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A B S T R A C T

Understanding the galaxy-dark matter halo connection is essential to identify the driv-
ing processes of galaxy evolution, and to constrain models and simulations of galaxies
in the cosmological context. In this direction, semi-empirical approaches, such as the
abundance matching technique, the halo occupational distribution model, and the con-
ditional mass function formalism, have emerged as a simple yet powerful statistical
approach for connecting observable properties of galaxies to their host CDM halos. This
Thesis presents a new approach that combines and extends the main ideas behind these
frameworks. It uses observational data as constrains, such as the galaxy stellar mass
function and/or its decomposition into centrals and satellites, and the spatial clustering
of galaxies. This approach is applied to infer separately the central galaxy stellar-to-halo
mass (CHMR) and the satellite galaxy stellar-to-subhalo mass relations (SSMR) and their
intrinsic scatters, which are found to be small. We discuss on the robustness and uncer-
tainties of the CHMR and SSMR for local galaxies by considering several combinations
of observational data, and emphasize on the differences between the CHMR and the
SSMR, usually ignored in the literature. Our approach allows to extend observations
to any central/satellite occupational distribution and to masses below the completeness
of current surveys by extrapolating the galaxy-dark matter halo connection at dwarf
scales. We study the distribution of the most massive satellite-to-central mass ratio in
groups/clusters, and find that the centrals are statistically different from the satellites.
We study also the massive satellite population (m∗ > 4 × 107 M�) of Milky Way-sized
galaxies. Our results suggest that there is not a massive satellite missing problem in the
ΛCDM scenario. However, we confirm that the maximum circular velocity of satellites
in dark-matter-only simulations with m∗ < 108 M� are systematically larger than those
obtained from observational inferences from current analysis of the Milky-Way bright
dwarfs. We also infer the galaxy stellar mass function and galaxy clustering from the
COSMOS survey and use them to determine the redshift evolution of CHMR and SSMR
from z = 0.2 to z = 1. We report evidence for little evolution of these relations. We
further generalize our approach to obtain separately the SHMR (as well as the baryon-
to-halo mass relation, BHMR) both for blue and red central galaxies. The results suggest
that the SHMR does not segregate significantly by color. Finally, we use static models
of disks galaxies seeded in dark matter halos in order to probe the obtained BHMR and
SHMR for blue galaxies in the light of local observed scaling and dynamical relations of
disk galaxies.

This Thesis builds an statistical framework for constraining the galaxy-(sub)halo con-
nection, and ultimately, theories about the evolution of central and satellite galaxies
in the light of the current paradigm of structure formation and evolution, the ΛCDM
model.
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Part I

P R E A M B U L O

Se presentan los antecedentes, motivación, objetivos y metodología de la Tesis. La
estructura de la misma está basada principalmente en cuatro artículos ya publica-
dos/en prensa, dos más en preparación, y parcialmente hace uso de resultados de
otro artículo sometido a arbitraje. En el Capítulo introductorio se busca integrar el
contenido de dichos trabajos en una descripción general de la línea de investigación
que se siguió durante el desarrollo de la Tesis doctoral.





1
I N T R O D U C C I Ó N

1.1 antecedentes y motivación

El entendimiento de la evolución de las galaxias en el contexto cosmológico es uno
de los grandes retos de la astronomía y cosmología de la presente década. Dicho en-
tendimiento se centra principalmente en determinar cómo se agrupan las galaxias y
cómo adquieren sus diferentes propiedades (masa baríonica, masa estelar, tipo mor-
fológico, tamaño, color, tasa de formación estelar, metalicidad, etc.) en el contexto del
paradigma cosmológico actual de formación de estructuras.

De acuerdo a este paradigma, las estructuras actuales son el producto de la evolución
gravitacional en un universo en expansión de un campo primigenio de tenues perturba-
ciones en densidad; dichas perturbaciones a su vez se propone fueron sembradas en
la remota época inflacionaria, cuando las fluctuaciones cuánticas del vacío se desconec-
taron causalmente para convertirse en perturbaciones a la métrica del espacio-tiempo
hasta que, con el transcurrir del tiempo cósmico, se vuelven a conectar causalmente
convirtiéndose en verdaderas perturbaciones en densidad (reseñas del paradigma cos-
mológico actual, conocido como el modelo de Materia Oscura Fría con Λ (MOF-Λ), se
pueden encontrar p. ej. en Avila-Reese [5], Longair [128], Mo, van den Bosch & White
[143]).

En el contexto del paradigma MOF-Λ actual, la materia oscura domina sobre la bar-
iónica por lo que la evolución de las perturbaciones que dan origen a las estructuras de
gran escala es básicamente gravitacional. Los bariones son atrapados posteriormente en
los potenciales gravitacionales de las estructuras de MOF. Cuando estas estructuras al-
canzan su máxima expansión y colapsan gravitacionalmente, se convierten en regiones
autogravitantes en equilibrio virial separadas ya de la expansión del Universo. Éstas
regiones autogravitantes se les denomina como halos de materia oscura. El proceso de
ensamblaje de masa de los halos se da en una fase altamente no lineal del campo de
perturbaciones donde diferentes escalas del campo interactúan unas con otras. Como
resultado, los halos oscuros tienen un proceso extendido de ensamblaje, incorporando
material constantemente en forma difusa y a través de acreción (fusiones) de estruc-
turas más pequeñas; las cuales mientras éstas sobreviven en el interior del halo, son
denominadas como subhalos.

Actualmente, la amplia evidencia observacional apunta a que las galaxias se han for-
mado y evolucionado en los halos de materia oscura (y en los subhalos previo a su
acreción), donde múltiples mecanismos del tipo (g)astrofísico se mezclan para dar ori-
gen a las propiedades que observamos de las galaxias. Naturalmente, esto ha llevado
a suponer que las propiedades observadas de las galaxias deberían estar íntimamente
relacionadas con las propiedades y evolución de los halos de materia oscura.

Desde un punto de vista teórico, las propiedades, evolución y acumulamiento de los
halos de MOF se encuentran bien entendidos mediante el uso de simulaciones numéri-

3
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cas y/o a través de modelos analíticos. Desde esta perspectiva, estudiar las propiedades
globales de las galaxias en términos de la conexión galaxia–halo es de gran convenien-
cia para entender y constreñir los fenómenos astrofísicos que han jugado un rol critico
en la formación y evolución de las galaxias. En esta dirección, los enfoques semiempíricos
son una alternativa sencilla pero a la vez poderosa para lograr la conexión galaxia–halo
oscuro.

La esencia de los enfoques semiempíricos es la conexión galaxia–halo utilizando como
base observacional las descripciones estadísticas de la población de galaxias, tales como
las funciones (por unidad de volumen comóvil) de: luminosidad, masa estelar M∗, veloci-
dad máxima de rotación Vm, dispersión de velocidades σV y radio efectivo reff; la función
de correlación de dos puntos (FC2P) global y/o separada en intervalos de M∗; etc. La
base teórica son las funciones de masa de los halos y subhalos de MOF. Como resultado
de conectar estadísticamente las poblaciones teóricas de halos y observadas de galax-
ias, se obtiene la relación M∗–Mh (así como eventualmente Vm–Mh, reff–Mh, etc.) en las
épocas y rangos de masas que puedan proveer las observaciones (v.gr. Vale & Ostriker
[216], Kravtsov et al. [115], Conroy, Wechsler & Kravtsov [58], Shankar et al. [187], Wein-
berg et al. [234], Baldry, Glazebrook & Driver [16], Blanton, Geha & West [31], Vale & Os-
triker [217], Conroy & Wechsler [57], Drory et al. [75], Moster et al. [148], Behroozi, Con-
roy & Wechsler [19], Chae [49], Guo et al. [102], Rodríguez-Puebla et al. [177], Rodríguez-
Puebla, Drory & Avila-Reese [178], Papastergis et al. [159], Behroozi, Wechsler & Conroy
[20], Reddick et al. [170], por mencionar algunos). El esquema mostrado en la Fig. 2 ilus-
tra la esencia de los enfoques semiempíricos.

La relación M∗–Mh (o fs ≡ M∗/Mh − Mh) es el resultado de la compleja gastrofísica
de los bariones atrapados (o perdidos) por los halos de MOF y refleja la eficiencia de
crecimiento de la masa estelar de la galaxia en función de la masa del halo. El principal objetivo
de los modelos/simulaciones de formación y evolución de galaxias deductivos (ab initio)
es obtener y explicar "productos finales" como la relación M∗–Mh a cada época. En este
sentido, el contar con determinaciones semi-empíricas de la relación M∗–Mh (y otras
relaciones como Vm–Mh y reff–Mh) a z ∼ 0 y otros z’s es de gran utilidad para constreñir los
modelos y simulaciones de formación y evolución de galaxias.

Actualmente existen maneras directas de inferir la relación M∗–Mh a z ∼ 0, por ejem-
plo, con la técnica de lentes débiles galaxia-galaxia (Mandelbaum et al. [133], Mandel-
baum, Seljak & Hirata [132], Schulz, Mandelbaum & Padmanabhan [184]), la cinemática
de satélites (Conroy et al. [56], More et al. [145, 146], Wojtak & Mamon [241]) y estudios
en cumulos/grupos de galaxias (Lin & Mohr [126], Yang et al. [244, 249], Hansen et al.
[103], Yang et al. [250]). Desafortunadamente estos métodos directos tienen un intervalo
dinámico limitado y requieren, por el bajo cociente señal a ruido, del método de apil-
amiento de muchas galaxias1 lo cual puede introducir sesgos. Por otro lado, están las
técnicas indirectas o semi-empiícas para inferir la relación M∗–Mh, del tipo de las men-
cionadas anteriormente, mismas que permiten llegar a intervalos dinámicos más am-
plios al conectar distribuciones estadísticas observadas de las galaxias con las predichas
para los halos oscuros.

La técnica más sencilla de los métodos semiempíricos y que menos suposiciones in-
troduce, es la de empatar las funciones acumulativas de masa estelar (FMEG) y de masa

1 En ingles está técnica es conocida como "stacking".
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Figure 2: Conexión semi-empŕicia galaxia–halo: la población de halos de MOF obtenida en simu-
laciones numéricas cosmológicas es confrontada estadísticamente con la población ob-
servada de galaxias bajo la suposición de que en cada halo/subhalo existe una galaxia
central/satélite. Por ejemplo, empatando las funciones de masa acumulativas de galax-
ias y halos se infiere la masa de halo Mh que le corresponde a una dada masa estelar
de galaxia M∗ y se puede calcular el cociente M∗/Mh (eficiencia de crecimiento de la
masa estelar) en función de la masa del halo; como se aprecia en la figura, este cociente
a z ∼ 0 tiene un pico de máxima eficiencia alrededor de Mh ∼ 1012 M� (que coinci-
dentemente corresponde a la masa del halo de la Vía Lactea) e incluso en el pico el
valor es mucho menor que la fracción bariónica universal, que es 15–17%. La conexión
galaxia–halo se puede afinar más introduciendo modelos de ocupación de satélites en
los halos y de función condicional de M∗, para lo cual se requiere más restrictores
observacionales, como sería la FC2P global o en diferentes intervalos de M∗.
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de halos (FMH) para lograr asignar así una Mh a cada M∗ (Técnica de la Corresponden-
cia de Abundancias, ver 2; [115, 216, 19] y ver más referencias ahí). Esta técnica se ha
revelado como muy práctica y poderosa, dando resultados similares a los métodos di-
rectos mencionados arriba en el intervalo de M∗ y a los z muy locales en los que se
pueden comparar. Otros métodos semi-empiícos más sofisticados para lograr la conex-
ión galaxia–halo pero que introducen más suposiciones y parámetros libres, son los así
llamados Modelo de Ocupación de Halos [25, 60, 259, 1, 208, 258, 229, 228, 223] y Modelo de la
Probabilidad Condicional de la Función de Luminosidad [245, 244, 249, 247, 250, 148, 121, 122].
En este tipo de modelos, se requiere también información observacional extra como la
función de correlación de dos puntos y/o la Función Condicional de Luminosidad (o
M∗). En ésta Tesis se presenta un enfoque que integra todas estas técnicas y modelos a
fin de investigar más allá de una simple relación M∗–Mh universal y usar los resultados
para sondear la validez del escenario cosmológico MOF-Λ, así como constreñir procesos
y parámetros astrofśicos de la evolución galáctica.

1.1.1 Más allá de una relación M∗–Mh universal

Las inferencias semi-empíricas, por simplicidad, conectan masas de halo a masas este-
lares (u otras propiedades de escala) sin distinguir si la galaxia es central o satélite o
alguna otra propiedad (relación universal). Se entiende por galaxia central aquella aso-
ciada al halo principal (no contenido en un halo más grande) y generalmente formada
en su centro, mientras que una galaxia satélite es aquella asociada a un subhalo, es de-
cir un halo contenido en uno más grande; desde un punto de vista observacional, una
galaxia satélite es un miembro de un grupo menos masivo (luminoso) que la galaxia
central del grupo2. La división de galaxias en centrales y satélites en este sentido, es
una primera aproximación de lo que es el medio ambiente que rodea una galaxia deter-
minada. Una galaxia de una dada masa estelar, la Vía Láctea por ejemplo, no tiene las
mismas propiedades si es central en su halo o es satélite en un cúmulo de galaxias. Por
lo tanto, es crucial obtener la relación M∗–Mh al menos separada en galaxias centrales y satélites.
La diferencia entre ambas relaciones refleja cuánto el medio ambiente del halo anfitrión
influye sobre la ulterior eficiencia de crecimiento de masa estelar de las galaxias y sobre
la evolución del subhalo.

En las inferencias semi-empíricas comunes se supone también implícitamente que
la eficiencia de crecimiento de M∗ es función sólo de la masa del halo, por lo que la
relación M∗–Mh se considera universal, aunque se introduce una dispersión intrínseca
que no se especifica con qué propiedades galácticas correlacionaría. Es bien sabido en
la astronomía extragaláctica que la masa estelar o luminosidad no determinan de man-
era dominante el resto de las propiedades de las galaxias, como ocurre con las estrellas.
A paridad de M∗ las galaxias presentan una amplia distribución en propiedades inten-
sivas como índice de color, tipo morfológico (T), tasa de formación estelar específica

2 En esta caso nos referimos a "grupos" basados en halos, es decir el conjunto de todas las galaxias ligadas
gravitacionalmente en el interior del radio virial de un halo anfitrión (ver Yang et al. [249], Yang, Mo &
van den Bosch [247]). Esta definición de grupo es algo diferente a la que históricamente se ha usado en
la astronomía observacional. Un grupo basado en halo puede ser un cúmulo o grupo de galaxias pero
también una galaxia tipo Vía Láctea con sus satélites.
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(TFEe≡TFE/M∗), etc.; ver una reseña en Blanton & Moustakas [32]. En realidad las dis-
tribuciones de la mayoría de las propiedades suelen ser bimodales, correlacionando los
modos con M∗. En términos muy generales, se habla de dos secuencias o nubes en la
distribución de las propiedades galácticas: (a) la nube de galaxias dominadas por un
disco soportado por rotación (T ≥ 1 o índice de Sèrsic n ≤ 2.4), azules, con TFEe altas
(activas) y localizadas generalmente en ambientes de densidad promedio o baja; (b) la
secuencia de galaxias dominadas por un esferoide soportado por dispersión de veloci-
dades (T <1 o índice de Sèrsic n > 2.4), rojas, con TFEe bajas (pasivas) y localizadas
generalmente en ambientes densos (v. gr., Norberg et al. [155, 154], Zehavi et al. [259], Li
et al. [123], Zehavi et al. [258], Weinmann et al. [236], Poggianti et al. [164], Martínez,
O’Mill & Lambas [134], Blanton & Berlind [30], Hansen et al. [103], Yang, Mo & van
den Bosch [247], Blanton & Moustakas [32]). Mientras que las galaxias del primer modo
tienden a ser de baja masa, las del segundo modo tienden a ser de masas más altas, no
obstante hay una fuerte dispersión en esta tendencia.

Por tanto, una cuestión de relevancia a estudiar es si la marcada bimodalidad en la
distribución de propiedades de las galaxias se revela en la relación M∗–Mh, es decir si
las galaxias se segregan por color, TFEe, morfología, etc. en dicha relación. De ser así,
significaría que la masa del halo influye no sólo en la eficiencia de la formación de la
masa estelar de las galaxias sino que también en sus propiedades intensivas. Si no es
así, entonces es más probable que las propiedades intensivas, mismas que parcialmente
correlacionan con la masa estelar, son determinadas en gran parte por procesos internos
de la galaxia o por otras propiedades del halo aparte de su escala, por ej. su historia
de agregación de masa (HAM), la presencia o no de fusiones mayores, su momento
angular expresado a través del parámetro de giro λ. En conclusión, es de gran relevancia
determinar la relación M∗–Mh por separado al menos para los dos principales modos de la
distribución de propiedades intensivas de las galaxias, por ejemplo, para las galaxias divididas en
rojas y azules.

1.1.2 Física y evolución galáctica a partir de la conexión galaxia–halo oscuro

Hasta ahora se habló de la relación M∗–Mh, siendo ésta el "producto final" de los pro-
cesos de evolución de galaxias en función de la masa del halo, pero también es de gran
interés poder determinar la relación masa bariónica (Mb=M∗+ Mg)–Mh, donde Mg es la
masa en gas frío3 en la galaxia. Dicha relación, comparada con la relación M∗–Mh, da
información sobre la eficiencia de transformación del gas en estrellas en función de la
escala. Como se verá a lo largo de esta Tesis, la razón fs=M∗/Mh tiene un pico (máx-
ima eficiencia de crecimiento de M∗) a Mh ∼ 1012 M� (ver Fig. 2). A masas mayores,
decrece con Mh y a masas menores decrece aún más rápido mientras menor es Mh. Este
comportamiento con la escala se interpreta principalmente de la siguiente manera:

• En halos con Mh > 1012 M�, a mayor masa, el tiempo de enfriamiento radiativo
del gas que se virializa a través de choques durante el colapso gravitacional del

3 Estrictamente el gas frío de una galaxia en su mayoría está constituido de hidrógeno atómico y molecular
en menor medida de otros componentes como molculas de CO, etc. Por tanto, a lo largo de está Tesis nos
referiremos al gas frío como aquel constituido de hidrógeno atómico y molecular.
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halos es más largo, de tal manera que sólo una fracción pequeña de los bariones
se incorpora a la galaxia en épocas muy tempranas a través de procesos violentos
de fusiones; además estas galaxias tienen hoyos negros supermasivos que al ser
alimentados producen Núcleos Galácticos Activos capaces de eyectar y calentar
gas evitando que éste caiga ulteriormente en la galaxia, dejándola con una fracción
fs pequeña.

• En halos con Mh < 1012 M�, mientras menos masivos son, con más facilidad se
pierde gas de la galaxia, y eventualmente del halo, debido a la retroalimentación de
la TFE (principalmente por la energía inyectada por las supernovas); para halos de
masas muy pequeñas, incluso su potencial es tan débil que casi no se logra atrapar
el gas intergaláctico ionizado originado por la primera generación de estrellas y/o
galaxias, las cuales produjeron un fondo de radiación en el ultravioleta calentando
el gas y así volviendo ineficiente la formación de estelar y entonces el crecimiento
de las galaxias (Hoeft et al. [107]).

No obstante, aparte de los procesos globales de captura y pérdida del gas, el mismo
proceso de transformación del gas en estrellas podría ser función de la masa. En efecto,
mientras menos masivas son las galaxias, mayores fracciones de gas frío suelen tener, lo
cual sugiere que fueron menos eficientes en transformar su gas en estrellas. Por lo tanto,
la restricción semi-empírica de la relación Mb–Mh es de gran utilidad para constreñir el rol de los
procesos de eyección de gas por retroalimentación y de eficiencia de formación de gas molecular
y ulterior formación estelar, en función de la masa del halo. Además es importante, como
en el caso de la relación M∗–Mh, contar con esta determinación separada en galaxias
centrales/satélites y rojas/azules.

La razón Mb/Mh (llamada fracción galáctica bariónica, fb) en función de Mh es un
ingrediente clave en modelos de galaxias tanto del tipo estático como del tipo evolu-
tivo, en especial para galaxias con morfología dominda por disco. Dicha fracción es un
parámetro utilizado en este tipo de modelos para calcular las propiedades de discos en
equilibrio centrífugo "cargados" en halos oscuros (v.gr., Mo, Mao & White [144], Zavala
et al. [255], Dutton et al. [80], Gnedin et al. [96], Dutton & van den Bosch [79]) o para
calcular la evolución completa de éstos discos utilizando como esqueleto la evolución
de los halos oscuros, e incluyendo la formación estelar y la evolución secular de los
discos (v.gr., Firmani & Avila-Reese [82, 83], Firmani, Avila-Reese & Rodríguez-Puebla
[85], van den Bosch [218]). Usando este tipo de modelos, es interesante explorar los
efectos de la relación fb–Mh obtenida para galaxias de disco (digamos azules) sobre las
relaciones de escala y otras correlaciones, tales como la relación de Tully-Fisher estelar y
radio–M∗, la correlación entre el cociente M∗ a masa dinámica (o velocidad al máximo
del disco a velocidad total) con Mh, M∗, la densidad superficial, etc. (ver por ej. Zavala
et al. [255], Dutton et al. [80], Gnedin et al. [96], Avila-Reese et al. [12], Reyes et al. [171]).
Este tipo de análisis permite sondear la autoconsitencia de la conexión galaxia–halo de
materia oscura a nivel de las propiedades internas y observables de las galaxias de disco
y permite identificar nuevos posibles procesos astrofísicos relevantes en la evolución de
las galaxias de disco. En miras a la futura generación de catálogos y muestras extensas
de galaxias locales con propiedades estructurales, dinámicas, de poblaciones estelares
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y de metalicidad determinadas de manera uniforme4, los resultados de estos análisis
podrán ser confrontados con observaciones y usados para interpretar las mismas.

Un sondeo más empírico de la autoconsistencia entre la conexión galaxia–halo de
materia oscura y las propiedades internas de las galaxias se puede lograr mapeando
dicha conexión obtenida con los métodos estadísticos sobre planos de correlaciones entre
propiedades de las galaxias y viceversa (ver intentos preliminares en esta dirección en
Blanton, Geha & West [31], Chae [49]), en este proceso de mapéo se revelan aspectos
claves de la gastrofísica implicada en la formación de las galaxias y/o del marco teórico
subyacente, el escenario de MOF-Λ. Dicho mapéo se puede realizar tanto a z ∼ 0 como a
otros z′s en los que exista la información observacional necesaria. También, dependiendo
de la disponibilidad de los datos observacionales, este mapéo se puede realizar por
separado para distintos tipos de galaxias ya sea por color, tipo morfológico, TFEe, etc.

La determinación de las FMEG y funciones de correlación a diferentes corrimientos
al rojo son cada vez más rutinarias, haciendo uso de catastros como el COSMOS [185],
AEGIS [65], CANDELS [100], etc. Esto genera entonces la posibilidad de obtener la
conexión galaxia–halo a diferentes épocas. Una importante consecuencia de determinar
las relaciones entre propiedades extensivas de las galaxias y la masa del (sub)halo a
diferentes épocas es que se puede hacer uso de las historias individuales de agregación
de masa de los halos para obtener entonces la evolución individualizada (trazas evoluti-
vas) de las propiedades de las galaxias, por ejemplo de la M∗ [57, 84]. En otras palabras,
al lograr la conexión semi-empírica entre, p. ej., M∗ y Mh y al usar la evolución teórica
de Mh, ¡ se logra también inferir la evolución "individual" de M∗! Este enfoque iniciado
por Conroy & Wechsler [57] y Firmani & Avila-Reese [84] ha cobrado popularidad re-
ciéntemente (v. gr. Yang et al. [250], Moster, Naab & White [147], Behroozi, Wechsler &
Conroy [20]).

El enfoque semiempírico, basado en en la información estadística que proveen los
grandes catastros modernos, se ha consolidado definitivamente como una herramienta
poderosa para constreñir los procesos astrofísicos y evolutivos de las galaxias y para
poner a prueba el paradigma cosmológico subyacente. Los trabajos realizados en esta
Tesis constituyen una contribución a esta línea de investigación reciente.

1.2 objetivos

La presente Tesis se enfoca en una serie de objetivos en torno a la cuestión general de
la conexión semi-empírica galaxia–halo de MOF a través de un modelo estadístico, así
como al uso de los resultados obtenidos para constreñir propiedades poblacionales a
z ∼ 0 y aspectos evolutivos de las galaxias desde z ∼ 1. El enfoque desarrollado permite
"extender" las limitaciones de las observaciones al nivel estadístico más completo re-
querido, así como extrapolar las observaciones a masas donde las observaciones todavía
no son completas. Los objetivos particulares más relevantes de esta Tesis son:

4 Estos catálogos se están ya generando o se generarán con proyectos como "Mapping Near Galaxies at APO"
(MaNGA) en el SDSS-IV y "Calar Alto Legacy Integral Field Spectroscopy Area" (CALIFA). Haciendo uso
de la técnica de espectroscopía de campo integral, se obtienen los espectros en absorpción y emisión a lo
largo y ancho de las galaxias que cuentan ya con fotometría bidimensional multibanda de tal manera que
todas las propiedades mencionadas, tanto locales como globales, pueden ser determinadas
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• Explorar la viabilidad o no de la suposición común de que la relación M∗–Mh
es la misma para galaxias centrales y satélites. Esto, tomando en cuenta las dos
definiciones de masa del subhalo, al momento de su acreción y al momento de
observación.

• Desarrollar un modelo semiempírico estadístico para inferir las relaciones M∗–
Mh locales de galaxias centrales y satélites utilizando no sólo la correspondencia
de abundancias sino además información sobre la función de correlación de dos
puntos, misma que permite constreñir las distribuciones ocupacionales de satélites
en halos. En base a esto, probar el comportamiento general de la relación M∗–
Mh separada para galaxias centrales y satélites. Constreñir la dispersión de estas
relaciones y predecir la Función de Masa Estelar Condicional en función de la
masa del halo anfitrión.

• Explorar la auto-consistencia del enfoque semiempírico y sus aciertos o no con las
predicciones que hace. En base a esto, sondear el escenario jerárquico de MOF-Λ
subyacente y evaluar si nuestros resultados pueden constreñir procesos/parámet-
ros astrofísicos de este escenario.

• Aplicar el modelo semiempírico desarrollado para extender y extrapolar a escalas
menores las observaciones usadas como base del modelo con el fin de predecir
diferentes estadísticas de ocupación de halos. Por ejemplo, las distribuciones y
dinámica interna de satélites en galaxias del tipo Vía Láctea y las distribuciones del
cociente masa del satélite más masivo entre masa de la central (brecha) en función
de la masa. Usar los resultados al nivel de observaciones para hacer inferencias
astrofísicas de diversa índole.

• Extender el modelo estadístico desarrollado para (1) inferir la relación M∗–Mh
separada no sólo en centrales y satélites, sino también en galaxias rojas y azules;
y (2) para inferir las distribuciones ocupacionales de halos para galaxias centrales
rojas/azules y sus fracciones correspondientes de satélites rojos/azules.

• Estudiar si la relación M∗–Mh se segrega por color o si la dispersión de esta
relación correlaciona con el color. Constreñir las fracciones de halos anfitriones
de galaxias azules y rojas en función de Mh. Explorar en general qué puede estar a
la base de la dispersión en la estrecha relación M∗–Mh desde halos galácticos hasta
halos de cúmulos de galaxias. Explorar si esta dispersión depende de la riqueza
del número del grupo.

• Generalizar el análisis con el modelo estadístico a otras épocas, haciendo uso en
particular de las observaciones del catastro COSMOS (hasta z ∼ 1) e inferir así una
conexión evolutiva entre la población galáctica local y las de alto z. En particular,
explorar si la relación M∗–Mh de galaxias centrales y satélites cambia significativa-
mente o no con el corrimiento al rojo y determinar la evolución de la fracción de
satélites en función de la masa.

• Generalizar el modelo estadístico semiempírico para determinar las relaciones
Mb–Mh de galaxias rojas/azules, es decir incluir la información del contenido de
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gas frío en las galaxias. Estudiar las implicaciones para la evolución galáctica de
la fracción bariónica de galaxias rojas y azules en función de la masa obtenida
( fb=Mb/Mh vs Mh).

• Sondear las consecuencias de la fracción bariónica fb(Mh) obtenida para galaxias
azules (tardías) en lo que concierne a las propiedades estructurales y dinámicas de
las galaxias de disco. Desarrollar para esto un modelo "estático" de sembrado de
galaxias de disco en equilibrio centrífugo en el interior de halos de MOF contraí-
dos adiabáticamente por la presencia del disco, donde la fracción bariónica es un
parámetro base. Explorar si las relaciones de escala y otras correlaciones a nivel
estelar y bariónico son consistentes con las observaciones.

1.3 metodología y observaciones

Para lograr los objetivos planteados en esta Tesis (Sección 1.2) se requiere de modelos
estadísticos capaces de conectar las poblaciones teóricas de halos y subhalos de MOF
con las poblaciones observadas de galaxias centrales y satélites. En este sentido, como
se describió en la Sección 1.1, varias técnicas y modelos semiempíricos fueron ya desar-
rollados en los últimos años. La principal herramienta metodológica de esta Tesis será
un nuevo modelo semiempírico más completo que los previos. El modelo desarrollado
aquí combina la Técnica de la Correspondencia de Abundancias con los modelos de
Ocupación de Halos y de Probabilidad Condicional de la Función de Luminosidad (de
masa estelar en nuestro caso).

El modelo requiere de un método estadísitico de ajuste paramétrico potente. En al-
gunos casos se usará la minimización de cuadrados con el método de conjunto de direc-
ciones de Powell en multidimensiones. Sin embargo, para nuestro modelo completo, se
aplicará el método más poderoso de Cadenas de Markov Monte Carlo con implementa-
ciones desarrolladas para nuestro caso particular.

En cuanto a la base observacional para el modelo estadístico semiempírico, la prin-
cipal muestra local que se usará es el catálogo de grupos basados en halos de Yang
et al. [249] y Yang, Mo & van den Bosch [247]. Este catálogo está construido de una
muestra completa de galaxias desde M∗ ∼ 7 × 108 M� del DR4 del Sloan Digital Sky
Survey (SDSS). Con este catálogo se construye la FMEG separada en galaxias centrales
y satélites y para cada caso, en rojas y azules. También se hará uso de FMEG obtenidas
por otros autores en base a muestras obtenidas de otro DRs del SDSS, (v. gr., Baldry,
Glazebrook & Driver [16]). En este caso, sólo se cuenta con la FMEG total (no separada
en centrales/satélites y/o rojas/azules) pero se llega a masas más pequeñas, debido a
correcciones por completez que incluyen el brillo superficial.

Para la función de correlación de dos puntos (FC2P) local se usarán los resultados de
Yang et al. [250] obtenida a partir del DR7 del SDSS. Estos autores presentan la FC2P
proyectada de las galaxias en diferentes intervalos de masa estelar, lo cual nos provee
una base observacional más completa para constreñir los parámetros de nuestro modelo.
Li et al. [123] presenta las FC2P proyectadas por separado para las galaxias rojas y azules,
lo cual nos sirve para comparar con las predicciones de nuestro modelo.
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Para los datos observacionales a otras épocas, se usarán en nuestras exploraciones
varias muestras y recopilaciones de la FMEG. Sin embargo, los resultados presentados
en esta Tesis se refieren principalmente a los datos del catastro COSMOS, Scoville et al.
[185] y Drory et al. [75]. Estos datos fueron cedidos amablemente por el Dr. Niv Drory
para nuestro uso. El catastro COSMOS consta de ∼ 300, 000 galaxias con z fotométrico
determinado hasta z ∼ 1; con el mismo se pueden obtener las FMEG promedio al
menos en cuatro intervalos de z. Las galaxias tienen definida su masa estelar, color y
TFE. Debido a la pequeña área del cielo que cubre el COSMOS, las FMEG sufren del
problema de varianza cósmica; en particular entre z ∼ 0.5 y 0.9 parece ser que la muestra
se encuentra en regiones algo sobredensas. Por lo tanto, buscaremos introducir algunas
correcciones para resolver este problema.

En cuanto a la FC2P, en base a los datos del COSMOS, hemos usado un método
adecuado para extraer la FC2P angular en los mismos intervalos de z en que obtuvimos
las FMEG. Se aplicarán también una serie de correcciones por efectos de borde y por
varianza cósmica.

Finalmente, para la modelación de galaxias sembradas en halos de MOF en una época
dada (modelos "estáticos"), se implementará un modelo iterativo tipo Mo, Mao & White
[144]. Con la generalización que se hará de dicho modelo, se podrán "sembrar" discos
o esferoides en halos de MOF con un dado perfil de densidad y momento angular,
y resolver así la distribución de masas estelar, bariónica y oscura de todo el sistema
acoplado. Se usará también un código seminumérico de evolución de galaxias de disco
(Firmani & Avila-Reese [82], Firmani, Avila-Reese & Rodríguez-Puebla [85]) para seguir
la evolución completa de galaxias bajo las restricciones de fracción bariónica que se
infieran del estudio semiempírico.

1.4 contenido

En lo que sigue, la Tesis presenta diez Capítulos más, agrupados en seis Partes.

• En la Parte II, se aborda la cuestión sobre cuánto afecta a la inferencia de la relación
M∗–Mh el considerar o no la separación de las galaxias en centrales y satélites y de
los halos en principales y subhalos (Capítulo 2). Luego se presenta nuestro mod-
elo estadístico completo y se explora la firmeza de las inferencias de la relación
M∗–Mh separada para galaxias centrales y satélites, su dispersión y predicciones
en cuanto a las distribuciones ocupacionales de centrales y satélites en los halos
(Capítulo 3). El contenido del ambos Capítulos fue parte de dos artículos publica-
dos: Rodríguez-Puebla, Drory & Avila-Reese 2012, ApJ 756, 2; Rodríguez-Puebla
Avila-Reese & Drory 2013, ApJ 767, 92.

• En la Parte III se aplican las distribuciones ocupacionales obtenidas para explorar
la dependencia con Mh del cociente masa del satélite más masivo a masa de la cen-
tral (brecha) y las probabilidades de encontrar galaxias con masas similares a tipo
las Nubes de Magallanes en halos de distintas masas (Capítulo 4). En el Capítulo 5,
en base a un catálogo sintético construido con el modelo semiempírico completo,
se estudian una serie de distribuciones (configuraciones) de satélites más masivos
que Fornax (M∗ ∼ 4 × 107 M�) en galaxias con masas estelares similares a la de la
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Vía Láctea con el fin de encontrar la probabilidad de un sistema como el de la Vía
Láctea, encontrar las masas de halo más probables para este sistema y constreñir
la dinámica interna de los satélites en galaxias tipo Vía Láctea; este último objetivo
se pretende usar como prueba al escenario MOF-Λ a escalas de galaxias enanas.
El contenido del Capítulo 4 corresponde a la segunda parte del artículo publicado
en el ApJ mencionado en la Parte II (Rodríguez-Puebla, Avila-Reese & Drory 2013,
ApJ 767, 92, mientras que el Capítulo 5 corresponde al contenido de otro artículo
en el ApJ: Rodríguez-Puebla, Avila-Reese & Drory 2013, ApJ (en prensa).

• La extensión de nuestro modelo estadístico semiempírico a otros corrimientos al
rojo (hasta z ∼ 1) es presentada en la Parte IV. Se obtienen resultados relacionados
a la relación M∗–Mh separada en centrales y satélites usando los datos del catastro
COSMOS; se predice también la evolución de la fracción de satélites en función
de la masa. El único Capítulo de esta parte (6), esta reflejado de un artículo en
preparación.

• En la Parte V, usando la Técnica de la Correspondencia de Abundancias se ob-
tienen las relaciones locales M∗–Mh y Mb–Mh de galaxias centrales separadas en
rojas y azules y se discuten las implicaciones (Capítulo 7). Para lograr estas in-
ferencias, se tuvo que hacer algunas suposiciones acerca de los halos que alber-
gan galaxias rojas y azules. En el Capítulo 8 se presenta un enfoque más general,
basado en nuestro modelo semi-empŕico completo, para constreñir la relación M∗–
Mh de galaxias centrales y satélites separadas en rojas y azules, tomando en cuenta
información relacionada la FC2P. Tambýen encontramos estás relaciones de man-
era local al aplicar el mismo modelo y restringimos (en vez de suponer a priori) las
funcionen de masa de los halos anfitriones de galaxias rojas y azules. El Capt́ulo
7 corresponde a un artículo publicado: Rodríguez-Puebla, Avila-Reese, Colín &T
Firmani 2011, RevMexAA, 47, 235; mientras que el Capítulo 8 aborda algunas cues-
tiones en el articulo remitido, Lacerna, Rodríguez-Puebla, Avila-Reese, Hernández-
Toledo 2013, ademas de ser un artículo en preparación.

• Finalmente, en la Parte VI se exploran las consecuencias de la fracción bariónica
en función de Mh obtenidas para galaxias azules (tardías en una primera aproxi-
mación) sobre las propiedades estructurales y dinámicas de galaxias de disco. En
el Capt́ulo 9 se presenta un enfoque analítico capaz de predecir las tendencias
promedio de las relaciones de escala bariónicas, mientras que en el Capítulo 10
se usa un modelo completo para sembrar discos en halos de MOF tomando en
cuenta la contracción adiabática que sufre el halo y las diferentes dispersiones en
los parámetros del modelo.

Las conclusiones más generales de la Tesis son presentadas en la Parte VII. Las con-
clusiones más especificas se presentan al final de cada Capítulo.





Part II

A S TAT I S T I C A L A P P R O A C H F O R L I N K I N G G A L A X I E S T O
H A L O S

En esta Parte II, se estudia la conexión galaxia-(sub)halo enfatizando la correspon-
dencia natural entre galaxia central y halo, y galaxia satélite y subhalo. En particular,
se exploran las relaciones masa estelar galaxia central-masa halo, M∗-Mh, y masa es-
telar galaxia satélite-masa subhalo, m∗-msub, tomando en cuenta dos definiciones de
la masa de los subhalos: al tiempo de su acreción, macc

sub, y al tiempo de su obser-
vación, mobs

sub. En el Capitulo 2 se generaliza la técnica de la correlación de abundan-
cias para inferir las relaciones M∗-Mh y m∗-msub por separado. De esta manera se
explora la viabilidad de la suposición comúnmente adoptada en la literatura de que
la relaciones M∗-Mh y m∗-msub son idénticas, tanto para macc

sub como para mobs
sub. El re-

sultado es que esto no es correcto. En el Capitulo 3 se presenta un modelo estadístico
más completo, el cual relaciona la función de masa estelar de galaxias centrales y
satétiles, la función de masa de halos/subhalos de materia oscura fría, las funciones
condicionales de masa estelar de satélites y las funciones de correlación de dos pun-
tos en diferentes intervalos masa. Este nuevo modelo permite inferir las relaciones
M∗-Mh y m∗-msub por separado de una manera auto-consistente con todo el cuerpo
de observaciones. Mostramos que la relación m∗-mobs

sub es diferente a la relación m∗-
macc

sub, y a su vez ambas son diferentes a la relación M∗-Mh de galaxias centrales. Se
muestra que estas relaciones obtenidas a través de nuestro modelo son firmes y con
dispersiones intrínsecas pequeñas. Se demuestra que la correlación de abundancias
es equivalente a la correlación de los números ocupacionales en halos (relacionados
con el acumulamiento espacial), razón por la cual la conexión galaxia-halo obtenida
con la técnica de la correlación de abundancias predice funciones de correlación
cercanas a las observadas. No obstante, como se demuestra, los resultados son más
firmes y exactos cuando se toma en cuenta de manera auto-consistente tanto el em-
pate la correlación de abundancias como el acumulamiento espacial.

El Capítulo 2 corresponde al artículo publicado: "The Stellar-Subhalo Mass Relation of
Satellite Galaxies", Rodríguez-Puebla, Drory & Avila-Reese 2012, ApJ 756, 2. El Capítulo 3
corresponde a una parte del artículo publicado: "The Galaxy-Halo/Subhalo Connection:
Mass Relations and Implications for Some Satellite Occupational Distributions", Rodríguez-
Puebla Avila-Reese & Drory 2013, ApJ 767, 92





2
T H E S T E L L A R – S U B H A L O M A S S R E L AT I O N O F S AT E L L I T E
G A L A X I E S AT z ∼ 0

This Chapter was published as: Rodríguez-Puebla A.; Drory N.; Avila-Reese V., 2012, ApJ, 756,
2.

ABSTRACT
We extend the abundance matching technique (AMT) to infer the satellite–subhalo

and central–halo mass relations (MRs) of local galaxies, as well as the corresponding
satellite conditional mass functions. We use the observed galaxy stellar mass function
(GSMF) decomposed into centrals and satellites and the Λ-CDM distinct halo and sub-
halo mass functions as inputs. We explore the effects of defining the subhalo mass, m s u b ,
at the time of (sub)halo accretion (m a c c

s u b) versus defining it at the time of observation
(m o b s

s u b); and we test the standard assumption that centrals and satellites follow the same
MRs. We show that this assumption leads to predictions in disagreement with observa-
tions, specially when m o b s

s u b is used. Instead, we find that when the satellite–subhalo MRs
are constrained by the satellite GSMF, they are always different from the central–halo
MR: the smaller the stellar mass, the less massive is the subhalo of satellites as compared
to the halo of centrals of the same stellar mass. This difference is more dramatic when
m o b s

s u b is used instead of m a c c
s u b . On average, for stellar masses lower than ∼ 2 × 1 0 1 1

M� , the dark mass of satellites decreased by 6 0 − 6 5 % with respect to their masses at
accretion time. We find that MRs for both definitions of subhalo mass yield satellite con-
ditional mass functions (CSMF) in agreement with observations. Also, when these MRs
are used in a halo occupation model, the predicted two–point correlation functions at
different stellar mass bins agree with observations. The average stellar–halo MR is close
to the MR of central galaxies alone, and conceptually this average MR is equivalent to
abundance matching the cumulative total GSMF to the halo + subhalo mass function
(the standard AMT). We show that the use of m o b s

s u b leads to less uncertain MRs than
m a c c

s u b , and discuss some implications of the obtained satellite–subhalo MR. For example,
we show that the tension between abundance and dynamics of Milky-Way satellites in
the Λ-CDM cosmogony disspaers if the faint-end slope of the GSMF upturns to a value
of ∼ − 1 . 6.

2.1 introduction

In recent years the abundance matching technique (AMT) has emerged as a simple yet
powerful statistical approach for connecting galaxies to halos without requiring knowl-
edge of the underlying physics [e.g., 216, 115, 58, 187, 16, 57, 75, 19, and references
therein].

Briefly, the AMT assumes a one-to-one monotonic relationship between stellar and
halo masses which can be constrained by matching the cumulative observed galaxy stel-
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lar mass function (GSMF) to the theoretical halo plus subhalo cumulative mass function.
Interestingly enough, this simple approach successfully reproduces the observed spatial
clustering of galaxies [e.g., 58, 148]. The AMT allows to probe the average galaxy stellar–
halo mass relation, M ∗ ( M h) (hereafter SHMR), delivering very useful information for
constraining models of galaxy evolution [e.g., 102, 85, 6].

The above has motivated several authors to use the AMT extensively. For example,
with the advent of large galaxy surveys at different redshifts, the AMT has been applied
for constraining the evolution of the average SHMR [e.g., 58, 75, 57, 148, 19]. As a natural
extension, these studies have been combined with predicted average halo mass aggrega-
tion histories in order to infer average galaxy M∗ growth histories as a function of mass
[57, 84, see for a review Avila-Reese & Firmani [9], and references therein]. By includ-
ing observational information on the gas content of galaxies, the AMT has been also
used to constrain the baryon mass to Mh relation of galaxies [16, 177]. Finally, variants
of the AMT, where instead of mass functions, circular velocity functions or functions
of any other galaxy/halo global property are employed, have been explored, too [e.g.,
58, 31, 214].

The AMT has been commonly applied to the total (central plus satellite galaxies)
GSMF matched against the total (distinct plus satellite) halo population. This approach
has been criticized, because quite different average SHMRs are obtained for different
proposed forms of the satellite stellar-subhalo mass relation (SSMR, m∗(msub)) and the
central SHMR (M∗(Mh)1; 152).

A common (questionable) assumption is that the SSMR is identical to the central
SHMR. Under this assumption, it is also common to define subhalo mass at the time
of accretion (macc

sub) rather than at the time of observation (mobs
sub), when subhalos have lost

a significant fraction of mass due to tidal stripping. The use of macc
sub has been justified

because the question of subhalo mass loss is avoided in this way, and regarding the
satellite m∗, it is expected that it remains almost constant since its infall into the host
halo. The projected two-point correlation function of galaxies is reproduced under these
assumptions [58, 148]. It should also be said that while the (local) SHMR for central
galaxies has been determined [e.g., 133, 146], the stellar–subhalo mass relation for satel-
lites/subhalos, SSMR, has not been yet discussed in detail in the literature.

In view of the above, some important questions arise. Why does using macc
sub instead of

mobs
sub lead to the correct clustering of galaxies? Does the macc

sub–M∗ relation reproduce the
observed satellite GSMF, the conditional stellar mass function, and spatial clustering of
galaxies at the same time? Even more fundamentally, if is not assumed that the SSMR
is identical to the central SHMR, then, what follows for the SSMR, either using mobs

sub or
macc

sub? Does it deviate from the central SHMR?
In this paper we extend the common AMT to constrain both the central SHMR and

the SSMR separately, as well as the average (total) SHMR. By construction, this formal-
ism also allows to predict the mean satellite conditional mass function (CSMF), i.e., the
probability that satellites of a given stellar mass reside in distinct host halos of a given
mass. We will (i) test whether the SSMR and the central SHMR have the same shape; (ii)
discuss the consequences of defining the subhalo mass at accretion time vs. at observed

1 In order to make the distinction explicit, we shall use upper-case letters for the central galaxy and the
distinct halo masses and lower-case letters for the satellite galaxy and subhalo masses.
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(present) time; and (iii) check the self-consistency of our predicted present-day central
SHMR and SSMR by comparison with the observed satellite CSMF and the spatial clus-
tering of galaxies.

This Chapter is laid out as follows. In Section 2.2 we present the AMT, focusing on
the details of our extended abundance matching. In Section 2.3 we present the predicted
stellar-halo mass relations (2.3.1) and satellite CSMFs (2.3.2) for cases when the SSMR is
assumed equal to the central SHMR, and when both mass relations are independently
constrained. In 2.3.3, a Halo Occupation Distribution (HOD) model is used to explore
whether the predicted central SHMR’s and SSMR’s are consistent with the observed
spatial clustering of galaxies. Section 2.4 is devoted to our conclusions and a discussion
of the results and their implications.

All our calculations are based on a flat ΛCDM cosmology with ΩΛ = 0.73, h = 0.7,
and σ8 = 0.84, close to those reported by WMAP 7.

2.2 the abundance matching technique

In this section we describe the technique of matching abundances between central galax-
ies and halos and satellite galaxies and subhalos, separetely, which we present here as
an extension to the standard AMT.

2.2.1 Modeling the central & satellite GSMFs

To model the central GSMF, let Pcen(M∗|Mh) denote the probability distribution function
that a distinct halo of mass Mh hosts a central galaxy of stellar mass M∗. Then the
number density of central galaxies with stellar masses between M∗ and M∗ + dM∗ is
given by

φcen(M∗)dM∗ = dM∗
∫ ∞

0
Pcen(M∗|Mh)φh(Mh)dMh. (1)

For the population of satellite galaxies in individual subhalos, let Psat(m∗|msub) be the
probability distribution function that a subhalo msub

2 hosts a satellite galaxy of stellar
mass m∗. Thus the average satellite CSMF (the number of satellite galaxies of stellar
mass between m∗ and m∗ + dm∗ that reside in distinct host halos of mass Mh, e.g., 248)
is

Φs(m∗|Mh)dm∗ = dm∗
∫ ∞

0
Psat(m∗|msub)Φsub(msub|Mh)dmsub, (2)

where Φsub(msub|Mh) is the subhalo conditional mass function [subhCMF, i.e., the num-
ber of subhalos of mass between msub and msub + dmsub residing in host halos of mass
Mh; e.g., 41]. A natural link between the satellite GSMF, φsat, and the distinct halo mass
function (HMF, φh) arises once the satellite CSMF is given:

φsat(m∗)dm∗ = dm∗
∫ ∞

0
Φs(m∗|Mh)φh(Mh)dMh. (3)

2 Whenever we use msub we refer to subhalo mass generically. In practice, that can either be the mass at
accretion time, macc

sub, or at observation (present-day) time, mobs
sub.



20 the satellite–subhalo mass relation

Inserting equation (2) into equation (3) and rearranging terms, the satellite GSMF can
be rewritten in terms of Psat(m∗|msub):

φsat(m∗)dm∗ = dm∗
∫ ∞

0
Psat(m∗|msub)φsub(msub)dmsub, (4)

where the subhalo mass function (subHMF) is given by

φsub(msub)dmsub = dmsub

∫ ∞

0
Φsub(msub|Mh)φh(Mh)dMh. (5)

Equations (1) and (4) describe the abundance matching in its differential form for the
central-halo and satellite-subhalo populations, respectively. The distribution probability
Pcen(M∗|Mh) is defined by the mean M∗(Mh) relation and a scatter around it of σc, while
the distribution probability Psat(m∗|msub), assumed to be independent of host halo mass
(as is commonly adopted in the AMT), is defined by the mean m∗(msub) relation and a
scatter around it of σs. Observe that once Psat(m∗|msub) is given, the satellite CSMF is a
prediction according to equation (2).

Here, Pcen(M∗|Mh) and Psat(m∗|msub) are modeled as lognormal distributions with a
width (scatter around the stellar mass) assumed to be constant and the same for both
centrals and satellites, σc = σs = 0.173 dex. Such a value was inferred for central galaxies
from the analysis of general large group catalogs (YMB09) and it is supported by recent
studies on the kinematics of satellite galaxies [146]. Regarding the intrinsic scatter of
the satellite-subhalo relation, it has not been discussed in detail in the literature. While
the exploration of this scatter is beyond the scope of the present paper, our conclusions
will not depend critically on the assumed value for it or even if it is allowed to depend
on host halo mass. We will further discuss this question in Section 2.4.2. Both m∗(msub)
and M∗(Mh) are parametrized by the same modified two-power-law form proposed in
Behroozi, Conroy & Wechsler [19]. This five-parameters function is quite general and, in
the context of the AMT, has been shown to reproduce the main features of a Schechter-
like GSMF.

2.2.2 The relation to standard abundance matching

In the standard AMT the cumulative halo+subhalo mass function and the total observed
cumulative GSMF are matched to determine the mass relation between halos and galax-
ies, which is assumed to be monotonic. In this context, no intrinsic scatter in the stellar
mass at a given halo is assumed. In our approach, where the galaxy and halo popu-
lations are separated into centrals/satellites and distinct halo/subhalos, the latter en-
tails that the probability distribution functions of centrals and satellites take the partic-
ular forms: Pcen(M|Mh) = δ(M− M∗(Mh)) and Psat(M|msub) = δ(M− m∗(msub)),
where M∗(Mh) and m∗(msub) are the mean central-halo and satellite-subhalo mass rela-
tions, and δ is for the δ-Dirac function. The above "no scatter” probability distribution
function for centrals applied in Eq. (1) would lead us to conclude that the cumulative
central GSMF, ncen(> M∗), should match the cumulative distinct halo mass function,
nh(> Mh(M∗)). The same reasoning applies for satellites/subhalos. Therefore, we ar-
rive to the standard AMT formulation:

ng(> M∗) = nh(> Mh) + nsub(> Mh), (6)
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where ng(> M∗) ≡ ncen(> M∗) + nsat(> M∗) is the total GSMF.
Since the abundance matching can be applied to centrals/halos and satellites/subha-

los separately, let us analyze now only the latter. Under the assumption that the m∗(msub)
relation is independent of the host halo mass, it is clear that using either the abundance
matching of all satellites and all subhalos, nsat(> m∗) = nsub(> msub), or the match-
ing of their corresponding mean occupational numbers, one may find exactly the same
m∗(msub) relation. In this sense, we state that matching abundances is equivalent to
matching occupational numbers:

〈Ns(> m∗|Mh)〉 = 〈Nsub(> msub|Mh)〉 ⇐⇒ nsat(> m∗) = nsub(> msub). (7)

In the case that the probability distribution function Psat(m∗|msub) includes scatter
around the mean SSMR, as we consider here, the above conclusion remains the same as
long as Psat(m∗|msub) is assumed to be independent on halo mass. In general, the inclu-
sion of constant scatter in the galaxy-halo mass relations is not a conceptual problem for
the AMT, but it slightly modifies the shape of the mass relations at the high mass end
[see 19]. Finally, note that if Psat(m∗|msub) depends on Mh, then φsat may not be directly
related to φsub (see Eq. 8) and using either the matching of satellites and subhalo abun-
dances or the matching of their corresponding occupational numbers would not lead to
find exactly the same m∗(msub).

2.2.3 Inputs for matching abundances

The inputs required for the procedure described above are the subhCMF, the distinct
HMF, and the observed satellite and central GSMFs.

For the subhCMF, we use the results obtained in Boylan-Kolchin et al. [41, BK10]
based on the analysis of the Millennium-II Simulation. This simulation assumes the
same cosmological parameters and the same particle number as the Millennium Simula-
tion, but in a smaller volume increasing up to 125 times the mass resolution. It consists
of 21603 particles, each of mass m = 6.885 × 106h−1M� in a periodic cube of length
L = 100h−1Mpc. Observe that this mass particle resolution is around four orders of
magnitude below the subhalo masses required (∼ 1010h−1M�) to match the lower stel-
lar mass limit in the YMB09 GSMF. The fitting formula for the cumulative subhCMF
reported in BK10 at the [1012, 1012.5]h−1M� mass interval is:

〈Nsub(> msub|Mh)〉 = μ0

(
μ

μ1

)a

exp

[
−
(

μ

μcut

)b
]

, (8)

where μ = msub/Mh. For msub= macc
sub, (μ0, μ1, μcut, a, b, ) = (1, 0.038, 0.225,−0.935, 0.75),

while for msub = mobs
sub, = (1.15(log Mh−12.25), 0.01, 0.096,−0.935, 1.29). According to BK10,

the shape of the mobs
sub subhCMF remains the same for other halo masses but its nor-

malization, μ0, systematically increases with Mh, roughly by 15% per dex in Mh. Such
a behavior has been reported in an analysis of the Millennium simulations by Gao
et al. [90, for closely related results, with small differences in the amplitude, see also
91, 220, 260, 3, 93]. We introduce the dependence μ0 = 1.15(log Mh−12.25), where μ0 = 1
at log Mh = 12.25. In the case of the macc

sub subhCMF, the normalization factor is nearly
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independent of Mh, i.e., μ0 = 1 (BK10; see also 94). The subhCMF is given by Φsub =
dNsub/dmsub.

In order to construct the macc
sub subhCMF, BK10 traced each subhalo back in time so

that they were able to find the point at which its bound mass reached a maximum, i.e.,
the time the halo became a subhalo. The latter guarantees that we are working with
the surviving population of accreted halos and no further assumptions on the merging
process are necessary.

The difference between the Millennium-II simulation cosmology and ours leads to
differences in the resulting abundances of subhalos of roughly a few percent in the
amplitude of the subhalo mass function (BK10). This is also supported by previous
works that explored the impact of changing cosmological parameters on the subhalo
occupational statistics (e.g., 261). Additionally, to be consistent with the same cosmology
for which the subhalo subhCMF was inferred, we repeated all the analysis to be showed
below but using the WMAP1 cosmology. We find that all our results are practically the
same.

For the distinct HMF, we will use the formula given by Sheth & Tormen [192]. This
formula provides a reasonable fit to the the virial mass3 function at z ∼ 0 measured in
large cosmological N-body simulations [e.g., 113, 64].

For our purpose, the decomposition of the GSMF and the CSMFs into centrals and
satellites galaxies is necessary. Using a large general group catalog [249] based on the
data from the SDSS, YMB09 constructed and studied the decomposition of the GSMF
and the CSMFs into centrals and satellites galaxies. In that paper, a central galaxy was
defined as the most massive galaxy in a group and the remaining galaxies as satellites.
For the mass completeness limit in the GSMF, they adopted the value as function of
redshift proposed in van den Bosch et al. [219]. They have also taken into account in-
completeness in the group mass by considering an empirical halo-mass completeness
limit (for details we refer the reader to YMB09).

Where necessary, halo masses are converted to match our definition of virial mass,
and stellar masses are converted to the Chabrier [48] IMF. In particular, YMB09 defined
halo masses with the average density 180 times the background density, according to
Giocoli et al. [93, see their appendix B] these halos are ∼ 11% larger than our definition
of virial mass.

2.2.4 Procedure and uncertainties

We constrain the parameters of the functions proposed to describe the central SHMR
and SSMR by means of Eqs. (1) and (3), and by using the Powell’s directions set method
in multi-dimensions for the minimization [167]. Note that in our analysis the reported
statistical errors in the GSMFs, as well as the intrinsic scatter in the mass relations are
taken into account. However, we will not analyze rigorously here the effects of uncer-
tainties on the mass relations as well as their errors. Instead, we remit the reader to
previous works [148, 19, 177].

3 The mass enclosed within the radius at which, according to the spherical collapse model, the overdensity
of a sphere is Δvir times larger than the matter critical density of the used cosmological model; for the
cosmology assumed here, Δvir(z = 0)= 97.
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Figure 3: Satellite GSMFs calculated under the assumption that Psat(m∗|msub) = Pcen(M∗|Mh)
and for the cases macc

sub (long-dashed line) and mobs
sub (short-dashed line) were used for the

subhalo mass definition. Filled circles and squares with error bars show the YMB09 cen-
tral and satellite GSMFs, respectively. The solid line is for the case when Psat(m∗|msub)
was determined using the YMB09 satellite GSMF as a constraint, i.e., is the best model
fit to this function. The dotted dashed lines shows the central SHMR.

Behroozi, Conroy & Wechsler [19] studied in detail the uncertainties and effects on
the average SHMR due to different sources of error like those in the observed GSMFs,
including stellar mass estimates; in the halo mass functions; in the uncertainty of the
cosmological parameters; and in linking galaxies to halos, including the intrinsic scatter
in this connection. These authors have found that the largest uncertainty by far in the
SHMR is due to the systematic shifts in the stellar estimates. The second important
source of uncertainty is due to the intrinsic scatter, that we take into account in our
analysis. Other statistical and sample variance errors have negligible effects, at least for
local galaxies. According to the Behroozi, Conroy & Wechsler [19] study, the statistical
and systematical uncertainties account for 1σ errors in the SHMR of approximately 0.25
dex at all masses, which is almost totally due to the uncertainty in stellar mass estimates.
We have explored here also the effects of the subhalo CMF uncertainty on the SSMR. By
using the 25% per dex in Mh variation reported by Giocoli et al. [93] (instead of 15%),
we find that the SSMR shifts in m∗ by only ≈ 0.04 dex.

2.3 results

2.3.1 The satellite GSMF and the SSMR

By means of the procedure described in Section 2, we calculate first the satellite GSMF
(Fig. 3) when the SSMR and the central SHMR are assumed to be the same, i.e., m∗(msub) =
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M∗(Mh). This is equivalent to assume that Psat(m∗|msub) = Pcen(M∗|Mh) if the intrinsic
scatter of both relations is the same. We obtain the central SHMR by matching abun-
dances of YMB09 central galaxies to distinct halos. This relation and the subhalo mass
function obtained from the theoretical subhCMF (eq. 8), are used to infer the satellite
GSMF (eq. 4). The satellite GSMF is presented for the two cases of subhalo mass def-
inition: φsat,acc when macc

sub is used (long-dashed line), and φsat,obs when mobs
sub is used

(short-dashed line). The observational results of YMB09 are plotted as well.
Under the assumption that m∗(msub) = M∗(Mh), the predicted number density of

satellites at masses below the knee is underestimated on the average by a factor of ∼ 2
when using macc

sub, and ∼ 5 when using mobs
sub. Note that the former is closer to the YMB09

data. The reason is simply because the normalization of the macc
sub subHMF is higher

and closer to the distinct HMF than the normalization of the mobs
sub subHMF. Therefore,

satellites of equal m∗ are expected to have a higher number density when using the
accreted-time (macc

sub) subHMF compared to using the observed-time (mobs
sub; present-day)

subHMF.
However, neither macc

sub nor mobs
sub are able to reproduce the observed satellite GSMF,

and the discrepancy is due to the basic assumption of a common stellar mass–(sub)halo
mass relation for centrals and satellites. In the case that msub = macc

sub, this is equivalent
to assume that the SSMR is independent of redshift. But in fact this cannot be the case
since the satellite mass m∗ hardly will remain the same since it was accreted to the
present epoch. On the other hand, when using msub = mobs

sub, that the SSMR is equal to
the central SHMR implies that both have evolved, on average, identically. This cannot
be the case because it is evident that the population of subhalos evolved differently to
distinct halos, mainly by losing mass due to tidal striping [e.g., 115, 220].

The next step in our analysis is to allow the SSMR and central SHMR to be different,
i.e., m∗(msub) �= M∗(Mh). In this case, Psat(m∗|msub) is determined by means of Eq. (4)
using the YMB09 satellite GSMF as a constraint. For the subhCMF, we again use both
definitions of subhalo mass, macc

sub and mobs
sub. For illustrative purpose, we present the

resulting satellite GSMF for the case when mobs
sub was used (solid line in Fig 3; an almost

identical GSMF is obtained when macc
sub was used).

