a la curva de calentamiento del agua de mar, el gráfico 5-2 muestra el cambio de temperatura de acuerdo al calor que es absorbido. Para éste caso en específicose fijó un flujo másico de 3 kg/s para obtener los dos perfiles. Un incremento en el flujo másico reducirá la temperatura de salida del fluido de enfriamiento; sin embargo, repercutirá directamente en el consumo eléctrico de la bomba de enfriamiento, consumo que a su vez forma parte de los usos propios del CBEI. Además, se consideró un gradiente de temperatura máxima del agua que se re-ingresará al mar de 7°C<sup>49</sup>. Con ésta condición se estimó el flujo mínimo necesario para obtener esta diferencia de temperaturas. Los flujos másicos pueden incrementarse siempre y cuando sea conveniente para la totalidad del sistema, dicho análisis de sensibilidad se mostrará a continuación.

De acuerdo a las propiedades de los fluidos de enfriamiento que están siendo utilizados, es de esperarse que se necesite un menor flujo másico de agua de mar y que, muy probablemente, su temperatura de salida sea menor que la del aire. Por cada incremento de temperatura de 0.074 °C del agua de enfriamiento éste absorberá una energía térmica de 1 kW. A diferencia del aire que aumenta tres veces más su temperatura al retirar la misma cantidad energética (0.22 °C).

<sup>&</sup>lt;sup>49</sup> Dato de la Planta de Potencia de Cogeneración "Presidente Adolfo López Mateo" de la CFE, Tuxpan, Ver.



Gráfica 5-3 Curva de calentamiento CBEI-Condensador de tubo y coraza<sup>50</sup>

#### 5.3.1 Comportamiento con cambios de carga

La variación en la generación eléctrica exige, en mayor o menor medida, de una tasa de transferencia de calor. Para satisfacer dicha demanda, en el caso del intercambiador de tubo y coraza, la única forma controlable de lograrlo es mediante el aumento o disminución del flujo másico del agua de enfriamiento. El siguiente gráfico muestra la variación de la potencia de bombeo para valores de flujos másicos desde 1 hasta 10 kg/s y un rango de flujo másico de isopentano de 0.1 a 0.6 kg/s que corresponden a 1.7 y 10 kW respectivamente. El rango de flujo másico de bombeo establecido, está en función de la potencia generada y la temperatura del recurso. La potencia de bombeo de casi 0.5 kW corresponde al límite superior de flujo másico de agua de mar y de 0.1 kW para el límite inferior.

<sup>&</sup>lt;sup>50</sup> AspenPLUS<sup>®</sup>



El mejoramiento en la transferencia de calor debido a un aumento del flujo de enfriamiento implica mover una mayor masa y en consecuencia, una mayor demanda energética de los dispositivos auxiliares. Sin embargo, a diferencia del aerocondensador, estos valores son menores dado las características y propiedades de los fluidos empleados. Razón por la cual la potencia neta es afectada en menor medida por las variaciones de flujo. Con un maximo de .5 kW ,aproximadamente, para incrementos de flujos de agua de mar de hasta 10 kg/s. Esto es, para potencia neta de 1.2 a 9.7 kW a una tasa de 1 kg/s(agua de mar), hasta valores de 1.7 a 10.2 kW flujos másicos de 10 kg/s (Gráfico 5-5).

<sup>&</sup>lt;sup>51</sup> AspenPLUS<sup>®</sup>



#### 5.3.2 Comportamiento con cambios en condiciones del medio ambiente

Dentro de los parámetros impredecibles y no controlados de la naturaleza, es importante considerar los cambios ambientales que repercuten directa o indirectamente las propiedades de las sustancias de nuestro interés. En el aerocondensador, las condiciones atmosféricas determinan el dato de entrada para el análisis.

Las propiedades del agua de enfriamiento, además de otra seria de factores, también están determinadas por las condiciones ambientales, por esta razón es necesario estar consciente del grado de las repercusiones que éstas podrían acarrear sobre nuestro sistema. Para el análisis de sensibilidad siguiente se varió, además del flujo másico del isopentano (para obtener diferentes potencias en la turbina), la temperatura de entrada del agua de enfriamiento de un valor de 5 hasta 30 °C. En los gráficos 5-6 y 5-7 se muestran por separado el impacto sobre la potencia de bombeo y la potencia neta.

<sup>&</sup>lt;sup>52</sup> AspenPLUS®



Gráfica 5-6 Potencia de bombeo vs flujo másico de agua de mar<sup>53</sup>



<sup>&</sup>lt;sup>53</sup> AspenPLUS



Al igual que el ventilador utilizado en la propuesta anterior, la bomba de circulación del agua de mar es un elemento auxiliar, por lo cual, un aumento en su potencia (que incrementa proporcionalmente con el flujo másico) tiene un efecto negativo sobre la

<sup>&</sup>lt;sup>54</sup> AspenPLUS

potencia neta. A diferencia del sistema de enfriamiento anterior, las curvas de potencia son representadas por un perfil lineal.

## 5.4 Conclusión

La temperatura y presión del agua de enfriamiento fueron consideradas de 25°C y 1 Bar de presión, respectivamente. Para determinar el incremento de presión suministrada por la bomba fue necesario evaluar rangos de longitud de tubería (de 100 a 1000 m) y de diámetros (de 2 a 4 pulgadas). Con las combinaciones posibles se determinó un incremento de presión máximo de 0.25 Bar, presión que se fijó para los cálculos posteriores.

El flujo másico de agua de enfriamiento mínimo para retirar una carga térmica de 107 kW, a una temperatura de 25°C, es de 3kg/s. Dicho valor de flujo másico dependerá de la variación de la temperatura del recurso marino. Bajo estas estas condiciones, para retirar un kW térmico, el agua de enfriamiento sufre un incremento de temperatura de 0.074°C.

Además de la dependencia directa con su temperatura inicial, el flujo másico de agua de enfriamiento depende de la potencia eléctrica producida por el Ciclo Binario. El cual requerirá una mayor o menor carga térmica y en consecuencia un menor o menor flujo másico. Así, la potencia neta producida podrá ir desde 1.2 a 9.5 kW, para un flujo másico de 10 kg/s a diferentes temperaturas de entrada, y desde 1.7 hasta 9.7 kW, para un flujo másico de 1 kg/s a diferentes temperaturas.

De acuerdo al análisis de sensibilidad realizado, las variaciones en la temperatura de entrada del agua de enfriamiento de entre los 5 y 30 °C, funcionamiento el ciclo a una carga máxima, producen perfiles de potencia de bombeo lineales de pendiente positiva, los cuales van desde los 0.19 hasta 0.4 kW.

A menor temperatura es necesario un mayor flujo de agua de enfriamiento y, en consecuencia, una mayor potencia de bombeo, por lo cual, el perfil de potencia neta presenta un comportamiento lineal con pendiente negativa, con un rango de 9.7 hasta 9.5 operando a su máxima capacidad.

## 6 Análisis Económico

Para la ejecución de proyectos en la Ingeniería, además de un análisis técnico que garantice su factibilidad física, es fundamental determinar la rentabilidad de dicho proyecto. En general, resultados positivos en cuanto a eficiencias y potencial energético se refiere implican, de manera parcial, la viabilidad del proyecto. Sin embargo, esto no significa que un recurso energético que sea factible de explotar garantice un retorno económico considerable (pensando en que garantice alguno). Por tales motivos, para obtener un análisis integral que permita tener una visión total y hacer una toma de decisión que no comprometa la prosperidad del proyecto después de su puesta en marcha, es necesario involucrar un análisis económico considerando la mayoría de las variables posibles durante la vida del mismo.

En éste análisis económico, se exigirá al CBEI a su máxima capacidad sometido a las condiciones ambientales más adversas que exigen un máximo de consumo energético de ventiladores (caso aerocondensador) y de bombas (caso condensador de contacto indirecto). Bajo ésta situación se determinará la energía neta producida (kW-hora) de acuerdo a los consumos propios de cada esquema de enfriamiento propuesto.

Con la producción energética de cada caso y la tarifa correspondiente de acuerdo a la Comisión Federal de Electricidad, se determinará el total que se pagaría mes con mes a CFE por dichos consumos obteniendo un total anual. Éste total se traduce como ahorros o ganancias durante la vida del proyecto que, en promedio, va desde los 20 a los 30 años.

Por otro lado, para obtener el costo inicial de cada uno de los equipos es necesario un dimensionamiento de los mimos, elegir los materiales de fabricación y las especificaciones de diseño, es decir, realizar un diseño mecánico. A pesar de no estar dentro de los alcances de éste trabajo de tesis, el diseño mecánico total de cada uno de los sistemas propuestos será anexado al final del trabajo, geometrías de los equipos, curvas de desempeño térmico e hidráulico y planos de fabricación serán especificados. Para alcanzar éste objetivo también se usará como herramienta de trabajo el Software AspenPlus, el cual cuenta con una base de datos que contempla costos de fabricación, costos de materiales y costos de operación por Kilowatt hora de acuerdo al código de diseño ASME Sec VII Div 1 y el estándar Americano ANSI.

Con base en lo anterior se puede determinar la inversión inicial necesaria para la puesta en marcha el Ciclo Binario de Evaporación Instantánea de acuerdo al sistema de enfriamiento a utilizar, así como también los costos de mantenimiento que se requerirán.

Finalmente se determinarán algunos indicadores económicos como la Tasa Interna de Retorno (TIR), el valor presente neto, el tiempo de retorno, relación beneficio costo, etc., permitiendo la evaluación de ambos escenarios que permita conclusiones con un mayor grado de certidumbre.

#### 6.1 Caso 1: Aerocondensador

De acuerdo a la publicación en el Diario Oficial el martes 22 de mayo de 2012, en dónde la Comisión Reguladora de Energía expide las Reglas Generales de Interconexión al Sistema Eléctrico Nacional para generadores o permisionarios con fuentes de energías alternas o de cogeneración, se considera generación en pequeña escala a aquella central generadora con capacidad de hasta 10 kW (uso residencial) y de hasta 30 kW en uso general de baja tensión. Por lo cual se considerarán los cargos mensuales por energía en pesos por kilowatt hora (\$/kWh) establecidos en la Tarifa 3.<sup>55</sup>

| Tarifa 3  |           |                  |        |        |        |        |        |        |        |        |        |        |
|-----------|-----------|------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| CARGO PO  | R DEMAND  | A ( <b>s/kw)</b> |        |        |        |        |        |        |        |        |        |        |
| Dic./2014 | Ene.      | Feb.             | Mar.   | Abr.   | May.   | Jun.   | Jul.   | Ago.   | Sep.   | Oct.   | Nov.   | Dic.   |
| 242.01    | 241.84    | 245.42           | 246.57 | 247.68 | 249.24 | 250.11 | 250.91 | 252.11 | 254.35 | 257.63 | 258.69 | 258.66 |
| CARGO PO  | R ENERGÍA | (\$/KWH)         |        |        |        |        |        |        |        |        |        |        |
| 1.699     | 1.624     | 1.569            | 1.487  | 1.416  | 1.395  | 1.364  | 1.356  | 1.366  | 1.452  | 1.405  | 1.340  | 1.242  |
|           |           |                  |        |        |        | _      |        |        |        |        |        |        |



En el caso específico del aerocondensador se requiere una potencia de 3.129 kW para su operación, dicho consumo no será considerado como consumo extra en la producción dado que se considerara dentro de los costos de operación. Es importante mencionar que, en ambos sistemas de enfriamiento se diseñó la planta para una generación de 10 kW, ya contemplando las bombas inherentes al CBEI, por lo tanto, la producción final dependerá únicamente de los consumos propios de cada sistema.

Al multiplicar la generación neta (10 kW) por el número de horas (24) se obtiene la energía en kW-hora. Si ahora se multiplica por la tarifa especificada y el número correspondiente de días, se puede determinar el ahorro mensual como lo muestra la siguiente tabla.

|                 | Enero   | Febrero | Marzo      | Abril   | Мауо      | Junio     |
|-----------------|---------|---------|------------|---------|-----------|-----------|
| Tarifa [\$/kWh] | 1.624   | 1.569   | 1.487      | 1.416   | 1.395     | 1.364     |
| Ahorro [\$]     | 8309.18 | 7250.89 | 7608.22    | 7011.24 | 7137.50   | 6753.76   |
|                 | Julio   | Agosto  | Septiembre | Octubre | Noviembre | Diciembre |
| Tarifa [\$/kWh] | 1.356   | 1.366   | 1.452      | 1.405   | 1.34      | 1.242     |
| Ahorro [\$]     | 6937.96 | 6989.12 | 7189.49    | 7188.67 | 6634.93   | 6354.68   |

Tabla 6-2 Ahorros mensuales correspondientes al CBEI 10 kW

En seguida se muestran los costos de fabricación, el costo de los materiales, especificando el costo del haz de tubos y el costo de los ventiladores, es decir, el costo inicial correspondiente al costo del equipo. Además, también se muestra el costo de operación correspondiente al costo por kW-hr.<sup>56</sup>

<sup>&</sup>lt;sup>55</sup> Tarifas de acuerdo a la Comisión Federal de Electricidad (CFE)

<sup>&</sup>lt;sup>56</sup> Base de datos del código de diseño ASME Sec VII Div 1 y el Estándar Americano ANSI

| Cost data                             |       | Dollar(US) |
|---------------------------------------|-------|------------|
| Labor cost                            |       | 7319       |
| Tube material cost                    |       | 1356       |
| Total material cost (excluding tubes) |       | 2685       |
| Total fan cost                        |       | 251        |
| Equipment cost                        |       | 11611      |
|                                       |       |            |
| Power cost per KWhr                   |       | 0.06       |
| Operating period                      | Hours | 8760       |
| Operating cost                        |       | 1645       |
|                                       |       |            |
| Operating and equipment cost          |       | 13256      |

Tabla 6-3 Costos de equipo y operación

Con el ingreso anual, los costos de inversión, costos de operación y mantenimiento<sup>57</sup>, es posible obtener tablas de valores corrientes y de valores presentes considerando una tasa de descuento del 15% y un tipo de cambio de 16.57 al 2 de diciembre del 2015.<sup>58</sup> Los gráficos más representativos son mostrados a continuación, el detalle de cálculo es mostrado en el Apéndice D.



