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On some applications of exchangeable and stationary dependence structures

by Arrigo COEN

Exchangeable and stationary models arise in a wide variety of problems where statis-

tical analysis is applied. They represent two of the most natural dependence struc-

tures that appear in real phenomena. Accordingly, this work considers three differ-

ent aspects about these dependent structures. The first aspect that we analyze is

the construction of multivariate stationary processes with a given stationary distri-

bution. In particular, we study three different models using our construction; these

models present t-multivariate, Gaussian and Wishart stationary distribution, respec-

tively. The second aspect that we handle is the computation of ruin probabilities

under exchangeable claim amounts scenario. We extend various important risk the-

ory results of the independent framework. Finally, the third aspect that we handle is

the implications on the renewal equation if the renewals are exchangeable. We found

that the renewal function in this framework can be rewritten as the solution of a new

type of equations. Furthermore, we obtain the general solution to them.
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Introducción (Spanish version)

En estadística, la dependencia de las variables juega un importante rol en el compor-

tamiento de un modelo, y por ende influye en su habilidad para representar la reali-

dad. El estudiar estas estructuras nos permite representar de manera más adecuada

los fenómenos que estamos analizando. Sin una apropiada estructura de dependen-

cia, la inferencia que un modelo es capaz de capturar puede ser incorrecta.

Las aportaciones de este trabajo se basan en dos tipos de estructuras de dependen-

cia: estacionariedad e intercambiabilidad. Estas simetrías distribucionales represen-

tan el comportamiento de procesos que probabilísticamente no son afectados por

traslaciones y permutaciones, respectivamente. Estos supuestos son naturales en

muchas aplicaciones, por tanto, estas estructuras son útiles para plantear esquemas

generales fuera del supuesto de independencia.

Gran parte de la literatura que trata a estas estructuras de dependencia se enfoca en

su caracterización, lo cual fue iniciado por el celebrado teorema de representación

de Bruno de Finetti [de Finetti, 1937] y la versión que planteó Maitra [Maitra, 1977]

para variables aleatorias estacionarias. Sin embargo, fuera de la importancia de la in-

tercambiabilidad para la estadística Bayesiana, pocos trabajos se enfocan en estudiar

las implicaciones de estas estructuras en áreas de modelaje de procesos estocásticos.

Nuestra motivación es en esta dirección y, en este trabajo, exploraremos las implica-

ciones de estos supuestos en algunos problemas específicos.

En concreto centraremos nuestra discusión en tres diferentes aspectos de estas es-

tructuras de dependencia

• Aspecto 1: La construcción de procesos estacionarios multivariados dada una

distribución estacionaria, fijada de antemano.

• Aspecto 2: El calculo de probabilidades de ruina bajo el supuesto de que los

reclamos sean intercambiables.

1



Introducción 2

• Aspecto 3: Las implicaciones sobre la ecuación de renovación cuando los tiem-

pos de las renovaciones son intercambiables.

A continuación damos una breve descripción de cada uno de estos aspectos:

Para enfrentar el primer aspecto, en el Capítulo 1 presentamos una construcción de

procesos multivariados estacionarios. La ventaja de nuestro enfoque es que otorga

libertad en la selección de la distribución estacionaria, mientras que la mayoría de

los planteamientos están restringidos a una sola familia paramétrica de distribu-

ciones multivariadas. En particular, generalizamos las ideas de Pitt and Walker [2005]

and Mena and Walker [2009], al caso multivariado. Usando esta construcción, pre-

sentaremos tres modelos de procesos multivariados estacionarios; dichos modelos

tienen a las distribuciones t-multivariada, Gaussiana y Wishart como distribución

estacionaria, respectivamente. Modelos de este tipo son frecuentemente utilizados

en aplicaciones; por ejemplo, estos modelos son ampliamente utilizados en finanzas

para la estimación de volatilidad.

Para hacer frente al segundo aspecto desarrollamos resultados analíticos sobre la

probabilidad de ruina para el modelo de reserva de Cramér-Lundberg con reclamos

intercambiables (el modelo CLEC, por sus siglas en inglés), en el Capítulo 3. En este

modelo los reclamos tienen una estructura de dependencia dada por un proceso in-

tercambiable. Esta hipótesis es adecuada para el modelaje de ciertas reservas, ya

que en algunos casos las observaciones de los reclamos muestran una correlación

positiva. Esto ocurre, por ejemplo, en seguros catastróficos que cubren tormentas,

ya que las magnitudes de los reclamos están positivamente correlacionadas por la

magnitud de la tormenta que los genera.

En el Capítulo 2 presentamos una breve introducción a la teoría clásica de riesgo.

Esta introducción nos será útil para analizar extensiones de resultados clásicos para

el modelo CLEC, e.g. una generalización de la fórmula de Pollaczek-Khinchine y

una generalización de la desigualdad de Lundberg. Es importante mencionar que

mostraremos una condición equivalente a la condición de ganancia neta, para el caso

intercambiable. Esta nueva condición revela importantes puntos a tomar en cuenta

por una compñía de seguros cuando la hipótesis de independencia no es satisfecha.

Nuestro trabajo puede ayudar a mostrar los riesgos que estaría tomando una com-

pañía al toma cierto portafolio de seguros, bajo el supuesto de reclamos intercam-

biables. Algunos de nuestros hallazgos pueden ser consultados en Coen and Mena

[2015b].



Introducción 3

Finalmente, para analizar el tercer aspecto, en el Capítulo 4, investigamos las im-

plicaciones teóricas en un modelo de renovación con renovaciones intercambiables.

En dicho capítulo extendemos algunos de los resultados clásicos de teoría de ren-

ovación. Para caracterizar estos procesos definimos el concepto de ecuaciones de

renovación condicionadas. En particular, exhibiremos la existencia y unicidad de

sus soluciones.

Al tener hipótesis menos restrictivas, los modelos de renovación intercambiables

pueden ser aplicados a escenarios más generales que los modelos de renovación

clásicos. Por ejemplo, pueden ser aplicados en la teoría de confiabilidad para analizar

los costos asociados con distintas políticas de mantenimiento, cuyas épocas de ren-

ovación tienen cierta dependencia. Nuestros hallazgos sobre ecuaciones de ren-

ovación intercambiables forman parte manuscrito que estamos finalizando [Coen

and Mena, 2015a].





Preface (English version)

In statistics, the dependence structure of a model plays an important role in deter-

mining its ability to resemble reality. Disentangling such structure allows us to study

the intrinsic relations among variables. Consequently, without an adequate depen-

dent structure the inference that the model grants could be weak.

In this work we base our developments on two types of dependence structures: sta-

tionarity and exchangeability. In words, these distributional symmetries resemble

the behavior of processes that are probabilistically unaffected under shifts and per-

mutations, which appear naturally in many applications. Accordingly, they serve as

a natural general framework to settings outside independence.

Great part of the literature regarding these dependence structures focuses on their

characterizations, starting with the celebrated representation theorem by Bruno de

Finetti [de Finetti, 1937] and Maitra’s version [Maitra, 1977] for stationary sequences

of random variables. However, besides the impact of exchangeability within the

Bayesian statistics literature, only few works are devoted to study and analyze the

implications of such dependences structures in other areas of stochastic modeling.

Therefore, our motivations lies in this direction and, in this work, we explore the im-

pact of these characteristic features in some specific problems.

Accordingly, in this work we center our discussion to three different aspects about

these dependent structures:

• Aspect 1: The construction of multivariate stationary processes with a given sta-

tionary distribution.

• Aspect 2: The computation of ruin probabilities under exchangeable claim amounts

scenarios.

5



Preface 6

• Aspect 3: The implications of the renewal equation when renewals times are

exchangeable.

Let us briefly describe each of these three aspects:

In order to undertake the first aspect, in Chapter 1 we present a construction tech-

nique of multivariate stationary process. The advantage of this approach is that it

grants liberty in the selection of the stationary distribution, whereas most existing

approaches are restricted to only specific choices of parametric multivariate dis-

tributions. In particular, we generalize some ideas of Pitt and Walker [2005] and

Mena and Walker [2009], to the multivariate framework. Using this construction

we present, in Chapter 1, three multivariate stochastic process models; these mod-

els present t-multivariate, Gaussian and Wishart stationary distribution, respectively.

Models of this kind are frequently need in applied areas. For instance, they are widely

used in financial applications for local volatility estimation and smoothing. Accord-

ingly, part of our ongoing work focuses on the preparation of a manuscript that con-

tains our findings in this subject.

To handle the second aspect we develop analytical results of the ruin probability un-

der the Cramér-Lundberg reserve model with exchangeable claims (CLEC model) in

Chapter 3. In this model the dependence structure among claims follows an ex-

changeable process. This assumption is adequate for a reserve model because in

some cases claim data show positive correlated feature; for example, in storm insur-

ance the size of the claim amounts are positive correlated by the magnitude of the

storms that generates them. Consequently, in Chapter 2 we give a review of the clas-

sical theory that we will extent for the CLEC model. Indeed, we will show explicit

equivalences of various results, e.g. a generalization of the Pollaczek-Khinchine for-

mula and a generalized Lundberg inequality. In particular, we will give an equivalent

condition to the net profit condition, for the exchangeable scenario. This condition

unveils important concerns for the insurer when the independence assumption is vi-

olated. Our analysis could be applied to measure the consequences of the decisions

of an insurance portfolio, since it can grant knowledge about the magnitude of the

risks under a more general scenario. Some of our findings in this direction can be

found in Coen and Mena [2015b].

Finally, to undertake with the third aspect described above we investigate, in Chap-

ter 4, the theoretic consequence of a renewal model with exchangeable renewals. In

this chapter we extend some of the classical renewal theory results. To characterize



Preface 7

these processes, we define the concept of conditional renewal function. This func-

tions can be rewritten as the solutions of exchangeable renewal equations, and using

these equations we exhibit expressions for them. As a result of its less constraining

assumptions, exchangeable renewal models can be applied to more general scenar-

ios, where the classical renewal models can not. For instance, our results could be

employed in reliability theory to analyze repair-vs-replace decisions, where the costs

associated with various maintenance policies need to be identified, and the renewal

epochs show a nonindependent behavior. The findings that we have obtain concern-

ing renewal exchangeable equations are part of a manuscript that we are now finish-

ing for its possible publication in a peer review journal [Coen and Mena, 2015a].





Chapter 1

Stationarity, exchangeability and some

stochastic processes with multivariate

marginal distributions

This chapter presents the basic background on exchangeability and stationarity nec-

essary for subsequent chapters. In particular, the constructions of some stochastic

processes with multivariate marginal distributions are analyzed. In Section 1.1 the

motivations to study general symmetric structures are explained. Section 1.2 ana-

lyzes the exchangeable symmetry, and also discusses some theoretical results on this

subject that will be used in Chapters 3 and 4. Section 1.3 focuses on the concept of

stationary processes, and gives a review of the relevant literature of different con-

structions of this kind of process. The final three sections of this chapter present

multivariate stationary processes with appealing symmetric properties.

1.1 Introduction

One natural feature that appears in many different real process is a symmetric struc-

ture. From a probabilistic prospective, this translates to retain certain symmetry in

the law driving the random elements that describe such a process. This property

should be understood in the broad sense of invariance under a family of measurable

transformations. Hence, this motivates the following definition.1

1We are assuming a fixed probability space (Ω,F ,P), rich enough to develop all the probabilistic
structures presented.

9



Stationarity, exchangeability and some stochastic multivariate processes 10

Definition 1. A stochastic process X = {Xi : i ∈I } is said to be symmetric to the family

of measurable transformations T = {T j : j ∈J } if

T j (X )
d= X ,

for all j ∈J , where
d= denotes equality in distribution.

An example of a distributional symmetry is given by an independent sequence X =
{Xn : n ∈N}, with respect to the family of transformations defined by Tk (X ) = {Xn+k :

n ∈N}, for k ∈N; in this example, the symmetry is granted because shifts in the index

do not affect the probability law of the process. Also, a Markov chain that starts in its

stable distribution is symmetric to these transformations.

In general, the property of symmetry could be established from many different an-

gles, as many as families of measurable transformations exists. From a modeler point

of view, this structure allow us, in particular, to establish a nonindependent interac-

tion among variables. Using this concept we can reflect the real interplay, against

the assumption of independence, which in some cases is unrealistic and is typically

imposed to facilitate mathematical computations.

In some instances, the assumption of distributional symmetry is misunderstood as

a result of a certain proclivity to see it as a trend around a value. Let us consider the

scenario given in Figure 1.1, to exemplify this last point. This figure shows a trajec-

tory of a process with the symmetry stationarity (see Definition 8). In this example,

the process that generates the trajectory has an stationary distribution which is the

mixture of three Gaussians distributions. At first glance, the trajectory exhibited in

this figure could be misinterpreted as belonging to a non-stationary process. Conse-

quently, in this case a misjudgment could appear because the symmetric structure is

establish around a non visually-symmetric distribution.

By reason of their natural resemblance to real properties, the distributional symme-

tries of stationarity and exchangeability, have been the focal point in many studies;

e.g. Yaglom [1987a,b] and Kallenberg [2005], and references therein. These symme-

tries are indeed very appealing to model real phenomena.
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FIGURE 1.1: Example of a stationary process. The figure shows the trajectory of a
stationary process, its histogram, and its density estimation. In this example, the
stationary distribution was a mixture of three Gaussian distributions, yielding a dis-

tribution with multiple modes, and a stationary process with multiple regimes.

1.2 Exchangeability

As mention in Kallenberg [1973],

“Interchangeability is one of the most natural extensions of the concept of

independence, being sufficiently general to provide a unifying framework

for the theories of infinite divisibility, empirical distributions and sam-

pling from finite populations, and yet sufficiently restrictive to admit an

explicit treatment in terms of canonical representations.”

To start our analysis of the exchangeable symmetry we define first the concept of

conditional independence. The equivalence between conditional independence and

exchangeability is provided by de Finetti’s representation theorem (Theorem 3, be-

low). The definition of conditional independence reflects the existence of a factor

such that conditioning on it the variables of a process are independent, which is a

common assumption in many models.
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Definition 2. Let G be a σ-algebra of events and {Gi : i ∈ I } a set of classes of events

indexed by I . The classes {Gi : i ∈ I } are said to be conditionally independent given G

if for every finite K ⊂ I , and all choices of Ak ∈Gk with k ∈ K ,

P

[ ⋂
k∈K

Ak

∣∣∣∣∣G
]
= ∏

k∈K
P [Ak |G ] , a.s.

Accordingly, a stochastic process {Xi : i ∈ I } is called conditional independent given

G if the sequence of classes {σ(Xi ) : i ∈ I } is conditionally independent given G .

If G = {;,Ω}, then conditional independence given G coalesces to ordinary (uncon-

ditional) independence, while if G =F , where F denotes the σ-algebra of our fixed

probability space (Ω,F ,P), then every sequence of classes of events is conditionally

independent given G .

Independent random variables may lose their independence under conditioning.

For example, if X1 and X2 are independent with P [Xi = 1] = 1−P [Xi =−1] = p ∈ (0,1)

for i = 1,2, and we define S = X1 + X2, then P [Xi = 1|S] > 0, i = 1,2, for S = 0 or 2,

whereas P [X1 = 1, X2 = 1|S2] = 0 when S = 0. On the other hand, dependent ran-

dom variables may gain independence under conditioning, i.e., become condition-

ally independent. For instance, in a Markov chain the variables {X1, X2, . . . , Xn−1} and

{Xn+1, Xn+2, . . .} are conditional independent given Xn , but they can be not indepen-

dent.

To define, in mathematical terms, the concept of exchangeability we first state the

following three definitions: finite permutation, σ-algebra of permutable events and

tail σ-algebra.

Definition 3. A mapping π= {πi : i ≥ 1} fromN+ onto itself is called a finite permuta-

tion if π is one-to-one and πn = n for all but finite number of integers.

Definition 4. We will denote by D the set of all finite permutations π and B∞ be the

class of Borel subsets of R∞. For a stochastic process X = {Xi : i ≥ i } we define the

σ-algebra of permutable events of X by

I = {
X −1(B) : B ∈B∞,P

[
X −1(B)4 (πX )−1(B)

]= 0, all π ∈D
}

,

where πX = {πi Xi : i ≥ 1} for π a finite permutation, and 4 is the symmetric difference

set operator.
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The proof that I is actually a σ-algebra follows by the fact that 4 preserves comple-

mentation and union.

Definition 5. The tail σ-algebra of a stochastic process X = {Xn : n ≥ 1} is given by

T =
∞⋂

n=1
σ

(
X j : j ≥ n

)
.

The sets of the tail σ-algebra are called tail events and functions measurable relative

to the tail σ-algebra are named tail functions.

The assumption of exchangeability is quotidian in many experimental schemes. How-

ever, in many cases its implications are not taken in to account. When considering

samples of an experiment, it is common to treat the information obtained from ev-

ery observation point regardless of its position within the sample. This idea implies

a symmetric treatment of the observations. So, the next definition formalizes this

concept in mathematical terms.

Definition 6. A sequence of random variables X = {Xn : n ≥ 1} is said to be exchange-

able if X
d=πX for every π ∈D.

One motivation for the definition of exchangeability is to express the symmetry of

beliefs about the random quantities in the weakest possible way. It says that the la-

beling of the variables is irrelevant. There are many situations in which this assump-

tion is reasonable; examples of its application can be consulted, for instance, in Koch

and Spizzichino [1982] applied to survey sampling, actuarial techniques, operational

research problems, among others.

In general, it is not possible to embed a given finite set of exchangeable random vari-

able in an infinite set of exchangeable random variables, or even in a larger finite set.

For example, if P [X1 = 1, X2 = 0] = P [X1 = 0, X2 = 1] = 1/2, one cannot even adjoin a

third random variable and preserve exchangeability. This is important to take into

account when establishing an exchangeable model.

The next three theorems have their motivation in de Finetti’s representation theo-

rem, and they establish equivalences to exchangeability. Proofs of this results can be

consulted in Loève [1978, p. 30], Aldous [1985, p. 20], Schervish [1995, Ch. 1] and

Chow and Teicher [1997, p. 232]. First, Theorem 1 relates exchangeability and con-

ditional independence, and also indicates to which σ-algebras we can condition to

obtain this equivalence.
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Theorem 1. The process {Xn : n ≥ 1} is exchangeable if and only if it is conditionally

independent and identically distributed given some σ-algebra G of events. Moreover,

G can be taken to be either the σ-algebra I of permutable events or the tail σ-algebra

T , and

P [X1 < x|I ] =P [X1 < x|T ] , a.s.

The next result shows that the tail σ-algebra and the σ-algebra that makes the pro-

cess conditional independent are almost the same.

Theorem 2. Let the process {Xn : n ∈N} be conditionally independent given aσ-algebra

G of events. Then for any T ∈T there exists some G ∈G with

P [G 4T ] = 0,

where G4T = (G∩T c )∪(Gc ∩T ) is the symmetric difference between the sets G and T .

In order to establish the de Finetti’s theorem we first define the concepts of random

probability measure and empirical distribution.

