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Abstract

Nosotros consideremos el problema clásico de Lane-Emden-Fowler

(℘p,Θ)

{
−∆v = |v|p−2v in Θ,
v = 0 on ∂Θ,

para ambas, linealidad críticas (p = 2∗) y supercríticas (p > 2∗), en un dominio
acotado suave Θ en RN , N ≥ 3. Aquí, como es usual, 2∗ := 2N

N−2
es el exponente

crítico de Sobolev. En algunos casos particulares uno puede reducir el problema
supercrítico a un problema anisotrópico critico de la forma

(℘∗a1,a2,a3,Ω
)

{
−div(a1(x)∇u) + a2(x)u = a3(x)|u|2∗−2u in Ω,
u = 0 on ∂Ω

en donde Ω es un dominio acotado suave en Rn, n ≥ 3 y ai ∈ C0(Ω) es estrictamente
positiva para cada i = 1, 2, 3. En esta tesis presentamos resultados acerca de la
existencia, no existencia y multiplicidad de soluciones para estos problemas
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Chapter 1
Introduction

We consider the classical Lane-Emden-Fowler problem

(℘p,Θ)

{
−∆v = |v|p−2v in Θ,
v = 0 on ∂Θ,

both for critical (p = 2∗) and supercritical (p > 2∗) nonlinearities, in a bounded
smooth domain Θ in RN , N ≥ 3. Here, as usual, 2∗ := 2N

N−2
is the critical Sobolev

exponent.
In some particular cases one can reduce the supercritical problem to a anisotropic

critical problem of the form

(℘∗a1,a2,a3,Ω
)

{
−div(a1(x)∇u) + a2(x)u = a3(x)|u|2∗−2u in Ω,
u = 0 on ∂Ω

where Ω is a bounded smooth domain in Rn, n ≥ 3, and ai ∈ C0(Ω) is strictly positive
for i = 1, 2, 3.
In this thesis we present results about the existence, non-existence and multiplicity

of solutions for these problems. Part of these results were obtained in colaboration
with Mónica Clapp and Angela Pistoia and are contained in the papers [13, 14, 15].
Other results are new.

1.1 A brief historical background

Equation (℘p,Θ) models many physical phenomena. For p = 2∗ it arises in fundamental
questions in di�erential geometry like the Yamabe problem or the scalar curvature
problem.
Problem (℘p,Θ) has been widely studied in the last 50 years. The process for

understanding it has helped to develop new and interesting techniques which can be
applied to a wide variety of problems.



2 Introduction

In the subcritical case (p < 2∗), the compactness of the Sobolev embedding

H1
0 (Θ) ↪→ Lp(Θ) (1.1)

guarantees that problem (℘p,Θ) has one positive solution and in�nitely many sign
changing solutions in every smooth bounded domain Θ.
For p ≥ 2∗, the embedding (1.1) is no longer compact, so existence of solutions for

problem (℘p,Θ) becomes a delicate issue. In this situation still very little is known con-
cerning the existence and nonexistence of solutions, particularly for the supercritical
case.
It is well known that in this case the existence of a solution for problem (℘p,Θ)

depends on the domain. The �rst result is due to Pohozaev [40], he showed that if
the domain Θ satis�es a particular geometric condition then problem (℘p,Θ) has no
nontrivial solution. More precisely

Theorem 1.1 (Pohozhaev, 1965). If Θ is strictly starshaped, then problem (℘p,Θ)
does not have a nontrivial solution for every p ≥ 2∗.

On the other hand, Kazdan and Warner [25] showed that

Theorem 1.2 ( Kazdan-Warner, 1975). If Θ = Aa,b is an annulus, i.e.

Θ = Aa,b := {x ∈ RN : 0 < a < |x| < b}

then, problem (℘p,Aa,b) has in�nitely many radial solutions for every p > 2.

1.1.1 The critical problem

When p = 2∗, the problem (℘2∗,Θ) is invariant under the group of Möbius transfor-
mations, see [17]. This produces a lack of compactness of the associated variational
functional, which prevents the straightforward application of the usual variational
methods. For this reason, (℘2∗,Θ) is a quite interesting and challenging problem.
The �rst nontrivial existence result for the problem (℘2∗,Θ) is due to Coron [11].

He showed that problem (℘2∗,Θ) has a positive solution in every domain with a small
enough hole. More precisely

Theorem 1.3 (Coron, 1984). If 0 6∈ Θ and Θ ⊃ Aa,b with a/b large enough then,
problem (℘2∗,Θ) has at least one positive solution.

A few years later a remarkable result was obtained by Bahri and Coron [3]. They
showed that problem (℘2∗,Θ) has a positive solution in every domain Θ with nontrivial
topology. More accurately, they showed that

Theorem 1.4 (Bahri-Coron, 1988). If H̃∗(Θ,Z/2) 6= 0, then problem (℘2∗,Θ) has a
positive solution.
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Theorem 1.4 shows that the existence of solutions for problem (℘2∗,Θ) depends also
on the topology of the domain and not just on its geometry.
However, the condition H̃∗(Θ,Z/2) 6= 0 is not necessary for the existence of a

nontrivial solution. Examples of contractible domains for which problem (℘2∗,Θ) has
at least one nontrivial solution have been given, see for instance [22, 23, 36, 38].
Regarding the multiplicity of solutions for problem (℘2∗,Θ), many results have been

established in speci�c symmetric domains, for example [36, 29, 18].
In particular, Clapp [12] provided a generalization for the nonautonomous problem

(℘∗1,0,a3,Ω
) of the result given by Kazdan-Warner (Theorem 1.2). For every positive

continuous function a3 she shows that

Theorem 1.5 (Clapp, 2003). If Ω and a3 are invariant under a group G of linear
isometries of Rn and the cardinality of all the G-orbits is in�nite then, problem

(℘∗1,0,a3,Ω
)

{
−∆u = a3(x)|u|2∗−2u in Ω,
u = 0 on ∂Ω.

has in�nitely many G-invariant solutions.

For nonsymmetric domains, multiplicity results have been established for problem
(℘2∗,Θ) in domains with a thin enough perforation, see for example [16, 18, 32, 42].
In particular, for this type of domains, there is a remarkable result due to Ge, Musso
and Pistoia [24], were they prove that

Theorem 1.6 (Ge-Musso-Pistoia, 2010). Let Θ ⊂ RN be a smooth bounded domain,
ξ ∈ Θ and

Θε := Θ\Bε(ξ)

then, the number of solutions for problem (℘2∗,Θε) goes to in�nity as ε goes to zero.

But for domains which are neither highly symmetric nor small perturbations of a
given domain multiplicity remains largely open. For these domains, Clapp and Pacella
[17] gave the �rst result about the existence of multiple sign changing solutions for
problem (℘2∗,Θ). Using the main result of [17], they showed that there exist many
examples of domains Ω having only �nite symmetries in which problem (℘2∗,Θ) has a
prescribed number of solutions, one of them being positive and the rest change sign.
This result supports our belief that multiplicity of solutions for problem (℘2∗,Θ)

should hold in noncontractible domains. But the proof of such a general statement is
still way out of reach.

1.1.2 The supercritical problem

In the supercritical problem (℘p,Θ), p > 2∗, the lack of a Sobolev embedding implies
that the standard variational formulation used in the subcritical and critical cases
cannot be used.



Unlike in the critical case, in the supercritical case p > 2∗ the condition H̃∗(Θ,Z/2) 6=
0 does not guarantee the existence of a solution for problem (℘p,Θ). This was pointed
out by Passaseo in [37, 39], were he showed that for every integer 1 ≤ k ≤ N − 3
there exists a smooth bounded domain Θk ⊂ RN such that

• Θk has the homotopy type of the sphere Sk,

• problem (℘p,Θk) does not have a nontrivial solution for p ≥ 2∗N,k := 2(N−k)
N−k−2

,

• problem (℘p,Θk) has in�nitely many solutions for p < 2∗N,k.

Note that the number 2∗N,k = 2(N−k)
N−k−2

is the Sobolev critical exponent in dimension
(N − k).
In addition, Passaseo's domains Θk also satisfy that they are invariant under de

group G = O(k+ 1) ⊂ O(N) and the cardinalities of all the G-orbits in Θk are equal
to in�nity. This shows that there is not an analogous theorem to Theorem 1.5 for the
supercritical case.
The �rst nontrivial existence result for problem (℘p,Θ), p > 2∗ was obtained by del

Pino, Felmer and Musso [20], in the slightly supercritical case, i.e. for p > 2∗ but
close enough to 2∗.
Many existence results have been established for problem (℘p,Θ) in the slightly

subcritical, i.e. when p = 2∗N,k − ε, ε is positive and small enough, see for instance
[1, 4, 5, 32].
There are only a few results about the existence and multiplicity of solutions for

problem (℘p,Θ) when p is the pure supercritical exponent, i.e. when p = 2∗N,k for an
integer 1 ≤ k ≤ N − 3, see for example [26, 46].
In particular, Wei and Yan [46] exhibited domains Θ in which problem (℘p,Θ) has

in�nitely many positive solutions. They considered domains Θ of the form

Θ := {(y, z) ∈ Rk+1 × RN−k−1 : (|y| , z) ∈ Ω}, (1.2)

where Ω is a bounded smooth domain in RN−k with Ω ⊂ (0,∞) × RN−k−1 which
satis�es certain geometric assumptions.
The proof of results [1, 26, 33, 46] uses a procedure which consists on reducing the

supercritical problem (℘p,Θ) to some nonautonomous problem in a domain Ω of lower
dimension but with the same exponent p.
We shall also follow this approach to obtain results about the existence and mul-

tiplicity of a new type of solutions for the problem (℘p,Θ) in the pure supercritical
exponent.

1.2 Main results of the thesis: The nonautonomous

critical problem

In this subsection we state our results for the anisotropic critical problem:
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(℘∗a1,a2,a3,Ω
)

{
−div(a1(x)∇u) + a2(x)u = a3(x)|u|2∗−2u in Ω,
u = 0 on ∂Ω.

where Ω is a smooth bounded domain in Rn, n ≥ 3, 2∗ = 2n
n−2

is the Sobolev critical

exponent and ai : Ω→ R is a continuous function for i = 1, 2, 3 which satis�es that

• min
x∈Ω

ai(x) > 0 for i = 1, 3 and

• min
x∈Ω

a2(x) > −λ1(Ω), where λ1(Ω) is the �rst eigenvalue of −∆ in H1
0 (Ω).

1.2.1 Multiplicity of solutions in symmetric domains

We shall prove a multiplicity result for problem (℘∗a1,a2,a3,Ω
) which extends the main

results in [13, 14, 17]. In order to give the precise statement of this result we need to
introduce some notation:
Let O(n) be the group of linear isometries of Rn. If G is a closed subgroup on O(n),

we will denote by

Gx := {gx : g ∈ G}

the G-orbit of x and by #Gx its cardinality. A domain Ω ⊂ Rn is called G-invariant
if Gx ⊂ Ω for all x ∈ Ω and a function u : Ω→ R is called G-invariant if u is constant
on every orbit Gx with x ∈ Ω. Let S be the best Sobolev constant for the embedding

D1,2(Rn) ↪→ L2∗(Rn).

Now, �x a closed subgroup Γ of O(n) and a nonempty Γ-invariant smooth bounded
domain D ⊂ Rn such that #Γx = ∞ for all x ∈ D. Also suppose that ai is an
Γ-invariant continuous function for i = 1, 2, 3. We shall prove the following result

Theorem 1.7. There exists an increasing sequence (`m) of positive real numbers,
depending only on Γ, D, a1, a2 and a3, with the following property: If Ω is a smooth
bounded domain that contains D and if it is invariant under the action of a closed
subgroup G of Γ for which (

min
x∈Ω

a1(x)
n
2 #Gx

a3(x)
n−2

2

)
> `m

holds, then problem (℘∗a1,a2,a3,Ω
) has at leastm pairs of G-invariant solutions ±u1, . . . ,±um

such that u1 is positive, u2, . . . , um change sign, and∫
Ω

|∇uk|2 ≤ `kS
n
2 for every k = 1, . . . ,m.
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The proof of this result uses variational methods. The main ingredient is a com-
pactness result (Theorem A.1) given in Appendix A, which is an extension of the main
result in [12], which in turn is a symmetric version of Struwe's result in [44]. The
positive solution is obtained using the classical mountain pass theorem of Ambrosetti
and Rabinowitz [2]. Applying a symmetric mountain pass theorem given in [17] we
show the existence of multiple solutions which change sign.
Theorem 1.7 is interesting even for the autonomous problem

(℘2∗,Θ)

{
−∆u = |u|2∗−2u in Θ,
u = 0 on ∂Θ,

As we mentioned previously, Bahri and Coron [3] showed that it has at least one posi-
tive solution if Θ has nontrivial reduced homology with Z/2-coe�cients, see Theorem
1.4. On the other hand, for domains which are neither highly symmetric nor small
perturbations of a given domain, multiplicity remains largely open.
Theorem 1.7 extends our results in [13, 14]. The special case for problem (℘2∗,Θ)

where Γ = O(n) and D = Aa,b was established in [17]. This situation is, how-
ever, quite restrictive, particularly in odd dimensions. For example, if N = 3, then
minx∈Aa,b #Gx ≤ 2 for every subgroup G 6= SO(3), O(3). In fact, minx∈Aa,b #Gx is
either 1 or 2 for most subgroups of O(3), cf. [10]. As we shall see, the number `1

goes to in�nity as b/a → 1. Therefore, the main result in [17] will provide solutions
in subdomains of R3 only if b/a is su�ciently large, which is the case already handled
by Coron [11] and by Ge, Musso and Pistoia [24].
Theorem 1.7, on the other hand, provides examples in every dimension of domains

Ω, having only �nite symmetries, in which problem (℘∗a1,a2,a3,Ω
) has a prescribed num-

ber of solutions. Speci�c examples will be given in Chapter 3.

1.2.2 Existence of solutions in punctured domains

We also study a nonautonomous critical problem in punctured domains.
Fix a closed subgroup Γ on O(n) and Ω a smooth bounded Γ-invariant domain in

Rn. We denote by
ΩΓ := {x ∈ Ω : gx = x ∀g ∈ Γ}

the set of Γ-�xed points in Ω. Assume ξ0 ∈ ΩΓ and write

Ωε := {x ∈ Ω : |x− ξ0| > ε},

Note that, since ξ0 ∈ ΩΓ, Ωε is also Γ-invariant.
Consider the problem

(℘∗Q,Ωε)

 −∆u = Q(x)u
n+2
n−2 in Ωε,

u > 0 in Ωε,
u = 0 on ∂Ωε,
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where n ≥ 3 and Q is a Γ-invariant continuous function which satis�es minx∈Ω Q(x) >
0.
In Chapter 2 we prove the following result

Theorem 1.8. Assume that ∇Q(ξ0) 6= 0. Then there exists ε0 > 0 such that, for
each ε ∈ (0, ε0), problem (℘∗Q,Ωε) has a Γ-invariant solution uε which concentrates and
blows up at the point ξ0 as ε→ 0.

Notice that if Γ ≡ 1 then, Theorem 1.8 shows the existence of one positive solution
for the problem (℘∗Q,Ω) in every smooth bounded, not necessarily symmetric,
punctured domain. If Q ≡ 1, this is Coron's result (Theorem 1.3).
The proof of Theorem 1.8 uses the well-known Lyapunov-Schmidt reduction proce-

dure. With the help of some estimates given in [24] we perform the �nite dimensional
reduction. Then, we compute the asymptotic expansion of the reduced energy func-
tional and we show that it has a critical point which is stable under C1-perturbations.
We believe that existence and also multiplicity can be shown for the more general

problem (℘∗a1,0,a3,Ω
) in a punctured domain, see Section 1.4.

1.3 Main results of the thesis: The supercritical prob-

lem

In this section we state our results for the supercritical problem

(℘p,Θ)

{
−∆v = |v|p−2v in Θ,
v = 0 on ∂Θ,

where Θ is a smooth bounded domain RN , N ≥ 3 and p > 2∗. Here, as before,
2∗ = 2N

N−2
is the critical Sobolev exponent.

1.3.1 Multiplicity results in domains induced by Hopf maps.

To prove our multiplicity results for problem (℘p,Θ) we use a reduction procedure,
introduced by Ruf and Srikanth in [43]. The results in this subsection will be derived
from Theorem 1.7 using the Hopf maps, which we de�ne next.
We are interested in the particular cases when N = 2, 4, 8 or 16. In this situation we

can write RN = K×K where K is either the real numbers R, the complex numbers C,
the quaternions H or the Cayley numbers O. The set of units SK := {ζ ∈ K : |ζ| = 1}
acts on RN by multiplication on each coordinate, i.e. ζ(z1, z2) := (ζz1, ζz2).
The Hopf map

}K : K×K 7→ RdimK+1 ≡ R×K
is given by

}K(z1, z2) = (|z1|2 − |z2|2, 2z1z2).

We shall prove the following results.
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Theorem 1.9. Let G be a closed subgroup of O(dimK + 1), Ω be a G-invariant
bounded smooth domain in RdimK+1 all of whose G-invariant orbits are in�nite. Set
Θ := }−1

K (Ω). Then, for q = 2∗N,dimK−1, the supercritical problem (℘q,Θ) has in�nitely

many solutions in Θ which are constant on }−1
K (Gx) for each x ∈ Ω.

Note that, since 0 /∈ Ω, Θ := }−1
K (Ω) is homeomorphic to Ω× SK.

Next we consider the case where Θ = }−1
K (Ω) and Ω has �nite orbits. We �x a

closed subgroup Γ of O(dimK + 1) and a nonempty Γ-invariant bounded smooth
domain D in RdimK+1 such that #Γx =∞ for all x ∈ D. We obtain following result.

Theorem 1.10. There exists an increasing sequence (`m) of positive real numbers,
depending only on Γ and D, with the following property: If Ω is a smooth bounded
domain that contains D and if it is invariant under the action of a closed subgroup
G of Γ for which

min
x∈Ω

(#Gx) |2x|
dimK−1

2 > `m

holds, then, for q = 2∗N,dimK−1, problem (℘q,Θ) has at least m pairs of solutions

±v1, . . . ,±vm in Θ := }−1
K (Ω), which are constant on }−1

K (Gx) for each x ∈ Ω. In
particular, they are SK-invariant. Moreover, v1 is positive and v2, . . . , vm change
sign.

Theorems 1.9 and 1.10 provides many examples of domains in which some super-
critical problems has a prescribed number of solutions. We shall give some of them
in Chapter 3.

1.3.2 Multiplicity results in domains of revolution.

Fix k1, . . . , km ∈ N and set k := k1 + · · ·+km. Let N ≥ k+m+ 2 and Ω be a smooth
bounded domain in RN−k such that

Ω ⊂ {(x1, . . . , xm, x
′) ∈ Rm × RN−k−m : xi > 0, i = 1, . . . ,m}. (1.3)

De�ne

Θ := {(y1, . . . , ym, z) ∈ Rk1+1×· · ·×Rkm+1×RN−k−m : (|y1|, . . . , |ym|, z) ∈ Ω}. (1.4)

In the following we consider O(N − k − m) as the subgroup of O(N − k) which
acts on the second factor of Rm ×RN−k−m ≡ RN−k. In Chapter 3 we shall prove the
following results

Theorem 1.11. Let G be a closed subgroup of O(N − k −m), Ω be a G-invariant
bounded smooth domain as above, all of whose G-orbits are in�nite. Then, for q =
2∗N,N−k, the supercritical problem (℘q,Θ) has in�nitely many O(k1 + 1)× · · ·×O(km +
1)×G-invariant solutions in the domain Θ de�ned as above.
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For example, if Ω is a solid of revolution around the x1-axis in R3 whose closure is
contained in (0,∞)× (R2\{0}) then, for any k, problem (℘2∗N,3,Θ

) has in�nitely many

O(k + 1)×O(2)-invariant solutions in Θ := {(y, z) ∈ Rk+1 × R2 : (|y|, z) ∈ Ω}.
Next we consider another type of domains Θ. We �x a closed subgroup Γ of

O(N − k −m) and a Γ-invariant domain D such that

D ⊂ {(x1, . . . , xm, x
′) ∈ Rm × RN−k−m : xi > 0, i = 1, . . . ,m}.

whose Γ-orbits are in�nite. Consider the function a : Rm × RN−k−m → R de�ned by

a((x1, . . . , xm, x
′)) = xk1

1 · · · xkmm
We prove the following result

Theorem 1.12. There exists an increasing sequence (`m) of positive real numbers,
depending only on Γ, D and a, with the following property: If Ω is a smooth bounded
domain invariant under the action of a closed subgroup G of Γ such that

D ⊆ Ω ⊂ {(x1, . . . , xm, x
′) ∈ Rm × RN−k−m : xi > 0, i = 1, . . . ,m}

for which
min
x∈Ω

(a(x)#Gx) > `m

holds, then, for q = 2∗N,N−k, problem (℘q,Θ) has at least m pairs of O(k1 + 1)× · · · ×
O(km + 1)×G-invariant solutions ±v1, . . . ,±vm in Θ (de�ned as in 1.4). Moreover,
v1 is positive and v2, . . . , vm change sign.

