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Abstract 

Fluids formed by small drops of one fluid immersed into a second immiscible fluid are found in 

countless important industrial operations.  This class of problems is highly complex given that the interface 

of liquids depends on the stress field of the complete flow.  This thesis presents the study of the dynamics 

of a drop immersed in an elongational flow that differs significantly from previous studies by Taylor 

(Taylor 1934), Leal and coworkers (Bentley and Leal 1986a and b), or the Italians (Guido and Villone 

1998; Guido et al. 1999, 2000; Guido and Greco 2001), or Moldenaers (Boonen et al.2010; Vananroye 

2006, 2007, 2008).  The experimental device used to generate these flow is the Two Roll Mill (TRM), 

developed for the study of the dynamics of deformation of drops in elongational flow fields with vorticity 

and with several features not available for flow cells with simple shear, eccentric cylinders or pure 

elongational flow fields. In that way the TRM serves as complement to those devices in the performance 

of studies that improve the current understanding of the effects of vorticity on drop dynamics in well 

characterized two-dimensional strong flow fields. The TRM can generate an ample range of planar flow, 

with kinematics close to simple shear flow up to deformation rates characteristic of pure elongational 

flows.  

Like other extensional (or elongational) flow fields, the drop is placed at the stagnation point —

where is subjected to deformation with a saddle-point stability environment. Contrary to the standard 

technique, maintaining the drop at the unstable stagnation point for extended periods of time requires a 

different type of control scheme.  For the TRM a novel nonlinear procedure is used that is robust, and 

makes possible a large set of experiments.  

Chapter 1 to 4 of this work describe the elements of the experimental device and a 

characterization of the experimental values of the flow type parameters obtained with the geometries 

available for the TRM flow cell.  As well, the performance of the flow cell is also evaluated, in particular 

the instantaneous velocities obtained on the cylinders, which are critical parameters in the control strategy 

implemented. The implementation of this control is done by applying a non-linear scheme —based on the 

Poincaré-Bendixson theorem— that has not previously been used. It requires a process based on real-time 

image analysis of the drop and real-time non-periodic updating of the velocities of the motors.  Those 

features are incorporated in the computer program that controls the experimental device, developed in 

visual C++ and which coordinates the data provided by the image analysis and the control of the motors, 

all in real-time.  This control was experimentally tested to find the most appropriate parameters, to 

evaluate its robustness and to corroborate that it does not affect the dynamics of drop deformation. 



 

Chapter 5 and 6 present experimental results obtained with the device for different flow type 

parameters and for two viscosities ratios systems. The results for the low viscosities ratios include the 

determination of the critical capillary number for that viscosities ratio studied as a function of the flow 

field type, as well as the observation of the breakup process. For the high viscosities ratio, the 

experimental results show the highly complex behavior present in the transient stages and how this 

behavior is modified by the flow field.  For this case, the flow device allows the study of the response of 

the drop to start up flows. For very low capillary numbers, the time evolution of the deformation is 

characterized by a simple monotonically increasing function to a steady form. For large Capillary 

numbers the steady form is reached after a multi-damped oscillations evolution. Effects by near walls on 

the deformation of the drop were also studied, for both viscosities ratios, being more evident and studied 

with more detail in the high viscosities ratio system.  For this latter system and for the flow filed closest to 

simple shear flow, it was possible to observe the confinement effect on the drop deformation during 

transient and steady states.  This confinement experiments show that there are similar effects in to reduce 

the vorticity in the flow fields and to inhibit its effects by increasing the confinement of the drop. 

 

 

 

 

 

 

 

 

 

 

 

 

 





 
 

Resumen 

Los fluidos formados por pequeñas gotas de un fluido inmersas en un Segundo fluido inmiscible 

se encuentran en incontables operaciones industriales. Esta clase de problemas es altamente complejo 

dado que la interface de los líquidos depende de de los esfuerzos del campo de flujo completo. Esta tesis 

presenta el estudio de la dinámica de una gota inmersa en un flujo elongacional que difiere 

significativamente de los estudios previos de Taylor (Taylor 1934), Leal y colaboradores (Bentley and 

Leal 1986a and b), o de los italianos Guido y Villone (Guido and Villone 1998; Guido et al. 1999, 2000; 

Guido and Greco 2001), o Moldenaers (Boonen et al.2010; Vananroye 2006, 2007, 2008). El dispositivo 

experimental usado para generar estos tipos de flujo es el Molino de dos Rodillos TRM, (por sus siglas en 

inglés Two Roll Mill), desarrollado para el estudio de la dinámica de deformación de gotas en campos de 

flujo elongacional con vorticidad y con diversas características no disponibles en celdas de campos de 

flujo de cortante simple, cilindros concéntricos o flujo puramente elongacional. De esta forma el Molino 

de Dos Rodillos funciona como complemento de estos dispositivos en desarrollo de estudios que mejoren 

el conocimiento actual de los efectos de la vorticidad en la dinámica de gotas en campos de flujo fuertes 

bidimensionales bien caracterizados. El Molino de Dos Rodillos puede generar un amplio rango de flujos 

planos con una cinemática cercana al flujo en cortante simple con velocidades de deformación 

características  de flujos puramente elongacionales. 

 Al igual que otros campos de flujo extensionales (o elongacionales) la gota es colocada en el 

punto de estancamiento –donde está sujeta a deformación en un ambiente de estabilidad del tipo punto-

silla. Contrario a las técnicas estándar, mantener a la gota en el punto de estancamiento inestable por 

largos periodos de tiempo requiere un esquema de control diferente. Para el Molino de Dos Rodillos se 

usa un novedoso procedimiento no lineal que es robusto y hace posible el desarrollo de experimentos de  

larga duración. 

Del capítulo 1 al 4 de este trabajo se describen los elementos del dispositivo experimental además 

de la caracterización de los valores experimentales del tipo de flujo que se tiene con las geometrías  

disponibles para la celda de flujo del Molino de Dos Rodillos. También se evalúa el desempeño de la 

celda de flujo, en particular las velocidades instantáneas obtenidas en los cilindros, las cuales son 

parámetros críticos en la estrategia de control implementada. La implementación de este control se hace 

aplicando un esquema no lineal –basado en el teorema de Poincaré-Bendixson– que no ha sido usado 

previamente. Este control requiere de un proceso basado en un análisis de imágenes en tiempo real  y en 

un ajuste de las velocidades de los motores también en tiempo real. Estas características están 

incorporadas en un programa de computadora que controla el dispositivo experimental, desarrollado en 



 

Visual C++ y que coordina los datos provistos por el análisis de imágenes y el control de los motores en 

tiempo real. Este control fue probado experimentalmente para encontrar los parámetros más apropiados, 

para evaluar su robustez y corroborar que el control no afecta la dinámica de deformación de la gota. 

Los capítulos 5 y 6 presentan los resultados experimentales obtenidos con el dispositivo para 

diferentes parámetros del tipo de flujo y para dos sistemas de relaciones de viscosidad. Los resultados 

para la relación de viscosidades baja incluye la determinación de los números capilares críticos para esa 

relación de viscosidades como función del tipo de flujo asi como la observación del proceso de ruptura. 

Para la relación de viscosidades alta, los resultados experimentales muestran el comportamiento altamente 

complejo presente en los estados transitorios y como este comportamiento es modificado por el flujo. Para 

este caso el dispositivo de flujo permite el estudio de la respuesta de la gota al inicio súbito de un flujo. 

Para números capilares muy bajos, la evolución temporal de la deformación es caracterizada por una 

función de incremento monótono simple hacia un estado permanente. Para números capilares grandes el 

estado permanente se alcanza después de una evolución oscilatoria multi-amortiguada. Efectos de 

fronteras cercanas en la deformación de la gota también fueron estudiadas, para ambas relaciones de 

viscosidad, siendo más evidentes y estudiadas con mas detalles en el sistema con una alta relación de 

viscosidades. Para este ultimo sistema y con el campo de flujo más cercano a cortante simple, fue posible 

observar el efecto de confinamiento en la deformación durante los estados transitorio y permanente. Los 

experimentos de confinamiento muestran que hay efectos similares en reducir la vorticidad en el campo 

de flujo y en inhibir sus efectos incrementando el grado de confinamiento de la gota. 
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Introduction 

Fluids formed by small drops of one fluid immersed into a second continuous immiscible fluid are 

found in countless important industrial operations. Food and pharmaceutical emulsions, paint 

manufacturing, polymer processes, are some examples. Also, enhanced oil recovery and soil and 

groundwater remediation often involve the use of multiphase fluids.  Because the structure of the two-phase 

fluid depends on the history of flow stresses, the processing of these fluids plays a fundamental roll in their 

manufacturing processes. That is, their properties are due to a dynamic microstructure, which can be easily 

modified or disrupted by the presence of external stress fields.  Hence, engineering applications of these 

complex fluids require developing the capacity of prediction and control of its dynamic behavior. That is, its 

rheology must be based upon the knowledge of its microstructure evolution and stability. 

  

It is well known that the basic knowledge of the deformation, break-up and coalescence of one 

single drop is an useful benchmark to understand the physical phenomena involve, which can be  

extrapolated to a better qualitative understanding of more concentrated systems. Many researchers have 

contributed to this knowledge, beginning with the pioneering of Taylor (1934). The flow of these 

substances shows a rheological behavior that depends on the viscosities ratio, the surface tension, 

surfactants, flow-type parameter and the coupled effects of the fluid structure and the kinematics 

properties of the flow. The coupling of structure and flow occurs in the non-linear regimen, being an area 

of current scientific research.  

 

Earlier studies of the dynamics of drops have been summarized in excellent reviews by Acrivos 

(1983), Rallison (1984), Stone (1994) and Briscoe et al. (1999). Until now, the bulk of theoretical and 

experimental studies with strong flows have addressed the fluid dynamics of pure extensional flows or 

simple shear flows (Rallison 1984; Stone 1994). Four-Roll Mills (pure extensional flows) and Parallel 

Band (simple shear flows) cover a wide interval in the flow-type parameter. More recently, Moldenaers 
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and collaborators have used an eccentric Couette cell to study the drop deformation dynamics in a 

combination of simple shear and elongational flow in a periodic time dependent environment. 

 

However, there is a gap between these flow fields and those generated by co-rotating Two-Roll 

Mill geometries. The TRM flows cover a range of flow parameters not accessible with any of the previous 

devices. In this Thesis, the methodology for study the dynamic of drops using the Two Roll Mill device 

will be presented. This device is particularly effective for flows with values of the flow type parameter α 

between 0.03 ≤ α ≤ 0.3 (Reyes and Geffroy 2000b). The smallest value implies a flow very close to the 

kinematic of simple shear while the largest values provide a deformation rate typical of elongational flow. 

With this setup, drop deformations can be studied under varied and well characterized kinematic 

conditions. Thus, this flow cell is capable of providing detailed experimental information about drop 

dynamics under conditions that include the effects of elongation with significant vorticity, nearby walls, 

and the presence of surfactants or other polymeric additives; conditions not amenable to study with the 

earlier flow devices. From the point of view of applicable boundary conditions, drop phenomena analyzed 

with this experimental setup have similar kinematics, as well as dynamically to the slow flow 

hydrodynamics of two-phase flows through pores and fractures. 

 

Chapter 1 presents the parameters that rule the drop deformation (the flow type parameter among 

them) and a brief background about related previous works. Chapter 2 exposes the concept of the Two-

Roll Mill geometry, how it produces the different flow fields and the parameter that characterizes those 

flow fields as the angle that defines the parameter of type of  flow. Chapter 3 presents the components of 

the experimental device and the characterization of the different geometries used in this work, it is to say, 

the measure of the precise flow type parameter values corresponding to each one of the geometries 

available. 

 

 Chapter 4 presents the implementation of the control scheme used to keep the drop in the region 

of study, it contains the parameters of the control and the test carried out to ensure that it does not affect 

the drop deformation results and that is robust enough to carry out long time experiments. In chapter 5 the 

results of the experiments of drop deformation performed with this flow cell are presented, Those results 

show the effect of the flow type parameters in the dynamics of deformation for two viscosities ration and 

the confinement effect for the flow filed closest to simple shear. Chapter 6 present the measure of the 

interfacial tension for the two viscosities ration using the data provided by the experimental device.  
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1 General aspects on drop deformation 

1.1 Drop deformation parameters 

Many problems in fluid mechanics involve the flow of a drop of one fluid embedded in another 

immiscible fluid. This problem exhibits many complex phenomena and is especially difficult to solve the 

basic equations, because the position and shape of the drop changes in response to the second fluid in 

movement. Figure 1.1 shows the basic description of the problem as a drop of radius r0, viscosity μ0 and 

density ߩ଴, freely suspended in a second immiscible fluid with viscosity μ1 and density ߩଵ. Assuming that 

both fluids are Newtonian and incompressible, and that the flow is slow enough such as that Re << 1, then 

the inertial effects may be neglected and the governing equations are only the Stokes and continuity 

equations. 

 
Figure 1.1. Schematic representation of a drop suspended in a second immiscible fluid. 

׏ ∙ ଵ࢛ ൌ ଵ݌׏									0 ൌ  ሺ1.1ሻ																																																							,			ଵ࢛ଶ׏ଵߤ

׏ ∙ ଴࢛ ൌ ଴݌׏							0	 ൌ  ሺ1.2ሻ																																																						.			଴࢛ଶ׏଴ߤ
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1.1.1 Boundary Conditions  

 

From a dynamical point of view the interface S between the drop and the external fluid is a 

singular surface of concentrated forces; i.e., the forces acting on both sides of the interface have different 

values, which creates a discontinuity on the surface force ∆f that basically depends on the surface 

tension	ߪ. Under flow, when ∆f is different from zero and has a finite value, may deform, while ∆f ൌ 0, 

means that the interface in simply advected by the flow and is has no important role in the deformation 

dynamics.  Considering that the governing equations are valid in the two fluids, there are boundary 

conditions that must be satisfied at the drop interface in order to determinate completely a solution of 

these governing equations. Those conditions are: the continuity of the velocity field across the interface, 

the kinematic condition on the flow device and the local balance of stresses across the interfaces S. 

 

Continuity of the velocity 

The continuity of the velocity at the interface S corresponding to the no-slip boundary condition 

implies that 

૚ܝ ൌ  ሺ1.3ሻ																																																																												,ࡿ	on	૙ܝ

where the velocity in the external fluid is u1 and the velocity of the drop fluid is u0. 

 

Kinematic condition 

The kinematic condition, which comes from the principle of mass conservation, is based upon the 

assumption that the interface is neither a source nor a sink of mass. Accordingly, the normal component 

of the velocity at S, in both fluids, must be equal to the normal velocity of the surface itself. As the 

surface S may translate and deform into new shapes as a function of time, the kinematic condition can be 

expressed in the form of a relationship between ܝଵ ∙ ଴ܝ	or	ܖ ∙  and the time rate of change of the ܖ

interface shape (where n is the unit normal vector to S, see Fig.1.2). To express this relationship in 

mathematical form, consider that ܨሺ࢞;   represents the interface shape as the set of points x where	ሻݐ	

;࢞ሺܨ ሻݐ	 ൌ 0.  Then, the unit normal vector n to S can be defined in terms of F(x;	t) as 

ܖ ൌ േ
સܨ
‖સܨ‖

		,																																																																																	ሺ1.4ሻ 

where the sign is chosen by convention so that n is a positive unit vector when it points into the exterior 

fluid 1. Now, since F  is a scalar function which is always equal to zero at any point on the fluid interface, 

its time derivative following any material point on the interface is equal to zero, that is 
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ܨ∂
ݐ∂

൅ ܝ ∙ સܨ ൌ 0	, for	any	point	on	ࡿ.																															ሺ1.5ሻ 

Replacing Eq. 1.4 into Eq. 1.5, the kinematic condition is given as 

1
‖સܨ‖

ܨ∂
ݐ∂

൅ ܝ ∙ ܖ ൌ 0	,							on	ࡿ.																																																									ሺ1.6ሻ 

 

 

Figure 1.2.  Schematic representation of the section of the interface between the drop and the external 
fluid. 
 

