37 24

Universidad Nacional Autónoma de México

FACULTAD DE QUIMICA

"DESTILACION DE UNA MEZCLA MEG-AGUA EN LA COLUMNA DE PLATOS DE CAMPANA"

EVAMENES PROFESIONALES

TESIS MANCOMUNADA QUE PARA OBTENER EL TITULO DE INGENIERO QUIMICO PRESENTAN MAGDALENO GUILLERMO GALINDO HERNANDEZ FAUSTINO GOMEZ SUAREZ

MEXICO, D. F.

FALLA DE ORIGEN

1990

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis está protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE

INTRODUCCIO	N	. 1
CAPITULO 1	овјетічо	4
CAPITULO 2	CARACTERISTICAS DE LA MEZCLA MEG-AGUA	5
CAPITULO 3	DESCRIPCION DEL EQUIPO	20
CAPITULO 4	DESCRIPCION DEL PROCESO	32
CAPITULO 5	EXPERIMENTACION Y RESULTADOS	34
CAPITULO 6	DISCUSION DE LOS RESULTADOS	56
CAPITULO 7	CONCLUSIONES Y RECOMENDACIONES	64
APENDICE		71
BIBLIOGRAFIA		93

INTRODUCCION

INTRODUCCION

El uso de la destilación como un proceso de separación y purificación es muy antiguo. Mediante los escritos de historiadores se indica que la primera descripción registrada de una destilación ocurrió en Egipto alrededor del año 50 A.C. Sin embargo, descripciones históricas más antiguas de productos como aceites esenciales, perfumes, medicinas, bebidas, etc., pueden hacernos deducir que la destilación en alguna forma fue conocida probablemente de mil a dos mil años antes de esa fecha. Se obtuvo agua fresca por destilación de agua de mar, usando una esponja como condensador, alrededor del año 300 D.C., y aproximadamente al mismo tiempo se destiló turpentina del aceite de ricino condensándolo en una manta de lana.

Un condensador simple, consistiendo de un tubo largo expuesto al aire y conduciendo a un recibidor, fue descrito en el siglo IV, y en el siglo XI se hizo el primer registro de alcohol por destilación.

A principios del siglo XVI se aplicó la destilación para la separación y recuperación de alcohol, agua, vinagre, esencias, aceites y otros numerosos productos. También a principios de ese siglo aparecieron libros con el tema de la destilación. Brunschwig y Andrew incluyeron información sobre los procesos de destilación desarrollados en ese tiempo, los cuales consistían, básicamente, en destilaciones batch en pequeña escala sin tener reflujo prácticamente sino usando tubos rectos o, en algunos casos, tubos curvos enfriados con agua como condensador.

En el proceso de la destilación la separación de una mezcla de materiales para obtener uno o más productos deseados se lleva a cabo por selección de condiciones de temperatura y presión tal que cuando menos una fase vapor y una líquida coexisten y se logra una diferencia en la concentración relativa de los materiales a ser separados en las dos fases. Cuando las dos (o más fases) están en un estado de equilibrio físico, ocurre la

máxima diferencia relativa en la concentración de los materiales en las fases. Por lo tanto, el logro de las condiciones de equilibrio es deseable en el proceso de la destilación, y en la mayoría de los métodos de diseño usan el equilibrio como una de las condiciones de frontera para cálculos de diseño cuantitativo.

La destilación, en el sentido mas amplio de la palabra, significa generación de vapores de un líquido y posterior condensación de los mismos. Cuando los vapores son generados de una mezcla de líquidos, la destilación también significará la alteración de la mezcla, puesto que los vapores condensados tendrán una composición diferente de aquella de la mezcla original.

La destilación permite obtener productos de alta pureza que, en ocasiones, no requieren de un procedimiento posterior de separación. Esto ha hecho de la destilación una de las operaciones unitarias con transferencia de masa más importantes en la industria de refinación y petroquímica.

El ochenta por ciento de las separaciones de mezclas se realizan por medio de la destilación, siendo ésta la causa por la que su estudio es muy trascendente, requiriéndose de un buen conocimiento y dominio de ella en sus diferentes formas.

La práctica de la destilación, en los laboratorios de Ingeniería Química debe ser ilustrativa, acorde con la realidad y trabajar en las mejores condiciones posibles de seguridad.

En cuanto al Laboratorio de Ingeniería Química de la Facultad de Química, las prácticas de destilación que se realizaban con anterioridad utilizaban mezclas en las que alguna o varias de las sustancias presentaban situaciones de peligrosidad, esto es, eran muy inflamables, como fue el caso del etanol en la mezcla etanol agua o muy tóxicas como el benceno y el tolueno en la mezcla de ambas sustancias. El riesgo que representaba trabajar con estas mezclas motivó a que se pensara en sustituirlas por otra, que sin

dejar de ser ilustrativas del fenómeno de la destilación representara menos peligro de toxicidad e inflamabilidad.

La mezcla que se proponé es la formada por monoetilenglicol y agua. El monoetilenglicol es una sustancia que no representa peligro significativo en cuanto a inflamabilidad y toxicidad como se describe en el Capítulo 2.

Para implementar el uso de esta nueva mezcla fue necesario realizar un número considerable de corridas experimentales, en las que, mediante el manejo de variables como el flujo de alimentación, flujo de reflujo, temperatura de alimentación, plato de alimentación, presión de vapor de calentamiento, flujo de destilado, composición de la alimentación, número del plato
inundado al inicio de la operación, flujo de residuo, etc. se logró obtener
las condiciones de operación que cumplieran con el objetivo de la práctica,
las cuales se detallan en el Capítulo 5.

Como resultado de la experimentación se hacen varias recomendaciones para el mejoramiento de la operación de la columna de platos del laboratorio de Ingeniería Química, las cuales se enlistan en el Capítulo 7.

CAPITULO 1

OBJETIVO

CAPITULO 1

OBJETIVO.

En el laboratorio de Ingeniería Química las prácticas de destilación en columna de platos forman parte del módulo de destilación que incluye, además, las prácticas de Destilación Diferencial y Destilación por Arrastre con vapor.

Los objetivos del presente trabajo son:

- 1.1 Determinar las condiciones de operación para la destilación de una mezcla monoetilenglicol agua en la columna de platos instalada en el Laboratorio de Ingeniería Química de la Facultad de Química.
- 1.2 Elaborar el material de apoyo necesario para la realización de la práctica de destilación en la columna de platos, en donde se emplea la mezcla mencionada con anterioridad.

Al lograr los objetivos anteriores se podrá trabajar en la columna de platos en forma segura y el fenómeno de la destilación será ilustrativo.

CAPITULO 2 CARACTERISTICAS DE LA MEZCLA MEG-AGUA

CONTENIDO

- 2.1 INTRODUCCION.
- 2,2 CARACTERISTICAS QUE DEBEN CONSIDERARSE PARA IDENTIFICAR UN PRODUCTO QUÍMICO,
- 2.3 CARACTERISTICAS DE LOS GLICOLES,
- 2.4 TABLA DE PROPIEDADES PARA EL MANEJO DEL MONOETILENGLICOL.
- 2.5 TABLAS PISICOQUIMICAS PARA GLICOLES,
- 2.6 CONCLUSION.

2 CARACTERISTICAS DE LA MEZCLA MEG-AGUA

2.1 INTRODUCCION

Hay miles de compuestos y mezclas químicas que presentan mayor o menor riesgo para el usuario inexperto. Debido al uso creciente de productos químicos en los laboratorios de Ingeniería Química, es necesario conocer las propiedades tanto físicas como químicas, de las sustancias empleadas para evitar riesgos en su manejo.

En los laboratorios de Ingeniería Química, los problemas de seguridad que lleva consigo el uso de dichos productos por razón de su magnitud y complejidad exigen que se evalúe sistemáticamente todas sus propiedades a fin de conocer sus riesgos; por ejemplo su toxicidad y la inflamabilidad. Después de hacer esta evaluación podrán eliminarse o controlar los riesgos, así como evitar el desperdicio de productos químicos y lesiones graves a estudiantes y profesores.

Aunque por norma general es suficiente el conocimiento genérico de como manejar con seguridad un producto químico, la evaluación debe hacerse tan pronto como se tiene conocimiento de que se va a emplear un nuevo producto químico y debe hacerse una reevaluación cuando hay algún cambio de ubicación de las instalaciones.

2.2 CARACTERISTICAS QUE DEBEN CONSIDERARSE PARA IDENTIFICAR UN PRODUCTO QUÍMICO

- a) Nombre del producto químico. Debe darse siempre el nombre común lo mismo que el nombre químico de la sustancia en cuestión.
- b) Estado físico. Es importante determinar si el producto químico se recibe en estado sólido, líquido o gaseoso, aunque no necesariamente el saber su estado sirva para averiguar sus propiedades físicas generales.

Debe considerarse si se entrega o almacena el producto químico en estado inestable. Los peligros que deben considerarse son: rápida emisión debido a fugas, rápida elevación de temperatura debido a cercanías de fuego, etc. Si es un líquido, ¿por dónde será el derrame?. ¿Pueden corroerse los tambores si se les deja en terreno húmedo o corroerse internamente si se les almacena por mucho tiempo?.

Determinar las propiedades tóxicas de cualquier producto químico que se vaya a usar es muy importante, particularmente cuando la toxicidad es una forma insidiosa de conducir a un envenenamiento crónico.

2.3 CARACTERISTICAS DE LOS GLICOLES

La experiencia humana indica que el hombre parece ser más susceptible al daño causado por el etilenglicol y el dietilenglicol que los animales de laboratorio. La dosis letal para humanos es de cerca de 1.4 ml/Kg para etilenglicol y de 1.0 ml/Kg para dietilenglicol.

Toxicidad oral crónica. Los glicoles varían considerablemente en toxicidad oral crónica. Concretamente, el etilenglicol se considera tóxico para usos donde existe posibilidad de ingestión.

La alimentación de ratas por dos años con dietas que contenían 0.5 y 1.0 g/Kg de etilenglicol, causó acción tóxica centrada principalmente en los riñones. El etilenglicol acortó el lapso de vida de las ratas, produjo piedras de oxalato de calcio en la vejiga, atrofia renal severa y degenera ción adiposa en el hígado.

los glicoles, en especial el etilenglicol, no producen grados significativos de irritación cuando se aplican a la piel y no hay evidencia que indique que sean absorbidos a través de la piel en cantidades suficientes para producir daño sistemático. Puede resultar una acción macerante leve, comparable a la causada por la glicerina de las exposiciones prolongadas y muy severas al etilenglicol. Bajo severas condiciones de exposición, tal como bañar realmente el cuerpo con etilenglicol por períodos de tiempo prolongados, es posible que bastante del material pueda ser absorbido para causar daño sistemático. Debido a estas consideraciones el uso de los glicoles en prepara — ciones elaboradas para ser aplicadas sobre áreas extensivas del cuerpo se considera imprudente.

La inhalación de los vapores de los glicoles no representa riesgo significativo en aplicaciones ordinarias. Las concentraciones atmosféricas de vapores de etilenglicol del orden de 0.35 a 0.40 mg/ml (140-160 ppm) por 80 períodos de 8 horas cada uno durante 6 semanas no causó daño en ratones y ratas. Sin embargo, es prudente evitar inhalar vapores emanados de materiales y nubes calientes, particularmente si la exposición es prolongada y repetida.

A continuación se presenta la Tabla de Propiedades para el Manejo del Etilenglicol y las Tablas Fisicoquímicas para Glicoles.

2.4 TABLA DE PROPIEDADES PARA EL MANEJO DEL MONOETILENGLICOL

SINONIMOS: 1,2 - Etanodiol, Glicol, Etilenglicol, Monoetilenglicol. LIQUIDO INCOLORO DE SABOR DULCE, HIGROSCOPICO.

FORMULA: QI, QII - QI, QI

PESO MCLECULAR: 62.1

PUNTO DE ERULLICION: 197.5 °C a 760 mm Hg

LIMITE EXPLOSIVO INFERIOR: 3.2 %

TEMPERATURA DE FUSION: -15.6 °C

PUNTO DE INFLAMACION: 111 °C (C.C.)

DENSIDAD: 1.113 g/ml a 25° / 25°C

TEMPERATURA DE AUTOIGNICION: 400°C

DENSIDAD DEL VAPOR: 2.14

PRESION DEL VAPOR: 0.005 mm Hg a 20 °C

DATOS DE TOXICIDAD AGUDA:

- ORAL: DL_{SO} (RATAS) = 5840 mg/Kg

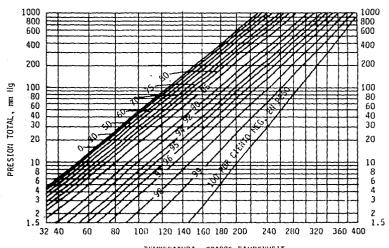
- INTRAVENOSO (IV): DL_{SO} (RATON) = 3000 mg/Kg

- IRRITACION: Moderada por vía cutánea, ojos y mucosas, vía oral, intr \underline{a}

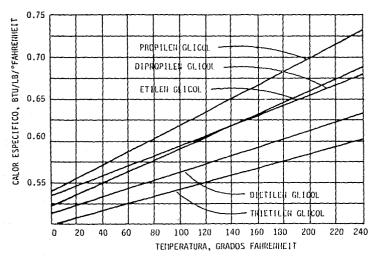
venosa e intraperitoneal (LA DOSIS LETAL REPORTADA PARA

EL SER HUMANO ES DE 100 ml).

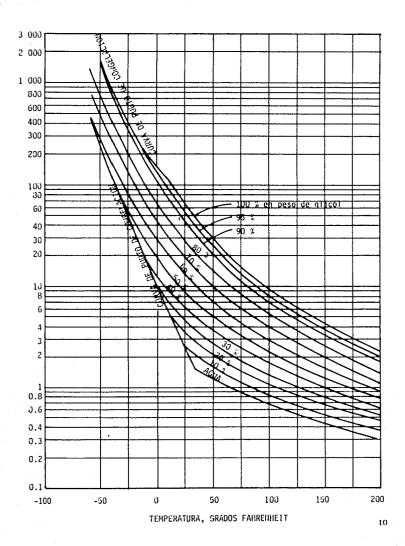
SI SE INGIERE OCASIONA INICIALMENTE ESTIMULO AL SISTEMA NERVIOSO CENTRAL, SEGUIDO POR DEPRESION. MAS ADELANTE CAUSA DAÑOS AL RIÑON QUE PUEDEN TERMINAR FATALMENTE. ALTAMENTE TOXIOO COMO AEROSOL CUANDO SE INIALA.

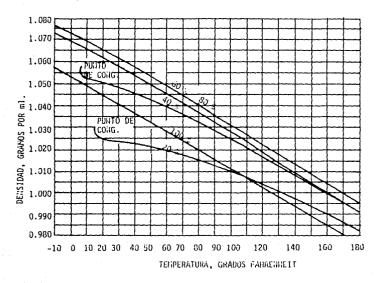

PELIGRO DE INCENDIO: BAJO, cuando se expone a calor o flama; puede reaccionar violentamente con ácido clorosulfónico, óleum y ácido sulfúrico.

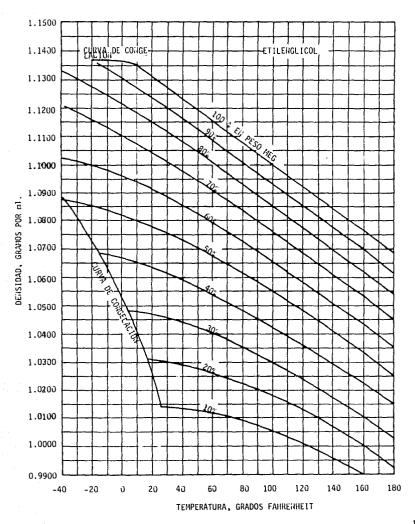
CALENTAMIENTO ESPONTANEO: NO

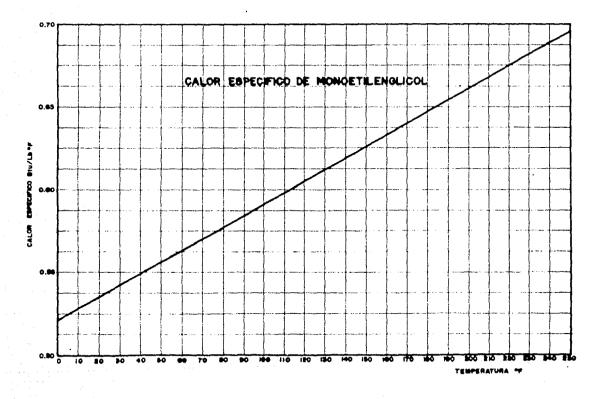

PELIGRO DE EXPLOSION: MODERADO, cuando se expone a la flama.

