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Introduccion

Es un honor para mi presentar la siguiente tesis de Doctorado, fruto de
un continuo trabajo académico de ocho semestres bajo la supervisién del
Dr. Angel Tamariz Mascarida. El objetivo de este trabajo es presentar los
resultados que obtuve durante mi estancia doctoral.

El capitulo 1 estd dedicado a estudiar resultados preliminares acerca de
los espacios resolubles, espacios maximales y espacios submaximales.

En el capitulo 2 presento los resultados originales que obtuve durante la
primera parte de mi estancia doctoral. Fruto de este trabajo fue la redaccion
del articulo de investigacién [14], mismo que ya fue aceptado para su pu-
blicacién en la revista Topology and its Applications. En este capitulo, se
estudian las consecuencias de la existencia de familias ai-maximales y se dan
dos condiciones suficientes que garantizan su existencia.

En particular demostré que bajo la hipdtesis del continuo, no existen
familias ai-maximales y que la existencia de dichas familias implica la ex-
istencia de un espacio Baire, irresoluble y sin puntos aislados. En [32], se
demuestra que la existencia de un espacio Baire, irresoluble y sin puntos
aislados es equiconsistente con la existencia de un cardinal medible, lo que
implica que la existencia de familias ai-maximales de cardinalidad maxima
implica la existencia de cardinales medibles en algiin modelo consistente con
7FC.

La motivacion para estudiar familias ai-maximales surgié después de es-
tudiar espacios resolubles y descubrir que en [28], los autores inventaron
un método que utiliza familias maximales independientes para demostrar
que existen espacios w-resolubles que no son maximalmente resolubles. En
consecuencia, pude modificar dicho método para determinar condiciones su-
ficientes y condiciones necesarias para la existencia de familias ai-maximales
independientes.

Pavlov anuncié en [37, Theorem 3.16] que, bajo la Hipdtesis del Con-
tinuo, cualquier espacio Baire ccc sin puntos aislados y 17 es resoluble. En
un reciente trabajo demostré que bajo la Hipétesis del Continuo, la exis-
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iv INTRODUCCION

tencia de un cardinal medible es equivalente a la existencia de un espacio
Baire crowded ccc casi irressoluble y T7. Esta afirmacién demuestra que la
proposicién de Pavlov [37, Theorem 3.16] es incorrecta. Aunado a esto,
pude probar lo siguiente. 1.- Cualquier espacio crowded ccc con cardinali-
dad menor que el primer cardinal débilmente inaccesible es casi resoluble.
2.- Si 2“ es menor que el primer cardinal débilmente inaccesible entonces
cualquier espacio T, crowded ccc es casi resoluble. 3.- V = L implica que
todo espacio crowded es casi resoluble. Estos resultados estan recopilados
en el manuscrito [13].

El capitulo 3 estd dedicado a estudiar resultados preliminares acerca de
las compactaciones de los espacio Tychonoff, las realcompactaciones y los
espacios pseudocompactos.

En el capitulo 4 presento lo resultados originales que obtuve acerca de
los espacios débilmente pseudocompactos. En particular, obtuve una carac-
terizacién de este tipo de espacios usando subanillos regulares; caractericé
los espacios débilmente pseudocompactos en la clase de los espacios local-
mente pseudocompactos y demostré que los espacios que no son localmente
pseudocompactos no son G densos en ninguna compactacion simple.

Saber si el espacio w*! es débilmente pseudocompacto ain no se ha
podido determinar, pero pude demostrar una condicién necesaria para que
esto ultimo suceda, a saber, que la reticula de compactaciones de w“! no
es b reticula. Todos los resultados que obtuve sobre espacios débilmente
pseudocompactos han sido recopilados en el articulo [15].



Chapter 1

Preliminaries on almost
resolvable spaces

1.1 Resolvable spaces

In [23], Hewitt introduced the concept of resolvable spaces, defining them as
those topological spaces which contain two disjoint dense subsets. An easy
example is the real line R, indeed, the rational numbers Q and the irrational
numbers P, form a partition of R in two dense subsets.

More generally, if « is a cardinal and o > 1, we will say that a space
X is a-resolvable if there is a family of « disjoint dense subsets. Observe
that 2-resolvable is equivalent to resolvable and all spaces are 1-resolvable.
It is easy to see that if Y is an a-resolvable subspace of X then clx Y is
a-resolvable, because every dense subset of Y is also dense in clx Y.

Example 1.1. In the open interval (0,1) the set D = {p/2? : 0 < p <
29, p,q € w and p odd} € QN (0,1) is dense. If we take n > 1 and define
Dy, = {p/2"9T™ . 0 < p < 2MFT™ p g € w and p odd} for every m < n, then
{Dy, : m < n} is a family of n disjoint dense subsets in (0, 1). Therefore,
(0,1) is n-resolvable for every n > 2 and so is [0, 1].

We will see in Corollary 1.6, that if a space X is n-resolvable for every
n > 2, then X is w-resolvable. The next theorem says that the union of
a-resolvable spaces is a-resolvable.

Theorem 1.2. [9] Let o > 1 be a cardinal and let X be a space of the form
X = UjesX; with each X;, a-resolvable. Then X is a-resolvable.

Proof. Consider the family S = {A C P(X) : A is a family of pairwise
disjoint a-resolvable spaces}. Then S is nonempty and (S, C) is a partially
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2 PRELIMINARIES ON ALMOST RESOLVABLE SPACES

ordered set. Take a chain C in §. Then UC is an element of S. Applying
Zorn’s Lemma, we can find a maximal family A of pairwise disjoint a-
resolvable subspaces of X.

If the open set U = X \ clx(UA) is nonempty, there is j € J, such that
UNX; #0. Then U N Xj is a-resolvable, and AU {U N X;} is a family of
pairwise disjoint a-resolvable spaces contradicting the maximality of A.

Therefore UA is dense in X. Now, for every element A € A, there is a
family {Dé4 : £ < a} of pairwise disjoint dense subsets of A. Define

D¢ = UAeAD?, for every £ < a.

Take a nonempty open set V in X. Since UA is dense in X, there is
A € A such that V' N A is nonempty, hence V' N A¢ is nonempty for every
§ < a. Then V N D¢ is nonempty for every { < «, and this shows that
{D¢ : £ < a} is a family of pairwise disjoint dense subsets of X. O

Corollary 1.3. Let X be a space. For every cardinal o > 1, there is a
unique partition {Yy, Z,} of X such that every a-resolvable subset of X
is contained in Y, Y is closed and a-resolvable, and no subset of Z is a-
resolvable.

Proof. Define Y = U{Z C X : Z is a-resolvable}. Because of the last
theorem, Y is a-resolvable. Since cly Y is a-resolvable, Y is closed. Then,
{Y, X \ Y} is the desired partition. O

Corollary 1.4. Let n > 2 be a finite integer. Let X be a n?-resolvable
space. If X = DU FE and D is not n-resolvable, then some nonempty open
subset of E' is n-resolvable.

Proof. Since X is n’-resolvable, we can write X = Ui<i<nFi, where {E; :
1 <i < mn}is a family of pairwise disjoint subspaces such that each E; is a
union of n many disjoint dense subsets of X.

Observe that D = Uj<ij<,(D N E;). Since D is not n-resolvable, there is
a nonempty open set U and an 49 such that U N D N E;, is empty. Then
UNE;, CUNE. Since Ej, is a union of n many disjoint dense subsets of X
and U is open, then U N FE is a nonempty open n-resolvable subset of E. [

Theorem 1.5. [5] If X is n-resolvable for every n > 2, then there are
disjoint dense subsets D and X \ D of X such that X \ D is k-resolvable for
every finite cardinal k > 2.
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Proof. Since X is 2-resolvable, we can write X = F U F where E and F
are disjoint and dense in X. For each n > 2, apply Corollary 1.3 to obtain
E =Y, U Z, where Y,, N Z, = 0, no subset of Z,, is n-resolvable, every n-
resolvable subset of E is contained in Y,, and Y, is n-resolvable and closed.
Find an open set U, such that U, N E = Z,.

For each n > 2, define V,, = Uy;,<,,Upy,, and observe that V;, N E = Z,, for
every n € w. Indeed, if V, NENY,, # 0, then U, NY,, is nonempty for some
m < n. Then, U,, NY, is n-resolvable. But, Z,, =U,,NE D U,,NY,. Then
U, N'Y, is not m-resolvable, because it is a subspace of Z,,. Since m < n,
we have a contradiction.

Now, take ng > 2. Since V,,, is nZ-resolvable (because X is n2-resolvable),
and Z,, = V,,, N E does not contain nonempty open ngp-resolvable subsets,
then, applying the last corollary, we have that V;,, N F' is ng-resolvable.

Let Vo = Up>2V,,. Then, Vo N F' is k-resolvable for every k > 2. To see
this, take k > 2. Then, V,,,NF is k-resolvable for every m > k. Since V,, C V},
for every p < k, V, N I is k-resolvable for every p < k. Then, Vo N F is a
union of k-resolvable subspaces. It is easy to see that clx Vo N F is also
k-resolvable for every n > 2. Since (X \ clx Vy) N E is an open subset of Y,
for every n > 2, then (X \ clx Vo) N E is n-resolvable for every n > 2.

Define D = (clx Vo N E) U ((X \ clx Vo) N F). Then D and X \ D are
dense in X and X \ D = (clx \WNF)U((X \ clx Vo) N E) is n-resolvable for
every n > 2. O

Corollary 1.6. [25] If X is n-resolvable for every finite cardinal n > 2, then
X is w-resolvable.

Proof. There are disjoint dense subsets D and X \ D of X such that X \ D
is k-resolvable for every finite cardinal k > 2. Define Dy = D.

Let n € w and suppose that {Dg, D1, ..., Dy, X \ (Un<nDm)} is a family
of disjoint dense subsets of X such that X \ (Up<n,Dp,) is k-resolvable for
every finite cardinal k£ > 2.

There are disjoint dense subsets Dy, 11 and (X \ (Upm<pnDpm)) \ D of X\
(Um<nDm) such that (X \ (Upn<nDm)) \ D is k-resolvable for every finite
cardinal k£ > 2. Hence {Dy, D1, ..., Dpt1, X \ (Un<nt1Dm)} is a family of
disjoint dense subsets of X such that X \ (Up<pt+1Dm) is k-resolvable for
every finite cardinal k£ > 2.

Therefore, {D,, : n € w} is a family of pairwise disjoint dense subsets of
X. O

Corollary 1.7. The space Q is w-resolvable and so is R.
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Observe that if a topological space X has an isolated point x, then every
dense subset D of X contains x, therefore X is not resolvable. We will say
that a topological space X is crowded, if X contains no isolated points. So,
the study of resolvable spaces is interesting just in the realm of crowded
spaces.

The dispersion character of X, denoted by A(X), is the least cardinality
of a nonempty open subset of X. If U is a nonempty open subset of a crowded
space X, then the cardinality of every family of disjoint dense subsets of X is
less than or equal to |U|. Therefore we have proved the following proposition.

Proposition 1.8. If X is a crowded space and X is a-resolvable, then
a < A(X).

The weight of a space X is defined as the smallest cardinal number of
the form |B| such that B is a base for X; this cardinal is denoted by w(X).
A family N of subsets of a topological space X is a network for X if for
every point z € X and any neighborhood U of z, there is an M € N
such that x € M C U. The network weight of a space X is defined as the
smallest cardinal number of the form |[A| such that N is a network for X;
this cardinal is denoted by nw(X). It is easy to prove that nw(X) < w(X)
and nw(X) < | X|.

Theorem 1.9. [17] For every compact space X we have nw(X) = w(X).

Proof. Let nw(X) = k and let A be a network for X of cardinality x. If k
is finite, then X is discrete of cardinality x and w(X) = nw(X).

Suppose that x > w. Let B={M € N : there exist N € N and disjoint
open sets Uy, Uy € 7x such that M C Uy, N C Us}. Let By be the family of
finite intersections of B. Therefore, By is a base for a topology ¢ in X.

Let x,y, be two distinct points of X. There are open subsets Uy, Us € Tx
such that x € Uy,y € Us. Since N is a network, there exist Ny, Ny €
N such that + € Ny C U,y € Ny C Us. Then Ny, Ny € o. Therefore
(X,0) is Hausdorff. Observe that the identity function i from X to (X, o)
is continuous. Since (X, 7x) is compact, ¢ is closed, and therefore, i is a
homeomorphism.

Since |By| = [N, we have w((X,0)) < k. Hence w(X) < k. O

The following theorem is going to be useful.

Theorem 1.10 (Disjoint refinement lemma). [10] Let o be an infinite car-
dinal and let {A¢ : £ < o} be a family of sets such that |A¢| > o for & < a.
Then there is a family of pairwise disjoint sets {Bg : £ < a} such that:
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1. ngA§f0T§<Oé,
2. |Bel = a for € < a.

Proof. Let avg € Ap. Let 8 < o« and suppose that for ¢ < £ < 3 we have
defined mgl € Ag such that mg € A\ {mg/ (' < (<&} and ZEg # ZEg/ for
¢ <¢"<B.
Choose xgl € Ag \ {a;gl ¢ <& < B} for p < B and a:g, # xgn for
B < " < . Define
Be={25:£<B<a}

Then the family {B¢ : £ < a} is as required. O

Proposition 1.11. Let X be a crowded space and « be an infinite cardinal.
If X has a network N such that IN| < « and for every S € N, |S| > a,
then X is a-resolvable.

Proof. Set N'= {S¢ : £ < a}. By the disjoint refinement lemma, there is a
family of pairwise disjoint sets { B¢ : £ < a} such that:

1. Bg € 5¢ for € < o,
2. |Bel = afor £ < o

For each & < a, let {bg : ¥ < a} be an enumeration of By without repetitions.
Now, for each v < «, define D, = {bg : &€ < a}. We are going to see that D
is dense for every v < a. Take 79 < a. Let U be a nonempty open set of X.
Since N is a network, there is & such that Sg, € U and Bg, C U. Therefore
bzg € D,,NU. Since {B¢ : £ < a} is a pairwise disjoint family, {D- : v < a}
is a pairwise disjoint family of dense subsets of X. O

The next theorem shows that there is a Tychonoff crowded space X such
that X is A(X)-resolvable.

Theorem 1.12. Let X be a crowded Hausdorff locally compact space, then
X is A(X)-resolvable.

Proof. Let A = {U € 7x : A(X) = |U|,clx U is compact and |clx U| =
|U|}. Tt is easy to see that A is nonempty. Indeed, take an open set V such
that V' = A(X). If W is an open subset of V such that clx W is compact
and cly W C V, then |[W| < |clx W| < |[V] = A(X), but [W| > A(X).
Therefore |W| = | clx W| = A(X).
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Let U € A and let B be a base for U with |B| = w(U). By Theorem 1.9,
w(clx U) < |clx U|. Then

1B = w(U) < w(clx U) < | ely U] = [U] = A(X).

Since |B| > A(X) for every B € B, Proposition 1.11 establishes that U
is A(X)-resolvable. Therefore UA is A(X)-resolvable. Observe that UA is
dense. Therefore X is A(X)-resolvable. O

Proposition 1.13. Let (X, p) be a metric space, then w(X) = d(X).

Proof. 1f B is a base for X. For every B € B, take xp € B. Then, {zp: B €
B} is a dense subset of X. Therefore w(X) < d(X).

Now, let A be a dense subset of X such that |A| = d(X). Denote by B
the family of all balls B(z,r) = {y € X : p(z,y) < r}, such that z € A and
r € Q. Then, |B| < |A].

We are going to prove that B is a base for (X, p). Take a point y € X and
U an open set in X such that y € U. There is r € R such that B(y,r) C U.
Since A is dense, there is © € A such that z € B(y,r/3). Take a rational
number 7o such that r/3 < rg < r/2. Then y € B(z,r9). Take z € B(x,19).
Then d(z,y) < d(z,x) + d(z,y) < ro + /3 < r. Therefore,

B(x,70) C Bly,r) C U.
Hence B is a base for (X, p) and w(X) < d(X). O

Theorem 1.14. If X is a crowded metric space, then X is A(X)-resolvable.

Proof. Let X be a crowded metric space and A = {U € 7x : A(X) = |U|}.
It is easy to see that A is nonempty.

Let U € U and B be a base for U with |B| = w(U). By theorem 1.13,
w(U) = d(U). Then,

Bl = w(U) = d(U) < |U] = A(X).
Since |B| > A(X) for every B € B, the proposition 1.11 establishes that U

is A(X)-resolvable. Therefore UA is A(X)-resolvable. Observe that UA is
dense. Therefore X is A(X)-resolvable. O
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1.2 Maximal spaces

A crowded space X is irresolvable if X is not resolvable, more generally,
given a cardinal «, we say that X is a-irresolvable if X is not a-resolvable.
We are going to study irresolvable spaces using maximal spaces.

Definition 1.15. [16] Call a space X maximal if its topology, 7x, is maximal
in the collection of all crowded topologies on X. If T' is a separation axiom,
call X maximal T if 7x is maximal in the collection of all crowded topologies
satisfying T on X.

Proposition 1.16. [16] If i € {1,2,3,3.5}, then mazimal T; spaces are
wrresolvable.

Proof. Let (X,7) be a topological space. Suppose that D, E are disjoint
dense subsets of (X, 7). Consider the topology 7" on X generated by 7 U
{D, X \ D}. Since 7 is crowded, so is 7". Hence D is an element of 7/ but D
is not an element of 7, therefore 7/ properly contains 7.

If i € {1,2} and 7 is T}, then 7’ is T;. Hence (X, 7) is not maximal 7; if
ie{l,2}.

Now suppose that 7 is T3. Take x € X and x € AN D, where A € 7x.
There is B € 7x such that x € Band clx BC A. If y € AN D, then y €
(X \clx B)U(X\ D), therefore y & cl(BND). Hence, cl/(BND) C AND.
Since z € cl/ (BN D), 7" is T3. If x € A\ D, where A € 7x, the proof is
analogous. Hence (X, 7) is not maximal T5.

Now suppose that 7 is Tychonoff. Take z € X and x € AN D, where
A € 7x. There is a continuous function g : (X, 7) — [0, 1] such that g(x) =0
and g[X \ A] C {1}. Since 7 C 7/, g is also continuous when considered as a
function from (X, 7’) into [0, 1] and the function f : (X,7") — [0,1] defined
by f(y) =0ify € D and f(y) =1 if y € X \ D is continuous. Therefore
(g+ f)(x)=0and (g+ f)[X \ (AN D)] C [1,2]. Hence (X, 7’) is Tychonoff
and (X, 7) is not maximal Tychonoff. O

The following theorem constructs a countable crowded Tychonoff irre-
solvable space.

Theorem 1.17. [23]
1. A space is mazimal if and only if it is mazximal T}.
2. Mazimal Ty spaces are maximal.

3. There exists a mazximal Tychonoff space.
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Proof. (1). If X is a maximal space, define
7 ={U\ F:U € 7x and F is a finite subset of U}.

If x € X, then X \{x} is open, so 7’ is a T} crowded topology on X containing
7x. Therefore 7x is T7.

(2). If o is a crowded topology on X such that 7x C o, then o is Tb,
and so Tx = 0.

(3). Consider the set P = {7 : 7 is a crowded Tychonoff topology on
w}. Then P is nonempty and is partially ordered by C . Now, if C is a
chain in P, then UC is closed under finite intersections. Hence UC is base for
some topology, VC, on w. To see that VC is Tychonoff, take z € U for some
U € UC. There is 7 € C such that U € 7. There is a continuous function
f:(X,7) —[0,1] such that f(x) = 0and f[X\U] C {1}, since 7 C VC, f is
continuous in VC. Then VC is a T3 topology on w. Hence P has a maximal
element by Zorn’s Lemma. O

Example 1.18. w has a maximal Tychonoff topology 7. Hence (w, 7), is a
crowded Tychonoff irresolvable space. It is easy to see that A((w,7)) = w.

It is interesting to study the unique partition given by corollary 1.3 for
a maximal space. Actually, if a space (X, 7) is maximal and a = 2, then
Y5 = (). Indeed, take a crowded subspace Z C X. Suppose that D and E
are disjoint dense subsets of Z. Then the topology 7™ on X generated by
7U{D} is crowded because D is dense in Z. By the maximality of X, 7 = 7.
Therefore D is an open subset of Z whose intersection with E is empty.
Hence, X contains no nonempty resolvable subspace.

We will call a crowded space X hereditarly irresolvable if X contains no
nonempty resolvable subspace. We just proved the following proposition.

Proposition 1.19. Mazimal spaces are hereditarly irresolvable.

A space X is open hereditarly irresolvable (OHI) if it is crowded and
every nonempty open subspace of X is irresolvable.

A subspace A of a space X is nowhere dense if intx clx A = (). A space
X is nodec if every nowhere dense subset of X is closed. Observe that if X
is a nodec space and A is a nowhere dense subset of X, then every subset
of A is also nowhere dense, hence every subset of A is closed, therefore A is
discrete.

Lemma 1.20. [16] Let X be a crowded space. Then X is an OHI space if
and only if for every subset A of X, if intx A is empty, then A is nowhere
dense
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Proof. Assume that X is OHI. Suppose that intx A is empty. Let U be
a nonempty open subset of X. Then U \ A is dense in U. Since U is not
resolvable, U N A is not dense in U. Hence, there is p € U and there is a
open subset V' of X such that p € V and V NU N A = (), this implies that
p € X \ clx A. Hence, intx clx(A) = (). Then A is nowhere dense.

Now let U be a nonempty open subset of X. Let A be dense in U, then
U Cintx cly A and A is not nowhere dense. By hypothesis, A has nonempty
interior, so U \ A is not dense in U and U is not resolvable. O

A topological space X is extremely disconnected, if clx U is open for
every open subset U in X.

Maximal spaces are extremely disconnected, indeed, let U be a nonempty
open subset of (X, 7). Then, the topology 7" generated by 7 U {clx U} is a
crowded topology on X. Therefore, 7/ = 7 and clx U is open in X.

1.3 Submaximal spaces

We will call a space X submaximal if every dense subset of X is open in X.
Observe that a submaximal space cannot contain two disjoint dense subsets.

Proposition 1.21. Mazimal spaces are submazximal

Proof. Assume that (X, 7) is a maximal space. Let D be a dense subset
of X. We have seen that the topology 7’ generated by 7 U {D} is crowded,
therefore 7/ = 7 and D is open. O

Observe that if A is a nowhere dense subset of a submaximal space X,
then intx A is empty and X \ A is dense in X, therefore A is closed. Hence,
submaximal spaces are nodec.

Proposition 1.22. Crowded submazimal spaces are open hereditarly irre-
solvable.

Proof. Let U be a nonempty open subset of a crowded submaximal space
X. If D is dense in U, then DU (X \ clx U) is dense in X, so it is open, then
D is open, therefore U is submaximal, hence irresolvable. O

Proposition 1.23. A crowded space X is submaximal if and only if X is
open hereditarly irresolvable and nodec.

Proof. Suppose that X is OHI and nodec. Let D be a dense subset of X.
Then int(X \ D) = (. By 1.20, X \ D is nowhere dense. Since X is nodec,
D is open. O
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A space X is o-discrete (strongly o-discrete) if X is can be written as a
countable union of discrete subspaces(closed discrete subspaces).

Theorem 1.24. [3] Let X be a crowded submazimal space. Then X is
o-discrete if and only if is strongly o-discrete.

Proof. Let D be a discrete subset of X. Since X is crowded, intx D is empty,
and so D is nowhere dense, on the other hand, X is nodec and thus, D is
closed. Therefore, if X is a countable union of discrete subsets then X is a
countable union of closed discrete subsets. O

The following characterization of submaximal spaces is useful.

Proposition 1.25. [3] A space X is submazimal if and only if every subset
A of X is the intersection of an open subset and a closed subset of X.

Proof. Suppose that X is submaximal. Let A be a subset of X. It is easy
to see that U = AU (X \ clx A) is dense in X, therefore it is open. Hence
A=Unclx A.

Suppose that every subset A of X is the intersection of an open subset
and a closed subset of X. Let D be a dense subset of X. Then D = U NC,
where U is open in X and C' is closed in X. Hence C' is equal to X and U
is equal to D. Therefore D is open in X. O

A space X is ccc if every pairwise disjoint family of nonempty open
subsets of X is countable. Observe that if D is dense in a ccc space X then
D is also ccc. Indeed, let {Us : s € S} be a family of pairwise nonempty
open disjoint subsets of D. For every s € S, let V5 be an open subset of X
such that Us = V;N D. Since D is dense, {Vs : s € S} is a family of pairwise
nonempty open disjoint subsets of X. Therefore, |S| < w.

Theorem 1.26. [3] Every regular submazimal ccc space X is a Q-set, that
is, every subset of X is a Gs set in X.

Proof. By proposition 1.25, it is enough to prove that every closed subset
of X is a G set in X.

Let F' be a closed subset of X. Suppose that X \ F' is nonempty and
define

v ={clx U : U is a nonempty open subset of X and F Necly U = (}.

Since X is regular, X \ F' = Uy. By Zorn’s Lemma, there is a maximal
pairwise disjoint subfamily £ of 7. By hypothesis, |{] < w. Let V = U¢.
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Observe that V is F,, and V U F' is dense in X. Then, V U F' is open in X.
Therefore F' = (VU F)\ V and F is Gs. O

In section 2.1 we are going to construct crowded ccc Tychonoff submax-
imal spaces which are not maximal. In order to do so, we will use the
following well known results.

Lemma 1.27. A space X is extremely disconnected if and only if whenever
U and V are open disjoint subsets of X, we get cly UNcly V = 0.

Proof. Suppose that X is extremely disconnected. Let U, V be open subsets
of X and suppose that clx UNcly V # (). Since clx U is open, clxy UNV # ()
and U NV is not empty.

