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Resumen

Las estrellas masivas juegan un papel central en la evolución del uni-
verso. Su feedback ayuda a moldear y a determinar las propiedades
f́ısicas y evolución de las galaxias. Sin embargo, los procesos f́ısicos
relevantes en la formación de estas estrellas masivas no están bien
establecidos y son objeto de intenso debate en la astrof́ısica contem-
poránea.

El objetivo de esta tesis es el de entender el escenario global de
formación estelar en nubes moleculares (NMs) en evolución desde
dos puntos de vista, uno anaĺıtico y otro numérico. Resultados re-
cientes de simulaciones numéricas y de observaciones sugieren que
las NMs pueden estar en un estado de contracción gravitacional
global, por lo que dirigimos nuestros modelos y simulaciones en este
sentido. En este escenario, hemos desarrollado un modelo semi-
anaĺıtico que da cuenta de la evolución completa de NMs en colapso
global, siguiéndolas desde su formación hasta su destrucción por la
radiación ionizante proveniente de las estrellas masivas. Extende-
mos este modelo para explorar la dependencia de la tasa y eficiencia
de formación estelar en la masa de las NMs. Satisfactoriamente
logramos reproducir muchas de las caracteŕısticas evolutivas obser-
vadas (como la distribución de edades de estrellas en cúmulos y la
secuencia temporal de NMs gigantes reportada en la Nube Mayor de
Magallanes) dentro de una precisión de medio orden de magnitud.

Posteriormente, presentamos simulaciones numéricas incluyendo cam-
pos magnéticos y un modelo detallado del transporte radiativo, para
simular el efecto que la radiación ionizannte, proveniente de las es-
trellas masivas, tiene sobre la dinámica de la nube. Nuestros re-
sultados indican que la radiación ionizante es capaz de erosionar
y dispersar las NMs en colapso reduciendo tanto la tasa como la
eficiencia de formación estelar a valores consistentes con los obser-
vados.



Abstract

Massive stars play a central role in the evolution of the universe.
Their feedback helps shape and determine the physical properties
and evolution of galaxies. However, the relevant physical processes
in the formation of these massive stars are not well established and
are subject to intense debate in contemporary astrophysics.

The objective of this thesis is to understand the global scenario of
star formation in evolving molecular clouds (MCs) from both an
analytical and a numerical standpoint. Recent numerical results
and observations suggest that MCs may be in a state of global grav-
itational contraction, and we cast our model and simulations in this
framework. In this scenario, we have developed a semi-analytical
model that accounts for the evolution of MCs in global collapse,
from the cloud formation to its destruction by ionizing radiation
from massive stars. This model is then extended to explore the de-
pendence of the star formation rate and efficiency on the mass of
these MCs. We have successfully reproduced many of the observed
evolutionary features of MCs (such as the stellar age distribution
in clusters and the evolutionary sequence for giant MCs recently
reported for the Large Magellanic Cloud) within half an order of
magnitude.

Next, we present numerical simulations of the process, including
magnetic fields and a detailed model of radiative transfer, to repre-
sent the effect of the ionizing radiation from the massive stars on the
clouds’ dynamics. Our results indicate that ionizing radiation is able
to erode and disperse the collapsing MCs and reduce both the star
formation rate and efficiency to values consistent with observation.
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Introduction

Many aspects of the star formation process remain the subject of intense debate,
despite its fundamental importance. One of these aspects, addressed in this
work, is the regulation of the rate and efficiency with which stars form in the
interstellar medium (ISM) of our Galaxy (the star formation rate [SFR] and
efficiency [SFE], respectively). This requires, in turn, to understand the origin
and evolution of molecular clouds (MCs), which are the sites where stars form
today. This is of vital importance, because the way in which the clouds evolve
determines the way in which they form stars and also the way in which the
newborn stars impact their environment.

When massive stars die, they return a significant portion of their mass (en-
riched by nucleosyntesis) into the ISM. In general, it is estimated that about 20%
of the mass used up in star formation is fed back into the ISM after the star is
born. This return of material, as well as the radiation from newly-formed stars,
injects energy and momentum into the ISM (see, e.g., Mac Low and Klessen,
2004). There are also indications that the Galaxy is still accreting some material
from the intergalactic medium (IGM), but at the same time is losing some of
it into the IGM through diffusion processes or in catastrophic galaxy collisions.
Thus, the ISM is highly dynamic and turbulent, with Reynolds numbers � 106

(Elmegreen and Scalo, 2004a). As a result, the structure of the ISM is highly
complex and temperature (T ), density, and even velocity and magnetic fields
vary vastly across the Galaxy, to the point that the ISM has been described as
violent (McCray and Snow, 1979).

The highly dynamic state of the ISM causes in particular the formation of
cold, dense regions which are referred to as clouds. These may be composed
mainly of Hydrogen atoms (and thus called atomic clouds) or, if the column
density of this gas is high enough to shield it from the dissociating background
UV radiation, they may be composed primarily of Hydrogen molecules, H2, and
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1.1 The interstellar medium

Table 1.1: Phases of the interstellar medium in the Galaxy. Table adapted from
Ferrière (2001)

Phase T (K) n (cm−3) Fraction of Volume M (109M�)
Molecular clouds 10-20 102 − 106 0.01 ∼ 1.3− 2.5

Cold neutral medium 50-100 20-50 0.01− 0.04 |� 6.0
Warm neutral medium 6000-10 000 0.2-0.5 0.2− 0.6 |� 6.0
Warm ionized medium ∼ 8000 0.2-0.5 0.15− 0.4 � 1.6
Hot ionized medium ∼ 106 ∼ 0.0065 0.4− 0.7 -

in this case the clouds are called molecular. It is in these densest, molecular,
clouds that star formation (SF) takes place in our Galaxy.

There is no consensus about whether the clouds are in a dynamic state or
rather are in a state of equilibrium, although there is growing evidence sugges-
ting that MCs are in a state of hierarchical collapse. This, however, presents
a problem, because early studies (Zuckerman and Evans, 1974; Zuckerman and
Palmer, 1974) argued that MCs could not be in a state of free-fall, or else the
SFR would be much larger than observed, and concluded that MCs should be
supported in some way against gravitational collapse. In this frame, the main
goal of this thesis, is to demonstrate that the scenario of global cloud collapse,
with the star formation rate (SFR) and efficiency (SFE) regulated by massive
star-feedback is plausible.

In this chapter we begin by introducing the ISM constituents (section 1.1)
and their relation with the formation and evolution of stars (section 1.2). We
continue in section 1.3 discussing the dynamic state of MCs, and in section 1.4
we present the corresponding scenarios of star formation. Finally, in section 1.5
we discuss the effects of feedback from massive star on the parental MC.

1.1 The interstellar medium

In our Galaxy, the space between the stars is not completely empty. Instead, it
contains an extremely tenuous material known as the ISM, which is mainly com-
posed of ordinary matter (gas and dust), relativistic charged particles (known
as cosmic rays) and magnetic fields. The gas and dust are in the form of either
individual clouds or in a diffuse background. Interstellar space typically con-
tains about one Hydrogen atom per cubic centimetre and 100 dust particles per
cubic kilometre. Cosmic rays are mixed with the gas and dust. There is also a
weak (of order a few μG), but still very important, galactic magnetic field.

Each of the components of the ISM plays an important role in the process
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1.1 The interstellar medium

Table 1.2: Physical properties of the molecular phase in the Galaxy

GMCs Clumps cores
Mass (M�) 6× 104 − 2× 106 102 1− 10
Size (pc) 20− 100 0.2− 4 0.1− 0.4

Density (cm−3) 100− 300 103 − 104 104 − 105

Temperature (K) 15− 40 7− 15 10
Magnetic Field (μG) 1− 10 3− 30 10− 50
Line width (km s−1) 6− 15 0.5− 4 0.2− 0.4
Dynamical time (Myr) 3 1 0.6

of star formation and the interaction between the different components should
be included in a comprehensive theory. However, to describe all components
and their interactions an entire book would be needed, so in this section we will
concentrate mainly in a short description of the molecular gas phase, the dust,
and the magnetic field, which are the initial ingredients for star formation.

1.1.1 Interstellar Gas

The interstellar gas constitutes ∼10-15% of the total mass of our Galaxy, and
tends to be concentrated near the galactic plane and through the spiral arms.
In these regions, most of the stars are formed, in particular, the most massive
ones.

This interstellar gas is composed mostly of hydrogen, with small amounts of
carbon, oxygen, iron, and other heavier elements. Specifically, 70.4% of the total
gas mass is hydrogen, ∼28.1% is helium, and only ∼1.5% is in heavier elements
(see Ferrière, 2001, and references therein). The gas appears in mainly three
phases (although as many as 5 or more have been suggested; e.g., Heiles, 2001),
a cold phase consisting of molecular and atomic hydrogen gas and dust, a warm
phase, with both atomic and ionized hydrogen gas, and a hot phase, containing
shocked gas from supernova explosions, as well as what is referred to as coronal
gas. The main physical parameters of these phases are listed in Table 1.1.

Of specific interest for star formation is the cold phase of the ISM, and in
particular its molecular component, whose sub-components and physical pro-
perties are listed in Table 1.2. The molecular gas is mainly concentrated in a
ring between 2 and 8 kpc in the Galactic plane and at a height of � 0.2 kpc
(Bronfman et al., 1988; Clemens et al., 1988). Also, this molecular gas is con-
tained in hierarchically-organized discrete clouds from giant MCs or complexes
(GMCs) with sizes of a few tens of pc, masses above 106 M� and number den-
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1.1 The interstellar medium

sity, n, of ∼ 100 − 1000 cm−3, to small dense cores with sizes of several tenths
of pc, masses ∼ 0.3 − 103 M� and number densities ∼ 104 − 106cm−3 (Larson,
1981; Goldsmith, 1987). In general, the MCs are very cold, with temperatures
in the range of 10 to 20K (Goldsmith, 1987, see Table 1.2), corresponding to
thermal velocities of � 0.22 to 0.31 km s−1.

Regarding the dynamical features of MCs, Larson (1981) found what are
often referred to as Larson’s relations. The first relation tells us that MCs
are supersonically turbulent with non-thermal velocity dispersion (σrms) that
increases as a power of the size (RC), i.e., σrms ∝ Rβ

C, where the presently-
accepted value of β is ∼ 1/2. Larson’s second relation suggests that the density
(ρ) decreases as a power of the size as ρ ∝ R−1

C . However, it has been suggested
(Kegel, 1989; Scalo, 1990; Vazquez-Semadeni and Gazol, 1995; Heyer et al.,
2009; Ballesteros-Paredes et al., 2011a) that these relationships may not be as
universal as previously thought, and instead, that the density-size relation is
only an artefact of the criterion used to define them (Ballesteros-Paredes et

al., 2012), and that the line-width-size relation generalizes to σrms/R
1/2
C ∝ Σ1/2

(where Σ is the surface density; Ballesteros-Paredes et al., 2011a).

1.1.2 Interstellar Dust

The interstellar dust constitutes about 1% of the gas. Dust grains are mi-
croscopic particles (with typical sizes of 0.1 to 1μm) composed of dielectric
materials and refractors, which are formed in the atmospheres of stars of late
spectral type K or M, and expelled to the interstellar space by radiation pre-
ssure (Woolf and Ney, 1969; Draine, 1990). Dust particles become apparent by
observing the extinction of light along the line of sight to background sources.
Because of the small size of the dust particles, more blue light will be scattered
than red light and, as a result, the images from the sources appear redder than
they were without dust (interstellar reddening).

Gas and dust are well intermixed at all scales, and regions of high gas density
are usually also regions of high dust density. A typical interstellar grain consists
of a core of rock material (graphite, silicates or possibly iron) surrounded by
an ice sheet (water, methane or ammonia), although it has been suggested
the presence of ring molecules called polycyclic aromatic hydrocarbons (PAHs;
Duley and Williams, 1981; Leger and Puget, 1984). Their thermodynamic pro-
perties depend on the environment, the average temperature in interstellar space
is ∼10-20 K, but close to hot stars is 100-600 K, and in regions of ionized gas
is 70-100 K. Its number density is extremely low, typically ∼100 dust particles
per cubic kilometre.
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1.2 The Interstellar Medium-star cycle

Although dust is a small fraction of the mass of interstellar material, about
1%, and 0.1% of the baryonic mass of our galaxy, is of vital importance, since
dust absorbs between 30 and 50% of starlight emitted in the Galaxy and re-emits
it in the IR, which means that 0.1% of the baryons are responsible for �50% of
the bolometric luminosity of the galaxy. Furthermore, the dust grains are the
sites of formation of molecules and are responsible for most of the molecular
hydrogen in the ISM (Hollenbach and Salpeter, 1971; Katz et al., 1999).

1.1.3 Magnetic fields

It is well known that magnetic fields permeate the Galaxy and can affect the
gas dynamics. Ions tend to follow magnetic field lines, and the field lines can
be compressed or expanded by electromagnetic effects (e.g., Shu, 1992).

Troland and Heiles (1986), using the Zeeman effect, reported a magnitude
of a few μG with a slight tendency to increase with the increase in the density.
This trend is more pronounced in the density range of 102 − 104 cm−3, where
the magnetic field can reach tens of μG (see also Myers et al., 1995; Crutcher,
1999). Rand and Kulkarni (1989) by observing 116 near pulsars concluded that
the local magnetic field has an uniform component ∼ 1.6μG and an irregular
component of ∼ 5μG. In the other hand, Rand and Lyne (1994) obtained
consistently an uniform field of ∼ 1.4μG and they found that the magnetic
field increases toward the Galactic center, reaching a magnitude of ∼ 4.2μG in
a Galactic radius of 4 kpc.

Although it is not clear the origin of the magnetic field, it is thought that
it is generated in the interiors of stars and are amplified by the turbulence
generated by supernovae explosions.

Magnetic field strength determinations by Zeeman splitting observations in
MCs indicate that the magnetic field strength increases with increasing density
with a power-law exponent p ≈ 2/3 at densities n > 300 cm−3 (Crutcher et
al., 2010), which is expected if gravity dominates the magnetic pressure (e.g.,
Mestel, 1966). Thus, the magnetic pressure is insufficient to balance gravity
and prevent contraction (see Section 2.5.2). At lower densities, � 300 cm−3,
the maximum strength of the interstellar magnetic field seems to be roughly
constant ∼ 10μG (Crutcher et al., 2010).

1.2 The Interstellar Medium-star cycle

Although the interstellar medium contains only a small fraction of the total
mass of galaxies, it plays a vital role in many chemical and physical processes.
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1.3 The Star Formation Efficiency

In particular, a very important process is the ISM-star cycle, in which stars
form from molecular gas and dust in the densest and coldest regions in MCs.
During a star’s lifetime, depending on its total mass, a significant fraction of
that material may be returned to the ISM through the winds of massive stars or
mass ejections from young or late evolutionary stages. This ejections enrich the
environment and at the same time can induce the formation of new stars from
this processed material, thus completing the cycle. Thereby, to understand the
evolution of a star, it is important to study the nature and evolution of the
ISM, and of MCs in particular.

1.3 The Star Formation Efficiency

It is well known that the ISM and the process of star formation are closely
related, since observations towards interstellar clouds reveal that all the current
SF in the galaxy is associated with MCs of gas and dust (see, e.g., Blitz, 1993;
Williams et al., 2000). On the other hand, regarding the physical processes
involved, we know that stars form by gravitational contraction on dense cores
in MCs (see, e.g., Shu et al., 1987). However, the complete cycle is not well
understood and is a current subject of intense debate.

An important step in understanding the problem is understanding the evo-
lution of giant molecular clouds (GMCs; see, e.g., Vázquez-Semadeni, 2010;
Vázquez-Semadeni, 2012), from their birth to their possible destruction by the
stars formed. In this context, the concept of star formation efficiency, which is
typically defined as the mass fraction of a MC that turns into stars during its
lifetime, appears and takes a central role. It is essentially an observable that
models of star formation try to explain.

The SFE is an elusive concept of observational origin essentially, but is ac-
tually a function of space and time, and depends of what is the final fate of the
clouds. Traditionally, it assumes that the cloud is a well-defined gas reservoir
and has finite and well defined lifetime and mass. However, recent observational
and theoretical studies, suggest that these assumptions are not necessarily ve-
rified. In particular, and very importantly, it is highly probable that GMCs
are in the process of accreting mass from a reservoir of atomic gas (see, e.g.,
the review by Molinari et al., 2014). This is supported by observations that
invariably suggest that GMCs are immersed in an atomic envelope (see, e.g.,
Blitz and Thaddeus, 1980; Wannier et al., 1983; Andersson and Wannier, 1993;
Ballesteros-Paredes et al., 1999a; Brunt, 2003; Blitz et al., 2007) and increase
their mass over time (Kawamura et al., 2009) and by numerical simulations of
the formation of MCs from compressions in the warm neutral medium (WNM;
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e.g., Ballesteros-Paredes et al., 1999a; Hennebelle and Pérault, 1999; Koyama
and Inutsuka, 2000; Koyama and Inutsuka, 2002; Vázquez-Semadeni et al.,
2007). For MCs accreting mass from the WNM throughout their lifetimes, con-
verting part of their mass into stars, which inject energy to the cloud destroying
or dispersing it, the concept of SFE becomes more elusive.

In this work we attempt to reformulate the concept of SFE in a dynamic
environment trying to capture this complex situation.

1.4 Scenarios of Star Formation

An unresolved issue is whether the GMCs are in virial equilibrium or in global
gravitational contraction. This debate comes from forty years ago. Initially Gol-
dreich and Kwan (1974) proposed that the supersonic line-widths observed in
MCs corresponded to movements of global gravitational contraction, but quickly
Zuckerman and Palmer (1974) argued that, if this were the case, the SFR in the
Galaxy would be much greater than the observed. Zuckerman and Evans (1974)
then suggested that the line-widths could correspond to small-scale turbulence,
introducing the notion that the clouds are entities in equilibrium, a notion that
remained until recently (se e.g., Mac Low and Klessen, 2004). Since then,
theoretical models of star formation have been based on the idea that turbu-
lence provides support to the clouds against their self gravity, keeping them in a
state of virial quasi-equilibrium (see, e.g., Norman and Silk, 1980; McKee, 1989;
Matzner, 2002; Krumholz and McKee, 2005; Li and Nakamura, 2006; Nakamura
and Li, 2007; Wang et al., 2010). However, recent observational and theoreti-
cal evidence have suggested a return to the possibility that MCs may be in a
global state of gravitational contraction (see, e.g., Hartmann et al., 2001; Burk-
ert and Hartmann, 2004; Hartmann and Burkert, 2007; Peretto et al., 2007;
Vázquez-Semadeni et al., 2007; Galván-Madrid et al., 2009; Vázquez-Semadeni
et al., 2009; Schneider et al., 2010; Csengeri et al., 2011; Peretto et al., 2014).
Then, it is necessary to solve the problem of the excessive SFR that this sce-
nario would seem to imply. Of curse, a solution to this problem has existed
since the time when the debate first appeared: that the clouds are destroyed
early in their evolution by their own stellar products (Field, 1970; Whitworth,
1979; Cox, 1983; Elmegreen, 1983; Franco et al., 1994). In this work we adopt
this point of view, and we assume that the radiation of massive stars (ionizing
photons, radiation pressure, winds and supernova explosions) can regulate the
SFR, maintaining a low SFE, as suggested by the observations (see for example
the review of Vázquez-Semadeni, 2010).

These two possible states, clouds in equilibrium and clouds in global gravi-
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tational contraction, give rise to two main scenarios that attempt to explain the
star formation process: slow and fast star formation. Both are able to explain
the observed SFE. To get a clear picture, we can write the SFE as

SFE =
1

MC

∫
Δt

SFR dt, (1.1)

where MC is the total cloud mass, and Δt is “the cloud lifetime”. Assuming a
constant SFR during Δt , we have

SFE =
SFR

MC

Δt. (1.2)

We intuitively can see from this expression, that a low SFE can be achieved
through a low SFR for a long time (a few tens of Myr) consistent with models
in which SFR is regulated by turbulence (slow star formation), or through a
high SFR in a short time (a few Myr) consistent with models of clouds in global
gravitational contraction (fast star formation).

Other proposals to explain the low SFE in the Galaxy are that global MC
collapse is prevented because i) strong magnetic fields support the clouds (e.g.,
Allen and Shu, 2000); or ii) GMCs are gravitationally unbound (e.g., Clark and
Bonnell, 2004).

1.4.1 Slow Star Formation

For many years, the accepted scenario of star formation (particularly of low-
mass) was the Standard Model, in which clouds are globally supported by mag-
netically subcritical magnetic fields, and the cores contract quasi-statically over
long times (∼ 10 My) until the magnetic flux has been sufficiently redistributed
through the process known as ambipolar diffusion (AD), so the magnetic forces
are no longer capable of supporting the core, allowing the dynamic gravitational
collapse (e.g., Shu et al., 1987; Mouschovias, 1991a). According to this model,
the low SFE is explained by the low mass fraction that becomes supercritical
by the AD.

However, these ideas of equilibrium or quasi-equilibrium, seem contradictory
with the highly turbulent nature of the ISM, so the presence of turbulence within
the MCs has recently been considered as a possible mechanism to reduce the
SFE, if the turbulent pressure is considered as an additional agent of support
to the thermal and magnetic pressures against gravity. These ideas give rise to
the Turbulent Model. The key point in this model is that the turbulence has
a dual effect: it supports the cloud as a whole, while locally it induces density
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fluctuations (Sasao, 1973; Leorat et al., 1990; Klessen et al., 2000; Vázquez-
Semadeni et al., 2003).1

In the case of supersonic isothermal turbulence, strong density fluctua-
tions are produced (e.g., von Weizsäcker, 1951; Sasao, 1973; Elmegreen, 1993;
Vazquez-Semadeni, 1994; Gammie and Ostriker, 1996; Passot and Vázquez-
Semadeni, 1998; Ballesteros-Paredes et al., 1999b; Ostriker et al., 1999; Padoan
and Nordlund, 1999; Ostriker et al., 2001), forming dense sheets and filaments
(e.g., Vazquez-Semadeni et al., 2000) in which stars form later, even in the
presence of supercritical magnetic fields (e.g., Ostriker et al., 1999; Padoan
and Nordlund, 1999; Ostriker et al., 2001; Vázquez-Semadeni et al., 2005a).
Thus, several numerical studies with (Heitsch et al., 2001; Vázquez-Semadeni
et al., 2005a; Vázquez-Semadeni et al., 2005b) and without (Klessen et al.,
2000; Vázquez-Semadeni et al., 2003) magnetic field, have shown that incre-
asing the strength (i.e., the Mach number of the turbulence) of the continu-
ously forced turbulence, the effect is to reduce the SFE (see also Mac Low
and Klessen, 2004). However, studies in which the turbulence is applied only
initially, so that it subsequently decays, showed the opposite effect (Nakamura
and Li, 2005), suggesting that the nature and development of turbulence effect
is essential in determining the SFE.

In summary, supersonic isothermal turbulence provides global support to the
MCs, but produces local collapse, involving small mass fractions, and producing
a low SFE (Klessen et al., 2000; Heitsch et al., 2001; Vázquez-Semadeni et al.,
2003), as observed in low-mass star forming regions in galactic disks (e.g., Myers
et al., 1986; Federrath and Klessen, 2013). In contrast, the lack of turbulent
support results in regions collapsing freely. In hydrodynamic simulations (e.g.,
Wada and Norman, 1999; Klessen and Burkert, 2000), the gas collapses freely
form a network of overdensities in which the star formation is highly efficient,
as observed in high-mass star forming regions.

In the last decade there have been various analytical models for the SFE
based on the notion of turbulent support. The most relevant one for our pur-
poses is the so called cloud-support models (Krumholz and McKee, 2005; Hen-
nebelle and Chabrier, 2011; Padoan and Nordlund, 2011; Federrath and Klessen,
2012; Federrath and Klessen, 2013).2 In these models, the turbulence is the key
physical process, since it supports globally the MC against gravity (maintaining
the cloud in quasi-equilibrium conditions) and regulates the SFR by inducing
local compressions that cause a small fraction of clouds mass to collapse per
global free-fall time.

However, this class of models is not fully supported by simulations of MC

1See also the review by Vazquez-Semadeni et al. (2000).
2These models differ in the way they chose the threshold density.
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formation and evolution (Vázquez-Semadeni et al., 2007; Heitsch and Hart-
mann, 2008; Vázquez-Semadeni et al., 2010; Vázquez-Semadeni et al., 2011).
In such simulations, the effect of large-scale turbulence in the warm ISM is to
form dense, cold clouds that rapidly engage in global gravitational collapse, the
turbulence induced by the formation process being insufficient to support the
clouds. Moreover, SF does not begin in those clouds until after several Myr of
collapse. Thus, by the time SF starts, the cloud is already collapsing, and so
stellar feedback cannot be the driver of the internal cloud turbulence, at least
during its early stages.

1.4.2 Rapid Star Formation

The alternative is to return to the scenario of global gravitational contraction.
A large number of studies argue in favor of this scenario by noting that several
observational properties of clouds and clumps are consistent with models do-
minated by such contraction (e.g., Hartmann and Burkert, 2007; Peretto et al.,
2007; Vázquez-Semadeni et al., 2009; Peretto et al., 2013). Moreover, the notion
of random turbulence on a small scale seems contrary to the fact that the main
component of the speed differences within the clouds and clumps at all levels
seems to occur at the largest scales, consistent with coherent motions in the
scale of the clump or cloud (Heyer and Brunt, 2007).

Recent evidence suggests that GMCs start near the magnetically super-
critical state (e.g., Crutcher, 1999), which eliminates the long AD time of the
standard model (e.g., Ciolek and Basu, 2001; Fatuzzo and Adams, 2002; Heitsch
et al., 2004), but perhaps the most compelling evidence in the change of vision
is that the MCs seem to form strars synchronously, so that the ages of the stars
in the clusters are all very similar, and in fact, very few stars older than the
average age of the cluster stars are observed. In particular there is the so called
post-T-Tauri problem, which consists of the apparent absence of old T-Tauri
stars in the vicinity of star forming regions. Ballesteros-Paredes et al. (1999a)
proposed that the solution to this problem is that MCs are formed on short time
scales by compression from large scale flows. These authors suggested that, for
example, the Taurus MC has formed recently (∼ 3Myr ago) by this mechanism,
suggesting that older stars near the region (with ages 5-10 Myr) are field stars.

Numerical studies of formation of clouds by WNM converging flows show
that the clouds are born turbulent due to various instabilities, such as Kelvin-
Helmholtz, Rayleigh-Taylor, thermal, and the nonlinear thin-shell instability
(Koyama and Inutsuka, 2002; Audit and Hennebelle, 2005; Heitsch et al., 2005;
Vázquez-Semadeni et al., 2006). The resulting turbulence is subsonic relative to
the warm gas, but supersonic with respect to the cold phase (Koyama and Inut-

10
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suka, 2002; Heitsch et al., 2005), involving large density fluctuations (clumps)
for which the free-fall time is significantly less than the average of the cloud.
Thus, once the global collapse begins, the clumps can complete their collapse
faster than the bulk of the cloud, so that these clumps begin to form stars,
which then begin to feed energy and momentum back onto their parent clouds,
potentially destroying them before they can complete their global collapse (see,
e.g., Vázquez-Semadeni et al., 2010; Dale et al., 2012; Coĺın et al., 2013; Dale
et al., 2013).