Gráfica 6-1 Valor Presente Acumulado

<sup>&</sup>lt;sup>57</sup> Los costos de mantenimiento se consideraron como el 6% de la inversión inicial según (Smith, 2005), con una periodicidad de 5 años.

<sup>&</sup>lt;sup>58</sup> De acuerdo a la Bolsa Mexicana de Valores.



Gráfica 6-2 Tasa Interna de Retorno [TIR]

| RESULTADO NETO DE OPERACIÓN [RNO] | 615186.3086 | Pesos     |
|-----------------------------------|-------------|-----------|
| RELACIÓN B/C                      | 3.197529264 | veces     |
| VALOR PRESENTE NETO [VPN]         | 422792.0386 | mil Pesos |
| TASA INTERNA DE RETORNO [TIR]     | 49.90%      | %         |
| TIEMPO DE RETORNO                 | 2.547777043 | Años      |

#### 6.2 Caso 2: Intercambiador de tubo y coraza

El costo total de un intercambiador de calor puede ser visto como la combinación de dos costos principalmente: el costo inicial y el costo de operación. El costo inicial (o costo capital) es el costo de compra del intercambiador de calor. La estimación del costo de compra es usualmente basada en la estimación del área de transferencia de calor y el conocimiento y experiencia en la manufactura.

| Equipment                                            | Material of construction | Capacity<br>measure                                        | Base size<br>QB | Base cost<br>C <sub>B</sub> (\$) | Size<br>range  | Cost exponent |
|------------------------------------------------------|--------------------------|------------------------------------------------------------|-----------------|----------------------------------|----------------|---------------|
| Agitated reactor                                     | CS                       | Volume (m <sup>3</sup> )                                   | 1               | $1.15 \times 10^{4}$             | 1-50           | 0.45          |
| Pressure vessel                                      | SS                       | Mass (t)                                                   | 6               | $9.84 \times 10^{4}$             | 6-100          | 0.82          |
| Distillation column<br>(Empty shell)                 | CS                       | Mass (t)                                                   | 8               | 6.56 × 10 <sup>4</sup>           | 8-300          | 0.89          |
| Sieve trays<br>(10 trays)                            | CS                       | Column<br>diameter (m)                                     | 0.5             | $6.56 \times 10^{3}$             | 0.5-4.0        | 0.91          |
| Valve trays<br>(10 trays)                            | CS                       | Column<br>diameter (m)                                     | 0.5             | $1.80 \times 10^{4}$             | 0.5-4.0        | 0.97          |
| Structured packing<br>(5 m height)                   | SS (low<br>grade)        | Column<br>diameter (m)                                     | 0.5             | $1.80 \times 10^4$               | 0.5-4.0        | 1.70          |
| Scrubber<br>(Including random<br>packing)            | SS (low grade)           | Volume (m <sup>3</sup> )                                   | 0.1             | $4.92 \times 10^{3}$             | 0.1-20         | 0.53          |
| Cyclone                                              | CS                       | Diameter (m)                                               | 0.4             | $1.64 \times 10^{3}$             | 0.4-3.0        | 1.20          |
| Vacuum filter                                        | CS                       | Filter area (m <sup>2</sup> )                              | 10              | $8.36 \times 10^{4}$             | 10-25          | 0.49          |
| Dryer                                                | SS (low<br>grade)        | Evaporation rate<br>(kg H <sub>2</sub> O-h <sup>-1</sup> ) | 700             | $2.30 \times 10^5$               | 700-3000       | 0.65          |
| Shell-and-tube heat                                  | CS                       | Heat transfer<br>area (m <sup>2</sup> )                    | 80              | $3.28 \times 10^{4}$             | 80-4000        | 0.68          |
| Air-cooled heat<br>exchanger                         | CS                       | Plain tube heat<br>transfer<br>area (m <sup>2</sup> )      | 200             | 1.56 × 10 <sup>5</sup>           | 200-2000       | 0.89          |
| Centrifugal pump<br>(Small, including<br>motor)      | SS (high grade)          | Power (kW)                                                 | 1               | 1.97 × 10 <sup>3</sup>           | 1-10           | 0.35          |
| Centrifugal pump<br>(Large, including<br>motor)      | CS                       | Power (kW)                                                 | 4               | $9.84 \times 10^{3}$             | 4-700          | 0.55          |
| Compressor<br>(Including motor)                      |                          | Power (kW)                                                 | 250             | $9.84 \times 10^4$               | 250-10,000     | 0.46          |
| Fan<br>(Including motor)                             | CS                       | Power (kW)                                                 | 50              | $1.23 \times 10^{4}$             | 50-200         | 0.76          |
| Vacuum pump<br>(Including motor)                     | CS                       | Power (kW)                                                 | 10              | $1.10 \times 10^{4}$             | 10-45          | 0.44          |
| Electric motor                                       |                          | Power (kW)                                                 | 10              | $1.48 \times 10^{3}$             | 10-150         | 0.85          |
| Storage tank<br>(Small atmospheric)                  | SS (low<br>grade)        | Volume (m <sup>3</sup> )                                   | 0.1             | $3.28 \times 10^{3}$             | 0.1-20         | 0.57          |
| Storage tank<br>(Large atmospheric)                  | CS                       | Volume (m <sup>3</sup> )                                   | 5               | $1.15 \times 10^{4}$             | 5-200          | 0.53          |
| Silo                                                 | CS                       | Volume (m <sup>3</sup> )                                   | 60              | $1.72 \times 10^{4}$             | 60-150         | 0.70          |
| Package steam boiler<br>(Fire-tube boiler)           | CS                       | Steam<br>generation<br>(kg·h <sup>-1</sup> )               | 50,000          | 4.64 × 10 <sup>5</sup>           | 50,000-350,000 | 0.96          |
| Field erected<br>steam boiler<br>(Water-tube boiler) | CS                       | Steam<br>generation<br>(kg·h <sup>-1</sup> )               | 20,000          | 3.28 × 10 <sup>5</sup>           | 10,000-800,000 | 0.81          |
| Cooling tower<br>(Forced draft)                      |                          | Water flowrate<br>(m <sup>3</sup> ·h <sup>-1</sup> )       | 10              | $4.43 \times 10^{3}$             | 10-40          | 0.63          |

CS = carbon steel; SS (low grade) = low-grade stainless steel, for example, type 304; SS (high grade) = high-grade stainless steel, for example, type 316 Tabla 6-4 Correlaciones de costo capital para capacidades de equipos típicas Robin Smith en su libro *Chemical Process Design and Integration* desarrolla una ecuación que puede ser usada para estimar el costo capital de una gama de equipos industriales para nuevos diseños. De acuerdo al equipo a diseñar son consideradas las correlaciones de costo capital descritas en la tabla 6-4 junto con la siguiente ecuación.

$$PC = C_B \left(\frac{Q}{Q_B}\right)^M \tag{24}$$

Donde:

PC = Costo de compra [Dolares Americanos]

 $C_B = Costo \ base \ [Dolares \ Americanos]$ 

Q = Capacidad

 $Q_B = Tamaño \ base$ 

M = Exponente de costo

Debido a que el costo de compra también depende de la presión de operación y temperatura, así como también del material de construcción, una expresión más rigurosa debería ser usada para una mejor estimación del costo inicial (Smith, 2005).

$$IC = \delta_M \delta_P \delta_T PC \tag{25}$$

La tabla siguiente muestra los diferentes valores que toman los factores para el caso específico del intercambiaor de calor de tubo y coraza.

| Material of construction  | Correction factor $\delta_M$ |
|---------------------------|------------------------------|
| CS shell and tubes        | 1                            |
| CS shell, aluminium tubes | 1.3                          |
| CS shell, monel tubes     | 2.1                          |
| CS shell, SS tubes        | 1.7                          |
| SS shell and tubes        | 2.9                          |
| Design pressure (Pa)      | Correction factor $\delta_P$ |
| 1000                      | 2                            |
| 10 000                    | 1.3                          |
| 50 000-700 000            | 1                            |
| 5 000 000                 | 1.5                          |
| 10 000 000                | 1.9                          |
| Design temperature (°C)   | Correction factor $\delta_T$ |
| 0-100                     | 1                            |
| 300                       | 1.6                          |
| 500                       | 2.1                          |

Tabla 6-5 Factores de costo capital

Para éste caso de estudio, se utilizará la base de datos de costos de equipos contenida en el Software AspenPLUS<sup>®</sup> para dar cierta uniformidad de costos con el caso del aerocondensador. Sin embargo, el software AspenPLUS<sup>®</sup> solo contiene el costo inicial del intercambiador de calor de tubo y coraza, no incluye costos de operación ni de mantenimiento. Además, no incluye datos económicos de la bomba de que utilizará para transportar el recurso marino. Por dichas razones, se utilizarán las correlaciones anteriores para el caso de la bomba. Del mismo modo que el caso aerocondensador, se contemplará el 6% de la inversión inicial como gastos de mantenimiento<sup>59</sup>, difiriendo en su periodicidad, cada 4 años.

El costo de operación es gobernado por el requerimiento de la potencia de bombeo que es requerido para conducir los fluidos frio y caliente a través del intercambiador. El costo de operación puede ser determinado de la ecuación (Sinnot, 1996):

$$OC = \frac{(E_s + E_t) x \, op \, x \, ec}{1000} \tag{26}$$

Donde  $E_s$  and  $E_t$  son las potencias de bombeo requeridas en Watts por los lados de la coraza y de los tubos respectivamente, *op* es el periodo de operación en horas y *ec* es el costo de la electricidad.

Presión de bombeo lado coraza [W]: 481.5

Presión de bombeo lado tubo [W]: 331.4

Dado que la presión del lado de los tubos corresponde a la presión de la bomba de condensación, ya se encuentra considerada en el análisis termodinámico del CBEI, de este modo, el costo de operación dependerá únicamente de la potencia de bombeo de la coraza. De acuerdo a la tarifa 3<sup>60</sup> correspondiente a cada mes y cada uno de los días con los que éste cuenta, se obtiene la siguiente tabla:

|                                  | Enero  | Febrero | Marzo      | Abril   | Мауо      | Junio     |
|----------------------------------|--------|---------|------------|---------|-----------|-----------|
| Tarifa [\$/kWh]                  | 1.624  | 1.569   | 1.487      | 1.416   | 1.395     | 1.364     |
| Costo Ope. [\$]                  | 581.78 | 507.68  | 532.70     | 490.90  | 499.74    | 472.87    |
|                                  | Julio  | Agosto  | Septiembre | Octubre | Noviembre | Diciembre |
| Tarifa [\$/kWh]                  | 1.356  | 1.366   | 1.452      | 1.405   | 1.34      | 1.242     |
| Costo Ope. [\$]                  | 485.77 | 489.35  | 503.38     | 503.32  | 464.55    | 444.93    |
| COSTO DE OPERACIÓN ANUAL [Pesos] |        |         |            |         | 5976.96   |           |

Tabla 6-6 Costos de operación mensual

<sup>&</sup>lt;sup>59</sup> (Smith, 2005).

<sup>&</sup>lt;sup>60</sup> Tarifa de la Comisión Federal de Electricidad.

Una vez determinados la inversión inicial total (condensador de tubo y coraza y bomba), los costos de operación y los costos de mantenimiento se procede a obtener los parámetros económicos que mejor describen el comportamiento en el tiempo de nuestra propuesta. Los gráficos del valor presente neto acumulado (en pesos) y de la tasa interna de retornos son mostradas a continuación. Los detalles de los cálculos realizados son expuestos en el Apéndice D.



Gráfica 6-3Valor presente neto acumulado



Gráfica 6-4 Tasa interna de retorno

| RESULTADO NETO DE OPERACIÓN [RNO] | 750880.5102 | Pesos     |
|-----------------------------------|-------------|-----------|
| RELACIÓN B/C                      | 3.219813944 | veces     |
| VALOR PRESENTE NETO               | 517674.3302 | mil Pesos |
| TASA INTERNA DE RETORNO [TIR]     | 50.08%      | %         |
| TIEMPO DE RETORNO                 | 2.529294996 | Años      |

Finalmente, se muestra un resumen de análisis de rentabilidad del proyecto que nos permitirá realizar una segunda conclusión sobre cual sistema propuesta es más conveniente desde un punto de vista más completo (técnico-económico).

# 7 Análisis de Resultados y Conclusiones

Mediante un análisis de primera y segunda ley de la termodinámica se calcularon las eficiencias térmicas y de utilización que caracterizan al CBEI sin importa el flujo másico de acuerdo a condiciones de separación de 104.3 °C correspondiente una presión de 7.76 Bar. Obteniéndose valores de 10.3 % y 23% respectivamente. Valores que ubican al CBEI por encima del promedio de los Ciclos Binarios en términos de eficiencias

Dada las propiedades de cada uno de los fluidos de enfriamiento, es posible suponer que se requiera un menor flujo de agua que de aire como fluido de enfriamiento, bajo las mismas condiciones de temperatura y presión. Por cada kilowatt térmico que es retirado del fluido de trabajo, el aire incrementa su temperatura 0.22°C, mientas que el agua incrementa 0.074°C. Entre otros factores, esto se podría explicar en primera instancia, por la diferencia entre calores específicos de dichas sustancias.