Now, let U be an open subset of X. Then U, X \ clx U are open disjoint
subsets of X so, by hypothesis, cly U Neclx (X \ clx U) = 0, but clx U U
clx(X \ clx U) = X. Then clx U is open. O

Lemma 1.28. If X is a regular infinite space and x € X is a non isolated
point with a local countable base, then X is not extremely disconnected.

Proof. Let {By, : n € w} be a countable local base at = such that B,,11 C B,
for every n € w. Let 29 € Bp\{z} and x,, € B, \ ({xm : m < n}U{x}). Since
X is regular, there is a family {U,, : n € w} of pairwise disjoint open sets in
X such that x,, € U, for every n € w. Therefore W = U{Us, : n € w} and
V = U{Uzp+1 : n € w} are open disjoint sets such that z € clx W Nclx V.
Therefore, X is not extremely disconnected. O

Lemma 1.29. Let Y and Z be Hausdorff spaces and let f :' Y — Z be an
open continuous surjective function. If A is a dense extremely disconnected
subspace of Y, then f[A] is extremely disconnected.

Proof. Suppose that A is dense in Y and f[A] is not extremely disconnected.
There exist y € f[A] and nonempty open disjoint subset U,V of f[A] such
that y € clyq) UNclyq) V. Take open sets Uy, V1 in Z such that UiNf[A] = U
and Vi N f[A] = V. Since f is surjective, f[A] is dense in Z. Then, U; NV}
is empty. Pick z € A with f(x) = y. Let W be an open set in Y such
that € W. Then, f[W] is an open set in Z such that y € f[W], therefore,
fIW]NU; # 0 and f[W]NV; # 0, which implies that W N f<[U1] # 0 and
W N f<[Vi] # 0. As a consequence

xecly(fT[Uh]) Nely (fTVi]) N A =cla(fT[UI]NA) Ncla(fT[U1] N A)

because A is dense in Y. But f<[U;] N A and f<[Vi] N A are disjoint and
open in A. Therefore A is not extremely disconnected. O
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Theorem 1.30. Assume that X; is a Hausdorff space with more than one
point for every t € T with T infinite. Then the product space X = [[{ X :
t € T} does not contain a dense extremely disconnected subspace.

Proof. Suppose that A is a dense extremely disconnected subspace of X. Let
S be a countable subset of T. The projection 7g : X — Xg =][{X;:t € S}
is an open continuous function. By Lemma 1.29, X¢ has a dense extremely
disconnected subspace B.

Now, let ¢t € S, since By = m[B] is extremely disconnected and dense
in X; and X; is Hausdorff with more than one point, there is a nonempty
clopen set U; in By such that V; = B\ Uy is a nonempty clopen set in B;. Let
ft + By = {0,1} be defined by fi(x) =0 if x € U; and fi(z) = 1 otherwise.
Then, f; is open, continuous and surjective.

Define Y = [[{B; : t € S} and observe that B C Y. Let f:Y — {0,1}°
be defined by

m(f(2)) = fi(x(t))
for every x € Y and every t € S.
Then, f is an open continuous surjective function. By Lemma 1.29,
f[B] is a dense extremely disconnected subspace of the second countable

regular space {0,1}°. Hence f[B] is a second countable regular space with
no isolated points, by 1.28, f[B] is not extremely disconnected. O

Corollary 1.31. No maximal space can be embedded as a dense subspace
into an infinite product of Hausdorff disconnected spaces.

Proof. Recall that maximal spaces are extremely disconnected. O

A space X is Baire if for every collection {U,, : n € w} of open dense
subsets of X, the intersection N{U, : n € w} is dense in X. Observe that if
U is an open subspace of a Baire space, then U is Baire.

Theorem 1.32. [1] The following conditions are equivalent.
1. There is a crowded Hausdorff irresolvable Baire space.
2. There is a Hausdorff mazrimal non-o-discrete space.
3. There is a crowded Hausdorff submazimal non-o-discrete space.

Proof. Suppose that X is a crowded Hausdorff Baire irresolvable space. By
1.3, X has a nonempty open hereditarly irresolvable subspace Z. Since Z
is open, Z is Baire and we may assume that X itself is open hereditarly
irresolvable. Take any crowded maximal topology ¢ on X such that 7x C o.
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Therefore (X, o) is Hausdorff maximal. Suppose that (X, o) is o-discrete.
Then X = U{X,, : n € w}, where X,, is discrete in (X,0) and X,, N X; = 0,
whenever m # j. If int-, X, is nonempty, then int, X, is nonempty, wich is
a contradiction, since X, is discrete in the crowded space (X, o). Therefore,
every X, has empty interior in X. By 1.20, X,, is nowhere dense in X.
Therefore X is not Baire. Thus, (X, o) is a maximal non-o-discrete space.

Every maximal space in submaximal.

Suppose that X is a crowded Hausdorff submaximal non-o-discrete space
and suppose the existence of a nonempty open o-discrete subspace of X. By
Zorn’s Lemma, there is a maximal pairwise disjoint family A of nonempty
open o-discrete subspaces. Define Y = clx(UA). Since intx (Y \ UA) is
empty, by lemma 1.20, Y\ UA is nowhere dense. Since X is nodec, Y\ UA
is closed and discrete. For each U € A, there is a family {D}; : n € w}
of pairwise disjoint discrete subspaces of U. For each n € w, define D, =
UueaDpr. It is easy to see that each D, is discrete. Therefore UA is o-
discrete, and so is Y. Therefore Z = X \ Y is a nonempty open subspace of
X. If V is a nonempty open o-discrete subspace of Z, by the maximality of
A, there is U € A, such that V N U is nonempty, but U C Y. Therefore, Z
contains no nonempty open o-discrete subset.

Observe that Z is Baire. Indeed, suppose that {U,, : n € w} is a collection
of open dense subsets of Z. Since Z is submaximal, Z \ U, is closed and
discrete for every n € w. So the set P = U{Z \ U, : n € w} is a o-discrete
subspace of Z. Hence, every nonempty open subset of Z meets Z \ P, this
means that N{U, : n € w} is dense in Z. O






Chapter 2

Almost resolvable spaces and
ai-maximal independent
families

2.1 Almost resolvable spaces

The following definition was introduced by Bolstein[5].

A topological space X is almost resolvable if X is the union of a countable
collection of subsets each of them with empty interior. Otherwise, we will
say that X is almost irresolvable.

Observe that every resolvable space is almost resolvable. Indeed if A, B
are disjoint dense subsets of a topological space X, the interiors intx A and
intx B are empty, then X is almost resolvable. Also, if A is a nonempty
open subspace of an almost resolvable space, then A is almost resolvable.

Proposition 2.1. [14, Dorantes, Pichardo, Tamariz] If X is almost irre-
solvable and A(X) = |X|, then | X| has uncountable cofinality.

Proof. Without loss of generality, let us assume that the underlying set of
X is the cardinal k. Our argument will be by contrapositive so assume that
{an : n € w} is an increasing sequence of ordinals whose supremum is x and

such that ap = 0. Define, for each integer n, Y, := [ay, ap41) to obtain a
countable cover of X. Since X is almost irresolvable, int Y;,, # ), for some
m, and therefore A(X) < |X]. O

By example 1.18, w has a crowded Tychonoff irresolvable topology 7. It
is clear that A((w,7)) = w. By the previous proposition, (w,7) is almost

15
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resolvable not resolvable.

Definition 2.2. Let X be a topological space. X will be called almost w-
resolvable if there exists {Y}, : n < w}, a cover of X, such that J,,, ¥; has
empty interior for each n < w. All spaces which lack this kind of cover will
be called almost w-irresolvable. Thus any space which is almost w-resolvable
is almost resolvable.

Proposition 2.3. If X contains an almost w-resolvable (almost resolvable)
dense subspace, then X is almost w-resolvable (almost resolvable).

Proof. Suppose that D is a dense subspace of X such that D = U{D,, :
n € w} and intp(U{Dy,, : m < n}) is empty for every n € w. Therefore
X = (X \D)U(UD, : n € w}) and it is easy to see that X is almost
w-resolvable. O

Theorem 2.4. [/0] If X is the union of almost w-resolvable (almost resolv-
able) subspaces, then, X is almost w-resolvable (almost resolvable)

Proof. Suppose that X = U{X; : j € J} where each X; is almost w-
resolvable. Let A = {45 : s € S} be a maximal family of pairwise dis-
joint, nonempty almost w-resolvable subspaces of X. For each s € 5, let
As = U{A? : n € w}, where int4, (U{AT" : m < n}) is empty for every
n € w. Without lost of generality we can suppose A? N AT = () for every
n #m.

Suppose that B = X \ clx(UA) is nonempty for some j € J. Since B
is open in X, B is almost w-resolvable and B N A = () for every A € A,
contradicting the maximality of A. Hence X \ clyx (UA) is empty for every
j € J, therefore UA is dense in X.

Now, define Z = X \ UA and Y;,, = U{A? : s € S}. Since UA is dense,
inty Z is empty.

Suppose that U is a nonempty open set in X. Then, U N A; is nonempty
for some t € S. Let n € w, since A; is almost w-resolvable, there is a €
(U N A) \U{A} : m < n}. Observe that (U N A;) NY,, = A for every
m € w. Therefore a € (UNA;) \U{Y,, : m < n}. Hence ZU(U{Y,, : m < n})
has empty interior for every n € w.

For almost resolvable, the proof is analogous. ]

Note that if X is a submaximal space and A C X has void interior, then
all its subsets are closed in X. Hence A is closed discrete.

Proposition 2.5. [14, Dorantes, Pichardo, Tamariz] If X is crowded sub-
mazimal, the following are equivalent.
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1. X s almost w-resolvable.
2. X 1is almost resolvable.
3. X 1is strongly o-discrete.
4. X is o-discrete.

Proof. By Theorem 1.24, (3) and (4) are equivalent. It is clear that (1)
implies (2). To prove that (1) follows from (4) assume that {D,, : n < w} is
a cover of X consisting of discrete subspaces. By letting Y;, = Dy, \U,,, Di,
n € w, we obtain {Y} : k € w}, a partition of X into discrete subspaces.
Since X is crowded, each set | J;,_,, Yx has empty interior so (1) holds. Since
every set with void interior is closed and discrete, (2) implies (3). O

A topological space X will be called open hereditarly almost irresolv-
able (OHAI, for short) if every nonempty open subspace of X is almost
irresolvable.

Remark 2.6. Since resolvability implies almost resolvability, if a space X
is OHAI, then X is OHI.

Lemma 2.7. Every almost irresolvable space has a nonempty OHAI open
subspace.

Proof. Let X be an almost irresolvable space and let Y = U{Z C X : Z
is almost resolvable}. By Theorem 2.4, Y is almost resolvable. Since Y is
dense in clx Y, by Proposition 2.3, clx Y is almost resolvable, then Y is
closed. Therefore X \ Y is a nonempty OHAI open subspace of X. O

The following theorem can be found in [2].

Proposition 2.8. [2, Corollary 5.4] In the class of Baire spaces, resolvabil-
ity and almost resolvability are the same concept.

The following definition is well known.

Definition 2.9. An ideal on a nonempty set S is a collection I of subsets
of S such that:

1.0eland S €I,
2. i XelandY €1, then XUY €I,

.if X, YCS Xel,andY C X, thenY € 1.
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Examples 2.10. 1. The trivial ideal, I = {0}.

2. Let Xy be a nonempty subset of S. If Xy # S, the ideal  ={X C §:
X C Xy} is called the principal ideal on S generated by Xj.

3. Let S be an infinite set and let I = {X C S : X is finite}. Then I is
an ideal on S.

4. If X is a topological space, define I = {Y C X : Y is nowhere dense
in X}. Then [ is the ideal of nowhere dense subsets of X.

Definition 2.11. An ideal I on X is o-complete if for every countable
subfamily {X,, : n € w} C I, the union U{X,, : n € w} belongs to I.

Definition 2.12. Let X be space. A subspace A of X is meager in X if
A = U{A4, : n € w}, where A, is nowhere dense in X for every n € w. All
other subsets of X are called second category in X.

Example 2.13. Observe that every Baire space is second category in itself.
Let X be a Baire space and I ={Y C X :Y is first category in X}, then I
is a o-complete ideal in X.

Theorem 2.14. [14, Dorantes, Pichardo, Tamariz] The following state-
ments are equivalent for any submaximal crowded topological space X .

1. X s OHAL
2. X is Baire.

3. If I is the collection of all subsets of X with empty interior, then I is
a o-complete ideal on X.

4. X has no nonempty open o-discrete subspaces.

Proof. Let I be the collection of all subsets of X with empty interior and
let A € I. By 1.20, A is nowhere dense. Since X is nodec, A is closed
and discrete. Now, if A is closed and discrete, A is nowhere dense, and A
has empty interior. Therefore I coincides with the ideal of nowhere dense
subsets of X.

Let U be a nonempty open subset of X. Since X is crowded and sub-
maximal, U is crowded and submaximal. By 2.5, U is almost resolvable if
and only if U is o-discrete. Hence (1) < (4).

Suppose that D is a countable family of dense open subsets of X, such
that U = X \ clx(ND) is nonempty. Observe that {X \ D : D € D} is a
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subfamily of I. But U C U{X \ D : D € D}. Therefore I is not o-complete
and this proves (3) — (2).

If U is a nonempty open o-discrete subspace then U is a countable union
of nowhere dense subsets of X, in particular, U is not Baire and then X is
not Baire. Therefore (2) — (4).

If T is not o-complete, there is a family {4, : n € w} C I, such that
U = intx(U{4, : n € w}) is nonempty. Since U is open in X, inty (U N Ay,)
is empty for every n € w. Therefore {U N A,, : n € w} is a countable cover
of U formed by subsets of U with empty interior in U. Hence (1) — (3). O

Definition 2.15. An ideal on a set S is o-saturated if I is o-complete,
{s} € I for every s € S, and P(S) \ I contains no uncountable pairwise
disjoint family.

Theorem 2.16 (Dorantes). Let X be a crowded space and define I = {Y C
X :intx Y = 0}. Then,

1. I is an ideal on X if and only if X is OHL
2. I is a o-complete ideal on X if and only if X is OHAL
3. I is a o-saturated ideal on X if and only if X is OHAI and ccc.

Proof. Observe that ) € I, X ¢ I andif A CY with Y € I then A € Y.
Then [ is an ideal if and only if Y € I and Z € I implies Y UZ € I. Since X
is crowded, {x} € I for every z € X. Also, I contains the ideal of nowhere
dense subsets of X. Recall that OHAI implies OHI.

1. Suppose that U is a nonempty open resolvable subspace of X. There
is D C U such that D and U \ D are dense in U. Then intx D =
intx (U \ D) =0. But, U & I, hence, I is not an ideal.

Suppose that X is OHI. If A € I, by 1.20, A is nowhere dense, then I
coincides with the ideal of nowhere dense sets in X.

2. Suppose that X is OHAIL Then I is an ideal. Let {Y, : n € w}
be a countable subfamily of I. If U is open in X and U C U{Y},, :
n € w}, then {UNY, : n € w} is a countable cover of U such that
inty (U NY,) =0 for every n € w. Since X is OHAI, U is empty and
U{Y,, : n € w} belongs to I. Therefore, I is a o-complete ideal on X.

Suppose that X is not OHAI There exist a nonempty open set U and
countable cover {U,, : n € w} of U, such that inty (U,) = () for every
n € w. Then intx (U,) = 0 for every n € w. Hence, {U, : n € w} C I,
but U{U, : n € w} does not belong to I. Hence, I is not o-complete.
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3. Suppose that X is OHAIL Then, [ is a o-complete ideal on X. Observe
that P(S)\/ is the collection of all subsets of X with nonempty interior.
Therefore X is ccc if and only if P(S) \ I contains no uncountable
pairwise disjoint family. Therefore I is a o-saturated ideal on X if and
only if X is ccc.

O]

Definition 2.17. [26] An Ulam matrix is a collection {Aq , : @ € wy,n € w}
of subsets of wy such that:

1. if a # B, then Ay, N Ag, = 0 for every n € w;
2. for each a, the set wy \ (U{Aqn : 7 € w}) is at most countable.

In other words, an Ulam matrix has w; rows and w columns. Each
column consists of pairwise disjoint sets and the union of each row contains
all but countably many elements of w;.

Lemma 2.18. [26] An Ulam matriz exists.
Proof. For each { € wy, let f¢ : { — w be an injective function. We can do
this because £ is countable for every ¢ € wi. For a € wi and n € w, define

Aa,n C wy by
£ € Ay if and only if fe(a) =n.

Let o, B € wi. If £ € Aa nNAgy, for some n € w, then fe(a) =n = fe(B).
Therefore, « = 3 and property (1) of 2.17 is verified.
Let a € w;. Suppose that a € €. Then

S Aa,f&(a)'
Therefore {{ € wy : @ € £} is contained in U{A, 5 : n € w}. Hence,
wi \ (UW{Aqn inew}) Ca+l.
The last inequality implies that property (2) is also verified. O
Lemma 2.19. [26] There is no o-saturated ideal on wy.

Proof. Let {Aqn : @ € w1,n € w} be an Ulam matrix. Suppose that I is a
o-complete ideal in w; such that I contains all singletons. Let a € wy. By
2.17(2), the set wy \ (U{Aqn : n € w}) belongs to I. By definition 2.9, the
set U{Aqnn 1 n € w} does not belong to I. Therefore, there exists n, € w
such that Ay p, & 1.
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Now, for every n € w, define W,, = {a € w1 : n = ny}. Since w; =
U{W,, : n € w}, there is m € w such that W,, is uncountable.
Define

A={Agm:ae Wy}

By 2.17(1), A is pairwise disjoint family, then, A is uncountable and by
construction A C P(k) \ 1.

By definition 2.15, I is not o-saturated. Therefore, there is no o-
saturated ideal on wj. ]

Corollary 2.20. If Z is a crowded ccc almost irresolvable space then |Z| >
w1.

Proof. By 2.7, there is a nonempty open OHAI subspace X of Z. Every
finite crowded space is almost resolvable, then |X| > w. By 2.16(3), there
is a o-saturated ideal on X, then |X| # w. By 2.19, |X| # w;. Hence,
wy < |X| < 1Z). O

Definition 2.21. An ideal I on a nonempty set S is a prime ideal on S| if
for every X C S, either X € T or S\ X € I.

Lemma 2.22. [26] If I is a o-saturated ideal on S, then either there exists
Z CS,suchthat I | Z ={X CZ:X €1} is a prime ideal on Z, or there
exists a o-saturated ideal on some cardinal xk < 2%.

Proof. Suppose that I is a o-saturated ideal on S such that for every Z C S,
I1Z={XCZ:X €I} isnot aprime ideal on Z. Observe that I | Z is
an ideal if and only if Z & I. Then, for every Z C S, either Z € I or there
is a subset Xz C Z such that Xz ¢ [ and Z\ Xz & I.

Now, define Ty = {S}, and suppose that for some n € w,n > 0, we have
defined T,, such that:

1. if AeT,, then A& I,

2. if A, BeT, and A # B, then ANB =10,

3. if A €T,, then there is B € T,,_1 such that A C B and
4. UT,, = S for every n € w.

Define Ty,+1 = {Xz,Z\ Xz : Z € T,,}. Tt is easy to see that T}, satisfies
1, 2, 3 and 4. Therefore, we can define T,, for every n € w.
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Let T =U{T, : n € w} and define X <Y if Y C X for every X,Y € T.
Then (7, <) is a partially ordered set. A subset C' C T is a chain if (C, <)
is linearly ordered. By Zorn’s Lemma, 7' contains maximal chains.

If C'is a chain in T, then for every n € w, CNT, has at most one element,
because two different elements of 7T, are disjoint, and if C' is maximal chain,
then C'NT,, has exactly one element for every n € w.

Observe that T' is countable. Let {C, : a < s}, with x < 2¥, be
an enumeration of all the maximal chains of T such that Z, = NC, is
nonempty.

Let a # B. If for every n € w, Co, NT,, = CgNT,, then Cy = Cs.
Therefore, there is n € w such that C, NT;, # C3 NT,. Take A € C, NT,
and B € CsNT,. Hence, Z,NZ3 C AN B =1.

Now, take z € X. Observe that for every n € w, there is A7 € T,, such
that x € AT. Hence A” = {A¥ : n € w} is a chain in T. Suppose that C is a
chain in T such that A* C C. If A € C, there is m € w such that A € T,,,, if
A # A% then, AN A% = () and C is not a chain. Hence C' C A*. Therefore,
A? is a maximal chain. Since z € NA”, there is a < k such that A* = C,,.

If for some o < Kk, Zy & I, then Xz, and Z, \ Xz, are contained in NC,,.
Hence Cp U{Xz,} and C, U{Z, \ Xz, } are chains. By the maximality of
Cos{Xz,,Z0 \ Xz,} C C,, which is a contradiction. Hence, Z, € I, for
every a < K.

By the previous three paragraphs, {Z, : @ < k} is a partition of S into
K elements of 1.

Define f: S — k by

f(z) = aif and only if x € Z,,.

Let J ={Z C k: f<[Z] € I}. It is easy to see that J is an ideal
on k. Suppose that {Z, : p € w} is a countable subcollection of J. Then,
{f<1Z,] : p € w} is a countable subcollection of I. Hence, [ [Upec,Zp] € I,
therefore U,ec.,Z), belongs to J. Then, J a o-complete ideal on x. Let 8 € k.
Then, Zg = f<[{B}] and {5} € J.

Assume that {A, : w € U} C P(xk) \ J and A, N A, = 0 for all u # v.
Then, {f“[Ay] : w € U} is a pairwise disjoint family contained in P(5) \ I.
Since [ is o-saturated, U is countable. We conclude that J is a o-saturated
ideal on k. O

Theorem 2.23 (Dorantes). If Z is a Hausdorff crowded ccc almost irre-
solvable space, then there exists a o-saturated ideal on some cardinal Kk < 2.



ALMOST RESOLVABLE SPACES 23

Proof. By 2.7, Z has an open OHAI subspace X. By 2.16, I = {Y C X :
intx Y = (0} is a o-saturated ideal on X. Let Y be an arbitrary subset of X.
We are going to prove that I [ Y = {X CY : X € I} is not a prime ideal
onY.

IfY e€l,then,Y €I [Y,s0! Y isnot an ideal on Y. Suppose that
Y ¢ I. Then, intxy Y # (). Since X is Hausdorfl without isolated points,
there are nonempty open disjoint sets V, W in X such that VUW C Y.
Then, V' ¢ I and since W C Y\ V, we obtain, Y\ V ¢ I. Hence I [ Y is not
a prime ideal on Y. By 2.22, there exists a o-saturated ideal on x < 2¥. [J

Since there is no o-complete ideal on w, we have the following theorem:

Theorem 2.24 (Dorantes). If X is a Hausdorff crowded ccc almost irre-
solvable space, then the Continuum Hypothesis fails.

Proof. By 2.23, there exists a o-saturated ideal on some cardinal k < 2%.
Then, kK # w and by 2.19, k # wy. Therefore wy < kK < 2%. O

The following definitions are well known.

Definition 2.25. The cofinality c¢f (k) of an infinite cardinal « is the smallest
cardinal A such that k can be represented as the union of some family, of
cardinality at most A, of sets of cardinality less than .

A cardinal k is regular if c¢f(k) = K, otherwise « is singular.

It is easy to see that if x is an infinite cardinal, c¢f(k) is less than or
equal to k. Then « is singular if and only if c¢f (k) < k.

Definition 2.26. Let x be an uncountable cardinal. An ideal I on X is
k-complete if for every subfamily {X, : @ < v} C I, with v < k, the union
U{X, : @ < v}, belongs to I. Observe that o-complete is equivalent to
wi-complete.

Lemma 2.27. [26, Lemma 10.5] Let k be the least cardinal with the property
that there is a o-saturated ideal on k, and let I be such ideal. Then I is k-
complete.

Proof. Suppose that I is not x-complete. There is a collection {X, : a <
~v} C I such that v < k and the union X = U{X,, : @ < 7} is not an element
of I.

For each a < 7y define Y, = X, \U{X3 : 8 < a}. Then, Y, is an element
of I for every o < vy and U{Y, : a <} = X.
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Define f : X — ~ by
f(z) = aif and only if x € Y.

Let J ={Z C~: f<[Z] € I}. It is easy to see that J is a o-saturated
ideal on 7. This contradicts the choice of k as the least cardinal with the
property that there is a o-saturated ideal on k. ]

Remark 2.28. If I is a o-saturated and x-complete ideal on k, then k is
regular.

Proof. 1f k is singular then k = U{f, : @ < A} and B, < k for every a < A
and A < k. Since all the singletons belong to I, 8, € I for every a < A.
Since I is k-complete, k € I, which is a contradiction. O

The following definition can be found in [26]

Definition 2.29. An uncountable cardinal x is weakly inaccessible if k is a
regular limit cardinal.

Lemma 2.30. /26, Lemma 10.14] Let k, \ be infinite cardinals. If k = A7,
then there is no k-complete o-saturated ideal on k.

Proof. For each & € AT, let fe: & — X be an injective function. We can do
this because |{| < A. Define A4, ,, for « € AT and n € X by

£ € Any if and only if fe(a) =n.

We are going to prove that {Aq,,; : @ € ATy € A} is a collection of subsets
of AT such that:

1. if a # B € AT, then A, ,, N Ag, =0 for every n € X;

2. for each a € AT, the set AT \ (U{An, : n € A}) has cardinality less
than or equal to A.

Let a, B € AT If £ € Ay yNAp,, for some n € A, then fe(o) =n = fe(B).
Therefore, « = /3 and property (1) is verified.
Let o € AT. Suppose that a € €. Then

¢ e Aa,fg(a)'
Therefore {€ € AT : a € £} is contained in U{A,,, : n € A}. Hence,

M\ (W{Aay e Ca+1.
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The last inequality implies that property (2) is also verified.

Now, suppose that I is a k-complete ideal on « such that I contains all
singletons.