As shown in Fig. 4, the SSMRs obtained by using macc
sub (long-dashed line) and mobs

sub
(solid line) are quite different. The central SHMR (dot-dashed line) is the same for both
cases. The error bar in the left panel shows a 1σ uncertainty of 0.25 dex in the normaliza-
tion of the mass relations. This is roughly the uncertainty estimated by Behroozi, Conroy
& Wechsler [19] taking into account all the systematical and statistical sources of errors
(see 2.2.4).

When using the accretion-time subhalo mass, macc
sub, we note that the resulting SSMR

at log(m∗/M�) < 11 systematically lies above the central SHMR, with differences in
the stellar-mass axis (halo-mass axis) of ∼ 0.5 dex (0.2 dex) at the smallest masses.
For log(M∗/M�) > 11 this trend is inverted, but the differences between central and
satellites are very small. However, the relation obtained this way should be taken with
caution. By construction, each macc

sub is itself a cumulative distribution of all the objects
accreted in a time interval Δz. Therefore such a SSMR entails that all accreted objects of
mass macc

sub would evolve, on average, to host the same m∗ despite having been accreted
at different times. We discuss this in 2.4.1.
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Figure 4: Left panel: Inferred mass relations for satellite galaxies when the subhalo mass is de-
fined as mobs

sub (blue solid line) and as macc
sub (red long-dashed-line), and for central galax-

ies (black dot-long-dashed line). The density-weighted average relation when using
subhalo mass mobs

sub is plotted with a blue short-dashed line, while when using subhalo
mass macc

sub is plotted with a black short-dotted line. For comparison, the (average) mass
relation obtained in Behroozi, Conroy & Wechsler [19] is also plotted (filled circles).
Right panel: A comparison of the mass relations of satellite and central galaxies with
direct observational inferences (the same line code of left panel for models is used;
dashed lines indicate extrapolations to lower masses). Filled circles with error bars
correspond to the mass relation of central galaxies from the analysis of staked weak-
lensing in Mandelbaum et al. [133]. Dashed area indicates the 68% of confidence in the
mass relation of central galaxies using the kinematics of satellites [146]. The inferred
total mass at the tidal radii for the brightest dwarf galaxies obtained in Strigari et al.
[200] and Strigari, Frenk & White [201] are plotted with filled squares and triangles, re-
spectively. Filled pentagon shows the mass at the tidal radius for the Large-Magallanic
Cloud [235]. The gray dotted-dashed curve is the mobs

sub SSMR assuming a faint-end
slope in the satellite GSMF of α = −1.6.

When using the observation-time (present-day) subhalo mass, mobs
sub, the SSMR (solid

blue line) and central SHMR are very different, though they show the same trend as
when using macc

sub. For example, on average, a satellite with log(M∗/M�) = 10 resides in
a subhalo a factor of ∼ 4 less massive than the halo of a central galaxy with the same
stellar mass. Notice that mobs

sub(m∗) < macc
sub(m∗) and that the difference increases the lower

the mass is. This is consistent with the picture that most massive subhalos, on average,
fell into larger halos just very recently and they have not had time to lose significant
amounts of mass due to tidal striping, in contrast to the lowest mass subhalos.

This also suggests that the SSMR for both definitions of subhalo mass should tend
to the central SHMR at the high-mass end, but this is not the case as seen in Fig. 4
where small differences remain. The possible reasons are that, firstly, the intrinsic scatter
around the stellar–(sub)halo mass relations is actually lower for the former than for the
latter (here we assumed it to be the same for satellites and centrals, see 2.4.2). Secondly,
that the YMB09 satellite GSMF may underestimate the true satellite mass function at
large masses [see also 194].
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Fiber collisions could introduce some systematic error that may affect the YMB09
group catalog. To study the impact of this possible systematic error, YMB09 divided
their group catalog into two sample: one that uses galaxies with known redshifts, and
another that includes galaxies that lack redshifts due to fiber collisions. When compared
the corresponding satellite CSMFs from both samples (see their Fig. 6), they found that
the sample for which the correction for fiber collisions has been taking into account,
has a higher amplitude of the CSMFs than when this correction has not been applied,
specially in low mass halos. However, the difference is very marginal and well within the
error bars. We conclude that fiber collisions in the YMB09 group catalog are not a serious
source of systematics and should not to affect our conclusions. Regarding completeness
and contamination of their group catalog [for details see 249], 80% have a completeness
greater than 0.6, while 85% have a contamination lower than 0.5. In terms of purity, their
halo-based group finder is consistent with the ideal situation.

Finally, we note that the mass relation usually obtained by matching abundances be-
tween the total GSMF and the halo plus subhalo mass function, in the light of the de-
composition into centrals and satellites, could be interpreted as a density–weighted average
SHMR:

〈M∗(M)〉φ =
φsub(M)
φDM(M)

m∗(M) +
φh(M)

φDM(M)
M∗(M), (9)

where φDM(M) = φsub(M) + φh(M), m∗(M) is the mean SSMR and M∗(M) is the mean
central SHMR. This relation is plotted in Fig. 4 with short-dashed-dot and short-dashed
lines when using macc

sub and mobs
sub, respectively. Since most galaxies in the YMB09 catalog

are centrals, the central SHMR is very close to the density-weighted average SHMR.
For comparison, we plotted the Behroozi, Conroy & Wechsler [19] average mass relation
(filled circles), which is in excellent agreement with our density-weighted average SHMR
when using the accreted-time subhalo mass, macc

sub.
Observe that differences between the satellite and the average (total) mass relations

are small when macc
sub is used, while differences become dramatic when mobs

sub is used.
The above explains why under the assumption that m∗(macc

sub) = M∗(Mh) = 〈M∗(M)〉φ,
the resulting satellite GSMF are closer to observations. On the other hand, since the
macc

sub subHMF has a higher normalization than the mobs
sub subHMF, the above shows that

when assuming m∗(mobs
sub) = M∗(Mh) = 〈M∗(M)〉φ, we should expect that the resulting

satellite GSMF is significantly below the observed satellite GSMF.

2.3.1.1 Comparison with other observational inferences

In the right panel of Fig. 4, we plot some observational inferences of halo and sub-
halo masses as a function of stellar mass. The inferred 〈Mh〉(M∗) of central galax-
ies from staked weak-lensing studies using the SDSS [133] are shown as filled cir-
cles with error bars. Mandelbaum et al. [133] reported the data actually for blue and
red galaxies separately. We estimated the average mass relation for central galaxies as:
〈Mh〉(M∗) = fb(M∗)〈Mh〉b(M∗) + fr(M∗)〈Mh〉r(M∗), where fb(M∗) and fr(M∗) are the
blue and red galaxy fractions in the sample, and 〈Mh〉b and 〈Mh〉r are the correspond-
ing blue and red mass relations. The inferred 〈log(M∗)〉(Mh) for central galaxies from
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staked kinematics of satellites [146] are plotted as the dashed area indicating the 68% of
confidence.

Our inferred central SHMR (dotted-dashed curve) is consistent with the weak-lensing
inferences at all masses, and with the satellite kinematics inferences at masses M∗ >∼ 1011

M�; for smaller masses, our halo masses are a factor up to ∼ 2 smaller than the satellite
kinematics inferences. In fact, it was already noted that using the kinematics of satellite
galaxies yields halo masses around low mass galaxies that are systematically larger than
most other methods, specially for red central galaxies [146, 194, 177].

Regarding satellites, unfortunately, there are not direct inferences of their subhalo
masses. Some model-dependent estimates based on dynamical observations of Milky-
Way (MW) satellites were presented in the literature. For example, using the line-of-sight
velocity dispersions measured for the brightest spheroidal dwarf galaxies, Strigari et al.
[200] and Strigari, Frenk & White [201] determined their masses within their tidal radii.
These dynamical masses, plotted in Fig. 4 (filled squares and triangles, respectively), are
expected to be of the order of mobs

sub. We also plot an estimate of the mass at the tidal
radius for the Large-Magallanic Cloud [filled pentagon, 235]. The SSMRs constrained
here do not extend to the small masses of MW satellites but we plot their extrapolations
to these masses (dashed curves). The gray dotted-dashed curve will be discussed in
section 2.4.3.

2.3.2 The satellite CSMF

From the approach described in Section 2, another statistical quantity that deserves to
be subject of study is the satellite CSMF (Eq. 2). We calculate the mean halo–density–
weighted CSMF at the [Mh1 , Mh2 ] bin as:

〈Φs〉 =

∫ Mh2
Mh1

Φs(m∗|Mh)φh(Mh)dMh∫ Mh2
Mh1

φh(Mh)dMh

. (10)

This quantitiy has been inferred from observations by YMB09, again using their SDSS
galaxy catalog (filled circles with error bars in Fig. 5).

First, we consider again the case assuming m∗(msub) = M∗(Mh). When msub is defined
at the observation time, the resulting CSMFs are lower than the YMB09 CSMFs by a
factor of ∼ 5 in the power-law regime (roughly the same factor by which φsat,obs is
lower than the YMB09 observed satellite GSMF). Similarly, when msub is defined at the
accretion time, the predicted CSMFs in the power-law regime are below the YMB09
CSMFs by nearly the same factor, ∼ 2, that φsat,acc lies below the satellite GSMF. The
normalization of the CSMF increases faster with Mh when mobs

sub is used instead of macc
sub.

This is because we allow the mobs
sub subhCMF normalization to vary with host halo mass,

while the macc
sub subhCMF normalization is independent of host halo mass.

The black continuous (mobs
sub) and blue long-dashed (macc

sub) lines in Fig. 5 (almost in-
distinguishable one from other) are the predictions when Psat(m∗|msub) has been con-
strained by means of the observed satellite GSMF. The agreement of the predicted satel-
lite CSMF’s, for both mobs

sub and macc
sub with the YMB09 CSMF’s is now remarkable at all
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Figure 5: Density–weighted average satellite CSMF in eight halo mass intervals. Red short-
dashed and green short-dashed-dot lines are for the cases when the central SHMR and
the SSMR were assumed to be equal and mobs

sub and macc
sub were used, respectively. The

black solid and blue long-dashed lines are again for mobs
sub and macc

sub, respectively, but
in the case the central and satellite mass functions were independently constrained by
means of our extended AMT (they overlap most of time). Filled circles with error bars
show the CSMFs inferred from observations by YMB09. Note that their halo masses
were converted to match our virial definition.

halo mass bins for low/intermedium stellar masses. Although, as above, the normal-
ization of the CSMF’s increases faster when msub = mobs

sub than when msub = macc
sub, the

differences between both cases at any mass are less than 0.05 dex, within the error bars
of the observational data.

Despite the overall agreement, for halo mass bins lower than ∼ 1013 M�, the number
of massive satellite galaxies is overestimated, specially at the lowest Mh bins. A possible
reason for this is the assumption that the scatter in Psat(m∗|msub) is constant while in
reality it could depend on Mh as well as on msub. However, the probability of finding
massive satellite galaxies in halos less massive than ∼ 1013 M� is low and they do not
contribute significantly to the mean total density of satellite galaxies. Therefore, this
assumption does not change our conclusions, see also 2.4.

Our analysis shows that assuming Psat(m∗|msub) = Pcen(M∗|Mh) the resulting satellite
CSMFs are not consistent with observations. Instead, when Psat(m∗|msub) is independently
constrained using the observed satellite GSMF, there is a clear agreement, no matter
what definition of msub was employed for the subhCMF.
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Figure 6: Projected two–point correlation functions of galaxies in five stellar mass intervals ob-
tained with the HOD model using different galaxy-halo mass relations obtained with
our AMT. Gray short-dashed and green short-dashed-dot lines are for the cases when
the central SHMR and the SSMR were assumed to be equal and mobs

sub and macc
sub were

used, respectively. The black solid and blue long-dashed lines are again for mobs
sub and

macc
sub, respectively, but in the case the central and satellite mass functions were inde-

pendently constrained (they overlap most of time). The observed projected correlation
functions reported in Yang et al. [250] are shown by filled circles with error bars.

2.3.3 Abundance matching and clustering

It has been noted in the literature that the average (total) SHMR obtained with the
standard AMT is consistent with the observed spatial clustering of galaxies [58, 148].
We will test now whether this is the case for the mass relations of central and satellite
galaxies obtained here with our extended AMT. We will compute the galaxy projected
correlation function by means of a HOD model for each of the mass relation obtained in
2.3.

A HOD model is a statistical tool mainly used to describe the clustering of galaxies
(e.g., 25, 60, 245, 259, 258, 121, 122, 250, and more references therein). In contrast to the
AMT, which is a quasi empirical tool, a HOD employs modeling motivated by results
of cosmological N-body [e.g., 115] and hydrodynamical [e.g., 262] simulations.

In short, a HOD model describes the probability that a halo of mass Mh hosts a num-
ber of N galaxies with stellar masses greater than M∗. Once the occupational numbers
are defined, the two-point correlation function can be computed assuming that the total
mean number of galaxy pairs is the contribution of all pairs coming from galaxies in the
same halo (one-halo term, corresponding to smaller separations) and pairs from differ-
ent halos (two-halo term, corresponding to larger separations). For a detailed description
for the HOD model we employ here, see Appendix A.
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First, consider the case when Psat(m∗|msub) = Pcen(M∗|Mh). The short-dashed curves
in Fig. 6 show the projected correlation functions in five stellar mass bins for the case
when the mobs

sub subhCMF was used. The Yang et al. [250] galaxy projected correlation
functions from the DR7 SDSS are plotted as filled circles with error bars. The resulting
correlation functions are clearly below observations, mainly in the one-halo term. This is
because using mobs

sub underestimates the satellite GSMF and CSMF, resulting in a strong
deficit of satellite galaxies. Observe that if Ns ∼ 0, then N ∼ Nc and therefore, bg(M∗) ∼
〈b(Mh)〉 where 〈b(Mh)〉 is the mean weighted halo bias function, see Eq. 138.

When using the subhCMF for macc
sub instead of mobs

sub (dot-short-dashed curves), the
agreement with the observed correlation functions is better, though at scales where the
one-halo term dominates, the predictions are still below observations. This is, again, be-
cause the satellite GSMF and CSMF are underestimated in this case. We remark that
using the (average or total) SHMR obtained with the standard AMT in the HOD model
by matching the total GSMF to the total halo+subhalo mass function (in the case of
macc

sub), leads to excellent agreement with the observed correlation functions, a result that
is well known. However in this case the SSMR is not constrained, instead it is implicitly
assumed to be equal to the central SHMR (for macc

sub). With our extended AMT, we can
explicitly separate both mass relations. When they are assumed to be equal and the cen-
tral SHMR is constrained with the central GSMF, then we obtain the predictions already
shown, in particular the correlation functions. The fact that the predicted correlation
functions, when macc

sub is used, are close to those predicted in the standard AMT (and
to the observed ones) is because the central and average SHMR are indeed close, as we
discussed in §§3.1, see Fig. 4.

Thus, under the assumption that Psat(m∗|msub) = Pcen(M∗|Mh), the observed cluster-
ing of galaxies is better reproduced when the subhalo mass in abundance matching is
defined as macc

sub rather than mobs
sub. Nevertheless, even in the former case, the agreement

with observations is only marginal.
We now turn the analysis to the cases where the SSMR is not assumed to be equal

to the central SHMR. The black solid and blue long-dashed lines in Fig. 6 show the
predicted correlation functions in the cases where either msub or macc

sub were used. Both
cases lead to very similar results and agree very well with observations.

Therefore, the HOD model combined with the central and satellite mass relations indepen-
dently constrained with the extended AMT, is able to reproduce the observed correlation func-
tions, no matter if mobs

sub or macc
sub are used. This successful prediction is a consequence of

the good agreement obtained between our predicted satellite CSMFs and those inferred
from observations (2.3.2 and 5).

2.4 summary and discussion

In this Chapter, we extend the AMT in order to constrain both the central stellar–halo
and the satellite–subhalo mass relations separately, using as an input (i) the distinct halo
and subhalo mass functions, and (ii) the observed central and satellite GSMFs. Our for-
malism, by construction, predicts also the satellite CSMFs as a function of host halo mass,
and when applied to a HOD model, allows to predict the spatial correlation functions.
We present results for the cases when the SSMR is assumed to be equal to the central
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SHMR, Psat(m∗|msub)=Pcen(M∗|Mh), and when both mass relations are constrained in-
dependently (i.e., it is not assumed that Psat(m∗|msub)=Pcen(M∗|Mh)). All our analysis is
carried out for subhalo masses defined at accretion time, macc

sub, and at the observed time
(present day), mobs

sub. The main results and conclusions are as follows:

• Assuming that the mass relation between satellites and subhalos is identical to the
mass relation between centrals and distinct halos (including their intrinsic scat-
ters), Psat(m∗|msub)=Pcen(M∗|Mh), the predicted satellite GSMF, CSMFs and pro-
jected two–point correlation functions lie below those obtained from observations
for both definitions of msub, though the disagreements are small when msub=macc

sub
(Figs. 3, 5, 6). We conclude that assuming Psat(m∗|msub)=Pcen(M∗|Mh) leads to pre-
dictions in disagreement with observations, specially when mobs

sub is used.

• When the SSMR is no longer assumed to be equal to the central SHMR and in-
stead is constrained by means of the observed satellite GSMF, the predicted satel-
lite CSMFs and projected correlation functions agree in general with observations,
both for mobs

sub and macc
sub. However, for halo masses lower than ∼ 1013 M�, the num-

ber of very massive (rare) satellites is over-predicted.

• The resulting msub–m∗ relations when using either mobs
sub or macc

sub are quite different
from each other, and in each case are different from the central SHMR (Fig. 4). For
a given stellar mass, the satellite subhalo mass is smaller than central halo mass,
and the mass difference is increasing the lower the mass is. These differences are
dramatic when mobs

sub is used.

• Our density-weighted average (centrals + satellites) SHMRs are close to the central
SHMR when either mobs

sub or macc
sub is used (central galaxies dominate in the YMB09

catalog). Such an average SHMR coincides conceptually with the one inferred from
matching the total (centrals+ satellites) cumulative GSMF and the halo + subhalo
cumulative mass function (standard AMT).

2.4.1 On the inference of the SSMR and its implications for the average mass relation

The conclusions listed above can be well understood by examining the basic ideas be-
hind the extended AMT, as we show in Section 2.2. Essentially, matching abundances of
satellite galaxies to subhalos is equivalent to matching their corresponding occupational
numbers, that is:

〈Ns(> m∗|Mh)〉 = 〈Nsub(> msub|Mh)〉. (11)

The opposite is also true: matching their corresponding occupational numbers is equiv-
alent to matching their abundances. This is an important result because it shows that
once Psat(m∗|msub) (and Pcen(M∗|Mh)) is properly constrained, we will obtain the correct
conditional mass functions and consequently the correct spatial clustering for galaxies.

The above means that there is a unique msub(m∗) relationship for each definition of
msub, which depends solely on 〈Nsub(> msub|Mh)〉. Because of this uniqueness, it fol-
lows that the mobs

sub(m∗) and macc
sub(m∗) relations should be different, and any incorrect
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assumption on each one of these relations will lead to inconsistencies in the conditional
mass functions and spatial clustering of galaxies, as for example those that we have
found here when Psat(m∗|msub) was assumed to be equal to Pcen(M∗|Mh). Under this
assumption, when macc

sub was used, the inconsistencies were actually small. This is be-
cause in this case the "incorrect" assumption for the SSMR is actually not too far from
the "correct" result obtained when Psat(m∗|mobs

sub) is independently constrained (compare
dot-dashed and solid green curves in Fig. 4), contrary to what happens when mobs

sub is
used.

It is important to remark that in the standard AMT, only the average SHMR is con-
strained (using the total GSMF), leaving unconstrained the SSMR, something that on
its own introduces a large uncertainty in the average SHMR [see 152]. We have shown
that such average SHMR is conceptually equal to the density–weighted average mass
relation obtained here from the observationally constrained central SHMR and SSMR.
Therefore, our resulting average mass relation is expected to be less uncertain than pre-
vious determinations. On the other hand, this average mass relation is expected to be
close to the central SHMR because most of the galaxies in the used observational catalog
are centrals.

We conclude that in order to properly infer the SSMR and the central SHMR at the
same time, and in this way reduce the uncertainty in the average SHMR, additional ob-
servational constraints than the total GSMF are necessary. The most obvious and direct
is the GSMF decomposed into central and satellite galaxies, something that was pro-
vided by YMB09. However, observe that, according to eq. (11), the satellite CSMFs or
the clustering of galaxies, modulo the observational errors, provide observational con-
straints that lead to similar inferences of the SSMR, because of the uniqueness of this
relation for a given well defined 〈Nsub(> msub|Mh)〉 (see above).

Finally, we note that obtaining the SSMR for the subhalo mass defined at the accretion
time introduces uncertainties due to our ignorance about evolutionary processes of the
stellar mass since accretion . This does not happen when the SSMR is obtained for both
the satellite and subhalo masses defined at the same epoch, for instance the present
time. When matching abundances for the macc

sub case, the fact that (1) macc
sub is itself a cu-

mulative distribution of all objects accreted over a period of time, and that (2) m∗ may
have changed between accretion and observation, are not taken into account. In other
words, it is implicitly assumed that the satellite stellar mass stops evolving soon after
accretion. In reality the situation is actually quite complex in the sense that, depending
on the accretion time and the orbit of the satellites, the evolution of their stellar masses
is diverse, with some of them early quenched and others actively evolving, perhaps in
some cases as the central ones of the same mass [see e.g., 237, for semi-empirical infer-
ences on such a complexity of galaxy evolution in groups]. This diversity introduces an
intrinsic uncertainty on the results. Such an uncertainty might be accounted for the prob-
ability distribution functions: P(m∗|m∗,acc, z), which gives the probability that a satellite
accreted at epoch z evolves, on average, to the observed satellite m∗, and P(m∗,acc|macc

sub, z),
which gives the probability that a subhalo macc

sub hosts a galaxy of mass m∗,acc at the time
of accretion. Now, the satellite CSMF (Eq. 2) can be written as [143]:

Φs(m∗|Mh) =
∫ ∫ ∫

P(m∗|m∗,acc, z)P(m∗,acc|macc
sub, z)× Φ(macc

sub|Mh, z)dm∗,accdmacc
subdz.
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(12)

Note that in our analysis in §§3.1, we implicitly assume that the stellar mass of satel-
lite galaxies does not change once they become satellites, i.e. P(m∗|m∗,acc, z) = δ(m∗ −
m∗,acc, z), and that P(m∗,acc|macc

sub, z) is independent of redshift. Thus, the application of
the AMT to infer the satellite CSMF and the m∗–msub relation for subhalo mass defined
at its accretion time formally requires more observational constraints at higher redshifts.
This is a problem already faced by previous authors [e.g., 250].

The above is not the only way to formally write the satellite CSMF; it can be written in
a way that instead of implying knowledge of the change of m∗ from accretion to observa-
tion, implies just knowledge on the change of the subhCMF between these two epochs.
Let us consider the distribution function, Pacc(mobs

sub|macc
sub, z), giving the probability that

halos accreted at epoch z evolve, on average, to the observed (present-day) subhalos
mobs

sub, and the probability distribution function of these subhalos of hosting a galaxy of
mass m∗, Psat(m∗|mobs

sub). In this case, the satellite CSMF (Eq. 2) is written as

Φs(m∗|Mh) =
∫ ∫ ∫

Psat(m∗|mobs
sub)Pacc(mobs

sub|macc
sub, z)× Φ(macc

sub|Mh, z)dmobs
subdmacc

subdz,

(13)

and therefore the satellite GSMF, Eq. 4, is given by

φsat(m∗) =
∫ ∫ ∫

Psat(m∗|mobs
sub)Pacc(mobs

sub|macc
sub, z)× φsub(macc

sub, z)dmobs
subdmacc

subdz. (14)

Since the macc
sub subHMF would evolve into the mobs

sub subHMF, we write

φsub(mobs
sub) =

∫ ∫
Pacc(mobs

sub|macc
sub, z)φsub(macc

sub, z)dmacc
subdz. (15)

This last equation is the abundance matching of accreted subhalos to present-day sub-
halos. Therefore,

φsat(m∗) =
∫

Psat(m∗|mobs
sub)φsub(mobs

sub)dmobs
sub. (16)

This equation is nothing but abundance matching satellite galaxies to subhalos at the
time they are observed. Hence, the reason that the satellite GSMF matches the subHMF
in a more direct way for subhalo masses defined at the observation time (eq. 16) than
at the accretion time (eq. 12), is that in the latter case the unknown P(m∗|m∗,acc, z) and
P(m∗,acc|macc

sub, z) "evolutionary" functions have to be introduced. However, we acknowl-
edge that for the former case, our ignorance on the scatter around the SSMR is a also
potential source of uncertainty. All our calculations are under the assumption that this
scatter is the same as the scatter of the central SHMR. In any case, even if these scat-
ters are different, note that including scatter affects the stellar-to-(sub)halo mass relation
only at its high-mass end, where on average satellites are expected to be accreted re-
cently, hence their SSMR and scatter are yet similar to those of centrals/halos.
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2.4.2 On the intrinsic scatter in the SSMR

A possible source of systematic errors in our analysis is the assumption that the intrinsic
scatter around the SSMR, σs is constant and equal to the scatter around the central
SHMR. To probe the impact of this assumption we repeated all our analysis but this
time assuming σs = 0. When comparing the results using σs = 0 to those obtained based
on σs = 0.173 dex, we find that they are consistent with each other, and therefore with
the satellite CSMFs and with the galaxy spatial clustering measured from the YMB09
catalog. In more detail, we find that the resulting CSMF’s reproduce observations for
σs = 0 slightly better than for σs = 0.173 dex, especially at the massive end. This is
because when the intrinsic scatter is not taken into account (σs = 0), the shape of the
SSMRs steepens at the massive end (see also 19). Consequently, for a given m∗, the
subhalo mass is larger, and the abundances of larger (sub)halos is lower in general than
those of smaller halos. Therefore, the number density of satellites at the massive end
is lower. However, the projected correlation functions remain almost the same because
the probability of finding a massive satellite galaxy in host halos less massive than
log Mh ∼ 13 is very low. They do not contribute significantly to the mean total density
of galaxies. Although better models are needed in order to give a realistic form for σs,
our main conclusions seem to be robust to variations in the adopted value for σs.

2.4.3 Implications for satellite/subhalo evolution

The local SSMR obtained for both definitions of the subhalo mass, macc
sub and mobs

sub, are
such that at halo masses smaller than 2 − 10 × 1013 M� and at a given galaxy stellar
mass, the corresponding subhalo mass is smaller on average than the halo mass of
centrals (Fig. 4). This difference increases the smaller the mass is, and much more for
the subhalo mass defined at the observed time (present-day). In the case of macc

sub, the
differences might be because the halo mass at the epoch it became a subhalo (accretion
time) is smaller than its present-day counterpart at a given stellar mass and/or because
the satellite stellar mass increased faster than the central one for a given halo mass. In
fact, it is difficult to make any inference in this case because the abundance matching is
between local galaxies and (sub)halos at different past epochs. In any case, the fact that the
inferred mass relations for satellites and centrals when macc

sub is used are not too different,
suggests that the central galaxy–distinct halo mass relation does not change too much
with time, at least since the epoch at which most of the subhalos were accreted.

When mobs
sub is used, both abundances of satellites and subhalos are matched at the

same epoch, the observation (present-day) time. In this case the strong difference be-
tween the satellite and central mass relations can be interpreted mainly as the result
of subhalo mass loss due to tidal stripping. Besides, the smaller the subhalo, the larger
is the mass loss on average, though there is a large scatter and highly dependent of
the orbit. Probably, the different evolution in stellar mass between central and satellite
galaxies could also play a role for the differences but not as significant a role that the
one related to halo and subhalo mass evolution.

From Fig. 4 one sees that for a given m∗, the mobs
sub–to–macc

sub ratio is 0.35–0.40 for the
smallest masses up to m∗ ∼ 2 × 1011 M�. At larger masses, this ratio rapidly tends
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to 1. Therefore, the subhalos of satellites galaxies less massive than m∗ ∼ 2 × 1011 M�
have lost, on average (for all host halo masses4), 60–65% of their masses since they were
accreted. It should be noted that this is a rough approximation and the evolution of the
stellar mass since the satellite was accreted should be taken into account, see §4.1. This
result shows us that the galaxy-(sub)halo connection for satellite galaxies is far from
direct; present-day satellites of masses m∗ ∼ 7 × 108 M� and larger have formed in
subhalos that at the time they were accreted onto galaxy sized halos were on average
a factor 2.5–3 larger than at the present epoch. This has severe implications for studies
aimed to constrain the Λ-CDM scenario at the level of subhalo/satellite distributions.

For example, it has been discussed that seeding the subhalos in simulations of MW-
like halos by using an extrapolation to low masses of the stellar–halo mass relation
obtained by means of the AMT, predicts a MW dwarf spheroidal (dSph) luminosity
function in agreement with the observed one. However, the circular velocities at the
maximum (or the masses at the infall) of the subhalos associated to the dSphs are signif-
icantly larger than inferences from observed kinematics [37].

In the right panel of Fig. 4 we have plotted the extrapolation to low masses of our
SSMRs, both for subhalo masses defined at the present day (red line) and at the infall
time (blue line). The observational points in the panel are for MW satellites, which
subhalo masses were estimated at their truncation radii. Thus, if we assume that these
masses are roughly equal to the present-day subhalo masses in the Λ-CDM simulations,
then the simulated subhalo masses, mobs

sub, are up to ≈ 10 − 30 times larger than those
associated to dSphs. If the comparison is done with the extrapolation of the average (or
central) SHMR, then the differences increases by a factor of ∼ 3 more [see also Fig. 7 in
37].

Our extrapolated results show that the discrepancy in subhalo mass between MW
bright dSphs and Λ-CDM simulations is smaller than previously reported but is still
significant. Note that for the extrapolation, we have used the same slope of the YMB09
satellite GSMF at the low mass end, α = −1.25 (Fig. 3). If this slope steepens for smaller
masses, for example to a value of α = −1.6, then our extended AMT predict the mobs

sub
SSMR plotted as the gray dotted-dashed curve in Fig. 4, which is already consistent
with the dynamical estimates.

The GSMF at low masses may be significantly incomplete because of missing low-
surface brightness galaxies. By taking into account the bivariate distribution of stellar
mass versus surface brightness, Baldry, Glazebrook & Driver [16] have found evidence
for an upturn in the faint-end GSMF slope (α ≈ −1.6) for a subsample of field SDSS
galaxies. More recently, using the GAMA survey, a slope of α ≈ −1.47 has been reported
[14]. Steep faint-end slopes have been also found at higher redshifts. For instance, using
the COSMOS field, Drory et al. [75] have measured slopes of α ∼ −1.7 at all redshifts z ≤
1 There are also pieces of evidence that the faint-end slope of the GSMF (or luminosity
function) changes with the environment: in clusters of galaxies it steepens significantly
[for a discussion see 16, and the references therein]. The cluster GSMF is actually related
to the satellite GSMF, through the satellite CSMF.

We conclude that using a correct AMT for connecting satellite galaxies to their present-
day subhalos and assuming a steep faint-end slope in the satellite GSMF (α ∼ −1.6), the

4 The dependence of the satellite subhalo mass loss on host halo mass will be explored elsewhere.
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predicted SSMR for the Λ-CDM cosmogony would be consistent with the dynamics of
MW satellites.
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T H E G A L A X Y– H A L O / S U B H A L O C O N N E C T I O N AT z ∼ 0

Part of this Chapter was published as: Rodríguez-Puebla A.; Avila-Reese V.; Drory N., 2013, ApJ
767, 92.

ABSTRACT
We infer the local stellar-to-halo/subhalo mass relations (MRs) for central and satel-

lite galaxies separately. Our statistical method is extending the abundance matching,
halo occupation distribution, and conditional stellar mass function formalisms. We con-
strain the model using several combinations of observational data, consisting of the
total galaxy stellar mass function (GSMF), its decomposition into centrals and satellites,
and the projected two-point correlation functions (2PCFs) measured in different stellar
mass ( M ∗ ) bins. In addition, we use the ΛCDM halo and subhalo mass functions. The
differences among the resulting MRs are within the model-fit uncertainties (which are
very small, smaller than the intrinsic scatter between galaxy and halo mass), no matter
what combination of data are used. This shows that matching abundances or occupa-
tional numbers is equivalent, and that the GSMFs and 2PCFs are tightly connected.
We also constrain the values of the intrinsic scatter around the central-halo (CH) and
satellite-subhalo (SS) MRs assuming them to be constant: σc = 0 . 1 6 8 ± 0 . 0 5 1 dex
and σs = 0 . 1 7 2 ± 0 . 0 5 7 dex, respectively. The CH and SS MRs are actually different,
in particular when we take the subhalo mass at the present-day epoch instead of at their
accretion time. When using the MRs for studying the satellite population (e.g., in the
Milky Way, MW), the SS MR should be chosen instead of the average one. Our model
allows one to calculate several population statistics.

3.1 introduction

The statistical description of the galaxy population is a valuable tool for understanding
the properties of galaxies and the way they cluster, as well as the role that mass and en-
vironment play in shaping these properties. Moreover, statistical descriptors such as the
luminosity function, the galaxy stellar mass function (GSMF), and the two-point correla-
tion function (2PCF) has allowed us to probe galaxy evolution and its connection to the
cosmological initial conditions of structure formation [e.g., 162, 252]. Such a connection
is of vital importance in studies devoted to the development of the current ΛCDM cos-
mological paradigm. A key ingredient in these studies is the link between galaxy and
dark matter halo properties. Such a link allows to project the theoretical dark matter
halo population onto the observable galaxies.

Recently, progress towards connecting galaxies and halos has been made through the
development of several techniques for observationally estimating the dark halo masses
of luminous galaxies, such as weak lensing [133, 132, 184], kinematics of satellite galaxies
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[56, 145, 146, 241], and galaxy clusters [249, 247, 103, 250]. However, these direct probes
of halo mass still have large uncertainties.

Consequentially, semi-empirical approaches that link the galaxy and dark matter halo
distributions statistically are of great importance. For example, the Halo Occupation
Distribution (HOD) formalism, which describes the probability for finding N galaxies
in halos of mass Mh, has been used successfully to understand the non-linear relation
between the distribution of galaxies and matter, for instance, at the level of the power
spectra [186, 161, 60, 252], or the two-point correlation functions [25, 60, 259, 1, 208, 258,
229, 228, 223, and references therein].

However, the HOD model provides only information on the total number of galaxies
above some luminosity or stellar mass threshold per halo, and constrains only the halo
mass of the central galaxy. In order to describe the detailed halo occupation and mass
distribution of central and satellite galaxies, Yang, Mo & van den Bosch [245] introduced
the conditional luminosity (or stellar mass) function (CSMF) in the HOD model (see
also e.g., 247, hereafter YMB09, 148, 121, 122, 250). The CSMF is defined as the average
number of galaxies with stellar masses between M∗ ± dM∗/2 occupying a halo of a
given mass Mh. Nevertheless, both the HOD model and the CSMF formalism assume
a parametric description for the satellite population distributions which is constrained
using observations.

In order to avoid an arbitrary parametric description for the satellite population, the
above models can be generalized with the abundance matching technique (hereafter,
AMT; e.g., 216, 115, 58, 187, 234, 16, 217, 57, 75, 148, 19, 102, 20, 170, 159). Under the hy-
pothesis that there exists a one-to-one monotonic relation between stellar mass and halo
plus subhalo mass, matching the total galaxy and halo plus subhalo abundances yields
a global (average) relation between M∗ and Mh. Note that in this simple procedure, the
central-to-halo and satellite-to-subhalo mass relations (hereafter CHMR and SSMR, re-
spectively) are not differentiated. Recently, Simha et al. [193] have found in their cosmo-
logical N-body/hydrodynamics simulations that both mass relations are nearly identical
if the subhalo masses, msub, are defined at their accretion times. Additionally, previous
studies have shown that when the AMT results are applied to the HOD model with msub
defined at the accretion epoch, then the spatial clustering of galaxies is mostly recovered
(e.g.,58, 148). Similar results are expected when msub is defined at the observation time
but a global offset is applied to account for the average effect of subhalo mass loss due
to tidal stripping [216, 234].

On the other hand, there is no reason to assume a priori the SSMR to be identical
to the CHMR (152, 178, hereafter RDA12). For accretion-time msub, such an assumption
implies that the change of the stellar masses of satellites after their accretion will be
such that they would occupy the z = 0 central-to-halo mass relation or, more generally,
that the CHMR almost does not change with time. Recent studies based on large halo-
based group catalogs [e.g., 237] or on the predicted bulge-to-total mass ratio of central
galaxies[254] have shown that once satellite galaxies are accreted, they evolve roughly
as a central galaxy at least for several Gyrs. This could imply that the SSMR with msub
defined at accretion time may not be equal to the z = 0 CHMR. Nevertheless, in the
cosmological simulations of Simha et al. [193], despite the fact that satellites continue to
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grow after accretion, both mass relations end up similar. It is therefore likely that the
growth in mass as well as the change of the CHMR with time are very small.

In the previous Chapter, see also RDA12, we extended the AMT to determine the
CHMR and SSMR separately, using the observed decomposition of the GSMFs into cen-
trals and satellites. We have found that indeed the SSMR is not equal to the CHMR,
and that applying them to the HOD + CSMF model leads to satellite CSMF and corre-
lation functions in excellent agreement with observational data. Actually, when msub is
defined at the accretion time, the z = 0 mass relations become close but not equal (see
Fig. 2 in RDA12). Additionally, RDA12 show that the uncertainty in the AMT related
to the satellite stellar mass growth can be avoided if subhalo masses are defined at the
time of observation rather than at the time of accretion. RDA12 also suggest that the
central-halo and satellite-subhalo mass relations can be determined simultaneously us-
ing the correlation functions as observational input, instead of the GSMF decomposed
into satellites and centrals. This is presumably because matching abundances of satellite
to subhalos is essentially equivalent to matching their corresponding occupational numbers (and
vice versa).

In the present Chapter, we aim to test the above statements. We will also probe how
robust the determinations of the central-to-halo and satellite-to-subhalo mass relations
through our extended AMT and HOD+CSMF combined model are. We will explore
whether these mass relations vary significantly depending on the combinations of ob-
servational data being used; in particular, we will explore whether the uncertainties in
the model parameters that describe the mass relations shrink significantly when more
observational constraints are added.

In Section 3.2 we describe our extended AMT, already presented in the previous
Chapter, combined with the HOD+CSMF model, and present the different combinations
of data to be used to constrain the model parameters. The results of our model for the
different data sets are presented in Section 3.3. In particular, we compare the central-halo
and satellite-subhalo mass relations obtained using different data sets. We also constrain
the intrinsic scatter around the mean central-halo and satellite-subhalo mass relations.
At the end of this section we discuss the halo occupational statistics related to the halo
mass dependence of the satellite CSMF. Section 3.4 is devoted to discuss the robustness
of the obtained mass relations and their model uncertainties, as well as the implications
of extrapolating our obtained SSMR to masses as small as the MW dwarf spheroidal
galaxies. Finally, we present our conclusions in Section 3.5.

We adopt cosmological parameter values close to WMAP 7: ΩΛ = 0.73, ΩM = 0.27, h =
0.70, ns = 0.98 and σ8 = 0.84.

3.2 methodology

In the following we present our model connecting galaxies to halos and subhalos via
their occupational numbers. This is done under the assumption that on average the
central-to-halo and satellite-to-subhalo relations are monotonic. The model relates in
a self-consistent way the GSMF decomposed into centrals and satellites, the ΛCDM
halo/subhalo mass functions, the satellite CSMFs, and the galaxy projected 2PCFs. As a
result, it constrains both the CHMR and the SSMR, and predicts the satellite CSMF and
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several other occupational statistics. Unlike previous models of this kind [e.g., 148], the
CHMR and SSMR are treated separately.

3.2.1 Connecting galaxies to halos and subhalos

The total GSMF is decomposed into satellites and central galaxies,

φg(M∗) = φg,cen(M∗) + φg,sat(M∗), (17)

which after integration yields the mean cumulative number density of galaxies with
stellar masses greater than M∗,

∫ ∞

M∗
φgdM∗′ =

∫ ∞

M∗
φg,cendM∗′ +

∫ ∞

M∗
φg,satdM∗′, (18)

or, in short,

ng(> M∗) = ng,cen(> M∗) + ng,sat(> M∗). (19)

3.2.1.1 Central galaxies

For constructing the central GSMF, we will use the conditional probability that a given
halo of mass Mh is inhabited by a central galaxy with stellar mass between M∗ ± dM∗/2,
Pcen(M∗|Mh)dM∗, and assume this distribution to be log-normal:

Pcen(M∗|Mh)dM∗ =
dM∗√

2πσ2
c M∗ ln(10)

× exp

[
− log2(M∗/M∗,c(Mh))

2σ2
c

]
, (20)

with σc being the intrinsic scatter (width), expressed in dex units, around log M∗,c(Mh),
the mean stellar-to-halo mass relation of central galaxies (CHMR). Formally, Pcen(M∗|Mh)
maps the HMF onto the central GSMF, thereby encoding all the physical processes in-
volved in galaxy formation inside the halos. We parametrize log M∗,c(Mh) using the
functional form proposed by Behroozi, Wechsler & Conroy [20],

log M∗,c(Mh) = log(εc M1,c) + f (log(Mh/M1,c)) − f (0), (21)

where

f (x) = δc
(log(1 + ex))γc

1 + e10−x − log(10αcx + 1). (22)

This function behaves as power law with slope α at masses much smaller than M1,c,
and as a sub-power law with slope γc at larger masses. This parametrization maps the
ΛCDM HMF to a Schechter-like GSMF [183].

The mean number density of central galaxies with stellar masses between M∗ ±
dM∗/2, (i.e., the central GSMF) is given by

φg,cen(M∗)dM∗ = dM∗
∫ ∞

0
Pcen(M∗|Mh)φh(Mh)dMh, (23)
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where φh(Mh) is the distinct HMF. We use the fitted results to the distinct HMF from
cosmological simulations carried out in Tinker et al. [207] as reported in their Appendix
B. Here we define halo masses at the virial radius, i.e. the halo radius where the spherical
overdensity is Δvir times the mean matter density, with Δvir = (18π2 + 82x− 39x2)/Ω(z),
and Ω(z) = ρm(z)/ρcrit and x = Ω(z) − 1 [43].

Having defined Pcen(M∗|Mh), the cumulative probability that a halo of mass Mh hosts
a central galaxy with a stellar mass greater than M∗ is simply∫ ∞

M∗
Pcen(M∗|Mh)dM∗, (24)

which coincides with the definition of the mean occupational number of central galaxies,
〈Nc(> M∗|Mh)〉. Finally, we are able to infer the mean number density of galaxies with
stellar mass greater than M∗, that is, ng,cen(> M∗) =

∫ ∞
0 〈Nc(> M∗|Mh)〉φh(Mh)dMh.

3.2.1.2 Satellite galaxies

Since satellites are expected to reside in subhalos, we will use a similar approach to
centrals, i.e. we will establish a link between the properties of satellite galaxies to those of
the subhalos. However, in this case, one should take into account that (i) before becoming
a satellite they occupy a distinct halo, and (ii) the subhalo mass, msub, can be defined at
the observation time (their present-day mass in our case) or at the accretion time (the
epoch when a distinct halo became a subhalo).

Item (ii) is discussed in RDA12. First, RDA12 show that once the subhalo mass func-
tion is provided for any definition of subhalo mass, the satellite-to-subhalo mass relation,
SSMR, can be constrained consistently with the observed satellite GSMF. Therefore, the
use of one or another is subject to practical criteria. On one hand, with the accretion-
epoch definition, the central and satellite mass relations are almost the same, as observa-
tions (RDA12) and simulations (193) show, and the obtained SSMR for this case is free
of a potential dependence on host halo mass. Besides, the accretion-time msub definition
is less sensitive to the specifics of the halo finding algorithm than the observed-time
definition. On the other hand, the SSMR for the subhalo mass defined at accretion time
is actually a nominal relation, where the abundance matching is carried out for the satel-
lite GSMF at the present epoch but for a subhalo mass function constructed for subhalos
accreted at different previous epochs. The physical interpretation of this nominal relation
requires assumptions about the evolution of galaxies. Instead, when matching present-
day satellite abundances with present-day subhalo abundances, the connection is direct
and no assumptions about evolution are necessary (see Chapter 2 and also RDA12,§§4.1,
for an extensive discussion).

Here, our constraints for the SSMR refer to msub defined at the same epoch that the
observational input is provided for, that is the present time. However, some results will
be presented also for the accretion-time msub.

For the subhalo abundance, given as the subhalo conditional mass function, we use the
results obtained in Boylan-Kolchin et al. [41] based on the Millennium-II simulation. It
is worth noting that the lowest subhalo masses we probe in this work (∼ 1010 − 1011M�,
depending on the GSMF used) are around 3–4 orders of magnitude above the mass res-
olution of this simulation. The present-day subhalo mass is the mass enclosed within a
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truncation radius, which is defined as the radius where the spherically-averaged density
profile starts to flatten or to increase with radius. The fitting formula for the mean cu-
mulative number of subhalos with present-day (observed) mass msub given a host halo
mass Mh is:

〈Nsub(> msub|Mh)〉 = μ0

(
μ

μ1

)a

exp

[
−
(

μ

μcut

)b
]

, (25)

where μ = msub/Mh and {μ0, μ1, μcut, a, b} = {1.15(log Mh−12.25), 0.010, 0.096,−0.935, 1.29}.
Then, the number of subhalos of mass between msub ± dmsub/2 residing in host halos of
mass Mh (the SubhCMF), is simply

Φsub(msub|Mh)dmsub = d〈Nsub(> msub|Mh)〉. (26)

The average cumulative number of subhalos reported in Boylan-Kolchin et al. [41],
Eq. (25), was actually obtained for MW-sized halos. However, as the authors discuss, the
normalization factor, μ0, has been found to vary with Mh, roughly 15% per dex in Mh.
For this reason we introduce the quantity μ0 = 1.15(log Mh−12.25) [see also 90].

The difference in cosmology between the Millennium-II simulation and ours leads
to differences in the resulting abundances of subhalos of roughly a few per cent in
the amplitude of the subhalo mass function (41), and it has little effects on our results
(see RDA12). In any case, we introduce a correction to first order, taking advantage of
the fact that Tinker et al. [207] provides the distinct HMF as a function of the relevant
cosmological parameters. First, the subhalo mass function is calculated from Eqs. (25)
and (26) and the Tinker et al. [207] HMF defined for the Millenium cosmology. Then,
the "Millenium-cosmology" subhalo-to-halo mass function ratio is calculated, T(M) =
φsub,MII(M)/φh,MII(M). This ratio is now used to recalculate the subhalo mass function
for our cosmology as φsub(M) = T(M)φh(M), where φh(M) is the Tinker et al. [207]
HMF for our cosmology. Finally, assuming the same functional form for the subhalo
conditional mass function (Eq. 26), with the same μ0, we obtain the new parameters for
our cosmology from χ2 fitting {μ1, μcut, a, b} = {0.011, 0.096,−0.935, 1.342}. These are
actually very close to what is reported in Boylan-Kolchin et al. [41].

Analogously to centrals, to construct the satellite GSMF we introduce the probabil-
ity, Psat(M∗|msub)dM∗, that a subhalo of mass msub hosts a satellite galaxy with stellar
mass between M∗ ± dM∗/2. In general there is no reason for assuming Pcen(M∗|Mh) =
Psat(M∗|msub)1. We again adopt a log-normal form,

Psat(M∗|msub)dM∗ =
dM∗√

2πσ2
s M∗ ln(10)

× exp

[
− log2(M∗/M∗,s(msub))

2σ2
s

]
, (27)

1 This assumption may actually lead to inconsistent results, even for the accretion-time msub definition, as
shown in RDA12. For msub defined at the present time, tidal stripping affects the masses of the subhalos
producing a systematic offset between the galaxy-halo and satellite-subhalo mass relations, which is some-
times incorporated as an assumed global offset in the AMT analyses [e.g., 216, 234]. For msub defined at
the accretion epoch, the two relations become actually close according to the extended AMT analysis of
RDA12 or to the results of cosmological simulations [193], but there may be still offsets and differences in
scatter because of the uncertain evolution of the satellites after accretion (see Fig. 2 in RDA12 and Figs. 3
and 7 below).
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where σs is the scatter (width) around the logarithm in base 10 of M∗,s(msub), the mean
satellite-subhalo mass relation (SSMR). Similarly to centrals, we parametrize log M∗,s(msub)
using Eq. (21). The reason is because, as observations suggest, the shape of the satellite
GSMF is also a Schechter-like function (e.g., YMB09; 250), which is easily reproduced
from the halo or subhalo mass function using the parametrization given by Eq. (21).

The next step is to link satellites to subhalos. The most natural way to do this is via
their occupational numbers [e.g., 248]. Let Φsat(M∗|Mh) be the CSMF giving the mean
number of satellites of stellar mass M∗ ± M∗/2 residing in a host halo of mass Mh:

Φsat(M∗|Mh)dM∗ = dM∗
∫ ∞

0
Psat(M∗|msub)Φsub(msub|Mh)dmsub. (28)

The similarity with Eq. (23) is not a coincidence, since this is actually the AMT in its
differential form but at the level of CSMFs. Integrating this over stellar mass gives the
mean occupation of satellite galaxies in individual halos:

〈Ns(> M∗|Mh)〉 =
∫ ∞

M∗
Φsat(M∗|Mh)dM∗. (29)

At this point we are in a position to compute the satellite GSMF:

φg,sat(M∗)dM∗ = dM∗
∫ ∞

0
Φsat(M∗|Mh)φh(Mh)dMh, (30)

and in the case that σs is a constant,

φg,sat(M∗)dM∗ = dM∗
∫ ∞

0
Psat(M∗|msub)φsub(msub)dmsub, (31)

which is the matching of satellite galaxies to subhalos. The mean number density of
satellite galaxies with stellar mass greater than M∗ is given by:

ng,sat(> M∗) =
∫ ∞

0
〈Ns(> M∗|Mh)〉φh(Mh)dMh. (32)

Finally, note that the relation between Pcen(M∗|Mh) and Psat(M∗|msub) with the distri-
bution P(M∗|M) used in the standard AMT (e.g., 217, 19) is given by

P(M∗|M) =
φsub(M)
φDM(M)

Psat(M∗|M) +
φh(M)

φDM(M)
Pcen(M∗|M), (33)

where φDM(M) = φsub(M) + φh(M) and M applies either to the distinct halo or subhalo
masses. Then, the above equation relates the mass relation commonly obtained through
the standard AMT with those obtained in this Chapter,

〈log M∗(M)〉 =
φsub(M)
φDM(M)

〈log M∗,s(M)〉 +
φh(M)

φDM(M)
〈log M∗,c(M)〉, (34)

where M∗,s(M) and M∗,c(M) are the SSMR and CHMR, respectively. It is worth noting
that the standard AMT is recovered if both Pcen(M∗|Mh) and Psat(M∗|msub) are assumed
to be δ−functions. Then ng,cen(> M∗) + ng,sat(> M∗) = nsub(> Mh) + nh(> Mh). For a
detailed discussion see RDA12.
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3.2.2 The two-point correlation function

So far, the galaxy-(sub)halo link is based on an extended AMT. However, having mod-
eled the occupational numbers for central and satellite galaxies, we can now introduce
information related to the spatial clustering. For convenience, we will write 〈N〉 ≡
〈N(> M∗|Mh)〉, 〈Nc〉 ≡ 〈Nc(> M∗|Mh)〉 and 〈Ns〉 ≡ 〈Ns(> M∗|Mh)〉.

As usual, the two-point correlation function is decomposed into two parts,

1 + ξgg(r) = [1 + ξ1h
gg(r)] + [1 + ξ2h

gg(r)], (35)

where ξ1h
gg(r) describes pairs within the same halo (one-halo term), while ξ2h

gg(r) describes
pairs occupying different haloes (two-halo term). Notice that the terms 1 + ξ1h

gg(r) and
1 + ξ2h

gg(r) indicates that we are adding the pairs directly to the term 1 + ξgg(r).
To compute the one-halo term, we need to count all galaxy pairs 〈N(N − 1)〉/2 sep-

arated by a distance r ± dr/2 within individual halos of mass Mh, following a pair
distribution λ(r)dr weighted by the abundance of distinct halos, φh, and normalized by
the mean galaxy number density ng,

1 + ξ1h
gg(r) =

1
2πr2n2

g

∫ ∞

0

〈N(N − 1)〉
2

λ(r)φh(Mh)dMh. (36)

The contribution to the mean number of galaxy pairs from central-satellite pairs and
satellite-satellite pairs is given by

〈N(N − 1)〉
2

λ(r)dr = 〈Nc〉〈Ns〉λc,s(r)dr +
〈Ns(Ns − 1)〉

2
λs,s(r)dr. (37)

We assume that central-satellite pairs follow a pair distribution function λc,s(r)dr =
4πρ̃NFW(Mh, r)r2dr, where ρ̃NFW(Mh, r) is the normalized NFW halo density profile.
The satellite-satellite pair distribution, λs,s(r)dr, is then the normalized density profile
convolved with itself, that is, λs,s(r)dr = 4πλNFW(Mh, r)r2dr, where λNFW is the NFW
profile convolved with itself. An analytic expression for λNFW(Mh, r) is given by Sheth
et al. [190]. Both ρ̃NFW and λNFW depend on the halo concentration parameter, cNFW. N-
body numerical simulations show that this parameter weakly anti-correlates with mass,
cNFW = a − b×logMh, though with a large scatter.

Based on results of N-body [115] and hydrodynamic [262] simulations, we will as-
sume that the number of satellite-satellite pairs follow a Poisson distribution with mean
〈Ns〉2 = 〈Ns(Ns − 1)〉. This is also supported by the analysis based on a large catalog of
galaxy groups by Yang, Mo & van den Bosch [246].

For the two-halo term, where r > 2Rh(Mh), all pairs must come from galaxies in
separate halos. We compute the two-halo term from the non-linear matter correlation
function, ξm(r) following [196]:

ξ2h
gg(r) = b2

gζ2(r)ξm(r), (38)

where ζ(r) is the scale dependence of dark matter halo bias [209, see their Eq. B7], and,

bg =
1

ng

∫ ∞

0
b(Mh)〈N(> M∗|Mh)〉φh(Mh)dMh, (39)
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Table 1: Constraints

Constraints:

Data set Satellite GSMF Central GSMF Total GSMF 2PCF χ2

A YMB09 YMB09 — � χ2
φsat

+ χ2
φcen

B � � YMB09 Y12 χ2
φall

+ χ2
wp

C YMB09 YMB09 — Y12 χ2
φsat

+ χ2
φcen

+ χ2
wp

B1 � � BGD08 Y12 χ2
φall

+ χ2
wp,bin

Predictions:

Data set Satellite GSMF Central GSMF Total GSMF 2PCF sat. CSMF

A � � — � �

B � � � � �

C � � � � �

B1 � � � � �

is the galaxy bias with b(Mh) being the halo bias function [191].
Once we have calculated ξgg(r), we relate it to the projected two-point correlation

function (2PCF), wp(rp), by

wp(rp) = 2
∫ ∞

0
ξgg(

√
r2

p + x2)dx. (40)

In this model, Eqs. (20–40) relate the observed 2PCF to the central and satellite occupa-
tional number distributions, which on their own are related to the central and satellite–
(sub)halo mass relations. In consequence, the correlation function is related to the total
GSMF and its decomposition into centrals and satellites. Therefore, since the GSMFs and
PCFs are tightly connected, any combination of these observational constraints is not ex-
pected to provide independent constrains on the mass relations and the occupational
number distributions. However, we expect that the uncertainties in the determinations
of these functions are reduced as more observational constraints are introduced. We will
explore this question in more detail in §§4.1.

3.2.3 Parameters in the model

Ultimately, our model, which in total consists of ten free parameters –if σc, σs, and the
cNFW − Mh relation are fixed– constrains the central and satellite stellar-to-(sub)halo
mass relations. Five parameters are used to model the CHMR (Eq. 21): M1,c, εc, αc,
δc, and γc; and five more to model the SSMR (and therefore the satellite occupational
numbers): m1,s, εs, αs, δs, and γs. Note that the success of our model relies on the abil-
ity to choose a parametric description of the M∗–Mh and M∗–msub relations (Eq. 21),
such that the observed total GSMF and its decomposition into centrals and satellites are
well-reproduced. As discussed previously, the main motivation for the functional forms
chosen here is that they are able to reproduce Schechter-like GSMFs accurately.
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Using a SDSS halo-based group catalog, YMB09 found that the intrinsic scatter around
the CHMR is approximately independent of halo mass and log-normally distributed,
with a mean width of σc(logMh)=0.173 dex. This result is also supported by studies of
satellite-galaxy kinematics [145, 146] and analysis using HOD models [245, 59, 45, 122].
Additionally, AMT results are able to reproduce the GSMF and the spatial clustering
of galaxies simultaneously when using σc =const. (e.g., 148; RDA12; 170). On the other
hand, the scatter σs around the SSMR has not yet been discussed in the literature. In
RDA12 it is assumed to be the same as for central galaxies, giving results consistent
with the observed projected 2PCFs and satellite CSMFs. Having said that, we assume
the intrinsic scatters σc and σs to be independent of halo mass and equal to 0.173 dex.
Nevertheless, as we have discussed, the constraints provided by the GSMF decomposed
into centrals and satellites and the projected 2PCFs are not independent but rather they
are complementary. Therefore, when using all these constraints, it may be possible to
leave σc and/or σs as free parameters. We will perform this exercise in Section 3.3. Fi-
nally, for the relation of the concentration parameter cNFW with mass, we use the fit to
numerical simulations by Muñoz-Cuartas et al. [150].

3.2.4 Observational data sets and strategy

A combination of the total, central, and satellite GSMFs, and the projected 2PCF for
different M∗ bins are necessary to constrain our model. In the following, we will ex-
periment with different combinations of these data. We wish to understand how the
stellar–(sub)halo mass relations vary depending on the combination of observational
data used to constrain them. In particular, we would like to explore whether the uncer-
tainty in the model parameters drops significantly by introducing more observational
constraints.

The different observational data to be used for constraining the model parameters are
as follows:

• The YMB09 GSMF decomposed into central and satellite galaxies. These data were
obtained from a large halo-based galaxy group catalog constructed in Yang et al.
[249] from the SDSS DR4 (they define a central galaxy as the most massive galaxy
in a group with the remaining galaxies being satellites). Both the central and the
satellite GSMF are well-described by Schechter functions, with central galaxies
being the more abundant population at all masses, at least above the low-mass
limit of the sample, log(M∗/M�) = 8.4.

• The total BGD08 GSMF, which is well described by a double Schechter function.
This GSMF is steeper at the low-mass end than the YMB09 GSMF (See also 75).
BGD08 have actually extended the GSMF to a lower limit, log(M∗/M�) = 7.4, by
introducing a surface-brightness completeness correction.

• The projected 2PCFs determined in five M∗ bins by Yang et al. [250, hereafter Y12]
based on the SDSS DR7.

The combinations explored to constrain the model parameters consists of four data
sets:
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Set A consists of the YMB09 central and satellite GSMFs, and is used to constrain the
model parameters of our extended AMT; in this case, the projected 2PCFs in various
mass bins are predicted. Set B consists of the total YMB09 GSMF and the Y12 projected
2PCFs, and this is used to constrain our full combined model; the GSMF decomposed
into centrals and satellites is a prediction. Set B1 is similar to set B but instead of the
YMB09 GSMF, the Baldry, Glazebrook & Driver [16, hereafter BGD08] GSMF is used. Set
C consists of all the available data: the YMB09 GSMF decomposed into centrals/satellites and
the Y12 projected 2PCF determined in different M∗ bins; this data set over-constrains
our full combined model.

We notice that fiber collisions in the SDSS data underlying the group catalog may
introduce an extra source of uncertainty when using the satellite GSMF for constrain-
ing the parameters in sets A and C. However, this seems to be a small effect at most
since YMB09 show that satellite CSMFs with a correction for fiber collisions are only
marginally different. It is also important to highlight that the authors report only the
diagonal elements of the covariance matrix for the projected 2PCFs. We expect that the
full covariance matrix would reduce possible systematic errors and extra uncertainties
in some of the constrained parameters. As discussed in §3.1, the lack of the covariance
matrix seems to affect the results for the abundance of satellite galaxies, however, these
effects are of minor importance.

Table 1 summarizes the different data sets presented above and specifies where the
observables are used as constraints and in where they are predicted by the model.

We use Markov Chain Monte Carlo (MCMC, see Appendix B) methods for sampling
the best fit parameters that maximize the likelihood function L ∝ exp(−χ2/2). Each
MCMC chain consist of 1.5 × 106 elements. See Appendix C for details on the full pro-
cedure.

3.3 the analysis

In our model the central/satellite GSMFs are tightly connected to the projected 2PCFs
in such a way that given one the other can be inferred (§§3.1). This connection passes
through the underlying halo/subhalo statistics and the stellar-to-(sub)halo mass rela-
tions. Therefore, the latter, together with the satellite CSMF, are predictions in all cases
(§§3.2 and §4, respectively).

