
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

POSGRADO EN CIENCIA E INGENIERÍA DE LA COMPUTACIÓN

RANDOM BOOLEAN NETWORKS, STUDY OF DEGENERACY

PRESENTA:
ROBERTO GUTIÉRREZ GARCÍA

T E S I S
QUE PARA OPTAR POR EL GRADO DE:

MAESTRO EN CIENCIAS (COMPUTACIÓN)

DR. DAVID A. ROSENBLUETH LAGUETTE Y DR. CARLOS
GERSHENSON GARCÍA

IIMAS - UNAM
PROGRAMA DE POSGRADO EN CIENCIA E INGENIERÍA DE LA

COMPUTACIÓN

MÉXICO, D.F. SEPTIEMBRE 2013



Thesis Advisor Dr. David A.
Rosenblueth Laguette

Thesis Advisor Dr. Carlos
Gershenson García

Chairman of Department
Dr. Fernando Arámbula Co-
sio

Thesis Reader Dr. León
Patricio Martínez Castilla

Thesis Reader Dr. Max-
imino Aldana González

Thesis Reader Dr. Pedro
Miramontes Vidal

ii



Random Boolean Networks, Study of Degeneracy

By

Roberto Gutiérrez García

Dissertation

Submitted in Partial Fulfillment of the Requirements
for the Degree of Master
in Computer Sciences

in the “Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas” IIMAS at
National Autonomous University of Mexico UNAM, 2013

Mexico City, Mexico



“At the center of the problem is the process of the
self-organization of matter.”

Albert L. Lehninger

“The world is either the effect of cause or chance.
If the latter, it is a world for all that, that is to
say, it is a regular and beautiful structure.”

Marcus Aurelius



A mis padres, Amada y Max, por su amor y

apoyo incondicional.

A Francisco y María Fernanda, por su gran

cariño y compañia



Agradecimientos

En primer lugar, agradezco a mi familia. A mis padres, Maximino y Amada, por el amor

que me han brindado toda la vida. A mi hermano Francisco, con quien he compartido

mi vida desde mis primeros años. A María Fernanda, mi sobrina (hermana), por esas

tardes en las me convierto de vuelta en niño, mostrandome lo hermosa y sencilla que

es la vida. A mis demás tíos, primos y toda la familia, que han estado al pendiente de mi

Un especial agradecimiento a mis tíos Fabiana y Severo, por el invaluable apoyo y cariño

durante la realización de mi maestría.

Agradezco a mi tutor Carlos, a quien admiro no sólo por su inteligencia, ideas y trabajo,

sino por su calidad humana.

A todos mis amigos, por sus locuras, kilómetros recorridos, los amenos momentos, y por

su apoyo incondicional.

El desarrollo de esta tesis fue apoyado por el CONACyT beca 371.369 y PAEP, UNAM.



Abstract

Random Boolean networks (RBNs) are general models of gene regulatory networks

that can be used to explore evolution theories. Understanding the relationship be-

tween robustness and evolvability is key to explaining how living systems can withstand

mutations, while produce variation that may lead to evolutionary innovations. Here

we explore the hypothesis that degeneracy plays a central role in robustness and thus

evolvability. We propose three types of degeneracy for RBNs. Results suggest that all

three types of degeneracy increase the robustness of RBNs and decrease their attractor

lengths. Our results complement the evidence in favor of degeneracy as a promoter of

evolvability.
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Chapter 1

Introduction

Life exhibits many interesting features which are difficult to create artificially. At al-

most all biological organization scales, we see that systems are versatile and robust to

changing conditions [WJM10]. Thus, many phenomena can be described as complex

adaptive systems (CAS). CAS are complex in the sense that they are conformed by

multiple interconnected elements, and adaptive, because these systems have the capac-

ity to change their functionality. The individual and collective behaviors change and

self-organizes [Mit09].

Common examples of CAS are the immune system, stock markets, gene regulatory net-

works, social networks, Internet, etc. These systems consist of a large number of compo-

nents, that interact with each other. Emergent behaviors and pro-

perties arise at the system level. A system is robust if it can maintain its function

in face of perturbations [Wag05b].

Robustness is in some sense unique, because it is obtained through a richly distributed

response that allows CAS to handle challenging variations of environmental stress

[WJM10].

Although robust, biological systems sometimes can adapt themselves to explore new

resources and persist in unpredictable environments [Whi10]. Therefore, a second im-
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portant feature is the ability to innovate. In other words, evolvability is the capacity to

discover beneficial, heritable adaptations. [WA96].

Moreover, robustness plays a key role in evolvability allowing the gradual exploration

of new solutions, while maintaining functionality. A small change in a fragile system

would destroy it. There are several mechanisms that help a system to be robust [von56],

such as modularity [Sim96, WP05], distributed robustness [Wag05a], redundancy, and

degeneracy [LB04]. In this work, we focus on the latter.

A deep understanding of CAS requires the comprehension of the conditions which faci-

litate the coexistence of high robustness, growing complexity, and the continued propen-

sity for innovation, i.e. evolvability [Whi10]. “Understanding the relationship between

robustness and evolvability is key to understand how living things can withstand muta-

tions, while producing ample variation that leads to evolutionary innovations” [CMW07].

Many CAS can be usefully described as network, where nodes represent elements, and

their connections represent their interactions. Network connectivity relates directly to

robustness because it allows for mutations and perturbations that do not change the

phenotype [Wag05b]. The degree of robustness depends on the local topology and the

size of the network. Besides, evolvability is concerned with long-term movements that

can reach over widely different regions of the fitness landscape1. An extensive neutral

network2 with a rich phenotypic neighborhood allows the exploring of many diverse

phenotypes without affecting the core functionalities of a system [WB10a].

1The set of all possible genotypes, their degree of similarity, and their related success values is
called a fitness landscape.

2A neutral network is a set of points in the search space which have the same fitness. Neutral
networks are also defined as points in the search space that are connected through neutral point-
mutations where the fitness is the same for all the points in such network [Kim83].
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Degeneracy

In biology, degeneracy refers to conditions where the functions or capabilities of compo-

nents partially overlap [Whi10, WB10a]. In other words, degeneracy is the property of

having similar results from different pathways or different processes, emerging through

the actions of multiple dissimilar parts [Wag05a, Wag05c].

This property is not visible at a single scale because it is present in complex systems

where heterogeneous components (e.g. gene products) have multiple interactions with

each other. In this sense, degeneracy is a system property that requires the existence

of multi-functional components (but also modules and pathways), which have similar

functionalities under certain conditions and may play different roles under other condi-

tions [GSFF00b].

Degeneracy is intimately related to complexity because while complex systems are both

functionally integrated and functionally segregated, degenerate components are both

functionally redundant and functionally independent [Whi10].

In the same sense, Edelman and Gally [EG01] point out that degeneracy is a ubiquitous

biological property and argue that it is a feature of complexity at the genetic, cellu-

lar, organismic, and population levels. Furthermore, it is both necessary for, and an

inevitable outcome of, natural selection, and contributes to robustness because it pro-

vides a mechanism to obtain the same functionality through a diversity of components.

3



The contrast between degeneracy and redundancy at the structural level is sharpened by

comparing design and selection in engineering and evolution, respectively. In engineering

systems, logic prevails, and, for fail-safe operation, redundancy is built into design. This

is not the case for biological systems [EG01].

Modeling degeneracy in RBN

Random Boolean networks (RBN) are appealing models for studying evolution, since

functionality and topology are not assumed. RBNs have different dynamic regimes. On

the one hand, the dynamics which stabilize quickly, is called ordered regime. On the

other hand, the dynamics where RBNs are generally sensitive to initial conditions, is

called chaotic regime. The phase transition from the ordered to the chaotic regime, is

known as the edge of chaos, where small changes do not destroy previous functionality,

but can explore their space of possibilities.

This thesis shows the effects of degeneracy for achieving robustness and evolvability, in

face to perturbations, in discrete dynamical systems, using random Boolean networks

as model of study.

In this work, three types of degeneracy are defined: function degeneracy, input degener-

acy and output degeneracy. Based on this classification, computational experiments are

developed to compare the effects different types of degeneracy and redundancy on the

dynamics of RBNs. Sensitivity to initial conditions, complexity, and information are

also measured. Experiments measuring complexity and information are implemented.

The relevance of this thesis, lies in the study of degeneracy of CAS, particularly in ran-

4



dom Boolean networks. The relationship between degeneracy, as a form of robustness

and ability to innovate (adaptability) of living beings is analized.

This thesis is organized as follows: chapter 2 provides an introduction to discrete dynam-

ical systems. Chapter 3 presents a description of random Boolean networks. Chapter 4

presents a description of how degeneracy is defined and implemented, from duplicate el-

ements (redundant nodes), to elements with a structural and functional partial change.

Chapter 5 shows the results obtained and a discussion about experiment outcomes.

Chapter 6 concludes the thesis.

5



Chapter 2

Dynamical networks

There are many different ways to study CAS by means of: agent-based models, complex

network-based models, and differential equations. Agent-based models are developed

by means of various methods and tools, identifying the different agents inside the model

and capturing the essential characteristics and behavior. Another method for modeling

CAS involves building complex network models by using interaction data of various

CAS components. A different approach for modeling complex systems may be using

differential equations, (particular examples are [GK73, KEG02], for GRNs) in which

interactions are incorporated as logical functions.

Dynamical networks are interesting models since one does not have to assume any

functionality or particular connectivity of networks, to study their generic properties.

Dynamical networks are used for exploring the configurations where life could emerge

[Ger04a]. In this chapter we discuss the most important concepts of network theory

(graph theory) and basic realizations of possible network organizations. The definitions

and concepts are based on [Gro08].

2.1 Real-World Networks

Dynamical networks constitute a wide class of CAS. There are plenty of examples in

nature, ranging from social insects such as ants, to the biosphere and the ecosystems,

6



as well as the immune system. The brain of vertebrate and most invertebrate animals,

is another example of adaptive dynamical system, composed of interconnected neurons,

via a synapse. In the same way, in life we interact through social networks at different

scales. Networks are ubiquitous models throughout the domain of living creatures.

Fig. 2.1: Illustration of the network structure of the world-wide web (left) and of the
Internet (right); from [Bar02].

