

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

DOCTORADO EN CIENCIAS BIOMÉDICAS INSTITUTO DE FISIOLOGÍA CELULAR

EFECTO DEL 17β-ESTRADIOL Y DE LA ONCOPROTEÍNA E7 DEL VPH16 EN EL PERFIL DE EXPRESIÓN GÉNICA DURANTE EL DESARROLLO TEMPRANO DE LA CARCINOGÉNESIS CERVICAL EN UN MODELO MURINO.

TESIS

QUE PARA OPTAR POR EL GRADO DE: DOCTOR EN CIENCIAS

PRESENTA:

ENOC MARIANO CORTÉS MALAGÓN

DIRECTOR DE TESIS

DR. PATRICIO GARIGLIO VIDAL

INSTITUTO DE FISIOLOGÍA CELULAR

DEPARTAMENTO DE GENÉTICA Y BIOLOGÍA MOLECULAR CINVESTAV

COMITÉ TUTOR

DR. ALEJANDRO GARCÍA CARRANCÁ DRA. MARCELA LIZANO SOBERÓN INSTITUTO DE INVESTIGACIONES BIOMÉDICAS INSTITUTO DE INVESTIGACIONES BIOMÉDICAS

MÉXICO, DF. FEBRERO DE 2014

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

INDICE DE TABLAS Y FIGURAS

Tabla 1. Lista de oligonucleótidos usados en RT-qPCR para la validación de resultados de	
microarreglos	22
Tabla 2. Proteínas celulares que se asocian con la proteína E7 del VPH	49
Tabla 3. Genes regulados en común por E7 del VPH16 y/o E2	50
Tabla 4. Genes regulados por E7 del VPH16 en combinación con el E2	51
Tabla 5. Genes regulados por E2	54
Tabla 6. Genes regulados por la oncoproteína E7 del VPH16	57
Tabla 7. Genes comunes que son expresados en cervix de ratones K14E7+E2 y en tejido cervica	I
humano microdisectado	57

Figura 1. Organización genómica del VPH16	2
Figura 2. Estructura de la proteína E7 del VPH16	5
Figura 3. Histopatología de tejido cervical de ratón y expresión de biomarcadores (PCNA y p16-	
INK4a)	. 26
Figura 4. Perfil de expresión global de los ratones K14E7+E ₂ , K14E7 y FvB+E ₂ comparados contra	3
ratones FvB sin tratamiento	. 27
Figura 5. Procesos biológicos basados en ontología génica	. 28
Figura 6. Validación de datos de microarreglos por RT-qPCR.	. 29
Figura 7. El E ₂ aumenta la expresión de la proteína S100-A9	. 31
Figura 8. La oncoproteína E7 del VPH16 disminuye la expresión de S100A8 y S100A9	. 32
Figura 9. El tratamiento con ICI 182.780, un antagonista de receptores a estrógenos, disminuye	la
expresión de S100A8 y S100A9	. 33
Figura 10. El tratamiento con E ₂ aumenta la expresión S100A9	. 34
Figura 11. El E ₂ y la oncoproteína E7 aumentan la expresión de la Claudina-4	. 35

CONTENIDO

I. ABREVIATURASi
II. RESUMENii
III. INTRODUCCIÓN1
3.1. VIRUS DEL PAPILOMA HUMANO Y CÁNCERES HUMANOS1
3.2. CICLO DE VIDA DEL VPH
3.3. CARACTERÍSTICAS GENERALES DE LA PROTEÍNA E7 DE PAPILOMAVIRUS HUMANO4
3.3.1. BLANCOS Y EFECTOS CELULARES DE LA PROTEÍNA E7 DE ALTO RIESGO5
3.3.1.1. E7 Y SU UNIÓN A MIEMBROS DE LA FAMILIA DE RETINOBLASTOMA5
3.3.1.2. E7 Y SU UNIÓN A INHIBIDORES DE CDKs6
3.3.1.3. E7 Y SU EFECTO SOBRE p537
3.3.1.4. E7 Y SU UNIÓN A FACTORES DE LA TRANSCRIPCIÓN CELULAR7
3.3.1.5. E7 Y SU INTERACCIÓN CON PROTEÍNAS RELACIONADAS A LA APOPTOSIS9
3.4. EL PAPEL DE LOS ESTRÓGENOS EN EL DESARROLLO DEL CÁNCER CERVICOUTERINO12
3.5. EL ESTRADIOL Y LAS ONCOPROTEÍNAS DEL VPH COMO FACTORES DE CÁNCER CERVICOUTERINO EN MODELOS MURINOS
IV. JUSTIFICACIÓN
V. OBJETIVOS
VI. DIAGRAMA DE TRABAJO18
VII. MATERIALES Y MÉTODOS19
7.1. PROPAGACIÓN DE RATONES TRANSGÉNICOS Y TRATAMIENTO CON E ₂ 19
7.2. OBTENCIÓN DE TEJIDOS E HISTOPATOLOGÍA19
7.3. EXTRACCIÓN DE RNA E HIBRIDACIÓN EN MICROARREGLOS
7.4. ANÁLISIS DE DATOS DE MICROARREGLOS21
7.5. RT-PCR EN TIEMPO REAL
7.6. INMUNOHISTOQUÍMICA E INMUNOFLUORESCENCIA22
7.7. CULTIVO CELULAR
7.8. WESTERN BLOT
7 9 ΔΝΔΊ ΙSIS ESTADÍSTICO 24

VIII. RESULTADOS	5
8.1. EL TRATAMIENTO CON E ₂ DURANTE 3 MESES EN EL MODELO MURINO K14E7 GENERA NEOPLASIA INTRAEPITELIAL ESCAMOSA GRADO 2 25	5
8.2. EFECTO DE LA ONCOPROTEÍNA E7 Y DEL E_2 EN EL PERFIL GLOBAL DE EXPRESIÓN GÉNICA26	5
8.3. VALIDACIÓN DE DATOS DE MICROARREGLOS POR RT-qPCR28	3
8.4. EL E ₂ AUMENTA LA EXPRESIÓN DE S100a9 30)
8.5. EL E ₂ Y LA ONCOPROTEÍNA E7 DEL VPH16 TIENEN UN EFECTO SIGNIFICATIVO EN LA EXPRESIÓN DE CLAUDINA 4 3 4	1
IX. DISCUSIÓN	5
X. REFERENCIAS	2
XI. ANEXOS	Ð

I. ABREVIATURAS

VPH16	Virus del papiloma humano tipo 16
VPH-AR	Virus del papiloma humano de alto riesgo
VPH-BR	Virus del papiloma humano de bajo riesgo
E7	Oncogén E7
K14E7	Modelo murino que expresa E7, dirigido por el promotor de citoqueratina 14
URR	Región larga de control del VPH
DNA	Ácido desoxirribonucleico
RNA	Ácido ribonucleico
CR	Región conservada del VPH
CXXC	Motivo de dedos de zinc
LXCXE	Motivo de unión a pRB
SDS-PAGE	Electroforesis en gel de acrilamida con dodecil sulfato sódico
EREs	Elementos de respuesta a estrógenos
ERα	Receptor a estrógenos alfa
ERβ	Receptor a estrógenos beta
E ₂	17β-estradiol
mRNA	Ácido ribonucleico mensajero
PCNA	Antígeno nuclear de proliferación celular
p16-INK4a	p16 miembro de la familia de Inhibidores de cinasas dependientes de ciclina
NIC	Neoplasia Intraepitelial Cervical
TZ	Zona de Transformación Cervical
RT-qPCR	Retrotranscripción acoplada a reacción en cadena de la polimerasa cauantitativa

II. RESUMEN

La oncoproteína E7 del VPH16 y el 17 β -estradiol (E₂) son factores importantes en la inducción de lesiones premalignas y cáncer cervical. El estudio de estos factores es crucial para tener un mejor conocimiento de la carcinogénesis cervical. En nuestro estudio, se evaluó el efecto de la oncoproteína E7 y/o el E₂ sobre el perfil de expresión génica global a partir de tejido cervical de ratones transgénicos para la oncoproteína E7 VPH16 (K14E7) y de ratones no transgénicos (FvB). Con el uso de microarreglos de alta densidad, se determinó que la onconrpoteína E7 del VPH16 en combinación con el E2 modificaron, especialmente, la expresión de genes involucrados en la respuesta inmune; mientras que, la oncoproteína E7 modificó, principalmente, la expresión de genes relacionados en el metabolismo celular. Además, usando Western blot y RT-qPCR, validamos algunos genes que están relacionados con la respuesta inmune (S100a8 y S100a9) y con las uniones estrechas (Claudina 4); los cuales observamos que son sobre-expresados por influencia del E₂. En conclusión, los resultados presentados aquí sugieren que la oncoproteína E7 del VPH16 contribuye, en parte, a la carcinogénesis cervical por modificar la expresión genes relacionados con el metabolismo celular, mientras que el estradiol contribuye al cambiar la expresión de genes asociados con la inmunidad. La identificación de la expresión diferencial de estos genes provee las bases para estudios posteriores sobre su papel en la carcinogénesis cervical.

ABSTRACT

The HPV16 E7 oncoprotein and E_2 are important factors for the induction of premalignant lesions and cervical cancer. The study of these factors is crucial for a better understanding of cervical tumorigenesis. Here, we assessed the global gene expression profile induced by the HPV16 E7 oncoprotein and/or E_2 in cervical tissue of the non transgenic FvB and K14E7 transgenic mice. We found that the most dramatic changes in gene expression occurred in K14E7 and FvB groups treated with E_2 . A large number of differentially expressed genes involved in the immune response were observed in E_2 treated groups. The E7 oncoprotein mainly affected the expression of genes involved in cellular metabolism. Our microarray data also identified differentially expressed genes that have not previously been reported in cervical cancer. We also evaluated the E7 oncoprotein and/or E_2 effect on some immune response genes (S100a8 y S100a9) and tight junction gene (Claudin 4). The results show that these genes are regulated, mainly, by E_2 . The identification of genes regulated by E7 and E_2 provides the basis for further studies on their role in cervical carcinogenesis.

III. INTRODUCCIÓN

3.1. VIRUS DEL PAPILOMA HUMANO Y CÁNCERES HUMANOS

Los virus del papiloma humano (VPHs) son miembros de la familia Papillomaviridae, se caracterizan porque infectan células epiteliales. Los VPHs consisten de un genoma de ácido desoxirribonucleico (DNA, por sus siglas en inglés) de doble cadena circular empaguetado en un cápside icosahédrica de 55 nm de diámetro. Sólo una de las dos cadenas transcribe de 5 a 6 marcos de lectura (ORFs, por sus siglas en inglés) tempranos (E) que codifican para proteínas no estructurales, y dos ORFs tardíos (L) que codifican proteínas de la cápside mayor y menor, L1 y L2, respectivamente (Fig. 1). Hasta la fecha se han identificado casi 200 genotipos de VPHs y han sido categorizados, por el grado de similitud, en géneros específicos. El género alfa de los VPHs han recibido especial consideración, ya que estos han sido clasificados como de alto y bajo riesgo basado en la propensión de causar lesiones y cáncer cervical. En el caso del cáncer cervicouterino, el DNA de los VPHs de alto riesgo se ha encontrado en aproximadamente en 95% de los casos; entre éstos, cerca del 50% tienen infección con VPH16, y 20% muestran infección con VPH18, 31 o 45. Los virus de bajo riesgo, tales como VPH6 y VPH11, se encuentran principalmente en verrugas genitales y raramente están asociados con cáncer (Wise-Draper and Wells, 2008). Los VPHs de alto riesgo también desempeñan un papel importante en la patogénesis de un subgrupo de cánceres de cabeza y cuello. Los cánceres orofaríngeos positivos para VPH contienen el tipo 16 en 90% de los casos; además, se han detectado también a los VPH18, 33 y 31 en tales casos (Munger et al., 2004; Zur Hausen, 2006).

3.2. CICLO DE VIDA DEL VPH

Figura 1. Organización genómica del VPH16. La organización genómica del VPH16 es el modelo de los VPHs del género alfa, ésta comprende la región larga de control (LCR); la cual se caracteriza por el control de la replicación viral y de la expresión de los genes de los VPHs. También se observa la organización de genes de expresión temprana (E) y tardía (L) que son necesarios para el ciclo de vida del virus.

El ciclo de vida del VPH está relacionado con el programa de diferenciación celular de los queratinocitos. La infección ocurre a través de microlesiones del epitelio que exponen a las células de la capa basal a la entrada viral. El receptor de entrada del virus a la célula es desconocido; sin embargo, el sulfato de heparina media el ataque inicial del virus a la célula. También, se ha observado la presencia de un receptor secundario requerido para la infección eficiente, y se ha sugerido que en este papel está involucrada la integrina α6 (Doorbar, 2006). La infección de las células basales conduce a la activación de una cascada de expresión viral que resulta en la producción de aproximadamente 20 a 100 copias extracromosomales de DNA viral por célula. Entre las primeras proteínas virales que son expresadas se encuentran los factores de replicación E1 y E2, estas proteínas forman complejos que se unen a secuencias en el origen viral de replicación. La proteína E1 también exhibe actividad de helicasa, permitiendo la separación del DNA viral en el complejo de replicación. La proteína E2 tiene dos funciones: por una parte, inhibe la transcripción de la región temprana, y por la otra incrementa su transcripción. A niveles

bajos, E2 se une a secuencias específicas de la LCR y activa la transcripción temprana, mientras que a altas concentraciones tiene función represora, bloqueando los sitios de unión a factores celulares de la transcripción (Longworth and Laimins, 2004b).

Las células basales del epitelio escamoso estratificado se dividen de manera asimétrica: una de las células hijas se separa de la capa basal, migra hacia el estrato granuloso y sufre diferenciación. En un epitelio normal no infectado, las células salen del ciclo celular mientras dejan la capa basal, y esto con frecuencia resulta en la formación de un núcleo picnótico; en cambio, las células infectadas dejan la capa basal y permanecen activas en el ciclo celular debido a la acción de la oncoproteína E7. Las células altamente diferenciadas entran nuevamente a la fase S y activan la expresión de factores de replicación celular requeridos para la replicación viral. La presencia de E7 conduce a la retención del núcleo a través de todas las capas del epitelio infectado. De igual manera, la proteína E6 maneja la proliferación de las células basales y parabasales. No solamente son necesarias las oncoproteínas para la inmortalización celular, sino que también son necesarias para el mantenimiento de formas extracromosomales del VPH en las células basales no diferenciadas. Por otra parte, aún no se entiende completamente la función de E4 y E5; sin embargo, se ha propuesto que están involucradas en la regulación viral. La proteína E4 se expresa en las etapas tardías de la infección, cuando los viriones completos son ensamblados, y no se conoce que tenga propiedades transformantes; sin embargo, se considera que tiene un papel importante en la maduración y replicación del virus. También, induce el colapso de la red de citoqueratinas citoplasmáticas de los queratinocitos humanos, una situación que puede ayudar a que los viriones sean liberados. En el caso de E5, ésta interactúa con varias proteínas transmembranales, como los receptores del factor de crecimiento epidérmico, del factor de crecimiento β derivado de plaquetas y del factor 1 estimulador de colonias. Para el caso de las regiones tardías, L1 y L2 codifican proteínas necesarias para el ensamble viral. La proteína L1 está altamente conservada entre las diferentes especies de virus del papiloma humano, y por lo tanto, se ha usado ampliamente como blanco molecular en el diagnóstico y en la elaboración de vacunas (Doorbar, 2005; Motoyama et al., 2004).

3.3. CARACTERÍSTICAS GENERALES DE LA PROTEÍNA E7 DE PAPILOMAVIRUS HUMANO

La proteína E7 de VPHs de alto riesgo puede cooperar con RAS para transformar fibroblastos (Munger et al., 2001). Las proteínas E7 son pequeñas, de aproximadamente 100 aminoácidos (Boulet et al., 2007); su extremo amino terminal contiene secuencias homólogas a una porción pequeña de la región 1 conservada y a la porción entera de la región conservada 2 de la proteína E1A de adenovirus, y secuencias relacionadas con el antígeno tumoral largo de los poliomavirus. La proteína E7 tiene tres regiones conservadas (CR): el dominio CR1 NH₂-terminal, la región CR2 y el dominio CR3 COOH-terminal (Fig. 2). La región CR1 es necesaria para la transformación celular y para la degradación de pRb, pero no contribuye directamente a la unión de pRb. La región CR2 contiene una secuencia central conservada (LXCXE) de unión a pRb y un sitio de fosforilación CKII. El dominio COOH-terminal consiste de dos motivos CXXC separados por un espaciador de 29/30 aminoácidos; esta última región está implicada en la asociación de pRb y otras proteínas celulares (Boulet et al., 2007; Münger, Howley, and DiMaio, 2007; Narisawa-Saito and Kiyono, 2007; Wise-Draper and Wells, 2008).

La oncoproteína E7 del VPH16 consta de 98 aminoácidos, con un peso molecular aproximado de 11 kDa; sin embargo, en geles SDS-PAGE muestra una movilidad electroforética anormal que genera aparentemente diferentes pesos moleculares, de 14 a 21 kDa (Smotkin and Wettstein, 1986; Smotkin and Wettstein, 1987). Se ha sugerido que estas diferencias son resultado del alto contenido de residuos ácidos localizados en el dominio CR1 (Armstrong and Roman, 1993), aunque también puede deberse a su alta hidrofobicidad y su alta capacidad para formar oligómeros (Alonso et al., 2002; Munger and Phelps, 1993). Además, se ha demostrado la presencia de 3 isoformas de E7 VPH16 que varían en su peso molecular y en su punto isoeléctrico; estas proteínas fueron descritas como E7a1 (17.5 kDa, IEP 4.68), E7a (17 kDa, IEP 6.18) y E7b (16 kDa, IEP 6.96). También, se determinó que E7 se sintetiza como una proteína de 17 kDa y después de aproximadamente una hora es procesada a una proteína de 16 kDa, con vida media más corta (Valdovinos-Torres et al., 2008). Por otra parte, se demostró que la proteína E7 de VPH16 está localizada tanto en el citoplasma (Huh et al., 2005; Nguyen et al., 2007;

Ressler et al., 2007; Valdovinos-Torres et al., 2008) como en el núcleo (Greenfield et al., 1991; Sato et al., 1989; Smith-McCune et al., 1999; Valdovinos-Torres et al., 2008), y que E7 carece tanto de actividad enzimática intrínseca como de actividad de unión al DNA, y hoy se acepta ampliamente que su actividad biológica está relacionada con su habilidad para asociarse a/y deshacer complejos celulares (Valdovinos-Torres et al., 2008).

Figura 2. Estructura de la proteína E7 del VPH16. El esquema muestra las regiones conservadas (CRs) que son esenciales para la unión con proteínas celulares y para la transformación celular. La región que va desde el aminoácido 2-15 está representada por CR1, y la región que va desde el 15/16-37/38 se representa por CR2 y contiene una secuencia conservada LXCXE CKII. El dominio carboxilo terminal, que va desde el aminoácido 37/38-98, tiene una topología compacta de β1β2α β3α2 que representa una conformación de unión a zinc; los residuos de cisteína, involucrados en la unión a zinc, están ordenados en dos motivos CXXC separados por 29 aminoácidos.

3.3.1. BLANCOS Y EFECTOS CELULARES DE LA PROTEÍNA E7 DE ALTO RIESGO

La oncoproteína E7 afecta muchos procesos celulares, entre ellos el control del ciclo celular, la reparación del daño al DNA, la senescencia y diferenciación, el metabolismo, la modulación de citocinas, la estabilidad de proteínas, la transcripción y el control epigenético. Estas alteraciones se explican por la interacción de E7 con un gran número de proteínas celulares (Roman and Munger, 2013) (Anexos, Tabla 1).

3.3.1.1. E7 Y SU UNIÓN A MIEMBROS DE LA FAMILIA DE RETINOBLASTOMA

La proteína E7 se une aproximadamente a 50 proteínas celulares, entre las cuales destacan a algunos miembros de la familia de proteínas "pocket" como pRb, p107 y p130 (Balsitis et al., 2006). La proteína E7 está, principalmente, localizada en el núcleo donde se asocia con pRb para facilitar la progresión a la fase S del ciclo celular. En las células normales, pRb está hipofosforilada y unida a E2F en G1 temprano, formando un complejo

represor transcripcional. Con la hiperfosforilación de pRb el complejo se disocia, permitiendo a E2F actuar como un activador transcripcional. Por asociación con pRb, E7 previene su asociación con E2F, por lo tanto promueve la progresión del ciclo celular (Boulet et al., 2007). El mecanismo molecular por el cual pRb es degradado por influencia de E7, es que E7 recluta y une a la calpaína a pRb. E7 activa el rompimiento de la forma completa de retinoblastoma (pRb⁹²⁸) desplazando a E2F del producto pRb⁸¹⁰ y esta especie es degradada por el sistema del proteasoma (Darnell et al., 2007).