Let o € AT. By (2), the set AT\ (U{Aqn : 7 € A}) belongs to I. By
definition 2.9, the set U{An, : 1 € A} does not belong to I. Since I is
k-complete, there exists 7, € A such that A, & I.

Now, for every n € A, define W,y = {a € AT : n = n}. Since AT =
U{W, : n € A} and A7 is regular, there is u € X such that W, has cardinality
AT

Define

A={Aqu:a e W,}

By (1), A is pairwise disjoint family, then, A is uncountable and by
construction A C P(k) \ 1.

By definition 2.15, I is not o-saturated. Therefore, there is no x-complete
o-saturated ideal on k. d

Corollary 2.31. [26] Let s be the least cardinal with the property that
there is a o-saturated ideal on k, and let I be such ideal. Then I is k-
complete and k is weakly inaccessible.

Proof. I is a k-complete o-saturated ideal on k [Lemma 2.27]. We are going
to prove that k is weakly inaccessible. Let A be a cardinal such that A < k.
Then AT < k, but AT # £ [Lemma 2.30]. Therefore « is a limit cardinal.
Since & is regular [Remark 2.28], x is weakly inaccessible. O

Theorem 2.32 (Dorantes). Let Z be a Ty crowded ccc space. If 2¥ is less
than the first weakly inaccessible cardinal, then Z is almost resolvable.

Proof. Suppose that Z is a crowded ccc almost irresolvable T5 space. Then
there exists a o-saturated ideal on k < 2¥ [Theorem 2.23|. Let x be the least
cardinal with the property that there is a o-saturated ideal on . Then & is
weakly inaccessible [Corollary 2.31]. Obviously x < 2. Hence Z is almost
resolvable. O

Corollary 2.33 (Dorantes). If 2¢ is less than the first weakly inaccessible
cardinal, then:

1. every Ts crowded Baire ccc space is resolvable,

2. every T, crowded submaximal ccc space is strongly o-discrete.
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Proof. 1. If X is a Ty crowded Baire ccc space, then X is almost resolv-
able, by Proposition 2.8, X is resolvable,

2. If X is a Ty crowded submaximal ccc space, then X is almost resolv-
able, by Proposition 2.5, X is strongly o-discrete.
O

Corollary 2.34 (Dorantes). If the Continuum Hypothesis holds then:
1. every T crowded ccc space is almost resolvable,
2. every Ty crowded Baire ccc space is resolvable,
3. every Ty crowded submaximal ccc space is strongly o-discrete.

Theorem 2.35 (Dorantes). Let Z be a crowded ccc space. If the cardinality
of Z 1is less than the first weakly inaccessible cardinal, then Z is almost
resolvable.

Proof. Suppose that Z is a crowded ccc almost irresolvable space. By 2.7,
there is a crowded ccc OHAI subspace X C Z. By 2.16, [ = {Y C X :
intx Y = (0} is a o-saturated ideal on X. Let x be the least cardinal with the
property that there is a o-saturated ideal on . Then & is weakly inaccessible
[Corollary 2.31]. Obviously x < |Z|. Hence, the cardinality of Z is greater
or equal to the first inaccessible cardinal. ]

Corollary 2.36 (Dorantes). Let Z be a crowded ccc space and suppose
that the cardinality of Z is less than the first weakly inaccessible cardinal,

1. if Z is Baire, then Z is resolvable,
2. if Z is submaximal, then Z is strongly o-discrete.

Corollary 2.37 (Dorantes). Suppose that there are no weakly inaccessible
cardinals, then:

1. every crowded ccc space is almost resolvable,
2. every crowded Baire ccc space is resolvable,

3. every crowded submaximal ccc space is strongly o-discrete.



BAIRE CCC IRRESOLVABLE SPACES 27

2.2 Baire ccc irresolvable spaces

Definition 2.38. A space X is regular card-homogeneous if A(X) = |X|
and | X| is a regular cardinal.

Theorem 2.39 (Dorantes). Let X be a set. Suppose that I C P(X) is a
prime o-saturated ideal on X, then there is a T ccc submaximal connected

OHAI homogeneous topology T on X. If, in addition I is | X |-complete, then
A((X, 7)) =[X].

Proof. Define 7 = {0} UP(X) \ I. Then 7 is a topology on X. Indeed,
(), X € 7. Suppose that {Us; : s € S} C 7, if Uy, is nonempty for some
so € S, then, Us, & I. since Uy, C U{Us : s € S}, UW{Us : s € S} & I.
Now, take A, B € 7 and suppose that AN B is nonempty. Since [ is prime,
X\A € Iand X\B € I. Therefore, X\ AUX\B € I. Hence X\ (ANB) eI
and ANB ¢ 1.

Consider the topological space (X, 7). Let € X. Since I is o-saturated,
{z} € I, then X \ {z} & I, hence {x} is closed in X. Since {z} is not an
element of I, {x} is not open, hence X is crowded.

Observe that I = {Y C X :intx Y = 0}. By 2.16, X is OHAI and ccc.

Let D be a dense subspace of X. Then, intx (X \ D) is empty, therefore,
X\ D eI, hence D ¢ I and D is open. Then, X is submaximal. Observe
that for every subset A C X, then either A is open or X \ A is open. Also,
if AC X and A is clopen, then A =0 or A = X, therefore X is connected.

We are going to prove that X is homogeneous. Let x,y € X such
that x # y. Let f : X — X be a bijection such that f(z) =y, f(y) = =
and f(z) = z for every z € X \ {z,y}. We are going to prove that f is a
homeomorphism.

Let U I.IfU CU\{x,y},orz,y € U, then f[U] =U and fT[U] =U.

Without lost of generality suppose that f(y) = x € U and y ¢ U. Since
{z} € I, (U\ {z}) & I, hence (U \ {z}) U {y} does not belong to I. It is
easy to see that f[U] = (U \ {z}) U{y}. Also, y € (U \ {z}) U{y} and
SNz} U{y} €U

Therefore, f is continuous and open. Hence, X is a T} ccc submaximal
connected OHAT homogeneous space.

Now, if I is |X|-complete, then every nonempty open subset of (X, 7)
has cardinality | X|. O

Corollary 2.40 (Dorantes). Let k be the least cardinal with the property
that there is a o-saturated ideal on k, and let I be such ideal. Then, either
there exists a 17 ccc submaximal connected OHAI homogeneous space Z
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such that Z is regular card-homogeneous or there exists a o-saturated ideal
on kK < 2%,

Proof. By Lemma 2.27 and Remark 2.28, I is xk-complete and & is regular.
Suppose that there exists X C k, such that I | X ={Z C X : Z € I}
is a prime ideal on X. Then, I | X is a prime o-saturated ideal on X. By
corollary 2.39, there is a T} crowded ccc submaximal OHAI space Z such
that A(Z) = |Z] < |X]|. By 2.16, there is a o-saturated ideal on Z, since x
is the least cardinal having a o-saturated ideal, |Z| > k.
Otherwise, by 2.22, there exists a o-saturated ideal on x < 2%, ]

Theorem 2.41. [Dorantes] If 2 is less than the first weakly inaccessible
then the following conditions are equivalent:

1. there is a T1 ccc submazximal connected OHAI homogeneous space Z
such that Z is reqular card-homogeneous,

2. there is a T1 ccc Baire connected OHAI homogeneous space Z such
that Z is reqular card-homogeneous,

3. there is a Th crowded ccc OHAI space Z such that Z is reqular card-
homogeneous, and

4. there exists a o-saturated ideal on some set S.

Proof. By 2.14, a submaximal space X is Baire if and only if X is OHAI,
then 1 = 2.

It is clear that 2 = 3.

If 3 holds, then, by 2.16(3), there exists a o-saturated ideal on some set
S.

Suppose (4). Let x be the least cardinal with the property that there is
a o-saturated ideal on k, and let I be such ideal. Then [ is k-complete and
k is weakly inaccessible [Corollary 2.31].

By Corollary 2.40, either there exists a T crowded ccc submaximal con-
nected irresolvable space Z such that A(Z) = |Z| with |Z] is regular, or
there exists a o-saturated ideal on some A\ < 2%,

Obviously k < A < 2¥. Since k is weakly inaccessible, there is no a
o-saturated ideal on A < 2¢. Hence, (1) holds. O

Corollary 2.42 (Dorantes). If there exists a o-saturated ideal on some set S
and 2% is less than the first weakly inaccessible, then there is a Baire crowded
connected ccc OHAI Ty space Z such that Z is regular card-homogeneous.
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It turns out that we can construct 77 crowded ccc Baire almost irresolv-
able spaces using measurable cardinals, but first we need some definitions.

Definition 2.43. [26] Let S be an infinite set. A nontrivial o-additive
measure on S is a real valued function p on P(S) such that:

1. u(@) =0 and u(S) =1,
2. if X CY then u(X) < p(Y);
3. u({z}) =0 for all z € X;

4. if {X,, : n € w} is a pairwise disjoint family of subsets of S, then
p(U{X, :n ew}) =3{u(X,) :n €w}.

Let © be a nontrivial o-additive measure on a set S and consider the
ideal of null sets:
I,={X CS:puX)=0}

Then I, is a nontrivial o-saturated ideal on S. Indeed, the empty set
belongs to I, and S does not. If X € I, and Y € I, then (X UY) <
pu(X)+p(Y) =0, then X UY is an element of I,. f Y € [, and X C YV
then p(X) = 0, hence X € I,. Therefore I, is an ideal. Let x € X, then
p({z}) =0 and = € I,,. Hence I, is a nontrivial ideal.

Let {X,, : n € w} be a countable family of elements of I,,. Then p(U{X,, :
n € w}) < 3{u(X,):n €w} =0. Hence, the union U{X,, : n € w} belongs
to I, therefore I, is o-complete.

Suppose that J = {X, : @ < w1} is an uncountable pairwise disjoint
subfamily of P(S) \ I,,. For each n € w define

Ip ={a <wy:p(Xa) =1/n}.

It is easy to see that wy = U{J, : n € w}. Then, there is ny € w such
that .J,,, is uncountable. Take a countable subfamily J), of J,,. Then

no
p(U{J: J e J;LO}) =>{u(J):J € J;LO} =¥{1/n:J € J{lo} > 00.
Hence, every pairwise disjoint subfamily of P(S) \ I, is countable. By
definition 2.15, I is a o-saturated ideal on S. Therefore we have proved:

Theorem 2.44. [26] If i1 is a nontrivial o-additive measure on a set S then
1, is a nontrivial o-saturated ideal on S.



30 ALMOST RESOLVABLE SPACES AND AI-MAXIMAL INDEPENDENT FAMILIES

Corollary 2.45 (Dorantes). If there exists a nontrivial o-additive measure
on a set S and if 2“ is less than the first weakly inaccessible then there
exists a submaximal crowded ccc OHAI T} space Z such that Z is regular
card-homogeneous.

Proof. Immediate from Theorem 2.44 and Corollary 2.42. 0

Definition 2.46. [26, Definition 10.8] An uncountable cardinal x is real-
valued measurable if there exists a nontrivial k-additive measure p on k.

Theorem 2.47. [26, Corollary 10.7] The least cardinal that carries a non-
trivial o-additive measure is real-valued measurable.

Definition 2.48. [26, Definition 10.3] An uncountable cardinal  is mea-
surable if there is a k-complete prime ideal I on x such that {z} € I for
every r € K.

Theorem 2.49 (Dorantes). The existence of a measurable cardinal k im-
plies the existence of a a ccc submazximal connected OHAI homogeneous Ty
space Z such that A(Z) = |Z| = k.

Proof. Suppose that k is a measurable cardinal. By Definition 2.48, there
is a k-complete prime ideal I on  such that {x} € I for every z € k. We
will see that there exists a nontrivial o-additive measure p on x such that
I=1,.

Define 1 : P(k) = Rby pu(X) =0if X € [ and p(X) =11if X ¢ I for
every X C k. Then:

1. (@) =0 and u(k) = 1;

2. X CYand X € I, then pu(X) =0 < pu(Y); if X CY and X ¢ I,
then Y ¢ I and u(X) <1 = pu(Y);

3. since {z} € I for every = € k, p({z}) = 0 for every x € k;

4. suppose that {X,, : n € w} is a pairwise disjoint family of subsets of
k. If {X, :n € w} C I, then U{X,, : n € w} belongs to I, hence
w(UH{ X, :n €w}l) =0=X{u(X,): n € w}. Now suppose that there
is m such that X, ¢ I, since I is a prime ideal k \ X, is an element
of I, hence X, C k\ X, and X, € I for every p # m,p € w. Therefore
w(U{X, :new})=1=3{uX,):ncw}l.
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Hence, p is a nontrivial o-additive measure p on x such that I = I,,. Then,
I is a o-saturated ideal [Theorem 2.44]. Since I is a prime ideal, applying
2.39, we obtain the desired result. O

The next Theorem appears in [26].

Theorem 2.50. /26, Corollary 10.10] If k carries a k-complete o-saturated
ideal, then either k is measurable or k < 2%.

The following theorem is well known.

Theorem 2.51. If 2¥ is less than the first weakly inaccessible then the
following conditions are equivalent:

1. there is a measurable cardinal,
2. there is a real-valued measurable cardinal,
3. there exists a o-saturated ideal on some set S.

Proof. If k is a measurable cardinal, then x carries a nontrivial o-additive
measure, by Theorem 2.47, there is real-valued measurable cardinal.

If there is a real-valued measurable cardinal k, then there exists a o-
saturated ideal on x [Theorem 2.44].

Finally, suppose (9). Let x be the least cardinal with the property that
there is a o-saturated ideal on k, and let I be such ideal. Then I is k-
complete and k is weakly inaccessible [Corollary 2.31].

Then, either x is measurable or k < 2¢ [Theorem 2.50]. Since we are
assuming that 2% is less than the first weakly inaccessible, x is measurable.

O

We have an improvement of this theorem.

Theorem 2.52. If 2¥ is less than the first weakly inaccessible then the
following conditions are equivalent:

1. there is a measurable cardinal,
2. there is a real-valued measurable cardinal,

3. there exists a submazimal crowded ccc OHAI T space Z such that Z
s reqular card-homogeneous,

4. there exists a Baire crowded ccc OHAI Ty space,

5. there exists a Baire crowded ccc almost irresolvable T4 space,
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6. there exists a Baire crowded ccc irresolvable T space,

7. there exists a Baire crowded ccc almost irresolvable space,
8. there exists a crowded ccc almost irresolvable space,and
9. there exists a o-saturated ideal on some set S.

Proof. 1f there is a real-valued measurable cardinal k, by Corollary 2.45,
there exists a submaximal crowded ccc OHAI Ty space Z such that Z is
regular card-homogeneous.

If X is a submaximal OHAI space, then X is Baire [Theorem 2.14].

(4) = (5), (5) = (7) and (7) = (8) are immediate.

In the class of Baire spaces, resolvability and almost resolvability are the
same concept [2, Corollary 5.4]. Hence (5) and (6) are equivalent.

If there exists a crowded ccc almost irresolvable, then there exists a
o-saturated ideal on some set S [Theorem 2.16]. O

Since the Continuum Hypothesis implies that 2¢ is less than the first
weakly inaccessible then we have the following Corollary:

Corollary 2.53. Assuming the Continuum Hypothesis, the following con-
ditions are equivalent:

1. there is a measurable cardinal,
2. there is a real-valued measurable cardinal,

3. there exists a submaximal crowded ccc OHAI 77 space Z such that Z
is regular card-homogeneous,

4. there exists a Baire crowded ccc OHAI T space,

5. there exists a Baire crowded ccc almost irresolvable 17 space,
6. there exists a Baire crowded ccc irresolvable T7 space,

7. there exists a Baire crowded ccc almost irresolvable space,

8. there exists a crowded ccc almost irresolvable space,and

9. there exists a o-saturated ideal on some set S.
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A.V. Arhangel’skii and P.J. Collins asked in [3, Problem 7.4] if every
regular submaximal space ccc is strongly o-discrete. Assuming the existence
of a measurable cardinal, then by Theorem 2.49, there is a T1 crowded ccc
submaximal OHAI space Z, by 2.5, Z is not strongly o-discrete. In this
case, Z is Baire [Theorem 2.14], then it is proved that Pavlov’s claim [37,
Theorem 3.16] is incorrect.

However, assuming CH, by 2.24, every T5 crowded ccc is almost resolv-
able, by 2.5, every 15 crowded ccc submaximal is strongly o-discrete.

In contrast with the previous affirmation, it is worth noting that, under
Martin’s Axiom (MA(wy) + -CH), every T» crowded ccc space is almost
resolvable [7, Theorem 4.1].

Definition 2.54. Let I be an ideal over a set S. A family R C P(S)\I is I-
dense if for every X € P(S)\I, there is an S € R such that S\ X € I; Ris I-
proper if for any finite subfamily R’ C R either "R’ = @ or "R’ € P(S)\I; R
is I-almost disjoint if for every distinct S, 5" € R, SNS" € I. Let A € P(S)\I.
An [I-partition of A is a maximal I-almost disjoint family of subsets of A.
An I-partition P, of A is a refinement of an I-partition P; of A, denoted by
P < P, ifevery X € Ps is a subset of some Y € Ps.

The ideal I is weakly precipitous if I is o-complete and whenever A
does not belong to I, and {P, : n € w} are I-partitions of A such that
Py< P <...<P,<..., then there exists a sequence of sets Wy 2 Wy D
... Wy, D ..., such that W,, € P, for each n € w and N{W,, : n € w} # 0.

Proposition 2.55. [32, Proposition 2.9] Let I be an ideal on some cardinal
k. If I has an I-dense and I-proper family, then every I-almost disjoint
family has cardinality at most k. If, in addition, I is o-complete, then I is
weakly precipitous.

Theorem 2.56. [32, Theorem 2.0] If k is a regular cardinal that carries a
weakly precipitous ideal, then there is a measurable cardinal in some inner

model of ZFC.
We have the next proposition.

Proposition 2.57 (Dorantes). If X is a crowded OHAI space then I =
{Y C X :intxY = 0} has an I-dense and I-proper family and I is weakly
precipitous.

Proof. I is o-complete [Theorem 2.16(2)]. It is easy to see that the topol-
ogy of X, 7x, is both I-dense and I-proper, then I is weakly precipitous
[Proposition 2.55]. O
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Kunen, Szymanski and F. Tall proved the following theorem.
Theorem 2.58. [32, Theorem 2.1] The following conditions are equivalent:
1. There is a Baire irresolvable space,

2. there is a o-complete ideal I, such that I has an I-dense and I-proper
family.

We have an improvement of the last theorem.

Theorem 2.59 (Dorantes). The following conditions are equivalent:
1. There is a Baire irresolvable space,
2. there is a crowded almost irresolvable space and

3. there is a o-complete ideal I, such that I has an I-dense and I-proper
family.

Proof. 1t is easy to see that (1)=-(2) [2, Corollary 5.4].

Suppose (2), then there is a crowded OHAI space. By 2.57, (3) holds.
By [32, Theorem 2.1], (3) = (1).

Another interesting way to prove (2) = (1) is the following. If Z is
crowded almost irresolvable, there is a crowded OHAI subspace X of Z.
Then I = {Y C X :intx Y = 0} is o-complete [Theorem 2.16, (2)]. Suppose
that D is a countable family of dense subsets of X. Observe that {X\D : D €
D} is a subfamily of I. Then U{X\D : D € D} € I, hence intx (X \ND) = 0.
Therefore ND is dense and X is Baire. O

Kunen, Szymanski, and Tall proved in [32, Corollary 3.6] the following:

Theorem 2.60. [32] The following conditions are pairwise equiconsistent
1. there is a measurable cardinal,
2. there is a real-valued measurable cardinal and
3. there is a OHI Baire space X such that X is reqular card-homogeneous.

We have an improvement of the last Theorem.

Theorem 2.61. The following statements are pairwise equiconsistent:
1. There is a measurable cardinal,

2. there is a real-valued measurable cardinal,
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3. there is a Baire crowded ccc almost irresolvable T space Z such that
Z 1is reqular card-homogeneous and

4. there is a crowded almost irresolvable space Z such that Z s regqular
card-homogeneous.

Proof. Suppose that there is a crowded almost irresolvable space Z such
that Z is regular card-homogeneous. Let X be a nonempty OHAI subspace
of Z. Then X is regular card-homogeneous. Hence, I ={Y C X :intxy Y =
(0} is weakly precipitous [Proposition 2.57]. Since the cardinality of X is
regular, there is a measurable cardinal in some inner model of ZFC [Theorem
2.56]. O

Proposition 2.62. [32] If V = L, then any crowded space X, such that X
1s reqular card-homogeneous, is almost resolvable.

In case that the space X is ccc we can omit the regular card-homogeneous
hypothesis.

Theorem 2.63. IfV = L, then every crowded ccc space is almost resolvable.

Proof. V.= L implies the Continuum Hypothesis and there are no mea-
surable cardinals, then then every crowded ccc space is almost resolvable
[Theorem 2.52]. O

Kunen and Tall proved in [33] the following proposition:

Proposition 2.64. [33] If there is a weakly precipituous ideal on some car-
dinal K, then there is a measurable cardinal in some inner model.

Then, we have the following Theorem:

Theorem 2.65. The following statements are pairwise equiconsistent:
1. There is a measurable cardinal,
2. there is a real-valued measurable cardinal,
3. there is a Baire ccc irresolvable space and
4. there is a Baire irresolvable space and

5. there is a crowded almost irresolvable.
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Proof. Suppose (2), by Theorem 2.61, there is a Baire ccc almost iressolvable
space. In the class of Baire spaces, resolvability and almost resolvability are
the same concept [2, Corollary 5.4]. Hence (2) = (3) and (4) = (5). It is
easy to see that (3) = (4).

Suppose that there is a crowded almost irresolvable space Z. Let X be a
nonempty OHAIT subspace of Z. Hence, I = {Y C X :intx Y = 0} is weakly
precipitous [Proposition 2.57]. Therefore, there is a measurable cardinal in
some transitive model of ZFC [Proposition 2.64]. O

Corollary 2.66. If V=L, then:
1. every crowded space is almost resolvable,
2. every crowded Baire space is resolvable,
3. every crowded submaximal space is strongly o-discrete.

O. T. Alas et al. asked the following question:

Question 2.67. [1, Question 4.2] Is it true in ZFC that every homogeneous
submaximal (regular) space is strongly o-discrete?.

We have a partial answer. If k is a measurable cardinal, there is a prime
o-saturated ideal on k, then there is a 77 ccc submaximal connected OHAI
homogeneous space Z such that A(Z) = |Z| = k. Hence Z is not strongly
o-discrete [Proposition 2.5]. Observe that k™ is not measurable [26, Lemma
10.4]. This example, also shows that the next theorem cannot be extended
to T spaces if there are measurable cardinals.

Theorem 2.68. [1, Theorem 3.13] Let  be a non-measurable cardinal. If
X is a crowded locally homogeneous Hausdorff space with | X| < k, then X
18 almost resolvable.

2.3 Maximal independent families

In this section we are going to construct irresolvable dense subspaces of the
Cantor Cube 2" for every infinite cardinal «.

Let S be a set. As usual, P(S) is the power set of S and c¢ is the
cardinality of P(w). The inverse image f<[A] of A CY under the function
[ X=>Yis{zeX: f(x)e A}

For any cardinal x, denote by D(k) the discrete space of cardinality .
If k is finite D(k) = k.
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Definition 2.69. The collection of all partial functions from S into T is
denoted by Fn(S,T), i.e., p € Fn(S,T) if and only if p C S x T is a finite
function. In particular, when 7' = 2, elements of Fn(S, 2) are normally called
conditions. If p € Fn(S,T'), dom(p) = {s € S : (s,t) € p for some ¢t € T'}.
Define [p] := {f € T° : p C f} for each p € Fn(S, T).

Lemma 2.70. Let k be a cardinal, the family {[p] : p € Fn(S,D(k))} is the
canonical base for the topological product D(xk)° and w(2%) < |S].

Proof. Let V = Nuerms [{pa}] be a canonical open set in D(x)*, where F is
a finite subset of S and p, € D(k) for every o € F. Define p € Fn(S, D(k))
by p(a) = po for every a € F. Observe that [p] = V. Since |Fn(S,2)| = |95/,
w(2%) < |9]. O

Theorem 2.71 (The Hewitt-Marczewski-Pondiczery Theorem). If  is an
infinite cardinal, then d(D(k)*") < k.

Proof. Let T be the topological product 2. Then |T| = 2% and w(T') < k.

Take a base B for T such that |B| < k and denote by T the collection of all

finite families of pairwise disjoint members of B, it is clear that |7| < k.
Define

D ={f:T — D(k) : there is Ay € T such that

[ is constant in every member of Ay and in T\ UA}

For every n € w, define D,, = {f € D : |A¢| = n}, and observe that
|Dy| = k" = k. Since D = U{D,, : n € w}, the cardinality of D is less or
equal to K.

We are going to prove that D is dense in the topological product D(x)7.
Let p € Fn(T, D(k)). Since T is Hausdorff, for every ¢t €dom(p), there is
U; € B such that t € Uy and if ¢,s € dom(p) and ¢t # s, then Uy N U = ().
Therefore, {U; : t € dom(p)} is an element of 7.

Now, define f : T — D(k) by

f(s) =p(t) if s € U; for some t € dom(p) and

ft)y=0ift e T\U{U; : t € dom(p)}.

It is clear that f € D. Since f(t) = p(t) for every t € dom(p), f € [p].
Therefore, D is dense in in the topological product D(x)7. O
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Corollary 2.72. Let s be an infinite cardinal. If {X; : s € S} is a family
of topological spaces such that d(Xs) < & for every s € S and |S| < 2%, then
d(I{X,:s€ 8}) <k.

Proof. Suppose that the spaces X are nonempty and |S| = 2. For every
s € S let As be a dense subspace of X, such that |[As| = d(X;) and f; :
D(k) — As be an onto function. Since D(k) is discrete, fs is continuous for
each s € S.

