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Introduction

During recent years the research in copulas has given a lot of attention to the construction of

bivariate copulas with given properties. Even more recent are the multivariate constructions

of copulas with given properties. The idea is to provide new families that allow us to model

multivariate data, since the known models are not numerous enough to do so. In this work

we will study some of these constructions and we will attempt to provide extensions to higher

dimensions to some of the results for bivariate copulas. We also introduce a new construction

of copulas, based on a sample, which allows us to carry on statistical procedures.

In Chapter 1 we make a review of the basic concepts of copulas. We give special emphasis to

the basic definitions in a multivariate setting. We state the main results for the construction

of copulas, the necessary conditions to obtain an Archimedean Copula and some concepts of

dependence that will be used later. Most of the notation that will be used throughout the

rest of this thesis is given in this chapter.

In Chapter 2 we will try to find an extension of the multivariate patchwork construction

given by Durante et al [24]. In order to do that, we extend the results in the papers by De

Baets and De Meyer [12] and Durante, Saminger-Platz and Sarkoci [23, 24]. Such extensions

allow us to provide an alternate proof of the main result in Mesiar and Sempi [55].

In Chapter 3 we define the d-sample copula of order m for integers d,m ≥ 2, where d is

the dimension, based on a sample of a d-distribution function on Rd or a d-copula on [0, 1]d.

The sample d-copula definition is grounded on the self similar copula construction and on

transformation matrices which are presented in Cuculescu and Theodorecu [8], Fredricks et

al [34] and Trutschnig and Fernández-Sánchez [69]. We give and prove some of its main

properties, and we propose a new statistical methodology with several examples. We also

observe that the empirical copula can be obtained from a sample d-copula of order m.

Chapter 4 presents the basic definitions and main results for Archimedean copulas and their

1



2 CONTENTS

diagonals. Then we extend to the multivariate case the result announced by Frank [31]

which states that bivariate Archimedean copulas are uniquely determined by their diagonal

whenever Frank’s condition δ′(1−) = 2 is satisfied. This result appears in Alsina et al [2]

and in Erdely [26].

Chapter 5 is a review of the construction of a multivariate copula given a d-diagonal presented

in the paper of Cuculescu and Theodorescu [8], which is very rich in ideas but does not provide

detailed proofs of their results. We also observe that their proof is based on approximations

of what we call p-shuffles of δW d .

We end this work with conclusions and some insights for future research.



Chapter 1

Preliminaries

We start this section giving the main definitions and several well known results for copulas.

Most of the material in this chapter can be found in Nelsen [58].

1.1 Basic concepts

Definition 1.1. A two-dimensional subcopula (or two-subcopula, or briefly, a sub-

copula) is a function C ′ from S1 × S2 to I, where I = [0, 1] and Si ⊂ I, {0, 1} ⊂ Si for

i = 1, 2, with the following properties:

1. For every u in S1 and for every v in S2,

C ′(u, 0) = 0 = C ′(0, v) (1.1)

and

C ′(u, 1) = u, C ′(1, v) = v; (1.2)

2. For every u1, u2 in S1 and v1, v2 in S2 such that u1 ≤ u2 and v1 ≤ v2,

C ′(u2, v2)− C ′(u1, v2)− C ′(u2, v1) + C ′(u1, v1) ≥ 0 (1.3)

If S1 = S2 = I we say that C ′ is a two-dimensional copula or two-copula, or briefly, a

copula. We will call the left-hand side of the inequality (1.3), the C ′-volume of [u1, u2] ×

[v1, v2].

The set of all copulas has lower and upper bounds.

Theorem 1.2. Let C be a subcopula. Then for every (u, v) in DomC ,

W (u, v) ≤ C(u, v) ≤M(u, v). (1.4)

Where M(u, v) = min{u, v} and W (u, v) = max{u+ v − 1, 0}.

3



4 CHAPTER 1. PRELIMINARIES

The functions M and W in (1.4) are themselves copulas and we refer to M as the Fréchet-

Hoeffding upper bound and W as the Fréchet-Hoeffding lower bound. A third

important copula that we will frequently find is the product copula Π(u, v) = uv, since it

characterizes independence of two random variables.

Remark 1.3. Let C0 and C1 be copulas, and let q be any number in I. It is easy to see from

definition 1.1 that the weighted arithmetic mean (1 − q)C0 + qC1 is also a copula. Hence

we conclude that any convex linear combination of copulas is a copula. We can also easily

verify that the geometric mean of two copulas may fail to be a copula, namely, if C is the

geometric mean of Π and W , that is C(u, v) = Π(u, v)1/2W (u, v)1/2, the C-volume of the

rectangle [1/2, 3/4]× [1/2, 3/4] is negative.

Among other important properties of copulas and subcopulas are the following.

Theorem 1.4. Let C ′ be a subcopula. Then for every (u1, v1), (u2, v2) in DomC ′,

|C ′(u2, v2)− C ′(u1, v1)| ≤ |u2 − u1|+ |v2 − v1| (1.5)

Hence C ′ is uniformly jointly continuous on its domain.

The main result in copula theory is Sklar’s theorem, which relates joint distribution functions

with its marginals using a copula.

Theorem 1.5 (Sklar’s Theorem). Let H be a joint distribution function with margins F

and G. Then there exists a copula C such that for all x, y in R,

H(x, y) = C(F (x), G(y)). (1.6)

If F and G are continuous, then C is unique; otherwise C is uniquely determined on RanF×
RanG. Conversely if C is a copula and F and G are distribution functions, then the function

H defined by (1.6) is a joint distribution function with margins F and G.

Definition 1.6. Let F be a distribution function. Then a quasi-inverse of F is any function

F (−1) such that

1. If t is in RanF , then F (−1)(t) is any number x in R such that F (x) = t, i.e., for all t in

RanF ,

F (F (−1)(t)) = t;

2. If t is not in RanF ,

F (−1)(t) = inf{x|F (x) ≥ t} = sup{x|F (x) ≤ t}.
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Note: If F is strictly increasing, it has a single quasi-inverse, which is the ordinary inverse,

and in this case we use the customary notation F−1.

Lemma 1.7. Let H be a distribution function with margins F and G. Then there exists a

unique subcopula C ′ such that

1. DomC ′ = RanF × RanG,

2. For all x, y in R, H(x, y) = C ′(F (x), G(y)).

Furthermore, if F (−1) and G(−1) are quasi-inverses of F and G, respectively. Then for any

(u, v) in DomC ′,

C ′(u, v) = H(F (−1)(u), G(−1)(v)). (1.7)

When F and G are continuous, the above result holds for copulas as well and provides a

method of constructing copulas from joint distribution functions.

1.1.1 Multivariate copulas

Although many of the definitions and theorems have analogous multivariate versions, not all

of them do. We will use vector notation for points in Rn
, e.g., a = 〈a1, a2, · · · , an〉, and we

will write a ≤ b (a < b) when ak ≤ bk (ak < bk) for all k. For a ≤ b we will let [a,b] denote

the n-box B = [a1, b1] × [a2, b2] × · · · × [an, bn] the cartesian product of n closed intervals.

The vertices of an n-box are the points c = 〈c1, c2, · · · , cn〉, where each ck is equal to either

ak or bk. The unit n-cube In is the product I× I× · · · × I. An n-place real function H is a

function whose domain, DomH, is a subset of Rn and whose range, RanH, is a subset of R.

Definition 1.8. Let S1, S2, · · · , Sn be nonempty subsets of R, and let H be an n-place real

function such that DomH = S1 × S2 × · · · × Sn. Let B = [a,b] be an n-box all of whose

vertices are in DomH. Then the H-volume of B is given by

VH(B) =
∑

sgn(c)H(c) (1.8)

where the sum is taken over all vertices c of B, and sgn(c) is given by

sgn(c) =

{
1, if ck = ak for an even number of k’s,
−1, if ck = ak for an odd number of k’s.

We will call R a non trivial n-box if for every i ∈ {1, . . . , n}, −∞ < ui < vi < ∞. For

any 1 ≤ k ≤ n and for every 1 ≤ i1 < i2 < · · · < ik ≤ n define

Ri1,...,ik = {〈x1, . . . , xn〉 ∈ R | for every j ∈ {1, . . . , k}, either xij = uij or xij = vij}. (1.9)
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Then we call Ri1,...,ik an (n− k)-dimensional face of R. If k = 1 an (n− 1)-dimensional

face is usually called simply a face of R, in this last case we make a distinction. We will

denote by

Rl
i = {〈x1, . . . , xn〉 ∈ R | xi = ui}

and call it the ith-lower face, and

Ru
i = {〈x1, . . . , xn〉 ∈ R | xi = vi}

and call it the ith-upper face.

Remark 1.9. Of course the domain of the function sgn depends also on the n-box we are

using.

Definition 1.10. An n-place real function H is n-increasing if and only if VH(B) ≥ 0 for

all n-boxes B whose vertices lie in DomH.

Definition 1.11. An n-dimensional subcopula (or n-subcopula) is a function C ′ from

S1 × S2 × · · · × Sn to I, where Sk ⊂ I and {0, 1} ∈ Sk for k = 1, . . . , n, with the following

properties:

1. For every u in S1 × · · · × Sn,

C ′(u) = 0 if at least one coordinate of u is 0

and

if all coordinates of u are 1 except possibly uk, then C ′(u) = uk

2. For every a and b in S1 × · · · × Sn such that a ≤ b,

VC′([a,b]) ≥ 0 (1.10)

When S1 = S2 = · · · = Sn = I we say that C ′ is an n-dimensional copula or n-copula.

Theorem 1.12 (Sklar’s theorem in n dimensions). Let H be an n dimensional distribution

function with margins F1, F2, . . . , Fn. Then there exists an n-copula C such that for all x in

Rn
,

H(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)). (1.11)
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If F1, F2, . . . , Fn are all continuous, then C is unique; otherwise, C is uniquely determined

on RanF1 × RanF2 × · · · × RanFn. Conversely, if C is an n-copula and F1, F2, . . . , Fn

are distribution functions, the function H defined by (1.11) is an n-dimensional distribution

function with margins F1, F2, . . . , Fn.

The extensions of the 2-copulas M , Π and W to n dimensions are denoted Mn, Πn and W n,

and are given by:

Mn(u) = min(u1, u2, . . . , un);

Πn(u) = u1u2 . . . un;

W n(u) = max(u1 + u2 + · · ·+ un − n+ 1, 0).

Remark 1.13. The functions Mn and Πn are n-copulas for all n ≥ 2, but the function

W n fails to be an n-copula for any n > 2, see [58]. Nevertheless, we have the following

n-dimensional version of the Fréchet-Hoeffding bounds inequality (1.4).

Theorem 1.14. If C is any n-copula, then for every u in In,

W n(u) ≤ C(u) ≤Mn(u). (1.12)

Although the Fréchet-Hoeffding lower bound W n is never a copula for n > 2, the left hand

inequality in (1.12) is best possible, in the sense that for any n ≥ 3 and any u in In, there

exists an n-copula C such that C(u) = W n(u):

Theorem 1.15. For any n ≥ 3 and any u in In, there exists an n-copula C (which depends

on u) such that

C(u) = W n(u)

1.1.2 Archimedean Copulas

Archimedean copulas can easily be constructed and they are specified by a univariate func-

tion, so the copulas which are bivariate functions can be written in terms of a univariate

function and its pseudo-inverse.

Definition 1.16. Let ϕ be a continuous, strictly decreasing function from I to [0,∞] such

that ϕ(1) = 0. The pseudo inverse of ϕ is the function ϕ[−1] with Domϕ[−1] = [0,∞] and

Ranϕ[−1] = I given by

ϕ[−1](t) =

{
ϕ−1(t), 0 ≤ t ≤ ϕ(0),
0, ϕ(0) ≤ t ≤ ∞. (1.13)
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Theorem 1.17. Let ϕ be a continuous, strictly decreasing function from I to [0,∞] such that

ϕ(1) = 0, and let ϕ[−1] be the pseudo-inverse of ϕ defined by (1.13). Let C be the function

from I2 to I given by

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)), (1.14)

then C is a copula if and only if ϕ is convex, that is, ϕ(au+ (1− a)v) ≤ aϕ(u) + (1− a)ϕ(v)

∀ 0 ≤ a ≤ 1 and ∀ u, v ∈ I.

Definition 1.18. Let ϕ and ϕ[−1] satisfy the hypotheses of Theorem 1.17. Copulas of the

form (1.14) are called Archimedean copulas. The function ϕ is called an inner genera-

tor of the copula.

Note: If ϕ(0) = ∞, we say that ϕ is a strict generator. In this case, ϕ[−1] = ϕ−1 and

C(u, v) = ϕ−1(ϕ(u) + ϕ(v)) is said to be a strict Archimedean copula.

Fundamental properties of Archimedean copulas.

Theorem 1.19. Let C be an Archimedean copula with generator ϕ. Then:

1. C is symmetric, that is, C(u, v) = C(v, u) for all u, v in I;

2. C is associative, that is, C(C(u, v), w) = C(u,C(v, w)) for all u, v, w in I;

3. If c > 0 is any constant, then cϕ is a generator of C.

4. The level curves of an Archimedean copula are convex.

It is easy to show that the diagonal section δC of an Archimedean copula C satisfies δC(u) < u

for all u ∈ (0, 1), furthermore, the next theorem, based on Ling [46], gives a useful charac-

terization for Archimedean copulas.

Theorem 1.20. Let C be a copula and let δC be the diagonal section of C. Then C is

Archimedean if and only if C is associative and δC(u) < u for all u in (0, 1).

Remark 1.21. The Fréchet-Hoeffding upper bound M is not Archimedean since δM(t) = t

for all t ∈ [0, 1]. However, W is an Archimedean copula with generator ϕ(t) = 1− t.
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1.1.3 Dependence

There are a variety of ways to discuss and to measure dependence. Because the most widely

known scale-invariant measures of association are the population versions of Kendall’s tau

and Spearman’s rho, both of which “measure” a form of dependence known as concordance

we will begin there.

Definition 1.22. Let 〈xi, yi〉 and 〈xj, yj〉 denote two observations from a vector 〈X, Y 〉 of

continuous random variables. We say that 〈xi, yi〉 and 〈xj, yj〉 are concordant if (xi −

xj)(yi− yj) > 0. Similarly, we say that 〈xi, yi〉 and 〈xj, yj〉 are discordant if (xi− xj)(yi−

yj) < 0.

That is, a pair of random variables are concordant if large values of one tend to be associated

with large values of the other, and small values of one with small values of the other.

The sample version of the measure of association known as Kendall’s tau is defined in terms

of concordance as follows: Let {〈x1, y1〉, 〈x2, y2〉, . . . , 〈xn, yn〉} denote a random sample of n

observations from a vector 〈X, Y 〉 of continuous random variables. There are
(
n
2

)
distinct

pairs 〈xi, yi〉 and 〈xj, yj〉 of observations in the sample, and each pair is either concordant

or discordant. Let c denote the number of concordant pairs and d the number of discordant

pairs. The sample version of Kendall’s tau is defined as

t =
c− d
c+ d

=
(c− d)(

n
2

) . (1.15)

The population version of Kendall’s tau for a vector 〈X, Y 〉 of continuous random vari-

ables with joint distribution function H is defined similarly. Let 〈X1, Y1〉 and 〈X2, Y2〉 be

independent and identically distributed random vectors, each with joint distribution func-

tion H. Then the population version of Kendall’s tau is defined as the probability of

concordance minus the probability of discordance:

τ = τX,Y = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0].

Theorem 1.23. Let 〈X1, Y1〉 and 〈X2, Y2〉 be independent vectors of continuous random

variables with joint distributions distribution functions H1 and H2, respectively, with common

margins F (of X1 and X2) and G (of Y1 and Y2). Let C1 and C2 denote the copulas of

〈X1, Y1〉 and 〈X2, Y2〉, respectively. Let Q be defined as

Q = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0].
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Then

Q = Q(C1, C2) = 4

∫∫
I2
C2(u, v)dC1(u, v)− 1.

We will say that Q is a concordance function.

As a corollary we list some of the properties of Q, but first we need a definition.

Definition 1.24. If C1 and C2 are copulas, we say that C1 is smaller than C2 (or C2 is

larger than C1) and write C1 ≺ C2 if C1(u, v) ≤ C2(u, v) for all u, v ∈ I.

Corollary 1.25. Let C1, C2 and Q be as in Theorem 1.23. Then

1. Q is symmetric in its arguments: Q(C1, C2) = Q(C2, C1).

2. Q is increasing in each argument: if C1 ≺ C ′1 and C2 ≺ C ′2 for all 〈u, v〉 in I2, then

Q(C1, C2) ≤ Q(C ′1, C
′
2).

3. For every copula C, Q(C,C) ∈ [−1, 1].

Theorem 1.26. Let X and Y be continuous random variables whose copula is C. Then the

population version of Kendall’s tau for X and Y is given by

τX,Y = τC = Q(C,C) = 4

∫∫
I2
C(u, v)dC(u, v)− 1. (1.16)

Note: The integral that appears in (1.16) can be interpreted as the expected value of the

function C(U, V ) of uniform (0, 1) random variables U and V whose joint distribution func-

tion is C, that is to say,

τC = 4E(C(U, V ))− 1.

In general, evaluating the population version of Kendall’s tau requires the evaluation of the

double integral in (1.16), but for an Archimedean copula the situation is simpler.

Corollary 1.27. Let X and Y be random variables with an Archimedean copula C with

generator ϕ. The population version τC of Kendall’s tau for X and Y is given by

τC = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt.



1.2. KNOWN RESULTS ABOUT COPULA CONSTRUCTIONS 11

Another measure of association based on concordance and discordance is Spearman’s rho.

To obtain this measure we let 〈X1, Y1〉, 〈X2, Y2〉 and 〈X3, Y3〉 be three independent random

vectors with a common joint distribution function H, with margins F and G and copula

C. The population version (we will see later the sample version) ρX,Y of Spearman’s rho

is defined to be proportional to the probability of concordance minus the probability of

discordance for the two vectors 〈X1, Y1〉 and 〈X2, Y3〉, that is, a pair of random vectors with

the same margins but one vector has a distribution H, while the components of the other

are independent:

ρX,Y = 3(P [(X1 −X2)(Y1 − Y3) > 0])− P [(X1 −X2)(Y1 − Y3) < 0].

Note: The joint distribution of 〈X2, Y3〉 is F (x)G(y), because X2 and Y3 are independent.

Thus the copula of 〈X2, Y3〉 is Π, note also that the pair 〈X3, Y2〉 could be used equally as

well. So that, using Theorem 1.23 and part 1 of Corollary 1.25 we have

Theorem 1.28. Let X and Y be continuous random variables whose copula is C. Then the

Spearman’s rho for Y and Y is given by

ρX,Y = ρC = 3Q(C,Π), (1.17)

= 12

∫∫
I2
uvdC(u, v)− 3, (1.18)

= 12

∫∫
I2
C(u, v)dudv − 3. (1.19)

Note: The coefficient “3” is a normalization constant, because, as it can be easily verified,

Q(C,Π) ∈ [−1/3, 1/3].

1.2 Known results about copula constructions

1.2.1 Some Methods of constructing copulas

The Inversion Method

Given a bivariate distribution function H with continuous margins F and G, we can “invert”

H via (1.7) to obtain a copula:

C(u, v) = H(F (−1)(u), G(−1)(v)). (1.20)

With this copula, new bivariate distributions with arbitrary margins, say F ′ and G′, can be

constructed using Sklar’s theorem: H ′(x, y) = C(F ′(x), G′(y)).
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Geometric Methods

This methodology includes the construction of singular copulas with prescribed support.

Some examples are provided in Nelsen [58]. The “ordinal sum” construction consists in

rescaling copies of the support of some copulas to fit some subsquares of I2 as we will see

in Chapter 2. For the “shuffles of M” the mass distribution can be obtained by placing the

mass for M on I2, cutting I2 vertically into a finite number of strips, shuffling the strips with

perhaps some of them flipped around their vertical axes of symmetry, and then reassembling

them to form the square again, see Nelsen [58]. Another example of construction are “convex

sums” which are a continuous analog of the finite convex linear combination (see remark 1.3)

of copulas.

Copulas with Prescribed Diagonal Section

We now turn to the construction of copulas having a prescribed diagonal section. The

diagonal section of a copula C is the function δC from I to I defined by δC(t) = C(t, t).

Diagonal sections are of interest because if X and Y are random variables with a common

distribution function F and copula C, then the distribution functions of the order statistics

max(X, Y ) and min(X, Y ) are δC(F (t)) and 2t− δC(t), respectively.

As a consequence of Theorem 1.4 and Fréchet-Hoeffding bounds (1.4), it follows that if δ is

the diagonal section of a copula, then

δ(1) = 1; (1.21a)

0 ≤ δ(t2)− δ(t1) ≤ 2(t2 − t1) for all t1, t2 ∈ I with t1 ≤ t2; (1.21b)

and δ(t) ≤ t for all t ∈ I (1.21c)

Definition 1.29. Any function δ : I→ I that satisfies (1.21a) to (1.21c) will be called simply

a diagonal, while we refer to the function δC(t) = C(t, t) as the diagonal section of C.

Now suppose that δ is any diagonal. Is there a copula C whose diagonal section is δ? The

answer is yes, as is stated in the following

Theorem 1.30. Let δ be any diagonal, and set

C(u, v) = min(u, v, [δ(u) + δ(v)]/2). (1.22)

Then C is a copula whose diagonal section is δ.
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The proof of the above theorem can be found in Fredricks and Nelsen [32].

Copulas of the form given by (1.22) are called diagonal copulas.

1.2.2 Patchwork based methods of construction

Nelsen et al. [59] studied a method, called copula (or quasi-copula) diagonal splice, for

creating new copulas or quasi-copulas with a given diagonal section by joining portions of

two copulas (or quasi-copulas) with a common diagonal section. This method was introduced

by Durante, Mesiar and Sempi [20] for binary aggregation operators and applied to quasi-

copulas. The diagonal splice of two functions is given in the next definition.

Definition 1.31. Let f1 and f2 be two functions defined on the square [0, 1]2. Then the

diagonal splice of f1 and f2 is the function f1 � f2 defined by

(f1 � f2) =

{
f1(u, v), if u ≤ v,

f2(u, v), if u > v.

The diagonal splice of two quasi-copulas is always a quasi-copula. The next theorem is

presented in Durante, Mesiar and Sempi [20] and proved in Nelsen et al. [59].

Theorem 1.32. Let δ be a diagonal, and Q1 and Q2 two quasi-copulas with a common

diagonal δ. Then the diagonal splice of Q1 and Q2 is also a quasi-copula with diagonal δ.

Note: The diagonal splice of two copulas Q1 and Q2 (respectively proper quasi-copulas) with

a common diagonal section δ can be a proper quasi-copula (respectively a copula) as shown

in examples 5 and 6 in [59].

The following theorem provides a necessary and sufficient condition for the diagonal splice

of two copulas to be a copula.

Theorem 1.33. Let δ be a diagonal, and C1 and C2 two copulas with a common diagonal

section δ. Then the diagonal splice C1 � C2 is a copula with diagonal δ if, and only if,

C1(u, v) + C2(v, u) ≤ δ(u) + δ(v) for every u, v ∈ I with u ≤ v.

Notice that if C1 and C2 are both symmetric copulas with common diagonal section δ then

the condition C1(u, v) + C2(v, u) ≤ δ(u) + δ(v) is satisfied.

De Baets and De Meyer [12] established a general framework for constructing copulas that

can be regarded as a patchwork-like assembly of arbitrary copulas with non overlapping

rectangles as patches based on Proposition 7 of their paper.
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Proposition 1.34. Consider a copula C, a rectangle R := [u, u′] × [v, v′] ⊂ [0, 1]2, and a

mapping D : [u, u′]× [v, v′]→ [0, 1]. Define the binary operation Q by

Q(x, y) =

{
D(x, y), if 〈u, v〉 ∈ [u, u′]× [v, v′],

C(x, y), elsewhere.

Q is a copula if and only if C and D coincide on the boundaries of R and D is 2-increasing

on R.

In 2009 Durante et al. [24] presented another method for construction of two-copulas, they

call it Rectangular Patchwork for Bivariate Copulas. Here we give an alternative

enunciation.

Theorem 1.35. Let C be a copula, let {Cj}j∈J be a family of copulas and let {Rj = [uj1, v
j
1]×

[uj2, v
j
2]}j∈J be a family of 2-boxes, in this case rectangles in [0, 1]2, such that Rj ∩ Rk ⊂

δ(Rj) ∩ δ(Rk) for every j, k ∈ J with j 6= k. Define for every j ∈ J , λj = VC(Rj), and for

every x ∈ [uj1, v
j
1] and for every y ∈ [uj2, v

j
2], Rj,x = [uj1, x]×[uj2, v

j
2] and Rj,y = [uj1, v

j
1]×[uj2, y].

Let C̃ : [0, 1]2 → [0, 1] be defined by

C̃(x, y) =

{
λjCj

(
VC(Rj,x)

λi
,
VC(Rj,y)

λj

)
+ ϕCj (x, y) if 〈x, y〉 ∈ Rj and λj > 0,

C(x, y), otherwise,
(1.23)

where ϕCj (x, y) = hC
uj2

(x) + vC
uj1

(y) − hC
uj2

(uj1) with hC
uj2

(x) = C(x, uj2) and vC
uj1

(y) = C(uj1, y).

Then C̃ is a copula.

Mesiar and Sempi [55] defined a generalization of the ordinal sums for dimensions greater

than or equal to three. For a set of indexes J ⊂ N, the ordinal sum of the n-copulas

{Ck}k∈J over a partition of I, {[ak, bk]}k∈J , is given by

C(u) =

 ak + (bk − ak)Ck
(min(u1,bk)−ak

bk−ak
, . . . , min(un,bk)−ak

bk−ak

)
if min(u1, . . . , un) ∈ (ak, bk) for some k ∈ J

min(u1, . . . , un) elsewhere,

(1.24)

for all u = 〈u1, . . . , un〉 ∈ [0, 1]n.

Mesiar and Sempi prove that C in the equation above is a copula for all n ≥ 2 and, in the

case n = 2, it coincides with the usual ordinal sum.
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Finally a non patchwork-base method is provided by Siburg and Stoimenov [66]. The method

consists in gluing rescaled copulas on adjacent n-boxes of [0, 1]n whose union is [0, 1]n. The

main result is,

Proposition 1.36. Let n ≥ 2 and let C1, C2 be two n-copulas. Let 0 ≤ θ ≤ 1 and define

Rl
i,θ = [0, 1]×· · ·× [0, 1]× [0, θ]× [0, 1]×· · ·× [0, 1], where the interval [0, θ] is located on the

ith coordinate, for some i ∈ {1, 2, . . . , n}, similarly define Ru
i,θ = [0, 1]× · · · × [0, 1]× [θ, 1]×

[0, 1]× · · · × [0, 1]. Define for every x = 〈x1, . . . , xi, . . . , xn〉 ∈ [0, 1]n

(C1 ~xi=θ C2) (x)=


θC1

(
x1, . . . ,

xi
θ
, . . . , xn

)
if x ∈ Rl

i,θ

(1− θ)C2

(
x1, . . . ,

xi−θ
1−θ , . . . , xn

)
+θC1(x1, . . . , 1, . . . , xn) if x ∈ Ru

i,θ.
(1.25)

Then C1 ~xi=θ C2 is an n-copula.
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Chapter 2

Multivariate Patchwork

In this chapter we give an alternative proof of the construction of n-dimensional ordinal sums

given in Mesiar and Sempi [55]; we also provide a new methodology to construct n-copulas

extending the patchwork methodology of Durante, Saminger-Platz and Sarkoci in [23] and

[24]. Finally, we use the gluing method of Siburg and Stoimenov [66] and its generalization

in Mesiar et al [53] to give an alternative method of patchwork construction of n-copulas,

which can be also used in composition with our patchwork method. The main results of this

chapter have already been published in [36].

2.1 Introduction

The idea of patching a 2-copula C, or simply copula, in a rectangular region R, by redefining

C using another function D on R, is of great interest when modeling some bivariate data. It is

well known that in many applications such as Mathematical Finance, Risk Theory, Ecology,

etc., the researchers know from previous data what is the behavior of their observations

in the tails, but if they try to fit a known model, many times, this model does not agree

with these tail behaviors. In this case, it is important to take a base copula C and try to

modify it in the regions of interest using some other copulas which have the behavior that

we are looking for. This is now possible using the general approach of rectangular patchwork

construction.

In this chapter we will generalize these results for n copulas with dimensions n ≥ 3.

We start with a definition and a generalization of the main results in De Baets and De Meyer

[12].

Definition 2.1. Let C : D → I where D ⊂ In = "ni=1 I. If D = In we will call C an

n-operation.

17
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i) We will say that C is increasing on D if and only if for every x, z ∈ D, where x ≤ z, we

have that C(x) ≤ C(z), see comments before Definition 1.8.

ii) We will say that C is n-increasing if C satisfies Definition 1.10.

Proposition 2.2. Let C : D → I where D = "ni=1[ui, vi] ⊂ In. Then C is increasing if

and only if for every i ∈ {1, . . . , n} and for every ui ≤ xi ≤ vi, C(·, . . . , ·, xi, ·, . . . , ·) :

"nj=1,j 6=i[uj, vj]→ I is increasing.

Definition 2.3. Let C : In → I be an n-operation. Then

i) C is an n-conjunctor if and only if C is increasing and for every i ∈ {1, . . . , n} and for

every xi ∈ I, C(1, . . . , 1, xi, 1, . . . , 1) = xi.

ii) C is an n-copula if and only if C is an n-conjunctor which is also n-increasing.

Remark 2.4. It is easy to see that if C : In → I is an n-conjunctor which is also n-increasing.

Then from part i) in Definition 2.3, we have that C satisfies the boundary conditions of a

copula and therefore C is an n-copula.

If we define TD : In → I by

TD(x1, . . . , xn) =

{
min{x1, . . . , xn} if max{x1, . . . , xn} = 1,
0 otherwise.

Then for every i ∈ {1, . . . , n} and for every xi ∈ I we have that TD(1, . . . , 1, xi, 1, . . . , 1) = xi.

Let x = 〈x1, . . . , xn〉 ∈ In and assume that there exists i ∈ {1, . . . , n} such that xi = 1. Let

w = 〈w1, . . . , wn〉 ∈ In such that x ≤ w, then xj ≤ wj for every j ∈ {1, . . . , n}\{i} and

1 = xi = wi. Then

0 ≤ TD(x1, . . . , xi−1, 1, xi+1, . . . , xn)

= min{x1, . . . , xi−1, 1, xi+1, . . . , xn}

≤ min{w1, . . . , wi−1, 1, wi+1, . . . , wn}

= TD(w1, . . . , wi−1, 1, wi+1, . . . , wn).

Let x = 〈x1, . . . , xn〉 ∈ In such that for every i ∈ {1, . . . , n}, xi < 1 and let w = 〈w1, . . . , wn〉

such that x ≤ w. Then 0 = TD(x) ≤ TD(w). Therefore, TD is increasing and an n-

conjunctor, according to Definition 2.3. In fact, TD is the smallest n-conjunctor, observe

that TD is the multivariate version of the “drastic t-norm”, see [2].
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Proposition 2.5. Let C be an n-conjunctor, let R = "ni=1[ui, vi] ⊂ In be a non trivial n-box

and let D : R→ I. Define Q : In → I by

Q(x) =

{
D(x) if x ∈ R,
C(x) if x ∈ [0, 1]n\R. (2.1)

If C = D on the boundary of R, that is, ∂R, and D is increasing on R, then Q is an

n-conjunctor.

Proof. Let C,D,R and Q as in the hypotheses. If there exist i, j ∈ {1, . . . , n} with

i 6= j such that vi < 1 and vj < 1 then for every k ∈ {1, . . . , n} and for every xk ∈ I,

〈1, . . . , 1, xk, 1, . . . , 1〉 ∈ In \R. Then from equation (2.1)

Q(1, . . . , 1, xk, 1, . . . , 1) = C(1, . . . , 1, xk, 1, . . . , 1) = xk.

If we assume that there exists i ∈ {1, . . . , n} such that vi < 1 and for every j ∈ {1, . . . , n}\{i},

vj = 1, then for every yi ∈ [ui, vi], 〈1, . . . , 1, yi, 1, . . . , 1〉 ∈ ∂R, and by equation (2.1)

Q(1, . . . , 1, yi, 1, . . . , 1) = C(1, . . . , 1, yi, 1, . . . , 1) = yi.

Finally, if for every i ∈ {1, . . . , n}, vi = 1 and yk ∈ [uk, 1] for any k ∈ {1, . . . , n}, then we

have that 〈1, . . . , 1, yk, 1, . . . , 1〉 ∈ ∂R, and by equation (2.1)

Q(1, . . . , 1, yk, 1, . . . , 1) = C(1, . . . , 1, yk, 1, . . . , 1) = yk.

So, Q satisfies the boundary conditions of an n-conjunctor. Now we have to prove that Q is

increasing, by Proposition 2.2 it is enough to see that for every i ∈ {1, . . . , n} and for every

zi ∈ I the function Q(·, . . . , ·, zi, ·, . . . , ·) is increasing.

So, let i ∈ {1, . . . , n} be fixed and zi ∈ I. We proceed by cases:

First, if zi ∈ [0, ui] ∪ [vi, 1]. Denote by
◦
R= "ni=1(ui, vi) the interior of R. Observe that since

C = D on ∂R, using equation (2.1), we can redefine Q as follows:

Q(x) =

{
D(x) if x ∈

◦
R,

C(x) if x ∈ [0, 1]n\
◦
R .

(2.2)

Define the region

Hzi = {〈x1, . . . , xn〉 ∈ In | xi = zi} ⊂ In \
◦
R= In \

n

"
i=1

(ui, vi). (2.3)
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From equation (2.2), it follows that for every 〈x1, . . . , xn〉 ∈ Hzi

Q(·, . . . , ·, zi, ·, . . . , ·) = C(·, . . . , ·, zi, ·, . . . , ·),

which is increasing by Proposition 2.2.

Second, assume that zi ∈ (ui, vi), consider two points x,w ∈ Hzi , such that x ≤ w, that is,

x = 〈x1, . . . , xi−1, zi, xi+1, . . . , xn〉 and w = 〈w1, . . . , wi−1, zi, wi+1, . . . , wn〉 with xj ≤ wj for

every j ∈ {1, . . . , n}\{i}. Let

Hx,w := {〈z1, . . . , zn〉 ∈ Hzi | for every j ∈ {1, . . . , n}\{i}, xj ≤ zj ≤ wj}. (2.4)

Here we have to check two cases:

Case 1. If Hx,w∩
◦
R= ∅, then Hx,w ⊂ In \

◦
R. So, Q(·, . . . , ·, zi, ·, . . . , ·) =

C(·, . . . , ·, zi, ·, . . . , ·) which is increasing on Hx,w.

Case 2. If Hx,w∩
◦
R 6= ∅, in this case we have to check subcases.

Subcase i) Assume that x ∈
◦
R and w ∈

◦
R, then Hx,w ⊂

◦
R using equation (2.2), we have that

Q(·, . . . , ·, zi, ·, . . . , ·) = D(·, . . . , ·, zi, ·, . . . , ·)

which is increasing on Hx,w by hypothesis and using Proposition 2.2.

Subcase ii) Assume that x 6∈
◦
R and w ∈

◦
R. Then w = 〈w1, . . . , wi−1, wi = zi, wi+1, . . . , wn〉

where uj < wj < vj for every j ∈ {1, . . . , n} and if x = 〈x1, . . . , xi−1, xi = zi, xi+1, . . . , xn〉

then there exists j ∈ {1, . . . , n}\{i} such that xj 6∈ (uj, vj). Let

Jx = {j ∈ {1, . . . , n}\{i} | xj 6∈ (uj, vj)}, (2.5)

then Jx 6= ∅. Also define

J lx = {j ∈ {1, . . . , n}\{i} | xj ∈ [0, uj]}, (2.6)

and

Jux = {j ∈ {1, . . . , n}\{i} | xj ∈ [vj, 1]}. (2.7)

Then Jx = J lx∪Jux which is a disjoint union. If Jux 6= ∅, then there exists j ∈ {1, . . . , n} such

that vj ≤ xj , but, xj ≤ wj < vj, which is a contradiction. So, J lx 6= ∅, and in fact, Jx = J lx.

Therefore,

for every j ∈ Jx, xj ≤ uj < wj < vj. (2.8)



2.1. INTRODUCTION 21

Define z = 〈z1, . . . , zi−1, zi, zi+1, . . . , zn〉 such that

zj =

{
uj if j ∈ Jx,
xj if j ∈ J cx = {1, . . . , n}\Jx.

(2.9)

Then using equation (2.8) z ∈ Hx,w and z ∈ ∂R, and also x ≤ z ≤ w. Therefore, using that

C = D on ∂R and equation (2.1)

Q(w1, . . . , wi−1, zi, wi+1, . . . , wn)−Q(x1, . . . , xi−1, zi, xi+1, . . . , xn)

= Q(w1, . . . , wi−1, zi, wi+1, . . . , wn)−Q(z1, . . . , zi−1, zi, zi+1, . . . , zn)

+Q(z1, . . . , zi−1, zi, zi+1, . . . , zn)−Q(x1, . . . , xi−1, zi, xi+1, . . . , xn)

= D(w1, . . . , wi−1, zi, wi+1, . . . , wn)−D(z1, . . . , zi−1, zi, zi+1, . . . , zn)

+C(z1, . . . , zi−1, zi, zi+1, . . . , zn)− C(x1, . . . , xi−1, zi, xi+1, . . . , xn) ≥ 0, (2.10)

and Q(·, . . . , ·, zi, ·, . . . , ·) is increasing.

Subcase iii) If x ∈
◦
R and w 6∈

◦
R is completely analogous to subcase ii).

Subcase iv) Assume that x 6∈
◦
R and w 6∈

◦
R. Define Jx, J

l
x and Jux , as in equations (2.5), (2.6)

and (2.7), analogously define for w, Jw, J
l
w and Juw. Since x 6∈

◦
R and w 6∈

◦
R we know that

Jx = J lx ∪ Jux 6= ∅ and Jw = J lw ∪ Juw 6= ∅. (2.11)

Since Hx,w∩
◦
R 6= ∅, let z = 〈z1, . . . , zn〉 ∈ Hx,w∩

◦
R. Then from (2.4)

xj ≤ zj ≤ wj and uj < zj < vj for every j ∈ {1, . . . , n}. (2.12)

If Jux 6= ∅ there exists j ∈ {1, . . . , n}\{i} such that vj ≤ xj, but xj ≤ zj < vj which is a

contradiction. Hence, J lx 6= ∅, and in fact, Jx = J lx. So, for every j ∈ Jx, xj ≤ uj < zj < vj.

If J lw 6= ∅ there exists k ∈ {1, . . . , n}\{i} such that wk ≤ uk, but uk < zk ≤ wk which is a

contradiction. Hence, Juw 6= ∅, and in fact, Jw = Juw. So, for every k ∈ Jw, uk < zk < vk ≤
wk.

Define d = 〈d1, . . . , di−1, zi, di+1, . . . , dn〉 such that

dj =

{
uj if j ∈ Jx,
xj if j ∈ J cx = {1, . . . , n}\Jx.

(2.13)
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Then using (2.11), (2.12) and (2.13), d ∈ ∂R ∩Hx,w and x ≤ d ≤ z.