Specifically, recent numerical studies of cloud formation by converging warm
neutral gas streams, which produce an initially atomic dense cloud, show that
the cloud grows in mass over time, until it becomes gravitationally unstable
and begins to form stars (e.g., Vázquez-Semadeni et al., 2007). Thus, cloud
turbulence produced during the process of its formation, is then replaced by
large scale motions of gravitational contraction. Vázquez-Semadeni et al. (2008)
conducted a systematic study of the topology of the velocity field, finding a clear
tendency for denser objects to have more convergent flows. This contradicts the
traditional view that the broad lines of the MCs and their substructure corres-
pond to random turbulence. Instead, MCs contain a significant component of
large-scale convergence, in accordance with the original proposal of Goldreich
and Kwan (1974). In any case, the MCs contain large nonlinear overdensities
in which the free-fall time (tff) is significantly shorter than the average MC.
Thus, once the global collapse begins, the clumps can complete their collapse
faster than the bulk of the cloud if they have masses larger than their Jeans
mass. However, if clouds and their substructure are in gravitational contraction,
as originally raised by Goldreich and Kwan (1974), is necessary to solve the
Zuckerman & Palmer conundrum in this scenario.

1.5 Self-regulated star formation

Many different physical processes contribute to shaping galactic ecosystems.
To understand galactic structure, morphology, and evolution, a key question is
what regulates the star formation rate. Because stars have an impact on their
environment, the rate at which gas can collapse to make new stars is affected
by the previous generation of star formation.

Newly born stars appear in or near the MC in which they formed. Generally,
when stars are formed, they do so in large numbers and some of them are
massive stars. These hot stars immediately begin photoionizing the residual
ISM around themselves, giving rise to bright HII regions. Thus, massive stars
not only erode the interface between their HII region and the dark MC, they
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also sweep up material, compressing it and possibly generating new bursts of
star formation around of the ionization fronts (Field and Saslaw, 1965).

1.5.1 Feedback from massive stars

As we have mentioned, the stars have a strong effect mainly on their birth envi-
ronments through their various feedback mechanisms, which could be classified
in three main categories (following Krumholz et al., 2014a): i) momentum
feedback, through protostellar outflows and radiation pressure, which inject mo-
mentum into star-forming clouds; ii) explosive feedback, through winds from
massive stars with M > 40M�, photoionization feedback and supernovae; and
iii) thermal feedback, through non-ionizing radiation. However, the ionizing
feedback from massive stars is generally considered to be the dominant mecha-
nism of stellar energy injection at the scale of GMCs (Matzner, 2002), unless
there is a population of stars with masses � 20M�, in which case the radiation
pressure begins to be the dominant eedback process (Krumholz et al., 2009).
Thus, hereinafter we will only consider the ionizing radiation from massive stars
in large scale, although a comprehensive study should include all the feedback
mechanisms.

Whitworth (1979) analytically estimated the effect of expanding blister HII
regions (or champagne flows) on the parent cloud of massive stars, concluding
that once 4% of the mass of a GMC of 105 M� has been converted to stars,
their feedback is sufficient to completely disperse the remaining cloud. Franco
et al. (1994) extended this result considering that a fraction of massive stars
are embedded in the cloud and do not produce a blister HII region, but rather
an embedded one, and estimated the maximum number of massive stars that
can be hosted by a GMC before it is destroyed, concluding that the SFE (the
mass converted to stars) falls in the range of 2%−16%, with an average of 5%.

However, these authors considered the effects of ionization on smooth clouds
of constant mass and density. Also, 2D numerical simulations by Bodenheimer
et al. (1979) showed that blister HII regions could be an efficient dispersal me-
chanism. On the other hand, Mazurek (1980) and Yorke et al. (1989) found that
the disruption of clouds by HII regions is strongly impeded if the clouds are in
free fall and if the ionizing sources are embedded in the cloud. Dale and Bonnell
(2011) in 3D numerical simulations, also found that accretion flows onto an
ionizing source strongly limit the effect of ionizing feedback. Thus, the picture
from recent numerical simulations of HII regions expanding in highly structu-
red clouds is less clear, because the expanding HII regions can also promote the
formation on new stars.

Oort (1954) first suggested the idea of positive feedback, in which expan-
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ding ionization fronts might sweep up material forming dense shells which, can
fragment and produce cold cloudlets that may eventually collapse. Dale et al.
(2005) by numerical simulations of dynamically expanding HII regions, find evi-
dence of both positive and negative feedback, although Mac Low et al. (2007)
found that expanding HII regions in a turbulent cloud do not efficiently trigger
star formation. Observationally, it is extremely difficult to identify triggered
star formation.

1.6 Goal

In this thesis, we will study the effect of ionizing feedback (and magnetic fields)
in destroying the clouds and regulating SF in collapsing MCs (within the sce-
nario of rapid SF) from an analytical and numerical point of view. Analytical
models to date are based on clouds of constant mass and in equilibrium (Whit-
worth, 1979; McKee, 1989; Franco et al., 1994, see also Section 1.4.1). In
Chapters 3 and 4 we present a semi-analytical model extending these previous
studies to the case of evolving clouds. For this, we propose a model for the SFR
and SFE in MCs formed by the collision of WNM streams (trying to capture
the phenomenology observed in numerical simulations as those presented in,
e.g., Vázquez-Semadeni et al., 2007). In this scenario, the cloud accretes mass
from the diffuse phase and loses mass by SF and ionization from massive stars.
Thus, we investigate the competition between destruction and regeneration in
the cloud.

On the other hand, in Chapter 5 we perform numerical simulations of
MC formation, incorporating magnetic fields, self-gravity, radiative cooling and
heating, and stellar feedback. This complements our semi-analytical model and
previous numerical studies (Vázquez-Semadeni et al., 2007; Vázquez-Semadeni
et al., 2011; Coĺın et al., 2013).
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2

Physics of Star Formation

We now focus on the macro-physics of star formation from a dynamical point of
view, addressing different physical processes taking place at different scales of
time and space in the star forming clouds. We will use this description mainly
in numerical models (Chapter 5).

The chain of events for star formation is as follows. The ISM can be treated
as an ideal gas (Section 2.2) obeying the hydrodynamic Equations (Section 2.1),
and subject to heating and cooling processes (described in Section 2.3). As is
well known, the stars are formed by gravitational collapse in molecular cloud
cores, so that gravity (Section 2.4) eventually overcomes the agents that oppose
it. Most of these cores are located in the middle plane of our Galaxy, where
the magnetic energy density is comparable to the kinetic energy density of the
gas, which means that the magnetic field, described in Section 2.5, is important
in the energy budget of this gas. Once stars form in a molecular cloud core,
the ionizing radiation (Section 2.6), mainly from massive stars, becomes the
dominant process in the dynamics of the parental MC, causing its destruction or
dispersion. During all evolutionary stages of MCs, the flow regime is turbulent
(Section 2.7), with turbulence playing different roles depending on the scale and
the physical conditions. Finally, in Section 2.8 we list the final set of equations
that we use for the numerical simulations presented in Chapter 5.

2.1 Hydrodynamics

We can treat the ISM as a continuum, since the gas particles undergo many colli-
sions before traversing a significant fraction of the region, sharing their collective
physical properties, and therefore their velocity distributions are Maxwellian,
implying that we can describe them by a single gas kinetic temperature which
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2.1 Hydrodynamics

is usually the same for all species of particles present. Thus, the state of the gas
can be described in terms of macroscopic properties in addition to temperature
(e.g. pressure, density and velocity), which are averages over the properties of
many individual particles contained within regions of extent (L) much greater
than the mean free path (l). Usually, for most systems in the ISM, the condi-
tion L � l is satisfied. For example, for the WNM (L ∼ 100 pc, n ∼ 1 cm−3),1

GMCs (L ∼ 10 pc, n ∼ 100 cm−3), and dense cores(L ∼ 0.1 pc, n ∼ 104 cm−3),
the corresponding mean free path are roughly 10−4, 10−6, and 10−8 pc, respec-
tively.

A more detailed description of the physics described here can be found in,
e.g., Dyson and Williams (1980) and Shu (1992).

2.1.1 Euler Equations

The Euler equations for compressible gas dynamics are a set of expressions of
the conservation of mass, momentum and energy for isolated systems, neglecting
diffusive effects.

In the absence of sources or sinks of mass, the conservation of mass is ex-
pressed by the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

where ρ is the density and u the velocity of the fluid.
In the absence of external forces (body forces due to gravity or magnetic

field), Newton’s second law of motion applied to a fluid leads us to the equation
of conservation of momentum per unit volume,

∂(ρu)

∂t
+∇ · (ρuu) +∇P = 0, (2.2)

where P is the fluid pressure. As we will show in Section 2.7, viscous effects
can be safely neglected. Thus, the interstellar gas can be modeled as an ideal
fluid which is governed by the Euler equations.

Next is the first law of thermodynamics. However, to derive the correspond-
ing equation, it is necessary to consider the conservation of total energy, because
the exertion of a force onto the system will have an effect on both its internal
and its kinetic energy. Thus, we have

∂(ρetot)

∂t
+∇ · [(ρetot + P )u] = 0, (2.3)

1See Tables 1.1 and 1.2.
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where the total specific energy, etot, is the sum of the specific internal energy,
eint, and the kinetic specific energy of the gas, i.e.,

etot = eint +
1

2
u2, (2.4)

Additional source terms must be added to the Euler Equations (2.1)-(2.3) to
properly model the star formation process.

Finally, we need another equation to close the system, since the set of partial
differential equations given by the Euler equations represent five equations and
six variables. This additional equation is the equation of state of an ideal gas,
which relates the thermal pressure P to the internal energy of the gas, which
we discuss in the next section.

2.2 Thermodynamics of an Ideal Gas

In general, the ISM is assumed to behave as an ideal gas, since its constituent
particles (atoms, molecules, and dust) interact only elastically, and also it is in
general highly rarified. The thermal equation of state of an ideal gas is

P = nkBT, (2.5)

where P is the pressure, n the number density, T the gas temperature, and kB
the Boltzmann constant. The mass density ρ is given by ρ = μmpn, μ being the
mean molecular weight, and mp the proton mass. Whith this, Equation (2.7.4)
can also be written as

P =
ρkBT

μmp

. (2.6)

It can be shown that this equation can be rewritten in terms of the adiabatic
index, γ, and the specific internal energy, as

P = (γ − 1) ρ eint. (2.7)

Combining Equations (2.6) and (2.7), we find a relation between specific
internal energy and temperature given by

T =
μmp

kB
(γ − 1)eint. (2.8)
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In partially ionized plasmas, such as HII regions, it is important to consider
the degree of ionization of the gas. Thus, we need to introduce the ionization
fraction to Equation (2.8), which becomes

T =
μmp

kB

(γ − 1)eint
1 + xHII

, (2.9)

where we have considered a gas containing pure hydrogen with total number
density, nH, given by

nH = nHI + nHII, (2.10)

with nHI and nHII respectively being the number density of atomic and ionized
hydrogen, so that their respective fractions are

xHI =
nHI

nH

, xHII =
nHII

nH

. (2.11)

Equation (2.9) completes the set of thermodynamic relations for a partially
ionized gas.

2.3 Heating and Cooling

Microscopic and radiative processes govern the heating and cooling in the ISM,
which are crucial in MCs for the star formation activity. To form a star, the
gas must undergo gravitational collapse. During this collapse, the gas density
increases. Collisions between atoms and molecules become more frequent and
the gas temperature rises. Since a heated gas tends to expand, the cloud collapse
could be halted, unless heat is effectively and continuously removed from the
cloud. We account for these processes by adding source terms to the energy
Equation (2.3),

∂(ρetot)

∂t
+∇[(ρetot + P )u] = Γ− nΛ, (2.12)

where we have introduced the heating rate, Γ = Γ(n, T ), and the cooling
rate, nΛ = nΛ(n, T ). Several heating and cooling mechanisms are at work
within different regions of the ISM. Which mechanism dominates depends on
the physical conditions of the ISM, as we will see next.

2.3.1 Heating

In the WNM (where T ∼ 8000K, and the ionization fraction is ∼ 10−3), photo-
electric heating from grains dominates at densities larger than 0.1 cm−3, but at
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Figure 2.1: Cooling function, Λ, as a function of temperature from Dalgarno
and McCray (1972). The labels indicate the ionization fraction.

lower densities the heating becomes dominated by a combination of cosmic ray
and X-ray heating, with negligible contributions from carbon photoionization
(aided in part by the fact that at 8000K the carbon ionization fraction is high,
making photoionization heating inefficient).

In the cold neutral medium (CNM; where T ∼ 100K and the ionization
fraction is ∼ 10−4), photoelectric heating dominates over the entire range of
densities, followed by cosmic ray heating down by about a factor of 10-100.
Photoionization heating by Carbon and X-ray photoelectric heating are down
by many orders of magnitude over the entire range (e.g., Wolfire et al., 1995,
see Figure 2.2).

In the cold cores of molecular clouds (where T ∼ 10K and the ionization
fraction is ∼ 10−7), UV photons from the interstellar radiation field cannot
penetrate and photoelectric heating becomes negligible. Cosmic ray heating
dominates over the entire range of densities, and other processes related to gas
dynamics become important, but all at least an order of magnitude smaller than
cosmic ray heating (e.g., Wolfire et al., 1995; Koyama and Inutsuka, 2000, see
Figure 2.2).
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Figure 2.2: Heating and cooling rates per hydrogen nucleus as a function of
number density. Solid and dashed lines indicate cooling and heating process,
respectively. Labels are as follows. PE: photoelectric heating from small grains
and PAHs; XR: X-ray; CR: cosmic ray; CI: photoionization of C; CII: CII fine-
structure; OI: OI fine-structure; Rec: recombination onto small grains and PAHs;
Lyα: Lyα plus metastable transitions; CI∗: fine structure 609μm; CI∗∗: fine
structure 370μm. Figure from Wolfire et al. (1995).

2.3.2 Cooling

Cooling processes involve the conversion of kinetic energy (thermal motion) to
radiant energy (photons) that can escape from the system. This typically occurs
through collisional excitation, followed by radiative decay.

The main source of cooling is molecular rotational and vibrational de-exci-
tation, emitting photons from particles previously excited by collisions with H2,
H, dust or electrons. However, if the density is high the de-excitation can also
occur through another collision. An important coolant is CO through rotational
excitation, as well as trace ions (CII) at low densities, and neutral C and O fine
structure excitation at high density. In warm gas (T ∼ 6000K), the molecules
CO, OH and H2O also make considerable contributions to the cooling, and
vibrational H2 emission cools molecular gas after it has been strongly heated in
shock waves to over ∼ 1000 K. Rotational excitation of H2 will also cool gas
heated above ∼ 200 K. This mechanism of cooling is probably the dominant in
MCs (see, e.g., Wolfire et al., 1995; Koyama and Inutsuka, 2000).

A second important cooling mechanism is the dust emission, which occurs
when the gas transfers energy to the dust through gas-grain collisions, provided
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that the grains are cooler than the gas. The dust grains are efficient radiators in
the long wavelength continuum (infrared and submillimetre) and so the radiated
energy escapes from the cloud. However, the dust is also a potential heating
source through collisions if the dust can be kept warmer than the molecules by
background radiation (e.g., Goldsmith, 2001).

Other less relevant cooling processes are bremsstrahlung (important for a
fully ionized gas), resonance lines, and recombination (Dalgarno and McCray,
1972).

2.4 Gravity

Gravity is the universal force that causes all matter to attract. In general, when
the force of gravity pulling in on a MC is greater than the strength of various
forms of internal pressure pushing out, the cloud collapses. Thus, star formation
occurs when singularities (in practice, objects much denser than the MC gas)
in the density field of an MC begin to appear.

2.4.1 Poisson Equation

The self-gravity of the gas —that is, the mutual gravitational attraction of all
particles of the gas— is described as follows. Since the gravitational field is
conservative, it can be expressed in terms of a scalar potential φ as

g = −∇φ, (2.13)

where g is the gravitational acceleration. The negative sign follows the con-
vention that work is gained from a loss of potential energy. This gravitational
potential is related to the gas density through Poisson’s equation

∇2φ = 4πGρ, (2.14)

where G is the Newton’s constant.
The gravitational acceleration enters the momentum Equation (2.2) as a

gravitational force per unit volume, ρg. Thus, the momentum equation in the
presence of gravitational forces is

∂(ρu)

∂t
+∇ · (ρuu) +∇P = ρg. (2.15)

Finally, we add the corresponding term in the energy Equation (2.3), which
then reads

∂(ρetot)

∂t
+∇ · [(ρetot + P )u] = ρu · g. (2.16)
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Therefore the gravitational field can change not only the dynamical proper-
ties, but also the thermodynamic properties of the system.

2.4.2 Jeans Gravitational instability

Support against gravity may be provided in particular by thermal pressure.
According to the Jeans classic analysis of sound waves propagating through a
uniform and isothermal gas of density ρ0 in the presence of self-gravity, we find
that modes with wavelengths larger than the so-called Jeans length, given by

λJ =
2π

kJ
=

√
πc2s
Gρ0

, (2.17)

are gravitationally unstable, so that the perturbations grow exponentially. To
relate this critical wave number to a critical mass, MJ, we consider a sphere
with diameter λJ and density ρ0. Thus,

MJ =
4π

3
ρ0

(λJ

2

)3

=
π5/2

6G3/2

c3s

ρ
1/2
0

. (2.18)

If the mass of a spherical condensation is greater than MJ, it will collapse.
For an isothermal gas, the sound speed is given by

cs =

√
kBT

μmp

, (2.19)

and therefore the Jeans Mass scales as MJ ∝ ρ
−1/2
0 T 3/2. Once the cloud is

gravitationally unstable, the free-fall time for spherical homologous collapse,

tff =
( 3π

32Gρ

)1/2

, (2.20)

is a good approximation for the collapse time scale. However, most structures
in the ISM are far from spherical, so the Jeans mass must be recalculated, for
a planar geometry as we show in Section 3.3.4.

2.5 Magnetic Field

The equation governing the evolution of the magnetic field in a (possibly par-
tially) ionized gas is (see, e.g., Shu, 1992)

∂B

∂t
= ∇× (u×B)−∇×

(
η∇×B

)
, (2.21)
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where η is the magnetic diffusivity. The second term in the right hand side of
Equation (2.21) represents the effect of Ohmic dissipation, which we can neglect,
not because the conductivity of astrophysical gases has much larger values in
comparison with normal terrestrial materials, but because typical systems have
enormous dimensions, L, and the characteristic diffusion time, defined as tD ∼
L2/η, is much longer than the dynamic time (∼ L/cs) of these systems. This
case is referred to as ideal magnetohydrodynamic (MHD). Thus, we have that
Equation (2.21) simplifies to

∂B

∂t
= ∇× (u×B). (2.22)

This equation is known as the induction equation. Also, we need to consider
that magnetic monopoles do not exist in Nature. This condition is expressed
by the condition

∇ ·B = 0, (2.23)

which must be satisfied at all times.

2.5.1 Magnetic flux freezing

We define the magnetic flux across a cross-sectional area A of the fluid as

Φ ≡
∫
A

B · ndA. (2.24)

Using Stokes’ theorem, the Lagrangian derivative of the magnetic flux is

dΦ

dt
=

∫
A

∂B

∂t
· ndA+

∫
A

∇× (B× u) · ndA = 0, (2.25)

which we have equated to zero using Equation (2.22) ignoring the dissipative
term. This implies that the magnetic flux does not change as a fluid parcel
evolves, changing its cross-section area in the ideal MHD regime, i.e., in the
absence of resistive effects. This effect is commonly referred to as flux freezing.
For collapsing dense cores, thus implies that the field is carried with gas during
the collapse.

In the ISM in general, the resistivity is extremely low and so flux freezing is
applicable at all but the highest densities.
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2.5.2 Mass-to-flux ratio and magnetic support

To get an idea about the support provided by a magnetic field to a cloud against
its self-gravity, we consider a spherical cloud of radius R, uniform density ρ,
constant temperature T , and permeated by uniform magnetic field of magnitude
B. The gravitational energy is

Eg = −G

∫
M ′(r)

r
dr ≈ −3

5

GM2

R
, (2.26)

whereas that the magnetic energy is

Emag =

∫
B2

8π
dV ≈ B2R3

6
. (2.27)

Then, the ratio of the gravitational to the magnetic energy is

|Eg|
Emag

≈ 18π2G

5

(M
Φ

)2

, (2.28)

where Φ ≈ πR2B is approximately the magnetic flux (Equation (2.24)) in this
geometry. The term (M/Φ) is known as mass-to-flux ratio. The condition for
collapse, |Eg| > Emag, implies

M

Φ
>

(M
Φ

)
crit

≡
√

5

18π2G
= cst., (2.29)

although the exact value of the numerical factor depends on the geometry.
A cloud with M/Φ > (M/Φ)crit is referred to as magnetically supercritical;
otherwise it is referred to as magnetically subcritical.

2.5.3 Coupling to Hydrodynamics

The magnetic field can affect the dynamics and thermodynamics of the gas
through the Lorentz force, fL, exerted on a charged particle of velocity u moving
in an electric field E and a magnetic field B. The force due to the magnetic field
is perpendicular to both the direction of the velocity vector and the magnetic
field, and is given by

fL = ene

(
E+

u

c
×B

)
, (2.30)

where e is the electron charge, ne is the electron number density, and c is the
speed of light. We have assumed that the fluid is electrically neutral. Providing
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2.5 Magnetic Field

that electric fields are negligible, charged particles are forced to spiral around
magnetic field lines and cannot actually cross them except by collisions. Thus,
Equation (2.30) becomes

fL = −2ene

c
(ui ×B) =

j

c
×B =

1

4π
(∇×B)×B =

1

4π
(B · ∇)B− 1

8π
∇B2,

(2.31)

where we have used some standard vector identities (j is the current density
and ui is the ion velocity). Including this force, we can rewrite the equation of
momentum (2.2) as

∂(ρu)

∂t
+∇ · (ρuu) = −∇

(
P + PB

)
+

1

4π
(B · ∇)B, (2.32)

where we have defined the magnetic pressure as PB ≡ B2/8π, whose effect is
to oppose to the gathering together of the magnetic field lines.

Finally, the equation of energy (2.3) reads

∂

∂t

(
ρetot

)
+∇ ·

[(
ρetot + P + PB

)
u− 1

4π
(u ·B)B

]
= 0. (2.33)

2.5.4 Magnetohydrodynamic waves

Small-amplitude perturbations in a magnetised fluid can produce three different
types of the so-called MHD waves, which transmit disturbances over appreciable
lengths. The first one is the so-called Alfvén wave, which propagates at the
Alfvén speed

vA =
B√
4πρ

(2.34)

in the same direction as the magnetic field. The Alfvén wave is a transverse
wave and does not produce pressure or density fluctuations. However, the mag-
netic field tension provides a restoring force. The other two waves are referred as
fast and slow magneto-sonic waves, and propagate at different phase velocities.
The Alfvén velocity lies between these two speeds. For a detailed derivation
and discussion see, e.g., Shu (1992).
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2.6 Radiation

2.6 Radiation

Radiation from stars has a strong impact on MCs, so that any model without
this ingredient is incomplete. Moreover, and regardless of the scenario of SF,
ionizing radiation from massive stars is proposed as the main mechanism for
energy injection into MCs (Matzner, 2002, see also Sections 1.4.1 and 1.4.2).
Therefore, we include effects of ionizing feedback (such as HII regions), first in
a semi-analytical model (Chapters 3 and 4) and then in numerical simulations
(Chapter 5).

In Appendix A we introduce the basic definitions required to characterize the
radiation field, which can be treated from two points of view, using macroscopic
and quantum descriptions. Each of these approaches yields useful information
and, taken together, they provide a full picture of the nature of the field. Ho-
wever, we will concentrate mainly on the macroscopic description, which can
be directly connected to the thermodynamics. Thus, in this section we describe
the physics of radiative transfer and its coupling to the hydrodynamic equations
described in Section 2.1. The discussion in this section follows that in Rijkhorst
et al. (2006) and Peters et al. (2010).1 See also, e.g., Rybicki and Lightman
(1979), Osterbrock (1989), Shu (1991), Frank and Mellema (1994), Rijkhorst
et al. (2006), and Peters et al. (2010)

2.6.1 Point sources

For the purpose of the simulations to be presented in Chapter 5, we can safely
model the stars as point sources (see Section 5.3). Then, the specific flux at
distance r from a star of radius rstar and emitting a uniform specific intensity
at its surface, Iν(0), is

Fν = πIν(r)
(rstar

r

)2

. (2.35)

Because of the symmetry of the problem, there is only a flux in radial di-
rection. Thus, the integrals in Equations (A.3) and (A.9) are equal (cos θ = 1),
and we have

Fν(r) = 4πJν(r). (2.36)

We can use Equation (A.16) as a solution of the radiative transfer equation
along rays, and modeling the specific intensity of the protostar with a black-
body spectrum of temperature Tstar, i.e. Iν(0) = Bν(Tstar), we can analytically

1See also the PhD thesis by Thomas Peters (available in http://www.mpia-hd.mpg.de/

imprs-hd/theses/thesis_peters.pdf), on which the simulations presented in Chapter 5
and some sections of this chapter are based.
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express the mean specific intensity as

Jν(r) =
(rstar

r

)2 1

2c2
hν3

exp(hν/kBTstar)− 1
exp(−τν(r)), (2.37)

where we have used

Bν(T ) =
2h

c2
ν3

exp(hν/kBT )− 1
, (2.38)

h being the Plank constant and kB the Boltzmann constant. Finally, to find
the radius of the star, rstar, we invoke the Stefan-Boltzmann law

L = 4πσr2starT
4
star, (2.39)

where L and Tstar can be determined directly from stellar evolution models.

2.6.2 Coupling to Hydrodynamics

We couple the radiation field to the energy equation through the ionization
heating term. The photoionization heating rate is given by (Osterbrock, 1989)

Γph = nHI

∫ ∞

νT

4πJν
hν

σνh(ν − νT)dν. (2.40)

Using the equation for the specific mean intensity (2.37), this equation be-
comes

Γph = nHI

(rstar
r

)22πh
c2

∫ ∞

νT

σνν
2(ν − νT) exp(−τν(r))

exp(hν/kBTstar)− 1
dν, (2.41)

where the optical depth τν(r) is given by Equation (A.18). Since this heating
mechanism dominates in HII regions, we neglect other heating sources such as
dust and accretion heating.

2.6.3 Ionization

The evolution of the ionization fraction xHII (Equation 2.11), is governed by the
equation

dxHII

dt
= xHI(Aph + Ac)− xHIIneαR, (2.42)

where Aph and Ac are defined below, and αR is the radiative recombination
rate (Rijkhorst et al., 2006). This equation accounts for neutral hydrogen atoms
that can be ionized, and for hydrogen ions that can recombine.
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The first contribution to the ionization term is the photoionization rate
(Osterbrock, 1989), where

Aph =

∫ ∞

νT

4πJν
hν

σνdν (2.43)

represents the number of ionizations per hydrogen atom per second. With the
specific mean intensity given by Equation (2.37), Aph becomes

Aph =
(rstar

r

)2(2π
c2

)∫ ∞

νT

σνν
2 exp(−τν(r))

exp(hν/kBTstar)− 1
dν. (2.44)

The second contribution to the ionization rate is the collisional ionization
rate (Cox and Tucker, 1969), where

Ac = AHIne

√
T exp−IHI/kBT , (2.45)

with AHI = 5.84 × 10−11 cm3K−1/2s−1 and IHI = 3.6 eV being the hydrogen
ionization energy.

For the recombination term, we use the on-the-spot approximation (see, e.g.,
Osterbrock, 1989), which allows us to use the recombination coefficient given
by

αR = αR(10
4 K)

( T

104 K

)
, (2.46)

where αR(10
4 K) = 2.59× 10−13 cm3s−1.

