

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

POSGRADO EN CIENCIA E INGENIERÍA DE LA COMPUTACIÓN

MÉTODO DE CLUSTERING BASADO EN EL PRINCIPIO DE MÁXIMA ENTROPÍA

TESIS

QUE PARA OPTAR POR EL GRADO DE:

DOCTOR EN CIENCIAS (COMPUTACIÓN)

PRESENTA:

EDWYN JAVIER ALDANA BOBADILLA

TUTOR

DR. ANGEL FERNANDO KURI MORALES

POSGRADO EN CIENCIA E INGENIERÍA DE LA COMPUTACIÓN

MÉXICO, D.F. JUNIO 2015

UNAM – Dirección General de Bibliotecas

Tesis Digitales

Restricciones de uso

DERECHOS RESERVADOS ©

PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea
objeto de protección de los derechos de autor, será exclusivamente para
fines educativos e informativos y deberá citar la fuente donde la obtuvo
mencionando el autor o autores. Cualquier uso distinto como el lucro,
reproducción, edición o modificación, será perseguido y sancionado por el
respectivo titular de los Derechos de Autor.

Universidad Nacional Autónoma de México

Doctoral Thesis

A Clustering Method Based on the
Maximum Entropy Principle

Author:

Edwyn Javier Aldana

Bobadilla

Supervisor:

Dr. Angel Fernando Kuri

Morales

A thesis submitted in ful�lment of the requirements

for the degree of Doctor of Philosophy in Computer Sciences

in the

Graduate School of Computer Science and Engineering

June 2015

http://www.unam.mx/
http://www.johnsmith.com
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com
http://www.mcc.unam.mx/

Declaration of Authorship

I, Edwyn Javier Aldana Bobadilla, declare that this thesis titled, 'A Clustering

Method Based on the Maximum Entropy Principle' and the work presented in it are my

own. I con�rm that:

� This work was done wholly or mainly while in candidature for a research degree at

this University.

� Where any part of this thesis has previously been submitted for a degree or any

other quali�cation at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

"In the mountains of truth you will never climb in vain: either you will get up higher

today or you will exercise your strength so as to be able to get up higher tomorrow".

Friedrich Nietzsche

Abstract

Graduate School of Computer Science and Engineering

Doctor of Philosophy in Computer Sciences

A Clustering Method Based on the Maximum Entropy Principle

by Edwyn Javier Aldana Bobadilla

Clustering is an unsupervised process to determine which unlabeled objects in a set share

interesting properties. The objects are grouped into k subsets (clusters) whose elements

optimize a proximity measure. Methods based on information theory have proven to

be feasible alternatives. They are based on the assumption that a cluster is one subset

with the minimal possible degree of �disorder�. They attempt to minimize the entropy of

each cluster. We propose a clustering method based on the maximum entropy principle.

Such a method explores the space of all possible probability distributions of the data to

�nd one that maximizes the entropy subject to extra conditions based on prior infor-

mation about the clusters. The prior information is based on the assumption that the

elements of a cluster are �similar� to each other in accordance with some statistical mea-

sure. As a consequence of such a principle, those distributions of high entropy that satisfy

the conditions are favored over others. Searching the space to �nd the optimal distribu-

tion of object in the clusters represents a hard combinatorial problem, which disallows

the use of traditional optimization techniques. Genetic algorithms are a good alterna-

tive to solve this problem. We benchmark our method relative to the best theoretical

performance, which is given by the Bayes classi�er when data are normally distributed,

and a multilayer perceptron network, which o�ers the best practical performance when

data are not normal. In general, a supervised classi�cation method will outperform a

non-supervised one, since, in the �rst case, the elements of the classes are known a priori.

In what follows, we show that our method's e�ectiveness is comparable to a supervised

one. This clearly exhibits the superiority of our method.

http://www.mcc.unam.mx/

Acknowledgements

I would like to express my sincere gratitude to my advisor Dr. Angel Fernando Kuri

Morales for the continuous support of my Ph.D study and research, for his patience,

motivation, enthusiasm, and immense knowledge. His guidance helped me in all the

time of research and writing of this thesis. I could not have imagined having a better

advisor and mentor.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr. Humberto

Carrillo Calvet and Dr. Javier Garcia Garcia, for their encouragement, and insightful

comments.

My sincere thanks also goes to Dr. Katya Rodríguez Vázquez and Dr. Nicolás Kemper

Valverde, for reviewing this work and making critical suggestions.

I would especially like to thank the Graduate School of Computer Science and Engineer-

ing at Universidad Nacional Autónoma de México.

I also want to thank CONACYT (Consejo Nacional de Ciencia y Tecnología) for their

�nancial support granted during my doctoral research.

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

Contents v

List of Figures vii

List of Tables viii

Prologue 1

1 Introduction 4

1.1 Determining the Optimal Value of k . 5

1.2 Evaluating the Clustering Process . 5

1.3 Finding the Best Partition of X . 7

1.4 Choosing the Meta-Heuristic . 8

1.5 Related Works . 8

1.6 Organization of the Discussion . 10

2 Maximum Entropy Principle and Clustering 11

2.1 Maximum Entropy Principle . 12

2.1.1 Numerical Example . 12

2.2 Finding the Optimal Partition . 14

3 Solving the Problem through EGA 17

3.1 Encoding a Clustering Solution . 17

3.2 Finding The Probability Distribution of the Elements of a Cluster 18

3.3 Determining the Parameters of CBE . 19

4 Datasets 20

4.1 Synthetic Dataset . 20

4.2 Real-World Datasets . 21

v

Contents vi

5 Methodology to Gauge the E�ectiveness of a Clustering Method 22

5.1 Determining the E�ectiveness Using Synthetic Gaussian Datasets 22

5.2 Determining the E�ectiveness of Using Synthetic Non-Gaussian Datasets . 23

5.3 Determining the E�ectiveness Using Real-World Datasets 23

5.4 Determining the Statistical Signi�cance of the E�ectiveness 23

6 Results 25

6.1 Synthetic Gaussian Datasets . 25

6.2 Synthetic Non-Gaussian Datasets . 26

6.3 "Real-World" Datasets . 27

7 Conclusions 29

A Eclectic Genetic Algorithm 31

A.1 Performance of EGA . 32

A.1.1 Set of Algorithms . 33

A.1.2 Global Performance . 33

B Datasets 35

B.1 Synthetic Gaussian Datasets . 35

B.2 Synthetic Non-Gaussian Datasets . 37

B.3 "Real World" Datasets . 38

C Ensuring Normality in an Experimental Distribution 40

D Clustering with an N-Dimensional Extension of Gielis Superformula 43

E Clustering based on optimization of validity index (CVI) 52

E.1 Validity Index . 52

E.1.1 Dunn and Dunn (DD) index . 52

E.1.2 Davies-Bouldin (DB) index . 53

E.1.3 Scattering and Dispersion (SD) index 54

E.1.4 Variance of the Nearest Neighbor Distance (VNND) index 54

E.2 Experiments and Results . 55

F Clustering Based on Entropy Optimization 57

G Choosing The Best Genetic Algorithm 94

References 124

List of Figures

1.1 Example of a clustering problem. (a) Dataset X1; (b) solution for k = 2;
and (c) another solution for k = 2. 6

1.2 Another clustering problem. (a) Dataset X2; (b) solution for k = 2; and
(c) another solution for k = 2. 6

3.1 Feasible partition sets of X ∈ <2 for k = 2. (a) Π1 and (b) Π2. 18

3.2 Representation of p(~x|C1). 18

3.3 Example of the probability space of Ci in <. 19

3.4 Example of the probability space of Ci in <3. 19

6.1 Example of possible arrangements of a Gaussian dataset. 26

B.1 Gaussian sets in <2. 35

B.2 Disjoint Gaussian sets for n = 2 and k = 3. (a) ρ = 0 and (b) ρ = 0.4,
ρ = −0.7, ρ = 0.7. 36

B.3 Overlapping Gaussian sets for n = 2 and k = 3. (a) ρ = 0 and (b) ρ = 0.8,
ρ = −0.8. 36

B.4 Concentric Gaussian sets for n = 2 and k = 3. (a) µCi = (0.5, 0.5)
∀i and ρ = 0 and (b) µCi = (0.5, 0.5) ∀i and ρ = −0.9. 37

C.1 Size of sample M vs. p . 41

vii

List of Tables

2.1 Unidimensional dataset. 12

2.2 Probability model of Π∗. 13

2.3 Probability model and the entropy of Π∗. 13

2.4 Probability model and entropy of Π1. 14

2.5 Probability model and entropy of Π2. 14

6.1 Average e�ectiveness (ϕ) for Gaussian datasets. 26

6.2 Performance relative to the Bayes classi�er (BC) (%). 26

6.3 Average e�ectiveness (ϕ) for non-Gaussian datasets. ENCLUS, entropy
clustering; CBE, clustering-based on entropy. 27

6.4 Performance relative to MLP (%). 27

6.5 E�ectiveness of CBE and other clustering methods for "Real-World" Datasets 28

6.6 Performance relative to MLP. 28

A.1 Global Performance of all algorithms for di�erent categories of problems . 34

B.1 Parameters of the generation process of datasets. 37

B.2 Properties of the selected datasets. 38

E.1 Performance of CVI for disjoint Gaussian dataset 56

E.2 Performance of CVI for Gaussian dataset with partial overlap 56

E.3 Performance of CVI for Gaussian dataset with total overlap 56

E.4 Performance of CVI and BC for di�erent Gaussian datasets 56

viii

Prologue

One of the basic tasks in Data Mining is the process of determining which unlabeled

objects in a set do share interesting properties. Such process is denoted as "clustering",

where the objects are grouped into k subsets or clusters whose elements optimize a

proximity measure. Usually such proximity is de�ned by a metric or distance. The more

traditional clustering methods are based on the minimization of such distance. This

fact imposes important constraints on the geometry of the clusters found. Since each

element in a cluster lies within a radial distance relative to a given center, the shape of

the covering or hull of a cluster is hyper-spherical (convex) which sometimes does not

encompass adequately the elements that belong to it.

The research described in this thesis was focused on �nding a clustering method that

overcomes such constraints. To reach this goal we explored di�erent approaches: (1) We

proposed a method in which the elements of a cluster were determined by �nding a set of

locus (one for each cluster), which encompass the data to be clustered. A locus is a curve

or surface formed by all the data satisfying a particular equation. To �nd the feasible

equations, we resorted to Gielis's Super-Formula (GSF) that allowed us to de�ne a wide

family of functions. To �nd the optimal locus, we used a Genetic Algorithm (GA). This

approach was not hampered by distance considerations. A point to be made is that the

generalization for data in <n (n > 3) is a non-trivial problem. This limitation forced us to

explore other alternatives. The reader can �nd details about this approach in Appendix

D which was published in [1] and presented at 7th WSEAS International Conference

on Arti�cial Intelligence, Knowledge Engineering and Databases(AIKED'08). (2) Other

alternative, based on the identi�cation of those elements of the dataset which optimize

some validity index was proposed. In the usual process, the clusters are found via some

arbitrary clustering method and then assigned a quality grade according to a certain

validity index. We propose a novel method �nding the elements of the clusters from the

indices directly. Usually the purported indices are expressed mathematically with some

complex function which is not prone to optimization by any of the traditional methods.

We analyze clusters resulting by optimizing several validity indices with a GA. This

approach and its results are presented in Appendix E, which were published in the book

1

Prologue 2

New Fundamental Technologies in Data Mining [2]. We found that the optimization

of validity indices is a promising approach, however such approach did not solve the

problem about the constraints of the geometry of the clusters, since most indices are

based on proximity relationships on the metric space of the dataset. (3) This fact led

us to search a validity index on the probability space of the dataset rather than on the

metric space of it. Such validity index was an information theoretical function. Our idea

was to �nd a arrangement of clusters whose probability distributions optimize this new

validity index. The results of this approach have partly been presented at international

conferences in Holland, Germany and USA (see Appendix F).

Since exploring the feasible space of all probability distributions is a hard problem,

the use of suitable optimization method was compulsory. Based on the assumption that

under certain conditions the GAs always converge to the optimal solution [3], we consider

the GAs as a good alternative to solve such problem. To determine the best GA, we

conducted a study regarding the performance of a set of 4 structurally di�erent GAs

and a non-evolutionary algorithm to solve a wide reservoir of optimization problems.

The results of this study were presented at 12th Mexican International Conference on

Arti�cial Intelligence and published in [4, 5]. We have decided to include this study in

Appendix G.

The referred work gave rise to the following publications and presentations at interna-

tional conferences:

1. Kuri-Morales, A., Aldana-Bobadilla, E., Clustering with an N-Dimensional Ex-

tension of Gielis Superformula, WSEAS, 343-350, Editor(s)): Zadeh et al., ISBN:

978-960-6766-4, ISSN: 1790-5109, 20/02/2008.

2. Kuri-Morales, A., Aldana-Bobadilla, E., Evolutionary Entropic Clustering: a new

methodology for data mining, Sociedad Mexicana de Inteligencia Arti�cial, CD,

Editor(s)): Alexander Gelbukh, ISBN: 978-607-95367, 09/11/2009.

3. Kuri-Morales, A., Aldana-Bobadilla, E., Finding irregularly shaped clusters based

on Entropy, ICDM - 2010, Springer, 59-70, Editor(s)): Petra Perner, ISBN: 3-642-

14399-7, ISSN: 0302-9743, 10/07/2010.

4. Aldana-Bobadilla, E., Kuri-Morales, A., A methodology to �nd clusters in the

data based on Shannon's Entropy and Genetic Algorithms, WorldComp'11, CSRea

Press, 21-27, Editor(s)): Arabnia, H., Hashemi, R., Solo, A., ISBN: 1-60132-182-1,

18/07/2011.

5. Aldana-Bobadilla, E., Kuri-Morales, A., A methodology to �nd clusters in the

data based on Shannon's Entropy and Genetic Algorithms, Proceedings of the

Prologue 3

10th WSEAS international conference on communications, WSEAS, 272-280, Ed-

itor(s)): Mastorakis, N., Mladenov, V., Savkovic-Stevanovic, J., ISBN: 978-960-

474-28, 01/03/2011.

6. Kuri-Morales, A., Aldana-Bobadilla, E., The Best Genetic Algorithm Part I, A

Comparative Study of Structurally Di�erent Genetic Algorithms, Springer, 1-15,

Editor(s)): Castro, Gelbukh, González, ISBN: 9783642451119, ISSN: 1611-3349,

27/11/2013. Best Paper Award, Second Place.

7. Kuri-Morales, A., Aldana-Bobadilla, E., López-Peña, J., The Best Genetic Algo-

rithm Part II, A Comparative Study of Structurally Di�erent Genetic Algorithms,

Springer, 16-29, Editor(s)): Castro, Gelbukh, González, ISBN: 9783642451119,

ISSN: 1611-3349, 27/11/2013.

8. Aldana-Bobadilla, E., Kuri-Morales, A., Unsupervised Classi�er Based on Heuris-

tic Optimization and Maximum Entropy Principle, Springer, 17-30, Editor(s)):

Emmerich, M. et al, ISBN: 9783319011271, ISSN: 2194-5357, 10/07/2013

Other important publication was a chapter book dealing with di�erent approaches of

clustering. The complete reference is shown in what follows:

9. Kuri-Morales, A., Aldana-Bobadilla, E., The search for irregularly shaped clusters

in data mining, New Fundamental Technologies in Data Mining, Intech, 323-354,

Editor(s)): Funtasu, K., Hasegawa, K., ISBN: 9789533075471, 15/01/2011.

All these works are the basis and foundation of this dissertation. They allowed us to

mature the �nal results which were submitted for publication in the international journal

of Entropy (see [6]). The comments and suggestions of the reviewers allowed us to

improve our research and validate the �nal results.

Chapter 1

Introduction

Pattern recognition is a scienti�c discipline whose methods allow us to describe and

classify objects. The descriptive process involves the symbolic representation of these

objects through a numerical vector ~x:

~x = [x1, x2, . . . xn] ∈ <n (1.1)

where its n components represent the value of the attributes of such objects. Given a

set of objects (�dataset�) X, there are two approaches to attempt the classi�cation: (1)

supervised; and (2) unsupervised.

In the unsupervised approach case, no prior class information is used. Such an approach

aims at �nding a hypothesis about the structure of X based only on the similarity

relationships among its elements. These relationships allow us to divide the space of

X into k subsets, called clusters. A cluster is a collection of elements of X, which are

"similar" between them and "dissimilar" to the elements belonging to other clusters.

Usually, the similarity is de�ned by a metric or distance function d : X ×X → < [7�9].

The process to �nd the appropriate clusters is typically denoted as a clustering method.

In the literature, many clustering methods have been proposed [10, 11]. Most of them

begin by de�ning a set of k centroids (one for each cluster) and associating each element

in X with the nearest centroid based on a distance d. This process is repeated, until

the di�erence between centroids at iteration t and iteration t− 1 tends to zero or when

some other optimality criterion is satis�ed. Examples of this approach are k-means

[12] and fuzzy c-means [13�15]. Other methods not following the previous approach

are: (1) hierarchical clustering methods that produce a tree or a graph in which, during

the clustering process, based on some similarity measure, the nodes (which represent a

possible cluster) are merged or split; in addition to the distance measure, we must also

4

Chapter 1. Introduction 5

have a stopping criterion to tell us whether the distance measure is su�cient to split

a node or to merge two existing nodes [16�18]; (2) density clustering methods, which

consider clusters as dense regions of objects in the dataset that are separated by regions of

low density; they assume an implicit, optimal number of clusters and make no restrictions

with respect to the form or size of the distribution [19]; and (3) meta-heuristic clustering

methods that handle the clustering problem as a general optimization problem; these

imply a greater �exibility of optimization algorithms, but also longer execution times

[20, 21].

We propose a numerical clustering method that lies in the group of meta-heuristic clus-

tering methods, where the optimization criterion is based on information theory. Some

methods with similar approaches have been proposed in the literature (see Section 1.5).

1.1 Determining the Optimal Value of k

In most clustering methods, the number k of clusters must be explicitly speci�ed. Choos-

ing an appropriate value has important e�ects on the clustering results. An adequate

selection of k should consider the shape and density of the clusters desired. Although

there is not a generally accepted approach to this problem, many methods attempting to

solve it have been proposed [11, 22, 23]. In some clustering methods (such as hierarchi-

cal and density clustering), there is no need to explicitly specify k. Implicitly, its value

is, nevertheless, still required: the cardinality or density of the clusters must be given.

Hence, there is always the need to select a value of k. In what follows, we assume that

the value of k is given a priori. We do not consider the problem of �nding the optimal

value of k. See, for example, [24�26].

1.2 Evaluating the Clustering Process

Given a dataset X to be clustered and a value of k, the most natural way to �nd the

clusters is to determine the similarity among the elements of X. As mentioned, usually,

such similarity is established in terms of proximity through a metric or distance function.

In the literature, there are many metrics [27] that allow us to �nd a variety of clustering

solutions. The problem is how to determine if a certain solution is good or not. For

instance, in Figures 1.1 and 1.2, we can see two datasets clustered with k = 2. For

such datasets, there are several possible solutions, as shown in Figures 1.1b,c and 1.2b,c,

respectively.

Chapter 1. Introduction 6

Frequently, the goodness of a clustering solution is quanti�ed through validity indices

[10, 14, 28, 29]. The indices in the literature are classi�ed into three categories: (1) exter-

nal indices that are used to measure the extent to which cluster labels match externally-

supplied class labels (F-measure [30], NMIMeasure [31], entropy [32], purity [33]); (2)

internal indices, which are used to measure the goodness of a clustering structure with

respect to the intrinsic information of the dataset ([34], [35],[36],[37], [14]); and (3) rel-

ative indices that are used to compare two di�erent clustering solutions or particular

clusters (the RAND index [38] and adjusted RAND index [39]).

(a) (b) (c)

Figure 1.1: Example of a clustering problem. (a) Dataset X1; (b) solution for k = 2;
and (c) another solution for k = 2.

(a) (b) (c)

Figure 1.2: Another clustering problem. (a) Dataset X2; (b) solution for k = 2; and
(c) another solution for k = 2.

Clusters are found and then assigned a validity index. We bypass the problem of qual-

ifying the clusters and, rather, de�ne a quality measure and then �nd the clusters that

optimize it. This allows us to de�ne the clustering process as follows:

Chapter 1. Introduction 7

De�nition 1. Given a dataset X to be clustered and a value of k, clustering is a process

that allows the partition of the space of X into k regions, such that the elements that

belong to them optimize a validity index q.

Let Ci be a partition of X and Π = {C1, C2, ...Ck} the set of such partitions that

represents a possible clustering solution of X. We can de�ne a validity index q as a

function of the partition set Π, such that the clustering problem may be reduced to an

optimization problem of the form:

Optimize q = f(Π)

subject to:

gi(Π) ≤ 0, i = 1, 2...,m

hj(Π) = 0, j = 1, 2, ..., p

(1.2)

where gi and hj are constraints, likely based on prior information about the partition set

Π (e.g., the desired properties of the clusters).

We want to explore the space of those feasible partition sets and �nd one that optimizes

a validity index instead, doing an a posteriori evaluation of a partition set (obtained

by any optimization criterion) through such an index. This approach allows us to �nd

�the best clustering� within the limits of a validity index. To tightly con�rm such an

assertion, we resort to the statistical evaluation of our method (see Chapter 5).

1.3 Finding the Best Partition of X

Finding the suitable partition set Π of X is a di�cult problem. The total number of

di�erent partition sets of the form Π = {C1, C2, ...Ck} may be expressed by the function

S(N, k) associated with the Stirling number of the second kind [40], which is given by:

S(N, k) =
1

k!

k∑

i=0

(−1)k−i
(
k

i

)
iN (1.3)

where N = |X|. For instance, for N = 50 and k = 2, S(N, k) ≈ 5.63 × 1014. This

number illustrates the complexity of the problem that we need to solve. Therefore, it

is necessary to resort to a method that allows us to explore e�ciently a large solution

space. In the following section, we brie�y describe some meta-heuristic searches.

Chapter 1. Introduction 8

1.4 Choosing the Meta-Heuristic

During the last few decades, there has been a tendency to consider computationally-

intensive methods that can search very large spaces of candidate solutions. Among the

many methods that have arisen, we mention tabu search [41�43], simulated annealing

[44, 45], ant colony optimization [46], particle swarm optimization [47] and evolutionary

computation [48]. Furthermore, among the many variations of evolutionary computation,

we �nd evolutionary strategies [49], evolutionary programming [50], genetic programming

[51] and genetic algorithms (GAs) [52]. All of these methods are used to �nd approximate

solutions for complex optimization problems. It was proven that an elitist GA always

converges to the global optimum [3]. Such a convergence, however, is not bounded in

time, and the selection of the GA variation with the best dynamic behavior is very

convenient. In this regard, we rely on the conclusions of previous analyses [4, 5], which

showed that a breed of GA, called the eclectic genetic algorithm (EGA), achieves the

best relative performance. These analyses have been include in Appendix G. Such an

algorithm incorporates the following:

(1) Full elitism over a set of size n of the last population. Given that, by generation t,

the number of individual tested is nt, the population in such a generation consists

of the best n individuals.

(2) Deterministic selection as opposed to the traditional proportional selection operator.

Such a scheme emphasizes genetic variety by imposing a strategy that enforces the

crossover of prede�ned individuals. After sorting the individual's �tness from better

to worse, the i-th individual is combined with the (n− i+ 1)-th individual.

(3) Annular (two-point) crossover.

(4) Random mutation of a percentage of bits of the population.

In Appendix A, we present additional information and the pseudo-code of EGA, detailed

information about it, can be found in [5].

1.5 Related Works

Our method is meta-heuristic. The main idea behind such method is to handle the

clustering problem as a general optimization problem. In the literature there are vari-

ous suitable meta-heuristic clustering methods. For instance, in [55�57], three di�erent

clustering methods based on di�erential evolution, ant colony and multi-objective pro-

gramming, respectively, are proposed.

Chapter 1. Introduction 9

Both meta-heuristic or analytical methods (iterative, density-based, hierarchical) have

objective functions, which are associated with a metric. In our method, the validity

index becomes the objective function.

Our objective function is based on information theory. Several methods based on the

optimization of information theoretical functions have been studied [58�63]. Typically,

they optimize quantities, such as entropy [32] and mutual information [64]. These quan-

tities involve determining the probability distribution of the dataset in a non-parametric

approach, which does not make assumptions about a particular probability distribution.

The term non-parametric does not imply that such methods completely lack parameters;

they aim to keep the number of assumptions as weak as possible (see [60, 63]). Non-

parametric approaches involve density functions, conditional density functions, regres-

sion functions or quantile functions in order to �nd the suitable distribution. Typically,

such functions imply tuning parameters that determine the convergence of searching for

the optimal distribution.

A common clustering method based on information theory is ENCLUS (entropy cluster-

ing) [65], which allows us to split iteratively the space of the dataset X in order to �nd

those subspaces that minimize the entropy. The method is motivated by the fact that

a subspace with clusters typically has lower entropy than a subspace without clusters.

In order to split the space of X, the value of a resolution parameter must be de�ned. If

such a value is too large, the method may not able to capture the di�erences in entropy

in di�erent regions in the space.

Our proposal di�ers from traditional clustering methods (those based on minimizing a

proximity measure as k -means or fuzzy c-means) in that, instead of �nding those clusters

that optimize such a measure and then de�ning a validity index to evaluate its quality,

our method �nds the clusters that optimize a purported validity index.

As mentioned, such validity index is an information theoretical function. In this sense,

our method is similar to those mentioned methods based on information theory. How-

ever, it does not use explicitly a non-parametric approach to �nd the distribution of the

dataset. It explores the space of all possible probability distributions to �nd one that

optimizes our validity index. For this reason, the use of a suitable meta-heuristic is com-

pulsory. With the exception of the parameters of such a meta-heuristic, our method does

not resort to additional parameters to �nd the optimal distribution and, consequently,

the optimal clustering solution.

Our validity index involves entropy. Usually in the methods based on information theory,

the entropy is interpreted as a "disorder" measure; thus, an obvious way is to minimize

Chapter 1. Introduction 10

such a measure. In our work, we propose to maximize it due to the maximum entropy

principle.

1.6 Organization of the Discussion

The rest of this work is organized as follows: In Chapter 2, we brie�y discuss the concept

of information content, entropy and the maximum entropy principle. Then, we approach

such issues in the context of the clustering problem. In Chapter 3, we formalize the

underlying ideas and describe the main line of our method (in what follows, clustering

based on entropy (CBE)). In Chapter 4, we present a general description of the datasets.

Such datasets were grouped into three categories: (1) synthetic Gaussian datasets; (2)

synthetic non-Gaussian datasets; and (3) experimental datasets taken from the UCI

Machine Learning Repository [67]. In Chapter 5, we present the methodology to evaluate

the e�ectiveness of CBE regardless of a validity index. In Chapter 6, we show the

experimental results. We use synthetically-generated Gaussian datasets and apply a

Bayes classi�er (BC) [66, 68, 69]. We use the results as a standard for comparison due to

its optimal behavior. Next, we consider synthetic non-Gaussian datasets. We prove that

CBE yields results comparable to those obtained by a multilayer perceptron network

(MLP). We show that our (non-supervised) method's results are comparable to those of

BC and MLP, even though these are supervised. The results of other clustering methods

are also presented, including an information theoretic-based method (ENCLUS). Finally,

in Chapter 7, we present our conclusions. We have included three appendices expounding

important details.

Chapter 2

Maximum Entropy Principle and

Clustering

The so-called entropy [32] appeals to an evaluation of the information content of a random

variable Y with possible values {y1, y2, ...yn}. From a statistical viewpoint, the informa-

tion of the event (Y = yi) is inversely proportional to its likelihood. This information is

denoted by I(yi), which can be expressed as:

I(yi) = log

(
1

p(yi)

)
= −log (p(yi)) (2.1)

From information theory [32, 70], the entropy of Y is the expected value of I. It is given

by:

H(Y) = −
N∑

i=1

p(yi)log (p(yi)) (2.2)

Typically, the log function may be taken to be log2, and then, the entropy is expressed

in bits; otherwise, as ln, in which case the entropy is in nats. We will use log2 for the

computations in this paper.

When p(yi) is uniformly distributed, the entropy of Y is maximal. This means that Y

has the highest level of unpredictability and, thus, the maximal information content.

The value of the entropy has many intuitive interpretations: the distributions of higher

entropy represent more "disorder", they are "smoother", or they are "less predictable".

11

Chapter 2. Maximum Entropy Principle and Clustering 12

2.1 Maximum Entropy Principle

Since entropy re�ects the amount of "disorder" of a system, many methods employ some

form of such a measure in the objective function of clustering. It is expected that each

cluster has a low entropy, because data points in the same cluster should look similar

[59�63].

We consider the clustering problem a stochastic system with a set of states S = {Π1,Π2, ...,Πn}
whose probabilities are unknown (recall that Πi is a likely partition set of X of the form

Π = {C1, C2, ..., Ck}). A possible assertion would be that the probabilities of all states

are equal (p(Π1) = p(Π2) = ... = p(Πn−1) = p(Πn)), and therefore, the system has the

maximum entropy. However, if we have additional knowledge, then we should be able to

�nd a probability distribution that is better in the sense that it is less uncertain. This

knowledge can consist of certain average values or bounds on the probability distribution

of the states, which somehow de�ne several conditions imposed upon such distribution.

Usually, there is an in�nite number of probability models that satis�es these conditions.

The question is: which model should we choose? The answer lies in themaximum entropy

principle, which may be stated as follows [71]: when an inference is made on the basis

of incomplete information, it should be drawn from the probability distribution that

maximizes the entropy, subject to the constraints on the distribution. As mentioned, a

condition is an expected value of some measure about the probability distributions. Such

a measure is one for which each of the states of the system has a value denoted by g(Πi).

2.1.1 Numerical Example

Let X = {9, 10, 9, 2, 1} be a discrete dataset to be clustered with k = 2. We assume that

the "optimal" labeling of the dataset is the one that is shown in Table 2.1.

X C

9 C1

10 C1

9 C1

2 C2

1 C2

Table 2.1: Unidimensional dataset.

Chapter 2. Maximum Entropy Principle and Clustering 13

Such labeling de�nes a partition Π∗ of the form Π∗ = {C1 = {9, 10, 9}, C2 = {2, 1}}.
The probability model of Π∗ is given by the conditional probabilities p(x|Ci) that rep-

resent the likelihood that, when observing cluster Ci, we can �nd object x. Table 2.2

shows such probabilities.

X C p(x|C1) p(x|C2)

9 C1 0.333 0.000

10 C1 0.333 0.000

11 C1 0.333 0.000

2 C2 0.000 0.500

1 C2 0.000 0.500

Table 2.2: Probability model of Π∗.