Define e = 〈e1, . . . , ei−1, zi, ei+1, . . . , en〉 such that

ek =

{
vk if k ∈ Jw,
wk if k ∈ J cw = {1, . . . , n}\Jw.

(2.14)

Then using (2.11), (2.12) and (2.14), e ∈ ∂R ∩Hx,w and z ≤ e ≤ w. Therefore,

x ≤ d ≤ e ≤ w with d and e in ∂R. (2.15)

Then using (2.1) and (2.15)

Q(w1, . . . , wi−1, zi, wi+1, . . . , wn)−Q(x1, . . . , xi−1, zi, xi+1, . . . , xn)

= Q(w1, . . . , wi−1, zi, wi+1, . . . , wn)−Q(e1, . . . , ei−1, zi, ei+1, . . . , en)

+Q(e1, . . . , ei−1, zi, ei+1, . . . , en)−Q(d1, . . . , di−1, zi, di+1, . . . , dn)

+Q(d1, . . . , di−1, zi, di+1, . . . , dn)−Q(x1, . . . , xi−1, zi, xi+1, . . . , xn)

= C(w1, . . . , wi−1, zi, wi+1, . . . , wn)− C(e1, . . . , ei−1, zi, ei+1, . . . , en)

+D(e1, . . . , ei−1, zi, ei+1, . . . , en)−D(d1, . . . , di−1, zi, di+1, . . . , dn)

+C(d1, . . . , di−1, zi, di+1, . . . , dn)− C(x1, . . . , xi−1, zi, xi+1, . . . , xn) ≥ 0, (2.16)

So, Q(·, . . . , ·, zi, ·, . . . , ·) is increasing, and by Proposition 2.2 Q is increasing. Therefore, Q

is an n-conjunctor.

Remark 2.6. Observe that if R = "ni=1[ui, vi] and S = "ni=1[wi, zi] are two non trivial n-boxes

then R ∩ S = ∅ or R ∩ S is another n-box, because for every i ∈ {1, . . . , n}

[ui, vi] ∩ [wi, zi] =


∅ if ui < vi < wi < zi or wi < zi < ui < vi,
[wi, vi] if ui ≤ wi ≤ vi ≤ zi,
[wi, zi] if ui ≤ wi < zi ≤ vi,
[ui, zi] if wi ≤ ui ≤ zi ≤ vi,
[ui, vi] if wi ≤ ui < vi ≤ zi.

So, R ∩ S = Πn
i=1[ui, vi] ∩ [wi, zi] is either the empty set or an n-box.

Definition 2.7. Let R = "ni=1[ui, vi] and S = "ni=1[wi, zi] be two non trivial n-boxes. We will

say that R and S are adjacent if and only if they have a common adjacent face, that is,

if there exists i ∈ {1, . . . , n} such that vi = wi or ui = zi and for every j ∈ {1, . . . , n}\{i},

uj = wj and vj = zj and
◦
R ∩

◦
S= ∅.
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Proposition 2.8. Let R = "ni=1[ui, vi] and S = "ni=1[wi, zi] be two non trivial n-boxes.

Let
◦
R= "ni=1(ui, vi) be the interior of R, and let Vert(S) the set of vertices of S. Let

VS,R = Vert(S)∩
◦
R, if we denote by | · | the cardinality of a set, then |VS,R| ∈ {0, 20 =

1, 21, . . . , 2n−1, 2n}, and if |VS,R| > 0 then S can be written as

S = ∪2n/|VS,R|
k=1 Sk, (2.17)

where every Sk is an n-box. Also, if 0 < |VS,R| < 2n

for every k1, k2 ∈ {1, . . . , 2n/|VS,R|} with k1 6= k2, Sk1 ∩ Sk2 ∩ ∂R 6= ∅, (2.18)

and Sk1 ∩ Sk2 includes a subset of a (n − j)-dimensional face of R for some j ∈ {1, . . . n}.
Besides,

for every k1, k2 ∈ {1, . . . , 2n/|VS,R|} with k1 6= k2,
◦
Sk1 ∩

◦
Sk2= ∅, (2.19)

and for every k1 ∈ {1, . . . , 2n/|VS,R|}

there exists k2 ∈ {1, . . . , 2n/|VS,R|}, k2 6= k1, such that Sk1 andSk2 are adjacent. (2.20)

In the representation of S in equation (2.17) there exists a unique k0 ∈ {1, 2, . . . , 2n/|VS,R|}

such that Sk0 ⊂ R and for the remaining k′s, Sk∩
◦
R= ∅.

Proof. Let R = "ni=1[ui, vi] and S = "ni=1[wi, zi] be two non trivial n-boxes. Define VS,R =

Vert(S)∩
◦
R. Observe that if |VS,R| = 0, then S ⊂ (

◦
R)c, where (

◦
R)c is the complement of

◦
R.

Observe also that if |VS,R| = 2n then S ⊂
◦
R and 2n/|VS,R| = 1. So, equation (2.17) holds

defining S1 = S.

We will work with the upper coordinates that define S, in order to facilitate notation and

without losing generality.

First, assume that for every i ∈ {1, . . . , n}, wi < ui < zi < vi. Then VS,R = Vert(S)∩
◦
R=
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{〈z1, . . . zn〉} and |VS,R| = 1 = 20. We also have that

S =
n

"
i=1

[wi, zi]

=
n

"
i=1

[wi, ui] ∪ [ui, zi]

= [w1, u1]× · · · × [wn−1, un−1]× [wn, un]

∪[w1, u1]× · · · × [wn−1, un−1]× [un, zn]

∪[w1, u1]× · · · × [un−1, zn−1]× [wn, un]

∪[w1, u1]× · · · × [un−1, zn−1]× [un, zn]

...
...

...

∪[u1, z1]× · · · × [un−1, zn−1]× [wn, un]

∪[u1, z1]× · · · × [un−1, zn−1]× [un, zn]

= S1 ∪ S2 ∪ S3 ∪ S4 ∪ · · · ∪ S2n−1 ∪ S2n . (2.21)

Observe that in the last line of (2.21) we have used an order in the listing, in order to see

how it is done, define the intervals I1,i = [wi, ui] and I2,i = [ui, zi] for every i ∈ {1, . . . , n},

observe that from equation (2.21), we can write

S = ∪〈j1,...,jn〉∈{1,2}n
n

"
i=1

Iji,i. (2.22)

Hence, it is clear that the number of n-boxes in (2.21) is 2n = 2n/20 = 2n/|VS,R| and (2.17)

holds. Besides, in order for the last equality to make complete sense we need to establish an

order in {1, 2}n. Let l = 〈l1, . . . , ln〉 ∈ {1, 2}n, define Ql = {k ∈ {1, . . . , n} | lk = 2}. Now

we define ϕ : {1, 2}n → {1, 2, 3, . . . , 2n} by

ϕ(l) = 1 +
∑
k∈Ql

2n−k for every l ∈ {1, 2}n.

Of course, Ql = ∅ if and only if l = 〈1, 1, . . . , 1〉 and in this case ϕ(1, 1, . . . , 1) = 1. Also

observe that if l = 〈2, 2, . . . , 2〉, then ϕ(2, 2, . . . , 2) = 1 +
∑n

k=1 2n−k = 1 +
∑n−1

j=0 2j = 2n. It

is not difficult to see that ϕ is a bijection between {1, 2}n and {1, 2, 3, . . . , 2n}. The order we

propose is the following: we say that if r, s ∈ {1, 2}n then r < s if and only if ϕ(r) < ϕ(s).

So, using (2.22) we can order the Si using ϕ, we will call this order the binary order.
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Observe that 〈u1, . . . un〉 ∈ Sk for every k ∈ {1, 2, 3, . . . , 2n}, hence, (2.18) holds.

Let k1, k2 ∈ {1, 2, 3, . . . , 2n}, with k1 6= k2, then using the binary order and representation

(2.22), there exist r, s ∈ {1, 2}n with r 6= s, such that k1 = ϕ(r) and k2 = ϕ(s); since r 6= s

there exists j ∈ {1, 2, . . . , n} such that rj = 1 and sj = 2, or rj = 2 and sj = 1, in either

case
◦

Irj ,j ∩
◦

Isj ,j= (wj, uj) ∩ (uj, zj) = ∅. So,
◦
Sk1 ∩

◦
Sk2= "ni=1

◦
Iri,i ∩"ni=1

◦
Isi,i= ∅, and (2.19)

holds.

Using the order we establish above it is clear that S2m−1 and S2m are adjacent n-boxes for

every m ∈ {1, 2, . . . , 2n−1}, so, (2.20) holds.

Observe that the only Sk included in R is S2n , and using representation (2.22), since [wi, ui]∩

(ui, zi) = ∅ for every i ∈ {1, . . . , n} then Sk∩
◦
R= ∅ for every 1 ≤ k < 2n.

Second, assume that there exists j ∈ {1, . . . , n} such that uj < wj < zj < vj and for every

i ∈ {1, . . . , n}\{j}, wi < ui < zi < vi. Without losing generality we can assume that j = 1.

Then VS,R = Vert(S)∩
◦
R= {〈z1, z2 . . . zn〉, 〈w1, z2, . . . zn〉} and |VS,R| = 2 = 21. We also have

that

S = [w1, z1]× (
n

"
i=2

[wi, zi])

= [w1, z1]× (
n

"
i=2

[wi, ui] ∪ [ui, zi])

= [w1, z1]× · · · × [wn−1, un−1]× [wn, un]

∪[w1, z1]× · · · × [wn−1, un−1]× [un, zn]

∪[w1, z1]× · · · × [un−1, zn−1]× [wn, un]

∪[w1, z1]× · · · × [un−1, zn−1]× [un, zn]

...
...

...

∪[w1, z1]× · · · × [un−1, zn−1]× [wn, un]

∪[w1, z1]× · · · × [un−1, zn−1]× [un, zn]

= S1 ∪ S2 ∪ S3 ∪ S4 ∪ · · · ∪ S2n−1−1 ∪ S2n−1 . (2.23)

In this case if we call I1 = [w1, z1] and using the same notation as above we have that

S = ∪〈j2,...,jn〉∈{1,2}n−1I1 × Ij2,2 × · · · × Ijn,n. (2.24)
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Hence the number of n-boxes in this case is 2n−1 = 2n/21 = 2n/|VS,R| and (2.17) holds, and

we use ϕ : {1, 2} → {1, 2, . . . , 2n−1} to establish the order of the n-boxes Sk.

Since [w1, z1] ⊂ [u1, v1] and for every j ∈ {2, 3, . . . , n}, uj belongs to the jth coordinate of

any Sk for every k ∈ {1, 2, . . . 2n−1}, then using equation (1.9),

R2,3,...,n∩Sk1 ∩Sk2 = {〈x1, . . . , xn〉 ∈ R | for every j ∈ {2, 3, . . . , n}, xj = uj}∩Sk1 ∩Sk2 6= ∅,

for every k1, k2 ∈ {1, 2, . . . , 2n−1} with k1 6= k2. So, (2.18) holds.

To see that equation (2.19) holds we use exactly the same arguments as in the first case.

Using the order we established above it is clear that S2m−1 and S2m are adjacent n-boxes for

every m ∈ {1, 2, . . . , 2n−2}, so, (2.20) holds.

Observe that the only Sk included in R is S2n−1 , and since [wi, ui] ∩ (ui, zi) = ∅ for every

i ∈ {1, . . . , n} then Sk∩
◦
R= ∅ for every 1 ≤ k < 2n−1.

In the kth step, assume that exist 1 ≤ i1 < i2 < · · · < ik ≤ n such that uij < wij < zij < vij

for every j ∈ {1, 2, . . . , k} and for every i ∈ {1, . . . , n}\{i1, i2, . . . , ik}, wi < ui < zi < vi.

We will assume without losing generality that ij = j for every j ∈ {1, 2, . . . , k}.Then VS,R =

Vert(S)∩
◦
R= {〈x1, x2, . . . , xn〉 ∈ Vert(S) |xi = wi or xi = zi for every i ∈ {1, . . . , k},

and xj = zj for every j ∈ {k + 1, k + 2, . . . , n}}

and |VS,R| = 2k. We also have that

S = [w1, z1]× · · · × [wk, zk]× (
n

"
i=k+1

[wi, zi])

= [w1, z1]× · · · × [wk, zk]× (
n

"
i=k+1

[wi, ui] ∪ [ui, zi])

= [w1, z1]× · · · × [wk, zk]× · · · × [wn−1, un−1]× [wn, un]

∪[w1, z1]× · · · × [wk, zk]× · · · × [wn−1, un−1]× [un, zn]

∪[w1, z1]× · · · × [wk, zk]× · · · × [un−1, zn−1]× [wn, un]

∪[w1, z1]× · · · × [wk, zk]× · · · × [un−1, zn−1]× [un, zn]

...
...

...
...

∪[w1, z1]× · · · × [wk, zk]× · · · × [un−1, zn−1]× [wn, un]

∪[w1, z1]× · · · × [wk, zk]× · · · × [un−1, zn−1]× [un, zn]

= S1 ∪ S2 ∪ S3 ∪ S4 ∪ · · · ∪ S2n−k−1 ∪ S2n−k . (2.25)
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In this case if we call Ii = [wi, zi] for i ∈ {1, 2, . . . .k} and using the same notation as in the

first case we have that

S = ∪〈jk+1,...,jn〉∈{1,2}n−kI1 × · · · × Ik × Ijk+1,k+1 × · · · × Ijn,n. (2.26)

Hence the number of n-boxes in this case is 2n−k = 2n/2k = 2n/|VS,R| and (2.17) holds, and

we use ϕ : {1, 2} → {1, 2, . . . , 2n−k} to establish the order of the n-boxes Sj.

Since [wi, zi] ⊂ [ui, vi] for every i ∈ {1, . . . , k} and for every j ∈ {k + 1, k + 2, . . . , n}, uj

belongs to the jth coordinate of any Sk for every k ∈ {1, 2, . . . 2n−k}, then using equation

(1.9),

Rk+1,k+2,...,n ∩ Sk1 ∩ Sk2 =

{〈x1, . . . , xn〉 ∈ R | for every j ∈ {k + 1, k + 2, . . . , n}, xj = uj} ∩ Sk1 ∩ Sk2 6= ∅,
(2.27)

for every k1, k2 ∈ {1, 2, . . . , 2n−k} with k1 6= k2. So, (2.18) holds.

To see that equation (2.19) holds we use exactly the same arguments as in the first case.

Using the order we established above it is clear that S2m−1 and S2m are adjacent n-boxes for

every m ∈ {1, 2, . . . , 2n−(k+1)}, so, (2.19) holds.

Observe that the only Sk included in R is S2n−k , and since (wi, ui) ∩ (ui, zi) = ∅ for every

i ∈ {1, . . . , n} then
◦
Sk ∩

◦
R= ∅ for every 1 ≤ k < 2n−k..

Finally, if we let k = n− 1 and we proceed as above

S = ([w1, z1]×· · ·× [wn−1, zn−1]× [wn, un])∪ ([w1, z1]×· · ·× [wn−1, zn−1]× [un, zn]) = S1∪S2.

So, (2.17), (2.18), (2.19) and (2.20) follow immediately, also, only S2 is included in R and

S1∩
◦
R= ∅.

Lemma 2.9. Let R = "ni=1[ui, vi] and S = "ni=1[wi, zi] be two adjacent non trivial n-boxes.

Let C : R→ I and D : S → I such that VC(R) ≥ 0 and VD(S) ≥ 0. Define Q : S ∪R→ I by

Q(x) =

{
C(x) if x ∈ R,
D(x) if x ∈ S (2.28)

If C = D on the common face of R and S then Q is well defined and VQ(R ∪ S) = VQ(R) +

VQ(S) = VC(R) + VD(S) ≥ 0.
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Proof. Let R = "ni=1[ui, vi] and S = "ni=1[wi, zi] be two adjacent non trivial n-boxes. By

Definition 2.7 there exists i ∈ {1, 2, . . . , n} such that either vi = wi or ui = zi and for every

j ∈ {1, 2, . . . , n}\{i}, uj = wj and vj = zj. Without losing generality we will assume that

i = 1 and v1 = w1. Then

R = [u1, v1]×
n

"
i=2

[ui, vi] and S = [v1, z1]×
n

"
i=2

[ui, vi], (2.29)

and

R ∪ S = [u1, z1]×
n

"
i=2

[ui, vi]. (2.30)

Also the common face of R and S is the set

R ∩ S = {〈x1, . . . , xn〉 | x1 = v1 and for every j ∈ {2, . . . , n}, xj ∈ [uj, vj]}. (2.31)

So, Q is well defined. Let

Vert(Ru1) = {c ∈ Vert(R) | c1 = u1} and Vert(Rv1) = {c ∈ Vert(R) | c1 = v1}. (2.32)

Then Vert(R) = Vert(Ru1) ∪ Vert(Rv1) which is a disjoint union. Define analogously,

Vert(Sv1) and Vert(Sz1), then Vert(S) = Vert(Sv1) ∪ Vert(Sz1) which is a disjoint union.

Besides,

|Vert(Ru1)| = |Vert(Rv1)| = |Vert(Sv1)| = |Vert(Sz1)| = 2n−1.

Define also Vert((R ∪ S)u1) and Vert((R ∪ S)z1) and observe that

Vert((R ∪ S)u1) = Vert(Ru1), Vert((R ∪ S)z1) = Vert(Sz1) and Vert(Rv1) = Vert(Sv1).

(2.33)

Recall that the function sgn in Definition 1.8, equation (1.8) depends only on the vertices of

the n-box T in which the volume is calculated. So, we will denote sgnT instead of sgn, when

the T may change.

We also observe that if c = 〈c1, . . . , cn〉 ∈ Vert(Rv1) = Vert(Sv1). We have that

if sgnR(c) = 1, then sgnS(c) = −1 and if sgnR(c) = −1, then sgnS(c) = 1, (2.34)

because in R, v1 is the final point of [u1, v1] and in S, v1 is the initial point of [v1, z1],

using Definition 1.8. Also, from equations (2.29), (2.30) and (2.33), we have that if c ∈

Vert((R∪S)u1 = Vert(Ru1), then sgnR∪S(c) = sgnR(c), and if c ∈ Vert((R∪S)z1 = Vert(Sz1),

then sgnR∪S(c) = sgnS(c).
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Therefore, if C = D on the vertices of the common face of R and S given in equation (2.31),

using equations (2.28), (2.29), (2.33), and (2.34) we have that

VQ(R ∪ S) = VQ([u1, z1]×
n

"
j=2

[uj, vj])

=
∑

{c∈Vert(R∪S)}

sgnR∪S(c)Q(c)

=
∑

{c∈Vert((R∪S)z1 )}

sgnR∪S(c)Q(c)

+
∑

{c∈Vert((R∪S)u1 )}

sgnR∪S(c)Q(c)

=
∑

{c∈Vert((R∪S)z1 )}

sgnR∪S(c)Q(c)

+
∑

{c∈Vert(Sv1 )}

Q(c)

−
∑

{c∈Vert(Rv1 )}

Q(c)

+
∑

{c∈Vert((R∪S)u1 )}

sgnR∪S(c)Q(c)

=
∑

{c∈Vert(Sz1 )}

sgnS(c)D(c)

+
∑

{c∈Vert(Sv1 )}

sgnS(c)D(c)

+
∑

{c∈Vert(Rv1 )}

sgnR(c)C(c)

+
∑

{c∈Vert(Ru1 )}

sgnR(c)C(c)

= VQ(S) + VQ(R)

= VD(S) + VC(R) ≥ 0. (2.35)
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Observe that if we have a function C : R ∪ S → I and in definition (2.28) we change D by

C, we also have that if VC(R) ≥ 0 and VC(S) ≥ 0 the result still holds.

Now we will prove the main result.

Theorem 2.10. Let C : In → I be an n-copula, let R = "ni=1[ui, vi] ⊂ In be a non trivial

n-box. Let D : R→ I be a function. Define Q : In → I by

Q(x1, . . . , xn) =

{
D(x1, . . . , xn) if 〈x1, . . . , xn〉 ∈ R,
C(x1, . . . , xn) if 〈x1, . . . , xn〉 ∈ In \R. (2.36)

Then, Q is an n-copula if and only if D = C on ∂R and D is n-increasing.

Note: In Theorem 2.10 we can replace the n-box R by a region of the form R = [a, 1]\[b, 1]

with a ≤ b and define Q as above. In this case Q will be a copula whenever D is n-increasing,

D = C on ∂R∩
◦
I and D satisfies the boundary conditions of a copula in ∂D ∩ ∂ I.

Proof. Let C : In → I be an n-copula, let R = "ni=1[ui, vi] ⊂ In be a non trivial n-box. Let

D : R → I be a function. Define Q as in equation (2.36). First, assume that Q is an n-

copula, then using Definition 2.3 and Remark 2.4, we have that Q is n-increasing, therefore,

Q|R the restriction of Q to R is also n-increasing, but from equation (2.36), Q|R = D and D

is n-increasing. Besides, any n copula is jointly uniformly continuous, see Nelsen [58], then

C = D on ∂R.

Conversely, if we assume that D is n-increasing on R and C = D on ∂R and we define Q as

in equation (2.36) then we can redefine Q as follows:

Q(x1, . . . , xn) =

{
D(x1, . . . , xn) if 〈x1, . . . , xn〉 ∈

◦
R,

C(x1, . . . , xn) if 〈x1, . . . , xn〉 ∈ In \
◦
R,

(2.37)

where
◦
R= "ni=1(ui, vi). Using equation (2.37) we observe that for any R = "ni=1[ui, vi] ⊂ In

all the vectors of the form 〈1, . . . , 1, xi, 1, . . . , 1〉 with i ∈ {1, . . . , n} and xi ∈ I belong to

In \
◦
R. So, using (2.37), Q(1, . . . , 1, xi, 1, . . . , 1) = C(1, . . . , 1, xi, 1, . . . , 1) = xi, for every

i ∈ {1, . . . , n} and for every xi ∈ I.

Similarly, if we let x = 〈x1, . . . , xi−1, 0, xi+1, . . . , xn〉, then x ∈ In \
◦
R for every xj ∈ I and

for every j ∈ {1, . . . , i − 1, i + 1, . . . , n}. So, using (2.37), Q(x) = C(x) = 0, for every x =

〈x1, . . . , xi−1, 0, xi+1, . . . , xn〉 with i ∈ {1, . . . , n} and for every x1, . . . , xi−1, xi+1, . . . , xn ∈ I.

Therefore, Q satisfies all the boundary conditions of an n-copula.
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Hence, all we have to prove is that Q is n-increasing. So, let S = "ni=1[wi, zi] ⊂ In, we have

to see that VQ(S) ≥ 0. We will proceed by cases and we will use Proposition 2.8 and Lemma

2.9.

Recall that VS,R = Vert(S)∩
◦
R, we know from Proposition 2.8 that |VS,R| ∈ {0, 20 =

1, 21, . . . , 2n}. If Vert(S) = ∅ then |VS,R| = 0 and Vert(S) ⊂ (
◦
R)c = In \

◦
R, and by equation

(2.37), VQ(S) = VC(S) ≥ 0, since C is n-increasing.

On the other hand, if |VS,R| = 2n then Vert(S) ⊂
◦
R⊂ R, and in this case S ⊂

◦
R⊂ R, and

by equation (2.37), VQ(S) = VD(S) ≥ 0, because D is n-increasing on R.

So, we only have to prove that VQ(S) ≥ 0 when 20 = 1 ≤ |VS,R| ≤ 2n−1.

We will see in detail the most difficult case, assume that |VS,R| = 20 = 1, without losing

generality we can assume that S has the representation given in equation (2.21) of Proposition

2.8, that is, S = "ni=1[wi, ui] ∪ [ui, zi] = S1 ∪ S2 ∪ · · · ∪ S2n . Here, we will take advantage of

the order induced by ϕ in Proposition 2.8. We saw in the proof of Proposition 2.8 that in

this case, for every m ∈ {1, 2, . . . , 2n−1}, S2m−1 and S2m are adjacent n-boxes. Define

T 1
m = S2m−1 ∪ S2m for every m ∈ {1, 2, . . . , 2n−1}, then S = ∪2n−1

j=1 T
1
j , (2.38)

using equation (2.21). We also have that

S =
n

"
i=1

[wi, zi]

= T 1
1 ∪ T 1

2 ∪ T 1
3 ∪ T 1

4 ∪ · · ·T 1
2n−1−1 ∪ T 1

2n−1

= [w1, u1]× · · · × [wn−2, un−2]× [wn−1, un−1]× [wn, zn]

∪[w1, u1]× · · · × [wn−2, un−2]× [un−1, zn−1]× [wn, zn]

∪[w1, u1]× · · · × [un−2, zn−2]× [wn−1, un−1]× [wn, zn]

∪[w1, u1]× · · · × [un−2, zn−2]× [un−1, zn−1]× [wn, zn]

...
...

...
...

∪[u1, z1]× · · · × [un−2, zn−2]× [wn−1, un−1]× [wn, zn]

∪[u1, z1]× · · · × [un−2, zn−2]× [un−1, zn−1]× [wn, zn]. (2.39)

It is clear that T 1
2m−1 and T 1

2m are adjacent n-boxes for every m ∈ {1, 2, . . . , 2n−2}
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Besides, from the proof of this case in Proposition 2.8, we know that

T 1
m∩

◦
R= (S2m−1∩

◦
R) ∪ (S2m∩

◦
R) = ∅ for every m ∈ {1, 2, . . . , 2n−1 − 1}, (2.40)

and

T 1
2n−1∩

◦
R= (S2n−1∩

◦
R) ∪ (S2n∩

◦
R) = ∅ ∪

n

"
i=1

(ui, zi) =
n

"
i=1

(ui, zi). (2.41)

So, using equation (2.37) and Lemma 2.9, for every m ∈ {1, 2, . . . , 2n−1 − 1}, we have that

VQ(T 1
m) = VC(T 1

m) = VC(S2m) + VC(S2m−1) ≥ 0, (2.42)

and for m = 2n−1 we have that

VQ(T 1
2n−1) = VC(S2n−1) + VD(S2n) ≥ 0. (2.43)

We can finish the proof of this case using equations (2.38), (2.40) and (2.41). But, we

will keep using Lemma 2.9 to finish the proof, because the remaining cases are necessarily

included below. Observe that equation (2.39) represents also the case in which, for every

i ∈ {1, 2, . . . , n− 1}, wi < ui < zi < vi and un < zn < wn < vn. But in this case,

|VS,R| = |Vert(S)∩
◦
R | = |{〈z1, . . . , zn−1, zn〉, 〈z1, . . . , zn−1, wn〉}| = 2. (2.44)

Now, define

T 2
m = T 1

2m−1 ∪ T 1
2m for every m ∈ {1, 2, . . . , 2n−2}, then S = ∪2n−2

j=1 T
2
j , (2.45)

using equation (2.39). We also have that

S =
n

"
i=1

[wi, zi]

= T 2
1 ∪ T 2

2 ∪ T 2
3 ∪ T 2

4 ∪ · · ·T 2
2n−2−1 ∪ T 2

2n−2

= [w1, u1]× · · · × [wn−3, un−3]× [wn−2, un−2]× [wn−1, zn−1]× [wn, zn]

∪[w1, u1]× · · · × [wn−3, un−3]× [un−2, zn−2]× [wn−1, zn−1]× [wn, zn]

∪[w1, u1]× · · · × [un−3, zn−3]× [wn−2, un−2]× [wn−1, zn−1]× [wn, zn]

∪[w1, u1]× · · · × [un−3, zn−3]× [un−2, zn−2]× [wn−1, zn−1]× [wn, zn]

...
...

...
...

...

∪[u1, z1]× · · · × [un−3, zn−3]× [wn−2, un−2]× [wn−1, zn−1]× [wn, zn]

∪[u1, z1]× · · · × [un−3, zn−3]× [un−2, zn−2]× [wn−1, zn−1]× [wn, zn]. (2.46)
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Again, it is clear that T 2
2m−1 and T 2

2m are adjacent n-boxes for every m ∈ {1, 2, . . . , 2n−3}.

Besides, as above, we know using equation (2.40) that

T 2
m∩

◦
R= (T 1

2m−1∩
◦
R) ∪ (T 1

2m∩
◦
R) = ∅ for every m ∈ {1, 2, . . . , 2n−2 − 1}, (2.47)

and using (2.41)

T 2
2n−2∩

◦
R= (T 1

2n−1−1∩
◦
R) ∪ (T 1

2n−1∩
◦
R) = ∅ ∪

n

"
i=1

(ui, zi) =
n

"
i=1

(ui, zi). (2.48)

So, using equation (2.37) and Lemma 2.9, we have that

VQ(T 2
m) = VQ(T 1

2m) + VQ(T 1
2m−1) ≥ 0 for every m ∈ {1, 2, . . . , 2n−2}. (2.49)

And in the case that (2.44) holds, for every m ∈ {1, 2, . . . , 2n−2 − 1}, we have that

VQ(T 2
m) = VC(T 2

m) = VC(T 1
2m) + VC(T 1

2m−1) ≥ 0, (2.50)

and for m = 2n−2 we have that

VQ(T 1
2n−2) = VC(T 1

2n−1−1) + VQ(T 1
2n−1) ≥ 0. (2.51)

Now, of course, we proceed inductively, by defining for 3 ≤ k ≤ n

T km = T k−1
2m−1 ∪ T k−1

2m for every m ∈ {1, 2, . . . , 2n−k}, then S = ∪2n−k

j=1 T
k
j , (2.52)

where every T km is of the form

T km = I1 × · · · × In−k × [wn−(k+1), zn−(k+1)]× · · · × [wn, zn], (2.53)

and for every j ∈ {1, 2, . . . , n − k}, either Ij = [wj, , uj] or Ij = [uj, zj]. Again, T k2m−1 and

T k2m are adjacent n-boxes for every m ∈ {1, 2, . . . , 2n−(k+1)}. Besides

T km∩
◦
R= (T k−1

2m−1∩
◦
R) ∪ (T k−1

2m ∩
◦
R) = ∅ for every m ∈ {1, 2, . . . , 2n−k − 1}, (2.54)

and

T k2n−k∩
◦
R= (T k−1

2n−k−1
∩
◦
R) ∪ (T 1

2n−k∩
◦
R) = ∅ ∪

n

"
i=1

(ui, zi) =
n

"
i=1

(ui, zi). (2.55)

So, using equation (2.37) and Lemma 2.9 we have similar equations as in (2.49), or as in

(2.50) and (2.51) depending on the number of vertices in VS,R.
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Theorem 1.35 is the main result in the patchwork construction of 2-copulas given in

Durante et al [24]. An alternative shorter proof using the next results is given at the end of

this section.

Definition 2.11. Let F : D → RI be a function, where D ⊂ RI n for some n ≥ 2. We will

say that F is modular if and only if for any n-box R whose vertices lie in D we have that

VF (R) = 0.

Using Aczél and Dhombres [1], we give a characterization of modular functions, and a useful

Lemma.

Lemma 2.12. Let F : D → RI be a function where D ⊂ RI n for some n ≥ 2. Then

F is modular if and only if there exist n functions Gi : RI n−1 → RI such that for every

x = 〈x1, x2, . . . , xn〉 ∈ D

F (x) = G1(x2, x3, . . . , xn) + · · ·+Gi(x1, . . . , xi−1, xi+1, . . . , xn) + · · ·+Gn(x1, . . . , xn−1).

(2.56)

Proof. Let R = "ni=1[ui, vi] be an n-box and let c = 〈c1, c2 . . . , cn〉 be a vertex of R, define

c∗1 = v1 if c1 = u1 or c∗1 = u1 if c1 = v1. Then c∗ = 〈c∗1, c2, . . . , cn〉 is another vertex of R, and

using equation (1.8), sgn(c)G1(c) + sgn(c∗)G1(c∗) = 0. Repeating the argument for the ith

coordinate of c respectively, in the remaining n− 1 functions we have the result.

The importance of Lemma 2.12 is that the functions G1, . . . , Gn in equation (2.56) are

completely arbitrary. For example if n = 3 and we define F (x, y, z) = G1(x, y) +G2(x, z) +

G3(y, z)+H1(x)+H2(y)+H3(z)+K where G1, G2, G3, H1, H2 and H3 are arbitrary functions

and K is a constant, then F is modular.

Lemma 2.13. Let n ≥ 2, let R = "ni=1[ui, vi] ⊂ In be an n-box, let D : R → RI be an

n-increasing function and let E : R → RI be a modular function. If we define F : R → RI

by

F (x) = D(x) + E(x). (2.57)

Then F is an n-increasing function.

An useful result about n-increasing functions is the following
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Lemma 2.14. Let n ≥ 2 and let R = "ni=1[ui, vi] ⊂ In be a non trivial n-box, let C : In → I

and D : In → I be two n-copulas. Let λ = VC(R) and assume that λ > 0. Define E : R →

[0, λ] by

E(x) = λD

(
VC(Rx1)

λ
, . . . ,

VC(Rxn)

λ

)
for every x ∈ R, (2.58)

where for every i ∈ {1, . . . , n}, ui ≤ xi ≤ vi and

Rxi = [u1, v1]× · · · × [ui−1, vi−1]× [ui, xi]× [ui+1, vi+1]× · · · × [un, vn]. (2.59)

Then E is an n-increasing function on R.

Besides, if x = 〈v1, . . . , vj−1, xj, vj+1, . . . , vn〉, for some j ∈ {1, . . . , n} and uj ≤ xj < vj,

then E(x) = VC(Rxj), in particular E(v1, v2, . . . , vn) = λ.

Proof. Let n ≥ 2 and let R = "ni=1[ui, vi] ⊂ In be a non trivial n-box, let C : In → I and

D : In → I be two n-copulas, such that λ = VC(R) > 0. Define the function E as in equation

(2.58), first we will observe that E takes values in [0, λ] ⊂ I. Observe that from equation

(2.59), for every x ∈ R and for every i ∈ {1, . . . , n}, Rxi is an n-box and Rxi ⊂ R, then

0 ≤ VC(Rxi) ≤ VC(R) = λ. So, for every x ∈ R,

0 ≤ VC(Rxi)

λ
≤ 1 for every i ∈ {1, . . . , n}. (2.60)

Since D is an n-copula and 0 < λ ≤ 1, then E in equation (2.58) takes values on [0, λ] ⊂ I.

Assume that x ∈ R is such that there exists i ∈ {1, . . . , n} with xi = ui, observe that in this

case Rui is a trivial n-box, in fact,

Rui = [u1, v1]× · · · × [ui−1, vi−1]× [ui, ui]× [ui+1, vi+1]× · · · × [un, vn],

and according to Definition 1.8, Rui is a face of R. If z = 〈z1, . . . , zi−1, zi, zi+1, . . . zn〉 is a

vertex of Rui , then zi = ui and z appears twice when we evaluate VC(Rui), first appears with

positive sign and then appears with negative sign, or vice versa. Therefore, VC(Rui) = 0.

Since, D is an n-copula, then

D

(
VC(Rx1)

λ
, . . . ,

VC(Rxi−1
)

λ
,
VC(Rui)

λ
,
VC(Rxi+1

)

λ
, . . . ,

VC(Rxn)

λ

)
= 0.

Therefore,

E(x) = 0 if there exists i ∈ {1, . . . , n}, such that xi = ui. (2.61)
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Now, assume that x ∈ R is such that there exists i ∈ {1, . . . , n} with xi = vi, then using

equation (2.59), Rvi = R. Therefore,

if xi = vi for some i ∈ {1, . . . , n} then
VC(Rvi)

λ
= 1. (2.62)

Let i ∈ {1, . . . , n} and let ui ≤ xi1 ≤ xi2 ≤ vi, then [u1, xi1 ] ⊂ [ui, xi2 ], and using equation

(2.59), Rxi1
⊂ Rxi2

⊂ R. So, if for some i ∈ {1, . . . , n}

ui ≤ xi1 ≤ xi2 ≤ vi then 0 ≤
VC(Rxi1

)

λ
≤
VC(Rxi2

)

λ
≤ 1. (2.63)

Now assume that S = "ni=1[wi, zi] ⊂ R, then for every i ∈ {1, . . . , n} we have that ui ≤ wi ≤

zi ≤ vi. So, using equation (2.63) we get that

0 ≤ VC(Rwi)

λ
≤ VC(Rzi)

λ
≤ 1 for every i ∈ {1, . . . , n}. (2.64)

Define T by

T =
n

"
i=1

[
VC(Rwi)

λ
,
VC(Rzi)

λ

]
. (2.65)

Then by inequality (2.64) we know that T in equation (2.65) is n-box included in In. So,

using the definition of E in equation (2.58) and definition (2.65), we have that

VE(S) = λ · VD(T ) ≥ 0, (2.66)

because D is n-increasing. Therefore, from (2.66), E is n-increasing.

Finally, observe that if x ∈ R is such that there exists j ∈ {1, . . . , n} such that uj ≤ xj < vj

and for every i ∈ {1, . . . , n}\{j}, xi = vi, then using equation (2.62), and the fact that D is

an n-copula. we have that

E(x) = λD

(
VC(Rx1)

λ
, . . . ,

VC(Rxj−1
)

λ
,
VC(Rxj)

λ
,
VC(Rxj+1

)

λ
, . . . ,

VC(Rxn)

λ

)

= λD

(
1, . . . , 1,

VC(Rxj)

λ
, 1, . . . , 1

)
= VC(Rxj). (2.67)

Observe that if also xj = vj then Rxj = R and E(v1, v2, . . . , vn) = λ.

The second result we need to prove Theorem 1.35 is:



2.1. INTRODUCTION 37

Lemma 2.15. Let n = 2 and let R = "2
i=1[ui, vi] ⊂ [0, 1]2 be a non trivial n-box, let

C : I2 → I and D : I2 → I be two copulas. Let λ = VC(R) and assume that λ > 0. Define

E : R→ [0, λ] by

E(x1, x2) = λD

(
VC(Rx1)

λ
,
VC(Rx2)

λ

)
for every 〈x1, x2〉 ∈ R, (2.68)

where

Rx1 = [u1, x1]× [u2, v2] and Rx2 = [u1, v1]× [u2, x2]. (2.69)

Then there exist two functions f : [u1, v1] → RI and g : [u2, v2] → RI and a constant K0,

such that if we define Q : I2 → RI by

Q(x1, x2) =

{
E(x1, x2) + f(x1) + g(x2) +K0 if 〈x1, x2〉 ∈ R
C(x1, x2) otherwise.

Then Q is a copula.

Proof. Let n = 2 and let R = "2
i=1[ui, vi] ⊂ I2 be a non trivial n-box, let C : I2 → I and

D : I2 → I be two copulas. Let λ = VC(R) and assume that λ > 0. Define E as in equation

(2.68), by Lemma 2.14 we know that E : R → [0, λ] and that E is 2-increasing. Now let

f : [u1, v1]→ RI and g : [u2, v2]→ RI be two arbitrary functions and let K0 be an arbitrary

constant. If we define F : R→ RI by

F (x1, x2) = E(x1, x2) + f(x1) + g(x2) +K0 for every 〈x1, x2〉 ∈ R. (2.70)

We know from Lemma 2.12 and Lemma 2.13 that F is a 2-increasing function on R.

Observe that ∂R is given by

∂R = {〈x1, x2〉 ∈ R | x1 = u1} ∪ {〈x1, x2〉 ∈ R | x2 = u2}

∪{〈x1, x2〉 ∈ R | x1 = v1} ∪ {〈x1, x2〉 ∈ R | x2 = v2}. (2.71)

In order to apply Theorem 2.10, we need that C and F in equation (2.70) coincide on ∂R

given in equation (2.71).

