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Introduccién

En este trabajo proporcionamos una introduccion accesible y autonoma a
las graficas cuanticas y gréficas discretas, mas ain, damos algunas posibles di-
recciones de investigacion en el contexto de Biologia Matematica. Revisamos
articulos recientes sobre las aplicaciones de gréaficas a Biologia, éstas estan
basadas en graficas discretas regularmente. Nuestra intencién principal en
esta tesis es una comparacion entre graficas cuanticas y graficas discretas,
enfocandonos en como las graficas cudnticas pueden entrar en el dominio de
la Biologia. Nosotros creemos que las graficas cuanticas pueden proveer una
contribucion importante a la Biologia por las siguientes tres razones:

e El espectro de una grafica cudntica finita es infinito, en contraste con
el espectro de una grafica discreta finita que es finito. Por lo que,
la informacién que una grafica cuantica puede proporcionar para el
modelado de un fenémeno puede ser superior.

e Existe una cantidad muy grande de trabajos en la comunidad de
Fisica Matemdtica sobre gréaficas cuanticas. Nosotros creemos que
los bidlogos matemaéaticos deberian tomar ventaja de este trabajo.

e Ademas de la teoria espectral (que es una de las herramientas prin-
cipales para los modelos que analizamos sobre las gréficas discretas),
en graficas cuanticas la teoria de dispersion juega un papel central
(el cual da herramientas matematicas adicionales e informacion).

En la seccién 1.1, para el caso de graficas discretas, consideramos el es-
pacio de funciones definidas en los vértices de una grafica finita y conexa
y con valores en los reales o en los nimeros complejos, v dentro de éste,
un producto interno designado con pesos. El Laplaciano de una grafica es
definido en este espacio en términos de estos pesos y notamos que resulta ser
autoadjunto.

Las graficas métricas son definidas en la seccion 1.2 con una grafica disc-
reta y dirigida subyacente, pero sus aristas son consideradas como intervalos
reales con una coordenada en cada uno de éstas. Las funciones definidas so-
bre estas graficas toman valores en todos los puntos de las aristas (incluyendo

, . . 2 .
los vértices). En este caso, el operador Laplaciano es A = —dd—2 (i.e. menos
. . . . . 4 .
la segunda derivada distribucional tomada sobre cada arista). El espacio que
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6 INTRODUCCION

consideramos para el dominio de A es H?(T'), el espacio de Sobolev de fun-
ciones definidas sobre I' con derivadas distribucionales, hasta de orden dos,
cuadrado integrables. Con el propdsito de garantizar que este operador es
autoadjunto, necesitamos imponer algunas condiciones de frontera locales a
la funciones en el dominio de A.

En la seccién 1.3, demostramos que, si el Laplaciano A es definido en
un dominio que contiene al espacio C3° (con condiciones de frontera locales
mixtas de Dirichlet o Neumann), entonces el dominio del operador adjunto
A* es un subconjunto del espacio de Sobolev H?(T'). Para la demostracién
de este hecho usamos la regularidad del Laplaciano de Dirichlet en intervalos
finitos y semi infinitos. Incluimos la prueba de ésto en el escrito presente
por dos razones: la primera es mantener el trabajo tan auténomo como sea
posible y la segunda (y més importante) es que el estudio de operadores
elipticos en gréficas no requiere la (sofisticada) maquinaria completa desar-
rollada en la teoria general de operadores elipticos en conjuntos abiertos en
R™ (o variedades de Riemann), pero tiene la ventaja de que (en graficas)
la prueba puede ser presentada de una manera corta, intuitiva, auténoma y
accesible. Esta presentacion incluye todas las ideas clave que pueden ser gen-
eralizadas para variedades, por lo tanto, ésto es valioso para estudiantes de
maestria que desean comprender las ideas principales de regularidad eliptica
de una manera econémica. Adicionalmente, recalcamos que el entendimiento
de las graficas cuanticas no requiere la teoria plena de ecuaciones diferen-
ciales parciales elipticas, y este texto suministra el conocimiento béasico para
los estudiantes que quieren empezar una investigacion en graficas cuanticas
sin entrar en la ecuaciones diferenciales parciales.

En la seccién 1.4, siguiendo las ideas de [9] y considerando I' una gréfica
métrica finita y conexa, para funciones f en el dominio del Laplaciano damos
algunas condiciones de frontera locales que son suficientes y necesarias para
asegurar que este operador es autoadjunto. Estas condiciones son estableci-
das en el teorema 1.4.8, el cual es demostrado considerando sélo una parte
pequena de la grafica (una vecindad de un vértice que parece una grafica
estrella) ya que las condiciones son locales.

Las graficas son aplicadas en muchos modelos matematicos en Biologia.
Los ejemplos van desde redes neuronales, modelos de proteinas o genes, hasta
cadenas troficas y arboles filogenéticos. En el dltimo capitulo, escribimos una
resenia de algunas aplicaciones matematicas a redes bioldgicas, con particular
énfasis sobre el espectro del Laplaciano de una gréafica discreta e indagando
como las graficas cuanticas pueden incluirse en estos modelos.



Introduction

In this work we provide an accessible and self-contained introduction to
quantum graphs and discrete graphs and we give possible research directions
in the context of Mathematical Biology. We revise recent research papers on
applications of graphs to Biology. These applications are regularly based on
discrete graphs. Our main intention in this thesis is a comparison between
quantum and discrete graphs focusing on how quantum graphs could entry
into the domain of Biology. We believe that quantum graphs could provide
an important input in Biology for the following three reasons:

(1) The spectrum of a finite quantum graph is infinite, in contrast with
the spectrum of a finite discrete graph that is finite. Therefore, the
information that a quantum graph might provide to the modeling of
a phenomenon might be superior.

(2) There is a huge amount of work in the Mathematical Physics com-
munity on quantum graphs. We believe that the mathematical bi-
ologists should take advantage of this work.

(3) Apart from spectral theory (which is one of the main tools for the
models we analyze on discrete graphs), in quantum graphs the scat-
tering theory plays a central role (which gives additional mathemat-
ical tools and information).

In Section 1.1, for the case of discrete graphs, we will consider the space of
real or complex valued functions defined on the vertices of a finite connected
graph and, defined therein, an inner product designated with weights. The
graph Laplacian is defined on this space in terms of these weights and we
will see that it turns out to be self-adjoint.

Metric graphs are defined in Section 1.2 with an underlying directed dis-
crete graph, but its edges will be considered as real intervals with a coordinate
on each one. The functions defined on these graphs take values in all the
points of the edges (including the vertices). In this case, the Laplace opera-
tor is going to be A = —% (i.e. the negative second distributional derivate
taken on each edge). The space consider for the domain of A is H?(T'), the
Sobolev Space of functions defined on I with square integrable distributional
derivates up to order two. In order to guarantee self-adjointness, we need

7



8 INTRODUCTION

to impose some local boundary conditions to the functions in the domain of A.

In Section 1.3, we demonstrate that, if the Laplacian A is defined with
domain containing C§°(T") (with mixed Dirichlet or Neumann local boundary
conditions), then the domain of the adjoint operator A* is a subset of the
Sobolev space H?(T"). The proof of this fact uses regularity of the Dirichlet
Laplacian in finite and semi-infinite intervals. We include the demonstration
of this in the present manuscript for two reasons: The first is to keep this
work as self-contained as possible and the second (and the most relevant one)
is that studying elliptic operators in graphs does not require the full (sophis-
ticated) machinery developed in the general theory of elliptic operators in
open sets in R” (or Riemannian manifolds), but it has the advantage that
the proof can be presented (in graphs) in a short, intuitive, self-contained
and accessible way. This presentation already includes all key ideas that can
be generalized to manifolds, and it is, therefore, valuable to master students
that may want to grasp the main ideas of elliptic regularity in an economic
way. Additionally, we stress that understanding quantum graphs does not
require the full theory of elliptic PDE’s, and this text provides the basic
knowledge to scholars who might want to start doing research on quantum
graphs without going into PDE’s.

In Section 1.4, following ideas from [9] and considering I' a finite con-
nected metric graph, for functions f in the domain of the Laplacian we give
some local boundary conditions which are sufficient and necessary to assure
the self-adjointness of this operator. These conditions are settled on Theorem
1.4.8, which is proved just considering a small part of the graph (a vicinity
of a vertex which looks like a star graph) being that the conditions are local.

Graphs are applied in many biological mathematical models. The exam-
ples go from neuronal networks, protein or genetic models, to trophic chains
and phylogenetic trees. In the last Chapter, we write a review of some math-
ematical applications to biological networks, with particular emphasis on the
spectrum of the discrete graph Laplacian, and enquiring how quantum graphs
could make an entry in these models.



CHAPTER 1

The Graph Laplacian

A discrete graph or combinatorial I' consists of a numerable set V =
{v;} of vertices and a set £ = {e;} of edges between vertices. If no confusion
arises, we just say graph instead of discrete graph. Two vertices u and v are
adjacent if there exists an edge between them and we will detone by u ~ v.

We will use the notation v € e to indicate that v is a vertex of e. The
degree d, of a vertex v is the number of edges which proceed from it, i.e.,

d,=|{e€&:vee}

We will assume that all the degrees are finite.

A path in T is a finite sequence of distinct vertices {vg, v1,...,v5} CV
and edges {eq, e, ..., e, } C &, such that v;_; € e; and v; € e; for all ¢ =
1,2,..., k. We say that a graph is connected if there is a path between any
two vertices.

We will say that a graph is a directed, or a digraph, if each of its edges
has an assigned direction, i.e. there are functions o: &€ — V and t: &€ — V
such that, for every e € &£, o(e) represents the origin vertex of e and t(e)
the terminal vertex.

1.1. The Laplacian on Discrete Graphs

Consider I' a finite and connected discrete graph. A real or complex
valued function f on I' is defined on the vertices of I'. We will denote by
L*(T) the set of functions from T to C.