1.3.3 Positive solutions which concentrate along a thin spher-
ical hole

We also establish the existence of a positive solution vε for problem (℘p,Θε) in some
domains Θε obtained by deleting a ε-neighborhood of some sphere embedded in Θ
and certain supercritical exponents p. These solutions vε concentrate and blow up
along the sphere as ε→ 0.
In this section we will state and describe these results. They follow from Theorem

1.8 and the reduction via Hopf maps described in Chapter 3.
Let N = 4, 8, 16 and let us consider Θ, an SK-invariant bounded smooth domain in

RN= K2 such that 0 /∈ Θ. Fix a point z0 ∈ Θ and for each ε > 0 small enough let

Θε := {z ∈ Θ : dist(z,SKz0) > ε}

where SKz0 := {ϑz0 : ϑ ∈ SK}. This is again an SK-invariant bounded smooth domain
in K2. We consider the supercritical problem

(℘1
ε)

 −∆v = v
dimK+3
dimK−1 in Θε,

v > 0 in Θε,
v = 0 on ∂Θε.

We prove the following result.



Theorem 1.13. There exists ε0 > 0 such that, for each ε ∈ (0, ε0), the supercritical
problem (℘1

ε) has an SK-invariant solution vε which concentrates and blows up along
the sphere SKz0 as ε→ 0.

Let Φ be an [O(m)×O(m)]-invariant bounded smooth domain in R2m such that
0 /∈ Φ and (y0, 0) ∈ Φ. We write Sm−1

0 := {(y, 0) : |y| = |y0|} for the [O(m)×O(m)]-
orbit of (y0, 0), and for each ε > 0 small enough we set

Φε := {x ∈ Φ : dist(x, Sm−1
0 ) > ε}.

This is again an [O(m)×O(m)]-invariant bounded smooth domain in R2m. We con-
sider the supercritical problem

(℘2
ε)

 −∆v = v
m+3
m−1 in Φε,

v > 0 in Φε,
v = 0 on ∂Φε.

We prove the following

Theorem 1.14. There exists ε0 > 0 such that, for each ε ∈ (0, ε0), problem (℘ε) has
an [O(m)×O(m)]-invariant solution vε which concentrates and blows up along the
(m− 1)-dimensional sphere Sm−1

0 as ε→ 0.

1.3.4 Nonexistence

As we already mentioned the domains Θk in Passaseo's examples [37, 39] have the

homotopy type of Sk. This shows that the condition H̃∗(Θ,Z/2) 6= 0 is not enough
to guarantee a solution for the problem (℘p,Θ) when p > 2∗. But, one may think

that perhaps if H̃∗(Θ,Z/2) is richer, then (℘p,Θ) will have a nontrivial solution when
p > 2∗. The next result shows that this is not true in general.

Theorem 1.15. Given k = k1 + · · · + km with ki ∈ N and k ≤ N − 3, and ε > 0
there exists a bounded smooth domain Θ in RN , such that

• Θ has the homotopy type of Sk1 × · · · × Skm ,

• the problem (℘p,Θ) does not have a nontrivial solution for p ≥ 2∗N,k + ε,

• the problem (℘p,Θ) has in�nitely many solutions for p ∈ (2, 2∗N,k).

In particular, if we take all ki = 1, the domain Θ in Theorem 1.15 is homotopy
equivalent to the product of k circles. In this case, Θ satis�es not only that the
homology is nontrivial but that there are k di�erent cohomology classes in H1(Θ;Z)
whose cup-product is the generator of Hk(Θ;Z). Hence, the cup-length of Θ equals
k + 1.

In Chapter 4 we will give the proof of Theorem 1.15 as well as a nonexistence result
which gives more examples of domains Θ in which problem (℘p,Θ) does not have a
nontrivial solution.
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1.4 Open problems

In this subsection we indicate some of the open problems which are motivated by this
work and which we plan to continue investigating

1. A di�erent kind of reduction that leads to domains in which problem (℘p,Θ)
has solutions for supercritical p has been recently considered in [1, 27]. This
reduction is performed by considering domains Θ obtained by rotation; namely,
Θ := {(y, z) ∈ Rk+1 × RN−k−1 : (|y| , z) ∈ Ω} where Ω is a domain contained in
the half-space (0,∞)×RN−k−1, 1 ≤ k ≤ N − 3. Then, solutions to the problem

(℘p,a,Ω)

{
−div(a(x)∇u) = a(x)|u|p−2u in Ω,
u = 0 on ∂Ω,

with a(x1, . . . , xN−k) = xk1, give rise to solutions of problem (℘p,Θ) for the same
exponent p.

Let q = 2(N−k)
N−k−2

be the critical exponent in the dimension of Ω. In [27] Kim
and Pistoia used the Lyapunov-Schmidt reduction procedure to show that in a
punctured domain Ωε = {x ∈ Ω : dist(x, ξ0) ≥ ε}, ξ0 ∈ Ω, ε > 0, the critical
problem (℘q,a,Ωε) has multiple sign-changing solutions, whose shape resembles
a tower of bubbles with alternating sign centered at the point ξ0, and that the
number of such solutions becomes arbitrary large as ε → 0. These solutions
give rise to sign changing solutions to the supercritical problem (℘q,Θ) which
are towers of layers concentrating at a k-dimensional sphere in Θ as ε→ 0.

If one wishes to combine this kind of reduction with the one given by the Hopf
�brations in order to produce solutions to supercritical problems in new types
of domains, one is lead to consider a more general problem of the form

(℘∗a1,0,a3,Ω
)

{
−div(a1(x)∇u) = a3(x)|u|2∗−2u in Ω,
u = 0 on ∂Ω,

where Ω is a smooth bounded domain in Rn, 2∗ = 2n
n−2

is the critical Sobolev

exponent in dimension n, and a and b are positive functions on Ω.

I believe that, with some modi�cations, the argument used by Kim and Pistoia
in [27] can be adapted to produce towers of bubbles for problem (℘∗a1,0,a3,Ω

) in
a punctured domain Ωε for ε small. This would allow us to extend Theorems
1.8, 1.13 and 1.14, as well as the results in [27], and to produce new solutions
to supercritical problems. I am currently investigating this question.

2. Apart from the fact that it provides solutions for supercritical problems, problem
(℘∗a,b,Ω) has an interest of its own. Many well-known results for the autonomous
equation a = b ≡ 1, obtained by variational methods, cannot be extended to the
nonautonomous problems in a straightforward manner. The lack of compactness
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is stronger in the nonautonomous case because, in general, there are no energy
gaps where the Palais-Smale condition holds. Establishing existence for this
problem is a challenging question which I wish to continue investigating.

3. I would also like to apply the techniques I have used in my Ph.D. research to
other related problems, for example to equations involving the fractional Lapla-
cian. In [8] Capella used the technique for sign-changing solutions developed
in [17] to obtain a multiplicity result for the pure critical exponent problem
involving the half Laplacian in an annular-shaped domain. I believe that the
techniques used in [13, 14] can be adapted to obtain solutions in more general
domains, and for supercritical nonlinearities.

4. In [9] Choi, Kim and Lee established existence of multiple bubbling solutions
of nonlinear elliptic equations involving the fractional Laplacians and critical
exponents. I would like to investigate whether their results can be extended to
a nonautonomous problem and to supercritical nonlinearities.



Chapter 2
The nonautonomous critical problem

In this chapter we consider the anisotropic critical problem

(℘∗a1,a2,a3,Ω
)

{
−div(a1(x)∇u) + a2(x)u = a3(x)|u|2∗−2u in Ω,
u = 0 on ∂Ω,

where

• Ω is a smooth bounded domain in Rn,

• ai : Ω→ R is a continuous function for i = 1, 2, 3 and satis�es that

• min
x∈Ω

ai(x) > 0 for i = 1, 3 and

• min
x∈Ω

a2(x) > −λ1(Ω), where λ1(Ω) is the �rst eigenvalue of the −∆ in

H1
0 (Ω).

As we mentioned in the introduction, the solutions to problem (℘∗a1,a2,a3,Ω
) will

provide solutions for some supercritical problems, but apart from this property, this
problem has an interest of its own.
The aim of this chapter is to prove Theorems 1.7 and 1.8 stated in the introduction.

2.1 Multiplicity in symmetric domains

As before, let O(n) be the group of linear isometries of Rn. For every G closed
subgroup of O(n) we will denote by

Gx := {gx : g ∈ G}

the G-orbit of x and by #Gx its cardinality. A domain Ω ⊂ Rn is called G invariant
if

Gx ⊂ Ω for all x ∈ Ω.
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A function u : Ω→ R is called G-invariant if u is constant on every orbit Gx.
Now, �x a closed subgroup Γ on O(n) and a nonempty Γ-invariant smooth domain

D ⊂ Rn such that #Γx = ∞ for all x ∈ D. Also suppose that ai is Γ-invariant for
i = 1, 2, 3. We shall prove that
Theorem 1.7 There exists an increasing sequence (`m) of positive real numbers,

depending only on Γ and D, with the following property: If Ω contains D and if it is
invariant under the action of a closed subgroup G of Γ for which(

min
x∈Ω

a1(x)
n
2 #Gx

a3(x)
n−2

2

)
> `m

holds, then problem (℘∗a1,a2,a3,Ω
) has at leastm pairs of G-invariant solutions ±u1, . . . ,±um

such that u1 is positive, u2, . . . , um change sign, and∫
Ω

|∇uk|2 ≤ `kS
n
2 for every k = 1, . . . ,m.

Theorem 1.7 provides many examples of domains Ω having only �nite symmetries
in which problem (℘∗a1,a2,a3,Ω

) has a prescribed number of solutions. Speci�c examples
may be obtained as follows:

Example 1. Let Γ = SC := {c ∈ C : |c| = 1}. We can think Γ as a subgroup of O(n)
in the obvious way. The function

Γ× (C× Rn−2) 7→ C× Rn−2

(c, (a, y)) 7→ (ca, y)

is an action of the group Γ on C × Rn−2 = Rn. Now, let D0 be a smooth bounded
domain in Rn−1 such that

D0 ⊂ {(t, y) ∈ R× Rn−2 : t > d}

for some d > 0, and set

D := {(a, y) ∈ C× Rn−2 : (|a|, y) ∈ Ω0} ⊂ Rn.

Note that D is Γ-invariant and #Γx =∞ ∀x ∈ D.
Consider the subgroup

Gr := {e2πik/r : k = 0, . . . , r − 1} ⊂ Γ,

and notice that

#Grx = r ∀x ∈ (C\{0})× Rn−2.
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Therefore, if Ω ⊂ (C\{0})× Rn−2 is an Gr-invariant domain and Ω ⊃ D, then

min
x∈Ω

#Gx = r.

So, if we �x m ∈ N, then

r ·

(
min
x∈Ω

a1(x)
n
2

a3(x)
n−2

2

)
> `m

if r is large enough. Hence, Theorem 1.7 yields at least m pairs of solutions to problem
(℘∗a1,a2,a3,Ω

).

In order to give the proof of Theorem 1.7 we need to introduce some notation and
recall some basic notions.
It is well known that, by the principle of symmetric criticality of Palais [35], the

G-invariant solutions to problem (℘∗a1,a2,a3,Ω
) are the critical points of the restriction

of the functional

J(u) :=
1

2

∫
Ω

(a1|∇u|2 + a2u
2)− 1

2∗

∫
Ω

a3|u|2
∗

=
1

2
||u||2a1,a2

− 1

2∗
|u|2∗a3,2∗

to the space of G-invariant functions

H1
0 (Ω)G : {u ∈ H1

0 (Ω) : u(gx) = u(x) for all g ∈ G, x ∈ Ω},

the non trivial critical points of J are contained in the Nehari manifold

NG(Ω) = {u ∈ H1
0 (Ω)G : ||u||2a1,a2

= |u|2∗a3,2∗}.

We will make use of the following result

Theorem 2.1. If Ω is G-invariant, and

#Gx =∞ for all x ∈ Ω

then, problem (℘∗a1,a2,a3,Ω
) has in�nitely many G-invariant solutions. Moreover, there

exists a nontrivial G-invariant solution u to problem (℘∗a1,a2,a3,Ω
) which satis�es

J(u) = inf
w∈NG(Ω)

J(w).

Proof. Since #Gx = ∞ for all x ∈ Ω, Corollary A.3 shows that the functional J
satis�es condition (PS)Gc in H1

0 (Ω) for every c ∈ R.
It is also clear that J satis�es all the other conditions of the mountain pass theorem

[2]. Hence, there exists a nontrivial solution u to problem (℘∗a1,a2,a3,Ω
) which satis�es

J(u) = inf
w∈NG(Ω)

J(w).

Moreover, since J is odd, it has an unbounded sequence of critical values.
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As a corollary of Theorem 2.1 we have the following generalization of Kazdan's and
Warner's result (Theorem 1.2)

Corollary 2.2 (Kazdan-Warner). If Ω = Aa,b is an annulus, then the problem
(℘∗a1,a2,a3,Aa,b

) has in�nitely many radial solutions.

The main ingredient for the proof of Theorem 1.7 is the following mountain pass
result for sign changing solutions.

Theorem 2.3. Let W be a �nite dimensional subspace of H1
0 (Ω)G. If J satis�es

condition (PS)Gc in H1
0 (Ω)G for all c ≤ supW J , then J has at least dim(W )− 1 pairs

of sign changing critical points u ∈ H1
0 (Ω)G such that J(u) ≤ supW J .

Proof. The proof can be found, up to minor modi�cations, in [17, Theorem 3.7].

2.1.1 Proof of Theorem 1.7

Let P1(D) be the collection of all nonempty Γ-invariant bounded smooth do-
mains contained in D and for every k ≥ 2 we de�ne

Pk(D) := {(D1, . . . , Dk) : Di ∈ P1(D), Di ∩Dj = ∅ if i 6= j}.

Note that Pk(D) 6= ∅ for all k ∈ N. Moreover, since Di ⊂ D and Di is Γ-invariant,
we have that #Γx = ∞ for all x ∈ Di. Hence, Theorem 2.1 shows that there exists
a nontrivial solution ωDi to problem (℘∗a1,a2,a3,Di

) which satis�es

J(ωDi) = inf
ω∈NΓ(Di)

J(ω).

In addition, if we extend ωDi by zero outside Di, we have that ωDi ∈ H1
0 (Ω)G for

every bounded G-invariant domain Ω such that Di ⊂ Ω and every G ⊂ Γ. Moreover,
we have that

J(ωDi) = max
t≥0

J(tωDi). (2.1)

For every m ∈ N, let

cm := inf

{
m∑
i=1

J(ωDi) : (D1, . . ., Dm) ∈ Pm(D)

}
.

Note that c1 = J(ωD) > 0 and J(ωDi) ≥ c1. Next, we will show that

cm > cm−1 for every m > 1. (2.2)

Indeed, if ε ∈ (0, c1) and (D1, . . ., Dm) ∈ Pm(D), we have that (D1, . . ., Dm−1) ∈
Pm−1(D) and

cm−1 + ε ≤
m−1∑
i=1

J(ωDi) + ε <
m−1∑
i=1

J(ωDi) + J(ωDm) =
m∑
i=1

J(ωDi).
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Therefore,

cm−1 + ε ≤
m∑
i=1

J(ωDi) for every (D1, . . ., Dm) ∈ Pm(D), (2.3)

which implies 2.2.
We de�ne

`k :=

(
1

n
Sn/2

)−1

ck.

We will prove that the sequence (`k) has the desired property. In order to do this �x
m ∈ N and let Ω be a bounded smooth domain containing D, invariant under the
action of a closed subgroup G of Γ for which(

min
x∈Ω

a1(x)
n
2 #Gx

a3(x)
n−2

2

)
> `m. (2.4)

We divided the rest of proof into three steps.
Step 1: For every ε small enough, there exist a set A(ε) := {±uε1, . . . ,±uεm} which

contains m pairs of G-invariant solutions ±uε1, . . . ,±uεm such that uε1 is positive,
uε2, . . . , u

ε
m change sign, and

J(uεk) ≤ cm + ε for every 1 ≤ k ≤ m.

Notice that condition (2.4) is equivalent to(
min
x∈Ω

a1(x)
n
2 #Gx

a3(x)
n−2

2

)
1

n
Sn/2 > cm,

therefore, we can take ε ∈ (0, c1) such that cm + ε <

(
minx∈Ω

a1(x)
n
2 #Gx

a3(x)
n−2

2

)
1
n
Sn/2. By

the de�nition of cm we can choose an element (D1, . . ., Dm) ∈ Pm(D) such that the
associated functions {ωD1 , . . . , ωDm} ⊂ H1

0 (Ω) satisfy

cm ≤
m∑
i=1

J(ωDi) < cm + ε.

Now, let Wm the linear subspace of H1
0 (Ω)G generated by the set {ωD1 , . . . , ωDm}.

Notice that, since
suppωDi ∩ suppωDj = Di ∩Dj = ∅,

we have that dimWm = m. Moreover, equation (2.1) shows that

dm := sup
Wm

J ≤
m∑
i=1

J(ωDi) <

(
min
x∈Ω

a1(x)
n
2 #Gx

a3(x)
n−2

2

)
1

n
Sn/2.
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Corollary A.3 implies that J satis�es (PS)Gc in H1
0 (Ω) for all c ≤ dm, so the moun-

tain pass theorem [2] yields a positive critical point uε1 ∈ H1
0 (Ω)G of J such that

J(uε1) ≤ d1. Moreover, Theorem 2.3 yields m−1 pairs of sign changing critical points
±uε2, . . . ,±uεm ∈ H1

0 (Ω)G of J such that

J(uεk) < dm ≤ cm + ε for every 1 ≤ k ≤ m.

Step 2: There exist m pairs of G-invariant solutions ±u′1, . . . ,±u
′
m such that u

′
1 is

positive, u
′
2, . . . , u

′
m change sign, and

J(u
′

k) ≤ cm for every 1 ≤ k ≤ m. (2.5)

Let (εr) ⊂ (0, c1) be a sequence such that εr → 0. Also, for every εr, let A(εr) be
the set of solutions constructed in step 1.
If there exists r0 ∈ N such that

J(w) ≤ cm for every w ∈ A(εr0),

we have that the proof of step 2 is complete. If this is not the case, we have that for
every r ∈ N there exists a wr ∈ A(εr) such that

cm < J(wr) ≤ cm + εr

This implies that J(wr)→ cm, and since ∇J(wr) = 0, we have that (wr) is a Palais-
Smale sequence for J in cm. Since J satis�es (PS)Gcm , we have that there exists
u
′
m ∈ H1

0 (Ω)G such that, after passing to a subsequence, we have

wr → u
′

m in H0
1 (Ω)G

Therefore, u
′
m is a critical point of J such that

J(u
′

m) = cm.

On the other hand, note that if Ω satis�es condition (2.4) then it also satis�es that(
min
x∈Ω

a1(x)
n
2 #Gx

a3(x)
n−2

2

)
1

n
S
n
2 > `m−1 (2.6)

Therefore, applying the argument given in step 1, this time for the numberm−1 and
for ε small enough, we obtainm−1 pairs ofG-invariant solutions±u′1,±u

′
2, . . . ,±u

′
m−1

to problem (℘∗a1,a2,a3,Ω
), such that u

′
1 is positive, ±u′2, . . . ,±u

′
m−1 change sign, and

J(u
′

i) ≤ cm−1 + ε < cm for every i = 1, 2, . . . ,m− 1.



Hence, ±u′1,±u
′
2, . . . ,±u

′
m−1,±u

′
m are m pairs of G-invariant solutions, u

′
1 is positive

and u
′
2, . . . , u

′
m change sign and

J(u
′

k) ≤ cm for every 1 ≤ k ≤ m. (2.7)

This proves step 2.