Since the ionization affects the thermodynamics of the gas, we use the form
of the equation of state relevant for a partially ionized gas, given by Equa-
tion (2.9). Also, the ionization affects the optical depth, and thus we use the
photoionization heating rate, described by Equation (2.41).

2.6.4 HII Regions: ionization balance and expansion

When a massive star appears, almost immediately it begins to radiate energy
within the MC in which it was born. This energy is mainly in the form of
ionizing photons, with energies above 13.6 eV, which first dissociate the H2 and
then ionize the resulting HI, producing a so-called HII region. At the same
time electrons and protons recombine, creating new atomic hydrogen. Since
each ionization event removes a photon from the beam, only a limited region of
the surrounding cloud can be ionized.

We assume that the star emits photons at a constant rate, S∗, and that
the number density of electrons, ne, and the temperature of the plasma are
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spatially constant, so that the balance between ionizations and recombinations
is described by

S∗ =
4π

3
n2
eα(T )R

3
s (2.47)

where Rs is the Strömgren radius. We then solve for Rs, assuming that the
ionization spreads so quickly that the original cloud density, nH, does not change
appreciably, so that ne � nH, and

Rs =
( 3S∗
4παn2

H

)
. (2.48)

After the Strömgren radius is reached, all ionizing photons are consmed, but
the ionized gas has a pressure two orders of magnitude higher than the neutral
gas because the electrons removed from the atoms are typically expelled at
velocities of several kms. The overpressure in the bubble causes it to expand
at velocities of order the sound speed. In a uniform medium, this leads to the
so-called Spitzer solution (Spitzer 1978)

R(t) = Rs

(
1 +

7

4

cst

Rs

)4/7

. (2.49)

The final equilibrium state can never be reached, since the expansion time
scale is typically an order of magnitude larger than the lifetime of a massive
star. Nevertheless, the expanding period is important because it imparts mo-
mentum to the surrounding gas, and larger masses of gas can be ionized as
the density decreases (see Equation 2.47). Furthermore, the analytical result is
important because it allows testing numerical simulations containing expanding
HII regions.

2.7 Turbulence

Turbulence is a highly chaotic regime of flow that tends to stir the fluids and
occurs when molecular viscosity in the fluid is negligible compared to the mo-
mentum advection term (see Equation (2.50) below). However, a certain de-
gree of order persists as scale-dependent spatial correlations among the flow
variables. Generally it is agreed that a turbulent flow is characterized by the
following features, i) it contains an extremely large number of excited degrees
of freedom (or modes); ii) the modes are able to nonlinearly exchange energy;
iii) the system is unpredictable; i.e., it is “sensitive to initial conditions”; and
iv) the system has a highly mixing nature. For a more detailed discussion
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of the complex statistical characteristics of turbulence, see e.g., Scalo (1987),
Frisch (1995), Vázquez-Semadeni (1999), Biskamp (2003), Elmegreen and Scalo
(2004a), Mac Low and Klessen (2004), and Lesieur (2008).

2.7.1 The Navier-Stokes equation

To characterize the turbulence, we first define the Reynolds number, Re. The
momentum equation, (2.2), including the viscous terms is known as the Navier-
Stokes equation, and reads

∂u

∂t
+ u · ∇u = −1

ρ
∇P + νK(∇2u+∇∇ · u), (2.50)

where νK is the kinematic viscosity and we have neglected the so-called second-
viscosity. From this equation, we can distinguish the two relevant terms for the
turbulence. The first is the advection term (u·∇u), which tends to mix the fluid,
and the second is the viscous term, which has the opposite effect, of tending
to homogenize the velocity field. In general, this term involves second spatial
derivatives of the velocity. The ratio of these defines the Reynolds number,
which, to order of magnitude, is

Re ∼ U2L−1

νKUL−2
∼ UL

νK
, (2.51)

where U and L are the characteristic velocity and scale lengths, respectively.
Experimentally, it is found that a flow becomes fully turbulent when Re �
a few × 103. Thus, we can consider that the ISM is highly turbulent, since
typical parameters imply Re � 106 (e.g., Elmegreen and Scalo, 2004a).

Much of the turbulent theory is developed in Fourier space, writing the fields
(density, velocity) as a superposition of Fourier modes, allowing a description
of the flow in terms of length scales, characterized by their wavelength, λ. The
Fourier decomposition for an arbitrary physical field, A(x, t), takes the form

A(x, t) =

∫
Ak(t)e

ik·xd3k, (2.52)

where k is the vector Fourier mode, with associated wavenumber k = |k| =
2π/λ, and Ak is the corresponding Fourier amplitude, a complex number which
we assume depends only on time. Thus, the decomposition of the velocity field
is

u(x, t) =

∫
uk(t)e

ik·xd3k, (2.53)
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2.7 Turbulence

with an analogous one for the density and magnetic fields. We use the property
that the differentiation operation in real physical space becomes a multiplication
in Fourier space; that is, ∇[Ak(t)e

ik·x] = ikAk(t). With this, the Navier-Stoques
equation (2.50) in Fourier space for an incompressible flow (∇u = k · uk) be-
comes

duk

dt
+

i

2

∑
p+q=k

[
(q · up)uq + (p · uq)up

]
= − i

ρ
kPk − νKk

2uk, (2.54)

with the set of wavevectors p, q and k, which are known as triads and satisfy
the condition p+ q = k.

2.7.2 The energy spectrum

The Fourier representation of the flow leads to the definition of an important
concept in the theory of turbulence —the turbulent energy spectrum E(k),
which is defined as the specific kinetic energy contained in wavenumber modes
in the interval k and k + dk:

E(t) =
1

2

∫
Vx

|u(x)|2d3x =
1

2

∫
Vk

|uk|2d3k ≡ 1

2

∫ ∞

0

E(k)dk, (2.55)

where the second equality comes from Parseval’s theorem for complex variables,
and the identity defines E(k). Thus,

E(k) ≡ 1

2

∫
θk

∫
φk

|uk|2k2 sin θkdθkdφk, (2.56)

where the quantity |uk|2 is sometimes referred to as the velocity power spec-
trum. In the incompressible regime, with ρ =cst., the kinetic energy is simply
proportional to the specific kinetic energy. However, in the compressible case
this result is no longer valid since the total kinetic energy needs to be calculated
taking into account the density variations, as

E(k) ≡ 1

2

∫
V

ρu2d3x. (2.57)

2.7.3 The Kolmogorov-Obukhov theory

Kolmogorov (1941) and Obukhov (1941) independently derived the expected
functional form of the energy spectrum for homogeneous1 incompressible turbu-
lence. This result is often referred to as the K41 theory, which is based on the

1In the sense that average properties are independent of position in the fluid.
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following assumptions: i) A very large range of scales are present in the flow;
ii) energy is injected primarily at the largest scale in the flow, L, and dissipated
at some small scale, lvisc; iii) the energy is transferred among the modes (or
scales), and the transfer is local in Fourier space (in triads with p ∼ q ∼ k); and
iv) the system is in a stationary state, so that the energy transfer rate in the
inertial range (i.e. scales between L and lvisc) is independent of wavenumber k,
and equals the energy injection and dissipation rates.

With these assumptions, the form of the spectrum in the inertial range can
be estimated from dimensional analysis as follows. The energy transfer rate for
eddies of scale size l can be written as ε ∼ u2

l /τl, where ul is the characteristic
velocity difference across the eddy, and τl = l/ul is the circulation time at scale
l. Thus, using assumption iv) we have

ul = (εl)1/3. (2.58)

Now, the characteristic velocity difference at scale l can be identified with
the rms specific kinetic energy contained in scales l′ < l, which is given by the
energy spectrum as

u2
l = 2

∫ ∞

2π/l

E(k)dk. (2.59)

Assuming that the spectrum has a power-law dependence on wavenumber,
E(k) ∝ kn, and substituting the scaling relation (2.58), we find n = −5/3.
This is the famous Kolmogorov −5/3 law. Although there is no fully deductive
theory that starts from the Navier-Stokes equations to derive it, Kolmogorov’s
law has been verified experimentally in terrestrial flows (e.g., Grant et al., 1962)
and in astrophysical flows that are expected to behave nearly incompressible
(Armstrong et al., 1995).

2.7.4 Compressible turbulence

Gas flows in the ISM, however, are highly compressible, and the driving of
the turbulence is not uniform, so the Kolmogorov-Obukhov theory is no longer
applicable and numerical simulations are required to study these systems.

An immediate consequence of non-incompressibility is that we need to con-
sider the continuity equation in its full extent, rather than in the incompressible
form, ∇·u = 0. In principle, the internal energy equation, Equation (2.3) must
also be considered, although, in this case, an intermediate step is possible, which
is the assumption of a barotropic flow, in which the thermal pressure depends
only on the density, P = P (ρ), so that the energy equation may still be by-
passed. A frequently used approximation is that of polytropic flows, where the
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dependence is assumed to be a power law,

P ∝ ργeff , (2.60)

where γeff is the effective polytropic exponent, and is a free parameter, that
represents any net heating and cooling acting on the gas. This case includes
the extremely common assumption of isothermal flows, for which γeff = 1.

To know the magnitude of the density fluctuation, we consider the ratio of
the advection and the pressure gradient term two terms, and assume it is of
order unity, so that both terms contribute equally to the momentum equation.
That is,

|u · ∇u|
|∇P

ρ
| ∼ 1, (2.61)

which can be rewritten as

|u · ∇u| ∼ |c
2
s∇ρ

ρ
| (2.62)

where we have used the equation of state () with the pressure given by Equation
(2.60, with γeff = 1), which implies ∇P ≈ c2s∇ρ. To order of magnitude, this
gives

U2

L
∼ c2s

ρ

δρ

L
(2.63)

or, equivalently,
δρ

ρ
∼ U2

c2s
≡ M2

s (2.64)

where Ms is the sonic Mach number. We see then that the typical relative
density fluctuation is of the order of the Mach number squared. In Section
3.3.5 we will discuss the probability density distribution (PDF) of these density
fluctuations.

In the compressible case, in order to study the energy spectrum, it is con-
venient to decompose the velocity field in a rotational (or solenoidal), uk,s, and
a compressible (or potential) component, uk,c, such that

k · uk,s = 0 k× uk,c = 0 (2.65)

Note that these two components are orthogonal to each other in Fourier
space. These components of the velocity field can have different dynamic pro-
perties and energy transfer between these two modes affects the dynamics of
compressible flows. The transfer is predominantly from rotational modes to
the compressible ones (Vazquez-Semadeni et al., 1996), so that the rotational
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energy tends to decay if there are no sources of vorticity. This is particularly
interesting because turbulence is typically manifested by rotational phenomena.

Thus, contrary to the incompressible case, for which the Kolmogorov spec-
trum seems to be universal, in the compressible case the spectral slope depends
on the degree of compressibility of the flow. Numerical simulations of isothermal
supersonic turbulence suggest that, as the Mach number is increased, the slope
of the (specific) energy spectrum shifts from the kolmogorov value of −5/3 (in
the weakly compressible regime) to −2 (at a very high compressibility) for both
compressive and solenoidal components (Kritsuk et al., 2007). The latter case
is likely to occur in the ISM, and particularly in MCs where the Mach number
is high.

Indeed, in the limit of zero pressure, the system described by Equation (2.50;
in one dimension) produces a network of overlapping shocks with a spectral slope
of −2 (Frisch & Bec 2001), in agreement with the numerical simulations. This
state is known as Burgers Turbulence. Kritsuk et al. (2007) have suggested,
additionally, that the quantity ρ1/3u exhibits Kolmogorov scaling even in the
compressible case, and supported this suggestion with numerical simulations.

2.8 The final set of equations

Considering the Euler equations (Section 2.1.1) with all the astrophysically
relevant source terms, namely self-gravity (Section 2.4), magnetic fields (Section
2.5.3), and heating and cooling (Sections 2.3 and 2.6.2), we arrive to the set of
the ideal magnetohydrodynamic equations

∂ρ

∂t
+∇ · (ρu) = 0,

∂(ρu)

∂t
+∇ · (ρuu) = ρg −∇

(
P + PB

)
+

1

4π
(B · ∇)B,

∂

∂t

(
ρetot

)
+∇ ·

[(
ρetot + P + PB

)
u− 1

4π
(u ·B)B

]
=

= Γ− Λ + ρu · g,
∂B

∂t
= ∇× (u×B),

∇ ·B = 0,

∇2φ = 4πGρ,

(2.66)

which, together with the equation of state (2.6), form a closed coupled set of
equations that can be solved numerically (see Chapter 5).
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3

An evolutionary model for
collapsing Molecular Clouds and
their Star Formation activity

3.1 Abstract

We present an idealized, semi-empirical model for the evolution of gravitation-
ally contracting molecular clouds (MCs) and their star formation rate (SFR)
and efficiency (SFE). The model assumes that the instantaneous SFR is given
by the mass above a certain density threshold divided by its free-fall time.
The instantaneous number of massive stars is computed assuming a Kroupa
initial mass function. These stars feed back on the cloud through ionizing ra-
diation, eroding it. The main controlling parameter of the evolution turns out
to be the maximum cloud mass, Mmax. This allows us to compare various
properties of the model clouds against their observational counterparts. A gi-
ant molecular cloud (GMC) model (Mmax ∼ 105 M�) adheres very well to the
evolutionary scenario recently inferred by Kawamura et al. for GMCs in the
Large Magellanic Cloud. A model cloud with Mmax ≈ 2000 M� evolves in the
Kennicutt–Schmidt diagram first passing through the locus of typical low- to
intermediate-mass star-forming clouds, and then moving toward the locus of
high-mass star-forming ones over the course of ∼ 10 Myr. Also, the stellar
age histograms for this cloud a few Myr before its destruction agree very well
with those observed in the ρ-Oph stellar association, whose parent cloud has a
similar mass, and imply that the SFR of the clouds increases with time. Our
model thus agrees well with various observed properties of star-forming MCs,
suggesting that the scenario of gravitationally collapsing MCs, with their SFR
regulated by stellar feedback, is entirely feasible and in agreement with key
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observed properties of MCs.

3.2 Introduction

A crucial ingredient in understanding the star formation efficiency (SFE) of
giant molecular clouds (GMC) is the study of their evolution, from their for-
mation to their destruction by the massive stars they form. A still unsolved
problem is whether the GMCs are in approximate virial equilibrium, or rather
they are in gravitational contraction. Initially, Goldreich & Kwan (1974) pro-
posed that the supersonic linewidths observed in GMCs correspond to global
gravitational contraction, but Zuckerman & Palmer (1974) readily argued that
if all the molecular gas in the Galaxy were in free fall, then the total star forma-
tion rate (SFR) in the Galaxy would be about two orders of magnitude higher
than observed (we will refer to this as the “SFR conundrum”). Zuckerman &
Evans (1974) subsequently suggested that the linewidths could correspond to
small-scale turbulent motions, giving rise to the notion that clouds are quasi-
equilibrium entities, a notion that has survived until today (see, e.g., the reviews
by Mac Low and Klessen, 2004; McKee and Ostriker, 2007).

Since then, most theoretical models of star formation (SF) have been based
on the assumption that turbulence provides support against the clouds’ self-
gravity, and allows them to maintain a quasi-virial equilibrium state, thus pre-
venting global collapse and maintaining a low global SFR (e.g., Norman and
Silk, 1980; McKee, 1989; Matzner, 2002; Krumholz and McKee, 2005; Li and
Nakamura, 2006; Nakamura and Li, 2007; Wang et al., 2010). In these models,
the turbulence is maintained by the energy feedback into the cloud from the
stars it forms. One interesting model where strict equilibrium was not assumed,
was that by Krumholz et al. (2006), where the fully time-dependent virial the-
orem was solved numerically for a cloud under the influence of its self-gravity
and the pressure produced by feedback from H II regions, although the cloud
was restricted to have a spherical geometry, and mass loss by the cloud due to
ionizing radiation by massive stars was not considered. Those authors found
that clouds undergo a few expansion–contraction oscillations, until they are fi-
nally dispersed, and the SFEs over the clouds’ lifetimes were found to be ∼ 5%
– 10%. More recently, a similar model, with the same restrictions but includ-
ing mass accretion from the environment, was considered by Goldbaum et al.
(2011). In this model, the clouds again reach virial equilibrium, and maintain
roughly constant column densities.

However, recent theoretical and observational evidence has suggested a re-
turn to the global gravitational contraction scenario of Goldreich & Kwan (1974)
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(e.g., Hartmann et al., 2001; Burkert and Hartmann, 2004; Hartmann and Burk-
ert, 2007; Peretto et al., 2007; Vázquez-Semadeni et al., 2007; Galván-Madrid et
al., 2009; Vázquez-Semadeni et al., 2009; Schneider et al., 2010; Csengeri et al.,
2011). Additionally, Clark and Bonnell (2005) have suggested that molecular
cloud (MC) turbulence, rather than directly producing Jeans-unstable clumps,
only produces the seed nonlinear density fluctuations for subsequent gravita-
tional fragmentation, which proceeds on different timescales due to the spatial
variations on the local free-fall time induced by the turbulence (Heitsch and
Hartmann, 2008). But then, if we again allow for clouds and their substruc-
tures to be in gravitational contraction, it is necessary to find a solution for
the SFR conundrum in this scenario. The semi-empirical model presented here
investigates whether stellar feedback can accomplish this.

Our model is motivated by the numerical simulations of Vázquez-Semadeni
et al. (2010), who have investigated the evolution of clouds formed by the col-
lision of warm neutral medium (WNM) cylindrical streams, including stellar
feedback from ionization heating from massive stars. Those authors found that
the clouds are in general not stabilized by the feedback, but rather are either
dispersed or continue to contract globally, depending on their mass. Here, we
construct a model that attempts to capture the phenomenology observed in
those simulations, scanning the space of the parameters that determine the
physical properties of the cloud. Rosas-Guevara et al. (2010) have also pre-
sented a parameter-space study, but using numerical simulations, and without
feedback, while Dib et al. (2011) have produced an analytical model similar to
ours, but aimed at investigating the effect of varying metallicity on the SFE.

The plan of the paper is as follows. In Section 3.3, we describe the general
model, which we then calibrate against a fiducial numerical simulation from
Vázquez-Semadeni et al. (2010) in Section 3.4. In Section 3.6, we compare
the calibrated model against various observational properties of both large and
small MCs, parameterized only by their mass. In Section 3.7 we present a
discussion, and finally a summary and our conclusions in Section 3.8.

3.3 The Model

We construct a model for studying the SFE in a thin cylindrical cloud under-
going gravitational contraction, as observed in various simulations (Vázquez-
Semadeni et al., 2007; Heitsch and Hartmann, 2008; Vázquez-Semadeni et al.,
2010; Vázquez-Semadeni et al., 2011). The system is schematically illustrated
in Figure 3.1. In the simulations, the collision of WNM streams nonlinearly
triggers thermal instability, forming a thin cloud of cold atomic gas (e.g., Hen-
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nebelle and Pérault, 1999; Koyama and Inutsuka, 2000; Walder and Folini, 2000;
Koyama and Inutsuka, 2002), which becomes turbulent by the combined action
of various dynamical instabilities (Hunter et al., 1986; Vishniac, 1994; Koyama
and Inutsuka, 2002; Heitsch et al., 2005; Vázquez-Semadeni et al., 2006). The
cloud soon begins to contract gravitationally as a whole. However, before this
global collapse is completed, some local, nonlinear (i.e., large-amplitude) den-
sity enhancements produced by the initial turbulence manage to collapse on
their own, since their local free-fall time is shorter than the average one for
the entire cloud (Heitsch and Hartmann, 2008; Pon et al., 2011). These local
collapses thus involve only a fraction of the cloud’s total mass. Also, we assume
that the newly-formed stars feed energy back into the cloud. We only consider
the ionizing radiation from massive stars, since this radiation is probably the
dominant mechanism of stellar energy injection at the scale of GMCs (Matzner,
2002).

Figure 3.1: Model setup. Cylindrical streams of WNM are assumed to collide
head-on to form first a flattened CNM cloud, which proceeds to collapse, becom-
ing molecular and star forming in the process. The main parameters of the model
are the radius of the cylinders Rinf , and the density and velocity of the inflowing
warm gas.

In what follows, we investigate the competition between the cloud’s gravi-
tational contraction and its destruction by the mass consumption by star for-
mation (SF) as well as by the ionization produced by the newly formed massive
stars. Below we describe how we calculate the contributions from these pro-
cesses. It is important to note that we do not follow the chemistry, but rather
consider that all the cold gas, either atomic or molecular, is involved in the
gravitational contraction and, eventually, star formation.
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3.3.1 Mass accretion

In our scenario, the cloud’s mass (MC) at time t is given by

MC(t) =

∫ t

0

Ṁinf(t
′) dt′ −MS(t)−MI(t), (3.1)

where Ṁinf(t) is the mass accretion rate onto the cloud from the WNM inflows,
MS(t) is the total mass in stars, andMI(t) is the mass ionized by stellar feedback.
Note that all these masses are considered to be functions of time. We assume
that

Ṁinf(t) = 2 ρinf vinf (π R2
C), (3.2)

where vinf is the inflow speed, ρinf = ninf μH mH is the inflow mass density
(with ninf being the number density of the inflows, μH the mean atomic weight
of the diffuse gas, and mH the atomic hydrogen mass). Note that π R2

C is
also the cross-sectional area of the thin, cylindrical, cold and dense cloud that
forms by thermal instability at the layer compressed by the inflows. We take
the cloud’s radius RC(t) as being initially equal to the inflow radius Rinf and
to later decrease as the cloud contracts gravitationally. The factor of two in
Equation (3.2) represents the fact that there are two inflows, one on each side
of the forming cloud.

3.3.2 Mass in Stars

We assume that the SFR is given by the ratio of the gas mass in the high-
density tail (n > nSF) of the density distribution produced by the turbulence in
the cloud, to its local free-fall time, tff(nSF) =

√
3π/32GμmHnSF. We refer to

nSF as the threshold density for star formation, and denote by f(t) the fraction
of the cloud’s mass that is at densities above nSF (discussed in Section 3.3.6).
We then have

SFR(t) =
MC(t)

tff(nSF)
f(t), (3.3)

so that the mass in stars at time t is

MS(t) =

∫ t

0

SFR(t′)dt′ =
∫ t

0

MC(t
′)

tff(nSF)
f(t′) dt′. (3.4)

We assume that the initial density of the cloud is that of the cold neu-
tral medium (CNM), in balance with the sum of the thermal and ram pres-
sures of the inflows, as described in Vázquez-Semadeni et al. (2006). Typically,
nCNM ≈ 100 cm−3, and we use a mean molecular weight of μ = 2.35, adequate
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for molecular gas. As the cloud evolves by contraction, the mean density evolves
as determined by its mass and size, so that ρ̄ = MC/πR

2
Ch, where h is the cloud

thickness (cf. Section 3.3.4).

3.3.3 Ionized Mass

To model the cloud evaporation by massive stars, we use the results from Franco
et al. (1994). These authors found that the cloud evaporation rate by a massive
star near the cloud surface is

ṀI,sur(t) ≈ 2πR2
S,0mHn̄cs,I

(
1 +

5cs,I t

2RS,0

)1/5

, (3.5)

where t is the age of the massive star, cs,I is the sound speed in the ionized
gas, n̄ = ρ̄/μmH is the mean number density of the MC, and RS,0 is the initial
Strömgren radius of the massive star in the cloud (RS,0 = [3S∗/4παB(2n̄)

2]1/3,
with S∗ being a representative value of the UV Lyman-continuum photon flux
(Franco et al., 1994) and αB the recombination coefficient for the ionized gas).
We assume that RS,0 is reached immediately at the instantaneous mean density
of the cloud, which, in our model, is continually increasing as the cloud con-
tracts. Therefore, over a short time interval Δt (between t and t + Δt), over
which the cloud’s density can be assumed constant, a massive star near the
cloud’s surface can ionize a mass ΔMI,sur = ṀI,sur(t)Δt.

In addition, we consider that, during the time interval Δt, the cloud forms
ΔNOB(t) = xOBSFR(t)Δt/〈MOB〉 new massive stars of average mass 〈MOB〉,
where xOB is the mass fraction of massive stars, which we calculate assuming
an initial mass function (IMF) from Kroupa (2001), with lower and upper mass
limits of 0.01 and 60M� respectively. Defining a star as “massive” if it has a
mass M ≥ 8M�, we obtain xOB = 0.12 and a mean massive-star mass 〈MOB〉 =
17 M�. Furthermore, in Equation (3.5) we take S∗ = 2 × 1048 s−1, cs,I =
12.8 km s−1, and αB = 2.6 × 10−13 cm−3 s−1 where we have assumed that the
temperature of ionized gas in the HII region is 104 K.

With the above considerations, and discretizing the time variable, the ion-
ized mass at time ti is given by

MI(ti) = MI(ti−1) +
i∑

j=k

ΔNOB(tj)ΔMI,sur(tj), (3.6)

where tk is the time at which the oldest remaining OB stars were formed,
k = i − int (tOB/Δt), ‘int’ is the integer function, and tOB = 5 Myr is the
main-sequence lifetime of our representative OB star. The second term in the
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right-hand side of Equation (3.6) thus gives the mass ionized over the time
interval Δt = ti − ti−1 by the stars formed between tk and the present time,
ti. Note that we have neglected the possibility that part of the ionized gas can
recombine and return to the cloud, as we expect the ionized gas to escape to
the diffuse medium.

Finally, to account for the fact that the massive stars are born in dense
environments, in Equation (3.5) we take the density as the maximum between
the instantaneous cloud density n(t) and 103 cm−3 (typical of clumps), in order
to avoid an over ionization when the cloud density is low.

3.3.4 Global gravitational collapse

Following the trend seen in the numerical simulations, we assume that our
clouds evolve in two stages. First, a mass-growth stage occurs, during which
the cloud (initially of zero mass) increases its mass by accretion from the WNM
at constant radius and density, so that only its thickness increases (see, e.g.,
Folini and Walder, 2006; Vázquez-Semadeni et al., 2006; Vázquez-Semadeni et
al., 2007), until it reaches its thermal Jeans mass. At that point, the second
stage begins, during which the cloud undergoes global gravitational contraction.
For circular modes in a self-gravitating isothermal sheet of finite thickness, the
Jeans mass is given by (Larson, 1985):

MJ = 4.67
c4s

G2Σ
, (3.7)

where cs is the cloud sound speed, and Σ = M(t)/πR2(t) is the surface density,
with M(t) and R(t) being the instantaneous mass and radius of the cloud,
respectively. In order to calculate the sound speed we first compute the cloud’s
temperature. To do this, we use the fit by Koyama & Inutsuka (2002; see
also the note in Vázquez-Semadeni et al. 2007) to the heating and cooling
processes considered by Koyama and Inutsuka (2000). This allows us to solve
for the temperature of thermal equilibrium (heating = cooling) as a function
of the density. In this way, we get temperatures of T ≈ 42 K for a density of
n = 102 cm−3 and T ≈ 7 K for n ∼ 107 cm−3.

During the mass-growth stage, over which the cloud’s radius remains con-
stant (R = Rinf), the cloud’s thickness h is given by the condition of constant
number density:

h(t) =
MC(t)

nCNM μmH(π R2
inf)

. (3.8)

where nCNM = 100 cm−3 is the assumed CNM density. Once the collapse begins,
we assume that the thickness remains constant at the final value achieved during

40



3.3 The Model

the growth stage, and that its volume density increases only due to the radial
contraction, as suggested by simulations including self-gravity (e.g., Vázquez-
Semadeni et al., 2007; Heitsch and Hartmann, 2008; Vázquez-Semadeni et al.,
2010; Vázquez-Semadeni et al., 2011). This assumption is equivalent to assu-
ming that the average thickness of the cloud is much smaller than its Jeans
length throughout its evolution. In general, this is a good approximation until
when the cloud has contracted to radii of a few pc.

