

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA INGENIERÍA EN ENERGÍA

ESTUDIO TEÓRICO EXPERIMENTAL DE UN TERMOCONVERSOR SOLAR PARA EL CALENTAMIENTO DE AIRE Y SU INTEGRACIÓN EN PROCESOS AGROINDUSTRIALES

TESIS QUE PARA OPTAR POR EL GRADO DE: MAESTRO EN INGENIERÍA

PRESENTA: ING. GIBRÁN RODRIGO MEJÍA TORÍZ

TUTOR PRINCIPAL **DR. ISAAC PILATOWSKY FIGUEROA** INSTITUTO DE ENERGÍAS RENOVABLES, UNAM

COMITÉ TUTOR DR. JORGE MARCIAL ISLAS SAMPERIO - IER, UNAM DR. ROSENBERG JAVIER ROMERO DOMÍNGUEZ - PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA DR. VÍCTOR HUGO GÓMEZ ESPINOZA - IER, UNAM DR. OCTAVIO GARCÍA VALLADARES - IER, UNAM

MÉXICO, D. F., OCTUBRE 2014

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

Presidente:	Dr. Islas Samperio Jorge Marcial
Secretario:	Dr. Pilatowsky Figueroa Isaac
Vocal:	Dr. Romero Domínguez Rosenberg Javier
1 er. Suplente:	Dr. Gómez Espinoza Víctor Hugo
2 do. Suplente:	Dr. García Valladares Octavio

Lugar donde se realizó la tesis:

Instituto de Energías Renovables, UNAM. Temixco, Morelos, México.

TUTOR DE TESIS:

Dr. Isaac Pilatowsky Figueroa

FIRMA

"Ahmo yen mitz cualnextia tlen tic matitla yen tlen ticchiua ica toni tic mati"

(No importa lo que sabes, sino lo que haces con lo que sabes)

- Inocente Morales Baranda Teuctli

AGRADECIMIENTOS

A la Universidad Nacional Autónoma de México y al Instituto de Energías Renovables por haberme brindado la oportunidad de cursar mis estudios de maestría en sus aulas y laboratorios.

Al CONACYT por el apoyo económico otorgado.

A mi asesor, Dr. Isaac Pilatowsky Figueroa, por su incansable disposición y apoyo para que este trabajo pudiera culminarse. Pero sobre todo, agradezco la amistad brindada.

A los Sinodales, Dr. Jorge Islas, Dr. Octavia García, Dr. Rosenberg Romero, Dr. Victor Gómez, por su disposición y aportaciones a este trabajo.

A las y los compañeros de laboratorio y del área de refrigeración por el constante apoyo técnico: Cesar Vidaña, Christian Martínez, Iris Santos, Javier Delgado, Jorge Chan, Onésimo Cepeda, Roy Solano y Emanuel Salazar.

Al Dr. Victor Gómez por las facilidades brindadas en cuanto al manejo de equipo de laboratorio y de medición.

A los trabajadores del Taller y a Miguel Ríos, porque sin su apoyo la construcción del sistema de calentamiento solar de aire se hubiera tornado muy complicada.

Al personal de limpieza del Instituto, porque su diaria (y muchas veces invisible) labor permite el trabajo cómodo de toda la comunidad.

Al personal administrativo de todas las áreas del Instituto, Coordinación de Posgrado, Secretaría Académica, Secretaría Técnica, Dirección, Biblioteca, Unidad de Cómputo, porque en algún momento se necesitó algún trámite y nunca fue negado.

Un agradecimiento especial, y en memoria, al Dr. Ignacio Salvador Torres Alvarado.

A las compañeras y compañeros del Instituto, y a quienes se convirtieron en amigos.

A mis raíces y mis ramas, Consuelo, Armando, Irma, Armando, Nora, Armando, Araceli, Yunuen, José.

A mis imprescindibles, con quienes me he construido, destruido y reconstruido, quienes hoy están... y sé que mañana también.

A la vida.

Tlazohcamati.

ÍNDICE

Lista de Figuras	х
Lista de Tablas	xiv
Nomenclatura	xv
Presentación	1
Introducción	3
Justificación	9
Objetivos	13
Antecedentes	15

CAPÍTULO 1. CALENTAMIENTO SOLAR DE AIRE Y PROPUESTA DE MODELO TEÓRICO

1.1 Introducción	19
1.2 Captadores solares para calentamiento de aire	20
1.2.1 Descripción y clasificación de captadores solares para el	21
calentamiento de aire según el patrón de flujo	
1.3 Análisis térmico y de eficiencia del captador solar de aire	25
1.3.1 producto transmitancia-absortancia ($\tau \alpha$)	30
1.3.2 Pérdidas de calor (u_l)	31
1.3.2.1 Coeficientes de transferencia de calor convectivo	32
1.3.2.2 Coeficientes de transferencia de calor radiativo	35
1.3.2.3 Coeficiente de pérdida superior (U_t)	37
1.3.2.4 Coeficiente de pérdida de fondo (U_b)	37
1.3.2.5 Coeficiente global de pérdida de calor (U_L)	38
1.3.3 Factor de remoción de calor (F_R)	38
1.3.4 Eficiencia del captador (η)	38
1.4 Propuesta de modelo teórico	39

CAPÍTULO 2. DISEÑO DEL SISTEMA DE CALENTAMIENTO SOLAR DE AIRE Y ESTUDIO EXPERIMENTAL

2.1 Introducción	43
2.2 Diseño del sistema de calentamiento solar de aire	44
2.2.1 Captador solar	44
2.2.2 Diseño y control del sistema inyector de aire	45
2.2.2.1 Diseño del sistema inyector de aire	46
2.2.2.2 Control del sistema inyector de aire	54
2.3 Instrumentación	56
2.3.1 Sensores para determinar la temperatura	56
2.3.2 Sensores para determinar la velocidad de viento	60
2.3.2.1 Velocidad del viento a la entrada del captador	60
2.3.2.2 Velocidad del viento a los alrededores.	60
2.3.3 Sensor para determinar la radiación solar	61
2.3.4 Sistema de adquisición de datos	62
2.4 Estudio experimental	63
2.4.1 Metodología	64

CAPÍTULO 3. RESULTADOS EXPERIMENTALES

3.1 Introducción	71
3.2 Distribución de temperaturas del aire que circula dentro del captador solar	72
3.3 Distribución de temperaturas en la placa absorbedora	75
3.4 Promedios de las temperaturas de: aire a la entrada, aire a la salida, placa	77
absorbedora, cubierta transparente, ambiente, parte posterior del	
captador e irradiancia solar	
3.5 Temperatura del aire a la salida y delta de temperatura	80
3.6 Eficiencia del calentador solar de aire	82
3.7 Aplicación del sistema de calentamiento solar de aire diseñado en el secado	87
de mango	

CONCLUSIONES

ANEXOS	
A.1 Diagrama de Moody	99
A.2 Especificaciones del ventilador centrífugo inyector de aire	100
A.3 Especificaciones autotransformador variable	101
A.4 Especificaciones placa aislante	103
A.5 Especificaciones piranómetro	105
A.6 Especificaciones sensor para determinar la velocidad del viento a la	107
entrada del captador	
A.7 Especificaciones sensor para determinar la velocidad del viento a los	108
alrededores	

REFERENCIAS

109

95

LISTA DE FIGURAS

Figura i.1 Fuentes de energía primaria, cuadro comparativo entre el año 1973 y	4
2010.	
Figura 1.1 Captadores solares para calentamiento de aire: (a) Flujo de aire por encima	21
de la placa absorbedora; (b) Flujo de aire por debajo de la placa absorbedora; (c)	
Flujo de aire por ambos lados de la placa absorbedora.	
Figura 1.2 Captadores solares con flujo de aire por ambos lados de la placa absorbedora:	22
(a) Paso paralelo; (b) Doble paso.	
Figura 1.3 Captador solar para el calentamiento de aire con placa perforada.	23
Figura 1.4 Factores involucrados en el análisis térmico de un calentador solar de aire	26
comúnmente empleado.	
Figura 1.5 Curvas de eficiencia teóricas respecto a tres posibles temperaturas de	29
referencia, para un flujo másico constante.	
Figura 1.6 Absorción de la radiación solar en la placa absorbedora.	31
Figura 1.7 Variación de la eficiencia con respecto a diferentes flujos.	39
Figura 1.8 Modelo teórico del captador solar.	39
Figura 2.1 Sistema de calentamiento solar de aire.	44
Figura 2.2 Contracción brusca y suave; los valores de ζ se toman de la Figura 2.3.	49
Figura 2.3 Valores de ζ según la Figura 2.2.	49
Figura 2.4 Sistema impulsor de aire, ductos de entrada y salida de aire y captador solar.	50
(a) Vista superior del sistema donde se muestran los puntos de pérdidas de carga.	
Entre los puntos 1 y 2 las pérdidas son de forma (secundarias), y entre los puntos	
2 y 3 las pérdidas son <i>de superficie</i> (primarias). (b) Vista lateral del sistema.	
Figura 2.5 Ventilador centrífugo inyector de aire, Newark modelo G2E140-AL30-48,	53
utilizado en el calentador solar de aire.	
Figura 2.6 Curva característica del sistema y pérdidas de presión del ventilador a	53
diferentes flujos.	
Figura 2.7 Autotransformador Powerstat modelo 136BU utilizado como regulador de	54
voltaje para controlar la velocidad de giro del ventilador inyector de aire.	
Figura 2.8 Diagrama de conexión del autotransformador y el ventilador inyector de aire.	55
Figura 2.9 Autotransformador de voltaje conectado al ventilador inyector de aire.	55

Figura 2.10 Relación "Voltaje de salida del autotransformador - Velocidad de aire a la	56
entrada del captador / Flujo másico"	
Figura 2.11 Termopar tipo T para determinar las temperaturas de entra y salida del aire	57
del captador.	
Figura 2.12 Termopar de superficie tipo J para determinar las temperaturas de la placa	57
absorbedora, cubierta transparente y parte posterior del captador.	
Figura 2.13 Sensor PT-100 (Termistor) para la medición de la temperatura ambiente.	57
Figura 2.14 Corte transversal del captador donde se muestra la distribución de los	58
termopares tipo T para medir la temperatura del aire a la entrada y a la salida	
del captador.	
Figura 2.15 Distribución de los termopares de superficie tipo J. (a) Vista superior de la	58
placa absorbedora (los orificios a la entrada y a la salida indican perforaciones	
donde se colocan los termopares tipo T), (b) Vista superior de la cubierta	
transparente, (c) Vista posterior de la placa aislante del captador.	
Figura 2.16 Se observan en la parte central los termopares de superficie TJ09- TJ12 y	59
las canaletas bajo las cuales se encuentran los termopares TT01-TT04 para la	
medición de la temperatura del aire a la entrada (lado izquierdo), y los	
termopares TT05-TT08 para la medición de la temperatura del aire a la salida	
(lado derecho).	
Figura 2.17 Anemómetro de hilo caliente para determinar la velocidad del viento a la	60
entrada del captador.	
Figura 2.18 Sensor de dirección de viento (veleta) modelo es 03301.	60
Figura 2.19 Anemómetro modelo es el 03101.	61
Figura 2.20 Piranómetro marca Kipp & Zonen empleado para medir la radiación solar.	61
Figura 2.21 Adqusidor de datos marca Agilent.	62
Figura 2.22 Programa para el registro y almacenamiento de datos elaborada con el	63
software VEE-Engineering.	
Figura 2.23 Captura de pantalla de la obtención de los promedios de las temperaturas	65
registradas con el adquisidor de datos.	
Figura 2.24 Captura de pantalla del programa hecho en Excel para el análisis de los	69
datos y la obtención de la eficiencia térmica del calentador solar.	

Figura 3.1 Distribución de la temperatura del aire a la entrada y a la salida del captador	74
para diferentes velocidades/flujos de aire. (a) 2 m/s (111.48 m ³ /h), (b) 3 m/s	
$(167.22 \text{ m}^3/\text{h})$, (c) 5 m/s (278.71 m ³ /h), (d) 8 m/s (445.93 m ³ /h).	
Figura 3.2 Distribución de temperaturas sobre la placa absorbedora para diferentes	76
velocidades/flujos de entrada de aire al captador solar. (a) 2 m/s (111.48 m ³ /h),	
(b) 3 m/s (167.22 m ³ /h), (c) 5 m/s (278.71 m ³ /h), (d) 8 m/s (445.93 m ³ /h).	
Figura 3.3 Promedios de las temperaturas de entrada, salida, placa absorbedora, cubierta	79
transparente, ambiente y parte posterior del captador para diferentes	
velocidades/flujos de entrada de aire al captador solar. (a) 2 m/s (111.48 m ³ /h), (b)	
3 m/s (167.22 m ³ /h), (c) 5 m/s (278.71 m ³ /h), (d) 8 m/s (445.93 m ³ /h).	
Figura 3.4 Temperaturas de salida del aire, media, máxima y mínima, para los cuatro	81
diferentes flujo de aire.	
Figura 3.5 Diferencias de temperaturas, media, máxima y mínima, entre la salida y la	81
entrada del aire al captador solar para los cuatro diferentes flujo de aire.	
Figura 3.6 Eficiencias del captador solar para diferentes velocidades/flujos de entrada de	84
aire al captador. (a) 2 m/s (111.48 m ³ /h), (b) 3 m/s (167.22 m ³ /h), (c) 5 m/s	
$(278.71 \text{ m}^3/\text{h}), (d) 8 \text{ m/s} (445.93 \text{ m}^3/\text{h}).$	
Figura 3.7 Eficiencias del captador solar para diferentes velocidades/flujos de entrada de	85
aire al captador.	
Figura 3.8 Curva de eficiencia del calentador solar diseñado.	85
Figura 3.9 Eficiencia del calentador solar y delta de temperaturas para diferentes flujos.	86
Figura 3.10 Interconexión del calentador solar de aire al túnel de secado.	88
Figura 3.11 Adecuación de ventilas en la primer sección del secador para mejorar la	88
distribución del aire caliente que entra en contacto con las primeras charolas.	
Figura 3.12 Corte y distribución del mango en las charolas de secado.	89
Figura 3.13 Disposición de las muestras en las charolas de secado.	89
Figura 3.14 Analizador de humedad.	90
Figura 3.15 Balanza portátil para medir pérdida de masa de las muestras de mango	90
durante el proceso de secado solar.	
Figura 3.16 Pérdida de masa de cuatro muestras de mango, y la temperatura del túnel de	92
secado, durante el proceso de secado solar.	
Figura 3.17 Muestras de mango deshidratado empleando el calentador solar de aire	93
diseñado.	

Figura A.1 Diagrama de Moody.	99
Figura A.2 Especificaciones del ventilador centrífugo inyector de aire.	100
Figura A.3 Especificaciones autotransformador variable.	102
Figura A.4 Especificaciones placa aislante.	104
Figura A.5 Especificaciones piranómetro.	106
Figura A.6 Especificaciones sensor para determinar la velocidad del viento a la	107
entrada del captador	
Figura A.7 Especificaciones sensor para determinar la velocidad del viento a los	108
alrededores	

LISTA DE TABLAS

Tabla 1.1 Ventajas y desventajas de captadores solares para el calentamiento de aire para	24
diferentes patrones de flujo de aire.	
Tabla 1.2 Valores rango y promedio de coeficiente de pérdida de calor superior U_t para	24
diferentes tipos de captadores solares de aire.	
Tabla 2.1 Rangos mínimos de prueba de velocidad y flujo para el calentador solar	47
diseñado según Draft standard for testing of solar air collectors based on EN12975-2 and	
ASHRAE 93-2003.	
Tabla 2.2 Ecuación y desviación estándar de cada uno de los sensores de temperatura	59
utilizados.	
Tabla 2.3 Relación voltaje del autotransformador – velocidad del aire.	64
Tabla 2.4 Constantes empleadas para el análisis de datos y obtención de la eficiencia	67
térmica del calentador solar.	
Tabla 3.1 Temperaturas, máxima, mínima y media, para cada uno de los flujos de aire.	82
Tabla 3.2 Diferencia entre las temperaturas de salida y entrada, máxima, mínima y media,	82
para cada uno de los flujos de aire.	
Tabla 3.3 Humedad inicial de cuatro muestras de mango fresco.	91
Tabla 3.4 Pérdida de masa, en gramos, de doce muestras de mango durante el proceso de	91
secado solar.	
Tabla 3.5 Reducción de masa y porcentaje de humedad final de cuatro muestras de	92
mango sometidas al proceso de secado solar.	

NOMENCLATURA

Ap	Área de captación solar	[m]
Cair	Calor específico del aire	[J/kg K]
$\mathbf{D}_{\mathbf{h}}$	Diámetro hidráulico	[m]
FR	Factor de remoción de calor	
F'	Factor de eficiencia del captador	
g	Aceleración gravitacional	$[m/s^2]$
$\mathbf{h}_{\mathbf{f}}$	Coeficiente de transferencia de calor dentro del canal de flujo	$[W/m^2 K]$
$\mathbf{h}_{\mathbf{ga}}$	Coeficiente de transferencia de calor de la cubierta transparente al ambiente	$[W/m^2 K]$
\mathbf{h}_{pg}	Coeficiente de transferencia de calor de la placa absorbedora a la	$[W/m^2 K]$
	cubierta transparente	
h _{rga}	Coeficiente de transferencia de calor radiativo de la cubierta	$[W/m^2 K]$
9	transparente al ambiente	
hrph	Coeficiente de transferencia de calor radiativo dentro del canal de fluio	$[W/m^2 K]$
hrng	Coeficiente de transferencia de calor radiativo de la placa absorbedora	$[W/m^2 K]$
i pg	a la cubierta transparente	[,,,,,,,,,,,,,,]
т	Irradiancia solar	$[\mathbf{W}/\mathbf{m}^2]$
I K	Conductividad térmica del aire	[W/m K]
	Conductividad térmica aislante térmico	[W/m K]
L	Distancia entre la placa absorbedora y la cubierta transparente	[m]
Lin	Espesor aislamiento térmico	[m]
-m m	Fluio másico	[kg/h]
Nu	Número de Nusselt	
ò	Fluio volumétrico	[m ³ /h]
\mathcal{Q}		
Q_u	Calor util ganado	[W/S]
R _a	Número de Rayleigh	
Re	Número de Reynolds	
Ta	Temperatura ambiente	[°C]
Tb	Temperatura parte posterior del captador	[°C]
Ti	Temperatura del aire a la entrada	[°C]
$\mathbf{T}_{\mathbf{f}}$	Temperatura del fluido	[°C]
T _g	Temperatura de la cubierta transparente	[°C]
T _o	Temperatura del aire a la salida	[°C]
T _s	Temperatura del cielo	
T _{pb}	Temperatura del fondo de la placa absorbedora	[°C]
Tpt	Temperatura de la placa absorbedora	$\begin{bmatrix} C \end{bmatrix}$
U _b	Coeficiente de perdida de calor de fondo	$[W/m^2 K]$
U_t	Coefficiente alebel de rérdide de color	$[W/m^2 K]$
UL	Velocidad del circ	[W/M ² K]
u	velocidad del alle Difusividad térmisa dal sina	[III/S] $[m^2/c]$
u o	Difusividad termica del aire	[III ⁻ /S]
þ	Angulo de inclinación del captador solar	١Ŭ

Δ	Diferencia de temperatura	[°C]
ε	Emisividad térmica	
η	Eficiencia	[%]
μ	Viscosidad dinámica del aire	[Pa s]
ν	Viscosidad cinemática del aire	$[m^2/s]$
ρ_{air}	Densidad del aire	$[kg/m^3]$
σ	Constante de Steffan-Boltzman, 5,6705 x 10 ⁻⁸	$[W/m^2K^4]$
τα	Producto transmitancia-absortancia	

PRESENTACIÓN

El presente trabajo trata sobre el diseño, la construcción y el estudio del comportamiento térmico de un sistema modular de calentamiento solar de aire pensado principalmente para aplicaciones en sistemas de producción agrícola; y de la posibilidad, desde la sustentabilidad, de aplicar este tipo de sistema en un proceso de secado solar de alimentos, con miras a lograr un impacto social positivo dentro de una comunidad.

Esta tesis está dividida en 3 capítulos. En el capítulo I se habla de los métodos comúnmente empleados para el calentamiento solar de aire, describiendo y clasificando los diferentes tipos de captadores solares para el calentamiento de aire que existen. Posteriormente se desarrolla de manera teórica el análisis térmico y de eficiencia del tipo de captador solar utilizado para este trabajo, para finalmente presentar una propuesta del modelo teórico del calentador solar a diseñar.

En el capítulo II se da una descripción del sistema de calentamiento solar de aire diseñado, la instrumentación empleada, y se detalla la metodología del estudio experimental que se desarrolló para evaluar la eficiencia térmica del sistema, en función de los diversos factores que intervienen en el desempeño del mismo.

El capítulo III concierne a los resultados obtenidos en las evaluaciones experimentales del comportamiento térmico del sistema de calentamiento solar de aire, mostrando gráficamente la distribución de temperaturas en el sistema para cada día solar de prueba, así como la eficiencia que presenta el sistema dentro de un determinado rango de flujo de aire.

INTRODUCCIÓN

La especie humana ha vivido el 95% de su historia de manera sustentable basando su consumo energético en fuentes renovables de energía (solar, eólica, hidráulica y biomasa). Durante ese largo periodo la población humana no rebasó unos cientos de millones de individuos. Los avances eran lentos y las civilizaciones se desarrollaban, tocaban su auge y luego declinaban cuando rebasaban los recursos energéticos a su alcance o la capacidad de soporte del medio ambiente (Tainter, 1988, citado por Ferrari, 2013)

Fue hasta el siglo XVIII, con el inicio de la revolución industrial, que el modelo energético empleado hasta entonces se fue modificando drásticamente, y otras fuentes de energía como el carbón tomaron gran fuerza.

Fue con el descubrimiento de grandes yacimientos de combustibles fósiles que se inició la "fiebre del oro negro" que prevalece hasta nuestros días. En poco tiempo el carbón y los hidrocarburos desbancaron a las fuentes de energía anteriormente empleadas para dar lugar a sistemas altamente centralizados, que si bien ofrecían energía abundante y barata para el desarrollo industrial, trajeron consigo la implantación de patrones de consumo irracional de energía, el deterioro del medio ambiente, y el crecimiento desbordado de las ciudades junto con el abandono gradual del sector rural.

Hacia la década de 1970 las energías renovables se consideraron una alternativa a las energías tradicionales, tanto por su disponibilidad presente y futura garantizada (a diferencia de los combustibles fósiles que precisan miles de años para su formación) como por su menor impacto ambiental. En el año de 1973, el embargo petrolero árabe originó, como reacción en los países industrializados afectados, el establecimiento de programas y políticas orientados a la sustitución del petróleo como fuente energética con base en gran medida en las fuentes renovables de energía, con lo que se impulsó nuevamente su investigación y desarrollo.

En ese breve período, se lograron desarrollar sistemas confiables, eficaces y altamente rentables desde el punto de vista económico (aunque no tanto así desde el punto de vista social y cultural). Ejemplo de ellos son los aerogeneradores empleados ya por millares; los diversos sistemas de calefacción para uso doméstico, la producción de miles de metros cuadrados de módulos fotovoltaicos y la producción de bioetanol y su empleo como combustible a partir de biomasa. (Rincón, 1999)

Por otro lado, el crecimiento acelerado de la humanidad en los últimos tres siglos es algo inusual, que ha sido posible sólo gracias al espectacular incremento de la energía disponible asociado al uso masivo de los combustibles fósiles. Carbón, petróleo y gas representan una fracción de la energía solar recibida por el planeta en el pasado geológico, pero se trata de recursos finitos, no renovables, una herencia geológica que una vez consumida no volveremos a tener. En la actualidad los combustibles fósiles constituyen el 81% de la energía que se usa a nivel global (Figura i.1) y los derivados del petróleo proveen el 95% de la energía usada para el transporte (International Energy Agency, 2012). Sin embargo, en poco más de 150 años hemos quemado casi la mitad del petróleo que se ha formado en millones de años y hemos transferido de la corteza terrestre a la atmósfera enormes cantidades de carbono que están contribuyendo a modificar el clima. Este camino no puede continuar al infinito y, evidentemente, no es sustentable. (Ferrari, 2013)

Figura i.1 Fuentes de energía primaria, cuadro comparativo entre el año 1973 y 2010. (Ferrari, 2013)

ENERGÍA SOLAR COMO RECURSO ENERGÉTICO RENOVABLE

La energía solar es la energía obtenida directamente del sol. La radiación solar incidente en la Tierra puede ser aprovechada para calentar agua, aire, u otros fluidos, o para generar electricidad.

