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Introducción

Es un honor para mi presentar la siguiente tesis de Doctorado, fruto de
un continuo trabajo académico de ocho semestres bajo la supervisión del
Dr. Ángel Tamariz Mascarúa. El objetivo de este trabajo es presentar los
resultados que obtuve durante mi estancia doctoral.

El caṕıtulo 1 está dedicado a estudiar resultados preliminares acerca de
los espacios resolubles, espacios maximales y espacios submaximales.

En el caṕıtulo 2 presento los resultados originales que obtuve durante la
primera parte de mi estancia doctoral. Fruto de este trabajo fue la redacción
del art́ıculo de investigación [14], mismo que ya fue aceptado para su pu-
blicación en la revista Topology and its Applications. En este caṕıtulo, se
estudian las consecuencias de la existencia de familias ai-maximales y se dan
dos condiciones suficientes que garantizan su existencia.

En particular demostré que bajo la hipótesis del continuo, no existen
familias ai-maximales y que la existencia de dichas familias implica la ex-
istencia de un espacio Baire, irresoluble y sin puntos aislados. En [32], se
demuestra que la existencia de un espacio Baire, irresoluble y sin puntos
aislados es equiconsistente con la existencia de un cardinal medible, lo que
implica que la existencia de familias ai-maximales de cardinalidad máxima
implica la existencia de cardinales medibles en algún modelo consistente con
ZFC.

La motivación para estudiar familias ai-maximales surgió después de es-
tudiar espacios resolubles y descubrir que en [28], los autores inventaron
un método que utiliza familias maximales independientes para demostrar
que existen espacios ω-resolubles que no son maximalmente resolubles. En
consecuencia, pude modificar dicho método para determinar condiciones su-
ficientes y condiciones necesarias para la existencia de familias ai-maximales
independientes.

Pavlov anunció en [37, Theorem 3.16] que, bajo la Hipótesis del Con-
tinuo, cualquier espacio Baire ccc sin puntos aislados y T1 es resoluble. En
un reciente trabajo demostré que bajo la Hipótesis del Continuo, la exis-
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iv INTRODUCCIÓN

tencia de un cardinal medible es equivalente a la existencia de un espacio
Baire crowded ccc casi irressoluble y T1. Esta afirmación demuestra que la
proposición de Pavlov [37, Theorem 3.16] es incorrecta. Aunado a esto,
pude probar lo siguiente. 1.- Cualquier espacio crowded ccc con cardinali-
dad menor que el primer cardinal débilmente inaccesible es casi resoluble.
2.- Si 2ω es menor que el primer cardinal débilmente inaccesible entonces
cualquier espacio T2 crowded ccc es casi resoluble. 3.- V = L implica que
todo espacio crowded es casi resoluble. Estos resultados están recopilados
en el manuscrito [13].

El caṕıtulo 3 está dedicado a estudiar resultados preliminares acerca de
las compactaciones de los espacio Tychonoff, las realcompactaciones y los
espacios pseudocompactos.

En el caṕıtulo 4 presento lo resultados originales que obtuve acerca de
los espacios débilmente pseudocompactos. En particular, obtuve una carac-
terización de este tipo de espacios usando subanillos regulares; caractericé
los espacios débilmente pseudocompactos en la clase de los espacios local-
mente pseudocompactos y demostré que los espacios que no son localmente
pseudocompactos no son Gδ densos en ninguna compactación simple.

Saber si el espacio ωω1 es débilmente pseudocompacto aún no se ha
podido determinar, pero pude demostrar una condición necesaria para que
esto último suceda, a saber, que la ret́ıcula de compactaciones de ωω1 no
es b ret́ıcula. Todos los resultados que obtuve sobre espacios débilmente
pseudocompactos han sido recopilados en el art́ıculo [15].



Chapter 1

Preliminaries on almost
resolvable spaces

1.1 Resolvable spaces

In [23], Hewitt introduced the concept of resolvable spaces, defining them as
those topological spaces which contain two disjoint dense subsets. An easy
example is the real line R, indeed, the rational numbers Q and the irrational
numbers P, form a partition of R in two dense subsets.

More generally, if α is a cardinal and α ≥ 1, we will say that a space
X is α-resolvable if there is a family of α disjoint dense subsets. Observe
that 2-resolvable is equivalent to resolvable and all spaces are 1-resolvable.
It is easy to see that if Y is an α-resolvable subspace of X then clX Y is
α-resolvable, because every dense subset of Y is also dense in clX Y.

Example 1.1. In the open interval (0, 1) the set D = {p/2q : 0 < p <
2q, p, q ∈ ω and p odd} ⊆ Q ∩ (0, 1) is dense. If we take n > 1 and define
Dm = {p/2nq+m : 0 < p < 2nq+m, p, q ∈ ω and p odd} for every m < n, then
{Dm : m < n} is a family of n disjoint dense subsets in (0, 1). Therefore,
(0, 1) is n-resolvable for every n ≥ 2 and so is [0, 1].

We will see in Corollary 1.6, that if a space X is n-resolvable for every
n ≥ 2, then X is ω-resolvable. The next theorem says that the union of
α-resolvable spaces is α-resolvable.

Theorem 1.2. [9] Let α ≥ 1 be a cardinal and let X be a space of the form
X = ∪j∈JXj with each Xj , α-resolvable. Then X is α-resolvable.

Proof. Consider the family S = {A ⊆ P(X) : A is a family of pairwise
disjoint α-resolvable spaces}. Then S is nonempty and (S,⊆) is a partially
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2 PRELIMINARIES ON ALMOST RESOLVABLE SPACES

ordered set. Take a chain C in S. Then ∪C is an element of S. Applying
Zorn’s Lemma, we can find a maximal family A of pairwise disjoint α-
resolvable subspaces of X.

If the open set U = X \ clX(∪A) is nonempty, there is j ∈ J, such that
U ∩Xj 6= ∅. Then U ∩Xj is α-resolvable, and A ∪ {U ∩Xi} is a family of
pairwise disjoint α-resolvable spaces contradicting the maximality of A.

Therefore ∪A is dense in X. Now, for every element A ∈ A, there is a
family {DA

ξ : ξ < α} of pairwise disjoint dense subsets of A. Define

Dξ = ∪A∈ADA
ξ , for every ξ < α.

Take a nonempty open set V in X. Since ∪A is dense in X, there is
A ∈ A such that V ∩ A is nonempty, hence V ∩ Aξ is nonempty for every
ξ < α. Then V ∩ Dξ is nonempty for every ξ < α, and this shows that
{Dξ : ξ < α} is a family of pairwise disjoint dense subsets of X.

Corollary 1.3. Let X be a space. For every cardinal α ≥ 1, there is a
unique partition {Yα, Zα} of X such that every α-resolvable subset of X
is contained in Y, Y is closed and α-resolvable, and no subset of Z is α-
resolvable.

Proof. Define Y = ∪{Z ⊆ X : Z is α-resolvable}. Because of the last
theorem, Y is α-resolvable. Since clX Y is α-resolvable, Y is closed. Then,
{Y,X \ Y } is the desired partition.

Corollary 1.4. Let n ≥ 2 be a finite integer. Let X be a n2-resolvable
space. If X = D ∪ E and D is not n-resolvable, then some nonempty open
subset of E is n-resolvable.

Proof. Since X is n2-resolvable, we can write X = ∪1≤i≤nEi, where {Ei :
1 ≤ i ≤ n} is a family of pairwise disjoint subspaces such that each Ei is a
union of n many disjoint dense subsets of X.

Observe that D = ∪1≤i≤n(D ∩ Ei). Since D is not n-resolvable, there is
a nonempty open set U and an i0 such that U ∩ D ∩ Ei0 is empty. Then
U ∩Ei0 ⊆ U ∩E. Since Ei0 is a union of n many disjoint dense subsets of X
and U is open, then U ∩E is a nonempty open n-resolvable subset of E.

Theorem 1.5. [5] If X is n-resolvable for every n ≥ 2, then there are
disjoint dense subsets D and X \D of X such that X \D is k-resolvable for
every finite cardinal k ≥ 2.
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Proof. Since X is 2-resolvable, we can write X = E ∪ F where E and F
are disjoint and dense in X. For each n ≥ 2, apply Corollary 1.3 to obtain
E = Yn ∪ Zn where Yn ∩ Zn = ∅, no subset of Zn is n-resolvable, every n-
resolvable subset of E is contained in Yn and Yn is n-resolvable and closed.
Find an open set Un such that Un ∩ E = Zn.

For each n ≥ 2, define Vn = ∪m≤nUm, and observe that Vn ∩E = Zn for
every n ∈ ω. Indeed, if Vn ∩E ∩Yn 6= ∅, then Um ∩Yn is nonempty for some
m ≤ n. Then, Um ∩Yn is n-resolvable. But, Zm = Um ∩E ⊇ Um ∩Yn. Then
Um ∩ Yn is not m-resolvable, because it is a subspace of Zm. Since m ≤ n,
we have a contradiction.

Now, take n0 ≥ 2. Since Vn0 is n20-resolvable (because X is n20-resolvable),
and Zn0 = Vn0 ∩ E does not contain nonempty open n0-resolvable subsets,
then, applying the last corollary, we have that Vn0 ∩ F is n0-resolvable.

Let V0 = ∪n≥2Vn. Then, V0 ∩ F is k-resolvable for every k ≥ 2. To see
this, take k ≥ 2. Then, Vm∩F is k-resolvable for every m ≥ k. Since Vp ⊆ Vk
for every p ≤ k, Vp ∩ F is k-resolvable for every p ≤ k. Then, V0 ∩ F is a
union of k-resolvable subspaces. It is easy to see that clX V0 ∩ F is also
k-resolvable for every n ≥ 2. Since (X \ clX V0)∩E is an open subset of Yn,
for every n ≥ 2, then (X \ clX V0) ∩ E is n-resolvable for every n ≥ 2.

Define D = (clX V0 ∩ E) ∪ ((X \ clX V0) ∩ F ). Then D and X \ D are
dense in X and X \D = (clX V0 ∩F )∪ ((X \ clX V0)∩E) is n-resolvable for
every n ≥ 2.

Corollary 1.6. [25] If X is n-resolvable for every finite cardinal n ≥ 2, then
X is ω-resolvable.

Proof. There are disjoint dense subsets D and X \D of X such that X \D
is k-resolvable for every finite cardinal k ≥ 2. Define D0 = D.

Let n ∈ ω and suppose that {D0, D1, . . . , Dn, X \(∪m≤nDm)} is a family
of disjoint dense subsets of X such that X \ (∪m≤nDm) is k-resolvable for
every finite cardinal k ≥ 2.

There are disjoint dense subsets Dn+1 and (X \ (∪m≤nDm)) \D of X \
(∪m≤nDm) such that (X \ (∪m≤nDm)) \ D is k-resolvable for every finite
cardinal k ≥ 2. Hence {D0, D1, . . . , Dn+1, X \ (∪m≤n+1Dm)} is a family of
disjoint dense subsets of X such that X \ (∪m≤n+1Dm) is k-resolvable for
every finite cardinal k ≥ 2.

Therefore, {Dn : n ∈ ω} is a family of pairwise disjoint dense subsets of
X.

Corollary 1.7. The space Q is ω-resolvable and so is R.
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Observe that if a topological space X has an isolated point x, then every
dense subset D of X contains x, therefore X is not resolvable. We will say
that a topological space X is crowded, if X contains no isolated points. So,
the study of resolvable spaces is interesting just in the realm of crowded
spaces.

The dispersion character of X, denoted by ∆(X), is the least cardinality
of a nonempty open subset ofX. If U is a nonempty open subset of a crowded
space X, then the cardinality of every family of disjoint dense subsets of X is
less than or equal to |U |. Therefore we have proved the following proposition.

Proposition 1.8. If X is a crowded space and X is α-resolvable, then
α ≤ ∆(X).

The weight of a space X is defined as the smallest cardinal number of
the form |B| such that B is a base for X; this cardinal is denoted by w(X).
A family N of subsets of a topological space X is a network for X if for
every point x ∈ X and any neighborhood U of x, there is an M ∈ N
such that x ∈ M ⊆ U. The network weight of a space X is defined as the
smallest cardinal number of the form |N | such that N is a network for X;
this cardinal is denoted by nw(X). It is easy to prove that nw(X) ≤ w(X)
and nw(X) ≤ |X|.

Theorem 1.9. [17] For every compact space X we have nw(X) = w(X).

Proof. Let nw(X) = κ and let N be a network for X of cardinality κ. If k
is finite, then X is discrete of cardinality κ and w(X) = nw(X).

Suppose that κ ≥ ω. Let B = {M ∈ N : there exist N ∈ N and disjoint
open sets U1, U2 ∈ τX such that M ⊆ U1, N ⊆ U2}. Let B0 be the family of
finite intersections of B. Therefore, B0 is a base for a topology σ in X.

Let x, y, be two distinct points of X. There are open subsets U1, U2 ∈ τX
such that x ∈ U1, y ∈ U2. Since N is a network, there exist N1, N2 ∈
N such that x ∈ N1 ⊆ U1, y ∈ N2 ⊆ U2. Then N1, N2 ∈ σ. Therefore
(X,σ) is Hausdorff. Observe that the identity function i from X to (X,σ)
is continuous. Since (X, τX) is compact, i is closed, and therefore, i is a
homeomorphism.

Since |B0| = |N |, we have w((X,σ)) ≤ κ. Hence w(X) ≤ κ.

The following theorem is going to be useful.

Theorem 1.10 (Disjoint refinement lemma). [10] Let α be an infinite car-
dinal and let {Aξ : ξ < α} be a family of sets such that |Aξ| ≥ α for ξ < α.
Then there is a family of pairwise disjoint sets {Bξ : ξ < α} such that:
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1. Bξ ⊆ Aξ for ξ < α,

2. |Bξ| = α for ξ < α.

Proof. Let x00 ∈ A0. Let β < α and suppose that for ξ′ ≤ ξ < β we have

defined xξ
′

ξ ∈ Aξ′ such that xξ
′

ξ ∈ Aξ′ \ {x
ζ′

ζ : ζ ′ ≤ ζ < ξ} and xζ
′

β 6= xζ
′′

β for
ζ ′ < ζ ′′ ≤ β.

Choose xβ
′

β ∈ Aβ′ \ {xξ
′

ξ : ξ′ ≤ ξ < β} for β′ ≤ β and xβ
′

β 6= xβ
′′

β for
β′ < β′′ ≤ β. Define

Bξ = {xξβ : ξ ≤ β < α}

Then the family {Bξ : ξ < α} is as required.

Proposition 1.11. Let X be a crowded space and α be an infinite cardinal.
If X has a network N such that |N | ≤ α and for every S ∈ N , |S| ≥ α,
then X is α-resolvable.

Proof. Set N = {Sξ : ξ < α}. By the disjoint refinement lemma, there is a
family of pairwise disjoint sets {Bξ : ξ < α} such that:

1. Bξ ⊆ Sξ for ξ < α,

2. |Bξ| = α for ξ < α.

For each ξ < α, let {bγξ : γ < α} be an enumeration of Bξ without repetitions.

Now, for each γ < α, define Dγ = {bγξ : ξ < α}. We are going to see that Dγ

is dense for every γ < α. Take γ0 < α. Let U be a nonempty open set of X.
Since N is a network, there is ξ0 such that Sξ0 ⊆ U and Bξ0 ⊆ U. Therefore
bγ0ξ0 ∈ Dγ0 ∩U. Since {Bξ : ξ < α} is a pairwise disjoint family, {Dγ : γ < α}
is a pairwise disjoint family of dense subsets of X.

The next theorem shows that there is a Tychonoff crowded space X such
that X is ∆(X)-resolvable.

Theorem 1.12. Let X be a crowded Hausdorff locally compact space, then
X is ∆(X)-resolvable.

Proof. Let A = {U ∈ τX : ∆(X) = |U |, clX U is compact and | clX U | =
|U |}. It is easy to see that A is nonempty. Indeed, take an open set V such
that V = ∆(X). If W is an open subset of V such that clXW is compact
and clXW ⊆ V, then |W | ≤ | clXW | ≤ |V | = ∆(X), but |W | ≥ ∆(X).
Therefore |W | = | clXW | = ∆(X).
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Let U ∈ A and let B be a base for U with |B| = w(U). By Theorem 1.9,
w(clX U) ≤ | clX U |. Then

|B| = w(U) ≤ w(clX U) ≤ | clX U | = |U | = ∆(X).

Since |B| ≥ ∆(X) for every B ∈ B, Proposition 1.11 establishes that U
is ∆(X)-resolvable. Therefore ∪A is ∆(X)-resolvable. Observe that ∪A is
dense. Therefore X is ∆(X)-resolvable.

Proposition 1.13. Let (X, ρ) be a metric space, then ω(X) = d(X).

Proof. If B is a base for X. For every B ∈ B, take xB ∈ B. Then, {xB : B ∈
B} is a dense subset of X. Therefore ω(X) ≤ d(X).

Now, let A be a dense subset of X such that |A| = d(X). Denote by B
the family of all balls B(x, r) = {y ∈ X : ρ(x, y) < r}, such that x ∈ A and
r ∈ Q. Then, |B| ≤ |A|.

We are going to prove that B is a base for (X, ρ). Take a point y ∈ X and
U an open set in X such that y ∈ U. There is r ∈ R such that B(y, r) ⊆ U.
Since A is dense, there is x ∈ A such that x ∈ B(y, r/3). Take a rational
number r0 such that r/3 < r0 < r/2. Then y ∈ B(x, r0). Take z ∈ B(x, r0).
Then d(z, y) ≤ d(z, x) + d(x, y) < r0 + r/3 < r. Therefore,

B(x, r0) ⊆ B(y, r) ⊆ U.

Hence B is a base for (X, ρ) and w(X) ≤ d(X).

Theorem 1.14. If X is a crowded metric space, then X is ∆(X)-resolvable.

Proof. Let X be a crowded metric space and A = {U ∈ τX : ∆(X) = |U |}.
It is easy to see that A is nonempty.

Let U ∈ U and B be a base for U with |B| = w(U). By theorem 1.13,
w(U) = d(U). Then,

|B| = w(U) = d(U) ≤ |U | = ∆(X).

Since |B| ≥ ∆(X) for every B ∈ B, the proposition 1.11 establishes that U
is ∆(X)-resolvable. Therefore ∪A is ∆(X)-resolvable. Observe that ∪A is
dense. Therefore X is ∆(X)-resolvable.
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1.2 Maximal spaces

A crowded space X is irresolvable if X is not resolvable, more generally,
given a cardinal α, we say that X is α-irresolvable if X is not α-resolvable.

We are going to study irresolvable spaces using maximal spaces.

Definition 1.15. [16] Call a spaceX maximal if its topology, τX , is maximal
in the collection of all crowded topologies on X. If T is a separation axiom,
call X maximal T if τX is maximal in the collection of all crowded topologies
satisfying T on X.

Proposition 1.16. [16] If i ∈ {1, 2, 3, 3.5}, then maximal Ti spaces are
irresolvable.

Proof. Let (X, τ) be a topological space. Suppose that D,E are disjoint
dense subsets of (X, τ). Consider the topology τ ′ on X generated by τ ∪
{D,X \D}. Since τ is crowded, so is τ ′. Hence D is an element of τ ′ but D
is not an element of τ, therefore τ ′ properly contains τ.

If i ∈ {1, 2} and τ is Ti, then τ ′ is Ti. Hence (X, τ) is not maximal Ti if
i ∈ {1, 2}.

Now suppose that τ is T3. Take x ∈ X and x ∈ A ∩D, where A ∈ τX .
There is B ∈ τX such that x ∈ B and clX B ⊆ A. If y 6∈ A ∩ D, then y ∈
(X \clX B)∪(X \D), therefore y 6∈ clτ ′(B∩D). Hence, clτ ′(B∩D) ⊆ A∩D.
Since x ∈ clτ ′(B ∩ D), τ ′ is T3. If x ∈ A \ D, where A ∈ τX , the proof is
analogous. Hence (X, τ) is not maximal T3.

Now suppose that τ is Tychonoff. Take x ∈ X and x ∈ A ∩ D, where
A ∈ τX . There is a continuous function g : (X, τ)→ [0, 1] such that g(x) = 0
and g[X \A] ⊆ {1}. Since τ ⊆ τ ′, g is also continuous when considered as a
function from (X, τ ′) into [0, 1] and the function f : (X, τ ′)→ [0, 1] defined
by f(y) = 0 if y ∈ D and f(y) = 1 if y ∈ X \ D is continuous. Therefore
(g + f)(x) = 0 and (g + f)[X \ (A ∩D)] ⊆ [1, 2]. Hence (X, τ ′) is Tychonoff
and (X, τ) is not maximal Tychonoff.

The following theorem constructs a countable crowded Tychonoff irre-
solvable space.

Theorem 1.17. [23]

1. A space is maximal if and only if it is maximal T1.

2. Maximal T2 spaces are maximal.

3. There exists a maximal Tychonoff space.
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Proof. (1). If X is a maximal space, define

τ ′ = {U \ F : U ∈ τX and F is a finite subset of U}.

If x ∈ X, then X\{x} is open, so τ ′ is a T1 crowded topology on X containing
τX . Therefore τX is T1.

(2). If σ is a crowded topology on X such that τX ⊆ σ, then σ is T2,
and so τX = σ.

(3). Consider the set P = {τ : τ is a crowded Tychonoff topology on
ω}. Then P is nonempty and is partially ordered by ⊆ . Now, if C is a
chain in P, then ∪C is closed under finite intersections. Hence ∪C is base for
some topology, ∨C, on ω. To see that ∨C is Tychonoff, take x ∈ U for some
U ∈ ∪C. There is τ ∈ C such that U ∈ τ. There is a continuous function
f : (X, τ)→ [0, 1] such that f(x) = 0 and f [X \U ] ⊆ {1}, since τ ⊆ ∨C, f is
continuous in ∨C. Then ∨C is a T3 topology on ω. Hence P has a maximal
element by Zorn’s Lemma.

Example 1.18. ω has a maximal Tychonoff topology τ. Hence (ω, τ), is a
crowded Tychonoff irresolvable space. It is easy to see that ∆((ω, τ)) = ω.

It is interesting to study the unique partition given by corollary 1.3 for
a maximal space. Actually, if a space (X, τ) is maximal and α = 2, then
Y2 = ∅. Indeed, take a crowded subspace Z ⊆ X. Suppose that D and E
are disjoint dense subsets of Z. Then the topology τ ′ on X generated by
τ ∪{D} is crowded because D is dense in Z. By the maximality of X, τ = τ ′.
Therefore D is an open subset of Z whose intersection with E is empty.
Hence, X contains no nonempty resolvable subspace.

We will call a crowded space X hereditarly irresolvable if X contains no
nonempty resolvable subspace. We just proved the following proposition.

Proposition 1.19. Maximal spaces are hereditarly irresolvable.

A space X is open hereditarly irresolvable (OHI) if it is crowded and
every nonempty open subspace of X is irresolvable.

A subspace A of a space X is nowhere dense if intX clX A = ∅. A space
X is nodec if every nowhere dense subset of X is closed. Observe that if X
is a nodec space and A is a nowhere dense subset of X, then every subset
of A is also nowhere dense, hence every subset of A is closed, therefore A is
discrete.

Lemma 1.20. [16] Let X be a crowded space. Then X is an OHI space if
and only if for every subset A of X, if intX A is empty, then A is nowhere
dense
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Proof. Assume that X is OHI. Suppose that intX A is empty. Let U be
a nonempty open subset of X. Then U \ A is dense in U. Since U is not
resolvable, U ∩ A is not dense in U. Hence, there is p ∈ U and there is a
open subset V of X such that p ∈ V and V ∩ U ∩ A = ∅, this implies that
p ∈ X \ clX A. Hence, intX clX(A) = ∅. Then A is nowhere dense.

Now let U be a nonempty open subset of X. Let A be dense in U, then
U ⊆ intX clX A and A is not nowhere dense. By hypothesis, A has nonempty
interior, so U \A is not dense in U and U is not resolvable.

A topological space X is extremely disconnected, if clX U is open for
every open subset U in X.

Maximal spaces are extremely disconnected, indeed, let U be a nonempty
open subset of (X, τ). Then, the topology τ ′ generated by τ ∪ {clX U} is a
crowded topology on X. Therefore, τ ′ = τ and clX U is open in X.

1.3 Submaximal spaces

We will call a space X submaximal if every dense subset of X is open in X.
Observe that a submaximal space cannot contain two disjoint dense subsets.

Proposition 1.21. Maximal spaces are submaximal

Proof. Assume that (X, τ) is a maximal space. Let D be a dense subset
of X. We have seen that the topology τ ′ generated by τ ∪ {D} is crowded,
therefore τ ′ = τ and D is open.

Observe that if A is a nowhere dense subset of a submaximal space X,
then intX A is empty and X \A is dense in X, therefore A is closed. Hence,
submaximal spaces are nodec.

Proposition 1.22. Crowded submaximal spaces are open hereditarly irre-
solvable.

Proof. Let U be a nonempty open subset of a crowded submaximal space
X. If D is dense in U, then D∪ (X \ clX U) is dense in X, so it is open, then
D is open, therefore U is submaximal, hence irresolvable.

Proposition 1.23. A crowded space X is submaximal if and only if X is
open hereditarly irresolvable and nodec.

Proof. Suppose that X is OHI and nodec. Let D be a dense subset of X.
Then int(X \D) = ∅. By 1.20, X \D is nowhere dense. Since X is nodec,
D is open.
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A space X is σ-discrete (strongly σ-discrete) if X is can be written as a
countable union of discrete subspaces(closed discrete subspaces).

Theorem 1.24. [3] Let X be a crowded submaximal space. Then X is
σ-discrete if and only if is strongly σ-discrete.

Proof. Let D be a discrete subset of X. Since X is crowded, intX D is empty,
and so D is nowhere dense, on the other hand, X is nodec and thus, D is
closed. Therefore, if X is a countable union of discrete subsets then X is a
countable union of closed discrete subsets.

The following characterization of submaximal spaces is useful.

Proposition 1.25. [3] A space X is submaximal if and only if every subset
A of X is the intersection of an open subset and a closed subset of X.

Proof. Suppose that X is submaximal. Let A be a subset of X. It is easy
to see that U = A ∪ (X \ clX A) is dense in X, therefore it is open. Hence
A = U ∩ clX A.

Suppose that every subset A of X is the intersection of an open subset
and a closed subset of X. Let D be a dense subset of X. Then D = U ∩ C,
where U is open in X and C is closed in X. Hence C is equal to X and U
is equal to D. Therefore D is open in X.

A space X is ccc if every pairwise disjoint family of nonempty open
subsets of X is countable. Observe that if D is dense in a ccc space X then
D is also ccc. Indeed, let {Us : s ∈ S} be a family of pairwise nonempty
open disjoint subsets of D. For every s ∈ S, let Vs be an open subset of X
such that Us = Vs ∩D. Since D is dense, {Vs : s ∈ S} is a family of pairwise
nonempty open disjoint subsets of X. Therefore, |S| ≤ ω.

Theorem 1.26. [3] Every regular submaximal ccc space X is a Q-set, that
is, every subset of X is a Gδ set in X.

Proof. By proposition 1.25, it is enough to prove that every closed subset
of X is a Gδ set in X.

Let F be a closed subset of X. Suppose that X \ F is nonempty and
define

γ = {clX U : U is a nonempty open subset of X and F ∩ clX U = ∅}.

Since X is regular, X \ F = ∪γ. By Zorn’s Lemma, there is a maximal
pairwise disjoint subfamily ξ of γ. By hypothesis, |ξ| ≤ ω. Let V = ∪ξ.
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Observe that V is Fσ and V ∪ F is dense in X. Then, V ∪ F is open in X.
Therefore F = (V ∪ F ) \ V and F is Gδ.

In section 2.1 we are going to construct crowded ccc Tychonoff submax-
imal spaces which are not maximal. In order to do so, we will use the
following well known results.

Lemma 1.27. A space X is extremely disconnected if and only if whenever
U and V are open disjoint subsets of X, we get clX U ∩ clX V = ∅.

Proof. Suppose that X is extremely disconnected. Let U, V be open subsets
of X and suppose that clX U∩clX V 6= ∅. Since clX U is open, clX U∩V 6= ∅
and U ∩ V is not empty.

Now, let U be an open subset of X. Then U,X \ clX U are open disjoint
subsets of X so, by hypothesis, clX U ∩ clX(X \ clX U) = ∅, but clX U ∪
clX(X \ clX U) = X. Then clX U is open.

Lemma 1.28. If X is a regular infinite space and x ∈ X is a non isolated
point with a local countable base, then X is not extremely disconnected.