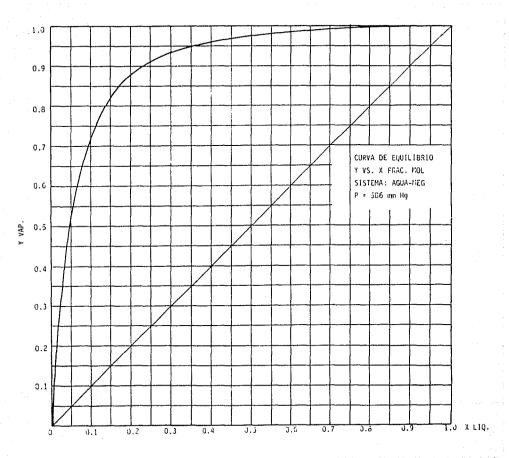
PARA COMBATIR EL INCENDIO USAR: ESPUMA, AGUA, CO2 Y POLVO QUIMICO .

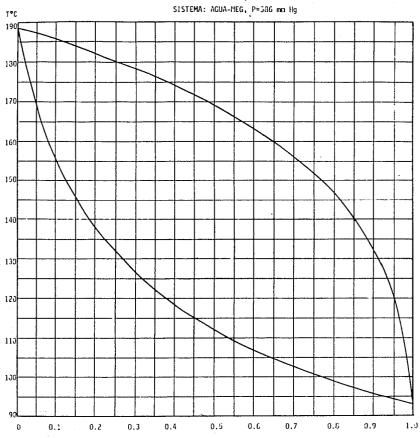

2.5 TABLAS FISICOQUIMICAS PARA GLICOLES

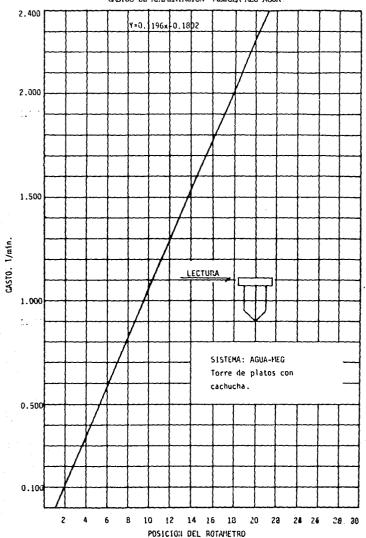

TEMPERATURA, GRADOS FAHRENHEIT
PRESIONES DE VAPOR DE SOLUCIONES ACUOSAS DE ETILENGLICOL

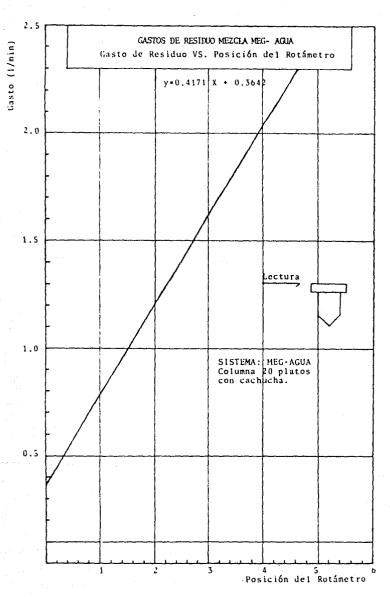

CALOR ESPECIFICO DE GLICOLES ANHIDROS

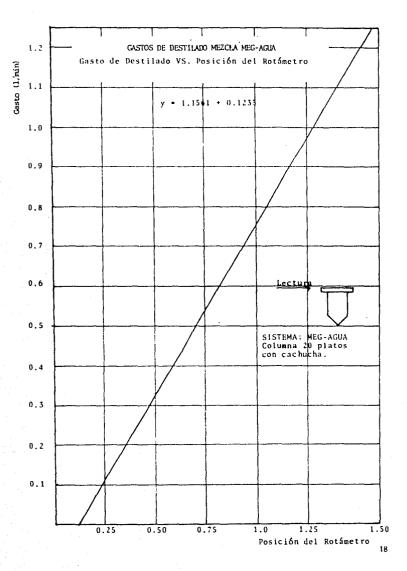



DENSIDAD DE MEZCLAS ACUOSAS DE ETILENGLICOL


DENSIDAD DE SOLUCIONES ACUOSAS DE ETILENGLICOL







2.6. CONCLUSION

Los glicoles discutidos aquí tienen un grado de toxicidad e inflamabilidad relativamente bajo y no presentan riesgo serio en lo que a su uso y manejo industrial se refiere. El etilenglicol se encuentra dentro del grupo de glicoles tratados en este capítulo, por lo que reune las condiciones para su uso en la realización de las prácticas de destilación en la columna de platos del Laboratorio de Ingeniería Química.

CAPITULO 3: DESCRIPCION DEL EQUIPO

C ON TENIDO

3.1 FUNDAMENTOS DE DESTILACION EN LA COLUMNA DE F	T LONATAMENTAL	ເບວ ນະ	: NROTTENCTON	EN L	Y	CULCUTVA	UG,	PLANTUS
---	----------------	--------	---------------	------	---	----------	-----	---------

- 3.2 LOCALIZACION DEL EQUIPO EN EL LABORATORIO DE INGENIERIA QUIMICA
- 3.3 DIAGRAMA DE FILLIO DE LA COLLANA DE DESTILACION
- 3,4 ESPECIPICACIONES DEL EQUIPO DE DESTILACION
- 5.5 INSTRUMENTACION DE LA COLUMNA DE DESTILACION

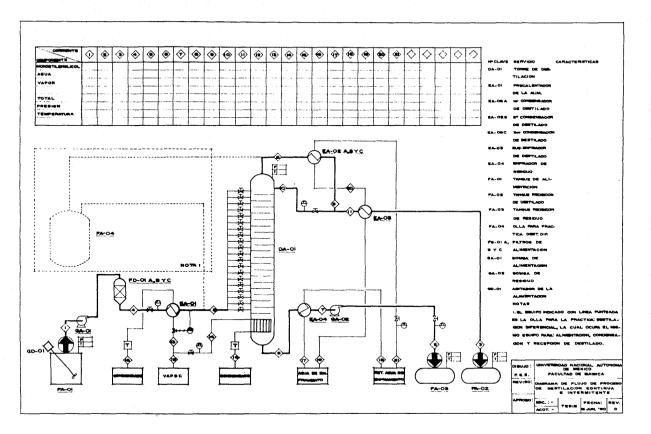
CAPITULO 3: DESCRIPCION DEL EQUIPO

3.1 FUNDAMENTOS DE DESTILACION EN LA COLUNNA DE PLATOS

El proceso de separación denominado destilación, utiliza dos fases que son: vapor y líquido, esencialmente a la misma temperatura y a la misma presión en las zonas coexistentes. Se emplean dispositivos denominados platos para lograr que las dos fases estén en contacto íntimo. Los platos se acomodan uno sobre otro y se encierran en una cubierta cilíndrica para formar una columna.

La mezcla de alimentación a separar en sus componentes se introduce en un plato elegido previamente en la coraza de la columna. Debido a la diferencia de gravedad entre la fase de vapor y la de líquido, éste cae en cascada de plato en plato, mientras que el vapor asciende por la columna para lograr un contacto directo en cada uno de los platos. El líquido que llega al fondo de la columna se vaporiza parcialmente por medio de un calentador tipo calandria (rehervidor) para proporcionar vapor que asciende por la columna. El resto del líquido se retira como producto del fondo disminuyendo su temperatura en el enfriador de producto. El vapor que sale por la parte superior de la columna, entra a un condensador saliendo de éste para pasar a través de un enfriador retirándose como producto destilado.

Las fases de vapor y líquido en un plato se acercan a los equilibrios de temperatura, presión y composición hasta cierto grado dependiendo de la eficiencia del plato de contacto.


Los componentes más ligeros, que son los que tienen un punto de ebullición bajo, tienden a concentrarse en la fase de vapor, mientras que los más posados (punto de ebullición alto) tienden a la fase líquida. El resultado es una fase de vapor que se hace más rica en componentes ligeros conforme va ascendiendo en la columna, y una fase líquida que se va haciendo cada vez más rica en los componentes pesados conforme desciende en cascada. La separación entre el producto seperior y el del fondo se logra dependiendo primordialmente de las volatilidades relativas de los componentes.

3.2 LOCALIZACION DEL EQUIPO EN EL LABORATORIO DE INGENIERIA OUIMICA.

La torre de platos de destilación del Laboratorio de Ingeniería Química de la Facultad de Química se encuentra ubicada en el lugar denominado "foso", con coordenadas (2,B), tomadas como referencia para su localización en el plano general de planta del Laboratorio de Ingeniería Química presentado en la Tesis "Anteproyecto de un Programa de Seguridad e Higiene para el Laboratorio de Ingeniería Química". .(Ver Bibliografía).

3.3 DIAGRAMA DE FLUJO DE LA COLUMNA DE DESTILACION

(Ver página siguiente)

3.4 ESPECIFICACIONES DEL EQUIPO DE DESTILACION

EQUIPO: COLUMNA DE DESTILACION DE PLATOS

CLAVE: DA-01

SERVICIO: Separación de una mezcla binaria en sus

componentes.

MARCA: Brighton Copper WKS.

MATERIAL DE

LA COLUMNA: Fundición de bronce.

DIAMETRO: 7 5/8" (0.1936 m.) exterior.

ALTURA: 13.84 pies (4.22 m.)

NUMERO DE PLATOS: 20

TIPO DE PLATO: De 3 campanas.

DIAMETRO DE LA

BAJANTE: 1" (0.0254 m.)

NUMERO DE SERIE

DEL FABRICANTE: 17006

REHERVIDOR

NUMERO DE FLUXES: 43

SUPERFICIE DE

CALENTAMIENTO: $7.034 \text{ pies}^2 (0.653 \text{ m}^2).$

MATERIAL DE LOS

FLUXES: Cobre.

DIAMETRO: 5/8 " (0.0158 m.)

LONGITUD: 12" (0.3048 m.)

MATERIAL ELEMENTO

DE CALENTAMIENTO: Fundición de bronce.

DIAMETRO: 8" (0.2032 m.)

PRECALENTADOR DE LA CORRIENTE DE ALIMENTACION EOUIPO:

CLAVE: EA-01

SERVICIO: Precalentar la alimentación a destilar.

MATERIAL DE LA

ENVOLVENCE: Cobre.

DIAMETRO DE LA

ENVOLVENTE: 4 1/2" (11.43 cm.)

SUPERFICIE DE

1.288 $pies^2$ (0.1196 m^2) CALENTAMIENTO:

NUMERO DE FLUXES: 8 tubos.

MATERIAL: Cobre.

DIAMETRO: 3/8" (0.9525 cm.)

LONGITUD: 1.64 pies (0.50 m.)

PRIMER CONDENSADOR DE DESTILADO VERTICAL. ECU IPO:

CLAVE: EA-02 A

SERVICIO: Condensador de vapores del domo de la columna DA-01

MARCA: Brighton Copper Works N.S.

MATERIAL DE LA

ENVOLVENTE: Cobre.

DIAMETRO DE LA

ENVOLVENTE: 3 3/4" (9.5 cm.)

SUPERFICIE DE

NUMERO DE FLUXES:

7.854 pies² (0.7296 m²) CALENTAMIENTO:

30 tubos.

MATERIAL: Cobre.

1/4 " (0.635 cm.) DIAMETRO:

IONGITUD: 4 pies (1,219 m.)

SERIE DEL FABRICANTE: 562 EQUIPO: SEGUNDO CONDENSADOR DE DESTILADO VERTICAL.

CLAVE: EA-02 B

SERVICIO: Condensador de vapores del domo de la columna DA-01

MARCA: Brighton Copper WKS. N.S.

MATERIAL DE LA

ENVOLVENTE: Cobre.

DIAMETRO DE LA

ENVOLVENTE: 3 3/4" (9.5 cm.)

SUPERFICIE DE

CALENTAMIENTO: $7.854 \text{ pies}^2 (0.7296 \text{ m}^2)$

NUMERO DE FLUXES: 30 tubos.

MATERIAL: Cobre.

DIAMETRO: 1/4" (0.635 cm.)

LONGITUD: 4 pies (1.219 m.)

NUMERO DE SERIE

DEL FABRICANTE: 563

EQUIPO: TERCER CONDENSADOR DE DESTILADO

CLAVE: FA-02 C

SERVICIO: Condensador de vapores del domo de la columna DA-01

MARCA: Brighton Copper WKS. N.S.

MATERIAL DE LA

ENVOLVENTE: Cobre.

DIAMETRO DE LA

ENVOLVENTE: 3 3/4" (9.5 cm)

SUPERFICIE DE

CALENTAMIENTO: 3.927 pies² (0.3653 m²)

NUMERO DE FLUXES: 30 tubos.

MATERIAL: Cobre.

DIAMETRO: 1/4" (0.635 cm.)

IONGITUD: 2 pies (0.6095 m.)

EQUIPO: Subenfriador de destilado.

CLAVE: EA-03

SERVICIO: Subenfriador de producto destilado.

MATERIAL DE LA ENVOLVENTE:

MATERIAL DE LA

Acero al carbón.

DIAMETRO DE LA

ENVOLVENTE: 8" (20.3 cm.)

LONGITUD: 13 3/4 " (35 cm.)

EQUIPO: ENFRIADOR DE RESIDUO

CLAVE: FA-04

SERVICIO: Enfriador del residuo obtenido

MATERIAL DE LA ENVOLVENTE: Cobre

DIAMETRO DE LA ENVOLVENTE: 4 1/2 " (11.5 cm)

SUPERFICIE DE CALENTAMIENTO: 1.288 pies² (0.1196 m²)

NUMERO DE FLUXES: 8 tubos

DIAMETRO: 3/8" (0.9525 cm.)

1.0NGITUD: 1.64' (0.50 m.)

EQUIPO: TANQUE DE ALIMENTACION

CLAVE: FA-01

SERVICIO: Tanque alimentador a la torre DA-01

MATERIAL: Acero inoxidable

DIAMETRO: 22 3/4 " (57.64 cm)

LONGITUD: 35 3/4 " (90.5 cm.)

VOLUMEN: 236 1ts.

TIPO: Cilindrico vertical

EQUIPO: TANQUE RECIBIDOR DE DESTILADO

CLAVE: FA-02

SERVICIO: Tanque recibidor de destilado

MATERIAL: Acero al carbón

DIAMETRO: 16 3/16 " (41 cm)

LONGITUD: 29 2/16 " (74 cm)

VOLUMEN: 97.7 litros

TIPO: Cilindrico horizontal

EQUIPO: TANQUE RECIBIDOR DE RESIDUO

CLAVE: FA-03

SERVICIO: Tanque recibidor de producto de residuo

MATERIAL: Acero al carbón

DIAMETRO: 16 3/16 " (41 cm)

LONGITUD: 29 2/16 " (74 cm)

VOLUMEN: 97.7 litros

TIPO: Cilindrico horizontal

EQUIPO: BOMBA CENTRIFUGA HORIZONTAL

CLAVE: GA-01

SERVICIO: Romba de alimentación a la torre DA-01

ACCIONADOR: Motor eléctrico

MARCA: MASTER

H.P.: 1/4

FASES: 3

CICLOS: 50-60

R.P.M. : 1725-1425

MARCA: WESTRO

EQUIPO: BOMBA CENTRIFUÇA HORIZONTAL

CLAVE: GA-02

SERVICIO: Bomba de residuo de la torre DA-01

ACCIONADOR: Motor eléctrico

MARCA: MEIDENSHA ELECTRIC

H.P.: 1/4

FASES:

CICLOS: 50-60

R.P.M.: 1690

MARCA: SUPER

EQUIPO: AGITADOR DE LA ALIMENTACION

3

CLAVE: GD-01

SERVICIO: Agitador del Tanque de alimentación FA-01

ACCIONADOR: Motor eléctrico

TIPO: Hélice, montado sobre eje vertical

3.5 INSTRUMENTACION DE LA COLUNNA DE DESTILACION

INDICADORES DE FLUJO

Rotámetros tipo flotador, elemento primario de medición.

