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Introducción

En este trabajo proporcionamos una introducción accesible y autónoma a
las gráficas cuánticas y gráficas discretas, más aún, damos algunas posibles di-
recciones de investigación en el contexto de Bioloǵıa Matemática. Revisamos
art́ıculos recientes sobre las aplicaciones de gráficas a Bioloǵıa, éstas están
basadas en gráficas discretas regularmente. Nuestra intención principal en
esta tesis es una comparación entre gráficas cuánticas y gráficas discretas,
enfocándonos en cómo las gráficas cuánticas pueden entrar en el dominio de
la Bioloǵıa. Nosotros creemos que las gráficas cuánticas pueden proveer una
contribución importante a la Bioloǵıa por las siguientes tres razones:

• El espectro de una gráfica cuántica finita es infinito, en contraste con
el espectro de una gráfica discreta finita que es finito. Por lo que,
la información que una gráfica cuántica puede proporcionar para el
modelado de un fenómeno puede ser superior.
• Existe una cantidad muy grande de trabajos en la comunidad de

F́ısica Matemática sobre gráficas cuánticas. Nosotros creemos que
los biólogos matemáticos debeŕıan tomar ventaja de este trabajo.
• Además de la teoŕıa espectral (que es una de las herramientas prin-

cipales para los modelos que analizamos sobre las gráficas discretas),
en gráficas cuánticas la teoŕıa de dispersión juega un papel central
(el cual da herramientas matemáticas adicionales e información).

En la sección 1.1, para el caso de gráficas discretas, consideramos el es-
pacio de funciones definidas en los vértices de una gráfica finita y conexa
y con valores en los reales o en los números complejos, y dentro de éste,
un producto interno designado con pesos. El Laplaciano de una gráfica es
definido en este espacio en términos de estos pesos y notamos que resulta ser
autoadjunto.

Las gráficas métricas son definidas en la sección 1.2 con una gráfica disc-
reta y dirigida subyacente, pero sus aristas son consideradas como intervalos
reales con una coordenada en cada uno de éstas. Las funciones definidas so-
bre estas gráficas toman valores en todos los puntos de las aristas (incluyendo

los vértices). En este caso, el operador Laplaciano es ∆ = − d2

dx2
(i.e. menos

la segunda derivada distribucional tomada sobre cada arista). El espacio que
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6 INTRODUCCIÓN

consideramos para el dominio de ∆ es H2(Γ), el espacio de Sobolev de fun-
ciones definidas sobre Γ con derivadas distribucionales, hasta de orden dos,
cuadrado integrables. Con el propósito de garantizar que este operador es
autoadjunto, necesitamos imponer algunas condiciones de frontera locales a
la funciones en el dominio de ∆.

En la sección 1.3, demostramos que, si el Laplaciano ∆ es definido en
un dominio que contiene al espacio C∞0 (con condiciones de frontera locales
mixtas de Dirichlet o Neumann), entonces el dominio del operador adjunto
∆∗ es un subconjunto del espacio de Sobolev H2(Γ). Para la demostración
de este hecho usamos la regularidad del Laplaciano de Dirichlet en intervalos
finitos y semi infinitos. Incluimos la prueba de ésto en el escrito presente
por dos razones: la primera es mantener el trabajo tan autónomo como sea
posible y la segunda (y más importante) es que el estudio de operadores
eĺıpticos en gráficas no requiere la (sofisticada) maquinaria completa desar-
rollada en la teoŕıa general de operadores eĺıpticos en conjuntos abiertos en
Rn (o variedades de Riemann), pero tiene la ventaja de que (en gráficas)
la prueba puede ser presentada de una manera corta, intuitiva, autónoma y
accesible. Esta presentación incluye todas las ideas clave que pueden ser gen-
eralizadas para variedades, por lo tanto, ésto es valioso para estudiantes de
maestŕıa que desean comprender las ideas principales de regularidad eĺıptica
de una manera económica. Adicionalmente, recalcamos que el entendimiento
de las gráficas cuánticas no requiere la teoŕıa plena de ecuaciones diferen-
ciales parciales eĺıpticas, y este texto suministra el conocimiento básico para
los estudiantes que quieren empezar una investigación en gráficas cuánticas
sin entrar en la ecuaciones diferenciales parciales.

En la sección 1.4, siguiendo las ideas de [9] y considerando Γ una gráfica
métrica finita y conexa, para funciones f en el dominio del Laplaciano damos
algunas condiciones de frontera locales que son suficientes y necesarias para
asegurar que este operador es autoadjunto. Estas condiciones son estableci-
das en el teorema 1.4.8, el cual es demostrado considerando sólo una parte
pequeña de la gráfica (una vecindad de un vértice que parece una gráfica
estrella) ya que las condiciones son locales.

Las gráficas son aplicadas en muchos modelos matemáticos en Bioloǵıa.
Los ejemplos van desde redes neuronales, modelos de protéınas o genes, hasta
cadenas tróficas y árboles filogenéticos. En el último caṕıtulo, escribimos una
reseña de algunas aplicaciones matemáticas a redes biológicas, con particular
énfasis sobre el espectro del Laplaciano de una gráfica discreta e indagando
cómo las gráficas cuánticas pueden incluirse en estos modelos.



Introduction

In this work we provide an accessible and self-contained introduction to
quantum graphs and discrete graphs and we give possible research directions
in the context of Mathematical Biology. We revise recent research papers on
applications of graphs to Biology. These applications are regularly based on
discrete graphs. Our main intention in this thesis is a comparison between
quantum and discrete graphs focusing on how quantum graphs could entry
into the domain of Biology. We believe that quantum graphs could provide
an important input in Biology for the following three reasons:

(1) The spectrum of a finite quantum graph is infinite, in contrast with
the spectrum of a finite discrete graph that is finite. Therefore, the
information that a quantum graph might provide to the modeling of
a phenomenon might be superior.

(2) There is a huge amount of work in the Mathematical Physics com-
munity on quantum graphs. We believe that the mathematical bi-
ologists should take advantage of this work.

(3) Apart from spectral theory (which is one of the main tools for the
models we analyze on discrete graphs), in quantum graphs the scat-
tering theory plays a central role (which gives additional mathemat-
ical tools and information).

In Section 1.1, for the case of discrete graphs, we will consider the space of
real or complex valued functions defined on the vertices of a finite connected
graph and, defined therein, an inner product designated with weights. The
graph Laplacian is defined on this space in terms of these weights and we
will see that it turns out to be self-adjoint.

Metric graphs are defined in Section 1.2 with an underlying directed dis-
crete graph, but its edges will be considered as real intervals with a coordinate
on each one. The functions defined on these graphs take values in all the
points of the edges (including the vertices). In this case, the Laplace opera-

tor is going to be ∆ = − d2

dx2
(i.e. the negative second distributional derivate

taken on each edge). The space consider for the domain of ∆ is H2(Γ), the
Sobolev Space of functions defined on Γ with square integrable distributional
derivates up to order two. In order to guarantee self-adjointness, we need
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8 INTRODUCTION

to impose some local boundary conditions to the functions in the domain of ∆.

In Section 1.3, we demonstrate that, if the Laplacian ∆ is defined with
domain containing C∞0 (Γ) (with mixed Dirichlet or Neumann local boundary
conditions), then the domain of the adjoint operator ∆∗ is a subset of the
Sobolev space H2(Γ). The proof of this fact uses regularity of the Dirichlet
Laplacian in finite and semi-infinite intervals. We include the demonstration
of this in the present manuscript for two reasons: The first is to keep this
work as self-contained as possible and the second (and the most relevant one)
is that studying elliptic operators in graphs does not require the full (sophis-
ticated) machinery developed in the general theory of elliptic operators in
open sets in Rn (or Riemannian manifolds), but it has the advantage that
the proof can be presented (in graphs) in a short, intuitive, self-contained
and accessible way. This presentation already includes all key ideas that can
be generalized to manifolds, and it is, therefore, valuable to master students
that may want to grasp the main ideas of elliptic regularity in an economic
way. Additionally, we stress that understanding quantum graphs does not
require the full theory of elliptic PDE’s, and this text provides the basic
knowledge to scholars who might want to start doing research on quantum
graphs without going into PDE’s.

In Section 1.4, following ideas from [9] and considering Γ a finite con-
nected metric graph, for functions f in the domain of the Laplacian we give
some local boundary conditions which are sufficient and necessary to assure
the self-adjointness of this operator. These conditions are settled on Theorem
1.4.8, which is proved just considering a small part of the graph (a vicinity
of a vertex which looks like a star graph) being that the conditions are local.

Graphs are applied in many biological mathematical models. The exam-
ples go from neuronal networks, protein or genetic models, to trophic chains
and phylogenetic trees. In the last Chapter, we write a review of some math-
ematical applications to biological networks, with particular emphasis on the
spectrum of the discrete graph Laplacian, and enquiring how quantum graphs
could make an entry in these models.



CHAPTER 1

The Graph Laplacian

A discrete graph or combinatorial Γ consists of a numerable set V =
{vi} of vertices and a set E = {ej} of edges between vertices. If no confusion
arises, we just say graph instead of discrete graph. Two vertices u and v are
adjacent if there exists an edge between them and we will detone by u ∼ v.

We will use the notation v ∈ e to indicate that v is a vertex of e. The
degree dv of a vertex v is the number of edges which proceed from it, i.e.,

dv =
∣∣{e ∈ E : v ∈ e}

∣∣.
We will assume that all the degrees are finite.

A path in Γ is a finite sequence of distinct vertices {v0, v1, . . . , vk} ⊂ V
and edges {e1, e2, . . . , ek} ⊂ E , such that vi−1 ∈ ei and vi ∈ ei for all i =
1, 2, . . . , k. We say that a graph is connected if there is a path between any
two vertices.

We will say that a graph is a directed, or a digraph, if each of its edges
has an assigned direction, i.e. there are functions o : E → V and t : E → V
such that, for every e ∈ E , o(e) represents the origin vertex of e and t(e)
the terminal vertex.

1.1. The Laplacian on Discrete Graphs

Consider Γ a finite and connected discrete graph. A real or complex
valued function f on Γ is defined on the vertices of Γ. We will denote by
L2(Γ) the set of functions from Γ to C.

Introducing an L2-product:

(f, g) :=
∑
v∈V

bvf(v)g(v),

where the weights bi are positive reals, the Discrete Graph Laplacian is
defined as follows:

∆: L2(Γ)→ L2(Γ)

∆f(v) :=
1

bv

(
dvf(v)−

∑
u∼v

f(u)
)

∀f ∈ L2(Γ). (1)

9



10 1. THE GRAPH LAPLACIAN

An important property of ∆ is that it is a self-adjoint operator. This
follows from the symmetry of the adjacency relation. Indeed, from the defi-
nition of the product with weights we have

(f,∆g) =
∑
v∈V

bvf(v)
1

bv

(
dvg(v)−

∑
u∼v

g(u)
)

=
∑
v∈V

f(v)
(
dvg(v)−

∑
u∼v

g(u)
)

=
∑
v∈V

(
dvf(v)g(v)−

∑
u∼v

f(v)g(u)
)

=
∑
v∈V

(
dvf(v)−

∑
u∼v

f(u)
)
g(v)

=
∑
v∈V

bv
1

bv

(
dvf(v)−

∑
u∼v

f(u)
)
g(v)

= (∆f, g)

for any f, g ∈ L2(Γ).

1.2. Metric Graphs

Now we will consider edges not only as relations between vertices, but
also as intervals, providing a metric to the graph.

Definition 1.2.1. Let Γ be graph with set of vertices V and set of edges E.
We will say that Γ is a metric graph if it satisfies the following conditions:

(1) Γ is directed and for every edge e ∈ E there is a length Le ∈ (0,∞].
(2) To each edge there is a coordinate xe ∈ [0, Le] increasing in the

direction of the edge.

Henceforth, we identify the edges e with the intervals [0, Le] if Le < ∞
and with the intervals [0,∞) if Le = ∞. Furthermore, we denote by e̊ the
interior of the edge e, defined by means of the identifications above, that is
to say,

e̊ ≡(0, Le)

In order to define a metric naturally, we will assume that a metric graph
is connected. If {ej}Mj=1 is a sequence of edges which form a path, its length
is defined as

∑
Lej . For every two vertices v and w, the distance ρ(v, w)

is the minimal element of the lengths of the paths which join them. The
distance ρ(x, y) between two points x and y of two edges can be defined
in an analogous way. For example, if {ej}Mj=1 is a sequence of edges such
that they form a “path” between x ∈ e1 and y ∈ eM , and t(e1) ∈ e2 and
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o(eM) ∈ eM−1, then its length will be (Le1 − x) +
∑M−1

j=2 Lej + y. The other
cases are similar.