Stress conditions  

If the interface is characterized by an isotropic surface tension, ߪ, acting in the plane of the 

interface, there are only two forces on any element of the interface: (a) The stresses T acting on the faces 

of the interface element which are proportional to the surface area, and (b) the tensile force, due to the 

interfacial tension, acting on the plane of the surface at the edges of the interface element. To obtain a 

relation between ߪ and Δf, consider an element of surface area at the interface ΔS that is enclosed by the 

contour C —see Fig.  1.2— then, the force balance has the form 

ඵ ൫લ െ લ෡൯ ∙ dܵ	ܖ
∆஺

൅ ර ݈݀	܊	ߪ
஼

ൌ 0	,																																																		ሺ1.7ሻ 

 

where the unit vector b lies on the plane tangent to the interface and is normal to C, see Fig. 1.2. Using 

the identity b = t × n, Eq. 1.7 can be rewritten in the equivalent form: 

ඵ ൫લ െ લ෡൯ ∙ dS	ܖ
∆஺

ൌ ර ܖ	ߪ ൈ ݈݀	ܜ
஼

		,																																																					ሺ1.8ሻ 

where n and t are unit vectors normal to the interface and tangential to C, respectively. To convert the 

contour integral of Eq. 1.8 into an area integral, a variation of the Stokes’ theorem can be used; thus, 

 

 

b

t

 




n
S

C


C
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ර ۴ ൈ ݈݀	ܜ
஼

ඵ ሺܖ	׏ ∙ ۴ െ ۴׏ ∙ dS	ሻܖ
∆஺

	,																																																		ሺ1.9ሻ 

where F is a differentiable function defined over the whole space. Extending the domain of definition of 

the  normal  vector  n  and  of the surface tension σ away from the interface into the whole space, setting 

F = ߪ n, and using Eq. 1.9, the following equation is obtained: 

ර ܖ	ߪ ൈ ݈݀	ܜ
஼

ඵ ሺܖ	׏ ∙ ሺܖߪሻ െ ሻܖߪሺ׏ ∙ 	dS	ሻܖ
∆஺

.																																								ሺ1.10ሻ 

 

Substituting Eq. 1.10 into Eq. 1.8, and noting that ܖ׏ ∙ ܖ ൌ
ଵ

ଶ
ܖሺ׏ ∙ ሻܖ ൌ 0, thus 

ඵ ൣ൫લ െ લ෡൯ ∙ ܖ െ ׏	ܖ ∙ ሺܖߪሻ ൅ ሻܖߪሺ׏ ∙ dS	൧ܖ
∆஺

ൌ 

ൌඵ ൣ൫લ െ લ෡൯ ∙ ܖ െ ׏	ܖߪ ∙ ܖ ൅ ሺ۷ െ ሻܖܖ ∙ dS	൧ߪ׏
∆஺

ൌ 0	.																								ሺ1.11ሻ 

 

Given that the last equation is true for any arbitrary surface element, and the surface tension is uniform 

then 

൫લ െ લ෡൯ ∙ ܖ ൌ ׏	ܖߪ ∙  ሺ1.12ሻ																																																																.		ܖ

If we take the inner product of Eq. 1.6 with n, and recalling that 	લ ൌ െ۷݌	 ൅ 	ૌ ൌ െ۷݌	 ൅  this gives ,۳ߤ2	

̂݌ െ ݌ ൅ ሾሺૌ െ ૌොሻ ∙ ሿܖ ∙ ܖ ൌ ׏	ߪ ∙  	ሺ1.13ሻ																																																									.	ܖ

The non-dimensionalization of the last equation with the characteristic length 	the drop radius 

݈௖ ൌ ௖ݑ  ଴, the characteristic velocity as the translational velocity of the dropݎ ൌ ௖݌ and ܃ ൌ ܃ߤ ܽ⁄  for the 

characteristic pressure (valid for low Reynolds number). The result is 

	܃	ߤ
଴ݎ

ሺ̂݌ߣ െ ሻ݌ ൅	
܃	ߤ
଴ݎ

ሾሺ2ࢋ െ ොሻࢋߣ2 ∙ ሿܖ ∙ ܖ ൌ
ߪ
଴ݎ
׏ ∙  ሺ1.14ሻ																																											.ܖ

Or 

ሺ̂݌ߣ െ ሻ݌ ൅ ሾሺࢋ െ ොሻࢋߣ ∙ ሿܖ ∙ ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥܖ
ி௟௢௪	ி௜௘௟ௗ	௦௧௥௘௦௦

ൌ
1
ܽܥ

׏ ∙ .			ถܖ
஽௥௢௣	௦௛௔௣௘

		 																																ሺ1.15ሻ	 

Where	ࢋ ൌ ሺݎ଴ ⁄܃ ሻ	۳, is the dimensionless rate of deformation tensor, 	ߣ ൌ ଴ߤ ⁄ଵߤ   is the viscosity ratio 

and the dimensionless parameter Ca is the capillary number. 
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The first and the second terms on the right side of Eq. 1.15 express discontinuities of the stress 

field in the normal directions. When the drop is subjected to a flow field, the pressure and stress 

differences at the interface do not have a uniform distribution.  In this case, the normal stress balance is 

satisfied by a deformation on the drop, where the interface curvature ሺ׏ ∙  ሻ varies in the same way as theܖ

normal-stress variations over the surface. 

From the dimensionless form of the stress condition we can observe that the three governing 

parameters for drop deformation are:  

 

 The viscosities ratio  	ߣ ൌ ଴ߤ ⁄ଵߤ  

 The capillary number   ܽܥ ≡ |ඥ|۷۷૛۳	μଵ	଴ݎ
మ ⁄ߪ 	≡ ሶߛ	ଵߤ	଴ݎ 	 ⁄ߪ 			 

Where ۷۷૛۳is the second invariant of 	2۳ ൌ સܝ ൅ સܝ୘. For simple shear rate flows,  ඥ|۷۷૛۳|
మ ൌ 	 γሶ 	  

 And the tensorial character of સܝ. 

Where the tensorial character of સܝ gives the Flow-Type parameter  ߙ	    
 

1.1.2 Flow-Type Parameter 

The flow-type parameter characterizes the form of the velocity gradient tensor and specifies the 

ratio of the magnitude of the rate of deformation tensor to that of the vorticity 

 

݊݋݅ݐܽ݉ݎ݋݂݁݀	݂݋	݁݀ݑݐ݅݊݃ܽ݉
ݕݐ݅ܿ݅ݐݎ݋ݒ	݂݋	݁݀ݑݐ݅݊݃ܽ݉

ൌ 	
1 ൅ ߙ
1 െ ߙ

	.																																													ሺ1.16ሻ 

Thus ߙ is given by 

ߙ ൌ 	
‖۳‖ െ ‖ഥܟ‖
‖۳‖ ൅ ‖ഥܟ‖

	.																																																																				ሺ1.17ሻ 

Where 	۳ ൌ
૚

૛
൫સܝ ൅ સܝ୘൯	is the rate of deformation tensor and ܟഥ  is the objective vorticity tensor 

(Astarita 1979), which measures the rate of rotation of a material point with respect to the rate of 

deformation’s principal axes at that point. 

The case of ߙ	 ൌ 	െ1	corresponds to pure rotational flow, ߙ	 ൌ 	0 to simple shear flow and 

	ߙ ൌ 	1	describes a pure extensional flow (see Fig.1.3). Figure 1.4 shows the streamlines for different 

values of ߙ between simple shear and pure extensional flows. 
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Figure 1.3.   stream lines for some flow type parameter. 
  

 
Figure 1.4.     Streamlines  for different values of  the Flow‐Type parameter  (Bentley & Leal 1986b). The 
TRM attains flow fields similar to those of the lower plots. 

 

1.1.3 Deformation Parameter 

To characterize the deformation of the drop under a flow field, a first approximation assumes 

ellipsoidal deformed shape and the dimensionless measure of the magnitude of the deformation is the 

Taylor Deformation Parameter DT, defined in terms of the major semi axis L and the minor semi axis B 

of the ellipsoidal drop cross section proyected in the x-y plane Fig 1.5. The cross section proyected in the 

z-y plane is considered to be almost circular or  ܹ	 ൌ   .ܤ	

்ܦ ൌ
௅ି஻

௅ା஻
	,																																																									 ሺ1.18ሻ  

The angle between the major semi axis L of the deformed drop and the x-axis, correspond to the 

the orientation angle ߠ of the drop. 

ߙ ൌ 	െ1																		 ߙ ൌ 0 ߙ ൌ 	1		
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Figure 1.5.  Semi‐axes of the ellipsoidal deformed drop and the orientation angle ࣂ. 
 

1.2 Historical Background  

When a drop is suddenly subjected to flow, it will deform, orient and possibly break up.  As it was 

mentioned before, the drop response is determined by its viscosities ratio, the capillary number, and the 

nature of the flow.  For capillary numbers lower than a critical value, the stresses upon the drop due to the 

flow field are equilibrated by the interfacial tension and the drop reaches a final steady state shape and 

orientation. For capillary numbers above the critical value, the surface tension is not strong enough to 

balance the flow field stresses and the drop eventually breaks up. A high level of research activity, 

focused on the relationship between flow and drop deformation, has been carried out since the work done 

by Taylor (1932, 1934). This work includes, both theoretical analysis (based on the small deformation and 

negligible inertia forces assumptions) and experimental observations, focused on the deformation of 

single drops suspended in a second liquid to which either a simple shear or a planar elongational flow is 

applied. In order to generate these flows experimentally Taylor used the Parallel Band apparatus (PB for 

simple shear flow) and Four-Roll Mill apparatus (FRM for planar elongation). In general, at small 

deformations Taylor's theory agrees well with experimental observations. 

Some major improvements of Taylor's theoretical work include better drop shape description 

(Chaffey and Brenner 1967), covering a wider range of viscosities ratios (Cox 1969), and the description 

of their transient behavior (Cox 1969; Barthès-Biesel and Acrivos 1973; Rallison 1980). Furthermore, in 
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order to study highly extended drops, slender body theory has been applied by Acrivos and Lo (1978), 

Rallison and Acrivos (1978) and Hinch and Acrivos (1979, 1980).  

Major experimental contributions are due to Rumscheidt and Mason (1961), Torza et al. (1972), 

Grace (1982), Bentley and Leal (1986a,b), Stone et al. (1986) and more recently by Guido and Villone 

(1998), Guido et al. (1999, 2000), Guido and Greco (2001), Birkhofer et al. (2005) and Megias-Alguacil 

et al. (2005). These include measurements of the critical capillary number over a wide range of viscosities 

ratio, both in simple shear and planar elongation flows (Grace 1982), and computer controlled versions of 

Taylor's four roll mill (Bentley and Leal 1986a) and shear band apparatus (Guido and Villone 1998; 

Birkhofer et al. 2005). These computer-controlled versions of the Taylor's setup take advantage of 

modern camera technology in that they use real-time monitoring of the drop position as input in their 

control algorithms. 

The bulk of theoretical and experimental studies (except that of Bentley and Leal 1986a, b), have 

only addressed the fluid dynamics of two flow field types: simple shear flows (where the magnitudes of 

the vorticity and the strain rate are equal, a	 ൌ 	0), and pure extensional flows (with no vorticity, a	 ൌ 	1), 

whereas actual dispersing devices generally create highly complex flows and the behavior of drop 

deformations have a strong dependence on the flow type. As it was mentioned before, the three main 

aspects that domain the behavior of the drop are: the capillary number Ca, the viscosities ratio ߣ and the 

nature of the flow field ߙ.  The first one can be easily modified by changing the strain rate for fixed 

viscosities ratio and flow type. With respect to the others, Grace (1982) carried out an investigation for 

the critical capillary number as a function of the viscosities ratio for single Newtonian drops in both 

simple shear and planar elongation flows and later, Bentley and Leal (1986b) carried out these studies for 

some intermediate flow types. Figure 1.6 shows the experimental data for these experiments. The 

continuous line in the figure is an empirical fit to Grace’s data made by de Bruijin (1989) for simple shear 

flow that summarizes the results indicating that no break up is possible when ߣ	 ൐ 	3.5, which agrees well 

with the results found by Taylor.  For pure extensional flow, although qualitatively different, both Grace 

(1982) and Bentley and Leal (1986b), results show that this flow-type can break up the drop regardless of 

the viscosities ratio. As to intermediate flow types, Bentley and Leal founded that for flow fields with 

	ߙ ൏ 	0.4, there is a limit of viscosities ratio that depends on the flow type, for ߙ	 ൌ 	0.2 the limits is 

	ߣ ൌ 	27 and for ߙ	 ൌ 	0.4 the corresponding limit is ߣ	 ൌ 57. Flow fields with ߙ	 ൌ 	0.6 or higher, always 

can achieve the breakup of the drop as in pure extensional flows. More recently, Moldenaers and 

collaborators have used a time combination of simple shear and elongational flows in an eccentric 

Couette device (Boonen et al. 2010).  
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Figure 1.6.     Critical capillary numbers  for different values of  flow  type parameters as  function of  the 
viscosities ratio. The continuous line is a curve fitted to the experimental data of Grace (1982) done by 
de Brujin (1989). 
 

Figure 1.6 shows that the amount of vorticity plays a critical role in drop deformation. It 

determines the critical capillary number needed for drop breakup; even more, if the drop will breakup or 

not for a given viscosity ratio.  The breakup condition of a drop depends on the flow type because the 

vorticity present in the flow field will tend to inhibit the deformation applied for the flow. That’s why the 

breakup of a drop is always possible in flow fields with a ൌ 	1 or closer values, where the vorticity is too 

small or even inexistent to counteract the deformation. In general, for the same capillary number and 

viscosities ratio, as the amount of vorticity present in the flow field is increased (ߙ approaching zero), the 

possibility to breakup the drop is reduced. 

There are many devices which can generate flows with values of ߙ ൌ 0 and the computerized 

version of the four roll mill of Bentley and Leal (1986a) allows the generation of flow fields in which the 

flow type parameter can achieve different values ranging from 0.2 ൏ ߙ ൑ 1. Thus, four-roll mills and 

simple shear flow devices cover a wide interval in the flow-type parameter space.  However, there is a gap 

in the flow type values still not reported. As can be seen in Fig. 1.6; the qualitative behavior for flows with 

ߙ ൒ 0.6	 is very similar, and is close to that for α = 0.2, the figure shows that the drop behavior for flow 

fields with values of 	ߙ ൌ 	0 , differs greatly from those with values of ߙ higher than 0.2.  In order to fill this 

gap in understanding, which is worth to investigate, the co-rotating Two-Roll Mill (TRM) can be used. 

Different geometries for this device can generate flow fields with an effective interval for ߙ of 0.03	 ൑

	ߙ	 ൑ 	0.3 (Reyes and Geffroy 2000b).  And for the Newtonian-fluid Stokes flow, there is an analytical 
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solution for the TRM  that can be used as benchmark for the underlying studies of the accuracy of the flow 

device, not available for FRM configurations. 
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2 Flows generated by Two-Roll Mills 
The use of laminar flows capable of inducing significant deformation on the fluid microstructure on 

embedded objects is an essential tool for studies in fluid mechanics of non-Newtonian fluids (Geffroy and 

Leal 1992, Singh and Leal 1996), chaotic advection (Jana et al. 1996, Atobe 1997), drop and bubble 

dynamics (Stone 1994, Bentley and Leal 1986 b), and in general in many industrial applications. These 

flows have proven advantageous for studies of fluid systems that show a marked nonlinear, hysteretic 

behavior due to its dynamic microstructure.  Simple viscometric flows and purely extensional flows 

(Huilgol and Phan Thien) are among the two most frequently used flow fields that have different kinematics. 

However, on one hand viscometric flows have significant amounts of vorticity and are expected not to 

produce large deformations on an embedded object.  The observed behavior in viscometric steady flows is 

understood by parcels of fluid that at any given time separate linearly in time; i. e., at most, the separation 

can only grow algebraically. Hence, these flows produce only a moderate change on the fluid structure, and 

thus are classified as weak flows. On the other hand, for steady extensional flows there is no vorticity, and 

two neighboring elements of fluid will separate in time exponentially. Given enough time, the flow will 

induce significant changes on the microstructure of the fluid regardless of its relaxation mechanisms; 

therefore, these are classified as strong flows (Olbricht et al. 1992, Chong et al. 1990). 

 

2.1 The Two-Roll Mill geometry 

A schematic of the Two-Roll Mill device is shown in Fig. 2.1. It consists of two cylinders of 

radius R with collinear axes separated by a small distance de and rotating in the same direction, while 

immersed in a fluid bath.  The flow fields generated by a co-rotating TRM contain a stagnation point on 

the line between the cylinders axes, with well known local kinematic conditions and characterized by a 

given value of the flow parameter ߙ. 
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Some of the features of the flow fields generated by these mills are as follows: 

(a) The value of the flow parameter α is determined only by the geometrical characteristics of 

the TRM; i.e., the cylinders radii and the axes separation.  

(b) Although these flows belong to the family of strong flows, simple shear flows behavior can 

be approached as closely as needed, by increasing monotonically the vorticity.  

(c) There exists an analytical solution for Stokes flow that takes into account the presence of the 

cylinders’ boundaries, in contrast with other strong flows used to study long-term effects in 

embedded objects, such as four-roll mills. 

In a TRM, the strength of vorticity and the shear rate can be easily varied, although with less 

flexibility than with a FRM (Bentley and Leal 1986a). Compared to Four-Roll Mills, the Two-Roll Mill 

requires a change of geometry for different values of ߙ.  In contrast and for a given geometry, the shear 

rate, ߛሶ ൌ ඥ|۷۷૛۳|, at the stagnation point is a simple function of the speed of the cylinders. 

For TRM geometries with equal radii, the flow-type parameter at the stagnation point has a 

maximum value when the angular velocity is the same on each cylinder, and the ratio of deformation rates 

to vorticity associated to the flow-type parameter ߙ, it is given as 

ߙ ൌ  ሺ2.1ሻ																																																																					ଶሺ߶ሻ,݊ܽݐ

where ߶ is half the angle of the incoming and outgoing axes in the stagnation point (see Fig. 2.1). This 

angle is a function of the geometry of the TRM, and is independent of the angular velocity of the 

cylinders (Reyes and Geffroy 2000a, Reyes 2005). Fig. 2.2 shows the streamlines for symmetric co-

rotating Two Roll Mills for several ratios between the cylinder’s radius and their axes separation 

distance de.  

For large ߙ values, say ߙ	 ൐ 	0.3, the maximum shear rate accessible at the stagnation point is 

small, requiring a high angular velocity of the cylinders in order to achieve moderate shear rates at the 

central region. Under these conditions, a high shear rate always exists near the cylinders, consequently 

generating a poor condition for a low Reynolds number flow fields. This is the main limitation for 

generating strong flows using devices based on Two-Roll Mill geometries. When using Four-Roll Mills, 

the smaller values of the flow field parameter are achieved by rotating a set of two cylinders very slowly 

compared to the other two. Thus, Four-Roll Mill flow fields with small values are intrinsically unstable, 

and the control scheme becomes less reliable, contrary to what is expected for flows generated by TRMs. 

Consequently, Two-Roll and Four-Roll Mills are adequate flow field complements to each other. 
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Figure 2.1. (a) The Two‐Roll Mill device consist in two co‐rotating cylinders of equal radius, with collinear 
axes separated by a small distance; (b) Stream lines for a flow field generated by a Two Roll Mill device. 
The stagnation point  is  located on the  line between the cylinders’ axes and the angle ϕ between the 
incoming and outgoing stream lines. 

 
Fig. 2.2.  Streamlines for symmetric co‐rotating Two‐Roll Mills for several ratios between the cylinders’ 
radius and their axes distance. These figures are obtained from the analytical solution (Reyes 2005). This 
solution is used to calculate all flow parameters and is valid for an extended central region. 