Ambos sistemas de enfriamiento fueron sometidos a un análisis para determinar los posibles escenarios que podrían presentarse de acuerdo a las variaciones atmosféricas, las cuales determinaron las condiciones iniciales de los fluidos utilizados en cada caso, con las cuales fueron calculadas las potencias requeridas para su operación. De este modo, los rangos de temperatura y presión evaluados, así como también el flujo másico, dependieron de las propiedades de cada uno de los fluidos y, como resultado, fueron diferentes. Para la propuesta de aerocondensador, las condiciones del aire de entrada fueron variadas desde los 10 °C hasta los 40°C, para rangos de flujo másico de 4.5 kg/s a 10 kg/s, sin embargo, para el último flujo de 10 kg/s, el cambio de temperatura no representó un cambio significativo en el consumo energético del sistema de enfriamiento a partir de los 35 °C, mismo fenómeno que se presentó para temperaturas menores de 10°C hasta los 5°C. Mientras que, en la propuesta de condensación con agua marina, la temperatura del agua de enfriamiento fue evaluada de los 5°C hasta los 30°C para un rango de flujo másico que va desde 1 kg/s hasta los 10 kg/s.

Las curvas de consumo energético de las dos propuestas de sistemas de enfriamiento presentan tendencias distintas, por un lado, tenemos una curva exponencial que describe la demanda energética de los ventiladores con valores de 0.3 kW hasta 3.6 kW. Por otro lado, la energía requerida por el sistema de enfriamiento con agua de mar, correspondiente a la potencia de bombeo va desde 0.2 kW hasta 0.4 kW con una tendencia lineal. Como una conclusión preliminar, considerando únicamente el análisis técnico realizado, la propuesta de condensación con agua marina representa una mejor alternativa dado que el consumo energético, para las condiciones ambientales más adversas y para las óptimas, es casi igual y considerablemente menor en el condensador de tubos y coraza, respectivamente.

Para la realización del análisis de rentabilidad del proyecto con cada uno de los sistemas de enfriamiento propuestos, fue necesario considerar los costos iniciales precargados del Software AspenPLUS<sup>®</sup> dando una mayor uniformidad en cuanto a precios se refiere. En el caso del Aerocondensdor también se incluyeron los gastos de operación, mientras que, para el condensador de tubo y coraza, fue necesario recurrir a correlaciones empíricas desarrolladas por Robin Smith (Smith, 2005).

Entre los costos iniciales existe una diferencia considerable, igual a 40,810 pesos. Siendo el condensador de contacto directo el límite superior con un costo de 233,206.13 pesos. Sin embargo, dada las características de cada uno de los sistemas, el aerocondensador requiere un 78% más, en cuanto a gastos de operación se refiere. Esto se debe al consumo energético de los ventiladores que impulsan el fluido de enfriamiento, representando alrededor del 3.4 % de la energía producida por el CBEI. Por otro lado, dadas las propiedades altamente corrosivas que presenta el agua de mar, la periodicidad del mantenimiento al que debe de ser sometido el condensador de tubo y coraza es más frecuente y, en este caso, de mayor costo, además de requerir un sistema de bombeo que repercute directamente en el gasto inicial.

Los costos de mantenimiento y de operación, son dos factores determinantes en la elección del tipo de sistema de enfriamiento que debe ser utilizado. Es importante mencionar que ningún ciclo de generación eléctrica es igual a otro, por lo cual, siempre será necesario un análisis particular de cada caso que arroje datos característicos propios del sistema, dando las bases fundamentales para una correcta toma de decisión.

Con el análisis técnico antes realizado, se podía discernir una diferencia notable del CBEI trabajando con uno u otro sistema de enfriamiento dado el alto consumo energético de los ventiladores del aerocondensador. Sin embargo, analizando los indicadores económicos, dicha diferencia empieza a ser cada vez menor. La relación beneficio costo varía apenas en un 0.7%, las ganancias presentan una diferencia del 20% (\$95,000.00), la tasa interna de retorno es prácticamente la misma para el aerocondensador y condensador de tubo y coraza, esto es, del 49.9% y 50.08% respectivamente, y el tiempo en el que inicia la retroactividad económica varían apenas en 15 días aproximadamente. Los factores más importantes que participan en ésta balance económico son, los costos de mantenimiento y los equipos auxiliares que intervienen en el costo inicial del condensador de tubo y coraza.

Considerando todos los puntos antes enumerados, es posible realizar una conclusión que no excluya las posibilidades de uno u otro sistema, es decir, para éste caso de estudio en particular, la rentabilidad económica del proyecto marca una diferencia entre las propuestas que favorece al intercambiador de tubo y coraza. Sin embargo, dicha diferencia no es tan notable como se esperaría, por lo cual, es necesario considerar un tercer factor, determinar el sitio en el cual será instalado. Aun cuando no se tenga disponibilidad del agua de mar, el proyecto es muy atractivo técnica y económicamente para su ejecución.

## 8 Bibliografía

- Al-Gagawi, J., Said, S., & Zubair, S. (2005). Assessment of currente methods in determining fouling growth in heat exchanger. *International Journal of Heat Exchanger*, 153-164.
- Armstead, C. (1993). Energía Geotérmica.
- Baumann, K. (1921). Some Recent Developments in Large Steam Turbine Practice.
- DiPippo, R. (2012). *Geothermal power Plants: Principles, Aplications, Case Studies and Environmental Impact.* North Dartmouth, Massachusetts: Elsevier.
- Energy Engineering. (2 de 11 de 2015). *What-When-How*. Obtenido de https://what-when-how.com
- Franco, A., & Villani, M. (s.f.). *Optimal Design of Binary Cycle power Plants for Water-Dominated, Medium-Temperature Geothermal Fiels.* Pisa, Italy.
- Fridleifsson, I. (2001). Geothermal energy for the benefit of the people. *Renewable and sustainable energy reviews*, 299-312.
- Gnielinski, V. (1988). Forced Convection in Ducts. *Heat Exchanger Design Hanbook*.
- Gupta, H., & Roy, S. (2007). *Geothermal Energy: An alternative resource for the 21st century.*
- Henry, J. (1988). Headers, nozzles and tornarounds. En *Heat Exchanger Design Handbook*. New York: Hemisphere Publishing Corp.
- Huttrer, G. W. (2001). The status of world gothermal power generation 1995-2000. *Geothermics*, 1-27.
- Kent, R. T. (1938). Mechanical Engineers Handbook. New York.
- Kröger, D. G. (2004). Air cooled heat exchanger and cooling towers. thermal flow performance evaluation and design. Tulsa, Oklahoma: PennWell Corporation.
- Li, M., & Lior, N. (2014). Comparative Analysis of Power Plant Options for Enhanced Geothermal Systems (EGS). *Energies*, 8427-8445.
- Lund, J., & Freeston, D. (2001). Worldwide direct uses of geothermal energy 2000. *Geothermics*, 29-68.
- Nesta, J., & Bennett, C. (2004). Reduce fouling in shell-tube heat exchangers. *Hydrocarbon Processing*, 21-37.
- Shah, R., & Sckulic|, D. (2003). Fundamentals of heat exchanger design.
Sinnot, R. (1996). Coulson and Richardson's Chemical Engineering.

- Smith, R. (2005). Chemical Process Design and Integration.
- SPX Cooling Technologies, Inc. (2009). *Cooling Tower Fundamentals*. Overland Park, Kansas USA.
- Tate, E. N., & Sieder, G. (1936). Heat Transfer and Pressure Drop of liquids in Tubes. Industrial and Engineering Chemistry, 1429-1435.
- TEMA. (1999). Standards of the Tubular Exchanger Manufacturers Association. Ney York.
- White, D. (1974). Diverse Origins of hydrothermal fluids. *Economic Geology*, 954-973.

Young, C. Y., & Agnon, S. (1952). *Heating, Piping, Air Conditioning.* 

## **Apéndice** A

### Gradiente Adiabático Seco (Dry Adiabatic Lapse Rate-DALR)

El desempeño de los intercambiadores de calor enfriados por aire y torres de enfriamiento es afectado por los cambios en las condiciones ambientales. Cambios en temperatura, humedad, viento, lluvia y radiación solar también afectarán en menor o mayor medida. Por lo tanto, todas estas consideraciones deben ser tomadas en cuenta al diseñar estos tipos de sistemas de enfriamiento.

La atmósfera es una mezcla de gases de la cual el nitrógeno y oxígeno son los principales constituyentes. También contiene pequeñas cantidades de vapor de agua y otros gases, incluyendo dióxido de carbono, hidrógeno, helio y gases inertes como argón, kriptón, neón, etc. La variación de las propiedades de los constituyentes es mínima en un rango de altitudes involucradas en la aerodinámica convencional; además, la atmosfera puede ser considerada como un gas homogéneo y de composición uniforme.

Considere una pequeña fracción de aire que puede ser movido arriba o abajo en un campo de presión atmosférica. Si éste proceso es adiabático, no habrá transferencia de calor al aire ni por conducción ni por radiación, por lo tanto, el cambio de temperatura será el resultado únicamente por el cambio de presión.

El gradiente de presión en un campo gravitacional está dado por:

$$\frac{dp}{dz} = -\rho g \tag{27}$$

Para un proceso isentrópico

$$\frac{p}{\rho^{\gamma}} = constante \tag{28}$$

La densidad del aire puede ser expresada en función de la ley de gas ideal como

$$\rho = \frac{p}{RT} \tag{29}$$

Sustituyendo ecuación 88 en ecuación 87 y derivando con respecto a la altura encontramos

$$\frac{1-\gamma}{\gamma p}\frac{dp}{dz} + \frac{1}{T}\frac{dT}{dz} = 0 \tag{30}$$

Combinado las ecuaciones 88, 89 y 90, el gradiente de temperatura puede ser expresado como:

$$\frac{dT}{dZ} = -\frac{g(\gamma - 1)}{\gamma R} \tag{31}$$

La aceleración de la gravedad (g) es una función de la latitud y altitud. Sin embargo, los cambios en sus valores son tales que no afectan el efecto sobre en el desempeño de los intercambiadores de calor enfriados con aire es mínimo.

Para aire seco con  $\gamma=rac{c_p}{c_v}=1.4,$   $R=287.08rac{J}{kg^{\circ K}}$  y  $g=9.8~m/s^2$ 

$$\frac{dT}{dz} = -0.00975 \,^{\circ} \frac{K}{m}$$

Éste gradiente de temperatura es conocido como el gradiente adiabático seco (Dry Adiabatic Lapse Rate-DALR).