The entropy of X conditioned on the random variable C taking a certain value Ci is

denoted as H(X|C = Ci). Thus, we de�ne the total entropy of Π∗ as:

H(Π∗) =
∑

Ci∈Π∗
H(X|C = Ci)

H(Π∗) = − ∑
Ci∈Π∗

∑
x∈Ci

p(x|Ci)log(p(x|Ci))
(2.3)

Given the probability model of Π∗ and Equation (2.3), the total entropy of Π∗ is shown

in Table 2.3. We may also calculate the mean and the standard deviation of the elements

x ∈ Ci denoted as σ(Ci) in order to de�ne a quality index:

g(Π∗) =
2∑

i=1

σ(Ci) (2.4)

X C p(x|C1) p(x|C2) p(x|C1)log (p(x|C1)) p(x|C2)log (p(x|C2))

9 C1 0.333 0.000 −0.528 0.000

10 C1 0.333 0.000 −0.528 0.000

11 C1 0.333 0.000 −0.528 0.000

2 C2 0.000 0.500 0.000 −0.500

1 C2 0.000 0.500 0.000 −0.500

H(Π∗) 2.584

g(Π∗) 1.316

Table 2.3: Probability model and the entropy of Π∗.

Chapter 2. Maximum Entropy Principle and Clustering 14

Alternative partition sets are shown in Tables 2.4 and 2.5.

X C p(x|C1) p(x|C2) p(x|C1)log (p(x|C1)) p(x|C2)log (p(x|C2))

9 C1 0.250 0.000 −0.500 0.000

10 C1 0.250 0.000 −0.500 0.000

11 C1 0.250 0.000 −0.500 0.000

2 C2 0.000 1.000 0.000 0.000

1 C1 0.250 0.000 −0.500 0.000

H(Π1) 2.000

g(Π1) 3.960

Table 2.4: Probability model and entropy of Π1.

X C p(x|C1) p(x|C2) p(x|C1)log (p(x|C1)) p(x|C2)log (p(x|C2))

9 C2 0.000 0.333 0.000 −0.528

10 C1 0.500 0.000 −0.500 0.000

11 C1 0.500 0.000 −0.500 0.000

2 C2 0.000 0.333 0.000 −0.528

1 C2 0.000 0.333 0.000 −0.528

H(Π2) 2.584

g(Π2) 4.059

Table 2.5: Probability model and entropy of Π2.

In terms of maximum entropy, partition H(Π2) is better than H(Π1). Indeed, we can

say that H(Π2) is as good as H(Π∗). If we assume that a cluster is a partition with

the minimum standard deviation, then the partition set Π∗ is the best possible solution

of the clustering problem. In this case, the minimum standard deviation represents a

condition that may guide the search for the best solution. We may consider any other

set of conditions depending on the desired properties of the clusters. The best solution

will be the one with the maximum entropy, which complies with the selected conditions.

2.2 Finding the Optimal Partition

In the example above, we knew the labels of the optimal class and the problem became

trivial. In the clustering problems, there are no such labels, and thus, it is compulsory to

�nd the optimal solution based solely on the prior information supplied by one or more

Chapter 2. Maximum Entropy Principle and Clustering 15

conditions. We are facing an optimization problem of the form:

Maximize:H(Π)

subject to:

g1(Π) ≤ ε1
g2(Π) ≤ ε2

...

gn(Π) ≤ εn
Π ∈ S

(2.5)

where εi is the upper bound of value of the i-th condition. We do not know the value of

εi, and thus, we do not have enough elements to determine compliant values of gi. Based

on prior knowledge, we infer whether the value of gi is required to be as small (or large)

as possible. In our example, we postulated that gi(Π) (based on the standard deviation

of the clusters) should be as small as possible. Here, gi(Π) becomes an optimization

condition. Thus, we can rede�ne the above problem as:

Optimize:(H(Π), g1(Π), g2(Π), ..., gn(Π))

subject to:

Π ∈ S
(2.6)

which is a multi-objective optimization problem [72].

Without loss of generality, we can reduce the problem in Equation (2.6) to one of max-

imizing the entropy and minimizing the sum of the standard deviation of the clusters

(for practical purposes, we choose the standard deviation; however, we may consider

any other statistics, even higher-order statistics). The resulting optimization problem is

given by:

Maximize:H(Π) ∧Minimize:g(Π))

subject to:

Π ∈ S
(2.7)

where g(Π) is the sum of the standard deviation of the clusters. In a n-dimensional

space, the standard deviation of the cluster Ci is a vector of the form ~σ = (σ1, σ2, σn),

where σj is the standard deviation of each dimension of the objects ~x ∈ Ci. In general,

we calculate the standard deviation of a cluster as:

σ(Ci) =
n∑

j=1

σi∀σj ∈ ~σ (2.8)

Chapter 2. Maximum Entropy Principle and Clustering 16

Then, we de�ne the corresponding g(Π) as:

g(Π) =

k∑

i=1

σ(Ci) (2.9)

The entropy of the partition set Π denoted by H(Π) is given by Equation (2.3).

The problem of Equation (2.7) is intractable via classical optimization methods [73, 74].

The challenge is to simultaneously optimize all of the objectives. The tradeo� point is

a Pareto-optimal solution [75]. Genetic algorithms are popular tools used to search for

Pareto-optimal solutions [76, 77].

Chapter 3

Solving the Problem through EGA

Most multi-objective optimization algorithms use the concept of dominance in their

search to �nd a Pareto-optimal solution. For each objective function, there exists one

di�erent optimal solution. An objective vector constructed with these individual optimal

objective values constitutes the ideal objective vector of the form:

z∗ = (f∗1 , f
∗
2 , ..., f

∗
n) (3.1)

where f∗i is the i-th objective function. Given two vectors z and w, it is said that z

dominates w, if each component of z is less or equal to the corresponding component of

w, and at least one component is smaller:

z � w ↔ ∀i(zi ≤ wi) ∧ ∃k(zk < wk) (3.2)

We use EGA to solve the problem of Equation (2.7).

3.1 Encoding a Clustering Solution

We established that a solution (an individual) is a random sequence of symbols s from

the alphabet
∑

= {1, 2, 3...k}. Every symbol in s represents the cluster to which an

object ~x ∈ X belongs. The length of s is given by the cardinality of X. An individual

determines a feasible partition set Π of X. This is illustrated in Figure 3.1.

17

Chapter 3. Solving the Problem through EGA 18

(a) (b)

Figure 3.1: Feasible partition sets of X ∈ <2 for k = 2. (a) Π1 and (b) Π2.

From this encoding, Π1 = {C1 = {x1, x5}, C2 = {x2, x3, x4}} and Π2 = {C1 = {x1, x3, x4},
C2 = {x2, x5}}. EGA generates a population of feasible partition sets and evaluates them

in accordance with their dominance. Evolution of the population takes place after the

repeated application of the genetic operators, as described in [4, 5].

3.2 Finding The Probability Distribution of the Elements

of a Cluster

Based on the encoding of an individual of EGA, we can determine the elements ~x that

belong to Ci for all i = 1, 2, ..., k. To illustrate the way p(~x|C1) is calculated, we refer to

the partition set shown in Figure 3.2.

Figure 3.2: Representation of p(~x|C1).

The shaded area represents the proportion of ~x, which belongs to cluster C1. We divide

the probability space of cluster C1 into a �xed number of quantiles (see Figure 3.3). The

conditional proportion of ~x in Ci is the proportion of the number of objects ~x in a given

quantile.

Chapter 3. Solving the Problem through EGA 19

Figure 3.3: Example of the probability space of Ci in <.

An unidimensional case is illustrated in Figure 3.3. This idea may be extended to a

multidimensional space, in which case, a quantile is a multidimensional partition of the

space of Ci, as is shown in Figure 3.4. In general, the p(~x|Ci) is the density of the

quantile to which ~x belongs in terms of the percentage of data contained in it. We want

to obtain quantiles that contain at most 0.0001 percent of the elements. Thus, we divide

the space of Ci into 10,000 quantiles.

Figure 3.4: Example of the probability space of Ci in <3.

3.3 Determining the Parameters of CBE

The EGA in CBE was executed with the following parameter values: Pc = 0.90, Pm =

0.09, Population size = 100, Generations = 800. It is based on a preliminary study,

which showed that from a statistical view point, EGA converges to the optimal solution

around such values when the problems are demanding (those with a non-convex feasible

space) [4, 5]. The value of k in all experiments is known a priori from the dataset.

Chapter 4

Datasets

We present a general description of the datasets used in our work. They comprise three

categories: (1) synthetic Gaussian datasets; (2) synthetic non-Gaussian datasets; and (3)

experimental datasets taken from the UCI database repository, i.e., real-world datasets.

Important details about these categories are shown in Appendix B.

4.1 Synthetic Dataset

Supervised clustering is, in general, more e�ective than an unsupervised one. Knowing

this, we make an explicit comparison between a supervised method and our own clus-

tering algorithm. We will show that the performance of our method is comparable to

the one of a supervised method. This fact underlines the e�ectiveness of the proposed

clustering algorithm. It is known that, given a dataset X divided into k classes whose

elements are drawn from a normal distribution, a BC achieves the best solution relative

to other classi�ers [69]. Therefore, we will gauge the performance of CBE relative to BC.

Without the normality assumption, we also want to measure the performance of CBE

relative to a suitable classi�er; in this regard, we use MLP, which has been shown to be

e�ective without making assumptions about the dataset.

Our claim is that if CBE performs satisfactorily when it is compared against a supervised

method, it will also perform reasonably well relative to other clustering (non-supervised)

methods. In order to prove this, we generated both Gaussian and non-Gaussian synthetic

datasets, as described in Appendix B. For each dataset, the class labels were known.

They are meant to represent the expected clustering of the dataset. It is very important

to stress that CBE is unsupervised, and hence, it does not require the set of class labels.

20

Chapter 4. Datasets 21

4.2 Real-World Datasets

Likewise, we also used a suite of datasets that represent �real-world� problems from the

UCI repository, also described in Appendix B, Section B.3. We used an MLP as practical

approximation to the best expected classi�cation of these datasets.

Chapter 5

Methodology to Gauge the

E�ectiveness of a Clustering Method

In what follows, we present the methodology to determine the e�ectiveness of any cluster-

ing method (CM). We solve a large set of clustering problems by generating a su�ciently

large supply of synthetic datasets. First, the datasets are made to distribute normally.

Given the fact that BC will classify optimally when faced with such datasets, we will use

them to compare a CM vs. BC. Afterwards, other datasets are generated, but no longer

demanded to be Gaussian. We will use these last datasets to compare a CM vs. MLP.

In both cases, we are testing the large number of classi�cation problems to ensure that

the behavior of a CM, relative to the best supervised algorithm (BC or MLP), will be

statistically signi�cant.

With the real-world datasets, the e�ectiveness of a CM is given by the number matching

between cluster labels obtained by such a CM and the a priori class labels of the dataset.

5.1 Determining the E�ectiveness Using Synthetic Gaus-

sian Datasets

Given a labeled Gaussian dataset X∗i (i = 1, 2, ...n), we use BC to classify X∗i . The same

set not including the labels will be denoted Xi. The classi�cation yields Y ∗i , which will

be used as the benchmarking reference. We may determine the e�ectiveness of any CM

as follows:

1. Obtain a sample X∗i .

2. Train the BC based on X∗i .

22

Chapter 5. Methodology to Gauge the E�ectiveness of a Clustering Method 23

3. From the trained BC, obtain the �reference� labels for all ~x∗ ∈ X∗i (denoted by

Y ∗i).

4. Train the CM with Xi to obtain a clustering solution denoted as Yi.

5. Obtain the percentage of the number of elements of Yi that match those of Y ∗i .

5.2 Determining the E�ectiveness of Using Synthetic Non-

Gaussian Datasets

Given a labeled non-Gaussian dataset X∗i for i = 1, 2, ...N , we followed the same exact

steps as described in Section 5.1, but we replaced the BC with an MLP. We are assuming

(as discussed in [69]) that MLPs are the best practical choice as a classi�er when data

are not Gaussian.

5.3 Determining the E�ectiveness Using Real-World Datasets

With the real-world datasets, the e�ectiveness of a CM is given by the percentage match-

ing between cluster labels obtained by such a CM and the a priori class labels of the

dataset.

5.4 Determining the Statistical Signi�cance of the E�ective-

ness

We statistically evaluated the e�ectiveness of any CM using synthetic datasets (both

Gaussian and non-Gaussian). In every case, we applied a CM to obtain Yi. We denote

the relative e�ectiveness as ϕ. We wrote a computer program that takes the following

steps:

(1) A set of N = 36 datasets is randomly selected.

(2) Every one of these datasets is used to train a CM and BC or MLP, when data are

Gaussian or non-Gaussian, respectively.

(3) ϕi is recorded for each problem.

(4) The average of all ϕi is calculated. Such an average is denoted as ϕ̄m.

(5) Steps 1�4 are repeated, until the ϕ̄m are normally distributed. The mean and stan-

dard deviation of the resulting normal distribution are denoted by µ′ and σ′, respec-

tively.

Chapter 5. Methodology to Gauge the E�ectiveness of a Clustering Method 24

From the central limit theorem, ϕ̄m will be normally distributed for appropriate M .

Experimentally (see Appendix C), we found that an adequate value of M is given by:

M ≈ b− ln[ln(a
P)]

c
(5.1)

where P is the probability that the experimental χ2 is less than or equal to 3.28, and

there are �ve or more observations per quantile; a = 0.046213555, b = 12.40231200 and

c = 0.195221110. For p ≤ 0.05, from 5.1, we have that M ≥ 85. In other words, if

M ≥ 85, the probability that ϕ̄ is normally distributed is better that 0.95. Ensuring

that ϕ̄ ∼ N(µ′, σ′), we can easily infer the mean µ and the standard deviation σ of the

distribution of ϕ from:

σ = σ′
√
N (5.2)

µ = µ′ (5.3)

From Chebyshev's inequality [78], the probability that the performance of a CM ϕ lies

in the interval [µ− λσ, µ+ λσ] is given by:

p(µ− λσ ≤ ϕ ≤ µ+ λσ) ≥ 1− 1

λ2
(5.4)

where λ denotes the number of standard deviations. By setting λ = 3.1623, we ensure

that the values of ϕ will lie in this interval with probability p ≈ 0.9. A lower bound on

ϕ (assuming the symmetric distribution of the ϕs) is given by µ+ λσ.

Chapter 6

Results

In what follows, we show the results from the experimental procedure. We wanted

to explore the behavior of our method relative to other clustering methods. We used

a method based on information theory called ENCLUS and two other methods: k -

means and fuzzy c-means. For all methods, we used the experimental methodology

(with Gaussian and non-Gaussian datasets). All methods were made to solve the same

problems.

6.1 Synthetic Gaussian Datasets

Table 6.1 shows the values of ϕ for Gaussian datasets. Lower values imply better closeness

to the results achieved from BC (see Section 5.1). The Gaussian datasets were generated

in three di�erent arrangements: disjoint, overlapping and concentric. Figure 6.1 shows

an example of such arrangements.

All four methods yield similar values for disjoint clusters (simple problem). However,

important di�erences are found when tackling the overlapping and concentric datasets

(hard problems). We can see that CBE is noticeable better.

Since BC exhibits the best theoretical e�ectiveness given Gaussian datasets, we have

included the percentual behavior of the four methods relative to it in Table 6.2.

25

Chapter 6. Results 26

Algorithm Disjoint Overlapping Concentric

k -means 0.018 0.42 0.52

fuzzy c-means 0.017 0.36 0.51

ENCLUS 0.019 0.04 0.12

CBE 0.020 0.03 0.04

p-value < 0.05

Table 6.1: Average e�ectiveness (ϕ) for Gaussian datasets.

Figure 6.1: Example of possible arrangements of a Gaussian dataset.

Algorithm Disjoint Overlapping Concentric

k -means 0.982 0.576 0.475

fuzzy c-means 0.983 0.636 0.485

ENCLUS 0.981 0.960 0.879

CBE 0.980 0.970 0.960

BC 1.000 1.000 1.000

p-value < 0.05

Table 6.2: Performance relative to the Bayes classi�er (BC) (%).

6.2 Synthetic Non-Gaussian Datasets

Table 6.3 shows the values of ϕ for non-Gaussian datasets. These do not have a particular

arrangement (disjoint, overlapping and concentric). As before, lower values imply better

closeness to the results achieved from MLP (see Section 5.2).

The values of CBE and ENCLUS are much better than the ones of traditional clustering

methods. Nevertheless, when compared to ENCLUS, CBE is 62.5% better.

Chapter 6. Results 27

Algorithm µ(ϕ)

k -means 0.56

fuzzy c-means 0.54

ENCLUS 0.13

CBE 0.08

p-value < 0.05

Table 6.3: Average e�ectiveness (ϕ) for non-Gaussian datasets. ENCLUS, entropy
clustering; CBE, clustering-based on entropy.

Since MLP is our reference for non-Gaussian datasets, we have included the percentual

behavior of the four methods relative to it in Table 6.4.

Algorithm Percentual Performance

k -means 0.440

fuzzy c-means 0.460

ENCLUS 0.870

CBE 0.920

MLP 1.000

p-value < 0.05

Table 6.4: Performance relative to MLP (%).

6.3 "Real-World" Datasets

Based on Section 5.3, we calculate the e�ectiveness for the same set of CMs. Here, we

used MLP as a practical reference of the best expected classi�cation. The results are

shown in Table 6.5. Contrary to previous results, a greater value represents a higher

e�ectiveness.

Chapter 6. Results 28

Set CBE ENCLUS k-Means Fuzzy c-Means MLP

Abalone 0.596 0.563 0.496 0.511 0.690

Cars 0.917 0.896 0.696 0.712 0.997

Census 0.855 0.812 0.774 0.786 1.000

Hepatitis 0.859 0.846 0.782 0.811 0.987

Yeast 0.545 0.496 0.470 0.486 0.750

Average 0.754 0.723 0.644 0.661 0.885

Table 6.5: E�ectiveness of CBE and other clustering methods for "Real-World"
Datasets

As expected, the best value was achieved by MLP. The relative performance is shown in

Table 6.6.

Method Relative E�ectiveness

k -means 0.728

Fuzzy c-means 0.747

ENCLUS 0.817

CBE 0.853

MLP 1.000

Table 6.6: Performance relative to MLP.

Chapter 7

Conclusions

A new unsupervised classi�er system (CBE) has been de�ned based on the entropy as a

quality index (QI) in order to pinpoint those elements in the dataset that, collectively,

optimize such an index. The e�ectiveness of CBE has been tested by solving a large

number of synthetic problems. Since there is a large number of possible combinations

of the elements in the space of the clusters, an eclectic genetic algorithm is used to

iteratively �nd the assignments in a way that increases the intra- and inter-cluster entropy

simultaneously. This algorithm is run for a �xed number of iterations and yields the best

possible combination of elements given a preset number of clusters k. That the GA will

eventually reach the global optimum is guaranteed by the fact that it is elitist. That it

will approach the global optimum satisfactorily in a relatively small number of iterations

(800) is guaranteed by extensive tests performed elsewhere (see [4, 5]).

We found that when compared to BC's performance over Gaussian distributed datasets,

CBE and BC have, practically, indistinguishable success ratios, thus proving that CBE is

comparable to the best theoretical option. Here, we, again, stress that BC corresponds to

supervised learning, whereas CBE does not. The advantage is evident. When compared

to BC's performance over non-Gaussian sets, CBE, as expected, displayed a much better

success ratio. The conclusions above have been reached for a statistical p-value of 0.05.

In other words, the probability of such results to persist on datasets outside our study

is better than 0.95, thus ensuring the reliability of CBE.

The performance value ϕ was calculated by: (1) providing a method to produce an

unlimited supply of data; (2) This method is able to yield Gaussian and non-Gaussian

distributed data; (3) Batches of N = 36 datasets were clustered; (4) For every one

of the N Gaussian sets, the di�erence between our algorithm's classi�cation and BC's

classi�cation (ϕ) was calculated; (5) For every batch, ϕ was recorded; (6) The process

described in Steps 3, 4 and 5 was repeated until the ϕ distributed normally; (7) Once the

29

Chapter 7. Conclusions 30

ϕ are normal, we know the mean and standard deviation of the means; (8) Given these,

we may infer the mean and standard deviation of the original pdf of the ϕs; (9) From

Chebyshev's theorem, we may obtain the upper bound of ϕ with probability 0.95. From

this methodology, we may establish a worst case upper bound on the behavior of all of

the analyzed algorithms. In other words, our conclusions are applicable to any clustering

problem (even those outside of this study) with a probability better than 0.95 .

For completeness, we also tested the e�ectiveness of CBE by solving a set of �real world�

problems. We decided to use an MLP as the comparison criterion to measure the per-

formance of CBE based on the nearness of its e�ectiveness with regard to it. Of all of

the unsupervised algorithms that were evaluated, CBE achieved the best performance.

Here, two issues should be underlined: (1) Whereas BC and MLP are supervised, CBE

is not. The distinct superiority of one method over the others, in this context, is evident;

(2) As opposed to BC, CBE was designed not to need the previous calculation of the

conditional probabilities of BC; a marked advantage of CBE over BC. It is important

to mention that our experiments include tight tests comparing the behavior of other

clustering methods. We compared the behavior of k -means, fuzzy c-means and ENCLUS

against BC and MLP. The results of the comparison showed that CBE outperforms them

(with 95% reliability).

For disjoint sets, which o�er no major di�culty, all four methods (k -means, fuzzy c-

means, ENCLUS and CBE) perform very well relative to BC. However, when tack-

ling partially overlapping and concentric datasets, the di�erences are remarkable. The

information-based methods (CBE and ENCLUS) showed the best results; nevertheless,

CBE was better than ENCLUS. For non-Gaussian datasets, the values of CBE and EN-

CLUS also outperform the other methods. When CBE is compared to ENCLUS, CBE

is 62.5% better.

In conclusion, CBE is a non-supervised, highly e�cient, universal (in the sense that it

may be easily utilized with other quality indices) clustering technique whose e�ective-

ness has been proven by tackling a very large number of problems (1,530,000 combined

instances). It has been, in practice, used to solve complex clustering problems that other

methods were not able to solve.

Appendix A

Eclectic Genetic Algorithm

For those familiar with the methodology of genetic algorithms, it should come as no

surprise that a number of questions relative to the best operation of the algorithm im-

mediately arise. The simple genetic algorithm [52] frequently mentioned in the literature

leaves open the optimal values of, at least, the following parameters:

(1) Probability of crossover (Pc).

(2) Probability of mutation (Pm).

(3) Population size.

Premature and/or slow convergence are also of prime importance. For this, the EGA

includes the following characteristics:

(1) The best (overall) n individuals are considered. The best and worst individuals (1−n)

are selected; then, the second best and next-to-the-worst individuals (2− [n−1]) are

selected, etc.

(2) Crossover is performed with a probability Pc. Annular crossover makes this operation

position independent. Annular crossover allows for unbiased building block search, a

central feature to GA's strength. Two randomly selected individuals are represented

as two rings (the parent individuals). Semi-rings of equal size are selected and

interchanged to yield a set of o�spring. Each parent contributes the same amount

of information to their descendants.

(3) Mutation is performed with probability Pm. Mutation is uniform and, thus, is kept at

very low levels. For e�ciency purposes, we do not work with mutation probabilities

for every independent bit. Rather, we work with the expected number of mutations,

which, statistically is equivalent to calculating mutation probabilities for every bit.

31

Appendix A. Eclectic Genetic Algorithm 32

Hence, the expected number of mutations is calculated from `∗n∗pm, where ` is the
length of the genome in bits and n is the number of individuals in the population.

In what follows, we present the pseudo-code of EGA:

Algorithm 1: Eclectic genetic algorithm.

Data:

n = Number of individuals

pc = Crossover probability

pm = Mutation probability

` = Length of the Individual

b2m = ` ∗ n ∗ pm number of bits to mutate

Result: The top n individuals

Generate a population P of size n whose n` bits are randomly set:

initialize(P);

evaluate(P);

Sort individuals from best to worst based on their �tness:

sort(P);

while convergence criteria are not met do

duplicate(P);

for i = 1 to n do

Generate a random number R;

if R > pc then

Generate a random integer locus ∈ [1, `];

Interchange the semi-ring starting at locus for individuals i and 2n− i+ 1:

crossover(P (i), P (2n− i+ 1));

end

end

Mutate the population in b2m randomly-selected bits:

mutate(P);

Evaluate the population again:

evaluate(P);

Sort individuals from best to worst based on their �tness:

sort(P);

Eliminate the worst n individuals from P

remove(P);

end

Return P

A.1 Performance of EGA

To choose EGA as the best optimization method to solve our problem, we rest on the

conclusions of our previous analysis regarding the performance of a set of algorithms

Appendix A. Eclectic Genetic Algorithm 33

(which included evolutionary and non-evolutionary algorithms) [4, 5]. In the following

subsections we show the set of algorithms analyzed and what we consider the most

important results. The reader can �nd details of this results in Appendix G

A.1.1 Set of Algorithms

We selected a set A of 4 structurally di�erent GAs and a non-evolutionary algorithm

(NEA) in order to solve, in principle, an unlimited supply of functions in < × < sys-

tematically generated. From the results obtained, a ranking of the algorithms in A was

determined. For completeness, an extended set of functions in <×<, <×<2 and <×<3

was generated and subsequently solved. A similar behavior of A (within statistical lim-

its) was found in all cases. This fact allowed to hypothesize about the behavior of A for

functions in <×<n. As supplement, a suite of problems was selected which includes hard

unconstrained problems (which traditionally have been used for benchmarking purposes)

[94] and constrained problems [95]. Lastly, atypical GA-hard functions were analyzed

[89, 90]. The set A included the following GAs:

1. An elitist canonical GA (in what follows referred to as TGA [eliTist GA]) [3].

2. A Cross generational elitist selection, Heterogeneous recombination, and Cata-

clysmic mutation algorithm (CHC algorithm) [91].

3. An Eclectic Genetic Algorithm (EGA) [92].

4. A Statistical GA (SGA) [93, 96].

The set A also includes a non-evolutionary algorithm called RMH algorithm[88].

A.1.2 Global Performance

The results were grouped into three categories: 1) Unbiased Problems (set of functions

systematically generated), 2) Selected Suite Problems (Unconstrained and Constrained

Functions) and 3) Atypical Problems. Table A.1 shows the relative global performance

of such functions. The best algorithm in the table is EGA

Appendix A. Eclectic Genetic Algorithm 34

Table A.1: Global Performance of all algorithms for di�erent categories of problems

Ai Unbiased Suite Atypical Global Performance Relative

EGA 9.64 8.00 4.48 7.37 100.00%

RMH 6.24 0.012 2.04 2.76 37.49%

TGA 1.35 1.16 4.77 2.43 32.91%

SGA 1.33 0.036 3.33 1.57 21.23%

CHC 2.12 0.08 2.10 1.43 19.44%

Appendix B

Datasets

B.1 Synthetic Gaussian Datasets

To generate a Gaussian element ~x = [x1, x2, ..., xn], we use the acceptance-rejection

method [79, 80]. In this method, a uniformly distributed random point (x1, x2, ..., xn, , y)

is generated and accepted i� y < f(x1, x2, ..., xn) where f is the Gaussian pdf. For

instance, on the assumption of ~x ∈ <2, in Figure B.1, we show di�erent Gaussian sets

obtained by applying this method.

Figure B.1: Gaussian sets in <2.

In the context of some of our experiments, X is a set of k Gaussian sets in <n. We

wanted to test the e�ectiveness of our method with datasets that satisfy the following

de�nitions:

De�nition 2. Given n and k, a dataset X is a disjoint set if ∀Ci ⊂ X, it holds that

Ci ∩ Cj = φ ∀i, j = 1, 2, ..k and i 6= j.

In Figure B.2, we illustrate two possible examples of such datasets for n = 2 and k = 3.

The value ρ is the correlation coe�cient.

35

Appendix B. Datasets 36

(a) (b)

Figure B.2: Disjoint Gaussian sets for n = 2 and k = 3. (a) ρ = 0 and (b) ρ = 0.4,
ρ = −0.7, ρ = 0.7.

De�nition 3. Given n and k, a dataset X is an overlapping set if ∃Ci, Cj ⊂ X, such that

Ci ∩ Cj 6= φ and Ci * Cj ∀i, j = 1, 2, ..k and i 6= j.

In Figure B.3 we illustrate two possible examples of such datasets for n = 2 and k = 3.

(a) (b)

Figure B.3: Overlapping Gaussian sets for n = 2 and k = 3. (a) ρ = 0 and (b)
ρ = 0.8, ρ = −0.8.

De�nition 4. Given n and k, a dataset X is a concentric set if ∀Ci ⊆ X, its mean value,

denoted by µCi , is equal to µCj∀i, j = 1, 2, ..k .

In Figure B.4 we illustrate two possible examples of such datasets for n = 2 and k = 3.

Appendix B. Datasets 37

(a) (b)

Figure B.4: Concentric Gaussian sets for n = 2 and k = 3. (a) µCi = (0.5, 0.5)
∀i and ρ = 0 and (b) µCi

= (0.5, 0.5) ∀i and ρ = −0.9.

We generated 500 datasets for each type (1500 total), randomly choosing the values of

n and k, n ∼ U [2− 20] and k ∼ U [2− 15]. In Table B.1, we show the parameters of this

process.

Parameter Value

Type of dataset Disjoint, Overlapping, Concentric

Clusters per dataset (k) U ∼ [2− 15]

Dimensionality (n) U ∼ [2− 20]

Cardinality of cluster (|C|) 1000 elements

Maximum size of a dataset 15,000 elements

Dataset per type 500

Total number of problems 1500

Table B.1: Parameters of the generation process of datasets.

B.2 Synthetic Non-Gaussian Datasets

To generate Non-Gaussian patterns in <n, we resort to polynomial functions of the form:

f(x1, x2, ..., xn) = am1x
m
1 + ...+ amnx

m
n + ...+ a11x1 + a1nxn (B.1)

Given that such functions have larger degrees of freedom, we can generate many points

uniformly distributed in <n. As reported in the previous section, we wrote a computer

program that allows us to obtain a set of 500 di�erent problems. These problems were

generated for random values of n and k (U ∼ [2 − 20] and U ∼ [2 − 15], respectively)

with |Ci| = 200.

Appendix B. Datasets 38

B.3 "Real World" Datasets

In order to illustrate the performance of our method when faced with �real world� prob-

lems, we selected �ve datasets (Abalone [81], Cars [82], Census Income[83], Hepatitis [84]

and Yeast [85]) from the UCI Machine Learning repository, whose properties are shown

in Table B.2.

Problem's Name Number of Variables Number of Classes Sample Size Missing Values

Abalone 8 4 3133 no

Cars 22 4 1728 no

Census Income 14 2 32,561 yes

Hepatitis 20 2 155 yes

Yeast 10 8 1486 no

Table B.2: Properties of the selected datasets.