Define f: D(k)® — TI{A, : s € S} by

ms(f(9)) = fs(9(s))

for every g € D(k)® and s € S. Since f, is continuous for each s € S, f
is continuous. Therefore, d(TI{As : s € S}) < d(D(x)%). By the Hewitt-
Marczewski-Pondiczery Theorem, d(II{As : s € S}) < K, since II{A; : s €
S}is dense in II{X; : s € S}, d(II{Xs: s € S}) < k. O

Theorem 2.73. Let k be an infinite cardinal. If {Xs : s € S} is a family
of topological spaces such that d(Xs) < k for every s € S, then any family
of pairwise disjoint open subsets of the Cartesian product X = llyegXs has
cardinality < K.

Proof. Let {U; : t € T'} be a family of pairwise disjoint nonempty open
subsets of X. Suppose that |T"| > k.

If |T7| > 2% take a subset T of cardinality 2% in 7". If |T"| < 2" take
T=T.

For every t € T there exist a finite set S; C S and a family of open sets
W§ C X, for every s € S such that V; = N{n* [W!] : s € S;} is contained
in U;. The set Sp = U{S; : t € T'} also has cardinality < 2%. By 2.72, the
Cartesian product Il;cg,Xs contains a dense subset A of cardinality < k.

Observe that {mg,[V;] : t € T'} is a family of nonempty open disjoint sets
in ses, Xs. Indeed, if f € mg,[Vi,]N7s, [Vi,] With ¢1,t2 € T, then, there exist
g1 € Vi, and g2 € Vi, such that f = 7g,(g1) = 7s,(g2), since S, , S, C So,
f € Uy, NUy,. Therefore t; = to. Since A is dense in Iseg, X5, |T| < |A] < &,
which is a contradiction. O

Corollary 2.74. In the Cartesian product of separable spaces any family
of pairwise disjoint non empty open sets is countable.

Example 2.75. For any cardinal x the Cantor cube 2% is ccc, and if D is
dense in 2%, then D is also ccc.
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For a cardinal &, [S]" denotes the collection of all subsets of S which have
cardinality . Similarly, [S]<" is the family of all subsets of S whose cardi-
nality is less than x. Given a cardinal A, we denote by x<* the cardinality
of the set [k]<.

Definition 2.76. Let S be a set and let C = {(C2,CL) : a < A} be a
nonempty family of pairs of subsets of S such that each unordered pair
{CY,C1} is a partition of S.

1. For each nonempty p € Fn(\,2) we define

C(p) := [ OB : a € domp},
and C(0) = S.
2. We say that C is independent if C(p) # () for each p € Fn(A, 2).
3. C will be called uniform if for all p € Fn(\,2) we have |C(p)| = |S|.

4. C is separating if for each pair of distinct points z,y € S there exist
a < X and i < 2 such that z € C!, and y € CL~.

Remark 2.77. To avoid trivialities we will consider only infinite indepen-
dent families on infinite sets.

Let p,q € Fn(S,2) be arbitrary. We say that p < ¢ iff ¢ C p. p and ¢
will be called compatible (in symbols, p | ¢) if p U ¢ is a function; otherwise
they are incompatible (in symbols, p L ¢). A subset of Fn(S,2) in which
any two different elements are incompatible will be called an antichain. The
following lemma is part of the folklore and is used through all the chapter.

Lemma 2.78. Let C be an independent family of size A. For all p,q €
Fn(A,2) the following holds:

1. C(p) € C(q) if and only if p < gq.
2. C(p)NC(q) # 0 if and only if p and q are compatible.

Proof. Assume that p £ ¢ and fix («, i) € ¢\p. If @« € domp, then (o, 1—1) €
p and therefore C(p) NC(q) = 0. When « ¢ domp, we let r = pU{(a,1—1)}
to obtain C(r) C C(p) and C(r) N C(q) = 0; in particular, C(p) € C(q). If
p < g, then p is an extension of ¢ and C(p) C C(q).

If p L g, then for some (a,7) € p, we get (a,1 — i) € q and therefore
C(p) NC(q) = 0. On the other hand, if p | ¢, then p U ¢, is an extension of p
and ¢, and C(p) NC(q) = C(p U q). O



40 ALMOST RESOLVABLE SPACES AND AI-MAXIMAL INDEPENDENT FAMILIES

The constructions described in the following two paragraphs will be used
constantly in this thesis and are well known.

Given an independent family C = {(CY,CL) : @ < A} on a set S, there
is a topology for S which has {C(p) : p € Fn(\,2)} as a base. Indeed, for
any @ < A\, S = C({(a,0)}) UC({(er,1)}) and C(p) N C(q) = C(p U q). The
topological space which results of endowing S with this topology will be
denoted by Se.

Remark 2.79. Another space that can be naturally associated to C is the
following: for each x € S let d, : A — 2 be defined by d,(a) = 0 if and only
if x € C2. Then D¢ will denote the subspace {d, : € S} of the topological
product 2*.

The next proposition is well known and establishes a connection between
the spaces studied in the previous paragraphs.

Proposition 2.80. Let C be an independent family of size A on a set S.
Then:

1. For all x € S and for all p € Fn(\,2),d, € D¢ N [p] is equivalent to
xz € C(p).

2. C is uniform if and only if A(S¢) = |Se|.

3. De¢ is dense in the product space 2.

4. The map h : S¢ — D¢ given by h(x) = d, is continuous.
5. C is separating if and only if h is a homeomorphism.

Proof. 1. Let x € S and p € Fn(\,2). Then d, € [p] if and only if p C d,,
when and only when p(a) = d;(«), for every o € dom p, and this is

(@)

equivalent to x € C5“ for every a € dom p, if and only if z € C(p).

2. By (1), |C(p)| = & for all p € Fn(A,2), if and only if A(S¢) =&

3. Let p € Fn(A\,2). Since C is independent, we can take y € C(p). Then
dy € [p] N De.

4. Let p € Fn(A,2). By 2, z € C(p) if and only if d, € [p]. Therefore
RIC(p)] = [p] N D¢. Thus, h is continuous and open.

5. By 4, we have that h is a homeomorphism if and only if A is injective.
Suppose h is injective, take two different points z,y € S, then d, =
h(xz) # h(y) = dy, hence there is & < A such that d,(a) = 1 — dy(a).
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Therefore x € Ci“‘(“) and y € C;—dy(a), and C is separating. Now

Suppose C is separating, take two different points x,y € S. There
exist @ < A\ and i < 2 such that * € C! and y € CL7%. Therefore
dy(a) =i # 1 —1i=dy(a), and h is injective.

O

Corollary 2.81. If C is a separating independent family of cardinality A,
on S, then S¢ is Tychonoff ccc and crowded.

Proof. By the previous theorem, S¢ is homeomorphic to a dense subspace
of 2, then S¢ is Tychonoff, since 2* is crowded and ccc, then so is S¢. O

In this chapter we have constructed dense subspaces of Cantor cubes, 27,
using independent families and now we are going to construct independent
families using dense subspaces of Cantor cubes.

In order to fulfill the promise, take Y = {y, : @ < k} be a dense subset
of 2* (we are assuming that a # 8 implies y, # yg). For each & < X and
i < 2 define Bé = {a < Kk :ya(§) =i} and take By := {(Bg,Bgl) 1 &< AL
The following lemma is well known.

Lemma 2.82. Let Y be a dense subset of cardinality k on the product space
2. The family By is a separating independent family on k of cardinality A
such that Dg, =Y

Proof. Tt is easy to see that the unordered pair {Bg, Bgl} is a partition of k.

Let p € Fin(\,2). Since [p] is an open subset of 2*, there is & < A such
that yo € [p] NY. Since p C yq, @ € By (p).

By the remark 2.79, d,(§) = 0 if and only if « € Bg, but this happens if
and only if yo(§) = 0. Then d, = y, for every a < k. Then Dg, =Y. O

We will see how to construct irresolvable spaces using independent fam-
ilies.

Definition 2.83. We will say that an independent family C on .S is maximal
independent, if it is not properly contained in any other independent family
on S.

The next proposition is well known.

Proposition 2.84. Let C be a separating independent family C of cardinality
A on S. Then C is maximal independent if and only if D¢ is an irresolvable
subset of 2*.
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Proof. Assume that D¢ is resolvable. Let U,V two disjoint dense subsets
of De. Let A = {z € S : d, € U}. We are going to prove that C' =
CU{(A,S\ A)} is an independent family on S which properly contains C.

First observe that (A,S \ A) is not an element of C. Otherwise, there
would be o < X and i € {0, 1} such that A = C%. Let p = {(«, 1)}, since V
is dense, there exists € S such that d, € [p]NV. By 2.80(1), x € C(p) = A,
and again by 2.80, d, € U, which implies that U and V are not disjoint.

Then C’ properly contains C. Now Let p € Fn(\,2). Then [p] N U and
[p]NV are nonempty, then C(p)NA and C(p)NS\ A are nonempty. Therefore
C’ is an independent family on S which properly contains C.

Now suppose that C is not maximal and let C’ be an independent family
on S such that C is properly contained in C’. Let (4,5 \ A) € C"\ C. Define
U={d, € D¢ : x € A}. Then U and D¢ \ U are disjoint dense subsets.
Indeed, let p € Fn(\,2). Since C’ is independent, there exist € C(p) N A
and y € C(p) NS\ A4, then d, € [p]NU and dy € [p]N D¢ \ U. O

Let k be an infinite cardinal. There is a dense subset Y of cardinality s
in 22", Then By is an independent family on s of cardinality 2~.

Lemma 2.85. There exists a uniform independent family of subsets of k of
cardinality 2°.

Proof. Define P = [k]<% x [[k]<“]<“. That is, P is the set of all pairs (F,F)
where F' is a finite subset of x and F is a finite set of finite subsets of .
Since [k]<“ has cardinality x, P has cardinality &.

Take a enumeration P(k) = {U, : a < 2"} of all subsets of . For each
a < 25 let

CO={(F,F)e P:FNU,€ F}and CL =P\ C?

and define C = {(C2,C}) : a < 27}.
Let p € Fn(2",2). For each pair of distinct elements a, 8 € dom(p), let
a8 be an element of x such that either £, 3 € Uy \ Ug or &y 8 € Ug \ Us.
Define

G ={&.p:a,p €dom(p),a# S}

For each £ € £\ G, define Fr = GU{{}. Observe that Frt NU, # F: NUg
when o, 8 € dom(p), # . Therefore Fe N U, = F¢ N Up if and only if
a = f3. Define F¢ = {F: N U, : p(o) = 0}.

Claim: (F¢, F¢) € C(p). Take € dom(p). If p(a) = 0, Fe N Uy € Fo,
then, (F¢, Fe) € CO. If p(a) = 1, Fe N Uy & Fe, then, (F¢, Fe) € CL. Hence
(Fe, Fe) € C(p). Therefore C(p) has cardinality &.
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If a # 3,C9\ Cg is not empty and also C9 \ Cé is not empty, hence C is
a uniform independent family on k of cardinality 2. O

2.4 Ai-maximal independent families
Definition 2.86. Let C be an independent family of size A on a set S.

1. C is ai-maximal independent if for every partition {Y;, : n < w} of §
there exist p € Fn(\,2) and m < w such that C(p) C Y,,.

2. We say that C is awi-maximal independent if for every partition {Y,, :
n < w} of S there exist p € Fn(A,2) and m < w satisfying C(p) C
Uigm YVZ

We are going to see how to construct almost irresolvable spaces from
ai-maximal independent families.

Proposition 2.87. [22, Proposition 2.6] Let C be an independent family
of size A on a cardinal k. Then C is ai-mazimal independent iff D¢ is an
almost irresolvable subspace of 2.

Proof. Suppose that C is an ai-maximal independent family. Take a count-
able partition {U,, : n € w} of D¢. For each n € w, define B,, = {a < k :
do € Up}. Then {B,, : n € w} is a partition of k. By hypothesis, there exist
p € Fn(A,2) and m € w such that C(p) C By,. Then [p|N D¢ C U,,. Indeed,
if do € [p] N D¢ then o € C(p) C By, by definition of B,,, we have that
do € Up,. Hence intp, (U,,) is not empty and De¢ is almost irresolvable.
Now assume that D¢ is almost irresolvable. Take a countable partition
{Y,, : n < w} of k. For each n € w, define U,, to be the subset {d, : @ € Y, }
of D¢. The collection {U,, : n € w} is a countable partition of D¢. Since
De¢ is almost irresolvable, there is m € w such that intp, (Uy,) is not empty.
Take p € Fn(A,2) such that [p] N D¢ C U,,. Hence C(p) C Y,,. O

Similarly, [22, Proposition 2.7] states that C is awi-maximal independent
iff D¢ is an almost w-irresolvable subspace of 2*.

Corollary 2.88 (Dorantes). There are no ai-maximal independent families
under the Continuum Hypothesis.

Proof. If C is an ai-maximal independent family, then D¢ is a dense subspace
of the product space, 2* for some . Then D¢ is a Hausdorff crowded, ccc,
almost irresolvable space. By 2.24 CH fails. O
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We are going to study some consequences of the existence of ai-maximal
independent families.

Recall that if Y = {y, : @ < k} is a dense subset of 2* and if for each
€ < Xand i< 2 we define Bé ={a <K :ys(&) =i}, then B := {(Bg,Bgl) :
& < A} is a separating independent family such that Dg =Y. In particular,
we have the following.

Proposition 2.89. For each dense almost w-irresolvable subspace Y of 2*
of size Kk there exists an awi-maximal independent family on k of size .

Definition 2.90. Let C be an independent family of size 2" on a set S,
where k := |S|. We say that C is a nice independent family on S if the
following conditions hold:

1. C is separating,
2. each element of [S¢|<" is closed discrete in Se,

3. if A € [Sc]”, then either A is closed discrete in S¢ or C(p) C A for
some p € Fn(2",2).

A nice independent family on S which is, at the same time, ai-maximal
independent will be called a nice ai-maximal independent family. Similarly,
a nice awi-maximal independent family is a nice independent family which
is awi-maximal independent.

Proposition 2.91. Suppose that C is a nice independent family on a set S.
Then D¢ is submazximal.

Proof. Let D be a dense subset of D¢. Then D¢ \ D has empty interior,
because D is dense, therefore D¢ \ D is closed. O]

Nice independent families produce spaces with interesting properties:

Proposition 2.92. If C is a nice independent family, then every subset of
Xc is a Gg, i.e., Xc is a Q-set space

Proof. As we noted above, X¢ is submaximal and since C is separating, X¢
is Tychonoff and ccc. By proposition 1.26, X¢ is a Q-set space. This proves
(1). O

The following result states that we can always modify a suitable inde-
pendent family to obtain a uniform nice independent family.
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Theorem 2.93. [14, Dorantes, Pichardo, Tamariz] Let B be a uniform
independent family on k of size 2%. There is a uniform nice independent
family C on k such that if p € Fn(2",2) and Y € [k]" satisfy B(p) C Y, then
there exists ¢ € Fn(2%,2) with C(q) C Y.

Proof. Enumerate B = {(Bg,Bgl) 1€ < 2"} and [k]" = {F¢ : £ < 2"}. Now
partition 2% into two pieces, Iy and I’, such that |I| = k<% and |I'| = 2.
Also fix a partition {Ja 4 : A € [k]<", a0 € K\ A} C [Lp]“ of I into countable
pieces. For all A € [k]<", a € k\ A, and § € J4 o define

C’g = (Bg UA)\{a} and C’él = R\Cg = (B§1 \ A) U{a}.
Thus, define
By ={(C¢,Ce) 1 € € Iy U{(Bg, By) : € € 2"\ I},

then By is a separating uniform independent family of size 2.

Let P := Fn(2",2).

If By(q) C Fy for some ¢ € P, define pg = q, 11 = Iy, Ko = 0, fo = 0 and
By = By.

If By € Fy for all ¢ € P, let K be a subset of cardinality « of I’,pg = ()
and fo: Ko — k be a bijection. We want to make Fj closed discrete in Bj.

For each £ € Ky, define:

€2 = (BYU Fo) \ {fo(©)} and Cf = 5\ C = (BE\ Fo) U {fol©)}:
Observe that if i € Fp, there is £ € K such that fo(§) = 4, and
Ce N Fy = {i}.
Define I1 = Iy U K and
Bi={(C¢,C¢) : € € Y U{(B¢, Be) : £ € 27\ o},

We are going to prove that B; is a uniform independent family of size
27,

Suppose that Bi(p) has cardinality less than x for some p € P. Then
A =Bi(p) € [k]<", take a € K\ A and £ € J4 4 \ dom(p). Then,

Bl(p) - Cg
Let p* = pU{( 1)}, therefore

Bi(p*) = 0.
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Observe that By(p*) \ Fo C Bi(p*) = 0.

Then By(p*) C Fp, which is a contradiction. Then B; is uniform inde-
pendent family on k.

Assume that for some o < 2% we have constructed

(i) a sequence {pg:f <a} CP,

(ii) a collection {Kjp : B < a} of subsets of I’ such that |Kg| € {0, s} for
each § < «,

(iii) a bijection fg: Kz — & for each § < a with |Kg| = &, and
(iv) a family {{C?, C’g} : £ € Kg} of partitions of  for each 8 < «
in such a way that the following holds for each 8 < a:

(18) If we let Iy = Io U g5 K¢ and

Bs = {(C¢.C¢) 1 € € Igy U{(BY, Bg) : € € 2\ I},
then Bg is a uniform independent family of size 2.

(28) If Bg(q) C Fp for some g € P, then Kg = () and Bg(pg) C Fp.
(38) When Bg(q) € Fj for all ¢ € P, then

(a) pg =10,
(b) Kpis asubset of I\ e 5(K¢ Udompe) with [Kp| = &, and
(c) for each § € Kg:

C¢ = (BYUF3)\{f3(&)} and C¢ = k\ C¢ = (B \ Fp) U{f3(&)}.
Define I, = In U (Ug<aK¢) and
Bo = {(CL.C1) s € € LY U{(BLBY) s € € 2°\ ).

Suppose that F, contains B, (p) for some p € P. Define p, = p, Ko = 0.
Therefore By (pa) C Fy and (2«r) holds.

Now, suppose that F,, 2 B,(p) for every p € P. Since K = (U{dom(p¢) :
¢ < a})U(U{K; : ¢ < a}) has cardinality less than 2, we can choose a
subset K, of cardinality « in I’ \ K. Set p, = () and f, : K, — k a bijection.

For each ¢ € K, define:

CY = (BYUF)\{fa(§)} and Cf = k\ Cf = (B \ Fo) U{fa(9)}.
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Therefore, (3c) holds.

If a = 3+ 1 for some 3 < 2%, then, I, = I3 U Kpg.

If Kg = 0, then B, = Bg. Therefore, B, is a uniform independent family
of size 2% and (1a) holds.

Suppose that Kz is nonempty. By (28), Bs(q) € Fp for all ¢ € P.
Suppose that B, (p) has cardinality less than x for some p € P. Then A =
Ba(p) € [k]<", take vy € k\ A and £ € J4 5 \ dom(p). Then,

Ba.(p) C C’g.
Let p* =pU{(§, 1)}, therefore
Ba(p*) = 0.

By (38)(c), Bs(p™) \ Fjg < Ba(p®) = 0.

Then Bg(p*) C Fjp, which is a contradiction. Then B, is a uniform
independent family of size 2 on k and (1) holds.

Now, suppose that « is a limit ordinal.

Let p € P. Observe that

Ba(p) = (N{C) : € € domp N I }) N (N{BL : € € domp )\ 1}).

Since dom p N I,, is finite, there is 8 < a such that dompNI, C Ig C I,.
Therefore,

Ba(p) = (N{C) : € € domp N Ig}) N (N{BY® : € € domp \ I5}).

Hence
Ba(p) = Bg(p),

implying that B, is a uniform independent family of size 2 on x and (l«)
holds.

Hence, (1a),(2a) and (3«v) are satisfied for every a < 2, and the trans-
finite construction of C = By« is completed.

C is separating. Indeed, if a, 8 € k and a # 3, take § € Jy4y 5. Then

a€Cfand §eCf.

By construction, C is uniform.

If A € [k]<", take any v € K\ A and £ € J4 4, then A C Cg and « € Cgl.
Therefore x \ A is open in k¢. To see that A is discrete, take v € A, and
§ € Ja(y}y then

AN Cgl ={v}.
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Take F' € [k]", then F' = Fj for some § < 2. If (28) holds, then,
K = 0 and Bg(pg) € Fp. Therefore C(pg) = Bg(pg) C Fs. Suppose that
(38) holds, if i € Fg, there is £ € Kg such that fg(£) =14, and

Cgl ﬂF/j = {Z}

Therefore, Fj is discrete. If i € k '\ Fj, there is £ € Kg such that fg(§) = 1,
and
CiNFg=0andic€Cq.

Therefore Fjg is closed and discrete in x¢.

Hence, C is a uniform nice independent family on &

Finally, suppose that Y C x and p € P satisfy B(p) C Y. Then Y = Fj
for some 8 < 2%, because B is uniform. It suffices to show the existence
of a condition r € P with Bg(r) C B(p). Indeed, if this is the case, then
at stage  the assumptions in (28) hold and therefore Bg(pz) C Y. One
easily verifies that Bg(pg) = B(pg) whenever g < v < 2%, In particular,
Clpg) CY.

In order to find the condition r that we mentioned in the previous para-
graph, we need the following claim.

Claim. For each § € IgNdom p and any finite set H C 2" with domp C
H there exist §',0” € Iz \ H such that ¢’ # ¢” and

c?ncdnct c B,

To prove the claim we will consider two cases. If § € Iy, then d € J, , for
some b € [£]<" and @ € k\b. Thus any pair of different points ¢§’, 0" € Jp o\ H
will work. On the other hand, when § € Iz \ Iy, there exists £ < 3 with
§ € K¢. Set a := f¢(d) and notice that we only need to take &' € K¢\ H
and 0" € Jy, \ H.

Using finite recursion we define, for each 6 € IgNdom p, a pair of ordinals
8, 0" € I satistying the conclusion of the Claim and such that

r:=pU{(£,0): &€ Izgndomp}U{(",1): &€ IgNdomp}
is a function. Therefore Bg(r) C B(p). O

Corollary 2.94. For any infinite cardinal x, there is a crowded, submaxi-
mal, ccc space X such that A(X) = | X|.

Proof. By 2.85 there is a uniform independent family B on « of cardinality
2%. By 2.93, there is a nice uniform independent family C on & of cardinality
2. By 2.91, D¢ is submaximal, and since D¢ is dense in product space 27,
D¢ is crowded and ccc. Since C is uniform A(D¢) = |D¢| O
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Corollary 2.95. For any cardinal k, the existence of a uniform ai-maximal
(respectively, awi-maximal) independent family on  of size 2 implies the
existence of a uniform nice ai-maximal (respectively, awi-maximal) indepen-
dent family on k.

Proof. Suppose that B is a uniform ai-maximal independent family on
with |B| = 2% and let C be the uniform nice independent family given by
the previous theorem. Assume that {Y}, : n < w} is a partition of x and fix
p € Fn(2%,2) and m < w in such a way that B(p) C Y;,. Hence, there is
q € Fn(2"%,2) such that C(q) C Y.

Similar arguments apply in the case where B is awi-maximal indepen-
dent. O

Definition 2.96. Let C = {(C’g, C'gl) : £ < A} be an independent family on
a set S.

1. For each p € Fn(\,2) we define
Clp:={(C¢NC(p),C¢NC(p)) : € € A\ domp}.

2. We say that C is globally ai-maximal independent on S if C[p is ai-
maximal independent on C(p) for all p € Fn(A, 2).

Remark 2.97. Let C, S, and X be as in the definition. For each r € Fn(A, 2),
C(r) is an open and closed subspace of X¢ which has {C(r) NC(p) : p €
Fn(\\ domr,2)} as a base for its topology. Therefore X, = C(r).

Observe that if C is a nice independent family on «, then C [ 7 is a nice
independent family on C(r), for all r € Fn(2%,2).

Proposition 2.98. [1/, Dorantes, Pichardo, Tamariz] Let C be an indepen-
dent family on a set S. Then C is globally ai-maximal independent iff X¢ is
OHAL

Proof. Let A := |C|. When X¢ is OHAI and p € Fn(A,2), C(p) is almost
irresolvable; hence Remark 2.97 implies that C[p is ai-maximal independent.

For the other implication assume that X¢ is not OHAT and fix a family,
{Y,, : n € w}, of pairwise disjoint subsets of X whose union, Y, is a non-
empty open subset of X, but each Y,, has empty interior. Then there is
p € Fn(\, 2) with C(p) C Y and therefore {C(p)NY,, : n € w} witnesses that
C(p) is almost resolvable. O

As a consequence of the work done, we obtained:
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Proposition 2.99. IfC is an ai-maximal independent family on k of size A,
then C[r is globally ai-maximal independent on C(r), for some r € Fn(\,2).

Proof. Since X¢ is almost irresolvable, Lemma 2.7, implies the existence
of a finite function r € Fn(A,2) such that C(r) is OHAIL According to
2.97, Xer, is OHAI by the previous proposition, C|[r is globally ai-maximal
independent. 0

The next theorem can be found in [20].

Theorem 2.100. [20] Every almost resolvable space X is the union of a
resolvable space X1 and a first category set Xo with X1 closed in X and
XiNXy=0.

Corollary 2.101. If X is Baire almost resolvable, then X is resolvable.

Proof. If X is Baire, X does not have nonempty open sets of first category.
O

For a cardinal k, we will say that a topological space X satisfies (f,) if
X is a dense subspace of 22" with A(X) = |X| = &.

Theorem 2.102. [14, Dorantes, Pichardo, Tamariz] The following state-
ments are equivalent for any cardinal k.

1. There is an almost irresolvable space which satisfies (t).
There is a Baire submazimal space which satisfies (fy).

There is a Baire OHI space which satisfies (Tx).

There is a Baire irresolvable space which satisfies (1x).

There is a Baire almost irresolvable space which satisfies (1x).