# Apéndice B (Aeroenfriador)

## Hoja de especificación API

|                                               | Air-Cooled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l Heat Exchang                                                                                                                                                                                                                                                                                   | er Specific                              | ation Sheet                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                  |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6                                             | Size & Type 3.1 / 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m Type                                                                                                                                                                                                                                                                                           | Forced                                   | Numl                                                                                                                                                                                                                                      | berof Bays 1                                                                                                                                                                                                                                     |
| 7                                             | Surf/Unit-Finned Tube 233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.5 <mark>m²</mark> Barear                                                                                                                                                                                                                                                                       | ea/bundle                                | 9.9 <mark>m²</mark>                                                                                                                                                                                                                       | Area ratio 23.49                                                                                                                                                                                                                                 |
| 8                                             | Heat exchanged 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ′.6 <b>k₩</b>                                                                                                                                                                                                                                                                                    | MT                                       | D, Eff                                                                                                                                                                                                                                    | 20.35 °C                                                                                                                                                                                                                                         |
| 9                                             | Transfer Rate-Finned 28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bare, Service                                                                                                                                                                                                                                                                                    | 532 Clea                                 | an                                                                                                                                                                                                                                        | 674.2 W/(m² K)                                                                                                                                                                                                                                   |
| 10                                            | PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ERFORMANCE DA                                                                                                                                                                                                                                                                                    | TA - TUBE SI                             | IDE                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                  |
| 11                                            | Fluid Circulated 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                  |                                          |                                                                                                                                                                                                                                           | In/Out                                                                                                                                                                                                                                           |
| 12                                            | Total Fluid Entering kg/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2885                                                                                                                                                                                                                                                                                           | Density, Lia                             | ka/m³                                                                                                                                                                                                                                     | /618.01                                                                                                                                                                                                                                          |
| 13                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | In/Out                                                                                                                                                                                                                                                                                           | Density, Vap                             | ka/m <sup>3</sup>                                                                                                                                                                                                                         | 5.44/                                                                                                                                                                                                                                            |
| 14                                            | Temperature *C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73.69/49.25                                                                                                                                                                                                                                                                                      | Specific Heat.                           | Lia kJ/(ka K)                                                                                                                                                                                                                             | /2.386                                                                                                                                                                                                                                           |
| 15                                            | Liquid ka/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0/0.2885                                                                                                                                                                                                                                                                                         | Specific Heat.                           | Van kJ/(kg K)                                                                                                                                                                                                                             | 1.918/                                                                                                                                                                                                                                           |
| 16                                            | Vanor kg/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2885/0                                                                                                                                                                                                                                                                                         | Therm Cond I                             | in W/(m K)                                                                                                                                                                                                                                | /0.0979                                                                                                                                                                                                                                          |
| 17                                            | Noncondensable kg/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0/0                                                                                                                                                                                                                                                                                              | Therm Cond \                             | /an W/(mK)                                                                                                                                                                                                                                | 0.02047                                                                                                                                                                                                                                          |
| 18                                            | Steam kg/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                                                                                                                                                                                                                                                                                                | Freeze Point                             | *C                                                                                                                                                                                                                                        | 0.02017                                                                                                                                                                                                                                          |
| 19                                            | Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                                                                                                                                                                                                                                                                                | Bubble / Dewu                            | noint °C                                                                                                                                                                                                                                  | 49 74/ 49 74                                                                                                                                                                                                                                     |
| 20                                            | Molecular wt. Van                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 72.15/                                                                                                                                                                                                                                                                                           | Latent heat                              | k.l/ka                                                                                                                                                                                                                                    | /                                                                                                                                                                                                                                                |
| 21                                            | Molecular wt, YGP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.107                                                                                                                                                                                                                                                                                           | Inlet pressure (                         | abs) har                                                                                                                                                                                                                                  | 2.055                                                                                                                                                                                                                                            |
| 22                                            | Viscositu Lia mPas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /0.1615                                                                                                                                                                                                                                                                                          | Pres Drop Allo                           | w/Calc Pa                                                                                                                                                                                                                                 | 20550 / 5276 6                                                                                                                                                                                                                                   |
| 23                                            | Viscositu Van mPa s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00797                                                                                                                                                                                                                                                                                          | Fouling resistar                         |                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                |
| 24                                            | Fielderly, Fup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PERFORMANCE DA                                                                                                                                                                                                                                                                                   |                                          | )F                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                  |
| 25                                            | Air Quantitu Total 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                  |                                          | itude                                                                                                                                                                                                                                     | m                                                                                                                                                                                                                                                |
| 26                                            | Air Quantity, Fotal<br>Air Quantitu/Ean 4.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 Kgrs<br>13 m3/e                                                                                                                                                                                                                                                                               |                                          | mperature In                                                                                                                                                                                                                              | 25 <b>*</b> C                                                                                                                                                                                                                                    |
| 20                                            | Static Pressure 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 Pa                                                                                                                                                                                                                                                                                             | Te                                       | mperature Out                                                                                                                                                                                                                             | 35.72 °C                                                                                                                                                                                                                                         |
| 28                                            | Face Velocitu 4.36 m/s Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ve velocitu 516                                                                                                                                                                                                                                                                                  | kale/m² De                               | niperatare otat                                                                                                                                                                                                                           | 0 *C                                                                                                                                                                                                                                             |
| 20                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SIGN-MATERIALS                                                                                                                                                                                                                                                                                   | CONSTRUCT                                |                                                                                                                                                                                                                                           | • •                                                                                                                                                                                                                                              |
| 20                                            | Design pressure 3 her                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tast Pressure                                                                                                                                                                                                                                                                                    | Code                                     | Design temperatur                                                                                                                                                                                                                         | • 200 <b>*</b> C                                                                                                                                                                                                                                 |
| 31                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Heade                                                                                                                                                                                                                                                                                            | <u></u>                                  | Design temperatar                                                                                                                                                                                                                         | Tube                                                                                                                                                                                                                                             |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                  | /I                                       |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                  |
| 32                                            | Size m 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tupe Box                                                                                                                                                                                                                                                                                         |                                          | Material                                                                                                                                                                                                                                  | Carbon Steel                                                                                                                                                                                                                                     |
| 32                                            | Size m 3.1<br>Number/bau 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type Box<br>Material Ca                                                                                                                                                                                                                                                                          | arbon Steel                              | Material<br>Specifications                                                                                                                                                                                                                | Carbon Steel                                                                                                                                                                                                                                     |
| 32<br>33<br>34                                | Size m 3.1<br>Number/bay 1<br>Tube Bows 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type Box<br>Material Ca<br>Passes 4                                                                                                                                                                                                                                                              | arbon Steel                              | Material<br>Specifications                                                                                                                                                                                                                | Carbon Steel                                                                                                                                                                                                                                     |
| 32<br>33<br>34<br>35                          | Size m 3.1<br>Number/bay 1<br>Tube Rows 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type Box<br>Material Ca<br>Passes 4<br>Plug Mat                                                                                                                                                                                                                                                  | arbon Steel                              | Material<br>Specifications<br>OD 25.4<br>No /Bun                                                                                                                                                                                          | Carbon Steel<br>Min 1.65 mm<br>56 Ing 25 m                                                                                                                                                                                                       |
| 32 33 34 35 36                                | Size m 3.1<br>Number/bay 1<br>Tube Rows 4<br>Arrangement<br>Bundles 1 par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type Box<br>Material Ca<br>Passes 4<br>Plug Mat.<br>Gasket Mat                                                                                                                                                                                                                                   | arbon Steel                              | Material<br>Specifications<br>OD 25.4<br>No./Bun<br>Pitch 60./ 5                                                                                                                                                                          | Carbon Steel<br>Min 1.65 mm<br>56 Lng 2.5 m<br>1.96 30 Degrees                                                                                                                                                                                   |
| 32 33 34 35 36 37                             | Size     m     3.1       Number/bay     1       Tube Rows     4       Arrangement       Bundles     1       Baus     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Type Box<br>Material Ca<br>Passes 4<br>Plug Mat.<br>Gasket Mat.<br>Corr Allow                                                                                                                                                                                                                    | arbon Steel                              | Material<br>Specifications<br>OD 25.4<br>No./Bun<br>Pitch 60 / 5                                                                                                                                                                          | Carbon Steel<br>Min 1.65 mm<br>56 Lng 2.5 m<br>1.96 30 Degrees<br>FIN                                                                                                                                                                            |
| 32334358378                                   | Size     m     3.1       Number/bay     1       Tube Rows     4       Arrangement       Bundles     1       Bays     1       par       Bays     1       Bundle frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Type Box<br>Material Ca<br>Passes 4<br>Plug Mat.<br>Gasket Mat.<br>Corr. Allow.<br>Inlet nozzle (11)                                                                                                                                                                                             | arbon Steel                              | Material<br>Specifications<br>OD 25.4<br>No./Bun<br>Pitch 60 / 5                                                                                                                                                                          | Carbon Steel<br>Min 1.65 mm<br>56 Lng 2.5 m<br>1.96 30 Degrees<br>FIN<br>ned                                                                                                                                                                     |
| 3334566788                                    | Size     n     3.1       Number/bay     1       Tube Rows     4       Arrangement       Bundles     1       Bays     1       Bays     1       Bundle frame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type Box<br>Material Ca<br>Passes 4<br>Plug Mat.<br>Gasket Mat.<br>Corr. Allow.<br>Inlet nozzle (1)<br>Outlet nozzle (1)                                                                                                                                                                         | mm<br>53.98 mm                           | Material<br>Specifications<br>OD 25.4<br>No./Bun<br>Pitch 60 / 5<br>Type G-finn<br>Material Alum                                                                                                                                          | Min         1.65 mm           56 Lng         2.5 m           11.96         30         Degrees           FIN                                                                                                                                      |
| 3333536338394                                 | Size         n         3.1           Number/bay         1           Tube Rows         4           Arrangement         4           Bundles         1         par           Bays         1         par           Bundle frame         4         4           MISCELLANEOUS         5         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Type Box<br>Material Ca<br>Passes 4<br>Plug Mat.<br>Gasket Mat.<br>Corr. Allow.<br>Inlet nozzle (1)<br>Outlet nozzle (1)<br>Special Nozzles                                                                                                                                                      | mm<br>53.98 mm<br>15.8 mm                | Material<br>Specifications<br>OD 25.4<br>No./Bun<br>Pitch 60 / 5<br>Type G-fini<br>Material Alum<br>OD 57 15                                                                                                                              | Min         1.65 mm           56 Lng         2.5 m           11.96         30         Degrees           FIN                                                                                                                                      |
| 33343383383944                                | Size         n         3.1           Number/bay         1           Tube Rows         4           Arrangement         4           Bundles         1         par           Bays         1         par           Bundle frame         4         4           Struct. Mount.         5         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Type Box<br>Material Ca<br>Passes 4<br>Plug Mat.<br>Gasket Mat.<br>Corr. Allow.<br>Inlet nozzle (1)<br>Outlet nozzle (1)<br>Special Nozzles<br>Bating.                                                                                                                                           | mm<br>53.98 mm<br>15.8 mm                | Material<br>Specifications<br>OD 25.4<br>No./Bun<br>Pitch 60 / 5<br>Type G-fini<br>Material Alum<br>OD 57.15                                                                                                                              | Min         1.65 mm           56 Lng         2.5 m           11.96         30         Degrees           FIN                                                                                                                                      |
| 33345633839444                                | Size         n         3.1           Number/bay         1           Tube Rows         4           Arrangement         9           Bundles         1         par           Bays         1         par           Bundle frame         9         1           Struct. Mount.         Struct. Mount.         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type Box<br>Material Ca<br>Passes 4<br>Plug Mat.<br>Gasket Mat.<br>Corr. Allow.<br>Inlet nozzle (1)<br>Outlet nozzle (1)<br>Special Nozzles<br>Rating<br>TI Pl                                                                                                                                   | mm<br>53.98 mm<br>15.8 mm                | Material<br>Specifications<br>OD 25.4<br>No./Bun<br>Pitch 60 / 5<br>U<br>Type G-fini<br>Material Alum<br>OD 57.15<br>No. 433 <b>#/m</b>                                                                                                   | Min         1.65 mm           56 Lng         2.5 m           11.96         30         Degrees           FIN                                                                                                                                      |
| 333456338394444                               | Size         n         3.1           Number/bay         1           Tube Rows         4           Arrangement         9           Bundles         1         par           Bays         1         par           Bays         1         par           Bundle frame         1         Struct. Mount.           Struct. Mount.         Surf.Prep           Louvers         Vibration Switches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type Box<br>Material Ca<br>Passes 4<br>Plug Mat.<br>Gasket Mat.<br>Corr. Allow.<br>Inlet nozzle (1)<br>Outlet nozzle (1)<br>Special Nozzles<br>Rating<br>TI Pl<br>Chem Cleaning                                                                                                                  | mm<br>53.98 mm<br>15.8 mm                | Material<br>Specifications<br>OD 25.4<br>No./Bun<br>Pitch 60 / 5<br>Type G-fini<br>Material Alum<br>OD 57.15<br>No. 433 <b>#/m</b><br>Code                                                                                                | Min         1.65 mm           56 Lng         2.5 m           1.96         30         Degrees           FIN                                                                                                                                       |
| 32 33 34 35 36 37 38 39 49 41 42 43 44        | Size     n     3.1       Number/bay     1       Tube Rows     4       Arrangement     4       Bundles     1       Bays     1       Bundle frame       MISCELLANEOUS       Struct. Mount.       Surf.Prep       Louvers       Vibration Switches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Type Box<br>Material Ca<br>Passes 4<br>Plug Mat.<br>Gasket Mat.<br>Corr. Allow.<br>Inlet nozzle (1)<br>Outlet nozzle (1)<br>Special Nozzles<br>Rating<br>TI Pl<br>Chem Cleaning<br>MECHANICAL E                                                                                                  | mm<br>53.98 mm<br>15.8 mm                | Material<br>Specifications<br>OD 25.4<br>No./Bun<br>Pitch 60 / 5<br>Type G-fin<br>Material Alum<br>OD 57.15<br>No. 433 #/m<br>Code<br>Stamp                                                                                               | Carbon Steel<br>Min 1.65 mm<br>56 Lng 2.5 m<br>1.96 30 Degrees<br>FIN<br>ned<br>inum 1060<br>Tks 0.28 mm<br>Design Temp *C<br>Specs                                                                                                              |
| 32 33 34 35 36 37 38 39 49 44 42 43 44 45     | Size     m     3.1       Number/bay     1       Tube Rows     4       Arrangement       Bundles     1       Bays     1       Bays     1       Bundle frame       MISCELLANEOUS       Struct. Mount.       Surf.Prep       Louvers       Vibration Switches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type Box<br>Material Ca<br>Passes 4<br>Plug Mat.<br>Gasket Mat.<br>Corr. Allow.<br>Inlet nozzle (1)<br>Outlet nozzle (1)<br>Special Nozzles<br>Rating<br>TI Pl<br>Chem Cleaning<br>MECHANICAL E<br>Driver Tupe                                                                                   | mm<br>53.98 mm<br>15.8 mm                | Material<br>Specifications<br>OD 25.4<br>No./Bun<br>Pitch 60 / 5<br>Type G-fin<br>Material Alum<br>OD 57.15<br>No. 433 #/m<br>Code<br>Stamp                                                                                               | Carbon Steel<br>Min 1.65 mm<br>56 Lng 2.5 m<br>1.96 30 Degrees<br>FIN<br>ned<br>inum 1060<br>Tks 0.28 mm<br>Design Temp °C<br>Specs                                                                                                              |
| 333356378394444444                            | Size     m     3.1       Number/bay     1       Tube Rows     4       Arrangement       Bundles     1       Bays     1       Bays     1       Bundle frame       MISCELLANEOUS       Struct. Mount.       Surf.Prep       Louvers       Vibration Switches       Fan,Mfr., Model       No /Bay     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Type Box<br>Material Ca<br>Passes 4<br>Plug Mat.<br>Gasket Mat.<br>Corr. Allow.<br>Inlet nozzle (1)<br>Outlet nozzle (1)<br>Special Nozzles<br>Rating<br>TI Pl<br>Chem Cleaning<br>MECHANICAL E<br>Driver, Type<br>Mfr                                                                           | mm<br>53.98 mm<br>15.8 mm                | Material<br>Specifications<br>OD 25.4<br>No./Bun<br>Pitch 60 / 5<br>Type G-fin<br>Material Alum<br>OD 57.15<br>No. 433 #/m<br>Code<br>Stamp                                                                                               | Carbon Steel<br>Min 1.65 mm<br>56 Lng 2.5 m<br>1.96 30 Degrees<br>FIN<br>ned<br>inum 1060<br>Tks 0.28 mm<br>Design Temp *C<br>Specs<br>ype                                                                                                       |
| 333456388894444444444444444444444444444444444 | Size         n         3.1           Number/bay         1           Tube Rows         4           Arrangement         8           Bundles         1         par           Bays         1         par           Bays         1         par           Bundles         1         par           Bays         1         par           Bundle frame         1         par           Struct. Mount.         1         Surf.Prep           Louvers         1         Vibration Switches           Fan,Mfr., Model         No./Bay         2 RPM           Dia         0.6096         m         Blade(s)                                                                                          | Type Box<br>Material Ca<br>Passes 4<br>Plug Mat.<br>Gasket Mat.<br>Corr. Allow.<br>Inlet nozzle (1)<br>Outlet nozzle (1)<br>Special Nozzles<br>Rating<br>TI PI<br>Chem Cleaning<br>MECHANICAL E<br>Driver, Type<br>Mfr.<br>No /Bau                                                               | mm<br>53.98 mm<br>15.8 mm                | Material<br>Specifications<br>OD 25.4<br>No./Bun<br>Pitch 60 / 5<br>Type G-fini<br>Material Alum<br>OD 57.15<br>No. 433 #/m<br>Code<br>Stamp<br>Speed Reducer, T<br>Mfr.&Model<br>No./Bay                                                 | Carbon Steel<br>Min 1.65 mm<br>56 Lng 2.5 m<br>1.96 30 Degrees<br>FIN<br>ned<br>inum 1060<br>Tks 0.28 mm<br>Design Temp °C<br>Specs<br>ype                                                                                                       |
| 333456338394444444444444444444444444444444444 | Size         n         3.1           Number/bay         1           Tube Rows         4           Arrangement         4           Bundles         1         par           Bays         1         par           Bays         1         par           Bundles frame         1         par           Bundle frame         1         par           Bundle frame         1         par           Bundle frame         1         par           Bundle frame         1         par           Struct. Mount.         Struct. Mount.         1           Surf.Prep         Louvers         1           Louvers         1         Par           Fan,Mfr., Model         No./Bay         2 RPM           Dia.         0.6096         m Blade(s)           Pitch         Angle         Angle                                                                                                                                          | Type Box<br>Material Ca<br>Passes 4<br>Plug Mat.<br>Gasket Mat.<br>Corr. Allow.<br>Inlet nozzle (1)<br>Outlet nozzle (1)<br>Special Nozzles<br>Rating<br>TI Pl<br>Chem Cleaning<br>MECHANICAL E<br>Driver, Type<br>Mfr.<br>No./Bay<br>BPM                                                        | mm<br>53.98 mm<br>15.8 mm                | Material<br>Specifications<br>OD 25.4<br>No./Bun<br>Pitch 60 / 5<br>Type G-fini<br>Material Alum<br>OD 57.15<br>No. 433 <b>#/m</b><br>Code<br>Stamp<br>Speed Reducer, T<br>Mfr.&Model<br>No./Bay<br>Bating                                | Carbon Steel          Min       1.65 mm         56 Lng       2.5 m         11.96       30       Degrees         FIN                                                                                                                              |
| 333456383994444444444444444444444444444444444 | Size         n         3.1           Number/bay         1           Tube Rows         4           Arrangement         8           Bundles         1         par           Bays         1         par           Bays         1         par           Bundles         1         par           Bays         1         par           Bundle frame         1         par           Struct. Mount.         Struct. Mount.         Struct. Mount.           Surf.Prep         Louvers         Vibration Switches           Fan,Mfr., Model         No./Bay         2 RPM           Dia.         0.6096         m         Blade(s)           Pitch         Angle         Blade(s)         Hub                                                                                                                                                                                                                                     | Type Box<br>Material Ca<br>Passes 4<br>Plug Mat.<br>Gasket Mat.<br>Corr. Allow.<br>Inlet nozzle (1)<br>Outlet nozzle (1)<br>Special Nozzles<br>Rating<br>TI Pl<br>Chem Cleaning<br>MECHANICAL E<br>Driver, Type<br>Mfr.<br>No./Bay<br>RPM<br>Enclosure                                           | mm<br>53.98 mm<br>15.8 mm                | Material<br>Specifications<br>OD 25.4<br>No./Bun<br>Pitch 60 / 5<br>Type G-fini<br>Material Alum<br>OD 57.15<br>No. 433 <b>#/m</b><br>Code<br>Stamp<br>Speed Reducer, T<br>Mfr.&Model<br>No./Bay<br>Rating<br>Batio                       | Carbon Steel          Min       1.65 mm         56 Lng       2.5 m         11.96       30       Degrees         FIN                                                                                                                              |
| 333456338394444444444                         | Size         m         3.1           Number/bay         1           Tube Rows         4           Arrangement         4           Bundles         1         par           Bays         1         par           Bays         1         par           Bundles         1         par           Bays         1         par           Bundle frame         1         par           Struct. Mount.         Surf.Prep         Louvers           Vibration Switches         1         Fan,Mfr., Model           No./Bay         2         RPM         Dia.           Dia.         0.6096         m         Blade(s)           Pitch         Angle         Blade(s)         Hub           bn/Ean         1         564         Min         Amb | Type Box<br>Material Ca<br>Passes 4<br>Plug Mat.<br>Gasket Mat.<br>Corr. Allow.<br>Inlet nozzle (1)<br>Outlet nozzle (1)<br>Outlet nozzle (1)<br>Special Nozzles<br>Rating<br>TI Pl<br>Chem Cleaning<br><b>MECHANICAL E</b><br>Driver, Type<br>Mfr.<br>No./Bay<br>RPM<br>Enclosure<br>V/Phase/Hz | arbon Steel<br>mm<br>53.98 mm<br>15.8 mm | Material<br>Specifications<br>OD 25.4<br>No./Bun<br>Pitch 60 / 5<br>Type G-fini<br>Material Alum<br>OD 57.15<br>No. 433 <b>#/m</b><br>Code<br>Stamp<br>Speed Reducer, T<br>Mfr.&Model<br>No./Bay<br>Rating<br>Ratio<br>Support            | Carbon Steel          Min       1.65 mm         56 Lng       2.5 m         11.96       30       Degrees         FIN                                                                                                                              |
| 333456383944444444444444                      | Size         m         3.1           Number/bay         1           Tube Rows         4           Arrangement         4           Bundles         1         par           Bays         1         par           Bays         1         par           Bundle frame         1         par           Bundle frame         1         par           Bundle frame         1         par           Struct. Mount.         Struct. Mount.         Struct. Mount.           Surf.Prep         Louvers         Vibration Switches           Fan,Mfr., Model         No./Bay         2 RPM           Dia.         0.6096         m         Blade(s)           Pitch         Angle         Blade(s)         Hub           hp/Fan         1.564         Min. Amb                                                                                                                                                                        | Type Box<br>Material Ca<br>Passes 4<br>Plug Mat.<br>Gasket Mat.<br>Corr. Allow.<br>Inlet nozzle (1)<br>Outlet nozzle (1)<br>Special Nozzles<br>Rating<br>TI Pl<br>Chem Cleaning<br><b>MECHANICAL E</b><br>Driver, Type<br>Mfr.<br>No./Bay<br>RPM<br>Enclosure<br>V/Phase/Hz                      | arbon Steel<br>mm<br>53.98 mm<br>15.8 mm | Material<br>Specifications<br>OD 25.4<br>No./Bun<br>Pitch 60 / 5<br>Type G-fini<br>Material Alum<br>OD 57.15<br>No. 433 #/m<br>Code<br>Stamp<br>Speed Reducer, T<br>Mfr.&Model<br>No./Bay<br>Rating<br>Ratio<br>Support<br>Louvers        | Carbon Steel          Min       1.65 mm         56 Lng       2.5 m         11.96       30       Degrees         FIN       ned         inum 1060       Tks       0.28 mm         Design Temp       *C         Specs       *         'ype       hp |
| 333356338394444444444444                      | Size     m     3.1       Number/bay     1       Tube Rows     4       Arrangement     Bundles     1       Bays     1     par       Bays     1     par       Bays     1     par       Bundle frame     MISCELLANEOUS       Struct. Mount.     Surf.Prep       Louvers     Vibration Switches       Fan,Mfr., Model     No./Bay       No./Bay     2 RPM       Dia.     0.6096       Blade(s)     Hub       hp/Fan     1.564 kW       Min. Amb       Control Action on Air Failure-       Dearsea     Control of Quitter Broceses                                                                                                                                                                                                                                                                                                                                                                                            | Type Box<br>Material Ca<br>Passes 4<br>Plug Mat.<br>Gasket Mat.<br>Corr. Allow.<br>Inlet nozzle (1)<br>Outlet nozzle (1)<br>Special Nozzles<br>Rating<br>TI Pl<br>Chem Cleaning<br>MECHANICAL E<br>Driver, Type<br>Mfr.<br>No./Bay<br>RPM<br>Enclosure<br>V/Phase/Hz                             | arbon Steel mm 53.98 mm 15.8 mm          | Material<br>Specifications<br>OD 25.4<br>No./Bun<br>Pitch 60 / 5<br>Type G-fini<br>Material Alum<br>OD 57.15<br>No. 433 <b>#/m</b><br>Code<br>Stamp<br>Speed Reducer, T<br>Mfr.&Model<br>No./Bay<br>Rating<br>Ratio<br>Support<br>Louvers | Carbon Steel          Min       1.65 mm         56 Lng       2.5 m         11.96       30       Degrees         FIN       ned         inum 1060       Tks       0.28 mm         Design Temp       *C         Specs       *         fype       hp |
| 333456338344444444444444                      | Size         n         3.1           Number/bay         1           Tube Rows         4           Arrangement         8           Bundles         1         par           Bays         1         par           Bays         1         par           Bundles frame         MISCELLANEOUS           Struct. Mount.         Suff.Prep           Louvers         Vibration Switches           Vibration Switches         Struct. Model           No./Bay         2 RPM           Dia.         0.6096         Blade(s)           Pitch         Angle           Blade(s)         Hub           hp/Fan         1.564         Min. Amb           Control Action on Air Failure-         Degree Control of Outlet Process Tem           Bericculation         Air Failure-         Degree Control of Outlet Process Tem                                                                                                            | Type Box<br>Material Ca<br>Passes 4<br>Plug Mat.<br>Gasket Mat.<br>Corr. Allow.<br>Inlet nozzle (1)<br>Outlet nozzle (1)<br>Special Nozzles<br>Rating<br>TI Pl<br>Chem Cleaning<br><b>MECHANICAL E</b><br>Driver, Type<br>Mfr.<br>No./Bay<br>RPM<br>Enclosure<br>V/Phase/Hz<br>perature          | mm<br>53.98 mm<br>15.8 mm                | Material<br>Specifications<br>OD 25.4<br>No./Bun<br>Pitch 60 / 5<br>Type G-fin<br>Material Alum<br>OD 57.15<br>No. 433 #/m<br>Code<br>Stamp<br>Speed Reducer, T<br>Mfr.&Model<br>No./Bay<br>Rating<br>Ratio<br>Support<br>Louvers         | Carbon Steel Min 1.65 mm 56 Lng 2.5 m 1.96 30 Degrees FIN ned inum 1060 Tks 0.28 mm Design Temp *C Specs ype hp hp                                                                                                                               |