First, observe that E(u1, x2) = 0 for every x2 ∈ [u2, v2], as observed in equation (2.61), and

for the same reason, E(x1, u2) = 0 for every x1 ∈ [u1, v1]. Therefore, using equation (2.70),

we want to choose, if possible, f , g and K0 such that the following two equations hold.

F (u1, x2) = f(u1)+g(x2)+K0 = C(u1, x2) and F (x1, u2) = f(x1)+g(u2)+K0 = C(x1, u2),

(2.72)
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for every x1 ∈ [u1, v1] and for every x2 ∈ [u2, v2]. The natural proposal is:

f(x1) = C(x1, u2) and g(x2) = C(u1, x2) for every x1 ∈ [u1, v1] and for every x2 ∈ [u2, v2].

(2.73)

If we substitute the f and g proposed in (2.73) in equation (2.70), and we define K0 =

−C(u1, u2) we obtain

F (u1, x2) = C(u1, u2) + C(u1, x2) +K0 = C(u1, x2) (2.74)

and

F (x1, u2) = C(x1, u2) + C(u1, u2) +K0 = C(x1, u2), (2.75)

and (2.72) holds, that is, the proposal in equation (2.73) allows that C = F on {〈x1, x2〉 ∈

R | x1 = u1} ∪ {〈x1, x2〉 ∈ R | x2 = u2} of equation (2.71).

Finally, we have to see that proposal in equation (2.73) allows that C = F on {〈x1, x2〉 ∈

R | x1 = v1} ∪ {〈x1, x2〉 ∈ R | x2 = v2}.

Let x = 〈v1, x2〉 where u2 ≤ x2 ≤ v2, then we have that

F (v1, x2) = E(v1, x2) + f(v1) + g(x2) +K0

= VC(Rx2) + C(v1, u2) + C(u1, x2)− C(u1, u2)

= C(v1, x2)− C(v1, u2)− C(u1, x2) + C(u1, u2)

+C(v1, u2) + C(u1, x2)− C(u1, u2)

= C(v1, x2). (2.76)

Finally, if x = 〈x1, v2〉 where u1 ≤ x1 ≤ v1, and using the same equations as above,

F (x1, v2) = E(x1, v2) + f(x1) + g(v2) +K0

= VC(Rx1) + C(x1, u2) + C(u1, v2)− C(u1, u2)

= C(x1, v2)− C(x1, u2)− C(u1, v2) + C(u1, u2)

+C(x1, u2) + C(u1, v2)− C(u1, u2)

= C(x1, v2). (2.77)

Therefore from equations (2.76) and (2.77), the proposal in equation (2.73) allows that F = C

on ∂R. So, Theorem 2.10 can be applied, and Q given in equation (2.70) is a copula.
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Remark 2.16. Observe that if we use the notation in Durante et al (2009), and using

equation (2.73) and the definition of K0 in the previous Lemma,

f(x1) = C(x1, u2) = hCu2(x1), g(x2) = C(u1, x2) = vCu1(x2) andK0 = −C(u1, u2) = −hCu2(u1).

Now we can prove Theorem 1.35.

Proof. (Theorem 1.35) Let C be a copula, let {Cj}j∈J be a family of copulas and let

{Rj = [uj1, v
j
1] × [uj2, v

j
2]}j∈J be a family of 2-boxes, in this case rectangles in [0, 1]2, such

that Rj ∩ Rk ⊂ ∂Rj ∩ ∂Rk for every j, k ∈ J with j 6= k. Define for every j ∈ J ,

λj = VC(Rj), and for every x ∈ [uj1, v
j
1] and for every y ∈ [uj2, v

j
2], Rj,x = [uj1, x]× [uj2, v

j
2] and

Rj,y = [uj1, v
j
1]× [uj2, y]. Let C̃ : [0, 1]2 → [0, 1] defined by

C̃(x, y) =

{
λjCj

(
VC(Rj,x)

λi
,
VC(Rj,y)

λj

)
+ ϕCj (x, y) if (x, y) ∈ Rj and λj > 0,

C(x, y), otherwise,
(2.78)

where ϕCj (x, y) = hC
uj2

(x) + vC
uj1

(y)− hC
uj2

(uj1).

First we observe that we can assume that every rectangle Rj is non trivial, because otherwise

VC(Rj) = 0, and from equation (2.78) then C̃ = C on Rj. We can also assume that for every

j ∈ J , VC(Rj) = λj > 0, because if VC(Rj) = 0 then from equation (2.78) we have again

that C̃ = C on Rj. Therefore, we redefine J to be the set of indices such that Rj is non

trivial and VC(Rj) > 0. In that case, it is clear that J is at most a countable set, because

we are assuming that
◦
Rj ∩

◦
Rk= ∅, for every j, k ∈ J with j 6= k, then

∑
j∈J VC(Rj) ≤ 1,

which forces J to be at most a countable set. So, J can be written as J = {j1, j2, . . .}.
Now, we will proceed by induction. Let k = 1 and define R := Rj1 and D := Cj1 in Lemma

2.14, then we know that λj1 = VC(Rj1) > 0, and that Qj1 := Q defined in equation (2.70) is

a copula. Here we observe, that Qj1 may be different from C only in
◦
Rj1 .

Now, let k = 2 and define C := Qj1 , R := Rj2 and D := Cj2 in Lemma 2.14, then we know

that λj2 = VC(Rj2) > 0, and that Qj2 := Q defined in equation (2.70) is a copula. Here we

observe, that Qj2 may be different from C only in
◦
Rj1 ∪

◦
Rj2 , where

◦
Rj1 ∩

◦
Rj2= ∅.

Inductively, let k > 2 and define C := Qjk−1
, R := Rjk and D := Cjk in Lemma 2.14, then

we know that λjk = VC(Rjk) > 0, and that Qjk := Q defined in equation (2.70) is a copula.

Here we observe, that Qjk may be different from C only in ∪kl=1

◦
Rjl , where ∩kl=1

◦
Rjl= ∅.
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Of course, this procedure leads to equation (2.78), and C̃ is a copula.

2.2 Multivariate Ordinal Sums of Copulas

In this section we will use our results to prove that the construction of ordinal sums can be

extended to n ≥ 3. This result was first proved in Mesiar and Sempi [55]. We start with a

general Proposition.

Proposition 2.17. Let C1 be an n-copula for some n ≥ 2, and let 0 ≤ a1 < b1 ≤ 1, define

R = "ni=1[a1, b1] = [a1, b1]n an n-box in In. Define C : In → I by

C(x) =

{
a1 + (b1 − a1)C1

(
min{x1,b1}−a1

b1−a1 , . . . , min{xn,b1}−a1
b1−a1

)
if min{x1, . . . , xn} ∈ [a1, b1],

min{x1, . . . , xn} elsewhere.

(2.79)

Then C is an n-copula.

Proof. We will proceed by induction. Let n = 2, and let 0 ≤ a1 < b1 ≤ 1. Define C as in

equation (2.79). Let A1 = {〈x1, x2〉 ∈ I2 | min{x1, x2} ∈ [a1, b1]}, then it is clear that

Ac1 = {〈x1, x2〉 ∈ I2 |x1 < a1 or x2 < a1} ∪ {〈x1, x2〉 ∈ I2 |x1 > b1 and x2 > b1}

= A2 ∪ A3.

Observe that A1 is the union of the 3 = 2n− 1 rectangles R1 = [a1, b1]2, R2 = [a1, b1]× [b1, 1]

and R3 = [b1, 1]× [a1, b1], see Figure 1.

Figure 1.- Regions A1, A2 and A3
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Define D : A1 → RI by

D(x1, x2) = a1 + (b1 − a1)C1

(
min{x1, b1} − a1

b1 − a1

,
min{x2, b1} − a1

b1 − a1

)
. (2.80)
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If 〈x1, x2〉 ∈ R2 then D(x1, x2) = a1+(b1−a1)C1((x1−a1)/(b1−a1), 1) = a1+(x1−a1) = x1 =

min{x1, x2}. Similarly, if 〈x1, x2〉 ∈ R3 then D(x1, x2) = x2 = min{x1, x2}. Using Theorem

2.10 we have to see that D is 2-increasing on R1 and that D and M(x1, x2) = min{x1, x2}
coincide on ∂R1. We know that C1 is a 2-copula, so, C1 is 2-increasing. Define a function

h : R1 → I2 by:

h(x1, x2) =

(
x1 − a1

b1 − a1

,
x2 − a1

b1 − a1

)
. (2.81)

Then it is clear that h is a bijection which takes R1 onto I2, and also h is increasing in each

coordinate. Let S = [x1,1, x1,2] × [x2,1, x2,2] where a1 ≤ xi,1 ≤ xi,2 ≤ b1 for i = 1, 2. Then S

is a rectangle included in R1, and the function h in equation (2.81), takes S onto

h[S] =

[
x1,1 − a1

b1 − a1

,
x1,2 − a1

b1 − a1

]
×
[
x2,1 − a1

b1 − a1

,
x2,2 − a1

b1 − a1

]
,

and using Lemma 2.14 with E(x1, x2) = a1, we have from equation (2.80) that

VD(S) = (b1 − a1)VC1(h[S]) ≥ 0. (2.82)

Therefore, from equation (2.82), D is 2-increasing on R1. Now, we prove that D coincides

with M on ∂R1. Let x = (x1, a1) or x = (a1, x2), where a1 ≤ x1, x2 ≤ b1. Then, since C1 is

a 2-copula

D(x1, a1) = a1 + (b1 − a1)C1

(
x1 − a1

b1 − a1

,
a1 − a1

b1 − a1

)
= a1 = M(x1, a1) (2.83)

and

D(a1, x2) = a1 + (b1 − a1)C1

(
a1 − a1

b1 − a1

,
x2 − a1

b1 − a1

)
= a1 = M(a1, x2). (2.84)

Finally, if x = (x1, b1) or x = (b1, x2), where a1 ≤ x1, x2 ≤ b1. Then, since C1 is a 2-copula

D(x1, b1) = a1 + (b1 − a1)C1

(
x1 − a1

b1 − a1

,
b1 − a1

b1 − a1

)
= a1 + (b1 − a1)

x1 − a1

b1 − a1

= x1 = M(x1, b1)

(2.85)

and

D(b1, x2) = a1 + (b1 − a1)C1

(
b1 − a1

b1 − a1

,
x2 − a1

b1 − a1

)
= a1 + (b1 − a1)

x2 − a1

b1 − a1

= x2 = M(b1, x2).

(2.86)
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From equations (2.83), (2.84), (2.85) and (2.86) D and M coincide on ∂R1 and C in equation

(2.79) is a 2-copula according to Theorem 2.10.

Let n > 2 and let C1 be an n-copula, let R1 = [a1, b1]n be an n-box in In and let C

be defined as in equation (2.79). Define D : A1 → RI , where A1 = {〈x1, . . . , xn〉 ∈

In | min{x1, . . . , xn} ∈ [a1, b1]}, then it is clear that

Ac1 = {〈x1, . . . , xn〉 ∈ In | there exists i ∈ {1, . . . , n} such thatxi < a1}

∪ {〈x1, . . . , xn〉 ∈ In |xi > b1 for every i ∈ {1, . . . , n}}

= A2 ∪ A3. (2.87)

We will observe that in this case A1 is the union of 2n − 1 n-boxes with disjoint interiors,

which include R1. Let I1,i = [a1, b1] and I2,i = [b1, 1] for i ∈ {1, . . . , n} then

[a1, 1]n = ([a1, b1] ∪ [b1, 1])n = ∪〈j1,...,jn〉∈{1,2}n
n

"
i=1

Iji,i.

Therefore,

A1 = [a1, 1]n\[b1, 1]n

= ∪〈j1,...,jn〉∈{1,2}n
n

"
i=1

Iji,i\
n

"
i=1

I2,i,

which is a union of 2n− 1 n- boxes with disjoint interiors. Define for every 〈x1, . . . , xn〉 ∈ A1

D(x1, . . . , xn) = a1 + (b1 − a1)C1

(
min{x1, b1} − a1

b1 − a1

, . . . ,
min{xn, b1} − a1

b1 − a1

)
. (2.88)

Using the same ideas as above and the fact that C1 is n-increasing, it is not difficult to see

that D is n-increasing on A1. So, using Theorem 2.10 and the note below it, we only have

to see that M(x1, . . . , xn) = min{x1, . . . , xn} and D coincide on ∂A1 ∩ ∂(A2 ∪ A3).

Using equation (2.87), if 〈x1, . . . , xn〉 ∈ ∂A1 ∩ ∂(A2 ∪ A3), then there exists i ∈ {1, . . . , n}

such that xi = a1 and for every j ∈ {1, . . . , n}\{i}, xj ∈ [a1, 1], or there exists i ∈ {1, . . . , n}

such that xi = b1 and for every j ∈ {1, . . . , n}\{i}, xj ∈ [b1, 1]. In the first case using

equation (2.88) and the boundary conditions of C1, we have that

D(x1, . . . , xn) = a1 + (b1 − a1) · 0 = a1 = min{x1, . . . , xn},
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and in the second case

D(x1, . . . , xn) = a1 + (b1 − a1)C(1, . . . , 1,
b1 − a1

b1 − a1

, 1 . . . , 1) = b1 = min{x1, . . . , xn}.

Therefore, M and D coincide on ∂A1 ∩ ∂(A2 ∪ A3) and C defined in equation (2.79) is an

n-copula.

Remark 2.18. In the previous Proposition we define R = [a1, b1]n. Let us denote by

λ = VM(R), where M(x1, . . . , xn) = min{x1, . . . , xn}, we will see that λ = b1− a1. We know

that using formula (1.8), we have that

VM(R) =
∑

c∈Vert(R)

sgn(c)M(c). (2.89)

We observe that if c = 〈c1, . . . , cn〉 ∈ Vert(R), then for every i ∈ {1, . . . , n} ci = a1 or ci = b1.

So, if there exists i ∈ {1, . . . , n} such that ci = a1 then M(c) = a1, and the only vertex of R

such that M(c) = b1 is c = 〈b1, b1, . . . , b1〉 =: b1. Then using (2.88), we have that

λ = VM(R) = b1 + a1

∑
c∈Vert(R)\{b1}

sgn(c). (2.90)

Observe that
∑

c∈Vert(R)
sgn(c) = 0, this follows using the binomial expansion of 0 = ((−1)+

1)n. But, in this case

0 = ((−1) + 1)n

=
n∑
k=0

(
n
k

)
(−1)k(1)n−k

= 1 +
n∑
k=1

(
n
k

)
(−1)k(1)n−k.

Therefore,
∑n

k=1

(
n
k

)
(−1)k(1)n−k = −1, and using (2.90) we get that λ = VM(R) =

b1 − a1.

Remark 2.19. It is very important to observe that in the case n = 2, the construction of

ordinal sums is made by modifying the copula M only on squares that have opposite vertices
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on the main diagonal, namely, if R = [a, b]2 ⊂ I2 and D is a 2-copula, then the function

C : I2 → I given by

C(x1, x2) =

{
a+ (b− a)D

(
x1−a
b−a ,

x2−b
b−a

)
if 〈x1, x2〉 ∈ [a, b]2

M2(x1, x2) = min{x1, x2} elsewhere

is a copula, see for example Nelsen [58]. If we try to extend directly this idea to higher

dimensions the result is false, that is, if we take any n ≥ 3, D an n-copula and R = [a, b]n ⊂ In

an n-box with opposite vertices on the main diagonal and we define a function C : In → I

by

C(x1, . . . , xn) =

{
a+ (b− a)D

(
x1−a
b−a , · · · ,

xn−b
b−a

)
if 〈x1, . . . , xn〉 ∈ [a, b]n

Mn(x1, . . . , xn) = min{x1, . . . , xn} elsewhere.

Then C is not necessarily an n-copula. To see this, we give an easy example with n = 3,

D = Π3 and R = [0, 1/3]3. If we define C as in the above equation, we have that

C(x1, x2, x3) =

{
1
3
Π3 (3x1, 3x2, 3x3) if 〈x1, x2, x3〉 ∈ [0, 1/3]3

M3(x1, x2, x3) = min{x1, x2, x3} elsewhere.
(2.91)

In this case, if we take 〈x1, x2, x3〉 = 〈1/3, 1/4, 1/4〉, then 〈x1, x2, x3〉 is a point on an upper

face of the 3-box R, but

1

3
Π3

(
3 · 1

3
, 3 · 1

4
, 3 · 1

4

)
=

3

16
6= 1

4
= min

{
1

3
,
1

4
,
1

4

}
.

Therefore, by Theorem 2.10, C in equation (2.91) is not a 3-copula.

By Proposition 2.17, we know that if we define

C1(x1, x2, x3) =

{
1
3
Π3
(

min{x1,1/3}
1/3

, min{x2,1/3}
1/3

, min{x3,1/3}
1/3

)
if min{x1, x2, x3} ∈ [0, 1/3],

min{x1, x2, x3} elsewhere.

(2.92)

Then C1 is a 3-copula. Observe that the big difference between equations (2.91) and (2.92)

is that in the first line of (2.91) the region is R = [0, 1/3]3, and in the first line of equation

(2.92) the region is I3 \(1/3, 1]3, that is, the complement of the 3-box (1/3, 1]3.

Of course we can extend Proposition 2.17 to obtain the multivariate version of ordinal sums,

as in Mesiar and Sempi [55]. See also the application given in the paper of Durante and

Fernández-Sánchez [16].
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Theorem A Let {Cj}j∈J be a family of n-copulas, let {[aj, bj]}j∈J where J = {1, . . . , n}

or J = {1, 2, . . .}. Assume that for every j ∈ J , 0 ≤ aj < bj ≤ 1, and even more for every

j, j + 1 ∈ J , bj ≤ aj+1. Define C : In → I by

C(x) =


aj + (bj − aj)Cj

(
min{x1,bj}−aj

bj−aj , . . . ,
min{xn,bj}−aj

bj−aj

)
if min{x1, . . . , xn} ∈ [aj, bj] for j ∈ J

Mn(x) = min{x1, . . . , xn} elsewhere.

(2.93)

Then C is an n-copula.

Proof. The proof of Theorem A is an easy induction that uses the same arguments that we

used on the proof of Theorem 1.35 given in Chapter 1.

2.3 A Multivariate Patchwork Construction

In this section we provide a multivariate patchwork construction of n-copulas in n-boxes by

using the regions determined in multivariate ordinal sums. We will start by taking a 3-copula

and a 3-box R with 〈1, 1, 1〉 as one of its vertices.

Theorem 2.20. Let C and C1 be two 3-copulas and let R = [u1, 1] × [u2, 1] × [u3, 1] where

0 < ui < 1 for i ∈ {1, 2, 3} and define 0 = 〈0, 0, 0〉. Assume that λ = VC(R) > 0,

and for every x1 ∈ [u1, 1], for every x2 ∈ [u2, 1] and for every x3 ∈ [u3, 1], define Rx1 =

[u1, x1]× [u2, 1]× [u3, 1], Rx2 = [u1, 1]× [u2, x2]× [u3, 1] and Rx3 = [u1, 1]× [u2, 1]× [u3, x3].

Let C̃ : I3 → I be defined in x = 〈x1, x2, x3〉 by

C̃(x) =

{
λC1

(
VC(Rx1 )

λ
,
VC(Rx2 )

λ
,
VC(Rx3 )

λ

)
+ VC([0,x] \ [u,x]) if x ∈ R

C(x), otherwise,
(2.94)

where [a,b] = [a1, b1] × [a2, b2] × [a3, b3] for a = 〈a1, a2, a3〉,b = 〈b1, b2, b3〉, and u =

〈u1, u2, u3〉. Then C̃ is a 3-copula.

Remark 2.21. The 3-box R can be written as R = [u,1] where 1 = 〈1, 1, 1〉.

Proof. Let D(x) = E(x) + F (x) with E(x) = λC1

(
VC(Rx1 )

λ
,
VC(Rx2 )

λ
,
VC(Rx3 )

λ

)
and F (x) =

VC([0,x] \ [u,x]). By Lemma 2.14 E is a 3-increasing function.
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To see that D is also 3-increasing, using Lemma 2.13, we just need to prove that F is a

modular function. Let x ∈ R then,

F (x) = VC([0,x])− VC([u,x])

= C(x)−
∑

c∈Vert([u,x])

sgn(c)C(c)

= C(x1, x2, x3)− {C(x1, x2, x3)

−C(u1, x2, x3)− C(x1, u2, x3)− C(x1, x2, u3)

+C(x1, u2, u3) + C(u1, x2, u3)− C(u1, u2, x3)

−C(u1, u2, u3)}

= C(u1, x2, x3) + C(x1, u2, x3) + C(x1, x2, u3)

−C(x1, u2, u3)− C(u1, x2, u3)− C(u1, u2, x3)

+C(u1, u2, u3), (2.95)

but equation (2.95) is a modular function by the observation just below Lemma 2.12.

Now we will prove that C̃ is 3-increasing. Let x be a point in one of the lower faces of R.

Without loss of generality let x = 〈x1, x2, u3〉 ∈ ∂R with u1 ≤ x1 ≤ 1, u2 ≤ x2 ≤ 1. Then

VC(Ru3) = 0 and D(x) = λC1

(
VC(Rx1 )

λ
,
VC(Rx2 )

λ
, 0
λ

)
+VC([0, x1]× [0, x2]× [0, u3])− 0 = C(x).

So, D = C in the lower faces of R.

Using the proof of Theorem 2.10, we can see that VC̃(S) = VC(S∩{[0, 1]3\R})+VD(S∩R) ≥ 0

for any 3-box S ⊂ I3 and so C̃ is 3-increasing.

Finally, we prove that C̃ satisfies the boundary conditions of a copula.

First C̃(x1, x2, x3) = C(x1, x2, x3) = 0 if any of the xi = 0 for i ∈ {1, 2, 3}, and C̃(1, 1, 1) =

λC(1, 1, 1) + VC([0, 1]3) − VC([u,1]) = λ + 1 − VC(R) = 1 by the definition of λ. Then,

since C̃ = C in I3 \R we just need to see that C̃(x) = D(x) = xi, for x = 〈x1, 1, 1〉,

〈1, x2, 1〉, 〈1, 1, x3〉 with xi ∈ [ui, 1], i = 1, 2, 3. By the second part of Lemma 2.14 we have

E(x1, 1, 1) = VC(Rx1), E(1, x2, 1) = VC(Rx2), E(1, 1, x3) = VC(Rx3) for xi ∈ [ui, 1], i = 1, 2, 3.
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Without losing generality let us assume x = 〈x1, 1, 1〉, where u1 ≤ x1 ≤ 1, then

D(x) = E(x1, 1, 1) + F (x1, 1, 1)

= VC(Rx1) + VC([0, x1]× [0, 1]× [0, 1])− VC([u1, x1]× [u2, 1]× [u3, 1])

= VC(Rx1) + C(x1, 1, 1)− VC(Rx1)

= x1. (2.96)

Similar results as (2.96) hold if x = 〈1, x2, 1〉 or if x = 〈1, 1, x3〉. On the other hand if

x = 〈x1, 1, 1〉 where 0 ≤ x1 ≤ u1, then C̃(x) = C(x) = x1, since C is a 3-copula. Similar

results are obtained for x = 〈1, x2, 1〉 and x = 〈1, 1, x3〉 when 0 ≤ x2 ≤ u2 and 0 ≤ x3 ≤ u3.

Therefore, C̃ in equation (2.94) is a 3-copula.

Remark 2.22. If we let ui = 0 for some i ∈ {1, 2, 3} in the previous Theorem the result still

holds. For example if u1 = 0, then R = [0, 1]× [u2, 1]× [u3, 1], and if we take x = 〈0, x2, x3〉

where u2 ≤ x2 ≤ 1 and u3 ≤ x3 ≤ 1, then by definition (2.94) we have that

C̃(x) = λC1

(
VC(Rx1=0)

λ
,
VC(Rx2)

λ
,
VC(Rx3)

λ

)
+ VC([0,x])− VC([u,x])

= 0 + VC([0, 0]× [0, x2]× [0, x3])− VC([0, 0]× [u2, x2]× [u3, x3])

= 0.

Clearly, Theorem 2.20 can be generalized easily to higher dimensions.

Theorem 2.23. For every n ≥ 3 let C and C1 be two n-copulas and let R = [u1, 1]× [u2, 1]×

· · · × [un, 1] where 0 ≤ ui < 1 for i ∈ {1, . . . , n}. Assume that λ = VC(R) > 0, and for every

i ∈ {1, . . . , n} and for every xi ∈ [ui, 1] define Rxi = [u1, 1] × · · · × [ui−1, 1] × [ui, xi] ×

[ui+1, 1]× · · · × [un, 1]. Let (C
⊎

uC1) : In → I be defined in x = 〈x1, . . . , xn〉 by

(
C
⊎
u

C1

)
(x) =

{
λC1

(
VC(Rx1 )

λ
, . . . , VC(Rxn )

λ

)
+ VC([0,x] \ [u,x]) if x ∈ R

C(x), otherwise,
(2.97)

where [a,b] = [a1, b1] × · · · × [an, bn] for a = 〈a1, . . . , an〉,b = 〈b1, . . . , bn〉, and u =

〈u1, . . . , un〉. Then (C
⊎

uC1) is an n-copula.

Proof. It follows the same steps as the proof of Theorem 2.20
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Remark 2.24. For every n ≥ 3 and for every n-copula C we can obtain from equation (2.97)

every n-copula C1. Let C and C1 arbitrary n-copulas and let R = In, then VC(R) = 1 = λ,

and for every i ∈ {1, . . . , n} and for every xi ∈ [0, 1], Rxi = I× · · ·× I×[0, xi]× I · · · × I. So,

VC(Rxi) = xi for every i ∈ {1, . . . , n} and u = 0. Therefore, from equation (2.97) we have

that (C
⊎

uC1)(x) = C1(x) for every x ∈ In.

Using Theorem 2.23 we can construct many different new n-copulas. Observe that in the

construction of the copula (C
⊎

uC1) on R = [u,1], given in equation (2.97), the copula

C remains fixed on In \R, and on R we have a rescaled version of the copula C1. Using

Theorem 2.23 we have the following

Definition 2.25. For n ≥ 3, let Cn be the family of n-copulas. For every fixed u ∈ [0, 1)n,

we define the function
⊎

u : Cn × Cn → Cn via

⊎
u

(C,C1) = (C
⊎
u

C1). (2.98)

Lemma 2.26. Let n = 3, u ∈ (0, 1)3 and Π3 the product 3-copula and let C1 and C2 be

3-copulas. Then

(
C1

⊎
u

C2) = Π3 (2.99)

if and only if C1 = C2 = Π3.

Proof. Let n = 3, u ∈ (0, 1)3 and R = [u,1]. First, assume that C1 = C2 = Π3, then

λ = VΠ3(R) = (1−u1)(1−u2)(1−u3). Now, we will see that VΠ3(Rxi)/λ = (xi−ui)/(1−ui)

for every i ∈ {1, 2, 3}. Without losing generality we will assume that i = 1. Since Rx1 =

[u1, x1]× [u2, 1]× [u3, 1] then

VΠ3(Rx1)

λ
=

(x1 − u1)(1− u2)(1− u3)

(1− u1)(1− u2)(1− u3)
=

(x1 − u1)

(1− u1)
.
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So, using equations (2.94), (2.95) and Definition 2.25, we have that for x ∈ R

(C1

⊎
u

C2)(x) = λΠ3

(
VΠ3(Rx1)

λ
,
VΠ3(Rx2)

λ
,
VΠ3(Rx3)

λ

)
+ VΠ3([0,x] \ [u,x])

= λΠ3

(
(x1 − u1)

(1− u1)
,
(x2 − u2)

(1− u2)
,
(x3 − u3)

(1− u3)

)
+ VΠ3([0,x] \ [u,x])

= (x1 − u1)(x2 − u2)(x3 − u3) + x1x2x3 − (x1 − u1)(x2 − u2)(x3 − u3)

= x1x2x3

= Π3(x).

Conversely, assume that equation (2.99) holds for some C1 and C2 3-copulas, then from

equation (2.94) it is clear that C1 must be Π3 in I3 \R. Then λ = (1 − u1)(1 − u2)(1 − u3)

and VC1([0,x] \ [u,x]) = x1x2x3 − (x1 − u1)(x2 − u2)(x3 − u3). But, from equations (2.94)

and (2.99) this implies that C2 = Π3.

Of course, Lemma 2.26 also holds for n > 3.

Example 2.27. Let n = 3, let C1(x) = exp
(
−
[
(− ln(x1))θ + (− ln(x2))θ + (− ln(x3))θ

]1/θ)
for some θ ≥ 1, which is a member of the Gumbel-Hougaard Archimedean family, see

Example 4.23 in Nelsen [58], and let C = Π3. Let R = [1/2, 1] × [1/2, 1] × [3/4, 1], then

λ = VΠ3(R) = 1/16, and VΠ3(Rxi) = (1/8)(xi − 1/2) for i = 1, 2 with x1, x2 ∈ [1/2, 1],

and VΠ3(Rx3) = (1/4)(x3 − 3/4) with x3 ∈ [3/4, 1]. Besides, VΠ3([0,x]) = x1x2x3 and since

u = 〈1/2, 1/2, 3/4〉 then VΠ3([u,x]) = (x1 − 1/2)(x2 − 1/2)(x3 − 3/4). Therefore, using

Theorem 2.20 if we define C̃ = (C
⊎

uC1) then C̃(x) =

{
1
16
C1(2x1 − 1, 2x2 − 1, 4x3 − 3) + x1x2x3 − (x1 − 1/2)(x2 − 1/2)(x3 − 3/4) if x ∈ R

x1x2x3 otherwise.

Then C̃ is a 3-copula, which behaves like a rescaled version of the Gumbel-Hougaard family

on the upper 3-box R and on the rest is the product copula. It is also clear that C̃ is not an

ordinal sum.

Example 2.28. We will see that even for n = 3, when we take a 3-box not in the upper

corner, for instance, a 3-box of the form R = [0, v1]× [0, v2]× [0, v3] ⊂ I3, it might be difficult

or impossible to patch a copula C with a rescaled version of a copula D on R. Let us take
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two 3-copulas C and D such that λ = VC(R) > 0, define Rxi for xi ∈ [0, vi] as in equation

(2.94) of Theorem 2.20, for every i ∈ {1, 2, 3}, and take

E(x) = λD

(
VC(Rx1)

λ
,
VC(Rx2)

λ
,
VC(Rx3)

λ

)
,

which is 3-increasing by Lemma 2.14, then we can find functions F1,2(x1, x2), F1,3(x1, x3),

F2,3(x2, x3) from I2 into RI , and functions H1(x1), H2(x2) and H2(x2) from I into RI , such

that if we define

ϕ(x) = F1,2(x1, x2) + F1,3(x1, x3) + F2,3(x2, x3) +H1(x1) +H2(x2) +H3(x3)

for every x ∈ R, then the function Q : I3 → I defined by

Q(x) =

{
E(x) + ϕ(x) if x ∈ R
C(x) if x ∈ I3 \R

is continuous. However Q is not in general a 3-copula.

We know that the function ϕ defined above is a modular function by Lemma 2.12, and by

Lemma 2.13 the first row in the definition of Q is also 3-increasing. Besides, since C and

D are 3-copulas we also know that E(x) is continuous. The idea now is try to find an

appropriate continuous function ϕ, such that it makes Q continuous.

First we observe that ∂R is given by the union of {x ∈ R | there exists i ∈ {1, 2, 3} such that xi =

0} with {x ∈ R | there exists i ∈ {1, 2, 3} such that xi = vi}. Since C is continuous we only

have to find ϕ such it makes coincide the first row with the second row of Q on the upper

faces of R, that is, on

{x ∈ R | there exists i ∈ {1, 2, 3} such that xi = vi}.

In this case we want to find adequate functions in the definition of ϕ such that the following

three conditions hold

Q(v1, x2, x3) = C(v1, x2, x3) for every 〈x2, x3〉 ∈ [0, v2]× [0, v3],

Q(x1, v2, x3) = C(x1, v2, x3) for every 〈x1, x3〉 ∈ [0, v1]× [0, v3],

and

Q(x1, x2, v3) = C(x1, x2, v3) for every 〈x1, x2〉 ∈ [0, v1]× [0, v2].
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We define for 〈x1, x2〉 ∈ [0, v1]× [0, v2]

F1,2(x1, x2) = −λD
(
VC(Rx1)

λ
,
VC(Rx2)

λ
, 1

)
+ C(x1, x2, v3),

for 〈x1, x3〉 ∈ [0, v1]× [0, v3]

F1,3(x1, x3) = −λD
(
VC(Rx1)

λ
, 1,

VC(Rx3)

λ

)
+ C(x1, v2, x3),

and for 〈x2, x3〉 ∈ [0, v2]× [0, v3]

F2,3(x2, x3) = −λD
(

1,
VC(Rx2)

λ
,
VC(Rx3)

λ

)
+ C(v1, x2, x3).

We also define for x1 ∈ [0, v1], x2 ∈ [0, v2] and x3 ∈ [0, v3]

H1(x1) = VC(Rx1)− C(x1, v2, v3), H2(x2) = VC(Rx2)− C(v1, x2, v3)

and

H3(x3) = VC(Rx3)− C(v1, v2, x3).

Then if we take 〈v1, x2, x3〉 ∈ R, we observe that Rv1 = R, λ = VC(R) = C(v1, v2, v3), and

using the boundary properties of D, we have that

Q(v1, x2, x3) = λD

(
1,
VC(Rx2)

λ
,
VC(Rx3)

λ

)

−λD
(

1,
VC(Rx2)

λ
, 1

)
+ C(v1, x2, v3)

−λD
(

1, 1,
VC(Rx3)

λ

)
+ C(v1, v2, x3)

−λD
(

1,
VC(Rx2)

λ
,
VC(Rx3)

λ

)
+ C(v1, x2, x3)

+VC(Rv1)− C(v1, v2, v3) + VC(Rx2)− C(v1, x2, v3) + VC(Rx3)− C(v1, v2, x3)

= −VC(Rx2)− VC(Rx3) + C(v1, x2, x3) + λ− λ+ VC(Rx2) + VC(Rx3)

= C(v1, x2, x3).
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Therefore, the first condition above holds. Analogously it is easy to see that the other two

conditions also hold with the same definition of ϕ which is clearly continuous. Hence, Q is

continuous.

Now, if x ∈ R is such that xi = 0 for some i ∈ {1, 2, 3}, then it is clear that VC(Rxi) = 0

and since D and C are 3-copulas then E(x) = 0 = C(x). However, if we take x =

〈0, x2, x3〉 with x2 ∈ (0, v2] and x3 ∈ (0, v3], then E(x) = 0, F1,2(0, x2) = 0, F1,3(0, x3) = 0,

F2,3(x2, x3) = −λD(1, VC(Rx2)/λ, VC(Rx3)/λ)+C(v1, x2, x3), H1(0) = 0, H2(x2) = VC(Rx2)−

C(v1, x2, v3) = C(v1, x2, v3) − C(v1, x2, v3) = 0 and H3(x3) = VC(Rx3) − C(v1, v2, x3) =

C(v1, v2, x3) − C(v1, v2, x3) = 0. So, ϕ(x) = −λD(1, C(v1, x2, v3)/λ, C(v1, v2, x3)/λ) +

C(v1, x2, x3), which in general is not zero. Therefore, Q is not a 3-copula although it is

continuous.

This last example shows that it is not easy to find a modular function ϕ, such that the

function Q satisfies being a 3-copula. The problem is to find a modular function ϕ such

that the first and second rows in the definition of Q coincide on the lower and upper faces

of R. It seems that we can make them coincide if we take only the lower faces or only the

upper faces, but not both at the same time, in order to get a 3-copula. Maybe if we define

a different function ϕ we could obtain a 3-copula, but this still remains an open problem.

2.3.1 Patchwork Construction method for dimensions higher than

or equal to three

We first observe that the construction of new copulas in Theorem (2.23) is restricted to

n-boxes of the form R = [u,1] ⊂ In where u = 〈u1, . . . , un〉 and 1 = 〈1, . . . , 1〉. The question

here is, how to do a construction of a new copula when we want to modify a base n-copula

C on an arbitrary n-box R = [u,v] ⊂ In by a modifying n-copula D?

In order to answer this question we will propose a new methodology which is based on

Theorem 2.23.

Let us assume that R = [u,v] ⊂ In is a non trivial n-box such that for every i ∈ {1, . . . , n},

0 < ui < vi < 1. Let Vert(R) be the set of vertices of R. We will first establish an order

in this set of vertices. Let c ∈ Vert(R), define a bijection f : Vert(R) → {1, 2}n given

by f(c) = 〈l1, l2, . . . , ln〉 ∈ {1, 2}n, where li = 1 if ci = ui and li = 2 if ci = vi. Define

Qf(c) = {k ∈ {1, . . . , n} | f(c)k = 2}, where f(c)k is the kth coordinate of f(c). Now we

define the composition ϕ : Vert(R)→ {1, 2, . . . , 2n} given by
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ϕ(f(c)) = 1 +
∑

k∈Qf(c)

2n−k for every c ∈ Vert(R).

Of course, Qf(c) = ∅ if and only if c = 〈u1, u2, . . . , un〉 and in this case ϕ(f(u1, u2, . . . , un)) =

1. Also observe that if c = 〈v1, v2, . . . , vn〉, then ϕ(f(v1, v2, . . . , vn)) = 1 +
∑n

k=1 2n−k =

1 +
∑n−1

j=0 2j = 2n. It is easy to see that ϕ is a bijection which establishes an order among

the vertices of R, in fact, this order gives the number one to the “lowest” vertex and the

number 2n to the “highest” vertex.

Let C be an n-copula which we will call base copula, let D be an n-copula which we will call

modifying copula, and let R = [u,v] ⊂ In be a non trivial n-box. Then inductively define

• Let C1 = (C
⊎

uD) where 1 = ϕ(u).

• Given Ck for 1 ≤ k < 2n, let c ∈ Vert(R) such that ϕ(c) = k + 1 and define Ck+1 =

(Ck
⊎

cC).

• The n-copula C2n is our target copula.

Observe that if we follow this construction, then in the first step in C1 we introduce the

rescaled version of the n-copula D on [u,1], and in the remaining steps we keep unaltered

C1 at least in the semi open n-box [u,v) = "ni=1[ui, vi).

Example 2.29. Let us assume that n = 3 and that we want to construct a 3-copula C

which has a desired behavior in each of the eight vertices of I3. We will use the 3-box given

by R = [0, 1/2]3 as an auxiliary tool. We first establish a bijection h : Vert(I3) → Vert(R),

among the vertices of I3 and the vertices of R. If c ∈ Vert(I3) then the coordinates of h(c)

are given by

h(c)i =

{
0 if ci = 0
1/2 if ci = 1,

for i = 1, 2, 3. Using the order established at the beginning of this subsection we have Table

1
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Table 1.- Order of the vertices of I3

c f(c) Qf(c) ϕ(f(c))
〈0, 0, 0〉 〈1, 1, 1〉 ∅ 1
〈0, 0, 1〉 〈1, 1, 2〉 {3} 1 + 23−3 = 2
〈0, 1, 0〉 〈1, 2, 1〉 {2} 1 + 23−2 = 3
〈0, 1, 1〉 〈1, 2, 2〉 {2, 3} 1 + 23−2 + 23−3 = 4
〈1, 0, 0〉 〈2, 1, 1〉 {1} 1 + 23−1 = 5
〈1, 0, 1〉 〈2, 1, 2〉 {1, 3} 1 + 23−1 + 23−3 = 6
〈1, 1, 0〉 〈2, 2, 1〉 {1, 2} 1 + 23−1 + 23−2 = 7
〈1, 1, 1〉 〈2, 2, 2〉 {1, 2, 3} 1 + 23−1 + 23−2 + 23−3 = 8

Of course, the order of the vertices of R is the same, that is,

ϕ(f(h(c))) = ϕ(f(c)) for every c ∈ Vert(I3).