Proof. Let {Bn : n ∈ ω} be a countable local base at x such that Bn+1 ⊆ Bn
for every n ∈ ω. Let x0 ∈ B0\{x} and xn ∈ Bn\({xm : m < n}∪{x}). Since
X is regular, there is a family {Un : n ∈ ω} of pairwise disjoint open sets in
X such that xn ∈ Un for every n ∈ ω. Therefore W = ∪{U2n : n ∈ ω} and
V = ∪{U2n+1 : n ∈ ω} are open disjoint sets such that x ∈ clXW ∩ clX V .
Therefore, X is not extremely disconnected.

Lemma 1.29. Let Y and Z be Hausdorff spaces and let f : Y → Z be an
open continuous surjective function. If A is a dense extremely disconnected
subspace of Y , then f [A] is extremely disconnected.

Proof. Suppose that A is dense in Y and f [A] is not extremely disconnected.
There exist y ∈ f [A] and nonempty open disjoint subset U, V of f [A] such
that y ∈ clf [A] U∩clf [A] V. Take open sets U1, V1 in Z such that U1∩f [A] = U
and V1 ∩ f [A] = V. Since f is surjective, f [A] is dense in Z. Then, U1 ∩ V1
is empty. Pick x ∈ A with f(x) = y. Let W be an open set in Y such
that x ∈ W. Then, f [W ] is an open set in Z such that y ∈ f [W ], therefore,
f [W ] ∩ U1 6= ∅ and f [W ] ∩ V1 6= ∅, which implies that W ∩ f←[U1] 6= ∅ and
W ∩ f←[V1] 6= ∅. As a consequence

x ∈ clY (f←[U1]) ∩ clY (f←[V1]) ∩A = clA(f←[U1] ∩A) ∩ clA(f←[U1] ∩A)

because A is dense in Y. But f←[U1] ∩ A and f←[V1] ∩ A are disjoint and
open in A. Therefore A is not extremely disconnected.
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Theorem 1.30. Assume that Xt is a Hausdorff space with more than one
point for every t ∈ T with T infinite. Then the product space X =

∏
{Xt :

t ∈ T} does not contain a dense extremely disconnected subspace.

Proof. Suppose that A is a dense extremely disconnected subspace of X. Let
S be a countable subset of T. The projection πS : X → XS =

∏
{Xt : t ∈ S}

is an open continuous function. By Lemma 1.29, XS has a dense extremely
disconnected subspace B.

Now, let t ∈ S, since Bt = πt[B] is extremely disconnected and dense
in Xt and Xt is Hausdorff with more than one point, there is a nonempty
clopen set Ut in Bt such that Vt = Bt\Ut is a nonempty clopen set in Bt. Let
ft : Bt → {0, 1} be defined by ft(x) = 0 if x ∈ Ut and ft(x) = 1 otherwise.
Then, ft is open, continuous and surjective.

Define Y =
∏
{Bt : t ∈ S} and observe that B ⊆ Y. Let f : Y → {0, 1}S

be defined by
πt(f(x)) = ft(x(t))

for every x ∈ Y and every t ∈ S.
Then, f is an open continuous surjective function. By Lemma 1.29,

f [B] is a dense extremely disconnected subspace of the second countable
regular space {0, 1}S . Hence f [B] is a second countable regular space with
no isolated points, by 1.28, f [B] is not extremely disconnected.

Corollary 1.31. No maximal space can be embedded as a dense subspace
into an infinite product of Hausdorff disconnected spaces.

Proof. Recall that maximal spaces are extremely disconnected.

A space X is Baire if for every collection {Un : n ∈ ω} of open dense
subsets of X, the intersection ∩{Un : n ∈ ω} is dense in X. Observe that if
U is an open subspace of a Baire space, then U is Baire.

Theorem 1.32. [1] The following conditions are equivalent.

1. There is a crowded Hausdorff irresolvable Baire space.

2. There is a Hausdorff maximal non-σ-discrete space.

3. There is a crowded Hausdorff submaximal non-σ-discrete space.

Proof. Suppose that X is a crowded Hausdorff Baire irresolvable space. By
1.3, X has a nonempty open hereditarly irresolvable subspace Z. Since Z
is open, Z is Baire and we may assume that X itself is open hereditarly
irresolvable. Take any crowded maximal topology σ on X such that τX ⊆ σ.
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Therefore (X,σ) is Hausdorff maximal. Suppose that (X,σ) is σ-discrete.
Then X = ∪{Xn : n ∈ ω}, where Xn is discrete in (X,σ) and Xm ∩Xj = ∅,
whenever m 6= j. If intτX Xn is nonempty, then intσXn is nonempty, wich is
a contradiction, since Xn is discrete in the crowded space (X,σ). Therefore,
every Xn has empty interior in X. By 1.20, Xn is nowhere dense in X.
Therefore X is not Baire. Thus, (X,σ) is a maximal non-σ-discrete space.

Every maximal space in submaximal.
Suppose that X is a crowded Hausdorff submaximal non-σ-discrete space

and suppose the existence of a nonempty open σ-discrete subspace of X. By
Zorn’s Lemma, there is a maximal pairwise disjoint family A of nonempty
open σ-discrete subspaces. Define Y = clX(∪A). Since intX(Y \ ∪A) is
empty, by lemma 1.20, Y \ ∪A is nowhere dense. Since X is nodec, Y \ ∪A
is closed and discrete. For each U ∈ A, there is a family {Dn

U : n ∈ ω}
of pairwise disjoint discrete subspaces of U. For each n ∈ ω, define Dn =
∪U∈ADn

U . It is easy to see that each Dn is discrete. Therefore ∪A is σ-
discrete, and so is Y. Therefore Z = X \ Y is a nonempty open subspace of
X. If V is a nonempty open σ-discrete subspace of Z, by the maximality of
A, there is U ∈ A, such that V ∩ U is nonempty, but U ⊆ Y. Therefore, Z
contains no nonempty open σ-discrete subset.

Observe that Z is Baire. Indeed, suppose that {Un : n ∈ ω} is a collection
of open dense subsets of Z. Since Z is submaximal, Z \ Un is closed and
discrete for every n ∈ ω. So the set P = ∪{Z \ Un : n ∈ ω} is a σ-discrete
subspace of Z. Hence, every nonempty open subset of Z meets Z \ P, this
means that ∩{Un : n ∈ ω} is dense in Z.





Chapter 2

Almost resolvable spaces and
ai-maximal independent
families

2.1 Almost resolvable spaces

The following definition was introduced by Bolstein[5].

A topological space X is almost resolvable if X is the union of a countable
collection of subsets each of them with empty interior. Otherwise, we will
say that X is almost irresolvable.

Observe that every resolvable space is almost resolvable. Indeed if A,B
are disjoint dense subsets of a topological space X, the interiors intX A and
intX B are empty, then X is almost resolvable. Also, if A is a nonempty
open subspace of an almost resolvable space, then A is almost resolvable.

Proposition 2.1. [14, Dorantes, Pichardo, Tamariz] If X is almost irre-
solvable and ∆(X) = |X|, then |X| has uncountable cofinality.

Proof. Without loss of generality, let us assume that the underlying set of
X is the cardinal κ. Our argument will be by contrapositive so assume that
{αn : n ∈ ω} is an increasing sequence of ordinals whose supremum is κ and
such that α0 = 0. Define, for each integer n, Yn := [αn, αn+1) to obtain a
countable cover of X. Since X is almost irresolvable, int Ym 6= ∅, for some
m, and therefore ∆(X) < |X|.

By example 1.18, ω has a crowded Tychonoff irresolvable topology τ. It
is clear that 4((ω, τ)) = ω. By the previous proposition, (ω, τ) is almost

15
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resolvable not resolvable.

Definition 2.2. Let X be a topological space. X will be called almost ω-
resolvable if there exists {Yn : n < ω}, a cover of X, such that

⋃
i<n Yi has

empty interior for each n < ω. All spaces which lack this kind of cover will
be called almost ω-irresolvable. Thus any space which is almost ω-resolvable
is almost resolvable.

Proposition 2.3. If X contains an almost ω-resolvable (almost resolvable)
dense subspace, then X is almost ω-resolvable (almost resolvable).

Proof. Suppose that D is a dense subspace of X such that D = ∪{Dn :
n ∈ ω} and intD(∪{Dm : m ≤ n}) is empty for every n ∈ ω. Therefore
X = (X \ D) ∪ (∪{Dn : n ∈ ω}) and it is easy to see that X is almost
ω-resolvable.

Theorem 2.4. [40] If X is the union of almost ω-resolvable (almost resolv-
able) subspaces, then, X is almost ω-resolvable (almost resolvable)

Proof. Suppose that X = ∪{Xj : j ∈ J} where each Xj is almost ω-
resolvable. Let A = {As : s ∈ S} be a maximal family of pairwise dis-
joint, nonempty almost ω-resolvable subspaces of X. For each s ∈ S, let
As = ∪{Ans : n ∈ ω}, where intAs(∪{Ams : m ≤ n}) is empty for every
n ∈ ω. Without lost of generality we can suppose Ans ∩ Ams = ∅ for every
n 6= m.

Suppose that B = Xj \ clX(∪A) is nonempty for some j ∈ J . Since B
is open in Xj , B is almost ω-resolvable and B ∩ A = ∅ for every A ∈ A,
contradicting the maximality of A. Hence Xj \ clX(∪A) is empty for every
j ∈ J , therefore ∪A is dense in X.

Now, define Z = X \ ∪A and Yn = ∪{Ans : s ∈ S}. Since ∪A is dense,
intX Z is empty.

Suppose that U is a nonempty open set in X. Then, U ∩At is nonempty
for some t ∈ S. Let n ∈ ω, since At is almost ω-resolvable, there is a ∈
(U ∩ At) \ ∪{Amt : m ≤ n}. Observe that (U ∩ At) ∩ Ym = Amt for every
m ∈ ω. Therefore a ∈ (U ∩At)\∪{Ym : m ≤ n}. Hence Z∪(∪{Ym : m ≤ n})
has empty interior for every n ∈ ω.

For almost resolvable, the proof is analogous.

Note that if X is a submaximal space and A ⊆ X has void interior, then
all its subsets are closed in X. Hence A is closed discrete.

Proposition 2.5. [14, Dorantes, Pichardo, Tamariz] If X is crowded sub-
maximal, the following are equivalent.
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1. X is almost ω-resolvable.

2. X is almost resolvable.

3. X is strongly σ-discrete.

4. X is σ-discrete.

Proof. By Theorem 1.24, (3) and (4) are equivalent. It is clear that (1)
implies (2). To prove that (1) follows from (4) assume that {Dn : n < ω} is
a cover of X consisting of discrete subspaces. By letting Yn = Dn \

⋃
i<nDi,

n ∈ ω, we obtain {Yk : k ∈ ω}, a partition of X into discrete subspaces.
Since X is crowded, each set

⋃
k<n Yk has empty interior so (1) holds. Since

every set with void interior is closed and discrete, (2) implies (3).

A topological space X will be called open hereditarly almost irresolv-
able (OHAI, for short) if every nonempty open subspace of X is almost
irresolvable.

Remark 2.6. Since resolvability implies almost resolvability, if a space X
is OHAI, then X is OHI.

Lemma 2.7. Every almost irresolvable space has a nonempty OHAI open
subspace.

Proof. Let X be an almost irresolvable space and let Y = ∪{Z ⊆ X : Z
is almost resolvable}. By Theorem 2.4, Y is almost resolvable. Since Y is
dense in clX Y, by Proposition 2.3, clX Y is almost resolvable, then Y is
closed. Therefore X \ Y is a nonempty OHAI open subspace of X.

The following theorem can be found in [2].

Proposition 2.8. [2, Corollary 5.4] In the class of Baire spaces, resolvabil-
ity and almost resolvability are the same concept.

The following definition is well known.

Definition 2.9. An ideal on a nonempty set S is a collection I of subsets
of S such that:

1. ∅ ∈ I and S 6∈ I,

2. if X ∈ I and Y ∈ I, then X ∪ Y ∈ I,

3. if X,Y ⊆ S,X ∈ I, and Y ⊆ X, then Y ∈ I.
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Examples 2.10. 1. The trivial ideal, I = {∅}.

2. Let X0 be a nonempty subset of S. If X0 6= S, the ideal I = {X ⊆ S :
X ⊆ X0} is called the principal ideal on S generated by X0.

3. Let S be an infinite set and let I = {X ⊆ S : X is finite}. Then I is
an ideal on S.

4. If X is a topological space, define I = {Y ⊆ X : Y is nowhere dense
in X}. Then I is the ideal of nowhere dense subsets of X.

Definition 2.11. An ideal I on X is σ-complete if for every countable
subfamily {Xn : n ∈ ω} ⊆ I, the union ∪{Xn : n ∈ ω} belongs to I.

Definition 2.12. Let X be space. A subspace A of X is meager in X if
A = ∪{An : n ∈ ω}, where An is nowhere dense in X for every n ∈ ω. All
other subsets of X are called second category in X.

Example 2.13. Observe that every Baire space is second category in itself.
Let X be a Baire space and I = {Y ⊆ X : Y is first category in X}, then I
is a σ-complete ideal in X.

Theorem 2.14. [14, Dorantes, Pichardo, Tamariz] The following state-
ments are equivalent for any submaximal crowded topological space X.

1. X is OHAI.

2. X is Baire.

3. If I is the collection of all subsets of X with empty interior, then I is
a σ-complete ideal on X.

4. X has no nonempty open σ-discrete subspaces.

Proof. Let I be the collection of all subsets of X with empty interior and
let A ∈ I. By 1.20, A is nowhere dense. Since X is nodec, A is closed
and discrete. Now, if A is closed and discrete, A is nowhere dense, and A
has empty interior. Therefore I coincides with the ideal of nowhere dense
subsets of X.

Let U be a nonempty open subset of X. Since X is crowded and sub-
maximal, U is crowded and submaximal. By 2.5, U is almost resolvable if
and only if U is σ-discrete. Hence (1)⇔ (4).

Suppose that D is a countable family of dense open subsets of X, such
that U = X \ clX(∩D) is nonempty. Observe that {X \ D : D ∈ D} is a
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subfamily of I. But U ⊆ ∪{X \D : D ∈ D}. Therefore I is not σ-complete
and this proves (3)→ (2).

If U is a nonempty open σ-discrete subspace then U is a countable union
of nowhere dense subsets of X, in particular, U is not Baire and then X is
not Baire. Therefore (2)→ (4).

If I is not σ-complete, there is a family {An : n ∈ ω} ⊆ I, such that
U = intX(∪{An : n ∈ ω}) is nonempty. Since U is open in X, intU (U ∩An)
is empty for every n ∈ ω. Therefore {U ∩ An : n ∈ ω} is a countable cover
of U formed by subsets of U with empty interior in U. Hence (1)→ (3).

Definition 2.15. An ideal on a set S is σ-saturated if I is σ-complete,
{s} ∈ I for every s ∈ S, and P(S) \ I contains no uncountable pairwise
disjoint family.

Theorem 2.16 (Dorantes). Let X be a crowded space and define I = {Y ⊆
X : intX Y = ∅}. Then,

1. I is an ideal on X if and only if X is OHI.

2. I is a σ-complete ideal on X if and only if X is OHAI.

3. I is a σ-saturated ideal on X if and only if X is OHAI and ccc.

Proof. Observe that ∅ ∈ I,X 6∈ I and if A ⊆ Y with Y ∈ I then A ∈ Y.
Then I is an ideal if and only if Y ∈ I and Z ∈ I implies Y ∪Z ∈ I. Since X
is crowded, {x} ∈ I for every x ∈ X. Also, I contains the ideal of nowhere
dense subsets of X. Recall that OHAI implies OHI.

1. Suppose that U is a nonempty open resolvable subspace of X. There
is D ⊆ U such that D and U \ D are dense in U. Then intX D =
intX(U \D) = ∅. But, U 6∈ I, hence, I is not an ideal.

Suppose that X is OHI. If A ∈ I, by 1.20, A is nowhere dense, then I
coincides with the ideal of nowhere dense sets in X.

2. Suppose that X is OHAI. Then I is an ideal. Let {Yn : n ∈ ω}
be a countable subfamily of I. If U is open in X and U ⊆ ∪{Yn :
n ∈ ω}, then {U ∩ Yn : n ∈ ω} is a countable cover of U such that
intU (U ∩ Yn) = ∅ for every n ∈ ω. Since X is OHAI, U is empty and
∪{Yn : n ∈ ω} belongs to I. Therefore, I is a σ-complete ideal on X.

Suppose that X is not OHAI. There exist a nonempty open set U and
countable cover {Un : n ∈ ω} of U, such that intU (Un) = ∅ for every
n ∈ ω. Then intX(Un) = ∅ for every n ∈ ω. Hence, {Un : n ∈ ω} ⊆ I,
but ∪{Un : n ∈ ω} does not belong to I. Hence, I is not σ-complete.
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3. Suppose that X is OHAI. Then, I is a σ-complete ideal on X. Observe
that P(S)\I is the collection of all subsets ofX with nonempty interior.
Therefore X is ccc if and only if P(S) \ I contains no uncountable
pairwise disjoint family. Therefore I is a σ-saturated ideal on X if and
only if X is ccc.

Definition 2.17. [26] An Ulam matrix is a collection {Aα,n : α ∈ ω1, n ∈ ω}
of subsets of ω1 such that:

1. if α 6= β, then Aα,n ∩Aβ,n = ∅ for every n ∈ ω;

2. for each α, the set ω1 \ (∪{Aα,n : n ∈ ω}) is at most countable.

In other words, an Ulam matrix has ω1 rows and ω columns. Each
column consists of pairwise disjoint sets and the union of each row contains
all but countably many elements of ω1.

Lemma 2.18. [26] An Ulam matrix exists.

Proof. For each ξ ∈ ω1, let fξ : ξ → ω be an injective function. We can do
this because ξ is countable for every ξ ∈ ω1. For α ∈ ω1 and n ∈ ω, define
Aα,n ⊆ ω1 by

ξ ∈ Aα,n if and only if fξ(α) = n.

Let α, β ∈ ω1. If ξ ∈ Aα,n∩Aβ,n for some n ∈ ω, then fξ(α) = n = fξ(β).
Therefore, α = β and property (1) of 2.17 is verified.

Let α ∈ ω1. Suppose that α ∈ ξ. Then

ξ ∈ Aα,fξ(α).

Therefore {ξ ∈ ω1 : α ∈ ξ} is contained in ∪{Aα,n : n ∈ ω}. Hence,

ω1 \ (∪{Aα,n : n ∈ ω}) ⊆ α+ 1.

The last inequality implies that property (2) is also verified.

Lemma 2.19. [26] There is no σ-saturated ideal on ω1.

Proof. Let {Aα,n : α ∈ ω1, n ∈ ω} be an Ulam matrix. Suppose that I is a
σ-complete ideal in ω1 such that I contains all singletons. Let α ∈ ω1. By
2.17(2), the set ω1 \ (∪{Aα,n : n ∈ ω}) belongs to I. By definition 2.9, the
set ∪{Aα,n : n ∈ ω} does not belong to I. Therefore, there exists nα ∈ ω
such that Aα,nα 6∈ I.
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Now, for every n ∈ ω, define Wn = {α ∈ ω1 : n = nα}. Since ω1 =
∪{Wn : n ∈ ω}, there is m ∈ ω such that Wm is uncountable.

Define

A = {Aα,m : α ∈Wm}.

By 2.17(1), A is pairwise disjoint family, then, A is uncountable and by
construction A ⊆ P(κ) \ I.

By definition 2.15, I is not σ-saturated. Therefore, there is no σ-
saturated ideal on ω1.

Corollary 2.20. If Z is a crowded ccc almost irresolvable space then |Z| >
ω1.

Proof. By 2.7, there is a nonempty open OHAI subspace X of Z. Every
finite crowded space is almost resolvable, then |X| ≥ ω. By 2.16(3), there
is a σ-saturated ideal on X, then |X| 6= ω. By 2.19, |X| 6= ω1. Hence,
ω1 < |X| ≤ |Z|.

Definition 2.21. An ideal I on a nonempty set S is a prime ideal on S, if
for every X ⊆ S, either X ∈ I or S \X ∈ I.

Lemma 2.22. [26] If I is a σ-saturated ideal on S, then either there exists
Z ⊆ S, such that I � Z = {X ⊆ Z : X ∈ I} is a prime ideal on Z, or there
exists a σ-saturated ideal on some cardinal κ ≤ 2ω.

Proof. Suppose that I is a σ-saturated ideal on S such that for every Z ⊆ S,
I � Z = {X ⊆ Z : X ∈ I} is not a prime ideal on Z. Observe that I � Z is
an ideal if and only if Z 6∈ I. Then, for every Z ⊆ S, either Z ∈ I or there
is a subset XZ ⊆ Z such that XZ 6∈ I and Z \XZ 6∈ I.

Now, define T0 = {S}, and suppose that for some n ∈ ω, n > 0, we have
defined Tn such that:

1. if A ∈ Tn, then A 6∈ I,

2. if A,B ∈ Tn and A 6= B, then A ∩B = ∅,

3. if A ∈ Tn, then there is B ∈ Tn−1 such that A ⊆ B and

4. ∪Tn = S for every n ∈ ω.

Define Tn+1 = {XZ , Z \XZ : Z ∈ Tn}. It is easy to see that Tn+1 satisfies
1, 2, 3 and 4. Therefore, we can define Tn for every n ∈ ω.
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Let T = ∪{Tn : n ∈ ω} and define X ≤ Y if Y ⊆ X for every X,Y ∈ T.
Then (T,≤) is a partially ordered set. A subset C ⊆ T is a chain if (C,≤)
is linearly ordered. By Zorn’s Lemma, T contains maximal chains.

If C is a chain in T , then for every n ∈ ω, C∩Tn has at most one element,
because two different elements of Tn are disjoint, and if C is maximal chain,
then C ∩ Tn has exactly one element for every n ∈ ω.

Observe that T is countable. Let {Cα : α < κ}, with κ ≤ 2ω, be
an enumeration of all the maximal chains of T such that Zα = ∩Cα is
nonempty.

Let α 6= β. If for every n ∈ ω, Cα ∩ Tn = Cβ ∩ Tn, then Cα = Cβ.
Therefore, there is n ∈ ω such that Cα ∩ Tn 6= Cβ ∩ Tn. Take A ∈ Cα ∩ Tn
and B ∈ Cβ ∩ Tn. Hence, Zα ∩ Zβ ⊆ A ∩B = ∅.

Now, take x ∈ X. Observe that for every n ∈ ω, there is Axn ∈ Tn such
that x ∈ Axn. Hence Ax = {Axn : n ∈ ω} is a chain in T . Suppose that C is a
chain in T such that Ax ⊆ C. If A ∈ C, there is m ∈ ω such that A ∈ Tm, if
A 6= Axm, then, A∩Axm = ∅ and C is not a chain. Hence C ⊆ Ax. Therefore,
Ax is a maximal chain. Since x ∈ ∩Ax, there is α < κ such that Ax = Cα.

If for some α < κ,Zα 6∈ I, then XZα and Zα \XZα are contained in ∩Cα.
Hence Cα ∪ {XZα} and Cα ∪ {Zα \XZα} are chains. By the maximality of
Cα, {XZα , Zα \ XZα} ⊆ Cα, which is a contradiction. Hence, Zα ∈ I, for
every α < κ.

By the previous three paragraphs, {Zα : α < κ} is a partition of S into
κ elements of I.

Define f : S → κ by

f(x) = α if and only if x ∈ Zα.

Let J = {Z ⊆ κ : f←[Z] ∈ I}. It is easy to see that J is an ideal
on κ. Suppose that {Zp : p ∈ ω} is a countable subcollection of J. Then,
{f←[Zp] : p ∈ ω} is a countable subcollection of I. Hence, f←[∪p∈ωZp] ∈ I,
therefore ∪p∈ωZp belongs to J. Then, J a σ-complete ideal on κ. Let β ∈ κ.
Then, Zβ = f←[{β}] and {β} ∈ J.

Assume that {Au : u ∈ U} ⊆ P(κ) \ J and Au ∩ Av = ∅ for all u 6= v.
Then, {f←[Au] : u ∈ U} is a pairwise disjoint family contained in P(S) \ I.
Since I is σ-saturated, U is countable. We conclude that J is a σ-saturated
ideal on κ.

Theorem 2.23 (Dorantes). If Z is a Hausdorff crowded ccc almost irre-
solvable space, then there exists a σ-saturated ideal on some cardinal κ ≤ 2ω.
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Proof. By 2.7, Z has an open OHAI subspace X. By 2.16, I = {Y ⊆ X :
intX Y = ∅} is a σ-saturated ideal on X. Let Y be an arbitrary subset of X.
We are going to prove that I � Y = {X ⊆ Y : X ∈ I} is not a prime ideal
on Y .

If Y ∈ I, then, Y ∈ I � Y, so I � Y is not an ideal on Y. Suppose that
Y 6∈ I. Then, intX Y 6= ∅. Since X is Hausdorff without isolated points,
there are nonempty open disjoint sets V,W in X such that V ∪ W ⊆ Y.
Then, V 6∈ I and since W ⊆ Y \V, we obtain, Y \V 6∈ I. Hence I � Y is not
a prime ideal on Y . By 2.22, there exists a σ-saturated ideal on κ ≤ 2ω.

Since there is no σ-complete ideal on ω, we have the following theorem:

Theorem 2.24 (Dorantes). If X is a Hausdorff crowded ccc almost irre-
solvable space, then the Continuum Hypothesis fails.

Proof. By 2.23, there exists a σ-saturated ideal on some cardinal κ ≤ 2ω.
Then, κ 6= ω and by 2.19, κ 6= ω1. Therefore ω1 < κ ≤ 2ω.

The following definitions are well known.

Definition 2.25. The cofinality cf(κ) of an infinite cardinal κ is the smallest
cardinal λ such that κ can be represented as the union of some family, of
cardinality at most λ, of sets of cardinality less than κ.

A cardinal κ is regular if cf(κ) = κ, otherwise κ is singular.

It is easy to see that if κ is an infinite cardinal, cf(κ) is less than or
equal to κ. Then κ is singular if and only if cf(κ) < κ.

Definition 2.26. Let κ be an uncountable cardinal. An ideal I on X is
κ-complete if for every subfamily {Xα : α < γ} ⊆ I, with γ < κ, the union
∪{Xα : α < γ}, belongs to I. Observe that σ-complete is equivalent to
ω1-complete.

Lemma 2.27. [26, Lemma 10.5] Let κ be the least cardinal with the property
that there is a σ-saturated ideal on κ, and let I be such ideal. Then I is κ-
complete.

Proof. Suppose that I is not κ-complete. There is a collection {Xα : α <
γ} ⊆ I such that γ < κ and the union X = ∪{Xα : α < γ} is not an element
of I.

For each α < γ define Yα = Xα \∪{Xβ : β < α}. Then, Yα is an element
of I for every α < γ and ∪{Yα : α < γ} = X.
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Define f : X → γ by

f(x) = α if and only if x ∈ Yα.

Let J = {Z ⊆ γ : f←[Z] ∈ I}. It is easy to see that J is a σ-saturated
ideal on γ. This contradicts the choice of κ as the least cardinal with the
property that there is a σ-saturated ideal on κ.

Remark 2.28. If I is a σ-saturated and κ-complete ideal on κ, then κ is
regular.

Proof. If κ is singular then κ = ∪{βα : α < λ} and βα < κ for every α < λ
and λ < κ. Since all the singletons belong to I, βα ∈ I for every α < λ.
Since I is κ-complete, κ ∈ I, which is a contradiction.

The following definition can be found in [26]

Definition 2.29. An uncountable cardinal κ is weakly inaccessible if κ is a
regular limit cardinal.

Lemma 2.30. [26, Lemma 10.14] Let κ, λ be infinite cardinals. If κ = λ+,
then there is no κ-complete σ-saturated ideal on κ.

Proof. For each ξ ∈ λ+, let fξ : ξ → λ be an injective function. We can do
this because |ξ| ≤ λ. Define Aα,η, for α ∈ λ+ and η ∈ λ by

ξ ∈ Aα,η if and only if fξ(α) = η.

We are going to prove that {Aα,η : α ∈ λ+η ∈ λ} is a collection of subsets
of λ+ such that:

1. if α 6= β ∈ λ+, then Aα,η ∩Aβ,η = ∅ for every η ∈ λ;

2. for each α ∈ λ+, the set λ+ \ (∪{Aα,n : η ∈ λ}) has cardinality less
than or equal to λ.

Let α, β ∈ λ+. If ξ ∈ Aα,η∩Aβ,η for some η ∈ λ, then fξ(α) = η = fξ(β).
Therefore, α = β and property (1) is verified.

Let α ∈ λ+. Suppose that α ∈ ξ. Then

ξ ∈ Aα,fξ(α).

Therefore {ξ ∈ λ+ : α ∈ ξ} is contained in ∪{Aα,η : η ∈ λ}. Hence,

λ+ \ (∪{Aα,η : η ∈ λ}) ⊆ α+ 1.
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The last inequality implies that property (2) is also verified.

Now, suppose that I is a κ-complete ideal on κ such that I contains all
singletons.