α = 0.03 α = 0.1 

α = 0.2 α = 0.3 
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3 The experimental device 

This chapter presents the elements that constitute the computer-controlled Two Roll Mill flow 

cell experimental device.  It is divided in two parts. The first part describes the characteristics of the 

elements of the apparatus and the second part describes the characteristics of its operation to produce the 

required flow field parameters.  

3.1 Main elements of the experimental device 

Figure 3.1 (a) shows some of the principal components of the experimental device mounted on a 

pneumatically levitated workstation by Newport Research.  In the Figure can be seen the optical system, 

the Two-Roll Mill flow cell and the pair of motors. The figure 3.1 (b) is a scheme of the experimental 

arrangement. 

The experimental device components are the: 

 Optical System. 

 Two Roll Mill flow cell. 

 Interface system and motors. 

 Illumination  and thermal bath. 

 

3.1.1 The optical system  

The optical train is made up with:  

 A motorized Navitar telecentric zoom, with a maximum magnification of 12X, 

 An optical adapter Navitar 1-61390 with a magnification of 2X, 

 An IEEE 1394 CCD Sony camera, model XCD-X700. 
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(a) 

 
Figure 3.1.  Photo of the Experimental setup (top) and principal components: (1) Each cylinder is driven 
independently  by  a  high  resolution  servomotor,  (2)  Flow  cell  container,  (3)  Mirror,  (4)  3‐axes 
displacement mount for optical system, (5) Motorized zoom and focus  lens,  (6) CCD Camera, (7) Fiber 
optic  light  source,  and  (8)  Computer  operating  in  real‐time  processes  images  and  sets  the motors 
speeds. 

 

The experiment is mounted to a base fixed to the levitated workstation. The optical assembly is 

mounted on a base that allows precise movements in all three axes by means of precision ground slides and 

micrometric screws manually operated, see Fig. 3.2.  The visual field-of-view is covered with 1024 by 768 

pixels is on the x-y plane of the flow field, which is accessible through the bottom glass window using a 45 

degrees mirror (with the reflective coating on the front surface) located underneath the flow cell. 

Light source 

Flow cell 
Optical System 

Motors 
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Figure 3.2.  The optical system consists mainly of the camera and the motorized zoom is mounted in a 
rigid base that allows precise movements by means of precision ground slides and micrometric screws. 

The optical system has two main purposes: (a) to monitor the position of the center of mass of the 

drop during the experiments, providing a sequence of images in real time to the control scheme in order to 

keep the drop in the stagnation point region, and (b) once the experiment is running, the system captures 

and saves the images of the deformation process for a posterior analysis of the dynamics. In order to carry 

out those tasks, it is necessary to know the capabilities and characteristics of the system, i.e., the 

resolution, focal distance, and the pixel/mm ratio for the optical train mounted.  

The maximum optical resolution of the full assembly was determined using a 1951 USAF glass 

slide resolution test target by Edmund Optics.  With this target, the resolution of any imaging system can 

be determined by viewing the clarity of the horizontal and vertical lines in the image of the target 

acquired by the system.  The largest set of non-distinguishable horizontal and vertical lines determines the 

resolving power of the imaging system.  Fig. 3.3 shows the structure of the target and Table 3.1 lists the 

resolution in number of line pairs per millimeter for a given element within a group. With our optical 

system, the maximum resolution is 64 line pairs per millimeter, which equates to roughly 8 µm 

corresponding to that of the element 1 in the group 6, Fig. 3.4. 

 
Figure  3.3 Structure of the USAF 1951 target showing the elements and groups numbers. 
 

Group Number

Element Number 
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Table  3.1.  Resolution  of  the  system  in  number  of  line‐pairs  in  function  of  the  element  and  group 
number. 

Element  Group Number 

  ‐2  ‐1  0  1  2  3  4  5  6  7 

1  0.250  0.500  1.00  2.00  4.00  8.00  16.00  32.00  64.0  128.0 

2  0.280  0.561  1.12  2.24  4.49  8.98  17.95  36.0  71.8  144.0 

3  0.315  0.630  1.26  2.52  5.04  10.10  20.16  40.3  80.6  161.0 

4  0.353  0.707  1.41  2.83  5.66  11.30  22.62  45.3  90.5  181.0 

5  0.397  0.793  1.59  3.17  6.35  12.70  25.39  50.8  102.0  203.0 

6  0.445  0.891  1.78  3.56  7.13  14.30  28.50  57.0  114.0  228.0 

 

 

 
Figure 3.4. Image of the maximum resolution possible in the optical system. In this picture the element 
taken for the calibration is the first element of the sixth group corresponding to a resolution of 64 line 
pairs per millimeter. 

It is necessary to obtain the real size of the objects in the images and given that the image analysis 

provides the dimension in pixels, then, a relation between pixels and millimeters is needed. This relation 

was determined using an Image Analysis Micrometer test target by Edmund Optics.  The calibration was 

done by measuring a distance in the image of the target in pixels and relating that distance with the 

corresponding indicated for the target in micrometers.  Fig. 3.5 shows an example of the image of the 

target obtained with the maximum magnification in the optical system.  The procedure was repeated for 

different magnifications of the zoom and given that a change in the zoom requires an adjustment of the 

focal distance, this was done by translating the optical system along the optical axis with the micrometric 

screws. Table 3.2 summarizes the results of the calibration providing the relation of pixels and 

millimeters as well as the focal distance and the visual field dimensions for different zoom positions.  
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Figure  3.5.  Image  of  the  micrometer  target  test  used  for  determine  the  relation  of  pixels  and 
millimeters.  This  picture  corresponds  to  maximum  zoom  and  a  relation  of  700  pixels  per  each 
millimeter. 
 

Table 3.2 Characteristics of the visual field of the optical system for different magnification grades. 
 

Zoom position 
Focal  distance  
[mm] 

pixels/mm ratio 
Visual  field  size 
[mm] 

12300  34.5  700  1.46 x 1.09 

12000  34.8  658  1.55 x 1.16 

11000  34.9  537.5  1.90 x 1.42 

10000  35.2  438.4  2.33 x 1.75 

9000  37.0  356.5  2.87 x 2.1 

8000  39.5  288.8  3.54 x 2.65 

7000  41.4  234.9  4.36 x 3.27 

6000  42.4  191.5  5.34 x 4.01 

3.1.2 The Two-Roll Mill flow cell 

The TRM flow cell consists in two cylinders, a support for the two cylinders and an enclosure. To 

minimize the external wall effects on the flow field, the interior contour of the container matches a 

selected streamline around the cylinders.  It is made of black anodized aluminum to minimize internal 

optical reflections (see Fig. 3.6). This main body has a cooling loop around the vertical walls of the body 

designed to maintain stable the temperature of the fluids.  The cell has three optical quality windows, two 

on the side and one at the bottom.  The cell is covered with a strong stainless steel lid where the cylinder 

supports —the housing for the worm-gear mechanism and bearing— are fastened.  The lid has a large 

detachable acrylic window to facilitate illuminating from the top.  Each cylinder inside of the flow cell is 

held in position by a set of three bearings, with worm-gear and bearing preloaded for tighter operation on 

the radial and axial directions.  The cylinders are made of two pieces, an internal shaft of small diameter 

made of stainless steel, (which is in contact with all bearings, bolts and gears) and the outer shell —larger 

in diameter— made of black-anodized aluminum.  The shafts were attached permanently —by previously 

cryo-shrinking the shafts— inside hollowed aluminum cylinders, and subsequently machining the 

ensemble to the exact required external dimensions.  This low-mass design reduces the rotational inertia 
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of the cylinder while maintaining the required rigidity.  The top and bottom end of the cylinder have 

conical shapes, with an angle that guarantees that the shear rate at the top and bottom gap is smaller than 

the values observed within the flow field.  There is a 1mm gap between the top and bottom of the flow 

cell and the conical portion of the cylinders. These gaps can be filled with air (at the top) or a heavy fluid 

(for the bottom) of low viscosity in order to reduce the component of the velocity gradient normal to the 

extensional flow field.  

Table 3.3. Dimension of the cylinders for each geometries and the corresponding analytical value of the 
flow type parameter ࢻ for each one of them.   

Geometry  Cylinder 
Diameter 
[mm] 

Gap 
[mm] 

Analytical value of the 
flow type parameter α 

A 
1  41.037 

10.9  0.12 
2  41.035 

B 
1  42.909 

9.1  0.1 
2  42.905 

C 
1  47.17 

4.8  0.05 
2  47.18 

D 
1  49.03 

3  0.03 
2  49.02 

Given that the distance between the cylinder axes is fixed by the cell design, pairs of cylinders of 

different size are needed to generate flow fields with different values of α.  In order to attain the highest 

accuracy generating flows, the most important criterion are the machining tolerances required for the 

geometry of flow cell.  In particular, the value of α depends strongly on the size and shape of the 

cylinders and the separation and parallelism between its axes, while the steadiness of the shear rate 

depends on the tolerances of the coupling mechanism and motor performance driving each cylinder.  For 

the actual geometry used in the laboratory, three physical length scales are critical: the exact diameter of 

cylinders, the concentricity of all cylindrical surfaces and the parallelism and exact distance between the 

cylinders axes.   Assuming a fixed distance for the cylinder axes, de, and good concentricity of surfaces, 

then  cylinders with a machining accuracy of ±0.005 mm will generate a flow field with an uncertainty of 

less than ±0.4% of the nominal value of α.  The configuration of the flow cell used in these experiments 

has a fixed distance between cylinder axes of 52.000 mm. Table 3.3 presents the measured dimensions of 

the set of cylinders and its corresponding analytical value of the flow type parameter α. The parallelism of 

the cylinder axes is maintained by preloaded bearings.  These bearing housings were all machined with 

the cell rigidly set on the milling machine, which guarantee a parallelism for the cylinders axes within 5 

arc-seconds.  The position of the lid is pin down to the flow cell by a pair of pegs, the latter maintaining a 
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reproducible top-to-bottom alignment.  The cell is mounted on a rigid base to assure that this support 

provides the highest rigidity to shear displacement with respect to the imaging systems base.  

Fig. 3.6 shows the channels and the connectors of the cooling loop, the top transparent cover for 

illumination, the housing for the gears, worms and top bearings, the lateral window housing. The flow 

cell is placed on a rigid base where the motors that drive the cylinders are attached.  Given that the 

cylinder axes position is fixed for the TRM geometry, different sizes of the cylinders are needed to 

generate flow with different values of the flow type parameter. 

 

Figure 3.6.   Components of  the  flow  cell TRM–B:  (1) Main body of  the  flow  cell;  (2) Channels of  the 
cooling loop; (3) Exterior jacket of the cooling loop; (4) Hollowed cylinders, with steel shaft and external 
black anodized cylinders; (5) Bottom window assembly; (6) Lateral window assembly; (7) Top window 
assembly;  (8) Lid of  the cell body, with  top acrylic window;  (9) bearings and worm‐gear support of a 
cylinder; (10) Worm‐Gear mechanism; (11) Connector to the cooling loop; (12) Drainage hole. 

 

3.1.3 Interface system and motors 

The data acquisition system consists of a computer Workstation HP XW4300 with a PCI SERCOS 

expansion card for the motors, and a Firewire interface for the imaging system.   The SERCOS 

communicates via optical fibers with the controllers of the motors, and permits addressing the motion 

controllers individually.  Each cylinder is driven by a servomotor coupled with a precision and preloaded 

worm-gear mechanism.  The Kollmorgen motors AKM-11B have a rating of 125W —with very small 

inertia— and are driven by Controller SERCOS Servostar 300.  Communication by the motion controllers 

to the computer is through the dedicated PCI interface card.  The steadiness to establish a given shear rate is 
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better than 0.2% and depends primarily on the precision of the motors systems to generate the corresponding 

velocity of rotation.  The control of the motors can be done using the software BASIC Moves Development 

Studio, provided by Kollmorgen or using the API (Application Programming Interface) files incorporated in 

the Visual C++ program that was developed for this experiment.  The software BASIC Moves was used 

only for the correct configuration of the motors and controllers or for testing purposes. 

3.1.4 Illumination and thermal bath 

Illumination  

The illumination is done from the top using an optical-fiber bundle to guide the light from the 

lamp to the flow cell. The fiber optics is placed above the flow cell as is shown in Fig. 3.1. The light 

source is a Fiber-Lite metal halide fiber optic illuminator with intensity control via manual iris, model 

MH 100 by Dolan-Jenner.  

Thermal bath  

The control of the temperature of the fluids in the experiment was done using a RM6 LAUDA 

thermal bath. The inlet and outlet of the bath were connected to the inlets and outlets of the cooling loop 

in the flow cell. The temperature is maintained within ±0.01K. 

3.2 Experimental parameters 

In order to have reliable results with the experiments it is necessary to know the precise value of 

the parameters that characterize the dynamic of the drop deformation, it is to say: the viscosities ratio λ —

that depends on the properties of the fluids—, the value of the flow type parameter ߙ —that depends on 

the geometry of the cylinders— and the shear rate applied —that depends on the angular velocity of the 

cylinders ߱. Besides, an essential aspect in the experiments is the control of the drop position whose 

fundamental parameter is the stagnation point location given by the intersection of the outgoing and 

incoming axis. Consequently, it is necessary to characterize the uncertainties of the experimental device 

in three aspects: (1) the real value of the flow type parameter (2) ,ߙ the velocities of the cylinders and (3) 

the stagnation point location, related with both the geometry and velocity of the cylinders. 

3.2.1 Experimental values of the flow type parameter 

The value of the flow type parameter α depends basically on the diameters of the cylinders used 

in the flow cell.  However, the accuracy of the generated flow depends on the accuracy of machining.  In 
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order to determine experimentally the value of α for each pair of cylinders we can use Eq. (2.1) that 

relates this value with ߶ —the angle between the incoming and outgoing axes in the flow field.  

During, the calibration procedure, the exact location of the stagnation point—with respect to the 

optical image—is sought, as well as determining experimentally the precise value of the flow-type 

parameter α. Obtaining this information does not require visualization of all streamlines, but knowing 

only the location of the incoming and outgoing axes suffices. Their intersection will provide the exact 

position of the stagnation point and the angle between them will give the flow-type parameter value.  

A small amount of very small air bubbles are injected in the region about the stagnation point, 

with the sole purpose of being use as flow tracer particles. The high viscosity of the silicon fluid and the 

very small size of the bubbles allow using them for a sufficiently long period of time. With the bubbles in 

place, the cylinders are rotated slowly with the same angular velocity, Figs. 3.7a and 3.7b. The bubbles 

drift away from the central region following the outgoing streamlines. Eventually; bubbles on the 

outgoing axis remain only, as shown in Figs. 3.7c and 3.7d. Then, the cylinders are spun in the opposite 

direction converting the outgoing axis into the incoming one. Now the bubbles drift back towards the 

central region and after a short time, as before, then drift away making it possible to visualize the line 

corresponding to the outgoing axis: Figs. 3.7e to 3.7h.  The overlap of both pictures in Fig. 3.7d and 3.7h, 

allows the determination of the angle of orientation, ߶	—an experimental value for the flow-type 

parameter— and the actual position of the stagnation point. This process was carried out for each pair of 

cylinders in order to have the value of ߙ for all the geometries. Table 3.4 shows the overlapped pictures of 

each geometry as well as the flow type parameter value for each one of them. 

 

Figure 3.7.  Sequence of images for the determination of the type of flow.  From a to d, the cylinders are 
rotating  clockwise  with  the  same  angular  velocity  and  counterclockwise  from  e‐h.  The  dark  line 
corresponds  to  the outgoing axis.   The pictures  correspond  to  the geometry A and  the experimental 
value of the type of flow is as determined by the angle sustained in images d and h is  ࢻ ൌ ૙. ૚૜. 
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Table 3.4.  Experimental value of the flow type parameter α for the different geometries. 

Geometry  Overlapped pictures 
Angle ࣘ  
[degrees] 

Flow Type  ࢻ

A 19.9  0.13 

B 17.5  0.01 

C 13.1  0.05 

D 10.04  0.03 
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3.2.2 Angular velocity of the cylinders 

The angular velocity of the cylinders, ߱, depends on the velocity of the motors and is a 

fundamental parameter for two aspects in the experiment: (1) the shear rate about the stagnation point, 

that is directly proportional to it, and (2) controlling the position of the drop, that is based on small 

variations —around 4%— of these velocities. The angular velocity of the motors is set at the computer 

using the software developed for the experiment and transfer from the motors to the cylinders using a 

worm-gear mechanism.  Due to this transmission arrangement, the motor rotates five times faster than the 

required angular velocity on the cylinder. To ensure that the velocity programmed through software is the 

correct one on the cylinders, these latter were measured.  First, a velocity was set via the program and 

then the actual velocities of the motors and the cylinders were measured. Because of the control scheme, 

during an experiment a cylinder can have one of three possible velocities: (1) the nominal velocity, ߱௡௢௠, 

that depends on the required shear rate, (2) a maximum velocity ω+ (4% faster than the nominal value), 

and (3) a minimum velocity ω- (4% slower than ωnom). The measured velocities during the test phase are 

those corresponding to a nominal velocity for a shear rate of 1s-1, using the cell with geometry B and its 

corresponding maximum and minimum velocities.  Table 3.5 shows the results for the motors and the 

cylinders.  Even though there are small differences between the velocities programmed for the motors and 

the real ones, these differences seems to disappear due to the reduction in the transmission resulting in a 

perfect match in the velocities of the cylinders and therefore in the shear rate value. 

Table 3.5.   Comparison between the velocities ω+, ωnom and ω‐, programmed and measured, both in the 
motors and in the cylinders. The nominal velocity value correspond to that necessary for having a shear 
rate of ࢽሶ ൌ1s‐1 with the cell geometry B. 