Definition 7. Given a measurable space (S,A ), a stochastic process Q = {Q(A) : A ∈
A } = {Q(A,ω) : A ∈A ,ω ∈Ω} is called a random probability measure over (S,A ) if:

i) The function Q(·,ω) is a probability measure in (S,A ) for every ω ∈Ω.

ii) The function Q(A, ·) is a random variable in (Ω,F ,P) for every A ∈A .

Example 1. Given a stochastic process {Xn : n ≥ 1}, we define its n-empirical distribu-

tion process by

Qn(B ,ω) = 1

n

n∑
i=1

1B (Xi (ω)), (1.1)

for any B ∈F and ω ∈Ω. It follows that the empirical distribution is in fact a random

probability measure on (Ω,F ), for each n ≥ 1.

Notice that random measures are random elements that define σ-algebras over the

set P of probability measures. In this work, an important role is played by the de

Finetti’s σ-algebra Q, which is generated by the sets

Q(x, y) = {F ∈P |Q(x) ≤ y}, x, y ∈R.
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Accordingly, it can be shown that the sets of the form{
Q ∈P :

∫
R

xdQ(x) ≤ y

}
, y ∈R

are (P ,Q) measurable, see Blum et al. [1958]. In general, if f : R→ R is a Borel mea-

surable function, then the sets{
Q ∈P :

∫
R

f (x)dQ(x) ≤ y

}
, y ∈R,

are (P ,Q) measurable,see Grandell [1977]. These types of measurable sets will be

used in Chapters 3 and 4 to prove properties of our exchangeable models.

Now, we will state a version of the de Finetti’s theorem. This result establishes that

exchangeability is equivalent to the existent of a random probability measure Q, such

that conditioning to it the variables are independent with Q as they probability mea-

sure. This theorem also shows that Q is the limit of the empirical distributions.

Theorem 3 (Bruno de Finetti’s representation theorem). The stochastic process {Xn :

n ≥ 1} is exchangeable if and only if there is a random probability measure Q over

(Ω,F ), such that conditional on Q, {Xn : n ≥ 1} are independent identically distributed

with measure Q. Moreover, this implies the existence of a measureµ over (P ,Q), called

the de Finetti’s measure, such that

P [X1 ≤ x1, . . . , Xn ≤ xn] =
∫
P

n∏
i=1

Q(xi )µ(dQ), (x1, . . . , xn) ∈Rn ,

for every n ≥ 1. Also, the distribution of Q is unique, and the n-empirical distributions

(1.1) converges to Q(B) almost surely for each B ∈F .

An important point to underline here is that, is that de Finetti’s theorem operates

over infinite sequences, and cannot be applied to finite exchangeable sequences. To

see this last point, let {X1, . . . , Xn} be exchangeable, with finite variance σ2 and corre-

lation ρ, then

Var

(
n∑

i=1
Xi

)
=

n∑
i=1

σ2 + ∑
i 6= j

ρσ= nσ
[
1+ (n −1)ρ

]
.

Since this is a positive quantity, we have

ρ ≤− 1

n −1
. (1.2)
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Thus the members of an infinite exchangeable sequence are always positively cor-

related. Consequently, if the correlation between variables is negative then they can

never be conditional independent and at the same time identically distributed.

Also is important to notice that the marginal distribution of an exchangeable process

{Xn : n ≥ 1} is equal to

FXi (x) =P [Xi ≤ x]

= E [P [Xi ≤ x|Q]]

= E [Q(x)] , (1.3)

for any x ∈ R. In words, this last equation says that the marginal stationary distribu-

tion is the mean of the random distribution Q.

The next couple of examples give constructions of exchangeable variables with dif-

ferent correlation coefficients.

Example 2. Let us show that any correlation in [−1/(n −1),1] can be attained by a set

of n exchangeable random variables. Assuming that {Zi : 1 ≤ i ≤ n} are n independent

identically distributed random variables with E [Zi ] = 0 and E
[

Z 2
i

]= 1, define

Xi = Zi + c
n∑

j=1
Z j

with c ∈R. This implies that their joint characteristic function is

ϕX1,...,Xn (t1, . . . , tn) = E[
exp{i [t1X1 + . . .+ tn Xn]}

]
= E

[
exp

{
i

[(
t1 + c

n∑
j=1

t j

)
Z1 + . . .+

(
tn + c

n∑
j=1

t j

)
Zn

]}]

=ϕ
(

t1 + c
n∑

j=1
t j

)
+·· ·+ϕ

(
tn + c

n∑
j=1

t j

)
,

which is a symmetric function with respect to (t1, . . . , tn), whereϕ is the common char-

acteristic function of each of the variables Z1, . . . , Zn . Accordingly, {Xi : 1 ≤ i ≤ n} are

exchangeable. An easy computation shows that the correlations of {Xi : 1 ≤ i ≤ n} are

given by

Corr(Xi , X j ) = 1− 1

nc2 +2c +1
.
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For different values of c, this correlation take values in [−1/(n−1),1). Finally, to obtain

an exchangeable process with Corr(Xi , X j ) = 1 we define the process {Xi : 1 ≤ i ≤ n},

where all its variables are equal to Z1, i.e., X1 = . . . = Xn = Z1.

Example 3. In this example we will construct an infinite exchangeable sequence with

correlation value in [0,1]. In order to establish our construction we assume that we

have a sequence {Zi : i ≥ 0} of i.i.d. random variables. Thus, we define

Xi = c Z0 +Zi , i ≥ 1,

for some c ∈ R. Then, {Xi : i ≥ 0} are exchangeable, because condition to Z0 are inde-

pendent and identically distributed. Notice that Corr(Xi , X j ) = c2/(c2+1), which takes

values on [0,1), when c varies. For a correlation equal to one, we take Xi = Z0, for every

i ≥ 1.

One difficulty in the last example is that, in general, we have a lack of analytic expres-

sions for the marginal distributions. To overcome this problem we will use a Bayesian

parametric construction in this work. To construct exchangeable sequences we will

first fix a parametric family of distributions and then establish a prior distribution

over its parameters (see Sections 3.7 to 3.10). Indeed, many of our analysis use tools

from the Bayesian statistical theory.

The concept of exchangeability was fist introduced by Bruno de Finetti. In de Finetti

[1931] he characterizes mixtures of process with discrete marginal distributions, with

only two possible states. He subsequently, de Finetti [1937], generalized this result to

any type of mixtures of sequences of independent, identically distributed random

variables. Following these ideas, Freedman [1962] shows necessary and sufficient

conditions for those stochastic process that can be represented as mixtures of vari-

ous special families of discrete time processes. Using the theory of extreme points of

convex sets, a generalization of this is then presented in Freedman [1963], to the case

of continuous time process. We recommend to the reader to consult Kingman [1978],

for examples of how to model phenomena with exchangeable processes. Some ver-

sion of extensions of the central limit theorem within the exchangeable framework

can be found in Blum et al. [1958], Chernoff and Teicher [1958] and Klass and Te-

icher [1987]. There exists a vast literature concerning with analytical properties of ex-

changeable sequences, for further references see Hewitt and Savage [1955], Kendall

[1967], Kallenberg [1973, 1974, 1975], Diaconis and Freedman [1980a,b] and Huang

[1990].
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1.3 Stationarity

There are several real random phenomena sharing certain type of stationary behav-

ior, whose distributions are, to some extend, non affected by shifts in their indexing,

typically identified as time or space. An example of this behavior could be consulted

in Barndorff-Nielsen et al. [1998], where they study the behavior of a financial time

series and show how well can be fitted by an stationary model. Let us establish this

concept mathematically.

Definition 8. A stochastic process X = {X t : t ∈ T }, where T =R or T =N, will be called

stationary if all its finite-dimensional distributions remain the same under transla-

tions in time, i.e., if

(X t1 , . . . , X tn )
d= (X t1+τ, . . . , X tn+τ), ∀ti , ti +τ ∈ T.

This assumption helps to obtain mathematical tractable models; for instance, a sim-

plification in the estimation procedures could appear because the number of param-

eters involved are reduced [Ferrari and Wyner, 2003]. In particular, this assumption is

fruitful to model multivalued phenomenon where over-parametrization can be spe-

cially problematic. Applications of stationary multivariate processes have been stud-

ied by Rue and Held [2005] on epidemiology, Kindermann and Snell [1980] on social

sciences, Xu [2011] on finance, Winkler [2003] on image analysis, and Vanmarcke

[2010] on geology. In general, they are also used in special applications like detection

theory, signal processing, spatial statistics, and reliability.

For a recent account of the classification of stationary processes we recommend the

reader to look at the book of Kallenberg [2005]. Also important to mention are the

studies by Cramér and Leadbetter [2004] and Lindgren [2013], which show many the-

oretical implications and the wide spectrum o application of these type of processes.

In this work we use different constructions of stationary processes, let us now give a

brief account of some approaches relevant for our further developments. In particu-

lar, to those constructions of Markovian reversible stationary models.

The problem of constructing stationary models with prescribed marginal distribu-

tions has recently received considerable attention. Within the discrete-time litera-

ture, two works that serve as cornerstone are Lawrance and Lewis [1977] and Jacobs



Stationarity, exchangeability and some stochastic multivariate processes 19

and Lewis [1977]; both of these contributions focus in constructions with exponen-

tial marginal distributions. Many models then follow their ideas, in particular, with

marginal distributions such as gamma, Poisson and negative binomial; examples of

it could be consulted in Gaver and Lewis [1980], Lawrance [1982], McKenzie [1986,

1988], Lewis et al. [1989], McCormick and Park [1992] and Al-Osh and Aly [1992]. A

review of non-Gaussian first order linear autoregressive models can be consulted in

Grunwald et al. [1995]. Nowadays, new constructions of stationary processes contin-

ues to appear, in particular for the multivariate framework.

In Joe [1996] a construction of ARMA models for convolution-closed families of in-

finitely divisible distributions is presented. An extension of this work then appear in

Jørgensen and Song [1998], for AR(1) time series, using the method of thinning. To

construct these types of series they establish the relation

X t = At (X t−1;α)+εt , t = 1,2, . . . ,

where At is the thinning operator, and the two terms of the right hand side are inde-

pendent of each other. This generalizes the notion of binomial thinning of a Poisson

variable treated by McKenzie [1988], and the beta thinning of the gamma distribution

used by Lewis et al. [1989].

Based on this construction, more general frameworks are proposed in Pitt et al. [2002].

They explore the unidimensional discrete time process which fulfils the lineal equa-

tion

E [Xn |Yn−1] = ρYn−1 + (1−ρ)µ,

where Y is an auxiliary process. A previous application of a similar idea is presented

in Barndorff-Nielsen [1997] who generates a Markov chain {Xn : n ≥ 1} via a sequence

of unknown latent states {Yn : n ≥ 1}, related by certain conditional densities f (yn |xn)

and f (xn |yn−1). They use the Gaussian and the inverse Gaussian distributions to

define the transition densities. A lack of a joint density contributes to the absence of

analytic expressions for the marginal and stationary distribution of {Xn : n ≥ 1}.

In this work we use frequently the idea of an auxiliary process to construct exchange-

able and stationary process. This idea helps to gain control and to understand accu-

rately the interactions among variables because it factorizes the entire distribution

of the process as products of conditional distributions. The versatility of this idea

could be applied to the construction of discrete and continuous time multivariate

processes (see Sections 1.4 to 1.6).
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The number of contributions within the multivariate framework has, however, re-

ceived less attention in the literature. This, is perhaps due to the fact of its multi-

variate character complexity their joint marginal density and their transition density.

Nevertheless, the stationary multivariate processes theory has many important ap-

plications. For instance, some appealing references are found in: Greenwood and

Williamson [1966] and Nayak [1973] for metallic surfaces; Wong and Tsui [1977] for

electrical engineering; Matérn [1960] for forestry problems; and in Panda [1977],

Panda and Dubitzki [1979], and Bruce and Schachter [1980] for image analysis.

Due to the above mention complexity one can resolve to a particular family of dis-

tributions. Accordingly, for the sake of clarity let us continue our discussion using

density functions.

One appealing construction of multivariate process is presented in Fox and West

[2011]. They construct a process with stationary Wishart distribution by using the

property of being closed under conditionality. Due to the above mention complexity

one can resolve to a particular family of distributions. To define the density f (xt−1, xt )

they use an inverse Wishart distribution with a random matrix φt . This matrix φt

must accomplish the relation:

(
X t−1 φ′

t

φt X t

)
∼ IW2q

(
n +2,n

(
S SF ′

F S S

))
. (1.4)

They show which are the restrictions for F and S to make the process X stationary

and reversible.

In Mena and Walker [2009] the construction studied by Pitt et al. [2002], of univari-

ate processes, is extended to the continuous time case. In the remaining sections of

this chapter we seek to generalize this idea to some multivariated-value processes.

The extension that we will present has the advantage of an easy implementation and

interpretation. It is worth to emphasize that this construction works for continuous

and discrete time processes.

Let us present our multivariate reversible stationary process construction. The steps

of this construction start with the desired (fixed) stationary multivariate density f (xt ).

Then, we introduce a latent process Y = {Yt : t ∈ R+}, through the conditional multi-

variate density f (yt |xt ), in such a way that the domain of this density, as a function

of xt , coincides with the support of f (xt ). With the knowledge of f (xt ) and f (yt |xt ),
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an application of Bayes theorem leads to a form for f (xt |yt ), using

f (xt |yt ) ∝ f (yt |xt ) f (xt ).

Moreover, it is important to mention that both of the processes X and Y are reversible

and also satisfy the independence structure:

P
[
Yt+s |Y (t ),X (t )]=P [Yt+s |X t ] ,

P
[

X t+s |Y (t+s),X (t )]=P [X t+s |Yt+s] ,

where Y (t ) = {Ys : 0 ≤ s ≤ t } and X (t ) = {Xs : 0 ≤ s ≤ t } [see Liu et al., 1994]. The

transition density driving a Markovian process with stationary distribution f (xt ) is

then constructed by

f (xt+s |xs) =
∫

f (xt+s |ys) f (ys |xs)d ys . (1.5)

This resemblance precise the type of dependence induced by Gibbs sampler Markov

chains, but in continuous time. Clearly, such a process is reversible with stationary

distribution f (xt ).

In the next sections we will exhibit three different stationary models that we worked

during our research. Other models were developed under the research, but the cho-

sen models exemplify better the ideas of the construction. Each of these sections is

devoted to a different multivariate model. The first model can be used to model pro-

cesses with light tails, the second to model the evolution of a time indexed covariance

matrix, and the third model could be used for heavy tailed processes.

1.4 Gaussian-Gaussian model

It this section we present a construction of a continuous time process X = {X t : t ∈
R+}, such that for every time its invariant distribution is Gaussian given by

X t ∼ N(µ,Σ), t ∈R+,
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where µ ∈ Rd and Σ ∈ Rd×d are fixed. We will induce the dependence in the model

using the conditional distribution

Yt |X0 ∼ N(X0,φt ), t ∈R+, (1.6)

where φt is a positive defined matrix.

An instance of the potential applications of Gaussian multivariate processes can be

consulted in Rue and Held [2005], and references therein.

In the following lines we will find conditions over φt needed to obtain a reversible

stationary process. To this end, let us first use Bayes theorem to obtain

X t |Yt ∼ N
(
Ct [φ−1

t Yt +Σ−1µ],Ct
)

, t ∈R+, (1.7)

where Ct = [φ−1
t +Σ−1]−1. From equations (1.5) to (1.7) we obtain that the transition

density of the process X , which is given by

X t |X0 ∼ N
(
Ct [φ−1

t X0 +Σ−1µ],Ct +Ctφ
−1
t C T

t

)
. (1.8)

To achieve the restrictions over φt such that Markovianity is preserved, we must find

the conditions such that the Chapman-Kolmogorov equations are satisfy. The mo-

ment generation function of X t given X0 = x0 is

LX t |X0=x0 (λ) = exp

{[
xT

0 φ
−1
t +µTΣ−1]Ctλ+ 1

2
λT [

Ct +Ctφ
−1
t Ct

]
λ

}
,

and the Chapman-Kolmogorov equations applied to generator functions are then

equivalent to

E
[
LX t+s |Xs (λ)|X0

]=LX t+s |X0 (λ), t , s ∈R+. (1.9)

First notice that

E
[
LX t+s |Xs (λ)|X0 = x0

]
= exp

{
µTΣ−1Ctλ+ 1

2
λT [

Ct +Ctφ
−1
t Ct

]
λ

}
×LX t |X0=x0

(
φ−1

t Ctλ
)

= exp

{
µTΣ−1Ctλ+ 1

2
λT [

Ct +Ctφ
−1
t Ct

]
λ

}
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×exp

{[
xT

0 φ
−1
t +µTΣ−1]Ctφ

−1
t Ctλ+ 1

2
λT Ctφ

−1
t

[
Ct +Ctφ

−1
t Ct

]
φ−1

t Ctλ

}
.

From such expression and equation (1.9) we have that

φs+tΣ
−1 +1 = (

φtΣ
−1 +1

)(
φsΣ

−1 +1
)

. (1.10)

This implies that φt is given by

φt =Σ
(
eαt −1

)
, (1.11)

for some α matrix of dimensions d ×d . Substituting the right side of equation (1.11)

in to equation (1.8), we obtain

X t |X0 ∼ N
(
e−ΣαΣ−1t X0 +

(
1−e−ΣαΣ−1t

)
µ, Σ

(
1−e−2αt )) . (1.12)

The constrains over α are given by the restriction of the positive definiteness of the

covariance matrix of the densities in equations (1.6) and (1.12). This implies that

Σ
(
eαt −1

)
and Σ(1−e−2αt ) are positive definite matrices for every t .

It is important to emphasize that the Gaussian-Gaussian model is in fact a diffusion

process [Stroock and Varadhan, 2006]. Let us find its diffusion coefficients; to obtain

them we use the limit formulas of Kloeden and Platen [1992, pp. 68]

a(x) = lim
t↓0

E [X t |X0 = x]−x

t

=−ΣαΣ−1(x −µ),

and

B(s, x)B(s, x)T = lim
t↓0

1

t

(
E
[
(X t −x)(X t −x)T |X0 = x

]−x
)

= lim
t↓0

1

t

((
1−e−2tα)

Σ+ [(
e−tα−1

)(
x −µ)][(

e−tα−1
)

(x −µ)
]T

)
=2αΣ.
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Then the stationary process X coincides with that being a solution of the multivariate

stochastic differential equation

d X t =−ΣαΣ−1(x −µ)d t +
p

2αΣdWt , (1.13)

which corresponds to the Ornstein-Uhlenbeck multivariate diffusion process. In

general, this process is known as the solution of a more general multivariate stochas-

tic differential equation. Nevertheless, we have obtain, the particular case, in equa-

tion (1.13) when it is reversible. For a recent account of the theory of diffusions we

refer the reader to Rogers and Williams [2000a,b]. Indeed, in the univariate case it is

granted the reversibility property, while in the multivariate framework it is not. This

example shows the advantage of our construction to obtain the conditions for this

property.