There is a Baire almost w-irresolvable space which satisfies (Tx).

NS v o

There is an almost w-irresolvable space which satisfies (f).

Proof. Let us prove that (2) follows from (1). If (1) holds, Corollary 2.95
guarantees the existence of a uniform nice ai-maximal independent family
C on k. According to Proposition 2.99, there is a condition r for which C|r
is globally ai-maximal independent on x. Since |C(r)| = x and C[r is a nice
independent family on C(r), we will assume, without loss of generality, that
C is globally ai-maximal independent on x. Thus X is Baire submaximal
(Proposition 2.98 and Theorem 2.14) and A(X¢) = k. Using the fact that
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C is separating, we have that X¢ is homeomorphic to D¢ (see the discussion
following Lemma 2.78) and therefore D¢ is the space needed in (2).

Implications (2)—(3)—(4) and (5)—(6)—(7) are straightforward.

By 2.101, (4) implies (5).

Finally, if (7) is true, Corollary 2.95 gives the existence of a uniform nice
awi-maximal independent family C on k. By Proposition 2.5, X¢ is a space
whose existence is claim in (1). O

As a consequence of Theorem 2.102 we obtained that the consistency
strength of the existence of a family as described in part (6) is greater than
the existence of a measurable cardinal:

Corollary 2.103. If x carries a uniform awi-maximal independent family
of size 27, then k is measurable in an inner model of ZFC.

Proof. For such a x we obtain the existence of a dense subspace Y of 22"
which is Baire and satisfies A(Y) = |Y| = k. It is proved in [32], [33], and
[26, Theorem 22.33] that the existence of a space with these characteristics
implies the conclusion of the corollary. O

Theorem 2.104. If an infinite cardinal x carries a uniform awi-maximal
independent family of size 2%, then the following holds:

1. K has uncountable cofinality,
2. Kk # w1, and
8. CH fails, i.e., ¢ > wy.

Proof. (1) is a corollary of Proposition 2.1.

To prove (2) and (3) assume that x is as described in the hypothesis.
Corollary 2.95 guarantees the existence of a uniform nice ai-maximal inde-
pendent family C on x. Then X¢ is a regular, crowded, submaximal, ccc,
almost irresolvable space. By 2.20, k # w1 and by 2.24 CH fails. O

Note that a corollary of the previous result is that if CH holds, then
no cardinal x carries a uniform awi-maximal independent family of size 27.
The same conclusion is consistent with =CH. Indeed, [7, Theorem 4.1] states
that if there are no Souslin trees, then every ccc crowded Hausdorff space is
almost w-resolvable (see the discussion following Definition 2.86).

In [30, Page 79] and [32, Theorem 3.3] it is shown that if x is measur-
able and the ground model satisfies CH, then the generic extension yield
by Fn(k,2,w;) contains a Baire OHI space X with A(X) = |X| (compare
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with part (3) of Theorem 2.102). But in the generic extension no cardinal
k carries a uniform awi-maximal independent family of size 2 because CH
holds in it.

(1) (][40, Questions 5.8]) Is the topology generated by the union of a chain
of almost w-resolvable topologies for a set X always almost w-resolvable?

Assume that k carries a uniform ai-maximal independent family of size
2%. Corollary 2.95 provides us with a nice ai-maximal independent family
C = {(CY,CL) : a < 2F}. For each integer n let C,, := C\ {(C2,CL) : n <
a < w}. Denote by 7, the topology which has {C,,(p) : p € Fn(2"\n,2)} as a
base. Then {7, : n < w} is an increasing sequence of topologies. Moreover,
{CY,C1} is a partition of (k,7,) into two disjoint dense sets for all n < w
and therefore 7, is resolvable. On the other hand, the topology generated by
\U,, Tn coincides with the topology of X¢ and so it is almost w-irresolvable.

(2) ([3, Problem 7.4]) Is every regular ccc submaximal space strongly o-
discrete?

Let C be a nice ai-maximal independent family. Thus X¢ is crowded and
submaximal. Also, Proposition 2.5 implies that this space is not o-discrete.
Since X¢ is homeomorphic to D¢, a dense subspace of the product 22", we
have that X¢ is Tychonoff and ccc.

There is a ZFC answer for [36, Problem 3.8]: Does any submaximal space
contain a dense maximal space? According to [, Theorem 4.1], 22" has a
dense subspace Y which is submaximal. On the other hand, an immediate
consequence of [1, Corollary 2.2] is that no dense subspace of 22" is maximal.
Therefore Y is a submaximal space which contains no dense maximal space.

2.5 Some combinatorics

The following result suggests that if one adds enough random reals, the
generic extension may contain an ai-maximal independent family.

Theorem 2.105. [14, Dorantes, Pichardo, Tamariz] Let B be a uniform
independent family of size 2% on a cardinal k and let C be the family which
was constructed in the proof of Theorem 2.93. If m : P(k) — [0,1] is a
o-additive measure such that m(C(p)) = 27!, for each p € Fn(2%,2), then
C is globally ai-mazimal independent.

Proof. Denote by I the ideal of null sets, i.e., z € I iff m(x) = 0. Since m
is o-additive, I is wi-complete so, according to Theorem 2.14, we only need
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to show that I coincides with the collection of all subsets of X with void
interior (one easily verifies that if this is the case, then the argument given
in the proof of Theorem 2.14 to show that I is o-saturated still works). Set
P := Fn(2%,2).

Observe that if A C X¢ and p € P satisfy C(p) € A, then m(A) > 0.
Hence all null sets have empty interior.

Now let A be a subset of X¢ with empty interior. If A =0, m(A) =0 so
let us assume that A # (). Since all finite subsets of X¢ are closed, we have
that » \ A is infinite. Our plan is to show that m(A4) < 27 for all i < w.

For the rest of the argument we will follow the notation introduced in
the proof of Theorem 2.93. Let n < w be arbitrary.

Suppose first that |A| < k. Fix a set H C k\ A with |H| = n and for
each o € H let @ € J4 4 be arbitrary. Thus, if we let p := {(@,0) : a« € H},
then A C C(p) and |p| = n. Clearly m(A) < 27",

When |A| = &, there exists § < 2" with A = Fg. Let H C Kz be such
that |[H| =n and fg[H] C k\ A. Thus ¢ := H x {0} e Pand A CC(q). O

This section will end with a combinatorial characterization of the exis-
tence of uniform ai-maximal independent families.

Given a poset P, we will denote by B(P) its Boolean completion, i.e.,
B(P) is a complete Boolean algebra which contains P as a dense subset. As
usual, given a set S C B(PP), \/ S and /A S represent the supremum and the
infimum of S in B(IP), respectively.

Remark 2.106. If b € B(P), then b = \/{p € P : p < b} and therefore
BP)={VS:SCP}.

The following fact (see, for example, [31, II Exercise 19]) will be used
later.

Remark 2.107. If 5,7 C P, then \/ S < \/ T iff for all p € S and for each
q < p there exists r € T with r | q.

Theorem 2.108. [1/, Dorantes, Pichardo, Tamariz] The following are
equivalent for any infinite cardinal .

1. There exists a uniform ai-mazximal independent family on k of size 27.

2. Kk carries an wy-complete ideal I for which the quotient Boolean algebra
P(k)/I is isomorphic to B(Fn(2",2)) and [k]<" C I.

Proof. We will show first that (2) implies (1). Set P := Fn(2",2) and sup-
pose that f: B(P) — P(k)/I is an isomorphism.
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Let {A¢ : £ < 2"} be an enumeration of I where each A¢ is listed infinitely
many times.

Let £ < 2 be arbitrary. Fix Bg C k such that f({(£,0)}) = [Bg], where
[Bg} denotes the equivalence class of Bg modulo I, and let Bfl =K\ Bg.
Since {(&,1)} is the Boolean complement of {(£,0)} in B(IP), we have that
fHE D} = [Bgl] Define C? := Bg \ A¢ and C’g1 = Bg1 U Ae.

We will argue that C := {(Cg, C’g) : € < 2%} is ai-maximal independent.

We are going to prove that C is uniform independent. Let p € P be
arbitrary and observe that if £ < 2" and i < 2, then [Cg] = [Bé] Therefore
the equality f(p) = [C(p)] follows from the fact p = A{{(a,p(a))} : @ €
domp}. In particular, C(p) ¢ I and so |C(p)| = k.

Let {Y, : n € w} be a partition of k. Since I is a proper w;-complete
ideal, there is m < w with Y, ¢ I. Let b € B(P) and p € P be so that
f(b) = [Yi] and p < b. Thus [C(p)] = f(p) < [Ym), i.e., C(p) \ Y, € I. For
some § € 2%\ domp we get A¢ =C(p) \ Y, and so ¢ :=p U {(&,0)} satisfies
C(q) € Yin.

Assume (1). Proceeding as in the proof of (1)—(2) in Theorem 2.102,
there is a nice independent family C on « for which X¢ is Baire submaximal
and A(X¢) = k. Thus I, the ideal of nowhere dense subsets of X¢, is an
wi-complete ideal on k and coincides with the collection of all subsets of
X¢ with empty interior. Moreover, each element of I is closed and [k]<" =
[Xc]<" C 1.

For each z C k let 2* := {p € P: C(p) C z}. Define h : P(k) — B(P) by
h(z) :=\/ z*. We will show that the following holds:

(a) for all z,y € P(k), z \y € I iff h(xz) < h(y); and
(b) h is onto.

Notice that if (a) and (b) are true, then h induces an isomorphism from
P(x)/I onto B(P).

Observe that if p € z* and ¢
Remark 2.107 to obtain that h(x)
with p | q.

Let us prove (a). Suppose that z \ y € I and let p € * be arbitrary.
Then z \ y is closed, C(p) € = \ y, and C(p) C z. Hence C(p) \ z = () and
Cp) \ (z\y) = (C(p) \ z) U (C(p) Ny) = C(p) Ny is a nonempty open set.
There is ¢ € P so that C(¢) € C(p) Ny. Clearly ¢ € y* and ¢ | p (Lemma
2.78). By the observation made in the previous paragraph: h(z) < h(y).

Now suppose that = \ y ¢ I. Then C(p) C z \ y for some p € P. In
particular, p € z*. Notice that for all ¢ € y* we have C(q) C y and thus

< p, then ¢ € a*. Therefore we apply
< ( ) iff for each p € x* there is ¢ € y*
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C(p)NC(q) =0, ie., p L g (Lemma 2.78). This shows that h(z) £ h(y) and
so (a) is proved.

According to Remark 2.106, h is onto if for each S C P there is z C & such
that h(x) = \/ S. Solet S C P be arbitrary and define z := | J{C(p) : p € S}.
Clearly, S C z* and hence \/ S < h(z). We will use Remark 2.107 to show
that h(xz) < \/S. If p € 2*, then C(p) C x and hence C(p) NC(q) # O for
some q € S. Thus p | ¢ according to Lemma 2.78. O

It is worth noticing that the argument given for (1)—(2) in the previous
theorem shows that the existence of an wi-complete ideal, I, on x for which
the quotient P(k)/I is isomorphic to B(Fn(2",2)) implies the existence of
an ai-maximal independet family on x of size 2.

2.6 Questions
This section is dedicated to some interesting problems.
Problem 2.109. Are the following statements consistent with ZFC?

1. There are cardinals x which carry an awi-independent family of size
257

2. There are cardinals x which carry an awi-independent family of size A
with A\ < 277

3. For some cardinal A\, 2* contains a dense almost w-irresolvable sub-
space but no dense almost irresolvable subspace?

Problem 2.110. Is it true that if £ does not carry an awi-maximal indepen-
dent family of size 2%, then all Baire dense subspaces of 22 are w-resolvables?
(Theorem 2.102 guarantees that if the cardinality of the subspace is k, then
the answer is “yes.”)

If B is an arbitrary independent family on a cardinal x of size 27, the
construction described in the proof of Proposition 2.90 shows how to modify
B to obtain a nice independent family C on x. One may wonder if this process
preserves algebraic structures.

Problem 2.111. Is it true that if Dg is a topological subgroup of the
product 22°, then so is D¢?
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We can give two remarks regarding this question.

First, it is proved in [3, Corollary 8.16] that the cardinality of a ccc nodec
topological group is not greater than c. Therefore D¢ is not a topological
subgroup when s > ¢ independently of the properties that B has.

Second, [1, Corollary 3.8] states that if Y is a homogeneous submax-
imal space with |Y| = A(Y) and |Y| is non-measurable cardinal, then Y
is strongly o-discrete. Thus X¢ is not homogeneous when B is ai-maximal
independent and  is non-measurable (see the proof of Corollary 2.95 and
Proposition 2.5).



Chapter 3

Preliminaries on weakly
pseudocompact spaces

3.1 The Stone-Cech compactification

Throughout this chapter all topological spaces are considered Tychonoff and
with more than one point. A zero set in X is a set of the form Z(f) = {x €
X : f(z) = 0}, where f is a real valued continuous function defined on
X, and a cozero set is the complement of a zero set. A pair (aX,a), is
a compactification of a space X, if aX is compact and a : X — aX is an
embedding such that a[X] is dense in aX. To simplify notation, we will write
aX instead of (aX,a). We will denote by C(X, Z) the set of all continuous
functions from X into Z.
The next theorem will enable us to construct compactifications

Theorem 3.1 (Embedding Theorem). Let X be a space and R be a subset
of R. If F is a subset of C(X, R) such that:

1. if z,y are distinct points in X, there is f € F such that f(x) # f(y)
and

2. if x € U C X, where U is open in X, then there is f € F such that
f(z) & clr fIX\U].
Then, the evaluation map ep : X — RE, defined by ms(er(z)) = f(x) for
every x € X and every f € F, is an embedding.

Proof. We know that a function g defined on a space Z to a product space
II{Z; : j € J} is continuous if and only if 7; o g is continuous for every
projection ;. Since 7wy o ep = f, for every f € F,ep is continuous.

57
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Claim 1. ep is injective. Take xg and z; two different points in X.
There is a continuous function f € F' such that f(xo) # f(z1). Therefore
mr(er(z0)) = f(wo) # f(x1) = 7f(er(21)). Hence ep(zo) # er(21)

Claim 2. ef is open onto er[X]. Suppose that V is an open subset of X
and z is an element of V. There is a continuous function f € F such that
f(z) & clg f[X \ V]. So, there is an open set W C R such that f(z) € W
and W N f[X \ V] = 0. Therefore:

er(r) € ep[X] N7y [W] Cep[V].

Indeed, take y € X such that ep(y) € 7} [W]. Then mp(ep(y)) € W, that
is, f(y) € W and f(y) € f[X \ V]. Therefore, y € V. Since ep[X]| N7} [W]
is open in ep[X], we conclude that ep[V] is open in ep[X].

Hence er is an embedding. O

In the next theorem we are going to construct a special compactification
of a space X.

Theorem 3.2. [}3] Let X be a space. There is a compactification X of
X such that for each continuous function f : X — [0,1], there is a unique
continuous function Sf : X — [0,1] such that f = Bf o S.

Proof. Define 8 : X — [0,1]9(501) by 7,(8(z)) = f(z) for every z € X
and f € C(X,[0,1]). By the Embedding Theorem, /3 is an embedding.

Let 58X = clB[X]. Then 8 : X — Y is an embedding such that g[X] is
dense in £X.

Now, if f: X — [0,1] is a continuous function, then, by the definition of
3, we have

f=(ms1BX)op.

Finally, if g : BX — [0,1] is a continuous function such that f = go 3,
then

9(B(z)) = f(z) = (my | BX)(B(2))
for every x € X. Since B[X] is dense in fX, g = 7y | fX and the theorem
is established. O

If X is a space, the compactification SX, constructed in the last Theo-
rem, is called the Stone-Cech compactification of X.

Corollary 3.3. If X is compact, then X is homeomorphic to X.

Proof. 1f X is compact then S[X] is compact and 8 : X — S[X] is a home-
omorphism. O
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If aX and bX are two compactifications of a space X, we will say that
aX < bX, if there is a continuous function f : bX — aX such that fob = a.

Theorem 3.4. [37] Let X be a space. If f : X — K is a continuous
fynction from X to a compact space K, then there is a continuous function
f:BX — K such that f o3 = f.

Proof. Let f, X and K be as in the statement of the theorem. Define « :
K — [0, 160 by 7 (a(t)) = g(t) for every ¢t € K and g € O(K, [0, 1]).
By the Embedding Theorem, we can see that the subspace a[K] is homeo-
morphic to K.

Observe that, for every g € C(K,|0,1]), the composition g o f is an
element of C'(X,[0,1]), then S(go f) : X — [0,1] is the only continuous
function such that f(go f)o B =go f.

Therefore, we can define

h:BX — [0,1]CU01)
by
7g(h(p)) = B(go f)(p) for every p € X and for every g € C(K, [0, 1]).

Then A is continuous.
If x € X and g € C(K,[0,1]) then

mg(h(B(x))) = Bg o £)(B(z)) = g(f(x)) = mg(a(f(x)))
Therefore h(B(x)) = a(f(x)) for every x € X. Hence, h[F[X]] C a[K].
Since oK is compact, we also have the following:
RIBX] = hlclsx BIX]] C cA[BX]] C clafK] = a[K].

Therefore i : X — a|K]. Now, define f=(a")oh
It is easy to see that fo 8 = f. O

Corollary 3.5. If aX is a compactification of X, then there is a continuous
function 7 : X — aX such that 7 o 8 = a. Therefore X > aX.

Proof. The embedding a : X — aX is a continuous function from X to the
compact space aX. Then, a : 6X — aX is a continuous function such that
aof =a. O
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Proposition 3.6. [37] If aX is a compactification of X such that for each
continuous function f : X — [0, 1] there is a continuous function f, : aX —
[0,1] such that f = f, 0 a, then aX > BX.

Proof. Define h : aX — [0, 1]¢(501D) by

77 (h(p)) = fa(p)

for every f € C(X,[0,1]) and every p € aX. Then h is continuous.
Let z € X and f € C(X,[0,1]). Then

mi(ha(@))) = fala(z)) = f(z) = 74 (B(2)).

Therefore h(a(z))) = f(x) for every x € X, and so h[a[X]] C B[ X].
We also have the following:

hlaX] = hlclyx a[X]] C clh[a[X]] C cl B[X] = BX.

We conclude that b : aX — X is such that hoa = f. O

We will say that two compactifications, aX and bX, of a space X are
equivalent if there is a homeomorphism h : aX — bX such that hoa = b.
In this case we will write a X =x bX. Observe that if aX > bX and bX >
aX then aX is equivalent to bX. Indeed, there are continuous functions
f:aX — bX and g : bX — aX such that foa =b and a = g o b. Therefore
(go f) | a[X] = idyx | a[X], where idy is the identity homeomorphism
defined on a space Y. Since a[X] is dense in aX,go f = id,x. In the same
way, f o g =idpx. Therefore f = ¢~ and f is a homeomorphism.

A subspace X C Y is C*-embedded in a space Y if for every continuous
function f : X — [0,1], there is a continuous function ¢g : ¥ — [0, 1] such
that g | X = f.

Corollary 3.7. X is the only compactification, up to equivalence, of X
such that S[X] is C*-embedded in SX.

When dealing with compactifications, the next proposition is useful. Re-
call that a continuous function between topological spaces, f : X — Y is
perfect if f is onto, closed and for every y € Y, the fiber f<[{y}] is compact.

Proposition 3.8. [37] Let X andY be spaces. If f € C(X,Y), S is dense in
X, and f | S is a perfect function from S onto f[S], then f[X\S] C Y\ f[S].
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Proof. Suppose that there is © € X \ S such that f(z) € f[S]. Let T' =
SU{z}. Since f [ S is a perfect function, (f [ S)(f(x)) = fC(f(z))NS is
a compact set which we will denote by K. Hence K is closed in T. There is
an open subset U in T such that K C U and x ¢ clp U. Since S is dense in
X, S is dense in T. Hence clp UUclp(S\U) =T and f(z) € flclp(S\U)] C
clyis) fIS\ U] = f[S\ U], where the last equality holds because f [ S is a
closed function. Therefore, there exists s € S\ U such that f(s) = f(z).
Then s € K \ U, which is a contradiction. O

Proposition 3.9. Let X be a space. There is a set K(X) of compactifica-
tions of X such that any two distinct members of K(X) are non equivalent
and any compactification of X is equivalent to some member of K(X).

If X is a space, then the pair (IC(X), <) is a partially ordered set.

Proposition 3.10. [37] Let X be a space. Then every nonempty subset of
K(X) has a least upper bound in (K(X), <).

Proof. Let S be a nonempty subset of IC(X). Define
F={goa:geC(aX,[0,1]),aX € S}.

Then F' C C(X, [0, 1]). We will see that F' satisfies the hypothesis 1) and
2) of the Embedding Theorem.

Take any aX € S. Let x,y be distinct points of X, then a(z) # a(y),
because a : X — aX is an embedding. There is a continuous function
g € C(aX,[0,1]) such that g(a(z)) # g(a(y)). Then F satisfies 1).

Suppose that x € U C X, where U is open in X. Again, since a is
an embedding, a(z) € a[U] C aX, and a[U] is open in a[X]. There is a
continuous function g € C(a[X], [0,1]) such that g(a(z)) = 0 and g[a[X] \
a[U]] € {1}. Also, observe that (g o a)[X \ U] C g[a[X] \ a[U]]. Then F
satisfies 2).

Now, define e : X — [0,1]¥ by

Tgoa(€(2)) = g(a(z))

for every x € X and every g oa € F. By the Embedding Theorem, e is an
embedding. Let eX = (clp yr €[X], €). Then eX is a compactification of X.

Claim 1: eZ is an upper bound of S in (K(X), <). To see this, take an
arbitrary aX € S. Define 7 : aX — [0, 1]¢(@X%0:1]) by
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By the Embedding Theorem, y[aX] is homeomorphic to aX.
We want to see that eX > aX. In order to achieve this, define

h:[0,1)F — [0,1)¢@X01D

by
Wf(h(z)) = 7Tfoob(z)
for every z € [0,1]F and every f € C(aX,[0,1]). Then h is continuous.
It z € X, then m(h(e(x))) = 7roale(x)) = [flalz)) = mp(y(a(2))).
Therefore h(e(x)) = v(a(z)) for every z € X, hence hle[X]] C ~[a[X]] C
v[aX] and

hleX] = h[cle[X]] C clhle[X]] C cly[aX] = v[aX].

Therefore h | eX : eX — ~[aX] is continuous and v o h [ eX :
eX — aX is also continuous. In the last paragraph we established that
h(e(z)) = ~y(a(x)) for every x € X, hence v (h(e(x))) = a(x) for every
x € X, this implies

(v ohleX)oe=a

Hence eX > aX.

Claim 2: eX is the least upper bound of S in (I(X),<). To see this,
suppose that bX is a compactification of X such that bX > aX for every
aX € S. We are going to prove that bX > eX. Indeed, for each aX € S,
we have bX > aX, then there is a continuous function j,x : bX — aX such
that j,x o b = a. Now, define h : bX — [0,1]F by

Tgoa(R(w)) = g(jax (w)),

for every w € bX and every goa € F. Then h is continuous.
Now, take x € X. Then

Tgoa(R(b(2))) = 9(Jax (b(2))) = g(a(x)) = Tgoa(e(2)),
hence h(b(x)) = e(x) for every x € X. Henceforth, h[b[X]] C e[X] and
h[bX] = hlclb[X]] C clh[b[X]] C cle[X] = eX.

Observe that A [ bX : bX — eX is a continuous function such that
hob=-e. Then bX > eX.
In conclusion, eX is the least upper bound of S in (I(X), <). O
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We will say that (X)) is a lattice if every two compactifications have a
lower bound in (C, <). If this is the case, then, by the previous theorem,
every two compactifications have a greatest lower bound.

Recall that a space X is locally compact if every point has a compact
neighborhood. The following proposition is well known.

Proposition 3.11. Let A be a subspace of a locally compact space X. Then
A is locally compact if and only if A is open in clx A.

Proof. Suppose that A is locally compact. Take a point x € A and let
Z = clx A. There is an open set U C A such that x € U and cla U is
compact. Therefore cly U is closed in Z and clqU = clz U. There is an
open set V C Z, such that U = V N A. Since A is dense in Z, we have
VCcyzV=clz(VNA) =clzU=clgU C A Hence z € V C A and A is
open in Z.

Let A be an arbitrary subset of X. We are going to prove that Z = clx A
is locally compact. Take z € Z. There is an open set U C X such that z € U
and clx U is compact. Then clx U N Z is compact. Thus, x € U N Z and
cz(UNZ)=cx(UNZ)NZ C clx UNZ. Therefore clz(U N Z) is compact.

Now, suppose that A is open in Z. Take a point x € A and fix an open
set U C Z such that x € U and clz U is compact. There is an open set
W C X such that x € W C cl; W C U N A. Therefore cly; W is compact
and cly(WNA) = clz(WNA)NA = clz(W)NA = clz W. The second equality
holds because A is dense in Z. Therefore, z € W N A and cly(W N A) is
compact. Hence A is locally compact. O

Definition 3.12. For a space X, a compactification aX of X is a one point
compactification of X if |aX \ a[X]| = 1.

Proposition 3.13. [37]

1. If a space X has a one point compactification, then X is locally compact
and not compact.

2. If a space X is locally compact and not compact, then X has a one point
compactification aX such that bX > aX for every compactification bX
of X.

Proof. (1). Let aX be a one point compactification of X. Then aX \ a[X]
is closed, so a[X] is open. Therefore a[X] is locally compact and so is X.

Since a[X] is a proper dense subset of a X, a[X] is not compact and neither
is X.
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(2). Let w ¢ X and Y = X U {w}. Define
v ={W CY :WnNX is open in X and if w € W then X \W is compact}.

It is straightforward to see that 7y is a compact Hausdorff topology on
Y such that X is dense in Y. So aX = (Y, id) is a one point compactification
of X.