To determine the radial evolution during the contraction stage, we first
calculate the acceleration at the cloud’s edge. We take a reference frame with
its origin at the cloud’s center and with its x-axis along the inflow direction
(i.e., perpendicular to the plane of our flattened cloud). We integrate over mass
elements ρ̄ dzdydx located at a distance [(R − z)2 + y2 + x2]1/2 from the edge.
At a certain time ti, the acceleration at the cloud edge is

a(ti) = 2G ρ̄i

∫ Ri

−Ri

dz

∫ √
R2

i−z2

0

dy

∫ h/2

−h/2

Ri − z

[(Ri − z)2 + y2 + x2]3/2
dx, (3.9)

where ρ̄i = ρ̄(ti) and Ri = RC(ti). We solve the first integral analytically, while
the second and third ones are solved numerically by the composite Simpson rule.
After a small time increment Δt = ti − ti−1, the change in the cloud radius is

Ri+1 = Ri − v0,i Δt− 1

2
a(Ri)Δt2, (3.10)

where the instantaneous velocity at time ti is v0,i =
∑i

j=0 a(Rj)Δt for constant
Δt.

Finally, we introduce a correction factor, representative of the fact that true
gravitational collapse of a gaseous mass does not occur in strict free fall, since
thermal pressure is never completely negligible, as pointed out in the pioneering
work by Larson (1969, Appendix C). There, he reported that the collapse of
his simulations occurred in a time longer than the free-fall time by a factor of
1.58. Thus, at each time step, we divide the radius given by Equation (3.10)
by a factor fL, which we refer to as the “Larson parameter”, and calibrate in
Section 3.4.

3.3.5 Density distribution

A key ingredient in our evolutionary model is the fraction of dense gas that is
participating in the SF process, and therefore so is the evolution of the proba-
bility density function (PDF) of the cloud’s density field.

In our model, we consider that our clouds are born transonically turbulent,
as a consequence of the various instabilities at play in the compressed layer
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between the streams (Vishniac, 1994; Walder and Folini, 2000; Heitsch et al.,
2005; Heitsch et al., 2006; Vázquez-Semadeni et al., 2006). Also, in the absence
of direct stellar irradiation, the temperature in the cold gas varies at most
by factors of a few for densities 100 < n < 107 cm−3, and thus, as a first
approximation, we consider it to be isothermal. Therefore, we assume that the
density field within the cloud is initially characterized by a log-normal PDF,
appropriate for supersonically turbulent, isothermal gas (Passot and Vázquez-
Semadeni, 1998). The PDF is then given by

P (s) =
1√
2πσ2

s

exp

[
−(s− sp)

2

2σ2
s

]
, (3.11)

where
s ≡ ln(ρ/ρ̄), sp = ln(ρp/ρ̄) = −σ2

s/2, (3.12)

with ρp being the peak density, and

σ2
s = ln(1 + b2M2

rms), (3.13)

where b is a proportionality constant related with the compressibility induced
by the turbulent forcing, which for simplicity we take equal to unity (see, e.g.,
Vazquez-Semadeni, 1994; Padoan et al., 1997; Passot and Vázquez-Semadeni,
1998; Federrath et al., 2008).

However, more recent numerical and observational studies suggest that the
density PDF in gravitationally contracting systems does not preserve its log-
normal shape during the collapse, but rather develops a power-law tail at high
densities (Klessen, 2000; Dib and Burkert, 2005; Vázquez-Semadeni et al., 2008;
Kainulainen et al., 2009; Ballesteros-Paredes et al., 2011b; Kritsuk et al., 2011).
In particular, Kritsuk et al. (2011) have suggested that the final slope should
be in the range [3/2,7/4], but at the present time we know of no theoretical
prediction as to how the slope nor the transition point between the log-normal
and the power law should evolve in time. We experimented with various options
for modeling the evolution of the PDF’s power-law tail, but found the behavior
to be very sensitive to the parameters used, while we had no physical ways of
constraining them. Finally, Kritsuk et al. (2011) proposed that the origin of the
power-law tail is the development of local collapsing flows, that may have either
Larson–Penston (Larson, 1969; Penston, 1969) or Shu (1977) density profiles.
In this case, the power-law tail is an effect of the gravitational collapse rather
than its cause, and thus it should not be counted as providing turbulent seeds
for future collapses. For all of these reasons, we do not consider the power-law
form of the PDF and stick to the log-normal.
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It is worth noting that the density PDF we consider here refers only to the
cold (approximately isothermal) gas that makes up the cloud and not to the
entire gas contents of the system. This means that this PDF is not directly
comparable to that observed in the numerical simulations of the same process,
which corresponds to thermally bistable gas. Thus, we did not consider the
possibility of using a PDF extracted from numerical simulations, either.

We model the evolution of the lognormal density PDF as follows. First,
as indicated by Equation (3.12), the mean of the PDF is given by the cloud’s
mean density, given by ρ̄ = MC/πR

2
Ch. In turn, we prescribe that ρ̄ varies as

follows. During the mass-growth stage, it remains constant, at 100 cm−3. Once
the contraction stage begins, it increases, causing the density PDF to shift to
higher values. Eventually, however, the SFR becomes large enough that the
ionization by newly born massive stars reduces the cloud’s mass rapidly enough
as to cause the PDF to shift back toward lower densities again.

Second, the standard deviation of the PDF is determined by the turbulent
rms Mach number, as indicated by Equation (3.13). Unfortunately, the evolu-
tion of the turbulent component of the Mach number remains rather uncertain.
Standard relations, such as Larson’s (1981) velocity dispersion size cannot be
assumed here. Indeed, in our collapsing-cloud scenario, the majority of the ve-
locity dispersion is due to the contracting motions (Ballesteros-Paredes et al.,
2011a) rather than to random turbulent motions, and should not be counted as
turbulence capable of producing new density fluctuations susceptible of subse-
quent collapse.

Of course, it is natural to assume that a fraction of the kinetic energy in the
collapsing motions will be transferred to random motions, but this problem re-
mains largely unexplored in the case of gaseous media. Vázquez-Semadeni et al.
(1998) numerically investigated the scaling of the non-collapsing component of
the velocity dispersion in collapsing spherical clouds. Those authors found that
the turbulent velocity dispersion scaled as ρx, with x ∈ [1/4, 1/2], depending
on the particular setup of the collapse and on the presence of magnetic fields.
However, that study was performed at low resolution and was restricted to
spherical geometry, so it cannot be taken as definitive. More recently, Klessen
and Hennebelle (2010) suggested that the rate of kinetic energy injection by the
warm neutral streams feeding an MC is at least one order of magnitude larger
than the rate of turbulent energy dissipation within the clouds. However, these
estimates are not enough to properly constrain the evolution of the turbulent
kinetic energy in our model clouds. Thus, we simply take a constant value of
the turbulent Mach number, which represents a compromise between turbulent
decay by dissipation and feeding of the turbulence by transfer from the collaps-
ing motions. This thus implies that the width of the PDF in our model remains
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constant through the cloud’s evolution as well. We take this constant value
of the turbulent Mach number as Mrms = 3, the canonical value for the cold
neutral medium (Heiles and Troland, 2003).

3.3.6 Star-forming mass fraction

Finally, as mentioned in Section 3.3.2, we assume that only gas with number
density higher than a threshold value nSF participates in the instantaneous
SF process. This amounts to assuming that nSF is sufficiently larger than the
cloud’s mean density n̄ as to guarantee that tff(nSF) � tff(n̄), where tff(n) is the
free-fall time corresponding to density n. In a sense, this prescription may be
thought of as the model’s analogue of sink particles in a numerical simulation
(Bate et al., 1995; Federrath et al., 2010a), in which gas at sufficiently high
densities is replaced by point mass particles representing collapsed objects.

Thus, for the assumed log-normal PDF the fraction of dense gas that forms
stars is given by

f(t) =
1

2

[
1− erf

(
2 sSF(t)− σ2

s√
2σs

)]
, (3.14)

where sSF = ln(ρSF/ρ̄), and ρSF is the volume density corresponding to nSF

(see also Elmegreen, 2002; Krumholz and McKee, 2005; Dib et al., 2011). The
value of nSF is calibrated against a numerical simulation by Vázquez-Semadeni
et al. (2010) in Section 3.4.

3.3.7 Temporal evolution

With all the above ingredients, we discretize Equation (3.1) as

MC(ti) =
i∑

j=0

Ṁinf(tj)Δt−
i∑

j=0

MC(tj)Δt

tff(tj)
f(tj)−

[
MI(ti−1)+

i∑
j=k

ΔNOB(tj)ΔMI,sur(tj)
]

(3.15)
We integrate this equation numerically over time, taking Δt = 4 × 10−4 Myr.
We choose this value as a reasonable compromise between speed and accuracy,
after experimenting with timesteps down to 0.01 times this value, from which
we found (with arbitrary free parameters) that the chosen value gives already
well-converged values of the final cloud masses, the variable that turned out to
be most sensitive to the size of the timesteps.

We consider that the cloud’s evolution ends either because the cloud gets
completely evaporated by the massive-star ionization or because its average
density reaches nSF, a point at which the remaining mass is fully converted into
stars and the cloud disappears.
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3.4 Calibration of the model

With all the model ingredients defined, we now proceed to calibrate it by mat-
ching it to one of the numerical simulations by Vázquez-Semadeni et al. (2010).
We consider the simulation labeled SAF1 in that paper, which most resembles
the physical conditions built into our model. The label SAF indicated that
it contained small-amplitude initial velocity fluctuations (∼ 2% of vinf), which
were sufficient to trigger the instabilities responsible for turbulence production
in the forming cloud, but not large enough to significantly distort its sheet-like
geometry.

The simulation considered the collision of two cylindrical WNM streams
with ninf = 1 cm−3, Tinf = 5000K, inflow radius of Rinf = 64 pc, and an initial
inflow speed vinf = 7.5km s−1.1 Thus, for our calibration purposes, we use
these same values for our model, except for vinf . We do this because, in the
simulation, the inflow speed decreases over time, because the rear end of the
inflowing cylinder leaves a vacuum behind it. As a consequence, in the reference
frame of the inflow, the inflow’s rear end tends to re-expand into this vacuum,
producing a velocity gradient along the cylinder. Instead, in the model we use
a constant inflow speed, and thus we take a smaller value, representative of the
time-averaged speed in the simulation. We find that a value of vinf = 4.5km s−1

provides the best match for the evolution of the simulation cloud’s mass. Also,
we find that the temporal evolution of the cloud’s radius is best matched with
a value of the Larson parameter of fL = 1.7, very close to the original value
of 1.58 originally proposed by Larson (1969). We show the evolution of these
quantities for both the simulation and the model in Figure 3.2. Note that the
evolution for the model with the ionizing stellar feedback turned both on and
off is shown. We refer to the model with feedback off as the LN-F0 case, and
to the one with the feedback on, as the LN-F1 case.

Next, keeping the above parameters fixed, we vary the nSF parameter, the
density threshold for star formation, to match the SFR and SFE of the simula-
tion, with the SFE being defined as

SFE(t) =
MS(t)

MC(t) +MS(t) +MI(t)
, (3.16)

where MC is the dense gas mass, MS is the total mass in stars, MI is the
total mass ionized by stars, all quantities being time dependent. Figure 3.3
shows the evolution of the SFR and SFE of the model for nSF = 105, 106,
and 107 cm−3, and compares them with the evolution of the corresponding

1Note that there are typographical errors in the numbers reported by Vázquez-Semadeni
et al. (2010). The values given here are the correct ones.
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Figure 3.2: Left: evolution of the dense gas mass, ionized gas mass, and mass
in stars for the model cloud with parameters that best match the corresponding
quantities (except for the ionized mass, which is not measured) in the SAF1
simulation of Vázquez-Semadeni et al. (2010). The green lines represent the
simulation, the blue lines represent the model cloud with stellar feedback turned
off, and the black lines represent the model cloud with the stellar feedback turned
on, with nSF = 106 cm−3. The vertical line represents the beginning of global
collapse. Right: evolution of the cloud radius in the model and in the simulation,
with the same color coding as in the left panel.

quantities in the simulation, showing that the best match is obtained with
a value nSF = 106 cm−3, which we use in the rest of the paper. This value is
reassuring since, on the one hand, it is comparable to the sink-formation density
threshold used in the numerical simulations (Vázquez-Semadeni et al., 2007;
Vázquez-Semadeni et al., 2010), and on the other, it is high enough that the
material above those densities can be safely assumed to be locally gravitationally
bound (Galván-Madrid et al., 2007; Heitsch and Hartmann, 2008).

3.5 Discussion of the calibrated model’s evolu-

tion

Once the model parameters have been calibrated with the SAF1 simulation,
it is illustrative to discuss the general features of the model cloud’s evolution,
which hold qualitatively for the other cases we explore in Section 3.6, where
varying only the inflow radius Rinf we are able to match and explain several
observed features of MCs and their star-forming activity.

First, we note from the right panel of Figure 3.2 that the radius of the model
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Figure 3.3: Left: evolution of the star formation rate (SFR) for the model cloud
for the cases nSF = 105, 106, and 107 cm−3, compared to the evolution of the SFR
in the SAF1 simulation of Vázquez-Semadeni et al. (2010). Right: same as the
left panel, but for the star formation efficiency (SFE). The green lines represent
the numerical simulation.

with feedback (LN-F1) evolves slightly more slowly than that of the case without
feedback (LN-F0). This is because the stellar feedback erodes the cloud through
ionization, thus reducing its mass, which in turns causes a lower gravitational
acceleration, thus slowing the collapse. We also note that the radius of the
LN-F0 case approaches zero at late times, while that of the LN-F1 ends at a
finite radius, implying that the evolution is terminated because the cloud is
completely evaporated before it reaches zero radius (see below).

Second, from the left panel of Figure 3.2, we note that the dense gas mass of
both the LN-F0 and LN-F1 models decreases at late times. This is because even
in the non-feedback LN-F0 model, gas is consumed due to the conversion of
gas to stars. However, we see that the mass consumption is much more abrupt
in the LN-F0 model, while in the LN-F1 model it proceeds more slowly. This
indicates that the feedback inhibits star formation to the level that the mass
consumed by ionization from the feedback is less than the mass that would be
consumed by star formation were there no feedback. Nevertheless, note that
the dense gas mass in the LN-F1 model approaches zero at the end of the
evolution, indicating that all of the cloud’s mass is used up by the combined
action of ionization and star formation. This corresponds to the well-known
fact that clusters eventually destroy their natal cloud and are left with no gas
around them after several million years (Leisawitz et al., 1989).

Finally, note from Figure 3.4 that both the SFR and the SFE increase at
an ever faster pace until the end of the simulation in the non-feedback case
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LN-F0, while their growth slows down in the case of LN-F1. In this case, the
SFR eventually begins to decrease and goes to zero at the end of the evolution,
as the dense gas mass is completely consumed by the ionization, leaving no
further fuel for star formation. Instead, the SFR in the LN-F0 case would reach
a singularity at a finite time were it not for the time discretization of our model.

Figure 3.4: Evolution of the SFR (left) and the SFE (right) of the calibrated
model with nSF = 106 cm−3 for a case with feedback turned off (LN-F0, blue line)
and a case with feedback on (LN-F1, black line). The green lines represent the
numerical simulation. The LN-F0 model has accelerating SFR and SFE, while
they decelerate for model LN-F1. See also discussion in Section 3.7.3

3.6 Comparison with observations and previous

work

We now proceed to compare the results of our model with related observational
results. For the various comparisons, we vary only the inflow radius parameter,
Rinf , which determines the maximum dense gas mass attained by the model.

3.6.1 Evolutionary stages

As a first case in point, we consider the evolutionary stages of the clouds.
Recently, Kawamura et al. (2009) have suggested that GMCs in the Large
Magellanic Cloud undergo four evolutionary stages. In the first stage (Type
I, with a duration of ∼ 7 Myr and a median mass MtI ∼ 104.8 M�), the GMCs
show no sign of massive star formation. In the second stage (Type II; 14 Myr;
MtII ∼ 105.2 M�), the GMCs have only HII regions, while in the third (Type
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III; 6 Myr; MtIII ∼ 105.4 M� ), the GMCs contain both HII regions and clusters.
Finally, the last stage (IV) corresponds to the time when the GMCs have been
completely dispersed, and only young clusters and/or supernova remnants are
found.

Because the masses of the clouds in their sample are near 105M�, we choose
an inflow radius Rinf = 100 pc, which gives a maximum cloud mass (Mmax)
of slightly over 105 M�, thus making it directly comparable to their cloud
sample. Figure 3.5 shows the evolution of both the number of massive stars in
the model cloud (top panel) and the masses of the dense gas, ionized gas, and
stellar components of the cloud (bottom panel). For comparison with the cloud
types defined by Kawamura et al. (2009), here we define Type I as the epoch
when the model cloud has less than one massive star, Type II as the period
when the cloud has less than 20 massive stars, and Type III as the period when
the cloud has more than 20 massive stars. We see that the model cloud spends
∼ 5 Myr as a Type I, ∼ 12 Myr as a Type II, and ∼ 10 Myr as a Type III,
noting that after such a time the cloud’s mass has decreased by more than a
factor of two, and may be considered to be on its way to disappearing.

We also note from the bottom panel of Figure 3.5, that the dense gas mass
of the model cloud varies only moderately during the time it spends as an
either Type I, II or III cloud, although a net increase from Type I to Type II is
apparent. Moreover, because the cloud’s mass decreases by over a factor of two
while it is in the Type III stage, a significant scatter in cloud masses is expected
in this class, as is indeed observed in Figure 12 of Kawamura et al. (2009).

From the above discussion, we thus conclude that the evolution of our model
GMC, with Rinf = 100 pc, compares well, both qualitatively and quantitatively,
with the evolutionary scheme proposed by Kawamura et al. (2009) for GMCs
in the LMC.

3.6.2 Fiducial model versus OMC-1

Next, we compare our model cloud with the physical conditions of real star-
forming regions. As an example, we choose the clump known as OMC-1 in the
Orion Molecular Cloud, which can be considered a typical massive star-forming
region, and has been extensively studied. The total gas mass in OMC-1 is
∼ 2200M� (Bally et al., 1987), the size is ∼ 1.35 pc (which implies a number
density ∼ 1.54 × 104 cm−3), and the mass in stars is ∼ 500M�, which implies
that the average SFR is 〈SFR〉 � 2.5 × 10−4 M�yr−1, assuming a stellar age
spread of � 2Myr (see Vázquez-Semadeni et al., 2009, and references therein).

To compare with this, we choose a value of Rinf = 10 pc for our model,
which at t = 27.6 Myr has the same density as OMC-1, making it directly
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Figure 3.5: Top: evolution of the number of massive stars in the model cloud
with Rinf = 100 pc, showing the periods which roughly correspond to the cloud
types defined by Kawamura et al. (2009). Bottom: evolution of the dense gas,
ionized and stellar masses for this cloud.

comparable to the latter. At this time, the model cloud has a mass M ≈
1800 M�, a mass in stars ≈ 200M�, and size (diameter) ≈ 1.9 pc. Moreover,
the average SFR over the last 2 Myr (the age dispersion used to compute the
SFR of OMC-1) is 〈SFR〉 ≈ 100 M� Myr−1 (see Figure 3.6). These values
are in very good agreement with the estimates for OMC-1, suggesting that our
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Figure 3.6: Evolution of a model cloud with Rinf = 10 pc in an SFR vs. size
(R) diagram. Note that the size axis is reversed, so that the cloud evolves from
left to right as it contracts gravitationally. Also plotted is the locus of the OMC-1
star-forming region in this diagram, showing that the model comes very close to
that locus toward the end of its evolution.

evolutionary model correctly describes this cloud.

3.6.3 Kennicutt–Schmidt relation.

Another possible point of comparison of our model with observational data is
provided by the so-called Kennicutt–Schmidt relation. Ever since the seminal
paper by Schmidt (1959), it has been well known that there exists a relationship
between the SFR and the gas density in galaxies. Four decades later, collecting
data from various surveys of nearby normal and starburst galaxies, Kennicutt
(1998) found a clear correlation between the galaxy-averaged SFR surface den-
sity (ΣSFR) and the galaxy-averaged total gas surface density (Σgas = ΣHI+ΣH2 ,
where ΣHI and ΣH2 are the HI and H2 surface densities, respectively) of the form
ΣSFR ∝ ΣN

gas, with N ≈ 1.4.
Recent observations of external galaxies with high spatial resolution (on

scales of fractions of kpc) show that ΣSFR scales almost linearly with ΣH2 , while
no clear correlation exists with ΣHI (see, e.g., Wu et al., 2005; Bigiel et al., 2008).
However, observations of individual clouds (e.g., Evans et al., 2009; Heiderman
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et al., 2010) systematically show larger values of ΣSFR than those implied by the
fits by Kennicutt (1998), Bigiel et al. (2008), and Wu et al. (2005). Moreover,
the SFRs derived by Heiderman et al. (2010) for their massive clump sample
were obtained using extragalactic methods (taken from Wu et al., 2010), and
they warn that this could cause the SFRs they report to be underestimated by
up to 0.5–1 orders of magnitude, implying an even stronger disagreement with
the galaxy-scale measurements.

Figure 3.7: SFR surface density ΣSFR vs. gas surface density Σgas. The
dashed line represents the Kennicutt-Schmidt relation, while the lower dotted
line represents the observational fit by Bigiel et al. (2008) and the top dotted
line is the fit by Wu et al. (2005). We also plot the data for individual low-
to intermediate-mass star-forming regions by Evans et al. (2009) (+ symbols)
and Heiderman et al. (2010) (× symbols) and for massive clumps by Heiderman
et al. (2010) (∗ symbols). The filled square represents OMC-1 (see Vázquez-
Semadeni et al., 2009) and the filled triangle is Taurus (see, e.g., Heiderman et
al., 2010). The arrows in the massive clumps from the latter authors indicate the
likely correction to the SFR due to their application of extragalactic methods to
Galactic regions. The solid black line shows the evolution of our calibrated model
with Rinf = 10 pc.

These cloud-scale observations occupy a well-defined locus in Σgas − ΣSFR

space, which can be compared with our model. For this task, we choose an
inflow radius Rinf = 10 pc, for which our model reaches a maximum mass of
Mmax ≈ 2000M�, almost identical to the median mass of the Evans et al. (2009)
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sample. In Figure 3.7 we then plot the evolution of this model, as well as the
loci of the clouds from the Evans et al. (2009) and Heiderman et al. (2010),
adding an upward-pointing arrow to the latter points, of length corresponding
to one order of magnitude, to indicate the likely underestimation of the SFR
for massive clumps by the latter authors. We also plot the data from OMC-1
(from Vázquez-Semadeni et al., 2009) and Taurus (see, e.g., Heiderman et al.,
2010). The model evolves from low to high values of both Σgas and ΣSFR.

It is interesting to note that the model passes first through the locus of the
low-mass star-forming clouds and later near the locus of the clumps forming
massive stars. This means that the model predicts that present-day, relatively
quiescent, low-mass star-forming clouds may evolve into massive star-forming
ones in a few to several Myr. A similar conclusion was reached through nume-
rical simulations by Vázquez-Semadeni et al. (2009). This reinforces the idea
that the dispersion of the observational data is due to different evolutionary
states of the clouds in a sample (see, e.g., Bigiel et al., 2011).

3.6.4 Stellar age distribution

One important prediction of our model is that the SFR increases over time.
This is because, as the cloud contracts and its mean density increases, the frac-
tion of star-forming gas in the cloud increases. An increasing SFR has already
been proposed by Palla and Stahler (1999), Palla and Stahler (2000), and Palla
and Stahler (2002) on the basis of the age distribution in various low- and high-
mass clusters. However, this result has been questioned, since there is evidence
suggesting that the older stars are not genuine members of the clusters, but
rather belong to a different population (Hartmann, 2003; Ballesteros-Paredes
and Hartmann, 2007; Heitsch and Hartmann, 2008). Moreover, Hartmann
(2003) has posed the conundrum that, if most clouds form at an accelerated
pace only over the last few Myr, and form stars at a very slow rate over the pre-
vious 10 Myr or so, most clouds should be found to be in the slow-star-forming
period, but this is not what is observed. Our evolutionary scenario for clouds
may offer a solution to this debate.

Because in our model we compute the total mass of stars (ΔM) formed at
each time step, we can readily obtain the total number of stars formed during
that time step as the integral over all masses of the, normalized to ΔM . The
left panel of Figure 3.8 shows the stellar age histogram for our calibrated model,
with Rinf = 10 pc (Mmax ≈ 2000M�) at the end of its life —i.e., when it has
completely lost its gas. We show the histograms for a case with feedback off
(model LN-F0) and one with feedback on (model LN-F1). It is clear from
this figure that indeed the age distribution is concentrated toward young ages,
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although a few older stars exist.

Figure 3.8: Left: stellar age distribution for our calibrated model withRinf = 10
pc (Mmax ≈ 2000M�), calculated at the end of the cloud’s evolution. Right:
compilation of the age histograms for the associations studied by Palla and Stahler
(2000).

These results can be compared with the age histograms presented by Palla
and Stahler (2000) for the Orion Nebula Cluster (ONC), the Taurus-Auriga re-
gion, Lupus, ρ-Oph, Chameleon, Upper Scorpius, and IC348. In these clusters,
the fraction of stars with ages up to 1 Myr ranges from ∼ 30% to 66%, while the
fraction of stars with ages up to 4 Myr is in the range 80% – 97%. Moreover,
only in the case of Upper Scorpius does the age histogram peak at an age larger
than 1 Myr, namely at 3 Myr. For this association, the fraction of stars with
ages ≤ 1 Myr is only 11%, while the fraction with ages ≤ 4 Myr is 71%. We
show a compilation of these in the right panel of Figure 3.8.

We can see that, qualitatively, the stellar age histogram at the end of our
model’s life resembles those of Palla and Stahler (2000), although, quantita-
tively, the model’s histogram in Figure 3.8 is much more concentrated toward
short ages. However, this must be due to the fact that it was calculated at the
end of the model’s evolution. Clearly this is not the case for the clusters and
groups analyzed by Palla and Stahler (2000), because, as those authors them-
selves point out, in most cases the clusters are still embedded in their parent
clouds, with only Upper Scorpius being already exposed. This means that we
should consider our model before the end of its life.

In Figure 3.9 we show the age histogram for the calibrated model, calculated
at 1 and 2 Myr before the end of its evolution, and compare it with one of the
histograms from Palla and Stahler (2000) —that for ρ-Oph. We see that the
histogram becomes less peaked as earlier times before the cloud’s destruction is
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taken, becoming more closely resemblant to the histograms of Palla and Stahler
(2000). This is because, as the SFR increases toward later times, the fraction of
young stars becomes increasingly larger. In particular, the histograms for 1 and
2 Myr before the cloud’s dispersal seem to bracket the histogram for ρ-Oph. As
seen from the right panel of Figure 3.8, the other regions are less concentrated
toward short ages. According to our model, then, ρ Oph is a somewhat more
evolved region, well matched by our model at � 2 Myr before its dispersal,
while the other regions would correspond to somewhat less evolved stages, at
slightly earlier times (3–4 Myr) before destruction.

Figure 3.9: Stellar age distribution for our calibrated model with Rinf = 10 pc
(Mmax ≈ 2000M�), calculated at 1 and 2 Myr before the end of the cloud’s evo-
lution, compared with the corresponding distribution for the ρ-Oph association
(Palla and Stahler, 2000).