Estudios de la carcinogénesis cervical muestran que la inactivación de pRb no es suficiente para inducir cáncer cervical en ratones transgénicos tratados con estrógenos. La expresión de E7, en cérvix de ratones tratados crónicamente con estrógenos, induce la formación de cáncer cervical aún cuando se interrumpe la interacción E7-pRb en un ratón "knock in" que porta un alelo pRb resistente a E7. Lo anterior indica que los efectos de E7 sobre otros blancos diferentes a pRb y el tratamiento con estrógenos son críticos para la carcinogénesis cervical (Balsitis et al., 2006).

3.3.1.2. E7 Y SU UNIÓN A INHIBIDORES DE CDKs

Entre los blancos diferentes a pRb, se ha encontrado que E7 interactúa con inhibidores del ciclo celular como p21 y p27 (Boulet et al., 2007). Se ha reporteado que E7 del VPH16 es capaz de inactivar las funciones inhibitorias de p21 a través de su unión a secuencias del extremo carboxilo (sitios importantes para su unión con PCNA y CDK2) (Funk et al., 1997). También, se ha encontrado que los niveles de p21 están aumentados en queratinocitos que expresan E7, en neoplasia cervical de alto grado, así como también en el cérvix de ratones transgénicos K14E7 (modelo murino para el estudio de la carcinogénesis cervical). Sin embargo, en estudios hechos con ratones transgénicos K14E7 se demostró que p21 funciona como un supresor de tumor y E7 es capaz de inactivarlo (Shin et al., 2009), así como también estimula genes de fase S como ciclina E y A. Estas interacciones son los principales factores que estimulan el crecimiento celular.

3.3.1.3. E7 Y SU EFECTO SOBRE p53

Al igual que la proteína E6, se ha observado que E7 tiene efectos sobre p53. Las células que expresan E7 contienen niveles incrementados de p53 y la vida media está incrementada, sugiriendo que E7 puede perturbar la degradación de p53. Se ha reportado que en células que expresan E7, mdm2 no está eficientemente unida a p53 en comparación a las células no transformadas con E7. Dado la habilidad de E7 de activar promotores de respuesta a E2F, se ha postulado que los niveles incrementados de p53 pueden ser debido a la inducción transcripcional de p14 mediada por E2F. Sin embargo, la expresión de E7 no causa un incremento rápido de p14, y la estabilización de p53 mediada por E7 también se ha observado en fibroblastos de embriones de ratón deficientes en ARF (Munger et al., 2001).

3.3.1.4. E7 Y SU UNIÓN A FACTORES DE LA TRANSCRIPCIÓN CELULAR.

Además de interactuar con las principales proteínas reguladoras del ciclo celular, la proteína E7 es capaz de asociarse a factores de la transcripción. Por ejemplo E7 se une con miembros de AP-1 como c-Jun, Jun-B, Jun-D y c-Fos, todos cruciales en mediar los efectos mitógenos y en la diferenciación de los queratinocitos. El efecto de E7 sobre la progresión del ciclo celular, vía factores de transcripción AP-1, puede ser dependiente o independiente de pRb. En el mecanismo dependiente de pRb, el promotor de c-Jun, contiene sitios AP-1 y es regulado por el complejo pRb/c-Jun. El reclutamiento de c-Jun por Rb a sitios AP-1 guía a la activación de la transcripción a partir de los promotores de respuesta a c-Jun (Nead et al., 1998). La oncoproteína E7 se une a c-Jun independientemente de pRb, potencia la transactivación de genes involucrados en la progresión del ciclo celular (Antinore et al., 1996). Pruebas hechas en queratinocitos que expresan E7, indican que la unión al DNA por c-Jun, JunB, JunD y Fra1 es baja comparada con los queratinocitos no transformados por E7. Esto quizá es un mecanismo por el cual VPH pueda inhibir la diferenciación de los queratinocitos (Nead et al., 1998).

También se ha demostrado que E7 interactúa con la proteína de unión a la caja TATA (TBP) evitando su unión al DNA, por lo tanto puede haber un efecto inhibitorio transcripcionalmente mediado por E7 (Maldonado et al., 2002).

Se ha reportado que E7 de VPH16 se asocia con SRC-1 reteniéndolo y relocalizándolo en el citoplasma. SRC-1 es un miembro de la familia de coactivadores del receptor de esteroides p160 que es requerido para actividad transcripcional de los receptores de esteroides. Los SRCs modulan la expresión de genes blanco por interacción con receptores nucleares unidos a ligando, por reclutamiento de HATs, metilasas y por ensamble de factores de la transcripción (Baldwin, Huh, and Munger, 2006).

Otro factor transcripcional al que se une E7 es la fosfoproteína 2 de fase M (MPP2, por sus siglas en ingles). La función precisa de MPP2 no es clara, el papel potencial de MPP2 en la transición S y M puede indicar por qué esta proteína interacciona con E7 de VPH-16. Por la estimulación de la actividad de MPP2 como un activador transcripcional, E7 de VPH-16 debe adquirir la habilidad de modular un grupo de genes distintos a los regulados por p105Rb y p21 (Luscher-Firzlaff et al., 1999)

Se ha observado que E7 del VPH-18 interactúa con c-Myc aumentando su actividad de transactivación. Adicionalmente está interacción promueve la habilidad de unión al DNA de c-Myc (Wang et al., 2007).

La oncoproteína E7 puede unirse directamente a E2F1 y aumentar su actividad transcripcional (Hwang et al., 2002). El factor E2F1 regula el control transcripcional de E2F6, el cual está sobreregulado en la transición G1/S para ejercer un efecto opuesto sobre la actividad de los promotores de respuesta a E2F, por lo tanto dirige la salida apropiada del ciclo celular y la diferenciación (Lyons, Salih, and Tuana, 2006). Interesantemente E7 se une y reprime la actividad transcripcional represora de E2F6 (McLaughlin-Drubin, Huh, and Munger, 2008), sugiriendo que la desregulación funcional de E2F6 por E7 es necesaria para contrabalancear la sobreregulación de E2F6 como consecuencia de la activación de E2F1 por E7 (McLaughlin-Drubin and Munger, 2009).

3.3.1.5. E7 Y SU INTERACCIÓN CON PROTEÍNAS RELACIONADAS A LA APOPTOSIS

Con respecto a la apoptosis se ha observado que la oncoproteína E7 puede tanto inducirla como inhibirla. Por ejemplo, E7 activa la apoptosis en células NIH3T3 a través del motivo LXCXE. Otra manera de inducir apoptosis es mediante la formación de complejos E7/p21, los cuales activan la captesina B, un mediador apoptótico, en células U2OS. También E7 inicia la apoptosis por la inducción de TRIAL y TNF- α en queratinocitos primarios humanos (Jiang and Yue, 2014). Por otro lado, la inhibición de la apoptosis por E7 puede darse mediante la unión e inacticvación de la proteína 3 de unión al factor de crecimiento parecido a la insulina (IGFBP-3, por sus siglas en ingles), el producto proapoptótico de un gen supresos de tumores (Santer et al., 2007). Otra manera de inhibición de la apotosis es por la interacción entre E7 VPH16 y el producto del gen Siva. Este factor se une al tallo citoplasmático del antígeno CD27, un miembro de la superfamilia del receptor del factor de necrosis tumoral (TFNR, por sus siglas en ingles), y se ha demostrado que juega un papel importante en la vía apoptótica inducida por CD27. Además, Siva se une al factor antiapoptótico Bcl-X₁ que sensibiliza a las células hacia la apoptosis. Interesantemente, E7 es capaz de inhibir la unión de Siva-1 con Bcl-X_L lo cual se describe como un paso clave en la inhibición de la apoptosis (Severino et al., 2007).

3.3.1.6. E7 Y SU INTERACCIÓN CON FACTORES QUE MODIFICAN LA CROMATINA

Se ha demostrado la interacción de E7 con acetil transferasas de histonas, por ejemplo las proteínas E7 de VHP6, 16 y 18 interaccionan con la acetiltransferasa pCAF, la cual se ha reportado que funciona como un coactivador para una variedad de factores de la transcripción, incluyendo a p53. La oncoproteína E7 de VPH16 interacciona con el dominio acetiltransferasa de pCAF, y reduce su actividad in vitro (Avvakumov, Torchia, and Mymryk, 2003). También se ha observado que E7 de VPH-AR incrementa la acetilación de la lisina 9 en la histona 3 localizada en los promotores para E2F1 y cdc25a (Zhang et al., 2004), y que también previene la unión de desacetilasas de histonas (HDAC clase I) al promotor E2F2 facilitando su sobre-expresión (Longworth and Laimins, 2004a). En contraste a la expresión sobreregulada de E2F1 y 2, E7 también utiliza a HDACs para la

represión del promotor del interferón beta a través de la interacción con el factor 1 de respuesta a interferón (IRF1) (Park et al., 2000).

Asimismo, se demostró que el gen *"enhancer of zeste homologue 2"* (*EZH2*) es un nuevo blanco de los oncogenes virales en células transformadas por VPH (Kuner R, Vogt M. 2007). El gen EZH2 codifica una proteína del grupo polycomb que actúan como una metiltransferasa de histonas involucrada en la proliferación celular y en la resistencia a la apoptosis y que su expresión se ve aumentada por E7 VPH16, 11 y 6b vía liberación de E2F de pRb (Holland, D. Cancer Res. 2008). Recientemente se demostró que E7 induce la expresión de KDM6B (desmetilasa específica de H3K27me3), las cuales median la expresión del biomarcador p16-INK4a (McLaughlin-Drubin, Crum, and Munger, 2011).

Uno de los rasgos de las células tumorales es la modificación de sus patrones de metilación a nivel del DNA, resaltando la importancia de la regulación de las DNAmetiltransferesas en las células normales. Se ha reportado la regulación viral de DNAmetiltransferesas como Dnmt1, por ejemplo, se encontró que la proteína E1A de adenovirus 5 y E7 de VPH16 se unen y sobreregulan la actividad de Dnmt1 (Burgers, WA. Oncogene. 2007)

Estos datos sugieren que E7 de alto riesgo puede incrementar la acetilación de histona por reclutamiento de acetilasas de histonas (HATs) e inhibir la desacetilación por suprimir la actividad de las HDACs, aumentar la metilación de DNA por unión con DNA metiltransferasas, creando una estructura de cromatina que promueve la expresión de genes vitales para la progresión del ciclo celular y que promueve mecanismos de evasión a la respuesta inmune.

3.3.1.7. E7 Y SU EFECTO SOBRE LA RESPUESTA INMUNE

La proteína E7 AR puede suprimir las actividades inhibitorias de TGF- β . Los blancos moleculares de E7 de la vía TGF- β no son ampliamente conocidos, sin embargo, se ha reportado la pérdida del receptor 1 de TGF- β y también disminución del receptor 2 TGF- β en el modelo K14E7 (Diaz-Chavez et al., 2008; Woodworth, 2002). La oncoproteína E7

también puede interferir directamente con la vía de señalización TGF-beta por unión a las proteínas Smad (Habig et al., 2006)

Por otra parte, es concebible pensar que la habilidad de E7 de inactivar a inhibidores de Cdks (CKIs) como p21 y p27, los cuales han sido implicados en la inhibición del crecimiento mediada por TGF- β , puedan contribuir a esta actividad (Woodworth, 2002).

Similarmente, las líneas celulares de carcinoma cervical que contienen VPH son resistentes a la actividad citostática de TNF α . El factor de necrosis tumoral alfa es producida por las células T citotóxicas y es un importante mediador de la respuesta inmune a las infecciones virales. TNF induce arresto del crecimiento y diferenciación en los queratinocitos normales. Como en otros escenarios esto es acompañados por una inducción de p21 independiente de p53. Análisis mutagénicos en E7 correlacionan la subversión del arresto del celular con la capacidad de E7 de inactivar proteínas "pocket" (Münger, Howley, and DiMaio, 2007).

Los interferones también son importantes citocinas citostáticas que son producidas en respuesta a las infecciones virales. La proteína E7 puede interactuar con p48, un componente del complejo transcripcional ISGF-3, evitando su traslocación nuclear después de la estimulación con IFN- α inhibiendo los genes de respuesta a INF (Narisawa-Saito and Kiyono, 2007; Wise-Draper and Wells, 2008; Woodworth, 2002). Otros grupos han descrito mecanismos diferentes por los cuales E7 de alto riesgo inhibe la señalización de los interferones. En algunos estudios demostraron que E7 de VPH-16 interactúa e inactiva al factor de transcripción IRF-1 el cual regula la expresión de INF- β (Perea, Massimi, and Banks, 2000; Um et al., 2002).

Hay una clara evidencia que sugiere que las moléculas de superficie del complejo mayor de histocompatibilidad clase I (MHC-I, por sus siglas en ingles) y componentes de la vía de presentación de antígenos están desregulados en tumores cervicales. Por ejemplo, en un estudio se demostró un interferencia directa a nivel de la transcripción por la oncoproteína E7 de VPH-18 con la expresión de la cadena pesada del MHC clase I, TAP y LMP2 (Georgopoulos, Proffitt, and Blair, 2000).

3.4. EL PAPEL DE LOS ESTRÓGENOS EN EL DESARROLLO DEL CÁNCER CERVICOUTERINO Los efectos ejercidos por los estrógenos son mediados a través de dos receptores nucleares, el receptor de estrógeno α y β (ER α y ER β , respectivamente) (Nilsson et al., 2001). La regulación transcripcional de genes diana en respuesta al 17 β -estradiol (E₂) es mediada principalmente por dos mecanismos; en uno, el complejo E₂-ER se une a secuencias específicas llamadas elementos de respuesta a estrógenos (EREs, por sus siglas en inglés); este complejo unido al DNA interactúa con proteínas correguladoras, promoviendo el remodelaje y la atracción de la maquinaria general de la transcripción, que resulta en un complejo de inicio de la transcripción. Alternativamente, el complejo ligando-ER puede interactuar con otros factores de la transcripción, que a su vez, se unen a secuencias diferentes a los EREs (por ejemplo, vía complejos AP1 o SP1) (Heldring et al., 2007). ER α y ER β tienen diferentes afinidades para diferentes elementos de respuesta a estrógeno y exhiben distintas propiedades transcripcionales; adicionalmente, E₂ ejerce efectos no genómicos rápidos, atribuidos a una señalización iniciada por la membrana celular (Moriarty, Kim, and Bender, 2006).

A pesar de las evidencias de que el VPH está fuertemente implicado como agente causal del cáncer cervical, la sola infección del VPH no es suficiente para el desarrollo del tumor. Se requiere además la participación del sistema inmune, cofactores químicos y biológicos; por su parte, las hormonas sexuales también pueden tener un papel en el desarrollo de las lesiones (pre) neoplásicas del cérvix (Delvenne et al., 2007).

En los últimos años, se han agrupado y analizado datos epidemiológicos con estudios de casos y controles que indican que hay un riesgo incrementado para el desarrollo de carcinoma cervical en mujeres con infección del virus del papiloma humano y alta paridad, o después del uso prolongando de contraceptivos orales (OCs, por sus siglas en inglés). Algunas razones de momios (ORs, por sus siglas en inglés) fueron de 3.8 para el carcinoma cervical después de siete embarazos a término, y de 2.3 para mujeres con uno o dos embarazos a término. Los ORs para el uso de OCs fueron de 2.9 por el uso de 5 a 9 años y de 4.0 por el uso de 10 o más años (de Villiers, 2003). En la gran mayoría de los casos de cáncer cervical y de las lesiones preneoplásicas, éstas se desarrollan en una región específica del cérvix, la zona de transformación (TZ, por sus siglas en inglés), donde el epitelio glandular del endocérvix es transformado progresivamente a un epitelio escamoso, durante un proceso conocido como metaplasia (Delvenne et al., 2007; Remoue et al., 2003). Se cree que la TZ contiene células trocales que pueden dar origen tanto a tipos celulares endocervicales como ectocervicales. Muchas líneas de evidencia sugieren que la exposición a estrógenos está implicada en la hiperplasia y en la diferenciación escamosa de las células de reserva. Primero, la metaplasia escamosa parece ser inducida en el cérvix por disminución del pH, y la acidificación epitelial ocurre durante la adolescencia como resultado de producción incrementada de estrógenos y de los cambios en la flora bacteriana cervical. Segundo, es bien conocido que el tratamiento con estrógenos induce la proliferación benigna de las células epiteliales escamosas de la vagina y el cérvix, presumiblemente por señalización a través de los receptores de estrógenos (Delvenne et al., 2007).

La exposición a estrógenos no sólo está involucrada en el proceso de metaplasia, sino también en la particular sensibilidad de la TZ al desarrollo de lesiones (pre) neoplásicas (Elson et al., 2000). Asimismo, se ha demostrado que biopsias de la TZ con metaplasia inmadura exhiben una densidad significativamente mayor de células positivas a receptores de hormonas comparadas con el epitelio ectodérmico, sugiriendo que la TZ puede estar en riesgo incrementado en el desarrollo de lesiones debido a la alta sensibilidad hormonal (Remoue et al., 2003).

3.5. LOS ESTRÓGENOS SINERGIZAN CON LAS ONCOPROTEÍNAS DEL VPH PARA CAUSAR CÁNCER CERVICAL EN MODELOS MURINOS

Una de las evidencias más fuertes que relacionan a las hormonas como cofactores en el desarrollo del cáncer cervical se ha originado de estudios que utilizan modelos de ratones transgénicos; en los cuales múltiples (E6, E7, E1, E2, E4 y E5) u oncogenes individuales (E6 ó E7) del VPH16 son expresados, bajo el control de la citoqueratina 14 (K14), en epitelio escamoso estratificado (piel, cavidad oral, ano, vagina y cérvix). Aunque esto ratones

transgénicos pueden desarrollar espontáneamente tumores en la piel, ellos raramente desarrolla espontáneamente cáncer cervical; sin embargo, si son tratados con 17β -estradiol (E₂) eficientemente desarrollaran cáncer cervical. (Riley et al., 2003; Song et al., 2000).

Por ejemplo, se ha demostrado que los ratones transgénicos para la región temprana del VPH16 (K14VPH16) no desarrollan espontáneamente cáncer cervical (independientemente del número de embarazos), mientras que el 100% desarrollan cáncer cervical cuando son expuestos a dosis de 0.25 mg/60 días de E₂ durante seis meses. Para el caso del tratamiento con el E₂ en los ratones no transgénicos, se observó una capacidad incrementada de proliferación en el epitelio del tracto reproductivo, que resultó en una zona hiperplásica que retuvo la habilidad de diferenciarse (Arbeit, Howley, and Hanahan, 1996). En otro estudio se descubrió que la reducción en 5 veces de la dosis de la hormona (0.05 mg/60 días) indujo carcinogénesis escamosa únicamente en la zona de transformación cervical; además encontraron que la metaplasia escamosa se originaba en las células de reserva glandulares. Por lo tanto, proponen que una combinación de dosis bajas de estrógenos y bajos niveles de expresión oncogénica del VPH predisponen a las células de reserva glandulares de la zona de transformación hacia el epitelio escamoso, más que al columnar (Elson et al., 2000). Para investigar el papel individual de la oncoproteína E6 o E7 en sinergismo con E2 se usaron los modelos K14E6 y K14E7, respectivamente. Este estudio demostró que la oncoproteína E7 del VPH16 y el E₂ son capaces de producir displasia en alto grado y cáncer invasivo a los seis meses, sin embargo, la expresión de E6 solamente induce displasia cervical de bajo grado, sin progresión adicional durante los seis meses de tratamiento con E_2 . No obstante, la coexpresión de E6 y E7 en ratones dobles transgénicos (K14E6E7) tratados con estrógenos genera tumores mucho más agresivos, llevando a la conclusión de que E6 contribuye tardíamente a la carcinogénesis cervical (Riley et al., 2003). En base a estas evidencias, surge la interrogante de saber en qué etapas del cáncer cervical los estrógenos desempeñan un papel importante en el desarrollo de la enfermedad. En un trabajo en el cual utilizan modelos murinos K14E7 y K14E6E7, se demostró que tras el tratamiento con

 E_2 durante nueve meses se originaban tumores cervicales más grandes en comparación con el tratamiento de seis meses, los cuales producía tumores menos agresivos. Además, observaron que cuando cesó el tratamiento con el estrógeno a los seis meses y se dio seguimiento por tres meses más, los modelos murinos tuvieron regresión de los tumores, particularmente del cérvix. De lo anterior concluyen que el E_2 contribuyen no sólo al inicio, sino a la persistencia y al desarrollo continuo del cáncer cervical de los modelos K14E7 y K14E6E7 (Brake and Lambert, 2005). Dada la importancia del E_2 en inducir cáncer cervical, también se ha investigado el papel su receptor nuclear alfa. En un estudio se demostró que el tratamiento con E_2 en modelos K14E7 deficientes al receptor de estrógenos alfa (K14E7/ER $\alpha^{-/-}$) fallan en producir displasia o cáncer cervical (Chung et al., 2008) y qué es el dominio de unión al DNA del receptor alfa (DBD) el importante para la carcinogénesis cervical en esto modelos (Son et al., 2014). Además, se ha demostrado que el fulvestrant, un modulador selectivo del receptor a estrógeno, promueve la regresión de displasias de alto grado y cáncer cervical en el modelo K14E6E7 (Chung and Lambert, 2009).