CLAVE	SERVICIO	CARACTERISTICAS	LOCALIZACION
Fl-01	MEDIDOR DE FLUJO DE ALIMENTACION	ESCALA: 0-25; marca: Fischer & Porter	Tablero de control
F1-02	MEDIDOR DE FLUJO DE RESIDUO	ESCALA: 0-5; s/marca	Tablero de control
FI-03	MEDIDOR DE FLUJO DE DESTILADO	ESCALA: 0-1.27 LPM; marca W & T	Tablero de control
F1-04	MEDIDOR DE FLUJO DE REFLUJO	ESCALA: 0-25; marca Fischer & Porter	Tablero de control
F1-05	MEDIDOR DE FLUJO DE AGUA DE ENFRIAMIEN- TO	ESCALA: 0-100 % de flujo máximo; marca W & T de México.	Salida de agua de enfriamiento

INDICADORES DE PRESION

Manômetros de tubo Bourdón tipo carátula de reloj; elemento primario de medición.

CLAVE	SERVICIO	CARACTERISTICAS	LOCALIZACION
PI-01	PRESION DE VAPOR DEL PRECALENTADOR	Escala: 0-4 Kg/cm ² ; diá- metro: 16 cm; marca: METRON	Entrada de vapor de la válvula neumática
PI-02	PRESION DE VAPOR DE CALENTAMIENTO A LA TORRE DA-01	Escala: 0-2 Kg/cm ² ; diámetro:5.2 cm marca:METRON	Tablero de control
PI-03	PRESION EN EL DOMO DE LA TORRE DA-01	Escala: 0-26 cm, vac. 0-2 Kg/cm ² ; diámetro: 9.5 cm; marca: ASH- CROFT	Domo de la Torre DA-01
PI-04	PRESION DE DESCARGA DE LA BOMBA GA-01	Escala:0-4 Kg/cm ² ; diámetro: 7 cm; marca: ASHCROFT	Tablero de Control

CLAVE	SERVICIO	CARACTERISTICAS	LOCALIZACION
PI-05	PRESION DE DES- CARGA BOMBA GA-01	Diámetro: 7 cm; Escala: 0-4 Kg/cm ² ; Marca: Ash croft.	Tablero de Control

INDICADOR DE NIVEL DE VIDRIO

Indicadores de tubo, elemento primario de medición.

CLAVE	SERVICIO	CARACTERISTICAS	LOCALIZACION
LI-01	NIVEL DEL FONDO DE LA TORRE DA-01	Longitud: 28 3/4 " (73 cm) Diámetro 5/8 " (1.58 cm)	Fondo de la Torre DA-01.
LI-02	NIVEL DEL TANQUE DE DESTILADO FA-02	Longitud: 12 1/4 " (31 cm) Diámetro: 5/8 " (1.58 cm)	Tanque de destilado FA-02.
L1-03	NIVEL DEL TANQUE DE RESIDUO	Longitud: 12 1/4 " (31 cm) Diámetro: 5/8 " (1.58 cm)	

INDICADOR DE TEMPERATURA

CLAVE	SERVICIO	CARACTERISTICAS	LOCALIZACION
T1-01	TEMPERATURA DE A MENTACION	ALI Bulbo de mercurio; Marca: Palmer; Rango: 30-400 °F	Tablero de Control
T1-02	TEMPERATURA DEL RESIDUO	Bulbo de mercurio; Marca: Palmer; Rango: 30-300°F	Tablero de Control
TI-03	TEMPERATURA DEL REFLUJO	Bulbo de mercurio; Marca: Palmer; Rango: 30-300 F	Tablero de Control
TI-04	TEMPERATURA DEL DESTILADO	Bulbo de mercurio; Marça; Palmer; Rango: 30-300 °F	Tablero de Control
TI-05	TEMPERATURA DEL RESIDUO	Carátula de reloj; Marca: American; Rango: 0-200 ⁰ F Diámetro: 5.3 cm	Tablero de Control

REGISTRADOR DE TEMPERATURA

CLAVE	SERVICIO	CARACTERISTICAS	LOCALIZACION
TR-01	INDICADOR Y REGISTRADOR DE TEMPERATURA	Analógico de aguja móvil, registrador de gráfica de tira, rango: 0-160°C, marca: BRISTOL'S	Tablero de control (lado sur de la torr DA-01)
TC-01	TEMPERATURA DE ALIMENTACION	Sistema termal de mercu- rio, transmisor neumático de acción reversa, válvula neumática	Tablero de control (parte inferior de la torre DA-01)

TERMOPARES

El equipo consta de 24 termopares, distribuidos en el cuerpo de la torre de destilación DA-01 para enviar la señal a un multipotenciómetro marca Uneywell con un rango de 0 a 200 °C, indicando las temperaturas en cada uno de los platos.

CLAVE	LOCALIZACION
TW-01	Plato 01 de la torre DA-01
TW-02	Plato 02 de la torre DA-01
TW-03	Plato 03 de la torre DA-01
TW-04	Plato 04 de la torre DA-01
TW-05	Plato 05 de la torre DA-01
TW-06	Plato 06 de la torre DA-01
TW-07	Plato 07 de la torre DA-01
TW-08	Plato 08 de la torre DA-01
TW-09	Plato 09 de la torre DA-01
TW-10	Plato 10 de la torre DA-01
TW-11	Plato 11 de la torre DA-01
TW-12	Plato 12 de la torre DA-01
TW-13	Plato 13 de la torre DA-01
TW-14	Plato 14 de la torre DA-01
TW-15	Plato 15 de la torre DA-01
TW-16	Plato 16 de la torre DA-01
TW-17	Plato 17 de la torre DA-01
TW-18	Domo de la torre DA-01
TW-19	Salida de agua del enfriador de residuo EA-04
TW-20	Agua de enfriamiento a la salida del condensador EA-02 C
TW-21	Flujo de alimentación a la torre DA-01
TW-22	Fondo de la torre DA-01
TW-23	Vapores que entran a los condensadores EA-02 A
TW-24	Residuo de la mezcla a la salida del enfriador EA-04

CAPITULO 4 DESCRIPCION DEL PROCESO

CONTENIDO

- 4.1 ALIMENTACION
- 4.2 PRECALENTAMIENTO
- 4.3 VAPOR DE CALENTAMIENTO
- 4.4 CONDENSACION
- 4.5 RESIDUO
- 4.6 AGUA DE ENFRIAMIENTO

CAPITULO 4

DESCRIPCION DEL PROCESO

4.1 ALIMENTACION

La mezcla a destilar se prepara en el tanque de alimentación FA-01, en donde se homogeniza mediante el agitador GD-01. Esta mezcla se alimenta a la columna por el plato número 3 mediante la bomba de alimentación GA-01, pasando previamente por los filtros FD-01 A, B y C y el medidor de flujo FI-01.

4.2 PRECALENTAMIENTO

La mezcla que sale del medidor de flujo FI-01 pasa por el precalentador EA-01 de donde sale a una temperatura entre 70 y 80 °C y una presión de 1.7 $\rm Kg/cm^2$ manométricas.

La torre de destilación puede operar en tres formas diferentes, a saber, presión atmosférica, vacío y presión mayor a la atmosférica. En este caso se trabajó a presión atmosférica.

4.3 VAPOR DE CALENTAMIENTO

La carga térmica necesaria para la operación de la torre es suministrada por el rehervidor, utilizando vapor saturado que se controla mediante una válvula reguladora de presión, en un rango de 0 a 2 Kg/cm².

4.4. CONDENSACION

Los vapores obtenidos en el domo de la torre se encuentran a una temperatura de 90 °C aproximadamente, los cuales son enviados hacia los condensadores EA-02 A, B y C, de donde se obtiene un destilado con una temperatura de 65°C, que se envía al subenfriador de destilado EA-03, almacenándose posteriormente en el tanque recibidor de destilado FA-02 a una temperatura aproximada de 30 °C.

4.5 RESIDUO

El residuo se obtiene por la parte inferior de la torre DA-01 con una temperatura entre 115 y 125 °C, el cual se envía al enfriador de residuo EA-04, saliendo a una temperatura de 30°C aproximadamente, almacenándose enseguida en el tanque de almacenamiento FA-03 por medio de la bomba GA-02.

4.6 AGUA DE ENFRIAMIENTO

El agua de enfriamiento se alimenta al subenfriador de destilado EA-03, luego pasa a los condensadores de destilado EA-02 A, B y C y finalmente a la rejilla recolectora. Agua de enfriamiento se alimenta también al enfriador de residuo EA-04 y posteriormente a la rejilla recolectora.

CAPITULO 5: EXPERIMENTACION Y RESULTADOS

CONTENIDO

- 5.1 OBJETIVO DE LA EXPERIMENTACION
- 5.2 LISTA DE VARIABLES A MEDIR DURANTE LA EXPERIMENTACION
- 5.3 DESCRIPCION DE VARIABLES Y SUS MODIFICACIONES DURANTE LA EXPERIMENTACION EN LA COLUMNA DE DESTILACION
- 5,4 INFORMACION GENERADA DURANTE LA REALIZACION DEL PRESENTE TRABAJO

CAPITULO 5: EXPERIMENTACION Y RESULTADOS

5.1 OBJETIVO DE LA EXPERIMENTACION

La experimentación se realizó con el objeto de encontrar las condiciones de operación adecuadas en la columna de destilación, para la mezcla MEG-ACUA, buscando obtener un residuo de 80% en peso y elaborar la técnica de operación para que realicen la práctica los alumnos y profesores.

Al experimentar en la columna se procuró que las condiciones de trabajo fueran fácilmente reproducibles durante la operación de la columna de destilación, por los alumnos que realizan las prácticas correspondientes a la asignatura de Transferencia de Masa, esperando resultados formativos.

A continuación se describen los pasos que se consideraron durante la experimentación.

Se propuso una secuencia de operación que consistió en:

- Tener disponibles los servicios auxiliares que se requieren durante la experimentación como son los siguientes: vapor de calentamiento, agua de enfriamiento, aire de instrumentos y corriente eléctrica.
- 2. Tener el equipo en condiciones adecuadas para la operación.
- La primera etapa de corridas experimentales en el equipo se realizó utilizando la técnica de operación del equipo propuesta en el manual de transferencia de masa. (Ver bibliografía)

Durante la experimentación se midieron las siguentes variables: temperaturas, flujo de alimentación, flujo de destilado, flujo de residuo, flujo de reflujo y la presión del vapor de calentamiento. Al analizar los resultados obtenidos se concluyó que la técnica empleada no era la adecuada para la mezcla MEG-AGUA, ya que la separación fue del 28% en peso en el residuo como se ve en las corridas 1, 2 y 3 de la Tabla 5-4. Para conocer la composición de las muestras se empleó el método de análisis por refractometría.

4. Los resultados que se obtuvieron en cada corrida se analizaron y

discutieron en un taller organizado para este fin originando las modificaciones a las variables a manejar en las futuras corridas. Para ordenar la información experimental obtenida fue necesario elaborar un formato y tablas de apoyo para realizar la práctica en forma adecuada.

5.2 LISTA DE VARIABLES A MEDIR DURANTE LA EXPERIMENTACION

- a) Antes del experimento
- V_{TT} (1) Volumen inicial de mezcla en el tanque de alimentación.
- C_{Λ} (% en peso) Composición inicial de la alimentación.
- V_{T} (1) Volumen del tanque de alimentación después de inundar el plato N° 3.
- b) Durante la operación

t	(min)	Tiempo

P_v (Kg/cm²) Presión de vapor de calentamiento

F_c (1/min) Flujo del condensado de vapor de calentamiento

V_c (1) Volumen acumulado del condensado

T_f (°C) Temperatura del fondo de la columna

T_d (°C) Temperatura del domo de la torre

T_A (°C) Temperatura de la mezcla de alimentación

F_A (1/min) Flujo de la mezcla de alimentación

F_R (1/min) Flujo de residuo

F_n (1/min) Flujo de destilado

V_D (1) Volumen acumulado de destilado

 C_{p} (% en peso) Composición del residuo $C_{\mathbf{n}}$ (% en peso) Composición en el destilado $T_{\rm D}$ (°C) Temperatura en el destilado T_R (°C) Temperatura en el residuo Después de la experimentación c) (% en peso) Composición del destilado acumulado $c_{\rm p}$ Volumen total del residuo V_{RT} (1) Composición del residuo acumulado C_{RT} (% en peso) PA. Plato de alimentación Composición en los platos 1, 3, 5, 7, 9, 11, C (% en peso) 13, 15, 17 y destilado

Volumen final del tanque de alimentación

 V_{FFT-1} (1)

5.3 DESCRIPCION DE VARIABLES Y SUS MODIFICACIONES DURANTE LA EXPERIMENTACION EN LA COLUMNA DE DESTILACION

Tomando en cuenta las condiciones del equipo y los servicios auxiliares como limitantes y no perdiendo de vista que se desea obtener un residuo con 80% de composición, se diseñó un programa de experimentación donde se fueron cambiando las variables de operación, con el propósito de encontrar las condiciones fijadas.

LISTA DE VARIABLES QUE SE MANEJARON

1.	Flujo de alimentación	(1/min)
2.	Flujo de reflujo	(1/min)
3.	Temperatura de alimentación	(°C)
4.	Plato de alimentación	
5.	Presión de vapor de calentamiento	(Kg/cm ²)
6.	Flujo de destilado	(1/min)
7.	Composición de la alimentación	(% en peso MEG)
8.	Volumen inicial de operación	(1)
9.	Flujo de residuo	(1/min)

A continuación se describen como fueron modificándose las condiciones de las variables y los resultados registrados en las corridas efectuadas.

1. Plujo de alimentación

Las condiciones que se obtuvieron variando el flujo de alimentación se resumen en la tabla siguiente:

VARIACION DE LA COMPOSICION EN EL RESIDUO SEGUN EL FILIJO DE ALIMENTACION

Condición de flujo de alimentación	а	ь	c			
Número total de corridas efectuadas	3	5	. 14			
Número de las corridas a que corresponde	1 a 1a 3	5 a 1a 9	10 a 1a 24			
Intervalo del flujo de alimentación (1/min)	1.75-1.85	0.675-0.850	0.35-0.50			
Composición obtenida en el residuo en fracción peso MEG	268-378	57%-75%	76%-81%			

TABLA 5-1

*Ver tabla 5-4

Condición a: Se alimentó en un intervalo de 1.75-1.85 1/min. obteniédose un residuo con composiciones entre 26-37%, lo cual no cumple con el objetivo establecido de obtener una composición de 80% en peso en el residuo.

También se observó que la columna vomitaba la mezcla al aumentar la presión de vapor de calentamiento, por lo que se decidió disminuir el flujo de al \underline{i} mentación a otra condición.

Condición b: Al disminuir el flujo entre el intervalo 0.675-0.850 1/min se

obtuvo un aumento en la composición del residuo entre 57-75 % dando como resultado que no existiera vómito de la mezcla.

Condición c: Considerando que uno de los factores limitantes del equipo son los condensadores porque su instalación no es la correcta, ya que la línea de vapores entran por la parte inferior del primer condensador, originando con esto que se acumule el destilado y posteriormente se descargue de golpe. Para disminuir este efecto se disminuyó el flujo de alimentación entre 0.35 - 0.50 l/min. Como consecuencia el equipo trabajó sin vomitar obteniéndose un residuo con una composición entre 76 - 81 % en fracción peso, cumpliéndose con esto el objetivo fijado.

Reflujo externo

Como consecuencia de que el equipo no se encuentra aislado se observó que tiene un reflujo interior muy grande, que no es medible y que aumenta gradualmente al ir descendiendo a través de la columna.

Durante la primera etapa de experimentación se trabajó con el reflujo externo, dando como resultado que por debajo del plato de alimentación presentaba concentraciones menores con respecto a la composición de alimentación y por lo tanto la composición en el residuo fue baja, por lo que se decidió no utilizar reflujo exterior.

3. Temperatura de alimentación

En la primera etapa de experimentación se trabajó a temperatura ambiente en el flujo de alimentación, con esto se observó que aumentó el reflujo interno en la columna, por lo que se decidió aumentar la temperatura de alimentación hasta la temperatura de saturación de la mezcla MEG-AGUA.