These results suggest a possible resolution of the debate between the Palla-
Stahler and the Hartmann groups. Specifically, although our model indeed
predicts an increase of the SFR in collapsing clouds, this does not conflict with
the conundrum posed by Hartmann (2003): no fully formed MCs are observed
without significant amounts of star formation because the clouds themselves are
evolving. Thus, at the time when they had much lower SFRs, they were not
fully formed yet, and thus not identifiable as large MCs. Indeed, the clouds’
mean density was lower, and thus, in reality, they probably consisted of a few
molecular clumps immersed in a still-atomic interclump medium. Only in the
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last few Myr of their evolution, the clouds are dense enough on average that
most of their bulk is already molecular, and by that time they are forming stars
at a much higher rate, as observed. A similar conclusion has been recently
reached on the basis of numerical simulations by Hartmann et al. (2012).

3.7 Discussion

3.7.1 The constant-Mrms assumption

A feature of our model that may appear odd at first sight is that we have
taken Mrms = 3 as the (constant) fiducial value for the rms Mach number of the
turbulence within the cloud, as it is contrary, for example, to the famous Larson
(1981) velocity-dispersion-size scaling relation. However, it must be recalled
that in this paper we are specifically assuming that such a relation, or its more
modern rendition by Heyer et al. (2009), is a manifestation of the gravitational
contraction of the cloud, rather than a feature of the turbulence (Ballesteros-
Paredes et al., 2011a). Thus, the relevant rms Mach number must be the
remainder after the collapsing motions have been removed. A competition may
be set up between the transfer of kinetic energy from the collapsing motions to
the turbulent ones and the dissipation (Vázquez-Semadeni et al., 1998; Klessen
and Hennebelle, 2010), and so, in the absence of a reliable model, we consider
that the assumption of a constant rms Mach number with the value typical
for the CNM (Heiles and Troland, 2003) is reasonable, although a possible
alternative recipe for its initial value would be to take it equal to the inflow Mach
number (Banerjee et al., 2009). We consider that further work is necessary to
better constrain this parameter.

3.7.2 The log-normal PDF assumption

A similar situation arises for the density PDF in the cloud, which we have
assumed to have a log-normal shape, even though it is well known that star-
forming clouds develop a power-law tail at high densities (Klessen, 2000; Dib
and Burkert, 2005; Vázquez-Semadeni et al., 2008; Kainulainen et al., 2009;
Ballesteros-Paredes et al., 2011b; Kritsuk et al., 2011). However, Kritsuk et al.
(2011) have suggested that such power-law tails are the effect of the development
of local collapsing sites with power-law density profiles. In this case, as explained
in Section 3.3.5, the power-law tail in the PDF would be the result of the
collapse, rather than the seed for it, and thus the relevant PDF for the seeds for
future collapse should be the underlying log-normal one, after removal of the
already-collapsing regions. Moreover, there is no complete theory for how the
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density PDF should evolve in time from a lognormal to a power law. Unknowns
such as the timescale for the transition, the density at which the power-law tail
starts, and the final slope of this region are uncertain at present. As above, we
consider that further work is necessary to clearly resolve this issue, and in the
meantime we settle for the log-normal PDF assumption.

3.7.3 Accelerating star formation

An important precision is in order concerning the acceleration of star formation
in our model. Indeed, our model predicts that the SFR increases over time,
and therefore, star formation (SF; strictly speaking, the instantaneous stellar
mass, MS(t)) accelerates. However, it is common to find the statement in the
literature that it is the SFR that accelerates. This is not the case for our model
with feedback. The SFR is the time derivative ofMS. Since the SFR increases in
time, the second time derivative of MS is positive, and thus the SF accelerates.
However, the second time derivative of the SFR (the third derivative of MS) is
negative for our model with feedback (see the left panel of Figure 3.4), and thus
strictly speaking the SFR decelerates.

3.7.4 Room for improvement

In the present model, we have bypassed the supporting effect of all forms of
pressure, and replaced it by the empirical “Larson factor”, fL, which effectively
lengthens the timescale for collapse. In the case of the original work by Larson
(1969, Appendix C), this factor represented the support from thermal pressu-
re which, incidentally, should be most important during the earlier stages of
the collapse. Calibrating against the SAF1 simulation by Vázquez-Semadeni
et al. (2010), we found a value of fL roughly 8% larger than the one found
by Larson, suggesting perhaps that turbulent pressure added a certain (small)
amount of support (the magnetic field was not included in that simulation).
Including physically motivated terms into the collapse prescription that account
for thermal, turbulent and magnetic support is an important goal, which we will
attempt to pursue in a future contribution.

Nevertheless, it is interesting that our model, calibrated in the non-magnetic
case of the SAF1 simulation, gives a good match to a number of observational
properties of MCs in a wide range of masses. This suggests that magnetic
support is not crucial in these objects. In turn, this is consistent with the
recent realization that star-forming clouds tend to be magnetically supercritical
in general (Bourke et al., 2001; Crutcher et al., 2003; Troland and Crutcher,
2008), and thus they should be essentially in a free-fall regime.
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Finally, in this paper we have not considered the effect of supernova ex-
plosions toward the late evolutionary stages of the clouds. This may help in
reducing the model’s SFR at those stages, probably bringing it to better agree-
ment with the observations (see, e.g. Figure 3.7).

3.8 Summary and Conclusions

In this paper we have developed a semi-empirical analytical model (based on
simulations by Vázquez-Semadeni et al., 2010) in which an MC is formed by
converging WNM flows. We assumed that the inflow collision produces a CNM
cloud, through nonlinear triggering of the thermal instability, and that the cloud
becomes turbulent through the combined action of the latter and various other
dynamical instabilities, such as the nonlinear thin shell, Kelvin–Helmholtz, and
Rayleigh–Taylor ones. We assumed that the rms Mach number of this turbu-
lence remains fixed at the typical values in the CNM (Ms ≈ 3), and that over
its evolution, the cloud develops further nonthermal motions related to its col-
lapse, not its internal turbulence. We also assumed that the cloud forms stars
with a Kroupa (2001)-type IMF, so that massive stars only appear when a suf-
ficiently large number of stars has formed to adequately sample the high-mass
tail of the IMF. Finally, we assumed that the density PDF in the cloud has
a log-normal shape and a fixed width (corresponding to a constant turbulent
Mach number Mrms), but whose maximum shifts toward higher densities as the
cloud contracts and becomes denser on average.

Using the same WNM inflow parameters as the simulation labeled SAF1
from Vázquez-Semadeni et al. (2010), namely Rinf = 64 pc, ninf = 1 cm−3, and
Mrms = 3, we calibrated the model by searching the density threshold for star
formation, nSF, that best matched the simulation’s evolution of the SFR and
SFE. Our calibrated value was nSF = 106 cm−3. With the nSF, ninf , and Mrms

parameters fixed, the only remaining free parameter of the model is the WNM
inflow radius Rinf , which essentially controls the maximum mass reached by the
model cloud, Mmax. Varying this parameter we then match the model to clouds
of various masses, and compare with various properties of such clouds.

The generic behavior of the model cloud, with the parameters of the SAF1
simulation, is as follows: (1) the size of the model cloud decreases faster (by
gravitational contraction) in a case without stellar feedback (model LN-F0) than
in a case with it (model LN-F1). This is because feedback partially evaporates
the cloud, thus reducing its gravitational potential, and slowing its collapse.
(2) The model without feedback approaches a final state of zero size with finite
mass (a singularity), while the case with feedback approaches a final state of
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zero mass at finite size, i.e., it is completely consumed by SF and ionization
before it reaches zero size. (3) Although the SFR increases in both cases, it
accelerates over time in the LN-F0 model, while it decelerates over time in the
LN-F1 model.

We then set out to apply the model to explain a number of observed features
of MCs of a wide range of masses. First, we compared the predictions of our
model with the evolutionary scenario for GMCs recently proposed by Kawamura
et al. (2009), in which the GMCs start out having no massive stars, then have
reduced numbers of them, so as to only have isolated HII regions, and finally
have large numbers of them, so as to clearly contain massive clusters. We find
that our model, with a value of Rinf that gives Mmax ∼ 105 M�, comparable to
the mass range reported by those authors, spends similar times in each of the
stages reported by them.

We also investigated a model cloud with Rinf = 10 pc, corresponding to
Mmax ∼ 2000 M�. We find that such a model cloud evolves in the ΣSFR–Σgas, or
Kennicutt–Schmidt, diagram, in such a way that it passes first through the locus
of individual low-mass star-forming clouds and later through the locus of high-
mass star-forming clumps, as reported by Evans et al. (2009) and Heiderman
et al. (2010). Next, we compared an evolved stage of the calibrated model, also
using Rinf = 10 pc, with the physical conditions in the OMC-1 massive clump,
finding that it has similar physical conditions after ∼ 26 Myr of evolution since
its parent MC first formed, although it spends only about 2 Myr in a state
comparable to OMC-1.

Finally, we investigated the stellar age distribution in our isolated-cloud
model with Rinf = 10 pc, showing that, taken a few Myr before the end of the
cloud’s life, it is consistent with the corresponding distributions presented by
Palla and Stahler (2000) for various clusters and associations. Furthermore, the
model predicts that the shape of this age distribution depends on the evolutio-
nary stage of the system, being more peaked toward young ages as the system
grows older, because of its increasing SFR.

We conclude that our evolutionary and collapsing model of MCs adequately
represents actual clouds of a wide range of masses, with no need whatsoever
for the consideration of equilibrium states. In this sense, the present model,
although idealized, represents a promising first attempt at a non-equilibrium
model for MCs and their star-forming properties.
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4

An evolutionary model for
collapsing Molecular Clouds and
their Star Formation activity. II.
Mass dependence of the Star
Formation Rate

4.1 Abstract

We discuss the evolution, and dependence on cloud mass, of the star formation
rate (SFR) and efficiency (SFE) of star-forming molecular clouds (MCs) within
the scenario that clouds are undergoing global collapse and that the SFR is con-
trolled by ionization feedback. We find that low-mass clouds (Mmax � 104 M�)
spend most of their evolution at low SFRs, but end their lives with a mini-burst,
reaching a peak SFR ∼ 104 M�Myr−1, although their time-averaged SFR is only
〈SFR〉 ∼ 102 M�Myr−1. The corresponding efficiencies are SFEfinal �60% and
〈SFE〉 �1%. For more massive clouds (Mmax � 105 M�), the SFR first in-
creases and then reaches a plateau, because the clouds are influenced by the
stellar feedback since earlier in their evolution. As a function of cloud mass,
〈SFR〉 and 〈SFE〉 are well represented by the fits 〈SFR〉 ≈ 100(1+Mmax/1.4×
105 M�)1.68 M�Myr−1 and 〈SFE〉 ≈ 0.03(Mmax/2.5× 105 M�)0.33, respectively.
Moreover, the SFR of our model clouds follows closely the SFR-dense gas mass
relation recently found by Lada et al., during the epoch when their instanta-
neous SFEs are comparable to those of the clouds considered by those authors.
Collectively, a Monte Carlo integration of the model-predicted SFR(M) over a
Galactic giant molecular cloud mass spectrum yields values for the total Galac-
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tic SFR that are within half an order of magnitude from the relation obtained by
Gao & Solomon. Our results support the scenario that star-forming MCs may
be in global gravitational collapse and that the low observed values of the SFR
and SFE are a result of the interruption of each SF episode, caused primarily
by the ionizing feedback from massive stars.

4.2 Introduction

The regulation of the star formation rate (SFR) in molecular clouds (MCs)
has been a key problem in astrophysics for more than half a century, ever
since Schmidt (1959) noticed that the SFR in clouds exhibited a power-law
dependence on the gas number density n. A crucial aspect of the SFR was
noticed by Zuckerman and Palmer (1974), who pointed out that the observed
Galactic SFR is at least one order of magnitude lower than that expected if
the clouds were forming stars at the “free-fall rate” given by the ratio of the
total molecular gas mass in the Galaxy to the typical free-fall time of this
gas. Indeed, current estimates of the total molecular gas mass and density
(Mmol ∼ 109 M�, n ∼ 100cm−3; e.g., Ferrière, 2001) imply a free-fall SFR
∼ 200 M� yr−1, while the observed SFR is roughly 100 times smaller (e.g.,
Chomiuk and Povich, 2011). Thus, it was concluded that MCs could not be in
free-fall, contrary to the then-recent suggestion of Goldreich and Kwan (1974),
and that the nonthermal linewidths observed in the clouds were produced by
small-scale turbulence instead (Zuckerman and Evans, 1974).

Since then, MCs have been assumed to be supported by a number of physical
agents, such as magnetic fields (e.g., Shu et al., 1987; Mouschovias, 1991b) or
turbulence (e.g., Vazquez-Semadeni et al., 2000; Vázquez-Semadeni et al., 2003;
Elmegreen and Scalo, 2004b; Mac Low and Klessen, 2004; Ballesteros-Paredes
et al., 2007; McKee and Ostriker, 2007). In both scenarios, the necessary low
SFR was attained because a small fraction of the mass managed to escape the
support. This fraction was mediated by ambipolar diffusion in the first case and
by local turbulent compressions that induced small-scale, low-mass collapses in
the second. In the last decade, a number of models for the turbulent regula-
tion of star formation (SF) have been constructed within the scenario of clouds
in which both the global support and the local collapses are induced by turbu-
lence (Krumholz and McKee, 2005; Hennebelle and Chabrier, 2011; Padoan and
Nordlund, 2011). These models are based on the premise that the high-density
tail of the density probability density function (PDF), which takes a log-normal
form for supersonic isothermal turbulence (Vazquez-Semadeni, 1994; Padoan
et al., 1997; Passot and Vázquez-Semadeni, 1998), is responsible for the instan-
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taneous SFR, which is given by this mass divided by a characteristic timescale.
The models differ in the threshold density for defining the “high-density” gas
and the characteristic timescale. A thorough discussion of these models has
been recently provided by Federrath and Klessen (2012).

However, recent evidence from both observations and numerical simulations
has suggested that star-forming MCs may be in gravitational collapse after
all. Comparing numerical simulations of a variety of turbulent and free-falling
regimes to the observed kinematics of the clump NGC 2264-C, Peretto et al.
(2007) showed that the best fit was provided by simulations in which infall
dominates over turbulence by a large margin (95% of the kinetic energy). Com-
paring the morphology of the Orion A cloud to that of simulations of gravita-
tional collapse of a nearly elliptical sheet of gas, Hartmann and Burkert (2007)
suggested that the entire Orion A cloud may be in gravitational collapse. Also,
infall has been observed at multiple scales in the high-mass star-forming region
G20.08−0.14 (Galván-Madrid et al., 2009) and from filamentary regions onto
clumps, as well as onto the filaments (Schneider et al., 2010; Kirk et al., 2013).
On the numerical side, simulations of cold, dense cloud formation including self-
gravity (Vázquez-Semadeni et al., 2007; Heitsch and Hartmann, 2008; Vázquez-
Semadeni et al., 2009; Vázquez-Semadeni et al., 2010; Vázquez-Semadeni et al.,
2011) have shown that the clouds engage in gravitational collapse shortly after
they collect enough mass to be Jeans-unstable and long before any star forma-
tion begins to occur within them. Moreover, the nonlinear density fluctuations
produced by the turbulence in the cloud have shorter free-fall timescales than
the cloud at large and therefore complete their collapses before the cloud does.
Thus, Vázquez-Semadeni et al. (2009) suggested that MCs are in a state of “hi-
erarchical gravitational collapse”, where the local, small-scale collapses of dense
cores are occurring within the global, large-scale collapse of the cloud.

In a previous paper (Zamora-Avilés et al., 2012, hereafter Paper I), we pre-
sented an analytical model for the evolution of the SFR in the context of gravi-
tationally collapsing clouds. This model was based on the same prescription for
computing the SFR as that used in the models mentioned above, i.e., an inte-
gration of the density PDF above a certain threshold density to obtain the mass
responsible for the “instantaneous” SFR. The threshold density was obtained by
calibrating the evolution of the SFR with the numerical simulations of Vázquez-
Semadeni et al. (2010), and the timescale was chosen as the free-fall time at the
threshold density. However, the distinctive feature of the model was that the
cloud, assumed to have a sheet-like geometry, was considered to be undergoing
free-fall gravitational collapse, causing its mean density to increase. Therefore,
the density PDF was considered to continuously shift to higher densities and
thus the star-forming mass continuously increased in time, implying a system-
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atic increase of the SFR. The controlling parameter of the model was found to
be the total system mass, and the model successfully described the evolutionary
sequence for ∼ 105 M� giant molecular clouds (GMCs) reported by Kawamura
et al. (2009), the stellar age histograms for clouds of mass ∼ 2000 M� as re-
ported by Palla and Stahler (2000) and Palla and Stahler (2002), and the locus
of clouds of this same mass in the Kennicutt−Schmidt diagram, as reported by
Evans et al. (2009).

Since the main controlling parameter of the model from Paper I was the
cloud’s mass, in this paper we now examine the predictions of the model for
the dependence of the SFR and the star formation efficiency (SFE) with the
mass of the cloud, and from there examine the prediction of the model for the
SFR−mass relation first proposed by Gao and Solomon (2004, hereafter, the GS
relation). The plan of the paper is as follows. In Section 4.3, we present a brief
summary of the model, as well as its application to the present study. In Section
4.4, we present the results for the dependence of the SFR and the SFE with
cloud mass and compare the model with the observational GS relation. Then, in
Section 4.5, we discuss some implications and limitations of our results. Finally,
in Section 4.6, we present a summary.

4.3 The Model

Our model, first presented in Paper I, follows the evolution of the gas mass that
initially constitutes a cold atomic cloud, formed by the collision of two streams
in the warm neutral medium (WNM). The model is intermediate between a
Lagrangian and an Eulerian description, as it follows the collapse of the cold
cloud material as soon as it exceeds its Jeans mass, but at the same time allows
for the addition of fresh material, coming from the continuing WNM streams
(“the inflows”), through the boundaries of the collapsing region. As the cold gas
collapses and reduces its size, we only add to it the material entering through
its instantaneous, reduced boundaries, while the rest of the inflow material is
assumed to be deposited in an envelope whose evolution we ignore. Thus, the
model accounts for the fact that a “cloud” is not made of the same material
throughout its evolution, but rather is constantly accreting fresh material from
its environment, as has been proposed by several studies (e.g., Smith et al., 2009;
Vázquez-Semadeni et al., 2009; Vázquez-Semadeni et al., 2010; Goldbaum et
al., 2011). Within this scenario, we follow the evolution of the material that
initially begins to collapse, to which we will, for convenience, refer to as “the
cloud”, although it must be borne in mind that the entire system consists of this
collapsing region plus the material added to the envelope during the evolution.
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Thus, the entire system does not contract because of the material continuously
added to it.

We assume that the clouds are born with a density of n = 100 cm−3 and
a temperature of ∼ 40 K,1 representative of the cold atomic medium (CNM).
In Paper I, the flows were assumed to continue indefinitely, as is done in many
numerical simulations (e.g., Audit and Hennebelle, 2005; Hennebelle et al.,
2008). Instead, here we assume that the flows subside after 25 Myr, somehow
mimicking the duration of the accretion flow that a parcel in the ISM may be
subject to when traversing a 1 kpc spiral arm at a speed of ∼ 20km s−1 (the
spiral pattern speed with respect to the gas at the Solar circle). The mass
accretion rate onto the cloud is given by Ṁinf = 2ρWNMvinf(πR

2
inf), where ρWNM

is the WNM density (= 2.1× 10−24 g cm−3, which corresponds to n = 1 cm−3

assuming a mean particle mass of 1.27), vinf is the inflow velocity (= 4.5 km s−1,
obtained from the calibration; see below), and Rinf is the radius of the inflow,
assumed to have a cylindrical shape. This inflow continues to feed the cloud
for 25 Myr, increasing its mass. We assume that the cloud begins to undergo
global gravitational collapse as soon as it reaches its Jeans mass, which, for a
planar cloud, is given by (Larson, 1985):

MJ = 4.67
c4s

G2Σ
, (4.1)

where cs is the sound speed in the cloud, assumed constant and uniform (cs(T =
40 K) = 0.38 km s−1), and Σ = MC(t)/πR

2
C(t) is the surface density, withMC(t)

and RC(t) being the instantaneous mass and radius of the cloud, respectively.
Note that we deliberately do not consider turbulent support, as one essential
feature of the model is that the large supersonic velocities that develop in molec-
ular clouds are the result of the collapse and thus do not provide support. We
also assume that because the initial turbulence is transonic (see below), it does
not provide a significant source of additional support. Finally, note also that
once the cloud has started to collapse, its radius shrinks, and so we only con-
sider the mass inflow across its instantaneous cross section, assuming that the
rest of the material goes into a medium-density (∼ 100cm−3) cloud envelope,
which is not included in the collapse calculation.

We furthermore assume that the cold dense gas is turbulent, due to the
combined action of various instabilities (Vishniac, 1994; Walder and Folini,
2000; Heitsch et al., 2006; Vázquez-Semadeni et al., 2006), with a moderate
Mach number Mrms = 3. This is consistent with observations of the velocity
dispersion in the cold neutral medium (Heiles and Troland, 2003). Note that this

1This temperature is obtained considering the heating and cooling processes by Koyama
and Inutsuka (2000).
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Mach number is significantly lower than the typical Mach numbers, Mrms ∼ 10–
20, usually associated with molecular clouds, which in our model correspond to
infall velocities rather than to random turbulence. We stress that numerical
simulations in general (Koyama and Inutsuka, 2002; Audit and Hennebelle,
2005; Vázquez-Semadeni et al., 2006; Vázquez-Semadeni et al., 2007; Banerjee
et al., 2009) show that the turbulent Mach numbers produced in the atomic
precursor of a MC by the flow collision are substantially smaller than those
observed in MCs. As discussed in Vázquez-Semadeni et al. (2007), such high
Mach numbers are only observed in cloud evolution simulations as a consequence
of the gravitational contraction. As a consequence of the turbulence in the dense
gas, we assume that the cloud develops a log-normal density PDF of the form

P (s) =
1√
2πσ2

s

exp

[
−(s− sp)

2

2σ2
s

]
, (4.2)

where s ≡ ln(ρ/〈ρ〉), sp = ln(ρp/〈ρ〉) = −σ2
s/2, and σ2

s = ln(1+b2M2
rms), with ρp

being the peak density, 〈ρ〉 the mean density, and b a proportionality constant
related to the compressibility induced by the turbulent forcing (Federrath et al.,
2008; Federrath et al., 2010b). For simplicity, we consider only compressible
modes, i.e., b = 1.

As in other recent SFR models (Krumholz and McKee, 2005; Hennebelle and
Chabrier, 2011; Padoan and Nordlund, 2011; Federrath and Klessen, 2012), we
assume that the high-density tail of the PDF is responsible for the instantaneous
SFR in the cloud, which is calculated as

SFR(t) =
M(n > nSF, t)

tff(nSF)
, (4.3)

where nSF is a threshold number density for defining the mass involved in the
instantaneous SFR and tff(nSF) is the free-fall time at number density nSF.
Note that nSF represents neither the mean density of the cloud nor the typical
density of the clumps that form stars. Instead, it is a free parameter of the model
indicating the density above which the collapse time can be considered to be
negligibly small compared to the evolutionary timescale of the system. That
is, since the cloud contains a distribution of density fluctuations caused by the
turbulence, the densest among these have the shortest collapse timescales. The
parameter nSF represents the density fluctuation level whose collapse time can
be considered as “instantaneous” in the model. On the other hand, the typical
density of a star-forming cloud or clump is represented by the peak of the density
PDF, and is generally smaller than nSF, except at the very last stages of the
collapse of a model cloud, when its mean density reaches very high values (see
below).
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The threshold number density nSF was calibrated in Paper I by matching the
evolution of the model to the results of the numerical simulations −specifically,
the evolution of the SFR, and the gaseous and stellar masses. The best match
was found to occur for nSF = 106cm−3 (for which the free-fall time is tff ≈
0.03 Myr) and this value was left fixed thereafter. Here we continue to use that
value.

In addition, in Equation (4.3), M(n > nSF, t) is the mass of the material at
densities above nSF, and given by

M(n > nSF, t) = fMC(t), (4.4)

where f is the mass fraction at densities above nSF, given by1

f =
1

2

[
1− erf

(
sSF − σ2

s/2√
2σs

)]
(4.5)

and sSF ≡ ln(ρSF/〈ρ〉) (see also Elmegreen, 2002; Krumholz and McKee, 2005;
Dib et al., 2011).

As mentioned above, in contrast with the models by Krumholz and McKee
(2005), Padoan and Nordlund (2011), and Hennebelle and Chabrier (2011),
which considered stationary clouds, here we assume that the cloud is collap-
sing, keeping in mind that it is a sheet-like object and so its collapse proceeds
more slowly than that of a three-dimensional object of the same volume density
(Burkert and Hartmann, 2004; Pon et al., 2012; Toalá et al., 2012). In the
model, we numerically solve the free-fall motion of the sheet-like cloud.

As a consequence of its collapse, the mean density of the cloud increases with
time, causing the density PDF to systematically shift towards higher densities.
Thus, in our model (based on the notion of hierarchical gravitational collapse;
Vázquez-Semadeni et al., 2009), the global collapse of the cloud is represented
by the fact that the mean density of a cloud or clump increases over time, while
the local collapses of the densest regions are represented by the calculation of the
instantaneous SFR, performed by considering the mass above nSF and dividing
it by the free-fall time at this density. This treatment implies that the SFR
in the model is an increasing function of time, since the area under the PDF
at densities higher than nSF increases as the mean density increases. The total
mass in stars at time t in the model is thus given by

MS(t) =

∫ t

0

SFR(t′)dt′. (4.6)

1Note that this equation in Paper I contains a typographical error. The form written here
is the correct expression.
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From this stellar mass, the number of massive stars (with a representative mass
of 17 M�) is computed using a standard initial mass function (IMF; Kroupa,
2001), with lower and upper mass limits of 0.01 and 60 M�, respectively. In
turn, this allows us to compute the mass evaporation rate, ṀI(t), by these stars
using the prescription from Franco et al. (1994) for the evaporation rate induced
by a single massive star of age t̂ located near the cloud edge, given by

ṀI(t̂) � 2πR2
S,0mpcs,I〈n〉

(
1 +

5cs,It̂

2RS,0

)1/5

(4.7)

where cs,I is the sound speed in the ionized gas (= 12.8 km s−1), 〈n〉 is the
mean number density of the cloud, mp is the proton mass, and RS,0 is the
initial Strömgren radius in a medium of density 〈n〉. To calculate this radius,
as in Franco et al. (1994), we additionally assume a recombination coefficient for
the ionized gas αB = 2.6× 10−13 cm−3 s−1 and a representative value of the UV
Lyman-continuum photon flux S∗ = 2 × 1048 s−1, corresponding to our generic
massive star. Finally, to get the total ionized mass we integrate Equation (4.7)
over the lifetime of each massive star formed and add the contributions from
all active massive stars.

Figure 4.1: Left: time evolution of the radius for clouds with Mmax = 103, 104,
105, and 106M� (black, blue, green, and red lines, respectively). The vertical
dashed lines represent the time at which the cloud reaches its Jeans mass and
begins contracting, whereas the vertical thin dotted black line is the time at which
the accretion stops (at t = 25Myr). Right: time evolution of the density. The
line colors have the same meaning as in the left panel.

With the above ingredients, the instantaneous mass of the cloud is the result
of the competition between addition of fresh gas by accretion, the consumption
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by star formation, and the evaporation from the massive stars. Thus, the cloud
mass evolves according to

MC(t) =

∫ t

0

Ṁinf(t
′) dt′ −MS(t)−MI(t). (4.8)

We numerically integrate Equation (4.8), together with Equations (4.6) and
(4.7), to obtain the temporal evolution of a specific cloud, until it is finally
dispersed.