1.5 Wishart-Wishart model

The Wishart distribution is used, in particular, to model the distribution of the co-

variance matrix of different phenomena, this clearly happens since its support is the

set of positive definite matrices. This distribution originally emerged from the study

of the maximum likelihood estimator of the covariance matrix of multivariate Gaus-

sian variables [see Wishart, 1928]. Examples underlying modern uses of covariance

matrix-value stochastic processes can be found in Leung et al. [2013], where a cur-

rency option pricing model is developed using the Wishart distribution. It is also

important to mention the work by Bru [1991] where the Wishart process is defined as

the strong solution of a stochastic differential equation, which is a generalization the

idea of the Bessel process. Other examples in the same line can be consulted in Fox

and West [2011], Gourieroux et al. [2009] and Philipov and Glickman [2006a,b].

The model of this section has the Wishart distribution as its stationary distribution.

To be more precise, we fix the stationary distribution to be

X t ∼ Wp (ν, M) , t , s ∈R+,

where ν is its freedom degrees, and M its a scale matrix of dimension p ×p, which is

symmetric and positive definite. Once again, mimicking the construction in the pre-

vious section, the relation between the stationary process X and the auxiliary process
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Y is assumed to be given by

Yt |X0 ∼ Wp

(
a,

(
φt X0φt

)−1
)

,

where a ≥ p, and φt is a matrix of dimensions p ×p of complete rank. Following the

construction in Mena and Walker [2009], these hypothesis imply that

X t |Yt ∼ Wp

(
ν+a,

[
φt Ytφt +M−1]−1

)
,

and the transition density is given by

f (xt |x0) =
∫

f
(
xt |yt

)
f
(
yt |x0

)
d yt

=
∣∣φt

∣∣a |xt |(2a+ν−p−1)/2 etr
(−M−1xt /2

)
2(2a+ν)p/2Γp

(a
2

)
Γp

(a+ν
2

)
×

∫
etr

(−φt (xt +x0)φt yt /2
)∣∣M−1 + ytφtφt

∣∣(a+ν)/2 ∣∣yt
∣∣(a−p−1)/2 d yt ,

(1.14)

where etr(·) stands for the exponential trace function, i.e. etr(A) = exp{tr(A)}. For

this model we have not found yet a simplified expression for the transition density.

Part of our future work focuses in develop analytic results for this model using Gibbs’

sampling techniques.

1.6 Gaussian-Wishart model

The t-multivariate distribution is frequently used to model heavy tailed observations.

In many cases, it is applied to data which originally were modeled by Gaussian distri-

butions, but the demand of heavier tails makes it necessary. Examples of its applica-

bility can be consulted in Nason [2001] to define an index over the cluster accuracy,

and in Galimberti and Soffritti [2014] where it explores a linear model where the er-

ror terms follow a finite mixture of t-multivariate distributions. For a deep analysis

of the applications of the t-multivariate distribution we refer the reader to Kotz and

Nadarajah [2004].

To construct the model of this section we will use the two previously presented mod-

els. For each time t ∈N the process has a conditional distribution X t |Wt ∼ N
(
µ,W −1

t

)
,
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where µ is a fixed vector and the process W has stationary distribution Wt ∼ W(ν, M)

for each t ∈N. To obtain the conditional distribution N
(
µ,W −1

t

)
we use an auxiliary

process Y so that

Yt |X0,W0 ∼ N
(
X0,φt

)
, t ∈N, (1.15)

where φt is, for now, a positive definite matrix.

Using that

f (xt |yt , wt ) ∝ f (yt |xt , wt ) f (xt |wt ),

we obtain

X t |Yt ,Wt ∼ N
(
Ct

[
φ−1

t Yt +Wtµ
]

,Ct
)

, (1.16)

where Ct =
[
φ−1

t +Wt
]−1

. Applying equations (1.5), (1.15) and (1.16) we obtain the

transition conditional distributions of the process X given W are given by

X t |X0,W0 ∼ N
(
Ct

[
φ−1

t X0 +W0µ
]

,Ct +Ctφ
−1
t C T

t

)
. (1.17)

A useful characteristic of this model is the control over its general and local variabil-

ity. We have control over the evolution of the general covariance between the points

using the parameters of the process W ; this happens as a consequence of the role of

Wt in equation (1.17). It is important to notice that this gives us control over the tails

of the process, making them heavier or lighter. On the other hand, we have control

over the local variability of the process; this is granted by changing the values of the

parameter φt . This parameter controls the variability of the transitions of successive

states of the process (see equation (1.17)); for instance, a change of φt could acceler-

ate the velocity of convergence to the stationary distribution.

The following result shows that the process X has an stationary multivariate t distri-

bution.

Theorem 4. The Gaussian-Wishart model has stationary distribution multivariate t,

given by

f (x) = Γ
(
ν+1

2

) |M |1/2

π−n/2Γ
(
ν
2

)∣∣∣1+M
(
x −µ)(

x −µ)T
∣∣∣− ν+1

2

.

Proof.

f (x) =
∫

f
(
x|w−1) f

(
w−1)d y
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=
∫

(2π)−n/2|w |−1/2 exp
{
−(

x −µ)T w−1 (
x −µ)

/2
}

×2−νn/2Γ−1
n

(ν
2

)
|M |−ν/2 |w |−(ν+p+1)/2etr

{−M−1w−1/2
}

d w

=π−n/22−(ν+1)n/2Γ−1
n

(ν
2

)
|M |−ν/2

×
∫

|w |−(ν+1+p+1)/2etr
{
−

[(
x −µ)(

x −µ)T +M−1
]

w−1/2
}

d w

=π−n/22−(ν+1)n/2Γ−1
n

(ν
2

)
|M |−ν/22(ν+1)n/2Γ−1

n

(
ν+1

2

)∣∣∣(x −µ)(
x −µ)T +M−1

∣∣∣− ν+1
2

= Γ
(
ν+1

2

) |M |1/2

π−n/2Γ
(
ν
2

)∣∣∣1+M
(
x −µ)(

x −µ)T
∣∣∣− ν+1

2

.

In the last equality we use that

Γn(a) =π(n−1)/2Γ(a)Γn−1

(
a − 1

2

)
,

and the proof is complete.

As a consequence of the last result the Gaussian-Wishart model could be use to em-

ulate the behavior of a heavy tailed stationary phenomena. The use of t-multivariate

distributions enjoys renewed interest due to applications in mathematical finance,

especially through the use of the Student t copula, see Demarta and McNeil [2005]

and Chan and Li [2008].





Chapter 2

Key results in risk theory

In order to analyze a reserve model with a dependent structure on claim amounts

and extend many of the classical results under this framework, we first establish in

this chapter the basic background on risk theory that we will use in further chapters.

Among other things, an insurance contract is an instrument against a fortuitous turn

of events established between the insured and the insurance company. The insured

is the object of some random risks and decides to buy a contract from the insurance

company to soften the possible consequences of future events. In order to price ade-

quately this type of contracts, the insurance company must take into account all the

important features of the risk and the available knowledge from similar past events.

In addition, an arbitration commission must be present to supervise the fair play

between the two parts.

Although there are many important objects in an insurance company to be modeled

mathematically, we will restrict our attention to its reserve process. The monetary

reserve of the company is intrinsically linked with its capability to pay its obligations

and avoid bankruptcy. Focusing on the size of the reserve is also important, because

insurance laws and regulations could request some threshold to allow the company

to operate [see Wahl and Rose, 2011].

In this chapter, we will give a brief and basic analysis of the risk theory framework

that will be used on the rest of the work; its layout is as follows. In Section 2.1, we will

present the Cramér-Lundberg model and show an interpretation of its assumptions

and implications. Section 2.2 defines the problem of ruin, and Section 2.3 gives an

analysis of the net profit condition in the classical framework. In Sections 2.4 to 2.6

29
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we will show some classical results of the ruin probabilities; e.g. integro-differential

expressions, bounds and equivalent formulations. At the end, in Section 2.8, we re-

view some studies that relax the classical assumptions. All the results shown in this

chapter will be applied in Chapter 3 as a benchmark to contrast the behavior of a

dependent claim scenario.

2.1 Introduction to the classical theory:

the Cramér-Lundberg model

One could think about the behavior of the reserve of an insurance company through

time as:

Reserve at time t = Initial capital+ Incomes at time t −Outcomes at time t .

This abstraction, which is not trivial at all, allows us to separately model the differ-

ent elements that constitute the reserve process. Let us have some words about the

general properties of each of these three components:

1. The objective of the initial capital is to provide a buffer which protects the

interests of policyholders. This buffer should be sufficiently large to allow to

take management actions and regulator actions against the impact of adverse

events.

2. Incomes at time t are mainly constituted by the premiums charged to the in-

sured in the time interval (0, t ]. These premium amounts must be calibrated

by taking into account the magnitude and frequency of the possible claims

and the market behavior (see Sundt [1991] and Daykin et al. [1994]). We will

make the usual assumption that incomes follow a deterministic linear func-

tion. This hypothesis is supported on the fact that the insurance companies

we model are big enough that premiums arrive almost continuously and they

are non-affected by the number of insured quitting their contracts. There is a

vast amount of literature centered on how to calculate the constant premium

rate [see for instance Goovaerts et al., 1984], but we will not elaborate on this

point here.
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3. Outcomes at time t are mainly constituted by the claims charged to the insur-

ance company in the time interval (0, t ], and modeled by a random process

S = {St : t ≥ 0}. Many interesting analyses from different viewpoints had been

devoted to the study of the intricate and complex behavior of this process. In

particular, one natural and usual way to shape this process, that we will use in

this work, is given by establishing a counting process N = {Nt : t ≥ 0} modeling

claim times and a stochastic process Y = {Yi : i ∈N} to model claim amounts,

independent of each other. In this way, the times at which the claims occur and

their severities, are modeled separately. Other approaches do not disaggregate

the information in this way, e.g. when the reserve is modeled by some Lévy

process. One advantage of this type of analysis is a better understanding of the

contribution of each process.

Let us first analyze the claim time process N . In Chapter 4 we will generalize these

ideas by presenting results of a more general process to model claim times. There-

fore, the next definition, that follows the notation of Ross [1996], describes what we

mean when referring to counting processes.

Definition 9. A stochastic process N = {Nt : t ≥ 0} is said to be a counting process if

Nt represents the total number of “events” that have occurred up to time t . That is, a

counting process N must satisfy:

1. Nt ≥ 0.

2. N is integer valued.

3. Ns ≤ Nt , for s < t .

4. Nt −Ns equals the number of events that have occurred in the interval (s, t ], for

s < t .

In particular, a counting process is said to possess independent increments if the num-

bers of events occurring in disjoint time intervals are independent, and it is said to

possess stationary increments if the distribution of the number of events that occur in

any time interval depends on it only through its length.

By far, the most tractable and studied counting process is the Poisson process, defined

next.
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Definition 10. The counting process N is said to be a (homogeneous) Poisson process

having rate λ, λ> 0, if:

1. N0 = 0.

2. N has independent increments.

3. The number of events in any interval of length t is Poisson distributed with mean

λt . That is, for all s, t ≥ 0,

P [Nt+s −Ns = n] = e−λt (λt )n

n!
, n = 0,1, . . . .

The Poisson process is a stochastic counting process that appears in many phenomenon

in which there is a large population of individuals who, more or less independently

of each other, have a small probability of contributing to the count in the next small

time interval. For a thorough treatment of the Poisson process, we refer the reader to

Kingman [1993] and Kingman [2006].

Remark 2.1. It is important to mention that the study of the homogeneous Poisson

process also unveil characteristics of the inhomogeneous process, i.e. when the rate

parameter λ is a function of time. This interaction between the these two processes

happens because because any inhomogeneous process can be transformed into a

homogeneous one (and vice versa) by using a time change [for example see Mikosch,

2009, Section 2.1.3]. Similarly, it is worth saying that the Palm–Khintchine theorem

states that the superposition of independent equilibrium renewal processes behaves

asymptotically like a Poisson process [see Heyman and Sobel, 2004, p. 157]. These

two properties contribute to the wildly accepted use of the Poisson process in a vari-

ety of models.

Nevertheless, a limitation of the Poisson process is that the jumps are always of unit

size. The next definition gives a stochastic process with random size of jumps.

Definition 11. Let Y = {Yi : i ∈ N} be a sequence of independent and identically dis-

tributed R+-valued random variables, having distribution function F , and suppose

that this sequence is independent of N = {Nt : t ≥ 0}, a Poisson random variable with

mean λ. Then, the random process

St =
Nt∑

i=1
Yi , t ≥ 0,
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is said to be a compound Poisson process, with Poisson parameter λ and component

distribution F .

As is commonly known, the Poisson compound process inherit many properties of

the Poisson process [see Bening and Korolev, 2002]. Filip Lundberg uses this process

to postulate a continuous time risk model where the aggregate claims in any interval

have a compound Poisson distribution, which is presented in the next definition.

Definition 12. The Cramér-Lundberg (CL) reserve model Ru = {Ru
t : t ≥ 0}, is given by

Ru
t = u +pt −

Nt∑
i=1

Yi , t ≥ 0, (2.1)

with the assumptions:

• u is the initial reserve at time 0, and p is the constant premium rate.

• N is a Poisson process of rate λ.

• Y is a sequence of independent and identically F distributed variables with val-

ues in R+, also independent of N .

Figure 2.1 shows an example of the path behavior of this type of reserve processes.

One reason for using a Poisson process in this definition lies in the fact that many

properties of the Poisson process are desirable to model claims times; for example,

the process Ru = {Ru
t : t ≥ 0} posses a memoryless behavior, and also the probability

of simultaneous claims is zero. These particular constrains must be take into account

when one wants to model real data. Excellent analyzes of this model can be found

for example in Bowers et al. [1997], Beard et al. [1969], Dickson et al. [1992], Rolski

et al. [1999] and Asmussen and Albrecher [2010].

Many studies are devoted to generalizations of the CL model, and many others demon-

strate why it could be used as a suitable approximation to processes that not fulfilling

all its hypothesis; for instance, in some cases these processes are used to model re-

serves despite the fact that their incomes are nondeterministic [see Bühlmann, 1970,

Chapter 2]. Furthermore, in Gerber [1984] and Michel [1987] it is shown that the col-

lective risk model could be used to approximate the individual risk model. In some

instances there are not enough data to adjust an individual model, although the cal-

ibration of the collective model could be efficient.
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t

Ru
t

0

u

FIGURE 2.1: Example of a possible reserve trajectory for the CL model. Blue lines
denotes the periods without the claims, green dots indicate the drops caused by

claims, and the red line characterizes a period with a negative reserve.

Several generalizations, mainly featuring more realistic considerations for the count-

ing processes N and more general premium functions, can be easily found in the

literature, see, for instance, Thorin [1971b] and the references therein; for further

evidences see Grandell [1997] and Bening and Korolev [2002]. However, in most of

these studies independence among claims is a persistent assumption.

To continue with our analysis of the reserve trajectories the next proposition provides

information about the moments of the reserve process Ru ; a proof of this result can

be consulted in Kaas et al. [2004, p. 47].

Proposition 5. For a general counting process N and t , s,u > 0 with t ≤ s we have

E
[
Ru

t

]= u +pt −E [Nt ]E [Y1] ,

Cov(Ru
t ,Ru

s ) =Var(Ru
t ) = E [Nt ]Var(Y1)+Var(Nt )(E [Y1])2,

MRu
t

(r ) = exp{r (u + ct )} MNt

(
ln(MY1 (−r ))

)
,

where MX represents the moment generator function of a variable X . In particular,

when N is a Poisson process,

E
[
Ru

t

]= u +pt −λtE [Y1] ,

Cov(Ru
t ,Ru

s ) =Var(Ru
t ) =λtE

[
Y 2

1

]
,

Corr(Ru
t ,Ru

s ) =
p

t/s,
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MRu
t

(r ) = exp
{
r (u + ct )+λt

(
MY1 (−r )−1

)}
.

This proposition implies that E
[
Ru

t /t
] → c −λµ as t →∞; then a condition towards

having solvency is c −λµ> 0, as it implies a positive drift for the reserve trajectories.

In Section 2.3 we will elaborate on more closely this condition, and its implications

over the ruin probability.

We like also to remark that the covariance between Ru
t and Ru

s , for t < s, is given

only by the variance Ru
t . This means that the variability is generated only by their

variables in common. Since, we can rewrite Ru
s as Ru

t + (Ru
s − Ru

t ), and these two

terms are independent of each other.

A reserve model will be useless without an indicator of the solvency of the insurance

company. The next section will focus in an indicator of this kind.

2.2 Ruin probabilities

It is fundamental for a profitable insurance company to have a positive reserve. This

surplus could then be used by the insurance company to shield itself against future

time periods when claim payments exceed the premiums collected, or to be invested

in order to obtain dividends [see Asmussen and Albrecher, 2010, Ch. VIII]. To analyze

the liability of an insurance company we will define what we mean by ruin and prob-

ability of ruin. Here and subsequently, ruin is the event of having a negative reserve;

mathematically speaking:

ruin = {Ru
t < 0 for some t > 0}.

While the analogous accounting concept is more complex, for our purposes this def-

inition will suffice.

The probability of ruin is usually studied as a function of the initial capital u, even

though it is a function of many other factors (e.g. the distribution of claim amounts,

premium rates and the distribution of the claims’ frequencies). One theoretical rea-

son to define this probability as a function of the initial capital is that the ruin event is

settled in terms of other capitals, the forthcoming capitals. Consequently, we can es-

tablish an equation for the ruin probability as a function of u (see Section 2.4). One
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practical reason for this viewpoint is that the initial capital is a variable under the

control of the insurance company, whose minimum could be explicitly requested by

a regulatory entity to increase the likelihood to fulfill the company’s liabilities.

The study of ruin probabilities could be divided in two major subjects: finite-horizon

and infinite-horizon. There exists a vast literature concerning both of these topics.

However, the ideas that we what to generalize are focus on the infinite-horizon ruin

probabilities, and we will not analyze the finite-horizon case. Under these lines of

thought the next definition follows.

Definition 13. The (infinite-horizon) ruin probability is defined as

ψ(u) =P
[

inf
t≥0

Ru
t < 0

]
, u ≥ 0. (2.2)

Explicit expressions for equation (2.2) are rare, even under the classical framework;

we refer the reader to Section 2.7 to consult some of this special cases. To overcome

this deficiency, several research lines had been develop to unveil the behavior of

equation (2.2). In the following sections of this chapter, we will analyze the classi-

cal results of ruin probabilities that we require for the rest of this work.

2.3 The classical net profit condition

In general terms, the next four properties indicate a profitable insurance business:

P1 More incomes than outcomes are expected.

P2 If the business lasts endlessly, an enormous amount of money will be obtain.

P3 The ruin probability is less than one.

P4 By increasing the initial capital the ruin probability is decreased.

All this properties sound rational and valid not only for an insurance business, but

also for any kind of business. Moreover, each of them brings into focus different qual-

ities of a productive insurance company; since an enterprise without those charac-

teristics would not be practical to model because is doomed to fail. It is worth point-

ing out that any of them implies an avoidance of getting ruined, they only mitigate
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the risk. In this section, we will analyze them mathematically and study their inter-

actions under the framework of the CL model.

Let us start by establishing property P1 in mathematical terms.