3.3.1 The GSMFs & projected 2PCFs

Figure 7 shows the model results for the central, satellite, and total GSMFs, while Fig. 8
shows the projected 2PCFs in different mass bins. The observational data are also plotted
in these figures (symbols with error bars). The shaded regions in the figures are the
resulting model-fit standard deviations calculated from the 1.5× 106 MCMC models for
sets B and B1 (the upper and lower panels of Fig. 7, respectively), and for set A (Fig. 8).
These standard deviations are associated with the uncertainties in the model parameters,
and are produced partially by the uncertainties in the observations used to constrain the
model. For a discussion on the model scatter see Sect. 5.1.
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Figure 7: The GSMF for all, central, and satellite galaxies. For clarity, in each panel the central
GSMF was shifted down by 1 dex, and the satellite GSMF by 2 dex. Upper panel: Model
results for sets A (blue long dashed line), B (red dot-short-dashed line), and C (solid
line), compared to the observed YMB09 GSMFs for all (filled circles), central (filled
squares), and satellite galaxies (filled triangles). For sets A and C the curves are just
the best joint fit to the data, while for set B are model predictions. The shaded areas
correspond to the standard deviation of the 1.5 × 106 MCMC models for set B. Lower
panel: Same as upper panel but for the set B1 (green dot-long-dashed line and shaded
areas). The predictions for set B are repeated in this panel (red dot-dashed line). The
corresponding observational total BGD08 GSMF is showed with solid circles and error
bars. The inset shows how the central and the satellite GSMFs add up to give the total
GSMF in the case of set B1.
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Figure 8: Projected 2PCFs in five stellar mass bins corresponding to the data sets A, B, C, and B1
(see Table 1), and to the Y12 observational determinations (crosses with error bars). The
lines corresponding to each set are indicated in the last panel. For set A, the plotted
2PCFs are predictions, while for the rest of the sets are just the joint best fits. The
shaded areas show the standard deviation for the 1.5 × 106 MCMC models.

For set A, which is constrained by the YMB09 satellite and central GSMFs (solid sym-
bols in Fig. 7; red dot-dashed curves are just the joint best fits to data), the model
predicts the projected 2PCFs (red dot-dashed curves with shaded areas in Fig. 8). Both
the amplitude and the shape of the predicted projected 2PCFs are in excellent agree-
ment with observations (crosses with error bars, Y12) at each stellar mass bin plotted in
Fig. 8. This result is not surprising as shown in RDA12. What is interesting, however, is
that the standard deviations are consistent with the errors reported in the observations.
Note that the 1-halo term is the zone with the largest uncertainty, which arises directly
from the uncertainty in the satellite GSMF. For set B, which is constrained by the total
YMB09 GSMF and the Y12 projected 2PCFs (black curves are just the joint best fits to
data), the model predicts the central and satellite GSMFs (black curves and gray shaded
regions in the upper panel of Fig. 7). The model predictions agree very well with obser-
vations, and therefore with set A. These results show that the central/satellite GSMFs and
the 2PCFs are tightly connected in such a way that given one, the other can be inferred through
our model. Observe that in Fig. 7, the standard deviations are consistent with the error
bars both for the satellite and the central GSMF. The former has the largest uncertainties.
Therefore, the lack of information from the projected 2PCF covariance matrix seems to
affect mostly the abundance of satellite galaxies or equivalently, the 1-halo term in the
projected 2PCF.

Set B1 (lower panel of Fig. 7) is similar to set B, but the BGD08 total GSMF is used
as a constraint instead of YMB09 data. Therefore, the model total GSMF and 2PCFs
(green dot-long-dashed curves in Figs. 7 and 8, respectively) are just the joint best fits
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Table 2: Fit parameters

Central galaxies:

Data set log M1,c stdev log εc stdev αc stdev δc stdev γc stdev

A 11.477 0.073 -1.582 0.050 2.252 0.461 3.558 0.206 0.485 0.044

B 11.480 0.066 -1.580 0.038 1.982 0.338 3.530 0.198 0.491 0.040

C 11.493 0.068 -1.600 0.047 2.138 0.417 3.572 0.202 0.487 0.043

B1 11.676 0.056 -1.475 0.027 2.056 0.110 2.454 0.183 0.514 0.047

Satellite galaxies:

Data set log m1,s stdev log εs stdev αs stdev δs stdev γs stdev

A 10.761 0.069 -0.992 0.063 2.469 0.710 3.616 0.260 0.435 0.077

B 10.773 0.088 -0.951 0.052 2.670 0.792 3.612 0.255 0.437 0.075

C 10.775 0.064 -0.957 0.052 2.474 0.657 3.586 0.260 0.423 0.071

B1 11.017 0.90 -0.709 0.044 2.322 0.191 1.667 0.225 0.993 0.133

to the data, but the central and satellite GSMFs are predicted (green dot-long-dashed
curves with gray shaded areas in the lower panel of Fig. 7). Note that the BGD08 GSMF
extends to lower stellar masses. The resulting slope of the satellite GSMF at the faint
end (log(M∗/M�) <∼ 9.6), is α ∼ −1.5, which is steeper than set B, α ∼ −1.2, and the
bump around M∗∼ 8 × 1010M� in the central GSMF is more pronounced. A steeper
total GSMF implies a major contribution of satellite galaxies to the total GSMF at low
masses.

Finally, for set C, neither the central/satellite GSMFs nor the projected 2PCFs at dif-
ferent mass bins are predicted but rather employed to constrain the model parameters.
Therefore, the blue long-dashed curves shown for set C in Figs. 7 and 8 are just the joint
best fits to the observations; they are not predictions. For this set, the predictions are the
constraints on the stellar-to-(sub)halo mass relations. The question now is how different
can these relations and their uncertainties be from those inferred using the other data
sets.

3.3.2 Mass relations

In the upper panels of Fig. 9 we plot the central, satellite, and average stellar-to-(sub)halo
mass ratios (stellar mass fractions, f∗) as a function of the (sub)halo mass obtained for
each data set listed in Table 1. The stellar mass fractions are obtained directly from the
corresponding mass relations. Table 6.2.2 lists the best fit MCMC model parameters of
these relations for each of the sets. We use Eq. (34) to compute the average f∗. Recall
that the average relation, 〈log M∗(M)〉, is conceptually what is commonly obtained with
the standard AMT. However, in the latter case it is not possible to distinguish the mass
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Figure 9: Upper panels: From left to right, the constrained stellar mass fractions of central and
satellites, and of the number-density average (Eq. 34) of both. The lines corresponding
to each set are indicated inside the panels. Short-dashed curves in the second and
third panels are the constrained mass relations when the subhalo mass is defined at
its accretion time. The systematic uncertainty due to stellar mass determination (0.25
dex) is shown with the light-gray shaded areas. Gray light dashed areas indicate the
MCMC model-fit standard deviation in the case of set C. Lower panels: The MCMC
model-fit standard deviations for each data set. The short dashed lines in the right
and middle lower panels are the intrinsic scatters, σc and σs, constrained for the set C
assuming them to be constant. The color shaded area show the standard deviations of
these values.

relations for centrals and satellites, and it is common practice to assume them equal. As
shown in RDA12, this assumption is not correct.

In general, we find that the shape of the stellar fractions for both the centrals/ha-
los and satellites/subhalos rises steeply at low masses, reaching a maximum and then
declines roughly as a power law towards higher masses. We do not find significant dif-
ferences among the stellar mass fractions obtained for sets A, B and C. Observe how
all of them lie well within the 1σ uncertainty which is dominated by the systematic un-
certainty in the stellar mass determination (∼ 0.25 dex, light shaded area in Fig. 9; see
19). All these relations even lie well within the standard deviation of the MCMC models,
shown as a dark gray shaded area in set C (the others being very similar). In the lower
panels of Fig. 9 we plot the the standard deviations as a function of (sub)halo mass for
each set, which we discuss in detail in §5.1.

We arrive at two important implications: (1) the very small standard deviations ob-
tained for the stellar-to-(sub)halo mass relations implies that the assumption that on
average there is a monotonic relation between galaxy and (sub)halo masses is consistent
with the data; (2) the result that set A and set B lead to very similar mass relations
confirms that matching abundances is equivalent to matching occupational numbers and vice
versa, as suggested in RDA12. Therefore, constraining the model parameters with all the
observational information, as in set C, should lead again to the same stellar-to-(sub)halo
mass relations as in sets A and B. Indeed, this is what we obtain.
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The central f∗–Mh relations for sets A–C at the low (high) mass end scale roughly
as f∗ ∝ M1.5

h ( f∗ ∝ M−0.7
h ). The average f∗–Mh relations are such that they lie above but

closer to centrals, simply because they are the dominant population. Instead, the satellite
f∗–msub relations are quite different to centrals, both in the amplitude and in the location
of the maximum of f∗. The maximum shifts from log(Mh/M�)≈ 11.9 to log(msub/M�)≈
11.2. These differences are basically due to the fact that subhalos lose mass due to tidal
striping (on average 60–65% of the mass since accretion for subhalos hosting satellites
less massive than ∼ 2 × 1011 M�; RDA12; see also 216, 234, 230). However, even when
the subhalo mass at accretion time is used, some differences remain, showing that the
assumptions about evolution made in order to construct the nominal SSMR for this case
are roughly but not exactly obeyed.

In Fig. 9 we plot the model results for subhalo mass defined at accretion time for the
set C (black dashed curve)2. The f∗–msub (or SSMR) relation now lies close to the central
f∗–Mh (or CHMR) relation. Recall that for connecting the present-day observed satel-
lite M∗ to (sub)halo masses at their different accretion epochs, one implicitly assumes
that the satellite stellar masses change in a way that at z = 0 the SSMR is equal to the
CHMR. Our ignorance about how the satellite masses evolve introduces an extra uncer-
tainty in the determination of the SSMR when the subhalo mass at the accretion time is
used (Y12; RDA12). In any case, as extensively discussed in RDA12, for one or another
definition of subhalo mass, there is a unique but different average SSMR for which the
satellite GSMF and CSMF, and the correlation functions are in agreement with observa-
tions. Nevertheless, when the SSMR is assumed to be equal to the CHMR, the predicted
satellite GSMF and CSMF, and correlation functions depart from observations. They
do so more strongly for the observation-time definition, mobs, and less strongly for the
accretion-time definition, macc(see Figs. 1, 3, and 4 in RDA12).

The mass relations for set B1 (green dot-dashed curves) are somewhat different to
those of set B: at high masses the central (and the average) f∗–Mh relation is steeper
than in set B, and at low masses the satellite f∗–msub relation is shallower. Recall that the
massive-end of the total BGD08 GSMF (set B1) decays faster than in the YMB09 GSMF
(set B; see Fig. 7). Consequently, at a fixed Mh the CHMR for set B1 is systematically
lower than for set B. At low masses, the GSMF in set B1 is steeper than in set B, causing
this a steeper satellite GSMF and therefore a shallower decay of M∗ as msub decreases as
compared to set B.

3.3.3 Constraining the intrinsic scatter of the stellar-to-(sub)halo mass relations

The results presented above are obtained under the assumption of lognormal intrinsic
scatter around the CHMR and the SSMR with constant 1σ widths of 0.173 dex for both
relations. Our model is over-constrained by observations in set C. Therefore, we may
leave one or both of the intrinsic scatters as free parameters, but keep the assumption
that they are constant, that is, independent of (sub)halo mass.

The results of leaving only one of σc or σs free are very similar to leaving both free at
the same time. The MCMC algorithm in the latter case constrains the intrinsic scatters

2 The SubhCMF for subhalos defined at the accretion time given by Boylan-Kolchin et al. [41, see also Giocoli,
Tormen & van den Bosch [94]] has been used (see RDA12 for details).
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Figure 10: Central mass probability distributions and satellite CSMFs, Pcen and Φsat, in eight
halo mass bins for set C (dark red and dark gray shaded areas, respectively) and set B1
(orange and light gray shaded areas, respectively). The shaded areas correspond to the
standard deviation of the MCMC model-fits for each set, which for Pcen are actually
very thin. The observational inferences by YMB09 are plotted with crosses forPcen, and
with filled squares for the satellite CSMFs. Their halo masses were converted to match
our virial definition.
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to be σc = 0.168 ± 0.051 dex and σs = 0.172 ± 0.057 dex. These values are surprisingly
close to those we have assumed. These values are plotted in the lower panels of Fig. 9.
The constrained mass relation parameters also remain almost the same. So, under the
assumption of lognormal distributed and constant intrinsic scatters, our results confirm
previously estimated values of the scatter for central galaxies, and predict similar values
for the scatter around the mass relation of satellite galaxies.

3.3.4 The conditional stellar mass functions

In Fig. 10, we plot the resulting central galaxy mass probability distributions, Pcen, and
the satellite CSMFs, Φsat, in eight halo mass bins both for set C (dark red and dark
gray areas, respectively) and set B1(orange and light gray areas, respectively). Because
the predictions for sets A and B are very similar to those of set C we do not plot them
separately. In fact, what is plotted in Fig. 10 are the standard deviations (scatters) of the
MCMC models for each set, which for Pcen are actually very small. Pcen is the probability
distribution for a halo of a fixed mass to host a central galaxy of a given stellar mass (eq.
20), while Φsat refers to the mean number of satellite galaxies residing in a host halo of
a fixed mass (eq. 28). We compute Pcen averaged in each [Mh1 , Mh2 ] bin as:

〈Pcen〉 =

∫ Mh2
Mh1

Pcen(M∗|Mh)φh(Mh)dMh∫ Mh2
Mh1

φh(Mh)dMh

, (41)

while for satellites, the averaged CSMF is given by:

〈Φsat〉 =

∫ Mh2
Mh1

Φsat(M∗|Mh)φh(Mh)dMh∫ Mh2
Mh1

φh(Mh)dMh

. (42)

As seen in Fig. 10, the smaller the halo mass, the larger is the stellar mass gap between
the most common central galaxy and the most abundant satellites. In other words, on
average, as smaller is the halo, the larger is the ratio of the central galaxy mass to the
masses of the satellite population.

In Fig. 10 we also show the corresponding observational results by YMB09 for centrals
(crosses) and satellites (filled squares). The agreement between the model predictions for
set C and the observational data is remarkable. However, some marginal differences are
observed. As the halo mass decreases, the width of the central probability distribution is
systematically somewhat broader, and therefore its amplitude is lower compared with
the YMB09 data. This could be due to the assumption that the intrinsic scatter σc is
independent of Mh. There are some pieces of evidence that σc slightly depends on Mh
as discussed in Yang, Mo & van den Bosch [247, see also 263].

Regarding the satellite CSMFs, the abundance of very massive satellites is slightly,
but systematically, overestimated for Mh

<∼ 1013M�. This was noted already in RDA12,
which suggest that a possible reason is due to the assumption that the intrinsic scatter σs

is independent of Mh. We have explored this possibility, and found that as Mh decreases,
the scatter σs does tend to zero in order to reproduce the observations. Such a behavior
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is not expected at all. Another possibility, and the most likely, is that the YMB09 satellite
GSMF is underestimated (e.g., 194; RDA12), although the results from set B indicate that
the obtained satellite GSMF is consistent with observations. In any case, the excess of
massive satellites in low mass halos does not contribute significantly to the total mean
density of galaxies.

For set B1, we observe that Pcen is shifted to slightly lower values of M∗ as the halo
mass increases when comparing with observations (and set C). This is a consequence of
the observed trends of the M∗–Mh relations between set B1 and C (see Fig. 9), and it is
ultimately related to the fact that the high-mass end the BGD08 GSMF decreases faster
than the YMB09 GSMF. On the other hand, the satellite CSMFs for set B1 are slightly
steeper at low stellar masses to those of set C. This is a consequence of the BGD08 GSMF
being steeper than that of YMB09 at low masses. Note that the uncertainty in the CSMFs
for set B1 dramatically increases at the lowest masses. This is because at these masses
there is no information on the 2PCF, so that the total GSMF alone poorly constraints the
CSMFs. Set B1 also overestimates the abundance of massive satellites in low mass halos.

3.4 discussion

3.4.1 Robustness and model uncertainties of the stellar-to-(sub)halo mass relations

The main result from Section 3.3 is that both the inferred central-halo and satellite-
subhalo mass relations do not change for all the combinations of data sets we explored.
In other words, these relations seem to be determined robustly, no matter whether only
the central/satellite GSMFs (set A) or whether only the total GSMF and the 2PCFs (set
B) or whether all of these data (set C) are used. The results confirm what is expected:
the GSMFs of central and satellites galaxies are well connected with the 2PCFs and both
are part of a general statistical description of the galaxy population. However, it could
be that the uncertainties around the mass relations depend on the set of observables
used. In particular, we expect that the uncertainties should be smaller when all the
observational data are used to constrain the model.

From the results of the MCMC search over 1.5 × 106 models we can identify at each
(sub)halo mass the average M∗ and its standard deviation. The average stellar masses
for a given (sub)halo mass are indistinguishable to those given by the average stellar-
to-(sub)halo mass relations constructed with the best fit parameters obtained with the
MCMC method. The standard deviations can be interpreted then as the 1σ model-fit
uncertainty around these relations [see also 146]. This uncertainty is due to (i) the inabil-
ity of the proposed stellar-to-(sub)halo mass relations (Eqs. 21) to reproduce jointly the
observational data, and (ii) the observational errors in these data. The dark gray areas
in Figs. 9 and 11 correspond to the standard deviations for the set C; the much wider
light gray areas show the scatter of 0.25 dex attributed to the systematic uncertainty in
the determination of the stellar mass [19].

How do the model-fit uncertainties in the stellar-to-(sub)halo mass relations for set
C compare with the other sets? To our surprise, the uncertainties in sets A, B, and B1
are as small as for set C. Actually, the uncertainties are smaller than the intrinsic scatter
between galaxy and halo mass at least for halo masses larger than ∼ 1011 M�. The
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Figure 11: Central-halo, satellite-subhalo, and average mass relations for sets C (solid line) and
B1 (green dot-dashed line). Short-dashed curves in the medium and right panels are
the mass relations when subhalo mass is defined at its accretion time. The systematic
uncertainty due to stellar mass determinations is show with the light-gray shaded area.
Gray dashed area indicates the standard deviation of the MCMC model fits in for set
C. Filled circles with error bars correspond to the mass relation of central galaxies
from the analysis of staked weak-lensing by Mandelbaum et al. [133]. Orange dashed
area indicates the 68% of confidence in the mass relation of central galaxies using
the kinematics of satellites [146]. Abundance matching results reported in Behroozi,
Wechsler & Conroy [20], and Guo et al. [102] are plotted with the blue dot-short-
dashed and the red long-dashed lines. For comparison we have plotted with the cyan
solid lines in the middle and right panels the central-halo mass relations for set C.
Observe how in the middle panel the SSMR for the subhalo mass defined at the
accretion time lies above the CHMR by a factor of ∼ 3, while in the right panel the
nominal average mass relation at the accretion time is a factor of ∼ 1.25 higher than
the CHMR.
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lower panels of Fig. 9 show the MCMC standard deviations as a function of (sub)halo
mass for all the sets studied here. If any, the major differences are for the uncertainties
in the SSMR: they become large at large subhalo masses and are larger for set A (and
B1) and smaller for set C. At the smallest (sub)halo masses the model uncertainties for
all the sets increase significantly (but yet below the systematic uncertainty of 0.25 dex).
This is related to the larger observational errors at smaller stellar masses both for the
GSMFs, in particular the one for satellites, and the projected 2PCFs. The small model-
fit uncertainties obtained in the determination of the central-halo and satellite-subhalo
mass relations through our model again lead us to conclude that these determinations
are robust.

How do the stellar-to-(sub)halo mass relations compare with previous works? The
most direct (but highly uncertain) methods to infer the halo masses of galaxies for large
samples of objects are through weak lensing and satellite kinematics. In the left panel
of Fig. 11, we reproduce the results for central galaxies of 〈log(M∗)〉 as a function of Mh
by using stacked satellite kinematics [146, Dr. S. More kindly provided us the data in
electronic form] and of 〈Mh〉 as a function of M∗ by using stacked weak lensing analysis3

[133]. The latter authors inferred the CHMR separated into late- and early-type galaxies,
〈Mh〉l(M∗) and 〈Mh〉e(M∗), respectively. We compute the average 〈Mh〉(M∗) relation for
all central galaxies as

〈Mh〉(M∗) = fl(M∗)〈Mh〉l(M∗) + fe(M∗)〈Mh〉e(M∗), (43)

where fl(M∗) and fe(M∗) are the fraction of late- and early-type galaxies of stellar
masses M∗ in the sample. Note also that for the More et al. [146] and Mandelbaum
et al. [133] results, small corrections in Mh were applied for consistency to our defini-
tion of virial mass, as well as in M∗ to be consistent with the Chabrier [48] IMF adopted
here.

As seen in Fig. 11, the Mandelbaum et al. [133], weak-lensing determinations are
consistent with our CHMR. However if one takes into account that their dependence
of 〈Mh〉 on M∗ would be flatter at high masses in case it is deduced from the inverse
relation (see footnote), then our determination for set C would be steeper. Instead, the
results for set B1 would probably be in better agreement with Mandelbaum et al. [133]
at high masses. The More et al. [146] satellite-kinematics determinations are consistent
with our results for masses larger than Mh ∼ 4 × 1012 M�, but at smaller masses their
amplitude can be 2-3 times lower. This discrepancy between satellite kinematics and
other methods has been noted previously (e.g., 146, 194, 177).

In the right panels of Fig. 11 we compare the average stellar-to-halo mass relation
(Eq. 34) obtained for set C with those of Guo et al. [102] (red long-dashed curve) and
by Behroozi, Wechsler & Conroy [20] (blue dot-dashed curve). These authors obtained
their relations by matching the abundances of all galaxies to abundances of halos plus
subhalos. In general, our average mass relation is consistent with these previous global
AMT results, though a direct comparison might not be fair, because we do not assume

3 As widely discussed in Behroozi, Conroy & Wechsler [19], due to the scatter, the inferences are slightly
different depending on whether M∗ is constrained as a function of Mh or viceversa. As these authors show,
the main difference is at the high-mass end, in the direction that the CHMR being flatter if is inferred as a
function of Mh.
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that the mass relations for centrals–halos and satellites–subhalos are the same. Also, the
definition of subhalo mass used here (at the time of observation) is different to the one
used in the above papers, who define it at the time of accretion. Hence, we also plot
our SSMR for the subhalo mass defined at the accretion time in Fig. 11 (dashed curve
in the central panel, set C) and the corresponding average mass relation (dashed curve
in the right panel). The nominal SSMR is close but not equal to the present-day CHMR.
We found that the nominal SSMR lies above the CHMR at most by a factor of ∼ 3,
while the nominal average mass relation is a factor of ∼ 1.25 higher than the CHMR. To
establish the former relation, one should know how the CHMR (at the accretion time,
the satellite is still a central galaxy and the subhalo is a distinct halo) changes with
time, and how the satellite mass evolved since accretion. Assuming that the CHMR is
the same at all epochs leads to the nominal SSMR to be equal to the CHMR (RDA12).
The fact that we find both relations to be close (but not equal) implies then that the
galaxy–halo connection changes only little with time. This seems to be also the situation
in cosmological simulations (193; 71).

For set B1, which uses the BGD08 GSMF, the CHMR changes slightly its slope at
low masses, while the SSMR becomes systematically shallower than in the case of set C.
This is because the BGD08 GSMF becomes steeper at lower masses. However, when the
density-weighted average is calculated, the slope change seen for the centrals is almost
smeared out. For the Behroozi, Wechsler & Conroy [20] total (average) mass relation the
slope change is present, presumably because the contribution of the satellite-subhalo
mass relation is not taken into account. On the other hand, if we use the subhalo mass
at the accretion time instead that at the observation time, then the smearing-out of the
slope change is less evident.

3.4.2 The satellite-subhalo mass relation at the low-mass end

An interesting question is how to extend the GSMFs and stellar-to-(sub)halo mass rela-
tions towards low masses, since most potential issues with the ΛCDM scenario are hap-
pening at small scales. As recently discussed by Boylan-Kolchin, Bullock & Kaplinghat
[38], the ΛCDM scenario can be compatible with the overall abundance of MW satel-
lites, but it predicts subhalos that are too massive (or too concentrated) compared to
dynamical observations of the brightest dwarf spheroidal (dSph) satellites. This can be
visualized using the dSph stellar mass vs. subhalo maximum circular velocity (or mass)
diagram, comparing the observations for the bright MW dSphs with extrapolations of
total (centrals+satellites) abundance matching results to low masses. For a given M∗, the
MW dSphs have subhalo circular velocities (or masses) much larger (by ∼ 1.5− 2 dex in
mass) than the extrapolated AMT results.

Our model has the advantage that it allows to constrain the CHMR and the SSMR
separately (Fig. 9). The extrapolation of the latter only is what actually should be used
for comparison with the MW satellites. RDA12 show that if the faint-end extrapolation
of the GSMF is as steep as −1.6 (BGD08; 75) and is completely dominated by satellite
galaxies, then the ΛCDM subhalo masses are consistent with the subhalo masses of the
observed MW dSphs. Here, masses are defined at the estimated tidal radii of the dwarf
satellites (see Fig. 2 in RDA12 and references therein). By using our model, we are able
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to decompose the BGD08 GSMF into satellites and centrals (set B1; Fig. 7). The faint-end
slope of the satellite GSMF (down to ∼ 2.5 × 107 M�) indeed resembles the total mass
function, but satellites do not dominate over centrals. Therefore, the inferred SSMR gives still
too large subhalo masses (by 0.3–0.4 dex) as compared with the tidal masses of the MW
dwarfs. We should note that in set B1, the Y12 projected 2PCFs are used, and for stellar
masses smaller than reported in Y12 (∼ 1 × 109 M�), no projected 2PCF constraints are
applied. There are some hints that the projected 2PCFs of galaxies at small distances
(one-halo term, where satellites dominate) are steeper than those measured in YMB09,
especially for the smallest galaxies [124]. If this is the case, then we can easily show that
the satellites become more abundant in the GSMF and the SSMR is flatter at low masses,
leading to a better agreement with the inferred tidal (subhalo) masses for the MW dSph
satellites.

3.4.3 Interpreting the bump of the GSMF

Several interpretations of the shape of the total GSMF have been offered in the literature
[16, 75, 124, 34, 165]. In this section we will focus on interpreting the shape of the GSMF
using arguments based on the occupation statistics of galaxies within halos. Looking
at Fig. 10 (see also Fig. 12 in Chapter 4), it becomes apparent that as the halo mass
increases, the likelihood of finding at least one satellite with a stellar mass similar to
that of the central galaxy increases rapidly. Also, the stellar mass range covered by
the satellite population is narrower and closer to that of the central as the halo mass
increases. Assuming that these features of the satellite population mass distribution
are robust and have been in place since the assembly of the central, it follows that the
central’s probability of growing by accreting large (compared to itself) satellites was
largest in high-mass halos that today occupy the bump and high-mass end of the mass
function.

3.5 conclusions

An statistical model that combines the AMT with the HOD and CSMF formalisms is
presented. The model allows to constrain the central-halo and satellite-subhalo mass
relations (CHMR and SSMR) separately, as well as the satellite CSMFs inside the ha-
los. The ΛCDM halo mass function and subhalo conditional mass functions were used
as input. From the observational point of view, the model works with the total GSMF
and its decomposition into centrals and satellites, and the 2PCFs. Therefore, the ob-
servations used to constrain the model can be different combinations of data: either the
central/satellite GSMFs (from YMB09; set A), or the total GSMF (from YMB09 or BGD08)
and the Y12 projected 2PCFs (sets B and B1), or all the data, i.e., the GSMFs of centrals
and satellites and the projected 2PCFs (set C). Our aim was to explore how sensitive are
the determinations of the mass relations and their uncertainties to the different data set
used to constrain the model, as well as to test the overall consistency of the observations
with the ΛCDM halo/subhalo mass functions. Related to the latter, we explored model
predictions regarding some satellite number distributions. The main conclusions are:
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• The constrained parameters of the CHMR and SSMR are almost identical for all sets
of data, showing that these relations (and therefore, also the satellite CSMFs) are robust
with respect to different combinations of the data used to constrain the model. To our
surprise, even the model-fit uncertainties in the constrained stellar-to-(sub)halo mass
relations are very similar for the different combinations of data sets, including the one
where all the data are used (set C). These uncertainties are smaller than the assumed
intrinsic scatters (0.173 dex) for Mh

>∼ 1011 M�, and of that order for smaller masses
where the observational determinations of the GSMFs and projected 2PCFs have larger
errors.
• For set A, the projected 2PCFs are predictions, while for set B (and B1), the GSMF

decomposition into centrals and satellites are predictions. In each case, these predictions
agree very well with the observations. This shows that matching central/satellite and
(sub)halo abundances (set A) is equivalent to matching central/satellite and (sub)halo
occupational numbers, in which case the 2PCFs are necessary (sets B, B1), and vice versa.
In both cases, the CHMR and SSMR are intermediate relations. The key novelty in our
model is that both relations are constrained separately instead of being assumed equal.
Our results show also that the satellite/central GSMF is tightly connected to the spatial
clustering of the population, both at the level of the one- and two-halo terms, as well as
with the satellite mass functions inside the halos.

• For set C, neither the projected 2PCFs nor the GSMF decomposition are predictions,
instead observational determinations of these functions are used to constrain the model.
This allows us to leave the widths of the intrinsic scatter around the CHMR and SSMR
(assumed independent of mass and log-normally distributed) as free parameters. We ob-
tain σc = 0.168 ± 0.051 dex and σs = 0.172 ± 0.057 dex. For centrals, our result confirms
previous estimates, and for satellites we find that the intrinsic scatter is almost the same
as for centrals.
• The satellite-subhalo mass relation, where subhalo masses are defined at the obser-

vation time, is not equal to the central-halo relation. For the former, the stellar mass
scales as Mh

2.5 at the low mass-end and as Mh
1.7 at the high-mass end (set C), while

for the latter, these scalings go as M∗ ∝ Mh
2.9 and Mh

1.7, respectively. This difference
is mainly due to the fact that subhalos lose mass (60-65%) due to tidal striping. When
msub is defined at the accretion time, the nominal SSMR is actually close to the CHMR
but again not equal. The SSMR lies above the CHMR at most by a factor of ∼ 3, while
the average mass relation is a factor of ∼ 1.25 higher than the CHMR, implying that the
CHMR likely changes little with time.
• In set B1, we use the BGD08 total GSMF, which extends to masses as lower as

log(M∗/M�)=7.4. This function is steeper at the low-M∗ end and decays faster at the
highest masses than the YMB09 GSMF. Therefore, the CHMR and SSMR are slightly
different to those in set B. In particular, the lowest masses show a slight flattening as
compared to results of set B. For the satellites, if extrapolated to even lower masses,
this implies smaller subhalo masses for a given stellar mass than usually obtained from
the standard AMT. This is diminishing the potential problem of too massive ΛCDM
subhalos for the bright MW dSphs.

Our model allows us to infer in a natural way any statistical distribution for the
central and satellite galaxy populations, for example the satellite CSMF and the mass
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distributions and probabilities of particular subpopulations of satellites as a function of
halo mass. The obtained satellite CSMFs in different halo mass bins agree very well with
those inferred from the SDSS halo-based galaxy groups in YMB09.

We conclude that the semi-empirical results we obtain here, both for the central-halo
and satellite-subhalo mass relations and their intrinsic scatters, are quite robust and
imply full consistency of the ΛCDM halo and subhalo populations with several statis-
tical distributions of the observed populations of central and satellite galaxies down to
M∗ ∼ 109 M�.
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Part III

A P P L I C AT I O N S F O R S O M E S AT E L L I T E O C C U PAT I O N A L
D I S T R I B U T I O N S AT z ∼ 0

En esta Parte III, exploramos diversas distribuciones ocupacionales y probabilísticas
de las galaxias en función de su masa de halo, Mh. En el Capítulo 4 se infiere la
distribución de masa del satélite más masivo como función de Mh, utilizando las
relaciones M∗-Mh y m∗-msub previamente constreñidas en el Capítulo 3. Al com-
parar la distribución de masa del satélite más masivo con aquella de las galaxias
centrales, mostraremos que las galaxias centrales son galaxias estadísticamente es-
peciales en el halo, es decir no son una realización estadística de la muestra de
miembros del grupo/cúmulo, por lo menos hasta halos tan masivos como 1015 M�.
Mientras menor la masa, mayor es la brecha entre las masas de la central y el satélite
más masivo. En el Capítulo 5 se construye un catalogo sintético en base al modelo
presentado en los Capítulos 2 y 3, con el fin de estudiar una serie de distribuciones
de satélites (más masivos que Fornax, m∗ ∼ 4 × 107M�) alrededor de galaxias tipo
Vía Láctea (VL). Nuestro catálogo se puede entender como una prolongación de
las observaciones actuales que permite estudiar estadísticamente las poblaciones
satelitales de decenas de miles de galaxias tipo VL hasta masas tan pequeñas como
Fornax. Se muestra que la VL no es un sistema común al tener dos satélites tan
masivos como las Nubes de Magallanes, pero tampoco es un caso atípico; la fun-
ción de masa de sus satélites está dentro del 1-σ del promedio. Por la configuración
satelital de la VL, su masa de halo estadísticamente no es menor a ∼ 1.4 × 1012 M�
al nivel de 1-σ. Nuestros resultados sugieren que en la cosmología ΛCDM no existe
un problema de satélites masivos perdidos a nivel de abundancias. Sin embargo,
a nivel de dínamica interna, los satélites sumidos en subhalos de materia oscura
fría, a partir de m∗ ∼ 108 M� y para masas menores, parecen no estar en buen
acuerdo (demasiado concentrados) con las pocas inferencias que hay de velocidad
circular al máximo de galaxias enanas, representando un potencial problema para
la cosmología ΛCDM o para nuestro entendimiento de la física de galaxias enanas
satélites.

El Capítulo 4 corresponde a una parte del artículo publicado: "The Galaxy-Halo/Subhalo
Connection: Mass Relations and Implications for Some Satellite Occupational Distribu-
tions", Rodríguez-Puebla, Avila-Reese & Drory 2013, ApJ 767, 92. El Capítulo 5 corre-
sponde al artículo en prensa: "The Massive Satellite Population of Milky-Way Sized
Galaxies", Rodríguez-Puebla Avila-Reese & Drory 2013, ApJ, en prensa.
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P R O B A B I L I T Y D I S T R I B U T I O N S O F S AT E L L I T E S A S A F U N C T I O N
O F H A L O M A S S

Part of this Chapter was published as: Rodríguez-Puebla A.; Avila-Reese V.; Drory N., 2013, ApJ
767, 92.

ABSTRACT
Using the central stellar-to-halo mass relations and the satellite stellar-to-halo mass

relations constrained in Chapter 3, we predict the mass distribution both for the most
massive satellite and the central galaxy as a function of halo mass. Additionally, we
also predict the probabilities of having N satellites in the mass range of the Magellanic-
Clouds (MCs) for a range of possible MW-halo masses. We find that the central galaxy
M∗ is not on average within the mass distribution of the most-massive satellite, even for
cluster-sized halos, i.e., centrals are not a mere realization of the high-end of the satellite
mass function; however for > 3 × 1013 M� halos, ∼ 15% of centrals could be. We also
find that the probabilities of Milky Way-sized halos of having N MCs-sized satellites
agree well with observational measures; for a halo mass of 2 × 1012 M�, the probability
to have 2 MCs is 5.4%, but if we exclude those systems with satellites larger than the
MCs, then the probability decreases to < 2.2%.

4.1 introduction

The statistical model for linking galaxies to (sub)halos presented in Chapter 3, allows
to infer in a natural way any statistical distribution for the central and satellite galaxy
populations. As an example, in that Chapter we have presented the predicted central
and satellite conditional stellar mass functions, CSMF, as a function of halo mass. The
obtained central and satellite CSMFs in different halo mass bins agree very well with
those inferred from the SDSS halo-based galaxy groups in YMB09. The above result give
the confidence to explore more and different mass distributions and probabilities of
particular subpopulations of satellite galaxies as a function of halo mass. The main aim
of this Chapter is to use the mass relations of Chapter 3 and explore their implications
for some satellite occupational distributions. In particular, we will explor two interesting
statistics related to well-posed astronomical problems. The first one, is a longstanding
question and refers whether the brightest cluster galaxies are a mere statistical extreme
of the luminosity function in clusters or they form a different class [e.g., 213]. To study
this problem, we will compute the distribution of the stellar mass gap between the
central and the most-massive satellite galaxy as a function of halo mass. The second one,
refers to the probabilities for MW-like halos to have NMC MC-sized satellites.
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Figure 12: Stellar mass distributions of centrals (solid line) and the most massive satellites
(dashed line) in seven different host halo masses. Shaded areas indicate the 68% of the
corresponding distributions. The central galaxy masses on average are not part of the
1σ most-massive satellite distributions. For masses above ∼ 3× 1013 M�, only approx-
imately 15% of both distributions overlap. For smaller masses, this fraction rapidly
decreases down to 3% at Mh = 1012 M�. The fraction of cases with overlapping dis-
tributions are expected to correspond to those cases where the central galaxy mass is
a statistical realization of the most-massive satellite distribution.

4.2 probability distributions of satellites

Once we have constrained the distribution of satellite galaxies in Chapter 3 by means of
the central stellar-to-halo mass relations and the satellite stellar-to-halo mass relations,
we can now predict the probabilities of having N satellites of a fixed M∗ or in a particular
M∗ range as a function of Mh. It is assumed in our model that the second moment of
the satellite distribution follows a Poissonian distribution (see section 3.2.2); the second
moment is necessary to estimate chance probabilities for any given number of satellites.
The probability of finding N satellites with stellar mass above M∗ in a host halo of mass
Mh is then given by:

P(N) =
NN

s e−Ns

N!
, (44)

where for convenience we redefined Ns = 〈Ns(> M∗|Mh)〉.
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4.3 results

4.3.1 The most massive satellite mass distribution

We can use the satellite CSMF and Eq. (44) to compute the mass probability distribution
of the most massive satellite in halos of different masses. This is given by the following
expression [e.g., 142, 217]:

P1(M∗|Mh)dM∗ =
∂Ns

∂M∗
× e−Ns dM∗, (45)

Note that
∫ ∞

M∗ P1(M∗|Mh)dM∗ = P(≥ 1), where P(≥ 1) is the probability of finding at
least one satellite galaxy more massive than M∗, P(≥ 1) = 1 − P(0).

The results are shown in Fig. 12, where dashed and solid lines are for the most massive
satellite and central galaxy mass distributions, respectively. The latter is by assumption
a lognormal function of width σc = 0.173 dex. The shaded areas indicate the 68% width
of the corresponding distributions. As seen in Fig. 12, the mass distribution of the most
massive satellite changes with Mh: in massive halos, it becomes closer to the distribution
of the central galaxy, while in lower mass halos it tends towards small satellite masses
compared to the central. This difference in masses, expressed in magnitudes, is referred
in the literature of galaxy groups/clusters as the magnitude gap. The behavior seen in
Fig. 12 is just a consequence of the satellite CSMFs showed in Fig. 10.

For halos larger than ∼ 1 − 3 × 1013 M�, the mean and standard deviation of the
most massive satellite mass distribution slightly increase and decrease with Mh, respec-
tively, while for smaller masses, the mean value of P1(M∗|Mh) strongly decreases as
Mh decreases (faster than the central galaxy mass does) and the standard deviation in-
creases. This transition is just at the mass corresponding to small classical galaxy groups.
Therefore, our result seems to be a consequence of the fact that in groups, the larger
the system’s mass is, the smaller is the collision cross sections for big galaxies of close
masses so that more of them survive. Instead, in galaxy-sized halos, due to their smaller
velocity dispersions, the galaxy collision cross sections are large in such a way that the
largest galaxies probably merged into one dominant central. Besides, the smaller the
halo, the earlier most of its mass assembled on average; hence, the (wet) mergers of the
most massive galaxies in the halo would have happened early. However, a fraction of
the galaxy-sized halos, while on average dynamically old, can accrete massive satellites
late. This could partially explain the wide distribution of masses of the second most
massive satellite in MW-sized halos. For example, as seen in Fig. 12, the probability for
these halos to have the most massive satellite ∼ 5 times larger than the LMC is close to
the probability to have this satellite as massive as the LMC.

From Fig. 10 we see that the mass of the central galaxy in the largest halos could be
the statistical extreme of the satellite CSMF. According to Fig. 12, the mass distributions
of the most massive satellite and central galaxy become closer as Mh increases. However,
quantitatively, we see that the mean of P1(M∗|Mh) lies outside of the 1σ of the central
galaxy mass distribution even for a 1015 M� halo, i.e., the central and the most massive
satellite galaxy, on average, are not expected to be drawn from the same exponentially
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decaying mass function; this criterion is similar to the observational one introduced by
Tremaine & Richstone [213].

We can estimate the fraction of systems where both mass distributions overlap, and
consider that this fraction corresponds to the cases where the most massive satellite and
the central galaxy are drawn from the same distribution. For masses above ∼ 3 × 1013

M�, approximately 15% of halos would have central galaxies that are not statistically
peculiar with respect to the satellites. For smaller masses, this fraction rapidly decreases
down to 3% at Mh = 1012 M�. In conclusion, most of centrals seem to form a statistically
different class of galaxies with respect to the satellites at all halo masses, with a small
fraction of cases, up to ∼ 15% in cluster-sized halos, being the exception, that is to say
the centrals in these cases could be a statistical realization of the high-mass end of the
satellite CSMF.

In order to compare our population statistics in detail with observations, the systems
should be selected by the central galaxy M∗ and/or group richness instead of the halo
mass. We will will carry out this exercise elsewhere by using a mock catalog based on
the the distributions constrained with our model.

4.3.2 The probability of Milky Way–Magellanic Clouds systems

Our model results and Eq. (45) can be used to compute the probability of having
one, two, or N Magellanic Clouds (MCs) satellites in MW-sized halos. We calculate
these probabilities for a range of possible MW-halo masses discussed in the literature:
(0.7, 1, 2, 3)× 1012 M�. We use MLMC = 2.3 × 109M� and MSMC = 5.3 × 108M� [109] for
the stellar masses of the MCs.

Firstly, we are interested in calculating statistics that can be compared with obser-
vations. From a large SDSS sample, Liu et al. [127] have estimated the fraction of iso-
lated galaxies with MW-like luminosities that do not have (NMC = 0) and that have
NMC = 1, 2, 3, 4, 5, or 6 MC-sized satellites. We calculate similar probabilities for each of
the halo masses mentioned above. In order to compare with Liu et al. [127], we do not
exclude systems with satellites more massive than the LMC. The results from Liu et al.
[127], for a search of MC-sized satellites up to 150 kpc around the primary, are plotted
with crosses in Fig. 13 (from their Table 1)1. Note that in our case satellites are counted
inside the host virial radius (∼ 200 − 300 kpc). Liu et al. [127] plot in their Fig. 8 the
probabilities with a search radius up to 250 kpc only for NMC = 0, 1, 2, 3. We reproduce
these measurements in Fig. 13 with gray symbols and error bars.

Our predicted probabilities for set C are plotted in Fig. 13. The probabilities of MW-
like halos hosting MC-sized luminous satellites (but including possible larger satellites)
increase with Mh. Recall that in the case of Liu et al. [127] the central galaxy luminosity
is fixed. In this sense, our results suggest that this luminosity (M0.1r = −21.2 ± 0.2 mag)
can be associated to halos of different masses: for those galaxies with 1 or 2 MC-sized
satellites, the preferred masses are ≈ 1− 2× 1012 M�, while for those rarer systems with

1 The selection criteria and observational corrections for searching for MC-like satellites are actually quite
diverse. Liu et al. [127, see also 44] explored the sensitivity of the probabilities to changes in various
selection parameters and found that their results can be slightly different, with the largest sensitivity being
the the satellite search radius around the primary.
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3 to 6 MC-sized satellites, the preferred masses are > 2× 1012 M�. Interestingly enough,
from the inverse of the CHMR (set C), taking into account the intrinsic scatter around
this relation, the halo masses corresponding to the MW stellar mass, log(M∗/M�) =
10.74±0.1, are log(Mh/M�) = 12.31 ± 0.22. Therefore, the rare halos that host 1 or 2
MC-sized satellites are those on the low-mass side of the halo mass distribution given
the MW central stellar mass, while the much more rarer halos hosting 3 to 6 MC-sized
satellites are those in the high-mass end of such a distribution.

The probability of the concrete case of two MC-sized satellites (NMC=2; but not ex-
cluding the possibility of satellites larger than the LMC) in a MW-like halo of 2 × 1012

M� is 5.4% for set C (see Fig. 12). If we exclude now from our model predictions the
possibility of having satellites larger than the LMC (as it happens in the MW system),
then the probability drops to a upper limit of 2.2%.

The statistics of finding MW-sized galaxies with satellites in the concrete mass range
of the MCs is limited. This statistics is actually part of the more general cumulative
conditional satellite mass function. Having this function for galaxies we may then ask,
for instance, whether the MW is rare because it has two too massive satellites or because
it has a deficiency of massive (larger than LMC) satellites with respect to the average. We
will report results related to these questions elsewhere by using a mock galaxy catalog
generated with the distributions constrained here. The mock catalog will allow us also
to infer several statistics given the central galaxy stellar mass in which we are interested
in (e.g., the MW one) instead of exploring a range of possible halo masses as was done
here.

Finally, the agreement between the predicted and observationally determined prob-
abilities is reasonable within the uncertainties. Such an agreement indicates that the
model is self-consistent as well as consistent with the underlying ΛCDM scenario. Note
that this self-consistency has been proven down to the scales of the MC galaxies and at
the level of satellite population distributions. Similar probabilities were found also using
large N-body cosmological simulations and looking for MW-sized halos with subhalos
that have dynamical properties similar to the MCs [41, 44].

4.4 conclusions

The model presented in Chapter 3 allows to infer any statistical distribution for the cen-
tral and satellite galaxy populations. In this Chapter we have used the central stellar-to-
halo mass relations and the satellite stellar-to-halo mass relations constrained in Chapter
3 in order to explore; (1) the distribution of the stellar mass gap between the central and
the most-massive satellite galaxy as a function of halo mass, and (2) the probabilities
for MW-like halos to have NMC MC-sized satellites. Our conclusions regarding these
questions are:

• With decreasing halo mass, the mass distribution of the most massive satellite as
compared to the the distribution of the central galaxy become more different and
shifted to lower masses. This shows that the central is a statistically exceptional
galaxy in the halo (group). For masses larger than Mh ∼ 3 × 1013 M�, the differ-
ences become smaller but even in this case only ∼ 15% of halos seem to have the
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Figure 13: Probability of occurrence of NMC MC-sized satellites in a range of possible MW-sized
host halos (different lines are for the different masses indicated in the legends) based
on the results for set C. Observational determinations by [127] for a large sample of
SDSS galaxies are shown with black (gray) crosses for distances from the host up
to 150 kpc (250 kpc). The black arrows show how the the occurrence of MC-sized
satellites change when the search radii goes from 150 kpc to 250 kpc from the host.
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most massive satellite statistically indistinguishable from the central one, which
implies that the latter could be a mere statistical realization of the massive-end of
the satellite CSMF instead of realization of a different galaxy.

• For the range of halo masses in question for the MW, we find that the probabilities
to have NMC MC-sized satellites are in good agreement with the observational
determinations by Liu et al. [127]. A MW-halo mass of <∼ 2× 1012 M� would agree
better with the observational determinations for two MC-sized satellites (NMC = 2).
When excluding the cases that satellites are larger than the LMC, the probabilities
become even lower: < 2.2% for Mh = 2 × 1012 M�.
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This Chapter will be published as: Rodríguez-Puebla A; Avila-Reese V.; Drory N., 2013, in press
at ApJ.

ABSTRACT
Several occupational distributions for satellite galaxies more massive than m∗ ≈ 4 ×

107 M� around Milky-Way (MW)-sized hosts are presented and used to predict the
internal dynamics of these satellites as a function of m∗. For the analysis, a large galaxy
group mock catalog is constructed on the basis of (sub)halo-to-stellar mass relations
fully constrained with currently available observations, namely the galaxy stellar mass
function decomposed into centrals and satellites, and the two-point correlation functions
at different masses. We find that 6.6% of MW-sized galaxies host 2 satellites in the mass
range of the Small and Large Magellanic Clouds (SMC and LMC, respectively). The
probabilities of the MW-sized galaxies to have 1 satellite equal or larger than the LMC
or 2 satellites equal or larger than the SMC or 3 satellites equal or larger than Saggitarius
(Sgr) are ≈ 0.26, 0.14, and 0.14, respectively. The cumulative satellite mass function of the
MW, Ns(≥ m∗), down to the mass of the Fornax dwarf is within the 1σ distribution of
all the MW-sized galaxies. We find that MW-sized hosts with 3 satellites more massive
than Sgr (as the MW) are among the most common cases. However, the most and second
most massive satellites in these systems are smaller than the LMC and SMC by roughly
0.7 and 0.8 dex, respectively. We conclude that the distribution Ns(≥ m∗) for MW-sized
galaxies is quite broad, the particular case of the MW being of low frequency but not
an outlier. The halo mass of MW-sized galaxies correlates only weakly with Ns(≥ m∗).
Then, it is not possible to accurately determine the MW halo mass by means of its
Ns(≥ m∗); from our catalog we constrain a lower limit of 1.38 × 1012 M� at the 1σ

level. Our analysis strongly suggests that the abundance of massive subhalos should
agree with the abundance of massive satellites in all MW-sized hosts, i.e. there is not a
(massive) satellite missing problem for the ΛCDM cosmology. However, we confirm that
the maximum circular velocity, vmax, of the subhalos of satellites smaller than m∗ ∼ 108

M� is systematically larger than the vmax inferred from current observational studies
of the MW bright dwarf satellites; differently from previous works, this conclusion is
based on an analysis of the overall population of MW-sized galaxies. Some pieces of
evidence suggest that the issue could refer only to satellite dwarfs but not to central
dwarfs; then, environmental processes associated to dwarfs inside host halos combined
with SN-driven core expansion should be at the basis of the lowering of vmax.
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5.1 introduction

According to the current paradigm of cosmic structure formation and evolution, galax-
ies form inside Cold Dark Matter (CDM) halos, which grow both by diffuse mass ac-
cretion and by incorporation of smaller halos that become subhalos. Inside the subha-
los (at least inside the more massive ones) galaxies should also have formed prior to
their halo’s infall, becoming satellite galaxies. Therefore, the present-day population of
satellites around central galaxies is the product of the halo/subhalo assembly and the
survival/destruction history of the the galaxies inside the subhalos. N-body simulations
within the context of the ΛCDM cosmological scenario provide us with the subhalo con-
ditional mass function (subHCMF) as a function of host halo mass Mh [see for recent
results, e.g., 197, 94, 41, 90, 20]. Using this function and statistical models constrained
by observations, the central/satellite–halo/subhalo mass connection can be established
[e.g., 44, 176, hereafter RAD13]. In this way, the abundances of the galaxy satellite pop-
ulation as a function of Mh can be calculated (satellite conditional stellar mass function,
CSMF). In this paper, our interest is focused on these abundances for systems with a
central galaxy of Milky Way (MW) stellar mass, M∗,MW.

With the advent of large galaxy surveys, some observational statistical studies of the
satellite abundance of central galaxies, in particular those of MW luminosity or mass,
have beed published. Several statistical distributions have been determined this way,
for instance, the fractions of MW-sized galaxies with a given number Ns of satellites
in the mass range of the Magellanic Clouds (MC) or with masses equal or larger than
the LMC or the SMC [109, 211, 127, 44, 174]. A natural question is whether the ΛCDM
scenario makes predictions in agreement with these statistical results related to scales smaller
than previously probed.

The works mentioned above conclude that the MW is a rare case with significantly
more massive (MC-sized) satellites than other galaxies of similar luminosity or mass.
Other studies determine the average luminosity distribution of bright satellites around
centrals [120, 101, 226, 202, 110, 181]. The distribution of the MW bright satellites seems
to lie above the average found for MW-sized galaxies. In spite of all of these studies, it is
not yet clear whether the satellite luminosity (mass) distribution of the MW is rare in a
statistically significant sense. It could be that the MW-sized galaxies have a broad range
of satellite luminosity distributions, the MC-like case being not particularly frequent but
not an outlier.

The question on how typical is the MW satellite mass distribution has acquired rel-
evance recently. This distribution, being the best studied one, is used to compare with
subhalo distributions predicted in the context of the ΛCDM and alternative cosmological
scenarios in order to test these scenarios at the smallest scales [c.f. 37, 38, 129, 222, 257].
However, such a comparison relies (i) on the hope that the MW satellite CSMF is
not atypical and (ii) on the assumed halo mass for the MW (the subhalo abundance
strongly depends on Mh, e.g., 90, 224). For example, Boylan-Kolchin, Bullock & Kapling-
hat [37, 38] have shown that for a few ΛCDM halos of ∼ 1012 M� resimulated at very
high resolution, there is a significant excess of subhalos with too high masses or maxi-
mum circular velocities (vmax > 25 km/s) with respect to what is inferred for the MW
satellite population (the so-called “too big to fail" problem). By means of an analytical
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model for generating a large sample of ΛCDM halos with their corresponding subhalo
populations, Purcell & Zentner [169] propose that the large variation in the latter among
different host halos ameliorates the “too big to fail" problem: at least ∼ 10% of their
MW-sized halos host subhalo populations in agreement with the MW dwarf satellite
kinematics. Wang et al. [224] suggest that the problem is ameliorated if the MW halo
mass is simply less massive than is commonly thought, Mh

<∼ 1012 M�.
In all of these works, the main caveats are the way the MW satellite population is put

into the statistical context, and the way the populations of the predicted subhalos and of
the observed MW satellites are matched. Here, we attempt to overcome these caveats by
using a large mock catalog of MW-sized galaxies, constructed on the basis of (sub)halo-
to-stellar mass relations fully constrained with currently available observations, namely
the galaxy stellar mass function, GSMF, decomposed into centrals and satellites, and
the projected two-point correlation functions, 2PCFs, measured at different stellar mass
bins (for references see Section 2). While these observations are complete only down to
≈ 2 × 108 M�, the occupational procedure used to construct the catalog allows one to
"extrapolate" observations down to the stellar masses that match the minimum halo/sub-
halo masses considered here. In RDA13 [see also 44], a preliminary attempt of studying
the massive satellite population of MW-sized galaxies has been presented; however, in
that paper the results are given as a function of Mh instead of M∗,MW, which introduces
freedom to choose the right Mh to be used for the MW.

Our main result from analyzing the mock catalog is that the ΛCDM scenario is statis-
tically consistent with observations regarding the abundances and internal dynamics of
satellites in MW-sized galaxies down to satellite stellar masses m∗ ∼ 108 M�. At lower
masses, down to the limit of our study (m∗ ∼ 107 M�), the abundances continue being
consistent but the internal dynamics of observed dwarf satellites suggest that their sub-
halos have vmax values smaller than those of the ΛCDM subhalos, under the assumption
that the vmax of the latter remain the same after galaxy formation and evolution. Our
conclusions are not affected by uncertainties on the matching of subhalo-satellite abun-
dances, on the statistical interpretation of the MW nor on the halo MW mass. Regarding
the latter, we instead find the Mh distribution of the MW analogs [see also 44].

The layout of this Chapter is as follows. In Section 5.2 we briefly describe the semi-
empirical occupational approach for linking galaxies to halos and subhalos and how,
by using the results of this approach, we construct a mock catalog of 2 million central
galaxies, each one with its satellite population down to m∗ ∼ 107 M�. From this cata-
log, we select a subsample of about 41000 central galaxies with MW-like stellar masses.
In Section 3, we present different statistical distributions for the massive satellite popu-
lation of the MW-sized galaxies and compare them to some observational studies. We
investigate the question of how common the MW satellite mass distribution is in 5.3.1,
while in 5.3.2 we present the halo mass distribution of the MW analogs. In Section 5.4
we present vmax vs. stellar mass for the mock galaxy (both satellites and centrals) and
compare with observations. Our conclusions and a discussion are given in Section ??.
We adopt cosmological parameter values close to WMAP 7: ΩΛ = 0.73, ΩM = 0.27,
h = 0.70, ns = 0.98, and σ8 = 0.84.
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5.2 the method

In what follows, we briefly review the semi-empirical approach we use for connect-
ing galaxies to halos and subhalos of different masses. For an extensive presentation
of this approach, see Chapter 3 and also Section 2 of RAD13. The approach relies on
the assumption that the central-to-halo and satellite-to-subhalo mass relations (CHMR
and SSMR, respectively) are monotonic. By parametrizing these mass relations, with
their intrinsic scatter included, one can use the predicted ΛCDM distinct halo and con-
ditional subhalo mass functions (HMF and subHCMF) to generate the halo/subhalo
occupational distributions both for central and satellite galaxies. Therefore, this method
encapsulates the main ideas behind the abundance matching technique, the halo occu-
pation distribution model, and the conditional stellar mass function formalism (RAD13;
see also 178). The advantage of the approach is that all the relevant observed statistical
distributions of central and satellite galaxies (the GSMF decomposed into centrals and
satellites, the CSMFs, and the 2PCFs) are consistently related to each other and with the
predicted halo/subhalo statistical distributions (the HMF and subHCMF).

The outputs of this approach are the CHMR and SSMR, including their intrinsic scat-
ters, and the satellite CSMFs as a function of halo mass Mh. Here we will use the best con-
strained CHMR and SSMR obtained in RAD13. These relations were (over)constrained
by making use of all the available observational information (data set C in RAD13): the
central and satellite GSMFs determined by Yang, Mo & van den Bosch [247] down to
2.5× 108 M� and the projected 2PCFs determined by Yang et al. [250] in five stellar mass
bins. For the distinct HMF and subHCMF, the Tinker et al. [207] and Boylan-Kolchin et al.
[41, see also Gao et al. [90]] fits to cosmological simulations were used, respectively.

5.2.1 The galaxy group mock catalog

Instead of using the analytical CHMR and SSMR directly, we apply these functions
and their scatters to generate a mock galaxy group catalog. With this catalog we will
explore several statistical satellite distributions that can be compared with some direct
observational determinations given as a function of the central stellar mass. The catalog
is generated as follows:

• From a minimum halo mass of Mh,min = 1010.5M�, a population of 2× 106 halos is
sampled from the distinct HMF. Each halo is randomly picked from this function
by generating a random number U uniformly distributed between 0 and 1 and
finding the value for Mh that solves the equation nh(Mh)/nh(Mh,min) = U. Here
nh is the cumulative distinct HMF.

• To each halo a central galaxy with stellar mass M∗ is assigned randomly from the
probability distribution P(M∗|Mh), i.e. the mean M∗–Mh relation and its intrinsic
scatter which is assumed to be lognormal distributed with a width of 0.173 dex
(see RAD13).

• To each halo defined by its mass Mh a subhalo population above msub,min = 109 M�
is assigned randomly by assuming a Poisson distribution [115, 41]. First, the total
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number of subhalos, Nsub, above msub,min is specified by choosing an integer from
a Poisson distribution with mean 〈Nsub(> msub,min|Mh)〉, where this mean number
is taken from the subHCMF for the given Mh. Then, the mass msub for each subhalo
is assigned by solving the equation 〈Nsub(> msub|Mh)〉/〈Nsub(> msub,min|Mh)〉 =
u, where u again is a random number uniformly distributed between 0 and 1. Note
that this last step should be repeated Nsub times in order to assign subhalo masses
to each one of the Nsub subhalos. The lower limit in subhalo mass is enough to
sample satellite galaxies with stellar masses larger than m∗ ≈ 107M�, see Fig. 7 of
RAD13.

• To each subhalo we assign a satellite galaxy with stellar mass m∗, taken from
the probability distribution P(m∗|msub), i.e. the mean m∗–msub relation and an
intrinsic scatter, assumed to be lognormal distributed with a width equal to the
central/halo case (the latter assumption seems to be reasonable, see RAD13).

The mock catalog generated in this way reproduces the observational statistical func-
tions used to constrain the CHMR and SSMR, namely the GSMF separated into central
and satellite galaxies and the 2PCFs in several mass bins. However, the catalog contains
much more information, which can be thought as an “extension" as well as an extrapo-
lation to lower masses of the observations. In particular, we can find the overall satellite
number distributions down to m∗ = 107 M� around galaxies of a given stellar mass M∗.

Fig. 14 illustrates the mean CHMR (solid line) and its 1σ scatter (0.173 dex; gray
shaded area) for the data set C as reported in RAD13. The 2 million mock central galax-
ies sample this distribution by construction. The short dashed line indicates the mass
of central galaxies with log M∗ = 10.74 while the dotted lines are 0.1 dex above and
below defining a subsample of galaxies with stellar masses in the bin log(M∗,MW/M�)∈
[10.64, 10.84], which corresponds to the stellar mass estimate for the MW [86]. The 40694
realizations out of the 2 millions that fall within this narrow M∗ range are represented us-
ing black dots (MW-sized galaxies). The shape of the resulting distribution of this subsam-
ple of central galaxies as a function of Mh is shown in the bottom panel of the figure. The
mean and the standard deviation for this distribution are log(Mh/M�)= 12.312 ± 0.277.

5.3 results and comparison to observations

In the previous Section, we generated a mock catalog of central galaxies corresponding
to the stellar mass estimates for the MW. These galaxies have halos in a broad range of
masses (see Fig. 14). From this sample, we can then establish the fractions (probabilities)
of systems with Ns satellites within a (stellar) mass range or above a given mass; this
mass can not be smaller than m∗ = 107 M�, the minimal mass used to construct the
mock catalog (see §§5.2.1). Therefore, our results will be restricted to the population of
the largest satellites.

For the statistical calculations, we will assume that the stellar masses of the LMC and
SMC satellite galaxies are mLMC = 2.3× 109 M� and mSMC = 5.3× 108 M� [109]. We will
also consider that the third most massive MW satellite is Sagittarius (Sgr). For a V−band,
the absolute magnitude of −13.63 mag and a stellar mass-to-luminosity ratio of 2 for
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Figure 14: Stellar-to-halo mass relation for central galaxies. The solid line indicates the CHMR
reported in RAD13, while the gray shaded area shows the 1σ scatter around the mean,
assumed to be 0.173 dex. Galaxies that are identified with MW-sized galaxies are those
lying in the bin log M∗ ∈ [10.64, 10.84] indicated with the dotted lines. The dashed line
indicates the mean of this bin. The black dots are the 40694 realizations of MW-sized
galaxies. The resulting distribution as a function of halo mass for MW-sized galaxies is
showed below the CHMR. The mean and the standard deviation for this distribution
are log Mh = 12.312 and 0.277 dex, respectively.