Let α ∈ λ+. By (2), the set λ+ \ (∪{Aα,n : η ∈ λ}) belongs to I. By
definition 2.9, the set ∪{Aα,η : η ∈ λ} does not belong to I. Since I is
κ-complete, there exists ηα ∈ λ such that Aα,ηα 6∈ I.

Now, for every η ∈ λ, define Wη = {α ∈ λ+ : η = ηα}. Since λ+ =
∪{Wη : η ∈ λ} and λ+ is regular, there is µ ∈ λ such that Wµ has cardinality
λ+.

Define

A = {Aα,µ : α ∈Wµ}.

By (1), A is pairwise disjoint family, then, A is uncountable and by
construction A ⊆ P(κ) \ I.

By definition 2.15, I is not σ-saturated. Therefore, there is no κ-complete
σ-saturated ideal on κ.

Corollary 2.31. [26] Let κ be the least cardinal with the property that
there is a σ-saturated ideal on κ, and let I be such ideal. Then I is κ-
complete and κ is weakly inaccessible.

Proof. I is a κ-complete σ-saturated ideal on κ [Lemma 2.27]. We are going
to prove that κ is weakly inaccessible. Let λ be a cardinal such that λ < κ.
Then λ+ ≤ κ, but λ+ 6= κ [Lemma 2.30]. Therefore κ is a limit cardinal.
Since κ is regular [Remark 2.28], κ is weakly inaccessible.

Theorem 2.32 (Dorantes). Let Z be a T2 crowded ccc space. If 2ω is less
than the first weakly inaccessible cardinal, then Z is almost resolvable.

Proof. Suppose that Z is a crowded ccc almost irresolvable T2 space. Then
there exists a σ-saturated ideal on κ ≤ 2ω [Theorem 2.23]. Let κ be the least
cardinal with the property that there is a σ-saturated ideal on κ. Then κ is
weakly inaccessible [Corollary 2.31]. Obviously κ ≤ 2ω. Hence Z is almost
resolvable.

Corollary 2.33 (Dorantes). If 2ω is less than the first weakly inaccessible
cardinal, then:

1. every T2 crowded Baire ccc space is resolvable,

2. every T2 crowded submaximal ccc space is strongly σ-discrete.
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Proof. 1. If X is a T2 crowded Baire ccc space, then X is almost resolv-
able, by Proposition 2.8, X is resolvable,

2. If X is a T2 crowded submaximal ccc space, then X is almost resolv-
able, by Proposition 2.5, X is strongly σ-discrete.

Corollary 2.34 (Dorantes). If the Continuum Hypothesis holds then:

1. every T2 crowded ccc space is almost resolvable,

2. every T2 crowded Baire ccc space is resolvable,

3. every T2 crowded submaximal ccc space is strongly σ-discrete.

Theorem 2.35 (Dorantes). Let Z be a crowded ccc space. If the cardinality
of Z is less than the first weakly inaccessible cardinal, then Z is almost
resolvable.

Proof. Suppose that Z is a crowded ccc almost irresolvable space. By 2.7,
there is a crowded ccc OHAI subspace X ⊆ Z. By 2.16, I = {Y ⊆ X :
intX Y = ∅} is a σ-saturated ideal on X. Let κ be the least cardinal with the
property that there is a σ-saturated ideal on κ. Then κ is weakly inaccessible
[Corollary 2.31]. Obviously κ ≤ |Z|. Hence, the cardinality of Z is greater
or equal to the first inaccessible cardinal.

Corollary 2.36 (Dorantes). Let Z be a crowded ccc space and suppose
that the cardinality of Z is less than the first weakly inaccessible cardinal,

1. if Z is Baire, then Z is resolvable,

2. if Z is submaximal, then Z is strongly σ-discrete.

Corollary 2.37 (Dorantes). Suppose that there are no weakly inaccessible
cardinals, then:

1. every crowded ccc space is almost resolvable,

2. every crowded Baire ccc space is resolvable,

3. every crowded submaximal ccc space is strongly σ-discrete.
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2.2 Baire ccc irresolvable spaces

Definition 2.38. A space X is regular card-homogeneous if 4(X) = |X|
and |X| is a regular cardinal.

Theorem 2.39 (Dorantes). Let X be a set. Suppose that I ⊆ P(X) is a
prime σ-saturated ideal on X, then there is a T1 ccc submaximal connected
OHAI homogeneous topology τ on X. If, in addition I is |X|-complete, then
∆((X, τ)) = |X|.

Proof. Define τ = {∅} ∪ P(X) \ I. Then τ is a topology on X. Indeed,
∅, X ∈ τ. Suppose that {Us : s ∈ S} ⊆ τ, if Us0 is nonempty for some
s0 ∈ S, then, Us0 6∈ I. since Us0 ⊆ ∪{Us : s ∈ S}, ∪{Us : s ∈ S} 6∈ I.
Now, take A,B ∈ τ and suppose that A ∩B is nonempty. Since I is prime,
X \A ∈ I and X \B ∈ I. Therefore, X \A∪X \B ∈ I. Hence X \(A∩B) ∈ I
and A ∩B 6∈ I.

Consider the topological space (X, τ). Let x ∈ X. Since I is σ-saturated,
{x} ∈ I, then X \ {x} 6∈ I, hence {x} is closed in X. Since {x} is not an
element of I, {x} is not open, hence X is crowded.

Observe that I = {Y ⊆ X : intX Y = ∅}. By 2.16, X is OHAI and ccc.

Let D be a dense subspace of X. Then, intX(X \D) is empty, therefore,
X \D ∈ I, hence D 6∈ I and D is open. Then, X is submaximal. Observe
that for every subset A ⊆ X, then either A is open or X \ A is open. Also,
if A ⊆ X and A is clopen, then A = ∅ or A = X, therefore X is connected.

We are going to prove that X is homogeneous. Let x, y ∈ X such
that x 6= y. Let f : X → X be a bijection such that f(x) = y, f(y) = x
and f(z) = z for every z ∈ X \ {x, y}. We are going to prove that f is a
homeomorphism.

Let U 6∈ I. If U ⊆ U \{x, y}, or x, y ∈ U, then f [U ] = U and f←[U ] = U .

Without lost of generality suppose that f(y) = x ∈ U and y 6∈ U. Since
{x} ∈ I, (U \ {x}) 6∈ I, hence (U \ {x}) ∪ {y} does not belong to I. It is
easy to see that f [U ] = (U \ {x}) ∪ {y}. Also, y ∈ (U \ {x}) ∪ {y} and
f [(U \ {x}) ∪ {y}] ⊆ U.

Therefore, f is continuous and open. Hence, X is a T1 ccc submaximal
connected OHAI homogeneous space.

Now, if I is |X|-complete, then every nonempty open subset of (X, τ)
has cardinality |X|.

Corollary 2.40 (Dorantes). Let κ be the least cardinal with the property
that there is a σ-saturated ideal on κ, and let I be such ideal. Then, either
there exists a T1 ccc submaximal connected OHAI homogeneous space Z
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such that Z is regular card-homogeneous or there exists a σ-saturated ideal
on κ ≤ 2ω.

Proof. By Lemma 2.27 and Remark 2.28, I is κ-complete and κ is regular.

Suppose that there exists X ⊆ κ, such that I � X = {Z ⊆ X : Z ∈ I}
is a prime ideal on X. Then, I � X is a prime σ-saturated ideal on X. By
corollary 2.39, there is a T1 crowded ccc submaximal OHAI space Z such
that ∆(Z) = |Z| ≤ |X|. By 2.16, there is a σ-saturated ideal on Z, since κ
is the least cardinal having a σ-saturated ideal, |Z| ≥ κ.

Otherwise, by 2.22, there exists a σ-saturated ideal on κ ≤ 2ω.

Theorem 2.41. [Dorantes] If 2ω is less than the first weakly inaccessible
then the following conditions are equivalent:

1. there is a T1 ccc submaximal connected OHAI homogeneous space Z
such that Z is regular card-homogeneous,

2. there is a T1 ccc Baire connected OHAI homogeneous space Z such
that Z is regular card-homogeneous,

3. there is a T1 crowded ccc OHAI space Z such that Z is regular card-
homogeneous, and

4. there exists a σ-saturated ideal on some set S.

Proof. By 2.14, a submaximal space X is Baire if and only if X is OHAI,
then 1⇒ 2.

It is clear that 2⇒ 3.

If 3 holds, then, by 2.16(3), there exists a σ-saturated ideal on some set
S.

Suppose (4). Let κ be the least cardinal with the property that there is
a σ-saturated ideal on κ, and let I be such ideal. Then I is κ-complete and
κ is weakly inaccessible [Corollary 2.31].

By Corollary 2.40, either there exists a T1 crowded ccc submaximal con-
nected irresolvable space Z such that ∆(Z) = |Z| with |Z| is regular, or
there exists a σ-saturated ideal on some λ ≤ 2ω.

Obviously κ ≤ λ ≤ 2ω. Since κ is weakly inaccessible, there is no a
σ-saturated ideal on λ ≤ 2ω. Hence, (1) holds.

Corollary 2.42 (Dorantes). If there exists a σ-saturated ideal on some set S
and 2ω is less than the first weakly inaccessible, then there is a Baire crowded
connected ccc OHAI T1 space Z such that Z is regular card-homogeneous.
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It turns out that we can construct T1 crowded ccc Baire almost irresolv-
able spaces using measurable cardinals, but first we need some definitions.

Definition 2.43. [26] Let S be an infinite set. A nontrivial σ-additive
measure on S is a real valued function µ on P(S) such that:

1. µ(∅) = 0 and µ(S) = 1;

2. if X ⊆ Y then µ(X) ≤ µ(Y );

3. µ({x}) = 0 for all x ∈ X;

4. if {Xn : n ∈ ω} is a pairwise disjoint family of subsets of S, then

µ(∪{Xn : n ∈ ω}) = Σ{µ(Xn) : n ∈ ω}.

Let µ be a nontrivial σ-additive measure on a set S and consider the
ideal of null sets:

Iµ = {X ⊆ S : µ(X) = 0}.

Then Iµ is a nontrivial σ-saturated ideal on S. Indeed, the empty set
belongs to Iµ and S does not. If X ∈ Iµ and Y ∈ Iµ then µ(X ∪ Y ) ≤
µ(X) + µ(Y ) = 0, then X ∪ Y is an element of Iµ. If Y ∈ Iµ and X ⊆ Y
then µ(X) = 0, hence X ∈ Iµ. Therefore Iµ is an ideal. Let x ∈ X, then
µ({x}) = 0 and x ∈ Iµ. Hence Iµ is a nontrivial ideal.

Let {Xn : n ∈ ω} be a countable family of elements of Iµ. Then µ(∪{Xn :
n ∈ ω}) ≤ Σ{µ(Xn) : n ∈ ω} = 0. Hence, the union ∪{Xn : n ∈ ω} belongs
to Iµ, therefore Iµ is σ-complete.

Suppose that J = {Xα : α < ω1} is an uncountable pairwise disjoint
subfamily of P(S) \ Iµ. For each n ∈ ω define

Jn = {α < ω1 : µ(Xα) = 1/n}.

It is easy to see that ω1 = ∪{Jn : n ∈ ω}. Then, there is n0 ∈ ω such
that Jn0 is uncountable. Take a countable subfamily J ′n0

of Jn0 . Then

µ(∪{J : J ∈ J ′n0
}) = Σ{µ(J) : J ∈ J ′n0

} = Σ{1/n : J ∈ J ′n0
} >∞.

Hence, every pairwise disjoint subfamily of P(S) \ Iµ is countable. By
definition 2.15, I is a σ-saturated ideal on S. Therefore we have proved:

Theorem 2.44. [26] If µ is a nontrivial σ-additive measure on a set S then
Iµ is a nontrivial σ-saturated ideal on S.
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Corollary 2.45 (Dorantes). If there exists a nontrivial σ-additive measure
on a set S and if 2ω is less than the first weakly inaccessible then there
exists a submaximal crowded ccc OHAI T1 space Z such that Z is regular
card-homogeneous.

Proof. Immediate from Theorem 2.44 and Corollary 2.42.

Definition 2.46. [26, Definition 10.8] An uncountable cardinal κ is real-
valued measurable if there exists a nontrivial κ-additive measure µ on κ.

Theorem 2.47. [26, Corollary 10.7] The least cardinal that carries a non-
trivial σ-additive measure is real-valued measurable.

Definition 2.48. [26, Definition 10.3] An uncountable cardinal κ is mea-
surable if there is a κ-complete prime ideal I on κ such that {x} ∈ I for
every x ∈ κ.

Theorem 2.49 (Dorantes). The existence of a measurable cardinal κ im-
plies the existence of a a ccc submaximal connected OHAI homogeneous T1
space Z such that ∆(Z) = |Z| = κ.

Proof. Suppose that κ is a measurable cardinal. By Definition 2.48, there
is a κ-complete prime ideal I on κ such that {x} ∈ I for every x ∈ κ. We
will see that there exists a nontrivial σ-additive measure µ on κ such that
I = Iµ.

Define µ : P(κ) → R by µ(X) = 0 if X ∈ I and µ(X) = 1 if X 6∈ I for
every X ⊆ κ. Then:

1. µ(∅) = 0 and µ(κ) = 1;

2. if X ⊆ Y and X ∈ I, then µ(X) = 0 ≤ µ(Y ); if X ⊆ Y and X 6∈ I,
then Y 6∈ I and µ(X) ≤ 1 = µ(Y );

3. since {x} ∈ I for every x ∈ κ, µ({x}) = 0 for every x ∈ κ;

4. suppose that {Xn : n ∈ ω} is a pairwise disjoint family of subsets of
κ. If {Xn : n ∈ ω} ⊆ I, then ∪{Xn : n ∈ ω} belongs to I, hence
µ(∪{Xn : n ∈ ω}) = 0 = Σ{µ(Xn) : n ∈ ω}. Now suppose that there
is m such that Xm 6∈ I, since I is a prime ideal κ \Xm is an element
of I, hence Xp ⊆ κ\Xm and Xp ∈ I for every p 6= m, p ∈ ω. Therefore
µ(∪{Xn : n ∈ ω}) = 1 = Σ{µ(Xn) : n ∈ ω}.
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Hence, µ is a nontrivial σ-additive measure µ on κ such that I = Iµ. Then,
I is a σ-saturated ideal [Theorem 2.44]. Since I is a prime ideal, applying
2.39, we obtain the desired result.

The next Theorem appears in [26].

Theorem 2.50. [26, Corollary 10.10] If κ carries a κ-complete σ-saturated
ideal, then either κ is measurable or κ ≤ 2ω.

The following theorem is well known.

Theorem 2.51. If 2ω is less than the first weakly inaccessible then the
following conditions are equivalent:

1. there is a measurable cardinal,

2. there is a real-valued measurable cardinal,

3. there exists a σ-saturated ideal on some set S.

Proof. If κ is a measurable cardinal, then κ carries a nontrivial σ-additive
measure, by Theorem 2.47, there is real-valued measurable cardinal.

If there is a real-valued measurable cardinal κ, then there exists a σ-
saturated ideal on κ [Theorem 2.44].

Finally, suppose (9). Let κ be the least cardinal with the property that
there is a σ-saturated ideal on κ, and let I be such ideal. Then I is κ-
complete and κ is weakly inaccessible [Corollary 2.31].

Then, either κ is measurable or κ ≤ 2ω [Theorem 2.50]. Since we are
assuming that 2ω is less than the first weakly inaccessible, κ is measurable.

We have an improvement of this theorem.

Theorem 2.52. If 2ω is less than the first weakly inaccessible then the
following conditions are equivalent:

1. there is a measurable cardinal,

2. there is a real-valued measurable cardinal,

3. there exists a submaximal crowded ccc OHAI T1 space Z such that Z
is regular card-homogeneous,

4. there exists a Baire crowded ccc OHAI T1 space,

5. there exists a Baire crowded ccc almost irresolvable T1 space,
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6. there exists a Baire crowded ccc irresolvable T1 space,

7. there exists a Baire crowded ccc almost irresolvable space,

8. there exists a crowded ccc almost irresolvable space,and

9. there exists a σ-saturated ideal on some set S.

Proof. If there is a real-valued measurable cardinal κ, by Corollary 2.45,
there exists a submaximal crowded ccc OHAI T1 space Z such that Z is
regular card-homogeneous.

If X is a submaximal OHAI space, then X is Baire [Theorem 2.14].

(4)⇒ (5), (5)⇒ (7) and (7)⇒ (8) are immediate.

In the class of Baire spaces, resolvability and almost resolvability are the
same concept [2, Corollary 5.4]. Hence (5) and (6) are equivalent.

If there exists a crowded ccc almost irresolvable, then there exists a
σ-saturated ideal on some set S [Theorem 2.16].

Since the Continuum Hypothesis implies that 2ω is less than the first
weakly inaccessible then we have the following Corollary:

Corollary 2.53. Assuming the Continuum Hypothesis, the following con-
ditions are equivalent:

1. there is a measurable cardinal,

2. there is a real-valued measurable cardinal,

3. there exists a submaximal crowded ccc OHAI T1 space Z such that Z
is regular card-homogeneous,

4. there exists a Baire crowded ccc OHAI T1 space,

5. there exists a Baire crowded ccc almost irresolvable T1 space,

6. there exists a Baire crowded ccc irresolvable T1 space,

7. there exists a Baire crowded ccc almost irresolvable space,

8. there exists a crowded ccc almost irresolvable space,and

9. there exists a σ-saturated ideal on some set S.
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A.V. Arhangel’skǐı and P.J. Collins asked in [3, Problem 7.4] if every
regular submaximal space ccc is strongly σ-discrete. Assuming the existence
of a measurable cardinal, then by Theorem 2.49, there is a T1 crowded ccc
submaximal OHAI space Z, by 2.5, Z is not strongly σ-discrete. In this
case, Z is Baire [Theorem 2.14], then it is proved that Pavlov’s claim [37,
Theorem 3.16] is incorrect.

However, assuming CH, by 2.24, every T2 crowded ccc is almost resolv-
able, by 2.5, every T2 crowded ccc submaximal is strongly σ-discrete.

In contrast with the previous affirmation, it is worth noting that, under
Martin’s Axiom (MA(ω1) + ¬CH), every T2 crowded ccc space is almost
resolvable [7, Theorem 4.1].

Definition 2.54. Let I be an ideal over a set S. A family R ⊆ P (S)\I is I-
dense if for every X ∈ P(S)\I, there is an S ∈ R such that S\X ∈ I; R is I-
proper if for any finite subfamilyR′ ⊆ R either ∩R′ = ∅ or ∩R′ ∈ P(S)\I;R
is I-almost disjoint if for every distinct S, S′ ∈ R,S∩S′ ∈ I. Let A ∈ P(S)\I.
An I-partition of A is a maximal I-almost disjoint family of subsets of A.
An I-partition P2 of A is a refinement of an I-partition P1 of A, denoted by
P1 ≤ P2, if every X ∈ P2 is a subset of some Y ∈ P2.

The ideal I is weakly precipitous if I is σ-complete and whenever A
does not belong to I, and {Pn : n ∈ ω} are I-partitions of A such that
P0 ≤ P1 ≤ . . . ≤ Pn ≤ . . . , then there exists a sequence of sets W0 ⊇ W1 ⊇
. . .Wn ⊇ . . . , such that Wn ∈ Pn for each n ∈ ω and ∩{Wn : n ∈ ω} 6= ∅.

Proposition 2.55. [32, Proposition 2.9] Let I be an ideal on some cardinal
κ. If I has an I-dense and I-proper family, then every I-almost disjoint
family has cardinality at most κ. If, in addition, I is σ-complete, then I is
weakly precipitous.

Theorem 2.56. [32, Theorem 2.0] If κ is a regular cardinal that carries a
weakly precipitous ideal, then there is a measurable cardinal in some inner
model of ZFC.

We have the next proposition.

Proposition 2.57 (Dorantes). If X is a crowded OHAI space then I =
{Y ⊆ X : intX Y = ∅} has an I-dense and I-proper family and I is weakly
precipitous.

Proof. I is σ-complete [Theorem 2.16(2)]. It is easy to see that the topol-
ogy of X, τX , is both I-dense and I-proper, then I is weakly precipitous
[Proposition 2.55].
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Kunen, Szymański and F. Tall proved the following theorem.

Theorem 2.58. [32, Theorem 2.1] The following conditions are equivalent:

1. There is a Baire irresolvable space,

2. there is a σ-complete ideal I, such that I has an I-dense and I-proper
family.

We have an improvement of the last theorem.

Theorem 2.59 (Dorantes). The following conditions are equivalent:

1. There is a Baire irresolvable space,

2. there is a crowded almost irresolvable space and

3. there is a σ-complete ideal I, such that I has an I-dense and I-proper
family.

Proof. It is easy to see that (1)⇒(2) [2, Corollary 5.4].
Suppose (2), then there is a crowded OHAI space. By 2.57, (3) holds.

By [32, Theorem 2.1], (3)⇒ (1).
Another interesting way to prove (2) ⇒ (1) is the following. If Z is

crowded almost irresolvable, there is a crowded OHAI subspace X of Z.
Then I = {Y ⊆ X : intX Y = ∅} is σ-complete [Theorem 2.16, (2)]. Suppose
that D is a countable family of dense subsets of X. Observe that {X\D : D ∈
D} is a subfamily of I. Then ∪{X\D : D ∈ D} ∈ I, hence intX(X\∩D) = ∅.
Therefore ∩D is dense and X is Baire.

Kunen, Szymański, and Tall proved in [32, Corollary 3.6] the following:

Theorem 2.60. [32] The following conditions are pairwise equiconsistent

1. there is a measurable cardinal,

2. there is a real-valued measurable cardinal and

3. there is a OHI Baire space X such that X is regular card-homogeneous.

We have an improvement of the last Theorem.

Theorem 2.61. The following statements are pairwise equiconsistent:

1. There is a measurable cardinal,

2. there is a real-valued measurable cardinal,
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3. there is a Baire crowded ccc almost irresolvable T1 space Z such that
Z is regular card-homogeneous and

4. there is a crowded almost irresolvable space Z such that Z is regular
card-homogeneous.

Proof. Suppose that there is a crowded almost irresolvable space Z such
that Z is regular card-homogeneous. Let X be a nonempty OHAI subspace
of Z. Then X is regular card-homogeneous. Hence, I = {Y ⊆ X : intX Y =
∅} is weakly precipitous [Proposition 2.57]. Since the cardinality of X is
regular, there is a measurable cardinal in some inner model of ZFC [Theorem
2.56].

Proposition 2.62. [32] If V = L, then any crowded space X, such that X
is regular card-homogeneous, is almost resolvable.

In case that the space X is ccc we can omit the regular card-homogeneous
hypothesis.

Theorem 2.63. If V = L, then every crowded ccc space is almost resolvable.

Proof. V = L implies the Continuum Hypothesis and there are no mea-
surable cardinals, then then every crowded ccc space is almost resolvable
[Theorem 2.52].

Kunen and Tall proved in [33] the following proposition:

Proposition 2.64. [33] If there is a weakly precipituous ideal on some car-
dinal κ, then there is a measurable cardinal in some inner model.

Then, we have the following Theorem:

Theorem 2.65. The following statements are pairwise equiconsistent:

1. There is a measurable cardinal,

2. there is a real-valued measurable cardinal,

3. there is a Baire ccc irresolvable space and

4. there is a Baire irresolvable space and

5. there is a crowded almost irresolvable.
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Proof. Suppose (2), by Theorem 2.61, there is a Baire ccc almost iressolvable
space. In the class of Baire spaces, resolvability and almost resolvability are
the same concept [2, Corollary 5.4]. Hence (2) ⇒ (3) and (4) ⇒ (5). It is
easy to see that (3)⇒ (4).

Suppose that there is a crowded almost irresolvable space Z. Let X be a
nonempty OHAI subspace of Z. Hence, I = {Y ⊆ X : intX Y = ∅} is weakly
precipitous [Proposition 2.57]. Therefore, there is a measurable cardinal in
some transitive model of ZFC [Proposition 2.64].

Corollary 2.66. If V=L, then:

1. every crowded space is almost resolvable,

2. every crowded Baire space is resolvable,

3. every crowded submaximal space is strongly σ-discrete.

O. T. Alas et al. asked the following question:

Question 2.67. [1, Question 4.2] Is it true in ZFC that every homogeneous
submaximal (regular) space is strongly σ-discrete?.

We have a partial answer. If κ is a measurable cardinal, there is a prime
σ-saturated ideal on κ, then there is a T1 ccc submaximal connected OHAI
homogeneous space Z such that ∆(Z) = |Z| = κ. Hence Z is not strongly
σ-discrete [Proposition 2.5]. Observe that κ+ is not measurable [26, Lemma
10.4]. This example, also shows that the next theorem cannot be extended
to T1 spaces if there are measurable cardinals.

Theorem 2.68. [1, Theorem 3.13] Let κ be a non-measurable cardinal. If
X is a crowded locally homogeneous Hausdorff space with |X| ≤ κ, then X
is almost resolvable.

2.3 Maximal independent families

In this section we are going to construct irresolvable dense subspaces of the
Cantor Cube 2κ for every infinite cardinal κ.

Let S be a set. As usual, P(S) is the power set of S and c is the
cardinality of P(ω). The inverse image f←[A] of A ⊆ Y under the function
f : X → Y is {x ∈ X : f(x) ∈ A}.

For any cardinal κ, denote by D(κ) the discrete space of cardinality κ.
If κ is finite D(κ) = κ.
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Definition 2.69. The collection of all partial functions from S into T is
denoted by Fn(S, T ), i.e., p ∈ Fn(S, T ) if and only if p ⊆ S × T is a finite
function. In particular, when T = 2, elements of Fn(S, 2) are normally called
conditions. If p ∈ Fn(S, T ), dom(p) = {s ∈ S : (s, t) ∈ p for some t ∈ T}.
Define [p] := {f ∈ TS : p ⊆ f} for each p ∈ Fn(S, T ).

Lemma 2.70. Let κ be a cardinal, the family {[p] : p ∈ Fn(S,D(κ))} is the
canonical base for the topological product D(κ)S and w(2S) ≤ |S|.

Proof. Let V = ∩α∈Fπ←α [{pα}] be a canonical open set in D(κ)S , where F is
a finite subset of S and pα ∈ D(κ) for every α ∈ F. Define p ∈ Fn(S,D(κ))
by p(α) = pα for every α ∈ F. Observe that [p] = V. Since |Fn(S, 2)| = |S|,
w(2S) ≤ |S|.

Theorem 2.71 (The Hewitt-Marczewski-Pondiczery Theorem). If κ is an
infinite cardinal, then d(D(κ)2

κ
) ≤ κ.

Proof. Let T be the topological product 2κ. Then |T | = 2κ and w(T ) ≤ κ.
Take a base B for T such that |B| ≤ κ and denote by T the collection of all
finite families of pairwise disjoint members of B, it is clear that |T | ≤ κ.

Define

D = {f : T → D(κ) : there is Af ∈ T such that

f is constant in every member of Af and in T \ ∪Af}

For every n ∈ ω, define Dn = {f ∈ D : |Af | = n}, and observe that
|Dn| = κn+1 = κ. Since D = ∪{Dn : n ∈ ω}, the cardinality of D is less or
equal to κ.

We are going to prove that D is dense in the topological product D(κ)T .
Let p ∈ Fn(T,D(κ)). Since T is Hausdorff, for every t ∈dom(p), there is
Ut ∈ B such that t ∈ Ut and if t, s ∈ dom(p) and t 6= s, then Ut ∩ Us = ∅.
Therefore, {Ut : t ∈ dom(p)} is an element of T .

Now, define f : T → D(κ) by

f(s) = p(t) if s ∈ Ut for some t ∈ dom(p) and

f(t) = 0 if t ∈ T \ ∪{Ut : t ∈ dom(p)}.

It is clear that f ∈ D. Since f(t) = p(t) for every t ∈ dom(p), f ∈ [p].
Therefore, D is dense in in the topological product D(κ)T .
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Corollary 2.72. Let κ be an infinite cardinal. If {Xs : s ∈ S} is a family
of topological spaces such that d(Xs) ≤ κ for every s ∈ S and |S| ≤ 2κ, then
d(Π{Xs : s ∈ S}) ≤ κ.

Proof. Suppose that the spaces Xs are nonempty and |S| = 2κ. For every
s ∈ S let As be a dense subspace of Xs such that |As| = d(Xs) and fs :
D(κ)→ As be an onto function. Since D(κ) is discrete, fs is continuous for
each s ∈ S.

Define f : D(κ)S → Π{As : s ∈ S} by

πs(f(g)) = fs(g(s))

for every g ∈ D(κ)S and s ∈ S. Since fs is continuous for each s ∈ S, f
is continuous. Therefore, d(Π{As : s ∈ S}) ≤ d(D(κ)S). By the Hewitt-
Marczewski-Pondiczery Theorem, d(Π{As : s ∈ S}) ≤ κ, since Π{As : s ∈
S} is dense in Π{Xs : s ∈ S}, d(Π{Xs : s ∈ S}) ≤ κ.