Definition 14. We term the condition

p >λE [Y1] , (2.3)

the CL net profit condition. For simplicity of notation, we also define the safety loading

by

η= (p/λE [Y ])−1.

The interpretation of the net profit condition is rather intuitive; for any given lapse

of size t , the expected number of claims, λt , times the expected size of claims, E [Y1],

must be smaller than the premium income in this lapse, pt ; this implies equation (2.3).

In other words, the average cash flow in the portfolio must be positive; in average,

more premium flows into the portfolio than claims costs flow out. As already men-

tioned, this does not mean that ruin is avoided, since the expectation of a stochastic

process says relatively little about the fluctuations of the process.

The idea behind property P2 is that a lucrative enterprise eventually will make a huge

amount of money if it continues operating without interruption. Consequently, this

property refers to the limit behavior of the reserve. The next proposition charac-

terizes this limit and establish the implication of property P1 on property P2 [see

Asmussen and Albrecher, 2010, p. 73].

Proposition 6. The drift and the oscillation of Ru are driven by:

1. Regardless the value of η, Ru
t /t

a.s.−−→ p −λE [Y1] as t →∞;

2. If η> 0, then Ru
t

a.s.−−→∞;

3. If η< 0, then Ru
t

a.s.−−→−∞;

4. If η= 0, then liminft→∞ Ru
t =−∞, limsupt→∞ Ru

t =∞.

An important remark on this proposition is that the only scenario for a profitable

business is when η > 0, because in all the other cases the reserve surely reaches big

negative numbers in a finite time. Examples of typical trajectories assuming η > 0
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FIGURE 2.2: Examples of reserve trajectories showing their remarkable different be-
havior with and without the net profit condition. In the left plot the reserve trajecto-
ries satisfies the net profit condition which gives them an upward trend, against the
behaviors of their analogues in right plot with a downward trend, given by the lack

of the net profit condition.

and η< 0 are shown in Figure 2.2. A helpful analysis of this limit is given in Mikosch

[2004, p. 159].

To continue with property P3, the next corollary shows how the net profit condition

implies that the ruin probability is less than one, its proof is straightforward from the

last proposition.

Corollary 6.1. The ruin probability ψ(u) is equal to 1 for all u when η ≤ 0, and less

than 1 for all u when η> 0.

This corollary allows us to think the net profit condition as a bound condition, be-

cause if it is satisfied thenψ is always less than one. This corollary will be fundamen-

tal in Section 3.3. Therefore, property P1 implies property P2.

Finally, the idea of property P4 comes from the notion that as bigger is our reserve

as farther we are of getting ruin. Mathematically, it refers to the limit behavior of

ψ(u) when u →∞. The next theorem establishes the implication of property P1 on

property P4 [see Embrechts et al., 1997, p. 31]

Theorem 7. In the CL model, assuming the net profit condition we have the limit be-

havior

lim
u→∞ψ(u) = 0. (2.4)
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This result has a practical viewpoint. Under the net profit condition, an insurance

company could, in principle, take a risk if its initial capital as high as needed to obtain

desired ruin probability level. An example of this is presented in Remark 2.2.

Hence, we have shown that property P1 implies all the others. In conclusion, the

net profit condition is a necessary assumption to model the reserve process of prof-

itable insurance business, because it warranties the desirable and necessary mention

premises. From now on we assume the net profit condition over all the reserve pro-

cess that we analyze.

2.4 Integro-differential and integral equations

In this section we introduce a function which embraces the probability of ruin as a

particular case. This function has significant importance on its own (see Dickson

[1992] and Dufresne and Gerber [1988]), even though we will only use it to present

some formulae for the ruin probability ψ.

Definition 15. For u, y ≥ 0, G(u, y) is defined as the probability that ruin occurs with

initial reserve u and deficit immediately after ruin occurs at most y.

The function G is an special case of the Gerber-Shiu penalty function [see Gerber

and Shiu, 1998], however this level of generality it is not essential to express our main

ideas. The relation between the ruin probability and G is given by

ψ(u) = lim
y→∞G(u, y), u ≥ 0.

Using a first step analysis, G can be rewritten as an integro-differential equation,

which is the subject of the following result [see Klugman et al., 2012, p. 303].

Theorem 8. The function G satisfies the next integro-differential equation

∂

∂u
G(u, y) = λ

c
G(u, y)− λ

c

∫ u

0
G(u −x, y)dF (x)− λ

c
[F (u + y)−F (u)], u ≥ 0, (2.5)

where F is the distribution function of the claims.

As nearly all equations of this type, closed analytic solutions for equation (2.5) are

only known for a few special instances (e.g. claims distributed exponentially). Nev-

ertheless, some properties of G may be determined using this equation; for instance,
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under suitable conditions, solutions to equation (2.5) could be approximated using

analytic methods [Pitts and Politis, 2007] and numerical methods [Butcher, 2008].

On the other hand, as a theoretical result, Theorem 8 has many important implica-

tions; in particular the next couple of results, Theorems 9 and 10, could be proven

directly from it. Theorem 9 allow us to see the ruin probability as a defective renewal

equation [see Rolski et al., 1999, p. 213], and Theorem 10 is used to rewrite ψ as a

geometric compound sum.

Theorem 9. The ruin probability ψ satisfies the integro-differential equation

ψ′(u) = λ

p
ψ(u)− λ

p

∫ u

0
ψ(u −x)dF (x)− λ

p
F (u), u ≥ 0, (2.6)

and the integral equation

ψ(u) = λ

p

(∫ ∞

u
F (x)d x +

∫ u

0
ψ(u −x)F (x)d x

)
, u ≥ 0, (2.7)

where F (x) = 1−F (x).

The solution of equation (2.7) can also be expressed as an infinite series of functions,

called a Neumann series [see Watson, 1995, Ch. XVI]. A direct proof of Theorem 9

could be also consulted in Asmussen and Albrecher [2010, p. 79] and Grandell [1991,

p. 6].

The next theorem give us the distribution of the deficit if the initial capital is zero. For

a direct proof of it, without the use of Theorem 8, we refer the reader to Bowers et al.

[1997, Section 13.5].

Theorem 10.

G(0, y) = λ

c

∫ y

0
F (x)d x, y ≥ 0. (2.8)

As a particular case of equation (2.8) we obtain that ψ satisfies the following result.

Corollary 10.1. The ruin probability with zero initial reserve is

ψ(0) = 1

1+η = λE [Y1]

p
(2.9)

The important point to note here is that the ruin probability with initial capital zero

only depends on the safety loading, and not on the particular distribution of the

claims.
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2.5 Lundberg’s exponential bound

In this section we present an upper exponential bound for the ruin probability. To

this end, we need to define the concept of adjustment coefficient, which is the first

nonnegative root γ of the Lundberg’s fundamental equation∫ ∞

0
eγxF (x)d x = p

λ
. (2.10)

To exhibit the Lundberg’s bound we first establish the next theorem; this result, as

Theorem 9, presents an equivalent expression for the ruin probability.

Theorem 11. If there exists a γ> 0 satisfying equation (2.10), then

ψ(u) = e−γu

E
[
exp

{−γRu
T

} |T <∞] , u ≥ 0, (2.11)

where T = inf{t ≥ 0 : Ru
t < 0} is the ruin time.

Some proofs of Theorem 11 use the fact that γ is the only constant that makes{
exp

{−γRu
T

}
: t ≥ 0

}
a martingale [see Bowers et al., 1997, p. 426]. Likewise, the use of

martingale techniques is common in many proofs of this kind of bounds; see for in-

stance Dassios and Embrechts [1989], Delbaen and Haezendonck [1985] and [Møller,

1992]. Also this type of techniques have given more concrete proofs to classical re-

sults (see for instance Gerber [1979, 1988]).

The next theorem could be proven as a direct consequence of Theorem 11 and the

fact that Ru
T < 0 given that T <∞.

Theorem 12 (Lundberg bound). For the classical risk model,

ψ(u) ≤ e−γu , u ≥ 0, (2.12)

where γ is known as the adjustment coefficient.

Remark 2.2. Theorem 12 gives us a twofold way to manage the magnitudes of risks of

an insurance company. Suppose that the company can only handle ruin probabilities

smaller than α and the moment generator function of the claims exists. If the initial
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capital u is prearranged, then a loading factor η such that

η≥
u

{
E

[
exp

(
− lnα

u
X

)]
−1

}
−µ lnα

−1,

gives us the desired bounded probability. On the other hand, if we have η fixed, then

initial capitals of the form

u ≥ − ln(α)

η
,

gives us the now required probabilities. So, Theorem 12 gives us information about

needed restrictions for the parameters.

Taylor [1976] has used differential and integral inequalities to derive an improvement

to equation (2.12), obtaining

ψ(u) ≤
(

sup
x∈[0,ω]

er x
∫ ∞

x F (s)d s∫ ∞
x er sF (s)d s

)
, u ≥ 0,

whereω= sup{x : F (x) < 1} is the maximum claim size. For a deeper treatment of this

type of bounds, we refer the reader to Willmot [1994].

One of the main drawback of the mentioned bounds is that they only exist for claims

with light-tail distributions. Light-tail distributions are characterized by having tails

lighter than an exponential function, against heavy tail distributions that have tails

heavier than any exponential function. Many interesting studies focus on the heavy

tail analysis, e.g. Resnick [2007] and Embrechts et al. [1997]. In particular, we would

like to mention the woks of Asmussen and Kroese [2006], Asmussen and Binswanger

[1997] and Asmussen et al. [2000] on this subject; they, in particular, tackle the ruin

estimation problem using variance reduction techniques.

2.6 Pollaczek-Khinchine formula and Laplace transfor-

mation ofψ

In this section, we present two useful expressions for the ruin probability. These ex-

pressions have many things in common; for instance, both of them give us analytic

algorithms to find approximations for the ruin probability. The Pollaczek-Khinchine

formula and Laplace transformation had several works devoted to their implications
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and generalizations, although we will restrict our discussion to those aspects that we

will use in Chapter 3. Let us first discuss the Pollaczek-Khinchine formula.

The Pollaczek-Khinchine formula [Khintchine, 1932, Pollaczek, 1930], also known as

Beekman’s formula [Beekman, 1968, 1985], gives a simple and general algorithm to

compute the ruin probabilities using a convolution approach. To establish its algo-

rithm, we need to define the equilibrium distribution Fe , also named integrated tail

distribution, given by

Fe (x) = 1

E [Y1]

∫ x

0
F (y)d y, x ≥ 0. (2.13)

Theorem 13 (The Pollaczek-Khinchine formula). For each u ≥ 0,

ψ(u) =
(
1− λE [Y1]

p

) ∞∑
n=1

(
λE [Y1]

p

)n

(Fe )∗n(u), (2.14)

where (Fe )∗n denotes the n-convolution1 of Fe .

Proofs of this result can be consulted in Rolski et al. [1999, p. 166] and Deelstra and

Plantin [2014, p. 32]. In general, equation (2.14) is proved by seeing that ruin is equiv-

alent to the event that the maximum aggregate loss is greater than the initial capital,

or by analyzing the Laplace transform of a compound geometric sum and comparing

it to the transform of the ruin probability.

The idea of a compound geometric sum is key to the Monte Carlo estimation of the

infinite time ruin probability. Even if one could simulate the reserve process Ru , one

would not obtain an estimator of ψ; this happens because one will need to let the

simulation program to run until the end of time to only find one non-ruin trajec-

tory. Theorem 13 tell us that the mean of variables 1{X1+...+XM>u} is an estimator of

ψ, where Xi ∼ Fe are independent and also independent of M ∼ Geo(η/(1+η)). See

Section 3.6 for an extension of these ideas.

Another valuable use of the Pollaczek-Khinchine formula is the Panjer’s recursion

[Panjer, 1981, 1986]. This recursion uses a discretization of Fe to approximate equa-

tion (2.14); we refer the reader to Dufresne and Gerber [1989] for a comparison of this

method against others, and to Dickson [1995] for a review of it.

1In Section 4.1 we give a closer analysis to the convolution operator.
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Also it is important to mention that equation (2.14) could be used for heavy tail claim

frameworks; in particular, it does not depend on the existence of the Lundberg coef-

ficient (see equation (2.10)).

Let us now continue with analyzing the Laplace transform of the ruin probability. In

this work we refer to the expression

Lψ(s) =
∫ ∞

0
ψ(u)e−sudu, s > 0, (2.15)

as the Laplace transform of ψ. Note that this integral exists and is finite for all val-

ues s > 0. A useful survey of the Laplace transform is given in Widder [1945]. For a

thorough treatment of this topic we refer the reader to Schiff [1999].

Theorem 14. The Laplace transform of equation (2.15) can be expressed as

Lψ(s) = 1

s
− p −λE [Y1]

ps −λ(1− lY (s))
, s > 0. (2.16)

A direct proof of Theorem 14 is presented in Rolski et al. [1999, p. 165]; others apply

the Laplace transform to both sides of equation (2.14).

Methods to invert numerically equation (2.16) are remarkably easy to implement, in

some cases the programs to compute it are compose only by a small number of lines

[see Abate and Whitt, 1992]. An implementation of the inversion formula to approx-

imate ψ is presented by Lima et al. [2002], they exhibit a numerical analysis of its

behavior under diverse claim distributions; in particular, they extend this framework

to the case of Erlang(2) inter-claims times. Likewise, an analytic application of The-

orem 14 is presented in Thorin [1973], where the Laplace transform is used to obtain

an expression of the ruin probability for hyperexponential distributed claims. For

a deeper discussion of the use of inversion techniques, we refer the reader to Em-

brechts et al. [1993].

Summarizing, the results of Theorem 13 and Theorem 14 give us analytic and nu-

merical expressions for the ruin probability. Unlike equations (2.6) and (2.7), where

ψ is only expressed as the solution of a mathematical statement, equations (2.14)

and (2.15) presentψ in terms of u, p and F . They are analytic results because in some
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instances we could insert these terms in the formula and obtain a tractable expres-

sion, and they are numerical results because both provide us algorithms to approx-

imate ψ. These benefits have been used to find or approximate ψ by many authors,

and they are also extended in our exchangeable model (see Sections 3.5 and 3.6).

2.7 Some analytic expressions for the ruin probability

Some known expressions for the ruin probability ψ are:

• If Yi ∼ Exp(β) then

ψ(u) = 1

1+η exp

{
− ηβu

1+η
}

.

• If Yi ∼ Ga(α,α), with α < 1 [see Grandell and Segerdahl, 1971, Thorin, 1973],

then

ψ(u) = η(1−R/α)exp{−Ru}

1+ (1+η)R − (1+η)(1−R/α)
+ αηsin(απ)

φ
· I ,

where

I =
∫ ∞

0

xαexp{−(x +1)αu}

[xα{1+α(1+η)(x +1)}−cos(απ)]2 + sin2(απ)
d x.

• If Yi ∼ f (y) = qαeαy + (1−q)βeβy [see Panjer and Willmot, 1992], then

ψ(u) = 1

(1+η)(r2 − r1)

[
(ρ− r1)exp{−r1u}+ (r2 −ρ)exp{−r2u}

]
,

where

r1 =
ρ+η(α+β)− [

{ρ+η(α+β)}2 −4αβη(1+η)
]1/2

2(1+η)
,

r2 =
ρ+η(α+β)+ [

{ρ+η(α+β)}2 −4αβη(1+η)
]1/2

2(1+η)
,

and

p = qα−1

qα−1 + (1−q)β−1
, ρ =α(1−p)+βp.

For more general mixtures of exponential distributions see Cramér [1955].

• If Yi ∼ PH(π,S) [see Asmussen and Albrecher, 2010, p. 264], then

ψ(u) =−λ
p
π′S−1 exp

{
(S +S1λπ′S−1/p)u

}
1
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where π is the vector of initial probabilities, S is the subgenerator matrix, and

1 is a vector of ones [see also Bladt, 2005].

All this expressions will play an important roll in our analysis of the exchangeable

model in Chapter 3.

2.8 Relaxation of the classical independent claims as-

sumption

The wide variety of risk products and their complexity, together with current inter-

national needs such as the Solvency II directive, require models that relax the strong

requirement of independence among claims. The European solvency system is dis-

cussed in e.g. Linder and Ronkainen [2004] and Sandström [2005, 2007]. Specific

topics of the solvency project are discussed in Djehiche and Hörfelt [2005] and Vesa

et al. [2007]. Indeed, It is easy to find insurance contracts where positively depen-

dent claims might induce an increment of the aggregated claims. Let us mention

three examples of this behavior:

• Using data from Friedman and Companies [1987] and Müller and Pflug [2001]

observe that claims caused by tornadoes exhibit a significative positive corre-

lation.

• Nikoloulopoulos and Karlis [2008] show that the intensity of an earthquake and

the time elapsed from the previous one are positively related.

• Kiladis and Diaz [1989] show that climate patterns in eastern Australia are heav-

ily dependent on the Southern Oscillation Index.

These examples have a direct connection to climate damage insurance. Indeed, vi-

olations of the independence assumption are noted by various authors, e.g. Amba-

gaspitiya [2009], Biard et al. [2008] and Abbas et al. [2012].

Current literature offers only a few risk models that incorporate dependence among

claims. For example: Albrecher and Boxma [2004] allow the time between claims

to depend on the previous claim magnitude. Gerber [1982] and Promislow [1991]
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assume a linear ARMA model for the claim sizes process. Mikosch and Samorod-

nitsky [2000a] use a stationary ergodic stable process to model claims, and analyze

their asymptotic behavior. Cossette and Marceau [2000] model dependence through

a Poisson shock process. However, it is important to mention that in most of these

generalizations, the complexity inherent to their dependence structures makes diffi-

cult the obtention of explicit formulae.

In the majority of studies of reserves with dependent structures, only obtain bounds

and/or asymptotic results for the ruin probability are obtained. For instance, in the

case of light-tailed claim sizes, Müller and Pflug [2001] present a Lundberg limit-

ing result by assuming conditions on the probability-generating function, Nyrhinen

[1998, 1999] obtain rough exponential estimates for ruin probabilities using large de-

viations techniques, and Albrecher and Kantor [2002] study the behavior of the Lund-

berg exponent as a function of a dependence measure using three simulation meth-

ods of the ruin probability. In the other hand, for heavy-tailed claims, Asmussen et al.

[1999] extend a classical result on the distribution tail of the maximum of a random

walk, and Mikosch and Samorodnitsky [2000a,b] evaluate the asymptotic behavior of

the ruin probability for some stationary ergodic stable processes. See also Asmussen

and Albrecher [2010, Ch. XIII] and the references therein.

In the next chapter we will present our results over the ruin probability of a reserve

process with exchangeable claims.





Chapter 3

The CLEC model

When we seek to relax the classical independent claims approach a natural idea is to

establish an exchangeable claim process. The assumption of exchangeability among

claims is adequate for some insurance business; it resembles that the sequence of

the claims amounts does not have a particular trend and allows, at the same time,

to establish a dependent structure. The purpose of this chapter is to develop the

theoretic consequences of equation (2.1) under this framework. This model will be

call the Cramér-Lundberg model with exchangeable claims (CLEC).