La tabla siguiente muestra los cambios en la temperatura de alimentación.

Condición en la temperatura de alimentación	a	b				
Intervalo de la temperatura de alimentación	68°C-76°C	80°C-90°C				
Número de corridas efectua- das en cada condición	5	6				
Número de las corridas que se realizaron (Ver Tabla 5-4)	9, 11, 12 17 y 20	13, 18, 19 22, 23, 24				
Intervalo de la composición del residuo (% en peso)	76 - 79	79 - 82				
Intervalo en la composición entre los platos 3 al 11	25 ~ 0.4 %	25 - 2 %				

Tabla 5-2. Variación de la temperatura de alimentación. (Ver Tabla 5-4)

Condición a: Se observó que en el residuo se obtuvo una composición entre 76-79%, el cual se encuentra muy cercano al objetivo fijado.

Condición b: Se obtuvo un residuo entre 79-82% en peso.

También aumentó la composición entre los platos 3 y 11 en el intervalo 25 al 2%, condición bastante aceptable, además de que el análisis de las muestras es más fácil de realizar.

4. Plato de alimentación

Otra de las variables que se manejaron fue el plato de alimentación para la operación de la columna realizando los siguientes cambios en el número de plato de alimentación, que se describen en la tabla siguiente:

Condiciones del plato de alimentación	a	b	с	ď	e
Número de plato en el cual se alimenta	15	10	6	4	3
Total de corridas realizadas	9	2	1	10	1
Corridas experimentales correspondientes	1 a 9	10, 11	12	13, 15, 17 18, 1, 23	14
Variación en las compo- siciones en la sección de agotamiento	N O	ACE	РТАВ	LES	ACEPTABLE

Tabla 5-3. Variación del plato de alimentación. (Ver Tabla 5-4)

Condiciones a, b, c, d: El comportamiento en estas condiciones fue NO aceptable porque la composición en los platos en la sección de agotamiento fueron menores que la composición en el plato de alimentación. Esta composición debió ir aumentando del plato de alimentación al residuo; en algunas corridas su comportamiento fue constante; en esta condición la columna no destiló sino que trabajó como tubo; por lo cual no cumplió el

principio de la destilación en columna de platos.

Condición e: Las composiciones que se obtuvieron por debajo del plato de alimentación fueron aceptables, aumentando gradualmente desde el residuo al plato de alimentación; por esta razón se eligió el plato #3 para alimentar la columna en la práctica de la destilación intermitente.

5. Presión de vapor de calentamiento

Durante la primera etapa del trabajo experimental se utilizó al inicio de la operación una presión de vapor de calentamiento de 2 Kg/cm², dando como resultado que la torre se inundara (vomitara) debido a un gran aumento del reflujo interior, lo que da origen a la disminución de la eficiencia del equipo. Cuando se disminuyó la presión de vapor de calentamiento a valores de 1 Kg/cm² la columna presentó lloriqueo, esto es, al ser poco el vapor de calentamiento los vapores que ascienden por los platos de calentamiento se condensan y caen como gotas en las chimeneas de las campanas en cada plato a través de toda la columna. Este fenómeno se explica porque las chimeneas de los platos están más abajo de la altura del vertedero.

Posteriormente se propuso regular el ritmo de la alimentación del vapor de calentamiento iniciando con 1 Kg/cm², aumentando gradualmente 0.1 Kg/cm² cada 10 minutos, variando la presión de calentamiento en función del aumento de la composición del residuo y así mantener el flujo de destilado constante durante el tiempo de la experimentación.

6. Flujo del destilado

El flujo de destilado se controló únicamente con la presión de vapor de calentamiento, dejando totalmente abierta la válvula correspondiente y así lograr que el flujo de destilado sea constante.

7. Concentración de la alimentación

Se realizaron corridas con una composición en fracción peso del 50% y 25%, con lo cual no se obtuvieron cambios considerables en la composición en el residuo, por lo tanto se decidió trabajar con una composición de 20% a 25%; con esto la operación del equipo es ilustrativa.

8. Número del plato inundado al inicio de la operación

Al inicio, se inundó hasta el plato número 15, operando la columna a destilación intermitente con el propósito de concentrar el residuo y después operar la columna en forma continua; duran te esta condición se observó que al alimentar el vapor de calentamiento no destiló la columna, por lo que se decidió cambiar el nivel de inundación hasta llegar al plato número 3.

Al concluir con las etapas de experimentación el total de corridas efectuadas fueron 25, obteniendo las condiciones de operación recomendables para operar la columna.

Estas condiciones se resumen enseguida:

VADTABLE

AMCIMINI	COMPTCTON OBTENION
Flujo de alimentación	0.35 a 0.50 1/min
Flujo externo	Sin reflujo
Temperatura de alimentación	80 a 90 °C
Plato de alimentación	Número 3
Presión de vapor de calent <u>a</u> miento	1 a 2 Kg/cm ² con variación de 0.1 Kg/cm ² cada 10 minutos
Flujo de destilado	Constante, en función de la presión de vapor
Composición en la aliment <u>a</u> ción	20 a 25 % en peso MEG
Múmero de plato inundado al inicio de la operación	Plato número 3

CONDICTON OPPENIES

Durante la destilación en la columna de platos se observaron dos etapas principales:

- 1. Arranque de la columna que consiste en inundar con una mezcla MEG-AGUA hasta el plato número 3 y destilar en forma intermitente hasta que la mezcla llegue al nivel del plato número 1.
- 2. Reanudar inmediatamente la alimentación y destilar en forma continua, por lo que se decidió realizar la práctica en dos sesiones; la primera es de introducción, con el propósito de que el alumno conozca el equipo y realice la operación en forma intermitente. La segunda sesión tiene como propósito operar el equipo en forma continua y obtener los resultados que se tienen como objetivo, por lo que en concreto se proponen dos prácticas para destilar en la columna:
- A. Práctica de Destilación Intermitente

B. Práctica de Destilación Continua

En la Tabla 5-4 se encuentra el resumen de los datos que se obtuvieron durante el trabajo de experimentación.

5.4 INFORMACION GENERADA DURANTE LA REALIZACION DEL PRESENTE TRABAJO

- Descripción del equipo y diagrama de flujo de la columna de platos. (Ver página 22).
- 2. Técnica de operación para la práctica de destilación $I_{\underline{n}}$ termitente y Continua.
- Formatos para la información experimental requerida.
 (Hoja de datos)
- 4. Técnica para el análisis de las muestras.
- 5. Lista de variables a medir durante la experimentación.
- 6. Condiciones recomendables de operación

TABLA 5.4 RESUMEN DE CORRIDAS EXPERIMENTALES

VARIABLES MEDIBLES	1	2	3	4	5	6	7	8	9	10	11	12	ช	14	15	16	17	18	19	20	21	zz	23	24	25
PLATO DE ALIMENTACION	15	15	15	15	15	15	15	15	15	10	10	6	4	3	,	3	-	4	4	<u>.</u>	4	L	<u></u>	3	1
COMPOSICION EN LA ALIMENTACION, % EN PESO	19	22	19	an	19	19	17	15	19	20	an	90	46	25	25	<u>-</u>	23	27.5	25.6	23	24.3	27.A	27.B	ļ <u>-</u>	\vdash
PLATO INUNDADO AL INICIO DE LA OPERACION								В						_					3	3	3	3	3	3	3
FLUJO PROMEDIO DE LA ALIMENTACION, lts/min	1.75	1.95	1.87		0.67	0.6	0.6	0.88	0.77	0.42	0.45	D.37	0.35	0.45	0.35	0.33	0.50	0.55	0.37	0.39	0.35	0.45	0.45	0.5	0.8
TEMPERATURA DE LA ALIMENTACION OC	88	95	80		78				75		G.	72	æo	78	68	75	74	90	80	76	78	80	B3	86	86
FLUJO PROMEDIO DEL RESIDUO, lts/min	1.2	1.15	1.15		0.2	0.2	0.16	0.37	0.12		0.13	0.13	0.06	p. 18	p .07 6	0.18	0.18	0.1	0.065	0.147	0.07	0.15	0.13	0.17	0.3
	0.55	0.75	0.83	0.60	0.50	0.50	0.33	0.55	0.50	0.36	D.Ż2		0.26	0.27	0.27	0.19	0.32	0.31	0.26	0.23	0.28	0.26	0.31	0.59	0.90
PRESION DEL VAPOR DE CALEN- TAMIENTO PROMEDIO, Kg/cm ²	1.0	1.5	1.8	1.6				1.4	1.7	1.5	1.5	1.4	1.6	1.5	1.5	1.6	1.4	1.6	1.6	1.5	1.8	1.7	1.8	1.6_	1.6
PRESION DEL VAPOR DE CALEN- TAMIENTO AL FINAL, Kg/cm2				2.0	2.0	2.0	2.0	1.6	2.0	2.0	2.0	2.0	2.0	1.8	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	5.0	2.0
FLUJO DEL VAPOR CONDENSADO PROMEDIO lts/min				0.56	0.66	0.52		0.68	8.0	0.56	0.58	0.66	2.42	p. 22	p.36	0.36	3.38	0.36	0.37	0.52	0.65	0.50	0.37	0.50	0.74
			-	-	0.06	-							0.01	_			_				0.04				Ш
PLATO 19 PLATO 18	1.1	14.0		د.0	0.5			2.0 3.5		D.22 D.35			0.025 0.025								1.42			1.773	1.771
PLATO 16				5.0	5.0		-		75.D	0.67				-			-		·	1				0.42	D.21
PLATO 15	18	20	16					74	77.7	1.0			0.057				-	0.4	0.02	0.52	3.33		0.5	0.69	
PLATO 14	ļ	20	16	<u> </u>			ļ	12		1,1	5.0		0.16					0.6				2			0.23
PLATO 13				ļ	_		<u> </u>			2.0			0.29	0.234	0.2		p. 136	0.9	U.2	2.62	3.44	7.81	ı.ue	12.W	
PLATO 12		_	<u> </u>	 			<u> </u>	-				2.0			_		-		- c	-		= ,,	2.00	2.52	0 =
PLATO 11 PLATO 10	18	20	16	23	14	11	7	12	17.5	3.0		-	D. 742 D. 707					1.6	0.65	3.2	}	3,44	224	2.32	10.7
PLATO 9	1 17	<u>a</u>	 ''	 			⊢' —	٠.	-	۳	\vdash	-	J.,u,	-:-	۳		13.4		1 -	0.00	E 70	3.00	2 57	/. SE	1.515
PLATO 8	18	20	24	 	 	 	 	11	19	16	 	7	1.0	3.0	1.0	0.7	1.50	9.0	12.5	0.76	2,45	2.21	20.2	7.00	1,73
PLATO 7		20	24	23	14	10	7.0	10.5	<u> </u>	16.5	14.0		3.0	4.0		3.72		7.0	9.1	12.52	6.07	5.06	4.5	6.07	
PLATO 6		-	T	T =			1	1	T		<u> </u>		7.0	6.0		1	-		ļ.					İ	
PLATO 5	18	ao	18				9.0	11.0	20.0	16.0	\Box		10.0	11.0	8.0	8.0	9.5	13.0	22.	18.6	10.1	29.3	8.91	5.56	5.56
PLATO 4	19	\Box					T		14.5	T	14.5		46	1										I	
PLATO 3	16	20	17	17	16	13	34	23	20.5	17.0	17.0	45	37	27	ao	36	21		29.2	<u> </u>	25.7				_
RESTDUO	26	37	35	70	75	67	72	53	Œ	80	65	78	80	76	80	79	76	79	79.5	79	B1.04	79.0	B1.04	79.	75.49

LABORATORIO DE INGENIPRIA OUIMIC.

PRACTICA: DESTILACIÓN CONTINUA PN TORRE DE PLATOS

TARLA 5.5

PORMATO PARA LA ISPORMACION EXPERIMENTAL REQUERIDA

Uluviassia Maccional
Arthuración PECHA: CDRRIDA # 24 HORARIO: GRUPO: PPOFESOR:

OUR DE ALIMENTACION A

COMPOSICION DE LA ALI-MENTACION CAPA A DEBO VOLUMEN DEL TANQUE DE ALIMENTACION DESPUES DE INFINDAR PLATO 3 AZ=170 d

VOLUMEN FINAL DEL TAN-PUE DE ALIMENTACION 131 150 : COMPOSICION DEL DESTILA DO ACUMULADO CO APORTO

	Į			COMPOSICION RESIDUO										
T	TIEMPO	PRESION DEL		VOLUMEN ACU	emperat	iras en			PLUJO DE RE	FLUJO DE DESTILADO	VOLUMEN ACU-			COMPO
	t	VAPOR PV	₽c	CONDENSADO Vc	PONDO Tf		LIMPHTA CION, T	Pa	Pz	r _d	PESTILADO		CIONCO RREGIE	
ł	-tater	1.0	li/eini_				1.c.	11/212)	- II-/=10)			╁┻╼╌	_Is	
ŀ	10	1.0	0.660	10.0	714	88.5	 		 	 	1	1,3565	1,3585	25.80
T	20	1.1	0.680	18.0	115	88.5				0.630	4.630	1. 75/15	1.3905	27.85
1	30	1.3	0.740	24.0	119	88.5				0.700	11,000	1.369	1.3705	38. nn
Ε	40	1.6	0.700	32.0	124	89.0			Ì	0.630	19,000	1,3835	1,3855	53.00
Γ	50	1.8	0.260	36,45	124	89.0	70.0	0.500	0.220	0.210	22,360	1.4099	1,4175	78.5N
[60	2.0	0.440	40.2	128	89.0	94.0	0.500	0.230	_0.220	26.560	1,4095	1.6115	
F	70	2.0	0.500	43.45	128	0.68	86.0	0.500	0.170	0.390	29,290	1.4085	1.4105	28.50
ļ				Tat. 47.45							Tot. 33.10			
t	لــــــــــــــــــــــــــــــــــــــ						<u> </u>				<u> </u>			

VOLUMEN TOTAL

ACUMULADO CAPIA, 33 Peso

TEMP. EN EL DESTILADO 34.0 °C

TEMPERATURA PN PI RESIDUO 25.0°C

PLATO DE ALIMENTACION: 3

								احما		-1-	<u> </u>	Z N	_2_0_1	_0_1_4	T 0 9						
ŧ	PLATOS	PLAT	011	PLATO	تحا	PLATO	1 5	PLATO	1.7	PLATO	4 9	PLATO	1 31	PLATO.	L 13	PLATO	115	PLATO	417	DESTIL	NDO
[CORRIDA	le	\$peso	Ic	1 peso				10450		Breso		Peso		Te#4		& peac		tneso		peso
[Α			1.3525	19.75	1.335	5.568	1,3390	6.07	1.3375	4.55	1,3355	2.52	1.3395	1.203	1,3372	0.691	1.33 e	0.73		
- [

1 PESO MEG = 1 013.17 I - 1 350.56

i_c = 1 + 0.002

DESTILACION EN TORRE DE PLATOS TECNICA DE OPERACION

OPERACION INTERMITENTE

- Preparar en el tanque de alimentación FA-01 150 litros, aproximadamente de una mezcla MEG-AGUA, que tenga una composición entre 20 y 30 % en peso MEG.
- 2 Agitar durante 5 minutos para obtener una mezcla homogénea mediante el agitador GD-01.
- 3 Alinear la alimentación desde el tanque FA-01 al plato # 3, haciéndola pasar por los filtros FB-01 A, B y C y el table ro de control.
- 4 Alinear el destilado, mandando las vaporizaciones del domo de la torre a los condensadores EA-02 A, B y C (en ese or den); y el total de esos condensados al tanque recibidor de destilado FA-02 a través del tablero de control.
- 5 Cerrar la válvula de descarga del residuo.
- 6 Alinear agua de enfriamiento al subenfriador de destilado EA-03, a los condensadores EA-02 A, B y C, al rotámetro FI-05 y a la rejilla recolectora (en ese orden).
- 7 Alinear el vapor de calentamiento, verificando su trayectoria desde la caldera, hasta la válvula reguladora de presión que abastece la torre.
- 8 Alimentar la mezcla mediante la bomba GA-01, hasta inundar el plato # 3. Parar en ese momento la bomba y cerrar la válvula de alimentación a la torre.
- 9 Alimentar agua de enfriamiento a los equipos indicados en 6

- y descargarla al drenaje a través del rotámetro FI-05 tota<u>l</u> mente abierto.
- 10 Alimentar vapor de calentamiento a la calandria de la torre a una presión de 1.0 Kg/cm². Purgar la descarga de condensados a través del by-pass de la trampa de vapor y alinear ésta cuando se haya eliminado el total de condensados acumu lados. Incrementar la presión del vapor, aproximadamente en 0.1 Kg/cm² cada 10 minutos, hasta alcanzar una presión máxima de 2.0 Kg/cm². cuidando que el flujo de condensado de la calandria no sea menor de 0.250 1/min, ni mayor de 1.0 1/min.
- 11 Cada 10 minutos, y en forma simultánea, a partir del momento en que se registre destilado en el rotámetro FI-02:
 -Muestrear residuo y destilado.
 - -Medir el flujo de destilado y el flujo de condensados de la calandria.
- 12 Terminar la operación cuando la concentración en el residuo esté entre 65 y 75 %.
- 13 Cerrar la válvula de suministro de vapor a la calandria de la torre.
- 14 Cerrar la válvula de suministro de agua de enfriamiento a los condensadores EA-02 A, B y Cyal subenfriador de destilado EA-03.
- 15 Medir el volumen final de destilado y determinar su composición.
- 16 Medir el volumen final de residuo y determinar su composición.
- 17 Determinar el volumen total de condensados generados en la calandria de la torre.