We consider a function f(x) on Γ defined along the edges. Before the next
definitions, let us introduce the notation fe and fe̊ to refer the restriction of
a function f defined on Γ to the edge e and to e̊, respectively. Also remark
that the norm on the function space L2(e) is given by

‖fe‖2
L2(e) =

∫
e

|fe(x)|2dx,

and that if Dkfe̊ ≡ dkf
dxk
≡ dkf

dxke
is the k-th distributional derivate of fe̊, then

Hk (̊e) = {fe̊ ∈ L2(̊e) | Dαfe̊ ∈ L2(̊e), α = 0, . . . , k}
is the Sobolev space with norm

‖fe̊‖2
Hk (̊e) =

k∑
α=0

‖Dαfe̊‖2
L2 (̊e).

Definition 1.2.2. Let Γ be a metric graph. The space L2(Γ) consists of
functions f on Γ such that fe ∈ L2(e) for every edge e of Γ and such that

‖f‖2
L2(Γ) :=

∑
e∈E

‖fe‖2
L2(e) <∞. (2)

The Sobolev space Hk(Γ) consists of functions f on Γ such that fe̊ ∈ Hk (̊e)
for every edge e of Γ and such that

‖f‖2
Hk(Γ) :=

∑
e∈E

‖fe̊‖2
Hk (̊e) <∞. (3)

Note 1.2.3. Due to the Sobolev inequalities (see [12],Theorem 5, page 269),
for a function fe ∈ H1((0, Le)), there exists a function f ∗e ∈ C0,1/2([0, Le])
that is equal to fe (except on a null set) and such that

‖f ∗e ‖C0,1/2([0,Le]) ≤ C‖fe‖H1((0,Le))

for some constant C. So henceforth, we will identify a function fe ∈ H1(e)
with its continuous version f ∗e .

1.3. Regularity

We study the Laplace operator in various domains. We define

C∞0 (Γ) :=
⊕
e∈E

C∞0 (̊e).

We use the notation Dom(∆) to specify a possible domain. We assume that

C∞0 (Γ) ≤ Dom(∆) ≤ H2(Γ).
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For every Dom(∆), we denote by (∆;Dom(∆)) the Laplace operator with
domain Dom(∆) that is given by minus the second distributional derivative
operator, i.e.

∆(f) = −d
2f

dx
∀f ∈ Dom(∆),

and by (∆;Dom(∆))∗ := (∆∗;Dom(∆∗)), we denote the adjoint operator of
(∆;Dom(∆)).

The purpose of this section is to prove that, if C∞0 (Γ) ≤ Dom(∆), then
the domain of (∆;Dom(∆))∗ is contained in H2(Γ). Recall that, for every
e ∈ E , fe̊ is the restriction of f to the open ser e̊, and that each edge has a
coordinate xe ∈ [0, Le] (if its length is finite) or xe ∈ [0,∞).

So, to our purpose, we have to prove two things about f ∈ Dom(∆∗):

• that fe̊ ∈ H2((0, Le)) if e has finite length and
• that fe̊ ∈ H2((0,∞)) if e has infinite length.

To simplify the notation, we will avoid the subindex in fe and just write
f . Let us begin with the case when e has infinite length. Consider the
operator (∆;C∞0 ((0,∞)). Consider the following property of the elements of
the domain of (∆;C∞0 ((0,∞)))∗:

f ∈ Dom(∆∗) ⇐⇒ ∃g ∈ L2((0,∞)) : 〈f,∆h〉 = 〈g, h〉 ∀h ∈ Dom(∆)

⇐⇒
∫

(0,∞)

f ·∆h =

∫
(0,∞)

g · h ∀h ∈ C∞0 ((0,∞)) ⇐⇒ Tg = ∆Tf , (4)

where Tg and ∆Tf are the distributions which satisfy

Tg(h) =

∫
(0,∞)

g(x)h(x)dx ∀h ∈ C∞0 ((0,∞))

and

∆Tf (h) =

∫
(0,∞)

f(x)∆h(x)dx ∀h ∈ C∞0 ((0,∞)),

respectively.

Proposition 1.3.1. ( Translations are continuous in LP ). Let t ∈ R and
define τt(f) := ft, where ft(x) := f(x + t). If 1 ≤ p < ∞, then for every
f ∈ Lp(R)

‖ft − f‖p → 0 as t→ 0.

Proof. As the set of finite linear combinations of characteristic functions
of intervals is dense in LP (R), take φ a finite linear combination of character-
istic functions of intervals such that ‖f − φ‖p is enough small. Without loss
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of generality, consider the characteristic function of an open interval (a, b),
then

‖τt(χ(a,b))− χ(a,b)‖p ≤ (2|t|)1/p −→
t→0

0.

Thus we have

‖τt(φ)− φ‖p −→
t→0

0.

But then,

‖ft − f‖p ≤ ‖ft − φt‖p + ‖φt − φ‖p + ‖φ− f‖p
= 2‖f − φ‖p + ‖φt − φ‖p −→

t→0
0.

�

Consider an even function η ∈ C∞0 (R) such that supp(η) ⊂ B(0, 1), η ≥ 0
and η is not identically zero. For example, the function

η(x) =

{
Ce1/(|x|2−1) if |x| < 1

0 if |x| ≥ 1

whith C > 0 a constant such that
∫
η(x)dx = 1. We obtain then a sequence

of mollifiers by letting ηε(x) = 1
ε
η(x

ε
), i.e. a sequence (ηε)ε>0 of functions

satisfying

(i) ηε ∈ C∞0 (R),

(ii) supp(ηε) ⊂ B(0, ε),
(iii)

∫
ηε = 1,

(iv) ηε ≥ 0 in R and
(v) ηε(x) = ηε(−x) for every x ∈ R.

Lemma 1.3.2. Let us consider a function f ∈ L2
(
R
)

and a sequence of
mollifiers (ηε)ε>0. Define

fε(x) := f ∗ ηε(x) :=

∫ ∞
−∞

f(y)ηε(x− y)dy ∀x ∈ R.

Then, the following statements hold:

(1) fε ∈ C∞(R)
(2) dn

dxn
fε = f ∗ dn

dxn
ηε for every n ∈ N,

(3) fε ∈ L2(R) for every ε > 0 and fε −→
ε→0

f in L2
(
R
)
.

Proof. By the definition of fε, for every x ∈ R we have that

fε(x+ h)− fε(x)

h
=

∫ ∞
−∞

(ηε(x− y + h)− ηε(x− y)

h

)
f(y)dy.
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Then, by the Dominated Convergence Theorem follows

lim
h→0

fε(x+ h)− fε(x)

h
=

∫ ∞
−∞

dηε
dx

(x− y)f(y)dy =
(
f ∗ dηε

dx

)
(x).

Hence, dfε
dx

(x) exists and

dfε
dx

(x) =
(
f ∗ dηε

dx

)
(x).

A similar argument shows that dn

dxn
fε exists and

dn

dxn
fε(x) =

∫ ∞
−∞

dn

dxn
ηε(x− y)f(y)dy =

(
f ∗ dn

dxn
ηε

)
(x) ∀x ∈ R,

for each n = 0, 1, 2, ... Hence, points (1) and (2) are satisfied.
To demonstrate (3), we make reference to Theorem 4.22 in [10] to verify

fε ∈ L2(R) and

f ∗ ηε −→
ε→0

f

in L2(R).
�

Lemma 1.3.3. Let f, g ∈ L2((0,∞)). Suposse ∆Tf = Tg. Then, for any
ε > 0, there is a function φ ∈ C∞([0,∞)) such that

‖f − φ‖L2((0,∞)) < ε and ‖g −∆φ‖L2((0,∞)) < ε.

Proof. For every δ > 0, define the functions τδ(f), τδ(g) : (−δ,∞)→ R
as follows:

τδ(f)(x) = f(x+ δ), τδ(g)(x) = g(x+ δ). (5)

It is easy to see that τδ(f), τδ(g) ∈ L2((−δ,∞)). By Propositon (1.3.1) there
exists δ0 > 0 such that

‖τδ0(f)− f‖L2((0,∞)) < ε/2, ‖τδ0(g)− g‖L2((0,∞)) < ε/2. (6)

We extend the functions τδ0(f), τδ0(g) to R, without changing notation, defin-
ing them as 0 in (−∞,−δ]. Using Lemma 1.3.2 we obtain that there is
ε0 ∈ (0, δ0) which satisfies

‖τδ0(f) ∗ ηε0 − τδ0(f)‖L2(R) < ε/2, ‖τδ0(g) ∗ ηε0 − τδ0(g)‖L2(R) < ε/2. (7)

Now we can define the function which satisfies the claims of this Lemma as
follows:

φ := τδ0(f) ∗ ηε0 .
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It follows from Lemma 1.3.2 that φ ∈ C∞([0,∞)). Moreover, by Equations
(6) y (7) we have

‖f − φ‖L2((0,∞)) ≤ ‖f − τδ0(f)‖L2((0,∞)) + ‖τδ0(f)− φ‖L2((0,∞)) < ε.

Now we will prove that

∆(τδ0(f) ∗ ηε0) = ∆τδ0(f) ∗ ηε0 = τδ0(g) ∗ ηε0 ,

on [0,∞). From Lemma 1.3.2,

∆(τδ0(f) ∗ ηε0) = τδ0(f) ∗∆ηε0 .

Let Tτδ0 (f) the distribution on (−δ0,∞) associated to τδ0(f). In the same way

define Tτδ0 (g). We will show that ∆Tτδ0 (f) = Tτδ0 (g). If u ∈ C∞0
(
(−δ0,∞)

)
,

then

∆Tτδ0 (f)(u) =

∫
(−δ0,∞)

τδ0(f)∆u =

∫
(0,∞)

fτ−δ0(∆u)

=∆Tf (τ−δ0(u)) = Tg(τ−δ0(u)) = Tτδ0 (g)(u),

since τ−δ0(u) ∈ C∞0
(
(0,∞)

)
. The next step is to prove that τδ0(f) ∗∆ηε0 =

τδ0(g) ∗ ηε0 as functions on [0,∞). Take x ∈ [0,∞),

τδ0(f) ∗∆ηε0(x) =

∫
R
τδ0(f)(y)∆ηε0(x− y)dy =

∫
R
τδ0(f)(y)∆ηε0(y − x)dy

=

∫
R
τδ0(f)(y)∆τ−x(ηε0(y))dy = ∆Tτδ0 (f)(τ−x(ηε0))

=Tτδ0 (g)(τ−x(ηε0)) = τδ0(g) ∗ ηε0(x),

where we used that τ−x(ηε0) ∈ C∞0 (−δ0,∞), since ε0 < δ0 and x ≥ 0.
Finally, we obtain

‖g −∆φ‖L2((0,∞)) ≤ ‖g − τδ0(g)‖L2((0,∞)) + ‖τδ0(g)−∆φ‖L2((0,∞))

= ‖g − τδ0(g)‖L2((0,∞)) + ‖τδ0(g)− τδ0(g) ∗ ηε0‖L2((0,∞)) < ε.

�

Lemma 1.3.4. Let φ ∈ C∞([0,∞)). There exists C̃ > 0 such that

‖φ‖H2((0,∞)) ≤ C̃(‖φ‖L2((0,∞)) + ‖∆φ‖L2((0,∞))).

Proof. If x ∈ [0,∞), note that

φ(x+ y)− φ(x) =

∫ x+y

x

φ′ ∀y ∈ (−x,∞),
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thereby, using Cauchy-Schwarz inequality,

|φ(x)| ≤ |φ(x+ y)|+
(∫ x+y

x

|φ′|2
)1/2

|y|1/2 ∀y ∈ (−x,∞).

Let ε > 0. By integrating we obtain

ε|φ(x)| ≤
∫ ε

0

|φ(x+ y)|dy +
2

3
‖φ′‖L2((0,∞))ε

3/2

≤‖φ‖L2((0,∞))ε
1/2 +

2

3
‖φ′‖L2((0,∞))ε

3/2.