Sgr1 imply a stellar mass of mSgr = 5× 107 M�. Sgr is a tidally-stripped dwarf. Based on
observations of its tidal tails, a total magnitude (core + tails) of ≈ −15 mag is obtained
[153]. Then, a rough estimate of the core + tails stellar mass of Sgr is mSgr+t = 1.5 × 108

M�. The fourth most massive MW satellite is Fornax (For), with a V-band absolute
magnitude of −13.3 mag. An estimate of its stellar mass is mFor = 4.3× 107 M�, de Boer
et al. [66].

Our mock catalog was constructed based on observational constraints, so the different
satellite population statistics should be consistent with those of real galaxies; we expect
that this consistency is preserved for the extrapolations to lower masses using this cata-
log. In what follows, we compare the results from the mock catalog with observational
distributions of MW-sized galaxies and their population of massive satellites. It is im-
portant to remark that we do not assume a particular halo mass for the studied MW-sized
galaxies.

From a large SDSS sample, Liu et al. [127] estimate the fraction of MW-sized isolated
galaxies that do not have any (NMC = 0) and that have NMC = 1, 2, 3, 4, 5 or 6 MC-
sized satellites. In the same way, we find in our mock catalog the different fractions of
MW-sized galaxies with NMC = 0, 1...6 satellites in the stellar mass range mSMC − mLMC.
Figure 15 shows the predicted probabilities (long-dashed line). The probability of MW-
sized galaxies having two MC-sized satellites is 6.6%. If, from the subsample of MW-like
galaxies having NMC MC-sized satellites we exclude those with satellites larger than the

1 We assume for Sgr a stellar population with average metallicity [Fe/H]≈ −0.5 dex [50, 51] and average age
of 8 Gyr [22].
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Figure 15: Probability of occurrence of NMC satellites in the MC mass range around MW-sized
galaxies (long-dashed line; solid line is for the extra condition of no satellites larger
than the LMC). The shaded areas are the respective Poissonian errors from the count-
ing. Direct observational results from [127] are plotted with black (separation from
the host up to 150 kpc) and gray (separations up to 250 kpc) skeletal symbols.

LMC, then the probabilities decrease even further (solid line). For NMC = 2 and no
satellites larger than LMC, the probability is now only 0.08%. Note that this implies
that by far most of those MW-like systems that have NMC = 2 should have at least one
satellite more massive than the LMC; the MW system does not have such a satellite.

The results from Liu et al. [127], for a search of MC-sized satellites (not excluding sys-
tems with satellites larger than the LMC) up to 150 kpc around the primary, are plotted
as crosses in Fig. 15. Note that in our case satellites are counted inside the host virial
radius (∼ 200 − 300 kpc). Based on Fig. 8 in Liu et al. [127], we also plot the proba-
bilities when the search radius is increased up to 250 kpc (data are provided only for
NMC = 0, 1, 2, 3). It should be said that the selection criteria and observational correc-
tions to correct for MC-sized satellites are quite diverse. Liu et al. [127, see also Busha
et al. [44]] explored the sensitivity of the probabilities to changes in various selection
parameters and found that their results can slightly change; the results are particularly
sensitive to the satellite search radius around the primary.

The agreement between the probabilities in our mock catalog and the Liu et al. [127]
observations is good within the uncertainties. It is encouraging that the mock catalog
predicts the statistics of very rare events, as those systems with NMC ≥ 3, in good
agreement with observations. Regarding the more common events, in the catalog there
is a ∼ 66% chance of MW-sized galaxies without MC-sized satellites, while Liu et al.
[127] report 71% of such galaxies (for radii up to 250 kpc); this is because we also have
slightly more galaxies with NMC = 1 than in Liu et al. [127] (the probabilities of systems
with more MC-sized satellites are even lower and do not contribute significantly). These
small differences can be explained due to the fact that the search radius for satellites
in Liu et al. [127] is up to 250 kpc, while in our case there is a fraction of MW-sized
galaxies with massive halos, whose virial radii are larger than 250 kpc. If the satellite
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Figure 16: Probability of occurrence of Ns satellites around MW-sized galaxies with stellar
masses equal or larger than the LMC, SMC, Sgr+tail, and Sgr (solid, short-dashed,
dot-short-dashed, and dashed lines, respectively). The skeletal symbols are the obser-
vational inferences by Robotham et al. [174], corrected for a search radius up to 250
kpc, for satellites equal or more massive than the LMC and the SMC.

search radius would be increased in Liu et al. [127], then the fraction of MW-sized
galaxies without MC-sized satellites would decrease.

An alternative statistical study of MW analog systems was presented in Robotham
et al. [174]. Based on a sample of MW-sized galaxies from the new GAMA survey [74],
they have found the fractions of objects in this sample with at least one satellite as
massive as the LMC or with two satellites at least as massive as the SMC. From our mock
catalog we can calculate the fractions of MW-sized galaxies with any number of satellites
equal or larger than a given stellar mass m∗, P[Ns(≥ m∗|M∗,MW)]. Figure 16 shows these
probabilities for m∗ ≥ mLMC(solid line), m∗ ≥ mSMC (dashed line), and m∗ ≥ mSgr (long-
dashed line; the dot-dashed line is for the case when the tails of Sgr are included in its
mass). The colored contours around the lines are the corresponding Poissonian errors
from counting. The probabilities of finding one satellite equal or more massive than
the LMC and two satellites equal or more massive than the SMC are 26% and 14.5%,
respectively. In the case of Robotham et al. [174] these probabilities are 11.9% (11.2%–
12.8%) and 3.4% (2.7% –4.5%). However, in Robotham et al. [174] the satellite search
radius was fixed to only 70 kpc. From Liu et al. [127], we roughly estimate the factors by
which these fractions could increase if the search radius were to be extended to to 250
kpc; the factors are at least 2 and 4.5 for NMC = 1 and NMC = 2, respectively (they could
be larger because Liu et al. [127] limit the search to only satellites in the mLMC − mSMC

mass range). Taking these correction factors into account, the agreement between the
predicted probabilities and those determined by Robotham et al. [174] becomes quite
good.

Recently, several authors have measured the complete (bright) satellite abundances
around bright centrals, in particular those with luminosities close to the MW and M31,
by using adequate samples from the SDSS [120, 101, 226, 202, 181] and from the Canada-
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France-Hawai Telescope Legacy Survey [110]. In each one of these studies, different
criteria for the sample selection, different searching and correction methodologies, vari-
ous radii for the satellite search, etc. were applied. Therefore, the results are not easy to
compare.

In general, these works find that the conditional bright satellite luminosity function
of MW/M31-sized galaxies is described by a relatively steep power law, and a normal-
ization such that down to ∼ 6 magnitudes fainter than the central there is on average a
factor of 1.5 − 2 fewer satellites than the average of the MW and M31. The MW satellite
CSMF measured in our mock catalog agrees in general with these studies, but it seems
to be slightly overabundant above the mass (or luminosity) corresponding to the SMC,
in particular with respect to Wang & White [226] and Strigari & Wechsler [202]. In the
case of Jiang, Jing & Li [110, and in a less extent for Guo et al. [101]], a slight flattening
at the high-end of the luminosity function is seen, which is similar to our case. We re-
call that the direct observational searches of satellites are for a fixed radius around the
central, which is 250 or 300 kpc typically (the exception is Jiang, Jing & Li [110] who use
the virial radius determined by the Yang et al. [249] group finding algorithm). In the
mock catalog we count the satellites inside the virial radius, which for a non-negligible
fraction of galaxies, is larger than 300 kpc. Therefore, it is expected that the number of
satellites counted in the direct observational studies (in special of the most massive ones,
which are more probable to be at larger radii) should be slightly lower than in our mock
catalog.

We conclude that the population of the largest satellites around MW-sized central
galaxies in our mock catalog agrees in general with several direct observational deter-
minations, which present different and limited satellite population statistics. The ad-
vantage of our mock catalog, constrained by observations, is that allows calculate any
satellite occupational statistics, and to extend the satellite mass limit to masses lower
than current direct observational studies. In this way, one may explore in more detail
how are the satellite populations of MW-sized galaxies and how particular is the MW
system.

5.3.1 How common is the Milky-Way system?

According to Fig. 16, the MW is less common than similar sized galaxies in the sense
that it has one satellite as massive as the LMC or two satellites equal or more massive
than the SMC; there are more MW-sized galaxies that do not have satellites of mass
m∗ ≥ mLMC (60.6% vs 26.1% for those with one satellite) or have less than two satellites
more massive than mSMC (85.5% vs 14.5% for those with two satellites). However, the
MW can be considered a common galaxy in the sense that it has three satellites more
massive than mSgr. In general, what we learn from Fig. 16 is that the satellite number
distributions are relatively wide and there is not a strongly preferred number of satellites
above a given mass. For example, the probabilities of having 0, 1, 2, 3, or 4 satellites with
m∗ ≥ mSgr are within a factor of less than two from each other.

The fact that the satellite number distributions of MW-sized galaxies are broad can
also be seen in the plot of the cumulative number of satellites above a given mass m∗
as a function of m∗, Ns(≥ m∗|M∗,MW), which is related to the satellite CSMF discussed
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above. Figure 17 shows the average (solid line) and the 1σ scatter (gray shaded area)
of Ns(≥ m∗|M∗,MW) from the mock catalog. The latter is quite broad. The cyan line
corresponds to the MW (the red line is for the case the mass of Sgr includes the tidal
tails). The MW massive satellite population is within 1σ of the number distribution
of satellites as a function of mass of all MW-sized galaxies, being above the average
by less than a factor of 2 at the MC satellite masses, and very close to the average
regarding its three (four) satellites equal or more massive than Sgr (For). By means of
direct observational determinations Guo et al. [101], Strigari & Wechsler [202], and Jiang,
Jing & Li [110] arrived to a similar conclusion. From a frequency point of view, we find
that the MW-sized galaxies with one satellite ≥ mLMC (two satellites ≥ mSMC), as the
MW, happen only 1/0.6=1.68 (2/1.02 =1.92) times less frequently than the average (see
also Fig. 16).

In fact, given that the (massive) satellite number distribution as a function of mass
of MW-sized galaxies is relatively broad, several kind of “configurations" have close
probabilities and all are relatively low. Besides, as more constraints are imposed on the
configuration (as for example, to have two satellites in the SMC–LMC mass range but
not larger than the LMC, see Fig. 15), the lower will be the frequency of occurrence.
However, this does not imply that systems with a particular configuration are outliers, i.e., out
of 1σ.

In Fig. 17, we also show the mean satellite cumulative mass function of the subsam-
ples of MW-sized galaxies constrained to have Ns ≥ 3 (short dashed line), Ns = 3 (long
dashed line), and Ns ≤ 3 (dot-dashed line) satellites more massive than Sgr. It is in-
teresting to see that galaxies with exactly 3 satellites more massive than Sgr are close to the
average for MW-sized centrals, but they have typically the most and second most massive
satellites smaller than the LMC and SMC by roughly 0.7 and 0.8 dex, respectively. The
subsample of galaxies with Ns ≥ 3 satellites more massive than Sgr describes better the
satellite mass function of the MW down to the SMC or to Sgr when including its tails.
Finally, we see that the MW definitively does not belong statistically to the subsample
of MW-sized centrals with Ns ≤ 3 satellites more massive than Sgr, contrary to what is
assumed in Wang et al. [224].

The analysis presented above for the MW system can be applied also to M31. Recent
observational results show that M31 has at least twice as many satellites as the MW
[251]. Specifically, it has six satellites brighter than the luminosity of Sgr, making M31
an outlier according to Fig. 17. However, the stellar mass of M31 is a factor of ∼ 2 larger
than the MW [e.g., 205]. Therefore, it is expected that the M31 halo is more massive
than the MW one, hence the M31 halo should host more satellites. This question will be
analyzed in detail elsewhere.

5.3.2 The halo masses of MW-like systems

The host halo mass distribution of the MW-sized galaxies in the mock catalog is plotted
in Fig. 14. The distribution is broad, with mean and median values of 2.05 × 1012 and
1.91 × 1012 M�. It is known that for clusters and groups of galaxies the total dynamical
mass of the system correlates with the richness (number of members above a given mass,
see e.g., 172). Is this also the case for MW-like systems? Could we constrain statistically
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Figure 17: Cumulative satellite mass function of MW-sized galaxies in the mock catalog (solid
line) and its 1σ scatter (gray shaded area). Subsamples of MW-sized galaxies con-
strained to have Ns ≥ 3, Ns = 3, and Ns ≤ 3 satellites more massive than Sgr are
indicated with the short-dashed, long-dashed, and dot-dashed lines, respectively. The
cyan staggered line corresponds to the MW satellite galaxies, while the red line is for
the case the mass of Sgr includes their tidal tails.

the MW halo mass by its number of satellites above a given mass or in between a given
mass range?

In Fig. 18 we plot the mean host Mh of the mock MW-systems with Ns satellites with a
mass larger or equal than the LMC (solid line), SMC (short-dashed line), and Sgr (long-
dashed line), and with masses in between the SMC and LMC (dot-dashed blue line).
The statistical scatter in all the cases is roughly ∼ 0.24 dex in logMh. For clarity, we
plot the scatter (vertical lines) only for the cases corresponding to the MW, i.e., Ns = 1
for the solid line, Ns = 2 for the short-dashed line, Ns = 3 for the long-dashed line,
and Ns = 2 for the dot-dashed blue line (slightly shifted horizontally). Figure 18 shows
that, in general, there is a correlation of Mh with Ns but it is weak. The scatter of Mh
around a given M∗ does not depend significantly on Ns for galaxies below the knee in
the M∗–Mh relation (see Fig. 14).

From Fig. 18 we can say that at the 1σ level, the halo mass of MW-like systems is not
smaller than 1.38 × 1012 M�. This limit is for the case of 3 satellites with m∗ ≥ mSgr (the
mean Mh for this case is log(Mh/M�)=12.33). Interestingly enough, most of the obser-
vational estimates of the MW halo mass give values above 1012 M�. For example, the
most recent work, based on the proper motion of the Leo I dwarf galaxy in combination
with numerical simulations, favors a value of 1.6 × 1012M� [39, and references therein].
For restrictions related to the number of MC-sized satellites, the typical halo masses are
slightly larger as seen in Fig. 18; for example, log(Mh/M�) = 12.430±0.232 for the case
of 2 satellites more massive than mSMC. This estimate is somewhat larger than the one
obtained by Busha et al. [44], who used the Bolshoi N-body cosmological simulation
[113] to look for MW-sized halos with two subhalos with maximum circular velocity,
vmax, larger than 50 km/s (according to our vmax–m∗ relation, this mass corresponds to
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Figure 18: Mean host halo mass of the MW-sized galaxies in the mock catalog as a function
of the number of satellites with masses larger or equal than the LMC, SMC, Sgr +
tails, and Sgr (see the corresponding lines inside the plot). The case for the interval
between the LMC and SMC is also included (blue dot-dashed line). Observe how
the halo mass of MW-sized galaxies correlates weakly with the number of satellite
galaxies. Nevertheless, from all the showed cases, the MW halo mass is not smaller
than 1.38 × 1012 M� at 1σ level.

a smaller m∗ than the one used here for the SMC, see Fig. 19 below; therefore, the host
Mh estimated in Busha et al. [44] would be larger, in better agreement with our study, if
they had used the vmax corresponding to mSgr). The orbital information of the MC-sized
subhalos in N-body simulations has been also used for improving the statistical deter-
minations of the MW halo mass [36, 44], finding that the typical masses should be above
log(Mh/M�) = 12.2-12.3.

5.4 satellite vs Λcdm subhalo populations

The statistical method used to construct our mock catalog allows for a connection be-
tween satellite and subhalo masses to be made. This connection is constrained by the
observed satellite GSMF and the projected correlation functions at different mass bins
(see RAD13), and it can be extrapolated to stellar masses lower than the completeness
limit of the observational samples. In papers such as Boylan-Kolchin, Bullock & Kapling-
hat [37, 38] and Lovell et al. [129], the satellite population of the MW is used to discuss
the consistency of the predicted subhalo population in the ΛCDM or ΛWDM scenar-
ios, but an uncertainty remains about whether the MW and their satellites are a typical
system and what the halo mass of the MW is [e.g., 169, 224]. With our observationally-
based catalog, we do not face such a problem since we account for a large population of
MW-sized systems (centrals + satellites), with their corresponding host halo masses.

Our mock catalog offers a statistically complete sample of MW-sized galaxies with
their satellite populations, for which we can "measure" the subhalo masses associated
to the satellites. By using the tight correlation between maximum circular velocity, vmax,
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Figure 19: The internal dynamics of dwarf galaxies as a function of stellar mass. Solid circles with
error bars show the mean and the standard deviation of the mock catalog subhalo vmax
centered at different satellite stellar masses (m∗= 1.2 × 107M�, m∗,For, m∗,Sgr, m∗,SMC,
m∗,LMC and 7.1 × 109M�. The magenta long-dashed line indicates the mean vmax–M∗
relation for the mock central galaxies. Observational estimates for the LMC [157], SMC
[198], Sgr [153] and For [201] are plotted with the color filled symbols. The inferred
values of vmax by Peñarrubia, McConnachie & Navarro [160] for the next three smaller
MW dwarfs, Leo I, Sculptor, and Leo II, are indicated with arrows; their stellar masses
are smaller than 107 M�. The dashed line is an extrapolation to lower masses of the
stellar (inverse) TF relation of field disk galaxies reported in Avila-Reese et al. [12]
down to ∼ 109 M�. Individual measurements of Vrot and stellar mass for both central
and satellite dwarfs by Geha et al. [92] are plotted with crosses. While the error bars
in the Geha et al. [92] sample are different in each galaxy, on average they are of the
order of ∼ ±5 km/s. For a subsample of isolated dwarfs, Blanton, Geha & West [31]
report a median Vrot = 56 ± 3 km/s (violet cross).
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and mass of the subhalos measured in the Millenium-II Simulation [41, taking into ac-
count the scatter around this correlation], the m∗–vmax relation and its scatter can be
predicted. Note that implicity we are assuming that the subhalo vmax is not altered by
baryonic effects. Therefore, in our case, the question is not about a consistency between
the number of ΛCDM subhalos (above a given msub or vmax) and the number of satel-
lites (above the m∗ corresponding to msub or vmax) –this consistency was stablished
by construction in the method– but about whether the predicted m∗–msub or m∗–vmax

relations agree with direct observations.
Figure 19 shows the mean and standard deviation of the vmax vs. m∗ relation for all

the satellites above m∗ = 107 M� around MW-sized galaxies in our mock catalog. The
scatter is due to the dispersions in host halo masses, in the m∗–msub relation, and in
the m∗–vmax relation. The dashed line is an extrapolation to lower masses of the stellar
(inverse) Tully-Fisher (TF) relation of field disk galaxies as determined from a suitable
catalog in Avila-Reese et al. [12, the stellar mass was shifted by -0.1 dex to convert
from the diet-Salpeter to the Chabrier initial mass function]. The vmax–m∗ relation of the
satellites seems to bend towards the low-mass side of the TF relation of larger galaxies.
In fact, a close trend is followed by central galaxies; the solid line in Fig. 19 shows the
mean of the vmax vs. M∗ relation for central galaxies in the mock catalog. Such a trend is
in agreement with some direct observational studies of the TF relation of dwarf galaxies
[c.f. 138, 70, 2]. The scatter of the vmax–m∗ (as well as the vmax–M∗) relation increases
towards lower masses, also in agreement with direct observational studies. The bend of
the stellar TF relation at velocities below ∼ 100 km/s and the increase of its scatter is also
observed in cosmological numerical simulations [72] and it is explained by the strong
loss of baryons due to SN-driven feedback in low-amplitude gravitational potentials.

In Fig. 19 we also plot the individual measurements of the maximum rotation velocity
Vrot and stellar mass for (central and satellite) dwarf galaxies by Geha et al. [92, crosses]2.
The scatter is high, and down to stellar masses ∼ 108 M� most of dwarfs are close to
those from our catalog and above the extrapolated TF relation. There are some hints that
those dwarfs in the high-Vrot side in the Geha et al. [92] sample tend to be centrals. For
example, Blanton, Geha & West [31] select the subsample of very isolated dwarfs from
Geha et al. [92]; these are certainly central galaxies. They report a median Vrot = 56 ± 3
km/s for this subsample which spans almost all the mass range of the total sample. This
value is also plotted in Fig. 19 (violet cross) and it agrees well with the velocities of our
central galaxy sample.

For masses smaller than 108 M�, there is a significant fraction of observed dwarfs
with lower vmax than the mock dwarfs, although the scatter is high. We also plot the
values of vmax and m∗ inferred observationally for the MW satellites LMC, SMC, Sgr,
and For (color filled symbols; for the sources see the figure caption), as well as the
inferred values of vmax by Peñarrubia, McConnachie & Navarro [160] for the next three
smaller MW dwarfs, Leo I, Sculptor, and Leo II (indicated with arrows; their stellar
masses are certainly smaller than 107 M�). While the LMC and SMC fall close to the

2 Note that (i) in several cases the HI line widths used to estimate Vrot underestimates the real maximum
velocity that could be at a radius larger than that where gas is observed; and (ii) the galaxy+subhalo vmax
after baryon matter is included in the numerical simulations may be lower than in the pure dark matter
subhalo vmax (see for a discussion Section 5).
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mock satellites, the observational inferences of vmax for Sgr and For are smaller than the
mean of the mock satellites; a similar difference is expected for the next smaller dwarfs,
Leo I, Sculptor, and Leo II. Even the lower-1σ scatter, given mainly by those systems in
low-mass host halos, is higher than the For vmax.

For a large sample of galaxies (and not only for the MW galaxy satellites), the results
shown above confirm a potential problem for the small dwarf galaxies (stellar masses <∼ 108

M�): they seem to be associated to significantly less concentrated (smaller vmax) systems than
those the ΛCDM scenario predicts [37, 38]. However, the question that remains open is
whether this problem refers to both central and satellites galaxies or only to the latter. According
to the above, it could be that those dwarfs in the Geha et al. [92] sample that are in the
low-Vrot side are satellites, while those in the high-Vrot side are centrals, and as can be
appreciated in Fig. 19, they are consistent with the mock central dwarfs.

5.5 summary & discussion

??
By means of a statistical approach that observationally constrains the galaxy-(sub)halo

connection for central and satellite galaxies, we generate a realization of 2 × 106 central
galaxies and their populations of satellites. Each galaxy is characterized by its stellar
and (sub)halo mass and, by construction, the catalog reproduces (i) the observed cen-
tral/satellite GSMFs and projected two-point correlation functions in several stellar mass
bins down to their completeness limits (m∗ ∼ 2.5 × 108 M�, though we extrapolate it
down to ∼ 107 M�); (ii) the ΛCDM distinct halo mass function [207] as well as the con-
ditional subhalo mass functions [41]. From this catalog we picked all the central galaxies
with MW stellar mass, log M∗ = 10.74 ± 0.1 dex (40694 objects), and studied the (mas-
sive) satellite occupational distributions of these galaxies. The main results from the
"observation" of the MW-like systems in the mock catalog are:

• The fractions (probabilities) of MW centrals with NMC satellites within the MCs
stellar mass range or above the SMC or LMC masses are in general agreement with
direct observational studies [127, 44, 174] after correcting for the satellite search ra-
dius, which in our case is the virial radius of the host halo (see Figs. 15 and 16).
For example, we obtain that the probability of finding 2 satellites in the MC mass
range is ∼ 6.6% (or ∼ 0.08% if we add the condition of having no satellites more
massive than the LMC); the probabilities of having 1 satellite with m∗ ≥ mLMC, 2
satellites with m∗ ≥ mSMC or 3 with m∗ ≥ mSgr are 26.1%, 14.5%, and 14.3%, respec-
tively. We also find that the average (massive) satellite mass function of the mock
MW-sized galaxies is consistent with recent direct observational determinations of
the (bright) conditional satellite luminosity function.

• Having the two most massive satellites be as massive as the MCs makes the MW
less common, but it is not a rare case in the sense of an outlier. In our catalog,
MW-sized galaxies with one satellite ≥ mLMC (two satellites ≥ mSMC), as the MW,
happen only 1/0.6=1.68 (2/1.02 =1.92) times less frequently than the average. The
cumulative satellite mass function of the MW down to the mass of For is within
the 1σ distribution of all the MW-sized galaxies, lying above the average by less
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than a factor of two at the MCs masses and close to the average at the For and
Sgr masses (Fig. 17). MW-sized centrals with exactly 3 satellites more massive
than Sgr are among the most common ones, but they have typically the most and
second most massive satellites smaller than the LMC and SMC by roughly 0.7 and
0.8 dex, respectively. In general, we find that the satellite number distributions of
MW-sized galaxies are relatively broad.

• As opposed to clusters and groups of galaxies, the halo mass Mh of MW-sized
galaxies correlates weakly with the number of satellites above a given mass (Fig. 18).
The mean logMh and its standard deviation for galaxies with 3 satellites equal
or more massive than Sgr is 12.33 ± 0.19. For 2 satellites with m∗ ≥ mSMC or
m∗ in the SMC-LMC mass range, the mean and standard deviation are logMh=
12.430± 0.232 and logMh= 12.552± 0.283, respectively. Therefore, it is not possible
to constrain the halo mass of MW-sized galaxies with appreciable accuracy with
the satellite population abundance of the MW, but one can say that, at the 1σ level,
this mass is not smaller than 1.38 × 1012 M�, consistent with recent claims based
on the combination of high numerical simulations with the proper motion of Leo
I [39].

• In our catalog of MW-sized galaxies, the number of ΛCDM subhalos (above a
given msub or vmax) is consistent with the number of satellites (above the m∗ cor-
responding to msub or vmax) by construction and, since the satellite abundances of
the mock galaxies are in agreement with different direct observational studies, one
may conclude that there is not a (massive) satellite missing problem for the ΛCDM
model. However, we find an internal dynamics problem: the vmax of the subhalos of
satellites smaller than ∼ 108 M� seems to be systematically larger than the vmax

inferred from current observational studies of dwarf satellites, by factors ∼ 1.3− 2
at the masses of Sgr and For (Fig. 19). There are some hints that this issue could
refer only to the satellite dwarfs but not to the central ones.

We conclude that the general agreement of our satellite abundance statistics with di-
rect observations signals towards a self-consistency in the construction of the mock cat-
alog, and it shows that the underlaying ΛCDM (sub)halo abundances and internal dynamics
are consistent with observations down to the scales of the MC galaxies. For smaller masses, our
results point out to a possible issue in the internal dynamics of the ΛCDM (sub)halos
as compared with the observed satellite dwarfs. These results confirm the conclusions
by Boylan-Kolchin, Bullock & Kaplinghat [37, 38] for satellite spheroidal dwarfs but with
the difference that in our case the results refer to the overall population of MW-sized galaxies.
Therefore, our conclusions are free of uncertainties intrinsic to the analysis in Boylan-
Kolchin, Bullock & Kaplinghat [37, 38] about whether the MW system is atypical or not
and and also in regards to the MW halo mass to be used [e.g., 169, 224]. However, before
arriving to any conclusion, several aspects of these results should be carefully discussed
(for an extensive discussion see Boylan-Kolchin, Bullock & Kaplinghat [37, 38]). Here we
highlight two observational caveats.

(i) Our prediction refers to the maximum circular velocity of the pristine subhalo, vmax.
Observations refer to the maximum or last-point measured galaxy rotation velocity, Vrot,
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or to a model-dependent vmax constrained by measurements of the stellar velocity dis-
persion under several assumptions. Because dwarf galaxies are dark matter dominated,
in the context of the ΛCDM model it is expected that vmax is attained at a radius much
larger than the optical one, where the observational tracers are not available. Then, it
could be that the current observational inferences are underestimating the actual values
of vmax. Regarding the dispersion-supported dwarf spheroidals, their unknown stellar
velocity anisotropy and/or halo shape make the inference of their mass distributions
ambiguous [e.g., 200, 104, 242, and more references therein].

(ii) The mock catalog was constructed using both the m∗–msub and the M∗–Mh rela-
tions constrained with the Yang, Mo & van den Bosch [247] central and satellite GSMFs
down to ∼ 2× 108M�, as well as with observed projected correlation functions reported
in Yang et al. [250]. For smaller masses, we use just an extrapolation of this relation
and its scatter. If the satellite GSMF at smaller masses would be steeper than the Yang,
Mo & van den Bosch [247] faint-end or the scatter larger than the assigned by us (due,
for example, to highly stochastic star formation and tidal effects in the satellite dwarfs),
then the relation would be shallower and more scattered, which implies lower subhalo
masses (or vmax) on average at a given m∗ and higher scatter in these quantities. In
Rodríguez-Puebla, Drory & Avila-Reese [178], by using a low-mass slope of −1.6 for the
satellite GSMF, we obtained subhalo masses for m∗ = 107 − 108 M� dwarfs as small
as the tidal masses (close to the subhalo masses) inferred for some MW satellites. This
slope is given by Baldry, Glazebrook & Driver [16] for the GSMF, which goes down to
∼ 2.5 × 107 M� after applying a correction for surface brightness incompleteness. How-
ever, the GSMF in this case refers to all galaxies. In RAD13 we decomposed the Baldry,
Glazebrook & Driver [16] GSMF into centrals and satellites, and obtaining a m∗–msub
relation that implies subhalo masses larger than the tidal masses by roughly 0.3-0.4 dex.
Future samples, complete down to the smallest masses and decomposed into central and
satellite galaxies, should tell us whether the satellite GSMF towards very small masses
is steep enough or not as to imply subhalo masses (or vmax) in better agreement with
current dynamical studies.

Finally, if the observations regarding the faint-end of the satellite GSMF and the in-
ternal dynamics of the dwarf satellites remain roughly as those discussed here, then
our results could be an indication that baryonic physics significantly affects the inner
structure of the very small subhalos that host dwarf satellites. A possible physical mech-
anism for explaining the decrease of the inner concentration, and therefore of vmax,
in low-mass ΛCDM (sub)halos could be feedback-driven gas outflows. By means of
N-body/Hydrodynamics cosmological simulations, some authors have shown that re-
peated strong outflows during the halo/galaxy growth are able to drag with them the
inner dark matter decreasing the inner gravitational potential [136, 130, 98, 264, 156],
though it seems difficult that such an effect would be able to lower vmax to the required
values [38, 73]. However, some numerical simulations show that in the case of satellites, the
combination of this effect with the stronger tidal effects of the halo when a central bary-
onic galaxy is included, as well as the lowered baryon fractions of the dwarf satellites,
work in the direction of reducing the circular velocities of the simulated MW satellite
dwarf spheroidals to the levels required by the results of Boylan-Kolchin, Bullock &
Kaplinghat [38] or our ones [42, 4, 99].
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We have found some hints that the apparent problem of too low-circular velocities of
dwarfs smaller than m∗ ∼ 108 M� refers mostly to satellite galaxies but not to central
ones. If this is the case, then such a problem is explained by the plausible physical
mechanisms mentioned above. However, if the problem remains for isolated dwarfs, then
this could the necessity of a modification in the cosmological scenario, for example, by
introducing warm or self-interacting dark matter [129, 222].
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Part IV

T H E S T E L L A R - ( S U B ) H A L O M A S S R E L AT I O N S U P T O z ∼ 1

En esta Parte IV, se estudian las relaciones masa estelar galaxia central-masa halo,
M∗-Mh, y masa estelar galaxia satélite-masa subhalo, m∗-msub, por separado, en cu-
atro diferentes intervalos de corrimiento al rojo, hasta z ∼ 1. En el Capítulo 6 se ex-
tiende el modelo estadístico presentado en el Capítulo 3 a otras épocas, utilizando la
función de masa estelar de galaxias y la función de correlación angular de dos pun-
tos del catastro COSMOS hasta z ∼ 1. Se muestra que la evolución de las relaciones
M∗-Mh y m∗-macc es débil. Los principales cambios son: el decrecimiento ligero con
el tiempo de la masa Mh al pico del cociente f∗ = M∗/Mh ("downsizing" en masa);
una ligera caída y empinamiento hacia z′s más altos de la parte de bajas masas de la
relación M∗-Mh, así como una ligera subida de la parte de masas altas de la relación
m∗-macc. El pico de f∗, la eficiencia de crecimiento de masa estelar, para galaxias cen-
trales es aproximadamente constante, f∗ ≈ 0.03, mientras que para galaxias satélites
decrece ligeramente con z, siendo en promedio f∗ ≈ 0.04. Se encuentra también
que la fracción de galaxias satélites con relación al total a una dada masa estelar es
siempre menor a ∼ 0.35, decreciendo ligeramente hasta M∗ ∼ 2 × 1010 M� y luego
fuertemente a masas mayores donde la gran mayoría de las galaxias son centrales;
este comportamiento se observa en todas las épocas pero las fracciones en sí dismin-
uyen hacia altos corrimientos al rojo, es decir existían menos galaxias satélites en el
pasado. Se discuten ampliamente las implicaciones de nuestros resultados en lo que
concierne al ensamblaje de la masa estelar de las galaxias en función de la escala.





6
T H E E V O L U T I O N O F T H E S T E L L A R - T O ( S U B ) H A L O M A S S
R E L AT I O N S O F C E N T R A L / S AT E L L I T E G A L A X I E S A N D O F T H E
S AT E L L I T E F R A C T I O N F R O M T H E C O S M O S S U RV E Y

ABSTRACT
By means of a statistical model to connect galaxies to cold dark matter halos, we infer
the redshift evolution of stellar-to-(sub)halo mass relations separately for central and
satellite galaxies, CHMR and SSMR, respectively. The observational data are the galaxy
stellar mass function, GSMF, and the angular two-point correlation function from z = 0.2
to z = 1 extracted from the COSMOS survey. Our main result shows that the CHMR
and SSMR change little with redshift. At most, the low-mass end of the former slightly
decreases with z, and the high-mass end of the latter, slightly increases with z. For cen-
tral galaxies, the halo mass at which the peak of the stellar mass growth efficiency is
reached, f∗ = M∗/Mh, shifts weakly towards lower masses at lower z (downsizing in
mass). This efficiency is roughly the same since z ∼ 1 with a peak value of f∗ ∼ 0.03.
For satellite galaxies, f∗ has a slightly different evolution and slightly larger values, ex-
plained by the fact that the subhalo mass at the accretion time is on average smaller than
the current halo masses of central galaxies. The fraction of satellite galaxies decreases
with stellar mass, strongly for masses > 2× 1010 M�, at all redshifts. With time, the frac-
tions at each mass increases; the maximum value of this fraction is at the lowest redshift
and mass bins, ∼ 0.35. We find that a toy model, where the CHMR is the same at all
z, describes reasonable well our main results regarding the central/satellite GSMFs, the
satellite fractions, and the satellite CSMFs at different z. However, this model implies
a constant specific star formation rate with M∗ at low masses, in tension with direct
determinations of the SSFR vs M∗ of local and high-redshift galaxies.

6.1 introduction

In recent years, the galaxy-halo connection has been routinely inferred by using an am-
ple variety of approaches, from those able to probe directly the masses of the dark mat-
ter halos (by using galaxy weak lensing, [133, 132, 184], kinematics of satellite galaxies,
[56, 145, 146, 241], and galaxy clusters, [249, 247, 103, 250]) to those that indirectly infer
halo masses. The latter are based on statistical analysis, for instance the Halo Occupation
Distribution (HOD) model [25, 60, 259], the Conditional Stellar Mass Function (CSMF)
formalism [245, 249, 148, 121, 122, 250], and the Abundance Matching Technique [AMT
216, 115, 58, 187, 234, 16, 217, 57, 75, 148, 19, 102, 20, 170, 159]. While improvements on
direct techniques have been developed in recent years, they are still limited due to their
need to stack large ensembles in order to attain a acceptable signal to noise. In addition,
the dynamical range they can probe is limited. Therefore, indirect approaches have re-
ceived much attention due to their relative simplicity and the ample dynamical range
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for connecting galaxies to halos, not only for local galaxies but at different redshifts,
[e.g., 122, 250].

Indirect approaches can be divided into two main approaches. The first approach,
which includes the HOD model, and the closely related CSMF formalism, describes the
probability that a halo of mass Mh host a N number of galaxies above some luminosi-
ty/stellar mass (M∗) threshold which can be constrained by using the observed spatial
clustering of galaxies. The second approach, the AMT, assumes a one-to-one monotonic
relationship between luminosity or M∗ and Mh, and it is constrained by matching the ob-
served cumulative galaxy luminosity or stellar mass function to the theoretical halo plus
subhalo cumulative mass function. The indirect techniques assume that at the center of
each dark matter halo a central galaxy is located, with satellite galaxies orbiting within
the virial radius of the central galaxy. These satellite galaxies are thought to be formed
in dark matter halos prior to become subhalos. As a result, a central stellar-to-halo mass
and satellite stellar-to-subhalo mass relations are stablished. In the case of the HOD
model and the CSMF formalism, the satellite-to-subhalo connection is not implemented.
In the case of the AMT, this connection is implemented but under the assumption that
it is identical to the one of the central galaxies. Consequently, little it is known about
the satellite-to-subhalo connection both for local and high redshift galaxies (but see
Rodríguez-Puebla, Drory & Avila-Reese [178], Rodríguez-Puebla, Avila-Reese & Drory
[176], Neistein et al. [152] and Part II for local galaxies, and Watson & Conroy [231] for a
first approach at higher redshifts). Understanding the details of the satellite-to-subhalo
connection is of vital importance. It provides information about how the stellar mass
of satellite galaxies have evolved since their accretion, and shed light on the physical
process that may affect their evolution.

In Chapters 2 and 3 we have developed an approach that combines the AMT, the HOD
model, and the CSMF formalism in order to determine separately the central stellar-
to-halo mass and the satellite stellar-to-subhalo mass relations. In this approach the
subhalo mass is defined either at the time of accretion or at the current (observed) time.
We have applied the approach to obtain the local (z ∼ 0) central stellar-to-halo and
satellite-to-subhalo mass relations. In the present Chapter, we extend this approach to
higher redshifts. To that end, we utilize the Cosmic Evolution Survey [COSMOS, 185],
which allows to estimate both the galaxy stellar mass function (GSMF) and the galaxy
spatial clustering at different redshift, up to z ∼ 1. Unfortunately, the COSMOS survey
is affected by cosmic variance. In order to overcome this issue, we will introduce some
corrections.

The inferences of the stellar-to-(sub)halo mass relations at different epochs provide
relevant constraints to galaxy evolution as a function of mass. For example, if the mass
relation at masses below the knee (Mh

<∼ 1012 M�) decreases with z, then a fast late
stellar mass assembly for low-mass galaxies is expected. Instead, a non-evolving mass
relation, implies little M∗ growth and therefore, low specific star formation rates for
these galaxies. By connecting the mass relations at different redshifts with the predicted
mean halo mass assembly histories in N−body simulations, the respective mean galaxy
M∗ histories can be inferred as has been down preliminary in the pioneering works by
Conroy & Wechsler [57] and Firmani & Avila-Reese [84].
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In recent years, several determinations of the global stellar-to-halo mass relation up
to high redshifts appeared in the literature [19, 20, 148, 147, 61, 122, 250]. Nevertheless,
whether this mass relation changes or not with redshift it is yet a matter of great debate.
By means of our approach, we will be able to obtain accurate constrains because, con-
trary to previous works, we handle separately the central-halo and the satellite-subhalo
connection. Furthermore, our determinations will be carried out in narrower redshift
bins than most of previous works.

During the preparation of this work, Watson & Conroy [231] submitted a paper in
which they also constrain the mass relation of satellite galaxies. However, these authors
do not constrain both the central and satellite mass relations in a self-consistent way.

This Chapter is organized as follows, In section 6.2, we describe the extended AMT
and HOD+CSMF model. In Section 6.3, we present the data employed to constrain the
model parameters, consisting of the total GSMF and the angular projected correlation
function from the COSMOS survey from redshift z = 0.2 to z = 1. Section 6.4, presents
the procedure and the uncertainty treatment to constrain the mass relations of centrals
and satellites. In section 6.5, we present our results about the redshift evolution of the
central-to-halo mass relation and the satellite mass relation. In section 6.6, we discuss on
the possible consequence of the trends obtained for the mass relations. Finally, in section
6.7, we present our conclusions.

We adopt cosmological parameter values close to WMAP 7: ΩΛ = 0.73, ΩM = 0.27, h =
0.70, ns = 0.98 and σ8 = 0.84.

6.2 the galaxy-(sub)halo connection model

In the following, we describe briefly the semi-empirical approach used to connect the
stellar masses of central and satellite galaxies with their respective masses of halos and
subhalos. The basic idea behind this approach relies on the assumption that the cen-
tral stellar-to-halo mass and the satellite stellar-to-subhalo mass relations (CHMR and
SSMR, respectively) are monotonic. Clearly, if the dark matter halos are the hosts of cen-
tral galaxies and the subhalos are the hosts of satellite galaxies, the CHMR and SSMR
provide a direct link to the mass function of central and satellite galaxies, respectively.
Furthermore, given the conditional subhalo mass function, or equivalently, the subhalo
occupational numbers (usually obtained from N−body cosmological simulations [see
e.g., 41, , and references therein]), the SSMR offers the most practical solution to the
conditional stellar mass function of satellite galaxies, or equivalently, the galaxy occupa-
tional numbers. Therefore, this approach naturally encapsulates the main ideas behind
the abundance matching technique, the halo occupation distribution model, and condi-
tional stellar mass function formalism. A detailed description of the approach and its
application for constraining the CHMR and the SSMR at z ∼ 0 have been presented in
Part II or in RDA12 and RAD13. Here we will apply the approach to constrain the CHMR
and the SSMR at higher redshifts, up to z ∼ 1, by using the data provided by COSMOS.

Conceptually, the main steps in our statistical approach at each redshift can be sum-
marized as follows:
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1. Propose parametric functions for the mean CHMR and SSMR. In general, these
parametric functions are not necessarily the same. Assume that both central and
satellite galaxies are drawn from lognormal distributions with mean CHMR and
CHMR and scatters σc and σs.

2. Define the theoretical distinct halo and the conditional subhalo mass functions
(HMF and subHMF, respectively); for the latter, the subhalo mass can be defined
at the observation time, mobs, or at the time when the subhalo has been accreted
into the distinct halo, macc.

3. Select the observed GSMF; if available, use the GSMF decomposed into central
and satellite galaxies, and/or the observed spatial clustering of galaxies; otherwise,
combine the information of the global GSMF and the observed spatial clustering
of galaxies (the latter is the case for samples at high redshifts, where the decompo-
sition into central and satellite galaxies is difficult).

4. Assume that the spatial distribution of subhalos, and hence of satellite galaxies,
follow the halo mass density profile1. Assume also that the number distribution of
subhalos inside a distinct halo follows a Poissonian distribution (this assumption is
based on results from N-body cosmological simulations, e.g., Kravtsov et al. [115])

5. By means of a fitting procedure of the model to the selected observational data,
constrain the parameters of the CHMR and SSMR and their scatters.

The advantage of this approach is that self-consistently relates the GSMF decomposed
into centrals and satellites, the HMF/subHMF, the satellite conditional stellar mass rela-
tions (CSMFs), and the galaxy two-point correlation functions (2PCFs). Recall that unlike
previous models of this kind, the CHMR and the SSMR are handled separately. Recently,
Watson & Conroy [231], presented a similar approach that also allows to constrain the
SSMR, but using as input the previously determined total CHMR.

As we have concluded in RAD13 (Chapter 3), the constrained mass relations and their
uncertainties are similar using either the observed GSMF decomposed into centrals and
satellites plus the projected 2PCFs (set C in RAD13) or only the total GSMF plus the
2PCFs (set B in RAD13). Note that in the latter case, the GSMF decomposition into
centrals and satellites is a prediction of the model. Similarly to our set B in RAD13,
in this work we constraint the mass relations by using the total GSMF and the spatial
clustering of galaxies obtained from the COSMOS survey, then the corresponding central
and satellite GSMFs are also predictions of the model.

In the following, we briefly describe our theoretical assumptions, and in the next
Section we describe the observational data used to constrain the overall model.

6.2.1 Theoretical assumptions

As it is commonly assumed in the literature (e.g., 250, RAD13, and more references
therein), we model the distribution of central galaxies at a fixed halo mass, Pcen(M∗|Mh),

1 Of course this is only an approximation since detailed studies in N−body simulations have shown that this
may not be the case specially near the host halo centre, (e.g. Springel et al. [197])
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as a lognormal distribution, with the parameters log M∗(Mh) and σc denoting, respec-
tively, the mean logarithmic stellar mass and the standard deviation in units of dex. For
satellites galaxies, we assume also a lognormal distribution for Psat(M∗|msub), with a
standard deviation σs in units of dex. In essence, the probability distribution functions
Pcen(M∗|Mh) and Psat(M∗|msub) encode all the physical processes involved in galaxy
evolution.

For both M∗(Mh) and M∗(msub) at a given redshift, we adopt the functional form
proposed in Behroozi, Wechsler & Conroy [20],

log M∗ = log(εM1) + f (log(M/M1)) − f (0), (46)

where

f (x) = δc
(log(1 + ex))γc

1 + e10−x − log(10αcx + 1). (47)

Here M applies either to distinct halo or subhalo mass. This function behaves as power
law with slope α at masses much smaller than M1,c, and as a sub-power law with slope
γc at larger masses. The main motivation for this functional form is its ability to map
Schechter-like GSMFs from power-law halo or subhalo mass distributions; in the mass
ranges of interest, the ΛCDM HMF and subHMF are indeed power laws.

For the the distinct HMF, we use the accurate fits to ΛCDM cosmological N-body
simulations presented in Tinker et al. [207]. Here we define the halo masses at the virial
radius, i.e. the radius where the spherical overdensity is Δvir times the mean matter
density, with Δvir = (18π2 + 82x − 39x2)/Ω(z), and Ω(z) = ρm(z)/ρcrit and x = Ω(z)−
1. [43].

For the conditional subHMF, we use the results obtained in Boylan-Kolchin et al. [41]
based on the Millennium-II simulation at redshift z = 0. Previous studies based on either
the analysis of N−body simulations or using extended Press-Shechter formalism have
shown that (1) the conditional subhalo mass function is self-similar, i.e., independent
of halo mass [91, 69, 115, 210, 20] and (2) it evolves little with redshift [220, 94]. Based
on these results, for all the redshifts studied here, we used the fitting form obtained
in Boylan-Kolchin et al. [41] at z = 0 but re-scaled to our cosmology (see section 2 of
RAD13 or Chapter 3). Our method allows to use the subhalo mass defined either at the
accretion time (msub=macc) or at the current (observation) time (msub=mobs). In this work,
we use the first definition in order to compare with some previous works based on the
AMT (see Chapters 2 and 3).

For the dark matter halo density profile, used to describe the spatial distribution of
subhalos, we assume the Navarro-Frenk-White profile, which can be specified by Mh
and the concentration parameter cNFW. For the values of cNFW, we use the main cNFW–
Mh relation at different epochs as reported from large N-body cosmological simulations
in Muñoz-Cuartas et al. [150].

From the COSMOS survey we measure the angular 2PCF at a given redshift bin
[zmin, zmax]. In order to connect it to the 3D 2PCF, ξgg

2, we use the Limber’s equation:

ω(θ) =
2
c

∫ zmax

zmin

H(z)
(

dn
dz

)2

dz
∫ ∞

0
ξgg(

√
u2 + x2(z)θ2)du, (48)

2 The clustering of galaxies is computed using the HOD model [25, 60]. The HOD model describes the
probability that a halo of mass Mh hosts a number of N galaxies with stellar masses greater than M∗. Once
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where c is the speed of the light, H(z) is the Hubble parameter at the redshift z, dn/dz
is the normalized redshift distribution of the galaxies in the sample and x(z) is the
comoving distance to the median redshift. For the calculation of the angular clustering,
we consider dn/dz to be constant at each redshift bin.

6.2.2 Parameters in the model

Our model consists in total of ten free parameters for a given redshift bin. Five param-
eters are to describe the CHMR: M1,c, εc, αc, δc, and γc; and five more, to describe the
SSMR (and therefore the satellite occupational numbers): m1,s, εs, αs, δs, and γs.

While in principle, both σc and σs, the intrinsic scatters of the CHMR and SSMR,
could be considered as two more free parameters in the model, we opt to leave them
fixed, independent of halo mass, as well as of redshift, and with a value of 0.173 dex.
The lack of information about the central/satellite GSMFs at higher redshifts makes
uncertain the restriction of these parameters. The assumption is well justified at z ∼ 0
by results based on large halo-based group catalogs (YMB09), analysis of satellite-galaxy
kinematics [145, 146], and analysis based on the galaxy spatial clustering [245, 59, 45, 122,
see also RAD13]. While there is no systematic studies of these scatters at higher redshifts,
a few attempts to measure them have been performed using the galaxy spatial clustering
[61], and in combination with galaxy-galaxy weak lensing [see e.g., 122]. These studies
show that the scatter around the CHMR is nearly constant and independent of Mh and
z. In addition, the value of σc has been found consistent with the value obtained for local
galaxies. On the other hand, the scatter σs around the SSMR has not yet been discussed
in detail in the literature. In RDA12 (Chapter 2), at z ∼ 0, it was assumed to be the
same as for central galaxies, giving results consistent with the observed projected 2PCFs
and satellite CSMFs. In RAD13 (Chapter 3), using the decomposition of the GSMF into
centrals and satellites, together with the projected 2PCFs, we have shown that when σc

and σs are left as free parameters, the constrained values are actually very similar and
close to 0.173 dex. In conclusion, we assume that both σc and σs are the same at all
redshifts.

In Section 6.4 we describe how the model parameters are constrained by by the obser-
vational data (presented in the next Section)

6.3 the data

In order to constrain the galaxy-to-(sub)halo mass relations at different epochs both for
central and satellite galaxies, one requires a large and deep galaxy survey, from which
we can measure the GSMFs (at least the total one) and the galaxy clustering at different
epochs. This is the case of the COSMOS survey [185]. This survey covers an area of
2deg2, containing approximately 60000 galaxies with photometric redshifts derived from
30 broad and medium bands in the redshift interval 0.2 < z < 1 [e.g., 108, 46].

the occupational numbers are defined, ξgg can be computed by assuming that the total mean number of
galaxy pairs is the contribution of all pairs coming from galaxies in the same halo (one-halo term) and
pairs from different halos (two-halo term). For a detailed description for the HOD model employed here,
see RAD13 or Chapter 3.
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In the following, we summarize the observational data utilized to constrain the model
parameters. Firstly, we briefly describe the GSMFs obtained in Drory et al. [75] from the
COSMOS survey. We then describe how we measure the angular correlation functions
for various mass thresholds in the COSMOS survey within the same redshifts bins.

6.3.1 The galaxy stellar mass functions

We use the GSMFs from the COSMOS survey obtained in Drory et al. [75] in four redshift
bins: 0.2 < z < 0.4, 0.4 < z < 0.6, 0.6 < z < 0.8 and 0.8 < z < 1. Drory et al.
[75] obtained the stellar masses through the full multi-band photometry spectral energy
distribution fitting using stellar population models with a Chabrier [48] IMF.

Unfortunately, the volume the coverage of the COSMOS survey is relatively small in
such a way that the sample suffers of cosmic variance issues. Several galaxy clustering
analysis of this survey have reported a significant excess clustering at large scales, i.e.,
a large fraction of galaxies seem to lie in over-dense structures [140, 114, 67]. This ex-
cess, which affects galaxies in some redshift intervals within 0.6 < z < 1.0, could be a
potential source of uncertainty since the GSMF has some dependence on environment.
In the following we describe how we attempt to correct the Drory et al. [75] GSMFs at
a first order due to this environment effect. For the excess clustering correction see next
subsection.

The strongly clustered nature of the COSMOS survey has been identified at different
redshifts but seems to be more important at redshifts around z = 0.9 Kovač et al. [114],
de la Torre et al. [67]. In essence, one expects that the galaxy number density in high
density environments is higher compared to the galaxy number density in the field, see
e.g., Tempel et al. [206]. In order to correct to first order the COSMOS GSMF at z ∼ 0.9,
we have renormalized the GSMF by a factor of ∼ 0.8. We obtain this correction by
comparing with different GSMFs published in literature coming from different surveys
[e.g., 149]. On the other hand, at redshift z ∼ 0.5, apparently there is a large under-
density which results in a lower GSMF by a factor of ∼ 2 [see 75]. In comparison with
other published GSMFs at this redshift we opted to correct the GSMF by a factor of
∼ 1.6.

Figure 20 shows the corrected COSMOS total GSMFs at the four redshift bins (dots
with error bars). The stellar masses at which the sample in each redshift bin is complete
increases from ∼ 5 × 108 M� at z ∼ 0.3 to ∼ 3 × 109 M� at z ∼ 0.9. The solid lines
are the best model fit to the observations (the uncertainties of the fits are not shown to
avoid confusion in the plot. Nevertheless, not that these are of the order of the observed
ones). The shaded areas show the corresponding 1σ uncertainty regions of the model
(predicted) central and satellite GSMFs. The solid lines correspond to the total GSMF
and its decomposition into centrals and satellites, calculated under the assumption that
the stellar-to-(sub)halo mass relation is constant in time (see Sect. 6.5 below).



100 stellar-to-halo mass relations from the cosmos survey

Figure 20: The GSMFs for all, central and satellite galaxies at four redshift bins. The best fit
model to the total GSMF is indicated with the solid line, while the resulting central
and satellite GSMFs are indicated respectively with the orange and red shaded areas
which represent the 1σ confidence level. The model predictions for no evolution in
the CHMR and SSMR are indicated with the long dashed lines. Filled circles indicate
the total Drory et al. [75] GSMF from the COSMOS field.

6.3.2 The Angular Correlation function

In this Section we present the measurements of the angular 2PCF, ω(θ), in the same
redshift bins where the GSMFs were reported. In addition, for each z bin, the angular
correlation function is computed for several stellar mass thresholds, spaced equally in
bins of 0.5 dex in log M∗. Notice that the lowest mass threshold in each z bin is defined
to correspond to the lowest M∗ limit of the GSMFs. Our galaxy sample is based on the
COSMOS galaxy survey, version 1.8, dated July 2010.

To estimate the galaxy clustering at each mass threshold, we use the Landy & Szalay
[119] estimator,

ωLS(θ) = 1 +
DD(θ)
RR(θ)

N2
R

N2
D

+ 2
DR(θ)
RR(θ)

NR

ND
(49)

where DD(θ), RR(θ) and DR(θ) are the data-data, random-random and the data-random
pairs, respectively. The number of galaxies in the data and random catalogs are denoted
by ND and NR, respectively. For each correlation function measured, we create a random
catalog with 1.5 × 105 galaxies covering the same area as the original sample.

To estimate the errors in the galaxy clustering for each mass threshold sample we use
the bootstrap method. In this method one forms a set of Nrs resampling of the original
sample and of the same size by randomly picked galaxies from the original sample and
replacing them with the original sample. Then, the covariance matrix is given by,

C(ωi, ωj) =
1

Nrs − 1

Nrs

∑
k=1

(ωk
j − ωLS,j)(ωk

i − ωLS,i) (50)

where ωk
j is the value of the two point angular correlation function at the jth bin in the

kth resampling and we have adopted Nrs = 5.
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6.3.2.1 The integral constraint

In small sample areas, as in the COSMOS survey, measurements of the clustering at
large angles are biased, this is because one cannot estimate the true ω(θ) when the
angles are comparable to the survey area. The impact of this effect is that the estimation
of the angular clustering is negatively offset from the true ω(θ). This offset, C, can be
estimated by carrying out the following integration over the field area Ω:

C =
1

Ω2

∫ ∫
ω(θ)dΩ1dΩ2, (51)

where C is known as the integral constraint. In practice, one can use the random-random
pairs to carry out this integral numerically,

C = ∑ ω(θ)RR(θ)
∑ RR(θ)

. (52)

Traditionally, the estimation for C is made by an iterative process for which one re-
quires a prior model for the true ω(θ). In the literature, the model for the true ω(θ)
is often assumed to be a simple power-law, i.e., ω(θ) = Aωθγ−1, where Aω is the am-
plitude and the slope γ has the value of ∼ 1.8, (see e.g., Roche et al. [175]). However,
assuming a power-law for ω(θ) could lead us to the introduction of an extra source of
error. We therefore decide to use an alternative method to determine C, through which
we obtain a self-consistent determination of ω(θ) instead of assuming it as a power law.

As mentioned earlier, when using the mass relation between galaxies and (sub)halos
obtained via the AMT, the clustering properties of the galaxies, such as the amplitude
and the shape of ω(θ), are well characterized within the context of the HOD model
(e.g.,58, 148). This is true when the subhalo mass is defined at the accretion epoch,
msub = macc. To estimate C we take the advantage of this result. At each redshift bin,
we match the abundances between galaxies and halos plus subhalos by assuming that
Pcen(M∗|Mh) = Psat(M∗|msub); under this hypothesis, we compute a first model for ω(θ)
(see e.g., Chapter 2 and 3, and see also 58, 148). Using equation (52) we obtain a first
estimate for C. For the next step, we use the halo model. Assuming that Pcen(M∗|Mh) �=
Psat(M∗|msub) and using as constraints the overall GSMF and the corrected ω(θ) =
ωLS(θ) + C, we obtain a new set of mass relations for centrals and satellites, separately.
Then C is recalculated according to Eq. (52) . If the new C is substantially different than
the old one, then we repeat the process until some convergence is reached. Observe that
the resulting mass relation constrained under this scheme is not what we report along
this paper. These mass relations were used only to estimate C accurately. In this case,
the mass relations were constrained by finding the model parameters that maximize
the likelihood function L ∝ exp(−χ2/2) by using the Powell’s directions set method in
multi-dimensions, Press et al. [167].

As mentioned above, in the COSMOS survey there is a significant excess of clustering
at large scales which might potentially affect our measurements of the galaxy correlation
function, particularly at z ∼ 0.9. de la Torre et al. [67] have investigated how the observed
clustering of galaxies depends on the local environment, in particular in the zCOSMOS
survey, which is a subsample of the COSMOS field. Based on mock galaxy catalogs that
mimic the zCOSMOS survey, de la Torre et al. [67] found that when the top ten precent
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tail of the galaxies in the high density environments are excluded, the galaxy clustering
reassembles the Λ−CDM correlation function at large scales. To correct at a first order
our measurements of the angular galaxy clustering at z ∼ 0.9, we have found that
the following renormalization for the last mass threshold sample: ωcorr(θ|z ∼ 0.9, 11 <

log M∗) = ω(θ|z ∼ 0.9, 11 < log M∗) − 0.01, roughly mimics the correction proposed in
de la Torre et al. [67].

Figure 21 shows the resulting measured angular correlation functions for the four
redshift bins and for all mass threshold samples (skeletal symbols with error bars). The
redshift for each mass threshold sample is indicated in each panel. At a fixed redshift,
the strength of the clustering increases with mass. At a fixed stellar mass, low redshifts
galaxies are more clustered. This is consistent with previous reports of the galaxy clus-
tering between z = 0.2 to z = 1 (e.g., 61).

6.4 procedure & uncertainty treatment

We now describe the procedure for constraining the ten free parameters of the model
(§§6.2.2) by using the available observational data (§§6.3) and taking into account differ-
ent kind of uncertainties. By constraining these parameters, the model allows to predict
at each redshift bin the central and satellite galaxy-to-(sub)halo mass relations, the satel-
lite CSMFs, and the decomposition of the GSMFs into centrals and satellites.

6.4.1 The fitting procedure

To sample the best fit parameters that maximize the likelihood function L ∝ exp(−χ2/2),
we use a Markov Chain Monte Carlo (MCMC) method. Each MCMC chain consist of
5 × 105 elements for each mass threshold sample. We define the function χ2 as,

χ2 = χ2
φg

+ ∑
i,j

χ2
ωi

j(θ), (53)

where for the GSMF, the χ2’s are defined as:

χ2
φg

=
Nbin

∑
i=1

(
φg

i
,model − φg

i
,obs

σi
obs

)2

, (54)

Nbin is the number of bins in the total GSMF with an ith value of φg
i
,obs and an error of

σi
obs. The ith value of the total GSMF computed in the model is denoted as φg

i
,model.

For the angular 2PCF, the χ2 is defined as:

χ2
ωi

j(θ) =
N∗,bin

∑
i=1

Nθ,bin

∑
j=1

(
ω

i,j
model − ω

i,j
obs

σ
i,j
obs

)2

, (55)

where N∗,bin is the number of stellar mass bins, Nθ,bin denotes the number of bins in
the two point angular correlation function, ω

i,j
model(ω

i,j
obs) is the amplitude of the ob-

served (modeled) galaxy clustering at the j-th angular distance bin of the i-th stellar
mass threshold bin.
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Figure 21: Angular two point angular correlation functions at different redshift bins and stellar
mass thresholds. The skeletal symbols with error bars, show our estimation of the
galaxy clustering in the COSMOS field, while the solid lines indicate our best fit
models. Note that the redshift bins and the stellar mass thresholds are indicated in
each panel.
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In the case of χ2
ωj(θ) we use only the diagonal of the covariance matrix. As noted in

RAD13 the lack of the full covariance matrix seems to affect the results for the abundance
of satellite galaxies. Nevertheless, the error introduced under this scheme is within the
errors of the observed satellite GSMF. Additionally, Zheng, Coil & Zehavi [263] found
that the resulting marginalized distributions of the HOD parameters when using the
diagonal of the covariance matrix were closely similar to those when the full covariance
matrix is considered. Therefore, we conclude that the errors introduce in the posterior
distributions of the model parameters are of minor importance.