Social networks are an example of a communication network. Most human communica-

tion takes place directly among individuals. The spreading of rumors, jokes and diseases

takes place by contact between individuals.

Information processing is ubiquitous in networks; well known examples are the Internet

and the world-wide web, see Fig. 2.1. Inside a cell the many constituent proteins form

an interacting network, as illustrated in Fig. 2.2. The same is of course true for artificial

neural networks as well as for the networks of neurons that constitute the human brain.

It is therefore important to understand the statistical properties of the most important

network classes.

2.2 Graph-Theoretical Concepts

In this section, we introduce some concepts allowing us to characterize theoretical graphs

and real-world networks.

7



Fig. 2.2: A protein interaction network, showing a complex interplay between highly
connected hubs and communities of subgraphs with increased densities of edges from
[PDFV05]).
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Degree of a Vertex

A graph is made out of vertices connected by edges, determining the degree of a vertex,

as defined below:

Degree of a Vertex. The degree k of the vertex is the number of edges linking such a

vertex to either another node in the network, or itself.

Nodes having a degree k substantially above the average are denoted hubs, which are

relevant to the network theory studies.

Coordination Number

The simplest type of network is the random graph. It is characterized by only two

numbers: By the number of vertices N and by the average degree z, also called the

coordination number.

Coordination Number. The coordination number z is the average number of links per

vertex, namely the average degree.

A graph with an average degree z has Nz/2 connections. Alternatively we can define

with p the probability to find a given edge.

Connection Probability. The probability that an edge between two nodes in the network

occurs is called the connection probability p.

9



Fig. 2.3: Random graphs with N = 12 vertices and different connection probabilities
p = 0.08 (left) and p = 0.4 (right). The three mutually connected vertices (0,1,7)
contribute to the clustering coefficient and the fully interconnected set of sites (0,4,10,11)
is a clique in the network on the right.

Erdös-Rényi Random Graphs

We can construct a specific type of random graph simply by taking N nodes, also called

vertices and by drawing Nz/2 lines, the edges, between randomly chosen pairs of nodes,

compare Fig. 2.3. This type of random graph is called an Erdös-Rènyi random graph.

For Erdös-Rényi random graphs we have

p =
Nz

2

2

N(N − 1)
=

z

N − 1
(2.1)

for the relation between the coordination number z and the connection probability p.

The Thermodynamic Limit

Most systems in nature are not in equilibrium; i.e. they are changing over time, and

are continuously and discontinuously subject to flux of matter and energy from other

systems and chemical reactions.

Thermodynamic Limit. The thermodynamic limit, or macroscopic limit, is the large N

10



limit in statistical mechanics, where N is the number of particles, such as (atoms

or molecules), in the system.

A property is extensive if it is proportional to the amount of constituting elements, and

intensive if this property does not depend on the system size or the amount of material

in the system. We note that p = p(N) → 0 in the thermodynamic limit N → ∞ for

Erdös-Rényi random graphs and intensive z ∼ O(N0); compare Eq. 2.1.

There are small and large real-world networks and it makes sense only for large networks

to consider the thermodynamic limit. An example is the network of hyperlinks in the

world wide web, as shown in Fig. 2.41.

Fig. 2.4: Partial map of the Internet based on the January 15, 2005. Each line is drawn
between two nodes, representing two IP addresses. This graph represents less than 30%
of the Class C networks reachable by the data collection program in early 2005.

1Image by The Opte Project, data can be found on opte.org
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Chapter 3

Random Boolean Networks

Complex systems theory deals with dynamical systems containing a large number of

variables. The resulting dynamical behavior can be arbitrarily complex and sophisti-

cated. For measuring the properties of dynamical systems is therefore important to

consider the scale at which experiments are performed, as small networks can show a

different behavior than large-scale networks.

Networks of interacting binary variables, i.e. Boolean networks, constitute a canonical

complex dynamical systems for the study of dynamics and many properties of biological

systems, exploring them with different topologies.

Random Boolean networks can hence be considered, in a certain sense, as being of

prototypical importance in this field, as they provide well defined classes of dynamical

systems for which the thermodynamical limit N →∞ can be taken. They show chaotic

as well as regular behavior, despite their apparent simplicity, and many other dynamical

systems phenomena. Also, in the thermodynamic limit there can be phase transitions

between chaotic and regular regimes.

One of the aims of RBN research is studying how the topology of a network (struc-

ture) determines the state transition properties of the network (function), which is the

conceptual framework of this study. Note that all the definitions and concepts of this
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chapter are from the book [Gro08].

3.1 Introduction

Random Boolean networks (RBNs) were developed by Stuart Kauffman as a model of

gene regulatory networks (GRNs) [Kau69, Kau93, Ger04a], which consist of N nodes

with a Boolean state, representing whether a gene is being transcribed or not (on or

off respectively). These states are determined by the states of K nodes which can be

considered as inputs or links towards a node. Because of this, RBNs are also known

as NK networks or Kauffman models [AGCK03]. The states of nodes are updated by

lookup tables that specify for every 2K possible combination of input states the future

state of the node.

RBNs are random in the sense that the connectivity (which nodes are inputs of which,

see Fig. 3.1) and functionality (lookup tables of each node, see Table 3.1) are chosen

randomly when a network is generated, although these remain fixed as the network is

updated each time step. RBNs are discrete dynamical networks (DDNs), since they

have discrete values, number of states, and time [Wue98]. They can also be seen as

a generalization of Boolean cellular automata [NC97, Ger02], where each node has a

different neighborhood and rule.

In RBNs, each state has only one successor, while having the possibility of having sev-

eral predecessor states (many states lead to one state), or no predecessor (states without

predecessors are called Garden of Eden states). In this way, transitions between network

states determine the state space of the RBN.

13



In classic RBNs, the updating is deterministic and synchronous [Ger02]. Since they

have 2N possible network states, sooner or later a state will be repeated. When this

occurs, the network has reached an attractor, since the dynamics will remain in that

subset of the state space. If the attractor consists of only one state, then it is called

a point attractor (similar to a steady state), whereas an attractor consisting of several

states is called a cycle attractor (similar to a limit cycle).

According to Kauffman, the number of cell types in an organism is similar to the num-

ber of attractors in a RBN, with number of nodes similar to the number of genes of the

organism [Kau69]. In this context, all cells of an animal contain the same genes and cell

differentiation, i.e. the fact that a skin cell differs from a muscle cell, is because of the

differences in the gene activities in the respective cells.

Kauffman’s original model has been generalized to a wide spectrum of applications,

such as to analyze and predict genomic interactions [SS96, SFAW97], in neural networks

[HMAG02], robotics [QNDR03] and music generation [Dor00]. Therefore, Boolean net-

works are general models to study diverse dynamical systems because we can model at

an abstract level many phenomena, and study generic properties of networks indepen-

dently of their functionality [Ger04a]. For modeling particular genetic networks, other

models have been proposed, differing by their updating schemes [HB97].

3.2 Boolean Networks

In this section, we describe the dynamics of a set of N binary variables.

Boolean Variables A Boolean or binary variable has two possible values, we denote

14



them as 0 and 1 in this work.

These variables interact according to rules denoted as coupling functions.

Boolean Coupling Functions. A Boolean function {0, 1}K → {0, 1} maps K Boolean

variables into a single one.

The dynamics of the system is considered to be discrete, t = 0, 1, 2, . . . . The value

of the variables at the next time step is determined by the choice of Boolean coupling

functions. The set of all these elements and their linkage is denoted as the Boolean

network.

The Boolean network. The set of Boolean coupling functions interconnecting the

N Boolean variables can be represented graphically by a directed network, the

Boolean network.

Fig. 3.1: Illustration of a Boolean network with N = 4 nodes and a connectivity K = 2,
and their lookup table.

In Fig. 3.1 a small Boolean network of size N = 4 is illustrated.
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3.3 Random Variables and Networks

Modeling real-world systems by a collection of interacting binary variables is often a

simplification, as real-world are often represented by continuous variables. For the case

of the gene expression network, we just keeps two possible states for every single gene:

active or inactive.

Thresholds are parameter regimes at which the dynamical behavior changes qualita-

tively, and are wide-spread in biological systems. Examples are neurons, which fire or

do not fire depending on the total strength of presynaptic activity. Similar thresholds

occur in metabolic networks in the form of activation potentials for the chemical reac-

tions involved. However, thresholds are not of interest for the purpose of this work.

Boolean networks have a rich variety of possible concrete model realizations, which differ

in updating scheme, topology and and type of coupling ensembles.

3.3.1 Boolean Variables and State Space

We denote by

σi ∈ 0, 1, i = 1, 2, . . . , N

the N binary variables and by Σt the state of the system at time t,

Σt = {σ1(t), σ2(t), . . . , σN(t)}. (3.1)

Σt can be thought of as a vector pointing to one of the Ω = 2N edges of anN -dimensional

hyper-cube, where Ω is the number of possible configurations, in a given time step. Thus,
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σ1 σ2 σ3
Random

(a)
Canalizing

(b)
Additive Gen.

(c)
XOR
(c)

0 0 0 0 1 0 0
0 0 1 1 1 0 1
0 1 0 1 1 0 1
0 1 1 0 1 1 0
1 0 0 1 0 0 1
1 0 1 0 0 1 0
1 1 0 1 0 1 0
1 1 1 1 0 1 1

Table 3.1: Examples of Boolean functions of three arguments. (a) A particular random
function. (b) A canalizing function of the first argument; when σ1 = 0, the function
value is 1. If σ1 = 1, then the output can be either 0 or 1. (c) An additive function.
The output is 1 (active) if at least two inputs are active. (d) The generalized XOR,
which is true when the number of 1-bits is odd.

.

time is assumed to be discrete,

σi = σi(t), t = 1, 2, . . . .

The value of a given Boolean element σi at the next time step is given by the values of

K controlling variables.