Thus,

|φ(x)| ≤ ‖φ‖L2((0,∞))ε
−1/2 +

2

3
‖φ′‖L2((0,∞))ε

1/2.

Similarly, when ε = 1, we have

|φ′(x)| ≤ ‖φ′‖L2((0,∞)) +
2

3
‖φ′′‖L2((0,∞)).

Recall that

ab ≤ 1

2
(a2 + b2) ≤ a2 + b2 ∀a, b > 0

and

ab =
(1

ε
a
)

(εb) ≤
(a
ε

)2

+ (εb)2 ∀a, b > 0.

Then, we have for any x ∈ [0,∞) and ε > 0,

|φ(x)‖φ′(x)| ≤
(
‖φ‖L2((0,∞))ε

−1/2 +
2

3
‖φ′‖L2((0,∞))ε

1/2
)(
‖φ′‖L2((0,∞)) +

2

3
‖φ′′‖L2((0,∞))

)
=ε−1/2‖φ‖L2((0,∞))‖φ′‖L2((0,∞)) +

2

3
ε−1/2‖φ‖L2((0,∞))‖φ′′‖L2((0,∞))

+
2

3
ε1/2‖φ′‖2

L2((0,∞)) +
4

9
ε1/2‖φ′‖L2((0,∞))‖φ′′‖L2((0,∞))

≤
(
ε−1‖φ‖L2((0,∞))

)2
+
(
ε1/2‖φ′‖L2((0,∞))

)2
+

2

3
ε−1/2

(
‖φ‖2

L2((0,∞)) + ‖φ′′‖2
L2((0,∞))

)
+

2

3
ε1/2‖φ′‖2

L2((0,∞)) +
4

9
ε1/2
(
‖φ′‖2

L2((0,∞)) + ‖φ′′‖2
L2((0,∞))

)
=‖φ‖2

L2((0,∞))

(
ε−2 +

2

3
ε−1/2

)
+ ‖φ′‖2

L2((0,∞))

(
ε+

10

9
ε1/2
)

+ ‖φ′′‖2
L2((0,∞))

(2

3
ε−1/2 +

4

9
ε1/2
)

=α‖φ‖2
L2((0,∞)) + β‖φ′‖2

L2((0,∞)) + γ‖φ′′‖2
L2((0,∞)),
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that is to say,

|φ(x)‖φ′(x)| ≤ α‖φ‖2
L2((0,∞)) + β‖φ′‖2

L2((0,∞)) + γ‖φ′′‖2
L2((0,∞)) (8)

where α := ε−2 + 2
3
ε−1/2, β := ε + 10

9
ε1/2 and γ = 2

3
ε−1/2 + 4

9
ε1/2. Consider

ε > 0 such that 2β < 1.

Take N ∈ N and compute the next inequality using (8):∫ N

0

|φ′|2 =φ′φ
∣∣∣N
0
−
∫ N

0

φ′′φ

≤|φ′(N)||φ(N)|+ |φ′(0)||φ(0)|+ ‖φ′′‖L2((0,∞))‖φ‖L2((0,∞))

≤|φ′(N)||φ(N)|+ |φ′(0)||φ(0)|+ 1

2

(
‖φ′′‖2

L2((0,∞)) + ‖φ‖2
L2((0,∞))

)
≤2
(
α‖φ‖2

L2((0,∞)) + β‖φ′‖2
L2((0,∞)) + γ‖φ′′‖2

L2((0,∞))

)
+ ‖φ′′‖2

L2((0,∞)) + ‖φ‖2
L2((0,∞)).

Therefore,

‖φ′‖2
L2((0,∞)) = lim

N→∞

∫ N

0

|φ′|2

≤2
(
α‖φ‖2

L2((0,∞)) + β‖φ′‖2
L2((0,∞)) + γ‖φ′′‖2

L2((0,∞))

)
+ ‖φ′′‖2

L2((0,∞)) + ‖φ‖2
L2((0,∞)),

which implies

‖φ′‖2
L2((0,∞)) ≤

1

1− 2β

(
(2α + 1)‖φ‖2

L2((0,∞)) + (2γ + 1)‖φ′′‖2
L2((0,∞))

)
≤C̄
(
‖φ‖2

L2((0,∞)) + ‖φ′′‖2
L2((0,∞))

)
,

where C̄ = max{2α+1
1−2β

, 2γ+1
1−2β
}. Finally, from the fact that

a2 + b2 ≤ (a+ b)2 ∀a, b ≥ 0,

follows
‖φ′‖L2((0,∞)) ≤ C̄1/2

(
‖φ‖L2((0,∞)) + ‖φ′′‖L2((0,∞))

)
.

By letting C̃ := 1 + C̄1/2 we obtain the desired result. �
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Theorem 1.3.5. Suppose that f ∈ L2
(
(0,∞)

)
is such that ∆Tf = Tg, for

some g ∈ L2
(
(0,∞)

)
. Then f ∈ H2

(
(0,∞)

)
.

Proof. By Lemma 1.3.3, there is a sequence of functions (φn)n∈N on
C∞
(
(0,∞)

)
satisfying

lim
n→∞

‖φn − f‖L2((0,∞)) + ‖∆φn − g‖L2((0,∞)) = 0,

which implies that

lim
m,n→∞

‖φn − φm‖L2((0,∞)) + ‖∆φn −∆φm‖L2((0,∞)) = 0.

From Lemma 1.3.4 we have

‖φn − φm‖H2((0,∞)) ≤ C
[
‖φn − φm‖L2((0,∞)) + ‖∆φn −∆φm‖L2((0,∞))

]
,

which implies that

lim
m,n→∞

‖φn − φm‖H2((0,∞)) = 0.

Thus, (φn)n∈N is a Cauchy sequence in H2
(
(0,∞)

)
. Since H2((0,∞)) is

complete, there exists h ∈ H2
(
(0,∞)

)
such that

h = lim
n→∞

φn.

But f = limn→∞ φn in L2, then we have f = h (maybe except on a null set).
We conclude f ∈ H2

(
(0,∞)

)
.

�

Corollary 1.3.6. The domain of
(
∆;C∞0 ((0,∞))

)∗
is a subset of H2

(
(0,∞)

)
.

Proof. It follows from Equation (4) and Theorem 1.3.5.
�

Corollary 1.3.7. If C∞0 ((0,∞)) ≤ Dom(∆), then the domain of (∆,Dom(∆))∗

is a subset of H2((0,∞)).

Proof. Recall that if A and B are two operators such that Dom(A) ⊂
Dom(B), then Dom(B∗) ⊂ Dom(A∗). Then the result follows from the con-
tainment

C∞0 ((0,∞)) ⊂ Dom(∆),

and the Corollary 1.3.6. �

To prove the second case (i.e. when e has finite length), let us obtain
analogous results for functions in L2((0, b)), where b < ∞. Similarly, we
have the property of the elements of the domain of (∆;C∞0 ((0, b)))∗:

f ∈ Dom(∆∗) ⇐⇒ ∃g ∈ L2((0, b)) : 〈f,∆h〉 = 〈g, h〉 ∀h ∈ Dom(∆)
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⇐⇒
∫

(0,b)

f ·∆h =

∫
(0,b)

g · h ∀h ∈ C∞0 ((0, b)) ⇐⇒ Tg = ∆Tf , (9)

where Tg and ∆Tf are the distributions which satisfy

Tg(h) =

∫
(0,b)

g(x)h(x)dx ∀h ∈ C∞0 ((0, b))

and

∆Tf (h) =

∫
(0,b)

f(x)∆h(x)dx ∀h ∈ C∞0 ((0, b)),

respectively.

Proposition 1.3.8. Let ε ∈ (−1/2,∞) and define Eε(f)(x) := f
(

x
1+2ε

)
.

Then for every f ∈ Lp(R)

‖Eε(f)− f‖p → 0 as ε→ 0.

Proof. As the set of finite linear combinations of characteristic functions
of intervals is dense in Lp, take φ a finite linear combination of characteristics
functions of intervals, such that ‖f − φ‖p is enough small. Without loss of
generality, we only consider characteristic functions of open intervals. For
each interval (a, b), we have two different cases for the homothety Eε(χ(a,b)))
depending on (1 + 2ε). First consider that 0 < (1 + 2ε) < 1, then a(1 + 2ε) <
a ≤ b(1 + 2ε) < b. This implies that

‖Eε(χ(a,b))− χ(a,b)‖p ≤ (|a2ε|+ |b2ε|)1/p −→
ε→0

0, (10)

since the function Eε(χ(a,b))−χ(a,b) is different from zero only in the intervals
(a(1 + 2ε), a] and [b(1 + 2ε), b).

On the other hand, if (1 + 2ε) ≥ 1, then a ≤ a(1 + 2ε) ≤ b ≤ b(1 + 2ε).
Similarly, we obtain (10).

Thus, as φ is a finite linear combination of characteristics functions of
intervals, we have

‖Eε(φ)− φ‖p −→
ε→0

0.

But then,

‖Eε(f)− f‖p ≤ ‖Eε(f)− Eε(φ)‖p + ‖Eε(φ)− φ‖p + ‖φ− f‖p
= (1 + (1 + 2ε)1/p)‖f − φ‖p + ‖Eε(φ)− φ‖p −→

ε→0
0.

�

The proof of the following Lemma is similar to that in Lemma 1.3.3.



20 1. THE GRAPH LAPLACIAN

Lemma 1.3.9. Let f, g ∈ L2((0, b)) such that ∆Tf = Tg. Then, for all
ε > 0, there is a function φ ∈ C∞([0, b]) satisfying ‖f − φ‖L2((0,b)) < ε and
‖g −∆φ‖L2((0,b)) < ε.

Proof. For any δ, ε > 0, we define functions τεEδ(f), τεEδ(g) : [−ε, b(1+
2δ)− ε]→ R as follows:

τεEδ(f)(x) = f
( x+ ε

1 + 2δ

)
, τεEδ(g)(x) = g

( x+ ε

1 + 2δ

)
. (11)

It is easy to see that τεEδ(f), τεEδ(g) ∈ L2([−ε, b(1+2δ)−ε]). We extend these
functions to R, whitout changing notation, defining them as 0 in (−∞,−ε)∪
(b(1 + 2δ)− ε,∞). By propositions (1.3.1) and (1.3.8), there are ε1 > 0 and
δ0 > 0 such that ε1 < 2bδ0 and

‖τε1Eδ0(f)− f‖L2(R) < ε/2, ‖τε1Eδ0(g)− g‖L2(R) < ε/2. (12)

It follows from Lemma 1.3.2 that there is ε0 ∈ (0, ε1) such that ε0 + ε1 <
2bδ0 and

‖τε1Eδ0(f)∗ηε0−τε1Eδ0(f)‖L2(R) < ε/2, ‖τε1Eδ0(g)∗ηε0−τε1Eδ0(g)‖L2(R) < ε/2.
(13)

Thus, if we define

φ := τε1Eδ0(f) ∗ ηε0 ,
by Equations (12) and (13) we have

‖f − φ‖L2((0,b)) ≤ ‖f − τε1Eδ0(f)‖L2((0,b)) + ‖τε1Eδ0(f)− φ‖L2((0,b)) < ε.

Now let us see that

∆(τε1Eδ0(f) ∗ ηε0) = ∆τε1Eδ0(f) ∗ ηε0 = τε1Eδ0(g) ∗ ηε0 ,
on [ε0 − ε1, b(1 + 2δ)− ε0 − ε1]. From Lemma 1.3.2,

∆(τε1Eδ0(f) ∗ ηε0) = τε1Eδ0(f) ∗∆ηε0 .