Let bX be a compactification of X. Define f : bX — aX by f(b(z)) ==
for every x € X, and f(z) = w for every z € bX \ b[X]. To see that f is
continuous, let z € bX \ b[X] and f(z) € W for some W open in aX. Since
f(z) = w,bX \ W is compact and therefore 7' = bX \ b[X \ W] is open in
bX. Observe that z € bX \ b[X] C T. Then f[T] C W. So, f is continuous
at z.

Since b[X] is open in bX and f[b[X]] = X, then f is continuous in b[X].
Also, f ob=1idx, therefore bX > aX. O

We will say that K(X) is a complete lattice if every nonempty subset
S C K(X) has a greatest lower bound.

Proposition 3.14. Let X be a space. If (X)) has a smallest element, then
K(X) is a complete lattice.

Proof. Let aX be the smallest element of I(X). Let S be a nonempty subset
of K(X). Let T'= {bX : bX < ¢Y for every ¢Y € S}. Then aX € T. By
3.10, T has a greatest upper bound dX in IC(X). It is easy to see that dX
is the greatest lower bound of S in K(X). O

We will see that if X is not locally compact, then (X)) is not a complete
lattice.

Proposition 3.15. [37] For a non compact space X, the following condi-
tions are equivalent.

1. K(X) is a complete lattice.
2. X s locally compact.

3. X has a one point compactification.

BN

. For every compactification (aX,a) of X, a[X] is open in aX.

5. There is a compactification (aX,a) of X such that a[X] is open in aX .
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Proof. Suppose that K(X) is a complete lattice. Then, £(X) has a smallest
element aX. We are going to prove that aZ is a one point compactification
of X. Since X is not compact, aX \ a[X] is nonempty. We will show that
laX \ a[X]| < 1. Suppose that p,q are points in aX \ a[X] and define Y =
(aX \ {p,q}) U{r} where r ¢ Z. Let f:aX — Y be defined by f(z) = z if
z€aX \{p,q} and f(p) = f(q) = r. Give Y the quotient topology induced
by f.

It is easy to see that Y is Hausdorff, indeed, observe that f<[aX \
{p,q}] = aX \ {p,q}. Therefore, aX \ {p,q} is open in Y. Therefore, every
two points in aX \ {p, ¢} have disjoint neighborhoods in Y. Now if b € a X,
there are disjoint open sets U,V in aX such that b € U and p,q € V.
Therefore b € f[U],r € f[V] and f[U], f[V] are disjoint open sets in Y.

Also, observe that f | (aX \{p, ¢}) is a homeomorphism. Since X N{p, ¢}
is empty, X is a subspace of Y. Since a[X] is dense in aX and f is continuous,
fla[X]] = a[X] is dense in Y. Hence bX = (Y,idx) is a compactification of
X and aX > bX. Since aX is the smallest element in K£(X),bX > aX. So,
there is a homeomorphism ¢ : bX — aX, such that g o idxy = a. Observe
that go f : aX — aX is continuous and go foa = idx. Then go f = id,x.
Sop={(gof)p)= (g0 f)(q) = q. Hence aX \ a[X] has just one point and
aX is a one point compactification of X. So, 1 implies 3.

Suppose that X has a one point compactification aX. Then, a[X] is
open in aX. Hence 3 implies 5.

If a[X] is open in some compactification aX, by 3.11, a[X] is locally
compact. Then, 5 implies 2.

Let (aX,a) be an arbitrary compactification of X. By Proposition 3.11,
a]X] is locally compact if and only if a[X] is open in cl,x a[X] = aX. Hence
2 is equivalent to 4.

If X is locally compact, then (X)) has a smallest element. By Proposi-
tion 3.14, 2 implies 1. O

Corollary 3.16. A non compact, locally compact space X has a unique,
up to equivalence, one point compactification.

Proof. Let aX be the one point compactification of X constructed in 3.13(2)
and let bX be a one point compactification. By construction of a X, we have
that there is a continuous function f : bX — aX such that fob = a. By 3.8,
fIbX \ b[X]] € aX \ a[X]. Therefore f is a bijection. Since bX is compact,
f is closed and therefore f is a homeomorphism. Hence bX =x aX. O

A basic reference about the Stone-Cech compactification is [43]. Other
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references are [37] and [17]. A recent M.S. thesis, written in Spanish, study-
ing different types of compactifications is [12].

3.2 The Hewitt realcompactification

Definition 3.17. A space X is called realcompact if there is no space Y
which satisfies the following two conditions:

1. There exists an embedding r : X — Y such that r[X] # cly r[X] =Y.

2. For each continuous function f : X — R, there is a continuous function
g:Y — R, such that gor = f.

Theorem 3.18. [17] A space X is compact if and only if X is realcompact
and pseudocompact.

Proof. If X is compact, then it is pseudocompact. If r : X — Y is an
embedding, then r(X) = cly r(X) and so X is realcompact.

Suppose that X is pseudocompact and not compact. Observe that 3 :
X — BX is an embedding such that B[X] # clgx B[X] = X. Now take a
continuous function f : X — R. By hypothesis, f is bounded. Therefore,
there exists a compact subset K C R such that f : X — K. By 3.2, there
is a continuous function S8f : BX — K C R, such that 8f o § = f. By
definition, X is not realcompact. O

Theorem 3.19. [17] A space X is realcompact if and only if X is homeo-
morphic to a closed subspace of a power R* for some cardinal k.

Proof. Let X be a realcompact space. Define r : X — REXR) 1y

mp(r(z)) = f(2),

for every z € X and every f € C(X,R). By the Embedding Theorem, r is
an embedding. Define Y = clyoxr) r[X]. Now, if f : X — R is a continuous
function, then, by definition of r, we have

f=(melY)or.

By definition of realcompact spaces, r[X] = clr[X]. Hence, X is homeomor-
phic to a closed subspace r[X] of the Cartesian product RC(XR),

Suppose that X is a closed subspace of a power R” for some cardinal
k. Suppose that r : X — Y is an embedding such that cly r[X] = Y and
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for each continuous function f : X — R, there is a continuous function
g : Y — R, such that gor = f. Since 7, [ X : X — R is continuous
for every o < k, there is a continuous function g, : ¥ — R, such that
gaor =m, | X, for every a < k.

We are going to prove that r[X] =Y. Define F': Y — R” by

Ta(F'(Y)) = ga(y),

for every y € Y and every a < k. Then F' is continuous. Now, take z € X.
Then

Ta(F(r(2))) = ga(r(2)) = ma(z).

Therefore F(r(x)) = x for every x € X. We also have
F[Y] = Flclr[X]] Ccd Fr[X]] Ccl X = X.

Therefore F': Y — X. Observe that r(F(r(x))) = r(x) for every z € X.
Then roF : Y — Y, when restricted to r[X] coincides with id,x). Since r[X]
is dense in Y, r o F' = idy. Therefore, Y = r[F[Y]] C r[X]. Hence Y = r[X].
By definition 3.17, X is realcompact. O

Corollary 3.20. Every closed subspace of a realcompact space is realcom-
pact.

Corollary 3.21. The arbitrary product of realcompact spaces is realcom-
pact.

Corollary 3.22. Let X be a topological space and let {A; : s € S} be a
family of subspaces of X. If Ay is realcompact for every s € S, then NgcgAs
is realcompact.

Corollary 3.23. If f : X — Y is a continuous function of a realcompact
space to a space Y, then for every realcompact subspace B of Y, the inverse
image f“ [B] is realcompact.

The next theorem provides us a useful characterization of realcompact
spaces.

Theorem 3.24. [17] A space X is realcompact if and only if for every point
p € BX \ B[X] there exists a continuous function h : X — [0,1] such that
z € h[{0}] C X \ ALX).
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Proof. Let X be a realcompact space and suppose that o € X \ [X]. The
function e : X — Y = B[X]| U {z} defined by e(x) = f(x) is an embedding
satisfying condition 1 in definition 3.17. Since X is realcompact, there is a
continuous function f : X — R not satisfying condition 2 in 3.17.

Define ¢1(z) = 1 + max{f(x),0} and ¢g2(z) = 1 — min{ f(x),0}. Clearly,
gi + X — R are continuous for i € {1, 2}.

Suppose that there are continuous functions G; : Y — R such that
Gioe = g; for i € {1,2}. Define F = (G; — G2) : Y — R. Now, it is
easy to see that F'oe = f. Then f satisfies condition 2 in 3.17, which is a
contradiction.

Without loss of generality, we can suppose that g; does not satisfy con-
dition 2 in 3.17. Define g = 1/g; : X — [0, 1]. Observe that Bg(z) > 0 for
every x € X.

If Bg(xo) > 0, define h : Y — R by h(z) = 1/(Bg(x)) for every x € Y.
Then h(e(x)) = 1/(Bg(e(x))) = 1/g(x) = g1(x) for every x € Y. Therefore
hoe = g1, which is a contradiction. Therefore, Bg(z¢) = 0.

Now, suppose that for every point z € X\ 5[ X] there exists a continuous
function h, : fX — [0,1] such that z € A [{0}] C X \ B[X]. Then X =
N{hI[(0,1]] - z € BX \ B[ X]}. By 3.22 and 3.23, X is realcompact. O

Theorem 3.25. For every space X there is a unique (up to homeomor-
phism) realcompact space vX which satisfies the following two conditions:

1. There exists an embedding v : X — vX such that cl,x v(X) = vX.

2. For every continuous function f : X — R there exists a continuous
function vf : vX — R such that vf ov = f.

The space vX also satisfies the following condition:

3. For every continuous function f: X —Y of X to a realcompact space
Y, there is a continuous function f:vX — Y such that fov = f.

Proof. Let aR be the one point compactification of R.

Let f: X — R be a continuous function and take the only continuous
function 8f : X — aR such that §f o § = f. Observe that S[X] C
(8f)* [R]. Define vX =N{(8f)[R]: f € C(X,R)}.

The function v : X — vX, defined by v(z) = B(z) for every x € X, is a
embedding such that cl,x v[X] = vX.

Now, if fo : X — R is a continuous function, vX C (5(fo))* [R]. There-
fore, 5(fo) | vX : vX — R. Define vf = [(fo) | vX. It is easy to see that
vfov = f. Hence vX satisfies conditions 1 and 2.
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To see that vX satisfies condition 3, let Y be a realcompact space and
f : X = Y be a continuous function. There is an embedding e : ¥ — R”
such that e[Y] is closed in R” for some cardinal &.

Observe that for each a < k,mq0eo f : X — R is a continuous function.
Then, v(mq 0eo f): vX — R is a continuous function such that v(m, 0 e o
f)ov=myo0eo f. Then we can define F': vX — R" by

Ta(F(p)) = (v(ma 0 eo f))(p)

for every p € v.X and every a < k.
If z € X, then

Tal'((v(2))) = v(7a 0 € 0 f)(v(2)) = male(f(2))).
Therefore F'(v(x)) = e(f(x)) for every x € X and F[v[X]] C e[Y]. Hence
FlvX] = Flclv[X]] Ccl Fv[X]] C cle[Y] = e]Y].

Then F': vX — e[Y]. Define G = ¢ o F : vX — Y. Now it is easy to
see that Gowv = f.

Suppose that v1 X is a realcompact space that satisfies conditions 1 and 2.
As in the proof for v.X, we can see that vy X satisfies condition 3. Therefore,
there are continuous functions f : vX — v1 X and g : 11X — vX such that
fov=w; and g ov; = v. Therefore, fog [ vi[X]| = idy,x [ vi[X]. Since
v1[X] is dense in 11X, f o g = id,, x. Analogously, g o f = id,x. Therefore
f =g and [ is a homeomorphism. O

The space vX is called the Hewitt realcompactification of X.
Another way to see vX is the following.

Corollary 3.26. Let X be a space. Then

vX =N{T C X : T is realcompact and B[ X]| C T'}.
Proof. Define

m X =N{T C X : T is realcompact and B[X]| C T'}.

By 3.22, v1 X is realcompact. Let v1 : X — v1X be defined by v (z) = B(x)
for every x € X. Then v; is an embedding such that cl,, x v1[X] = v1 X.
Let f: X — R be a continuous function and take the only continuous
function 8f : X — aR such that ff o 8 = f. Observe that S[X] C
(Bf)T[R]. By 3.23, (Bf)[R] is realcompact. Then v1 X C (8f)T[R].
Therefore, 5f [ v1 X : v1 X — R.
Let v1f = Bf | v1X. It is easy to see that v f ov; = f. Hence v1 X
satisfies conditions 1 and 2 of Theorem 3.25. Hence, 11 X Z vX. O
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Definition 3.27. The statement X C Y is Gs-dense in Y means that each
nonempty Gg-set in Y contains a point in X.

Since every nonempty G5 subset contains a nonempty zero set and every
zero set is G, then X C Y is Gs-dense in Y if and only if every nonempty
zero set in Y meets X.

We are going to see a characterization of Lindelof spaces which will be
useful to the subsequent theorem.

Proposition 3.28. [39] The following are equivalent for a topological space
X.

1. X is Lindelof;

2. for every compactification bX of X and every compact K C bX \ X,
there is a Gs subset G such that K C G C bX \ X;

3. there is a compactification bX of X such that for every compact K C
bX \ X, there is a G5 subset G such that K C G C bX \ X.

Proof. (1) = (2) Assume that X be a Lindelof space, bX € K(X) and K is
a compact subset of bX \ X. For every z € X, there are open disjoint subsets
U,V in bX such that € U, and K C V,. Then X C U{U, : € X}. Since
X is Lindel6f, there is a countable subset Y C X, such that X C U{U, : x €
Y} Hence, G = {V, : x € Y} is a G subset such that K C G C bX \ X.
Suppose (3). Let {V; : s € S} be an open cover of X. For each s € S,
there is an open subset Us of bX such that Vs = U, N X. If bX = U{Us : s €
S} then there is a finite subcover of X. Suppose that K = bX \ (U{U; : s €
S}) is nonempty. By hypothesis, there is a countable collection {W,, : n € w}
of open subsets of bX such that K C Ny, W,, € bX \ X. Observe that for
each n € w, bX\W,, is compact and is contained in U{Uj : s € S}. Therefore,
there exists a finite collection S,, C S such that bX \ W,, CU{Us : s € S,,}.
Define T' = U{S,, : n € w}. It is easy to see that X C U{bX \W,, :n € w} C
U{Us : s € T'}. Observe that T is countable and X C U{V; : s € T'}. Hence,
X is Lindelof. O

Theorem 3.29. FEvery Lindeldf space is realcompact.

Proof. Take a Lindelof space X. Suppose that p € SX\ B[ X]. By Proposition
3.28, there is a G subset G such that such that {p} C G C X \ g[X]. By
Theorem 3.24, X is realcompact. ]

Corollary 3.30. Let X be a space, then v[X] is Gs-dense in v.X.
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Proof. Suppose that f : X — [0,1] is a continuous function such that
Z(f)Nov[X] is empty.

Then X \ Z(f) = fC[R\ {0}]. Since R\ {0} is Lindeldf, by 3.29, it is
realcompact. By 3.23, 5X \ Z(f) is realcompact. By 3.25, v X C X\ Z(f),
therefore Z(f) NvX is empty. O

Theorem 3.31. [37] Let X be a space and p € 3X. Then the following are
equivalent.

1. pe X\ vX.
2. There is a zero set Z in X such thatp € Z and Z N B[X] = 0.

Proof. Suppose that p € X \ vX. By the construction of vX in 3.25,
there is a continuous function f : X — R such that Sf(p) € aR \ R,
where aR = R U {y} is the one point compactification of R,y ¢ R and
Bf: X — aR is the unique continuous function such that 8f o g = f.

It is easy to verify that the function g : aR — R, defined by g(y) = 0
and g(x) = 1/x for every z € R, is continuous.

Therefore p € (g o Bf)[{0}]. Let Z = (g o Bf)[{0}]. Since vX C
(BT IR], Z C X \vX. Therefore, ZNF[X] = () and Z is a zero set in SX.

Suppose that there is a zero set Z in fX such that p € Z and ZNG[X] =
(). By corollary 3.30, Z NvX is empty. Therefore p € 5X \ vX.

O

3.3 Pseudocompact spaces

A space X is pseudocompact if every real-valued continuous function is
bounded.

Proposition 3.32. /23] A space X is pseudocompact if and only if X is
Gs-dense in BX.

Proof. If X is pseudocompact, vX is pseudocompact, then vX is compact,
then closed in 5X. Hence vX = X. By 3.30, X is Gs-dense in SX.

Now, suppose that f : X — R is a continuous unbounded function.
Define g(a) = max{1, f(a)} for every a € X. Then g : X — R is a continuous
unbounded function such that Z(g) =0 and 1/¢g : X — [0, 1] is continuous.
There is a continuous extension H : fX — [0,1] such that H [ X = 1/g.
Take n € w. There is z € X, such that g(z) > n, then z € H[[0,1/n + 1]]
and we proved that {H*[0,1/m + 1] : m € w} has the finite intersection
property. Since H[0,1/m + 1] is compact for each m € w}, Z(H) is
nonempty, but, Z(H) N X = (). Therefore X is not Gs-dense in X O
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Observe that if X is Gg-dense in SX, then X is GGg-dense in every com-
pactification. Indeed, take a compactification aX of X. Then there is a con-
tinuous function f : SX — aX such that fo 8 = a. If Z(g) is a nonempty
zero set in a X, since f is onto, then Z(go f) is a nonempty zero set in 5X.
Hence, Z(g o f) N B[X] is nonempty and there is S(z) € Z(g o f) N B[X].
Therefore, g(a(z)) = g(f(B(x))) = 0. Then Z(g) N a[X] is nonempty. With
the same technique we can also prove that if aX and bX are two compact-
ifications of X such that aX < bX and X is Gg-dense in bX, then X is
Gs-dense in aX.

Proposition 3.33. Let X be a space. If A C X is a pseudocompact space
and A C B C clx A, then B is pseudocompact.

Proof. Suppose that B\ A # () and that f : B — [0,—) is a continuous
unbounded function. For every n € w, take z, € AN f[(n,—)]. We can
do this because A is dense in B. Then f | A: A — [0,—) is a continuous
unbounded function. O

Definition 3.34. Let X be a space. A family {Ys: s € S} of subsets of X
is locally finite if for every x € X, there is an open set U in X such that
zeUand {s€S:UNYs # 0} is finite.

Proposition 3.35. [23] For a space X the following are equivalent:
1. X is pseudocompact.
2. FEwvery locally finite family of nonempty open subsets of X is finite.

Proof. Suppose that {U, : n € w} is an infinite, locally finite family of
nonempty open subsets of X. For each n € w, take a point z,, € U,, and a
continuous function f,, : X — R such that f,(z,) =n and f,[X \U,] C {0}.
Define f: X — R by

f(l') = Eneo.)|fn(l')|'

We are going to see that f is continuous. Take x¢g € X and € > 0. There is
an open set U in X such that zg € U and M = {n € w : UNU,, # 0} is finite.
For each i € M, there is an open set W; C X such that xo € W; and ify € W,
then |fi(y) — fi(zo)| < €¢/|M]. Now, take a point x € U N (N{W; : i € M}).
Then

|f(z) = f(20)| = [Bnew| fu(®)] — Znew| fulxo)|| =

= [Znemfn(@)] = Enem|fn(@o)ll = [Bnerr(|fn()] = [ fn(0))]
< nemlfu(x) = fulzo)| < |M]-€/|M] = e.
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Therefore f is continuous and unbounded.

Now suppose that f : X — R is a continuous unbounded function. Take
xo € X such that f(xg) > 0. For each n > 0 take a point z, such that
f(zyn) > max{n, f(xn—1)}. It is easy to see that

{F71(f(w2n-1), f(x2nt1))] : n € w,n > 0}
is an infinite, locally finite family of nonempty open subsets of X. O

Definition 3.36. A subset A of a space X is regular closed if clx intx A =
A.

Corollary 3.37. If X is pseudocompact and A is regular closed in X, then
A is pseudocompact.

Proof. Let A = clyintx A. Suppose that U = {U, : n € w} is a locally
finite family of nonempty open subsets of A. For each n € w, let V,, be
an open subset of X such that U, = V, N A. Since V;, N A is nonempty,
W, = VuNintx A # 0 for each n € w. Then W = {W,, : n € w} is a
family of nonempty open subsets of X. We are going to see that W is locally
finite in X. If © € A, there is an open subset U in X such that z € U and
M ={ne€w:UNU, # 0} is finite. If UNW,, is nonempty, then UNV,, N A
is nonempty. Thus, U N U,, is nonempty and m € M. Hence W is locally
finite in X.

Since X is pseudocompact, W is finite, and so is U. ]

Mréwka spaces will be used to construct examples in this thesis.

Definition 3.38. A family A of infinite subsets of w is almost disjoint if
the intersection of any two distinct members of A is finite. A family A of
infinite subsets of w is maximal almost disjoint if for every infinite subset A
of w, there is B € A such that AN B is finite.

Example 3.39. There is a maximal almost disjoint family of cardinality
2%,

Enumerate the rationals Q = {q1,¢o,...}. For each irrational number
p € R\Q, let Sy = {q,7,q,z, ...} be a pairwise distinct sequence of rational
numbers converging to p. Define A, = {nf,nb,...}. Since A, N A; is finite
whenever p,t € R\ Q satisfy p # ¢, the family B = {4, : p € R\ Q} is
almost disjoint of cardinality |R|.

Now, let 2 = {A C P(w) : A is an almost disjoint family on w and
B C A}. Then 2 is non empty.
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Let € be a chain in (2, C). It is easy to see that U€ is an almost disjoint
family on w. By Zorn’s Lemma, 2l has a maximal element C. Then C is a
maximal almost disjoint family of cardinality 2%.

Example 3.40 (Mréwka spaces). Let A be an almost disjoint family. Define
U(A)=AUw.

Generate a topology on ¥(A) in the following way: For every n € w,{n} is
a basic neighborhood of n in ¥(A). If A € A and F is a finite subset of A
then {A} U (A\ F) is a basic neighborhood of A in W(A).

It is easy to see that W(A) is a Hausdorff, locally compact and zero
dimensional space such that w is dense in WU(A).

Proposition 3.41. Let A be an almost disjoint family. Then V(A) is pseu-
docompact if and only if A is a mazximal almost disjoint family.

Proof. Suppose that A is a maximal almost disjoint family and let Z =
{Z, : n € w} be an infinite locally finite family of nonempty open subsets
of U(A). Let zp € Zp Nw. Since Z is locally finite, My ={n € w: zp € Z,}
is finite.

Now, let m > 0 and suppose that for each 0 < ¢ < m we have defined
Pg> 2q € w and M, C w such that:

1. pg € w\ U{M, :r < q}.
2. zq € Zp, Nw.
3. Myg={necw:z,€ Z,}.

Let pp, € w\ U{M, : ¢ < m}. Choose z, € Zp,, Nw and let M, = {n €
W zm € Zp}. Then, it is easy to see that py,, z;,, and M, satisfy conditions
1, 2, and 3.

Therefore Z = {z,, : m € w} is an infinite subset of w.

Since A is a maximal almost disjoint family, there is A € A such that
AN Z is infinite. Let F' be a finite subset of A. Then (A\ F) N Z is infinite.

Therefore {A} U (A \ F') is a basic neighborhood of A such that ({A} U
(A\ F))NZ,, #0 for every z, € (A\F)N Z.

Hence, Z is not locally finite in A, which is a contradiction. Then, every
locally finite family of nonempty open subsets of ¥(.A) is finite. By Theorem
3.35, ¥(A) is pseudocompact.

Now, suppose that A is an almost disjoint family not maximal. There is
an infinite subset A C w, such that A N B is finite for every B € A.
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Hence Z = {{n} : n € A} is an infinite locally finite family of open
subsets in ¥(A).

Indeed, if B € A, then V ={B}UB\ A is an open subset of ¢)(A) such
that {n € w:n € V} is empty. O






Chapter 4

Weakly pseudocompact
spaces

Definition 4.1. [21] A space X is weakly pseudocompact if there is a com-
pactification (aX,a) of X such that a[X] is Gs-dense in aX.

Then every pseudocompact space is weakly pseudocompact. In this
chapter we will identify a[X] to X whenever (aX,a) is a compactification
of X.

Theorem 4.2. [21] Every weakly pseudocompact space is Baire.

Proof. Assume that X is Gs-dense in the compactification aX. Let {U, :
n € w} be a collection of open dense subsets of X and let U be a nonempty
open subset of X. For each n € w, there is an open set V,, in a X, such that
U, =V, N X and there is an open set V in aX such that U = V N X. Then
{V,, : n € w} is a countable collection of open dense subsets of aX. Since aX
is Baire, D = N{V}, : n € w} is dense in aX. Therefore D NV is nonempty
and observe that D NV is a G5 subset of aX. By hypothesis, DNV N X is
nonempty, hence U N (N{U,, : n € w}) is nonempty. O

Theorem 4.3. [21] The product of weakly pseudocompact spaces is weakly
pseudocompact.

Proof. Observe that if X, is Gs-dense in Y; for each s € S, then X = Il;c5X;
is G5 dense in Y = I, 5Y;. Indeed, take a countable collection {U,, : n € w}
of open subsets of Y such that G = N{U, : n € w} is nonempty. Let
y = {ys}tses € G. For each n € w, there exists a finite subset F,, C S

7
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such that for every s € F,, there is an open subset V.* in Y, such that
Y € Neer, s V2] C U

Let s € S. If s € S\ (UpewFn), take x5 € Xg, otherwise define G5 =
N{V>? : s € F,}. Since ys € G5, G5 is a nonempty Gs subset of Ys. By
hypothesis, there is x5 € G5 N X,. Take = {z5}ses. Now it is easy to see
that x € GN X. I

Proposition 4.4. [21] If X is weakly pseudocompact and Lindeldf then X
18 compact.

Proof. Assume that X is Lindelof and let bX be a compactification of X. If
p € bX \ X, by 3.28, there is a G subset G in bX such that p € G C bX \ X,
then X is not Gs-dense in b.X. ]

The next theorem give us a characterization of weakly pseudocompact-
ness in locally compact spaces.