Controlling Elements. The controlling elements σj1(i), σj2(i), . . . , σjK(i) of a Boolean

variable σi determine its time evolution by

σi(t+ 1) = fi(σj1(i)(t), σj2(i)(t), . . . , σjK(i)(t)). (3.2)

Here fi is a Boolean function associated with σi. The set of controlling elements might

include σi itself. Some exemplary Boolean functions are given in the Table 3.1.
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Number of Coupling Functions

The coupling function:

fi : {σj1(i), . . . , σjK(i)},→ σi (3.3)

has 2K different arguments. To each argument value we can assign either 0 or 1. Thus

there are a total of

|f(K)| = 2(2K) = 22K (3.4)

possible coupling functions. For example, if we have a connectivity K = 3, we will have

|f(3)| = 223 = 256 possible functions. In Table 3.1 we present several examples for the

mentioned example.

Model Realizations

A given set of linkages and Boolean functions {fi} defines what we call a realization of

the model. The dynamics then follows from Eq. 3.2. For the updating of all elements

during one time step we have several choices:

• Synchronous updating: All variables σi(t) are updated simultaneously.

• Serial updating (or asynchronous updating): Only one variable is updated at every

step. This variable may be picked at random or by some predefined ordering

scheme.

The updating scheme does not affect thermodynamic properties. However, the occur-

rence and the properties of cycles and attractors discussed in Sect. 3.5, crucially depends

on the updating scheme.
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3.3.2 Model Definition

Finally, for a complete definition of the model we specify several parameters:

The Connectivity: The first step is to select the connectivity Ki of each element, i.e.

the number of its controlling elements. With

〈K〉 =
1

N

N∑
i=1

Ki

the average connectivity is defined. Here we will consider mostly the case in which

the connectivity is the same for all nodes: Ki = K, i = 1, 2, . . . , N .

The connecting input links: The second step is to select the specific set of controlling

elements σj1(i), σj2(i), . . . , σjK(i) on which the element σi depends. See Figure 3.1

for an illustration.

The Evolution Rule: The third step is to choose the Boolean function fi determining

the value of σi(t+ 1) from the values of the linkages σj1(i)(t), σj2(i)(t), ..., σjK(i)(t).

Besides, the way the connecting input links are assigned determines the topology of

the network. There are diverse topologies. We mention three general cases: lattices,

uniform and scale-free topologies. Other type of topology are small-world networks,

with regular short-distance links and random long-distance links are popular models in

network theory.

3.4 The Dynamics of Boolean Networks

Although living entities follow the laws of physics and chemistry, several key features

of biological systems result from the relevance that information plays, are not shared
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by physical systems [Gou02]. The transmission, storage and manipulation of informa-

tion in biological systems let the creation of biological structures through evolutionary

pathways which are contingent [Hop94].

Information allows biological systems to compute. More complex organisms are better

able to cope with environmental uncertainty because they can compute, i.e. they have

memory or some form of internal plasticity, and they can also make calculations that

determine the appropriate behavior using what they sense from the outside world [FS04].

In Boolean networks, the dynamics needs to be sufficiently versatile for adaptive behav-

ior but short of chaotic to ensure reliable behavior, and this in turn implies a balance

between order and chaos in the network.

There is an emergent property in CAS, a network’s ability to dynamically categorize its

state-space. The emergent structure that embodies memory is the network’s basin of

attraction field, representing all possible trajectories through state-space. Categoriza-

tion occurs far from equilibrium as well as at attractors, creating a complex hierarchy

of content addressable memory represented by separate attractors within the attraction

field, and also by the root’s subtrees in basins of attraction [Wue97]. In RBNs, as well

as in many dynamical systems, three regimes can be distinguished: ordered, critical,

and chaotic [Ger04a].

3.4.1 The flow of information through the network

For random models which maintain the same updating scheme, the response to change

is relevant, since changing the value of any variable σi can cause either a small or large
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effect in the dynamics of the system. We may either change the initial conditions, or

some specific coupling function, and examine its effect on the time evolution of the

variable considered.

A GRN, to give an example, for which even small damage routinely results in the death

of the cell, will be at an evolutionary disadvantage with respect to a more robust gene

expression set-up. Here we will examine the sensitivity of the dynamics with regard to

the initial conditions. A system is robust if two similar initial conditions lead to similar

long-time behavior. One way to measure the robustness of a system is by the difference

in their states, so that we need some definitions:

The Hamming Distance

We consider two different initial states,

σ0 = {σ1(0), σ2(0), . . . , σN(0)}, σ̃0 = {σ̃1(0), σ̃2(0), . . . , σ̃N(0)}.

Typically we are interested in the case when Σ0 and Σ̃0 differ in the values of only by one

element. A suitable measure for the distance is the Hamming distance D(σ, σ̃) ∈ [0, N ],

DH(σ, σ̃) =
N∑
i=1

|σi − σ̃i|, (3.5)

which is just the sum of elements that differ in Σ0 and Σ̃0. As an example we consider

Σ1 = {1, 0, 0, 1}, Σ2 = {0, 1, 1, 0}, Σ3 = {1, 0, 1, 1}.

We have DH = 4 for the Hamming distance Σ1 − Σ2 and DH = 1 for the Hamming
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distance Σ1 − Σ3. If the system is robust, two close-by initial conditions will never

diverge with passing time, in terms of the Hamming distance.

The Normalized Hamming Distance

The normalized Hamming distance Dn(σ, σ̃) ∈ [0, 1] between two configurations is de-

fined as:

H(σ, σ̃) =
D(σ, σ̃)

N
(3.6)

3.4.2 Dynamical Regimes

RBNs have three dynamical regimes: ordered, chaotic, and critical [Wue98, Ger04a].

Typical dynamics of the three regimes can be seen in Fig. 3.2. The ordered regime is

characterized by small change, i.e. most nodes are static. The chaotic regime is char-

acterized by frequent changes, i.e. nodes are changing.

RBNs in the ordered regime are robust to perturbations (of states, of connectivity, of

node functionality). Since most nodes do not change, damage has a low probability

of spreading through the network. By contrast, RBNs in the chaotic regime are frag-

ile: since most nodes are changing, damage spreads easily, creating large avalanches

that spread through the network. The critical regime balances the ordered and chaotic

properties: the network is robust to damage, but it it not static. This balance has led

people to argue that life and computation should be within or near the critical regime

[Lan90, Kau93, Cru94, Kau00]. In the ordered regime, there is robustness, but no possi-

bility for dynamics, computation, and exploration of new configurations, i.e. evolution.

In the chaotic regime, exploration is possible, but the configurations found are fragile,
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Fig. 3.2: Trajectories through state space of RBNs within different phases, N = 32. A
square represents the state of a node. Initial states at top, time flows downwards. Left:
ordered, K = 1. Center: critical, K = 2. Right: chaotic, K = 5.

i.e. it is difficult to reach persisting patterns (memory). In Fig. 3.2 we can appreciate

characteristic dynamics of RBNs in different phases.

It has been found that the regimes of RBNs depend on several parameters and prop-

erties [Gerss]. Still, two of the most salient parameters are the connectivity K and the

probability p that there is a 1 on the last column of lookup tables. When p = 0.5 there

is no probability bias. For p = 0.5, the ordered regime is found when K < 2, the chaotic

regime when K > 2, and the critical regime when K = 2 [Ger04a]. The ordered and

chaotic regimes are found in distinct phases, while the critical regime is found on the

phase transition. Derrida and Pomeau [DP86] found analytically the critical connectiv-

ity Kc
1:

〈Kc〉 =
1

2p(1− p)
(3.7)

1This result is for infinite-sized networks. In practice, for finite-sized networks, the precise criticality
point may be slightly shifted.
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This can be explained using the simple method of Luque and Solé [LS97]: Focusing on

a single node i, the probability that a damage to it will percolate through the network

can be calculated. A phase diagram describing this equation can be seen in Fig. 3.3.

It can be seen that this probability will increase with K, as more outputs from a

node will increase the chances of damage propagation. Focusing on a node j from

the outputs of i, there will be a probability p that j = 1. Thus, there will be a

probability 1 − p that a damage in i will propagate to j. Complementarily, there

will be a probability 1 − p that j = 0, with a probability p that a damage in i will

propagate to j. If there are on average K nodes that i can affect, then we can expect

damage to spread if 〈K〉2p(1−p) ≤ 1 [LS97], which implies chaotic dynamics. However,

K = N Kauffman Network with p = 0.5 has chaotic dynamics, but it is possible to

construct RBNs with ordered dynamics, using mechanisms such as canalizing functions2

[SK04, HSWK02, KPS+].

3.5 Cycles and Attractors

Boolean dynamics correspond to a trajectory within a finite state space of size Ω = 2N .

Any trajectory generated by a dynamical system with immutable dynamical update

rules, will eventually lead to a cyclical behavior. No trajectory can generate more than

Ω distinct states in a row. Once a state is revisited,

Σt = Σt−T , T < Ω,

2In a canalizing function, the function value is determined when one of its arguments, say m ∈
{1, . . . ,K}, is given a specific value, for example, σm = 0. The function value is not specified if the
canalizing argument has another value
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Fig. 3.3: Phase diagram for the classical model, reprinted from [Ald03]

part of the original trajectory is retraced and cyclic behavior follows. The resulting

cycle acts as an attractor for an initial conditions set.

Cycles of length 1 are fixpoint attractors. The fixpoint condition σi(t+1) = σi(t) (i =

1, . . . , N) is independent of the updating rules, viz synchronous vs. asynchronous. The

order of updating the individual σi is irrelevant when none of them changes [Ger02].

In Fig. 3.4 a network with N = 3 and K = 2 is fully defined. The time evolution of

the 23 = 8 states of Σt is given for synchronous updating. We can observe one cycle of

length 2 and two cycles of length 1 (fixpoints).

Attractors. An attractor A0 of a discrete dynamical system is a region {Σt} ⊂ Ω in

phase space that maps onto itself under the time evolution At+1 = At ≡ A0.
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Fig. 3.4: A Boolean network with N = 3 sites and connectivities Ki ≡ 2. Left : Def-
inition of the network linkage and coupling functions. Right : The complete network
dynamics (from [LS00]).

Attractors are cycles

Σ(1) → Σ(2) → · · · → Σ(1),

see Figs.3.5 and 3.4 for some examples. Fixpoints are cycles of length 1.

The Attraction Basin. The attraction basin B of an attractor A0 is the set {
∑

t} ⊂ Ω

for which there is a time T <∞ such that
∑

T ∈ A0.