Los mecanismos por los cuales los estrógenos contribuyen al cáncer no son totalmente claros, pero se ha demostrado que sus metabolitos dañan al DNA y de esta manera podrían contribuir al inicio de lesiones cervicales. También se ha reconocido que son potentes mitógenos y por lo tanto podrían contribuir a la promoción del tumor

Una de las consecuencias más notables de la expresión de la oncoproteína E7 es la inducción de la síntesis de DNA en una tasa más alta que en los ratones no transgénicos. Además, la expresión de E7 en la capa basal del epitelio escamoso estratificado causa hiperplasia en las orejas, en la piel del dorso, en el paladar, en el esófago, en el estómago aglandular y en el exocérvix (Herber et al., 1996). El estudio del ratón K14E7, también ha revelado que E7 VPH16 inhibe la respuesta inducida por daño al DNA. Este efecto puede acelerar la acumulación de mutaciones necesarias para que las células infectadas con VPH-AR lleguen a ser malignas (Song, Gulliver, and Lambert, 1998).

IV. JUSTIFICACIÓN

La manera por la cual los estrógenos, en sinergismo con la oncoproteína E7, contribuyen al desarrollo del cáncer cervical no es clara; sin embargo, algunos de los mecanismos por los cuales los estrógenos y E7 se les ha asociado al cáncer es por su efecto mitógeno y porque causan inestabilidad genómica. El efecto mitógeno de E₂ y E7 ha sido, en gran parte, atribuido a su habilidad de modificar la expresión de genes clave en el avance del ciclo celular.

Las perturbaciones en la expresión de los genes es un evento importante en la patogénesis del cáncer. La tecnología basada en los microarreglos es una manera ideal para estudiar los efectos e interacciones de múltiples genes en el cáncer. Por lo tanto, un análisis de los cambios en el patrón de expresión global de mRNAs causado por E₂ y/o E7, especialmente en modelos in vivo, provee una herramienta poderosa para entender los mecanismos moleculares de la acción de los estrógenos y de la oncoproteína E7 del virus del papiloma humano en la carcinogénesis cervical.

Por otra parte, el uso del modelo murino que expresa la oncoproteína E7 (K14E7) y que recibe tratamiento con E₂, como modelo para el estudio de la carcinogénesis cervical, ha demostrado ser muy útil por varias razones: primero, porque se ha demostrado que la oncoproteína E7 tiene el papel más importante en la génesis del cáncer cervical; segundo, la historia natural de la enfermedad en el modelo K14E7 es muy similar a la que sucede en mujeres; tercero, el papel del E₂ como co-factor en el desarrollo y progresión del cáncer cervical en ratones transgénicos K14E7 se parece a la evidencia epidemiológica reportada en mujeres positivas a VPH, que usan contraceptivos orales por largos periodos; y cuarto, hay un patrón muy similar de expresión de biomarcadores para el cáncer cervical en humanos y en el modelo K14E7.

V. OBJETIVOS

GENERAL.

Analizar los cambios en el perfil de expresión global, de tejido cervical, provocados por la hormona E_2 y la oncoproteína E7 del VPH16 en cérvix de ratones K14E7 que han sido tratados durante 3 meses con E_2 , usando microarreglos de oligonucleótidos de alta densidad.

PARTICULARES.

1. Determinar los cambios en el perfil de expresión global provocados únicamente por la oncoproteína E7 del VPH16 usando cérvix de ratones transgénicos K14E7.

2. Determinar los cambios de perfil de expresión global provocados únicamente por E_2 usando cérvix de ratones FvB.

3. Validar los cambios de expresión reportados por la técnica de microarreglos analizando los niveles de mRNA de algunos genes con RT-qPCR.

4. Determinar el efecto de la oncoproteína E7 y/o el E_2 sobre la expresión, a nivel de proteína, de genes ligados a los procesos biológicos más afectados en el perfil global de expresión.

VI. DIAGRAMA DE TRABAJO

Tx: Tratamiento, PFA; Paraformaldehído, T-Per: Sol. Para extraer proteínas, WB: Western blot, IHC: Inmunohistoquímica, IFC: Inmunofluorescencia

VII. MATERIALES Y MÉTODOS

7.1. GENERACIÓN DE RATONES TRANSGÉNICOS Y TRATAMIENTO CON 17β-ESTRADIOL

Como grupo problema se utilizó al ratón transgénico K14E7 con un fondo genético FvB. Este modelo, se caracteriza por usar el promotor transcripcional de la citoqueratina 14 para expresar la proteína E7 de VPH16 en las células basales del epitelio estratificado de piel y cérvix. Como grupo control se usaron ratones FvB no transgénicos. Para realizar los experimentos de microarreglos se utilizaron 4 grupos de ratones: 9 ratones K14E7 con tratamiento hormonal (E₂), 9 ratones K14E7 sin tratamiento, 9 ratones FvB con tratamiento hormonal, y 9 ratones FvB sin tratamiento. El tratamiento se inició al mes de edad y se mantuvo durante tres meses (4 meses de edad); éste consistió en la inserción, en la zona dorsal, de "pellets" que liberan 0.05 mg de E₂ durante 2 meses; por lo tanto, el tratamiento consistió en la inserción de un primer pellet al mes de edad, y segundo pellet a los 3 meses de edad para sacrificarlos a los 4 meses de edad. Todos los ratones fueron mantenidos y tratados de acuerdo a la "American Association of Laboratory Animal Care" (AALAC), y todos los experimentos y procedimientos fueron aprobados por el comité de la Unidad de Investigación para el Cuidado de Animales de Laboratorio (UPEAL-CINVESTAV-IPN, Mexico; NOM-062-ZOO-1999).

7.2. OBTENCIÓN DE TEJIDOS E HISTOPATOLOGÍA

Los ratones K14E7 y FvB fueron sacrificados por dislocación cervical, inmediatamente se removió el tracto reproductivo y se lavó con PBS 1X para eliminar el exceso de sangre. A éste se le eliminó la parte vaginal y endometrial para conservar la parte cervical. Las muestras de tejido cervical se almacenaron en RNA later (Ambion) o fueron fijadas en paraformaldehído 4% y embebidas en parafina. Para analizar los rasgos histopatológicos, se cortaron secciones seriadas de 5 µm de espesor, se desparafinaron y se hidrataron de acuerdo a indicaciones previamente descritas (Ibarra Sierra et al., 2012); posteriormente se tiñeron con hematoxilina y eosina.

Para clasificar la histopatología cervical, se usó un sistema de gradiente para la carcinogénesis cervical en ratones transgénicos (Riley et al., 2003). Brevemente, la

Cortés-Malagón EM. 2014

neoplasia intraepitelial escamosa 1 (NIC1) consiste en un incremento doble de las capas basal/basaloíde del epitelio escamoso cervical y vagina en ratones transgénicos tratados con estradiol comparados con ratones no transgénicos. Las lesiones NIC2 contienen células con un incremento adicional en el tamaño nuclear, el grado de anaplasia, frecuencia y distribución de células displásicas de las capas suprabasales del epitelio escamoso. Por otra parte, la capa basal es proyectada hacia el estroma en forma de papilas. Las lesiones NIC3 contienen abundantes células anaplásicas, algunas con un incremento pronunciado en el tamaño nuclear. El cáncer *in situ* demuestra un grado pronunciado de remodelación y ondulación del borde epitelio-estroma sin evidencia de microinvasión.

7.3. EXTRACCIÓN DE RNA E HIBRIDACIÓN EN MICROARREGLOS

Las muestras cervicales almacenadas en RNA later fueron utilizadas para la extracción del RNA total. Brevemente, el procedimiento consistió en macerar el cérvix con nitrógeno líquido para posteriormente extraer el RNA usando un procedimiento estándar (Trizol, Ambion). La calidad y cantidad de RNA fueron evaluadas en "Agilent 2100 Bioanalyzer" (Agilent Technologies) que reporta un número de RIN (integridad de RNA); un algoritmo que se basa en la selección de rasgos que contribuyen a dar información acerca de la integridad del RNA, el RIN se reporta en una escala del 0-10, siendo las escalas mayores numeros de RIN que reportan una buena integridad del RNA. Únicamente las muestras con un número de integridad \geq 8 fueron utilizadas para su uso en los microarreglos de Affymetrix. La síntesis de cDNA, amplificación y el análisis de expresión se realizó de acuerdo a las instrucciones del fabricante (Affymetrix WT Sense Target labeling assay Manual). Se mezcló el RNA de tres ratones diferentes y por cada grupo se utilizaron tres mezclas independientes. Para el proceso de hibridación se usó el GeneChip Mouse Gene 1.0 ST Array (el cual evalúa la expresión de 26,166 transcriptos), por grupo de estudio se realizaron tres replicas biológicas.

7.4. ANÁLISIS DE DATOS DE MICROARREGLOS

Se usó el software Partek Genomic Suite version 6.4 (Partek) para analizar la intensidad de señal de cada microarreglo (3 replicas biológicas/grupo). Los valores de intensidad fueron normalizados usando el análisis de corrección RMA. Se utilizó un análisis estadístico de ANOVA de dos colas para identificar los genes diferencialmente expresados. En el análisis de datos solamente se incluyeron los genes con diferencias estadísticamente significativas (un valor de p< 0.05) y un criterio de "Fold change" \geq 2 y \leq -2. Los datos de microarreglos fueron depositados en la base de datos del NCBIGEO [GEOID: GSE46890]. Para identificar los procesos biológicos modificados por E7 y/o el E₂ se usó el software Ingenuity Pathway (Ingenuity Systems). Se usó HUGO Gene Nomenclature Committee (HGNC) y UniProtKB para escribir correctamente los símbolos de los genes y proteínas de humano y ratón.

7.5. RT-PCR EN TIEMPO REAL

Se aisló RNA total de 6 ratones (diferentes a los utilizados en los microarreglos) por grupo de trabajo (K14E7, FvB, K14E7+E₂ and FvB+E₂) y su calidad fue determinada usando electroforesis en geles de agarosa al 2% y teñidos con bromuro de etidio. El RNA fue cuantificado por análisis de espectrometría a 260 nm/280 nm. La síntesis de cDNA se hizo de acuerdo a las instrucciones del fabricante (Invitrogen). La amplificación por qPCR se hizo utilizando el DNA Master SYBR Green I kit (Roche) y el equipo 7300 Real Time PCR system.

Los moldes de cDNA fueron amplificados durante 45 ciclos en procesos de 3 pasos. Brevemente: un paso de 30 segundos de desnaturalización a 95 °C, una fase de alineamiento de 30 segundos a 60 °C y una fase de elongación de 30 segundos a 72 °C. Cada gen fue cuantificado por triplicado y normalizado con HPRT como gen de referencia y la expresión diferencial se calculó usando el método de Livak (2^{-ΔΔCt}) (Schmittgen and Livak, 2008). Todas las secuencias de los primers y productos de PCR son descritos en la Tabla 1.

Símbolo del gen	Sentido	Anti-sentido	Tamaño esperado (pb)
ll1a	TCACCTTCAAGGAGAGCCG	ATCTGGGTTGGATGGTCTCTT	150
Tnfa	CATCTTCTCAAAATTCGAGTGACAA	TGGGAGTAGACAAGGTACAACCC	175
Irf1	AGCATAGTCCCACTGCAAACAG	GCCTCTGCCTTACACCTCAGA	150
S100a8	AAATCACCATGCCCTCTACAAG	CCCACTTTTATCACCATCGCAA	165
S100a9	ATACTCTAGGAAGGAAGGACACC	TCCATGATGTCATTTATGAGGGC	129
Slc23a1	AAAGCAGCATGAGGTCGTGG	ACTGAAGCACGTCAGGTAATG	163
lfi44	AACTGACTGCTCGCAATAATGT	GTAACACAGCAATGCCTCTTGT	102
Gpd1	ATGGCTGGCAAGAAAGTCTG	CGTGCTGAGTGTTTGATGATCT	175
Serpinb3b	CATGCAACAGAAGAGAGCGAA	GCTACTGCTTAGGCTCCCAC	102
Spp1	AGCAAGAAACTCTTCCAAGCAA	GTGAGATTCGTCAGATTCATCCG	134
Dmbt1	ACCTTCAGTCCATGGGCTATTC	TCTCGTTGTCAGCCTGTTTGA	150
Rerg	GCAAGTCAGCGATTGTAGTGA	CTTCATCGTCTATGGTTGCCTG	105
Tff1	TTCCCGTGAAGCTGCCATGG	TGTTTCTTCCTGGGCCTGGG	115
lgfbp5	GGTGTGTGGACAAGTACGGAATGA	ACGTTACTGCTGTCGAAGGCGT	88
Hprt	GTAATGATCAGTCAACGGGG	CCAGCAAGCTTGCAACCTTAAC	177

Tabla 1. Lista de oligonucleótidos usados en RT-qPCR para la validación de resultados de microarreglos

7.6. INMUNOHISTOQUÍMICA E INMUNOFLUORESCENCIA

La detección de proteínas en tejido cervical fue hecha usando el Mouse/Rabbit PolyDetector HRP/DAB Detection System (Bio SB) de acuerdo a las recomendaciones del fabricante. Las muestras de 5 μm de espesor (3 ratones por grupo) fueron incubadas toda la noche con los anticuerpos primarios monoclonales contra PCNA, p16-INK4a, (Santa Cruz Biotechnology) Claudin-4 (Invitrogen) S100-A8 ó S100-A9 (Abcam). Seguido del procedimiento de inmuohistoquímica, los tejidos fueron co-teñidos con hematoxilina y montados en GVA (Zymed). Para el procedimiento de inmunofluorescencia, secciones cervicales de 5 µm de espesor, de tres ratones por grupo de estudio, fueron sumergidas en PBS 1X y bloqueadas con suero bovino, posteriormente fueron lavadas tres veces con PBS 1X e incubadas durante 1 hora a 37 °C con anti-Caludina 4 (Santa Cruz Biotechnology). Posteriormente, las secciones fueron incubadas durante 30 min a temperatura ambiente con un anticuerpo secundario acoplado a FITC (Zymed), se enjuagaron con PBS 1X, se cotiñeron con yoduro de propidio y fueron montadas en Vectashield (Vector). Las preparaciones fueron examinadas con microscopía confocal (SP2 Leica Microsystems) y las imágenes capturadas fueron importadas al software Adobe Photoshop CS6 (Adobe Systems) para ajuste de brillo, contraste y resolución (300 dpi).

7.7. CULTIVO CELULAR

Se cultivaron queratinocitos primarios de prepucio humano (HFK) y queratinocitos transformados con la oncoproteína E7 del VPH16 (HFK-E7) en un medio libre de suero suplementado con el factor de crecimiento epidermal, extracto de pituitaria bovina (Gibco, Life Technologies), peniclina 50 U/ml, estreptomicina 50 µg/ml, gentamicina 10 µg/ml, y anfotericina B 0.75 µg/ml.

7.8. WESTERN BLOT

Se extrajo la proteína total del cérvix usando T-PER (Tissue Protein Extraction Reagent, Thermo Scientific) de acuerdo a las instrucciones del fabricante, se usaron 20 µg para la técnica SDS-PAGE y las proteínas fueron transferidas a una membrana Immobilon-P (Millipore). La membrana fue bloqueada por una hora con leche al 5% en TBS 1X (Tris-HCl 20 mmol/L pH 7.5, NaCl 150 mmol/L, y Tween-20 0.5%). Posteriormente fue incubada toda la noche con anticuerpos anti-S100-A9 (1:2,000) ó anti-Claudin-4 (1:1,000) o incubada con anticuerpo anti-beta-actina (control de carga) e incubados por 1 h con anticuerpo secundario anti-rata ó anti-conejo acoplados a HRP (GE Healthcare). La membrana se reveló con Millipore Immobilon Western Chemiluminescent HRP Substrate de acuerdo a las instrucciones del fabricante. La quimioluminiscencia fue detectada usando FujiFilm LAS-3000 imaging system. Para medir la expresión de las proteínas se uso el software Image J, el cual mide el número de pixeles de las bandas en relación control de carga y a las muestras control.

Las células HFK y HFK-E7 fueron tratados por 48 h con el antogonista de estrógenos ICI 182,780 50 nM (Tocris Bioscience) y con el vehículo (0.5% etanol). Para el tratamiento con 17 β -estradiol, primeramente las células se sometieron a inanición durante 48 h, y después fueron tratadas con 17 β -estradiol 10 nM durante 24 h. Se realizó análisis de western blot bajo condiciones convencionales. Brevemente, las células que crecieron a un 80% de confluencia fueron lisadas con buffer de lisis (Triton 1%X-100, NaCl 100 mM, HEPES 50 mM, pH 7.9; EDTA 10 mM, NaPP 4 mM, NaF 10 mM, vanadato 2 mM, PMSF 1 mM, aprotinina 2 µg/ml y leupeptina 2 µg/ml). Se utilizaron 50 µg de proteína total para

realizar la técnica de SDS-PAGE, posteriormente las proteína fueron transferidas a una membrana de nitrocelulosa Immobilon-P (Millipore). La membrana fue bloqueada por una hora con leche al 5% en TBS 1X (Tris-HCl 20 mmol/L, pH 7.5; NaCl 150 mmol/L, y Tween-20 0.5%). Inmediatamente fue incubada toda la noche con anticuerpos anti-hS100A9 y anti-hS100A8 (1:300) e incubado por 2 h con anticuerpo secundario anti-ratón acoplado a HRP (GE Healthcare). La membrana se reveló con Millipore Immobilon Western Chemiluminescent HRP Substrate de acuerdo a las instrucciones del fabricante. La quimioluminiscencia fue detectada usando FujiFilm LAS-3000 imaging system.

7.9. ANÁLISIS ESTADÍSTICO

Se realizó una t student y todos los valores p <0.05 fueron considerados como estadísticamente significativos.

VIII. RESULTADOS

8.1. EL TRATAMIENTO CON E₂ DURANTE 3 MESES EN EL MODELO MURINO K14E7 GENERA NEOPLASIA INTRAEPITELIAL ESCAMOSA GRADO 2.

Para establecer el grado de displasia o cáncer en el cérvix en ratón, se usó el sistema de gradiente de clasificación histopatológico (Riley et al., 2003) (ver sección de materiales y métodos). Usando este sistema se observó que en ratones FvB+E₂ se desarrolló hiperplasia epitelial escamosa, con figuras mitóticas basales ocasionales y preservación de queratinocitos suprabasales diferenciados (Fig. 3B). De manera contraria, en el tejido cervical escamoso de los ratones K14E7+E₂ se observaron células con núcleos incrementados en su tamaño, aumento de células displásicas en las capas suprabasales y formación de papilas hacia el estroma (Fig. 3D); todo esto fue reportado por Elson et al. (2000) y Arbeit et al. (1996) como un NIC 2 equivalente al reportado en humanos. Por otra parte, ninguno de los ratones sin tratamiento desarrolló hiperplasia o neoplasia (Fig. 3A y C).

Para comparar el diagnóstico histopatológico y la expresión de algunos biomarcadores establecidos para la carcinogénesis cervical (Branca et al., 2007; Herbsleb et al., 2001) se realizaron ensayos de inmunohistoquímica para PCNA y p16-INK4a. En los ratones K14E7+E₂, tanto PCNA (Fig. 3H) como p16-INK4a (Fig. 3L) se localizaron principalmente en el núcleo, su expresión estuvo aumentada y su distribución fue uniforme en el epitelio. Esto indica una actividad de proliferación generalizada, similar al patrón de tinción basal que se origina en las células basales y se extiende hacia las capas superiores, usualmente observadas en las lesiones NIC 2 humanas (del Pino et al., 2009; Dray et al., 2005; Kurshumliu, Thorns, and Gashi-Luci, 2009; Missaoui et al., 2010). Por otro lado, en los ratones K14E7 la tinción con PCNA fue observada en el compartimento basal y parabasal del epitelio escamoso estratificado hiperproliferativo (Fig. 3G). Por otra parte, la tinción con p16-INK4a fue difusa (Fig. 3K); sin embargo, la intensidad de tinción fue más baja que la observada en el ratón K14E7+E₂ (Fig. 3L). En el ratón FvB+E₂, la expresión de PCNA solamente se observó en la capa basal (Fig. 3F) y la expresión de p16-

INK4a fue observada en el compartimento basal y suprabasal (Fig. 3J). En ratones FvB control, la expresión de PCNA y p16-INK4a se observó solamente en el epitelio basal (Fig. 3E y I).