Theorem 2.73. Let κ be an infinite cardinal. If {Xs : s ∈ S} is a family
of topological spaces such that d(Xs) ≤ κ for every s ∈ S, then any family
of pairwise disjoint open subsets of the Cartesian product X = Πs∈SXs has
cardinality ≤ κ.

Proof. Let {Ut : t ∈ T ′} be a family of pairwise disjoint nonempty open
subsets of X. Suppose that |T ′| > κ.

If |T ′| > 2κ take a subset T of cardinality 2κ in T ′. If |T ′| ≤ 2κ take
T = T ′.

For every t ∈ T there exist a finite set St ⊆ S and a family of open sets
W s
t ⊆ Xs for every s ∈ St such that Vt = ∩{π←[W t

s ] : s ∈ St} is contained
in Ut. The set S0 = ∪{St : t ∈ T} also has cardinality ≤ 2κ. By 2.72, the
Cartesian product Πs∈S0Xs contains a dense subset A of cardinality ≤ κ.

Observe that {πS0 [Vt] : t ∈ T} is a family of nonempty open disjoint sets
in Πs∈S0Xs. Indeed, if f ∈ πS0 [Vt1 ]∩πS0 [Vt2 ] with t1, t2 ∈ T, then, there exist
g1 ∈ Vt1 and g2 ∈ Vt2 such that f = πS0(g1) = πS0(g2), since St1 , St2 ⊆ S0,
f ∈ Ut1 ∩Ut2 . Therefore t1 = t2. Since A is dense in Πs∈S0Xs, |T | ≤ |A| ≤ κ,
which is a contradiction.

Corollary 2.74. In the Cartesian product of separable spaces any family
of pairwise disjoint non empty open sets is countable.

Example 2.75. For any cardinal κ the Cantor cube 2κ is ccc, and if D is
dense in 2κ, then D is also ccc.
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For a cardinal κ, [S]κ denotes the collection of all subsets of S which have
cardinality κ. Similarly, [S]<κ is the family of all subsets of S whose cardi-
nality is less than κ. Given a cardinal λ, we denote by κ<λ the cardinality
of the set [κ]<λ.

Definition 2.76. Let S be a set and let C = {(C0
α, C

1
α) : α < λ} be a

nonempty family of pairs of subsets of S such that each unordered pair
{C0

α, C
1
α} is a partition of S.

1. For each nonempty p ∈ Fn(λ, 2) we define

C(p) :=
⋂
{Cp(α)α : α ∈ dom p},

and C(∅) = S.

2. We say that C is independent if C(p) 6= ∅ for each p ∈ Fn(λ, 2).

3. C will be called uniform if for all p ∈ Fn(λ, 2) we have |C(p)| = |S|.

4. C is separating if for each pair of distinct points x, y ∈ S there exist
α < λ and i < 2 such that x ∈ Ciα and y ∈ C1−i

α .

Remark 2.77. To avoid trivialities we will consider only infinite indepen-
dent families on infinite sets.

Let p, q ∈ Fn(S, 2) be arbitrary. We say that p ≤ q iff q ⊆ p. p and q
will be called compatible (in symbols, p | q) if p ∪ q is a function; otherwise
they are incompatible (in symbols, p ⊥ q). A subset of Fn(S, 2) in which
any two different elements are incompatible will be called an antichain. The
following lemma is part of the folklore and is used through all the chapter.

Lemma 2.78. Let C be an independent family of size λ. For all p, q ∈
Fn(λ, 2) the following holds:

1. C(p) ⊆ C(q) if and only if p ≤ q.

2. C(p) ∩ C(q) 6= ∅ if and only if p and q are compatible.

Proof. Assume that p 6≤ q and fix (α, i) ∈ q\p. If α ∈ dom p, then (α, 1−i) ∈
p and therefore C(p)∩C(q) = ∅. When α 6∈ dom p, we let r = p∪{(α, 1− i)}
to obtain C(r) ⊆ C(p) and C(r) ∩ C(q) = ∅; in particular, C(p) 6⊆ C(q). If
p ≤ q, then p is an extension of q and C(p) ⊆ C(q).

If p ⊥ q, then for some (α, i) ∈ p, we get (α, 1 − i) ∈ q and therefore
C(p) ∩ C(q) = ∅. On the other hand, if p | q, then p ∪ q, is an extension of p
and q, and C(p) ∩ C(q) = C(p ∪ q).
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The constructions described in the following two paragraphs will be used
constantly in this thesis and are well known.

Given an independent family C = {(C0
α, C

1
α) : α < λ} on a set S, there

is a topology for S which has {C(p) : p ∈ Fn(λ, 2)} as a base. Indeed, for
any α < λ, S = C({(α, 0)}) ∪ C({(α, 1)}) and C(p) ∩ C(q) = C(p ∪ q). The
topological space which results of endowing S with this topology will be
denoted by SC .

Remark 2.79. Another space that can be naturally associated to C is the
following: for each x ∈ S let dx : λ→ 2 be defined by dx(α) = 0 if and only
if x ∈ C0

α. Then DC will denote the subspace {dx : x ∈ S} of the topological
product 2λ.

The next proposition is well known and establishes a connection between
the spaces studied in the previous paragraphs.

Proposition 2.80. Let C be an independent family of size λ on a set S.
Then:

1. For all x ∈ S and for all p ∈ Fn(λ, 2), dx ∈ DC ∩ [p] is equivalent to
x ∈ C(p).

2. C is uniform if and only if ∆(SC) = |SC |.

3. DC is dense in the product space 2λ.

4. The map h : SC → DC given by h(x) = dx is continuous.

5. C is separating if and only if h is a homeomorphism.

Proof. 1. Let x ∈ S and p ∈ Fn(λ, 2). Then dx ∈ [p] if and only if p ⊆ dx,
when and only when p(α) = dx(α), for every α ∈ dom p, and this is

equivalent to x ∈ Cp(α)α for every α ∈ dom p, if and only if x ∈ C(p).

2. By (1), |C(p)| = κ for all p ∈ Fn(λ, 2), if and only if ∆(SC) = κ

3. Let p ∈ Fn(λ, 2). Since C is independent, we can take y ∈ C(p). Then
dy ∈ [p] ∩DC .

4. Let p ∈ Fn(λ, 2). By 2, x ∈ C(p) if and only if dx ∈ [p]. Therefore
h[C(p)] = [p] ∩DC . Thus, h is continuous and open.

5. By 4, we have that h is a homeomorphism if and only if h is injective.
Suppose h is injective, take two different points x, y ∈ S, then dx =
h(x) 6= h(y) = dy, hence there is α < λ such that dx(α) = 1 − dy(α).
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Therefore x ∈ C
dx(α)
α and y ∈ C

1−dy(α)
α , and C is separating. Now

Suppose C is separating, take two different points x, y ∈ S. There
exist α < λ and i < 2 such that x ∈ Ciα and y ∈ C1−i

α . Therefore
dx(α) = i 6= 1− i = dy(α), and h is injective.

Corollary 2.81. If C is a separating independent family of cardinality λ,
on S, then SC is Tychonoff ccc and crowded.

Proof. By the previous theorem, SC is homeomorphic to a dense subspace
of 2λ, then SC is Tychonoff, since 2λ is crowded and ccc, then so is SC .

In this chapter we have constructed dense subspaces of Cantor cubes, 2λ,
using independent families and now we are going to construct independent
families using dense subspaces of Cantor cubes.

In order to fulfill the promise, take Y = {yα : α < κ} be a dense subset
of 2λ (we are assuming that α 6= β implies yα 6= yβ). For each ξ < λ and
i < 2 define Bi

ξ := {α < κ : yα(ξ) = i} and take BY := {(B0
ξ , B

1
ξ ) : ξ < λ}.

The following lemma is well known.

Lemma 2.82. Let Y be a dense subset of cardinality κ on the product space
2λ. The family BY is a separating independent family on κ of cardinality λ
such that DBY = Y

Proof. It is easy to see that the unordered pair {B0
ξ , B

1
ξ} is a partition of κ.

Let p ∈ Fn(λ, 2). Since [p] is an open subset of 2λ, there is α < λ such
that yα ∈ [p] ∩ Y. Since p ⊆ yα, α ∈ BY (p).

By the remark 2.79, dα(ξ) = 0 if and only if α ∈ B0
ξ , but this happens if

and only if yα(ξ) = 0. Then dα = yα for every α < κ. Then DBY = Y.

We will see how to construct irresolvable spaces using independent fam-
ilies.

Definition 2.83. We will say that an independent family C on S is maximal
independent, if it is not properly contained in any other independent family
on S.

The next proposition is well known.

Proposition 2.84. Let C be a separating independent family C of cardinality
λ on S. Then C is maximal independent if and only if DC is an irresolvable
subset of 2λ.
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Proof. Assume that DC is resolvable. Let U, V two disjoint dense subsets
of DC . Let A = {x ∈ S : dx ∈ U}. We are going to prove that C′ =
C ∪ {(A,S \A)} is an independent family on S which properly contains C.

First observe that (A,S \ A) is not an element of C. Otherwise, there
would be α < λ and i ∈ {0, 1} such that A = Ciα. Let p = {(α, i)}, since V
is dense, there exists x ∈ S such that dx ∈ [p]∩V. By 2.80(1), x ∈ C(p) = A,
and again by 2.80, dx ∈ U, which implies that U and V are not disjoint.

Then C′ properly contains C. Now Let p ∈ Fn(λ, 2). Then [p] ∩ U and
[p]∩V are nonempty, then C(p)∩A and C(p)∩S\A are nonempty. Therefore
C′ is an independent family on S which properly contains C.

Now suppose that C is not maximal and let C′ be an independent family
on S such that C is properly contained in C′. Let (A,S \A) ∈ C′ \ C. Define
U = {dx ∈ DC : x ∈ A}. Then U and DC \ U are disjoint dense subsets.
Indeed, let p ∈ Fn(λ, 2). Since C′ is independent, there exist x ∈ C(p) ∩ A
and y ∈ C(p) ∩ S \A, then dx ∈ [p] ∩ U and dy ∈ [p] ∩DC \ U.

Let κ be an infinite cardinal. There is a dense subset Y of cardinality κ
in 22

κ
. Then BY is an independent family on κ of cardinality 2κ.

Lemma 2.85. There exists a uniform independent family of subsets of κ of
cardinality 2κ.

Proof. Define P = [κ]<ω× [[κ]<ω]<ω. That is, P is the set of all pairs (F,F)
where F is a finite subset of κ and F is a finite set of finite subsets of κ.
Since [κ]<ω has cardinality κ, P has cardinality κ.

Take a enumeration P(κ) = {Uα : α < 2κ} of all subsets of κ. For each
α < 2κ, let

C0
α = {(F,F) ∈ P : F ∩ Uα ∈ F} and C1

α = P \ C0
α

and define C = {(C0
α, C

1
α) : α < 2κ}.

Let p ∈ Fn(2κ, 2). For each pair of distinct elements α, β ∈ dom(p), let
ξα,β be an element of κ such that either ξα,β ∈ Uα \ Uβ or ξα,β ∈ Uβ \ Uα.

Define

G = {ξα,β : α, β ∈ dom(p), α 6= β}.

For each ξ ∈ κ \G, define Fξ = G∪{ξ}. Observe that Fξ ∩Uα 6= Fξ ∩Uβ
when α, β ∈ dom(p), α 6= β. Therefore Fξ ∩ Uα = Fξ ∩ Uβ if and only if
α = β. Define Fξ = {Fξ ∩ Uα : p(α) = 0}.

Claim: (Fξ,Fξ) ∈ C(p). Take α ∈ dom(p). If p(α) = 0, Fξ ∩ Uα ∈ Fξ,
then, (Fξ,Fξ) ∈ C0

α. If p(α) = 1, Fξ ∩ Uα 6∈ Fξ, then, (Fξ,Fξ) ∈ C1
α. Hence

(Fξ,Fξ) ∈ C(p). Therefore C(p) has cardinality κ.
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If α 6= β,C0
α \C0

β is not empty and also C0
α \C1

β is not empty, hence C is
a uniform independent family on κ of cardinality 2κ.

2.4 Ai-maximal independent families

Definition 2.86. Let C be an independent family of size λ on a set S.

1. C is ai-maximal independent if for every partition {Yn : n < ω} of S
there exist p ∈ Fn(λ, 2) and m < ω such that C(p) ⊆ Ym.

2. We say that C is aωi-maximal independent if for every partition {Yn :
n < ω} of S there exist p ∈ Fn(λ, 2) and m < ω satisfying C(p) ⊆⋃
i≤m Yi.

We are going to see how to construct almost irresolvable spaces from
ai-maximal independent families.

Proposition 2.87. [22, Proposition 2.6] Let C be an independent family
of size λ on a cardinal κ. Then C is ai-maximal independent iff DC is an
almost irresolvable subspace of 2λ.

Proof. Suppose that C is an ai-maximal independent family. Take a count-
able partition {Un : n ∈ ω} of DC . For each n ∈ ω, define Bn = {α < κ :
dα ∈ Un}. Then {Bn : n ∈ ω} is a partition of κ. By hypothesis, there exist
p ∈ Fn(λ, 2) and m ∈ ω such that C(p) ⊆ Bm. Then [p]∩DC ⊆ Um. Indeed,
if dα ∈ [p] ∩ DC then α ∈ C(p) ⊆ Bm, by definition of Bm, we have that
dα ∈ Um. Hence intDC(Um) is not empty and DC is almost irresolvable.

Now assume that DC is almost irresolvable. Take a countable partition
{Yn : n < ω} of κ. For each n ∈ ω, define Un to be the subset {dα : α ∈ Yn}
of DC . The collection {Un : n ∈ ω} is a countable partition of DC . Since
DC is almost irresolvable, there is m ∈ ω such that intDC(Um) is not empty.
Take p ∈ Fn(λ, 2) such that [p] ∩DC ⊆ Um. Hence C(p) ⊆ Ym.

Similarly, [22, Proposition 2.7] states that C is aωi-maximal independent
iff DC is an almost ω-irresolvable subspace of 2λ.

Corollary 2.88 (Dorantes). There are no ai-maximal independent families
under the Continuum Hypothesis.

Proof. If C is an ai-maximal independent family, then DC is a dense subspace
of the product space, 2λ for some λ. Then DC is a Hausdorff crowded, ccc,
almost irresolvable space. By 2.24 CH fails.



44 ALMOST RESOLVABLE SPACES AND AI-MAXIMAL INDEPENDENT FAMILIES

We are going to study some consequences of the existence of ai-maximal
independent families.

Recall that if Y = {yα : α < κ} is a dense subset of 2λ and if for each
ξ < λ and i < 2 we define Bi

ξ := {α < κ : yα(ξ) = i}, then B := {(B0
ξ , B

1
ξ ) :

ξ < λ} is a separating independent family such that DB = Y . In particular,
we have the following.

Proposition 2.89. For each dense almost ω-irresolvable subspace Y of 2λ

of size κ there exists an aωi-maximal independent family on κ of size λ.

Definition 2.90. Let C be an independent family of size 2κ on a set S,
where κ := |S|. We say that C is a nice independent family on S if the
following conditions hold:

1. C is separating,

2. each element of [SC ]
<κ is closed discrete in SC ,

3. if A ∈ [SC ]
κ, then either A is closed discrete in SC or C(p) ⊆ A for

some p ∈ Fn(2κ, 2).

A nice independent family on S which is, at the same time, ai-maximal
independent will be called a nice ai-maximal independent family. Similarly,
a nice aωi-maximal independent family is a nice independent family which
is aωi-maximal independent.

Proposition 2.91. Suppose that C is a nice independent family on a set S.
Then DC is submaximal.

Proof. Let D be a dense subset of DC . Then DC \ D has empty interior,
because D is dense, therefore DC \D is closed.

Nice independent families produce spaces with interesting properties:

Proposition 2.92. If C is a nice independent family, then every subset of
XC is a Gδ, i.e., XC is a Q-set space

Proof. As we noted above, XC is submaximal and since C is separating, XC
is Tychonoff and ccc. By proposition 1.26, XC is a Q-set space. This proves
(1).

The following result states that we can always modify a suitable inde-
pendent family to obtain a uniform nice independent family.
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Theorem 2.93. [14, Dorantes, Pichardo, Tamariz] Let B be a uniform
independent family on κ of size 2κ. There is a uniform nice independent
family C on κ such that if p ∈ Fn(2κ, 2) and Y ∈ [κ]κ satisfy B(p) ⊆ Y , then
there exists q ∈ Fn(2κ, 2) with C(q) ⊆ Y .

Proof. Enumerate B = {(B0
ξ , B

1
ξ ) : ξ < 2κ} and [κ]κ = {Fξ : ξ < 2κ}. Now

partition 2κ into two pieces, I0 and I ′, such that |I0| = κ<κ and |I ′| = 2κ.
Also fix a partition {JA,α : A ∈ [κ]<κ, α ∈ κ\A} ⊆ [I0]

ω of I0 into countable
pieces. For all A ∈ [κ]<κ, α ∈ κ \A, and ξ ∈ JA,α define

C0
ξ := (B0

ξ ∪A) \ {α} and C1
ξ := κ \ C0

ξ = (B1
ξ \A) ∪ {α}.

Thus, define

B0 = {(C0
ξ , C

1
ξ ) : ξ ∈ I0} ∪ {(B0

ξ , B
1
ξ ) : ξ ∈ 2κ \ I0},

then B0 is a separating uniform independent family of size 2κ.
Let P := Fn(2κ, 2).
If B0(q) ⊆ F0 for some q ∈ P, define p0 = q, I1 = I0,K0 = ∅, f0 = ∅ and

B1 = B0.
If B0 6⊆ F0 for all q ∈ P, let K0 be a subset of cardinality κ of I ′, p0 = ∅

and f0 : K0 → κ be a bijection. We want to make F0 closed discrete in B1.
For each ξ ∈ K0, define:

C0
ξ = (B0

ξ ∪ F0) \ {f0(ξ)} and C1
ξ = κ \ C0

ξ = (B1
ξ \ F0) ∪ {f0(ξ)}.

Observe that if i ∈ F0, there is ξ ∈ K0 such that f0(ξ) = i, and

C1
ξ ∩ F0 = {i}.

Define I1 = I0 ∪K0 and

B1 = {(C0
ξ , C

1
ξ ) : ξ ∈ I1} ∪ {(B0

ξ , B
1
ξ ) : ξ ∈ 2κ \ I0},

We are going to prove that B1 is a uniform independent family of size
2κ.

Suppose that B1(p) has cardinality less than κ for some p ∈ P. Then
A = B1(p) ∈ [κ]<κ, take α ∈ κ \A and ξ ∈ JA,α \ dom(p). Then,

B1(p) ⊆ C0
ξ .

Let p∗ = p ∪ {(ξ, 1)}, therefore

B1(p∗) = ∅.
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Observe that B0(p∗) \ F0 ⊆ B1(p∗) = ∅.
Then B0(p∗) ⊆ F0, which is a contradiction. Then B1 is uniform inde-

pendent family on κ.
Assume that for some α < 2κ we have constructed

(i) a sequence {pβ : β < α} ⊆ P,

(ii) a collection {Kβ : β < α} of subsets of I ′ such that |Kβ| ∈ {0, κ} for
each β < α,

(iii) a bijection fβ : Kβ → κ for each β < α with |Kβ| = κ, and

(iv) a family {{C0
ξ , C

1
ξ } : ξ ∈ Kβ} of partitions of κ for each β < α

in such a way that the following holds for each β < α:

(1β) If we let Iβ = I0 ∪
⋃
ξ<βKξ and

Bβ = {(C0
ξ , C

1
ξ ) : ξ ∈ Iβ} ∪ {(B0

ξ , B
1
ξ ) : ξ ∈ 2κ \ Iβ},

then Bβ is a uniform independent family of size 2κ.

(2β) If Bβ(q) ⊆ Fβ for some q ∈ P, then Kβ = ∅ and Bβ(pβ) ⊆ Fβ.

(3β) When Bβ(q) 6⊆ Fβ for all q ∈ P, then

(a) pβ = ∅,
(b) Kβ is a subset of I ′ \

⋃
ξ<β(Kξ ∪ dom pξ) with |Kβ| = κ, and

(c) for each ξ ∈ Kβ:

C0
ξ = (B0

ξ ∪Fβ) \ {fβ(ξ)} and C1
ξ = κ \C0

ξ = (B1
ξ \Fβ)∪{fβ(ξ)}.

Define Iα = I0 ∪ (∪ξ<αKξ) and

Bα = {(C0
ξ , C

1
ξ ) : ξ ∈ Iα} ∪ {(B0

ξ , B
1
ξ ) : ξ ∈ 2κ \ Iα}.

Suppose that Fα contains Bα(p) for some p ∈ P. Define pα = p,Kα = ∅.
Therefore Bα(pα) ⊆ Fα and (2α) holds.

Now, suppose that Fα 6⊇ Bα(p) for every p ∈ P. Since K = (∪{dom(pζ) :
ζ < α}) ∪ (∪{Kζ : ζ < α}) has cardinality less than 2κ, we can choose a
subset Kα of cardinality κ in I ′ \K. Set pα = ∅ and fα : Kα → κ a bijection.

For each ξ ∈ Kα, define:

C0
ξ = (B0

ξ ∪ Fα) \ {fα(ξ)} and C1
ξ = κ \ C0

ξ = (B1
ξ \ Fα) ∪ {fα(ξ)}.
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Therefore, (3α) holds.
If α = β + 1 for some β < 2κ, then, Iα = Iβ ∪Kβ.
If Kβ = ∅, then Bα = Bβ. Therefore, Bα is a uniform independent family

of size 2κ and (1α) holds.
Suppose that Kβ is nonempty. By (2β), Bβ(q) 6⊆ Fβ for all q ∈ P.

Suppose that Bα(p) has cardinality less than κ for some p ∈ P. Then A =
Bα(p) ∈ [κ]<κ, take γ ∈ κ \A and ξ ∈ JA,γ \ dom(p). Then,

Bα(p) ⊆ C0
ξ .

Let p∗ = p ∪ {(ξ, 1)}, therefore

Bα(p∗) = ∅.

By (3β)(c), Bβ(p∗) \ Fβ ⊆ Bα(p∗) = ∅.
Then Bβ(p∗) ⊆ Fβ, which is a contradiction. Then Bα is a uniform

independent family of size 2κ on κ and (1α) holds.
Now, suppose that α is a limit ordinal.
Let p ∈ P. Observe that

Bα(p) = (∩{Cp(ξ)ξ : ξ ∈ dom p ∩ Iα}) ∩ (∩{Bp(ξ)
ξ : ξ ∈ dom p \ Iα}).

Since dom p∩ Iα is finite, there is β < α such that dom p∩ Iα ⊆ Iβ ⊆ Iα.
Therefore,

Bα(p) = (∩{Cp(ξ)ξ : ξ ∈ dom p ∩ Iβ}) ∩ (∩{Bp(ξ)
ξ : ξ ∈ dom p \ Iβ}).

Hence
Bα(p) = Bβ(p),

implying that Bα is a uniform independent family of size 2κ on κ and (1α)
holds.

Hence, (1α),(2α) and (3α) are satisfied for every α < 2κ, and the trans-
finite construction of C = B2κ is completed.
C is separating. Indeed, if α, β ∈ κ and α 6= β, take ξ ∈ J{α},β. Then

α ∈ C0
ξ and β ∈ C1

ξ .

By construction, C is uniform.
If A ∈ [κ]<κ, take any α ∈ κ \A and ξ ∈ JA,α, then A ⊆ C0

ξ and α ∈ C1
ξ .

Therefore κ \ A is open in κC . To see that A is discrete, take γ ∈ A, and
ξ ∈ JA\{γ},γ then

A ∩ C1
ξ = {γ}.
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Take F ∈ [κ]κ, then F = Fβ for some β < 2κ. If (2β) holds, then,
Kβ = ∅ and Bβ(pβ) ⊆ Fβ. Therefore C(pβ) = Bβ(pβ) ⊆ Fβ. Suppose that
(3β) holds, if i ∈ Fβ, there is ξ ∈ Kβ such that fβ(ξ) = i, and

C1
ξ ∩ Fβ = {i}.

Therefore, Fβ is discrete. If i ∈ κ \ Fβ, there is ξ ∈ Kβ such that fβ(ξ) = i,
and

C1
ξ ∩ Fβ = ∅ and i ∈ C1

ξ .

Therefore Fβ is closed and discrete in κC .
Hence, C is a uniform nice independent family on κ
Finally, suppose that Y ⊆ κ and p ∈ P satisfy B(p) ⊆ Y . Then Y = Fβ

for some β < 2κ, because B is uniform. It suffices to show the existence
of a condition r ∈ P with Bβ(r) ⊆ B(p). Indeed, if this is the case, then
at stage β the assumptions in (2β) hold and therefore Bβ(pβ) ⊆ Y . One
easily verifies that Bβ(pβ) = Bγ(pβ) whenever β ≤ γ ≤ 2κ. In particular,
C(pβ) ⊆ Y .

In order to find the condition r that we mentioned in the previous para-
graph, we need the following claim.

Claim. For each δ ∈ Iβ ∩dom p and any finite set H ⊆ 2κ with dom p ⊆
H there exist δ′, δ′′ ∈ Iβ \H such that δ′ 6= δ′′ and

C
p(δ)
δ ∩ C0

δ′ ∩ C1
δ′′ ⊆ B

p(δ)
δ .

To prove the claim we will consider two cases. If δ ∈ I0, then δ ∈ Jb,α for
some b ∈ [κ]<κ and α ∈ κ\b. Thus any pair of different points δ′, δ′′ ∈ Jb,α\H
will work. On the other hand, when δ ∈ Iβ \ I0, there exists ξ < β with
δ ∈ Kξ. Set α := fξ(δ) and notice that we only need to take δ′ ∈ Kξ \ H
and δ′′ ∈ J∅,α \H.

Using finite recursion we define, for each δ ∈ Iβ∩dom p, a pair of ordinals
δ′, δ′′ ∈ Iβ satisfying the conclusion of the Claim and such that

r := p ∪ {(ξ′, 0) : ξ ∈ Iβ ∩ dom p} ∪ {(ξ′′, 1) : ξ ∈ Iβ ∩ dom p}

is a function. Therefore Bβ(r) ⊆ B(p).

Corollary 2.94. For any infinite cardinal κ, there is a crowded, submaxi-
mal, ccc space X such that ∆(X) = |X|.

Proof. By 2.85 there is a uniform independent family B on κ of cardinality
2κ. By 2.93, there is a nice uniform independent family C on κ of cardinality
2κ. By 2.91, DC is submaximal, and since DC is dense in product space 2κ,
DC is crowded and ccc. Since C is uniform ∆(DC) = |DC |
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Corollary 2.95. For any cardinal κ, the existence of a uniform ai-maximal
(respectively, aωi-maximal) independent family on κ of size 2κ implies the
existence of a uniform nice ai-maximal (respectively, aωi-maximal) indepen-
dent family on κ.

Proof. Suppose that B is a uniform ai-maximal independent family on κ
with |B| = 2κ and let C be the uniform nice independent family given by
the previous theorem. Assume that {Yn : n < ω} is a partition of κ and fix
p ∈ Fn(2κ, 2) and m < ω in such a way that B(p) ⊆ Ym. Hence, there is
q ∈ Fn(2κ, 2) such that C(q) ⊆ Ym.

Similar arguments apply in the case where B is aωi-maximal indepen-
dent.

Definition 2.96. Let C = {(C0
ξ , C

1
ξ ) : ξ < λ} be an independent family on

a set S.

1. For each p ∈ Fn(λ, 2) we define

Cdp := {(C0
ξ ∩ C(p), C1

ξ ∩ C(p)) : ξ ∈ λ \ dom p}.

2. We say that C is globally ai-maximal independent on S if Cdp is ai-
maximal independent on C(p) for all p ∈ Fn(λ, 2).

Remark 2.97. Let C, S, and λ be as in the definition. For each r ∈ Fn(λ, 2),
C(r) is an open and closed subspace of XC which has {C(r) ∩ C(p) : p ∈
Fn(λ \ dom r, 2)} as a base for its topology. Therefore XCdr = C(r).

Observe that if C is a nice independent family on κ, then C � r is a nice
independent family on C(r), for all r ∈ Fn(2κ, 2).

Proposition 2.98. [14, Dorantes, Pichardo, Tamariz] Let C be an indepen-
dent family on a set S. Then C is globally ai-maximal independent iff XC is
OHAI.

Proof. Let λ := |C|. When XC is OHAI and p ∈ Fn(λ, 2), C(p) is almost
irresolvable; hence Remark 2.97 implies that Cdp is ai-maximal independent.

For the other implication assume that XC is not OHAI and fix a family,
{Yn : n ∈ ω}, of pairwise disjoint subsets of XC whose union, Y , is a non-
empty open subset of X, but each Yn has empty interior. Then there is
p ∈ Fn(λ, 2) with C(p) ⊆ Y and therefore {C(p)∩Yn : n ∈ ω} witnesses that
C(p) is almost resolvable.