DESTILACION EN TORRE DE PLATOS TECNICA DE OPERACION

OPERACION CONTINUA

Para iniciar la operación continua se procede a operar la torre en forma intermitente hasta llegar a las condiciones establecidas en el punto 11. Enseguida continuar con el punto 18.

- 18 Iniciar la alimentación continua en el plato #4, con un flu jo entre 0.3 y 0.5 1/min., precalentándolo en EA-01 a una temperatura aproximada de 80°C, mediante el ajuste del controlador de temperatura colocado en la alimentación de vapor del EA-01.
- 19 Mantener la presión del vapor de calentamiento para estas condiciones, en 2.0 kg/cm², en la calandria de la torre.
- 20 Suministrar agua de enfriamiento al enfriador de residuo EA-04.
- 21 Desalojar el residuo al tanque de almacenamiento FA-03 con la bomba GA-02 a un flujo entre 0.060 y 0.100 1/min. Medir el flujo de residuo en la línea de muestreo con probeta y cronómetro.
- 22 Fijar el flujo de residuo para mantener constante el nivel marcado en el plato # 1.
- 23 Cada 10 minutos, a partir de haber alcanzado el nivel marca do en el plato # 1:
 - -Registrar condiciones de operación (Temperatura, Presión, Nivel).
 - -Muestrear: Destilado, residuo y fase líquida de por lo menos 8 platos representativos, para determinar composiciones.

- 24 Terminar la operación cuado la información mencionada en el punto 23 esté completa.
- 25 Parar: alimentación, descarga de residuo, vapor de calentamiento y agua de enfriamiento.
- 26 Medir el volumen final de destilado y determinar su composición.
- 27 Medir el volumen final de residuo y determinar su composición.
- 28 Determinar el volumen total de condensados generados en la calandría de la torre.

Técnica para el análisis de las muestras.

Para el análisis de las muestras que se obtienen durante la operación se propone la siguiente técnica de análisis.

En el análisis se usa el método por refractometría, que consiste en leer el índice de refracción de la mezcla. Con este valor se utiliza posteriormente una ecuación algebraica en lugar de gráfica para obtener lecturas más exactas de las composiciones en fracción peso MEG.

A continuación se describe la técnica de análisis para las muestras MEG-AGUA.

1. Con el refractómetro se lee el índice de refracción, posteriormente con este dato se emplea la siguiente ecuación para calcular la composición:

\$ en fracción peso =
$$1.013.17 I_c - 1.350.56$$
 (1)

- 2. Se obtienen lecturas directas en el refractómetro de las siguientes muestras: alimentación, residuo, plato N° 3 al 11.
- 3. Para las muestras del plato N° 12 al 20 y el destilado se obtienen composiciones menores de 1% en fracción peso, estas lecturas no se alcanzan a leer en forma directa en el refractómetro dando valores del índice de refracción inferiores a 1.3350; para estas muestras se sigue el tratamiento siguiente:
- a) Se pesa un vaso de precipitados de 100 ml.
- b) Se coloca la muestra en el vaso, según el volumen establecido, según se indica en la Tabla 5-7.

- Al peso anterior (b) se le resta el peso del vaso vacío
 (a) para obtener el peso de la muestra diluída.
- d) Se calienta la muestra (c) hasta ebullición para concentrarla hasta un volumen de 1 ml. aproximadamente; se pesa el vaso con la muestra concentrada.
- e) Al peso del vaso con muestra concentrada (d) se resta el peso del vaso vacío (a) obteniéndose el peso de la muestra concentrada.
- f) Se calcula la relación de pesos mediante el peso de la muestra concentrada (e) entre el peso de muestra diluída
 (c).
- g) Se determina el índice de refracción de la muestra concentrada, obteniéndose el valor de (I).
- h) Se hace la corrección del índice de refracción de la muestra concentrada sumándole 0.002, quedando:

$$I_c = I + 0.002$$

- Mediante la ecuación (1) se calcula el por ciento en peso de la muestra concentrada.
- k) Para obtener la concentración en fracción peso de la muestra original buscada se multiplica el por ciento en peso de la muestra (d) por la relación del peso de la muestra (f) y se divide entre 100.

NUME	RO DE	PLATO	VOLUMEN DE L	A MUESTRA (m1)
	10		2	
	11		3	
	12		4	
	. 13		8	
	1.4		15	
	. 15		25	•
	16		30	
	17		40	
	18		50	
	. 19		75	
	Destila	do	200	

Tabla 5-7. Volumen de muestra diluída que se recomienda concentrar, según el plato de la columna a que corresponde. Se concentran todas las muestras hasta 1 ml. aproximadamente.

LABORATORIO DE INGENIFRIA OUTRICA

Universidad Nacional Autónoma de México PRACTICA: DESTILACION

CONTINUE

EN TORRE DE PLATOS

HOJA DE DATOS DE MUESTRAS CON INDICE DE REFRACCION INFFRIORES A 1.1350

FECHA:	CORRIDA Nº 24	но	RARIO				G	RUPOI					PROPE	SOR:			
CONCE	No. de Muestra PTO	1	2	3	1	5	6	7 .	e	9	10	11	12	13	14	15	16
٨	PESO RECIPIENTE VACTO (g.)						48.25	50.15	49.5	55.3	8.63	49.7					
В	PPSO RECIPIENTE CON MUESTRA (g.)						59.95	62.45	64	88.8	114	106					
с В А	PESO MUESTRA (g.)						11.7	12.3	14.5	33.5	65.37	56.3					
D	PESO RECIPIENTE						50.65	52.15	51.52	58.5	49.4	50.6					
2 - D - A	PESO CONCENTRADO						2.4	2.0	2.02	3,2	0.77						
F=E/C	RELACION DE PESO DE LAS MUESTRAS						0.205	0.1626	0.1393	D.0 955							
I	INDICE DE REFRAC- CION DE LA MUESTRA	1.3505	1.3370	1.3365	1,3353	1.3335	1.3368	1.3052	1.3340	1.3328	1.3305	1.3305					
Ic=I+0.00	INDICE DE REFRAC- CION CORREGIDO DE LA MUESTRA CONC.	1.3525	1.3390	1.3385	1.3375	1.3355	1.3388	1.3372	1.3360	1.3348	1.3315	1.3315					
J=1013.17 c-1350.56	POR CIENTO EN PESO DE LA MUESTRA CON- CENTRADA						5.87	4.25	3.03	1.819							
K~J*F/100	COMPOSICION EN PRAC CION PESO DE LA MUPSTRA ORIGINAL		6.07	5.56	4.55	2.52	1.203	0.691	0.422	3. 173							

DESTILADO

⁺ DESTILADO ACUMULADO

CAPITULO 6: DISCUSION DE LOS RESULTADOS

CONTENIDO

- 6.1 INTRODUCCION
- 6.2 LISTA DE LITERALES UTILIZADAS
- 6.3 DATOS REQUERIDOS PARA REALIZAR LOS CALCULOS
- 6.4 ECUACIONES QUE SE REQUIEREN PARA REALIZAR
 LOS CALCULOS
- 6.5 SECUENCIA PARA REALIZAR EL BALANCE DE MATERIA
- 6.6 SECUENCIA PARA REALIZAR EL BALANCE DE ENERGIA
 TOTAL
- 6.7 CALCULOS PARA DETERMINAR LAS PERDIDAS DE CALOR
- 6.8 EJEMPLO DE CALCULO (EJEMPLO DETALLADO QUE MUESTRA COMO SE LLEGO A LOS RESULTADOS)
- 6.9 ANALISIS DE LOS RESULTADOS

CAPITULO 6: DISCUSION DE LOS RESULTADOS

6.1 INTRODUCCION

Tomando en cuenta las condiciones de instalación del equipo y los resultados obtenidos durante la experimentación, los cálculos que se pueden realizar son:
a) el balance de materia y b) el balance de energía en el equipo, ya que si se pretenden reralizar los cálculos para los métodos de McCabe-Thiele o Ponchon Savarit, sería necesario contar con los datos de la relación de reflujo, el cual no es medible por las siguientes razones: el reflujo interno es muy grande, los flujos molares no son constantes en cada una de las secciones de la columna (las líneas de operación no son rectas) y la columna presenta pérdidas de calor por radiación debido a que no está aislada. Por consiguiente, no pueden realizarse los cálculos por métodos gráficos.

En los siguientes puntos se presenta la metodología para realizar los cálculos.

6.2 LISTA DE LITERALES UTILIZADAS PARA EL CALCULO

Volumen inicial del tanque de alimentación	V _{A1} lts.
Volumen final del tanque de alimentación	VA3 lts.
Volumen acumulado de destilado	V _d Its.
Volumen total del residuo	V _{rt} lts.
Volumen acumulado del condensado	V lts.
Composición de la alimentación	CA % peso
Composición del destilado acumulado	Cd % peso
Composición del residuo acumulado	C % peso
Temperatura del flujo de alimentación	TA °C
Temperatura en el destilado	Td °C
Temperatura en el residuo	Τ, ^O C
Presión del vapor de calentamiento	P _v Kg/cm ²
Intervalo de tiempo durante la experimentación	e min.

6.3 DATOS REQUERIDOS PARA REALIZAR LOS CALCULOS

Nota.- Para realizar estos cálculos se tomaron en cuenta los datos de la corrida experimental Nº 24 (Tabla 5-5)

Volumen total alimentado	v_{TA}	49.00 its.
Volumen total destilado	v _{Td}	33.10 lts.
Volumen total del residuo	V _{Tr}	16.00 lts.
Volumen del vapor condensado	V_{vc}	47.40 lts.
Concentración de la alimentación	V _A	23.23 % peso
Composición del destilado	c _D	0.040 % peso
Composición del residuo	c_R	64.33 % peso
Temperatura de la alimentación	TA	20.00 °C
Temperatura del destilado	Тd	20.00 ^O C
Temperatura del residuo	T_{R}	20.00 °C
Temperatura del vapor	T _v	122.30 °C
Densidad de la alimentación	PA	1.03 Kg/l
Densidad del destilado	$\rho_{\rm D}$	1.00 Kg/i
Densidad del residuo	PR	1.098 Kg/l
Densidad del vapor	Pv	1.00 Kg/i
Presión del destilado	PD	0.79 Kg/cm ²
Presión del vapor de calentamiento		2.17 Kg/cm ²
Calor latente del destilado	λ_{D}	544 cal/Kg
Calor latente del vapor	λ_{v}	524.4 cal/Kg

6.4 ECUACIONES QUE SE REQUIEREN PARA REALIZAR LOS CALCULOS

$$Q_p = Q_T - Q_L$$

donde: $Q_p = Pérdidas$ de calor
 $Q_T = Calor$ total
 $Q_L = Calor$ latente

 $Q_T = w_c \lambda_c$ calor total del vapor de calentamiento a la presión de operación.

$$Q_L = w_D \lambda_D$$
 calor del destilado

% Pérdidas de calor = $Q_p/Q_T \times 100$

6.5 SECUENCIA PARA REALIZAR EL BALANCE DE MATERIA

6.5.1a Volumen de alimentación
$$V_{A1} - V_{A3} = 180 - 131 = 49$$
 lts.

6.5.1b Volumen de destilado
$$V_D = 33.11$$
 lts.

6.5.1c Volumen del residuo
$$V_{\rm p} = 16$$
 lts.

6.5.1d Volumen de destilado + residuo
$$V_{D+R} = 33.11 + 16 = 49.11$$
 lts.

6.5.1e Volumen del condensado del vapor
$$V_v = 47.45$$
 lts.

6.5.2 Composiciones de las corrientes

6.5.2a Composición de la alimentación
$$C_A = 23.23 \%$$
 peso MEG

6.5.2b Composición del destilado
$$C_D = 0.040 \%$$
 peso MEG

6.5.2c Composición del rsiduo
$$C_R = 64.33 \%$$
 peso MEG

6.5.3 Temperaturas de las corrientes (Balance global)

6.5.3a Temperatura de la alimentación
$$T_A = 20^{\circ}C$$

6.5.3b Temperatura del destilado
$$T_D = 20$$
 °C; 35 °C

6.5.3c Temperatura del residuo
$$T_D = 20$$
 °C; 23°C

6.5.4 Densidades de las corrientes

$$P_A = 1.03 \text{ Kg/I}$$

$$\rho_{\rm D}$$
 = 1.00 Kg/l

6.5.4d Densidad del condensado del vapor de calentamiento $\rho_{\rm v}$ = 1.00 Kg/l

6.5.5 Peso en las corrientes

6.5.5a Peso de la alimentación:
$$w_A = P_A V_A = 1.03 \times 49 = 50.47 \text{ Kg}$$

6.5.5b Peso del destilado:
$$w_D = \rho_D V_D = 1.00 \times 33.11 = 33.11 \text{ Kg}$$

6.5.5c Peso del residuo:
$$w_R = \rho_R V_R = 1.098 \times 16 = 17.57 \text{ Kg}$$

6.5.5d Peso del destilado + residuo:

$$w_{D+R} = w_D + w_R = 33.11 + 17.57 = 50.68 \text{ Kg}$$

6.5.5e Peso del condensado del vapor de calentamiento

$$w_v = P_v V_v = 1.00 \times 47.45 = 47.45 \text{ Kg}$$

- 6.5.6 Peso del MEG
- 6.5.6a Peso del MEG de la alimentación

$$W_{MEG-A} = X_{MEG-A}W_A = 0.2323 \times 50.47 = 11.72 \text{ Kg}$$

6.5.6b Peso del MEG en el destilado

$$w_{MEG-D} = x_{MEG-D} w_{D} = 0.0004 \times 33.11 = 0.0132 \text{ Kg}$$

6.5.6c Peso del MEG en el residuo

$$W_{MEG-R} = X_{MEG-R}W_{R} = 0.6433 \times 17.57 = 11.290 \text{ Kg}$$

6.5.6d Peso del MEG del destilado + residuo

$$W_{MEG-D+R} = 0.0132 + 11.290 = 11.3032 \text{ Kg}$$

- 6.5.7 Peso del agua de las corrientes
- 6.5.7a Peso del agua de la alimentación

$$^{W}AGUA = ^{X}AGUA^{W}A = 0.7677 \times 50.47 = 38.75 \cdot Kg$$

6.5.7b Peso del agua del destilado

$$w_{AGUA-D} = x_{AGUA-D} w_{D} = 0.9996 \times 33.11 = 33.0967 \text{ Kg}$$

6.5.7c Peso del agua del residuo

$$w_{AGUA-R} = x_{AGUA-R} w_{R} = 0.3563 \times 17.57 = 6.28 \text{ Kg}$$

6.5.7d Peso del agua de destilado + residuo

$$^{W}AGUA D+R = ^{W}AGUA-D + ^{W}AGUA-R = 33.096 + 6.28 = 39.376 Kg$$

- 6.6 SECUENCIA PARA REALIZAR EL BALANCE DE ENERGIA TOTAL
- 6.6.1 Presión de operación
- 6.6.1a Presión del destilado: $P_D = 0.79 \text{ Kg/cm}^2$
- 6.6.1b Presión de vapor de calentamiento: $P_v = 2.17 \text{ Kg/cm}^2$
- 6.6.2 Calor latente
- 6.6.2a Calor latente del destilado: λ_D = 544 cal/Kg (De Tablas de Vapor)
- 6.6.2b Calor latente del vapor de calentamiento: $\lambda_v = 524.4 \text{ cal/Kg}$ (De Tablas de Vapor)