Step 3: There exist m pairs of G-invariant solutions ±u1, . . . ,±um such that u1 is
positive, u2, . . . , um change sign, and

J(uk) ≤ ck for every 1 ≤ k ≤ m. (2.8)

Again, note that if Ω satis�es (2.4) then it also satis�es(
min
x∈Ω

a1(x)
n
2 #Gx

a3(x)
n−2

2

)
1

n
S
n
2 > `k (2.9)

for every k = 1, . . . ,m−1. So, applying the arguments given in steps 1 and 2 to each k,
we obtain k pairs of G-invariant solutions ±uk1,±uk2, . . . ,±ukk to problem (℘∗a1,a2,a3,Ω

),
such that uk1 is positive, ±uk2, . . . ,±ukk change sign, and

J(uki ) ≤ ck for every i = 1, 2, . . . , k.

Setting u1 := u1
1 and choosing uk ∈ {uk2, . . . , ukk} inductively, such that uk 6= ui for

every i = 1, . . . , k− 1, we obtain m pairs of G-invariant solutions ±u1,±u2, . . . ,±um
to problem (℘∗a1,a2,a3,Ω

) such that u1 is positive, ±u2, . . . ,±um change sign, and

J(uk) ≤ ck for every k = 1, 2, . . . ,m. (2.10)

Finally, note that, since

J(uk) =
1

n

∫
Ω

|∇uk|2 ≤ ck =
1

n
`mS

n
2 (2.11)

we have that equation (2.10) is equivalent to∫
Ω

|∇uk|2 ≤ `kS
n
2 for every k = 1, . . . ,m.

this completes the proof.
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2.2 Existence in punctured domains

In this section we will show the existence of one positive solutions for a nonautonomous
critical problem in every smooth bounded domain, not necessary symmetric, but with
a small hole. We start with some notation.
Fix a closed subgroup Γ of O(n) and a smooth bounded Γ-invariant domain Ω in

Rn. Let Γx := {gx : g ∈ Γ} be the Γ-orbit of x ∈ Rn. We denote by

ΩΓ := {x ∈ Ω : gx = x ∀g ∈ Γ}

the set of Γ-�xed points in Ω. Assume ξ0 ∈ ΩΓ and write

Ωε := {x ∈ Ω : |x− ξ0| > ε}.

Note that, since ξ0 ∈ ΩΓ, Ωε is also Γ-invariant.
We consider the problem

(℘∗Q,ε)

 −∆u = Q(x)u
n+2
n−2 in Ωε,

u > 0 in Ωε,
u = 0 on ∂Ωε,

where n ≥ 3 and the function Q ∈ C2(Ω) is Γ-invariant and satis�es minx∈Ω Q(x) > 0.
We will prove the following result.
Theorem 1.8 Assume that ∇Q(ξ0) 6= 0. Then there exists ε0 > 0 such that, for

each ε ∈ (0, ε0), problem (℘∗Q,ε) has a Γ-invariant solution uε which concentrates and
blows up at the point ξ0 as ε→ 0.

Remark 2.4. Notice that if Γ ≡ 1 then, Theorem 1.8 shows the existence of one
positive solution for the problem (℘∗Q) in every smooth bounded, not necessarily sym-
metric, punctured domain.

The proof of Theorem 1.8 uses the well-known Ljapunov-Schmidt reduction, adapted
to the symmetric case. In the following section we sketch this reduction, highlighting
the places where the symmetries play a role. In subsection 2.2.2 we give an expansion
of the reduced energy functional and use it to prove Theorem 1.8.

2.2.1 The �nite dimensional reduction

For every bounded domain U in Rn we take

(u, v) :=

∫
U
∇u · ∇v, ‖u‖ :=

(∫
U
|∇u|2

)1/2

,

as the inner product and its corresponding norm in H1
0 (U). If we replace U by Rn

these are the inner product and the norm in D1,2(Rn). We write

‖u‖r := (

∫
U
|u|r)1/r
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for the norm in Lr(U), r ∈ [1,∞).
If U is Γ-invariant for some closed subgroup Γ of O(n) we set

H1
0 (U)Γ := {u ∈ H1

0 (U) : u is Γ-invariant}

and, similarly, for D1,2(Rn)Γ and Lr(U)Γ.
It is well known that the standard bubbles

Uδ,ξ(x) = αn
δ
n−2

2

(δ2 + |x− ξ|2)
n−2

2

, αn := [n(n− 2)]
n−2

4 , δ ∈ (0,∞), ξ ∈ Rn,

are the only positive solutions of the equation

−∆U = Up in Rn,

where p := n+2
n−2

. Thus, the function Wδ,ξ := γ0Uδ,ξ, with γ0 := [Q(ξ0)]
−1
p−1 , solves the

equation
−∆W = Q(ξ0)W p in Rn. (2.12)

Let

ψ0
δ,ξ :=

∂Uδ,ξ
∂δ

= αn
n− 2

2
δ
n−4

2
|x− ξ|2 − δ2

(δ2 + |x− ξ|2)n/2
, (2.13)

ψjδ,ξ :=
∂Uδ,ξ
∂ξj

= αn(n− 2)δ
n−2

2
xj − ξj

(δ2 + |x− ξ|2)n/2
, j = 1, . . . , n.

The space generated by these n+ 1 functions is the space of solutions to the problem

−∆ψ = pUp−1
δ,ξ ψ, ψ ∈ D1,2(Rn). (2.14)

Note that
Uδ,ξ ∈ D1,2(Rn)Γ i� ξ ∈ (Rn)Γ

and, similarly, for every j = 0, 1, . . . , n,

ψjδ,ξ ∈ D
1,2(Rn)Γ i� ξ ∈ (Rn)Γ.

Let Ω be a Γ-invariant bounded smooth domain in Rn, Q ∈ C2(Ω) be positive and
Γ-invariant, and ξ0 ∈ ΩΓ. For ε > 0 small enough set

Ωε := {x ∈ Ω : |x− ξ0| > ε}.

Consider the orthogonal projection Pε : D1,2(Rn) → H1
0 (Ωε), i.e. if W ∈ D1,2(Rn)

then PεW is the unique solution to the problem

−∆ (PεW ) = −∆W in Ωε, PεW = 0 on ∂Ωε. (2.15)
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A consequence of the uniqueness is that PεW ∈ H1
0 (Ωε)

Γ if W ∈ D1,2(Rn)Γ.
We denote by G(x, y) the Green function of the Laplace operator in Ω with zero

Dirichlet boundary condition and by H(x, y) its regular part, i.e.

G(x, y) = βn

(
1

|x− y|n−2 −H(x, y)

)
,

where βn is a positive constant depending only on n. The following estimates will
play a crucial role in the proof of Theorem 1.8.

Lemma 2.5. Assume that δ → 0 as ε → 0 and ε = o(δ) as ε → 0. Fix η ∈ Rn, set
ξ := ξ0 + δη, and de�ne

R(x) := PεUδ,ξ(x)− Uδ,ξ(x) + αnδ
n−2

2 H(x, ξ) +
αn

δ
n−2

2 (1 + |η|2)
n−2

2

εn−2

|x− ξ0|n−2
.

Then there exists a positive constant c such that the following estimates hold true for
every x ∈ ΩrB(ξ0, ε):

|R(x)| ≤ cδ
n−2

2

[
εn−2(1 + εδ−n+1)

|x− ξ0|n−2
+ δ2 +

( ε
δ

)n−2
]
,

|∂δR(x)| ≤ cδ
n−4

2

[
εn−2(1 + εδ−n+1)

|x− ξ0|n−2
+ δ2 +

( ε
δ

)n−2
]
,

|∂ξiR(x)| ≤ cδ
n
2

[
εn−2(1 + εδ−n)

|x− ξ0|n−2
+ δ2 +

εn−2

δn−1

]
.

Proof. See Lemma 3.1 in [24].

For each ε > 0 and (d, η) ∈ ΛΓ := (0,∞)× (Rn)Γ set (see (2.12))

Vd,η := PεWδ,ξ = γ0PεUδ,ξ with δ := dε
n−2
n−1 , ξ := ξ0 + δη. (2.16)

The map (d, η) 7→ Vd,η is a C
2-embedding of ΛΓ as a submanifold of H1

0 (Ωε)
Γ, whose

tangent space at Vd,η is

Kε
d,η := span{Pεψjδ,ξ : j = 0, 1, . . . , n}.

Note that, since ξ0, η ∈ (Rn)Γ, also ξ ∈ (Rn)Γ and, therefore, Kε
d,η ⊂ H1

0 (Ωε)
Γ. We

write
Kε,⊥
d,η := {φ ∈ H1

0 (Ωε)
Γ : (φ, Pεψ

j
δ,ξ) = 0 for j = 0, 1, . . . , n}

for the orthogonal complement of Kε
d,η in H1

0 (Ωε)
Γ, and Πε

d,η : H1
0 (Ωε)

Γ → Kε
d,η and

Πε,⊥
d,η : H1

0 (Ωε)
Γ → Kε,⊥

d,η for the orthogonal projections, i.e.

Πε
d,η(u) :=

n∑
j=0

(u, Pεψ
j
δ,ξ)Pεψ

j
δ,ξ, Πε,⊥

d,η (u) := u− Πε
d,η(u).
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Let i∗ε : L
2n
n+2 (Ωε)→ H1

0 (Ωε) be the adjoint operator to the embedding iε : H1
0 (Ωε) ↪→

L
2n
n−2 (Ωε), i.e. v = i∗ε(u) if and only if

(v, ϕ) =

∫
Ωε

uϕ ∀ϕ ∈ C∞c (Ωε)

if and only if
−∆v = u in Ωε, v = 0 on ∂Ωε. (2.17)

Sobolev's inequality yields a constant c > 0, independent of ε, such that

‖i∗ε(u)‖ ≤ c ‖u‖ 2n
n+2

∀u ∈ L
2n
n+2 (Ωε), ∀ε > 0. (2.18)

Note again that

i∗ε(u) ∈ H1
0 (Ωε)

Γ if u ∈ L
2n
n−2 (Ωε)

Γ.

We rewrite problem (℘∗Q,ε) in the following equivalent way:{
u = i∗ε [Q(x)f(u)] ,
u ∈ H1

0 (Ωε),
(2.19)

where f(s) := (s+)p and p := n+2
n−2

.
We shall look for a solution to problem (2.19) of the form

uε = Vd,η + φ with (d, η) ∈ ΛΓ and φ ∈ Kε,⊥
d,η . (2.20)

As usual, our goal will be to �nd (d, η) ∈ ΛΓ and φ ∈ Kε,⊥
d,η such that, for ε small

enough,
Πε,⊥
d,η [Vd,η + φ− i∗ε(Qf(Vd,η + φ))] = 0 (2.21)

and
Πε
d,η[Vd,η + φ− i∗ε(Qf(Vd,η + φ))] = 0. (2.22)

First we will show that, for every (d, η) ∈ ΛΓ and ε small enough, there exists a
unique φ ∈ Kε,⊥

d,η which satis�es (2.21). To this aim we consider the linear operator

Lεd,η : Kε,⊥
d,η → Kε,⊥

d,η de�ned by

Lεd,η(φ) := φ− Πε,⊥
d,η i

∗
ε [Qf

′(Vd,η)φ].

It has the following properties.

Proposition 2.6. For every compact subset D of ΛΓ there exist ε0 > 0 and c > 0
such that, for each ε ∈ (0, ε0) and each (d, η) ∈ D,∥∥Lεd,η(φ)

∥∥ ≥ c ‖φ‖ for all φ ∈ Kε,⊥
d,η , (2.23)

and the operator Lεd,η is invertible.
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Proof. The argument given in [24] to prove Lemma 5.1 carries over with minor changes
to our situation.

The following estimates may be found in [28].

Lemma 2.7. For each a, b, q ∈ R with a ≥ 0 and q ≥ 1 there exists a positive constant
c such that the following inequalities hold

||a+ b|q − aq| ≤
{
cmin{|b|q , aq−1 |b|} if 0 < q < 1,

c(|a|q−1 |b|+ |b|q) if q ≥ 1.

Again, the argument given to prove similar results in the literature carries over
with minor changes to prove the following result. We include it this time to illustrate
this fact and also because some of the estimates will be used later on.

Proposition 2.8. For every compact subset D of ΛΓ there exist ε0 > 0 and c > 0
such that, for each ε ∈ (0, ε0) and for each (d, η) ∈ D, there exists a unique φεd,η ∈
Kε,⊥
d,η ⊂ H1

0 (Ωε)
Γ which solves equation (2.21) and satis�es∥∥φεd,η∥∥ ≤ cε

n−2
n−1 . (2.24)

Moreover, the function (d, η) 7→ φεd,η is a C1-map.

Proof. Note that φ ∈ Kε,⊥
d,η solves equation (2.21) if and only if φ is a �xed point of

the operator T εd,η : Kε,⊥
d,η → Kε,⊥

d,η de�ned by

T εd,η(φ) = (Lεd,η)
−1Πε,⊥

d,η i
∗
ε [Qf(Vd,η + φ)−Qf ′(Vd,η)φ−Q(ξ0)(γ0Uδ,ξ)

p] .

We will prove that T εd,η is a contraction on a suitable ball.
To this aim, we �rst show that there exist ε0 > 0 and c > 0 such that for, each

ε ∈ (0, ε0),

‖φ‖ ≤ cε
n−2
n−1 ⇒

∥∥T εd,η(φ)
∥∥ ≤ cε

n−2
n−1 . (2.25)

From Proposition 2.6 we have that, for some c > 0 and ε small enough,∥∥(Lεd,η)
−1
∥∥ ≤ c ∀(d, η) ∈ D.

Using (A.6) we obtain∥∥T εd,η(φ)
∥∥ ≤ c ‖Q [f(Vd,η + φ)− f ′(Vd,η)φ]−Q(ξ0)(γ0Uδ,ξ)

p‖ 2n
n+2

≤ c ‖Q [f(Vd,η + φ)− f(Vd,η)− f ′(Vd,η)φ]‖ 2n
n+2

+ c ‖Qf(Vd,η)−Q(γ0Uδ,ξ)
p‖ 2n

n+2
+ cγp0

∥∥[Q−Q(ξ0)]Up
δ,ξ

∥∥
2n
n+2

.
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Using the mean value theorem, Lemma A.10 and the Hölder inequality we have that,
for some t ∈ (0, 1),

‖Q [f(Vd,η + φ)− f(Vd,η)− f ′(Vd,η)φ]‖ 2n
n+2
≤ c ‖[f ′(Vd,η + tφ)− f ′(Vd,η)]φ‖ 2n

n+2

≤ c ‖f ′(Vd,η + tφ)− f ′(Vd,η)‖n/2 ‖φ‖2∗

≤ c(‖φ‖2∗ + ‖φ‖
4

n−2

2∗ ) ‖φ‖2∗

≤ c(‖φ‖2
2∗ + ‖φ‖p2∗).

Moreover, using Lemma 2.5 one can show that

‖Qf(Vd,η)−Q(γ0Uδ,ξ)
p‖ 2n

n+2
≤ c

∥∥(PεUδ,ξ)
p − Up

δ,ξ

∥∥
2n
n+2

≤
(
c

∫
Ωε

∣∣Up−1
δ,ξ (PεUδ,ξ − Uδ,ξ)

∣∣ 2n
n+2 + c

∫
Ωε

|PεUδ,ξ − Uδ,ξ|p+1

)n+2
2n

(2.26)

≤ cδ,

see inequality (6.4) in [24]. Finally, setting y = x−ξ
δ

= x−ξ0
δ
− η and Ω̃ε := {y ∈ Rn :

δy + ξ ∈ Ωε}, and using the mean value theorem, for some t ∈ (0, 1) we obtain

∥∥[Q−Q(ξ0)]Up
δ,ξ

∥∥
2n
n+2

=

(∫
Ω̃ε

|Q(δy + δη + ξ0)−Q(ξ0)|
2n
n+2 Up+1(y)dy

)n+2
2n

= δ

(∫
Ω̃ε

|〈∇Q(tδy + tδη + ξ0), y + η〉|
2n
n+2 Up+1(y)dy

)n+2
2n

(2.27)

≤ cδ.

This proves statement (2.25).

Next we show that we may choose ε0 > 0 such that, for each ε ∈ (0, ε0), the operator

T εd,η : {φ ∈ Kε,⊥
d,η : ‖φ‖ ≤ cε

n−2
n−1} → {φ ∈ Kε,⊥

d,η : ‖φ‖ ≤ cε
n−2
n−1}

is a contraction and, therefore, has a unique �xed point, as claimed.

If φ1, φ2 ∈ {φ ∈ Kε,⊥
d,η : ‖φ‖ ≤ cε

n−2
n−1}, using again the mean value theorem we

obtain∥∥T εd,η(φ1)− T εd,η(φ2)
∥∥ ≤ c ‖f(Vd,η + φ1)− f(Vd,η + φ2)− f ′(Vd,η)(φ1 − φ2))‖ 2n

n+2

= c ‖[f ′(Vd,η + (1− t)φ1 + φ2)− f ′(Vd,η)](φ1 − φ2)‖ 2n
n+2

≤ c ‖f ′(Vd,η + (1− t)φ1 + φ2)− f ′(Vd,η)‖n
2
‖φ1 − φ2‖2∗
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for some t ∈ [0, 1], and arguing as before we conclude that

‖f ′(Vd,η + (1− t)φ1 + φ2)− f ′(Vd,η)‖n
2
≤ c

(
‖(1− t)φ1 + φ2‖2∗ + ‖(1− t)φ1 + φ2‖

4
n−2

2∗

)
≤ c

(
‖φ1‖2∗ + ‖φ2‖2∗ + ‖φ1‖

4
n−2

2∗ + ‖φ2‖
4

n−2

2∗

)
Hence, if ε is su�ciently small, it follows that∥∥T εd,η(φ1)− T εd,η(φ2)

∥∥ ≤ κ ‖φ1 − φ2‖

with κ ∈ (0, 1).

Finally, a standard argument shows that (d, η) 7→ φεd,η is a C
1-map. This concludes

the proof.

Consider the functional Jε : H1
0 (Ωε)→ R de�ned by

Jε(u) :=
1

2

∫
Ωε

|∇u|2 − 1

p+ 1

∫
Ωε

Q|u|p+1.

It is well known that the critical points of Jε are the solutions of problem (2.19). We

de�ne the reduced energy functional J̃Γ
ε : ΛΓ → R by

J̃Γ
ε (d, η) := Jε(Vd,η + φεd,η). (2.28)

If Γ = {1} is the trivial group, we simply write J̃ε instead of J̃Γ
ε and Λ instead of ΛΓ.

Next we show that the critical points of J̃Γ
ε are Γ-invariant solutions of problem

(2.19).

Proposition 2.9. If (d, η) ∈ ΛΓ is a critical point of the function J̃Γ
ε , then Vd,η+φ

ε
d,η ∈

H1
0 (Ωε)

Γ is a critical point of the functional Jε and, therefore, a Γ-invariant solution
of problem (2.19).

Proof. Assume �rst that Γ is the trivial group. Then Λ = (0,∞) × Rn and the
statement is proved using similar arguments to those given to prove Lemma 6.1 in
[21] or Proposition 2.2 in [24].

If Γ is an arbitrary closed subgroup of O(n), then ΛΓ is the set of Γ-�xed points in
Λ of the action of Γ on the space R×Rn which is given by g(t, x) := (t, gx) for g ∈ Γ,
t ∈ R, x ∈ Rn. By the principle of symmetric criticality [35], if (d, η) ∈ ΛΓ is a critical

point of the function J̃Γ
ε , then (d, η) is a critical point of J̃ε : (0,∞) × Rn → R, and

the result follows from the previous case.
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2.2.2 The asymptotic expansion of the reduced energy func-
tional

In order to �nd a critical point of J̃Γ
ε we will use the following asymptotic expansion

of the functional J̃ε : (0,∞)× Rn → R.

Proposition 2.10. The asymptotic expansion

J̃ε(d, η) = c0 +Q(ξ0)−
2
p−1F (d, η)ε

n−2
n−1 + o(ε

n−2
n−1 )

holds true C1-uniformly on compact subsets of Λ, where the function F : (0,∞) ×
Rn → R is given by

F (d, η) :=


αd+ β 1

(1+|η|2)d
− γ

〈
∇Q(ξ0)
Q(ξ0)

, η
〉
d if n = 3,

β
(

1
(1+|η|2)d

)n−2

− γ
〈
∇Q(ξ0)
Q(ξ0)

, η
〉
d if n ≥ 4.

(2.29)

for some positive constants c0, α, β and γ.