Figura 3. Histopatología de tejido cervical de ratón y expresión de biomarcadores (PCNA y p16-INK4a). La imagen corresponde a secciones del epitelio endocervical de ratones de 4 meses de edad no transgénicos (FvB) y transgénicos (K14E7), tratados y no tratados con E₂ durante tres meses. Las secciones fueron teñidas con hematoxilina y eosina (H&E, A-D) e inmunoteñidas para PCNA (E-H) o p16-INK4a (I-L). La señal café representa células positivas para PCNA o p16-INK4a. El campo visual representa un aumento de 40X.

8.2. EFECTO DE LA ONCOPROTEÍNA E7 Y DEL E_2 EN EL PERFIL GLOBAL DE EXPRESIÓN GÉNICA

Para evaluar el perfil de expresión génica global en tejido cervical inducido por la oncoproteína E7 más E₂ o de manera individual, se usaron ratones hembras FvB y K14E7 tratadas con pellets de E₂ durante tres meses, y ratones no tratados K14E7, todos ellos comparados contra ratones FvB control. Se extrajo el RNA total del cérvix y se sintetizó a cDNA, para posteriormente ser examinado mediante Whole Mice Genome Oligo Microarrays (ver la lista de los genes diferencialmente expresados en GEO ID: GSE46890).

Usando ANOVA, un criterio de cambio de ≥ 2 y ≤ -2 , y un valor de *P*<0.05, se determinó que los cambios más dramáticos en el perfil de expresión ocurrieron en los grupos tratados con E₂ (Fig. 4A). Cuando se compararon los perfiles de expresión entre los grupos K14E7+E₂, K14E7 y FvB+E₂ se encontró que muchos genes estaban compartidos entre los grupos (Anexos, Tabla 3). Se realizó un diagrama de Venn (Fig. 4B) para identificar genes comunes, así como genes regulados exclusivamente por E7 y E₂. Se encontraron 70 genes comunes entre los grupos K14E7+E₂ y FvB+E₂, nueve genes entre los grupos K14E7+E₂ y K14E7 y solamente se encontraron dos genes comunes entre los tres grupos. Interesantemente, se encontró que 134 (K14E7+E₂), 198 (FvB+E₂) y 30 (K14E7) genes fueron exclusivos de cada grupo (Anexos, Tabla 4-6).

Figura 4. Perfil de expresión global de los ratones K14E7+E₂, K14E7 y FvB+E₂ comparados contra ratones FvB sin tratamiento. Para determinar la cantidad de genes diferencialmente expresados se usó un corte de expresión de ≥ 2 y ≤ -2 y un valor de P < 0.05. (A) Se detectaron 148, 16 y 197 genes aumentados; 67, 25 y 73 disminuidos en su expresión entre los grupos K14E7+E₂, K14E7 y FvB+E₂, respectivamente. (B) El diagrama de Venn muestra genes únicos (a-c) y comunes (d-g) diferencialmente expresados entre los grupos antes mencionados.

Se realizó un análisis de ontología génica con el uso del software Ingenuity Pathway (IPA) para clasificar los genes diferencialmente expresados involucrados en procesos celulares. Con este análisis se observó que muchos procesos asociados con la inmunidad (movimiento celular, desarrollo del sistema hematológico, tránsito celular inmune y respuesta inflamatoria) fueron modificados principalmente en los grupos K14E7+E₂ y FvB+E₂ (Fig. 5), mientras que en el grupo K14E7 los procesos modificados fueron el metabolismo de carbohidratos, la bioquímica de moléculas pequeñas, el metabolismo de lípidos y el transporte molecular.

Figura 5. Procesos biológicos basados en ontología génica. Para cada grupo experimental los genes fueron categorizados en procesos biológicos. Las barras indican el valor de *p* que denota el grado de relación entre los genes.

8.3. VALIDACIÓN DE DATOS DE MICROARREGLOS POR RT-qPCR

Para validar los datos de los microarreglos se tomó como criterios genes que estuvieran involucrados en los principales procesos biológicos más alterados, además de genes relacionados con diferentes cánceres. Se validaron cinco genes del grupo K14E7+E₂ (II1a,

Tnfa, Irf1, S100a8, y S100a9), cinco del grupo K14E7 (Slc23a1, Ifi44, Gpd1, Serpinb3b, y Spp1) y seis genes del grupo FvB+E₂ (II1a, Dmbt1, Tnfa, Rerg, Tff1, y Igfbp5). Como se muestra en la Fig. 6, todos los resultados fueron consistentes con los datos de los microarreglos. Entre los genes validados, S100a8 y S100a9 fueron los genes más aumentados en su expresión en el grupo K14E7+E₂, mientras que Slc23a1 fue el más aumentado, y Gpd1 y Serpinb3b fueron los más disminuidos en el grupo K14E7. Por otra parte, en el grupo FvB+E₂ se observó un aumento en la expresión de II1a y Dmbt1, y una disminución de la expresión de Tff1.

Figura 6. Validación de datos de microarreglos por RT-qPCR. Comparación de los niveles de expresión de genes seleccionados determinado por análisis de microarreglos y RT-qPCR. La expresión relativa fue calculada con la ecuación $2^{-\Delta\Delta ct}$; todos los datos fueron normalizados con Hprt como gen de referencia y se usaron ratones FvB no tratados como grupo control. Los datos de RT-qPCR son expresados como medias ±DE de tres análisis independientes. Las barras negras representan los datos del RT-qPCR, y las barras grises los datos de los microarreglos.

8.4. EL ESTRADIOL AUMENTA LA EXPRESIÓN DE S100a9

Dado que los genes S100a9 y S100a8 fueron algunos de los genes que están asociados a la inflamación (proceso más alterado), que están muy aumentados en su expresión en los resultados de microarreglos (Anexos, Tabla 3), además de que se ha reportado que están incrementado en diversos tumores y que desempeñan un papel importante en cánceres asociados con la inflamación (Markowitz and Carson, 2013); se decidió evaluarlos a nivel de proteína en todos los grupos de estudio. Mediante análisis de RT-qPCR se observó que los genes S100a8 y S100a9 están sobre-expresados en los grupos que recibieron tratamiento con estradiol (K14E7+ E_2 y FvB+ E_2) (Fig. 7A). Es interesante notar, que mediante Western blot, únicamente se detectó la proteína S100-A9 en los grupos tratados (Fig 7B). También se evaluó, mediante inmunohistoquímica, la distribución y expresión de S100-A8 y S100-A9 en el tejido cervical escamoso. La inmunotinción de las secciones de tejido cervical de los grupos tratados con estradiol reveló un aumento en la expresión de la proteína S100-A9. Su expresión fue evidente en el citoplasma y fue más intensa en el núcleo de las células epiteliales del tejido escamoso estratificado (Fig. 7C). En los grupos de ratones no tratados (K14E7 y FvB), fue muy similar la expresión y localización de esta proteína. Para el caso de S100-A8, se observó señal en infiltrado leucocitario en tejido cervical de los grupos tratados (Fig. 7C)

Figura 7. El 17β-estradiol aumenta la expresión de la proteína S100-A9. El análisis con RT-qPCR (A) muestra una expresión elevada del mRNA de S100a8 y S100a9 en los grupos de ratones K14E7+E₂ y FvB+E₂. Las barras representan la media ±DE de tres experimentos independientes (**P* < 0.05, ***P* < 0.01, *t* de Student). Los datos fueron normalizados con Hprt como gen de referencia y se usaron ratones FvB no tratados como grupo control. Los análisis de Western Blot (B) e inmunohistoquímica (C) también revelaron un aumento en la expresión de S100-A9 en el grupo de ratones tratados con estradiol.

Para corroborar el efecto de la oncoproteína E7 del VPH16 y/o del E₂ sobre la expresión de los genes S100A9 y S100A8 humanos, se cultivaron queratinocitos de prepucio humano (HFK) y queratinocitos transformados con la oncoproteína E7 VPH16 (HFK-E7) en un medio libre de suero, posteriormente fueron tratados con el antagonista de estrógenos ICI 182,780 y con E₂. En este estudio, se reportó que la oncoproteína E7 del VPH16 disminuyó la expresión de los genes S100A8 y S100A9 tanto a nivel de mRNA como de proteína (Fig. 8A y B). De igual manera, en los HFK que recibieron el tratamiento con ICI 182,780 se observó la disminución en la expresión de los genes S100A8 y S100A9 a nivel

de mRNA (Fig. 9A) como de proteína (Fig 9C). Por otra parte, en los HFK-7 que recibieron el tratamiento con ICI 182,780 los niveles de mRNA para S100A8 fueron similares al control, con un ligero incremento para S100A9 (Fig. 9B); sin embargo, los niveles de proteína disminuyeron (Fig. 9C). Al evaluar el efecto del E₂ sobre estos genes, se observó que los niveles de mRNA de S100A8 y A9 fueron muy similares, tanto en lo grupos tratados como no tratados (Fig. 10A y B). Sin embargo, se observó un ligero incremento en la expresión de S100-A9 a nivel de proteína (Fig. 10C). Estos resultados sugieren que E₂ induce la expresión de la proteína S100-A9 tanto *in vivo* como *in vitro*.

Figura 8. La oncoproteína E7 del VPH16 disminuye la expresión de S100A8 y S100A9. (A) RT-qPCR de S100A8 y S100A9 (relativa a GAPDH). (B) Resultados de western blot muestran resultados representativos de tres experimentos (**p < 0.01, t de Student).

Figura 9. El tratamiento con ICI 182.780, un antagonista de receptores a estrógenos, disminuye la expresión de S100A8 y S100A9. Al tratar las células HFK con ICI 182,780 se observó una disminución en la expresión de S100A8 y A100A9, tanto a nivel de mRNA (A) como de proteína (C). Contrariamente, en las células HFK-E7 la disminución sólo es evidente a nivel de proteína (B y C). Los HFK y HFK-E7 fueron tratados con el vehículo o con ICI 182,780 (50 nm) por 48 h. Se realizó fraccionamiento celular y los lisados se sometieron a SDS-PAGE seguido por IB con los anticuerpos anti-S100A8, anti-S100A9 y anti-beta-actina (control). Los resultados de Western blot muestran resultados representativos de tres experimentos. La RT-qPCR es relativa a GAPDH (p < 0.01, t de Student).

Figura 10. El tratamiento con estradiol aumenta la expresión S100A9. En las células HFK y HFK-E7, el efecto del E_2 sobre la expresión, a nivel de mRNA, de S100A8 y S100A9 (A y B) fue muy similar al grupo control. En cambio; el tratamiento con E_2 incrementó ligeramente la expresión, a nivel de proteína, de S100A9 (C). Los HFK y HFK-E7 fueron tratados con el vehículo o con estradiol por 24 h después de un periodo de 48 h de inanición de suero o cualquier factor de crecimiento. Se realizó fraccionamiento celular y los lisados se sometieron a SDS-PAGE seguido por IB con los anticuerpos anti-S100A8, anti-S100A9 y anti-beta-actina (control). Los resultados de Western blot muestran resultados representativos de tres experimentos. La RT-qPCR es relativa a GAPDH.

8.5. EL ESTRADIOL Y LA ONCOPROTEÍNA E7 DEL VPH16 TIENEN UN EFECTO SIGNIFICATIVO EN LA EXPRESIÓN DE CLAUDINA 4

Debido a que el producto del gen Cldn4 se ha asociado con cánceres epiteliales y fue un gen que aumentó ligeramente sus niveles de expresión en el grupo K14E7+E₂ (Anexos, Tabla 4), se decidió determinar el efecto de la oncoproteína E7 o del estradiol sobre la expresión de este gen en el tejido cervical escamoso. Se reportó que el mRNA de Cldn4 fue más alto en los ratones K14E7+E₂ y FvB+E₂ comparado con los ratones FvB control (Fig. 11A). Por otra parte, la expresión en el grupo K14E7 fue muy similar al control. Al nivel de proteína se observó que hubo aumento en la expresión tanto en los grupos tratados con

estradiol como del grupo K14E7. Es interesante notar, que al nivel de mRNA y proteína únicamente hubo correlación entre los grupos tratados (Fig. 11B). También se detectó la distribución y expresión de Cldn4 por inmunofluorescencia; en el tejido cervical escamoso de los ratones K14E7+E₂ se observó un incremento de la expresión en los bordes que delinean la capa suprabasal (Fig.11C); en el grupo FvB+E₂, se observó que en la mayoría del estrato suprabasal la expresión de la Cldn4 fue aumentada y localizada a nivel de membrana celular; de igual manera, en el grupo K14E7 estuvo aumentada en el estrato suprabasal; sin embargo, el patrón de expresión fue desorganizado. Interesantemente, ni la capa basal ni la parabasal del tejido escamoso cervical expresaron Cldn4 en todos los grupos de estudio. Estos resultados sugieren que la oncoproteína E7 sola o en combinación con el estradiol aumenta la expresión de Claudina 4 en la capa suprabasal del tejido escamoso cervical.

Figura 11. **El E₂ y la oncoproteína E7 aumentan la expresión de la Claudina-4.** El análisis con RT-qPCR muestra una expresión elevada del mRNA de Claudina-4 en los grupos de ratones K14E7+E2 y FvB+E2 (A). Las barras representan la media ±DE de tres experimentos independientes (*p < 0.05, **p < 0.01, t de Student). Los análisis de Western Blot (B) e **inmunofluorescencia** (C) también revelaron un aumento en la expresión de Claudina-4 en el grupo de ratones tratados con estradiol y en ratones K14E7.

IX. DISCUSIÓN

Con el fin de esclarecer los posibles mecanismos moleculares por los cuales la oncoproteína E7 del VPH16 y el estradiol están involucrados en las etapas tempranas de la carcinogénesis cervical, fue necesario realizar un perfil de expresión global en el tejido cervical de ratones que expresan la oncoproteína E7 del VPH16 y que fueron tratados durante tres meses con estradiol. Es de notar que un gran número de genes diferencialmente expresados se reportaron en los grupos tratados con estradiol; esto podría explicarse parcialmente porque los estrógenos regulan la transcripción de muchos genes a través de varios mecanismos, tales como (1) activación nuclear, incluyendo la interacción clásica de los receptores nucleares activados con los elementos de respuesta a estrógenos en el DNA; (2) a través de la interacción proteína-proteína con factores de transcripción como SP1, AP1 y NF-κB (Nilsson et al., 2001), y (3) por efectos no nucleares a través de receptores de superficie celular acoplados a la vía de las MAPKs (Gruber et al., 2002). Por otra parte, la oncoproteína E7 carece de actividad enzimática y de unión al DNA (Moody and Laimins, 2010); por lo tanto, su capacidad de alterar la expresión de genes debe derivar de su habilidad para asociarse con complejos celulares (Ghittoni et al., 2010; McLaughlin-Drubin and Munger, 2009).

Como consecuencia del gran número de vías modificadas por E7 o por el 17βestradiol, es difícil discutir cada una en detalle, y por eso se decidió discutir los procesos celulares más alterados en el modelo de carcinogénesis cervical K14E7+E₂.

Muchos de los genes diferencialmente expresados codifican elementos de la respuesta inmune, y muchos de los genes reportados (II1b, II1a, Tnfa, II8rb, Tnfaip3, Cd74, Cd274, S100a8, S100a9, Ccl3, Cd14, Cd3g, Cxcl13, H2-Q6, ligp1, Inhba, Irg1, Tgtp, y Trem1) son expresados en común y con expresión similar en grupos K14E7 y FvB tratados con E₂ (Anexos, Tabla 3). Estudios previos han reportado que algunos genes como II1b (Polan, Daniele, and Kuo, 1988; Ruh et al., 1998), Tnfa, Tnfaip3 (Vendrell et al., 2007), II8rb (Cxcr2) (Lei et al., 2003) y S100a9 (Stygar et al., 2007) son modulados por los estrógenos, y su expresión y secreción depende del tipo celular, de las condiciones del medio y de la concentración de estrógenos. Por lo tanto, es probable que en los ratones K14E7 tratados

con estradiol la expresión de genes que codifican la respuesta inmune sea modificada por el estradiol más que por la oncoproteína E7.

También es interesante notar que algunos genes regulados por E₂, mencionados anteriormente (II1b, Tnfa, Cd74, Cd274, S100a8 y S100a9), se han reportado diferencialmente expresados en cáncer cervical (Al-Tahhan, Etewa, and El Behery, 2011; Cheng et al., 2011; Choi et al., 2007; Karim et al., 2009); sin embargo, en estos estudios no se reportó la influencia de los estrógenos. Por otra parte, en nuestro estudio se reportan genes de la respuesta inmune aumentados en su expresión (Ccl3, Cxcl13, Il8rb) que no se han reportado en el cáncer cervical; sin embargo, estos genes se han reportado incrementados en cánceres que están asociados con la inflamación (Panse et al., 2008; Seder et al., 2009; Silva et al., 2007; Wang et al., 2012). Además, es interesante notar que un trabajo previo (realizado por nuestro grupo) de expresión global, en cérvix del ratón K14E7 de 1.5 mese de edad sin tratamiento exógeno con estradiol, se observó que varios genes asociados a la inflamación estuvieron disminuidos en su expresión (Ibarra Sierra et al., 2012). Nuestros resultados abren la posibilidad de que E₂ favorezca la expresión diferencial de estos genes y contribuya a la modulación del proceso inflamatorio durante la carcinogénesis cervical en el modelo K14E7+E2, especialmente en cuando ya se presentan lesiones precursoras del cáncer cervical.

Dada la importancia de la respuesta inmune y la inflamación en el cáncer, se decidió evaluar la expresión algunos genes asociados con la inflamación (S100a8 y 100a9). S100-A8 y S100-A9 son proteínas que pertenece a la familia de las calgranulinas/S100, y se les encuentra principalmente en una variedad de células inmunes, así como también en epitelio escamoso. Tienen propiedades antimicrobianas, citostáticas, antiproliferativas, apoptóticas y quimio-atrayentes (Srikrishna, 2012). En este estudio se encontró que los grupos tratados con E₂ aumentan la expresión de S100a9 tanto al nivel de mRNA como al nivel de proteína. En células HFK, el tratamiento con un antagonista de estrógenos disminuyó los niveles de la proteína S100-A9. Estos resultados sugieren que E₂ está involucrado en la regulación de la expresión de S100a9 *in vivo*.

Este gen puede responder indirectamente al E₂ a través de estímulos inflamatorios tales como la interleucina 1 beta (Bando et al., 2007) o el factor de necrosis tumoral (Hiratsuka et al., 2006), los cuales promueven la expresión y la formación de homodímeros S100-A9 resistentes a proteasas (Riva et al., 2013). En este contexto, es interesante notar que los genes ll1b y Tnfa se encontraron aumentados en su expresión de nos grupos tratados con E₂; por lo tanto, estas citocinas pueden regular la expresión de S100a9 en el cérvix en los modelos murinos.

Recientemente, se reportó que S100-A9 está sobreexpresada en NIC1, NIC2, NIC3 y cáncer cervical (Zhu et al., 2013; Zhu et al., 2009). En otros tumores se ha asociado con el desarrollo, la invasión y la metástasis (Ichikawa et al., 2011; Kallberg et al., 2012; Li et al., 2012). De manera contraria, hay reportes que sugieren que el complejo S100A8/A9 induce apoptosis e inhibe la metástasis en líneas celulares CaSki, y también reduce el crecimiento celular en otras líneas derivadas de cáncer cervical (Qin et al., 2010; Tugizov et al., 2005). Estos efectos antagónicos puede ser explicados por influencia de la concentración; por ejemplo, diferentes estudios han demostrado que concentraciones que van desde 20-250 µg/ml (complejo S100A8/A9) promueven la apoptosis, mientras que a bajas concentraciones (<20 µg/ml) promueven la proliferación de las células tumorales (Srikrishna, 2012); sin embargo, estos efectos no han podido establecerse *in vivo*.