  Programmed Angular Velocity [rad/seg]  Measured Angular Velocity [rad/seg] 

M 
O 
T 
O 
R 
S 

Maxima ω+  1.19075 
1.1922  Motor 1 

1.1922  Motor 2 

Nominal ωnom  1.1491 
1.1497  Motor 1 

1.1485  Motor 2 

Minimal ω‐  1.1045 
1.1090  Motor 1 

1.1069  Motor 2 

C 
Y 
L 
I 
N 
D 
E 
R 
S 

Maxima ω+  0.23815 
0.2382  Cylinder 1 

0.2382  Cylinder 2 

Nominal ωnom  0.22982 
0.22985  Cylinder 1 

0.22985  Cylinder 2 

Minimal ω‐  0.22090 
0.22098  Cylinder 1 

0.22098  Cylinder 2 
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3.2.3 Fluctuation of the stagnation point location 

During the execution of an experiment, the exact position of the stagnation point is not fixed, it could 

only be fixed if the cylinders had a perfect geometry with no eccentricities and were rotating with exactly the 

same angular velocity all the time. Given that those conditions are practically impossible to achieve under 

laboratory conditions, the actual, instantaneous location of the stagnation point is continuously changing. 

These changes are mainly because of two factors: (1), the small variations in the instantaneous velocity of the 

cylinders and (2), the eccentricities of each cylinder with respect to its rotational axes.  

3.2.3.1 Instantaneous velocity 

According to the Table 3.4, the angular velocities in the cylinders are in excellent agreement with those 

programmed in the software which means that the shear rate in the stagnation point is the correct one. 

However, those velocities are the time-average values. But for determining the instantaneous stagnation 

point location, those measures are not enough. The instantaneous position of the stagnation point depends 

(among other things) on the instantaneous relative tangential velocities of the cylinders; i.e., if the 

velocity of a cylinder changes, the stagnation point position will be displaced, moving toward the cylinder 

rotating slower. In order to determine the fluctuation of the position of the stagnation point due to 

variations of the instantaneous velocities of the cylinders, the variations of velocities were measured to 

determine how important these are.  To carry this out, a band of paper —with a series of equally spaced 

lines printed on it— was attached to the surface of each cylinder, Fig.3.8 (a). The paper band image was 

recorded while the cylinder was rotating at a specific velocity; in this way, the instantaneous velocity of 

the cylinder is be determined by analyzing the video, and measuring the time taken for each line to travel 

a certain distance, Figure 3.8 (b). 

 
Figure 3.8.  Configuration used to measure the instantaneous velocity in the cylinder. 

V=d/t 

d 

(a) (b) 
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Figure 3.9 presents the instantaneous angular velocities, ω+, ωnom and ω- , measured on cylinder 2 

of geometry B, as a function of time.  The total time interval for determining the maximum and nominal 

velocities corresponds to approximately 2 revolutions of the cylinder, and one revolution for the 

minimum speed.  By observing the graphic it can be noted that even when there are fluctuations in the 

velocities there is a certain similarity in the plots of those variations and that the pattern is repeated in 

each velocity curve. Thus, instead of plotting the speed data as a function of time, in Fig. 3.10 speeds are 

presented as a function of the angular position of the cylinder.  The same data of the maximum and 

nominal velocities are plotted in polar form in Fig. 3.11. In this plot, it is clear that the variations repeat 

each revolution and are the same regardless the velocity of the cylinders.  Figs. 3.12 and 3.13 correspond 

to the instantaneous velocities of cylinder 1, with these figures showing the same behavior than those 

corresponding to cylinder 2.  Fig. 3.12 is the polar plot corresponding to the maximum velocity of the 

cylinder 1 and figure 3.13 is the plot of the velocities ω+, ωnom and ω- for cylinder 1 as a function of the 

position and as the same as the cylinder 2 the pattern in the plot is repeated in all three velocities curves.  

 

 

Figure 3.9.   Variation of the three different  instantaneous velocities programmed for the cylinder 2 of 
the geometry B as a function of the time.  
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 Figure 3.10.   Variation of the three different instantaneous velocities programmed for the cylinder 2 of 
the geometry B as a function of the cylinder position. 
 

 
Figure 3.11.   Polar plot of the maximum and nominal velocities measured in the cylinder 2 of geometry 
B. The data corresponds to the measures of two revolutions. 
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Figure 3.12.  Polar plot of the maximum velocity measured in the cylinder 1 of the geometry B. The data 
corresponds to the measures of two complete revolutions and the beginning of a third. 

 

Figure 3.13.  Variation of the three different instantaneous velocities programmed for the cylinder 1 of 
the geometry B as a function of the cylinder position. 

The previous plots show that variations of the instantaneous velocities of each cylinder are less 

than 3% of the average value.  Furthermore, these variations depend mainly on the angular position of the 

cylinders and are independent of the set velocities value. A possible cause for the variations can be the 

transmission connecting the motors and the cylinders. The mechanism accelerates and decelerates the 

cylinders depending on the position of the worm respect to the gear and every time they are in the same 
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position, they have the same variations and the cylinder has the same velocity. Even when the average 

velocity for each revolution is correct, the instantaneous velocity is continuously changing due to the 

minimal irregularities in the contact between the worm and gear surfaces. Given that the shape of these 

pieces are fixed so are the irregularities and in consequence the changes in the velocities. In order to 

confirm that, the mechanism was disassembled and the relative position of the gear respect to the worm 

was changed.  Fig.3.14 shows the nominal instantaneous velocity of cylinder 1 in geometry B after this 

change was done. Even when this was carried out for one velocity only, it can be seen that, as expected, 

the pattern of fluctuations changed but is still periodic for each revolution.  Consequently, the position of 

the stagnation point will be changing due to the variations of the instantaneous velocity of the cylinders 

and even when the changes are not expected to be important, they are significant so that the stagnation 

point location will not be fixed, but also fluctuate.   

 
Figure 3.14.   Polar plot of the nominal velocity measured in the cylinder 1 of the geometry B once that 
the relative positions of the worm and gear have been changed. The data corresponds to the measures 
of one complete revolutions and the beginning of a second. 
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Figure 3.15.   Schematic representation of the effect of the eccentricity in the stagnation point position. 
(a)  cylinders  rotating  with  no  eccentricities  and  (b) movement  of  the  stagnation  point  due  to  the 
eccentricity  present  in  the  upper  cylinder.    The  same  behavior  is  expected  for  a  cylinder  with  an 
eccentric outer surface. 
 

3.2.3.2 Cylinders geometry 

Along with the diameter, the eccentricity of the cylinders, e, and the distance separating their 

axes, de, are of major importance. In the best of cases, if the cylinders had no eccentricities and with the 

distance de fixed, the length of the line ds, indicated in Fig. 3.15 (a), would remain constant, And if the 

cylinders were rotating with the same velocity ω, the position of the stagnation point would be at the 

middle of that line and would also remain unmoved.  But, any eccentricity e present on one cylinder (or 

both of them), Fig.3.15 (b), the distance ds will be instantaneously changing between ds and ds’; because 

of that, the position of the stagnation point will be displaced by the distance e/2.  

In order to know if the stagnation point will be displaced due to the eccentricities of the cylinders, 

these were measured for all geometries. The measurements were carried out using a Mitutoyo dial 

indicator (±0.0001” resolution) placed at the top, in the middle and at the bottom of the cylinder, as Fig. 

3.16 shows, with the eccentricity e given by the total displacement of the dial indicator. Fig. 3.17 is a plot 

of the dial indicator displacements for cylinders of geometries A and B, as a function of the angular 

e/2 

e 

d
   ds 

(a) (b) 
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position of the cylinder. All curves in the graphic resemble those produced for a circle rotating 

eccentrically and only differ in amplitude.  

 

Figure 3.16.  Schematic representation of the measures of the eccentricities in the cylinders with the dial 
indicator. 
 

 

Figure 3.17.  Displacement of the dial indicator as a function of the angular position in the cylinder. 
 

It can be seen that the eccentricity of the cylinder 1 of the geometry B is much bigger than the 

corresponding to the other cylinders, whose eccentricities have the same order.  These eccentricities will 

e 

e 

bottom

top

middle

Dial indicator
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cause a change in the stagnation point position but this change can be reduced if the cylinders are placed 

in such a way that the maximum and minimum displacements of each cylinder coincides in the line where 

is formed the stagnation point; with that the distance “ds” will change symmetrically and in that way the 

effect of the eccentricities can be eliminated or at least reduced.  Table 3.6 shows the results for the 

measure of the eccentricities in all the cylinders. The geometry B will be discarded because of its 

eccentricities being too large.  All other pairs of cylinders have total eccentricities less than 20μm 

resulting in a displacement of the stagnation point less than 10μm and if they are placed correctly, the 

displacement can be reduced even more.  

Table 3.6.   Measured eccentricities of the cylinders. 

Geometry/Cylinder  Eccentricities  [μm] 

Top  Middle  Bottom 

A/1  13  12  10 

A/2  16  11  9 

B/1  58  28  13 

B/2  19  18  18 

C/1  4  6  9 

C/2  22  18  20 

D/1  10  10  20 

D/2  24  18  10 

 

3.2.2.3 Total displacement of the stagnation point 

As it was mentioned before, the information about the exact position of the stagnation point is of 

importance for carrying out the experiments. During an experiment, that position cannot be determined 

and is supposed to be known, under nominal conditions (both cylinders rotating with the same angular 

velocity ωnom) the program that controls the experiment assumes that the stagnation point is located at the 

center of the image acquired by the camera.  

So, in order to ensure that this assumption is correct, it is necessary to find the location of the 

stagnation point and adjust the position of the camera in such a way that the center of the image coincides 

with the actual stagnation position.  It is to say, once the software has fixed the angular velocities for each 

cylinder, the stagnation point will not have a static position, but instead there is a region where it wanders 

about due to the combined effects of the fluctuations in the instantaneous velocities and the shape 

parameters of the geometry. This small region is delimited by a lower and a upper position will depend on 
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these combined causes.  Figure 3.18 (a) is a composition of two time-lapse frames with the lines of the 

outgoing axes for both extreme positions remarked.  This Figure shown the range of fluctuations of the 

position of the stagnation point during execution of an experiment; thus, the stagnation region limits can 

be determined.   

 

 

Figure 3.18.   (a) Lines marking the extreme positions of the outgoing axes and delimiting the region of 
displacement  of  the  stagnation  point.  (b)  the  camera  is  positioned  in  the  middle  of  the  extreme 
positions of the stagnation point. 

 

This composite picture gives a clearer idea of the continuous movement of the stagnation point. 

Thus, more than adjusting the position of the video camera to make the center of the image coincide with 

it, the best option is to place the camera to match the center of the image with the center of the region 

about the trace of the instantaneous stagnation point, Figure 3.18 (b).   Figure 3.19 shows the 

determination of the limits of the displacement of the stagnation point for three possible combinations of 

the angular velocities in the experiment. The superior configuration corresponds to that for the upper 

cylinder (cylinder 2) rotating with ω- and the cylinder 1 below rotating with ω+. The central region, or the 

nominal, corresponds with both cylinders rotating with the same nominal velocity ωnom, and the inferior 

configuration correspond to cylinder 2 rotating with ω+ and cylinder 1 rotating with ω-. Now with that 

information available, it is possible to implement the control scheme for maintain the drop in the region of 

interest and in that way to perform the experiments of drop deformation. 

  

(a) (b)

Region of the 
displacement of the 
 stagnation point  

Center of the image 
in the video camera
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Figure 3.19.   Lines delimiting the regions of displacement of the stagnation point for the combination of 
the three possible velocities in the cylinders. The measures correspond to velocities for a shear rate of 
1s‐1 in the geometry A. 
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4 Control scheme for the drop position  

In this chapter, the implementation of a control scheme for the position of a drop around the 

stagnation point of the flow generated by the Two-Roll Mill is presented. The control is based on the 

Poincaré-Bendixson theorem for two-dimensional ordinary differential equations (Reyes et al. 2011). 

Namely, when a particle moves within a closed region containing inside a saddle point, and the vector 

field of the equation points inwards at the boundary of the region, the particle undergoes a stable 

attractive periodic motion.  Given a prescribed tolerance region, around the unstable stagnation point, an 

incoming flow field can always be generated when the centre of mass of the drop reaches the boundary of 

the tolerance region.  This corrective flow field is produced by adjusting the angular velocity of the 

cylinders, which are calculated using the analytical solution for the flow.  The variation of the velocities 

needed by the control does not imply a significant change in the flow parameters. That is, the velocity 

corrections are small and these apply for a small period of time.  This scheme gives the time dependent 

analogue of the Poincaré-Bendixson situation just described.  

The drop is controlled in a perturbed-attracting non-periodic and closed trajectory about the 

stagnation point, while being confined to a prescribed tolerance area.  This mechanism is very different 

from the one used for the proportional control which modifies the unstable nature of the saddle point by 

adjusting the angular velocities of the cylinder to project the motion along the stable direction only.  In 

this implemented control, the effect of the unstable direction combined with the flow readjustment 

produces the periodic motion.  The control scheme is capable of relocating the stagnation point on a time 

scale much shorter than the time scale of the drop's evolution and the influence of this control scheme on 

the drop's parameters is small with respect to the nominal flow (around 1%) Reyes et al. (2011). 

Moreover, the control would remain effective during times much longer than the internal time scales for 

the drop evolution. 
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 Reyes made numerically studies on the influence of the control scheme upon the drop's forms.  

He studied the influence of this control on the motion of a two dimensional drop by solving the Stokes 

equations in a container subjected to the appropriate boundary conditions on the cylinders and the free 

surface of the drop.  These equations are solved for a variety of flows and drop parameters in order to 

study the perturbation effects introduced by the application of the control scheme and to provide the 

appropriate parameters for experimental studies. 

The control scheme is simple. As the drop evolves under flow conditions, its center of mass is 

tracked.  When the drop drifts away from the stagnation point and its center of mass overtakes the 

prescribed domain, the flow is modified by adjusting the angular velocity of the cylinders according to the 

values obtained from the approximate solution for flows generated by TRMs.  Essentially, by adjusting 

the angular velocities of the cylinders, the outgoing streamline environment is changed into an incoming 

one, reversing the direction of motion of the drop, which is now towards the nominal stagnation point 

along a stable direction.  The important feature for studies of deformation of drops is that the reversal of 

direction does not alter significantly the deformation rates applied upon the drop; thus, the drop's 

deformation dynamics is essentially undisturbed. The process is repeated as needed and the drop is 

confined for long times under steady and known flow conditions 

4.1 Formulation of the control problem 

As already demonstrated by Bentley and Leal (1986a), the only way to maintain fixed the 

position of the drop with respect to the flow field is by changing the location of the stagnation point via 

adjustments of the angular velocities of the cylinders, with the constraint that these changes must avoid 

significant modifications of the flow field.  Consequently, a useful control scheme for flows by TRMs or 

FRMs has to maintain the drop as close as possible to the stagnation point for a sufficiently long time, 

making possible studies of the drop dynamics.  From now on, the selected flow field conditions of a TRM 

are called nominal, and its properties such as the shear rate, flow-type parameter and the position of the 

stagnation point will be denoted by the subscript Nom. 

Figure 4.1 shows the streamlines around the stagnation point of the nominal flow field.  When a 

drop or rigid particle is placed around the stagnation point, eventually, it drifts along the direction of the 

outgoing streamlines.  The objective of the control is to maintain a drop around the stagnation point under 

nominal flow conditions. In Fig. 4.2a, a rectangle is shown about the stagnation point of the flow field; 

the boundaries of this rectangle serve as the limits where the position of the center of mass of the drop is 
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allowed to stay at nominal flow conditions. This tolerance area is quite small for the experimental set up, 

being a small fraction of the diameter of the drop.   

The dark lines in Fig. 4.2(a) correspond to the streamlines of the nominal flow field with the 

outgoing and incoming axes marked with arrows over the tolerance area.  In Fig. 4.2(a), the dashed flow 

lines correspond to the streamlines of the corrective flow with its stagnation point at ySS. The flow lines 

which correspond to the corrective stagnation point in the lower half of the tolerance are, at -ySS (not 

shown), are similar although located in a mirror-symmetric manner relative to the tolerance area.  Fig. 

4.2b shows a detailed sketch of the tolerance area above the nominal stagnation point with the nominal 

and corrective stagnation points marked. 

 
Figure.  4.1.    Streamlines  generated  by  the    Two‐Roll Mill,  showing  the  stagnation  point  in  the  gap 
between the rollers. The position of the stagnation point along the vertical can be moved changing the 
angular velocities of the rollers. 

 

 
  (a)                                                                (b) 
Figure 4. 2.  Streamlines around the stagnation point of the unperturbed flow field (dark lines) and the 
corrective  flow  (dashed  lines) generated by  the TRM. The angle between  the  incoming and outgoing 
streamlines at the nominal stagnation point qNom and the angle at the corrective flow qss have essentially 
the same values Reyes et al. (2011). 
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 When a drop is placed near the nominal stagnation point and the flow is started, the particle center of 

mass drifts away from that point. Assume the center of mass initially at the position A —at time t = 0—

located  inside the tolerance area shown in Fig. 4.3(a).  At this position, the flow corresponds to the 

nominal conditions, and the center of mass is subsequently advected along the outgoing direction 

reaching B at t = ton when the control is applied.  The effect of the control is to displace the stagnation 

point to ySS, switching the flow field to one where the stream lines at B are towards the corrected 

stagnation point.  As a result, the center of mass follows the flow lines along the path BC, arriving at C at 

time t = toff that depends on the limit established by lin; see Fig. 4.3(b).  At C, the flow is reset to the 

nominal conditions and the stagnation point is moved back to the yNom position; thus, the center of mass 

follows the path CD, as in Fig. 4.(c).  At D the situation is repeated but now shifting the stagnation point 

to ‒ ySS , until the center of mass reaches E, in Fig. 4.3(d), where the stagnation point is shifted back to the 

nominal value and the center of mass moves towards F where the process is repeated Fig. 4.3(e). Now, 

the line lin is very important, and as can be seen it works as the boundary that determines when the 

corrective flow is turned off and the experiment go back to the nominal conditions. The slope of lin can be 

modified in order to adjust the time lag associated to the characteristic time scale of the fluid when the 

flow is reset to the nominal conditions. 