Let TEδ0 (f) the distribution on (0, b(1 + 2δ0)) corresponding to Eδ0(f). In
the same way we definine TEδ0 (g). We will show that ∆TEδ0 (f) = TEδ0 (g). Let

u ∈ C∞0
[
(0, b(1 + 2δ0))

]
, then

∆TEδ0 (f)(u) =

∫
(0,b(1+2δ0))

Eδ0(f)∆u = (1 + 2δ)

∫
(0,b)

f(x)∆u(x(1 + 2δ))dx

= (1 + 2δ)∆Tf [u(x(1 + 2δ))] = (1 + 2δ)Tg[u(x(1 + 2δ))]

=

∫
(0,b(1+2δ))

g
( x

1 + 2δ

)
u(x)dx = TEδ0 (g)(u).
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since u(x(1 + 2δ)) ∈ C∞0
[
(0, b)

]
. Our next goal is to prove τε1Eδ0(f) ∗∆ηε0 =

τε1Eδ0(g) ∗ ηε0 as functions on [ε0 − ε1, b(1 + 2δ) − ε0 − ε1]. Take x ∈ [ε0 −
ε1, b(1 + 2δ)− ε0 − ε1], then

τε1Eδ0(f) ∗∆ηε0(x) =

∫
R
τε1Eδ0(f)(y)∆ηε0(x− y)dy =

∫
R
τε1Eδ0(f)(y)∆ηε0(y − x)dy

=

∫
R
Eδ0(f)(y)∆τ−ε1−xηε0(y)dy = TEδ0 (g)(τ−ε1−x(ηε0))

=Tτε1Eδ0 (g)(τ−x(ηε0)) = τε1Eδ0(g) ∗ ηε0(x),

where we used that τ−ε1−x(ηε0) ∈ C∞0 ((0, b(1 + 2δ0))).
Due to [0, b] ⊂ [ε0 − ε1, b(1 + 2δ0)− ε0 − ε1], by Equations (12) y (13) we

obtain

‖g −∆φ‖L2((0,b)) ≤‖g − τε1Eδ0(g)‖L2((0,b)) + ‖τε1Eδ0(g)−∆φ‖L2((0,b))

=‖g − τε1Eδ0(g)‖L2((0,b)) + ‖τε1Eδ0(g)− τε1Eδ0(g) ∗ ηε0‖L2((0,b)) < ε.

�

Lemma 1.3.10. Let φ ∈ C∞([0, b]). Then there is C̃ > 0 such that

‖φ‖H2((0,b)) ≤ C̃(‖φ‖L2((0,b)) + ‖∆φ‖L2((0,b))).

Proof. Let x ∈ [0, b]. Notice that

φ(x+ y)− φ(x) =

∫ x+y

x

φ′ ∀y ∈ (−x, b− x).

Thus, using Cauchy-Schwarz inequality,

|φ(x)| ≤ |φ(x+ y)|+
(∫ x+y

x

|φ′|2
)1/2

|y|1/2 ∀y ∈ (−x, b− x).

Let |ε| < b/2. By integrating we obtain,

|ε| · |φ(x)| ≤
∫ ε

0

|φ(x+ y)|dy +
2

3
‖φ′‖L2((0,b))|ε|3/2

≤
∫ x+ε

x

|φ(y)|dy +
2

3
‖φ′‖L2((0,b))|ε|3/2

≤‖φ‖L2((0,b))|ε|1/2 +
2

3
‖φ′‖L2((0,b))|ε|3/2.

where we choose ε ∈ (0, b/2) if x ≤ b/2 and ε ∈ (−b/2, 0) if x > b/2. Then
we have,

|φ(x)| ≤ ‖φ‖L2((0,b))|ε|−1/2 +
2

3
‖φ′‖L2((0,b))|ε|1/2.
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Let us recall that

ab ≤ 1

2
(a2 + b2) ≤ a2 + b2 ∀a, b > 0

and

ab =
( 1

|ε|
a
)

(|ε|b) ≤
( a
|ε|

)2

+ (|ε|b)2 ∀a, b > 0.

Using these last inequalities and considering real numbers κ with |κ| =
b/4, we obtain

|φ(x)‖φ′(x)| ≤(‖φ‖L2((0,b))|ε|−1/2 +
2

3
‖φ′‖L2((0,b))|ε|1/2)(‖φ′‖L2((0,b))|κ|−1/2 +

2

3
‖φ′′‖L2((0,b))|κ|1/2)

=|ε|−1/2|κ|−1/2‖φ‖L2((0,b))‖φ′‖L2((0,b)) +
2

3
|ε|−1/2|κ|1/2‖φ‖L2((0,b))‖φ′′‖L2((0,b))

+
2

3
|ε|1/2|κ|−1/2‖φ′‖2

L2((0,b)) +
4

9
|ε|1/2|κ|1/2‖φ′‖L2((0,b))‖φ′′‖L2((0,b))

≤(|ε|−1|κ|−1/2‖φ‖L2((0,b)))
2 + (|ε|1/2‖φ′‖L2((0,b)))

2 +
2

3
(|ε|−1‖φ‖2

L2((0,b)) + |κ|‖φ′′‖2
L2((0,b)))

+
2

3
|ε|1/2|κ|−1/2‖φ′‖2

L2((0,b)) +
4

9
(|ε|‖φ′‖2

L2((0,b)) + |κ|‖φ′′‖2
L2((0,b)))

=
(
|ε|−2|κ|−1 +

2

3
|ε|−1

)
‖φ‖2

L2((0,b)) +
(13

9
|ε|+ 2

3
|ε|1/2|κ|−1/2

)
‖φ′‖2

L2((0,b))

+ ‖φ′′‖2
L2((0,b))

(10

9
|κ|
)

=α‖φ‖2
L2((0,b)) + β‖φ′‖2

L2((0,b)) + γ‖φ′′‖2
L2((0,b)),

where α := |ε|−2|κ|−1 + 2
3
|ε|−1, β := 13

9
|ε| + 2

3
|ε|1/2|κ|−1/2 and γ = 10

9
|κ|.

Choose ε > 0 such that 2β < 1.

Now we calculate,∫ b

0

|φ′|2 =φ′φ
∣∣∣b
0
−
∫ b

0

φ′′φ

≤|φ′(b)||φ(b)|+ |φ′(0)||φ(0)|+ ‖φ′′‖L2((0,b))‖φ‖L2((0,b))

≤|φ′(b)||φ(b)|+ |φ′(0)||φ(0)|+ 1

2

(
‖φ′′‖2

L2((0,b)) + ‖φ‖2
L2((0,b))

)
≤2
(
α‖φ‖2

L2((0,b)) + β‖φ′‖2
L2((0,b)) + γ‖φ′′‖2

L2((0,b))

)
+ ‖φ′′‖2

L2((0,b)) + ‖φ‖2
L2((0,b)).
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Thereby,

‖φ′‖2
L2((0,b)) =

∫ b

0

|φ′|2 ≤ 2
(
α‖φ‖2

L2((0,b)) + β‖φ′‖2
L2((0,b)) + γ‖φ′′‖2

L2((0,b))

)
+ ‖φ′′‖2

L2((0,b)) + ‖φ‖2
L2((0,b)).

This last inequality implies

‖φ′‖2
L2((0,b)) ≤

1

1− 2β

(
(2α + 1)‖φ‖2

L2((0,b)) + (2γ + 1)‖φ′′‖2
L2((0,b))

)
≤C̄
(
‖φ‖2

L2((0,b)) + ‖φ′′‖2
L2((0,b))

)
,

where C̄ = max{2α+1
1−2β

, 2γ+1
1−2β
}. Finally, using the fact that

a2 + b2 ≤ (a+ b)2 ∀a, b ≥ 0,

we have
‖φ′‖L2((0,b)) ≤ C̄1/2

(
‖φ‖L2((0,b)) + ‖φ′′‖L2((0,b))

)
.

Letting C̃ := 1 + C̄1/2 we obtain the desired result. �

Theorem 1.3.11. Suppose that f ∈ L2
(
(0, b)

)
is such that ∆Tf = Tg for

some g ∈ L2
(
(0, b)

)
. Then f ∈ H2

(
(0, b)

)
.

Proof. By Lemma 1.3.9 there exists a sequence of functions (φn)n∈N in
C∞
(
(0, b)

)
such that

lim
n→∞

‖φn − f‖L2((0,b)) + ‖∆φn − g‖L2((0,b)) = 0,

implying that

lim
m,n→∞

‖φn − φm‖L2((0,b)) + ‖∆φn −∆φm‖L2((0,b)) = 0.

According to Lemma 1.3.10, there is C > 0 such that

‖φn − φm‖
H2
(

(0,b)
) ≤ C

[
‖φn − φm‖L2((0,b)) + ‖∆φn −∆φm‖L2((0,b))

]
,

thus
lim

m,n→∞
‖φn − φm‖H2((0,b)) = 0.

Then (φn)n∈N is a Cauchy sequence in H2
(
(0, b)

)
. Since H2((0, b)) is com-

plete, there exists h ∈ H2
(
(0, b)

)
such that

h = lim
n→∞

φn.

But f = limn→∞ φn in L2, then f = h (maybe except on a null set). Hence
f ∈ H2

(
(0, b)

)
.

�
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Corollary 1.3.12. The domain of
(
∆;C∞0 ((0, b)

)∗
is a subset of H2

(
(0, b)

)
.

Proof. It follows from Equation (9) and Theorem 1.3.11. �

Corollary 1.3.13. If C∞0 ((0, b)) ≤ Dom(∆), then domain of (∆,Dom(∆))∗

is a subset of H2((0, b)).

Proof. The result follows from the containment

C∞0 ((0, b)) ⊂ Dom(∆),

and the Corollary 1.3.12.
�

1.4. Quantum Graphs and the Laplacian on Metric Graphs

Definition 1.4.1. A quantum graph is a metric graph Γ with a self-adjoint
differential operator H (called Hamiltonian) in a space of functions defined
on Γ.

In this work, we will consider the Hamiltonian to be the Laplacian op-
erator ∆, i.e. the negative second order distributional derivate of functions
which take values at each edge of the graph. But for the self-adjointness of
∆, we will need to impose some vertex conditions to these functions.

Notice that for the Laplacian

f(x) 7→ −d
2f

dx2

the direction of the coordinate is irrelevant since ∆f(x) = ∆f(−x) for all
x ∈ R, so the direction on which the derivate is taken in each edge is not
relevant.

As the operator involves a second distributional derivate, we will assume
that the functions of the domain of ∆ belong to the Sobolev space H2(Γ).
We will give some local vertex conditions for the self-adjointness of the
Laplacian, so henceforth we only consider parts of the graph which are star
graphs (see Figure 1).

Consider f ∈ H2(Γ) and any vertex v of Γ. As we suppose that the
degree of each vertex is finite, we can enumerate all the neighbours of v and
all the edges between v and its neighbours, i.e., there exist a subset of vertices
{u1, u2, . . . , udv} ⊂ V and some edges {e1, e2, . . . , edv} ⊂ E such that v ∈ ei
and ui ∈ ei for every i = 1, 2, . . . , dv. Also, we establish that fi refers to the
restriction fei for i = 1, 2, . . . , dv. Then, we can denote by F (v) the vector
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Figure 1. Star graph.

column

F (v) := (f1(v), . . . , fdv(v))t =


f1(v)
. . .
. . .

fdv(v)

 . (14)

and, similarly,

F ′(v) := (f ′1(v), . . . , f ′dv(v))t =


f ′1(v)
. . .
. . .

f ′dv(v)

 . (15)

Note 1.4.2. As f ∈ H1(Γ), by the Trace Theorem for Sobolev spaces (see
[12], p. 258), F and F ′ are well defined on v. Thus, the boundary conditions
will be given just considering the values which take the function f and its
distributional derivate df/dx on the vertices v.

Lemma 1.4.3. Let A and B matrices of d× d satisfying the following con-
ditions:

the matrix (A|B) ∈Matd×2d has maximal rank, (16)

the matrix AB∗ is self-adjoint. (17)

Then, for any real k 6= 0, the matrix A + ikB is invertible and σ(k) =
−(A+ ikB)−1(A− ikB) is a unitary matrix.
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Proof. Condition (17) implies that AB∗ = (AB∗)∗ = BA∗, then

(A+ ikB)(A∗ − ikB∗) = AA∗ − ikAB∗ + ikBA∗ + k2BB∗ (18)

= AA∗ + k2BB∗ (19)

= (A− ikB)(A∗ + ikB∗)

= (A|kB)

(
A∗

kB∗

)
,

where (A|kB) denotes the matrix dv×2dv composed by A and kB. Now note
that (A+ikB)∗ = (A∗−ikB∗) and, due to the fact that rank(TT ∗) = rank(T )
for any finite matrix T (see [13], section 6.4, exercise 18), we can demonstrate
that A+ ikB has maximal rank:

rank(A+ ikB) = rank((A+ ikB)(A∗ − ikB∗))

= rank
(

(A|kB)

(
A∗

kB∗

))
= rank((A|kB)(A|kB)∗)

= rank((A|kB)) = dv.