The probability to end up in a given cycle is directly proportional, for randomly drawn

initial conditions, to the size of its basin of attraction. The three-site network illustrated

in Fig. 3.4 is dominated by the fixpoint {1, 1, 1}, which is reached with probability 5/8

for random initial starting states.

Attractors and fixpoints are generic features of dynamical systems and are important

for their characterization, as they dominate the time evolution in state space within

their respective basins of attraction. Random Boolean networks can be used for studies

of the dynamics of the system and the structure of network topology.

26



Fig. 3.5: Cycles and linkages. Left: Sketch of the state space where every bold point
stands for a state Σt = {σ1, . . . , σN}. The state space decomposes into distinct attractor
basins for each cycle attractor or fixpoint attractor. Right: Linkage loops for an N = 20
model with K = 1. The controlling elements are listed in the center column. Each
arrow points from the controlling element toward the direct descendant. There are
three modules of uncoupled variables from [AGCK03].

3.5.1 Linkage Loops, Ancestors and Descendants

Every variable σi can appear as an argument in the coupling functions for other elements;

in this case it is said to act as a controlling element. The collections of all such linkages

can be represented graphically by a directed graph, as illustrated in Figs. 3.4 and 3.5,

with the vertices representing the individual binary variables. Any given element σi can

then influence a large number of different states during the continued time evolution.

Ancestors and Descendants. The elements a variable affects consecutively via the

coupling functions are called its descendants. Going backwards in time we find

ancestors for each element.

Linkage loops are disjoint for K = 1, since they have no element in common, as can be

seen in the example of the 20-site network illustrated in Fig. 3.4, where the descendants

of σ11 are σ11 , σ12 and σ14.
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When an element is its own descendant (and ancestor) it is said to be part of a linkage

loop. Different linkage loops can overlap, as is the case for the linkage loops

σ1 → σ2 → σ3 → σ4 → σ1, σ1 → σ2 → σ3 → σ1

shown in the example of Fig. 3.6.

Fig. 3.6: Illustration of a Boolean network with N = 4 nodes and a connectivity K = 2,
and their look up table.

Descendants Elements. The descendants elements set from a Boolean variable σi is

defined as

ςi = {σi(1), σi(2), . . . , σi(Kσi )}. (3.8)

where Kσi is the number of Boolean variables that depends of σi.

The set of descendants elements might include σi itself.

3.5.2 Modules and Time Evolution

The set of ancestors and descendants determines the overall dynamical dependencies.

Module. The collection of all ancestors and descendants of a given element σi is called

the module (or component) to which σi belongs.
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If we go through all variables σi, i = 1, . . . , N we find all modules, with every element

belonging to one and only one specific module. Otherwise stated, disjoint modules cor-

respond to disjoint subgraphs, the set of all modules constitute the full linkage graph.

The time evolution is block-diagonal in terms of modules; σi(t) is independent of all

variables not belonging to its own module, for all times t.

3.5.3 Relevant Nodes and Dynamic Core

Taking a look at dynamics of the 20-site model illustrated in Fig. 3.5, we notice that the

elements σ12 and σ14 just follow the dynamics of σ11 , they are enslaved by σ11 . These

two elements do not control any other element and we could just delete them from the

system without qualitative changes to the overall dynamics.

Relevant Nodes. A node is termed relevant if its state is not constant and if it controls

at least one other relevant element (eventually itself).

An element is constant if it always evolves, independently of the initial conditions, to

the same state, and it is not constant otherwise. The set of relevant nodes, the dynamic

core, controls the overall dynamics. The dynamics of all other nodes can be disregarded

without changing the attractor structure. The node σ13 of the 20-site network illus-

trated in Fig. 3.5 is relevant if the Boolean function connecting it to itself is either the

identity or the negation.

The concept of a dynamic core is of importance for practical applications. Gene expres-

sion networks may be composed of thousands of nodes, but contain generally a relatively

small dynamic core controlling the overall network dynamics.
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3.6 Related Work

Fernández and Solé studied issues related to the evolvability of networks, such as robust-

ness, redundancy, degeneracy, and modularity [FS04]. Furthermore, some studies have

shown that topologies affect considerably the properties of RBNs [OS02]. For example,

Aldana [Ald03] found that scale-free networks can have critical dynamics with a lower

connectivity than expected. A study of modularity was done in [Pob11, PG11], where it

was shown that in spite of a high intramodular connectivity, a low connectivity between

modules lead the system to the critical regime in what otherwise would be the chaotic

regime.

Gershenson et al. [GKS06] studied the effect of redundant nodes on the robustness of

RBNs. Using computer simulations, they found that the addition of redundant nodes

to RBNs increases their robustness. However, too much redundancy could reduce the

adaptability of an evolutionary process. Redundancy is a common feature of engineered

systems where redundant parts can substitute for others that malfunction or fail, or

augment output when demand for a particular output increases [WJM10].

A previous study about robustness and evolvability in GRNs is presented in [ABKR07].

This work studies the robustness and evolvability of the attractor landscape of GRN,

under the process of gene duplication followed by divergence. Robustness is defined as

the conservation of attractors under perturbation of the network structure. Evolvabil-

ity is considered as the emergence of new attractors. The RBN model [Kau69] with

homogeneous random topology was used, which has been extensively studied, and also a

scale-free output topology, a more realistic topology [BABC+08]. The results of this work

show that an intrinsic property of this kind of networks is that with a high probability,
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the previous phenotypes are preserved and new ones may appear. Also, these results

indicate that networks operate close to the critical regime, exhibiting the maximum

robustness and evolvability simultaneously.
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Chapter 4

Degeneracy in Random Boolean
Networks

Living systems can often maintain functions robustly under volatile conditions, yet also

retain a propensity to discover new functions and adapt their functions under novel

environments. In other words, an adequate robustness and evolvability is a desirable

property in living systems [Gerss].

There are many definitions of degeneracy, but we rely on the definition used in biology,

where degeneracy refers to conditions where the functions or capabilities of components

overlap partially. As defined in [TSE99], “degeneracy is the ability of elements that are

structurally different to perform the same function or yield the same output; it is a well

known characteristic of the genetic code and immune systems”.

There are many examples cited by Edelman and Gally in [EG01], demonstrating the

ubiquity of degeneracy in biology. It is pervasive in proteins of every functional class

(e.g. enzymatic, structural, or regulatory) [Wag00] and is readily observed in ontoge-

nesis [New94] and the nervous system [TSE99]. Other examples are cited in [Whi10],

highlighting the adhesins gene family in saccharomyces process, which expresses pro-

teins that typically play unique roles during development, yet can perform each other’s

functions when expression levels are altered [GSFF00a]. Another example of degener-

acy is found in glucose metabolism, which take place through glycolysis and the pentose
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phosphate pathway. These pathways can substitute for each other if necessary even

though the sum of their metabolic effects is not identical [SCH+04].

Degeneracy is a ubiquitous biological property that it is a feature of complexity at

genetic, cellular, and population levels. Furthermore, degeneracy is a prerequisite of

natural selection because natural selection can only operate among a population of ge-

netically dissimilar organisms. This implies that multiple genes contribute in an overlap-

ping fashion to the construction of each phenotypic feature undergoing selection [EG01].

But even if simple redundancy seems to provide robustness versus noise and mutation,

from the perspective of evolution, redundancy would make organisms much less able to

innovate, because all the copies of components that protect redundant systems prob-

ably have to be changed if a change in function is needed, inhibiting the adaptation

process. In fact, degeneracy can provide a source of robustness without the drawbacks

of redundancy. Thus, the amount of degeneracy can be tuned by evolution to a suitable

degree by making the appropriate changes to the network [FS04].

Random Boolean networks, being general models, are used for the analysis of the phase

transition in their resulting dynamical space. They are also recognized to be the start-

ing points for the modeling of gene expression and protein regulation networks; the

fundamental networks at the basis of all life. Therefore, the study of degeneracy in

random Boolean networks, being an intrinsic property of CAS, is the object of study

of this work, to understand the dynamics that the RBNs have with nodes that present

degeneracy. Important studies of degeneracy effects in complex systems have been made

in [TSE99, Whi10, WB10b, WJM10].
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This definition of degeneracy can be seen as a partial redundancy of the method pro-

posed in [GKS06], as described in the next section. For partial redundancy we refer to

a node duplicated of the network, with structural and functional changes.

We define three types of degeneracy from redundant nodes; one of them modifies the

function of the network, named function degeneracy, while the other two types modify

the structure, named input degeneracy and output degeneracy as described below. It

should be noted that a redundant node can be modified by the three types of degener-

acy, with a different degeneracy coefficient for each type.

In the section 4.1, we explain how to add a redundant node to a random Boolean network

ensemble. Subsequently, we describe the method we proposed to get a degenerated node

from the duplicated node.

4.1 Redundancy in RBNs

The process for adding a redundant node to a RBN is the following [GKS06]:

1. Select randomly a node X to be duplicated.

2. Add a new node R to the network (Nnew = N old + 1), with the same inputs and

lookup table as X (i.e. kR = kX , fR = fX ), and outputs to the same nodes of

which X is input:

knewi = koldi ∪ kiR if ∃kiX , ∀i (4.1)

3. Double the lookup tables of the nodes of which X is input with the following

criterion: When R = 0, copy the old lookup table. When R = 1, and X = 0, copy
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the same values for all combinations when X = 1 and R = 0. Copy again the

same values to the combinations where X = 1 and R = 1. In other words, make

an inclusive OR (symbol ∨) function in which X ∨R should be one to obtain the

old outputs when only X was one.

if ∃KiX ,∀i



fnewi (σi1 , . . . , σiX = 0, σiR = 0 . . . , σiKi ) = f oldi (σi1 , . . . , σiX = 0, . . . , σiki )

fnewi (σi1 , . . . , σiX = 0, σiR = 1 . . . , σiKi ) = f oldi (σi1 , . . . , σiX = 1, . . . , σiki )

fnewi (σi1 , . . . , σiX = 1, σiR = 0 . . . , σiKi ) = f oldi (σi1 , . . . , σiX = 1, . . . , σiki )

fnewi (σi1 , . . . , σiX = 1, σiR = 1 . . . , σiKi ) = f oldi (σi1 , . . . , σiX = 1, . . . , σiki )

After this process, R will be a redundant node of X, and vice versa. A diagram illus-

trating the inclusion of a red node is depicted in Fig. 4.1.