- 6.6.5 Cálculo de las pérdidas de calor
- 6.6.5a Calor total abastecido por el vapor de calentamiento

$$Q_T = w_v \lambda_v = 47.45 \times 524.4 = 24 884.69 \text{ cal.}$$

6.6.5b Calor usado para la destilación

$$Q_L = w_D \lambda_D = 33.11 \times 544 = 18 \text{ 011.84 cal.}$$

- 6.7 Cálculos para determinar las pérdidas de calor
- 6.7.1 Pérdidas de calor durante el tiempo de operación

$$Q_{p} = Q_{T} - Q_{L} = 24 884.69 - 18 011.84 = 6 872 cal.$$

- 6.7.2 Tiempo de operación: 55 minutos
- 6.7.3 Pérdidas de calor en una hora de operación

$$Q_p = 6 872.84 \text{ cal }_{x} \frac{60 \text{ min/hr}}{55 \text{ min}} = 7 497.65 \text{ cal/hr}$$

6.7.4 Por ciento de las pérdidas de calor

% Pérdidas de calor =
$$Q_p/Q_T$$
 x 100 = 7 497.65/24 884.69 x 100 = 30.12

6.8 EJEMPLO DE CALCULO (EJEMPLO DETALLADO QUE MUESTRA COMO SE LLEGO A LOS RESULTADOS)

TABLA Nº 6-1, RESUMEN DE LOS CALCULOS DE UNA CORRIDA EXPERIMENTAL

DESTILACION CONTINUA

Puntos de la secuencia	6.5.1	6.5.2	6.5.3	6.5.4	6.5.5	6.5.6	6.5.7	6.6.1	6.6.2
CONCEPTO	VOLUMEN V (1)	CONCENTRACION C (% PESO MEG)	TEMPERATURA T °C	DENSIDAD f' (Kg/1)	PESO TOTAL W (KG)	PESO MEG W MEG (KG)	PESO H20 w H20 (Kg)	PRESION PABS (KG/CM2)	CALOR LATENTE A (CAL/KG)
A) ALIMENTACION	49	23,23	20	P _A =1.031	50,47	11.72	38.75		
B) DESTILADO	33,11	0.04	20	PD=1.00	33.11	0.001324	33,096	P _D =0,79	λ _v =544
C) RESIDUO	16	64.33	20	PR-1.098	17.57	11.29	6.28		
D) DESTILADO + RESIDUO	49.11				50,68	11.291	39.377		
E) VAPOR (condensado)	47,45		. 20	P =1.00	47,45			P _v =2.17	λ _v =524.4

$$C_A = \frac{11.303}{50.47} \times 100 = 22.39$$
%

$$f_{\rm A} = 1.022 \text{ kg/1}$$

$$w_A = V_A P_A = 49 \times 1,022 = 50.078 \text{ Kg}$$

$$C_A = \frac{11.303}{50.078} \times 100 = 22.57 %$$

$$Q_p = Q_p - Q_r$$

$$Q_{r} = w_{c} \lambda_{c} = 47.45 \times 524.4 = 24 884.69 \text{ cal}$$

$$Q_L = w_D^{\lambda}_D = 33.11 \times 544 = 18 011.84 \text{ cal}$$

$$Q_p = 6 872,84 \text{ cal/55 min}$$

$$Q_p = 7 497 \text{ cal/h}$$

% Pérdidas de calor =
$$\frac{Q_p}{Q_p} \times 100 = 30.12$$

6.9 ANALISIS DE LOS RESULTADOS

La incongruencia observada en el balance de materia puede ser debido a que la muestra de la carga no haya sido representativa por falta de agitación. Esta hipótesis se basa en los valores del agua y el MEG en el destilado y residuo.

La comprobación de esta hipótesis consiste en que al ajustar el contenido del MEG en el residuo se ajusta el balance de agua.

Partiendo del peso_{MEG D+R} = 0.0132 + 11.290 = 11.303 Kg

Peso de la alimentación = 50.47 Kg

$$C_A = 11.303 / 50.47 \times 100 = 22.39 \%$$

$$f_{A} = 1.022 \text{ Kg/I}$$

$$W_A = V_A P_A = 49 \times 1.022 = 50.078 \text{ Kg}$$

$$C_A = 11.303 / 50.078 \times 100 = 22.57 \% peso MEG$$

para
$$w_{MEG} = 11.303 \text{ Kg y } w_{MEG} = 50.078 \text{ Kg}$$

CAPITULO 7

CONCLUSIONES Y RECOMENDACIONES

CAPITULO 7

CONCLUSIONES Y RECOMENDACIONES

- 1. Conclusiones sobre la mezcla MEG-AGUA: Se encontró que los glicoles tienen un grado de toxicidad relativamente bajo y no representan riesgos serios en lo que a uso y manejo industrial se refiere; la inhalación de los vapores no presenta riesgos significativos en aplicaciones ordinarias; la irritación es moderada por vía cutánea; el peligro de incendio y explosión es bajo cuando se expone a calor o flama; es poco volátil, por lo que en el domo se obtiene agua como destilado, la que no presenta peligro de explosión.
- Conclusiones para las condiciones de operación en la columna de platos con la mezcla MEG-AGUA: Al concluir la experimentación, los rangos de operación obtenidos son satisfactorios y reproducibles para la realización de la práctica de destilación y se recomienda trabajar con las siguientes condiciones:

VARIABLE

- 1. Flujo de alimentación
- 2. Flujo externo
- 3. Temperatura de alimentación
- 4. Plato de alimentación
- 5. Presión de vapor de calentamiento
- 6. Flujo de destilado
- 7. Composición de la alimentación
- 8. Número de plato inundado al inicio de la operación

CONDICION

0.35 a 0.50 1/min

Sin reflujo

80 a 90 °C

Número 3

1 a 2 Kg/cm² con variación de 0.1 Kg/cm² cada 10 minutos

Constante en función de la presión de vapor

20 a 25 % en peso MEG

Número 3

- 3. La destilación en la columna se puede llevar a cabo en dos etapas para simplificar la familiarización con el equipo y por razones de tiempo de laboratorio se proponen dos prácticas con los siguientes nombres:
 - Destilación intermitente en columna de platos
 - Destilación continua en columna de platos

Durante la realización del presente trabajo de tesis se generó el instructivo para las prácticas propuestas con el material de apoyo necesario para integrarlo, el cual consiste en lo siguiente:

- I Objetivo
- II Descripción del equipo y Diagrama de Flujo
- III Tabla de propiedades para el manejo del MEG
 - IV Técnica de Operación
 - V Formato para la información experimental requerida
- VI Contenido del Informe de la Práctica
- VII Bibliografía
- VIII Apéndice

Estas prácticas cumplen con los objetivos buscados, proporcionando al alumno una experiencia más acorde con la realidad como se trabaja en la industria. Por lo tanto es de gran valor en la formación del futuro Ingeniero Químico.

En la práctica de Destilación Intermitente se pretende mostrar al alumno el arranque de una columna de destilación como se realiza en la industria, además de que se prepara al alumno a conocer y familiarizarse con el equipo para que en la siguiente práctica realice la destilación en forma continua, o sea, que el trabajo experimental en la columna se completa al final de la segunda práctica,

Para realizar otro tipo de cálculos en la columna como ya los mencionamos se necesita acondicionar el equipo para obtener los datos necesarios, por lo que se hacen las siguientes recomendaciones para el mejoramietno del equipo:

 Aislamiento de la columna y de las lineas de alimentación del domo a los condensadores.

Esta modificación propuesta es una de las más importantes pues se tendrá la operación de la columna en forma correcta, se evitarán las pérdidas de calor y por lo tanto el reflujo debido a la condensación de vapores por falta de aislamiento, teniendo también un ahorro de energía y el alumno observará la columna de destilación del Laboratorio de Ingeniería Química como las verá en la industria.

El aislamiento de las líneas de alimentación y líneas de vapores del domo a los condensadores, se requiere que estén aisladas para no tener pérdidas de calor y evitar que las líneas funcionen como torres de pared húmeda, agravando el problema del reflujo interno, el cual no es medible.

 Cambio en la instalación de los condensadores de los vapores.

Se propone el cambio de instalación de los condensadores en las siguientes formas: Cambio de la línea de alimentación de los vapores que van del domo al primer condensador, cambiarla de la parte inferior del condensador a la parte superior quedando en contracorriente con el agua de enfriamiento. Otra alternativa es cambiar de posición los condensadores, instalándolos horizon talmente evitando así la inundación de los mismos.

 Cambio del plato de vidrio de la parte superior de la columna al extremo inferior.

Con esto se podrá mejorar el control en la operación de la columna; con el plato de vidrio se observará el nivel de la mezcla a destilar, nos ayudará a regular los flujos de alimentación, residuo y destilado para que el nivel se mantenga constante.

Instalación de un medidor de nivel del fondo hasta el plato
 No. 3 de la columna de destilación.

Para la operación de la columna de destilación cuando se alimenta la mezcla MEG-AGUA hasta el plato No. 3, con el indicador de nivel se medirá el volumen de manera directa.

5. Cambio del medidor de flujo del residuo.

El rotámetro que se encuentra instalado en la línea de descarga del residuo es de una capacidad más grande a la requerida, por lo que se recomienda instalar otro de una capacidad aprox<u>i</u> mada de 0 a 1.5 l/min.

6. Calibración de todos los instrumentos de medición.

Para obtener datos más exactos se recomienda calibrar los indicadores de flujo, termopares, manômetros, así como el multipotenciómetro.

 Instalación de un medidor de volumen para el tanque de alimentación.

Es necesario adaptar un medidor de volumen al tanque de alimentación de la mezcla para obtenenr lecturas más precisas del volumen que contiene en cada una de las etapas de la operación.

8. Calibración de la válvula reguladora de presión.

Se recomienda la calibración de la válvula reguladora de presión de la línea de vapor de calentamiento que entra a la calandria de la columna hasta una presión de 2.0 Kg/cm².

 Instalar colector de condensados del vapor de calentamien to con un medidor de nivel.

El propósito es recuperar y medir los condensados para calcular el calor alimentado.

10. Señalar las claves del equipo.

Indicar con letreros adecuados los equipos principales auxiliares y de instrumentación con sus nombres y claves de acuerdo al servicio y características que presentan según se establece en el diagrama de flujo.

 Cambiar la válvula de compuerta en la línea de alimentación del vapor de calentamiento.

Esta válvula se localiza en la entrada a la calandria de la columna; es una válvula de tipo compuerta. Se recomienda cambia<u>r</u> la por una válvula de globo para tener un mayor control de flujo de vapor.

 Calibración de la válvula automática que controla la temperatura en la línea de alimentación. Se recomienda la calibración de esta válvula ya que se observan variaciones en la temperatura del flujo de alimentación durante la operación de la columna.

 Instalación de un medidor de presión en el fondo de la columna.

Este medidor permitirá controlar la operación de la columna.

 Instalación de un medidor de flujo en la línea de agua de enfriamiento del cambiador de calor EA-04.

Conociendo el gasto del agua que se utiliza como enfriamiento del residuo se pueden realizar cálculos de balance parcial de energía.

15. Instalación de una pierna barométrica.

En la línea del residuo de la columna se propone instalar una pierna barométrica a la altura del plato número 1, con el prop<u>o</u> sito de mantener el nivel de la mezcla que se destila en el primer plato y así controlar la operación de manera estable.

16. Cambio del tipo de plato de la columna de destilación.

Se propone cambiar los platos de campana que se encuentran instalados en la columna de destilación, por platos de válvulas. Actualmente los platos de campanas ya no se usan en la industria por su ineficiencia y difícil control. En la operación de la columna, el funcionamiento de los platos de válvulas es más ver sátil, trabajan con presión hidrostática, regulando las vaporizaciones durante la operación de la columna.

ESTA TESIS NO LEBE Salir de la biblioteg**a** Este trabajo es una etapa, de varias, en la reestructuración de la torre de platos del laboratorio de ingeniería química que servirá como base para futuras experimentaciones en las que se implementan prácticas más apegadas a los conceptos de la destilación.

Para realizar el presente trabajo de tesis se consideró la seguridad como un elemento importante en el trabajo experimental. La seguridad debe ser, por lo tanto, un concepto primordial para la formación profesional del estudian te y que se tome en cuenta al instalar los equipos de laboratorio, así como al proponer y realizar las prácticas experimentales.

Por último, esperamos que este trabajo sirva de apoyo al personal que labora en el laboratorio de Ingeniería Química para que pueda evaluar las necesidades y requerimientos del equipo de laboratorio y de esta manera lo acondicio ne y lo actualice para que se obtenga el mejor aprovechamiento posible en la impartición de las prácticas.

APENDICE

CONTENIDO

INSTRUCTIVO DE LA PRACTICA:

DESTILACION EN TORRE DE PLATOS

FACULTAD DE QUIMICA

DIVISION DE INGENIERIA LABORATORIO DE INGENIERIA QUIMICA

INSTRUCTIVO DE LA

PRACTICA: DESTILACION EN TORRE DE PLATOS

CONTENIDO

- I OBJETIVO
- II DESCRIPCION DEL EQUIPO
- III TABLA DE PROPIEDADES PARA EL MANEJO DEL MEG
 - IV TECNICA DE OPERACION
 - V FORMATO DE LA INFORMACION EXPERIMENTAL REQUERIDA
 - VI CONTENIDO DEL INFORME DE LA PRACTICA
- VII BIBLIOGRAFIA
- VIII APENDICE

PRACTICA: DESTILACION EN TORRE DE PLATOS

I OBJETIVO

DESTILACION INTERMITENTE

Operar la torre de platos en forma intermitente para separar una mezcla MEG-AGUA con una composición inicial entre 20 y 30 % hasta una composición final entre 65 y 75 % en el residuo.

DESTILACION CONTINUA

Operar continuamente la torre para separar una mezcla MEG-AGUA con una composición inicial entre 20 y 30 %, para obtener del domo una mezcla MEG-AGUA con una composición de 0.1 % máximo y del fondo un residuo con una composición de 65 % mínimo.

11 DESCRIPCION DEL EQUIPO

N° CLAVE	SERVICIO	CARACTERISTICAS
DA-01	TORRE DE DESTILACION	Cilíndrica vertical de 7 5/8 " (0.193 m) de diámetro, por 4.22 m de altura, de 20 platos con 3 cam- panas en arreglo triangular por ca da plato; material de fundición de bronce.
EA-01	PRECALENTADOR DE LA ALIMENTACION	Vertical con 8 fluxes de 3/4" de diámetro por 1.64' (0,5 m) de longitud y 185.5 in ² (0.119 m ²) de su perfície de calentamiento; material de cobre.
EA-02 A	PRIMER CONDE'SADOR DE DESTILADO	Vertical con 30 fluxes de $\frac{1}{4}$ " de di $\frac{4}{y}$ metro por $\frac{4}{4}$ " (1.22 m) de longitud $\frac{7}{y}$ 1130.97 in $\frac{2}{3}$ (0.729 m ²) de superficie de calentamiento; material de cobre.
EA-02 B	SEGUNDO CONDENSADOR DE DESTILADO	Vertical con 30 fluxes de $\frac{1}{y}$ de diá metro par 4' (1.22 m) de longitud $\frac{1}{y}$ 1130.97"in ² (0.729 m ²) de superficie de calentamiento; material de cobre.
EA-02 C	TERCER CONDENSADOR DE DESTILADO	Vertical con 30 fluxes de i" de diá metro por 2'(0.609 m) de longitud y 565.5 in (0.365 m²) de superfi- cie de calentamiento; material de cobre.