Figure 4.2: Time evolution of the dense gas mas (solid lines; Equation (4.8)),
and mass in stars (dotted lines) for clouds with Mmax = 103, 104, 105, and
106M� (black, blue, green, and red lines, respectively). The vertical dashed
lines represent the time, tSF, at which the cloud starts to form stars, whereas
the vertical thin dotted black line is the time at which the accretion stops (at
t = 25Myr).

As emphasized in Paper I, the main controlling parameter of this model is
the total mass involved in the process, which for fixed values of ρWNM and vinf
is controlled by the cylinder radius Rinf . In what follows, we thus choose the
required value of Rinf to obtain the reported maximum cloud mass, which is
the maximum mass reached by the cold, dense gas during the model’s evolution
and labeled Mmax. Since the numerical integration of the model takes only a
few seconds on a desktop computer, it allows us to sweep parameter space using
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hundreds of models of different masses, a task that cannot be undertaken with
full numerical simulations.

Figure 4.1 shows the evolution of the cloud radius and mean density for
representative clouds with Mmax = 103, 104, 105, and 106 M�. A number of
features are worth noticing. First, from the left panel of Figure 4.1, it is seen
that the radius of a cloud remains essentially constant over more than 10 Myr
of evolution, during which the cloud is accreting mass, until it reaches its Jeans
mass. Afterward, the cloud’s radius begins to decrease at an accelerated pace,
with its mean density increasing, as shown by the right panel of Figure 4.1.
It is noteworthy that this evolution implies that the material constituting an
initially medium-sized cloud of size ∼ 10 pc and mass a few thousand M�, such
as Perseus or Ophiuchus, should evolve into a massive-star-forming clump of
density ∼ 105–106cm−3 and sizes � 1 pc, such as the massive clumps studied
by Wu et al. (2010), as shown in Figure 7 of Paper I. It must be borne in mind,
however, that by the time the cloud has contracted to a massive clump, it is
embedded in the envelope that has been added to the cloud’s surroundings by
the WNM inflows.

Figure 4.2, in turn, shows the evolution of the dense gas mass and the stellar
mass for these models. It is seen that in all but the most massive model (the
one with Mmax = 106 M�), the cloud mass increases until the time when the
stellar ionizing feedback begins to rapidly erode the dense gas mass, causing it
to decrease again. The exception to this behavior is the model with Mmax =
106 M�, for which the dense gas mass stops increasing at t ∼ 10 Myr. This is
due to the fact that its mass is so large that the mass fraction at high density
in this cloud allows for the formation of massive stars and the corresponding
erosion even before the cloud has had time to contract significantly.1

In the next section, we discuss the evolution of the SFR and the SFE for
the models as parameterized by their mass.

4.4 Model Predictions

4.4.1 Mass Dependence of the Star Formation Rate

In this and the following sections, we consider a collection of models of various
masses, and focus on the variation of the maximum and time-averaged values
of the SFR and the SFE (see Section 4.4.2) as a function of Mmax. The time

1Recall that in the model, the clouds are assumed to have sheet-like geometry and that
their collapse is given by the expression corresponding to such geometry (Burkert and Hart-
mann, 2004), which is slower than the collapse for a spherical geometry (Pon et al., 2012;
Toalá et al., 2012).
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averages we consider cover the time span between the formation of 0.01M� (the
lower limit in the IMF considered) of stellar products and the destruction of the
cloud (see Figure 4.2). To simplify the discussion, we will refer to “low-mass
clouds” as those with Mmax � 104 M�; to “intermediate-mass” clouds as those
with maximum masses in the range of 104 − 105 M�; and to “massive clouds”
as those with Mmax � 105 M�.

It is important to note that, so far, we have referred to our models simply
as “clouds”. However, in this section, in which we try to predict characteristic
values of the SFR and SFE (characterized by their time averages) in molecular
clouds of different masses, it is important to define the time interval during
which the clouds can be considered as “molecular”, so that the time averages
are computed over this interval. Unfortunately, in our one-zone model without
chemistry, there is no direct way to determine this time. Thus, we instead take
the beginning of the averaging interval as the time at which the clouds begin to
form stars, tSF. We have verified that this is a reasonable proxy for determining
when the clouds begin to be sufficiently molecular by using the density PDF to
compute the mass fraction at densities n > 103cm−3—which can be reasonably
assumed to be already in molecular form—at the time SF starts, finding that
this mass fraction is ≥ 0.2 in all models. Thus, hereinafter we will refer to
clouds after tSF as “star-forming molecular clouds” (SF-MCs) and to clouds in
previous stages as “precursor” clouds.

In the left panel of Figure 4.3, we show the evolution of the SFR for clouds
of maximum masses Mmax = 103, 104, 105, and 106 M�. We observe that low-
mass SF-MCs have a very low SFR over most of their evolution and end their
evolution with a short SF burst. This can be understood because due to their
low mass, these clouds can only reach large SFRs when a substantial fraction
of their mass is involved in SF. This can only occur when their mean density
has become comparable to nSF, as shown in the right panel of Figure 4.1. At
this point, these clouds are quickly destroyed by the first massive stars. This
also means that the consumption of the gas in these clouds is mostly due to SF
rather than to evaporation by feedback from the massive stars.

On the other hand, intermediate- and high-mass SF-MCs increase their SFR
for the first ∼ 10 Myr and then reach a plateau, remaining there for roughly
10–20 Myr more. This is because due to their higher masses, they can have
larger SFRs since earlier times (even a small fraction of their mass corresponds
to a large enough mass involved in active SF). This implies that massive SF
starts earlier in these clouds. Nevertheless, due to their larger masses and
accretion rates, they are not completely destroyed, although these clouds do lose
some of their mass when the first massive stars appear. Moreover, this partial
mass dispersal causes a decrease in the SFR and therefore the cloud evolution
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reaches an approximately stationary SFR for a significant part of their lifetimes.
Thus, in these clouds, a larger fraction of the dense gas consumption is due to
evaporation, compared to the low-mass clouds. Note, however, that accretion
plays a fundamental role in this behavior since in experiments where we have
cut the accretion shortly after the onset of SF, the massive stars quickly destroy
the clouds.

In the right panel of Figure 4.3, we show the maximum and the time-
averaged values of the SFR as a function of Mmax. Note that each point in
this figure corresponds to a full integration of an individual model. We note
that for low-mass SF-MCs, the maximum SFR is much larger than its average
values because of the short but intense SF burst that characterizes the end of
the evolution of these clouds. Instead, for more massive SF-MCs, the peak and
the average SFR are similar due to the prolonged epoch of roughly constant SF
that occurs in these clouds. As a reasonable approximation, the time-averaged

Figure 4.3: Left: time evolution of the SFR for clouds with Mmax = 103, 104,
105, and 106M� (black, blue, green, and red lines, respectively). The vertical
dashed lines represent the time, tSF, at which the cloud starts to form stars,
whereas the vertical thin dotted black line is the time at which the accretion
stops (at t = 25Myr). Right: maximum and time-averaged SFR (asterisks and
plus symbols, respectively) as a function of the maximum mass achieved by each
model cloud. The averaging is performed over the period during which the clouds
form stars.

SFR can be fit by a power law of the cloud mass, given by

〈SFR〉 ≈ 100
(
1 +

Mmax

1.4× 105 M�

)1.68

M� Myr−1, (4.9)

which is shown as the dashed line in the right panel of Figure 4.3.
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4.4.2 Mass Dependence of the Star Formation Efficiency

We now turn to the mass dependence of the SFE. As in Paper I, we define the
instantaneous SFE as

SFE(t) =
MS(t)

MC(t) +MS(t) +MI(t)
, (4.10)

where all the quantities are time-dependent. The left panel of Figure 4.4 shows
the time evolution of the SFE for models with Mmax = 103, 104, 105, and
106 M�. From this figure, we see that in the low-mass SF-MCs, the final star
formation burst (see right panel in Figure 4.3) produces large final efficiencies
(�60%), although this is not in contradiction with observations, as it is not
possible to observationally determine the SFE of a cloud/cluster system after
the gas has been dispersed. On the other hand, for the more massive SF-MCs,
the SFE reaches a saturated value of ∼ 6%. The SFE can saturate due to
the interplay between the gas evaporation by the feedback and the accretion of
fresh gas, so that the masses of the cloud and of the stellar component increase
simultaneously, keeping the instantaneous SFE approximately constant.

The right panel of Figure 4.4 shows the final and time-averaged efficiencies
for the SF-MCs as a function of their masses. As in the right panel of Figure
4.3, each point in this plot represents the full temporal integration of one model
with a given radius Rinf , which reaches the maximum dense gas mass indicated
by its horizontal coordinate. From this figure, we see that although the final
instantaneous SFEs of the low mass clouds are much higher than those of the
high-mass ones, the time-averaged values of the SFE increase monotonically
with Mmax. The time-averaged SFE should be representative of the result of
observing a MC ensemble of random ages and thus represent the average value
of the SFE observed for MCs of the indicated mass. We see that 〈SFE〉 is well
fit by a power law of the form

〈SFE〉 ≈ 0.03
( Mmax

2.5× 105 M�

)0.33

, (4.11)

so that we obtain time-averaged SFEs in the range of 0.5−6% for the range
of maximum cloud masses shown in Figure 4.4, consistent with observational
determinations for GMCs in general (see, e.g., the compilation by Federrath and
Klessen, 2013). Thus, our model predicts that the time-averaged SFE should
increase with the cloud mass, albeit slowly, with a scatter that might correspond
not only to observational errors, but also to the variation of the SFE over the
evolution of the clouds.

The exponent in Equation (4.11) is close to the value predicted analytically
by Fall et al. (2010) of 0.25 for the case of feedback dominated by ionization
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Figure 4.4: Left: time evolution of the SFE for clouds with Mmax = 103, 104,
105, and 106M�. The symbolism is the same as in Figure 4.3. Right: maximum
and mean SFEs as a function of the maximum cloud mass.

heating. The difference may be due to the fact that those authors considered
stationary energy (or momentum, for the case of momentum-dominated feed-
back) balance, while here we take the additional step of considering the time
evolution of the feedback and/or to the different assumed geometries (flat in
our case).

4.4.3 Star Formation Rate-Dense Gas Mass Correlation

In Paper I we showed that the evolution of our model clouds with maximum
dense gas masses Mmax ∼ 2000 M�, when plotted in the Kennicutt-Schmidt
(KS) diagram, took them from the locus of clouds forming low-mass stars such
as Perseus, Lupus, Serpens, and Ophiuchus (Evans et al., 2009) to that of clouds
forming massive stars, such as the Orion A cloud and the clumps investigated by
Heiderman et al. (2010). We now investigate whether, collectively, our clouds
conform to observed star formation correlations found for averages over large
volumes. This is important because those correlations are often interpreted as
the result of a sustained low value of the SFE due to global turbulent support
of the clouds (e.g., Krumholz et al., 2009; Krumholz et al., 2012), while our
model clouds are in global collapse, and their SFR and SFE are not constant
but rather time-dependent. In this case, one can ask whether the time-averaged
(over their star-forming epoch) SFR and SFE of our model clouds are consistent
with the observed SF correlations.

One important such correlation is the one found by Gao and Solomon (2004,
hereafter GS04) who, in a sample of luminous and ultraluminous infrared galax-
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ies as well as of normal spirals, found a linear relationship between the IR lu-
minosity (a tracer of the SFR) and the HCN luminosity (a tracer of the dense
[n ≥ ndens = 3× 104 cm−3] gas mass), implying that

SFR ≈ 180

(
Mdens

104 M�

)
M� Myr−1, (4.12)

which is a linear relationship between the SFR and Mdens, the mass at density
≥ ndens (Figure 4.5). On MC scales, Lada et al. (2010, hereafter LLA10) found
a similar linear relationship (SFR ∝ Mdens) for a sample of nearby MCs (see
Figure 4.5), measuring the gas mass at densities above n ≥ ndens = 104 cm−3

from extinction maps and estimating the SFR by counting young stellar objects
(YSOs) and dividing by a typical age spread, Δt ∼ 2 Myr. These authors also
found that the SFEs of their cloud sample fall in the range of 0.1%−-4%.

We wish to compare our model’s predictions to these results. To do so, at the
individual cloud level, we attempt to replicate the procedure of LLA10. Note
that according to our model, both the SFR and the SFE of a cloud increase over
time and thus the range of efficiencies observed in LLA10’s sample is interpreted
as a spread in evolutionary stages. In turn, this implies that the corresponding
SFRs should also correspond to a range of evolutionary stages. Thus, for each
model cloud, we should consider the range of SFRs that it may have over this
range of evolutionary stages for comparison with the observations. However,
we have the problem that the evolutionary stage of the clouds considered by
LLA10 is not known. To circumvent this problem, we make use of the fact
that our model predicts both the SFR and the SFE of the clouds as a function
of time. These quantities are different from each other, because the SFR is a
truly instantaneous quantity, while the SFE involves the integral of both the
stellar and gaseous mass accretion rates (see Equation (4.10)). Thus, we can
use the instantaneous SFE of a cloud as a proxy for its evolutionary stage and
then compute the corresponding SFR predicted by the model at that stage to
compare with the observationally inferred SFRs.

Note in addition that the SFR estimates by LLA10 are not strictly instanta-
neous values but rather averages over the age spread Δt. We thus also estimate
the SFR not through the instantaneous SFR predicted by the model, but as the
number of stars of age < 2 Myr, divided by this time interval, and compute this
estimate at two different times, one labeled t1, when the clouds’ SFE is 0.1%
and the other labeled t2, when the clouds’ SFE is 4%, consistent with the range
of SFEs exhibited by the LLA10 sample. Thus, for each model cloud we report
a range of SFRs. Similarly, the instantaneous mass of the model clouds varies
between these two times, and therefore we also report a range of masses for
each model cloud. We do this for model clouds with maximum masses in the
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same mass range—recall the model clouds are labeled by the maximum mass
they reach during their evolution—as the clouds in their sample.

Figure 4.5: SFR as a function of dense gas mass (Mdens = M(n ≥ ndens), with
ndens = 104 cm−3) for low- to intermediate-mass model clouds (open circles with
error bars; see the text). In the lower left corner, corresponding to individual
cloud masses, the filled stars correspond to data from Evans et al. (2009), while
the filled circles correspond to the cloud sample studied by LLA10, with the red
solid line denoting the mean fit reported by those authors and its dispersion re-
presented by the red dotted lines. In the upper right corner, corresponding to
galactic masses, the solid black line shows the scaling found by GS04 (Equation
(4.12), with ndens = 3 × 104 cm−3), the black dotted lines showing the scatter
of their observational sample. The filled red square shows the position of the
modeled Milky Way given by Equation (4.14). Finally, the filled black diamonds
represent Monte Carlo realizations of cloud ensembles taken at random evolu-
tionary stages (in the SF-MC stage), with the red filled diamond giving the
average value of these experiments.

In Figure 4.5 we show, in the lower left corner, the range of SFRs computed
as described above versus the range of dense gas mass (i.e., at densities n >
ndens = 104 cm−3) for our model clouds (open circles with error bars) and for
the cloud sample studied by LLA10 (filled black circles) and by Evans et al.,
2009 (filled black stars).1 The ranges of SFR and Mdens between t1 and t2 for

1LLA10 report the dense gas mass, and we take the number directly from them. However,
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the model clouds are indicated by the error bars, while the open circles are the
mean of these quantities between these two times. It is seen that the slope of
the ensemble of models is nearly unity, similarly to the fit by LLA10, and that
the locus of the means falls within the scatter reported by those authors.

As a further test of the model, we can estimate the total Galactic SFR it
predicts by convolving the time-averaged SFR for each cloud mass,

〈
SFR

〉
(M),

with a suitable cloud mass spectrum. This can be then compared with the
average relation derived by GS04 for external galaxies.

We use the Galactic cloud mass spectrum derived by Williams and McKee
(1997), given by

dNC = N0

(
MU

M

)α

d(lnM), (4.13)

where dNC is the number of MCs with masses in the range M to M + dM ,
N0 = 63, α = 0.6 and MU = 106 M� is the maximum assumed mass of GMCs
in the Galaxy (see also McKee and Ostriker, 2007). The total Galactic SFR is
then given by

SFRtot =

∫ MU

0

〈SFR〉(M)dNC (4.14)

This exercise gives a global Galactic SFR of 14 M� yr−1, within a factor of five
from recent observational estimates (e.g., Chomiuk and Povich, 2011). Also, we
can compute the total dense mass above ndens as

Mtot(n > ndens) =

∫ MU

0

〈M(n > ndens)〉(M)dNC, (4.15)

where M(n > ndens) is given by Equations (4.4) and (4.5), replacing nSF by
ndens. We find Mtot(n > ndens) = 1.3× 108 M�. The red filled square near the
upper-right corner of Figure 4.5 shows the resulting “model galaxy”, based on
our model’s predicted 〈SFR〉, which is seen to be larger than the mean scaling
by GS04 by a factor ∼ 5. The discrepancy is probably due to the strong SF
bursts predicted by our model for low-mass clouds, in which ∼ 40% of the total
SFR takes place, according to the mass spectrum.

A perhaps more precise comparison is provided by a Monte Carlo integration,
taking the SFR and the corresponding mass at random times for each SF-MC,
and integrating again according to the mass spectrum. In the upper right corner

Evans et al., 2009 only report total masses and hence we estimate Mdens for their cloud
sample using the same procedure as for our model clouds; that is, we assume a lognormal
PDF centered at the mean density of the clouds reported by those authors and with width
corresponding to a Mach number of three.
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of Figure 4.5 (filled black diamonds), we also show a hundred of these experi-
ments, obtaining average values of 9 M� yr−1 and Mdens = 1.1 × 108 M� for
the total SFR and dense mass gas (filled red diamond), respectively. Roughly a
third of the points generated in this way are seen to fall within the uncertainties
of the GS04 relation. Nevertheless, the set of points always falls above the mean
GS04 relation, and so the model does seem to overestimate the Galactic SFR
by a factor of three to five. We discuss this further in Section 4.5.2.

4.5 Discussion and limitations

4.5.1 Implications and Insights

One important prediction of our model is that GMCs evolve in such a way that
a moderate-size MC eventually becomes a dense, massive-star-forming clump
over the course of ∼ 10 Myr. We now discuss how this process fits into our
established knowledge about MCs.

4.5.1.1 Large- and Small-scale Collapse

The first point to emphasize is that the model is designed to account for both the
collapse of small-scale clumps and cores and the collapse of the cloud as a whole.
This is in line with the notion advanced by Vázquez-Semadeni et al. (2009) that
gravitational collapse in MCs is hierarchical so that small-scale, local collapses
occur within the environment of a cloud that is also undergoing collapse as a
whole (a large-scale collapse). The small-scale collapse is described in the “stan-
dard” way (e.g., Krumholz and McKee, 2005; Hennebelle and Chabrier, 2011;
Padoan and Nordlund, 2011), by assuming that the cloud contains a distribu-
tion of density fluctuations, the densest of which are undergoing instantaneous
collapse, and therefore being responsible for the instantaneous SFR of the cloud.
This amounts for what is normally referred to as the fragmentation of the cloud.

The large-scale collapse, on the other hand, is accounted for by directly
computing the contraction rate of the whole cloud based on its average density
and corresponding free-fall time. This contrasts with the models cited above,
which assume roughly stationary conditions in the clouds and therefore cannot
account for any evolutionary features of the clouds. In our model, the whole
evolutionary nature of the process derives from the fact that the cloud is con-
tracting as a whole.

77



4.5 Discussion and limitations

4.5.1.2 Velocity Gradients: Rotation or Infall?

A widespread notion is that MCs rotate and that such rotation would prevent
their contraction to clump scales. Indeed, velocity gradients are ubiquitously
observed in MCs (e.g., Pound and Goodman, 1997; Brunt, 2003; Rosolowsky
et al., 2003; Brunt et al., 2009) as well as in dense cores within them (e.g.,
Goodman et al., 1993; Kirk et al., 2010, see also the review by Belloche, 2013).
However, as stated above, some form of contraction must occur in order to form
a massive, dense clump.

Although the velocity gradients are almost always interpreted as rotation,
it is important to remark that there is no a priori reason to do this, and in
fact, Brunt (2003) points out that the Principal Component Analysis of the ve-
locity structure in MCs is inconsistent with the signature of rotation in model
clouds. On the other hand, Vázquez-Semadeni et al. (2008) showed that over-
dense regions in simulations of driven isothermal turbulence exhibit on average
a negative velocity divergence (i.e., a velocity convergence) whose magnitude
is within the range of velocity gradients reported by Goodman et al. (1993)
in cores of similar sizes, suggesting again that a significant component of the
observed gradients may actually consist of inflow motions rather than rotation.
Similar conclusions were obtained by Csengeri et al. (2011) for massive dense
cores in Cygnus-X, where they concluded that infall as well as rotation may be
present.

Finally, it should also be noticed that in general, these infalling motions
are not expected to be spherically symmetrical, as MCs are observed to consist
mostly of filamentary structures (e.g., Myers, 2009; André et al., 2010; Molinari
et al., 2010; Kirk et al., 2013), and therefore the classical infall signature (e.g.,
Evans, 1999, Section 4.7) should not be expected in molecular line observations
of objects at these scales, so the failure to detect them does not rule out the
possibility that the velocity gradients observed across clouds correspond in fact
to collapsing motions.

4.5.1.3 Delayed and Extended Star Formation Activity

Another prediction from the model is that the evolution of the clouds includes
a period of time (see left panel of Figure 4.3) with no significant SF (i.e., as
precursor clouds) and, once star formation starts, they are expected to spend
several more Myr at low SFRs. Interestingly, the low-mass clouds spend longer
times in these states than the high-mass ones. For example, it can be seen in
Figure 4.3 that a cloud with Mmax = 103M� takes ∼ 20Myr to start forming
stars and after that, it spends ∼ 8 Myr with very low SFR. This is because the
low-mass clouds need to contract by a large factor to reach a large enough mean
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density that the mass above the threshold density nSF causes a significant SFR.
Instead, the high-mass clouds begin to do so at earlier times, when their mean
density is still relatively low, because even a small fraction of their mass above
nSF involves sufficient mass for the SFR to already be significant.

However, this prediction might appear contradictory with the notion that
MCs form stars rapidly after their formation (Hartmann et al., 2001). What
must be borne in mind here is that the model follows the evolution of the
clouds from their earliest, cold-atomic stage, which is effectively the precursor
of a GMC (Vázquez-Semadeni et al., 2006). Clouds formed by colliding WNM
streams are expected to build up their molecular content over relatively long
timescales (e.g., Franco and Cox, 1986; Hartmann et al., 2001; Heitsch and
Hartmann, 2008; Micic et al., 2013) and should only become mostly molecular
by the time when they have become strongly gravitationally bound. In the
context of our model, then, the zero- or low-SFR epochs correspond to times
when the cloud is still atomic-dominated, consisting of a collection of moderate-
mass, slowly star-forming molecular clumps, immersed in an atomic substrate.
The high-SFR stages occur when the cloud is already in a mostly molecular
state, in agreement with the notion that MCs form stars rapidly, within a
few Myr from their formation. The subtle additional consideration is that the
clouds have much longer time spans, but they are mostly non-molecula druring
most of that time and they are forming stars at very low rates. We estimate the
molecular fraction of the clouds’ mass as a function of time for the sample clouds
of masses 103 to 106 M�, and in all cases, by the time SF starts, 20% or more
of the mass is “molecular” (gas with number density greater than 103 cm−3).

We emphasize that this result is consistent with the fact that embedded
clusters generally contain a small fraction of older stars, although the majority
of their stars is young (Palla and Stahler, 1999; Palla and Stahler, 2000). In-
deed, in Paper I, we showed that the model correctly recovers the typical age
distributions found in those clusters. Also in this regard, it should be noted
that the above discussion implies that the gravitational contraction is likely
to start in the mostly atomic stage. This is consistent with numerical simu-
lations of cloud formation that also follow the atomic and molecular fractions,
which suggest that molecules actually form during the gravitational contraction
(Heitsch and Hartmann, 2008) and with the result by Glover and Clark (2012)
that molecules are in fact not necessary for producing the cooling needed for
gravitational collapse.

Finally, an important point is worth clarifying. The prediction that massive
GMCs, with 105 – 106M�, have extended periods of star formation lasting 20
Myr or more may seem to be in conflict with observations of nearby clouds
like Orion and “dispersed” regions, such as Sco-Cen, as it is generally accepted
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that cloud dispersal by the recently-formed stars occurs rapidly, within a few
Myr. However, this quick dispersal refers essentially to the immediate gaseous
environs of a newly formed cluster only, as it is also known that SF occurs only
over a small fraction of a cloud’s volume (e.g., Kirk et al., 2006), while the
destruction of a large GMC may easily take over 10 Myr. For example, in the
Sco-Cen region, the three main subgroups, Upper Scorpius, Upper Centaurus-
Lupus, and Lower centaurus-Crux, have ages that differ by more than 10 Myr,
and it has been suggested that the latest events might have been triggered by
the earlier ones (e.g., Preibisch and Mamajek, 2008). Thus, SF in the parent
GMC might have been going on for at least that amount of time, suggesting that
the lifetime predicted by our model for massive clouds is reasonable. In the case
of this complex, however, the dispersal has probably been completed already
as the clusters there are already devoid of gas. However, the SF episode must
have lasted at least the length of time spanned by the age difference between
the clusters.

On the other hand, Kawamura et al. (2009) have suggested that GMCs with
masses ∼ 105–106M� in the LMC may have lifetimes of ∼ 25 Myr, with three
well-defined stages in terms of their SF activity. In Paper I, we showed that our
model for clouds of those masses matches within a factor of two the duration of
the individual stages, while the left panel of Figure 4.3 here shows that indeed
this is the time span of the star-forming stages of such clouds.

Thus, we conclude that the cloud evolution predicted by the model is in
very good agreement with many known properties and evolutionary features of
MCs.

4.5.2 Limitations

Our SFR model is clearly an extreme idealization of the actual process occurring
in MCs, as it only considers the effects of self-gravity and photoionization on
the evolution of the clouds. In particular, it neglects any support from magnetic
fields, which are known to retard the gravitational collapse in comparison with
the non-magnetic case (e.g., Ostriker et al., 1999), the momentum injection by
the ionizing stellar feedback and by stellar outflows, and the additional feedback
from supernovae and radiation pressure from the most massive stars. Since all
of these processes tend to either counteract the collapse or to destroy the clouds
more rapidly, it is clear that the SFR and SFE predicted by the model are upper
limits to those in real clouds.

Nevertheless, it is all the more interesting that within these important li-
mitations, our model in general predicts values of the SFR and the SFE, as
well as evolutionary features of the clouds (Paper I), that generally agree well
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with the corresponding observational measurements, with the largest deviations
occurring when the time-averaged values of the SFR for all cloud masses are
added to construct a Galaxy-wide SFR. Better agreement is obtained for the
Galaxy-wide SFR when a set of Monte-Carlo realizations is considered, using
values of the instantaneous SFR at random times for each cloud mass. This
suggests that the final SFR burst predicted by the model for low-mass clouds
may be overestimated, and indeed, the time-averaged SFR predicted for these
clouds exhibits a bump at low-to-intermediate cloud masses (see Figure 4.3).
This suggests that, especially for these clouds, the effects of magnetic fields
and outflows may be most important. Nevertheless, the general better-than-
order-of-magnitude agreement of the model with the observations suggests that
self-gravity and photoionizing radiation, the processes considered by the model,
are among the dominant processes controlling the evolution of the clouds and
their star formation activity, with the other processes providing second-order
corrections only.