An estimation of the CLEC process was first explored by Mena and Nieto-Barajas

[2010]; however, besides some finite-horizon simulation scenarios, little has been

said about the probability of ruin. Hence, here we look for various analytical results

equivalent to those available for the ruin probability under the CL model. In partic-

ular, we observe that, due to the identically distributed property featuring exchange-

able sequences, some of the marginal properties carry over to the exchangeable sce-

nario. Most importantly, explicit equivalences of various results, e.g. a generaliza-

tion of the Pollaczek-Khinchine formula, a generalized Lundberg inequality, etc., are

obtained. One significant ingredient in our proposal is the Bayesian construction of

exchangeable sequences, which brings out an appealing modeling component to the

classical CL scheme.

The layout in this chapter is as follows: In Section 3.1, we define the CLEC model

and present various results for its moments. Section 3.2 analyze the ruin probabili-

ties for this model and gives the connection to ruin probabilities of the CL model. In

Section 3.3 an equivalent condition to the net profit condition of the classical frame-

work is obtain. Sections 3.4 to 3.6 extents classical results to the ruin probabilities,

49
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and these results are then applied to some specific claim scenarios in Sections 3.7

to 3.10. Some concluding remarks are deferred to Section 3.11.

Part of the results presented in this chapter can be found in Coen and Mena [2015b].

3.1 Introduction to the CLEC model

Let us start with the definition of the CLEC model.

Definition 16. The Cramer-Lundberg reserve model with exchangeable claims (CLEC)

model, Ru = {Ru
t : t ≥ 0}, is given by

Ru
t = u +pt −

Nt∑
i=1

Yi t ≥ 0, (3.1)

with the assumptions:

• u is the initial reserve at time 0, and p is the constant premium rate.

• N = {Nt : t ≥ 0} is a Poisson process of rate λ.

• Y = {Yi : i ∈N} is an exchangeable sequence, with de Finetti’s measure µ.

• Y and N are independent of each other.

One can notice that by taking de Finetti’s measure as a point measure the CLEC

model includes the CL model as an special case. An important characteristic to men-

tion is that under the CLEC model there are infinite different types of exchangeable

process that have the same marginal claim distribution, which gives it more flexibil-

ity to model different types of dependency. This approach adds a natural modeling

feature to risk models.

A useful property of the CLEC model is its time homogeneous structure. Under this

model, the distribution of a sequence of n claims at a given set of times remains the

same under time shifts, meaning that

P
[
Ru

t1
≤ x1, . . . ,Ru

tn
≤ xn |Ru

t0
= x0

]=P[
Ru

t1+h ≤ x1, . . . ,Ru
tn+h ≤ xn |Ru

t0+h = x0

]
where xi , ti ,h > 0 for all i = 1,2, . . . ,n.



The CLEC model 51

Let us now analyze the behavior of the moments of the CLEC model. For the sake

of comparison, we will compare them to their analogues in the classical model with

the same claim distribution. Here and subsequently, we will add the subindex C L to

quantities referring to the Cramer-Lundberg model, e.g. Ru
t ,C L , ψC L , etc.

While the expected values of the reserve coincide for the two models,

E
[
Ru

t

]=u +pt −E
[

Nt∑
i=1

Yi

]

=u +pt −E
[
E

[
Nt∑

i=1
Yi

∣∣∣∣∣Nt

]]

=u +pt −E [Nt ]E [Y1]

=E[
Ru

t ,C L

]
,

we have that its covariances vary, because for t and s, with t ≤ s, they are related by

Cov(Ru
t ,Ru

s ) =E [NtE [Y1|Q]+Nt (Ns −1)E [Y1Y2|Q]]− (E [NtE [Y1|Q]])2

=Cov(Ru
t ,C L ,Ru

s,C L)+λ2t 2Cov(Y1,Y2),

since Cov(Ru
t ,C L ,Ru

s,C L) = λtE
[
Y 2

i

]
. In particular, notice that the difference between

the two covariances grows as t 2 over time; this shows some bigger dispersion of the

CLEC reserve. Clearly, as a particular case

Var(Ru
t ) =Var(Ru

t ,C L)+λ2t 2Cov(Y1,Y2).

One common mistake is to overload the variances of the claims in order to accom-

modate the independent claims assumption. Indeed, there are cases where selecting

a heavy-tail distribution for the claims is not an adequate choice, and the claim be-

haviors would be better captured by a dependent scheme.

For t < s the correlation for the CLEC model is given by

Corr(Ru
t ,Ru

s ) =Corr(Ru
t ,C L ,Ru

s,C L)

√√√√E
[
Y 2

1

]+λsCov(Y1,Y2)

E
[
Y 2

1

]+λtCov(Y1,Y2)
(3.2)
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where Corr(Ru
t ,C L ,Ru

s,C L) =p
t/s (see Proposition 5). Unlike the Corr(Ru

t ,C L ,Ru
s,C L), the

correlation for the CLEC model depends on the covariance of the exchangeable claims.

Also, it is easy to check that the square root in equation (3.2) is bigger than one, which

means that the CLEC correlation dominates the CL correlation. In general, we have√
λCov(Y1,Y2)

E
[
Y 2

1

]+λmin(t , s)Cov(Y1,Y2)
≤Corr(Ru

t ,Ru
s ) ≤ 1.

FIGURE 3.1: Different behaviors of the reserve process under distinct correlations.
Blue trajectories correspond to the CLEC model and the orange ones corresponds
to the CL model. All trajectories have the same claim distribution, but in cases with

CLEC model different de Finetti measures.

Figure 3.1 is show the different behaviors of the reserve process under distinct corre-

lations, although with the same marginal distribution for the two models. A remark-

able bigger tendency to get ruin is exhibit when the correlation is bigger; in general,

a more spread behavior is obtained when the correlation is increased.

Depending on the application in mind, the current literature of Bayesian nonpara-

metrics offers several choices for the de Finetti’s measure µ, e.g. the Dirichlet process

[Ferguson, 1973]; the class of Gibbs-type priors [De Blasi et al., 2015]; the logistic nor-

mal distribution [Lenk, 1988], etc. However, depending on the context, sometimes it
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is more convenient to restrict the support of µ to a parametric family. Clearly, within

this latter scenario, one is bounded to a parametric model choice, besides the choice

for the restricted, finite dimensional distribution, µ.

It is worth noticing that the CLEC reserve process no longer has independent incre-

ments, but rather classifies as a conditional Markov process with exchangeable incre-

ments [van Handel, 2009]. For this reason, some results available for the CL would

not necessarily follow in this framework (e.g. the Cramér’s asymptotic ruin formula).

3.2 Ruin probabilities for the CLEC model

In this section we will establish our main result, which is a link between the ruin

probabilities under the exchangeable claims model to ruin probabilities with inde-

pendent claims. To this end we need to fix some new concepts; in general, many of

them are generalizations of classical ones, but their scope allow us to analyze the new

interactions appearing in the CLEC model.

Definition 17. Following the same notation as in Section 1.2, let us define the condi-

tional ruin probability by

ψ(u|Q) =P
[

inf
t≥0

Ru
t < 0

∣∣∣Q
]

(3.3)

for every u ≥ 0 and Q ∈P .

It is worth pointing out that a conditional ruin probability could be a random entity

if Q is a random distribution. In view that the claims are conditional independent,

the above quantity is in fact the ruin probability corresponding to a CL model with

Q as it claim distribution. The link between ψ(u|Q) and ψ(u) is the subject of the

following result.

Theorem 15. Let µ be the de Finetti’s measure for the exchangeable claims in the CLEC

model, then

ψ(u) =
∫
P
ψ(u|Q)µ(dQ). (3.4)

Proof. The proof follows from de Finetti’s representation theorem and an application

of the fundamental property of conditional expectation,

ψ(u) =P
[

inf
t≥0

Ru
t < 0

]
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=E
[
P

[
inf
t≥0

Ru
t < 0

∣∣∣Q
]]

=
∫
P
ψ(u|Q)µ(dQ).

Remark 3.1. An interpretation of the last result is that in the CLEC model the proba-

bility of ruin is a weighted average of independent ruin probabilities of the CL mod-

els, where the weight structure is given through the de Finetti’s measure.

Theorem 15 is a key result because it allows us to extend properties of the CL model to

the CLEC model. For example, using the fact thatψ(u|Q) is a nonincreasing function

of u, it follows that the ruin probability for the CLEC model is also a nonincreasing

function. Also, this theorem reveals information about the interaction between µ

and ψ, which clearly brings relevance to the selection of an adequate measure µ and

therefore an appealing modeling feature to accommodate a particular dependence.

In the next sections we will analyze the implications of Theorem 15, and develop

extensions of classical results using it.

3.3 The net profit condition set

One premise under which the CL model is used is the net profit condition, that is

p >λE [Y1] , (3.5)

which is necessary to avoid bankruptcy with probability one (see Section 2.3). Within

the classical model, if this condition is accomplished, then the ruin probability de-

cays to zero as the initial capital increases, i.e.

ψC L(u) → 0 as u →∞.

This reflects a desired property of any potential insurance business; namely the fact

that with enough initial capital one is able to cover any risk level. Hence, in this sec-

tion we will find which is an equivalent condition to the classical net profit condition

under the CLEC model.
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Let us first denote by B the set

B = {Q ∈P :λE [Y1|Q] < p},

and name it the net profit condition set. It is worth pointing out that this set is mea-

surable with respect to the de Finetti’s measure µ (see Section 1.2). Then B, is the

set of distributions that accomplish the classical net profit condition (3.5). This set

allows us to rewrite equation (3.4) as

ψ(u) =
∫
Bc
ψ(u|Q)µ(dQ)+

∫
B
ψ(u|Q)µ(dQ)

=
∫
B
ψ(u|Q)µ(dQ)+µ(

Bc) , (3.6)

using the fact that ψ(u|Q) = 1 for Q ∈Bc .

Before establishing a net profit condition for the CLEC model, let us highlight two

important properties differentiating the CLEC model from the classical independent

claims scenario. First, we show that the probability of ruin is bounded from be-

low with a quantity that could be different than zero (compare this against equa-

tion (2.4)), then we exhibit the limit behavior of ψ(u) as u tends to infinity.

Proposition 16. The ruin probability in the CLEC model has the lower bound µ (Bc ).

Proof. From equation (3.6) we obtain

ψ(u) ≥µ(
Bc) ,

using the fact ψ(u|Q) is nonnegative, and this is the desired conclusion.

This bound is also the limit of the function ψ, as the next proposition shows.

Proposition 17.

lim
u→∞ψ(u) =µ(

Bc) .

Proof.

lim
u→∞ψ(u) = lim

u→∞

∫
B
ψ(u|Q)µ(dQ)+µ(

Bc)
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=
∫
B

lim
u→∞ψ(u|Q)µ(dQ)+µ(

Bc)
=

∫
B

0µ(dQ)+µ(
Bc)

=µ(
Bc) ,

where the third equality uses Theorem 7.

From Proposition 17, we can compare the limiting behavior of the ruin probabilities

of the CL and CLEC models, as the initial surplus increases; see Figure 3.2. In the

CL model this probability could be arbitrary small if the net profit condition (3.5) is

satisfied, however, in the CLEC model this value could be far from zero, when only

working under (3.5), see Figure 3.2(A). This observation is crucial when one is choos-

ing a model, because for the CL model there is always, given the classical net profit

condition is fulfilled, an initial capital big enough to reduce the probability of ruin

to any fixed level. Instead, for the CLEC model there might be cases where no mat-

ter how big we make the initial capital, the ruin probability might never be reduced

beyond a certain level. As illustrated in Figure 3.2(A), this happens to levels below

the quantity µ (Bc ), while if µ (Bc ) = 0 the ruin probability of CLEC decays to zero as

the initial capital increases, see Figure 3.2(B). This clearly suggest a re-definition of

condition (3.5) needs to take place.

Definition 18. We term the condition

µ
(
Bc)= 0, (3.7)

the CLEC net profit condition.

Indeed, this new condition ensures a measure zero to all conditional CL models not

satisfying (3.5). The next proposition shows a relation between the CLEC net profit

condition and the classical net profit condition.

Proposition 18. The CLEC net profit condition implies the classical net profit condi-

tion.

Proof. If we assume the condition of equation (3.7), then

E [Yi ] =
∫
E [Yi |Q]µ(dQ)
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(A) µ (Bc ) > 0. (B) µ (Bc ) = 0.

FIGURE 3.2: Example of the general behavior of the ruin probability with and with-
out the condition of (3.7). Is important to mention that even under this condition
the ruin probabilities under the CLEC model still been bigger that the ones of the CL

model. A particular case of this behavior is show in Figure 3.5.

=
∫
B
E [Yi |Q]µ(dQ)

<
∫
B

p

λ
µ(dQ)

=p

λ
.

The opposite implication is not always true; this is exhibit in the examples of Sec-

tions 3.7 to 3.10.

In the next three sections we look for various analytical results equivalent to those

available for the ruin probabilities under the CL model.

3.4 Lundberg inequality and behavior at u = 0

As noted in Asmussen and Albrecher [2010], the asymptotic behavior of the ruin

probability is affected by the dependence among claims. In particular, they observe

that under certain conditions

lim
u→∞

logψ(u)

−γε = 1,



The CLEC model 58

when the aggregated claims could be expressed as a sum of dependent random vari-

ables, where γ,ε > 0 satisfy some conditions [see also Glynn and Whitt, 1994]. This

shows a reduction on the asymptotic speed of the ruin probability, when compared

against the independent scheme. A classical result of the independent, light-tail, case

is the Cramér-Lundberg condition [see Cai, 2006]. This condition assumes the ex-

istence of a constant R > 0, called the adjustment coefficient, satisfying Lundberg

equation (see equation (2.10)), and gives an exponential tail behavior for the ruin

probability. To display the analogous behavior for the exchangeable model we need

to define the set of random distributions C by

C = {
Q ∈P : θ(R,Q) = 0 for some R > 0

}
,

where the function θ is given by

θ(r,Q) =λ(
MY |Q (r )−1

)−pr,

where r > 0, Q ∈ P , and MY |Q denotes the moment-generating function of the dis-

tribution Q. The region C is called the the adjustment coefficient set. We can now

generalize the Lundberg inequality for the CLEC model.

Proposition 19 (Lundberg Inequality). The probability of ruin is bounded from above

by

ψ(u) ≤
∫
BC

e−R(Q)uµ(dQ)+
∫
BC c

ψ(u|Q)µ(Q)+µ(
Bc) , u ≥ 0, (3.8)

where R(Q) is the solution to the equation θ(R,Q) = 0 for a fixed Q.

Proof. From the classical result we know that

ψ(u|Q) ≤ e−R(Q)u

for Q ∈BC [see, e.g., Cai, 2006], which implies

ψ(u) =
∫
P
ψ(u|Q)µ(dQ)

=
∫
BC

ψ(u|Q)µ(dQ)+
∫
BC c

ψ(u|Q)µ(dQ)+µ(
Bc)

≤
∫
BC

e−R(Q)uµ(dQ)+
∫
BC c

ψ(u|Q)µ(dQ)+µ(
Bc) .
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Passing to the study of the ruin probability at the extreme point zero, and in order to

compare the behaviors of the CL and CLEC models, we use as a benchmark a fixed

claim marginal distribution. At the outset, we will assume that only the classical net

profit condition (3.5) is satisfied. This will help us to unveil the difference between

both approaches while keeping the same marginal distribution, namely the conse-

quences of using an independent claims model in the presence of dependent claims.

However, if a business is to be undertaking under the CLEC model, condition (3.7)

must be achieved.

Under the framework mention, the next proposition compares the behavior of both

ruin probabilities at zero.

Proposition 20. Under the classical net profit condition we have

ψ(0)−ψC L(0) =µ(
Bc)− λ

p
E [Y11Bc ] , (3.9)

where 1{·} denotes the indicator function.

Proof. For the CL model we have that ψC L(0) =λE [Y1]/p (see equation (2.9)), which

implies

ψ(0) =
∫
B
ψ(0|Q)µ(dQ)+µ(

Bc)
=

∫
B

λE [Y1|Q]

p
µ(dQ)+µ(

Bc)
= λ

p

∫
B
E [Y1|Q]µ(dQ)+µ(

Bc)
= λ

p
E [Y11B]+µ(

Bc)
=ψC L(0)+µ(

Bc)− λ

p
E [Y11Bc ] .

In the case that µ (Bc ) = 0 we obtainψC LEC (0) =ψC L(0); this happens because all the

ruin probabilities taking into account by the de Finetti’s measure start in the value

λE [Y1]/p.
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From relation equation (3.9), it is clear that, when working under (3.5) only, there are

cases in whichψC L(0) >ψ(0) but at some point, say u∗, this relation flips toψC L(u) <
ψ(u) for all u > u∗. Figure 3.5 also illustrates this point.

3.5 Laplace transform

Similar to the CL model, there are cases in which one might not have an analytic ex-

pression for the ruin probability of the CLEC model. In such cases we might resort

to alternative expressions of the ruin probability. In this direction, this section and

the next give expressions for the Laplace transform and the Pollaczek-Khintchine for-

mula for the ruin probability (see Section 2.6).

Let us denote by Lψ the Laplace transformation of ψ, that is

Lψ(s) =
∫ ∞

0
e−suψ(u)du. (3.10)

Proposition 21 (Laplace transform). The Laplace transform for the ruin probability of

the CLEC model is given by

Lψ(s) = 1

s
−

∫
B

p −λE [Y1|Q]

ps −λ(
1−LQ (s)

)µ(dQ), (3.11)

where LQ denotes the Laplace transform of the distribution Q.

Proof. Following Rolski et al. [1999] we can see that for Q ∈B (see Theorem 14)

Lψ(·|Q)(s) = 1

s
− p −λE [Y1|Q]

ps −λ(
1−LQ (s)

) ,

that implies

Lψ(s) =
∫ ∞

0
e−suψ(u)du

=
∫ ∞

0

∫
B

e−suψ(u|Q)µ(dQ)du +
∫ ∞

0

∫
Bc

e−suµ(dQ)du

=
∫
B

∫ ∞

0
e−suψ(u|Q)duµ(dQ)+ µ (Bc )

s

=
∫
B

1

s
− p −λE [Y1|Q]

ps −λ(
1−LQ (s)

)µ(dQ)+ µ (Bc )

s
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=1

s
−

∫
B

p −λE [Y1|Q]

ps −λ(
1−LQ (s)

)µ(dQ),

which establishes the formula.

3.6 Pollaczek-Khintchine formula

In this section we well give the extension of the Pollaczek-Khintchine formula to

the exchangeable framework, and an algorithm to approximate ruin probabilities

through simulation. As in the classical model, the knowledge of how to simulate

reserve trajectories could be not enough to approximate the infinite time ruin prob-

abilities (see section 2.6). As is done in the CL framework, this formula could be use

to approximate directly the ruin probabilities by restrict the infinite number of terms

in its sum to a finite number, since they are decreasing.

Proposition 22 (Pollaczek-Khintchine formula). The ruin probability corresponding

to the CLEC model can be represented as the following infinite sum

ψ(u) = 1−
∫
B

ρQ

1+ρQ

∞∑
m=0

(1+ρQ )−mF∗m
I ,Q (u)µ(dQ), u ≥ 0, (3.12)

where

ρQ = p

λE [Y1|Q]
−1 and FI ,Q (u) = 1

E [Y1|Q]

∫ u

0
P

[
Y1 > y |Q]

d y, u ≥ 0.