#### Geometría de intercambio

| Unit                        |    |        |                                |                |               |
|-----------------------------|----|--------|--------------------------------|----------------|---------------|
| Bays in parallel per unit   |    | 1      | A or V frame                   |                | None          |
| Bundles in parallel per bay |    | 1      | Tube inclination               |                | 0             |
| Fans per bay                |    | 2      | Tube side flow orientation     | Cou            | inter-current |
| Bay width                   | m  | 1.02   | Outside stream flow direction  | Degrees        | 0             |
| Bundle width                | m  | 0.87   | Fan diameter                   | m              | 0.6096        |
| Unit length                 | m  | 3.1    | Plenum depth                   | m              | 0.2438        |
| Unit width                  | m  | 1.02   | Ground clearance               | m              | 0.9144        |
| Unit height                 | m  | 0.2078 | Distance from bundle to exchan | gerexit m      | 0             |
| Bundle                      |    |        |                                |                |               |
| Tubes per bundle            |    | 56     | Number of tube types           |                | 1             |
| Tube rows per bundle        |    | 4      | Tube row arrangement           | Staggered-even | rows to right |
| Tubes per row per bundle    |    | 14     | Tube transverse pitch          | mm             | 60            |
| Tube passes per bundle      |    | 4      | Tube row longitudinal pitch    | mm             | 51.96         |
| Total tube length           | m  | 2.5    | Layout angle                   | Degrees        | 30            |
| Effective tube length       | m  | 2.2242 | Area ratio finned to bare      |                | 23.49         |
| Tubesheet(s) thickness      | mm | 50.8   | Total surface effectiveness    |                | 0.81          |
| Tube support width          | mm | 25     | External enhancement           |                |               |
| Number of tube supports     |    | 9      | Internal enhancement           |                |               |
| Bundle face area            | m² | 1.9    |                                |                |               |

## Detalles de ventilador

| Fan                              |           |        |                               |                          |            |            |         |      |       |
|----------------------------------|-----------|--------|-------------------------------|--------------------------|------------|------------|---------|------|-------|
| Draft type                       |           | Forced | Air quantity (Act / Std) m³/s |                          |            |            | 4.223   | 7    | 4.169 |
| Total number of fans             |           | 2      | Fa                            | ce velocity (Act/Std)    | m/s        | 4.36       | 1       | 4.31 |       |
| Fans per bay                     |           | 2      | Te                            | mperature (Act/Std)      |            | *C         | 25      | 1    | 21.1  |
| Fan diameter                     | m         | 0.6096 | Pre                           | essure (Act/Std)         |            | bar        | 1.01288 | 1    | 1.013 |
| Bundle face area                 | m²        | 1.9    | De                            | nsity (Act/Std)          |            | kg/m³      | 1.18    | 1    | 1.2   |
| Fan coverage %                   |           | 26.84  | De                            | sign temperature (summe  | er/winter) | *C         | 25      | 1    | 0     |
| Number of blades                 |           |        | Bra                           | ake power (summer/winte  | er)        | kW         | 1.433   | 1    | 1.564 |
| Fan blade pitch                  |           |        | То                            | tal brake power (winter) |            | kW         |         |      | 3.129 |
| Fan hub diameter                 | m         |        | Fai                           | n drive efficiency %     |            |            |         |      | 95    |
| Vendor for actual fan            |           |        | Fa                            | n efficiency %           |            |            |         |      | 65    |
| Fan Noise Level                  |           |        |                               | Low Performance          | High P     | erformance | A       | ctu  | al    |
| Fan rotational speed             |           | RPI    | м                             | 3046.64                  | 185        | 6.13       |         |      |       |
| Sound power level (per fan)      |           | d      | dB 108.01 9                   |                          |            | 5.98       |         |      |       |
| Sound power level (per unit)     |           | d      | dB 111.02 98.99               |                          |            | 8.99       |         |      |       |
| Sound pressure level (1 m from f | an)       | d      | IB                            | 101.94                   | 89         | 9.92       |         |      |       |
| Sound pressure level (0.3 m from | n bundle) | d      | IB                            | 101.44                   | 89         | 3.42       |         |      |       |