Therefore, A+ ikB is invertible and the matrix σ(k) is well defined.
Following the same reasoning we get that the matrix (A− ikB) is invert-

ible, then, also its adjoint (A∗ + ikB∗) is invertible. Using Equation (18) we
have

σ(k) = −(A+ ikB)−1(A− ikB)

= −(A+ ikB)−1(A− ikB)(A∗ + ikB∗)(A∗ + ikB∗)−1

= −(A+ ikB)−1(A+ ikB)(A∗ − ikB∗)(A∗ + ikB∗)−1

= −(A∗ − ikB∗)(A∗ + ikB∗)−1.

Thus, we can verify that σ(k) is unitary :

σ(k)σ(k)∗ = −(A∗ − ikB∗)(A∗ + ikB∗)−1[−(A+ ikB)−1(A− ikB)]∗

= (A∗ − ikB∗)(A∗ + ikB∗)−1(A− ikB)∗[(A+ ikB)−1]∗

= (A∗ − ikB∗)(A∗ + ikB∗)−1(A∗ + ikB∗)[(A+ ikB)∗]−1

= (A∗ − ikB∗)(A∗ − ikB∗)−1 = I,
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and similarly,

σ(k)∗σ(k) = [−(A+ ikB)−1(A− ikB)]∗[−(A∗ − ikB∗)(A∗ + ikB∗)−1]

= (A− ikB)∗[(A+ ikB)−1]∗(A∗ − ikB∗)(A∗ + ikB∗)−1

= (A∗ + ikB∗)[(A+ ikB)∗]−1(A∗ − ikB∗)(A∗ + ikB∗)−1

= (A∗ + ikB∗)(A∗ − ikB∗)−1(A∗ − ikB∗)(A∗ + ikB∗)−1

= (A∗ + ikB∗)(A∗ + ikB∗)−1 = I.

�

Note 1.4.4. We do not consider the point at infinity as a vertex, so edges
with infinite length do not have more than one vertex.

In the following lemmas, we will give some equivalent descriptions of the
domain of ∆ in terms of vertex conditions, which are necessary and sufficient
to guarantee the self-adjointness of the Laplacian operator.

Besides, as all the conditions are local, we will consider only one vertex
v and a vicinity of it where the graph is like a star graph. Thus, in the
demonstrations, we avoid de notation Av, Bv, dv, F (v), F ′(v), ... and instead
we use A,B, d, F, F ′, ..., respectively.

Lemma 1.4.5. Let Γ be a metric graph with finite number of edges. For
every vertex v ∈ V, take Av and Bv matrices dv × dv such that

(Av|Bv) ∈ Matdv×2dv has maximal rank and

AvB
∗
v is self-adjoint.

Furthermore, define for every vertex v ∈ V

Uv = −(A− ikB)−1(A+ ikB) ∈ Matdv×dv .

Then, Uv is a unitary matrix for every v and

{f ∈ H2(Γ) : AvF (v) +BvF
′(v) = 0 ∀v ∈ V} =

{f ∈ H2(Γ) : i(Uv − I)F (v) + (Uv + I)F ′(v) = 0 ∀v ∈ V},
where I ∈ Matdv×dv is the identity matrix.

Proof. Using Lemma 1.4.3, notice that

−2i(A+ ikB)−1A = −2i(A+ ikB)−1 1

2
((A− ikB) + (A+ ikB))

= i(σ(k)− I),
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where the matrix σ(k) = −(A + ikB)−1(A − ikB) is unitary for every real
k 6= 0 according to Lemma 1.4.3. Similarly,

−2i(A+ ikB)−1B = −2i(A+ ikB)−1 1

2ik
((A+ ikB)− (A− ikB))

= −1

k
(I + σ(k)).

From these equalities follows that

AF +BF ′ = 0

⇐⇒ − 2i(A+ ikB)−1(AF +BF ′) = 0

⇐⇒ i(σ(k)− I)F − 1

k
(I + σ(k))F ′ = 0.

Taking k = −1 we obtain

AF +BF ′ = 0

⇐⇒ i(U − I)F + (U + I)F ′ = 0,

where U = σ(−1) is unitary. �

Lemma 1.4.6. Let Γ be a metric graph with finite number of edges. For ev-
ery vertex v of Γ consider a unitary matrix Uv ∈ Matdv×dv . Let PD,v and PN,v
be the orthogonal projectors onto the eigenspaces of the matrix Uv with eigen-
values −1 and +1, respectively, and PR,v := I − PD,v − PN,v. Furthermore,
we define Λv : PR,v[Cdv ]→ PR,v[Cdv ] by

Λv := −i
(
PR,v(Uv + I)PR,v

)−1

PR,v(Uv − I)PR,v.

Then Λv is invertible and self-adjoint and

{f ∈ H2(Γ) : i(Uv − I)F (v) + (Uv + I)F ′(v) = 0 ∀v ∈ V} =

{f ∈ H2(Γ) : (PD,v − ΛvPR,v)F (v) + (PN,v + PR,v)F
′(v) = 0 ∀v ∈ V}.

Notice that (PD,v − ΛvPR,v)F (v) + (PN,v + PR,v)F
′(v) = 0 if and only if

PD,vF (v) = 0, PN,vF
′(v) = 0

and

PR,vF
′(v) = ΛvPR,vF (v).

Proof. As PD and PN are the orthogonal projectors onto the eigenspaces
of the matrix U with eigenvalue −1 and +1, respectively, then PR = I−PD−
PN is the projection onto the eigenspaces of all the eigenvalues different from
−1 and +1. These three projectors conmute with U and thus with U − I and
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U + I, by the spectral theorem.
We first suppose that

i(U − I)F (v) + (U + I)F ′(v) = 0 (20)

and prove that

(PD,v − ΛvPR,v)F (v) + (PN,v + PR,v)F
′(v) = 0.

Multiplying (20) by PD and commuting, we have

i(U − I)F (v) + (U + I)F ′(v) = 0

=⇒ iPD(U − I)F (v) + PD(U + I)F ′(v) = 0

⇐⇒ i(U − I)PDF (v) + (U + I)PDF ′(v) = 0. (21)

It follows from the definition of PD that (U+I)PD = 0 and (U−I)PD = −2PD,
reducing equation (21) to

−2iPDF (v) = 0.

Hence, PDF (v) = 0.
In the same way, multiplying (20) by PN and commuting,

i(U − I)F (v) + (U + I)F ′(v) = 0

=⇒ iPN(U − I)F (v) + PN(U + I)F ′(v) = 0

⇐⇒ i(U − I)PNF (v) + (U + I)PNF ′(v) = 0. (22)

From the definition of PN we have (U + I)PN = 2PN and (U − I)PN = 0,
reducing the equation (22) to

2PNF
′(v) = 0.

Therefore, PNF
′(v) = 0.

Now let (U+I)R and (U−I)R the restrictions of (U+I) and (U−I) to the
space PRCd, respectively; due to ker(U + I)R = {0} and ker(U − I)R = {0},
there exist (U + I)−1

R and (U − I)−1
R . Newly, multiplying (20) by PR and

commuting,

i(U − I)F (v) + (U + I)F ′(v) = 0

=⇒iPR(U − I)F (v) + PR(U + I)F ′(v) = 0

⇐⇒ i(U − I)PRF (v) + (U + I)PRF ′(v) = 0

⇐⇒ − (U + I)−1
R [i(U − I)RPRF (v) + (U + I)RPRF ′(v)] = 0

⇐⇒ − i(U + I)−1
R (U − I)RPRF (v)− PRF ′(v) = 0.

As Λ = −i(U + I)−1
R (U − I)R, we deduce

ΛPRF (v) = PRF
′(v).
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Further, Λ is invertible, as it is the composition of invertible operators,
and it is self-adjoint since

Λ = Λ∗

⇐⇒ − i(U + I)−1
R (U − I)R = i(U − I)∗R[(U + I)−1

R ]∗

⇐⇒ − (U − I)R(U + I)∗R = (U + I)R(U − I)∗R
⇐⇒ − (U − I)R(U∗ + I)R = (U + I)R(U∗ − I)R
⇐⇒ − (U − U∗)R = (−U + U∗)R.

We now suppose that

(PD,v − ΛvPR,v)F (v) + (PN,v + PR,v)F
′(v) = 0.

and prove that
i(U − I)F (v) + (U + I)F ′(v) = 0.

Since PDF (v) = 0, PNF (v) = 0 and ΛPRF (v) = PRF
′(v), then

iPD(U − I)F (v) + PD(U + I)F ′(v) = 0,

iPN(U − I)F (v) + PN(U + I)F ′(v) = 0 and

iPR(U − I)F (v) + PR(U + I)F ′(v) = 0,

which implies that

i(U − I)F (v) + (U + I)F ′(v) = 0.

�

Lemma 1.4.7. Let Γ be a metric graph with finite number of edges. Suppose
that for each vertex v there are complementary orthogonal projections PD,v,
PN,v and PR,v (i.e. PD,v +PN,v +PR,v = I and their images are orthogonal to
each other), and an invertible self-adjoint map Λv : PR,v[Cdv ]→ PR,v[Cdv ].

For every vertex v ∈ V define the operators

Av := PD,v − ΛPR,v and Bv := PN,v + PR,v,

and, without loss of generality, the matrix representations of these operators
are denoted by Av and Bv,respectively. Then

(Av|Bv) ∈ Matdv×2dv has maximal rank and

AvB
∗
v is self-adjoint.

Further,

{f ∈ H2(Γ) : (PD,v − ΛvPR,v)F (v) + (PN,v + PR,v)F
′(v) = 0 ∀v ∈ V}

= {f ∈ H2(Γ) : AvF (v) +BvF
′(v) = 0 ∀v ∈ V}.
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Proof. Notice that, if PDF = 0, PNF
′ = 0 and PRF

′ = ΛPRF (i.e.
(PD,v − ΛvPR,v)F (v) + (PN,v + PR,v)F

′(v) = 0 ), then

AF +BF ′ =(PD − ΛPR)F + (PN + PR)F ′

=− ΛPRF + PRF
′ = 0.

Conversely, if AF +BF ′ = 0, then

PDF + PNF
′ + (PRF

′ − ΛPRF ) = 0.

Therefore, as PD and PN are orthogonal and PR = I− PD − PN , we obtain

PDF = 0, PNF
′ = 0 and PRF

′ = ΛPRF.

Now let us see that AB∗ is self adjoint. On the one hand,

AB∗ =(PD − ΛPR)(PN + PR)∗

=(PD − ΛPR)(PN + PR)

=− ΛPR,

and on the other hand,

A∗B =(PD − ΛPR)∗(PN + PR)

=(PD − PRΛPR)∗(PN + PR)

=(PD − P ∗RΛ∗P ∗R)(PN + PR)

=(PD − ΛPR)(PN + PR)

=− ΛPR,

where we have use the fact that Λ is self-adjoint. Hence, AB∗ = A∗B. Finally,
to show that (A|B) = (PD −ΛPR|PN + PR) has maximal rank, observe that
for any u ∈ Cd,

(PD − ΛPR)(PDu) + (PN + PR)(0̄) =PDu,

(PD − ΛPR)(0̄) + (PN + PR)(PNu) =PNu and

(PD − ΛPR)(0̄) + (PN + PR)(PRu) =PRu,

where 0̄ denotes de zero vector in Cd. These equalities imply that

dim((A|B)C2d) ≥ dim(PDCd) + dim(PNCd) + dim(PRCd) = d.

We conclude that (A|B) has maximal rank. �
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Theorem 1.4.8. Let Γ be a metric graph with finite number of edges. Con-
sider the operator ∆ = − d2

dx2
(i.e. minus the second distributional derivate)

with domain

Dom(∆) = {f ∈ H2(Γ) : AvF (v) +BvF
′(v) = 0 ∀v ∈ V},

where Av and Bv are matrices dv × dv. Then, ∆ is self-adjoint if, and only
if,

(Av|Bv) ∈Matdv×2dv has maximal rank, (23)

and AvB
∗
v is self-adjoint.[9] (24)

Proof. We recall that, as all the conditions are local, we consider only
one vertex v and a vicinity of it where the graph is like a star graph. There-
fore, we avoid using notations Av, Bv, dv, F (v), F ′(v), ... and instead we use
A,B, d, F, F ′, ..., respectively. We furthermore assume, without loss of gen-
erality, that for each edge e, the coordinate xe is such that o(e) = v, recall
that o(e) is the initial point of the edge e.