We chose datasets that represent classi�cation problems where the class labels for each

object are known. Then, we can determine the performance of any clustering method as

an e�ectiveness percentage. The selection criteria of these datasets were based on the

following features:

Appendix B. Datasets 39

• Multidimensionality.

• Cardinality.

• Complexity (non-linearly separable problems).

• Categorical data.

• Data with missing values.

Some of these features involve preprocessing tasks to guarantee the quality of a dataset.

We applied the following preprocessing techniques:

(1) Categorical variables were encoded using dummy binary variables [86].

(2) We scaled the dataset into [0, 1).

(3) In order to complete missing information, we interpolate the unknown values with

natural splines (known to minimize the curvature of the approximant) [87].

Appendix C

Ensuring Normality in an

Experimental Distribution

We wish to experimentally �nd the parameters of the unknown probability density func-

tion (pdf) of a �nite, but unbounded, dataset X. To do this, we must determine the

minimum number of elements M that we need to sample to ensure that our experi-

mental approximation is correct with a desired probability P . We start by observing

that a mean value is obtained from X by averaging N randomly-selected values of the

xi, thus: x̄i = 1
N

∑
xi . We know that any sampling distribution of the x̄i (sdm) will

be normal with parameters µx̄ and σx̄ when N → ∞. In practice, it is customary to

consider that a good approximation will be achieved when N > 20; hence, we decided

to make N = 36. Now, all we need to determine the value of M is to �nd su�cient

x̄i's (i = 1, 2, . . . ,M) until they distribute normally. Once this occurs, we immediately

have the parameters µx̄ and σx̄. The parameters of the unknown pdf are then easily

calculated as µ = µx̄ and σ =
√
nσx̄. To determine that normality has been reached, we

followed the following strategy. We used a setting similar to the one used in the χ2 test

in which: (1) We de�ned ten categories di (deciles) and the corresponding 11 limiting

values (vi) assuming a normal distribution, such that one tenth of the observations are

expected per decile:
´ vi+1
vi

N(µ, σ) ≈ 0.1, i = 0, 1, . . . , 9. For this to be true, we make,

v0 = −5.000, v1 = −1.285, v2 = −0.845, v3 = −0.530, v4 = −0.255, v5 = 0.000 and the

positive symmetrical values; (2) We calculated χ2 =
∑

(oi − ei)2/ei for every xi, where

oi is the observed number of events in the i-th decile and ei is the expected number of

such events. For the k-th observed event, clearly, the number of expected events per

decile is k/10; (3) We further require, as is usual, that there be at least omin = 5 events

per decile. Small values of the calculated χ2 indicate that there is a larger similarity

between the hypothesized and the true pdfs. In this case, a small χ2 means that the

observed behavior of the x̄i's is closer to a normal distribution. The question we want

40

Appendix C. Ensuring Normality in an Experimental Distribution 41

to answer is: How small should χ2 be in order for us to ascertain normality? Remember

the test χ2 is designed to verify whether two distributions di�er signi�cantly, so that one

may reject the null hypothesis, i.e., the two populations are not statistically equivalent.

This happens for large values of χ2 and is a function of the degrees of freedom (df).

In our case, df = 7. Therefore, if we wanted to be 95% certain that the observed x̄i's

were not normally distributed, we would demand that χ2 ≥ 14.0671. However, this case

is di�erent. We want to ensure the likelihood that the observed behavior of the x̄i's is

normal. In order to do this, we performed a Monte Carlo experiment along the following

lines. We set a desired probability P that the x̄i's are normal.

We establish a best desired value of χ2, which we will call χbest. We make the number of

elements in the sample NS = 50. We then generate NS instances of N(0, 1) and count

the number of times the value of the instance is in every decile. We calculate the value

of the corresponding χ2 and store it. We thusly calculate 100, 000 combinations of size

NS. Out of these combinations, we count those for which χ2 ≤ χbest and there are at

least omin observations per decile. This number divided by 100, 000, which we shall call

p, is the experimental probability that, for NS observations, the sample �performs� as

required. We repeat this process increasing NS up to 100. In every instance, we test

whether p > P . If such is the case, we decrement the value of χbest and re-start the

process. Only when p ≤ P , does the process end.

In Figure C.1, we show the graph of the size of sampleM vs. the experimental probability

p that p ≤ P and oi ≤ omin for χbest (from the Monte Carlo experiment).

Figure C.1: Size of sample M vs. p

Every point represents the proportion of combinations satisfying the required conditions

per 100,000 trials. For this experiment, χbest = 3.28. We obtained an approximation

to a Gompertz model with S = 0.0023 and r = 0.9926. It has the form p = ae−e
b−cM

;

where a = 0.046213555, b = 12.40231200, c = 0.195221110. From this expression, we

solve for M , to get:

Appendix C. Ensuring Normality in an Experimental Distribution 42

M ≈ b− ln[ln(a
P)]

c
(C.1)

As may be observed, p < 0.05 for M ≥ 85, which says that the probability of obtaining

χ2 ≤ 3.28 by chance alone is less than �ve in one hundred. Therefore, its is enough to

obtain 85 or more x̄i's (3060 xi's) to calculate µ and σ and be 95% sure that the values

of these parameters will be correct.

Appendix D

Clustering with an N-Dimensional

Extension of Gielis Superformula

43

Clustering with an N-Dimensional Extension of
Gielis Superformula

ANGEL KURI MORALES,EDWIN ALDANA BOBADILLA

Department of Computation
Instituto Tecnológico Autónomo de México

Río Hondo No. 1
MEXICO

akuri@itam.mx, ealdana@mcc.unam.mx

Abstract:- Clustering is the task which allows us to identify groups, distributions or patterns over a set of
data. To achieve it we must, first, adopt a measure of likelihood which allows us to group elements of
similar characteristics into two or more such clusters. Presently there are several clustering algorithms
which appeal to various metrics among which there outstand the ones based on Minkowski�s and
Mahalanobis� distances. In general this approach yields hyperspherical forms which restrict the fact that
some clusters may be represented by irregular N-dimensional bodies. In this paper we use a formula
originally developed by Johan Gielis which has been called the �superformula�. It allows the generation of
N-dimensional bodies of arbitrary shape by modifying certain parameters. This approach allows us to
represent a cluster as the set of data contained in a given body without resorting to a metric of distance.
Therefore, we replace the idea of nearness by one of membership. To determine the more adequate values
of the parameters in the superformula we applied a Genetic Algorithm (GA); the so called Vasconcelos�
GA.

Key-Words:- Clustering, Minkowsky�s Distance, Mahalanobis� Distance, Gielis superformula, Genetic
algorithm, Vasconcelos GA.

1 Introduction

The goal of Clustering is to partition a set of
data into subsets each of which is called a
cluster. In one approach we must begin by
determining the optimum number of clusters.
This is not an easy task. In fact, it may be
proven that no optimum assignment algorithm
exists for arbitrary conditions. Most
methodologies require this issue to be solved at
the outset. Typical methods such as K-means
fall into this category. In [2] and [3], for
instance, some alternatives to solve this issue
are discussed.
Secondly, it is necessary to determine a
measure of likelihood such that it is possible to

establish a criterion of membership for any
data point. A very popular measure is the
proximity or distance between the elements of
the data set whenever these data are expressed
in like units. The most used metrics are,
probably, Minkowski�s and Mahalanobis�
which are described in sections 2.1 and 2.2.
The disadvantage of using these metrics is that
they restrict the form of the clusters to, in
general, hyper-spherical shapes in an N-
dimensional space.
In figure 1 we show a set of data in a
bidimensional space which are to be grouped
into three clusters.

If we use a metric distance we get a clustering
such as the one shown in figure 2.

Ideally we would like to be able to find clusters
which encompass all data from the original set
as shown in figure 3.

In order to be able to achieve this we propose
to use a formula originally developed by Johan
Gielis [1], which is the generalization of a
hyper-ellipse and incorporates a set of
parameters which yield the corresponding
degrees of freedom which, when modified,
may conform such a hyper-ellipse allowing us
to find a virtually unlimited number of forms as
described in section 2.2.
This implies that we must optimize the values
of the parameters such that the forms of the
clusters adapt themselves to accommodate all
the elements of the data set. In order to do this
we appeal to a non-traditional Genetic
Algorithm (GA) called VGA (Vasconcelos�
Genetic Algorithm).

2 Generalities

2.1 Minkowski’s Distance

Let x = (x1, �, xn) and y = (y1,�yn) be vectors
in Rn. Then Minkowsky�s distance between x
and y is given by:

pn

i

p
iyixd

/1

1
|| 














=
−= ∑ (1)

Where p is not necessarily an integer but must
be larger than 1 to comply with the triangle�s
inequality. When p=2 we have the Euclidean
distance.

2.2 Mahalanobis’ Distance

Mahalanobis� distance is defined as a measure
of likelihood between the vectors x = (x1, �,
xn) and y = (y1,�yn). It is given by

∑ ∑
= =

−−=
N

x

N

y
jyiyjxixxybd

1 1
))(((2)

Fig. 2: Clustering with metric distance.

Fig. 3: Idealized clustering

Fig. 1: A bi-dimensional data set

where axy is the covariance between x and y,
and is given by

∑
=

−−=
K

k
ykyxkx

K
a

1
))((1

xy (3)

∑∑
==

==
K

k
ky

K

k K
ykx

K
x

11

1;1
 (4)

and

bxy is the corresponding element of the inverse
of the covariance matrix; K is the number of
objects in the data. If the covariance matrix is
the identity then Mahalanobis� distance reduces
to the Euclidean distance.

2.3 Gielis Formula

Gielis superformula (GSF) generalizes the
equation of a hyper-ellipse by introducing
some parameters which increase the degrees of
freedom of the resulting figures when
geometrically interpreted. It is given by

132

1

4
sin

4
cos

)(

nnn

b

m

a

m

r

−




























+








=

φφ

φ (5)

Where r is the radius and Φ is the angle. In
figure 4 we show some forms generated from
a=b=1 and several values assigned to m, n1,
n2, n3 . It is possible to generalize the formula
to 3 or more dimensions. Figure 5 shows some
forms obtained for a 3D space.

2.4 Genetic Algorithms

Genetic Algorithms (GA) (a very interesting
introduction to genetic algorithms and other
evolutionary algorithms may be found in [5])
are optimization algorithms which are frequently
cited as �partially simulating the process of natural

evolution�. Although this a suggestive analogy
behind which, indeed, lies the original motivation
for their inception, it is better to understand them as
a kind of algorithms which take advantage of the
implicit (indeed, unavoidable) granularity of the
search space which is induced by the use of the
finite binary representation in a digital computer. In
such finite space numbers originally thought of as
existing in nℜ actually map into B space.
Thereafter it is simple to establish that a
genetic algorithmic process is a Markov chain
(MC) whose states are the populations arising
from the so-called genetic operators:
(typically) selection, crossover and mutation.
As such they display all of the properties of a
MC. Therefore one may conclude the following
mathematical properties of a GA: 1) The results
of the evolutionary process are independent of
the initial population; 2) A GA preserving the
best individual arising during the process will
converge to the global optimum (albeit the
convergence process is not bounded in time).

Fig. 4: Some forms generated with the
superformula for a=b=1, m, n1, n2, n3

Fig. 5: Some forms gotten from the extension of
Gielis formula to 3D

For a proof of these facts the interested reader
may see [6]. Their most outstanding feature is
that, as opposed to other more traditional
optimization techniques, the GA iterates
simultaneously over several possible solutions
to the problem. Thereafter, other plausible
solutions are obtained by combining (crossing
over) the codes of these solutions to obtain
hopefully better ones. The solution space (SS)
is, therefore, traversed stochastically searching
for increasingly better plausible solutions. In
order to guarantee that the SS will be globally
considered some bits are randomly selected and
changed (a process called mutation). The main
concern of GA-practitioners (given the fact that
the GAs, in general, will find the best solution)
is to make the convergence as efficient as
possible. The work of Forrest et al. (see [7])
has determined the characteristics of the so-
called Idealized GA (IGA) which is impervious
to GA-hard problems (see [8]).

2.4.1 Vasconcelos’ Genetic Algorithm

Clearly the implementation of the IGA is
unattainable. However, a practical approximation
called the Vasconcelos� GA (VGA) has been
repeatedly tested and proven to be highly efficient

[9]. The VGA, therefore, turns out to be an
optimization algorithm of broad scope of
application and demonstrably high efficiency.

2 The problem

Considering that the use of metric distances limits
the forms of the clusters to hyper-spherical forms in
N-space, we use GSF in order to find (possibly)
highly irregular forms which represent in a
more general way such clusters. This implies
that we abandon the idea that a cluster is a set
of vectors which are close to each other (in
some sense) by the one of a cluster as the set of
vectors which lie within an N-dimensional
object (NDO). In this case we have chosen to
select the cluster forms from the family of
NDOs arising from the N-dimensional
generalization of GSF. In order to implement
this idea we must optimize the parameters in
GSF. The idea is to work in reverse and find
the parameters which are to be put in GSF such
that all data vectors may be found within the
NDOs. To achieve this we must define K
NDOs, where K is the number of clusters.
Every NDO must have a precise definition in
terms of its position and its geometric
characteristics. Of course the problem resides
in finding the appropriate combination of
values which maximizes the membership of all
vectors into all of the clusters and other
criteria, as will be discussed in the sequel. This,
of course, is a complex problem of
optimization that we have tackled with VGA.
One crucial issue is the precise formulation of
the fitness function for VGA.

3 Solution

The solution we describe assumes that the
number of clusters is already known. To
illustrate our method we consistently assumed,
without loss of generality, that there are 4
clusters and we are working on 3D.
Firstly, we generate 4 NDOs (one per cluster)

as shown in figures 6 and 7.

For every cluster we calculated 2,500
coordinates. Therefore we got a data set (3D
coordinates) of size 10,000.
Hence, there are 10,000 elements that we
know, a priori, belong to the 4 clusters defined
by the NDOs in figures 6 and 7. The goal was
to use this set as an input for VGA in a way
such that we may verify that the values of the
parameters in GSF correspond to those of

figures 6 and 7.

3.1 Encoding the problem for the Genetic
Algorithm

The variables to optimize are m, n1, n2, n3, a, b
for each of the clusters. Therefore, the
encoding of one cluster for VGA is shown in
figure 8.

We have introduced variables cx, cy, cz which
correspond to the centers of the clusters. For
illustration purposes we found the initial
coordinates for these centers by applying a
fuzzy-c means algorithm. This allows us to
compare the results obtained from VGA and
those used to define the clusters we used.
Figure 9 shows the 3D positions of the centers.

Since, in accordance to Gielis Superformula

Fig. 6. NDOs projected into (x,y)

Fig. 7. NDOs represented in (x,y,z)

Fig. 8: Part of the genome encoding a cluster

Fig. 9: Centers for Gielis EBs gotten from fuzzy-
c means

+ℜ∈3,2,1, nnnm and 0, ≠+ℜ∈ba we used
three bits to represent the integer part of the
parameter and 32 for the fractional part. Figure
10 illustrates the full chromosome used for
VGA.

Fig. 10. Full chromosome for VGA

3.2 Fitness function

The fitness for the individuals in the population
is given by the correct membership assignment
of every vector in the data set to the NDOs
given the parameters encoded in the individual.
For instance, in a set of size N assumed to lie
within 4 clusters a �good� individual is one in
which the parameters in GSF yield 4 NDOs
which include all N vectors. Hence, the fitness
of an individual is given by the number of
vectors lying within the clusters encoded in the
individual�s chromosome. In figure 11 we may
see an individual whose genome corresponds to
4 NDOs which include 5 vectors out of 10.
hence, its fitness is 5.

Fig. 11. Individual whose genome achieves partial

inclusion for a data set.

It may happen that an individual includes all
vectors in a single NDO as shown in figure 12. In
such case, even if the inclusion is total, the
individual is less than optimal and this
representation must be penalized. To this effect we
introduced an index given by the ratio of the
number of clusters induced by the individual and
the target number of clusters. In the example these
quotient would evaluate to ¼ or 0.25. If we now
multiply this index times the included number of
vectors the individual induces we get

5.225.010 =× which is the proposed fitness
function. Equation (6) generalizes this

criterion.

C
vgaC

nnf ×=)((6)

Fig. 12. Full inclusion in a single set

In equation (6) Cvga is the number of clusters
induced by an individual and C is the desired
number of clusters.

3.3. Cluster membership for an NDO
A very basic subproblem one has to cope with is
how to determine whether a given vectors lies
inside a given NDO. To this effect we first generate
a grid over the surface of the NDO.
 We applied a triangulation algorithm called ear
clipping [4] which, for every 3 non-consecutive
points generates a triangle belonging to the grid. In
the end the algorithm yields a number of triangles
leading to a body�s characterization as shown in
figure 13.
 To test whether a point lies within the NDO we
make, for every triangle, a projection which has an
angle of spread. This defines an orthogonal cone on
the grid. One then tests algebraically whether the
point under analysis is within the cone.

4 Results and future research

The results of the execution of VGA when a
sample of size 10,000 whose memberships are

known for 4 clusters are shown in table 1.

Fig. 13. Surface grid on a 3D NDO.

Likewise, in table 2 we include a simple
comparison between alternative methods.

The results gotten so far are preliminary. Although
we have achieved reasonable clustering for
synthetic data where traditional clustering
techniques perform poorly, several issues remain to
be solved.

Table 1. Number of elements correctly assigned by
VGA on a NDO obtained from GSF.

Cluster 1 2430
Cluster 2 2455
Cluster 3 2463
Cluster 4 2475
Total 9823
% Error 1,77

Table 2. Comparison between different classifica-
tion methods
Method Errors % Error
Kohonen Maps 2,654 25.51
Fuzzy C-Means 389 3.74
Perceptron Network 310 2.98
VGA-Gielis 177 1.7

a) The fitness function has to be refined. It is not
clear whether a simple strategy as outlined above
will be adequate in most cases.
b) The computation involved in the determination
of the membership of the vectors to an NDO has to
be improved, given the computationally intensive
nature of the evolutionary algorithm.
c) The best spread angle has to be determined a
priori. We would like to relieve the user from this
task.

In the near future we will report on these issues.
All in all we know, from initial

experiments, that our method will perform
adequately where others simply will not do because
of conceptual constraints, as stressed in the
introduction. In the past it has been customary to
verify the goodness of the clusters gotten by a given
method through tests which emphasize one or
several criteria. For a discussion of this matter the
reader is referred to [10], [11]. In our method the
goodness of the cluster is a necessary condition for
the clusters to be found. Therefore, there is no need
for �outside� validity measures. In fact, the method
may be seen as a dynamic measure of such validity,
which is another interesting contribution. That is,
the validity is defined as the one maximizing the set
of vectors lying in the NDOs.

References:
[1] Gielis, J., A generic geometric transformation
that unifies a wide range of natural and abstract
shapes, American Journal of Botany, 2003.
[2] Tsunenori, I., An expansion of X-means for
automatically determining the optimal number of
clusters,2005,http://www.rd.dnc.ac.jp/~tunenori/
doc/487-053.pdf access 26/01/2008.
[3] Xin L., Wai M., Chi K.L., Determining the
Optimal Number of Cluster by an Extended RPCL
Algorithm, Hong Kong: Polytechnnic University,

1999.
[4] Eberly, D., Triangulation by ear clipping, 2002,
http://www.geometrictools.com/Documentation/Tri
angulationByEarClipping.pdf, access 25/01/2008.
[5] Bäck, T., Evolutionary Algorithms in Theory
and Practice, Oxford University Press, 1996.
[6] Rudolph, G., Convergence Analysis of
Canonical Genetic Algorithms, IEEE Transactions
on Neural Networks, 5(1):96-101, January, 1994.
[7] Forrest, S. and Mitchell, M., What makes a
problem hard for a genetic algorithm?
Machine Learning, 13:285-319, 1993.
[8] Mitchell, M. An introduction to genetic
algorithms, MIT Press, pp. 132-134, 1996.
[9] Kuri, A., A Methodology for the Statistical
Characterization of Genetic Algorithms, LNAI
2313, pp. 79-88, Springer-Verlag, 2002.
[10] Domeniconi, C., Gunopulos,D., Ma, S.,
Papadopoulos, D., Yan , B., Locally Adaptive
Metrics for Clustering High Dimensional
Data, Data Mining and Knowledge Discovery ,
Springer, Volume 14, Number 1, 2007.
[11] Kovács, F., Iváncsy, R., A novel cluster
validity index: variante of the nearest neighbor
distance, WSEAS Transactions on Computers,
Issue 3, Vol. 5, pp. 477-483, 2006.

Appendix E

Clustering based on optimization of

validity index (CVI)

We propose an alternative to solve the clustering problem based on the identi�cation

of those elements of X which optimize some quality measures or validity index [10].

In the usual process, the clusters are found via some arbitrary clustering method and

then assigned a quality grade according to a certain validity index. We propose a novel

alternative �nding the elements of the clusters from the indices directly. Usually the

purported indices are expressed mathematically with some complex function which is not

prone to optimization by any of the traditional methods. We analyze clusters resulting

by optimizing a validity index with EGA.

E.1 Validity Index

The validity index are used for measure the quality of a clustering results obtained

through of the some clustering method. If we work "backwards" and optimize the pur-

ported index, we should come up with a "good" clustering. The following indices was

selected with this purpose.

E.1.1 Dunn and Dunn (DD) index

This validity index for clustering attempts to identify �compact and well separated clus-

ters� [15]. The index is de�ned by following equation for a speci�c number of clusters.

D = mini=1,..,k

{
minj=i+1,...,k

{
d(Ci, Cj)

maxm=1,...,kdiam(Cm)

}}
(E.1)

52

Appendix D. Clustering with an N-Dimensional Extension of Gielis Superformula 53

where k is the number of clusters, d(Ci, Cj) is the dissimilarity function between two

clusters Ci and Cj de�ned as

d(Ci, Cj) = minx∈Ci,y∈Cjd(x, y) (E.2)

and diam(cm) is diameter of the m-th cluster which may be considered as a measure of

dispersion of the clusters and de�ned as follows:

diam(Cm) = maxx,y∈Cm {d(x, y)} (E.3)

If the data set contains well-separated clusters, the distance between clusters is usually

large and the diameter of the clusters is expected to be small. Therefore large value

means better clustering results.

E.1.2 Davies-Bouldin (DB) index

A similarity measure Rij between the clusters Ci and Cj is de�ned based on a measure

of dispersion of a cluster denoted as si and a dissimilarity measure between two clusters

denoted as dij . The Rij index is de�ned to satisfy the following conditions:

1. Rij ≥ 0

2. Rij = Rji

3. if si = 0 and sj = 0 then Rij = 0

4. if sj > sk and dij = dik then Rij > Rik

5. if sj = sk and dij < dik then Rij > Rik

These conditions state that Rij is non-negative and symmetric. It is given by:

Rij =
si + sj
dij

(E.4)

The dissimilarity measure dij and the dispersion si are de�ned as follows:

dij = d(vi, vj) (E.5)

si =
1

|Ci|
∑

x∈Ci

d(x, vi) (E.6)

Appendix D. Clustering with an N-Dimensional Extension of Gielis Superformula 54

where vi is the centroid of the cluster Ci . The DB index measures the average of

similarity between each cluster an its most similar one [36]. The lower value of DB

means better clustering result due to the clusters have to be compact and separated.

The value of the index is calculated as follows:

DB =
1

k

k∑

i=1

Ri (E.7)

where Ri = max{Rij}, i = 1, ...k
j=1,...,k, j 6=i

E.1.3 Scattering and Dispersion (SD) index

The Scattering and Dispersion validity index is de�ned based on the concepts of the

average scattering for clusters and total separation between clusters [10]. Let σ(Ci) be

the vector variance of a i-th cluster and σ(X) the vector variance of the set X such that

the average scattering is given by:

Scat =
1

k

k∑

i=1

‖ σ(Ci) ‖
‖ σ(X) ‖ (E.8)

The dispersion or total separation between clusters is given by following equation:

Dis =
Dmax

Dmin

k∑

i=1




k∑

j=1

|vi − vj |



−1

(E.9)

where Dmax = max(|vi − vj |) and Dmin = min(|vi − vj |) ∀i, j ∈ {1, 2, 3, . . . , k} are the
maximum and minimum distance between cluster centroids vi respectively. Now, we can

de�ne a validity index based on equations above, as follows

SD = αScat+Dis (E.10)

where α is a weighting factor equal to Dis value in case of maximum number of clus-

ters. Lower SD index means better cluster con�guration, it means that the clusters are

compact and separated.

E.1.4 Variance of the Nearest Neighbor Distance (VNND) index

A disadvantage of the introduced validity index is that they do not investigate the local

environment of the elements of a cluster. A novel approach is to investigate the local

Appendix D. Clustering with an N-Dimensional Extension of Gielis Superformula 55

environment through the deviation of the nearest neighbor distances in every cluster [97].

This can be de�ned as:

dmin(xi) = miny∈Ci {d(xi, y)} (E.11)

dmin(Ci) =

∑
x∈Ci

dmin(xi)

|Ci|
(E.12)

V (Ci) =
1

|C|i − 1

∑

xi∈Ci

dmin(xi)− dmin(Ci) (E.13)

Based on above equations the VNND index is de�ned as:

V NND =

k∑

i=1

V (Ci) (E.14)

This validity index measures the homogeneity of the clusters. Lower index value means

more homogeneous clustering. The principal advantage is that VNND index do not use

global references points for calculate its value (e.g centroids) thus it can measure clusters

with non-convex hulls.

E.2 Experiments and Results

To measure the e�ectiveness of this method, we ran 200 times the EGA (with 150 indi-

viduals and G = 300), using di�erent validity index and a given type of Gaussian dataset

(disjoint, partial and total overlap). In Table E.1 we show the average performance of

CVI for the disjoint pattern sets generated. The �performance value� is de�ned as the

success ratio based on the class labels of the objects (elements in a dataset) known a

priori. We also show the performance displayed by the Bayesian Classi�er for the same

set of problems (see Table E.2 and E.3). We show the result obtained with partial and

total overlap respectively.

Considering that CVI displays the best performance with the index SD(with an average

performance value of 70.3), we show the global results in Table E.4. In general we can

see that CVI yields "good" results relative to a Bayesian classi�er.

Appendix D. Clustering with an N-Dimensional Extension of Gielis Superformula 56

Table E.1: Performance of CVI for disjoint Gaussian dataset

Index Type Optimization Performance

Dunn and Dunn Maximize 99.00

SD Validity Index Minimize 99.00

Davies-Boulding Minimize 99.00

Nearest Neighbor Distance Minimize 99.00

Bayesian Classi�er Efectiveness 99.00

Table E.2: Performance of CVI for Gaussian dataset with partial overlap

Index Type Optimization Performance

Dunn and Dunn Maximize 36.00

SD Validity Index Minimize 58.00

Davies-Boulding Minimize 38.00

Nearest Neighbor Distance Minimize 57.00

Bayesian Classi�er Efectiveness 71.70

Table E.3: Performance of CVI for Gaussian dataset with total overlap

Index Type Optimization Performance

Dunn and Dunn Maximize 40.00

SD Validity Index Minimize 54.00

Davies-Boulding Minimize 38.00

Nearest Neighbor Distance Minimize 53.00

Bayesian Classi�er Efectiveness 66.50

Table E.4: Performance of CVI and BC for di�erent Gaussian datasets

Algorithm Disjoint Partial Overlap Total Overlap Global Relative

CVI 99.0 58.0 54.0 70.3 92.0%

BC 99.9 71.7 56.5 76.0 100%

Appendix F

Clustering Based on Entropy

Optimization

57

Unsupervised Classi�er Based on Heuristic

Optimization and Maximum Entropy Principle

Edwin Aldana-Bobadilla and Angel Kuri-Morales

Universidad Nacional Autónoma de México, Mexico City, Mexico,
Instituto Tecnológico Autónomo de México, México City, Mexico

ealdana@uxmcc2.iimas.unam.mx,

akuri@itam.mx

Abstract. One of the basic endeavors in Pattern Recognition and par-
ticularly in Data Mining is the process of determining which unlabeled
objects in a set do share interesting properties. This implies a singu-
lar process of classi�cation usually denoted as "clustering", where the
objects are grouped into k subsets (clusters) in accordance with an ap-
propriate measure of likelihood. Clustering can be considered the most
important unsupervised learning problem. The more traditional cluster-
ing methods are based on the minimization of a similarity criteria based
on a metric or distance. This fact imposes important constraints on the
geometry of the clusters found. Since each element in a cluster lies within
a radial distance relative to a given center, the shape of the covering or
hull of a cluster is hyper-spherical (convex) which sometimes does not
encompass adequately the elements that belong to it. For this reason
we propose to solve the clustering problem through the optimization
of Shannon's Entropy. The optimization of this criterion represents a
hard combinatorial problem which disallows the use of traditional opti-
mization techniques, and thus, the use of a very e�cient optimization
technique is necessary. We consider that Genetic Algorithms are a good
alternative. We show that our method allows to obtain successfull results
for problems where the clusters have complex spatial arrangements. Such
method obtains clusters with non-convex hulls that adequately encom-
pass its elements. We statistically show that our method displays the
best performance that can be achieved under the assumption of normal
distribution of the elements of the clusters. We also show that this is a
good alternative when this assumption is not met.

Keywords: Clustering, Genetic Algorithms, Shannon's Entropy, Bayesian
Classi�er

1 Introduction

Pattern recognition is a scienti�c discipline whose purpose is to describe and
classify objects. The descriptive process involves a symbolic representation of
these objects called patterns. In this sense, the most common representation is
through a numerical vector x:

2 Edwin Aldana-Bobadilla and Angel Kuri-Morales

x = [x1, x2, . . . xn] ∈ <n (1)

where the n components represent the value of the properties or attributes of an
object. Given a pattern set X, there are two ways to attempt the classi�cation:
a) Supervised Approach and b) Unsupervised Approach.

In the supervised approach, ∀x ∈ X there is a class label y ∈ {1, 2, 3, ..., k}.
Given a set of class labels Y corresponding to some observed patterns x (�train-
ing� patterns), we may postulate a hypothesis about the structure of X that is
usually called the model. The model is a mathematical generalization that allows
us to divide the space of X into k decision regions called classes. Given a model
M , the class label y of an unobserved (unclassi�ed) pattern x′ is given by:

y = M(x′) (2)

On the other hand, the unsupervised approach consists in �nding a hypothesis
about the structure of X based only on the similarity relationships among its
elements. The unsupervised approach does not use prior class information. The
similarity relationships allow to divide the space of X into k subsets called
clusters. A cluster is a collection of elements of X which are �similar� between
them and �dissimilar� to the elements belonging to other clusters. Usually the
similarity is de�ned by a metric or distance function d : X ×X → <.