Introducing an L2-product:

(f.9) = _buf(v)g(v),

where the weights b; are positive reals, the Discrete Graph Laplacian is
defined as follows:

A: L*(T) — L*(I)

Af(v) =

S

(duf@) =Y f)  ¥fe LX), &

u~v

9



10 1. THE GRAPH LAPLACIAN

An important property of A is that it is a self-adjoint operator. This
follows from the symmetry of the adjacency relation. Indeed, from the defi-
nition of the product with weights we have

(£,89) = Y bt )5 (dug0) = 3 g(w)

- :Z:f(v) (dugv) - UZN;;;))
-3 (000 L 00)
R 2
_vezvb_< F0) =3 1w)ate)
=(Af,9)

for any f,g € L*(T).

1.2. Metric Graphs

Now we will consider edges not only as relations between vertices, but
also as intervals, providing a metric to the graph.

Definition 1.2.1. Let I' be graph with set of vertices ¥V and set of edges .
We will say that I' is a metric graph if it satisfies the following conditions:

(1) T is directed and for every edge e € £ there is a length L. € (0, 00].
(2) To each edge there is a coordinate x. € [0,L.] increasing in the
direction of the edge.

Henceforth, we identify the edges e with the intervals [0, L.] if L. < oo
and with the intervals [0,00) if L. = co. Furthermore, we denote by é the
interior of the edge e, defined by means of the identifications above, that is
to say,

e =(0,L.)

In order to define a metric naturally, we will assume that a metric graph
is connected. If {e; }Jj\il is a sequence of edges which form a path, its length
is defined as ) L.;. For every two vertices v and w, the distance p(v, w)
is the minimal element of the lengths of the paths which join them. The
distance p(z,y) between two points x and y of two edges can be defined
in an analogous way. For example, if {ej}j]‘il is a sequence of edges such
that they form a “path” between = € e; and y € ey, and t(e;) € ey and
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o(en) € epr—1, then its length will be (L., — x) + ZM ! Le; +y. The other
cases are similar.

We consider a function f(z) on I' defined along the edges. Before the next
definitions, let us introduce the notation f, and fg to refer the restriction of
a function f defined on I' to the edge e and to €, respectively. Also remark
that the norm on the function space L?(e) is given by

1ol / fu(a)|d,

and that if DFf: = 4°f — d"f i the k-th distributional derivate of fe, then

_dk_d:r’g
H*(&) = {f: € L*(¢) | D“f: € L*(¢),a =0,...,k}

is the Sobolev space with norm

k
Hféleﬁlk(é) = Z HDafé’H%%é)-
a=0

Definition 1.2.2. Let T' be a metric graph. The space L*(T') consists of
functions f on T such that f, € L*(e) for every edge e of T' and such that

”f”%z(p) = Z ||f6||%2(8) < Q. (2)
el

The Sobolev space H*(T') consists of functions f on T such that f: € H*(é)
for every edge e of I' and such that

112y = D I fell3eeey < oo (3)

ec&
Note 1.2.3. Due to the Sobolev inequalities (see [12], Theorem 5, page 269),
for a function f. € H'((0,L.)), there exists a function f* € C%V/2%([0, L))
that is equal to f. (except on a null set) and such that

[ £l corrzo,ry < Cllfellzo,z0))
for some constant C. So henceforth, we will identify a function f. € H'(e)
with its continuous version f7.
1.3. Regularity
We study the Laplace operator in various domains. We define

= csee)

eef

We use the notation Dom(A) to specify a possible domain. We assume that

Ce°(T) < Dom(A) < H*(T).
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For every Dom(A), we denote by (A;Dom(A)) the Laplace operator with
domain Dom(A) that is given by minus the second distributional derivative

operator, i.e.
d*f
and by (A;Dom(A))* := (A*;Dom(A*)), we denote the adjoint operator of

(A; Dom(A)).

The purpose of this section is to prove that, if C§°(I') < Dom(A), then
the domain of (A;Dom(A))* is contained in H?(T'). Recall that, for every
e € &€, fe is the restriction of f to the open ser ¢, and that each edge has a
coordinate z. € [0, L] (if its length is finite) or z. € [0, c0).

So, to our purpose, we have to prove two things about f € Dom(A*):

e that f; € H?((0, L.)) if e has finite length and
e that f; € H?((0,00)) if e has infinite length.

To simplify the notation, we will avoid the subindex in f. and just write
f. Let us begin with the case when e has infinite length. Consider the
operator (A; C§°((0,00)). Consider the following property of the elements of
the domain of (A; C3°((0,00)))*:

f € Dom(A*) <= Jg € L*((0,00)): (f,Ah) = (g,h) Yh € Dom(A)
= f-Ah:/ g-h YheCF((0,00)) < T,= ATy, (4)
(0,00) (0,00)

where T, and AT} are the distributions which satisfy

T, (h) = /( | J@hEE e C(0,59)
and |
ATY(h) = /(Um) f@)Ah(@)de  Vh € C3((0,00)),
respectively.

Proposition 1.3.1. (Translations are continuous in L”). Let t € R and
define 7,(f) := fi, where fi(z) := f(x +1). If 1 < p < o0, then for every
f e L’(R)
\fe— fll, =0 as t— 0.
PROOF. As the set of finite linear combinations of characteristic functions

of intervals is dense in LT (R), take ¢ a finite linear combination of character-
istic functions of intervals such that || f — ¢||, is enough small. Without loss
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of generality, consider the characteristic function of an open interval (a, b),
then

_ < 1/p ]
17 (X @) = X@nllp < 2E)7* — 0
Thus we have
I7(6) — oll, — 0.
But then,

1= Flly < 1o = &ully + 1160 = Bllp + 116 = 1,
= 20|~ gllp + 160 — oll, — 0.

Consider an even function n € C§°(R) such that supp(n) C B(0, 1
and 7 is not identically zero. For example, the function

Cel/UeP=1if |z| < 1
n(x) =

~

3
vV
@]

0 it |z|>1

whith C' > 0 a constant such that [n(z)dx = 1. We obtain then a sequence
of mollifiers by letting n.(z) = In(%), i.e. a sequence (ne)eso of functions
satisfying

. > 0in R and
() = ne(—x) for every z € R.

)

) fnezla
)
)

Lemma 1.3.2. Let us consider a function f € L? (R) and a sequence of
mollifiers (ne)eso. Define

fe(x) == fxn(z) = /Oo f)nz —y)dy VxR,

Then, the following statements hold:

(1) f, e C¥R)

(2) ;i—nfe =[x (Z;_nné for every n € N,

(3) f. € LA(R) for every e > 0 and f. = fin L*(R).
€—>

PROOF. By the definition of f., for every x € R we have that

Mt 1) = fla) [ (e 1) e =00

h h

—00
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Then, by the Dominated Convergence Theorem follows

g I = I8 [ gy gy = (1 ¢ 5 ).

h—0 h o dz
Hence, %(m) exists and

dfe, . dne
Te(@) = (£ ) @),
A similar argument shows that CZ—”” fe exists and

n

ot = [ ey = (7 4on)@) VeeR

*
o dx™ dx™

for each n = 0,1,2, ... Hence, points (1) and (2) are satisfied.
To demonstrate (3), we make reference to Theorem 4.22 in [10] to verify

fe € L*(R) and
f * T)e ;; f
in L?(R).
OJ

Lemma 1.3.3. Let f,g € L*((0,00)). Suposse ATy = T,. Then, for any
€ > 0, there is a function ¢ € C*°([0,00)) such that

||f — ¢||L2((O,oo)) < € and Hg — A¢‘|L2((O,oo)) < €.

PROOF. For every § > 0, define the functions 75(f), 75(g) : (—9,00) = R
as follows:

7s(f)(x) = f(z +9), 75(9)(x) = g(x +9). (5)

It is easy to see that 75(f), 75(g) € L*((—4,00)). By Propositon (1.3.1) there
exists dp > 0 such that

1750 (f) — fllz2((0,00)) < €/2, 1750 (9) — 9llz2((0,00)) < €/2- (6)

We extend the functions 75,(f), 75,(g) to R, without changing notation, defin-
ing them as 0 in (—oo, —d]. Using Lemma 1.3.2 we obtain that there is
€0 € (0,0p) which satisfies

1750 () * Mey — 750 () | L2®) < €/2, 1750 (9) * Neo — 750 (9) | 22wy < €/2- (7)

Now we can define the function which satisfies the claims of this Lemma as
follows:

¢ = T5o(f) * Neo -
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It follows from Lemma 1.3.2 that ¢ € C°°(]0,00)). Moreover, by Equations
(6) y (7) we have

1f = 9llz20,00)) SN = Too ()l 220,000 + 1750 (f) = @l 2(0,00)) < €

Now we will prove that

A(T(So(f) * 7760) = AT(So(f) *Teg = 7_50(9) *Teg
on [0,00). From Lemma 1.3.2,
A(T5o(f) * 7750) = T5o(f) * Anm‘

Let Tr, (f) the distribution on (—dp, 00) associated to 75,(f). In the same way

define Ty, (). We will show that ATy, (j) = Tr, (). If u € C5°((—do, 00)),
then

M= [ mpau= [ raiow

(0,00)

=ATy (750 (1) = Ty(7-50 (1)) = Tr5 (9 (w),

since 7_s,(u) € C§°((0,00)). The next step is to prove that 75,(f) * Ane, =
Ts,(9) * Mg, as functions on [0, 00). Take z € [0, ),

Too (f) % Aney () = / Too () (Y) ANy (7 — y)dy = / Too (f) () Ane, (y — )dy

R R

zémUMMumawsz%Nmem
:TTao (9) (T—x (7760)) = T (g) * Teg (:E)’

where we used that 7_,(n,,) € C5°(—dp, 00), since €y < &y and = > 0.
Finally, we obtain

19 — Adllz2((0,00)) < N9 = T50(9) | 2((0,00)) + 1756 (9) — DDl L2((0,00))
= |lg — 75, ()|l 22((0,00)) + 1750(9) — T50(9) * Neo | 22((0,00)) < €.
]

Lemma 1.3.4. Let ¢ € C*=([0,00)). There exists C > 0 such that
101 1r2((0,000) < CUIDll L2((0,00)) + [[AP] 120,000 )-

Proor. If z € [0,00), note that

oz +y)— o(z) = /Hy ¢ Vy € (—z,00),
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thereby, using Cauchy-Schwarz inequality,

Tty /
ol <lota+l+ ([ 107) Wl e (-ao0)

Let € > 0. By integrating we obtain

€ 2
o) < [ 106+ ldy+ 316 liaomye””
0

1/2

2
§H¢HL2((0700))6 + §“¢/HL2((O,OO))€3/2'

Thus,
_ 2
|6(2)] < 1|6]| z2(0.00n€ > + §\|¢/1|L2((o,oo>)€1/2~
Similarly, when € = 1, we have
2
0" ()| < 9] L2((0,00)) + §|\¢"|\L2<<o,oo))-
Recall that

ab < ~(a®+b*) <a*+b*  Va,b>0

N —

and
ab = <1a> (eb) < <2)2 + (eb)®>  Va,b> 0.

