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Abstract

Nosotros consideremos el problema clésico de Lane-Emden-Fowler

(0ro) —Av=|vP"%v in O,

.0 v=2>0 on 00,

para ambas, linealidad criticas (p = 2*) y supercriticas (p > 2*), en un dominio
acotado suave © en RY, N > 3. Aqui, como es usual, 2* := % es el exponente

critico de Sobolev. En algunos casos particulares uno puede reducir el problema
supercritico a un problema anisotrépico critico de la forma

(0" ) —div(ay (2)Vu) + ag(x)u = az(z)|u[* u in Q,
Yay,a2,a3.9 u=0 on 02

en donde Q es un dominio acotado suave en R, n > 3y a; € C°(Q) es estrictamente
positiva para cada ¢ = 1,2,3. En esta tesis presentamos resultados acerca de la
existencia, no existencia y multiplicidad de soluciones para estos problemas



vi

CONTENTS




Chapter

Introduction

We consider the classical Lane-Emden-Fowler problem

(o) —Av = |[v|P"%v in O,

.0 v=20 on 00,

both for critical (p = 2*) and supercritical (p > 2*) nonlinearities, in a bounded
smooth domain © in RY, N > 3. Here, as usual, 2* := -2 is the critical Sobolev

N—2
exponent.

In some particular cases one can reduce the supercritical problem to a anisotropic
critical problem of the form

(o ) —div(ay (z)Vu) + ag(x)u = az(z)|u[* u in Q,
Yay,a2,a3.9 u=0 on 02

where © is a bounded smooth domain in R", n > 3, and a; € C°(Q) is strictly positive
fori=1,2,3.

In this thesis we present results about the existence, non-existence and multiplicity
of solutions for these problems. Part of these results were obtained in colaboration
with Monica Clapp and Angela Pistoia and are contained in the papers [13, 14, 15].
Other results are new.

1.1 A brief historical background

Equation (g, e) models many physical phenomena. For p = 2* it arises in fundamental
questions in differential geometry like the Yamabe problem or the scalar curvature
problem.

Problem (p,eo) has been widely studied in the last 50 years. The process for
understanding it has helped to develop new and interesting techniques which can be
applied to a wide variety of problems.



2 Introduction

In the subcritical case (p < 2*), the compactness of the Sobolev embedding
Hy(©) — LP(O) (1.1)

guarantees that problem (p,e) has one positive solution and infinitely many sign
changing solutions in every smooth bounded domain ©.

For p > 2*, the embedding (1.1) is no longer compact, so existence of solutions for
problem (p, ) becomes a delicate issue. In this situation still very little is known con-
cerning the existence and nonexistence of solutions, particularly for the supercritical
case.

It is well known that in this case the existence of a solution for problem (p,0)
depends on the domain. The first result is due to Pohozaev [40], he showed that if
the domain O satisfies a particular geometric condition then problem (p,e) has no
nontrivial solution. More precisely

Theorem 1.1 (Pohozhaev, 1965). If © is strictly starshaped, then problem (p,e)
does not have a nontrivial solution for every p > 2*.

On the other hand, Kazdan and Warner [25] showed that

Theorem 1.2 ( Kazdan-Warner, 1975). If © = A, is an annulus, i.e.
O=A={rcRY:0<a<|z|<b}

then, problem (pp a,,) has infinitely many radial solutions for every p > 2.

1.1.1 The critical problem

When p = 2%, the problem (po+ @) is invariant under the group of Mobius transfor-
mations, see [17]. This produces a lack of compactness of the associated variational
functional, which prevents the straightforward application of the usual variational
methods. For this reason, (po2+ o) is a quite interesting and challenging problem.

The first nontrivial existence result for the problem (o« ) is due to Coron [11].
He showed that problem (o« g) has a positive solution in every domain with a small
enough hole. More precisely

Theorem 1.3 (Coron, 1984). If 0 ¢ © and © D A, with a/b large enough then,
problem (pa+ o) has at least one positive solution.

A few years later a remarkable result was obtained by Bahri and Coron [3]. They
showed that problem (- ¢) has a positive solution in every domain © with nontrivial
topology. More accurately, they showed that

Theorem 1.4 (Bahri-Coron, 1988). If fl*(@,Z/2) # 0, then problem (p2« o) has a
positive solution.
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Theorem 1.4 shows that the existence of solutions for problem (9 ¢) depends also
on the topology of the domain and not just on its geometry.

However, the condition H.(©,7Z/2) # 0 is not necessary for the existence of a
nontrivial solution. Examples of contractible domains for which problem (9 o) has
at least one nontrivial solution have been given, see for instance [22, 23, 36, 38|.

Regarding the multiplicity of solutions for problem (- ), many results have been
established in specific symmetric domains, for example [36, 29, 18].

In particular, Clapp [12]| provided a generalization for the nonautonomous problem
(97 .0.5.0) Of the result given by Kazdan-Warner (Theorem 1.2). For every positive
continuous function as she shows that

Theorem 1.5 (Clapp, 2003). If Q and as are invariant under a group G of linear
isometries of R™ and the cardinality of all the G-orbits is infinite then, problem

(! ) —Au = az(x)|ul* 2u in Q,
1,0,a3,0 u="0 on O0N).

has infinitely many G-invariant solutions.

For nonsymmetric domains, multiplicity results have been established for problem
(p2+.0) in domains with a thin enough perforation, see for example [16, 18, 32, 42].
In particular, for this type of domains, there is a remarkable result due to Ge, Musso
and Pistoia [24], were they prove that

Theorem 1.6 (Ge-Musso-Pistoia, 2010). Let © C RY be a smooth bounded domain,
£ €0 and
O := O\ B(&)

then, the number of solutions for problem (pa+o.) goes to infinity as e goes to zero.

But for domains which are neither highly symmetric nor small perturbations of a
given domain multiplicity remains largely open. For these domains, Clapp and Pacella
[17] gave the first result about the existence of multiple sign changing solutions for
problem (ps+g). Using the main result of [17], they showed that there exist many
examples of domains 2 having only finite symmetries in which problem (s« ) has a
prescribed number of solutions, one of them being positive and the rest change sign.

This result supports our belief that multiplicity of solutions for problem (g o)
should hold in noncontractible domains. But the proof of such a general statement is
still way out of reach.

1.1.2 The supercritical problem

In the supercritical problem (p, o), p > 2%, the lack of a Sobolev embedding implies
that the standard variational formulation used in the subecritical and critical cases
cannot be used.



Unlike in the critical case, in the supercritical case p > 2* the condition fh(& 7]2) #
0 does not guarantee the existence of a solution for problem (g, ¢). This was pointed
out by Passaseo in [37, 39|, were he showed that for every integer 1 < k < N —3
there exists a smooth bounded domain O, C RY such that

e O, has the homotopy type of the sphere S¥,

e problem (p,e,) does not have a nontrivial solution for p > 2%, = %Jj—lz_]‘g,
e problem () e,) has infinitely many solutions for p < 23,.
Note that the number 23, = % is the Sobolev critical exponent in dimension

(N — k).

In addition, Passaseo’s domains Oy also satisfy that they are invariant under de
group G = O(k+1) C O(N) and the cardinalities of all the G-orbits in © are equal
to infinity. This shows that there is not an analogous theorem to Theorem 1.5 for the
supercritical case.

The first nontrivial existence result for problem (p, o), p > 2* was obtained by del
Pino, Felmer and Musso [20], in the slightly supercritical case, i.e. for p > 2* but
close enough to 2*.

Many existence results have been established for problem (p,e) in the slightly
subcritical, i.e. when p = 2}, — €, € is positive and small enough, see for instance
[1, 4, 5, 32].

There are only a few results about the existence and multiplicity of solutions for
problem (g, ) when p is the pure supercritical exponent, i.e. when p = 2}, for an
integer 1 < k < N — 3, see for example [26, 46].

In particular, Wei and Yan [46] exhibited domains © in which problem (p,¢) has
infinitely many positive solutions. They considered domains © of the form

0 = {(y,2) € RFI x RN=F1: (Jy|, 2) € Q}, (1.2)

where  is a bounded smooth domain in RN=* with Q C (0,00) x RN=#~! which
satisfies certain geometric assumptions.

The proof of results |1, 26, 33, 46] uses a procedure which consists on reducing the
supercritical problem (g, ¢) to some nonautonomous problem in a domain € of lower
dimension but with the same exponent p.

We shall also follow this approach to obtain results about the existence and mul-
tiplicity of a new type of solutions for the problem (p, o) in the pure supercritical
exponent.

1.2 Main results of the thesis: The nonautonomous
critical problem

In this subsection we state our results for the anisotropic critical problem:
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(¢" ) —div(ay () Vu) + ag(x)u = az(z)|u[* 2u in Q,
Yay,a2,a3,0 u=20 on 0f).

where €2 is a smooth bounded domain in R", n > 3, 2* = % is the Sobolev critical

exponent and a; : Q — R is a continuous function for i = 1, 2,3 which satisfies that

e mina;(z) >0 fori=1,3 and
z€Q

e minay(z) > —\; (), where \(2) is the first eigenvalue of —A in HJ ().

xeﬁ

1.2.1 Multiplicity of solutions in symmetric domains

We shall prove a multiplicity result for problem (g7, ,, .. o) Which extends the main
results in [13, 14, 17]. In order to give the precise statement of this result we need to
introduce some notation:

Let O(n) be the group of linear isometries of R™. If G is a closed subgroup on O(n),
we will denote by

Gr:={gx: g€ G}

the G-orbit of z and by #Gu its cardinality. A domain £ C R" is called G-invariant
if Gz C Qfor all z € 2 and a function u : 2 — R is called G-invariant if v is constant
on every orbit Gx with x € ). Let S be the best Sobolev constant for the embedding

DY (R™) — L* (R™).

Now, fix a closed subgroup I" of O(n) and a nonempty I'-invariant smooth bounded
domain D C R™ such that #I'x = oo for all x € D. Also suppose that a; is an
[-invariant continuous function for ¢ = 1,2,3. We shall prove the following result

Theorem 1.7. There exists an increasing sequence ({,) of positive real numbers,
depending only on T, D, aq,as and as, with the following property: If Q is a smooth
bounded domain that contains D and if it is invariant under the action of a closed

subgroup G of I for which

zeQ (7,3(1') 2

holds, then problem (¢, ., .. o) has at least m pairs of G-invariant solutions £uy, . .., £,
such that uy is positive, us, ..., u,, change sign, and

/ |Vug|? < 0,55 for every k=1,...,m.
0
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The proof of this result uses variational methods. The main ingredient is a com-
pactness result (Theorem A.1) given in Appendix A, which is an extension of the main
result in [12|, which in turn is a symmetric version of Struwe’s result in [44]. The
positive solution is obtained using the classical mountain pass theorem of Ambrosetti
and Rabinowitz [2]. Applying a symmetric mountain pass theorem given in [17] we
show the existence of multiple solutions which change sign.

Theorem 1.7 is interesting even for the autonomous problem

( ) —Au=|ul*u in O,
f2-.0 u=>0 on 00,

As we mentioned previously, Bahri and Coron [3] showed that it has at least one posi-
tive solution if © has nontrivial reduced homology with Z/2-coefficients, see Theorem
1.4. On the other hand, for domains which are neither highly symmetric nor small
perturbations of a given domain, multiplicity remains largely open.

Theorem 1.7 extends our results in |13, 14|. The special case for problem (p2- o)
where I' = O(n) and D = A,; was established in [17]. This situation is, how-
ever, quite restrictive, particularly in odd dimensions. For example, if N = 3, then
mingea, , #Gr < 2 for every subgroup G # SO(3),0(3). In fact, mingca, , #Gx is
either 1 or 2 for most subgroups of O(3), c¢f. [10]. As we shall see, the number ¢,
goes to infinity as b/a — 1. Therefore, the main result in [17] will provide solutions
in subdomains of R? only if b/a is sufficiently large, which is the case already handled
by Coron [11] and by Ge, Musso and Pistoia [24].

Theorem 1.7, on the other hand, provides examples in every dimension of domains
), having only finite symmetries, in which problem (g7 . .. o) has a prescribed num-
ber of solutions. Specific examples will be given in Chapter 3.

1.2.2 Existence of solutions in punctured domains

We also study a nonautonomous critical problem in punctured domains.
Fix a closed subgroup I' on O(n) and €2 a smooth bounded I'-invariant domain in
R™. We denote by
A={recQ:gr=2 YgeT}

the set of I'-fixed points in 2. Assume &, € QU and write
Qe={zeQ:|z—¢&| >c¢€}

Note that, since & € QF, Q. is also I'-invariant.
Consider the problem

n+2

—Au = Q(x)ur2 in Q,
(90.0.) uw>0 in Q.
u=>0 on 0€),,
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where n > 3 and @ is a I'-invariant continuous function which satisfies min_.q Q(x) >
0.
In Chapter 2 we prove the following result

Theorem 1.8. Assume that VQ(&) # 0. Then there exists ¢ > 0 such that, for
each € € (0,¢€), problem (95 o.) has a T'-invariant solution u. which concentrates and
blows up at the point & as € — 0.

Notice that if I' = 1 then, Theorem 1.8 shows the existence of one positive solution
for the problem (p*QQ) in every smooth bounded, not necessarily symmetric,
punctured domain. If @ = 1, this is Coron’s result (Theorem 1.3).

The proof of Theorem 1.8 uses the well-known Lyapunov-Schmidt reduction proce-
dure. With the help of some estimates given in [24] we perform the finite dimensional
reduction. Then, we compute the asymptotic expansion of the reduced energy func-
tional and we show that it has a critical point which is stable under C'-perturbations.

We believe that existence and also multiplicity can be shown for the more general
problem (p} .. o) in a punctured domain, see Section 1.4.

1.3 Main results of the thesis: The supercritical prob-
lem

In this section we state our results for the supercritical problem

(0ro) —Av=|vP"%v in O,
o v=20 on 00,

where © is a smooth bounded domain RY, N > 3 and p > 2*. Here, as before,

2% = % is the critical Sobolev exponent.

1.3.1 Multiplicity results in domains induced by Hopf maps.

To prove our multiplicity results for problem (g, o) we use a reduction procedure,
introduced by Ruf and Srikanth in [43]. The results in this subsection will be derived
from Theorem 1.7 using the Hopf maps, which we define next.

We are interested in the particular cases when N = 2,4, 8 or 16. In this situation we
can write RV = K x K where K is either the real numbers R, the complex numbers C,
the quaternions H or the Cayley numbers Q. The set of units S := {( € K: |(| = 1}
acts on RY by multiplication on each coordinate, i.e. ((21,29) := (€21, (29).

The Hopf map

fig : K x K R¥EH =R x K

is given by
(21, 22) = (|21 — |22]%, 22122).

We shall prove the following results.
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Theorem 1.9. Let G be a closed subgroup of O(dimK + 1), Q be a G-invariant
bounded smooth domain in R¥™E+1 gl of whose G-invariant orbils are infinite. Set
© = h'(Q). Then, for ¢ = 2y qmx_1, the supercritical problem (pqe) has infinitely
many solutions in © which are constant on hy'(Gx) for each x € ).

Note that, since 0 ¢ Q, © := fiz'(2) is homeomorphic to € x Sk.

Next we consider the case where © = 7iz'(Q2) and € has finite orbits. We fix a
closed subgroup I' of O(dimK + 1) and a nonempty I'-invariant bounded smooth
domain D in RY™E+L guch that #1'z = oo for all # € D. We obtain following result.

Theorem 1.10. There exists an increasing sequence ({y,) of positive real numbers,
depending only on I' and D, with the following property: If Q) is a smooth bounded
domain that contains D and if it is invariant under the action of a closed subgroup

G of I for which
dimK—-1

min (#Gx) [2z| 2 >4,
xef)

holds, then, for q = 23 ginx_1, problem (pge) has at least m pairs of solutions
+v1,...,F0, in O = hg'(Q), which are constant on fig'(Gx) for each v € Q. In
particular, they are Sk-invariant. Moreover, vy s positive and vq, ..., v, change
Sign.