We begin by finding the set of ten parameters, a = {M1,c, εc, αc, δc, γc, M1,s, εs, αs, δs, γs},
that minimizes χ2 using the Powell’s directions set method in multi-dimensions, Press
et al. [167]. This first set of parameters are used as the starting point to sample the pa-
rameter space with the MCMC method. We also need to specify for each parameter an
initial proposal distribution, which generates the candidate for sampling the parameter
space. We assume that each proposal distribution is Gaussian distributed. The standard
deviation for each parameter, σi, is calculated from the covariance matrix. The covari-
ance matrix or error matrix of a is defined as the inverse of the n × n matrix α = ε−1,
computed according to

αkl =
1
2

∂2χ2(a)
∂ak∂al

. (56)

Therefore, the standard deviations in the parameters correspond to the square roots
of the terms in its diagonal, i.e., σ(ai) =

√
εii. We use the complete covariance matrix

as our best initial guess for the covariance matrix of the model parameters. Then the
covariance matrix for the proposed matrix generates candidates from a previous step
according to: ai = ai,curr + ε

p
ijxj where ε

p
ij is given by ε

p
ij = εij/n2, with n = 10 the

number of parameters to be fitted and xj is a vector consisting of j = 1, ..., 10 standard
normal deviates.

Using these results, we sample a first chain with 100,000 models, from which we com-
pute the complete covariance matrix, εc

ij. If the ratio of each prior,
√

εii, to each element
of the resulting diagonal covariance matrix,

√
εc

ii, lies in the range 0.8 ≤ √
εii/εc

ii ≤ 1.2,
then we initialize a second chain with 5× 105 elements for the model analysis; otherwise,
we repeat the procedure j−times until the ratio of the covariances of the previous chain

with the last one reachs the condition 0.8 ≤
√

ε
j−1
ii /ε

j
ii ≤ 1.2, that is, until there is not a

sufficiently significant improvement in the standard deviations of the model parameters.
The j−covariance matrix for the proposed distribution is given by ε

p,j
il = ε

j
il/n2. Then,

we run a last chain with 5× 105 elements for the model analysis. This procedure usually
takes one or two iterations.

6.4.2 The uncertainties

When computing the mass relations, there are several sources of uncertainties that
should be take into account. Among the most relevant are those in the observed GSMF,
including stellar mass estimates; in the halo mass functions; in the uncertainty of the
cosmological parameters; and in linking galaxies to halos, including the intrinsic scatter
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Figure 22: From left to right, the constrained stellar mass fraction of central and satellites, and the
number-density average mass relation. The filled blue circles, red filled squares, green
filled triangles and the yellow filled pentagons correspond to the redshifts centered
at z ∼ 0.3, 0.5, 0.7 and 0.9. Note the weak redshift evolution of the mass relations,
specially for high masses.

in this connection. In Behroozi, Conroy & Wechsler [19] the impact of these sources of
uncertainties has been studied in detail. These authors have found that the largest un-
certainty by far in the CHMR is due to systematic shifts in the stellar mass estimates,
roughly ∼ 0.25 dex, which is the value that we adopt. The second important source
of uncertainty is due to the intrinsic scatter of the stellar mass at a fixed halo mass.
We account for this error in our analysis by introducing the lognormal distributions
Pcen(M∗|Mh) and Psat(M∗|msub). The third important source of uncertainty becomes rel-
evant with redshift. This is the error introduced when the stellar masses are estimated
with limited photometric information. For this source of uncertainty, galaxies have an
intrinsic scatter relative to the true galaxy stellar mass. In our analysis, we account for
this source of uncertainty by introducing a Gaussian distribution, G(M∗|m∗), in such a
way the observed GSMF, φg(M∗), and the true GSMF, φg,true(M∗), are related via the
following convolution,

φg(M∗, z) =
∫ ∞

0
G(M∗|m∗, z)φg,true(m∗, z)dm∗. (57)

In sum, the impact of this source of uncertainty is that the observed (convolved) GSMF is
shallower than the true GSMF at the high mass end. According to Behroozi, Wechsler &
Conroy [20], G(M∗|m∗) has a mean of zero and its scatter depends on redshift according
to σ(z) = σ0 + σzz, with σ0 = 0.07 and σz = 0.04. This is consistent with previous results
in the literature [e.g., 55, 112, 163] Finally, we assume that other statistical and sample
variance errors have negligible effects, at least for redshifts z < 1.

6.5 results

6.5.1 The stellar-to-(sub)halo mass relationships

We now present the resulting COSMOS mass relations after sample the posterior distri-
butions of the model parameters by using the MCMC method described above.
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Figure 23: Redshift evolution of the stellar-to-halo mass ratio, f∗, at a fixed (sub)halo mass,
f∗(z|Mh), in various (sub)halo masses. The values of central galaxies are denoted
by the red circles with error bars, while satellite galaxies are plotted with the skeletal
symbols with error bars.

Figure 24: Left Panel: Redshift evolution of the (sub)halo mass at which the peak of the stellar-
to-(sub)halo mass ratio reaches its peak value, Mpeak

h . Model predictions for centrals
(open red circles with error bars) and satellites (blue skeletal symbols with error bars),
compared to the galaxy clustering analysis inferences of Coupon et al. [61] (black filled
triangles with error bars) and the AMT results from Behroozi, Wechsler & Conroy [20]
(open green pentagons) and Moster, Naab & White [147] (magenta solid line) Right
Panel: Redshift evolution of the maximum value of the stellar-to-(sub)halo mass ratio.
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Figure 22 shows, the central, satellite and average stellar-to-(sub)halo mass fractions,
f∗ = M∗/M, where M = Mh or = macc, vs M (left, middle and right panels, respectively)
corresponding to each one of the four redshift bins analyzed here. In general the f∗ − M
relations change little with redshift. In the case of central galaxies, f∗ slightly decreases
with z for masses below the peak, and it remains almost the same for larger masses. In
the case of satellite galaxies, the most notable difference in the evolution is at the largest
masses: f∗ decreases at higher redshifts.

To study in more detail the possible changes of the f∗ − M relations, in Fig. 23 we
plot the redshift evolution of f∗ at a fixed (sub)halo mass, f∗(z|M), in eight different
host halo/subhalo masses. We begin by examining f∗(z|Mh) for central galaxies (red
circles with error bars). The value of f∗(z|Mh) for halos smaller than Mh ∼ 1012 M�,
increases slightly for low z, i.e., for the low-mass halos, the efficiency of stellar mass
growth increases towards lower redshifts. For Mh = 1011.4 M�, if one extrapolates the
trend down to z ∼ 0, then f∗ changes from z ∼ 0 to ∼ 1 by a factor of 2, while for
Mh = 1012.15 M�, there is already no change. For larger masses, f∗ starts to decrease
very slowly as z is lower, i.e., galaxies in very massive halos were slightly more efficient
in growing their stellar masses at higher redshifts.

In the case of satellite galaxies, analogously to centrals, f∗(z|macc) changes little with
z (blue crosses with error bars in Fig. 23. For subhalo masses at the accretion below
macc ∼ 1013 M�, f∗ does not change systematically with z, while for larger masses a
slight systematical increase of f∗ at low z is observed. In other words, massive halos at
the moment that they were accreted into a larger halo they formed stars more efficiently
than those that are accreted in later epochs.

From Fig. 22, we see that the halo/subhalo mass corresponding to the peak values of
f∗, shifts to lower values with time for central galaxies, while it remains roughly constant
for satellite galaxies. In Fig. 24, we plot the values of these peak masses and stellar-to-
(sub)halo mass ratios at the different redshifts analyzed here. For central galaxies, the
peak halo mass is Mpeak

h ≈ 8 × 1011M� at z ∼ 0.3 and Mpeak
h ∼ 1.5 × 1012M� at z ∼ 0.9

(solid red circles with error bars in the left panel of Fig. 24). The difference at these
two redshifts is a factor of ∼ 2 and suggests a downsizing effect in the efficiency of the
galaxy stellar mass growth. Instead, for the satellite galaxies, the peak subhalo mass,
mpeak

acc (blue crosses with error bars), remains almost the same at all redshifts, with a
value of mpeak

acc ∼ 5 × 1011M�, i.e., it is lower at all times than the peak halo mass of
central galaxies. This result is related to the definition of the (sub)halo mass at the epoch
of its accretion, rather than to a question of efficiency: macc traces on average the masses
of halos as they were in the past (at their accretion time) and since the halo mass is
smaller on average in the past, then macc < Mh in general. Therefore, the overall satellite
stellar-to-subhalo mass relations, in particular their peaks, are shifted on average to
lower masses with respect to the central mass relations.

On the right panel of Fig. 24 we plot the corresponding f peak
∗ values as a function of

redshift both for centrals and satellite galaxies. The value of f peak
∗ for centrals does not

change systematically since z ∼ 1; in the case of satellites, f peak
∗ slightly increases at low

z. The values of centrals are slightly lower than those of satellites, but not because the
latter are more efficient in their stellar mass growth than the former, but because the
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halo masses at the accretion time were on average smaller than those of the halos at the
current epoch. This effect increases at low z.

In the same Fig. 24, we compare our result with recent measurements of Mpeak
h re-

ported in the literature. Coupon et al. [61] (black triangles), based on the galaxy cluster-
ing analysis of luminosity threshold samples from the CFHTL, infer the redshift evolu-
tion of Mpeak

h at the same redshifts bins than our measurements. The inferences based
on the AMT by Behroozi, Wechsler & Conroy [20] and Moster, Naab & White [147] are
also plotted: open pentagons for the two redshifts reported in the former paper, and the
magenta solid line for the fit reported in the latter paper. Our results are qualitatively
consistent with these previous inferences of Mpeak

h .
For completeness, in the right panel of Fig. 22 we plot the average (global) stellar-

to-(sub)halo mass fractions as a function of mass. Conceptually, this relation is the one
that is commonly obtained in the standard AMT (see Eq. 17 in RAD13). Recall that
in that case the central and satellite relations can not be differentiated. The average
f∗ − Mh relation is a density-weighted average relation between the respective central
and satellite relations. We see that these relations at different z are similar to those of the
central galaxies; this is because central galaxies are more common in the observational
sample than satellites.

Since we find strikingly little evolution of the mass relations for centrals, as well as for
satellite galaxies, the average mass relation almost also do not evolve, as seen in Fig. 22.
Recently Behroozi, Wechsler & Conroy [20] arrived to a similar result. Presumably, this
is a consequence of the little redshift evolution of the global GSMF, and possibly, of the
central GSMF. In order to test this hypothesis, we compare the model predictions for
the central and satellite GSMFs with those inferred assuming a non-evolutionary model
for the CHMR and the SSMR.

6.5.2 The GSMF of central & satellite galaxies

The resulting predictions for the central (orange filled area) and satellite (red filled area)
GSMFs from z = 0.2 to z = 1 are plotted in Fig. 20 above. The filled areas represent
the confidence at the 1-σ level. At higher redshifts the average (total) GSMF is more
dominated by the central GSMF component than at lower redshifts. With cosmic time,
the abundance of satellite galaxies increases, specially from intermediate to low masses.
The high-mass end remains almost the same at all redshifts. Note that the low-mass end
slope of the GSMFs of centrals and satellites are similar to those of the average (global)
GSMFs at all redshifts; this means that the number ratio of satellite to central galaxies is
nearly constant at these masses.

The long-dashed black solid lines in each panel indicate the resulting central, satellite
and total GSMFs from a model, where it is assumed that the CHMR and SSMR do
not change with redshift (non-evolutionary model). The constant CHMR and SSMR for
this model are fixed to be those constrained locally in RAD13 (Chapter 3), where the
data are richer and more accurate than at higher redshifts. These mass relations were
accurately constrained by using the observational information of the GSMF decomposed
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Figure 25: Satellite fraction as a function of the stellar mass for the redshift bins centered at
z = 0.3, 0.5, 0.7, and 0.9 (crosses, filled circles, triangles and squares, respectively).
Solid lines indicates the fraction obtained from the non-evolutionary model, see the
text for details.

Figure 26: Satellite CSMFs in eight halo mass bins for the redshift bins centered at z = 0.3, 0.5, 0.7,
and 0.9 (solid, short-dashed, long-dashed and dot-short dashed lines, respectively).
For comparison we present the Satellite CSMFs constrained in Chapter 3 using set B
and set C, light gray and dark gray areas.



110 stellar-to-halo mass relations from the cosmos survey

into centrals and satellites and the galaxy correlation function decomposed into several
mass bins (set C).

We observe that the non-evolutionary model roughly reproduces the abundances of
centrals and satellites up to z = 1. This means that the little redshift evolution of the
observed GSMF seen up to z = 1 is a direct consequence of the (almost) lack of evolution
in the mass relations or, i.e., in the efficiency of stellar mass growth of galaxies as a
function of halo mass. Nevertheless, this model cannot reproduce the (weak) redshift
evolution of the GSMF at its high mass end, mainly the one corresponding to satellites.

6.5.3 The satellite fraction

Figure 25 shows the fraction of those galaxies that are satellites, fsat, as a function of
stellar mass for the redshift bins centered at z = 0.3, 0.5, 0.7, and 0.9 (crosses, filled circles,
triangles and squares, respectively). For comparison, we show the resulting fractions
obtained from the non-evolutionary model (solid black lines). In general, at all redshifts
fsat slowly decreases with M∗ up to M∗ ∼ 1010 M�, and for larger masses, it decreases
strongly. This fraction for most of the masses increases at low z. At M∗ ∼ 1010M�, fsat

increased by factor of ∼ 1.5 from z = 0.9 to z = 0.3. The non-evolutionary model is
qualitatively similar to our results but it shows slightly lower (higher) values of fsat at
smaller (larger) masses at all redshifts.

Finally, since the SSMR determines the halo occupation distribution of satellite galax-
ies at a fixed halo mass, the slight change of SSMR with redshift implies that the satellite
population follows a redshift independent occupational distribution at a fixed halo mass
[e.g., 61]. Therefore the satellite CSMF as a function of Mh should be also approximately
independent of redshift. This is indeed the case for our model results. Figure 26 shows
the predicted satellite CSMFs in eight halo mass bins for each one of the four redshift
bins. Recall that the HOD of subhalos as a function of Mh used here is independent of
redshift according to analysis of N−body cosmological simulations [91, 69, 115, 210, 20].

6.6 discussion

6.6.1 Comparison with previous works

The aim of this Chapter was to constrain the redshift evolution of the mass relations for
both centrals and satellites, CHMR and SSMR, respectively, in the COSMOS survey, and
to estimate the decomposition of the GSMFs into centrals and satellites at different z′s .
There are only a few previous attempts to infer the SSMR separately for local galaxies
[178, 176, 152], and only one at higher redshifts [231]. Our determinations are the most
complete (4 redshift bins) up to z ∼ 1. In the following, in order to make a direct
comparison with previous works, we have divided the discussion between those that
infer the mass relations of central galaxies only and those that infer the average mass
relation.
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Figure 27: Stellar-to-halo mass relations for central galaxies at the redshift bins z = [0.4, 0.6] and
[0.8,1]. Model results, solid lines bracketed by the orange shaded areas, compared
to the galaxy clustering+weak lensing analysis from Leauthaud et al. [122] and the
results based on CSMF formalism from Yang et al. [250].
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Figure 27 presents a comparison of the CHMRs at the redshift bins centered in z = 0.5
and z = 0.9 (solid lines bracketed by orange dashed regions) with those reported in Yang
et al. [250] and Leauthaud et al. [122].

The observational constraints used by Yang et al. [250] were the total GSMFs up to
z ∼ 4, the conditional stellar mass function at z ∼ 0 in various halo mass bins, and
the galaxy clustering for z ∼ 0 galaxies. They experimented with two different sets for
the GSMF up to z ∼ 4: one reported in Pérez-González et al. [163] and based on the
Spitzer data (Y+12A), and another one reported in Drory et al. [76] and based on the
deep multicolor data in the FORS deep field and the Great Observatories Origins Deep
Survey-south/Chandra deep field-south region (Y+12B). Their corresponding CHMRs
are plotted in Fig. 27 as green and grey shaded areas, respectively (they represent the 1σ

confidence level of their inferences). In the case of Leauthaud et al. [122], they combined
staked galaxy-galaxy weak lensing data and galaxy clustering at various mass thresholds
from the COSMOS data. The resulting mean halo masses as a function of stellar mass
are also plotted (dashed blue lines). Note that for the latter the comparison is not direct
since Leauthaud et al. [122] inferred the mean Mh as a function of M∗; we actually plot
the inverse of their reported relation. Note also that we have applied small corrections
to Mh in the Yang et al. [250] results in order to convert their halo mass definition to our
virial mass, as well as in M∗ in order to be consistent with the Chabrier [48] initial mass
function adopted here.

In general, our results are roughly consistent with both the Yang et al. [250] and
Leauthaud et al. [122] results, in particular with the latter. This is not surprising since
Leauthaud et al. [122] actually used similar data to those used here. For the z ∼ 0.9
bin, our results and even more those of Leauthaud et al. [122], show stellar masses
larger than those of Yang et al. [250] for halos in the mass range 1012 − 1013 M�. This
discrepancy with the COSMOS data has been noted before (see 250) and it is probably
due to the overdensity in the COSMOS field at z ∼ 0.9. It seems that our attempt to
correct for the overdensity, both in the GSMF and the angular 2PCF, ameliorated the
problem as compared with the Leauthaud et al. [122] results.

In Figure 28 we present a comparison of the average stellar-to-halo mass relation at the
redshift bins centered in z = 0.5 and z = 0.9 (solid lines surrounded by orange dashed re-
gions) with previous works, namely Behroozi, Conroy & Wechsler [19], Behroozi, Wech-
sler & Conroy [20] and Moster, Naab & White [147]. Note that these authors used meth-
ods closely related to the abundance matching technique.

Behroozi, Conroy & Wechsler [19] (violet long dashed line) used as observational in-
put the total Pérez-González et al. [163] GSMF in a wide range of redshifts, and consid-
ered several sources of uncertainty. Behroozi, Wechsler & Conroy [20] used the combined
data sets of Baldry, Glazebrook & Driver [16], Moustakas et al. [149] and Pérez-González
et al. [163]. We present their results at z ∼ 0.9 with the red long dashed line. Moster,
Naab & White [147] used the GSMFs by Pérez-González et al. [163] and Santini et al.
[182] GSMFs (green solid line).

Our inferred average mass relations are consistent with previous AMT results, spe-
cially at z ∼ 0.5. At redshift ∼ 0.9 we observe a discrepancy between our results with
those obtained in Behroozi, Conroy & Wechsler [19], the reason is not clear. However,
the comparison between our results with those from Behroozi, Wechsler & Conroy [20]
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Figure 28: Similar to Fig. 27 but for the average stellar-to-halo mass relation. Comparison with
the results based on the AMT from Behroozi, Conroy & Wechsler [19], Behroozi, Wech-
sler & Conroy [20] and Moustakas et al. [149] are shown with the short-dashed, long-
dashed and short dotted-lines, respectively.

are consistent within the error bars. Note that Behroozi, Wechsler & Conroy [20] used
similar data than Behroozi, Conroy & Wechsler [19] for redshifts z < 1, but the former
have include also the Moustakas et al. [149] GSMF as a constraint.

6.6.2 On the lack of evolution of the stellar-to-(sub)halo mass relations

The main result of this Chapter is the slight change with redshift obtained for both the
CHMR and SSMR (Figs. 22 and 23), which implies that the efficiency of stellar mass
growth of both central and satellite galaxies for a given host halo mass is roughly the
same since z ∼ 1. However, for central galaxies, we found a shift of the halo mass at the
peak efficiency towards lower masses at low z (downsizing; Fig. 24). These findings are
probably mainly due to the slight evolution of the total GSMF since z ∼ 1. To test this
hypothesis, we have applied a model in which the CHMR and the SSMR do not evolve
with redshift and obtained a GSMF change with z consistent with the one observed in
the COSMOS GSMF, althought at the high-mass end the prediction evolves less than the
observation. The latter is associated to the (slight) change that the peak efficiency scale
seems to suffer (downsizing).
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The almost lack of evolution of the CHMR since z ∼ 1 offers a first order description
of the stellar mass growth of central galaxies. For the case of a no evolving CHMR, the
stellar mass growth of a central galaxy is determine by the shape of this relation and the

growth rate of its host halo, that is, M∗(z) ∝ Mβ(Mh;z)
h (z), where β(Mh; z) is the slope of

the CHMR around the mass in question and at the epoch z; for a non-evolving CHMR,
β at a given Mh is the same at all redshifts. The local CHMR (see Chapter 3) is such that
β acquires roughly the following values:

β ≈ 2.5 for Mh < 1012M�,

β ≈ 1 for Mh ∼ 1012M�,

β ≈ 0.3 for Mh > 1012M�.

(58)

Using the above equations, we can infer a very crude model for the stellar mass growth
rate of galaxies, Ṁ∗. By differentiating in time M∗(z) ∝ Mβ

h(z) (omiting by the moment
the dependence of β on Mh), one obtains Ṁ∗ ∝ β× Mβ

h × Ṁh. From N-body cosmological
simulations, Fakhouri & Ma (2010) obtained that Ṁh ∝ f (z)× M1.1

h , where f (z) is a func-
tion that strongly increases with z. Hence, Ṁ∗ ∝ β× Mβ+0.1

h × f (z) ∝ β× M1+0.1/β
∗ × f (z).

The specific stellar mass growth rate is then: (Ṁ∗/M∗) ∝ β × M0.1/β
∗ × f (z). Therefore,

for a given z, the normalization of (Ṁ∗/M∗), given by β, decreases almost and order of
magnitude from low to high masses (see eq. 58), i.e., low-mass galaxies are more actively
growing than massive galaxies. For any mass, (Ṁ∗/M∗) is higher at higher z according
to the dependence on f (z). For galaxies living in halos much smaller than the peak mass,
Mh ∼ 1012 M�, β = 2.5, and therefore, (Ṁ∗/M∗) ∝ β × M0.04∗ × f (z), i.e., their specific
M∗ growth rate is almost independent on mass. For low-mass galaxies the specific M∗
growth rate is practically equal to the in situ specific star formation rate (SSFR). For large
masses, along with the SSFR, dry mergers (low gas content) can significantly contribute
to the M∗ growth of galaxies.

The non-evolution model makes predictions that at a qualitatively level agree with
the empirical picture of stellar mass growth of galaxies as a function of their masses
(see e.g., Firmani & Avila-Reese [84], Behroozi, Wechsler & Conroy [20]). However, in
more detail, we remark a possible shortcoming. At small masses, a large body of ob-
servational inferences show that the SSFR increases on average for small M∗ for local
and higher redshift galaxy populations (downsizing in SSFR; see for a review 87, 9, 17).
The non-evolution model predicts a constant SSFR; in order for the SSFR to increase
for low masses, the f∗–Mh relation at low masses should decreases and steepen with z.
Our constrained CHMR shows this behavior, though very incipiently. Thus, a moderate
evolution of the low-mass side of the CHMR seems to be necessary in order to be in
agreement with observations of the SSFR of galaxies.

At large masses, the observational pieces of evidence suggest that galaxies are passive
since long time ago, i.e. they are almost not forming stars anymore since high redshifts
(e.g., Pérez-González et al. [163]). This is roughly our result obtained for large masses
for a non-evolving CHMR, but there is yet room for a small growth by dry mergers.
It is still a matter of debate how much massive passive galaxies grow by dry mergers
since z ∼ 1. In the case of our constrained CHMRs, they slightly increase with z at the
high-mass end, which implies even less stellar mass growth than the non-evolving case.
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Thus, our results disfavor the role of dry mergers in the late mass growth of massive
passive galaxies.

Whereas at a first order the redshift evolution of CHMR seems to be constant, in detail
we observe that the halo mass where the peak of f∗, Mpeak

h , is reached increases with
redshift. This means that high mass halos were more efficient in growing stars during
the past. Nevertheless, we observe that this efficiency is roughly the same since z ∼ 1
with a critical value of f∗ ∼ 0.03. For satellite galaxies, the position of the peak of f∗
stays also roughly constant but higher compared to centrals, fpeak ∼ 0.04 vs. ∼ 0.03.

Similarly, when one looks at the position of Mpeak
acc , it is almost constant, while the Mpeak

h
for centrals decreases from z ∼ 0.9 to ∼ 0.3 by a factor of 2, being all the time larger than
Mpeak

acc (see Fig. 24). These differences can be explained mostly by the fact that since macc

is the mass of a halo accreted in the past, it is systematically lower than the current halo
masses of central galaxies. It is also possible that the difference between the CHMR and
the SSMR gives quantitative information about how much, on average, satellite galaxies
have grown after their accretion.

Finally, if the CHMR and the SSMR are independent on redshift and roughly similar,
i.e., CHMR ∼ SSMR, then the distribution functions Pcen(M∗|Mh) ∼ Psat(M∗|msub),
which is one of the main hypothesis of the abundance matching technique. Is possible
that this the main reason for the success of the AMT [see also, 231],

6.7 conclusions

By means of a statistical model that combines the AMT, the HOD model, and the CSMF
formalism, we have inferred the stellar-to-(sub)halo mass relations for central and satel-
lite galaxies at different redshifts up to z ∼ 1 for the COSMOS data. This deep survey
offers the possibility to calculate the necessary information for constraining the param-
eters of our model, namely the GSMF and the angular 2PCFs at different redshift bins,
from z = 0.3 to z = 0.9 in our case. We have corrected the GSMF and angular 2PCFs
at the redshifts were the COSMOS survey is apparently affected by the large-scale over-
densities and underdensities within its relatively small area. Our main results and con-
clusions are as follow.

• The CHMR and SSMR change slight with redshift. The most remarkable changes
are at the low-mass end of the former which slightly decreases with z, and at
the high-mass end of the latter, which slightly increases with z. The halo mass
corresponding to the peak of the stellar-to-halo mass ratio f∗ of central galaxies,
Mpeak

h , decreases a factor of 2 from z = 0.9 to z = 0.3 (downsizing in mass), while
the corresponding peak mass for the satellite galaxies, mpeak

acc , remains the same
and it is ever smaller than Mpeak

h . The values of f∗ are roughly 0.03 and 0.04 for
central and satellite galaxies, respectively, at all redshifts. These small differences
between the central and satellite mass relations can be explained mainly by the
fact that the halo masses at the past accretion time (used for assigning subhalo
masses to the satellites) are systematically smaller than the current halos masses
of centrals because the halo mass increases with time on average.
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• Our model allows to decompose the GSMF at each z into centrals and satellites.
The fraction of satellite galaxies at a given stellar mass, fsat, slightly decreases with
M∗ up to ∼ 1010M�, and for larger masses strongly decreases. This behavior is the
same at the four redshift bins; however, the values of fsat increase with time for
almost all masses. For instance, for M∗ ∼ 1010M�, fsat ≈ 0.32 at z = 0.3 and it
increased by a factor of ∼ 1.5 since z = 0.9. The satellite CSMFs as a function of
host halo mass remain roughly the same at different redshifts.

In spite of the cosmic variance issues of the COSMOS sample, we were able to ob-
tain robust constrains on the CHMR and SSMR of central and satellite galaxies at four
redshift bins since z ∼ 1, as well as on the fractions of satellite galaxies as a function
of M∗ at each redshift. We find that the change of the mass relations with z, in particu-
lar the one corresponding to central galaxies, is small. Therefore, a model that assumes
no evolution of the CHMR describes reasonable well our main results regarding the
GSMFs of central/satellites, the satellite fractions, and the satellite CSMFs at different
epochs. However, we have seen that a complete lack of evolution of the CHMR implies
no downsizing in SSFR, i.e., a constant SSFR with M∗ at low masses, in potential conflict
with direct determinations of the SSFR vs M∗ of local and high-redshift galaxies. Since
our constrained stellar-to-halo mass relation for centrals actually slightly decreases and
steepens with z at low masses, some downsizing in SSFR is expected. For large masses,
our CHMR slightly decreases with z, which implies almost no growth of M∗ for massive
galaxies, and hence a minimal possibility for dry mergers.
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Part V

T H E G A L A X Y- T O - H A L O C O N N E C T I O N O F B L U E A N D R E D
G A L A X I E S AT z ∼ 0

En esta Parte V nos enfocamos en estudiar la conexión local galaxia central-halo
separada en galaxias rojas y azules con el objetivo de dilucidar si la eficiencia de
crecimiento de masa estelar de las galaxias ( f∗ = M∗/Mh), aparte de la masa de
halo, Mh, depende del color de la galaxia. En el Capitulo 7 se utiliza la técnica del
empate de las abundancias para obtener las relaciones masa estelar galaxia central-
masa halo, M∗-Mh, y masa bariónica galaxia central-masa halo, Mb-Mh, para galax-
ias centrales rojas y azules, para lo cual se hacen suposiciones sobre los halos que
albergan galaxias rojas y azules basadas principalmente en criterios de fusiones may-
ores. Se encuentra que las relaciones M∗-Mh para galaxias centrales rojas y azules
difieren poco, siendo la eficiencia f∗ ligeramente mayor para galaxias rojas para
masas mayores a Mh ∼ 3× 1011 M�. En el caso de las relaciones bariónicas, Mb-Mh,
las diferencias entre rojas y azules son aún menores, a excepción de las masas bajas,
Mh

<∼ 3 × 1011 M�, donde la relación para azules se hace más plana. En el Capitulo
8 se presenta un modelo estadístico más completo que el simple empate de abun-
dancias, mismo que relaciona de manera auto-consistente la función de masa de
galaxias centrales y satétiles separadas en rojas y azules, las funciones condicionales
de masa estelar de satélites y la función de correlación de dos puntos separadas en
rojas y azules, así como la función de masa de (sub)halos de materia oscura fría.
Además en este modelo, la fracción de halos que albergan galaxias rojas y azules
se constriñe usando las distribuciones color-M∗ observadas. Como resultado de la
auto-consistencia que se logra entre todas las observaciones mencionadas y las fun-
ciones de masa de halos/subhalos, se obtiene la relación M∗-Mh por separado en
rojas y azules, así como también la función de masa de los halos que albergan galax-
ias rojas y azules y las funciones de masa condicional de satélites rojos y azules en
función de Mh. Se muestra que las relaciones M∗-Mh de azules y rojas no difieren
significativamente entre sí, y por lo tanto no se segregan sistemáticamente de la
relación M∗-Mh total de galaxias centrales. Las suposiciones hechas en el Capítulo
8 sobre los halos que albergan galaxias rojas y azules, basadas en criterios de fu-
siones mayores, parecen ser consistentes con los resultados obtenidos del modelo,
incluyendo la función de correlación observada de galaxias rojas y azules. No ob-
stante, algunos refinamientos a esas suposiciones son necesarios. Se concluye que la
eficiencia de crecimiento de M∗ de las galaxias centrales es fuertemente controlada
por la masa del halo (potencial gravitacional) debido a los procesos astrofísicos de
eyección de gas por retro-alimentación de SNs y AGNs y de enfriamiento radiativo
del gas, mismos que son principalmente dependientes de la escala; posibles depen-
dencias de la historia de agregación de masa de los halos o su concentración que
podrían segregar a las galaxias por color en la relación M∗-Mh son borradas.

El Capítulo 7 corresponde al artículo publicado: "On the stellar and baryonic mass
fractions of central blue and red galaxies", Rodríguez-Puebla, Avila-Reese, Colín & Fir-
mani 2011, RevMexAA, 47, 235. Algunas cuestiones que se discuten en el Capítulo 8
han sido abordadas en el artículo remitido "Central galaxies in different local environ-
ments at z ∼ 0: do they have similar properties?", Lacerna, Rodríguez-Puebla, Avila-Reese,
Hernández-Toledo 2013
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O N T H E S T E L L A R A N D B A RY O N I C M A S S F R A C T I O N S O F
C E N T R A L B L U E A N D R E D G A L A X I E S

This Chapter was published as: Rodríguez-Puebla A; Avila-Reese V.; Colín P.; Firmani C., 2011,
RevMexAA, 47, 235.

ABSTRACT
Using the abundance matching technique, we infer the local stellar and baryonic mass–

halo mass (Ms-Mh and Mb-Mh) relations separately for central blue and red galaxies
(BGs and RGs). The observational inputs are the SDSS central BG and RG Stellar Mass
Functions and the measured gas mass-Ms relations. For halos associated to central BGs,
the distinct ΛCDM Halo Mass Function is used and set up to exclude: (i) the observed
group/cluster mass function and (ii) halos with a central major merger at resdshifts
z ≤ 0.8. For central RGs, the complement of this mass function to the total one is used.
At Mh > 1011.5M�, the Ms of RGs tend to be higher than those of BGs for a given Mh, the
difference not being larger than 1.7. At Mh < 1011.5M�, this trend is inverted. For BGs
(RGs): (a) the maximum value of fs = Ms/Mh is 0.021+0.016

−0.009 (0.034+0.026
−0.015) and it is attained

at log(Mh/M�)= 12.0 (=11.9); (b) fs ∝ Mh ( fs ∝ Mh
3) at the low-mass end while at the

high-mass end, fs ∝ Mh
−0.4 ( fs ∝ Mh

−0.6). The baryon mass fractions, fb=Mb/Mh, of BGs
and RGs reach maximum values of fb = 0.028+0.018

−0.011 and fb = 0.034+0.025
−0.014, respectively. At

Mh < 1011.3M�, the dependence of fb on Mh is much steeper for RGs than for BGs. We
discuss the differences found in the fs-Mh and fb-Mh relations between BGs and RGs in
the light of semi-empirical galaxy evolution inferences.

7.1 introduction

The galaxy stellar and baryonic mass functions (GSMF and GBMF, respectively), inferred
from the observed luminosity function and gas fraction–stellar mass ( fg–Ms) relation,
contain key statistical information to understand the physical processes of galaxy for-
mation and evolution. Within the context of the popular Λ Cold Dark Matter (ΛCDM)
hierarchical scenario, dark matter halos are the sites where galaxies form and evolve
[239, 238]. Hence, a connection between GBMF or GSMF and the halo mass function
(HMF) is expected. The result of such a connection is the galaxy stellar and baryonic
mass–halo mass relations, Ms-Mh and Mb–Mh, and their intrinsic scatters, both set by
complex dynamical and astrophysical processes intervening in galaxy formation and
evolution [see for recent reviews, 18, 5, 23]. In this sense, the Mb/Mh and Ms/Mh ratios
quantify the efficiency at which galaxy and star formation proceeds within a halo of
mass Mh. Therefore, the empirical or semi-empirical inference of the Mb–Mh and Ms–
Mh relations and their scatters (locally and at other epochs) is nowadays a challenge of
great relevance in astronomy.
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For simplicity, in statistical studies like those related to the GSMF, galaxies are labelled
by their mass alone. However, by their observed properties, correlations, and evolution,
galaxies show a very different nature, at least for the two major groups in which they
are classified: the rotationally-supported disk star-forming (late-type) and the pressure-
supported spheroid quiescent (early-type). In the same way, the evolution of galaxies is
expected to differ if they are centrals or satellites. The main intrinsic processes of galaxy
evolution are associated to central galaxies, while satellite galaxies undergo several ex-
tra astrophysical processes because of the influence of the environment of the central
galaxy/halo system in which they were accreted. Hence, if the Mb–Mh or Ms–Mh rela-
tions are used for constraining galaxy formation and evolution processes, these relations
are required separately for at least the two main families of late- and early-type galaxies
and taking into account whether the galaxy is central or satellite. Fortunately, in the last
years several studies appeared, in which a decomposition of complete GSMFs by color,
concentration or other easily measurable indicators of the galaxy type was carried out
[e.g., 21, 188, 26]. Evenmore, in a recent work Yang, Mo & van den Bosch [247, hereafter
YMB09] used the Sloan Digital Sky Survey (SDSS) data for obtaining the GSMFs of both
central and central + satellite galaxies separated in each case into blue and red objects.

With the coming of large galaxy surveys, a big effort has been done in constraining
the z ∼ 0 total Ms–Mh relation (i) directly by estimating halo masses with galaxy-galaxy
weak lensing, with kinematics of satellite galaxies or with X-ray studies; and (ii) indirectly
by linking observed statistical galaxy properties (e.g., the galaxy stellar mass function
GSMF, the two-point correlation function, galaxy group catalogs) to the theoretical HMF
[see for recent reviews and more references, 148, 146, 19, hereafter BCW10]. While the
latter approach does not imply a measure-based determination of halo masses, it is
simpler from a practical point of view, as it allows to cover larger mass ranges, and
can be extended to higher redshifts than the former approach [see recent results in, 57,
148, 225, and BCW10]. Besides, both the weak lensing and satellite kinematics methods
in practice are (still) statistical in the sense that one needs to stack large number of
galaxies in order to get sufficient signal-to-noise. This introduces a significant statistical
uncertainty in the inferred halo masses.

The indirect approach for linking galaxy and halo masses spans a large variety of
methods, among them the Halo Occupation Distribution [161, 25, 115] and the Condi-
tional Luminosity Function formalisms [245, 244]. These formalisms introduce a priori
functional forms with several parameters that should be constrained by the observa-
tions. Therefore, the final inferred Ms–Mh relation is actually model-dependent and yet
sometimes poorly constrained due to degeneracies in the large number of parameters. A
simpler and more empirical method –in the sense that it uses only the GSMF (or luminos-
ity function) as input and does not require to introduce any model– has been found to
give reasonable results. This indirect method, called the abundance matching technique
(hereafter, AMT; e.g., 216, 115, 58, 187, 234, 16, 217, 57, 75, 148, 19, 102, 20, 170, 159),
is based on the assumption of a monotonic correspondence between Ms and Mh; in
the limit of zero scatter in the Ms–Mh relation, the halo mass Mh corresponding to a
galaxy of stellar mass Ms, is found by matching the observed cumulative GSMF to the
theoretical cumulative HMF.
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In this Chapter we apply the AMT in order to infer the local Ms–Mh relation for
central blue and red galaxies separately, which requires as input both the observed central
blue and red GSMFs, taken here from YMB09. Note that in order to infer the Ms–Mh
relation of galaxy subpopulations (e.g., blue/red or central/satellite ones) solely from
the overall GSMF, models for each subpopulation should be introduced, which largely
increases the uncertainty in the result. Regarding the HMFs to be matched with the
corresponding observed central GSMFs, the theoretical HMF is decomposed into two
functions –associated to halos hosting blue and red galaxies– based on empirical facts:
blue galaxies are rare as central objects in groups/clusters of galaxies, and they should
not have undergone late major mergers because of the dynamical fragility of disk (blue)
galaxies. Nowadays, it is not clear whether the Ms–Mh relation varies significantly or
not with galaxy color or type. Previous studies that discussed this question were based
on direct methods: the weak lensing [133] and satellite kinematics [146] techniques. The
uncertainties in the results of these studies are yet large, and can be subject to biases
intrinsic to the sample selection and to effects of environment.

We also estimate here the galaxy baryon mass-halo mass relations, Mb–Mh
1, where

Mb= Ms+ Mg, by using the GSMFs combined with average observational estimates of
the galaxy gas mass, Mg, as a function of Ms. The galaxy baryonic mass fraction, fb=
Mb/Mh, and its dependence on mass is important for constraining models and simula-
tions of galaxy evolution, and is also a key input for some approaches, implemented for
modelling the most generic population of galaxies, namely isolated (central) disk galaxies
[e.g., 144, 82, 218, 203, 80, 96, 79]. In these and other studies, it was shown that several
disk galaxy properties, correlations and their scatters depend (or are constrained) by fb.
In a similar way, the fb-Mh dependence is expected to play some role in the results of
structural and dynamical models of spheroid-dominated galaxies.

In Section 7.2 we describe the method and the data input. The stellar/baryon mass–
halo mass relations for the total, blue and red (sub)samples are presented in Section
7.3. In Section 7.4 we compare our results with other observational works, and discuss
whether they are consistent or not with expectations of semi-empirical inferences. The
summary and our conclusions are given in Section 7.5.

7.2 the method

The AM statistical technique is based on the hypothesis of a one-to-one monotonic in-
creasing relationship between Ms (or Mb) and Mh. Therefore, by matching the cumulative
galaxy stellar and halo mass functions, for a given Ms a unique Mh is assigned:∫ ∞

Mh

φh(M′
h)dM′

h =
∫ ∞

Ms

φs(M′
s)dM′

s, (59)

where φh is the overall HMF (distinct + subhalos) and φs is the overall GSMF; distinct
halos are those not contained inside more massive halos. It is reasonable to link central
galaxies with distinct halos. Therefore, in the case of using the GSMF for only central
galaxies, the distinct HMF should be used for the matching. Since the main purpose of
this Chapter is the inference of the Ms–Mh (and the corresponding Mb–Mh) relation for

1 We assume that the galaxy baryonic mass is included in the halo (virial) mass Mh.
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Figure 29: Left panel: Different local GSMFs for all galaxies. The reported data in Bell et al. [21,
pink squares] and YMB09 (black hexagons) are plotted directly, while for Baldry,
Glazebrook & Driver [16, blue solid line] and Li & White [124, dot-dashed green
line], the best fits these authors find to their samples are plotted. Red triangles show
the data from YMB09 corresponding to the GSMF of central-only galaxies. Middle and
right panels: Data corresponding to the decomposition of the GSMF into blue and red
galaxies, respectively, from Bell et al. [21] and for all and central-only galaxies from
YMB09.

blue (red) galaxies, (i) a GSMF that separates galaxies by color is necessary (the data to
be used here are discussed in 7.2.1), and (ii) a criterion to select the halos that will likely
host blue (red) galaxies shall be introduced (see 7.2.2.1).

In this Chapter we will not carry out an exhaustive analysis of uncertainties in the
inference of the Ms–Mh relation with the AMT. This was extensively done in BCW10
[see also, 148]. In BCW10 the uncertainty sources are separated into three classes: (i)
in the observational inference of GSMF, (ii) in the dark matter HMF, which includes
uncertainties in the cosmological parameters, and (iii) in the matching process arising
primarily from the intrinsic scatter between Ms and Mh.

7.2.1 Galaxy and Baryonic Stellar Mass Functions

In the last years, complete galaxy luminosity functions (and therefore, GSMFs) were
determined for local samples covering a large range of luminosities (masses). The stel-
lar mass is inferred from (multi)photometric and/or spectral data (i) by using average
stellar mass-to-light ratios, depending only on color (inferred from application of stellar
population synthesis –SPS– models to galaxy samples with independent mass estimates,
e.g. Bell et al. [21]), or (ii) by applying directly the SPS technique to each sample galaxy,
when extensive multi-wavelength and/or spectral information is available.

In both cases, a large uncertainty is introduced in the inference of Ms due to the uncer-
tainties in the IMF, stellar evolution, stellar spectral libraries, dust extinction, metallicity,
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etc. Bell et al. [21] estimated a scatter of ≈ 0.1 dex in their Ms/L ratios in infrared bands.
Conroy, Gunn & White [55] carried out a deep analysis of propagation of uncertainties
in SPS modelling and concluded that Ms at z ∼ 0 carry errors up to ∼ 0.3 dex (but see
Gallazzi & Bell [89]). Here, we will consider an overall systematical uncertainty of 0.25
dex in the Ms determination (see BCW10).

Most of the current local GSMFs were inferred from the 2dF Galaxy Redshift Survey,
Two Micron All-Sky Survey (2MASS) and SDSS [e.g., 52, 21, 13]. The low-mass com-
pleteness limit due to missing of low surface brightness galaxies is at ∼ 108.5 Ms [16].
An upturn of the GSMF close to this end (below Ms∼ 109 M�) was confirmed in several
recent works (16; YMB09; 124). Due to this upturn, a better fit to the GSMFs is obtained
by using a double or even triple Schechter function. Since the low-mass end of the GSMF
is dominated by late-type galaxies, this upturn plays an important role in the Ms–Mh
relation of late-type galaxies at low masses.

For our purposes, observational works where the GSMF is decomposed into late- and
early-types galaxies are required. Such a decomposition has been done, for example, in
Bell et al. [21], who combined 22679 SDSS Early Data Release and 2MASS galaxies, and
used two different criteria, color and concentration, to split the sample into two types of
galaxies. A much larger sample taken from the NYU-VAGC based on the SDSS DR4 has
been used by YMB09 (see also Yang, Mo & van den Bosch [246]), who split the sample
into blue and red subsamples according to a criterion in the 0.1(g − r) − Mr diagram. In
both works, Ms is calculated from the r−band magnitude by using the corresponding
color-dependent Ms/Lr ratio given in Bell et al. [21]. In YMB09 each color subsample is
in turn separated into central and satellite galaxies according to their memberships in
the constructed groups, where the central galaxy is defined as the most massive one in
the group and the rest as satellite galaxies.

In Figure 29, the Bell et al. [21] and YMB09 GSMFs are reproduced by using the data
sets reported in these papers. In the left panel, the full sample from each work (solid
squares and solid hexagons, respectively) are plotted, as well as the case of central-only
galaxies from YMB09 (solid triangles); both GSMFs and the other ones plotted in this
figure are normalised to h = 0.7 and to a Chabrier [48] IMF. In the central and right
panels, the corresponding blue (late-type) and red (early-type) sub-samples are plotted
with the same symbols on the left panel. For the Bell et al. [21] sub-samples, only those
separated by their color criterion are plotted. Both GSMFs corresponding to the full and
blue sub-samples are in good agreement for Ms

>∼ 109.5 M�. For lower masses, the Bell
et al. [21] GSMF’s are higher. On one hand, the Bell et al. [21] sample is much smaller
than the YMB09 one (therefore the effect of cosmic variance is more significant). On the
other hand, the redshift completeness and Ms limit in YMB09 is treated with updated
criteria.

In Figure 29, we also plot fits to the overall GSMF presented in Baldry, Glazebrook
& Driver [16, double Schechter function, solid blue line] and in Li & White [124, triple
Schechter function, dashed green line] for new SDSS releases and by using directly SPS
models to estimate Ms for each galaxy. These fits agree well with the YMB09 data in the
mass range 9.2 <∼ log(Ms/M�) <∼ 11.2. For smaller masses, the Baldry, Glazebrook &
Driver [16] fit tends to be steeper while the Li & White [124] fit tends to be shallower than
the YMB09 data. For larger masses, both fits decrease faster with Ms than the YMB09
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data. All these (small) differences are due to the different methods used to estimate Ms,
as well as the different volumes and limit corrections of the samples (see,16; YMB09; and
124 for discussions).

The split into two colors of the sample used by YMB09 is a rough approximation to the
two main families of disk- and spheroid-dominated galaxies. It is well known that the
morphological type correlates with the galaxy color, though with a large scatter. There
is for example a non-negligible fraction of galaxies (mostly highly inclined) that are red
but of disk-like type (e.g., Bernardi et al. [26]). However, given that here we consider
a partition of the overall sample just in two groups, we believe that is reasonable to
assume in a first approximation that the color criterion for the partition will also serve
at this level as a morphological criterion.

For the YMB09 sample, the fractions of blue and red galaxies are ≈ 55% and ≈ 45%,
respectively, for Ms

>∼ 3× 108 M�. Red galaxies dominate the total GSMF at large masses.
At Ms≈ 2 × 1010 M� the abundances of red and blue galaxies are similar and at lower
masses the latter are increasingly more abundant than the former. For Ms

<∼ 109 M�,
the abundance of red galaxies, mainly central ones, steeply increases towards smaller
masses. The existence of this peculiar population of faint central red galaxies is discussed
in YMB09. Wang et al. [227] suggested that these galaxies are hosted by small halos that
have passed through their massive neighbors, and the same environmental effects that
cause satellite galaxies to become red are also responsible for the red colors of such
galaxies. However, as these authors showed, even if the environmental effects work,
there are in any case over 30% of small halos that are completely isolated in such a way
that these effects can not be invoked for them.

In the YMB09 sample, around 70% of the galaxies are central. As mentioned in the In-
troduction, the inference of the Ms–Mh relation for central-only galaxies is important for
studies aimed to constrain galaxy formation and evolution in general; satellite galaxies
are interesting on its own but they lack generality because their evolution and properties
are affected by extra environmental processes.

In what follows, the YMB09 GSMF provided in tabular form and split into blue/red
and central/satellite galaxies will be used to apply the AMT. Our main goal is to infer
the Ms–Mh relation for central blue (late-type) and red (early-type) galaxies.

We will infer also the corresponding Mb–Mh (baryonic) relations. The blue and red
GBMFs are estimated from the blue and red GSMFs, respectively, where in order to pass
from Ms to Mb, the cool (atomic and molecular) gas mass, Mg, corresponding on average
to a given Ms is taken from the empirical blue and red Mg–Ms relations. In Figure 30,
a compilation of observational estimates is plotted in the Ms–Mg plane for a sample of
disk galaxies that includes low surface brightness galaxies from Avila-Reese et al. [12,
blue dots with error bars; they added H2 mass contribution by using an estimate for
the H2-to-HI mass ratio as a function of galaxy type], and for another galaxy sample
from McGaugh [137, blue crosses; no H2 contribution is considered and their dwarf
galaxies were excluded]. An orthogonal linear doubly-weighted regression to the data
from Avila-Reese et al. [12] gives:

Mg

1010M�
= 0.43 ×

(
Ms

1010M�

)0.62

. (60)
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Figure 30: Gas mass vs stellar mass for a sample of disk high and low surface brightness galaxies
collected and homogenised by Avila-Reese et al. [12, blue dots with error bars] and for
a sample of disk galaxies presented by McGaugh [137, blue crosses]. The solid blue
line is the orthogonal linear doubly-weighted regression to the data from the former
authors and the dashed lines show an estimate of the intrinsic scatter around the fit.
The solid red line is an estimate of the Mg–Ms correlation for red galaxies by using
our fit to blue galaxies and the ratio of blue-to-red atomic gas fraction determined in
Wei et al. [233, see text].
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This fit is plotted in Figure 30 with its corresponding estimated scatter (≈ 0.3 dex; blue
solid and dashed lines). This is the relation and its scatter used to calculate Mb and the
blue GBMF. A similar relation has been inferred by Stewart et al. [199]. The gas fractions
in red galaxies are much smaller than in blue galaxies. For sub-samples of blue and
red galaxies, Wei et al. [233] reported the atomic gas fractions versus Ms (molecular gas
was not included). The ratio of both of their fits as a function of Ms is used here to
estimate from eq. (60, blue galaxies) the corresponding average Mg for red galaxies as a
function of Ms (red solid line). As an approximation to the scatter (short-dashed lines),
the average scatter reported for red galaxies in Wei et al. [233] is adopted here.

7.2.2 Halo and sub-halo mass functions

A great effort has been done in the last decade to determine the HMF at z = 0 and at
higher redshifts in N-body cosmological simulations. A good fit to the results, at least
for low redshifts, is the universal function derived from a Press-Schechter formalism
[166] generalized to the elliptical gravitational collapse [192, hereafter S-T]. In fact, Tin-
ker et al. [207] have shown that at the level of high precision, the HMF changes for
different cosmological models and halo mass definitions as well as a function of z. For
our purposes and for the cosmology used here, the S-T approximation provides a good
description of the z = 0 HMF of distinct halos:

φh(Mh)dMh = A
(

1 +
1

ν2q

)√
2
π

ρ̄Mν

M2
h

∣∣∣∣ d ln σ

d ln Mh

∣∣∣∣ exp
[
−ν2

2

]
dMh (61)

where A = 0.322, q = 0.3, ν2 = a(δc/D(z)σ(Mh)) with a = 0.707, δc = 1.686Ω0.0055
m is the

linear threshold in the case for spherical collapse in a flat universe with cosmological
constant, D(z) is the growth factor and σ(Mh) is the mass power spectrum variance of
fluctuations linearly extrapolated to z = 0. The halo (virial) mass, Mh is defined in this
Chapter as the mass enclosed within the radius where the overdensity is ρ̄vir = Δ times
the mean matter density, ρ̄M; Δ ≈ 340 according to the spherical collapse model for the
cosmology used here. The cosmological parameters assumed here are close to those of
WMAP5 (Komatsu et al. 2009): ΩM = 0.27, ΩΛ = 1 − Ωm = 0.73, h = 0.70, σ8 = 0.8.

The distinct HMF should be corrected when a GSMF corresponding to all galaxies
is used in the AMT. In this case, satellite galaxies are included in the GSMF. Therefore,
subhalos should be taken into account in the HMF. The subhalo fraction is no more than
≈ 20% of all the halos at z = 0 [e.g., 187, 58, 93, see also BCW10]. When necessary, we
correct the S-T HMF for (present-day) subhalo population by using the fitting formula
to numerical results given in Giocoli et al. [93]:

dn(msub)
d ln msub

= A0mη−1
sub exp

[
−
(

msub

m0

)γ]
, (62)

with η = 0.07930, log A0 = 7.812, log(m0/M�) = 13.10 and γ = 0.407.
The upper panel of Figure 31 shows the (distinct) S-T HMF (solid line), the sub-

halo HMF (short-long-dashed line), and the distinct+subhalo HMF (dash-dotted line).
The correction by sub-halos in the abundance is small at low masses and negligible
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at high masses. When the GSMF refers only to central galaxies –which is the case in
this Chapter–, then it is adequate to use the distinct HMF for the AMT, i.e. the subhalo
abundance correction is not necessary.

7.2.2.1 Haloes hosting blue and red galaxies

In the AMT, the cumulative GSMF and HMF are matched in order to link a given Ms to
Mh. When a subsample of the total GSMF is used –as is the case for inferring the Ms–Mh
relation of only late- or early-type galaxies– it would not be correct to use the total HMF
for the matching. This function, in the ignorance of which is the mass function of halos
hosting blue (red) galaxies, at least should be re-normalised (decreased uniformly) by
the same fraction corresponding to the decrease of the sub-sample GSMF with respect
to the total GSMF. In YMB09, ≈ 55% (≈ 45%) of the galaxies are in the blue (red)
sub-samples for Ms

>∼ 3 × 108 M�. We may go one step further by proposing general
observational/physical conditions for halos to be the host of blue (late-type) or red
(early-type) galaxies. Note that the division we do here of galaxies is quite broad –just
in two groups–, therefore very general conditions are enough.

Haloes that host central blue and red galaxies are expected to have (i) a different
environment, and (ii) a different merger history. We take into account these two factors
in order to roughly estimate the HMF of those halos that will host today central blue
and red galaxies.

Environment.- Blue (late-type) galaxies are rare in the centers of groups and clusters of
galaxies [high-density environments; e.g., 155, 259, 123, 68, 158, 32, and more references
therein]. For example, in the SDSS YMB09 sample that we use here (see also Weinmann
et al. [236]), among the groups with 3 or more members, the fraction of those with a
central blue galaxy is only ≈ 20%, and most of these central galaxies are actually of low
masses. Therefore, cluster- and group-sized halos (more massive than a given mass) can
not be associated to central blue galaxies when using the AMT. This means that the halo
mass function of groups/clusters of galaxies should be excluded from the theoretical
HMF (Shankar et al. [187]).

Heinämäki et al. [105] have determined the HMF of groups with 3 or more mem-
bers and with a number density enhancement δn/n ≥ 80 from the Las Campanas
Redshift Survey. The authors estimated the corresponding group virial mass on the
basis of the line-of-sight velocity and harmonic radius of the group, in such a way that
this mass is defined at the radius where δn/n=80. The observational galaxy overden-
sity δn/n is related to the mass overdensity δρ/ρ roughly through the bias parameter
b: δρ/ρ =(1/b)×δN/N, where b ≈ 1/σ8 [135]. Hence, for σ8 = 0.8, δρ/ρ ≈ 64; since
the group selection was carried out in [215], where an Einstein-de Sitter cosmology was
used, then ρ = ρcrit in this case. In our case, the halo virial mass is defined at the ra-
dius where δρ/ρ ≈ 340 (see §§2.2); in terms of ρcrit, our overdensity is 340 × ΩM = 92.
Therefore, the halo virial masses in Heinämäki et al. [105] should be slightly larger than
those used here. For the NFW halos of masses larger than ∼ 1013 M�, the differences
are estimated to be a factor of 1.10-1.20. We correct the group masses of Heinämäki et al.
[105] by 15%. In the upper panel of Fig. 31, the corrected group (halo) mass function is
reproduced (solid dots) and an eye-fit to them is plotted (dot-dashed cyan line).
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Figure 31: Upper panel: Distinct S-T HMF for the cosmology adopted in this paper (solid black
line), sub-halo mass function at z = 0 according to Giocoli et al. [93, short-long-dashed
purple line], and the sum of both (dot-dashed orange line). The solid dots are mea-
sures of the group/cluster mass function according to Heinämäki et al. [105] and
adequately corrected to our definition of virial halo mass; the dot-long-dashed cyan
line is an eye-fit to the data. Lower panel: The same distinct S-T HMF (solid black line)
shown in the upper panel but (i) excluding halos that suffered late major mergers
–since z = 0.8– (short-dashed black line) and (ii) excluding these halos and those
of observed groups/clusters (long-dashed blue line). The latter is the HMF to be as-
signed to the sub-sample of central blue galaxies. The complement of this function to
the total (S-T) (dot-dashed red line) is the HMF to be assigned to the sub-sample of
central red galaxies. The inset shows the ratio of number densities of halos that did
not suffer major mergers since z = 0.8 to all the (distinct) halos according a cosmolog-
ical N-body simulation (Colín et al. 2011, see text). The fit to this ratio (solid line in
the inset) is what has been used to correct the S-T HMF for halos that did not suffer
late major mergers.
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Merger history.- Disk (blue, late-type) galaxies are dynamically fragile systems and thus
they are not expected to survive strong perturbations such as those produced in major
mergers or close interactions. However, as several theoretical studies have shown [e.g.,
173, 97], when the mergers are gas-rich (’wet’) and/or at early epochs (in fact, both facts
are expected to be correlated), it is highly probable that a gaseous disk is regenerated
or formed again with the late accreted gas. Therefore, a reasonable restriction for halos
that will host disk galaxies is that they did not undergo central major mergers since a
given epoch (at earlier epochs, while the central major merger may destroy the disk, a
new gaseous disk can be formed later on). Based on numerical simulations, Governato,
Mayer & Brook [97] suggested that a ’wet’ major merger of disk galaxies at z ∼ 0.8 has
yet a non-negligible probability of rebuilding a significant disk by z ∼ 0. We will assume
here that halos for which their centers have a major merger at z < 0.8 will not host a disk
galaxy.

In Colín et al. (2011; in prep.) the present-day abundance fraction of halos with no
central major merger since z = 0.8 was measured as a function of Mh from an N-
body ΛCDM cosmological high–resolution simulation with Ωm = 0.24, ΩΛ = 0.76,
and σ8 = 0.75 (box size and mass per particle of 64 h−1Mpc and 1.64 × 107h−1M�,
respectively). The friends-of-friends (FOF) method with a linking-length parameter of
0.17 was applied for identifying halos. The mass ratio to define a major merger was
q = Mh,2/Mh,1 > 0.2 and the merger epoch was estimated as that one when the center
of the accreted halo arrived to the center of the larger halo by dynamical friction; this
epoch is calculated as the cosmic time when both FOF halos have "touched" plus the
respective dynamical friction (merging) time as given by the approximation of Boylan-
Kolchin, Ma & Quataert [40]. The fraction of halos that did not suffer a major merger
since z = 0.8 with respect to all the halos as a function of Mh measured in Colín et al.
(2011) is used here to correct our distinct S-T HMF. This measured fraction is showed in
the inset in the lower panel of Fig. 31; the solid line is a linear fit by eye in the log-log plot:
log(nnoMM/nall)= 0.472 − 0.065log(Mh/M�). As it is seen, the fraction slightly decreases
with mass, which is consistent with the idea that larger mass halos are assembling later
with a significant fraction of their masses being acquired in late major mergers. After
the correction mentioned above, we get the mass function of halos that did not suffer a
central major merger (q > 0.2) since z = 0.8 (short-dashed black line in the lower panel
of Fig. 31).

The final corrected HMFs.- The function obtained after (i) subtracting from the distinct
S-T HMF the group mass function and (ii) excluding halos that did not suffer a late
central major merger is plotted in Fig. 31 (blue long-dashed line). This mass function is
proposed here to correspond to halos that host blue galaxies today. The overall number
fraction of these halos with respect to the distinct ones (described by the S-T HMF) is
∼ 58%, which is roughly consistent with the fraction of blue galaxies in the YMB09
sample. The HMF corresponding to the complement is plotted in Fig. 31 as the red dot-
dashed curve. By exclusion, this HMF will be associated to the GSMF of the red central
galaxy sub-sample for deriving the Ms–Mh relation of red galaxies.
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7.3 results

7.3.1 The overall, central, and satellite stellar–halo mass relations

In Fig. 32, the Ms–Mh relation obtained by using the Li & White [124] GSMF (see 7.2.1
and Fig. 29) and the S-T HMF corrected to include sub-halos is plotted (long-dashed blue
line). The relation given by BCW10, who also used as input the Li & White [124] GSMF,
is shown (short-dashed red line). Both curves are almost indistinguishable, indicating an
excellent consistency in spite of the differences in some of the methodological aspects.

Further, we plot in Fig. 32 the Ms–Mh relation but using now the total YMB09 GSMF
(dot-dashed pink line). This relation is similar to the one inferred using the Li & White
[124] GSMF. For log(Mh/M�) >∼ 12, the former shifts with mass slightly to higher values
of Ms for a given Mh than the latter (at log(Mh/M�) = 13.5 the difference is not larger
than 0.08 dex in logMs). Such a shift is explained by the (small) systematical difference
between the YMB09 and Li & White [124] GSMFs at masses larger than log(Ms/M�) ∼
11 (see 7.2.1 and Fig. 29).

In Fig. 32, the Ms–Mh relations given in Baldry, Glazebrook & Driver [16, dot-dashed
orange line], Moster et al. [148, short-long-dashed line] and Guo et al. [102, dotted
green line] are also plotted. When it was necessary, we have corrected the stellar masses
to the Chabrier IMF, and the halo masses to the definition of virial mass used here (see
7.2.2.1). As mentioned above, Baldry, Glazebrook & Driver [16] corrected their HMF to
exclude groups/clusters of galaxies (something that we do but only for the central blue
galaxies, see 7.2.1 and the result below). As seen in Fig. 32, their correction produces a
steeper Ms–Mh relation at the high-mass side than in our case. Moster et al. [148] and
Guo et al. [102] constrained the Ms–Mh relation by assigning stellar masses to the halos
and subhalos of an N-body cosmological simulation in such a way that the total GSMF
is reproduced. Therefore, by construction, their Ms–Mh relations take into account the
group/cluster halo masses issue. The Ms–Mh relations in both works are also slightly
steeper than ours at high masses but shallower on average than that one of Baldry,
Glazebrook & Driver [16]. Note that in BCW10 the scatter in Ms at fixed Mh was taken
into account but the group/cluster halo masses issue was not.