In this work we discuss a clustering method which does not depend explic-
itly on minimizing a distance metric and thus, the shape of the clusters is not
constrained by hyper-spherical hulls. Clustering is a search process on the space
of X that allows us to �nd the k clusters that satisfy an optimization criteria.
Mathematically, any criterion involves an objective function f which must be
optimized. Depending on the type of f , there are several methods to �nd it.
Since our clustering method involves an objective function f where its feasible
space is, in general, non-convex and very large, a good optimization algorithm is
compulsory. With this in mind, we made a comprehensive study [13] which dealt
with the relative performance of a set of structurally di�erent GAs and a non-
evolutionary algorithm over a wide set of problems. These results allowed us to
select the statistically �best� algorithm: the EGA [20]. By using EGA we may be
sure that our method will displays high e�ectiveness for complex arrangements
of X.

The paper is organized as follows: In Section 2, we brie�y show the re-
sults that led us to select the EGA. Then we present the di�erent sets of pat-
terns X that will serve as a the core for our experiments. We use a Bayesian
Classi�er[2,4,8] as a method of reference because there is theoretical proof that
its is optimal given data stemming from normal distributions. In this section we
discuss the issues which support our choice. In Section 3 we discuss the main
characteristics of our method and the experiments which show that it is the best
alternative. In Section 4 we present our general conclusions.

Advances in Intelligent Systems and Computing 3

2 Preliminaries

As pointed out above, a �good� optimization algorithm must be selected. We
rest on the conclusions of our previous analysis regarding the performance of
a set of GAs[13] . Having selected the best GA, we prove the e�ectiveness of
our clustering method by classifying di�erent pattern sets. To this e�ect, we
generated pattern sets where, for each pattern, the class of the objects is known.
Hence, the class found by our clustering method may be compared to the true
ones. To make the problems non-trivial we selected a non-linearly separable
problems. We discuss the process followed to generate these sets. Finally, we
resort to a Bayesian Classi�er [4] in order to show that the results obtained by
our method are similar to those obtained with it.

2.1 Choosing the Best Optimization Algorithm

This section is a very brief summary of the most important results found in [13].
A set A of 4 structurally di�erent GAs and a non-evolutionary algorithm (NEA)
was selected in order to solve, in principle, an unlimited supply of systematically
generated functions in < × <(called unbiased functions). An extended set of
such functions in <×<2 and <×<3 was generated and solved. Similar behavior
of all the GAs inA (within statistical limits) was found. This fact allowed us
to hypothesize that the expected behavior of A for functions in < × <n will be
similar. As supplement, we tackled a suite of problems (approximately 50) which
includes hard unconstrained problems (which traditionally have been used for
benchmarking purposes) [19,3] and constrained problems [11]. Lastly, atypical
GA-hard functions were analyzed [18,16].

Set of Algorithms The set A included the following GAs: a)An elitist canonical
GA (in what follows referred to as TGA [eliTist GA]) [21], b) A Cross genera-
tional elitist selection, Heterogeneous recombination, and Cataclysmic mutation
algorithm (CHC algorithm) [5], c) An Eclectic Genetic Algorithm (EGA) [20],
d) A Statistical GA (SGA) [23,12] and e) A non-evolutionary algorithm called
RMH [17].

Table 1 shows the relative global performance of all algorithms for the func-
tions mentioned. The best algorithm in the table is EGA.

Table 1: Global Performance
Ai Unbiased Suite Atypical Global Performance Relative

EGA 9.64 8.00 4.48 7.37 100.00%
RMH 6.24 0.012 2.04 2.76 37.49%
TGA 1.35 1.16 4.77 2.43 32.91%
SGA 1.33 0.036 3.33 1.57 21.23%
CHC 2.12 0.08 2.10 1.43 19.44%

4 Edwin Aldana-Bobadilla and Angel Kuri-Morales

2.2 The pattern set

Given a set of patterns to be classi�ed, the goal of any classi�cation technique
is to determine the decision boundary between classes. When these classes are
unequivocally separated from each other the problem is separable; otherwise,
the problem is non-separable. If the problem is linarly separable, the decision
consists of a hyperplane. In Figure 1 we illustrate ths situation.

(a) Linearly Separable patterns (b) Non-linearly separable
patterns

Fig. 1: Decision boundary

When there is overlap between classes some classi�cation techniques (e.g.
Linear classi�ers, Single-Layer Perceptrons [8]) may display unwanted behavior
because decision boundaries may be highly irregular . To avoid this problem
many techniques has been tried (e.g. Support Vector Machine [9], Multilayer
Perceptrons [22]). However, there is no guarantee that any of this methods will
perform adequately. Nevertheless, there is a case which allows us to test the
appropriateness of our method. Since it has been proven that if the classes are
normally distributed, a Bayesian Classi�er yields the best possible result (in
Section 2.3 we discuss this fact) and the error ratio will be minimized. Thus,
the Bayesian Classi�er becomes a good method with which to compare any
alternative clustering algorithm.

Hence, we generated Gaussian pattern sets considering singular arrangements
in which determining the decision boundaries imply non-zero error ratios. With-
out loss generality we focus on patterns de�ned in <2. We wish to show that the
results obtained with our method are close to those obtained with a Bayesian
Classi�er; in Section 3, the reader will �nd the generalization of our method for
<n.

oetision Soundary

, o

't, <> () " "

o'

• o
" ,, 00 "
" i "

",.00! "' '':''
0» 0 " ,,~

,,<>0 "
" O{) " "
,," ". () , O

Advances in Intelligent Systems and Computing 5

Gaussian Patterns in <2 LetXj be a pattern set de�ned in <2 and Ci ⊂ Xj a
pattern class. A pattern x = [x1, x2] ∈ Ci is drawn from a Gaussian distribution
if its joint probability density function (pdf) is given by:

f(x1, x2) =
1

2πσx1σx2

√
1− ρ2

e

(
− 1

2(1−ρ2)

[(
x1−µx1
σx1

)2
−2ρ (x1−µx1)(x2−µx2)

σx1σx2
+
(
x2−µx2
σx2

)2
])

(3)
where −1 < ρ < 1, −∞ < µx1

< ∞, −∞ < µx2
< ∞, σx1

> 0, σx2
> 0. The

value ρ is called the correlation coe�cient.

To generate a Gaussian pattern x = [x1, x2], we use the acceptance-rejection
method [1,10] which allows us to generate random observations (x1, x2) that
are drawn from f(x1, x2). In this method, a uniformly distributed random point
(x1, x2, y) is generated and accepted i� y < f(x1, x2). In Figure 2.1 we show
di�erent pattern sets obtained by applying this method with distinct statistical
arguments in (3)

Fig. 2: Di�erent Gaussian pattern sets with µx1
= µx2

= 0.5,σx1
= σx2

= 0.09.
Each set was generated with di�erent correlation coe�cient: a. ρ = 0.0, b. ρ =
−0.8, c. ρ = 0.8.

The degrees of freedom in (3) allow us to generate Gaussian pattern sets
with varied spatial arrangements. In principle, we analyze pattern sets with the
following con�gurations:

� Sets with disjoint pattern classes.

� Sets with pattern classes that share some elements (partial overlap between
classes)

� Sets with pattern classes whose members may share most elements (total
overlap).

We proposed these con�gurations in order to increase gradually the complexity
of the clustering problem and analyze systematically the performance of our
method. In the following subsections, we make a detailed discussion regarding
the generation of sets with these con�gurations.

6 Edwin Aldana-Bobadilla and Angel Kuri-Morales

Gaussian pattern set with disjoint classes.

De�nition: Let X1 be a pattern set with classes Ci⊂ X1∀i = 1, 2...k which
are drawn from a Gaussian distribution. X1 is a set with disjoint classes if
∀Ci, Cj ⊂ X1, Ci ∩ Cj = φ.

Based on the above de�nition, we generate two di�erent sets where x ∈ [0, 1]2

(in every set there are three classes and |X| = 1000). In Figure 3 we illustrate
the spatial arrangement of these sets.

(a) Pattern set with ρ = 0 (b) Pattern set with ρ = 0.4,ρ =
−0.7, ρ = 0.7

Fig. 3: Gaussian pattern sets with disjoint classes

Gaussian pattern set with Partial Overlap

De�nition: Let X2 be a pattern set with classes Ci⊂ X2∀i = 1, 2...k which
are drawn from a Gaussian distribution. X2 is a set with partial overlap if
∃Ci, Cj ⊂ X2 such that Ci ∩ Cj 6= φ and Ci * Cj .

Based on the above de�nition, we generate two di�erent sets where x ∈ [0, 1]2

(in every set there are three classes and |X| = 1000). In Figure 4 we illustrate
the spatial arrangement of these sets.

Advances in Intelligent Systems and Computing 7

(a) Pattern set with ρ = 0 (b) Pattern set ρ = 0.8, ρ = −0.8,
ρ = −0.8

Fig. 4: Pattern sets with overlap classes

Gaussian pattern set with Total Overlap

De�nition: Let X3 be a pattern set with classes Ci⊂ X3∀i = 1, 2...k which
are drawn from a Gaussian distribution. X3 is a set with total overlap if
∃Ci, Cj ⊂ X3 such that Ci ⊆ Cj .

Based on the above de�nition, we generate two di�erent sets where x ∈ [0, 1]2

(in every set there are three classes and |X| = 1000). In Figure 5 we illustrate
the spatial arrangement of these sets.

(a) Pattern set withρ = 0 (b) Pattern set with ρ = −0.9

Fig. 5: Pattern sets with total overlap classes

•. + +

8 Edwin Aldana-Bobadilla and Angel Kuri-Morales

2.3 Bayesian Classi�er

If the objects in the classes to be clustered are drawn from normally distributed
data, the best alternative to determine the decision boundary is using a Bayesian
Classi�er. The reader can �nd a extended discussion in [4,8].

Given a sample of labeled patterns x ∈ X, we can hypothesize a partitioning
of the space of X into k classes Ci. The classi�cation problem can be reduced
to �nd the probability that given a pattern x, it belongs to Ci. From Bayes's
theorem this probability is given by:

p(Ci|x) =
p(x|Ci)p(Ci)

p(x)
(4)

where p(Ci) is usually called the prior probability. The term p(x|Ci) represents
the likelihood that observing the class Ci we can �nd the pattern x. The prob-
ability to �nd a pattern x in X is denoted as p(x) which is given by:

p(x) =

k∑

i=0

p(x|Ci)p(Ci) (5)

The prior probability p(Ci) is determined by the training pattern set (through
the class labels of every pattern). From 4 we can note that the product p(x|Ci)p(Ci)
is the most important term to determine p(Ci|x) (the value of p(x) is merely a
scale factor). Therefore, given a pattern x to be classi�ed into two classes Ci or
Cj , our decision must focus on determining max [p(x|Ci)p(Ci), p(x|Cj)p(Cj)].
In this sense, if we have a pattern x for which p(x|Ci)p(Ci) ≥ p(x|Cj)p(Cj) we
will decide that it belongs to Ci, otherwise, we will decide that it belongs to Cj .
This rule is called Bayes's Rule.

Under gaussian assumption, the Bayesian classi�er outperforms other clas-
si�cation techniques, such as those based on linear predictor functions [8]. We
discuss our method assuming normality so as to measure its performance rela-
tive to that of a Bayesian Classi�er. Our claim is that, if the method performs
satisfactorily when faced with Gaussian patterns, it will also perform reasonably
well when faced with other possible distributions.

3 Clustering based on Shannon's Entropy (CBE)

We can visualize any clustering method as a search for k regions (in the space
of the pattern set X), where the dispersion between the elements that belong to
them is minimized. This dispersion can be optimized via a distance metric [15,7],
a quality criterion or a membership function [14]. In this section we discuss an al-
ternative based on Shannon's Entropy [24] which appeals to an evaulation of the
information content of a random variable Y with possible values {y1, y2, ...yn}.
From a statistical viewpoint, the information of the event (Y = yi) is propor-
tional to its likelihood. Usually this information is denoted by I(yi) which can
be expressed as:

Advances in Intelligent Systems and Computing 9

I(yi) = log

(
1

p(yi)

)
= −log (p(yi)) (6)

From information theory [24,6], the information content of Y is the expected
value of I. This value is called Shannon's Entropy which is given by:

H(Y) = −
n∑

i=1

p(yi)log (p(yi)) (7)

When p(yi) is uniformly distributed, the entropy value of Y is maximal. It
means that all events in the probability space of Y have the same ocurrence
probability and thus Y has the highest level of unpredictability. In other words,
Y has the maximal information content.

In the context of the clustering problem, given an unlabeled pattern set
X, we hypothesize that a cluster is a region of the space of X with a large
information content. In this sense, the clustering problem is reduced to a search
for k regions where the entropy is maximized. Tacitly, this implies �nding k
optimal probability distributions (those that maximize the information content
for each regions). It is a hard combinatorial optimization problem that requires
an e�cient optimization method. In what follows we discuss the way to solve
such problem through EGA. In principle, we show some evidences that allow us
to think that our method based on entropy is succesful. We statistically show
this method is the best.

3.1 Shannon's Entropy in clustering problem

Given an unlabeled pattern set X, we want to �nd a division of the space of
the X into k regions denoted by Ci, where Shannon's Entropy is maximized.
We consider that the entropy of Ci depends on the probability distribution of
all possible patterns x that belong to it. In this sense, the entropy of Ci can be
expressed as:

H(Ci) =
∑

x∈Ci
p(x|Ci)log(p(x|Ci) (8)

Since we want to �nd k regions Ci that maximize such entropy, the problem is
reduced to an optimization problem of the form:

Maximize:
k∑
i=1

∑
x∈Ci

p(x|Ci)log(p(x|Ci))
subject to:
p(x|Ci) > 0

(9)

To �nd the Ci's that minimize (9) we resort to the EGA. We encoded an in-
dividual as a random sequence of symbols L from the alphabet

∑
= {1, 2, 3...k}.

Every element in L represents the class label of a pattern x in X such that the

10 Edwin Aldana-Bobadilla and Angel Kuri-Morales

length of L is |X|. Tacitly, this encoding divides the space of X into k regions
Ci as is illustrated in Figure 5.1.

(a)

(b)

Fig. 6: Possible divisions of the space of a pattern set X in <2 based on the
encoding of an individual

Given this partititon, we can determine some descriptive parameters θi of the
probability distribution of Ci (e.g. the mean or the standard deviation). Having
determined θi and under the assumption that the probability distribution of Ci
is known, the entropy of Ci can be determined. Complementarily, in Subection
3.3.2 we discuss a generalization making this assumption unnecessary.

3.2 E�ectiveness of the Entropic Clustering for Gaussian Patterns

in <2

Based on the above, given an encoding solution L of a clustering problem (where
X is a pattern set in <2) we can determine k regions Ci with parameter θi =
[µ(Ci), σ(Ci)]. Assuming that Ci is drawn from a Gaussian distribution, the
value of p(x|Ci) with x = [x1, x2] is given by:

ˆ

x1

ˆ

x2

f(x1, x2) (10)

where f(x1, x2) is the bivariate Gaussian density function (see Equation 3).
Given such probability the entropy for each Ci can be determined, the �tness

D

•

D

•

• •

•

D

•

D

•

x

D D D • D

D 2 2 • 2

•
2 2

Advances in Intelligent Systems and Computing 11

of every L is given by
k∑
i=1

H(Ci). The optimal solution will be the individual

with the best �tness value after G iterations. To measure the e�ectiveness of
our method, we ran 100 times the EGA (with 150 individuals and G = 300),
selecting randomly di�erent Gaussian pattern sets (disjoint, partial overlap and
total overlap) in <2. In Table 2 we show the performance of CBE for these
problems. The �performance value� is de�ned as the success ratio based on the
class labels of the patterns known a priori. We also illustrate the performance
displayed by the Bayesian Classi�er for the same set of problems.

Table 2: Performance of CBE and BC for di�erent Gaussian pattern sets in <2

Algorithm Disjoint Partial Overlap Total Overlap Global Relative

CBE 99.0 70.8 57.6 75.8 99.7%
BC 99.9 71.7 56.5 76.0 100%

We see that there is not an important di�erence between results of our
method and the results of a Bayesian Classi�er. This result allows us to as-
certain that our method is as good as the BC. Recall that the BC displays the
best possible performance under Gaussian assumption. Furthermore, it is very
important to stress that our method is unsupervised and, hence, the pattern set
X is unlabeled. CBE allows us to �nd the optimal value of θi for all Ci that
maximize the objective function (see Equation 9). These results are promising
but we want to show that our method performs successfully, in general, as will
be shown in the sequel.

3.3 Comprehensive E�ectiveness Analysis

In order to evaluate the general e�ectivennes of CBE, we generated systemat-
ically a set of 500 clustering problems in <n assuming normality. The number
of clusters for each problem and the dimensionality were randomly selected (the
number of clusters k ∼ U(2, 20) and the dimensionality n ∼ U(2, 10)). Thus, we
obtained an unbiased set of problems to solve through CBE and BC. Similarly,
we also propose a method to generate systematically a set of clustering problems
in <n without any assumption regarding the pdf of the patterns to be classi�ed.

E�ectiveness for Gaussian Patterns in <n We wrote a computer program
that generates Gaussian patterns x = [x1, x2,...xn,] through the acceptance-

rejection method [1,10] given a value of n. Here, a uniformly distributed ran-
dom point (x1, x2, ...xn, y) is generated and accepted i� y < f(x1, x2, ..., xn)
where f(x1, x2, ..., xn) is the Gaussian density function with parameters µ and
σ. Our program determines randomly the values of µ = [µx1 , µx2 ..., µxn] and
σ = [σx1 , σx2 ..., σxn] such that µxi ∈ [0, 1] and σxi ∈ [0, 1]. In this way a cluster
is a set of Gaussian patterns with the same values of µ and σ. and a clustering

12 Edwin Aldana-Bobadilla and Angel Kuri-Morales

problem is a set of such clusters. The cardinality of a cluster is denoted by |Ci|
whose value was established as 200. It is important to note that the class label of
every generated pattern was recorded in order to determine the performance or
e�ectiveness of a classi�cation process. We obtained a set of 500 di�erent Gaus-
sian clustering problems. To evaluate the performance of any method (CBE or
BC) for such problems, we wrote a computer program that executes the following
steps:

1. A set of N = 36 clustering problems are randomly selected.
2. A e�ectiveness value yi is recorded for each problem.
3. For every N problems ȳi is calculated.
4. Steps 1-3 are repeated until the values ȳi are approximately normally dis-

tributed with parameter µ′ and σ′ (from the central limit theorem).

Dividing the span of means ȳi in deciles, normality was considered to have been
reached when:

1. χ2 ≤ 4 and
2. The ratio of observations in the i-th decil Oi ≥ 0.5 ∀i.

From Chebyshev's Inequality [25] the probability that the performance of an
method denoted by τ lies in the interval [µ′ − λσ′, µ′ + λσ′] is given by:

p(µ′ − λσ′ ≤ τ ≤ µ′ + λσ′) ≥ 1− 1

λ2
(11)

where λ denotes the number of standard deviations. By setting λ = 3.1623 we
ensure that the values of τ will lie in this interval with probability p ≈ 0.9. Hence,
the largest value of performance found (with p ≈ 0.95 if we assume a symmetric
distribution) by any method (CBE and BC) is µ+ λσ. The results are shown in
Table 3. These results allow us to prove statistically (with signi�cance level of
0.05) that in <nour method is as good as the BC under normality assumption.

Table 3: Comparative average success ratio for Gaussian Problems
Algorithm µ σ µ+ λσ Relative

CBE 75.53 3.22 85.71 99%
BC 76.01 3.35 86.60 100%

E�ectiveness for Non-Gaussian Patterns <n To generate a Non-Gaussian
patterns in <nwe resort to polynomial functions of the form:

f(x1, x2, ..., xn) = am1x
m
1 + ...+ amnx

m
n + ...+ a11x1 + a1nxn (12)

Given that such functions have larger degrees of freedom, we can generate many
points uniformly distributed in <n. As reported in the previous section, we wrote
a computer program that allows us to obtain a set of 500 di�erent problems.

Advances in Intelligent Systems and Computing 13

These problems were generated for random values of n and k with |Ci| = 200.
As before, a set of tests with N = 36 was performed. As before, the number
of samples of size N dependend on the distribution reaching normality. The
results of this set of experiments is shown in Table 4. These results show that
our method outperforms BC with a signi�cant level of 0.05.

Table 4: Comparative average success ratio for non-Gaussian Problems
Algorithm µ σ µ+ kσ Relative

CBE 74.23 2.12 80.93 100%
BC 61.76 2.65 70.14 86%

4 Conclusions

The previous analysis, based on the solution of an exhaustive sample set, allows
us to reach the following conclusions:

Entropic clustering (CBE) is reachable via an e�cient optimization algo-
rithm. In this case, based on previous work by the authors, one is able to take
advantage of the proven e�ciency of EGA. The particular optimization function
(de�ned in (9)) yields the best average success ratio. We found that CBE is
able to �nd highly irregular clusters in pattern sets with complex arrangements.
When compared to BC's performance over Gaussian distributed data sets, CBE
and BC have, practically, indistinguishable success ratios. Thus proving that
CBE is comparable to the best theoretical option. Here we, again, stress that
while BC corresponds to supervised learning whereas CBE does not. The ad-
vantage of this characteristic is evident. When compared to BC's performance
over non-Gaussian sets CBE, as expected, displayed a much better success ratio.
Based on comprehensive analysis (subsection 3.3), the conclusions above have
been reached for statistical p values of O(0.5). In other words, the probability of
such results to persist on data sets outside our study is better than 0.95. Thus
ensuring the reliability of CBE. Clearly above older alternatives.

References

1. Casella, G., Robert, C.P.: Monte carlo statistical methods (1999)
2. De Sa, J.M.: Pattern recognition: concepts, methods, and applications. Springer

Verlag (2001)
3. Digalakis, J., Margaritis, K.: An experimental study of benchmarking functions for

genetic algorithms (2002)
4. Duda, R., Hart, P., Stork, D.: Pattern classi�cation. New York: John Wiley, Section

10, 6 (2001)
5. Eshelman, L.: The chc adaptive search algorithm. how to have safe search when

engaging in nontraditional genetic recombination (1991)
6. Gallager, R.G.: Information theory and reliable communication (1968)

14 Edwin Aldana-Bobadilla and Angel Kuri-Morales

7. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques.
Journal of Intelligent Information Systems 17(2), 107�145 (2001)

8. Haykin, S.: Neural Networks: A Comprehensive Foundation. 2nd Edition (1998)
9. Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector

classi�cation (2003)
10. Johnson, J.L.: Probability and statistics for computer science. Wiley Online Li-

brary (2003)
11. Kim, J.H., Myung, H.: Evolutionary programming techniques for constrained op-

timization problems (1997)
12. Kuri-Morales, A.: A statistical genetic algorithm (1999)
13. Kuri-Morales, A., Aldana-Bobadilla, E.: A comprehensive comparative study of

structurally di�erent genetic algorithms. Sent for publication (2013)
14. Kuri-Morales, A., Aldana-Bobadilla, E.: The Search for Irregularly Shaped Clusters

in Data Mining. Kimito, Funatsu and Kiyoshi, Hasegawa (2011)
15. MacQueen, J., et al.: Some methods for classi�cation and analysis of multivariate

observations. In: Proceedings of the �fth Berkeley symposium on mathematical
statistics and probability. vol. 1, p. 14. California, USA (1967)

16. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press (1996)
17. Mitchell, M., Holland, J., Forrest, S.: When Will a Genetic Algorithm Outperform

Hill Climbing? Advances of Neural Information Processing Systems, No. 6, Morgan
Kaufmann, pp. 51-58 (1994)

18. Molga, M., Smutnicki, C.: Test functions for optimization needs. Retrieved March
11, 2012 from http://www.zsd.ict.pwr.wroc.pl/�les/docs/functions.pdf, pp. 41-42
(2005)

19. Pohlheim, H.: Geatbx: Genetic and evolutionary algorithm toolbox for use with
matlab documentation (2012)

20. Rezaee, J., Hashemi, A., Nilsaz, N., Dezfouli, H.: Analysis of the strategies in
heuristic techniques for solving constrained optimisation problems (2012)

21. Rudolph, G.: Convergence Analysis of Canonical Genetic Algorithms. IEEE Trans-
actions on Neural Networks, 5(1):96-101, January (1994)

22. Rumelhart, D.E., Hintont, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Nature 323(6088), 533�536 (1986)

23. Sánchez-Ferrero, G., Arribas, J.: A statistical-genetic algorithm to select the most
signi�cant features in mammograms (2007)

24. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mo-
bile Computing and Communications Review 5(1), 3�55 (2001)

25. Steliga, K., Szynal, D.: On markov-type inequalities (2010)

Finding irregularly shaped clusters based on Entropy

Angel Kuri-Morales
1
,

Edwin Aldana-Bobadilla

2

1 Department of Computation,

Autonomous Technological Institute of Mexico,

Rio Hondo No. 1,

Mexico City, Mexico

2 Institute of Research in Applied Mathematics and Systems,

Autonomous University of Mexico,

University City,

Mexico City, Mexico

akuri@itam.mx, ealdana@uxmcc2.iimas.unam.mx

Abstract. In data clustering the more traditional algorithms are based on

similarity criteria which depend on a metric distance. This fact imposes

important constraints on the shape of the clusters found. These shapes generally

are hyperspherical due to the fact that each element in a cluster lies within a

radial distance relative to a given center. In this paper we propose a clustering

algorithm that does not depend on such distance metrics and, therefore, allows

us to find clusters with arbitrary shapes in n-dimensional space. Our proposal is

based on some concepts stemming from Shannon's information theory and
evolutionary computation. Here each cluster consists of a subset of the data

where entropy is minimized. This is a highly non-linear and usually non-convex

optimization problem which disallows the use of traditional optimization

techniques. To solve it we apply a rugged genetic algorithm (the so-called

Vasconcelos’ GA). In order to test the efficiency of our proposal we artificially

created several sets of data with known properties in a tridimensional space.
The result of applying our algorithm has shown that it is able to find highly

irregular clusters that traditional algorithms cannot. Some previous work is

based on algorithms relying on similar approaches (such as ENCLUS' and

CLIQUE's). The differences between such approaches and ours are also

discussed.

Keywords: clustering, data mining, information theory, genetic algorithms

1 Introduction

Clustering is an unsupervised process that allows the partition of a data set X in k

groups or clusters in accordance with a similarity criterion. This process is

unsupervised because it does not require a priori knowledge about the clusters.

Generally the similarity criterion is a distance metrics based in Minkowsky Family [1]

which is given by:

���(�, �) =
� |�
 − �
|��

��

�
 (1)

where P and Q are two vectors in an n-dimensional space. From the geometric point

of view, these metrics represent the spatial distance between two points. However,

this distance is sometimes not an appropriate measure for our purpose. For this reason

sometimes the clustering methods use statistical metrics such as Mahalanobis' [2],

Bhattacharyya's [3] or Hellinger's [4], [5]. These metrics statistically determine the

similarity of the probability distribution between random variables P and Q. In

addition to a similarity criterion, the clustering process typically requires the

specification of the number of clusters. This number frequently depends on the

application domain. Hence, it is usually calculated empirically even though there are

methodologies which may be applied to this effect [6].

1.1 A Hierarchy of Clustering Algorithms

A large number of clustering algorithms has been proposed which are usually

classified as follows:

Partitional. Which discover clusters relocating iteratively elements of the data set

between subsets. These methods tend to build clusters of proper convex shapes. The

most common methods of this type are k-means [7], k-medoids or PAM (Partitioning

Around Medoids) and CLARA (Clustering Large Applications) [8].

Hierarchical. In which large clusters are merged successively into smaller clusters.

The result is a tree (called a dendrogram) whose nodes are clusters. At the highest

level of the dendrogram all objects belong to the same cluster. At the lowest level

each element of the data set is in its own unique cluster. Thus, we must select the

adequate cut level such that the clustering process is satisfactory. Representative

methods in this category are BIRCH [9], CURE and ROCK [10].

Density Based. In this category a cluster is a dense (in some pre-specified sense)

region of elements of the data set that is separated by regions of low density. Thus,

the clusters are identified as areas highly populated with elements of the data set. Here

each cluster is flexible in terms of their shape. Representative algorithms of this

category are DBSCAN [11] and DENCLUE [12].

Grid Based. Which use space segmentation through a finite number of cells and from

these performs all operations. In this category are STING (Statistical Information

Grid-based method) described by Wang et al. [13] and Wave Cluster [14].

Additionally, there are algorithms that use tools such as fuzzy logic or neural

networks giving rise to methods such as Fuzzy C-Means [15] and Kohonen Maps

[16], respectively. The performance of each method depends on the application

domain. However, Halkidi [17] present several approaches that allow to measure the

quality of the clustering methods via the so-called "quality indices".

1.2 Desired Properties of Clustering Algorithms

In general a good clustering method must:

─ Be able to handle multidimensional data sets.

─ Be independent of the application domain.

─ Have a reduced number of settings.

─ Be able to display computational efficiency.

─ Be able to yield irregular shaped clusters.

With respect to last point, the great majority of the clustering methods restrict the

shape of the clusters to hyperspherical shapes (in the space of the metric) owing to the

use of some sort of distance as a similarity criterion. Thus, necessarily the distance

between each point inside a cluster and its center is smaller than the radius of an n-

dimensional sphere. This is illustrated in Figure 1 for the simplest case where n=2

(and, thus, yields a circle).

Fig. 1. Clusters with circular shapes

An ideal case would allow us to obtain arbitrary shapes for the clusters that

adequately encompass the data. Figure 2 illustrates this fact.

Fig. 2. Clusters with arbitrary shapes

Therefore, we propose a clustering algorithm that allows us to find clusters with

irregular shapes that represent the data set better than clustering approaches that use

distance metrics.

2 Related Works

Our proposal is based on maximizing density in terms of the entropy of the area of the

space that represents a cluster. There exist previous works with similar approaches.

Cheng et al [18], for example, present an algorithm called ENCLUS (Entropic

Clustering) in which they link the entropy with two concepts that the authors call

coverage and density. These are determined by the space's segmentation.

Segmentation is made iteratively. Henceforth, several conditions have to be satisfied

for every iteration of the algorithm. The space segmentation is a partition on non-

overlapping rectangular units based on CLIQUE (Clustering in Quest) algorithm

where a unit is dense if the fraction of the elements contained in the unit is greater

than a certain threshold. A cluster is the maximum set of connected dense units.

Another work is the so-called COOLCAT algorithm [19] which also approaches the

clustering problem on entropic considerations but is mainly focused on categorical

sets of data. The difference of our proposal is that the space is quantized through a

hypercube that encapsulates all elements of the data set. The hypercube is composed

of units of quantization that called “hypervoxels” or, simply, “voxels”. The number of

voxels determines the resolution of the hypercube. Contrary to ENCLUS, our

algorithm does not iterate to find the optimal space quantization. Here the hypercube

is unique and its resolution is given a priori as a parameter. The units of quantization

become the symbols of the source's alphabet which allow an analysis through

information theory. Our working hypothesis is that areas with high density have

minimum entropy with respect to areas with low density.

3 Generalities

In what follows we make a very brief mention of most of the theoretical aspects

having to do with the proper understanding of our algorithm. The interested reader

may consult the references.