Example of Degeneracy in a RBN

To illustrate the three types of degeneracy, we use an example. Let us define a RBN

with N = 3 and K = 2. The Controlling Elements for each one are given by

X = f(Z, Y ),

Y = f(W,X),

and

Z = f(X,Z)

respectively. Adding a redundant node, the new functionalities for Y and Z are defined

as

Y r = f(W,X ∨R),
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and

Zr = f(X ∨R,Z)

respectively, while Controlling Elements σX are the same. For the added node R, the

Controlling Elements are given by the function R = f(Z, Y ) as seen in 4.1.

Fig. 4.1: A simple RBN with N = 4, K = 2, with Nred = 1.

4.2 Degeneracy in RBNs

After adding a redundant node to the RBN ensemble, we proceed to add degeneracy to

the duplicated node. We require three parameters which are the coefficients for:

φ ∈ (0, 1) degeneracy in coupling functions. This variable represents the coefficient of

change in the coupling function,

ι ∈ (0, 1) degeneracy in connecting input links. This variable represents the coefficient

of change of input controlling elements.
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ω degeneracy in connecting output links. This variable represents the coefficient of

change of output controlling elements, with respect to the duplicated node.

In this way, the new network has N+1 Boolean variables, considering the RBN ensemble

plus the new redundant node added, maintaining the same connectivity K. Such new

redundant node will keep a similarity with respect to the selected node, changing some

values as function of φ in the case of coupling function, ω for changes in the connecting

input links and ι for changes in the connecting output links.

Adding a node to a RBN, if we have φ = ι = ω = 0, it means that the new node differs

from the input and output links with respect to the selected node, as well as it lookup

table (the new values generated are random, so some of these values may match), as

seen in figure 4.2. On the other hand, if we have φ = ι = ω = 1 it means that the input,

output, and the lookup table is equivalent to the selected node, yielding a redundant

node as in figure 4.1. In other words, the value of the variable is analogous to the degree

of correlation between the selected node, and the new node.

Fig. 4.2: RBN of N = 4. Node D has a) function, b) input and c) output degeneracy,
respectively. Degeneracy in D is from adding a redundant node of X.
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When we add a node, for some σi, the number of controlling elements increases from

Ki to Ki + 1. Thus, the number of states for the controlling function is of 2K+1 = 2k
′ .

In the case that a node gets a controlling element from σired , its coupling function is

doubled, as a canalizing function.

In the following sections, we present the definition of redundancy used in this work, and

our proposed definition of degeneracy. An example of degeneracy can be seen in fig. 4.1.

4.3 Function Degeneracy

To define the function degeneracy, firstly let’s define the number of ones in a coupling

function as:

l =
N∑
i=1

σi (4.2)

We define φ ∈ [0, 1] as the coefficient of degeneracy in a coupling function. A randomly

selected node is duplicated, maintaining the same input and output links, but changing

zφ = bl · (1 − φ)c number of variables to the new coupling function fifd , which are

randomly selected. The new values to assign are randomly selected with probability p.

Therefore, if we have φ = 1, then fi = fifd . Otherwise, if φ = 0, then all the values (2Ki

variables) of fifd will be assigned randomly.

For the new value to be assigned, let’s define

d : {0, 1}∗ → [0,∞) (4.3)

such that di can be either 0 or 1 with probability p(1) = p(0) = 0.5.
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Using the Eq. 3.3 and Eq. 4.3, the coupling function of fifd is

fifd = {σj1(i), σj2(i), . . . ,

σjm1 (i)
= d1, σjm2 (i)

= d2, . . . , σjmzφ (i) = dZφ),

. . . , σjK(i)} → σifd

Note that the values of m are randomly selected, having 1 ≤ m ≤ 2Ki .

Using the example of Fig. 4.1, the Fig. 4.2 a) shows a RBN with function degeneracy

in the duplicated node.

4.4 Input Degeneracy

This kind of degeneracy modifies the structure. For input degeneracy, a randomly se-

lected node is duplicated, maintaining the same function and outputs links, but changing

the zι = bK (̇1− ι)c number of input connecting links (also called controlling elements).

For this case, ι ∈ [0, 1] is the coefficient of degeneracy in the controlling elements (see

eq. 3.2) of a Boolean variable σi.

Similar to function degeneracy, if we have ι = 1, then σi = σiid . Otherwise, if ι = 0,

then all the controlling elements σj1(i), σj1(i), . . . , σjKi(i) will be randomly re-assigned.

Using the Eq. 3.2 and Eq. 4.3, the time evolution of a Boolean variable σiid is given by

σiid = fi(σj1(i), σj2(i), . . . , σjm1 (i)
, σjm2 (i)

, . . . , σjmzι (i), . . . , σjK(i))

Note that the values of m are randomly selected, having 0 ≤ m ≤ Ki.
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Using the example of fig 4.1, the fig. 4.2 b) shows a RBN with function degeneracy in

the duplicated node.

4.5 Output Degeneracy

Output Degeneracy, as input degeneracy, modifies the structure of an RBN. In this case,

a randomly selected node is duplicated, maintaining the same coupling function and con-

trolling elements, but changing zω = bKout(̇1 − ι)c output connection links number of

outputs links. For this case, ω ∈ [0, 1] is the coefficient of degeneracy in the output links.

As with previous description of partial redundancy, if we have ω = 1, then σi = σiod .

Otherwise, if ι = 0, then all the descendant controlling elements σi(1), σi(1), . . . , σi(Ki)

will be re-assigned randomly.

Using the Eq. 3.2 and Eq. 4.3, the direct descendant set of output controlling elements

ςiod is determined by

ςiod = {σi(1), σi(2), . . . , σi(m1), σi(m2), . . . , σi(mzω ), . . . , σi(Kσi )}

Note that the values of m are randomly selected, having 0 ≤ m ≤ Kσi .
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Chapter 5

Numerical Simulations

As described in previous chapters, the behavior of artificial and biological networks is

determined by the dynamics of its attractor states. This behavior, is related to the

notions of order, complexity and chaos, which depend largely on the degree to which

their attractors converge [Wue02].

This chapter exhibits results obtained to measure number of attractors, size of attrac-

tors, sensitivity to initial conditions and finally, measures of information theory and

statistics for classic RBN model, adding redundant nodes with several values for the co-

efficients of degeneracy, as defined in Chap. 4. The open software laboratory RBNLab

[Ger05] was extended to implement and thus explore the properties of degeneracy men-

tioned before. The improved version of RBNLab and its Java source code are available

at http://rbn.sourceforge.net.

In this chapter, we call RBN core, an ensemble of a classical RBN [Kau69] with size N ,

K connectivity, uniform distribution and a homogeneous topology. For all experiments,

the probability for getting a 1 in the rules is p = 0.5 (no bias in lookup tables [Ger04a]).

The experiments we performed start by creating RBN core ensembles, adding redun-

dant nodes to them, with different values for ι, φ, ω coefficients, to improve degeneracy,

according to the definition in Chap. 4. We refer to Ndeg to the number of nodes added

with certain degree of degeneracy.
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To calculate statistical properties, we randomly generated 1000 networks. RBN core

ensembles with N = 15 and Ndeg = 5, with K = {1, 2, 3, 4, 5}. We show the figures for

the results with K = 5 because these are the most illustrative, and in the appendix A

the summary of numerical results is shown. The results compare with redundant nodes

and simple RBN ensembles. It should be noted that results presented are based on

the dynamics of the RBN core ensembles, i.e. results do not consider the controlling

elements of Ndeg.

Experiments with ι, φ, ω values between (0, 1) were performed, but the effects of degen-

eracy showed in the results are not statistically significant and not illustrative, being

differences between treatments less pronounced.

5.1 Statistical properties

The statistical properties that were considered to determine the dynamics of RBN en-

sembles with partial redundant nodes are the following:

• Number of attractors (A).

• Attractors average length (L̄).

• Percentage of states in attractors (%SIA).

A description of the experiments and their results are described below. For practical

reasons, we will call in graphs Simple to RBN ensembles without any kind of degeneracy,

FD to RBN ensembles with function degeneracy, ID to RBN ensembles with Input

42



Degeneracy, OD to RBN ensembles with output degeneracy and Red to RBN ensembles

with Redundant nodes.

5.1.1 Number of Attractors (A).

There is evidence that cell types correspond to different dynamical states of a complex

system, i.e. the gene expression network. The number of attractors reflects how many

distinct sets of states can capture the dynamics of the RBN. When A > 1 it is considered

that the system is multistable [Tho78]. It can be said that more attractors imply more

potential functionality of the network.

Fig. 5.1: Number of Attractors Found with N = 15, Ndeg = 5, K = {1, 2, 3, 5}; in
logarithmic scale.

In Fig. 5.1 we can see the results for RBN ensembles with N = 15, Ndeg = 5 and K = 5
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and a larger RBN with N = 80, Ndeg = 20 and K = 3, showing the number of attractors

found, presented as boxplots1.

These results shows that any type of degeneracy in RBNs affects the number of attrac-

tors, while redundancy maintains the same number of attractors as the RBNs core. It

should be noted that statistical results give overlapping variances for N = 15 cases.

Fig. 5.2: Number of Attractors Found with N = 80, Ndeg = 20, K = {1, 2, 3}; in
logarithmic scale.

The effect of degeneracy is stronger on RBNs with a high connectivity K, i.e. in the
1A boxplot is a non-parametric representation of a statistical distribution. Each box contains the

following information: The median (Q2 = x0.50) is represented by the horizontal line inside the box.
The lower edge of the box represents the lower quartile (Q1 = x0.25) and the upper edge represents
the upper quartile (Q3 = x0.75). The interquartile range (IQR = x0.75 − x0.25) is represented by the
height of the box. Data which is less than Q1− 1.5 · IQR or greater than Q3+ 1.5 · IQR is considered
an outlier, and is indicated with circles. The whiskers (horizontal lines connected to the box) show the
smallest and largest values that are not outliers.
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chaotic regime. RBNs in the ordered and critical regimes (K ≤ 2) seem not to be

affected by the addition of any type of degenerate nodes, as can be seen in Fig. 5.1.