€ €
Then, we have for any = € [0,00) and € > 0,

_ 2 2
9@)16' @) < (16llz2000ne ™ + 519/ ll20000€2) (1920000 + 519" 20000 )

2
Ze1/2

3

2 4
+ §€1/2H¢,H%2((0,oo)) + 561/2’\¢/|’L2((0,oo))”¢”|’L2((0,oo))
2

_ 2 2 _
S(E 1||¢||L2((o,oo))) +(61/2”¢,||L2((0,oo))) +§€ 1/2(||¢||%2((0,oo))+||¢H||%2((0,oo)))

2 4
+ 561/2”(?/”%2((0,00)) + 561/2(H¢/”%2((0700)) + ||¢”||%2((0,oo)))

_ 2 _ 10
=19l Z2 (0,00 <€ 2+ 3¢ 1/2> + 10172 (0.00)) (e + 561/2>
2 _ 4
+ Hd)HH%z((o,OO)) (56 Y2y 561/2>

:04H¢||%2((0,oo)) + 6||¢/||%2((O,oo)) + 7||¢//||%2((0,oo))7

=¢8]l 20,000 19/l 220,000 + 111 220,000 19"l 2((0.00))
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that is to say,
[p(z)[|¢' ()] < 04||¢||%2((0,oo)) + 5”(15/”%2((0,00)) + 7||¢N||%2((o 00)) (8)

where o := €72 4 2712, B := e+ De!/? and v = 2712 + 2€'/2. Consider
e > 0 such that 25 < 1.

Take N € N and compute the next inequality using (8):
/N 9 =43 / '3
0
<|¢'(N H(b )|+ 16/(0)]]o(0)] + ||¢”||L2( 0.00) 1912 ((0,50))

<|¢"(N)[[¢(N)| + [¢'(0)[|¢(0)| + 5 (||¢"||L2(<ooo) + 1811 72((0.000))
52(04||¢||%2((0,oo)) + 5”925/”%2((0,00)) + V||¢”||L2((o,oo))) + H¢”||L2((o,oo)) + ||¢||%2((O,oo))'

Therefore,
16 Baomy = Jim [ 18P
(00 =y, f

§2(&’|¢"%2((0,oo)) + 5”¢/H%2((0,oo)) + ’Y\|¢”H%2((o,oo))) + ”¢HHZL2((0,OO)) + |’¢’|%2((0,oo))7

which implies
1
161172 ((0.00)) < 125 (Ca+ D122 000 + 27 + D" 1 72((0.00)))
C(||¢||%2((0,m)) + ||¢”||%2((O,oo))>7

where C' = max{?2 . 2;,, fﬁ;} Finally, from the fact that

a® 4 b* < (a +b)? Va,b > 0,

follows B
N Nzz00en < C(I6ll200e + 19" llz20000)-
By letting C := 1 + C'"/? we obtain the desired result. O
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Theorem 1.3.5. Suppose that f € L2((0,OO)) is such that ATy =T,, for
some g € L*((0,00)). Then f € H?((0,00)).

PrOOF. By Lemma 1.3.3, there is a sequence of functions (¢p)neny on
C>((0,00)) satisfying
Jim {l¢n = fllz2(0.000) + 1800 = gllz2(0.000) = 0,
which implies that
Dim g = Ol 200 + 1A = Admllz2(0.00) = 0-
From Lemma 1.3.4 we have

Hgbn - QbmHH?((0,00)) < C[Hgbn - ¢m||L2((0,00)) + HAgbn - AngrL||L2((0,oo))]>
which implies that

lim ||¢n - ¢m||H2((0u0°)) =0.

m,n—00

Thus, (¢n)nen is a Cauchy sequence in H?((0,00)). Since H?((0,00)) is
complete, there exists h € H?((0,00)) such that

h = lim ¢,.

n—o0

But f = lim,_ .o ¢, in L?, then we have f = h (maybe except on a null set).
We conclude f € H?((0,00)).
]

Corollary 1.3.6. The domain of (A; C5°((0,00)))" is a subset of H((0, 00)).

Proor. It follows from Equation (4) and Theorem 1.3.5.
0J

Corollary 1.3.7. IfC§((0,00)) < Dom(A), then the domain of (A, Dom(A))*
is a subset of H?((0,00)).

PROOF. Recall that if A and B are two operators such that Dom(A) C
Dom(B), then Dom(B*) C Dom(A*). Then the result follows from the con-
tainment

C5°((0,00)) € Dom(A),
and the Corollary 1.3.6. OJ

To prove the second case (i.e. when e has finite length), let us obtain
analogous results for functions in L?*((0,0)), where b < oo. Similarly, we
have the property of the elements of the domain of (A; C§°((0,b)))*:

f € Dom(A*) <= 3Jg € L*((0,b)): (f,Ah) = (g,h) Vh € Dom(A)
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= f-Ah:/ g-h YheC((0,b) <= T,= ATy, (9)
(0,b) (0,b)

where T, and AT} are the distributions which satisfy

7,(h) = /( o e CE(OD)

and
ATy(h) = [ f(x)Ah(z)de  Vh e C57((0,0)),
(07b)
respectively.

Proposition 1.3.8. Let € € (—1/2,00) and define E.(f)(z) := f(ﬁ)
Then for every f € LP(R)

NE(f)— fll, =0 as € — 0.

PROOF. As the set of finite linear combinations of characteristic functions
of intervals is dense in LP, take ¢ a finite linear combination of characteristics
functions of intervals, such that || f — ||, is enough small. Without loss of
generality, we only consider characteristic functions of open intervals. For
each interval (a,b), we have two different cases for the homothety E.(x(a)))
depending on (1 + 2¢). First consider that 0 < (14 2¢) < 1, then a(1+ 2¢) <
a < b(1+ 2¢) < b. This implies that

1Ee(X@) = X@@nllp < (Ja2e] + [b2e))"/? — 0, (10)
since the function F(X(a)) — X(a,0) is different from zero only in the intervals
(a(1 + 2¢),a] and [b(1 + 2¢),b).

On the other hand, if (14 2¢) > 1, then a < a(1 4 2¢) < b < b(1 + 2e).
Similarly, we obtain (10).

Thus, as ¢ is a finite linear combination of characteristics functions of
intervals, we have

1E(6) ~ 6ll, — 0.
But then,
1E(f) = fllp S NE(f) = E(D)llp + [[Ee(9) — Sllp + ¢ — [llp
= (1+ (1 +20"")If = 6llp + 1 E(9) = ¢ll, —2 0.

The proof of the following Lemma is similar to that in Lemma 1.3.3.
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Lemma 1.3.9. Let f,g € L*((0,b)) such that ATy = T,. Then, for all
€ > 0, there is a function ¢ € C*°([0,b]) satisfying ||f — ¢||r2(op)) < € and
lg = Adllr2op) <€

PROOF. For any ¢, ¢ > 0, we define functions 7. Es(f), 7 Es(g) : [—€,b(1+
20) — €] — R as follows:

mEs(D@) = F(3555): rEs()@) = 9(10s) (1)

It is easy to see that 7. Es(f), 7.FEs(g9) € L*([—¢, b(14+26)—¢]). We extend these
functions to R, whitout changing notation, defining them as 0 in (—oo, —¢) U
(b(1 + 20) — €,00). By propositions (1.3.1) and (1.3.8), there are ¢; > 0 and
0o > 0 such that €; < 2bdy and

17e, Eoo (f) = fll2) < €/2, 17 Eoo (9) = gllz@) < €/2. (12)

It follows from Lemma 1.3.2 that there is ¢y € (0,€;) such that ey + € <
2b50 and

H7—€1 E5o(f)*77€0_7_61E50(f)”LQ(R) < 6/27 HT61E50 (g)*nEO_TelEtso (Q)HL?(R) < 6/2'
(13)

Thus, if we define
ORES 7-€1E'50<f) * Teg s
by Equations (12) and (13) we have

If = ol 2oy SN = Ter Eso ()| L20,0)) F+ |7 Eso (f) — @l 2208 < €-

Now let, us see that

A(7e, Esy (f) % ney) = ATe Esy () * Ny = Tey By (9) * 7ey.
on [ep — €1,b(1 +26) — ¢y — €1]. From Lemma 1.3.2,

A(Te, Esy (f) * o) = Tey Eso (f) % Aneg.-

Let Tg, (r) the distribution on (0,b(1 4+ 2dp)) corresponding to Eg,(f). In
the same way we definine TEso (¢)- We will show that ATE%( nH= TE(S0 (¢)- Let

u € C§e[(0,b(1 +25))] , then

My =[  Ey(Ndu=(+2) [ f@)bu(e(1+25)ds

(0,6(14260)) (0,b)
= (1+20)AT[u(z(1+26))] = (1 +20)T,[u(z(1 + 26))]

T
/(O,b(1+25)) 1426 Es,(9)
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since u(z(1428)) € C§°[(0,b)]. Our next goal is to prove 7., Es, (f) * Ane, =
Te, Es,(g) * ne, as functions on [eg — €1,b(1 + 20) — €g — €1]. Take x € [eg —
€1,b(1 +20) — €9 — €1], then

Tey By () * Aney () = / Ter oo (F) (9) Aty (2 = y)dy = / Ter Eso (F) (Y) Aty (y — )y