3.1 Information Theory

Information theory addresses the problem of collecting and handling data from a

mathematical point of view. There are two main approaches: the statistical theory of

communication (proposed by Claude Shannon [20] and the so-called algorithmic

complexity (proposed by Andrei Kolmogorov [21]. In this paper we rely on the

statistical approach in which information is a series of symbols that comprise a

message, which is produced by an information source and is received by a receiver

through a channel.

Where:

Message. It is a finite succession or sequence of symbols.

Information Source. It is a mathematical model denoted by S which represents an

entity which produces a sequence of symbols (message) randomly. The space of all

possible symbols is called source alphabet and is denoted as Σ [22].

Receiver. It is the end of the communication's channel which receives the message.

Channel. It is the medium used to convey a message from an information source to a

receiver.

In this document we apply two key concepts which are very important for our

proposal.

Self Information. It is the information contained in a symbol si, which is defined

as1:

 �(�
) = − log� �(�
) (2)

Where p(si) is the probability that the symbol si is generated by the source S. We can

see that the information of a symbol is greater when its probability is smaller. Thus,

the self information of a sequence of statistically independent symbols is:

 �(���� … ��) = �(��) + �(��) + ⋯ + �(��) (3)

Entropy. The entropy is the expected value of the information of the symbols

generated by the source S. This value may be expressed as:

�() = � �(�
)�(�
)�

�� = − � �(�
) log� �(�
)�

�� (4)

Where n is the size of the alphabet Σ. Therefore, we see that entropy is greater the

more uniform the probability distribution of symbols is.

3.2 Genetic Algorithms

Genetic Algorithms (GA) (a very interesting introduction to genetic algorithms and

other evolutionary algorithms may be found in [23]) are optimization algorithms

which are frequently cited as “partially simulating the process of natural evolution”.

Although this a suggestive analogy behind which, indeed, lies the original motivation

for their inception, it is better to understand them as a kind of algorithms which take

advantage of the implicit (indeed, unavoidable) granularity of the search space which

is induced by the use of the finite binary representation in a digital computer.

In such finite space numbers originally thought of as existing in
nℜ actually map

into B
m
 space. Thereafter it is simple to establish that a genetic algorithmic process is

1 The base for the logarithms is arbitrary. When (as above) we choose base 2 the information is

measured in "bits".

a finite Markov chain (MC) whose states are the populations arising from the so-

called genetic operators: (typically) selection, crossover and mutation. As such they

display all of the properties of a MC. From this fact one may infer the following

mathematical properties of a GA: 1) The results of the evolutionary process are

independent of the initial population and 2) A GA preserving the best individual

arising during the process will converge to the global optimum (albeit the

convergence process is not bounded in time). For a proof of these facts the interested

reader may see [24]. Their most outstanding feature is that, as opposed to other more

traditional optimization techniques, the GA iterates simultaneously over several

possible solutions. Thereafter, other plausible solutions are obtained by combining

(crossing over) the codes of these solutions to obtain hopefully better ones. The

solution space (SS) is, therefore, traversed stochastically searching for increasingly

better plausible solutions. In order to guarantee that the SS will be globally explored

some bits of the encoded solution are randomly selected and changed (a process

called mutation). The main concern of GA-practitioners (given the fact that well

designed GAs, in general, will find the best solution) is to make the convergence as

efficient as possible. The work of Forrest et al. has determined the characteristics of

the so-called Idealized GA (IGA) which is impervious to GA-hard problems [25].

3.3 Vasconcelos’ Genetic Algorithms

The implementation of the IGA is unattainable in practice. However, a practical

approximation called the Vasconcelos’ GA (VGA) has been repeatedly tested and

proven to be highly efficient [26]. The VGA, therefore, turns out to be an

optimization algorithm of broad scope of application and demonstrably high

efficiency.

A statistical analysis was performed by minimizing a large number of functions and

comparing the relative performance of six optimization methods2 of which five are

GAs. The ratio of every GA’s absolute minimum (with probability P=0.95) relative to

the best GA’s absolute minimum may be found in Table 1 under the column “Relative

Performance”. The number of functions which were minimized to guarantee the

mentioned confidence level is shown under “Number of Optimized Functions”.

2 VGA: Vasconcelos’ GA; EGA: Eclectic GA; TGA: Elitist GA; SGA: Statistical GA; CGA:

Canonical (or Simple) GA; RMH: Random Mutation Hill Climber.

Table 1. Relative Performance of Different Breeds of Genetic Algorithms

Algorithm Relative

Performance

Number of Optimized

Functions
VGA 1.000 2,736

EGA 1.039 2,484

TGA 1.233 2,628

SGA 1.236 2,772

CGA 1.267 3,132

RHC 3.830 3,600

It may be seen that the so-called Vasconcelos’ GA (VGA) in this study was the best

of all the analyzed variations. Interestingly the CGA (the classical or "canonical"

genetic algorithm) comes at the bottom of the list with the exception of the random

mutation hill climber (RHC) which is not an evolutionary algorithm. According to

these results, the minima found with the VGA are, on the average, more than 25%

better than those found with the CGA. Due to its tested efficiency, we now describe in

more detail the VGA.

Outline of Vasconcelos’ Genetic Algorithm (VGA)

1. Generate random population of n individuals (suitable solutions for the

problem).

2. Evaluate the fitness f(x) of each individual x in the population.

3. Order the n individuals from best (top) to worst (bottom) for i=1, 2,. . . , n

according to their fitness.

4. Repeat steps A-D (see below) for  n/21,2,...,i = .

A. Deterministically select the i-th and the th-1)i-(n +

individuals (the parents) from the population.

B. With probability Pc cross over the selected parents to form two

new individuals (the offspring). If no crossover is performed,

offspring are an exact copy of the parents.

C. With probability Pm mutate new offspring at each locus (position

in individual).

D. Add the offspring to a new population

5. Evaluate the fitness f(x) of each individual x in the new population

6. Merge the newly generated and the previous populations

7. If the end condition is satisfied, stop, and return the best solution.

8. Order the n individuals from best to worst (i=1, 2, . . . , n) according to their

fitness

9. Retain the top n individuals; discard the bottom n individuals

10. Go to step 4

As opposed to the CGA, the VGA selects the candidate individuals

deterministically picking the two extreme (ordered according to their respective

fitness) performers of the generation for crossover. This would seem to fragrantly

violate the survival-of-the-fittest strategy behind evolutionary processes since the

genes of the more apt individuals are mixed with those of the least apt ones. However,

the VGA also retains the best n individuals out of the 2n previous ones. The net effect

of this dual strategy is to give variety to the genetic pool (the lack of which is a cause

for slow convergence) while still retaining a high degree of elitism. This sort of

elitism, of course, guarantees that the best solutions are not lost. On the other hand,

the admixture of apparently counterpointed plausible solutions is aimed at avoiding

the proliferation of similar genes in the pool. In nature as well as in GAs variety is

needed in order to ensure the efficient exploration of the space of solutions3. As stated

before, all GAs will eventually converge to a global optimum. The VGA does so in

less generations. Alternatively we may say that the VGA will outperform other GAs

given the same number of generations. Besides, it is easier to program because we

need not to simulate a probabilistic process. Finally, the VGA is impervious to

negative fitness's values.

We, thus, have a tool which allows us to identify the best values for a set of

predefined metrics possibly reflecting complementary goals. This metric(s) may be

arbitrary and this suits us well because one way to establish which of a set of software

systems is better than the other is to: a) Define a metric or set of metrics. b)

Determine the one system whose combination is best for the systems. For these

reasons we use in our work the VGA as the optimization method. In what follows we

explain our proposal based in the concepts mentioned above.

4 Evolutionary Entropic Clustering

Let X be a data set of elements xi such that !
�"!
�, !
�, … , !
�#, let D be an n-

dimensional space such that !$ ∈ & and let cj be a subset of D called cluster. Then

we must find a function that associates each element of X to the j-th cluster cj as:

kjandXcxf ji ≤≤∀= 2;)((5)

Where k is the number of clusters and '(!
) is called the membership function. Now

we describe a method which attempts to identify those elements within the data set

which share common properties. These properties are a consequence of (possibly)

high order relationships which we hope to infer via the entropy of a quantized vector

space. This space, in what follows, will be denoted as the Hypercubic Wrapper.

4.1 Hypercubic Wrapper

A Hypercubic Wrapper denoted as is an n-dimensional subspace of D such that:

3 The Latin American philosopher José Vasconcelos proposed that the admixture of all races

would eventually give rise to a better one he called the cosmic race; hence the algorithm’s

name.

 !
 ∈ �(∀!
 ∈ * (6)

HW is set of elements vm called voxels, which are units in n-dimensional that can

contain zero or more elements of the set X. The cardinality of HW is given by the

number the voxels that we specify in each dimension of the space D such that:

 |�(| = + ,

�

�� (7)

Where ,
 is the number of voxels in the i-th dimension and n is the dimension number

of D. From equation (7) it follows that ∀-� ∈ �(:

 0 < 0 ≤ + ,

�

�� (8)

Figure 4 shows a graphical representation of HW in a tridimensional space, where the

cardinality is equal to 27 (because there are three voxels in each dimension, i.e.

3=iL).

Fig. 3. Hypercubic Wrapper in a tri-dimensional space

However, in general, jiLL ji ,∀≠ and it is, therefore, possible to define different

HWs by changing the values of the Li's as shown in Figure 4

Fig. 4. Hypercubes with different lengths per dimension

Once this wrapper's characteristics are defined, we may use a clustering method based

in the concept of Self Information, Entropy, and VGA. Now we describe our proposal

which we call the Fixed Grid Evolutionary Entropic Algorithm (FGEEA).

. ~ .. "", . . .,

".: .
.:.: ..
'.' . .. : ' . ..

4.2 Fixed Grid Evolutionary Entropic Algorithm

Definition 1. Every voxel that includes at least one element of the data set X is called

a non-empty voxel; otherwise it is called an empty voxel

Definition 2. For the purpose of entropy calculation, any non-empty voxel is

identified with the i-th symbol and will be denoted by si.

Definition 3. The space of all symbols is an alphabet denoted by Σ.

Definition 4. The data set is equivalent the source of information S. Such source only

produces symbols of Σ.

Definition 5. The probability that the symbol si is produced by S is the number of its

elements divided by the cardinality of the data set X. This probability is denoted as

p(sI).

Corollary. The density of a symbol si is proportional to its probability p(si).

It follows that:

|Σ| ≤ |�(| (9)

�() = � �(�
)�(�
)�

�� = − � �(�
) log� �(�
)�

�� (10)

Our idea is to use the entropy for determine the membership of every symbol in the j-

th cluster, based on the follows assumptions:

Assumption 1. The source S always produces the same symbols for a given data set X.

Assumption 2. The spatial position of each symbol (voxel) is invariant for a given data

set X. Therefore, H(S) is constant.

According to the working hypothesis, the areas with high density have minimum

entropy with respect to areas with low density. Then the areas with minimum entropy

possibly identify a cluster.

To determine the entropy of a possible cluster we introduce a term we call

intracluster entropy, defined as:

 �(3
) = − � �4�56 log� �(�5) ∀ �5 ∈ 3
 (11)

Where �(3
) is the intracluster entropy of i-th cluster. In order to determine that sj

belongs to ci we use a genetic algorithm, as discussed in what follows.

Application of Vasconcelos’ Genetic Algorithm

Our aim is to find the areas of the subspace HW where the entropy is minimal. This is

to find groups of voxels such as each group have minimal entropy (intracluster

entropy).

Clearly this is an optimization problem. For reasons explained above we use a VGA.

The individuals of the algorithm have been encoded as follows. a) The length of the

genome is equal to the cardinality of Σ. [It is composed by all symbols (or genes)]. b)

Each gene is assigned a label that represents the cluster to which it belongs. c) It has a

sequential index. Such index will allow mapping all symbols to subspace HW. Fig.5

exemplifies a genome for k=3.

Fig. 5. Genome of the individual (k=3).

Now, we defined the fitness function as:

'4$7�$-$�89:56 = 0$7 � �(3
) ';< = ≤ >�

�? (12)

Subject to:

� �(3
) ≥ �()�

�? (13)

 A� �(3
) − �()�

�? A ≥ ∆� (14)

Where ; is the size of the population and ∆� is a parameter that represents a

threshold of the difference between the sum of intracluster entropies and the entropy

of source S. Additionally we have introduced a constraint called intracluster density

defined as:

�3
 ≤ C (15)

where ε is the threshold density. One last constraint is the intracluster density (dci). It

is the number of elements of data set X which belong to the symbols of i-th cluster:

�3
 = D
E

 (16)

where α is the number the elements that belong to the data set X and β is the number

of symbol within cluster i. This constraint ensures that entropy is minimal within any

given cluster. The algorithm yields a best individual which represents a set of clusters

of symbols that are map into sets of voxels in the subspace HW, as shown in Fig. 6.

Fig. 6. Possible clustering delivered by the VGA. Different intensities in the cube represent a

different cluster. White voxels are empty.

 In what follows we show some experiments that allow us to test the effectiveness of

the algorithm presented previously

5 Experimental Results

Our algorithm was tested with a synthetic data set which consists of a set of points

contained by three disjoint spheres. The features and parameters of the first test are

given in Table 2. The values of the parameters were determined experimentally.

Table 2. Features and parameters first test.

Feature Value Parameter Value

Sample size 192 N (Number of individuals) 500

Elements per cluster 64 G (Generations) 1000

Dimensions 3 Pm (Mutation Probability) 0.001

Data Distribution Disjoint

sphere

Pc (Crossover Probability)

∆i

0.99

3.5<∆i<3.6

Cardinality of ∑ 26 ε 5

The VGA was run 20 times (with different seeds of the pseudo random number

generator) yielding an average effectiveness of 98%. Notice that no information other

than the number of clusters is fed to FGEEA.

The same data set was tested with other algorithms such as Kohonen Maps and Fuzzy

C-Means. The results obtained are shown in Table 3.

Table 3. Results obtained with Kohonen Maps and Fuzzy C-Means.

Algorithm Average Effectiveness

Kohonen Maps 0.99

Fuzzy C- Means 0.98

This us allow see that the result of our proposal is similar to result given by some

traditional algorithms. The high effectiveness in all cases is probably due to the

spatial distribution of data set.

Next, we test with other data set whose spatial distribution yields presents overlapping

clusters as is shown in Fig. 11. For clarity we show a bi-dimensional example. The

actual runs consisted of three dimensional data.

Fig. 7. Overlapping clusters.

In this case also the size sample is 192 elements distributed in three clusters a priori

whose cardinality is 64 elements. The results obtained are shown in Table 4.

Table 4. Results of FGEEA with overlapping data set

Algorithm Average Effectiveness

Kohonen Maps 0.62

Fuzzy C- Means 0.10

FGEEA 0.73

Here the effectiveness decreases significantly in general. But FGEEA showed the

better results.

Finally we tested our algorithm with a data set in tridimensional space with an

unknown spatial distribution. For k = 3 (number of clusters) the algorithm found a

solution that is shown in Fig. 8. Here the clusters are irregularly shaped.

Fig. 8. Irregular clusters. The

voxels are empty.

These last results were not compared with other clustering algorithms

can see that in principle our app

6 Conclusions and Future Work

These results allow us to test the feasibility of our algorithm

however, to assume its effectiveness in general.

testing with several data

techniques. Computationally,

relation between elements of a multidimensional data

showed that in principle, membership

its entropy without an excessive

results obtained are limited (since they

dimensional data) they are promissory.

our method for a data

computational complexity and

report on these issues shortly.

References

1. Cha, Sung Hyuk:

Massachusetts (2008
2. Mahalanobis, Prasanta Chandra:

3. Bhattacharyya, A.:

defined by probability distributions, Calcutta

4. Pollard, David E.:

University Press, Ca
5. Yang, Grace Lo y Le Cam, Lucien M.

Concepts. Springer,

6. Li, Xin, Wai, Man y Kwong Li, Chi:

an Extended RPCL Algorithm.

(1999).

he number of voxels is 15625 (25 voxels per dimension). The white

hese last results were not compared with other clustering algorithms. However,

can see that in principle our approach is feasible.

and Future Work

These results allow us to test the feasibility of our algorithm. This is not enough

effectiveness in general. To achieve this proof we require

testing with several data sets and applying more solid clustering validation

Computationally, the analysis of the geometric and spatial membership

ion between elements of a multidimensional data set is hard. Our approach

membership relations in a data set can be found through of

n excessive demand on computational resources. Even though the

d are limited (since they correspond to particular cases and in tri

dimensional data) they are promissory. Therefore, future work requires to generalize

 set in n-dimensional space (with n>3), to analyze its

computational complexity and to test its detailed mathematical formulation. We will

report on these issues shortly.

 Taxonomy of Nominal Type Histogram Distance Measures,

2008).
Mahalanobis, Prasanta Chandra: On the genaralized distance in statistics. (1936).

 On a measure of divergence between two statistical populations

ed by probability distributions, Calcutta (1943).

: A user's guide to measure theoretic probability. Cambridge

Cambridge (2002).
Yang, Grace Lo y Le Cam, Lucien M.: Asymptotics in Statistics: Some Basic

Springer, Berlin(2000).

, Xin, Wai, Man y Kwong Li, Chi: Determining the Optimal Number of Clusters by

an Extended RPCL Algorithm. Hong Kong Polytechnic University, Hong Kong

white

However, we

ot enough,

require

clustering validation

membership

ur approach

through of

Even though the

correspond to particular cases and in tri-

Therefore, future work requires to generalize

), to analyze its

to test its detailed mathematical formulation. We will

Measures,

On a measure of divergence between two statistical populations

Cambridge

ics: Some Basic

Determining the Optimal Number of Clusters by

Hong Kong

7. MacQueen, J.B.: Some Methods for Classification and Analysis of Multivariate

Observations. In :Proceedings of 5th Berkley Sysmposium on Mathematical Statiscs

and Probability, pp. 281-297, Berkley (1967).

8. Ng, R y Han, J.: Effecient and Effective Clustering Methods for Spatial Data Mining,

Santiago de Chile (1994).

9. Zhang, T, Ramakrishnman, R y Linvy, M.: BIRCH: An Efficient Method for Very

Large Databases, Montreal, Canada (1996).

10. Guha, S, Rastogi, R y Shim, K: An efificient Clustering Algorithm for Large

Databases, (1998).

11. Ester, M, Kriegel, H., Sander, J., Xu X.: A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise, pp. 226-223, Portland (1996).

12. Hinneburg, A y Keim, D.: An Efficient Approach to Clustering in Large Multimedia

Databases with noise, (2000).

13. Wang, Wei, Yang, Jiong y Muntz, Richard. STING : A Statistical Information Grid

Approach to Spatial Data. In: Proceedings of the 23rd VLDB Conference,

Athens (1997).
14. Sheikholeslami, Gh., Chatterjee, S. y Zhang, A.: Wavecluster: A multi-resolution

clustering. In : Proceedings of the 24th VLDB conference, (1998).

15. Dunn, J. C.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting

Compact Well-Separated Clusters, pp. 32-57, (1973)

16. Kohonen, T.: Self-Organizing Maps. In: Series in Information Sciences, (1995).

17. Halkidi, M, Batistakis, Y. y Vzirgiannis, M.: On Clustering Validation Techniques,

pp. 107-145, (2001)

18. Cheng, C., Fu, Ada W. y Zhang, Y.: Entropy- based Subspace Clustering for Mining

Numerical Data, (1998).

19. Barbará, D., Julia, C. y Li, Y.: COOLCAT: An entropy-based algorithm for

categorical clustering, George Mason University (2001).

20. Shannon, Claude E. A mathematical theory of communication, pp. 379-423, (1948)
21. Kolmogorov, A. N.: Three approaches to the quantitative definition of information,

pp. 1-7, (1948).

22. Gray, Robert M.: Entropy and Information Theory. In : Springer Verlag, (2008).

23. Bäck, T.: Evolutionary Algorithms in Theory and Practice. In: Oxford University

Press, (1996).

24. Rudolph, G. Convergence Analysis of Canonical Genetic Algorithms. In. : IEEE

Transactions on Neural Networks, (1994).

25. Forrest, S. and Mitchell, M. What makes a problem hard for a genetic algorithm? In :

Machine Learning, (1993).

26. Kuri, Angel. A Methodology for the Statistical Characterization of Genetic

Algorithms. In : Springer-Verlag, págs. 79-88, (2002).

A methodology to find clusters in the data based on
Shannon's Entropy and Genetic Algorithms

Edwin Aldana-Bobadilla1, Angel Kuri-Morales2

1Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas, Universidad Nacional Autónoma de
México, Mexico City, Mexico

2Departamento Académico de Computación, Instituto Tecnológico Autónomo de México, Mexico City,
Mexico

Abstract - The most common clustering methods are based on
metrics that allow the determination of the similarity between
elements of a given data set. This similarity allows us to divide
the data set into subsets (clusters) that contain "highly
similar" elements. The use of a metric imposes two
constraints. First, the shape of the found clusters is generally
hyper-spherical (in the space of the metric) due to the fact that
each element in a cluster lies within a radial distance relative
to a given center. Second, the metric may be sensitive to the
probability density function of the data set. Following this fact
several methods based on statistical approaches have become
an attractive and powerful option. These involve the
estimation of the probability density function (pdf) of the data
set which minimizes an optimality criterion. Generally this is
a highly non-linear and usually non-convex optimization
problem which disallows the use of traditional optimization
techniques. In this paper we propose a statistical method
based on Shannon's Conditional Entropy which uses a rugged
genetic algorithm to find the optimal pdf. Each individual of
the Genetic Algorithm is a possible solution of a clustering
problem. The fitness of an individual is determined by
Shannon´s entropy encoded in its genome and an additional
constraint related to the "quality" of this solution. The
"quality" is measured through a validity index of the
clustering process. A novel and important aspect of our
method is the form of representation of the objects of the data
set in order to reduce the computational complexity due to the
high dimensionality. We show that our proposal has high
effectiveness relative to methods as k-means, fuzzy c-means
and Kohonen Maps with a synthetic data set.

Keywords: Clustering, Information Theory, Genetic
Algorithms, Bayesian Classifier, Data Mining.

1 Introduction
 The clustering process is an optimization problem that
maximizes the similarity between objects or elements that
belong to same cluster and minimizes the similarity between
elements of different clusters. The effectiveness of a
clustering method is given by several factors such as the
metric and the desired number of clusters.

Particularly, the use of a metric imposes some constraints on
the shape of clusters found. These shapes generally are

hyperspherical (in the space of the metric) due to the fact that
each element in a cluster lies within a radial distance relative
to a given center. In other words the elements of a cluster tend
to group around a single mean value (center) which sometimes
disallows the extraction of hidden patterns in the data set.

In this paper we propose an alternative method based on a
statistical approach. Our proposal does not use explicitly a
metric to determine the elements that belong to given cluster.
Overall, this proposal is an iterative search of a partition
model of the data set in which the entropy (uncertainty) is
minimized. In order to determine the entropy of the data set
for a particular partition model, the estimation of its
probability density function (pdf) is necessary. This
estimation can be achieved statistically from three different
methods: parametric, semi-parametric and non-parametric
[15]. Unlike parametric and semi-parametric methods, the
non-parametric methods do not make any assumption about of
the pdf of the data set. The Parzen window [5] is among the
most widely-used non-parametric density estimation method.

Different clustering methods have been proposed around these
non-parametric methods and minimum entropy principle [9],
[15],[16]. These methods can be seen as an iterative search of
an optimal pdf of the data set such that the entropy is minimal.
However, depending on the dataset the search may be
unfeasible or may yield local optimal solutions. Thus, this is a
highly non-linear and usually non-convex optimization
problem which disallows the use of traditional optimization
techniques or pdf estimation methods.

We propose a method which uses a rugged genetic algorithm
(the so-called Vasconcelos's GA [12]). Each individual of GA
is a possible solution of a clustering problem which represents
a pdf of the data set. The fitness of an individual is based on
the minimum entropy principle and an additional constraint
related to the "quality" of the solution. The "quality" is
measured through an validity indices of the clustering process.
Several validity indices have been developed and introduced
[4],[8], [11]. A novel and important aspect of our proposal is
the form of representation of the objects of the data set.
Generally the properties of each object are represented as real
values of vector in a Euclidean space. The dimensionality of
this vector is given by the number of such properties. Its value
is an important element of the computational complexity of a
clustering algorithm.

In order to reduce the dimensionality, statistical techniques as
such as Pearson's correlation analysis [3] and/or principal
components' analysis [17] have been used. In many cases,
however, these techniques are sensitive to the data distribution
and impair the effectiveness of the clustering process. To
avoid this fact we map the n-dimensional vector space of the
data set to the space of all possible strings (words) that can be
built using the symbols of an alphabet ∑. This transformation
allows us to represent an object of data set as a word of length
n (for a n-dimensional space) and a cluster as a subset of
words with some "degree of similarity". The entropy of a
cluster is determined by the probability distribution of all
words that belong to that cluster.

Our work begins with an account of several concepts which
are needed to expose our method. Then, we expound the
fundamental process of our proposal. Finally we show several
numerical results and the respective conclusions.

2 Theoretical Aspects
In what follows we make a very brief mention of the
theoretical aspects having to do with the proper understanding
of our proposal. The reader may find more details in the
references.

2.1 Minimum Entropy Principle

Shannon's entropy [20] allows us to measure the uncertainty
associated with a random variable X. Mathematically,
Shannon's entropy of X with a probability mass function p(x)
is defined as:

H (X)=−∑ p (x) log (p (x)) (1)

The possible values of a random variable X occur with certain
probability p(X=x) or simply p(x). When p(x) is uniformly
distributed we say that the uncertainty is greatest or that the
process represented by the random variable X has a highest
degree of “disorder”. Figure 1 represents the entropy for two
possible values of X with probabilities p and 1- p; when
p=0.5 the entropy is maximum.

Figure 1. Entropy in the case of two possibles values with probabilities p
and (1-p)

In the context of the clustering problem we assume that a
cluster is a subset of the data set which has minimum entropy.
It means that a cluster is a partition of data set with minimum
degree of “disorder”. The entropy of a cluster is directly

related to its elements. In terms of probability, the entropy of
the cluster depends of the pdf of its elements. In what follows
we expound on this fact.

Let D be the data set with K partitions (clusters) and x an
element that belong to D. Then the pdf of x is given by:

p (x)=∑
i

K

p (x∣i) p (i) (2)

where p(i) is the prior probability for the i-th partition and
p(x|i) is the prior probability of x given the i-th partition. In
Figure 2 we show an intuitive representation of the
probabilities p(x|1) and p(x|3), the probability p(x|2) is zero.

However we would like to know the dependence of pdf of the
i-th partition with respect to x. This dependence is given by
Bayes Theorem [10] :

p (i∣x)=
p (x∣i) p (i)

p (x)
(3)

When p(i|x) is uniformly distributed for all i, we can say that
the element x belongs to any partition and thus the uncertainty
is maximum (see Figure 3a.). On the other hand if all p(i|x)
but one are zero (one having the value unity) then we are
certain of the partition to which x belongs (see Figure 3b).

Now, let C be a random variable whose possible values are
1,2,..K which represent the partitions of D. Let X be a random
variable whose possible values are all elements x that belong
to D. Then the entropy of C given X is:

H (C∣X)=−∑
i=1

K

p (i∣x) log (p (i∣x)) (4)

Figure 2. Probability space of a data set with three partitions. The
element x belongs to partition 1 and 2 with a probability greater than
zero.

Figure 3. a) Uniform probability of p(i|x) . b) Probability of p(1|x)

where p(i|x) is a posteriori pdf. Thus, our goal is to find this
function such that H(C|X) is minimum. For reasons already
mentioned we use a genetic algorithm. The entropy given by
Equation 4 is called Conditional Entropy [1].

2.2 Genetic Algorithms

Genetic Algorithms (an interesting introduction to GA's and
other evolutionary algorithms may be found in [2]) are
optimization algorithms which are frequently cited as
“partially simulating the process of natural evolution”.
Although this a suggestive analogy behind which, indeed, lies
the original motivation for their inception, it is better to
understand them as a kind of algorithms which take advantage
of the implicit (indeed, unavoidable) granularity of the search
space which is induced by the use of the finite binary
representation in a digital computer. In such finite space,
numbers originally conceived as existing in Rn actually map
into Bm space. Thereafter it is simple to establish that a genetic
algorithmic process is a finite Markov chain (MC) whose
states are the populations arising from the so called genetic
operators: (typically) selection, crossover and mutation [19].
As such they display all of the properties of a MC. From this
fact one may prove that:

1. The final results of the evolutionary process are
independent of the initial population and

2. A GA preserving the best individual arising during the
process will converge to the global optimum (albeit the
convergence process is not bounded in time).

Their most outstanding feature is that, as opposed to other
more traditional optimization techniques, the GA iterates
simultaneously over several possible solutions. Then, other
plausible solutions are obtained by combining (crossing over)
the codes of these solutions to obtain hopefully better ones.
The solution space (SS) is, therefore, traversed stochastically
searching for increasingly better plausible solutions. In order
to guarantee that the SS will be globally explored some bits of
the encoded solution are randomly selected and changed (a
process called mutation). The main concern of GA-
practitioners (given the fact that well designed GAs, in
general, will find the best solution) is to make the
convergence as efficient as possible. The work of Forrest et al.
has determined the characteristics of the so-called Idealized
GA (IGA) which is impervious to GA-hard problems [6].

2.2.1 Vasconcelos's Genetic Algorithm

The implementation of the IGA is unattainable in practice.
However, a practical approximation called the Vasconcelos’s
GA (VGA) has been repeatedly tested and proven to be highly
efficient [12]. The VGA, therefore, turns out to be an
optimization algorithm of broad scope of application and
demonstrably high efficiency. A statistical analysis was done
by minimizing a large number of functions and comparing the
relative performance of six optimization methods of which

five are GAs1. The ratio of every GAs absolute minimum
(with probability p = 0.95) relative to the best GAs absolute
minimum may be found in Table 1 under the column
“Relative Performance”. The number of functions which were
minimized to guarantee the mentioned confidence level is
shown under “Number of Optimized Functions”. It may be
seen that VGA, in this study, was the best of all the analyzed
variations. Interestingly the CGA (the classical or "canonical"
genetic algorithm) comes at the bottom of the list with the
exception of the random mutation hill climber (RHC) which is
not an evolutionary algorithm. According to these results, the
minimal found with VGA are, in the worst case, more than
25% better than those found with the CGA. Due to its tested
efficiency, we now describe in more detail VGA.

As opposed to the CGA, VGA selects the candidate
individuals deterministically picking the two extreme (ordered
according to their respective fitness) performers of the
generation for crossover. This would seem to fragrantly
violate the survival-of-the-fittest strategy behind evolutionary
processes since the genes of the more apt individuals are
mixed with those of the least apt ones. However, VGA also
retains the best n individuals out of the 2n previous ones.