El sol es la fuente de energía más grande que existe en el mundo. La radiación solar que llega a la Tierra es 10,000 veces mayor a la demanda mundial de energía primaria; es decir de la energía contenida en los combustibles y otras formas de energía (petróleo, gas, carbón, etc.). La energía del sol es un tipo de energía inagotable, renovable y limpia. (Montiel, 2012)

Las diferentes tecnologías solares se clasifican en pasivas o activas según cómo capturan, convierten y distribuyen la energía solar. Las tecnologías activas incluyen, por ejemplo, el uso de paneles fotovoltaicos (energía solar fotovoltaica) y colectores térmicos para captar la energía (energía solar térmica). Entre las técnicas pasivas, se encuentran diferentes técnicas enmarcadas en la arquitectura bioclimática: la orientación de los edificios al Sol, la selección de materiales con una masa térmica favorable o que tengan propiedades para la dispersión de luz, así como el diseño de espacios mediante ventilación natural. (*Instituto de Investigaciones Legislativas del Senado de la República, 2004*)

ENERGÍA SOLAR TÉRMICA

La energía solar térmica convierte, mediante el empleo de captadores solares, la radiación solar en calor para luego transferirla a algún fluido de trabajo. Esta forma de conversión de calor puede satisfacer diversas necesidades. Por ejemplo, se puede obtener agua caliente para consumo doméstico o industrial, o bien para brindar calefacción a hogares, hoteles, piscinas o cualquier espacio. También es posible generar frío durante épocas cálidas. En procesos agroindustriales se pueden conseguir otro tipo de aplicaciones como invernaderos solares que favorecen las cosechas, secadores solares de alimentos o madera, o destilación solar de agua. A temperaturas más elevadas se puede calentar algún fluido que permita el movimiento de turbinas para generar electricidad.

El captador solar es una superficie que, expuesta a la radiación solar, permite absorber parte de la energía solar que incide sobre ella, transformarla en calor y transmitirla a cierto fluido. Existen tres categorías diferentes entre los captadores en función de la temperatura que puede alcanzar su superficie:

- Captadores de baja temperatura. Proveen calor útil a temperaturas menores de 80 °C mediante absorbedores metálicos o no metálicos. El colector solar plano es el aparato más representativo de la tecnología solar fototérmica. Sus principales aplicaciones son en el calentamiento de agua para uso doméstico y albercas, para secar productos agropecuarios o climatizar espacios mediante el calentamiento de aire, para destilar agua en comunidades rurales principalmente y, en general, para todas aquellas actividades industriales en las que el calor de proceso no es mayor de 80 °C, por ejemplo la pasteurización, el lavado textil, etc.
- Colectores de temperatura media. Son los dispositivos que concentran la radiación solar para entregar calor útil a mayor temperatura, usualmente entre los 100 y 300 °C. En esta categoría se tiene a los concentradores estacionarios y a los canales parabólicos, todos ellos efectúan la concentración mediante espejos dirigidos hacia un receptor de menor tamaño. Tienen el inconveniente de trabajar solamente con la componente directa de la radiación solar por lo que su utilización queda restringida a zonas de alta irradiancia.
- Colectores de alta temperatura. Existen en tres tipos diferentes: los colectores de plato parabólico, de canal parabólico y los sistemas de torre central. Operan a temperaturas superiores a los 500 °C y se usan generalmente para generar electricidad termosolar y transmitirla a la red eléctrica.

Una de las aplicaciones termosolares de baja temperatura más estudiadas y difundidas por las principales potencias económicas del mundo, es el calentamiento solar de agua para uso doméstico, sin embargo el rubro del calentamiento solar de aire ha sido poco estudiado.

En el informe Energías Renovables para el Desarrollo Sustentable en México 2009, Alatorre (2009) hace mención de las aplicaciones térmicas de la radiación solar, pero nada se menciona acerca del calentamiento solar de aire, únicamente se centran en el análisis de calentadores de agua, es decir, la capacidad instalada, costos, proyecciones. En ese estudio se menciona que "…la principal tecnología para el aprovechamiento térmico de la radiación solar es el calentador solar de agua…". En otro informe llamado Prospectiva de Energías Renovables 2012-2026, la Secretaría de Energía (SENER) (2012) menciona que: "En la actualidad, la energía solar térmica en México se aplica fundamentalmente en el calentamiento de agua para usos residenciales, institucionales y recreativos…". En ese mismo informe, en lo que concierne a las perspectivas a futuro, de igual manera, se hace mención únicamente del calentamiento de agua, pero nada se habla de sistemas de calentamiento de aire.

Por tanto, considero necesario ahondar en la investigación y el desarrollo de sistemas de calentamiento solar de aire; que si bien este tipo de sistemas no representan el mismo impacto poblacional que los sistemas fotovoltaicos, su utilidad a nivel rural y agropecuario puede ser significativa, ambiental, social y económicamente hablando.

JUSTIFICACIÓN

Los captadores solares para el calentamiento de aire son usados generalmente para el calentamiento o precalentamiento en sistemas de aire acondicionado o para aplicaciones de secado. El diseño de calentadores solares de aire, los materiales para su elaboración y sus métodos de construcción ha sido poco desarrollado en comparación con los calentadores solares de agua. (Ion & Martins, 2006)

La principal tecnología de calentamiento solar de aire se ha centrado en la calefacción de espacios tales como edificios, naves industriales y fábricas, siendo este un medio eficaz para precalentar el aire que circule dentro del área deseada y así ahorrar dinero y energía eléctrica que se consume en grandes cantidades al operar sistemas de aire acondicionado. Sin embargo, un segmento en el que se ha invertido y estudiado muy poco ha sido el dedicado al sector agrícola, donde el calentamiento solar de aire puede significar un gran aporte para la climatización de invernaderos, criaderos de aves, o en procesos de secado de cualquier tipo de producto orgánico; es decir, se puede aplicar en diversos sistemas de producción agrícola.

Cuando se habla de un sistema de producción agrícola eficiente, generalmente se entiende como un sistema que maximiza producción y ganancia económica, dejando de lado la conservación de los recursos naturales y el impacto social -positivo o negativo-, que dicho sistema pueda generar para los productores dentro una comunidad.

Tratar de hacer operativo el concepto de sustentabilidad en sistemas de producción agrícola, implica evaluar proyectos, tecnologías y sistemas de manejo de recursos naturales, abordando el análisis tanto de los procesos ambientales como de los fenómenos de tipo socioeconómico. Además es necesario integrar perspectivas temporales más amplias que las usualmente consideradas en una evaluación convencional (Masera y Astier, 2000).

Por lo tanto, con este trabajo se pretende evaluar una tecnología de calentamiento solar de aire que puede ser ampliamente adaptable en sistemas de producción agrícola rural, para con esto, como trabajo a futuro, analizar la sustentabilidad de un proyecto que involucre este sistema, aplicado como ejemplo en un proceso de secado solar de mango, de manera tal que el objetivo se dirija a promover un impacto positivo a cierta región productora de dicho fruto.

El secado solar es un proceso en el cual se transforma la energía radiante proveniente del sol en energía térmica con el fin de reducir la cantidad de líquido contenido en un material sólido hasta un valor aceptablemente bajo. El producto que se extrae de un secador puede reducir su tamaño hasta en un 75%, lo que facilita su almacenamiento, y reduce costos de transporte. Además, el secado de productos agrícolas retrasa su descomposición al inhibir la acción de hongos o bacterias debido a la poca cantidad de agua en el producto. Al retrasar la descomposición, el tiempo de almacenamiento se extiende considerablemente, brindándole un valor agregado al producto.

Las pruebas de secado se realizarán con mango dado que es uno de los frutos de mayor importancia a nivel mundial, ocupando el quinto lugar dentro de los principales productos frutícolas. México es el quinto productor mundial del fruto, y en el país ocupa el cuarto puesto como fruto más producido con más de 1,600,000 toneladas en el año 2010 (Montaño, 2012). Además, México es el principal país exportador. El 86% lo envía a los E.U.A., el 9% a Canadá, el 3% lo envía a Japón, Francia y Holanda, y el 2% restante a otros países. El tipo de mango que se empleará será el *Ataulfo*, debido a que su pulpa es firme, lo que facilita el tratamiento y manejo de la fruta, además de que es la variedad de mango más producida en México. (Plan rector. Sistema Producto mango de Michoacán, 2013).

De acuerdo con la FAO, el 90% de las frutas tropicales son consumidas en los países productores y el 10% restante se comercia en el mundo. De este último porcentaje, la mitad se comercia como fruta fresca y la otra mitad como un producto procesado, como puede ser la extracción de pulpa o la deshidratación (Financiera Rural, 2010). Sin embargo, de acuerdo al estudio de la Cadena Agroalimentaria del Mango, realizado en 2003, uno de los más importantes problemas de la transformación del mango es el mínimo desarrollo tecnológico para su industrialización, por lo que se privilegia su venta en fresco, lo que implica que los productos finales tengan un bajo valor agregado en el mercado y existe un

alto desperdicio de materia prima (en México se calcula una merma total del 40% en la producción). Una manera de responder a esta situación es la formación de una red de valor, en la cual es indispensable conocer las necesidades del consumidor para el desarrollo de nuevas estrategias de comercialización del mango, todo esto con la finalidad de aumentar la competitividad del sistema producto. (Sumaya-Martínez, Sanchez, Torres y García, 2012).

En el año 2009 Estados Unidos, principal país importador de frutas tropicales deshidratadas en el mundo, importó 5,410 toneladas de mango deshidratado, con un valor de 38.8 millones de dólares. De tales importaciones un 16.5% tuvo como origen México, ocupando la tercera posición como proveedor después de Filipinas y Tailandia, que participaron con el 55.4% y 26.6% de las importaciones respectivamente. El precio de mango deshidratado es el más alto de todos los conceptos, rebasando al precio del mango fresco en 9.5 veces y del congelado en 4.5 veces. (Financiera Rural, 2010).

Esto puede significar una buena oportunidad para productores de mango mexicano, ya que, debido a la problemática del alto porcentaje de merma, una posible solución para disminuir esta cifra y, a la vez, aumentar la ganancia económica por la venta del producto, puede ser la comercialización y exportación de dicho fruto en seco.

Por tanto, motivado principalmente por aplicaciones en el sector rural y agrícola, y dado la escasa investigación referente al calentamiento solar de aire, en este trabajo se propone, se diseña y se analiza un sistema modular de calentamiento solar de aire que puede ser empleado en diversas aplicaciones de producción agrícola y que, además, pueda contribuir, quizás, a lograr un impacto positivo en el desarrollo sustentable de alguna región o comunidad.

OBJETIVOS

- Diseñar, construir, instrumentar y evaluar el desempeño térmico de un calentador solar de aire de carácter modular que pueda ser adaptable a diversos procesos en sistemas de producción agrícola (secado, invernaderos, climatización de espacios, criaderos de aves, entre otros).
- Adaptar el sistema diseñado para interconectarse a un túnel de secado, para así probar su desempeño en una aplicación particular de secado solar de mango.

ANTECEDENTES DEL CALENTAMIENTO SOLAR DE AIRE

De manera general existen dos principales tipos de calentadores solares de aire, cada uno con diversas variaciones en sus diseños: El calentador convencional que cuenta con una placa absorbedora donde el fluido de trabajo (aire) fluye por encima y/o por debajo de ella, y el calentador con placa absorbedora porosa donde el fluido circula a través de ella. Para incrementar la eficiencia térmica, la energía en forma de calor captada por la placa tiene que ser transferida al aire que fluye, de manera eficiente. Por tanto, diversas configuraciones de placa absorbedora han sido diseñadas para mejorar dicha transferencia de calor. Choundhury, C., Anderson, S.L., Rekstand, J. (1988) propusieron modificar la placa plana absorbedora por un absorbedor corrugado. Garg, H.P., Choundhury, C., Datta, G. (1991) propusieron agregar aletas a la placa absorbedora. Mohamad, A.A. (1997) sugirió una placa absorbedora porosa. Mishra & Sharma (1981) reportaron el uso de absorbedores que tienen una cama llena de papel aluminio, esferas huecas y vidrio triturado.

Usar un medio poroso como absorbedor incrementa el área de transferencia de calor con la corriente de aire; sin embargo, al emplear una placa absorbedora de este tipo, se debe tener especial cuidado con la caída de presión dentro del conducto donde circula el aire. No obstante, la eficiencia térmica de este tipo de captadores solares es mayor que la que presentan los captadores convencionales.

Todas estas propuestas en las placas absorbentes implican, en la mayoría de los casos, materiales nuevos, o no convencionales en el mercado, lo que conlleva altos costos en la elaboración de estas placas especiales. Henden, L., Rekstad, J., Meir, M. (2002) mencionan que la principal barrera para la fabricación a gran escala de este tipo de sistemas solares térmicos es el alto costo en comparación con los sistemas de calefacción convencionales. El costo del captador es de gran importancia, por lo que la necesidad de fabricar captadores más económicos es evidente.
Para Mishra & Sharma (1981), la cantidad de energía solar absorbida por un calentador solar de aire depende en gran medida de:

- El nivel de radiación solar y la orientación del captador solar;
- El grado de absorción de la superficie absorbedora; y
- La transmitancia del material de la cubierta.

El material de la superficie absorbedora debe presentar un coeficiente de absortividad alto, coeficiente de emisividad bajo, de buena conductividad térmica y debe de ser térmicamente estable bajo las temperaturas de operación. Además debe de ser durable y lo más económico posible.

La transmitancia del material de la cubierta es también un parámetro importante que afecta a la cantidad de energía solar absorbida por un captador. Una buena cubierta debe tener una alta transmitancia en el rango visible del espectro electromagnético y una baja transmitancia a la radiación infrarroja.

Otras cualidades de un buen material para la cubierta incluyen la baja capacidad de absorción de calor, resistencia a la ruptura, durabilidad en condiciones climáticas adversas y que sea de bajo costo. El vidrio ha sido utilizado ampliamente como un material de cubierta debido a su alta transmisión de la luz visible, baja transmitancia a la radiación infrarroja y la estabilidad a altas temperaturas. Otros materiales como los plásticos se están utilizando cada vez más, principalmente por ser más económicos, sin embargo, su principal limitación es su relativamente baja estabilidad a altas temperaturas y su baja durabilidad bajo condiciones climáticas extremas, en particular debido a la degradación que sufren bajo largos periodos de exposición a la radiación ultravioleta. (Ion & Martins, 2006). No obstante, en época reciente, los policarbonatos más avanzados garantizan no degradación por 15 años.

Por otro lado, para desarrollar un mercado son necesarias normas de requisito básico, ya que con ellas se certifica la calidad de los componentes y el rendimiento del sistema. Sin embargo, las normas actuales de prueba aún no cubren suficientemente los captadores solares para el calentamiento de aire, o bien, la instrumentación pretendida para cubrir

algunas especificaciones requiere de una incertidumbre sumamente baja, característica que no siempre está presente en todos los instrumentos de un laboratorio no especializado en la certificación.

Existen normas como la ANSI/ASHRAE 93, publicado por primera vez en 1977, la cual proporciona una buena base para medir el rendimiento de los colectores solares de calentamiento de aire, sin embargo las pruebas de durabilidad y fiabilidad no están incluidos en la norma.

En Europa, en la actualidad no existe alguna prueba estándar para captadores de calentamiento solar de aire. La norma disponible para pruebas de captadores solares es la EN 12975:2006, la cual no cubre las tecnologías de calentamiento solar de aire. (Kramer, 2013)

Otro documento que sirve como referencia para probar los captadores solares de aire es el IEA SHC Task 19 – Solar Air Systems (2000). (Draft standard for testing of solar air collectors based on EN12975-2 and ASHRAE 93-2003, n. d.).

Se ha dado, en esta primer sección, un esbozo de lo que trata este trabajo de tesis. Se señaló el porqué de realizar un trabajo teórico-experimental sobre un sistema de calentamiento solar de aire, mencionando las partes que lo componen, y sus posibles aplicaciones en procesos agroindustriales, así como la importancia y el valor agregado que se le puede dar a cierto producto (en este caso el mango), al atacar el problema del desperdicio o merma mediante un proceso de deshidratado, pudiendo emplear el sistema que se propone para dicho fin.

CAPÍTULO 1. CALENTAMIENTO SOLAR DE AIRE Y PROPUESTA DE MODELO TEÓRICO

1.1 INTRODUCCIÓN

A nivel rural e industrial existen diversas maneras de obtener aire caliente para distintas aplicaciones como climatización de espacios o procesos de secado. Los métodos tradicionales de calentamiento de aire implican el consumo de algún combustible fósil o el uso de resistencias eléctricas. Ambos métodos, aunque energéticamente sean muy eficientes, son sumamente contaminantes y costosos (ambiental y económicamente hablando).

Un método menos empleado, y alternativo a los anteriores, para el calentamiento de aire es la utilización de captadores solares que transforman en calor la radiación solar absorbida en su superficie, para transferirlo al fluido de trabajo (en este caso, aire). Estos captadores utilizan tanto la radiación solar directa como la difusa, no requieren de sistemas de seguimiento solar y prácticamente no precisan de mantenimiento.

Para aplicaciones de baja temperatura como el secado solar, los captadores solares de placa plana proveen, durante el día y en ciertas condiciones atmosféricas, la energía necesaria para este proceso.

El funcionamiento básico de un captador solar consiste en recibir la radiación solar que incide en la superficie externa del captador, hecha de algún material transparente, generalmente vidrio o plástico. La radiación solar que atraviesa la cubierta transparente del captador incide en una superficie interna, que se denomina absorbedora, aumentando su temperatura. El flujo de aire calentado por contacto con esa superficie se puede aprovechar para distintos procesos como el secado de productos agrícolas, o la climatización de espacios en aplicaciones como incubadoras o invernaderos.

En este capítulo se da una descripción general de diferentes tipos de captadores solares para el calentamiento de aire que existen, así como el análisis térmico, de eficiencia y la propuesta de un modelo teórico a desarrollar.

1.2 CAPTADORES SOLARES PARA CALENTAMIENTO DE AIRE

Un calentador solar de aire convencional es, en esencia, un captador de placa plana con una placa absorbedora, un canal de flujo de aire, una cubierta transparente a la radiación solar en la parte superior (aunque también existen captadores sin cubierta, pero su eficiencia es muy baja), y aislamiento térmico en las partes baja y laterales del captador, (Tiwari, 2008).

Diversos calentadores de aire han sido diseñados, diferenciándose unos de otros de acuerdo a ciertas características de construcción, como son:

- Tipo de cubierta
- Tipo de absorbedor
- Patrón y tipo de flujo

La cubierta, además de transmitir la luz solar al interior del captador, reduce las pérdidas de calor por radiación y convección hacia el ambiente. Generalmente se usa vidrio, acrílico o alguna superficie plástica transparente a la radiación solar, de preferencia con el mayor índice de transmisividad posible; sin embargo dado que los materiales de las cubiertas son vulnerables a romperse, el costo de mantenimiento se incrementa.

El absorbedor convierte la energía solar en calor, el cual debe intercambiar en su mayor cantidad posible, y rápidamente, a la corriente de aire que pasa sobre y/o debajo de él.

1.2.1 DESCRIPCIÓN Y CLASIFICACIÓN DE CAPTADORES SOLARES PARA EL CALENTAMIENTO DE AIRE SEGÚN EL PATRÓN DE FLUJO

Existen cuatro patrones de flujo posibles:

- Flujo de aire entre la cubierta y el absorbedor.
- Flujo de aire por debajo del absorbedor.
- Flujo de aire en ambos lados del absorbedor.
- Flujo de aire atravesando un absorbedor poroso.

La elección del patrón y tipo de flujo de aire (natural o forzado) depende de la aplicación y de la temperatura de salida de aire que se desee. Los captadores con flujo de aire entre la cubierta y el absorbedor son los más simples y económicos, sin embargo su eficiencia es un poco baja debido a que las pérdidas de calor por convección en la cubierta son altas. Los captadores con flujo de aire por debajo del absorbedor son los más comunes y aplicables con diversos tipos de absorbedor. Si el flujo de aire se induce de manera forzada y en régimen turbulento, se incrementa la transferencia de calor convectivo. Algunos tipos de calentadores solares de aire se muestran en la Figura 1.1.

En los captadores solares con *flujo de aire por encima de la placa absorbedora*, Figura 1.1(a), el aire se calienta a su paso por el conducto formado entre la cubierta transparente y la placa absorbedora. El calor se transfiere al aire a través del lado superior del absorbedor. Estos calentadores de aire son los más sencillos y económicos de construir, sin embargo,

Figura 1.1 Captadores solares para calentamiento de aire: (a) Flujo de aire por encima de la placa absorbedora; (b) Flujo de aire por debajo de la placa absorbedora; (c) Flujo de aire por ambos lados de la placa absorbedora.

dado que aire caliente fluye por encima del absorbedor, la cubierta recibe gran cantidad de calor, lo que aumenta las pérdidas de calor por convección hacia el ambiente. Debido a que una cantidad importante de calor se pierde hacia el ambiente, la eficiencia de estos calentadores se reduce, por lo que son poco recomendables, (Tiwari, 2008).

En los captadores solares con *flujo de aire por debajo de la placa absorbedora*, Figura 1.1(b), la placa absorbedora está colocada directamente detrás de la cubierta transparente, con una capa de aire separándola de la cubierta. El aire a calentar fluye entre la superficie interna del absorbedor y la placa de aislante, de esta manera, la transferencia de calor sucede debido al intercambio de calor entre el lado interior del absorbedor y el aire que fluye por debajo del mismo. Además es posible incrementar geométricamente el área de transferencia de calor agregando aletas entre el absorbedor y el aislante, mejorando la eficiencia del calentador.

En los captadores solares con *flujo de aire por ambos lados de la placa absorbedora*, Figura 1.1(c), el aire fluye por los dos lados del absorbedor, lo que incrementa el área de transferencia de calor, pero reduce la temperatura de la placa. En la Figura 1.2 se pueden observar dos distintas configuraciones de este tipo de captadores, se tiene el de paso paralelo, Figura 1.2(a), y el de doble paso, Figura 1.2(b).

flujo de aire aislamiento (b)

Figura 1.2 Captadores solares con flujo de aire por ambos lados de la placa absorbedora: (a) Paso paralelo; (b) Doble paso. (Ekechukwu & Norton, 1999).

Otro tipo de captadores solares para calentamiento de aire con cubierta, son los de *placa porosa*. Este tipo de captador es una modificación de los captadores con paso de aire por ambos lados de la placa. Están construidos por lo general, con un absorbedor altamente poroso, como una gasa ennegrecida o viruta de madera. Debido a su porosidad hay un incremento en el área de transferencia de calor entre el aire y la placa absorbedora, sin embargo, la caída de presión del flujo de aire se incrementa. La Figura 1.3 representa este tipo de captador solar.

Figura 1.3 Captador solar para el calentamiento de aire con placa perforada. (Ekechukwu & Norton, 1999).

En la Tabla 1.1 se resumen las ventajas y desventajas de los captadores solares para el calentamiento de aire según el patrón de flujo en la placa absorbedora. Como se muestra en esta tabla, un aspecto de suma importancia que debe tomarse en cuenta para elegir el tipo de captador solar son las pérdidas térmicas. En los captadores solares con flujo por encima de la placa absorbedora, dado que fluye aire caliente entre la placa y la cubierta transparente, esta recibe gran cantidad de calor, lo que conlleva a mayores pérdidas de energía hacia el ambiente.