As a consequence of the work done, we obtained:
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Proposition 2.99. If C is an ai-maximal independent family on κ of size λ,
then Cdr is globally ai-maximal independent on C(r), for some r ∈ Fn(λ, 2).

Proof. Since XC is almost irresolvable, Lemma 2.7, implies the existence
of a finite function r ∈ Fn(λ, 2) such that C(r) is OHAI. According to
2.97, XCdr is OHAI, by the previous proposition, Cdr is globally ai-maximal
independent.

The next theorem can be found in [20].

Theorem 2.100. [20] Every almost resolvable space X is the union of a
resolvable space X1 and a first category set X2 with X1 closed in X and
X1 ∩X2 = ∅.

Corollary 2.101. If X is Baire almost resolvable, then X is resolvable.

Proof. If X is Baire, X does not have nonempty open sets of first category.

For a cardinal κ, we will say that a topological space X satisfies (†κ) if
X is a dense subspace of 22

κ
with ∆(X) = |X| = κ.

Theorem 2.102. [14, Dorantes, Pichardo, Tamariz] The following state-
ments are equivalent for any cardinal κ.

1. There is an almost irresolvable space which satisfies (†κ).

2. There is a Baire submaximal space which satisfies (†κ).

3. There is a Baire OHI space which satisfies (†κ).

4. There is a Baire irresolvable space which satisfies (†κ).

5. There is a Baire almost irresolvable space which satisfies (†κ).

6. There is a Baire almost ω-irresolvable space which satisfies (†κ).

7. There is an almost ω-irresolvable space which satisfies (†κ).

Proof. Let us prove that (2) follows from (1). If (1) holds, Corollary 2.95
guarantees the existence of a uniform nice ai-maximal independent family
C on κ. According to Proposition 2.99, there is a condition r for which Cdr
is globally ai-maximal independent on κ. Since |C(r)| = κ and Cdr is a nice
independent family on C(r), we will assume, without loss of generality, that
C is globally ai-maximal independent on κ. Thus XC is Baire submaximal
(Proposition 2.98 and Theorem 2.14) and ∆(XC) = κ. Using the fact that
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C is separating, we have that XC is homeomorphic to DC (see the discussion
following Lemma 2.78) and therefore DC is the space needed in (2).

Implications (2)→(3)→(4) and (5)→(6)→(7) are straightforward.
By 2.101, (4) implies (5).
Finally, if (7) is true, Corollary 2.95 gives the existence of a uniform nice

aωi-maximal independent family C on κ. By Proposition 2.5, XC is a space
whose existence is claim in (1).

As a consequence of Theorem 2.102 we obtained that the consistency
strength of the existence of a family as described in part (6) is greater than
the existence of a measurable cardinal:

Corollary 2.103. If κ carries a uniform aωi-maximal independent family
of size 2κ, then κ is measurable in an inner model of ZFC.

Proof. For such a κ we obtain the existence of a dense subspace Y of 22
κ

which is Baire and satisfies ∆(Y ) = |Y | = κ. It is proved in [32], [33], and
[26, Theorem 22.33] that the existence of a space with these characteristics
implies the conclusion of the corollary.

Theorem 2.104. If an infinite cardinal κ carries a uniform aωi-maximal
independent family of size 2κ, then the following holds:

1. κ has uncountable cofinality,

2. κ 6= ω1, and

3. CH fails, i.e., c > ω1.

Proof. (1) is a corollary of Proposition 2.1.
To prove (2) and (3) assume that κ is as described in the hypothesis.

Corollary 2.95 guarantees the existence of a uniform nice ai-maximal inde-
pendent family C on κ. Then XC is a regular, crowded, submaximal, ccc,
almost irresolvable space. By 2.20, κ 6= ω1 and by 2.24 CH fails.

Note that a corollary of the previous result is that if CH holds, then
no cardinal κ carries a uniform aωi-maximal independent family of size 2κ.
The same conclusion is consistent with ¬CH. Indeed, [7, Theorem 4.1] states
that if there are no Souslin trees, then every ccc crowded Hausdorff space is
almost ω-resolvable (see the discussion following Definition 2.86).

In [30, Page 79] and [32, Theorem 3.3] it is shown that if κ is measur-
able and the ground model satisfies CH, then the generic extension yield
by Fn(κ, 2, ω1) contains a Baire OHI space X with ∆(X) = |X| (compare
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with part (3) of Theorem 2.102). But in the generic extension no cardinal
κ carries a uniform aωi-maximal independent family of size 2κ because CH
holds in it.

(1) ([40, Questions 5.8]) Is the topology generated by the union of a chain
of almost ω-resolvable topologies for a set X always almost ω-resolvable?

Assume that κ carries a uniform ai-maximal independent family of size
2κ. Corollary 2.95 provides us with a nice ai-maximal independent family
C = {(C0

α, C
1
α) : α < 2κ}. For each integer n let Cn := C \ {(C0

α, C
1
α) : n ≤

α < ω}. Denote by τn the topology which has {Cn(p) : p ∈ Fn(2κ\n, 2)} as a
base. Then {τn : n < ω} is an increasing sequence of topologies. Moreover,
{C0

n, C
1
n} is a partition of (κ, τn) into two disjoint dense sets for all n < ω

and therefore τn is resolvable. On the other hand, the topology generated by⋃
n τn coincides with the topology of XC and so it is almost ω-irresolvable.

(2) ([3, Problem 7.4]) Is every regular ccc submaximal space strongly σ-
discrete?

Let C be a nice ai-maximal independent family. Thus XC is crowded and
submaximal. Also, Proposition 2.5 implies that this space is not σ-discrete.
Since XC is homeomorphic to DC , a dense subspace of the product 22

κ
, we

have that XC is Tychonoff and ccc.

There is a ZFC answer for [36, Problem 3.8]: Does any submaximal space
contain a dense maximal space? According to [, Theorem 4.1], 22

κ
has a

dense subspace Y which is submaximal. On the other hand, an immediate
consequence of [1, Corollary 2.2] is that no dense subspace of 22

κ
is maximal.

Therefore Y is a submaximal space which contains no dense maximal space.

2.5 Some combinatorics

The following result suggests that if one adds enough random reals, the
generic extension may contain an ai-maximal independent family.

Theorem 2.105. [14, Dorantes, Pichardo, Tamariz] Let B be a uniform
independent family of size 2κ on a cardinal κ and let C be the family which
was constructed in the proof of Theorem 2.93. If m : P(κ) → [0, 1] is a
σ-additive measure such that m(C(p)) = 2−|p|, for each p ∈ Fn(2κ, 2), then
C is globally ai-maximal independent.

Proof. Denote by I the ideal of null sets, i.e., x ∈ I iff m(x) = 0. Since m
is σ-additive, I is ω1-complete so, according to Theorem 2.14, we only need
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to show that I coincides with the collection of all subsets of XC with void
interior (one easily verifies that if this is the case, then the argument given
in the proof of Theorem 2.14 to show that I is σ-saturated still works). Set
P := Fn(2κ, 2).

Observe that if A ⊆ XC and p ∈ P satisfy C(p) ⊆ A, then m(A) > 0.
Hence all null sets have empty interior.

Now let A be a subset of XC with empty interior. If A = ∅, m(A) = 0 so
let us assume that A 6= ∅. Since all finite subsets of XC are closed, we have
that κ \A is infinite. Our plan is to show that m(A) ≤ 2−i for all i < ω.

For the rest of the argument we will follow the notation introduced in
the proof of Theorem 2.93. Let n < ω be arbitrary.

Suppose first that |A| < κ. Fix a set H ⊆ κ \ A with |H| = n and for
each α ∈ H let α ∈ JA,α be arbitrary. Thus, if we let p := {(α, 0) : α ∈ H},
then A ⊆ C(p) and |p| = n. Clearly m(A) ≤ 2−n.

When |A| = κ, there exists β < 2κ with A = Fβ. Let H ⊆ Kβ be such
that |H| = n and fβ[H] ⊆ κ \A. Thus q := H × {0} ∈ P and A ⊆ C(q).

This section will end with a combinatorial characterization of the exis-
tence of uniform ai-maximal independent families.

Given a poset P, we will denote by B(P) its Boolean completion, i.e.,
B(P) is a complete Boolean algebra which contains P as a dense subset. As
usual, given a set S ⊆ B(P),

∨
S and

∧
S represent the supremum and the

infimum of S in B(P), respectively.

Remark 2.106. If b ∈ B(P), then b =
∨
{p ∈ P : p ≤ b} and therefore

B(P) = {
∨
S : S ⊆ P}.

The following fact (see, for example, [31, II Exercise 19]) will be used
later.

Remark 2.107. If S, T ⊆ P, then
∨
S ≤

∨
T iff for all p ∈ S and for each

q ≤ p there exists r ∈ T with r | q.

Theorem 2.108. [14, Dorantes, Pichardo, Tamariz] The following are
equivalent for any infinite cardinal κ.

1. There exists a uniform ai-maximal independent family on κ of size 2κ.

2. κ carries an ω1-complete ideal I for which the quotient Boolean algebra
P(κ)/I is isomorphic to B(Fn(2κ, 2)) and [κ]<κ ⊆ I.

Proof. We will show first that (2) implies (1). Set P := Fn(2κ, 2) and sup-
pose that f : B(P)→ P(κ)/I is an isomorphism.
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Let {Aξ : ξ < 2κ} be an enumeration of I where each Aξ is listed infinitely
many times.

Let ξ < 2κ be arbitrary. Fix B0
ξ ⊆ κ such that f({(ξ, 0)}) = [B0

ξ ], where

[B0
ξ ] denotes the equivalence class of B0

ξ modulo I, and let B1
ξ := κ \ B0

ξ .
Since {(ξ, 1)} is the Boolean complement of {(ξ, 0)} in B(P), we have that
f({(ξ, 1)}) = [B1

ξ ]. Define C0
ξ := B0

ξ \Aξ and C1
ξ := B1

ξ ∪Aξ.
We will argue that C := {(C0

ξ , C
1
ξ ) : ξ < 2κ} is ai-maximal independent.

We are going to prove that C is uniform independent. Let p ∈ P be
arbitrary and observe that if ξ < 2κ and i < 2, then [Ciξ] = [Bi

ξ]. Therefore
the equality f(p) = [C(p)] follows from the fact p =

∧
{{(α, p(α))} : α ∈

dom p}. In particular, C(p) /∈ I and so |C(p)| = κ.
Let {Yn : n ∈ ω} be a partition of κ. Since I is a proper ω1-complete

ideal, there is m < ω with Ym /∈ I. Let b ∈ B(P) and p ∈ P be so that
f(b) = [Ym] and p ≤ b. Thus [C(p)] = f(p) ≤ [Ym], i.e., C(p) \ Ym ∈ I. For
some ξ ∈ 2κ \ dom p we get Aξ = C(p) \ Ym and so q := p ∪ {(ξ, 0)} satisfies
C(q) ⊆ Ym.

Assume (1). Proceeding as in the proof of (1)→(2) in Theorem 2.102,
there is a nice independent family C on κ for which XC is Baire submaximal
and ∆(XC) = κ. Thus I, the ideal of nowhere dense subsets of XC , is an
ω1-complete ideal on κ and coincides with the collection of all subsets of
XC with empty interior. Moreover, each element of I is closed and [κ]<κ =
[XC ]

<κ ⊆ I.
For each x ⊆ κ let x∗ := {p ∈ P : C(p) ⊆ x}. Define h : P(κ)→ B(P) by

h(x) :=
∨
x∗. We will show that the following holds:

(a) for all x, y ∈ P(κ), x \ y ∈ I iff h(x) ≤ h(y); and

(b) h is onto.

Notice that if (a) and (b) are true, then h induces an isomorphism from
P(κ)/I onto B(P).

Observe that if p ∈ x∗ and q ≤ p, then q ∈ x∗. Therefore we apply
Remark 2.107 to obtain that h(x) ≤ h(y) iff for each p ∈ x∗ there is q ∈ y∗
with p | q.

Let us prove (a). Suppose that x \ y ∈ I and let p ∈ x∗ be arbitrary.
Then x \ y is closed, C(p) 6⊆ x \ y, and C(p) ⊆ x. Hence C(p) \ x = ∅ and
C(p) \ (x \ y) = (C(p) \ x) ∪ (C(p) ∩ y) = C(p) ∩ y is a nonempty open set.
There is q ∈ P so that C(q) ⊆ C(p) ∩ y. Clearly q ∈ y∗ and q | p (Lemma
2.78). By the observation made in the previous paragraph: h(x) ≤ h(y).

Now suppose that x \ y /∈ I. Then C(p) ⊆ x \ y for some p ∈ P. In
particular, p ∈ x∗. Notice that for all q ∈ y∗ we have C(q) ⊆ y and thus



QUESTIONS 55

C(p)∩ C(q) = ∅, i.e., p ⊥ q (Lemma 2.78). This shows that h(x) 6≤ h(y) and
so (a) is proved.

According to Remark 2.106, h is onto if for each S ⊆ P there is x ⊆ κ such
that h(x) =

∨
S. So let S ⊆ P be arbitrary and define x :=

⋃
{C(p) : p ∈ S}.

Clearly, S ⊆ x∗ and hence
∨
S ≤ h(x). We will use Remark 2.107 to show

that h(x) ≤
∨
S. If p ∈ x∗, then C(p) ⊆ x and hence C(p) ∩ C(q) 6= ∅ for

some q ∈ S. Thus p | q according to Lemma 2.78.

It is worth noticing that the argument given for (1)→(2) in the previous
theorem shows that the existence of an ω1-complete ideal, I, on κ for which
the quotient P(κ)/I is isomorphic to B(Fn(2κ, 2)) implies the existence of
an ai-maximal independet family on κ of size 2κ.

2.6 Questions

This section is dedicated to some interesting problems.

Problem 2.109. Are the following statements consistent with ZFC?

1. There are cardinals κ which carry an aωi-independent family of size
2κ?

2. There are cardinals κ which carry an aωi-independent family of size λ
with λ < 2κ?

3. For some cardinal λ, 2λ contains a dense almost ω-irresolvable sub-
space but no dense almost irresolvable subspace?

Problem 2.110. Is it true that if κ does not carry an aωi-maximal indepen-
dent family of size 2κ, then all Baire dense subspaces of 22

κ
are ω-resolvables?

(Theorem 2.102 guarantees that if the cardinality of the subspace is κ, then
the answer is “yes.”)

If B is an arbitrary independent family on a cardinal κ of size 2κ, the
construction described in the proof of Proposition 2.90 shows how to modify
B to obtain a nice independent family C on κ. One may wonder if this process
preserves algebraic structures.

Problem 2.111. Is it true that if DB is a topological subgroup of the
product 22

κ
, then so is DC?
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We can give two remarks regarding this question.
First, it is proved in [3, Corollary 8.16] that the cardinality of a ccc nodec

topological group is not greater than c. Therefore DC is not a topological
subgroup when κ > c independently of the properties that B has.

Second, [1, Corollary 3.8] states that if Y is a homogeneous submax-
imal space with |Y | = ∆(Y ) and |Y | is non-measurable cardinal, then Y
is strongly σ-discrete. Thus XC is not homogeneous when B is ai-maximal
independent and κ is non-measurable (see the proof of Corollary 2.95 and
Proposition 2.5).



Chapter 3

Preliminaries on weakly
pseudocompact spaces

3.1 The Stone-Čech compactification

Throughout this chapter all topological spaces are considered Tychonoff and
with more than one point. A zero set in X is a set of the form Z(f) = {x ∈
X : f(x) = 0}, where f is a real valued continuous function defined on
X, and a cozero set is the complement of a zero set. A pair (aX, a), is
a compactification of a space X, if aX is compact and a : X → aX is an
embedding such that a[X] is dense in aX. To simplify notation, we will write
aX instead of (aX, a). We will denote by C(X,Z) the set of all continuous
functions from X into Z.

The next theorem will enable us to construct compactifications

Theorem 3.1 (Embedding Theorem). Let X be a space and R be a subset
of R. If F is a subset of C(X,R) such that:

1. if x, y are distinct points in X, there is f ∈ F such that f(x) 6= f(y)
and

2. if x ∈ U ⊆ X, where U is open in X, then there is f ∈ F such that
f(x) 6∈ clR f [X \ U ].

Then, the evaluation map eF : X → RF , defined by πf (eF (x)) = f(x) for
every x ∈ X and every f ∈ F, is an embedding.

Proof. We know that a function g defined on a space Z to a product space
Π{Zj : j ∈ J} is continuous if and only if πj ◦ g is continuous for every
projection πj . Since πf ◦ eF = f, for every f ∈ F, eF is continuous.

57
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Claim 1. eF is injective. Take x0 and x1 two different points in X.
There is a continuous function f ∈ F such that f(x0) 6= f(x1). Therefore
πf (eF (x0)) = f(x0) 6= f(x1) = πf (eF (x1)). Hence eF (x0) 6= eF (x1)

Claim 2. eF is open onto eF [X]. Suppose that V is an open subset of X
and x is an element of V. There is a continuous function f ∈ F such that
f(x) 6∈ clR f [X \ V ]. So, there is an open set W ⊆ R such that f(x) ∈ W
and W ∩ f [X \ V ] = ∅. Therefore:

eF (x) ∈ eF [X] ∩ π←f [W ] ⊆ eF [V ].

Indeed, take y ∈ X such that eF (y) ∈ π←f [W ]. Then πf (eF (y)) ∈W, that
is, f(y) ∈ W and f(y) 6∈ f [X \ V ]. Therefore, y ∈ V. Since eF [X] ∩ π←f [W ]
is open in eF [X], we conclude that eF [V ] is open in eF [X].

Hence eF is an embedding.

In the next theorem we are going to construct a special compactification
of a space X.

Theorem 3.2. [43] Let X be a space. There is a compactification βX of
X such that for each continuous function f : X → [0, 1], there is a unique
continuous function βf : βX → [0, 1] such that f = βf ◦ β.

Proof. Define β : X → [0, 1]C(X,[0,1]) by πf (β(x)) = f(x) for every x ∈ X
and f ∈ C(X, [0, 1]). By the Embedding Theorem, β is an embedding.

Let βX = clβ[X]. Then β : X → Y is an embedding such that β[X] is
dense in βX.

Now, if f : X → [0, 1] is a continuous function, then, by the definition of
β, we have

f = (πf � βX) ◦ β.

Finally, if g : βX → [0, 1] is a continuous function such that f = g ◦ β,
then

g(β(x)) = f(x) = (πf � βX)(β(x))

for every x ∈ X. Since β[X] is dense in βX, g = πf � βX and the theorem
is established.

If X is a space, the compactification βX, constructed in the last Theo-
rem, is called the Stone-Čech compactification of X.

Corollary 3.3. If X is compact, then βX is homeomorphic to X.

Proof. If X is compact then β[X] is compact and β : X → β[X] is a home-
omorphism.
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If aX and bX are two compactifications of a space X, we will say that
aX ≤ bX, if there is a continuous function f : bX → aX such that f ◦ b = a.

Theorem 3.4. [37] Let X be a space. If f : X → K is a continuous
function from X to a compact space K, then there is a continuous function
f̃ : βX → K such that f̃ ◦ β = f.

Proof. Let f,X and K be as in the statement of the theorem. Define α :
K → [0, 1]C(K,[0,1]) by πg(α(t)) = g(t) for every t ∈ K and g ∈ C(K, [0, 1]).
By the Embedding Theorem, we can see that the subspace α[K] is homeo-
morphic to K.

Observe that, for every g ∈ C(K, [0, 1]), the composition g ◦ f is an
element of C(X, [0, 1]), then β(g ◦ f) : βX → [0, 1] is the only continuous
function such that β(g ◦ f) ◦ β = g ◦ f.

Therefore, we can define

h : βX → [0, 1]C(K,[0,1])

by

πg(h(p)) = β(g ◦ f)(p) for every p ∈ βX and for every g ∈ C(K, [0, 1]).

Then h is continuous.

If x ∈ X and g ∈ C(K, [0, 1]) then

πg(h(β(x))) = β(g ◦ f)(β(x)) = g(f(x)) = πg(α(f(x)))

Therefore h(β(x)) = α(f(x)) for every x ∈ X. Hence, h[β[X]] ⊆ α[K].

Since α[K] is compact, we also have the following:

h[βX] = h[clβX β[X]] ⊆ clh[β[X]] ⊆ clα[K] = α[K].

Therefore h : βX → α[K]. Now, define f̃ = (α←) ◦ h
It is easy to see that f̃ ◦ β = f.

Corollary 3.5. If aX is a compactification of X, then there is a continuous
function π : βX → aX such that π ◦ β = a. Therefore βX ≥ aX.

Proof. The embedding a : X → aX is a continuous function from X to the
compact space aX. Then, ã : βX → aX is a continuous function such that
ã ◦ β = a.
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Proposition 3.6. [37] If aX is a compactification of X such that for each
continuous function f : X → [0, 1] there is a continuous function fa : aX →
[0, 1] such that f = fa ◦ a, then aX ≥ βX.

Proof. Define h : aX → [0, 1]C(X,[0,1]) by

πf (h(p)) = fa(p)

for every f ∈ C(X, [0, 1]) and every p ∈ aX. Then h is continuous.

Let x ∈ X and f ∈ C(X, [0, 1]). Then

πf (h(a(x))) = fa(a(x)) = f(x) = πf (β(x)).

Therefore h(a(x))) = β(x) for every x ∈ X, and so h[a[X]] ⊆ β[X].

We also have the following:

h[aX] = h[claX a[X]] ⊆ clh[a[X]] ⊆ clβ[X] = βX.

We conclude that h : aX → βX is such that h ◦ a = β.

We will say that two compactifications, aX and bX, of a space X are
equivalent if there is a homeomorphism h : aX → bX such that h ◦ a = b.
In this case we will write aX ≡X bX. Observe that if aX ≥ bX and bX ≥
aX then aX is equivalent to bX. Indeed, there are continuous functions
f : aX → bX and g : bX → aX such that f ◦ a = b and a = g ◦ b. Therefore
(g ◦ f) � a[X] = idaX � a[X], where idY is the identity homeomorphism
defined on a space Y. Since a[X] is dense in aX, g ◦ f = idaX . In the same
way, f ◦ g = idbX . Therefore f = g← and f is a homeomorphism.

A subspace X ⊆ Y is C∗-embedded in a space Y if for every continuous
function f : X → [0, 1], there is a continuous function g : Y → [0, 1] such
that g � X = f.

Corollary 3.7. βX is the only compactification, up to equivalence, of X
such that β[X] is C∗-embedded in βX.

When dealing with compactifications, the next proposition is useful. Re-
call that a continuous function between topological spaces, f : X → Y, is
perfect if f is onto, closed and for every y ∈ Y, the fiber f←[{y}] is compact.

Proposition 3.8. [37] Let X and Y be spaces. If f ∈ C(X,Y ), S is dense in
X, and f � S is a perfect function from S onto f [S], then f [X\S] ⊆ Y \f [S].
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Proof. Suppose that there is x ∈ X \ S such that f(x) ∈ f [S]. Let T =
S ∪{x}. Since f � S is a perfect function, (f � S)←(f(x)) = f←(f(x))∩S is
a compact set which we will denote by K. Hence K is closed in T. There is
an open subset U in T such that K ⊆ U and x 6∈ clT U. Since S is dense in
X, S is dense in T. Hence clT U ∪ clT (S \U) = T and f(x) ∈ f [clT (S \U)] ⊆
clf [S] f [S \ U ] = f [S \ U ], where the last equality holds because f � S is a
closed function. Therefore, there exists s ∈ S \ U such that f(s) = f(x).
Then s ∈ K \ U, which is a contradiction.

Proposition 3.9. Let X be a space. There is a set K(X) of compactifica-
tions of X such that any two distinct members of K(X) are non equivalent
and any compactification of X is equivalent to some member of K(X).

If X is a space, then the pair (K(X),≤) is a partially ordered set.

Proposition 3.10. [37] Let X be a space. Then every nonempty subset of
K(X) has a least upper bound in (K(X),≤).

Proof. Let S be a nonempty subset of K(X). Define

F = {g ◦ a : g ∈ C(aX, [0, 1]), aX ∈ S}.

Then F ⊆ C(X, [0, 1]). We will see that F satisfies the hypothesis 1) and
2) of the Embedding Theorem.

Take any aX ∈ S. Let x, y be distinct points of X, then a(x) 6= a(y),
because a : X → aX is an embedding. There is a continuous function
g ∈ C(aX, [0, 1]) such that g(a(x)) 6= g(a(y)). Then F satisfies 1).

Suppose that x ∈ U ⊆ X, where U is open in X. Again, since a is
an embedding, a(x) ∈ a[U ] ⊆ aX, and a[U ] is open in a[X]. There is a
continuous function g ∈ C(a[X], [0, 1]) such that g(a(x)) = 0 and g[a[X] \
a[U ]] ⊆ {1}. Also, observe that (g ◦ a)[X \ U ] ⊆ g[a[X] \ a[U ]]. Then F
satisfies 2).

Now, define e : X → [0, 1]F by

πg◦a(e(x)) = g(a(x))

for every x ∈ X and every g ◦ a ∈ F. By the Embedding Theorem, e is an
embedding. Let eX = (cl[0,1]F e[X], e). Then eX is a compactification of X.

Claim 1: eZ is an upper bound of S in (K(X),≤). To see this, take an
arbitrary aX ∈ S. Define γ : aX → [0, 1]C(aX,[0,1]) by

πf (γ(y)) = f(y).
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By the Embedding Theorem, γ[aX] is homeomorphic to aX.

We want to see that eX ≥ aX. In order to achieve this, define

h : [0, 1]F → [0, 1]C(aX,[0,1])

by

πf (h(z)) = πf◦a(z)

for every z ∈ [0, 1]F and every f ∈ C(aX, [0, 1]). Then h is continuous.

If x ∈ X, then πf (h(e(x))) = πf◦a(e(x)) = f(a(x)) = πf (γ(a(x))).
Therefore h(e(x)) = γ(a(x)) for every x ∈ X, hence h[e[X]] ⊆ γ[a[X]] ⊆
γ[aX] and

h[eX] = h[cl e[X]] ⊆ clh[e[X]] ⊆ cl γ[aX] = γ[aX].

Therefore h � eX : eX → γ[aX] is continuous and γ← ◦ h � eX :
eX → aX is also continuous. In the last paragraph we established that
h(e(x)) = γ(a(x)) for every x ∈ X, hence γ←(h(e(x))) = a(x) for every
x ∈ X, this implies

(γ← ◦ h � eX) ◦ e = a

Hence eX ≥ aX.
Claim 2: eX is the least upper bound of S in (K(X),≤). To see this,

suppose that bX is a compactification of X such that bX ≥ aX for every
aX ∈ S. We are going to prove that bX ≥ eX. Indeed, for each aX ∈ S,
we have bX ≥ aX, then there is a continuous function jaX : bX → aX such
that jaX ◦ b = a. Now, define h : bX → [0, 1]F by

πg◦a(h(w)) = g(jaX(w)),

for every w ∈ bX and every g ◦ a ∈ F. Then h is continuous.

Now, take x ∈ X. Then

πg◦a(h(b(x))) = g(jaX(b(x))) = g(a(x)) = πg◦a(e(x)),

hence h(b(x)) = e(x) for every x ∈ X. Henceforth, h[b[X]] ⊆ e[X] and

h[bX] = h[cl b[X]] ⊆ clh[b[X]] ⊆ cl e[X] = eX.

Observe that h � bX : bX → eX is a continuous function such that
h ◦ b = e. Then bX ≥ eX.

In conclusion, eX is the least upper bound of S in (K(X),≤).
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We will say that K(X) is a lattice if every two compactifications have a
lower bound in (K,≤). If this is the case, then, by the previous theorem,
every two compactifications have a greatest lower bound.

Recall that a space X is locally compact if every point has a compact
neighborhood. The following proposition is well known.

Proposition 3.11. Let A be a subspace of a locally compact space X. Then
A is locally compact if and only if A is open in clX A.

Proof. Suppose that A is locally compact. Take a point x ∈ A and let
Z = clX A. There is an open set U ⊆ A such that x ∈ U and clA U is
compact. Therefore clA U is closed in Z and clA U = clZ U . There is an
open set V ⊆ Z, such that U = V ∩ A. Since A is dense in Z, we have
V ⊆ clZ V = clZ(V ∩ A) = clZ U = clA U ⊆ A. Hence x ∈ V ⊆ A and A is
open in Z.

Let A be an arbitrary subset of X. We are going to prove that Z = clX A
is locally compact. Take x ∈ Z. There is an open set U ⊆ X such that x ∈ U
and clX U is compact. Then clX U ∩ Z is compact. Thus, x ∈ U ∩ Z and
clZ(U ∩Z) = clX(U ∩Z)∩Z ⊆ clX U ∩Z. Therefore clZ(U ∩Z) is compact.