 

Figure   4.3. Trajectory followed by the center of mass of a drop  immersed  in the controlled 
flow  field. The  control area  is  shown  in grey. The nominal  flow  corresponds  to  the darker 
continuous lines, and the dashed lines show the relative displacement of the flow field during 
the controlled portion of the cycle. 
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Thus, the purpose of the implemented control scheme is to produce always an incoming flow for 

the drop at the boundary of the tolerance area. In this way, the centre of mass is effectively moved as a 

dynamical system with an unstable rest point (the stagnation point) but with an incoming vector field in 

an area surrounding the box. In this case, since the incoming vector field is time dependent, a bounded 

trajectory is obtained that is approximately recursive.  This nonlinear procedure of balancing the repulsion 

at the critical point with the correction of the boundary of the tolerance region always produces a very 

robust bounded trajectory inside any prescribed area. Furthermore, the main parameters of the flow, 

ሶߛ 	and	ߙ, remain quasi-constant values.  

All displacements of the stagnation point are assumed to be carried out on a time scale small 

compared to the dynamics of the drop.  In the theoretical description above, both the center of mass of the 

drop and the streamlines are adjusted instantaneously.  For a laboratory experiment this is not the case: 

the exact position of the center of mass is determined after processing the images, so, the determination of 

the position of the center of mass of the drop and then the modification of the velocity of the driving 

motors accordingly to the flow field required is done within a finite response time. 

The relevant times involved are τ₁, associated to the velocity of the video system, the time of 

capture and processing of all images, the finite response time τ₂, the time taken by the cylinders to 

readjust their velocity as a consequence of the control, and τ₃,	the time of response of the fluid around the 

drop to the adjustment in the velocity of the TRM. The total response time τ₁ + τ₂ + τ₃ = τc must be 

smaller than the characteristic time τd of the internal motion of the drop which is a function of the 

capillary number and the viscosity ratio. 

To determine the adjusted velocity field —i.e., the position of the stagnation point position ySS (or 

‒ ySS)— it is necessary to ensure an incoming flow field at this position on the boundary.  This 

requirement gives ySS as a function of the size of the tolerance area. So, the required values of ω+ and ω- 

to relocate the stagnation point to  ySS  can be calculated using the analytical solution.  It is remarked that 

the present control takes advantage of the knowledge of the local flow field and balances the unstable 

motion at the stagnation point with a time dependent incoming flow at the boundary, giving an effective 

dynamical system with a periodic or quasi-periodic orbit for the center of mass. As well, during the 

control steps, II2D (related to the applied shear rate) remains constant while all changes of α are less than 

0.5% for all cases Reyes et al. (2011). 
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4.2 Experimental Scheme 

Fig. 4.4 shows the schematic block diagram of the experimental setup.  A drop is initially placed as 

close as possible to the nominal stagnation point in the flow field and its position is monitored with the 

optical system that provides the images used to calculate the coordinates of the center of mass of the drop. 

With this information, the program selects the appropriate angular velocity for the cylinders, in order to 

maintain the drop in the desired position (which is the nearest to the nominal stagnation point location). 

Once these velocities are selected, the velocities of the motors are updated and this cycle is repeated. 

 
Figure 4.4. Experimental set up block diagram. 
 

The control software is written in Visual C++, for execution in real-time mode. A Graphical User 

Interface (GUI) provides access to the application; see Fig. 4.5.  It incorporates the tools to adjust the video 

and the parameters of the motors.  For the video signals, the GUI window has two displays.  One is for the 

raw video input, which shows in real time the frame acquired by the camera.  The other display shows 

processed images made up of the contour of the drop and the location of its calculated center of mass, along 

with the tolerance area (fixed with the slide bar in the window, during execution of the experiments) and the 

lines corresponding to the ingoing and outgoing streamlines of the nominal stagnation point. 

For the control of the motors, the GUI has a manual and an automatic control options. The 

manual control is use prior to the execution of an experiment, to position the drop near the nominal 

stagnation point inside the tolerance area. It consists of the GUI window slide bars that allow controlling 

the velocities of each cylinder as well as their direction of rotation.  In this way, achieving an initial drop 

position is quite simple, requiring a few attempts by the experimentalist.  Once the drop is in the starting 

location (i.e., inside the tolerance area), the automatic control is activated and an experiment is initiated.  

The monitoring section in the window allows us to watch the instantaneous velocities of the motors, the 

coordinates of the center of mass, the size of the tolerance area, and the number of images that have been 

saved and processed. 
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Figure 4.5. Graphical User Interface (GUI) of the Two‐Roll Mill Experiment. It incorporates two displays.  
One is for the raw video input the other display shows processed images made up of the contour of the 
drop  and  the  location  of  its  calculated  center  of  mass,  along  with  the  tolerance  area,  the  lines 
corresponding to the ingoing and outgoing streamlines of the nominal stagnation point.  
 

4.2.1 Control implementation 

The typically observed response time for the computer interface, motor power electronics and 

cylinders inertia is less than 0.01 seconds, for changes of rotational speeds less than 5% of the preset 

values.  The flow parameters and the position of the stagnation point are adjusted simultaneously by 

varying the angular velocities of both cylinders ω₁ and ω₂ keeping II2D constant. 

The automatic control operates under a real-time environment and the program has three data 

feeds: (i) The image acquisition (ii) Image analysis (iii) Adjustment of the velocities of the motors. The 

diagram of the control scheme is shown in Fig. 4.6. 
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Figure 4.6.   Diagram of  the  control  scheme. The program monitors  the drop position and adjust  the 
velocity of the cylinders to keep the drop near to the nominal stagnation point. 

 

Image acquisition 

The images acquired by the CCD camera are handled using the Instrumental and Industrial 

Digital Camera Application Programming Interface (IIDCAPI) written in the C++ language, by Sony.  

The image acquisition consists of two simultaneous processes, taking the photo and storing it in a file, 

along with the nominal parameters in the experiment at that time (shear rate, control stage, tolerance area 

size and drop position coordinates), and the other one is creating a temporary archive of images.  The 

archive is a short FIFO list with a fixed number of elements and with the last image acquired by the 

camera available for analysis as well as a few previous ones in case of delays in processing data. 

Image analysis 

The image analysis evaluates the instantaneous position of the drop in real-time, which is the input 

variable for the control scheme. The Open Source Computer Vision Library (OpenCV) from 

http://opencv.org/ is used to process the raw images.  Firstly, an image frame is loaded from the list to 

define the drop contour. Since the drop contour looks dark on a bright background, the appropriate range 

goes from a gray level corresponding to black to the upper threshold value selected; an appropriate value of 

such a threshold must satisfy the condition of generating an image with a closed drop contour.  Then, a 

simple standard algorithm (gray-level thresholding) is applied to remove and clean the image of all pixels 

having a gray level outside a certain range (from 0 to 255 in a gray-scale).  In this way, most of all spurious 

objects in the image having pixel values below a pre-set threshold are filtered out and the process leads to a 

binary (black & white) image containing only the drop.  For each binary image, the contour of the drop is 

found using the Canny algorithm (Canny 1986), a function available in the OpenCV libraries, and then the 

center of mass is computed using the corresponding discrete integral.  The analysis is carried out in a 1/100 

of a second, regardless of the drop size, and the resolution for the position of the drop centroid is a fraction 

of a pixel for the smallest drops studied. 
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Adjustment of the velocities of the motors  

Once the program has the coordinates of the center of mass of the drop, the algorithm next 

evaluates whether the centroid is inside the tolerance area.  If it is not, the program executes de P-B 

control algorithm and modifies the velocities of the motors depending on the position of the center of 

mass of the drop; otherwise the algorithm carries on under nominal flow field conditions. Also, in this 

section of the code, the ID number of the image, the coordinates of the center of mass and the size of the 

tolerance area of the image being processed are save in a file. 

4.3 Experimental test of the control 

The following experiments were carried out only to evaluate the performance of the control 

scheme for two fundamental aspects: the flow field fluctuations due to the physical imperfections of the 

flow cell studied in the previous chapter; and to find the most adequate parameter lin for the control stage. 

So, emphasis is given to the trajectory of the drop more than the deformation.  Actually, the capillary 

number was the same for all experiments, hence, the deformation DT and orientation ߠ	are also the same. 

For these experiments the exterior fluid is a Polydimethylsiloxane oil DMS 25, η = 485 mPa·s 

with a relative density of 0.971 at 23Ԩ. The drop fluid is a vegetable canola oil, filtered through a 3 μm 

pore size with η = 72.6 mPa·s and relative density of 0.917 at 23Ԩ. Both liquids have a well defined 

Newtonian behavior at the interval of shear rate values used.  The capillary number for the experiments 

was Ca = 0.1031 and the values of the slope ߚ of lin were 40⁰ ,30⁰ ,20⁰ = ߚ and 50⁰ and one with a 

vertical limit, figure 4.7.  By adjusting lin, the drifting effects on the τc time can be optimized, which is a 

nonlinear function of the viscosity of the surrounding fluid. 

 
Figure 4.7.     Limits taken by the program for turning off the corrective flow. (a) Diagonal  limit with an 
angle ࢼ between the x axis and the line lin, (b) vertical limit taken lin at the borders of the tolerance area. 

 

Measurements of the drop deformation parameters are made by processing the files generated 

during execution of the experiments. The archive for a single run, consists in a list containing: all frames, 

and the control status and values of the motors parameters for each frame.  Thus, this data set contains the 
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history of the control status active at the moment when the frame was taken and when the control scheme 

is started or stopped. This data provides the coordinates of the center of mass, the mayor and minor axis L 

and B, and the orientation angle θ, for every frame.  More details about the post processing are given in 

the chapter corresponding to the experimental results. The following Figs. 4.8 to 4.12 show the 

deformation, orientation and trajectories of the center of mass of the drop due to variations on the lin 

parameter.  

The plots corresponding to the trajectories of the drop centroid show that these are different from 

the expected ideal path; all have observable perturbations. Even when the control program keeps the 

velocity of the cylinders constant, the plots show abrupt and chaotic changes of the trajectories, caused by 

small changes in the velocity field near the cylinders.  These fluctuations in the velocity field are caused 

by imperfections of the cell and cylinders, which causes small accelerations and decelerations of the 

cylinders, albeit when these variations are not sufficient to modify the flow field parameters.  

However, the average steady state values of the deformation and orientation plots are not affected 

by the centroid trajectory. Even more, the plots of the deformation parameter seem to have the same 

values despite the trajectory followed by the drop or the value of lin used in the experiments. The former 

values remain constant during the time that the experiment lasts, with those parameters essentially being 

insensitive to the imperfections in the flow cell, and more important, insensitive to the control stage active 

at that moment. That is, the deformation and orientation induced in the drop is robust, regardless of the 

fluctuation of the applied flow field, either under nominal (YNom) or corrective (YSS or –YSS).  Figure 4.13 

shows the time duration of the drop under all stages of the control, for different values of the limit lin, 

showing that the time under nominal conditions is longer than the time under corrective environment. 

The values of lin —used as limits for deactivation of the control in Figs. 5.8 – 5.12— has no effect 

on the deformation and orientation induced in the drop, but it has a significant influence on the centroid 

trajectory of the drop around the nominal stagnation point.  Cases when the drop carried out the maximum 

displacements are those corresponding to the lin = 20୭ (see Fig. 4.8), and with the vertical limit (see 

Fig. 4.12.  Under this condition, the maximum distance of center of mass of the drop respect to the YNom is 

about 0.45mm in the x-axis and 0.12 mm in the y-axis, however in the plots corresponding to lin = 

30୭, 40୭	and	50୭, the maximum displacement are in the order of 0.35 mm in the x-axis and 0.07 mm in 

the y axis.  Even when this does not affect the deformation and orientation results, and that the control of 

the drop was effective in all cases, it would be important to keep the center of mass of the drop the closest 

possible to the nominal stagnation point. The last in order to avoid long distances from the YNom which 

prevent the situation where the drop is so far from the stagnation point that it would be impossible for the 

control to redirect the drop toward it and in that case to lose the drop from the central region. 
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Figure 4.8.   Deformation, orientation and trajectory of the centroid of the drop, using the parameter 
lin = 20º. The mean deformation is DT = 0.1039, STD=0.002 and the mean orientation angle is 41.8º. 
 

 

 

 
Figure  4.9    Deformation,  orientation  and  trajectory  of  the  center  of mass  of  the  drop,  using  the 
parameter  lin = 30º.  The mean deformation is DT  = 0.1042,  STD = 0.0021, the mean orientation angle is 
41.8º. 
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Figure 4.10.   Deformation, orientation and trajectory of the center of mass of the drop, using lin =  40º . 
The mean deformation is DT = 0.1045, STD = 0.0025, and the mean orientation angle is 41.8º. 
 
 

 

 
Figure 4.11.   Deformation, orientation and trajectory of the center of mass of the drop, using  lin = 50º.  
The mean deformation is DT = 0.1049,  STD = 0.0027, the mean orientation angle is 41.8º. 
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Figure 4.12.     Deformation, orientation and trajectory of the center of mass of the drop, using vertical 
limits.   The mean deformation is DT = 0.1039, STD = 0.0020, the mean orientation angle is 41.8º. 
 

 
Figure 4.13.   Duration of the control stages in a deformation experiment.  The plot shows that the time 
under nominal conditions is larger than the time under corrective conditions. 

 

The control implemented is shown to be successful. At this point, several adverse effect have 

been evaluated in the implementation.  Nevertheless, the control scheme is robust enough to keep the drop 

inside a region where the parameters of interest have a small variation, for long times; enough to have 

reliable measures of the relevant parameters. Figures 4.8-4.12 show that, despite the trajectory of the 

drop, the parameters of the drop dynamics (DT and orientation angle) are well characterized, thus, the 

main imperfections have a minimal effect. It is important to mention that even when the comparisons are 

0

20

40

60

80

100

0

0.02

0.04

0.06

0.08

0.1

0.12

0 10 20 30 40 50 60

O
ri

en
ta

ti
on

   
A

ng
le

 
[D

eg
]

D
ef

or
m

at
io

n 
 

P
ar

am
et

er

t [s]

Deformation and Orientation of the drop

‐0.12

‐0.08

‐0.04

0

0.04

0.08

0.12

‐0.5 ‐0.4 ‐0.3 ‐0.2 ‐0.1 0 0.1 0.2 0.3 0.4 0.5

0

10

20

30

40

50

1 2 3

t [s]

Control Stage

Vertical 50 40 30

‐Yss YNOMYss

lin slope   (degrees)



52 
 

made just for only one flow-type parameter, the results shown that it is reasonable to expect the same 

when a different flow-type parameter, (a different geometry) is used. 
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5 Experiments and results 

This chapter presents a general description of a typical experiment with the TRM and the results 

obtained from the experiments performed in this thesis. The chapter is divided in two sections, the first 

one describes the characteristics of the fluids used and the general procedure followed during the 

experimentation and the second part corresponds to the experimental results obtained. 

5.1 Fluid properties and experimental procedure 

5.1.1 Fluid properties 

The experiments were carried out for two viscosity ratio systems, a low viscosities ratio system 

and a high viscosities ratio system, in both cases the suspending fluid used was the DMS T35, a 

PolyDiMethylSiloxane (PDMS) from Gelest Inc, with a measured viscosity ߤଵ ൌ	5.1 Pa·s (51 Poise) and 

relative density of ߩ௥ ൌ 	0.973  at 25 Ԩ filtered through a 3 µm pore size. For the low viscosity ratio 

system the drop fluid consisted of vegetable canola oil with a measured viscosity ߤ଴ ൌ	62 mPa·s (0.6 

Poise) and a relative density ߩ௥ ൌ 	0.917	at 25 Ԩ. The viscosity ratio for this system is ߣ ൌ 0.012 and the 

interfacial tension is 2.7mN/m. For the high viscosity ratio system the drop fluid consisted in 

PolyIsobutilene by Polysciences Inc., with a viscosity ߤ଴ ൌ	80 Pa·s (800 Poise) and a relative density 

௥ߩ ൌ 	0.92 at 25Ԩ. The viscosity ratio for this system is ߣ ൌ 16 and the corresponding interfacial tension 

is 3.5mN/m. All experiments were performed at 25°C ± 0.1°C.  Figures 5.1 to 5.3 show the results of the 

viscosities values for the fluids as a function of the shear rate and for different temperature values.  
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Figure 5.1.   Viscosity of the suspending fluid DMS T35 for different temperatures. The viscosity for the 
temperature of the experiments correspond to 51 Poise @ 25⁰ C.  

 

 

 
Figure  5.2.  Viscosity of the drop  fluid PolyIsoButilene for the high viscosities ratio. The viscosity for the 
temperature of the experiments correspond to 800  Poise @ 25⁰ C.  
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Figure  5.3.   Viscosity  of  the  canola  oil  corresponding  to  the  drop  fluid  for  low  viscosities  ratio.  The 
viscosity for the temperature of the experiments correspond to 0.62 Poise @ 25⁰ C. 
 

5.1.2 Experimental procedure 

An experiment consists of introducing a drop into the gap region between the cylinders using a 

homemade device.  Using the computer control under the manual supervision, the drop is positioned so 

that its centroid is inside the tolerance area. Then, the automatic control is activated and an experiment is 

carried out, keeping the drop under the pre-established flow conditions (shear rate), while recording all 

digital images for a posterior analysis.  Every drop is deformed under a series of values of shear rate.  At 

first, the shear rate is set at a small value, and once the experiment has lasted long enough —and the drop 

has reached the steady state deformation— the flow is stopped; subsequently, the deformed drop slowly 

recovers its spherical form.  For a new run, the shear rate is set to a higher value and the procedure is 

repeated. This procedure is carried out several times until the shear rate is strong enough to cause the drop 

to breakup. In this way, an archive with the images of the deformation, as a function of the time, for the 

imposed shear rate is obtained; a set of files of this kind is generated for every drop. Each set of files 

corresponds to a specific drop, with known diameter.  With these data, the parameters of the deformation 

are obtained by performing an image analysis to the files generated in the experiments.  