Results for larger networks can be seen in Fig. 5.2 (For more details of results, see

summary tables in Appendix A).

5.1.2 Average Attractors Lengths L̄

When L = 1, there are only point attractors in the network. Larger values of L indicate

longer cycle attractors.

Fig. 5.3: L̄ for RBN ensembles with N = 15, Ndeg = 5, K = {1, 2, 3, 5}; in logarithmic
scale.

In general, results obtained of RBNs with degenerated nodes, have attractors with

smaller number of states. Moreover, the effect of degeneracy in the RBN seems to be

less in networks with redundant nodes and output degeneracy, and higher for networks
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with nodes with function and input degeneracy, as shown in the Fig. 5.3. The results

are more significant for larger networks, although the high standard deviation should

be noted in all cases.

This can be explained by the fact that in deterministic updating schemes (as the one used

in this work), attractor lengths grow algebraically with N [Ger04b]. Larger networks

allow the possibility of more combinations of states in an attractor, increasing its length.

It is not so much that a large N favors longer attractors, but a small N restricts their

possibility. For K ≤ 2, classical RBNs have the lowest L. Results for simple RBNs

and ensembles with redundant nodes have longer attractors, in larger networks with

N = 80, Ndeg = 20 and K = 2, as can be seen in Fig. 5.4. More results can be seen

in the Appendix. These results with larger networks (N = 720) are less significative

because they represent the results for 100 RBN ensembles.

5.1.3 Average States in Attractors %SIA.

The Percentage of States in Attractors (%SIA) reflects how much complexity reduction

is performed by the network, i.e. from all possible Ω = 2N states, how many states

capture the dynamics. It depends on the number of attractors and their length. Even

when complexity reduction is relevant, larger values of %SIA indicate a more complex

potential functionality of the network, i.e. richer dynamics [PG11]. A large %SIA can

be given by large attractor lengths L̄ and/or a high number of attractors A. The more

and longer attractors a network has, it can exhibit a richer behavior.

Redundancy decreases the %SIA, in the chaotic regime, as it can be seen for K = 5 in

Fig. 5.5. Degeneracy reduce %SIA, even more: output degeneracy decreases the most,

46



Fig. 5.4: L̄ for RBN ensembles with N = 80, Ndeg = 20, K = {1, 2, 3}; in logarithmic
scale.

while function degeneracy decreases the least. Since the number of attractors remained

almost constant, we can deduce that a reduction of SIA is due to a reduction of the

attractor lengths.

%SIA = 100 · A · Le
2N

. (5.1)

Statistical results often give high standard deviations σ. This is because some networks

might have a single point attractor, while others might have several cycle attractors.

However, even the averaged values are informative: they show the effect of RBNs with

different parameters on the network properties and dynamics. Nevertheless, the poten-

tial implications of high standard deviations should not be discarded.
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Fig. 5.5: Percentage of states in Attractors (%SIA) for RBN ensembles with N = 15,
Ndeg = 5 K = {1, 2, 3, 5}; in logarithmic scale.

5.2 Sensitivity to Initial Conditions

To characterize the dynamical regime of an ensemble of discrete dynamical systems, in

this case RBNs, we measured the sensitivity to initial conditions; measuring how small

differences in initial states lead to similar or different states: if the system is sensitive

to small differences, it is considered to be in the chaotic regime. This method is similar

to stability analysis of dynamical systems [Sey94] or damage spreading [Sta94]. There

are also equivalents to Lyapunov exponents in RBNs [LS00]. The rationale is similar

in all of these methods: if perturbations do not propagate, then the system is in the

ordered dynamical phase. If perturbations propagate through the system, then it is in

the chaotic dynamical phase [PG11]. The phase transition (also called critical regime)

lies where the size of the perturbation remains constant in time.
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To measure the effects of spreading damage in RBNs with degeneracy, we made exper-

iments of sensitivity to initial conditions, with RBN ensembles of size N = 20, having

Ndeg = 5 nodes with degeneracy, for different values. The number of states analyzed

was 215 = 32768, which is the number of total states in these network ensembles.

The process we followed to measure statistically the sensitivity to initial conditions of

RBNs, is described in the next steps [Ger04b]:

1. For a RBN ensemble with N = 15 and a random initial state σi, let it run for a

number of steps tmax (for our experiments, tmax = 10, 000), to reach a final state

Σ′(tmax) = σ′.

2. After that, we apply a random point mutation to initial state σi to obtain σ′i , i.e.

flipping a bit of σi.

3. Then, let the network run for tmax from σ′i and σi to obtain the final states σf ,

σ′f , respectively.

The difference between states σi and σf , and between σ′i and σ′f were calculated using the

normalized Hamming distance, which measures the number of units that are different

in two set of states:

H(σ, σ′) =
1

N

N∑
i=1

|σi − σ′i|. (5.2)

If states σ and σ′ are equal, then H(σ, σ′) = 0. The maximum H = 1 is given when σ is

the complementary state of σ′, i.e. full anticorrelation. H = 0.5 implies no correlation

between σ and σ′. The smaller H is, the more similar σ and σ′ are. As H increases (up

to H = 0.5), it implies that differences between σ and σ′ also increase.
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Because there is only one bit difference between σi and σ′i and each state has N bits:

Hi = H(σi, σ
′
i) =

1

N
. (5.3)

Now, to measure the sensitivity to initial conditions, the difference between the final

and initial Hamming distances ∆H is used:

∆H = Hf −Hi, (5.4)

where

Hf = H(σf , σ
′
f ). (5.5)

When ∆H < 0, it means that different initial states converge to the same final state, a

characteristic of the ordered regime, where trajectories in state space tend to converge.

when ∆H > 0, it means that small differences in initial states tend to increase, a char-

acteristic of the chaotic regime, where trajectories in state space tend to diverge. When

∆H = 0, small initial differences are maintained, a characteristic of the critical regime,

where trajectories in state space neither converge nor diverge (in practice, ∆H ≈ 0).

Thus, the average ∆H can indicate the regime of a RBN. Boxplots of results are shown

in Fig. 5.6. Note that boxplots show medians. Statistics results can be found in Ap-

pendix A.

For K = 1, the dynamics are in the ordered regime for all cases, since small differences

in initial states tend to be reduced, indicated by a negative ∆H = − 1
NT

. For K = 2,

the average ∆H is close to zero for all cases, suggesting a critical regime. The differ-

ence caused by degeneracy is clearly seen for K > 2, i.e. in the chaotic regime. Fig. 5.7

shows the average of ∆H for RBN ensembles with N = 20, Ndeg = 5 andK = {1, 2, 3, 5}
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Fig. 5.6: Average of Sensitivity to Initial conditions for N = 20, Ndeg = 5, K =
{1, 2, 3, 5}; for 1000 RBN ensembles.

The sensitivity to initial conditions is related to the robustness provided by redundancy

and partial redundancy, in cases of function degeneracy, input degeneracy, with values

close to zero. This behavior is because it is more difficult for damage to spread through

the network, having nodes which provide stability to the descendant nodes. In the case

of output degeneracy, damage spreading is potentially greater in the sense that the

states affect greater number of descendant nodes.
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x

Fig. 5.7: Average of Sensitivity to Initial conditions for N = 20, Ndeg = 5, K =
{1, 2, 3, 5}; for 100 RBN ensembles.

To ensure that the results with N = 20 were not an artifact of the small size of the

networks, we also executed experiments for larger networks with N = 80, which 20%

of its nodes have partial redundancy, analyzing one hundred networks and one hundred

state pairs which were explored for ten thousand steps. These experiments are less sta-

tistically significant, but they clearly show that degeneracy and redundancy provides a

significant difference in sensitivity to initial conditions, and not to network size. Results

can be observed in Fig. 5.8 and Fig. 5.9.
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Fig. 5.8: Average of sensitivity to initial conditions for N = 100, K = {1, 2, 3, 5},
Ndeg = 20, for 1000 RBN ensembles.

5.2.1 Adding Degeneracy plus redundancy

The results obtained in previous experiments, have led us to ask the question of whether

the effects of redundancy and degeneracy are additive, i.e., what happens if we add re-

dundant nodes plus one kind of degeneracy to a RBN? In this section we show the

results of adding redundancy and degeneracy in RBN ensembles. The way in which the

nodes were added, were choosing a random node, and doubling it twice. One of these

duplicated nodes is the redundant node, and the other duplicated node has one of the

three types of degeneracy.
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Fig. 5.9: Average of Sensitivity to Initial conditions for N = 800, Ndeg = 80, K =
{1, 2, 3, 5}; for 100 RBN ensembles.

In this section, we present the results of sensitivity to initial conditions in RBNs, having

N = 15 and K = {1, 2, 3, 5}, adding Nred = 5 redundant nodes and Ndeg = 5 nodes

with degeneracy. These results are compared with RBN ensembles with N = 15, called

RBN core, as can be seen in Fig. 5.10 and 5.11. One thousand RBN ensembles were

performed. The numerical results are shown in appendix A.

We also executed experiments with larger networks, having N = 880, Nred = 80,

Ndeg = 80 and K = {1, 2, 3, 5}, for one hundred RBN ensembles, where we can see

a greater δH difference with respect to RBN core ensembles.

The experiments of RBN ensembles with degeneracy plus redundancy, shows a greater

effect of having nodes with redundancy plus some kind of degeneracy, than just having
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Fig. 5.10: Boxplot of sensitivity to initial conditions for N = 15, K = {1, 2, 3, 5},
Nred,deg = {5, 5}, for 1000 RBN ensembles.