Theorems 1.9 and 1.10 provides many examples of domains in which some super-
critical problems has a prescribed number of solutions. We shall give some of them
in Chapter 3.

1.3.2 Multiplicity results in domains of revolution.

Fix k1,...,k, € Nandset k := ki +---+k,,. Let N > k+m+2 and 2 be a smooth
bounded domain in RY~* such that

Qc{(z1,...,xm ) ER" xRN F™ 2, >0,i=1,...,m}. (1.3)
Define
O:={(y', ..., y™ 2) € R\ o x RFHLCRNTF=m (g g™, 2) € Q). (1.4)

In the following we consider O(N — k — m) as the subgroup of O(N — k) which
acts on the second factor of R™ x RV=*=m = RV=* In Chapter 3 we shall prove the
following results

Theorem 1.11. Let G be a closed subgroup of O(N — k —m), Q be a G-invariant
bounded smooth domain as above, all of whose G-orbits are infinite. Then, for ¢ =
2N n_k» the supercritical problem (pq0) has infinitely many O(k1 +1) X -+ X O(ky +
1) x G-invariant solutions in the domain © defined as above.
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For example, if Q is a solid of revolution around the z;-axis in R? whose closure is
contained in (0, 00) x (R*\{0}) then, for any k, problem (925, ,.0) has infinitely many
O(k + 1) x O(2)-invariant solutions in © := {(y,2) € R¥1 x R?: (|y|,2) € Q}.

Next we consider another type of domains ©. We fix a closed subgroup I' of
O(N — k —m) and a I'-invariant domain D such that

DcC{(zy,...,0pma) R xRV F™ 0, >0,i=1,...,m}.

whose I'-orbits are infinite. Consider the function a : R™ x R¥=%*=™ _ R defined by

a((z1, ..., Tm, 7)) = a:lfl oo -:rfnm

We prove the following result

Theorem 1.12. There exists an increasing sequence ({y,) of positive real numbers,
depending only on I', D and a, with the following property: If 1 is a smooth bounded
domain invariant under the action of a closed subgroup G of I' such that

DCQC{(zr,...,2ma) ER™" xRV F™™ 0. >0i=1,...,m}

for which

min (a(z)#Gz) >

€l
holds, then, for ¢ = 2y x_y, problem (pqe) has at least m pairs of O(ky +1) x -+ X
O(km + 1) x G-invariant solutions vy, ..., v, in © (defined as in 1./). Moreover,
vy 18 positive and vy, . .., v, change sign.

1.3.3 Positive solutions which concentrate along a thin spher-
ical hole

We also establish the existence of a positive solution v, for problem (p,e.) in some
domains O, obtained by deleting a e-neighborhood of some sphere embedded in ©
and certain supercritical exponents p. These solutions v, concentrate and blow up
along the sphere as e — 0.

In this section we will state and describe these results. They follow from Theorem
1.8 and the reduction via Hopf maps described in Chapter 3.

Let N = 4,8,16 and let us consider ©, an Sk-invariant bounded smooth domain in
RY= K? such that 0 ¢ ©. Fix a point 2y € © and for each ¢ > 0 small enough let

O, := {z € © : dist(z,Skz) > €}

where Skzo := {0z : ¥ € Sk}. This is again an Sk-invariant bounded smooth domain
in K2. We consider the supercritical problem

dim K43 .
—A’U = pdimK-1 1mn 667
1 .
(pc) v >0 in O,
v=20 on 00..

We prove the following result.



Theorem 1.13. There exists ¢ > 0 such that, for each € € (0,€), the supercritical
problem (p!) has an Sg-invariant solution v, which concentrates and blows up along
the sphere Sxzg as € — 0.

Let ® be an [O(m) x O(m)]-invariant bounded smooth domain in R*™ such that
0 ¢ ® and (yo,0) € ®. We write S ' := {(y,0) : |y| = |yo|} for the [O(m) x O(m)]-
orbit of (yo,0), and for each € > 0 small enough we set

®, = {z € & : dist(x, SJ" ') > €}

This is again an [O(m) x O(m)]-invariant bounded smooth domain in R?*". We con-
sider the supercritical problem

“Av=umsl in o,
(97) v>0 in @,
v=20 on 09,.
We prove the following

Theorem 1.14. There exists ¢y > 0 such that, for each € € (0,¢€y), problem (p.) has
an [O(m) x O(m)]-invariant solution v, which concentrates and blows up along the
(m — 1)-dimensional sphere S§"™' as e — 0.

1.3.4 Nonexistence

As we already mentioned the domains ©j in Passaseo’s examples [37, 39| have the
homotopy type of S¥. This shows that the condition H,(©,Z/2) # 0 is not enough
to guarantee a solution for the problem (p,e) when p > 2*. But, one may think
that perhaps if H,(©,Z/2) is richer, then (pp.o) will have a nontrivial solution when
p > 2*. The next result shows that this is not true in general.

Theorem 1.15. Given k = ki + -+ k,,, withk; € Nand k < N —3, and e > 0
there exists a bounded smooth domain © in RN such that

e O has the homotopy type of SF* x - . x Skm,
e the problem (p, o) does not have a nontrivial solution for p > 2vete

e the problem (ppe) has infinitely many solutions for p € (2,2} ).

In particular, if we take all k; = 1, the domain © in Theorem 1.15 is homotopy
equivalent to the product of k circles. In this case, © satisfies not only that the
homology is nontrivial but that there are k different cohomology classes in H'(©;Z)
whose cup-product is the generator of H*(0;Z). Hence, the cup-length of © equals
k+1.

In Chapter 4 we will give the proof of Theorem 1.15 as well as a nonexistence result
which gives more examples of domains © in which problem (p,e) does not have a
nontrivial solution.
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1.4 Open problems

In this subsection we indicate some of the open problems which are motivated by this
work and which we plan to continue investigating

1. A different kind of reduction that leads to domains in which problem (p,e)
has solutions for supercritical p has been recently considered in [1, 27]. This
reduction is performed by considering domains © obtained by rotation; namely,
O = {(y,2) € RFFL x RN=k=L . (|y|, 2) € Q} where Q is a domain contained in
the half-space (0,00) x RN =k=1 1 < k < N — 3. Then, solutions to the problem

( ) —div(a(r)Vu) = a(z)[ulP"?u in Q,

Bpa0 u=0 on 02,

with a(xy,...,xn_1) = 2, give rise to solutions of problem (p, o) for the same
exponent p.

Let ¢ = %]j,;k; be the critical exponent in the dimension of . In [27] Kim

and Pistoia used the Lyapunov-Schmidt reduction procedure to show that in a
punctured domain Q. = {z € Q : dist(z,&) > €}, & € Q, € > 0, the critical
problem (p,.0.) has multiple sign-changing solutions, whose shape resembles
a tower of bubbles with alternating sign centered at the point &,, and that the
number of such solutions becomes arbitrary large as ¢ — 0. These solutions
give rise to sign changing solutions to the supercritical problem (p,e) which
are towers of layers concentrating at a k-dimensional sphere in © as € — 0.

If one wishes to combine this kind of reduction with the one given by the Hopf
fibrations in order to produce solutions to supercritical problems in new types
of domains, one is lead to consider a more general problem of the form

(o ) —div(a;(2)Vu) = az(z)|u* 2u in Q,
¥a1,0,a3,0 w=0 on 0f,

where €2 is a smooth bounded domain in R", 2* = %

exponent in dimension n, and a and b are positive functions on ).

is the critical Sobolev

I believe that, with some modifications, the argument used by Kim and Pistoia
in [27] can be adapted to produce towers of bubbles for problem (o} g, q) in
a punctured domain (), for € small. This would allow us to extend Theorems
1.8, 1.13 and 1.14, as well as the results in [27], and to produce new solutions
to supercritical problems. I am currently investigating this question.

2. Apart from the fact that it provides solutions for supercritical problems, problem
(¢ p.o) has an interest of its own. Many well-known results for the autonomous
equation a = b = 1, obtained by variational methods, cannot be extended to the
nonautonomous problems in a straightforward manner. The lack of compactness
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is stronger in the nonautonomous case because, in general, there are no energy
gaps where the Palais-Smale condition holds. Establishing existence for this
problem is a challenging question which I wish to continue investigating.

. I would also like to apply the techniques I have used in my Ph.D. research to

other related problems, for example to equations involving the fractional Lapla-
cian. In [8] Capella used the technique for sign-changing solutions developed
in [17] to obtain a multiplicity result for the pure critical exponent problem
involving the half Laplacian in an annular-shaped domain. I believe that the
techniques used in [13, 14| can be adapted to obtain solutions in more general
domains, and for supercritical nonlinearities.

. In 9] Choi, Kim and Lee established existence of multiple bubbling solutions

of nonlinear elliptic equations involving the fractional Laplacians and critical
exponents. I would like to investigate whether their results can be extended to
a nonautonomous problem and to supercritical nonlinearities.



Chapter 2

The nonautonomous critical problem

In this chapter we consider the anisotropic critical problem

(o" ) —div(ay (x)Vu) + az(z)u = az(z)|ul* 2u in Q,
Ka1,a2,a3,0 u=0 on 052,

where
e () is a smooth bounded domain in R,
e a;: Q) — R is a continuous function for i = 1,2, 3 and satisfies that

e mina;(z) >0 fori=1,3 and
TS

e minas(x) > —A(2), where A\ () is the first eigenvalue of the —A in
el
Hg ().

As we mentioned in the introduction, the solutions to problem (o} . .. o) will
provide solutions for some supercritical problems, but apart from this property, this
problem has an interest of its own.

The aim of this chapter is to prove Theorems 1.7 and 1.8 stated in the introduction.

2.1 Multiplicity in symmetric domains

As before, let O(n) be the group of linear isometries of R™. For every G closed
subgroup of O(n) we will denote by

Gr:={gx:9€ G}

the G-orbit of x and by #Gz its cardinality. A domain 2 C R" is called G invariant
if

Gz Cc Q for all z € Q.
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A function u : 2 — R is called G-invariant if u is constant on every orbit Gz.

Now, fix a closed subgroup I" on O(n) and a nonempty I-invariant smooth domain
D C R"™ such that #I'zr = oo for all x € D. Also suppose that a; is I'-invariant for
1 =1,2,3. We shall prove that

Theorem 1.7 There exists an increasing sequence ({y,) of positive real numbers,
depending only on I' and D, with the following property: If Q0 contains D and if it is
invariant under the action of a closed subgroup G of I' for which

20 ag(r) 2

holds, then problem (¢, ., .. o) has at least m pairs of G-invariant solutions £uy, . .., u,,
such that uy s positive, us, ..., u,, change sign, and

/ \Vug|? < 0,57 for every k=1,...,m.
Q

Theorem 1.7 provides many examples of domains {2 having only finite symmetries
in which problem (¢} .. .. o) has a prescribed number of solutions. Specific examples
may be obtained as follows:

Example 1. Let ' =S¢ :={c € C: |c| = 1}. We can think T as a subgroup of O(n)
in the obvious way. The function

[x (CxR"?) — CxR"?
(¢, (a,y)) = (ca,y)

is an action of the group T' on C x R"2 = R". Now, let Dy be a smooth bounded
domain in R"™1 such that

Dy C{(t,y) ERxR"?:t>d}
for some d > 0, and set
D :={(a,y) € CxR"?: (|a],y) € N} C R"

Note that D is I'-invariant and #'x = oo Vr € D.
Consider the subgroup

Gy ={e"*" . k=0,...,r—1}CT,

and notice that

#G,r =1 Ve (C\{0}) x R"2
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Therefore, if Q C (C\{0}) x R"2 is an G.-invariant domain and Q D D, then

min #Gx = r.
€

So, if we fir m € N, then

if v is large enough. Hence, Theorem 1.7 yields at least m pairs of solutions to problem
(81 .02,05.02)-

In order to give the proof of Theorem 1.7 we need to introduce some notation and
recall some basic notions.

It is well known that, by the principle of symmetric criticality of Palais [35], the
G-invariant solutions to problem (g} ,, .. ) are the critical points of the restriction
of the functional

1

1
J(u) = —/(a1|Vu|2+a2u2)——/a3|u
2 Ja 2% Jq
1 1,

asz,2*

2%

Sl o, = 5
to the space of G-invariant functions

HY )Y : {u € H}(Q) : u(gz) = u(z) for all g € G,z € Q},
the non trivial critical points of J are contained in the Nehari manifold

N(Q) = {u € Hy(Q) : [[ullg, 0, = lulz 2-}-

We will make use of the following result
Theorem 2.1. If Q) is G-invariant, and
#Gr = oo for all x € )

then, problem (¢} ., 4..0) has infinitely many G-invariant solutions. Moreover, there
exists a nontrivial G-invariant solution u to problem (¢} ., .. o) which satisfies
J(uw)= inf J(w).
(w) weNC () (w)
Proof. Since #Gx = oo for all x € Q, Corollary A.3 shows that the functional J
satisfies condition (PS)¢ in H(2) for every ¢ € R.
It is also clear that J satisfies all the other conditions of the mountain pass theorem
[2]. Hence, there exists a nontrivial solution u to problem (g7 .. .. o) which satisfies

J(u)= inf J(w).
)=, a7

Moreover, since J is odd, it has an unbounded sequence of critical values.
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As a corollary of Theorem 2.1 we have the following generalization of Kazdan’s and
Warner’s result (Theorem 1.2)

Corollary 2.2 (Kazdan-Warner). If Q = A, is an annulus, then the problem
(91.a2.03.4, ,) as infinitely many radial solutions.

The main ingredient for the proof of Theorem 1.7 is the following mountain pass
result for sign changing solutions.

Theorem 2.3. Let W be a finite dimensional subspace of H(Q)S. If J satisfies
condition (PS)S in H}(Q)C for all ¢ < supy, J, then J has at least dim(W) — 1 pairs
of sign changing critical points u € HE(Q)¢ such that J(u) < supy, J.

Proof. The proof can be found, up to minor modifications, in [17, Theorem 3.7|. [

2.1.1 Proof of Theorem 1.7

Let Pi(D) be the collection of all nonempty I'-invariant bounded smooth do-
mains contained in D and for every k > 2 we define

Py(D) :={(Dy,...,Dy) : D; € Pi(D),D; N D; =0 if i # j}.

Note that Py(D) # (0 for all £ € N. Moreover, since D; C D and D; is T-invariant,
we have that #I'x = oo for all x € D;. Hence, Theorem 2.1 shows that there exists
a nontrivial solution wp, to problem (g} . . 5 ) which satisfies

J(wp,) = weﬁfr%f(Di) J(w).

In addition, if we extend wp, by zero outside D;, we have that wp, € H(Q)¢ for
every bounded G-invariant domain €2 such that D; C Q) and every G C I'. Moreover,

we have that
J(wp,) = max J(twp,). (2.1)

For every m € N, let

G 1= i {g:lj(w[)i) . (Dy,...,Dy) € Pm(D)}.

Note that ¢; = J(wp) > 0 and J(wp,) > ¢;. Next, we will show that
Crm > Cyn—1 for every m > 1. (2.2)

Indeed, if € € (0,¢1) and (Dy,...,D,,) € Pn(D), we have that (Dy,...,Dpoq) €
Pm_l(D) and

-1 m—1 m

Cm_1+€§ J(wDi)—|—€< ZJ(WDJ"“J(WDm):ZJ(WDi)

1 =1 1=1

3

i
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Therefore,

Cm—1+€ < Z J(wp,) for every (D1, ..., Dy,) € Pn(D), (2.3)

=1

which implies 2.2.
We define

1 -1
51@ = (—Sn/2> Ck.
n

We will prove that the sequence (¢)) has the desired property. In order to do this fix
m € N and let €2 be a bounded smooth domain containing D, invariant under the
action of a closed subgroup G of I' for which

<mm C“(x)—#?x> > L. (2.4)

zeQ as (;y)T
We divided the rest of proof into three steps.
Step 1: For every € small enough, there exist a set A(e) := {xu5, ..., £us,} which
contains m pairs of G-invariant solutions uj,...,xus, such that uj is positive,
change sign, and

1> 13
us, ..., U,

J(uy) <epmte forevery 1 <k <m.