Theorem 4.5. [21] For a locally compact space X, the following statements
are equivalent.

1. X is weakly pseudocompact;
2. X is Gg-dense in its one point compactification;
3. X is either compact or is not Lindelof.

Proof. Suppose that there is a compactification bX of X such that X is G-
dense in b.X. Let aX be the one point compactification of X. Since a X < bX,
X is Gg-dense in aX. Hence, 1 implies 2.

By definition, 2 implies 1, and by Proposition 4.4, 1 implies 3.

If X is not Gs-dense in its one point compactification, aX \ X is a Gs
subset of aX, hence X is o-compact and X is Lindelof. O

The next example shows that the classes of pseudocompact spaces and
weakly pseudocompact spaces are different.

Example 4.6. Let A be an uncountable almost disjoint family on w which is
not maximal. Then the Mréwka space ¢(A) is locally compact not Lindelof.
Therefore, 1)(A) is weakly pseudocompact non-pseudocompact.

The next theorem studies open subsets of weakly pseudocompact spaces.

Theorem 4.7. [17] If X is weakly pseudocompact and U is an open subspace
of X, then U is either weakly pseudocompact or locally compact Lindeldf.
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Proof. If U is locally compact and not Lindeldf, then U is weakly pseudo-
compact.

Assume that U is not locally compact. Let bX be a compactification of
X such that X is Gs-dense in bX. Let W be an open subset of bX such that
U=WnX. Define K =bX \ W and take p € W\ U. We are going to prove
that U is G dense in the quotient space bX/(K U {p}).

Let G be a nonempty G subset of bX /(K U{p}) and 7 : bX — bX /(KU
{p}) the natural projection.

We have two cases. If K U {p} C 7[G], then 7<[G] \ K is a Gs
subset in bX and contains p. There is z € X N7<[G] \ K C U. Hence
m(x) e GNwU=GNU.

If (KU{p}) N7 [G] =0, then 7 [G] C W. Thereis z € X N7 [G] C U.
Hence n(z) e GNw[U] =GNU. O

Also, Eckertson asked the following questions.

Questions 4.8. 1. If K is compact and X x K is weakly pseudocompact,
must X be weakly pseudocompact?

2. Is weak pseudocompactness an invariant of perfect maps?
3. Is weak pseudocompactness an inverse invariant of perfect open maps?

4. Can a finite product of non-compact Lindel6f spaces ever be weakly
pseudocompact?

5. Are the uncountable products w“!, R“? and S“!, where S is the Sor-
genfrey line, weakly pseudocompact spaces?

In this thesis we improve some of the previous theorems. In Section 4.1,
we study locally pseudocompact spaces and the concept of simple pseudo-
compactness is introduced, some properties of simple pseudocompact spaces
and relations to weakly pseudocompactness are studied. In Section 4.2, we
introduce the concept of k-embedded subspace. In Section 4.3, we give a par-
tial answer to the following question: If Cone(X) is weakly pseudocompact
and it is not compact, must X be weakly pseudocompact? (see Theorem
4.60 below). In Section 4.4, we give a positive answer to the question: If
X x Z is weakly pseudocompact and Z is compact, must X be weakly pseu-
docompact? And using this result, we found weakly pseudocompact spaces
whose Hewitt realcompactifications are not weakly pseudocompact. And,
in Section 4.5, we prove the main result of this chapter by giving a charac-
terization of weakly pseudocompact spaces in terms of regular subrings of

C*(X).
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4.1 Locally pseudocompact spaces

A space X is locally pseudocompact if every point of X has a pseudocompact
neighborhood.

Observe that if P is a topological property which is inherited by regular
closed subsets and such that every pseudocompact space with P is compact,
then every locally pseudocompact space with P is locally compact.

There are zero-dimensional countably compact spaces which are not lo-
cally compact; an example is provided by that given by Frolik see [19, Ex-
ample 3.10.19]:

Example 4.9. Let f : [fw]* — Pfw be a function such that f(A) is an
accumulation point of A in fw for each A € [fw]¥. Define Xy = w and

Xo = (U'y<ozX’Y) U f[[U’Y<aX’Y}w]

if 0 < a < w;. Observe that X = Uy<w, Xo is countably compact and its
cardinality is less than or equal to 2. Since all infinite closed subsets of Sw
have cardinality 22° (Theorem 3.3, [43]), X is countably compact and it is
not locally compact.

Definition 4.10. A subset B of a space X is called bounded in X if for
every continuous function f : X — R, f[B] is bounded in R. And a space
X is locally bounded if every point has a bounded neighborhood in X.

The following lemma is a characterization of the bounded subsets of a
space X.

Lemma 4.11. [21] For A C X, the following are equivalent:
1. A is bounded in X and
2. clgx A CvX.

Proof. Suppose that there exists p € clgx A\ vX. By 3.31, there is a con-
tinuous function f : BX — [0, 1] such that f(p) =0 and f(x) > 0 for every
x € X. Therefore 1/f [ X : X — [0,1] is a continuous function. For each
n € w, take a point =, € AN f<[[0,1/n)]. We can see that 1/f(x,) > n.
Then 1/f is unbounded on A.

Suppose that clgx A C vX. Let f : X — R be a continuous function.
There exists a continuous function vf : v X — R such that vf [ X = f.
Then vf | clgx A : clgx A — R is a continuous function. Since clgx A is
compact, vf [ clgx A is bounded. Therefore f [ A=vf [ Ais bounded. [



LOCALLY PSEUDOCOMPACT SPACES 81

A pseudocompact space X is a pseudocompactification of a space Y if
there is an embedding A : Y — X such that A\[Y] is dense in X.

Definition 4.12. [4] For a space X define apX = X U (X \ vX).
Theorem 4.13. [4] The space apX is a pseudocompactification of X.

Proof. Suppose that there is a zero set Z C (apX) = X such that Z N
apX = 0. Then Z C v X\ X. Hence Z is a zero set in vX such that ZNX = 0,
by 3.30, Z = (). Therefore, every nonempty zero set in S(apX) meets apX,
by 3.32, apX is pseudocompact. O

Definition 4.14. [29] For a space X define (X = X U (X \ intgx vX).
Theorem 4.15. [29] The space (X is a pseudocompactification of X.

Proof. Observe that apX C (X C gX. By 3.33, (X is pseudocompact. [

There is a nice characterization of locally pseudocompact spaces.

Theorem 4.16. [15, Dorantes, Tamariz] For a space X, the following state-
ments are equivalent:

1. X is locally pseudocompact;

X CintgxvX;

X and X \ intgx vX are disjoint;

(X \ X is compact;

X has a pseudocompactification with compact remainder;
X is open in some pseudocompactification;

X 1s locally bounded;

there s a locally compact space Y such that X CY C v.X;

© »® xRS o

X is an open subset of a pseudocompact space.

Proof. (6) = (1). Let bX be a pseudocompactification of X with a closed
remainder and let z € X. There is a continuous function f : bX — [0,1]
such that f(z) =0 and f[bX \ X]| C {1}. The set C' = f<[[0,1/2)] is open
in bX and clyx C is pseudocompact because pseudocompactness is inherited
by regular closed subsets. Since clxy C = clyx C N X and clyx C' C X, then
C is an open neighborhood of z with pseudocompact closure in X.
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It is easy to see that (1) = (7),(5) = (6), (3) & (2) < (8) and (6) < (9).

(7) = (2): Let # € X. There exists an open subset U C X such
that U € N C X and N is bounded in X. By lemma 4.11, clgx U C vX.
Observe that there is an open subset W in X, such that U = W N X,
and W C clgx W = clgx U C vX. Therefore, x € W C intgx vX. Hence,
X Cintgx vX.

(3) = (4). Observe that X \ intgx vX is compact and (X \ X = X\
intgx vX.

(4) = (5). By 4.15, (X is a pseudocompactification of X, by hypothesis,
the remainder (X \ X is compact. O

As a consequence of the previous theorem and Theorem 4.7, we obtain
Corollary 3.6 in [35]:

Corollary 4.17. If X is locally pseudocompact, then X is weakly pseudo-
compact or locally compact Lindelof.

The next corollary improves Proposition 1.1 in [17].

Corollary 4.18. If X is locally pseudocompact, then X is weakly pseudo-
compact if and only if either X is compact or X is not Lindelof

Proof. If X is locally pseudocompact non-Lindelof, then X is weakly pseu-
docompact (Corollary 4.17). If X is weakly pseudocompact Lindel6f, by
Corollary 4.4, X is compact. O

Example 4.19. [15, Dorantes, Tamariz] A weakly pseudocompact space
which is zero-dimensional, locally pseudocompact and it is not locally com-
pact: Let A be an almost disjoint family in w which is not maximal and
of cardinality > Ry. Let .S be a zero-dimensional countably compact space
which is not locally compact (see Example 4.9). Let X = AU (w x 9).
We will consider the topology 7 in X generated by the following system of
basic neighborhoods. A basic neighborhood of a point A € A is of the form
{A} U (B x S) where B C A and A\ B is finite. A basic neighborhood of
a point (n,s) € w x S is of the form {n} x U where U is an open subset
of S with s € U. Then (X, 1) is a zero-dimensional, locally pseudocompact,
non-pseudocompact, non-Lindelof space which is not locally compact. By
Corollary 4.18, (X, 7) is weakly pseudocompact.

A compactification bX of a space X is simple if there is a compact subset
K C X \ X such that bX is equivalent to SX/K.
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Definition 4.20. [15, Dorantes, Tamariz] A space X is simple pseudocom-
pact if X is Gs-dense in some simple compactification.

We will say that (C(X), <) is a b-lattice if the simple compactifications
of X are dense in (K(X), <); that is, if for each bX € K, there is a compact
set K C X\ X such that 5X/K < bX. Observe that if X is locally compact
then IC(X) is a b-lattice.

Proposition 4.21. [15, Dorantes, Tamariz] If C(X) is a b-lattice, then X
is weakly pseudocompact if and only if X is simple pseudocompact.

Proof. If X is weakly pseudocompact, then X is Gs-dense in some com-
pactification Y. Then, there is a compact subset K C X \ X such that
BX/K <Y. Therefore, X is Gs-dense in 5X/K. The inverse implication is
obvious. O

Theorem 4.22. [15, Dorantes, Tamariz] Let X be a non-compact space.
The space X is simple pseudocompact if and only if there exists a compact
K C X \ X such that K is not a Gs-subset of BX and if 0 # H C X is
a Gg-subset in BX such that HN K =0, then HN X # ().

Proof. First we are going to prove the necessity. There is a compact set
K C X \ X such that X is Gs-dense in Y = fX/K. Let 7 : X — Y be
the natural projection. If K is a Gs-subset of X, then Y \ 7n[fX \ K] is
a nonempty Gg-subset in Y whose intersection with X is empty. Then K
is not a Gg-subset of 5X. Let H C X be a nonempty Gs-subset disjoint
from K. Then 7[H] is a Gs-subset in Y. Hence, 7[H] N X is nonempty and
therefore H intersects X.

Now we are going to prove the sufficiency. Let K C X \ X be a
compact subspace that satisfies the hypotheses. Let 7 : fX — Y = X/K
be the natural projection and U C Y a nonempty Gs-subspace. We have two
choices: K C 75 [U] or 7 [UJNK = (). In either case the set Hx = 7 [U]\ K
is a nonempty Gs-subset such that Hx NK = (). By hypothesis, HxNX # 0,
hence U N X # (). O

Corollary 4.23. If X is simple pseudocompact, then X is locally pseudo-
compact.

Proof. Let K C X\ X be a compact subspace that satisfies the hypotheses
of the last theorem and take y € X \ K. Take a Gs-subset H C X such
that y € H. Then H\ K is a nonempty Gs-subset whose intersection with K
is empty. Hence, (H\ K)NX # () and HNX # (). Therefore, X\ K C vX.
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Since X C X \ K, then X C intgx vX. Now, by applying Theorem 4.16
we finish our proof. O

Thus, w*!, R¥! and S“! are not simple pseudocompact. As a consequence
of the next corollary we obtain Theorem 3.2 in [17].

Corollary 4.24. If X is not locally pseudocompact and K(X) is a b-lattice,
then X is not weakly pseudocompact.

We know that X = D(wp)“ is weakly pseudocompact. The absolute
E(X) is a realcompact space which is not locally compact and so, it is
not locally pseudocompact. By [17, Theorem 3.3, K(E(X)) is a b-lattice.
Applying the previous corollary, we conclude that E(X) is not weakly pseu-
docompact (see Example 3.5 in [17]).

Corollary 4.24 does not help us to answer question 4.8.(5) because, as
we are going to see below K(w*!), IC(R*?) and K(S“!) are not b-lattices.

What we already have is summarized in the following diagram.

 Xis locally pseudocompact — X is weakly pseudocompact if and only i
¥ is compact or not Lindelaf.
Xisaspace -

K{X)is a b-lattice ——» X is not weakly

X is not locally pseudocompact.

pseudocompact

KX} isnot a b-lattice — Gl

A simple pseudocompact space is locally pseudocompact and weakly
pseudocompact, but must a weakly pseudocompact locally pseudocompact
space be simple pseudocompact? The answer is in the affirmative.

Theorem 4.25. [15, Dorantes, Tamariz] If X is pseudocompact and U
18 an open subspace of X such that X C BU. Then, U is either simple
pseudocompact or locally compact Lindeldf.

Proof. If U is locally compact and it is not Lindelof, then U is Gs-dense in
its one point compactification. Then U is simple pseudocompact.

Now, suppose that U is not locally compact. Let W C 8X = SU be an
open subspace such that U = W N X and let K = gU \ W. Take a point
p € W\ U. Since X is pseudocompact, X is Gg-dense in 8X. So, {p} is not
a Gg-subset of X = BU. Then, U is Gg-dense in SU/(K U {p}). O
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Corollary 4.26. Let X be a topological space. Then the following are
equivalent.

1. X is simple pseudocompact;
2. X is either compact or locally pseudocompact non-Lindelof;
3. X is locally pseudocompact weakly pseudocompact.

Proof. By definition and Corollary 4.23, (1) = (3).

Now, suppose that X is locally pseudocompact and non-Lindel6f. Let
(X = X U(BX \ intgx vX). By Theorem 4.15, (X is pseudocompact.
Observe that X is open in ¢X and the last theorem applies. Since X is not
Lindel6f, X is simple pseudocompact. This proves (2) = (1).

By Corollary 4.18, it follows that (2) is equivalent to (3). O

So, the free topological sum of w; copies of R is simple pseudocompact.
The Sorgenfrey line is not simple pseudocompact because it is not locally
pseudocompact. Moreover, if A is a non-maximal almost disjoint family on
w of uncountable cardinality, then the Mréwka-Isbell space ¥(A) is a simple
pseudocompact space which is not pseudocompact.

When dealing with perfect functions, local pseudocompactness behaves
similarly to local compactness.

Theorem 4.27. Let f : X — Y be a perfect function between topological
spaces. If X 1is locally pseudocompact then Y is locally pseudocompact.

Proof. Let X be a locally pseudocompact space. Take y € Y. For every
z € f<[{y}], there is an open subset U, C X such that € U, and clx U,
is pseudocompact. Then there is a finite subset {z1,...,z,} C f<[{y}]
such that f<[{y}] € U Uy, = W. Then cly W is pseudocompact and
y € Y\ fIX\ W] C flclx W]. Since pseudocompactness is hereditary to
regular closed sets, cly (Y \ f[X \ W]) is pseudocompact. Therefore, Y is
locally pseudocompact. O

Corollary 4.28. Let f : X — Y be a perfect function between topological
spaces. If X is simple pseudocompact then Y is simple pseudocompact.

In the last theorem, we cannot drop the condition that f is closed. Ex-
ample 3.1 in [17] will help us to see this:

Example 4.29. [15, Dorantes, Tamariz] Consider the spaces Y = w,, and
X = (W X {w}) U (Up<w(wn x {n})) as a subspace of K = (w,+1) x (w+1).
The projection 7 : X — Y defined as 7(«, ) = « is open, continuous and
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has compact fibers. The space X is locally compact non-Lindelof; then, it is
simple pseudocompact. But Y is Lindel6f non-compact, therefore it is not
weakly pseudocompact.

Theorem 4.30. Let f: X — Y be an open perfect function from X onto a
locally pseudocompact space Y. Then X is locally pseudocompact.

Proof. Let x € X. There is an open set U C Y such that f(z) € U and
cly U is pseudocompact. There is an open set V' C X such that x € V' and
f[V] CU. Then Z = cly f[V] is pseudocompact. We are going to prove that

g=1f1f712Z]

is an open, perfect function onto its image.

If W is an open subset of f<[Z], then there is an open subset W/ C X
such that W = W/Nf<[Z]. Then f[W] = fIW']NZ. Indeed, if z € f[W']|NZ,
there exists x € W’ such that f(z) = z. Thenz € W/Nf<[Z], and z € f[W].
Hence g is open. Since f<[Z] is closed, g is perfect onto its image. By [19,
3.10.H], f<[Z] is pseudocompact. Observe that x € V C clx V C f[Z].
Since cly V' is a regular closed subset of f<[Z], it is pseudocompact. In
conclusion, X is locally pseudocompact. O

Corollary 4.31. Let f: X — Y be an open perfect function from X onto
a simple pseudocompact space Y. Then X is simple pseudocompact.

We know that the product of two pseudocompact spaces is not necessarily
pseudocompact. Thus, the following proposition is interesting.

Proposition 4.32. [15, Dorantes, Tamariz] Let Z be a locally compact
space. If X is simple pseudocompact and is not compact, then X x Z is
simple pseudocompact and is not compact. If, in addition, Z is Lindelof,
then the converse is also true.

Proof. In this proof, Corollary 4.26 will be used.

Suppose that Z is locally compact and X is simple pseudocompact and it
is not compact. Then X x Z is locally pseudocompact and it is not Lindelof;
so, X X Z is simple pseudocompact and non-compact.

Now assume that X x Z is simple pseudocompact and that Z is Lindelof.
Thus, X is locally pseudocompact. If X is Lindelof, then X x Z is Lindelof
because Z is o-compact. Since X x Z is weakly pseudocompact, X X Z is
compact and this leads to a contradiction. Then X is not Lindel6f. Therefore
X is simple pseudocompact. O
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Proposition 4.33. Let X = Il;cgX be a topological product. If X is
locally pseudocompact then:

1. all but finitely many X are pseudocompact; and

2. each X is locally pseudocompact.

In addition, if X is a non-compact simple pseudocompact space, then
we have (1), (2) and

3. some X, is not Lindelof.

Proof. Suppose that X is locally pseudocompact. Since the projections are
open, each X is locally pseudocompact. Take z € X. There is an open
subset U C X such that x € U and clx U is pseudocompact. Then U
contains a basic open set of the form

B = ﬂznzlﬂ-; [USZ]

where U, is an open subset of X, for all i € {1,...,n}.

Therefore, clx B = Ni_ 75 [clx, Us,] C clx U is pseudocompact. Hence,
if s £ s;, fori € {1,...,n}, Xy = ms[cly B] is pseudocompact.

Now, assume that X is simple pseudocompact and non-compact. Then,
X is locally pseudocompact and is not Lindel6f (Corollary 4.26). So, (1)
and (2) hold. Moreover, if each X, were Lindeldf, then each X, would be o-
compact and all but finitely many of X would be compact. Then X would
be Lindeldf. O

Corollary 4.34. Let v and k be two infinite cardinals. Then R® and ~*
are not locally pseudocompact.

It is easy to prove the following proposition.

Proposition 4.35. Let X be a family of topological spaces. Then the free
topological sum of the elements of X', @&, is locally pseudocompact, if and
only if each X € X is locally pseudocompact.

The following propositions are interesting for themselves.

Proposition 4.36. Let Y be a compactification of X and let £ : X — YV
be the continuous extension of the identity function idx : X — X. If G is
a Gg-subset of X such that G C X \ X and X is Gs-dense in Y, then
tBX\G] =Y.

Proposition 4.37. Let X be a non-compact space. Then the following are
equivalent:
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1. X is weakly pseudocompact;

2. there is a compactification Y of X such that for every point y € Y\ X, if
G C BX and G is a Gg-subspace such that f<[y] C G, then GNX # (),
where f is the only continuous extension of the identity.

Proof. Clearly (1) implies (2).

Let us suppose the claim in (2). Let Y be a compactification of X which
satisfies (2). If G is a nonempty Gs-subspace of Y and y € G, then f<[y] C
/¥|G]. Hence, f<[G] N X # (. Therefore, GN X # (). O

4.2 k-embedded subspaces

In this section we are going to prove that the partial ordered set of compacti-
fications (K(w“"), <) is not a b-lattice. Also, the concept of k-embeddedness
is introduced.

Proposition 4.38. If 58X is zero dimensional, then every simple compact-
ification of X is zero dimensional.

Proof. Let K C X \ X be a nonempty compact space. Assume that 7 :
BX — BX/K is the canonical projection, p € fX/K, and U C X /K is an
open subspace such that p € U C X/K.

Suppose that K = 7 [p|. There is a clopen subset A C X such that
K C A C n7[U]. Hence w[A] is a clopen subspace of SX/K such that
pem[A] CU.

Now suppose that K N7 [p] = (. Let {x} = 7% [p]. There is a clopen
subset A C X, such that z € A C 7 [U] \ K. Hence 7[A] is a clopen
subspace of SX/K such that p € n[A] C U. O

Corollary 4.39. If X is a strongly zero dimensional space with a connected
compactification, then K(X) is not a b-lattice.

Proposition 4.40. [37, 4.7(g)] X is strongly zero dimensional if and only
if for every pair of disjoint zero sets A, B in X, there is a clopen set C C X
such that A C C C X \ B.

Recall the following theorem:

Lemma 4.41 (Arkhangel’skii’s Factorization Theorem). Let D be a dense
subspace of the product X = llgecgXs such that each Xs has a countable
network. Then, for every real-valued continuous function f on D, there
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exists a countable set K C S and a continuous real-valued function h on
| D] such that f = (hong) [ D.

Theorem 4.42. If D is dense in a product of zero-dimensional spaces with
countable network, then D is strongly zero-dimensional.

Proof. Let {X;:s € S} be a family of zero-dimensional spaces with count-
able network and let D be a dense subspace of the product I35 X;. Let A, B
disjoint zero sets in D. There is a continuous function f : D — [0, 1] such
that A = f<(0) and B = f<(1). By Lemma 4.41, there exist a countable
subset 7' C S and a continuous function g : Y = 7p[D] — [0, 1] such that
f=(gomr) | D. Observe that Y is zero-dimensional and Lindel6f. There-
fore, Y is strongly zero-dimensional. So there is a clopen subset C' C Y
such that ¢~ (0) € C C Y \ ¢ (1). Hence 7y [C] is a clopen subset of
in X such that A C 7y [C] C X \ B. By Proposition 4.40, X is strongly
zero-dimensional. O

Corollary 4.43. Let D be a dense subspace of w". Then, (D) is b-lattice
if and only if K < w.

Proof. If k > w, then the interval [0, 1]* is a connected compactification of
the strongly zero-dimensional space D. Indeed, the space w“ is homeomor-
phic to R\ Q and w” is homeomorphic to (w*)”. Now, if k < w, then w" is
discrete and so D is locally compact, that is, (D) is a b-lattice. O

Theorem 4.44. [15, Dorantes, Tamariz] Let X be a strongly zero-dimen-
sional space. Then K(X) is a b-lattice if and only if for each compactification
Y of X, the closure in' Y of the union of non-trivial connected components
of Y\ X is contained in'Y \ X.

Proof. Suppose that K(X) is a b-lattice. Let Y be a compactification of X.
Let B : X — Y be the continuous extension of idx : X — X. There is a
compact subset K of X \ X such that X/K <Y. This means that there
is a continuous function k : ¥ — 8X /K such that k | X is the identity
function. Observe that each element y € Y is of the form S(z), for some
¢ € X, and k(B(x)) = m(x), where m : X — BX/K is the natural quotient
map. Also, observe that (l% o B) | X =x | X. It happens that (BX/K)\ X
is zero-dimensional and k | k[(8X/K) \ {n[K]}] is an injective function.
Then each non-trivial component in Y \ X must be contained in &~ [x[K]]
which is a compact subset of Y\ X. Then, cly(JC) C Y \ X, where C is
the collection of non-trivial connected components of ¥\ X.
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Now, denote by calC the collection of all non-trivial connected compo-
nents of Y\ X. Suppose that Y is a compactification of X and that cly (UC)
is contained in Y \ X. Let B:BX — Y be the continuous function which
extends the identity. Let K be equal to 3 [cly (C)]. So K is a compact
subset of 5X \ X and the function h from Y to SX/K defined as h(y) =y
ifyeY \cly(UJC) and h(y) = m(K) is continuous and h | X = idx. O

Corollary 4.45. [15, Dorantes, Tamariz] If X is a strongly zero dimensional
space having a compactification with connected remainder, then /(X)) is b-
lattice if and only if X is locally compact.

Proof. Let Y be a compactification of X with connected remainder. If K(X)
is a b-lattice, then there is a compact subset K C X \ X such that ¥ >
BX/K. Since BX/K is zero dimensional, (5X/K) \ X is a point because it
is a continuous image of a connected space. Then X is open in fX/K. [O

Definition 4.46. [15, Dorantes, Tamariz] A subspace Y of a space X is
said to be k-embedded in X if for each compactification bY of Y, there
is a compactification ¢X of X such that cl.x Y < bY, that is, there is a
continuous function f : Y — cl.x Y such that f [ Y =id [ Y.

Observe that if Z,Y and X are topological spaces such that Z is k-
embedded in Y and Y is k-embedded in X, then Z is k-embedded in X. We
also have:

Lemma 4.47. Assume that Z CY C X and Z is k-embedded in X. Then,
Z is k-embedded in'Y .