A file for a single run consists of a list containing: all frames, the control status as well as 

variables for the motors as a function of time. These data make possible to know when exactly the flow is 
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started and the deformation process begins, and when exactly the flow stops. The image analysis for 

evaluation of the deformation parameters is carried out using a program very similar to the image analysis 

in the control part, Fig 5.4.  An averaging filter is preliminarily applied to the image for noise reduction. 

The contour of the drop is identified by applying the Canny algorithm for edge detection after a threshold 

corresponding to maximum contrast of the drop with respect to the background.  Subsequently, L and B 

are calculated as the two semi-axes of an equivalent ellipse having the same area and the same first and 

second moment of area. The program analyses each frame in a file and generates a list with the 

coordinates of the center of mass, the lengths of the major and minor semi-axes L and B, and the 

orientation angle θ.  The Taylor deformation parameter DT is also calculated, and, if needed, saves the 

frame that is displayed with the standard format *.bmp.  

 

 
Figure 5.4.   GUI of the program used to process the image files from the experiments.  

 

The data obtained during processing of the images are in pixels.  But given that a relation 

between mm and pixels is available and knowing that the video is taken at a rate of 15 fps, it is quite easy 

to have these data in terms of mm and seconds. Fig. 5.5 shows the plots for the complete image analysis 

obtained from an experiment with a drop with r0 = 0.46 mm, a viscosities ratio ߣ	 ൌ 	0.012 and a flow 

type a	 ൌ 	0.03 under a shear rate of ߛሶ ൌ1.0 s-1: the capillary number is Ca = 0.86.  Those plots show the 
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time evolution of the Taylor deformation DT and the orientation angle ߠ	and can be divided in two parts: 

the deformation history (after startup of flow), and the relaxation stage (once the flow has been stopped). 

In this chapter we only focus in the first part, concerning to the onset of deformation, the relaxation stage 

is analyzed in the interfacial tension chapter. 

 

 

 
Figure 5.5.   Time evolution of the Taylor deformation DT and the orientation angle ࣂ for a drop with  
r0 = 0.46 mm under a flow type with a	= 0.03 and a shear rate of ࢽሶ ൌ1.0 s‐1. 
 

5.2 Experimental results 

When a drop of one fluid is placed in another fluid under flow conditions, the drop will deform 

and under specific conditions it might break.  The initially spherical drop will deform in response to the 

stresses exerted by the flow on its surface, ߬௙ ൌ ሶߛߤ	 , which depend on the viscosity of the external fluid 

and on the shear rate ߛሶ .  In response to the flow, the drop tries to resist these distorting forces through the 

action of the interfacial stress, ߬ௗ ൌ 	 ଴ݎ ⁄ߪ . This force balance results in an equilibrium shape that is 
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maintained as long as the flow exists. In general, the response and ultimate form of a drop immersed in a 

flow field is determined by:  (i) the capillary number Ca, the ratio between the stresses due to the flow 

and those due to the interfacial tension, 	ܽܥ ൌ ߬௙ ߬ௗ⁄ ൌ ଴ݎሶߛߤ	 ⁄ߪ ; (ii) the ratio between the viscosity of the 

drop and the fluid matrix, ߣ; and (iii) the type of flow field, characterized by ߙ.	 Experimental studies 

have found that the behavior of the drop depends in a complicated manner specially on the type of flow 

and on the viscosities ratio.  

In this section the dynamics of drops embedded in flow fields with ߙ	ߙ ,0.13 =	0.05 = and 

 =	ߣ :are presented. The experiments show the time evolution of drops for two viscosities ratio 0.03 =	ߙ

0.012 and  ߣ	16 =, under different values of capillary numbers Ca.  Of primary interest is to visualize the 

shape that the drop will take up, whether it will deform into a steady shape or whether it will break at 

some point as the strength of the distorting forces is increased. 

5.2.1 Low viscosities ratio 

In general, for the case of low viscosities ratio, ߣ	1 >>, the breakup of the drop is always possible 

in any strong flow, despite the parameter ߙ characterizing it.  For a given viscosity ratio, the capillary 

number needed is a function of the type of flow because the vorticity —measured with ߙ— inhibits the 

drop deformation and therefore retards the breakup.  For these drops, the relevant question is determining 

the magnitude of the capillary number —which depends on the type of flow and the viscosities ratio— 

that must be applied to ensure breakup.  In this way, for equal capillary numbers the stresses over the drop 

will be different whether it is immersed in a flow with ߙ close to zero or in a flow with ߙ close to one.  In 

the first case, the vorticity will cause on the drop a higher rotation and a lower deformation than in the 

second case; therefore, the drop will be less prone to be broken. With ߙ and ߣ given, for capillary 

numbers below a critical value Cacrit, the drop only attains a steady state shape and orientation whereas 

above Cacrit the stresses of the flow are high enough to cause the drop to break up. 

5.2.1.1	Drop	deformation	

Figs. 5.6, 5.9 and 5.12 show the transient and steady deformation and orientation for initially 

spherical drops (DT = 0) subjected to a stepwise increment up to subcritical conditions, with constant shear 

rate.  The figures belong to experiments carried out with the same drop —one drop for each type of flow.   

Each curve shows the deformation and orientation as a function of the time for startup experiments, with 

different capillary numbers, with the last curve obtained corresponding to a capillary number whose value is 

slightly above the critical value; because of that, the flow conditions led to the breakup of the drop.  For the 

subcritical conditions in all three flow fields, the interfacial tension dominates and the drop is deformed into 



59 
 

an ellipsoid, reaching the steady state after a monotonic evolution.   The typical internal circulation of the 

drop maintains a stable equilibrium shape, and upon cessation of the flow the drop returns to its original 

spherical shape after a relaxation process.  Figs. 5.7, 5.10 and 5.13 are polar plots of the deformation 

parameter DT versus the orientation angle ߠ for the same experiments as before.  This parametric time 

evolution shows clearly the deformation and orientation of the drop at its final stationary state. The plots 

concerning to ߙ ൌ 0.13 and ߙ ൌ 0.05 show that for ܽܥ	 ൐ 	0.6, the drop evolves over the same curves, this 

behavior is not present in the plot corresponding to ߙ ൌ 0.03. 

 

 
Figure  5.6.  Time  evolution  of  the  deformation  and  orientation  parameter  for  	ࢻ ൌ ૙. ૚૜  and  l	 ൌ
	૙. ૙૚૛ and different capillary numbers. 
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Figure 5.7.  Polar plot for different capillary numbers. Parameters obtained for a drop under a flow field 
with a	 ൌ 	૙. ૚૜ and ࣅ ൌ ૙. ૙૚૛.	

As the capillary number increases so do the final deformation, while the orientation angle ߠ 

approaches the limiting value ߶, the characteristic angle of the outgoing axes for each flow.  Figs. 5.8, 

5.11 and 5.14 show the steady state deformation and orientation as a function of the capillary number for 

each type of flow. All three flow fields present a linear behavior for low capillary numbers, ܽܥ ൏ 	0.5, 

where the slope of the curve fitted to the data has a value close to unity for all them. The flow with 

ߙ ൌ 0.13 maintains this behavior for all ranges of the capillary numbers but for ߙ ൌ 0.05 and ߙ ൌ 0.03, 

as Ca increases, the effect of the higher vorticity is manifested with a slight deviation from the linear 

behavior.  Fig. 5.15 is a comparison between the three flow fields and data available from literature 

(Bentley and Leal 1986b) both for deformation and orientation as a function of the capillary number.  It 

can be seen that for flows with higher vorticity (lower values of ߙ) the critical capillary number increases, 

and the minimum angle attained by the drop is closer to the angle ߶, for each flow field.  Fig. 5.15 also 

shows the theoretical linear behavior predicted by the Taylor for ߙ	0 = and for the same viscosities ratio.  

There is a good agreement between Taylor´s theory and the experimental data obtained for ߙ	0.1 =, over 

predicting elongation for flow-type parameter values lower than 0.1 and under predicting deformation for 

the most elongational flow fields.  However, Taylor’s theory is quite accurate for capillary numbers up to 

0.5 for all geometries of the TRM. 
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Figure 5.8.  Steady state drop deformation and orientation for a	 ൌ 	૙. ૚૜ and ࣅ ൌ ૙. ૙૚૛. 
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Figure  5.9.  Time  evolution  of  the  deformation  and  orientation  parameters  for  	ࢻ ൌ ૙. ૙૞  and 
l	 ൌ 	૙. ૙૚૛ and different capillary numbers. 
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Figure 5.10.  Polar plot for different capillary numbers. Parameters obtained for a drop under a flow field 
with a	 ൌ 	૙. ૙૞ and ࣅ ൌ ૙. ૙૚૛. 
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Figure 5.11. Steady state drop deformation and orientation for a ൌ ૙. ૙૞ and ࣅ ൌ ૙. ૙૚૛. 
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Figure 5.12.  Time evolution of deformation and orientation parameters for ࢻ	 ൌ ૙. ૙૜ and 
 	l	 ൌ ૙. ૙૚૛	and different capillary numbers. 

 

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

D
T
 unconstrained

D
T
=0.7

D
T
=0.76

D
T
=0.5

D
T
=0.31

Ca= 0.97
Ca= 0.95

Ca= 0.793

Ca= 0.528

Ca= 0.317

D
T

t [s] 

Ca= 0.132 D
T
=0.13

0 5 10 15 20 25 30
5

10

15

20

25

30

35

40

45

50


nom
= 10

= 15.3

= 19

= 26.8

= 34.2

Ca= 0.978
Ca= 0.952

Ca= 0.793

Ca= 0.528

Ca= 0.317



t [s]

Ca= 0.132 = 40



66 
 

 

 

 

 

 

Figure 5.13.     Polar plot  for different capillary numbers. Parameters obtained  for a drop under a  flow 
type a		= 0.03 and l	 ൌ 	૙. ૙૚૛. 



67 
 

 

Figure 5.14.    Steady state drop deformation and orientation for a ൌ ૙. ૙૜ and l	 ൌ 	૙. ૙૚૛. 
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.

 

Figure 5.15.     Comparison between  the  steady  states drop deformation and orientation  for different 
flow fields.  
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5.2.1.2	Critical	capillary	number	

If Ca reaches a certain limit, then the stresses due to the flow cannot be supported by the 

interfacial tension and the drop has reached breakup conditions. The value of this critical capillary 

number Cacrit strongly depends both on the type of flow and the viscosities ratio. Critical capillary 

numbers have been determined for a wide range of viscosities ratio and different type of flows, covering 

the classical simple shear ߙ ൌ 0 and elongational ߙ ൌ 1 (Grace 1982) as well as intermediate flows in the 

range of  0.2 ൏ 	ߙ	 ൑ 	1 (Bentley and Leal, 1986b) but leaving uncovered the range of 0	 ൏ 	ߙ	 ൏ 	0.2. In 

this work, the Cacrit is determined for drops under flow conditions; no previous experimental data was 

available corresponding to a viscosity ratio of ߣ ൌ 0.012 nor for flow fields with	ߙ ൌ ߙ ,0.13	 ൌ 	0.05 

and ߙ ൌ 	0.03.  The critical capillary number is experimentally determined by slowly increasing the shear 

rate applied to the drop until no more stable condition of the deformation is obtained.  The Cacrit for the 

flows with ߙ ൌ 	0.13	is Cacrit = 0.70 and for the flows with ߙ ൌ 	0.05 is Cacrit = 0.82, which are the 

lowest values where no stable conditions were present; see Figures 5.16 and 5.18.   

 
Figure 5.16.  Time evolution of the deformation parameter DT for capillary numbers above critical for a 
flow field with ࢻ ൌ ૙. ૚૜ and ࣅ ൌ ૙. ૙૚૛. 
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Figure 5.17.   Polar evolution of the deformation and orientation parameters for  ࢇ࡯ ൐  for a flow ࢚࢏࢘ࢉࢇ࡯	
field with ࢻ ൌ ૙. ૚૜ and ࣅ ൌ ૙. ૙૚૛.   

 

 

 
Figure 5.18.  Time evolution of the deformation parameter DT for capillary numbers above critical for a 
flow field with ࢻ ൌ ૙. ૙૞ and ࣅ ൌ ૙. ૙૚૛. 
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Figures 5.16 and 5.18 show the deformation as a function of the time for conditions in which the 

forces due to the applied shear rate exceeds the interfacial tension ones.  When the drop is subjected to 

 ௖௥௜௧, it cannot attain a stable shape (supported by the interfacial tension) and the deformationܽܥ		ܽܥ

continues increasing unconstrained with a deformation velocity that depends on how much the capillary 

number applied exceeds critical value.   Figures 5.17 and 5.19 are polar plots of the deformation 

parameter DT vs the orientation angle ߠ  for  Ca  Cacrit.  The dimensionless graphics show that the value 

of the capillary number does not matters on the evolution of the deformation with respect to the 

orientation: the path followed by the drop is the same with DT increasing while ߠ	approaches to the 

outgoing axis angle ߶.  Regarding the flow with ߙ ൌ 	0.03,  a confinement effects was observed. For 

simple shear flows the confinement ratio is defined as the ratio of the drop diameter, d = 2r0, to the gap 

spacing, g, separating the walls of the devices used to produce the flow.  The same definition of the 

confinement ratio d/g will be used in this work but taking g as the gap defined for the TRM geometry, 

(the distance that separates the cylinders surfaces as shown in Fig. 2.1) that for the case of ߙ ൌ 	0.03 is 

݃	 ൌ 	3.0 mm. Accordingly, the degree of confinement seems not to have an appreciable effect on Cacrit 

when it is lower than 0.3, or for ߣ values of the order unity; when d/g exceeds a value of 0.3, the Cacrit 

increases with increasing the degree of confinement for  ߣ	 ൏ 	1 and reduces for ߣ	 ൐ 1 (Vananroye et al. 

2006a).  

 

 
Figure 5.19.  Polar evolution of the deformation and orientation parameters for  ࢇ࡯ ൐  for a flow ࢚࢏࢘ࢉࢇ࡯	
field with ࢻ ൌ ૙. ૙૞ and ࣅ ൌ ૙. ૙૚૛.   
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Figure 5.20 shows the deformation evolution for different capillary numbers that led to breakup 

and its associated d/g value.  It can be observed that the lower Ca is 0.96 and corresponds to confinement 

ratios below 0.3.  Hence, it can be said that the critical capillary number for unconfined drops under flow 

fields with ߙ ൌ 	0.03 is close to Cacrit = 0.96.  The same figure shows that as predicted, for a viscosity 

ratio ߣ	 ൌ 1.1 x 10-2, Cacrit increases for d/g = 0.3, and when d/g = 0.45 there is no breakup despite a 

capillary number close to Ca = 1.06, which for lower confinement ratios causes the rupture of the drop.  

The polar plot in Fig. 5.21 show that as d/g increases, the drop starts to modify its evolution, presenting 

slight departures from what can be considered the “unconfined evolution”, these departures are barely 

visible for d/g = 0.3 and are more evident for d/g = 0.45 where the drop attains a deformation and  

orientation stable in the long run.   Fig. 5.22 is a comparison of the trajectories followed by the drops for 

the three types of flow.  

 
Figure  5.20.      Time  evolution of drop deformation DT  for  critical  capillary numbers  and  for different 
confinement ratios for a flow field with ࢻ ൌ ૙. ૙૜ and ࣅ ൌ ૙. ૙૚૛. 
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Figure 5.21.  Polar evolution of the deformation and orientation parameters for  ࢇ࡯ ൐  in a flow ࢚࢏࢘ࢉࢇ࡯	
field with ࢻ ൌ ૙. ૙૜ and ࣅ ൌ ૙. ૙૚૛ and for different confinement ratios. 
 

 
Figure 5.22.     Polar evolution of the deformation and orientation for critical capillary numbers for the 
three types of flow with ࣅ ൌ ૙. ૙૚૛. 
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5.2.1.3	Breakup	process	

Once the Ca exceeds the critical value, the drop starts an unbounded elongation process that 

continues as long as the flow is kept.  If the flow is maintained, the drop will deform until it forms a 

thread that when is long and thin enough it will breakup by capillary instabilities.  If the flow is stopped, 

driven by the interfacial tension, the drop either will return to its initial spherical shape or it will breakup 

into smaller fragments depending on the maximum deformation reached.  In both cases, the breakup 

process is similar despite the type of flow used to deform the drop. Its dynamics and the final drop size 

distribution depend only on the viscosities ratio and the deformation reached by the drop prior to stopping 

the flow. The effect of the flow is only to modify the time scale for the deformation of the drop (Stone et 

al. 1986). 

For drops that are only slightly deformed, an appropriate measure of deformation is DT which is 

strictly applicable only for elliptically deformed drops, being zero for spherical drops and asymptotically 

approaches unity as the drop became infinitely extended.  But beyond a certain degree of deformation, the 

drop becomes very elongated, (ܮ	 ≫  and then, the interfacial tension will make the middle section ,(ܤ	

tubular with a circular cross section (Mikami et al. 1975).  This small circular cross section causes a high 

internal pressure with a slow decay of B, and consequently –given its definition– a slower growth of DT. 

Because of that, for highly elongated drops under breakup conditions, it is convenient to characterize the 

degree of deformation using the dimensionless elongation ratio, L/r0, as the appropriate parameter of the 

deformation, being r0 the radius of the spherical drop. 

Figures 5.23 to 5.25 are plots of the deformation measured with the elongation parameter L/r0 as 

function of the dimensionless time for subcritical and supercritical Ca values.  These figures show the 

maximum possible stable elongation of the drop for this viscosities ratio and the different flow types. 

These values are: L/r0 = 3.25 for ߙ	 ൌ 	0.13,  L/r0 = 3.5 for ߙ	 ൌ 	0.05 and L/r0 = 3.75 for ߙ	 ൌ 	0.03. As 

mentioned before, if ܽܥ	 ൐  ௖௥௜௧ the drop will continue elongating but if the flow is arrested before theܽܥ	

drop elongation exceeds a critical value, it will still retract back into a sphere. Stone and Leal (1989b) 

extensively studied retraction of extended viscous drops and determined the maximum elongation from 

which a drop still retracts without breaking as function of the viscosities ratio. For a drop with ߣ	 ൌ

	0.012, the elongation that the drop needs to reach to be fragmented when it retracts lies in the range of  

5.4 < L/r0 < 6.2 (Stone and Leal 1989a 1989b). 
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Figure  5.23.      Deformation  measured  with  the  elongation  parameter  L/r0  as  function  of  the 
dimensionless time for subcritical and supercritical Ca	values for a flow field ࢻ ൌ ૙. ૙૜. The plot shows 
the maximum possible stable elongation. 