Proof. We write

Jε(Vd,η + φεd,η) =
1

2

∥∥Vd,η + φεd,η
∥∥2 − 1

p+ 1

∫
Ωε

Q
∣∣Vd,η + φεd,η

∣∣p+1

= Jε(Vd,η) + γ0

∫
Ωε

(Up
δ,ξ − (PεUδ,ξ)

p)φεd,η

− γp0
∫

Ωε

[Q−Q(ξ0)] (PεUδ,ξ)
p φεd,η +

1

2

∥∥φεd,η∥∥2

− 1

p+ 1

∫
Ωε

Q
(∣∣Vd,η + φεd,η

∣∣p+1 − |Vd,η|p+1 − (p+ 1)V p
d,ηφ

ε
d,η

)
.

Then, using Hölder's inequality and inequalities (2.24), (2.26) and (2.27) we obtain

Jε(Vd,η + φεd,η) = Jε(Vd,η) +O
(
ε

2(n−2)
n−1

)
= γ2

0

[
1

2

∫
Ωε

Up
δ,ξ (PεUδ,ξ)−

1

p+ 1

∫
Ωε

|PεUδ,ξ|p+1

]
(2.30)

− 1

p+ 1
γp+1

0

∫
Ωε

[Q−Q(ξ0)] |PεUδ,ξ|p+1 +O
(
ε

2(n−2)
n−1

)
.

Next, we compute the �rst summand on the right-hand side of equality (2.30). From
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Lemma 2.5 we have that

1

2

∫
Ωε

Up
δ,ξ (PεUδ,ξ)−

1

p+ 1

∫
Ωε

|PεUδ,ξ|p+1

=
p− 1

2(p+ 1)

∫
Ωε

Up+1
δ,ξ −

1

2

∫
Ωε

Up
δ,ξ (PεUδ,ξ − Uδ,ξ)−

1

p+ 1

∫
Ωε

∣∣|PεUδ,ξ|p+1 − Up+1
δ,ξ

∣∣
=

p− 1

2(p+ 1)

∫
Ωε

Up+1
1,0 −

1

2

∫
Ωε

Up
δ,ξ (PεUδ,ξ − Uδ,ξ) + o(ε

n−2
n−1 )

=
p− 1

2(p+ 1)

∫
Rn
Up+1

1,0 +
1

2

∫
Rn
Up
δ,ξΥ

ε
δ,ξ + o(ε

n−2
n−1 ),

where

Υε
δ,ξ(x) := αnδ

n−2
2 H(x, ξ) + αn

1

δ
n−2

2 (1 + |η|2)
n−2

2

εn−2

|x− ξ0|n−2
. (2.31)

Setting x = ξ + δy we have

αn

∫
Rn
Up
δ,ξΥ

ε
δ,ξ

= αn

∫
Rn
Up
δ,ξ(x)(δ

n−2
2 H(x, ξ))dx+ αn

∫
Rn
Up
δ,ξ(x)

(
1

δ
n−2

2 (1 + |η|2)
n−2

2

εn−2

|x− ξ0|n−2

)
dx

= αnδ
n−2

∫
Rn
Up

1,0(y)H(δy + δη + ξ0, δη + ξ0)dy

+ αn
1

(1 + |η|2)
n−2

2

∫
Rn
Up

1,0(y)

(
εn−2

δn−2|y − η|n−2

)
dy

= αn

(∫
Rn
Up

1,0

)
H(ξ0, ξ0)δn−2(1 + o(1)) + αng(η)

1

δn−2
εn−2(1 + o(1)),

where the function g : Rn → R is de�ned by

g(η) :=
1

(1 + |η|2)
n−2

2

∫
Rn

1

|y − η|n−2
Up

1,0(y)dy.

Since −∆U = Up in Rn, an easy computation shows that

g(η) =
1

(1 + |η|2)
n−2

2

U1,0(η) = αn
1

(1 + |η|2)n−2
.

To compute the second summand on the right-hand side of equality (2.30) we use the
Taylor expansion

Q(δy + ξ0 + δη) = Q(ξ0) + δ〈∇Q(ξ0), y + η〉+O(δ2(1 + |y|2))
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, and using conditions (2.16), we obtain∫
Ωε

[Q−Q(ξ0)] |PεUδ,ξ|p+1 =

∫
Ωε

[Q−Q(ξ0)]Up+1
δ,ξ + o(ε

n−2
n−1 )

=

∫
Ω̃ε

(Q(δy + ξ0 + δη)−Q(ξ0))Up+1
1,0 (y)dy + o(ε

n−2
n−1 )

= δ

∫
Rn
〈∇Q(ξ0), η〉Up+1

1,0 (y)dy + δ

∫
Rn

〈∇Q(ξ0), y〉
(1 + |y|2)n

dy +O
(
ε

2(n−2)
n−1

)
= δ〈∇Q(ξ0), η〉

(∫
Rn
Up+1

1,0

)
(1 + o(1)),

because
∫
Rn
〈∇Q(ξ0),y〉
(1+|y|2)n

dy = 0. Collecting all the previous information we obtain

J̃ε(d, η) = Jε(Vd,η + φεd,η)

=


c0 + γ2

0

(
c1H(ξ0, ξ0)d+ c2g(η)1

d
− c3

〈
∇Q(ξ0)
Q(ξ0)

, η
〉
d
)√

ε+ o(
√
ε) if n = 3,

c0 + γ2
0

(
c2g(η) 1

dn−2 − c3

〈
∇Q(ξ0)
Q(ξ0)

, η
〉
d
)
ε
n−2
n−1 + o(ε

n−2
n−1 ) if n ≥ 4,

as claimed.

2.2.3 Proof of Theorem 1.8

We will show that the function F de�ned in (2.29) has a critical point (d0, η0) ∈
ΛΓ = (0,∞)× (Rn)Γ which is stable under C1-perturbations. Then, we deduce from

Proposition 2.10 that the functional J̃Γ
ε has a critical point in ΛΓ for ε small enough,

so the result follows from Proposition 2.9.
Let n = 3. Set ζ0 := ∇Q(ξ0)

Q(ξ0)
and consider the half spaceH := {η ∈ R3 : α−γ〈ζ0, η〉 >

0}. For each η ∈ H there exists a unique d = d(η), given by

d(η) =

√
β

(1 + |η|2)(α− γ〈ζ0, η〉)
∈ (0,∞),

such that Fd(d, η) = 0. Moreover, Fdd(d(η), η) > 0 for any η ∈ H. Consider the

function F̃ : H → R de�ned by

F̃ (η) := F (d(η), η) = 2β2

√
α− γ〈ζ0, η〉

1 + |η|2
.

The point

η0 :=

α−
√
α2 + γ2 |ζ0|2

γ |ζ0|2

 ζ0
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is a strict maximum point of F̃ . Setting d0 := d(η0) we deduce from Lemma 5.7 in [30]
that (d0, η0) is a C1-stable critical point of the function F . Note that, since ξ0 ∈ ΩΓ

and Q is Γ-invariant, ∇Q(ξ0) ∈ (Rn)Γ . Hence, (d0, η0) ∈ ΛΓ.
If n ≥ 4 arguing as in the previous case we easily conclude that, if

η0 := − ∇Q(ξ0)

|∇Q(ξ0)|
, d0 :=

(
(n− 2)β

2n−2γ

Q(ξ0)

|∇Q(ξ0)|

) 1
n−1

,

then (d0, η0) is a C1-stable critical point of the function F and (d0, η0) ∈ ΛΓ. This
concludes the proof. �



Chapter 3
The supercritical problem.

We consider the supercritical problem

(℘p,Θ)

{
−∆v = |v|p−2 v in Θ,
v = 0 on ∂Θ,

where Θ is a bounded smooth domain in RN , N ≥ 3, and p > 2∗.
The main objective of this chapter is to discuss and prove Theorems 1.9−1.14 stated

in the introduction.

3.1 Reduction to a nonautonomous critical problem

3.1.1 Reductions via Hopf maps

Let N = 4, 8 or 16 and write RN = K × K where K is either the complex numbers,
the quaternions or the Cayley numbers. The set of units SK := {ζ ∈ K : |ζ| = 1} acts
on RN by multiplication on each coordinate, i.e. ζ(z1, z2) := (ζz1, ζz2). Recall that
the Hopf map

}K : K×K 7→ RdimK+1

is given by

}K(z1, z2) = (|z1|2 − |z2|2, 2z1z2).

We shall make use of the following results, a detailed account is given in Aprendix
??.

Proposition 3.1. Let N = 2, 4, 8, 16, p > 2 and Ω be a smooth bounded domain in
RdimK+1 such that 0 /∈ Ω. If u is a solution of{

−∆u = 1
2|x| |u|

p−2u in Ω,

u = 0 on ∂Ω,
(3.1)
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then v = u ◦ }K is an SK-invariant solution of problem{
−∆v = |v|p−2v in }−1

K (Ω) := Θ
v = 0 on ∂Θ,

(3.2)

We will also make use of a variation of this reduction, which was proved by Pacella
and Srikanth in [34].
Let O(m) × O(m) acts on R2m ≡ Rm × Rm in the obvious way and O(m) act on

the last m coordinates of Rm+1 ≡ R×Rm. Write the elements of R2m as (y1, y2) with
yi ∈ Rm and the elements of Rm+1 as x = (t, ζ) with t ∈ R, ζ ∈ Rm.
Proposition 3.2. Let N = 2m, m ≥ 2, and Θ be an [O(m)×O(m)]-invariant
bounded smooth domain in R2m such that 0 /∈ Θ. Set

Ω := {(t, ζ) ∈ R× Rm : hR(|y1| , |y2|) = (t, |ζ|) for some (y1, y2) ∈ Θ}.

If u(t, ζ) = u(t, |ζ|) is an O(m)-invariant solution of problem{
−∆u = 1

2|x| |u|
p−2 u in Ω,

u = 0 on ∂Ω,
(3.3)

then v(y1, y2) := u(hR(|y1| , |y2|)) is an [O(m)×O(m)]-invariant solution of problem{
−∆v = |v|p−2v in Θ,
v = 0 on ∂Θ,

3.1.2 Reduction via rotations

Next we will present a reduction via rotations which allow us to reduce some super-
critical problems to some critical or subcritical anisotropic problem.
Fix k := k1 + · · · + km with k ≤ N − 2 and ki ∈ N ∪ {0} for 1 ≤ i ≤ m. Let

Ω ⊂ RN−k be a smooth bounded domain with

Ω ⊂ {(x1, . . . , xm, x
′) ∈ Rm × RN−k−m : xi > 0, i = 1, . . . ,m}. (3.4)

Let H := O(k1 + 1)× · · · ×O(km + 1) and think H as a subgroup of O(N). Let

(g1, . . . , gm) ∈ H with gi ∈ O(ki + 1) and

(y1, . . . , ym, z) ∈ RN with yi ∈ Rki+1 and z ∈ RN−k−m.

The function

Γ× RN 7→ RN

(g1, · · · , gm)(y1, · · · , ym, z) 7→ (g1y
1, · · · , gmym, z)

is an action of the group H on RN . Therefore, if we set

Θ := {(y1, . . . , ym, z) ∈ Rk1+1×· · ·×Rkm+1×RN−k−m : (|y1|, . . . , |ym|, z) ∈ Ω}. (3.5)

one has immediately that Θ is H-invariant. Under this assumption the following
holds true
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Lemma 3.3. Let Θ,Ω and H as before. Then we have that an H-invariant function
u(y1, · · · , ym, z) = u(|y1|, · · · , |ym|, z) is a solution to problem{

−∆u = |u|p−2u in Ω,
u = 0 on ∂Ω,

if and only if u satis�es{
−div(a(x)∇u) = a(x)|u|p−2u in Θ,
u = 0 on ∂Θ,

where a : RN−k → R is de�ned by a(x1, . . . xN−k) := xk1
1 . . . xkmm .

3.2 Multiplicity for supercritical problems in sym-

metric domains

3.2.1 Multiplicity via Hopf �brations

This subsection is devoted to proof and discuss Theorems 1.9 and 1.10, we recall these
results below
Theorem 1.9 Let G be a closed subgroup of O(dimK + 1), Ω be a G-invariant

bounded smooth domain in RdimK+1 all of whose G-invariant orbits are in�nite. Set
Θ := }−1

K (Ω). Then, for q = 2∗N,dimK−1, the supercritical problem (℘q,Θ) has in�nitely

many solutions in Θ which are constant on }−1
K (Gx) for each x ∈ Ω.

We �x a closed subgroup Γ of O(dimK+ 1) and a nonempty Γ-invariant bounded
smooth domain D in RdimK+1 such that #Γx =∞ for all x ∈ D.We obtain following
result.
Theorem 1.10 There exists an increasing sequence (`m) of positive real numbers,

depending only on Γ and D, with the following property: If Ω contains D and if it is
invariant under the action of a closed subgroup G of Γ for which

min
x∈Ω

(#Gx) |2x|
dimK−1

2 > `m

holds, then, for q = 2∗N,dimK−1, problem (℘q,Θ) has at least m pairs of solutions

±v1, . . . ,±vm in Θ := }−1
K (Ω), which are constant on }−1

K (Gx) for each x ∈ Ω. In
particular, they are SK-invariant. Moreover, v1 is positive and v2, . . . , vm change
sign.
Note that the domains Θ in Theorems 1.9 and 1.10 are homeomorphic to SK × U ,

where SK := {ξ ∈ K : |ξ| = 1} is the set of units in K.
Theorems 1.9 and 1.10 provide a new type of domains in which some supercritical

problems has multiple solutions. For example
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Example 2. Fix a bounded smooth domain D0 in R2 with D0 ⊂ (0,∞)× R and set

D := {(z, t) ∈ K× R : (|z| , t) ∈ D0}.

Then D is invariant under the action of the group Γ := SC of unit complex numbers
on K× R given by

eiθ(z, t) := (eiθz, t)

Note also that
#Γx =∞ ∀x ∈ D.

then Theorem 1.9 shows that problem (℘2∗N,dimK−1,Θ
) has in�nitely many solutions in

Θ := }−1
K (D) which are constant on }−1

K (Gx) for each x ∈ D.

On the other hand, Theorem 1.10 provides examples of less symmetrical domains
Θ in where some supercritical problems has a prescribed number of solutions, for
instance

Example 3. Let D as in Example 2 and let Gr the cyclic subgroup of Γ of order r,
i.e.

Gr := {e2πik/n : k = 0, ..., r − 1}.
Then #Grx = r for every x ∈ (Kr {0})× R.
Set Ω ⊂ K× R an Gr-invariant bounded smooth domain with

D ⊂ Ω ⊂ (Kr {0})× R,

Notice that
min
x∈Ω

(#Grx) = r,

and therefore

min
x∈Ω

(#Grx) |2x|
dimK−1

2 = min
x∈Ω

r |2x|
dimK−1

2 > `m

if r is large enough. Hence, Theorem 1.10 yields at least m pairs of solutions to
problem (℘2∗N,dimK−1,Θ

) in Θ := }−1
K (Ω) which are constant on }−1

K (Gx) for each x ∈ Ω.

Proof of Theorem 1.9

Let N = 4, 8 or 16, RN = K × K and �x a closed subgroup G of O(dimK + 1).
Proposition 3.1 shows that if a function u is a solution to problem{

−∆u = 1
2|x| |u|

2∗
N,dim(K−1)

−2u in Ω,

u = 0 on ∂Ω,
(3.6)

then, v = u ◦ }K is a solution to problem (℘2∗
N,dim(K−1)

,Θ) for Θ := }−1
K (Ω). It is clear

that the function

x 7→ 1

2|x|
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is radial and therefore Γ-invariant. Hence, if Ω is an G-invariant smooth bounded
domain in RdimK+1 such that

#Gx =∞ for all x ∈ Ω. (3.7)

then, Theorem 2.1, with a1 ≡ 1, a2 ≡ 0 and a3 ≡ 1
2|x| , shows that problem 3.6 has

in�nitely many G-invariant solutions.
Finally, since every G-invariant solution u of problem 3.6 is constant on every orbit

Gx, then v = u ◦ }K is constant in }−1
K (Gx) for each x ∈ Ω.

Proof of Theorem 1.10

Let N = 4, 8 or 16, RN = K × K and �x a closed subgroup Γ of O(dimK + 1). Let
D a Γ-invariant smooth bounded domain in RdimK+1 such that

#Γx =∞ for all x ∈ D. (3.8)

Again, Proposition ?? shows that if a function u is a solution to problem{
−∆u = 1

2|x| |u|
2∗
N,dim(K−1)

−2u in Ω,

u = 0 on ∂Ω,
(3.9)

then, v = u ◦ }K is a solution to problem (℘2∗
N,dim(K−1)

,Θ) for Θ := }−1
K (Ω).

Hence, if we apply Theorem 1.7 for the domain D and the group Γ, with a1 ≡ 1,
a2 ≡ 0 and a3 ≡ 1

2|x| , we have that:

There exists an increasing sequence (`m) of positive real numbers, depending only
on Γ and D, with the following property: If Ω contains D and if it is invariant under
the action of a closed subgroup G of Γ for which

min
x∈Ω

(#Gx) |2x|
dimK−1

2 > `m

holds, then problem 3.9 has at least m pairs of G-invariant solutions ±u1, . . . ,±um.
Moreover, u1 is positive and u2, . . . , um change sign.
Hence, the function vi = ui ◦}K is a solution to problem (℘pK) in Θ = }−1

K (Ω) which
is constant on }−1

K (Gx) for each x ∈ Ω. for every i = 1 . . .m

3.2.2 Multiplicity via rotations

Proof of Theorems 1.11 and 1.12

The aim of this section is to prove Theorems 1.11 and 1.12 stated in the Introduction.
As before, �x k1, . . . , km ∈ N and set k := k1 + · · · + km and let Ω as in (3.4) and
Θ as in (3.5). Consider O(N − k −m) as the subgroup of O(N − k) which acts on
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the second factor of Rm × RN−k−m ≡ RN−k and the function a : Rm × RN−k−m → R
de�ned by

a((x1, . . . , xm, x
′)) = xk1

1 · · · xkmm
Theorem 1.11 Let G be a closed subgroup of O(N − k −m), Ω be a G-invariant

bounded smooth domain as in 3.4 all of whose G-orbits are in�nite. Then, the super-
critical problem (℘2∗N,N−k,Θ

) has in�nitely many O(k1+1)×· · ·×O(k2+1)×G-invariant
solutions in the domain Θ de�ned as (3.5).

Proof. By Lemma 3.3 we have that if u is a G-invariant solution to problem{
−div(a(x)∇u) = a(x)|u|2∗N,N−k−2u in Ω,
u = 0 on ∂Ω,

(3.10)

then, v(y1, · · · , ym, z) = u(|y1|, · · · , |ym|, z) is a O(k1+1)×· · ·×O(k2+1)×G-invariant
solution to problem (℘2∗N,N−k,Θ

).

Notice that the function a is G-invariant (recall that we are thinking of G ⊂ O(N−
k−m) as the subgroup of O(N−k) which acts on the second factor of Rm×RN−k−m).
Since, Ω ⊂ RN−k is G-invariant and all the G-orbits are in�nite, then Theorem 2.1,

with a1 ≡ a3 ≡ a and a2 ≡ 0, shows that problem 3.10 has in�nitely many G-invariant
solutions. This concludes the proof.

Next, we will prove
Theorem 1.12 There exists an increasing sequence (`m) of positive real numbers,

depending only on Γ, D and a, with the following property: If

D ⊆ Ω ⊂ {(x1, . . . , xm, x
′) ∈ Rm × RN−k−m : xi > 0, i = 1, . . . ,m}

and if Ω is invariant under the action of a closed subgroup G of Γ for which

min
x∈Ω

(a(x)#Gx) > `m (3.11)

holds, problem (℘2∗N,N−k,Θ
) has at least m pairs of O(k1 + 1) × · · · × O(k2 + 1) × G-

invariant solutions ±v1, . . . ,±vm in Θ (de�ned as in (1.4)). Moreover, v1 is positive
and v2, . . . , vm change sign.

Proof. Applying Lemma 3.3, we have that if u is a G-invariant solution to problem{
−div(a(x)∇u) = a(x)|u|2∗N,N−k−2u in Ω,
u = 0 on ∂Ω,

(3.12)

then, v(y1, · · · , ym, z) = u(|y1|, · · · , |ym|, z) is an O(k1 + 1) × · · · × O(k2 + 1) × G-
invariant solution to problem (℘2∗N,N−k,Θ

).



Therefore, if Ω ⊂ RN−k satis�es that

min
x∈Ω

a(x)
n
2 #Gx

a(x)
n−2

2

= min
x∈Ω

(a(x)#Gx) > `m (3.13)

then, Theorem 1.7, with a1 ≡ a3 ≡ a and a2 ≡ 0, shows that problem 3.12 has at
leastm pairs ofG-invariant solutions±u1, . . . ,±um such that u1 is positive, u2, . . . , um
change sign.
Hence, vi(y

1, · · · , ym, z) = ui(|y1|, · · · , |ym|, z) is an O(k1 +1)×· · ·×O(k2 +1)×G-
invariant solution to problem (℘2∗N,N−k,Θ

) for every i = 1, 2 . . . ,m.