Now, suppose that A is open in Z. Take a point x ∈ A and fix an open
set U ⊆ Z such that x ∈ U and clZ U is compact. There is an open set
W ⊆ X such that x ∈ W ⊆ clZW ⊆ U ∩ A. Therefore clZW is compact
and clA(W∩A) = clZ(W∩A)∩A = clZ(W )∩A = clZW. The second equality
holds because A is dense in Z. Therefore, x ∈ W ∩ A and clA(W ∩ A) is
compact. Hence A is locally compact.

Definition 3.12. For a space X, a compactification aX of X is a one point
compactification of X if |aX \ a[X]| = 1.

Proposition 3.13. [37]

1. If a space X has a one point compactification, then X is locally compact
and not compact.

2. If a space X is locally compact and not compact, then X has a one point
compactification aX such that bX ≥ aX for every compactification bX
of X.

Proof. (1). Let aX be a one point compactification of X. Then aX \ a[X]
is closed, so a[X] is open. Therefore a[X] is locally compact and so is X.
Since a[X] is a proper dense subset of aX, a[X] is not compact and neither
is X.
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(2). Let w 6∈ X and Y = X ∪ {w}. Define

τY = {W ⊆ Y : W ∩X is open in X and if w ∈W then X\W is compact}.

It is straightforward to see that τY is a compact Hausdorff topology on
Y such that X is dense in Y. So aX = (Y, id) is a one point compactification
of X.

Let bX be a compactification of X. Define f : bX → aX by f(b(x)) = x
for every x ∈ X, and f(z) = w for every z ∈ bX \ b[X]. To see that f is
continuous, let z ∈ bX \ b[X] and f(z) ∈ W for some W open in aX. Since
f(z) = w, bX \W is compact and therefore T = bX \ b[X \W ] is open in
bX. Observe that z ∈ bX \ b[X] ⊆ T. Then f [T ] ⊆ W. So, f is continuous
at z.

Since b[X] is open in bX and f [b[X]] = X, then f is continuous in b[X].
Also, f ◦ b = idX , therefore bX ≥ aX.

We will say that K(X) is a complete lattice if every nonempty subset
S ⊆ K(X) has a greatest lower bound.

Proposition 3.14. Let X be a space. If K(X) has a smallest element, then
K(X) is a complete lattice.

Proof. Let aX be the smallest element of K(X). Let S be a nonempty subset
of K(X). Let T = {bX : bX ≤ cY for every cY ∈ S}. Then aX ∈ T. By
3.10, T has a greatest upper bound dX in K(X). It is easy to see that dX
is the greatest lower bound of S in K(X).

We will see that if X is not locally compact, then K(X) is not a complete
lattice.

Proposition 3.15. [37] For a non compact space X, the following condi-
tions are equivalent.

1. K(X) is a complete lattice.

2. X is locally compact.

3. X has a one point compactification.

4. For every compactification (aX, a) of X, a[X] is open in aX.

5. There is a compactification (aX, a) of X such that a[X] is open in aX.



THE STONE-ČECH COMPACTIFICATION 65

Proof. Suppose that K(X) is a complete lattice. Then, K(X) has a smallest
element aX. We are going to prove that aZ is a one point compactification
of X. Since X is not compact, aX \ a[X] is nonempty. We will show that
|aX \ a[X]| ≤ 1. Suppose that p, q are points in aX \ a[X] and define Y =
(aX \ {p, q}) ∪ {r} where r 6∈ Z. Let f : aX → Y be defined by f(z) = z if
z ∈ aX \ {p, q} and f(p) = f(q) = r. Give Y the quotient topology induced
by f.

It is easy to see that Y is Hausdorff, indeed, observe that f←[aX \
{p, q}] = aX \ {p, q}. Therefore, aX \ {p, q} is open in Y. Therefore, every
two points in aX \ {p, q} have disjoint neighborhoods in Y. Now if b ∈ aX,
there are disjoint open sets U, V in aX such that b ∈ U and p, q ∈ V.
Therefore b ∈ f [U ], r ∈ f [V ] and f [U ], f [V ] are disjoint open sets in Y.

Also, observe that f � (aX\{p, q}) is a homeomorphism. Since X∩{p, q}
is empty, X is a subspace of Y. Since a[X] is dense in aX and f is continuous,
f [a[X]] = a[X] is dense in Y. Hence bX = (Y, idX) is a compactification of
X and aX ≥ bX. Since aX is the smallest element in K(X), bX ≥ aX. So,
there is a homeomorphism g : bX → aX, such that g ◦ idX = a. Observe
that g ◦ f : aX → aX is continuous and g ◦ f ◦ a = idX . Then g ◦ f = idaX .
So p = (g ◦ f)(p) = (g ◦ f)(q) = q. Hence aX \ a[X] has just one point and
aX is a one point compactification of X. So, 1 implies 3.

Suppose that X has a one point compactification aX. Then, a[X] is
open in aX. Hence 3 implies 5.

If a[X] is open in some compactification aX, by 3.11, a[X] is locally
compact. Then, 5 implies 2.

Let (aX, a) be an arbitrary compactification of X. By Proposition 3.11,
a[X] is locally compact if and only if a[X] is open in claX a[X] = aX. Hence
2 is equivalent to 4.

If X is locally compact, then K(X) has a smallest element. By Proposi-
tion 3.14, 2 implies 1.

Corollary 3.16. A non compact, locally compact space X has a unique,
up to equivalence, one point compactification.

Proof. Let aX be the one point compactification of X constructed in 3.13(2)
and let bX be a one point compactification. By construction of aX, we have
that there is a continuous function f : bX → aX such that f ◦b = a. By 3.8,
f [bX \ b[X]] ⊆ aX \ a[X]. Therefore f is a bijection. Since bX is compact,
f is closed and therefore f is a homeomorphism. Hence bX ≡X aX.

A basic reference about the Stone-Čech compactification is [43]. Other
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references are [37] and [17]. A recent M.S. thesis, written in Spanish, study-
ing different types of compactifications is [12].

3.2 The Hewitt realcompactification

Definition 3.17. A space X is called realcompact if there is no space Y
which satisfies the following two conditions:

1. There exists an embedding r : X → Y such that r[X] 6= clY r[X] = Y.

2. For each continuous function f : X → R, there is a continuous function
g : Y → R, such that g ◦ r = f.

Theorem 3.18. [17] A space X is compact if and only if X is realcompact
and pseudocompact.

Proof. If X is compact, then it is pseudocompact. If r : X → Y is an
embedding, then r(X) = clY r(X) and so X is realcompact.

Suppose that X is pseudocompact and not compact. Observe that β :
X → βX is an embedding such that β[X] 6= clβX β[X] = βX. Now take a
continuous function f : X → R. By hypothesis, f is bounded. Therefore,
there exists a compact subset K ⊆ R such that f : X → K. By 3.2, there
is a continuous function βf : βX → K ⊆ R, such that βf ◦ β = f. By
definition, X is not realcompact.

Theorem 3.19. [17] A space X is realcompact if and only if X is homeo-
morphic to a closed subspace of a power Rκ for some cardinal κ.

Proof. Let X be a realcompact space. Define r : X → RC(X,R) by

πf (r(x)) = f(x),

for every x ∈ X and every f ∈ C(X,R). By the Embedding Theorem, r is
an embedding. Define Y = clRC(X,R) r[X]. Now, if f : X → R is a continuous
function, then, by definition of r, we have

f = (πf � Y ) ◦ r.

By definition of realcompact spaces, r[X] = cl r[X]. Hence, X is homeomor-
phic to a closed subspace r[X] of the Cartesian product RC(X,R).

Suppose that X is a closed subspace of a power Rκ for some cardinal
κ. Suppose that r : X → Y is an embedding such that clY r[X] = Y and
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for each continuous function f : X → R, there is a continuous function
g : Y → R, such that g ◦ r = f. Since πα � X : X → R is continuous
for every α < κ, there is a continuous function gα : Y → R, such that
gα ◦ r = πα � X, for every α < κ.

We are going to prove that r[X] = Y. Define F : Y → Rκ by

πα(F (y)) = gα(y),

for every y ∈ Y and every α < κ. Then F is continuous. Now, take x ∈ X.
Then

πα(F (r(x))) = gα(r(x)) = πα(x).

Therefore F (r(x)) = x for every x ∈ X. We also have

F [Y ] = F [cl r[X]] ⊆ clF [r[X]] ⊆ clX = X.

Therefore F : Y → X. Observe that r(F (r(x))) = r(x) for every x ∈ X.
Then r◦F : Y → Y, when restricted to r[X] coincides with idr[X]. Since r[X]
is dense in Y, r ◦F = idY . Therefore, Y = r[F [Y ]] ⊆ r[X]. Hence Y = r[X].
By definition 3.17, X is realcompact.

Corollary 3.20. Every closed subspace of a realcompact space is realcom-
pact.

Corollary 3.21. The arbitrary product of realcompact spaces is realcom-
pact.

Corollary 3.22. Let X be a topological space and let {As : s ∈ S} be a
family of subspaces of X. If As is realcompact for every s ∈ S, then ∩s∈SAs
is realcompact.

Corollary 3.23. If f : X → Y is a continuous function of a realcompact
space to a space Y, then for every realcompact subspace B of Y , the inverse
image f←[B] is realcompact.

The next theorem provides us a useful characterization of realcompact
spaces.

Theorem 3.24. [17] A space X is realcompact if and only if for every point
p ∈ βX \ β[X] there exists a continuous function h : βX → [0, 1] such that
x ∈ h←[{0}] ⊆ βX \ β[X].
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Proof. Let X be a realcompact space and suppose that x0 ∈ βX \β[X]. The
function e : X → Y = β[X] ∪ {x} defined by e(x) = β(x) is an embedding
satisfying condition 1 in definition 3.17. Since X is realcompact, there is a
continuous function f : X → R not satisfying condition 2 in 3.17.

Define g1(x) = 1 + max{f(x), 0} and g2(x) = 1−min{f(x), 0}. Clearly,
gi : X → R are continuous for i ∈ {1, 2}.

Suppose that there are continuous functions Gi : Y → R such that
Gi ◦ e = gi for i ∈ {1, 2}. Define F = (G1 − G2) : Y → R. Now, it is
easy to see that F ◦ e = f. Then f satisfies condition 2 in 3.17, which is a
contradiction.

Without loss of generality, we can suppose that g1 does not satisfy con-
dition 2 in 3.17. Define g = 1/g1 : X → [0, 1]. Observe that βg(x) ≥ 0 for
every x ∈ X.

If βg(x0) > 0, define h : Y → R by h(x) = 1/(βg(x)) for every x ∈ Y.
Then h(e(x)) = 1/(βg(e(x))) = 1/g(x) = g1(x) for every x ∈ Y. Therefore
h ◦ e = g1, which is a contradiction. Therefore, βg(x0) = 0.

Now, suppose that for every point z ∈ βX\β[X] there exists a continuous
function hz : βX → [0, 1] such that z ∈ h←z [{0}] ⊆ βX \ β[X]. Then X =
∩{h←z [(0, 1]] : z ∈ βX \ β[X]}. By 3.22 and 3.23, X is realcompact.

Theorem 3.25. For every space X there is a unique (up to homeomor-
phism) realcompact space υX which satisfies the following two conditions:

1. There exists an embedding υ : X → υX such that clυX υ(X) = υX.

2. For every continuous function f : X → R there exists a continuous
function υf : υX → R such that υf ◦ υ = f.

The space υX also satisfies the following condition:

3. For every continuous function f : X → Y of X to a realcompact space
Y, there is a continuous function f̃ : υX → Y such that f̃ ◦ υ = f.

Proof. Let αR be the one point compactification of R.
Let f : X → R be a continuous function and take the only continuous

function βf : βX → αR such that βf ◦ β = f. Observe that β[X] ⊆
(βf)←[R]. Define υX = ∩{(βf)←[R] : f ∈ C(X,R)}.

The function υ : X → υX, defined by υ(x) = β(x) for every x ∈ X, is a
embedding such that clυX υ[X] = υX.

Now, if f0 : X → R is a continuous function, υX ⊆ (β(f0))
←[R]. There-

fore, β(f0) � υX : υX → R. Define υf = β(f0) � υX. It is easy to see that
υf ◦ υ = f. Hence υX satisfies conditions 1 and 2.
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To see that υX satisfies condition 3, let Y be a realcompact space and
f : X → Y be a continuous function. There is an embedding e : Y → Rκ
such that e[Y ] is closed in Rκ for some cardinal κ.

Observe that for each α < κ, πα ◦ e◦ f : X → R is a continuous function.
Then, υ(πα ◦ e ◦ f) : υX → R is a continuous function such that υ(πα ◦ e ◦
f) ◦ υ = πα ◦ e ◦ f. Then we can define F : υX → Rκ by

πα(F (p)) = (υ(πα ◦ e ◦ f))(p)

for every p ∈ υX and every α < κ.
If x ∈ X, then

παF ((υ(x))) = υ(πα ◦ e ◦ f)(υ(x)) = πα(e(f(x))).

Therefore F (υ(x)) = e(f(x)) for every x ∈ X and F [υ[X]] ⊆ e[Y ]. Hence

F [υX] = F [cl υ[X]] ⊆ clF [υ[X]] ⊆ cl e[Y ] = e[Y ].

Then F : υX → e[Y ]. Define G = e← ◦ F : υX → Y. Now it is easy to
see that G ◦ υ = f.

Suppose that υ1X is a realcompact space that satisfies conditions 1 and 2.
As in the proof for υX, we can see that υ1X satisfies condition 3. Therefore,
there are continuous functions f : υX → υ1X and g : υ1X → υX such that
f ◦ υ = υ1 and g ◦ υ1 = υ. Therefore, f ◦ g � υ1[X] = idυ1X � υ1[X]. Since
υ1[X] is dense in υ1X, f ◦ g = idυ1X . Analogously, g ◦ f = idυX . Therefore
f = g← and f is a homeomorphism.

The space υX is called the Hewitt realcompactification of X.
Another way to see υX is the following.

Corollary 3.26. Let X be a space. Then

υX ∼= ∩{T ⊆ βX : T is realcompact and β[X] ⊆ T}.

Proof. Define

υ1X = ∩{T ⊆ βX : T is realcompact and β[X] ⊆ T}.

By 3.22, υ1X is realcompact. Let υ1 : X → υ1X be defined by υ1(x) = β(x)
for every x ∈ X. Then υ1 is an embedding such that clυ1X υ1[X] = υ1X.

Let f : X → R be a continuous function and take the only continuous
function βf : βX → αR such that βf ◦ β = f. Observe that β[X] ⊆
(βf)←[R]. By 3.23, (βf)←[R] is realcompact. Then υ1X ⊆ (βf)←[R].

Therefore, βf � υ1X : υ1X → R.
Let υ1f = βf � υ1X. It is easy to see that υ1f ◦ υ1 = f. Hence υ1X

satisfies conditions 1 and 2 of Theorem 3.25. Hence, υ1X ∼= υX.
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Definition 3.27. The statement X ⊆ Y is Gδ-dense in Y means that each
nonempty Gδ-set in Y contains a point in X.

Since every nonempty Gδ subset contains a nonempty zero set and every
zero set is Gδ, then X ⊆ Y is Gδ-dense in Y if and only if every nonempty
zero set in Y meets X.

We are going to see a characterization of Lindelöf spaces which will be
useful to the subsequent theorem.

Proposition 3.28. [39] The following are equivalent for a topological space
X.

1. X is Lindelöf;

2. for every compactification bX of X and every compact K ⊆ bX \ X,
there is a Gδ subset G such that K ⊆ G ⊆ bX \X;

3. there is a compactification bX of X such that for every compact K ⊆
bX \X, there is a Gδ subset G such that K ⊆ G ⊆ bX \X.

Proof. (1)⇒ (2) Assume that X be a Lindelöf space, bX ∈ K(X) and K is
a compact subset of bX \X. For every x ∈ X, there are open disjoint subsets
Ux, Vx in bX such that x ∈ Ux and K ⊆ Vx. Then X ⊆ ∪{Ux : x ∈ X}. Since
X is Lindelöf, there is a countable subset Y ⊆ X, such that X ⊆ ∪{Ux : x ∈
Y }. Hence, G = ∩{Vx : x ∈ Y } is a Gδ subset such that K ⊆ G ⊆ bX \X.

Suppose (3). Let {Vs : s ∈ S} be an open cover of X. For each s ∈ S,
there is an open subset Us of bX such that Vs = Us ∩X. If bX = ∪{Us : s ∈
S} then there is a finite subcover of X. Suppose that K = bX \ (∪{Us : s ∈
S}) is nonempty. By hypothesis, there is a countable collection {Wn : n ∈ ω}
of open subsets of bX such that K ⊆ ∩n∈ωWn ⊆ bX \X. Observe that for
each n ∈ ω, bX\Wn is compact and is contained in ∪{Us : s ∈ S}. Therefore,
there exists a finite collection Sn ⊆ S such that bX \Wn ⊆ ∪{Us : s ∈ Sn}.
Define T = ∪{Sn : n ∈ ω}. It is easy to see that X ⊆ ∪{bX \Wn : n ∈ ω} ⊆
∪{Us : s ∈ T}. Observe that T is countable and X ⊆ ∪{Vs : s ∈ T}. Hence,
X is Lindelöf.

Theorem 3.29. Every Lindelöf space is realcompact.

Proof. Take a Lindelöf space X. Suppose that p ∈ βX\β[X]. By Proposition
3.28, there is a Gδ subset G such that such that {p} ⊆ G ⊆ βX \ β[X]. By
Theorem 3.24, X is realcompact.

Corollary 3.30. Let X be a space, then υ[X] is Gδ-dense in υX.
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Proof. Suppose that f : βX → [0, 1] is a continuous function such that
Z(f) ∩ υ[X] is empty.

Then βX \ Z(f) = f←[R \ {0}]. Since R \ {0} is Lindelöf, by 3.29, it is
realcompact. By 3.23, βX \Z(f) is realcompact. By 3.25, υX ⊆ βX \Z(f),
therefore Z(f) ∩ υX is empty.

Theorem 3.31. [37] Let X be a space and p ∈ βX. Then the following are
equivalent.

1. p ∈ βX \ υX.

2. There is a zero set Z in βX such that p ∈ Z and Z ∩ β[X] = ∅.

Proof. Suppose that p ∈ βX \ υX. By the construction of υX in 3.25,
there is a continuous function f : X → R such that βf(p) ∈ αR \ R,
where αR = R ∪ {y} is the one point compactification of R, y 6∈ R and
βf : βX → αR is the unique continuous function such that βf ◦ β = f.

It is easy to verify that the function g : αR → R, defined by g(y) = 0
and g(x) = 1/x for every x ∈ R, is continuous.

Therefore p ∈ (g ◦ βf)←[{0}]. Let Z = (g ◦ βf)←[{0}]. Since υX ⊆
(βf)←[R], Z ⊆ βX \υX. Therefore, Z ∩β[X] = ∅ and Z is a zero set in βX.

Suppose that there is a zero set Z in βX such that p ∈ Z and Z∩β[X] =
∅. By corollary 3.30, Z ∩ υX is empty. Therefore p ∈ βX \ υX.

3.3 Pseudocompact spaces

A space X is pseudocompact if every real-valued continuous function is
bounded.

Proposition 3.32. [23] A space X is pseudocompact if and only if X is
Gδ-dense in βX.

Proof. If X is pseudocompact, υX is pseudocompact, then υX is compact,
then closed in βX. Hence υX = βX. By 3.30, X is Gδ-dense in βX.

Now, suppose that f : X → R is a continuous unbounded function.
Define g(a) = max{1, f(a)} for every a ∈ X. Then g : X → R is a continuous
unbounded function such that Z(g) = ∅ and 1/g : X → [0, 1] is continuous.
There is a continuous extension H : βX → [0, 1] such that H � X = 1/g.
Take n ∈ ω. There is x ∈ X, such that g(x) > n, then x ∈ H←[[0, 1/n+ 1]]
and we proved that {H←[0, 1/m + 1] : m ∈ ω} has the finite intersection
property. Since H←[0, 1/m + 1] is compact for each m ∈ ω}, Z(H) is
nonempty, but, Z(H) ∩X = ∅. Therefore X is not Gδ-dense in βX
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Observe that if X is Gδ-dense in βX, then X is Gδ-dense in every com-
pactification. Indeed, take a compactification aX of X. Then there is a con-
tinuous function f : βX → aX such that f ◦ β = a. If Z(g) is a nonempty
zero set in aX, since f is onto, then Z(g ◦ f) is a nonempty zero set in βX.
Hence, Z(g ◦ f) ∩ β[X] is nonempty and there is β(x) ∈ Z(g ◦ f) ∩ β[X].
Therefore, g(a(x)) = g(f(β(x))) = 0. Then Z(g) ∩ a[X] is nonempty. With
the same technique we can also prove that if aX and bX are two compact-
ifications of X such that aX ≤ bX and X is Gδ-dense in bX, then X is
Gδ-dense in aX.

Proposition 3.33. Let X be a space. If A ⊆ X is a pseudocompact space
and A ⊆ B ⊆ clX A, then B is pseudocompact.

Proof. Suppose that B \ A 6= ∅ and that f : B → [0,→) is a continuous
unbounded function. For every n ∈ ω, take xn ∈ A ∩ f←[(n,→)]. We can
do this because A is dense in B. Then f � A : A → [0,→) is a continuous
unbounded function.

Definition 3.34. Let X be a space. A family {Ys : s ∈ S} of subsets of X
is locally finite if for every x ∈ X, there is an open set U in X such that
x ∈ U and {s ∈ S : U ∩ Ys 6= ∅} is finite.

Proposition 3.35. [23] For a space X the following are equivalent:

1. X is pseudocompact.

2. Every locally finite family of nonempty open subsets of X is finite.

Proof. Suppose that {Un : n ∈ ω} is an infinite, locally finite family of
nonempty open subsets of X. For each n ∈ ω, take a point xn ∈ Un and a
continuous function fn : X → R such that fn(xn) = n and fn[X \Un] ⊆ {0}.
Define f : X → R by

f(x) = Σn∈ω|fn(x)|.

We are going to see that f is continuous. Take x0 ∈ X and ε > 0. There is
an open set U in X such that x0 ∈ U and M = {n ∈ ω : U∩Un 6= ∅} is finite.
For each i ∈M, there is an open setWi ⊆ X such that x0 ∈Wi and if y ∈Wi,
then |fi(y)− fi(x0)| < ε/|M |. Now, take a point x ∈ U ∩ (∩{Wi : i ∈ M}).
Then

|f(x)− f(x0)| = |Σn∈ω|fn(x)| − Σn∈ω|fn(x0)|| =

= |Σn∈M |fn(x)| − Σn∈M |fn(x0)|| = |Σn∈M (|fn(x)| − |fn(x0)|)|

≤ Σn∈M |fn(x)− fn(x0)| < |M | · ε/|M | = ε.
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Therefore f is continuous and unbounded.

Now suppose that f : X → R is a continuous unbounded function. Take
x0 ∈ X such that f(x0) > 0. For each n > 0 take a point xn such that
f(xn) > max{n, f(xn−1)}. It is easy to see that

{f←[(f(x2n−1), f(x2n+1))] : n ∈ ω, n > 0}

is an infinite, locally finite family of nonempty open subsets of X.

Definition 3.36. A subset A of a space X is regular closed if clX intX A =
A.

Corollary 3.37. If X is pseudocompact and A is regular closed in X, then
A is pseudocompact.

Proof. Let A = clX intX A. Suppose that U = {Un : n ∈ ω} is a locally
finite family of nonempty open subsets of A. For each n ∈ ω, let Vn be
an open subset of X such that Un = Vn ∩ A. Since Vn ∩ A is nonempty,
Wn = Vn ∩ intX A 6= ∅ for each n ∈ ω. Then W = {Wn : n ∈ ω} is a
family of nonempty open subsets of X. We are going to see thatW is locally
finite in X. If x ∈ A, there is an open subset U in X such that x ∈ U and
M = {n ∈ ω : U ∩Un 6= ∅} is finite. If U ∩Wm is nonempty, then U ∩Vm∩A
is nonempty. Thus, U ∩ Um is nonempty and m ∈ M. Hence W is locally
finite in X.

Since X is pseudocompact, W is finite, and so is U .

Mrówka spaces will be used to construct examples in this thesis.

Definition 3.38. A family A of infinite subsets of ω is almost disjoint if
the intersection of any two distinct members of A is finite. A family A of
infinite subsets of ω is maximal almost disjoint if for every infinite subset A
of ω, there is B ∈ A such that A ∩B is finite.

Example 3.39. There is a maximal almost disjoint family of cardinality
2ω.

Enumerate the rationals Q = {q1, q2, . . .}. For each irrational number
p ∈ R \Q, let Sp = {qnp1 , qnp2 , . . .} be a pairwise distinct sequence of rational

numbers converging to p. Define Ap = {np1, n
p
2, . . .}. Since Ap ∩ At is finite

whenever p, t ∈ R \ Q satisfy p 6= t, the family B = {Ap : p ∈ R \ Q} is
almost disjoint of cardinality |R|.

Now, let A = {A ⊆ P(ω) : A is an almost disjoint family on ω and
B ⊆ A}. Then A is non empty.
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Let C be a chain in (A,⊆). It is easy to see that ∪C is an almost disjoint
family on ω. By Zorn’s Lemma, A has a maximal element C. Then C is a
maximal almost disjoint family of cardinality 2ω.

Example 3.40 (Mrówka spaces). LetA be an almost disjoint family. Define

Ψ(A) = A ∪ ω.

Generate a topology on Ψ(A) in the following way: For every n ∈ ω, {n} is
a basic neighborhood of n in Ψ(A). If A ∈ A and F is a finite subset of A
then {A} ∪ (A \ F ) is a basic neighborhood of A in Ψ(A).

It is easy to see that Ψ(A) is a Hausdorff, locally compact and zero
dimensional space such that ω is dense in Ψ(A).

Proposition 3.41. Let A be an almost disjoint family. Then Ψ(A) is pseu-
docompact if and only if A is a maximal almost disjoint family.

Proof. Suppose that A is a maximal almost disjoint family and let Z =
{Zn : n ∈ ω} be an infinite locally finite family of nonempty open subsets
of Ψ(A). Let z0 ∈ Z0 ∩ ω. Since Z is locally finite, M0 = {n ∈ ω : z0 ∈ Zn}
is finite.

Now, let m > 0 and suppose that for each 0 < q < m we have defined
pq, zq ∈ ω and Mq ⊆ ω such that:

1. pq ∈ ω \ ∪{Mr : r < q}.

2. zq ∈ Zpq ∩ ω.

3. Mq = {n ∈ ω : zq ∈ Zn}.

Let pm ∈ ω \ ∪{Mq : q < m}. Choose zm ∈ Zpm ∩ ω and let Mm = {n ∈
ω : zm ∈ Zn}. Then, it is easy to see that pm, zm and Mm satisfy conditions
1, 2, and 3.

Therefore Z = {zm : m ∈ ω} is an infinite subset of ω.
Since A is a maximal almost disjoint family, there is A ∈ A such that

A∩Z is infinite. Let F be a finite subset of A. Then (A \F )∩Z is infinite.
Therefore {A} ∪ (A \ F ) is a basic neighborhood of A such that ({A} ∪

(A \ F )) ∩ Zpm 6= ∅ for every zm ∈ (A \ F ) ∩ Z.
Hence, Z is not locally finite in A, which is a contradiction. Then, every

locally finite family of nonempty open subsets of Ψ(A) is finite. By Theorem
3.35, Ψ(A) is pseudocompact.

Now, suppose that A is an almost disjoint family not maximal. There is
an infinite subset A ⊆ ω, such that A ∩B is finite for every B ∈ A.
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Hence Z = {{n} : n ∈ A} is an infinite locally finite family of open
subsets in ψ(A).

Indeed, if B ∈ A, then V = {B} ∪B \A is an open subset of ψ(A) such
that {n ∈ ω : n ∈ V } is empty.





Chapter 4

Weakly pseudocompact
spaces

Definition 4.1. [21] A space X is weakly pseudocompact if there is a com-
pactification (aX, a) of X such that a[X] is Gδ-dense in aX.

Then every pseudocompact space is weakly pseudocompact. In this
chapter we will identify a[X] to X whenever (aX, a) is a compactification
of X.

Theorem 4.2. [21] Every weakly pseudocompact space is Baire.

Proof. Assume that X is Gδ-dense in the compactification aX. Let {Un :
n ∈ ω} be a collection of open dense subsets of X and let U be a nonempty
open subset of X. For each n ∈ ω, there is an open set Vn in aX, such that
Un = Vn ∩X and there is an open set V in aX such that U = V ∩X. Then
{Vn : n ∈ ω} is a countable collection of open dense subsets of aX. Since aX
is Baire, D = ∩{Vn : n ∈ ω} is dense in aX. Therefore D ∩ V is nonempty
and observe that D ∩ V is a Gδ subset of aX. By hypothesis, D ∩ V ∩X is
nonempty, hence U ∩ (∩{Un : n ∈ ω}) is nonempty.