Assume that we have selected eight 3-copulas {Cj}8
j=1, such that if c ∈ Vert(I3) and it satifies

that ϕ(f(c)) = j, then Cj has the desired behavior near the vertex c, for every j ∈ {1, . . . , 8}.
Now we proceed with the construction of a 3-copula which satisfies the desired properties

using the 3-box R:

• Let j = 1, R1 = I3 and define D1 = C1 on R1, then D1 is exactly C1 near c = 0 ∈
Vert(R), 0 ∈ Vert(I3) and ϕ(f(0)) = 1.

• Let j = 2, R2 = I× I×[1/2, 1], u2 = 〈0, 0, 1/2〉 ∈ Vert(R), then ϕ(f(h(u2))) = 2 = j.

Define D2 = (D1

⊎
u2 C2), then from equation (2.97), D2 behaves like C1 near 0 and

like C2 near 〈0, 0, 1〉 = c, where ϕ(f(c)) = 2 = j.

• Inductively, given Dj−1 for 3 ≤ j ≤ 8, let Rj = [cj1, 1] × [cj2, 1] × [cj3, 1], where uj =

〈cj1, c
j
2, c

j
3〉 ∈ Vert(R) is such that ϕ(f(h(uj))) = j. Define Dj = (Dj−1

⊎
uj Cj), then

from equation (2.97), Dj behaves like Ck near ck ∈ Vert(I3) for every k = {1, 2, . . . , j}.

• Then if we define C := D8, C has the desired properties.

The last example has of course generalizations to higher dimensions, and it is of great im-

portance because it allows to model tail dependence, see for example Joe [41] and Nelsen

[58]. In fact, in Finance and Risk Theory one of the biggest problems is to model tail depen-

dence for economic variables using copulas, see for example Embrechts et al [25], Cherubini
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et al [6], McNeil et al [51], Malevergne et al [49], Zhang [72], just to mention some refer-

ences. The use of copulas for modeling dependence has been also used in other areas such

as ecology, hidrology, medicine, etc., see for example Dorey and Joubert [14], Erdely and

Dı́az-Vieira [27] or Salvadori et al [63]. The last example provides a method for modeling

the tail dependence in dimensions higher than or equal to three.

Of course this methodology also allows us to study the multidimensional versions of the

horizontal and vertical sections of 2-copulas and the construction of 2-copulas with given

horizontal or vertical sections, see for example see Nelsen [58], Durante et al [19] or Klement

et al [43]. For n ≥ 3, we can analyze the structure of the n − 1 dimensional faces of an

n-copula, of the form

Ci(x) = {C(x1, . . . , xi−i, ai, xi+1, . . . , xn) | xj ∈ I for every j ∈ {1, . . . , n}\{i}},

where ai ∈ I is fixed and i ∈ {1, . . . , n}; which are clearly equivalent to the horizontal and

vertical sections of a 2-copula.

Example 2.30. Let us assume that n = 3 and R = [0, 1/2]3 in Example 2.29, and let us

select the first six copulas as C1 = · · · = C6 = Π3, C7 = M3 and C8 is a Gumbel-Hougaard

copula with parameter θ = 2, that is,

C8(x) = exp
{
−
[
(lnx1)2 + (lnx2)2 + (lnx3)2

]1/2}
.

If we proceed with the order given in Table 1 and the steps of Example 2.29, we get that

D1 = D2 = · · · = D6 = Π3 by Lemma 2.26, so, we can start at the seventh step.

Let u7 = 〈1/2, 1/2, 0〉 ∈ Vert(R), R7 = [1/2, 1] × [1/2, 1] × I and define D7 = (D6

⊎
u7 C7),

after some calculations we have that λ7 = VΠ3(R7) = 1/4, VΠ3(R7
x1

) = x1/2 − 1/4, x2/2 −

1/4, VΠ3(R7
x3

) = x3/4, VΠ3([u7,x]) = x1x2x3 − (1/2)(x2x3 + x1x3) + x3/4 and

D7(x) =


1
4

min{2x1 − 1, 2x2 − 1, x3}
+1

2
(x2x3 + x1x3)− 1

4
x3 if x ∈ R7

x1x2x3 otherwise.

For the last step we have u8 = 〈1/2, 1/2, 1/2〉 ∈ Vert(R), R8 = [1/2, 1] × [1/2, 1] × [1/2, 1].

Define D8 = (D7

⊎
u8 C8), then we get λ8 = VD7(R

8) = 1/8, VD7(R
8
x1

) = x1/2 − 1/4 −

C7(2x1 − 1, 1, 1/2)/4, VD7(R
8
x2

) = x2/2 − 1/4 − C7(1, 2x2 − 1, 1/2)/4, VC7(R
8
x3

) = x3/4 −
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1/8, VD7([u
8,x]) = D7(x1, x2, x3)−C7(2x1− 1, 2x2− 1, 1/2)/4 + x3/4− (x2x3 + x1x3)/2 and

D8(x) =



1
8
C8

(
4x1 − 2− 2 min{2x1 − 1, 1

2
}, 4x2 − 2− 2 min{2x2 − 1, 1

2
}, 2x3 − 1

)
+1

4
min{2x1 − 1, 2x2 − 1, 1

2
} − 1

4
x3 + 1

2
(x2x3 + x1x3) if x ∈ R8

1
4

min{2x1 − 1, 2x2 − 1, x3}
+1

2
(x2x3 + x1x3)− 1

4
x3 if x ∈ [1/2, 1]× [1/2, 1]× [0, 1/2]

x1x2x3 otherwise.

We can see that this last copula behaves similar to the copula M in the vertex 〈1, 1, 0〉 and

similar to a Gumbel-Hougaard copula near the vertex 〈1, 1, 1〉.

2.4 An Alternative Patchwork Using Gluing Copulas

In Siburg and Stoimenov [66] a new methodology of constructing n-copulas is proposed. The

main idea is to glue two rescaled copulas on adjacent n-boxes of In whose union is In, two

n-boxes R and S are adjacent if their intersection is a common face. Their main result is

the following:

Theorem B Let n ≥ 2 and let C1, C2 be two n-copulas. Let 0 ≤ θ ≤ 1 and define Rl
i,θ =

I× · · · × I×[0, θ] × I× · · · × I, where the interval [0, θ] is located on the ith coordinate, for

some i ∈ {1, 2, . . . , n}, similarly define Ru
i,θ = I× · · ·×I×[θ, 1]×I× · · ·×I. Define for every

x = (x1, . . . , xi, . . . , xn) ∈ In

(
C1 ~

xi=θ
C2

)
(x)=

{
θC1

(
x1, . . . ,

xi
θ
, . . . , xn

)
if x ∈ Rl

i,θ

(1− θ)C2

(
x1, . . . ,

xi−θ
1−θ , . . . , xn

)
+ θC1(x1, . . . , 1, . . . , xn) if x ∈ Ru

i,θ.

(2.100)

Then C1~xi=θ C2 is an n-copula.

Proof. Observe that the first row in equation (2.100) it is simply C1 rescaled on Rl
i,θ and

the second row is C2 rescaled on Ru
i,θ plus the value of the rescaled C1 in 〈x1, . . . , 1, . . . xn〉.

It is clear that C1~xi=θ C2 satisfies the boundary conditions of an n-copula. Using that Rl
i,θ

and Ru
i,θ are adjacent n-boxes with common face Ri,θ = {x ∈ In |xi = θ}, and observing that

on Ri,θ both rows of equation (2.100) coincide, it is clear that C1~xi=θ C2 is an n-increasing

function. Therefore, C1~xi=θ C2 is an n-copula.

Of course, the binary operation~xi=θ, where i ∈ {1, . . . , n} and θ ∈ I, is defined on the family

Cn of all n-copulas. Of course, ~xi=θ is not a commutative operation. In Proposition 2.20
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of Siburg and Stoimenov [66], it is shown that if Πn is the n-product copula, i ∈ {1, . . . , n}
and θ ∈ I. Then

C1 ~
xi=θ

C2 = Πn if and only if C1 = C2 = Πn. (2.101)

This result follows directly from equation (2.100).

Remark 2.31. For dimension n = 2 the constructions proposed in Theorem 1.35 in Section

2.1 and the one given in Theorem B are quite different. Let C = M , J = {1}, R1 =

[0, 1/2, 1] × I and C1 = Π in Theorem 1.35. Then λ1 = VM(R1) = 1/2, R1,x = [0, x] × I,

R1,y = [0, 1/2], [0, y] for every x ∈ [0, 1/2] and for every y ∈ [0, 1]. So, VM(R1,x) = x and

VM(R1,y) = min{1/2, y} and ϕM1 (x, y) = hM0 (x) + vM0 (y) − hM0 (0) = 0. Therefore, using

equation (1.23)

C̃(x, y) =

{
1
2
Π(2x, 2 min{1/2, y}) if 〈x, y〉 ∈ [0, 1/2]× I

min{x, y} if 〈x, y〉 ∈ [1/2, 1]× I .

=

{
2x ·min{1/2, y} if 〈x, y〉 ∈ [0, 1/2]× I
min{x, y} if 〈x, y〉 ∈ [1/2, 1]× I .

On the other hand, if we let C1 = Π, C2 = M and θ = 1/2 in Theorem B, then using

equation (2.100), we get that(
Π ~
x=1/2

M

)
(x, y) =

{
1
2
Π(2x, y) if 〈x, y〉 ∈ [0, 1/2]× I

1
2

min{2x− 1, y}+ 1
2

min{1, y} if 〈x, y〉 ∈ [1/2, 1]× I .

=

{
xy if 〈x, y〉 ∈ [0, 1/2]× I
1
2

min{2x+ y − 1, 2y} if 〈x, y〉 ∈ [1/2, 1]× I .

Of course, C̃ 6=
(
Π~x=1/2M

)
.

Example 2.32. We will see that even for n = 3 the patchwork construction given in Theorem

2.20 is also different from the gluing proposal in Theorem B. In the case where Π3 is the

base copula they may coincide, but in general they are different. Let us glue Π3 with some

3-copula C1 in x1 = 1/2, using equation (2.100) we get

(
Π3 ~

x1=1/2
C1

)
(x)=


1/2 · Π3

(
x1
1/2
, x2, x3

)
if x ∈ [0, 1/2]× I× I

(1− 1/2)C1

(
x1−1/2
1−1/2

, x2, x3

)
if x ∈ [1/2, 1]× I× I

+1/2Π3(1, x2, x3)
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=


x1x2x3 if x ∈ [0, 1/2]× I× I

1
2
C1 (2x1 − 1, x2, x3) if x ∈ [1/2, 1]× I× I

+1
2
x2x3

(2.102)

Now, using Remark 2.22, let us patch the 3-copula C1 in R = [1/2, 1] × I× I with the 3-

copula Π3. In this case, u = 〈1/2, 0, 0〉, λ = VΠ3(R) = 1/2, VΠ3(Rx1) = x1 − 1
2
, VΠ3(Rx2) =

x2
2
, VΠ3(Rx3) = x3

3
, VΠ3([0,x]) = Π3(x1, x2, x3) and VΠ3([u,x]) = VΠ3([1/2, x1] × [0, x2] ×

[0, x3]) = (x1 − 1/2)x2x3, for every x1 ∈ [1/2, 1] and for every x2, x3 ∈ [0, 1]. Then using

equation (2.94) in Theorem 2.20 we have that

(
Π3
⊎
u

C1

)
(x)=


Π3 (x1, x2, x3) if x ∈ [0, 1/2]× I× I

1/2C1

(
x1−1/2

1/2
, x2/2

1/2
, x3/2

1/2

)
+ Π3(x1, x2, x3) if x ∈ R = [1/2, 1]× I× I

−VΠ3([1/2, x1]× [0, x2]× [0, x3])

=


x1x2x3 if x ∈ [0, 1/2]× I× I

1
2
C1 (2x1 − 1, x2, x3) if x ∈ R = [1/2, 1]× I× I

+1
2
x2x3

(2.103)

Then from equations (2.102) and (2.103), clearly, (Π3 ~x1=1/2 C1) = (Π3
⊎

uC1). But if we

reverse the order and we glue some copula C1, say C1 = M+Π3

2
, with Π3 in x = 1/2 we get

from equation (2.100) that

(
C1 ~

x1=1/2
Π3

)
(x)=


1/2C1

(
x1
1/2
, x2, x3

)
if x ∈ [0, 1/2]× I× I

(1− 1/2)Π3
(
x1−1/2
1−1/2

, x2, x3

)
if x ∈ [1/2, 1]× I× I

+1/2C1(1, x2, x3)

=

{
1
4

min{2x1, x2, x3}+ 1
2
x1x2x3 if x ∈ [0, 1/2]× I× I

x1x2x3 − x2x3
4

+ min{x2,x3}
4

if x ∈ [1/2, 1]× I× I,
(2.104)

and using Theorem 2.20 and Remark 2.22 again, if we patch the same copula C1 in R =

[1/2, 1]×I× I with Π3 we have that u = 〈1/2, 0, 0〉, λ = VC1(R) = C1(1, 1, 1)−C1(1/2, 1, 1) =

1/2, VC1(Rx1) = C1(x1, 1, 1)−C1(1/2, 1, 1) = x1−1/2, VC1(Rx2) = C1(1, x2, 1)−C1(1/2, x2, 1)

= (3x2 − min{1, 2x2})/4, VC1(Rx3) = C1(1, 1, x3) − C1(1/2, 1, x3) = (3x3 − min{1, 2x3})/4,

VC1([0,x]\[u,x]) = C1(x1, x2, x3) − (C1(x1, x2, x3) − C1(1/2, x2, x3)) = C1(1/2, x2, x3), for
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every x1 ∈ [1/2, 1] and for every x2, x3 ∈ [0, 1]. So, by equation (2.94) in Theorem 2.20 we

have that

(
C1

⊎
u

Π3

)
(x)=


C1 (x1, x2, x3) if x ∈ [0, 1/2]× I× I

1
2
Π3
(
x1−1/2

1/2
, (3x2−min{1,2x2})/4

1/2
, (3x3−min{1,2x3})/4

1/2

)
elsewhere

+C1(1/2, x2x3)

=


1
2

min{x1, x2, x3}+ 1
2
x1x2x3 if x ∈ [0, 1/2]× I× I

1
4

(
x1 − 1

2

)
(3x2 −min{1, 2x2}) (3x3 −min{1, 2x3}) if x ∈ [1/2, 1]× I× I

+1
2

min{1/2, x2, x3}+ 1
4
x2x3

(2.105)

If x = 〈1/4, 1/4, 1/4〉 then from equations (2.104) and (2.105), (C1 ~x1=1/2 Π3)(x) = 9/128,

but (C1

⊎
u Π3)(x) = 9/64. So, gluing and patching copulas do not always yield the same

result. This example also shows that the operations gluing and patching are not commuta-

tive.

2.4.1 Proposed Methodology Using Gluing Copulas

Let R = "ni=1[ui, vi] ⊂ In be a non trivial n-box, we want to define an n-copula C, such

that on R it behaves as a rescaled version of another n-copula C1. We propose to take as a

background copula Πn(x1, . . . , xn) = x1x2 · · ·xn the n-product copula and to give a rescaled

version of C1 on R. In order to do so, we can use the gluing method as follows:

• Since R is non trivial then for every i ∈ {1, . . . , n}, 0 ≤ ui < vi ≤ 1, then there exists

ai ∈ [0, 1) such that aivi = ui.

• Define T1 = Πn~x1=a1 C1, then T1 is an n-copula such that for x1 ∈ [0, a1] behaves like

Πn, and for x1 ∈ [a1, 1] behaves like a rescaled version of C1.

• Inductively, let Tk = Πn~xk=ak Tk−1 for every k ∈ {2, . . . , n}, then Tk is an n-copula

such that for xk ∈ [0, ak] behaves like Πn.

• Define inductively Tn+j = Tn+j−1~xj=vj Πn for every j ∈ {1, 2, . . . , n}.

• Let C = T2n, then C has the desired properties.
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Example 2.33. We will see that this proposed methodology does not yield to the ordinal

sum. In order to do so we will consider the copula Π. Let us define

T1(x1, x2) =

(
M ~

x1=1/2
Π

)
(x1, x2) =

{
min

{
x1,

1
2
x2

}
if 〈x1, x2〉 ∈ [0, 1/2]× I

x1x2 if 〈x1, x2〉 ∈ [1/2, 1]× I .

In the next step we glue M with the copula T1 at x2 = 1/2, that is, we define T2(x1, x2) by

(
M ~

x2=1/2
T1

)
(x1, x2) =


min

{
1
2
x1, x2

}
if 〈x1, x2〉 ∈ I×[0, 1/2]

min
{
x1,

2x1+2x2−1
4

}
if 〈x1, x2〉 ∈ [0, 1/2]× [1/2, 1]

x1x2 if 〈x1, x2〉 ∈ [1/2, 1]× [1/2, 1].

The resulting copula T2 behaves like Π on [1/2, 1]2, on I×[0, 1/2] has support the line joining

〈0, 0〉 and 〈1, 1/2〉 with mass 1/2 and on [0, 1/2]× [1/2, 1] has support the line joining 〈0, 1/2〉

and 〈1/2, 1〉 with mass 1/4, see Figure 2 below.

On the other hand the ordinal sum of Π on [1/2, 1]2 is given by

C(x1, x2) =

{
2x1x2 − x1 − x2 + 1 if 〈x1, x2〉 ∈ [1/2, 1]2

min{x1, x2} otherwise.

Of course, the gluing copula T2 is different from C the ordinal sum.

Figure 2.- Support of the gluing copula T2
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Chapter 3

Sample d-copulas of order m

In this chapter we analyze the construction of d-copulas including the ideas of Cuculescu

and Theodorescu [8], Fredricks et al [34], Mikusiński and Taylor [56] and Trutschnig and

Fernández-Sánchez [69]. Some of these methods use iterative procedures to construct copulas

with fractal supports. In this chapter the dimension of the copulas will be denoted by d and

in Section 3.2 and Section 3.3, n will always denote the sample size.

In Cuculescu and Theodorescu [8], they introduce a new family of copulas which they call

self-similar copulas, in dimension two, using an iterated procedure, they also prove the

existence of a d-copula with any given diagonal, we will see in detail this proof in Chapter 5.

These ideas were substantially improved in Fredricks et al [34] in dimension d = 2, and quite

recently in Trutschnig and Fernández-Sánchez [69] these results are generalized to d ≥ 3.

In this chapter we will follow the original ideas given in Cuculescu and Theodorescu [8],

giving generalizations to higher dimensions d ≥ 3.

We start this chapter by stating the main results in Fredericks et al [34] in section 3.1 and

we relate their concept of transformation matrices to doubly stochastic matrices. Then we

generalize the results given in Cuculescu and Theodorescu [8], to any dimension d > 2. We

also mention that the family of fractal d-copulas is dense in the family of all d-copulas for

any d ≥ 2. Finally we analyze the multivariate extension of Fredricks et al [34] given in

Trutschnig and Fernández-Sánchez [69].

The main part of this chapter is given in section 3.2, where we introduce the sample d-copula

of order m with m ≥ 2, the main idea is to use the above methodologies to construct a new

copula based on a sample. The greatest advantage of the sample d-copula is the fact that

it is already an approximating d-copula and that it is easily obtained. A particular case of

these d-copulas corresponds to the checkerboard d-copulas defined in Mikusiński and Taylor

[56]. We will see that these new copulas provide a nice way to study multivariate data with

61
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an approximating copula which is simpler than the empirical multivariate copula, and that

the empirical copula is the restriction to a grid of a sample d-copula of order m = n. These

sample d-copulas can be used to make statistical inference about the distribution of the data,

as shown in this section.

We find some of its basic properties and also propose some possible statistical applications of

the sample d-copula. We will see that the sample d-copula of order m is a strongly consistent

estimator of the d-copula which generated the data.

Section 3.2 also studies some of the basic probability properties of the sample d-copula of

order m including its close relation to the multivariate distribution with parameters n the

sample size, and v positive parameters whose sum is one and m ≤ v < md. We will also

include new applications of the sample d-copula in Statistics.

In section 3.3 we find the minimum number of parameters needed to generate the multivariate

distribution associated to the d-sample copula of order m.

Section 3.4 studies the relation between d-copulas and d-dimensionally stochastic matrices.

In section 3.5 we include some important remarks.

3.1 d-Copulas with Fractal Supports

In Fredricks et al [34] using techniques of iterated function systems (IFS) the authors con-

struct for dimension d = 2 a large class of copulas. They first consider a transformation

matrix, that is a real nonnegative matrix Tm1×m2 = (tij)〈i,j〉∈Im1×Im2
,where Im = {1, . . . ,m},

such that max{m1,m2} ≥ 2,
∑

i,j tij = 1,
∑

i∈Im1
tij > 0 for every j ∈ Im2 and

∑
j∈Im2

tij > 0

for every i ∈ Im1 . Define two partitions of [0, 1], {p0, p1, . . . , pm1} and {q0, q1, . . . , qm2},

by letting p0 = 0 = q0, and for i ∈ Im1 let pi =
∑i

i′=1

∑
j∈Im2

ti′j, and for j ∈ Im2 let

qj =
∑j

j′=1

∑
i∈Im1

tij′ . Define

Rij = (pi−1, pi]× (qj−1, qj] for every 〈i, j〉 ∈ Im1 × Im2 ,

where for i = 1 or j = 1 we take closed intervals instead of right open intervals. Of course,

{Rij}〈i,j〉∈Im1×Im2
is a partition of I2. Let C be a copula and define a transformation T (C)

using the partition of I2 and the transformation matrix T , where for each 〈i, j〉 ∈ Im1 × Im2 ,

T (C) spreads mass tij on Rij rescaling the whole mass of C, that is, if 〈u, v〉 ∈ Rij let
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T (C)(u, v) =
∑

i′<i,j′<j

ti′j′+
u− pi−1

pi − pi−1

∑
j′<j

tij′+
v − qj−1

qj − qj−1

∑
i′<i

ti′j + tijC

(
u− pi−1

pi − pi−1

,
v − qj−1

qj − qj−1

)
,

(3.1)

where empty sums are defined to be zero. Then T (C) is always a copula. If we define

iteratively

T 2(C) = T (T (C)) and T k+1(C) = T (T k(C)) for every k > 2.

In fact, T k(C) = (⊗kT )(C), where ⊗k is the tensor product of T with itself k times. It is

easy to see by induction that if T is a transformation matrix of dimension m1 × m2 then

⊗kT is also a transformation matrix of dimension m1
k × m2

k for every k ≥ 2. Then we

have that for any transformation matrix T there exists a unique copula copula CT , such that

T (CT ) = CT . Moreover, CT = limk→∞ T
k(C) for any copula C. Since CT does not depend

on the copula C, we may restrict to the limit of the sequence {T k(Π)}k≥1. In fact, they call

C invariant if C = CT for some transformation matrix T .

They also observe that if π1 = {p0, p1, . . . , pm1} and π2 = {q0, q1, . . . , qm2} are any partitions

of [0, 1], and we define tij = (pi − pi−1)(qj − qj−1) for every 〈i, j〉 ∈ Im1 × Im2 , then T =

(tij)〈i,j〉∈Im1×Im2
is a transformation matrix which generates the partitions π1 and π2 and has

CT = Π2 the product copula.

Recall that for every k ≥ 2 a square real matrix P = (pij)
k
i,j=1 is a doubly stochastic

matrix if and only if pij ≥ 0 and
∑k

j=1 pij =
∑k

i=1 pij = 1 for every i, j ∈ {1, 2, . . . , k}.

Define

T = {Tm1×m2 | Tm1×m2 is a transformation matrix, with m1,m2 ≥ 2

and tij ∈ Q for every 〈i, j〉 ∈ Im1 × Im2}.

Then we have the following result

Lemma 3.1. Let Tm1×m2 ∈ T then there exist k ≥ 2 and Pk×k = (pij)
k
i,j=1 a double stochastic

matrix, such that if we define Sk×k = (pij/k)ki,j=1 then T (Π2) = S(Π2).

The proof follows directly by considering k the least common multiple of the denominators

of (tij)〈i,j〉∈Im1×Im2
.

The last lemma can be used in every single step of the construction of CT . However, it is

clear that the support of the limit copula CT may be different from CS. In fact, in section 3.2



64 CHAPTER 3. SAMPLE D-COPULAS OF ORDER M

we will use only square matrices T with rational entries, and the first step in the construction

of CT . So, we can think of T as a doubly stochastic matrix times a positive integer. For

some results on doubly stochastic matrices see for example Sherman [65] or Marcus [50].

Example 3.2. As an easy example of Lemma 2.1 consider the transformation matrix

T =

(
0 1/3

2/3 0

)
.

Then if we define

S =

 0 0 1/3
1/6 1/6 0
1/6 1/6 0

 .

We have that P = 3 · S is a doubly stochastic matrix and T (Π2) = S(Π2).

Now we generalize the results given in Cuculescu and Theodorescu [8].

Recall that a d-dimensional square matrix P, for d ≥ 2, is an array of real numbers

of the form P = (pi1i2···id)
k
i1,...id=1 for some k ≥ 2. We will say that P is d-dimensionally

stochastic if and only if 0 ≤ pi1i2···id ≤ 1 for every i1, i2, . . . , id ∈ {1, . . . , k}, and for every

1 ≤ j1 < j2 < · · · < jd−1 ≤ d we have that

k∑
ij1=1

k∑
ij2=1

· · ·
k∑

ijd−1
=1

pi1i2···id = 1, (3.2)

where the remaining index is fixed and taken in {1, . . . , k}. In this case it is clear that

k∑
i1=1

k∑
i2=1

· · ·
k∑

id=1

pi1i2···id = k.

Of course a 2-dimensionally stochastic matrix is a doubly stochastic matrix. Let C1
i1,i2,...,id

=

pi1i2···id/k for every i1, . . . , id ∈ {1, . . . k}, and for every A ∈ B(Id) and for every n ≥ 1 define

µn(A) = kdn
kn∑

i1,...,id=1

Cn
i1,...,id

λd
(([

i1 − 1

kn
,
i1
kn

]
× · · · ×

[
id − 1

kn
,
id
kn

])
∩ A

)
, (3.3)

where for every i1, . . . id ∈ {1, . . . , kn}, for every i′1, . . . i
′
d ∈ {1, . . . , k} and for every n ≥ 1,

Cn+1
k(i1−1)+i′1,...,k(id−1)+i′d

=
pi′1···i′d
kd−1

· Cn
i1,...,id

. (3.4)
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Here B(Id) is the borel σ-algebra and λd is the Lebesgue measure. Then we have a multi-

variate extension of Cuculescu and Theodorescu [8], its proof follows as in Trutschnig and

Fernández-Sánchez [69].

Proposition 3.3. Let d ≥ 2, let P be a d-dimensional square matrix of order k ≥ 2, which is

d-dimensionally stochastic. Let n ≥ 1 and define µn as in equation (3.3), then (Id,B(Id), µn)

is a probability space. Besides, if we define

Cn(u1, . . . , ud) = µn([0, u1]× · · · × [0, ud]) for every u1, . . . ud ∈ I . (3.5)

Then Cn is a d-copula for every n ≥ 1. If we define µP = limn→∞ µn, then µP exists with

respect to weak convergence and it is a probability measure on (Id,B(Id)). Evenmore, µP

induces a d-copula CP by defining

CP(u1, . . . , ud) = µP([0, u1]× · · · × [0, ud]) for every u1, . . . ud ∈ I . (3.6)

If P includes zeros then µP is a singular measure.

In the case d = 2 and k = 2, we have that if 0 < a < 1 and

P =

(
a/2 (1− a)/2

(1− a)/2 a/2

)
.

then 2P is doubly stochastic and CP is a singular copula if a 6= 1/2 as observed in Cuculescu

and Theodorescu [8], see also [18]. Observe also that a 2-dimensionally stochastic matrix

or doubly stochastic matrix depends only on one parameter. We will study this problem in

detail in Section 3.3.

Now we will see that for d ≥ 2 the set of d-copulas given in (3.6) is dense in the family of all

copulas with respect to the supremum distance, when we consider the set of d-dimensionally

stochastic matrices.

Theorem 3.4. Let C be a d-copula for some d ≥ 2, then for every ε > 0 there exists P a

d-dimensionally stochastic matrix such that if we construct the copula CP defined in equation

(3.6)

dsup(C,CP) = sup
u1,...,ud∈[0,1]

|C(u1, . . . , ud)− CP(u1, . . . , ud)| < ε. (3.7)
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The proof of this theorem follows from Mikusiński and Taylor [56], since in each step of the

construction of CP we obtain a checkerboard approximation. Evenmore, they prove that the

convergence of the checkerboard approximations to the d-copula C holds in a stronger mode

denoted by ∂-convergence which implies uniform convergence.

In Cuculescu and Theodorescu [8], for dimensions greater than or equal to three they only

say “ For q ≥ 2 copulas analogous to µP may also be defined (particularly one concentrated

on Menger’s sponge)...”. Here q is the dimension. This statement is not correct as we will

see in an example but in [69] the authors provide an example of a 3-copula which has a

Menger’s sponge like set support.

Example 3.5. Recall that Menger’s sponge is a fractal construction on I3 which starts by

dividing I in three equal intervals [0, 1/3], [1/3, 2/3] and [2/3, 1], and then divide the whole

cube in 27 cubes of volume 1/27. The first step consists in removing seven cubes

C1 = [1/3, 2/3]× [0, 1/3]× [1/3, 2/3] C2 = [0, 1/3]× [1/3, 2/3]× [1/3, 2/3]

C3 = [1/3, 2/3]× [1/3, 2/3]× [0, 1/3] C4 = [1/3, 2/3]× [1/3, 2/3]× [1/3, 2/3]

C5 = [1/3, 2/3]× [1/3, 2/3]× [2/3, 1] C6 = [2/3, 1]× [1/3, 2/3]× [1/3, 2/3],

and

C7 = [1/3, 2/3]× [2/3, 1]× [1/3, 2/3].

The result of the first step is a cube where all the middle thirds have been removed, so it

has square middle holes that go all the way through on each face. The construction follows

inductively by repeating the above procedure to every sub-cube that has not been removed.

Let P = (pi1i2i3)
3
i1,i2,i3=1 be a square 3-matrix of order k = 3. If we want to construct a

3-copula which has as support Menger’s sponge then we would have to require that

p212 = p122 = p221 = p222 = p223 = p322 = p223 = 0.

See Figure 3.

B1 = [1/3, 2/3]× I× I B2 = I×[1/3, 2/3]× I and B3 = I× I×[1/3, 2/3].

If C is any 3-copula then

VC(Bi) =
1

3
for every i ∈ {1, 2, 3}.



3.1. D-COPULAS WITH FRACTAL SUPPORTS 67

Figure 3: Support of µ1 for P in the case of Menger’s sponge
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But, this implies that

VC(B1) = p211 + p213 + p231 + p233 =
1

3
VC(B2) = p121 + p123 + p321 + p323 =

1

3

and

VC(B3) = p112 + p312 + p132 + p332 =
1

3
.

So, VC(B1) + VC(B2) + VC(B3) = 1, that is the whole mass. Hence the remaining entries of

the matrix P satisfy

p111 = p112 = p311 = p313 = p131 = p133 = p331 = p333 = 0.

Which implies that the Menger’s sponge cannot be the support of a 3-copula.

Finally, we give the generalization of transformation matrices in dimension d found in

Trutschnig and Fernández-Sánchez [69]. Let In = {1, 2, . . . , n} for n ≥ 1. For d ≥ 2,

let m1, . . . ,md ∈ NI and define Id = "di=1 Imi . Let τ be a probability measure on (Id, 2Id),
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then we call τ a generalized transformation matrix if for every j ∈ {1, . . . , d} and for

every k ∈ {1, . . . ,mj} ∑
i∈Id,ij=k

τ(i) > 0. (3.8)

Observe that equation (3.8) is a natural extension of the conditions of transformation ma-

trices in Fredricks et al [34], and that τ can be written as a d-dimensional matrix T , by

writing

τ(i) = ti1,i2,...,id if i = 〈i1, i2, . . . , id〉 ∈ Id. (3.9)

In the remaining of this section we will only use the case m1 = m2 = · · · = md = m ≥ 2. In

this case, if all τ(i) are rational, we observe that equation (3.8) is equivalent to saying that τ

induces the existence of an m0 ≥ m and a d-dimensional square matrix T0 such that m0 ·T0 is

a d-dimensionally stochastic matrix, as defined after Example 2.2. This is a consequence of

an obvious multivariate extension of Lemma 2.1 for any τ probability measure with rational

values on (Id, 2Id) in equation (3.9).

All the results at the beginning of this section about the construction of copulas in Fredricks

et al [34], can be easily generalized to dimensions d ≥ 3.

Let m ≥ 2 and for every i = 〈i1, i2, . . . , id〉 ∈ Im := "dj=1 Im define

Ri =

(
i1 − 1

m
,
i1
m

]
×
(
i2 − 1

m
,
i2
m

]
× · · · ×

(
id − 1

m
,
id
m

]
, (3.10)

where if for some j ∈ {1, . . . , d}, ij = 1, then we take closed intervals instead of left open

intervals. Then {Ri}i∈Im is a partition of Id that we will call the uniform partition of

order m of Id.

Let C be a d-copula and define for every i = 〈i1, i2, . . . , id〉 ∈ Im

ti1,i2,...,id = VC(Ri) and TC = (ti1,i2,...,id)
m
i1,...,id=1 . (3.11)

Then TC is a square d-dimensional matrix with nonnegative entries, which generates the

checkerboard approximation given in [56] and it is a generalized transformation matrix,

because by equation (3.9), if we take any j ∈ {1, . . . , d} and any k ∈ {1, . . . ,m} then by the
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definition of d-copula

∑
i∈Im,ij=k

τ(i) =
m∑
i1=1

· · ·
m∑

ij−1=1

m∑
ij+1=1

· · ·
m∑
id=1

VC(R〈i1,...,ij−1,k,ij+1,...,id〉)

= VC

(
I× · · · × I×

[
k − 1

m
,
k

m

]
× I · · · × I

)
= C(1, . . . , 1, k/m, 1, . . . , 1)− C(1, . . . , 1, (k − 1)/m, 1, . . . , 1)

=
1

m
> 0. (3.12)

Observe that in equation (3.12) for every d-copula C, for every j ∈ {1, . . . , d} and for every

k ∈ {1, . . . ,m},
∑

i∈Im,ij=k τ(i) = 1/m only depends on m.

Also observe that m · TC is a d-dimensionally stochastic square matrix.

Now, if we have T = (ti1,...,id)
m
i1,...,id=1 a generalized transformation square d-dimensional

matrix, define p1,0 = p2,0 = · · · = pd,0 = 0, and for every j ∈ {1, . . . , d} and for every

k ∈ {1, . . . ,m} define

pj,k =
k∑

ij=1

m∑
i1=1

· · ·
m∑

ij−1=1

m∑
ij+1=1

· · ·
m∑
id=1

ti1,...,id . (3.13)

Then 0 = pj,0 < pj,1 < · · · < pj,m−1 < pj,m = 1 is the partition with m + 1 points of [0, 1]

induced by T , which corresponds to the jth coordinate.

If we take a d-copula C and we define T (C)(u1, . . . , ud) for 〈u1, . . . , ud〉 ∈ Id using a similar

formula as the one used in dimension 2 in equation (3.1), then T (C) is always a d-copula,

see also Trutschnig and Fernández-Sánchez [69]. In particular if C = Πd the product d-

copula T (Πd)(u1, . . . , ud) has a simpler expression. For example if d = 3 and 〈u1, u2, u3〉 ∈
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R〈i1,i2,i3〉 = Ri = (p1,i1−1, p1,i1 ]× (p2,i2−1, p2,i2 ]× (p3,i3−1, p3,i3 ] for some i ∈ Im then

T (Π3)(u1, u2, u3) =
∑

i<i1,j<i2,k<i3

ti,j,k +

(
u1 − p1,i1−1

p1,i1 − p1,i1−1

) ∑
j<i2,k<i3

ti1,j,k

+

(
u2 − p2,i2−1

p2,i2 − p2,i2−1

) ∑
i<i1,k<i3

ti,i2,k +

(
u3 − p3,i3−1

p3,i3 − p3,i3−1

) ∑
i<i1,j<i2

ti,j,i3

+

(
u1 − p1,i1−1

p1,i1 − p1,i1−1

)(
u2 − p2,i2−1

p2,i2 − p2,i2−1

)∑
k<i3

ti1,i2,k

+

(
u1 − p1,i1−1

p1,i1 − p1,i1−1

)(
u3 − p3,i3−1

p3,i3 − p3,i3−1

)∑
j<i2

ti1,j,i3

+

(
u2 − p2,i2−1

p2,i2 − p2,i2−1

)(
u3 − p3,i3−1

p3,i3 − p3,i3−1

)∑
i<i1

ti,i2,i3

+ti1,i2,i3

(
u1 − p1,i1−1

p1,i1 − p1,i1−1

)(
u2 − p2,i2−1

p2,i2 − p2,i2−1

)(
u3 − p3,i3−1

p3,i3 − p3,i3−1

)
. (3.14)

Observe that from equation (3.14) it is clear that T (Π3) is a 3-copula which assigns uniform

mass ti1,i2,i3 to each box R〈i1,i2,i3〉 for every 〈i1, i2, i3〉 ∈ {1, . . . ,m}. Therefore, the generalized

transformation matrix T can be thought as the weighted density of the 3-copula T (Π3), given

by ti/λ
d(Ri) for every i ∈ Im, induced by the partitions and the 3-boxes that they generate.

Of course the d-dimensional case includes 2d terms that can be easily generalized.

Even if equation (3.14) seems quite complicated, it is easy to program in a computer when

we have the 3-dimensional generalized transformation square matrix T of order m. We have

written a short program in language R which computes T (Π3)(u1, u2, u3) for any given vector

〈u1, u2, u3〉 ∈ I3, see the site https://sites.google.com/site/probstatsr.

3.2 Sample d-Copula of Order m

Now we use the ideas of section 3.1 to define the sample d-copula of order m in two

settings.
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3.2.1 Sample d-Copula of Order m for a d-Copula C

Let m ≥ 2 and assume that we take an independent sample of size n, where n ≥ m, from a

d-copula C, let us denote the sample by

Un = {x1, · · · ,xn}, (3.15)

where xk = 〈xk,1 . . . xk,d〉 ∈ Id for every k ∈ {1, . . . , n}.

Define for every i = 〈i1, . . . , id〉 ∈ Im using equation (3.10)

sni1,...,id =
|Ri ∩ Un|

n
, (3.16)

where | · | denotes the cardinality of a set. Define

Snm =
(
sni1,...,id

)m
i1,...,id=1

. (3.17)

Then it is clear that Snm is a square d-dimensional matrix such that

m∑
i1,...,id=1

sni1,...,id = 1. (3.18)

Define

S+ = {Snm | Snm is a generalized transformation matrix andn,m ∈ N with n ≥ m ≥ 2}.