Un segundo grupo de genes que se encontraron diferencialmente expresados incluyen algunos involucrados en el metabolismo, tales como: Ucp1, Cox7a1 y Cox8b, los cuales estuvieron disminuidos en su expresión en los grupos K14E7 y K14E7+E₂. La proteína Ucp1, la cual está localizada en las mitocondrias de los adipocitos pardos, actúa como acarreador de protones, aumentando la respiración y la producción de calor celular (Mailloux and Harper, 2011). La sobreexpresión de Ucp1 resulta en un incremento del consumo de oxígeno y disminución del crecimiento celular (Lee et al., 2012); de igual manera, Ucp3 (homólogo de Ucp1) también incrementa la respiración celular y está asociada con la resistencia a la carcinogénesis de piel mediada por compuestos carcinogénicos (Lago et al., 2012). Otros genes que también participan en la cadena respiratoria y que estuvieron reducidos en su expresión en los ratones K14E7 son las

subunidades de la citocromo C oxidasa (COX) Cox7a1 y Cox8b. La supresión de la respiración mitocondrial y de la actividad COX, así como también de la inducción glicolítica mediadas por la vía Wnt, son rasgos de procesos cancerosos celulares (Lee et al., 2012). Estos hallazgos sugieren que en nuestro modelo de ratón la reducción en la expresión de Ucp1, Cox7a1 y Cox8b debe disminuir la respiración mitocondrial, promover la actividad glicolítica e incrementar el crecimiento tumoral.

Es bien conocido que E7 del VPH16 perturba el programa de diferenciación de los queratinocitos y permite que la síntesis de DNA ocurra en un subgrupo de células suprabasales del tejido epitelial cervical (Flores et al., 2000). De acuerdo con esta situación, en este trabajo se observó que PCNA, un marcador de células proliferantes no diferenciadas, estuvo incrementado en los compartimentos basal y suprabasal por influencia de la oncoproteína E7 (K14E7 y K14E7+E₂); además, es interesante notar que un grupo de genes relacionados con la diferenciación de queratinocitos estuvieron significativamente disminuidos en los ratones K14E7 y K14E7+E₂. Estos hallazgos confirman y extienden las observaciones de que la diferenciación epitelial está alterada por influencia de E7 (Gyongyosi et al., 2012; Santin et al., 2005).

Existe una pequeña probabilidad de que los cambios en la expresión de genes no representen efectos directos de E7 o del estradiol, sino que sean reflejo de la expansión celular, que permanece activamente proliferante, o sean resistentes a la diferenciación terminal. Por ejemplo, la oncoproteína E7 y el estradiol estimulan la producción de Il1a (previamente mencionada), la cual a su vez induce la expresión de factores de crecimiento que estimulan la proliferación de queratinocitos y de células cancerosas a través de vías autocrinas y paracrinas (Bando et al., 2007; Castrilli et al., 1997); tampoco se conoce que E7 o el estradiol regulen directamente genes de la envoltura cornificada (previamente discutidos), por lo que estos cambios pueden reflejar efectos secundarios de estos factores.

Otro gen aumentado en su expresión en el grupo de los ratones $K14E7+E_2$ fue Cldn4. La Claudina-4 es un componente de las uniones estrechas; este gen tiene un papel importante en la inhibición de la invasión y metástasis (Shang et al., 2012). Se ha

reportado que las proteínas de las uniones estrechas están desreguladas en un gran número de cánceres epiteliales (Webb, Spillman, and Baumgartner, 2013). En nuestro estudio observamos que E7 y/o el estradiol incrementaron la expresión de la Claudina-4; sin embargo, es interesante notar que este aumento se observó especialmente en las células parcialmente diferenciadas del estrato suprabasal, mientras que las células proliferantes (basal y parabasal) la expresión se va perdiendo. Esto denota que conforme avanza la carcinogénesis cervical se pierde la diferenciación celular y por lo tanto disminuyen las uniones estrechas favoreciendo la invasión y metástasis. Estos resultados son consistentes con otros reportes que encuentran que la expresión de Claudina-4 está limitada a la capa suprabasal de lesiones intraepiteliales escamosas (Sobel et al., 2005). Nuestros resultados indican una alteración en la proliferación y la diferenciación celular, así que la disminución de Claudina-4, en la capa basal y parabasal de nuestro modelo, podría ser un marcador importante de la interrupción de la diferenciación normal y un marcador temprano de la carcinogénesis cervical.

Los resultados de expresión global de este trabajo parcialmente asocian los cambios de expresión génica a un tipo celular; por ejemplo, algunos datos obtenidos del ratón K14E7+E₂, como la expresión de Cldn 4 (Morin, 2005; Tsukita and Furuse, 2002), podrían estar de acuerdo con datos de expresión de células epiteliales de tejido microdisectado. En este trabajo reportamos genes con perfil similar de expresión comparado con perfiles provenientes de tejido microdisectado con lesiones premalignas y cáncer cervical (Anexos, Tabla 7) (Gius et al., 2007; Zhai et al., 2007), y solamente dos genes que se expresan en el estroma del tejido cervical estuvieron correlacionados con nuestro trabajo. Por lo tanto, el estudio de la oncoproteína E7 del VPH16, del estradiol o una combinación de ambos en el cérvix debe dar información muy similar a la del tejido microdisectado. Con respecto a esto, también es relevante notar que recientemente nuestro grupo determinó que los efectos del estrógeno sobre la carcinogénesis cervical son mediados en parte por la vía de señalización estrógeno/receptor α del tejido estromal (Chung et al., 2013).

En conclusión, los resultados presentados aquí sugieren que la oncoproteína E7 del VPH16 contribuye principalmente a la carcinogénesis cervical por modificar genes relacionados con el metabolismo celular, mientras que el estradiol principalmente modifica la expresión de genes asociados con la inmunidad. Es importante resaltar que se identificó un gran número de genes diferencialmente expresados que ya se habían reportado en otros estudios de cáncer cervical. Además, se identificó la expresión diferencial de nuevos genes que podrían contribuir a la tumorogénesis cervical y pueden ofrecer propuestas como potenciales marcadores diagnósticos e incluso terapéuticos.

X. REFERENCIAS

- Al-Tahhan, M. A., Etewa, R. L., and El Behery, M. M. (2011). Association between circulating interleukin-1 beta (IL-1beta) levels and IL-1beta C-511T polymorphism with cervical cancer risk in Egyptian women. *Mol Cell Biochem* 353(1-2), 159-65.
- Alonso, L. G., Garcia-Alai, M. M., Nadra, A. D., Lapena, A. N., Almeida, F. L., Gualfetti, P., and Prat-Gay, G. D. (2002). High-risk (HPV16) human papillomavirus E7 oncoprotein is highly stable and extended, with conformational transitions that could explain its multiple cellular binding partners. *Biochemistry* **41**(33), 10510-8.
- Antinore, M. J., Birrer, M. J., Patel, D., Nader, L., and McCance, D. J. (1996). The human papillomavirus type 16 E7 gene product interacts with and trans-activates the AP1 family of transcription factors. *EMBO J* **15**(8), 1950-60.
- Arbeit, J. M., Howley, P. M., and Hanahan, D. (1996). Chronic estrogen-induced cervical and vaginal squamous carcinogenesis in human papillomavirus type 16 transgenic mice. *Proc Natl Acad Sci U S A* **93**(7), 2930-5.
- Armstrong, D. J., and Roman, A. (1993). The anomalous electrophoretic behavior of the human papillomavirus type 16 E7 protein is due to the high content of acidic amino acid residues. *Biochem Biophys Res Commun* **192**(3), 1380-7.
- Avvakumov, N., Torchia, J., and Mymryk, J. S. (2003). Interaction of the HPV E7 proteins with the pCAF acetyltransferase. *Oncogene* **22**(25), 3833-41.
- Baldwin, A., Huh, K. W., and Munger, K. (2006). Human papillomavirus E7 oncoprotein dysregulates steroid receptor coactivator 1 localization and function. *J Virol* **80**(13), 6669-77.
- Balsitis, S., Dick, F., Dyson, N., and Lambert, P. F. (2006). Critical roles for non-pRb targets of human papillomavirus type 16 E7 in cervical carcinogenesis. *Cancer Res* **66**(19), 9393-400.
- Bando, M., Hiroshima, Y., Kataoka, M., Shinohara, Y., Herzberg, M. C., Ross, K. F., Nagata, T., and Kido, J. (2007). Interleukin-1alpha regulates antimicrobial peptide expression in human keratinocytes. *Immunol Cell Biol* 85(7), 532-7.
- Boulet, G., Horvath, C., Vanden Broeck, D., Sahebali, S., and Bogers, J. (2007). Human papillomavirus: E6 and E7 oncogenes. *Int J Biochem Cell Biol* **39**(11), 2006-11.
- Brake, T., and Lambert, P. F. (2005). Estrogen contributes to the onset, persistence, and malignant progression of cervical cancer in a human papillomavirus-transgenic mouse model. *Proc Natl Acad Sci U S A* **102**(7), 2490-5.
- Branca, M., Ciotti, M., Giorgi, C., Santini, D., Di Bonito, L., Costa, S., Benedetto, A., Bonifacio, D., Di Bonito, P., Paba, P., Accardi, L., Syrjanen, S., Favalli, C., and Syrjanen, K. (2007). Upregulation of proliferating cell nuclear antigen (PCNA) is closely associated with high-risk human papillomavirus (HPV) and progression of cervical intraepithelial neoplasia (CIN), but does not predict disease outcome in cervical cancer. *European journal of obstetrics,* gynecology, and reproductive biology **130**(2), 223-31.
- Castrilli, G., Tatone, D., Diodoro, M. G., Rosini, S., Piantelli, M., and Musiani, P. (1997). Interleukin 1alpha and interleukin 6 promote the in vitro growth of both normal and neoplastic human cervical epithelial cells. *Br J Cancer* **75**(6), 855-9.
- Cheng, R. J., Deng, W. G., Niu, C. B., Li, Y. Y., and Fu, Y. (2011). Expression of macrophage migration inhibitory factor and CD74 in cervical squamous cell carcinoma. *Int J Gynecol Cancer* **21**(6), 1004-12.

- Choi, Y. W., Kim, Y. W., Bae, S. M., Kwak, S. Y., Chun, H. J., Tong, S. Y., Lee, H. N., Shin, J. C., Kim, K. T., Kim, Y. J., and Ahn, W. S. (2007). Identification of differentially expressed genes using annealing control primer-based GeneFishing in human squamous cell cervical carcinoma. *Clin Oncol (R Coll Radiol)* **19**(5), 308-18.
- Chung, S. H., and Lambert, P. F. (2009). Prevention and treatment of cervical cancer in mice using estrogen receptor antagonists. *Proc Natl Acad Sci U S A* **106**(46), 19467-72.
- Chung, S. H., Shin, M. K., Korach, K. S., and Lambert, P. F. (2013). Requirement for stromal estrogen receptor alpha in cervical neoplasia. *Horm Cancer* **4**(1), 50-9.
- Chung, S. H., Wiedmeyer, K., Shai, A., Korach, K. S., and Lambert, P. F. (2008). Requirement for estrogen receptor alpha in a mouse model for human papillomavirus-associated cervical cancer. *Cancer research* **68**(23), 9928-34.
- Darnell, G. A., Schroder, W. A., Antalis, T. M., Lambley, E., Major, L., Gardner, J., Birrell, G., Cid-Arregui, A., and Suhrbier, A. (2007). Human papillomavirus E7 requires the protease calpain to degrade the retinoblastoma protein. *J Biol Chem* **282**(52), 37492-500.
- de Villiers, E. M. (2003). Relationship between steroid hormone contraceptives and HPV, cervical intraepithelial neoplasia and cervical carcinoma. *Int J Cancer* **103**(6), 705-8.
- del Pino, M., Garcia, S., Fuste, V., Alonso, I., Fuste, P., Torne, A., and Ordi, J. (2009). Value of p16(INK4a) as a marker of progression/regression in cervical intraepithelial neoplasia grade 1. *Am J Obstet Gynecol* **201**(5), 488 e1-7.
- Delvenne, P., Herman, L., Kholod, N., Caberg, J. H., Herfs, M., Boniver, J., Jacobs, N., and Hubert, P. (2007). Role of hormone cofactors in the human papillomavirus-induced carcinogenesis of the uterine cervix. *Mol Cell Endocrinol* 264(1-2), 1-5.
- Diaz-Chavez, J., Hernandez-Pando, R., Lambert, P. F., and Gariglio, P. (2008). Down-regulation of transforming growth factor-beta type II receptor (TGF-betaRII) protein and mRNA expression in cervical cancer. *Mol Cancer* **7**, 3.
- Doorbar, J. (2005). The papillomavirus life cycle. J Clin Virol 32 Suppl 1, S7-15.
- Doorbar, J. (2006). Molecular biology of human papillomavirus infection and cervical cancer. *Clin Sci* (*Lond*) **110**(5), 525-41.
- Dray, M., Russell, P., Dalrymple, C., Wallman, N., Angus, G., Leong, A., Carter, J., and Cheerala, B. (2005). p16(INK4a) as a complementary marker of high-grade intraepithelial lesions of the uterine cervix. I: Experience with squamous lesions in 189 consecutive cervical biopsies. *Pathology* **37**(2), 112-24.
- Elson, D. A., Riley, R. R., Lacey, A., Thordarson, G., Talamantes, F. J., and Arbeit, J. M. (2000). Sensitivity of the cervical transformation zone to estrogen-induced squamous carcinogenesis. *Cancer Res* **60**(5), 1267-75.
- Flores, E. R., Allen-Hoffmann, B. L., Lee, D., and Lambert, P. F. (2000). The human papillomavirus type 16 E7 oncogene is required for the productive stage of the viral life cycle. J Virol 74(14), 6622-31.
- Funk, J. O., Waga, S., Harry, J. B., Espling, E., Stillman, B., and Galloway, D. A. (1997). Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. *Genes Dev* **11**(16), 2090-100.
- Georgopoulos, N. T., Proffitt, J. L., and Blair, G. E. (2000). Transcriptional regulation of the major histocompatibility complex (MHC) class I heavy chain, TAP1 and LMP2 genes by the human papillomavirus (HPV) type 6b, 16 and 18 E7 oncoproteins. Oncogene 19(42), 4930-5.
- Ghittoni, R., Accardi, R., Hasan, U., Gheit, T., Sylla, B., and Tommasino, M. (2010). The biological properties of E6 and E7 oncoproteins from human papillomaviruses. *Virus Genes* **40**(1), 1-13.

- Gius, D., Funk, M. C., Chuang, E. Y., Feng, S., Huettner, P. C., Nguyen, L., Bradbury, C. M., Mishra, M., Gao, S., Buttin, B. M., Cohn, D. E., Powell, M. A., Horowitz, N. S., Whitcomb, B. P., and Rader, J. S. (2007). Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates. *Cancer Res* 67(15), 7113-23.
- Greenfield, I., Nickerson, J., Penman, S., and Stanley, M. (1991). Human papillomavirus 16 E7 protein is associated with the nuclear matrix. *Proc Natl Acad Sci U S A* **88**(24), 11217-21.
- Gruber, C. J., Tschugguel, W., Schneeberger, C., and Huber, J. C. (2002). Production and actions of estrogens. *N Engl J Med* **346**(5), 340-52.
- Gyongyosi, E., Szalmas, A., Ferenczi, A., Konya, J., Gergely, L., and Veress, G. (2012). Effects of human papillomavirus (HPV) type 16 oncoproteins on the expression of involucrin in human keratinocytes. *Virol J* **9**, 36.
- Habig, M., Smola, H., Dole, V. S., Derynck, R., Pfister, H., and Smola-Hess, S. (2006). E7 proteins from high- and low-risk human papillomaviruses bind to TGF-beta-regulated Smad proteins and inhibit their transcriptional activity. *Arch Virol* **151**(10), 1961-72.
- Heldring, N., Pike, A., Andersson, S., Matthews, J., Cheng, G., Hartman, J., Tujague, M., Strom, A., Treuter, E., Warner, M., and Gustafsson, J. A. (2007). Estrogen receptors: how do they signal and what are their targets. *Physiol Rev* 87(3), 905-31.
- Herber, R., Liem, A., Pitot, H., and Lambert, P. F. (1996). Squamous epithelial hyperplasia and carcinoma in mice transgenic for the human papillomavirus type 16 E7 oncogene. *J Virol* **70**(3), 1873-81.
- Herbsleb, M., Knudsen, U. B., Orntoft, T. F., Bichel, P., Norrild, B., Knudsen, A., and Mogensen, O. (2001). Telomerase activity, MIB-1, PCNA, HPV 16 and p53 as diagnostic markers for cervical intraepithelial neoplasia. *APMIS : acta pathologica, microbiologica, et immunologica Scandinavica* **109**(9), 607-17.
- Hiratsuka, S., Watanabe, A., Aburatani, H., and Maru, Y. (2006). Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. *Nat Cell Biol* **8**(12), 1369-75.
- Huh, K. W., DeMasi, J., Ogawa, H., Nakatani, Y., Howley, P. M., and Munger, K. (2005). Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600. *Proc Natl Acad Sci U S A* **102**(32), 11492-7.
- Hwang, S. G., Lee, D., Kim, J., Seo, T., and Choe, J. (2002). Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. *J Biol Chem* **277**(4), 2923-30.
- Ibarra Sierra, E., Diaz Chavez, J., Cortes-Malagon, E. M., Uribe-Figueroa, L., Hidalgo-Miranda, A., Lambert, P. F., and Gariglio, P. (2012). Differential gene expression between skin and cervix induced by the E7 oncoprotein in a transgenic mouse model. *Virology* 433(2), 337-45.
- Ichikawa, M., Williams, R., Wang, L., Vogl, T., and Srikrishna, G. (2011). S100A8/A9 activate key genes and pathways in colon tumor progression. *Mol Cancer Res* **9**(2), 133-48.
- Jiang, P., and Yue, Y. (2014). Human papillomavirus oncoproteins and apoptosis (Review). *Exp Ther Med* **7**(1), 3-7.
- Kallberg, E., Vogl, T., Liberg, D., Olsson, A., Bjork, P., Wikstrom, P., Bergh, A., Roth, J., Ivars, F., and Leanderson, T. (2012). S100A9 interaction with TLR4 promotes tumor growth. *PLoS One* 7(3), e34207.

- Karim, R., Jordanova, E. S., Piersma, S. J., Kenter, G. G., Chen, L., Boer, J. M., Melief, C. J., and van der Burg, S. H. (2009). Tumor-expressed B7-H1 and B7-DC in relation to PD-1+ T-cell infiltration and survival of patients with cervical carcinoma. *Clin Cancer Res* 15(20), 6341-7.
- Kurshumliu, F., Thorns, C., and Gashi-Luci, L. (2009). p16INK4A in routine practice as a marker of cervical epithelial neoplasia. *Gynecol Oncol* **115**(1), 127-31.
- Lago, C. U., Nowinski, S. M., Rundhaug, J. E., Pfeiffer, M. E., Kiguchi, K., Hirasaka, K., Yang, X., Abramson, E. M., Bratton, S. B., Rho, O., Colavitti, R., Kenaston, M. A., Nikawa, T., Trempus, C., Digiovanni, J., Fischer, S. M., and Mills, E. M. (2012). Mitochondrial respiratory uncoupling promotes keratinocyte differentiation and blocks skin carcinogenesis. *Oncogene* **31**(44), 4725-31.
- Lee, S. Y., Jeon, H. M., Ju, M. K., Kim, C. H., Yoon, G., Han, S. I., Park, H. G., and Kang, H. S. (2012). Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism. *Cancer Res* 72(14), 3607-17.
- Lei, Z. B., Fu, X. J., Lu, Z. T., Wang, B. C., Liu, X. L., and You, N. Z. (2003). Effect of estradiol on chemokine receptor CXCR2 expression in rats: implications for atherosclerosis. Acta Pharmacol Sin 24(7), 670-4.
- Li, C., Li, S., Jia, C., Yang, L., Song, Z., and Wang, Y. (2012). Low concentration of S100A8/9 promotes angiogenesis-related activity of vascular endothelial cells: bridges among inflammation, angiogenesis, and tumorigenesis? *Mediators Inflamm* **2012**, 248574.
- Longworth, M. S., and Laimins, L. A. (2004a). The binding of histone deacetylases and the integrity of zinc finger-like motifs of the E7 protein are essential for the life cycle of human papillomavirus type 31. *J Virol* **78**(7), 3533-41.
- Longworth, M. S., and Laimins, L. A. (2004b). Pathogenesis of human papillomaviruses in differentiating epithelia. *Microbiol Mol Biol Rev* **68**(2), 362-72.
- Luscher-Firzlaff, J. M., Westendorf, J. M., Zwicker, J., Burkhardt, H., Henriksson, M., Muller, R., Pirollet, F., and Luscher, B. (1999). Interaction of the fork head domain transcription factor MPP2 with the human papilloma virus 16 E7 protein: enhancement of transformation and transactivation. *Oncogene* **18**(41), 5620-30.
- Lyons, T. E., Salih, M., and Tuana, B. S. (2006). Activating E2Fs mediate transcriptional regulation of human E2F6 repressor. *Am J Physiol Cell Physiol* **290**(1), C189-99.
- Mailloux, R. J., and Harper, M. E. (2011). Uncoupling proteins and the control of mitochondrial reactive oxygen species production. *Free Radic Biol Med* **51**(6), 1106-15.
- Maldonado, E., Cabrejos, M. E., Banks, L., and Allende, J. E. (2002). Human papillomavirus-16 E7 protein inhibits the DNA interaction of the TATA binding transcription factor. *J Cell Biochem* **85**(4), 663-9.
- Markowitz, J., and Carson, W. E., 3rd (2013). Review of S100A9 biology and its role in cancer. Biochim Biophys Acta **1835**(1), 100-9.
- McLaughlin-Drubin, M. E., Crum, C. P., and Munger, K. (2011). Human papillomavirus E7 oncoprotein induces KDM6A and KDM6B histone demethylase expression and causes epigenetic reprogramming. *Proc Natl Acad Sci U S A* **108**(5), 2130-5.
- McLaughlin-Drubin, M. E., Huh, K. W., and Munger, K. (2008). Human papillomavirus type 16 E7 oncoprotein associates with E2F6. *J Virol* **82**(17), 8695-705.
- McLaughlin-Drubin, M. E., and Munger, K. (2009). The human papillomavirus E7 oncoprotein. *Virology* **384**(2), 335-44.
- Missaoui, N., Trabelsi, A., Hmissa, S., Fontaniere, B., Yacoubi, M. T., Mokni, M., Korbi, S., and Frappart, L. (2010). p16INK4A overexpression in precancerous and cancerous lesions of the uterine cervix in Tunisian women. *Pathol Res Pract* **206**(8), 550-5.