Theorem 4.3. [21] The product of weakly pseudocompact spaces is weakly
pseudocompact.

Proof. Observe that if Xs is Gδ-dense in Ys for each s ∈ S, then X = Πs∈SXs

is Gδ dense in Y = Πs∈SYs. Indeed, take a countable collection {Un : n ∈ ω}
of open subsets of Y such that G = ∩{Un : n ∈ ω} is nonempty. Let
y = {ys}s∈S ∈ G. For each n ∈ ω, there exists a finite subset Fn ⊆ S

77
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such that for every s ∈ Fn, there is an open subset V n
s in Ys such that

y ∈ ∩s∈Fnπ←s [V n
s ] ⊆ Un.

Let s ∈ S. If s ∈ S \ (∪n∈ωFn), take xs ∈ XS , otherwise define Gs =
∩{V n

s : s ∈ Fn}. Since ys ∈ Gs, Gs is a nonempty Gδ subset of Ys. By
hypothesis, there is xs ∈ Gs ∩Xs. Take x = {xs}s∈S . Now it is easy to see
that x ∈ G ∩X.

Proposition 4.4. [21] If X is weakly pseudocompact and Lindelöf then X
is compact.

Proof. Assume that X is Lindelöf and let bX be a compactification of X. If
p ∈ bX \X, by 3.28, there is a Gδ subset G in bX such that p ∈ G ⊆ bX \X,
then X is not Gδ-dense in bX.

The next theorem give us a characterization of weakly pseudocompact-
ness in locally compact spaces.

Theorem 4.5. [21] For a locally compact space X, the following statements
are equivalent.

1. X is weakly pseudocompact;

2. X is Gδ-dense in its one point compactification;

3. X is either compact or is not Lindelöf.

Proof. Suppose that there is a compactification bX of X such that X is Gδ-
dense in bX. Let αX be the one point compactification of X. Since αX ≤ bX,
X is Gδ-dense in αX. Hence, 1 implies 2.

By definition, 2 implies 1, and by Proposition 4.4, 1 implies 3.

If X is not Gδ-dense in its one point compactification, αX \X is a Gδ
subset of αX, hence X is σ-compact and X is Lindelöf.

The next example shows that the classes of pseudocompact spaces and
weakly pseudocompact spaces are different.

Example 4.6. Let A be an uncountable almost disjoint family on ω which is
not maximal. Then the Mrówka space ψ(A) is locally compact not Lindelöf.
Therefore, ψ(A) is weakly pseudocompact non-pseudocompact.

The next theorem studies open subsets of weakly pseudocompact spaces.

Theorem 4.7. [17] If X is weakly pseudocompact and U is an open subspace
of X, then U is either weakly pseudocompact or locally compact Lindelöf.
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Proof. If U is locally compact and not Lindelöf, then U is weakly pseudo-
compact.

Assume that U is not locally compact. Let bX be a compactification of
X such that X is Gδ-dense in bX. Let W be an open subset of bX such that
U = W ∩X. Define K = bX \W and take p ∈W \U. We are going to prove
that U is Gδ dense in the quotient space bX/(K ∪ {p}).

Let G be a nonempty Gδ subset of bX/(K∪{p}) and π : bX → bX/(K∪
{p}) the natural projection.

We have two cases. If K ∪ {p} ⊆ π←[G], then π←[G] \ K is a Gδ
subset in bX and contains p. There is x ∈ X ∩ π←[G] \ K ⊆ U. Hence
π(x) ∈ G ∩ π[U ] = G ∩ U.

If (K∪{p})∩π←[G] = ∅, then π←[G] ⊆W. There is x ∈ X∩π←[G] ⊆ U.
Hence π(x) ∈ G ∩ π[U ] = G ∩ U.

Also, Eckertson asked the following questions.

Questions 4.8. 1. If K is compact and X×K is weakly pseudocompact,
must X be weakly pseudocompact?

2. Is weak pseudocompactness an invariant of perfect maps?

3. Is weak pseudocompactness an inverse invariant of perfect open maps?

4. Can a finite product of non-compact Lindelöf spaces ever be weakly
pseudocompact?

5. Are the uncountable products ωω1 ,Rω1 and Sω1 , where S is the Sor-
genfrey line, weakly pseudocompact spaces?

In this thesis we improve some of the previous theorems. In Section 4.1,
we study locally pseudocompact spaces and the concept of simple pseudo-
compactness is introduced, some properties of simple pseudocompact spaces
and relations to weakly pseudocompactness are studied. In Section 4.2, we
introduce the concept of k-embedded subspace. In Section 4.3, we give a par-
tial answer to the following question: If Cone(X) is weakly pseudocompact
and it is not compact, must X be weakly pseudocompact? (see Theorem
4.60 below). In Section 4.4, we give a positive answer to the question: If
X×Z is weakly pseudocompact and Z is compact, must X be weakly pseu-
docompact? And using this result, we found weakly pseudocompact spaces
whose Hewitt realcompactifications are not weakly pseudocompact. And,
in Section 4.5, we prove the main result of this chapter by giving a charac-
terization of weakly pseudocompact spaces in terms of regular subrings of
C∗(X).
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4.1 Locally pseudocompact spaces

A space X is locally pseudocompact if every point of X has a pseudocompact
neighborhood.

Observe that if P is a topological property which is inherited by regular
closed subsets and such that every pseudocompact space with P is compact,
then every locally pseudocompact space with P is locally compact.

There are zero-dimensional countably compact spaces which are not lo-
cally compact; an example is provided by that given by Froĺık see [19, Ex-
ample 3.10.19]:

Example 4.9. Let f : [βω]ω → βω be a function such that f(A) is an
accumulation point of A in βω for each A ∈ [βω]ω. Define X0 = ω and

Xα = (∪γ<αXγ) ∪ f [[∪γ<αXγ ]ω]

if 0 < α < ω1. Observe that X = ∪α<ω1Xα is countably compact and its
cardinality is less than or equal to 2ω. Since all infinite closed subsets of βω
have cardinality 22

ω
(Theorem 3.3, [43]), X is countably compact and it is

not locally compact.

Definition 4.10. A subset B of a space X is called bounded in X if for
every continuous function f : X → R, f [B] is bounded in R. And a space
X is locally bounded if every point has a bounded neighborhood in X.

The following lemma is a characterization of the bounded subsets of a
space X.

Lemma 4.11. [21] For A ⊆ X, the following are equivalent:

1. A is bounded in X and

2. clβX A ⊆ υX.

Proof. Suppose that there exists p ∈ clβX A \ υX. By 3.31, there is a con-
tinuous function f : βX → [0, 1] such that f(p) = 0 and f(x) > 0 for every
x ∈ X. Therefore 1/f � X : X → [0, 1] is a continuous function. For each
n ∈ ω, take a point xn ∈ A ∩ f←[[0, 1/n)]. We can see that 1/f(xn) > n.
Then 1/f is unbounded on A.

Suppose that clβX A ⊆ υX. Let f : X → R be a continuous function.
There exists a continuous function υf : υX → R such that υf � X = f.
Then υf � clβX A : clβX A → R is a continuous function. Since clβX A is
compact, υf � clβX A is bounded. Therefore f � A = υf � A is bounded.
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A pseudocompact space X is a pseudocompactification of a space Y if
there is an embedding λ : Y → X such that λ[Y ] is dense in X.

Definition 4.12. [4] For a space X define α0X = X ∪ (βX \ υX).

Theorem 4.13. [4] The space α0X is a pseudocompactification of X.

Proof. Suppose that there is a zero set Z ⊆ β(α0X) = βX such that Z ∩
α0X = ∅. Then Z ⊆ υX\X. Hence Z is a zero set in υX such that Z∩X = ∅,
by 3.30, Z = ∅. Therefore, every nonempty zero set in β(α0X) meets α0X,
by 3.32, α0X is pseudocompact.

Definition 4.14. [29] For a space X define ζX = X ∪ (βX \ intβX υX).

Theorem 4.15. [29] The space ζX is a pseudocompactification of X.

Proof. Observe that α0X ⊆ ζX ⊆ βX. By 3.33, ζX is pseudocompact.

There is a nice characterization of locally pseudocompact spaces.

Theorem 4.16. [15, Dorantes, Tamariz] For a space X, the following state-
ments are equivalent:

1. X is locally pseudocompact;

2. X ⊆ intβXυX;

3. X and βX \ intβX υX are disjoint;

4. ζX \X is compact;

5. X has a pseudocompactification with compact remainder;

6. X is open in some pseudocompactification;

7. X is locally bounded;

8. there is a locally compact space Y such that X ⊆ Y ⊆ υX;

9. X is an open subset of a pseudocompact space.

Proof. (6) ⇒ (1). Let bX be a pseudocompactification of X with a closed
remainder and let x ∈ X. There is a continuous function f : bX → [0, 1]
such that f(x) = 0 and f [bX \X] ⊆ {1}. The set C = f←[[0, 1/2)] is open
in bX and clbX C is pseudocompact because pseudocompactness is inherited
by regular closed subsets. Since clX C = clbX C ∩X and clbX C ⊆ X, then
C is an open neighborhood of x with pseudocompact closure in X.
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It is easy to see that (1)⇒ (7),(5)⇒ (6), (3)⇔ (2)⇔ (8) and (6)⇔ (9).

(7) ⇒ (2): Let x ∈ X. There exists an open subset U ⊆ X such
that U ⊆ N ⊆ X and N is bounded in X. By lemma 4.11, clβX U ⊆ υX.
Observe that there is an open subset W in βX, such that U = W ∩ X,
and W ⊆ clβXW = clβX U ⊆ υX. Therefore, x ∈ W ⊆ intβX υX. Hence,
X ⊆ intβX υX.

(3)⇒ (4). Observe that βX \ intβX υX is compact and ζX \X = βX \
intβX υX.

(4)⇒ (5). By 4.15, ζX is a pseudocompactification of X, by hypothesis,
the remainder ζX \X is compact.

As a consequence of the previous theorem and Theorem 4.7, we obtain
Corollary 3.6 in [35]:

Corollary 4.17. If X is locally pseudocompact, then X is weakly pseudo-
compact or locally compact Lindelöf.

The next corollary improves Proposition 1.1 in [17].

Corollary 4.18. If X is locally pseudocompact, then X is weakly pseudo-
compact if and only if either X is compact or X is not Lindelöf

Proof. If X is locally pseudocompact non-Lindelöf, then X is weakly pseu-
docompact (Corollary 4.17). If X is weakly pseudocompact Lindelöf, by
Corollary 4.4, X is compact.

Example 4.19. [15, Dorantes, Tamariz] A weakly pseudocompact space
which is zero-dimensional, locally pseudocompact and it is not locally com-
pact: Let A be an almost disjoint family in ω which is not maximal and
of cardinality > ℵ0. Let S be a zero-dimensional countably compact space
which is not locally compact (see Example 4.9). Let X = A ∪ (ω × S).
We will consider the topology τ in X generated by the following system of
basic neighborhoods. A basic neighborhood of a point A ∈ A is of the form
{A} ∪ (B × S) where B ⊆ A and A \ B is finite. A basic neighborhood of
a point (n, s) ∈ ω × S is of the form {n} × U where U is an open subset
of S with s ∈ U. Then (X, τ) is a zero-dimensional, locally pseudocompact,
non-pseudocompact, non-Lindelöf space which is not locally compact. By
Corollary 4.18, (X, τ) is weakly pseudocompact.

A compactification bX of a space X is simple if there is a compact subset
K ⊆ βX \X such that bX is equivalent to βX/K.
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Definition 4.20. [15, Dorantes, Tamariz] A space X is simple pseudocom-
pact if X is Gδ-dense in some simple compactification.

We will say that (K(X),≤) is a b-lattice if the simple compactifications
of X are dense in (K(X),≤); that is, if for each bX ∈ K, there is a compact
set K ⊆ βX\X such that βX/K ≤ bX. Observe that if X is locally compact
then K(X) is a b-lattice.

Proposition 4.21. [15, Dorantes, Tamariz] If K(X) is a b-lattice, then X
is weakly pseudocompact if and only if X is simple pseudocompact.

Proof. If X is weakly pseudocompact, then X is Gδ-dense in some com-
pactification Y. Then, there is a compact subset K ⊆ βX \ X such that
βX/K ≤ Y. Therefore, X is Gδ-dense in βX/K. The inverse implication is
obvious.

Theorem 4.22. [15, Dorantes, Tamariz] Let X be a non-compact space.
The space X is simple pseudocompact if and only if there exists a compact
K ⊂ βX \X such that K is not a Gδ-subset of βX and if ∅ 6= H ⊆ βX is
a Gδ-subset in βX such that H ∩K = ∅, then H ∩X 6= ∅.

Proof. First we are going to prove the necessity. There is a compact set
K ⊂ βX \X such that X is Gδ-dense in Y = βX/K. Let π : βX → Y be
the natural projection. If K is a Gδ-subset of βX, then Y \ π[βX \ K] is
a nonempty Gδ-subset in Y whose intersection with X is empty. Then K
is not a Gδ-subset of βX. Let H ⊆ βX be a nonempty Gδ-subset disjoint
from K. Then π[H] is a Gδ-subset in Y . Hence, π[H] ∩X is nonempty and
therefore H intersects X.

Now we are going to prove the sufficiency. Let K ⊆ βX \ X be a
compact subspace that satisfies the hypotheses. Let π : βX → Y = βX/K
be the natural projection and U ⊆ Y a nonempty Gδ-subspace. We have two
choices: K ⊂ π←[U ] or π←[U ]∩K = ∅. In either case the setHK = π←[U ]\K
is a nonempty Gδ-subset such that HK∩K = ∅. By hypothesis, HK∩X 6= ∅,
hence U ∩X 6= ∅.

Corollary 4.23. If X is simple pseudocompact, then X is locally pseudo-
compact.

Proof. Let K ⊆ βX \X be a compact subspace that satisfies the hypotheses
of the last theorem and take y ∈ βX \K. Take a Gδ-subset H ⊆ βX such
that y ∈ H. Then H \K is a nonempty Gδ-subset whose intersection with K
is empty. Hence, (H \K)∩X 6= ∅ and H ∩X 6= ∅. Therefore, βX \K ⊆ υX.
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Since X ⊆ βX \ K, then X ⊆ intβX υX. Now, by applying Theorem 4.16
we finish our proof.

Thus, ωω1 , Rω1 and Sω1 are not simple pseudocompact. As a consequence
of the next corollary we obtain Theorem 3.2 in [17].

Corollary 4.24. If X is not locally pseudocompact and K(X) is a b-lattice,
then X is not weakly pseudocompact.

We know that X = D(ω1)
ω is weakly pseudocompact. The absolute

E(X) is a realcompact space which is not locally compact and so, it is
not locally pseudocompact. By [17, Theorem 3.3], K(E(X)) is a b-lattice.
Applying the previous corollary, we conclude that E(X) is not weakly pseu-
docompact (see Example 3.5 in [17]).

Corollary 4.24 does not help us to answer question 4.8.(5) because, as
we are going to see below K(ωω1), K(Rω1) and K(Sω1) are not b-lattices.

What we already have is summarized in the following diagram.

A simple pseudocompact space is locally pseudocompact and weakly
pseudocompact, but must a weakly pseudocompact locally pseudocompact
space be simple pseudocompact? The answer is in the affirmative.

Theorem 4.25. [15, Dorantes, Tamariz] If X is pseudocompact and U
is an open subspace of X such that X ⊆ βU. Then, U is either simple
pseudocompact or locally compact Lindelöf.

Proof. If U is locally compact and it is not Lindelöf, then U is Gδ-dense in
its one point compactification. Then U is simple pseudocompact.

Now, suppose that U is not locally compact. Let W ⊆ βX = βU be an
open subspace such that U = W ∩ X and let K = βU \W. Take a point
p ∈W \U. Since X is pseudocompact, X is Gδ-dense in βX. So, {p} is not
a Gδ-subset of βX = βU . Then, U is Gδ-dense in βU/(K ∪ {p}).
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Corollary 4.26. Let X be a topological space. Then the following are
equivalent.

1. X is simple pseudocompact;

2. X is either compact or locally pseudocompact non-Lindelöf;

3. X is locally pseudocompact weakly pseudocompact.

Proof. By definition and Corollary 4.23, (1)⇒ (3).
Now, suppose that X is locally pseudocompact and non-Lindelöf. Let

ζX = X ∪ (βX \ intβX υX). By Theorem 4.15, ζX is pseudocompact.
Observe that X is open in cX and the last theorem applies. Since X is not
Lindelöf, X is simple pseudocompact. This proves (2)⇒ (1).

By Corollary 4.18, it follows that (2) is equivalent to (3).

So, the free topological sum of ω1 copies of R is simple pseudocompact.
The Sorgenfrey line is not simple pseudocompact because it is not locally
pseudocompact. Moreover, if A is a non-maximal almost disjoint family on
ω of uncountable cardinality, then the Mrówka-Isbell space ψ(A) is a simple
pseudocompact space which is not pseudocompact.

When dealing with perfect functions, local pseudocompactness behaves
similarly to local compactness.

Theorem 4.27. Let f : X → Y be a perfect function between topological
spaces. If X is locally pseudocompact then Y is locally pseudocompact.

Proof. Let X be a locally pseudocompact space. Take y ∈ Y. For every
x ∈ f←[{y}], there is an open subset Ux ⊆ X such that x ∈ Ux and clX Ux
is pseudocompact. Then there is a finite subset {x1, . . . , xn} ⊆ f←[{y}]
such that f←[{y}] ⊆ ∪ni=1Uxi = W. Then clXW is pseudocompact and
y ∈ Y \ f [X \ W ] ⊆ f [clXW ]. Since pseudocompactness is hereditary to
regular closed sets, clY (Y \ f [X \W ]) is pseudocompact. Therefore, Y is
locally pseudocompact.

Corollary 4.28. Let f : X → Y be a perfect function between topological
spaces. If X is simple pseudocompact then Y is simple pseudocompact.

In the last theorem, we cannot drop the condition that f is closed. Ex-
ample 3.1 in [17] will help us to see this:

Example 4.29. [15, Dorantes, Tamariz] Consider the spaces Y = ωω and
X = (ωω×{ω})∪ (∪n<ω(ωn×{n})) as a subspace of K = (ωω+1)× (ω+1).
The projection π : X → Y defined as π(α, β) = α is open, continuous and
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has compact fibers. The space X is locally compact non-Lindelöf; then, it is
simple pseudocompact. But Y is Lindelöf non-compact, therefore it is not
weakly pseudocompact.

Theorem 4.30. Let f : X → Y be an open perfect function from X onto a
locally pseudocompact space Y. Then X is locally pseudocompact.

Proof. Let x ∈ X. There is an open set U ⊆ Y such that f(x) ∈ U and
clY U is pseudocompact. There is an open set V ⊆ X such that x ∈ V and
f [V ] ⊆ U. Then Z = clY f [V ] is pseudocompact. We are going to prove that

g = f � f←[Z]

is an open, perfect function onto its image.

If W is an open subset of f←[Z], then there is an open subset W ′ ⊆ X
such that W = W ′∩f←[Z]. Then f [W ] = f [W ′]∩Z. Indeed, if z ∈ f [W ′]∩Z,
there exists x ∈W ′ such that f(x) = z. Then x ∈W ′∩f←[Z], and z ∈ f [W ].
Hence g is open. Since f←[Z] is closed, g is perfect onto its image. By [19,
3.10.H], f←[Z] is pseudocompact. Observe that x ∈ V ⊆ clX V ⊆ f←[Z].
Since clX V is a regular closed subset of f←[Z], it is pseudocompact. In
conclusion, X is locally pseudocompact.

Corollary 4.31. Let f : X → Y be an open perfect function from X onto
a simple pseudocompact space Y. Then X is simple pseudocompact.

We know that the product of two pseudocompact spaces is not necessarily
pseudocompact. Thus, the following proposition is interesting.

Proposition 4.32. [15, Dorantes, Tamariz] Let Z be a locally compact
space. If X is simple pseudocompact and is not compact, then X × Z is
simple pseudocompact and is not compact. If, in addition, Z is Lindelöf,
then the converse is also true.

Proof. In this proof, Corollary 4.26 will be used.

Suppose that Z is locally compact and X is simple pseudocompact and it
is not compact. Then X×Z is locally pseudocompact and it is not Lindelöf;
so, X × Z is simple pseudocompact and non-compact.

Now assume that X×Z is simple pseudocompact and that Z is Lindelöf.
Thus, X is locally pseudocompact. If X is Lindelöf, then X ×Z is Lindelöf
because Z is σ-compact. Since X × Z is weakly pseudocompact, X × Z is
compact and this leads to a contradiction. ThenX is not Lindelöf. Therefore
X is simple pseudocompact.
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Proposition 4.33. Let X = Πs∈SXs be a topological product. If X is
locally pseudocompact then:

1. all but finitely many Xs are pseudocompact; and

2. each Xs is locally pseudocompact.

In addition, if X is a non-compact simple pseudocompact space, then
we have (1), (2) and

3. some Xs is not Lindelöf.

Proof. Suppose that X is locally pseudocompact. Since the projections are
open, each Xs is locally pseudocompact. Take x ∈ X. There is an open
subset U ⊆ X such that x ∈ U and clX U is pseudocompact. Then U
contains a basic open set of the form

B = ∩ni=1π
←
si [Usi ]

where Usi is an open subset of Xsi for all i ∈ {1, ..., n}.
Therefore, clX B = ∩ni=1π

←
si [clXs Usi ] ⊆ clX U is pseudocompact. Hence,

if s 6= si, for i ∈ {1, . . . , n}, Xs = πs[clX B] is pseudocompact.
Now, assume that X is simple pseudocompact and non-compact. Then,

X is locally pseudocompact and is not Lindelöf (Corollary 4.26). So, (1)
and (2) hold. Moreover, if each Xs were Lindelöf, then each Xs would be σ-
compact and all but finitely many of Xs would be compact. Then X would
be Lindelöf.

Corollary 4.34. Let γ and κ be two infinite cardinals. Then Rκ and γκ

are not locally pseudocompact.

It is easy to prove the following proposition.

Proposition 4.35. Let X be a family of topological spaces. Then the free
topological sum of the elements of X , ⊕X , is locally pseudocompact, if and
only if each X ∈ X is locally pseudocompact.

The following propositions are interesting for themselves.

Proposition 4.36. Let Y be a compactification of X and let t̃ : βX → Y
be the continuous extension of the identity function idX : X → X. If G is
a Gδ-subset of βX such that G ⊆ βX \ X and X is Gδ-dense in Y, then
t̃[βX \G] = Y.

Proposition 4.37. Let X be a non-compact space. Then the following are
equivalent:
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1. X is weakly pseudocompact;

2. there is a compactification Y ofX such that for every point y ∈ Y \X, if
G ⊆ βX and G is a Gδ-subspace such that f←[y] ⊆ G, then G∩X 6= ∅,
where f is the only continuous extension of the identity.

Proof. Clearly (1) implies (2).

Let us suppose the claim in (2). Let Y be a compactification of X which
satisfies (2). If G is a nonempty Gδ-subspace of Y and y ∈ G, then f←[y] ⊆
f←[G]. Hence, f←[G] ∩X 6= ∅. Therefore, G ∩X 6= ∅.

4.2 k-embedded subspaces

In this section we are going to prove that the partial ordered set of compacti-
fications (K(ωω1),≤) is not a b-lattice. Also, the concept of k-embeddedness
is introduced.

Proposition 4.38. If βX is zero dimensional, then every simple compact-
ification of X is zero dimensional.

Proof. Let K ⊆ βX \ X be a nonempty compact space. Assume that π :
βX → βX/K is the canonical projection, p ∈ βX/K, and U ⊆ βX/K is an
open subspace such that p ∈ U ⊆ βX/K.

Suppose that K = π←[p]. There is a clopen subset A ⊆ βX such that
K ⊆ A ⊆ π←[U ]. Hence π[A] is a clopen subspace of βX/K such that
p ∈ π[A] ⊆ U.

Now suppose that K ∩ π←[p] = ∅. Let {x} = π←[p]. There is a clopen
subset A ⊆ βX, such that x ∈ A ⊆ π←[U ] \ K. Hence π[A] is a clopen
subspace of βX/K such that p ∈ π[A] ⊆ U.

Corollary 4.39. If X is a strongly zero dimensional space with a connected
compactification, then K(X) is not a b-lattice.

Proposition 4.40. [37, 4.7(g)] X is strongly zero dimensional if and only
if for every pair of disjoint zero sets A,B in X, there is a clopen set C ⊆ X
such that A ⊆ C ⊆ X \B.

Recall the following theorem:

Lemma 4.41 (Arkhangel’skii’s Factorization Theorem). Let D be a dense
subspace of the product X = Πs∈SXs such that each Xs has a countable
network. Then, for every real-valued continuous function f on D, there
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exists a countable set K ⊆ S and a continuous real-valued function h on
πK [D] such that f = (h ◦ πK) � D.

Theorem 4.42. If D is dense in a product of zero-dimensional spaces with
countable network, then D is strongly zero-dimensional.

Proof. Let {Xs : s ∈ S} be a family of zero-dimensional spaces with count-
able network and let D be a dense subspace of the product Πs∈SXs. Let A,B
disjoint zero sets in D. There is a continuous function f : D → [0, 1] such
that A = f←(0) and B = f←(1). By Lemma 4.41, there exist a countable
subset T ⊆ S and a continuous function g : Y = πT [D] → [0, 1] such that
f = (g ◦ πT ) � D. Observe that Y is zero-dimensional and Lindelöf. There-
fore, Y is strongly zero-dimensional. So there is a clopen subset C ⊆ Y
such that g←(0) ⊆ C ⊆ Y \ g←(1). Hence π←Y [C] is a clopen subset of
in X such that A ⊆ π←Y [C] ⊆ X \ B. By Proposition 4.40, X is strongly
zero-dimensional.

Corollary 4.43. Let D be a dense subspace of ωκ. Then, K(D) is b-lattice
if and only if κ < ω.

Proof. If κ ≥ ω, then the interval [0, 1]κ is a connected compactification of
the strongly zero-dimensional space D. Indeed, the space ωω is homeomor-
phic to R \Q and ωκ is homeomorphic to (ωω)κ. Now, if κ < ω, then ωκ is
discrete and so D is locally compact, that is, K(D) is a b-lattice.

Theorem 4.44. [15, Dorantes, Tamariz] Let X be a strongly zero-dimen-
sional space. Then K(X) is a b-lattice if and only if for each compactification
Y of X, the closure in Y of the union of non-trivial connected components
of Y \X is contained in Y \X.

Proof. Suppose that K(X) is a b-lattice. Let Y be a compactification of X.
Let β̃ : βX → Y be the continuous extension of idX : X → X. There is a
compact subset K of βX \X such that βX/K ≤ Y . This means that there
is a continuous function k̃ : Y → βX/K such that k̃ � X is the identity
function. Observe that each element y ∈ Y is of the form β̃(x), for some
x ∈ βX, and k̃(β̃(x)) = π(x), where π : βX → βX/K is the natural quotient
map. Also, observe that (k̃ ◦ β̃) � X = π � X. It happens that (βX/K) \X
is zero-dimensional and k̃ � k̃←[(βX/K) \ {π[K]}] is an injective function.
Then each non-trivial component in Y \X must be contained in k̃−1[π[K]]
which is a compact subset of Y \ X. Then, clY (

⋃
C) ⊆ Y \ X, where C is

the collection of non-trivial connected components of Y \X.
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Now, denote by calC the collection of all non-trivial connected compo-
nents of Y \X. Suppose that Y is a compactification of X and that clY (∪C)
is contained in Y \ X. Let β̃ : βX → Y be the continuous function which
extends the identity. Let K be equal to β̃←[clY (

⋃
C)]. So K is a compact

subset of βX \X and the function h from Y to βX/K defined as h(y) = y
if y ∈ Y \ clY (

⋃
C) and h(y) = π(K) is continuous and h � X = idX .

Corollary 4.45. [15, Dorantes, Tamariz] If X is a strongly zero dimensional
space having a compactification with connected remainder, then K(X) is b-
lattice if and only if X is locally compact.

Proof. Let Y be a compactification of X with connected remainder. If K(X)
is a b-lattice, then there is a compact subset K ⊆ βX \ X such that Y ≥
βX/K. Since βX/K is zero dimensional, (βX/K) \X is a point because it
is a continuous image of a connected space. Then X is open in βX/K.

Definition 4.46. [15, Dorantes, Tamariz] A subspace Y of a space X is
said to be k-embedded in X if for each compactification bY of Y , there
is a compactification cX of X such that clcX Y ≤ bY , that is, there is a
continuous function f : bY → clcX Y such that f � Y = id � Y.

Observe that if Z, Y and X are topological spaces such that Z is k-
embedded in Y and Y is k-embedded in X, then Z is k-embedded in X. We
also have:

Lemma 4.47. Assume that Z ⊆ Y ⊆ X and Z is k-embedded in X. Then,
Z is k-embedded in Y .