 

 
Figure  5.24.      Deformation  measured  with  the  elongation  parameter  L/r0  as  function  of  the 
dimensionless time for subcritical and supercritical Ca	values for a flow field ࢻ ൌ ૙. ૙૞.  The plot shows 
the maximum possible stable elongation. 
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Figure  5.25.      Deformation  measured  with  the  elongation  parameter  L/r0  as  function  of  the 
dimensionless time for subcritical and supercritical Ca	values for a flow field ࢻ ൌ ૙. ૚૜.  The plot shows 
the maximum possible stable elongation. 
 
 

Fig. 5.26 shows different curves of the non-dimensional time evolution of the elongation 

parameter for a drop under different Ca for ߙ	 ൌ 	0.03.  The curve A in the plot shows that for ܽܥ ൏

  .௖௥௜௧ the drop attains a stable elongation that is below L/r0 = 3.75, the maximum possible in this flowܽܥ	

When Ca exceeds the Cacrit, the drop elongation is not limited but it continues, surpassing the maximum 

stable value, but if the flow is stopped and the elongation has not reached the minimum critical value of 

L/r0 = 5.4, the drop still retracts into a sphere curves B and C on Fig. 5.26.   If the flow is maintained so 

the maximum elongation is allowed to overreach this critical value, the retraction process leads to breakup 

of the drop via necking, curve D.  Fig. 5.27 shows the process of breakup corresponding to the curve D in 

Fig. 5.26.   
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Figure  5.26.    Deformation  measured  with  the  elongation  parameter L/r0  as  function  of  the 
dimensionless  time  for  supercritical  Ca  values.    The  plots  show  that  if  the  drop  does  not  reach  a 
minimum elongation, even when there is no stable shape, it still retracts into an sphere.  Data from an 
experiment with a flow field with ࢻ ൌ ૙. ૙૜ and ࣅ ൌ ૙. ૙૚૛. 
 

Therefore, the breakup of a drop is possible either by stopping the flow at a determined 

elongation (that ensures the breakup) or by sustaining the flow, such that the drop is stretched into a long 

slender viscous thread. In the first case, the mode of breakup depends on the viscosities ratio ߣ and the 

deformation reached by the drop at the moment of stopping the flow. If the flow is sustained and the 

capillary numbers are much higher than the critical value, Ca ≫ Cacrit, the drop is deformed affinely 

(negligible interfacial stresses), it is rapidly stretched into a slender fibril, which subsequently breaks up 

by capillary-wave instabilities.  Under those circumstances, the interfacial stresses are overridden by the 

deforming shear stresses and the drop is deformed with passive interfaces.  For Newtonian drops 

embedded in a Newtonian matrix experiments show that affine deformation occurs for simple shear flow 

when Ca/Cacrit ൒	2 (Elemans et al. 1993) and for plane hyperbolic flow when it is present when Ca/Cacrit 

൒	5 (Meijer and Janssen 1993).  If the Ca number is marginally greater than Cacrit, but Ca/Cacrit < 2, in 

simple shear the drop will also form a long thread and will breakup by capillary instabilities but with a 

time scale longer than that in affine deformation. 
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Figure 5.27.  Breakup process via necking of a slightly elongated drop with ࣅ	0.012 = in a flow field with 
	ࢻ ൌ 	૙. ૚૜. 

 

 (a) 

 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 
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In general there are three principal breakup mechanisms: necking (also called binary breakup), 

end-pinching and capillary-wave instabilities. The first two are similar and mainly result after cessation of 

the flow.  The necking, (Fig. 5.27), is present when the drop is deformed slightly beyond a critical length 

or when the strength of the flow is gradually increased, resulting in the split up of the drop into two equal-

sized daughter drops (Rumscheidt and Mason 1961).  The end-pinching (Figs. 5.28 and 5.27), occurs 

when the drop has reached higher elongation values or after step changes in the capillary number and/or 

the flow type (Stone and Leal 1989a, 1989b). The third mechanism, the capillary-wave instabilities, 

appears either there is a flow going on or when the flow has been stopped, as long as the drop elongation 

reached is high enough for each case. In this work only the two first were clearly observed; as for the 

capillary instabilities, the required elongation for the observation of that phenomenon in absence of flow –

and with this viscosities ratio– is L/r0 O(15) which was not reached. For the case of  breakup of the drop 

in presence of flow the required elongations are even higher, L/r0 >O( 15) (Stone and Leal 1989a, 1989b). 

Table 5.1 schematizes the principal breakup process of a single drop in linear flows, depending on the 

elongation ratio L/r0 (which is a function of the viscosities ratio) and a brief explanation about all three 

processes is given below. 

Table 5.1 Principal Breakup mechanism of single drops. 

 Deformation reached  Principal breakup mode 

Breakup 

conditions 

With 

Flow 

Drop forms very 

elongated thread 
Capillary instabilities 

 

Without 

Flow  

L/r0 barely above the 

critical value 
Necking 

 

Moderate L/r0 values  End‐pinching 
 

Highly elongated L/r0  
End pinching & 

capillary instabilities 

 

5.2.1.3.1 End pinching process 

When the drop becomes highly elongated, its shape resembles a cylindrical thread with bulbous 

ends; see Figs.  5.27e, 5.28e and 5.29c.  Observing the axial cross-section of the deformed drop, the cylin-

drical part has a curvature larger than the one at the bulbous ends and hence (due to the interfacial tension) 

with the internal pressure being higher than at the ends of the drop. In the regions where the cylindrical part 

joins the bulbous ends, there is a pressure gradient owed to the change from a high pressure region in the 
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(a) 

 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

Figure 5.28.   Breakup process via end‐pinching process of an elongated drop with ࣅ ൌ ૙. ૙૚૛ in a flow 
field with ࢻ ൌ ૙. ૚૜.	  
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Figure 5.29.   Breakup process via end‐pinching of an elongated drop with ࣅ ൌ ૙. ૙૚૛ in a flow field with 
	ࢻ ൌ 	૙. ૚૜.	
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cylindrical part to a lower pressure region in the bulbous ends.  This pressure gradient induces a flow 

from the central portion of the drop (the cylindrical section) toward the ends (the bulbs). This flow 

decreases the radius of the circular cross-section in that joining part inducing the formation of a neck and 

thus the eventual breakup via a capillary pinch-off process, Figs. 5.28f and 5.29d.    

After the flow is stopped, all external distorting force vanish.  If the curvature at the extremes of the 

drop is much larger than in the middle section, then a retraction process starts due to a high pressure in 

those ends with high curvature, creating another pressure gradient.  Therefore, a flow field is generated 

but this time from the ends of the drop toward the center.  This flow promotes a reduction in the 

elongation of the drop and brings the drop back to a more spheroidal shape. This process is evident in the 

change in shape from Fig. 5.28d (when the flow is stopped and the drop has a elongation ratio of  L/r0 = 

6.4) to Fig. 5.28e (where the drop has reduced its elongation ratio to L/r0 = 4.5, but with a shape in which 

the cylindrical part and the bulbous ends are evident).  

Consequently, after the drop has been deformed and suddenly the flow is stopped there will be a 

competition between those two pressure-driven flows inside the drop.  This question is settled by the 

viscosities ratio.  For ߣ	 ൏ 	1 the viscosity of the drop is low respect to that in the fluid matrix and 

therefore there can be large internal velocities and the flow toward the center of the drop cannot inhibit 

the formation of a neck and the subsequent pinch-off.  This environment is shown during the evolution 

from Fig. 5.28e to Fig. 5.28f; in those pictures, it can be seen that in about one second the change in the 

length of the drop is just visible, whereas the development of the neck near the bulbous par —and the 

consequent pinch-off of the extreme— is almost complete.  Once that the bulbous ends have been 

separated, the end-pinching breakup process is self-repeated, because the remaining cylindrical part has 

pointed ends, Fig. 5.29e.  This new shape creates a high internal pressure at the ends with its 

corresponding flow, subsequently developing a bulbous form; see Fig. 5.29f.  Once the bulbous region 

have been formed, the breakup process is repeated. 

For drops with very low viscosities ratio (ߣ	 ൑ 10ିଶ), the typical shape for moderate elongation 

ratios has very sharp ends (Figs. 5.27d and 5.28d). The curvature at these ends is so high that it results in 

large velocities gradients (due to large pressure gradients) from the ends toward the center and hence a 

rapid initial reduction in the length of the extremes, but if the drop is sufficiently elongated, it does not 

shortens fast enough to recover its spherical shape and the ends became bulbous which conduces to a 

necking breakup following the process mentioned, Fig. 5.27.  
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5.2.1.3.2 Capillary waves instabilities 

Once the drop has been stretched into long slender thread the radius of the cross section decreases 

in such a way that interfacial tensions become dominant.  It tends to minimize the interfacial area, and as 

a consequence, small perturbations will exist at the interface; these disturbances will grow and eventually 

bring about the disintegration of the thread into a line of smaller drops. As mentioned before, breakup of 

drops due to capillary instabilities is present either with or without flow. 

Quiescent matrix. 

Reviewing first the case of absence of flow, in 1935 Tomotika extended the pioneering work of  

Raleigh (1879) in the stability of a water jet in air by analyzing the case of an infinitely long viscous 

cylinder with radius R0, embedded in a quiescent fluid matrix with viscosity ߤଵ. He considered small 

disturbances at the interface, the so called “Raleigh disturbances” or “Raleigh instabilities”. To first order, 

these perturbations are sinusoidal, each one possessing a wavelength ζ with a small amplitude ε; see Fig. 

5.30. 

ܴሺݖሻ ൌ ܴ௠ ൅ ݖߨሺ2݊݅ݏ	ߝ ⁄ߞ ሻ,                                                         (5.1) 

or  

ܴሺݖሻ ൌ ܴ௠ ൅ ߯	ݖሺ݊݅ݏ	ߝ ܴ଴⁄ ሻ ,                                                       ሺ5.2ሻ 

with  ߯ ൌ ଴ܴߨ2 ⁄ߞ 	 as the dimensionless wave number instead of the wavelength amplitude  ߞ and Rm as 

the mean radius, 

ܴ௠ ൌ ඨܴ଴
ଶ െ

ଶߝ

2
	.																																																																									ሺ5.3ሻ 

 The disturbance amplitude is assumed to grow exponentially in time: 

ߝ ൌ  	ሺ5.4ሻ																																																																													.	଴݁௤௧ߝ

The initial distortion amplitude,	ߝ଴, is given by (Kuhn 1953): 

଴ߝ ൌ ൬
ܶ	ߢ	21

ଷߨ	ߪ	8 ଶ⁄ ൰
ଵ ଶ⁄

,																																																																						ሺ5.5ሻ 

 

T being the absolute temperature, ߪ the interfacial tension and ߢ Boltzmann´s constant, 

ߢ ൌ 1.38		x	10ିଶଷ		J/K.  Thus, the growth rate q is 

ݍ ൌ
,Ωሺ߯	ߪ ሻߣ
ଵܴ଴ߤ2

	,																																																																										ሺ5.6ሻ	 
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where Ω	ሺ߯,  ሻ is the dimensionless growth rate of the disturbance and is a function of the viscosities ratioߣ

 .and the dimensionless wave number ߯  (Tomotika 1935) ߣ

 
Figure  5.30.    Sinusoidal  disturbances  present  on  the  surface  of  a  viscous  cylinder  embedded  in  a 
quiescent viscous fluid matrix. 
 

At first, disturbances of all wave-numbers ߯ (or wave-lengths ߞ) are present, and depending on 

the viscosities ratio, one disturbance, ߯௠ (and its corresponding growth rate Ω௠), will become dominant 

causing the breakup of the cylinder when its amplitude equals the mean radius, i.e., 	ߝ௕ ൌ ܴ௠	 ൌ

	ඥ2/3	ܴ଴ (Raleigh 1879; Tomotika 1935; Elmendorp 1986).  From Eqs. (5.4) to (5.6), the time for 

breakup tb for a Newtonian thread in a Newtonian quiescent matrix can be calculated as:  

௕ݐ ൌ 	
1
ݍ
݈݊ ൬

௕ߝ
଴ߝ
൰ ൌ 	

1
ݍ
݈݊ ൬

0.82	ܴ଴
଴ߝ

൰ 	ൌ 		
ܴ଴	ଵߤ
Ω௠ߪ

	݈݊ ቆ
10ଶଷܴߪ଴

ଶ

ܶ
ቇ,																																				ሺ5.7ሻ	 

where	Ω௠ is the growth rate of the amplitude of the dominant perturbation. The values of  ߯௠	 and its 

corresponding dimensionless growth rate 	Ω௠ depend only on the viscosities ratio and can be obtained 

graphically from Fig. 2.7 in Elmendorp (1986). Considering that each spherical drop with radius Rd 

created after the breakup comes from the division of the initial cylinder with radius R0 into smaller 

identical cylinders of length ߞ, then, the radius of the resulting drops can be determined from conservation 

of volume, resulting in: 

ܴௗ ൌ ܴ଴ ൬
ߨ3
2߯௠

൰

భ
య

;																																																																									ሺ5.8ሻ	 

that is, it is only a function of the dimensionless wave number (or the viscosities ratio) and R0. 

The breakup of a deformed drop after the cessation of the flow is mainly via capillary pinch-off 

(either necking or end-pinching), for breakup via capillary instabilities it is necessary to reach extremely 

high elongation ratios —depending also on the viscosities ratio, L/r0 ~O (15), for ߣ ~O (10-2)— because 

the length of the cylinder must be greater than its cross-sectional circumference (since the amplitude ߝ of 

the perturbations grows up only when ߞ ൐  ଴).  Even when the drop is a long thread, the occurrence ofܴߨ2

 
R0 

Rm 
z 

ζ

ε
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capillary instabilities is not guaranteed.  The time-scale for developing the neck due to the interfacial 

tension is shorter in comparison with that needed for the development of the capillary instabilities, and the 

end-pinching effect reduce the length of the cylindrical thread and the probability for a perturbation to 

develop.   For this reason, even when the drop has formed a long thread, it will breakup by end-pinching, 

unless the elongation ratio is very large.   Figure 5.29 is a set of time-lapse photos of the breakup process 

of a very elongated drop, L/r0 = 11. This sequence shows that the degree of elongation is not high enough 

for the occurrence of breakup via capillary instabilities, because the cylindrical thread disintegrates before 

the capillary instabilities became dominant.  

At the moment the flow is stopped, see Fig. 5.29c, the cylindrical middle part has a radius R0 = 

1.12  10-4 m.  The interfacial tension of the system is ߪ ൌ 0.0027	N/m, the viscosity of the external 

fluid is ߤଵ ൌ 5.1	Pa ∙ s and the temperature is ܶ ൌ 25Ԩ ൌ 298.15	K. With a viscosities ratio ߣ ൌ 0.012	, 

and from Fig. 2.7 in Elemndorp (1986), the corresponding values of the dimensionless wave number and 

the dimensionless rate of growth are: ߯௠ ൌ 0.41	and		Ω௠ ൌ 0.54. Thus, using Eq. (5.7), the estimated 

time needed for breakup via capillary instabilities is ݐ௕ ൎ 9	s, and from Eq. (5.8) the radius of the 

resulting droplets should be around Rd = 0.25 mm. 

According to Fig. 5.29, the complete disintegration of the deformed drop took only about 4.4 s; 

that is, half the time tb; and during this short period of time the instabilities will not fully develop.  The 

perturbations became present at t = 2.6 s after the flow cessation, and its amplitude did not grow sufficient 

to cause the breakup of the cylindrical thread; see Fig. 5.29f.   By the time they are evident at t = 3 s, as in 

Fig. 5.29g, the second end-pinching process is almost complete and the pointing ends of the residual 

cylinder contributes to the formation of the bulbous extremes. This bulbous part accelerates the growth of 

the neck that initially was formed by the capillary instability and the last remaining part of the cylinder is 

finally divided in two drops, as shown Fig. 5.29h.  Nevertheless, the smaller “daughter” drops created by 

end-pinching have radii Rd’ = 0.26 mm, comparable to the value predicted by capillary instabilities.  

Deforming matrix. 

The stability of a thread in a flowing matrix is more difficult.  For instance, under simple shear 

flow the perturbations may be swept away so its effect will be damped out before being able to cause the 

thread breakup; see Fig 5.31 (Tomotika 1936; Elemendorp 1986).   Mikamy (1975) and later Khakhar and 

Ottino (1987) extended the theory for breakup of an infinitely long Newtonian cylinder in a quiescent 

matrix to cylinders in general linear flows and showed that the presence of flow has a stabilizing effect on 

the thread.  For a thread being elongated by a deforming fluid matrix, the wavelengths are continuously 

stretched, hence at any moment another disturbance wavelength becomes dominant and the breakup of  
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Fig 5.31.  The perturbations present in the cylinder are swept away due to the flow present around the 
cylinder. 
 

the threat is postponed when compared to a thread in a quiescent matrix. Breakup occurs as soon as the 

amplitude of a disturbance is greater the mean thread radius Rm that continuously decreases in time. In 

hyperbolic extensional flow, the time for breakup increases slowly with the capillary number (Khakhar  

and Ottino 1987) : 

 ሻ.                                                                    (5.9)ܽܥሺ	௕~logݐ

For simple shear flows, the results depend on the initial orientation angle of the thread β0 in the flow field. 