### Detalles de tubos

| Tube Type             |                 | 1             |
|-----------------------|-----------------|---------------|
| OD                    | mm              | 25.4          |
| ID                    | mm              | 22.1          |
| Wall thickness        | mm              | 1.65          |
| Flow area             | mm²             | 384           |
| Fin Type              |                 | 1             |
| Туре                  |                 | G-finned      |
| Material              |                 | Aluminum 1060 |
| Tip diameter          | mm              | 57.15         |
| Fin height            | mm              | 15.88         |
| Bundle Hyd. Diameter  | mm              | 3.49          |
| Minimum flow area     | mm <sup>2</sup> | 957535        |
| Mean fin thickness    | mm              | 0.28          |
| Fin frequency         | #/m             | 433           |
| Fin root diameter     | mm              | 25.4          |
| Conductivity          | W/(m K)         | 230.9766      |
| Density               | kg/m³           | 2768          |
| Surface effectiveness |                 | 0.81          |

## Válvulas y cabezales

| Nozzle                |           | Inlet        | Outlet       |
|-----------------------|-----------|--------------|--------------|
| Number (per circuit)  |           | 1            | 1            |
| Inside diameter       | mm        | 53.98        | 15.8         |
| Outside diameter      | mm        | 73.03        | 21.34        |
| Orientation           | Degrees   | 90           | -90          |
| Homogenous velocity   | m/s       | 23.18        | 2.38         |
| Rhov2                 | kg/(m s²) | 2923         | 3503         |
| Flange diameter       | mm        | 158.02       | 106.34       |
| Flange thickness      | mm        | 25           | 25           |
| Header                |           | Inlet        | Other        |
| Material              |           | Carbon Steel | Carbon Steel |
| Туре                  |           | Box          | Box          |
| Depth                 | mm        | 300          | 300          |
| Thickness, short wall | mm        | 24           | 24           |
| Thickness, long wall  | mm        | 24           | 24           |
| Cover thickness       | mm        | 10           | 10           |
| Tubesheet thickness   | mm        | 25.4         | 25.4         |

### Planos







#### Perfil de temperatura



# Apéndice C (Condensador de Contacto Indirecto)

## Hoja de especificación TEMA

|     | I                             | Heat Exchang | ger Specificat | ion Sheet    |               |                  |
|-----|-------------------------------|--------------|----------------|--------------|---------------|------------------|
| 1   |                               |              |                |              |               |                  |
| 2   |                               |              |                |              |               |                  |
| 3   |                               |              |                |              |               |                  |
| 4   |                               |              |                |              |               |                  |
| 5   |                               |              |                |              |               |                  |
| 6   | Size 205 - 3450               | mm Ty        | pe AFS Hor     | Connected in | 1 parallel    | 1 series         |
| - 7 | Surf/unit(eff.) 5             | m² Shells/   | ′unit 1        | Surf         | /shell (eff.) | 5 m²             |
| 8   |                               | PERFO        | RMANCE OF ON   | E UNIT       |               |                  |
| 9   | Fluid allocation              |              | Shell 9        | Side         | Tube          | Side             |
| 10  | Fluid name                    |              | AMAR           | INI          | 5             |                  |
| 11  | Fluid quantity, Total         | kg/s         | 3              |              | 0.28          | 85               |
| 12  | Vapor (In/Out)                | kg/s         | 0              | 0            | 0.2885        | 0.0069           |
| 13  | Liquid                        | kg/s         | 3              | 3            | 0             | 0.2816           |
| 14  | Noncondensable                | kg/s         | 0              | 0            | 0             | 0                |
| 15  |                               |              |                |              |               |                  |
| 16  | Temperature (In/Out)          | •C           | 25.01          | 32.92        | 73.69         | 46.89            |
| 17  | Dew / Bubble point            | *C           |                |              | 50.18         | 50.18            |
| 18  | Density Vapor/Liquid          | kg/m³        | / 848.65       | / 844.19     | 5.44 /        | 5.39 / 621.01    |
| 19  | Viscosity                     | mPa s        | / 1.16         | / 1.0532     | 0.0079 /      | 0.0073 / 0.1649  |
| 20  | Molecular wt, Vap             |              |                |              | 72.15         | 72.15            |
| 21  | Molecular wt, NC              |              |                |              |               |                  |
| 22  | Specific heat                 | kJ/(kg K)    | / 4.508        | / 4.507      | 1.918 /       | 1.788 / 2.369    |
| 23  | Thermal conductivity          | W/(m K)      | / 1.4302       | / 1.4026     | 0.0204 /      | 0.0174 / 0.0987  |
| 24  | Latent heat                   | kJ/kg        |                |              | 327           | 329.6            |
| 25  | Pressure (abs)                | bar          | 1.25           | 1.08221      | 2.055         | 1.86358          |
| 26  | Velocity                      | m/s          | 0.7            | '8           | 30.6          | 59               |
| 27  | Pressure drop, allow./calc.   | bar          | 0.26           | 0.16779      | 0.2           | 0.19143          |
| 28  | Fouling resistance (min)      | m² K/W       | 0.00           | 11           | 0.0002        | 0.0002E Ao based |
| 29  | Heat exchanged 107            | kW           |                | MTD          | corrected     | 20.23 °C         |
| 30  | Transfer rate, Service 1048.4 | Dirty        | 1125.7         | Clean 1881.6 |               | ₩/(m² K)         |

| 31 | 31 CONSTRUCTION OF ONE SHELL |                           |                       |            |                  |                 | Sketch           |              |
|----|------------------------------|---------------------------|-----------------------|------------|------------------|-----------------|------------------|--------------|
| 32 |                              |                           | Shell Side            |            | Tube Side        |                 |                  |              |
| 33 | Design/vac/test pr           | essure:g <mark>bar</mark> | 3/ /                  | 3          | / /              |                 |                  |              |
| 34 | Design temperature           | • <b>*</b> C              | 110                   |            | 110              |                 |                  |              |
| 35 | Number passes per            | shell                     | 2                     |            | 2                |                 |                  | an fin 🗌     |
| 36 | Corrosion allowance          | e mm                      | 3.18                  |            | 3.18             | î'n <u>≞, u</u> |                  | <u>ar</u> te |
| 37 | Connections                  | ln mm                     | 1 50.87 -             | 1          | 50.87 -          |                 |                  |              |
| 38 | Size/rating                  | Out                       | 1 50.87 -             | 1          | 12.77 -          |                 |                  |              |
| 39 | Nominal                      | Intermediate              | 1 .                   |            | 1 -              |                 |                  |              |
| 40 | Tube No. 26                  | OD 19.0                   | 5 Tks:Avg 2.11        | mm         | Length 3450      | mm              | Pitch 25.4       | mm           |
| 41 | Tube type Plain              |                           | <b>#/m</b> Material ( | Carbon Ste | el               | Tube patte      | ern 90           |              |
| 42 | Shell Carbon Stee            | I I                       | D 205 OD 219.08       | mm         | Shell cover      | Ca              | rbon Steel       |              |
| 43 | Channel or bonnet            | Carbon Steel              |                       |            | Channel cover    | Ca              | rbon Steel       |              |
| 44 | Tubesheet-stationa           | ry Carbon Steel           |                       |            | Tubesheet-floati | ng Ca           | rbon Steel       |              |
| 45 | Floating head cove           | r Carbon Steel            |                       |            | Impingement pro  | tection No      | )ne              |              |
| 46 | Baffle-cross Ca              | irbon Steel               | Type Single segmenta  | al C       | ut(%d) 37.61     | V Spacin        | ig:c/c 210       | mm           |
| 47 | Baffle-long Ca               | arbon Steel               | Seal type             |            |                  | Inlet           | 255.21           | mm           |
| 48 | Supports-tube                |                           | U-bend 0              |            | Туре             |                 |                  |              |
| 49 | Bypass seal                  |                           | Tube                  | tubesheet  | ; joint Ex       | p. 2 grv        |                  |              |
| 50 | Expansion joint              | -                         | Туре                  | None       |                  |                 |                  |              |
| 51 | RhoV2-Inlet nozzle           | 2263                      | Bundle entrand        | ;e 26      |                  | Bundle exit     | 26               | kg/(m s²)    |
| 52 | Gaskets - Shell side         | e Flat Me                 | tal Jacket Fibe Tube  | Side       | F                | Flat Metal Jack | tet Fibe         |              |
| 53 | Floating h                   | nead Flat Me              | tal Jacket Fibe       |            |                  |                 |                  |              |
| 54 | Code requirements            | ASME                      | Code Sec VIII Div 1   |            |                  | TEMA class      | R - refinerv ser | rvice        |
| 55 | Weight/Shell                 | 425.5                     | Filled with wate      | r 540.1    |                  | Bundle          | 144.8            | kg           |