Notice that condition (2.4) is equivalent to

(mﬂ> T,
n

zeQ as ($) 2

therefore, we can take € € (0, ¢;) such that ¢,, + ¢ < [ min, g au@)?#bz %S”/z. By

ag(ac)%
the definition of ¢,, we can choose an element (Dy,..., D,,) € P,,(D) such that the
associated functions {wp,,...,wp, } C Hi(S) satisfy

Cm <Y J(wp,) < em + €.
=1

Now, let W, the linear subspace of H}(Q) generated by the set {wp,,...,wp,, }-
Notice that, since
suppwp, N suppwp, = D; N D; =0,

we have that dimW,, = m. Moreover, equation (2.1) shows that

m 2 1
dy, :=supJ < > J(wp,) < (min Wﬂ) —gn2,
Wi, n

i=1 zeQ  ag(x) 2
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Corollary A.3 implies that J satisfies (PS)S in H}(Q) for all ¢ < d,,, so the moun-
tain pass theorem [2| yields a positive critical point u§ € HE()¢ of J such that
J(u3) < dy. Moreover, Theorem 2.3 yields m — 1 pairs of sign changing critical points
tus, ..., +us, € HH Q)Y of J such that

Juy) <dm <cp+e forevery 1 <k <m.

Step 2: There exist m pairs of G-invariant solutions iull, cee iu,m such that ull 18

. / .
positive, Uy, ..., u,, change sign, and

J(uy) < ¢ for every 1 < k < m. (2.5)

Let (e,) C (0,¢1) be a sequence such that ¢, — 0. Also, for every ¢,, let A(e,) be
the set of solutions constructed in step 1.
If there exists ro € N such that

J(w) < ¢, for every w € Ale,,),

we have that the proof of step 2 is complete. If this is not the case, we have that for
every r € N there exists a w, € A(e,.) such that

em < J(w,) < cm +ér

This implies that J(w,) — ¢, and since VJ(w,) = 0, we have that (w,) is a Palais-
Smale sequence for J in c,,. Since J satisfies (PS)S , we have that there exists
u;n € H}(Q)% such that, after passing to a subsequence, we have

w, — u,, in HY(Q)¢

Therefore, u,, is a critical point of J such that

/

J(u,,) = cm.

On the other hand, note that if Q satisfies condition (2.4) then it also satisfies that

(min M) o350, (2.6)

zeQ a3(x) 2 n

Therefore, applying the argument given in step 1, this time for the number m—1 and

for € small enough, we obtain m—1 pairs of G-invariant solutions j:u/l, j:u/z, oo Eu,
to problem (g7 .. .. o), such that uy is positive, &y, ..., 4u,, _, change sign, and

J(u;) <Cpo1te<c,foreveryi=1,2,...,m—1.



/

’ / ’ . . . . . o,
Hence’7 Fu,, :!:uz, ..., *u,, ;,£u,, are m pairs of G-invariant solutions, u, is positive
and u,, ..., u,, change sign and

J(uy) < ¢ for every 1 < k < m. (2.7)

This proves step 2.

Step 3: There exist m pairs of G-invariant solutions tuy, ..., *u,, such that uy is
positive, g, ..., U, change sign, and
J(ug) <cp  for every 1 <k <m. (2.8)

Again, note that if 2 satisfies (2.4) then it also satisfies

<mm C“(x)—#(j‘r> Lot sy, (2.9)
2 n

zeQ as (%) 2
forevery k =1,...,m—1. So, applying the arguments given in steps 1 and 2 to each k,
we obtain k pairs of G-invariant solutions +uf, £uf, ..., £u} to problem (¢} ., .. ),

such that u} is positive, &uf, ... duf change sign, and

J(uF) < ¢ for every i = 1,2,... k.

Setting u; := ul and choosing uy € {u}, ..., uf} inductively, such that uy # u; for

every i = 1,...,k — 1, we obtain m pairs of G-invariant solutions tuy, tus,..., *u,

to problem (g7 ., .. o) such that u, is positive, +us, ..., &u, change sign, and
J(ug) < ¢ for every k =1,2,...,m. (2.10)

Finally, note that, since
1 , 1 o
J(up) =~ | |[Vu|* < ¢ = —£,57 (2.11)
nJjo n
we have that equation (2.10) is equivalent to
/ \Vug|? < 0,57 for every k=1,...,m.
Q

this completes the proof.



20 Chapter 2

2.2 Existence in punctured domains

In this section we will show the existence of one positive solutions for a nonautonomous
critical problem in every smooth bounded domain, not necessary symmetric, but with
a small hole. We start with some notation.

Fix a closed subgroup I' of O(n) and a smooth bounded I'-invariant domain € in
R". Let 'z := {gx : g € I'} be the I'-orbit of z € R". We denote by

Q'={reQ:igr=2 VgeT}
the set of I'-fixed points in 2. Assume &, € QF and write
Qei={reQ:|z—E&]| > ¢l

Note that, since & € QF, Q. is also I'-invariant.
We consider the problem

n+2

—Au = Q(x)ur—2 1in .,
(90,c) u>0 in Q.,
u=>0 on 0f2,,

where n > 3 and the function @ € C?(Q) is I-invariant and satisfies min, g Q(z) > 0.
We will prove the following result.
Theorem 1.8 Assume that VQ(&) # 0. Then there exists €g > 0 such that, for
each € € (0, €p), problem (pg, ) has a T-invariant solution u. which concentrates and
blows up at the point & as € — 0.

Remark 2.4. Notice that of ' = 1 then, Theorem 1.8 shows the existence of one
positive solution for the problem (ga*Q) in every smooth bounded, not necessarily sym-
metric, punctured domain.

The proof of Theorem 1.8 uses the well-known Ljapunov-Schmidt reduction, adapted
to the symmetric case. In the following section we sketch this reduction, highlighting
the places where the symmetries play a role. In subsection 2.2.2 we give an expansion
of the reduced energy functional and use it to prove Theorem 1.8.

2.2.1 The finite dimensional reduction

For every bounded domain ¢ in R" we take

1/2
(u,v) := / Vu - Vo, l|lu| == </ ]Vu]Q) :
u u

as the inner product and its corresponding norm in H}(U). If we replace U by R”
these are the inner product and the norm in D%?(R™). We write

el o= ( / Mk
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for the norm in L"(U), r € [1,00).
If U is -invariant for some closed subgroup I' of O(n) we set

HYU)" = {u € H}(U) : u is T-invariant}

and, similarly, for DV2(R™)" and L"(U)".
It is well known that the standard bubbles
55

P ilz—ep= T n(n —2)]"T, §€(0,00), £E€R",

Use(z) = an
are the only positive solutions of the equation
—AU =U? in R",

where p 1= Z—Jjg Thus, the function Wi := yoUse, with v := [Q(é@)]ﬁ, solves the
equation

— AW = Q(&)W? in R"™ (2.12)
Let
oUs n—2na |z—¢P?—42
0 53
= = 2 2.13
w(s,f 65 an 2 5 ((52 + ym . 5’2),’1/27 ( )
OUs¢ n-2 zj =& :
J . S = q,(n—2) 2 J J , =1,...,n.
Voe = g, — om0 G ey "

The space generated by these n + 1 functions is the space of solutions to the problem

— Ay =pU; 'y, e DY(RY). (2.14)
Note that
Use € DV?RMY iff ¢e R
and, similarly, for every j =0,1,...,n,

Ul € DR iff  ¢e (R

Let Q be a I'-invariant bounded smooth domain in R™, Q € C%*(Q) be positive and
[-invariant, and & € QF. For € > 0 small enough set

Qei={zeQ:|z—E,]| > ¢l

Consider the orthogonal projection P, : DM(R") — H}(Q.), i.e. if W € DY(R")
then P.W is the unique solution to the problem

—A(PW)=—-AW in €, PW =0 on 0f,. (2.15)
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A consequence of the uniqueness is that P.W € H}(Q)' if W € DV2(R™)!.
We denote by G(z,y) the Green function of the Laplace operator in Q with zero
Dirichlet boundary condition and by H(z,y) its regular part, i.e.

1
|z —y|"?

o) = i ( - )

where 3, is a positive constant depending only on n. The following estimates will
play a crucial role in the proof of Theorem 1.8.

Lemma 2.5. Assume that 6 — 0 as ¢ — 0 and ¢ = 0(d) as ¢ — 0. Fizn € R", set
£ =&+ on, and define

ay, €n72

(o) -l

Then there exists a positive constant ¢ such that the following estimates hold true for
every x € QN B(&,¢€):

R(z) = PUse(x) — Use(x) + 0n6"7 H(z,€) +

en—2 1_|_€5 n+1) 9 €\ n—2
< =
R < o [ S e (5) .
en—2 1+€5 n-‘rl) ) e\n—2
05 R(x [ e O (5) ]
e 214+e ) L, €2
<
9 () cé[ R =
Proof. See Lemma 3.1 in [24]. O

For each € > 0 and (d,n) € A' := (0,00) x (R")'' set (see (2.12))
Vig = PWse = 7PUsg with ¢ := de%, £ =& + . (2.16)

The map (d,n) — Vg, is a C*-embedding of A" as a submanifold of Hg ()", whose
tangent space at Vy, is

K, = span{ft’elpig :7=0,1,...,n}.

Note that, since &,n € (R™)', also £ € (R™)' and, therefore, K5, C HH Q). We
write '

KEZL = {¢€H1< ) (¢7 ewig):() forj:O,l,...,n}
for the orthogonal complement of K, in H ()", and I, : HY Q)T — K¢, and
HZ’; CHY Q)Y — Kg:ﬁ for the orthogonal projections, i.e.

n

G, (w) =) (u, PGP, Mgy (u) = u— 11, (u).

Jj=0
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Let i* : L#7(€,) — HE () be the adjoint operator to the embedding i : HE(Q.) <
L%(Qe), ie. v =1 (u) if and only if

(v, ) = /Q up Vo € CZ(Q)
if and only if

—Av=u 1in §,, v=0 on 9. (2.17)

Sobolev’s inequality yields a constant ¢ > 0, independent of €, such that

liz)l < cllullz — Vue LE(Q), Ve>o0. (2.18)
Note again that
if(u) € HY Q)Y if we La2 ().
We rewrite problem () in the following equivalent way:

{neifar e

where f(s) := (s7)? and p := 22

n—2"

We shall look for a solution to problem (2.19) of the form
ue=Vyy+¢  with (d,n) € A" and ¢ € KJ; . (2.20)

As usual, our goal will be to find (d,n) € A" and ¢ € Kflﬁ such that, for ¢ small
enough,

G Vi + 6 = i2(Qf (Vay +9))] = 0 (2:21)
and

0G0 Vay + ¢ =i (Qf (Vay + ¢))] = 0. (2.22)

First we will show that, for every (d,n) € Al and e small enough, there exists a
unique ¢ € Kfﬁ which satisfies (2.21). To this aim we consider the linear operator

Ly, : Kgy — Kg, defined by
Liy(0) = ¢ — Mg, il [Qf (Van)9).
It has the following properties.

Proposition 2.6. For every compact subset D of AU there exist ¢¢ > 0 and ¢ > 0
such that, for each e € (0,¢€) and each (d,n) € D,

|L5, (@) = cllgll  forall ¢ € K3y (2.23)

dmn>

and the operator L, is invertible.
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Proof. The argument given in |24] to prove Lemma 5.1 carries over with minor changes
to our situation. OJ

The following estimates may be found in [28|.

Lemma 2.7. For each a,b,q € R witha > 0 and g > 1 there exists a positive constant
¢ such that the following inequalities hold

cmin{[b|?, a1 |b]} f0<qg<1,

9 __ .9 <
lla+ b = a’| < { (lal™ bl + b g 1.

Again, the argument given to prove similar results in the literature carries over
with minor changes to prove the following result. We include it this time to illustrate
this fact and also because some of the estimates will be used later on.

Proposition 2.8. For every compact subset D of AU there exist ¢¢ > 0 and ¢ > 0
such that, for each ¢ € (0,€y) and for each (d,n) € D, there erists a unique ¢, €

K;’; C H}(Q)Y which solves equation (2.21) and satisfies

(2.24)
Moreover, the function (d,n) — ¢5, is a Ct-map.

Proof. Note that ¢ € Kfl:i solves equation (2.21) if and only if ¢ is a fixed point of
the operator 7Ty, : K;j — K;:# defined by

T5(9) = (L) g i [Qf (Vg + &) — QF (Van)d — Q(&0) (10Use)”)

We will prove that 77, is a contraction on a suitable ball.
To this aim, we first show that there exist ¢, > 0 and ¢ > 0 such that for, each
e € (0, €),
n-2 . n-2
|o|| < cen1 = ||Td7n(¢)|| < cen—1. (2.25)

From Proposition 2.6 we have that, for some ¢ > 0 and e small enough,
Ly, <e  V(d.n) eD.
Using (A.6) we obtain
ITi0 (@ < QU Vay +6) = F'(Van)d] = Q&) (0Use)" | 22,

< clQU (Van+ ) = f(Van) = f'(Van)ll 2o
+d@ﬂwm—QmﬂmH%{H%HQ—Q@HWJ%j
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Using the mean value theorem, Lemma A.10 and the Holder inequality we have that,
for some ¢ € (0,1),

1Q U (Vi + &) = F(Viw) = F' (Van)lll 2 < eIl (Vs +16) = ' (Van)lol 2
< el (Van +16) = ' Van)ll,,

_4
< c(ll¢ll 5 ) |0l

< el + lIgll5.)-

Moreover, using Lemma 2.5 one can show that
1Qf (V) = QroUs )|l 2o, < c[|(PUse)” — Uy 2
nT+2
2n_ n
( / (U2 (PUse — Use)| ™ + ¢ / |P.Use — Ué,g\f’“) (2.26)
Qe

< cd,

see inequality (6.4) in [24]. Finally, setting y = ”C(S;E == 50 —nand Q, = ={yeR":
0y + & € .}, and using the mean value theorem, for some t € (0,1) we obtain

n+2
2n

i@ - Qe Ul 2 = ( | 106+ 5+ — @l Up“(y)dy)

n+2
2n

s ( [ 109QUsy 150+ €0y + ) Up“(y)czy)
6 (2.27)
< ¢d.

This proves statement (2.25).
Next we show that we may choose €y > 0 such that, for each € € (0, ¢y), the operator

T5, {6 € Kb ol < ceii} — {6 € K5t ||o]) < ci1}

is a contraction and, therefore, has a unique fixed point, as claimed.

If ¢1,00 € {9 € K;ﬁ el < ce%}, using again the mean value theorem we
obtain

2n

1 T5,(61) = Tiy(2)]| < cllf(Vay + é1) = f(Vay + ¢2) = ' (Van) (61 — 62))]
=cC H[f/(vdm + (1 - t)¢1 + ¢2) - f,(vd,n)](¢1 - ¢2)||n2f?2
< cllf'(Van+ A =8)¢1 + ¢2) = ' (Van)lla |61 — 2l
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for some t € [0, 1], and arguing as before we conclude that

Hﬂ%wHL%Wﬁwﬁ—ﬂ%wMSc@ﬂ—ﬂ%+@QHWO—0%+@5?>

4 4
< ¢ (I61l + ol + 1157 + 1l
Hence, if € is sufficiently small, it follows that

175, (61) — T, (9)]| < K llér — sl

with x € (0,1).
Finally, a standard argument shows that (d,n) — by Is & C'-map. This concludes
the proof. O

Consider the functional J, : H}(€2.) — R defined by

1 1
Je(u) = 5/@ [Vul* — m/ﬁ Qlu"*.

It is well known that the critical points of Je are the solutions of problem (2.19). We
define the reduced energy functional JI : A — R by

JE(dyn) = J(Vay + ¢5,). (2.28)

If I' = {1} is the trivial group, we simply write J. instead of J* and A instead of AT

Next we show that the critical points of jeF are I'-invariant solutions of problem
(2.19).
Proposition 2.9. If (d,n) € AL is a critical point of the function jer, then Vi, +¢q, €
H Q)Y is a critical point of the functional J. and, therefore, a U-invariant solution
of problem (2.19).