Proof. By a simple application of the formula to the independent case [Rolski et al.,

1999] (see Theorem 13) it is obvious that, for Q ∈B we have

ψ(u|Q) = 1− ρQ

1+ρQ

∞∑
m=0

(1+ρQ )−mF∗m
I ,Q (u), u ≥ 0,

which leads to the stated result.

Indeed, instead of simulating many paths of the reserve process to then calculate a

Monte Carlo estimation of the ruin probability, we can resort to Algorithm 1 below to

obtain a estimator ψ̂ of ψ. An important ingredient of this algorithm are the values

for m and n, which represent the number of times we simulate Q and the number of

trajectories of Ru for each Q, respectively.
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Algorithm 1 Estimator of ψ(u)

for j = 1 to m do
Simulate Q j using µ|B .
for i = 1 to n do

Simulate Mi j using Geom

(
ρQ j

1+ρQ j

)
.

Compute Si j = X1 +·· ·+XMi j using Xk ∼ FI ,Q j (u).
if Si j > u then

Make Zi j = 1.
else

Zi j = 0.
end if

end for
end for
return �ψ(u) = 1

mn

∑
i j Zi j +µ (Bc ).

3.7 Exponential–Bernoulli model

To fix ideas, we devote the next four sections to develop some relevant models. In

order to induce the dependence in the exchangeable claims, Y , we degenerate the

de Finetti’s measure to parametric family of distributions. That is, we assume that

the claim sequence is constructed as Yi |Z ∼ f (·|Z ) and Z ∼ FZ .

Also we construct exchangeable processes using the ideas of Mena and Nieto-Barajas

[2010]; they suggest a way to build an exchangeable sequence with a required marginal

for Yi . Their method goes as follows: given the desired choice of marginal distribu-

tion for Y , say FY , introduce a latent variable Z via the conditional distribution FZ |Y ,

having parametrical support coinciding with the support of FY . With these two dis-

tributions one can easily obtain the marginal for Z and, through Bayes theorem, the

conditional FY |Z .

In this Exponential–Bernoulli model µ is a point measure that assigns probability

q ∈ (0,1) to the exponential distribution with mean 1/α and probability 1− q to the

exponential distribution with mean 1/β, for some fixed α,β > 0. Clearly, this model

could be rephrase as Yi |Z = 0 ∼ Exp(α) and Yi |Z = 1 ∼ Exp(β), with Z ∼ Ber(q). This

implies that the marginal density is

f (y) =
∫

Q(y)µ(dQ)

=qαe−αy + (1−q)βe−βy , (3.13)
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and the covariance between two claims is

Cov(Yi ,Y j ) =
(

1

α
− 1

β

)2

q(1−q).

For the CL model the net profit condition (3.5) reduces to

p >λ
[

q

α
+ 1−q

β

]
,

and for the CLEC model the condition µ (Bc ) = 0 is equivalent to

p >λmax

{
1

α
,

1

β

}
,

which is a stronger condition.

Let us assume that the net profit condition for the CLEC model is satisfied in order to

compare the ruin probability under both modelling scenarios. In the CL model the

solution for the Exp(β) claim distribution is well known and given by

ψ(u|Q = Exp(β)) =


1 β≤ λ

p

λ
βp exp

{
−u

(
β− λ

p

)}
β> λ

p ,
(3.14)

and thus by applying Theorem 15, the ruin probability of the CLEC for the Exponential-

Bernoulli model is

ψ(u) = q
λ

αp
exp

{
−u

(
α− λ

p

)}
+ (1−q)

λ

βp
exp

{
−u

(
β− λ

p

)}
.

To obtain the ruin probability of the CL model with the same marginal distribution

given in equation (3.13), which is the mixture of two exponential distributions, Panjer

and Willmot [1992] used the Laplace transform inversion, and get

ψC L(u) = 1

(1+θ)(r2 − r1)
{(ρ− r1)e−r1u + (r2 −ρ)e−r2u},

where

r1 =
ρ+θ(α+β)− [

{ρ+θ(α+β)}2 −4αβθ(1+θ)
]1/2

2(1+θ)
,

r2 =
ρ+θ(α+β)+ [

{ρ+θ(α+β)}2 −4αβθ(1+θ)
]1/2

2(1+θ)

and
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ρ = (1−q)α2 +β2q

(1−q)α+βq
, θ = αβp

λ((1−q)α+βq)
−1.

See Figure 3.3 for a typical behavior of the ruin probabilities under this model.

Furthermore, the general expression for the CLEC ruin probability corresponding to

the mixture of m exponential distributions, is given by

ψ(u) =
m∑

i=1
qi

λ

αi p
exp

{
−u

(
αi − λ

p

)}
, u ≥ 0, (3.15)

where α1, . . . ,αm are the parameters of the exponentials distributions and q1, . . . , qm

are the weights of the mixture, such that
∑m

i=1 qi = 1 and for i = 1, . . . ,m, 0 ≤ qi ≤ 1. Is

important to note that this last equation also works for m =∞.

ΨCLEC

ΨCL

0 2 ´ 109 4 ´ 109 6 ´ 109 8 ´ 109 1 ´ 1010
u

0.1

0.2

0.3

0.4

FIGURE 3.3: Example of the ruin probabilities for the Exponential-Binomial model.
The solid line corresponds to the ruin probability of the CLEC model whereas the

dashed line for the CL model.

3.8 Erlang–Geometric model

Let us fix the marginal claim distribution to be Y ∼ Exp(β) with mean 1/β and the

conditional distribution Z |Y ∼ Po(φY ) for a fixed number φ > 0. This implies that

Y |Z ∼ Erl(z +1,β+φ) with mean (z +1)/(β+φ), and Z is geometric distributed with
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mass probability function given by

f (z) =
(

β

β+φ
)(

φ

β+φ
)z

1{0,1,2,...}(z). (3.16)

For the CLEC model we use the explicit solutions of the Erlang claims distribution,

see Section 2.7. In Asmussen and Albrecher [2010], a tractable expression for the

ruin probability under the classic independent risk model with Phase-type claims is

given (see Section 2.7). Using the fact that the Erlang distribution is a special case of

the Phase-type class of distributions, the conditional probability of ruin is given by

ψ(u|Z ) =


HeDu1 0 ≤ Z ≤ κ−2

1 κ−2 < Z ,
(3.17)

where κ is the largest integer less or equal to p(β+φ)/λ,

1 =



1

1
...

1

1


Z×1

, D =



−β β 0 0 · · · 0

0 −β β 0 · · · 0

0 0
. . . . . . . . . 0

...
...

. . . −β β 0

0 0 0 0 −β β

λ
p

λ
p

λ
p

λ
p

λ
p

λ
p −β


Z×Z

,

and H =
(
λ

pβ , λ
pβ , . . . , λ

pβ

)
1×Z

.

Following Theorem 15, we have

ψ(u) =
∫
P
ψ(u|Z )dµ(Z )

=
κ−2∑
z=0

HeDu1
(

β

β+φ
)(

φ

β+φ
)z

+
∞∑

z=κ−1

(
β

β+φ
)(

φ

β+φ
)z

=
κ−2∑
z=0

HeDu1
(

β

β+φ
)(

φ

β+φ
)z

+
(

φ

β+φ
)κ−1

In this model is important to remark that

µ
(
Bc)= (

φ

β+φ
)κ−1

,
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and

Corr(Y1,Y2) = φ

β+φ .

Hence, the parameterφ controls the correlation of the exchangeable process Y , which

ranges in the interval [0,1). Figure 3.4 shows a comparison of the ruin probabilities

for the CL and CLEC models, for this model under different values of φ.

10

20 Φ

5

10

15

20
u

0.000

0.005

0.010

FIGURE 3.4: Example of the probabilities of ruin for the Erlang-Geometric model.
The top graphic is the probability of ruin for the CLEC model, and the bottom one is
the analogous for the CL model. The figure shows the different behavior for distinct

values of φ.

3.9 Exponential–Gamma model

For the Exponential-Gamma model we assume that the claims have conditional dis-

tribution given by Yi |Z ∼ Exp(Z ), with Z ∼ Ga(a,b), where this latter refers to a

Gamma distribution with mean a/b. As before, the advantage of this model is that

some of the expressions are analytic; for instance, the distribution of claims has den-

sity

f (y) = aba

(y +b)a+1
1[0,∞)(y).

That is, a Pareto distribution with mean b/(a −1), for a > 1. Note that the Pareto dis-

tribution is heavy tailed, and in the case a ∈ (0,1) its mean becomes infinite. Applying
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FIGURE 3.5: Example of the behavior of the ruin probability for the Exponential-
Gamma model for different parameters. The probability of ruin on the CLEC model
(squares) is represented byψC LEC , andψC L represent the analogue for the CL model
(circles), both with the same parameters for each graphic. The straight line (dia-
monds) represents the limit behavior of the CLEC model. In both graphics the CLEC

net profit condition (3.7) is not accomplished.

equation (3.14) and Theorem 15, we obtain

ψ(u) =
∫
P
ψ(u|Z )dµ(Z )

=
∫ λ

p

0
1× ba za−1e−bz

Γ(a)
d z +

∫ ∞
λ
p

λ

zp
exp

{
−u

(
z − λ

p

)}
× ba za−1e−bz

Γ(a)
d z

=λba(b +u)1−ae−λu
p

Γ
(
a −1, (b+u)λ

p

)
pΓ(a)

+1−
Γ

(
a, bλ

p

)
Γ(a)

.

Figure 3.5 shows the evolution of the ruin probabilities for both, the CLEC and CL

models, as the initial surplus increases. In this model the function ψ starts at the

value

ψ(0) =
bλΓ

(
a −1, bλ

p

)
pΓ(a)

+1−
Γ

(
a, bλ

p

)
Γ(a)

,

and decrease with an exponential rate to the value

lim
u→∞ψ(u) = 1−

Γ
(
a, bλ

p

)
Γ(a)

.

Notice that the last two equations change remarkably under the independence hy-

pothesis. If we assume independence among claims, provided only the classical net
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profit condition is satisfied, we obtain

ψC L(0) = λE [Y1]

p
= λb

p(a −1)
,

lim
u→∞ψC L(u) = 0,

and so

ψ(0)−ψC L(0) =
bλΓ

(
a −1, bλ

p

)
pΓ(a)

−
Γ

(
a, bλ

p

)
Γ(a)

+1− bλ

(a −1)p

This last quantity could be positive or negative; for instance, for the values a = 4,

b = 3, λ = 2, and p = 10 is negative, and for a = 43, b = 4, λ = 7, and p = 3 is posi-

tive. This tell us that, when seen as function of the initial surplus, in some cases the

ruin probabilities for the CL model could start above the corresponding to the CLEC

model, but at some point the two probabilities intercept, and then after this point

the ruin probabilities of the CLEC model are the biggest. Of course, this last behav-

ior does not occur when at the outset the parameters are chosen such that (3.7) is

attained.

3.10 Phase-type–Dirichlet model

This final model uses one of the most general claim distributions with available an-

alytical expressions for the ruin probabilities, under the classical CL framework. In-

deed, the Phase-type distributions embrace a great variety of distributions on the

positive real line, enjoying a good balance between generality and tractability. They

can be seen to represent the absorption times of certain Markov jump processes

with {1, . . . ,m} transient states and an absorbing one m +1, see Bladt [2005] and the

references therein. An appealing feature of the class of Phase-type distributions is

that it is weakly dense in the space of all R+-valued distributions, see Asmussen

[2003]. To construct a parametric example over these distributions, we define the

Phase-type-Dirichlet model where the claims have conditional distribution given by

Yi |Z ∼ PH(Z ,S), with Z ∼ D(a1, . . . , ap ). Where by X ∼ PH(π,S), we mean a Phase-

type random variable with density

f (x) =π′eSx(−S1), for all x ≥ 0 (3.18)
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where the parameter π= (π1, . . . ,πm) represents the vector of initial probabilities on

the transient states, S is the subgenerator (m ×m)-matrix of the underlying Markov

chain and 1 is a m-vector of ones. The matrix S is defined by

Λ=
(

S −S1

0 0

)

where Λ is the intensity matrix of the Markov chain and 0 is a transpose m-vector of

zeros. Without loss of generality we are assuming that this Markov chain has a zero

probability of start at the absorbing state m +1.

Similarly, D(a1, . . . , am) denotes a Dirichlet distribution with parameters a1, . . . , am >
0, with density given by

f (z1, z2, . . . , zm) = Γ(a1 + . . .+am)

Γ(a1) · . . . ·Γ(am)
za1−1

1 . . . zam−1
m , (3.19)

for nonnegative numbers z1, . . . , zn such that
∑m

i=1 zi = 1, and zero otherwise. This

distribution has expected value A/a with A = (a1, . . . , am), and a =∑m
i=1 ai .

In an analogue manner of previous models, the distributions of equations (3.18)

and (3.19) will help us to define an exchangeable sequence, though in this case with

Phase-type marginal distributions. To this end, we will first proof some auxiliary re-

sults.

Lemma 1. If Y |Z ∼ PH(Z ,S) and Z ∼ D(a1, . . . , am), then the marginal Y ∼ PH(A/a,S).

Proof. Let ∆= {z = (z1, . . . , zm) : 0 ≤ z1, . . . , zm ,
∑m

i=1 zi = 1}

f (y) =
∫

f (y |z) f (z)d z

=
∫
∆

zT eSy (−S1)
Γ(a1 + . . .+am)

Γ(a1) · . . . ·Γ(am)
za1−1

1 . . . zam−1
m d z

=
[∫
∆

zT Γ(a1 + . . .+am)

Γ(a1) · . . . ·Γ(am)
za1−1

1 . . . zam−1
m d z

]
eSy (−S1), (3.20)

where the vector between brackets in equation (3.20) is given by[∫
∆

zT Γ(a1 + . . .+am)

Γ(a1) · . . . ·Γ(am)
za1−1

1 . . . zam−1
m d z

]
i

=
∫
∆

zT
i
Γ(a1 + . . .+am)

Γ(a1) · . . . ·Γ(am)
za1−1

1 . . . zam−1
n d z
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=
∫
∆

zi
Γ(a1 + . . .+am)

Γ(a1) · . . . ·Γ(am)
za1−1

1 . . . zam−1
n d z

= ai /a, (3.21)

which leads to the stated result.

This property, of closure under marginalization, tell us essentially that if we are able

to obtain analytic expression for the ruin probability in the CL model with Phase-

type claims hence we are potentially able to do it for the CLEC model as well, subject

to a marginalization of Z .

Before depicting the ruin probability, let us first, display some relevant moment prop-

erties for the claim reserving processes.

Lemma 2. If Yi |Z ∼ PH(Z ,S) are conditional independent random variables given Z ,

and Z ∼ D(a1, . . . , am) then

1. E [Yi ] =−AS−11/a, and Var(Yi ) = 2AS−21/a − (AS−11/a)2.

2. Cov(Y1,Y2) = (S−1e)TVar(Z )(S−1e).

In the last expression the covariance matrixVar(Z ) is given byVar(Z )i j =−ai a j /a2(a+
1) and Var(Z )i i =−ai (a −ai )/a2(a +1), for 1 ≤ i < j ≤ m, and a =∑m

i=1 ai .

Proof.

1. It follows directly from Lemma 1 and the moment expressions for a Phase-type

distribution [see Bladt, 2005].

2. Using the properties of conditional independence we obtain

Cov(Y1,Y2) =E [Cov(Y1,Y2|Z ]+Cov(E [Y1|Z ] ,E [Y2|Z ])

=Cov(E [Y1|Z ] ,E [Y2|Z ])

=Cov(−Z S−1e,−Z S−1e)

=Var(−Z S−1e)

=(S−1e)TVar(Z )(S−1e),
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and the proof ends using the the second moments of Z .

Asmussen and Albrecher [2010] showed that under the classic independent risk model,

with phase-type claims, the probability of ruin is given by

ψ(u|Z ) =


−λ

pπ
′S−1 exp

{
u

(
S +S1λπ′S−1/p

)}
1 p >−λπ′S−11

1 p ≤−λπ′S−11.
(3.22)

Analogously to the previous models, in order to take advantage of equation (3.22),

we construct the exchangeable sequence with the above conditional representation

of the Phase-type distribution via a Dirichlet random variable. Hence, the ruin prob-

ability becomes

ψ(u) =
∫
P
ψ(u|Q)µ(dQ)

=
∫

∆∩{p≤λzT S−11}

Γ(a1 + . . .+am)

Γ(a1) · . . . ·Γ(am)
za1−1

1 . . . zam−1
m d z

+
∫

∆∩{p>λzT S−11}

(
−λ

p
π′S−1 exp

{
u

(
S +S1λπ′S−1/p

)}
1
)
Γ(a1 + . . .+am)

Γ(a1) · . . . ·Γ(am)
za1−1

1 . . . zam−1
m d z

The complexity of the region ∆∩ {p > λπ′S−11} prevent us to obtain a compact gen-

eral analytic expression, but for a fixed array of parameters we could give the formula

for ψ. For example, if we denote by Be(α,β) a beta density with mean α/(α+β) and

define an exchangeable sequence with conditional distribution Yi |Z ∼ PD(π,S) for

i = 1,2, . . . with π = (Z ,1− Z )T and Z ∼ Be(α,β), we obtain the following expression

for the ruin probability

ψ(u) =
∫
ψ(u|Z = z)dFZ (z)

=
∫

[0,1]∩{r>λπ′S−11}

(
νe(T+(−S1)ν)u1

) zα−1(1− z)β−1

B(α,β)
d z +

∫
[0,1]∩{r≤λπ′S−11}

zα−1(1− z)β−1

B(α,β)
d z,

which can be calculated for a fixed set of parameters.
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3.11 Concluding remarks

The CLEC model provides with an appealing alternative to the CL model that relaxes

the important assumption of independence among claims. Indeed, it does not com-

plicate the obtention of ruin probability results when contrasted to the independent

claims framework.

An important observation, is that when working under the classical net profit con-

dition, the ruin probability for the CLEC model might have a positive lower bound,

when seen as a function of the initial surplus. Such observation might be seen as

a warning message, namely that under dependent claim scenarios, there might not

exist enough reserve to undertake a certain insurance business, at least not when

working with the usual net profit condition. Therefore, it is advisable to work under

the CLEC model from start together with its new net profit condition (3.7).

The exchangeability dependence scenario treated here for the CL model might be

also valid for more general frameworks, such as that where the reserve is model by a

more general exchangeable increments process. Indeed, more general results, such

as those encountered in the Gerber-Shui Theory [Kyprianou, 2013]; part of our ongo-

ing research focuses in these subjects. Furthermore, in the next chapter we analyze

implications of a more general claim times regime.



Chapter 4

Exchangeable renewal equations

A renewal process is used to model occurrences of events happening at random

times, where the times between the occurrences can be approximated by indepen-

dent and identically distributed nonnegative random variables. Some applications

of such a models can be typically found in: insurance risk models, queues, counter

process, inventory systems, traffic flow, evolutionary genetic mechanisms, and eco-

nomic structures.