The Ms–Mh relation using the YMB09 GSMF only for central galaxies and the distinct
(S-T) HMF is plotted in the lower panel of Fig. 32 (solid black line). At large masses,
this relation is quite similar to the one for all galaxies/satellites and halos/sub-halos
(dot-dashed pink line). This is because at large masses the great majority of galaxies
are centrals and the correction by sub-halos is negligible (see Figs. 29 and 31). At lower
masses, the exclusion of satellites and sub-halos implies a lower Ms for a given Mh. This
is because the GSMF decreases more than the HMF at lower masses when passing from
the total (galaxy and halo) samples to the central-only galaxy/distinct halo samples.
The physical interpretation of this result could be that satellite galaxies of a given Ms

have less massive halos than central galaxies due to tidal stripping. The Ms–Mh relation
derived only for the satellites YMB09 GSMF and the Giocoli et al. [93] z = 0 sub-halo
HMF is plotted in the lower panel of Fig. 32 (short-long-dashed cyan line).
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Figure 32: Upper panel: Stellar mass vs halo mass as inferred here by using the Li & White [124]
overall GSMF and the S-T HMF increased by the subhalo population (long-dashed
blue line) to be compared with the BCW10 inference, who used the same GSMF (short-
dashed red line). The dot-dashed pink line shows the same Ms vs Mh inference but
using the overall YMB09 GSMF. Different estimates of the overall Ms–Mh relation
by other authors (indicated in the panel), who took into account in different ways
the issue of group/cluster masses (see text) are also plotted Lower panel: Same Ms–
Mh relation as in the upper panel (dot-dashed pink line) but for the central-only
YMB09 GSMF and the S-T (distinct) HMF (solid line). The grey curves connected by
vertical lines show the estimated 1σ uncertainty for the latter case. The Ms–Mh relation
inferred for the only satellite YMB09 GSMF and the Giocoli et al. [93] z = 0 sub-halo
mass function is plotted with the short-long-dashed cyan line.
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7.3.1.1 Uncertainties

The uncertainty (standard deviation) in the Ms–Mh relation obtained by using the YMB09
central GSMF and the distinct S-T HMF (solid line), is plotted in Fig. 32 (grey curves con-
nected by vertical lines). As remarked in 7.2, we did not take into account all possible
uncertainty sources in the Ms–Mh relation but have just considered the two following
ones:

(i) The systematic uncertainty in stellar mass estimates, which is an uncertainty in the
GSMF. We assume for this uncertainty a scatter of 0.25 dex (Gaussian distributed) inde-
pendent of mass, and propagate it to the Ms–Mh relation (by far it results the dominant
source of error in the relation obtained with the AMT, see below and BCW10).

(ii) The intrinsic scatter in stellar mass at a fixed halo mass, which is an uncertainty in
the process of matching abundances. To take into account this scatter in Ms at fixed Mh a
probability density distribution should be assumed. The convolution of this distribution
with the true or intrinsic GSMF gives the measured GSMF. The cumulative true GSMF
is then the one used for the AMT (BCW10). The observational data allow to estimate the
scatter in luminosity (or Ms) which appears to be independent of Mh [145, 146, 247]. In
BCW10 a log-normal mass-independent scatter in Ms of 0.16±0.04 is assumed. Here, we
follow the overall procedure of BCW10 for taking into account this scatter.

We also explored the effect of (iii) the statistical uncertainty in the number density of
the GSMF (as given in YMB09), but we have found that the effect is negligible compared
to the one produced by item (i) (see also BCW10, their §§4.3.1). The effect of the intrinsic
scatter in Ms for a given Mh is also very small in the overall scatter of the Ms–Mh relation
but it affects the high mass end of the calculated Ms–Mh relation, where both the GSMF
and HMF decay exponentially, since there are more low mass galaxies that are scattered
upward than high mass galaxies that are scattered downward (BCW10). For instance, at
Mh = 1013.5 M�, the stellar mass after including this scatter is 1.2 times smaller. The
contribution from all other sources of error, including uncertainties in the cosmological
model, is much smaller ranging from 0.02 to 0.12 dex at z = 0.

From Fig. 32 we see that the 1σ uncertainty in the Ms–Mh relation is approximately
0.25 dex in logMs without any systematic dependence on Mh, in good agreement with
previous results [19, 148]. This uncertainty is larger than the differences between the
Ms–Mh average relations found by different authors, including those that use the indi-
rect AMT but with different GSMFs, methodologies, and corrections, and those who use
more sophisticated formalisms (see BCW10 and More et al. [146]). On one hand, this
shows that most methods and recent studies aimed at relating halo masses to observed
galaxies as a function of their stellar masses are converging to a relatively robust de-
termination. On the other hand, this result suggests that attaining a higher precision
in estimating Ms from observations is a crucial task for lowering the uncertainty in the
inference of the Ms–Mh relation.

7.3.2 The stellar-halo mass relations for central blue and red galaxies

The upper and lower left panels of Figure 33 show the mean Ms–Mh and fs–Mh relations
for: all central galaxies (solid line, as in Fig. 32), central blue (short-dashed line), and
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Figure 33: Left panels: Mean Ms–Mh (top) and fs–Mh (down) relations of all central (solid black
line), blue central (long-dashed blue line), and red central (short-dashed red line)
galaxies as inferred here by using the YMB09 data. The grey curves connected by
vertical lines show the 1σ uncertainty when all galaxies are considered; similar uncer-
tainty bands around the main relations are found for the blue and red sub-samples
(see Fig. 36). Right panels: Same as in left panels but for Mb instead of Ms. Dotted lines:
fb = fU/5 and fU/30, where fU = 0.167 is the universal baryon fraction.
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central red (long dashed line) galaxies. In order to infer these relations for blue galaxies,
we use the central blue YMB09 GSMF and the distinct (S-T) HMF corrected for excluding
halos (i) associated to observed groups/clusters of galaxies and (ii) that suffered central
major mergers since z = 0.8 (see 7.2.2.1). In the case of red galaxies, the central red
YMB09 GSMF and the HMF complementary to the one associated to blue galaxies were
used.

The shaded area in Figure 33 is the same 1σ uncertainty showed in Fig. 32 for the
overall central sample. The uncertainties corresponding to the Ms–Mh and fs–Mh rela-
tions for the blue and red galaxy sub-samples would be close to the one of the total
sample in case the corrections made to the HMF do not introduce an extra uncertainty.
In fact this is not true, in particular for the group/cluster mass function introduced to
correct the HMF associated to blue galaxies. Unfortunately, the work used for this cor-
rection (Heinämäki et al. [105]) does not report uncertainties. Hence, the uncertainties
calculated here for the blue and red samples (shown explicitly in Fig. 36 below) could
be underestimated, specially at large masses.

In the mass range 11.5 <∼ log(Mh/M�) <∼ 13.0, the Ms–Mh and fs–Mh relations for
central blue (red) galaxies lie slightly below (above) the relations corresponding to the
overall sample. For masses below these ranges, the trends invert. The fs–Mh curves for
blue and red sub-samples peak at log(Mh/M�)= 11.98 and 11.87, with values of fs =
0.021+0.016

−0.009 and fs = 0.034+0.026
−0.015, respectively. The corresponding stellar masses at these

peaks are log(Ms/M�)= 10.30 ± 0.25 for blue galaxies and log(Ms/M�)= 10.40 ± 0.25
for red galaxies. These masses are around a factor of 0.23 and of 0.30 the characteristic
stellar mass M� ≈ 1010.93M� of the overall YMB09 GSMF, respectively. The maximum
difference between the blue and red mean Ms–Mh relations is attained at log(Mh/M�)≈
11.9; at this mass, the fs value of the former is 1.7 times smaller than the fs of the latter.
For larger masses this difference decreases.

At the low-mass end, roughly fs ∝ Mh (∝ M0.5
s ) and fs ∝ M3.0

h (∝ M0.8
s ) for the blue

and red samples, respectively, while at the high-mass end, fs ∝ M−0.4
h (∝ M−0.7

s ) and
fs ∝ M−0.6

h (∝ M−1.5
s ), respectively.

It is important to note that the differences between blue and red Ms–Mh relations
at almost all masses are within the 1σ uncertainty of our inferences. We conclude that
the Ms–Mh ( fs–Mh) relation does not depend significantly on galaxy color (type). If
any, the mean fs–Mh relation of red galaxies is narrower and more peaked than the
one of blue galaxies. In the mass range where the abundances of blue and red galaxies
are closer (10.0 < log(Ms/M�)< 10.7), the intrinsic scatter around the Ms–Mh relation
would slightly correlate with color in the sense that the redder (bluer) the galaxy, the
larger (smaller) its Ms is for a fixed Mh, with a maximum average deviation from the
mean due to color no larger than ∼ 0.1 dex. For masses smaller than Ms ≈ 109.7 M�, the
correlation of the scatter with color would invert.

The (slight) differences between blue and red Ms–Mh ( fs–Mh) relations can be under-
stood basically by the differences in the respective cumulative GSMFs and, at a minor
level, by the differences of the corresponding HMFs for each case. The sharp peak in the
red fs–Mh relation is associated to the turn-over at Ms ∼ 1010.5 M� in the GSMF of red
galaxies (see Fig. 29).
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Figure 34: Left panels: Mean Ms–Mh (top) and fs–Mh (bottom) relations of central blue (blue
lines) and red (red lines) galaxies when (i) no systematical corrections to the cor-
responding "blue" and "red" HMFs were applied apart from re-normalisations in the
global abundance (see text, solid lines), (ii) the HMFs were corrected by group/cluster
abundances and re-normalised (long-dashed lines), and (iii) the HMFs were corrected
both by group/cluster abundances and late major mergers (as in Fig. 32, dot-dashed
lines). Right panels: Same as in left panels but for Mb instead of Ms.
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Table 3: Fit parameters

Parameter All Blue Red

log M0,h 11.97 11.99 11.87

log M∗
s 10.40 10.30 10.40

β 0.34 0.37 0.18

α 1.45 0.90 1.50

γ 0.90 0.90 0.90

a (Ms < M∗
s ) 0.000 0.125 0.000

a (Ms > M∗
s ) 0.095 0.125 0.093

In order to estimate the influence of the corrections introduced to the HMF for blue
(red) galaxies, we have redone the analysis by using the original distinct (S-T) HMF with-
out any correction but re-normalised to obtain the same fraction of halos as the fraction
implied by the GSMF of blue (red) galaxies with respect to the total GSMF. The results
are shown in Fig. 34 with solid curves of blue color (blue galaxies) and red color (red
galaxies). For comparison, the corresponding relations plotted in Fig. 33 are reproduced
here (dot-dashed blue and red lines, respectively). One sees that the corrections to the
HMF we have introduced for associating halos to the blue and red galaxy sub-samples
act in the direction of reducing the differences among them in the Ms–Mh ( fs–Mh) re-
lations, specially for larger masses. The group/cluster mass function correction to the
HMF hosting central blue galaxies is the dominant one. The dashed blue and red curves
show such a case, when only this correction (and a small re-normalisation) is applied.

7.3.2.1 Analytical fits to the stellar–halo mass relations

From the comparison of the GSMF and HMF it is easy to deduce that high- and low-mass
galaxies have significantly different Ms–Mh scalings, a fact attributed to the different
feedback/gas accretion mechanisms dominating in large and small systems (see e.g.,
Benson et al. [24]). The transition point between the low- and high-mass scalings defines
a characteristic halo mass M0,h and an associated stellar mass M∗

s . Therefore, it was
common to describe the Ms–Mh relation as a double-power law with the turnover point
at M0,h. However, BCW10 have argued recently that a power-law at the high-mass side
is conceptually a bad description for the Ms–Mh relation and proposed a modification
to it. Our results show indeed that a power-law is not enough to describe the high-mass
side of the Ms–Mh relations.

We have found that a good analytical description to the overall, blue, and red mean
Ms–Mh relations can be obtained for the inverse of the relations (Mh as a function of
Ms, as in BCW10) by proposing a power-law dependence for low masses and a sub-
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Figure 35: Analytical fits given by eq. (63) and Table 1 compared to the mean Ms–Mh relation
for all central galaxies (black solid line) and the central blue (blue solid line) and red
(red solid line) galaxy sub-samples.
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exponential law for high masses (see BCW10). The functional form that fits well the
three Mh–Ms relations is:

Mh =
M0,h

2γ

[(
Ms

M∗
s

)β/γ

+
(

Ms

M∗
s

)α/γ
]γ

10a(Ms/M∗
s −1) (63)

where β regulates the behaviour of the relation at masses Ms < M∗
s , α together with

the sub-exponential term (a < 1) regulate the behaviour at masses Ms > M∗
s , and γ

regulates the transition of the relation around M∗
s . In Table 1 we present the values of

all the parameters that best fit our results for the (central) overall, blue, and red Ms-Mh
relations. Note that a assumes two different values depending on whether the mass is
smaller or larger than M∗

s .
Figure 35 shows the three mean Ms–Mh relations obtained here and the functional

form given in eq. (63) with the corresponding parameters reported in Table 1. The func-
tional form is an excellent fit to the overall and blue Ms–Mh relations at all masses and
to the red Ms–Mh relation for masses larger than Mh ≈ 1011.3 M�.

7.3.3 The baryonic-halo mass relations for central blue and red galaxies

The right upper and lower panels of Fig. 33 show the mean Mb–Mh and fb–Mh relations,
for all central galaxies (solid line), central blue (long-dashed blue line), and central red
(short-dashed red line) galaxies. The blue and red GBMFs were calculated from the cor-
responding GSMFs adding to Ms the respective gas mass, Mg (see ??). The total GBMF
is the sum of both of them. The error in Mb was calculated as the sum in quadratures of
the errors in Ms and Mg. This error, together with the intrinsic scatter in Ms (see §§2.2),
both propagated to the Mb–Mh relation, account for an uncertainty (standard deviation)
of ∼ 0.23 dex in logMb at all masses (grey curves connected by vertical lines in Fig. 33).

The baryonic mass fraction, fb, for blue galaxies is larger than the corresponding
stellar one, fs, in particular at smaller halo masses. At Mh ≈ 1011 M�, fb is a factor of
2.4 higher than fs, while the peak of fb = 0.028+0.018

−0.011 (at Mh = 1012.0 M�) is only 1.3
times larger than the peak of fs (at Mh = 1012.0 M�). For larger masses, the difference
between fb and fs decreases, while for smaller masses, fb is increasingly larger than fs.
For red galaxies, fs and fb are very similar, some differences being observed only at the
lowest masses.

For masses larger (smaller) than Mh ≈ 1011.6 M�, the differences between the Mb–Mh
( fb–Mh) relations of blue and red galaxies become smaller (larger) than in the case of
stellar masses (left panels of Fig. 33). In general, the fb bell-shaped curve for red galaxies
is more peaked and narrower than the one for blue galaxies.

For blue galaxies, roughly fb ∝ Mh
0.7 (Mb

0.4) at the low-mass end, and fb ∝ Mh
−0.5

(Mb
−0.8) at the high-mass end. For red galaxies, roughly fb ∝ Mh

2.9 (Mb
0.8) at the low-

mass end, and fb ∝ Mh
−0.6 (Mb

−1.5) at the high-mass end. For halos of masses Mh ≈
1011.0 M� and Mh ≈ 1013.2 M�, the baryon fraction for blue (red) galaxies decreases to
values fb ≈ 0.004 and 0.0085 ( fb ≈ 0.0031 and 0.0071), respectively. Therefore, for all
masses, fb << fU , where fU ≡ Ωb/ΩM is the universal baryon mass fraction; for the
cosmology used here, fU = 0.167.
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7.4 discussion

7.4.1 Comparison with other works

As discussed previously (see Fig. 32), our inference of the local overall Ms–Mh relation
is in general in good agreement with several recent works that make use of the AMT
[e.g., 16, 102, 148, 19]. The aim in this Chapter was to estimate the Ms–Mh and Mb–Mh
relations for blue (late-type) and red (early-type) central galaxies separately. We have
found that the differences between the means of the obtained relations for blue and red
galaxies are within the 1σ uncertainty (see Fig. 33). In more detail, the mean stellar and
baryonic mass fractions ( fs and fb) as a function of Mh for red galaxies are narrower
and more peaked than those for blue galaxies in such a way that in a given mass range
(11.5–13.0 and 11.5–12.5 in log(Mh/M�) for the stellar and baryonic cases, respectively)
the former are higher than the latter and outside these ranges, the trend is inverted,
specially at the low–mass side.

There have been only a few previous attempts to infer the halo masses of central
galaxies as a function of mass (luminosity) and galaxy type [133, 146]. These works use
direct techniques (see 7.1), which are, however, limited by low signal-to-noise ratios,
specially for less massive systems in such a way that halo mass estimates are reliable
only for galaxies with Ms

>∼ 1010 M�. These techniques are galaxy-galaxy weak lensing
and kinematics of satellite galaxies around central galaxies. In order to overcome the
issue of low signal-to-noise ratios, large samples of galaxies are stacked together in bins
of similar properties (e.g., luminosity, Ms, galaxy type) to obtain higher signals of the
corresponding measures (the tangential shear in the case of lensing and the weighted
satellite velocity dispersion in the case of satellite kinematics). Moreover, estimates of
Mh with these sophisticated techniques are subject to several assumptions, among them,
those related to the internal halo mass distribution. It is usual to assume the Navarro,
Frenk & White [151] density profile with the mean concentration for a given mass as
measured in N-body cosmological simulations.

It is not easy to achieve a fair comparison of the results obtained with the AMT formal-
ism and those with the direct methods. We have inferred the mean (and scatter) of logMs

as a function of Mh, while the weak lensing and satellite kinematics techniques constrain
Mh as a function of Ms [see e.g., 146]; besides, the former calculates the mean of Mh (and
its scatter) in a linear scale instead of a logarithmic one. These different ways of defining
the relationship between stellar and halo masses, depending on the shapes and scatters
of the corresponding relations, diverge more or less among them. In BCW10 (see their
Fig. 10), it was shown that at low masses (log(Mh/M�) <∼ 12, log(Ms/M�) <∼ 10.5), av-
eraging logMs as a function of Mh or logMh as a function of Ms give equivalent results
for the AMT, but at high masses, where the Ms–Mh relation becomes much shallower,
this relation becomes steeper (higher stellar mass at a fixed halo mass) for the latter case
with respect to the former one.

In Fig. 36, the results from Mandelbaum et al. [133] are reproduced, left panels for
central late-type galaxies and right panels for central early-type galaxies (solid squares
with error bars). The error bars are 95 percent confidence intervals (statistical). Man-
delbaum et al. [133] have used the (de Vaucouleours/exponential) bulge-to-total ratio,
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frac_deV, given in the SDSS PHOTO pipeline as a criterion for late- (frac_deV< 0.5) and
early-type (frac_deV≥ 0.5) separation. This criterion of course is not the same as the
color used in YMB09, but there is a correlation between both of them in such a way that
a comparison between our results and those of Mandelbaum et al. [133] is possible at
a qualitative level. Note that we have diminished the halo masses of Mandelbaum et al.
[133] by ≈ 15% to convert to our definition of halo virial mass. In more recent works,
Mandelbaum, Seljak & Hirata [132] and Schulz, Mandelbaum & Padmanabhan [184]
reported a new weak lensing analysis for the massive central early-type galaxies using
the seventh SDSS data release (DR7) and a more sophisticated criteria for selecting the
early-type lens population. Their results are plotted in the right panel of Fig. 36 with
solid triangles and open squares, respectively.

In the case of the satellite kinematics estimates of Mh by More et al. [146], the same
SDSS sample and similar recipes as in YMB09 for calculating Ms, classifying galaxies
into blue and red, and finding central and satellites galaxies were used. More et al. [146]
applied their analysis to constrain the mean logMh as a function of Ms, but also present
the constraints of their model for the mean of logMs as a function of Mh. Their results
for the latter case, kindly made available to us in electronic form by Dr. S. More, are
reproduced in Fig. 36 as the shaded (orange) regions which represent the 68% confidence
intervals. Transforming from their definitions to ours of halo mass and IMF, their Mh
and Ms were diminished by ≈ 15% and ≈ 25%, respectively. The dotted horizontal
lines in each panel show the approximate range in Ms, where the estimates are reliable
according to More et al. [146, see their Fig. 11].

More et al. [146] also reported results for the average Mh as a function of Ms split in
central blue and red galaxies according to the galaxy group analysis by Yang et al. [249].
The solid (cyan) curves in Fig. 36 reproduce these results.

Finally, the standard ±1σ deviation intervals that we have obtained from the AMT
are reproduced in Fig. 36 for central blue and red galaxies (solid blue and red curves
connected by vertical lines, respectively). Note that in the estimates with direct methods,
the systematic uncertainty in Ms, which is the main source of error in the AMT, was not
taken into account.

Our inference for early-type (red) galaxies is consistent (within the uncertainties, er-
rors, and different ways of presenting the constraints) with the weak lensing results of
Mandelbaum et al. [133], Mandelbaum, Seljak & Hirata [132] and Schulz, Mandelbaum
& Padmanabhan [184], and with the galaxy group analysis of Yang et al. [249] as re-
ported in More et al. [146]. With respect to the satellite kinematics analysis by More
et al. [146], their mean halo masses for Ms ∼ 5 × 109 − 1011 M�, are larger than ours
(and those of Mandelbaum et al. [133] by factors around 2). For larger masses, all deter-
minations agree roughly with our results. In fact, there is some indication that satellite
kinematics yields halo masses around low mass central galaxies that are systematically
larger than most other methods, specially for red central galaxies Skibba et al. [194, but
see More et al. [146] for a discussion].

For late-type (blue) galaxies, our results are in reasonable agreement with those of
Mandelbaum et al. [133] for masses Ms

<∼ 1010.8 M�. At higher masses, their results
imply halo masses for a given Ms smaller than ours, with the difference increasing
towards higher stellar mass. The discrepancy would be weaker if one considers that the
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Figure 36: Comparison with other observational inferences. Left panel: Ms − Mh relation for blue
(late-type) galaxies. The blue curves connected by vertical lines encompass the ±1σ
interval inferred here. We also reproduce the inferences using galaxy-galaxy weak
lensing by Mandelbaum et al. [133, black squares], galaxy groups Yang et al. [249,
cyan solid line], and satellite kinematics More et al. [146, orange vertical lines]. Esti-
mates for the Milky Way are shown (open circle with error bar). Right panel: Ms − Mh
relation for red (early-type) galaxies. The red curves connected by vertical lines en-
compass the ±1σ interval inferred here. Other determinations as in the left panel but
for early-type galaxies are shown. More recent inferences with the weak lensing tech-
nique by Mandelbaum, Seljak & Hirata [132, filled violet triangles] and by Schulz,
Mandelbaum & Padmanabhan [184, open green squares] are also plotted.
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mean Ms–Mh relation in our case becomes steeper when calculating Mh as a function
of Ms. On the other hand, it must be said that the number statistics becomes poor
for massive late-type galaxies, resulting in a stacked weak lensing analysis with large
error bars. For example, in the two most massive bins in the Mandelbaum et al. [133]
sample (the two uppermost points in Fig. 36), only 5 and 11 percent of the galaxies are
classified as late types. Future weak lensing studies should confirm whether high-mass
late-type galaxies have such relatively small halos as found in Mandelbaum et al. [133].
Regarding the comparison with the satellite kinematics inferences of More et al. [146],
the agreement is reasonable at least up to Ms ≈ 1011 M�, although the relation inferred
by these authors is shallower than ours. For larger masses, these authors caution that
their results become very uncertain, as in the weak lensing case, because of poor statistics
of massive blue galaxies. The galaxy groups [249] inference, in the mass range allowed
by this technique, gives halo masses slightly smaller than the means of our inference for
a given Ms.

In general, most techniques for inferring the relationship between stellar and halo
masses of galaxies agree among them within factors up to 2–3 in Mh [19, 146, 78]. This
seems to be also the case for samples partitioned into late- and early-type galaxies, as
shown here. However, beyond the detailed comparison between our results and those
obtained with direct techniques, it seems that there is a systematic qualitative difference:
in our case, at a given halo mass (for 1011.5 M� <∼ Mh

<∼ 1013.0 M�), blue centrals, on
average, have lower stellar masses than red centrals, while in the case of determinations
with direct techniques, the opposite applies at least for masses larger than Mh ∼ 1012

M� [133, 146, see also Figs. 33 and 36].
A partial source of bias contributing to this difference could be that in the weak lens-

ing and satellite kinematics techniques the same concentration for halos hosting late-
and early-type galaxies is assumed. If halos of late- (early-)type galaxies are less (more)
concentrated than the corresponding average, then for the same measure (shear or satel-
lite velocity dispersion), the halo masses are expected to be higher (lower) than the
obtained ones. Therefore, the differences found [133, 146] in the mass halos of late- and
early-type galaxies of a given Ms would decrease or even invert their sing.

While it is difficult to make any robust statement about possible systematics in a given
technique regarding late and early types, we ask ourselves what should be modified in
our assumptions in order to invert the behaviour of the Ms–Mh relations with galaxy
type (color) obtained here. We have shown in Fig. 34 that our corrections to the HMF
had the effect of making closer the Ms–Mh relations of blue and red galaxies at large
masses. One possibility to invert the relation this is to make even steeper (shallower)
the HMF corresponding to blue (red) galaxies, mainly at the high-mass end (see Fig.
31, lower panel). This would imply, for instance, a higher correction to the HMF due
to groups than that made by us. The group/cluster mass function we used (Heinämäki
et al. [105]) is one of the most general ones found in the literature; it includes all kinds of
groups/clusters with 3 or more members and δN/N ≥ 80. The authors note that their
sample is complete down to a dynamical mass roughly equivalent to Mh = 5× 1013 M�.
It could be that the abundance of groups of lower masses is larger than that given in
Heinämäki et al. [105], although it is difficult to accept that blue galaxies are completely
absent in the centers of small and loose groups of a few (> 2) members.
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Last but not least, in Fig. 36 we include observational estimates for our Galaxy (open
circle). The uncertainties in the estimates of Mh for the Milky Way are still large but
better than most of the estimates for other individual galaxies. For recent reviews on
different results see Guo et al. [102] and Dutton et al. [78]. In Fig. 36 we plot a recent
estimate of Mh based on observations of 16 high velocity stars (Smith et al. [195]). These
authors find Mh = 1.42+1.14

−0.54 × 1012M�, which is in good agreement with several previous
works [e.g., 240, 180, 125], though results from Xue et al. [243] suggest lower values (but
see a recent revision by Przybilla et al. [168]). For its Mh, the Ms of Milky Way seems to
be in the extreme of blue galaxies, close to values typical of red galaxies. It should be
said that it is an open question whether of the Milky Way is an average galaxy or not. In
the stellar Tully-Fisher and radius–Ms relations (e.g., Avila-Reese et al. [12]), the Milky
Way is shifted from the average to the high-velocity and low-radius sides, respectively.

7.4.2 Interpretations and consistency of the results

Although our main result is that the differences between the Ms–Mh and Mb–Mh re-
lations for central blue and red galaxies are marginal (within the uncertainties of our
estimates), we will explore whether such differences are expected or not. For this it is
important to approach the problem from an evolutionary point of view.

In Firmani & Avila-Reese [84, hereafter FA10], the estimates of the Ms–Mh relation
for all galaxies at different redshifts, up to z = 4 (BCW10), and the average ΛCDM indi-
vidual halo mass aggregation histories (MAHs) were used to determine the individual
average Ms growth of galaxies in general as a function of mass (Galaxian Hybrid Evolu-
tionary Tracks, GHETs). It was found that the more massive the galaxies, the earlier they
transit from the active (star-forming, blue) regime to a passive (red) phase (population
’downsizing’), while their corresponding halos continue growing, more efficiently at
later epochs as more massive they are (’upsizing’). The inferred trend for the transition
stellar mass is log(Mtran/M�)≈ 10.30 + 0.55z. Therefore, galaxies of mass Ms ≈ 1010.3

M� are becoming passive (red) today. For Ms
>∼ Mtran, the larger the mass, the redder

on average will be the galaxy. The opposite applies for Ms
<∼ Mtran, the smaller the mass,

the bluer will be the galaxy. Interestingly, Ms ≈ 1010.3 M� is roughly the mass where
the overall YMB09 blue and red GSMFs cross: for masses larger than this crossing mass,
Mcross, redder galaxies become more and more abundant than bluer ones and the inverse
happens at smaller masses (see Fig. 29).

Galaxies that are transiting from active to passive at z ∼ 0 (those around Mtran ≈
1010.3 M�) have probably been subjected recently to a process that induced an efficient
transformation of the available gas into stars in such a way that their stellar populations
started to redden passively. Hence, for a given Mh, they are expected to have a higher
Ms (or fs) than those galaxies of similar mass that did not suffer (yet?) the process
mentioned above (bluer ones). The relatively small difference in fs for blue and red
galaxies we have found here (whose maximum is attained around Mtran ∼ Mcross, Fig.
33) would imply that the scatter around Mtran is moderate.

Galaxies more massive than Mtran (or Mcross), according to the evolutionary analysis
by FA10, the process of efficient gas consumption into stars (and the further cessation
of Ms growth) earlie as more massive is the galaxy, while their halos continue growing.
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Therefore, one expects that the more massive the galaxy, the redder and the lower its
stellar (and baryonic) mass fraction fs will be on average. The few blue massive galaxies
may have slightly smaller stellar masses (lower fs) than the corresponding red ones
because they should have transformed gas into stars less efficiently in the past. Therefore,
by including gas, i.e. when passing to fb the difference between blue and red massive
galaxies at large masses should become negligible. This is what indeed happens (see Fig.
33).

Galaxies less massive than Mtran (or Mcross) at z ∼ 0, according to FA10, are in gen-
eral more actively assembling their stellar masses as smaller they are (’downsizing in
specific SFR), while their dark halo mass growth is already very slow. This implies the
existence of relatively larger reservoirs of cold gas in low mass galaxies (gas not related
to the halo-driven infall) because the SF has been delayed in the disk and/or cold gas
is being lately (re)accreted into the galaxy. However, if for some reason the gas reservoir
in these galaxies is lost, then the galaxy will redden and its baryonic and stellar mass
fractions will be smaller than of the galaxies that were able to keep their gas reservoir
(the majority), in agreement with our inferences here (Fig. 33).

7.5 summary and conclusions

By means of the AM technique and using the central blue and red GSMFs, constructed
from the local SDSS sample by YMB09, we have inferred the local Ms–Mh (or fs–Mh)
relations for central galaxies and for the sub-samples of blue and red galaxies. To derive
the relations for the sample of blue galaxies, (i) the mass function of observed groups/-
clusters of galaxies is subtracted from the distinct (S-T) HMF (blue, late-type galaxies are
not observed in the centers of groups and clusters), and (ii) halos that suffered a major
merger since z = 0.8 are excluded. For red galaxies, the HMF is assumed to be the com-
plement of the "blue" one, with respect to the overall (distinct) HMF. We only consider
as sources of uncertainty the systematical error in assigning stellar masses to galaxies
(0.25 dex) and the intrinsic statistical scatter in stellar mass at a fixed halo mass (0.16
dex). By using the observational Mg–Ms relation and its scatter, we transited from Ms to
Mb (=Ms+ Mg) in the GSMF and estimated the overall blue and red GBMFs, which are
used to obtain the corresponding baryonic Mb–Mh (or fb–Mh) relations using the AM
technique.

The Ms–Mh relation obtained here agrees rather well with previous studies (see Fig.
32). The small differences found in this work can be explained mainly in terms of the dif-
ferent GSMFs used in each study, and to a less extent by variations in the methodology.
The 1σ uncertainty in the Ms–Mh relation is ≈ 0.25 dex in logMs. The Ms–Mh relation
of central galaxies lies below (lower Ms for a given Mh) the overall one by a factor ∼ 1.6
at Mh = 1011 M� and less than 5% for Mh > 1013 M�.

Our main result refers to the calculation of the central Ms–Mh and Mb–Mh relations for
the two broad populations into which the galaxy sample can be divided: blue (late-type)
and red (early-type) galaxies. We highlight the following results from our analysis:
• At Mh

>∼ 1011.3 M� the mean stellar mass fraction fs of blue galaxies is lower than
the one of red galaxies, the maximum difference being attained at Mh≈ 1011.7 M�; at
this mass, the fs of red galaxies is 1.7 times the one of blue galaxies (see Fig. 33). At
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larger masses, the difference decreases until it disappears. At Mh
<∼ 1011.3 M� the trend

is reversed as blue galaxies tend to have higher values of fs than red ones. In the case
of the baryonic mass fractions, fb, the same trends remain but at Mh

>∼ 1011.3 M� the
difference in fb between blue and red galaxies is small, while for smaller masses, the
difference increases.
• The Ms–Mh and Mb–Mh (or fs–Mh and fb–Mh) relations of central blue and red

sub-samples do not differ significantly from the respective relations of the overall central
sample, and these differences are within the 1σ uncertainty (Fig. 33). For blue (red) galax-
ies, the maximum value of fs is 0.021+0.016

−0.009 (0.034+0.026
−0.015) and is attained in halos of mass

Mh = 1011.98 M� (Mh = 1011.87 M�); the corresponding stellar mass is Ms = 1010.30±0.25

M� (Ms = 1010.40±0.25 M�), which is around 0.23 (0.30) times M�, the Schechter fit
characteristic mass of the overall GSMF of YMB09. For smaller and larger masses, fs

significantly decreases.
• We have compared our results with the few observational inferences of the Ms–

Mh relation for blue (late-type) and red (early-type) galaxies that exist in the literature.
Although these studies estimate halo masses using direct techniques (weak lensing and
galaxy satellite kinematics), they are still limited by the stacking approach they need
to apply (due to the low signal-to-noise ratio of individual galaxies) and by the large
uncertainties owing to unknown systematics. The overall differences among the different
studies (including ours) amount up to factors 2-4 at a given mass (these factors being
much smaller at other masses) for most methods (Fig. 36). For blue galaxies, all methods
agree reasonably well for low masses (Mh

<∼ 3 × 1012 M�), but at higher masses, our
inference implies larger halos for a given Ms. For red galaxies, at high masses (Mh

>∼ 3×
1012 M�), all methods agree reasonably well, but at lower masses, the satellite kinematics
technique produces halo masses, for a given Ms, larger than those obtained by other
methods.
• According to our results, for Mh

<∼ 1011.3 M�, the intrinsic scatter of the Ms–Mh
relation should slightly anti-correlate with galaxy color (for a fixed Mh, the bluer the
galaxy, the higher its Ms), while for more massive systems, the correlation should be
direct (for a fixed Mh, the redder the galaxy, the higher its Ms). For massive blue galaxies
in order to have higher fs values than the red ones, as the results from direct techniques
suggest, the HMF halos hosting blue (red) galaxies should be even steeper (shallower)
than what we have proposed here; this seems unlikely.
• The maximum baryon mass fraction of blue and red galaxies are fb = 0.028+0.018

−0.011
and fb = 0.034+0.025

−0.014, respectively, much smaller than fU = 0.167 in both cases, and these
maxima are attained at Mh ≈ 1012 M�. At large masses fb decreases approximately as
fb ∝ Mh

−0.5(Mb
−0.8) for blue galaxies and as fb ∝ Mh

−0.6(Mb
−1.5) for red galaxies, in

such a way that from Mh ≈ 5 × 1012 M�, blue galaxies have on average slightly larger
values of fb than red ones. At low masses, the fb of red galaxies strongly decreases as
the mass is smaller fb ∝ Mh

2.9(Mb
0.8), while for blue galaxies, due to the increasing gas

fractions towards smaller masses, fb decreases slower than fs, as fb ∝ Mh
0.7 (∝ Mb

0.4).
The AM technique has been revealed as a relatively simple but powerful method for

connecting empirically galaxies to dark halos. Here we extended this technique towards
inferences for the blue and red galaxy sub-populations separately. By introducing a
minimum of assumptions –otherwise the method becomes to similar to a semi-analytical
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model– we have found that the stellar and baryon mass–halo mass relations of blue and
red galaxies do not differ significantly among them and from the overall ones. The
maximum differences are around the peak of these relations, Mh ≈ 1012 M�, and are
consistent qualitatively with the inference that the galaxies in these halos are transiting
from an active to a quiescent regime (FA10). Those that transited recently is because
they had an efficient process of gas consumption into stars and further cessation of Ms

growth; therefore, they should be redder and with higher fs values than those that still
did not transit. For larger and lower masses than Mh ≈ 1012 M�, the differences decrease
and even invert, something that is also consistent with the inferences by FA10, based on
semi-empirical estimates of the evolution of the overall Ms–Mh relation.
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8
A R E T H E S T E L L A R - T O - H A L O M A S S R E L AT I O N S O F B L U E A N D
R E D G A L A X I E S C O N S I S T E N T W I T H T H E I R S PAT I A L
C L U S T E R I N G ?

Using a statistical model that combines the abundance matching technique, the halo
occupation distribution (HOD) model, and the conditional stellar mass function formal-
ism, we infer the stellar-to-halo mass relations, SHMR, of blue and red central galaxies,
the fraction of halos hosting blue central galaxies, and the HOD statistics of blue and
red satellite galaxies as a function of halo mass, Mh. We use as input the observed color
distributions as a function of stellar mass M∗, blue/red galaxy stellar mass functions,
and projected two point correlation functions decomposed into blue/red galaxies. The
fraction of halos hosting blue central galaxies decreases with Mh and it has a maximum
value of fblue ∼ 0.8 attained at Mh ≈ 1011.4M�. We find that this result agrees at a quali-
tatively level with the proposal in Chapter 7 that blue galaxies avoid halos that suffered
major mergers or that form rich group/cluster systems. The SHMR of central blue and
red galaxies do not differ significantly between them. This implies that the efficiency of
galaxy stellar mass growth, f∗ = M∗/Mh, is nearly independent of the central galaxy
color, although it strongly changes with Mh. The almost lack of segregation of the M∗–
Mh relation of central galaxies by color points out to a large dominion of the scale of the
halos over other properties, e.g., its concentration, connected to the efficiency of galaxy
stellar mass growth.

8.1 introduction

So far, most of current efforts for connecting galaxies to halos have focused on the galaxy
population as a whole, with the stellar mass, M∗, as the only galaxy property to link with
the cold dark matter (CDM) halos (see Part II). However, it is well know that mass is
not the only key parameter of galaxies, as in the case of stars. From the most general
point of view, galaxies can be accommodated into two very broad classes [see for a
review, 32]: red objects dominated by a pressure-suported component with typically old
stellar populations and inefficient star formation (early-type galaxies); and blue objects
dominated by a rotationally-supported disk with old and young stellar populations and
active star formation (late-type galaxies). Late- and early-type galaxies can have any
mass, though statistically the former tend to be smaller and the latter larger. Among the
intensive (scale independent) properties that characterize these two galaxy sequences,
the most easy to obtain in large surveys is the color index. Therefore, a next step in the
galaxy-halo connection is to establish it for at least galaxies separated into two groups, blue and
red ones. Constraining the role that color plays as a second parameter in the galaxy-halo
connection sheds certainly light on our understanding of galaxy evolution.

The distribution of galaxies as a function of color is bimodal [e.g., 15]. The shape of
the bimodality changes systematically with luminosity or M∗: the blue peak decreases in
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favor of the red one as the luminosity or M∗ increases. The bimodal distribution and its
dependence on M∗ is quantitatively different for central and satellite galaxies. In a more
general context, the denser the environment, the redder the galaxies are on average, and
the red galaxies are systematically more clustered spatially than the blue ones [see, e.g.,
123, 258]

In the previous Chapter [177], we have made a first attempt for inferring the stellar-
to-halo mass relations (SHMRs) for blue and red galaxies separately by using the abun-
dance matching technique (AMT). Motivated by theoretical and observational facts, the
CDM distinct halo mass function (HMF) used as a match to the galaxy stellar mass func-
tion (GSMF) of central blue galaxies, was corrected to correspond to halos hosting blue
galaxies by assuming that (1) cluster- and group-sized halos are less likely to host blue
central galaxies, and (2) blue central galaxies are not expected to live in halos that suf-
fered major mergers since z = 0.8. The corresponding HMF of red central galaxies, used
to abundance match the central red GSMF, is the complement to the total distinct HMF.
Under the such assumptions, the SHMRs of blue and red centrals were obtained. The
corresponding halo masses of both groups agree roughly with direct inferences of halo
masses of blue and red central galaxies at the masses where the comparison is possible
[e.g., 146].

The next important question to answer is; whether the obtained SHMRs provide the correct
link of blue and red galaxies to the CDM halos, in the sense that the spatial clustering of linked
blue and red galaxies is consistent with the corresponding observed spatial clustering.

In this Chapter, instead of assuming corrections to the HMF to assign host halos to
blue and red galaxies, we will introduce an empirical approach that makes use of the
observed color distributions as a function of M∗ and the observed projected correlation
functions of blue and red galaxies in different M∗ bins. In this way, by construction,
the obtained blue and red SHMRs are consistent with the observed color distributions
and spatial clustering of galaxies. The main assumption behind our approach is that the
color of a galaxy depends on the halo mass only through the empirical dependence of
color on M∗. The latter dependence, as already mentioned, is actually weak in the sense
that for a given M∗, galaxies may have a broad (bimodal) distribution of color. Thus,
with our semi-empirical approach, we will be able to constrain the fractions of halos at
each halo mass that are linked to blue and red galaxies, the fractions of blue and red
satellites occupying halos of a given mass, and the SHMRs of blue and red galaxies.

The fraction fs=M∗/Mh gives information about the efficiency of stellar mass growth
inside halos. The semi-empirically inferred strong correlation of fs on Mh, with a low
scatter (see Part II), indicates that this efficiency is determined mainly by the halo mass.
We would like to know if this efficiency is different for today blue and red galaxies, i.e.,
whether the fs–Mh (or M∗–Mh) relation segregates significantly by color or not.

This Chapter is organized as follows. In Section 8.2, we describe the approach for in-
ferring the fraction of halos from the distinct halo mass functions that are associated to
blue galaxies, as well as the our statistical model for constraining the blue/red SHMRs.
In Section 8.4, we present our results. Section 8.5 is devoted to a discussion of the impli-
cations of some of our results. Section 8.6 presents the main conclusions of the work.
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8.2 the model

In this Section we describe the semi-empirical approach used for assigning blue and red
central galaxies to their dark matter halos, as well as the satellite occupational numbers
of blue and red satellite galaxies. The statistical nature of this model allows us to relate
in a self-consistent way the blue and red GSMF decomposed into centrals and satellites
galaxies, the projected two-point correlation function (2PCF) of blue and red galaxies
and the ΛCDM halo/subhalo mass functions. The model outputs are: the mean stellar-
to-halo mass relations (SHMR) of blue and red central galaxies, the fraction of halos
hosting blue central galaxies and the fraction of blue satellite galaxies as a function
of halo mass. Our main goal here is to constrain these set of model outputs by using
observations of the color distributions as a function of stellar mass, the blue and red
GSMFs, and the projected 2PCF decomposed into blue and red galaxies.

The statistical approach developed here is based on the AMT, HOD model, and CSMF
formalism (see Part II) but in order to include the blue and red galaxy populations it
requires of two additions.

1. For connecting blue and red central galaxies to their dark matter halos (§8.2.1), we
introduce the conditional probability distribution function that a distinct halo of
mass Mh host a blue (red) central galaxy of stellar mass M∗, denoted by PB,c(M∗|Mh)
(PR,c(M∗|Mh)). As a result, these distributions contain information about the mean
SHMR of blue and red central galaxies, M∗,B(Mh) and M∗,R(Mh), respectively. How-
ever, as was outlined in Chapter 6, in order to infer both M∗,B(Mh) and M∗,R(Mh),
the unknown fraction of halos hosting blue and red central galaxies is a required
input of the model. We overcome this issue by assuming that the color of a central
galaxy mainly depends on the mass of the galaxy rather than on the halo mass.
Based on this assumption and having previously constrained the global central
stellar-to-halo mass relation and its scatter (Pc(M∗|Mh); see §§8.2.1), it is possible
to obtain a simple empirical model for the fraction of halos hosting blue central
galaxies.

2. In agreement with studies of galaxy groups and clusters, and those based on
galaxy clustering, we introduce a model for the fractions of blue/red satellite galax-
ies as a function of halo mass. These fractions are necessary to use the observed
blue/red correlation functions as constrains to the model.

8.2.1 The fractions of halos hosting blue/red galaxies as a function of mass

In the context of the AMT, the connection between the central GSMF, φg,c(M∗), and the
distinct halo mass function, φh(Mh), arises naturally by assuming a probability distribu-
tion function, denoted by Pc(M∗|Mh), that a distinct halo of mass Mh hosts a central
galaxy of stellar mass M∗ [216, 115, 58, 187, 234, 16, 217, 57, 75, 148, 19, 102, 20, 170, 159,
see also Chapters 2 and 3]. As a result of this connection, one obtains information about
the mean SHMR of central galaxies, M∗(Mh). Similarly, in the case that the total central
GSMF is expressed as the sum of the blue and the red central GSMFs, one can simply
define the conditional probability distribution functions PB,c(M∗|Mh) and PR,c(M∗|Mh)
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(see above) to establish the connection between the "blue" and "red" halo mass functions
and the GSMFs of blue and red centrals. Therefore, the GSMF of blue and red centrals
are given by:

φB,c(M∗) =
∫

PB,c(M∗|Mh)φh,B(Mh)dMh, (64)

and

φR,c(M∗) =
∫

PR,c(M∗|Mh)φh,R(Mh)dMh, (65)

respectively. Here φh,B and φh,R are the mass functions of dark matter halos hosting blue
and red central galaxies, respectively. These equations describe the abundance matching
formalism in its differential form for the blue central/halo and the red central/halo
populations.

Formally, the relation between Pc(M∗|Mh) and the distribution functions PB,c(M∗|Mh)
and PR,c(M∗|Mh) is given by

Pc(M∗|Mh) = PB,c(M∗|Mh) fB(Mh) + PR,c(M∗|Mh) fR(Mh). (66)

where fB(Mh) denotes the fraction of halos hosting blue centrals, and fR(Mh) = 1 −
fB(Mh) denotes the fraction of halos hosting red centrals. Note that fB = φh,B/φh and
fR = φh,R/φh.

Ideally, when one knows either fB(Mh) or fR(Mh)1 the problem of constraining the
parameters in the distribution functions PB,c(M∗|Mh) and PR,c(M∗|Mh) is relatively easy
by solving Eqs. 64 and 652. However, fB(Mh) is actually an unknown function and one
needs to assume a model for fB(Mh). In what follows, we describe a simple method to
estimate fB empirically under the assumption that the color of a central galaxy is not
directly related to the halo mass but to the stellar mass. Note that we are not claiming
that there is not a correlation between the color of the central galaxy and halo mass.
In the context of our model, this correlation exists but through the correlation of the
stellar mass with the halo mass. In what follows, we describe the empirical model used
to estimate fB.

In order to assign correctly colors to central galaxies in our approach, we must connect
statistically all the quantities of interest, i.e., stellar mass, color, and halo mass. For
that reason, we have introduced the distribution function P(Cgr, M∗|Mh), denoting the
probability that a distinct halo of mass Mh hosts a central galaxy of stellar mass M∗ and
color Cgr. This distribution function can be decomposed into a ”red sequence”, denoted
by the function R, and a ”blue cloud”, denoted by the function B;

P(Cgr, M∗|Mh) = B(Cgr, M∗|Mh) fB(Mh) + R(Cgr, M∗|Mh) fR(Mh), (67)

Notice that marginalizing over Cgr, Eq. (66) is recovered. For the moment, let us focus
on the right hand side of Eq. (67). Applying the Bayes’ Theorem, we can write:

B(Cgr, M∗|Mh) = B(Cgr|M∗, Mh)PB,c(M∗|Mh), (68)

1 Because the fractions fR(Mh) and fB(Mh) are mutually exclusive, hereafter we only refer to fB(Mh).
2 Note that in Chapter 7 we used these equations to constrain the mean relations M∗,B(Mh) and M∗,R(Mh),

provided that φh,B(Mh) was obtained by theoretical and observational facts about disk galaxies. In this
Chapter we again use these equation in order to constraint both M∗,B(Mh) and M∗,R(Mh), but this time by
proposing an empirical model for φh,B(Mh), and hence, for fB.
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and

R(Cgr, M∗|Mh) = R(Cgr|M∗, Mh)PR,c(M∗|Mh). (69)

Under the assumption that the color distribution of central galaxies at a fixed stellar
mass is independent of halo mass, the distributions B(Cgr|M∗, Mh) and R(Cgr|M∗, Mh)
are simply the conditional distributions B(Cgr|M∗) and R(Cgr|M∗), respectively3. There-
fore,

B(Cgr, M∗|Mh) ≈ B(Cgr|M∗)PB,c(M∗|Mh), (70)

and

R(Cgr, M∗|Mh) ≈ R(Cgr|M∗)PR,c(M∗|Mh). (71)

These equations show that the correlation between the color of the central galaxy and
Mh comes from the correlation that exist between the stellar and halo. This correlation
can be obtained as follows:

Cgr(Mh) ≡
∫

CgrP(Cgr, M∗|Mh)dCgrdM∗ = CB
gr(Mh) fB(Mh) + CR

gr(Mh) fR(Mh), (72)

where the first equality is the definition of Cgr(Mh), and the mean blue and red color-to-
halo mass relation are obtained from Eqs. (70) and (71),

CB
gr(Mh) =

∫
CB

gr(M∗)PB,c(M∗|Mh)dM∗, (73)

and

CR
gr(Mh) =

∫
CR

gr(M∗)PR,c(M∗|Mh)dM∗, (74)

respectively. From Eq. (72), it follows that the fraction of halos fB(Mh) hosting blue
central galaxies as a function of halo mass is,

fB(Mh) =
Cgr(Mh) − CR

gr(Mh)

CB
gr(Mh) − CR

gr(Mh)
. (75)

In practice, we do not evaluate the integrals in Eqs. (72), (73) and (74). Instead, as shown
in Appendix D, the following expression is a reasonable approximation,

fB(Mh) ≈ Cgr(M∗(Mh)) − CR
gr(M∗,R(Mh))

CB
gr(M∗,B(Mh)) − CR

gr(M∗,R(Mh))
. (76)

The importance of the above result is that fB can be constrained from the observed
mean color-to-stellar mass relation, Cgr(M∗), and the mean blue and red color-to-stellar

3 Observe that if the scatter of the mean M∗(Mh) relation is zero, then B(Cgr|M∗, Mh) = B(Cgr|M∗(Mh))
and R(Cgr|M∗, Mh) = R(Cgr|M∗(Mh)), i.e., we obtain the same result but avoiding any assumption on
the relation between the color and the halo mass. Actually, there are several pieces of evidence based on the
analysis of the clustering of galaxies [61, 250, 176], staked galaxy weak-lensing [122], satellite kinematics
[145, 146] and statistical properties of galaxies groups [249, 247, 250, 118], that the scatter around the mean
SHMR is very tight.
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mass relations, CB
gr(M∗) and CR

gr(M∗), and their scatters. In Appendix E, we describe the
data employed and how we obtain these relations, see also section 8.2.4. Note that the
calculation of fB involves the mean SHMR of all central galaxies and the mean SHMR
of blue and red central galaxies. This directly entails that once we are constraining the
mass relations of blue and red centrals, we are also constraining fB. Finally, note that
our model assumes that in general M∗(Mh) �= M∗,B(Mh) �= M∗,R(Mh).

8.2.2 The fractions of blue/red satellite galaxies as function of halo mass

The conditional stellar mass function of satellite galaxies, Φsat(M∗|Mh)(M∗), denotes the
number of satellites of stellar mass between M∗ and M∗ ± dM∗ residing in distinct host
halos of mass Mh. Under this definition, the satellite GSMF, φsat(M∗), is directly related
to the HMF, φh(Mh), according to,

φsat(M∗) =
∫

Φsat(M∗|Mh)φh(Mh)dMh. (77)

which after integration over stellar mass yields to

nsat(M∗) =
∫

〈Ns(> M∗|Mh)〉φh(Mh)dMh, (78)

where 〈Ns(> M∗|Mh)〉 is the number of satellite galaxies residing in a distinct host halo
above stellar mass M∗.

In order to separate satellite galaxies in colors we introduce the function F sat
b , which

specifies the fraction of blue satellite galaxies above some stellar mass threshold M∗
residing in halos of mass Mh. In its more general form, F sat

b (M∗|Mh) can be thought as
a function depending both on M∗ and Mh.

Studies on the spatial clustering of galaxies have shown its dependence on luminosity,
stellar mass and color [155, 154, 259, 123, 258]. In particular, when galaxies are divided
by color, red galaxies appear to be more strongly clustered. Therefore, a qualitative
interpretation is that red galaxies preferentially reside in groups and clusters, that is,
high-density environments. On the other hand, studies on galaxy groups have shown
that the relative fraction of red satellites increases with cluster mass [236, 164, 134, 30,
103, 247]. Based on these facts and after experimenting with different functional forms,
we define the fraction of blue satellite galaxies above the stellar mass threshold M∗ as a
function of halo mass Mh as:

F sat
b (M∗|Mh) = min[1, max[0,Fb(M∗|Mh)]], (79)

where

Fb(M∗|Mh) = F0

(
Mh

Mcut,b

)αb
(

M∗
σb M∗(Mh)

)μb

. (80)

Note that the function F sat
b (M∗|Mh) is always constrained to be between zero and one.

We assume that F0, Mcut,b, αb, μb and σb are free parameters. For the function Fb(M∗|Mh)
the slopes αb and μb control the behavior of the fraction as a function of halo and stellar
mass, respectively, and Mcut,b is a characteristic mass. The inclusion of the term M∗(Mh)
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as a characteristic mass is motivated by the results reported on the satellite CSMF in
YMB09. The amplitude of this function is controled by F0.

Finally the satellite GSMF of blue and red galaxies are given by:

φsat,blue(M∗) =
∫

∂〈Ns,b(> M∗|Mh)〉
∂M∗

φh(Mh)dMh, (81)

and

φsat,red(M∗) = φsat(M∗) − φsat,blue(M∗), (82)

respectively, where 〈Ns,b(> M∗|Mh)〉 = F sat
b (M∗|Mh) × 〈Ns(> M∗|Mh)〉.

8.2.3 The spatial clustering of galaxies

Our approach includes the so-called HOD model, which connects the occupational statis-
tics of galaxies as a function of halo mass with their spatial clustering [e.g., 259].

The HOD model characterize the probability that a halo of mass Mh hosts a number
of N galaxies with stellar masses greater than M∗. Within this formulation, the 2PCF is
obtained by assuming that the total mean number of galaxy pairs is the contribution of
all pairs coming from galaxies in the same halo (one-halo term) and pairs from different
halos (two-halo term). When dividing the population of galaxies into its blue and red
components, the generalization of the HOD model is relatively easy. In this case, the
one-halo regime gives information about the spatial clustering of galaxy pairs within
a common halo and lying in the same color sequence. For the two-halo regime, galaxy
pairs drawn from the same color sequence are counted from different halos. For the
details of the HOD model used in this paper we refer to the reader to Rodríguez-Puebla,
Drory & Avila-Reese [178] and Rodríguez-Puebla, Avila-Reese & Drory [176] (Part II).
Here we outline only the main features of the model.

As it is common for the one-halo term, we assume that the number of central-satellite
pairs follow the normalized mass density halo profile, taken to have the Navarro, Frenk
& White [151] shape and the number of satellite-satellite pairs related to this normalized
density profile convolved with itself. This profile is characterized in terms of the total
halo mass and the concentration parameter.

The two-halo term, which dominates at large scales, is obtained as the weighted aver-
age of the halo bias function [191] times the non-linear matter 2PCF [196]. The weight
of the halo bias will be proportional to the mean occupational number of galaxies times
the halo mass function.

Finally, we relate the correlation function, ξC
gg(r), to the projected correlation function,

wC
p (rp), by integration over the line of sight,

wC
p (rp) = 2

∫ ∞

0
ξC

gg(
√

r2
p + x2)dx, (83)

where C denotes blue or red.
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8.2.4 Summary of the model

Our main goal in this Chapter is to constrain the mean SHMR of blue and red central
galaxies, the fraction of halos hosting blue central galaxies, and the fraction of blue/red
satellite galaxies as a function of halo mass. To do so, we employ the blue and red
GSMF of all galaxies and the projected 2PCFs decomposed into blue and red galaxies
as observational constraints. Below, we summarize the main equations that relate our
model with these observational constraints.

1. The GSMF of blue and red centrals are given by

φB,c(M∗) =
∫

PB,c(M∗|Mh)φh,B(Mh)dMh, (84)

and

φR,c(M∗) =
∫

PR,c(M∗|Mh)φh,R(Mh)dMh, (85)

Here the halo mass functions hosting blue and red central galaxies are given by
φh,B = fB(Mh)φh(Mh) and φh,R(Mh) = φh(Mh) − φh,B(Mh).

2. The fraction of halos hosting blue galaxies is given by

fB(Mh) ≈ Cgr(M∗(Mh)) − CR
gr(M∗,R(Mh))

CB
gr(M∗,B(Mh)) − CR

gr(M∗,R(Mh))
. (86)

3. The satellite GSMF of blue and red galaxies are given by

φsat,blue(M∗) =
∫

∂〈Ns,b(> M∗|Mh)〉
∂M∗

φh(Mh)dMh, (87)

and

φsat,red(M∗) = φsat(M∗) − φsat,blue(M∗), (88)

respectively, where 〈Ns,b(> M∗|Mh)〉 is the number of blue satellite galaxies above
some stellar mass threshold M∗ residing in halos of mass Mh.

4. We compute 〈Ns,b(> M∗|Mh)〉 = F sat
b (M∗|Mh)×〈Ns(> M∗|Mh)〉, where F sat

b (M∗|Mh)
is the fraction of blue satellite galaxies above some stellar mass threshold M∗ resid-
ing in halos of mass Mh; this fraction is given by a parametric function motivated
by observational studies.

5. The total blue and red GSMFs are given by

φblue(M∗) = φB,c(M∗) + φsat,blue(M∗), (89)

and

φred(M∗) = φR,c(M∗) + φsat,red(M∗), (90)
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6. We compute the projected 2PCF of blue and red galaxies using the HOD model.

In item (1), we assume lognormal distributions both for PB,c(M∗|Mh) and PR,c(M∗|Mh).
Both lognormal distributions are characterized by their mean, M∗,B(Mh) and M∗,R(Mh),
and their scatters σb and σr. Our adopted parameterization for the mean SHMR of blue
central galaxies, M∗,B(Mh), is motivated by the functional form proposed in Behroozi,
Wechsler & Conroy [20]. This function consist of five parameters and in the context of
the AMT reproduces the main features of a Schechter-like function from a power-law
halo mass distribution. For red central galaxies, by using Eq. (66), one finds that the
relation between the mean SHMR of all central galaxies, M∗(Mh), the mean SHMR of
blue central galaxies, M∗,B(Mh), and the mean SHMR of red central galaxies, M∗,R(Mh),
is given by,

log(M∗,R(Mh)) =
log(M∗,B(Mh)) fB(Mh) − log(M∗(Mh))

1 − fB(Mh)
. (91)

where we have use the fact that fR(Mh) = 1− fB(Mh). Therefore, the red mean M∗,R(Mh)
relation is a function that does not need to be independetly constrained. For the SHMR
of all central galaxies, we use the set C constrained in Chapter 3. This SHMR and its
scatter was inferred by using the decomposition of the central and satellite GSMF and
the projected 2PCFs in different M∗ bins.

For the distinct HMF, we use the accurate fit to the abundance of dark matter halos
measured in large cosmological N-body simulations by Tinker et al. [207].

In item (2), we use the observed color-stellar mass distributions. As detailed in Ap-
pendix E, by using the Yang et al. [249] group catalog, based on the SDSS DR4, we
constrain the mean and the width of the blue and red distribution of central galaxies as
a function of stellar mass. To do so, we assume that the distribution of 0.1(g − r) colors
as a function of M∗ of central galaxies are drawn from bi-modal distribution functions
that depends on M∗. The distribution of each mode is represented by Gaussian func-
tions denoted by R(Cgr|M∗) and B(Cgr|M∗), respectively. The parameters CB

gr(M∗) and
CR

gr(M∗), and σB(M∗) and σR(M∗) denote the mean and the standard deviation for the
blue-cloud and red-sequence modes, respectively.

In items (3) and (4), the main ingredient is the fraction of blue satellite galaxies above
the stellar mass threshold M∗ residing in halos of mass Mh. The parameterization used
here is given by Eq. (80).

In item (6), we use the relation between concentration parameter cNFW as a function
of halo mass obtained by Muñoz-Cuartas et al. [150] from fits to N-body simulations.
Additionally, based on the results of high-resolution N-body [115] and hydrodynamic
simulations of galaxy formation [262], we assume that the second moment of satellite
galaxies, 〈Ns(Ns − 1)〉, follows a Poisson distribution with mean 〈Ns〉2 = 〈Ns(Ns − 1)〉.

Finally, in total our model consist of ten parameters. Five parameters to model the
SHMR for blue (and therefore red central galaxies, see above), and five more for the
occupational numbers of blue and red satellites galaxies. We recall that the global SHMR
of all central galaxies is taken from a previous determinations (by using the same Yang
et al. [249] data used here).
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8.3 observational data and fitting procedure

8.3.1 The data

In order to constrain the model parameters in our model, the combination of the total
blue and red GSMFs and the projected 2PCFs of blue and red galaxies for various mass
bins are necessary.