Table 1: Relative Performance of Different Breeds of Genetic
Algorithms

Algorithm Relative
Performance

Number of Optimized
Functions

VGA 1.000 2,736

EGA 1.039 2,484

TGA 1.233 2,628

SGA 1.236 2,772

CGA 1.267 3,132

RHC 3.830 3,600

The net effect of this dual strategy is to give variety to the
genetic pool (the lack of which is a cause for slow
convergence) while still retaining a high degree of elitism.
This sort of elitism, of course, guarantees that the best
solutions are not lost. On the other hand, the admixture of
apparently counterpointed plausible solutions is aimed at
avoiding the proliferation of similar genes in the pool. In
nature as well as in GAs variety is needed in order to ensure
the efficient exploration of the space of solutions. As stated
before, all elitist GAs will eventually converge to a global
optimum. The VGA does so in less generations. Alternatively
we may say that VGA will outperform other GAs given the
same number of generations. Besides, it is easier to program
because we need not simulate a probabilistic process. Finally,
VGA is impervious to negative fitness’s values. We, thus,
have a tool which allows us to identify the best values for a set
of predefined metrics possibly reflecting complementary
goals. For these reasons we use in our work VGA as the
optimization method. In what follows we explain our proposal
based in the concepts mentioned above.

1VGA: Vasconcelos’ GA; EGA: Eclectic GA; TGA: Elitist GA; SGA:
Statistical GA; CGA: Canonical (or Simple) GA; RMH: Random Mutation
Hill Climber.

3 Methodology
We begin our explanation by discussing the preprocessing of
the data set. It will allow us to change the vector
representation of the data in order to facilitate subsequent
calculations. Second, we show the details of the genome's
encoding in the context of the clustering problem. Finally we
show the way to evaluate each solution or individual in order
to find the best.

3.1 Preprocessing of the data set.

Let Σ be an alphabet and w a string that contains symbol of Σ.
Let D be a data set. Let xi = {a1, a2,...an} be an n-dimensional
vector such that xi є D where ai є R and D є Rn .

Let ⊥ak, a⊤ m be the minimal and maximal value a∀ i є D .
Let Δ be the difference between a⊤ m and ⊥ak, then we assign
to every symbol of Σ an interval value as following:

Table 2: Assigning values to symbols of Σ
Symbol Interval Value

so [.⊥ak ,⊥ ak+
Δ

∣Σ∣]
s1 [s0 max ,s0max+

Δ
∣Σ∣]

... ...

sm [sm−1 max , sm−1 max+
Δ

∣Σ∣]

Where si max is the maximum interval value of Si and |Σ| is the
cardinality of Σ (m=|Σ|). Now we assume that Σ is conformed
by the letters of the English alphabet and a⊤ m=1 and ⊥ak=0.
In accordance with Table 2 we can determine the interval
values of Σ as shown in Table 3.

 Table 3: Possible assignment of values for letters of the
English alphabet

Symbol Symbol Value

A
 [0,0+

1
26]

B [1
26

,
1

26
+

1
26]

... ...

Z [25
26

,1]
Moreover, if we assume a data set D in R3 such that some
x=[0.038,0.022,0.99]. Then x may be represented by w=AAZ.
Thus, ∀x є D, ∃w є Σ*. We represent the set of all strings or
words w as D'. For practical reasons we use the English
Alphabet although the method described does not depend on
any particular symbol set. However this method will be
affected by the cardinality of Σ. For example, if |Σ| =1 we
have that all elements of the data set are represented by the
same word regardless of their degree of similarity. Otherwise

when the value of |Σ| is higher we will have more precision
but the performance will be affected.

3.2 Encoding of the genome.

The individuals of the algorithm have been encoded as
follows. a) The length of the genome is equal to the
cardinality of D'. b) Each gene is associated with a word of
D'. The value of each gene corresponds to a label (for
practical purposes we use 1,2,...K) of the cluster to which the
word belongs. Thus, the i-th gene represent the cluster to
which the i-th word belongs. Figure 4 exemplifies a genome
for K=3.

Figure 4. Genome of the individual (K=3)

3.3 Fitness

Each individual is a possible solution of a clustering problem
which is evaluated through a fitness function. In what
follows we explain how this function is defined in the
context of our method.

Suppose that D'={AAA, ACA, MOM, NPM, ADE, UVT, VXT,
NQP, VWV} and K=3. Let Ii be the i-th individual of the
population whose genome are shown in Figure 5.

As discussed above we use the Minimum Entropy Principle.
In Equation 4 X is a random variable whose set of possibles
values belongs to D. Thus, if the data set D is transformed to
set D' (conformed by words w) then Equation 4 may be
rewritten as:

H (C∣W)=−∑
i=1

K

p (i∣w) log (p (i∣w)) (5)

Where W is a random variable whose possibles values are
strings of the Σ alphabet. We can calculate H(C|W) for all
individuals based on their genomes. This entropy may be
expressed as the sum of entropies for each cluster as follows:

Figure 5. Possible solution given by an Individual for K=3. Here are
shown the words associated to each gene.

H (C∣W)=∑
i=1

K

H (i∣W) (6)

Where H(i|W) is the entropy of cluster i. The idea is to
minimize the entropy for each cluster. However, this fact
involves a multi-objective optimization problem because
minimizing the entropy of a cluster affects the entropy of any
other. To resolve this problem we apply Pareto's Efficiency
[18]. Our objective function may be written as:

min [H (1∣W) ,H (2∣W) .. . H (K∣W)] (7)

So, the GA must find the individuals that minimize this
function which is represented as a vector of K dimensions. In
what follows this vector is called Entropy Vector. Each
individual has a Entropy Vector whose values are given by its
genome. In order to determine the individual with the best
vector, we apply the principle of Pareto Dominance [18].
The Pareto Dominance says that a Y vector dominates to Y* if
∀yi є Y, yi ≤ yi* and ∃yp such that yp< yp* . In the context of
VGA, a solution vector X of an Individual will dominate other
solution vectors. The number of vectors dominated by X are
called the dominance value. Thus, individuals with higher
dominance value will be the best. The result of the
evolutionary process yields a Pareto Front[18]. The fitness
function for i-th individual (Ii) may be written as:

f (I
i) =dom

i (8)
Where domi is the dominance value of the ith individual.
However this function does not always assure that an
individual with maximal dominance value is the best solution
to the clustering problem. We, therefore propose a quality
measure.

Our quality measure is based on the concept of Mutual
Information (MI) [21]. It is a symetric measure that quantifies
the mutual dependence between two random variables or the
information that these share. In the context of our problem,
the MI between two cluster u and v is given by:

I (u,v)=∑
i=1

R

∑
j=1

S

p (w i
,w

j)log
p (w i ,w j)

p (w i) p (w
i)

(9)

where R and S are |u| and |v| respectively and p(wi, wj) is the
probability that the words wi and wj are similar. This
probability is given by:

p (w
i
,w

j)=
∣wi∩w j∣

length (w i)
(10)

where the intesection between two word is given by their
common symbols. Clearly, all words of D' have the same
length.

If u ≠ v then the value of I(u,v) will be called Mutual
Information Intercluster (MIInter) . Otherwise this value will
be called Mutual Information Intracluster (MIIntra). A lower
value of MIInter and higher value of MIIntra means better
clusters. So, we propose a quality measure given by:

Q=

∑
i= 1

K

MI
Intra

(i,i)

∑
i,j≤K,i≠ j

MI
Inter

(i,j)
(11)

An individual with higher value of Q means a better solution.
Therefore the fitness function of the ith individual may be
defined as:

f (I
i) =dom

i
Q

i (12)

However, we observe that an individual with a “good” fitness
value does not always represent a global optimum. Thus, we
assume that each individual must be subject to the following
constraint : The probability for all partition (cluster) of D
must be greater than zero. Mathematically p(i)>0 i=1,2,..K∀
(see Equation 2 and Equation 3).

This constraint ensures that the individuals consists of non-
empty clusters whose entropy is minimal. Otherwise the
solutions will be outside of the feasible region. To encourage
reproduction of feasible individuals (which represents feasible
solutions) in every generation of VGA, we appeal to an
penalty method [14] whose goal is to punish unfeasible
individuals.

Here the penalty for unfeasible individual Ii is given by:

 P (I
i)=J −∑

i=1

s
J
m

(13)

where J is a large constant [O(109)], m is the number of
constraints and s is the number of these which have been
satisfied.

4 Numerical Experiment
In what follows we briefly describe how the test data set was
generated. Subsequently we show several parameters and
features of the performed tests. Finally we show the results.
We call our proposal has been called Entropic Evolutionary
Clustering (EEC).

4.1 The data set

Three data sets are analyzed in this work. We shall call them
“A”, “B” and “C” respectively. Every set is composed of
vectors (in a 3D space) that belong to three different spheres
which we call sphere 1, 2 and 3 respectively. There are 10,000
vectors in each one of the spheres. They were generated from.

x=x
0

+r sin θ cosϕ (14)

y=y
0

+r sin θsin ϕ (15)

z=z
0

+r cos θ (16)

from uniformly distributed values for r [0,1)∈ , (0 ≤ ≤ 2πϕ
and 0 ≤ θ ≤ π). For set A the three centers of the spheres were
chosen so that the spheres would not intersect. In set B, the
chosen centers yield partially overlapping data. Finally, in set
C, the spheres shared a common center. However, in the last
set for sphere 1 r [0,1)∈ ; for sphere 2 r [0, 0.666)∈ ; for
sphere 3 r [0, 0.333)∈ . In this case, then, spheres 1, 2 and 3
share the same space where the density of 2 is larger than that
of 1 and the density of 3 is larger than the other two. Our
intent is to choose vectors in set A, B and C whose
distribution is not uniform but Gaussian. To achieve this, we
determined to divide the space of probabilities of a Gaussian
curve in 20 equally spaced intervals. The area under the curve
for a normal distribution with μ = 0 and σ = 1 between -4 and
+4 is very closely equal to one. Therefore, it is easy to see that
5%, of the observations will be between −4 and −1.654; 5%,
will be between −1.654 and −1.280, etc. The required normal
behavior may be approximated by selecting 50 of the
uniformly distributed values from the interval [−4,−1,654);
another 50 from the interval [−1.654,−1.280), etc. In all we
will end up with 1000 vectors for every sphere. These vectors
will now be very closely Gaussian. When data is normally
distributed, a Bayesian classifier is optimal. The behavior of
one such classifier will serve as a base point. To stress: when
the distribution of the data set to classify is Gaussian, a
Bayesian classifier yields the best theoretical results (by
minimizing the probability of classification error
independently of the degree of overlap between the
distributions of the clusters) [7]. Hence, we resorted to
Gaussian distributed data in order to establish a behavior
relative to the best theoretical one when measuring the
performance of non-traditional methods. Our claim is that, if
the methods perform satisfactorily when faced with Gaussian
data, they will also perform reasonably well when faced with
other possible distributions. That is, we wish to show that the
results obtained with non-traditional methods are close to
those obtained with a Bayesian classifier for the same data set.
This would mean that these results correspond to an efficient
algorithm. The data sets are illustrated in Figure 6.

5 Results
The values of the parameters of VGA are given in Table 4.
These values were determined experimentally. As mentioned
above we use the English Alphabet to transform the original
data set. The VGA was run 20 times (with different seeds of
the pseudo random number generator) per data set. The same
data sets was tested with K-Means [22], Kohonen Maps [23]
and Fuzzy C-Means [4]. Since it may be proven that a
Bayesian Classifier is optimal when the data's pdf is Gaussian
[7], we include a comparison with such a Bayesian
Classifier. The results obtained with disjoint clusters are
shown in Table 5. This allows us to see that the results of EEC
are similar to those given by some alternative algorithms. The
high effectiveness in all cases is due to the spatial distribution
of data set. The results obtained with overlapping clusters are
shown in Table 6 where we can see that the effectiveness
decreases significantly in general.

Table 4: Parameters Test
Parameter Name Values

N (Number of Individuals) 50

G (Generations) 4000

pm (Mutation probability) 0.00

pc (Crossover Probability) 0.99 0.99

However EEC showed better results than traditional methods
and close results to Bayesian Classifier. The results obtained
in the two last cases (overlapping and concentric clusters) are
due to the fact that it is not possible to find a simple separable
boundary. Therefore, the boundary decision is unclear and the
vast majority of the clustering methods yield poor solutions.
The closeness of the results obtained so far relative to a
Bayesian Classifier, tells us that our approach is quite
efficient. In future works we will report on experiments
encompassing a wider range of data sets.

Table 5: Results obtained with disjoint clusters data set
Algorithm Average Effectiveness

EEC 0.99

K-Means 0.98

Kohonen Maps 0.99

Fuzzy C-Means 0.98

Bayesian Classifier Effectiveness 0.99

Figure 6. Types of data set

Table 6: Results obtained with overlapping clusters data set
Algorithm Average Effectiveness

EEC 0.87

K-Means 0.45

Kohonen Maps 0.72

Fuzzy C-Means 0.15

Bayesian Classifier Effectiveness 0.89

Table 7: Results obtained with concentric clusters data set
Algorithm Average Effectiveness

EEC 0.71

K-Means 0.36

Kohonen Maps 0.38

Fuzzy C-Means 0.15

Bayesian Classifier Effectiveness 0.72

6 Conclusion
Following the minimum entropy principle we employed a
genetic algorithm so that we were able to explore the solution
space of the clustering problem. This approach resulted a
better effectiveness with different data sets respect to K-
Means, Kohonen Maps and Fuzzy C-Means. If we consider
that Bayesian Classifier represents a theoretical limit then the
most interesting result is the nearness of EEC respect this
classifier. Our method promises to be a feasible alternative to
find non-spherical clusters due to the results obtained with the
concentric clusters of the data set C. However, we require
testing several data sets that allow us to statistically ascertain
that our method is good. We will report on these issues
shortly. Additionally, data preprocessing proved to be a good
alternative to reduce the computational complexity when the
dimensionality of the data set is fairly high.

7 References
[1] Arndt, C., Information measures: information and its description in
science and engineering, Springer Verlag, 2001

[2] Bäck, Th., Evolutionary Algorithms in Theory and Practice, Oxford
University Press, 1996

[3] Cohen, J., Applied multiple regression/correlation analysis for the
behavioral sciences, Lawrence Erlbaum, 2003

[4] Dunn, J. C., A Fuzzy Relative of the ISODATA Process and Its Use in
Detecting CompactWell-Separated Clusters, Journal of Cybernetics 3,
volume 3, 32–57, 1973

[5] Parzen E.: On the estimation of a probability density function and the
mode. Annals of Math. Stats., 33:1065-1076, 1962.

[6] Forrest, and Mitchell, What Makes a Problem Hard for a Genetic
Algorithm? Some Anomalous Results and Their Explanation,
MACHLEARN: Machine Learning 13, volume 13, 1993

[7] Haykin, Simon, Neural networks: A comprehensive foundation,
MacMillan,1994

[8] Halkidi, Maria, Batistakis, Yannis, and Vazirgiannis, Michalis, On
Clustering Validation Techniques, J. Intell. Inf. Syst. 17(2-3), volume 17,
107–145, 2001

[9] Jenssen, R., Hild, KE, Erdogmus, D., Principe, J.C., and Eltoft, T.,
Clustering using Renyi's entropy, Neural Networks, 2003. Proceedings of
the International Joint Conference on, volume 1, 523–528, 2003

[10] Joyce, James, Bayes Theorem, The Stanford Encyclopedia of
Philosophy, Fall 2008 edition, Eds: Zalta, Edward N., 2008

[11] Kovacs, Ferenc, and Ivancsy, Renata, A novel cluster validity index:
variance of the nearest neighbor distance, WSEAS Transactions on
Computers, volume 3, 477-483, March 2006

[12] Kuri-Morales, Angel, A Methodology for the Statistical
Characterization of Genetic Algorithms, MICAI, volume 2313, Springer, 79–
88, Eds: Coello, Carlos A. Coello, de Albornoz, Alvaro, Sucar, Luis Enrique,
and Battistutti, Osvaldo Cairó, 2002

[13] Kuri-Morales, Angel, and Aldana-Bobadilla, Edwin, Finding
Irregularly Shaped Clusters Based on Entropy, ICDM, volume 6171,
Springer, 57–70, Eds: Perner, Petra, 2010

[14] Kuri-Morales, Angel and Gutiérrez-García, Jesús, Penalty Function
Methods for Constrained Optimization with Genetic Algorithms: A
Statistical Analysis, MICAI, volume 2313, Springer, 108–117, Eds: Coello,
Carlos A. Coello, de Albornoz, Alvaro, Sucar, Luis Enrique, and Battistutti,
Osvaldo Cairó, 2002

[15] Lee, Y., and Choi, S., Minimum entropy, k-means, spectral clustering,
Neural Networks, 2004. Proceedings IEEE International Joint Conference
on, volume 1, 2005.

[16] Li, H., Zhang, K., and Jiang, T., Minimum entropy clustering and
applications to gene expression analysis, IEEE Computer Society, 2004.

[17] Pearson, K., Principal components analysis, The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science 6(2), volume 6,
559, 1901

[18] Podinovskii, VV, and Nogin, VD, Pareto-Optimal Solutions of
Multicriteria Problems, Nauka, Moscow, 1982

[19] Rudolph, G., Convergence Analysis of Canonical Genetic Algorithms,
IEEE Transactions on Neural Networks 5(1), volume 5, 96–101, January
1994

[20] Shannon, C. E., and Weaver, W., The Mathematical Theory of
Communication, Scientific American, July 1949

[21] Vinh, N.X., Epps, J., and Bailey, J., Information theoretic measures
for clusterings comparison: is a correction for chance necessary?,
Proceedings of the 26th Annual International Conference on Machine
Learning, 1073–1080, 2009

[22] McQueen, J. B., Some Methods of Classification and Analysis of
Multivariate Observations, Proceedings of Fifth Berkeley Symposium on
Mathematical Statistics and Probability, 281–297, Eds: Cam, L. M. Le, and
Neyman, J., 1967

[23] Kohonen Teuvo, Self-organizing maps, Springer-Verlag, New York,
Inc., 199

Appendix G

Choosing The Best Genetic

Algorithm

94

The Best Genetic Algorithm I
A Comparative Study of Structurally Different Genetic Algorithms

Angel Kuri-Morales

Instituto Tecnológico Autónomo de México
Río Hondo No. 1

México 01000, D.F.
México

akuri@itam.mx

Edwin Aldana-Bobadilla

Universidad Nacional Autónoma de México
IIMAS

México 04510, D.F.
México

edwynjavier@yahoo.es

Abstract. Genetic Algorithms (GAs) have long been recognized as powerful
tools for optimization of complex problems where traditional techniques do not apply.
However, although the convergence of elitist GAs to a global optimum has been
mathematically proven, the number of iterations remains a case-by-case parameter.
We address the problem of determining the best GA out of a family of structurally
different evolutionary algorithms by solving a large set of unconstrained functions.
We selected 4 structurally different genetic algorithms and a non-evolutionary one
(NEA). A schemata analysis was conducted further supporting our claims. As the
problems become more demanding, the GAs significantly and consistently
outperform the NEA. A particular breed of GA (the Eclectic GA) is superior to
all other, in all cases

Keywords. Global optimization; Genetic algorithms; Unconstrained functions;
Schemata analysis.

1. Introduction.

Optimization is an all pervading problem in engineering and the sciences. It is,
therefore, important to rely on an optimization tool of proven efficiency and
reliability. In this paper we analyze a set of optimization algorithms which have not
been analyzed exhaustively before and achieve interesting conclusions which allow us
to recommend one such algorithm as applicable to a large number complex problems.
When attempting to assess the relative efficiency of a set of optimization algorithms
one may take one of two paths: a) Either one obtains closed models for the algorithms
thus allowing their parametric characterization [1], [2], [3] or b) One selects a set of
problems considered to be of interest and compares the performance of the algorithms
when measured vs. such a set. Modeling an algorithm is frequently a complex task
and, more importantly, even slight changes in the algorithm lead to basically different
models [4], thus making the purported characterization impractical. The second
option, therefore, seems better suited for practical purposes. However, although there
are many examples of such an approach (for instance see [5], [6], [7]) it is always true
that a) The nature of the algorithms under study and their number are necessarily
limited and b) The selection of the benchmarking functions obeys to subjective
criteria. In this paper we choose to establish the relative efficiency of a set of genetic
algorithms (GAs) which are structurally different from one another as will be
discussed in the sequel. We have selected a set of such GAs and, for completeness,
we have also included a particular non-evolutionary algorithm (the Random Mutation
Hill Climber or RMH) whose efficiency has been reported in previous works [8], [9].
Many GAs are variations (i.e. different selection criteria [10], crossover strategies
[11], population size [12], 13] relationship between Pc and Pm, [14], [15], etc.) of the
initial one proposed by Holland (the so -called “Simple” or “Canonical” Genetic
Algorithm [CGA] [16]) which do not significantly improve on CGA’s overall
performance. For benchmarking purposes the mentioned variations are not useful
since they all share the same basic algorithmic structure. However there are GAs
where the strategies to a) select, b) identify and c) recombine candidate solutions
differ from the CGA’s substantially. The purported changes impose structural
differences between these algorithms which have resulted in remarkable performance
implications. We have selected four GAs with this kind of diverse characteristics. We
begin, in Section 2, by introducing the necessary notation; then presenting some
concepts and definitions. In Section 3 we describe the five algorithms in our work. In
section 4 we present the functions and results for a suite of problems that traditionally
have been used for benchmarking purposes of optimization algorithms [17] [18]. In
Section 5 we present our general conclusions.

2. Preliminaries

Throughout we use the following notation and definitions: A : Set of selected
optimization algorithms; iA : The i-th optimization algorithm (i.e. AAi ∈); xr : Vector

in nℜ ; Ω : Feasibility region of the space nℜ ; B : Set defined as }1,0{=B ; t:

Iteration number such that ∈≤≤ tGt ;1 N; G : Upper bound on the number of
iterations of iA . Without loss of generality our discussion will be focused on

numerical optimiz ation problems. One such problem f is defined as:

1,...pmi0)x(g

1,...mi0)x(h to Subject

)xf(Minimize

i

i

+=≤
==

r

r
v

 (1)

where ℜ→ℜn)xf(:v is the objective function, 0)(=xhi
r and 0)(≤xgi

r are
constraint functions defining Ω . This means that if a vector xr complies with all
constraints it belongs to Ω . In a problem without constraints, such as the on es
discussed here, all vectors xr lie within Ω .

We briefly pause to define what we understand as a genetic algorithm. Elsewhere
[20], it has been argued that an algorithm is “genetic” when it exhibits implicit
parallelism. Instead, we list the characteristics an iterative algorithm must have to be
considered “genetic”. Implicit parallelism is a consequence of these.

Definition 1:
A genetic algorithm is one which satisfies the following conditions:

1. It works on an n-dimensional discrete space D defined in rather than in
.

2. It traverses D searching an approximation of the optimum vector xv of (1) by
simultaneously analyzing a finite set DtS ∈)(of candidate solutions.

3. The elements of)}(),...,(),({)(21 tstststS n= are explicitly encoded in some
suitable way.

4. The information regarding the partial adequacy of the elements in)(tS is
extracted by solving the optimization problem for all)(tsi .

5. The qualified elements of)(tS are analyzed to select an appropriate subset
in order to improve the search in the problem's space.

6. Selected sections of the codes of)(tsi are periodically combined.

7. Selected elements of the codes of the)(tsi are periodically and randomly
altered.

8. A subset of the best solutions of)(tS is preserved for all the future steps of
the algorithms.

9. The algorithm cycles through steps 4-8 until a stopping condition is met.

"

The algorithms selected for this study satisfy all of the characteristics above and,
therefore, may be aptly considered to be genetic in a broader sense then the one
implied by the frequently cited “bio-inspired” analogy. In fact, this analogy, attractive
as it may seem, frequently distracts the attention of the user from the basic efficiency
elements which any optimization algorithm should incorporate. These issues must
supersede other considerations when determining the desirability of one algorithm
over others.

Consequently, set A includes the following GAs:
a) An elitist canonical GA (in what follows referred to as TGA [eliTist

GA]) [21].
b) A Cross generational elitist selection, Heterogeneous recombination, and

Cataclysmic mutation algorithm (CHC algorithm) [22].
c) An Eclectic Genetic Algorithm (EGA) [23].
d) A Statistical GA (SGA) [24] [25].

3. Selected Genetic Algorithms

It is frequent to cite the variations of the GAs by their “popular name”. However,
in so doing one incurs in the risk of not being precise on the details of the algorithm.
One of the basic tenets of this paper is that even small variations lead to potentially
important differences in their behaviors. For this reason, we now include the pseudo-
codes of the algorithms in our study. Keep in mind that our results refer to their
precise implementation and no others. As a case in point, when discussing SGA (the
Statistical GA) it may be easy to confuse it with EDA (Estimation of Distribution
Algorithm). However, in EDA no mutation is explicitly included, whereas in SGA it
is (see the code below)

In the description of the algorithms which follows a) We denote the arguments
),...,(1 kxxx =r with xi and the corresponding fitness function),...,()(1 kxxfxf =v

with f(xi), b) The function f(xi) to be optimized is numerical, c) We aim to minimize
f(xi), and d) The arguments xi of the fitness function f(x i) are encoded in binary.

Let ≡G number of generations; ≡n number of individuals; ≡I(n) the n-th

individual; ≡L length of the chromosome; ≡CP probability of crossover;

≡MP probability of mutation.
By “Generation of a random population ” we mean that, for a population of n

individuals each of whose chromosome’s length is L we make
for i = 1 to n

 for j=1 to L
 Generate a uniform random number 10 <≤ ρ .

 If <ρ 0.5 make 0←jbit ; else make 1←jbit .

 endfor
 endfor

3.1. Elitist Canonical GA (TGA)

This is the classical CGA with two provisions: a) The best individual is kept along

the whole process forming part of the evolving population and b) In step 3 of the
algorithm

()|)(||))((|)()(iiii xfavgxfminxfx ++=ϕ (A.1)

is used. These two steps ensure that no fitness value is negative making the
proportional selection scheme always feasible (see [28, 29, 30]).

0. Make 1←k .
1. Generate a random population
2. Select randomly an individual from the population (call it best).

Make f(best) ∞← .
3. Evaluate.

 for i=1 to n
Evaluate f(xi) .
Make))(()(ii xfxf ϕ← .

If f(xi) < f(best) make best ß xi and f(best) ß f(xi)
 endfor
4. If k = G return best and stop.
5. Selection

Make ∑
=

=
n

i
ixfF

1

)(

for i = 1 to n;
F
xf

PS i
i

)(
= ; Endfor

 for i =1 to n; Select I(i) with probability PSi.; endfor
6. Crossover
for i = 1 to n step 2

Randomly select two individuals (say I(X) and I(Y)) with probabilities PSX
and PSY, respectively.

Generate a uniform random number 10 <≤ ρ .
 If ≤ρ PC do

• Randomly select a locus l of the chromosome; Pick the leftmost L-
l bits of I(X) and the rightmost l bits of I(Y) and concatenate them
to form the new chromosome of I(X) ; Pick the leftmost L- l bits of
I(Y) and the rightmost l bits of the previous I(X) and concatenate
them to form the new chromosome of I(Y)

Make)()(XIiI ← ;)()1(YIiI ←+ .
endfor
7. Mutation
for i = 1 to n

 Select I(i)

 for j=1 to L
Generate a uniform random number 10 <≤ ρ .

 If ≤ρ PM make jj bitbit ← .

 endfor
endfor
8. Make 1+← kk and go to step 3.

3.2. Cross Generational elitist selection, Heterogeneous recombination and

Cataclysmic mutation GA (C HC)

This algorithm focuses on maintaining diversity while retaining the characteristics

of the best individuals. Inter-generational survival-of-the-fittest is attempted by
unbiased parent selection. Furthermore it tries to maintain diversity implementing the
so-called HUX crossover (Half, Uniform X-over) and introducing cataclysmic
mutations when the population’s diversity falls below a pre-defined threshold (see
[20]).

0. Make
0←l

4/Lthreshold ←
1. Generate a random population.
2. Evaluate f(xi) i∀
3. i))min(f(xbestf i ∀←)(

 est)bisxfiI best i)(|(←

4. l ← l +1
 If l = G return best and stop.
5. Copy all individual s from population P into set C
6. [HUX Crossover]
Let xyBit denote the y-th bit of individual x

for i=1 to n/2
Randomly select individuals IX and IY from C

 0←hammingXY
 for j ← 1 to L
 if bit j (IX) ≠ bit j(IY); DiffXY[j]=true;
 hammingXY ←hammingXY+1; else DiffXY[j]=false; f
 endfor
 if (hammingXY/2 ≤ threshold)

 eliminate C(X) and C(Y) from C
else

 mutated ←0
 while (mutated<hammingXY/2)

j ← random number between 1 and L
if DiffXY[j]

 Interchange the j-th bit of IX and I Y

 mutated ←mutated+1; DiffXY[j] ← false
endwhile

endfor
Evaluate f(xi) in C(i) i∀
Make P’= CP ∪
Sort P’ from best to worst
P’ ← Best n individuals from P’ ;)(xfbestf 1←)(; ← best 'P1

if P = P’
 threshold ← threshold-1
 if threshold=0

for i=2 to n
 Select the i-th individual

 for j=1 to L
Generate a uniform random number 10 <≤ ρ

If ≤ρ 0.35 make jj bitbit ←

threshold ← L/4
P ← P’; go to 4

3.3 Eclectic GA (EGA)

This algorithm uses deterministic selection, annular crossover, uniform mutation

and full elitism (a strategy akin to λµ + selection of evolutionary strategies [31] . The

probabilistic nature of EGA is restricted to parameters PC and PM. In EGA avoidance
of premature convergence is achieved by a two-fold strategy. First, the 2n ind ividuals
from the last two generations are ordered from best to worst and only the best n are
allowed to survive. Then the individuals are deterministically selected for crossover
by mixing the best with the worst (1 with n), the second with the second worst (2 and
n-1, . . .,), and so on. In this way n new individuals are generated. As the iterat ions
proceed, the surviving individuals become the top elite of size n of the whole process.
Annular crossover (equivalent to two-point crossover) is preferred because it makes
the process less dependent on a particular encodings. This algorithm was first reported
in [26] and included self-adaptation and periodic cataclysmic mutation. Later studies
[27] showed that neither of the two mechanisms was necessary . EGA is relatively
simple, fast and easy to program.