- Moody, C. A., and Laimins, L. A. (2010). Human papillomavirus oncoproteins: pathways to transformation. *Nature reviews. Cancer* **10**(8), 550-60.
- Moriarty, K., Kim, K. H., and Bender, J. R. (2006). Minireview: estrogen receptor-mediated rapid signaling. *Endocrinology* **147**(12), 5557-63.
- Morin, P. J. (2005). Claudin proteins in human cancer: promising new targets for diagnosis and therapy. *Cancer Res* **65**(21), 9603-6.
- Motoyama, S., Ladines-Llave, C. A., Luis Villanueva, S., and Maruo, T. (2004). The role of human papilloma virus in the molecular biology of cervical carcinogenesis. *Kobe J Med Sci* **50**(1-2), 9-19.
- Munger, K., Baldwin, A., Edwards, K. M., Hayakawa, H., Nguyen, C. L., Owens, M., Grace, M., and Huh, K. (2004). Mechanisms of human papillomavirus-induced oncogenesis. *J Virol* **78**(21), 11451-60.
- Munger, K., Basile, J. R., Duensing, S., Eichten, A., Gonzalez, S. L., Grace, M., and Zacny, V. L. (2001). Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. *Oncogene* 20(54), 7888-98.
- Münger, K., Howley, P., and DiMaio, D. (2007). Human papillomavirus E6 and E7 oncogenes. *In* "The Papillomavirus" (R. Garcea, and D. DiMaio, Eds.), pp. v, 415 p. Springer.
- Munger, K., and Phelps, W. C. (1993). The human papillomavirus E7 protein as a transforming and transactivating factor. *Biochim Biophys Acta* **1155**(1), 111-23.
- Narisawa-Saito, M., and Kiyono, T. (2007). Basic mechanisms of high-risk human papillomavirusinduced carcinogenesis: roles of E6 and E7 proteins. *Cancer Sci* **98**(10), 1505-11.
- Nead, M. A., Baglia, L. A., Antinore, M. J., Ludlow, J. W., and McCance, D. J. (1998). Rb binds c-Jun and activates transcription. *EMBO J* **17**(8), 2342-52.
- Nguyen, C. L., Eichwald, C., Nibert, M. L., and Munger, K. (2007). Human papillomavirus type 16 E7 oncoprotein associates with the centrosomal component gamma-tubulin. *J Virol* **81**(24), 13533-43.
- Nilsson, S., Makela, S., Treuter, E., Tujague, M., Thomsen, J., Andersson, G., Enmark, E., Pettersson, K., Warner, M., and Gustafsson, J. A. (2001). Mechanisms of estrogen action. *Physiol Rev* 81(4), 1535-65.
- Panse, J., Friedrichs, K., Marx, A., Hildebrandt, Y., Luetkens, T., Barrels, K., Horn, C., Stahl, T., Cao, Y., Milde-Langosch, K., Niendorf, A., Kroger, N., Wenzel, S., Leuwer, R., Bokemeyer, C., Hegewisch-Becker, S., and Atanackovic, D. (2008). Chemokine CXCL13 is overexpressed in the tumour tissue and in the peripheral blood of breast cancer patients. *Br J Cancer* 99(6), 930-8.
- Park, J. S., Kim, E. J., Kwon, H. J., Hwang, E. S., Namkoong, S. E., and Um, S. J. (2000). Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis. J Biol Chem 275(10), 6764-9.
- Perea, S. E., Massimi, P., and Banks, L. (2000). Human papillomavirus type 16 E7 impairs the activation of the interferon regulatory factor-1. *Int J Mol Med* **5**(6), 661-6.
- Polan, M. L., Daniele, A., and Kuo, A. (1988). Gonadal steroids modulate human monocyte interleukin-1 (IL-1) activity. *Fertil Steril* **49**(6), 964-8.
- Qin, F., Song, Y., Li, Z., Zhao, L., Zhang, Y., and Geng, L. (2010). S100A8/A9 induces apoptosis and inhibits metastasis of CasKi human cervical cancer cells. *Pathol Oncol Res* **16**(3), 353-60.
- Remoue, F., Jacobs, N., Miot, V., Boniver, J., and Delvenne, P. (2003). High intraepithelial expression of estrogen and progesterone receptors in the transformation zone of the uterine cervix. *Am J Obstet Gynecol* **189**(6), 1660-5.

- Ressler, S., Scheiden, R., Dreier, K., Laich, A., Muller-Holzner, E., Pircher, H., Morandell, D., Stein, I., Viertler, H. P., Santer, F. R., Widschwendter, A., Even, J., Jansen-Durr, P., Capesius, C., and Zwerschke, W. (2007). High-risk human papillomavirus E7 oncoprotein detection in cervical squamous cell carcinoma. *Clin Cancer Res* 13(23), 7067-72.
- Riley, R. R., Duensing, S., Brake, T., Munger, K., Lambert, P. F., and Arbeit, J. M. (2003). Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. *Cancer Res* **63**(16), 4862-71.
- Riva, M., He, Z., Kallberg, E., Ivars, F., and Leanderson, T. (2013). Human S100A9 protein is stabilized by inflammatory stimuli via the formation of proteolytically-resistant homodimers. *PLoS One* **8**(4), e61832.
- Roman, A., and Munger, K. (2013). The papillomavirus E7 proteins. Virology 445(1-2), 138-68.
- Ruh, M. F., Bi, Y., D'Alonzo, R., and Bellone, C. J. (1998). Effect of estrogens on IL-1beta promoter activity. *J Steroid Biochem Mol Biol* **66**(4), 203-10.
- Santer, F. R., Moser, B., Spoden, G. A., Jansen-Durr, P., and Zwerschke, W. (2007). Human papillomavirus type 16 E7 oncoprotein inhibits apoptosis mediated by nuclear insulin-like growth factor-binding protein-3 by enhancing its ubiquitin/proteasome-dependent degradation. *Carcinogenesis* **28**(12), 2511-20.
- Santin, A. D., Zhan, F., Bignotti, E., Siegel, E. R., Cane, S., Bellone, S., Palmieri, M., Anfossi, S., Thomas, M., Burnett, A., Kay, H. H., Roman, J. J., O'Brien, T. J., Tian, E., Cannon, M. J., Shaughnessy, J., Jr., and Pecorelli, S. (2005). Gene expression profiles of primary HPV16and HPV18-infected early stage cervical cancers and normal cervical epithelium: identification of novel candidate molecular markers for cervical cancer diagnosis and therapy. *Virology* **331**(2), 269-91.
- Sato, H., Watanabe, S., Furuno, A., and Yoshiike, K. (1989). Human papillomavirus type 16 E7 protein expressed in Escherichia coli and monkey COS-1 cells: immunofluorescence detection of the nuclear E7 protein. *Virology* **170**(1), 311-5.
- Schmittgen, T. D., and Livak, K. J. (2008). Analyzing real-time PCR data by the comparative C(T) method. *Nat Protoc* **3**(6), 1101-8.
- Seder, C. W., Hartojo, W., Lin, L., Silvers, A. L., Wang, Z., Thomas, D. G., Giordano, T. J., Chen, G., Chang, A. C., Orringer, M. B., and Beer, D. G. (2009). Upregulated INHBA expression may promote cell proliferation and is associated with poor survival in lung adenocarcinoma. *Neoplasia* 11(4), 388-96.
- Severino, A., Abbruzzese, C., Manente, L., Valderas, A. A., Mattarocci, S., Federico, A., Starace, G., Chersi, A., Mileo, A. M., and Paggi, M. G. (2007). Human papillomavirus-16 E7 interacts with Siva-1 and modulates apoptosis in HaCaT human immortalized keratinocytes. *J Cell Physiol* **212**(1), 118-25.
- Shang, X., Lin, X., Alvarez, E., Manorek, G., and Howell, S. B. (2012). Tight junction proteins claudin-3 and claudin-4 control tumor growth and metastases. *Neoplasia* **14**(10), 974-85.
- Shin, M. K., Balsitis, S., Brake, T., and Lambert, P. F. (2009). Human papillomavirus E7 oncoprotein overrides the tumor suppressor activity of p21Cip1 in cervical carcinogenesis. *Cancer Res* 69(14), 5656-63.
- Silva, T. A., Ribeiro, F. L., Oliveira-Neto, H. H., Watanabe, S., Alencar Rde, C., Fukada, S. Y., Cunha, F. Q., Leles, C. R., Mendonca, E. F., and Batista, A. C. (2007). Dual role of CCL3/CCR1 in oral squamous cell carcinoma: implications in tumor metastasis and local host defense. *Oncol Rep* 18(5), 1107-13.

- Smith-McCune, K., Kalman, D., Robbins, C., Shivakumar, S., Yuschenkoff, L., and Bishop, J. M. (1999). Intranuclear localization of human papillomavirus 16 E7 during transformation and preferential binding of E7 to the Rb family member p130. *Proc Natl Acad Sci U S A* **96**(12), 6999-7004.
- Smotkin, D., and Wettstein, F. O. (1986). Transcription of human papillomavirus type 16 early genes in a cervical cancer and a cancer-derived cell line and identification of the E7 protein. *Proc Natl Acad Sci U S A* **83**(13), 4680-4.
- Smotkin, D., and Wettstein, F. O. (1987). The major human papillomavirus protein in cervical cancers is a cytoplasmic phosphoprotein. *J Virol* **61**(5), 1686-9.
- Sobel, G., Paska, C., Szabo, I., Kiss, A., Kadar, A., and Schaff, Z. (2005). Increased expression of claudins in cervical squamous intraepithelial neoplasia and invasive carcinoma. *Hum Pathol* **36**(2), 162-9.
- Son, J., Park, J. W., Lambert, P. F., and Chung, S. H. (2014). Requirement of estrogen receptor alpha DNA-binding domain for HPV oncogene-induced cervical carcinogenesis in mice. *Carcinogenesis* **35**(2), 489-96.
- Song, S., Gulliver, G. A., and Lambert, P. F. (1998). Human papillomavirus type 16 E6 and E7 oncogenes abrogate radiation-induced DNA damage responses in vivo through p53-dependent and p53-independent pathways. *Proc Natl Acad Sci U S A* **95**(5), 2290-5.
- Song, S., Liem, A., Miller, J. A., and Lambert, P. F. (2000). Human papillomavirus types 16 E6 and E7 contribute differently to carcinogenesis. *Virology* **267**(2), 141-50.
- Srikrishna, G. (2012). S100A8 and S100A9: new insights into their roles in malignancy. J Innate Immun 4(1), 31-40.
- Stygar, D., Masironi, B., Eriksson, H., and Sahlin, L. (2007). Studies on estrogen receptor (ER) alpha and beta responses on gene regulation in peripheral blood leukocytes in vivo using selective ER agonists. *J Endocrinol* **194**(1), 101-19.
- Tsukita, S., and Furuse, M. (2002). Claudin-based barrier in simple and stratified cellular sheets. *Curr Opin Cell Biol* **14**(5), 531-6.
- Tugizov, S., Berline, J., Herrera, R., Penaranda, M. E., Nakagawa, M., and Palefsky, J. (2005). Inhibition of human papillomavirus type 16 E7 phosphorylation by the S100 MRP-8/14 protein complex. *J Virol* **79**(2), 1099-112.
- Um, S. J., Rhyu, J. W., Kim, E. J., Jeon, K. C., Hwang, E. S., and Park, J. S. (2002). Abrogation of IRF-1 response by high-risk HPV E7 protein in vivo. *Cancer Lett* **179**(2), 205-12.
- Valdovinos-Torres, H., Orozco-Morales, M., Pedroza-Saavedra, A., Padilla-Noriega, L., Esquivel-Guadarrama, F., and Gutierrez-Xicotencatl, L. (2008). Different Isoforms of HPV-16 E7 Protein are Present in Cytoplasm and Nucleus. *Open Virol J* **2**, 15-23.
- Vendrell, J. A., Ghayad, S., Ben-Larbi, S., Dumontet, C., Mechti, N., and Cohen, P. A. (2007). A20/TNFAIP3, a new estrogen-regulated gene that confers tamoxifen resistance in breast cancer cells. Oncogene 26(32), 4656-67.
- Wang, Q., Wen, Y. G., Li, D. P., Xia, J., Zhou, C. Z., Yan, D. W., Tang, H. M., and Peng, Z. H. (2012). Upregulated INHBA expression is associated with poor survival in gastric cancer. *Med Oncol* 29(1), 77-83.
- Wang, Y. W., Chang, H. S., Lin, C. H., and Yu, W. C. (2007). HPV-18 E7 conjugates to c-Myc and mediates its transcriptional activity. *Int J Biochem Cell Biol* **39**(2), 402-12.
- Webb, P. G., Spillman, M. A., and Baumgartner, H. K. (2013). Claudins play a role in normal and tumor cell motility. *BMC Cell Biol* **14**, 19.
- Wise-Draper, T. M., and Wells, S. I. (2008). Papillomavirus E6 and E7 proteins and their cellular targets. *Front Biosci* **13**, 1003-17.

Woodworth, C. D. (2002). HPV innate immunity. Front Biosci 7, d2058-71.

- Zhai, Y., Kuick, R., Nan, B., Ota, I., Weiss, S. J., Trimble, C. L., Fearon, E. R., and Cho, K. R. (2007). Gene expression analysis of preinvasive and invasive cervical squamous cell carcinomas identifies HOXC10 as a key mediator of invasion. *Cancer Res* **67**(21), 10163-72.
- Zhang, B., Laribee, R. N., Klemsz, M. J., and Roman, A. (2004). Human papillomavirus type 16 E7 protein increases acetylation of histone H3 in human foreskin keratinocytes. *Virology* **329**(1), 189-98.
- Zhu, X., Jin, L., Zou, S., Shen, Q., Jiang, W., and Lin, W. (2013). Immunohistochemical expression of RAGE and its ligand (S100A9) in cervical lesions. *Cell Biochem Biophys* **66**(3), 843-50.
- Zhu, X., Lv, J., Yu, L., Wu, J., Zou, S., and Jiang, S. (2009). Proteomic identification of differentiallyexpressed proteins in squamous cervical cancer. *Gynecol Oncol* **112**(1), 248-56.
- Zur Hausen, H. (2006). "Infections causing human cancer." Wiley-VCH; John Wiley [distributor], Weinheim Chichester.

XI. ANEXOS

Tabla 2. Proteínas celulares que se asocian con la proteína E7 del VPH^a

Símbolo del gen	Nombre original	No de acceso	VPH AR ^b	VPH BR ^c
ATM	ATM	472	VPH31	
BRCA1	BRCA1	1672	+	
CAPN1	Mu-Calpaina	823	+	
CCNA1	Ciclina A	8900	+	
CCNE1	Ciclina E	898	+	
CDK2	CDK2	1017	+	+
CDKN1A	p21CIP1	1026	+	
CDKN1B	p27KIP1	1027	+	
CENPC	CENP-C1	1060	+	
CHD4	Mi2	1108	+	
СНИК	ΙΚΚ-α	1147	+	
CUL1	Culina 1	8454	+	
CUL2	Culina 2	8453	VPH16	
CUL3	Culina 3	8452	+	+
CSNK2	Caseína cinasa II		+	
DNAJA3	hTid-1	9093	+	
DNMT1	DNMT1	1786	+	
DYRK1A	DYRK1A	1859	+	
E2F1	E2F1	1869	+	
E2F6	E2F6	1876	+	+
ENC1	Enc1	8507	VPH18/45	
EP300	p300	2033	+	
FHL2	FHL2	2274	+	
FOXM1	MPP2	2305	+	
GAA	α-glicosidasa	2548	+	
GSTP1	GSTP1	2950	+	
HDAC1	HDAC1	3065	+	
HDAC2	HDAC2	3066	+	
HIF1A	HIF1a	3091	+	+
HTRA1	HtrA1/Prss11	5654	+	
IGFBP3	IGFBP-3	3486	+	
IKBKB	IKK	3551	+	
IRF1	IRF-1	3659	+	
IRF9	p48	10379	+	
JUN	c-jun	3725	+	
KAT2B	pCAF	8850	+	+
KCMF1	KCMF1	56888	+	+
MYC	c-myc	4609	+	+
NCOA1	SRC1	8648	+	+
NME1	NM23-H3	4830	+	

NIME2		4021		
		4031	+	
		4920	+	
PKIVI	M2-PK	5315	+	
PML	PML	5371	+	+
PPP2R1/PPP2CA	PP2A	5519/5515	+	+
PSMC1	S4, 26S proteasoma	5700	+	
RAN	Ran	5901	+	
RB1	Prb	5925	+	
RBL1	p207	5933	+	
RBL2	p130	5934	+	
SIVA1	Siva-1	10572	+	
SMAD1	SMAD-1	4086	+	VPH1, 8, 11
SMAD2	SMAD-2	4087	+	VPH1, 8, 11
SMAD3	SMAD-3	4088	+	VPH1, 8, 11
SMAD4	SMAD-4	4089	+	VPH1, 8, 11
SMARCA4	BRG-1	6597	+	
SNW1	Skip	22983	+	
TAF1C	TAF-110	9013	+	
TAP1	TAP1	6890	+	+
TGM2	TGasa2	7052	+	+
ТВР	TBP	6908	+	+
TUBG1	γ-tubulina	7283	+	
UBR44	p600	23352	+	+
ZBTB17	Miz-1	7709	+	+
ZER1	ZER1	10444	VPH16	

^aTabla adaptada de Roman A. et al, 2013 ^bVPH-AR: Virus del papiloma humano de alto riesgo. ^cVPH-BR: Virus del papiloma humano de bajo riesgo.