3.3 Existence of solutions in domain with spherical

perforations

3.3.1 Proof of Theorem 1.13

As before, let N = 4, 8, 16 and let Θ be an SK-invariant bounded smooth domain in
RN= K2 such that 0 /∈ Θ. Fix a point z0 ∈ Θ and for each ε > 0 small enough let

Θε := {z ∈ Θ : dist(z,SKz0) > ε}

where SKz0 := {ϑz : ϑ ∈ SK}. This is again an SK-invariant bounded smooth domain
in K2. We consider the supercritical problem

(℘1
ε)

 −∆v = v
dimK+3
dimK−1 in Θε,

v > 0 in Θε,
u = 0 on ∂Θε.

we shall proof that:
Theorem 1.13 There exists ε0 > 0 such that, for each ε ∈ (0, ε0), the supercritical

problem (℘1
ε) has an SK-invariant solution vε which concentrates and blows up along

the sphere SKz0 as ε→ 0.

Proof. Set

n := dimK+ 1, hK(z0) = ξ0 and hK(Θ) := Ω ⊂ RdimK+1.

Notice that
hK(Θε) = Ω\Bε(ξ0) := Ωε,

i.e. hK(Θε) = Ωε is a punctured domain.
Now, since

n+ 2

n− 2
=
dimK+ 3

dimK− 1
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Proposition ?? shows that if u is a solution to problem −∆u = 1
2|x|u

n+2
n−2 in Ωε,

u > 0 in Ωε,
u = 0 on ∂Ωε,

(3.14)

then v = u ◦ }K is a solution to (℘1
ε).

Since

∇
(

1

2|x|

)
(ξ0) 6= 0

then, Theorem 1.8 (with Γ ≡ 1) shows that there exists ε0 > 0 such that, for each
ε ∈ (0, ε0), problem Problem (3.14) has a solution uε which concentrates and blows
up at the point ξ0 as ε→ 0.
Therefore, vε = uε◦}K solution to (℘1

ε) which is constant on }−1
K (x) for each x ∈ Ωε,

i.e. vε is SK-invariant.
Finally, since uε concentrates and blows up at the point ξ0 as ε→ 0, we have that

vε concentrates and blows up along the sphere SKz0 as ε→ 0.

3.3.2 Proof of Theorem 1.14

Let Φ be an [O(m)×O(m)]-invariant bounded smooth domain in R2m such that 0 /∈ Φ
and (y0, 0) ∈ Φ. We write Sm−1

0 := {(y, 0) : |y| = |y0|} for the [O(m)×O(m)]-orbit
of (y0, 0), and for each ε > 0 small enough we set

Φε := {x ∈ Φ : dist(x, Sm−1
0 ) > ε}.

This is again an [O(m)×O(m)]-invariant bounded smooth domain in R2m. We con-
sider the supercritical problem

(℘2
ε)

 −∆v = v
m+3
m−1 in Φε,

v > 0 in Φε,
u = 0 on ∂Φε.

Theorem 1.14 There exists ε0 > 0 such that, for each ε ∈ (0, ε0), problem (℘ε)
has an [O(m)×O(m)]-invariant solution vε which concentrates and blows up along
the (m− 1)-dimensional sphere Sm−1

0 as ε→ 0.

Proof. Let

Ω := {(t, ζ) ∈ R× Rm : hR(|y1| , |y2|) = (t, |ζ|) for some (y1, y2) ∈ Φ},

Notice that Ω is Γ-invariant. In e�ect, if g ∈ Γ and (t, |ζ|) ∈ Ω, then

(t, |gζ|) = (t, |ζ|) = hR(|y1| , |y2|)



3.3. Positive solutions which concentrate along a thin spherical hole 39

which implies that (t, gζ) ∈ Ω. In addition, if (y0, 0) ∈ Sm−1
0 , then we have that

hR(|y0| , |0|) = (|y0|2, 0)

Set ξ0 = (|y0|2 , 0, . . . , 0). Note that gξ0 = ξ0 for every g ∈ O(m), i.e. ξ0 ∈ ΩO(m)

The diagram

Rm × Rm (y1,y2)
f17→(|y1|,|y2|)
=⇒ [0,∞)× [0,∞)

⇓ }R

R× Rm (t,ζ)
f27→(t,|ζ|)

=⇒ R× [0,∞)

shows that

Ωε := Ω\Bε(ξ0) = {(t, ζ) ∈ R× Rm : hR(|y1| , |y2|) = (t, |ζ|) for some (y1, y2) ∈ Φε}.

Now, Proposition 3.2 implies that if u(t, ζ) = u(t, |ζ|) is an O(m)-invariant solution
of problem  −∆u = 1

2|x|u
m+3
m−1 in Ωε,

u > 0 in Ωε

u = 0 on ∂Ωε,

(3.15)

then v(y1, y2) := u(hR(|y1| , |y2|)) is an [O(m)×O(m)]-invariant solution of Problem
(℘2

ε).
Therefore, using Theorem 1.8 with

n = m+ 1, ξ0 = (|y0|2 , 0, . . . , 0), Γ = O(m) ⊂ O(n), Q(x) =
1

2 |x|
,

we have that there exists ε0 > 0 such that, for each ε ∈ (0, ε0), Problem (3.15) has an
O(m)-invariant solution uε(t, ζ) = uε(t, |ζ|) which concentrates and blows up at the
point ξ0 as ε→ 0.
Hence, vε(y1, y2) = uε(hR(|y1| , |y2|)) is an [O(m)×O(m)]-invariant solution of

Problem (℘2
ε) which concentrates and blows up along the (m− 1)-dimensional sphere

Sm−1
0 as ε→ 0
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Chapter 4
Nonexistence of solutions for the

supercritical problem

4.1 Introduction

In this section we present some results about the nonexistence of solutions for the
problem

(℘p,Ω,Q)

{
−∆u = Q(x)|u|p−2u in Ω,
u = 0 on ∂Ω,

where

• Ω is a smooth bounded domain in RN , N ≥ 3,

• p ≥ 2∗, where 2∗ = 2N
N−2

is the Sobolev critical exponent.

• Q ∈ C0(Ω) and minx∈ΩQ(x) > 0, (if Q ≡ 1 we will write (℘p,Ω) instead of
(℘p,Ω,1)).

It is well known that the existence of a solution for problem (℘p,Ω,Q) depends on
the domain. Pohozhaev's identity [40] implies that if Ω is strictly starshaped then
problem (℘p,Ω) does not have a nontrivial solution for every p ≥ 2∗. In the critical
case, (i.e. when p = 2∗), there is a very remarkable result obtained by Bahri and
Coron [3]. They showed that problem (℘2∗,Ω) has a positive solution in every domain
Ω with nontrivial topology, see 1.3 .

Remark 4.1. As we mentioned in the introduction, the condition H̃∗(Ω,Z/2) 6= 0
is not necessary for the existence of a solution, examples of contractible domains for
which problem (℘2∗,Ω) has at least one nontrivial solution have been given, see for
instance [22, 23, 36, 38]



The result obtained by Bahri and Coron suggests the following question : It is true
that the condition H̃∗(Ω,Z/2) 6= 0 guaranties the existence of a positive solution for
problem (℘p,Ω) when p > 2∗?
This question was pointed out by Rabinowitz, as reported by Brezis in [7]. The

answer was given by Passaseo [37, 39], he proved that

Theorem 4.2 (Passaseo, 1995). For every integer 1 ≤ k ≤ N − 3 there exists a
domain Θk such that

• Θk has the homotopy type of Sk,

• problem (℘p,Θk) does not have a nontrivial solution for p ≥ 2∗N,k := 2(N−k)
N−k−2

,

• problem (℘p,Θk) has in�nitely many solutions for p < 2∗N,k.

Note that the number 2∗N,k = 2(N−k)
N−k−2

is the Sobolev critical exponent in dimension
(N − k).

The domains of Passaseo are de�ned as follows: Fix an integer 1 ≤ k ≤ N − 3 and
an element (t, 0) ∈ (0,∞) × RN−k−1. Take a ball B with center in (t, 0) such that
B ⊂ (0,∞)× RN−k−1. Then

Θk := {(y, z) ∈ Rk+1 × RN−k−1 : (|y|, z) ∈ B}.

4.2 Nonexistence results

In this chapter we will describe our nonexistence results for problem (℘p,Ω,Q), one of
them will be a generalization of the Theorem 4.2. We start with some notation
Let Ω be a domain of the form

Ω := {(y, z) ∈ Rk+1 × RN−k−1 : (|y| , z) ∈ Θ}, (4.1)

where Θ is a bounded smooth domain in RN−k with Θ ⊂ (0,∞)× RN−k−1

We introduce the following geometric condition, which we will use to guarantee
nonexistence.

De�nition 1. We shall say that a domain Θ is doubly starshaped with respect to
R× {0} if there exist two numbers 0 < t0 < t1 such that t ∈ (t0, t1) for every (t, z) ∈
Θ and Θ is strictly starshaped with respect to ξ0 := (t0, 0) and to ξ1 := (t1, 0), i.e.

〈x− ξi, νΘ(x)〉 > 0 ∀x ∈ ∂Θr {ξi} ,

for each i = 0, 1, where νΘ(x) is the outward pointing unit normal to ∂Θ at x.



For Ω as in (4.1) and Q ∈ C1(Ω) we consider the problem

(℘p,Ω,Q)

{
−∆u = Q(y, z) |u|p−2 u in Ω,

u = 0 on ∂Ω.
(4.2)

We assume Q to be strictly positive on Ω and radially symmetric in y, i.e. Q(y, z) =

Q(|y| , z). As before 2N,k = 2(N−k)
(N−k)−2

. We prove the following result.

Theorem 4.3. If Θ is doubly starshaped with respect to R × {0} , 0 ≤ k ≤ N − 3
and 〈y, ∂yQ(y, z)〉 ≤ 0 and 〈z, ∂zQ(y, z)〉 ≤ 0 for all (y, z) ∈ Ω. Then Ω (as in (4.1))
satis�es that

• Ω has the homotopy type of Sk,

• the problem (℘p,Ω,Q) does not have a nontrivial solution for p ≥ 2∗N,k,

• the problem (℘p,Ω,Q) has in�nitely many solutions for p ∈ (2, 2∗N,k).

Note that if we take Θ to be a ball B centered at some point (τ, 0), which is
obviously doubly starshaped with respect to R×{0}, then Theorem 4.3 provides the
result given by Passaseo in Theorem 4.2.

Also note that the domains in Passaseo's examples [37, 39], as well as those in
Theorem 4.3, have the homotopy type of Sk. As we said before, this shows that the
condition H̃∗(Ω,Z/2) 6= 0 it is not enough to guarantee a solution for the problem

(℘p,Ω) when p > 2∗. But, one may think that perhaps if H̃∗(Ω,Z/2) is richer then
(℘p,Ω) will have a nontrivial solution when p > 2∗. The next result shows that this is
not true in general.

Theorem 4.4. Given k = k1 + · · ·+ km with ki ∈ N and k ≤ N − 3, and ε > 0 there
exists a bounded smooth domain Ω in RN , such that

• Ω has the homotopy type of Sk1 × · · · × Skm ,

• the problem (℘p,Ω) does not have a nontrivial solution for p ≥ 2∗N,k + ε,

• the problem (℘p,Ω) has in�nitely many solutions for p ∈ (2, 2∗N,k).

In particular, if we take all ki = 1 in Theorem 4.4, the domain Ω is homotopy
equivalent to the product of k circles and therefore Ω satis�es that it not only the
homology is not nontrivial but there are k di�erent cohomology classes in H1(Ω;Z)
whose cup-product is the generator of Hk(Ω;Z). Hence, the cup-length of Ω equals
k + 1.
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4.3 Main tools for proving nonexistence

In this subsection we provide a detailed account of the main tools for proving our
nonexistence results. We will use the following notation:
Fix k1, . . . , km ∈ N ∪ {0} with k := k1 + · · ·+ km ≤ N − 3 and let Θ be a bounded

smooth domain in RN−k such that Θ ⊂ (0,∞)m × RN−k−m. Set

Ω := {(y1, . . . , ym, z) ∈ Rk1+1 × · · · × Rkm+1 × RN−k−m :
(∣∣y1

∣∣ , . . . , |ym| , z) ∈ Θ},
(4.3)

and
G := O(k1 + 1)× · · · ×O(km + 1) (4.4)

Think of G as a subgroup of O(N) acting on Rk1+1 × · · · × Rkm+1 × RN−k−m in the
obvious way, i.e.

(g1, . . . , gm)(y1, . . . , ym, z) := (g1y
1, . . . , gmy

m, z) (4.5)

for gi ∈ O(ki + 1), yi ∈ Rki+1, z ∈ RN−k−m. It immediately follows that Ω is G-
invariant. The following result holds true.

Proposition 4.5. Let G, Θ and Ω as above. If Q(y1, · · · , ym, z) = Q(|y1|, · · · , |ym|, z)
is an G-invariant continuous function in Ω and 0 ≤ k ≤ N −3, then problem (℘p,Ω,Q)
has in�nitely many G-invariant solutions for p ∈ (2, 2∗N,k).

Proof. By Lemma ??, we have that aG-invariant function u(y1, · · · , ym, z) = u(|y1|, · · · , |ym|, z)
is a solution to problem (℘p,Ω,Q) if and only if u is a solution to problem{

−div(b(z)∇u) = c(z)f(u) in Θ,
u = 0 on ∂Θ,

(4.6)

where b(z1, . . . zN−k) := zk1
1 . . . zkmm and c(z) := Q(z)b(z).

It is well known that the solutions of problem (4.6) are the critical points of the
functional J : H1

0 (Θ) 7→ R, de�ned by

J(v) :=
1

2
‖v‖2

b −
1

p
|v|pc,p , v ∈ H1

0 (Θ)

where

‖v‖2
b =

∫
Θ

b(x) |∇v|2 and |v|pc,p =

∫
Θ

c(x) |v|p .

Notice that, since Θ ⊂ (0,∞)m × RN−k−m, the functions b and c are continuous
and strictly positive in Θ. This implies that the functions ‖v‖2

b and |v|pc,p are norms

equivalent to those of H1
0 (Θ) and Lp(Θ) respectively.

Now, since Θ ⊂ RN−k, the Rellich-Kondrachov theorem asserts that H1
0 (Θ) is

compactly embedded in Lp(Θ) for p < 2∗N−k = 2(N−k)
(N−k)−2

.
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Hence, the functional J satis�es the Palais-Smale condition in H1
0 (Θ). Moreover,

it clearly satis�es all other hypotheses of the symmetric mountain pass theorem [2].
So, J has an unbounded sequence of critical values. This implies that problem (4.6)
has in�nitely many solutions and therefore the problem (℘p,Ω,Q) has in�nitely many
G-invariant solutions.

The following lemma provides a necessary condition for a function u ∈ C2(Ω)∩C1(Ω)
to be a solution of problem (℘p,Ω,Q).

Lemma 4.6 ( Pucci-Serrin, 1986). Let Q ∈ C1(Ω). If u ∈ C2(Ω)∩C1(Ω) is a solution
of problem (℘p,Ω,Q) and χ ∈ C1(Ω,RN), then

1

2

∫
∂Ω

|∇u|2 〈χ, νΩ〉 dσ =

∫
Ω

(divχ)

[
1

p
Q |u|p − 1

2
|∇u|2

]
dx

+
1

p

∫
Ω

|u|p 〈χ,∇Q〉 dx+

∫
Ω

〈dχ [∇u] ,∇u〉 dx (4.7)

where νΩ is the outward pointing unit normal to ∂Ω.

Proof. It follows from the variational identity (4) in Pucci and Serrin's paper [41]

Remark 4.7. Since Ω is a smooth bounded domain, every weak solution u to
problem (℘p,Ω,Q) is a classical solution, i.e. u ∈ C2(Ω) ∩ C1(Ω), for more details, see
for instance, [45, Appendix B].

To conclude this subsection we will construct a vector �eld χ ∈ C1(Ω,RN) which,
in combination with Lemma 4.6, will be very useful for the proof of our nonexistence
results. To do this, let Θ ⊂ (0,∞)m × RN−k−m and Ω as in (4.3). Fix τ1, . . . , τm ∈
(0,∞), and for every 1 ≤ i ≤ m, let ϕi : (0,∞) 7→ R de�ned by

ϕi(t) =
1

ki + 1

[
1− (

τi
t

)ki+1
]
.

A direct computation shows that ϕi is strictly increasing in (0,∞) and solves the
following problem {

ϕ′i(t)t+ (ki + 1)ϕi(t) = 1, t ∈ (0,∞),
ϕi(τi) = 0.

For yi ∈ Rki+1�{0}, we de�ne

χ(y1, . . . , ym, z) := (ϕ1(
∣∣y1
∣∣)y1, . . . , ϕm(|ym|)ym, z). (4.8)

It is clear that χ ∈ C1(Ω,RN). Moreover,
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Lemma 4.8. χ has the following properties

(P1) divχ = N − k

(P2) 〈dχ(y1, . . . , ym, z) [ξ] , ξ〉RN ≤ max {1− k1ϕ1(|y1|), . . . , 1− kmϕm(|ym|), 1} |ξ|2 for
every yi ∈ Rki+1 r {0}, z ∈ RN−k−m, ξ ∈ RN .

Proof. We will use the following notation: for every 1 ≤ j ≤ m, let lj = k1+· · ·+kj+j
and (x1, . . . , xN) = (y1, · · · , ym, z), i.e.

yj = (xl(j−1)+1, . . . , xlj) and z = (x(lm+1), . . . , xN).

Hence,

|yj| =

 lj∑
i=l(j−1)+1

x2
i

1/2

.

Therefore,

χ(x1, · · · , xN) = (χ1(x1, · · · , xN), . . . , χlm(x1, · · · , xN), . . . , χN(x1, · · · , xN))

where
χi(x1, · · · , xN) = ϕj(|yj|)xi for lj−1 < i ≤ lj ≤ lm

and
χi(x1, · · · , xN) = xi for lm < i ≤ N.

A direct calculation shows that

∂χi
∂xi

(x1, · · · , xN) = ϕ′j(
∣∣yj∣∣)(xi)

2

|yj|
+ ϕj(

∣∣yj|) for lj−1 < i ≤ lj ≤ lm,

and
∂χi
∂xi

(x1, · · · , xN) = 1 for lm < i ≤ N.

Moreover, since

lj∑
i=l(j−1)+1

∂χi
∂xi

(x1, · · · , xN) = ϕ′j(
∣∣yj∣∣) |yj|2

|yj|
+ ϕj(

∣∣yj|) = 1,

we conclude that

divχ(x1, · · · , xN) =
m∑
j=1

 lj∑
i=l(j−1)+1

∂χi
∂xi

(x1, · · · , xN)

+ (N − k −m) = N − k,



this proves (P1).
To prove (P2), note that χ is G-equivariant for the G-action de�ned in (4.5).

Indeed, if
g := (g1, . . . , gm) ∈ G and (y1, . . . , ym, z) ∈ Ω

with
yi ∈ Rki+1 r {0}, z ∈ RN−k−m,

then

χ(g(y1, . . . , ym, z)) = χ(g1y
1, . . . , gmy

m, z)

= (ϕ1(
∣∣g1y

1
∣∣)g1y

1, . . . , ϕm(|gmym|)gmym, z)
= (ϕ1(

∣∣y1
∣∣)g1y

1, . . . , ϕm(|ym|)gmym, z)
= (g(ϕ1(

∣∣y1
∣∣)y1, . . . , ϕm(|ym|)ym, z))

= g(χ(y1, . . . , ym, z)).

This implies that

g ◦ dχ(y1, . . . , ym, z) = dχ(g(y1, . . . , ym, z)) ◦ g

for every g ∈ G. Hence,〈
dχ
(
y1, . . . , ym, z

)
[ξ] , ξ

〉
RN =

〈
g
(
dχ
(
y1, . . . , ym, z

)
[ξ]
)
, gξ
〉
RN

=
〈
dχ
(
g(y1, . . . , ym, z)

)
[gξ] , gξ

〉
RN

for all g ∈ G and all ξ ∈ RN . Thus, it su�ces to show that the inequality (P2)
holds for yi = (yi1, 0, . . . , 0) with yi1 > 0. Set χi(y

i) := ϕi(|yi|)yi. A straightforward
computation shows that, for such yi, dχi(y

i) is a diagonal matrix whose diagonal
entries are a11 = 1−kiϕi(yi1) and ajj = ϕi(y

i
1) for j = 2, . . . , ki + 1. Since ϕi(t) <

1
ki+1

for all t ∈ (0,∞), (P2) follows.