0. B2M ←  MPnL× (Expected number of mutations per generation)
1. i ← 1
2. Generate a random population

3. Evaluate the population.
4. [Duplicate Population]
for j = 1 to n
 I(n+j) ← I(j)
 fitness(n+j) ← fitness(j)
endfor
5. [Deterministic Selection Annular Crossover]
for j=1 to n/2

Generate a uniform random number 10 <≤ ρ

If cP≤ρ

Generate a random number 2/1 L<≤ ρ
Interchange the semi-ring starting at locus ρ between I(j)
 and I(n-j-1)

endif
endfor
5. [Mutation]
for j=1 to B2M

Generate uniform random numbers 1,0 21 <≤ ρρ

 Mutate Bit  L2ρ of I( n1ρ)

endFor
6. [Evaluate the New Individuals]
Calculate fitness(xi) for i=1,…,n
7. [λµ + Selection]

Sort the 2n individuals by their fitness, ascending
8. i ← i+1
 if i = G return I(1) and stop
 Go to 3

3.4. Statistical GA (SGA)

In this case the algorithm takes advantage of the fact that the average behavior of

traditional TGA may be achieved without actually applying the genetic operators but,
rather, statistically simulating their behavior [24]. SGA starts by generating the initial
population’s (P0) individuals randomly. The fitness for each individual is calculated
as per (A.1). It is then easy to determine its relative fitness ∑←Φ

j
jj xfxfx)(/)()(

which, immediately, induces a partial ordering in the population according to the
value of)(xΦ . Once this is done, the so-called probabilistic genome (PG) is

calculated. In this genome, the probability that the k-th bit of a genome attains a value
of 1 is derived from

LkbP
j

jkjk ,...,1=Φ= ∑ (A.2)

where bjk denotes the k-th bit of the j-th individual. Notice that Pk actually represents
the weighted expected number of times that bit k will take the value 1 as a function of
the fitness of the i-th population. This is equivalent to defining a set of probability
distribution functions (pdfs); one for each of the L bits in the genome. These pdfs are
Bernoulli distributed and, initially, may have rather large variances (2σ). Every new
population is generated by sampling from the j-th distribution to compose its new N
individuals. The i-th population consists of individuals that respond to the average
behavior of the (i-1)-th. Every new popul ation is also Bernoulli distributed but with
an increasingly small σ . Eventually the pdfs of the final population will have a
Bernoulli distribution with 0≈σ , implying approximate convergence. In a strict
sense, the SGA avoids the need to include explicit mutation provisions. Preliminary
tests showed that premature convergence is avoided if such provisions are made. The
whole process may be seen as a search for a crisp encoding of the solution with a set
of fuzzy bits. Each bit is progressively de-fuzzyfied in consecutive generations.

0. Make 1←k ;
 B2M ←  MPnL× (Expected number of mutations per generation)

1. Generate a random population
2. Select randomly an individual from the population (call it best). Make f(best)
∞← .

3. [Get probabilistic genome]
 PopFit ← 0

 for i=1 to n
Evaluate f(xi)
If f(xi)<f(best)
 best ← I(i); f(best) ← f(xi)

 endif
Make))(()(ii xfxf ϕ← ; PopFit ← PopFit + f(xi)

 Endfor
 for i=1 to n
 RelFit i ← f(x i)/PopFit;
 endfor
 for i=1 to L
 PGi ← 0;

 for j=1 to n
 if bitji = 1à PG i ← PGi+RelFitj
 endFor
 endFor
4. [Get new population]
 [Probabilistic Individuals]
 for i = 1 to n
 for j = 1 to L

Generate a uniform random number 10 <≤ ρ

 if ≤ρ PG j à Bitij ← 1; else Bitij ← 0

 endFor
 endFor
 [Mutate Individuals]
 for i=1 to B2M

Generate uniform random numbers 1,0 21 <≤ ρρ

 Mutate Bit  L2ρ of I( n1ρ)

 endFor
5. k ← k+1
 If k = G return best and stop; else Go to step 3

3.5. Random Mutation Hill-Climber (RMH)

T his algorithm is the only non-evolutionary one considered in this study. In

general, a “hill-climber” is an algorithm which attempts, iteratively, to improve on its
best found value by refining the last attempt.

1. [Generate the individual]
for i=1 to L

Generate a uniform random number 10 <≤ ρ .

If <ρ 0.5 make 0←ibit ; else make 1←ibit .

endfor
Make best ← I(0)
 BestFit ← ∞
2. [Iterate]
for i = 1 to G

[Evaluate the individual]
 f(i) ← fitness (xi)

if fitness(i)<BestFit à best ← I(xi); BestFit ← fitness(xi)
[Mutate]

 Generate a uniform random number Lk ≤≤1 ; Make kk bitbit ←

endfor

For the case of RMH,)(tS is a unitary set such that)}({)(tstS = where)(ts is

also a binary encoded candidate solution which is chosen at random and whose fitness
is evaluated. We explored the behavior of the Ai’s taking snapshots of their progress
in steps of 50 generations up to 800. A GA works with several candidate solutions
that allow it to explore different regions of Ω in parallel. On the other hand, the
RMH works with a single candidate solution that allows it to explore a single region
of Ω . The number of iterations of RMH needed for convergence, for this reason,
differs significantly from that of a GA. For benchmarking purposes, therefore, we
established the following standard.

1) Let M be the number of candidate solutions for a GA. Thus, for Ai it holds
that MtS =|)(|

2) The upper bound on the number of iterations of a RMH is set to GM × .
3) The upper bound on the number of iterations of any GA is set to G .

Any iA will, therefore, approach the solution to a problem f in at most G iterations.
For a detailed discussion of the algorithms see Appendix A.

4. Selected Functions

In this section we discuss the behavior of the algorithms for selected functions
whose minima are known and, therefore, allow us to establish a measure of
effectiveness relative to the best value found by the algorithm. The evaluation of all
algorithms in A is based on a set of unconstrained functions (UF) which have some
properties (multimodality, non-convexity, non-linearity, etc.) that make them good
choices for benchmarking purposes,

For reasons of space we may only succinctly present 6 of the 23 functions
considered in this study. 1) Hansen Function. Unimodal; it is defined in a n-
dimensional space Ν∈∀n :

)1)2cos(()1()1cos()1(),(
4

0
1

4

0
0 +++++++= ∑∑

==

jxjjiixixnf
ji

. O is 10|| ≤ix ;

the known minimum is -176.54. 2) De Jong’s Function. Continuous, convex and

unimodal: ∑
=

=
n

i
ixxf

1

2)(. O is nixi ,...,1,12.512.5 =≤≤− ; the known minimum is

0: 3) Rotated hyper-ellipsoid function. C ontinuous, convex and unimodal:

∑ ∑
= =














=

n

i
j

i

j

xxf
1

2

1

)(; O is -65536 <= xi <= 65536; the known minimum is 0. 4)

Rosenbrock's valley function. The global optimum lies inside a long, narrow,
parabolic shaped flat valley. To find the valley is trivial. However convergence to the
global optimum is difficult and hence this problem has been frequently used to test

the performance of optimization algorithms: 222
1

1
1)1()(100[)(ii

n

i
i xxxxf −+−= ∑

−

=
+ .

O is nixi ,...,1,048.2048.2 =≤≤− ; the known minimum is 0. 5) Rastrigin's

function. It is based on the function of De Jong with the addition of cosine
modulation in order to produce frequent local minima. The function is highly

multimodal:)2cos(10[10)(
1

2∑
=

−+=
n

i
ii xxnxf π . O is nixi ,...,1,12.512.5 =≤≤− ;

the known minimum is 0. 6) Schwefel's function. It is deceptive in that the global
minimum is geometrically distant, over the parameter space, from the next best local
minima. Therefore, the search algorithms are potentially prone to convergence in the

wrong direction:]||sin([)(
1

i

n

i
i xxxf ∑

=

−= . O is nixi ,...,1,500500 =≤≤− ; the

known minimum is -418.9828n.
All 23 functions have known optima. This allows us to define a relative measure of

performance for iA as follows:

*

*
),(

j

jj
ji y

yy
fAQ

−
= (2)

where *jy is the known optimum of jf and jy is the best value found by iA .

We ran every algorithm 100 times for every problem and obtained its average
performance. We obtained this average performance for all iA with G = 800. We got

snapshots of the process every 50 generations. In Figure 1 we show the corresponding
results.

Fig. 1. Average Performance for UF

Notice that in these functions all of the GAs outperform the RMH only marginally,
with the exception of EGA which is considerably better. Also notice that TGA (the
canonical GA) is able to reach an acceptable value only after a large number of
generations. From a further analysis we determined how the algorithms identify larger
order schemata. We indicate that iA is better than jA when the order of the schemata

of Ai is larger than the order of the schemata of Aj. (see Fig. 2). Consistent with the
previous results, TGA is the slowest algorithm to identify schemata of higher order.
That is, the sluggish nature of TGA is due to the fact that it spends many more
generations in identify ing the better individuals in terms of their schemata order.

Fig. 2. Average order of the schemata for UF.

5. Conclusions

The table for the suite of unconstrained problems (see Table 1) show that EGA
outperforms the rest of the algorithms; in this case, notably so. TGA is, by far, the
worst of the algorithms. Again RMH’s behavior is close to SGA’s and CHC’s.

Table 1. Average minimum for the suite of un constrained problems

Algorithm Average Minimum Relative Efficiency
EGA 0.0635 100.00%

SGA 0.1260 50.43%

RMH 0.1491 42.60%

CHC 0.1501 42.32%

TGA 0.2272 27.96%

The best algorithm is EGA. Considering the wide size and variety of the set of

problems we can say that, with high probability, the EGA is the best global
optimization algorithm in our study.

In concluding:

1. In all experiments, the EGA exhibited the best performance. We know that
EGA is a good alternative in problems with hard search spaces (e.g. non-
convex, constrained or highly dimensional spaces) .

2. From a large set of runs it is possible to obtain a practical estimate of the

schemata found by the algorithms.
3. The analysis of schemata order of the algorithms leads to results consistent

with the previous one.
4. A similar analysis including other optimization techniques (e.g. Simulated

annealing, Evolution strategies, Ant colony optimization, Particle swarm
optimization, Differential evolution, etc.) may be easily implemented.

References

1. MacKay, B., College, C., “Mathematics and Statistics Models”, http://serc.
carleton.edu/introgeo/mathstatmodels/index.html.

2. Mooney D., Swift, R., Mooney, D., A Course in Mathematical Modeling, Cambridge
University Press, 1999.

3. Anna Kolesárová; and Radko Mesiar, “Parametric characterization of aggregation
functions”, Fuzzy Sets Syst. 160, 6, 816-831, 2009.

4. Back, T., Evolutionary algorithms in theory and practice: evolution strategies, evolutionary
programming, genetic algorithms, Ch.4, p. 149-159, 1996.

5. Coello, C., “A comprehensive survey of evolutionary-based multiobjective optimization
techniques”, Knowledge and Information Systems, 1, 269-308, 1998.

6. De Jong, K., “An analysis of the behavior of a class of genetic adaptive systems”, Diss.
PhD thesis, Dept. of Computer and Comm. Sciences, Univ. of Michigan, Ann Arbor, MI,
1975.

7. Endre, A., Hinterding, R., Michalewicz, Z., "Parameter control in evolutionary
algorithms.", Evolutionary Computation, IEEE Transactions on 3.2: 124-141, 1999.

8. Mitchell, M., An Introduction to Genetic Algorithms, MIT Press, 1996.
9. Mitchell, M., J. Holland y S. Forrest, “When Will a Genetic Algorithm Outperform Hill

Climbing?”, Advances of Neural Information Processing Systems, No. 6, Morgan
Kaufmann, pp. 51-58, 1994.

10. Baker, J., "Adaptive selectio n methods for genetic algorithms". In Grefenstette, J., editor.
Proceedings of the 1st International Conference on Genetic Algorithms and their
Applications. Lawrence Earlbaum Associates, N.J., pp. 101-111 1985.

11. Anand, V., and Spears, W., "A Study of Crossover Operators in Genetic Programming",
Massachusetts Institute of Technology, Proceedings of the International Symposium on
Methodologies for Intelligent Systems, eds. Z. W. Ras and M. Zemankova, Berlin:
Springer-Verlag, 542: 409-418, 1991.

12. Bäck, T., "Se lf-Adaptation in Genetic Algorithms". In Francisco Varela and Paul
Bourgine, eds. Toward a Practice of Autonomous Systems: Proceedings of the First
European Conference on Artificial Life, pp. 263-271, MIT Press, 1991.

13. Bäck, T., "Evolutionary Algorithms in Theory and Practice", Oxford University Press,
1996.

14. De Jong, K., "An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
Doctoral Dissertation, University of Michigan, 1975.

15. De Jong, K., and Spears, W., "An Analysis of the Interacting Roles of Population Size and
Crossover in Genetic Algorithms". In Hans-Paul Shwefel and Reihnard Manner, eds.
Parallel Problem Solving from Nature, 1st. Workshop, PPSN 1, volume 496, of Lecture
Notes in Computer Science, pp. 38-47, Berlin, Germany, Springer-Verlag, 1991.

16. Holland, J. "Adaptation in Natural and Artificial Systems", Ann Arbor, MI; University of
Michigan Press, 1975.

17. Pohlheim, Hartmut, “GEATbx: Genetic and Evolutionary Algorithm Toolbox for use with
MATLAB Documentation”, http://www.geatbx.com/docu/in dex.html.Version 3.80
(released December 2006).

18. Digalakis, J. and Margaritis, K., “An experimental study of Benchmarking functions for
genetic algorithms”, Intern. J. Computer math., vol. 79(4), pp. 403–416, 2002.

19. Vose, D., (1991), "Generalizing the notion of schema in genetic algorithms". Artificial
Intelligence, 50(3):385-396, 1991.

20. Eshelman, L., “The CHC Adaptive Search Algorithm. How to Have Safe Search When
Engaging in Nontraditional Genetic Recombination”. In Rawlins, G., editor, FOGA -1,
pages 265–283. Morgan Kaufmann., 1991.

21. Rudolph, G., "Convergence Analysis of Canonical Genetic Algorithms", IEEE
Transactions on Neural Networks, 5(1):96-101, January, 1994.

22. Eshelman, op. cit., 1991.
23. Rezaee Jordehi, A., Hashemi, N, Nilsaz Dezfouli, H., “Analysis of the Strategies in

Heuristic Techniques for Solving Constrained Optimisation Problems”, Journal of
American Science, 8(10), 2012.

24. Sánchez-Ferrero, G., Arribas, JI, “A Statistical-Genetic Algorithm to Select the Most
Significant Features in Mammograms”, Lecture Notes in Computer Science, Volume
4673/2007, 189-196, DOI: 10.1007/978-3-540-74272-2_24, 2007.

25. Kuri-Morales, A., “A statistical genetic algorithm”, Proc. Of the 3d. National Co mputing
Meeting, ENC '99, pp. 215-228, Hgo., México, 1999.

26. Kuri-Morales, A., Villegas-Quezada, C. (1998). A universal eclectic genetic algorithm for
constrained optimization, Proceedings of the 6th European Congress on Intelligent
Techniques and Soft Computing. Vol. 1

27. Kuri-Morales, A. (2002). A methodology for the statistical characterization of genetic
algorithm s, MICAI 2002: Advances in Artificial Intelligence : 77-96

28. Back, T. (1996). Evolutionary algorithms in theory and pactice: evolution strategies,
evolutionary programming, genetic algorithms Ch.4, p. 149-159

29. Mitchell, M. (1996). An Introduction to Genetic Algorithms, MIT Press
30. Vose, D. (1996). The Walsh Transform and the Theory of the Simple Genetic Algorithm ,

Pal, S. and Wang, P., editors. Genetic Algorithms for Pattern Recognition, CRC Pres
31. Rowhanimanesh, A., Sohrab, E. (2012). A Novel Approach to Improve the Performance of

Evolutionary Methods for Nonlinear Constrained Optimization , Advances in Artificial
Intelligence

The Best Genetic Algorithm II
A Comparative Study of Structurally Different Genetic Algorithms

Angel Kuri-Morales

Instituto Tecnológico Autónomo de México
Río Hondo No. 1

México 01000, D.F.
México

akuri@itam.mx

Edwin Aldana-Bobadilla

Universidad Nacional Autónoma de México
IIMAS

México 04510, D.F.
México

edwynjavier@yahoo.es

Ignacio López-Peña

Universidad Nacional Autónoma de México
IIMAS

México 04510, D.F.
México

ignalp@gmail.com

Abstract. Genetic Algorithms (GAs) have long been recognized as powerful
tools for optimization of complex problems where traditional techniques do not apply.
In [1] we reported the superior behavior, out of 4 evolutionary algorithms and a hill
climber, of a particular breed: the so-called Eclectic Genetic Algorithm (EGA). EGA
was tested vs. a set (TS) consisting of large number of selected problems most of
which have been used in previous works as an experimental testbed. However, the
conclusions of the said benchmark are restrict ed to the functions in TS. In this work
we extend the previous results to a much larger set (U) consisting of

501011
31

1i
i)64(2? ×≈∑

=
≈ unconstrained functions. Randomly selected functions

in U were minimized for 800 generations each; the minima were averaged in batches

of 36 each yielding iX for the i-th batch. This process was repeated until the iX ’s

displayed a Gaussian distribution with parameters xµ and xσ . From these, the

parameters µ and σ describing the probabilistic behavior of each of the

algorithms for U were calculated with 95% reliability. We give a sketch of the proof
of the convergence of an elitist GA to the global optimum of any given function.

We describe the methods to: a) Generate the functions; b) Calculateµ and σ for U
and c) Evaluate the relative efficiency of all algorithms in our study. EGA’s
behavior was the best of all algorithms.

Keywords. Genetic algorithms, Unbiased functions, Statistical validation.

1. Introduction.

Optimization is an all pervading problem in engineering and the sciences. It is,
therefore, important to rely on an optimization tool of proven efficiency and
reliability. In this paper we compare a set of optimization algorithms which were
analyzed in [1] over a set of unconstrained selected functions in ℜ×ℜ . Here we
extend our study in two ways: First, we consider a, for all practical purposes,
unlimited reservoir of unconstrained functions. Second, we use the same basic
reservoir so that the functions correspond to ℜ×ℜ , ℜ×ℜ 2and ℜ×ℜ 3. The results
may be generalized for ℜ×ℜ n. In analogous comparative studies in the past (for
instance see [2], [3], [4]) it is always true that a) The nature of the algorithms under
study and their number are necessarily limited and b) The selection of the
benchmarking functions obeys to subjective crit eria. We know that any elitist GA will
find the global optimum. The time (iterations) the GA has to spend is, however, not
bounded. Therefore it seems appropriate to seek the fastest GA, in general. We
analyz e a set whose functions are tiveRepresentaa) , b) Large enough, c)

Automatically generated and d) Randomly selected. We may app ly statistical
methodologies to extract the probabilistic behavior of the algorithms under study with
arbitrary reliability. The results from an analysis following the previous guidelines
will enable us to ascertain which of the GAs is fastest, i.e. the best, for most functions
likely to be found in practice. In [5] it is shown that elitist GAs always converge to a global optimum. The basic
idea hinges on the following: a) Because GAs perform the search in a discrete space,
the number of possible points to examine is finite; b) Any combination of ind ividuals
in the population may be thought of as a state in a Markov chain (MC), c) Via
mut ation, there is a non-zero probability that the GA will reach all possible states in
the MC and d) If the best individual is retained throughout the process, when the GA
is stopped, the best individual will correspond to the best possible solution to the
problem. This is true iff there is no sink state (i.e. if there is always a non-zero pro b-
ability of exiting a given state of the MC). Holland’s original GA [6] did not include
elit ism. But most practical implementations do. In fact, any elitist algorithm, even if it
is not evolutionary, satisfying the condition of exhaustive visits to all poss ible states,
will, by the same token, reach a global optimum. A case in point is the so-called Ran-
dom Mutation Hill Climber or RMH (for which see [1, 7, 8]). If we keep track of the
best va lue, however, the behavior of the algorithm may be illustrated as in Figure 1.
In this case, even if the process looses its aim in the final stages of the evolutionary
search, the best value is retained and, eventually, the best overall value will be
reached.

Fig. 1. Convergence with Elitism

It is easy to see that, given the above, the only basic difference in speed between a
RMH (for example) and a GA has to reside in the crossover operator. The crossover
component of a GA is actually responsible for the convergence speed of the process.
Because of this we want to analyze several possible alternative GAs in trying to
determine which is most effective. The GAs considered were the following:

a) An elitist canonical GA (in what follows referred to as TGA [eliTist
GA]) [7].

b) A Cross generational elitist selection, Heterogeneous recombination, and
Cataclysmic mutation algorithm (CHC algorithm) [9].

c) An Eclectic Genetic Algorithm (EGA) [12].
d) A Statistical GA (SGA) [10] [11].

For a detailed description and the pseudo-code of all the algorithms see [1].
Because we found that EGA was the best, we consider of interest to reproduce it here.
When this algorithm was first reported it included self-adaptation and periodic
cataclysmic mutation. Later studies [13] showed that neither of the two mechanisms
was compulsory. EGA is relatively simple, fast and easy to program. In what follows,
the next variables are used: n à number of individuals; L à length of the chromo-
some in bits; PM à Probability of mutation; Pc à probability of crossover; I(i) à the
i-th individual; G à number of generations.

Pseudo-Code of the Eclectic GA (EGA)
0. B2M ←  MPnL× (Expected number of mutations per generation)
1. i ← 1
2. Generate a random population
3. Evaluate the population.
4. [Duplicate Population]
for j = 1 to n

(jlob.1 Best V.lue i.
/ Optimum / Retained

/c~\~_=~
// Best Calculated '"

~ V.lu" '"

(
Generation

 I(n+j) ← I(j)
 fitness(n+j) ← fitness(j)
endfor
5. [Deterministic Selection Annular Crossover]
for j=1 to n/2

Generate a uniform random number 10 <≤ ρ

If cP≤ρ

Generate a random number 2/1 L<≤ ρ
Interchange the semi-ring starting at locus ρ between I(j)
 and I(n-j-1)

endif
endfor
5. [Mutation]
for j=1 to B2M

Generate uniform random numbers 1,0 21 <≤ ρρ

 Mutate Bit  L2ρ of I( n1ρ)

endFor
6. [Evaluate the New Individuals]
Calculate fitness(xi) for i=1,…,n
7. [λµ + Selection]

Sort the 2n individuals by their fitness, ascending
8. i ← i+1
 if i = G return I(1) and stop
 Go to 3

The rest of the paper is organized as follows: in Section 2 we show how to extract the
mean value µ and the standard deviation s from the minima of the functions in U.

In Section 3 we describe how the functions in U may be generated and evaluated in
ℜ×ℜ , ℜ×ℜ 2and ℜ×ℜ 3. In Section 4 we present our conclusions.

2. Statistical Determination of the Best Algorithm in U

A thorough experimental test of a given set of algorithms (A) implies running a large
series of minimization trials. The probability that Ai reaches some minimum value
(which we denote by κ) is unknown. These κ will vary for every problem and will

distribute with mean µ and standard deviation s which are also unknown. We shall
approximate these values by sampling U. It is, therefore, of utmost importance that
we select sample S adequately; both in its nature and its size. Typ ically , the size of S
is determined from assumptions (directly or indirectly) depending on the form of the
population’s (κ ’s distribution). We followed a method which does not necessitate
from such assumptions. It relies on the knowledge that any sampling distribution of

means (sdom) will eventually become Gaussian. Therefore, we generate a succession
of problems to optimize (i.e. minimizing, every time, 36 problems of U) and calculate
the corresponding mean X . The iterations will be stopped only after the κ ’s are
distributed normally. Normality was considered to have been reached after dividing
the results in deciles when a) χ 2 28.3≤ and b) Oi, the number of observations in the

i-th decil, is 5 or more. We rely on the following theorems.
T heorem 1:
 Any sampling distribution of means (sdom) is distributed normally for a large enough
sample size n. [The Central Limit Theorem].
Remark: It is considered that any n>20 is satisfactory. We have chosen n=36.
T heorem 2:
 In a normal distribution (with mean Xµ and standard deviation Xσ) approximately

one tenth of the observations lie in the intervals: Xµ –5 Xσ to Xµ -1.29 Xσ ; Xµ -

1.29 Xσ to XX σµ 85.0− ; Xµ -0.85 Xσ to Xµ –0.53 Xσ ; Xµ -0.53 Xσ to Xµ –

0.26 Xσ ; Xµ -0.26 Xσ to Xµ and the positive symmetrical.

Remark: These deciles divide the area under the normal curve in 10 unequally spaced
intervals where t he expected number of observed events will be one tenth.
Theorem 3:
 The relation between the population distribution’s parameters µ and σ and the

sdom’s parameters Xµ and Xσ is given by Xµµ = and Xn σσ ⋅= .
Theorem 4:
 The proportion of any distribution found within k standard deviations of the mean is,
at least, 1-1/k2. That is, 2/11)(kkykp i −≥+≤≤− σµσµ .

We selected k = 3.1623 , which guarantees that our observations will lie within the
selected interval with 90.0≥p .

The question we want to answer is : How small should χ 2 be in order for us to
ascertain normality? Remember the χ 2 test is designed to verify whether two
distributions differ significantly so that one may reject the null hypothesis, i.e. the two
pop ulations are statistically NOT equivalent. This corresponds to large values of χ 2
and is a function of the degrees of freedom. In this case, if we wanted to be 95%
certain that the observed ix ’s were NOT normally distributed, we would demand
that χ 2 0671.14≥ . However, this case is different. We want to ensure the likelihood

that the observed behavior of the ix ’s IS normal. In order to do this we performed

the following Monte Carlo experiment . We set a desired probability P that the ix ’s
are normal. We establish a best desired value of χ 2 which we will call χ best. We

make NS ? 50. We then generate NS instances of N(0,1) and count the number of
times the value of the instance is in every decile. We calculate the value of the
corresponding χ 2 and store it. We thusly calculate 100,000 combinations of size NS.
Out of these combinations we count those for which χ 2 χ≤ best AND there are at

least omin =5 observations per decile. This number divided by 100,000 (which we shall
call p) is the experimental probability that, for NS observations, χ 2 “performs” as

p) is the experimental probability that, for NS observations, χ 2 “performs” as

required. We repeat this process increasing NS up to 100. In every instance we test
whether p > P. If such is the case we decrement the value of χ best and re-start the
process. Only when Pp ≤ does the process end. The probability that χ 2

 exceeds

χ best as a function of the number of problems being minimized (M) is shown in

Figure 2. Every point represents the proportion of combinations satisfying the
required conditions per 100,000 trials. For this experiment, χ best = 3.28. We
obtained an approximation to a Gompertz model with S=0.0023 and r=0.9926 . It has

the form
cMbeaep

−−= ; where 50.04621355 a = , 012.4023120 b = ,
00.19522111 c = . From this expression we solve for M, to get

(){ } cpabM /]/ln[ln−= . As may be observed, p<0.05 for 85M ≥ , which says
that the probabilit y of obtaining χ 2 28.3≤ by chance alone is less than five in one

hundred. Therefore, it is enough to obtain 85 or more ix ’s to calculate µ and σ
with 95% reliability.

Fig. 2. Probability of χ 2 and O i>5 as a function of the number of problems solved.

In what follows we describe the algorithm which results from all the foregoing
considerations.

Algorithm for the Determination of t he Distribution’s Parameters
Select an optimization algorithm A.

1. Make ←G number of generations.
2. Generate a random binary string. This is one possible)(xfi .

3. Minimize)(xfi iterating A, G times.

4. Store the best minimum value iκ .

5. Repeat steps (2-4) 36 times.

6. Calculate the average best value ? j= ∑
=

36

1
)36/1(
i iκ .

7. Repeat steps (5-6) 50 times.
8. Calculate κµ and κσ .
9. Repeat step (7) 85 times. The sdom’s distribution is normal with p=0.95.
10. Calculate κµµ = and κσσ 6= . We have inferred the expected best value

κ and the standard deviation for this algorithm.
From T4:

90.0)3.16233.1623(≥+≤≤− σµκσµP (1)

We have found a quantitative, unbiased measure of Ai’s performance in ℜ×ℜ .
These values for the different Ai’s allow us to make a fair unbiased assessment of their
behavior.

3. Generation of U for ℜ×ℜ n

Once we have determined how to extract the parameters of the pdf for the algorithms
we need an unbiased and automated way to obtain the problems to solve. We started
by using Walsh’s polynomials for ℜ×ℜ . Next we used a monomial basis to,
likewise, do so for ℜ×ℜ , ℜ×ℜ 2, ℜ×ℜ 3. The behavior of the algorithms for all
three cases was analyzed. T he distributions were statistically equivalent. An induction
principle leads to the conclusion that the observed behavior will be similar for

ℜ×ℜ n.

3.1 Generation of Unbiased Functions using Walsh Polynomials

A reservoir of 250,000 randomly generated binary strings of length L
(1024||32 ≤≤ L) may be interpreted as a set of 250,000 functions in ℜ×ℜ . Call this

set “U”. By “unbiased” we mean that, because the functions in U are randomly
generated, there is no bias in their selection. To generate functions automatically we
resort to Walsh functions)(xjψ which form an orthogonal basis for real-valued

functions defined on l)1,0(, where x is a bit string and l is its length. Henceforth,

any function f(x) thusly defined can be written as a linear combination of the jψ ’s

yielding a Walsh polynomial.

∑
=

=
31

0
)()(

j
xjjxf ψω

 (2)

where




=∧−
=∧+

=
1)(1
0)(1

)(
jxif
jxif

xj π
π

ψ
(3)

jx ∧ is the bitwise AND of x and j;)(xπ denotes the parity of x; and ℜ∈jω .

Therefore, the index j and argument x of)(xjψ must be expressed in comparable

binary. We, therefore, used 16 bits to represent x in a P0,15(x) format . This means that
we used one sign bit, 0 integers and 15 bits in a fixed point format for every term in
the x’s of (2). Consequently, we also used 16 bits for the indices j of (2). That implies
that 24218750.9999694824218750.99996948 +≤≤− x and 535,650 ≤≤ j . For
example, consider 1)1250.00048828(680,61 −=ψ . To see why, notice that j=61,680,

in binary, is 1111000011110000. Also, x= 1250.00048828 (with P0,15(x) format),
corresponds to 0000000000010000. And jx ∧ = 0000000000010000 for which

1)0100000000000000(=π . The length of the binary strings for the coefficients was

also made 16 and, hence, 24218750.9999694824218750.99996948 +≤≤− jω .

Therefore, any Walsh monomial jjψω is uniquely represented by a binary string of

length 32. Finally, we allow at least one but no more than 32 non-zero terms in (2).
This last conditions is mathematically expressed by including an aj term which may
only take two values (1 or 0) depending on whether the term appears. Given this , we
have

∑
=

=
32

1

)()(
j

jjj xx ψωαγ

where




−
−

=
presentnotistermthjtheif

 presentistermthjtheif
j 0

1
α

(3)

Denoting with τ the number of non-zero terms in 3 we see that a full (τ =32)
function’s binary representation is 1,024 bits long. We denote the space of all possible
functions defined by (3) with U and its cardinality with ξ . It is easy to see that

501011
31

1i
i)64(2? ×≈∑

=
≈ . The method outlined provides us with an unlimited

reservoir of functions in ℜ×ℜ . Equally importantly, the random selection of a
number τ and the further random selection ofτ different indices and τ different

jω ’s yields a uniquely identifiable function from such reservoir. The pool of Walsh

functions was randomly generated at the beginning; the)(xf ’s which the algorithms

were required to minimize were all gotten from the same pool, thus allowing us to test
the algorithms in a homogeneous functional environment.