Parker (1991) muestra que las pérdidas de calor de la placa absorbedora al ambiente son mayores en los captadores con flujo de aire por encima de la placa absorbedora y en los de flujo de aire por ambos lados de la placa que en los de flujo por debajo de ella. Además, los dos captadores con flujo de aire en contacto directo con la cubierta transparente presentan un incremento aparente inicial en la eficiencia cuando el coeficiente de transferencia de calor convectivo aumenta. Sin embargo estos captadores presentan reducción en la eficiencia con el incremento del coeficiente de transferencia de calor en el canal de flujo si el coeficiente de pérdida superior es alto.

Patrón de flujo	Ventajas	Desventajas
Flujo de aire por encima de la placa absorbedora	Construcción simple, económico	Sólo una superficie transfiere calor, altas pérdidas (especialmente cuando la diferencia de temperatura entre el absorbedor y el ambiente es grande), decrece rápidamente la eficiencia a altas velocidades de aire.
Flujo de aire por debajo de la placa absorbedora	El espacio de aire entre el absorbedor y la cubierta establece cierto aislamiento, además es posible incrementar geométricamente el área de transferencia de calor entre el absorbedor y el flujo de aire.	Sólo una superficie se usa como área efectiva de transferencia de calor.
Flujo de aire por ambos lados de la placa absorbedora	Doble área efectiva de transferencia de calor.	Baja eficiencia a diferencias de temperatura altas entre el absorbedor y el ambiente.
Flujo de aire que atraviesa un absorbedor poroso	Alto coeficiente de transferencia de calor	Alta caída de presión, y, dependiendo de las condiciones del aire ambiente, como polvo o basura que no sea filtrada, puede obstruir el absorbedor.

 Tabla 1.1 Ventajas y desventajas de captadores solares para el calentamiento de aire para diferentes patrones de flujo de aire.

Tipo de captador (flujo)	Coeficiente de pérdida de calor superior (U_t) [W/m ² K]		
	Promedio	Rango	
Por encima de la placa	16	2-25	
Por ambos lados de la placa	16	2-25	
Por debajo de la placa	4	2-10	

Tabla 1.2 Valores rango y promedio de coeficiente de pérdida de calor superior U_t para diferentestipos de captadores solares de aire. (Parker, 1991)

Por tales motivos, el modelo que se propone construir es un calentador solar activo con paso de aire por debajo de la placa absorbedora incorporando canales de flujo que harán la función de aletas, aumentando así el área de transferencia de calor entre la placa y el aire y, por tanto, la eficiencia del captador. Esto, sin embargo, representa mayor caída de presión, lo que significa mayor potencia de ventilación forzada para inyectar aire dentro del captador, por tanto habrá que seleccionar un ventilador adecuado que cubra los requerimientos de presión y flujo del calentador.

1.3 ANÁLISIS TÉRMICO Y DE EFICIENCIA DEL CAPTADOR SOLAR DE AIRE

El análisis térmico y de eficiencia de los captadores solares implica problemas particulares que dependen de condiciones climáticas, temperaturas de operación, flujos de aire regularmente pequeños y variables, y de las características propias del diseño de los captadores. En los calentadores de aire la diferencia entre la temperatura del aire a la entrada y a la salida puede estar por encima de los 40 °C, dependiendo de las condiciones mencionadas. Por ello es de suma importancia diseñar un captador solar en el que exista la mayor transferencia de calor posible entre la placa absorbedora y el flujo de aire. (Hastings, 2000)

La Figura 1.4 muestra un esquema de un calentador solar de aire comúnmente usado. En este caso el aire a calentares fluye de manera paralela por debajo del absorbedor.

Tiwari (2008) menciona que el rendimiento térmico de los calentadores de aire fue investigado analíticamente por vez primera por Hottel y Whillier en 1964. El modelo de análisis para un estado estacionario es el siguiente: La longitud y el ancho de la placa absorbedora es L_1 y L_2 respectivamente; se considera un elemento de área L_2dx a una distancia x de la entrada. Las ecuaciones de balance de energía para la placa absorbedora, placa posterior y corriente de aire pueden escribirse como:

Figura 1.4 Factores involucrados en el análisis térmico de un calentador solar de aire comúnmente empleado. Fuente (Elaboración propia)

Para la placa absorbedora:

$$I(t) = U_t (T_{pt} - T_a) + h_{pf} (T_{pt} - T_f) + h_{rpb} (T_{pt} - T_{pb})$$
(1.1)

Para la placa posterior:

$$h_{rpb}(T_{pt} - T_{pb}) = h_{bf}(T_{pb} - T_f) + U_b(T_{pb} - T_a)$$
(1.2)

Para la corriente de aire:

$$\dot{m}C_{air}dT_f = h_{pf}L_2dx(T_{pt} - T_f) + h_{pf}L_2dx(T_{pb} - T_f)$$
(1.3)

Para estimar el incremento de temperatura del aire a través del canal de flujo, se obtiene el calor útil ganado en el captador (\dot{Q}_u) de la siguiente forma:

$$\dot{Q}_{u} = F_{R}A_{P}\left[I\left(\tau\alpha\right) - U_{L}\left(T_{o} - T_{a}\right)\right]$$
(1.4)

Donde F_R es el factor de remoción de calor del captador. Este factor es una medida de la efectividad de la transferencia de calor desde el absorbedor hacia el fluido de transporte, y está dado por:

$$F_R = \frac{\dot{m}C_{air}}{U_L A_P} \left[1 - e^{\frac{-F'U_L A_P}{\dot{m}C_{air}}} \right]$$
(1.5)

Donde U_L es el coeficiente global de pérdidas de calor, dado por:

$$U_{L} = U' + \frac{1}{F'} \left[\frac{U_{b} \ h_{pf}}{h_{rpb} + h_{pf} + U_{b}} \right]$$
(1.6)

$$U' = U_t + \left[\frac{U_b \ h_{rpb}}{h_{rpb} + h_{bf} + U_b}\right]$$
(1.7)

mientras que el factor de eficiencia del captador (F') está dado por:

$$F' = \left[1 + \frac{U'}{h_e}\right]^{-1} \tag{1.8}$$

con:

$$h_e = h_{pf} + \left[\frac{h_{pf}h_{rpb}}{h_{rpb} + h_{bf} + U_b}\right]$$
(1.9)

 A_p es el área de absorción de la placa (m²); L es la distancia entre la placa absorbedora y la cubierta; I(t) es la intensidad de radiación solar (W/m²); U_b es el coeficiente pérdida de calor de fondo (W/m²K); U_t es el coeficiente de pérdida de calor superior (W/m²K); h_{ga} , h_{pg} y h_{pf} son los coeficientes de transferencia de calor convectivo entre la cubierta transparente y el ambiente, entre la placa absorbedora y la cubierta transparente, y entre la placa absorbedora y el fluido respectivamente (W/m²K); h_{rga} , h_{rpg} y h_{rpb} son los coeficientes de transferencia de calor radiativo entre la cubierta transparente y el ambiente, entre la placa absorbedora y la cubierta transparente, y entre la placa absorbedora y la fondo de ella respectivamente (W/m²K); T_a , T_g , T_i , T_o , T_f , T_{pt} , T_{pb} , T_b , son las temperaturas ambiente, de la cubierta transparente, del aire a la entrada, del aire a la salida, del fluido, de la placa absorbedora, del fondo de la placa absorbedora, y de la parte trasera del captador respectivamente (°C); \dot{m} es el flujo másico (kg/s); y *Cair* es el calor específico del aire (J/kg K).

Para el análisis en estado estacionario, la eficiencia instantánea del captador está dada por el cociente entre el calor útil ganado y la intensidad de radiación solar por unidad de área, esto es:

$$\eta = \frac{Q_u}{A_P I} \tag{1.10}$$

Sustituyendo la ecuación (1.4), se tiene la ecuación de Hottel-Whillier-Bliss, también conocida como ecuación generalizada de desempeño (Parker, 1991):

$$\eta = F_R \left[\left(\tau \alpha \right) - \frac{U_L}{I} \left(T_o - T_a \right) \right]$$
(1.11)

Esta ecuación muestra que la eficiencia depende de las condiciones de operación del captador. La eficiencia decrece cuando la diferencia de temperaturas se incrementa dado que las pérdidas de calor son mayores. Es importante definir las condiciones de operación del captador dada la diferencia de temperaturas entre la *temperatura global del captador* T_k , y la temperatura ambiente T_a . La curva de eficiencia se puede trazar como función de cierta temperatura de referencia, la cual correspondería físicamente a la temperatura T_k , sin embargo, en la práctica, es complicado obtener una temperatura media de toda la superficie del captador, por tal motivo se puede tomar como temperatura de referencia la temperatura del fluido a la entrada (T_i) , la temperatura del fluido a la salida (T_o) , o la también llamada temperatura media del captador (T_m) , la cual es el valor de la media aritmética entre las temperaturas de entrada y salida. Hastings (2000) reporta que la temperatura media física (T_k) del captador es comúnmente más cercana a la temperatura de salida (T_o) que a la temperatura media aritmética (T_m) . Por tal motivo se emplea en este trabajo la temperatura de salida como temperatura de referencia.

Figura 1.5 Curvas de eficiencia teóricas respecto a tres temperaturas de referencia. (Fuente: Hastings, 2000)

La Figura 1.5 muestra tres posibles curvas de eficiencia dependiendo la temperatura de referencia utilizada.

Una vez definida la temperatura de referencia en las condiciones de operación del captador, para obtener la ecuación generalizada de desempeño de un captador en particular, es necesario determinar tres valores: el producto transmitancia-absortancia efectivo ($\tau\alpha$) del sistema cubierta-absorbedor, el cual es un valor constante para radiación solar incidente normal a la superficie o para cualquier ángulo específico de incidencia, el coeficiente global de pérdidas de calor U_L , el cual depende de los coeficientes de transferencia de calor dentro del captador, y el factor de remoción de calor F_R , el cual es constante para cada diseño en particular cuando el flujo másico es constante y el fluido de trabajo no cambia.

1.3.1 PRODUCTO TRANSMITANCIA-ABSORTANCIA ($\tau\alpha$)

Parte de la radiación que pasa a través de la cubierta transparente e incide en la placa absorbedora es reflejada de regreso a la cubierta; sin embargo esta no se pierde en su totalidad dado que parte de ella es reflejada de regreso a la placa absorbedora, y así consecutivamente. Esto se muestra en la Figura 1.6, donde τ es la transmitancia de la cubierta a cierto ángulo, y α es la absortancia angular de la placa absorbedora. De la energía incidente ($\tau\alpha$) es absorbido por la placa absorbedora y (1- α) τ es reflejada de regreso hacia la cubierta. La reflexión desde la placa absorbedora es considerada difusa (sin polarizar) de manera que la fracción (1- α) τ choca contra la cubierta y (1- α) $\tau \rho_d$ es reflejada nuevamente hacia la placa absorbedora. La cantidad ρ_d se refiere a la reflectancia de la cubierta de la radiación difusa incidente desde el fondo y puede ser estimada para diversos ángulos. La reflexión múltiple de la radiación difusa continua de tal manera que la fracción de la energía incidente absorbida finalmente es:

$$(\tau\alpha) = \frac{\tau\alpha}{1 - (1 - \alpha)\rho_d} \tag{1.12}$$

Figura 1.6 Absorción de la radiación solar en la placa absorbedora.

No obstante, Duffie & Beckman (1980) señalan que una aproximación razonable para la mayoría de los captadores solares es:

$$(\tau\alpha) \cong 1.01\tau\alpha \tag{1.13}$$

La cual puede usarse como una estimación en lugar de la ecuación (1.12).

1.3.2 PÉRDIDAS DE CALOR (UL)

Se pierde energía en forma de calor hacia los alrededores desde (a) la placa absorbedora a través de la cubierta transparente (pérdida superior), y (b) la placa absorbedora a través del aislante (pérdidas de fondo y lateral). Estas pérdidas suceden por conducción, por convección y por radiación. El cálculo de los coeficientes de transferencia de calor correspondientes a cada fenómeno es esencial para el análisis del desempeño del captador.

El coeficiente global de pérdidas de calor esta dado por la ecuación (1.6). Para resolver dicha ecuación es necesario conocer las ecuaciones (1.7)-(1.9), por tanto se requiere determinar los coeficientes de transferencias de calor dentro del captador, el coeficiente de pérdida superior (U_t), y el coeficiente de pérdida de fondo (U_b).

1.3.2.1 Coeficientes de transferencia de calor convectivo

a) De la placa absorbedora a la cubierta transparente (h_{pg})

El coeficiente de transferencia de calor entre la placa absorbedora y la cubierta, dos superficies paralelas e inclinadas a cierto ángulo β sobre la horizontal, puede expresarse como:

$$h_{pg} = \mathrm{Nu}\frac{K}{L} \tag{1.14}$$

Donde Nu es el número adimensional de Nusselt, el cual indica la relación entre la transferencia de calor convectivo y conductivo en el fluido, K es la conductividad térmica del aire (W/mK), y L es el espacio entre la placa absorbedora y la cubierta (m).

El valor de Nusselt, cuando existe aire entre la placa y la cubierta, se puede obtener con la expresión dada por Holland *et. al.* (1976), (citado por Tiwari, 2008):

$$Nu = 1 + 1.44 \left[1 - \frac{1708}{Ra \cos \beta} \right]^{+} \left(1 - \frac{\sin(1.8\beta)^{1.6} 1708}{Ra \cos \beta} \right) + \left[\left\{ \frac{Ra \cos \beta}{5830} \right\}^{\frac{1}{3}} - 1 \right]^{+} (1.15)$$

Donde el exponente '+' significa que únicamente los valores positivos de los términos en corchetes se consideran; para valores negativos se usa cero. Para emplear esta relación, el ángulo de inclinación β puede variar únicamente entre 0° y 75°.

Sin embargo, Bucheberg *et. al.* (1976), (citado por Tiwari, 2008), han recomendado las siguientes correlaciones para pérdidas de transferencia de calor convectivo para un captador plano inclinado:

Nu = 1+1.446
$$\left[1 - \frac{1708}{\text{Ra } \cos \beta} \right]$$
 para 1708 < Ra $\cos \beta$ < 5900 (1.16)

Nu = 0.229 (Ra
$$\cos \beta$$
)^{0.252} para 5900 < Ra $\cos \beta < 9.23 \times 10^4$ (1.17)

Nu = 0.157 (Ra cos
$$\beta$$
)^{0.285} para 9.23×10⁴ < Ra cos β < 10⁶ (1.18)

En las expresiones anteriores *Ra* se refiere al número adimensional de Rayleigh, el cual representa la medida del balance entre las fuerzas que promueven la convección y las que se le oponen (fricción debido a la viscosidad y la difusión térmica que opera en sentido contrario al gradiente de temperatura presente en el fluido). El número de Rayleigh está dado por:

$$Ra = \frac{g \beta' \Delta T L^3}{\upsilon \alpha}$$
(1.19)

Donde g es la aceleración gravitatoria, β' es el coeficiente de expansión térmica ($\beta'=1/T_m$, donde T_m es una aproximación a la temperatura media entre las dos superficies paralelas), ΔT es la diferencia de temperaturas entre la placa absorbedora y la cubierta transparente, υ es la viscosidad cinemática del fluido y α es la difusividad térmica del fluido

b) De la cubierta transparente al ambiente (h_{ga})

El coeficiente de pérdidas de calor convectivo de la parte superior de la cubierta de vidrio al ambiente está dada por Watmuff *et. al.* (1977), (citado por Tiwari, 2008):

$$h_{ga} = 2.8 + 3.0 V \text{ para } 0 \le V \le 7 ms^{-1}$$
 (1.20)

Donde V es la velocidad del viento, por encima del captador.

c) Dentro del canal de flujo (*hpf* y *hbf*)

Los coeficientes de transferencia de calor convectivo entre el aire y dos paredes de un canal de flujo se consideran iguales, es decir que $h_{pf} = h_{bf}$ (Tiwari, 2008). Por tanto, el coeficiente de transferencia de calor dentro del canal de flujo de aire (h_f) se obtiene con la siguiente expresión:

$$h_f = \operatorname{Nu} \frac{K}{D_h} \tag{1.21}$$

Donde *K* es la conductividad térmica del aire (W/mK), y D_h es el diámetro hidráulico del canal de flujo (m). Empleando alguna de las correlaciones entre los números adimensionales de Nusselt y de Reynolds propuesta por Kreith (1973), (citado por Parker, 1991) dependiendo de la magnitud de Reynolds dentro del canal de flujo, se obtiene el valor del número de Nusselt para el canal de flujo. Los valores de Kreith para estas relaciones son aproximados en las ecuaciones (1.22)-(1.25).

$$Nu = 0.344 \,\text{Re}^{0.35}$$
 para $100 < \text{Re} \le 2100$ (1.22)

$$Nu = 168 \times 10^{-9} \text{ Re}^{2.25} \text{ para } 2100 < \text{Re} \le 2850$$
 (1.23)

$$Nu = 2.55 \times 10^{-3} \text{ Re}^{1.04} \text{ para } 2850 < \text{Re} \le 5650$$
 (1.24)

$$Nu = 19.8 \times 10^{-3} \text{ Re}^{0.8}$$
 para 5650 < Re ≤ 100000 (1.25)

Donde Re es el número de Reynolds, el cual es un parámetro adimensional que relaciona las fuerzas dinámicas y las fuerzas viscosas del fluido, cuyo valor indica el régimen del fluido, es decir, si es laminar, turbulento o en transición. El número de Reynolds es función de la velocidad del fluido u, del diámetro de la tubería (o diámetro hidráulico para tuberías de sección transversal no circular) D_h , y de la viscosidad cinemática del fluido v. Matemáticamente, Re se expresa de la siguiente manera:

$$\operatorname{Re} = \frac{uD_h}{v} \tag{1.26}$$

Donde D_h para tuberías de sección transversal no circular es:

$$D_h = \frac{4}{P} \tag{1.27}$$

Donde A es el área de la sección transversal del canal de flujo y P es el perímetro de dicha área.

^{34 |} Página

Por lo tanto, suponiendo la viscosidad cinemática del fluido como constante (considerando una temperatura promedio de 30°C), y que el diámetro hidráulico no cambia, la variación del número de Reynolds sólo será función de la velocidad del aire que atraviesa el captador solar. Así, sustituyendo la ecuación (1.26) en (1.22)-(1.25) según el valor de Reynolds obtenido, se obtiene el coeficiente de transferencia de calor dentro del canal de flujo dado por la ecuación (1.21).

1.3.2.2 Coeficientes de transferencia de calor radiativo

a) De la placa absorbedora a la cubierta transparente (h_{rpg})

La cantidad de calor transferido de la placa a la cubierta, por radiación, está dada por la expresión:

$$\dot{q}_{rad} = h_{rpg} \left(T_{pt} - T_g \right) \tag{1.28}$$

Donde h_{rpg} es el coeficiente de pérdidas de calor radiativo de la placa a la cubierta, expresado por:

$$h_{rpg} = \varepsilon_{eff} \sigma \frac{\left[\left(T_{pt} + 273.15 \right)^4 - \left(T_g + 273.15 \right)^4 \right]}{T_{pt} - T_g}$$
(1.29)

Donde σ es la constante de Stefan-Boltzmann, cuyo valor es 5.67x10⁻⁸ W/m²K⁴, y ε_{eff} se refiere a la emisividad efectiva del sistema placa-cubierta, dada por:

$$\varepsilon_{eff} = \left[\frac{1}{\varepsilon_p} + \frac{1}{\varepsilon_g} - 1\right]^{-1} \tag{1.30}$$

Donde ε_p y ε_g son, respectivamente, las emisividades de la placa absorbedora y de la cubierta transparente.

b) De la cubierta transparente al ambiente (*hrga*)

El coeficiente de pérdidas de calor radiativo de la cubierta al ambiente depende del intercambio de radiación con el cielo (Tiwari, 2008), a su temperatura T_s , donde:

$$T_s = T_a - 6 \tag{1.31}$$

Teniendo esto, el coeficiente de transferencia de calor radiativo entre la cubierta transparente y el ambiente se puede expresar como:

$$h_{rga} = \varepsilon_g \sigma \frac{\left[\left(T_g + 273.15 \right)^4 - \left(T_s + 273.15 \right)^4 \right) \right]}{T_g - T_a}$$
(1.32)

c) Dentro del canal de flujo (hrpb)

Para calcular el coeficiente de transferencia de calor radiativo en el canal de flujo se emplea la siguiente expresión:

$$h_{rpb} = \varepsilon_{eff_{pb}} \sigma \frac{\left[\left(T_{pt} + 273.15 \right)^4 - \left(T_{pb} + 273.15 \right)^4 \right]}{T_{pt} - T_{pb}}$$
(1.33)

Donde $\varepsilon_{eff_{pb}}$ se refiere a la emisividad efectiva del canal de flujo del aire, y está dado por:

$$\varepsilon_{eff_{pb}} = \left[\frac{1}{\varepsilon_{pt}} + \frac{1}{\varepsilon_{pb}} - 1\right]^{-1}$$
(1.34)

Donde ε_{pt} y ε_{pb} son las emisividades respectivas de las paredes superior e inferior del canal de flujo de aire.

1.3.2.3 Coeficiente de pérdida superior (U_t)

El coeficiente total de transferencia de calor de la placa absorbedora a la cubierta transparente puede expresarse como la suma de h_{pg} y h_{rpg} , esto es:

$$h_{\rm l} = h_{pg} + h_{rpg} \tag{1.35}$$

y el de la cubierta transparente al ambiente es:

$$h_2 = h_{ga} + h_{rga} \tag{1.36}$$

El coeficiente global de pérdida de calor superior de la placa absorbedora al ambiente es dado por:

$$U_t = \left[\frac{1}{h_1} + \frac{1}{h_2}\right]^{-1}$$
(1.37)

1.3.2.4 Coeficiente de pérdida de fondo (*Ub*)

Se pierde calor de la parte inferior del canal de flujo de aire hacia el ambiente primero por conducción a través del aislamiento y luego, consecuentemente, por convección y radiación desde la parte inferior del mismo hacia el ambiente. El coeficiente de pérdida de fondo está dado por:

$$U_b = \left[\frac{L_{in}}{K_{in}} + \frac{1}{h_b}\right]^{-1}$$
(1.38)

Donde el sufijo *in* se refiere al aislamiento, mientras que h_b es el coeficiente de pérdida de calor de la parte inferior del captador, el cual está dado por la suma del coeficiente de pérdida de calor convectivo h_{ba} y el coeficiente de pérdida de calor radiativo h_{rba} . Estos

valores pueden ser calculados como en el caso de la parte superior de la cubierta transparente, sin embargo, la magnitud de K_{in} y de h_b son tales que el segundo término de la ecuación (1.38) es despreciable comparado con el primero, por lo tanto la ecuación anterior puede reducirse a la siguiente expresión:

$$U_b \square \frac{K_{in}}{L_{in}} \tag{1.39}$$

1.3.2.5 Coeficiente global de pérdida de calor (UL)

Sustituyendo las Ecuaciones (1.21), (1.33), (1.38) y (1.37) en las Ecuaciones (1.7), (1.8) y (1.9), y estas a su vez en la Ecuación (1.6) se obtiene el coeficiente global de pérdida de calor en el captador.

1.3.3 FACTOR DE REMOCIÓN DE CALOR (F_R)

Para obtener el factor de remoción de calor del captador se sustituyen las Ecuaciones (1.6) y (1.8) en la Ecuación (1.5).

1.3.4 EFICIENCIA DEL CAPTADOR (η)

La eficiencia instantánea del captador depende del factor de remoción de calor (F_R) del captador (el cual es función del flujo), del producto transmitancia-absortancia ($\tau \alpha$) del sistema placa-cubierta, del coeficiente de pérdidas de calor (U_L), de la diferencia entre las temperaturas de salida del aire (T_o) y ambiente (T_a), y de la cantidad de radiación solar (I), como lo muestra la Ecuación (1.11).

$$\eta = F_R\left[\left(\tau\alpha\right) - \frac{U_L}{I}\left(T_o - T_a\right)\right]$$

Teniendo mediciones durante todo un día solar, y para diferentes flujos de aire, se obtendrá una curva de eficiencia del captador similar a la mostrada en la Figura 1.5 y en la Figura 1.7.