R R
:A%ﬁmmﬁmwmmFﬂWMMwWW

:T761E50(9)<T—w(77€0)) = T, s, (g> * Teg (‘7;)7

where we used that 7_.,_,(7,,) € C5°((0,b(1 + 2dp))).
Due to [0,b] C [0 — €1,b(1 + 20y) — €9 — €1], by Equations (12) y (13) we
obtain

lg — Al 2(0p)) <9 — T, Eso (9) | 2(0.8)) + 171 Es0(9) — A 22((0,))
=19 = Te, Esy (9) | 2(0.8)) + 171 E56(9) — Ter Eso (9) * Meo || 2¢0,0)) < €
]

Lemma 1.3.10. Let ¢ € C([0,b]). Then there is C > 0 such that
16l z2(0.) < CUlNL2(00) + 1AS] L2((0.07))-
PROOF. Let = € [0,b]. Notice that
T+y
o(r+y)—o(z) = / ¢ Yy € (—x,b— x).
Thus, using Cauchy-Schwarz inequality,
SRR
@l <o+l + ([ 16P) Wl e (-ab-a)
Let |e| < b/2. By integrating we obtain,

¢ 2
166 < [ 196+ ldy -+ 16 Lo lef”?
0
< v d 2 / 3/2
< [6()ldy + 116" 2o el

2
<[l L2 (0.0 le|** + §||¢'|\L2((o,b))|€|3/2-

where we choose € € (0,0/2) if x <b/2 and € € (—b/2,0) if x > b/2. Then
we have,

_ 2
|6(x)] < || z2(0py]el ™ + gHWHLQ((O,b))!E\”Q-
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Let us recall that

ab < ~(a® +v*) < a* + b Va,b >0

N[ —

and
ab = (| | )(| b) < <| |) 4 (lelp)? Va,b> 0.

Using these last inequalities and considering real numbers x with || =
b/4, we obtain

_ 2 B 2
lp(2) |0 ()| <Dl L2((0,0)l€] 1/2+5||¢'||L2<(o,b))|€|1/2)(||¢>’HL?((o,b))|ff| 1/2+§||¢”|!L2((o,b>)|/<~'|1/2)
_‘ -1/2),.1-1/2 / 2 —1/2y,.11/2 1
=le| /7| H¢||L2((o,b))|\¢HL?((o,b))Jr§|€| 151Dl 220, 16" | 2 (0,8))
2 _ 4
+ §|€|1/2|"f| 1/2||<Z5/||2L2((o,b)) + §|€|1/2|’<3|1/2||¢/||L2((o,b))||¢”||L2((o,b))
T 2,
<(lel™H || 1/2||¢||L2((0,b)))2+(|€|1/2H¢,“L2((0,b))>2+§(|€‘ 1||¢||%2((0,b))+|’f|||¢”||i2((o,b)))
21 22 B + = el 22 0y + IS P 0nn)
gl R L2((0.)) T o Ul L2 (o,p)) T IF L2((0.6))

_o) - 2 13 2 _
= (lel 21817 + Sl ™ 1l + (5olel + 51el 218172 16/ 22 0

10
116132 0 (1)
204H¢||%2((0,b)) + B¢’ HL?((o,b)) + 7l|¢//||%2((0,b))7

where = e || + 21| 8 = Ble] + 2[eV2n V2 and 5 = W]
Choose € > 0 such that 25 < 1.

Now we calculate,

[1or =, - [ o5
<[¢'(b ||¢ )| +16'(0)[[6(0)] + ||<Z5"||L2 (o) 121l 22 ((0,09)
<|¢'(0)[[6(b)] + &' (0)[|G(0)] + 5 (||¢”||L2 o)+ 19ll72(0.)
<2(allgll 7204 + BH¢I”%Z((O,b)) + "2 0m) + 1" 1220 + 1217200
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Thereby,

b
H¢,||2L2((O,b)) = /0 |¢']* < 2(()4”(?5”%2((0,1))) + 5|’¢/||%2((o,b)) +7||¢”||2L2((0,b)))
+ 19" 1720y + 181720
This last inequality implies
1
16'1Z2 (0.7 §m(<2a + Dol Z20m + 27 + DI 122049

<C(llelz2 (o + 110" 1 72¢00)

where C' = max{ ?‘gg,, fl—;} Finally, using the fact that

a® +b* < (a+b)? Va,b > 0,

we have )
16'll 22009y < C2 (19Nl 220 + 16" | 200 -
Letting C' := 1 4+ C''/? we obtain the desired result. O

Theorem 1.3.11. Suppose that f € L*((0,b)) is such that AT; = T, for
some g € L*((0,b)). Then f € H*((0,b)).

PROOF. By Lemma 1.3.9 there exists a sequence of functions (¢, ),en in
C>((0,b)) such that

Jim (|6 — fllzzo0) + 1A¢n = 9llz2(00) = 0,
implying that
m [én = Omllz2(0)) + |APn — Adml|r2((0,5)) = 0.
According to Lemma 1.3.10, there is C' > 0 such that
19 = Ol ) < €160 = Eullizion + 186, = Adullizgany |
thus
Wi {16 = Gl = 0.
Then (¢, )nen is a Cauchy sequence in H2((0,b)). Since H?((0,b)) is com-
plete, there exists h € H?((0,b)) such that
h = lim ¢,.

n—o0

But f = lim, ., ¢, in L? then f = h (maybe except on a null set). Hence

f e H*((0,b)). -
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Corollary 1.3.12. The domain of (A; Cse((0, b))* is a subset ofHQ((O, b))
PRrROOF. It follows from Equation (9) and Theorem 1.3.11. O

Corollary 1.3.13. If C5°((0,b)) < Dom(A), then domain of (A, Dom(A))*
is a subset of H*((0,0)).

PRrRoOOF. The result follows from the containment
C5°((0,)) € Dom(A),

and the Corollary 1.3.12.

1.4. Quantum Graphs and the Laplacian on Metric Graphs

Definition 1.4.1. A quantum graph is a metric graph I" with a self-adjoint
differential operator H (called Hamiltonian) in a space of functions defined
onI'.

In this work, we will consider the Hamiltonian to be the Laplacian op-
erator A, i.e. the negative second order distributional derivate of functions
which take values at each edge of the graph. But for the self-adjointness of
A, we will need to impose some vertex conditions to these functions.

Notice that for the Laplacian

> f
fl@) = ==
the direction of the coordinate is irrelevant since Af(xz) = Af(—x) for all
x € R, so the direction on which the derivate is taken in each edge is not
relevant.

As the operator involves a second distributional derivate, we will assume
that the functions of the domain of A belong to the Sobolev space H?(T).
We will give some local vertex conditions for the self-adjointness of the
Laplacian, so henceforth we only consider parts of the graph which are star
graphs (see Figure 1).

Consider f € H?*(T') and any vertex v of I'. As we suppose that the
degree of each vertex is finite, we can enumerate all the neighbours of v and
all the edges between v and its neighbours, i.e., there exist a subset of vertices
{ug,ug,...,uqg,} CV and some edges {e1,es,...,e4,} C & such that v € ¢;
and u; € e; for every 1 = 1,2,...,d,. Also, we establish that f; refers to the
restriction f,, for i = 1,2,...,d,. Then, we can denote by F'(v) the vector
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FIicURE 1. Star graph.

column
fi(v)
Flv) = (i) S o) = | 0 ] (14)
Ja,(v)
and, similarly,
fi(v)
Fo) = () S = | | (15)
fa,(®)

Note 1.4.2. As f € HY(T), by the Trace Theorem for Sobolev spaces (see
[12], p. 258), F and F' are well defined on v. Thus, the boundary conditions
will be given just considering the values which take the function f and its
distributional derivate df /dz on the vertices v.

Lemma 1.4.3. Let A and B matrices of d x d satisfying the following con-
ditions:

the matriz  (A|B) € Mataxaa has maximal rank, (16)
the matriz  AB* s self-adjoint. (17)

Then, for any real k # 0, the matrix A + ikB is invertible and o(k) =
—(A +ikB)'(A —ikB) is a unitary matriz.
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Proor. Condition (17) implies that AB* = (AB*)* = BA*, then

(A+ikB)(A* — ikB*) = AA* — ikAB* + ikBA* + k*BB*  (18)
= AA* + kK*BB* (19)
= (A — ikB)(A* 4+ ikB")

= s ().

where (A|kB) denotes the matrix d, x 2d,, composed by A and kB. Now note
that (A+ikB)* = (A*—ikB*) and, due to the fact that rank(77™) = rank(T’)
for any finite matrix 7" (see [13], section 6.4, exercise 18), we can demonstrate
that A 4 ikB has maximal rank:

rank(A + ikB) = rank((A + ikB) (A" — ikB"))

k((A]kB ( ))

= rank((A|k;B)(A|k;B) )
= rank((A|kB)) =

Therefore, A+ ikB is invertible and the matrix o (k) is well defined.

Following the same reasoning we get that the matrix (A — ik B) is invert-
ible, then, also its adjoint (A* 4+ ikB*) is invertible. Using Equation (18) we
have

o(k) = —(A+ikB)"'(A —ikB)
—(A+ikB) Y (A - ikB)(A* +ikB*)(A* +ikB*)"!
—(A+ikB) Y (A+ikB)(A* — ikB*)(A* +ikB*)"!
—(A* —ikB*)(A* +ikB*)™*

Thus, we can verify that o(k) is unitary :

o(k)o(k)" = —(A* —ikB*)(A* +ikB*) ' [~(A+ ikB) (A — ikB)|*
= (A* — ikB*)(A* 4+ ikB*) " (A — ikB)*[(A 4+ ikB)~']*
= (A* —ikB*)(A* 4+ ikB*) Y (A* + ik B*)[(A 4+ ikB)*]
= (A* —ikB*)(A* —ikB*)™' =1,
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and similarly,
o(k)o(k) = [-(A+ikB) " (A — ikB)]*[-(A* — ikB*)(A* 4 ikB*) ]
= (A — ikB)*[(A + ikB) '] (A" — ik B*)(A* 4+ ikB*) ™!
= (A* +ikB*)[(A+ikB)*] ' (A* — ik B*)(A* +ikB*)™!
= (A* +ikB*)(A* — ikB*)"Y(A* — ikB*)(A* +ikB*)™"
= (A* +ikB*)(A* +ikB*) ' =L
O

Note 1.4.4. We do not consider the point at infinity as a vertex, so edges
with infinite length do not have more than one vertex.