On the other hand, possibly the most questionable ingredient of our model
is the assumption that the density PDF remains log-normal during the entire
evolution of the clouds, an assumption that appears in conflict with the well-
known result, from both observations and numerical simulations, that star-
forming clouds develop a power-law high-density tail in their column density
distributions (e.g., Kainulainen et al., 2009; Ballesteros-Paredes et al., 2011b;
Kritsuk et al., 2011; Girichidis et al., 2014). However, in Paper I, we argued
that turbulence alone produces a log-normal, which is the seed of subsequent
gravitational collapse, and that the power-law tail is a result of this contraction.
Thus, the mass in this regime perhaps should not be counted as a seed for
subsequent collapse since it is already undergoing collapse. In any case, to
minimize the impact of this assumption, in Paper I, we calibrated the value
of the nSF by matching the predictions of the model to the output of the self-
consistent numerical simulations of Vázquez-Semadeni et al. (2010). The a
posteriori confirmation of this procedure is that, using the log-normal, the model
was able to match a variety of observations.

Another important point to recall is that the model assumes clouds with a
flattened geometry, for which the collapse timescale is significantly longer than
for a spherical geometry, typically by factors of half to one order of magnitude,
than the standard free-fall time (Pon et al., 2012; Toalá et al., 2012). However,
this is probably a reasonable assumption since most clouds are known to consist
of flattened or filamentary structures (e.g., Bally et al., 1989). This suggests that
another important factor determining the SFR is the non-spherical geometry of
MCs.
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4.6 Summary and Conclusions

In this paper, we have presented the predictions for the dependence of the time-
averaged SFR and SFE on the mass of the parent cloud from our semi-analytical
model for the evolution of these quantities in gravitationally collapsing clouds,
introduced in Paper I. The model assumes that the cloud forms by the collision
of two streams in the WNM, which induces a transition to the cold phase,
forming a cold cloud that becomes turbulent due to various instabilities (Heitsch
et al., 2005; Heitsch et al., 2006; Vázquez-Semadeni et al., 2006). Soon this
turbulent cloud begins to undergo global gravitational collapse. The collapse is
hierarchical because the turbulence in the cloud produces density fluctuations
that have shorter free-fall times than the cloud as a whole, and then form
stars before the collapse of the largest scales is completed. The fraction of the
cloud’s mass involved in instantaneous SF is determined by assuming that the
density PDF in the cloud is log-normal and that only the mass above a certain
critical density, nSF, is instantaneously forming stars. As the cloud collapses,
its mean density increases so that the PDF shifts to higher densities, causing
the instantaneous SFR to systematically increase in time.

The total amount of gas converted into stars is distributed among stellar
masses according to a standard IMF. The most massive stars produce ionizing
radiation, which evaporates parts of the cloud through HII regions. While all
this is happening, the cloud continues to accrete material from the converging
flows. Thus, the evolution of the cloud is regulated by the competition between
addition of fresh material by the accretion and the gas consumption by the SF
itself as well as by the evaporation by the ionizing radiation from the massive
stars. The model neglects the magnetic field and any injection of momentum
by the stellar feedback.

In Paper I, we found that the total mass involved in the process is the
main free parameter controlling the evolution of the clouds and their SFR.
We quantify this parameter by the maximum dense gas mass reached by the
clouds, Mmax(n ≥ 100 cm−3). In the present contribution, we have considered
the evolution, the final values, and the time averages over the star-forming
epochs of the model clouds, of the SFR and SFE predicted by the model, as
a function of the maximum dense gas mass attained by the model clouds. We
have found that low-to-intermediate-mass model clouds (M � 104 M�) spend
their early and intermediate evolutionary stages forming stars at low rates while
a strong star formation burst is produced during their final, dense stages (when
they appear as a massive clump within a larger cloud), at which time massive
stars appear and quickly destroy the cloud. Therefore, these clouds have a low
time-averaged SFR (〈SFR〉) but a high final SFR. Instead, in massive clouds
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(M � 105 M�), massive stars appear from early in their evolution, and thus
the ionizing feedback regulates the SFR almost from the beginning. This leads
to a final SFR comparable with the average. We provided fits to the mass
dependence of the time-averaged SFR and SFE, given by Equations (4.9) and
(4.11).

We then proceeded to investigate the relation between the SFR and the dense
cloud mass, Mdens, for our model clouds, mimicking the procedure followed by
LLA10. These authors estimated the SFR as the mass in YSOs (in our case,
stars younger than 2 Myr) divided by this time interval. Since the clouds studied
by LLA10 span a wide range in SFEs, we considered our model clouds in the
time interval during which they span the same SFE range. We found that the
mean values of the SFR and the clouds’ mass during this time interval fall
within the error bars of the mean relation reported by LLA10.

We also estimated the total Galactic SFR predicted by our model, by con-
volving the SFR (in average or taken it at a random time after the onset of
star formation) for each cloud mass with the Galactic cloud mass spectrum by
Williams and McKee (1997). The average of a hundred of these random real-
izations is within half an order of magnitude from the observed Galactic SFR,
and from the scaling relation found by GS04 for the global SFR versus galaxy
mass of a sample of external galaxies.

With respect to the SFE, we find that for low-mass clouds, in the final
star formation burst, the efficiency reaches final values ∼ 60%, although these
values are not in conflict with observations because they correspond to the stage
when no dense gas mass is left around a cluster, at which point it is almost
impossible to observationally know the initial amount of gas mass that went
into the formation of the cluster. The time-averaged SFE, on the other hand, is
∼1%, consistent with observational determinations performed on clusters still
embedded in their parent clouds (e.g., Evans et al., 2009). For massive clouds,
the SFE reaches values up to 6% (but with averages �5%), consistent with the
upper limits of SFE (∼ 10%) determined in Federrath and Klessen (2013).

We next discussed several implications of the model in the context of well
established notions about MCs and their SF activity, arguing that although
some of the model predictions and implications may seem to be in conflict with
those notions, upon closer examination no conflict exists and instead the model
offers a new insight about the evolution of MCs.

As pointed out in Section 4.5, the fact that our extremely idealized model, in
which only self-gravity and ionizing feedback control the evolution of the SFR in
the clouds, fits the observations typically within factors of a few, suggests that
these may be the dominant controlling processes, with other processes such as
magnetic support and momentum injection from massive-star winds probably
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providing mainly second-order adjustments.
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Numerical simulations: Effect of
ionizing feedback in magnetized,
collapsing Molecular Clouds

5.1 Abstract

We present radiation-magnetohydrodynamic simulations aimed at studying the
effect of ionizing radiation from massive stars on the star formation rate (SFR)
and efficiency (SFE) in turbulent, magnetized, and collapsing molecular clouds
(MCs) formed by converging flows. We evolve the simulations during the time
window before the first supernovae are expected to explode. The modeled MCs
are of intermediate mass, with a maximum mass Mmax ∼ 3 × 104 M�. Our
main findings are: (1) Dense gas with n � 104 cm−3 only appears once the cloud
starts to collapse globally and only ∼ 1.5Myr before the onset of star formation.
(2) The SFR increases over time and when massive stars appear, it gradually
decreases by about one order of magnitude and remains approximately constant
at ∼ 3 × 10−4 M�yr−1. The SFE is � 10%. These values are consistent with
observations and previous theoretical works. (3) Comparing the simulation with
feedback to the one without, the dense gas mass, Mdens = M(n > 100 cm−3),
does not change significantly and, although the number of sink particles is
similar in both simulations, the total sink mass is significantly lower (by a factor
of up to 4). (4) We reproduce the morphological characteristics observed in HII
regions (champagne flows, elephant trunks, shadows, parsec-scale bow shocks,
and isolated globules). (5) Ionizing radiation eventually stops the accretion
(through filaments) toward the massive star-forming regions. The new over-
pressured HII regions push away the dense gas, thus disrupting the more massive
collapse centres. Our results provide additional support to the scenario of MCs
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in global collapse, in which the SFR and SFE are regulated mainly by the
feedback from massive stars, which interrupts local SF events, rather than by
near-equilibrium conditions in the clouds.

5.2 Introduction

Massive stars play a key role in the evolution of galaxies. Through a combination
of massive outflows, expanding HII regions, and supernova events, they shape
and provide an important input of energy into the interstellar medium (ISM;
e.g.˜ Mac Low and Klessen, 2004). In particular, they have a significant effect on
their birthplaces through ionizing radiation and expanding HII regions, as well
as supernova explosions, eroding and dispersing their parent molecular cloud
(MC), directly affecting the star formation activity within the clouds (see, e.g.,
Vázquez-Semadeni, 2011; Krumholz et al., 2014b, for recent reviews).

It is well known that the negative feedback1 through blister-type HII regions
(or champagne flows) is efficient in eroding and dispersing MCs on timescales
of few tens of Myr (Blitz and Shu, 1980; Matzner, 2002). Idealized analytical
(e.g., Whitworth, 1979; Franco et al., 1994, see also Section 2.6.4) and numer-
ical (e.g. Bodenheimer et al., 1979; Tenorio-Tagle, 1979) works have shown
that blister HII regions are also able to reduce the SFE of GMCs to the low
observed values of � 10% (e.g., Myers et al., 1986). However, recent radiation-
magnetohydrodynamic (RMHD) simulations by Gendelev and Krumholz (2012)
suggest that this eroding mechanism is not so efficient as previously thought
when magnetic fields are present. Nevertheless, all these simplified models with-
out self-gravity, with plane-parallel geometry and uniform density fields are far
from the complex morphology and dynamics observed in MCs (see, e.g.,˜ André
et al., 2013, for a recent review). Furthermore, the dynamics (free-fall motions
or accretion) and the high-density environment of the birthplaces of massive
stars could strongly attenuate the disruptive effect of the massive stars (Yorke
et al., 1989; Dale et al., 2005; Peters et al., 2010). In this direction, there is grow-
ing evidence that MCs are in global collapse (see, e.g., Hartmann et al., 2001;
Burkert and Hartmann, 2004; Hartmann and Burkert, 2007; Peretto et al., 2007;
Vázquez-Semadeni et al., 2007; Galván-Madrid et al., 2009; Vázquez-Semadeni
et al., 2009; Schneider et al., 2010; Csengeri et al., 2011; Zamora-Avilés et al.,
2012; Peretto et al., 2014; Zamora-Avilés and Vázquez-Semadeni, 2014, see

1I.e., the suppression of star formation by erosion of the dense regions where massive stars
form. We also will refer to positive feedback as the promotion of star formation by expanding
HII regions, in the classical collect and collapse scenario (Elmegreen and Lada, 1977).
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also Sections 1.4 and 3.2), so henceforth we will focus in this scenario of MCs
without turbulent support and thus prone to a global gravitational collapse.

Simulations by Dale et al. (2005) of cluster formation in highly-structured
MCs (spherical, with decaying turbulence, so that they are not supported
against gravity) show that accretion of highly anisotropic dense gas onto ion-
izing sources strongly limits the effect of ionizing feedback. These authors also
find evidence of both positive and negative feedback, with SFEs around 10%.
In a parameter study with the same setup of Dale et al. (2005), Dale et al.
(2012) studied clouds with masses in the range 104 − 106 M�, finding that the
effect of the ionizing feedback depends strongly on the cloud escape velocities,
i.e., on their masses and sizes. It is very efficient in clouds with escape velocity
� 10 km s−1, but becomes inefficient in extended and massive clouds, for which
the escape velocity is greater than this value (see also Dale and Bonnell, 2011).

On the other hand, in a series of papers, Vázquez-Semadeni et al. (2010) and
Coĺın et al. (2013) have presented simulations of clouds formed by colliding flows
in the warm neutral medium (WNM). They investigate the competition between
the ionizing feedback and the accretion of fresh material onto the clouds, and
their effect on both the SFR and SFE within. They find that feedback generally
reduces the star formation efficiency to values lower than 10%, although the
effect is weaker for more massive clouds, in partial agreement with Dale et
al. (2012). However, these authors did not take into account the magnetic
field. With the same setup, including magnetic fields but ignoring radiation
feedback, Vázquez-Semadeni et al. (2011) found that an increase in the initially
uniform magnetic field from 2 to 4μG (corresponding to initially magnetically
supercritical and subcritical clouds, respectively) causes a delay in the onset of
star formation (by several Myr) and a decrease in the SFE (by more than one
order of magnitude) (see also Banerjee et al., 2009; Federrath and Klessen,
2012; Federrath and Klessen, 2013). Finally, the geometry of the clouds formed
by the collision of WNM streams is far from the spherical setups used by Dale
and coworkers, and is closer to being sheet-like.

Zamora-Avilés et al. (2012) presented a semi-analytical model trying to cap-
ture the phenomenology of the simulations of MCs formed by converging flows
(see also Zamora-Avilés and Vázquez-Semadeni, 2014). These authors find that
ionizing feedback is able to reduce the SFE to within half an order of magnitude
of the observed values in real MCs (e.g., Myers et al., 1986; Lada and Lada,
2003)

In order to complement the works mentioned in the previous two paragraphs,
we present in this contribution RMHD simulations at scale of MCs with realistic
properties. We pay special attention on the effect of the ionizing feedback
(treated self-consistently; see Rijkhorst et al., 2006; Peters et al., 2010) and
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magnetic fields in the evolution of both SFR and SFE. For this, we organize
this paper as follows. In Section 5.3, we describe the numerical model. In
Section 5.4 we present our results, which are then discussed in Section 5.5.
Finally, the summary and conclusions are presented in 5.6.

5.3 The numerical model

We use the Eulerian adaptive mesh refinement (AMR) FLASH2.5 code (Fryxell
et al., 2000) to perform three-dimensional, self gravitating, RMHD simulations,
including heating and cooling processes. We use an ideal MHD treatment since
the diffusive processes such as ambipolar diffusion (AD) at the simulated scales
are of the order of numerical noise, and their effect on the results are negligi-
ble (Vázquez-Semadeni et al., 2011). The ideal MHD equations, presented in
Section 2.8, are solved using the MHD 3-wave Bouchout solver, which preserves
positive states for density and internal energy (Bouchut et al., 2007; Waagan,
2009; Bouchut et al., 2010; Waagan et al., 2011). This solver is suitable for
highly supersonic astrophysical problems, such as those studied here.

In addition, we use the radiation scheme introduced by Rijkhorst et al.
(2006) and improved by Peters et al. (2010). This implementation has success-
fully passed several tests. It accurately calculates column densities, adequately
traces shadows, and is well coupled with hydrodynamics in 3D simulations of
photo evaporating clumps (Rijkhorst et al., 2006). Furthermore, it accurately
follows the velocity propagation for R-type (in a cosmological context; Iliev et
al., 2006) and D-type (corresponding to the analytical Spitzer solution; Peters
et al., 2010) ionization fronts.

5.3.1 Sink particles and refinement criterion

The Truelove criterion (Truelove et al., 1997) gives a constraint on the spatial
resolution in order to prevent spurious fragmentation in AMR simulations of
gravitational collapse. This criterion, which states that artificial fragmentation
can be avoided if the Jeans length (Equation (2.17)) is resolved with at least four
grid cells (i.e. λJ(ρ)/Δx � 4), is normally used as a for adjusting the resolution
and for sink particle formation (see, e.g., Federrath et al., 2010a).Sink particles
are used to represent collapsed objects. However, we have found that the sink-
particle mass distribution obtained using the Jeans criterion depends on the
resolution, thus affecting the stellar population and, through the feedback, the
entire evolution of the MCs. Indeed, because the masses of the sink particles
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start out as a fixed fraction of the mass of the grid cell in which the sink forms,
they become smaller at higher resolutions, implying a weaker feedback.

To avoid this problem, we have implemented a constant-mass criterion as
follows. We start with a uniform base grid with initial cell size Δx0 and initial
cell density ρ0, and therefore each cell initially contains a mass given by

m0 = ρ0Δx3
0. (5.1)

We then refine the cell size by a factor of 2 if the density increases by a factor
of 8, so that the density scales with grid cell size as ρ ∝ Δx−3 and so the mass
of the new level of refined cells is the same as that of the previous level when it
was created.

Once the maximum refinement level is reached in a given cell, no further
refinement is performed and a sink particle can be formed when the density in
this cell exceeds a threshold density, ρthr. The sink is formed with the excess
mass within the cell, that is, MSink = (ρ − ρthr)Δx3. The sink particles can
then accrete mass (with ρ > ρthr) from their surroundings (within an accretion
radius of ∼ 2.5Δx), increasing their mass (Federrath et al., 2010a).

5.3.2 Subgrid Star Formation prescription

Given the size of our numerical box and the maximum resolution we can achieve,
the sink particles rapidly reach hundreds of solar masses via accretion, and
therefore we must not treat them as single stars but rather as groups of stars.
Thus, we assume a standard initial mass function (IMF) and we estimate the
most massive star that the sink can host, which dominates its UV flux. The
sink radiates according this flux. We use a Kroupa (2001)-type IMF, which
reads

χ(m) ∝ m−αi , (5.2)

where α is a piecewise constant, and dN = χ(m)dm is the number of single
stars in the mass interval m to m+ dm. We normalize this IMF as∫ Mup

0.01M�
mχ(m)dm = MSink, (5.3)

where Msink represents the individual mass of the sink particles. Additionally,
Mup is the maximum mass that a star could reach, which is the minimum of
60M� and MSink. The lower limit is 0.01M� as usual (see Section 3.3.3). We
then integrate dN over bins of 1M� to obtain the number of stars, ΔN , in each
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Figure 5.1: Mass of the most massive star (m∗) in a sink particle of mass MSink

(left axis; solid line). The corresponding UV flux is plotted in the right axis
(dash-dot-dot line), according to ZAMS models (see the text). The horizontal
dot-lines represent the UV flux (right axis) for stars of different masses. According
with our prescription, massive stars (> 8M�) only appear in stellar groups with
MSink > 83M� (vertical dot line).

mass bin. The center of the last bin (m∗) satisfying ΔN � 1 is taken as the
mass of the most massive star that the sink can host (see Figure 5.1).

Finally, from zero-age main sequence (ZAMS) models (Paxton, 2004) we
assign an UV flux to the most massive star, m∗, and we assume that this star
dominates the emission of ionizing photons from the sink. In Figure 5.1 we plot
the mass of the most massive star (m∗) hosted in the sink and its corresponding
UV flux (FUV) as a function of the sink mass MSink. In order to save computa-
tional time, we consider that only sinks containing stars with masses � 8M�1

(horizontal line in Figure 5.1) emit ionizing radiation, since stars with lower
masses do not emit significant amounts of photoionizing photons, as shown in
Figure 5.1.

5.3.3 Feedback prescription

We use an adapted version of the hybrid characteristic ray-tracing module in
the FLASH code, which was implemented by Rijkhorst et al. (2006) and signifi-

1which correspond to FUV � 1046.5 s−1 for a cluster of � 83M�. We allow the massive
stars to radiate for 5Myr.
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cantly improved by Peters et al. (2010). The physical bases of this implementa-
tion were discussed in Section 2.6 (see also Frank and Mellema, 1994; Mellema
and Lundqvist, 2002). The method may be summarized as follows. In order to
calculate the flux of ionizing photons arriving at each cell, the column density
(Equation A.20) is calculated by interpolation (grid mapping) along rays from
the point sources to every cell. Then the ionization fractions (Equations 2.11
and 2.42) and temperature (Equation 2.9) can be computed through an iter-
ative process, taking advantage of the analytical solution to the rate equation
for the ionization fractions (Equation 2.42). Furthermore, the heating/cooling
can be iterated to convergence (see Section 5.3.4), so that the only restriction
on the time-step comes from the MHD module (courant condition). The mag-
netohydrodynamics and ionization calculations are coupled through operator
splitting.

5.3.4 Heating and Cooling

We calculate the heating and cooling rates by breaking them into heating and
cooling associated with ionization of hydrogen atoms and all the other sources
of cooling and heating (see also Krumholz et al., 2007). For the former, the
photoionization rate is (Osterbrock, 1989, see also Equation 2.40)

Γph = nHI

∫ ∞

νT

4πJν
hν

σνh(ν − νT)dν, (5.4)

where nHI is the number density of atomic hydrogen, ν is the frequency and
νT is the ionization threshold frequency (13.6 eV), σν is the absorption cross
section of atomic hydrogen, and h is the Planck constant. The specific mean
intensity, Jν , of a point source/star of radius rstar and effective temperature
Tstar (assuming a blackbody spectrum) is given by (see also Section 2.6.2 and
Equations 2.37 and 2.41; Rijkhorst et al., 2006; Peters et al., 2010)

Jν(r) =
(rstar

r

)2 1

2c2
hν3

exp(hν/kBTstar)− 1
exp(−τν(r)). (5.5)

with τν(r) the optical depth at position r computed directly from the column
density N(r) (see Equations (A.20), (2.37), and (2.41); Rijkhorst et al., 2006).
To counterbalance the photoionization heating rate, Γph, we consider the co-
llisional cooling (ions-electrons), Λcol, which is the main mechanism for energy
loss in partially ionized gas (see, e.g., Dalgarno and McCray, 1972).

On the other hand, for heating and cooling that are not directly due to
ionization, we use the analytic fits by Koyama and Inutsuka (2002) for the
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heating (ΓKI) and cooling (ΛKI) functions (see also Vázquez-Semadeni et al.,
2007, for corrections to typographical errors),

ΓKI = 2.0× 10−26 erg s−1 (5.6)

ΛKI(T )

ΓKI

= 107 exp
−1.184× 105

T + 1000
+ 1.4× 10−2

√
T exp

−92

T
cm3, (5.7)

which are based in the thermal and chemical calculations considered by Wolfire
et al. (1995) and Koyama and Inutsuka (2000).

Thus, the net heating and cooling rates are

Γ = Γph + ΓKI, Λ = nenHIIΛcol + n2
HIΛKI (5.8)

where nHI, ne, and nHII refers to the number density of neutral gas, electrons,
and ionized gas, respectively.

5.3.5 Initial conditions

We use a setup similar to that of Vázquez-Semadeni et al. (2007, see Figure
3.1 and 5.2). The numerical periodic box, of sizes Lx = 256 pc and Ly = Lz =
128 pc, is initially filled with warm neutral gas at uniform density of 2 cm−3 and
constant temperature of 1450K,1 which corresponds to the thermal equilibrium
(i.e., ΓKI = nΛKI) temperature at that density. Assuming a composition of
atomic hydrogen only (with a mean molecular weight μ = 1.27), the gas mass
in the whole box is ∼ 2.6×105 M�, whereas the mass contained in the cylinders
is ∼ 4.5× 104 M�.

The initial velocity field contains a random component in magnitude and
direction, with a maximum amplitude of 2.1 km s−1. On top of this random
field, we add two cylindrical streams, each of radius Rinf = 32 pc and length
Linf = 112 pc, moving in opposite directions at a moderately supersonic velocity
of 7.5 km s−1 in the x-direction (implying a Mach number of Minf � 1.85 with
respect to the adiabatic sound speed in the WNM), as we show in Figure 5.2.

The numerical box is permeated with a uniform magnetic field of 3μG along
the x-direction. This magnitude corresponds to the mean value of the uniform
component of the Galactic magnetic field (Beck, 2001). The corresponding
mass-to-flux ratio is 1.8 times the critical value, so that our clouds are magne-
tically supercritical.

1This temperature implies an isothermal sound speed of 3.1 km s−1.
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Figure 5.2: Edge-on view of the x-velocity field (in the x− y plane and z = 0)
at t = 0. Note the velocity perturbations in all the box and the over-imposed
cylindrical flows colliding at ∼ 7.5 km s−1 in the center of the numerical box.
Arrows indicate the direction of the initially uniform magnetic field along the
x-axis with magnitude of 3μG. The rest of the initial conditions correspond to
uniform fields (n = 2 cm−3, T = 1450K).

We start with a uniform grid1 with an initial resolution Δx0 = 2pc and
a cell mass of 0.5M�. We allow six refinement levels to achieve a maximum
resolution of Δx = 0.03 pc.

With this setup and initial conditions we perform two simulations at high
resolution, the first without and the second with feedback. We refer to the
former as the control simulation.

5.4 Results

In general, the cloud starts as a thin cylindrical sheet that fragments and
thickens as time increases, until it becomes gravitationally unstable and be-
gins to contract globally at t ∼ 10Myr, as shown in Figure 5.3. Shortly after
that (at tSF ≡ t ∼ 11.5Myr), star formation begins in the densest fragments
(clumps), while fragments continue to fall towards the global centre of mass.
The first massive star starts to radiate at tF ≡ t ∼ 12.7Myr. This behaviour is
quantitatively very similar to the magnetically supercritical model (B2-AD) of

1Except at the plane where the flows collide, where we add two refinement levels in order
to avoid effects due to low initial resolution.
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Figure 5.3: Face-on column density view of the “central cloud” in an evolu-
tionary sequence for the simulation without feedback. After 10Myr, the cloud
starts to collapse as a whole. The dots represent the projected position of the
sink particles, i.e., collapsed objects. See Figure 5.12 for a similar evolutionary
sequence in the simulation with feedback.

Vázquez-Semadeni et al. (2011), and the non-magnetic LAF runs presented in
Vázquez-Semadeni et al. (2010) and Coĺın et al. (2013).

In this section we analyse the simulations until the time when the first
supernova is expected to appear, at tSN ≈ 18Myr, since after this time the
simulation with feedback may no longer be realistic. Also, the simulations are
analysed in a central cylindrical region (with a circular cross section of radius
40 pc in the y − z plane and a length of 30 pc in the x-direction) in order to
exclude from the statistics the external clumps produced only by turbulence.
We will refer to this region as the “central cloud” (see Figures 5.3 and 5.4).

5.4.1 Global evolution

The collision of WNM streams (or inflows) in the center of the numerical box
(see Figure 5.2) nonlinearly triggers thermal instability, forming a thin cloud of
cold atomic gas (see, e.g., Hennebelle and Pérault, 1999; Koyama and Inutsuka,
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(a) Edge-on view (b) Face-on view

Figure 5.4: Column density of the central molecular cloud at t = 11.5Myr,
when the cloud begins to form stars. Note the complex filamentary structure.

2000; Walder and Folini, 2000; Koyama and Inutsuka, 2002), which at the
same time becomes turbulent by the combined action of various dynamical
instabilities (see, e.g., Hunter et al., 1986; Vishniac, 1994; Koyama and Inutsuka,
2002; Heitsch et al., 2005; Vázquez-Semadeni et al., 2006). Also, the thermal
pressure of the dense gas is in close pressure balance with the total (thermal +
ram) pressure of the surrounding WNM, which is significantly larger than the
the typical thermal pressure in the ISM. Thus, the dense gas has the physical
properties of GMCs1 (Vázquez-Semadeni et al., 2006; Banerjee et al., 2009).

The cloud soon becomes self-gravitating and begins to contract gravita-
tionally as a whole (at t ∼ 10Myr; see Figure 5.3). During the large-scale
contraction, some local, nonlinear (i.e., large-amplitude) density enhancements
produced by the initial turbulence manage to complete a collapse of their own,
since their local free-fall time is shorter than the average one for the entire cloud
(Vázquez-Semadeni et al., 2007; Heitsch and Hartmann, 2008; Pon et al., 2011).
These local collapses involve only a small fraction of the cloud’s total mass.

In Figure 5.4 we show the column density structure of the central cloud at
11.5Myr, when it begins to form stars. Note the highly complex filamentary
structure of the dens gas, which is a common feature in observed molecular
clouds (see, e.g. André et al., 2013, and references therein) and in simulations
(e.g, Gómez and Vázquez-Semadeni, 2014; Smith et al., 2014).