Figura 1.7 Variación de la eficiencia con respecto a diferentes flujos. (Fuente: Parker, 1991)

1.4 PROPUESTA DE MODELO TEÓRICO

Se proponen canales de flujo de material conductor, de manera tal que la placa superior e inferior estén térmicamente unidas y pueda suponerse que ambas superficies presenten la misma temperatura, como se muestra en la Figura 1.8. Teniendo esta unión térmica entre ambas placas, la transferencia de calor radiativo dentro del canal de flujo no necesita considerarse.

Parker (1991) establece que bajo estas características, el coeficiente global de pérdidas de calor U_L puede expresarse únicamente como la suma de las pérdidas superior U_t y de fondo U_b . Sin embargo esta expresión no contempla la pérdida de borde, la cual, a pesar de ser muy pequeña, considero debe incluirse. De esta manera, el coeficiente global de pérdidas de calor se puede redefinir de la siguiente manera:

$$U_L = U_t + U_b + U_e \tag{1.40}$$

Donde U_e representa la pérdida de borde. Tabor (1958), (citado por Tiwari, 2008), establece que la energía perdida en los costados de la caja del captador es la misma que la pérdida en la parte inferior, siempre y cuando el grosor del aislamiento de los bordes sea el mismo que el de la parte posterior. De esta manera, la pérdida de borde se expresa en términos del área del captador y del coeficiente de pérdida inferior de la siguiente manera:

$$U_e = U_b \left(\frac{A_e}{A_P}\right) \tag{1.41}$$

Donde A_e es el área del borde.

El factor de eficiencia del captador F' también se ve afectado bajo las condiciones de los canales de flujo propuestos, redefiniéndose de la siguiente manera:

$$F' = \frac{h_f}{h_f + U_L} \tag{1.42}$$

Bajo esta propuesta, reescribiendo la ecuación (1.1) de balance de energía para la placa absorbedora se tendría:

$$I(t) = \dot{q}_{u} + U_{L} \left(T_{pt} - T_{a} \right)$$
(1.43)

Donde:

$$\dot{q}_u = h_{pf} \left(T_{pt} - T_f \right) \tag{1.44}$$

Habiendo resuelto estas ecuaciones, se tienen identificados cuales son los parámetros y las variables que intervendrán y afectarán el desempeño y la eficiencia térmica del captador solar propuesto. En el siguiente capítulo se describirá el modelo físico diseñado y construido, así como la metodología utilizada para obtener experimentalmente la eficiencia térmica del sistema, con base en las ecuaciones aquí desarrolladas.

CAPÍTULO 2. DISEÑO DEL SISTEMA DE CALENTAMIENTO SOLAR DE AIRE Y ESTUDIO EXPERIMENTAL

2.1 INTRODUCCIÓN

En el capítulo anterior se mencionaron las características principales de distintos tipos de calentadores solares de aire que existen, haciendo notar que, dentro de las tres principales configuraciones de flujo: por encima, por debajo, y por ambos lados de la placa absorbedora, los de flujo de aire por debajo de la placa absorbedora son los que la literatura reporta como más adecuados al hacer un balance entre eficiencia y pérdidas de calor. Se establecieron las bases del diseño del calentador planteando un modelo teórico del tipo de distribución del flujo de aire por debajo de la placa absorbedora con el fin de incrementar la eficiencia del captador. Se propuso para el diseño del captador una serie de canales de flujo térmicamente unidos entre sí, en lugar de un solo canal, para con esto aumentar el área de intercambio de calor entra la placa y el aire, y mejorar la distribución del flujo de aire de distribución del flujo de aire placa y el aire, y mejorar la distribución del flujo de aire de intercambio de calor.

Partiendo del modelo teórico propuesto, en este capítulo se describirá el sistema de calentamiento solar de aire diseñado, la instrumentación requerida para su caracterización y se detallará el estudio experimental que se realizó.

El objetivo del estudio experimental es evaluar y caracterizar el comportamiento de la eficiencia térmica del calentador bajo cuatro diferentes flujos de aire, con la finalidad de conocer su funcionamiento y los factores que intervienen en la eficiencia térmica del sistema.

2.2 DISEÑO DEL SISTEMA DE CALENTAMIENTO SOLAR DE AIRE

El sistema de calentamiento de aire construido se compone de: ventilador inyector de aire y regulador de voltaje de corriente alterna, captador solar, soporte inclinado para el captador, y ductos de entrada y salida de aire, Figura 2.1.

Básicamente, el regulador de voltaje modifica la velocidad de giro del ventilador, para con ello tener control sobre la cantidad de aire que entra al captador solar en dependencia de la temperatura de aire de salida que se requiera.

Figura 2.1 Sistema de calentamiento solar de aire.

2.2.1 CAPTADOR SOLAR

Partiendo del modelo teórico propuesto en el capítulo anterior, se diseñó un captador solar para calentamiento de aire con paso por debajo de la placa absorbedora, incorporando perfiles tubulares rectangulares de hierro, recubiertos con pintura color negro mate de alta temperatura. Estos perfiles, térmicamente unidos entre sí mediante puntos de soldadura, hacen la función placa absorbedora y, al mismo tiempo, de canales de flujo para el aire que circula a lo largo del captador.

La placa absorbedora está conformada, por lo tanto, por la cara superior de cada uno de los perfiles unidos entre sí, teniendo un superficie de captación (A_P) de 1.22 m², recubierta con pintura negro mate de alta temperatura. Con esto se logran dos aplicaciones, la primera es tener una superficie plana, horizontal y opaca que capta la energía solar, y la segunda es tener canales de distribución "uniforme" del aire. En estudios anteriores realizados por Gama (2007) se utilizó únicamente una lámina negra como placa absorbedora, lo cual representa un menor costo, sin embargo la distribución de temperatura resulta poco uniforme. Al incorporar los perfiles tubulares como canales de flujo, estos hacen la función de *aletas*, con lo cual se aumenta el área de contacto entra la placa absorbedora y el aire que fluye por debajo de ella, además de asegurar una mejor distribución del aire a lo largo del captador.

Como cubierta transparente se empleó una hoja de vidrio normal de 2 m de largo por 66 cm de ancho y 3 mm de espesor. Como aislamiento térmico se utilizó una placa de espuma de celdas cerradas de poliisocianurato de la marca "Hunter Panels" de alta resistividad a la compresión, de 1 pulgada de espesor (25 mm), en los costados y en la parte posterior de los canales de flujo, el cual presenta un valor de conductividad térmica de 0.0236 W/mK. El captador está protegido por una carcasa de aluminio de 2 m de largo por 67 cm de ancho y 9 cm de altura, y está montado sobre un par de soportes que le permiten tener una inclinación de 20° sobre la horizontal, orientado hacia el sur.

2.2.2 DISEÑO Y CONTROL DEL SISTEMA INYECTOR DE AIRE

Elegir el ventilador inyector de aire adecuado para el captador solar diseñado no fue una tarea sencilla, ya que antes de seleccionarlo fue necesario conocer el flujo volumétrico de aire que pasará por el captador, así como su velocidad; además la caída de presión que habrá dentro del sistema, lo cual es función de las pérdidas de carga en los conductos por donde circulará el aire. Por lo tanto, fue necesario calcular previamente estos parámetros para poder seleccionar el ventilador adecuado con base a las curvas características proporcionadas por los fabricantes.

2.2.2.1 Diseño del sistema inyector de aire

La Norma EN-12975 (2010), citada en Draft standard for testing of solar air collectors based on EN12975-2 and ASHRAE 93-2003 (n. d.), establece que el rango de flujo másico \dot{m} para evaluar el comportamiento de un calentador solar de aire cuando se cuenta con ventilación forzada es de 20 a 120 kg/h/m². Partiendo de esta referencia, se procedió a calcular el flujo volumétrico \dot{Q} necesario y la velocidad de aire *u* con las siguientes expresiones:

$$\dot{Q} = \frac{\dot{m}}{\rho} = uA \tag{2.1}$$

Con lo que:

$$u = \frac{\dot{m}}{\rho A} \tag{2.2}$$

Donde *A* es el área de la sección transversal del canal de flujo del captador.

Para un área de captación de 1.22 m², \dot{m} es de 24.4 a 146.4 kg/h. Sustituyendo este rango en la ecuación (2.2) con $A=0.0155 \text{ m}^2$, y considerando una densidad del aire constante $\rho=1.164 \text{ kg/m}^3$ (a una temperatura de 30 °C), se tiene un rango de velocidad *u* entre 0.3644 y 2.1864 m/s. Teniendo esto, la norma establece que cuando la ventilación es forzada, el régimen del flujo debe ser entre transitorio y turbulento. Para conocer si con estas velocidades de viento se está entre esos regímenes de flujo, se calcula el número de Reynolds, el cual se expresa de la siguiente forma:

$$\operatorname{Re} = \frac{uD_h}{v}$$
(2.3)

Donde ν es la viscosidad cinemática del aire, cuyo valor se supone constante de 1.60 x 10⁻⁵ m²/s, para una temperatura de 30°C, y D_h es el diámetro hidráulico del canal por el que circula el fluido. Para ductos cuya sección transversal es rectangular, el diámetro hidráulico está dado por:

$$D_h = 4\frac{A}{P} = \frac{2ab}{a+b} \tag{2.4}$$

Donde *P* es el perímetro de la sección transversal del ducto rectangular, y *a* y *b* son la altura y la base del mismo. Para la entrada de aire al captador se tiene a = 0.0254 m, y b = 0.6096 m, con lo que el diámetro hidráulico es, $D_h = 0.0488$ m.

Con el rango de velocidad obtenido, y sustituyéndolo en la ecuación (2.3), se tiene un número de Reynolds entre 1171 y 7092. Esto indica que a velocidades bajas se tendría un régimen de flujo laminar, por lo que sería necesario incrementar el límite inferior de velocidad. Con fines prácticos únicamente, y de manera arbitraria, se reajusta el rango de velocidad 1 m/s $\leq u \leq 2.19$ m/s, lo que proporciona un nuevo rango de número de Reynolds aproximado entre 3250 y 7092, con lo cual se asegura que el régimen del flujo que pase por debajo de la placa absorbedora del captador será siempre entre transitorio y turbulento. En consecuencia, el rango del flujo másico también se ve afectado, por lo tanto se tiene:

Velocidad	и	1 – 2.19 m/s
Reynolds	Re	3253 - 7092
Flujo volumétrico	Ż	$55.80 - 139.70 \text{ m}^3/\text{h}$
Flujo másico	'n	67 – 146 kg/h

Tabla 2.1 Rangos mínimos de prueba de velocidad y flujo para el calentador solar diseñado según Draft standard for testing of solar air collectors based on EN12975-2 and ASHRAE 93-2003 (n. d.).

Para calcular la caída de presión dentro del sistema se emplea la ecuación de Bernoulli, para lo cual es necesario calcular previamente las pérdidas de carga en las tuberías donde circula el fluido, las cuales son de dos clases: primarias y secundarias. (Mataix, 2010).

Las pérdidas primarias son las *pérdidas de superficie* en el contacto del fluido con la tubería (capa límite), rozamiento de unas capas de fluido con otras (régimen laminar) o de las partículas de fluido entre sí (régimen turbulento). Tienen lugar en flujo uniforme, por tanto principalmente en los tramos de tubería de sección constante. En la Ecuación (2.5), conocida como ecuación de Darcy-Weisbach, se muestra que la pérdida de carga primaria para tuberías de diámetro constante es directamente proporcional al cuadrado de la velocidad media en la tubería y a la longitud de la tubería e inversamente proporcional al diámetro de la misma.

$$H_{rp} = \lambda \frac{L}{D} \frac{u^2}{2g}$$
(2.5)

Donde H_{rp} es la pérdida de carga primaria, λ es el coeficiente adimensional de pérdida de carga primaria, L es la longitud de la tubería, D es el diámetro de la tubería y u es la velocidad media del fluido. En los casos más generales λ es función de Re y de la rugosidad relativa de la tubería k/D. El coeficiente λ se puede obtener de manera gráfica haciendo uso del diagrama de Moody (ver Anexo A.1), o numéricamente, cuando 2000 < Re < 100000 y la tubería es lisa, mediante la ecuación de Blasius:

$$\lambda = \frac{0.316}{\text{Re}^{1/4}}$$
(2.6)

Las pérdidas secundarias son las *pérdidas de forma*, que tienen lugar en las transiciones (estrechamientos o expansiones de la corriente), codos, válvulas y en toda clase de accesorios de tubería. Estos elementos producen una perturbación de la corriente que origina remolinos y desprendimientos, que intensifican las pérdidas. Si la conducción es relativamente corta, las pérdidas secundarias pueden ser más importantes que las primarias. De manera similar a las pérdidas primarias, la ecuación fundamental de las pérdidas secundarias es:

$$H_{rs} = \zeta \frac{u^2}{2g} \tag{2.7}$$

Donde H_{rs} es la pérdida de carga secundaria, ζ es el coeficiente adimensional de pérdida de carga secundaria, y *u* es la velocidad media en la tubería, si se trata de codos o válvulas. Si se trata de un cambio de sección como contracción o ensanchamiento, suele tomarse la velocidad en la sección menor. El coeficiente ζ depende principalmente del tipo de accesorio por el que circule el fluido. Para el caso del sistema de calentamiento de aire diseñado, se tiene, entre el ventilador inyector de aire y el captador solar, un ducto cuyas características geométricas representan una *contracción* suave debido a que el diámetro hidráulico de la salida del ventilador (D_h =0.0930 m) es mayor que el diámetro hidráulico de la entrada de aire del captador (D_h =0.0488 m), como se muestra en la Figura 2.2.

Figura 2.2 Contracción brusca y suave; los valores de ζ se toman de la Figura 2.3 (Fuente: Mataix,

2010).

Figura 2.3 Valores de ζ según la Figura 2.2 (Fuente: Mataix, 2010).

(b)

Figura 2.4 Sistema impulsor de aire, ductos de entrada y salida de aire y captador solar. (a) Vista superior del sistema donde se muestran los puntos de pérdidas de carga. Entre los puntos 1 y 2 las pérdidas son *de forma* (secundarias), y entre los puntos 2 y 3 las pérdidas son *de superficie* (primarias). (b) Vista lateral del sistema.

Conociendo los parámetros que definen las pérdidas de carga dentro del sistema, se sabe que la energía en el punto 2 será igual a la energía en el punto 1 menos la energía perdida entre los puntos 1 y 2, es decir, se cumple la ecuación de Bernoulli con pérdidas secundarias, la cual, expresada en alturas equivalentes, será:

$$P_1 + \frac{1}{2}\rho u_1^2 - \rho g H_{rs} = P_2 + \frac{1}{2}\rho u_2^2$$
(2.8)

Por conservación de masa se tiene:

$$\dot{Q}_1 = \dot{Q}_2$$

 $u_1 A_1 = u_2 A_2$ (2.9)
 $u_1 = u_2 \frac{A_2}{A_1}$

Donde A_1 y A_2 son, respectivamente, el área de la sección transversal de salida de aire del ventilador y el área de la sección transversal de entrada de aire al captador, mientras que u_1 y u_2 son las velocidades del aire en dichos puntos del sistema.

Sustituyendo (2.9) en (2.8) se tiene:

$$P_1 + \frac{1}{2}\rho u_2^2 \left(\frac{A_2}{A_1}\right)^2 - \rho g H_{rs} = P_2 + \frac{1}{2}\rho u_2^2$$
(2.10)

Por tanto, la caída de presión entre los puntos 1 y 2 está dada por:

$$P_1 - P_2 = \frac{1}{2}\rho u_2^2 - \frac{1}{2}\rho u_2^2 \left(\frac{A_2}{A_1}\right)^2 + \rho g H_{rs}$$
(2.11)

De igual manera, la energía en el punto 3 será igual a la energía en el punto 2 menos la energía perdida entre los puntos 2 y 3. En este caso las pérdidas de carga corresponden a pérdidas primarias, cumpliéndose la ecuación de Bernoulli de la siguiente manera:

$$P_2 + \frac{1}{2}\rho u_2^2 - \rho g H_{rp} = P_3 + \frac{1}{2}\rho u_2^2$$
(2.12)

Con esto se tiene que la presión en el punto 2 sería:

$$P_2 = P_3 + \rho g H_{rp} \tag{2.13}$$
Sustituyendo (2.13) en (2.11) se tiene:

$$P_1 - P_3 = \frac{1}{2}\rho u_2^2 - \frac{1}{2}\rho u_2^2 \left(\frac{A_2}{A_1}\right)^2 + \rho g H_{rs} + \rho g H_{rp}$$
(2.14)

Agrupando términos y sustituyendo (2.5) y (2.7) en (2.14), se tiene la expresión que determina la caída de presión dentro del sistema, desde la inyección de aire hasta la salida del mismo del captador solar, de la siguiente manera:

$$P_1 - P_3 = \frac{1}{2}\rho u_2^2 \left[1 - \left(\frac{A_2}{A_1}\right)^2 + 12\lambda \frac{L}{D_h} + \zeta \right]$$
(2.15)

El factor 12 que multiplica a la expresión de las pérdidas primarias se debe a que el captador cuenta con 12 conductos de aire por debajo de la placa absorbedora, por lo que en la expresión se ocupa el diámetro hidráulico de cada uno de dichos conductos, es decir, $D_h=0.0339$ m.

Con ayuda de Excel, se programó la ecuación (2.15) para diferentes valores de ζ según lo indicado en las Figuras 2.2, 2.3 y 2.4, para λ según la ecuación (2.6), y para relaciones de área (A_2/A_1) de ventiladores disponibles en el mercado que cubrieran, en primera instancia, los requerimientos mínimos de flujo obtenidos con anterioridad. Con ello se obtuvo la caída de presión que tendría el sistema y se comparó con la curva característica de cada uno de esos ventiladores con el fin de seleccionar el más adecuado.

Se eligió un ventilador centrífugo con álabes hacia adelante, debido a que estos son los indicados para mover caudales relativamente bajos pero a elevada presión (Salvador Escoda, 2008), de la compañía Newark, modelo G2E140-AL30-48 (Figura 2.5), ya que era el que más se ajustaba, en flujo y presión, con los valores obtenidos, además de su disponibilidad en el mercado. Este ventilador opera con corriente alterna de 120 V, 1.15 A @1650 RPM.

La Figura 2.7 muestra la curva característica obtenida para el sistema calentador de aire diseñado y la curva de desempeño del ventilador obtenida con base a los datos proporcionados por el fabricante.

Figura 2.5 Ventilador centrífugo inyector de aire, Newark modelo G2E140-AL30-48, utilizado en el calentador solar de aire.

Figura 2.6 Curva característica de la caída de presión en el sistema (Ecuación 2.15) y la presión a la salida del ventilador para diferentes flujos. (Fuente: elaboración propia)

2.2.2.2 Control del sistema inyector de aire

Para poder tener control sobre la velocidad de giro del ventilador inyector y regular la cantidad de flujo que entra al captador, se utilizó un autotransformador marca Powerstat, modelo 136BU como el que se muestra en la Figura 2.7. Los autotransformadores suelen usarse como método de arranque suave para motores de inducción tipo jaula de ardilla, los cuales se caracterizan por demandar una alta corriente durante el arranque. Si se alimenta el motor conectándolo a la toma menor de un autotransformador, la tensión reducida de la alimentación resultará en una menor corriente de arranque y por lo tanto en condiciones más seguras de operación, tanto para el motor como para la instalación eléctrica. Una vez que el motor ha alcanzado suficiente velocidad, se puede ir aumentando la tensión de alimentación gradualmente, hasta llegar a la tensión de la red.

Figura 2.7 Autotransformador Powerstat modelo 136BU utilizado como regulador de voltaje para controlar la velocidad de giro del ventilador inyector de aire.

Figura 2.8 Diagrama de conexión del autotransformador y el ventilador inyector de aire. (Capacitor arrancador de 10 μF). (Fuente: Modificado de Ebm-Papst, Single Inlet Centrifugal Blowers)

Figura 2.9 Autotransformador de voltaje conectado al ventilador inyector de aire

Se realizaron evaluaciones experimentales para determinar la relación Voltaje de salida del autotransformador-Velocidad de aire a la entrada del captador (u_2), obteniendo la curva mostrada en la Figura 2.10.

Los ductos de entrada y salida de aire se construyeron con lámina de aluminio y fueron recubiertos con aislante térmico de ½ pulgada marca *armaflex*.

Figura 2.10 Relación "Voltaje de salida del autotransformador - Velocidad de aire a la entrada del captador / Flujo másico"

2.3 INSTRUMENTACIÓN

Para lograr la caracterización térmica del sistema de calentamiento de aire se emplearon diferentes tipos de sensores térmicos, transductores, así como un sistema de adquisición de datos.

2.3.1 SENSORES PARA DETERMINAR LA TEMPERATURA

Se emplearon 8 termopares tipo T (cobre/constantán) para determinar las temperaturas de entrada y salida del aire del captador (TT01-TT08), 8 termopares de superficie tipo J (hierro/constantán) para determinar las temperaturas de la placa absorbedora (TJ09-TJ12), la cubierta transparente (TJ14, TJ15) y la parte posterior de la placa aislante del captador (TJ13, TJ16), y un termistor tipo PT-100 para la medición de la temperatura ambiente (TERM). Todos ellos fueron previamente calibrados empleando un baño térmico, un termistor como referencia, y un sistema de adquisición de datos. Se tomaron 6 puntos de calibración a las temperaturas teóricas de 30°C, 40°C, 50°C, 60°C, 70°C, y 80°C; para cada punto se tomaron 21 mediciones con los 16 termopares. Posteriormente se realizó un análisis estadístico para determinar la ecuación y la desviación estándar de cada uno de los termopares.

Figura 2.11 Termopar tipo T para determinar las temperaturas de entrada y salida del aire del captador.

Figura 2.12 Termopar de superficie tipo J para determinar las temperaturas de la placa absorbedora, cubierta transparente y parte posterior del captador.

Figura 2.13 Sensor PT-100 (Termistor) para la medición de la temperatura ambiente.

Los termopares se distribuyeron en el captador como se muestra en las Figuras 2.14 - 2.16.

Figura 2.14 Corte transversal del captador donde se muestra la distribución de los termopares tipo T para medir la temperatura del aire a la entrada y a la salida del captador.

Figura 2.15 Distribución de los termopares de superficie tipo J. (a) Vista superior de la placa absorbedora (los orificios a la entrada y a la salida indican perforaciones donde se colocan los termopares tipo T), (b) Vista superior de la cubierta transparente, (c) Vista posterior de la placa aislante del captador.

Figura 2.16 Se observan en la parte central los termopares de superficie TJ09-TJ12 y las canaletas bajo las cuales se encuentran los termopares TT01-TT04 para la medición de la temperatura del aire a la entrada (lado izquierdo), y los termopares TT05-TT08 para la medición de la temperatura del aire a la salida (lado derecho).

TEMPERATURA	TERMOPAR	ECUACIÓN	DESV. EST.	MEDIA
	TT01	y = 0.9340x + 0.9513	0.055	
ENTRADA	TT02	y = 0.9634x + 0.9513	0.047	0.05
	TT03	y = 0.9641x + 0.7368	0.043	0.05
	TT04	y = 0.9671x + 0.5576	0.037	
	TT05	y = 0.9665x + 0.5085	0.035	
SALIDA	TT06	y = 0.9744x - 0.1093	0.029	0.03
SALIDA	TT07	y = 0.9695x + 0.3306	0.031	0.05
	TT08	y = 0.9691x + 0.3371	0.030	
	TJ09	y = 0.9868x + 1.5971	0.267	
PLACA	TJ10	y = 0.9919x + 1.5147	0.288	0.24
ABSORBEDORA	TJ11	y = 0.9661x + 1.8681	0.228	0.21
	TJ12	y = 1.0646x - 0.9509	0.194	
CUBIERTA	TJ13	y = 1.0446x + 0.2829	0.017	0.24
TRANSPARENTE	TJ14	y = 0.9863x + 2.1093	0.207	0.21
PLACA	TJ15	y = 0.9914x + 1.6447	0.272	0.25
AISLANTE	TJ16	y = 0.9646x + 2.3061	0.250	0.25
	TERMISTOR		0.025	

Tabla 2.2 Ecuación y desviación estándar de cada uno de los sensores de temperatura utilizados.