A natural generalization of these models is given by considering a counting process

for which the interarrival times are exchangeable. One of the advantages of the ex-

changeable scheme is that it allows us to establish different dependence schemes

over the same fixed marginal renewal distribution. The study of this generalization

was motivated by CLEC reserve model, because we want to establish a richer struc-

ture in the time occurrences of claims.

These kind of models are sometimes referred as mixed renewal models, but we pre-

fer the term exchangeable to emphasize our viewpoint on their connection to the

de Finetti’s measure. In general, most of the literature of exchangeable renewal pro-

cesses is devoted to their characterization and distributional properties. For a deep

discussion of their distributional properties we refer the reader to Kallenberg [1973,

1974]. Accordingly, our contribution focuses in extending the idea of a renewal equa-

tion to the exchangeable setting. This could resolve the unrealistic assumption of

independent renewals.

To present our analysis over exchangeable renewal processes, in Section 4.1 we will

show the basic background on renewal theory that we will use. In Section 4.2 we
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present the new definitions that we apply in the exchangeable framework. We de-

velop in Section 4.3 our main results over exchangeable renewal equations. Finally,

in Section 4.4 we show further results over this exchangeable model.

Part of the results presented in this chapter can be found in Coen and Mena [2015a].

4.1 Classical renewal equation theory

In this section we will give a review of the classical renewal theory results that we will

need for the rest of this chapter. Many proofs of them can be found in the literature;

for instance, some classical references of renewal theory are Cox [1962], Doob [1948]

and Smith [1958], and more recent treatments appear in Çinlar [1975], Asmussen

[2003], Heyman and Sobel [2004], Gut [2009] and Gallager [2013].

A classical renewal process is a stochastic model for events that occur randomly in

time. Its basic mathematical assumption is that the times between the successive

arrivals are independent and identically distributed. This type of processes have a

very rich and interesting mathematical structure and can be used as a foundation for

building more realistic models.

Let us start by defining the renewal property for the independent framework, in math-

ematical terms.

Definition 19. Let T = {Ti : i ∈N} be nonnegative sequence of i.i.d. random variables

with marginal density F , such that F (0) < 1. We define their adding process S = {Sn :

n ∈N} by

S0 = 0, and Sn = T1 +T2 +·· ·+Tn n ≥ 1.

Accordingly, we define the renewal process N = {Nt : t ≥ 0} by

Nt = sup{n ∈N : Sn ≤ t } t ≥ 0.

One interpretation of these variables is to think of Nt as the number of arrivals to a

system in the interval (0, t ], Tn as the interarrival time of the n-arrival, and Sn as the

arrival time of the n-arrival. Figure 4.1 reviews the connection between the sample

values of these random variables.
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t0 S1(ω) S2(ω) S3(ω)

Nt (ω)

T1(ω)

T2(ω)

T3(ω)

t

Nt (ω) = 2

FIGURE 4.1: A sample function of an arrival process for a given sample point ω with
its arrival epochs {Sn(ω)}n∈N, its interarrival times {Tn(ω)}n∈N, and its counting pro-
cess {Nt (ω)}t≥0. The sample function of the counting process is the step function

illustrated with a unit step at each arrival epoch.

Two important implications of the last definition are:

{Sn ≤ t } = {Nt ≥ n} and {Sn > t } = {Nt < n}.

Consequently, the renewal processes can be specified in three different ways: first, by

the joint distributions of the arrival epochs {Sn}n∈N; second, by the joint distributions

of the interarrival times {Tn}n∈N; and, third, by the joint distributions of the counting

random variables, {Nt }t≥0.

An frequently used operator in the theory of renewal processes is the convolution

operator, because in many instances we need to express the distribution of a sum.

Recall that the convolution of two distributions F and G of nonnegative random vari-

ables is defined by

F ∗G(t ) =
∫ t

0
F (t − s)dG(s) =

∫ t

0
G(t − s)dF (s), t ≥ 0.

The convolution F ∗G gives the distribution function of the sum of two independent

random variables with distribution functions F and G respectively. Let F be the dis-

tribution for the Ti . We will write F∗n for the convolution of F with itself n-times,

i.e., for the distribution of T1 + . . .+Tn . For convenience we will write F∗0 for the

trivial distribution function associated to the random variable which is identically 0.

Henceforth, we will follow this notation.
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Much of renewal theory results concern with determining the properties of the re-

newal function,

U (t ) = E [Nt ] , t ≥ 0, (4.1)

which is the expected number of renewals up to time t . Its importance comes from

the fact that in the independent framework the renewal function determines the

probabilistic behavior of the renewal process. Accordingly, a big part of the litera-

ture about the classical renewal theory is concerned with determining the properties

of this function. The following proposition shows an expression of U in terms of the

distribution of the renewals, F .

Proposition 23. Following the notation of Definition 19, the classical renewal function

(4.1) is determined by

U (t ) =
∞∑

n=1
F∗n(t ), t ≥ 0. (4.2)

Proof. We can rewrite the renewal process N as

Nt =
∞∑

n=1
In ,

where

In =
{

1 if the nth renewal ocurred in [0, t ]

0 otherwise.

Hence,

E [Nt ] = E
[ ∞∑

n=1
In

]

=
∞∑

n=1
E [In]

=
∞∑

n=1
P [Sn ≤ t ]

=
∞∑

n=1
F∗n(t ),

To obtain the equivalence between U and the distribution of the renewals F , let us

first obtain an expression for their Laplace transforms; by definition, the Laplace
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transform of the renewal function is given by

LU (s) =
∫ ∞

0
e−st dU (t ), s ≥ 0.

The next result shows the relationship between the Laplace transform of U and the

one of F .

Proposition 24. Using the notation of Definition 19, we have that the Laplace trans-

form of U and the one of F are related by

LU (s) = LF (s)

1−LF (s)
, s ≥ 0. (4.3)

Proof. Since F is a distribution function and we are assuming assume F (0) < 1, when

ever s is nonnegative1, then

0 <LF (s) < 1.

So, taking Laplace transformations of both sides equation (4.2) yields

LU (s) =
∞∑

n=1
LF∗n (s)

=
∞∑

n=1
[LF (s)]n

= LF (s)

1−LF (s)
.

An equivalent expression to equation (4.3) is given by

LF (s) = LU (s)

1−LU (s)
. (4.4)

So, equation (4.3) and equation (4.4) express the equivalence of U and F . Therefore,

the renewal function U completely characterizes the renewal process N ; this hap-

pens because U determines LU , which determines LF by equation (4.4), which in

turn characterizes the renewal process N .

1This also works even if s is complex but its real part when is positive.
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Now, we will continue with the analysis of N as the solution of a integral equation.

An equation of the form

g (t ) = h(t )+
∫ t

0
g (t −x)dF (x), t ≥ 0,

is called a renewal-type equation. In convolution notation the above states that

g = h + g ∗F.

Either iterating the above expression, or applying Laplace transforms we can show

that a renewal-type equation has the solution

g (t ) = h(t )+
∫ t

0
h(t −x)dm(x), t ≥ 0,

where m(x) =∑∞
n=1 F∗n(x).

To show the integral expression of U , defined in equation (4.1), we need to present

the concept of renewal argument; in general, many results can be efficiently obtained

using this idea. This is simply the observation that at any renewal epoch, another

renewal process starts which is a probabilistic replica of the original process. To

explain this concept, let us consider a renewal process {Nt }t≥0 with generating se-

quence {Tn}n∈N, then fix a positive integer k, and suppose that Sk = sk . Now define

a generating sequence {T ′
n}n∈N where for each sample path ω, T ′

n(ω) = Tk+n(ω), and

let {N ′
t−sk

}t≥sk be its renewal counting process. For any t ′ = t − sk > 0,

P
[
N ′(t ′) ≥ j

]=P[
T ′

1 + . . .+T ′
j ≤ t ′

]
=P[

Tk+1 + . . .+Tk+ j ≤ t ′
]

=P[
T1 + . . .+T j ≤ t ′

]
=P[

N (t ′) ≥ j
]

,

since the T ’s are i.i.d. . Consequently, this last expression is in fact the renewal argu-

ment in mathematical terms.

This implies that for k = 1

Nt =
0 if t < T1

1+N ′(t −T1) if t ≥ T1,
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or equivalently

Nt
d=

0 if t < T1

1+N (t −T1) if t ≥ T1.
(4.5)

We will prove the next theorem using a renewal argument; it can be also proved in-

verting the Laplace transformations of equation (4.4). This theorem characterizes

the utility function as a renewal equation.

Theorem 25. A renewal function U satisfies the renewal equation

U (t ) = F (t )+
∫ t

0
U (t −x)dF (x), t ≥ 0, (4.6)

and the only solution of equation (4.6) that has an Laplace transform is given by equa-

tion (4.2).

Proof. From equation (4.5),

E [Nt |T1] =
0 if T1 > t

1+U (t −T1) if T1 ≤ t .
(4.7)

Taking expectations of the last expression yields

U (t ) =
∫ t

0
[1+U (t −x)]dF (x), t ≥ 0,

which completes the proof.

The expressions given in equations (4.2) and (4.6) are useful to unveil the values of U ,

and with them the behavior of its renewal process. In some cases we can apply the

theory of differential equations to obtain analytical expression from this equations,

whereas in other cases we can approximate the values. Indeed, the equation (4.2)

allow us to approximate U by calculate enough terms of the convolutions F∗n , to

approximate the infinite sum. On the other hand, the equation (4.6) gives an expres-

sion we where U (t ) only depends on U (t − x), x ∈ [0, t ), so recursive computation

of U is possible. In the next sections we will extend this results to the exchangeable

framework.
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4.2 Exchangeable renewal processes

Now, we will show the mathematical implications of an exchangeable structure among

renewals. We will name such a counting process by exchangeable renewal process.

This is a widely accepted assumption in the literature; for instance, applications

of the exchangeable renewal process can be consulted in Shanthikumar [1987] for

modeling components lifetimes, Kuczura [1973] for modeling streams of customers,

Segerdahl [1970] for modeling the occurrence of rare events, and Cook et al. [1999]

for modeling disease activity in studies of chronic conditions. In these last references

the phenomena of study do not fulfill the independence among arrivals assumption.

A exchangeable renewal model could be applied to phenomena where the proba-

bility laws of the interarrivals are symmetrical, with a positive correlation, and not

necessary independent.

In order to analyze the concept of conditional equation, let us first define a exchange-

able renewal process.

Definition 20. Let T = {Ti : i ∈ N} be nonnegative sequence of exchangeable random

variables with de Finetti’s measure µ (see section 1.2), with marginal density F , such

that F (0) < 1. We define their exchangeable adding process S = {Sn : n ∈N} by

S0 = 0 Sn = T1 +T2 +·· ·+Tn n ≥ 1.

Accordingly, we define the exchangeable renewal process N = {Nt : t ≥ 0} by

Nt = sup{n : Sn ≤ t } t ≥ 0.

Each of this process definitions resemble the same structure as its homologous in

the independent scheme. Nevertheless, in the exchangeable case we have a richer

dependence structure to establish among the variables interactions.

It is important to remark the difference between exchangeable renewal processes

and Cox2 processes. A Cox process is a stochastic process which is a generalization

of a Poisson process where the time-dependent intensity λ(t ) is itself a stochastic

process, whereas exchangeable renewal process are not restricted to the Poisson dis-

tribution. The only case where the two definitions intersect, is in the case where the

2The process is named after the statistician David Cox, who first published the model in Cox [1955].
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de Finetti’s measure focuses all its mass in exponential distributions; known as mixed

Poisson process.

We continue to have the relation

{Nt = n} = {Sn ≤ t < Sn+1}. (4.8)

A way of rephrasing equation (4.8) is to think of t → Nt as the inverse function of

n → Sn . This idea is used to convert results on S to results on N in the indepen-

dent framework; for instance, limit theorems for one of the processes may be derived

from the corresponding limit theorems for the other [see Gut, 2009, Ch. 2]. Part of

our ongoing research focuses in obtaining limit results for the exchangeable renewal

process.

Definition 21. We denote by U the (exchangeable) renewal function, which is given

by

U (t ) = E [Nt ] , t ≥ 0, (4.9)

Remark 4.1. In this sense we will speak of a renewal function, without refer only to

the independent case, but rather to the more general exchangeable case.

As already mentioned, one of the main reasons for focusing on this function is that

uniquely determines de distributional properties of the renewal process in the classi-

cal framework. However, in the exchangeable case this uniqueness does not happen.

A counterexample of this is given in the next example.

Example 4. As previously noticed, the independent framework is a special case of the

exchangeable when the de Finetti’s allocates all its mass on a single distribution. With

this in mind, we will show that we can construct an exchangeable renewal process,

different to the Poisson process, but with the same exchangeable renewal function as

the Poisson process. Let us define the exchangeable renewal process N by the next con-

ditional scheme

Ti |∆∼ Exp(∆)

∆∼ U(0,2λ),

where Ti are the interarrivals. Under these assumptions we obtain that

E [Nt ] = E [E [Nt |Q]]
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=
∫
P
E [Nt |Q]µ(dQ)

=
∫ 2λ

0
E [Nt |∆]

1

2λ
d∆

=
∫ 2λ

0
t∆

1

2λ
d∆

=λt .

Then, this exchangeable renewal process have the same renewal function as a Poisson

process with parameter λ. In this example the intearrivals density is given by

fTi (t ) = 1−e−2tλ(1+2xλ)

2x2λ
, t ≥ 0

which is completely different to the exponential distribution of parameter λ.

Indeed, the renewal function does not characterize the exchangeable renewal pro-

cess; in this framework we need a richer structure. To define such structure, we need

to analyze the connection between the renewal function and the de Finetti’s mea-

sure.

Theorem 26. If U is a renewal function with de Finetti’s measure µ, then

U (t ) =
∞∑

n=1

∫
Q∗n(t )µ(dQ), t ≥ 0.

Proof. Conditioning with Q we obtain,

U (t ) =E [E [Nt |Q]]

=
∫
E [Nt |Q]µ(dQ)

=
∫ ∞∑

n=1
Q∗n(t )µ(dQ)

=
∞∑

n=1

∫
Q∗n(t )µ(dQ),

in the third equality we use the fact that E [Nt |Q] is the classical renewal function with

renewals distributed Q, and this is known to be equal to
∑∞

n=1 Q∗n(t ) (see Proposi-

tion 23).
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As in the independent framework, it is important to known that Nt has finite expec-

tation; which is the subject of the next result.

Theorem 27. If U is a renewal function, then U (t ) <∞ for all t ≥ 0.

Proof. For a non random distribution F we have F∗(n+m) = F∗n ∗F∗m , and

F∗(n+m)(t ) =
∫ t

0
F∗m(t −x)dF∗n(x)

≤F∗n(t )F∗m(t ).

Because the variables {Ti : i ∈N} are nonnegative, it follows that there exists a r such

that P [T1 + . . .+Tr > t ] > 0, for every fixed t ≥ 0. In the case that the support of F is

(0,∞) then r = 1 is adequate. Using the fact any natural n could be represented as

mr +k, then {1,2, . . .} = {mr +k : m ∈ {0,1, . . . , },k ∈ {1,2, . . . ,r }},

F∗n(t ) =F∗(mr+k)(t )

=F∗(r+(m−1)r+k)(t )

≤F∗r (t )F∗(m−1)r+k (t )

...

≤[F∗r (t )]mF∗k (t ).

This implies that

U (t ) =
∞∑

n=1
P

[
n∑

i=1
Ti ≤ t

]

=
∞∑

n=1

∫
Q∗n(t )µ(dQ)

=
∞∑

m=1

r∑
k=1

∫
Q∗(mr+k)(t )µ(dQ)

=
∞∑

m=1

r∑
k=1

P

[
mr+k∑

i=1
Ti ≤ t

]

≤
∞∑

m=1

r∑
k=1

P

[
mr∑
i=1

Ti ≤ t

]
P

[
k∑

i=1
Ti ≤ t

]



Exchangeable renewal equations 84

≤
∞∑

m=1

r∑
k=1

[
P

[
r∑

i=1
Ti ≤ t

]]m

P

[
k∑

i=1
Ti ≤ t

]

=
∞∑

m=1

[
P

[
r∑

i=1
Ti ≤ t

]]m r∑
k=1

P

[
k∑

i=1
Ti ≤ t

]

<∞.

The last result implies that the number of arrivals in any finite interval is expected to

be finite. This is a desirable property from a modeler point of view, since an infinite

number of arrivals could be inadequate. Likewise, the last proof shows that

P

[
n∑

i=1
Ti ≤ t

]
→ 0 as n →∞,

which is equivalent to

E
[
Q∗n(t )

]→ 0 as n →∞.

These last expression implies that the probability of a infinite number of arrivals con-

verge to zero. So, an exchangeable renewal model has the characteristic of finite

number of arrivals in a finite interval.

4.3 Conditional renewal equations

When one is working with exchangeable process it is useful to have expressions for

conditional expectations with respect to elements of the σ-algebra of distributions

Q (see section 1.2). Accordingly, we will present in this section two generalizations

of the concept of a exchangeable renewal function; the conditional renewal function,

and the conditional renewal set function. Moreover, these new definitions will be

used to show our main result of this chapter, Theorem 29.

Definition 22. We define the conditional renewal function as

U (t |Q) = E [Nt |Q] , t ≥ 0,Q ∈P , (4.10)

where P is the set of all nonnegative distribution functions of the support of µ.
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For a non random distribution F , the mapping t 7→ U (t |F ) is the classical renewal

function with renewals distributed as F . Under these notations we obtain the next

result.

Theorem 28. The relation between the conditional renewal function and the renewal

function is given by

U (t ) =
∫

U (t |Q)µ(dQ), t ≥ 0.

Proof. Conditioning over the values of the random distribution Q, we obtain:

U (t ) =E [Nt ]

=E [E [ Nt |Q]]

=
∫

U (t |Q)µ(dQ).

The last equality follows by the de Finetti’s representation theorem (see Theorem 3).

Let us obtain an equation for the conditional renewal function. By conditioning to

T1 and Q, we obtain

U (t ) =E [Nt ]

=E [E [Nt |Q]]

=
∫ ∫ ∞

0
E [Nt |T1 = x,Q]dQ(x)µ(dQ)

=
∫ ∫ t

0
E [Nt |T1 = x,Q]dQ(x)µ(dQ)

=
∫ ∫ t

0
[1+U (t −x|Q)]dQ(x)µ(dQ)

=
∫ ∫ t

0
1dQ(x)µ(dQ)+

∫ ∫ t

0
U (t −x|Q)dQ(x)µ(dQ)

=
∫

Q(t )µ(dQ)+
∫ ∫ t

0
U (t −x|Q)dQ(x)µ(dQ)

=E [Q(t )]+E [Q ∗U (t |Q)]
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And so we obtain the equation

U (t ) = E [Q(t )]+E [Q ∗U (t |Q)] (4.11)

This last equation motivates the next definition, which we will use to define condi-

tional renewal equations.

Definition 23. Let us introduce the conditional renewal set function as

U (t |G ) = E [Nt |Q ∈G ] . (4.12)

for all t ≥ 0 and G ∈Q.