N° CLAVE	SERVICIO	CARACTERISTICAS
EA-03	SUBENFRIADOR DE DESTILADO	Vertical con 8" (0.2 m) de diámetro por 13 3/4" (0.35 m) de longitud.
EA-04	ENFRIADOR DE RE- SIDUO	Horizontal con 8 fluxes de 3/4" de diámetro por 1,64' (0.5 m) de longitud y 185.5 in² (0.119 m²) de superficie de calentamiento; material de cobre.
FA-01	TANQUE DE ALIM <u>EN</u> TACION	Vertical con 236 litros de capacidad, 23" (57,64 cm) de diámetro y 35 2/16" (90.5 cm) de longitud; material de acero inoxidable.
FA-02	TANQUE RECIBIDOR DE DESTILADO	Horizontal con 97.7 litros de capacidad, con 16 3/16" (41 cm) de diámetro y 29 2/16" (74 cm) de longitud; material de acero al carbón.
FA-03	TANQUE RECIBIDOR DE RESIDUO	Horizontal con 97.7 litros de capacidad, con 16 3/16" (41 cm) de diámetro y 29 2/16" (74 cm) de longitud, material de acero al carbón.
FD-01 A,B y C	FILTRO DE ALIMENTACION	Filtro de porcelana.
GA-01	BOMBA DE ALIMENTACION	Bomba centrífuga horizontal de 1 HP marca WESTRO.
GA-02	BOMBA DE RESIDUO	Bomba centrífuga horizontal de l HP marca SUPER.
GD-01	AGITADOR DE LA ALIMENTACION	Motor eléctrico de HP tipo hélice.

INSTRUMENTACION

INDICADORES DE FLUJO

Rotámetros tipo flotador, elemento primario de medición.

N° CLAVE	SERVICIO	CARACTERISTICAS	LOCALIZACION					
FI-01	MEDIDOR DE FLUJO DE ALIMENTACION	Escala: 0-25; marca: Fischer & Porter	Tablero de control					
FI-02	MEDIDOR DE FLUJO DE RESIDUO	Escala: 0-5; s/marca	Tablero de control					
FI-03	MEDIDOR DE FLUJO DE DESTILADO	Escala: 0-1.27 LPM; marca: W & T.	Tablero de control					
FI-04	MEDIDOR DE FLUJO DE REFLUJO	Escala: 0-25; marca: Fischer & Porter.	Tablero de control					

Nº CLAVE	SERVICIO	CARACTERISTICAS	LOCALIZACION
FI-05	MEDIDOR DE FLUJO DE AGUA DE ENFRIA MIENTO	Escala: 0-100 % de flujo máximo; marca: Wallace & Tiernan de México.	

INDICADORES DE PRESION

Manómetros de tubo Bourdón tipo carátula de reloj; elemento primario de medición.

N° CLAVE	SERVIC10	CARACTERISTICAS	LOCALIZACION
PI-01	PRESION DE VAPOR DEL PRECALENTADOR EA-01	Escala: 0-4 Kg/cm ² ; diáme tro: 16 cm; marca: METRON	Entrada de vapor de la válvula neumática.
PI-02	PRESION DE VAPOR DE CALENTAMIENTO DE LA TORRE DA-01	Escala: 0-2 Kg/cm ² ; diáme tro: 5.2 cm; marca: METRON	Tablero de control
PI-03	PRESION EN EL DOMO DE LA TORRE DA-01	Escala: 0-76 cm vac. (0-2 Kg/cm ²); diámetro: 9.5 cm; marca: Ashcroft	Domo de la torre DA-01
PI-04	PRESION DE DES- CARGA DE LA BOM BA GA-01	Escala: 0-4 Kg/cm ² ; diámetro: 7 cm; marca:Ashcroft.	Tablero de control
PI-05	PRESION DE DES- CARGA DE LA BOM BA GA-02	Diámetro: 7 cm; escala: 0-4 Kg/cm ² ; marca:Aahcroft	Tablere de control

INDICADORES DE NIVEL DE VIDRIO

Indicadores de tubo, elemento primario de medición.

N° CLAVE	SERVICIO	CARACTERISTICAS	LOCALIZACION
LI-01	NIVEL DEL FONDO DE TORRE DA-01	Longitud: 73 cm; diámetro: 5/8" (1.58 cm)	Fondo de la torre DA-01
L1-02	NIVEL DE TANQUE DE DESTILADO FA-02	Longitud: 30 cm; diámetro: 5/8" (1.58 cm)	Tanque de desti- lado FA-02
LI-03	NIVEL DE TANQUE DE RESIDUO FA-03	Longitud: 30 cm; diametro: 5/8" (1.58 cm)	Tanque de resi- duo FA-03

INDICADOR DE TEMPERATURA

N° CLAVE	SERVICIO	CARACTERISTICAS	LOCALIZACION
TI-01	TEMPERATURA DE ALIMENTACION	Bulbo de mercurio, marca: Palmer, rango: 30-400 °F	Tablero de control

N° CLAVE	SERVICIO	CARACTERISTICAS	LOCALIZACION
T1-02	TEMPERATURA DEL RESIDUO	Bulbo de mercurio, marca: Palmer, rango: 30-300 °F	Tablero de control
T1-03	TEMPERATURA DEL REFILLIO	Bulbo de mercurio, marca: Palmer, rango: 30-300 °F	Tablero de Control
ГІ-04	TEMPERATURA DEL DESTILADO	Bulbo de mercurio, marca: Palmer, rango: 30-300 °F	Tablero de control
T1-05	TEMPERATURA DEL RESIDUO DE LA TORRE DA-01	Carátula de reloj, marca: American, rango: 0-200 °C diámetro: 5.3 cm	Fondo de la torre DA-01
REGISTRADO	R DE TIMPERATURA		
REGISTRADO N° CLAVE	R DE TIMPERATURA SERVICIO	CARACTERISTICAS	LOGALIZACION
		CARACTERISTICAS Analógico de aguja móvil, registrador de gráfica de tira, rango: 0-160 °C, marca: BRISTOL'S	LOCALIZACION . Tablero de control (lado sur de la torre DA-01)

TERMOPARES

Consta de 24 termopares, distribuidos en el equipo de torre de destilación DA-O1 para enviar la señal a un multipotenciómetro marca Honeywell con un rango de 0-200 °C, indicando las temperaturas en los sitios instalados.

CLAVE	LOCALIZACION
TW-01	Plato 01 de la torre DA-01
TW-02	Plato 02 de la torre DA-01
TW-03	Plato 03 de la torre DA-01
TW-04	Plato 04 de la torre DA-01
TW-05	Plato 05 de la torre DA-01
TW-06	Plato 06 de la torre DA-01
TW-07	Plato 07 de la torre DA-01
TW-08	Plato 08 de la torre DA-01
TW-09	Plato 09 de la torre DA-01
TW-10	Plato 10 de la torre DA-01
TW-11	Plato 11 de la torre DA-01
TW-12	Plato 12 de la torre DA-01
TW-13	Plato 13 de la torre DA-01
TW-14	Plato 14 de la torre DA-01
TW-15	Plato 15 de la torre DA-01
TW-16	Plato 16 de la torre DA-01
TW-17	Plato 17 de la torre DA-01
TW-18	Domo de la torre DA-01
TW-19	Salida de agua de enfriador de residuo EA-04
TW-20	Agua de enfriamiento de salida de condensador EA-020
TW-21	Nujo de alimentación a la torre DA-01
TW-22	Fondo de la torre DA-01
TW-23	Vapores que entran a los condensadores EA-02 A
TW-24	Residuo de la mezcla, salida de enfriador EA-04

III TABLA DE PROPIEDADES PARA EL MANEJO DEL MONOETILENGLICOL

SINONIMOS: 1,2-Etanodiol, Glicol, Etilenglicol, Monoetilenglicol.

LIQUIDO INCOLORO DE SABOR DULCE, HIGROSCOPICO.

FORMULA: CH_OHCH_OH

PFSO MOLECULAR: 62.1

PUNTO DE EBULLICION: 197.5 °C a 760 mm Hg.

LIMITE EXPLOSIVO INFERIOR: 3.2 \$

TEMPERATURA DE FUSION: - 15.6 °C

PUNTO DE INFLAMACION: 111 °C (C.C.)

DENSIDAD: 1,113 g/ml a 25°/25°C

TEMPERATURA DE AUTOIGNICION: 400°C

DENSIDAD DEL VAPOR: 2.14

PRESION DE VAPOR: 0.05 mm a 20 °C

DATOS DE TOXICIDAD AGUDA:

ORAL: DL_{50} (RATAS) = 5840 mg/Kg

INTRAVENOSO (IV): $DL_{50}(RATON) = 3000 \text{ mg/kg}$

INTRAPERITONEAL (IP): DL (CONEJO) = 1000 mg/Kg

IRRITACION = Moderada por vía cutánea, ojos y mucosas, vía oral, intravenosa e intraperitoneal (LA DOSIS LETAL REPORTADA PARA EL SER HUMANO ES DE 100 ml).

SI SE INGIERE OCASIONA INICIALMENTE ESTIMULO AL SISTEMA NERVIOSO CENTRAL, SEGUIDO POR DEPRESION. MAS ADELANTE CAUSA DAÑOS AL RIÑON QUE PUEDEN TERMINAR FATALMENTE. ALTAMENTE TOXICO COMO AEROSOL CUANDO SE INHALA.

PELIGRO DE INCENDIO: BAJO, cuando se expone a calor o flama; puede reaccionar violentamente con ácido clorosulfónico, óleum y ácido sulfúrico.

CALENTAMIENTO ESPONTANEO: NO
PELIGRO DE EXPLOSION: MODERADO, cuando se expone a la flama.
PARA COMBATIR EL INCENDIO USAR: ESPUMA, AGUA, CO, Y POLVO QUIMICO.

DESTILACION EN TORRE DE PLATOS IV TEONICA DE OPERACION

OPERACION INTERMITENTE

- 1 Preparar en el tanque de alimentación FA-01 150 litros, aproximadamente de una mezcla MEG-AGUA, que tenga una composición entre 20 y 30 % en peso de MEG.
- 2 Agitar durante 5 minutos para obtener una mezcla homogénea mediante el agitador GD-01.
- 3 Alinear la alimentación desde el tanque FA-01 al plato # 3, haciéndola pasar por los filtros FD-01 A,B y C y el tablero de control.
- 4 Alinear el destilado, mandando las vaporizaciones del domo de la torre a los condensadores EA-02 A, B y C (en ese orden); y el total de esos condensados al tanque recibidor de destilado FA-02 a través del tablero de control.
- 5 Cerrar la válvula de descarga del residuo.
- 6 Alinear agua de enfriamiento al subenfriador de destilado EA-03, a los condensadores EA-02 A, B y C, al rotámetro FI-05 y a la rejilla recolectora (en ese orden).
- 7 Alinear el vapor de calentamiento, verificando su trayectoria desde la caldera, hasta la válvula reguladora de presión que abastece a la torre.
- 8 Alimentar la mezcla mediante la bomba GA-01, hasta inundar el plato # 3. Parar en ese momento la bomba y cerrar la válvula de alimentación a la torre.
- 9 Alimentar agua de enfriamiento a los equipos indicados en 6 y descargarla al drenaje a través del rotámetro FI-05 totalmente abierto.
- 10 Alimentar vapor de calentamiento a la calandria de la torre a una presión de 1.0 kg/cm². Purgar la descarga de condensados a través del by-pass de la trampa de vapor y alimear ésta cuando se haya eliminado el total de condensados acumulados. Incrementar la presión del vapor, aproximadamente, en 0.1 kg/cm² cada 10 minutos, hasta alcanzar una presión máxima de 2.0 kg/cm², cuidando que el flujo de condensado de la calandria no sea menor de 0.250 l/min, ni mayor de 1.0 l/min.
- 11 Cada 10 minutos, y en forma simultánea, a partir del momento en que se registre destilado en el rotámetro FI-02;
 - Muestrear residuo y destilado.
 - Medir el flujo de destilado y el flujo de condensados de la calandria.
- 12 Terminar la operación cuando la concentración en el residuo esté entre 65 y 75 %
- 13 Cerrar la válvula de suministro de vapor a la calandria de la torre.
- 14 Cerrar la válvula de suministro de agua de enfriamiento a los condensadores EA-02 A, B y C y al subenfriador de destilado EA-03.
- 15 Medir el volumen final de destilado y determinar su composición.
- 16 Medir el volumen final de residuo y determinar su composición.
- 17 Determinar el volumen total de condensados generados en la calandria de la torre.

DESTILACION EN TORRE DE PLATOS IV TECNICA DE OPERACION

OPERACION CONTINUA

Para iniciar la operación continua se procede a operar la torre en forma intermitente hasta llegar a las condiciones establecidas en el punto 11. Enseguida continuar con el punto 18.

- 18 Iniciar la alimentación continua en el plato # 4, con un flujo entre 0.3 y 0.5 l/min, precalentándolo en EA-01 a una temperatura aproximada de 80 °C, mediante el ajuste del controlador de temperatura colocado en la alimentación de vapor del EA-01.
- 19 Mantgner la presión del vapor de calentamiento para estas condiciones, en 2.0 kg/cm², en la calandria de la torre.
- 20 Suministrar agua de enfriamiento al enfriador de residuo EA-04.
- 21 Desalojar el residuo al tanque de almacenamiento FA-03 con la bomba GA-02 a un flujo entre 0.060 y 0.100 l/min. Medir el flujo de residuo en la línea de muestreo con probeta y cronómetro.
- 22 Fijar el flujo de residuo para mantener constante el nivel marcado en el plato # 1.
- 23 Cada 10 minutos, a partir de haber alcanzado el nivel marcado en el plato # 1:
 - Registrar condiciones de operación (Temperatura, Presión, NIvel).
 - Muestrear: Destilado, residuo y fase líquida de por lo menos 8 platos representativos, para determinar composiciones.
- 24 Terminar la operación cuando la información mencionada en el punto 23 esté completa.
- 25 Parar: alimentación, descarga de residuo, vapor de calentamiento y agua de enfriamiento.
- 26 Medir el volumen final de destilado y determinar su composición.
- 27 Medir el volumen final de residuo y determinar su composición.
- 28 Determinar el volumen total de condensados generados en la calandria de la torre.

NOTA:

Ecuación para determinar la composición en peso de las muestras de la mezcla de MEG-aqua.

 $C = 10013.17 (I_C) - 1350.56$

C = composición en peso

Ic = Indice de refracción corregido.