2.3.2 SENSORES PARA DETERMINAR LA VELOCIDAD DE VIENTO

2.3.2.1 Velocidad del viento a la entrada del captador

Para determinar la velocidad del aire a la entrada del captador (u_2) se utilizó un anemómetro de hilo caliente marca Cole-Parmer modelo 37000-61 conectado a un dispositivo Tri-Sense de la misma marca, el cual presenta una precisión en la medición de ±2% (Ver Anexo A.6)

2.3.2.2 Velocidad del viento a los alrededores.

Para medir la velocidad del viento circundante en los alrededores del captador, se empleó un sensor de viento de veleta y copas marca Young Wind Sentry Set, modelo 03001. Este set se divide en: anemómetro modelo es el 03101, y sensor de dirección de viento (veleta) modelo es 03301. La precisión del instrumento es de ± 0.5 m/s (Ver Anexo A.7)

Figura 2.18 Sensor de dirección de viento (veleta) modelo 03301.

Figura 2.19 Anemómetro modelo es el 03101.

2.3.3 SENSOR PARA DETERMINAR LA RADIACIÓN SOLAR

Se utilizó un piranómetro marca Kipp&Zonen, modelo CM11 de clase II (Figura 2.20), el cual es un sensor que está diseñado para medir la densidad del flujo de radiación solar (en watts por metro cuadrado) de un campo de visión de 180°. Tiene una constante de sensibilidad s= 5.05×10^{-6} Vm²/W (la constante de proporcionalidad se conoce como la constante de calibración del instrumento), y una precisión de ±3% (ver Anexo A.5). El piranómetro se colocó con la misma inclinación sobre la horizontal que el captador solar. El cálculo de la irradiancia se realiza utilizando la siguiente ecuación:

$$I = \frac{V_{out}}{s} \tag{2.16}$$

Donde *I* es la irradiancia solar (W/m²), V_{out} el voltaje de salida (V), y *s* la sensibilidad del sensor (V m²/W).

Figura 2.20 Piranómetro marca Kipp & Zonen empleado para medir la radiación solar.

2.3.4 SISTEMA DE ADQUISICIÓN DE DATOS

El sistema de adquisición de datos permitió hacer más eficiente el registro y almacenamiento de las variables proporcionadas por los distintos instrumentos de medición instalados en el sistema. Cada uno de los instrumentos de medición mencionados (a excepción del anemómetro, el cual cuenta con su propio transductor de datos), es decir, termopares, termistor y piranómetro, entregan señales en forma de voltaje, las cuales deben transformarse en datos de temperatura y radiación, respectivamente. Para realizar el monitoreo de forma automática, se utilizó un adquisidor de datos marca Agilent, como se muestra en la Figura 2.21. Tiene una capacidad para alojar 3 tarjetas multiplexoras de 22 canales cada una, de los cuales 20 son de voltaje y 2 de corriente.

El adquisidor fue conectado a una computadora donde se utilizó el software "Agilent VEE-Pro" para el registro y almacenamiento de datos. En la Figura 2.22 se muestra la interfaz visual de entrada de valores, todos los datos se almacenan en la computadora en un archivo generado por el mismo programa.

Figura 2.21 Adqusidor de datos marca Agilent.

Figura 2.22 Programa para el registro y almacenamiento de datos elaborada con el software VEE-Engineering.

2.4 ESTUDIO EXPERIMENTAL

Uno de los objetivos de esta tesis es evaluar el desempeño térmico del sistema modular de calentamiento solar de aire diseñado.

Para determinar el comportamiento del calentador y evaluar su eficiencia térmica, es necesario conocer el producto transmitancia-absortancia de la cubierta transparente y la placa absorbedora, la distribución de temperaturas en el captador para un día solar, la velocidad y flujo másico del viento que atraviesa el captador, el nivel de radiación solar que incide en el captador, calcular las pérdidas térmicas, y hacer un comparativo entre todas estas variables para poder resolver la ecuación (1.11).

Para este estudio experimental se tomaron 3 días de mediciones de las temperaturas: ambiente, aire a la entrada, aire a la salida, placa absorbedora, cubierta transparente, placa aislante, y de la irradiancia solar para cada una de las 4 diferentes velocidades/flujos de entrada de aire al captador que se analizaron (velocidades y flujos teóricos), de acuerdo a la Ecuación (2.1), esto es:

- 2 m/s (111.48 m³/h).
- 3 m/s (167.22 m³/h).
- 5 m/s (278.71 m³/h).
- 8 m/s (445.93 m³/h).

En total se obtuvieron 12 mediciones con las cuales fue posible comparar el desempeño del calentador bajo diferentes flujos y condiciones climatológicas.

2.4.1 METODOLOGÍA

La metodología para cada día de medición fue la siguiente:

 Se fijó el voltaje del autotransformador para la velocidad y flujo de aire a evaluar (2, 3, 5, y 8 m/s, respectivamente para cada día), según la relación indicada en la Figura 2.11. Esto es:

Autotransformador	Velocidad del aire
[V]	[m/s]
35.67 ± 0.75	2 ± 0.17
49.78 ± 0.75	3 ± 0.17
78.00 ± 0.75	5 ± 0.17
120.33 ± 0.75	8 ± 0.17

Tabla 2.3 Relación voltaje del autotransformador – velocidad del aire.

 Se registró en la computadora, con ayuda del adquisidor de datos y el software empleado, las temperaturas de entrada y salida de aire (TT01-TT08), temperaturas de la placa absorbedora (TJ09-TJ12), temperaturas de la cubierta transparente (TJ14, TJ15), temperaturas en la parte posterior del aislante térmico (TJ13, TJ16), temperatura ambiente (TERM), radiación solar (PIR), y la hora del día. Para cada día se tomaron lecturas cada 30 segundos por un lapso entre 7 y 8 horas.

 El registro de datos guardados se vació en una tabla en Excel donde se calcularon los promedios de las temperaturas de aire a la entrada (*Ti*), de aire a la salida (*To*), de la placa absorbedora (*Tp*), de la cubierta transparente (*Tg*), y de la parte posterior del captador (*Tb*). (Figura 2.23)

	Ta	ir in			T air	out			Ta	bs		Tt	Ttop Tb		Tamb	Radiació	Velocida	PROMEDIOS					FEOLIA	
TT01	TT02	TT03	TT04	TT05	TT06	TT07	TT08	TJ09	T J 10	TJ11	TJ12	TJ14	T J 15	TJ16	TERM	PIR	viento	Ti	To	Tg ,	Тр	Tb	FECHA	HURA
31.353	30.39473	30.12835	29.19053	44.84282	43.01959	43.02738	42.86605	45.04393	45.11069	54.00562	54.43066	39.7327	33.32687	29.44994	24.359	506.3897	0	30.266653	43.438962	36.5297848	49.6477236	29.449944	24-oct-12	10:00:15
31.25493	30.13076	29.88829	28.93522	44.97523	43.03226	43.04871	43.21784	45.12682	45.15532	54.1515	54.55202	39.70804	33.36752	29.44512	24.41	508.6485	0.588495	30.052299	43.5685095	36.5377798	49.7464167	29.445121	24-oct-12	10:00:45
31.38289	30.16544	29.88058	28.99034	45.10474	43.12385	43.13112	43.02886	45.24129	45.23368	54.31767	54.66593	39.05906	32.93229	29.44898	24.117	511.3749	0.017058	30.104812	43.5971439	35.9956748	49.8646443	29.4489794	24-oct-12	10:01:15
31.43893	30.33982	30.05797	29.16248	45.19753	43.28171	43.30563	43.11608	45.30741	45.33783	54.38916	54.76068	39.61632	33.2426	29.53676	24.257	512.6988	0.346733	30.249801	43.7252353	36.4294586	49.9487707	29.536758	24-oct-12	10:01:45
31.54634	30.51805	30.27297	29.3559	45.28161	43.46294	43.40258	43.24497	45.36661	45.41917	54.49157	54.85117	40.3373	34.67914	29.70942	24.476	514.1269	0.610473	30.423314	43.8480264	37.5082206	50.032131	29.7094214	24-oct-12	10:02:15
31.58463	30.51805	30.25176	29.2824	45.357	43.4532	43.49565	43.33801	45.45543	45.47868	54.63552	54.93208	40.22585	34.50168	29.82614	24.576	515.5549	0	30.40921	43.9109635	37.3637643	50.1254272	29.826138	24-oct-12	10:02:45
31.60144	30.4429	30.14571	29.21567	45.50391	43.49023	43.52861	43.43492	45.56299	45.55605	54.75435	55.11307	40.30081	34.40353	29.9361	24.384	517.6578	0.368712	30.351431	43.9894156	37.3521694	50.2466126	29.9361024	24-oct-12	10:03:15
31.59864	30.44579	30.15438	29.19827	45.60732	43.61495	43.62944	43.53861	45.66364	45.65326	54.91182	55.24827	40.3659	33.52912	30.02002	24.417	519.5792	0.566517	30.349271	44.0975807	36.9475099	50.3692472	30.0200226	24-oct-12	10:03:45
31.73781	30.6298	30.37902	29.46519	45.66435	43.82445	43.84564	43.6801	45.72778	45.72765	54.96979	55.41648	40.88667	34.24689	30.15121	24.641	521.2927	0.346733	30.552953	44.2536323	37.5667799	50.460424	30.1512082	24-oct-12	10:04:15
31.73501	30.56236	30.2749	29.32689	45.82865	43.83029	43.88151	43.79736	45.80673	45.82188	55.07896	55.45587	40.77818	34.50862	30.2467	24.656	523.3178	0	30.474789	44.3344533	37.6433982	50.5408575	30.2467036	24-oct-12	10:04:45
31.78544	30.51901	30.24694	29.30271	45.87118	43.86342	43.90866	43.80608	45.88271	45.87346	55.22001	55.5751	40.05818	33.93856	30.16568	24.336	524.9796	0.170907	30.463525	44.3623342	36.9983712	50.6378196	30.1656772	24-oct-12	10:05:15
31.94516	30.74926	30.45615	29.51934	46.06834	44.0164	44.14521	43.98149	46.01494	45.93694	55.36975	55.73266	40.68842	34.87544	30.22838	24.672	527.0826	0	30.667477	44.5528622	37.7819306	50.7635744	30.2283762	24-oct-12	10:05:45
31.96851	30.88606	30.62294	29.62089	46.1244	44.22785	44.17236	43.98827	46.12349	46.00637	55.47312	55.91364	40.8127	34.11503	30.28722	24.66	528.6663	0.324755	30.774599	44.62822	37.4638656	50.8791583	30.2872168	24-oct-12	10:06:15
32.05443	30.96892	30.69042	29.69149	46.28677	44.26682	44.32554	44.18984	46.21921	46.12739	55.5765	56.03501	41.6264	35.09354	30.38464	24.653	530.0943	0	30.851315	44.7672455	38.3599702	50.9895254	30.3846414	24-oct-12	10:06:45
32.13196	31.11246	30.8225	29.84912	46.29837	44.40324	44.40407	44.30032	46.31197	46.19384	55.68567	56.14573	41.76053	35.70425	30.47435	24.808	530.4578	0	30.979012	44.8515007	38.7323898	51.0843015	30.4743492	24-oct-12	10:07:15
32.20107	31.02094	30.67018	29.70599	46.46944	44.47437	44.438	44.40983	46.4067	46.26427	55.84314	56.26496	41.51199	36.0324	30.53126	24.804	531.9638	0	30.899546	44.9479113	38.7721927	51.1947683	30.5312606	24-oct-12	10:07:45
32.15344	30.83886	30.49857	29.54062	46.56996	44.50458	44.53301	44.373	46.50834	46.38925	56.00062	56.4534	41.06716	35.18971	30.53898	24.529	534.2745	0.478603	30.757871	44.9951382	38.1284371	51.3379003	30.5389774	24-oct-12	10:08:15
32.14223	30.82248	30.52653	29.53965	46.67434	44.53186	44.56792	44.57264	46.58729	46.48249	56.12331	56.55879	41.72009	35.39196	30.63737	24.551	536.2737	0.039037	30.757722	45.0866887	38.5560252	51.4379685	30.6373666	24-oct-12	10:08:45
32.16558	30.89666	30.56316	29.5706	46.77969	44.74038	44.63675	44.53678	46.64649	46.52712	56.24504	56.66632	41.727	36.20887	30.69814	24.963	538.818	0.039037	30.799001	45.1734007	38,967934	51.5212427	30.6981364	24-oct-12	10:09:15
32.3393	30.99204	30.64993	29.67988	46.89953	44.84757	44.79187	44.71219	46.73827	46.59259	56.41121	56.74616	41.2447	35.69334	30.63351	24.653	540.6614	0	30.915289	45.3127899	38.4690197	51.6220557	30.6335082	24-oct-12	10:09:45
32.32436	30.97084	30.61329	29.64603	47.0851	44.95378	45.00516	44.71219	46.81228	46.63722	56.50009	56.81962	41.40546	35,16493	30.57274	24.878	541.9596	0.082993	30.888633	45.4390568	38.285195	51.6923017	30.5727384	24-oct-12	10:10:15
32.37293	31.14329	30.82829	29.84236	47.17692	45.07753	45.21069	45.01358	46.92872	46.74931	56.61216	57.02722	41.43604	35.22243	30.54862	24.999	544.8416	0	31.046716	45.6196794	38.3292332	51.8293496	30.5486234	24-oct-12	10:10:45
32.44952	31.29069	31.04521	30.02901	47.31899	45.16912	45.3377	45.14344	47.00865	46.81874	56.73292	57.14539	41.41829	34.36288	30.41937	24.96	547.1782	0.214863	31.203606	45.7423127	37.8905847	51.9264239	30.419367	24-oct-12	10:11:15
32.54011	31.30033	30.92181	29.97678	47.5094	45.35133	45.37745	45.35373	47.1241	46.91793	56.82277	57.23588	40.48722	32.60414	30.12613	24.548	548.0091	0	31.184757	45.8979771	36.5456793	52.0251698	30.1261286	24-oct-12	10:11:45
32.53638	31.31285	30.97098	29.97388	47.51906	45.45072	45.47925	45.25779	47.21982	46.97546	56.92711	57.38279	41.41927	33.52515	30.21391	24.594	549,5929	0	31.198521	45.9267047	37.4722113	52.1262957	30.2139072	24-oct-12	10:12:15
32.58214	31.45062	31.13198	30.14989	47.60411	45.50529	45.67412	45.44967	47.33331	47.08358	57.07395	57.53397	41.94497	35.20062	30.42323	24.929	551.5141	0	31.328659	46.0582971	38.5727933	52.2562006	30.4232254	24-oct-12	10:12:45
32.54572	31.3562	31.0616	30.01837	47.70463	45.61539	45.71483	45.62314	47.46554	47.1917	57.28456	57.68195	42.06924	36.06611	30.61132	25.072	552.9422	0	31.245473	46.1644999	39.0676763	52.4059349	30.6113224	24-oct-12	10:13:15
32.73999	31.50746	31.23032	30.20889	47.91339	45.79371	45.92328	45.64446	47.56619	47.29089	57.43527	57.86399	42.37401	36.51918	30.70296	25.084	553,5133	0	31.421663	46.3187103	39.4465945	52.5390854	30.7029594	24-oct-12	10:13:45
32.853	31.62981	31.32191	30.27368	48.0545	45.95156	45.96497	45.74331	47.67967	47.35734	57.50677	57.99068	42.70738	36.64608	30.82161	25.188	555.0192	0	31.519601	46.428585	39.6767288	52.6336149	30.8216052	24-oct-12	10:14:15
32.89784	31.67605	31.35276	30.30173	48.15115	46.01782	46.07355	45.82762	47.76256	47.42678	57.59758	58,13014	42.79418	36.54694	30.90456	25.316	555.9798	0.610473	31.557094	46.5175362	39.670556	52.729265	30.9045608	24-oct-12	10:14:45
32.92212	31.74734	31.40482	30.38103	48.24104	46.1747	46.22091	46.07281	47.86717	47.5587	57.76858	58.33774	42.94508	36.93953	31.12931	25.478	557.304	0.368712	31.613829	46.6773635	39.9423052	52.883045	31.1293126	24-oct-12	10:15:15
33.122	31.88896	31.58125	30.57445	48.43144	46.34327	46.40027	46.34125	47.9767	47.6688	57.93765	58.4804	42.72415	36.09783	31.11774	25.351	559.6665	0.632452	31.791665	46.879056	39.4109903	53.0158849	31.1177374	24-oct-12	10:15:45
33.07436	31.76661	31.41253	30.42648	48.46913	46.38225	46.48753	46.38873	48.07933	47.72831	58.06131	58.5464	42.38387	35.28786	30.97208	24.984	561.6657	0.082993	31.669998	46.9319086	38.8358666	53.1038367	30.9720828	24-oct-12	10:16:15
33.16963	31.91979	31.588	30.58606	48.60057	46.46702	46.56218	46.39164	48.18788	47.80469	58.14439	58.72525	42.83461	35.28786	30.99137	25.025	565.6123	0	31.81587	47.0053525	39.0612361	53.2155521	30.9913748	24-oct-12	10:16:45
33.04821	31.82731	31.45977	30.49418	48.6257	46.54497	46.65525	46.49921	48.34083	47.95744	58.35597	58.86897	42.54168	35.09057	30.92868	25.075	569.0653	0.082993	31.707368	47.0812832	38.8161263	53.380803	30.9286758	24-oct-12	10:17:15
33.21633	31.95448	31.62271	30.60636	48.8161	46.7915	46.78128	46.6281	48.44444	48.01894	58.45644	59.00098	43.24196	35,78058	31.06661	25.234	570.0519	0.742343	31.849969	47.2542455	39.51127	53.4802022	31.0666136	24-oct-12	10:17:45
33.23688	31.967	31.61692	30.58799	48.90985	46.83729	46.87436	46.62229	48.53523	48.08837	58.59942	59.18303	43.16009	35.27993	31.11774	25.123	572.155	0.830257	31.852197	47.3109467	39.2200101	53.6015142	31.1177374	24-oct-12	10:18:15
33.26677	31.99783	31.63524	30.63441	49.0181	46.92206	47.02463	46.81417	48.62404	48.14987	58.71149	59.34166	43.68875	35,78058	31.17851	25.107	572.4406	0.874213	31.883561	47.4447404	39.734667	53.7067649	31.1785072	24-oct-12	10:18:45

Figura 2.23 Captura de pantalla de la obtención de los promedios de las temperaturas registradas con el adquisidor de datos.¹

4. Los promedios obtenidos se evaluaron en otro programa hecho en Excel, seleccionando los datos para cada 10 minutos en lugar de cada 30 segundos, para reducir el número de datos; en ella se programaron todos los cálculos indicados en el Capítulo 1, de los parámetros necesarios para obtener la eficiencia térmica del captador. Esto es, para cada una de las lecturas registradas, el flujo másico (\dot{m}) (Ecuación (2.1)), número de Rayleigh (*Ra*) (Ecuación (1.19)), producto (*Ra* cos β),

¹ Los datos de la velocidad del viento a los alrededores fueron proporcionados por la Coordinación de Refrigeración y Bombas de Calor del Departamento de Sistemas Energéticos del Instituto de Energías Renovables.

número de Reynolds (*Re*) (Ecuación (1.26)), número de Nusselt (*Nu*) entre placa absorbedora y cubierta transparente (Ecuación (1.17))², y para el canal de flujo (Ecuaciónes (1.24) y (1.25))³; temperatura del cielo (*Ts*) (Ecuación (1.31)), coeficientes de transferencia de calor, convectivos y radiativos (*hpg*, *hga*, *hrpg*, *hrga*, *hf*) (Ecuaciones (1.14), (1.20), (1.29), (1.32) y (1.21) respectivamente), coeficientes de pérdida de calor, superior, inferior, lateral y global (*Ut*, *Ub*, *Ue* y *UL*) (Ecuaciones (1.37), (1.39), (1.41) y (1.40) respectivamente), factor de eficiencia del captador (*F'*) (Ecuación (1.42)), el factor de remoción de calor (*F_R*) (Ecuación (1.5)), calor útil (\dot{Q}_u) (Ecuación (1.4)), relación ((*To-Ta*)/*I*), y, finalmente, eficiencia instantánea (η) (Ecuación (1.11)).

Teniendo todos estos parámetros calculados para los datos de temperatura registrados cada 10 minutos, se tuvo un análisis completo para cada uno de los días de medición.

En la Tabla 2.4 se muestran las constantes empleadas en el programa. En dicha tabla lo único que varía entre prueba y prueba es la velocidad de aire a la entrada y, por consiguiente, el flujo de aire de acuerdo a la Ecuación (2.1) y el número de Reynolds de acuerdo a la Ecuación (1.26).

La Figura 2.24 es una muestra del programa hecho en Excel para el análisis de datos y obtención de la eficiencia térmica del calentador solar para diferentes velocidades de aire.

² Dado que 5900 < Ra cosβ < 9.23×10^4 para todo el rango de velocidad de viento, se emplea la relación indicada en la Ecuación (1.17) para obtener el número de Nusselt entre la placa absorbedora y la cubierta transparente.

³ Conforme se incrementa la velocidad del viento, el número de Reynolds también aumenta. Para el sistema diseñado, cuando la velocidad de viento u < 3 m/s, se tiene que Re < 5650, por lo tanto en este caso se emplea la relación indicada en la Ecuación (1.24) para determinar el número de Nusselt para el canal de flujo; pero cuando la velocidad de viento u \ge 3 m/s, se tiene que Re \ge 5650, por lo tanto en estos casos se emplea la relación dada por la Ecuación (1.25).

- 5. Con los datos obtenidos se graficaron los resultados que se muestran en el Capítulo
 - 3.

CONSTANTES												
Velocidad aire entrada	υ	=	2	[m/s]								
Flujo volumétrico total	Qt	=	111.48365	[m³/h]								
Flujo másico total	mt	=	129.76697	[kg/h]								
Flujo volumétrico canal de flujo	Q,	=	9.290304	[m³/h]								
Flujo másico canal de flujo	m _r	=	10.813914	[kg/h]								
Reynolds canal de flujo	Re	=	4.24E+03									
Gravedad	g	=	9.81	[m/s ²]								
Área del borde	Ae	=	0.1	[m ²]								
Área del colector	Ac	=	1.22	[m ²]								
Inclinación colector	β	=	20	٥								
Capacidad térmica aire	Cair	=	1005	[J/kg K]								
Densidad aire	ρ	=	1.164	[kg/m ³]								
Conductividad térmica aire	Kair	=	0.026	[W/mK]								
Viscosidad cinemática aire	v	=	1.60E-05	[m²/s]								
Viscosidad dinámica aire	μ	=	1.86E-05	[Pa s]								
Difusividad térmica arie	α	=	2.40E-05	[m²/s]								
Steffan-Boltzman	σ	=	5.67E-08	[W/m ² K ⁴]								
Espacio entre cubierta y placa	L	=	3.00E-02	[m]								
Espeso aislamiento	Lin	=	2.50E-02	[m]								
Resistencia aislante	Rin	=	1.06E+00	[m ² K/W]								
Conductivad aislante	Kin	=	2.36E-02	[W/mK]								
Diámetro hidrúalico canal de flu	Dh	=	3.39E-02	[m]								
Emisividad placa acero pintado	εр	=	0.95									
Emisividad vidrio normal	εg	=	0.88									
Emisividad efectiva pg	εeff	=	0.8410463									
Transmitancia del vidrio	τ	=	0.85									
Absortancia de la placa	α	=	0.93									
Transmitancia-absortancia	(τα)	=	0.80631									

Tabla 2.4 Constantes empleadas para el análisis de datos y obtención de la eficiencia térmica del calentador solar. Los valores que son función de la Temperatura se consideran para una temperatura de 30 °C. (Fuentes: Cengel y Boles, 2009; López, 2011; Hunter, n. d.; Testo AG, 2012; Todo sobre el vidrio, n. d.)