Proof. Let aZ be a compactification of Z. By hypothesis, there is a com-
pactification bX of X such that clbX Z ≤ aZ. Observe that cY = clbX Y is
a compactification of Y. Therefore clcY Z = clbX Z ∩ cY = clbX Z. Then, Z
is k-embedded in Y.

Theorem 4.48. [15, Dorantes, Tamariz] If Y is k− and C∗-embedded in
X and K(X) is a b-lattice, then K(Y ) is a b-lattice.

Proof. Let bY be a compactification of Y . Since Y is k-embedded in X,
there is a compactification bX of X such that clbX(Y ) ≤ bY . Let t̃ : bY →
clbX Y be a continuous function such that t̃ � Y = idY . Since Y is C∗-
embedded in X, then βY ≡Y clβX Y . Since K(X) is a b-lattice, there is a
compact K ⊆ βX \ X such that βX/K ≤ bX. So there is a continuous
map k̃ : bX → βX/K such that k̃(x) = x for every x ∈ X. Moreover,
k̃[clbX Y ] = clβX/K Y.
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Take M = K ∩ clβX Y . It happens that M is a compact subset of
clβX Y and M ∩ Y = ∅. So clβX Y/M is a simple compactification of Y and
clβX Y/M ≡Y clβX/K Y . On the other hand,

f̃ = (k̃ � clbX Y ) ◦ t̃ : bY → clβX/K Y

is continuous and f̃ � Y = idY . Therefore, K(Y ) is a b-lattice.

Lemma 4.49. Let X and Y be topological spaces. Let D and H be two
subsets of X × Y such that πX [D] is a C-embedded (resp., C∗-embedded)
subset of πX [H]. Assume that y ∈ Y is such that πX [D]× {y} ⊆ H. Then,
πX [D] × {y} is C-embedded (resp., C∗-embedded) in H. Moreover, if H is
dense in πX [D]× Y and πX [D] is k-embedded in πX [H], then πX [D]× {y}
is k-embedded in H.

Proof. Let y ∈ Y such that πX [D]× {y} ⊆ H and let f : πX [D]× {y} → R
be a (bounded) continuous function. Let h : πX [D] → πX [D] × {y} be
the natural homeomorphism, h(x) = (x, y). The function f ′ : πX [D] → R
defined by f ′(x) = f((x, y)) = (f ◦h)(x) is (bounded) continuous on πX [D].
So, there is a (bounded) continuous extension g′ : πX [H] → R of f ′. For
each (a, b) ∈ H, we define g(a, b) = g′(a) = (g′ ◦ πX)((a, b)). The function
g : H → R is (bounded) continuous and extends f . So if πX [D] is a C-
embedded (resp., C∗-embedded) subset of πX [H], then, πX [D] × {y} is C-
embedded (resp., C∗-embedded) in H.

Now, let b(πX [D] × {y}) be a compactification of πX [D] × {y}. Since
πX [D] and πX [D] × {y} are homeomorphic, there is a compactification
cπX [D] of πX [D] such that cπX [D] ≡ b(πX [D]×{y}). Let Z = cπX [D]×βY .
Since H is dense in πX [D]× Y , Z is a compactification of H. On the other
hand, clZ(πX [D]× {y}) = cπX [D]× {y}. Then πX [D]× {y} is k-embedded
in X × Y.

As a consequence of Theorem 4.48 and Lemma 4.49 we have:

Corollary 4.50. Let X and Y be topological spaces and let D,H ⊆ X×Y
be such that πX [D] is C∗ and k-embedded in πX [H] and H is dense in
πX [D]× Y . Then, if K(H) is a b-lattice, then K(πX [D]) is a b-lattice.

Corollary 4.51. Let {Xs : s ∈ S} be a collection of topological spaces.
Let T ⊆ S and D ⊆

∏
s∈S Xs. Then, if πT [D] is C∗− and k-embedded in∏

s∈T Xs and K(
∏
s∈S Xs) is a b-lattice, then K(πT [D]) is a b-lattice. In

particular, if K(
∏
s∈S Xs) is a b-lattice, then K(

∏
s∈T Xs) is a b-lattice.
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Theorem 4.52. [42] Let X be a space, if there is an infinite sequence {xn :
n ∈ ω} ⊆ βX \X converging to y ∈ X, then K(X) is not a lattice.

Proof. It may be assumed that if m 6= n then xm 6= xn. Define

D1 = {{x} : x ∈ βX \ Y } ∪ {{x2j , x2j+1} : j ∈ ω} and

D2 = {{x} : x ∈ βX \ Y } ∪ {{x2j , x2j−1} : j ∈ ω}

We are going to prove that the quotient space βX/D1 is Hausdorff. Let
π1 : βX → βX/D1 be the natural projection.

Take a, b ∈ βX \ (Y ∪{y}). There are open disjoint sets U, V in βX such
that a ∈ U and b ∈ V. Since Y ∪ {y} is compact, U ′ = U \ (Y ∪ {y}) and
V ′ = V \ (Y ∪ {y}) are open in βX and π←1 [π[U ′]] = U ′, π←1 [π[V ′]] = V ′.
Therefore, π[U ′] and π[V ′] are disjoint open sets in βX/D1 such that π(a) ∈
π[U ′] and π(b) ∈ π[V ′].

Take x2j , x2j+1 ∈ Y. There are open disjoint sets U, V in βX such that
{x2j , x2j+1} ⊆ U and y ∈ V. There is n ∈ ω such that if p ≥ 2n, then xp ∈ V.
Then V ′ = V \ {xp : p < 2n} and U ′ = U \ {xp : p < 2n, p 6= 2j, 2j + 1} are
open disjoint subsets in βX with π←1 [π[U ′]] = U ′, π←1 [π[V ′]] = V ′.

Therefore, π[U ′] and π[V ′] are disjoint open sets in βX/D1 such that
{x2j , x2j+1} ∈ π[U ′] and π(y) ∈ π[V ′]. Hence, βX/D1 is Hausdorff. Since π1
is continuous, βX/D1 is compact. Analogously, βX/D2 is compact. Observe
that βX/D1 and βX/D2 are compactifications of X.

Suppose that there is a compactification cX of X such that cX ≤ βX/D1

and cX ≤ βX/D2. Then, there are continuous functions gi : βX/Di → cX
such that gi ◦ πi � X = c, for i ∈ {1, 2}. Since X is dense in βX, g1 ◦ π1 =
g2 ◦ π2.

Now,
g1(π1(x0)) = g1(π1(x1)).

Suppose that g1(π1(xn)) = g1(π1(xn+1)). If n = 2j, then

g1(π1(xn+1)) = g2(π2(x2(j+1)−1)) = g2(π2(x2(j+1))) = g1(π1(xn+2)).

If n = 2j − 1, then

g1(π1(xn+1)) = g1(π1(x2j)) = g1(π1(x2j+1)) = g1(π1(xn+2)).

Therefore g1(π1(x0)) = g1(π1(xn)) for every n ∈ ω. Hence g1(π1(x0)) =
g1(π1(y)), but, by 3.8, g1(π1(x0)) ∈ cX \ c[X] and g1(π1(y)) = c(y) ∈ c[X],
which is a contradiction.

Hence, βX/D1 and βX/D2 don’t have a lower bound in K(X).
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Theorem 4.53. [42] If X is a first countable space, then X is locally com-
pact if and only if K(X) is a lattice.

Proof. If X is locally compact, K(X) is a complete lattice.
Suppose that X is first countable not locally compact. Then, X is not

open in βX. Therefore, there is a point x ∈ X ∩ clβX(βX \ X). Let {Bn :
n ∈ ω} be a countable local base of x in X such that Bn ⊇ Bn+1 for every
n ∈ ω. For each n ∈ ω, take an open set Vn in βX such that Bn = Vn ∩X
and Vn ⊇ Vn+1 for every n ∈ ω. For each n ∈ ω, take xn ∈ Vn ∩ (βX \X).

We are going to see that {xn : n ∈ ω} converges to x. Let U,W be open
sets in βX such that x ∈ U and clβX U ⊆ W. There is n ∈ ω such that
X ∩ Vn = Bn ⊆ U ∩X. Therefore,

clβX Vn = clβX Bn ⊆ clβX(U ∩X) = clβX U ⊆W.

Hence, xm ∈ W for every m ≥ n. We conclude that {xn : n ∈ ω} is a
sequence in βX \ X converging to a point x ∈ X, by 4.52, K(X) is not a
lattice.

Corollary 4.54. If X is first countable space then the following are equiv-
alent:

1. X is locally compact;

2. K(X) is a complete lattice;

3. K(X) a lattice; and

4. K(X) is a b-lattice.

Proof. Suppose that K(X) is a b-lattice. Take two compactifications aX and
bX of X. There is a simple compactification cX of X such that cX ≤ aX
and cX ≤ bX} Then S = {dX ∈ K(X) : dX ≤ aX and dX ≤ bX} is
nonempty. Hence S has a supremum in K(X). Let eX be the supremum of
S. It is easy to see that eX is the greatest lower bound of aX and bX in
K(X). Therefore K(X) is a lattice.

If K(X) is a lattice, by the last theorem, X is locally compact.
The equivalence between 1 and 2 is 3.15
If X is locally compact, the one point compactification aX is a simple

compactification and aX ≤ bX for every compactification bX, then K(X) is
a b-lattice.

The following result is a consequence of Corollaries 4.54 and 4.51.
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Corollary 4.55. For every first countable space X, K(Xκ) is a b-lattice if
and only if X is locally compact and either κ is finite or X is compact.

In particular, K(Sκ) is not b-lattice for every κ, and K(Rκ) is a b-lattice
if and only if κ < ω.

4.3 The geometric cone

For a space X, the geometric cone over X is Cone(X) = {0} ∪ (X × (0, 1])
topologized as follows: every open subset of the Tychonoff product (X ×
(0, 1]) is open in Cone(X); a basic open neighborhood of 0 is {0}∪(X×(0, ε)),
where ε > 0.

Observe that X is homeomorphic to the closed subspace X × {1} of
Cone(X). The following theorem is easy to prove.

Proposition 4.56. Let X be a space. Then,

1. X is compact if and only if Cone(X) is compact.

2. X is Lindelöf if and only if Cone(X) is Lindelöf.

Proof. We are going to prove 2. Suppose that Cone(X) is Lindelöf. Since X
is homeomorphic to the closed subspace X×{1} of Cone(X), X is Lindelöf.

Suppose that X is Lindelöf. Then, X × {1} is Lindelöf. Let U = {Us :
s ∈ S} be an open cover of Cone(X). There is s0 ∈ S such that 0 ∈ Us0 .
Hence, there is ε > 0 such that {0} ∪ (X × (0, ε)) ⊆ Us0 . Observe that
the subspace X × [ε, 1] is Lindelöf. Thus, there is a countable subfamily
{Um : m ∈ ω} of U such that X × [ε, 1] is contained in ∪{Um : m ∈ ω}.
Therefore, Cone(X) ⊆ Us0 ∪ (∪{Um : m ∈ ω}).

Eckertson posed the next proposition:

Proposition 4.57. [17, Proposition 2.4] If X is weakly pseudocompact then
Cone(X) is weakly pseudocompact.

Proof. Suppose that X is a Gδ-dense subspace of Y . We are going to prove
that Cone(X) is a Gδ-dense subspace of Cone(Y ). Let G be a nonempty
Gδ-subset of Cone(Y ). If 0 ∈ G, G∩Cone(X) is nonempty. Assume that
0 6∈ G. Then G ⊆ Y × (0, 1]. Take a point (y, r) ∈ G. Then, there is a
family {Un × Vn : n ∈ ω} of basic open subsets of Y × (0, 1] such that
(y, r) ∈ ∩{Un × Vn : n ∈ ω} ⊆ G. Observe that y ∈ ∩{Un : n ∈ ω}. Since X
is Gδ-dense in Y, there is x ∈ X ∩ (∩{Un : n ∈ ω}). It is straightforward to
see that (x, r) ∈ G. In conclusion, G∩Cone(X) is nonempty.
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Now, if Y is compact, so is Cone(Y ). Therefore if X is weakly pseudo-
compact, so is Cone(X).

Corollary 4.58. Let κ be a cardinal. Then Cone(D(κ)) is weakly pseudo-
compact if and only if κ > ω.

Proof. If κ > ω, the discrete spaceD(κ) is locally compact not Lindelöf, then
it is weakly pseudocompact. Hence, Cone(D(κ)) is weakly pseudocompact.

If κ ≤ ω, the space Cone(D(κ)) is a noncompact subspace of R2. Hence
Cone(D(κ) is Lindel̈f. Therefore, Cone(D(κ) is not weakly pseudocompact.

The following question comes naturally.

Question 4.59. If Cone(X) is weakly pseudocompact non-compact, must
X be weakly pseudocompact?

We have a partial answer to this question.

Theorem 4.60. [15, Dorantes, Tamariz] Let X be a non-compact space. If
Cone(X) is weakly pseudocompact then X × (0, 1] is weakly pseudocompact.

Proof. Suppose that Cone(X) is weakly pseudocompact, since X × (0, 1]
is open in Cone(X), X × (0, 1] is either weakly pseudocompact or locally
compact Lindelöf. If X is Lindelöf, so is Cone(X) [Proposition 4.56]. Hence
Cone(X) is compact [Proposition 4.4]. Since X is closed in his cone, X
is compact; a contradiction. Henceforth X is not Lindelöf and neither is
X × (0, 1]. Therefore, X × (0, 1] is weakly pseudocompact.

Theorem 4.61. For a space X, Cone(X) is pseudocompact if and only if
X is pseudocompact.

Proof. Suppose that X is pseudocompact. Let f : Cone (X) → R be a
continuous function. There exist ε > 0 and M > 0, such that

f [{0} ∪ (X × (0, ε))] ⊆ (f(0)− 1, f(0) + 1),

and f [X × [ε, 1]] ⊆ (−M,M). Then f is bounded.
Now suppose that Cone(X) is pseudocompact. Then X × [1/2, 1] is

pseudocompact, because it is a regular closed subset. Then X is pseudo-
compact.

Proposition 4.62. If Cone(X) is locally pseudocompact (locally compact),
then X is pseudocompact (respectively, compact).
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Proof. There is ε > 0 such that N = {0} ∪ (X × (0, ε]) is a pseudocompact
(compact) regular closed neighborhood of 0 in Cone(X). Then X × [ε/2, ε]
is pseudocompact (compact), and X is also pseudocompact (respectively,
compact).

Proposition 4.63. [17] Let X be a weakly pseudocompact space and let Y
be a locally compact space. If X × Y is not Lindelöf, then X × Y is weakly
pseudocompact.

Proof. If Y is weakly pseudocompact, so is X × Y. Suppose that Y is not
locally pseudocompact. Since Y is locally compact, Y is Lindelöf. If X is
compact, then X × Y is Lindelöf, which is a contradiction. Then X is not
compact. Suppose that X is a Gδ-dense subspace in the compactification
bX and let αY be the one point compactification of Y with αY \ Y = {∞}.
Fix points p ∈ bX \ X and y ∈ Y. We are going to prove that X × Y is
Gδ-dense in the compactification Z = (bX × αY )/((bX × {∞}) ∪ {(p, y)}).
Let π : X × Y → Z be the natural projection. Let G be a nonempty Gδ-
subset of Z. There is a collection {Un : n ∈ ω} of open subsets in Z such
that G = ∩{Un : n ∈ ω}.

Case 1: π[(bX×{∞})∪{(p, y)}] ∈ G, then (bX×{∞})∪{(p, y)} ⊆ π←[G].
Therefore, (p, y) ∈ π←[G]. For each n ∈ ω, take open sets An ⊆ bX and
Bn ⊆ αY such that (p, y) ∈ An × Bn ⊆ π←[Un]. Since W = ∩{An : n ∈ ω}
is a nonempty Gδ subset of bX, we can take a point x ∈ W ∩ X. Then
(x, y) ∈ π←[G]. Hence π((x, y)) ∈ G ∩ (X × Y ).

Case 2: π[(bX × {∞}) ∪ {(p, y)}] 6∈ G, then ()bX × {∞}) ∪ {(p, y)}) ∩
π←[G] = ∅. Hence ∅ 6= π←[G] ⊆ bX × Y.

Take a point (a, b) ∈ π←[G]. Again, for each n ∈ ω, take open sets
An ⊆ bX and Bn ⊆ αY such that (a, b) ∈ An × Bn ⊆ π←[Un]. Take a
point x ∈ (∩n∈ωAn) ∩ X. Then (x, b) ∈ π←[G] and therefore π((x, b)) ∈
G ∩ (X × Y ).

Question 4.64. If X × (0, 1] is weakly pseudocompact, must X be weakly
pseudocompact?

We have a partial answer to this question.

Theorem 4.65. [15, Dorantes, Tamariz] Let X be a locally pseudocompact
non-compact space. Then X is weakly pseudocompact if and only if X×(0, 1]
is weakly pseudocompact.

Proof. If X is weakly pseudocompact, then X is not Lindelöf and so by
Proposition 4.63, X × (0, 1] is weakly pseudocompact.
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Now, if X × (0, 1] is weakly pseudocompact, it is not Lindelöf because it
is not compact. Since (0, 1] is σ-compact, X is not Lindelöf. Therefore X is
weakly pseudocompact.

We have two corollaries of the last theorem.

Corollary 4.66. Let X be a locally pseudocompact non-compact space.
Then X is weakly pseudocompact if and only if Cone(X) is weakly pseudo-
compact.

Proof. Suppose that Cone(X) is weakly pseudocompact, by Theorem 4.60
X × (0, 1] is weakly pseudocompact, then X is weakly pseudocompact.

Corollary 4.67. Let X be a non-compact space. Then X is simple pseu-
docompact if and only if X × (0, 1] is simple pseudocompact.

Proof. If X is locally pseudocompact and weakly pseudocompact then X ×
(0, 1] is locally pseudocompact and weakly pseudocompact.

If X × (0, 1] is locally pseudocompact and weakly pseudocompact, then
X is locally pseudocompact and it is not Lindelöf.

Eckertson asked the following question.

Question 4.68. [17, Question 4.1] Can a finite product of non-compact
Lindelöf spaces ever be weakly pseudocompact?

We have a partial answer.

Theorem 4.69. [15, Dorantes, Tamariz] If X and Y are non-compact Lin-
delöf spaces, then X × Y is not simple pseudocompact.

Proof. If X ×Y is simple pseudocompact, since it is not compact, then it is
locally pseudocompact non-Lindelöf. Then X and Y are locally pseudocom-
pact Lindelöf spaces, ergo, locally compact Lindelöf spaces and therefore
X × Y is Lindelöf.

4.4 Products of weakly pseudocompact spaces

Eckertson posed the following question:

Question 4.70. [17, Question 2.6] If Z is compact and X × Z is weakly
pseudocompact, must X be weakly pseudocompact?

We reply in the affirmative:
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Theorem 4.71. [15, A. Dorantes-Aldama, R. Rojas-Hernández] If Z is
compact and X ×Z is weakly pseudocompact, then X is weakly pseudocom-
pact.

Proof. Let Y be a compactification of X×Z in which it is a Gδ-dense subset.
Define the partition P = {{y} : y ∈ Y \ (X × Z)} ∪ {{x} × Z : x ∈ X} in
Y . Let Y ′ be the quotient space Y/P and let π : Y → Y ′ be the natural
proyection.

Claim: The space Y ′ is Hausdorff.

Indeed, let y ∈ Y \ (X × Z) and x ∈ X. Since Z is compact, there
are disjoint open subsets U, V in Y such that y ∈ U and {x} × Z ⊆ V.
Observe that there is an open set A ⊆ X such that {x} × Z ⊆ A× Z ⊆ V.
As A × Z is open in X × Z, there is an open subset W ⊆ Y such that
A × Z = W ∩ (X × Z). It is easy to see that W ∩ V = π←[π[W ∩ V ]] and
x ∈ π[W ∩ V ].

Because U∩(X×Z) is open in X×Z, there is an open subset O ⊆ Y such
that πX [U∩(X×Z)]×Z = O∩(X×Z). Observe that, as X×Z is dense in Y,
W∩O = ∅. Then (O∪U)∩(X×Y ) = (πX [U∩(X×Z)]×Z)∪(U∩(X×Z)) =
πX [U ∩ (X × Z)] × Z. Then (O ∪ U) = π←[π[O ∪ U ]], y ∈ π[O ∪ U ] and
π[W ∩ V ] ∩ π[O ∪ U ] = ∅. Hence Y ′ is compact Hausdorff.

Observe that X is Gδ-dense in Y ′. Henceforth X is weakly pseudocom-
pact.

It is known that for every space X, we have that X is Gδ-dense in its
realcompactification υX. Then if υX is weakly pseudocompact, so is X.
Thus, a natural question is: If X is a weakly pseudocompact space, must
υX be weakly pseudocompact? We have a negative answer.

Theorem 4.72. [15, Dorantes, Tamariz] Let Y be a pseudocompact space
and let X be a realcompact, locally compact space of non measurable cardi-
nality. Then, X is weakly pseudocompact if and only if υ(X × Y ) is weakly
pseudocompact.

Proof. By [8, Corollary 2.2],

υ(X × Y ) = X × υY = X × βY.

By Theorem 4.71, X × βY is weakly pseudocompact if and only if X is
weakly pseudocompact.
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We can see that if A is a maximal almost disjoint family on ω, then
the Mrówka space Ψ(A) is a pseudocompact, non-compact space of non-
measurable cardinality. The space ω × Ψ(A) is locally compact and it is
not Lindelöf, then it is weakly pseudocompact. But ω × βΨ(A) is Lindelöf
non-compact, and then it is not weakly pseudocompact.

Theorem 4.73. [15, Dorantes, Tamariz] Let X be a dense k-embedded sub-
space of Y. If X is weakly pseudocompact, then Y is weakly pseudocompact.

Proof. Assume that Y is not weakly pseudocompact. Let bX be a compact-
ification of X. Since X is k-embedded in Y, there is a compactification bY
of Y such that clbYX ≤ bX. Let h̃ : bX → clbY X be a continuous function
such that h̃(x) = x for all x ∈ X. Because X is dense in Y , clbYX = bY . On
the other hand, since Y is not weakly pseudocompact, there is a nonempty
Gδ-subset G in bY such that G ∩ Y = ∅. Therefore, h̃−1[G] is a nonempty
Gδ-set in bX which has an empty intersection with X.

Corollary 4.74. If X is Gδ-dense an k-embedded in Y , then X is weakly
pseudocompact if and only if Y is weakly pseudocompact.

Example 4.75. Let A be a maximal disjoint family on ω. Then ω ×Ψ(A)
is not k-embedded in ω × αΨ(A), where αΨ(A) is the one point compacti-
fication of Ψ(A).

Since X is k-embedded in αX, when X is locally compact, the previous
example shows that the property of being k-embedded is not productive.

Corollary 4.76. Let α and κ be infinite cardinals such that κ > ω. If
Σκ(Rα) is k-embedded in Rα then Σκ(Rα) is weakly pseudocompact if and
only if Rα is weakly pseudocompact.

Proof. We know that υ(Σκ(Rα)) = Rα. Therefore, if Rα is weakly pseudo-
compact, then Σκ(Rα) is weakly pseudocompact.

If Σκ(Rα) is k-embedded in Rα then, by Theorem 4.73, if Σκ(Rα) is
weakly pseudocompact, then Rα is weakly pseudocompact.

4.5 Gelfand compactifications

In this section we characterize weak pseudocompactness in terms of regular
subrings. Recall that C∗(X) is the collection of all bounded real-valued
continuous functions defined on X. If r ∈ R, we will denote by r̄ the constant
function r̄(x) = r for every x ∈ X.
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For a space X and f ∈ C∗(X), define ||f || = sup{|f(x)| : x ∈ X}. If
f, g ∈ C∗(X), let d(f, g) = ||f − g||. Then d is a complete metric on C∗(X)
[37, Proposition 4.5(a)]. We will call d the sup norm metric on C∗(X).

Definition 4.77. [17] A subset S ⊆ C∗(X) is a subring of C∗(X) if 0̄ and
1̄ belong to S and for f, g ∈ S both fg and f − g belong to C∗(X).

Definition 4.78. [37] A subring Q of C∗(X) is called regular subring if Q
is a complete, with respect to the sup norm metric, subring of C∗(X) such
that Q contains all the constant functions and Z(Q) = {Z(f) : f ∈ Q} is a
base for the closed sets of X.

Definition 4.79. [17] A nonempty subset I ⊆ C∗(X) is an ideal of C∗(X)
if C∗(X) \ I is nonempty and for every f ∈ I and every g ∈ C∗(X), the
product fg belongs to I. A ideal I ⊆ C∗(X) is maximal if for g ∈ C∗(X)\I,
there are functions f ∈ C∗(X) and h ∈ I such that fg + h = 1̄.

Definition 4.80. [37] Let Q be a regular subring of C∗(X). Denote the
set of all the maximal ideals of Q by mQX. If f ∈ Q, define S(f) = {M ∈
mQX : f ∈M}. Define λ : X → mQX by λ(x) = {f ∈ Q : f(x) = 0}.

Proposition 4.81. [37, Lemma 4.5j] Let Q be a regular subring of C∗(X)
for a space X. Let f, g in Q. Then:

1. S(1̄) = ∅ and S(0̄) = mQX.

2. S(f) ∪ S(g) = S(fg).

3. S(f) ∩ S(g) ⊆ S(f2 + g2).

4. {S(f) : f ∈ Q} is a closed base for a Compact Hausdorff topology σ
in mQX.

We will consider mQX with the topology σ given by the previous theo-
rem.

Theorem 4.82. [37, Theorem 4.5m] Let Q be a regular subring of C∗(X)
for a space X. Then:

1. λ : X → mQX is a dense embedding, and if f ∈ Q, then λ[f←[{0}]] =
λ[X] ∩ S(f),

2. for every f ∈ Q, there is a unique continuous function fe ∈ C∗(mQX)
such that fe ◦ λ = f,
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3. C∗(mQX) = {fe : f ∈ Q} and Q = {f ∈ C∗(X) : f = F ◦ λ for some
F ∈ C∗(mQX)} and

4. for f ∈ Q,S(f) = (fe)←[{0}].

Lemma 4.83. Let X be a topological space. If Q ⊆ C∗(X) is a regular sub-
ring and F : mQX → R is a continuous function, then there is a continuous
function f ∈ Q such that F←{0} = S(f).

Proof. By Theorem 4.82(3), there exists f ∈ Q such that F = fe. By 4.82(4),
F←{0} = S(f).

Remark 4.84. Observe that 4.82(4) states that if f ∈ Q then S(f) is a
zero set of mQX.

Theorem 4.85. [37, Theorem 4.5(o)] Let X be a space and aX a compact-
ification of X. If Q = {f ◦ a : f ∈ C∗(aX)}, then aX ≡X mQX.

The next lemma is known and is a motivation for the subsequent theo-
rem.

Lemma 4.86. [17] A space X is pseudocompact if and only if f ∈ C∗(X)
and Z(f) = ∅ then 1/f ∈ C∗(X).

We are ready to present the promised characterization of weak pseudo-
compactness in terms of regular subrings.

Theorem 4.87. A space X is weakly pseudocompact if and only if there
exists a regular subring Q of C∗(X) such that whenever f ∈ Q and Z(f) = ∅,
we obtain 1/f ∈ Q.

Proof. Let X be a weakly pseudocompact space. There is a compactification
T of X such that X is Gδ-dense in T. By Theorem 4.85, Q = {f � X : f ∈
C∗(T )} is a regular subring of C∗(X), and K ≡X mQX. Let f ∈ Q and
suppose that 1/f 6∈ Q. Hence T = {gf : g ∈ Q} is a proper ideal of Q such
that f ∈ T. Hence, S(f) 6= ∅. By Remark 4.84, S(f) is a zero set of mQX,
by Theorem 4.82(1), we have

∅ 6= S(f) ∩ λ[X] = λ[Z(f)].

Then Z(f) is nonempty.
Let Q be a regular subring of C∗(X) that satisfies the hypothesis. Let

Z be a nonempty zero set of mQ(X). By Lemma 4.83 there exists f ∈ Q
such that Z = S(f). Take M ∈ S(f). Then M is a proper ideal in Q and
f ∈ M. Henceforth, 1/f 6∈ Q. The hypothesis says that Z(f) 6= ∅. Then
S(f) ∩ λ[X] = λ[Z(f)] 6= ∅ and X is weakly pseudocompact.





Bibliography

[1] O. T. Alas, M. Sanchis, M. G. Tkačenko, V. V. Tkachuk, and R. G.
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[40] Á. Tamariz-Mascarúa and H. Villegas-Rodŕıguez. Spaces of contin-
uos functions, box products and almost-ω-resolvable spaces, Comment.
Math. Univ. Carolin. 43,4 (2002) 687-705
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