(3.19)

If we assume that Snm ∈ S+ then define for every j ∈ {1, . . . , d} the partitions of I, πnj :=

{pnj,0, . . . , pnj,m} given in equation (3.13), and define the sample d-copula of order m,

denoted by Cn
m by

Cn
m(u1, . . . , ud) =

{
Snm(Πd)(u1, . . . , ud) if Snm ∈ S+

Πd(u1, . . . , ud) if Snm 6∈ S+,
(3.20)

for every 〈u1, . . . , ud〉 ∈ Id, where Snm(Πd)(u1, . . . , ud) is defined as in equation (3.14).

If we are given a sample from a d-copula C of size n ≥ m, but we do not have any information

about C except the sample, then the terms sni1,...,id from the d-dimensional matrix Snm, give

us the relative frequencies of the sample vectors that belong to Ri for every i ∈ Im, see

equation (3.10), which gives us a partition of Id. So, it seems natural to spread these
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frequencies uniformly on the transformed version of Ri under the partitions πj, that is why

we select Πd the product d-copula to define the sample d-copula in equation (3.20). This idea

is very common in Statistics, for example, the empirical distribution function assigns uniform

mass 1/n to each observed point or vector. On the other hand if Snm is not a generalized

transformation matrix, as defined above, we define the sample d-copula as Πd, the reason for

this selection is the fact that for dimension d = 2 and m = 2, if Sn2 is not a transformation

matrix, then there exists at least one column or one row such that the sum of its entries is

zero, and as observed in Fredricks et al [34], if T is a column or row vector then T (Π2) = Π2,

in the remaining case, that is when only one entry in T is non zero, then we could define

T = (1), and in this case T (Π2) = Π2, even when T is not a transformation matrix. For

higher dimensions d ≥ 3, we refer the reader to the gluing method in Siburg and Stoimenov

[66].

Now we analyze some of the main properties of Snm.

Proposition 3.6. Let m ≥ 2, let C be a d-copula and let Un = {x1, · · · ,xn} be an in-

dependent sample of size n ≥ m from C, define qi = VC(Ri) for every i ∈ Im. Then the

square d-dimensional matrix Snm has associated a multinomial distribution with parameters

n and {qi}i∈ICm, where ICm = {i ∈ I | qi > 0}. Besides, we have that 0 ≤ qi ≤ 1/m and∑
i∈Im,ij=k qi = 1/m for every j ∈ {1, . . . , d} and for every k ∈ {1, . . . ,m}.

Proof. Since {Ri}i∈Im in equation (3.10) is a partition of Id, then for every k ∈ {1, 2, . . . , n}

there exists a unique i ∈ Im such that xk ∈ Ri. Observe that from equation (3.18)
∑

i∈Im n ·

sni = n. Now, define qi = ti1,...,id , as in equation (3.11), for every i = 〈i1, . . . , id〉 ∈ Im. If

qi = 0 then P (xk ∈ Ri) = 0 for every k ∈ {1, . . . , n}. So, if we let ICm = {i ∈ Im | qi > 0},

then using the independence of the sample

P
(
Snm =

(
sni1,...,id

)m
i1,...,id=1

)
=

(
n!

Πi∈ICm (n · sni )!

)
Πi∈ICm q

n·sni
i . (3.21)

Therefore, Snm has the desired distribution.

The restrictions on the values of the qi follow from equation (3.12).

Depending on C we can have some simplifications in Proposition 3.6, for example:
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Corollary 3.7. If C = Πd in Proposition 3.6, then

P
(
Snm =

(
sni1,...,id

)m
i1,...,id=1

)
=

(
n!

Πi∈Im (n · sni )!

)(
1

md

)n
, (3.22)

and if C = Md, where Md(u1, . . . , ud) = min{u1, . . . , ud}, then

P
(
Snm =

(
sni1,...,id

)m
i1,...,id=1

)
=

(
n!

Π
i∈IMd

m
(n · sni )!

)(
1

m

)n
. (3.23)

Proof. If C = Πd just observe that qi = 1/md > 0 for every i ∈ Im, and if C = Md then

qi = 1/m if and only if Ri = ((k − 1)/m, k/m]d for some k ∈ {1, . . . ,m}. So, in this case,

IMm = {i ∈ Im | i = 〈k, . . . k〉 for some k ∈ {1, . . . ,m}}.
Now, we state a result about the values of n and m.

Lemma 3.8. Let m ≥ 2 and let C = Πd the product d-copula, and assume that the sample

size of the sample Un satisfies that n = m. Then

P (Smm ∈ S+) =
(m!)d

(md)m
. (3.24)

Proof. First, let d = 2 and m = n, in this case, Im = {1, . . . ,m}2 and if we define

Smm = (smi1,i2)
m
i1,i2=1 as in equation (3.17), then smi1,i2 = |R〈i1,i2〉∩Um|/m. So, there are at most

m vectors, say i1, . . . , im ∈ Im such that |Ril ∩ Um|/m = 1/m > 0 for every l ∈ {1, . . . ,m}.

From Fredricks et al [34], we know that Smm ∈ S+ if each column and each row of Smm have a

positive element. But, since there are at most m entries in Smm which are different from zero,

then there must be exactly one entry different from zero in each row and in each column.

Since Smm is a square matrix of order m, we can do this in m! forms. So using Corollary 3.2

equation (3.22)

P (Smm ∈ S+) = m! ·
(

m!

1! · · · 1!

)(
1

m2

)m
=

(m!)2

m2m
.

For d > 2 we proceed in a similar way. We know that Smm is a d-dimensional square matrix

of order m, so, Smm ∈ S+ if and only if there is exactly one entry of Smm different from zero

in each coordinate. In this case, proceeding as in the case d = 2, in the first coordinate we
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can select the non-zero entry in md−1 forms, for the second coordinate we have (m − 1)d−1

forms, etc. Then using Corollary 3.2, equation (3.22) again

P (Smm ∈ S+) = Πm
l=1(l)d−1 ·

(
m!

1! · · · 1!

)(
1

md

)m
=

(m!)d

(md)m
,

which finishes the proof.

Remark 3.9. From the proof of Lemma 3.3, it is clear that if the sample size n is less than

m, that is, n < m, then S+ = ∅, that is why we asked for the condition n ≥ m in the

definition of a sample d-copula of order m.

Now we give some asymptotic results about Cn
m.

Theorem 3.10. Let m ≥ 2 , n ≥ m and let Un be an independent sample of size n from a

d-copula C for some fixed d ≥ 2. Define Cn
m as in equation (3.20). Let Snm the d-dimensional

square matrix induced by the sample Un given in equations (3.16) and (3.17). Then for every

i = 〈i1, . . . , id〉 ∈ Im with m fixed,

lim
n→∞

sni1,...,id = VC(Ri) almost surely. (3.25)

The elements in the partitions {pnj,0, pnj,1, . . . , pnj,m} given in equation (3.13) satisfy that for

every j ∈ {1, . . . , d} and for every k ∈ {0, 1, . . . ,m},

lim
n→∞

pnj,k =
k

m
almost surely. (3.26)

Therefore, if we define the grid Km = {0, 1/m, 2/m, . . . , (m−1)/m, 1}d, the sample d-copula

Cn
m is such that

lim
n→∞

Cn
m(u1, . . . , ud) = C(u1, . . . , ud) for every 〈u1, . . . , ud〉 ∈ Km almost surely. (3.27)

Finally, if we also let m→∞ with values of m ≈ n1/2d we have that

Cn
m converges uniformly and almost surely to C. (3.28)

Proof. Let m ≥ 2 and d ≥ 2 be fixed integers, let C be a d-copula and let Un be a random

sample from C of size n ≥ m. Let sni1,...,id be defined as in equation (3.16), and observe that

sni1,...,id can be written as

sni1,...,id =
n∑
j=1

1R〈i1,...,id〉(xj)

n
for every i = 〈i1, . . . , id〉 ∈ Im, (3.29)
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where 1A is the indicator function of A. Using the strong law of large numbers (SLLN), we

have that for every i = 〈i1, . . . , id〉 ∈ Im

lim
n→∞

sni1,...,id = P (x ∈ R〈i1,...,id〉) = VC(Ri) almost surely, (3.30)

which proves (3.25). Now using equations (3.12), (3.13) and (3.25), we have that for every

j ∈ {1, . . . , d} and for every k ∈ {1, . . . ,m},

lim
n→∞

pnj,k =
k∑

ij=1

m∑
i1=1

· · ·
m∑

1j−1=1

m∑
ij+1=1

· · ·
m∑
id=1

lim
n→∞

sni1,...,id

=
k∑

ij=1

m∑
i1=1

· · ·
m∑

1j−1=1

m∑
ij+1=1

· · ·
m∑
id=1

VC(R〈i1,...,id〉)

=
k∑

ij=1

1

m
=

k

m
almost surely. (3.31)

So, (3.26) holds. Now, using equations (3.20), (3.1) , (3.14) and their generalizations, it is

clear that (3.27) holds.

Finally, equation (3.28) follows from the upper bounds given by the Pólya urn scheme, see

Table 5 below, and the multivariate normal approximation of the multinomial distribution.

Observe that from equation (3.27), if we let Cm = limn→∞C
n
m, then Cm coincides with µ1

in equation (3.3), for k = m and P = (pi1,...,id)
m
i1,...,id=1‘, where pi1,...,id = m · VC(R〈i1,...,id〉) for

every 〈i1, . . . , id〉 ∈ Im.

In the definition of Cn
m the sample d-copula of order m given in equation (3.20), it is very

important to check when the d-dimensional square matrix Snm belongs to S+, in terms of

the sample size n and the generating copula C. In order to evaluate P (Snm ∈ S+), we will

use C = Πd and a simulation procedure to approximate its value. We already have an exact

value of P (Smm ∈ S+), given in Lemma 3.3, when n = m, which is the limit case. We give

a preliminary study of P (Snm ∈ S+) for d = 2 and with m = 2, 3, 4 and for d = 3, 4 with

m = 2, 3 for n ≥ m, in the case C = Π, using 100,000 simulations. Observe that the case

C = Πd is the uniform case, hence the most “spread” case among the d-copulas. See Tables

1 and 2, where the values of P (Snm ∈ S+) for several values of n ≥ m are approximated

via simulations. Observe that even for small values of n the probability of obtaining a
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generalized transformation matrix is close to one. Also observe that probabilities, in the

limit case n = m, given in Lemma 3.3 are approximated very accurately.

In order to compare behaviors, we obtained 100,000 simulations in dimensions d = 2 and

d = 3 and different sample sizes n from several families, such as M2,M3,W 2, Frank, Clayton,

Normal with different parameters to compare the behavior of P (Snm ∈ S+) to the samples

coming from the product copula of dimension d = 2 and d = 3. Some of these results can be

seen in Table 3 and Table 4. From Tables 1 and 3 we observe that for very small values of n

the product copula gives smaller probabilities of P (Snm ∈ S+) than the other distributions,

we also have that M2 produces the largest probabilities compare to the other distributions.

However, for values of n between 30 and 50 the probabilities are quite similar for all the

distributions. Similar observations can be obtained from Tables 2 and 4.

We simulated several extra examples with copulas with Spearman’s rho varying from −1 to

0, and we obtained very similar results. For example for d = 2, W 2 gives very similar results

as M2, as expected.

For a further exploration of these results we recommend to see the algorithms to generate

samples of d-copulas in Mai and Scherer [48].

Another way of finding an upper bound for P (Snm ∈ S+) is to use the Pólya approach.

Consider k boxes and n ≥ k balls, for each ball we select uniformly one of the boxes and

the ball is placed inside that box, we repeat independently the procedure for the n balls.

We want to find the probability that at the end of this procedure there are no empty boxes,

let us call this event En
k . This probability is known as the Maxwell-Boltzmann occupancy

problem formula given by

P (En
k ) =

k∑
j=0

(−1)j
(
k
j

)(
1− j

k

)n
, (3.32)

see for example Mahmoud [47] page 37. Observe that if we have a sample of size n from the

copula product Πd and we take 2 ≤ m ≤ n, then the md boxes used in the construction of

the empirical copula of size m have the same probability 1/md. If we assume that n ≥ md

and k = md, in the occupancy problem above it is clear that the matrix Snm ∈ S+ if every

box has at least one ball (observation). Then P (En
k ) ≤ P (Snm ∈ S+). So, if we find a value of

n, depending on k, such that P (En
k ) ≈ 1, then we have that Snm is generalized transformation

matrix with very high probability. We proposed to use n(k) the minimum value of n such
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that P (E
n(k)
k ) ≥ 0.99999995, if we use the language R and we obtain a probability satisfying

this condition it is reported as 1.

Table 1.- Approximations of P (Snm ∈ S+) for d = 2 and m = 2, 3, 4

value of n d = 2 andm = 2 d = 2 andm = 3 d = 2 andm = 4
2 0.24980 - -
3 0.56013 0.04890 -
4 0.76562 0.19765 0.00867
5 0.88051 0.37881 0.05392
10 0.99588 0.89792 0.61116
15 0.99984 0.98655 0.89724
20 1 0.99849 0.97408
25 1 0.99979 0.99378
30 1 0.99998 0.99870
35 1 1 0.99950
40 1 1 0.99990
45 1 1 0.99995
50 1 1 1

Table 2.- Approximations of P (Snm ∈ S+) for d = 3, 4 and m = 2, 3

value of n d = 3 andm = 2 d = 3 andm = 3 d = 4 andm = 2 d = 4 andm = 3
2 0.12505 - 0.06192 -
3 0.42239 0.01112 0.31648 0.00249
5 0.82229 0.23426 0.76920 0.14455
10 0.99381 0.85042 0.99238 0.80913
15 0.99980 0.97938 0.99980 0.97177
20 0.99998 0.99759 0.99998 0.99625
25 1 0.99971 1 0.99959
30 1 0.99995 1 0.99997
35 1 1 1 0.99999
40 1 1 1 1
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Table 3.- Approximations of P (Snm ∈ S+) for d = 2 and m = 4 under different distributions

value of n Clayton θ = 2 Frank θ = 5 Normal ρ = 0.5 M2

4 0.01393 0.01272 0.01037 0.09364
5 0.06941 0.06674 0.05859 0.23416
10 0.62622 0.62193 0.61671 0.78161
15 0.90017 0.89780 0.89658 0.94685
20 0.97561 0.97532 0.97600 0.98712
25 0.99433 0.99395 0.99428 0.99694
30 0.99866 0.99860 0.99863 0.99934
35 0.99948 0.99967 0.99967 0.99988
40 0.99991 0.99992 0.99993 0.99997
45 0.99999 0.99999 0.99995 0.99998
50 0.99999 0.99999 0.99999 0.99998

Table 4.- Approximations of P (Snm ∈ S+) for d = 3 and m = 3 under different distributions

value of n Clayton θ = 2 Frank θ = 5 Normal ρ = 0.5 M3

3 0.02657 0.02285 0.01597 0.21962
5 0.29490 0.28744 0.25843 0.61540
10 0.86428 0.86021 0.85690 0.94941
15 0.98036 0.98036 0.97966 0.99249
20 0.99725 0.99750 0.99737 0.99903
25 0.99971 0.99966 0.99962 0.99989
30 0.99999 0.99995 0.99999 0.99999
35 1 0.99999 1 1
40 0.99999 1 1 1

We obtained the values of n(k) for 1 ≤ k ≤ 150, see some values on Table 5, and we fit

linear and non linear models to check its behavior. We found that a linear model is a good

approximation and that for large values of k the estimated line remains above the real values

of n(k). Observe that from Tables 1 and 2 the value of n such that P (Snm ∈ S+) is close to

one is actually smaller than the values of n(k) where k = md in the Pólya urn scheme even

for small values of k.

Table 5.- Values of n(k) such that of P (E
n(k)
k ) ≈ 1 for k of the form md

value of k 4 8 9 16 25 27 32 49 64 81 100
value of n(k) 64 142 162 304 491 533 639 1005 1332 1708 2131
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In the remaining part of this section we will study some important statistical applications.

Assume that d = 2 and recall that the main concordance measures are Kendall’s tau and

Spearman’s rho. If C is a copula we know that

τC = 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v)− 1 and ρC = 12

∫ 1

0

∫ 1

0

uvdC(u, v)− 3, (3.33)

see for example [58], equations 5.1.7 and 5.1.15b. Let 2 ≤ m ≤ n and let Un = {x1, . . . ,xn}

be a sample of size n of a copula C, or a modified sample of a joint continuous distribution

H(x, y). Define sni1,...,id , S
n
m,S+ and Cn

m as in equations (3.16), (3.17), (3.19) and (3.20), and

assume that Snm = (snij)
m
i,j=1 is a transformation square matrix of order m. Using the same

notation as in Fredricks et al [34] it is easy to see that for every i, j ∈ {0, 1, . . . ,m}∫ ∫
Rij

Cn
m(u, v)dCn

m(u, v) =

∫ qj

qj−1

∫ pi

pi−1

Cn
m(u, v)

sij
(p1 − pi−1)(qj − qj−1)

dudv

=
∑
i′<i

∑
j′<j

si′j′sij +
∑
j′<j

sij′sij
2

+
∑
i′<i

sij′sij
2

+
s2
ij

4
, (3.34)

and ∫ ∫
Rij

uvdCn
m(u, v) =

∫ qj

qj−1

∫ pi

pi−1

uv
sij

(p1 − pi−1)(qj − qj−1)
dudv

=
sij
4

(pi−1 + pi)(qj−1 + qj). (3.35)

Using (3.34) and (3.35) we can prove the following:

Lemma 3.11. Let d = 2 and let Un = {x1, . . . ,xn} be a sample of size n of a copula C,

or a modified sample of a joint continuous distribution H(x, y). Define sni1,...,id , S
n
m,S+ and

Cn
m as in equations (3.16), (3.17), (3.19) and (3.20), and assume that Snm = (snij)

m
i,j=1 is a

transformation square matrix of order m. Then

τCnm =
m−1∑
i=1

m−1∑
j=1

m∑
i′=i+1

m∑
j′=j+1

snijs
n
i′j′ −

m∑
i=1

m∑
j=2

m∑
i′=i+1

j−1∑
j′=1

snijs
n
i′j′ , (3.36)

and

ρCnm = 3

(
m∑
i=1

m∑
j=1

snij(pi−1 + pi)(qj−1 + qj)− 1

)
. (3.37)
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Besides,

τCnm ∈
[
−
(

1− 1

m

)
,

(
1− 1

m

)]
and ρCnm ∈

[
−
(

1− 1

m2

)
,

(
1− 1

m2

)]
. (3.38)

Observe that if n is a multiple of m and snii = 1/m for every i ∈ {1, . . . ,m}, with snij = 0 if

i 6= j, then the upper bounds in (3.38) are attained. For example if m = 2, and we consider

a copula C such that VC(R〈1,1〉) = 1/2 = VC(R〈2,2〉). Here we consider two extreme cases let

C1(u, v) = M2(u, v) = min{u, v} for every 〈u, v〉 ∈ I2 and C2(u, v) = max{0, u + v − 1/2}

if 〈u, v〉 ∈ R〈1,1〉, C2(u, v) = 1/2 + max{0, u + v − 3/2} if 〈u, v〉 ∈ R〈2,2〉 and C2(u, v) = 0

otherwise, that is, C2 is a shuffle of M2. In this case using (3.33) it is easy to see that

τC2 = 0 and ρC2 = 1/2, and obviously τM2 = ρM2 = 1. In general, for any m > 2 if we let

C1 = M2 and if we define C2 to be a shuffle of M that behaves like W 2 on each R〈i,i〉 for every

i ∈ {1, . . . ,m} then we have that τC2 = 1 − 2/m and ρC2 = 1 − 2/m2, but τM2 = ρM2 = 1.

Therefore, the upper bounds in (3.38) are the average of the minimum and maximum values

of τC and ρC when we only know that VC(R〈i,i〉) = 1/m for every i ∈ {1, . . . ,m}. Of course

for the lower bounds we have a similar result. In order to see how the above methodology of

estimation of measures of concordance works, we simulated 10000 samples from the normal

copula in dimension d = 2 of sizes n = 100 and n = 200 for different values of ρ between −1

and 1. In Table 6 we report the results of the estimations of ρ, when n = 200 with ρ = 0 and

ρ = 0.5, and for m = 5, 7, 12, 15. Of course when ρ = 0 we are sampling from the product

copula Π2.

Table 6.- Estimations of ρ for n = 200 and real values ρ = 0 and ρ = 0.5

ρ = 0 ρ = 0.5
m E(ρ̂) Var(ρ̂) E(ρ̂) Var(ρ̂)
5 0.000203 0.004563 0.43255 0.003174
7 -0.000567 0.004817 0.45464 0.003079
12 -0.001174 0.004945 0.47136 0.003124
15 0.000470 0.004974 0.47417 0.003079

In Table 6 we can observe that when ρ = 0 the expected value of ρ is close to 0 even for

small m, and for the case ρ = 0.5 the expected values approach 0.5 from the left when m

increases and the variances are stable in both cases. We also observed that the variances

decrease when the simple size increases form n = 100 to n = 200. For positive values of ρ

the behavior of the expected values and variances is similar to the case ρ = 0.5.
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Table 7.- Estimations of ρ for n = 200 when ρ = 1

m E(ρ̂) Var(ρ̂) min(ρ̂) max(ρ̂) upper bound of ρ̂
2 0.74626 0.00002713 0.69532 0.75 0.75
5 0.95760 0.00000292 0.94329 0.95997 0.96
9 0.98614 0.00000058 0.98008 0.98760 0.98765
12 0.99189 0.00000026 0.98574 0.99192 0.99305
15 0.99460 0.00000013 0.99212 0.99542 0.99555

In Table 7 we first observe that if ρ = 1 we are sampling from the copula M2 then the

expected values approach 1 quickly when m increases. Evenmore, if we observe the values

of the minima and maxima they approach the upper bound of ρCnm in equation (3.38), which

reflects in smaller variances. Besides, the worst case in the 10000 simulations when n = 200

and m = 15 is 0.99212 which is very close to one. For negative values of ρ we obtained

similar results.

As a second statistical application we proposed a method for the estimation of a parameter

when we are sampling from a parametric family {Cθ|θ ∈ Θ} with Θ ⊂ RI .

For some parametric families {Cθ|θ ∈ Θ} in dimension d, it is possible to make good estima-

tion of the parameter θ using the sample d copula of order m, even in the case when m = 2.

For example, in the case of some multivariate parametric Archimedean copulas, we observe

that VCθ([0, 1/2]d) is a continuous strictly monotone function f of the parameter θ ∈ Θ ⊂ RI

for any d ≥ 2. This is the case for example in the families Clayton with θ ∈ (0,∞), Frank

with (0,∞), Ali-Mikhail-Haq with θ ∈ [0, 1), Gumbel-Hougaard with θ ∈ [1,∞), etc, see

[58] Table 4.1. Then by estimating VCθ([0, 1/2]d) using sn1,1,...,1 in the generalized transfor-

mation matrix Snm as defined in equation (3.17), we can find a unique value of θ̂ such that

f(θ̂) = sn1,1,...,1. In general, we need to find f−1 in order to give θ̂, but in many cases f−1

may not have an analytic expression. However, it can be approximated very accurately with

a numerical procedure.

Observe that when m = 2 from Proposition 3.1, we are trying to estimate the value of θ ∈ Θ

such that f(θ) = VCθ(Ri0) = pi0 = Cθ(1/2, 1/2, . . . , 1/2), where i0 = 〈1, 1, . . . , 1〉, based on a

sample from Cθ of size n. We know from the basic properties of the multinomial distribution

that the number of observations that fall in the d-box Ri0 , let us say Xi0 , is distributed

as a binomial with parameters n and pi0 . Therefore, sn1,1,...,1 = Xi0/n is distributed as a

rescaled binomial with values in {0, 1/n, 2/n, . . . , 1}, and for n large enough sn1,1,...,1 is a
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good estimator of f(θ), hence θ̂ = f−1(sn1,1,...,1) is a good estimator of θ. The procedure of

estimation follows the next steps:

1.- Find the direct image f [Θ] = {f(θ) = Cθ(1/2, . . . , 1/2)|θ ∈ Θ} ⊂ I for the family

{Cθ|θ ∈ Θ}.

2.- Given a sample Un = {x1, . . . , xn} find the value of sn1,1,...,1 in the construction of the

sample

d-copula of order m = 2. If sn1,1,...,1 ∈ intf [Θ] proceed with the next steps.

3.- If f−1 has an analytic expression define θ̂ = f−1(sn1,1,...,1), and we are done. In other case,

if Θ is bounded, give a fine grid of Θ, to approximate f [Θ], otherwise give a fine grid of a

bounded subset Θ0 of Θ such that sn1,1,...,1 ∈ f [Θ0] and it is close to f [Θ], and use a linear

interpolation to estimate f−1(sn1,1,...,1) = θ̂.

As an application of this methodology we use the Frank family of copulas for d = 2 and d = 3.

In the case d = 2 it is easy to see that f [Θ] = (0, 1/4)∪ (1/4, 1/2) and f(θ) = Cθ(1/2, 1/2) is

a strictly increasing function which is symmetric with respect to the point 〈0, 1/4〉. If d ≥ 3

then f [Θ] = [1/2d, 1/2) since θ ≥ 0. In these cases f−1 has no analytic expression, so, we

use the grid construction defined above to estimate θ.

We generated 5000 samples of different sizes n = 500, 1000, 10000, 50000, 100000 from the

Frank copula with parameters θ = 2 and θ = 5. In Tables 8, 9, 10 and 11 we can see the

basic statistics of the estimations for the 5000 samples.

Table 8.- Estimations of θ for the Frank copula with d = 2 and θ = 2

n E(θ̂) Var(θ̂) min(θ̂) max(θ̂)
500 2.03938 0.582948 -0.51333 5.54950
1000 2.01002 0.286775 0.35233 3.97850
10000 2.00103 0.027756 1.42433 2.65066
50000 2.00187 0.005590 1.74500 2.27800
100000 1.99985 0.002830 1.81266 2.19766

Table 9.- Estimations of θ for the Frank copula with d = 3 and θ = 2

n E(θ̂) Var(θ̂) min(θ̂) max(θ̂)
500 2.00465 0.215213 0.37775 3.63266
1000 2.00282 0.103440 0.94150 3.33600
10000 2.00082 0.010230 1.61925 2.42125
50000 2.00155 0.002118 1.85150 2.20225
100000 2.00017 0.001008 1.88675 2.10825



3.2. SAMPLE D-COPULA OF ORDER M 83

Table 10.- Estimations of θ for the Frank copula with d = 2 and θ = 5

n E(θ̂) Var(θ̂) min(θ̂) max(θ̂)
500 5.17081 1.950315 1.57509 13.84323
1000 5.07970 0.891967 2.29133 10.10000
10000 5.01109 0.083791 3.90100 6.12500
50000 5.00001 0.016473 4.58750 5.53900
100000 5.00227 0.008161 4.69700 5.32500

Table 11.- Estimations of θ for the Frank copula with d = 3 and θ = 5

n E(θ̂) Var(θ̂) min(θ̂) max(θ̂)
500 5.07597 0.678271 2.66900 10.07200
1000 5.04366 0.319974 3.16400 7.27900
10000 5.00105 0.031167 4.40900 5.67650
50000 5.00303 0.006224 4.73633 5.28200
100000 5.00040 0.002999 4.82266 5.22500

As can be observed in Tables 8, 9, 10 and 11, the average estimation of θ is good in all cases,

and as expected the variances decrease as n increases. The minima and maxima of the

estimations are relatively far from each other when the sample size is n = 500. So, we do not

recommend to use this methodology for small n. It is also very important to observe that,

as expected from the binomial distribution and the central limit theorem, the estimation of

θ is quite good for n = 100000, but if we try to use the empirical distribution function when

d = 3, we would need an array of 1015 terms, which is needed to perform calculations in

order to estimate θ, which no computer can handle. However, in our tables the elapsed time

for each simulation was 15.98 seconds for θ = 2 and d = 3, and 16.25 seconds for θ = 5 and

d = 3.

As a third application we propose a simple goodness-of-fit test. Let us assume that we take

a sample of size n coming from a d-copula C and we take 2 ≤ m ≤ n a fixed integer. Let Ri

for i ∈ Im be the partition of Id in the construction of the sample d-copula, and assume that

Snm =
(
sni1,...,id

)m
i1,...,id=1

is a generalized transformation matrix. From Proposition 3.1 we know

that the square d-dimensional matrix Snm has a multinomial distribution with parameters n

and {qi}i∈ICm , where ICm = {i ∈ Im | qi > 0}. Therefore, we want to test the simple hypothesis

H0 : Snm  Mult
(
n, {qi}i∈ICm

)
, (3.39)
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against the alternative composite hypothesis H1 : Snm 6 Mult
(
n, {qi}i∈ICm

)
. In the literature

there are several proposals for a goodness-of-fit test for the multinomial distribution, see for

example [7] or [60]. In order to prove H0 vs H1 we used the most common statistics, that

is, Pearson’s χ2, which has asymptotically a chi-squared distribution with k − 1 degrees of

freedom, where k denotes de the cardinality of ICm.

Here we present a couple of examples:

In the first one we choose the case d = 2, m = 2, and the Frank copula with θ = 10,

and different values of n, in this case q〈1,1〉 = q〈2,2〉 = 0.43136 and q〈1,2〉 = q〈2,1〉 = 0.06844.

In Table 12 we give the basic statistical results of 10000 simulations with values of n =

5, 25, 100, 250, 500 and n = 1000. As we can observe, even for n as small as 25, the expected

values of sni,j for i, j ∈ {1, 2} are close to the real ones, with smaller variances as n increases

as expected. In Table 13 we present the results of the number of rejections of H0 at level

α = 0.05 for n = 100, 250, 500, 1000 and the mean of the p-values of the 10000 tests. From

these results we can see that the test performs as expected when α = 0.05. In order to check

the power of the test, depending on θ the parameter of the Frank copula, we performed

10000 tests of H0 as above, for n = 1000 with different values of θ varying from θ = 6 up to

θ = 15 taking integer values, the number of rejections of H0 in order were 9997 for θ = 6,

9815 for θ = 7, 6692 for θ = 8, 1860 for θ = 9, 1147 for θ = 11, 3577 for θ = 12, 6646 for

θ = 13, 8816 for θ = 14 and 9709 for θ = 15.

Table 12.- Estimations of snij, i, j ∈ 1, 2 for the Frank copula with d = 2, m = 2 and θ = 10

n E(sn1,1) Var(sn1,1) E(sn1,2) Var(sn1,2) E(sn2,1) Var(sn2,1) E(sn2,2) Var(sn2,2)

5 0.4359 0.03509 0.0668 0.01200 0.0658 0.01196 0.4315 0.03426
25 0.4312 0.00973 0.0681 0.00263 0.0690 0.00254 0.4316 0.00986
100 0.4431 0.00244 0.0688 0.00063 0.0685 0.00064 0.4319 0.00244
250 0.4312 0.00099 0.0683 0.00025 0.0685 0.00025 0.4320 0.00101
500 0.4312 0.00049 0.0688 0.00013 0.0686 0.00013 0.4314 0.00048
1000 0.4314 0.00025 0.0686 0.00006 0.0687 0.00006 0.4313 0.00024

Table 13.- Rejections of H0 for the Frank copula with d = 2, m = 2 and θ = 10

n Number of rejections Mean of p-value
100 485 0.50105
250 487 0.49428
500 508 0.49923
1000 492 0.50140
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As a second example we generated 10000 simulations of the copula M2 for m = 3 and

different values of n between 5 and 1000. In this case q〈1,1〉 = q〈2,2〉 = q〈3,3〉 = 1/3 and zero in

any other case. On Table 14 we report the basic statistics of the simulations. On Table 15

we report the number of rejections of H0 for n ≥ 25, and observe that even for n = 25 we

obtain nice results.

Table 14.- Estimations of snij, i, j ∈ 1, 2 for the copula M2 with d = 2 and m = 3

n E(sn1,1) Var(sn1,1) E(sn2,2) Var(sn2,2) E(sn3,3) Var(sn3,3)

5 0.33288 0.019545 0.33364 0.019482 0.33347 0.019482
25 0.33371 0.008919 0.33326 0.008833 0.33302 0.008880
100 0.33331 0.002206 0.33327 0.002223 0.33340 0.002229
250 0.33340 0.000889 0.33319 0.000889 0.33340 0.000889
500 0.33329 0.000444 0.33331 0.000445 0.33339 0.000445
1000 0.33324 0.000222 0.33336 0.000222 0.33339 0.000223

Table 15.- Rejections of H0 for the M2 copula with d = 2 and m = 3

n Number of rejections Mean of p-value
25 477 0.49930
100 543 0.49839
250 496 0.49869
500 498 0.50014
1000 507 0.49868

Observe that the null hypothesis (3.39) does not characterize a unique copula, but only

gives the volumes of the d-boxes needed in the construction of a d-sample copula of order

m. However, when m is large enough (3.39) approximates closely the underlying copula C,

by Theorem 3.5. We also performed simulations for d = 3 for different families of 3-copulas

obtaining similar results. Of course, we can also use different statistics to test (3.39), for

example the ones proposed in [7] or [60].

It is very important to observe that it may be possible to make bayesian inference. By

Proposition 1, we know that the square d-dimensional matrix Snm needed in the construction

of the d sample copula of order m follows a multinomial distribution, with restrictions on the

values of the pi for qi ∈ ICm. So, we could try to extend the classical approach of considering

a Dirichlet prior for the parameters in order to obtain the posterior distribution based on a

sample, as in [3]. But, this is material for future research.

Now we study the general setting of the sample d-copulas.
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3.2.2 Sample d-Copula of Order m for a Continuous d-Distribution

Function

Let m, d ≥ 2 be fixed integers and let H be a continuous d-distribution function in RI d. Let

Vn = {z1, . . . , zn} be a random sample from H of size n ≥ m. Let Un = {x1, . . . ,xn} be the

usual modified sample or pseudo sample, that is, if j ∈ {1, . . . , n} and zj = 〈zj,1, . . . , zj,d〉 ∈

RI d, define for k ∈ {1, . . . , d}

Rj,k =
n∑
l=1

1{zl,k≤zj,k}, (3.40)

where Rj,k is the rank of the observation zj,k for l varying between 1 and n. Now define for

every j ∈ {1, . . . , n}, xj = 〈xj,1, . . . , xj,d〉 where

xj,k =
Rj,k

n
and for every k ∈ {1, . . . , d}. (3.41)

Then

Un = {x1, . . . ,xn} ⊂ {1/n, . . . , (n− 1)/n, 1}d ⊂ Id . (3.42)

Of course, from the continuity assumption on H, the ranks in the definition of xj are all

different for every j ∈ {1, . . . , n} almost surely.

Recall that the empirical d-copula for the modified sample Un is defined by

Cn(u1, . . . , ud) =
1

n

n∑
j=1

1{xj,1≤u1,...,xj,d≤ud}, (3.43)

for every 〈u1, . . . , ud〉 ∈ Id, see for example Nelsen [58]. Observe that the empirical d-copula

is not a d-copula. For example, if u = 〈u1, . . . , ud〉 and 0 < u1 < 1/n then Cn(u1, . . . , ud) = 0.

In fact, since Cn(u1, . . . , ud) = 0 if for some j ∈ {1, . . . , d}, uj = 0. Then it is well known

that the restriction of Cn to the grid {0, 1/n, . . . , (n− 1)/n, 1} is a d-subcopula.

For m ≥ 2, n ≥ m and Un a modified random sample from a continuous d-distribution

function H. Define sni1,...,id , S
n
m,S+ and Cn

m as in equations (3.16), (3.17), (3.19) and (3.20).

In this case the structure of the modified sample Un simplifies significantly the structure of

the sample d-copula of order m, as can be seen in the following:

Theorem 3.12. Let Un be a modified random sample obtained from an original random

sample Vn of H a continuous d-distribution function in RI d. Define sni1,...,id , S
n
m,S+ and Cn

m
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as in equations (3.16), (3.17), (3.19) and (3.20). Then

Snm ∈ S+ for every 2 ≤ m ≤ n, (3.44)

that is, Snm is always a generalized transformation square matrix. Besides, if 2 ≤ m ≤ n and

we define for every j ∈ {1, . . . , d} the partitions πnj = {0 = pj,0, pj,1, . . . , pj,m−1, pj,m = 1}

given in equation (3.13), then

pj,k =
bk·n
m
c

n
for every j ∈ {1, . . . , d} and for every k ∈ {1, . . . ,m}, (3.45)

where bac denotes the greatest integer less than or equal to a. In particular, when n = m,

πnj = {0, 1/n, . . . , (n− 1)/n, 1} for every j ∈ {1, . . . , d}.

Even more, when n = m ≥ 2 the sample d-copula Cn
n is such that

Cn
n(u1, . . . , ud) = Cn(u1, . . . , ud) for every 〈u1, . . . , ud〉 ∈ {0, 1/n, . . . , (n−1)/n, 1}d, (3.46)

that is, we recover the empirical d-copula given in equation (3.43) on the grid {0, 1/n, . . . , 1}d.

Proof. Let Un be a modified random sample obtained from an original random sample Vn

of H a continuous d-distribution function in RI d and define sni1,...,id , S
n
m,S+ and Cn

m as in

equations (3.16), (3.17), (3.19) and (3.20).

Of course, it is enough to see that equation (3.44) holds for the limit case, that is, when

n = m ≥ 2. So Assume that n = m ≥ 2, in this case, from equations (3.40) and (3.41), we

know that xj,k = Rj,k/n for every j, k ∈ {1, . . . , n}. But, since all the ranks are different

with probability one, we have that the matrix Snn = (sni1,...,id)
n
i1,...,id=1, given in equation (3.17),

satisfies that for every j ∈ {1, . . . , d} and for every k ∈ {1, . . . , n}

n∑
i1=1

· · ·
n∑

ij−1=1

n∑
ij+1=1

· · ·
n∑

id=1

sni1,...,ij−1,ij=k,ij+1,...,id
=

1

n
. (3.47)

Therefore, Snn is a d-dimensional square matrix which is a generalized transformation matrix,

that is, Snn ∈ S+. So, (3.44) holds.

Now, assume that m is such that 2 ≤ m ≤ n and define for every j ∈ {1, . . . , d} the partitions

πnj = {0 = pj,0, pj,1, . . . , pj,m−1, pj,m = 1} given in equation (3.13). Then we know that

pj,k =
k∑

ij=1

m∑
i1=1

· · ·
m∑

ij−1=1

m∑
ij+1=1

· · ·
m∑
id=1

sni1,...,ij−1,ij ,ij+1,...,id
.
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Now using the sample size n, the partition of Id given by {Ri}i∈Im , see equation (3.10), and

by equation (3.29), we have that there are b(k · n)/mc points in the regions defined by pj,k,

where bac is the greatest integer less than or equal to a. Therefore, (3.45) holds.

Finally, if we assume that n = m ≥ 2, using the definition of the d-sample copula of order

n, Cn
n given in equation (3.20), the definition of the empirical copula in equation (3.43), the

partition given in equation (3.10), together with (3.14) and its generalizations. It is easy to

see that equation (3.46) also holds.

Observe that in the last Theorem, if n is a multiple of m, then by equation (3.45), pj,k = k/m

for every j ∈ {1, . . . , d} and for every k ∈ {1, . . . ,m}, that is, we recover the original partition

of Id. In the case that n is not a multiple of m the partition given in equation (3.45) is still

a good approximation of the original partition given by {Ri}i∈Im in equation (3.10).