μ	[W/m2K]	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582	138.89582
hrga	[W/m2K]	8.0885391	7.93258	7.7502691	7.6797856	7.6518826	7.6091223	7.5758277	7.538986	7.777846	7.6794208	7.5967972	7.5851657	7.647029	7.77678	7.6618038	7.5936079	7.6927253	7.7414258	7.6859902	7.7576784	7.814966	7.8727611	7.7511935	7.7366535	7.9520844	8.1840404	8.1009879	8.1586778	7.9816095	8.1414622	8.4076044	8.0766781
hrpg	[W/m2K]	6.0266648	6.1360822	6.2579119	6.3805864	6.4501177	6.5798061	6.6174996	6.7463387	6.7625802	6.8443204	6.9221355	6.9899919	7.07207	7.0941118	7.1290409	7.1527012	7.2711412	7.2874444	7.3352937	7.3481705	7.3210067	7.3781611	7.4416147	7.4161586	7.4415074	7.3396235	7.3162761	7.195224	7.1864516	7.1742415	7.1361783	7.1503288
вgч	[W/m2K]	2.8	3.04898	5.42264	3.70833	6.60947	2.8	2.8	2.8	7.53256	6.34573	3.97207	2.8	2.8	8.125975	6.87321	3.8402	2.8	7.071015	2.8	2.8	4.76329	4.697355	2.8	4.36768	2.91711	6.411665	5.95012	8.06004	7.00508	4.038005	3.70833	2.8
bpg	[W/m2K]	2.59E+00	2.60E+00	2.63E+00	2.67E+00	2.75E+00	2.74E+00	2.84E+00	2.82E+00	2.93E+00	2.94E+00	2.94E+00	2.94E+00	2.98E+00	3.04E+00	3.07E+00	3.09E+00	3.04E+00	3.07E+00	3.06E+00	3.08E+00	3.13E+00	3.07E+00	3.04E+00	3.06E+00	3.06E+00	3.14E+00	3.11E+00	3.18E+00	3.14E+00	3.11E+00	3.10E+00	3.03E+00
T-lo. [or]	La j Yazi	18.359	18.878	19.083	19.596	19.528	20.334	19.771	20.61	21.616	21.517	21.437	21.777	22.543	23.255	22.357	21.85	23.729	23.955	23.848	24.417	24.291	25.582	25.143	24.703	26.652	26.781	26.348	25.023	24.339	25.497	26.705	25.666
Mo. (Build)	Nu (riujo)	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565	15.091565
Nu (placa-	cubierta)	2.99E+00	3.01E+00	3.03E+00	3.08E+00	3.17E+00	3.17E+00	3.28E+00	3.25E+00	3.38E+00	3.39E+00	3.40E+00	3.40E+00	3.44E+00	3.50E+00	3.55E+00	3.56E+00	3.50E+00	3.55E+00	3.53E+00	3.55E+00	3.61E+00	3.54E+00	3.50E+00	3.54E+00	3.53E+00	3.62E+00	3.59E+00	3.67E+00	3.63E+00	3.59E+00	3.57E+00	3.50E+00
00	na cosp	2.69E+04	2.73E+04	2.83E+04	3.00E+04	3.37E+04	3.36E+04	3.87E+04	3.73E+04	4.35E+04	4.42E+04	4.44E+04	4.45E+04	4.67E+04	5.02E+04	5.27E+04	5.38E+04	5.02E+04	5.27E+04	5.20E+04	5.30E+04	5.66E+04	5.23E+04	5.02E+04	5.21E+04	5.16E+04	5.74E+04	5.55E+04	6.03E+04	5.75E+04	5.54E+04	5.44E+04	5.01E+04
ł	Na	2.86E+04	2.91E+04	3.01E+04	3.19E+04	3.59E+04	3.58E+04	4.11E+04	3.97E+04	4.63E+04	4.71E+04	4.73E+04	4.73E+04	4.97E+04	5.35E+04	5.60E+04	5.72E+04	5.34E+04	5.61E+04	5.53E+04	5.64E+04	6.02E+04	5.56E+04	5.34E+04	5.54E+04	5.49E+04	6.10E+04	5.91E+04	6.42E+04	6.12E+04	5.89E+04	5.79E+04	5.34E+04
	Tb	29.449944	30.572738	31.479462	31.88363	31.599073	33.072017	32.704504	34.389661	34.459112	34.017325	35.140119	36.020799	37.913344	36.723028	36.292816	36.868683	38.218158	37.487956	38.871192	39.603324	38.665732	39.094979	40.778206	40.665348	43.488732	40.19173	41.002958	39.241599	38.592423	39.28597	40.436738	41.449568
	Τp	49.647724	51.692302	54.070046	56.595643	58.708373	60.89201	62.77106	64.59602	66.417822	67.946599	69.284935	70.412278	72.308258	73.556877	74.729074	75.391118	76.404961	77.304332	77.884696	78.33551	78.821109	78.634708	79.103314	79.195247	79.466395	79.307287	78.475855	77.72787	76.887187	76.141471	75.276119	74.445745
TURA [°C]	Tg	36.529785	38.285195	40.08188	41.699994	41.888555	44.010635	43.325104	45.718501	44.357136	45.456248	46.605102	47.632939	48.299243	47.696966	47.585259	47.646128	50.354231	49.922609	50.822715	50.75286	49.381117	51.380744	52.873572	51.981031	52.487644	49.454581	49.597112	46.533029	47.144819	47.543565	47.236791	48.567282
TEMPERA	Τo	43.438962	45.439057	47.835703	50.199386	52.407499	54.53133	56.593107	58.543238	60.407593	61.926754	63.819177	64.812309	66.762277	68.395483	69.497867	70.379463	71.607886	72.604921	73.372579	74.084854	74.519766	74.535775	75.086293	75.530028	75.871055	75.722766	75.32281	74.568785	74.042869	73.312809	72.468526	71.484012
	Ti	30.266653	30.888633	32.031687	32.656451	33.612942	33.950747	34.631911	34.741746	35.677954	35.951671	36.527848	36.194046	37.356929	37.998454	37.884335	37.948287	38.864293	39.274366	39.466607	39.88615	39.852286	39.73062	40.003433	39.858095	40.514613	40.497746	40.352704	39.700436	39.351265	38.848142	38.557031	38.515649
	Ta	24.359	24.878	25.083	25.596	25.528	26.334	25.771	26.61	27.616	27.517	27.437	777.72	28.543	29.255	28.357	27.85	29.729	29.955	29.848	30.417	30.291	31.582	31.143	30.703	32.652	32.781	32.348	31.023	30.339	31.497	32.705	31.666
Velocidad	vienco [m/s]	0	0.0829933	0.8742133	0.3027767	1.2698233	0	0	0	1.57752	1.18191	0.39069	0	0	1.775325	1.3577367	0.3467333	0	1.4236717	0	0	0.65443	0.6324517	0	0.52256	0.0390367	1.2038883	1.05004	1.7533467	1.4016933	0.4126683	0.3027767	0
-11-12-0	Nadiación	506.3897	541.9596	577.68515	618.4996	658.06772	694.26059	727.0004	762.59624	791.90891	814.62673	841.47327	868.37129	899.94277	918.35089	930.37188	946.49505	957.68535	963.0598	973.96436	976.35307	980.63703	986.81624	981.96099	980.01386	979.44257	970.58911	960.30772	936.86277	926.21782	914.4303	894.93188	866.08653
Yaun	NOL 1	10:00:15	10:10:15	10:20:15	10:30:15	10:40:15	10:50:15	11:00:15	11:10:15	11:20:15	11:30:15	11:40:15	11:50:15	12:00:15	12:10:15	12:20:15	12:30:15	12:40:15	12:50:15	13:00:15	13:10:15	13:20:15	13:30:15	13:40:15	13:50:15	14:00:15	14:10:15	14:20:15	14:30:15	14:40:15	14:50:15	15:00:15	15:10:15

<u> </u>		4	1	99	뒫		2	102	4	22	9	102	2	99	1	22	90	2		77	50	뒨	9	ъ	2	2	22		1	100	22	ŋ	9
ίτο το 1/1	1/0-1-01/	0.037678	0.037938	0.03938	0.039779	0.040846	0.040614	0.042396	0.041874	0.041408	0.042239	0.043236	0.042649	0.042468	0.042620	0.044219	0.044933	0.043729	0.044285	0.044688	0.044725	0.045102	0.043527	0.044750	0.045741	0.044126	0.04424	0.044751	0.046480	0.047185	0.045728	0.044431	0.045974
/t: 1-1/	(11-14//1	0.0116662	0.0110906	0.0120285	0.0114154	0.0122859	0.010971	0.0121883	0.0106632	0.0101804	0.010354	0.0108035	0.0096929	0.0097939	0.0095208	0.0102404	0.0106691	0.0095389	0.0096768	0.0098757	0.0096985	0.0097501	0.0082575	0.0090232	0.0093418	0.0080276	0.0079506	0.0083356	0.0092622	0.0097302	0.008039	0.0065391	0.0079087
1	o 1 - d 1	6.2087617	6.2532449	6.234343	6.3962568	6.3008738	6.3606802	6.1779533	6.0527824	6.0102285	6.0198451	5.465758	5.5999689	5.5459812	5.1613941	5.2312069	5.0116547	4.7970749	4.6994109	4.5121173	4.2506559	4.3013432	4.0989327	4.0170209	3.6652186	3.5953404	3.5845211	3.1530454	3.1590849	2.8443185	2.8286615	2.8075934	2.9617333
i 1		13.172309	14.550424	15.804016	17.542936	18.794557	20.580583	21.961195	23.801492	24.729639	25.975083	27.29133	28.618263	29.405349	30.397029	31.613532	32.431176	32.743594	33.330555	33.905972	34.198704	34.66748	34.805155	35.08286	35.671933	35.356442	35.22502	34.970106	34.868349	34.691604	34.464668	33.911495	32.968363
	r	0.5628867	0.5591989	0.5327938	0.5414825	0.5118389	0.541882	0.5304054	0.5325348	0.493536	0.4954942	0.5086684	0.5232142	0.5222462	0.4743892	0.4722103	0.4947705	0.5113594	0.4671321	0.5046593	0.5032975	0.4795571	0.4898066	0.5026205	0.4797206	0.5025639	0.4672797	0.4690219	0.4413696	0.4466406	0.4817056	0.4911855	0.4951301
M.	du [w]	347.74884	369.73711	375.50021	408.58618	410.92609	458.97292	470.43804	495.45305	476.81937	492.44425	522.19766	554.29993	573.38981	531.5	535.98402	571.32335	597.46013	548.84886	599.65458	599.50316	573.73115	589.68585	602.13557	573.56206	600.52368	553.31467	549.49454	504.47341	504.69753	537.39314	536.28464	523.16715
8	E	0.9596739	0.9593062	0.9564006	0.9581497	0.9545294	0.9589651	0.9587663	0.9586368	0.9522782	0.9533977	0.9562796	0.9579124	0.9576105	0.9506244	0.9518891	0.9557689	0.9571061	0.9512222	0.9569646	0.9568023	0.9537625	0.9537836	0.9567273	0.9543586	0.9561781	0.9512017	0.9519404	0.94972	0.9511053	0.9546251	0.9548131	0.9567081
	-	0.9596984	0.9593309 (0.956427	0.9581751	0.9545568 (0.95899	0.9587914 (0.9586619	0.9523069 (0.9534259 (0.9563061	0.9579379	0.9576362	0.9506541 (0.9519181) 9557957	0.9571321	0.9512516	0.9569907	0.9568285	0.9537904 (0.9538115 (0.9567535	0.9543862 (0.9562046 (0.9512311	0.9519693	0.9497502	0.9511348 (0.9546525	0.9548405	0.9567344 (
ы	[W/m2K]	6.8327943 (5.8882331 (5.3278275	5.0628877 (5.6123518 (5.9397017	6.9697097	5.9892809 (5.9561259 (5.7849575	5.3461899 (5.0987701	5.1444546 (7.2097146 (7.0157024 (5.4237516 (5.2208524 (7.1179362	5.2422899 (5.2668913 (5.7292786	5.7260592 (5.2782693 (5.6383708	5.3616073 (7.121083 (7.0078541 (7.3487572	7.1358736 (5.5977696 (5.5691306	5.2811769 (
De	[W/m2K]	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377	0.077377
9	[W/m2K]	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944	0.944
ප	[W/m2K]	4.8114173	4.8668561	5.3064505	5.0415107	5.5909748	4.9183247	4.9483327	4.9679038	5.9347489	5.7635805	5.3248128	5.0773931	5.1230775	6.1883375	5.9943253	5.4023746	5.1994754	6.0965592	5.2209129	5.2455142	5.7079015	5.7046821	5.2568922	5.6169937	5.3402303	6.099706	5.986477	6.3273801	6.1144966	5.5763925	5.5477536	5.2597998
	Tb	29.449944	30.572738	31.479462	31.88363	31.599073	33.072017	32.704504	34.389661	34.459112	34.017325	35.140119	36.020799	37.913344	36.723028	36.292816	36.868683	38.218158	37.487956	38.871192	39.603324	38.665732	39.094979	40.778206	40.665348	43.488732	40.19173	41.002958	39.241599	38.592423	39.28597	40.436738	41.449568
	Τp	49.647724	51.692302	54.070046	56.595643	58.708373	60.89201	62.77106	64.59602	66.417822	67.946599	69.284935	70.412278	72.308258	73.556877	74.729074	75.391118	76.404961	77.304332	77.884696	78.33551	78.821109	78.634708	79.103314	79.195247	79.466395	79.307287	78.475855	77.72787	76.887187	76.141471	75.276119	74.445745
JRA [°C]	Tg	36.529785	38.285195	40.08188	41.699994	41.888555	44.010635	43.325104	45.718501	44.357136	45.456248	46.605102	47.632939	48.299243	47.696966	47.585259	47.646128	50.354231	49.922609	50.822715	50.75286	49.381117	51.380744	52.873572	51.981031	52.487644	49.454581	49.597112	46.533029	47.144819	47.543565	47.236791	48.567282
TEMPERAT	To	43.438962	45.439057	47.835703	50.199386	52.407499	54.53133	56.593107	58.543238	60.407593	61.926754	63.819177	64.812309	66.762277	68.395483	69.497867	70.379463	71.607886	72.604921	73.372579	74.084854	74.519766	74.535775	75.086293	75.530028	75.871055	75.722766	75.32281	74.568785	74.042869	73.312809	72.468526	71.484012
	Ti	30.266653	30.888633	32.031687	32.656451	33.612942	33.950747	34.631911	34.741746	35.677954	35.951671	36.527848	36.194046	37.356929	37.998454	37.884335	37.948287	38.864293	39.274366	39.466607	39.88615	39.852286	39.73062	40.003433	39.858095	40.514613	40.497746	40.352704	39.700436	39.351265	38.848142	38.557031	38.515649
	Та	24.359	24.878	25.083	25.596	25.528	26.334	25.771	26.61	27.616	27.517	27.437	27.777	28.543	29.255	28.357	27.85	29.729	29.955	29.848	30.417	30.291	31.582	31.143	30.703	32.652	32.781	32.348	31.023	30.339	31.497	32.705	31.666
Velocidad	vienco [m/s]	0	0.0829933	0.8742133	0.3027767	1.2698233	0	0	0	1.57752	1.18191	0.39069	0	0	1.775325	1.3577367	0.3467333	0	1.4236717	0	0	0.65443	0.6324517	0	0.52256	0.0390367	1.2038883	1.05004	1.7533467	1.4016933	0.4126683	0.3027767	0
Dadiaaida	Vadiación	506.3897	541.9596	577.68515	618.4996	658.06772	694.26059	727.0004	762.59624	791.90891	814.62673	841.47327	868.37129	899.94277	918.35089	930.37188	946.49505	957.68535	963.0598	973.96436	976.35307	980.63703	986.81624	981.96099	980.01386	979.44257	970.58911	960.30772	936.86277	926.21782	914.4303	894.93188	866.08653
		10:00:15	10:10:15	10:20:15	10:30:15	10:40:15	10:50:15	11:00:15	11:10:15	11:20:15	11:30:15	11:40:15	11:50:15	12:00:15	12:10:15	12:20:15	12:30:15	12:40:15	12:50:15	13:00:15	13:10:15	13:20:15	13:30:15	13:40:15	13:50:15	14:00:15	14:10:15	14:20:15	14:30:15	14:40:15	14:50:15	15:00:15	15:10:15

Figura 2.24 Captura de pantalla del programa hecho en Excel para el análisis de los datos y la obtención de la eficiencia térmica del calentador solar.

Con la ayuda del programa generado en Excel se determinaron todos los parámetros involucrados en el análisis teórico de eficiencia térmica de un captador solar para el calentamiento de aire con paso por debajo de la placa absorbedora, con base a las ecuaciones reportadas en la literatura y haciendo las modificaciones respectivas de acuerdo al diseño construido.

En el siguiente Capítulo se muestran, de manera gráfica, los resultados obtenidos para cada flujo evaluado.

CAPÍTULO 3. RESULTADOS EXPERIMENTALES

3.1 INTRODUCCIÓN

Como se mencionó en la Introducción, la eficiencia de los sistemas de calentamiento solar generalmente se evalúan de acuerdo a normas elaboradas por la American Society of Heating Refrigerating and Air-conditioning Engineers (ASHRAE), las cuales se realizan a nivel laboratorio y bajo condiciones controladas de flujo de aire, temperaturas e irradiancia solar principalmente, sin embargo dado que el sistema de calentamiento solar de aire diseñado se evaluó en campo, se tomaron en consideración las condiciones climatológicas locales, las cuales, por su naturaleza, varían en cada instante. Por tanto se torna complejo cubrir las normativas diseñadas para condiciones ideales.

Para lograr evaluar el comportamiento térmico del sistema diseñado, se realizó un análisis transitorio para diferentes flujos de aire bajo condiciones climatológicas locales, por lo tanto los resultados obtenidos para un mismo valor (teórico) de flujo de aire podían variar drásticamente de un día a otro. Se analizó el comportamiento del calentador para cuatro flujos de aire dentro de un rango aproximado entre 100 m³/h y 450 m³/h, obteniendo resultados de la distribución de temperaturas en el captador solar y de su eficiencia térmica.⁴

En los sistemas de calentamiento solar, las temperaturas del aire a la salida del captador y de la placa absorbedora a lo largo del día, son función de la radiación solar incidente, sin embargo después del medio día solar, dichas temperaturas presentan un ligero "retraso" debido a un almacenamiento de energía en la placa absorbedora.

⁴ En el capítulo anterior se mencionó que se realizaron 12 pruebas (3 para cada uno de los 4 diferentes flujos). Aquí se presentan únicamente los resultados de los mejores días de cada una de las pruebas, es decir, una gráfica para cada flujo de aire diferente.

En este capítulo se muestran los resultados obtenidos en el análisis del comportamiento térmico del calentador solar de aire diseñado, las temperaturas que se alcanzan a diferentes flujos de aire, la eficiencia del captador solar y finalmente un ejemplo de aplicación del sistema de calentamiento solar de aire en el proceso de secado de mango.

Estas pruebas se realizaron en la plataforma solar del Instituto de Energías Renovables de la Universidad Nacional Autónoma de México, ubicado en el municipio de Temixco, en el estado de Morelos, durante los meses de Octubre y Noviembre de 2012.

3.2 DISTRIBUCIÓN DE TEMPERATURAS DEL AIRE QUE CIRCULA DENTRO DEL CAPTADOR SOLAR

La Figura 3.1 muestra la distribución de temperaturas del aire a la entrada y a la salida del captador para las cuatro velocidades (cuatro flujos) de aire analizadas.

(a)

(b)

(d)

Figura 3.1 Distribución de la temperatura del aire a la entrada y a la salida del captador para diferentes velocidades/flujos de aire. (a) 2 m/s (111.48 m³/h), (b) 3 m/s (167.22 m³/h), (c) 5 m/s (278.71 m³/h), (d) 8 m/s (445.93 m³/h).

En estas gráficas se observa que la distribución de temperatura presenta uniformidad, que en la parte baja del captador existe mayor temperatura y que esta decrece un poco en la parte alta, tanto en la entrada como en la salida de aire al captador solar. Se observa que para el flujo más bajo, la temperatura de salida del aire es la más alta, alcanzando un máximo de aproximadamente 75 °C, mientras que para el flujo más alto la temperatura de salida del aire es la más alto la temperatura de salida del aire es la más un máximo de aproximadamente 48 °C. Se observa también que el nivel de radiación solar es un tanto similar para las cuatro pruebas.

3.3 DISTRIBUCIÓN DE TEMPERATURAS EN LA PLACA ABSORBEDORA

En la Figura 3.2 se muestra como se distribuye la temperatura, durante un día solar en cada prueba, sobre la placa absorbedora, para los cuatro valores de flujo analizados.

(a)

(c)

(**d**)

Figura 3.2 Distribución de temperaturas sobre la placa absorbedora para diferentes velocidades/flujos de entrada de aire al captador solar. (a) 2 m/s (111.48 m³/h), (b) 3 m/s (167.22 m³/h), (c) 5 m/s (278.71 m³/h), (d) 8 m/s (445.93 m³/h).

Como es de esperarse, la parte izquierda del captador presenta una temperatura más baja (temperatura indicada por los termopares TJ09 y TJ10) que la parte derecha (temperatura indicada por los termopares TJ11 y TJ12). Esta diferencia de temperaturas es más notoria para el flujo de aire más bajo, presentando una diferencia de temperatura de hasta casi 20°C entre el lado derecho e izquierdo del captador; mientras que para el flujo más alto, la diferencia de temperaturas entre ambos lados disminuye a un máximo de hasta 10°C aproximadamente. Esto se debe a que el lado izquierdo de la placa está en contacto directo con el aire que entra a temperatura ambiente, mientras que cuando el aire atraviesa por debajo del lado derecho de la placa, este ya incrementó su temperatura inicial debido al calor que ha "arrastrado" de la placa hasta ese momento, lo cual permite que la temperatura de la placa en el lado derecho sea siempre mayor que la temperatura en el lado izquierdo. Por otro lado, la parte alta de la placa absorbedora (temperaturas indicadas por los termopares TJ09 y TJ12) presenta, para todos los flujos, una temperatura mayor que la parte baja (termopares TJ10 y TJ11). Para el flujo más bajo existe una diferencia de temperatura máximo, entre la parte alta y la parte baja de la placa, de 5°C aproximadamente, mientras que para el flujo más alto esta diferencia se reduce a menos de 1°C, aproximadamente.

3.4 PROMEDIOS DE LAS TEMPERATURAS DE: AIRE A LA ENTRADA, AIRE A LA SALIDA, PLACA ABSORBEDORA, CUBIERTA TRANSPARENTE, AMBIENTE, PARTE POSTERIOR DEL CAPTADOR E IRRADIANCIA SOLAR

Una vez obtenidas todas las temperaturas promedio de la manera en que se indicó en el capítulo anterior, la Figura 3.3 muestra la distribución de dichas temperaturas, ambiente (Ta), del aire a la entrada (Ti), del aire a la salida (To), de la cubierta transparente (Tg), de la placa absorbedora (Tp), de la parte posterior del captador (Tb), y de la radiación solar para cada flujo de aire analizado.

(a)

(c)

(**d**)

Figura 3.3 Promedios de las temperaturas de entrada, salida, placa absorbedora, cubierta transparente, ambiente y parte posterior del captador para diferentes velocidades/flujos de entrada de aire al captador solar. (a) 2 m/s (111.48 m³/h), (b) 3 m/s (167.22 m³/h), (c) 5 m/s (278.71 m³/h), (d) 8 m/s (445.93 m³/h).