In the following lemmas, we will give some equivalent descriptions of the
domain of A in terms of vertex conditions, which are necessary and sufficient
to guarantee the self-adjointness of the Laplacian operator.

Besides, as all the conditions are local, we will consider only one vertex
v and a vicinity of it where the graph is like a star graph. Thus, in the
demonstrations, we avoid de notation A,, By, d,, F'(v), F'(v), ... and instead
we use A, B,d, F, F', ..., respectively.

Lemma 1.4.5. Let I' be a metric graph with finite number of edges. For
every vertex v € V, take A, and B, matrices d, X d, such that

(Ay|By,) € Maty, yoq, has mazimal rank and
A,B; s self-adjoint.
Furthermore, define for every vertex v € V
U, =—(A—ikB) (A +ikB) € Matg,«q,.
Then, U, is a unitary matrix for every v and
{fe H*T): A,F(v) + B,F'(v) =0 YveV}=
{fe H*T): iU, —)F(v) + (U, + DF'(v) =0 Yov € V},

where I € Matg, «q4, 15 the identity matriz.

PRroor. Using Lemma 1.4.3, notice that
1
—2i(A +ikB) ' A = —2i(A + ikB)‘lﬁ((A —ikB) + (A + ikB))
= Z(U(k) - H)v
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where the matrix o(k) = —(A + ikB) (A — ikB) is unitary for every real
k # 0 according to Lemma 1.4.3. Similarly,

—2i(A+ikB)'B = —2i(A + ikB)‘lﬁ((A +ikB) — (A — ikB))
7

1
= —(T+a(k)).

From these equalities follows that
AF + BF' =0
<= —2i(A+ikB) "(AF 4+ BF') =0
1

<~ i(o(k) —D)F — %(]I +o(k))F = 0.

Taking k = —1 we obtain
AF + BF' =0
— (U-I)F+(U~+DF =0,

where U = o(—1) is unitary. O

Lemma 1.4.6. Let I be a metric graph with finite number of edges. For ev-
ery vertex v of I' consider a unitary matriz U, € Matg, xq,. Let Pp, and Py,
be the orthogonal projectors onto the eigenspaces of the matrixz U, with eigen-
values —1 and +1, respectively, and Pr, =1 — Pp, — Pn,. Furthermore,
we define A, : Pr,[C%] — Pg,[C%] by

Ay = =i (Pro(Uy + H)P37U>1P37U(UU — )P,
Then A, is invertible and self-adjoint and
{feB*M):i(U, —DF () + (U, + DF'(v) =0 Yo €V} =
{f € H*(T): (Ppy — AyPry)F(v) + (Pyy + Pro)F'(v) =0 Yo e V}.

Notice that (Pp, — Ay Pry)F(v) + (Pny + Pry)F'(v) = 0 if and only if
PD,UF(U) = O, PN7UF/(U> =0
and

PR,UF/(U) = AUPR’UF(U).

PRrROOF. As Pp and Py are the orthogonal projectors onto the eigenspaces
of the matrix U with eigenvalue —1 and +1, respectively, then Pr = 1— Pp —
Py is the projection onto the eigenspaces of all the eigenvalues different from
—1 and +1. These three projectors conmute with U and thus with U —1I and
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U + 1, by the spectral theorem.
We first suppose that
i(U—-T)F(v)+ U +DF'(v)=0 (20)
and prove that
(Ppy — AyPry)F(v) + (Pny + Pry)F'(v) = 0.
Multiplying (20) by Pp and commuting, we have
i(U—-T)F(v)+ U +DF'(v)=0
= iPp(U —I)F(v) + Po(U+DF'(v) =0
< (U —-1)PpF(v)+ (U+1)PpF'(v) = 0. (21)

It follows from the definition of Pp, that (U+I)Pp = 0 and (U—-1)Pp = —2Pp,
reducing equation (21) to

—2iPpF(v) = 0.
Hence, PpF(v) = 0.
In the same way, multiplying (20) by Py and commuting,
i(U—-T)F(v)+ U +DF'(v)=0
— iPn(U -1)F(v) + Py(U+T)F'(v) =0
< (U —-1I)PyF(v)+ (U+1I)PyF'(v) = 0. (22)

From the definition of Py we have (U + )Py = 2Py and (U — I)Py = 0,
reducing the equation (22) to

2Py F'(v) = 0.
Therefore, Py F'(v) = 0.

Now let (U+1)g and (U —1I)g the restrictions of (U +1) and (U —1) to the
space PrCY, respectively; due to ker(U +I)g = {0} and ker(U — 1)z = {0},
there exist (U + I);' and (U — 1I)5'. Newly, multiplying (20) by Pg and
commuting,

WU -DF(v)+ (U+DF'(v)=0
=—iPr(U —1)F(v) + Pr(U + I)F'(v) =
< (U —I)PrF(v) + (U + I)PrF'(v) =
— — (U+DZ'i(U =D)pPrF(v) + (U + ) PrE"'(v)] = 0
= —i(U+1D)"(U —)rPrF(v) — PrF'(v) = 0.
As A = —i(U + 1) (U — I)p, we deduce
APRF<U) = PRF/(U).
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Further, A is invertible, as it is the composition of invertible operators,
and it is self-adjoint since
A=A
—i(U+ D5 (U-Dr=iU - DU+ DT
— (U -Dr(U+Di=U+DrU -1k
— (U -DrU"+Dr=U+DrU" - Dg
—(U—-U"gr=(-U+U")pg.

I
I

11

We now suppose that
(Ppy — AyPry)F(v) + (Pny + Pry)F'(v) = 0.
and prove that
(U —-T)F(v)+ (U+D)F'(v) =0.
Since PpF(v) =0, PyF(v) =0 and APgrF(v) = PrF'(v), then
iPp(U—-T)F(v)+ Pp(U +1)F'(v) =0,
iPy(U—-1)F()+Py(U+1)F'(v)=0  and
iPr(U —1)F(v) + Pr(U+1)F'(v) = 0,
which implies that
(U —=T)F(v) + (U+D)F'(v) =0.

O

Lemma 1.4.7. Let ' be a metric graph with finite number of edges. Suppose
that for each vertex v there are complementary orthogonal projections Pp.,,
Py, and Pg, (i.e. Pp,+ Py~ Pr, =1 and their images are orthogonal to
each other), and an invertible self-adjoint map A, : Pg,[C%] — Pg,[C%].
For every vertex v € V define the operators
Av = PD,U — APR,v and Bv = PN,fu + PRﬂ),
and, without loss of generality, the matrix representations of these operators
are denoted by A, and B,,respectively. Then
(Ay|By,) € Maty, voq, has mazimal rank and
A,B; s self-adjoint.
Further,
{f € H*T): (Ppy — AyPry)F(v) + (Pxny + Pro)F'(v) =0 Yv eV}
= {f e H*I): A,F(v) + B,F'(v) =0 Vv eV}
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PRrOOF. Notice that, if PhF = 0, PNF/ = 0 and PRF/ = APRF (1e
(PD,U — AUPRW)F(U) + (PN,U + PRJJ)F,(U) =0 ), then

AF + BF' =(Pp — APg)F + (Py + Pr)F’
=— APrF + PrF' =0.
Conversely, if AF + BF’' =0, then
PpF + PyF' + (PrF' — APRF) = 0.
Therefore, as Pp and Py are orthogonal and Pr =1 — Pp — Py, we obtain

PDF:O, PNF/:O and PRF/:APRF.

Now let us see that AB* is self adjoint. On the one hand,
AB* =(Pp — APg)(Pyx + Pgr)"
=(Pp — APg)(Pyx + Pr)
= — APp,
and on the other hand,
A*B

(Pp — APR)*(Py + Pg)
(Pp — PrAPR)*(Py + Pr)
(

(

Pp — PLA*PL)(Py + Pr)

Pp — APg)(Py + Pg)

— AP,

where we have use the fact that A is self-adjoint. Hence, AB* = A*B. Finally,

to show that (A|B) = (Pp — APgr|Py + Pgr) has maximal rank, observe that
for any u € C¢,

(PD — APR)(PDU) + (PN + PR)<O) :PDU,
0) + (Py + Pr)(Pyu) =Pyu and

(Pp — APg)(0)
(Pn + Pr)(Pru) =Pgu,

+
(Pp — APg)(0) +

where 0 denotes de zero vector in C?. These equalities imply that

dim((A|B)C*!) > dim(PpC?) + dim(PyC?) + dim(PrC?) = d.
We conclude that (A|B) has maximal rank. O
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Theorem 1.4.8. Let T’ be a metric graph with finite number of edges. Con-
sider the operator A = —== (i.e. minus the second distributional derivate)
with domain

Dom(A) = {f € H*(I'): A,F(v) + B,F'(v) =0 Yv €V},

where A, and B, are matrices d, X d,. Then, A is self-adjoint if, and only
if,
(Ay|By) € Matg,xoa, has mazimal rank, (23)

and A,B; s self-adjoint.”! (24)

Proor. We recall that, as all the conditions are local, we consider only
one vertex v and a vicinity of it where the graph is like a star graph. There-
fore, we avoid using notations A,, B,,d,, F'(v), F'(v), ... and instead we use
A, B,d,F,F', ..., respectively. We furthermore assume, without loss of gen-
erality, that for each edge e, the coordinate z. is such that o(e) = v, recall
that o(e) is the initial point of the edge e.

We will demonstrate that if A is self-adjoint, then the conditions (23)
and (24) are satisfied. Conversely, by Lemmas 1.4.5 and 1.4.6, we have that
if conditions (23) and (24) hold, then there exist complementary orthogonal
projectors Pp, Py and Pg, and A an invertible self-adjoint operator on PrC?
such that

PprF =0
PyF' =0 and
APRF = PRrF".

Moreover, for every vertex v of T,
{f € H'(T): AyF(v) + B,F'(v) = 0} =
{f € H*'): (Ppy — AyProy)F(v) + (P, + Pro)F'(v) = 0}
Under these conditions, we will prove that if
Dom(A) = {f € H*(I'): (Pp — APg)F + (Py + Pr)F' = 0},
then A is self-adjoint.