The statistical procedures presented in Section 3.2.1 can be used for modified samples. For

example, in the case of the concordance measures Kendall’s tau and Spearman’s rho, we can

observe that if we have two continuous random variables X and Y , such that Y = f(X),

where f is a strictly increasing function almost surely, then it is well known that the copula

CX,Y is the M2 copula. But, in this case, it is obvious to see that if we have an independent

random sample of size n of 〈X, Y 〉, and we take m = n, then τCnn = 1−1/n and ρCnn = 1−1/n2

with probability one, which correspond to the upper bounds in (3.38). So, even for small

values of n both measures are close to one.

In order to see how the estimation procedure in Section 3.2.1 works for modified samples,

we generated 10000 samples of different sizes n of a joint distribution with exponential

margins and corresponding copula Frank with parameter θ = 5 and d = 2. We use n =

200, 500, 1000, 5000 and n = 10000. In general the results had the same behavior as the one

in Table 10, providing good estimators of θ.

As an application of the hypothesis testing of (3.39) with modified samples we generated

10000 samples of Z = 〈X1, X2, X3〉 of three independent normal variables with corresponding

variances 1, 4 and 9, with different sample sizes n = 500, 1000, 10000 and n = 100000. Then

we obtained the modified samples for each simulation, and we calculate the corresponding

3-dimensional transformation matrices Sn3 for m = 3. Finally we tested the hypothesis

H0 : q〈i,j,k〉 = 1/27 = 0.0370370 for i, j, k ∈ {1, 2, 3}, corresponding to independence.

Instead of giving large tables we report only the extreme cases for each sample size for the
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twenty seven 3-boxes included in each test.

For n = 500 the minimal expected value observed was 0.03683, the maximal expected value

was 0.03727, the minimal value observed was 0.006 and the maximal was 0.078, and the

maximal variance was 0.0000554. For n = 1000 the minimal expected value observed was

0.03690, the maximal expected value was 0.03726, the minimal value observed was 0.013

and the maximal was 0.065, and the maximal variance was 0.0000277. For n = 10000 the

minimal expected value observed was 0.03700, the maximal expected value was 0.03706, the

minimal value observed was 0.0297 and the maximal was 0.044, and the maximal variance

was 0.0000028. For n = 100000 the minimal expected value observed was 0.037020, the

maximal expected value was 0.037056, the minimal value observed was 0.03499 and the

maximal was 0.03935, and the maximal variance was 0.00000028. From these results it is

clear that the estimations of the qi largely improve as n increases.

When we implement the hypothesis testing we observed that when α = 0.05, the number of

rejections of (3.39) was quite small for n ≥ 500.

We also applied the test with m = 2 and d = 3 with similar results. It is quite important

to provide elapsed times for each individual run, from different sample sizes. In Table 16

we give the average elapsed times of each test using modified samples, and the last column

gives us the average times to find the empirical copulas. We observed that for n ≥ 600

the language R can not allocate arrays of the required size (NA). We ran our simulations

using the language R in a Dell Precision 490 Workstation. It is clear that the elapsed times

increase linearly with the sample size n, instead of polynomially as it is the case for the

empirical copula.

Table 16.- Elapsed times for different sample sizes n in dimension d = 3

n seconds for m = 2 seconds for m = 3 seconds for m = n
50 0.007 0.03 113.28
100 0.017 0.06 1799.36
500 0.08 0.25 722061
1000 0.15 0.50 NA
10000 1.57 4.87 NA
100000 15.94 48.28 NA

The empirical d-copula has big restrictions in terms of evaluations in computers, for example

if we consider a sample size n = 1000 in dimension d = 4, then we need an array of

1012 entries, and in many situations we have to perform calculations with this array, which
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generally can not be supported in a computer. The sample d copula of order m only needs

an array of md entries which is more manageable specially for small m. Since we can use in

its definition 2 ≤ m ≤ n, we recommend to use m = 2 as the first approximation, in many

instances the sample d-copula of order 2 gives us some preliminary information about the

data, as observed in Section 3.2.

The sample d-copula of orderm can be used in several statistical procedures, such as goodness

of fit tests, tests of symmetry, estimation of one or more parameters in parametric models,

etc.

Of course by equation (3.46) in Theorem 3.7, we can also use all the asymptotic results

known for the empirical d-copula in the case that n = m. In the case that 2 ≤ m < n

we think that the convergence of the sample d-copula of order m has also nice asymptotic

properties, but this is a topic for future research.

3.3 Minimal number of parametersof a d-dimensionally

stochastic matrix

In this section we find the number of parameters necessary for a square d-dimensional matrix

to be a d-dimensional stochastic matrix.

We start this section with the simplest case. Assume that d = 2 and m = 2 and let

P = (pi1,i2)
2
i1,i2=1 be a real square matrix which is doubly stochastic, then using equation

(3.2) we have that P satisfies:

2∑
i1=1

pi1,j = 1 for j = 1, 2, (3.48)

and

2∑
i2=1

pi,i2 = 1 for i = 1, 2. (3.49)

Solving the equations (3.48) and (3.49) we observe that the solution is not unique, and it is

given simply by: If 0 ≤ p1,1 ≤ 1, then p1,2 = p2,1 = 1 − p1,1 and p2,2 = 1 − p1,2 = p1,1, that

is, in this case there is only one parameter let us say 0 ≤ p1,1 ≤ 1 and its value determines

uniquely the values of p1,2, p2,1 and p2,2.

Now assume that d = 2 and m ≥ 3 and let P = (pi1,i2)
m
i1,i2=1 be a real square matrix which
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is doubly stochastic, then using equation (3.2) we have that P satisfies:

2∑
i1=1

pi1,j = 1 for j = 1, 2, . . . ,m, (3.50)

and

2∑
i2=1

pi,i2 = 1 for i = 1, 2, . . . ,m. (3.51)

Observe that (3.50) and (3.51) is a system of 2m equations with m2 variables. Of course if

there is a solution of this system of equations the solution is not unique. First let us observe

that all entries of P are nonnegative and let us define Q = (pi1,i2)
m−1
i1,i2=1. Then from equations

(3.50) and (3.51) we have that

pm,j = 1−
m−1∑
i1=1

pi1,j for every j ∈ {1, . . . ,m− 1} (3.52)

and

pi,m = 1−
m−1∑
i2=1

pi,i2 for every i ∈ {1, . . . ,m− 1}. (3.53)

So, using (3.52) and (3.53) we have that

pm,m = 1−
m−1∑
j=1

pm,j

= 1−
m−1∑
j=1

(
1−

m−1∑
i1=1

pi1,j

)

= −m+ 2 +
m−1∑
j=1

m−1∑
i1=1

pi1,j
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= −m+ 2 +
m−1∑
i=1

m−1∑
i2=1

pi,i2

= 1−
m−1∑
i=1

(
1−

m−1∑
i2=1

pi,i2

)

= 1−
m−1∑
i=1

pi,m. (3.54)

Observe that pi,m and pm,j for i, j ∈ {1, 2, . . . ,m} can be expressed in terms of the entries

of the matrix Q. Hence, the number of parameters required to obtain the matrix P is the

number of entries of the matrix Q, that is, there are (m − 1)2 = m2 − 2(m − 1) − 1 =

md − d(m − 1) − 1 parameters and m2 − (m − 1)2 = 2m − 1 = d(m − 1) + 1 entries of the

matrix P which are determined uniquely in terms of the parameters.

Now, let P
′

= (pi1,i2)
m−1
i1,i2=1 be a real square matrix of order m− 1 with nonnegative entries

which satisfies the following 2(m− 1) + 1 = d(m− 1) + 1 equations:

0 ≤
m−1∑
i1=1

pi1,j ≤ 1 for every j ∈ {1, . . . ,m− 1}, (3.55)

0 ≤
m−1∑
i2=1

pi,i2 ≤ 1 for every i ∈ {1, . . . ,m− 1}, (3.56)

and

m− 2 ≤
m−1∑
i1=1

m−1∑
i2=1

pi1,i2 ≤ m− 1. (3.57)

Then if we extend P
′

to a square matrix P of order m by defining pi,m, pm,j as in equations

(3.52), (3.53) and pm,m as in equation (3.54), we clearly have that P is a doubly stochastic

matrix. Finally, we observe that all equations (3.55), (3.56) and (3.57) are required to obtain

a doubly stochastic matrix.

Example 3.13. Let us take d = 2 and m = 3 and consider the following three square

matrices

P
′

1 =

(
0.2 0.2
0.2 0.2

)
P
′

2 =

(
0.6 0.1
0.6 0.1

)
and P

′

3 =

(
0.4 0.4
0.4 0.4

)
(3.58)
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We first observe that the matrix P
′
1 satisfies the four equation in (3.55) and (3.56), but it

does not satisfy equation (3.57) since
∑m−1

i1=1

∑m−1
i2=1 pi1,i2 = .8 < m − 2 = 1. So, if we try to

define p3,3 = 1 − p1,3 − p2,3 = 1 − 0.6 − 0.6 = −0.2 < 0 then P
′
1 can not be extended to a

doubly stochastic matrix.

In the case of P
′
2 we observe that it satisfies equations (3.55), (3.57) and 0 ≤ p1,2 + p2,2 =

0.2 < 1, but, p1,1 + p2,1 = 1.2 > 1. So, if we try to define p3,1 = 1 − p1,1 − p2,1 = −0.2 < 0,

then P
′
2 can not be extended to a doubly stochastic matrix.

in the case of P
′
3 it satisfies (3.55), (3.56) and (3.57) in this case the extended doubly

stochastic matrix would be:

P3 =

 0.4 0.4 0.2
0.4 0.4 0.2
0.2 0.2 0.6

 .

Now we will consider higher dimensions, that is, d > 2. First, let us consider the case d = 3,

m = 2 and let P = (pi1,i2,i3)
2
i1,i2,i3=1 be a 3-dimensionally stochastic matrix of order m = 2.

In this case, using equation (3.2), P defines a system of 6 equations with 8 variables. Define

A =


1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

 , x =



p1,1,1

p1,1,2

p2,1,1

p2,1,2

p1,2,1

p1,2,2

p2,2,1

p2,2,2


, (3.59)

and let b = (1, 1, 1, 1, 1, 1, 1, 1). We want to find the general solution of the linear equation

A ·x = b, using Mathematica [71] and the function LinearSolve(A.x, b) we obtained a general

solution given by:

p1,2,2 = 1− p1,1,1 − p1,1,2 − p1,2,1,

p2,1,2 = 1− p1,1,1 − p1,1,2 − p2,1,1,

p2,2,1 = 1− p1,1,1 − p1,2,1 − p2,1,1,

p2,2,2 = −1 + p1,1,2 + p1,2,1 + p2,1,1 + 2p1,1,1. (3.60)

From (3.60) we can see that the solutions of A · x = b are given in terms of four parameters,

that is, the set Q = {p1,1,1, p1,1,2, p1,2,1, p2,1,1}, notice that the set of parameters is given by
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all the pi1,i2,i3 , with exactly one ij = 2 = m or without any ij = 2 = m. Also observe

that in general the possible solutions do not have any further restrictions, so, for example

x′ = (−1, 1, 1, 0, 1, 0, 0, 0) is one of the solutions of A · x = b, where x′ denotes x transpose.

Since P = (pi1,i2,i3)
2
i1,i2,i3=1 is a 3-dimensionally stochastic matrix of order m = 2, we have

additional restrictions, that is, 0 ≤ pi1,i2,i3 ≤ 1 for every i1, i2, i3 ∈ {1, 2} then we also have

restrictions on the parameters associated to (3.60) given by:

0 ≤ p1,1,1 + p1,1,2 + p1,2,1 ≤ 1

0 ≤ p1,1,1 + p1,1,2 + p2,1,1 ≤ 1

0 ≤ p1,1,1 + p1,2,1 + p2,1,1 ≤ 1

1 ≤ p1,1,2 + p1,2,1 + p2,1,1 + 2p1,1,1 ≤ 2. (3.61)

Conversely, if we define the set Q as above such that 0 ≤ p1,1,1, p1,1,2, p1,2,1, p2,1,1 ≤ 1, and

we assume that the restrictions in (3.61) are satisfied, then by defining p1,2,2, p2,1,2, p2,2,1

and p2,2,2 using equation (3.60), P = (pi1,i2,i3)
2
i1,i2,i3=1 is clearly a 3-dimensionally stochastic

matrix.

Notice that again the four restrictions in (3.61) are necessary in order to obtain a 3-

dimensionally stochastic matrix. For example if we let p1,1,1 = p1,1,2 = p1,2,1 = p2,1,1 = 0.1,

then using (3.60) we have that p1,2,2 = p2,1,2 = p2,2,1 = 0.7, but, p2,2,2 = −0.5. So,

P = (pi1,i2,i3)
2
i1,i2,i3=1 is not a 3-dimensionally stochastic matrix of order m = 2. Observe

that in this case Q = {p1,1,1, p1,1,2, p1,2,1, p2,1,1} satisfies the first three conditions in (3.61),

but the fourth condition is not satisfied.

As a second example in higher dimensions we consider d = 4 and m = 2, so, let P =

(pi1,i2,i3,i4)
2
i1,i2,i3,i4=1 be a 4-dimensionally stochastic matrix of order m = 2. In this case,

using equation (3.2), P defines a system of 8 equations with 16 variables. Define

A =



1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1


, (3.62)

x = (p1,1,1,1, p1,1,1,2, p1,1,2,1, p1,1,2,2, p1,2,1,1, p1,2,1,2, p1,2,2,1, p1,2,2,2, p2,1,1,1, p2,1,1,2,
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p2,1,2,1, p2,1,2,2, p2,2,1,1, p2,2,1,2, p2,2,2,1, p2,2,2,2) and b = (1, 1, 1, 1, 1, 1, 1, 1). We want to find the

general solution of the linear equation A · x = b, using Mathematica again we obtained a

solution given by:

p2,2,2,2 = −2 + p2,2,1,1 + p2,1,2,1 + p2,1,1,2 + p1,2,2,1 + p1,2,1,2 + p1,1,2,2

+2p1,2,1,1 + 2p1,1,2,1 + 2p1,1,1,2 + 3p1,1,1,1,

p2,2,2,1 = 1− p2,2,1,1 − p2,1,2,1 − p1,2,2,1 − p1,2,1,1 − p1,1,2,1 − p1,1,1,1,

p2,2,1,2 = 1− p2,2,1,1 − p2,1,1,2 − p1,2,1,2 − p1,2,1,1 − p1,1,1,2 − p1,1,1,1,

p2,1,2,2 = 1− p2,1,2,1 − p2,1,1,2 − p1,1,2,2 − p1,1,2,1 − p1,1,1,2 − p1,1,1,1,

p2,2,2,1 = 1− p1,2,2,1 − p1,2,1,2 − p1,2,1,1 − p1,1,2,2 − p1,1,2,1 − p1,1,1,2 − p1,1,1,1

and p2,1,1,1 = 0. Mathematica gives the warning Equations may not give solutions for all

“solve” variables. In this case it is easy to see that if pi1,i2,i3,i4 = 1/8 for every i1, i2, i3, i4 ∈

{1, 2}, then P = (pi1,i2,i3,i4)
2
i1,i2,i3,i4=1 satisfies the linear equation A · x = b, but p2,1,1,1 6= 0.

So, the solution given by Mathematica of the equations above is not the most general solution

of the linear equation A · x = b. However, the equations above show a pattern which allows

to find the most general solution of A · x = b, which is given by:

p2,2,2,2 = −2 + p2,2,1,1 + p2,1,2,1 + p2,1,1,2 + p1,2,2,1 + p1,2,1,2 + p1,1,2,2

+2p2,1,1,1 + 2p1,2,1,1 + 2p1,1,2,1 + 2p1,1,1,2 + 3p1,1,1,1,

p2,2,2,1 = 1− p2,2,1,1 − p2,1,2,1 − p1,2,2,1 − p1,2,1,1 − p1,1,2,1 − p2,1,1,1 − p1,1,1,1,

p2,2,1,2 = 1− p2,2,1,1 − p2,1,1,2 − p1,2,1,2 − p1,2,1,1 − p1,1,1,2 − p2,1,1,1 − p1,1,1,1,

p2,1,2,2 = 1− p2,1,2,1 − p2,1,1,2 − p1,1,2,2 − p1,1,2,1 − p1,1,1,2 − p2,1,1,1 − p1,1,1,1,

p1,2,2,2 = 1− p1,2,2,1 − p1,2,1,2 − p1,2,1,1 − p1,1,2,2 − p1,1,2,1 − p1,1,1,2 − p1,1,1,1. (3.63)

From (3.63) we can see that the solutions of A · x = b are given in terms of eleven pa-

rameters, that is, the set Q = {p1,1,1,1, p1,1,1,2, p1,1,2,1, p1,2,1,1, p2,1,1,1, p1,1,2,2, p1,2,1,2, p1,2,2,1,

p2,1,1,2, p2,1,2,1, p2,2,1,1}, notice that the set of parameters is given by all the pi1,i2,i3 , with

exactly two i′js = 2 = m, or with exactly one ij = 2 = m or without any ij = 2 = m. Ob-

serve also that in the first equation of (3.63), the parameters with exactly two i′js = 2 = m

appear with coefficient 1, the parameters with exactly one ij = 2 = m appear with coefficient
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2 and the parameter without any ij = 2 = m appears with coefficient 3. This observation

will be quite useful later. Since P = (pi1,i2,i3,i4)
2
i1,i2,i3,i4=1 is a 4-dimensionally stochastic

matrix of order m = 2, we have additional restrictions, that is, 0 ≤ pi1,i2,i3,i4 ≤ 1 for every

i1, i2, i3, i4 ∈ {1, 2}, and we also have restrictions on the parameters associated to (3.63)

given by:

0 ≤ p2,2,1,1 + p2,1,2,1 + p1,2,2,1 + p1,2,1,1 + p1,1,2,1 + p2,1,1,1 + p1,1,1,1 ≤ 1

0 ≤ p2,2,1,1 + p2,1,1,2 + p1,2,1,2 + p1,2,1,1 + p1,1,1,2 + p2,1,1,1 + p1,1,1,1 ≤ 1

0 ≤ p2,1,2,1 + p2,1,1,2 + p1,1,2,2 + p1,1,2,1 + p1,1,1,2 + p2,1,1,1 + p1,1,1,1 ≤ 1

0 ≤ p1,2,2,1 + p1,2,1,2 + p1,2,1,1 + p1,1,2,2 + p1,1,2,1 + p1,1,1,2 + p1,1,1,1 ≤ 1

and

2 ≤ p1,1,2,2 + p1,2,1,2 + p1,2,2,1 + p2,1,1,2 + p2,1,2,1 + p2,2,1,1

+2p1,2,2,2 + 2p2,1,2,2 + 2p2,2,1,2 + 2p2,2,2,1 + 3p2,2,2,2 ≤ 3. (3.64)

Conversely, if we define the set Q as above with 0 ≤ pi1,i2,i3,i4 ≤ 1, for every 〈i1, i2, i3, i4〉 and

pi1,i2,i3,i4 ∈ Q, and we assume that the restrictions in (3.64) are satisfied, then by defining

p1,2,2,2, p2,1,2,2, p2,2,1,2, p2,2,2,1 and p2,2,2,2 using equation (3.63), P = (pi1,i2,i3,i4)
2
i1,i2,i3,i4=1 is

clearly a 4-dimensionally stochastic matrix.

Again, it is not difficult to see that all restriction in (3.64) are necessary in order to obtain

a 4-dimensionally stochastic matrix.

As a third example we consider the case d = 3 and m = 3. Let P = (pi1,i2,i3)
3
i1,i2,i3=1 be a 3-

dimensionally stochastic matrix of order m = 3. In this case we have a system of 9 equations

with 27 variables. Using Mathematica we found the general solution which is given by

p1,3,3 = 1− p1,3,2 − p1,3,1 − p1,2,3 − p1,2,2 − p1,2,1 − p1,1,3 − p1,1,2 − p1,1,1

p2,3,3 = 1− p2,3,2 − p2,3,1 − p2,2,3 − p2,2,2 − p2,2,1 − p2,1,3 − p2,1,2 − p2,1,1

p3,1,3 = 1− p3,1,2 − p3,1,1 − p2,1,3 − p2,1,2 − p2,1,1 − p1,1,3 − p1,1,2 − p1,1,1

p3,2,3 = 1− p3,2,2 − p3,2,1 − p2,2,3 − p2,2,2 − p2,2,1 − p1,2,3 − p1,2,2 − p1,2,1

p3,3,1 = 1− p3,2,1 − p3,1,1 − p2,3,1 − p2,2,1 − p2,1,1 − p1,3,1 − p1,2,1 − p1,1,1

p3,3,2 = 1− p3,2,2 − p3,1,2 − p2,3,2 − p2,2,2 − p2,1,2 − p1,3,2 − p1,2,2 − p1,1,2
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and

p3,3,3 = −3 + p3,2,2 + p3,2,1 + p3,1,2 + p3,1,1 + p2,3,2 + p2,3,1 + p2,2,3 + p2,1,3+

p1,3,2 + p1,3,1 + p1,2,3 + p1,1,3+

2p2,2,2 + 2p2,2,1 + 2p2,1,2 + 2p2,1,1 + 2p1,2,2 + 2p1,2,1 + 2p1,1,2 + 2p1,1,1 (3.65)

Notice that in this case we have twenty parameters and the set of parameters is given by all

pi1,i2,i3 with exactly one ij = 3 = m or without any ij = 3 = m. We also observe that in the

last equation of (3.65) the parameters with exactly one ij = 3 = m appear with coefficient

1 and the parameters without any ij = 3 = m appear with coefficient 2.

Finally, observe that in all cases, that is, (3.60), (3.63) and (3.65) the sum of all entries of

P is always m as expected.

Now we will solve the general case, that is, d ≥ 2 and m ≥ 2. But first we will introduce

some notation.

Let Im = {1, 2, . . . ,m} for any integer m ≥ 2, and for any k ∈ {0, 1, 2, . . . , d}, where d ≥ 2,

define

Idm,k = { 〈i1, i2, . . . , id〉 ∈ Idm | with exactly (d− k) coordinates equal to m}. (3.66)

Now we state and prove our main result:

Theorem 3.14. Let d ≥ 2 and m ≥ 2 be two integers, let P = (pi1,i2,...,id)〈i1,...,id〉∈Idm be

a d-dimensionally stochastic square matrix. Then P satisfies the following d(m − 1) + 1

equations

0 ≤ pm,m,...,m = m+ d−md+
d∑

k=2

(k − 1)
∑

〈i1,...,id〉∈Idm,k

pi1,...,id

 ≤ 1, (3.67)

0 ≤ pm,m,...,m,1 = 1−
∑
〈i1,...,id−1〉∈Id−1

m \{〈m,m,...,m〉} pi1,...id−1,1 ≤ 1

...
...

0 ≤ pm,m,...,m,m−1 = 1−
∑
〈i1,...,id−1〉∈Id−1

m \{〈m,m,...,m〉} pi1,...id−1,m−1 ≤ 1

...
...

0 ≤ p1,m,m,...,m = 1−
∑
〈i2,...,id〉∈Id−1

m \{〈m,m,...,m〉} p1,i2...id ≤ 1

...
...

0 ≤ pm−1,m,m,...,m = 1−
∑
〈i2,...,id〉∈Id−1

m \{〈m,m,...,m〉} pm−1,i2...id ≤ 1. (3.68)
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Conversely if we have Q = {pi1,i2,...,id|〈i1, . . . , id〉 ∈ ∪dk=2Idm,k} a set of md − (d(m − 1) + 1)

parameters on [0, 1] which satisfy the following d(m− 1) + 1 conditions

md−m− d ≤
∑d

k=2

(
(k − 1)

∑
〈i1,...,id〉∈Idm,k

pi1,...,id

)
≤ md−m− d+ 1

0 ≤
∑
〈i1,...,id−1〉∈Id−1

m \{〈m,m,...,m〉} pi1,...id−1,m−1 ≤ 1

...

0 ≤
∑
〈i1,...,id−1〉∈Id−1

m \{〈m,m,...,m〉} pi1,...id−1,m−1 ≤ 1

...

0 ≤
∑
〈i2,...,id〉∈Id−1

m \{〈m,m,...,m〉} p1,i2...id ≤ 1

...

0 ≤
∑
〈i2,...,id〉∈Id−1

m \{〈m,m,...,m〉} pm−1,i2...id ≤ 1. (3.69)

Then if we define pi1,...,id for 〈i1, . . . , id〉 ∈ ∪1
k=0Idm,k using equations (3.67) and (3.68), the

resulting square matrix P = (pi1,...,id)〈i1,...,id〉∈Idm is a d-dimensionally square matrix.

Proof. We first observe that using definition (3.66), Idm = ∪dk=0Idm,k which is a disjoint

union. We also observe that Idm,0 = {〈m,m, . . . ,m〉} and Idm,1 = {〈m,m, . . . ,m, 1〉, . . . ,

〈m,m, . . . ,m,m− 1〉, . . . , 〈1,m,m, . . . ,m〉, . . . , 〈m− 1,m,m, . . . ,m〉}. So, the cardinality

of Idm,0 ∪ Idm,1 equals to d(m− 1) + 1.

First, define Q = {pi1,i2,...,id|〈i1, . . . , id〉 ∈ ∪dk=2Idm,k} a set of md− (d(m− 1) + 1) parameters

on [0, 1] which satisfy the d(m − 1) + 1 conditions in equation (3.69), and define pi1,...,id

for 〈i1, . . . , id〉 ∈ ∪1
k=0Idm,k. Observe that in the first equation of (3.69) the parameters with

exactly (d−k) i
′
js = m appear with coefficient (k−1) following the pattern of all the previous

examples. Now, using equations (3.67) and (3.68), it is not difficult to see that if we define

the square matrix P = (pi1,...,id)〈i1,...,id〉∈Idm , then
∑m

i1=1

∑m
i2=1 · · ·

∑m
id=1 pi1,i2,··· ,id = m, and

from (3.68) condition (3.2) is also satisfied, so, P is a d-dimensionally square matrix.

If we assume that P = (pi1,...,id)〈i1,...,id〉∈Idm is a d-dimensionally square matrix. Then using

(3.2) we have a linear system of md equations with md variables, we can write this linear

system as A · x = b, where A is a matrix of order md×md of zeros and ones, x is a column

vector with md entries, which includes all the values of pi1,...,id and b is a column vector of ones
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of order md, the general solution of this linear equation is given in the equalities of (3.67)

and (3.68), and since P is d-dimensionally stochastic then it is clear that all the inequalities

in (3.68) are satisfied, inequality (3.67) follows using (3.68) and similar arguments as in

equation (3.54).

It can be easily checked that equation (3.67) holds in the three examples presented above.

As an example let d ≥ 2 and m ≥ 2 be two integers, and let us assume that pi1,...,id = 1/md−1

for every 〈i1, . . . , id〉 ∈ ∪dk=2Idm,k. We will see that in this case pi1,...,id = 1/md−1 for every

〈i1, . . . , id〉 ∈ Idm.

First, from equation (3.68) we have that

pm,...,m,1 = 1−
∑

〈i1,...,id−1〉∈Id−1
m \{〈m,...,m〉}

pi1,...,id−1,1 = 1− (md−1 − 1)
1

md−1
=

1

md−1
.

Similarly,

pm,...,m,1 = · · · = pm,...,m,m−1 = · · · = p1,m,...,m = · · · = pm−1,m,...,m =
1

md−1
.

Now, from equation (3.67) we have that

pm,...,m = m+ d−md+
d∑

k=2

(k − 1)
∑

〈i1,...,id〉∈Idm,k

1

md−1
.

Using definition (3.66) we have that

∣∣Idm,k∣∣ =

(
d
k

)
(m− 1)k,

where | · | denotes the cardinality of a set. So,

pm,...,m = m+ d−md+
1

md−1

d∑
k=2

(k − 1)

(
d
k

)
(m− 1)k1d−k.

But,

(k − 1)

(
d
k

)
= d

(
d− 1
k − 1

)
−
(
d
k

)
.
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So,

d∑
k=2

(k − 1)

(
d
k

)
(m− 1)k = d(m− 1)

[
d−1∑
k=0

(
d− 1
k

)
(m− 1)k1(d−1)−k − 1

]

−

[
d∑

k=0

(
d
k

)
(m− 1)k1d−k − 1− d(m− 1)

]

= d(m− 1)[md−1 − 1]− [md − 1− d(m− 1)].

Therefore, pm,...,m = 1
md−1 .

3.4 d-copulas and d-dimensionally stochastic matrices

Let C be a d-copula and define for every i = 〈i1, i2, . . . , id〉 ∈ Idm, define Ri as in (3.10)

pi1,i2,...,id = VC(Ri) and PC = (pi1,i2,...,id)
m
i1,...,id=1 . (3.70)

Then PC is a square d-dimensional matrix with nonnegative entries, which generates the

checkerboard approximation given in [56]. Besides, if we take any j ∈ {1, . . . , d} and any

k ∈ {1, . . . ,m} then by the definition of d-copula, and using equation (3.12), we have that

∑
i∈Idm,ij=k

pi =
m∑
i1=1

· · ·
m∑

ij−1=1

m∑
ij+1=1

· · ·
m∑
id=1

VC(R〈i1,...,ij−1,k,ij+1,...,id〉)

=
1

m
. (3.71)

Observe that in equation (3.71) for every d-copula C, for every j ∈ {1, . . . , d} and for every

k ∈ {1, . . . ,m},
∑

i∈Im,ij=k pi = 1/m does not depend on j, k or C, only depends on m.

Notice also that if we multiply by m all the terms in (3.71) then we have, using equation

(3.2), that m · PC is a d-dimensionally stochastic matrix. Therefore, using Theorem 3.14,

we have established a relation between d-dimensionally stochastic matrices of order m ≥ 2

and the volumes under a d-copula C of the d-boxes given in partition (3.10) with m ≥ 2. In

fact, we can rewrite Theorem 3.14 in terms of d-copulas.

Theorem 3.15. Let d ≥ 2 and m ≥ 2 be two integers, let P = (pi1,i2,...,id)〈i1,...,id〉∈Idm be a

d-dimensionally stochastic square matrix. Then there exists a d-copula C such that for every
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〈i1, . . . , id〉 ∈ Idm
pi1,...,id
m

= VC(R〈i1,...,id〉). (3.72)

Conversely, if C is a d-copula and m ≥ 2 is an integer, and we define pi1,...,id and PC as in

equation (3.70), then m ·PC is a d-dimensionally stochastic matrix.

The existence of the d-copula C in equation (3.72) is not unique. For example let d = m = 2

and define P = (pi1,i2)〈i1,i2〉∈I22 , where p1,1 = p2,2 = 1 and p1,2 = p2,1 = 0. Then clearly P is

a doubly stochastic matrix. Define C1(u, v) = M2(u, v) = min{u, v} for every 〈u, v〉 ∈ I2,

which is the Fréchet-Hoeffding upper bound copula, and define C2(u, v) = max{0, u+v−1/2}

if 〈u, v〉 ∈ R〈1,1〉, C2(u, v) = 1/2 + max{0, u + v − 3/2} if 〈u, v〉 ∈ R〈2,2〉 and C2(u, v) = 0

otherwise, that is, C2 is a shuffle of M2, see [58]. Then it is immediate to see that

VC1(R〈i1,i2〉) = VC1(R〈i1,i2〉) = pi1,i2/2 for every 〈i1, i2〉 ∈ I2
2 .

Another key factor in connection with Theorem 3.14, is the fact that if we have d ≥ 2,

m ≥ 2 and C a d-copula and we define pi1,...,id = VC(R〈i1,...,id〉) for every 〈i1, . . . , id〉 ∈ Idm

then Q = {m ·pi1,i2,...,id|〈i1, . . . , id〉 ∈ ∪dk=2Idm,k} is a set of md− (d(m−1) + 1) parameters on

[0, 1] which satisfy the d(m− 1) + 1 conditions in equation (3.69) and which determines the

remaining entries in the d-dimensional matrix PC = (pi1,...,id)〈i1,...,id〉∈Idm . This observation

allows to reduce the number of parameters to estimate in the multinomial distribution given

in Proposition 3.2.1.

3.5 Final Remarks

In the last years many researchers have been proposing methods of constructing multivariate

copulas, see for example [22], [61] and [30]. The idea is to provide new families that allow

to model multivariate data, since the known models are not numerous enough to do so.

To find multivariate extensions of known results for 2-copulas is of great importance, and

lately several papers have been written to achieve this goal. In the case of ordinal sums, see

[2] or [58], we have a multivariate extension given in Mesiar and Sempi [55]. For the shuffles,

see [58], we have the extension of Durante and Fernández-Sánchez [17]. For extensions in

construction of multivariate copulas with a given diagonal, we may cite [39], [62] and [8].
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Another interesting references are [10], [11] and [68], see also a recent note on singular copulas

in [18].

The importance of the construction of what the authors called self-similar 2-copulas in Cu-

culescu and Theodorescu [8], was extended in [34] to construct interesting examples of 2-

copulas with given fractal supports. For the multivariate extension of the construction of

fractal copulas quite recently in Trutschnig and Fernández-Sánchez [69], using the results in

[34], give a method using transformation matrices to construct new interesting d-copulas.

In this chapter we provide in Proposition 3.3 the multivariate generalization of the construc-

tion in Cuculescu and Theodorescu [8].

We also proved that the resulting family of d-box invariant fractal d-copulas is dense in every

dimension d ≥ 2 for the sup norm.

In section 3.2 we introduced the sample d-copula of order m , based on the ideas of the

transformation matrices given in [34], and its generalization in [69], in two settings: First

when the sample is obtained from a d-copula C, and second when the sample comes from a

continuous d-distribution function on RI d.

In the first case, we observed that the sample d-copula has very nice properties and we

provided some important asymptotic results. We also observe that even for small values of

n the d-dimensional square matrix Snm, used in the definition of the sample d-copula of order

m, Cn
m in equation (3.20), is with high probability a generalized transformation matrix. We

also provide interesting statistical applications such as a new methodology for estimation of

parameters, a goodness-of-fit test and results about the usual concordance measures.

In the second case, for 2 ≤ m ≤ n, we proved that d-dimensional square matrix Snm, used

in the definition of the sample d-copula of order m, Cn
m in equation (3.20), is always a

generalized transformation matrix, which allows us to have a non trivial sample d-copula.

We also saw that we can recover the empirical d-copula from Cn
n . We also observed that the

statistical applications in the first case can be carried out easily to this case by using the

modified samples.

In both cases, the empirical d-copula of order m can be used to study the statistical properties

of the sample, and to try to model the d-copula that “better fits” the observations.

The empirical copula first proposed by Deheuvels in [13], which he called “fonction de

dépendance empirique” has very nice theoretical properties. However, for large samples

even in small dimensions it has big problems in applications, because of the limitations of a

standard computer. If the sample size n is small as well as the dimension d we can still use
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all the strong statistical techniques developed for empirical copulas, see for example [5], [29]

or [35]. However, if the sample size n is large, let us say n ≥ 100000, even in small dimen-

sions d = 2 or d = 3, the statisticians require new tools and methods which can be easily

implemented in standard computers, without the need of taking a much smaller subsample.

We think the sample d copula of order m may be this new tool.

We believe the sample d-copula of order m may be quite useful in applications, because

it is easy to obtain and any computer can handle the arrays needed for its construction,

considering medium values of m and values of d not so small, even if the sample size n is

quite large. This last fact is a great advantage for any statistician.

See the site https://sites.google.com/site/probstatsr where all the programs used in

this chapter are available in language R.

This chapter has been accepted for publication in [38] and [37].
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Chapter 4

Frank’s Condition for Multivariate
Archimedean Copulas.

In this chapter we study some of the possible constructions of a multivariate copula given a

diagonal section. We start with the definition of diagonal in a multivariate setting. We will

see that the direct algebraic generalizations of the Bertino copula and the diagonal copula

(1.22) do not work except when the diagonal section coincides with the diagonal section of

the copula M . The main result of this chapter is the generalization of the Frank’s condition

for a diagonal to determine uniquely an Archimedean copula. Most of the results in this

chapter have been accepted for publishing [28].

A very important result that characterizes diagonal sections of copulas, see Definition 1.29,

is the following result of Fredricks and Nelsen [32] or Fredricks and Nelsen [33]:

Theorem 4.1. Let δ : I→ I be a diagonal. Then there exists a copula C such that δC(t) =

δ(t) for every t ∈ I.

In particular, in [32] the authors proved Theorem 1.30, that is, if δ is a diagonal and

C(u, v) = min

{
u, v,

δ(u) + δ(v)

2

}
for every 〈u, v〉 ∈ [0, 1]2 (4.1)

then C is a singular copula with diagonal section δ and C is symmetric, that is, C(u, v) =

C(v, u) for every 〈u, v〉 ∈ I2. Another construction of copulas with given diagonal δ can be

found in [4], and it is given by

B(u, v) = min{u, v} − inf
min{u,v}≤t≤max{u,v}

[t− δ(t)] for every 〈u, v〉 ∈ I2 . (4.2)

B is a singular copula called Bertino copula with diagonal δ which is also symmetric.

105
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Next we present the definition of diagonal section of a multivariate copula and its properties.

4.1 Possible extensions of n-copulas with a given diag-

onal section.

We start this section by defining the diagonal section of an n-operation defined on I for

n ≥ 2.

Definition 4.2. Let n ≥ 2 and let C : In → I be a function. We define the diagonal section

of C, denoted by δC, as a function δC : I→ I, such that for every t = 〈t, t, . . . , t〉 ∈ In

δC(t) = C(t). (4.3)

Using Theorems 2.10.2 and 2.10.7 in Nelsen [58], it is easy to see that the diagonal section

of an n-copula for n ≥ 2 satisfies:

Lemma 4.3. Let n ≥ 2 and let C be an n-copula with diagonal section δC. Then δC satisfies

the following conditions:

δC(0) = 0 and δC(1) = 1. (4.4)

0 ≤ δC(t)− δC(s) ≤ n(t− s) for every 0 ≤ s ≤ t ≤ 1. (4.5)

max{nt− n+ 1, 0} ≤ δC(t) ≤ t for every 0 ≤ t ≤ 1. (4.6)

The last inequality is sharp.

Remark 4.4. It is very important here to notice that W n is an n-copula if and only if n = 2.

However, using the proof of Theorem 2.10.13 in Nelsen [58] it is easy to see that for every

n ≥ 3 there exists an n-copula C such that

δC(t) = δWn(t) = max{nt− n+ 1, 0} for every t ∈ I . (4.7)

For example, for n = 3 if we define C the 3-copula with density

c(x, y, z) =

{
9/4 for (x, y, z) ∈ R1 ∪R2 ∪R3,
0 elsewhere,

where R1 = [0, 2/3]× [0, 2/3]× [2/3, 1], R2 = [0, 2/3]× [2/3, 1]× [0, 2/3] and R3 = [2/3, 1]×

[0, 2/3]× [0, 2/3]. Then δC = δW 3 .
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Now we will see that (4.1) and (4.2) in the introduction cannot be generalized directly

to dimensions higher than 2. We start with equation (4.1) of Fredericks and Nelsen [32]

and n = 3. Let δ : [0, 1] → [0, 1] satisfying equations (4.4), (4.5) and (4.6), the obvious

generalization for this case is:

C(u, v, w) = min

{
u, v, w,

δ(u) + δ(v) + δ(w)

3

}
for every 〈u, v, w〉 ∈ I3 . (4.8)

It is clear from equations (4.4), (4.5) and (4.8) that C(u, v, w) = 0 if u = 0, v = 0 or w = 0,

so C satisfies condition i) of 3-copulas. Besides, using equations (4.4), (4.5) and (4.8),

C(u, 1, 1) = min{u, 1, 1, (δ(u) + 2δ(1))/3} = min{u, (δ(u) + 2)/3} = u, for every u ∈ [0, 1].