Tabla 3. Genes regulados en común por E7 VPH16 y/o 17β-estradiol

Nombre del gen	Símboloª	Num acceso ^b	K14E7+E2 FC	K14E7 FC	FvB+E ₂ FC
actin, alpha, cardiac muscle 1	Actc1	NM_009608	-2.54877		-5.99099
a disintegrin-like and metallopeptidase	Adamts4	NM_172845	2.11819		3.01177
Angiotensinogen	Agt	NM_007428	2.87846		4.00443
aldo-keto reductase family 1, member C19	Akr1c19	NM_001013785	-3.5877		-3.98332
arachidonate lipoxygenase, epidermal	Alox12e	NM_145684	4.72724		5.90274
aldehyde oxidase 3	Aox3	NM_023617	-3.40151		-4.11364
bone marrow stromal cell antigen 1	Bst1	NM_009763	2.51582		2.68
complement component 6	C6	NM_016704	2.26965		2.22289
cerebellin 1 precursor protein	Cbln1	NM_019626	2.41482		2.82187
chemokine (C-C motif) ligand 3	Ccl3	NM_011337	3.37986		9.49179
CD14 antigen	Cd14	NM_009841	2.58985		3.60758
CD274 antigen	Cd274	NM_021893	4.45666		2.16211
CD3 antigen, gamma polypeptide	Cd3g	NM_009850	3.64478		2.35054
CD72 antigen	Cd72	NM_001110320	3.14148		3.28328
CD74 antigen	Cd74	NM_001042605	2.08514		3.07175
chloride channel calcium activated 1	Clca1	NM_009899	2.95445		2.63894
chloride channel calcium activated 2	Clca2	NM_030601	6.50814		10.5924
chloride channel calcium activated 4	Clca4	NM_139148	8.46035		4.48195
C-type lectin domain family 4, member d	Clec4d	NM_010819	2.36816		2.92366
C-type lectin domain family 4, member e	Clec4e	NM_019948	4.55595		6.55667
cytochrome c oxidase, subunit VIIa 1	Cox7a1	NM_009944	-2.50677	-3.72358	
cytochrome c oxidase, subunit VIIIb	Cox8b	NM_007751	-3.61242	-4.37969	
carboxypeptidase A3, mast cell	Cpa3	NM_007753	-3.18318		-3.72184
carnitine palmitoyltransferase 1b, muscle	Cpt1b	NM_009948	-3.2382	-3.19199	
colony stimulating factor 3 receptor	Csf3r	NM_007782	2.09624		2.53745
chemokine (C-X-C motif) ligand 13	Cxcl13	NM_018866	4.62718		2.317
chemokine (C-X-C motif) receptor 6	Cxcr6	NM_030712	2.15627		2.39884
Fc receptor, IgG, low affinity IV	Fcgr4	NM_144559	2.13593		2.53836
formyl peptide receptor 1	Fpr1	NM_013521	2.4475		2.87993
glycerol-3-phosphate dehydrogenase 1	Gpd1	NM_010271	-2.72872	-2.75475	
gremlin 2 homolog, cysteine knot superfamily	Grem2	NM_011825	2.14298		4.45602
glutathione S-transferase omega 1	Gsto1	NM 010362	2.08971		2.57504

histocompatibility 28	H28	NM 031367	3.92112	4.93768	
histocompatibility 2, Q region locus 6	H2-Q6	NM 207648	2.02498		2.16344
immunoglobulin kappa chain complex	lgk	BC128281	3.63963	3.22287	
interferon inducible GTPase 1	ligp1	NM 001146275	4.27429		3.95962
interleukin 1 alpha	ll1a	NM 010554	5.75464		8.4744
interleukin 1 beta	ll1b	NM_008361	4.51691		6.68441
interleukin 8 receptor, beta	ll8rb	NM_009909	2.03042		3.79783
inhibin beta-A	Inhba	NM_008380	2.0134		2.21747
immunoresponsive gene 1	lrg1	NM_008392	6.98537		4.76009
keratin 76	Krt76	NM 001033177	-9.15389		-4.97456
keratin associated protein 3-3	Krtap3-3	NM_025524	-6.16145	-3.54688	-6.06942
late cornified envelope 3B	Lce3c	NM_025501	-3.20463		-2.04088
lipase, family member N	Lipn	NM_027340	2.46664		2.07343
lecithin-retinol acyltransferase	Lrat	NM_023624	3.67182		2.251
macrophage galactose N-acetyl-galactosamine specific lectin	Mgl1	NM_010796	2.35941		2.84871
macrophage galactose N-acetyl-galactosamine specific lectin	Mgl2	NM_145137	2.6039		3.35368
matrix metallopeptidase 12	Mmp12	NM_008605	3.00893		2.54026
MAS-related GPR, member A2	Mrgpra2	NM_153101	2.35145		2.00067
major urinary protein 1	Mup1	NM_001163011	7.38261		13.1878
major urinary protein 2	Mup2	NM_001045550	8.60296		13.5941
NLR family, pyrin domain containing 3	Nlrp3	NM_145827	2.11666		2.37769
Nik related kinase	Nrk	NM_013724	-2.94523		-3.53085
peptidoglycan recognition protein 4	Pglyrp4	NM_207263	2.66799		2.98559
pro-platelet basic protein	Ppbp	NM_023785	7.43678		8.40177
protease, serine, 22	Prss22	NM_133731	4.43477		2.55641
S100 calcium binding protein A8	S100a8	NM_013650	7.36274		9.52244
S100 calcium binding protein A9	S100a9	NM_009114	6.04809		10.1208
serum amyloid A 3	Saa3	NM_011315	5.22909		14.0891
serine (or cysteine) peptidase inhibitor, clade A member F	Serpina3f	NM_001033335	2.49774		2.078
serine (or cysteine) peptidase inhibitor, clade B member 3A	Serpinb3a	NM_009126	-5.89489	-2.81716	
serine (or cysteine) peptidase inhibitor, clade B member 3B	Serpinb3b	NM_198680	-7.2272	-3.00574	-2.31322
serine (or cysteine) peptidase inhibitor, clade B member 9E	Serpinb9b	NM_011452	2.30192		2.59198
solute carrier family 15, member 3	Slc15a3	NM_023044	2.04354		2.52415
Solute carrier family 26, member 4	Slc26a4	NM_011867	4.51651		6.5036
solute carrier family 5 (sodium/glucose cotransporter)	Slc5a1	NM_019810	2.47843		2.50765
solute carrier family 5 (iodide transporter)	Slc5a8	NM_145423	2.69129		3.53139
solute carrier family 6 (neurotransmitter transporter)	Slc6a14	NM_020049	5.74434		5.20517
small proline-rich protein 2D	Sprr2d	NM_011470	2.06873		2.27528
stefin A2 like 1	Stfa2l1	NM_173869	2.38873		3.00893
T-cell specific GTPase	Tgtp	NM_011579	4.68149		3.02754
tumor necrosis factor	Tnf	NM_013693	2.66658		2.16273
tumor necrosis factor, alpha-induced protein 3	Tnfaip3	NM_009397	2.23788		2.59381
triggering receptor expressed on myeloid cells 1	Trem1	NM_021406	2.939		2.88956
TRH-degrading enzyme	Trhde	NM_146241	-2.56399		-2.44049
tripartite motif-containing 15	Trim15	NM_001024134	2.00125		3.17889
uncoupling protein 1 (mitochondrial, proton carrier)	Ucp1	NM_009463	-13.0949	-9.68128	
urate oxidase	Uox	NM_009474	5.00375		4.21407
urotensin 2	Uts2	NM_011910	-4.58994	-2.65998	
Z-DNA binding protein 1	Zbp1	NM_021394	2.0746		2.2852

^aSimbolo official del gen por HUGO Gene Nomenclature Committee (HGNC). ^bRefSeq mRNA sequences (NCBI Gene database)

Tabla 4. Genes regulados por E7 VPH16 en combinación con el 17 β -estradiol

0	•		
Nombre del gen	Símbolo ^ª	Num de acceso ^b	K14E7+E₂FC
membrane-associated ring finger (C3HC4) 4	04-mar	NM_001045533	2,80428
actin binding LIM protein family, member 3	Ablim3	NM_198649	2,28009
a disintegrin and metallopeptidase domain 8	Adam8	NM_007403	2,8323
a disintegrin-like and metallopeptidase	Adamts5	NM_011782	-2,00101
amelotin	Amtn	ENSMUST0000073363	10,0395
ankyrin repeat and kinase domain containing 1	Ankk1	NM_172922	2,38458
apolipoprotein L 7ª	Apol7a	NM_029419	2,09881
B-cell leukemia/lymphoma 2 related protein A1a	Bcl2a1a	NM_009742	2,32942
B-cell leukemia/lymphoma 2 related protein A1b	Bcl2a1b	NM_007534	2,30346

B-cell leukemia/lymphoma 2 related protein A1d BCLI2-like 15 actin binding LIM protein family, member 3 a disintegrin and metallopeptidase domain 8 calmodulin 4 chemokine (C-C motif) ligand 17 chemokine (C-C motif) ligand 5 cyclin E1 CD3 antigen, epsilon polypeptide cytidine deaminase cyclin-dependent kinase-like 1 (CDC2-related kinase) chitinase 3-like 3 cartilage intermediate layer protein, nucleotide pyrophosph claudin 4 cytidine monophospho-N-acetylneuraminic acid hydroxylase carnosine dipeptidase 1 (metallopeptidase M20 family) contactin 1 carboxypeptidase A4 cysteine-rich C-terminal 1 chemokine (C-X-C motif) ligand 10 chemokine (C-X-C motif) ligand 11 chemokine (C-X-C motif) ligand 13 chemokine (C-X-C motif) ligand 5 chemokine (C-X-C motif) ligand 9 cytochrome P450, family 3, subfamily a, polypeptide 13 defensin beta 1 defensin beta 4 deoxyribonuclease 1-like 2 desmocollin 1 dual specificity phosphatase 5 elongation of very long chain fatty acids Eph receptor A2 fatty acid binding protein 3, muscle and heart Fez family zinc finger 2 fucosyltransferase 9 guanylate binding protein 1 guanylate binding protein 2 guanylate binding protein 4 guanylate binding protein 5 glycoprotein m6a G protein-coupled receptor 110 protein-coupled receptor 83 gastrin releasing peptide receptor gasdermin A GTPase, very large interferon inducible 1 heparan sulfate (glucosamine) 3-O-sulfotransferase 5 indoleamine 2,3-dioxygenase 1 interferon gamma inducible protein 47 interferon induced transmembrane protein 1 immunoglobulin heavy chain complex interleukin 2 receptor, alpha chain interferon regulatory factor 1 immunity-related GTPase family M member 1 immunity-related GTPase family M member 2 Iroquois related homeobox 1 (Drosophila) potassium inwardly-rectifying channel, subfamily J, membe 15 potassium inwardly-rectifying channel, subfamily J, membe 16 kallikrein related-peptidase 7 keratinocyte expressed, proline-rich keratin 20 keratin 23 keratin 4 keratin 9

late cornified envelope 1A1

Bcl2a1d	NM_007536	2,37997
Bcl2l15	NM_001142959	2,06103
Ablim3	NM_198649	2,28009
Adam8	NM_007403	2,8323
Calm4	NM_020036	-3,08737
Ccl17	NM 011332	2,54513
Ccl5	NM_013653	2,12698
Ccne1	NM_007633	2.03341
Cd3e	NM_007648	2.49224
Cda	NM_028176	2 03668
Cdkl1	NM 183294	-2 40986
Chi3l3	NM 009892	2 02288
Ciln	NM 172285	2,02200
Cldp4	NM 000003	2,37083
Ciuli4 Cmah	NM 001111110	2,14554
Critian Cristian		2,42125
Chup1	NIVI_177450	-2,118/0
Chthi	NM_007727	2,38891
Cpa4	NM_027926	-4,05937
Crct1	NM_028798	-2,04936
Cxcl10	NM_021274	3,749
Cxcl11	NM_019494	2,08358
Cxcl3	NM_203320	2,43701
Cxcl5	NM_009141	3,53989
Cxcl9	NM_008599	4,51906
Cyp3a13	NM_007819	2,07318
Defb1	NM_007843	3,71272
Defb4	NM_019728	-4,90967
Dnase1l2	NM_025718	-2,05895
Dsc1	NM_013504	-5,58765
Dusp5	NM_001085390	2,2802
Elovl3	NM_007703	-2,25319
Epha2	NM_010139	2,32439
Fabp3	NM_010174	-2,12126
Fezf2	NM_080433	2,84304
Fut9	NM 010243	-2,08529
Gbp1	NM_010259	2,67798
Gbp2	NM 010260	2.75185
Gbp4	NM_008620	3.42667
Gbp5	NM 153564	2,43272
Gnm6a	NM 153581	-2 09445
Gpr110	NM 133776	2 809
Gpr83	NM 010287	-5 10201
Gror	NM 008177	-2 50877
Grdma	NM 021247	2,50077
Gyin1	NM 029000	2,25710
	NM 001081208	2,99130
Idol	NNA 008224	-2,01911
1001	NNA 008324	3,40718
11147 Ifitm1	NM 026820	2,02902
Intml	NM_026820	3,08185
ign	BC088837	2,38042
II2ra	NM_008367	2,00889
Irf1	NM_008390	2,1957
lrgm1	NM_008326	2,32504
Irgm2	NM_019440	4,21434
Irx1	NM_010573	2,19814
Kcnj15	NM_019664	3,17138
Kcnj16	NM_010604	5,34533
Klk7	NM_011872	-2,89309
Kprp	NM_028629	-5,82312
Krt20	NM_025501	3,17709
Krt23	NM_001018079	2,32459
Krt4	NM_008493	2,98343
Krt9	NM_201255	-2,28093
Lce1a1	NM_025984	-3,07532

-2,50639 -6,56022 -2,55278 -5,51333 -2,60291 -8,35406 -4,31203 -2,26371 -3,73295 -2,5649 -3,06365 -2,61314 3,18771 2,79946 2,06141 -2,00665 2,04936 2,09854 2,29137 2,72522 2,55445 2,26841 2,25166 2,83175 9,19164 3,02085 2,4969 2,47968 -3,01751 8,21382 -2,03248 -2,37861 2,08821 2,22819 3,48826 3,33753 -2,21516 2,16467 2,06205 -2,37385 -3,17442 2,51034 -2,30671 2,14951 2,58408 2,5435 -2,18615 -2,10101 2,10847 -2,14007 -2,87279 2,36197 -2,06457 -2,06398 -2,45966 2,05854 2,38725 2,71773 -4,11239 2,06063 3,92614 2,80419 2,18354

late cornified envelope 1B	Lce1b	NM_026822
late cornified envelope 1C	Lce1c	NM_028622
late cornified envelope 1D	Lce1d	NM_027137
late cornified envelope 1E	Lce1e	NM 026811
late cornified envelope 1G	Lce1g	NM 025413
late cornified envelope 1H	Lce1h	NM_026335
late cornified envelope 1	Lce1i	NM 029667
late cornified envelope 1	l ce1l	NM 028628
late cornified envelope 32	Lce3a	NM 001039594
late cornified envelope 3R	Lco3h	NM 025501
late cornified envelope 35	Lco3f	NM 001018079
Lontin	Lon	NM 008403
	Lep	NM 001083804
Ipase, member n		NIVI_001083894
LOC10004707077 Similar to [Human ig rearranged gamma chai		ENSIVIUS100000103380
lymphocyte antigen 6 complex, locus GSB	Lybg5D	NIM_148939
lymphocyte antigen 6 complex, locus G6C	Lybgbc	NM_023463
lymphocyte antigen 6 complex, locus l	Lybi	NM_020498
Plaur domain containing 2	Lypd2	NM_026671
mannoside acetylglucosaminyltransferase 4, isoenzyme A	Mgat4a	NM_173870
matrix metallopeptidase 8	Mmp8	NM_008611
macrophage activation 2 like	Mpa2l	NM_194336
major urinary protein 20	Mup20	NM_001012323
major urinary protein 21	Mup21	NM_001009550
major urinary protein 4	Mup4	NM_008648
major urinary protein 7	Mup7	NM_001134675
NLR family, apoptosis inhibitory protein 3	Naip3	ENSMUST00000103563
NLR family, CARD domain containing 5	NIrc5	FJ889356
nitric oxide synthase 2, inducible	Nos2	NM_010927
nephroblastoma overexpressed gene	Nov	NM_010930
olfactomedin 4	Olfm4	NM_001030294
phospholipase A2, group IVD	Pla2g4d	NM_001024137
phospholipase A2, group V	Pla2g5	NM_001122954
plasminogen activator, urokinase receptor	Plaur	NM_011113
periplakin	Ppl	NM_008909
protease, serine 27	Prss27	NM 175440
prostate stem cell antigen	Psca	NM_028216
RAR-related orphan receptor beta	Rorb	NM 001043354
ribosomal protein L26	Rpl26	NM_009080
S100 calcium binding protein A2	S100a2	XM_001478157
short chain dehydrogenase/reductase family 16C, member 6	Sdr16c6	NM 001080710
serine (or cysteine) peptidase inhibitor, clade B, member 3c	Serpinb3c	NM 201363
serine (or cysteine) peptidase inhibitor, clade B, member 6b	Serpinb6b	NM 011454
serine (or cysteine) peptidase inhibitor, clade B, member 7	Serpinb7	NM 027548
serine (or cysteine) peptidase inhibitor, clade B, member 9e	Serpinb9e	NM 011456
serine (or cysteine) peptidase inhibitor, clade B, member 9f	Serpinb9c	NM 183197
serine (or cysteine) pentidase inhibitor, clade B, member 9g	Serpinb97 Serninh9g	NM 011455
solute carrier family 16	Slc16a14	NM 027921
solute carrier family 24	Slc24a3	NM 053195
solute carrier family 24	SIc2405	NM 1772/3
solute carrier family 40 (iron-regulated transporter)	SIc40a1	NM 016917
solute carrier family 6 (nourotransmitter transporter)	SIC4081	NIM_028878
solute carrier organic anion transporter family	Sico125	NM 120861
socreted Ly6/Daur domain containing 1	Slurp1	NM 020510
secreted Lyo/Fladi domain containing 1	Shard119	X04220
shi di hucieoldi KNA, C/D box 116	Shoorg nc1	A04239
signal transducer and activator of transcription 1	Sheel 0-h21	NK_001384
signal transducer and activator of transcription 1	Stat1	NIM_009283
transporter 1, ATP-binding cassette, SUD-Tamily B	Tap1	
i-cen receptor gamma, variable 3	TCrg-V3	
thioesterase superfamily member 5	Them5	NIM_025416
tollold-like		NIM_009390
transmembrane channel-like gene family	Tmc5	NM_001105252
transmembrane protease, serine 11e	Tmprss11e	NM_172880
uridine phosphorylase 1	Upp1	NM_009477

^aSímbolo oficial del gen por HUGO Gene Nomenclature Committee (HGNC).

^bRefSeq mRNA sequences (NCBI Gene database)

Tabla 5. Genes regulados por 17 β -estradiol

Nombre del gen	Símbolo ^ª	Num de acceso ^b	FvB+E ₂
			FC
ABI gene family, member 3 (NESH) binding protein	Abi3bp	NM_001014423	-2,11796
amiloride binding protein 1	Abp1	NM_029638	5,86733
acyl-CoA synthetase long-chain family member 1	Acsl1	NM_007981	2,03152
acyl-CoA synthetase medium-chain family member 3	Acsm3	NM_016870	2,27557
actin, alpha 1, skeletal muscle	Acta1	NM_009606	-3,55125
adenosine deaminase	Ada	NM_007398	3,33736
adiponectin, C1Q and collagen domain containing	Adipoq	NM_009605	2,03892
anterior gradient 2 (Xenopus laevis)	Agr2	NM_011783	-5,51151
aldo-keto reductase family 1, member C14	Akr1c14	NM_134072	2,55888
alkaline phosphatase, liver/bone/kidney	Alpl	NM_007431	2,68532
apolipoprotein B editing complex 2	Apobec2	NM_009694	3,27213
acidic ribosomal phosphoprotein PO	Arbp	NM_007475	-2,36865
Rho, GDP dissociation inhibitor (GDI) beta	Arhgdib	NM_007486	2,1767
ADP-ribosylation factor-like 4D	Arl4d	NM_025404	-2,25011
aspartoacylase (aminoacylase) 2	Aspa	NM_023113	2,60528
ATPase, Na+/K+ transporting, alpha 2 polypeptide	Atp1a2	NM_178405	2,41583
beta-1,4-N-acetyl-galactosaminyl transferase 1	B4galnt1	NM_008080	2,00772
Bcl2-like 15	Bcl2l15	AF014453	3,73529
basic helix-loop-helix domain containing, class B3	Bhlhb3	NM_009763	2,48738
complement component 2 (within H-2S)	C2	NM_013484	2,29779
complement component 3	C3	NM_009778	2,02144
complement component 4B (Childo blood group)	C4b	NM_009780	2,94799
complement component 4 binding protein	C4bp	NM_007576	6,86716
calcium channel, voltage-dependent, alpha2/delta subunit	Cacna2d3	NM_009785	2,28977
calbindin-28K (Calb1), mRNA	Calb1	ENSMUST0000029876	8,75624
Ccl28 // chemokine (C-C motif) ligand 28	Ccl28	NM_020279	3,41242
chemokine (C-C motif) ligand 8	Ccl8	NM_021443	3,04745
chemokine (C-C motif) receptor 1	Ccr1	NM_009912	2,35693
CD163 antigen (Cd163), mRNA	Cd163	ENSMUST0000032234	2,15109
CD300 antigen like family member F	Cd300lf	ENSMUST0000051264	2,38154
cell division cycle 7 (S, cerevisiae)	Cdc7	NM_009863	-2,03204
complement factor B	Cfb	NM_008198	3,56889
complement component factor i	Cfi	NM_007686	3,96263
chromogranin A	Chga	NM_007693	2,28974
chitinase 3-like 1	Chi3l1	NM_007695	30,7564
claudin 8 (Cldn8), mRNA	Cldn8	ENSMUST00000049697	-2,40029
C-type lectin domain family 4, member a1	Clec4a1	NM_199311	2,07645
calsyntenin 2	Clstn2	NM_022319	2,37855
carboxymethylenebutenolidase-like (Pseudomonas)	Cmbl	ENSMUST00000070918	2,37781
collagen, type XIV, alpha 1	Col14a1	NM_181277	-2,35294
collagen, type III, alpha 1	Col3a1	NM_009930	-2,00001
collagen, type IV, alpha 5	Col4a5	NM_007736	-2,20153
ceruloplasmin	Ср	NM_007752	3,63573
carboxypeptidase E	Сре	NM_013494	2,06714
colony stimulating factor 1 receptor	Csf1r	NM_001037859	2,03859
connective tissue growth factor (Ctgf), mRNA	Ctgf	ENSMUST0000020171	2,18409
cytotoxic T lymphocyte-associated protein 2 alpha	Ctla2a	NM_007796	-3,7256
cathepsin S	Ctss	NM_021281	2,08145
chemokine (C-X-C motif) ligand 2	Cxcl2	NM_009140	5,18243
cytochrome P450, family 21, subfamily a, polypeptide 1	Cyp21a1	ENSMUST0000025223	3,59571
cytochrome P450, family 2, subfamily e, polypeptide 1	Cyp2e1	NM_021282	2,94253
cytochrome P450, family 2, subfamily f, polypeptide 2	Cyp2f2	NM_007817	-2,94654
cytochrome P450, family 4, subfamily a, polypeptide 12B	Cyp4a12b	NM_172306	-5,21215
DNA segment, Chr 6, Wayne State University 176	D6Wsu176e	NM_138587	2,24857
deleted in malignant brain tumors 1	Dmbt1	NM_007769	6,99865
desmuslin	Dmn	NM_201639	-2,37559
EGF-like-domain, multiple 6	Egfl6	NM_019397	2,3014
ectonucleotide pyrophosphatase/phosphodiesterase 2	Enpp2	NM_015744	2,3647