Here we use the YMB09 GSMF of blue and red galaxies. These data were obtained
from the SDSS DR4 and within the redshift range 0.01 < z < 0.2. Stellar masses were ob-
tained from the fitted relation between the stellar-to-light mass ratio and color reported
in Bell et al. [21]. To be consistent with the Chabrier [48] initial mass function adopted
here, we subtract 0.1 dex to the stellar masses of YMB09 galaxies.

For the correlation functions, we use the Li et al. [123] measurements of wp(rp) in five
different stellar mass bins for a sample of ∼ 200, 000 galaxies based on the SDSS. They
also measured the clustering of galaxies spitted in blue and red ones. Note that Li et al.
[123] use a very similar color cut to ours to define blue galaxies.

8.3.2 Fitting procedure and uncertainties

To constraint the set of ten parameter introduced in our model, we use the Powell’s
directions set method in multi-dimensions for the minimization [167]. We infer the best
fitting model parameters by minimizing the merit function

χ2 = χ2(φY09
tot,blue) + χ2(φY09

tot,red) + χ2(wL06
p,blue) + χ2(wL06

p,red), (92)

where,

χ2(φY09
tot,color) =

1
Nbin

Nbin

∑
i=1

(
φg

i,tot,color
,model − φg

i,tot,color
,obs

σi,tot,color
obs

)2

. (93)

Here, φg
i,tot,color
,obs are the observed values of the total blue and red GSMFs with errors

σi,sat/cen,color
obs , while φg

color
,model denotes the same but for the model values.

For the spatial clustering we assume that:

χ2(wL06
p,color) =

1
Ns,binNr,bin

Ns,bin

∑
i=1

Nr,bin

∑
j=1

⎛
⎝wp

i,j
,model − wp

i,j,color
,obs

σ
i,j,color
obs

⎞
⎠

2

. (94)

where Ns,bin is the number of stellar mass bins; Nr,bin denotes the number of bins in
the projected 2PCF; wp

i,j,color
,obs (wp

i,j,color
,model ) is the amplitude of the observed (modeled) pro-

jected 2PCF at the jth projected distance bin of the ith stellar mass bin, for blue and red
galaxies.

In Behroozi, Conroy & Wechsler [19], the uncertainties that affect the SHMR have been
discussed in great detail. In that paper the authors conclude that the largest uncertainty
by far in the SHMRs, at least for local galaxies, is due to systematics shifts in the stellar
mass estimates. Here we assume that this error is of the order of 0.25 dex. The second



8.4 results 157

Figure 37: Galaxy stellar mass function for all, central and satellite blue and red galaxies. In
all the panels, except bottom right panel, the solid lines indicate the abundance of
blue galaxies, while the long dashed lines indicate the abundance of red galaxies. The
observational inferences reported in YMB09 for the blue (red) galaxies are plotted
with filled squares (empty circles). Upper left panel: Best fitting model to the observed
total GSMF of blue and red galaxies. Upper right panel: Model predictions for the
central GSMF of blue and red galaxies. Bottom left panel: Model predictions for the
satellite GSMF of blue and red galaxies. Bottom right panel: For illustrative purpose,
we compare the blue and the red GSMFs for all, central, and satellite galaxies.

most important source is the uncertainty in the intrinsic scatter of the mean SHMR. In
our analysis, the intrinsic scatter of the stellar mass at a fixed halo mass is modeled (by
construction) by using the distribution functions PB,c(M∗|Mh) and PR,c(M∗|Mh).

Finally, observe that while the YMB09 GSMF and the Li et al. [123] projected 2PCF
in various mass bins are used to constrain the model parameters, the fraction of halos
hosting blue central galaxies, the GSMFs decomposed into centrals and satellites, and
the CSMFs in different halo mass bins for blue and red galaxies are predictions of our
model.
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Figure 38: Projected 2PCF in five stellar mass bins for blue and red galaxies. The solid lines
indicate the best fitting model for blue galaxies, while long-dashed lines are for red
galaxies. The reported projected 2PCF in Li et al. [123] for blue and red galaxies are
shown with the filled squares and empty circles, respectively.

Figure 39: Left Panel: Fraction of halos from the distinct halo mass function associated to blue
galaxies. Fractions reported from staked weak-lensing [133] and satellite kinematics
[146] are plotted with filled squares/error bars and the shaded area, respectively. Left
Panel: The same as the left panel but as a function of stellar mass.
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8.4 results

8.4.1 Best fit model and the fraction of halos hosting blue/red central galaxies

The free parameters of our model (§§8.2.4) are constrained by fitting the model to the
observed GSMF of blue and red centrals and the blue/red projected 2PCFs in different
M∗ bins. Figures 37 (upper right panel) and 38 present the best fits for the GSMFs of
central blue and red galaxies, and the projected 2PCFs of blue and red galaxies in five
M∗ bins. These figures show the accuracy at which the model can be constrained. The
model has some difficulty in reproducing the steep slope at the lowest masses of the
red central GSMF, as well as the steep 2PCF at the smallest distances for these galaxies.
Recall that the decomposition of the GSMFs into centrals and satellites is already a
prediction of the model, not a fit4. The left upper and lower panels of Fig. 37 compare
predictions of our best fitted model with the observations of the total and only satellite
blue/red GSMFs from YMB09. The agreement is good, the model predictions are always
within the uncertainty of the observations.

The left panel of Fig. 39 presents the resulting fraction of halos hosting blue central
galaxies as a function of Mh, while the right panel shows the same fractions but as a
function of M∗. Our best constrained model is indicated with a solid line. The dashed
line is the fraction used in the previous Chapter [177] under the assumptions mentioned
in the Introduction. For comparison, in the left panel the filled squares with error bars
represent the blue fraction as reported from staked weak-lensing [133]5, and the shaded
area indicates the results from the analysis of satellite kinematics [146]. In the right
panel, the observed fractions of blue centrals as a function of stellar mass reported in
Mandelbaum et al. [133] are plotted as well.

We observe that the fraction of halos hosting blue centrals in our constrained model
present a maximum of fblue ≈ 0.8 at Mh = 1011.4M�, and as Mh increases, fblue declines
slowly. At ∼ 1012M� the fraction of halos hosting blue and red centrals is equal, i.e.,
fblue = fred = 0.5, and it falls below 0.1 for masses larger than Mh ∼ 5 × 1013M�. The
shape of this fraction is basically constrained by the shape of the fraction of blue centrals
as a function of stellar mass, which is given by the observed central blue and red GSMFs
(reproduced in the right panel of Fig. 39). In this sense, the fast increase of fblue as Mh at
low halo masses, and then its strong decline, is the result of the flattening (steepening)
of the low-mass end shapes of blue (red) central GSMFs, respectively (see Fig. 37).

From the comparison with direct inferences of halo masses, we see that our model
predicts a slightly higher fraction of high-mass blue halos. In the analysis of satellite
kinematics, practically all halos more massive than ∼ 3 × 1013M� hosts only red cen-
tral galaxies, while our results show that this fraction is about ∼ 85% which is more
consistent with weak-lensing results. Note that in the case of the analysis of staked satel-
lite kinematics, blue galaxies were selected by using a stricter color cut than in YMB09
catalog (see Appendix A of [146]). Presumably, this is the reason why there are not ha-

4 In any case, we have explored also the case of fitting the blue and red GSMFs provided by YMB09 instead of
predicting them (analogous to set C in Chapter 3) and found that the SHMR and other predictions remain
the same.

5 The data was taken using their table 1.
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Figure 40: Stellar-to-halo mass relations of blue and red central galaxies. Upper panels: From left
to right, the SHMR of blue and red galaxies, and a comparison between them. Solid
lines are for the results obtained here. Filled squares, pentagons, and triangles with
error bars correspond to the results by Mandelbaum et al. [133], Mandelbaum, Seljak
& Hirata [132] and Schulz, Mandelbaum & Padmanabhan [184] using galaxy-galaxy
weak lensing. The results obtained from group catalogs [249] are shown with cyan
solid lines, while indirect inferences using the AMT [177] are shown with short dashed
lines. Lower panels: From left to right, th fs–Mh relations obtained here for blue and
red central galaxies, and a comparison between them.

los hosting blue centrals galaxies more massive than ∼ 1013M�. At halo masses below
∼ 1013M�, our fraction is in good agreement in both cases, within the uncertainties,
both for staked weak-lensing and satellite kinematics results.

8.4.2 The stellar-to-halo mass relations of blue and red central galaxies

Top panels of Fig. 40 show the constrained local SHMRs for blue and red central galaxies
(solid line). In the same figure we plot some direct inferences of halo masses based on
staked weak lensing [133, 132, 184]6, and staked satellite kinematics [146]. The indirect
statistical inferences by Yang et al. [249] and [177], for both blue and red central galaxies,
are also plotted for comparison.

The right panel of Fig. 40 compares the blue and red central SHMRs. We find no
significative differences between the SHMRs of both galaxy populations. If any, there
is a systematical trend of blue centrals to have slightly lower stellar masses than red

6 Note that the mass relations based on staked weak-lensing measurements are averaged at a fixed stellar
mass, i.e, 〈Mh〉(M∗), while our mass relation are averaged at a fixed halo mass, 〈M∗〉(Mh).
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Figure 41: Density-weighted average CSMFs of blue and red galaxies. The solid and long dashed
lines show the resulting central and satellite CSMFs. The filled circles and squares with
error bars show the corresponding observational inferences by YMB09. Upper panels:
The CSMFs for blue galaxies. Lower panels: The CSMFs for red galaxies.

centrals for a given halo mass above Mh ∼ 7 × 1011 M�. At low masses, the blue (red)
SHMR scales as M∗ ∝ Mh

2.56 (M∗ ∝ Mh
3.03). At high masses, the scaling for blue (red)

centrals is M∗ ∝ Mh
0.63 (M∗ ∝ Mh

0.57).
The corresponding fs = M∗/Mh fractions vs Mh are shown in the bottom panels of

Fig. 40. The maximum for blue (red) centrals is fs ∼ 0.025 ( fs ∼ 0.031) and it occurs
at log(Mh/M�) ≈ 11.9 (log(Mh/M�) ≈ 11.8). The fs fraction is interpreted as the effi-
ciency of galaxy stellar mass growth in halos. Our results show then that this efficiency
is almost independent of the color type of central galaxies. Red centrals have slightly
larger values of fs, specially in the 11.7 < log(Mh) < 12.2 mass range, where the peak
efficiency is attained.

Finally, we find that our mass relations are roughly consistent with the staked weak-
lensing and satellite kinematics estimates, taking into account their large uncertainties.
For blue central galaxies, our results agree well with these inferences over the halo mass
range 12 < log(Mh/M∗) < 13, and for red centrals, the agreement is remarkable for
log(Mh/M∗) > 12.5. Regarding the halo masses reported in the group catalog of Yang
et al. [249], they are in agreement with our results, as well with previous results based
on the abundance matching results of Rodríguez-Puebla et al. [177].
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8.4.3 Occupational numbers

An immediate prediction of the model are the occupational statistics of galaxies in dark
matter halos. We compare the model predictions with the observed satellite and cen-
tral CSMFs for blue and red galaxies in the upper and bottom panels of Figure 41. The
filled circles with error bars denote the observed YMB09 central CSMFs, while the filled
squares with error bars denote the observed YMB09 satellite CSMFs. Because the obser-
vational data are given for counts in different halo mass ranges, we compute the mean
halo-density-weighted blue central CSMF in the [M1

h, M2
h] bin in order to compare with

these observations:

〈Φc,B〉 =

∫ M2
h

M1
h

Φc,b(M∗|Mh)φh,B(Mh)dMh∫ M2
h

M1
h

φh,B(Mh)dMh

, (95)

and the mean halo-density-weighted blue satellite CSMF according to:

〈Φs,B〉 =

∫ M2
h

M1
h

Φs,b(M∗|Mh)φh(Mh)dMh∫ M2
h

M1
h

φh(Mh)dMh

. (96)

Analogously, we compute the mean halo-density-weighted CSMFs for red central and
satellite galaxies.

In general, our central CSMFs match observational expectations fairly well, practically
at all masses both for central and satellites CSMFs. Nevertheless the faint-end of the
observed red satellite CSMFs in low mass halos, log(Mh/M�) < 12.7, is steeper than
our model prediction, although still within the uncertainties.

Figure 42 shows the mean central and satellite occupational numbers as a function
of halo mass for blue and red galaxies, separately, in stellar mass bins (upper panels)
and for stellar mass thresholds (bottom panels). The left panels of Fig. 42 shows that the
probability of having a blue central galaxy decreases with halo mass and eventually the
majority of massive halos will host red central galaxies. This is similar to Fig. 41.

In the middle panels of the same figure we present the occupational numbers of blue
an red satellite galaxies. The number of red satellites increases much faster than the
number of blue satellites as a function of halo mass. We found that the number of blue
satellites increases as a power law with Mh with a slope of 0.61, while the red sequences
grows as 1.06, independent of the stellar mass. Consistent with our results, previous
works have found that power-law slope for blue, lb, is lower than red galaxies, lr. For
instance, Magliocchetti & Porciani [131] found lb = 0.7 and lr = 1.1, while Collister &
Lahav [54] found lb = 0.88 and lr = 1.05.

8.5 discussion

8.5.1 The stellar-to-halo mass relations of blue and red galaxies

It is important to clarify that the inferences of the stellar-to-halo mass relations, SHMRs,
of local central blue and red galaxies performed here are not independent. In fact, we are
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Figure 42: Occupational number statistics for blue and red galaxies (see the text). Upper panels:
For stellar mass threshold. lower panels: For stellar mass bins.

using the previous constrained (Chapter 3) global SHMR, its scatter, and the observed
color–M∗ distributions, in order to sample the distributions of halos associated to blue
and red galaxies. Recall that we do so under the assumptions that for a given M∗, the
color does not depend on Mh and that the scatter distributions of the blue/red SHMRs
are lognormal and within the scatter of the global SHMR. It is within this scheme and
assumptions that, by means of our statistical method, we could constrain the SHMRs of
blue and red galaxies. The relevant point to remark is the overall self-consistency among
several kind of observations that we attain through our method and with the blue/red
central SHMRs constrained through it. We can say that the overall model results (see
Section 8.4) are a good description of the observed global GSMF and its decomposition
into blue and red components, the observed projected 2PCFs of blue and red galaxies,
the color–M∗ distributions, and the occupational statistics of blue and red satellites.
This encouraging self-consistency of our model and the observations suggests that the
underlying blue and red SHMRs are the correct ones.

Our results show that the SHMR of the galaxies separated into two broad groups, blue
and red objects, is close to the global one, i.e., galaxies do not segregate significantly by
color in the M∗–Mh (or fs–Mh) relation, implying that the color is not related to the
efficiency of galaxy stellar mass growth, fs. As a first approximation, we could say the
color of a galaxy is related to the halo mass aggregation history (MAH): halos that
assemble most of their mass early would not provide of baryonic material to the galaxy
for its late growth and the galaxy should be redder than anoother formed in a halo with
a more extended mass aggregation history [see e.g., 8]. The shape of the halo MAH is
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related to its present day concentration [11, 232, 7]. Thus, if the galaxy color correlates
with the halo concentration, then a significant segregation of galaxies in the M∗–Mh
relation is expected. However, the scatter of the concentration for a given Mh is large,
hence a large scatter in the M∗–Mh relation due to color would be obtained. The scatter
around the M∗–Mh relation is actually very small, in particular for central galaxies in
halos without satellites [118].

Our finding that the fs–Mh relation of central galaxies does not differ significantly for blue
and red galaxies suggests that the physical processes that coin the main fs–Mh relation largely
supersede possible effects of the halo MAH (related to the color) on the final stellar mass.

At masses much smaller than Mh ∼ 1012 M�, the decreasing efficiency of fs in low
mass Mh is determined by the star formation (mainly SN)–driven feedback. The gas
mass infall driven by the (cosmological) halo MAH is probably superseded by the local
outflow (and eventual re-accretion) processes, in such a way that the variations in M∗
for a given Mh for these low-mass systems does not correlate with the halo MAH. Our
results show that at these low masses, red galaxies have slightly higher values of fs

than blue galaxies. This could be a consequence of the fact that galaxies formed in halos
assembled earlier, had early periods of active star formation and therefore strong SN-
driven gas ejection, able to blown up away all the gas around, resulting in today a red
galaxy with a stellar mass lower than the case of galaxy formed in the same halo but
with a more quite MAH and star formation history.

At masses much larger than Mh ∼ 1012 M�, the decreasing star formation efficiency
is larger is determined by the large gas cooling times and the AGN–driven feedback.
Again, these processes certainly supersede the gas infall due to the halo MAH, in such a
way that the resulting color does not correlate with the final galaxy M∗ for a given Mh.

At masses around Mh ∼ 1012 M�, where the efficiency peaks (Fig. 40), our results
show slightly higher efficiencies for red galaxies than for the blue ones. The efficiency
peaks at these masses, just because these are the scales where (1) the SN-driven outflows
are already not important for such large gravitational potentials, and (2) the large gas
cooling time and AGN–driven feedback do not yet affect the central galaxy growth.
Therefore, at these scales the mentioned above processes are not expected to supersede
the effects of the halo MAH on the central galaxy mass growth. Interestingly enough,
our results show that around Mh ∼ 1012 M�, red galaxies have slightly larger values of
fs than blue galaxies, in agreement with the idea that they assembled more efficiently
in time just because the available baryons were accreted early due to their MAHs; the
galaxies of the same present-day halo mass that formed in halos with a more extended
MAH, accreted hence later a fraction of the baryons in such a way that they are bluer and
with less stars (smaller M∗). In any case, the differences we have found in the efficiencies
of blue and red galaxies are very small.

The lack of dependence of the galaxy stellar mass assembly on the MAH of their
halos is evidenced also by recent semi-empirical inferences of the SHMR at different
redshifts (see Chapter 6 and the references therein). The SHMRs at different redshifts are
connected by the average halo MAHs and, this way, the corresponding average galaxy
stellar mass aggregation histories are inferred. As early shown in Conroy & Wechsler
[57] and Firmani & Avila-Reese [84], the shapes of the average halo and galaxy MAHs
are roughly similar only for Mh ∼ 1012 M�. At larger masses, the stellar mass growth
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stops at higher redshifts for larger halo masses (downsizing in mass), while the halo
MAH shows the opposite behavior, being more active at late times for large halo masses.
At masses smaller than Mh ∼ 1012 M�, while the halo MAH at late times becomes flatter
as smaller is Mh, the galaxy stellar mass growth becomes actively growing (downsizing
in specific star formation rate). Therefore, these semi-empirical inferences are consistent
with the idea that the galaxy stellar mass assembly history is detached from the MAH
of its host halo.

8.5.2 The host halos of blue and red galaxies

According to the results shown in Fig. 39, the fraction of halos in the distinct halo
mass function that today are associated to central blue galaxies is maximal at Mh ≈
2 × 1011M�, attaining a value of fblue ∼ 0.8. At smaller masses, fblue decreases, and this
is associated to the low-mass end shapes of the blue/red central GSMFs from YMB09,
where the abundance of red galaxies increases while the one of blue galaxies remains
roughly constant. At larger masses, fblue decreases. Why do the fractions of blue and
red central galaxies depend on halo mass?

In Rodríguez-Puebla et al. [177, see also Chapter 7], we have postulated that fblue is
associated to the major merger history of the halos, and thus we have imposed two
criteria to select halos able to host blue (late-type) galaxies: (1) halos that did not suffer
a major merger since z = 0.8, and (2) halos that do not host classical groups richer
than 3 members (blue centrals in rich group/cluster of galaxies are rarely observed
and this could be related to the merger–driven violent assembly of central galaxies in
high-density environments).

From Fig. 39, one sees that the assumed fblue in Rodríguez-Puebla et al. [177] roughly
agrees with the constrained one here, suggesting that the physics behind the fraction
fblue (and its complement, fred) is qualitatively the one mentioned above. However, we
see also in Fig. 39 that there are some differences at low and high halo masses. The
assumption in Rodríguez-Puebla et al. [177] that disk (∼blue) galaxies do not exist in
halos that suffered major mergers with ratios larger than 0.2 after z = 0.8 seems to be
too strong for Mh

<∼ 1012 M�. It could be that for smaller galaxies, the less they are af-
fected by major mergers because small galaxies are more gaseous in such a way that the
mergers are actually wet; therefore, the redshift limit can be lowered at smaller masses,
increasing the fraction of low-mass halos hosting blue central galaxies. Furthermore, it
is important to keep in mind that color is just a first order approach to morphology;
some small galaxies are actually seen as blue spheroids in the local universe.

On the other hand, we obtain that a few fraction of massive halos can host blue
central galaxies. This fraction is actually constrained by the observed color distribution
of massive galaxies in the YMB09 catalog, which shows that there are indeed a few very
massive blue centrals (see Fig. 48 in the Appendix E). However, in More et al. [146] the
authors applied a stricter color cut in such a way that there are not blue centrals in halos
larger than ∼ 1013M�. Therefore, the determination of the fraction of halos at a given
mass hosting blue/red central galaxies is actually somewhat subjective, depending on
the criterion used to separate galaxies into blues and reds.
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8.6 conclusions

By means of a statistical model that combines the AMT, the HOD model, and the CSMF
formalism, we have constrained the SHMRs of blue and red central galaxies starting
from the global central SHMR and its scatter independently inferred first. For constrain-
ing the parameters of the model, we use the observed global GSMF and the projected
2PCFs of blue and red galaxies, as well as the color–M∗ distributions of central galaxies.
Since the model connects all these observational data with the distinct ΛCDM halo mass
function, one obtains self-consistently (1) the SHMR of blue and red central galaxies, (2)
the fraction of halos hosting blue/red central galaxies, and (3) the fraction of satellite
galaxies, that are blue/red as a function of both M∗ and Mh. Our main results are briefly
outlined as follows.

• The fraction of halos hosting blue central galaxies significantly decreases with
mass from its maximum ( fblue ∼ 0.8) attained at Mh ≈ 1011.4M�. This result agrees
qualitatively with the proposal in Rodríguez-Puebla et al. [177, Chapter 7] that blue
(late-type) galaxies do not live in halos that (1) suffered late major mergers and (2)
that host classical groups richer than 3 members. If the shape of the red (blue)
GSMF at the low-mass end is confirmed to be as steep (flat) as in YMB09, then
fblue ∼ 0.8 decreases strongly for masses lower than Mh ≈ 1011.4M�.

• The SHMR of central blue and red galaxies do not differ significantly between
them, suggesting that the efficiency of galaxy stellar mass growth, fs, is roughly the
same for blue and red galaxies but it strongly changes with Mh. The constrained
blue/red SHMRs agree by construction not only with the observed GSMFs of blue
and red galaxies, but also with the observed 2PCFs of blue and red galaxies.

• The obtained CSMFs of blue and red satellites as a function of Mh agree with
observations.

The obtained SHMRs for central blue and red galaxies rather than independent infer-
ences, are underlying relations of the model, which proved to offer a good description
of the observed global GSMF and its decomposition into blue and red components, the
observed projected 2PCFs of blue and red galaxies, the color–M∗ distributions, and the
occupational statistics of blue and red satellites. The almost lack of segregation of the
M∗–Mh relation of central galaxies by color points out to a large dominion of the scale
of the halos over other properties, e.g. the MAH, in determining the efficiency of galaxy
stellar mass growth.
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Part VI

I M P L I C AT I O N S O F T H E B A RY O N - T O - H A L O M A S S
R E L AT I O N O N T H E S T R U C T U R A L A N D D Y N A M I C A L

P R O P E RT I E S O F L O C A L G A L A X I E S

El estudio de la influencia de la fracción barionica en función de la masa del halo,
fb(Mh), inferida en el Capítulo 7, sobre las relaciones dinámicas y estructurales
de las galaxias de disco es abordado en esta Parte VI. En el Capítulo 9, se pre-
senta un enfoque analítico para explorar cómo dependen dichas relaciones de las
propiedades del halo (factor "cosmológico") tal como su masa, parámetro de giro
λh y concentración, y del factor "astrofísico" dado por la eficiencia de crecimiento
bariónico de las galaxias en función de Mh, justamente la fracción fb(Mh). Las con-
clusiones obtenidas son importantes para interpretar los resultados del siguiente
Capítulo. En el Capitulo 10 se presenta un enfoque más completo del modelo es-
tático, en el cual se siembran galaxias de disco en equilibrio centrífugo en halos
de materia oscura y se resuelven las propiedades del sistema final, dados los fac-
tores "cosmológicos" y "astrofísico", a través de iteraciones. En este caso se toman
en cuenta las distribuciones de los parámetros que describen los factores de en-
trada del modelo, de tal manera que las relaciones dinámico-estructurales obtenidas
tienen sus correspondientes dispersiones. Nuestros resultados permiten evaluar las
consecuencias de la relación fb(Mh) recientemente constreñida, en particular para
galaxias azules (Rodríguez et al. 2011), identificadas en primera aproximación como
galaxias dominadas por discos. Las relaciones de Tully-Fisher estelar y bariónica y
sus dispersiones se mantienen cercanas a las observaciones, sin presentar además el
problema del punto cero (normalización) reportado en algunos trabajos anteriores.
No obstante, las relaciones radio-masa (estelar o bariónica) y cociente de velocidades
máximas del disco a total vs. masa resultan ser sensibles a la forma de la relación
fb(Mh). Para estar de acuerdo con la relación radio-masa, las galaxias más masivas
deben tener un parámetro de giro menor que el de sus halos. Los discos modelados
aumentan el dominio del disco a medida que la densidad superficial se incrementa
pero nunca llegan a ser "discos máximos".

El Capt́itulo 10 contiene material parcialmente presentado en la memoria: "Seeding
the local disk galaxy population", Rodríguez-Puebla, Avila-Reese, Colín & Firmani 2011,
RevMexAA (CS), vol. 40, p. 84
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I N F L U E N C E O F T H E B A RY O N M A S S F R A C T I O N O N T H E D I S K
G A L A X Y S T R U C T U R A L / D Y N A M I C A L C O R R E L AT I O N S . I . A N
A N A LY T I C A L A P P R O A C H

ABSTRACT
By means of an analytical approach, the effects of cosmological/astrophysical initial
conditions on the structural-dynamical properties of baryonic disks formed inside CDM
halos are explored. Our main goal is to understand the role that the galaxy baryon
mass fraction, fb=Mb/Mh (Mh is the virial halo mass), plays in the main disk galaxy
correlations. The recently determined fb–Mh relation for central blue (disk-dominated)
galaxies (Chapter 7) changes strongly with Mh, having a bell shape with a peak at
Mh ∼ 1012 M�, with a value much smaller than the universal baryon mass fraction.
We find that the fb–Mh relation almost does not influence the shape and normalization
of the Vt,max–Mb (baryonic Tully-Fisher) relation, where Vt,max is the maximum circular
velocity of the disk + contracted halo system, but it strongly influences the radius–mass
and disk-to-total circular velocity ratio–mass relations. The predicted relations for the
ΛCDM cosmology are consistent with observations, with the exception of a deviation to
larger radii in the radius–mass relation. This issue suggests that the angular momentum
conservation should be relaxed in such a way that for the massive galaxies, some angular
momentum transfer result in disks with smaller spin parameters than those of the halos,
hence the disks end with smaller radii.

9.1 introduction

Several properties and correlations of the disk galaxy population have been studied by
means of analytic (static) and semi-numeric (evolutionary) models in the cosmological
context [e.g., 144, 10, 82, 218, 255, 80, 96, 203, 79, 85, and reference therein]. Typically,
these models use as input parameters he total halo (dark + baryonic) mass, Mh, the
baryon-to-halo mass ratio ( fb ≡ Mb/Mh, where Mb is the total galaxy mass in baryons),
the halo spin parameter λh, and the halo NFW concentration parameter, c, or in more
detail, the whole halo mass aggregation history, MAH. While λh, c or the halo MAH
as a function of Mh are provided by cosmological simulations (for the popular Λ Cold
Dark Matter cosmology, ΛCDM), the galaxy baryon fraction fb(Mh) has been treated as
a free parameter, commonly assumed to be constant or decreasing as Mh decreases.

The actual normalization and shape of the fb–Mh relation, including its scatter, is a
product of the complex physics of baryons in interaction with the growing CDM ha-
los. The processes of gas capture by the halos, its transformation into stars, its ejection
due to the stellar-driven (mainly supernova) and AGN-driven feedback and its even-
tual re-accretion, are expected to depend strongly on halo mass, epoch, and local galaxy
properties [see for recent reviews e.g., 143, 23]. These processes are still poorly under-
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stood and challenge the current deductive (ab initio) models and numerical simulations
of galaxy evolution.

On the other hand, based on large galaxy surveys, direct or indirect determinations
of the stellar-to-halo mass ratio ( fs ≡ Ms/Mh, where Ms is the galaxy stellar mass) as a
function of mass have started to be determined routinely (see previous Chapters of this
Thesis and the references therein). The shape of the local fs–Mh relation is such that it
increases strongly from small masses, attaining a maximum at Mh ∼ 1012 M�, and then
it decreases with Mh. The value of fs at the maximum is constrained to be around 0.025–
0.035, that is, much lower than the universal baryonic mass fraction, fb,U ≡ Ωb/ΩM ≈
0.16. The fs fraction is associated to the efficiency of galaxy stellar mass assembly. The
shape of fb as a function of Mh at z ∼ 0 seems to be qualitatively similar to the one
of fs [16, 177, 159], for masses large than Mh ∼ 5 × 1011 M�, both fb and fs are on
average actually close, having approximately the same maximal values, and for smaller
masses the former becomes systematically higher as smaller is Ms. This latter behavior
is related to the known fact that smaller galaxies have that as the smaller are the galaxies,
the higher are their gas higher gas fractions, i.e., lower mass galaxies are less efficient in
transforming gas into stars.

Here we are interested in exploring the influence of the "input" galaxy baryon fraction
fb(Mh) on the structural-dynamical correlations of disk galaxies. Therefore, it is impor-
tant to use a fb(Mh) function constrained for this kind of galaxies. In Rodríguez-Puebla
et al. [177, Chapter 7], by means of the Abundance Matching Technique, the fs and fb
as a function of Mh were constrained for blue and red galaxies separately, including
their scatters. In a first approximation, blue galaxies can be associated mostly to disk-
dominated galaxies. In fact, both relations are not too different for blue and red galaxies.
In any case, in this work we will use the main fb–Mh relation obtained in Rodríguez-
Puebla et al. [177] for blue galaxies.

For the explorative purpose in which we are interested in this Chapter, we require
a simple and transparent approach rather than a more complex model. Here we use a
static (non-evolutionary) approach for seeding disks in CDM halos based on Mo, Mao &
White [144]. In order to avoid iterative procedures and obtain analytical results for the
main correlations (not taking into account scatters), the model presented in this Chapter
represents a simplistic version of Mo, Mao & White [144] model. Is important to note
that in our analysis refers only to "baryonic" disks (stars+ gas) not affected by mergers
or secular processes; that is, we assume that once the exponential disk is formed in
centrifugal equilibrium inside the CDM halo, it remains as a disk and no difference
between gas and stars is made. In Chapter 10 we will present results for a complete
iterative model that takes into account the scatters in the input relations/parameters
and that models crudely the fractions of stars and gas. The results obtained here will
allow to understand those of the complete iterative model.

This Chapter is organized as follows. In section 9.2 we introduce a simple model in
which the approximate analytical formulations for the scaling relations of disk galaxies
are fully characterize by the parameters fb, λh and c, by assuming that (1) the total
maximum circular velocity of the disk+halo system is reached at the most inner regions,
(2) dark matter particles move in circular orbits and (3) the baryonic scaling relations
of disk galaxies are a crude representation of the stellar disk scaling relations. Using
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these analytical relations, in section 9.3 we explore at a qualitative level the impact that
the baryon-to-halo mass ratio, fb, has on the scaling relations of disk galaxies. Finally, in
section 9.4 we present our conclusions.

Except when we stated otherwise, we assume a ΛCDM cosmology with cosmological
parameters ΩM = 0.27, ΩM = 0.73, h = 0.70, and a Chabrier [48] IMF.

9.2 the analytical approach

The main trends of the scaling relations and other correlations of disk galaxies can be
described in terms of a few cosmological "input" relations and parameters, mainly fb,
λh and c as a function of Mh [see e.g., 144, 10, 82, 80, 12, and reference therein]. In the
following, an approach, based on Mo, Mao & White [144] but expressed in analytical
terms in order to simplify on the dependences, is presented.

Since our goal is to explore how the galaxy baryon mass fraction as a function of Mh
influences the disk galaxy main correlations at a qualitative level, we will study three
different cases for fb(Mh):

1. fb=0.03 (a constant fb and much smaller than fb,U has been commonly assumed in
early static and evolutionary semi-numerical models)

2. fb = 0.03(Mh/1011.5h−1M�)0.3 (the smaller the galaxies, the more dark dominated
they are; in order to catch this empirical fact for low-mass galaxies, a baryon mass
fraction decreasing with mass has been proposed, see for example Dutton et al.
[80]);

3. the mean fb(Mh) relation constrained by means of the abundance matching tech-
nique for blue (disk-dominated) galaxies in Rodríguez-Puebla et al. [177, Chapter
7]1 (for this more realistic case, fb rapidly increases with Mh up to a maximum
and then decreases for larger masses).

Figure 43 shows a comparison between these three cases of galaxy baryon-to-halo mass
ratio.

The key aspects of the disk galaxy model in which our analytical approach is based
are summarized as follows:

1. Initially, the baryonic gas and the dark matter are uniformly and well mixed in a
unique and virialized object described by a Navarro, Frenk & White [151] (NFW)
mass density profile, characterized by a total (baryonic + dark) viral mass and
radius, Mh and rvir, and a concentration, c.

2. The (baryonic) disk forms in the centre of the halo with a mass that is a fraction fb
of the halo mass, Mb= fbMh;

1 In that work, we have used the blue and red Galaxy Stellar Mass Functions of central galaxies determined
by Yang, Mo & van den Bosch [247] from the SDSS DR5. The Halo Mass Function (HMF) corresponding
to blue galaxies was calculated from the total ΛCDM (distinct) HMF but (i) by excluding those halos that
suffered major mergers after z = 0.8 (theirs disks likely will be destroyed and not regenerated by z ∼ 0),
and (ii) by subtracting the observed HMF of bounded groups with 3 or more members (late-type galaxies
are rare as central objects in groups/clusters).



172 the baryon fraction and the structural/dynamical disk correlations i

Figure 43: The baryon-to-halo mass ratio as a function of halo mass, fb(Mh), for the three dif-
ferent cases studied in this Chapter. The red dotted short-dashed shows a constant
fb = 0.03, while the blue short-dashed line shows a power-law form proposed in Dut-
ton et al. [80]. The fb constrained in Chapter 9 by using the central galaxy stellar mass
function from the SDSS DR4 is represented with the black solid line.
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3. The angular momentum of the disk is also a fraction of the one of the halo, i.e.,
jd = Jd/Jh. It follows that the connection between the disk and halo spin parameter
is: λd = λh(jd/ fb). If the detailed angular momentum is conserved, then λd=λh.

4. The disk is a thin and rotationally supported structure (centrifugal equilibrium)

with an exponential density mass profile, Σd(r) = Σ0e−r/Rd = Mb
2πR2

d
e−r/Rd .

5. The disk scale radius Rd is determined by the condition of centrifugal equilibrium
in the gravitational potential (described by the total circular velocity curve) pro-
duced by the disk and the halo, and with the disk angular momentum jd.

6. The accumulation of baryonic mass in the centre in order to form the disk produces
a contraction of the inner halo, in such a way that the centrifugal equilibrium is
reached in a gravitational potential different to the simple sum of those produced
by the pristine NFW halo and the exponential disk.

In order to keep analytical the full description of the disk/halo mass and circular
velocity profiles, the following extra assumptions should be done: (1) the total max-
imum circular velocity (disk+halo), Vt,max, is reached at radii much smaller than rvir;
(2) the dark matter particles in the spherical halo move in circular orbits and the halo
contraction proceeds under adiabatic conditions; and (3) detailed angular momentum
conservation is obeyed, i.e., λd=λh.

9.2.1 The main equations

In the disk + halo system, the total circular velocity is the sum in quadratures of circular
velocities of the disk and the (contracted) halo:

V2
t (r) = V2

d (r) + V2
h (r). (97)

In this section our aim is to estimate the maximum circular velocity of the final system
(disk + contracted halo), Vt,max, which will be necessary for calculating the baryonic
Tully-Fisher relation (bTFR)2 in §§9.2.2. Because in the central regions the disk tends to
dominate, one expects that the total circular velocity maximum should be also close to
2.2Rd, while for the most dark dominated systems (typically the smaller ones), the max-
imum is shifted to larger radii. In that direction, let us assume that Vt,max ≈ Vt(2.2Rd).
Therefore, under our assumption two ingredients are needed, V2

t,max ≈ V2
t (2.2Rd) =

V2
d (2.2Rd) + V2

h (2.2Rd). For the reminde of this section our strategy will focus in obtain-
ing separately the analytical expression for V2

h (2.2Rd) and V2
d (2.2Rd).

2 Historically, the TFR is defined as a relation between the luminosity (or stellar mass) and the maximal
rotation velocity, Vt,max. However, from a theoretical point of view, it is more correct to express Vt,max as a
function of luminosity (or mass; see for an extensive discussion Avila-Reese et al. [12]). This is called the
inverse TFR. In order to avoid this term all the time, we rename here the TFR as the relation between mass
(baryonic or stellar) and Vt,max.
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9.2.1.1 The analytical model

The initial (before contraction) halo, of virial radius rvir and mass Mh, has a spherical
NFW mass density profile characterized by the concentration parameter c:

Mh(ri) = Mh × g(c, x), (98)

where x = ri/rvir, c = rvir/r0 (r0 is a scale radius of the NFW density profile), and

g(c, x) =
ln(1 + cx) − cx/(1 + cx)

ln(1 + c) − c/(1 + c)
. (99)

From the spherical collapse model, the virial radius is defined as:

rvir =
(

3Mh

4πΔρ̄M

)1/3

= γ × Mh
1/3, (100)

where Δ ≈ 340 for the ΛCDM cosmology assumed here, and γ = (3/4πΔρm)1/3. The
circular velocity profile of the NFW profile is given by Vin

h (ri) =
√

GMh(ri)/ri. This
profile has a maximum at ri = 2.16r0 and its value at this radius can be calculated from
eqs. (98), (99), and (100):

Vin
h,max =

√
Gcg(c, 2.16r0)

2.16γ
Mh

1/3. (101)

The mass and circular velocity profiles of the halo, after the gravitational drag of the
disk, Mh(r) and Vh(r), can be obtained by mapping the initial mean radius ri of particles
in the NFW halo to the mean radius r at which these particles will end after the disk
formation and halo contraction. This mapping can be quantified through the contraction
factor ω = ri/r. It is usual to assume adiabatic invariance in the contraction process,
then the radial angular momentum of particles is conserved (Blumenthal et al. [33]).
From this condition:

Mh(ri)ri = Mb(r)r + Mh(ri)(1 − fb)r. (102)

For the inner regions of the disk + halo system (within a few disk scale radii) and using
ri = ωr, it is reasonable to assume that:

cω(r/rvir) << 1. (103)

For this case:

g(c, ωr/rvir) =
c2(ωr/rvir)2

ln(1 + c) − c/(1 + c)
= σ(c)(ωr/rvir)2. (104)

Assuming that r = bRd and by means of eqs. (98) and (102), the contraction factor ω is
given by:

ω3 − ω2(1 − fb) − [1 − (1 + b)e−b] fb

σ(c)b2

(
rvir

Rd

)2

= 0. (105)
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By means of the intermediate value theorem we can say that ω has at least one real
solution, furthermore, it is easy to show, by using the discriminant of the cubic equation,
that ω has one real root and two non-real complex conjugate roots, where the real one
is the one of interest in our case. The latter means that the circular velocity of the halo
after the gravitational drag can be written as:

V2
h (r) = G

Mh(ri → r)
r

(1 − fb) = G
Mh(ωr)

r
(1 − fb). (106)

As mentioned earlier, the total circular velocity of the disk + halo system is the sum in
quadratures of circular velocities of the disk and the contracted halo:

V2
t (r) = V2

d (r) + V2
h (r), (107)

For a thin exponential disk:

V2
d (r) = 4πGΣ0Rdy2[I0(y)K0(y) − I1(y)K1(y)], (108)

where y = r/2Rd, and I0,1 and K0,1 are modified Bessel functions of the first and second
kind respectively (Freeman [88]). The mapping of ri to r (which is expressed through the
contraction factor ω = ri/r) is performed iteratively by calculating the scale radius Rd of
the exponential disk in centrifugal equilibrium in the total gravitational potential field
defined by eq. (107). Since here we are interested in an (approximate) analytical description,
the iteration is avoided. In the approximation that the total circular velocity maximum is
close to 2.2Rd, the expression for the disk baryon component is very simple;

V2
d (2.2Rd) = α

Mb

Rd
, (109)

where α = 9.68GB1,1
0,0 and B1,1

0,0 = [I0(1.1)K0(1.1)− I1(1.1)K1(1.1)]. In contrast, the expres-
sion for V2

h (2.2Rd) of the contracted dark matter halo is more complex;

V2
h (2.2Rd) = G

Mhg(c, 2.2ωRd/rvir)
2.2Rd

(1 − fb). (110)

Here the mapping from ri to r = 2.2Rd due to halo contraction is contained in ω (see
equation (105), for the case b = 2.2). Again, in the inner regions of the disk + halo system
(within a few disk scale radii), it is reasonable to assume that cω(Rd/rvir) << 1 and as
in the case of eq. (104):

g(c, 2.2ωRd/rvir) =
4.84c2ω2(Rd/rvir)2

ln(1 + c) − c/(1 + c)
. (111)

At this moment our analytical expressions for both V2
d (2.2Rd) and V2

h (2.2Rd) depend
on scale length radius of the baryon disk, Rd. Under the assumption of angular momen-
tum conservation and centrifugal equilibrium, this radius can be estimated as follows;

Rd =
1√
2

fR(λh, c, fb) f (c)λhrvir, (112)
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where fR(λh, c, fb; Rd) (hereafter fR) is a function of the input parameters λh, c, and fb,
and of the same value of Rd, which takes into account the gravitational effects (including
the halo adiabatic contraction) of the disk. Thus, fR is the one that should be found by
an iterative procedure (see Mo, Mao & White [144] and next Chapter for more details).
Since fR, for most of the cases, has values of order unity, we assume it to be a constant
close to 1. f (c) is a function of the dark matter halo concentration that appears in the
calculation of the total energy of a NFW profile truncated at the viral radius rvir = cr0

(see Mo, Mao & White [144]). By introducing eq. (100) into eq. (112) one obtains:

Rd = Γ f (c)λh( fb
−1Mb)1/3, (113)

where Γ = (1/
√

2)× fR × γ. Thus, the disk scale radius Rd becomes defined only by the initial
cosmological/astrophysical parameters. Equation (113) will be used in §§9.2.3 for estimating
the radius-mass relation. It is easy to find also that the disk central surface density is
given by:

Σ0 =
M1/3

b f 2/3
b

π[Γ f (c)λh]2
. (114)

Having a model to estimate Rd, we can now obtain that the disk component is given
by (see eqs. 109 and 113, and Mb=2πΣ0R2

s )

V2
d (2.2Rd) = α

Mb

Rd
=

α

Γ f (c)
Mb

2/3 fb
1/3

λh
, (115)

while for the contracted dark matter halo (see Eqs. 110, 112 and 111) we get:

V2
h (2.2Rd) =

β

Γ f (c)
Mb

2/3

fb
2/3 λh(1 − fb), (116)

where β = 2.2Gω2c2[Γ f (c)/γ]2/[ln(1 + c) − c/(1 + c)]. Thus, the total circular velocity
at 2.2Rd is given by eqs. (115) and (116):

V2
t (2.2Rd) =

λh

Γ f (c)
Mb

2/3

fb
2/3

[
α

fb

λ2
h

+ β(1 − fb)

]
. (117)

We may further compare the maximum final circular velocity (Vt,max ≈ Vt(2.2Rd))
with the maximum circular velocity of the initial CDM halo (the cosmological one). The
ratio of both quantities for a given galaxy is given by eqs. (117) and (101):

Vt,max

Vin
h,max

≈
[

2.16αγ

Γ f (c)Gcg(c, 2.16r0)

(
fb

λh
+ (1 − fb)λh

β

α

)]1/2

. (118)

The parameter c and the functions fR, f (c), and g(c, 2.16r0) are expected to depend very
weakly on Mh (and hence on Mb). Therefore, the relevant connection between the final
(disk + contracted halo) Vt,max and the initial halo Vin

h,max, connection that will be used to
estimate the bTFR in §§9.2.2 , is given by:

Vt,max ≈ K × Vin
h,max

(
fb

λh
+ (1 − fb)λh

β

α

)1/2

, (119)
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where K includes all the constants and terms independent or poorly dependent on mass.
The N-body simulations provide us with the "cosmological" TFR, i.e., the relation be-
tween Vh,max and Mh, where Mh=Mb/ fb.

We are also interested in the local disk-to-total circular velocity ratio at 2.2Rd (see
§§9.2.3). From eqs. (115) and (117) we obtain that:

Vd(2.2Rd)
Vt(2.2Rd)

=
[

1 + λ2
h
(1 − fb)

fb

β

α

]−1/2

. (120)

For a given value of c and λh, the term β/α in eqs. (119) and (125) depends mainly
on ω the contraction factor of the halo at 2.2Rd (eq. 105). As mentioned above, the
formal procedure is to map r from ri by an iterative procedure. Here, in order to get the
analytical approximate equations, let assume in equation (112) that fR = 1 and write
the concentration parameter as c = c(Mh) = c( fb

−1Mb), and then insert the result in
eq. (105) (for the functionality of f (c) see Mo, Mao & White [144]). The last step is to fix
b = 2.2 and then you should be able to solve eq. (105). For radii around 2-3Rd and low
values of fb, the values of ω are ∼ 1.2 − 3. Note that when ω = 1 there is no adiabatic
contraction, and even more, if 0 < ω < 1, then the dark matter halo expands.

9.2.2 The Tully-Fisher relation

Using Eq. (118), we can now obtain the relation between Vt,max and the baryon mass
Mb, i.e., the bTFR. It is well known that Vin

h,max correlates with Mh (the "cosmological"
TFR) as Ma′

h (from N-body cosmological simulations, a′ ≈ 0.31 with a small scatter, e.g.,
Avila-Reese et al. [11, 7]). This is actually close to the simple case of a spherical collapse
into an isothermal sphere, Vin

h,max ∝ Mh
1/3, where Vh(r) is actually constant. Subsituting

this into eq. (9.2.2) and taking into account that Mh=Mb/ fb, we obtain that the bTFR in
terms of fb is;

Vt,max ≈ K ×
[

fb
1/3

λh
+

(1 − fb)
fb

2/3 λh
β

α

]1/2

Mb
1/3. (121)

Results from numerical simulations show that the halo spin parameter λh has a broad
lognormal distribution almost independent on halo mass and weakly dependent on
environment (e.g., Avila-Reese et al. [7], Bett et al. [29]). Therefore, it is expected that
the distribution of λh introduces an intrinsic scatter in the bTFR. In this section we are
interested only on the average trends with mass, for that reason we will fix λh = 0.035,
which is close to the median value found in large numerical simulations (e.g., Bett et al.
[29]). Similarly, for the concentration parameter c as a function of Mh we use the fit to a
large cosmological simulation reported in Muñoz-Cuartas et al. [150].

Most of the analytical and semi-numeric works mentioned on the introduction have
shown that the zero-point (normalization) and slope of the TFR relation, Vt,max = AMb

a,
are not too sensitive to fb, in particular if the adiabatic halo contraction due to disk
gravitational drag is taken into account. However, for a strong and peculiar dependence
of fb on mass, as the one inferred in Rodríguez-Puebla et al. [177, see fig. 43] for blue
galaxies, some curvature in the bTFR is expected: for masses much higher (lower) than
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the mass at the peak, Mb(Mh ∼ 1012M�) ≈ 1010.4M�, the slope a should be steeper
(shallower) than the average one at intermediate masses. From the toy model the slope
of the bTFR is given by

a =
d log Vt,max

d log Mb
∼ 1

3
−
(

1
3
− 1

2
η

)
fb

′, (122)

where, fb
′ = d log fb/d log Mb, and

η =
1 − β

α λ2
h

1 + β
α λ2

h
(1− fb)

fb

. (123)

For simplicity, we assume the ratio β/α as constant. Note that for the typical values of
fb, c and λh, the term inside of the parenthesis in eq. (122) is always positive, while
the values of fb

′ could change from positive to negative, see Fig. 43. Immediately, one
can see that for a peaked fb relation, at low masses fb

′ > 0, hence a = a+ < 1/3;
at high masses, fb

′ < 0, hence a = a− > 1/3; and at the peak mass, fb
′ = 0, hence

a = apeak ∼ 1/3. Therefore, for the fb(Mh) relation of blue (disk-dominated) galaxies
used here, for which fb

′(Mh < 1012M�) > fb
′(Mh ∼ 1012M�) > fb

′(Mh > 1012M�),
one should expect that a+ < apeak < a−. Therefore, a bend in the bTFR at low and high
masses is expected. For a constant baryon fraction, the slope of the bTFR is ∼ 1/3 at all
masses, a reminiscence of the "cosmological" TFR.

9.2.3 The radius–mass relation

According to eqs. (112) and (113), the disk scale radius correlates with Mh as Rd ∝
λh f (c)rvir ∝ λh f (c)Mh

1/3, where c depends weakly on Mh. In fact, the dependence of
f (c) on Mh is very weak, such that it can be considered as constant. As mentioned,
numerical simulations have shown that on average λh does not depend on Mh [e.g., 29].
Then the radius–mass relation is expected to scale with fb as Rd ∝ Mh

1/3 ∝ (Mb fb
−1)1/3

with a systematical shift that depends on λh. The peculiar and relatively pronounced
dependence of Rd on fb implies some curvature in the Rd − Mb relation. The slope of
this relation is

d log Rd

d log Mb
∼ 1

3
− 1

3
fb

′. (124)

Note that if the slope of the relation fb–Mh is zero, then d log Rd/d log Mb = 1/3. This
happens at the maximum of this ratio. For masses below the maximum, fb

′ > 0, hence
the slope becomes shallower, while for masses above the maximum, fb

′ < 0, hence the
slope becomes steeper.
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9.2.4 Disk-to-total velocity ratio at 2.2Rd vs mass

The ratio of the the disk-to-total circular velocities at 2.2Rd, Vd,2.2/Vt,2.2, characterizes
the inner dynamics of disk galaxies and it depends on the baryon-to-dark matter ratio
inside optical radii. According to our toy model this is given as:

Vd(2.2Rd)
Vt(2.2Rd)

=
[

1 + λ2
h
(1 − fb)

fb

β

α

]−1/2

. (125)

Note that the number on brackets is always positive. Moreover, if fb = fb,U ≈ 0.16 < 1
then Vd,2.2/Vt,2.2 < 1. On the order of magnitude, λh ∼ 10−2, fb << 1 and β/α ∼ 102,
we then obtain that λ2

h(1 − fb)β/α ∼ λh, and

[
1 + λ2

h
(1 − fb)

fb

β

α

]−1/2

∼ (1 + λh/ fb)−1/2. (126)

Therefore, at a first order the slope of the Vd,2.2/Vt,2.2 ratio is,

d log
d log Mb

Vd,2.2

Vt,2.2
∝

λh/ fb

1 + λh/ fb

d fb

d log Mb
∼ d fb

d log Mb
, (127)

where we use that fb ∼ λh.

9.3 results : implications for galaxy scaling relations

Based on the analytical approach described in the previous Section, we calculate the
disk baryonic Vt,max–Mb, radius–Mb, and Vd,2.2/Vt,2.2–Mb relations for the three different
fb(Mh) dependences showed in Fig. 43. In all the cases, we use the median values of the
CDM halo distributions corresponding to λh (=const.=0.035) and c(Mh). The results are
plotted in Fig. 44 for (1) fb=0.03 (dot-dashed red line), (2) fb = 0.03(Mh/1011.5h−1M�)0.3

(dashed blue line), and (3) the Rodríguez-Puebla et al. [177] fb(Mh) dependence for blue
galaxies (black solid line). Additionally, for the case (3), we present results for a lower
value of the spin parameter, λh = 0.02 (long-dashed black line).

The panel (a) of Fig. 44 shows the bTFR. The relations for all the cases are relatively
similar despite the quite different shapes of fb(Mh). As expected (see §§9.2.2), for the
peaked fb(Mh) form inferred semi-empirically, the bTFR slope becomes slightly steeper
and shallower at masses much higher and lower than the peak mass (Ms ≈ 1010.4 M�),
respectively (see eq. 122). For intermediate masses, the slope a ≈ 1/3 as well as the
normalization are in good agreement with observational inferences of the bTFR (see
e.g., Avila-Reese et al. [12]). For the case of a lower λh value (=0.02), there is not an
appreciable shift of the normalization neither on the bend of TFR. The trends found for
the bTFR are expected to be also valid for the stellar and (infrared) luminous TFRs.

There are some hints that the stellar or infrared TFR has a curvature in the predicted
sense at lower masses/luminosities [e.g., 137, 31, 139]. At large masses, the observations
are too scarce as to know whether there is or a bend or not.

In panel (b) of Fig. (44), Rd vs Mb is plotted. We observe that the Rd − Mb relation
is much more dependent on fb than the bTFR. For the semi-empiric fb(Mh) bell-shaped
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Figure 44: Dynamical and structural scaling relations for disk galaxies. In all the panels the solid,
short-dashed and dotted short-dashed lines show the results obtained when using
the Chapter 9 fb(Mh), the power-law form of fb(Mh) and fb = 0.03 and in all cases
a parameter spin λh = 0.035. The long-dashed line show the results when using the
former case of fb(Mh) and a lower spin value λh = 0.02. Panel a): The bTFR. This
relation is not significantly influenced by the shape of fb. Nevertheless, as expected
from the peaked Chapter 9 fb(Mh) relation, the bTFR is slightly steeper at masses be-
low 1010.4M�, above this masses it is shallower. Panel b): The Rd-Mb relation. Observe
how the fb significantly influences the shape of the Rd-Mb relation, while the spin
parameter λh affects only the normalization. Panel c: The disk-to-total circular velocity
ratio at 2.2Rd. Apparently, the shape of this ratio reassembles the shape of fb for all
the cases probed here. All galaxies tend to be submaximum disks even when the spin
parameter is lowered to a value of λh = 0.020.
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dependence, the Rd − Mb (average) relation is significantly curved, with a shallower
slope at low masses and much steeper slope at the largest masses, something expected
according to eq. (124). Therefore, the shape of the fb(Mh) relation significantly influ-
ences the shape of the Rd − Mb relation of disk galaxies. A strong effect of λh on the
normalization of this relation is also seen (it seems that the overall shape of the Rd–Mb
relation does not change significantly with λh). Since the disk central surface density, Σ0,
for a given Mb, strongly anti-correlates with λh (see eq. 114), then the scatter around the
normalization of the mean Rd − Mb relation correlates strongly with Σd, in such a way
that high (low) surface brightness galaxies (low and high values of λh, respectively) lie
below (above) the mean relation. Observations confirm this segregation of galaxies in
the Rd − Mb relation [12].

Is the radius–mass relation of observed disk galaxies as curved in Fig. 44? The ob-
servational studies refer mainly to the stellar or luminous radius–mass(luminosity) re-
lations. It is expected that from the baryonic to stellar or infrared luminosity radius–
mass(luminosity) relations there are not significant changes in the shape. For large sam-
ples from the SDSS, it was reported that the stellar radius–mass relation is indeed shal-
lower at low masses and steeper at high masses Shen et al. [189], Dutton et al. [78].
However, the change in the slope at high masses is not as pronounced as plotted in Fig.
44 for the fb(Mb) bell-shaped relation. Since for lower values of λh, the radius is smaller,
it could be that the disk spin parameter, λh, departs from the halo one towards lower
values as more massive are the galaxies. If this is the case, then the slope of the radius–
mass relation at large masses would become shallower than in the case of λd = λh
independent of mass. This opens the possibility that the detailed angular momentum
conservation in massive disk galaxies is not obeyed, <. λh.

In panel (c) of Fig. 44 we plot the ratio of the the disk-to-total circular velocity ratio at
2.2Rd, Vd,2.2/Vt,2.2, as a function of Mb. As can be seen, the Vd,2.2/Vt,2.2 ratio is strongly
dependent on fb. For the case fb=const., this ratio almost does not depend on mass (dot-
dashed red line). For fb increasing monotonically with mass, Vd,2.2/Vt,2.2 increases with
Mb (dashed blue line). However, for the semi-empirical fb(Mh) relation inferred for blue
central galaxies, this ratio becomes a strong function of Mb (solid black line), showing a
peak at Mb ≈ 1010.4 M�. Therefore, the shape of the fb–Mh relation remains imprinted
in the dependence of the disk-to-total circular velocity ratio on mass.

For λh = 0.035, the predicted disks are significantly sub-maximumal, i.e., strongly
dark-matter dominated, even those with masses at the peak. For λh = 0.020, the velocity
ratio at the peak barely implies the maximum-disk case (Vd,2.2/Vt,2.2 > 0.75). There are
several pieces of evidence that low-mass disks are deeply sub-maximum (strongly dark-
matter dominated), and as the mass increases or the Hubble type is earlier, they can
become of maximum-disk type (e.g., Zavala et al. [255], Herrmann & Ciardullo [106], for
a review see van der Kruit & Freeman [221], and more references therein). Some authors
find that all galaxies, even the massive ones, are in the sub-maximum regime with values
of Vd,2.2/Vt,2.2 = 0.63 ± 0.10, Bottema [35], = 0.57 ± 0.22, [116] or = 0.53 ± 0.15, [117],
but see Sackett [179] where Vd,2.2/Vt,2.2 = 0.85± 0.10 for massive galaxies. More recently,
by means of integral field stellar and gas kinematics, Bershady et al. [27] find that the
disk-to-total rotation velocity ratio increases with Vt,max (from ∼ 100 to 250 km/s) but
does not overcome ∼ 0.7, i.e. galaxies are sub-maximal. The method used by these
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authors breaks the disk-halo degeneracy by obtaining independent measures of the total
dynamical mass and dynamical disk-mass surface density.

9.4 conclusions

A static model of disk + halo galaxies based on Mo, Mao & White [144] has been used
to infer analytic relations for the main structural and dynamical correlations of disk
galaxies. These analytic relations are expressed in terms of the initial "cosmological"
parameters, namely the virial halo mass, Mh, its concentration c and spin parameter
λh, and the astrophysical parameter fb (the galaxy baryon-to-virial halo mass ratio).
The obtained correlations for the (disk + contracted halo) systems refer actually to disk
baryon quantities (mass, radius, etc.) and for exponential disks in which the effects of
mergers or secular evolution on the structural/dynamical properties are neglected.

The aim of our analytical approach is to understand in a transparent way the effects
of the initial conditions on the main structural/dynamical properties of disk galaxies,
in the context of the ΛCDM cosmology. We were particularly interested in exploring
the effects of the baryonic mass fraction and its dependence on mass, fb(Mh). Recent
semi-empirical determinations of this dependence for blue (disk-dominated) galaxies by
Rodríguez-Puebla et al. [177, Chapter 6] show that fb(Mh) is far from being constant or
a simple power law (Fig. 43).

From the results of our simple analytical approach (resumed in Fig. 44), we have seen
that:

• The bTFR (Vt,max vs Mb) is a robust relation that is weakly affected by the cosmo-
logical input parameters, as well as by the shape and normalization of fb(Mh). If
any, the bell shape of the semi-empirical fb–Mh relation imprints a weak bend in
the bTFR at low masses (slope shallower than a ∼ 1/3) and a very weak bend
at high masses (slope steeper than a ∼ 1/3); the slope of a ∼ 1/3 is a direct im-
print of the "cosmological" TFR (Vin

h,max − Mh). The normalization of the predicted
bTFR for the ΛCDM cosmology is consistent with the observed bTFR; there is not
a "zero-point TFR" issue.

• The baryonic Rd–Mb relation depends significantly on fb(Mh) and its scatter is
determined mainly by the variation of λh; the latter implies that galaxies are seg-
regated systematically in the radius–mass relation by their surface brightness. The
bell shape of the semi-empirically inferred fb–Mh relation, translates into a strong
curvature in the Rd–Mb relation: at masses close to those corresponding to the
maximum of fb(Mh), the slope of the relation is ∼ 1/3; at lower masses, the slope
becomes systematically shallower, while at higher masses, it becomes systemati-
cally steeper. The predicted Rd–Mb relation is actually consistent with observa-
tions, with the exception of the steepening at high masses; this suggests that the
detailed angular momentum conservation should be relaxed at high masses in
such a way that the disk spin parameter, λd, becomes systematically smaller than
λh as more massive the galaxy is.
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• The disk-to-total circular velocity ratio at 2.2Rd as a function of Mb also depends
on the shape and normalization of the fb–Mh relation. The Vd,2.2/Vt,2.2 ratio is a
measure of the luminous-to-dark matter content inside the galaxies. Our results
show that for the ΛCDM halos and the low values inferred for fb, galaxies are sub-
maximal. Only for the cases when the spin parameter is very small, the disk can
be concentrated enough as to be close to Vd,2.2/Vt,2.2 = 0.75, the value above which
a galaxy becomes maximum disk. The dependence of the Vd,2.2/Vt,2.2 ratio on Mb
for the semi-empirical fb–Mb relation and λh = 0.035, is such that it decreases in
low mass galaxies; a maximum value (≈ 0.55 − 0.60) is attained at the peak of the
fb–Mb relation, and at larger masses it decreases again. If the angular momentum
conservation is relaxed and λd systematically decreases as the mass increases, then,
the Vd,2.2/Vt,2.2 ratio would continue increasing with Mb.