Similarly, C(1, v, 1) = v and C(1, 1, w) = w for every v, w ∈ I, so, C satisfies condition ii)

of a 3-copula. Also, for every t ∈ [0, 1], C(t, t, t) = min{t, δ(t)} = δ(t) using equation (4.6).

Now we have to check if C in equation (4.8) is 3-increasing. Let 0 < t < 1 and consider the

3-box R = [0, t]× [t, 1]× [t, 1], then using equations (1.8), (4.8) and the boundary conditions

we have that

VC(R) = C(t, 1, 1)− C(t, 1, t)− C(t, t, 1)− C(0, 1, 1)

+C(t, t, t) + C(0, 1, t) + C(0, t, 1)− C(0, t, t)

= t− 2C(t, t, 1) + δ(t)

= t− 2 min

{
t,

2δ(t) + 1

3

}
+ δ(t). (4.9)

Now, t ≤ (2δ(t) + 1)/3 if and only if δ(t) ≥ (3t− 1)/2. Hence, from equation (4.9)

VC(R) =

{
δ(t)− t if δ(t) ≥ 3t−1

2

t− δ(t)
3
− 2

3
if δ(t) < 3t−1

2
.

(4.10)

Observe that using equation (4.6), the first row in equation (4.10) is nonnegative if and only

if δ(t) = t.

For the second row of equation (4.10), let h(t) = t− δ(t)/3− 2/3, then h(t) ≥ 0 if and only

if δ(t) ≤ 3t− 2, but, from equation (4.5) we know that 0 ≤ δ(v)− δ(u) ≤ 3(v − u) for every

0 ≤ u ≤ v ≤ 1. Let u = t and v = 1 in the above equation, then δ(1) − 3(1 − t) ≤ δ(t),

and using equation (4.4) we have that δ(t) ≥ 3t− 2. Therefore, the second row of equation

(4.10) is nonnegative if and only if δ(t) = 3t− 2 and δ(t) = 3t− 2 < (3t− 1)/2 if and only

if t < 1. Besides, since δ(t) ≥ 0, then δ(t) = max{0, 3t− 2}, that is, δ(t) = δW 3(t) for every
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t ∈ I. Observe that in this case, if t < 1/3 then δ(t) = 0 ≥ (3t − 1)/2, and using the first

row of equation (4.10) we have that VC(R) = δ(t) − t = −t < 0, so C in equation (4.8) is

not a 3-copula.

Therefore, if δ(t) is a diagonal different from δM3 then the function defined in (4.8) is not a

3-copula.

If we define δ1(t) = t = δM3(t) for every t ∈ I then using equation (4.8)

C(u, v, w) = min{u, v, w, (u+ v + w)/3} = min{u, v, w} = M3(u, v, w),

which is a 3-copula with diagonal δ1.

Now, let us see if the natural extension of the Bertino copula in equation (4.2) is an n-copula

for n = 3. Define for u, v, w ∈ I

B(u, v, w) = min{u, v, w} − inf
s∈[min{u,v,w},max{u,v,w}]

[s− δ(s)], (4.11)

where δ : I → I satisfying conditions (4.4), (4.5) and (4.6). It is clear from conditions

(4.4), (4.5) and (4.6), that B satisfies the boundary conditions of a 3-copula and that B

is a symmetric function with diagonal section δ. Let 0 < t < 1 and consider the 3-box

R = [0, t]× [t, 1]× [t, 1]. Then

VB(R) = B(t, 1, 1)−B(t, 1, t)−B(t, t, 1)−B(0, 1, 1)

+B(t, t, t) +B(0, 1, t) +B(0, t, 1)−B(0, t, t)

=

(
t− inf

s∈[t,1]
[s− δ(s)]

)
− 2

(
t− inf

s∈[t,1]
[s− δ(s)]

)
+ δ(t)

= t− 2t+ δ(t)

= δ(t)− t. (4.12)

From condition (4.6), VB(R) ≥ 0 if and only if δ(t) = t for every t ∈ I, that is, if δ(t) = δM3(t).

Therefore, for any δ different from δM3 the function B defined in (4.11) is not a 3-copula.

In a more recent paper Durante et al [21], the authors proposed a copula of the formD(x, y) =

min{x, y} − min{δ(x) − x, δ(y) − y}, where δ is a diagonal. If we try to generalize this to

dimension 3, we would have

D(x, y, z) = min{x, y, z} −min{δ(x)− x, δ(y)− y, δ(z)− z}. (4.13)
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Using (4.4) it is clear that D(x, y, z) = 0 if x = 0, y = 0 or z = 0, and D(x, 1, 1) = x,

D(1, y, 1) = y and D(1, 1, z) = z. So, D satisfies the boundary conditions of a 3-copula and

it is symmetric. Let 0 < t < 1 and consider the 3-box R = [0, t] × [t, 1] × [t, 1], then using

eqution (4.13) we have

VD(R) = D(t, 1, 1)−D(t, 1, t)−D(t, t, 1)−D(0, 1, 1)

+D(t, t, t) +D(0, 1, t) +D(0, t, 1)−D(0, t, t)

= t− 2t+ δ(t)

= δ(t)− t. (4.14)

Again, as above, D is a 3-copula if and only if δ(t) = δM3(t) = t for every t ∈ I, and in this

case D(x, y, z) = min{x, y, z} = M3(x, y, z) for every x, y, z ∈ I.

The following result is well known.

Theorem C Let δ : In → I be a diagonal for some n ≥ 2, that is, δ satisfies conditions

(4.4), (4.5) and (4.6). Then there exists C : In → I an n-copula, such that the diagonal

section of C, δC = δ.

A sketch of the proof of this result is given in Cuculescu and Theoderescu [8] and we will see

details of this result in Chapter 5. See also Rychlik [62], Jaworski [39], Jaworski and Rychlik

[40] and Mesiar and Navara [54].

4.2 Frank’s condition for Archimedean 2-copulas

Now, we recall the construction of Archimedean copulas, see for example Chapter 4 of Nelsen

[58]. In the next Theorem we restate Definition 1.16, Theorem 1.17 and Definition 1.18.

Theorem 4.5. Let ϕ : I → [0,∞] be a strictly decreasing function, that is, if 0 ≤ s <

t ≤ 1 then ϕ(s) > ϕ(t), such that ϕ(1) = 0 and 0 < ϕ(0) ≤ ∞. Define the pseudo-inverse

of ϕ as the function denoted by ϕ[−1] : [0,∞]→ I, defined by

ϕ[−1](t) =

{
ϕ−1(t) if 0 ≤ t ≤ ϕ(0)
0 if t ≥ ϕ(0),

where ϕ−1 is the usual inverse of ϕ. Furthermore, ϕ[−1](ϕ(t)) = t for every t ∈ I, and

ϕ
(
ϕ[−1](t)

)
= min{t, ϕ(0)} for every t ∈ [0,∞]. Then if we define

C(u, v) = ϕ[−1] (ϕ(u) + ϕ(v)) for every 〈u, v〉 ∈ I2 . (4.15)
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C in (4.15) is a copula, called Archimedean copula, if and only if ϕ is a convex function,

that is, for every 0 ≤ s ≤ t ≤ 1 and for every a ∈ I we have that ϕ(as + (1 − a)t) ≤

aϕ(s) + (1− a)ϕ(t).

The function ϕ in equation (4.15) is called an Archimedean strict generator if ϕ(0) =∞

and an Archimedean non-strict generator if 0 < ϕ(0) < ∞. In fact, it is easy to see

that the pseudo-inverse of ϕ coincides with the usual inverse if ϕ is a strict generator. We

also know that if ϕ is a generator of an Archimedean copula C, and we define ψ = c · ϕ,

where c > 0 is a positive constant, then ψ is also a generator of C. It is also clear from

equation (4.15), that if C is an Archimedean copula with generator ϕ and δC is its diagonal

section then

δC(t) = ϕ[−1](2ϕ(t)) for every t ∈ I . (4.16)

In the case that ϕ is a strict generator we can rewrite equation (4.16) as

ϕ(δ(t)) = Kϕ(t) where K = 2. (4.17)

The equation (4.17) for K 6= 0, 1 is known in the literature as the Schröder functional

equation, and it was studied first by Schröder [64] to solve iterative functional equations.

The problem that was proposed by Darsow and Frank [9] is the following: If we know the

diagonal section of an Archimedean copula C what can be said about its generator ϕ?

Sungur and Yang [67] state that for Archimedean copulas its diagonal section determines

uniquely the corresponding copula. However, this result does not hold. In fact, in the same

year Frank [31] announced in a report of a Symposium on functional equations the following

result:

Theorem 4.6 (Frank’s Condition). If C is an Archimedean copula with diagonal section δC,

and δ
′
C(1−) = 2 then C is uniquely determined by its diagonal section.

In the last Theorem δ
′
C(1−) denotes the left derivative of δC at x = 1. The proof of this

result was first included in Alsina et al [2], and it includes an example to see that if Frank’s

condition is not satisfied then we can construct different Archimedean copulas with the same

diagonal section.

4.3 Frank’s condition for Archimedean n-copulas.

We start this section by recalling some results about multivariate Archimedean copulas, we

start with a basic definition.
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Definition 4.7. Let g : J → RI be a an infinitely differentiable function where J is an

interval in RI . We will say that g is completely monotonic if its derivatives alternate in

signs, that is, g satisfies

(−1)k
dk

dtk
g(t) ≥ 0 (4.18)

for every t in the interior of J and for every k ∈ {0, 1, 2, . . .}.

Observe that from equation (4.18), a completely monotonic function satisfies that d2

dt2
g(t) ≥ 0,

then g is a convex function, see for example Dudley [15]. Using a result in Widder [70], if g is

completely monotonic on J = [0,∞) and g(c) = 0 for some c ∈ J , then g is identically zero

on J . Therefore, if the pseudo-inverse ϕ[−1], as defined in Theorem 4.6, of an Archimedean

generator ϕ is completely monotonic, it has to be positive on [0,∞), and so, ϕ is a strict

generator, that is, ϕ[−1] = ϕ−1 the usual inverse.

Example 4.8. Let f(x) = − ln(x) for 0 < x ≤ 1, since f is a nonnegative function such

that, f (k)(x) = (−1)k/xk for every k ≥ 1, then f is completely monotonic according to

Definition 4.7. Using the fact that the product of completely monotonic functions is also

completely monotonic, see for example Miller and Samko [57], we have that g(x) = (− ln(x))n

for 0 < x ≤ 1 is completely monotonic for every n ≥ 2.

The following Theorem was first proved in Kimberling [42], and can be found also in Nelsen

[58] and Alsina et al [2]

Theorem 4.9. Let ϕ be a strict Archimedean generator. The function C : In → I defined

by

C(u1, . . . , un) = ϕ[−1](ϕ(u1) + · · ·+ ϕ(un)). (4.19)

is an n-copula for all n ≥ 2 if and only if ϕ−1 is completely monotonic.

It is clear that if we define ϕ(t) = − ln(t) then ϕ−1(t) = exp(−t) which is clearly completely

monotonic, besides we know that ϕ is the generator of the product copula Πn(u1, . . . , un) =

u1 · u2 · · ·un, see Nelsen [58].

More recently, McNeil and Nešlehova [52] study necessary and sufficient conditions for a

generator to construct d-dimensional copulas, for a fixed d ≥ 2, one of their results states:
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Theorem D Let ϕ be a strict Archimedean generator with inverse φ = ϕ−1 which has

derivatives up to order d on (0, 1). Then ϕ generates an Archimedean d-copula if and only

if (−1)kφ(k)(x) ≥ 0 for k = 0, 1, . . . , d.

This result is Corollary 2.1 in McNeil and Nešlehová [52].

The following result is a particular case of Theorem 6.6 in Kuczma [44], or Theorem 2.3.12

in Kuczma et al [45].

Theorem 4.10. Let γ : I→ I be a function such that 0 < γ(u) < u for every u ∈ (0, 1), and

assume that γ′(0+) = 1
n

for some n ≥ 2 fixed. If s(u) is a solution of the functional equation

s (γ(u)) =
1

n
s(u) (4.20)

such that s(u)/u is monotonic in (0, 1), then

s(u) = k lim
m→∞

nmγm(u) (4.21)

where γm is the m-th iteration of γ, that is, the composition of γ with itself m times, and k

is any positive constant. Solution (4.21) is continuous, convex, unique (up to multiplicative

constants) and for k > 0 strictly monotonic in I.

Now we will see that Frank’s condition in Alsina et al [2] can be extended to n-Archimedean

copulas using the last Theorem.

Theorem 4.11. Let n ≥ 3 and let C be an n-Archimedean copula whose diagonal δC satisfies

δ
′
C(1−) = n. Then C is uniquely determined by its diagonal.

Proof. Let ϕ the strict generator of an n-Archimedean copula C for some n ≥ 3, then

using equation (4.19), we have that its diagonal satisfies that δ(u) = ϕ−1(nϕ(u)) for every

u ∈ I, which is a continuous and strictly increasing function. Therefore, its inverse δ−1 is

well defined. Now, take γ : I → RI defined by γ(u) = 1 − δ−1(1 − u) for every u ∈ I, then

γ is continuous, strictly increasing, with γ(0) = 0 and 0 < γ(u) < u for every u ∈ (0, 1). If

we define s(u) = ϕ(1 − u) and substitute the definition of γ and s in Schröder’s functional

equation we have that ϕ(δ(u)) = nϕ(u), we get that this functional equation is equivalent

to equation (4.20). So, by requiring that s(u)/u be monotonic and limu→0[γ(u)/u] = 1/n we

can apply Theorem 4.10, since the existence of a solution s(u) in (4.20) is guaranteed by the
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existence of ϕ(u) as a consequence of the Archimedeanity hypothesis. The last condition is

fulfilled if γ is right differentiable in zero and γ′(0+) = 1
n

which is equivalent to δ′(1−) = n.

Besides, since the generator ϕ is convex and so it is s(u) = ϕ(1 − u), then by Proposition

6.3.2 in Dudley [15], we have that s(u)/u is monotonic. Applying Theorem 4.10, we obtain

the following formula for ϕ in terms of the diagonal δ.

ϕ(u) = k lim
m→∞

nm[1− δ−m(u)], (4.22)

where δ−m is the composition of δ−1 with itself m times and k is a positive constant, be-

cause we require that ϕ ≥ 0. Hence, from Theorem 4.10 solution (4.22) is unique (up to

multiplicative constants which generate the same copula C).

In Alsina et al [2], Section 3.8, a counterexample is given, in order to show that if n = 2 and ϕ

is generator for an Archimedean copula C such that ϕ′(1−) = 0, or equivalently δC(1−) < 2,

where δC is the diagonal of the copula C, then the diagonal does not characterize uniquely

the generator ϕ. Alsina et al [2] provide a parametric family of generators {ϕβ,2 | 0 ≤ β ≤

1/(1 + 8π)} such that the diagonal section δβ1,2 = δβ2,2 = δC , but Cβ1,2 6= Cβ2,2 for β1 6= β2.

We will see that their upper bound for the values of β can be improved. They define for

0 ≤ β ≤ 1 and for 0 < x < 1

ϕβ,2(x) = (ln(x))2 + 2nβ sin

(
(ln(x))2

2n

)
if 2n+1π ≤ (ln(x))2 ≤ 2n+2π, (4.23)

for n ∈ Z. Observe that the first term in function ϕβ,2 in equation (4.23) corresponds to

the generator of the Gumbel-Hougaard family with θ = 2, see Nelsen [58], Section 4.2. The

second term in equation (4.23) is just a small perturbation of the generator by a periodic

function. We also observe that the condition 2n+1π ≤ (ln(x))2 ≤ 2n+2π is equivalent to

exp
(
−
√

2n+2π
)
≤ x ≤ exp

(
−
√

2n+1π
)
,

then we have that

lim
n→∞

exp
(
−
√

2n+2π
)

= 0 and lim
n→−∞

exp
(
−
√

2n+2π
)

= 1.

Then limx→0 ϕβ,2(x) = ∞ and limx→1 ϕβ,2(x) = 0. It is easy to see that ϕβ,2 in equation

(4.23) is twice differentiable, where

ϕ′β,2(x) =
2 ln(x)

x

(
1 + β cos

(
(ln(x))2

2n

))
,
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and

ϕ′′β,2(x) =
2(1− ln(x))

x2

(
1 + β cos

(
(ln(x))2

2n

))
− 4(ln(x))2

2nx2
β sin

(
(ln(x))2

2n

)
,

for exp
(
−
√

2n+2π
)
≤ x ≤ exp

(
−
√

2n+1π
)

and for every n ∈ Z. Evaluating numerically

the first and second derivatives of ϕβ,2 we observed that ϕ′β,2(x) ≤ 0 and ϕ′′β,2(x) ≥ 0 if and

only if 0 < β ≤ 0.062548, and this value is sharp. However, the upper bound of β in Alsina

et al [2] is 1/(1 + 8π) = 0.038266 is not sharp, see [26].

Now we give a counterexample, in order to show that if n = 3 and ϕ is generator for an

Archimedean 3-copula C such that ϕ′(1−) = 0, or equivalently δC(1−) < 3, where δC is the

diagonal of the 3-copula C, then the diagonal does not characterize uniquely the generator

ϕ. We provide a parametric family of generators {ϕβ,3 | 0 ≤ β ≤ K} for some K > 0, such

that the diagonal section δβ1,3 = δβ−2,3 = δC , but Cβ1,3 6= Cβ2,3 for β1 6= β2. We define for

0 ≤ β ≤ 1 and for 0 < x < 1

ϕβ,3(x) = (ln(x))4 + 3mβ sin

(
(ln(x))4

3m

)
if 3m+1π ≤ (ln(x))4 ≤ 3m+2π, (4.24)

for m ∈ Z. Again, the first term in function ϕβ,3 in equation (4.24) corresponds to the

the generator of the Gumbel-Hougaard family with θ = 4, and the second term in equation

(4.24) is just a small perturbation of the generator by a periodic function. In this case the

condition 3m+1π ≤ (ln(x))4 ≤ 3m+2π for m ∈ Z, is equivalent to

exp
(
−(3m+2π)1/4

)
≤ x ≤ exp

(
−(3m+1π)1/4

)
,

then we have that

lim
m→∞

exp
(
−(3m+2π)1/4

)
= 0 and lim

m→−∞
exp

(
−(3m+2π)1/4

)
= 1.

Then limx→0 ϕβ,3(x) = ∞ and limx→1 ϕβ,3(x) = 0. It is easy to see that ϕβ,3 in equation

(4.24) is continuous, and in fact, it is three times differentiable, where

ϕ′β,3(x) =
4(ln(x))3

x

(
1 + β cos

(
(ln(x))4

3m

))
,

ϕ′′β,3(x) =
4(ln(x))2[3− ln(x)]

x2

(
1 + β cos

(
(ln(x))4

3m

))
− 16(ln(x))6

3mx2
β sin

(
(ln(x))4

3m

)
,
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and

ϕ′′′β,3(x) =
24 ln(x)− 36(ln(x))2 + 8(ln(x))3

x3

(
1 + β cos

(
(ln(x))4

3m

))

− 48(ln(x))5[3− ln(x)]

3mx3
β sin

(
(ln(x))4

3m

)

− 64(ln(x))9

32mx3
β cos

(
(ln(x))4

3m

)
. (4.25)

Evaluating numerically it is easy to see that ϕβ,3(x) > 0 and ϕ′β,3(x) < 0 for every 0 < x < 1

and for every 0 ≤ β ≤ 1. Besides, ϕ′′β,3(x) > 0 for every 0 < x < 1 if 0 ≤ β ≤ 0.0115. Let

φβ,3 = ϕ−1
β,3, then using the formulas for the differentiation of inverse functions we know that

φ′β,3(x) =
1

ϕ′(φ(x))
and φ′′β,3(x) =

−ϕ′′(φ(x))

[ϕ′(φ(x))]2
.

Therefore, φβ,3(x) > 0 and φ′β,3(x) < 0 for every 0 < x < ∞ and for every 0 ≤ β ≤ 1.

We also have that φ′′β,3(x) > 0 for every 0 < x < ∞ if 0 ≤ β ≤ 0.0115. Now for the third

derivative of φβ,3 we have that

φ′′′β,3(x) = −
ϕ′′′β,3(φβ,3(x))

[ϕ′β,3(φβ,3(x))]4
+

3(ϕ′′β,3(φβ,3(x)))2

[ϕ′β,3(φβ,3(x))]5
. (4.26)

Observe that in this case the sign of the third derivative of φβ,3 is not necessarily the sign of

ϕ′′′β,3. Evaluating numerically φ′′′β,3(x) in equation (4.26), we obtain that φ′′′β,3(x) < 0 for every

0 < x <∞ if 0 ≤ β ≤ 0.0001267. Therefore, using Theorem D, if we define K = 0.0001267

then the family of generators {ϕβ,3 | 0 ≤ β ≤ K} satisfies the desired conditions.
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Chapter 5

Higher dimensional copulas with
given diagonal sections

The present chapter is a revision of Section 5, Higher dimension copulas with given diagonal,

in Cuculescu and Theodorescu’s paper [8]. For dimension 2 it is well known that given a

diagonal, see Definition 1.29, there is always a 2-copula such that its diagonal coincides

with the given one. Such a copula is easily constructed for example the diagonal copula in

equation (4.1) (see [32], [33]) and the Bertino copula in equation (4.2), as we have seen in

chapter 4. For higher dimensions it is also well known that for every diagonal there exists

a d-copula such that its diagonal coincides with the given one, however the construction

of such copula is not as clear as in dimension 2. We will complete the proof of Theorem

5.1 below using the ideas of Theodorescu [8]. We first give in Theorem 5.2 the necessary

and sufficient conditions on a partition of order 2p + 1 of I so that the function δn given in

Theorem 5.4 defines a d-diagonal in I. This conditions are not explicitly stated in Cuculescu

and Theodorescu [8]. We also filled the gaps in the proof given in [8]. Another proof can

be found in Rychlik [62] and Jaworski [39]. We also notice that for a given d-diagonal, the

d-diagonal δn defined in Theorem 5.4 is the smallest one satisfying δn
(
k

2n

)
= δ

(
k

2n

)
, for every

n ∈ N and k ∈ {0, 1, 2, . . . , n}.

Theorem 5.1. Let δ : I → I be a diagonal for some n ≥ 2, that is, δ satisfies conditions

(4.4), (4.5) and (4.6). Then there exists C : In → I an n-copula, such that the diagonal

section of C, δC = δ.

Let us analyze in detail the main ideas in Cuculescu and Theodorescu (2001) [8], we start

with a general Theorem which guarantees the existence of a d-copula C with a specific

diagonal.

117
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Theorem 5.2. Let p ≥ 1 be a positive integer and let τp = {t0, t1, . . . , t2p−1, t2p} be a partition

of [0, 1] such that

0 = t0 < t1 < t2 < · · · < t2p−2 < t2p−1 < t2p = 1. (5.1)

Define δτp : I→ RI to be a continuous piecewise differentiable function with δτp(0) = 0, such

that for every i ∈ {0, 1, . . . , p − 1}, δτp is constant on [t2i, t2i+1] and δ′τp(t) = d for every

t ∈ (t2i+1, t2i), where d ≥ 2 is an integer.

Then δτp is a d-diagonal if and only if the following conditions are satisfied:

p−1∑
i=0

[t2i+2 − t2i+1] =
1

d
(5.2)

and

k∑
i=0

d(t2i+2 − t2i+1) ≤ t2k+2 for every k ∈ {0, 1, . . . , p− 1}. (5.3)

Besides, if δτp satisfies the above conditions, there exists a d-copula Cτp such that its diagonal

δCτp (t) = δτp(t) for every t ∈ I.

Proof. Let p = 1, d ≥ 2 and let τ1 = {t0, t1, t2} such that 0 = t0 < t1 < t2 = 1, then from

(5.2) we have that t2 − t1 = 1/d, that is, t1 = 1 − 1/d, then using the definition of δτ1 we

have that

δτ1(t) =

{
0 if 0 = t0 ≤ t ≤ t1 = 1− 1/d
d(t− 1 + 1/d) if 1− 1/d = t1 ≤ t ≤ t2 = 1.

Therefore, δτ1 = δW d , where δW d(t) = max{dt − d + 1, 0} is a d-diagonal, using Remark

4.4, we know that there exists a d-copula Cτ1 which assigns uniform mass 1/d to the sets

Ai = "dj=1Ai,j, where Ai,i = [1 − 1/d, 1] and for j ∈ {1, 2, . . . , d}\{i}, Ai,j = [0, 1 − 1/d]

for every i ∈ {1, . . . , d}, which are sets with disjoint interiors in Id, and that the diagonal

δCτ1 (t) = δτ1(t) = max{dt− d+ 1, 0} for every t ∈ I.

Let p = 2 and let τ2 = {t0, t1, t2, t3, t4}, where 0 = t0 < t1 < t2 < t3 < t4 = 1 is a partition

of [0, 1] satisfying (5.2), that is,

1∑
i=0

t2i+2 − t2i+1 = (1− t3) + (t2 − t1) =
1

d
. (5.4)
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Let δτ2 the function defined by τ2 then

δτ2(t) =


0 if 0 = t0 ≤ t ≤ t1
d(t− t1) if t1 ≤ t ≤ t2
d(t2 − t1) if t2 ≤ t ≤ t3
d(t2 − t1) + d(t− t3) if t3 ≤ t ≤ t4 = 1

We observe that δτ2 is a continuous piecewise differentiable function, and from (5.4) we have

δτ2(1) = 1. So, δτ2 : I→ I is an onto increasing function.

We have to prove that δτ2 is a d-diagonal, that is, we have to see that conditions (4.4), (4.5)

and (4.6) are satisfied.

First, since δτ2(0) = 0 and δτ2(1) = 1, then δτ2 satisfies (4.4).

Second, let 0 ≤ s ≤ t ≤ 1, since δτ2 is increasing we know that 0 ≤ δτ2(t)− δτ2(s). So, all we

have to do is to see that δτ2(t) − δτ2(s) ≤ d(t − s). Assume for example that 0 ≤ s ≤ t1 <

t2 < t3 ≤ t ≤ 1 then adding and subtracting the intermediate t′is

δτ2(t)− δτ2(s) = δτ2(t)− δτ2(t3) + δτ2(t3)− δτ2(t2)

+δτ2(t2)− δτ2(t1) + δτ2(t1)− δτ2(s)

= d(t2 − t1) + d(t− t3)− d(t2 − t1) + d(t2 − t1)− d(t2 − t1) + d(t2 − t1)

= d(t− t3) + d(t2 − t1)

≤ d(t− s).

The remaining cases follow from the same idea by adding and subtracting the intermediate

t′is, when they exist. Therefore, δτ2 satisfies condition (4.5).

Third, it is clear that δτ2(t) ≥ max{0, dt − d + 1} for every t ∈ I for every τ2 partition

of I satisfying conditions (5.2) and (5.3). By observing that δτ2 is increasing and convex

on [t0, t2] = [0, t2] and on [t2, t4] = [t2, 1], and from condition (5.3) we have that δτ2(t2) =

d(t2 − t1) ≤ t2. So, δτ2(t) ≤ t for every t ∈ I and δτ2 satisfies condition (4.6). Hence, δτ2 is

d-diagonal.

Now, we will prove the existence of a d-copula Cτ2 such that its diagonal coincides with δτ2 .

Using condition (5.3) let us define

α = t2 − d(t2 − t1). (5.5)

Then α ≥ 0, besides since d ≥ 2 then d(t2 − t1) > t2 − t1, so t1 > t2 − d(t2 − t1). Therefore

t1 > α. (5.6)
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On the other hand, using (5.2) and (5.5)

t2 < t3 ⇐⇒ t2 < 1− 1 + t3

⇐⇒ t2 < d(t2 − t1) + d(1− t3)− 1 + t3

⇐⇒ t2 − d(t2 − t1) < (d− 1)[1− t3]

⇐⇒ (d− 1)[t3 − 1] + t2 − d(t2 − t1) < 0

⇐⇒ dt3 − (d− 1) + α < t3

⇐⇒ t3(d− 1) < d− 1− α

⇐⇒ t3 < 1− α

d− 1
. (5.7)

We also observe, using (5.5), that

α + (1− 1/d)(d(t2 − t1)) = α + d(t2 − t1)− (t2 − t1) = t2 − (t2 − t1) = t1. (5.8)

Now, let us define δ1 : I→ RI by

δ1(t) =
δτ2(α + t(t2 − α))

t2 − α
. (5.9)

Then, by equations (5.5) and (5.6), we have

δ1(0) =
δτ2(α)

t2 − α
= 0, (5.10)

by equation (5.5),

δ1(1) =
δτ2(t2)

t2 − α
=
d(t2 − t1)

d(t2 − t1)
= 1, (5.11)

and by equations (5.8) and(5.5),

δ1(1− 1/d) =
δτ2(α + (1− 1/d)(d(t− 2− t1)))

t2 − α
=
δτ2(t1)

t2 − α
= 0. (5.12)

It is clear that the function ϕ1(t) = α + t(t2 − α) is continuous strictly increasing on I and

its image is the interval [α, t2], and from equations (5.10), (5.11) and (5.12), the function

defined in (5.9) satisfies that for every t ∈ I, δ1(t) = max{0, dt − d + 1} = δτ1(t), given in

(5.4).
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Now, from equations (5.2) and (5.5)

1 = d(1− t3) + d(t2 − t1) ⇐⇒ d− 1 + d(t2 − t1) = dt3

⇐⇒ d− 1− t2 + d(t2 − t1) = dt3 − t2

⇐⇒ d− 1− α = dt3 − t2

⇐⇒ (d− 1)

(
1− α

d− 1

)
= dt3 − t2

⇐⇒ d

(
1− α

d− 1
− t3

)
= 1− α

d− 1
− t2. (5.13)

Besides, since (d− 1)/d = 1− 1/d = 1− (1− t3 + t2 − t1) = t3 − t2 + t1 by equation (5.2).

Then

t3 = t2 + t3 − t2 + t1 − t1

= t2 +
d− 1

d
− t1

= t2 +

(
d− 1

d

)(
1− dt1

d− 1

)

= t2 +

(
d− 1

d

)(
1− t2

d− 1
(1− d+ (d− 1))− dt1

d− 1

)

= t2 +

(
d− 1

d

)(
1− t2

d− 1
+
d(t2 − t1)

d− 1
− t2

)

= t2 +

(
1− 1

d

)(
1− α

d− 1
− t2

)
. (5.14)

Let us define δ2 : I→ RI by

δ2(t) =

[
δτ2
(
t2 + t

(
1− α

d−1
− t2

))
− δτ2(t2)

]
1− α

d−1
− t2

(5.15)

Using equation (5.7) we know that t3 < 1 − α/(d − 1) and by hypothesis t2 < t3 then

1− α/(d− 1)− t2 > 0 in equation (5.15). We have from equation (5.15), that

δ2(0) = 0, (5.16)
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using the definition of δτ2 and equations (5.15) and (5.13), we have

δ2(1) =

[
δτ2
(
t2 + 1− α

d−1
− t2

)
− δτ2(t2)

]
1− α

d−1
− t2

=
d(t2 − t1) + d

(
1− α

d−1
− t3

)
− d(t2 − t1)

1− α
d−1
− t2

= 1, (5.17)

and using equation (5.14) we have that

δ2(1− 1/d) =

[
δτ2
(
t2 +

(
1− 1

d

) (
1− α

d−1
− t2

))
− δτ2(t2)

]
1− α

d−1
− t2

=
[δτ2(t3)− δτ2(t2)]

1− α
d−1
− t2

= 0. (5.18)

It is clear that the function ϕ2(t) = t2 + t
(
1− α

d−1
− t2

)
is continuous strictly increasing on

I and its image is the interval [t2, 1−α/(d−1)], and from equations (5.16), (5.17) and (5.18)

the function defined in (5.15) satisfies that for every t ∈ I, δ2(t) = max{0, dt−d+1} = δτ1(t),

given in (5.4).

From the case p = 1 we know that there exists d-copulas C∗1 and C∗2 such that δC∗1 (t) =

δ1(t) = max{0, dt− d+ 1} = δ2(t) = δC∗2 (t) for every t ∈ I.

Observe that from equations (5.1), (5.5), (5.6) and (5.7), we have that

0 ≤ α < t1 < t2 < t3 < 1− α/(d− 1) ≤ 1. (5.19)

Define h1 : Id → RI d by

h1(x1, . . . , xd) = 〈α + (t2 − α)x1, . . . , α + (t2 − α)xd〉 for every 〈x1, . . . , xd〉 ∈ Id . (5.20)

Then h1 is continuous increasing in each coordinate with h1(0, . . . , 0) = 〈α, . . . , α〉 and

h1(1, . . . , 1) = 〈t2, . . . , t2〉. So, h1 sends Id onto [α, t2]d. Using equation (5.8), we also have

that h1(1 − 1/d, . . . , 1 − 1/d) = 〈t1, . . . , t1〉. Let C1 be the image measure induced by the

distribution function C∗1 under h1. If we define Bi = "dj=1 Bi,j, where

Bi,i = [t1, t2] and for every j 6= i, Bij = [α, t1]. (5.21)
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Then C1 assigns uniform mass 1/d to Bi for every i ∈ {1, . . . , d}.

For every 〈x1, . . . , xd〉 ∈ Id define h2 : Id → RI d by

h2(x1, . . . , xd) =

〈
t2 +

(
1− α

d− 1
− t2

)
x1, . . . , t2 +

(
1− α

d− 1
− t2

)
xq

〉
. (5.22)

Then h2 is continuous increasing in each coordinate with h2(0, . . . , 0) = 〈t2, . . . , t2〉 and

h2(1, . . . , 1) = 〈1 − α/(d − 1), . . . , 1 − α/(d − 1)〉. So, h1 sends Id onto [t2, 1 − α/(d − 1)]d.

Using equation (5.14), we also have that h2(1−1/d, . . . , 1−1/d) = 〈t3, . . . , t3〉. Let C2 be the

image measure induced by the distribution function C∗2 under h1. If we define Ci = "dj=1 Ci,j,

where

Ci,i = [t3, 1− α/(d− 1)] and for every j 6= i, Cij = [t2, t3]. (5.23)

Then C2 assigns uniform mass 1/d to Ci for every i ∈ {1, . . . , d}.

For every i ∈ {1, 2, . . . , d} define Di = "dj=1Di,j, where

Di,i =

[
1− α

d− 1
, 1

]
and for every j 6= i, Di,j = [0, α]. (5.24)

Let να be a measure on Id such that for every

να(Di) =
α

d− 1
uniformly, for every i ∈ {1, 2, . . . , d}. (5.25)

Observe that from equation (5.19), all the sets in (5.24) are disjoint.

Finally, define µτ2 : B(Id)→ [0,∞), where B(Id) is the set of Borel sets in Id, by

µτ2 = να + (t2 − α)C1 +

(
1− α

d− 1
− t2

)
C2. (5.26)

We observe that all the d-boxes with positive mass in the definitions of να, C1 and C2 have

disjoint interiors. So, the total mass of µτ2 is given by

µτ2
(
Id
)

= d
α

d− 1
+ (t2 − α) +

(
1− α

d− 1
− t2

)

= α

(
d

d− 1
− 1− 1

d− 1

)
+ 1

= 1. (5.27)
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Then (Id,B(Id), µτ2) is a probability space. Define Cτ2 : Id → I by

Cτ2(t1, . . . , td) = µτ2([0, t]) for every t = 〈t1, . . . , td〉 ∈ Id, (5.28)

where 0 = 〈0, 0, . . . , 0〉 ∈ Id.

Now, we have to see that the diagonal section δCτ2 coincides with δτ2 . To see this, observe

that the d-boxes which have positive uniform mass in Cτ2 are given in equations (5.21),

(5.23) and (5.24). There are exactly 3d, d-boxes, let G = ∪di=1Bi∪Ci∪Di, in order to obtain

the diagonal of Cτ2 we have to analyze the intersections [0, t]d ∩ G for every t ∈ I. We first

observe that using (5.19), (5.21), (5.23) and (5.24),

G ∩ [0, t]d =


∅ if 0 ≤ t ≤ α
∅ if α ≤ t < t1
∪di=1Bi if t2 ≤ t < t3
∪di=1Bi ∪ Ci if t = 1− α

d−1

G if t = 1.

Therefore, using (5.29) and the uniformity of the masses of the d-boxes Bi, Ci and Di and the

definition of Cτ2 in equation (5.28), and observing that by equation (5.5), t2−α = d(t2− t1),

by equation (5.13), d((1 − α/(d − 1)) − t3) = 1 − α/(d − 1) − t2), by equation (5.27),

(t2 − α) + (1− α/(d− 1)− t2) = 1− dα/(d− 1) and by equation (5.2), we have that

δCτ2 (t) =


0 if 0 ≤ t ≤ t1
d(t− t1) if t1 ≤ t ≤ t2
d(t2 − t1) if t2 ≤ t ≤ t3
d(t2 − t1) + d((1− α/(d− 1))− t3) if t = 1− α/(d− 1)
1 = d(t2 − t1) + d(1− t3) if t = 1.

So, extending (5.29) by uniformity it is clear that

δCτ2 (t) =


0 if 0 ≤ t ≤ t1
d(t− t1) if t1 ≤ t ≤ t2
d(t2 − t1) if t2 ≤ t ≤ t3
d(t2 − t1) + d(t− t3) if t3 ≤ t ≤ 1,

which coincides with δτ2(t) for every t ∈ I.

Finally, to see that Cτ2 is a d-copula, we observe that by the uniformity of the masses in

the 3d, d-boxes, Cτ2 has a density cτ2 with support on G. So, Cτ2 is d-increasing. Besides,
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Cτ2(s1, 1, . . . , 1) = µτ2([0, s]) where s = 〈s1, 1, . . . , 1〉, for every s1 ∈ I. We will prove that

Cτ2(s1, 1, . . . , 1) = s1 for every s1 ∈ [0, 1] by cases, we will use the definition of Bi, Ci, Di

given in equations (5.21), (5.23) and (5.24):

1) If 0 ≤ s1 ≤ α, then Bj ∩ [0, s] = ∅ = Cj ∩ [0, s] for every j ∈ {1, . . . , d} and

Dj∩[0, s] =

{
∅ if j = 1
[0, s1]× [0, α]× · · · × [1− α/(d− 1), 1]× · · · × [0, α] if j ∈ {2, . . . , d},

where [1 − α/(d − 1), 1] is located on the j-th coordinate. Then using the uniformity and

equation (5.26)

Cτ2(s) = µτ2
(
∪dj=2Dj ∩ [0, s]

)
=

d∑
j=2

µτ2(Dj ∩ [0, s])

=
d∑
j=2

s1

α

(
α

d− 1

)
= s1.