### Geometría de intercambio

| Unit Configuration                                                                                                                                                                                                                                                                                                  |                                               |                                                                  |                                                                                         |                      |                                     |                                       |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------|-------------------------------------|---------------------------------------|-----------|
| Exchanger Type                                                                                                                                                                                                                                                                                                      |                                               |                                                                  | AFS                                                                                     | Tube number (ca      | alos.)                              |                                       | 26        |
| Position                                                                                                                                                                                                                                                                                                            |                                               |                                                                  | Hor                                                                                     | Tube length actu     | ıal                                 | mm                                    | 3450      |
| Arrangement                                                                                                                                                                                                                                                                                                         |                                               | 1 par                                                            | 1 ser                                                                                   | Tube passes          |                                     |                                       | 2         |
| Baffle type                                                                                                                                                                                                                                                                                                         |                                               | Single                                                           | segmental                                                                               | Tube type            |                                     |                                       | Plain     |
| Baffle number                                                                                                                                                                                                                                                                                                       |                                               | -                                                                | 14                                                                                      | Tube O.D.            |                                     | mm                                    | 19.05     |
| Spacing (center-center)                                                                                                                                                                                                                                                                                             |                                               | mm                                                               | 210                                                                                     | Tube pitch           |                                     | mm                                    | 25.4      |
| Spacing at inlet                                                                                                                                                                                                                                                                                                    |                                               | mm                                                               | 255.21                                                                                  | Tube pattern         |                                     |                                       | 90        |
|                                                                                                                                                                                                                                                                                                                     |                                               |                                                                  | Shell                                                                                   | Kettle               | Fro                                 | nt head                               | Rear head |
| Outside diameter                                                                                                                                                                                                                                                                                                    |                                               | mm                                                               | 219.08                                                                                  |                      | 2                                   | 19.08                                 | 187.32    |
| Inside Diameter                                                                                                                                                                                                                                                                                                     |                                               | mm                                                               | 205                                                                                     |                      |                                     | 205                                   | 173.25    |
|                                                                                                                                                                                                                                                                                                                     |                                               |                                                                  |                                                                                         |                      |                                     |                                       |           |
|                                                                                                                                                                                                                                                                                                                     |                                               |                                                                  | 01 001                                                                                  |                      | <b>T</b> 1                          | 011                                   |           |
|                                                                                                                                                                                                                                                                                                                     |                                               |                                                                  | Shell Side                                                                              |                      | Tube                                | Side                                  |           |
| Nozzle type                                                                                                                                                                                                                                                                                                         |                                               | Inlet                                                            | Shell Side<br>Outlet                                                                    |                      | Tube<br>Inlet                       | Side<br>Outlet                        |           |
| Nozzle type<br>Number of nozzles                                                                                                                                                                                                                                                                                    |                                               | Inlet<br>1                                                       | Shell Side<br>Outlet<br>1                                                               |                      | Tube<br>Inlet<br>1                  | Side<br>Outlet<br>1                   |           |
| Nozzle type<br>Number of nozzles<br>Actual outside diameter                                                                                                                                                                                                                                                         | mm                                            | Inlet<br>1<br>60.32                                              | Shell Side<br>Outlet<br>1<br>60.32                                                      |                      | Tube<br>Inlet<br>1<br>60.32         | Side<br>Outlet<br>1<br>21.34          |           |
| Nozzle type<br>Number of nozzles<br>Actual outside diameter<br>Inside diameter                                                                                                                                                                                                                                      | mm                                            | Inlet<br>1<br>60.32<br>52.5                                      | Shell Side<br>Outlet<br>1<br>60.32<br>52.5                                              |                      | Tube<br>Inlet<br>1<br>60.32<br>52.5 | Side<br>Outlet<br>1<br>21.34<br>13.87 |           |
| Nozzle type<br>Number of nozzles<br>Actual outside diameter<br>Inside diameter<br>Height under nozzle                                                                                                                                                                                                               | mm<br>mm                                      | Inlet<br>1<br>60.32<br>52.5<br>37.41                             | Shell Side<br>Outlet<br>1<br>60.32<br>52.5<br>37.41                                     |                      | Tube<br>Inlet<br>1<br>60.32<br>52.5 | Side<br>Outlet<br>1<br>21.34<br>13.87 |           |
| Nozzle type<br>Number of nozzles<br>Actual outside diameter<br>Inside diameter<br>Height under nozzle<br>Dome inside diameter                                                                                                                                                                                       | mm<br>mm<br>mm                                | Inlet<br>1<br>60.32<br>52.5<br>37.41                             | Shell Side<br>Outlet<br>1<br>60.32<br>52.5<br>37.41                                     |                      | Tube<br>Inlet<br>1<br>60.32<br>52.5 | Side<br>Outlet<br>1<br>21.34<br>13.87 |           |
| Nozzle type<br>Number of nozzles<br>Actual outside diameter<br>Inside diameter<br>Height under nozzle<br>Dome inside diameter<br>Vapor belt inside diameter                                                                                                                                                         | mm<br>mm<br>mm<br>mm                          | Inlet<br>1<br>60.32<br>52.5<br>37.41                             | Shell Side<br>Outlet<br>1<br>60.32<br>52.5<br>37.41                                     |                      | Tube<br>Inlet<br>1<br>60.32<br>52.5 | Side<br>Outlet<br>1<br>21.34<br>13.87 |           |
| Nozzle type<br>Number of nozzles<br>Actual outside diameter<br>Inside diameter<br>Height under nozzle<br>Dome inside diameter<br>Vapor belt inside diameter<br>Vapor belt inside width                                                                                                                              | mm<br>mm<br>mm<br>mm<br>mm                    | Inlet<br>1<br>60.32<br>52.5<br>37.41                             | Shell Side<br>Outlet<br>1<br>60.32<br>52.5<br>37.41                                     |                      | Tube<br>Inlet<br>1<br>60.32<br>52.5 | Side<br>Outlet<br>1<br>21.34<br>13.87 |           |
| Nozzle type<br>Number of nozzles<br>Actual outside diameter<br>Inside diameter<br>Height under nozzle<br>Dome inside diameter<br>Vapor belt inside diameter<br>Vapor belt inside width<br>Vapor belt slot area                                                                                                      | mm<br>mm<br>mm<br>mm<br>mm<br>mm              | Inlet<br>1<br>60.32<br>52.5<br>37.41                             | Shell Side<br>Outlet<br>1<br>60.32<br>52.5<br>37.41                                     |                      | Tube<br>Inlet<br>1<br>60.32<br>52.5 | Side<br>Outlet<br>1<br>21.34<br>13.87 |           |
| Nozzle type<br>Number of nozzles<br>Actual outside diameter<br>Inside diameter<br>Height under nozzle<br>Dome inside diameter<br>Vapor belt inside diameter<br>Vapor belt inside width<br>Vapor belt slot area                                                                                                      | mm<br>mm<br>mm<br>mm<br>mm                    | Inlet<br>1<br>60.32<br>52.5<br>37.41                             | Shell Side<br>Outlet<br>1<br>60.32<br>52.5<br>37.41                                     | No                   | Tube<br>Inlet<br>1<br>60.32<br>52.5 | Side<br>Outlet<br>1<br>21.34<br>13.87 |           |
| Nozzle type<br>Number of nozzles<br>Actual outside diameter<br>Inside diameter<br>Height under nozzle<br>Dome inside diameter<br>Vapor belt inside diameter<br>Vapor belt inside width<br>Vapor belt slot area<br>Impingement protection                                                                            | mm<br>mm<br>mm<br>mm<br>mm                    | Inlet<br>1<br>60.32<br>52.5<br>37.41<br>No<br>impingement        | Shell Side<br>Outlet<br>1<br>60.32<br>52.5<br>37.41<br>                                 | No<br>It impingement | Tube<br>Inlet<br>1<br>60.32<br>52.5 | Side<br>Outlet<br>1<br>21.34<br>13.87 |           |
| Nozzle type         Number of nozzles         Actual outside diameter         Inside diameter         Height under nozzle         Dome inside diameter         Vapor belt inside diameter         Vapor belt inside width         Vapor belt slot area         Impingement protection         Distance to tubesheet | mm<br>mm<br>mm<br>mm<br>mm<br>mm <sup>2</sup> | Inlet<br>1<br>60.32<br>52.5<br>37.41<br>No<br>impingement<br>155 | Shell Side<br>Outlet<br>1<br>60.32<br>52.5<br>37.41<br>37.41<br>No<br>impingemen<br>155 | No<br>it impingement | Tube<br>Inlet<br>1<br>60.32<br>52.5 | Side<br>Outlet<br>1<br>21.34<br>13.87 |           |

#### Tubos

| Tupe                                                                                                                                                               |                      | Plain   | Tube number                                                                          |                | 26           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|--------------------------------------------------------------------------------------|----------------|--------------|
| Type                                                                                                                                                               |                      |         | Tube number                                                                          |                | 20           |
| Outside diameter                                                                                                                                                   | mm                   | 19.05   | Number of tubes plugged                                                              |                | U            |
| Inside diameter                                                                                                                                                    | mm                   | 14.83   | Tube length actual                                                                   | mm             | 3450         |
| Wall thickness                                                                                                                                                     | mm                   | 2.11    | Tube length effective                                                                | mm             | 3240.4       |
| Area ratio: Ao/Ai                                                                                                                                                  |                      | 1.28    | Front TubesheetThickness                                                             | mm             | 35.52        |
| Pitch                                                                                                                                                              | mm                   | 25.4    | Rear TubesheetThickness                                                              | mm             | 35.52        |
| Pattern                                                                                                                                                            |                      | 90      | Material                                                                             |                | Carbon Steel |
| External enhancement                                                                                                                                               |                      |         | Thermal conductivity                                                                 | W/(m K)        | 51.2221      |
| Internal enhancement                                                                                                                                               |                      |         |                                                                                      |                |              |
| Low fins                                                                                                                                                           |                      |         | Longitudinal fins                                                                    |                |              |
| Fin density                                                                                                                                                        | #/m                  |         | Fin number                                                                           |                | 0            |
|                                                                                                                                                                    |                      |         |                                                                                      |                |              |
| Fin height                                                                                                                                                         | mm                   |         | Fin thickness                                                                        | mm             |              |
| Fin height<br>Fin thickness                                                                                                                                        | mm<br>mm             |         | Fin thickness<br>Fin height                                                          | mm<br>mm       |              |
| Fin height<br>Fin thickness<br>Tube root diameter                                                                                                                  | mm<br>mm<br>mm       |         | Fin thickness<br>Fin height<br>Fin spacing                                           | mm<br>mm<br>mm |              |
| Fin height<br>Fin thickness<br>Tube root diameter<br>Tube wall thickness under fin                                                                                 | mm<br>mm<br>mm<br>mm |         | Fin thickness<br>Fin height<br>Fin spacing<br>Cut and twist length                   | mm<br>mm<br>mm |              |
| Fin height<br>Fin thickness<br>Tube root diameter<br>Tube wall thickness under fin<br>Tube inside diameter under fins                                              | mm<br>mm<br>mm<br>mm |         | Fin thickness<br>Fin height<br>Fin spacing<br>Cut and twist length                   | mm<br>mm<br>mm |              |
| Fin height<br>Fin thickness<br>Tube root diameter<br>Tube wall thickness under fin<br>Tube inside diameter under fins<br>Other (high) fins                         | mm<br>mm<br>mm<br>mm |         | Fin thickness<br>Fin height<br>Fin spacing<br>Cut and twist length                   | mm<br>mm<br>mm |              |
| Fin height<br>Fin thickness<br>Tube root diameter<br>Tube wall thickness under fin<br>Tube inside diameter under fins<br><b>Other (high) fins</b><br>High Fin Type | mm<br>mm<br>mm<br>mm | Default | Fin thickness<br>Fin height<br>Fin spacing<br>Cut and twist length<br>High Fin Thick | mm<br>mm<br>mm |              |

#### Baffles

| Baffles                                      |           |          |                                      |   |         |          |
|----------------------------------------------|-----------|----------|--------------------------------------|---|---------|----------|
| Туре                                         | Single se | egmental | Baffle cut: inner / outer / interm   |   |         |          |
| Tubes in window                              |           | Yes      | Actual (% diameter)                  | / | 37.61 / | ·        |
| Number                                       |           | 14       | Nominal (% diameter)                 | / | 40 /    | <i>'</i> |
| Spacing (center-center)                      | mm        | 210      | Actual (% area)                      | / | 34.39 / | <i>'</i> |
| Spacing at inlet                             | mm        | 255.21   | Cut orientation                      |   |         | V        |
| Spacing at outlet                            | mm        | 255.21   | Thickness                            |   | mm      | 3.18     |
| Spacing at central in/out for G,H,I,J shells | mm        |          | Tube rows in baffle overlap          |   |         | 2        |
| Spacing at center of H shell                 | mm        |          | Tube rows in baffle window           |   |         | 2        |
| End length at front head                     | mm        | 293.74   | Baffle hole - tube od diam clearance | ; | mm      | 0.79     |
| End length at rear head                      | mm        | 426.26   | Shell id - baffle od diam clearance  |   | mm      | 3.18     |

#### Haz de tubos (Bundle)

|       | Tube passes                                                         |                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 37.41 | Tube pass layout                                                    | Quadrar                                                                                                                                                                                                                                                                                                                                                                     | nt (dbl.band)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 37.41 | Tube pass orientation                                               |                                                                                                                                                                                                                                                                                                                                                                             | Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 29.48 | U-bend orientation                                                  |                                                                                                                                                                                                                                                                                                                                                                             | Undefined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 29.48 | Horizontal pass lane width                                          | mm                                                                                                                                                                                                                                                                                                                                                                          | 15.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| None  | Vertical pass lane width                                            | mm                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | Interpass tube alignment                                            |                                                                                                                                                                                                                                                                                                                                                                             | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | Deviation in tubes/pass                                             |                                                                                                                                                                                                                                                                                                                                                                             | 23.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | Outer tube limit                                                    | mm                                                                                                                                                                                                                                                                                                                                                                          | 160.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | Shell id - bundle otl diam clearance                                | mm                                                                                                                                                                                                                                                                                                                                                                          | 44.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | Tie rod number                                                      |                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5.4   | Tie rod diameter                                                    | mm                                                                                                                                                                                                                                                                                                                                                                          | 9.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5     | Sealing strips (pairs)                                              |                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5     | Tube to tubesheet joint                                             |                                                                                                                                                                                                                                                                                                                                                                             | Exp. 2 grv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0     | Tube projection from front tsht                                     | mm                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0     | Tube projection from rear tsht                                      | mm                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | 37.41<br>37.41<br>29.48<br>29.48<br>None<br>5.4<br>5<br>5<br>0<br>0 | Tube passes37.41Tube pass layout37.41Tube pass orientation29.48U-bend orientation29.48Horizontal pass lane widthNoneVertical pass lane widthInterpass tube alignmentDeviation in tubes/passOuter tube limitShell id - bundle otl diam clearanceTie rod number5Sealing strips (pairs)5Tube to tubesheet joint0Tube projection from front tsht0Tube projection from rear tsht | Tube passes         37.41       Tube pass layout       Quadrar         37.41       Tube pass orientation       29.48         29.48       U-bend orientation       mm         29.48       Horizontal pass lane width       mm         None       Vertical pass lane width       mm         Interpass tube alignment       Deviation in tubes/pass       0uter tube limit         Outer tube limit       mm       mm         Shell id - bundle otl diam clearance       mm         Tie rod number       mm         5       Sealing strips (pairs)       mm         5       Tube to tubesheet joint       0         0       Tube projection from front tsht       mm |

#### Planos







### Costos y peso

| Weights                          | kg    | Cost data                    | Dollar(US) |
|----------------------------------|-------|------------------------------|------------|
| Shell                            | 241   | Labor cost                   | 10301      |
| Front head                       | 29.7  | Tube material cost           | 257        |
| Rear head                        | 9.9   | Material cost (except tubes) | 1990       |
| Shell cover                      |       |                              |            |
| Bundle                           | 144.8 |                              |            |
| Total weight - empty             | 425.5 | Total cost (1 shell)         | 12549      |
| Total weight - filled with water | 540.1 | Total cost (all shells)      | 12549      |

### Perfiles de temperaturas



# Apéndice D (Detalle de análisis económico)

### Aerocondensador

|     | INGRESOS  | COSTOS         |           | INVERSION | соѕто      | CAMBIO     |
|-----|-----------|----------------|-----------|-----------|------------|------------|
| Año | Ahorros   | Mantenimiento  | Operación |           | Financiero | Neto       |
| 0   | 0         | 0              | 0         | 192394.27 | 0          | -192394.27 |
| 1   | 124132.08 | 0              | 27251.022 | 0         | 0          | 96881.058  |
| 2   | 124132.08 | 0              | 27251.022 | 0         | 0          | 96881.058  |
| 3   | 124132.08 | 0              | 27251.022 | 0         | 0          | 96881.058  |
| 4   | 124132.08 | 0              | 27251.022 | 0         | 0          | 96881.058  |
| 5   | 124132.08 | 11543.6562     | 27251.022 | 0         | 0          | 85337.4018 |
| 6   | 124132.08 | 0              | 27251.022 | 0         | 0          | 96881.058  |
| 7   | 124132.08 | 0              | 27251.022 | 0         | 0          | 96881.058  |
| 8   | 124132.08 | 0              | 27251.022 | 0         | 0          | 96881.058  |
| 9   | 124132.08 | 0              | 27251.022 | 0         | 0          | 96881.058  |
| 10  | 124132.08 | 11543.6562     | 27251.022 | 0         | 0          | 85337.4018 |
| 11  | 124132.08 | 0              | 27251.022 | 0         | 0          | 96881.058  |
| 12  | 124132.08 | 0              | 27251.022 | 0         | 0          | 96881.058  |
| 13  | 124132.08 | 0              | 27251.022 | 0         | 0          | 96881.058  |
| 14  | 124132.08 | 0              | 27251.022 | 0         | 0          | 96881.058  |
| 15  | 124132.08 | 11543.6562     | 27251.022 | 0         | 0          | 85337.4018 |
| 16  | 124132.08 | 0              | 27251.022 | 0         | 0          | 96881.058  |
| 17  | 124132.08 | 0              | 27251.022 | 0         | 0          | 96881.058  |
| 18  | 124132.08 | 0              | 27251.022 | 0         | 0          | 96881.058  |
| 19  | 124132.08 | 0              | 27251.022 | 0         | 0          | 96881.058  |
| 20  | 124132.08 | 11543.6562     | 27251.022 | 0         | 0          | 85337.4018 |
| 21  | 124132.08 | 0              | 27251.022 | 0         | 0 0        |            |
| 22  | 124132.08 | 0              | 27251.022 | 0         | 0 0        |            |
| 23  | 124132.08 | 0              | 27251.022 | 0         | 0          | 96881.058  |
| 24  | 124132.08 | 0              | 27251.022 | 0         | 0          | 96881.058  |
| 25  | 124132.08 | 11543.6562     | 27251.022 | 0         | 0          | 85337.4018 |
| 26  | 0         | 0              |           | 0         | 0          | 0          |
|     |           | TOTAL INVERSIÓ | 192394.27 |           |            |            |