fatty acid synthase	Fasn	NM_007988	2,00662
FAT tumor suppressor homolog 3 (Drosophila)	Fat3	NM_001080814	-2,45717
filamin A interacting protein 1	Filip1	NM_001081243	-2,28161
flavin containing monooxygenase 2	Fmo2	AF184981	-2,62097
fibromodulin	Fmod	NM_021355	-2,18922
glutamic acid decarboxylase 2	Gad2	NM_008078	2,03033
Gdf3 // growth differentiation factor 3 (Gdf3), mRNA	Gdf3	ENSMUST0000032211	2,23446
glial cell line derived neurotrophic factor family receptor	Gfra1	NM_010279	2,36358
glycoprotein 49 A	Gp49a	NM_008147	2,76698
glycoprotein A33 (transmembrane)	Gpa33	NM_021610	2,11627
G protein-coupled receptor 44	Gpr44	NM_009962	2,85479
glutamate receptor, ionotropic, AMPA3 (alpha 3)	Gria3	ENSMUST0000076349	-2,8056
glutamate receptor, ionotropic, AMPA4 (alpha 4)	Gria4	NM_019691	-3,23915
GTPase, very large interferon inducible 1	Gvi1	NM_029000	3,18961
granzyme B	Gzmb	NM_013542	-2,63437
granzyme C	Gzmc	NM_010371	-2,03507
granzyme D	Gzmd	NM_010372	-2,83185
granzyme F	Gzmf	NM_010374	-2,48449
hyaluronan synthase 2 (Has2), mRNA	Has2	ENSMUST0000050544	-2,59018
hepatocyte growth factor activator	Hgfac	NM_019447	2,13943
3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2	Hmgcs2	NM_008256	-2,83295
haptoglobin	Нр	NM_017370	3,27973
Igfbp5 // insulin-like growth factor binding protein 5	Igfbp5	NM_010518	-2,50177
interferon gamma induced GTPase	lgtp	NM_018738	2,11775
interleukin 13 receptor, alpha 2 (ll13ra2), mRNA	ll13ra2	ENSMUST0000033646	-3,92482
interleukin 1 family, member 6	ll1f6	NM_019450	2,20193
interleukin 1 family, member 9	II1f9	NM_153511	2,83225
interferon regulatory factor 4	Irt4	NM_013674	2,1838
interferon regulatory factor 7	Irt7	NM_016850	2,13435
immunity-related GTPase family, M	Irgm	NM_008326	2,16576
immunoglobulin superfamily containing leucine-rich repeat	Isir	NM_012043	-2,45806
integrin, alpha 11	ltga11	NM_176922	2,04403
integrin alpha 8	Itga8	NM_001001309	2,06106
integrin alpha M	Itgam	NM_001082960	3,14688
JAZF zinc finger 1 (Jazt1), mRNA	Jaz†1	ENSMUST0000074541	-2,67859
kallikrein related-peptidase 13	Klk13	NM_001039042	2,11641
kallikrein related-peptidase 9	KIk9	NM_028660	2,3497
keratin 1	Krt1	NM_008473	3,03514
keratin 10 (Krt10), mRNA	Krt10	ENSMUST00000103131	2,88015
keratin 78	Krt/8	NM_212487	-2,42806
laminin, alpha 4	Lama4	NM_010681	-2,00494
laminin, beta 3	Lamb3	NM_008484	2,10519
laminin gamma 3	Lamc3	NM_011836	2,09804
limb-bud and heart	LDN	NM_029999	2,05128
lipocalin 13	LCN13	NM_153558	-5,99794
gag protein	LOC629446	BC057932	2,20365
	Lor	NM_008508	2,2/344
lipoprotein lipase	Lpi	NIVI_008509	2,15524
lactoperoxidase (Lpo), mRNA	Lpo	ENSIMUS100000103177	7,3068
leucine-rich alpha-2-glycoprotein 1	Lrgi	NM_029796	3,82269
leucine rich repeat containing 55	LFFC55	NM_001033346	2,47277
leucine rich repeat protein 1, neuronai		NM_008516	-3,01219
lactotransferrin	LUI	NM_008522	2,98757
mitogen activated protein kinase 13	Маркіз	NM_010330	2,16295
mast cell protease 4	Mcpt4	NM_010779	-3,92058
microfibrillar associated protein 5	wrap5	BC025131	-2,01515
mannosyi (alpha-1,3-)-giycoprotein beta-1,4-in-acetyigiucosaminyitransferase,			4,9889
isozyme c (putative)	ivigat4C	EINSIVIUS I UUUUUUUUUUUU39	2 02405
monocyte to macrophage differentiation-associated 2	ivima2	NIVI_1/521/	2,02195
	wimp11		2,14537
MAS related CPB member P2	ivimp/	NIVI_U1U81U	2,8074
	ivirgprb2	INIVI_1/5531	3,93082
IVIAS-related GPK, member B3	ivirgprb3	NIVI_20/53/	4,/8/88
macropnage scavenger receptor 2	ivisr2	NIVI_030707	2,00049

mucin 21	Muc21	AB242596	2,22158
mucin 5. subtype B. tracheobronchial	Muc5b	NM 028801	-44.9444
myosin light nolynentide 4	Myl4	NM 010858	2 51887
myosin XVIIIh	Myo18h	XM 912851	2 308
myocardin	Myocd	NM 145136	-2.14961
natural cytotoxicity triggering receptor 1	Ncr1	NM 010746	-2.09155
natural killer cell group 7 sequence (Nkg7), mRNA	Nkg7	ENSMUST0000070518	-2.09997
NADPH oxidase 1	Nox1	NM 172203	7 06008
NADPH oxidase organizer 1	Novo1	BC119528	2 41737
natriuretic nantide recentor 3	Nor3	NIM 008728	2 01011
netrin 1 /	Ntn1	NM 008744	2,01011
otopotrin 1	Oton1	NIM 172709	2,00000
otopetini i	Ovtr	NM 001081147	2,003
pontidul argining doiminaso, tung II (Padi2), mPNA	Dadi?	ENSMUST0000020765	2 21202
protocodhorin 17	Faulz Dedb17	NNA 001012752	2,21290
photocautienti 17	PCUIII/ Dck1	NM_001013733	2,99105
phosphodiostorase 8P	PCKI	NM_011044	2,47200
phosphoulesteldse ob	Pueon Dallim 2	NN1_172205	2,19957
PDZ dilu Lilvi uomani 3	Pullins Datura	NM_000403	-2,24405
peptidogiycan recognition protein 1	Pgiyipi	NM_009402	2,45087
peptidase initiation 15	PI15 Diam	NM_053191	-2,1068/
polymeric immunoglobulin receptor	Pigr	NM_011082	4,19016
Phospholamban	PIN	NM_023129	-2,36341
phospholipid scramblase 2	Piscr2	NM_008880	2,03226
proteoglycan 4	Prg4	NM_021400	2,07675
prostaglandin-endoperoxide synthase 2	Ptgs2	NM_011198	2,1335
pleiotrophin	Ptn	NM_008973	-4,54938
protein tyrosine phosphatase-like	Ptpla	NM_013935	-2,42346
ribonucleoprotein, PTB-binding 2	Raver2	NM_183024	-2,1527
RAS-like, estrogen-regulated, growth-inhibitor	Rerg	ENSMUST0000032347	2,10156
ret proto-oncogene	Ret	NM_001080780	2,20268
resistin	Retn	NM_022984	2,11998
regulator of G-protein signaling 2 (Rgs2), mRNA	Rgs2	ENSMUST0000027606	-2,80736
RNA imprinted and accumulated in nucleus	Rian	AF357355	-2,37567
scavenger receptor class A, member 5 (putative)	Scara5	NM_028903	-2,17166
stearoyl-Coenzyme A desaturase 1	Scd1	NM_009127	2,17359
serine (or cysteine) peptidase inhibitor, clade B	Serpinb11	NM_025867	-5,58515
secreted frizzled-related protein 2 (Sfrp2), mRNA	Sfrp2	ENSMUST0000029625	2,41886
surfactant associated protein D	Sftpd	NM_009160	2,32469
SH3-binding domain glutamic acid-rich protein	Sh3bgr	NM_015825	-2,17649
sialic acid binding Ig-like lectin 1, sialoadhesin	Siglec1	NM_011426	2,09265
sialic acid binding Ig-like lectin H	Siglech	BC098229	2,25118
solute carrier family 27 (fatty acid transporter), member 2	Slc27a2	NM_011978	3,23086
solute carrier family 34 (sodium phosphate), member 2	Slc34a2	NM_011402	2,83362
solute carrier family 38, member 5 /	Slc38a5	NM_172479	3,1468
solute carrier family 5 (sodium/glucose cotransporter), member 9	Slc5a9	ENSMUST00000102720	2,17569
schlafen 1	Slfn1	NM_011407	2,11855
schlafen 4	Slfn4	NM_011410	4,11254
SLIT and NTRK-like family, member 3	Slitrk3	NM_198864	-2,54584
SWI/SNF related, matrix associated, actin dependent regulator of chromatin,			2 05 70 4
subfamily a, member 1	Smarca1	ENSMUST0000077569	-2,05784
sphingomyelin phosphodiesterase 3, neutral	Smpd3	NM_021491	2,43182
small nucleolar RNA, C/D box 82	Snord82	NR_002851	-2,03478
SAM pointed domain containing ets transcription factor	Spdef	ENSMUST0000025054	-2,43775
sparc/osteonectin, cwcv and kazal-like domains proteoglycan 2	Spock2	NM 052994	-3,88611
small proline-rich protein 2B	Sprr2b	NM_011469	6,3162
small proline-rich protein 2G	Sprr2g	NR 003548	-2.41033
small proline-rich protein 3	Sprr3	NM 011478	11.6543
stanniocalcin 2	Stc2	NM 011491	2.34364
Synpo2	Synpo2	AJ306625	-2.30154
thromboxane A synthase 1, platelet	Tbxas1	NM 011539	2.1781
transcription factor 23	Tcf23	NM 053085	-2.48589
T-cell receptor gamma, variable 2	Tcrg-V2	Z48589	2,55683
testis expressed gene 2	Tex2	NM 198292	2,29059
trefoil factor 1	Tff1	NM 009362	-8,06134
	· · · =	···	-,

thrombospondin 1	Thbs1	NM_011580	3,39504
thrombospondin 4 (Thbs4), mRNA	Thbs4	ENSMUST0000022213	2,41678
transmembrane protein 158	Tmem158	NM_001002267	2,09338
transmembrane protein 176A	Tmem176a	NM_025326	2,34907
transmembrane protein 56	Tmem56	NM_178936	2,17936
Tmem97	Tmem97	ENSMUST00000103242	-2,02056
transmembrane, prostate androgen induced RNA	Tmepai	NM_022995	2,06644
tumor necrosis factor, alpha-induced protein 3	Tnip3	ENSMUST0000019997	6,5986
topoisomerase (DNA) II alpha	Top2a	NM_011623	-2,06235
triggering receptor expressed on myeloid cells 2	Trem2	NM_031254	2,02948
tetraspanin 2	Tspan2	NM_027533	-2,02865
V-set and immunoglobulin domain containing 4	Vsig4	NM_177789	2,06775
zinc finger and BTB domain containing 8	Zbtb8	NM_153541	2,99224
zinc finger CCCH type containing 12A	Zc3h12a	NM_153159	2,26563

^aSímbolo oficial del gen por HUGO Gene Nomenclature Committee (HGNC). ^bRefSeq mRNA sequences (NCBI Gene database)

Tabla 6. Genes regulados por la oncoproteína E7 del VPH16

Nombre del gen	Símbolo ^ª	Num de acceso ^b	E7 VPH16 FC
alanine-glyoxylate aminotransferase 2-like 1	Agxt2l1	NM_027907	3,88591
arachidonate lipoxygenase, epidermal	Alox12e	NM_145684	5,07753
angiopoietin-like 7	Angptl7	NM_001039554	-2,47923
aquaporin 7	Aqp7	NM_007473	-2,37584
chemokine (C-C motif) ligand 7	Ccl7	NM_013654	-2,26918
chemokine (C-C motif) ligand 8	Ccl8	NM_021443	-2,25457
CD209d antigen	Cd209d	NM_130904	-2,2896
CD36 antigen	Cd36	NM_001159557	-2,02266
cell death-inducing DNA fragmentation factor, alpha subunit	Cidea	NM_007702	-2,45633
coagulation factor C homolog (Limulus polyphemus)	Coch	NM_007728	-2,9258
EF hand domain family, member B	Efhb	NM_172497	2,28828
EGF-like-domain, multiple 6	Egfl6	NM_019397	2,02547
fatty acid binding protein 4, adipocyte	Fabp4	NM_024406	-2,02279
homeo box D13	Hoxd13	NM_008275	-2,05421
interferon-induced protein 44	lfi44	NM_133871	2,11039
Immunoglobulin heavy chain (gamma polypeptide)	Ighg	AB097847	4,61762
immunoglobulin heavy chain variable region	Ighvq52.3.8	ENSMUST00000103443	2,24872
immunoglobulin joining chain	lgj	NM_152839	2,11695
immunoglobulin kappa chain variable 1 (V1)	lgk-V1	Z95477	2,74917
similar to immunoglobulin kappa chain	LOC100046350	ENSMUST00000103314	2,14964
similar to [Human Ig rearranged gamma chain	LOC100046973	ENSMUST00000103366	2,19028
mucin 13, epithelial transmembrane	Muc13	NM_010739	-2,65191
neuronatin	Nnat	NM_010923	-2,0205
2'-5' oligoadenylate synthetase-like 2	Oasl2	NM_011854	2,08348
phosphoenolpyruvate carboxykinase 1, cytosolic	Pck1	NM_011044	-2,52407
prokineticin receptor 2	Prokr2	NM_144944	-2,01096
solute carrier family 23 (nucleobase transporters), memb	Slc23a1	NM_011397	2,04965
SPHK1 interactor, AKAP domain containing	Sphkap	NM_172430	2,34228
secreted phosphoprotein 1	Spp1	NM_009263	-2,55783
small proline-rich protein 2B	Sprr2b	NM_011469	-2,58009

^aSímbolo oficial del gen por HUGO Gene Nomenclature Committee (HGNC).

^bRefSeq mRNA sequences (NCBI Gene database)

Tabla 7. Genes comunes que son expresados en cervix de ratones K14E7+E₂ y en tejido cervical humano microdisectado

Nombre del gen	Símbolo ^ª	Num de acceso ^b
arachidonate lipoxygenase, epidermal	Alox12e	NM_145684
a disintegrin and metallopeptidase domain 8	Adam8	NM_007403
a disintegrin-like and metallopeptidase (reprolysin type)	Adamts5	NM_011782
bone marrow stromal cell antigen 1	Bst1	NM_009763
cerebellin 1 precursor protein	Cbln1	NM_019626

chemokine (C-C motif) ligand 17	Ccl17	NM_011332
chemokine (C-C motif) ligand 5	Ccl5	NM 013653
cyclin E1	Ccne1	NM 007633
CD14 antigen	Cd14	NM_009841
CD3 antigen, epsilon polypeptide	Cd3e	NM_007648
CD3 antigen, gamma polypeptide	Cd3g	NM_009850
CD72 antigen	Cd72	NM 001110320
CD74 antigen (invariant polypeptide of MHC class II antigen-associated)	Cd74	NM 001042605
cvclin-dependent kinase-like 1 (CDC2-related kinase)	Cdkl1	NM 183294
cartilage intermediate laver protein, nucleotide pyrophosph	Ciln	NM 173385
cytidine mononhospho-N-acetylneuraminic acid hydroxylase	Cmah	NM_001111110
cytochrome c oxidase, subunit VIIa 1	Cox7a1	NM 009944
carboxypentidase A3 mast cell	C023	NM 007753
carboxypeptidase A3, mast cen	Cpa3	NM 027926
chamaking (C.X.C. matif) ligand 10	Cycl10	NIM_021274
chemokine (C-X-C motif) ligand 10	Cycl11	NIM_021274
chemoking (C-X-C motif) ligand 12	Cycl12	NM 019966
chemoking (C-X-C motif) ligand 13	Cycl2	NIM_010800
chemoking (C-X-C motif) ligand 5	CyclE	NM 000141
chemoking (C-X-C motif) ligand 0	CxclO	NM_009141
defension beto 1	Dofb1	NIVI_006599
	Delb1	NIVI_007843
detensiti bela 4	Del04	NIVI_019728
deoxyribonuclease 1-like 2	Dhase112	NIVI_025718
desmocollin 1	DSCI	NIVI_013504
dual specificity phosphatase 5	Dusp5	NM_001085390
tucosyltransferase 9	Fut9	NM_010243
guanylate binding protein 1	Gbp1	NM_010259
guanylate binding protein 2	Gbp2	NM_010260
giycoprotein mba	Gртба	NM_153581
gremin 2 nomolog, cysteine knot superfamily	Grem2	NM_011825
interferon induced transmembrane protein 1	lfitm1	NM_026820
interleukin 2 receptor, alpha chain	ll2ra	NM_008367
inhibin beta-A	Inhba	NM_008380
interferon regulatory factor 1	Irt	NM_008390
potassium inwardly-rectifying channel, subfamily J, member 15	Kcnj15	NM_019664
potassium inwardly-rectifying channel, subfamily J, member 16	Kcnj16	NM_010604
kallikrein related-peptidase 7 (chymotryptic, stratum corneum)	KIK7	NM_011872
keratin 23	Krt23	NM_033373
keratin 9	Krt9	NM_201255
lecithin-retinol acyltransferase (phosphatidylcholine-retinol-O-acyltransferase)	Lrat	NM_023624
lymphocyte antigen 6 complex, locus G6C	Ly6g6c	NM_023463
matrix metallopeptidase 12	Mmp12	NM_008605
matrix metallopeptidase 8	Mmp8	NM_008611
nephroblastoma overexpressed gene	Nov	NM_010930
olfactomedin 4	Olfm4	NM_001030294
phospholipase A2, group V	Pla2g5	NM_001122954
plasminogen activator, urokinase receptor	Plaur	NM_011113
protease, serine 27	Prss22	NM_133731
RAR-related orphan receptor beta	Rorb	NM_001043354
ribosomal protein L26	Rpl26	NM_009080
S100 calcium binding protein A2	S100a2	XM_001478157
S100 calcium binding protein A8 (calgranulin A)	S100a8	NM_013650
solute carrier family 15, member 3	Slc15a3	NM_023044
solute carrier family 24 (sodium/potassium/calcium exchanger) member 3	Slc24a3	NM_053195
solute carrier family 26, member 4	Slc26a4	NM_011867
solute carrier family 6 (neurotransmitter transporter)	Slc6a14	NM_020049
secreted Ly6/Plaur domain containing 1	Slurp1	NM_020519
tumor necrosis factor	Tnf	NM_013693
tumor necrosis factor, alpha-induced protein 3	Tnfaip3	NM_009397
uridine phosphorylase 1	Upp1	NM_009477

^aSímbolo oficial del gen por HUGO Gene Nomenclature Committee (HGNC). ^bRefSeq mRNA sequences (NCBI Gene database)