En estas gráficas se observa que para el flujo más bajo, la temperatura del aire a la salida es muy cercana a la temperatura de la placa absorbedora durante todo el día solar, alcanzando un máximo cercano a los 75°C. A medida que el flujo de aire aumenta, la temperatura del aire a la salida se aleja de la temperatura de la placa y se acerca más a la temperatura de la cubierta transparente.

3.5 TEMPERATURA DEL AIRE A LA SALIDA Y DELTA DE TEMPERATURA

Alrededor del medio día solar se tiene la mayor temperatura de salida de aire para cada uno de los distintos flujos analizados, siendo el flujo más bajo (111.5 m³/h) el que presenta la temperatura media de salida de aire más alta, la cual alcanzó una temperatura de $65.03^{\circ}C \pm 0.30^{\circ}C$, mientras que para el flujo más alto (445.93 m³/h), la temperatura media de salida de aire fue la más baja, con 41.95°C ± 0.30°C, es decir, entre el flujo más bajo y el flujo más alto las temperaturas medias entre estas pruebas presentan una diferencia de aproximadamente 23°C.

La Figura 3.4 muestra gráficamente las temperaturas, media (promedio de todo el día solar), máxima y mínima, de salida del aire obtenidas para cada uno de los flujos evaluados, estos resultados se indican en la Tabla 3.1; mientras que la Figura 3.5 muestra la diferencia de temperatura obtenida entre la salida y la entrada de aire al captador solar. En esta figura se observa que con un flujo bajo, se puede obtener una temperatura promedio de salida del aire de casi 30°C por encima de la temperatura de entrada, para flujos intermedios esta diferencia varía entre 15°C y 20°C, y para el flujo más alto la temperatura de salida, en promedio, estará 10°C por encima de la temperatura a la entrada, estos resultados se indican en la Tabla 3.2.

Figura 3.4 Temperaturas de salida del aire, media, máxima y mínima, para los cuatro diferentes flujo de aire.

TEMPERATURA		VELOCIDAD /	FLUJO DE AIRE	
(±0.032°C)	2 [m/s], 111.5 [m³/h]	3 [m/s], 167.22 [m³/h]	5 [m/s], 278.71 [m³/h]	8 [m/s], 445.93 [m³/h]
MÁXIMA	76.01 °C	64.29 °C	53.40 °C	46.76 °C
MÍNIMA	43.44 °C	39.66 °C	38.17 °C	34.11 °C
MEDIA	65.03 °C	56.36 °C	47.27 °C	41.95 °C

Tabla 3.1 Temperaturas, máxima, mínima y media, para cada uno de los flujos de aire.

DELTA	VELOCIDAD / FLUJO DE AIRE														
TEMPERATURA (±0.056°C)	2 [m/s], 111.5 [m³/h]	3 [m/s], 167.22 [m³/h]	5 [m/s], 278.71 [m³/h]	8 [m/s], 445.93 [m³/h]											
MÁXIMO	35.67 °C	25.51 °C	17.82 °C	13.27 °C											
MÍNIMO	13.17 °C	9.12 °C	7.02 °C	5.76 °C											
MEDIA	27.83 °C	19.80 °C	14.24 °C	10.47 °C											

Tabla 3.2 Diferencia entre las temperaturas de salida y entrada, máxima, mínima y media, paracada uno de los flujos de aire.

3.6 EFICIENCIA DEL CALENTADOR SOLAR DE AIRE

De acuerdo a lo mostrado en el Capítulo 1, se emplea la Ecuación (1.11) para evaluar la eficiencia térmica del calentador solar de aire, tomando como temperatura de referencia la temperatura de salida (T_o). Esta ecuación muestra que la eficiencia depende de las condiciones de operación del captador y de las condiciones climáticas.

La Figura 3.6 muestra la variación de la eficiencia para cada una de las cuatro pruebas, es decir, para los cuatro flujos distintos. En la Figura 3.7 se muestran las gráficas anteriores combinadas.

En la Figura 3.8 se muestra la curva de eficiencia global del calentador solar, para todo el rango de flujo de aire en el que fue evaluado. Se observa como la eficiencia decrece cuando la diferencia de temperaturas se incrementa dado que las pérdidas de calor son mayores. Aquí se comprueba lo indicado en la Figura 1.5 donde se muestran las curvas de eficiencia teóricas respecto a diferentes temperaturas de referencia.

⁽a)

(b)

(c)

(**d**)

Figura 3.6 Eficiencias del captador solar para diferentes velocidades/flujos de entrada de aire al captador. (a) 2 m/s (111.48 m³/h), (b) 3 m/s (167.22 m³/h), (c) 5 m/s (278.71 m³/h), (d) 8 m/s (445.93 m³/h).

Figura 3.7 Eficiencias del captador solar para diferentes velocidades/flujos de entrada de aire al captador.

Figura 3.8 Curva de eficiencia, producto de todos los datos, del calentador solar diseñado.

Figura 3.9 Eficiencia del calentador solar y diferencia de temperaturas entre la entrada y la salida del captador, para diferentes flujos.

En la Figura 3.9 se sobreponen las curvas de eficiencia del calentador solar y la diferencia de temperatura, para diferentes flujos de aire. Aquí se demuestra como la eficiencia del captador aumenta conforme aumenta el flujo, debido a que las pérdidas de calor disminuyen; en cambio la diferencia de temperatura disminuye conforme aumenta el flujo de aire, debido a que a mayor flujo es menor el intercambio de calor entre el aire que fluye en el captador y la placa absorbedora. En términos generales se logró obtener una eficiencia térmica en un dominio entre 0.5 y 0.7, lo cual coincide con lo reportado en la literatura, dentro del dominio del flujo analizado.

3.7 APLICACIÓN DEL SISTEMA DE CALENTAMIENTO SOLAR DE AIRE DISEÑADO EN EL SECADO DE MANGO

Parte del objetivo de este trabajo era vincular el sistema de calentamiento solar de aire diseñado con una aplicación agroindustrial, con miras a ser implementada a nivel rural o de campo, con el fin de proporcionar una herramienta que beneficie e impulse el desarrollo sustentable de cierta región o comunidad. Por tanto, se realizaron algunas pruebas de secado de mango para determinar el tiempo requerido para deshidratar dicho fruto, empleando el sistema de calentamiento solar de aire diseñado. Es importante señalar que estas pruebas no se sometieron a un análisis de cinética de deshidratación; únicamente se observó el tiempo total de secado y el contenido de humedad inicial y final del producto.

Las pruebas se realizaron en la plataforma solar del IER, donde se cuenta con un secador de túnel de tipo horizontal originalmente diseñado para el secado de 200 kg de arroz. (Gama, 2007). Este secador cuenta con 6 secciones de cuatro charolas cada una, con dimensiones de 54 cm de largo por 76 cm de ancho, teniendo así un área de 0.41 m^2 en cada charola. Para realizar algunas pruebas de secado empleando el calentador solar de aire diseñado, se instaló una tubería a la salida del captador para que se interconectara al secador, y se modificó la primer sección del secador adecuando unas ventilas con el fin de mejorar la distribución del aire que entra en contacto con las primeras charolas donde se coloca el producto. (Figura 3.10 y Figura 3.11).

Para las pruebas de secado de mango se utilizaron las cuatro charolas de la primera sección del túnel de secado. Las charolas se cubrieron con papel encerado perforado con el fin de evitar lo más posible que el producto quedara pegado en la charola, ya que el mango al deshidratarse libera azúcares, los cuales pueden caramelizarse y dejar impregnado parte del producto en la charola.

Figura 3.10 Interconexión del calentador solar de aire al túnel de secado.

Figura 3.11 Adecuación de ventilas en la primer sección del secador para mejorar la distribución del aire caliente que entra en contacto con las primeras charolas.

El mango *ataulfo* a deshidratar se lavó y cortó en rebanadas de aproximadamente 2 mm de espesor, usando guantes desechables y cubrebocas como medida de higiene. Las muestras se encontraban en un estado de madurez óptimo, todas similares entre sí. Para aprovechar la mayor cantidad del producto, el corte se hizo con todo y cáscara empleando una rebanadora de cocina, con el fin de lograr cortes uniformes.

Figura 3.12 Corte y distribución del mango en las charolas de secado.

Figura 3.13 Disposición de las muestras en las charolas de secado

Se colocó aproximadamente un total de 1.8 kg de mango en total, es decir aproximadamente 450 g de mango por charola, como se muestra en la Figura 4.9. De cada charola se identificaron 3 muestras, como se muestra en la Figura 3.13

Antes del inicio de la prueba de secado se determinó el contenido de humedad inicial de cuatro muestras de mango fresco, empleando un equipo analizador de humedad marca Ohaus, modelo MB45; estos resultados se muestran en la Tabla 3.1. Posteriormente, se identificaron doce muestras del mango rebanado para tomar lectura, en lapsos de una hora, de la pérdida de masa de cada muestra durante el proceso de secado solar, con ayuda de una balanza portátil marca Ohaus, modelo HH320; estos resultados se muestran en la Tabla 3.2.

Figura 3.14 Analizador de humedad.

Figura 3.15 Balanza portátil para medir pérdida de masa de las muestras de mango durante el proceso de secado solar.

Muestra	Humedad inicial [%]
1	80.23
2	81.34
3	81.74
4	79.57

 Tabla 3.3 Humedad inicial de cuatro muestras de mango fresco.

D.A. contract	Número de horas												
wuestra	0	1	2	3	4	5	6	7	8	9			
1	11.1	9.9	7.5	4.5	3.8	3.6	3.4	3.3	3.3	3.1			
2	16.1	13.6	12.0	7.3	6.8	5.1	4.6	4.1	3.8	3.6			
3	13.4	13.0	10.0	6.2	5.7	4.8	4.3	4.2	3.2	3.2			
4	13.0	10.1	7.1	4.9	4.1	3.5	3.2	3.1	2.9	2.9			
5	16.3	13.9	11.5	8.1	7.8	7.1	5.8	4.8	3.9	3.8			
6	15.2	10.9	9.9	6.8	4.9	3.9	3.3	3.1	3.0	2.9			
7	12.9	12.7	12.1	9.5	7.8	7.2	6.5	5.3	3.4	3.3			
8	16.2	13.9	10.6	8.8	7.5	6.2	5.0	4.5	3.9	3.8			
9	14.3	12.3	10.8	8.9	7.7	6.9	5.9	5.1	3.4	3.4			
10	13.7	12.3	10.1	7.3	6.5	5.5	4.5	4.0	3.7	3.6			
11	14.3	12.7	10.4	7.6	6.1	5.7	4.8	4.5	3.9	3.4			
12	10.8	9.5	9.3	8.0	6.5	6.0	5.3	4.4	2.7	2.6			

 Tabla 3.4 Pérdida de masa, en gramos, de doce muestras de mango durante el proceso de secado solar.

El sistema de calentamiento solar de aire se hizo funcionar a una velocidad de viento aproximada de 5 m/s, logrando una temperatura máxima dentro del túnel de secado de aproximadamente 50 °C.

Finalmente, se determinó el porcentaje de humedad final de cuatro de las doce muestras. Se tomaron las muestras del centro de cada charola. La Figura 3.16 muestra gráficamente el comportamiento de pérdida de masa durante la prueba, mientras que en la Tabla 3.5 se indica la masa inicial, masa final y porcentaje de humedad final de estas cuatro muestras.

Figura 3.16 Pérdida de masa de cuatro muestras de mango, y la temperatura del túnel de secado, durante el proceso de secado solar.

Muestra	Masa inicial [g]	Masa final [g]	Humedad final [%]
2	16.1	3.6	11.43
5	16.3	3.8	10.69
8	16.2	3.8	12.17
11	14.3	3.4	13.28

 Tabla 3.5 Reducción de masa y porcentaje de humedad final de cuatro muestras de mango sometidas al proceso de secado solar.

Figura 3.17 Muestras de mango deshidratado empleando el calentador solar de aire diseñado.

En promedio, la reducción de masa de estas cuatro muestras fue de un 74.47% respecto a su masa inicial después de 9 horas en el túnel de secado, mientras que el porcentaje de humedad final promedio que se logró fue de 11.89%. Considerando el porcentaje promedio de reducción de masa obtenido, la cantidad original de 1800 gramos de mango, teóricamente quedaría reducida a aproximadamente 450 gramos.

La Figura 3.17 muestra el resultado final del mango deshidratado empleando el sistema de calentamiento solar de aire diseñado interconectado a un túnel de secado.

Los resultados reportados en este capítulo muestran que el comportamiento térmico del sistema fue satisfactorio, logrando un rango de eficiencia térmica similar a lo indicado en la literatura. Además, al incorporar el sistema diseñado con un túnel de secado, se logró brindarle una aplicación práctica, demostrando que, empleando este módulo de calentamiento de aire, el sistema proporciona la energía calorífica necesaria para llevar a cabo un proceso de secado solar indirecto, para la cantidad de mango utilizada.

CONCLUSIONES

Los sistemas de calentamiento solar de aire han sido de relativa escasa importancia en la investigación solar térmica, a pesar de que los primeros estudios científicos se tienen desde hace más de 60 años, su promoción y aplicación ha sido muy limitada.

Durante la elaboración de este trabajo se diseñó, construyó, instrumentó, evaluó y puso a prueba un sistema de calentamiento solar de aire de carácter modular, que puede ser adaptable a diversos procesos, indicando, como interés personal, algunas aplicaciones en sistemas de producción agrícola como el secado, criaderos de aves, invernaderos, entre otras.

Con este trabajo, dada la escasa oferta de sistemas de calentamiento solar de aire, se pretende contribuir, en primera instancia, al impulso en la investigación de dicha área, pero, sobre todo, ofrecer un sistema que pueda implementarse en aplicaciones prácticas a nivel rural como medio de impulso al bienestar y desarrollo sustentable de alguna región o comunidad donde pueda tener efecto positivo el uso de este tipo de tecnología. Por lo tanto, para lograr este fin, éste trabajo no sólo muestra los resultados de evaluación de una tecnología solar, sino que además, el sistema construido se probó en una aplicación particular y se planteó la propuesta de una lista de indicadores que permitan ser un punto de partida para la evaluación de la sustentabilidad del proceso de secado solar de mango.

La evaluación térmica demostró que el sistema construido presenta resultados satisfactorios para las distintas aplicaciones en las que pudiera funcionar. Dependiendo la temperatura que se requiera, las condiciones climáticas y la ubicación geográfica del sistema, el módulo de calentamiento solar de aire permite obtener temperaturas promedio de salida entre 40 °C y 65 °C, aproximadamente, al regular la cantidad de aire que atraviesa el captador solar. Con los resultados obtenidos y los parámetros requeridos, se calculó la eficiencia térmica del sistema, demostrando que ésta se encuentra en un dominio entre 0.5 y 0.7, lo cual coincide con lo reportado en la literatura, dentro del rango de flujo de aire evaluado.

Una vez evaluado térmicamente el sistema y habiendo obtenido los resultados mencionados, se incorporó el sistema diseñado a un túnel de secado. Con esto se logró implementar una aplicación práctica de secado solar indirecto, demostrando que este módulo de calentamiento solar de aire, bajo las condiciones climáticas locales, proporciona la energía calorífica necesaria para deshidratar cerca de 2 kilogramos de mango, reduciendo la masa total del fruto en un 74.5% con un porcentaje de humedad final promedio de aproximadamente 12%, en un lapso de 9 horas.

Una característica importante del sistema diseñado es su carácter modular y multifuncional; lo que significa que, realizando algunas modificaciones, permite la incorporación de más módulos, en serie y/o paralelo, para así poder adaptarse a requerimientos físicos y térmicos específicos.

Una de las ideas principales que motivaron este trabajo es la posibilidad de vincular este tipo de tecnología en una aplicación a nivel rural, como puede ser el secado solar de mango, partiendo del objetivo de buscar un impacto social positivo en alguna región o comunidad donde pudiera implementarse un proyecto que involucre el aprovechamiento de este sistema. Para lograr tal fin se requerirá, primeramente, realizar una evaluación de sustentabilidad del proyecto, donde logren romperse los paradigmas productivistas que se basan en la obtención de mayores ganancias a corto plazo, a costa del deterioro ambiental y las pésimas condiciones laborales de las y los productores. Los análisis meramente económicos resultan inútiles sino existe una participación incluyente y equitativa de todas las instancias y grupos involucrados de la comunidad.

Como trabajo a futuro, propongo que la evaluación de sustentabilidad de un proyecto de este tipo deberá llevarse a cabo en atención a las siguientes premisas:

- El concepto de sustentabilidad se define a partir de cinco atributos generales de los agroecosistemas: a) productividad, b) estabilidad, confiabilidad y resilencia, c) adaptabilidad, d) equidad, y e) autogestión.
- 2. La evaluación de sustentabilidad es válida para: a) sistemas específicos en un determinado lugar geográfico y bajo un determinado contexto social y político,

b) una escala espacial previamente determinada, y c) una escala temporal previamente determinada.

- La evaluación de sustentabilidad es una actividad participativa que requiere de una perspectiva y un equipo de trabajo interdisciplinarios, incluyendo tanto evaluadores externos como a los involucrados directos del proyecto.
- 4. La sustentabilidad debe evaluarse bajo metodologías bien establecidas, de manera comparativa o relativa, es decir, comparar la evolución de un mismo sistema a través del tiempo, o comparar simultáneamente uno o más sistemas alternativos con un sistema de referencia.
- 5. La evaluación de sustentabilidad es un proceso cíclico que se va modificando y retroalimentando con base en la experiencia.

México, siendo quinto productor a nivel mundial de mango, posee un gran potencial para ofrecer un uso final a este alimento diferente al de su consumo y comercialización en fresco. Con una adecuada estrategia para el manejo y estabilización de los desechos de mango, provenientes tanto de su industrialización como de la cadena productiva, se pueden promover nuevos procesos de valorización en forma de desarrollo de nuevos productos, como lo es el mango deshidratado. Implementar tecnologías para la deshidratación de este fruto directamente en los centros de producción, basándose en el aprovechamiento de una energía limpia, gratuita y renovable como la solar, puede contribuir al desarrollo sustentable de la región o comunidad participante.

Se ha logrado con este trabajo implementar una aplicación tecnológica basada en energía solar, la cual, además de presentar buenos resultados de eficiencia, es multifuncional, es decir que es de fácil integración en otros procesos agroindustriales tales como las plantas incubadoras, criaderos de aves, acondicionamiento de espacios, y el propio secado, como ejemplo de aplicación de este trabajo dentro de un esquema que pretende aportar al beneficio social y al desarrollo sustentable de alguna comunidad o región rural.

ANEXOS

A.1 DIAGRAMA DE MOODY

Figura A.1 Diagrama de Moody.

A. 2 ESPECIFIACIONES DEL VENTILADOR CENTRÍFUGO INYECTOR DE AIRE

180 to 318 CFM, 115 & 230 Volt AC

Curve Number	PART NUMBER	Volts	Hertz	Watts	Flange	Rota- tion**	CFM @ 0"	dBA	Temp. Max °C	Wgt. (Ibs.)	Wiring Dgm#	Capacitor (µf)
1	G2E140-AL30-48	115	60	130	Yes	R	180*	60	40	7.0	А	10
1	G2E140-AL40-48	230	50/60	145	Yes	R	180*	60	40	7.0	А	2
2	G2E140-AC13-42	115	60	200	Yes	R	251	67	40	7.5	А	16
2	G2E140-AC05-42	230	60	210	Yes	R	251	67	40	7.5	А	4
3	G2E146-BF05-29*	115	60	295	Yes	R	318*	69	40	8.5	А	20
3	G2E146-BF01-35*	230	60	330	Yes	R	318*	69	40	8.5	Α	5
* Not to b	be run wide open - refer to p	erformanc	e curve.									

**Rotation as viewed from side opposite the lead exit: R = clockwise; L = counter-clockwise

Wiring Diagram

An extra capacitor can be connected in series to yield lower RPM for multi-speed requirements

	Dimensions inches & (millimeters)																	
Туре	Notes	Α	В	С	D	E	F	G	Н	1	J	К	L	M*	Ν	0	Ρ	Q
G2E140-AL	2	8.90	10.28	4.06	4.21	5.12	4.53	4.72	4.13	3.70	3.62	3.94	3.94	M4	.25	4.65	6.22	17.72
G2E140-AC	2	8.90	10.28	4.06	4.21	5.12	4.53	4.72	4.13	(34)	3.62	3.94	3.94	M4	.25	4.65	6.22	17.72
G2E146-BF	2	(226) 8.90	(261)	(103)	(107) 4.21	(130) 5.12	(115) 4.53	(120) 4.72	(105) 4.13	(94) 3.70	(92) 3.62	(100) 3.94	(100) 4.09	M4	(6.6)	(118) 4.94	(158)	(450)
		(226)	(261)	(103)	(107)	(130)	(115)	(120)	(105)	(94)	(92)	(100)	(104)		(6.3)	(126)	(158)	(450)

¹⁷⁴

Call ebm/Papst at 860-674-1515 • Fax 860-674-8536 • E-mail: sales@ebm.com for Technical Assistance @ ebm/Papst 1995, 1996, 1997. ebm/Papst reserves the right to change any specifications or data without notice

Figura A.2 Especificaciones del ventilador centrífugo inyector de aire.

A.3 ESPECIFICACIONES AUTOTRANSFORMADOR VARIABLE POWERSTAT

136B-236B series

POWERSTAT Variable Transformers of the 136B-236B Series are available in single and three phase, manually operated and motor-driven assemblies. The 136B Series operates from 120 volt lines and the 236B Series from 240 volt lines. The rated output for constant current loads is 22 amperes for the 136B Series and 10 amperes for the 236B Series. For a constant impedance load the maximum rated output current at line voltage is 28 amperes for the 136B Series and 13 amperes for the 136B-236B Series. POWERKOTE coils are featured on all units of the 136B-236B Series.

POWERSTAT Variable Transformers of the 136B-236B Series can be operated at any frequency between 50 and 2000 hertz. Figure A shows the reduction in allowable output current for operation higher than rated frequency. Figure B shows the regulation curves for types of the 136B-236B Series operating at full load current. Voltage drop is shown for any brush setting when full load is applied. For less than full load the voltage drop is proportional to the load. Driving torque, d-c resistance per coil and maximum core and brush loss when operating under no load are given in the chart. The shaft can be adjusted for general utility or back-of-panel mounting. Manually operated units have standard dials graduated 0-100. Terminal connections permit increasing output voltage with either clockwise or counterclockwise rotation of the knob. The angle of rotation from zero to maximum output voltage is 316°.

Plug-in units have the same ratings as types 136B and 236B but offer the convenience of input cord-plugs, fuses and output receptacles housed in cast aluminum terminal enclosures. They can be converted to limit the output voltage to line voltage. Plugs and receptacles are shown in the outline for cord and plug types on page 21. Fused units of the 136B Series have 25 ampere fuses and those of the 236B Series have 10 ampere fuses.

Open construction units have the letter U suffix in the type number and the same electrical ratings and coil to terminal wiring as their corresponding enclosed construction models. They have no protective screening. Knobs can be placed at the base end for back-of-panel mounting because the shaft is removable.

POWERSTAT Variable Transformers of the 136B-236B Series are available in two- and three-gang assemblies in either enclosed or open construction. Most ganged units are provided with jumpers in the standard common position that may be moved or removed as desired.

Two- and three-gang assemblies of the 136B-236B Series connected for parallel operation to increase their current carrying capacity require chokes to insure equal division of load. Order choke type T5000B for two-gang assemblies and type T5579B for three-gang assemblies.

All except plug-in units in the 136B-236B Series are available with motor drives in standard speeds of 5, 15, 30 or 60 seconds for full range travel. Motor-driven models have an MD prefix in the type number and the identical electrical ratings of their corresponding manually-operated types. The motor is rated for an input of 120 volts, 50/60 hertz single phase with a current requirement of approximately 0.3 ampere. Stand-offs are provided for bench mounting and slotted brackets for against-thewall mounting. When ordering, motor-driven units should be prefixed with the desired speed in seconds. For example: 5MD136B.