TOTAL INVERSIÓN FISICA

Tabla 0-1 Valores corrientes

| Año                         | Deflactor  | VPN de los | VPN de los | VPN de la | VP NETO    | VPN               | TIR %  | T Retorno     |
|-----------------------------|------------|------------|------------|-----------|------------|-------------------|--------|---------------|
|                             |            | Ahorros    | Costos     | Inversión | Anual      | Acumulado         |        | Años          |
|                             |            |            |            |           |            |                   |        |               |
| 0                           | 1          | 0          | 0          | 192394.27 | -192394.27 | -192394.27        | 0      |               |
|                             |            |            |            | _         |            | -                 |        |               |
| 1                           | 0.8695652  | 107940.939 | 23696.5409 | 0         | 84244.3983 | 108149.8717       |        | NL            |
| 2                           | 0 7561/137 | 93861 6862 | 20605 6877 | 0         | 73255 9985 | -<br>3/1893 87325 |        | NO<br>Retorno |
| 2                           | 0.6575162  | 81618 8576 | 17917 9893 | 0         | 63700 8683 | 28806 995         |        | 2 547777      |
| 4                           | 0 5717532  | 70972 9196 | 15580 8603 | 0         | 55392 0593 | 84199 05435       | 35 35% | 2.5 17777     |
| 5                           | 0.4971767  | 61715,5823 | 19287,8115 | 0         | 42427,7708 | 126626.8252       | 40.82% |               |
| 6                           | 0.4323276  | 53665.7237 | 11781.3688 | 0         | 41884.3549 | 168511.1801       | 44.37% |               |
| 7                           | 0.375937   | 46665.8467 | 10244.6685 | 0         | 36421.1782 | 204932.3582       | 46.46% |               |
| 8                           | 0.3269018  | 40578.9971 | 8908.40743 | 0         | 31670.5897 | 236602.9479       | 47.73% |               |
| 9                           | 0.2842624  | 35286.0845 | 7746.44124 | 0         | 27539.6432 | 264142.5912       | 48.52% |               |
| 10                          | 0.2471847  | 30683.5517 | 9589.45113 | 0         | 21094.1006 | 285236.6918       | 48.96% |               |
| 11                          | 0.2149432  | 26681.3493 | 5857.42249 | 0         | 20823.9268 | 306060.6186       | 49.29% |               |
| 12                          | 0.1869072  | 23201.1733 | 5093.41086 | 0         | 18107.7625 | 324168.381        | 49.50% |               |
| 13                          | 0.162528   | 20174.9333 | 4429.05292 | 0         | 15745.8804 | 339914.2614       | 49.64% |               |
| 14                          | 0.1413287  | 17543.4203 | 3851.35037 | 0         | 13692.0699 | 353606.3314       | 49.73% |               |
| 15                          | 0.1228945  | 15255.1481 | 4767.65201 | 0         | 10487.4961 | 364093.8274       | 49.78% |               |
| 16                          | 0.1068648  | 13265.3461 | 2912.17419 | 0         | 10353.172  | 374446.9994       | 49.82% |               |
| 17                          | 0.0929259  | 11535.0836 | 2532.32538 | 0         | 9002.75822 | 383449.7576       | 49.85% |               |
| 18                          | 0.0808051  | 10030.5075 | 2202.02207 | 0         | 7828.48541 | 391278.243        | 49.87% |               |
| 19                          | 0.0702653  | 8722.18042 | 1914.8018  | 0         | 6807.37862 | 398085.6216       | 49.88% |               |
| 20                          | 0.0611003  | 7584.50471 | 2370.36566 | 0         | 5214.13905 | 403299.7607       | 49.88% |               |
| 21                          | 0.0531307  | 6595.22149 | 1447.86526 | 0         | 5147.35623 | 408447.1169       | 49.89% |               |
| 22                          | 0.0462006  | 5734.97521 | 1259.01327 | 0         | 4475.96194 | 412923.0789       | 49.89% |               |
| 23                          | 0.0401744  | 4986.93496 | 1094.79415 | 0         | 3892.14082 | 416815.2197       | 49.90% |               |
| 24                          | 0.0349343  | 4336.46519 | 951.994909 | 0         | 3384.47028 | 420199.69         | 49.90% |               |
| 25                          | 0.0303776  | 3770.83929 | 1178.49066 | 0         | 2592.34863 | 422792.0386       | 49.90% |               |
| 26                          |            |            |            |           |            |                   |        |               |
|                             | VPN        | 802408.271 | 187221.963 | 192394.27 | 422792.039 |                   |        |               |
| Tabla 0-2 Valores presentes |            |            |            |           |            |                   |        |               |

### Condensador de Contacto Directo

|     | INGRESOS  | COSTOS    | INVERSION     |        | COSTO      | CAMBIO     |
|-----|-----------|-----------|---------------|--------|------------|------------|
| año | Ahorros   | Operación | mantenimiento |        | Financiero | Neto       |
| 0   | 0         | 0         | 0             | 233206 | 0          | -233206.18 |
| 1   | 124132.08 | 5976.96   | 0             | 0      | 0          | 118155.12  |
| 2   | 124132.08 | 5976.96   | 0             | 0      | 0          | 118155.12  |
| 3   | 124132.08 | 5976.96   | 0             | 0      | 0          | 118155.12  |
| 4   | 124132.08 | 5976.96   | 12476.2158    | 0      | 0          | 105678.905 |
| 5   | 124132.08 | 5976.96   | 0             | 0      | 0          | 118155.12  |
| 6   | 124132.08 | 5976.96   | 0             | 0      | 0          | 118155.12  |
| 7   | 124132.08 | 5976.96   | 0             | 0      | 0          | 118155.12  |
| 8   | 124132.08 | 5976.96   | 0             | 0      | 0          | 118155.12  |
| 9   | 124132.08 | 5976.96   | 0             | 0      | 0          | 118155.12  |
| 10  | 124132.08 | 5976.96   | 12476.2158    | 0      | 0          | 105678.905 |
| 11  | 124132.08 | 5976.96   | 0             | 0      | 0          | 118155.12  |
| 12  | 124132.08 | 5976.96   | 0             | 0      | 0          | 118155.12  |
| 13  | 124132.08 | 5976.96   | 0             | 0      | 0          | 118155.12  |
| 14  | 124132.08 | 5976.96   | 0             | 0      | 0          | 118155.12  |
| 15  | 124132.08 | 5976.96   | 12476.2158    | 0      | 0          | 105678.905 |
| 16  | 124132.08 | 5976.96   | 0             | 0      | 0          | 118155.12  |
| 17  | 124132.08 | 5976.96   | 0             | 0      | 0          | 118155.12  |
| 18  | 124132.08 | 5976.96   | 0             | 0      | 0          | 118155.12  |
| 19  | 124132.08 | 5976.96   | 0             | 0      | 0          | 118155.12  |
| 20  | 124132.08 | 5976.96   | 12476.2158    | 0      | 0          | 105678.905 |
| 21  | 124132.08 | 5976.96   | 0             | 0      | 0          | 118155.12  |
| 22  | 124132.08 | 5976.96   | 0             | 0      | 0          | 118155.12  |
| 23  | 124132.08 | 5976.96   | 0             | 0      | 0          | 118155.12  |
| 24  | 124132.08 | 5976.96   | 0             | 0      | 0          | 118155.12  |
| 25  | 124132.08 | 5976.96   | 12476.2158    | 0      | 0          | 105678.905 |
| 26  | 0         | 0         |               | 0      | 0          | 0          |
|     |           |           |               |        |            |            |

TOTAL INVERSIÓN FISICA

233206

Tabla 0-3 Valores corrientes

| Año | Deflactor                   | VPN de los               | VPN de los | VPN de la | VP NETO   | VPN         | TIR %   | T Retorno   |  |
|-----|-----------------------------|--------------------------|------------|-----------|-----------|-------------|---------|-------------|--|
|     |                             | Ahorros                  | Costos     | Inversión | Anual     | Acumulado   |         | Años        |  |
|     |                             |                          |            |           |           | 1           |         | 1           |  |
| 0   | 1                           | 0                        | 0          | 233206.18 | -233206.2 | -233206.18  |         |             |  |
|     |                             |                          |            |           |           | -           |         |             |  |
| 1   | 0.8695652                   | 107940.939               | 5197.35622 | 0         | 102743.58 | 130462.5971 |         |             |  |
| 2   | 0 7561427                   | 02061 6062               | 4510 44010 | 0         | 00242 246 | -           |         | No Potorno  |  |
| 2   | 0.7501457                   | 93001.0002               | 4519.44019 | 0         | 77600 01  | 41120.55108 | 24 269/ |             |  |
| 5   | 0.0575102                   | 70072 0106               | 10550 662  | 0         | 60422.257 | 06000 91516 | 24.20%  | 2.529294990 |  |
| 4   | 0.3717332                   | 70972.9190<br>61715 5022 | 2071 60520 | 0         | E0742.257 | 155724 7022 | 34.72%  |             |  |
| 5   | 0.4971707                   |                          | 29/1.00529 | 0         | 50/45.9// | 206916 5112 | 41.05%  |             |  |
| 0   | 0.4323270                   |                          | 2584.0046  | 0         | 51081.719 | 200810.5113 | 44.57%  |             |  |
| /   | 0.375937                    |                          | 2240.90052 | 0         | 44418.880 | 251235.3975 | 40.05%  |             |  |
| 8   | 0.3269018                   | 40578.9971               | 1953.87871 | 0         | 38625.118 | 289860.5159 | 47.92%  |             |  |
| 9   | 0.2842624                   | 35286.0845               | 1699.02497 | 0         | 33587.06  | 323447.5754 | 48.71%  |             |  |
| 10  | 0.24/184/                   | 30683.5517               | 4561.34275 | 0         | 26122.209 | 349569.7844 | 49.16%  |             |  |
| 11  | 0.2149432                   | 26681.3493               | 1284./069/ | 0         | 25396.642 | 374966.4267 | 49.48%  |             |  |
| 12  | 0.1869072                   | 23201.1733               | 1117.1365  | 0         | 22084.037 | 397050.4635 | 49.69%  |             |  |
| 13  | 0.162528                    | 201/4.9333               | 9/1.423039 | 0         | 19203.51  | 416253.9738 | 49.83%  |             |  |
| 14  | 0.1413287                   | 17543.4203               | 844.715686 | 0         | 16698.705 | 432952.6784 | 49.92%  |             |  |
| 15  | 0.1228945                   | 15255.1481               | 2267.7935  | 0         | 12987.355 | 445940.033  | 49.97%  |             |  |
| 16  | 0.1068648                   | 13265.3461               | 638.726417 | 0         | 12626.62  | 458566.6527 | 50.01%  |             |  |
| 17  | 0.0929259                   | 11535.0836               | 555.414276 | 0         | 10979.669 | 469546.3221 | 50.03%  |             |  |
| 18  | 0.0808051                   | 10030.5075               | 482.968935 | 0         | 9547.5385 | 479093.8606 | 50.05%  |             |  |
| 19  | 0.0702653                   | 8722.18042               | 419.972987 | 0         | 8302.2074 | 487396.068  | 50.06%  |             |  |
| 20  | 0.0611003                   | 7584.50471               | 1127.49417 | 0         | 6457.0105 | 493853.0786 | 50.07%  |             |  |
| 21  | 0.0531307                   | 6595.22149               | 317.559915 | 0         | 6277.6616 | 500130.7402 | 50.07%  |             |  |
| 22  | 0.0462006                   | 5734.97521               | 276.139056 | 0         | 5458.8362 | 505589.5763 | 50.08%  |             |  |
| 23  | 0.0401744                   | 4986.93496               | 240.120919 | 0         | 4746.814  | 510336.3904 | 50.08%  |             |  |
| 24  | 0.0349343                   | 4336.46519               | 208.800799 | 0         | 4127.6644 | 514464.0547 | 50.08%  |             |  |
| 25  | 0.0303776                   | 3770.83929               | 560.563869 | 0         | 3210.2754 | 517674.3302 | 50.08%  |             |  |
| 26  |                             |                          |            |           |           |             |         |             |  |
|     | VPN                         | 802408.271               | 51527.7612 | 233206.18 | 517674.33 |             |         |             |  |
|     | Tabla 0-4 Valores presentes |                          |            |           |           |             |         |             |  |