4.4 Proof of Theorem 4.3 and Theorem 4.4.

In this subsection we will prove our results about the nonexistence of solutions for
the problem (℘p,Ω,Q).
Proof of Theorem 4.3. By Lemma 4.6 we have that if u ∈ C2(Ω) ∩ C1(Ω) is a
solution of problem (℘p,Ω,Q) and χ ∈ C1(Ω,RN), then

1

2

∫
∂Ω

|∇u|2 〈χ, νΩ〉 dσ =

∫
Ω

(divχ)

[
1

p
Q |u|p − 1

2
|∇u|2

]
dx

+
1

p

∫
Ω

|u|p 〈χ,∇Q〉 dx+

∫
Ω

〈dχ [∇u] ,∇u〉 dx (4.9)
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where νΩ is the outward pointing unit normal to ∂Ω. Take χ to be the vector �eld
de�ned in (4.8) for m = 1, 0 ≤ k ≤ N − 3 and τ1 = t0 as in De�nition 1, that is

χ(y, z) := (ϕ(|y|)y, z), (y, z) ∈
(
Rk+1 r {0}

)
× RN−k−1

with ϕ(t) = 1
k+1

[
1− ( t0

t
)k+1

]
. Then

divχ = N − k (4.10)

Notice that
ϕ(t) ≥ 0 for every t ∈ (t0,∞). (4.11)

and, since |y| > t0 if (y, z) ∈ Ω, we have that

ϕ(|y|) > 0 if (y, z) ∈ Ω. (4.12)

This implies that

〈χ(y, z),∇Q(y, z)〉RN = ϕ(|y|) 〈y, ∂yQ(y, z)〉RN + 〈z, ∂zQ(y, z)〉RN ≤ 0 ∀(y, z) ∈ Ω.
(4.13)

By Proposition 4.8 we have that if y ∈ Rk+1 r {0} and z ∈ RN−k−1, then

〈dχ(y, z) [ξ] , ξ〉RN ≤ max {1− kϕ(|y|), 1} |ξ|2 for every ξ ∈ RN .

Notice that equation (4.11) implies that 1 − kϕ(t) < 1 for t ∈ (t0,∞). Therefore,
using equation (4.12), we conclude that

〈dχ (x) [ξ] , ξ〉 ≤ |ξ|2 ∀x ∈ Ω, ξ ∈ RN . (4.14)

We will show that

〈χ(x), νΩ(x)〉 > 0 ∀x ∈ ∂Ωr {gξ0, gξ1 : g ∈ O(k + 1)} . (4.15)

Since Ω is O(k+1)-invariant we have that νΩ is O(k+1)-equivariant. Thus, it su�ces
to show that

〈(ϕ(t)t, z), νΘ(t, z)〉 > 0 for all (t, z) ∈ ∂Θr {ξ0, ξ1} , (4.16)

where νΘ(t, z) is the outward pointing unit normal to ∂Θ at (t, z) which we write
as νΘ(t, z) = (ν1(t, z), ν2(t, z)) ∈ R × RN−k−1. Let (t, z) ∈ ∂Θ. Since Θ is doubly
starshaped we have that

(t− ti)ν1(t, z) + 〈z, ν2(t, z)〉 > 0 if (t, z) 6= (ti, 0), for i = 0, 1,

with t0, t1 as in De�nition 1. Therefore,

〈(ϕ(t)t, z), νΘ(t, z)〉 = ϕ(t)tν1(t, z) + 〈z, ν2(t, z)〉 > (ϕ(t)t− t+ ti)ν1(t, z).
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Set ψ(t) := ϕ(t)t− t. Note that ψ′(t) = −kϕ(t) < 0 if t > t0. So, since t ∈ (t0, t1) for
every (t, z) ∈ Θ, we have that

ϕ(t1)t1 − t1 = ψ(t1) ≤ ψ(t) ≤ ψ(t0) = −t0 ∀(t, z) ∈ ∂Θ.

If ν1(t, z) ≤ 0, then

〈(ϕ(t)t, z), νΘ(t, z)〉 > (ψ(t) + t0)ν1(t, z) ≥ 0

and if ν1(t, z) ≥ 0, then

〈(ϕ(t)t, z), νΘ(t, z)〉 > (ψ(t) + t1)ν1(t, z) ≥ ϕ(t1)t1ν1(t, z) ≥ 0.

This proves (4.16). Combining properties (4.10), (4.13), (4.14) and (4.15) with iden-
tity (4.9) gives

0 <

∫
Ω

(divχ)

[
1

p
Q |u|p − 1

2
|∇u|2

]
dx+

∫
Ω

|∇u|2 dx

= (N − k)

(
1

p
− 1

2
+

1

N − k

)∫
Ω

|∇u|2 dx

which implies that p < 2∗N,k if u 6= 0.
Proposition 4.5 yields in�nitely many solutions for problem (℘p,Ω,Q) when p < 2∗N,k.

Proof of Theorem 4.4. Choose α ∈ (1, N−k
2

) with 2∗N,k + ε ≥ 2(N−k)
N−k−2α

. Fix
τ1, . . . , τm ∈ (0,∞) and, for the given k1, . . . , km, de�ne χ as in (4.8). Let 0 < % < τi
be de�ned by

max {1− k1ϕ1(τ1 − %), . . . , 1− kmϕm(τm − %)} = α,

Θ := BN−k
% (τ) be the ball of radius % centered at τ = (τ1, . . . , τm, 0) in Rm×RN−k−m

and Ω be de�ned as in (4.3). Then Ω has the homotopy type of Sk1 × · · · × Skm .
Moreover, Lemma 4.8 asserts that

divχ = N − k and 〈dχ (x) [ξ] , ξ〉 ≤ α |ξ|2 ∀x ∈ Ω, ξ ∈ RN . (4.17)

Since ϕi(t) < 0 if t < τi and ϕi(t) > 0 if t > τi we have that, for all but a �nite
number of points (x, z) ∈ ∂Θ,

〈(ϕ1(x1)x1, . . . , ϕm(xm)xm, z), νΘ(t, z)〉 =
m∑
i=1

ϕi(xi)xi(xi − τi) + |z|2 > 0.

Hence,
〈χ, νΩ〉 > 0 a.e. on ∂Ω. (4.18)
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Combining properties (4.17) and (4.18) with identity (4.9) for K = 1 we obtain

0 <

∫
Ω

(divχ)

[
1

p
|u|p − 1

2
|∇u|2

]
dx+ α

∫
Ω

|∇u|2 dx

= (N − k)

(
1

p
− 1

2
+

α

N − k

)∫
Ω

|∇u|2 dx

which implies that p < 2(N−k)
N−k−2α

≤ 2∗N,k+ε if u 6= 0. Consequently, problem (℘p,Ω) does
not have a nontrivial solution in Ω for p ≥ 2∗N,k + ε, whereas Proposition 4.5 yields
in�nitely many solutions for p < 2∗N,k.



Appendix A
Representation of Palais-Smale sequences

A.1 Introduction

Our aim in this appendix is to describe the lack of compactness of the anisotropic
critical problem

(℘)


−div(a1(x)∇u) + a2(x)u = a3(x)|u|2∗−2u in Ω,
u = 0 on ∂Ω,
u(gx) = u(x) ∀x ∈ Ω, g ∈ G,

where

• G is a closed subgroup of O(N).

• Ω is a smooth bounded G-invariant domain in RN ,

• ai is a G-invariant continuous function for i = 1, 2, 3 and satis�es that

• min
x∈Ω

ai(x) > 0 for i = 1, 3 and

• min
x∈Ω

a2(x) > −λ1(Ω), where λ1(Ω) is the �rst eigenvalue of the −∆ in

H1
0 (Ω).

Recall that, by the principle of symmetric criticality of Palais [35], the solutions to
problem (℘) are the critical points of the restriction of the functional

J(u) :=
1

2

∫
Ω

(a1|∇u|2 + a2u
2)− 1

2∗

∫
Ω

a3|u|2
∗

=
1

2
||u||2a1,a2

− 1

2∗
|u|2∗a3,2∗

to the space of G-invariant functions

H1
0 (Ω)G : {u ∈ H1

0 (Ω) : u(gx) = u(x) for all g ∈ G, x ∈ Ω}.
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De�nition 2. We shall say that a sequence (un) in H1
0 (Ω) is a G−invariant Palais-

Smale sequence for J at the level c if

un ∈ H1
0 (Ω)G, J(un)→ c, J ′(un)→ 0 in H−1(Ω).

We say that J satis�es the G-invariant Palais-Smale condition (PS)Gc at the level c in
H1

0 (Ω) if every Palais-Smale sequence for J at the level c has a convergent subsequence
in H1

0 (Ω).

In general, the functional J does not satisfy the Palais-Smale condition for every
c ∈ R, i.e. there exist G-invariant Palais-Smale sequences which do not converge.
In [44], Struwe gave a global compactness result for problem (℘) in the particular

case when G ≡ 1 and ai ≡ 1, i = 1, 2, 3. In this case, he gave a complete description
of the Palais-Smale sequences of the associated variation problem in terms of the
solutions of the limit problem

(℘∞)

{
−∆u = |u|2∗−2u in RN ,
u→ 0 when |x| → ∞

Roughly speaking, he showed that the Palais-Smale sequences which do not converge,
approach to a sum of a solution (possibly trivial) to problem (℘) plus nontrivial
solutions of the (℘∞) rescaled by sequences of points in the closure of the domain.
In [12], Clapp generalizes the result given by Struwe to the symmetric non-autonomous

problem, (i.e. the particular case of problem (℘) when G is any closed subgroup of
O(N), a3 is a G-invariant positive continuous function and a1 ≡ a2 ≡ 1). In this
case, she showed that the lack of compactness is produced by solutions of limiting
problems of the form 

−∆u = |u|2∗−2u in RN ,
u→ 0 when |x| → ∞
u(gx) = u(x) for all g ∈ K

concentrating at G-orbits of Ω with orbit type G/K for some closed subgroup K of
�nite index in G.
In this section we will follow the proof of Clapp and Struwe to give a global com-

pactness result for problem (℘). In order to give a precise statement let us recall some
basic notions. Let O(N) be the group of linear isometries of RN . If G is a closed
subgroup on O(N), we will denote by

Gx := {gx : g ∈ G}

the G-orbit of x ∈ RN and by #Gx its cardinality. A domain Ω ⊂ RN is called G
invariant if

Gx ⊂ Ω for all x ∈ Ω.
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A function a : Ω → R is called G-invariant if u is constant on every orbit Gx. The
subgroup Gx of G de�ned by

Gx := {g ∈ G : gx = x},

is the G-isotropy group of x.
The main theorem of this chapter is the following

Theorem A.1. Let (un) be a G-invariant Palais-Smale sequence for J at the level c.
Then, passing to a subsequence of (un) if necessary, there exists a G-invariant solu-
tion (possibly trivial) to problem (℘), an integer m ≥ 0, closed subgroups G1, . . . , Gm

of �nite index in G, sequences (y1,n), . . . , (ym,n) in Ω, sequences (ε1,n), . . . , (εm,n) in
(0,∞) and non trivial solutions û1, . . . , ûm to problem (℘∞), with the following prop-
erties

(i) Gyi,n = Gi for all n ≥ 1, and yi,n → yi for every i = 1, . . . ,m.

(ii) ε−1
i,ndist(yi,n, ∂Ω)→∞ and εi,n|gyi,n−g′yi,n| → ∞ if [g′] 6= [g] in G/Gi for every
i = 1, . . . ,m,

(iii) ûi is Gi-invariant for every i = 1 . . .m.

(iv)

∥∥∥∥∥∥un − u−
m∑
i=1

∑
[g]∈G/Gi

(
a3(yi)

a1(yi)

) 2−N
4

ε
2−N

2
i,n ûi(g

−1ε−1
i,n(· − gyi,n))

∥∥∥∥∥∥→ 0 in D1,2(RN).

(v) J(u) +
m∑
i=1

|G/Gi|

(
a3(yi)

2−N
2

a1(yi)
−N

2

)
J∞(ûi) = c

As in [44] and [12], the proof of Theorem A.1 follows from the next lemma.

Lemma A.2. Let (un) be a G-invariant Palais-Smale sequence for J1 at the level
c > 0 such that un ⇀ 0 weakly in H1

0 (Ω)G. Then, there exist a closed subgroup K
of �nite index in G, a sequence (yn) in Ω, a sequence (εn) in (0,∞), a non trivial
solution û to the limit problem (℘∞) and a G-invariant Palais-Smale sequence (vn)
for J1 with the following properties

(i) Gyn = K for all n ∈ N, and yn → y0 in Ω.

(ii) ε−1
n dist(yn, ∂Ω)→∞ and ε−1

n |gyn − g′yn| → ∞ if [g′] 6= [g] in G/K

(iii) û is K-invariant,

(iv) vn = un −
∑

[g]∈G/K

(
a3(y0)

a1(y0)

) 2−N
4

ε
2−N

2
n û(g−1ε−1

n (· − gyn)) + o(1) in D1,2(RN).



(v) J1(vn) = J1(un)− |G/K|
(
a3(y0)

2−N
2

a1(y0)−
N
2

)
J∞(û) + o(1).

As in [44], from Theorem A.1 we can conclude the following corollary which is very
important for this work.

Corollary A.3. The functional J satis�es condition (PS)Gc in H1
0 (Ω) for every

c <

(
min
x∈Ω

a1(x)
N
2 #Gx

a3(x)
N−2

2

)
1

N
S
N
2 . (A.1)

In particular, if #Gx =∞ for all x ∈ Ω, then J satis�es condition (PS)Gc in H1
0 (Ω)

for every c ∈ R.

Proof. Let c be given as in the statement of this corollary. Since 1
N
S
N
2 is the minimum

energy of a non trivial solution û for problem (℘∞), we have that

c <

(
min
x∈Ω

a1(x)
N
2 #Gx

a3(x)
N−2

2

)
1

N
S
N
2 ≤ |G/K|

(
a1(y)

N
2

a3(y)
N−2

2

)
J∞(û)

for every isotropy closed subgroup K ⊂ G and every y ∈ Ω. Therefore, if (un) is
a G-invariant Palais-Smale sequence for J at the level c, it follows from statement
(v) of Theorem A.1 that m = 0. Finally, (iv) shows that (un) converge strongly in
H1

0 (Ω).

A.2 Main tools for proving Theorem A.1

In order to provide a proof of Theorem A.1 we need some tools which we introduce
below
For every closed subgroup H of G, the set

(RN)H := {x ∈ RN : gx = x for all g ∈ G}

is the �xed point space of H. Recall that the subgroups H and K of G are called
conjugate if there exists an element g ∈ G such that H = gKg−1. The conjugacy
class of H in G is the set

(H) := {gHg−1 : g ∈ G}.

Let
C := {(H) : H closed subgroup of G}.

It is well known that C is a partially ordered set with the partial order

(H) ≤ (K) if and only if gHg−1 ⊂ K for some g ∈ G.

The conjugacy class (Gx) of an isotropy group Gx is called isotropy class. Note that
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Remark A.4. If (K) = (Gx) and K ⊂ Gx, then K = Gx.

Proof. Let g ∈ G such that
Ggx = gGxg

−1 = K. (A.2)

The map x 7→ gx is an isomorphism between (RN)Gx and (RN)K . On the other hand,
since K ⊂ Gx, we have that (RN)Gx ⊂ (RN)K . Hence (RN)Gx = (RN)K . Using
equation (A.2) we have that gx ∈ (RN)K = (RN)Gx , therefore

Gx ⊂ Ggx = K,

this ends the proof.

We shall make use the following result

Lemma A.5. Every �nite-dimensional vector space has only �nitely many isotropy
classes.

Proof. See [6, IV.10]

Now consider the set
V := {x ∈ RN : #Gx <∞}.

Note that V is a linear subspace of RN . Also, since Ggx = Gx for every g ∈ G, we
have that V is G-invariant.

Remark A.6. For every sequence (wn) in V , there exist a closed subgroup L of G
and a subsequence of (wn), which we still denote in the same way, with the following
properties

• Gwn = L ∀n ∈ N

• (RN)L ⊆ V

Proof. Let (wn) ⊂ V . Using Lemma A.5 and passing to a subsequence we have that
there exists a closed subgroup L of G such that

(Gwn) = (L) ∀n ∈ N.

On the other hand, since
Ggx = gGxg

−1 ∀g ∈ G,
we have that

|(L)| = |(Gwn)| ≤ #Gwn <∞.
Since |(L)| is �nite, a subsequence of (wn) satis�es that

Gwn = L ∀n ∈ N.

Finally, note that if x ∈ (RN)L then L ⊆ Gx, and hence

#Gx = |G/Gx| ≤ |G/L| <∞.

This shows that (RN)L ⊆ V .
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The following lemma can be �nd, up to minor modi�cations, in [19, Lemma 3.2].

Lemma A.7. Given a sequence (εn) in (0,∞) and a sequence (ξn) in RN there exists
a sequence (yn) in RN and a closed subgroup K of G such that for some subsequence
of (ξn), which we still denote in the same way, it holds that

(s1) ε−1
n dist(Gξn, yn) is bounded.

(s2) Gn = K for all n ∈ N.

(s3) If |G/K| < ∞, then ε−1
n |gyn − g′yn| → ∞ for any g, g′ such that [g] 6= [g′] in

G/K.

(s4) If |G/K| = ∞, then there exists a closed subgroup K ′ of G such that K ⊂ K ′,
|G/K ′| =∞ and ε−1

n |gyn−g′yn| → ∞ for any g, g′ such that [g] 6= [g′] in G/K ′.

Proof. Given the sequences (εn) and (ξn), there are two cases:

Case 1 The sequence (ε−1
n dist(ξn, V )) is unbounded.

Case 2 The sequence (ε−1
n dist(ξn, V )) is bounded.

Case 1. Passing to a subsequence, we may assume that ε−1
n dist(ξn, V ) → ∞. Using

Lemma A.5, we may also assume that there exists an isotropy group K such that
(Gξn) = (K) for every n ∈ N. Therefore, for every ξn there exists gn ∈ G such that

K = gnGξng
−1
n = Ggnξn .

We de�ne yn := gnξn. From the de�nitions of the sequence (yn) and the closed
subgroup K it becomes evident that (s1) and (s2) are satis�ed.
Also, using that V is G-invariant, we have that

ε−1
n dist(yn, V ) = ε−1

n dist(ξn, V )→∞,

therefore, yn 6∈ V . This implies that

|G/K| = |G/Gyn| = #Gyn =∞.

Hencce, we have to prove that (s4) holds. Let V ⊥ the orthogonal complement of V
in RN and %n be the orthogonal projection of yn onto V

⊥. Since yn 6∈ V we have that
%n 6= 0. Hence, passing to a subsequence, we have that

%n
|%n|
→ % ∈ V ⊥.

We de�ne K ′ := G%. Also note that, since yn ∈ K ∀n ∈ N, we have that K ⊂ K ′.
Moreover, using that % ∈ V ⊥, we have

|G/K ′| = #G% =∞.
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Let g, g′ ∈ G such that [g] 6= [g′] in G/K ′. Since |g% − g′%| > 0, we can take n0 ∈ N
such that ∣∣∣∣ %n|%n| − %

∣∣∣∣ < 1

4
|g%− g′%| ∀n ≥ n0.

Then

|g%− g′%| ≤
∣∣∣∣g%− g%n

|%n|

∣∣∣∣+

∣∣∣∣g%n|%n| − g′%n
|%n|

∣∣∣∣+

∣∣∣∣g′%n|%n| − g′%
∣∣∣∣

=

∣∣∣∣g%n|%n| − g′%n
|%n|

∣∣∣∣+ 2

∣∣∣∣ %n|%n| − %
∣∣∣∣

≤
∣∣∣∣g%n|%n| − g′%n

|%n|

∣∣∣∣+
1

2
|g%− g′%| ∀n ≥ n0,

therefore
1

2
|g%− g′%||%n| ≤ |g%n − g′%n| ∀n ≥ n0.

This �nally yields

1

2
|g%− g′%|ε−1

n dist(yn, V ) =
1

2
ε−1
n |g%− g′%||%n|

≤ ε−1
n |g%n − g′%n|

≤ ε−1
n |gyn − g′yn| ∀n ≥ n0.

Since ε−1
n dist(yn, V )→∞, statement (s4) holds.