We will demonstrate that if ∆ is self-adjoint, then the conditions (23)
and (24) are satisfied. Conversely, by Lemmas 1.4.5 and 1.4.6, we have that
if conditions (23) and (24) hold, then there exist complementary orthogonal
projectors PD, PN and PR, and Λ an invertible self-adjoint operator on PRCd

such that

PDF = 0

PNF
′ = 0 and

ΛPRF = PRF
′.

Moreover, for every vertex v of Γ,

{f ∈ H2(Γ) : AvF (v) +BvF
′(v) = 0} =

{f ∈ H2(Γ) : (PD,v − ΛvPR,v)F (v) + (PN,v + PR,v)F
′(v) = 0}

Under these conditions, we will prove that if

Dom(∆) = {f ∈ H2(Γ) : (PD − ΛPR)F + (PN + PR)F ′ = 0},

then ∆ is self-adjoint.

We begin supposing that ∆ is self-adjoint. Let f ∈ Dom(∆) and g ∈
⊕e∈EC∞(e) such that becomes zero outside of a neigbourhood of the vertex
v. Since ∆ is self-adjoint, we have∑

e∈E

∫
e

d2fe(x)

dx2
ge(x)dx =

∑
e∈E

∫
e

fe(x)
d2ge(x)

dx2
dx. (25)
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As g is zero on all vertices different from v, integrating by parts we obtain∑
e∈E

∫
e

d2fe(x)

dx2
ge(x)dx =

∑
e∈E

(
−f ′e(v)ge(v)−

∫
e
dfe(x)
dx

dge(x)
dx

dx
)

=
∑
e∈E

(
−f ′e(v)ge(v) + fe(v)g′e(v) +

∫
e
fe(x)d

2ge(x)
dx2

dx
)
.

Then, by (25),∑
e∈E

f ′e(v)ge(v)−
∑
e∈E

fe(v)g′e(v) = 〈F ′, G〉 − 〈F,G′〉 = 0, (26)

where 〈, 〉 denotes the standar hermitian product on Cdv . Thus, g ∈ Dom(∆∗)
is equivalent to satisfy (26) for any f ∈ Dom(∆). But g ∈ Dom(∆∗) =
Dom(∆) is equivalent to

AG+BG′ = 0.

Thus, we have that for g ∈ Dom(∆∗) the following conditions are equivalent:

(i) AG+BG′ = 0 and
(ii) 〈F ′, G〉 − 〈F,G′〉 = 0 for all f ∈ Dom(∆).

By the rank-nullity Theorem for linear functions we have

dim(Ran(A|B)) = dim(C2d)− dim(Ker(A|B)) = 2d− dim(Ker(A|B)). (27)

But, from the equivalence between the points (i) and (ii) follows that

Ker(A|B) =
{(

G
G′

)
: AG+BG′ = 0

}
(28)

=
{(

G
G′

)
: 〈F,G′〉 − 〈F ′, G〉 = 0 ∀f ∈ Dom(∆)

}
Consider the following inner product in Cd × Cd ≡ C2d,〈(

X
Y

)
,

(
Z
W

)〉
=< X,Z > + < Y,W > ∀

(
X
Y

)
,

(
Z
W

)
∈ C2d,

and define the operator V : C2d → C2d by

V

(
X
Y

)
=

(
Y
−X

)
∀
(
X
Y

)
∈ C2d.

It is easy to see that V is unitary, i.e.

V V ∗ = V ∗V = I.
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Using Equation (28), we can write Ker(A|B) in terms of V and obtain

Ker(A|B) =
{(

G
G′

)
:
〈(

F
F ′

)
, V

(
G
G′

)〉
= 0 ∀f ∈ Dom(∆)

}
=
{(

G
G′

)
:
〈
V ∗
(
F
F ′

)
,

(
G
G′

)〉
= 0 ∀f ∈ Dom(∆)

}
= [V ∗(Dom(∆))]⊥

= [V ∗(Ker(A|B))]⊥.

This implies that

dim(Ker(A|B)) =2d− dim(V ∗(Ker(A|B)))

=2d− dim(Ker(A|B)),

where the last equality occurs since V ∗ is bijective. Thus, dim(Ker(A|B)) =
d. Therefore, by the Equation (27), the rank of (A|B) is d, i.e, (A|B) has
maximal rank.

Moreover, for any a, b ∈ R we can produce a function ge ∈ C∞([0, Le])
(vanishing outside a small vicinity of v) such that g(0) = a and g′(0) = b.
Then, if we take any vector h ∈ Cd, we can produce a function g ∈ ⊕e∈EC∞(e)
such that G = −B∗h y G′ = A∗h. Thereby, for every f ∈ Dom(∆)

〈F ′, G〉 − 〈F,G′〉 = 〈F ′,−B∗h〉 − 〈F,A∗h〉
= −〈BF ′, h〉 − 〈AF, h〉
= −〈BF ′ + AF, h〉 = 0.

Then (G|G′) = (−B∗h|A∗h) satisfy (ii). Equivalently, (−AB∗+BA∗)h =
0 for any h. Hence, AB∗ = A∗B, which means that condition (24) is satisfied.

Now we suppose that

Dom(∆) = {f ∈ H2(Γ) : (PD,v−ΛvPR,v)F (v)+(PN,v+PR,v)F
′(v) = 0 ∀v ∈ V},

where PD,v, PN,v and ΛPR,v := I − PD,v − PN,v are orthogonal projectors
acting on Cdv and Λv is an invertible self-adjoint operator on PR,vCdv . It
follows that

PD,vF (v) = 0, PN,vF
′(v) = 0 and

PR,vF
′(v) = ΛvPR,vF (v). (29)

We will show that this implies the self-adjointness for ∆.
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First we demonstrate that ∆ is a symmetric operator, i.e. Dom(∆) ⊂
Dom(∆∗) and ∆(f) = ∆∗(f) for all f ∈ Dom(∆). Let f, g ∈ Dom(∆). We
will use I = PD + PN + PR and that the projectors are self-adjoint operators
in order to compute

〈F ′, G〉 = 〈F ′, (PD + PN + PR)G〉
= 〈F ′, PDG〉+ 〈PNF ′, G〉+ 〈PRF ′, G〉
= 〈PRF ′, G〉
= 〈PRF ′, PRG〉
= 〈ΛPRF, PRG〉

and

〈F,G′〉 = 〈F, (PD + PN + PR)G′〉
= 〈PDF,G′〉+ 〈F, PNG′〉+ 〈F, PRG′〉
= 〈F, PRG′〉
= 〈PRF, PRG′〉
= 〈PRF,ΛPRG〉

Since Λ is self-adjoint we conclude

〈F ′, G〉 − 〈F,G′〉 = 〈ΛPRF, PRG〉 − 〈PRF,ΛPRG〉
= 〈ΛPRF, PRG〉 − 〈ΛPRF, PRG〉 = 0.

Thereby, integrating by parts twice we obtain∑
e∈E

∫
e

d2fe(x)

dx2
ge(x)dx =

∑
e∈E

∫
e

fe(x)
d2ge(x)

dx2
dx.

We conclude that f ∈ Dom(∆∗) and ∆∗f = ∆f . Thus ∆ is a symmetric
operator (i.e. ∆ ⊂ ∆∗).

Also, we have to prove that Dom(∆∗) ⊂ Dom(∆). Let g ∈ Dom(∆∗),
then

〈∆f, g〉 = 〈f,∆∗g〉 ∀f ∈ Dom(∆).

Notice that C∞0 (Γ) ⊂ Dom(∆) since f(v) = 0 for all f ∈ C∞0 (Γ). Thus, from
Corollaries 1.3.7 and 1.3.13, we have

Dom(∆∗) ⊂ H2(Γ).

Subsequently we can integrate by parts and obtain

〈f,∆∗g〉 = 〈∆f, g〉 = −〈F ′, G〉+ 〈F,G′〉+ 〈f,∆g〉 (30)
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for every f ∈ Dom(∆). Particularly,

〈f,∆∗g〉 = 〈f,∆g〉 ∀f ∈ C∞0 (Γ).

Since C∞0 (Γ) is dense in L2(Γ), we conclude that ∆g = ∆∗g for every g ∈
Dom(∆∗).

Moreover, from Equation (30) it follows

〈F ′, G〉 − 〈F,G′〉 = 0 ∀f ∈ Dom(∆). (31)

Now define A = PD − ΛPR and B = PN + PR. For every h ∈ Cd we can
construct a function f̃ ∈ H2(Γ) such that F̃ = −B∗h and F̃ ′ = A∗h. Notice

that f̃ satisfies (29) as the projectors PD, PN and PR are orthogonal. Indeed,

PDF̃ = PD(−B∗h) = PD((−PN − PR)h) = 0,

PN F̃
′ = PN(A∗h) = PN((PD − ΛPR)h) = 0 and

ΛPRF̃ =ΛPR(−B∗h) = ΛPR((−PN − PR)h) = −ΛPRh

=PR((PD − ΛPR)h) = PR(A∗h) = PRF̃
′.

Thus, f̃ ∈ Dom(∆) and it follows from equation (31) that

0 = 〈F̃ ′, G〉 − 〈F̃ , G′〉 = 〈A∗h,G〉 − 〈−B∗h,G′〉
〈h,AG〉 − 〈h,−BG′〉 = 〈h,AG+BG′〉.

This implies that AG+BG′ = 0 and then

0 = (PD − ΛPR)G+ (PN + PR)G′ = PDG+ PNG
′ + PR(−ΛPRG+ PRG

′).

As the projectors are orthogonal, we conclude that

PDG = 0, PNG
′ = 0 and − ΛPRG+ PRG

′ = 0.

This last statement implicates that g ∈ Dom(∆). Hence, we infer that ∆ is
self-adjoint.

�

Note 1.4.9. Theorem 1.4.8 together with Lemmas 1.4.5, 1.4.6 and 1.4.7 give
different characterizations of the domains of Laplace operators giving rise to
self-adjoint operators, when boundary conditions are local. The first demon-
strations are allocated to Kostrykin and Schrader in [19] and to Harmer in
[14]. A deeper study of the matrices A and B (using arguments of diago-
nalization) leads to self-adjointness conditions that can be reduced to Neu-
mann or Dirichlet conditions on each edge. This is achieved in [3], [4] and
[5], where low and high energy limits of scattering operators are studied, in
the case that electric potentials are added to the Laplacian in the context
of quantum mechanics and Schroedinger operators in star graphs (or matrix
Schroedinger operators in the half-line).



CHAPTER 2

The spectrum of the Laplacian

Consider Γ a finite connected discrete graph. We have already defined
the Discrete Graph Laplacian as

∆: L2(Γ)→ L2(Γ)

∆f(v) :=
1

bv

(∑
u∼v

f(u)− dvf(v)
)

∀f ∈ L2(Γ). (32)

We have proven that this operator is self-adjoint, besides it is nonpos-
itive, i.e.,

(∆u, u) ≤ 0, (33)

and ∆u = 0 when u is constant.
Notice that if u is an eigenfunction of ∆ w.r.t. the eigenvalue λ, then

λ ∈ R since ∆ is self-adjoint and

(∆u, u) = (λu, u) = λ(u, u) ≤ 0.

Thus, the eigenvalues of ∆ are nonpositive.
It is known that there exists an orthonormal basis of L2(Γ) consisting

of eigenvalues of ∆.[15] Moreover, if {u1, u2, . . . , uk} is an orthonormal basis
of L2(Γ) such that ui is an eigenfunction of ∆ w.r.t. the eigenvalue λi for
every i = 1, 2, . . . , k, then any f ∈ L2(Γ) admits a decomposition

f(v) =
k∑
i=1

(f, ui)ui(v) (34)

for every vertex v of Γ.

Based in the description above (following [15]) and seeking to establish a
result for the quantum graphs analogous to (34), in this chapter we add some
propositions and theorems taken from [9] provided with the necessary defi-
nitions. Also, we give a theorem which offers a relation between the spectra
of the discrete graph Laplacian and the Laplacian on a quantum graph for
the specific case of having a compact equilateral quantum graph. (Theorem
2.5.1).