We begin supposing that A is self-adjoint. Let f € Dom(A) and g €
BeceC™(e) such that becomes zero outside of a neighourhood of the vertex
v. Since A is self-adjoint, we have

B KECEmnTie) gy PRt )

eef eef




1.4. QUANTUM GRAPHS AND THE LAPLACIAN ON METRIC GRAPHS 33
As g is zero on all vertices different from v, integrating by parts we obtain

> / ALY dw—Z(—fg@)gem fedf;ydg;yd)

eef eef

Z( 9:(0) + fo(0)gL(@) + [, fola) Tl d.:z:>.

ec&

Then, by (25),
> AW)ge(w) =Y fe(v)gi(v) = (F',G) = (F,G') =0, (26)

where (,) denotes the standar hermitian product on C%. Thus, g € Dom(A*)
is equivalent to satisfy (26) for any f € Dom(A). But ¢ € Dom(A*) =
Dom(A) is equivalent to

AG + BG' = 0.
Thus, we have that for ¢ € Dom(A*) the following conditions are equivalent:

(i) AG+ BG' =0 and
(i) (F',G) — (F,G") =0 for all f € Dom(A).

By the rank-nullity Theorem for linear functions we have
dim(Ran(A|B)) = dim(C?*?) — dim(Ker(A|B)) = 2d — dim(Ker(A|B)). (27)
But, from the equivalence between the points (i) and (i) follows that

Ker(A|B) :{ (g) . AG + BG' = o} (28)

:{ (g) (F,G') = (F',G)=0 Vfe Dom(A)}

Consider the following inner product in C% x C?¢ = C?¢,
X\ (Z\\ X\ [z y
<(Y>,(W)>—<X,Z>+<Y,W> v(Y)’(W)GC’
and define the operator V : C?*? — C?¢ by

(- v

It is easy to see that V' is unitary, i.e.

VvV =VvV*'V =1L
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Using Equation (28), we can write Ker(A|B) in terms of V' and obtain

Ker(A|B) = {( ><( ),v(g,)>=o VfEDom(A)}
{( ) (v (F,)(g>>=o v/ € Dom(a) }

= [V*(Dom(A))]*
= [V*(Ker(A]B))]*.
This implies that
dim(Ker(A|B)) =2d — dim (V™ (Ker(A|B)))
=2d — dim(Ker(A|B)),
where the last equality occurs since V* is bijective. Thus, dim(Ker(A|B)) =

d. Therefore, by the Equation (27), the rank of (A|B) is d, i.e, (A|B) has
maximal rank.

Moreover, for any a,b € R we can produce a function g. € C*([0, L,])
(vanishing outside a small vicinity of v) such that ¢g(0) = a and ¢'(0) = 0.
Then, if we take any vector h € C%, we can produce a function g € @.csC>(e)
such that G = —B*h y G’ = A*h. Thereby, for every f € Dom(A)

(F',G) — (F,G') = (F',—B*h) — (F, A*h)
— —(BF',h) — (AF, h)
—(BF'+ AF,h) = 0.

Then (G|G") = (—B*h|A*h) satisfy (ii). Equivalently, (—AB*+ BA*)h =
0 for any h. Hence, AB* = A*B, which means that condition (24) is satisfied.

Now we suppose that
Dom(A) = {f € H*(T'): (Ppy—A,Pro)F(v)+(Pxy+Pro)F'(v) =0 Yo €V},

where Pp,, Py, and APg, := 1 — Pp, — Py, are orthogonal projectors
acting on C%™ and A, is an invertible self-adjoint operator on Pg,C%. It
follows that
Pp,F(v) =0, Py,F'(v)=0 and
PR,UF/(’U) = AUPRJ,F(’U). (29)
We will show that this implies the self-adjointness for A.
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First we demonstrate that A is a symmetric operator, i.e. Dom(A) C
Dom(A*) and A(f) = A*(f) for all f € Dom(A). Let f,g € Dom(A). We
will use I = Pp + Py + Pr and that the projectors are self-adjoint operators
in order to compute

<va(;>::
P”,f%DC?)4—(}%V}”,(?)+—(}?Rf”,(}>

and
(F,G'Y = (F,(Pp + Px + Pr)G")
= (PpF,G") + (F, PnG') + (F, PrG")
= (F, PrG")
= (PrF, PrG")
= (PgrF, APrG)

Since A is self-adjoint we conclude

(F',G) — (F,G"Y = (APRF, PrG) — (PrF, APRG)
= (APgF, PrG) — (APgF, PrG) = 0.
Thereby, integrating by parts twice we obtain

Z/dfe d—Z/fe dg;

ec& eef

We conclude that f € Dom(A*) and A*f = Af. Thus A is a symmetric
operator (i.e. A C A*).

Also, we have to prove that Dom(A*) C Dom(A). Let g € Dom(A*),
then

(Af,g) =(f,A%)  Vf e Dom(A).

Notice that C3°(I') € Dom(A) since f(v) =0 for all f € C§°(I"). Thus, from
Corollaries 1.3.7 and 1.3.13, we have

Dom(A*) C H*(T).
Subsequently we can integrate by parts and obtain

(f,A%g) = (Af,9) = —(F',G) +(F,G") + (f, Ag) (30)
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for every f € Dom(A). Particularly,

(f.A%) = (f,Ag)  Vf € CE(D).
Since C§°(T') is dense in L*(T'), we conclude that Ag = A*g for every g €
Dom(A*).
Moreover, from Equation (30) it follows
(F',G)y —(F,G') =0 Vf € Dom(A). (31)
Now define A = Pp — APg and B = Py + Pg. For every h € C? we can
construct a function f € H?*(I') such that F' = —B*h and F’ = A*h. Notice
that f satisfies (29) as the projectors Pp, Py and Pg are orthogonal. Indeed,
PpF = Pp(—=B*h) = Pp((—Px — Pr)h) =0,
PyF' = Py(A*h) = Py((Pp — APg)h) =0  and
APRrF =APR(—B*h) = APg((—Py — Pg)h) = —APgh
=Pr((Pp — APg)h) = Pr(A*h) = PRF".
Thus, f € Dom(A) and it follows from equation (31) that
0= (F',G)— (F,G") = (A*h,G) — (~B*h,G")
(h, AG) — (h,—BG") = (h, AG + BG").
This implies that AG + BG' = 0 and then
0= (Pp— APRr)G + (Px + Pr)G' = PpG + PyG' + Pr(—APgrG + PrG’).
As the projectors are orthogonal, we conclude that
PpG =0, PyG'=0 and — APRpG + PG’ =0.

This last statement implicates that g € Dom(A). Hence, we infer that A is
self-adjoint.

O

Note 1.4.9. Theorem 1.4.8 together with Lemmas 1.4.5, 1.4.6 and 1.4.7 give
different characterizations of the domains of Laplace operators giving rise to
self-adjoint operators, when boundary conditions are local. The first demon-
strations are allocated to Kostrykin and Schrader in [19] and to Harmer in
[14]. A deeper study of the matrices A and B (using arguments of diago-
nalization) leads to self-adjointness conditions that can be reduced to Neu-
mann or Dirichlet conditions on each edge. This is achieved in [3], [{] and
[5], where low and high energy limits of scattering operators are studied, in
the case that electric potentials are added to the Laplacian in the context
of quantum mechanics and Schroedinger operators in star graphs (or matriz
Schroedinger operators in the half-line).



CHAPTER 2

The spectrum of the Laplacian

Consider I' a finite connected discrete graph. We have already defined
the Discrete Graph Laplacian as

A: LA(T) — L¥(D)

1
Af(v) = b—(Zf(u) . dvf(v)> Vf e LX) (32)
We have proven that this operator is self-adjoint, besides it is nonpos-
itive, i.e.,

(Au,u) <0, (33)

and Au = 0 when u is constant.
Notice that if u is an eigenfunction of A w.r.t. the eigenvalue A, then
A € R since A is self-adjoint and

(Au,u) = (Au,u) = AMu,u) <0.

Thus, the eigenvalues of A are nonpositive.

It is known that there exists an orthonormal basis of L*(T") consisting
of eigenvalues of A."®l Moreover, if {u;, us, ..., uz} is an orthonormal basis
of L*(T") such that u; is an eigenfunction of A w.r.t. the eigenvalue \; for
every i = 1,2,...,k, then any f € L*(I") admits a decomposition

flv) = Z(f, ui)ui(v) (34)

for every vertex v of I'.

Based in the description above (following [15]) and seeking to establish a
result for the quantum graphs analogous to (34), in this chapter we add some
propositions and theorems taken from [9] provided with the necessary defi-
nitions. Also, we give a theorem which offers a relation between the spectra
of the discrete graph Laplacian and the Laplacian on a quantum graph for
the specific case of having a compact equilateral quantum graph. (Theorem
2.5.1).

37
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2.1. The spectrum of a self-adjoint linear operator

Consider H a Hilbert space and A a self-adjoint linear operator in H. We
define the resolvent set of A as

p(A) :={\ € C: (A — \I)"! exists and it is bounded}.
And we define the spectrum of A as the complement of its resolvent set, i.e.

g(A) :=C\ p(A).

We say that A € C is an eigenvalue of A if Ker(A — AI) # {0}, where
0 € H is the identity element. Furthermore, the elements of this kernel which
are different from 0 are called eigenfunctions with respect to A. The set of
all eigenvalues of A is designated the point spectrum and it is denoted by
op(A).

The elements of o(A) can be classified according to some properties.
The set of all eigenvalues of finite multiplicity which are not accumulation
points is the discrete spectrum o,4(A), and its complement is the essential
spectrum

Oess(A) :=0(A) \ 04(A).

Definition 2.1.1. Let H a Hamiltonian related to a quantum graph I' with
set of edges €. Referring to the Dirichlet conditions, we define the set op(H)
by the next relation:

a complex number A is an element of op(H) if, and only if, there exists a
function f € Dom(H) such that Hf. = \f. for some edge e € £ and f,
vanishes on the vertices of e.

Notice that, as sm(m) is an eigenfunction of —% in the interval [0, L./,

2 Le
when H = —4

on(H) = | | {<z—n>2‘n en}.