As mentioned in Section 5.3.1, the sinks continue to accrete mass after their

1Since we do not follow the chemistry we indistinctly will refer to the dense gas (n >
100 cm−3) as molecular.
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(a) Edge-on (b) Face-on

Figure 5.5: Column density of the “central molecular cloud” at t = 15.7Myr,
for the simulation with feedback. The star formation start at t ∼ 11.5Myr
(see Figure 5.4) and the first massive star appears roughly one Myr later at
t ∼ 12.7Myr. The dots represent the projected position of the sink particles,
being the white (with black borders) the massive enough ones to host massive
stars. The sub-region delimited by the white squares is plotted in Figure 5.6.

(a) Edge-on (b) Face-on

Figure 5.6: Column density of the regions marked with white-squares in Figure
5.5 at t = 12.7, 13.7, 15.7, and 17.7Myr, for the simulation with feedback. The
dots represent the projected position of the sink particles, being the white (with
black borders) those containing massive stars.

96



5.4 Results

formation, and eventually reach a high enough mass (MSink � 83M�) that they
can host a massive star. The sinks then begin to feed energy back radiate into
the cloud, ionizing and dispersing it before a significant fraction of gas can fall
onto new or existing sinks (see Figure 5.5).

5.4.2 The Star Formation Rate and Efficiency

The star formation process in the simulations exhibits strong intermittence in
both space and time. Because the cloud is gravitationally contracting, it is
globally becoming denser. Therefore, quantities such as the SFE and SFR are
naturally time dependent. As usual, the instantaneous SFE is computed as

SFE(t) =
MS(t)

MC(t) +MS(t)
, (5.9)

where MC is the dense gas mass (n > 100 cm−3), and MS is the total mass in
stars, which we assume equal to the total mass in sinks, Msink,tot. In systems
with massive stars, we should include the mass of ionized gas in the total cloud
mass. However, this quantity is difficult to determine in the simulations, since
it is not possible to distinguish which part of the total amount of ionized gas in
the simulation was processed through an HII region. Therefore, the values of
the SFE reported here are upper limits.

We take the time derivative of the total sink mass, dMsink,tot(t)/dt (which
is calculated by dividing the difference in the total sink mass in a time step by
the duration of the step), as a proxy for the SFR, which accounts for both the
mass collapsed onto new sinks and the mass accreted onto the existing ones.
Figure 5.8 shows the time evolution of the SFR and SFE for the simulations
with (dotted line) and without (solid line) feedback. In general, both the SFE
and the SFR grow monotonically, although, in the simulation with feedback,
the SFR decreases after the first massive star appears (at tF ∼ 12.7Myr). At
tSN (∼ 18Myr), the SFE is ∼ 30% in the control simulation without feedback
(consistent with the supercritical model by Vázquez-Semadeni et al., 2011)
while it is ∼ 10% in the simulation where the feedback is included (in agreement
with the LAF models by Vázquez-Semadeni et al., 2010; Coĺın et al., 2013).

This behavior of the SFE and SFR can be understood by looking at Figure
5.7, which shows the time evolution of the dense gas mass (Mdens = M(n >
100 cm−3)), the total sink mass (Msink,tot), and the total cloud mass (Mdens +
Msink,tot). Interestingly, comparing the simulation with feedback to the one
without, the dense gas mass (Figure 5.7a) does not change significantly and,
although the number of sink particles is similar in both simulations, the total
sink mass is significantly lower (by a factor of up to 4) because the ionization
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(a) Dense gas mass (b) Total sink mass

(c) Total cloud mass

Figure 5.7: Evolution of (a) the dense gas mass (Mdens; n > 100 cm−3), (b) total
sink mass (Msink,tot), and (c) total mass, Mdens + Msink,tot, for the simulations
with (dotted lines) and without (solid lines) feedback. Note that the vertical axis
is logarithmic in panel (b).

suppresses mass accretion onto the massive sinks (MSink � 100M�) that host
massive stars (see Figure 5.7b). Thus, for instance, at t = 18.3Myr, the sink
masses fall in the ranges 0.7 < MSink < 194M�, and 0.4 < MSink < 2026M�
for the simulations with and without feedback, respectively. This is in agree-
ment with the results by Vázquez-Semadeni et al. (2010), where a similar effect
was reported in simulations not including the magnetic field and using a crude
prescription for the radiative transfer. Those authors interpreted the result as
implying that the stellar feedback energy is injected mostly in the gas that is
on its final stages of collapse, and directed towards the newly-formed stellar
objects, diverting a large fraction of it back to the warm ionized phase.

5.4.3 Evolution of the Dense Gas

An important clue for understanding the effect of ionizing feedback on the star
formation process is provided by the evolution of the dense gas. The dense phase
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(a) Star Formation Efficiency (b) Star Formation Rate

Figure 5.8: Evolution of the Star Formation Rate and Efficiency for the simu-
lations with (dotted lines) and without (solid lines) feedback. The SFE reduces
to 10% in the simulation with feedback. The irregular lines tracing the SFR (b)
reflect the temporal intermittency of the star formation process.

appears at t ∼ 1.5Myr, but with physical conditions corresponding to those of
the CNM. Gas with densities (in the range 100 − 106 cm−3) representative of
MCs only appears at t ≈ 11Myr, as a consequence of gravitational contraction.

5.4.3.1 Density PDF

In Figure 5.9a we show the density probability density function (PDF) at t =
12.7, 13.7, 15.7, and 17.7Myr. At all these times, gravity dominates and star
formation has already begun. The density distribution exhibits power laws,
in agreement with what is observed in evolved star-forming regions (see, e.g.,
Kainulainen et al., 2009). Interestingly, we have found that these distributions
(specially at n > 100 cm−3) are insensitive to the presence of radiation fields,
and therefore can only be the result of self-gravity, as suggested by Schneider
et al., 2014. Furthermore, in some cases we have a double power law in the
high density part (see the panels at t = 13.7 and 15.7Myr in Figure 5.9a), as
observed for instance in Cep OB3, W43, RoseSe, Mon R2.1

To study the effect of the feedback on the dense gas, in Figure 5.9b we show
mass histograms as a function of density at t = 12.7, 13.7, 15.7, and 17.7Myr
for both the simulations with and without feedback. It is noteworthy that the
feedback affects mainly the low density gas (n < 100 cm−3, from the envelopes
of denser gas) and the very dense gas (n > 104 cm−3, from the sites of massive
star formation), leaving the distribution of the gas around 103 cm−3 unaltered.

1Schneider, et al., in prep., private communication.
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(a) Density PDFs (b) Mass histograms

Figure 5.9: Density PDFs and mass histograms for the central cloud at t =
12.7, 13.7, 15.7, and 17.7Myr. The solid and dotted lines refer to the simulation
without and without feedback, respectively.

5.4.3.2 Mass

In figure 5.10 we show the evolution of the gas mass at various densities. From
this figure, we can see that gas at density n � 100 cm−3 (black lines), appears
early at t ∼ 1.5Myr, whereas gas with density � 103 cm−3 is formed at t ∼
3Myr (purple lines). However, gas with density � 104 cm−3 only appears several
Myr later (at t ∼ 10Myr), when the self-gravity of the dense gas is already
important. At this stage, the gas is rapidly compressed to reach higher densities
and eventually begins forming stars at t ∼ 11.5Myr. This suggests that the
very dense gas is predominantly a product of gravitational contraction, and
explains why the SFR is strongly related to the content of gas with density
� 104 cm−3 (see, e.g., Gao and Solomon, 2004; Evans et al., 2009; Zamora-
Avilés and Vázquez-Semadeni, 2014).

5.5 Discussion

5.5.1 Comparison with the analytical model

Here we compare our results with the non-magnetic semi-analytic model pre-
sented in Chapters 3 and 4 (see Zamora-Avilés et al., 2012; Zamora-Avilés
and Vázquez-Semadeni, 2014). Figure 5.11 shows the evolution of the SFR and
SFE in the simulations discussed in this work (black lines) and in the semi-
analytical model (blue lines) for a cloud with the same radius (32 pc), initial
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Figure 5.10: Evolution of the dense gas mass (n > nthr) for the central cloud,
with nthr = 102 (black lines), 103 (purple lines), 104 (blue lines), 105 (green
lines, and 106 cm−3 (red lines). The solid and dotted lines refer to the simulation
without and without feedback, respectively.

density (2 cm−3), and ending time for the inflow. Therefore the model and
simulations also have the same maximum mass (Mmax ∼ 3 × 104 M�). We
added to this figure curves from a simulation at lower resolution (red lines; with
maximum resolution of Δx = 0.25 pc).

Although the two sets of simulations at the two resolutions show some mo-
derate systematic differences between each other, they differ only by factors of
a few in both the SFR and SFE. Comparing the high-resolution simulation with
the semi-analytical model we observe differences of up to one order of magni-
tude in both the SFE and SFR throughout the time evolution. In particular,
it is intriguing that the SFR in the simulations is nearly stationary in time,
not showing a significant systematic increase, contrary to the behavior of the
model and of the non-magnetic simulations of Vázquez-Semadeni et al. (2010)
(see Figure 3.4). This suggest that the presence of the magnetic field reduces
the acceleration of the SF process. However, control simulations without the
magnetic field, to be presented elsewhere, are necessary to confirm this result, in
order to perform the comparison with a consistent set of simulations. However,
there are points of agreement; for instance, the lifetime and the terminal SFE
are consistent in both the model and the simulations (comparing with the low
resolution simulation; see Figure 5.11). This study will be continued in future
work.
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(a) Star Formation Rate (b) Star Formation Efficiency

Figure 5.11: Evolution of the SFR and SFE for simulations at high (black lines;
see Figure 5.8) and low (red lines) resolution, and the prediction of the model
(blue lines) presented in Chapter 3 (see Zamora-Avilés et al., 2012).

5.5.2 Cloud disruption

The low resolution simulation indicates that the molecular cloud ends its evo-
lution at t ≈ 22Myr (in the sense that itsstar formation terminates, since,
although not all of its gas is ionized, the cloud is ultimately dispersed in small
low-mass cloudlets). Note that this lifetime is similar to that predicted by the
semi-analytical model (Chapters 3 and 4; see Figure 5.11) for a cloud of the
same mass. However, the first supernova is expected to explode at t ∼ 18Myr,
which could accelerate the destruction or dispersion of the cloud (see Figure
5.12).

5.5.3 Limitations

Our constant-mass refinement criterion does not fulfill the Truelove criterion
(Truelove et al., 1997) for preventing spurious fragmentation, since the resolu-
tion does not scale linearly with the Jeans length. We thus expect some artificial
fragmentation (sink formation). However, this should not significantly affect our
results, as we are not measuring the core mass function nor the stellar IMF,
but rather only the SFR and SFE, which do not depend on the details of the
fragmentation. Another important caveat is that, although our constant-mass
refinement criterion guarantees robustness of the sink mass spectrum at variable
resolution, the effect of the feedback on the gas does still depend on resolution,
since, at higher resolutions, the sinks form in higher-density environments that
are more difficult to disperse. Further investigation on the dependence of the
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Figure 5.12: Face-on column density view of the “central cloud” in an evo-
lutionary sequence for the simulation with feedback. After ∼ 18Myr, the first
supernova event is expected to appear. The dots represent the projected position
of the sink particles. See also Figure 5.3.

global evolution, including the SFR and SFE, on resolution needs to be per-
formed.

Regarding physical processes, one of the most notable caveats is the omission
of supernova explosions, which can help in dispersing the cloud and reducing
both the SFR and the SFE. We expect the first supernova event at t ∼ 18Myr,
so the simulation may become unrealistic at this time.

5.6 Summary and Conclusions

In this paper, we have presented radiation-MHD simulations to study the evolu-
tion of MCs formed by diffuse converging flows in the presence of magnetic fields
and massive-star ionization feedback. In particular we quantitatively studied
the effect of ionizing feedback on the SFR and SFE, as well as its interplay with
the magnetic field.

Analyzing two simulations, with and without feedback, during a time win-
dow of 5Myr since the time when the first massive star appears (i.e., before
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the first expected supernova event), we first study the evolution of the SFR and
SFE, noting that, in the simulation with feedback we obtain a maximum SFE of
∼ 10%, in agreement with previous numerical work, semi-analytical models and
observations toward massive star forming regions. The SFR first increases and
then decreases, as predicted by the theoretical model of Zamora-Avilés et al.
(2012).

We next studied the density PDF of both simulations, and found that dense
gas with n � 104 cm−3 appears only until t ∼ 10Myr, once the cloud starts
to collapse globally implying that it is formed by gravitational contraction,
not turbulence (in which case it should be present from the start as soon as
the turbulence becomes stationary). After the onset of massive star formation
(at t ∼ 12.7Myr), we found no significant difference in the high-density part
of the PDFs, which sometimes exhibit a double power law. Comparing the
simulation with feedback to the one without, the dense gas mass, Mdens =
M(n > 100 cm−3), does not change significantly and, although the number of
sink particles is similar in both simulations, the total sink mass is significantly
lower (by a factor of up to 4) because the ionization suppresses mass accretion
onto the massive sinks that host massive stars.

We then compared the predictions from the numerical simulations with the
analytic model from Chapters 3 and 4, and we found that the SFR and SFE
are more stationary in the simulations than in the model and in non-magnetic
simulations. The origin of this distinction will be investigated in future work.
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Summary and outlook

Throughout this thesis, we have studied the star formation rate (SFR) and
efficiency (SFE) in evolving molecular clouds (MCs), from an analytical and
a numerical point of view. Our models account for the evolution of MCs in
the solar neighbourhood, from their formation to their eventual destruction
by ionizing feedback from massive stars. In this scenario, MCs are formed by
two colliding warm neutral medium (WNM) flows, which nonlinearly trigger
thermal instability, producing a cold, dense atomic cloud. The inflow increases
the cloud’s mass and drives turbulence within it, until it eventually begins to
undergo gravitational collapse. The overdensities generated by the turbulence
collapse faster than whole cloud, starting to form stars through local collapses
while the cloud undergoes global collapse. Thus, the SFR is instantaneously
controlled by evaporation of the cloud material by massive-star ionization feed-
back.

6.1 The semi-analytical model

Within this general scenario, we presented in Chapter 3 an idealized semi-
analytical model, in which we assume that the instantaneous SFR is given by
the ratio of the mass above a certain density threshold to the free-fall time co-
rresponding to this density. The entire density PDF evolves by shifting towards
higher densities as the cloud collapses. The instantaneous number of massive
stars is computed assuming a Kroupa initial mass function. These stars feed
back on the cloud through ionizing radiation, eroding it. It is important to note
that our model is currently the only model for the SFR of an evolutionary nature
in the literature. We found:

• The main controlling parameter of the clouds evolution turns out to be
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the maximum cloud mass, Mmax (assuming they all start from cold neutral
medium conditions and with a flattened geometry).

• The star formation rate (SFR) and the star formation efficiency (SFR)
are time-dependent, and in general, these should be addressed as evolving
quantities, together with the quantities defining them (such as cloud mass
and mass in stars).

• The SFR (and cloud density) increase in time, until the cloud is destroyed
by stellar feedback. Thus, the SFR (and SFE) is correlated with the
density in agreement with observations (e.g., Louvet et al., 2014).

In addition, by analyzing two models, of low- (Mmax ∼ 2000M�) and high-
mass (Mmax ∼ 105 M�), and comparing them with observations, we found that:

• The low-mass cloud compares well with the physical conditions of massive
star-forming regions, such as the typical OMC-1 in the Orion Molecular
Cloud.

• Our low-mass model evolves in the KennicuttSchmidt diagram, first pass-
ing through the locus of typical low- to intermediate-mass star-forming
clouds, and then moving towards the locus of high-mass star-forming ones
over the course of∼ 10Myr. Like observed individual clouds, our modelled
cloud lies higher in the diagram than spatially-averaged (galaxy-scale or
kpc-scale) regions, implying that large-scale averages include much non-
star-forming gas. The scatter in this diagram should be understood as
different evolutionary states.

• The stellar age histograms for the low-mass cloud a few Myr before its
destruction agree very well with those observed in the ρ-Oph stellar asso-
ciation (e.g., Palla and Stahler, 2000), whose parent cloud has a similar
mass. This is a consequence of the fact that the SFR of the clouds in-
creases with time.

• The evolution of the high-mass cloud adheres very well to the evolutionary
scenario recently inferred by Kawamura et al. (2009) for GMCs in the
Large Magellanic Cloud.

In Chapter 4 we extended this semi-analytical model by performing a pa-
rameter study, varying the cloud mass. We found that:

106



6.1 The semi-analytical model

• Low-mass clouds (Mmax � 104 M�) spend most of their evolution at
low SFRs, but end their lives with a mini-burst. This is consistent with
the notion that the formation of massive stars is most likely the result
of a violent process like this star-forming mini-bursts (Hans Zinnecker,
private communication). The clouds reach a peak SFR ∼ 104 M�Myr−1,
although their time-averaged SFR is only 〈SFR〉 ∼ 102 M�Myr−1. The
corresponding efficiencies are SFEfinal �60% and 〈SFE〉 �1%.

• For more massive clouds (Mmax � 105 M�), the SFR first increases and
then reaches a plateau, because the clouds are influenced by the stellar
feedback since earlier in their evolution, regulating their SFR.

• As a function of cloud mass, the 〈SFR〉 and 〈SFE〉 are well represented
by the fits

〈SFR〉 ≈ 100
(
1 +

Mmax

1.4× 105 M�

)1.68

M� Myr−1, (6.1)

and

〈SFE〉 ≈ 0.03
( Mmax

2.5× 105 M�

)0.33

. (6.2)

These fits are potentially usable in cosmological simulations to provide a
sub-grid prescriptions of star formation.

• The SFR of our model clouds follows closely the SFR-dense gas mass
relation recently found by Lada et al. (2010), during the epoch when their
instantaneous SFEs are comparable to those of the clouds considered by
those authors.

• Collectively, a Monte Carlo integration of the model-predicted SFR(M)
over a Galactic giant molecular cloud mass spectrum yields values for the
total Galactic SFR that are consistent with the relation obtained by Gao
and Solomon (2004).

In general, this semi-analytical model fits several observational features
within a precision of half an order of magnitude. In future work, we will ex-
tend the model to include the effect of magnetic fields, other feedback mech-
anisms (such as winds, supernova explosions, and radiation pressure), and a
self-consistent modeling of the evolution of the density PDF. We expect that
these improvements will allow us to obtain second-order corrections and thus
an even more precise account of the observations.
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6.2 The numerical simulations

In Chapter 5 we performed numerical simulations with a similar setup and
physical process content as those of the semi-analytical model, but also including
magnetic fields and a detailed treatment of radiative transport. We use sink
particles representing collapsed objects (stars or groups of stars). Assuming a
standard initial mass function in each sink (Kroupa, 2001), we calculate the
most massive star that the sink can host. When this mass exceeds 8M�, the
corresponding sink begins to ionize the surrounding medium.

Using the FLASH code we performed two simulations, with and without
feedback, finding that:

• The simulation with feedback qualitatively reproduces the morphological
characteristics observed in HII regions.

• Dense gas with n � 104 cm−3 is formed by gravitational contraction, not
turbulence. Shortly after (∼ 1.5Myr) this dense gas appears, star forma-
tion begins.

• Early collapses produce enough massive stars to eventually disperse the
cloud long before all of its mass is consumed.

• Ionizing radiation eventually stops both the gas accretion toward the mas-
sive star-forming regions and the star formation in these regions.

• The SFR increases over time until when massive stars appears, at which
point it gradually decreases by about one order of magnitude and remains
approximately constant at ∼ 3 × 10−4 M�yr−1. This implies that the
ionizing feedback regulates the SFR.

• The final SFE is � 10%. These values are consistent with observations
(e.g., Lada and Lada, 2003) and previous theoretical works (e.g., Vázquez-
Semadeni et al., 2010; Coĺın et al., 2013).

The star formation is an intermittent process in space and time and only a
small fraction of the gas (� 10%) is involved in it. This ssolves the Zuckerman
& Palmer conundrum (see Section 1.4).
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6.3 Conclusion: A revised star formation paradigm

(a) SFEff from observations (b) SFEff from our models

Figure 6.1: (a) Star formation efficiency per free-fall time (SFEff) for objects
with number density n. We plot the theoretical prediction by Krumholz and
McKee (2005, horizontal band), observational data by Krumholz and Tan (2007,
filled squares, which are based on Galactic averages), and observational data of
individual clouds by Evans et al. (2009, filled diamonds) and Heiderman et al.
(2010, filled circles). (b) Same SFEff − n diagram, but including the cloud mass
in a third dimension. We overplot the evolutionary tracks for two of our models
with arbitrary maximum masses (red and black lines), which are also projected
in the SFEff − n plane.

6.3 Conclusion: A revised star formation pa-

radigm

Going back to the title of this thesis, Reformulation of the concept of Star
Formation Efficiency in evolving Molecular Clouds, we claim that the results
presented throughout this thesis imply a change in the paradigm of the star
formation theory.

In the traditional turbulent cloud-supportmodels1 (represented by Krumholz
and McKee, 2005; Hennebelle and Chabrier, 2011; Padoan and Nordlund, 2011;
Federrath and Klessen, 2012; Federrath and Klessen, 2013), clouds are assumed
to be in a quasi-equilibrium state, with support against self-gravity being pro-
vided by turbulence and possibly magnetic fields, thus preventing global collapse
and maintaining a low global SFRs and SFEs. In this scenario the clouds are

1This classification comes from Molinari et al. (2014), who also refer to models of clouds
in global gravitational collapse as cloud-collapse models.
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6.3 Conclusion: A revised star formation paradigm

time-stationary, since global cloud evolution is not considered. These models
predict a star formation efficiency per free-fall time,1 SFEff , of ∼ 1− 10% (see
Figure 6.1), in claimed qualitative agreement with observations (e.g., Krumholz
and Tan, 2007), although the claim has been disputed (e.g., Elmegreen, 2007).
In addition, this scenario is unable to explain many features observed in MCs
(see, e.g., Hartmann and Burkert, 2007; Galván-Madrid et al., 2009; Schneider
et al., 2010; Csengeri et al., 2011; Louvet et al., 2014; Peretto et al., 2014).

According to the picture presented here (a cloud-collapse model), since our
model continuosly evolves, the SFEff only makes sense as an average at galactic
scale (cloud ensemble) or over the cloud lifetime. This is evident when we plot
observations of individual clouds in the SFEff − n diagram as shown in Figure
6.1a. We note a significant dispersion, which can be explained because clouds
may be in different evolutionary stages, as our semi-analytical model suggests
(see Figure 6.1b).

Finally, from the results of both the semi-analytic model and numerical
simulations, we conclude that the scenario of MCs in global collapse, with the
SFR and SFE regulated by massive-star feedback, is not only entirely feasible
and in agreement with observations of MCs, but also necessary to explain key
observational features that cloud-support models are unable to reproduce.

1I.e., the SFE achieved on the free-fall time scale
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Appendix A

A.1 Radiation Fields

The specific intensity (or brightness) Iν(x, k̂, ν, t) of radiation or set of rays
at position x, traveling in direction k̂, with frequency ν, at time t is defined
such that the amount of energy, dEν , transported by radiation of frequencies
(ν, ν + dν) across an element of area dA with unit normal n̂ into a solid angle
dΩ around k̂ in a time interval dt is given by

dEν = Iν(x, k̂, ν, t) cos θ dAdΩ dν dt, (A.1)

where θ is the angle between the direction of the beam and the normal to the
surface (i.e. cos θ = k̂ · n̂). Thus defined, the specific intensity provides a
complete description of the radiation field from a macroscopic point of view.

We define the total intensity,

I =

∫ ∞

0

Iν dν, (A.2)

where Iν ≡ Iν(x, k̂, ν, t). Also, the specific radiative flux, Fν , is the amount
of energy passing through a small element of area within an interval frequency
interval per unit time in all directions, i.e.,

Fν =

∮
Iν cos θ dΩ. (A.3)

Now, to determine how much energy is contained within the radiation field,
we consider the specific energy density, uν , defined as the energy per unit
volume per unit frequency range. To determine this quantity it is conve-
nient to consider first the energy density per unit solid angle uν(Ω), given by
dEν = uν(Ω) dV dΩ dν, where dV is a volume element. We consider a cylinder
around a ray of length cdt and circular area dA. Since the volume of the cylinder
is cdtdA, then

111



A.1 Radiation Fields

dEν = uν(Ω) dA c dt dΩ dν, (A.4)

The radiation travels at velocity c, so that in time dt all the radiation in the
cylinder will pass out of it, and then

dEν = Iν dAdΩ dt dν. (A.5)

Equating the above two expressions yields

uν(Ω) =
Iν
c
. (A.6)

And integrating over all solid angles we have

uν =

∮
uν(Ω) dΩ =

1

c

∮
IνdΩ, (A.7)

or

uν =
4π

c
Jν , (A.8)

where we have defined the mean specific intensity, Jν , as the average of the
specific intensity over all solid angle, that is

Jν =
1

4π

∮
Iν dΩ. (A.9)

We obtain the total energy density, whose units are [u] = erg cm−3, simply
integrating uν over all frequencies

u =
4π

c
J, (A.10)

J being the mean total intensity,

J =
1

4π

∮
I dΩ. (A.11)

For further discussion see, e.g., Rybicki and Lightman (1979), Osterbrock
(1989), and Shu (1991)
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A.2 Radiative Transport

A.2 Radiative Transport

We now describe the effect of a radiation field that propagates through some
matter. We consider a medium containing absorbers with number densityn and
an effective cross section σν . The energy absorbed out of a ray crossing this
medium is

dIν dAdΩ dt dν = − Iν (nσν dAdr) dΩ dt dν, (A.12)

where dr is a path length element. Thus,

dIν = −nσν Iν dr, (A.13)

which is the transfer equation (without emissivity and time independent). Fol-
lowing Osterbrock (1989), the absorption cross section of atomic hydrogen is

σν = σT

[
β
( ν

νT

)−s

+ (1− β)
( ν

νT

)−s−1]
(A.14)

for ν > νT = 13.6 eV (the ionization threshold frequency), with the remaining
parameters β = 1.34, σT = 6.3× 10−18 cm2, and s = 2.99.

The absorption coefficient is defined as

αν = nσν = ρ κν , (A.15)

where κν (in cm2 g−1) is called the mass absorption coefficient or the opacity
coefficient. Thus, we can directly integrate Equation (A.13) to obtain

Iν(r) = Iν(0) exp(−τν(r)), (A.16)

where we have defined the optical depth as

τν =

∫ r

0

αν(r
′) dr′. (A.17)

Material with τν < 1 is called optically thin, and material with τν > 1 is
called optically thick. If αν is spatially constant, using Equation (A.15) we can
rewrite the optical depth as

τν = σν N(r), (A.18)

where the column density along some ray is given by

N(r) =

∫ r

0

n(r′) dr′. (A.19)
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A.2 Radiative Transport

Since σν is independent of temperature (see, e.g., Osterbrock, 1989), we can use
Equations (2.11) and (A.18) to calculate the optical depth for a gas containing
atomic hydrogen as

N(r) =

∫ r

0

nH(r
′) xHI(r

′) dr′, (A.20)

with nH the total number density and xHI the fraction of atomic hydrogen. Once
the optical depth is calculated, we can use it to find the ionization, heating and
cooling rates, and calculate the ionization state and temperature of the gas
caused by radiation sources within the gas, as we will see next.
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André, P., J. Di Francesco, D. Ward-Thompson, S.-i. Inutsuka, R. E. Pudritz,
and J. Pineda (2013). “From Filamentary Networks to Dense Cores in Molec-
ular Clouds: Toward a New Paradigm for Star Formation”. In: ArXiv e-prints
(cit. on pp. 86, 95).
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