Our analytical results allow to understand in a clear way how the initial conditions
influence the disk galaxy properties. We have found that, in particular, the effects of
the recently constrained fb–Mb relation for blue galaxies, are weak in the bTFR but
significant in the Rd–Mb and Vd,2.2/Vt,2.2–Mb relations. The results encourage us to use
the complete static models with the iterative procedure and taking into account the
intrinsic scatters of the initial parameters; fb, c and λh. The confrontation of the predicted
structural-dynamical correlations with those observed, including the scatters, allows us
to probe the underlaying cosmological model and constrain the relevant astrophysical
processes of disk galaxy formation.
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ABSTRACT
Using models of disk galaxies seeded inside ΛCold Dark Matter (ΛCDM) halos, we
study the structural and dynamical statistical properties of a whole population of disk
galaxies at z = 0. We are able to map the halo (cosmological) and astrophysical initial
conditions into the main correlations among these properties. These conditions (inputs)
are the distributions of the halo concentration and spin parameter, λh, as a function
of halo mass Mh, and of the baryonic mass growth efficiency given by the Mb/Mh
ratio, as a function of Mh. The former come from ΛCDM cosmological simulations, and
the latter from the new semi-empirical inferences for blue central galaxies presented
in Part V. Our models show that the population of disk galaxies formed inside CDM
halos are in good agreement with the observed shape, normalization and scatter of both
the stellar and baryonic TFRs; in particular, there is not a zero point problem. Our disk
galaxy population is also in good agreement with the observed shape, normalization and
scatter of both the stellar and baryonic mass-radius relations. However, this consistency
is attained only when the spin parameter of the disks is lower than that of their host
halos, λd < λh, in particular for the massive ones, Mh > 1012M�. Thus, we constrain
semi-empirically the dependence of λd on Mh. We find a weak anti-correlation between
the residuals of the TFR and those of the mass-radius relation. Thus, disk galaxies have a
significant contribution of dark matter inside their optical radii. Moreover, our analysis
based on the the disk-to-total maximum circular velocity ratio (which characterize the
contribution of the baryonic to the total matter in the inner parts of the disk), shows
that disk galaxies are dark matter dominated, i.e., disk galaxies are in the sub-maximum
regime, as some direct pieces of evidence suggest. Future studies in large spectroscopical
galaxy surveys (e.g., MaNGA) will confirm or not this result.

10.1 introduction

Disk galaxies are the most common type of galaxies in the local Universe. In the context
of the popular Λ−Cold Dark Matter (ΛCDM) cosmology, disks are generic structures
formed inside CDM halos from the gas trapped within them. Therefore, it is expected
that the structural and dynamical properties of the galactic disks are tightly related
(1) to the "cosmological" initial conditions imprinted in their halos (halo virial mass,
radius, concentration and spin parameter, Mh, rvir, c, and λh, respectively), and (2) to
the "astrophysical" initial or boundary conditions, as for example, the galaxy baryon
mass fraction, fb=Mb/Mh, where Mb is the disk baryonic mass. Note that Mh refers to
the total (baryonic + dark) mass inside the virial radius.

185
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A large effort has been done in understanding the formation and evolution of disk
galaxies in the context of the ΛCDM cosmology by means of evolutionary models/sim-
ulations and static population models (see for references Chapter 9). The former follow
the assembly and evolution of individual disk galaxies inside the growing CDM halos;
using this approach it is difficult to obtain a whole population of galaxies. The latter
approach is not evolutionary, but it allows to "seed" disk galaxies in a whole population
of CDM halos at a given epoch, and explore in this way the correlations between the
main structural and dynamical properties of galaxies.

The main question posed in this Chapter is whether the recently inferred fb–Mh rela-
tion and its scatter is consistent with the structural/dynamical correlations of local disk
galaxies. As mentioned above, these properties are tightly related to fb. This relation has
been recently constrained for both blue and red central galaxies by using the abundance
matching technique in Rodríguez-Puebla et al. [177, Chapter 6, see also Chapter 7]. Here
we use this fb relation and we will assume that blue galaxies are mostly disk-dominated
galaxies. The fb–Mh relation for blue central galaxies is strongly dependent on Mh, bell
shaped, with a maximum value at Mh ∼ 1012 M� not exceeding fb = 0.04 << fU, and
with a relatively small scatter (0.17 dex). The fact that fb is much smaller than the uni-
versal baryon mass fraction, fU = Ωb/Ωm, implies that the efficiency of central galaxy
formation is low, most likely due to the negative feedback effects of the same galaxy over
the gas inside and around it (see the introduction of Chapter 9 for a short discussion).

In order to explore the question introduced above, we will use static models devel-
oped on Mo, Mao & White [144] and Dutton et al. [80]. In the previous Chapter, we
showed (by means of simplistic analytical expressions based on this model) how differ-
ent initial conditions affect the structural/dynamical correlations of the baryonic disks
seeded in CDM halos. Here, the full iterative model will be applied, including the cor-
responding distributions (scatters) of the initial condition parameters. In this way, the
scatters around the predicted mean relations will be obtained. The scatters around re-
lations such as the Tully-Fisher and the radius-mass contain also valuable information
for understanding galaxy formation. Our model, under some assumptions, allows to
obtain also the stellar mass, radius, and surface density of the disks, as well as their gas
fractions. The scaling relations and other correlations of disk galaxies are better studied
observationally for stellar quantities rather than baryonic ones.

We will also discuss some results obtained with full evolutionary semi-numerical mod-
els Firmani & Avila-Reese [82], Firmani, Avila-Reese & Rodríguez-Puebla [85]. These
models follow self-consistently the formation and evolution of disks in isolated growing
CDM halos. The baryon and stellar mass fractions in these models, rather than an input
parameter, are obtained as the result of the gas infall, star formation (SF) process, and
the SF–driven feedback (mainly due to the Supernovae, SNe). The physics of the latter
process can be formulated in several ways. We explore in which cases the SN–driven
outflows are able to shape the Ms–Mh and Mb–Mh relations semi-empirically inferred
at z ∼ 0 and whether other properties, as the SF rate vs stellar mass Ms at z ∼ 0 and
other epochs, can be predicted at the same time in agreement with observations.

The essence of the static model is presented in Section 2; the procedure to generate
a full grid of models and the input distributions to be used are described in §§2.3.
The model results regarding the scaling relations are presented and compared with
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observations on §§3.1, while in §§3.2, the model results related to the internal luminous-
to-dynamical mass compositions of disk galaxies as a function mass, surface density
and rotation velocity are given and discussed in the light of observational inferences. In
Section 4 we briefly discuss the results of evolutionary models constrained to reproduce
the local Ms–Mh relation. Our conclusions are given in Section 5.

10.2 seeding disk galaxies in cdm halos : the static model

In the static model of galaxy disks Mo, Mao & White [144], an exponential disk of
mass Mb= fbMh is seeded inside a CDM halo with a NFW profile (Navarro, Frenk &
White [151]) characterized by its virial mass Mh, concentration parameter c, and spin
parameter λh. The scale radius Rd of the exponential (baryonic) disk is calculated under
the assumption that the gas falls within the gravitational potential of the system until
it reaches centrifugal equilibrium, having the gas the same angular momentum of the
halo (detailed angular momentum conservation, λd = λh). The gravitational potential
used to calculate the centrifugal equilibrium is the composition of the potentials due
to the halo and the disk. However, the formation of the disk in the centre of the halo
pulls gravitationally the dark matter. As a result the dark matter halo contracts; this
contraction is calculated under the assumption of adiabaticity. The new gravitational
potential is used to calculate a new Rd and so on; an iterative procedure is implemented
until Rd and the gravitational potential do not change (see details in Mo, Mao & White
[144] and Dutton et al. [80]).

The main aspects, assumptions, and equations describing the physics of the model
were presented in Section 2 of the previous Chapter. The initial conditions for the model
are Mh, c, λh, and fb. The first three ones are related to the cosmological CDM given by
N-body simulations of large volumes. The concentration weakly correlates with Mh and
it presents a wide lognormal scatter (e.g., Muñoz-Cuartas et al. [150]. The spin parameter
does not correlate with Mh and it presents also a lognormal scatter (e.g., Bett et al.
[29]). Regarding fb, this is a parameter related to the astrophysical processes of galaxy
formation (see Section 2 in Chapter 9). We will use the semi-empirical determination of
fb as a function of Mh (including the scatter) for blue galaxies obtained in Chapter 6.

Following, we detail the new features with respect to Mo, Mao & White [144] in our
disk galaxy model.

10.2.1 Adiabatic Contraction

In order to calculate the gravitational drag of baryon matter over the dark matter, the
key assumption is that the process of disk formation happens slowly in such a way that
the halo potential changes in timescales larger than the typical halo dynamical timescale.
The classical way to calculate the adiabatic contraction of CDM halos was introduced
by Blumenthal et al. [33], and it is what we used in Section 2.1 of the previous Chap-
ter (see for details therein). The calculation assumes spherical symmetry, homologous
contraction (no shell crossing), circular particle orbits, and conservation of the radial
angular momentum, which implies that Mh(r)r is an invariant, where Mh(r) is the mass
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contained inside the radius r. However, the particle orbits in the hierarchically growing
CDM halos in cosmological simulations are actually eccentric. Using high-resolution
hydrodynamics simulations, Gnedin et al. [95] found that the classical adiabatic contrac-
tion model systematically over-predicts the amounts of dark matter density in the inner
5% of the virial radius. In order to improve the classical model over this shortcoming,
they have proposed a simple modification, namely to introduce a generalized adiabatic
invariant:

M(r̄)r = cte, (128)

where M(r̄) is the mass enclosed within the orbit-averaged radius given by

r̄
rvir

= (0.85 ± 0.05)
(

r
rvir

)0.8±0.02

. (129)

This modification approximately accounts for orbital eccentricities of particles and re-
produces simulation profiles to within 10% - 20%. This new adiabatic invariant roughly
captures the complex interaction between the baryons and the dark matter halo.

10.2.2 Star Formation and stellar quantities

The static model is actually for baryonic disks, no matter if they are gaseous or stellar,
and it is assumed that the disks all the time have an exponential surface density distribu-
tion. Since the model is non-evolutionary, it is not possible to follow the whole process
of gas transformation into stars as well as secular dynamical processes or mergers that
could change the exponential distribution of the gas and stellar disk components. How-
ever, based on the fact that the most general conditions for star formation are related to
the local disk surface density and dynamics, we may roughly estimate the disk regions
where stars are expected to be formed. Thus, a rough estimate of the stellar mass Ms and
stellar half-mass radius, R1/2, can be obtained for our disks. To that end, we implement
a model close to the one used in Dutton et al. [80].

We assume that the inner regions of the exponential disks that obey the local Toomre
[212] criterion for gravitational instability in the gas disk are mostly transformed into
stars, while those that do not obey this criterion remain as gaseous. The gas Toomre
criterion is expressed in terms of the surface density, the instability being applied when
Σcrit(r) < Σd(r), where

Σcrit(r) =
σgas(r)κ(r)

3.36QG
, (130)

and σgas is the gas velocity dispersion, κ(r) is the epicyclic frequency at the radius r, and
Q is the Toomre instability parameter. Interstellar medium observations in our Galaxy
as well as in a few near spiral galaxies show that σgas is low, with measured values of
5-10 km/s typically (see e.g., Tamburro et al. [204]), and without a significant change
with radius and among different galaxies. Therefore, we assume here a constant value
of σgas = 6 km/s. Regarding the Q parameter, in the original Toomre [212] paper, by
definition it is equal to 1. However, by studying the instabilities in galaxy disks modeled
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in numerical simulations, where the disks have some vertical structure, values of Q ≈
1.5 − 2.5 are found. Here, we assume Q = 1.5.

In the regions where the local criterion for instability is fulfilled, we compute the
stellar surface mass density as

Σs(r) = Σb(r) − Σcrit(r). (131)

By integrating this last equation, we obtain the stellar mass enclosed at a radius r,

Ms(r) = 2π
∫ r

0
[Σb(r) − Σcrit(r)]r′dr′. (132)

The total stellar mass, Ms, is computed up to the radius where Σb(r) = Σcrit(r). From
eq. (132) we may calculate also the radius where half of the stellar mass is attained,
R1/2. Note that the stellar disk is now a component of the baryonic disk, i.e., Σb(r) =
Σs(r) + Σg(r), and since Σb(r) has an exponential distribution, Σs(r) will likely deviate
from an exponential distribution.

10.2.3 The procedure

In order to generate a catalog of mock disk galaxies and explore correlations and their
scatters among the properties of the galaxies, we proceed as follows:

• To each halo of mass Mh, a central galaxy with baryonic mass Mb is assigned ran-
domly from a lognormal probability distribution P(Mb|Mh). This distribution is
defined by the mean Mb − Mh relation and the width of the lognormal distribution,
σb. We use the mean Mb − Mh (or fb–Mh) relation semi-empirically determined in
Chapter 7 for central blue galaxies, with the scatter width σb = 0.173 dex.

• To each halo of mass Mh, a concentration parameter is assigned randomly from
a lognormal probability distribution P(c|Mh). This distribution is defined by the
c − Mh relation and the width of the lognormal distribution σc. For this relation
and the width of its scatter we use the fit to a large N-body cosmological simulation
reported in Muñoz-Cuartas et al. [150].

• To each halo, a spin parameter is assigned randomly from a lognormal probability
distribution P(λh). The mean and width of the distribution are taken from the fits
to the "Millenium" N-body cosmological simulation as reported in Bett et al. [29].

In the previous Chapter it was found that the radius–mass relation predicted by the
static model steepens strongly at high halo masses, in potential conflict with observa-
tions. Since the radius is directly proportional to the initial spin parameter, λh, this sug-
gests that for massive galaxies, some angular momentum is lost (transported) in such a
way the final spin parameter, λd, is smaller and the radius is smaller. Interesting enough,
by means of simple approaches for estimating from observations the galaxy spin pa-
rameter λd and for assigning a halo mass to the galaxies, some authors have found that
λd decreases with Mh for massive galaxies (Jimenez, Verde & Oh [111], Cervantes-Sodi
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et al. [47], Berta et al. [28]). This implies that the assumption of detailed angular momen-
tum conservation for massive galaxies should be relaxed: in the formation process of
these galaxies, the specific angular momentum of the gas is partially lost (transported).
By means of N-body/hydrodynamic simulations indeed it was found that when the
early assembly of a galaxy happens dominated by mergers, the gas trapped into the
pre-galactic fragments looses efficiently its specific angular momentum because these
fragments transfer their orbital angular momentum to the outer halo by tidal effects
(Zavala, Okamoto & Frenk [256]). On the other hand, from the N-body cosmological
simulations, it is well known that the merger rate increases as more massive are the
halos (e.g., Zavala et al. [254]). Therefore, it is expected that for massive halos, the final
spin parameter λd is systematically lower than the initial one in the halo, λh.

In view of the above discussion, for halos more massive than Mh = 1012 M�, follow-
ing the functionality found in Berta et al. [28], we assign a spin parameter taken from
the same lognormal scatter given by the "Milleniumm" simulation but with a mean spin
parameter given by logλd=alogMh + b. The values of a and b are fixed so that the obser-
vational stellar radius–mass relation is obtained, see below.

10.3 results

A grid of thousands of models has been generated according to the procedure described
in §§10.2.3. We now, present the results regarding the stellar/baryonic scaling relations
(§§10.3.1), and regarding the disk-to-total circular velocity ratio as a function of different
disk galaxy properties.

10.3.1 Scaling relations

The upper panels of Fig. 45 show the z=0 model stellar and baryonic TF relations (Vt,max

vs Ms and Mb, respectively; gray shaded area, containing the 68% scatter at a given
mass). Note that contrary to the previous Chapter, here (1) Vt,max is the actual maximum
of the total (disk+ contracted halo) circular velocity profile, rather than this velocity at
2.2Rd; and (2) the masses are for both the stellar component and the total baryonic one.
The black circles with error bars correspond to a homogenized sample of local high and
low surface brightness (HSB and LSB) disk galaxies presented in Avila-Reese et al. [12].
The blue crosses are for data compiled in McGaugh [137].

Both the stellar and baryonic TFRs are well described by a power law that slightly
starts to bend at lower masses. The slopes of the power laws (≈ 0.28 and 0.29, respec-
tively) are in excellent agreement with those fitted to observations in Avila-Reese et al.
[12]. The data from McGaugh [137] imply shallower slopes. Note that McGaugh does
not use Vt,max or a proxy to it, but the velocity where the rotation curves flattens. The
larger the mass, the more concentrated the disks in such a way that their rotation curves
are more peaked, and hence their maximum velocities are systematically larger than the
velocities where the curve flattens (this is likely why the velocities of the McGaugh galax-
ies are smaller on average as the mass is larger with respect to those in the Avila-Reese
et al. sample). McGaugh sample is also smaller and less complete in types and surface
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Figure 45: Predicted dependences of Vm and Reff as a function of stellar mass (left panels) and
baryon mass (right panels) by using the fb(Mh) function inferred in Chapter 9 for
blue central galaxies. The 1σ of the model population distributions is plotted with the
dark-gray shaded regions. Observational data from Avila-Reese et al. [12] are plotted
with black filled circles, inference reported in McGaugh [137] are plotted with the blue
skeletal symbols while the 1σ of the distribution Reff inferences obtained in Dutton
et al. [78] from the SDSS DR are plotted with the red dotted long-dashed lines.
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brightness values than the one compiled in Avila-Reese et al. In any case, for both sam-
ples, the zero points of the stellar and baryonic TFRs are similar and in good agreement
with our model galaxies. Several previous semi-analytical and numerical works used to
find that the zero-point of the predicted TFR is in conflict with observations in the sense
that the ΛCDM-based predictions are shifted to larger Vt,max than observations. We do
not find this problem.

The slight bend of the TFRs at low masses is something that is also reported in
observations. Unfortunately, the sample by Avila-Reese et al. is poor at masses below
Ms ∼ 3 × 109 M� in such a way that this bend can not be seen, but works focused on
dwarf galaxies show that their Vt,max for a given Ms or luminosity are on average larger
than those extrapolated from the TFR of massive (luminous) galaxies (e.g., McGaugh
[137], De Rijcke et al. [70], Blanton, Geha & West [31], McGaugh et al. [139]).

Regarding the intrinsic scatter of the observational TFR (after subtracting the observa-
tional scatter), it is actually very small (see Avila-Reese et al. [12] and more references
therein). Most of previous models and simulations used to predict scatters in the stel-
lar TFR higher than in the observations (Eisenstein & Loeb [81], Firmani & Avila-Reese
[82], Dutton et al. [80], Gnedin et al. [96], Avila-Reese et al. [12]). The intrinsic scatter of
the stellar TFR obtained here is in better agreement with the observational one reported
in Avila-Reese et al., thought yet it is slightly larger. The reason of the reduction of the
scatter in our models with respect to previous works is mainly due to the low values
of fb and its dependence on Mh used as input here. Recall that the fb–Mh relation and
its scatter used here was inferred semi-empirically. It is known that the intrinsic scatter
around the predicted TFR becomes smaller as lower is fb (e.g., Firmani & Avila-Reese
[82], Gnedin et al. [96]).

The lower panels of Fig. 45 show the z=0 model stellar and baryonic radius–mass
relations (gray shaded area, containing the 68% scatter at a given mass). The radius
here is the effective one (where half of the stellar or baryonic mass is contained). In the
baryonic case, where the disk is by construction exponential, Reff = 1.68 × Rd. However,
in the stellar case, the disk is not anymore exactly exponential and the effective radius
in this case can be close to or smaller than the corresponding to an exact exponential
disk; according to our disk instability algorithm of star formation, the stellar disk tends
to be more concentrated than the total baryonic one. The solid circles with error bars are
observations from the homogenized sample of Avila-Reese et al. [12, in this case, Reff
has been calculated as 1.68 times the Rd compiled by these authors]. The red dashed
lines in the Reff–Ms plane show the 16, 50 and 84% of the data from a large SDSS sample
of blue galaxies reported in the Dutton et al. [78]. The blue crosses in the Reff–Mb plane
are the data from the McGaugh [137] compilation.

As concluded in the previous Chapter, the radius–mass relation suffers a curvature
due to the strong curvature of the input fb–Mh relation. The large observational sample
of Dutton et al. [78] shows also such a curvature. However, we have shown in the pre-
vious Chapter that if λd = λh (angular momentum conservation), then the radius–mass
relation at the massive end is too steep, with radii too large as compared with observa-
tions. Therefore, as described in §§10.2.3, we lower systematically λd as more massive
is the halo, following the semi-empirical results of Berta et al. [28]. This is why our pre-
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dicted mass-radius relation agrees with observations towards higher masses. As a result
of such an agreement, we find that:

logλd = −0.16 × log(Mh/1012M�) + 0.3. (133)

The normalization and scatter of the stellar and baryonic mass-radius relation are in
good agreement with observations. The scatter in these relations is large, contrary to the
case of the TFRs. As discussed in the previous Chapter, the scatter is mainly due the
scatter in λh and hence it correlates strongly with the disk surface density (brightness);
this is also seen in the observations (e.g., Zavala [253], Avila-Reese et al. [12]).

We also find a weak anti-correlation between the residuals of the TFR and those of
the mass-radius relation, in particular for the baryonic case. The slopes of these anti-
correlations are close to the ones of the observations [63, 253, 62, 12], which implies that
real disk galaxies have a significant contribution of dark matter inside their optical radii.

10.3.2 The baryonic-to-dark matter ratio in disk galaxies

The Ms–Mh or Mb–Mh relations connect the masses of galaxies to those of the CDM
halos as cosmological objects, which are much more extended than galaxies. From an
observational point of view, the dynamical mass distribution (sum of baryonic and dark
matter) is easier to obtain within the optical radii of galaxies. The static models pre-
sented here, by construction, offer the possibility to link both aspects of the galaxy/halo
systems, i.e., their global galaxy-to-virial halo mass ratio and the galaxy-to-dynamical
mass ratios at radii within the optical galaxy.

The dynamical mass, Mdyn, is the sum of the disk and dark matter components at a
given internal radius. In our models, where centrifugal equilibrium and circular motions
are assumed, Mdyn(r) = V2

t (r)r/G. For a thin exponential disk, the ratio of the disk
(baryonic) to total mass at a given radius is proportional to the square of the ratio of disk
to total circular velocity at that radius, Mb/Mdyn ∝ (Vd/Vt)2. The disk circular velocity
for a thin exponential disk can be calculated from the observed disk surface brightness
(density) profile by using the Freeman [88] solution. Thus, the Vd/Vt ratio is in principle
an observational quantity that traces the ratio of luminous (baryonic) to total (including
dark matter) mass inside disk galaxies (see Zavala [253] for more explanations).

The Vd/Vt ratio can be defined for example at 2.2Rd as in the previous Chapter. Since
detailed rotation curves are typically not available, but proxies to their maxima are more
frequently reported, we can use from our static full model Vt,max, the total circular ve-
locity at its maximum, which for disk dominated galaxies is attained at ≈ 2.2Rd, but for
more dark matter dominated galaxies, is attained at larger radii. Instead, the maximum
of the disk circular velocity Vd,max, is by definition at 2.2Rd and it can be calculated eas-
ily from the observable mass and scale radius Rd of the exponential disk Freeman [88].
Therefore, in order to compare with observations, we will report the Vd,max/Vt,max ratio
for our models.

Figure 46 shows the Vd,max/Vt,max ratio vs the central stellar and baryonic surface
densities (left upper and lower panels) and the stellar and baryonic masses (right upper
and lower panels) for our model results (gray shaded area display the 68% scatter). The
squares and solid circles are the observational inferences from the Zavala et al. [255]
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Figure 46: Predicted dependences of Vd-to-Vt,max at the 2.2Rd Reff as a function of stellar/baryon
surface mass density (left panels) and stellar/baryon mass (right panels), by using the
fb(Mh) function inferred in Chapter 9 for blue central galaxies. The 1σ of the model
population distributions is plotted with the dark-gray shaded regions. Observational
data from Avila-Reese et al. [12] are plotted with black filled circles, inference reported
in Zavala et al. [255] are plotted with the open squares symbols.
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and Avila-Reese et al. [12] sample. The horizontal solid line indicates the minimal value
(0.75) above which a disk is maximum in the rotation curve decomposition Sackett [179],
i.e., luminous matter dominates inside the radius at which the rotation curve has its
maximum (e.g, see the recent review by van der Kruit & Freeman [221]).

As anticipated in the previous Chapter, the low baryon fractions used as input in
the models imply that disk galaxies are not maximum disks, that is, at radii around
the one where Vt,max is attained, dark matter already dominates. The Vd,max/Vt,max ratio
decreases towards lower surface densities and masses, although with a large scatter in
the latter case. Observations show qualitatively similar trends as shown in Fig. 46 (see
also Herrmann & Ciardullo [106]). Both observations and our ΛCDM-based models
show that the Vd,max/Vt,max ratio is more dependent on the surface density of the disks
than on their masses (see also Zavala et al. [255], who used fb=0.05=const). The weak
dependence on mass according to our models is such that for massive galaxies the
Vd,max/Vt,max ratio instead of continue increasing, decreases with mass. This is a clear
footprint of the shape of the used fb–Mh relation. Unfortunately, the level of precision
of the current observational inferences and the low numbers do not allow yet to test this
interesting feature.

The observational inferences plotted in Fig. 46 show that there are some galaxies with
Vd,max/Vt,max> 0.75, something that does not happen for the ΛCDM-based models with
the semi-empirical fb–Mh relation; the latter are dark matter dominated, even for the
highest surface density disks. If the adiabatic halo contraction implemented in our mod-
els would be weaker or even, instead of contraction, the inner halo regions would expand
due to galaxy formation (feedback effects; Dutton et al. [80], then the Vd,max/Vt,max could
be higher than we obtained. The question whether disk galaxies can be maximal or not
is highly debated from the observational point of view. As mentioned in the previous
Chapter, some authors find that all galaxies are in the sub-maximum regime Bottema
[35], Kregel, van der Kruit & de Grijs [116], Kregel, van der Kruit & Freeman [117], but
see Sackett [179].

More recently, by means of integral field stellar and gas kinematics, Bershady et al.
[27] find that the disk-to-total rotation velocity ratio increases with Vt,max but it does not
overcome ∼ 0.7, i.e. galaxies are sub-maximal. The method used by these authors breaks
the disk-halo degeneracy by obtaining independent measures of the total dynamical
mass and dynamical disk-mass surface density. In Fig. 47, the Vd,max/Vt,max ratio vs
Vt,max is plotted for our models and compared to the fit that Bershady et al. [27] provide
to their 30 disk galaxies. The observational inferences imply that disk galaxies could be
even more dark matter dominated than we are finding for the ΛCDM-based models and
including adiabatic halo contraction.

10.4 conclusions

A disk+halo static model based on Mo, Mao & White [144] and Dutton et al. [80] was
used to probe whether the recently inferred fb–Mh relation for blue galaxies and its scat-
ter (see Chapter 9) is consistent with the structural/dynamical correlations of local disk
galaxies. Contrary to the previous Chapter, where we used simplistic analytical expres-
sions based on these models, here the full iterative model has been applied, including
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Figure 47: Vd,max/Vt,max ratio as a function of Vt,max. The resulting 1σ distribution predicted by
the models is plotted by the shaded region, while the fitted relation (along with its
uncertainty) obtained in Bershady et al. [27] is plotted with the long dashed lines.

the corresponding distributions (scatters) of the initial condition parameters. This has
allowed us to study not only the mean of the structural/dynamical correlations but
also their scatters, and compare directly with observations. for both stellar and baryonic
quantities.

Our main findings are summarized as follows:

• The zero point and the slope of both the stellar and baryonic TFRs are in excellent
agreement with observational inferences [e.g., 12]. This is in contrast to some pre-
vious ΛCDM-based semi-analytical and numerical works that find that the zero-
point of the predicted TFR is in conflict with observations. While both TFRs are
well described by a power law, in detail we find that it slightly starts to bend at
lower masses, as well as at the largest masses. We also find that the scatter of the
stellar TFR obtained here is in reasonable agreement with the observations.

• The shape, the normalization and the scatter of the stellar and baryonic mass-
radius relation are in good agreement with observations [e.g., 78, 12] To attain
this agreement between models and observations we have relaxed the assumption
of detailed angular momentum conservation by lowering systematically the value
of λd with respect to λh towards higher masses. Our results lead to a new semi-
empirical inference of the λd dependence on mass. There is a weak anti-correlation
between the residuals of the TFR and those of the mass-radius relation, which
implies that disk galaxies have a significant contribution of dark matter inside
their optical radii.

• Based on the disk-to-total maximum circular velocity ratio, we observe that mod-
els galaxies are not maximum disks (at the 1σ level), even for the most massive
or highest density disks. This is because the fb(Mh) relation used as an input in
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the models has very low values, even at the peak of this relation. Therefore, on
average, model disk galaxies are dark matter dominated at optical radii. This is
consistent with recent observational reports that find that all galaxies are in the
sub-maximum regime.

• The disk-to-total maximum circular velocity ratio correlates better with the disk
surface density than with Ms. This ratio as a function of Vt,max tends to increase
with the surface density and Vt,max but it does not overcome ∼ 0.7, i.e. galaxies are
sub-maximal. A comparison with observational inferences in Bershady et al. [27]
suggest that disk galaxies could be even more dark matter dominated than what
is found with our models.

The population of z = 0 disk galaxies generated with our model by using the semi-
empirical fb–Mh relation and its scatter for blue central galaxies constrained in Chapter
9, is in good agreement with the structural/dynamical correlations of disk galaxies.
In the particular case of the radius-mass relation, we had to relax the assumption of
detailed angular momentum conservation, specially for large-mass disks. This implies
that during the formation and secular evolution of galaxies, some processes of angular
momentum transport play an important role in massive galaxies. These processes are
likely also behind the formation of a bulge and a supermassive black hole in its center.
We will report results by including bulges in our disk galaxies elsewhere.

The fact that the baryon fraction, used as an input in our models, is very low, in-
evitably implies that on average disk galaxies are dark dominated on their inner parts,
i.e., galaxies are not maximum disks. While observationally there is an ample debate
on whether or not disk galaxies are maximum the evidences points that the majority of
the disk are in the sub-maximum regime Bottema [35], Kregel, van der Kruit & de Grijs
[116], Kregel, van der Kruit & Freeman [117], Bershady et al. [27]. Future analysis with
high resolution spectroscopy galaxy surveys, (e.g., CALIFA, MaNGA), would shed light
on whether galaxies are sub-maximum disks as our model predicts.

Finally, we should say that when evolutionary models of disk galaxies are used, in
order to reproduce the local Ms–Mh relation that we have constrained along this Thesis,
strong feedback effects should be introduced. For galaxies in halos smaller than ∼ 1012

M�, the main feedback mechanism invoked in the literature is the one of SN-driven
outflows. There are several types of SN-driven feedback, e.g., by energy conservation
or by momentum conservation. In Firmani, Avila-Reese & Rodríguez-Puebla [85], we
have used a semi-numerical model of disk galaxy evolution and introduced different
types of SN-driven outflows in order to reproduce the obtained Ms–Mh relation for blue
galaxies (Part V) in halos smaller than ∼ 1012 M�. In that work, we have found that the
peculiar shape and normalization of the low-mass Ms–Mh relation can be reproduced
when strong momentum conservation outflows are used, taking into account that some
gas should be re-accreted (without re-accretion, the energy conservation strong outflows
are better suited to reproduce the Ms–Mh relation).

However, in Firmani, Avila-Reese & Rodríguez-Puebla [85] we have found that in
spite that the local Ms–Mh relation of blue galaxies can be reproduced by introducing
very strong feedback-driven outflows, it is impossible to reproduce the observed specific
star formation rate (SSFR) vs Ms relation. Besides, the model results show a evolution
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of the Ms/Mh ratio that seems to be opposite to what is inferred from semi-empirical
inferences for low-mass galaxies (see Chapter 5). Therefore, we conclude that the strong
feedback-driven outflows usually invoked in the literature, are not able to explain cru-
cial semi-empirical inferences for late-type galaxies as is the Ms–Mh relation and its
evolution as well as the observed SSFR-Ms relation (downsizing). Our semi-numerical
evolutionary model results were lately shown to be similar to the more sophisticated
N-body/hydrodynamics cosmological simulations of low-mass galaxies (Colín et al.
[53], Avila-Reese et al. [6]). Therefore, we conclude that some astrophysical ingredients
are missing in our current understanding of low-mass galaxy evolution. These ingredi-
ents can be related to the process of conversion of neutral gas into molecular one or
to the process of gas conversion into stars, and/or to feedback effects that rather than
ejecting the gas, keep it no forming stars.
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C O N C L U S I O N S

En general, en la presente Tesis se ha tratado la conexión entre las galaxias y los
(sub)halos de materia obscura mediante enfoques estadísiticos. En la Parte II, la cual
engloba los Capítulos 2 y 3, se han estudiado las relaciones de masa estelar galaxia
central-masa halo, M∗-Mh, y masa estelar galaxia satélite-masa subhalo, m∗-msub, por
separado. Como resultado, se desarrollo un modelo estadístico el cual es capaz de con-
streñir por separado las relaciones locales M∗-Mh y m∗-msub, donde msub puede referirse
a la masa de los subhalos al tiempo de observación, mobs

sub, y al momento de su acreción,
macc

sub. Este modelo representa una extensión a la técnica de la correlación de abundancias.
La virtud de este modelo radica en relacionar de manera auto-consistente la función de
masa estelar de galaxias (FMEG) centrales y satétiles, la función de masa de halos/sub-
halos de materia oscura fría, las funciones condicionales de masa estelar (FCME) de
satélites y la función de correlación de dos puntos (FC2P). Esto nos ha permitido no
solo constreñir las relaciones M∗-Mh y m∗-msub por separado si no sondear su robustez,
y ultimadamente discernir que tan viable es la suposición, comúnmente encontrada en
la literatura, de que las relaciones M∗-Mh y m∗-msub son idénticas.

En la Parte III, la cual es conformada por los Capítulos 4 y 5, se exploró las impli-
caciones de las relaciones M∗-Mh y m∗-msub en la ocupación de galaxias en halos de
materia oscura. Esto se ha hecho utilizando el modelo estadístico desarrollado en la
Parte II de esta Tesis. En particular, nos hemos enfocado en estudiar la brecha en masa
estelar existente entre el satélite más masivo y la galaxia central de un grupo/cumulo
en función de Mh, así como también diferentes distribuciones de probabilidades para la
población de satélites tan masivos como Fornax en galaxias tipo Vía Lćatea (VL).

En el Capítulo 6 correspondiente Parte IV, hemos extendido nuestro modelo estadís-
tico, para estudiar por separado la evolución con el corrimiento al rojo de las relaciones
M∗-Mh y m∗-msub, así como también la evolución de la fracción de galaxias satélites
utilizando los datos del catastro COSMOS.

En la Parte IV, la cual engloba los Capítulos 7 y 8, hemos estudiado la relación local
M∗-Mh de galaxias centrales no solo por su masa sino por colores. Como resultado, en
el Capítulo 7 se ha extendido la técnica de la correspondencia de las abundancias. Para
esto, fue necesario suponer la función de masa de halos que albergan galaxias azules
centrales a partir de motivaciones teorico-observacionales. En ese Capítulo, también
hemos estudiado la relación masa bariónica galaxia central-masa halo, Mb-Mh. En el
Capítulo 8, presentamos un enfoque más general, el cual esta basado en el modelo semi-
empirico desarrollado en la Parte II. Este nuevo enfoque nos permite incluir información
sobre la función de correlación de galaxias rojas y azules. La virtud de este modelo, es
que no solo permite constreñir de manera robusta las relaciónes M∗-Mh de galaxias rojas
y azules sino también constreñir de manera empirica la función de masa de halos que
albergan galaxias azules centrales.

201
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Por último, en la Parte V, que engloba los Capítulos 9 y 10, hemos desarrollado un
modelo estático de galaxia de disco sumergido dentro de un halo de materia oscura fría.
En este modelo las relaciones estructurales y dinámicas de las galaxias de disco quedan
bien caracterizadas en términos de los parámetros cosmológicos de entrada; la masa del
halo Mh, el parametro de concentración c y el parametro de giro λh, y del parametro
astrofísico fb = Mb/Mh, la fracción bariónica. Esto nos ha permitido sondear la fb de
galaxias azules obtenida previamente en la Parte IV a la luz de las de las relaciones
estructurares y dinámicas de las galaxias de disco.

A continuación presentamos las conclusiones más generales obtenidas en esta Tesis.
Las conclusiones más especificas son presentadas al final de cada Capítulo.

• Bajo la suposición de que la relación de masa entre galaxias satélites y subhalos
es idéntica a la relación entre galaxias centrales y halos, suposición comúnmente
empleada en la técnica de la correspondencia de las abundancias, lleva a predecir
una función de masa de galaxias satélites, funciónes de correlación de dos puntos
y funciones condicionales de masa estelar de satélites en desacuerdo con lo que
se infiere mediante los grandes catastros de galaxias. Esta conclusión fue obtenida
definiendo la masa de los subhalos tanto al tiempo de observación, mobs

sub, como al
momento de su acreción, macc

sub.

• Mediante el modelo desarrollado en la Parte II, que es una extensión de la corre-
spondencia de las abundancias, el modelo ocupaciónal de halos y la función condi-
cional de masa de galaxias satélites, hemos probado la robustez de las relaciones
M∗-Mh y m∗-msub, al utilizar diferentes combinaciones de datos observacionales,
tales como las funciones de masa estelar total, de galaxias centrales y satélites, y
la función de correlación de dos puntos. En todos los casos estudiados, las incer-
tidumbres asociadas a las relaciones de masa resultaron mucho más pequeñas que
las incertidumbres intrínsecas de las relaciones M∗-Mh y m∗-msub(∼ 0.17 dex). La
robustez de estas relaciones es valida definiendo la masa de los subhalos tanto al
tiempo de observación, mobs

sub, como al momento de su acreción, macc
sub.

• En general, la relación m∗-mobs
sub es muy diferente a la relación m∗-macc

sub, y a su vez
ambas son diferentes a la relación M∗-Mh de galaxias centrales. A una masa estelar
fija, la masa de los subhalos, tanto para mobs

sub como para macc
sub, es más pequeña que

la de los halos de galaxias centrales Mh. Esta diferencia incrementa a bajas masas
y son más fuertes cuando se utiliza mobs

sub.

• Encontramos que el ancho de la disperción intrínseca asociada a las relaciones
M∗-Mh y m∗-mobs

sub son estrechas; σc = 0.168 ± 0.051 dex y σs = 0.172 ± 0.057 dex,
respectivamente

• A una masa de halo fija, la distribución de masa del satélite más masivo se en-
cuentra desplazada a bajas masas con respecto a la distribución de masa de las
galaxias centrales, esto es, las galaxias centrales son galaxias estadísticamente es-
peciales en el halo (grupo). Sin embargo, esta diferencia se hace menor con la masa
del halo, al punto que en halos suficientemente masivos ambas distribuciones se
traslapan, aproximadamente ∼ 15%. En este caso, las galaxias centrales podrían
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ser una realización del la cola masiva de la función condicional de masa estelar de
satélites.

• Con respecto a la población de satélites masivos en galaxias tipo VL, obtuvimos
que la probabilidad de encontrar 2 satélites en el rango de masa de las Nube de
Magallanes (NM) es de ∼ 6.6% (o ∼ 0.08% si ademas se pide la condición que
no haya satétlites más masivos que la Nube Mayor de Magallanes, NMaM). La
probabilidad de tener un satétlite con m∗ ≥ mLMC, dos satétlites con masa mayores
a la Nube Menor de Magallanes, NMeM, m∗ ≥ mSMC, o tres con masas mayores
o iguales a la de Sagitario, Sgr, m∗ ≥ mSgr, son respectivamente el 26.1%, 14.5% y
el 14.3%. La distribución del numero ocupacional de galaxias satélites en galaxias
tipo VL es bastante amplia. Sin embargo, el hecho que la VL tenga dos satélites
tan masivos como las NMs la hace menos común, pero no un caso atípico.

• No es posible constreñir la masa del halo de la VL mediante la abundancia de sus
satélites masivos. No obstante, nuestros resultados muestran que a un nivel de 1σ,
la masa de galaxias tipo VL no es menor a 1.38 × 1012M�.

• Nuestros resultados muestran que en la cosmología ΛCDM no existe un problema
de satélites perdidos, al menos en el caso de los más masivos. Sin embargo, confir-
mamos un potencial problema de dinámica interna: la velocidad circular máxima
de los satélites enanos, por abajo de ∼ 108M�, parece ser sobreestimada por un
factor ∼ 1.3 − 2 de lo que típicamente es inferido en base a observaciones de los
satélites enanos de la VL. Es plausible que este problema se refiera solo a galaxias
satélites y no a galaxias centrales.

• Hemos calculado la función de correlación angular de dos puntos, ω(θ), utilizando
el catastro COSMOS en cuatro intervalos de corrimiento al rojo, z = [0.2, 0.4],
[0.4, 0.6], [0.6, 0.8] y z = [0.8, 1] y para diferentes umbrales de masa estelar. Fijando
un intervalo de corrimiento al rojo, la amplitud de la función de correlación se
incrementa con la masa estelar. Fijando un umbral de masa estelar, galaxias a
bajos corrimientos al rojo se encuentran más aglomeradas.

• Utilizando ω(θ) y la FMEG total del COSMOS, hemos constreñido la evolución con
el corrimiento al rojo de las relaciones M∗-Mh y m∗-macc

sub, por separado. Nuestros
resultados muestran que la evolución con el corrimiento al rojo de las relaciones
M∗-Mh y m∗-macc

sub es débil . No obstante, la masa de halo donde se da el máximo
del cociente f∗,peak = M∗/Mpeak

h ha aumentado en casi un factor 2 desde z ∼ 1,
mientras que su amplitud se ha mantenido relativamente constante desde z ∼
1, con un valor de f∗,peak ∼ 0.03. En el caso de las galaxias satélites, la masa

mpeak
acc , la masa del subhalo donde se da el máximo del cociente f∗,peak = m∗/mpeak

acc ,
es constante para todos los corrimientos al rojo. Su amplitud decrece conforme
aumenta el corrimientos al rojo, hasta parecerse a la de galaxias centrales.

• El hecho que las relaciones M∗-Mh y m∗-macc
sub no difieren significativamente entre

sí y que tampoco evolucionen significativamente con el corrimiento al rojo, cumple
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con los requerimientos que supone la técnica de la correspondencia de las abun-
dancias. Es plausible que este hecho brinde más pistas sobre porque es tan exitosa
esta técnica.

• Las relaciones m∗-Mh y Mb-Mh (donde Mb es la masa en estrellas más la masa en
gas, i.e., la masa bariónica) de galaxias centrales azules y rojas no difieren significa-
tivamente de la relación de galaxias centrales, y por lo tanto tampoco entre sí. Estas
diferencias se encuentran dentro del 1σ del la incertidumbre asociada a las rela-
ciones de masa. Tampoco hemos encontrado una clara indicación de segregación
de las relaciones M∗-Mh por color, no obstante, la M∗-Mh de galaxias centrales
rojas parece encontrarse por arriba de la M∗-Mh de galaxias azules centrales.

• Las suposiciones hechas en el Capítulo 7 sobre los halos que albergan galaxias
azules centrales, aquellos que no han sufrido una fusión mayor desde z ∼ 0.8 y
que no viven en gurpos con más de tres miembros, son consistentes con la función
de correlación de dos puntos de rojas y azules observada.

• La fracción de masa de halos que albergan galaxias azules centrales es una función
que depende fuertemente de la masa del halo. Esta muestra que la fracción máxima
de halos azules es del ∼ 80% y se da en masas de Mh ∼ 1011.4M�. Después de
estas masas la fracción cae, alcanzando un ∼ 50% en halos de masa Mh ∼ 1012M�
y un ∼ 4% en halos tan masivos como Mh ∼ 1015M�.

• Utilizando un modelo estático de galaxia de disco, hemos sondeado como afecta
el parametro de entrada la fb a las relaciones estructurales y dinámicas. Nuestros
resultados muestran que mientras las relaciones Tully-Fisher estelar (TFE) y bar-
iónica (TFB) son bastantes robustas, las relaciones radio efectivo-masa bariónica
y radio efectivo-masa estelar son afectadas significativamente por la forma de fb.
Similarmente, el cociente velocidad circular del disco a velocidad circular total al
máximo también se ve afectada significativamente por la forma de fb. No obstante,
cuando utilizamos la fb constreñida para las galaxias azules en el Capitulo 9, todas
las relaciones estructurales y dinámicas presentan un ligero doblez, esto es más ev-
idente en las relaciones radio efectivo-masa bariónica y radio efectivo-masa estelar,
así como también en el cociente velocidad circular del disco a velocidad circular
total al máximo.

• En general, utilizando como dato de entrada en nuestro modelo de galaxias de
disco la fb constreñida para las galaxias azules, encontramos que la normalización
así como las dispersiones intrínsecas en relaciones estructurales y dinámicas son
consistentes con las observaciones. Esto implica que la relación TFE y TFB no
presentan el problema del punto cero reportado en trabajos previos.

• Suponer conservación detallada del momento angular, λd = λh, lleva a encontrar
galaxias masivas con radios muy extendidos, es decir, galaxias de muy bajo brillo
superficial. Con el fin de reproducir las observaciones, encontramos que λd debe
adquirir sistemáticamente valores menores a λh con la masa Mh, i.e., la suposición
de conservación de momento angular detallado debe ser relajada.
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• Los valores tan bajos encontrado de galaxias azules para fb, inevitablemente lleva
a encontrar que al radio donde la curva de rotación total del sistema (halo+disco)
alcanza su máximo las galaxias son dominadas por materia oscura. En las observa-
ciones, ligeras indicaciones existen de que este puede ser el caso. Sin embargo, más
inferencias observacionales con datos de mucha más alta resolución son necesarios
para dilucidar cuando esto es cierto o no.
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T H E S PAT I A L C L U S T E R I N G O F G A L A X I E S I N T H E H O D M O D E L

Here we review the main ideas used to infer the spatial clustering of galaxies based
on a HOD model. We assume that the most massive galaxy in terms of stellar mass
within a halo of mass Mh is its central galaxy. Consequently the remaining galaxies are
all satellites. We let them follow the mass density profile of the host halo. We denote the
cumulative number of central and satellite galaxies with stellar masses greater than m∗
as Nc and Ns, respectively.

The two point correlation function is decomposed into two terms,

1 + ξgg(r) = [1 + ξ1h
gg(r)] + [1 + ξ2h

gg(r)], (134)

with 1 + ξ1h
gg(r) describing galaxy pairs within the same halo (the one-halo term), and

1 + ξ2h
gg(r) describing the correlation between galaxies occupying different halos (the

two-halo term).
We compute the one-halo term as

1 + ξ1h
gg(r) =

1
2πr2n2

g

∫ ∞

0

〈N(N − 1)〉
2

λ(r)φh(Mh)dMh, (135)

for pairs separated by a distance r ± dr/2. Here 〈N(N − 1)〉/2 is the total mean number
of galaxy pairs within halos Mh following a pair distribution λ(r)dr, and a mean number
density ng(m∗). The contribution to the total mean number of galaxy pairs from central-
satellite pairs and satellite-satellite pairs is

〈N(N − 1)〉
2

λ(r)dr = 〈Nc〉〈Ns〉λc,s(r)dr

+
〈Ns(Ns − 1)〉

2
λs,s(r)dr. (136)

As commonly assumed in HOD models, the number of central-satellite pairs follow the
normalized mass density halo profile, taken to be of Navarro, Frenk & White [151] shape.
The number of satellite-satellite pairs is then related to the normalized density profile
convolved with itself.

Halo profiles are defined in terms of the total halo mass and the concentration param-
eter. We use the relation between concentration parameter cNFW and halo mass obtained
by Muñoz-Cuartas et al. [150] from fits to N-body simulations.

Based on results of high-resolution N-body [115] and hydrodynamic simulations of
galaxy formation [262], we model the second moment of satellite galaxies, 〈Ns(Ns − 1)〉,
as a Poisson distribution with mean 〈Ns〉2 = 〈Ns(Ns − 1)〉.

We compute the two-halo term as

ξ2h
gg(r) = b2

gζ2(r)ξm(r), (137)
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where ξm(r) is the non-linear matter correlation function [196], ζ(r) is the scale depen-
dence of dark matter halo bias [209], and

bg =
1

ng

∫ ∞

0
b(Mh)〈N(> m∗|Mh)〉φh(Mh)dMh, (138)

is the galaxy bias with b(Mh) the halo bias function [191].
Once we have calculated ξgg(r), we relate it to the projected correlation function,

wp(rp), integration over the line of sight,

wp(rp) = 2
∫ ∞

0
ξgg(

√
r2

p + x2)dx. (139)



B
T H E M A R K O V C H A I N M O N T E C A R L O M E T H O D

The basic idea behind the Markov Chain Monte Carlo Method (MCMC) is to provide a
simple method for sampling random numbers from some generic probability distribu-
tion P(x). This is motived by the fact that in many cases one knows how to write the
equation for the probability distribution P(x), but is not trivial to generate random num-
bers from P(x). The benignity of the MCMC is that you do not even need to know how
to write the probability distribution P(x). This is the situation which one faces when try
to sample the a set of parameters, a = (a1, ..., an) that maximize the likelihood function
L(a) ∝ exp(−χ2(a)/2).

One of the most popular examples of a MCMC is the Metropolis-Hasting algorithm
(MHa, see e.g., Metropolis [141]). The idea in the MHa is to generate a sequence of states
(x0, x1, ..., xn, ...) such a that for a sufficient large n (ideally, n → ∞) we can guarantee that
xn ∼ P(x), i.e., we have sampled completely the distribution function P(x). In fact, the
above idea is known as a Markov chain, (Mc). Below, we describe how can one generate
samples from the distribution function P(x).

b.1 the metropolis-hasting algorithm

Without loss of generality, suppose that the current state of the Mc is xn and we want to
generate the next state xn+1. The generation of xn+1 in the Mc requires of two steps:

1. On the first step, one generates a candidate, denoted by xc, from a proposal dis-
tribution function, denoted by Q(xc|xn). Here the proposal distribution depends
on the current state of the Mc, xn. The importance of this step is to use a distribu-
tion function Q(xc|xn) easy to handy, i.e., that we know how to generate random
numbers from Q(xc|xn). Typically in the literature a normal distribution function
centered on the current state of xn and standard deviation of σ is what is used,
Q(xc|xn) ∼ Normal(xn, σ). Therefore, our candidate xc is a random realization
from Normal(xn, σ). In the following, we will denote the normal distribution func-
tion by Q(xc|xn, σ). Observe that σ is a free parameter that should be adjusted.

2. On the second step, we will ask whether xc is a good candidate for xn+1. To than
end, we need to compute the acceptance probability of xc given by:

A(xn → xc) = min
(

1,
P(xc)
P(xn)

× Q(xn|xc, σ)
Q(xc|xn, σ)

)
. (140)

To decide whether the candidate xc is either accepted or rejected, a random number
between 0 and 1 from a uniform distribution should be generated, then;

xn+1 =

{
xc if u ≤ A(xn → xc)
xn if u > A(xn → xc)

(141)
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we decide to accept the candidate xc when xn+1 = xc, otherwise we decide to reject
the candidate xc and xn+1 = xn.

Essentially, the above two-stage process is the entirely MHa. Nevertheless, few com-
ments are needed at this point. Firstly, observe that the ratio P(xc)/P(xn) is independent
on the normalizing constant of the distribution P(x). This will be very convenient for
our porpuse because obtaining the normalizing constant from the likelihood function is
not trivial, hence, we are allowed to write: L(a) ∝ exp(−χ2(a)/2). Second, because our
proposal distribution is symmetric, i.e., Q(xn|xc, σ) = Q(xc|xn, σ) for all xc and xn, then
the ratio in Eq. 140 is simply Q(xn|xc, σ)/Q(xc|xn, σ) = 1.

b.2 the mcmc method in multidimensions

So far the above explanation focused in the one dimensional case. The generalization
for sampling random vectors from some distribution P(x)1 is immediate. In essence,
the idea is the same since one should define a Mc to generate a very large sequence
of states (x0, x1, ..., xn, ...) to sample the distribution function P(x). Here each xi is a N-
dimensional vector. For example N can be the number of model parameter for fitting
some data and the vector xi represents the ith-array of the best fit model parameters.

To extent the above two-stage process there are few technical modifications that one
needs to include in step one. The value of each component, xc,i, of the vector xc is
generated from a Normal distribution function centered on the current state of the ith-
component and standard deviation of σi, Qi(xc,i|xn, σi). In general, for a candidate xc

there is no need to assume that all its components have the same parameters xn and
σi, rather they will depend on the problem to be solve. Finally, note that in the most
basic conception of MCMC method in multidimensions the normal distributions Qi are
independent between each other, but in general they can be generated, see Chapter 6.

1 Note that P(x) is a real number



C
T H E F I T T I N G P R O C E D U R E

From the fit to the data, we constrain the ten free parameters of model by maximiz-
ing the likelihood function L ∝ exp(−χ2/2). Table 1 lists the different combination of
observational constrains used in this paper.

For each GSMF, the χ2’s are defined as:

χ2(φauthor
tot,cen,sat) =

1
Nbin

Nbin

∑
i=1

(
φg

i
,model − φg

i
,obs

σi
obs

)2

, (142)

where Nbin is the number of bins in the total/central/satellite GSMF reported for each
author with an ith value of φg

i
,obs and an error of σi

obs. The ith value of the total/cen-
tral/satellite GSMF computed in the model is denoted as φg

i
,model.

For the Yang et al. [250] projected 2PCFs, the χ2 is defined as:

χ2(wY11
p,bin) =

1
Ns,binNr,bin

Ns,bin

∑
i=1

Nr,bin

∑
j=1

⎛
⎝wp

i,j
,model − wp

i,j
,obs

σ
i,j
obs

⎞
⎠

2

, (143)

where Ns,bin is the number of stellar mass bins, Nr,bin denotes the number of bins in
the 2PCF, wp

i,j
,obs(wp

i,j
,model) is the amplitude of the observed (modeled) 2PCF in the jth

projected distance bin of the ith stellar mass bin.
First, we find the set of parameters, a = (a1, ..., an), that minimizes χ2 using the Pow-

ell’s directions set method in multi-dimensions, Press et al. [167]. Then, the resulting
set of parameters is used as the starting point to sample the parameter space with the
MCMC method. In most of our cases n = 10. We also need to specify for each parame-
ter a proposed distribution, which generates the candidate for sampling the parameter
space. We assume that each proposed distribution is Gaussian distributed. The standard
deviation for each parameter, σ(ai), is calculated from the covariance matrix. The covari-
ance matrix or error matrix of a is defined as the inverse of the n × n matrix α = ε−1,
computed according to

αkl =
1
2

∂2χ2(a)
∂ak∂al

. (144)

Therefore, the standard deviations in the parameters correspond to the square roots of
the terms in its diagonal, i.e., σ(ai) =

√
εii. We consider these numbers as our best initial

guess for the diagonal covariance matrix of the model parameters. Then the covariance
matrix for the proposed matrix is computed according to the formula given in [77];
ε

p
ii = 2.4

n
2
εii, with n the number of parameters to be fitted.

Using these results, we sample a first chain with 100,000 models, from which we
compute the diagonal of the covariance matrix, εc

ii. If the ratio of each prior,
√

εii,
to each element of the resulting diagonal covariance matrix,

√
εc

ii, lies in the range
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0.8 ≤ √
εii/εc

ii ≤ 1.2, then we initialize a second chain with 1.5 × 106 elements for the
model analysis; else, we repeat the procedure j−times until the ratio of the covariances

of the previous chain with the last one reachs the condition 0.8 ≤
√

ε
j−1
ii /ε

j
ii ≤ 1.2, that

is to say, until there is not a sufficiently significant improvement in the standard devia-
tions of the model parameters. The j−covariance matrix for the proposed distribution is
given by ε

p,j
ii = 2.4

n
2
ε

j
ii. Then, we run a last chain with 1.5 × 106 elements for the model

analysis. This procedure usually takes one or two iterations. For all the chains, we find
a convergence ratio in each parameter lower than 0.01 [77].



D
J U S T I F I C AT I O N T O E Q U AT I O N 7 6

Suppose that there exist a probability distribution function f (x) which is negligible
outside the bin (η − ε, η + ε) and we would like to estimate the following integral:

∫ ∞

∞
g(x) f (x)dx, (145)

where g(x) is a continuos function. Here, we will assume that η is the mean of the
distribution f (x). Expanding g(x) in Taylor series around η

g(x) = g(η) + g′(η)(x − η) + ... + g(n)(η)
(x − η)n

n!
, (146)

where g(n) denotes the n-derivate with respect to x. Inserting this into Eq. 145, we obtain,

∫ ∞

∞
g(x) f (x)dx = g(η) + g′′(η)

σ2

2
+ ... + g(n)(η)

μn

n!
. (147)

Here, σ is the standard deviation of f (x). More generally μn is the nth moment of the
distribution function f (x), defined as:

μn =
∫ ∞

∞
(x − η)n f (x)dx. (148)

If g(x) is approximated by a parabola, then;

∫ ∞

∞
g(x) f (x)dx = g(η) + g′′(η)

σ2

2
, (149)

which is the solution to Eq. 145 at a second order. In Eq. 73 we have that f (x) →
PB,c(M∗|Mh) and g(x) → Cgr,B(M∗), in principle what we only need to compute is the fol-
lowing: d2Cgr,B(M∗)/d log M∗2. Because observationally Cgr,B(M∗) is well characterize by
a straight line then d2Cgr,B(M∗)/d log M∗2 ∼ 0. Therefore Cgr,B(Mh) ≈ Cgr,B(M∗,B(Mh))
provides an excellent approximation. Similarly, for the total and the red mean relations.
This implies that the fraction of blue central galaxies as a function of halo mass is well
approximated by,

fB(Mh) ≈ Cgr(M∗(Mh)) − Cgr,R(M∗,R(Mh))
Cgr,B(M∗,B(Mh)) − Cgr,R(M∗,R(Mh))

. (150)
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E
T H E M E A N C O L O R - T O - S T E L L A R M A S S R E L AT I O N O F B L U E A N D
R E D C E N T R A L G A L A X I E S

One important input of the model described in Chapter 8 is the mean color-to-stellar
mass relation of blue and red galaxies. In this Appendix, we obtain these relations from
the galaxy color distribution of central galaxies by using the Yang et al. [249] group
catalog.

First at all, we divide the catalog for centrals into two large subsamples namely that
of blue and that of red centrals. Here, we define blue and red galaxies by using the
same color cut in the color-magnitude diagram as in YMB09. Once we have obtained
these blue and red subsamples, we divide each of them into 32 stellar masses bins of
width 0.1 dex over the stellar mass range [108.5, 1011.7] M�. Then, each stellar mass bin is
divided into 22 color bins of width 0.05 each. Figure 48 shows these color distributions
at nine different stellar mass bins. Observe that each color distribution in the figure has
been renormalized by its maximum value. The blue circles in the figure indicates the
observed color distributions for the blue sample of central galaxies, while the red circles
presents the same but for red centrals. The solid lines represent the fit to each blue and
red color distribution by using Gaussian distribution models. In what follows, we will
denote these color distributions by B(Cgr|M∗) and R(Cgr|M∗) for the blue and the red
subsamples, respectively.

The relation between the total color distribution, P(Cgr|M∗), and the distributions
B(Cgr|M∗) and R(Cgr|M∗) is

P(Cgr|M∗) = B(Cgr|M∗) f∗,B(M∗) + R(Cgr|M∗) f∗,R(M∗). (151)

Here f∗,B(M∗) and f∗,R(M∗) denote the fraction of blue and red central galaxies with
stellar masses M∗. Notice that by definition, the observed mean color-to-stellar mass
relation is

Cgr(M∗) = CB
gr(M∗) f∗,B(M∗) + CR

gr(M∗) f∗,R(M∗) (152)

where CB
gr(M∗) and CR

gr(M∗) denote the observed mean color-to-stellar mass relation
for blue and red central galaxies. The quantities, CB

gr(M∗) and CR
gr(M∗) are the average

relations obtained after fitting the observed distributions B(Cgr|M∗) and R(Cgr|M∗).
Because of galaxies at a fixed luminosity, and at a fixed stellar mass, are observed only

within a certain redshift range within the sample, it is then expected that the color dis-
tribution suffers of incompleteness effects. This issue can be accounted by assigning to
each galaxy a weight 1/Vmax where Vmax is the maximum volume over which the galaxy
will be observed within the sample of volume VS. However, this volume corrections
depend mainly on the luminosity (stellar mass) and in less degree on the color such a
that correction is not important for the color distributions B(Cgr|M∗) and R(Cgr|M∗)
. Nevertheless, the total color distribution P(Cgr|M∗) depends on the fraction of blue
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and red centrals at each stellar mass bin, see Eq. 151, for which volume corrections are
important. We account for this correction by using the fact that the fraction fs(M∗) is the
ratio φB,c(M∗)/φg,c(M∗), where φB,c(M∗) and φg,c(M∗) are the blue and the total observed
central GSMFs, respectively. In addition that fR(M∗) = 1 − fB(M∗).
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Figure 48: Color distribution for blue and red central galaxies in various stellar mass bins. The
blue circles indicate the observed color distributions for the blue sample of central
galaxies, while the red circles presents the same information but for red. The solid
blue and red lines show the results of the Gaussian fitting models to the data for the
blue and red distributions. Each color distribution in the figure has been renormalized
by its maximum value.
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