2.2. The Spectral Theorem and Spectral Measure
For the next theorem we recall that L(H) is the Banach space of bounded

linear operators from H to H with norm

T
17 = sup 22 v e o),
w20 |z
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Theorem 2.2.1. Spectral Theorem. Let A be a self-adjoint operator in
H. There exists a unique map

¢a: Co(o(A)) = L(H)

such that

(1) ¢4 is an algebraic x-homomorphism of x-algebras,
(2) @A)l <11 fllze.

(3) if A€ R and ry(z) := (A
(4) a(f) =0 if suppf No(A

—2)7Y, then ¢a(ry) = (AL — A)~! and
) :Q)

Using the Theorem 2.2.1, we can define for every w € H a spectral
measure [, on o(A) such that

/ ) = (a0

Considering that a measure p : B — R is pure point if, for every
measurable set X € B,
= p()

zeX

we define the invariant subspace of A
H,, = {w € H: p,is pure point}.

We define the pure point spectrum of A as the spectrum of the restriction
A| ;> and we donoted by ,,(A).
pp

Definition 2.2.2. Let (X, B) be a measurable space, H a Hilbert space and
P = P(H) the set of orthogonal projections on H. Suppose that p : B — P
1S a function such that

e it is countable additive, i.e., if {0,} is a countable set of disjoint
sets of B and § = U,,0,,, then u(0) =s-y_ p(0,) (the strong limit of
partial sums),

e and it is complet, i.e., u(X) =1

Then, we say that p is a spectral measure on H and (X,B,H,u) is a
spectral measure space.

Theorem 2.2.3. Spectral Theorem (projection valued measure form)
Let A be a self-adjoint operator on H. Then there exists a unique spectral
measure

AL BR —)P(H),
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where Br denote the Borel o-algebra on R, such that
A= / sdpa(s).
R

2.3. Quadratic form

Consider H a self-adjoint operator acting as the negative second derivative
on a space of functions defined in a quantum graph I'. We choose the vertex
conditions to be of the form

Pp,F(v)=0
Py F'(v) =0
Pr F'(v) = A\ ProF(v),
where Pp ,, Py, and Pr, =1 — Pp, — Py, are orthogonal projectors acting

on C% and A, is a self-adjoint operator in Pg,C% for every vertex v € V.
The next theorem is taken from [9].

Theorem 2.3.1. The quadratic form of H is given by

<ww=21

The domain of this form s
{fe H(T): P, F =0 YveV}.
The sesqui-linear form of H is
df dg
(f0) = 3 [ 5L+ S NP F P, ). (36)

eef veY

df 12
%’ dz + UGZV(AUPRWF, ProF). (35)

2.4. Discreteness of the Laplacian Spectrum

A bounded operator T' € B(X,Y) is compact if the image {Tu,} of any
bounded sequence {u,} of X contains a Cauchy subsequence.

Lemma 2.4.1. Let T € B(X,Y) be a compact operator. Then, its spectrum
o(T) is a countable set with no accumulation points different from zero. Fach
nonzero eigenvalue X € o(T) has finite multiplicity, and X is an eigenvalue
of T* with the same multiplicity. [17]

Theorem 2.4.2. LetI' a compact quantum graph together with the Laplacian
A = —d*/dz? (i.e. the negative second distributional derivate) with domain
given as

{fe H*I'): A,F(v)+ B,F'(v) =0 Yv eV},
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where A,, B, are d, X d,-matrices such that (A,|B,) has mazimal rank and
AB* is self-adjoint. Then the resolvent (A — 1)~ is a compact operator in

L2(T). [9]
PROOF. The self-adjointness of A implies that the resolvent (A — ¢T)~!
is well defined from Ly(T') to Dom(A) C H*(T). The natural embedding
H*(T) — Ly(T),
given by the Sobolev embedding Theorem [2], is compact. Thus, the resolvent

is compact. 0

Corollary 2.4.3. The spectrum of the Laplacian o(A) consist of isolated
eigenvalues \; of finite multiplicity and such that \; — oo. [9]
J—00

PROOF. Notice that, for u € Dom((A — I)~!) different from zero and a
complex number v # 0, the following is satisfied
(A —4l) " ru = yu (37)
= u=(A—i)yu
> u+1yu = Ayu
— Au = (% + z)u

Then, by Lemma 2.4.1 and Theorem 2.4.2, the spectrum of the Laplacian
o(A) is a countable set with no accumulation points of eigenvalues with finite
multiplicity. Also notice that

1
— 41| — 00,
'Yj v;—0
then the eigenvalues of A, denoted as
1
)‘j = (— + Z),
Vi
diverge to infinity. OJ

2.5. Relation between Spectra of Laplacians

We say that a metric graph is equilateral when the length of all its
edges are equal. Now consider an equilateral quantum graph I' such that its
sets of vertices V and edges £ are countable, and assume that the common
length of its edges is L. Also, considering the Laplacian A (minus the second
distributional derivate) on I', suppose that any f € Dom(A) satisfies the
Neumann-Kirchhoff conditions:
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e f(z)is continuos on I', that is to say, every restriction f, is continuos
for every e € £ and, for any v € V,

fe(U) = fe’(v> ‘v’e, S gva

where &, denotes the set of all the edges which contain v.

e For every vertex v,
dfe
E =0
dr, (v) =0,

Eegv

where the derivates are taken in the direction away from the vertex.

We look for a relation between the spectrum of A and the normalized
discrete graph Laplacian. Henceforth, in order to distinguish between
both Laplacians, we use the notation A. for the Laplacian considered on a
quantum graph (which is given by minus the second distributional derivate)
and Ay for the normalized discrete graph Laplacian defined as

Auf(v) = f(v) - di S flu).

Using the Definition 2.1.1, we give the following relation between the
elements of 0(A.) and o(Ay) spectra.

Theorem 2.5.1. Consider I' an equilateral quantum graph and L € (0, 00)
the length of its edges. Also, suppose that 0 < d, < oo for every vertex
v €V and that every function f € Dom(A.) satisfies the Neumann-Kirchhoff
conditions. Let X € C\ op(A.) and k* = \. Then, the next equivalence
holds:

A€ 0,(A) < (1 —coskL) € g,(Ay).

The same relation occurs when we consider the spectrum o and the spectral
components oq, Oess and op,.[9]

Note 2.5.2. We only demonstrate one implication of the relation between
the point spectra. For the complete proof we refer to [9] that mention a proof
based on the formula of Krein and a technique developed in [23].

Proor. Consider the eigenvalue equation
d*u
——— =k 38
with boundary conditions u(0) = f(0) and u(L) = f(L) for every e € £.

Notice that the function u defined in each edge as
1
ue(x) = Sn(kD) [£(0)sin(k(L — x)) + f(L)sin(kz)],

is a solution of the Equation (38).
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Indeed, after some computations we obtain the first and the second deriva-
tives of wu,:

ul(z) = sin(kkL) [ — f(0) cos(k(L — z)) + f(L) cos(kz)] (39)
, —k? : :
u, (x) :W [f(0)sin(k(L — z)) + f(L)sin(kz)] (40)
= — K?u.(z).

Thus, substituting z = 0 in Equation (39) we have
k
/ O -
ue(0) sin(kL) [
Considering that we take the derivatives with direction from a vertex v
to its neighbours, we have that u.(0) = wu,(v) for every edge e € &,. Then,

writing the Neumann condition for the derivatives u/ using the Equation
(41), it follows

Z Ci;;e (v) = ;J sin(kkL) [ — f(0) cos(kL) + f(L)] =0. (42)

ee&;

— f(0) cos(kL) + f(L)]. (41)

We deduce that u satisfies the Neumann condition if, and only if,
> [ £(0)cos(kL) + f(L)] =0.
e€e&y
The last expression is equivalent to next equalities:

f(v)d, cos(kL) = > f(u)

u~v

- — Zf (1 — cos(kL)) f(v)

— Ayf(v) = (1 —cos(kL))f(v).

The previous equality of the normalized graph Laplacian holds for every
vertex v € V. Hence, we conclude that the function u satisfies the Neumann
condition if, and only if, f is an eigenfunction with respect to the eigenvalue
(1 — cos(kL)) of the normalized graph Laplacian. O

A fine achievement to enhance the relation between discrete graphs and
quantum graphs would be to extent Theorem 2.5.1 for graphs that are not
equilateral. Thus, we can enunciate the following new problem:
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Problem 2.5.3. For the case of graphs that are not equilateral, can we give
a relation as in Theorem 2.5.1 between the spectra of the discrete graph Lapla-
cian and the Laplacian on a quantum graph?

2.6. Spectral decomposition in eigenfunctions

We aim to find a sort of Fourier decomposition in terms of the eigenfunc-
tions of the Laplacian for the elements of Dom(A).

Let I' be a quantum graph with set of edges e € £ and denote by E the
cardinality of £. Define the set

A:={(A,|B,): veV}
and the vector £ = {£.} € (C\ {0})®. Consider the Hamiltonian
Ly &
Hae= 4703
on a quantum graph, with domain
Dom(H) = {f € H*(T): A,F(v) + B,F'(v) =0 Vv €V},

where, for every v € V, (A4,|B,) € A has maximal rank and A,B is self-
adjoint. That it is, H acts as re-scaled version of the negative second distri-

butional derivate

d2
72_
¢ da?

—£

on every edge e.
The operator H 4¢ is self-adjoint and its spectrum is real and discrete.

Definition 2.6.1. A subset X of an analytic manifold M is called analytic
if it can be locally described as the set of common zeros of several analytic
functions, and it is called principal analytic if it can be locally described
as the set of zeros of an analytic function.

Theorem 2.6.2. Define the following subset of C2XZ% x (C\ {0})E x C
S :={(A & N): (Hae — Al) does not have bounded inverse in L*(T)}.

Then, S is principal analytic.
Also, for every k > 1, define the subset of C2X% x (C\ {0})* x C

Sk = {(A,&N): dimKer(H e — M) > k}.
Then, S is analytic for every k > 1. [9]

Note that ;1 C Sk C S for every k > 1. The set § is the graph of the
multiplie-valued function

(Av 5) = O-(,H«‘Lf)’
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which can be considered as a “dispersion relation”.

The following definitions are reproduced from [16].