It is important to notice the relation among Definition 21, Definition 22 and Defini-

tion 23. To this end, let us point out two special cases of the last definition. First, by an

abuse of notation, for G = {Q} the conditional renewal function and the conditional

renewal set function coincide if we let U (t |Q) = U (t |{Q}). Second, the conditional

renewal set function and the renewal function coincide for G =P , i.e.,

U (t ) =U (t |P ), t ≥ 0.

This last equation not only implies that our notation is consistent, but also that the

conditional renewal function grant us all the probabilistic information about the ex-

changeable renewal process. Let us exemplify this last point.

Example 5. Let us define the conditional renewal set function by

U (t |Q) =
αt with probability p

βt with probability 1−p,
(4.13)

for some fixed numbers α,β> 0 and p ∈ (0,1). This implies that

Q ∼
Exp(α) with probability p

Exp(β) with probability 1−p
(4.14)
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Consequently the de Finetti’s measure µ is a measure that assigns probability p to the

exponential distribution with mean 1/α and probability 1−p to the exponential dis-

tribution with mean 1/β. Furthermore, under these assumptions we obtain that

U (t ) = pαt + (1−p)βt , t ≥ 0.

So, the conditional renewal function characterizes completely the renewal process.

Under these notations we can rewrite the conditional renewal function as

U (t |P ) = E [Q(t )]+E [Q ∗U (t |Q)] , t ≥ 0 (4.15)

which is a generalization of equation (4.6). Furthermore, this last equation is a par-

ticular case of

U (t |G ) = E [Q(t )]+E [Q ∗U (t |Q);Q ∈G ] , t ≥ 0,G ∈Q. (4.16)

The importance of this last expression lies in the fact that it contains all the needed

information about the exchangeable renewal process. In the exchangeable frame-

work the dependence structure is characterize by the de Finetti’s measure, and since

the classical renewal function is only a function of time, it do not have a rich enough

structure to characterize the dependence among renewals. Instead, the conditional

renewal function grant us this information in its second argument, G . This function

characterizes the de Finetti’s measure.

The next theorem is our main result of this chapter. In this theorem we generalize

the type of equation given in equation (4.16), and find its solution in terms of the

conditional renewal function. Hereafter, we call this class of equations conditional

renewal equations.

Theorem 29. Let a(t ) be a bounded positive function over bounded intervals. Let

A(t |G ) :R+×Q →R+. Then there is one and only one solution to the equation

A(t |G ) = a(t )+E [Q ∗ A(t |Q);Q ∈G ] , t ≥ 0,G ∈Q, (4.17)

with

sup
0≤s≤t ,G∈Q

|A(s|G )| <∞,
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and the solution is given by

A(t |G ) = a(t )+E [a ∗U (t |Q);Q ∈G ] , t ≥ 0,G ∈Q. (4.18)

Proof. First, let us see that the function

A′(t |G ) = a(t )+E [a ∗U (t |Q);Q ∈G ] , t ≥ 0,G ∈Q, (4.19)

is bounded over bounded intervals for fixed G ∈Q. For a fix T ∈R+, we have

sup
0≤t≤T

A′(t |G ) = sup
0≤t≤T

(a(t )+E [a ∗U (t |Q);Q ∈G ])

= sup
0≤t≤T

(
a(t )+

∫
G

a ∗U (t |Q)µ(dQ)

)

≤ sup
0≤t≤T

a(t )+
∫
G

sup
0≤t≤T

a ∗U (t |Q)µ(dQ)

= sup
0≤t≤T

a(t )+
∫
G

sup
0≤t≤T

∫ t

0
a(t −x)dU (x|Q)µ(dQ)

≤ sup
0≤t≤T

a(t )+
∫
G

∫ T

0
sup

0≤t≤T
a(t )dU (x|Q)µ(dQ)

= sup
0≤t≤T

a(t )+ sup
0≤t≤T

a(t )
∫
G

∫ T

0
dU (x|Q)µ(dQ)

= sup
0≤t≤T

a(t )

(
1+

∫
G

U (T |Q)µ(dQ)

)

≤ sup
0≤t≤T

a(t )

(
1+

∫
U (T |Q)µ(dQ)

)

= sup
0≤t≤T

a(t ) (1+U (T )) .

This implies that

sup
0≤t≤T G∈Q

A′(t |G ) <∞

Let see that A′ accomplishes equation (4.17). For the definition of A′, we see that

A′(t |P ) =a(t )+E [a ∗U (t |Q)] ,
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A′(t |Q) =a(t )+a ∗U (t |Q)

=a(t )+a ∗
∞∑

n=1
Q∗n(t ).

These last expressions implies:

A′(t |G ) =a(t )+E [a ∗U (t |Q);Q ∈G ]

=a(t )+
∫
G

a ∗U (t |Q)µ(dQ)

=a(t )+
∫
G

a ∗
(
Q(t )+

∞∑
n=2

Q∗n(t )

)
µ(dQ)

=a(t )+
∫
G

a ∗
(
Q(t )+Q ∗

∞∑
n=2

Q∗(n−1)(t )

)
µ(dQ)

=a(t )+
∫
G

a ∗
(
Q(t )+Q ∗

∞∑
n=1

Q∗n(t )

)
µ(dQ)

=a(t )+
∫
G

Q ∗
(

a(t )+a ∗
∞∑

n=1
Q∗n(t )

)
µ(dQ)

=a(t )+
∫
G

Q ∗ A′(t |Q)µ(dQ)

=a(t )+E[
Q ∗ A′(t |Q);Q ∈G

]
.

Therefore, A′ fulfills equation (4.17). To end the proof let us prove that is this solution

is unique. Assume that the function B , bounded over intervals, is also solution to

equation (4.17), i.e.,

B(t |G ) = a(t )+E [Q ∗B(t |Q);Q ∈G ] .

As already mentioned the evaluation on Q and P plays an important roll. In the case

of equation (4.17) we obtain that

A(t |P ) =a(t )+E [Q ∗ A(t |Q)] ,

A(t |Q) =a(t )+Q ∗ A(t |Q),
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and analogously for B . These last expressions imply

|A(t |Q)−B(t |Q)| =|Q ∗ A(t |Q)−Q ∗B(t |Q)|

=|Q ∗ [A(t |Q)−B(t |Q)]|
...

=|Q∗n ∗ [A(t |Q)−B(t |Q)]|

=
∣∣∣∣∫ t

0
A(t −x|Q)−B(t −x|Q)dQ∗n(x)

∣∣∣∣
≤

∫ t

0
|A(t −x|Q)−B(t −x|Q)|dQ∗n(x)

≤Q∗n(t ) sup
0≤s≤t

|A(s|Q)−B(s|Q)|

≤Q∗n(t ) sup
0≤s≤t ,G∈Q

|A(s|G )−B(s|G )|,

and so

|A(t |G )−B(t |G )| =|E [Q ∗ A(t |Q)−Q ∗B(t |Q);Q ∈G ]|

≤E [|Q ∗ [A(t |Q)−B(t |Q)]|;Q ∈G ]

≤E
[

Q∗n(t ) sup
0≤s≤t ,G∈Q

|A(s|G )−B(s|G )|;Q ∈G

]

≤E[
Q∗n(t );Q ∈G

]
sup

0≤s≤t ,G∈Q

|A(s|G )−B(s|G )|,

and we obtain the uniqueness using that A and B are bounded and E [Q∗n(t )] → 0 as

n →∞. This proves the theorem.

This last theorem give us a new characterization of a exchangeable renewal process,

but at the same time allows us to establish the particular scheme that the renewal

process will follow.

Let us have some words about the value of this last result. To this end, let us analyze

the equation (4.17) in the case of G =P , i.e.,

A(t ) = a(t )+E [Q ∗ A(t |Q)] , t ≥ 0.
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This last equation expresses that a change in the process A is driven by the sum of

two terms: a(t ), a given rate of change, plus an expected value. This second term

is the mean value of the convolution of a random distribution Q and the particular

behavior of A(t ) given this distribution. Therefore, the solution of an exchangeable

renewal equation is not restricted to a particular choice of distribution for the re-

newal, since its convolution part depends on Q. In other words, the behavior of the

solution depends on the selection of a random distribution Q.

In the classical independent framework, many quantities of interest of the renewal

process can be described by a renewal equation, and Theorem 29 gives the general

solutions for the exchangeable framework. Indeed, it does not complicate the obten-

tion of exchangeable renewal processes results when contrasted to the independent

claims framework.

4.4 Other results of conditional renewal processes

The results that we present in this section grant us information about the behavior

of the exchangeable renewal processes. They are extensions of useful results of the

independent framework. Accordingly, the next proposition shows an expression for

the expected value of the next renewal after the time t (see Figure 4.2).

Proposition 30. If N is an exchangeable renewal processes with de Finetti’s measure µ,

then

E
[
SNt+1

]= E [Y1]+
∫
E [Y1|Q]U (t |Q)µ(dQ), t ≥ 0.

Proof. We known from the renewal theory on the independent framework [see Hey-

man and Sobel, 2004, p. 121], that for a fixed Q,

E
[
SNt+1|Q

]= E [Y1|Q] [U (t |Q)+1].

Then, the proof follows directly from de Finetti’s representation and simple applica-

tion of the fundamental property of conditional expectation.

E
[
SNt+1

]= E[
E
[
SNt+1|Q

]]
= E [E [Y1|Q] [U (t |Q)+1]]



Exchangeable renewal equations 92

= E [Y1]+
∫
E [Y1|Q]U (t |Q)µ(dQ).

The next proposition gives us a lower bound for the renewal function.

Proposition 31. If U is an exchangeable renewal function with de Finetti’s measure µ,

then

U (t ) ≥
∫
D

t

E [Y1|Q]
µ(dQ)−1, t ≥ 0,

where

D = {
Q ∈P : E [Y1|Q] <∞}

,

is the set of random distributions with finite first moment.

Proof. We known from the renewal theory on the independent framework [see Hey-

man and Sobel, 2004, p. 121], that for a fixed Q,

U (t |Q) ≥ t

E [Y1]
−1 t ≥ 0,

when E [Y1|Q] <∞, and

U (t |Q) ≥−1 t ≥ 0,

in the case of E [Y1|Q] =∞. This gives

U (t ) = E [U (t |Q)]

=
∫
D

U (t |Q)µ(dQ)+
∫
Dc

U (t |Q)µ(dQ)

≤
∫
D

(
t

E [Y1]
−1

)
µ(dQ)−µ(D)

=
∫
D

t

E [Y1|Q]
µ(dQ)−1.

Let us denote by LU the Laplace transformation of U , that is

LU (s) =
∫ ∞

0
e−stU (t )d t , s ≥ 0. (4.20)
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The next result shows a way to calculate LU using the Laplace transforms of the ran-

dom distributions.

Proposition 32. Following the notation of equation (4.20) we have that

LU (s) =
∫

LQ (s)

1−LQ (s)
µ(dQ), s ≥ 0, (4.21)

where LQ is the Laplace transform of the distribution Q.

Proof.

LU (s) =
∫ ∞

0
e−stU (t )d t

=
∫ ∞

0
e−st

∞∑
n=1

∫
Q∗n(t )µ(dQ)d t

=
∫ ∞∑

n=1

∫ ∞

0
e−stQ∗n(t )d tµ(dQ)

=
∫ ∞∑

n=1
[LQ (s)]nµ(dQ)

=
∫

LQ (s)

1−LQ (s)
µ(dQ),

in the last equality we use that for any Q distribution, and we are assuming that

Q(0) < 1, whenever s is nonnegative, 0 < LQ (s) < 1

Proposition 32 provides a criterion for obtain analytic expressions for U , by applying

the inverse Laplace transform method on equation (4.21). Moreover, in cases when

no analytic formulae is obtained, this last result allow us to use Laplace approxima-

tion techniques to obtain an estimator of U .

The final result that we will present gives a representation of the distribution of three

variables related with the exchangeable renewal process. These variables character-

ize the local behavior of Nt . The random variable At = t −SNt , called the deficit; it

represent the time since the last renewal before t . The random variable Bt = SNt+1−t ,

called the excess; it represents the time from t until the next renewal occurs. Finally,

the random variable Lt = SNt+1 − SNt , called the spread; it represents the length of



Exchangeable renewal equations 94

the interrenewal time in progress at time t .3 Two important relations among this

variables are:

Lt =At +Rt

=TNt+1.

Figure 4.2 presents a graphic representation of the relationship among these pro-

cesses. Our definitions agree with classical ones, but the exchangeable assumption

allow us to use them to model more general phenomena.

S1 . . . SNt
t SNt+1 . . .

Lt

At Bt

FIGURE 4.2: Graphic representation of the relationship among the processes At , Bt

and Lt .

Proposition 33. Using the above notation, the variables At , Bt , and Lt have the follow-

ing representation for their distribution functions, under the exchangeable framework

FAt (z) =


∫ ∫ t

t−z
Qc (t −x)dU (x|Q)µ(dQ) if z ≤ t

1 if z > t ,

(4.22)

FBt (z) =
∫

Q(t + z)µ(dQ)−
∫ t

0
Qc (t + c −x)dU (x|Q)µ(dQ), (4.23)

3In the literature this variables are commonly also known under different names. At is also called
the backward recurrence time, or the age process. Bt is also called, also, the residual life, or the forward
recurrence time. Likewise, Lt is also known as the recurrence time, or the length process.
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and

FLt (z) =
∫ ∫ t

t−z
[Q(z)−Q(t −u)]dU (t |Q)µ(dQ)+


0 if z ≤ t∫

Q(z)−Q(t )µ(dQ) if z > t ,

(4.24)

where dU (t |Q) is the measure obtained with respect to the first argument, t .

Proof. Let us first notice that the conditional distributions of the variables At , Bt and

Lt coincide with the non-conditional distributions of the independent framework,

when condition to the de Finetti’s random distribution Q. So, using the results of the

independent framework (see Karlin and Taylor [1975] and Haviv [2013]), we obtain

that the conditional distribution of At given Q is

P [At ≤ z|Q] =


∫ t

t−z
Qc (t −x)dU (x) if z ≤ t

1 if z > t .

Therefore, applying the de Finetti’s representation theorem we obtain

FAt (z) =
∫
P [At ≤ z|Q]µ(dQ)

=


∫ ∫ t

t−z
Qc (t −x)dU (x|Q)µ(dQ) if z ≤ t

1 if z > t .

which establishes equation (4.22). The proofs of equations (4.23) and (4.24) follow

similarly using

P [Bt ≤ z|Q] =Q(t + z)−
∫ t

0
Qc (t + c −x)dU (x|Q),

and

P [Lt ≤ z|Q] =
∫ t

t−z
[Q(z)−Q(t −u)]dU (t |Q)+


0 z ≤ t

Q(z)−Q(t ) z > t .

The results presented in this chapter unveil some of the properties of the exchange-

able renewal process. In general, these model are applicable to quite a range of
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practical probability problems, where the independence assumption is not fulfilled.

These models have the particular benefit of a easy interpretation, while at the same

time they do not complicate the obtention of theoretic results, compared to other

dependence structures.

We are trying to generalize the results of Thorin [1970, 1971a], where is analyze the

behavior of the ruin probabilities under a classical renewal process directing the

claim arrivals, using the analysis presented in this chapter and the previous one.



Conclusions

In this work, we have shown some new results over exchangeable and stationary pro-

cesses. These distributional properties relax the sometimes unrealistic assumption

of independence, without compromising much its mathematical treatment. Fur-

thermore, we present the particular advantages of our models to resemble depen-

dent structures.

As mention in the preface, this work considers three different aspects about these

dependent structures. Let us mention our conclusions and future work, on each of

this aspects.

The first aspect that we analyzed is the construction of multivariate stationary pro-

cesses with a given stationary distribution. We have seen that our generalization of

the ideas of Pitt and Walker [2005] and Mena and Walker [2009] is effective to con-

struct multivariate reversible stationary processes. Indeed, the parametric models

that we present, using this construction, could be used to resemble a wide variety of

different behaviors, by changing their parameter values.

By studding the Gaussian-Gaussian model we obtained an appealing construction

of reversible Ornstein-Uhlenbeck multivariate diffusion processes. Our construction

scheme has the advantage of an easy implementation and interpretation, compared

to the usual constructions.

On the other hand, the Wishart-Wishart model could be use to model the evolution

of a covariance matrix. This process has the Wishart distribution as its stationary

distribution. Accordingly, this model can be used to analyze the volatility currency

option pricing, and also the correlation matrix of interest rates.

We also present a heavy tailed stationary processes, the Gaussian-Wishart model. Its

heavy tail property is proved in Theorem 4. This process has t-multivariate stationary

97
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distribution. The use of this distribution is enjoying nowadays a vast interest due to

its use in mathematical finance, which makes this model appealing to applications.

The second aspect that we study is the computation of ruin probabilities under ex-

changeable claim amounts scenario. We extend various important results of the in-

dependent framework to the exchangeable one.

The motivation to analyze the CLEC model was that among the driving assumptions

in classical collective risk models, the independence among claims is frequently vi-

olated by real applications. Therefore, there is an evident need of models that relax

such a restriction.

The main result that we obtain is that the ruin probability under the exchangeable

claims model can be represented as the expected value of the ruin probabilities cor-

responding to certain independent claims cases. This allows us to extend some clas-

sical results to our dependent claims scenario. The main tool that we use was the de

Finetti’s representation theorem for exchangeable random variables, and as a conse-

quence a natural Bayesian modeling feature for risk processes becomes available.

An important observation, is that when working under the classical net profit con-

dition, the ruin probability for the CLEC model might have a positive lower bound,

when seen as a function of the initial surplus. Such observation might be seen as

a warning message, namely that under dependent claim scenarios, there might not

exist enough reserve to undertake a certain insurance business, at least not when

working with the usual net profit condition. Therefore, it is advisable to work under

the CLEC model from start, together with its new net profit condition.

Finally, the third aspect that we analyze is the implications of the renewal equation if

the renewals are exchangeable. We characterize the exchangeable renewal process in

terms of the conditional renewal function. In particular, we show that this function

can be rewritten as the solution of a new type of equations; exchangeable renewal

equations. Furthermore, we obtain the general solution to this type of equations.

One of the advantages of the exchangeable scheme is that it allows us to establish dif-

ferent dependence schemes over the same fixed marginal renewal distribution. Con-

sequently, this model could be use to resemble the real interplay among renewals.

The results presented over this aspect unveil some of the properties of the exchange-

able renewal process. In general, these models are applicable to quite wide range of



Conclusions 99

practical probability problems, where the independence assumption is not fulfilled.

These models have the particular benefit of a easy interpretation, while at the same

time they do not complicate the obtention of theoretic results, compared to other

dependence structures.

Also is important to mention that we are trying to generalize the results of Thorin

[1970, 1971a], where is analyze the behavior of the ruin probabilities under a classical

renewal process directing the claim arrivals.

As a conclusion, the exchangeable and stationary models arise in a wide variety of

problems where statistical analysis is applied; they represent two of the most natural

dependence structures. Accordingly, the results of this work can be applied to unveil

important characteristics of real phenomena.
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