Proof. Assume first that I" is the trivial group. Then A = (0,00) x R" and the
statement is proved using similar arguments to those given to prove Lemma 6.1 in
[21] or Proposition 2.2 in [24].

If T is an arbitrary closed subgroup of O(n), then Al is the set of I-fixed points in
A of the action of I" on the space R x R™ which is given by ¢(¢,z) := (¢, gz) for g € T,
t € R, x € R™. By the principle of symmetric criticality [35], if (d,n) € Al is a critical
point of the function j{, then (d,n) is a critical point of J. (0,00) x R" — R, and
the result follows from the previous case. O
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2.2.2 The asymptotic expansion of the reduced energy func-
tional

In order to find a critical point of jef we will use the following asymptotic expansion
of the functional J, : (0,00) x R" — R.

Proposition 2.10. The asymptotic expansion

n—2

j;(da 77) = Co + Q(f{))_P%lF(d, 77)627:? + 0(6ﬁ)

holds true C*-uniformly on compact subsets of A, where the function F : (0,00) X
R™ — R is given by

Ozd—l—ﬂ

VQ(&) . B
1+|77| -7 < 0(&0) 777> d ifn=3,
L\ Q(%0) ‘

b (m) - 7< Q) 77> d ifn>4.

for some positive constants cq, ., 5 and 7.

F(d,n) := (2.29)

Proof. We write

1
Va4 i) = W+ il = 5 [ @i+

= J(Vay) + 70/ (Use — (PUse)?) 05,

€

1
ot [ 1@~ QU (PUse) 65, + 5 653,
Qe

1 € +1 1 €
-1 Q ([Van + 05, = Wan™ = (0 + DV, 05, )

Then, using Hélder’s inequality and inequalities (2.24), (2.26) and (2.27) we obtain

J(Vay + 04,) = J(Vag) + O (€57

1 1
A2 |2 P (P I P ptl 2.
% [2 | vt - = [ 1P } (2.30)

1 p+1 i p+1 2(":12>
ot [0 - Q@ P o ()

Next, we compute the first summand on the right-hand side of equality (2.30). From
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Lemma 2.5 we have that

1 1
_ Up PEU - PEU p+1
2/96 s.e (PeUse) p+1/95| 5.1

p—1 1 1 )
-2 [ -4 [ e v - s [ iRg - o
Q. 2 Ja p+1Jq,

2(p+1) .
p—1 b 1 / n—2
= urtt — [ U (PUse U
2p+ 1) /Q oo se (PeUse = Usg) + oen=1)
p—1 +1 1 / n=2
- Urt 4= | e
2(p + 1) /]R" 1,0 + 9 - setoe + 0(6 ),
where
() = a6 H (0, ) + 1 (231
) = Oy x, Op—s — —. .
’ 5T (1+n)2)*z v — &2

Setting x = £ + dy we have
an/ U&Tgf
€

=, /n Ule(2)(6°% H(w,€))dz + ay, /n U?,(x) (5732( 1 _ _ ) .

L+ [nf?)"= |z = &l

— / U o(y) H (y + 81 + &, 01 + €)dy
RTL

1 » "2
T / Uiolw) <5”2\y — 77\"2> W
= ([ U10) #6060 20+ 0l1) + cngln) g1+ o),

where the function g : R” — R is defined by

1 / 1
g(n) = = Ut o(y)dy.
D= 2 Jen Ty — ol

Since —AU = U? in R", an easy computation shows that

1 1

g(n) = WULO(U) = QHW'

To compute the second summand on the right-hand side of equality (2.30) we use the
Taylor expansion

Q0y + & +0n) = Q(&) + 5(VQ(&). y +n) + O*(1 +[y]*))
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, and using conditions (2.16), we obtain
/Q [Q — Q(&)] [PUselP ™ = /Q Q — Q(&)] Ule + o(en-1)

— [ QU+ &+ 50) — QNI Wy + o(eF)

| (VQ(&). v)
T )

~ st ([ vri') a o),

~5 [ (VQU&) UL Wy +5 [ dy+0 (&552)

because fRn <(v1$|(§f2))’ﬁ> dy = 0. Collecting all the previous information we obtain

Je(d7 T]) - Je(vd,n + gbfi,n)
co+ 7% (C1H(§o7 €0)d + cag(n)g — c3 v@c,zg) : 77> d> Ve+o(ye) ifn=3,

1 —2 n—2 .
o+ 8 (cag(m) gz — o3 (T8 ) d) i + ofei ) if n >4,
as claimed. 0

2.2.3 Proof of Theorem 1.8

We will show that the function F' defined in (2.29) has a critical point (do,n9) €
AT = (0,00) x (R™)" which is stable under C'-perturbations. Then, we deduce from

Proposition 2.10 that the functional JT has a critical point in AT for € small enough,
so the result follows from Proposition 2.9.

Let n = 3. Set (y := VQ%S) and consider the half space H := {n € R® : a—~((y,n) >

0}. For each n € H there exists a unique d = d(n), given by

dn) = \/ i £ (0, 00),

(1 + n*)(a = v{C,m)

such that Fy(d,n) = 0. Moreover, Fyq(d(n),n) > 0 for any n € H. Consider the
function F': H — R defined by

F(n) := F(d(n),n) = 26° 9%%%%2

Vo + 92 Gl
« 77160 %

0
v16l?

The point

No =
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is a strict maximum point of F. Setting do := d(ny) we deduce from Lemma 5.7 in [30]
that (do,70) is a C''-stable critical point of the function F. Note that, since & € QF
and Q is [-invariant, VQ(&) € (R™)" . Hence, (do,n0) € A

If n > 4 arguing as in the previous case we easily conclude that, if

_ VQ(%) _((n=2)8 Q&) =
®TTIVE) To ( 2n-2y \VQ(fo)\) ’

then (do,70) is a C'-stable critical point of the function F and (dgy,no) € AL. This
concludes the proof. O



Chapter 3

The supercritical problem.

We consider the supercritical problem

—Av=|v["?v in O,

(p0) { v=0 on 00,

where O is a bounded smooth domain in RN, N > 3, and p > 2*.
The main objective of this chapter is to discuss and prove Theorems 1.9—1.14 stated
in the introduction.

3.1 Reduction to a nonautonomous critical problem

3.1.1 Reductions via Hopf maps

Let N = 4,8 or 16 and write RY = K x K where K is either the complex numbers,
the quaternions or the Cayley numbers. The set of units Sk := {( € K : || = 1} acts
on RY by multiplication on each coordinate, i.e. ((z1,22) := (Cz1,(22). Recall that
the Hopf map

fig 1 K x K s REMEF

is given by
hk (21, 22) = (|21]? — |22, 27122).
We shall make use of the following results, a detailed account is given in Aprendix

77,

Proposition 3.1. Let N =2,4,8,16, p > 2 and Q be a smooth bounded domain in
REMEHL sych that 0 ¢ Q. If u is a solution of

(3.1)

—Au = ﬁ\uF"_Qu in €,
u=>0 on OS2,
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then v = u o hx is an Sk-invariant solution of problem

—Av = [v|P~2 in hg'(Q) =0
{ v=20 on 00, (3.2)

We will also make use of a variation of this reduction, which was proved by Pacella
and Srikanth in [34].

Let O(m) x O(m) acts on R*™ = R™ x R™ in the obvious way and O(m) act on
the last m coordinates of R™™! = R x R™. Write the elements of R*™ as (y;,y») with
y; € R™ and the elements of R™! as x = (¢,¢) with t € R, ( € R™.

Proposition 3.2. Let N = 2m, m > 2, and © be an [O(m) x O(m)]-invariant
bounded smooth domain in R®*™ such that 0 ¢ ©. Set

Q= {(t, Q) e RXR™ :br(|y1], [3a]) = (¢, [C]) for some (y1,42) € OF.

If u(t,¢) = u(t,|C|) is an O(m)-invariant solution of problem
—Au= = |uff ?u inQ

2] ’ 3.3

{ u=20 on 02, (3:3)

then v(y1, y2) == w(br(|v1], |ye])) is an [O(m) x O(m)]-invariant solution of problem

—Av = |[v|P"%v in O,
v=20 on 00,

3.1.2 Reduction via rotations

Next we will present a reduction via rotations which allow us to reduce some super-

critical problems to some critical or subcritical anisotropic problem.
Fix k .=k + -+ kp with K < N—2and k; € NU{0} for 1 <i < m. Let
Q) C RV be a smooth bounded domain with

Qc{(zy,...,0m2) ER" xRN0, >0,i=1,...,m}. (3.4)
Let H:=O(ky +1) x--- x O(k,, + 1) and think H as a subgroup of O(N). Let
(91,---,9m) € H with g; € O(k; + 1) and
(y',...,y™ 2) e RY  with ¢ € R%™ and z € RV F™,
The function
[ x RY — RY
(g1 gy’ Y™ 2) = (' gmy™, 2)
is an action of the group H on RY. Therefore, if we set
O :={(y',...,y™ 2) € R\ . xRFFLRN=F=m (11 g™, 2) € Q). (3.5)

one has immediately that © is H-invariant. Under this assumption the following
holds true
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Lemma 3.3. Let ©,€) and H as before. Then we have that an H-invariant function
u(yt, - y™ 2) =u(lyl], -, [y™, 2) is a solution to problem

—Au = |ulP"2u in Q,
u=20 on 0f),

if and only if u satisfies

{ —div(a(r)Vu) = a(z)|ulP~2u in O,

u=20 on 00,
where a : RN=% 5 R is defined by a(xy, ... xy_g) == xi .. akm

3.2 Multiplicity for supercritical problems in sym-
metric domains

3.2.1 Multiplicity via Hopf fibrations

This subsection is devoted to proof and discuss Theorems 1.9 and 1.10, we recall these
results below

Theorem 1.9 Let G be a closed subgroup of O(dimK + 1), Q be a G-invariant
bounded smooth domain in R¥™SHL gll of whose G-invariant orbits are infinite. Set
© =t (Q). Then, for ¢ = 2 gmx_1, the supercritical problem (pqe) has infinitely
many solutions in © which are constant on hy'(Gz) for each x € Q.

We fix a closed subgroup I' of O(dim K + 1) and a nonempty I'-invariant bounded
smooth domain D in RU™ %+ guch that #I'z = oo for all x € D. We obtain following
result.

Theorem 1.10 There exists an increasing sequence () of positive real numbers,
depending only on I" and D, with the following property: If Q) contains D and if it is
invariant under the action of a closed subgroup G of I' for which

dimK—1

min (#Gz) |2z| 2 >4,
x€Q)

holds, then, for q = 23 gink_1, problem (pge) has at least m pairs of solutions
vy, ..., Fv, in O = k' (Q), which are constant on hy'(Gz) for each v € Q. In
particular, they are Sg-invariant. Moreover, vy s positive and v, ..., v, change
Sigmn.

Note that the domains © in Theorems 1.9 and 1.10 are homeomorphic to Sg x U,
where Sk := {¢ € K : || = 1} is the set of units in K.

Theorems 1.9 and 1.10 provide a new type of domains in which some supercritical
problems has multiple solutions. For example
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Example 2. Fiz a bounded smooth domain Dy in R? with Dy C (0,00) X R and set
D :={(z,t) e KxR: (|z],t) € Dy}

Then D is invariant under the action of the group I' :== S¢ of unit complex numbers
on K x R given by
e¥(z,t) = (e”2,1)

Note also that
#lx =00 Vz e D.

then Theorem 1.9 shows that problem <p27\14dimK—l’®) has infinitely many solutions in

O := hx' (D) which are constant on hy'(Gx) for each x € D.

On the other hand, Theorem 1.10 provides examples of less symmetrical domains
© in where some supercritical problems has a prescribed number of solutions, for
instance

Example 3. Let D as in Example 2 and let G, the cyclic subgroup of I' of order r,
i.€.

G = {e¥* k=0,..,r—1}.

Then #G,x = r for every v € (K~ {0}) x R.
Set Q C K x R an G,.-invariant bounded smooth domain with

DcQc (K~{0}) xR,

Notice that
min (#G,z) =,

€

and therefore
. dim K—1 . dimK—1
min (#G,x) |2z| 2 =minr|2z] 2 >/,
e e

if v 1s large enough. Hence, Theorem 1.10 yields at least m pairs of solutions to
problem (oo o) in © = fig' (Q) which are constant on by (Gz) for each x € (.

N,dimK—1°

Proof of Theorem 1.9

Let N = 4,8 or 16, RY = K x K and fix a closed subgroup G of O(dimK + 1).
Proposition 3.1 shows that if a function « is a solution to problem

1 23 im(K— —2 1
{ —Au = gpfu[ Mamen Ty i Q, (3.6)

u=0 on 0,

then, v = u o hg is a solution to problem (g o) for © := h'(Q). Tt is clear

that the function

*
N,dim(K—1)”

2|z
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is radial and therefore I'-invariant. Hence, if 2 is an G-invariant smooth bounded
domain in RY¥™E+1 guch that

#Gx = oo forall z € Q. (3.7)

then, Theorem 2.1, with a; = 1, as = 0 and a3 = ﬁ, shows that problem 3.6 has
infinitely many G-invariant solutions.

Finally, since every G-invariant solution u of problem 3.6 is constant on every orbit
G, then v = u o fig is constant in fig'(Gx) for each z € Q.

Proof of Theorem 1.10

Let N = 4,8 or 16, RY = K x K and fix a closed subgroup I' of O(dimK + 1). Let
D a I'-invariant smooth bounded domain in RY™ K+ such that

#I'z = oo for all x € D. (3.8)

Again, Proposition 77 shows that if a function u is a solution to problem

—Au = S|y a2y in O
2la] ’
=0 on 02,

then, v = w o hx is a solution to problem (@27\7,dim(K71)7®) for © 1= h'(Q).
Hence, if we apply Theorem 1.7 for the domain D and the group I', with a; = 1,
as =0 and a3 = ﬁ, we have that:
There exists an increasing sequence (£,,) of positive real numbers, depending only
on I' and D, with the following property: If €2 contains D and if it is invariant under
the action of a closed subgroup G of I' for which

dim K—1

min (#Gx) [2z| 2 >4,
e

holds, then problem 3.9 has at least m pairs of G-invariant solutions tuy, ..., +u,,.
Moreover, u; is positive and uo, . . ., u,, change sign.

Hence, the function v; = u; o fix is a solution to problem (g, ) in © = fi'(2) which
is constant on fig'(Gx) for each z € Q. for every i = 1...m

3.2.2 Multiplicity via rotations
Proof of Theorems 1.11 and 1.12

The aim of this section is to prove Theorems 1.11 and 1.12 stated in the Introduction.
As before, fix ki,...,k, € N and set k := k; + -+ + k;,, and let  as in (3.4) and
O as in (3.5). Consider O(N — k — m) as the subgroup of O(N — k) which acts on
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the second factor of R™ x RV=+=m = RN=* and the function a : R™ x RN "F"" R
defined by
a((z1, ... T, ) = bt g
Theorem 1.11 Let G be a closed subgroup of O(N — k —m), Q be a G-invariant
bounded smooth domain as in 3.4 all of whose G-orbits are infinite. Then, the super-
critical problem (p2r, o) has infinitely many O(k1+1)x- - - X O(kz+1) X G-invariant
solutions in the domain © defined as (3.5).

Proof. By Lemma 3.3 we have that if u is a G-invariant solution to problem

—div(a(z)Vu) = a(z)[u*¥>5—+"2y in Q,
Ll mon, G
then, v(y', -+ ,y™ 2) = u(|y'], -, |y™|,2) isa O(k1+1) X - - - x O(kg+1) x G-invariant

solution to problem (a5 | o).
Notice that the function a is G-invariant (recall that we are thinking of G C O(N —
k—m) as the subgroup of O(N — k) which acts on the second factor of R™ x RN =k=m),
Since,  C RY~* is G-invariant and all the G-orbits are infinite, then Theorem 2.1,
with a; = a3 = a and a; = 0, shows that problem 3.10 has infinitely many G-invariant
solutions. This concludes the proof.
O

Next, we will prove
Theorem 1.12 There exists an increasing sequence ({,,) of positive real numbers,
depending only on I, D and a, with the following property: If

DCQc{(zy,...,0m2) ER" xRV 9, >0i=1,...,m}
and if § is invariant under the action of a closed subgroup G of I' for which

min(a(x)#Gx) >, (3.11)

z€Q

holds, problem (o o) has at least m pairs of O(ky +1) X --- x O(ky + 1) x G-

N,N—k>
invariant solutions vy, ..., v, in © (defined as in (1./)). Moreover, vy is positive
and vo, . .., v,, change sign.