3.2. Generation of Unbiased Functions from a Monomial Basis
Although it is possible to extend Walsh polynomials to higher dimensions, we found
it more convenient to appeal to a monomial basis for the remaining cases, as follows.

3.2.1 The case y=f(x)

 For the same functions in U we generated 150 random values 10 <≤ ix and

calculated)(ii xfy = for i=1,…,150. The sample consists of 150 binary strings of

length 16. We stored these binary strings in a set we shall call B. Likewise, we stored
the resulting yi’s in a set we shall call F. Notice that ℜ∈ii yx , . Then we obtained the

least squares approximating polynomial of degree 7. We will denote this set of
approximated polynomial functions as U2.
 We minimized enough polynomials in U2 for the distribution of the means to
be normal. We did this for each of the algorithms in our study. The results of the
minimization process are shown in Figure 3.
 A χ 2 goodness-of-fit test did not justify us to reject the null hypothesis H0:
“The distributions of the Walsh basis functions (WBF) and the monomial basis
functions (MBF) are similar”. Hence, we conclude that the statistical behaviors of the
algorithms when faced with problems defined with WBF and MBF are analogous. A
quality index Q = mean value of the minima with p = 0.95 was defined for all the
algorithms in our study. To visually enhance the difference between algorithms, we
represent the values of Q in a logarithmic scale. Since some of the Q’s are negative,
we first scaled them into the interval [d ,1) , where d << 1 . Q* is defined as follows:

Q*= log10{[Q i-min(Q)]/[max(Q)-min(Q)](1-d)+d}

Fig. 3. Behavior of the algorithms minimizing unbiased polynomial y=f(x) functions.

3.2.2 The case z=f(x,y)

In this case we considered the binary strings of set B. They were split into two
binary string sets of length 8 each, with P0,7. Then the leftmost 8 bits were mapped

, .. '
" s .,

J-"
" ,"
"
"'

• •
• • • •

:.; x .: .t. - __ x_", x 1+ 1-
. -e e -e -. •• _. _1_101 I iIi • , . .

++ + -.-.-.-.-.-.-.-.-.-.-t-&-I-&

----. '. --

into ℜ (which we now call x) and the rightmost 8 bits were also mapped into ℜ
(which we shall call y). These (xi,yi) pairs were stored in matrix XY. The values of the
independent variable z were those of set F. Our aim is to find polynomials of the form
z=f(x,y). In general, the problem is to find a set of (m) coefficients on a set of (n)
independent variables expressed as a linear combination of monomials of the n
var iables of degree up to ndd ,...,1 such that the absolute difference between an

approximating function and the observed data is minimized. This problem is
considerably more complex than the case y=f(x). Furthermore, m grows exponentially
as n and di do. For instance, if n=2 and d1=d2=7, m=64; likewise, for n=3,

7321 === ddd we have that m=512. This is the so-called called curse of

dimensionality. Both problems were circumvented by applying the Ascent Algorithm
(AA) [14]. The purpose of this algorithm is to express the behavior of a dependent
variable (y) as a function of a set of n independent variables (v).

)(

),...,,(21

vfy

vvvfy n

=

=
 (4)

The approximant is defined to have the following form:
mm XcXcXcy +++= ...

2211
 (5)

Xi denotes a combination of the independent variables. That is, Xi = fi(v). According
to the way these combinations are defined one may obtain different approximants.
Now, from the universal approximation theorem [15], any function of n variables may
be approximated with at most

∑
=

∑
= −

+−
−

∑
= −

+−
+−

=


















































k

i k

j nj

nj
i

k

j nj

nj
i

T
1

1 !)!12(

)!12(
)!12(

1 !)!12(

)!12(
12

!

!
 (6)

terms of degree k. The expression of T yields numbers of the order of 1012 even for
small n. Obviously it makes no sense to try to approximate any function with a
polynomial of these many terms. Therefore, we use a GA to select the best subset of
the terms we decide to consider to make the problem reasonably expressible.

Genetic Polynomials
The basic reason to choose AA is that it is not dependent on the origin of the Xi in (5).
We decided them to be the monomials of a full polynomial

∑ ∑
=

=
1

1 0

1
11

d

i

d

i

in
n

i
ini

n

n

vvccy . But it makes no difference to the AA whether the Xi

are gotten from a set of monomials or they are elements of arb itrary data vectors. T o
avoid the problem of the coefficient’s explosion we define the number (say ß) of
desired monomials of the approximant and then focus on slecting which of the p

possible ones these will be. There are C(p, ß) possible combinations of monomials
and even for modest values of p and ß an exhaustive search is out of the question.
This optimization problem may be tackled using a genetic algorithm (GA), as follows.

The genome is a binary string of size p. Every bit in it represents a
monomial. These monomials are ordered as per the sequence of the consecutive
powers of the variables. If the bit is ‘1’ it means that the corresponding monomial
remains while if it is a ‘0’ it means that such monomial is not to be considered. All
one has to ensure is that the number of 1’s is equal to ß. Assume, for example, that

)3,2,1(vvvfy = and that d1=1, d2=d3= 2. In such case the powers assigned to the

18332 =×× pos itions of the genome are
000,001,002,010,011,012,020,021,022,100,101,102,110,111,112,120,121,122.

For the case where ß=6 the genome 110000101010000001 corresponds to the
polynomial in (7).

2
3

2
2112231101

2
3

2
2022

2
20203001000321),,(vvvcvvcvvcvcvccvvvP +++++=

(7)
The initial population of the GA consists of a set of binary strings of length p in which
there are only ß 1’s. T he RMS error

∑
=

−=
N

i
iiRMS yf

N 1

2)(
1

ε (8)

 is calculated for each tested polynomial and, at the end of the process, the one
exhibiting the smallest such error is selected as the best approximant for the original
data set. That is, for every genome the terms corresponding to the 1’s are calculated.
These take the place of the X in (5). Then the AA is applied to get the corresponding
coefficients. To each combination of ß 1’s there corresponds a set of ß coefficients
minimizing i|)yfmax(| iiMAX ∀−=ε . For this set of coefficients RMSε is calcu-

lated. This is the fitness function for the GA. In the end, we retain the coefficients
which best minimize RMSε (from the GA) out of those which best minimize MAXε

(from the AA).
In our experiments, we set d1=d2= 4 and ß =6. We obtained an expression of the form :

665544332211 XcXcXcXcXcXcz +++++= (9)

 where ijς ’s value is either 0 or 1 as determined by the GA and

 ∑∑
= =

=
4

0i

4

0j

ji
ijiji yxcX ς (10)

Following the above procedure we found a polynomial for each of the functions in
xyz . We denote this new set of approximated polynomial functions as U3. Once the
distribution of the means is normal, as before, we inferred the mean µ and the

standard deviation s of the pdf of the minimum values reached by each of the algo-
rithms in our study. The results of the minimization process are shown in Figure 4.

Fig. 4. Behavior of algorithms minimizing unbiased polynomial z=f(x,y) functions.

3.2.3. The case w=f(x,y,z)
In this case we considered the binary strings of set B but they were now split into
three binary sets of lengths 5-5-6 with P0,4, P0,4, P0,5, respectively. Then the leftmost 5
bits, the middle 5 bits and the rightmost 6 bits were, likewise, mapped into ℜ . We
call the corresponding variables x, y and z. These (xi,yi,,zi) triples were stored in matrix
XYZ. The values of the independent variable w were those of set F. Our aim is to find
a polynomial of the form w=f(x,y,z). Following a process entirely similar to the one
described above, we now defined d1=d2=d3=4 with ß=6 and obtained

 665544332211 XcXcXcXcXcXcw +++++= (11)
 but now

∑∑∑
= = =

=
4

0i

4

0j k

kji
ijiji zyxcX

4

0

ς (12)

Again we found a polynomial for each of the functions now in wxyz . We denote this
new set of approximated polynomial functions with U4. We minimized enough
polynomials in U4 for the distribution of the means to be normal. Again we inferred
the mean µ and the standard deviation σ of the pdf of the minimum values reached
by each of the algorithms. The results of the minimization process are shown in
Figure 5.

'o ... -• -. ,
¡;'
J "

• • •
'1; X~lI: 'I;-lI:~lI:-*-il-)l X 'I;-)l- lI:- ;t"- lI: '1;

t . -••• -. -. -. -i -. -.. ~-... ". e e-e e -e $-ll-. · ___ _.·e e ••

. -.­. ~ --

Fig. 5. Behavior of algorithms minimizing unbiased polynomial w=f(x,y,z) functions.

4. Conclusions and Future Work

The results of our study show :
1) All the algorithms have a very similar behavior. We had to use a

logarithmic scale on the quality (Q*) of the results to make them apparent.
2) Remarkably, the RMH turns out to be as efficient as any of the GAs

except for EGA.
3) Their behavior as the search space grows from ℜ×ℜ , to ℜ×ℜ 2 to
ℜ×ℜ 3 is statistically indistinguishable.
4) We may expect, from an induction principle, that the algorithms behave

similarly in ℜ×ℜ n.
5) Even though all algorithms eventually approach similar minima, they do

so with evidently different rates. For example, TGA does not reach adequate
values until the very last generations.

6) SGA turns out to be the worst algorithm albeit it is the fastest (in CPU
time) of all the Ai.

7) As in [1], where the minimized functions were hand-picked, EGA is the
best algorithm of all.

8) EGA reaches its best minima in a relatively short number of generations.
Therefore, it is guaranteed to reach the best solution without having to specify a
large G.

In a paper to appear soon, we show that EGA works above par even when

faced with constrained problems. Intuitively this should be the case since even
constrained problems have to be, somehow, transformed into unconstrained ones.
In the end, it appears that, for very simple problems, RMH is enough to reach
acceptable solutions given enough time. However, when faced with more
demanding ones, EGA seems to be the best alternative: it is better and faster.

o
o . ,

."

• . . ~
' .

~-~-*-~-·-*-I_·_X_X_X_X_X_X_X_X

• •
, .. -.. -... -. -. 1-· -· -· ----

+. • ••••
•••••••• -.............. -• ..:.'-*44

-.-""

References

1. Kuri-Morales, A., Aldana-Bobadilla, E., “The Best Genetic Algorithm I: A Comparative
Study of Structurally Different Genetic Algorithms”, sent for publication .

2. De Jong, K., “An analysis of the behavior of a class of genetic adaptive systems”, Diss.
PhD thesis, Dept. of Computer and Comm. Sciences, Univ. of Michigan, Ann Arbor, MI,
1975.

3. Endre, A., Hinterding, R., Michalewicz, Z., "Parameter control in evolutionary
algorithms.", Evolutionary Computation, IEEE Transactions on 3.2: 124-141, 1999.

4. Molga, M., Smutnicki, C. , “T est functions for optimization needs”, Retrieved
March 11, 2012from http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf

5. Rudolph, G., "Convergence Analysis of Canonical Genetic Algorithms", IEEE
Transactions on Neural Networks, 5(1):96-101, January, 1994.

6. Holland, J. "Adaptation in Natural and Artificial Systems", Ann Arbor, MI; University of
Michigan Press, 1975.

7. Mitchell, M., An Introduction to Genetic Algorithms, MIT Press, 1996.
8. Mitchell, M., J. Holland y S. Forrest, “When Will a Genetic Algorithm Outperform Hill

Climbing?”, Advances of Neural Information Processing Systems, No. 6, Morgan
Kaufmann, pp. 51-58, 1994.

9. Eshelman, L., “The CHC Adaptive Search Algorithm. How to Have Safe Search When
Engaging in Nontraditional Genetic Recombination”. In Rawlins, G., editor, FOGA -1,
pages 265–283. Morgan Kaufmann., 1991.

10. Sánchez-Ferrero, G., Arribas, JI, “A Statistical-Genetic Algorithm to Select the Most
Significant Features in Mammograms”, Lecture Notes in Computer Science, Volume
4673/2007, 189-196, DOI: 10.1007/978-3-540-74272-2_24, 2007.

11. Kuri-Morales, A., “A statistical genetic algorithm”, Proc. Of the 3d. National Co mputing
Meeting, ENC '99, pp. 215-228, Hgo., México, 1999.

12. Kuri-Morales, A., Villegas-Quezada, C. (1998). A universal eclectic genetic algorithm for
constrained optimization, Proceedings of the 6th European Congress on Intelligent
Techniques and Soft Computing. Vol. 1

13. Kuri-Morales, A. (2002). A methodology for the statistical characterization of genetic
algorithm s, MICAI 2002: Advances in Artificial Intelligence : 77-96

14. Henryk UGOWSKI, "Remarks On The Ascent Algorithm For The Linear Minimax
Problem", COMPEL: The International Journal for Computation and Mathematics in
Electrical and Electronic Engineering, Vol. 8 Iss: 3, pp.181 – 184, 1989.

15. Cybenko., G. "Approximations by superpositions of sigmoidal functions", Mathematics of
Control, Signals, and Systems, 2 (4), 303-314, 1989.

References

[1] Kuri-Morales, A., Aldana-Bobadilla, E. Clustering with an N-Dimensional Exten-

sion of Gielis Superformula. WSEAS, 343-350, Editor(s)): Zadeh et al., ISBN:

978-960-6766-4, ISSN: 1790-5109, 20/02/2008

[2] Kuri-Morales, A., Aldana-Bobadilla, E. The search for irregularly shaped clusters

in data mining. New Fundamental Technologies in Data Mining, Intech, 323-354,

Editor(s): Funtasu, K., Hasegawa, K., ISBN: 9789533075471, 2011

[3] Rudolph, G. Convergence Analysis of Canonical Genetic Algorithms. IEEE Trans.

Neural Networks, 1994, 5, 96�101.

[4] Kuri-Morales, A.; Aldana-Bobadilla, E. The best genetic algorithm I. In Proceed-

ings of the 12th Mexican International Conference on Arti�cial Intelligence, Mexico

City, Mexico, 24�30 November 2013; pp. 1�15.

[5] Kuri-Morales, A.; Aldana-Bobadilla, E.; López-Peña, I. The best genetic algo-

rithm II. In Proceedings of the 12th Mexican International Conference on Arti�cial

Intelligence, Mexico City, Mexico, 24�30 November 2013; pp. 16�29.

[6] Aldana-Bobadilla, E., Kuri-Morales A. A Clustering Method Based on the Maxi-

mum Entropy Principle. Entropy 2015, 17, 151-180

[7] Bhattacharyya, A. On a Measure of Divergence between Two Statistical Popula-

tions. The Indian Journal of Statistics 1946. 7, 401�406.

[8] Kruskal, J.B. Multidimensional scaling by optimizing goodness of �t to a nonmetric

hypothesis. Psychometrika 1964, 29, 1�27.

[9] Mahalanobis, P.C. On the generalized distance in statistics. In Proceedings of the

National Institute of Sciences of India, Calcutta, India, 16 April 1936; Volume 2,

pp. 49�55.

[10] Halkidi, M.; Batistakis, Y.; Vazirgiannis, M. On clustering validation techniques.

J. Intell. Inf. Syst. 2001, 17, 107�145.

124

References 125

[11] Rokach, L.; Maimon, O. Clustering methods. In Data Mining and Knowledge

Discovery Handbook; Springer: New York, NY, USA, 2005; pp. 321�352.

[12] MacQueen, J. Some methods for classi�cation and analysis of multivariate obser-

vations. In The Fifth Berkeley Symposium on Mathematical Statistics and Proba-

bility; Le Cam, L.M., Neyman, J., Eds.; University of California Press: Berkeley,

CA, USA, 1967; Volume 1, pp. 281�297.

[13] Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms;

Springer: New York, NY, USA, 1981.

[14] Dunn, J.C. A fuzzy relative of the ISODATA process and its use in detecting

vompact well-separated clusters. J. Cybern. 1973, 3, 32�57.

[15] Dunn, J.C. Well-separated clusters and optimal fuzzy partitions. J. Cybern. 1974,

4, 95�104.

[16] Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning:

Data Mining, Inference, and Prediction, 2nd ed.; Springer: Standord, CA, USA,

2001.

[17] Guha, S.; Rastogi, R.; Shim, K. Cure: An e�cient clustering algorithm for large

databases. In Proceedings of the 1998 ACM SIGMOD International Conference on

Management of Data, Seattle, WA, USA, 1�4 June 1998; pp. 73�84.

[18] Livny, T.Z.R.R.M. Birch: An e�cient data clustering method for very large

databases. In Proceedings of the ACM SIGMOD international Conference on Man-

agement of Data, Montreal, QC, Canada, 1996; pp. 103�114.

[19] Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discov-

ering clusters in large spatial databases with noise. In Proceedings of 2nd Interna-

tional Conference on Knowledge Discovery and Data Mining, Portland, OR, USA,

2�4 August 1996; pp. 226�231.

[20] Caruana, R.; Elhaway, M.; Nguyen, N.; Smith, C. Meta clustering. In Proceedings

of the Sixth International Conference on Data Mining, Hong Kong, China, 18�22

December 2006; pp. 107�118.

[21] Das, S.; Abraham, A.; Konar, A. Metaheuristic Clustering; Springer: Berlin/Hei-

delberg, Germany, 2009.

[22] Milligan, G.W.; Cooper, M.C. An examination of procedures for determining the

number of clusters in a data set. Psychometrika 1985, 50, 159�179.

References 126

[23] Tibshirani, R.; Walther, G.; Hastie, T. Estimating the number of clusters in a data

set via the gap statistic. J. R. Stat. Soc. Ser. B 2001, 63, 411�423.

[24] Li, X.; Mak, M.-W.; Li, C.-K. Determining the optimal number of clusters by an

extended rpcl algorithm. J. Adv. Comput. Intell. Intell. Inf. 1999, 3, 467�473.

[25] Peck, R.; Fisher, L.; van Ness, J. Approximate con�dence intervals for the number

of clusters. J. Am. Stat. Assoc. 1989, 84, 184�191.

[26] Yan, M. Methods of Determining the Number of Clusters in a Data Set and a

New Clustering Criterion. Ph.D. Thesis, Virginia Polytechnic Institute and State

University, Blacksburg, VA, USA, November 2005.

[27] Cha, S.H. Taxonomy of nominal type histogram distance measures. In Proceedings

of the American Conference on Applied Mathematics, Harvard, MA, USA, 24�26

March 2008.

[28] Kim, D.-J. A novel validity index for determination of the optimal number of

clusters. IEICE Trans. Inf. Syst. 2001, 84, 281�285.

[29] Liu, Y.; Li, Z.; Xiong, H.; Gao, X.; Wu, J. Understanding of internal clustering

validation measures. In Proceedings of the 10th International Conference on Data

Mining (ICDM), Sydney, Australia, 13�17 December 2010; pp. 911�916.

[30] Larsen, B.; Aone, C. Fast and e�ective text mining using linear-time document

clustering. In Proceedings of the Fifth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, San Diego, CA, USA, 15�18 August 1999;

pp. 16�29.

[31] Strehl, A.; Ghosh, J. Cluster ensembles�A knowledge reuse framework for com-

bining multiple partitions. J. Mach. Learn. Res. 2003, 3, 583�617.

[32] Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J.

1948, 27, 379�423.

[33] Zhao, Y.; Karypis, G. Criterion Functions for Document Cluster-

ing: Experiments and Analysis; Technical Report #01-40; Available online:

http://glaros.dtc.umn.edu/gkhome/node/165 (accessed on 5 January 2015).

[34] Raftery, A.E. A note on bayes factors for log-linear contingency table models with

vague prior information. J. R. Stat. Soc. Ser. B 1986, 48, 249�250.

[35] Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation

of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53�65.

References 127

[36] Davies, D.L.; Bouldin, D.W. A cluster separation measure. IEEE Trans. Pattern

Anal. Mach. Intell. 1979, PAMI-1, 224�227.

[37] Rendón, E.; Garcia, R.; Abundez, I.; Gutierrez, C.; Gasca, E.; del Razo, F.; Gonza-

lez, A. Niva: A robust cluster validity. In Proceedings of the WSEAS International

Conferenceon Communications, Heraklion, Greece, 23�25 July 2008.

[38] Rand, W.M. Objective criteria for the evaluation of clustering methods. J. Am.

Stat. Assoc. 1971, 66, 846�850.

[39] Hubert, L.; Arabie, P. Comparing partitions. J. Classif. 1985, 2, 193�218.

[40] Graham, R.L.; Knuth, D.E.; Patashnik, O. Concrete Mathematics: A Foundation

for Computer Science; Addison-Wesley: Boston, MA, USA, 1989.

[41] Glover, F. Future paths for integer programming and links to arti�cial intelligence.

Comput. Oper. Res. 1986, 13, 553�549.

[42] Glover, F.; Laguna, M. Tabu Search; Kluwer Academic Publishers: Dordrecht,

The Netherlands, 1997.

[43] Glover, F.; McMillan, C. The general employee scheduling problem. An integration

of MS and AI. Comput. Oper. Res. 1986, 13, 563�573.

[44] Kirkpatrick, S. Optimization by simulated annealing: Quantitative studies. J. Stat.

Phys. 1984, 34, 975�986.

[45] Kirkpatrick, S.; Gelatt, C.; Vecchi, M. Optimization by simulated annealing.

Science 1983, 220, 671�679.

[46] Dorigo, M.; Blum, C. Ant colony optimization theory: A survey. Theor. Comput.

Sci. 2005, 344, 243�278.

[47] Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceed-

ings of the Sixth International Symposium on Micro Machine and Human Science,

Nagoya, Japan, 4�6 October 1995; pp. 39�43.

[48] Bäck, T.; Schwefel, H.-P. An overview of evolutionary algorithms for parameter

optimization. Evol. Comput. 1993, 1, 1�23.

[49] Beyer, H.G.; Schwefel, H.P. Evolution Strategies�A Comprehensive Introduction;

Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; Volume 1.

[50] Fogel, L.J. The future of evolutionary programming. In Proceedings of the Twenty-

Fourth Asilomar Conference on Signals, Systems and Computers, Paci�c Grove,

CA, USA, 5�7 November 1990; Volume 2, pp. 1036�1038.

References 128

[51] Banzhaf, W.; Nordin, P.; Keller, R.E.; Francone, F.D. Genetic Programming: An

Introduction: On the Automatic Evolution of Computer Programs and Its Applica-

tions (The Morgan Kaufmann Series in Arti�cial Intelligence); Morgan Kaufmann

Publishers: Burlington, MA, USA, 1997.

[52] Holland, J.H. Adaptation in Natural and Arti�cial Systems: An Introductory Anal-

ysis with Applications to Biology, Control, and Arti�cial Intelligence, 2nd ed.; MIT

Press: Cambridge, MA, USA, 1992.

[53] Pandey, Hari Mohan and Chaudhary, Ankit and Mehrotra, Deepti A compara-

tive review of approaches to prevent premature convergence in GA. Applied Soft

Computing, 2014; Volume 24, pp. 1047�1077.

[54] Kuri-Morales, A.; Villegas, C.Q. A universal eclectic genetic algorithm for con-

strained optimization. In Proceedings of the 6th European Congress on Intelligent

Techniques and Soft Computing, Aachen, Germany, September 1998; Volume 1,

pp. 518�524.

[55] Abudalfa, S.I. Metaheuristic Clustering Algorithm. Ph.D. Thesis, The Islamic

University of Gaza, Gaza, Palestine, 2010.

[56] Caballero, R.; Laguna, M.; Martí, R.; Molina, J. Multiobjective

Clustering with Metaheuristic Optimization Technology; Available online:

http://www.uv.es/sestio/TechRep/tr02-06.pdf (accessed on 5 January 2015).

[57] Shelokar, P.S.; Jayaraman, V.K.; Kulkarni, B.D. An ant colony approach for clus-

tering. Anal. Chim. Acta 2004, 509, 187�195.

[58] Faivishevsky, L.; Goldberger, J. A nonparametric information theoretic cluster-

ing algorithm. In Proceedings of the 27th International Conference on Machine

Learning, Israel, Israel, 21�24 June 2010.

[59] Gokcay, E.; Principe, J.C. Information theoretic clustering. IEEE Trans. Pattern

Anal. Mach. Intell. 2002, 24, 158�171.

[60] Hino, H.; Murata, N. A nonparametric clustering algorithm with a quantile-based

likelihood estimator. Neural Comput. 2014, 26, 2074�2101.

[61] Jenssen, R.; Hild, K.E.; Erdogmus, D.; Principe, J.C.; Eltoft, T. Clustering using

Renyi's entropy. In Proceedings of the International Joint Conference on Neural

Networks, Portland, OR, USA, 20�24 July, 2003; pp. 523�528.

[62] Slonim, N.; Atwal, G.S.; Tka£ik, G.; Bialek, W. Information-based clustering. Proc.

Natl. Acad. Sci. USA 2005, 102, 18297�18302.

References 129

[63] Sugiyama, M.; Niu, G.; Yamada, M.; Kimura, M.; Hachiya, H. Information-

maximization clustering based on squared-loss mutual information. Neural Comput.

2014, 26, 84�131.

[64] Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley:

Hoboken, NJ, USA, 2006.

[65] Cheng, C.-H.; Fu, A.W.; Zhang, Y. Entropy-based subspace clustering for mining

numerical data. In Proceedings of the Fifth ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 15�18

August 1999; pp. 84�93.

[66] De Sa, J.P.M. Pattern Recognition: Concepts, Methods, and Applications; Springer:

Berlin/Heidelberg, Germany, 2001.

[67] M. Lichman. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml.

University of California, Irvine, School of Information and Computer Sciences,2013

[68] Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classi�cation; Wiley: New York, NY,

USA, 2000.

[69] Haykin, S. Neural Networks: A Comprehensive Foundation, 2nd ed.; Prentice Hall:

Upper Saddle River, NY, USA, 1999.

[70] Gallager, R.G. Information Theory and Reliable Communication; Wiley: Hoboken,

NJ, USA, 1968.

[71] Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106,

620�630.

[72] Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; Wiley:

Chichester, UK, 2001.

[73] Snyman, J. Practical Mathematical Optimization: An Introduction to Basic Opti-

mization Theory and Classical and New Gradient-Based Algorithms; Springer: New

York, NY, USA, 2005.

[74] Thomas, G.B.; Finney, R.L.; Weir, M.D. Calculus and Analytic Geometry; Addison-

Wesley: Boston, MA, USA, 1988.

[75] Censor, Y. Pareto optimality in multiobjective problems. Appl. Math. Optim.

1977, 4, 41�59.

References 130

[76] Sindhya, K.; Sinha, A.; Deb, K.; Miettinen, K. Local search based evolutionary

multi-objective optimization algorithm for constrained and unconstrained prob-

lems. In Proceedings of the IEEE Congress on Evolutionary Computation, Trond-

heim, Norway, 18�21 May 2009; pp. 2919�2926.

[77] Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the

Strength Pareto Evolutionary Algorithm; TIK-Report 103; Avail-

able online: http://www.kddresearch.org/Courses/Spring-2007/

CIS830/Handouts/P8.pdf (accessed on 5 January 2015).

[78] Steliga, K.; Szynal, D. On Markov-Type Inequalities. Int. J. Pure Appl. Math.

2010, 58, 137�152.

[79] Casella, G.; Robert, C.P. Monte Carlo Statistical Methods; Springer: New York,

NY, USA, 1999.

[80] Johnson, J.L. Probability and Statistics for Computer Science; Wiley: Hoboken,

NJ, USA, 2003.

[81] Abalone Data Set. Available online: http://archive.ics.uci.edu/ml/datasets/Abalone

(accessed on 30 December 2014).

[82] Cars Data Set. Available online: http://archive.ics.uci.edu/ml/datasets/Car+Evaluation

(accessed on 30 December 2014).

[83] Census Income Data Set. Available online:

http://archive.ics.uci.edu/ml/datasets/Census+Income (accessed on 30 De-

cember 2014).

[84] Hepatitis Data Set. Available online: http://archive.ics.uci.edu/ml/datasets/Hepatitis

(accessed on 30 December 2014).

[85] Yeast Data Set. Available online: http://archive.ics.uci.edu/ml/datasets/Yeast (ac-

cessed on 30 December 2014).

[86] Agresti, A. Categorical Data Analysis; Wiley: Hoboken, NJ, USA, 2002.

[87] Shampine, L.F.; Allen, R.C.; Pruess, S. Fundamentals of Numerical Computing;

Wiley: New York, NY, USA, 1997.

[88] M. Mitchell An Introduction to Genetic Algorithms; MIT Press, pp 129�130,1996

[89] M. Mitchell and J. Holland and S. Forrest; When Will a Genetic Algorithm

Outperform Hill Climbing?; Advances of Neural Information Processing Systems,

No. 6, Morgan Kaufmann, pp. 51-58,1994

References 131

[90] M. Molga and C. Smutnicki; Test functions for optimization needs; Retrieved

March 11, 2012 from http://www.zsd.ict.pwr.wroc.pl/�les/docs/functions.pdf, pp.

41-42

[91] L. Eshelman; The CHC Adaptive Search Algorithm. How to Have Safe Search

When Engaging in Nontraditional Genetic Recombination; In Rawlins, G., editor,

FOGA -1, pages 265�283. Morgan Kaufmann, 1991

[92] J. Rezaee and A. Hashemi and N. Nilsaz and H. Dezfouli; Analysis of the Strategies

in Heuristic Techniques for Solving Constrained Optimisation Problems; Journal

of American Science, 8(10), 2012

[93] G. Sánchez-Ferrero and J. Arribas; A Statistical-Genetic Algorithm to Select the

Most Signi�cant Features in Mammograms; Lecture Notes in Computer Science,

Volume 4673/2007, 189-196, DOI: 10.1007/978-3-540-74272-2_24, 2007

[94] J. Digalakis and K. Margaritis; An experimental study of Benchmarking functions

for genetic algorithms; Intern. J. Computer math., vol. 79(4), pp. 403�416, 2002

[95] J-H. Kim and H. Myung; Evolutionary Programming Techniques for Constrained

Optimization Problems; IEEE Transactions on Evolutionary Computation, pp.

129, July 1997

[96] A. Kuri-Morales; A statistical genetic algorithm; Proc. Of the 3d. National

Computing Meeting, ENC '99, pp. 215-228, Hgo., México", 1999

[97] A novel cluster validity index: variance of the nearest neighbor distance; F. Kovacs

and R. Ivancsy; WSEAS Transactions on Computers, Volume 5, Nummber 3, pp.

477-483, 2006

	Portada
	Contents

	Prologue
	Chapter 1. Introduction
	Chapter 2. Maximum Entropy Principle and Clustering
	Chapter 3. Solving the Problem Through EGA
	Chapter 4. Datasets
	Chapter 5. Methodology to Gauge the Effectiveness of a Clustering Method
	Chapter 6. Results
	Chapter 7. Conclusions
	Appendices
	References