Case 2. The sequence (ε−1
n dist(ξn, V )) is bounded. Let F be the set of isotropy

classes (Gx) such that x ∈ V and ε−1
n (dist(ξn, (RN)gGxg

−1
)) contains a bounded sub-

sequence for some g ∈ G. By Lemma A.5 the cardinality of F is �nite.
We will prove that F 6= ∅. For this purpose, let xn to be the orthogonal projection

of ξn onto V . Since (xn) ⊂ V using Remark A.6, we can assume that there exist a
closed subgroup L of G and a subsequence of (xn), which we still denote in the same
way, with the properties

Gxn = L ∀n ∈ N and (RN)L ⊆ V.

Therefore
ε−1
n dist(ξn, (RN)L) ≤ ε−1

n |ξn − xn| = ε−1
n dist(ξn, V ) < c.

This shows that (L) ∈ F.
Now, since F is a partially ordered non-empty �nite set, there exists an element

(K) ∈ F which is a maximal element to the partial order. This means that if (F ) ∈ F
and (K) ≤ (F ) then (H) = (K). Moreover, since (K) ∈ F, passing to a subsequence
of (ξn), we may assume that

dist(ξn, (RN)K) < c <∞ ∀n ∈ N.
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We de�ne yn to be the orthogonal projection of ξn onto (RN)K . We immediately �nd
that

ε−1
n dist(Gξn, yn) ≤ ε−1

n |ξn − yn| = ε−1
n dist(ξn, (RN)K) < c ∀n ∈ N, (A.3)

hence, (s1) holds. Since (K) ∈ F, we have K = Gx0 for some x0 ∈ V . This implies
that if x ∈ (RN)K = (RN)Gx0 , then Gx0 ⊂ Gx. Therefore

#Gx = |G/Gx| ≤ |G/Gx0| = #Gx0 <∞.

We conclude that (RN)K ⊂ V . And since

(yn) ⊂ (RN)K (A.4)

using Remark A.6, there exist a closed subgroup L ⊂ G and a subsequence of (yn)
such that

Gyn = L ∀n ∈ N and (RN)L ⊆ V.

Note also that equation (A.4) implies that K ⊂ L, and therefore (RN)L ⊂ (RN)K .
Then, one has that

ε−1
n dist(ξn, (RN)L) = ε−1

n |ξn − yn| < c ∀n ∈ N.

So, (L) ∈ F. Since (K) is maximal in F and K ⊂ L, using Remark A.4, we concluded
that

K = F = Gyn ∀n ∈ RN .

This proves (s2).
Being that |G/K| <∞, we only need to prove (s3). Arguing by contradiction, let

us suppose that there exist g, g′ ∈ K such that [g] 6= [g′] in G/K and (ε−1
n |gyn−g′yn|)

is bounded. Let g0 := g−1g′ 6∈ K and L to be the subgroup of G generated by
K ∪ {g0}. Let W1 = (RN)L and W2 to be the orthogonal complement in (RN)K .
Write

yn = y1
n + y2

n, with y
i
n ∈ Wi i = 1, 2.

Since g0 6∈ K = Gyn , we have that g0yn 6= yn for all n ∈ N. And therefore, using that
g0 ∈ L and that y1

n ∈ W1, we obtain

0 6= g0yn − yn = (g0y
1
n − y1

n) + (g0y
2
n − y2

n) = g0y
2
n − y2

n. (A.5)

Hence y2
n 6= 0 for all n ∈ N. Passing to a subsequence we obtain that

y2
n

|y2
n|
→ y ∈ W2.

We will use the sequence (ε−1
n y2

n) to arrive a contradiction by showing that it cannot
be bounded or unbounded.
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First we will suppose that (ε−1
n y2

n) is unbounded. Then passing to a subsequence
and using equation (A.5), we have that∣∣∣∣g0y

2
n

|y2
n|
− y2

n

|y2
n|

∣∣∣∣ =
ε−1
n |g0yn − yn|
ε−1
n |y2

n|
=
ε−1
n |gyn − g′yn|
ε−1
n |y2

n|
≤ c

ε−1
n |y2

n|
→ 0

Therefore g0y = y, and being that y ∈ W2 ⊂ (RN)K , we have that gy = y for all
g ∈ L. This means that y ∈ (RN)L = W1, which is a contradiction.
Let us now suppose that (ε−1

n y2
n) is bounded. Since (y1

n) ⊂ (RN)K ⊂ V , Remark
A.6 implies that there exist a closed subgroup L1 of G such that Gy1

n
= L1 for all

n ∈ N. In addition, using Equation (A.3), results in

ε−1
n dist(ξn,RN)L1 = ε−1

n |ξn − y1
n| ≤ ε−1

n |ξn − yn|+ ε−1
n |y2

n| < c1 <∞,

for some constant c1 > 0. This shows that (L1) ∈ F. Note also that since y1
n ∈ W1,

we have that K ⊂ L ⊂ L1. Using again that (K) is a maximal element in F and
Remark A.4, we concluded that

K = L = L1,

which contradicts the fact that g0 6∈ K.
Therefore, if g, g′ ∈ K and [g] 6= [g′] in G/K then (|gyn − g′yn|) is not bounded.

This proves (s3) and concludes the proof.

Recall that the energy functional J∞ : D1,2(RN) → R associated to problem (℘∞)
is given by

J∞(u) :=
1

2

∫
RN
|∇u|2 − 1

2∗

∫
RN
|u|2∗ ,

Also, we de�ne the functional J1 : D1,2(RN)→ R by

J1(u) :=
1

2

∫
RN
a1|∇u|2 −

1

2∗

∫
RN
a3|u|2

∗

The following lemmas are taken from [47].

Lemma A.8. (Brézis-Lieb Lemma, 1983). Let Ω be an open subset of RN and let
(wn) ⊂ Lp(Ω), 1 ≤ p <∞. If

• (wn) is bounded in Lp(Ω),

• wn → w almost everywhere on Ω, then

lim
n→∞

(|wn|pp − |wn − w|pp) = |w|pp.
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Lemma A.9. If wn ⇀ w weakly in D1,2(RN) and w ∈ L∞loc(RN) then

|wn|2
∗−2wn − |wn − w|2

∗−2(wn − w)→ |w|2∗−2w in (D1,2(RN))′.

Lemma A.10. If

un ⇀ u weakly in H1
0 (Ω),

un → u a.e. on Ω,

un → u in L2
loc(Ω),

J(un) → c in R,
J ′(un) → 0 in (H1

0 (Ω))′,

then J ′(u) = 0 and vn := un − u is such that

‖vn‖2 = ‖un‖2 − ‖u‖2 + o(1),

J1(vn) → c− J(u) in R,
J ′1(vn) → 0 in (H1

0 (Ω))′,

Proof. Since un ⇀ u weakly in H1
0 (Ω), it is clear that

‖vn‖2 = 〈un, un〉 − 2〈un, u〉+ 〈u, u〉
= ‖un‖2 − ‖u‖2 + o(1).

On the other hand, being that vn → 0 in L2
loc(Ω), we obtain

J(vn)− J1(vn) =
1

2

∫
Ω

a2(x)v2
n = o(1), (A.6)

moreover, Lemma A.8 implies that

J(vn) =
1

2
〈un − u, un − u〉a1,a2

− 1

2∗

∫
Ω

a3|un − u|2
∗

=
1

2
(||un||a1,a2 − ||u||a1,a2)− 1

2∗

∫
Ω

a3|un − u|2
∗

+ o(1)

= J(un)− J(u) +
1

2∗
(

∫
Ω

a3|un|2
∗ −

∫
Ω

a3|u|2
∗ −

∫
Ω

a3|un − u|2
∗
) + o(1)

= c− J(u) + o(1),

which, together with equation (A.6), shows that

J1(vn) = c− J(u) + o(1).

On the other hand, since Ω is bounded, we can combine Rellich-Kondrakov Theorem
and Lebesgue's Dominated Convergence Theorem to obtain∫

Ω

a3|un|2
∗−2unϕ→

∫
Ω

a3|u|2
∗−2uϕ, for every ϕ ∈ H1

0 (Ω). (A.7)



Since un ⇀ u weakly in H1
0 (Ω), Equation (A.7) implies that

J ′(un)[ϕ] = 〈un, ϕ〉a1,a2
−
∫

Ω

a3|un|2
∗−2unϕ −→ 〈u, ϕ〉a1,a2

−
∫

Ω

a3|u|2
∗−2uϕ = J(u)[ϕ].

Since also J ′(un)[ϕ]→ 0, we have that J ′(u)[ϕ] = 0 for every ϕ ∈ H1
0 (Ω), e.i J ′(u) = 0

.
Being that vn → 0 in L2

loc(Ω) we have, for n large enough and for every ϕ ∈ C∞0 (Ω),
that

|J ′(vn)[ϕ]− J ′1(vn)[ϕ]| =

∣∣∣∣∫
Ω

a2vnϕ

∣∣∣∣
≤ sup

x∈Ω
|a2(x)|

(∫
Ω

|vn|2
)2(∫

Ω

|ϕ|2
)2

≤ Cε||ϕ||

Since C∞0 (Ω) is dense in H1
0 (Ω), we have that J ′(vn)→ J ′1(vn) in (H1

0 (Ω))′. Finally

J ′(vn)[ϕ] = 〈un − u, ϕ〉a1,a2
−
∫

Ω

a3|un − u|2
∗−2(un − u)ϕ

= J ′(un)[ϕ]− J ′(u)[ϕ] +

∫
Ω

a3|un|2
∗−2(un)ϕ−

∫
Ω

a3|u|2
∗−2uϕ

+

∫
Ω

a3|un − u|2
∗−2(un − u)ϕ,

hence, using again equation (A.7), we obtain

J ′(vn)[ϕ] = J ′(un)[ϕ]− J ′(u)[ϕ] + o(1),

and therefore

J ′1(vn) = J ′(vn) + o(1),

= J ′(un)− J ′(u)− o(1),

= o(1),

as we wanted to demonstrate.

A.3 Proof of Theorem A.1

We will begin with the proof of Lemma A.2 to carry on with the proof of Theorem
A.1.
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Proof of Lemma A.2. We divided the proof into several steps.
Step 1: De�nition of the sequences (εn), (yn) and the group K.
Let (un) be a G−invariant Palais-Smale sequence for J1 at the level c > 0, equation

1

N
||un||2a1

= J(un)− 1

2∗
J ′(un)(un) ≤ |c|+ 1 + ||un||a1 . (A.8)

guaranties that (un) is a bounded sequence in H1
0 (Ω)G and hence, J ′1(un)(un) → 0.

Therefore ∫
Ω

a3|un|2
∗

= N(J1(un)− 1

2
J ′1(un)(un))→ Nc > 0.

Let δ := min{Nc
2
,

(max
x∈Ω

a3)
2−N

2

(S
2
·min
x∈Ω

a1)−
N
2

} > 0 and extend un ≡ 0 outside Ω.

For every n ∈ N, consider the Levy concentration function Qn : [0,∞) → [0,∞)
de�ned by

Qn(r) := sup
y∈RN

∫
B(y,r)

a3|un|2
∗
.

Notice that Qn is an increasing continuous function. Moreover, since Qn(0) = 0 and
limr→∞Qn(r) > δ, there exist εn > 0 and ξn ∈ RN such that

Qn(εn) = sup
y∈RN

∫
B(y,εn)

a3|un|2
∗

=

∫
B(ξn,εn)

a3|un|2
∗

= δ.

Now, for the sequences (εn) and (ξn) we choose K and (yn) as in Lemma A.7.
By property (s1) of Lemma A.7 there exists a positive constant C1 such that

ε−1
n dis(Gξn, yn) < C1 for every n ∈ N. This implies that there exists gn ∈ G such that
Bεn(gnξn) ⊂ BCεn(yn) for C := C1 + 1. Hence, using that a3 and un are G-invariants,
one has that

δ =

∫
Bεn (ξn)

a3|un|2
∗

=

∫
Bεn (gnξn)

a3|un|2
∗ ≤

∫
BCεn (yn)

a3|un|2
∗
. (A.9)

Next we will show that |G/K| < ∞. If we suppose the contrary, property (s4) of
Lemma A.7 guarantees that there exists a closed subgroup K ′ such that K ⊂ K ′,
|G/K ′| =∞ and ε−1

n |gyn − g′yn| → ∞ for any [g], [g′] ∈ G/K ′ with [g] 6= [g′].
Let {g1, . . . , gm} in G such that [gi] 6= [gj] in G/K

′ if i 6= j. We have that

BCεn(giyn) ∩BCεn(gjyn) = ∅ ∀ i 6= j.

for n su�ciently large. Using again that the functions a3 and un are G−invariants
and inequality (A.9), we obtain

mδ ≤
m∑
i=1

∫
BCεn (giyn)

a3|un|2
∗ ≤

∫
Ω

a3|un|2
∗

= Nc+ o(1),
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for every m ∈ N. Since this is a contradiction, we conclude that |G/K| <∞.
Step 2: De�nition of û 6= 0 such that û(gx) = û(x) for all x ∈ Rn and g ∈ K.
Let us consider the following functions

ũn(z) := ε
N−2

2
n un(εnz + yn)

ani (z) := ai(εnz + yn) i = 1, 3.

Since un is G-invariant and Gn = K, we have that ũn is K-invariant. Indeed, if g ∈ K
we have that

ũn(gz) = ε
N−2

2
n un(εngz + yn)

= ε
N−2

2
n un(g(εnz + yn))

= ε
N−2

2
n un(εnz + yn)

= ũn(z).

for every z ∈ RN . Analogously, the equality

ani (gz) = ai(εngz + yn) = ai(g(εnz + yn)) = ani (z)

shows that ani is K-invariant for i = 1, 3. We also have that∫
Ω

a3(x)|un(x)|2∗dx =

∫
Ωn

an3 (z)|ũn(z)|2∗dz∫
Ω

a1(x)|∇un(x)|2dx =

∫
Ωn

an1 (z)|∇ũn(z)|2dz

where

Ωn := {z ∈ Rn : εnz + yn ∈ Ω}.

Being that ũn a bounded sequence in D1,2(RN) then a subsequence -which will be
denoted in the same way- satis�es that

ũn ⇀ ũ weakly in in D1,2(RN)

ũn → ũ strongly in L2
loc(RN)

ũn → ũ a.e. in RN .

It follows that ũ is K-invariant. Next we will proof that ũ 6= 0. Arguing by
contradiction, let's assume that ũ = 0. Let z ∈ RN and h̃ ∈ C∞0 (RN) such that
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supp(h̃) ⊂ B1(z). If hn(x) = h̃( 1
εn

(x− yn)), one has that

J1(un)[h2
nun] =

∫
Ω

a1(x)(∇un(x) · ∇(h2
n(x)un(x)))dx−

∫
Ω

a3(x)|un(x)|2∗h2
n(x)dx

=

∫
B1(z)

an1 (z)(∇ũn(z) · ∇(h̃2(z)ũn(z)))dz −
∫
B1(z)

an3 (z)|ũn(z)|2∗h̃2(z)dz.

Since J1(un)[h2
nun]→ 0, we have that∫

B1(z)

an1 (∇ũn · ∇(h̃2ũn)) =

∫
B1(z)

an3 |ũn|2
∗
h̃2 + o(1) (A.10)

On the other hand, using Hölder and Sobolev inequalities, equation A.10 and the fact
ũn → ũ = 0 in L2

loc(RN) we have that

S (minx∈Ω a1)

(∫
B1(z)

|h̃ũn|2
∗
) 2

2∗

≤
(

min
x∈Ω

a1

)∫
B1(z)

|∇(h̃ũn)|2

=

(
min
x∈Ω

a1

)∫
B1(z)

|h̃∇ũn + ũn∇h̃|2

=

(
min
x∈Ω

a1

)∫
B1(z)

(h̃2|∇ũn|2 + 2h̃ũn∇ũn · ∇h̃+ ũ2
n|∇h̃|2)

=

(
min
x∈Ω

a1

)∫
B1(z)

∇ũn · ∇(h̃2ũn) + o(1)

≤
∫
B1(z)

an1 (∇ũn · ∇(h̃2ũn)) + o(1)

=

∫
B1(z)

an3 |ũn|2
∗
h̃2 + o(1)

≤
(

max
x∈Ω

a3

)N−2
N
(∫

B1(z)

|h̃ũn|2
∗
) 2

2∗
(∫

B1(z)

an3 |ũn|2
∗
) 2

N

+ o(1)

≤
(

max
x∈Ω

a3

)N−2
N
(∫

B1(z)

|h̃ũn|2
∗
) 2

2∗

δ
2
N + o(1),

the last inequality is due∫
B1(z)

an3 |ũn|2
∗

=

∫
Bεn (εnz+yn)

a3|un|2
∗ ≤

∫
Bεn (ξn)

a3|un|2
∗

= δ.
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Now, using the de�nition of δ, one has

S

(∫
B1(z)

|h̃ũn|2
∗
) 2

2∗

≤
(max
x∈Ω

a3)
N−2
N

(min
x∈Ω

a1)

(∫
B1(z)

|h̃ũn|2
∗
) 2

2∗

δ
2
N + o(1)

≤ S

2

(∫
B1(z)

|h̃ũn|2
∗
) 2

2∗

+ o(1).

This implies that

∫
B1(z)

|h̃ũn|2
∗ → 0 for every y ∈ Rn and for every h̃ ∈ C∞0 (RN) such

that supph ⊂ B1(z). Hence, if we choose h̃ ∈ C∞0 (RN) such that supph̃ ⊂ B1(z) and

h̃ ≡ 1 in B 1
2
(z) we have that∫

B 1
2

(z)

|ũn|2
∗ ≤

∫
B1(z)

|h̃ũn|2
∗ → 0

Therefore ũn → 0 in L2∗

loc(RN). This is a contradiction because, using inequality (A.9),
we have that

0 < δ ≤
∫
BCεn (yn)

a3|un|2
∗

=

∫
BC(0)

an3 |ũn|2
∗ ≤ max

x∈Ω
a3

∫
BC(0)

|ũn|2
∗

We conclude that ũ 6= 0. Since (yn) is a bounded sequence, a subsequence converge
to a point y0 ∈ RN . We de�ne

û :=

(
a3(y0)

a1(y0)

)N−2
4

ũ.

Step 3: It holds true that ε−1
n dis(yn, ∂Ω)→∞, yn ∈ Ω and û is a solution to problem

(℘∞).

Since (εn) is bounded, a subsequence satis�es that εn → ε ∈ [0,∞). We claim that

ε = 0. Indeed, if ε 6= 0, for every h̃ ∈ C∞0 (RN), we can consider

hn(z) := ε
2−N

2
n h̃(

z − yn
εn

)

h(z) := ε
2−N

2 h̃(
z − y0

ε
)

Hence, by Lebesgue's dominated convergence, we have that∫
RN
|∇(hn − h)|2 → 0.
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Moreover, using that un ⇀ 0 in H1
0 (Ω) and therefore in D1,2(RN) , we have that

|〈ũn, h̃〉| = | 〈un, hn〉 | = | 〈un, hn〉 − 〈un, h〉+ 〈un, h〉 |
≤ | 〈un, hn − h〉 |+ | 〈un, h〉 |
≤ ||un||||hn − h||+ o(1)

≤ C||hn − h||+ o(1)

= o(1).

Since, this is true for every h̃ ∈ C∞0 (RN) we have that ũ = 0, which is a contradiction.
We conclude that ε = 0.
Let us suppose that the sequence (ε−1

n dis(yn,Ω)) is bounded to obtain a contradic-
tion. Passing to a subsequence, we may assume that ε−1

n dis(yn,Ω) → d < ∞. Note
that this implies that

dist(yn, ∂Ω)→ 0. (A.11)

After passing to a subsequence, we have the following two cases:

case 1. yn ∈ Ω ∀n ∈ N

case 2. yn ∈ RN\Ω ∀n ∈ N

First we will consider case 1.
For every z ∈ ∂Ω, ν(z) will denote the inward pointing unit to ∂Ω, and for every yn

let zn ∈ ∂Ω such that |yn − zn| = dist(yn, ∂Ω). We also may assume that ν(zn)→ ν.
Since ∂Ω is a compact smooth domain there exists a positive r0 such that

Br0(z + r0ν(z)) ⊂ Ω and Br0(z − r0ν(z)) ⊂ RN�Ω ∀z ∈ ∂Ω. (A.12)

Consider the transformations %in : RN → RN and de�ned by

%1
n(z) := εnz + yn and %2

n(z) :=
1

εn
(z − yn)

Lets consider the half-space H := {z ∈ RN : ν · z > −d}. We will show that
ũ ∈ D1,2

0 (H) and that ũ is a solution to problem

−∆u =
a3(y0)

a1(y0)
|u|2∗−2u in H. (A.13)

Fix x ∈ Rn�H. Note that x · ν(zn) > −ε−1
n |yn − zn| for all n > n1. Hence, there

exist r > 0 such that

x ∈ Br(((|%2
n(zn)|+ r)(−ν(zn))) ∀n ≥ n1.