Proof. Applying Lemma 3.3, we have that if u is a G-invariant solution to problem

—div(a(z)Vu) = a(z)[ul*»~-+"2y in Q,
{ u=20 on 0f), (3.12)
then, U(yla"' 7ymaz) = u(|y1|7"' ’|ym|7z) Is an O(kl + 1) Xoeee X O(kQ + 1) x G-

invariant solution to problem (po: = o). O



Therefore, if Q C RY~* satisfies that

min SO HCT o (a(@)£G) > 0, (3.13)
z€Q a(:p) 3 z€Q

then, Theorem 1.7, with a; = a3 = a and ay, = 0, shows that problem 3.12 has at

least m pairs of G-invariant solutions +uy, . .., +u,, such that u, is positive, us, ..., U,
change sign.

Hence, v;(y', -+ ,y™ 2) = w(|y'],- ,|y™|,2) is an O(k;+1) x -+ x O(ky+1) X G-
invariant solution to problem (p27\7,N7k’®) for every i = 1,2...,m.

3.3 Existence of solutions in domain with spherical
perforations

3.3.1 Proof of Theorem 1.13

As before, let N =4, 8,16 and let © be an Sk-invariant bounded smooth domain in
RN = K? such that 0 ¢ ©. Fix a point z, € © and for each ¢ > 0 small enough let

O, := {z € © : dist(z,Skz) > €}

where Sgzg := {¥z : ¥ € Sk }. This is again an Sk-invariant bounded smooth domain
in K2. We consider the supercritical problem

dim K43

—Av = pdmk-1 in O,
() v>0 in .,
u=0 on 00..

we shall proof that:

Theorem 1.13 There exists €g > 0 such that, for each e € (0,¢€y), the supercritical
problem (p!) has an Sk-invariant solution v, which concentrates and blows up along
the sphere Sgzy as € — 0.

Proof. Set
n=dimK+1, br(z) =& and bhx(©) = Q C RIEH,

Notice that
br(0c) = Q\B(&) = e,

i.e. hx(O,) = Q. is a punctured domain.
Now, since
n+2 dimK+3

n—2 dimK-—1
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Proposition 77 shows that if u is a solution to problem

n+2

—Au = ﬁum in €.,
u>0 in Q. (3.14)
u=>0 on Of),

then v = u o fig is a solution to (p!).

Since )
\ <m) (&) #0

then, Theorem 1.8 (with ' = 1) shows that there exists ¢y > 0 such that, for each
e € (0,€), problem Problem (3.14) has a solution u, which concentrates and blows
up at the point & as € — 0.

Therefore, v, = u. o hig solution to (p!) which is constant on fig' (z) for each z € €,
i.e. v, is Sg-invariant.

Finally, since u. concentrates and blows up at the point & as ¢ — 0, we have that
ve concentrates and blows up along the sphere Sxzy as € — 0.

[

3.3.2 Proof of Theorem 1.14

Let @ be an [O(m) x O(m)]-invariant bounded smooth domain in R?™ such that 0 ¢ ®
and (yo,0) € ®. We write S5 := {(y,0) : |y| = |yo|} for the [O(m) x O(m)]-orbit
of (yo,0), and for each ¢ > 0 small enough we set

®, = {x € & : dist(z, S" ) > €}.

This is again an [O(m) x O(m)]-invariant bounded smooth domain in R*". We con-
sider the supercritical problem

m—+3

—Av =vm-1 in P,
(7) v>0 in @,
uw=0 on 00,.

Theorem 1.14 There exists ¢ > 0 such that, for each € € (0,¢p), problem (pc)
has an [O(m) x O(m)]-invariant solution v. which concentrates and blows up along
the (m — 1)-dimensional sphere Sj"~ as e — 0.

Proof. Let

0= {(ta C) € R x R™ : hR('yl’ 9 ’@/2‘) = (t> ‘C’) for some (y1>y2) € (I)}a

Notice that € is [-invariant. In effect, if g € I and (¢, |(]) € €2, then

(¢, 19¢1) = (&, 1<) = br(lpl, [y2)
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which implies that (¢, g¢) € Q. In addition, if (yo,0) € S§"*, then we have that

bz(lyol , 101) = (lyol*, 0)

Set & = (\y0|2 ,0,...,0). Note that g& = & for every g € O(m), i.e. & € QO™
The diagram
(yl,yz)@gﬂ,lyz\)

R™ x R™ [0,00) x [0, 00)
I hir
f
R x R™ (2D R x [0, 0)

shows that

Q= O\B.(&) = {(1,0) € Rx R™ : be((un], Jyel) = (1, ]¢]) for some (31, 92) € @.).

Now, Proposition 3.2 implies that if u(t, () = u(t, |¢|) is an O(m)-invariant solution
of problem

—Au = Qig‘umfl n e,
u>0 in Q. (3.15)
u=>0 on 08,

then v(y1,y2) := w(br(|y1],|y2|)) is an [O(m) x O(m)]-invariant solution of Problem

(2)-
Therefore, using Theorem 1.8 with

n=m+1, &=(uwl.0,...,0, T=0(m)cOm, Q)= ﬁ

we have that there exists €y > 0 such that, for each € € (0, ¢), Problem (3.15) has an
O(m)-invariant solution wu.(t,() = u(t, |(|) which concentrates and blows up at the
point & as € — 0.

Hence, vc(y1,v2) = uc(br(|v1],]y2])) is an [O(m) x O(m)]-invariant solution of
Problem (p?) which concentrates and blows up along the (m — 1)-dimensional sphere
S lase—0

[l
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Chapter I

Nonexistence of solutions for the
supercritical problem

4.1 Introduction

In this section we present some results about the nonexistence of solutions for the
problem

—Au = Q(z)|ulP%u in Q,
(¥r.00) { u=20 on 012,

where
e ) is a smooth bounded domain in RY, N > 3,

e p > 2% where 2% = ]\2,—1172 is the Sobolev critical exponent.
e Q € C°N) and min, 5Q(z) > 0, (if @ = 1 we will write (p,0) instead of
(ppa1))-

It is well known that the existence of a solution for problem (p, 0 ) depends on
the domain. Pohozhaev’s identity [40] implies that if € is strictly starshaped then
problem (g, ) does not have a nontrivial solution for every p > 2*. In the critical
case, (i.e. when p = 2%), there is a very remarkable result obtained by Bahri and
Coron [3]. They showed that problem (po+ ) has a positive solution in every domain
) with nontrivial topology, see 1.3 .

Remark 4.1. As we mentioned in the introduction, the condition H,(,7/2) # 0
s not necessary for the existence of a solution, examples of contractible domains for

which problem (pa+q) has at least one nontrivial solution have been given, see for
instance [22, 23, 36, 38/



The result obtained by Bahri and Coron suggests the following question : I is true
that the condition H.(Q,7Z/2) # 0 guaranties the existence of a positive solution for
problem (pp0) when p > 2*7

This question was pointed out by Rabinowitz, as reported by Brezis in [7]. The
answer was given by Passaseo [37, 39], he proved that

Theorem 4.2 (Passaseo, 1995). For every integer 1 < k < N — 3 there exists a
domain Oy such that

e O, has the homotopy type of SF,

e problem (ppe,) does not have a nontrivial solution for p > 23, = %,

e problem (ppe,) has infinitely many solutions for p < 23 ,.

Note that the number 2y, = %]_V,;_k%

(N — k).

s the Sobolev critical exponent in dimension

The domains of Passaseo are defined as follows: Fix an integer 1 < k£ < N — 3 and
an element (t,0) € (0,00) x R¥"%71 Take a ball B with center in (¢,0) such that
B C (0,00) x RN=*=1 Then

O, :={(y,2) € RFHL x RN—F-L . (lyl,z) € B}.

4.2 Nonexistence results

In this chapter we will describe our nonexistence results for problem (p,0.0), one of
them will be a generalization of the Theorem 4.2. We start with some notation
Let 2 be a domain of the form

Q= {(y,2) e R" x RV 1 (|y], 2) € B}, (4.1)

where O is a bounded smooth domain in R¥=* with © C (0, 00) x RVN=F~1
We introduce the following geometric condition, which we will use to guarantee
nonexistence.

Definition 1. We shall say that a domain © is doubly starshaped with respect to
R x {0} if there exist two numbers 0 < to < t1 such that t € (to,t1) for every (t,z) €
© and © is strictly starshaped with respect to & = (to,0) and to & = (t1,0), i.e.

(x — &, ve(x)) >0 Vr € 00 N\ {&},

for each i = 0,1, where vg(x) is the outward pointing unit normal to 0O at x.



For Q as in (4.1) and Q € C*(Q) we consider the problem

—Au=Q(y,2)[uf *u inQ,
(9r0.0) { u=0 on Jf). (42)

We assume @ to be strictly positive on  and radially symmetric in y, i.e. Q(y, z) =

Q(ly|, z). As before 2y = (%Jflz)z We prove the following result.

Theorem 4.3. If O is doubly starshaped with respect to R x {0} , 0 <k < N —3
and (y,0,Q(y,2)) <0 and (z,0,Q(y, 2)) <0 for all (y,z) € Q. Then Q (as in (4.1))
satisfies that

o Q) has the homotopy type of S¥,
e the problem (ppa.q) does not have a nontrivial solution for p > 23,
e the problem (pp0.q) has infinitely many solutions for p € (2,2} ).

Note that if we take © to be a ball B centered at some point (7,0), which is
obviously doubly starshaped with respect to R x {0}, then Theorem 4.3 provides the
result given by Passaseo in Theorem 4.2.

Also note that the domains in Passaseo’s examples [37, 39|, as well as those in
Theorem 4.3, have the homotopy type of S*. As we said before, this shows that the
condition H,(2,7Z/2) # 0 it is not enough to guarantee a solution for the problem
(pp.o) when p > 2*. But, one may think that perhaps if ﬁ*(Q,Z/2) is richer then
(pp.o) will have a nontrivial solution when p > 2*. The next result shows that this is
not true in general.

Theorem 4.4. Given k =ki+---+ k,, with k; € N and k < N — 3, and € > 0 there
exists a bounded smooth domain Q in RN, such that

o ) has the homotopy type of SF* x - - x Skm,
e the problem (p,q) does not have a nontrivial solution for p > 2ve te,
e the problem (p,) has infinitely many solutions for p € (2,2},).
In particular, if we take all k; = 1 in Theorem 4.4, the domain ) is homotopy
equivalent to the product of k circles and therefore {2 satisfies that it not only the
homology is not nontrivial but there are k different cohomology classes in H'(Q;7Z)

whose cup-product is the generator of H*(2;Z). Hence, the cup-length of Q equals
k+1.
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4.3 Main tools for proving nonexistence

In this subsection we provide a detailed account of the main tools for proving our
nonexistence results. We will use the following notation:

Fix ki, ..., k, € NU{0} with k:=Fk; +--- 4+ k;,, <N — 3 and let © be a bounded
smooth domain in RV =% such that © C (0,00)™ x RN=*=m_ Set,

Q:={(y',...,y"™ 2) € RFHL x .o x REmtL o RN—E=m . ( .,|ym|,z) € 0},
(4.3)
and
G:=0(Fk +1)x---xO(k,+1) (4.4)

Think of G as a subgroup of O(N) acting on R¥! x ... x RkmT1 5 RN=k=m i the
obvious way, i.e.

(g17 s agm>(y17 s 7ym72> = (g1y17 S 7gmymvz> (45)

for g; € O(k; + 1), y* € R¥+1 2 € RVN=F= Tt immediately follows that Q is G-
invariant. The following result holds true.

Proposition 4.5. Let G, © and  as above. IOy, - ,y™ 2) =Q(vY, -, [y, 2)
is an G-invariant continuous function in Q and 0 < k < N —3, then problem (pp.0.0)
has infinitely many G-invariant solutions for p € (2,2y,).

Proof. By Lemma 77, we have that a G-invariant function u(y', - -+ ,y™, 2) = u(|y*|, - -

is a solution to problem (p, 0 ) if and only if u is a solution to problem

—div(b(2)Vu) = ¢(2)f(u) in O,
{ u=20 R ’ on 00, (4.6)
where b(z1,...2y_x) i= 21" ... 2k and ¢(2) := Q(2)b(2).

2)b(z
It is well known that the solutlons of problem (4.6) are the critical points of the

functional J : H}(©) — R, defined by

1

J(v) :—Hva——lv v € Hy(O)

c,p’

Joll? = / b(x) [Vol? and [of?, = / (@) [o]” -
(€] (€]

Notice that, since © C (0,00)™ x RV¥=F=™_ the functions b and ¢ are continuous
and strictly positive in ©. This implies that the functions ||v|; and vft,
equivalent to those of H}(©) and LP(©) respectively.

Now, since © C RM* the Rellich-Kondrachov theorem asserts that H}(©) is

compactly embedded in LP(©) for p < 25_, = (%ﬂ_)z

where

are 1norms

1yl 2)
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Hence, the functional J satisfies the Palais-Smale condition in H}(©). Moreover,
it clearly satisfies all other hypotheses of the symmetric mountain pass theorem |[2].
So, J has an unbounded sequence of critical values. This implies that problem (4.6)
has infinitely many solutions and therefore the problem (¢, ) has infinitely many
G-invariant solutions.

]

The following lemma provides a necessary condition for a function u € C*(Q)NC*(Q)
to be a solution of problem (g, 00).

Lemma 4.6 ( Pucci-Serrin, 1986). Let Q € C*(Q). Ifu € C*(Q)NCY () is a solution
of problem (pp0.0) and x € CH(Q,RY), then

1 1 1
5 [ 19 v do = [ Gainy [—@ af? — & |w|2] da
2 Jaq 0 p 2

1 p
oo [l (0 VQpde + [ @y (Vu Vapde  (4)

where vq s the outward pointing unit normal to 0S2.
Proof. 1t follows from the variational identity (4) in Pucci and Serrin’s paper [41] [

Remark 4.7. Since ) is a smooth bounded domain, cvery weak solution u to
problem (p,0.0) is a classical solution, i.e. u € C*(Q) N Cl( ), for more details, see
for instance, [15, Appendiz BJ.

To conclude this subsection we will construct a vector field x € C*(Q, RY) which,
in combination with Lemma 4.6, will be very useful for the proof of our nonexistence
results. To do this, let © C (0,00)™ x R¥N"*™ and Q as in (4.3). Fix 71,...,7m €
(0,00), and for every 1 <i <m, let ¢; : (0,00) — R defined by

oult) = = [1 - Copn].

ki +1 t

A direct computation shows that ; is strictly increasing in (0,00) and solves the
following problem
{ i(t)t
i(7i)

For y* € RFTIN {0}, we define

(ki +1)i(t) = 1, t € (0,00),
0.

Xy z) = ey Dyt em (Y™ 2). (4.8)

It is clear that y € C'(©2,RY). Moreover,
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Lemma 4.8. x has the following properties
(P1) divy = N — k

(P2) (dx(y", .- y™, 2) [€], ) <max {1 —kior(|y']), -, T = kmpm(ly™]), 1} €] for
every yt € REFL {0}, z € RNk ¢ e RV,

Proof. We will use the following notation: for every 1 < j < m,letl; = ki+---+k;+j
and (xq,...,2x5) = (y', -+ ,y™, 2), ie.

yj = (:El(j_l)+17 .. 7~:Clj) and z = (%(1m+1), e ,I‘N).