37
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2.1. The spectrum of a self-adjoint linear operator

Consider H a Hilbert space and A a self-adjoint linear operator in H. We
define the resolvent set of A as

ρ(A) := {λ ∈ C : (A− λI)−1 exists and it is bounded}.

And we define the spectrum of A as the complement of its resolvent set, i.e.

σ(A) := C \ ρ(A).

We say that λ ∈ C is an eigenvalue of A if Ker(A − λI) 6= {0}, where
0 ∈ H is the identity element. Furthermore, the elements of this kernel which
are different from 0 are called eigenfunctions with respect to λ. The set of
all eigenvalues of A is designated the point spectrum and it is denoted by
σp(A).

The elements of σ(A) can be classified according to some properties.
The set of all eigenvalues of finite multiplicity which are not accumulation
points is the discrete spectrum σd(A), and its complement is the essential
spectrum

σess(A) := σ(A) \ σd(A).

Definition 2.1.1. Let H a Hamiltonian related to a quantum graph Γ with
set of edges E. Referring to the Dirichlet conditions, we define the set σD(H)
by the next relation:

a complex number λ is an element of σD(H) if, and only if, there exists a
function f ∈ Dom(H) such that Hfe = λfe for some edge e ∈ E and fe

vanishes on the vertices of e.

Notice that, as sin
(
πnx
Le

)
is an eigenfunction of − d2

dx
in the interval [0, Le],

when H = − d2

dx
,

σD(H) =
⋃
e∈E

{(πn
Le

)2∣∣∣n ∈ N
}
.

2.2. The Spectral Theorem and Spectral Measure

For the next theorem we recall that L(H) is the Banach space of bounded
linear operators from H to H with norm

‖T‖ = sup
x6=0

‖Tx‖
‖x‖

∀T ∈ L(H).



2.2. THE SPECTRAL THEOREM AND SPECTRAL MEASURE 39

Theorem 2.2.1. Spectral Theorem. Let A be a self-adjoint operator in
H. There exists a unique map

φA : C0(σ(A))→ L(H)

such that

(1) φA is an algebraic ∗-homomorphism of ∗-algebras,
(2) ‖φA(f)‖ ≤ ‖f‖L∞,
(3) if λ 6∈ R and rλ(z) := (λ− z)−1, then φA(rλ) = (λI− A)−1 and
(4) φA(f) = 0 if suppf ∩ σ(A) = ∅.

Using the Theorem 2.2.1, we can define for every w ∈ H a spectral
measure µw on σ(A) such that∫

σ(A)

f(z)dµw(z) := (w, φA(f)w).

Considering that a measure µ : B → R is pure point if, for every
measurable set X ∈ B,

µ(X) =
∑
x∈X

µ(x),

we define the invariant subspace of A

Hpp := {w ∈ H : µw is pure point}.

We define the pure point spectrum of A as the spectrum of the restriction
A
∣∣
Hpp

, and we donoted by σpp(A).

Definition 2.2.2. Let (X,B) be a measurable space, H a Hilbert space and
P = P(H) the set of orthogonal projections on H. Suppose that µ : B → P
is a function such that

• it is countable additive, i.e., if {δn} is a countable set of disjoint
sets of B and δ = ∪nδn, then µ(δ) =s-

∑
n µ(δn) (the strong limit of

partial sums),
• and it is complet, i.e., µ(X) = I.

Then, we say that µ is a spectral measure on H and (X,B, H, µ) is a
spectral measure space.

Theorem 2.2.3. Spectral Theorem (projection valued measure form)
Let A be a self-adjoint operator on H. Then there exists a unique spectral
measure

µA : BR → P(H),
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where BR denote the Borel σ-algebra on R, such that

A =

∫
R
sdµA(s).

2.3. Quadratic form

ConsiderH a self-adjoint operator acting as the negative second derivative
on a space of functions defined in a quantum graph Γ. We choose the vertex
conditions to be of the form

PD,vF (v) = 0

PN,vF
′(v) = 0

PR,vF
′(v) = λvPR,vF (v),

where PD,v, PN,v and PR,v = I−PD,v −PN,v are orthogonal projectors acting
on Cdv and Λv is a self-adjoint operator in PR,vCdv for every vertex v ∈ V .

The next theorem is taken from [9].

Theorem 2.3.1. The quadratic form of H is given by

〈Hf, f〉 =
∑
e∈E

∫
e

∣∣∣ df
dx

∣∣∣2dx+
∑
v∈V

〈ΛvPR,vF, PR,vF 〉. (35)

The domain of this form is

{f ∈ H1(Γ) : PD,vF = 0 ∀v ∈ V}.
The sesqui-linear form of H is

〈Hf, g〉 =
∑
e∈E

∫
e

df

dx

dg

dx
dx+

∑
v∈V

〈ΛvPR,vF, PR,vG〉. (36)

2.4. Discreteness of the Laplacian Spectrum

A bounded operator T ∈ B(X, Y ) is compact if the image {Tun} of any
bounded sequence {un} of X contains a Cauchy subsequence.

Lemma 2.4.1. Let T ∈ B(X, Y ) be a compact operator. Then, its spectrum
σ(T ) is a countable set with no accumulation points different from zero. Each
nonzero eigenvalue λ ∈ σ(T ) has finite multiplicity, and λ is an eigenvalue
of T ∗ with the same multiplicity. [17]

Theorem 2.4.2. Let Γ a compact quantum graph together with the Laplacian
∆ = −d2/dx2 (i.e. the negative second distributional derivate) with domain
given as

{f ∈ H2(Γ) : AvF (v) +BvF
′(v) = 0 ∀v ∈ V},
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where Av, Bv are dv × dv-matrices such that (Av|Bv) has maximal rank and
AB∗ is self-adjoint. Then the resolvent (∆ − iI)−1 is a compact operator in
L2(Γ). [9]

Proof. The self-adjointness of ∆ implies that the resolvent (∆ − iI)−1

is well defined from L2(Γ) to Dom(∆) ⊂ H2(Γ). The natural embedding

H2(Γ) 7→ L2(Γ),

given by the Sobolev embedding Theorem [2], is compact. Thus, the resolvent
is compact. �

Corollary 2.4.3. The spectrum of the Laplacian σ(∆) consist of isolated
eigenvalues λj of finite multiplicity and such that λj →

j→∞
∞. [9]

Proof. Notice that, for u ∈ Dom((∆ − iI)−1) different from zero and a
complex number γ 6= 0, the following is satisfied

(∆− iI)−1u = γu (37)

⇐⇒ u = (∆− iI)γu
⇐⇒ u+ iγu = ∆γu

⇐⇒ ∆u =
(1

γ
+ i
)
u.

Then, by Lemma 2.4.1 and Theorem 2.4.2, the spectrum of the Laplacian
σ(∆) is a countable set with no accumulation points of eigenvalues with finite
multiplicity. Also notice that ∣∣∣ 1

γj
+ i
∣∣∣ →
γj→0

∞,

then the eigenvalues of ∆, denoted as

λj :=
( 1

γj
+ i
)
,

diverge to infinity. �

2.5. Relation between Spectra of Laplacians

We say that a metric graph is equilateral when the length of all its
edges are equal. Now consider an equilateral quantum graph Γ such that its
sets of vertices V and edges E are countable, and assume that the common
length of its edges is L. Also, considering the Laplacian ∆ (minus the second
distributional derivate) on Γ, suppose that any f ∈ Dom(∆) satisfies the
Neumann-Kirchhoff conditions:



42 2. THE SPECTRUM OF THE LAPLACIAN

• f(x) is continuos on Γ, that is to say, every restriction fe is continuos
for every e ∈ E and, for any v ∈ V ,

fe(v) = fe′(v) ∀e, e′ ∈ Ev,
where Ev denotes the set of all the edges which contain v.
• For every vertex v, ∑

e∈Ev

dfe
dxe

(v) = 0,

where the derivates are taken in the direction away from the vertex.

We look for a relation between the spectrum of ∆ and the normalized
discrete graph Laplacian. Henceforth, in order to distinguish between
both Laplacians, we use the notation ∆c for the Laplacian considered on a
quantum graph (which is given by minus the second distributional derivate)
and ∆d for the normalized discrete graph Laplacian defined as

∆df(v) = f(v)− 1

dv

∑
u∼v

f(u).

Using the Definition 2.1.1, we give the following relation between the
elements of σ(∆c) and σ(∆d) spectra.

Theorem 2.5.1. Consider Γ an equilateral quantum graph and L ∈ (0,∞)
the length of its edges. Also, suppose that 0 < dv < ∞ for every vertex
v ∈ V and that every function f ∈ Dom(∆c) satisfies the Neumann-Kirchhoff
conditions. Let λ ∈ C \ σD(∆c) and k2 = λ. Then, the next equivalence
holds:

λ ∈ σp(∆c) ⇐⇒ (1− cos kL) ∈ σp(∆d).

The same relation occurs when we consider the spectrum σ and the spectral
components σd, σess and σpp.[9]

Note 2.5.2. We only demonstrate one implication of the relation between
the point spectra. For the complete proof we refer to [9] that mention a proof
based on the formula of Krein and a technique developed in [23].

Proof. Consider the eigenvalue equation

−d
2u

dx
= k2u, (38)

with boundary conditions u(0) = f(0) and u(L) = f(L) for every e ∈ E .
Notice that the function u defined in each edge as

ue(x) =
1

sin(kL)

[
f(0) sin(k(L− x)) + f(L) sin(kx)

]
,

is a solution of the Equation (38).
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Indeed, after some computations we obtain the first and the second deriva-
tives of ue:

u′e(x) =
k

sin(kL)

[
− f(0) cos(k(L− x)) + f(L) cos(kx)

]
(39)

u′′e(x) =
−k2

sin(kL)

[
f(0) sin(k(L− x)) + f(L) sin(kx)

]
(40)

=− k2ue(x).

Thus, substituting x = 0 in Equation (39) we have

u′e(0) =
k

sin(kL)

[
− f(0) cos(kL) + f(L)

]
. (41)

Considering that we take the derivatives with direction from a vertex v
to its neighbours, we have that u′e(0) ≡ u′e(v) for every edge e ∈ Ev. Then,
writing the Neumann condition for the derivatives u′e using the Equation
(41), it follows∑

e∈Ev

due
dx

(v) =
∑
e∈Ev

k

sin(kL)

[
− f(0) cos(kL) + f(L)

]
= 0. (42)

We deduce that u satisfies the Neumann condition if, and only if,∑
e∈Ev

[
− f(0) cos(kL) + f(L)

]
= 0.

The last expression is equivalent to next equalities:

f(v)dv cos(kL)−
∑
u∼v

f(u) = 0

⇐⇒ f(v)− 1

dv

∑
u∼v

f(u) =
(
1− cos(kL)

)
f(v)

⇐⇒ ∆df(v) = (1− cos(kL))f(v).

The previous equality of the normalized graph Laplacian holds for every
vertex v ∈ V . Hence, we conclude that the function u satisfies the Neumann
condition if, and only if, f is an eigenfunction with respect to the eigenvalue
(1− cos(kL)) of the normalized graph Laplacian. �

A fine achievement to enhance the relation between discrete graphs and
quantum graphs would be to extent Theorem 2.5.1 for graphs that are not
equilateral. Thus, we can enunciate the following new problem:
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Problem 2.5.3. For the case of graphs that are not equilateral, can we give
a relation as in Theorem 2.5.1 between the spectra of the discrete graph Lapla-
cian and the Laplacian on a quantum graph?

2.6. Spectral decomposition in eigenfunctions

We aim to find a sort of Fourier decomposition in terms of the eigenfunc-
tions of the Laplacian for the elements of Dom(∆).

Let Γ be a quantum graph with set of edges e ∈ E and denote by E the
cardinality of E . Define the set

A := {(Av|Bv) : v ∈ V}

and the vector ξ = {ξe} ∈ (C \ {0})E. Consider the Hamiltonian

HA,ξ := −ξ−2 d
2

dx2

on a quantum graph, with domain

Dom(H) = {f ∈ H2(Γ) : AvF (v) +BvF
′(v) = 0 ∀v ∈ V},

where, for every v ∈ V , (Av|Bv) ∈ A has maximal rank and AvB
∗
v is self-

adjoint. That it is, H acts as re-scaled version of the negative second distri-
butional derivate

−ξ−2
e

d2

dx2
e

on every edge e.
The operator HA,ξ is self-adjoint and its spectrum is real and discrete.