Applying the transformation %1
n, we have that there exists n2 such that

%1
n(x) ∈ %1

n(Br(((|%2
n(zn)|+ r)(−ν(zn)))) = Bεnr(zn − εnrν(zn)) ⊂ Br0(zn − r0ν(zn))
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for all n ≥ n2. Therefore, using (A.12), for we obtain

x ∈ Br(((|%2
n(zn)|+ r)(−ν(zn))) ⊂ RN\Ωn ∀n ≥ n2.

Since suppũn ⊂ Ωn, we have that if x ∈ Rn�H then

ũn(x) = 0

for n su�ciently large. And so, using that ũn → ũ almost everywhere in Rn, we
conclude that ũ ∈ D1,2

0 (H). Preceding in a way analogous, for every compact set
K ⊂ H, there exists r > 0 and n1 ∈ N such that K ⊂ intBr((|r − |%2

n(zn)|ν(zn))) for
all n ≥ n1. Therefore, there exists n2 ∈ N, such that

%1
n(Br((r − |%2

n(zn)|)(ν(zn))) = Bεnr(zn + εnrν(zn)) ⊂ Br0(zn + r0ν(zn))

For all n ≥ n2. Hence, using again (A.12) we obtain

K ⊂ intBr((r − |%2
n(zn)|)(ν(zn))) ⊂ Ωn ∀n ≥ n2.

If φ̃ ∈ C∞0 (H), then suppφ̃ ⊂ Ωn for n su�ciently large. Let

φn(z) := ε
2−N

2 φ̃(ε−1
n (z − yn)).

It follows that∣∣∣∣∫
Ωn

an1∇ũn · ∇φ̃−
∫

Ωn

an3 |ũn|2
∗−2ũnφ̃

∣∣∣∣ = |J1(un)[φn]|

≤ ||∇J1(un)||||φn||
≤ ||∇J1(un)||||φ|| → 0

and since∫
Ωn

an1∇ũn · ∇φ̂−
∫

Ωn

an3 |ũn|2
∗−2ũnφ̂→

∫
H
a1(y0)∇ũ · ∇φ̂−

∫
H
a3(y0)|ũ|2∗−2ũφ̂,

we conclude that∫
H
a1(y0)∇ũ · ∇φ̂−

∫
H
a3(y0)|ũ|2∗−2ũφ̂ = 0 ∀φ̂ ∈ C∞0 (H).

This shows that ũ is a solution to problem (A.13). Pohozaev identity [40] shows that
ũ = 0, which is a contradiction.
Therefore, if yn ∈ Ω for all n ∈ N, we have that (ε−1

n dis(yn,Ω)) is not bounded.
Passing to a subsequence we may suppose that ε−1

n dis(yn,Ω)→∞.
In case 2 (when yn ∈ RN\Ω for all n ∈ N), it can be show, in full analogy with

case 1, that ε−1
n dis(yn,Ω)→∞.
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However, if yn ∈ RN\Ω, ε−1
n dis(yn,Ω)→∞ and C is a positive constant, we have

that BCε(yn) ⊂ RN\Ω for n su�ciently large. This implies that
∫
BCεn (yn)

|un|2
∗

= 0,

which contradicts equation (A.9).

Also it cannot be that yn ∈ ∂Ω, for otherwise ε−1
n dis(yn,Ω) → 0, which is not the

case. We concluded that yn ∈ Ω for all n ∈ N.

Finally, suppose that φ̃ ∈ C∞0 (RN), and suppφ̃ ⊂ Bρ(0). Since ε−1
n dis(yn,Ω)→∞,

we have that Bεnρ(yn) ⊂ Ω and therefore φ̃ ∈ C∞0 (Ωn) for all n ≥ n3. Arguing as
above we have that

∫
RN
a1(y0)∇ũ · ∇φ̂−

∫
RN
a3(y0)|ũ|2∗−2ũφ̂ = 0 ∀φ̂ ∈ C∞0 (RN).

This implies that ũ is a solution to problem

−∆u =
a3(y0)

a1(y0)
|u|2∗−2u in RN (A.14)

and therefore, û =
(
a3(y0)
a1(y0)

)N−2
4
ũ is a solution to problem (℘∞).

Step 4: De�nition of the sequence (vn) which satis�es (iv).

Let rn := 1
4

min{dist(yn,Ω), |gn − g′(yn)| with [g] 6= [g′] ∈ G/H}. Then we have
rnε
−1
n → ∞. We choose a radially symmetric function φ ∈ C∞0 (RN) such that 0 ≤

φ ≤ 1, φ(x) = 1 if |x| ≤ 1 and φ(x) = 0 if |x| ≥ 2. Let us introduce the sequence (vn)
de�ned by

vn := un −
∑

[g]∈G/H

ε
2−N

2
n a(y0)

2−N
4 û(ε−1

n g−1(z − gyn))φ(r−1
n (z − gyn)).

where a(y0) := (a3(y0)
a1(y0)

). Since û is K-invariant and Gyn = K for all n ∈ N, we have
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that vn is well de�ned, G-invariant and v ∈ H1
0 (Ω). Moreover∥∥∥∥∥∥vn − un +

∑
[g]∈G/H

ε
2−N

2
n a(y0)

2−N
4 û(ε−1

n g−1(· − gyn))

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

[g]∈G/H

ε
2−N

2
n a(y0)

2−N
4 û(ε−1

n g−1(· − gyn))[1− φ(r−1
n (· − gyn))]

∥∥∥∥∥∥
2

≤
∑

[g]∈G/H

a(y0)
2−N

2

∥∥∥ε 2−N
2

n û(ε−1
n g−1(· − gyn))[1− φ(r−1

n (· − gyn))]
∥∥∥2

= a(y0)
2−N

2 |G/K|
∥∥û(1− φ(r1

nεn(·)))
∥∥2

≤ C1a(y0)
2−N

2 |G/K|
(∫
|z|>2ε−1

n rn

|∇û|2 + (ε−1
n rn)−2

∫
ε−1
n rn<|z|<2ε−1

n rn

|û|2
)

≤ C2a(y0)
2−N

2 |G/K|

(∫
|z|>2ε−1

n rn

|∇û|2 +

(∫
|z|>2ε−1

n rn

|û|2
) 2

2∗
)
,

the last inequality follows from Hölder inequality. Since, û ∈ D1,2(RN) = {u ∈
L2∗(RN) : ∇u ∈ L2(RN)} and ε−1

n rn → ∞, we have that the last expression goes to
zero. Therefore (iv) holds.
Step 5: Proof of (v) and that J1(vn)→ 0.

Let G/K := {g1, . . . gm}. Since ũn ⇀ ũ weakly in D1,2(RN) we have that

ũn ◦ g−1
1 − ũ ◦ g−1

1 ⇀ 0 weakly in D1,2(RN), (A.15)

On the other hand, if ϕ ∈ D1,2(RN), we have that

〈ũ(g−1
i (·+ ε−1

n (g1yn − giyn))), ϕ(·)〉 = 〈ũ(·), ϕ(g−1
1 (· − ε−1

n (g1yn − gi(yn))))〉.

Hence, using that ε−1
n |g1yn − gjyn| → ∞ for every i 6= 1 , we obtain

ũ(g−1
i (·+ ε−1

n (g1yn − giyn)) ⇀ 0 weakly in D1,2(RN), (A.16)

if i 6= 1. Let

Dn(z) := un(z)−
m∑
i=1

ε
2−N

2
n a(y0)

2−N
4 û(ε−1

n g−1
i (z − giyn)).

Since un is G-invariant, it holds that

ε
N−2

2
n Dn(εnz + g1yn) = (ũn ◦ g−1

1 )−
m∑
i=1

ũ(g−1
i (z + ε−1

n (g1yn − giyn))),
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therefore, using equations (A.15) and (A.16), we obtain

ε
N−2

2
n Dn(εn ·+g1yn) + ũ ◦ g−1

1 ⇀ ũ ◦ g−1
1 weakly in D1,2(RN) (A.17)

‖Dn‖2
a1

=

∫
Ω

a1∇Dn · ∇Dn

=

∫
Ωn

an1∇(ε
N−2

2
n Dn(εnz + g1yn) + ũ ◦ g−1

1 − ũ ◦ g−1
1 ) · ∇(ε

N−2
2

n Dn(εnz + g1yn) + ũ ◦ g−1
1 − ũ ◦ g−1

1 )

=

∫
Ωn

an1∇(ε
N−2

2
n Dn(εnz + g1yn) + ũ ◦ g−1

1 ) · ∇(ε
N−2

2
n Dn(εnz + g1yn) + ũ ◦ g−1

1 )

− 2

∫
Ωn

an1∇(ε
N−2

2
n Dn(εnz + g1yn) + ũ ◦ g−1

1 ) · ∇(ũ ◦ g−1
1 ) +

∫
Ωn

an1∇(ũ ◦ g−1
1 ) · ∇(ũ ◦ g−1

1 )

=

∫
Ωn

an1∇(ε
N−2

2
n Dn(εnz + g1yn) + ũ ◦ g−1

1 ) · ∇(ε
N−2

2
n Dn(εnz + g1yn) + ũ ◦ g−1

1 )

−
∫
RN
a1(y0)∇(ũ ◦ g−1

1 ) · ∇(ũ ◦ g−1
1 ) + o(1)

=

∫
Ω

a1∇(Dn + ε
2−N

2 a(y0)û(ε−1
n g−1

1 (· − g1yn))) · ∇(Dn + ε
2−N

2 a(y0)û(ε−1
n g−1

1 (· − g1yn)))

− a1(y0)‖ũ‖2 + o(1)

Hence

‖un −
m∑
i=1

ε
2−N

2
n a(y0)

2−N
4 û(ε−1

n g−1
i (· − giyn))‖2

a1
=

‖un −
m∑
i=2

ε
2−N

2
n a(y0)

2−N
4 û(ε−1

n g−1
i (· − giyn))‖2

a1
−

(
a3(y0)

2−N
2

a1(y0)−
N
2

)
‖û‖2 + o(1)

Let us denote a0(y0) :=

(
a3(y0)

2−N
2

a1(y0)−
N
2

)
. Arguing by induction we have that

‖un −
m∑
i=1

ε
2−N

2
n a(y0)

2−N
4 û(ε−1

n g−1
i (· − giyn))‖2

a1
= ‖un‖2

a1
−ma0(y0)‖û‖2 + o(1)

Since, in step (iv) we proof that

‖vn‖2
a1

= ‖un −
m∑
i=1

ε
2−N

2
n a(y0)

2−N
4 û(ε−1

n g−1
i (· − giyn))‖2

a1
+ o(1), (A.18)

we conclude
‖vn‖2

a1
= ‖un‖2

a1
−ma0(y0)‖û‖2 + o(1). (A.19)
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On the other hand, using equation (A.17), one has that

ε
N−2

2
n Dn(εnz + g1yn) + ũ ◦ g−1

1 → ũ ◦ g−1
1 a.e. on RN .

Therefore, Lemma A.8 implies that∫
Ω

a3|Dn|2
∗

=

∫
Ωn

an3 |ε
N−2

2
n Dn(εn ·+g1yn) + ũ ◦ g−1

1 − ũ ◦ g−1
1 |2

∗

=

∫
Ωn

an3 |ε
N−2

2
n Dn(εn ·+g1yn) + ũ ◦ g−1

1 |2
∗ −

∫
RN
a3(y0)|(ũ ◦ g−1

1 )|2∗ + o(1)

=

∫
Ω

a3|Dn + ε
2−N

2 a(y0)
2−N

4 û(ε−1
n g−1

1 (· − g1yn))|2∗ −
∫
RN
a3(y0)|ũ|2∗ + o(1),

hence

|un −
m∑
i=1

ε
2−N

2
n a(y0)

2−N
4 û(ε−1

n g−1
i (· − giyn))|2∗a3,2∗ =

|un −
m∑
i=2

ε
2−N

2
n a(y0)

2−N
4 û(ε−1

n g−1
i (· − giyn))|2∗a3,2∗ − a0(y0)|û|2∗2∗ + o(1)

It follows by induction that

|un −
m∑
i=1

ε
2−N

2
n a(y0)

2−N
4 û(ε−1

n g−1
i (· − giyn))|2∗a3,2∗ = |un|2

∗

a3,2∗ −ma0(y0)|û|2∗2∗ + o(1).

Using again equation (A.18), we have that

|vn|2
∗

a3,2∗ = |un|2
∗

a3,2∗ −ma0(y0)|û|2∗2∗ + o(1). (A.20)

Combining equations (A.19) and (A.20) we obtain

J1(vn) = J1(un)− |G/K|a0(y0)J∞(û) + o(1),

which concludes the proof of (v).
Now, let ϕ ∈ C∞0 (Ω) and

ϕn(z) := ε
N−2

2 ϕ(εnz + g1yn).

Note that

〈ε
2−N

2 a(y0)
2−N

4 û(ε−1
n g−1

1 (· − g1yn)), ϕ〉a1 =

∫
an1∇(ũ ◦ g−1

1 ) ·
∫
an1∇(ϕn)
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also note that, since ũ is a solution to problem A.14, we have that∫
an1∇(ũ ◦ g−1

1 ) ·
∫
an1∇(ϕn)−

∫
an3 |ũ ◦ g−1

1 |2
∗−2(ũ ◦ g−1

1 )ϕn = o(1)

therefore

−〈ε
2−N

2 a(y0)
2−N

4 û(ε−1
n g−1

1 (· − g1yn)), ϕ〉a1 = −
∫
an3 |ũ ◦ g−1

1 |2
∗−2(ũ ◦ g−1

1 )ϕn + o(1)

Using again Lemma A.9, we obtain

J ′1(Dn)[ϕ] = 〈Dn, ϕ〉a1 −
∫
a3|Dn|2

∗−2Dnϕ

= 〈Dn + ε
2−N

2 a(y0)
2−N

4 û(ε−1
n g−1

1 (· − g1yn)), ϕ〉a1 − 〈ε
2−N

2 a(y0)
2−N

4 û(ε−1
n g−1

1 (· − g1yn)), ϕ〉a1

−
∫
a3|Dn|2

∗−2Dnϕ

= J ′(Dn + ε
2−N

2 a(y0)
2−N

4 û(ε−1
n g−1

1 (· − g1yn)))[ϕ]

+

∫
a3|Dn + ε

2−N
2 a(y0)

2−N
4 û(ε−1

n g−1
1 (· − g1yn))|2∗−2(Dn + ε

2−N
2 a(y0)

2−N
4 û(ε−1

n g−1
1 (· − g1yn)))ϕ

−
∫
an3 |ũ ◦ g−1

1 |2
∗−2(ũ ◦ g−1

1 )ϕn −
∫
a3|Dn|2

∗−2Dnϕ+ o(1)

= J ′1(Dn + ε
2−N

2 a(y0)
2−N

4 û(ε−1
n g−1

1 (· − g1yn)))[ϕ]

+

∫
an3 |ε

N−2
2

n Dn(εn ·+g1yn) + ũ ◦ g−1
1 |2

∗−2(ε
N−2

2
n Dn(εn ·+g1yn) + ũ ◦ g−1

1 )ϕn

−
∫
an3 |ũ ◦ g−1

1 |2
∗−2(ũ ◦ g−1

1 )ϕn −
∫
an3 |ε

N−2
2

n Dn(εn ·+g1yn)|2∗−2(ε
N−2

2
n Dn(εn ·+g1yn))ϕn + o(1)

= J ′1(Dn + ε
2−N

2 a(y0)
2−N

4 û(ε−1
n g−1

1 (· − g1yn)))[ϕ] + o(1)

It follows by induction that

J ′1(Dn)[ϕ] = J ′1(un)[ϕ] + o(1).

Finally, using equation (A.18), we conclude that

J ′(vn)[ϕ] = J ′(un)[ϕ] + o(1)

= o(1),

Since this is true for every ϕ ∈ C∞0 (Ω), we have that

J ′1(vn) = J ′1(un) + o(1)

= o(1).

which proves that (vn) is a Palais-Smale sequence for J1 and concludes the proof.
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Proof of Theorem A.1. Let (un) be a G−invariant Palais-Smale sequence for J at the
level c. Since

1

N
||un||2a1,a2

= J(un)− 1

2∗
J ′(un)(un) ≤ |c|+ 1 + ||un||a1,a2 .

we have that (un) is bounded. Therefore, passing to a subsequence if necessary, we
may assume that

un ⇀ u weakly in H1
0 (Ω)

un → u in L2
Loc(Ω)

un → u a.e. on Ω.

Setting u1
n := un − u, we have that u1

n ⇀ 0 weakly in H1
0 (Ω)G. Moreover, Lemma

A.10 implies that u is a solution to problem (℘) and

‖u1
n‖2 = ‖un‖2 − ‖u‖2 + o(1)

J1(u1
n) → c− J(u),

J ′1(u1
n) → 0 in (H1

0 (Ω))′

Hence, u1
n is a G-invariant Palais-Smale sequence for J1 at the level c1 := c − J1(u).

If c1 ≤ 0, from the equality

1

N
||u1

n||2a1,a2
= J1(u1

n)− 1

2∗
J ′(u1

n)(u1
n) + o(1),

we have that c1 = 0 and ||u1
n||a1,a2 → 0, which implies that u1

n → 0 strongly in H1
0 (Ω).

So, in this case the theorem is satis�ed with m = 0.
If c1 > 0, from Lemma A.2 we have that there exists a closed subgroup G1 of

�nite index in G, a non trivial solution û1 to problem (℘∞), a sequence (y1,n) in Ω, a
sequence (ε1,n) in (0,∞) and a G-invariant Palais-Smale sequence u2

n for J1 with the
following properties

(i) Gy1,n = G1 for all n ∈ N, and y1,n → y1 in Ω.

(ii) ε−1
1,ndist(y1,n, ∂Ω)→∞ and ε−1

1,n|gy1,n − g′y1,n| → ∞ if [g] 6= [g′] in G/G1,

(iii) û1 is G1-invariant.

(iv) u2
n = u1

n −
∑

[g]∈G/G1

(
a3(y1)

a1(y1)

)
ε

2−N
2

1,n û1(g−1ε−1
1,n(· − gy1,n)) + o(1) in D1,2(RN).

(v) J1(u2
n) = J1(un)− |G/G1|

(
a3(y1)

2−N
2

a1(y1)−
N
2

)
J∞(û1) + o(1).
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Equality (iv) show that u2
n ⇀ 0 weakly in H1

0 (Ω)G. Moreover, since û1 is a solution
to problem (℘∞), we have that J∞(û1) ≥ 1

N
SN/2. Hence, using (v), we obtain

J(un) ≥ J1(u1
n) ≥ J1(u2

n) +

(
min
x∈Ω

a3(x)
2−N

2

a1(x)−
N
2

#Gx

)
1

N
SN/2 + o(1),

therefore

lim
n→∞

J1(u1
n) = c1 ≥ lim

n→∞
J1(u2

n) +

(
min
x∈Ω

a3(x)
2−N

2

a1(x)−
N
2

#Gx

)
1

N
SN/2.

Let lim
n→∞

J1(u2
n) := c2. If c2 ≤ 0, equality

1

N
||u2

n||2a1,a2
= J1(u2

n)− 1

2∗
J ′1(u2

n)(u2
n),

shows that c2 = 0 and ||u2
n||a1,a2 → 0. Therefore u2

n → 0 strongly in H1
0 (Ω). In this

case, the theorem is satis�ed with m=1.
If c2 > 0, applying again Lemma A.2, this time to the sequence (u2

n), we have that
there exists a closed subgroup G2 of �nite index in G, a no trivial solution û2 to
problem (℘∞), a sequence (y2,n) in Ω, a sequence (ε2,n) in (0,∞) and a G-invariant
Palais-Smale sequence (u3

n) for J1 with the properties (i)-(v).
We can apply the same reasoning to the sequence (u3

n). The inequality

lim
n→∞

J1(uin) ≥ lim
n→∞

J1(ui+1
n ) +

(
min
x∈Ω

a3(x)
2−N

2

a1(x)−
N
2

#Gx

)
1

N
SN/2

guaranties that lim
n→∞

J1(um+1
n ) = 0 for some m ∈ N, and therefore ||um+1

n ||a1,a2 → 0.

This concludes the proof.
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