2) If α ≤ s1 ≤ t1, then Cj ∩ [0, s] = ∅ for every j ∈ {1, . . . , d}

Dj ∩ [0, s] =

{
∅ if j = 1
Dj if j ∈ {2, . . . , d},

and

Bj ∩ [0, s] =

{
∅ if j = 1
[α, s1]× [α, t1]× · · · × [t1, t2]× · · · × [α, t1] if j ∈ {2, . . . , d},

where [t1, t2] is located on the j-th coordinate. In this case
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Cτ2(s) = µτ2
((
∪dj=2Dj

)
∪
(
∪dj=2Bj ∩ [0, s]

))
=

d∑
j=2

(
α

d− 1

)
+

d∑
j=2

(t2 − α)

(
s1 − α
t1 − α

)
1

d

= α +
(t2 − α)

t1 − α
(d− 1)

d
(s1 − α)

= α +
(t2 − t1)

t1 − α
(d− 1)(s1 − α)

= s1,

because, using (5.5), −α = d(t2−t1)−t2, so, d(t2−t1)−(t2−t1) = t1−α, then (t2−t1)(d−1) =

t1 − α.

3) If t1 ≤ s1 ≤ t2. Then Cj ∩ [0, s] = ∅ for every j ∈ {1, . . . , d}

Dj ∩ [0, s] =

{
∅ if j = 1
Dj if j ∈ {2, . . . , d},

and

Bj ∩ [0, s] =

{
[t1, s1]× [α, t1]× · · · × [α, ti] if j = 1
Bj if j ∈ {2, . . . , d}.

In this case, using (5.5),

Cτ2(s) = µτ2
((
∪dj=2Dj

)
∪
(
∪dj=2Bj

)
∪ (B1 ∩ [0, s])

)
=

d∑
j=2

(
α

d− 1

)
+

d∑
j=2

(
t2 − α
d

)
+ (t2 − α)

(
s1 − t1
t2 − t1

)
1

d

= α +
(t2 − α)

d

[
d− 1 +

s1 − t1
t2 − t1

]

= α + (t2 − t1)

[
d− 1 +

s1 − t1
t2 − t1

]
= α + d(t2 − t1)− (t2 − t1) + s1 − t1
= t2 − t2 + t1 + s1 − t1
= s1.



127

4) If t2 ≤ s1 ≤ t3, then

Dj ∩ [0, s] =

{
∅ if j = 1
Dj if j ∈ {2, . . . , d},

Bj ∩ [0, s] = Bj for every j ∈ {1, . . . , d},

and

Cj∩[0, s] =

{
∅ if j = 1
[t2, s1]× [t2, t3]× · · · × [t3, 1− α/(d− 1)]× · · · × [t2, t3] if j ∈ {2, . . . , d},

where [t3, 1− α/(d− 1)] is located on the j-th coordinate. In this case,

Cτ2(s) = µτ2
((
∪dj=2Dj

)
∪
(
∪dj=1Bj

)
∪
(
∪dj=2Cj ∩ [0, s]

))
=

d∑
j=2

α

d− 1
+ (t2 − α)

d∑
j=1

1

d
+

d∑
j=2

(
1− α

d− 1
− t2

)(
s1 − t2
t3 − t2

)
1

d

= t2 +

(
d− 1

d

)(
1− α

d− 1
− t2

)(
s1 − t2
t3 − t2

)
= t2 + s1 − t2
= s1,

because by equation (5.14), t3 − t2 = ((d− 1)/d)(1− α/(d− 1)− t2).

5) If t3 ≤ s1 ≤ 1− α/(d− 1), then

Dj ∩ [0, s] =

{
∅ if j = 1
Dj if j ∈ {2, . . . , d},

Bj ∩ [0, s] = Bj for every j ∈ {1, . . . , d},

and

Cj ∩ [0, s] =

{
[t3, s1]× [t2, t3]× · · · × [t2, t3] if j = 1
Cj if j ∈ {2, . . . , d}.

Using the case 4),
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Cτ2(s) = µτ2
((
∪dj=2Dj

)
∪
(
∪dj=1Bj

)
∪
(
∪dj=2Cj

)
∪ (C1 ∩ [0, s])

)
= t2 +

d∑
j=2

(
1− α

d− 1
− t2

)
1

d
+

(
1− α

d− 1
− t2

)(
s1 − t3

1− α/(d− 1)− t3

)
1

d

= t2 +

(
d− 1

d

)(
1− α

d− 1
− t2

)
+

1

d

(
1− α

d−1
− t2

)(
1− α

d−1
− t3

)(s1 − t3)

= t2 + (t3 − t2) +
1

d

(
1− α

d−1
− t2

)(
1− α

d−1
− t3

)(s1 − t3)

= t3 + (s1 − t3)

= s1,

where we first used equation (5.14), and then by (5.13), we have that (1/d)(1− α/(d− 1)−

t2) = (1− α/(d− 1)− t3).

6) If 1− α/(d− 1) ≤ s1 ≤ 1, then

Dj ∩ [0, s] =

{
[1− α/(d− 1), s1]× [0, α]× · · · × [0, α] if j = 1
Dj if j ∈ {2, . . . , d},

Bj ∩ [0, s] = Bj for every j ∈ {1, . . . , d},

and

Cj ∩ [0, s] = Cj for every j ∈ {1, . . . , d}.

Then using case 4,

Cτ2(s) = µτ2
((
∪dj=2Dj

)
∪
(
∪dj=1Bj

)
∪
(
∪dj=1Cj

)
∪ (D1 ∩ [0, s])

)
= t2 +

d∑
j=1

(
1− α

d−1
− t2

)
d

+

(
s1 −

(
1− α

d−1

))
α
d−1

(
α

d− 1

)

= t2 +

(
1− α

d− 1
− t2

)
+ s1 − 1 +

α

d− 1

= s1.
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Therefore, Cτ2(s1, 1, . . . , 1) = s1 for every s1 ∈ I. Of course following the same steps we have

that Cτ2(1, . . . , 1, sj, 1, . . . , 1) = sj for every j ∈ {2, . . . , d} and for every sj ∈ I. Hence, Cτ2

is a d-copula. So, the case p = 2 is proved.

As an easy example, assume that d = 2 and p = 2 define the partition τ2 = {0 = t0, t1 =

0.32, t2 = 0.47, t3 = 0.65, t4 = 1}, then (t2 − t1) + (t4 − t3) = 1/2 and α = 0.17. In Figure 4

we provide the graph of the support of Cτ2 and the diagonal it generates.

Figure 4: Diagonal and Support of Cτ2 for the case d = 2, β = 1− α
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We now proceed by induction.

Let p ≥ 3 and assume that the result holds for every 1 ≤ r ≤ p − 1. Let τp = {t0, t1, . . . ,

t2p−1, t2p} be a partition of I such that

0 = t0 < t1 < t2 < · · · < t2p−1 < t2p = 1, (5.29)

p−1∑
i=0

t2i+2 − t2i+1 =
1

d
, (5.30)

and
s∑
i=0

d(t2i+2 − t2i+1) ≤ t2s+2 for every s ∈ {0, 1, . . . , p− 1}. (5.31)
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Define

α = min
1≤j≤p−1

t2j −
j−1∑
l=0

d(t2l+2 − t2l+1), (5.32)

and the define k to be the minimum index in {1, . . . , p− 1}, such that

α = t2k −
k−1∑
l=0

d(t2l+2 − t2l+1). (5.33)

Observe that α ≥ 0 by equation (5.31), we also observe that

α < t1, (5.34)

this follows, from equation (5.32), because α ≤ t2 − d(t2 − t1) < t1, since d ≥ 2. On the

other hand, since t2p−2 < t2p−1 by equation (5.29), then using (5.30), (5.32)

t2p−2 < t2p−1 ⇐⇒ t2p−2 < 1− 1 + t2p−1

⇐⇒ t2p−2 <

p−1∑
i=0

d(t2i+2 − t2i+1)− 1 + t2p−1

⇐⇒ α ≤ t2p−2 −
p−2∑
i=0

d(t2i+2 − t2i+1) < d(1− t2p−1)− 1 + t2p−1

⇐⇒ α < (d− 1)(1− t2p−1)

⇐⇒ t2p−1(d− 1) < d− 1− α

⇐⇒ t2p−1 < 1− α

d− 1
. (5.35)

In this case we can write δτp as

δτp(t) =



0 if 0 = t0 ≤ t ≤ t1
d(t− t1) if t1 ≤ t ≤ t2
d(t2 − t1) if t2 ≤ t ≤ t3
d(t2 − t1) + d(t− t3) if t3 ≤ t ≤ t4

...
...

...∑j
i=1 d(t2i − t2i−1) if t2j ≤ t ≤ t2j+1∑j
i=1 d(t2i − t2i−1) + d(t− t2j+1) if t2j+1 ≤ t ≤ t2j+2
...

...
...∑p−1

i=1 d(t2i − t2i−1) if t2p−2 ≤ t ≤ t2p−1∑p−1
i=1 d(t2i − t2i−1) + d(t− t2p−1) if t2p−1 ≤ t ≤ t2p = 1.
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Define δ1 : [0, 1]→ RI by

δ1(t) =
δτp(α + t(t2k − α))

t2k − α
, (5.36)

where α is given in equation (5.32) and 1 ≤ k ≤ p− 1 is defined in (5.33). We will see that

there exists a partition σk = {s0, s1, . . . , s2k−1, s2k} such that s0 = 0 < s1 < · · · < s2k−1 <

s2k = 1 with δ1 = δσk . We first observe that from equations (5.34), (5.36) and (5.36) we

have that

δ1(0) =
δτp(α)

t2k − α
= 0. (5.37)

We also have that from equations (5.33) and (5.36)

δ1(1) =
δτp(t2k)

t2k − α
=

∑k−1
i=0 d(t2i+2 − t2i+1)∑k−1
i=0 d(t2i+2 − t2i+1)

= 1. (5.38)

Define s0 = 0

si =
ti − α
t2k − α

for every i ∈ {1, . . . , 2k}. (5.39)

Then from equation (5.29) we have that

0 = s0 < s1 < · · · < s2k−1 < s2k = 1, (5.40)

that is, σk = {s0, s1, . . . , s2k} is a partition of I. Satisfying

k−1∑
i=0

s2i+2 − s2i+1 =

∑k−1
i=0 t2i+2 − t2i+1

t2k − α
=

∑k−1
i=0 t2i+2 − t2i+1∑k−1

i=0 d(t2i+2 − t2i+1)
=

1

d
, (5.41)

using equation (5.33) and (5.39). So, σk satisfies condition (5.2). Let 0 ≤ r ≤ k− 1 then we

know from equations (5.32), (5.33) and (5.31), that

0 ≤ α ≤ t2r+2 −
r∑
i=0

d(t2i+2 − t2i+1) ⇐⇒
r∑
i=0

d(t2i+2 − t2i+1) ≤ t2r+2 − α

⇐⇒
r∑
i=0

d

(
t2i+2 − t2i+1

t2k − α

)
≤
(
t2r+2 − α
t2k − α

)

⇐⇒
r∑
i=0

d(s2i+2 − s2i+1) ≤ s2r+2. (5.42)
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Therefore, from (5.42), σk satisfies condition (5.3).

From (5.40), (5.41), (5.42) and the induction hypothesis, there exists C∗1 a d-copula such

that its diagonal satisfies

δC∗1 (t) = δ1(t) for every t ∈ [0, 1]. (5.43)

Now define δ2 : I→ RI by

δ2(t) =

[
δτp
(
t2k + t

(
1− α

d−1
− t2k

))
− δτp(t2k)

]
1− α

d−1
− t2k

. (5.44)

Then

δ2(0) =

[
δτp(t2k)− δτp(t2k)

]
1− α

d−1
− t2k

= 0. (5.45)

Now, since by equations (5.30) and (5.29)

1 =
k∑
i=1

d(t2i − t2i−1) +

p−1∑
i=k+1

d(t2i − t2i−1) + d(1− t2p−1),

then

d− 1 +
k∑
i=1

d(t2i − t2i−1) = dt2p−1 −
p−1∑
i=k+1

d(t2i − t2i−1),

subtracting t2k on both sides, we get

d− 1− t2k +
k∑
i=1

d(t2i − t2i−1) = dt2p−1 −
p−1∑
i=k+1

d(t2i − t2i−1)− t2k,

by equation (5.33)

d− 1− α = dt2p−1 − t2k −
p−1∑
i=k+1

d(t2i − t2i−1),

so,

(d− 1)

(
1− α

d− 1

)
= dt2p−1 − t2k −

p−1∑
i=k+1

d(t2i − t2i−1).
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Then

d

(
1− α

d− 1
− t2p−1

)
= 1− α

d− 1
− t2k −

p−1∑
i=k+1

d(t2i − t2i−1). (5.46)

Therefore, using equations (5.44), (5.35), (5.36) and (5.46) we have

δ2(1) =

[
δτp
(
1− α

d−1

)
− δτp(t2k)

]
1− α

d−1
− t2k

=

∑p−1
i=1 d(t2i − t2i−1) + d

(
1− α

d−1
− t2p−1

)
−
∑k

i=1 d(t2i − t2i−1)

1− α
d−1
− t2k

=

∑p−1
i=k+1 d(t2i − t2i−1) + d

(
1− α

d−1
− t2p−1

)
1− α

d−1
− t2k

= 1. (5.47)

Observe that using equations (5.32), (5.33) and (5.29) we have that t2k ≤ t2p−2 < t2p−1. So,

by (5.35), in definition (5.44),

1− α

d− 1
− t2k > 1− α

d− 1
− t2p−1 > 0.

Let us define

ui =
t2k+i − t2k

1− α
d−1
− t2k

for every i ∈ {2k, 2k + 1, . . . , 2p− 1} (5.48)

and

u2p−2k =

(
1− α

d−1

)
− t2k

1− α
d−1
− t2k

= 1. (5.49)

Then using (5.29), (5.48) and (5.49) we have that if we let τp−k = {u0, u1, . . . , u2(p−k)}, is a

partition of I, such that,

0 = u0 < u1 < · · · < u2(p−k)−1 < u2(p−k) = 1, (5.50)

Now, from equation (5.46) we have that

p−1∑
i=k+1

(t2i − t2i−1) +

(
1− α

d− 1
− t2p−1

)
=

(
1

d

)(
1− α

d− 1
− t2k

)
.
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Therefore, using (5.46), (5.48) and (5.49),

p−k−1∑
i=0

(u2i+2 − u2i+1) =

p−k−2∑
i=0

(u2i+2 − u2i+1) + (u2p−2k − u2p−2k−1)

=

∑p−k−2
i=0 (t2k+2i+2 − t2k+2i+1) +

(
1− α

d−1
− t2p−1

)
1− α

d−1
− t2k

=

∑p−1
i=k+1(t2i − t2i−1) +

(
1− α

d−1
− t2p−1

)
1− α

d−1
− t2k

=

(
1

d

)(
1− α

d−1
− t2k

1− α
d−1
− t2k

)

=
1

d
. (5.51)

From equation (5.51), τp−k satisfies condition (5.2).

Let r ∈ {0, 1, . . . , p− k − 1}, then r + k ∈ {k, k + 1, . . . , p− 1}, and by equation (5.32),

(r+k+1)−1∑
j=0

d(t2j+2 − t2j+1) ≤ t2r+2k+2 − α. (5.52)

Then using (5.48), (5.33) and (5.52)

r∑
j=0

d(u2j+2 − u2j+1) =

∑r
j=0 d(t2k+2j+2 − t2k+2j+1)

1− α
d−1
− t2k

=

∑r+k
j=0 d(t2j+2 − t2j+1)−

∑k−1
j=0 d(t2j+2 − t2j+1)

1− α
d−1
− t2k

=

∑r+k
j=0 d(t2j+2 − t2j+1) + α− t2k

1− α
d−1
− t2k

≤ t2k+2r+2 − α + α− t2k
1− α

d−1
− t2k

= u2r+2. (5.53)

But, equation (5.53), implies that the partition τp−k in equation (5.50) satisfies condition

(5.3).
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From (5.50), (5.51), (5.53) and the induction hypothesis, there exists C∗2 a d-copula such

that its diagonal satisfies

δC∗2 (t) = δ2(t) for every t ∈ I . (5.54)

Now, define h1, h2 : Id → Id as in equations (5.20) and (5.22), by interchanging t2 by t2k.

Then it is clear that h1 is continuous strictly increasing and carries Id onto [α, t2k]
d, and

h2 is continuous strictly increasing and carries Id onto [t2k, α/(1 − d)]d. Let C1 and C2 the

measures defined on B([0, t2k]
d) and on B([t2k, 1 − α(d − 1)]d) respectively, induced by the

distribution functions C∗1 and C∗2 , and the functions h1 and h2 respectively.

Define Di for i ∈ {1, 2, . . . , d} as in equation (5.24), and να as in equation (5.25). Finally,

define µτp as in equation (5.26), interchanging t2 by t2k, that is,

µτp = να + (t2k − α)C1 +

(
1 +

α

d− 1
− t2k

)
C2. (5.55)

Then, as in equation (5.27) we have that µτp(I
d) = 1, that is, µτp is a probability measure

on the measurable space (Id,B(Id)). Define Cτp : Id → I by

Cτp(t1, . . . , td) = µτp([0, t]) for every t = 〈t1, . . . , td〉 ∈ Id . (5.56)

Then, Cτp is clearly a distribution function on Id, and using the same ideas as in the case

p = 2 we can see that the diagonal section of Cτp satisfies

δCτp (t) = Cτp(t, t, . . . , t) = δτp(t) for every t ∈ [0, 1]. (5.57)

Besides, using that

0 = t0 ≤ α < t1 < t2 < · · · < t2k−1 < t2k < t2k+1 < · · · < t2p−1 < 1− α

d− 1
≤ 1 = t2p,

it is easy to see that Cτp has uniform I univariate marginals. Therefore, from (5.57), Cτp is

a d-copula satisfying the conditions of the Theorem.

Remark 5.3. Let −∞ < a < b <∞ and let h : [a, b]→ RI be a function, such that,

h(t)− h(s) ≤ d(t− s) for every a ≤ s ≤ t ≤ b. (5.58)

If h(b) = h(a) + d(b− a), then h(t) = h(a) + d(t− a) for every t ∈ [a, b].
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To see this, define ϕ(t) = h(a)+d(t−a) for every t ∈ [a, b]. Then h(a) = ϕ(a) and h(b) = ϕ(b).

If we assume that there exists t0 ∈ (a, b), such that, h(t0) < ϕ(t0) = h(a) + d(t0 − a), then

h(b)− h(t0) = (h(a) + d(b− a))− h(t0)

> h(a) + d(b− a)− h(a)− d(t0 − a)

= d(b− t0),

which contradicts (5.58). If we assume that there exists t0 ∈ (a, b), such that, h(t0) > ϕ(t0) =

h(a) + d(t0 − a), then h(t0) − h(a) > d(t0 − a) contradicting (5.58), again. So, for every

t ∈ [a, b], h(t) = ϕ(t) = h(a) + d(t− a).

In the next Theorem we prove the statement given in [8] about the minimality of the d-

diagonal δn.

Theorem 5.4. Let δ be a d-diagonal for some integer d ≥ 2. Let n ≥ 0 and let k ∈
{0, 1, . . . , 2n − 1}. Define

an,k =
k + 1

2n
−
[
δ
(
k+1
2n

)
− δ

(
k

2n

)]
d

, (5.59)

and

δn(t) =

{
δ
(
k

2n

)
if k

2n
≤ t ≤ an,k

δ
(
k

2n

)
+ d(t− an,k) if an,k ≤ t ≤ k+1

2n
,

for k ∈ {0, 1, . . . , 2n − 1}. Then δn is a d-diagonal.

Evenmore, δn is the minimal d-diagonal such that δn
(
k

2n

)
=δ
(
k

2n

)
for every k ∈ {0, 1, . . . , 2n}.

Besides, δn(t)→ δ(t) uniformly on I.

Proof. Since δ is a d-diagonal, using (4.4) and (4.5), we have that for every n ≥ 0 and for

every k ∈ {0, 1, . . . , 2n − 1},

0 ≤ δ((k + 1)/2n)− δ(k/2n)

d
≤ d((k + 1)/2n − k/2n)

d
=

1

2n
,

then by equation (5.59),

k

2n
=
k + 1

2n
− 1

2n
≤ an,k ≤

k + 1

2n
. (5.60)



137

Also, δn(an,k) = δ(k/2n) = d(an,k − an,k) + δ(k/2n). So, δn in equation (5.60) is well defined.

We also observe that from equations (5.59) and (5.60) we have that

δn

(
k

2n

)
= δ

(
k

2n

)
and δn

(
k + 1

2n

)
= δ

(
k + 1

2n

)
, (5.61)

for every n ≥ 0 and for every k ∈ {0, 1, . . . , 2n − 1}.

Now we will see that δn(t) ≤ δ(t) for every n ≥ 0 and for every t ∈ I. Let n ≥ 0 and let

k ∈ {0, 1, . . . , 2n − 1}. Since δ is increasing by (4.5), then δ(k/2n) ≤ δ((k + 1)/2n).

If δ(k/2n) = δ((k + 1)/2n), then δ(t) = δ(k/2n) for every t ∈ [k/2n, (k + 1)/2n]. Now, by

definition (5.59), we have that an,k = (k + 1)/2n, and by (5.60), δn(t) = δ(k/2n) for every

t ∈ [k/2n, (k + 1)/2n]. So, δ(t) = δn(t) for every t ∈ [k/2n, (k + 1)/2n].

If δ(k/2n) < δ((k + 1)/2n) < δ(k/2n) + d/2n, then by definition (5.59), we have that

k

2n
< an,k <

k + 1

2n
. (5.62)

Then by definition (5.60) and by condition (4.5),

δn(t) = δ

(
k

2n

)
≤ δ(t) for every t ∈

[
k

2n
, an,k

]
.

Now, if we assume that for some t ∈ (an,k, (k+1)/2n) and δ(t) < δn(t) = δ(k/2n)+d(t−an,k),

then by (5.61) and (5.60)

δ

(
k + 1

2n

)
− δ(t) > δn

(
k + 1

2n

)
− δn(t)

= δ

(
k

2n

)
+ d

(
k + 1

2n
− an,k

)
− δ

(
k

2n

)
− d(t− an,k)

= d

(
k + 1

2n
− t
)
,

which contradicts (4.5). Hence, δn(t) ≤ δ(t) for every t ∈ [k/2n, (k + 1)/2n].

Finally, if δ((k + 1)/2n) = δ(k/2n) + d/2n, then an,k = k/2n and δ((k + 1)/2n) = δ(k/2n) +

d((k + 1)/2n − k/2n). So, by Remark 5.3, with a = k/2n and b = (k + 1)/2n, δ(t) =

δ(k/2n) + d(t− an,k) = δn(t) for every t ∈ [k/2n, (k + 1)/2n]. Therefore, by (4.6),
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δn(t) ≤ δ(t) ≤ t = δMd(t) for every t ∈ I, and for every n ≥ 0. (5.63)

Now, we analyze the extreme cases for δ. First, if we assume that δ(t) = δW d(t) = max{0, dt−

d+1} for every t ∈ I. Then, in this case δ(t) = 0 if 0 ≤ t ≤ 1−1/d, and δ(t) = d(t−(1−1/d))

for 1− 1/d ≤ t ≤ 1. Let n ≥ 0, then there exists a unique k0 ∈ {0, 1, . . . , 2n − 1} such that

k0/2
n ≤ 1− 1/d < (k0 + 1)/2n. Then using equation (5.59) we have that

an,k0 =
k0 + 1

2n
−
[
δ
(
k0+1

2n

)
− δ

(
k0
2n

)]
d

=
k0 + 1

2n
−
[
d
(
k0+1

2n
−
(
1− 1

d

))
− 0
]

d

= 1− 1

d
. (5.64)

From the definition of δ(t) in this case, it is clear that for every k > k0 with k ∈ {0, 1, . . . , 2n−

1}, we have that an,k = k/2n, because δ increases with slope d beginning at t = 1− 1/d. So,

using definition (5.60) we have that

δn(t) = δW d(t) = max

{
0, d

(
t−
(

1− 1

d

))}
for every n ≥ 0. (5.65)

In fact, using the same arguments as above and (5.63), it is easy to see that for every

d-diagonal δ, δ0(t) = δW d(t) for every t ∈ I.

Second, if we assume that δ(t) = δMd(t) = t for every t ∈ I. Then from equation (5.59) we

have that for every k ∈ {0, 1, . . . , 2n − 1},

k

2n
< an,k =

k + 1

2n
− 1

2nd
=

1

2n

(
k + 1− 1

d

)
<
k + 1

2n
. (5.66)

The inequality (5.63) imposes restrictions on the values of an,k in equation (5.59). For

example, if an,0 < (1/2n)(1 − 1/d), then by equation (5.60) we would have that δn(t) =

d(t−an,0) > d(t−(1/2n)(1−1/d)) for every t ∈ [an,0, 1/2
n]. But in this case, δn(1/2n) > 1/2n,

contradicting (5.63). Therefore,

(1/2n)(1− 1/d) ≤ an,0 ≤ 1/2n. (5.67)

On the other hand, if an,2n−1 = 1 = ((2n−1)+1)/2n, then by equation (5.60), we would have

that δn(t) = δ((2n − 1)/2n) for every t ∈ [(2n−1)/2n, 1]. But δ(1) = 1, so, δ((2n − 1)/2n) =
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1 > (2n − 1)/2n contradicting (5.63). Therefore,

2n − 1

2n
≤ an,2n−1 <

(2n − 1) + 1

2n
= 1. (5.68)

Observe that from equation (5.59), for every n ≥ 0 we have that

2n−1∑
k=0

(
k + 1

2n
− an,k

)
=

2n−1∑
k=0

[
δ
(
k+1
2n

)
− δ

(
k

2n

)]
d

=
δ(1)− δ(0)

d

=
1

d
. (5.69)

Besides, using (5.60), if we define Jδ = {k ∈ {0, 1, . . . , 2n − 1} | k/2n ≤ an,k < (k + 1)/2n}

it is clear from (5.69) that ∑
k∈Jδ

(
k + 1

2n
− an,k

)
=

1

d
. (5.70)

From equation (5.70) it is clear that Jδ 6= ∅, in fact by equation (5.68), k = 2n − 1 ∈ Jδ.

Now, we will find for δn an appropriate partition τp = {t0, t1, . . . , t2p} of I, such that, 0 =

t0 < t1 < · · · < t2p−1 < t2p = 1, for some 1 ≤ p ≤ 2n−1, and that satisfies conditions (5.2)

and (5.3) of Theorem 5.2.

Define Hδ = {j ∈ {0, 1, . . . , 2n−1} | j/2n < an,j < (j+1)/2n} and Iδ = {k ∈ {0, 1, . . . , 2n−

1} | an,k = k/2n}. Then

Jδ = Hδ ∪ Iδ, (5.71)

which is a disjoint union.

Assume that Iδ = {k1, k2, . . . ks}, where 0 < k1 < k2 < · · · < ks ≤ 2n − 1 with s ≥ 0, and

Hδ = {j1, j2, . . . , jr}, where 0 ≤ j1 < j2 < · · · < jr ≤ 2n − 1 with r ≥ 0. If s = 0 or r = 0

the corresponding sets are empty. Since Iδ ∩Hδ = ∅, and using (5.71), Jδ can be written as

Jδ = {l1, l2, . . . , lr+s}, where 0 ≤ l1 < l2 < · · · < lr+s ≤ 2n − 1. (5.72)

Define for every i ∈ {1, 2, . . . , r + s}

w2i−1 =

{
li
2n

if li ∈ Iδ
an,li if li ∈ Hδ,
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and

w2i =
li + 1

2n
if li ∈ Jδ. (5.73)

Let

U = {w1, w2, w3, w4, . . . w2(r+s)−1, w2(r+s)}. (5.74)

Then from (5.72) we have that the cardinality of U satisfies that 2(r + s) ≤ 2n+1. First we

observe that

w1 =

{
l1
2n

if li = k1 > 0, k1 ∈ Iδ
an,li > 0 if li = j1 = 0 ∈ Hδ.

Therefore, w1 > 0.

Observe that if Hδ = {0, 1, 2, . . . , 2n − 1}, then Iδ = ∅ and Jδ = Hδ. In this case

U =

{
an,0,

1

2n
, an,1,

2

2n
, . . . , an,2n−1,

2n

2n
= 1

}
.

If we define

t0 = 0 < t1 = an,0 < t2 =
1

2n
< t3 = an,1 < t4 =

2

2n
< · · · < t2n+1−1 = an,2n−1 < t2n+1 =

2n

2n
.

Then τp = {t0, t1, . . . , t2n+1−1, t2n+1} is a partition of I, as defined in Theorem 5.2, with

p = 2n.

If for some i ∈ {1, 2, . . . , 2(r + s)} we have that

w2i = w2i+1 we cancel out the terms w2i and w2i+1 from U. (5.75)

Now define the remaining elements by {t1, t2, . . . , t2p−1, t2p}, where t1 < t2 < · · · , t2p−1 < t2p,

t1 > 0 and t2p = 1 using (5.75) and (5.68). Besides, p ≤ (r + s) ≤ 2n, and we saw above the

upper bound can be found. Therefore, if we take t0 = 0 and we define

τp = {t0, t1, t2, . . . , t2p−1, t2p}. (5.76)

Then τp is a partition that satisfies conditions (5.1), (5.2) and (5.3) of Theorem 5.2, this

follows from equation (5.70) and inequality (5.63). So, for every δ d-diagonal and for every

n ≥ 0, and δn given in equation (5.60), there exists p ≥ 1, such that δn = δτp as defined in

(5.76), where τp satisfies the conditions of Theorem 5.2. Therefore, there exists a d-copula

Cτp such that its diagonal satisfies that

δCτp (t) = δτp(t) = δn(t) for every t ∈ I . (5.77)
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As an explanatory example, assume that δ is a d-diagonal for d = 2 and n = 3, that is,

2n = 8, and assume that δ satisfies:

δ

(
i

8

)
=



0.01 if i = 1
0.02 if i = 2
0.03 if i = 3
0.28 if i = 4
0.53 if i = 5
0.75 if i = 6
0.75 if i = 7
1 if i = 8

Using (5.78) we have that

Hδ = {0, 1, 2, 5} = {j1, j2, j3, j4} and Iδ = {3, 4, 7} = {k1, k2, k3},

and

Jδ = {0, 1, 2, 3, 4, 5, 7} = {l1, l2, l3, l4, l5, l6, l7}.

Then using (5.73) and (5.73) we have that

w1 = a3,0, w3 = a3,1, w5 = a3,2, w7 =
3

8
, w9 =

4

8
, w11 = a3,5 and w13 =

7

8
,

and

w2 =
1

8
, w4 =

2

8
, w6 =

3

8
, w8 =

4

8
, w10 =

5

8
, w12 =

6

8
and w14 =

8

8
= 1,

and U in equation (5.74) includes every wi for i ∈ {1, 2, . . . , 14}. Since

w6 =
3

8
= w7 and w8 =

4

8
= w9.

Then condition (5.75) is satisfied by i = 3 and i = 4. So, we delete four elements of U . If

we define using the remaining terms

t0 = 0 < t1 = a3,0 < t2 =
1

8
< t3 = a3,1 < t4 =

2

8
< t5 = a3,2

< t6 =
5

8
< t7 = a3,5 < t8 =

6

8
< t9 =

7

8
< t10 =

8

8
= 1. (5.78)

If we define, using (5.78), τ5 = {t0, t1, . . . , t8, t9, t10} is a partition of [0, 1] satisfying the

conditions of Theorem 5.2.
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Another relevant example is to consider q = 2 with δ = δM2 and n = 2, in this case

δ

(
i

4

)
=


0 if i = 1
0 if i = 2
0.5 if i = 3
1 if i = 4

Using (5.79) we have that

Hδ = ∅ and Iδ = {3, 4} = {k1, k2}

and

Jδ = {3, 4} = {l1, l2}.

Then using (5.73) and (5.73) we have that

w1 =
2

4
, w3 =

3

4
, w2 =

3

4
and w4 =

4

4
= 1.

and U in equation (5.74) includes every wi for i ∈ {1, 2, 3, 4}. Since

w2 =
3

4
= w3.

Then condition (5.75) is satisfied by i = 1. So we delete two elements of U , that is w2 and

w3. If we define using the remaining terms

t0 = 0 < t1 =
2

4
=

1

2
< t2 =

4

4
= 1,

and we define

τ1 = {t0, t1, t2}. (5.79)

Then clearly τ1 is a partition of I, satisfying the conditions of Theorem 5.2, for p = 1. So,

in general the value of p may vary between 1 and 2n.

We finally prove that limn→∞ δn(t) = δ(t) uniformly on I. We know that δn(0) = 0 = δ(0)

and δn(1) = 1 = δ(1) for every n ≥ 0. Let t ∈ (0, 1) and let n ≥ 0, then there exists a unique

k0 ∈ {0, 1, . . . , 2n − 1} such that k0/2
n ≤ t < (k0 + 1)/2n. So, using definition (5.60), and
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the fact that δn is a d-diagonal, we have that

|δ(t)− δn(t)| ≤
∣∣∣∣δ(t)− δ( k0

2n

)∣∣∣∣+

∣∣∣∣δ(k0

2n

)
− δn

(
k0

2n

)∣∣∣∣+

∣∣∣∣δn(k0

2n

)
− δn(t)

∣∣∣∣
≤ d

(
t− k0

2n

)
+ 0 + d

(
t− k0

2n

)

≤ 2d

2n

=
d

2n−1
. (5.80)

So, if we let ε > 0 and we take N ≥ 1, such that d/2N−1 < ε, then using (5.80), we have

|δ(t)− δn(t)| < ε, for every n ≥ N and for every t ∈ I. Therefore, δn(t) converges uniformly

to δ(t) on I.

Evenmore, it is not difficult to prove that the sequence {δn}∞n=0 increases uniformly to δ on

I.

Now the proof of Theorem 5.1 is straightforward, because, if δ is a d-diagonal then by

Theorem by Theorem 5.4, we have a sequence of d-diagonals {δn}∞n=0 such that δn(t) converges

uniformly to δ(t) on I. But, for every n ≥ 0, δn satisfies the conditions of Theorem 5.2. So,

for every n ≥ 0 there exists a d-copula Cn such that its diagonal satisfies that δCn = δn

for every n ≥ 0. If we define the supremum distance such that if C,D are d-copulas then

dsup(C,D) = supx∈Id |C(x) − D(x)|. Then by compactness of the set of all copulas with

supremum distance, there exists C a d-copula and a subsequence {Cnk}∞k=1 such that Cnk →
C uniformly. Then C is such that δC = δ.

We also observe that the d-diagonal δn given in Theorem 5.4 corresponds to a shuffle of the

diagonal δW d(t) defined in equation (4.7). We will say that a shuffle of the diagonal δW d(t) is

given by a partition of the interval [1−1/d, 1], namely 1−1/d = s0 < s1 < · · · < sp−1 < sp = 1

when we select a partition of [0, 1− 1/d] u0 = 0 < u1 < u2 < · · · < up−1 < up = 1− 1/d such

that if we define a partition of I by taking t0 = 0 < t1 = u1 < t2 = u1 + (s1 − s0) < t3 =

u2 + (s1− s0) < t4 = u2 + (s2− s0) < · · · < t2p−1 = up + (sp−1− s0) < t2p = up + (sp− s0) =

1 − 1/d + (1 − (1 − 1/d)) = 1, that satisfies (5.2) and (5.3). Then if we define δτp , as in

Theorem 5.2, where τp = {t0, t1, . . . , t2p−1, t2p}, we obtain a d-diagonal.

Example 5.5. Let d = 3 and p = 3 let {2/3 = s0 < s1 = 3/4 < s2 = 9/10 < s3 = 1} be a

partition of [2/3, 1] and define {u0 = 0 < u1 = 19/60 < u2 = 17/30 < u3 = 2/3} to be the
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partition of [0, 2/3]. Then τp = {0 = t0, t1 = 19/60, t2 = 4/10, t3 = 13/20, t4 = 8/10, t5 =

9/10, t6 = 1} which satisfies (5.2) and (5.3). The diagonal δτp is given in Figure 5, and from

Theorem 5.4, δτp is the minimal 3-diagonal which passes through the points 〈4/10, 1/4〉 and

〈8/10, 7/10〉.

Figure 5.- A shuffle of δW d
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Chapter 6

Conclusions

In Chapter 2 we extended the results in De Baets and De Meyer [12] to larger dimensions.

These results allowed us to provide alternative proof for the generalization Ordinal Sums in

Mesiar and Sempi [55] and to give a general framework for the proofs of the multivariate

patchwork-like constructions. We also found a multivariate extension of the bivariate rect-

angular patchwork construction of [23, 24]. Such constructions can modify a copula only

in a box attached to the upper corner of In but we proposed a methodology in which after

successive patches we can get modifications of a copula in inner n-boxes. The methodology

gives us the possibility to model tail dependence, but that is left for future research as well

as finding an algorithm to generate a random sample from the patched copula.

In Chapter 3 we provided the multivariate generalization of the construction in Cuculescu

and Theodorescu [8]. We succeeded in our attempt to construct a new family of copulas:

the sample d-copula of order m, based on the ideas of the transformation matrices given in

[34], and its generalization in [69]. Such construction is given in two settings: First when the

sample is obtained from a d-copula C, and second when the sample comes from a continuous

d-distribution function on RI d. In both cases we were able to provide interesting statistical

applications such as a new methodology for estimation of parameters, a goodness-of-fit test

and results about the usual concordance measures. In the second case, for 2 ≤ m ≤ n, we

proved that d-dimensional square matrix Snm, used in the definition of the sample d-copula of

order m, Cn
m in equation (3.20), is always a generalized transformation matrix, which allows

us to have a non trivial sample d-copula.

We also proved that the resulting family of d-copulas is dense in every dimension d ≥ 2 for

the sup norm. The main advantage of this new construction can yield possibly useful results

when sample sizes are very large. We still need to extend some of the results from the first
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setting into the second setting.

Also in this chapter we present the relation of d-dimensionally stochastic matrices and

transformation matrices and we find the necessary number of parameters for a square d-

dimensional matrix to be a d-dimensional stochastic matrix.

In Chapter 4 we prove that the direct algebraic extensions of the Bertino copula and the

diagonal copula do not work. We generalize Frank’s condition for a diagonal to determine

uniquely an Archimedean copula and its proof, given in Erdely [26]. We were also able to

extend the family of generators given in Alsina et al [2] which show that when the Frank

condition is not satisfied the diagonal does not characterize uniquely the generator and so

does not characterize uniquely the Archimedean copula.

Chapter 5 provides a step by step proof of the construction of d-copulas with a given diagonal

section. We also make a connection to the concept of shuffles of the diagonal δW d .



BIBLIOGRAPHY 147

Bibliography

[1] Aczél, J. and Dhombres, J. (1989). Functional Equations in Several Variables. Cambridge

University Press, Cambridge, UK.

[2] Alsina, C., Frank, M. J., and Schweizer, B. (2006). Associative Functions: Triangular

norms and copulas. World Scientific Publishing Co., Singapore.

[3] Berger, J. and Bernardo, J. (1992). Ordered group reference priors with application to

the multinomial problem. Biometrika, 79-1:25–37.

[4] Bertino, S. (1977). Sulla dissomiglianza tra mutabili cicliche. Metron, 35:53–88.
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tions. In Beneš, V. and Štěpán, editors, Distributions with given marginals and moments

problems, pages 129–136.

[33] Fredricks, G. A. and Nelsen, R. B. (2002). The Bertino family of copulas. In Cuadras,
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In press.



150 BIBLIOGRAPHY
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