Hence,
L 1/2
W= >
i=lj—1)+1
Therefore,
X(xh"' "TN) = (Xl(xl,"‘ ,IN),...,X17,L($1,"' 7"EN)7"'7XN(:L‘17"' 7xN))

where ’

Xi(@1, s an) = @[y )z for 1y <i <1 <y,
and

Xz'(l’b'“ ,xN) =g; forl,, <i<N.

A direct calculation shows that

o @ an) = ¢i(ly]) ] +oily’])  for lioy <i <1y <,
and 5
—aXi(iﬁl,"' ,xy) =1 forl, <i<N.
€L
Moreover, since
l; ax, ) ij|2 )
? !
ax.(xl’ o ’xN) - gpj<|yj‘) | j| _'_‘pj(‘y”) =1,
=l +l 4

we conclude that

m l;
oXi
diVX(zla"'vl'N):Z X'(l’l,"',llf]v) +(N_k_m):N_k7



this proves (P1).
To prove (P2), note that x is G-equivariant for the G-action defined in (4.5).
Indeed, if

g:=(91,...,9m) €Gand (y,...,y™ 2) €Q
with .
y'L c Rkﬂrl ~ {O}, = Rkafm’
then

X' u™2) = x(ayh - gmy™ 2)

(1l gy, - - em(lgmy™ D gmy™, 2)
= (elly' Nay’s - em(y™ Dgmy™, 2)

(gler([y' Ny’ - em(y™Dy™, 2))
= gx(y',....y" 2)).

This implies that

godx(y',....y™ 2) =dx(g(¥',....y"™ 2))oyg

for every g € GG. Hence,

(dx (y' ™ 2) €, )en = (o(dx (¥ 0™ 2) [€]), 9€) g
= (dx (g(", - y™ 2)) 196, 9€) o

for all ¢ € G and all £ € RY. Thus, it suffices to show that the inequality (P2)
holds for y* = (y,0,...,0) with y¢ > 0. Set x;(v") := ¢:(|v'])y’. A straightforward
computation shows that, for such 3’, dx;(y') is a diagonal matrix whose diagonal
entries are a;; = 1 —k;;(y;) and aj; = ¢;(y;) for j = 2,..., k;+ 1. Since ¢;(t) < k:+r1
for all t € (0,00), (P2) follows.

]

4.4 Proof of Theorem 4.3 and Theorem 4.4.

In this subsection we will prove our results about the nonexistence of solutions for
the problem (p,0.0)-

Proof of Theorem 4.3. By Lemma 4.6 we have that if u € C3(Q) NCY(Q) is a
solution of problem (p,0.0) and x € C}(Q2, RY), then

1 1 1
v o do = [ (@i [—@ af — & |w|2] da
2 Joa Q D 2

oo [l V@ e+ [ (@i, Vadr (39)
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where vgq is the outward pointing unit normal to 0€2. Take x to be the vector field
defined in (4.8) for m =1, 0 < k < N — 3 and 7, = ¢, as in Definition 1, that is

X, 2) = (e(yhy,2),  (y,2) € (R¥'{0}) x RV
with ¢(t) = =5 [1— (%)**!] . Then

divy = N — k (4.10)

Notice that
©(t) > 0 for every t € (ty,00). (4.11)

and, since |y| > to if (y, 2) € €2, we have that
o(lyl) > 0if (y,2) € Q. (4.12)

This implies that

(X(y, 2), VQ(y, 2))pn = 0(yl) {, 0, QY, 2))pw + (2, 0:Q(y, 2))pv <0 V(y, 2) € QL.
(4.13)
By Proposition 4.8 we have that if y € R¥t1 < {0} and z € RY"*~1 then

(dx(y,2) [€], )pn < max {1l —kep(|y|), 1} [¢]* for every &€ RN,

Notice that equation (4.11) implies that 1 — kp(t) < 1 for t € (t9,00). Therefore,
using equation (4.12), we conclude that

(dx (@) [€],€) <|¢]*  VeeQ, RV (4.14)
We will show that
(x(x),va(x)) >0 Ve € 00~ {90,951 g € O(k+1)}. (4.15)

Since €2 is O(k+ 1)-invariant we have that vq is O(k+1)-equivariant. Thus, it suffices
to show that

((p(t)t, 2),ve(t,2)) >0 for all (¢,z) € 00 \ {&o, &1}, (4.16)

where vg(t, z) is the outward pointing unit normal to 0O at (¢,z) which we write
as vo(t,z) = (vi(t, 2),1a(t,2)) € R x RVN=F=1 Let (¢,2) € 0O. Since O is doubly
starshaped we have that

(t =t (t, z) + (z,10(t, 2)) >0 if (t,2) # (t;,0), for i = 0,1,
with ¢y, ; as in Definition 1. Therefore,

((p(t)t, 2),ve(t, 2)) = @)t (t, z) + (z,va(t, 2)) > (@(t)t —t + t;)1(t, 2).
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= @(t)t — t. Note that ¢/(t) = —kp(t) < 0if £ > t. So, since t € (ty, 1) for
z) € O, we have that

o)t =t =v(t) <P(t) <P(to) = —te  V(t,2) € 00,

If v1(t,z) <0, then

Set (1) :
t

every (t,

((e()t, 2),ve(t, 2)) > (b(t) +to)(t, 2) = 0

and if vy (t,z) > 0, then

()t 2), vo(t, 2)) > (Y(1) + t)w(t, 2) = p(t)ta(t, 2) = 0.

This proves (4.16). Combining properties (4.10), (4.13), (4.14) and (4.15) with iden-
tity (4.9) gives

1 1
0< / (divy) {—QM’) — = |Vu|2] dx+/ \Vu|? da
Q p 2 Q

1 1 1 )
(N k)<p 2 N—k:)/gl ul dz

which implies that p < 27, if u # 0.
Proposition 4.5 yields 1nﬁn1te1y many solutions for problem (g, 0.q) when p < 2%,.

O
Proof of Theorem 4.4. Choose o € (1,%5%) with Qe e 2 % Fix
T1y -+, Tm € (0,00) and, for the given ky,..., k,,, define xy asin (4.8). Let 0 < p < 7;

be defined by
max {1 — k1o1(11 — 0), ..., 1 — ko (T — 0)} = @,

© := B)7*(7) be the ball of radius ¢ centered at 7 = (7, ..., Ty, 0) in R x RN-F=m
and Q be defined as in (4.3). Then  has the homotopy type of SF x ... x Skm.
Moreover, Lemma 4.8 asserts that

divy =N —k and (dx (z)[€],6) < alé]? VzeQ, £ eRY. (4.17)

Since @;(t) < 0if ¢t < 7; and @;(t) > 0 if ¢ > 7, we have that, for all but a finite
number of points (z, z) € 00,

((e1(x) 1y oy om(Tm)Tm, 2), Vo(t, 2)) = Zj:lgpl(xl)xl(a:l —7)+ |Z]2 > 0.

Hence,
(x,vo) >0  a.e. on 0. (4.18)
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Combining properties (4.17) and (4.18) with identity (4.9) for K =1 we obtain

1 1
0< / (divy) {— lul’ — = |Vu|2] dx—i—oz/ \Vul|® dx
Q p 2 Q

1 1 (6] 2
=(N—-k)|-—= d
( )(p 2+N_k)/Q|Vu| .
which implies that p < ]\27(_]\]2:];1“ < 2y, t¢ if u # 0. Consequently, problem (g, o) does

not have a nontrivial solution in € for p > 2%, + €, whereas Proposition 4.5 yields
infinitely many solutions for p < 273, m



Appendix A

Representation of Palais-Smale sequences

A.1 Introduction

Our aim in this appendix is to describe the lack of compactness of the anisotropic
critical problem

—div(a1 (2)Vu) + as(2)u = az(z)|u[* 2u in Q,
(9) u=70 on 0%,

u(gx) = u(x) Ve e,g€q,
where

e G is a closed subgroup of O(N).
e ) is a smooth bounded G-invariant domain in R¥,

e a; is a G-invariant continuous function for ¢ = 1,2, 3 and satisfies that

e mina;(z) > 0 for i = 1,3 and
xe)

e minas(x) > —A(2), where A\ () is the first eigenvalue of the —A in
e
Hy (42).

Recall that, by the principle of symmetric criticality of Palais [35], the solutions to
problem () are the critical points of the restriction of the functional

1

1
J(U) = 5/9((11]Vu]2+a2u2)—§/9a3\u

1, 1
= Sl o, — olul

2%

2*
az,2*

to the space of G-invariant functions

HY D) {u e H}(Q) : u(gr) = u(z) for all g € G, 2 € Q}.
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Definition 2. We shall say that a sequence (uy,) in Hi () is a G—invariant Palais-
Smale sequence for J at the level c if

u, € Hy ()Y, J(u,) — ¢, J'(u,) = 0 in H Q).

We say that J satisfies the G-invariant Palais-Smale condition (PS)S at the level c in

H}(Q) if every Palais-Smale sequence for J at the level ¢ has a convergent subsequence
in H} ().

In general, the functional J does not satisty the Palais-Smale condition for every
c € R, i.e. there exist G-invariant Palais-Smale sequences which do not converge.

In [44], Struwe gave a global compactness result for problem (p) in the particular
case when G =1 and a; =1, ¢ = 1,2, 3. In this case, he gave a complete description
of the Palais-Smale sequences of the associated variation problem in terms of the
solutions of the limit problem

(0) —Au = |ul*2u in RY,
Poo u—0 when |z| — oo

Roughly speaking, he showed that the Palais-Smale sequences which do not converge,
approach to a sum of a solution (possibly trivial) to problem () plus nontrivial
solutions of the (p..) rescaled by sequences of points in the closure of the domain.

In [12], Clapp generalizes the result given by Struwe to the symmetric non-autonomous
problem, (i.e. the particular case of problem (p) when G is any closed subgroup of
O(N), as is a G-invariant positive continuous function and a; = as = 1). In this
case, she showed that the lack of compactness is produced by solutions of limiting
problems of the form

—Au = |[u* 2u in RV,
u—0 when |z| — oo
u(gx) = u(x) forall g e K

concentrating at G-orbits of Q with orbit type G/K for some closed subgroup K of
finite index in G.

In this section we will follow the proof of Clapp and Struwe to give a global com-
pactness result for problem (). In order to give a precise statement let us recall some
basic notions. Let O(N) be the group of linear isometries of RY. If G is a closed
subgroup on O(N), we will denote by

Gr:={gx:9 € G}

the G-orbit of x € RY and by #Gx its cardinality. A domain Q C R¥ is called G
invariant if
Gz C () for all x € Q.
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A function a : Q — R is called G-invariant if u is constant on every orbit Gx. The
subgroup G, of G defined by

G, :={g€G:gr =z},

is the G-isotropy group of x.
The main theorem of this chapter is the following

Theorem A.1. Let (u,) be a G-invariant Palais-Smale sequence for J at the level c.
Then, passing to a subsequence of (uy,) if necessary, there exists a G-invariant solu-
tion (possibly trivial) to problem (), an integer m > 0, closed subgroups G, ...,Gy,

of finite index in G, sequences (Y1), -, (Ymn) in Q, sequences (€1),. .., (Emn) in
(0,00) and non trivial solutions Uy, . .., Uy, to problem (ps ), with the following prop-
erties

(i) Gy,, = G for alln > 1, and y; , — y; for everyi=1,... ,m.

(ii) €; p dist(yin, O) = 00 and &;p|gyin—g'Yin] — 00 if [¢'] # 9] in G/G; for every
1=1,...,m,

(11i) u; is Gi-invariant for every i =1...m.

(iv) un—u—i 3 (a:a(yz:)

i=1 [g]eG/G: al(yz)

2—N
4  2-N
) ST (g — gy = 0 im DR2RY).

2—N

(v) J(u) +Z|G/Gi| (%

[z

a1\Y;)

As in [44] and [12], the proof of Theorem A.1 follows from the next lemma.

Lemma A.2. Let (u,) be a G-invariant Palais-Smale sequence for Jy at the level
c > 0 such that u, — 0 weakly in HY(Q)Y. Then, there exist a closed subgroup K
of finite index in G, a sequence (y,) in 2, a sequence (€,) in (0,00), a non trivial
solution u to the limit problem (po) and a G-invariant Palais-Smale sequence (v,,)
for Jy with the following properties

(i) G,, = K for alln € N, and y, — yo in Q.
(ii) e, dist(y,, 0Q) = 0o and &, gy, — g'yn| — 00 if [¢'] # [g] in G/K
(111) U is K-invariant,

2—N

() == 3 (B P ) o) in DR

ylea/K Gl(yo)




2—N

() ) = ) = G/K] (S22 ) 1 @)+ o(0).

a1(yo)~

As in [44], from Theorem A.1 we can conclude the following corollary which is very
important for this work.

Corollary A.3. The functional J satisfies condition (PS)S in H}(Q) for every

c< <min M) lS%. (A1)

z€Q a3(x)¥ N

In particular, if #Gx = oo for all v € Q, then J satisfies condition (PS)S in HL ()
for every c € R.

Proof. Let c be given as in the statement of this corollary. Since %S % is the minimum
energy of a non trivial solution u for problem (p,), we have that

< (mﬁ> Ls¥ <|0/K] <i> To(@)

z€Q ad(x)T a3(y) P

for every isotropy closed subgroup K C G and every y € Q. Therefore, if (u,) is
a G-invariant Palais-Smale sequence for J at the level ¢, it follows from statement
(v) of Theorem A.1 that m = 0. Finally, (iv) shows that (u,) converge strongly in
H}(Q).

O

A.2 Main tools for proving Theorem A.1

In order to provide a proof of Theorem A.1 we need some tools which we introduce
below
For every closed subgroup H of G, the set

RN .= {2z ¢ RY : gz =z for all g € G}

is the fized point space of H. Recall that the subgroups H and K of G are called

conjugate if there exists an element g € G such that H = gKg~'. The conjugacy

class of H in G is the set
(H):={gHg™": g€ G}.

Let
C :={(H) : H closed subgroup of G}.

It is well known that C is a partially ordered set with the partial order
(H) < (K) if and only if gHg ' C K for some g € G.

The conjugacy class (G,) of an isotropy group G, is called isotropy class. Note that
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Remark A.4. If (K) = (G,) and K C G,, then K = G,.

Proof. Let g € G such that
Ggz = ¢G.g7 ' = K. (A.2)

The map z +— gz is an isomorphism between (RY)% and (RY)X. On the other hand,
since K C G, we have that (RV)% C (RV)X. Hence (RY)% = (RV)X. Using
equation (A.2) we have that gr € (RV)X = (RY)%  therefore

G, C Gy =K,
this ends the proof. O

We shall make use the following result

Lemma A.5. Every finite-dimensional vector space has only finitely many isotropy
classes.

Proof. See |6, TV.10]

Now counsider the set
Vi={r € RY : #Gz < oo}.

Note that V is a linear subspace of RY. Also, since Ggz = Gz for every g € G, we
have that V' is G-invariant.

Remark A.6. For every sequence (w,) in V, there exist a closed subgroup L of G
and a subsequence of (w,), which we still denote in the same way, with the following
properties

« G, =L VYneN
o RMLCV

Proof. Let (w,) C V. Using Lemma A.5 and passing to a subsequence we have that
there exists a closed subgroup L of GG such that

(Gw,) = (L) VYneN.

On the other hand, since
Ggr = ¢G.g™' Vg eEQG,

we have that
(L)] = (Guw,)| < #Gw,, < 0.

Since |(L)| is finite, a subsequence of (w,,) satisfies that
Gy, =L VneN.
Finally, note that if z € (RV)% then L C G,, and hence
#Gx = |G/G,| < |G/L| < .
This shows that (RV)L C V. O



56 Appendix A

The following lemma can be find, up to minor modifications, in [19, Lemma 3.2|.

Lemma A.7. Given a sequence (g,) in (0,00) and a sequence (&,) in RN there exists
a sequence (y,) in RY and a closed subgroup K of G such that for some subsequence
of (&), which we still denote in the same way, it holds that

(s1) e, dist(GE, yn) 1s bounded.
(s2) G, = K for alln € N.