Definition 2.6.3. A k-dimensional vector bundle consists of a total space
E, a base M and a projection w: E — M, where E and M are differentiable
manifolds, 7 is differentiable, for each x € M the fiber E, := 7 '(x) has the
structure of a k-dimensional vector space and there exists a neighbourhood
U, and a diffeomorphism (i.e. an isomorphism of smooth manifolds)

0r: ™ HUy) = U, x RF,
called local trivialization, such that for every y € U,
Pay = Palp,: By — {y} xR*
s a vector space isomorphism.

If (E,m, M) is a k-dimensional vector bundle, (Uy,)aeca a covering of M by
open sets and ¢, : 71(U,) — U, x R* the corresponding local trivializations,
for nonempty U, N U, we obtain transitions maps

0s0: Ua N U5 — GI(k,R)
by
Spﬂo@;l(va) = (1373050((1’)1}) Vo € Uang,UERk,

where Gl(k,R) is the general linear group. If M is a complex manifold and
the transitions maps are holomorphic, then (E, 7, M) is an holomorphic
vector bundle.

Theorem 2.6.4. With the specifications above, the set Ker(H.a¢) is an holo-
morphic k-dimensional vector bundle over Sy \ Sg+1. As a consequence, if
there exists a local analytic eigenvalue branch (A, &) of constant multiplicity
k, then there is an analytic local basis of k eigenfunctions. [9]

Although the next theorem could be generalized to infinite quantum
graphs, we consider I a finite quantum graph, with set of vertices V, and A
the Laplacian operator defined on

Dom(A) = {f € H*(T'): (Pp,—APgr,)F(v)+(Pyo+Pro)F'(v) =0 VoveV},
where Pp ,, Py, and Pg, are complementary orthogonal projectors and A is
an invertible self-adjoint operator defined on Pg,C%. Also, we assume that

e the lengths of the edges are bounded from below, i.e. there exists a
positive number L,,;, satisfying

Le 2 me > 07



46 2. THE SPECTRUM OF THE LAPLACIAN

e the bijections A, are uniformly bounded, i.e.
A < C < 0.
Definition 2.6.5. A function ¢(z) € H: (T') which satisfies

loc
(Ppw — APry)¢(v) + (Pyw + Pro)¢'(v) =0 Yo e,
is said to be a generalized eigenfunction with respect to A of the Laplacian
A if
Ag(x) = \op(x) a.e. on I.

Note 2.6.6. When we say that ¢(z) € HE ('), we suppose it is possible that

¢ is not square integrable on T (i.e. ¢ & L*(T)).

Theorem 2.6.7. Under the assumptions above, let p be the spectral measure
of A (see Theorem 2.2.3). Consider a function w: I' — [1,00) continuous
which satisfies 1/w € L*(T'). Then there exist a “spectral decomposition”
into functions ¢, such that, for p-almost all A € o(A), ¢ is a generalized
eigenfunction of A and w™¢y € L*(T) for p-almost all A € o(A). [9]



CHAPTER 3

Applications to Biology

3.1. GRN models

The large amount of genetic data has prompted the analysis of com-
plex systems, with various components and interactions between them, us-
ing mathematical and computational resources. For example, these methods
have contributed to comprehend plant growth and to understand genetic
foundations of the evolution of plants. For the very large number of genes,
and the complexity of interactions between them which regulate cell differ-
entiation and development, schematic and intuitive models are not enough
for responding the open questions about it in Biology. But mathematical
representations and computational simulations allow structural and dynami-
cal studies of complex collections of interconnected genes, proteins and other
molecules, which are called gene regulatory networks (GRN).[6]

The GRN models - in which genes, mRNA or proteins are represented
by nodes (vertices) and their regulatory interactions by links (edges) - have
been elaborated using functional genomics to reverse engineer the identity
of the network (graph), or using thorough molecular genetic experiments to
suggest models of GRN structures for small gene networks. These models
have permited the analysis of temporal change of gene activities (network
dynamics) and of the manner in which genes are connected to each other
(network architecture). [6]

Discrete and Continuous GRN Models: As development models in-
volve an extensive range of scales and mechanisms, depending on the scale
involved and the essence of the available information, a fitting mathematical
framework must be selected. GRN models might incorporate continuous or
discrete functions. Continuous models can include more detail and produce
quantitative predictions; they are very useful for investigating signal trans-
duction pathways and the circadian clock, for example. On the other hand,
experiments evidence that gene expression is digital at the individual cell
level. Thus, qualitative GRN models with discrete kinetics of gene activa-
tion are the most suitable representation of complex gene regulatory logics.

47
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F1GURE 1. Motif joining.

However, different analyses of topologically equivalent continuous and dis-
crete models reveal that both give analogous dynamic results. [6]

3.2. Eigenfunctions of the Graph Laplacian

From the analysis of the discrete graph Laplacian, qualitative properties
of a graph can be deduced [15]. Laplacian graph spectra has been used for
characterizing large networks and random graphs. Geometric properties of
the eigenvectors are studied in several applications in Mathematical Biology
and Combinatorial Optimization [24].

When a graph represents biological data as a structure that has evolved
from simple precursors, there are characteristic traced by this process in the
spectrum of the normalized graph Laplacian:

Acf() = f0) ~ 7 32 flu)
quF,uwv
(Notice that this Laplacian is the same as the defined in Equation (1), but
with weights b, = d,. ) For example, when a graph Iy is joined to an existing
graph I' in a vertex where an eigenfunction f of I'y (i.e. Ap,f — Af =0 for
some eigenvalue \) vanishes, the new graph obtained preserve the eigenvalue
A with a localized eigenfunction, that is, and eigenfunction which agrees with
f on I'g and vanishes at other vertices [7].

Another example is when a small subgraph T'; (motif) of T' is doubling
at I' (i.e. an extension of I' is constructed in the following way: A copy of
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F1GURE 2. Motif duplication.

[’y — denoted temporarily by I} — is added in such a way that each vertex
of I'] is connected to all closest neighbors, that do not belong to I'y, of the
copied vertex — see Figure 2). Then the new graph possesses the eigenvalue
A of the graph Laplacian on I'y

= ) =1 -N0),

v
uel'r u~v

related to the eigenfunction f with a localized eigenfunction which is double
(i.e. it agrees with —f on the double of I'y) [7].

Constructions like the first (motif joining) or the second (duplication)
could be functional to describe evolution hypothesis of a biological network
starting from the data available [7].

An other application of the analysis of the graph Laplacian eigenfunc-
tions is on Landscape Theory. A landscape is a triple (X, X, f) where X is
a set of configurations, X is a topological structure on X and f: X — R is
a fitness function. The topological structure is often specified as a function
N : X — 2% constructed in a symmetric way, satisfying z € N(y) <= vy €
N(z). This relation yields an undirected graph related to (X, X') [18].

The average cost of an arbitrary configuration is

It has been noticed that in multiple cases the function f defined as f (x) =
f(z) — f turns out to be an eigenfunction of the Laplacian of the graph re-
lated to the configuration space (X, X) [24].
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Some of the properties in discrete graph have their analogous in met-
ric graphs. For example, the eigenfunctions of the discrete graph Laplacian
has parallel characteristic to the ones of the eigenfunctions of the continuous
Laplacian given in the Courant Nodal Domain Theorem for Elliptic
Operators which states the following: Given a self-adjoint second order el-
liptic differential equation L[u] + Apu = 0 (p > 0) in a domain G with
arbitrary homogeneous boundary conditions; if its eigenfunctions are ordered
according to increasing eigenvalues, then the nodes of the n-th eigenfunction
u,, divide the domain into no more than n subdomains. Here L could be the
Laplacian and nodes are points where the eigenfunction u vanishes [24].

Associated with a graph G(V,E), a symmetric matrix M is called a
generalized Laplacian or discrete Schrodinger operator of G if My, < 0
whenever © ~ y and M,, = 0 when x and y are distinct and not adja-
cent. A positive (negative) strong nodal domain of a function f on V(G)
is a maximal connected induced subgraph of G with vertices v € V with
f(w) >0 (f(v) <0). And a positive (negative) weak nodal domain of a
function f on V(G) is a maximal connected induced subgraph of G with
vertices v € V with f(v) >0 (f(v) <0) that contains at least one nonzero
vertex. The Discrete Nodal Domain Theorem establishes the following:
Let M be a generalized Laplacian of a connected graph with n vertices. Then
any eigenfunction fi corresponding to the k-th eigenvalue A\, with multiplicity
r has at most k weak nodal domains and k+r —1 strong nodal domains [24].

3.3. Solitons, Quantum and Chaotic Graphs

There are also some investigations involving quantum graphs, solitons
and Biology. For example, in [22] it is shown that models of proteins present
pulses as solitons. Using the Schrodinger equation on a star quantum graph,
it has been proved that a fast soliton splits in reflected and transmitted com-
ponents after colliding with the central vertex of the graph [1]. And in [21]
is analysed the stability of some solitons for pulse propagation in biomem-
branes and nerves.

In the discrete setting, soliton graphs are the fundamental graphs of soli-
ton automata, which function as a mathematical model for molecular elec-
tronic switching [8].

The chaotic graphs are represented as many fuzzy fractal lines up to oo
and are described as chaotic matrices. Some operations on the chaotic graphs
such as the union and the intersection, the chaotic incidence matrices and
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the chaotic adjacency matrices has been studied. Chaotic systems are deter-
ministic and sensible to their initial condition. Chaotic behaviour is common
in systems as measles out break, heart rhythms, electrical brain activity, cir-
cadian rhythms, fluids and animal population. The generalization of discrete
graphs are fuzzy graphs, whereas chaotic graphs are more general than fuzzy
graphs. The biological properties of biological isomers represent a chain of
oo-chaotic graphs, which represent the biological properties like link, growth
toxics and pharmaceuticals [11].

Quantum graphs attracted the interest of the quantum chaos community
because they can be considered as typical and simple examples for the class of
systems in which classically chaotic dynamics implies universal correlations in
the semiclassical limit. Up to now there is only a limited understanding of the
reasons for this universality, and quantum graph models provide a valuable

opportunity for mathematically rigorous investigations of the phenomenon
[20].
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