Definition 2.6.1. A subset X of an analytic manifold M is called analytic
if it can be locally described as the set of common zeros of several analytic
functions, and it is called principal analytic if it can be locally described
as the set of zeros of an analytic function.

Theorem 2.6.2. Define the following subset of C2
∑
d2v × (C \ {0})E × C

S := {(A, ξ, λ) : (HA,ξ − λI) does not have bounded inverse in L2(Γ)}.

Then, S is principal analytic.
Also, for every k ≥ 1, define the subset of C2

∑
d2v × (C \ {0})E × C

Sk := {(A, ξ, λ) : dimKer(HA,ξ − λI) ≥ k}.

Then, Sk is analytic for every k ≥ 1. [9]

Note that Sk+1 ⊂ Sk ⊂ S for every k ≥ 1. The set S is the graph of the
multiplie-valued function

(A, ξ) 7→ σ(HA,ξ),
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which can be considered as a “dispersion relation”.

The following definitions are reproduced from [16].

Definition 2.6.3. A k-dimensional vector bundle consists of a total space
E, a base M and a projection π : E →M , where E and M are differentiable
manifolds, π is differentiable, for each x ∈M the fiber Ex := π−1(x) has the
structure of a k-dimensional vector space and there exists a neighbourhood
Ux and a diffeomorphism (i.e. an isomorphism of smooth manifolds)

ϕx : π−1(Ux)→ Ux × Rk,

called local trivialization, such that for every y ∈ Ux
ϕxy := ϕx

∣∣
Ey

: Ey → {y} × Rk

is a vector space isomorphism.

If (E, π,M) is a k-dimensional vector bundle, (Uα)α∈A a covering of M by
open sets and φα : π−1(Uα)→ Uα×Rk the corresponding local trivializations,
for nonempty Uα ∩ Uβ, we obtain transitions maps

ϕβα : Uα ∩ Uβ → Gl(k,R)

by

ϕβ ◦ ϕ−1
α (x, v) = (x, ϕβα(x)v) ∀x ∈ Uα ∩ Uβ, v ∈ Rk,

where Gl(k,R) is the general linear group. If M is a complex manifold and
the transitions maps are holomorphic, then (E, π,M) is an holomorphic
vector bundle.

Theorem 2.6.4. With the specifications above, the set Ker(HA,ξ) is an holo-
morphic k-dimensional vector bundle over Sk \ Sk+1. As a consequence, if
there exists a local analytic eigenvalue branch λ(A, ξ) of constant multiplicity
k, then there is an analytic local basis of k eigenfunctions. [9]

Although the next theorem could be generalized to infinite quantum
graphs, we consider Γ a finite quantum graph, with set of vertices V , and ∆
the Laplacian operator defined on

Dom(∆) = {f ∈ H2(Γ) : (PD,v−ΛPR,v)F (v)+(PN,v+PR,v)F
′(v) = 0 ∀v ∈ V},

where PD,v, PN,v and PR,v are complementary orthogonal projectors and Λ is
an invertible self-adjoint operator defined on PR,vCdv . Also, we assume that

• the lengths of the edges are bounded from below, i.e. there exists a
positive number Lmin satisfying

Le ≥ Lmin > 0,
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• the bijections Λv are uniformly bounded, i.e.

‖Λv‖ ≤ C <∞.
Definition 2.6.5. A function φ(x) ∈ H2

loc(Γ) which satisfies

(PD,v − ΛPR,v)φ(v) + (PN,v + PR,v)φ
′(v) = 0 ∀v ∈ V ,

is said to be a generalized eigenfunction with respect to λ of the Laplacian
∆ if

∆φ(x) = λφ(x) a.e. on Γ.

Note 2.6.6. When we say that φ(x) ∈ H2
loc(Γ), we suppose it is possible that

φ is not square integrable on Γ (i.e. φ 6∈ L2(Γ)).

Theorem 2.6.7. Under the assumptions above, let µ be the spectral measure
of ∆ (see Theorem 2.2.3). Consider a function w : Γ → [1,∞) continuous
which satisfies 1/w ∈ L2(Γ). Then there exist a “spectral decomposition”
into functions φλ such that, for µ-almost all λ ∈ σ(∆), φλ is a generalized
eigenfunction of ∆ and w−1φλ ∈ L2(Γ) for µ-almost all λ ∈ σ(∆). [9]



CHAPTER 3

Applications to Biology

3.1. GRN models

The large amount of genetic data has prompted the analysis of com-
plex systems, with various components and interactions between them, us-
ing mathematical and computational resources. For example, these methods
have contributed to comprehend plant growth and to understand genetic
foundations of the evolution of plants. For the very large number of genes,
and the complexity of interactions between them which regulate cell differ-
entiation and development, schematic and intuitive models are not enough
for responding the open questions about it in Biology. But mathematical
representations and computational simulations allow structural and dynami-
cal studies of complex collections of interconnected genes, proteins and other
molecules, which are called gene regulatory networks (GRN).[6]

The GRN models - in which genes, mRNA or proteins are represented
by nodes (vertices) and their regulatory interactions by links (edges) - have
been elaborated using functional genomics to reverse engineer the identity
of the network (graph), or using thorough molecular genetic experiments to
suggest models of GRN structures for small gene networks. These models
have permited the analysis of temporal change of gene activities (network
dynamics) and of the manner in which genes are connected to each other
(network architecture). [6]

Discrete and Continuous GRN Models: As development models in-
volve an extensive range of scales and mechanisms, depending on the scale
involved and the essence of the available information, a fitting mathematical
framework must be selected. GRN models might incorporate continuous or
discrete functions. Continuous models can include more detail and produce
quantitative predictions; they are very useful for investigating signal trans-
duction pathways and the circadian clock, for example. On the other hand,
experiments evidence that gene expression is digital at the individual cell
level. Thus, qualitative GRN models with discrete kinetics of gene activa-
tion are the most suitable representation of complex gene regulatory logics.

47
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Figure 1. Motif joining.

However, different analyses of topologically equivalent continuous and dis-
crete models reveal that both give analogous dynamic results. [6]

3.2. Eigenfunctions of the Graph Laplacian

From the analysis of the discrete graph Laplacian, qualitative properties
of a graph can be deduced [15]. Laplacian graph spectra has been used for
characterizing large networks and random graphs. Geometric properties of
the eigenvectors are studied in several applications in Mathematical Biology
and Combinatorial Optimization [24].

When a graph represents biological data as a structure that has evolved
from simple precursors, there are characteristic traced by this process in the
spectrum of the normalized graph Laplacian:

∆Γf(v) := f(v)− 1

dv

∑
u∈Γ,u∼v

f(u).

(Notice that this Laplacian is the same as the defined in Equation (1), but
with weights bv = dv. ) For example, when a graph Γ0 is joined to an existing
graph Γ in a vertex where an eigenfunction f of Γ0 (i.e. ∆Γ0f − λf = 0 for
some eigenvalue λ) vanishes, the new graph obtained preserve the eigenvalue
λ with a localized eigenfunction, that is, and eigenfunction which agrees with
f on Γ0 and vanishes at other vertices [7].

Another example is when a small subgraph Γ1 (motif ) of Γ is doubling
at Γ (i.e. an extension of Γ is constructed in the following way: A copy of
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Figure 2. Motif duplication.

Γ1 – denoted temporarily by Γ′1 – is added in such a way that each vertex
of Γ′1 is connected to all closest neighbors, that do not belong to Γ1, of the
copied vertex – see Figure 2). Then the new graph possesses the eigenvalue
λ of the graph Laplacian on Γ1

1

dv

∑
u∈Γ1,u∼v

f(u) = (1− λ)f(v),

related to the eigenfunction f with a localized eigenfunction which is double
(i.e. it agrees with −f on the double of Γ1) [7].
Constructions like the first (motif joining) or the second (duplication)
could be functional to describe evolution hypothesis of a biological network
starting from the data available [7].

An other application of the analysis of the graph Laplacian eigenfunc-
tions is on Landscape Theory. A landscape is a triple (X,X , f) where X is
a set of configurations, X is a topological structure on X and f : X → R is
a fitness function. The topological structure is often specified as a function
N : X → 2X constructed in a symmetric way, satisfying x ∈ N(y) ⇐⇒ y ∈
N(x). This relation yields an undirected graph related to (X,X ) [18].

The average cost of an arbitrary configuration is

f̄ =
1

|X|
∑
x∈X

f(x).

It has been noticed that in multiple cases the function f̃ defined as f̃(x) =
f(x) − f̄ turns out to be an eigenfunction of the Laplacian of the graph re-
lated to the configuration space (X,X ) [24].



50 3. APPLICATIONS TO BIOLOGY

Some of the properties in discrete graph have their analogous in met-
ric graphs. For example, the eigenfunctions of the discrete graph Laplacian
has parallel characteristic to the ones of the eigenfunctions of the continuous
Laplacian given in the Courant Nodal Domain Theorem for Elliptic
Operators which states the following: Given a self-adjoint second order el-
liptic differential equation L[u] + λρu = 0 (ρ > 0) in a domain G with
arbitrary homogeneous boundary conditions; if its eigenfunctions are ordered
according to increasing eigenvalues, then the nodes of the n-th eigenfunction
un divide the domain into no more than n subdomains. Here L could be the
Laplacian and nodes are points where the eigenfunction u vanishes [24].

Associated with a graph G(V,E), a symmetric matrix M is called a
generalized Laplacian or discrete Schrödinger operator of G if Mxy < 0
whenever x ∼ y and Mxy = 0 when x and y are distinct and not adja-
cent. A positive (negative) strong nodal domain of a function f on V (G)
is a maximal connected induced subgraph of G with vertices v ∈ V with
f(v) > 0 (f(v) < 0). And a positive (negative) weak nodal domain of a
function f on V (G) is a maximal connected induced subgraph of G with
vertices v ∈ V with f(v) ≥ 0 (f(v) ≤ 0) that contains at least one nonzero
vertex. The Discrete Nodal Domain Theorem establishes the following:
Let M be a generalized Laplacian of a connected graph with n vertices. Then
any eigenfunction fk corresponding to the k-th eigenvalue λk with multiplicity
r has at most k weak nodal domains and k+ r−1 strong nodal domains [24].

3.3. Solitons, Quantum and Chaotic Graphs

There are also some investigations involving quantum graphs, solitons
and Biology. For example, in [22] it is shown that models of proteins present
pulses as solitons. Using the Schrödinger equation on a star quantum graph,
it has been proved that a fast soliton splits in reflected and transmitted com-
ponents after colliding with the central vertex of the graph [1]. And in [21]
is analysed the stability of some solitons for pulse propagation in biomem-
branes and nerves.

In the discrete setting, soliton graphs are the fundamental graphs of soli-
ton automata, which function as a mathematical model for molecular elec-
tronic switching [8].

The chaotic graphs are represented as many fuzzy fractal lines up to ∞
and are described as chaotic matrices. Some operations on the chaotic graphs
such as the union and the intersection, the chaotic incidence matrices and
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the chaotic adjacency matrices has been studied. Chaotic systems are deter-
ministic and sensible to their initial condition. Chaotic behaviour is common
in systems as measles out break, heart rhythms, electrical brain activity, cir-
cadian rhythms, fluids and animal population. The generalization of discrete
graphs are fuzzy graphs, whereas chaotic graphs are more general than fuzzy
graphs. The biological properties of biological isomers represent a chain of
∞-chaotic graphs, which represent the biological properties like link, growth
toxics and pharmaceuticals [11].

Quantum graphs attracted the interest of the quantum chaos community
because they can be considered as typical and simple examples for the class of
systems in which classically chaotic dynamics implies universal correlations in
the semiclassical limit. Up to now there is only a limited understanding of the
reasons for this universality, and quantum graph models provide a valuable
opportunity for mathematically rigorous investigations of the phenomenon
[20].
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Silva Pereyra, Dra. Mariana Beńıtez Keinrad, Dr. Sergey Antonyan and Dr.
Pablo Padilla Longoria. In particular, I would like to express my gratitude
to Dr. Luis Silva Pereyra for introduce me at the Department of Mathe-
matical Physics of IIMAS (UNAM) and for his collaboration in seeking the
theme of this work, and to Dra. Mariana Beńıtez Keinrad for her invitation
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