LABORATORIO DE INGENIERIA QUIMICA PRACTICA: DESTILACION INTERMITENTE EN TORRE DE PLATOS FORMATO PARA LA INFORMACION EXPERIMENTAL REQUERIDA

Auronoma	FHOM.		11.80	RIU:			AUFO:		ina.	H FPCM:			_
		NICIAL DEL TA HON V1 (1) :	NQUE DE			PESO NEG) :	ALIMENTACION		THE DF				
			DICIONE						S				
UBBO	DEL VAPOR	PLUJO DEL CONDENSALIO	VOLUMEN ALTANI LADO DE CON- DENSADO	EN LA 1 HATO	DRIAL DOMO	FLLUO DEL DESTILADO	LADO DE DEST LADO	MOICE DE	REFRACCION	FRACCION	MOICE DE	MOICE DE	COMPOSICE PRACCIOS
·	1°,	+ _c	V _c	T _f	T _d	F ₀	v _d	L E1BO		PERO MES	[COMME SIDO	PESO INC
(min)	(kg/cm ²)	(1/ein)	(1)	(°C)	(°C)	(1/win)	(1)	 '	lc	 	 	lc.	
	 			 		 		 -	 	 			
	ļ			ļ				ļ	ļ	↓		 -	ļ
			 			ļ		 -		 	 	-	
			 					 		 	 	 	
			 					—					
			ļ 			<u> </u>		<u> </u>					
	L		L		L	ł		J	L	1	L	ــــــــــــــــــــــــــــــــــــــ	L
(1)	FINAL DEL (OMPOSICION FIN DUN C _R (1 PESO			TRATURA DEL. (°C) :		COMPOSICION	DEL DEST MEG) :	ILADO	TEMPERAL	TURA DEL DE	STILADO
	O MEG	1013.7 Ic		(MIX+) :	تا ر ا	(°C) :	\ \	-J (1 PLSO	MEG() :		「d (°C)	<u>:</u>	

LABORATORIO DE INGENIPEIA OUINICA

PRACTICA: DESCILACION INTERNITENTE EN TORRE DE PLATOS

r.de Q. DEP

Université Nacional Autonoma de HOJA DE D

HOJA DE DATOS DE MUESTRAS CON INDICE DE REFRACCION INFERIORES A 1.3350

PECHA:		НО	IOI KAR					RUPOs					PROFI	SORI					
No. de Huestra		1	1	1	2	3	4	5	•	7	•	,	10	11	12	13	14	15	16
٨	PESO RECIPIENTE VACIO (g)																		
В	PPRO RECIPIENTE CON MUESTRA (g)																		
C = B-A	PESO MUESTRA (q)																		
0	PESO RECIPIENTE COM MUESTRA CONCEN TRADE (8)																		
E - D-A	PESO CONCENTRADO																		
F-E/C	RELACION DE PESO DE LAS MUERTRAS																		
1	INDICE DE REFRAC- CONTENTADA MUESTRA																		
10-1+0.00	INDICE DE REFRAC- CION CORREGIDO DE LA MURETRA CONC.																		
J=1013.17 c-1350.5	POR CIENTO EN PESO DE LA NUESTRA CON- CENTRADA																		
K~J*F/100	COMPOSICION PH FRAG CION PESO DE LA MIESTRA CREGINAL																		

LABORATORIO DE INGENIPRIA OUINTOA

P P A C T I C A : D E S T I L A C I O N C O N T I N U A EN TORRE DE PLATOS FORMATO PARA LA INFORMACION EXPERIMENTAL REQUERIDA

	MÉSOCO PECHA:						HORARIO:					GPUPO:				PR	PROPESOR				
OUR D			DEL 9	74 CC	MPOSÍ	CION D	P. LA AI	.I- 150	ALTM	PP DPI ENTACIO DAR PLI	M DPS	PUES DI	\\ruz		INAL DI				CION (
1					c o	N D I	c`r o	N E S	D 1	. 01	E # 1	A C I () N							SICIO	DEL
TIEMPO t	PRES DE VAP P	L OR		DFL MSADO	HULAD	O DEL	PONDS Tg	, 00	MO N	LIMPHTA	KENTA		SIDIN	DE RE	PLUJO DESTII		PESTI	DE	PRAC-	DE RE PRAC- CIONC	SICIO EN Fr PESO
(min)	RQ./	ر هـ2 ١	-0.	(min)		L)	1.0	<u> </u>	<u>c)</u>	(°C)	11./	-(4)-	-11.0		12./21	n)			LEIDO	IC	Otpes
								#	\exists								 			<u> </u>	
								+									 				
								+	=								 		<u> </u>	 	_
												TOTAL		L			CORPOR	Yelfo	LEGG BY	d T To the	
										`	OLUM	TOTAL	rt-		J	L	ACUBEUT.	λος C	- 7	2000	
TEMP.	EN E	L DES	PILADO		<u> </u>			TZX	PERATU	RA M	PI. RPS	1D00	• 9			P	LATO D	. ALIM	ENTACI	ON t	
						,,,		Ç O		S-IC	T 0. N	, 2 4	LOS		70.8						
PLATOS		PLAT	21.	PLATO		PLAT	1 5	PLATC	1.7	PLATO		PLATO	111	PLATO	13	PLATO	-15	PLATO	417	PSTII	ADO
CORRIG	A	Îc	\$peso	1c	1pesc	Iç	9nesc	Ic	10050	Ic	\$peso	Ic	Peso	Ic	nesc	Ic) pes	Ic	tneso	Ic	paso
<u>\</u>						 -	 			 		├								 	
						·							·		L		4			·	
% PESO	ME	3 = 1	013.17	lc -	1350.5	6		lc - l	+ 0.0	002											

LABORATORIO DE INGENIFRIA OUINICA

Universitas Nacional Autónoma se Másico PRACTICA : DESTILACION CONTINUA

EN TORRE DE PLATOS

HOJA DE DATOS DE MUESTRAS CON INDICE DE REFRACCION INFERIORES À 1.3150

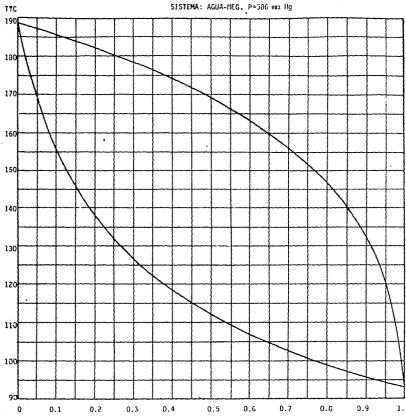
PECHAI		HOI	URIO					RUPO					PROF	FOR			
CONCZ	No. de Muestra PTO	1	2	3	•	5	•	7.	•	,	10	11	12	13	14	15	16
٨	PESO RECIPTENTE VACTO (g.)										•						
•	PPSO RECIPIENTE CON MUESTRA (g.)																
- 0 - A	PESO HURSTRA (g.)																
D	PESO RECIPIENTE CON MUESTRA CONCEN TRADA (D.)																
- D - A	PESO CONCENTRADO																
P-E/C	RELACION DE PESO DE LAS MUESTRAS																
ı	INDICE DE REPRAC- CONCENTRADAMUESTRA																
rc=I+0.00	INDICE DE REFRAC-																
7-1013.17 2-1350.56	POR CIENTO EN PESO DE LA MUESTPA CON- CENTRADA																
K-J*F/100	COMPOSICION EN FRAC CION PESO DE LA MUPSTRA ORIGINAL										,						

TABLA DE TEMPERATURA DE EBULLICION MEZCLA MEG-AGUA

Temp. ^O C	P ^O H ₂ O (mmHg)	P ^O MEG (mmHg)	X agua	Y agua	œ
93.025	586.000	11.466	1.00	1.00	51.11
95	630.50	12.757	0.9280	0.9985	49.42
100	755.88	16.612	0.7702	0.9935	45.50
105	901.26	21.454	0.6417	0.9869	42.01
110	1069.00	27.486	0.5363	0.9783	38.89
115	1261.64	34.943	0.4492	0.967	36.11
120	1481-91	44.090	0.3769	0.9531	33.61
125	1732.69	55.227	0.3164	0.9355	31.37
130	2017.06	68.698	0.2655	0.9139	29.36
135	2338.25	84.889	0.2224	0.8874	27.54
140	2699.70	104.234	0.1856	0.8551	25.90
145	3104.99	127.213	0.1541	0.8165	24.41
150	3557.89	154.361	0.1268	0.7699	23.05
155	4062.35	186.267	0.1031	0.7147	21.81
160	4622.46	223.577	0.0824	0.6500	20.68
165	5424.50	266.998	0.0619	0.5730	20.32
170	5926-87	317.300	0.0479	0.4845	18.68
175	6680.15	375.319	0.0334	0.3807	17.80
180	7507.07	441.957	0.0204	0.2613	16.99
185	8412.48	518.186	0.0086	0.1235	16.23
188.957	9241.41	586.000	0.0000	0.0000	15.77

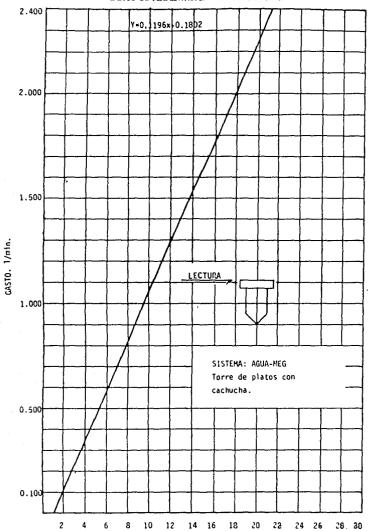
VI CONTENIDO DEL INFORME DE LA PRACTICA

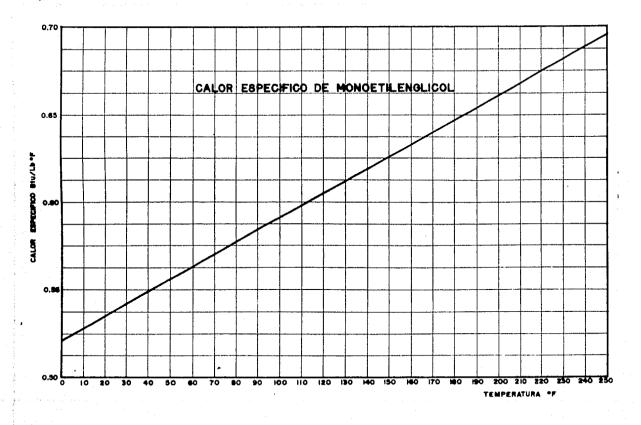
- 1 OBJETIVO
- 2 INFORMACION EXPERIMENTAL ORTENIDA
- 3 DESARROLLO DE LOS CALCULOS
- 4 CONCLUSIONES
- 5 RECOMENDACIONES


VII BIBLIOGRAFIA

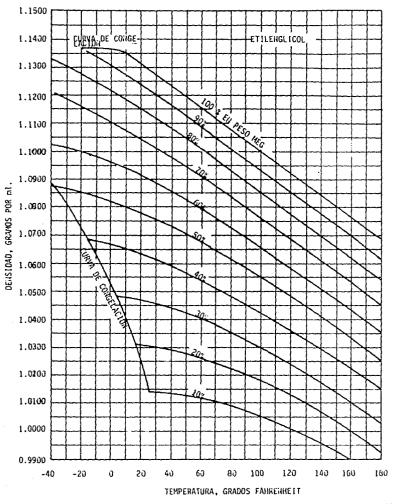
- McCabe, Smith, Operaciones Básicas en Ingeniería Química, Ed. Reverté.
- 2 Treybal R., Mass Transfer Operations, McGraw Hill, 1968.
- 3 Ocón y Tojo, Problemas de Ingeniería Química, Tomo I, Aguilar.
- 4 Ludwig, Applied Process Design for Chemical and Petrochemical Plants, 2nd Ed., Gulf Pub., 1977.
- 5 Van Winkle M., Distillation, New York, McGraw Hill, 1977.
- 6 Norman W. S., Absorption, Distillation and Cooling Towers, New York, J. Wiley, 1961.

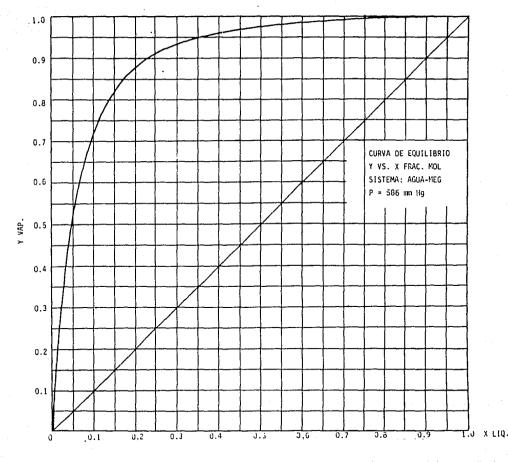
VIII APENDICE


- 1 Tabla de Temperatura de Ebullición. Mezcla MEG-AGUA.
- 2 Curva de Ebullición.Mezcla MEG-AGUA.
- 3 Gráfica de Gasto de Alimentación vs Posición del Rotámetro.
- 4 Gráfica de Calor Específico de Etilenglicol.
- 5 Gráfica de Densidad vs Temperatura. Mezcla MEG-AGUA.
- 6 Curva de Equilibrio.Mezcla MEG-AGUA.
- 7 Ejemplo de Cálculo. Destilación Intermitente y Destilación Continua.



X,Y FRACCION MOL





POSICION DEL ROTANETRO

DENSIDAD DE SOLUCIONES ACUOSAS DE ETILENGLICOL

DESTILACION CONTINUA (CALCULOS)

	(T) AOTTMEN	CONCENTRA- CION 1. PESO NEG	TEMPERATURA	DERSIDAD	PESO TOTAL W (kg)	PESO MEG	PESO H ₂ O (Kg)	PRESION Pabs.	CALOR LATENTE
ALIMENTACION	49	23.23	20	£ 1.03	50.47	11.72	38.75		
DESTILADO	33,11	0.0004	20	R. 1.00	33.11	0.013	33.097	P _D *0.79	A **544
RESIDUO	16	64.33	20	% 1.098	17.57	11.29	6.28		
DESTILADO + RESIDUO	49.11				50,68	11.303	39,377		
VAPOR (Cond)	47.45.		20	P : 1.00	47,45			Pv=2.17	ስv=524.4

Perdidas de Calor =
$$\frac{Q_D}{Q_T}$$
 = 100 = 30.1

PRACTICA: DESTILACION INTERMITENTE EJEMPLO DE CALCULO

	VOLUMEN (1)	COMPOSICION (* PESO MEG)	TEMP.	DENSIDAD (Kg/1)	PESO (Kg)	PESO MEG (Kg)	PESO AGUA (Kg)	PRESION (Kg/cm²)	λ Kcal/Kg
ALIMENTACION	32	22.69	20	1.027	32.864	7.4568	25.4072		
DESTILADO	20	0.02584	37	1.000	20	0.5168	19.4832	P _D =0.79	544
RESIDUO	12	57.23	20	1.073	12.876	7.368	5.50B		
RESIDUO + DESTILADO	32		1		32.876	7.8848	24.9912		1
CONDENSADOS VAPOR DE CALENTAMIENTO	28.520		87	1.000	28.520		28.520	P _v =2.17	524.4

$$C_A = \frac{7.8848}{32.8640} \times 100 = 23.99$$

$$\lambda_A$$
 + 1.029 Kg/l

$$W_A = V_A \lambda_A = (32)(1.029) = 32.928 \text{ KG}$$

$$C_A = \frac{7.8848}{32.9280} \times 100 = 23.945$$
 %

TIEMPO DE OPERACION: 40 min.

PERDIDAS DE CALOR = CALOR TOTAL - CALOR LATENTE

$$Q_p = Q_T - Q_L$$

$$Q_{T} = W_{C} \lambda_{C} = (28.520)(524.44) = 14 957.029 Kcal$$

$$Q_L = W_D \lambda_D = (20)(544) = 10 880 \text{ Kcal}$$

$$Q_p = 4077.0288 \text{ Kca} / 40 \text{ min}$$

$$Q_p = 6115.5432 \text{ Keal/h}$$

* PERDIDAS DE CALOR = 40.88

BIBLIOGRAFIA

BIBLIOGRAFIA

- 1, Foust, Alan S. Principios de Operaciones Unitarias, C.E.C.S.A., México, 1983
- 2. Handley, William; Manual de Seguridad Industrial, McGraw-Hill, 1980
- Instituto Mexicano del Petróleo; Instrumentos de Medición y Control. Medición de Flujo, Subdirección de Capacitación, 1976
- Instituto Mexicano del Petróleo; Manual de Operación, Planta Combinada, Tula, Hidalgo.
- Licona Ranchero, José; Análisis de riesgos y recomendaciones de seguridad para el evaporador del Laboratorio de Ingenieria Química de la Facultad de Química de la UNAM; Tesis, Facultad de Química, 1986.
- López Santiago, Luis; Anteproyecto de un Programa de Seguridad e Higiene para el Laboratorio de Ingeniería Química; Tesis, Facultad de Química, 1986
- Ludwing, E.E.; Applied Process Design For Chemical and Petrochemical Plants 2nd, Ed.; Vol. 2; Gulf Publishing, 1977
- McCabe, W.L. y Smith, J.C.; Operaciones Básicas de Ingeniería Química, Ed. Reverté. 1968.
- Manual de Prácticas de Laboratorio de Transferencia de Masa; Facultad de Química, U.N.A.M; 1982
- 10 Norman, W.S.; Absorption, Distillation and Cooling Towers; New York; John Wiley & Sons; 1961
- 11 Ocón y Tojo, Problemas de Ingeniería Química: Tomo I: Ed. Aguilar, 1974
- Perry, Robert H.; Manual del Ingeniero Químico; 5^a Edición; McGraw-Hill;
 1982.

- 13. Petróleos Mexicanos; Reglamento de Seguridad e Higiene, México, 1985.
- Rase, H.F. y Barrow, M.H.; Ingeniería de Proyectos para Plantas de Proceso; C.E.C.S.A.; 1981.
- Sawistowski, H.; Métodos de Cálculo en los Procesos de Transferencia de Materia; Alhambra; 1967.
- Treybal, Robert E.; Mass Transfer Operations; Second Edition; McGraw Hill; 1968.
- Valiente, A., Stivalet, R.P.; Problemas de Balance de Energía;
 Alhambra, 1982.
- Valiente, A.; Problemas de Balance de Materia; Alhambra Mexicana, S.A. 1981.
- 19. Van Winkle, M.; Distillation; New York; McGraw Hill; 1967.