Proof. Let aZ be a compactification of Z. By hypothesis, there is a com-
pactification bX of X such that clyx Z < aZ. Observe that cY = clpx Y is
a compactification of Y. Therefore cl.y Z = clpx Z NcY = clyx Z. Then, Z
is k-embedded in Y. ]

Theorem 4.48. [15, Dorantes, Tamariz] If Y is k— and C*-embedded in
X and K(X) is a b-lattice, then K(Y) is a b-lattice.

Proof. Let bY be a compactification of Y. Since Y is k-embedded in X,
there is a compactification bX of X such that clx(Y) < bY. Let £ : bY —
clyx Y be a continuous function such that ¢ | Y = idy. Since Y is C*-
embedded in X, then BY =y clgx Y. Since K(X) is a b-lattice, there is a
compact K C X \ X such that SX/K < bX. So there is a continuous
map k : bX — BX/K such that k(z) = = for every & € X. Moreover,

k’[Cle Y] = CIBX/K Y.



K-EMBEDDED SUBSPACES 91

Take M = K NclgxY. It happens that M is a compact subset of
clgxY and M NY = 0. So clgx Y/M is a simple compactification of ¥ and
clgx Y/M =y clgx/kx Y. On the other hand,

F=(lchxY)ot:bY = clgy/xY
is continuous and f | Y = idy. Therefore, K(Y) is a b-lattice. O

Lemma 4.49. Let X and Y be topological spaces. Let D and H be two
subsets of X XY such that wx[D] is a C-embedded (resp., C*-embedded)
subset of mx[H]. Assume that y € Y is such that 7x[D] x {y} C H. Then,
wx[D] x {y} is C-embedded (resp., C*-embedded) in H. Moreover, if H is
dense in wx[D] X Y and wx[D] is k-embedded in wx[H|, then mx[D] x {y}
s k-embedded in H.

Proof. Let y € Y such that mx[D] x {y} C H and let f: 7x[D] x {y} = R
be a (bounded) continuous function. Let h : wx[D] — 7wx[D] x {y} be
the natural homeomorphism, h(x) = (z,y). The function [’ : 7x[D] - R
defined by f'(z) = f((x,y)) = (foh)(z) is (bounded) continuous on mx [D].
So, there is a (bounded) continuous extension ¢’ : mx[H] — R of f’. For
each (a,b) € H, we define g(a,b) = ¢'(a) = (¢’ o mx)((a,b)). The function
g : H — R is (bounded) continuous and extends f. So if 7x[D] is a C-
embedded (resp., C*-embedded) subset of wx[H], then, mx[D] x {y} is C-
embedded (resp., C*-embedded) in H.

Now, let b(rx[D] x {y}) be a compactification of wx[D] x {y}. Since
mx[D] and wx[D] x {y} are homeomorphic, there is a compactification
crx | D] of mx[D] such that crx[D] = b(wx [D] x{y}). Let Z = erx[D]x Y.
Since H is dense in mx[D] X Y, Z is a compactification of H. On the other
hand, clz(wx[D] x {y}) = erx[D] x {y}. Then 7x[D] x {y} is k-embedded
in X xY. O

As a consequence of Theorem 4.48 and Lemma 4.49 we have:

Corollary 4.50. Let X and Y be topological spaces and let D, H C X xY
be such that mx[D] is C* and k-embedded in wx[H] and H is dense in
nx[D] x Y. Then, if K(H) is a b-lattice, then K(7x[D]) is a b-lattice.

Corollary 4.51. Let {X; : s € S} be a collection of topological spaces.
Let T C S and D C [[,cg Xs. Then, if 7p[D] is C*— and k-embedded in
[[ser Xs and K([[,cg Xs) is a b-lattice, then K(nr[D]) is a b-lattice. In
particular, if K(J],cq Xs) is a b-lattice, then IC([[;cr Xs) is a b-lattice.
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Theorem 4.52. [/2] Let X be a space, if there is an infinite sequence {x, :
ne€w} CLX\ X converging toy € X, then K(X) is not a lattice.

Proof. It may be assumed that if m # n then x,, # x,. Define
Dy ={{z}: 2 € BX\Y}U{{z2, 22541} : j € w} and

Dy = {{z}: 2 € BX\Y} U {{xa), 2351} 1 j € w}

We are going to prove that the quotient space 5X/D; is Hausdorff. Let
m : BX — BX/D; be the natural projection.

Take a,b € fX \ (Y U{y}). There are open disjoint sets U, V in X such
that @ € U and b € V. Since Y U {y} is compact, U' = U \ (Y U {y}) and
V' =V \ (Y U{y}) are open in X and =i [x[U']] = U',n{ [x[V']] = V"
Therefore, 7[U’] and 7[V’] are disjoint open sets in X /D, such that 7(a) €
7[U’] and 7(b) € 7[V'].

Take x2;, x2j41 € Y. There are open disjoint sets U, V' in X such that
{295, 22j41} C U and y € V. There is n € w such that if p > 2n, then z, € V.
Then V' =V \{z,:p<2n}and U' =U \ {zp : p < 2n,p # 2j,2j + 1} are
open disjoint subsets in X with #{ [#[U’]] = U’, =i [xn[V']] = V.

Therefore, 7[U’] and 7[V'] are disjoint open sets in X /D; such that
{z2j,x2j41} € 7[U'] and 7(y) € n[V’]. Hence, 5X/D; is Hausdorff. Since m
is continuous, X /Dy is compact. Analogously, 5X/Ds is compact. Observe
that 5X/D; and SX/D;y are compactifications of X.

Suppose that there is a compactification ¢X of X such that cX < 5X/D;
and ¢X < fX/Ds. Then, there are continuous functions g; : 5X/D; — cX
such that g;om; | X = ¢, for i € {1,2}. Since X is dense in X, g om =
g2 O Ta.

Now,

g1(m1(20)) = g1(m(21)).

Suppose that g1 (m1(xn)) = g1(m1(xnt1)). I n = 27, then

g1(m1(Tny1)) = 92(772(352@#1)71)) = 92(772(952(j+1))) = g1(m1(Tn+2))-

If n =25 —1, then

g1(T1(wng1)) = g1(mi(225)) = g1(m1(w2541)) = g1(m1(Tn12))-

Therefore g1 (m(z9)) = g1(m1(xy)) for every n € w. Hence g1(m(z0)) =

91(m1(y)), but, by 3.8, g1(m1(w0)) € ¢X \ ¢[X] and g1(m1(y)) = c(y) € c[X]
which is a contradiction.

Hence, X /Dy and X/Dy don’t have a lower bound in K(X).

O
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Theorem 4.53. [42] If X is a first countable space, then X is locally com-
pact if and only if K(X) is a lattice.

Proof. If X is locally compact, K(X) is a complete lattice.

Suppose that X is first countable not locally compact. Then, X is not
open in SX. Therefore, there is a point z € X Nclgx(BX \ X). Let {B,, :
n € w} be a countable local base of x in X such that B, O B4 for every
n € w. For each n € w, take an open set V,, in X such that B, =V, N X
and V,, D V,, 41 for every n € w. For each n € w, take x, € V,, N (X \ X).

We are going to see that {x,, : n € w} converges to z. Let U, W be open
sets in BX such that € U and clgx U C W. There is n € w such that
XNV, =08, CUnNX. Therefore,

CIBX Vo= CIBX B, C Clﬁx(UﬂX) = CIBX UCWw.

Hence, x,,, € W for every m > n. We conclude that {z, : n € w} is a
sequence in fX \ X converging to a point = € X, by 4.52, K(X) is not a
lattice. O

Corollary 4.54. If X is first countable space then the following are equiv-
alent:

1. X is locally compact;

2. K(X) is a complete lattice;
3. K(X) a lattice; and

4. K(X) is a b-lattice.

Proof. Suppose that IC(X) is a b-lattice. Take two compactifications aX and
bX of X. There is a simple compactification ¢X of X such that ¢X < aX
and cX < bX} Then § = {dX € K(X) : dX < aX and dX < bX} is
nonempty. Hence S has a supremum in K(X). Let eX be the supremum of
S. Tt is easy to see that eX is the greatest lower bound of aX and bX in
K(X). Therefore K(X) is a lattice.

If £(X) is a lattice, by the last theorem, X is locally compact.

The equivalence between 1 and 2 is 3.15

If X is locally compact, the one point compactification aX is a simple
compactification and aX < bX for every compactification bX, then K(X) is
a b-lattice. O

The following result is a consequence of Corollaries 4.54 and 4.51.
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Corollary 4.55. For every first countable space X, IC(X") is a b-lattice if
and only if X is locally compact and either x is finite or X is compact.

In particular, K(S*) is not b-lattice for every k, and IC(R") is a b-lattice
if and only if k < w.

4.3 The geometric cone

For a space X, the geometric cone over X is Cone(X) = {0} U (X x (0,1])
topologized as follows: every open subset of the Tychonoff product (X x
(0,1]) is open in Cone(X); a basic open neighborhood of 0 is {0}U(X x (0, €)),
where € > 0.

Observe that X is homeomorphic to the closed subspace X x {1} of
Cone(X). The following theorem is easy to prove.

Proposition 4.56. Let X be a space. Then,
1. X is compact if and only if Cone(X) is compact.
2. X is Lindeldf if and only if Cone(X) is Lindeldf.

Proof. We are going to prove 2. Suppose that Cone(X) is Lindel6f. Since X
is homeomorphic to the closed subspace X x {1} of Cone(X), X is Lindeldf.

Suppose that X is Lindelof. Then, X x {1} is Lindelof. Let U = {U; :
s € S} be an open cover of Cone(X). There is so € S such that 0 € Us,.
Hence, there is € > 0 such that {0} U (X x (0,€¢)) C Us,. Observe that
the subspace X X [e,1] is Lindelof. Thus, there is a countable subfamily
{Um, : m € w} of U such that X X [e, 1] is contained in U{U,, : m € w}.
Therefore, Cone(X) C U, U (U{Up, : m € w}). O

Eckertson posed the next proposition:

Proposition 4.57. [17, Proposition 2.4] If X is weakly pseudocompact then
Cone(X) is weakly pseudocompact.

Proof. Suppose that X is a Gs-dense subspace of Y. We are going to prove
that Cone(X) is a Gs-dense subspace of Cone(Y). Let G be a nonempty
Gs-subset of Cone(Y). If 0 € G, GNCone(X) is nonempty. Assume that
0 ¢ G. Then G C Y x (0,1]. Take a point (y,r) € G. Then, there is a
family {U,, x V,, : n € w} of basic open subsets of ¥ x (0,1] such that
(y,m) € U, x Vp : n € w} C G. Observe that y € N{U,, : n € w}. Since X
is Gs-dense in Y, there is x € X N (N{U,, : n € w}). It is straightforward to
see that (x,r) € G. In conclusion, GNCone(X) is nonempty.
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Now, if Y is compact, so is Cone(Y'). Therefore if X is weakly pseudo-
compact, so is Cone(X). O

Corollary 4.58. Let x be a cardinal. Then Cone(D(x)) is weakly pseudo-
compact if and only if kK > w.

Proof. 1If k > w, the discrete space D(k) is locally compact not Lindel6f, then
it is weakly pseudocompact. Hence, Cone(D(k)) is weakly pseudocompact.
If & < w, the space Cone(D(k)) is a noncompact subspace of R%. Hence
Cone(D(k) is Lindelf. Therefore, Cone(D(k) is not weakly pseudocompact.
O

The following question comes naturally.

Question 4.59. If Cone(X) is weakly pseudocompact non-compact, must
X be weakly pseudocompact?

We have a partial answer to this question.

Theorem 4.60. [15, Dorantes, Tamariz] Let X be a non-compact space. If
Cone(X) is weakly pseudocompact then X x (0, 1] is weakly pseudocompact.

Proof. Suppose that Cone(X) is weakly pseudocompact, since X x (0,1]
is open in Cone(X), X x (0,1] is either weakly pseudocompact or locally
compact Lindel6f. If X is Lindeldf, so is Cone(X) [Proposition 4.56]. Hence
Cone(X) is compact [Proposition 4.4]. Since X is closed in his cone, X
is compact; a contradiction. Henceforth X is not Lindel6f and neither is
X % (0,1]. Therefore, X x (0, 1] is weakly pseudocompact. O

Theorem 4.61. For a space X, Cone(X) is pseudocompact if and only if
X s pseudocompact.

Proof. Suppose that X is pseudocompact. Let f : Cone (X) — R be a
continuous function. There exist € > 0 and M > 0, such that

FROFU(X x (0,€))] € (£(0) =1, £(0) + 1),

and f[X X [¢,1]] € (=M, M). Then f is bounded.

Now suppose that Cone(X) is pseudocompact. Then X x [1/2,1] is
pseudocompact, because it is a regular closed subset. Then X is pseudo-
compact. ]

Proposition 4.62. If Cone(X) is locally pseudocompact (locally compact),
then X is pseudocompact (respectively, compact).
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Proof. There is € > 0 such that N = {0} U (X x (0, €]) is a pseudocompact
(compact) regular closed neighborhood of 0 in Cone(X). Then X X [¢/2, €]
is pseudocompact (compact), and X is also pseudocompact (respectively,
compact). O

Proposition 4.63. [17] Let X be a weakly pseudocompact space and let Y
be a locally compact space. If X XY is not Lindelof, then X XY is weakly
pseudocompact.

Proof. If Y is weakly pseudocompact, so is X x Y. Suppose that Y is not
locally pseudocompact. Since Y is locally compact, Y is Lindelof. If X is
compact, then X x Y is Lindel6f, which is a contradiction. Then X is not
compact. Suppose that X is a Gs-dense subspace in the compactification
bX and let @Y be the one point compactification of Y with aY \' Y = {co}.
Fix points p € bX \ X and y € Y. We are going to prove that X x Y is
Gs-dense in the compactification Z = (bX x aY)/((bX x {oco}) U{(p,y)})-
Let m : X XY — Z be the natural projection. Let G be a nonempty G-
subset of Z. There is a collection {U,, : n € w} of open subsets in Z such
that G = N{U, : n € w}.

Case 1: 7[(bX x{oo})U{(p,y)}] € G, then (bX x{oco})U{(p,y)} C 7 [G].
Therefore, (p,y) € 7 [G]. For each n € w, take open sets A,, C bX and
B, C aY such that (p,y) € A, X B, C 75 [U,]. Since W =N{A4,, : n € w}
is a nonempty Gg subset of bX, we can take a point x € W N X. Then
(z,y) € 7™ [G]. Hence 7((x,y)) €e GN(X xY).

Case 2: 7[(bX x {o0}) U{(p,y)}] € G, then (JbX x {o0}) U {(p,y)}) O
7[G] = 0. Hence 0 # 7 [G] CbX x Y.

Take a point (a,b) € 7 [G]. Again, for each n € w, take open sets
A, C bX and B, C aY such that (a,b) € A, x B, C 7 [U,]. Take a
point € (NpewAn) N X. Then (z,b) € 7 [G] and therefore m((x,b)) €
GN(X xY). O

Question 4.64. If X x (0,1] is weakly pseudocompact, must X be weakly
pseudocompact?

We have a partial answer to this question.

Theorem 4.65. [15, Dorantes, Tamariz] Let X be a locally pseudocompact
non-compact space. Then X is weakly pseudocompact if and only if X x (0, 1]
18 weakly pseudocompact.

Proof. If X is weakly pseudocompact, then X is not Lindel6f and so by
Proposition 4.63, X x (0, 1] is weakly pseudocompact.



PRODUCTS OF WEAKLY PSEUDOCOMPACT SPACES 97

Now, if X x (0, 1] is weakly pseudocompact, it is not Lindel6f because it
is not compact. Since (0, 1] is o-compact, X is not Lindelof. Therefore X is
weakly pseudocompact. ]

We have two corollaries of the last theorem.

Corollary 4.66. Let X be a locally pseudocompact non-compact space.
Then X is weakly pseudocompact if and only if Cone(X) is weakly pseudo-
compact.

Proof. Suppose that Cone(X) is weakly pseudocompact, by Theorem 4.60
X x (0,1] is weakly pseudocompact, then X is weakly pseudocompact. [J

Corollary 4.67. Let X be a non-compact space. Then X is simple pseu-
docompact if and only if X x (0, 1] is simple pseudocompact.

Proof. If X is locally pseudocompact and weakly pseudocompact then X x
(0, 1] is locally pseudocompact and weakly pseudocompact.

If X x (0,1] is locally pseudocompact and weakly pseudocompact, then
X is locally pseudocompact and it is not Lindelof. ]

Eckertson asked the following question.

Question 4.68. [17, Question 4.1] Can a finite product of non-compact
Lindel6f spaces ever be weakly pseudocompact?

We have a partial answer.

Theorem 4.69. [15, Dorantes, Tamariz] If X andY are non-compact Lin-
deldf spaces, then X x 'Y is not simple pseudocompact.

Proof. If X xY is simple pseudocompact, since it is not compact, then it is
locally pseudocompact non-Lindel6f. Then X and Y are locally pseudocom-
pact Lindel6f spaces, ergo, locally compact Lindelof spaces and therefore
X x Y is Lindelof. O

4.4 Products of weakly pseudocompact spaces

Eckertson posed the following question:

Question 4.70. [17, Question 2.6] If Z is compact and X x Z is weakly
pseudocompact, must X be weakly pseudocompact?

We reply in the affirmative:
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Theorem 4.71. [15, A. Dorantes-Aldama, R. Rojas-Herndndez] If Z is
compact and X X Z 1is weakly pseudocompact, then X is weakly pseudocom-
pact.

Proof. Let Y be a compactification of X x Z in which it is a Gg-dense subset.
Define the partition P = {{y} :y e Y\ (X x Z2)}U{{z} x Z : 2z € X} in
Y. Let Y/ be the quotient space Y/P and let 7 : Y — Y’ be the natural
proyection.

Claim: The space Y’ is Hausdorff.

Indeed, let y € Y \ (X x Z) and « € X. Since Z is compact, there
are disjoint open subsets U,V in Y such that y € U and {z} x Z C V.
Observe that there is an open set A C X such that {z} x Z C Ax Z C V.
As A x Z is open in X x Z, there is an open subset W C Y such that
AxZ=Wn(X x Z). It is easy to see that W NV = 7 [7[W N V]| and
zenWnV].

Because UN(X x Z) is open in X x Z, there is an open subset O C Y such
that Tx[UN(X x Z)|xZ = ON(X x Z). Observe that, as X x Z is dense in Y,
WNO = 0. Then (OUU)N(X XY) = (nx[UN(X X Z)|x Z)U(UN(X x Z)) =
mx[UN (X x Z)] x Z. Then (OUU) = 75 [x[O U U]],y € n[O U U] and
W NV]Nx[OUU] = 0. Hence Y’ is compact Hausdorff.

Observe that X is Gg-dense in Y’. Henceforth X is weakly pseudocom-
pact. ]

It is known that for every space X, we have that X is Gg-dense in its
realcompactification v.X. Then if vX is weakly pseudocompact, so is X.
Thus, a natural question is: If X is a weakly pseudocompact space, must
vX be weakly pseudocompact? We have a negative answer.

Theorem 4.72. [15, Dorantes, Tamariz] Let Y be a pseudocompact space
and let X be a realcompact, locally compact space of non measurable cardi-
nality. Then, X is weakly pseudocompact if and only if v(X X Y') is weakly
pseudocompact.

Proof. By [8, Corollary 2.2],
V(X xY)=X xvY =X x Y.

By Theorem 4.71, X x Y is weakly pseudocompact if and only if X is
weakly pseudocompact. O
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We can see that if A is a maximal almost disjoint family on w, then
the Mréwka space W(A) is a pseudocompact, non-compact space of non-
measurable cardinality. The space w x ¥(A) is locally compact and it is
not Lindeldf, then it is weakly pseudocompact. But w x SWU(A) is Lindel6f
non-compact, and then it is not weakly pseudocompact.

Theorem 4.73. [15, Dorantes, Tamariz] Let X be a dense k-embedded sub-
space of Y. If X s weakly pseudocompact, then Y is weakly pseudocompact.

Proof. Assume that Y is not weakly pseudocompact. Let bX be a compact-
ification of X. Since X is k-embedded in Y, there is a compactification bY
of Y such that clpy X < bX. Let h: bX — clpy X be a continuous function
such that iL(.I') =z for all z € X. Because X isdense in Y, clpy X = bY. On
the other hand, since Y is not weakly pseudocompact, there is a nonempty
Gs-subset G in bY such that G NY = . Therefore, h~[G] is a nonempty
Gs-set in bX which has an empty intersection with X. O

Corollary 4.74. If X is Gs-dense an k-embedded in Y, then X is weakly
pseudocompact if and only if Y is weakly pseudocompact.

Example 4.75. Let A be a maximal disjoint family on w. Then w x ¥(.A)
is not k-embedded in w x a¥(A), where a¥(A) is the one point compacti-
fication of W(.A).

Since X is k-embedded in aX, when X is locally compact, the previous
example shows that the property of being k-embedded is not productive.

Corollary 4.76. Let o and « be infinite cardinals such that £ > w. If
Yk (R%) is k-embedded in R® then ¥, (R®) is weakly pseudocompact if and
only if R* is weakly pseudocompact.

Proof. We know that v(X,(R®)) = R®. Therefore, if R* is weakly pseudo-
compact, then ¥, (R%) is weakly pseudocompact.

If ¥,(R®) is k-embedded in R® then, by Theorem 4.73, if 3,(R®) is
weakly pseudocompact, then R® is weakly pseudocompact. O

4.5 Gelfand compactifications

In this section we characterize weak pseudocompactness in terms of regular
subrings. Recall that C*(X) is the collection of all bounded real-valued
continuous functions defined on X. If r € R, we will denote by  the constant
function 7(x) = r for every z € X.
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For a space X and f € C*(X), define ||f|| = sup{|f(z)| : z € X}. If
f,g€ C*(X),let d(f,9) = ||f — g||- Then d is a complete metric on C*(X)
[37, Proposition 4.5(a)]. We will call d the sup norm metric on C*(X).

Definition 4.77. [17] A subset S C C*(X) is a subring of C*(X) if 0 and
1 belong to S and for f,g € S both fg and f — g belong to C*(X).

Definition 4.78. [37] A subring @ of C*(X) is called regular subring if @
is a complete, with respect to the sup norm metric, subring of C*(X) such
that @ contains all the constant functions and Z(Q) = {Z(f) : f € Q} is a
base for the closed sets of X.

Definition 4.79. [17] A nonempty subset I C C*(X) is an ideal of C*(X)
if C*(X) \ I is nonempty and for every f € I and every g € C*(X), the
product fg belongs to I. A ideal I C C*(X) is maximal if for g € C*(X)\ I,
there are functions f € C*(X) and h € I such that fg+h = 1.

Definition 4.80. [37] Let @ be a regular subring of C*(X). Denote the
set of all the maximal ideals of @ by mgX. If f € @, define S(f) = {M €
moX : f € M}. Define A : X — mgX by AN(z) ={f€Q: f(z) =0}

Proposition 4.81. [37, Lemma 4.5j] Let Q be a regular subring of C*(X)
for a space X. Let f,qg in Q. Then:

1. 5(1) =0 and S(0) = mpX.
2. S(f)uS(g) = 5(f9)-
3. S(f)NS(g) € S(f* +4°).

4. {S(f) : f € Q} is a closed base for a Compact Hausdorff topology o
in mQX.

We will consider mgX with the topology o given by the previous theo-
rem.

Theorem 4.82. [37, Theorem 4.5m] Let Q be a regular subring of C*(X)
for a space X. Then:

1. X : X - mqgX is a dense embedding, and if f € Q, then \[f<[{0}]] =
AXTNS(),

2. for every f € Q, there is a unique continuous function f¢ € C*(mgX)
such that f€o X = f,
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3. C*(mX)={f¢:feQ} and Q={f € C*(X) : f = F o\ for some
F e C*(mgX)} and

4. for f€Q,S(f) = (f)"[{0}].
Lemma 4.83. Let X be a topological space. If Q C C*(X) is a reqular sub-

ring and F': mgX — R is a continuous function, then there is a continuous
function f € Q such that F<{0} = S(f).

Proof. By Theorem 4.82(3), there exists f € @ such that F' = f¢. By 4.82(4),
F={0} = S(f). O

Remark 4.84. Observe that 4.82(4) states that if f € @ then S(f) is a
zero set of mgX.

Theorem 4.85. [37, Theorem 4.5(0)] Let X be a space and aX a compact-
ification of X. If Q = {foa: f € C*(aX)}, then aX =x mgX.

The next lemma is known and is a motivation for the subsequent theo-
rem.

Lemma 4.86. [17] A space X is pseudocompact if and only if f € C*(X)
and Z(f) =0 then 1/f € C*(X).

We are ready to present the promised characterization of weak pseudo-
compactness in terms of regular subrings.

Theorem 4.87. A space X is weakly pseudocompact if and only if there
exists a reqular subring Q of C*(X) such that whenever f € Q and Z(f) = 0,
we obtain 1/f € Q.

Proof. Let X be a weakly pseudocompact space. There is a compactification
T of X such that X is Gs-dense in T. By Theorem 4.85, Q ={f [ X : f €
C*(T)} is a regular subring of C*(X), and K =x mgX. Let f € @ and
suppose that 1/f ¢ Q. Hence T = {gf : g € @} is a proper ideal of @ such
that f € T. Hence, S(f) # (. By Remark 4.84, S(f) is a zero set of mgX,
by Theorem 4.82(1), we have

0 # S(f)NAX] = AlZ(f)]-

Then Z(f) is nonempty.

Let @ be a regular subring of C*(X) that satisfies the hypothesis. Let
Z be a nonempty zero set of mg(X). By Lemma 4.83 there exists f € Q
such that Z = S(f). Take M € S(f). Then M is a proper ideal in @ and
f € M. Henceforth, 1/f ¢ @Q. The hypothesis says that Z(f) # 0. Then
S(fYNAX] = AZ(f)] # 0 and X is weakly pseudocompact. O
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