(s3) If |G/K| < oo, then €, gy, — g'yn| — 00 for any g,g" such that [g] # [¢'] in
G/K.

(s4) If |G/ K| = oo, then there exists a closed subgroup K' of G such that K C K,
|G/K'| = 0o and &, |gyn — g'yn| — 00 for any g, g’ such that [g] # [¢] in G/ K.

Proof. Given the sequences (e,,) and (&,), there are two cases:

Case 1 The sequence (&, 'dist(£,,V)) is unbounded.
Case 2 The sequence (e, 'dist(,,V)) is bounded.

Case 1. Passing to a subsequence, we may assume that ¢, dist(¢,, V) — oco. Using
Lemma A.5, we may also assume that there exists an isotropy group K such that
(Ge,,) = (K) for every n € N. Therefore, for every ¢, there exists g, € G such that

We define y,, := ¢g,&,. From the definitions of the sequence (y,) and the closed
subgroup K it becomes evident that (s1) and (s2) are satisfied.
Also, using that V' is G-invariant, we have that

e dist(y,, V) = ¢, dist(&,, V) — oo,
therefore, v, € V. This implies that
G/K| = [G/G,| = #Gyn = .

Hencce, we have to prove that (s4) holds. Let V* the orthogonal complement of V/
in RY and g, be the orthogonal projection of 7, onto V*. Since y,, € V we have that
o, # 0. Hence, passing to a subsequence, we have that

Q'IL

|0n]

We define K’ := G,. Also note that, since y, € K Vn € N, we have that K C K'.
Moreover, using that o € V*+, we have

—oe V™t

|G/K'| = #Go = oc.
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Let g,¢" € G such that [g] # [¢'] in G/K'. Since |go — ¢'0| > 0, we can take ng € N
such that

On 1
i ‘<—|99—g’9| Vn > ny.
| 0] 4
Then
go—do < |go— 2% 90n _ 0n gl@"—g’g‘
- |Qn| |Qn| |Qn| ‘QN|
!
_ |9 _gen| o) 0 ‘
‘Qn’ ‘in ’Qn‘
!
n n 1
< &—&nt—!g@—g'@! Vn > no,
lonl ol | 2
therefore

1
§Ige —g'ollon] <lgon —g'0n] Yn > ng.
This finally yields

1 L 1 _
Slae - g'ole, dist(y,, V) = Qenl\gQ — 40l on]

et 1g0n — g’ onl

<
S gr_Ll |gyn - g,yn| Vn 2 no.

Since e, 'dist(y,, V) — oo, statement (s4) holds.

Case 2. The sequence (g, dist(&,,V)) is bounded. Let § be the set of isotropy
classes (Gy) such that x € V and &' (dist(&,, (RN)9C=9")) contains a bounded sub-
sequence for some g € GG. By Lemma A.5 the cardinality of § is finite.

We will prove that § # (). For this purpose, let x,, to be the orthogonal projection
of &, onto V. Since (x,) C V using Remark A.6, we can assume that there exist a
closed subgroup L of G and a subsequence of (z,,), which we still denote in the same
way, with the properties

G, =L VYneN and RMFCV

Therefore
e dist(€,, (RN < e Mg, — x| = £, dist(€,,V) < c.

This shows that (L) € §.

Now, since § is a partially ordered non-empty finite set, there exists an element
(K) € § which is a maximal element to the partial order. This means that if (F) € §
and (K) < (F) then (H) = (K). Moreover, since (K) € §, passing to a subsequence
of (&,), we may assume that

dist(&,, RM)E) <c< oo VneN.



58 Appendix A

We define y,, to be the orthogonal projection of &, onto (RY)X. We immediately find
that

et dist(GEn, yn) < et én — yn| = €, dist(€,, (RM)E) < ¢ Vn €N, (A.3)

hence, (s1) holds. Since (K) € §, we have K = G, for some zo € V. This implies
that if z € (RV)X = (RY)%o, then G,, C G,. Therefore

LGr = |GGy < |GGy = #Cay < 0.
We conclude that (RV)% C V. And since
(yn) C (RM) (A.4)

using Remark A.6, there exist a closed subgroup L C G and a subsequence of (y,)
such that
G,, =L YneN and RM)FCV.

Note also that equation (A.4) implies that K C L, and therefore (RV)E C (RV)E.
Then, one has that

e dist(€,, (RN = e ME, —yn| <c VneN.

So, (L) € §. Since (K) is maximal in § and K C L, using Remark A.4, we concluded
that
K=F=G, YnecR".

This proves (s2).

Being that |G/ K| < oo, we only need to prove (s3). Arguing by contradiction, let
us suppose that there exist g,¢' € K such that [g] # [¢/] in G/K and (¢, |9y, — g'yn])
is bounded. Let gy := ¢ !¢’ € K and L to be the subgroup of G generated by
K U {go}. Let W, = (RV)L and W, to be the orthogonal complement in (RV)X.
Write

Un =y: + 12, withy! e W, i=1,2.

Since gy ¢ K = G, we have that goy, # y, for all n € N. And therefore, using that
go € L and that y! € W, we obtain
0 7 goYn = Yn = (90¥n — Yn) + (90Yn — Yn) = 9G¥ = Y- (A.5)

Hence y2 # 0 for all n € N. Passing to a subsequence we obtain that

Y2
2]

We will use the sequence (&, '42) to arrive a contradiction by showing that it cannot

be bounded or unbounded.



A. Main tools for proving Theorem A.l 59

First we will suppose that (¢,'y?) is unbounded. Then passing to a subsequence
and using equation (A.5), we have that

-1 _ -1 o
_ Enl90Yn —yul _ e lgYn =9yl ¢

&yl eltlal T ety

gy Y2

ly2| Y2

Therefore goy = y, and being that y € W, C (RV)X, we have that gy = y for all
g € L. This means that y € (RV)L = Wy, which is a contradiction.

Let us now suppose that (g;1y2) is bounded. Since (y.) C (RV)¥ C V, Remark
A.6 implies that there exist a closed subgroup L; of G such that G,n = L; for all
n € N. In addition, using Equation (A.3), results in

ep dist(&n, RY )M = e M6 — yal < et [€n — yal + €5 |y < 1 < oo,

for some constant ¢; > 0. This shows that (L;) € §. Note also that since y} € W7,
we have that K C L C Ly. Using again that (K) is a maximal element in § and
Remark A.4, we concluded that

K=L=L,

which contradicts the fact that gy € K.
Therefore, if g, ¢ € K and [g] # [¢'] in G/K then (|gy, — ¢'yn|) is not bounded.

This proves (s3) and concludes the proof.
O]

Recall that the energy functional J., : D»?(RY) — R associated to problem (p4,)

is given by
1 1 .
Joo = = Vul? — — 2
W = 5 [ ViP5 [

Also, we define the functional J; : DV(RY) — R by

1 1 .
e N R\ LT

The following lemmas are taken from [47].

Lemma A.8. (Brézis-Lieb Lemma, 1983). Let Q be an open subset of RY and let
(w,) C LP(2), 1 <p < oo. If

o (wy) is bounded in LP(2),
e w, — w almost everywhere on €1, then

T (Jwalf — 0, — wlf) = wl,
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Lemma A.9. If w, — w weakly in DY*(RY) and w € LS (RY) then

2w, —w) = |w* 2w in (DY*(RY)).

[w,|* 2w, — |w, — w
Lemma A.10. If
u weakly in H}(SY),
u a.e. on 2,

u in L7 (€2),

loc

S
U

c in R,
0 in (Hy (%)),

S
2
I

d

then J'(u) = 0 and v, = u,, — u is such that

[oall* = funll® = [lu]* + o(1),
Ji(v,) — c¢—J(u) in R,
Ji(v,) = 0in (HH(Q)),

Proof. Since u,, — u weakly in HJ (), it is clear that

anH2 = (Un, Un) — 2{up, u) + (u, u)

= [Jun]|* = [lul® + o(1).

On the other hand, being that v, — 0 in L7
1

J(vn) — Ji(v,) = = /Q as(z)v2 = o(1), (A.6)

(), we obtain

2
moreover, Lemma A.8 implies that

1 1
J(v,) = 5 (U, — Uy Uy, — )

1

1 .
= §(HunHa1,a2 - HuHa1,a2) - ;/ai’)‘un - U‘Q +o(1)
Q

_ J(un)—J(u)+2—1*(/Qa3\un\2* —/Qa3|u|2* —/Qa?,]un—u|2*)+o(l)
= c¢—J(u)+o(1),

a0z % Qa3|un — u|2*

which, together with equation (A.6), shows that
Ji(v,) = ¢ — J(u) + o(1).

On the other hand, since 2 is bounded, we can combine Rellich-Kondrakov Theorem
and Lebesgue’s Dominated Convergence Theorem to obtain

/ aslun ¥ "unp — / as|u|® “up, for every p € H}(Q). (A.7)
Q 0



Since u, — u weakly in Hj(f2), Equation (A.7) implies that

I (Un) 0] = (tn, 0) 4, o —/QaslunIQ*Qunso — (U, 0y, a0, —/Q%IUIZ*QW = J(u)g].
Since also J'(u,)[p] — 0, we have that J'(u)[¢] = 0 for every p € HJ(Q2), e J'(u) =0

Being that v, — 0 in L}

i.(£2) we have, for n large enough and for every ¢ € C§°(Q),
that

T (o)) — (o))l = L@%¢

- igg‘az(x)‘ (/Q|vn\2)2 </Q |<P!2)2

< Cellyl]

Since C5°(Q) is dense in H}(Q2), we have that J'(v,) — Ji(v,) in (H}(2)). Finally

Tl = w%—mwnmfiéamm—MT*wn—ww
=JMMﬂ—ﬂwM+L%MVWwW—A%M”%¢

+ [ aafun = a2 = ),
Q
hence, using again equation (A.7), we obtain

J ()] = J'(un)[@] = J'(w)[e0] + o(1),

and therefore

Ji(vn) = J'(va) +o(1),

as we wanted to demonstrate. ]

A.3 Proof of Theorem A.1

We will begin with the proof of Lemma A.2 to carry on with the proof of Theorem
ALl
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Proof of Lemma A.2. We divided the proof into several steps.
Step 1: Definition of the sequences (g,,), (yn) and the group K.
Let (u,) be a G—invariant Palais-Smale sequence for J; at the level ¢ > 0, equation

1 1
NHunHzl = J(un) - ?J,(un)(uw < |C| +1+ ||un||a1 (A,8)

guaranties that (u,) is a bounded sequence in H}(Q)¢ and hence, J|(u,)(u,) — 0.
Therefore

/ as|un|?” = N(J1(up) — %J{(un)(un)) — Nc > 0.
0

2—N
(max ag) 2

Let § := min{%:, ”“"GQ—N} > (0 and extend w,, = 0 outside 2.
(s mlgrzlal)*7
xre

For every n € N, consider the Levy concentration function @, : [0,00) — [0, c0)
defined by

2%

Qn(r) = sup/ asz|uy,
B(y,r)

yeRN

Notice that @, is an increasing continuous function. Moreover, since @,,(0) = 0 and
lim, 00 @, (r) > 6, there exist g, > 0 and &, € RY such that

2% — / a3|un
B(&n,en)

Now, for the sequences (g,) and (,) we choose K and (y,) as in Lemma A.7.

By property (sl) of Lemma A.7 there exists a positive constant C; such that
e, dis(G&,, yn) < Cy for every n € N. This implies that there exists g, € G such that
B., (gn&n) C Bee, (yn) for C := C; + 1. Hence, using that a3 and w,, are G-invariants,

one has that
) :/ as|uy, z :/ a3|un|2* S/ as|u,
Be,, (gn) B (gnfn) BCan (yn)

Next we will show that |G/K| < oco. If we suppose the contrary, property (s4) of
Lemma A.7 guarantees that there exists a closed subgroup K’ such that K C K’,
|G/K'| = 0o and &, "[gyn — g'yn| — oo for any [g], [¢'] € G/K" with [g] # [g'].

Let {g1,...,9m} in G such that [g;] # [¢;] in G/K" if i # j. We have that

BC€n (gzyn> N BCsn (gjyn) = (Z) Vi # ]

for n sufficiently large. Using again that the functions a3 and u, are G—invariants
and inequality (A.9), we obtain

7 =4

Qn(en) = sup / az|uy,
B(y,en)

yeRN

2 (A.9)

&n

m

md < Z/ aslu,[* < / aslu,|*” = Nc+o(1),
Beey, (9iyn) Q

=1
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for every m € N. Since this is a contradiction, we conclude that |G/ K| < oc.
Step 2: Definition of u # 0 such that u(gz) = u(x) for all x € R" and g € K.
Let us consider the following functions

- N-2
Un(z) = &n? Un(EnZ + yn)
al(z) = ai(epz+yn) i=1,3.

Since u,, is G-invariant and G,, = K, we have that u, is K-invariant. Indeed, if g € K
we have that

N_2
671(92) = é&p’ un(5n92+yn)
N_2
= &n? un(g<5nz+yn))

N—2

* ‘

en? Up(Enz + Yn)

Up(2).
for every z € RY. Analogously, the equality
a;(9z) = ai(eng? + yn) = ai(9(enz + yn)) = ai'(2)

shows that a} is K-invariant for ¢ = 1,3. We also have that

/Qad(x)mn(x) Ydr = /n a? (2) |, (2)|* dz
/Q 01 (2) [V () 2z = /Q IV

where
Q, ={zeR": e,z 4y, € Q}.

Being that @, a bounded sequence in DY2(R™) then a subsequence -which will be
denoted in the same way- satisfies that

U, — U weakly in in D'?(RY)
U, — u strongly in L7 (R")

loc

U, — U ae. in RY.

It follows that w is K-invariant. Next we will proof that w # 0. Arguing by
contradiction, let’s assume that & = 0. Let 2 € RY and h € C5°(RY) such that
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supp(h) C By(z). If hy(z) = h(Z=(z — y,)), one has that

En

Ty (u)h2u,] = / 01 (2)(Vitn () - V(B2 ()t (2))) e — / 03(2) () [* 12 (2)di
- / ) (Viin(2) - V(0 ()T (2)) )z — / (2| (2) [P (2
Bi(2) Bi(2)
Since Ji(uy,)[h2u,] — 0, we have that
/ a(Vii, - V(h*1,)) = / al|in)* B2 + o(1) (A.10)
Bi(2) Bi(2)

On the other hand, using Holder and Sobolev inequalities, equation A.10 and the fact
U, —u=01in L} (RY) we have that

2
S (min, g aq) (/ ]ﬁﬂn 2*>
Bi(z)
< (minal) / IV (hii,,)[?
e Bi(z)

_ (min a1> / Vi, + 4, Vi
€N Bi(z)

= <mina1> / (h2|VTin|? + 201, Vi, - Vh + 2| Vh|?)
FISIY] Bi(z)

= <min a1> Vu, - V(ﬁ2ﬂn) +o(1)
z€S) Bi(z)

N-2 2 2
N —~ . 2% — « N
< (maxed) " ([ RaE) ([ am) o
Sy Bi(z) Bi(z)

N-2 2
N ~ _ . 2% 2
< (maxag) (/ | b, |2 ) O~ 4+ o(1),
z€QN Bi(z)

the last inequality is due

| amr = [ S
Bl(z) Bsn(EnZJFyn) Bsn(én)

*

= 0.
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Now, using the definition of 9, one has

N-2

% (maxas) ¥
~ L\ 2 - ~_
S(/ Ihﬂnl2) < 6Q—(/ |hidy,
Bi(z) (Iaflelg ap) Bi(z)

5(/ y%anyQ*)Q +o(1).
2 \Un»

This implies that / |hii,|>" — 0 for every y € R" and for every h € Cs°(RY) such
Bi(2)

that supph C By(z). Hence, if we choose h € C5°(RY) such that supph C By(z) and
h=1in B%(z) we have that

/ 2 g/ B2 = 0
B (2) Bi(z)

1
2

N

2*) 5% +o(1)

IA

2%

> (RY). This is a contradiction because, using inequality (A.9),

Therefore u,, — 0in L
we have that

Beey, (yn) Bc(0) el B (0)

We conclude that @ # 0. Since (y,) is a bounded sequence, a subsequence converge
to a point yy € RY. We define

2%

= (2e)

Step 3: It holds true that €, dis(y,, 0) — o0, y, € Q and U is a solution to problem
(Po0)-

Since (g,) is bounded, a subsequence satisfies that ¢, — ¢ € [0, 00). We claim that
e = 0. Indeed, if € # 0, for every h € C°(RY), we can consider

)

2N~ 2 —UYn

ho(z) = en? h(

Hence, by Lebesgue’s dominated convergence, we have that

/ V(B — B)[2 0.
RN
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Moreover, using that u,, — 0 in HZ () and therefore in DV?(R”) | we have that

[(tn, 1) = [ (uns hn) | | {wns b)) — (s B) + (un, ) |
| (tns o — ) [ + [ (n, ) |
[|un|[[/ain = R[] +o(1)

C||hn — hl| + 0(1)

o(1).