Fig. 5.11: Average of sensitivity to initial conditions for N = 15, K = {1, 2, 3, 5},
Nred,deg = {5, 5}, for 1000 RBN ensembles.

redundancy or degeneracy, but we should consider than the size of the networks is

greater, suggesting than the effect of robustness is additive. Also, these results allow to
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Fig. 5.12: Boxplot of sensitivity to initial conditions for N = 720, K = {1, 2, 3, 5},
Nred,deg = {5, 5}, for 100 RBN ensembles.

observe that RBN ensembles with degeneracy and redundancy provide higher stability

to sensitivity to initial conditions than simple RBNs, as shown in Fig. 5.13 and 5.12

Fig. 5.13: Average of sensitivity to initial conditions for N = 720, K = {1, 2, 3, 5},
Nred,deg = {5, 5}, for 100 RBN ensembles.
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5.3 Measures of complexity

Entropy is a concept from physics which encodes the multiplicity of states available

to a system at a given temperature. Entropy is also a central concept in information

theory, where it is commonly denoted as Shannon entropy or information entropy. In

this context, we are interested in the amount of information encoded by a sequence of

symbols of an alphabet, e.g. when transmitting a message:

. . . , σt+2, σt+1, σt, σt−1, σt−2, . . . .

Let us consider two time series of an alphabet composed by {0, 1}, e.g.

. . . , 101010101010, . . . , . . . , 1100010101100, . . . (5.6)

In these examples, entropy is the average amount of surprise associated with each time

series. The amount of surprise of a particular event is a function of the probability of

that event. The less probable an event, the more surprising it is.

In 1948, Claude Shannon studied in the context of telecommunication. Information can

be represented with a string X, composed by a sequence of values x which follow a

probability distribution P (x).

I = −
∑

P (x)logP (x). (5.7)

Shannon information can be seen also as a measure of uncertainty. If there is absolute

certainty about the future values of x, then, the information received will be zero. If

the probability distribution of receiving either zero or one is P (0) = P (1) = 0.5, then
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the information received is maximal.

From this definition, in [GF12] Emergence E is defined as the amount of information

produced by a process.

E =
Iout
Iin

, (5.8)

where Iin is the input information and Iout is the output information, which can be seen

as Iout = f(Iin).

In the other hand, the measure of self-organization was proposed in [GHA03] as the nega-

tive of the change of information δI: if the information is reduced, then self-organization

occurs, while an increase of information implies self-disorganization.

S = Iin − Iout. (5.9)

From the definition of information, complexity can be seen as the amount of information

required to describe a phenomenon at a particular scale [By04]. If more information

is required then the complexity can be said to be higher, considering the scale of ob-

servation (which is not discussed in this work). This work is based on the definition

proposed by [LRMC10], where complexity is the multiplication of Shannon’s Informa-

tion and disequilibrium.

E = E ∗ S. (5.10)

High E implies a low S and vice versa. For all cases, Iin = 1, is assumed, due to random

inputs.

A final measure made was homeostasis, defined as the ability of an organism to main-
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tain steady states of operation, in view of the internal and external changes [Can32].

Homeostasis is also defined as the opposite of a normalized Hamming distance:

H = 1− d(Iin, Iout) (5.11)

The results obtained for the measures, as defined in [GF12] can be seen in Fig. 5.14.

Fig. 5.14: Measures of a) complexity, b) emergence, c) self-organization, and d) home-
ostasis. RBN ensembles with N = 20 with Ndeg = 5, K = 5.
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The results obtained are not so descriptive, but we considered include them in this

work. This results suggest that information is the same for all the cases of degeneracy,

redundancy and simple RBNs, thus the complexity reduction of the networks is similar

for all cases. In Appendix there is a detailed information of the results.
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Chapter 6

Conclusions

We defined three types of degeneracy: function degeneracy, input degeneracy and output

degeneracy in RBNs. We performed experiments with these types of degeneracy, and

compared them with redundancy as defined in [GKS06] and with simple RBNs.

We performed statistical measures for RBN ensembles with N = 20 and N = 100 with

K = {1, 2, 3, 5}, which include attractor lengths (A), attractor average lengths (L) and

percentage of states in attractors (%SIA). Due to computational constrains, we could

not perform these experiments for larger networks. In the same way, we performed

experiments to measure the sensitivity to initial conditions, in RBN ensembles with

N = 20, N = 100 and N = 800 with K = {1, 2, 3, 5}. For N = 20, 1000 experiments

were performed and 100 experiments for other cases.

In natural systems, both redundancy and degeneracy are observed [Wag05a]. Our re-

sults suggest that these two properties increase the robustness of RBNs. Further work

is required to study the similarities and differences between degeneracy and redundancy.

The effect of degeneracy is stronger on RBNs with a high connectivity K, i.e. in the

chaotic regime. RBNs in the ordered and critical regimes (K ≤ 2) seem not to be af-

fected neither by the addition of any type of degenerate nor redundant nodes. However,

in RBN ensembles with K ≥ 2 the number of attractors is lower for the three types of
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degeneracy; also the length of the attractors is shorter compared with a simple RBN.

We also found that degeneracy increases the robustness of RBNs accordingly to the ex-

periments performed of sensitivity to initial conditions. This increases the probability of

neutrality in their evolution, as changes in the RBN (genotype) have a lower probability

of changing its function (phenotype).

These results suggest that degeneracy, as well as redundancy, can facilitate not only

robustness, but also evolvability, allowing new functionalities to arise from nodes with

small variations either in function or structure without changing too much the dynamics.

The results we present in this work suggest that degeneracy and redundancy promote

criticality, which is present in natural networks [AC03, OC06], in what otherwise would

be chaotic networks. Preliminary results showed that the effects of redundancy and

degeneracy are additive. It would be interesting to study in greater detail different

combinations of degeneracy, and whether their effects on criticality are cumulative: for

abstract RBNs and for real GRNs.

A drawback of the studies of discrete dynamic networks criticality based on sensitiv-

ity to initial conditions is that they restrict the critical regime to a phase transition.

Information-theoretical measures [LPZ08, WLP11] might offer an alternative to better

characterize the critical regime and the effect of degeneracy and other properties which

promote criticality [Gerss].
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Appendix A

Numerical Results

In this section we present numerical results of the experiments presented in Chapter 5,

which consists of statistical properties of the RBN ensembles and Sensitivity to Initial

Conditions. For statistical results we present numerical of the following:

• Attractors A.

• Attractors average length L̄.

• Percentage of states in attractors %SIA

for RBN ensembles with N = 20 which Ndeg = 5, N = 80 which Ndeg = 20. All the

experiments for K = {1, 2, 3, 5}.

For the Sensitivity to Initial Conditions, we present numerical results for RBN ensembles

with N = 20 which Ndeg = 5, N = 80 which Ndeg = 20. All the experiments for

K = {1, 2, 3, 5}.

Ndeg φ ι ω Ā L̄e %SIA σA σLe σ%SIA

5 0.0 0.0 0.0 1.667 2.893 2.76E-4 1.446 5.579 5.32E-4
5 0.0 1.0 1.0 1.547 2.605 2.48E-4 1.249 4.896 4.67E-4
5 1.0 0.0 1.0 1.613 2.77 2.64E-4 1.922 8.066 7.69E-4
5 1.0 1.0 0.0 1.515 2.446 2.33E-4 1.148 4.380 4.18E-4
5 1.0 1.0 1.0 1.717 3.131 2.99E-4 2.563 10.577 10.09E-4

Table A.1: Statistical results for case: Ncore = 15, K = 1 (for 1000 experiments).
.
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Ndeg φ ι ω Ā L̄e %SIA σA σLe σ%SIA

5 0.0 0.0 0.0 3.357 11.741 11.2E-4 2.963 15.321 1.46E-3
5 0.0 1.0 1.0 3.092 10.183 9.71E-4 3.079 14.961 1.43E-3
5 1.0 0.0 1.0 3.064 9.095 8.67E-4 2.843 10.970 1.05E-3
5 1.0 1.0 0.0 3.823 8.733 8.33E-4 2.347 12.313 1.17E-3
5 1.0 1.0 1.0 3.317 11.085 10.6E-4 3.216 17.037 1.62E-3

Table A.2: Statistical results for case: Ncore = 15, K = 2 (for 1000 experiments).
.

Ndeg φ ι ω Ā L̄e %SIA σA σLe σ%SIA

5 0.0 0.0 0.0 4.698 27.830 2.65E-3 3.402 25.171 2.40E-3
5 0.0 1.0 1.0 4.078 17.981 1.71E-3 3.055 14.663 1.40E-3
5 1.0 0.0 1.0 3.942 18.382 1.75E-3 2.721 14.398 1.37E-3
5 1.0 1.0 0.0 3.808 18.328 1.75E-3 2.413 14.396 1.37E-3
5 1.0 1.0 1.0 4.173 20.045 1.91E-3 2.876 15.123 1.44E-3

Table A.3: Statistical results for case: Ncore = 15, K = 3 (for 1000 experiments).
.

Ndeg φ ι ω Ā L̄e %SIA σA σLe σ%SIA

5 0.0 0.0 0.0 5 188.489 17.9E-3 2.120 135.635 12.93E-3
5 0.0 1.0 1.0 4 72.592 6.92E-3 2.145 50.513 4.82E-3
5 1.0 0.0 1.0 4 67.793 6.47E-3 2.058 43.555 4.15E-3
5 1.0 1.0 0.0 4 87.519 8.35E-3 2.022 55.231 5.27E-3
5 1.0 1.0 1.0 4 85.129 8.12E-3 2.018 50.447 4.81E-3
5 1.0 1.0 1.0 4 85.129 6.87E-3 2.496 47.294 4.51E-3

Table A.4: Statistical results for case: Ncore = 15, K = 5 (for 1000 experiments).
.

Ndeg φ ι ω Ā L̄e %SIA σA σLe σ%SIA

5 0.0 0.0 0.0 5.881 823.324 7.85E-2 2.209 464.872 4.43E-2
5 0.0 1.0 1.0 5.467 304.344 2.90E-2 2.252 183.516 1.75E-2
5 1.0 0.0 1.0 5.025 208.595 1.99E-2 1.948 117.753 1.12E-2
5 1.0 1.0 0.0 5.111 282.7 2.70E-2 1.980 153.498 1.46E-2
5 1.0 1.0 1.0 5.129 255.066 2.15E-2 1.917 116.750 1.11E-2

Table A.5: Statistical results for case: Ncore = 15, K = 10 (for 1000 experiments).
.
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Ndeg φ ι ω Ā L̄e %SIA σA σLe σ%SIA

20 0.0 0.0 0.0 1.44 2.4 1.118E-7 0.791 2.569 1.196E-7
20 0.0 1.0 1.0 1.39 2.48 1.155E-7 0.968 3.806 1.772E-7
20 1.0 0.0 1.0 1.54 2.74 1.276E-7 1.187 4.168 1.941E-7
20 1.0 1.0 0.0 1.30 2.16 1.006E-7 0.640 2.580 1.201E-7
20 1.0 1.0 1.0 1.43 2.51 1.169E-7 0.875 3.381 1.574E-7

Table A.6: Statistical results for case: Ncore = 80, K = 1 (for 100 experiments).
.