ТҮРЕ†	Appro Driving Oz-In	ximate Torque KpCm	No-Load Loss at 60 Hertz (Watts)	D-C Resistance per Coil* (Ohms)			
136B	30-50	2.2-3.6	15	0.27			
136 B-2	70-90	5-6.5	30	0.27			
136B-3	110-140	7.9-10.1	45	0.2.7			
236B	30-50	2.2-3.6	15	1.7			
236B-2	70-90	5-6.5	30	1.7			
236B-3	110-140	7.9-10.1	45	1.7			

*Measured from start to end of winding. †Data also applies to units having applicable prefixes and suffixes.

Figura A.3 Especificaciones autotransformador variable.

A.4 ESPECIFICACIONES PLACA AISLANTE HUNTER PANELS

POLIISOCIANURATO ENERGÉTICAMENTE EFICIENTE HUNTER PANELS

H-SHIELD Aislamiento de poliisocianurato plano

DESCRIPCIÓN DEL PRODUCTO

El H-Shield es un panel rígido para el aislamiento de techos compuesto de un núcleo de espuma de celdas cerradas de poliisocianurato y unido a cada lado a las caras reforzadas con fibra.

CARACTERÍSTICAS Y BENEFICIOS

- Fabricado con NexGen Chemistry: NO contiene CFC, HCFC, cero ODP, en conformidad con la EPA (Environmental Protection Agency) y casi no tiene potencial de calentamiento global (Global Warming Potential, GWP)
- · Aprobado para la aplicación directa a las cubiertas de acero.
- Aprobado por los principales sistemas de recubrimiento de techos BUR, capa única y modificada.

CARACTERÍSTICAS DEL PANEL

- Disponible en paneles de 4' x 4' (1220 mm x 1220 mm) y 4' x 8' (1220 mm x 2440 mm) en espesores de 1" (25 mm) a 4.0" (102 mm)
- Disponible en dos grados de resistencia a la comprensión de acuerdo con ASTM C1289, Tipo II, Clase 1, Grado 2 (20 psi), Grado 3 (25 psi).

APLICACIONES

- Construcciones que requieren calificaciones FM Clase 1 y UL Clase A
- Sistemas de techo de capa única (balastado, unido mecánicamente, completamente adherido)
- · Sistemas de techado de cierre metálico
- · Sistemas de brea modificada
- · Techado construido: asfalto y brea de alquitrán

ESPE	SOR 6) (MM)	VALOR R DE LTTR	CAPACIDAD DE INTERVALO DEL SURCO
1.00	25	6.00	2 5/8"
1.50	38	9.00	4 3/8"
1.60	41	9.60	4 3/8"
1.70	43	10.30	4 3/8"
2.00	51	12.10	4 3/8"
2.50	64	15.30	4 3/8"
2.70	69	16.60	4 3/8"
3.00	76	18.50	4 3/8"
3.30	84	20.40	4 3/8"
3.50	89	21.70	4 3/8"
3.60	91	22.40	4 3/8"
4.00	102	25.00	4 3/8"

CAN/ULC S770, lo cual proporciona un tiempo promedio ponderado de 15 años.

Códigos y cumplimientos

 ASTM C 1289 Tipo II, Clase 1, Grado 2, (20 psi) Grado 3, (25 psi)
 Código Internacional de Construcción (International Building Code, IBC) Capítulo 26

- Número de aprobación del producto del Estado de Florida FL 5968
- Aviso de aceptación (NOA) del Condado de Miami-Dade N.º: 09-0915.15 — Vence el 1.14.2015

Clasificaciones de Underwriters Laboratories, Inc.

- · UL 1256
- Ensamblajes de construcción de cubierta metálica aislada N.º 120. 123, 292
- UL 790
- · Ensamblajes de techo serie P clasificados por hora UL 263

Clasificado por UL para su uso en Canadá

Consulte el Directorio de productos certificados para Canadá de UL para obtener más detalles

Aprobaciones de Factory Mutual

- · FM 4450, FM 4470
- Aprobado para construcciones de cubierta metálica aisladas de Clase 1 para 1-60 a 1-270. Consulte RoofNav de las Aprobaciones de FM para obtener detalles sobre sistemas específicos.

Créditos potenciales de Liderazgo en Diseño de Energía y Medio Ambiente (Leadership in Energy and Environmental Design, LEED) para el uso del poliisocianurato

Energía y atmósfera

Rendimiento mínimo de la energía Optimizar el rendimiento de la energía

- Materiales y recursos
- · Reutilización de las construcciones
- · Gestión de desechos de construcción
- · Contenido reciclado · Materiales regionales y locales

Innovación y diseño

W W W . H U N T E R P A N E L S . C O M · 888.746.1114

POLIISOCIANURATO ENERGÉTICAMENTE EFICIENTE HUNTER PANELS

TABLA DE DATOS DE LAS PROPIEDADES FÍSICAS TÍPICAS NÚCLEO DE ESPUMA DE POLIISOCIANURATO ÚNICAMENTE

PROPIEDAD	MÉTODO DE PRUEBA	VALOR
Resistencia a la	ASTM D 1621	mínimo de 20 psi*
compresión	ASTM C 1289	(138kPa, Grado 2)
Estabilidad dimensional	ASTM D 2126	cambio lineal de 2% (7 días)
Transmisión de vapor de humedad	ASTM E 96	< 1 permeabilidad (57.5ng/(Pa•s•m²))
Absorción de agua	ASTM C 209	< 1% del volumen
Temperatura de se	rvicio	-100 °F a 250 °F (-73 °C a 122 °C)

*También disponible en un mínimo de 25 psi, Grado 3

ADVERTENCIAS Y LIMITACIONES

El aislamiento debe estar protegido de las llamas abiertas y mantenerse seco en todo momento. Instale solamente la cantidad de aislamiento que pueda cubrirse el mismo día con material de recubrimiento para techos terminado. Hunter Panels no será responsable de construcciones y techos específicos diseñados por otros, de deficiencias de construcción o de mano de obra, de condiciones peligrosas en el sitio de trabajo ni de almacenamiento y manipulación inapropiados. Las especificaciones técnicas mostradas en este material impreso tienen el propósito de ser utilizadas solamente como guías generales y están sujetas a cambio sin previa notificación. Comuníquese con Hunter Panels para obtener información más detallada, o remítase al Boletín técnico de PIMA N.º 109: Recomendaciones para la manipulación y almacenamiento de aislamientos para techos de poliisocianurato.

Sistemas de capa única

INSTALACIÓN

Sistemas balastados de capa única

Cada panel H-Shield descansa holgadamente en la cubierta el techo. Junte a tope los bordes y escalone las junturas de los paneles adyacentes. Instale el recubrimiento del techo de acuerdo con las especificaciones del fabricante.

Sistemas de capa única unidos mecánicamente

CORRECTION OF THE OWNER OWNER OWNER OWNER OWNE Cada panel H-Shield se debe asegurar a la cubierta del techo con sujetadores y platinas (apropiados para el tipo de cubierta). Junte a tope los bordes y escalone las junturas de los paneles adyacentes. Instale el recubrimiento del techo de acuerdo con las especificaciones del fabricante.

Capa única completamente adherida

1222222 Cada panel H-Shield se debe asegurar a la cubierta del techo con sujetadores y platinas (apropiados para el tipo de cubierta). Los paneles H-Shield con un máximo de 4' x 4' (1220 mm x 1220 mm) pueden ser adheridos a una cubierta de concreto preparada con un fregado completo de asfalto remojado caliente. La aplicación por adhesivo de aislamiento o masilla aplicada en frío también está aprobada. Junte a tope los bordes y escalone las junturas de los paneles adyacentes. Instale el recubrimiento del techo de acuerdo con las especificaciones del fabricante. Los adhesivos aprobados incluyen, pero no se limitan a, los siguientes: Carlisle FAST Adhesives · Insta Stik · Olybond · Millennium

R-30.6, dos capas de 2.5" H-Shield con membrana de capa única

Sistemas construidos, de brea de alquitrán y de brea modificada

Cada panel H-Shield se debe asegurar a la cubierta del techo con sujetadores y platinas (apropiados para el tipo de cubierta). Los paneles H-Shield con un máximo de 4' x 4' (1220 mm x 1220 mm) pueden ser adheridos a una cubierta de concreto preparada con un fregado completo de asfalto remojado caliente. La aplicación por adhesivo de aislamiento o masilla aplicada en frío también está aprobada. Junte a tope los bordes y escalone las junturas de los paneles adyacentes. Instale el recubrimiento del techo de acuerdo con las especificaciones del fabricante.

Figura A.4 Especificaciones placa aislante.

A.5 ESPECIFICACIONES PIRANÓMETRO

Kipp & Zonen

PYRANOMETER RANGE

features:

Kipp & Zonen pyranometers for atmospheric research and industry

In the range of secondary standard pyranometers, Kipp & Zonen supplies equipment with special features; a record breaking response time, exceptional levelling accuracy and a test certificate also covering the directional response. These important parameters ensure the highest accuracy measurements.

SOLAR & ATMOSPHERIC SCIENCE

Pyranometers are radiometers designed for measuring the irradiance on a plane surface resulting from radiant fluxes in the wavelength range from 0.3 to 3 micrometers,

normally from solar radiation and lamps. Kipp & Zonen has been manufacturing pyranometers for over 70 years. The instruments are used in meteorological research, solar energy research, material testing, climate control in greenhouses, building physics science and many other applications.

Kipp & Zonen can supply a full range of pyranometers and accessories, according to the ISO 9060 and World Meteorological Organisation (WMO) standards. The specifications of the various types of pyranometers are shown in the table on the rear page.

Common characteristics of Kipp & Zonen pyranometers are the robustness, and all weather performance. Pyranometers are easy to use, require no power, and are all supplied with calibration certificates that are traceable to WRR (World Radiometric Reference).

CM Series

PYRANOMETER RANGE

CM 3 housing

Note: The performance specifications quoted are worst-case and/or maximum values Kipp & Zonen B.V. reserve the right to alter specifications of the equipment described in this documentation without prior notice

	CM 22	GM 21	CM 11	CM 6B	CM 3			
ISO CLASSIFICATION / WMO CLASSIFICATION	Secondary Standard High Quality	Secondary Standard High Quality	Secondary Standard High Quality	First Class Good Quality	Second Class Moderate Quality			
Response time (95 %)	5 s	5 s	12 s	18 s	18 s			
Zero offsets (a) thermal radiation (200 W/m ²) (b) temperature change (5 K/hr)	± 3 W/m ² ± 1 W/m ²	± 7 W/m ² ± 2 W/m ²	± 7 W/m ² ± 2 W/m ²	± 15 W/m ² ± 4 W/m ²	± 15 W/m ² ± 4 W/m ²			
Non stability (change/year)	±0.5 %	±0.5 %	±0.5%	±1%	±1%			
Non linearity (0 - 1000 W/m ²)	± 0.2 %	±0.2 %	±0.6 %	± 1.2 %	± 2.5 %			
Directional error (at 1000 W/m ²)	± 5 W/m ²	± 10 W/m ²	± 10 W/m ²	± 20 W/m ²	± 25 W/m ²			
Temperature dependence of sensitivity	± 0.5 % (-20 to +50 °C)	± 1 % (-20 to +50 °C)	± 1 % (-10 to +40 °C)	± 2 % (-10 to +40 °C)	± 6 % (-10 to +40 °C)			
Tilt response (at 1000 W/m ²)	±0.2 %	±0.2%	±0.2%	±1%	±2%			
OTHER SPECIFICATIONS								
Sensitivity (µV/W/m ²)	7 - 14	7 - 17	4 - 6	9 - 15	10 - 35			
Impedance	10 - 100 Ω	40 - 100 Ω	700 - 1500 Ω	70 - 100 Ω	100 - 200 Ω			
Level accuracy	0.1°	0.1°	0.1°	0.5°	1°			
Operating temperature	-40 to +80 °C	-40 to +80 °C	-40 to +80 °C	-40 to +80 °C	-40 to +80 °C			
Cable length	10 m	10 m	10 m	10 m	10 m			
Spectral range (50 % points)	200 - 3600 nm	305 - 2800 nm	305 - 2800 nm	305 - 2800 nm	305 - 2800 nm			
Typical signal output for atmospheric applications	0 - 25 mV	0 - 25 mV	0 - 10 mV	0 - 25 mV	0 - 50 mV			
Maximum irradiance	4000 W/m ²	4000 W/m ²	4000 W/m ²	2000 W/m ²	2000 W/m ²			
Expected daily accuracy	±1%	±2%	±3%	±5%	± 10 %			
Recommended applications	Scientific research requiring the highest level of measure- ment accuracy and reliability	Meteorological net- works, reference measurements in extreme climates, polar or arid	Meteorological net- works, solar energy collector testing, materials testing	Good quality meas- urements for green- house climate control, field testing	Economical solution for routine measurements in weather stations			
Options · Cable extension (5,10,15, 20, 25,	Options Accessories • Cable extension (5, 10, 15, 20, 25, 100 m) ^{1,2,3,4,5}) • CV 2 Ventilation System ^{1,2,3,4})							

- Cable extension (5,10,15, 20, 25,100 m) ^{1,2,3,4,5)}
 Connector to extended cable ^{1,2,3,4,5)}
 Various Filter Domes ^{2,3,4)}
- Incorporated temperature sensor, Pt-100 or 10K thermistor 1,2,3)
- $^{1)}$ for CM 22 $^{2)}$ for CM 21 $^{-3)}$ for CM 11 $^{-4)}$ for CM 6B $^{-5)}$ for CM 3

SOLAR & ATMOSPHERIC SCIENCE

Kipp & Zonen B.V. Röntgenweg 1 2624 BD Delft P.O. Box 507 2600 AM Delft The Netherlands

T +31(0)15 2698 000 *F* +31(0)15 2620 351 *E* info.holland@kippzonen.com

Figura A.5 Especificaciones piranómetro.

CAP Suntracker and Positioner 1,2,3,4)
 CLF 1 leveling fixture ⁵)
 CM 121B Shadow Ring 1,2,3,4) *CLF 1 required for 5*)

Your local dealer:

SOLRAD Integrator and dataloggers 1.2.3.4.5)
 Various albedo mounting plates 1.2.3.4.5)

A.6 ESPECIFICACIONES SENSOR PARA DETERMINAR LA VELOCIDAD DEL VIENTO A LA ENTRADA DEL CAPTADOR

Figura A.6 Especificaciones sensor para determinar la velocidad del viento a la entrada del captador

A.7 ESPECIFICACIONES SENSOR PARA DETERMINAR LA VELOCIDAD DEL VIENTO A LOS ALREDEDORES

This product is no longer available and has been replaced by: 03002-L. Some accessories, replacement parts, or services may still be available.

Technical Description

03001-L

The 03001 Wind Sentry Set was replaced with the 03002 Wind Sentry Set on January 9, 2009. The 03001 and 03002 use the same vane and anemometer. However the 03002 includes a junction box allowing one cable to connect the entire wind set to the datalogger. The retired 03001 used two cables—one for the anemometer and one for the wind vane.

03001-L Specifications

- Range: 0 to 50 m/s
- > Accuracy: ±0.5 m/s
- > Threshold: 0.5 m/s

Figura A.7 Especificaciones sensor para determinar la velocidad del viento a los alrededores

REFERENCIAS

Aguilera, M., Bruna, G., Brzonic, F., Cerda, R. (1993). *Fundamentos en gestión para productos agropecuarios: Tópicos y estudios de casos consensuados por universidades chilenas*. Editado y producido por el Programa de Gestión Agropecuaria de Fundación Chile.

Alatorre, C. (2009). *Energías Renovables para el Desarrollo Sustentable en México 2009*. Secretaría de Energía, SENER. México, D. F.: Julio Alberto Valle Perena, Andre Eckermann, Valentina Barzalobre.

Altieri, M. (1994). Bases agroecológicas para una producción agrícola sustentable. *Agricultura Técnica*, 1994; 54 (4):371-86.

Cengel, Y., Boles, M. (2009). Termodinámica. Sexta edición. México: Mc. Graw Hill.

Choundhury, C., Anderson, S.L., Rekstand, J. (1988). A solar air heater for low temperature application. Solar Energy 40, 335–344.

Conway, G. (1990). Indicators of agricultural performance. En: *After de Green Revolution*, 288-303. Londres, Reino Unido: Earthscan Publications, Ltd.

Draft standard for testing of solar air collectors based on EN12975-2 and ASHRAE 93-2003 (n. d.). *Thermal solar systems and components. Solar air collectors, Test methods.*

Duffie, J., & Beckman, W. (1980). *Solar energy of thermal processes*. U.S.A.: Wiley-Interscience Publication.

Ekechukwu, O.V., & Norton B. (1999). Review of solar-energy drying systems II: an overview of solar drying technology. *Energy Conversion & Management* 40: 615-655.

Ferrari, L. (2013). Energía finita en un planeta finito. *Revista digital universitaria*, *19*(4). Recuperado de: http://www.revista.unam.mx/vol.14/num9/art30/#

Financiera Rural (2010). *Monografía del Mango*. México: Dirección General Adjunta de Planeación Estratégica y Análisis Sectorial. Dirección Ejecutiva de Análisis Sectorial. Recuperado de:

http://www.financierarural.gob.mx/informacionsectorrural/Documents/Monografias/Monograf%C3%ADa%20mango%20%28oct%2010%29.pdf

Fundación Produce Sinaloa, A.C. (2010). México: Investigan la conservación de mango deshidratado.

Recuperado de: http://www.freshplaza.es/article/45464/M%E9xico-Investigan-laconservaci%F3n-de-mango-deshidratado

Gama, J. (2007). Análisis teórico-experimental de un deshidratador solar combinado (térmico-fotovoltaico) para el tratamiento de arroz. Tesis de maestría, Centro de Investigación en Energía, UNAM, Temixco, Morelos, México.

García, R. (1992). Interdisciplinariedad y sistemas complejos. En: *Ciencias sociales y formación ambiental*. E. Leff, 85-123. México: Gedisa-UNAM-UNESCO.

Garg, H.P., Choundhury, C., Datta, G. (1991). *Theoretical analysis of a new finned type solar collector*. Energy 16, 1231–1238.

Mohamad, A.A. (1997). *High efficiency solar air heater*. Solar Energy 60 (2), 71–76.

Hart, R. (1985). *Conceptos básicos sobre agroecosistemas*. Turrialba, Costa Rica: Centro Agronómico Tropical de Investigación y Enseñanza.

Hastings, R. (2000). *Solar air systems. A design handbook.* Solar Heating and Cooling Executive Committee of the International Energy Agency (IEA). UK: James & James (Science Publishers).

Henden, L., Rekstad, J., Meir, M. (2002). *Thermal performance of combined solar systems with different collector efficiencies*. Solar Energy 72 (4), 299–305.

Hunter, (n. d.). *Poliisocianurato energéticamente eficiente Hunter Panels. H-Shield Aislamiento de poliisocianurato plano.* Recuperado de: http://www.hpanels.com/images/stories/pdfs/lit_prod_color/spanish/H-Shield_ES.pdf

Instituto de Investigaciones Legislativas del Senado de la República (2004). Nuevas energías renovables: Una alternativa energética sustentable para México. (Análisis y propuesta).

Recuperado de: http://xml.cie.unam.mx/xml/se/pe/NUEVAS_ENERG_RENOV.pdf

Instituto Nacional de Estadística, Geografía e Informática (INEGI) e Instituto Nacional de Ecología (INE). (2000). *Indicadores de Desarrollo Sustentable en México*. México. Recuperado de:

http://www.semarnat.gob.mx/archivosanteriores/informacionambiental/Documents/04_indicadores/indicadores_desarrollo_sustentable.pdf

International Energy Agency (IEA, 2012). *World Energy Outlook, 2012 Edition*. Recuperado de: http://www.worldenergyoutlook.org/publications/weo-2012/#d.en.26099

Ion, I. & Martins, J. (2006). *Design, developing and testing of a solar air collector*. The annals of "dunarea de jos" university of galati fascicle iv refrigerating technique, internal combustion engines, boilers and turbines. ISSN 1221-4558.

Kramer, K. (2013). *IEA-SHC Task 43: Solar rating and certification procedures. White Paper on Solar Air Heating Collectors.* International Energy Agency, Solar Heating and Colling Programme. Recuperado de: http://www.iea-

shc.org/data/sites/1/publications/Final%20White%20Paper%20Air%205-31-13.pdf

López, E. (2011). *Caracterización y evaluación de la eficiencia térmica y de secado en un deshidratador híbrido (solar - gas)*. Tesis de maestría, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca, Oaxaca, México.

Masera, O, Astier, M., López-Ridaura, S. (2000). *Sustentabilidad y manejo de recursos naturales. El marco de evaluación MESMIS*. Grupo Interdisciplinario de Tecnología Rural Apropiada, A. C. (GIRA, A. C.). Michoacán, México.

Mishra, C.B, Sharma, S.P. (1981). *Performance study of air-heated packed-bed solar energy collector*. International Journal of Energy 6:153–157.

Mataix, C. (2010). *Mecánica de fluidos y máquinas hidráulicas*. México: Alfaomega. Segunda edición.

Montaño L, G., (2012). *La producción y el valor del mango en México*. Recuperado de: http://www.funprover.org/agroentorno/agosto012pdf/produccmangomexico.pdf

Montiel, J. F. (2012). *La Energía Solar*. Comisión Nacional de Uso Eficiente de la Energía, CONUEE. Secretaría de Energía.

Recuperado de: http://www.procalsol.gob.mx/wb/procalsol/energia_solar2

Parker, B. F. (1991). *Solar-Thermal Design*. En: Parker, B.F. (Ed.), Solar Energy in Agriculture (pp. 157-185). Energy in World Agriculture, Vol 4. Amsterdam: Elsevier. Plan rector. Sistema Producto mango de Michoacán, (2013). Recuperado de: http://www.oeidrus-portal.gob.mx/oeidrus_mic/docs/Plan_Rector_Mango_2013.pdf

Patricio, P. (2011). *Productores de mango no reciben ningún tipo de apoyo*. El Diario de Zihuatanejo. Zihuatanejo, Guerrero, México. Recuperado de: http://www.diariodezihuatanejo.mx/2011/06/productores-de-mango-no-reciben-ninguna.html

Punter, A. (2002). *Solar Thermal Energy. Practical Action: Technology challenging poverty.* Recuperado de: http://practicalaction.org/solar-thermal-energy-1

Rincón M., E. (1999). Estado del arte de la investigación en energía solar en México. México: Fundación ICA.

Salvador Escoda, S. A. (Ed.). (2008) Manual práctico de ventilación. Catálogo técnico. Barcelona, España.

Secretaría de Energía (SENER, 2012). *Prospectiva de Energías Renovables 2012-2026*. México, D. F.: Secretaría de Energía (SENER). Recuperado de: http://www.sener.gob.mx/res/PE_y_DT/pub/2012/PER_2012-2026.pdf

Sumaya-Martínez, M., Sánchez, L., Torres, G. y García, D., (2012). Red de valor del mango y sus desechos con base en las propiedades nutricionales y funcionales. *Revista Mexicana de Agronegocios*, XVI(30) 826-833. Recuperado de: http://www.redalyc.org/articulo.oa?id=14123097005

Tagüeña, J., Martínez, M. (2009). Fuentes renovables de energía y desarrollo sustentable. *México: ADN Editores*.

Tainter, J. A. (1988). *The Collapse of Complex Societies*, New York & Cambridge, UK: Cambridge University Press. Recuperado de: http://www.youtube.com/watch?v=G0R09YzyuCI

Testo AG, (2012). *Termografía, guía de bolsillo*. Recuperado de: http://www.testo.com.ar/media/local_media/Gua_practica_termografia_ES.pdf

Tiwari, G. (2008). *Solar energy fundamentals, design, modelling and applications*. Pangobourne, England: Alpha science international ltd.

Todo sobre el vidrio (n. d.). *Características del vidrio*. *Propiedades*. Recuperado de: www.yourglass.com/agc-glass-europe/es/es/toolbox/pocket/2/SP_YGP_CHAP_II.pdf