Since, this is true for every h € C5°(RY) we have that @ = 0, which is a contradiction.
We conclude that e = 0.

Let us suppose that the sequence (e, 'dis(y,,2)) is bounded to obtain a contradic-
tion. Passing to a subsequence, we may assume that e, 'dis(y,,Q) — d < co. Note
that this implies that

IAININ

dist(yy, 0Q) — 0. (A.11)

After passing to a subsequence, we have the following two cases:
case 1. y, €Q VYn €N
case 2. y, € RN\Q Vn eN

First we will consider case 1.

For every z € 010, v(z) will denote the inward pointing unit to 0f2, and for every vy,
let z, € 0N such that |y, — z,| = dist(y,, 02). We also may assume that v(z,) — v.
Since 0f) is a compact smooth domain there exists a positive ry such that

B,,(z +rov(z)) € Q and B, (2 — ror(z)) € RIN\Q ¥z € 0Q. (A.12)

Consider the transformations ¢, : RY — RY and defined by

1
Q;(Z) ‘= e,2 + vy, and Qi(z) = 5_(Z — UYn)

n

Lets consider the half-space H := {z € RY : v .2 > —d}. We will show that
% € Dy*(H) and that @ is a solution to problem

— Ay — as(yo)|

= w|> 24 in M. A.13
a1(yo) ( )

Fix 2 € R"™\H. Note that z - v(2,) > —¢; |y, — 2, for all n > n;. Hence, there
exist 7 > 0 such that

v € B(((lgn(zn)l +7)(=v(20))) VY1 = my.

Applying the transformation o}, we have that there exists ny such that

0n(7) € 2(Br(((Ien(20) + 1) (=v(20)))) = Ber (20 — €arv(20)) C Byy(2n — 1ov(20))
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for all n > ny. Therefore, using (A.12), for we obtain
€ Bo(((lon(za)| + 1) (=1(20))) CRY\Q, Y1 > .
Since supp, C €,, we have that if z € R™\ H then
Up(x) =0

for n sufficiently large. And so, using that u, — u almost everywhere in R", we
conclude that u € Dé’Q(H). Preceding in a way analogous, for every compact set
K C H, there exists 7 > 0 and n; € N such that K C intB,.((|r — |02 (z,)|v(2,))) for
all n > ny. Therefore, there exists ny € N, such that

Q;(BT((T - ’Qi<zn)‘)(l/<zn))) = Bsnr(zn + 5nTV(Zn)) - Bro(zn + rOU(Zn))
For all n > ny. Hence, using again (A.12) we obtain
K C intB,((r — \Qi(znﬂ)(y(zn))) CcQ, Vn>ns.

If 5 € C§°(H), then Suppg C (, for n sufficiently large. Let

2—-N ~

Pn(2) =2 de, (2= yn))-
It follows that

= [Ji(un)[n]]

< V()] [l n]]
< [IVJi(u)]ll[6]] — 0

/ AV, Vo — | al|tn]* 2.0

n Qn

and since
| avin o [ a6 [ v ve- [ a2
QO Qn H H
we conclude that
[ aw)va- Vo [ wola -0 voe o).
H H

This shows that @ is a solution to problem (A.13). Pohozaev identity [40] shows that
u = 0, which is a contradiction.

Therefore, if 3, € Q for all n € N, we have that (¢, 'dis(y,,)) is not bounded.
Passing to a subsequence we may suppose that &, 'dis(y,, Q) — oo.

In case 2 (when y, € RN\Q for all n € N), it can be show, in full analogy with
case 1, that e, dis(y,, Q) — oo.
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However, if y, € RM\Q, & 1dis(y,, ) — oo and C is a positive constant, we have
that Be.(y,) C RM\Q for n sufficiently large. This implies that ch ¥ =0,

which contradicts equation (A.9).

() [Un

Also it cannot be that y, € 99, for otherwise ¢ 'dis(y,, Q) — 0, which is not the
case. We concluded that y,, €  for all n € N.

Finally, suppose that 5 € C°(RY), and supptg C B,(0). Since &, dis(yn, Q) — oo,
we have that B, ,(y,) C Q and therefore ¢ € C5°(€2,) for all n > nz. Arguing as
above we have that

/ ai(yo)Va-Vo— | as(y)a]* 2ud=0 Vo e C&RY).
RN

RN

This implies that u is a solution to problem

— Au= 200z ny g ey (A.14)
a1(yo)
=
and therefore, u = (%) u is a solution to problem ().

Step 4: Definition of the sequence (v,,) which satisfies (iv).

Let 7, := 1 min{dist(y,, ), |gn — ¢'(yn)| with [g] # [¢']| € G/H}. Then we have
rne,t — 0o. We choose a radially symmetric function ¢ € C5°(RY) such that 0 <

o<1, ¢(x)=1if |x] <1and ¢(z) = 0if |x| > 2. Let us introduce the sequence (v,,)
defined by

2-N 2-N

Un =y — > €a® alyo) * a(e, g7 (2 = gyn))e(ry (2 = gyn))-

a3(yo)

where a(yo) = (a1(y0)

). Since u is K-invariant and G, = K for all n € N, we have
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that v,, is well defined, G-invariant and v € H}(€2). Moreover

2
Uy = Un Y e aly) T ale; g7 (- — gyn)
lgleG/H
2
= | e el T  — gy — 6 — g9))
lgeG/H
2— 2-N 2
< Y aw) T e e g = gu )L - 60 (- — gy
l9leG/H

= aly) 7 1G/K]|[[a1L — d(rhen ()]

< Gl P61 ([ VAPt [ o)
|z|>2en 1 rn entrn<|z|<2enlrn

. R R =
< Chalyo)*?|G/K] ( / |Vu|2+( / |u|2) )
|z|>2e5 ' |2[>2e5 'y

the last inequality follows from Holder inequality. Since, u € DY2(RY) = {u €
L¥(RYN) : Vu € L2(RN)} and ¢, 'r, — oo, we have that the last expression goes to
zero. Therefore (iv) holds.

Step 5: Proof of (v) and that J;(v,) — 0.

Let G/K :={g1,...gm}- Since u, — @ weakly in D"?(R") we have that
U, 09y —tuogyt — 0 weakly in DV?(RY), (A.15)
On the other hand, if ¢ € D"?(RY), we have that

(g (- + e (9150 — gin))), 0()) = (@(), 091 (- = £ (919 — 9ilyn)))))-

Hence, using that €, *|g1y, — g;yn| — oo for every i # 1, we obtain

ﬁ(gi_l(- + 5;1(91% — GiYn)) — 0 weakly in DI’Q(RN), (A.16)
iti 41 Tet
5 N 1
Dn<2) = Un(Z) - Zgn CZ(Z/O) 4 u(gn 9; (Z - glyn))
i=1

Since u,, is G-invariant, it holds that

m
N—-2

en® Dn(enz + g19n) = (@ o gr") = > T(g; (2 + &, (919 — 9i9n)))
=1
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therefore, using equations (A.15) and (A.16), we obtain

N-2

en® Dp(en-+g1yn) + o gt — o gyt weakly in DY(RY) (A.17)

|D,|2, = / VD, -VD,

N-2

Q
- / "V(en® Du(enz + i) + G0 gi' — W0 g7") - V(en? Dulenz + gitm) + 0 g7! — o g7")
Qp

N-2 . N-2 .
= [ a'V(en® Du(enz+giyn) +U0 gy ') - Vien” Dulenz +g1yn) + U0 gy ")
Qn

- 2/ 1V(en D(€n2+glyn)+ﬂogfl)-V(ﬂogle/ ayV(wog, ') - V(uog ")
Qn Q

N-2 N-2
B / ayV(en® Dn(enz + g1yn) +uo gfl) V(en® Dn(enz + g1yn) +uo gfl)
- [ ) V@eg) - Ve g + o)
R

= /Qalv(D e alyo)ule, g7 (- — qiya))) - V(D 72 alyo)ile; g1 (- — giym)))
— ar(yo)[|Tl* + o(1)

Hence

[ — Zan a(yo) T e, g (- = giwn)) |12, =

=3 o) o <—giyn)>||§1—<%) Jal + o)

2—-N
Let us denote ag(yo) := (%) Arguing by induction we have that
ai(yo) 2

[[n — Zgn alyo) * e, g7 = g2, = lluall2, = mao(yo) [@l> + o(1)

Since, in step (iv) we proof that

2—N

L o
[vall2, = llun — > en? alyo) = (e, g7 (- = giyn)) |12, + (1), (A.18)
i—1

we conclude
[onll2, = llunll2, — mao(yo) [T]]* + o(1). (A.19)
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On the other hand, using equation (A.17), one has that

N—-2

en” Dp(enz + giyn) +uo gt — wogr ' ae. on RY,

Therefore, Lemma A.8 implies that

J

N-2 - . . B
== / ag’€n2 Dn(£n'+glyn)+uogll_uogl

1)2*

N2 . 1% - -~ "
= [ @l Duten toumn) + 700 - [ anll@o i + o)
Qn R

— /Qa;g!D L5 a(yo) e u(e, g (- _glyn))‘z*_/ﬂw as(yo)|u|* + o(1),

hence

o*

asz,2* =

WO 5. 2=N_, _q _
=3 en® alyo) T a@len 07 (- — gi) 2
=1

3: +0(1)

UCN 55 2-N ., _ ~
|u7’b - Z€n2 a(yo) 4 U’(gnlgz ( - glyn))|a3 2% T ao(y0)|u
=2
It follows by induction that

5o +o(1).

Zgn a(yo) T (e, 077 (- = i) )2 20 = [l 50 — mao(yo)|@

Using again equation (A.18), we have that

5 +o(1). (A.20)

= [unl3, 2- — mao(yo)|@

Combining equations (A.19) and (A.20) we obtain
Ji(vn) = Ji(un) = |G/ Klao(yo) Joo () + (1),
which concludes the proof of (v).
Now, let ¢ € C§°(Q2) and
N-2
pn(2) == 7 p(enz + 1Y)

Note that

2—-N

5 aln) 0 0 = ). 9o = [ V@ g / 3V (o)
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also note that, since w is a solution to problem A.14, we have that

/a?V(ﬁog;1)~/a?V(<pn) —/agﬁogl—l

therefore

P2 (wo gi e = o(1)

2—N 2—N

(e alyo) A T - — g1n))s D) = / a0 g P 2 (@ o gy )pn + o1)

Using again Lemma A.9, we obtain

J(DW)g) = (D @ar — / as| Dol Dy

T 0(e 97— 1)y @)y

= J(Dy+e 7 alye) T ale; g7 (- — i) [¢)

2-N 2=N _, 1 _
b [ aalDut £ alo) T e 0 - gum)

2—-N 2—

*_ 2-N 2-N _, _ _
T (Dn e aly) T e, 9r (= giyn)))e

- / T o g7 P 2(@o g )n — / 43| Dal2 2D + o(1)
2—N 2—

= Ji(Dn+e 7 aly) ® e, g1 (- — g1vn))) ¢
N-2 . N-2 ~
* /a’§|€n2 Dn(gn : ‘|‘91yn) +uo 91_1|2 _2(5712 Dn(gn : +glyn) +uo gl_l)gpn

e o = . o N2
B /ag|uogl_1|2 2(u0g1 1)90”_/a3|€n2 Dn(gn'+glyn)|2 2(5n2 Dn(En'+glyn))¢n+0(1)

2-N __

= Ji(D,+ E%a(yO)Tu(&:lgfl(' — g1Yn))) 0] + o(1)

It follows by induction that

J1(Dn)le] = Ji(un)lg] + o(1).
Finally, using equation (A.18), we conclude that
J'(va) ] = J'(un) ] + 0(1)
=o(1),
Since this is true for every ¢ € C§°(Q2), we have that
Ji(vn) = Ji(un) +o(1)
=o(1).

which proves that (v,) is a Palais-Smale sequence for J; and concludes the proof. [
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Proof of Theorem A.1. Let (u,) be a G—invariant Palais-Smale sequence for J at the
level c. Since

1 1
NHunHZl,az = J(un) - ;J/(un)(un) < |C’ +1+ HunHal,az'

we have that (u,) is bounded. Therefore, passing to a subsequence if necessary, we
may assume that

u, —u weakly in H,(Q)
u, —u in L3 .(Q)

u, — u a.e. on .

Setting ul := u, — u, we have that ul — 0 weakly in HZ(Q)¢.

A.10 implies that u is a solution to problem (p) and

Moreover, Lemma

lunl® = llnll® = [Jull® + o(1)
Ji(w,) = c—J(w),
Ji(u,) = 0in (H(Q))

Hence, u) is a G-invariant Palais-Smale sequence for J; at the level ¢; := ¢ — J;(u).
If ¢; <0, from the equality

1 1
AR, oy = () = 52 () () + (D),

we have that ¢; = 0 and ||} ||4; 4, — 0, which implies that u} — 0 strongly in H} ().
So, in this case the theorem is satisfied with m = 0.

If ¢; > 0, from Lemma A.2 we have that there exists a closed subgroup G of
finite index in G, a non trivial solution u; to problem (po), a sequence (y;,,) in 2, a
sequence (¢;,) in (0,00) and a G-invariant Palais-Smale sequence u? for J; with the
following properties

(i) Gy, =Giforalln €N, and y;,, — y1 in Q.
(ii) 5iidist(y17n, 0Q2) — oo and 51_7i|gy17n — gy1n| = o0 if [g] # [¢] in G/Gy,

(iii) @, is G;-invariant.

. a =N .
(iv) up =up— ) (ag(yl)) ers W9 ern(- = gyin)) +o(1) in DY2(RY).
[9I€EG/G1

z

2

(v) Ji(u2) = Jy(un) — |GGl (#> J(i) + o1).

ai(y1)”

I\D‘Z
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Equality (iv) show that u? — 0 weakly in H}(Q). Moreover, since U is a solution
to problem (pu), we have that Ju. () > +5™/2. Hence, using (v), we obtain

Tun) > Ji(ud) = (1) + <min M#%) SV 4 o(1),

therefore

2—N
2 1
lim Jy(u)) = ¢; > lim Jy(u2) + <min %#Gz) — SN2,

n—o0 n— oo

Let lim Jy(u?) := co. If ¢y <0, equality

n—oo

1

[l e = Si(un) = 2 T () (),

1

=
shows that c; = 0 and ||u2||a; .0, — 0. Therefore u?2 — 0 strongly in Hj(2). In this
case, the theorem is satisfied with m=1.

If ¢, > 0, applying again Lemma A.2; this time to the sequence (u?), we have that
there exists a closed subgroup G of finite index in G, a no trivial solution uy to
problem (po), a sequence (y2,,) in €2, a sequence (e2,,) in (0,00) and a G-invariant
Palais-Smale sequence (u?}) for J; with the properties (i)-(v).

We can apply the same reasoning to the sequence (u?). The inequality

z

4 . = 1
lim Jy(ul) > lim Jy(ub) + (min %#Gw) NSNQ

n—00 n—00 zeQ a, (;p)_ 2

guaranties that lim J;(u™"') = 0 for some m € N, and therefore |[u™*!(|4, 4, — O.
n—oo

This concludes the proof.
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