Ndeg φ ι ω Ā L̄e %SIA σA σLe σ%SIA

20 0.0 0.0 0.0 17.34 203.72 9.49E-6 38.168 584.488 2.734E-5
20 0.0 1.0 1.0 10.53 1253.76 58.4E-6 21.092 11359.171 53.156E-5
20 1.0 0.0 1.0 8.19 88.42 4.12E-6 11.557 248.901 11.641E-5
20 1.0 1.0 0.0 10.81 100.21 4.67E-6 22.733 194.201 9.076E-5
20 1.0 1.0 1.0 13.51 178.63 8.32E-6 22.482 373.029 1.744E-5

Table A.7: Statistical results for case: Ncore = 80, K = 2 (for 100 experiments).
.

Ndeg φ ι ω Ā L̄e %SIA σA σLe σ%SIA

20 0.0 0.0 0.0 62.25 171397.226 5.90E-3 100.902 303593 14.13E-3
20 0.0 1.0 1.0 16.50 29635.8 1.38E-3 34.726 106242 4.95E-3
20 1.0 0.0 1.0 19.95 43764.52 2.04E-3 48.501 147545 6.87E-3
20 1.0 1.0 0.0 20.71 44957.42 2.09E-3 57.938 175238 8.16E-3
20 1.0 1.0 1.0 39.35 101125.804 4.60E-3 74.093 226109 10.52E-3

Table A.8: Statistical results for case: Ncore = 80, K = 3 (for 100 experiments).
.

avg ∆H
N Ndeg K Simple FD ID OD R
20 5 1 -6.340E-2 -6.361E-2 -6.384E-2 -6.509E-2 -6.376E-2
20 5 2 -4.595E-2 -4.668E-2 -3.115E-2 -5.155E-2 -4.574E-2
20 5 3 3.001E-2 -1.777E-3 -1.050E-3 1.335E-2 4.432E-4
20 5 5 2.481E-1 1.468E-1 1.097E-1 1.669E-1 1.089E-1

Table A.9: Avg ∆H for RBN ensembles with Ncore = 15, K = {1, 2, 3, 5} (for 1000
experiments). Simple: Simple RBN, FD: RBN with function degeneracy, ID: RBN with
input degeneracy, OD: RBN with output degeneracy and R: RBN with redundant nodes

.
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σ
N Ndeg K Simple FD ID OD R
20 5 1 1.818E-2 1.873E-2 1.855E-2 1.687E-2 2.505E-2
20 5 2 7.574E-2 7.224E-2 7.273E-2 7.074E-2 8.356E-2
20 5 3 1.771E-1 1.535E-1 1.516E-1 1.727E-1 1.638E-1
20 5 5 2.475E-1 2.510E-1 2.403E-1 2.594E-1 2.505E-1

Table A.10: Standard deviations for RBN ensembles with Ncore = 15, K = {1, 2, 3, 5}
(for 1000 experiments). Simple: Simple RBN, FD: RBN with function degeneracy,
ID: RBN with input degeneracy, OD: RBN with output degeneracy and R: RBN with
redundant nodes

.

avg ∆H
N Ndeg K Simple FD ID OD R
20 5 1 -1.250E-2 -1.244E-2 -1.227E-2 -1.250E-2 -1.250E-2
20 5 2 -3.680E-3 -8.353E-3 -9.050E-3 -6.870E-3 -6.011E-3
20 5 3 3.894E-2 5.914E-3 2.118E-3 6.258E-3 4.533E-3
20 5 5 2.817E-1 1.813E-1 1.607E-1 2.432E-1 1.471E-1

Table A.11: Avg ∆H for RBN ensembles with Ncore = 80, K = {1, 2, 3, 5} (for 1000
experiments). Simple: Simple RBN, FD: RBN with function degeneracy, ID: RBN with
input degeneracy, OD: RBN with output degeneracy and R: RBN with redundant nodes

.

σ
N Ndeg K Simple FD ID OD R
20 5 1 1.666E-13 8.871E-4 1.863E-3 1.666E-013 1.666E-13
20 5 2 4.227E-2 2.708E-2 2.491E-2 3.287E-002 3.429E-2
20 5 3 1.804E-1 1.571E-1 1.544E-1 1.630E-001 1.653E-1
20 5 5 2.357E-1 2.365E-1 2.296E-1 2.411E-001 2.301E-1

Table A.12: Standard deviations for RBN ensembles with Ncore = 80, K = {1, 2, 3, 5}
(for 1000 experiments). Simple: Simple RBN, FD: RBN with function degeneracy,
ID: RBN with input degeneracy, OD: RBN with output degeneracy and R: RBN with
redundant nodes

.
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avg ∆H
N Nred Ndeg K Core R+FD R+ID R+OD
20 0 0 1 -6.027E-002 -6.297E-002 -6.443E-002 -6.505E-002
20 5 5 2 -1.127E-002 -5.394E-002 -5.812E-002 -5.350E-002
20 5 5 3 1.188E-001 -2.750E-002 -3.445E-002 -1.190E-002
20 5 5 5 3.470E-001 6.691E-002 1.829E-002 1.121E-001

Table A.13: Avg ∆H for RBN ensembles with Ncore = 15, K = {1, 2, 3, 5} (for 1000
experiments). R+FD: RBN with redundancy + function degeneracy, R+ID: RBN with
redundancy + input degeneracy and R+OD: RBN with redundancy + output degener-
acy

.

σ
N Nred Ndeg K Core R+FD R+ID R+OD
20 0 0 1 3.075E-002 2.281E-002 1.743E-002 2.458E-002
20 5 5 2 1.233E-001 6.024E-002 4.928E-002 7.098E-002
20 5 5 3 2.139E-001 1.229E-001 1.142E-001 1.532E-001
20 5 5 5 2.023E-001 2.262E-001 1.906E-001 2.608E-001

Table A.14: Standard deviations for RBN ensembles with Ncore = 15, K = {1, 2, 3, 5}
(for 1000 experiments). R+FD: RBN with redundancy + function degeneracy, R+ID:
RBN with redundancy + input degeneracy and R+OD: RBN with redundancy + output
degeneracy

.

avg ∆H
N Nred Ndeg K Core R+FD R+ID R+OD
20 0 0 1 -1.389E-003 -1.389E-003 -1.389E-003 -1.39E-003
20 5 5 2 5.339E-004 -1.389E-003 -1.138E-004 -1.22E-004
20 5 5 3 2.321E-001 9.903E-002 1.048E-001 9.81E-002
20 5 5 5 4.290E-001 1.048E-001 1.837E-001 1.87E-001

Table A.15: Avg ∆H for RBN ensembles with Ncore = 720, K = {1, 2, 3, 5} (for 100
experiments). R+FD: RBN with redundancy + function degeneracy, R+ID: RBN with
redundancy + input degeneracy and R+OD: RBN with redundancy + output degener-
acy

.
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σ
N Nred Ndeg K Core R+FD R+ID R+OD
20 0 0 1 1.339E-014 1.339E-014 1.339E-014 1.34E-014
20 5 5 2 1.347E-002 1.339E-014 1.021E-002 1.09E-002
20 5 5 3 1.887E-001 1.695E-001 1.720E-001 1.69E-001
20 5 5 5 1.489E-001 1.720E-001 2.344E-001 2.35E-001

Table A.16: Standard deviations for RBN ensembles with Ncore = 720, K = {1, 2, 3, 5}
(for 100 experiments). R+FD: RBN with redundancy + function degeneracy, R+ID:
RBN with redundancy + input degeneracy and R+OD: RBN with redundancy + output
degeneracy

.

K Simple RBN Function Deg Input Deg Output Deg Redundancy
1 0.9895611679 0.9899273337 0.9881121671 0.9885474509 0.9892979959
2 0.8904027185 0.8953620419 0.8936137607 0.8854827164 0.8842975171
3 0.6478774243 0.6586707062 0.6516444379 0.6517814963 0.640998786
4 0.5486910837 0.5505973502 0.5505632245 0.5491972189 0.5448491397
5 0.5210462451 0.5215738776 0.5219414944 0.5212703696 0.51873237
6 0.5098516183 0.5102240872 0.5103267267 0.5099717307 0.5086677228
7 0.50482505 0.5049422296 0.5050946341 0.5048353616 0.5041267551
8 0.5023830548 0.5024592682 0.5025331766 0.5023801169 0.5020009387
9 0.5011914279 0.5012361523 0.5012682962 0.5012203534 0.5009885617
10 0.5005897769 0.5006099417 0.5006469366 0.5006033301 0.5004640253

Table A.17: Mean values for Homeostasis experiments for 1000 RBNs ensembles with
N = 50, Ndeg = 50 and K = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

.

K Simple RBN Function Deg Input Deg Output Deg Redundancy
1 0.9864020901 0.9866635907 0.984464443 0.9850168108 0.9855530134
2 0.8137635716 0.8256727399 0.8197283462 0.8096024351 0.8055297582
3 0.2721822287 0.2990287861 0.2831693535 0.2811301765 0.2581777339
4 0.0752040057 0.0783097714 0.0784144597 0.07604513 0.069052685
5 0.0314487134 0.0322055304 0.0327178497 0.0316796118 0.0279259148
6 0.0144710361 0.0149714902 0.0151517638 0.0147016467 0.0127274104
7 0.0070670289 0.0072401978 0.0074386131 0.0071360719 0.0060720579
8 0.0034952339 0.0035784521 0.0036967386 0.0035134334 0.0029568146
9 0.0017736555 0.0018110599 0.0018779887 0.0017820361 0.0014699045
10 0.000905 0.000926 0.000957 0.000914 0.000736

Table A.18: Mean values for self-organization expermients for 1000 RBNs ensembles
with N = 50, Ndeg = 50 and K = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

.
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