The time for breakup is given by: 

ሺ1 ൅  ሻఔ,                                                            (5.10)ܽܥ	௕ሻ~ሺܿݐ	ܿ

where ܿ ൌ 2 tan  .(Khakhar  and Ottino 1987) 0 < ߥ ଴ is the initial orientation angle of the threat, andߚ ,଴ߚ

The main idea is illustrated in Fig. 5.32. All disturbances with initial wavelengths ߞ or dimensionless 

wave numbers ߯, evolve in time.  At the same time the wavelengths are stretched and the radius of the 

cross section is thinned, the amplitude ε of the dimensionless wavelength ߯ first damps then grows and 

finally dams again. Breakup is achieved when the amplitude of a disturbance intersects with the 

continuously decreasing mean threat radius (Tjahjady and Ottino 1991; Janssen and Meijer 1993). 

 
Figure 5.32.  Magnification of the disturbances and reduction of the mean radius in a cylinder immersed 
in a linear flow. The dashed line represents the dimensionless mean radius of the cylinder and the full 
lines represent the growth of the amplitude of the dimensionlees wave number. The intersection gives 
the breakup point, occurred at the breakup time tb. (Tjahjady and Ottino 1991). 
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5.2.2 High viscosities ratio 

For highly viscous drop fluids, with respect to the matrix one, the system evolves differently from 

cases where the drop viscosity is comparable to that of the matrix or lower. The dynamic of drop 

deformation under such conditions was first studied by Taylor (1934), who reported the main features of 

those systems.  Taylor main conclusions are: (i) for a viscosities ratio high enough, the simple shear flow 

is unable to cause the drop breakup; (ii) the steady state deformation is limited and inversely proportional 

to the viscosities ratio ்ܦ ൌ 5 ⁄ߣ4  (Taylor 1934); and (iii) the steady state orientation tends to zero 

ߠ ൎ 0°. Later, Rumscheidt and Mason (1961) carried out more detailed experiments with high viscosities 

ratios and reported an oscillatory response to start up experiments in simple shear flow.  This oscillatory 

behavior was firstly studied theoretically by Cox (1969) —at least for the case of small drop 

deformations— providing analytical expressions to evaluate the timeless evolution of a drop with high 

viscosities ratio that is abruptly subjected to a simple shear flow. The equations provided by Cox for 

ߣ ≫ 1 expresses the Taylor´s deformation parameter as 

்ܦ ൌ ௦ሾ1ܦ	 െ 2	݁షమబംሶ ೟ భవ಴ೌഊ⁄ ሻݐሶߛሺݏ݋ܿ	 ൅ ݁షరబംሶ ೟ భవ಴ೌഊ⁄ 	ሿ
భ
మ	.																																			ሺ5.11ሻ 

And the steady state deformation DS given by:   

௦ܦ ൌ
5ሺ19ߣ ൅ 16ሻ

4ሺ1 ൅ ሻଶߣሻඥሺ19ߣ ൅ ሺ20 ⁄ܽܥ ሻଶ
.																																																ሺ5.12ሻ	 

  

The orientation of the longest axis of the ellipsoidal drop is given by: 

 

ᇱߠ ൌ
ߨ
2
൅
1
2
ଵି݊ܽݐ ቆ

݁షమబംሶ	ሾߣ19 ೟ భవ಴ೌഊ⁄ ሻݐሶߛሺݏ݋ܿ	 െ 1ሿ ൅ ሺ20 ⁄ܽܥ ሻ݁షమబംሶ ೟ భవ಴ೌഊ⁄ ሻݐሶߛሺ݊݅ݏ	
ሺ20 ⁄ܽܥ ሻሾ	݁షమబംሶ ೟ భవ಴ೌഊ⁄ ሶߛሺݏ݋ܿ	 ሻݐ െ 1ሿ ൅ షమబംሶ݁ߣ19 ೟ భవ಴ೌഊ⁄ ሻݐሶߛሺ݊݅ݏ	

ቇ,					ሺ5.13ሻ	 

 

with ߠᇱ given in rad. In this case, the steady state orientation can be obtained from Eq. (5.13) by letting 

ݐሶߛ → ∞. Those equations describe an oscillatory damped behavior were the damping of the oscillations is 

proportional to 1/ሺߣ	ܽܥሻ in the dimensionless form, or in dimensional terms proportional to ߤ/ߪ଴ݎ଴.  

Even when those equations were derived for simple shear flows (ߙ ൌ 0), and are not accurate at all, 

they show the global behavior of the high viscosity ratios systems and can be used as a benchmark for the 

qualitative behavior of the types of flow studied in this work.  Figures 5.32 to 5.35 are a comparison of 

the predictions of Cox (1969) (that appears to be the only analytical formulas so far) and the experimental 

results for the flow of ߙ ൌ 0.03, the flow closest to simple shear. The comparisons are done with the 

purpose of  
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showing the general characteristics in drop deformation under high viscosities ratio conditions. Figs. 5.33 

and 5.34 are plots of the dimensionless time evolution of the deformation and the orientation in a system 

with ߣ ൌ 16 and different capillary numbers.   

 
Figure 5.33. Deformation as a function of the dimensionless time for a viscosities ratio of ࣅ ൌ ૚૟. Left 
side corresponds to the theoretical prediction of Cox (1969) for ࢻ ൌ ૙ and the right side to experimental 
results for ࢻ ൌ ૙. ૙૜.  

 
Figure 5.34. Deformation as a function of the dimensionless time for a viscosities ratio of ࣅ ൌ ૚૟. Left 
side  corresponding  to  theoretical  prediction  of  Cox  for  ࢻ ൌ ૙  and  the  right  side  corresponding  to 
experimental results for ࢻ ൌ ૙. ૙૜. 
 

Fig. 5.35 is a parametric plot of the deformation DT vs the orientation angle ߠ.  It shows the 

timeless evolution of the drop toward its equilibrium conditions and it can be seen that as Ca increases the 

drop starts to present cycles that increase in number as Ca rises.  

Looking at those figures some characteristics of these systems can be noted: 

(a) For large capillary numbers, the steady state conditions are reached after a damped oscillatory 

transient behavior. 
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(b) The steady state deformation DT becomes independent of the capillary number when this is large 

enough, see Fig. 5.33. 

(c) The steady state orientation ߠ always depends on the capillary number and approaches to zero as 

Ca increases, see Fig. 5.34. 

(d) The maximum amplitude of the oscillations in the transitory state depends on Ca, but its 

frequency does not. 

(e) The number of cycles needed for the drop to reach the stationary states increase with Ca. see 

Fig. 5.35. 

 
Figure 5.35. Deformation as a function of the dimensionless time for a viscosities ratio of ࣅ ൌ ૚૟.  Left 
side corresponds to theoretical prediction of Cox (1969) for ࢻ ൌ ૙ and the right side corresponding to 
experimental results for ࢻ ൌ ૙. ૙૜. 

 

In general and for the system of a low viscosities ratio, the steady states are reached 

monotonically, and as long as subcritical conditions are maintained, the steady state deformation and 

orientation depend on the value of Ca.  For these systems, the stress field imposed by the external flow is 

mainly balanced by the interfacial tension, by modifying the drop geometry.  For these systems, the 

vorticity present does not have a significant contribution in stabilizing the drop.  However, when ߣ ≫ 1, 

the monotonic transient and the dependence of the stationary deformation DT on Ca are rapidly lost.  

Unlike systems with low viscosities ratio, the evolution to the steady states is no longer monotonic for 

high Ca, and stationary conditions are reached after the observed transient oscillatory behavior, as shown 

in Figs. 5.33 to 5.35.  The steady state orientation decreases toward zero as Ca increases and the steady 

state deformation becomes independent from Ca, reaching the maximum value allowed by the viscosities 

ratio ߣ and the type of flow ߙ.  
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Blawzdziewicz et al., (2002, 2003) performed a linear stability analysis of the time-dependent form 

of the equations describing the deformation of a drop under the effects of an external flow field. Even when 

this analysis was done for flow fields closer to elongational, they established some points which have a close 

resemblance to those observed in the experiments. They showed that the deformation equations have, at 

least, two branches of stable solutions that merge and disappear at critical lines, Lc, drawn where turning-

point bifurcations occur.  Figure 5.36 schematizes the ideas of stability studied by Blawzdziewicz et al., 

(2003).  These two branches (the mechanisms in which the stationary drop shape is achieved) are: (1) drop 

deformation, due to the interfacial tension stresses and characterized by a low rotation of the drop and (2) 

drop rotation, due to the vorticity of the external flow and characterized by a low deformation. The limits of 

the domains of these solutions depend on the viscosities ratio ߣ, the type of flow	ߙ and the capillary number 

Ca.  From that point of view Blawzdziewicz et al., (2002, 2003) and Young et al., (2008) reached the same 

conclusions than previous experimental works.  Considering the instability of the systems as synonym of 

breakup condition and the stability as the existence of steady states, the system will always have a stable 

solution when the viscosities ratio exceeds a critical value ߣ௖,	that decreases with ߙ. With ߣ high enough to 

ensure the stability, the branch will only depend on the Ca, if it is above certain value, the stabilizing 

mechanism will be the rotation, below that value the mechanism will be the deformation. 

 
Figure 5.36.    Stabilizing mechanisms  in drop deformation as  function of  the  viscosities  ratio  and  the 
capillary number. This figure  only represent a typical graphic, the lines separating the stable zones may 
vary depending on the type of flow.   
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Drop deformation 

The systems with ߣ ≫ 1 behave different from those with ߣ ≪ 1. As the viscosity of the drop is 

increased, it starts to behave more as a rigid body than as a fluid particle. Taking the extreme case of a 

drop with ߤ଴ → ∞, immersed in any flow with vorticity different from zero (simple shear flow for 

example), it is more or less clear that the particle would not suffer any deformation but only rotation.  

This behavior would be the same despite the magnitude of shear rate applied; increasing the shear rate 

would only make the particle to spin faster but never to deform.   Hence, the role played by the vorticity 

increases with ߣ, whereas the deforming part diminishes. This was first noted by Taylor (1934); he 

realized that in simple shear flows the contribution of the vorticity becomes dominant enough to inhibit 

the breakup of drops when ߣ ൎ 4.  Above this value, the drop only attains a small deformations 

determined only for the viscosities ratio ߣ and independent of the Ca applied.  

Then, with ߣ fixed, the other parameter governing the maximum possible steady state 

deformation is the parameter of type of flow ߙ. This parameter determines the capacity to induce 

deformations in the drop.  When the drop is deformed under a flow field with vorticity, its particles are 

continuously extended and at the same time rotated; being the extending part the responsible for the 

deformation.  Consequently, the maximum deformation in steady state depends on the competition 

between those two components of the flow.  The vorticity induces a rotation that causes a continuous 

redistribution of the particles inside the drop respect to the directions of maximum extension, and 

depending on the quantity of vorticity present in a flow field, this will be more o less able to cause a 

reorientation of these particles before they are extended by the deforming component, i.e. the flow inside 

the drop will be more prone to form a vortex as the vorticity and viscosity increase.  In this manner, a 

flow with zero vorticity can always accomplish the breakup of a drop (no matter the viscosity ratio), given 

that the reorientation of the particles is nil, and therefore they remain all the time under a continuous 

deformation that eventually derives in breakup.  For flows with vorticity different from zero, there are 

limits on the viscosity ratios at which they are able to cause the breakup because the contribution of the 

vorticity (seen as the capacity of particle reorientation or the tendency of the drop to form vortex), 

increases with ߣ.  Thereby, in a flow with the parameter ߙ fixed, the steady state deformation reduces as ߣ 

increases, and for a viscosities ratio ߣ fixed this steady deformation increases with the flow type 

parameter ߙ that characterizes the flow field. 

The characteristics mentioned above roughly describe the behavior of high viscosity ratio 

systems.   In general, the study of the dynamics of drop deformation is a difficult problem because of the 

non-linear coupling of the processes involved, and still remains open.  Due to this non-linear character, a 

formal theoretical analysis is not a trivial task and a detailed mathematical description is out of the scope 
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of this work.  So, in order to understand the general role played by the principal factors in the drop 

deformation, the following descriptions are used assuming sometimes a linearized behavior.  However, 

this are only made with the specific purpose of simplifying the phenomena and having an easier 

description for its study, and may not have any general character.   

In the next lines, the reference plane used is the x-y plane with the origin at the center of the drop 

and where any particle position can be described by a vector ܚො of length r and angular orientation ߚ, the 

angle respect the x-axis; see Figure 5.37.   

 

 
Figure 5.37.  Regions of stretching and compression in the flow field. The principal axes of deformation 
are rotated 45° respect to the reference axes in the x‐y plane.  The magnitude of the rate of deformation 
varies as function of the angular position, achieving its maximum values at the position of the principal 
deformation axes. 

 

Summarizing, the three main effects governing the drop behavior are: (i) the drop relaxation; (ii) 

the drop deformation; and (iii) the drop rotation. The first one depending on the properties of the fluids 

and the physical characteristics of the drop and the two last depending both on the properties of the fluids 

and on the of type of flow field. 

i. The relaxation of the drop. This is the process by which the drop shape is adjusted by the effect 

of the interfacial tension ߪ, in response to changes in the outer pressure field, contracting the drop 

to a new equilibrium geometry.  It acts as an elastic membrane that as soon as the pressure out of 
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a time-scale is given by: ݐఙ ൌ 	 ሺߤ଴ ൅ ଴ݎଵሻߤ ⁄ߪ , expression that takes in count the viscosities of the 

drop and the matrix, the drop radius and the interfacial tension.   

The relaxation of the drop involves an internal flow, required by the reconfiguration of the 

geometry; these flows are caused by the pressure gradients due to the interfacial tension. Very 

viscous fluids, as well as weak interfacial tensions, or large drops will cause the internal fluid to 

retract slowly, and, therefore, the time taken by readjustment of the drop shape will be long. 

ii. The deformation of the drop, caused by the symmetric part of the velocity gradient tensor.  The 

magnitude of the rate of deformation it is not constant over the drop surface, it depends on the 

angular position of the particles inside the drop, i.e.,	ߛሶ ൌ  ሻ (while the rotation does not).  Theߚሶሺߛ

principal directions of deformation are rotated 45° respect to the x-y plane. The axes of maximum 

rate of elongation are oriented at ߚ ൌ 45° and ߚ ൌ 225° while axes of maximum rate of 

compression are oriented at ߚ ൌ 135° and ߚ ൌ 315°; see Figure 5.37.  The particles inside the 

drop, placed in the stretching regions, 0° ൏ ߚ ൏ 90° and 180° ൏ ߚ ൏ 270°, are advected (pulled 

from the center of the drop) while those in the compression regions 90° ൏ ߚ ൏ 180°	and	270° ൏

ߚ ൏ 360°,	 are pushed toward the center of the drop, with an initial spherical form being 

transformed into an ellipsoid.  The time scale for the deformation is that of the flow, given by the 

shear rate imposed, ݐ௙௟௢௪ ൌ 	1 ⁄ሶ௡௢௠ߛ . 

iii. The rotation of the drop is caused by the vorticity tensor, the anti-symmetric part of the velocity 

gradient tensor. At the same time that the drop deforms it also rotates with an angular velocity 

proportional to the shear rate applied.  The proportionality is a function of the type of flow 

߱  ሻ denoting the proportionality of the angular velocity ߱ to the shear rateߙሻ, with ݂ሺߙሶ௡௢௠݂ሺߛ	∝

applied as function of the parameter of type of flow (for ߙ ൌ 1 the vorticity is zero and therefore 

the angular velocity ߱ ൌ 0. For ߙ ് 1, ߱ is different from zero but always varying in the same 

proportion with ߛሶ௡௢௠).   

The time-scale for the rotation is also that of the flow, ݐ௙௟௢௪ ൌ 	1 ⁄ሶ௡௢௠ߛ , but with another 

important time-scale to take into count: the diffusion of vorticity time-scale.   The rotation applied 

at the interface between the drop and the outer fluid is eventually transmitted (or diffused) to the 

inner particles. The time scale for this transmission is the characteristic time for the diffusion of 

the vorticity given by ݐ୴ ൌ 	 ଴ݎ
ଶ ⁄଴ߥ , where ߥ଴ is the kinematic viscosity of the fluid of the drop.  

This time scale represents the time spent for the vorticity to diffuse from the interface into the 

interior of the drop.  For large values of ߥ଴, or small drops, this time of diffusion is short which 

means that at the moment the particles on the interface starts to rotate, the vorticity diffuses so fast 

to the interior that the particles inside the drop start to rotate almost at the same time with nearly 

the same angular velocity. 
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The dynamics of the deformation comes from the interplay of the deformation and the rotation. 

Fluid particles placed at about ߚ ൌ 45° are stretched with the maximum rate of deformation and as the 

angular position changes, so does the magnitude of this rate, decreasing from ߛሶ ൌ ߚ ሶ௡௢௠ atߛ ൌ 45° to 

ሶߛ ൌ	0 at ߚ ൌ 0°, where all particles are not stretched nor compressed.  Then at ߚ ൌ 0°, the direction of 

the shear rate is reversed, changing from stretching to compression with a magnitude that rises from ߛሶ ൌ	0 

at ߚ ൌ 0° to ߛሶ ൌ െߛሶ௡௢௠ at ߚ ൌ െ45°	(or 315°), where the fluid particles are compressed with the 

maximum rate of deformation.  In this way, the shape of the drop changes from spherical to ellipsoidal. 

But besides this deformation there is a rotation due to the high viscosity of the drop fluid, with the 

diffusive time for the vorticity being short, meaning that the particles inside the drop start to rotate almost 

at the same with nearly equal angular velocities.  

Since a rotation is nothing but a change in the angular orientation, their position with respect to 

the principal axes of deformation changes, while the magnitude of its velocity of deformation also does as 

well. Supposing a clockwise rotation, initially the particles placed at ߚ ൌ 45° are being advected from the 

center of the drop with the maximum velocity, ߛሶ௡௢௠, but as they rotate and ߚ approaches to 0° their 

velocity of deforming is reduced and eventually when they are at ߚ ൌ 0° this velocity is 0. As the rotation 

continues, the velocity of deformation of those particles increase, but in the opposite direction; now they 

are being compressed, and they are no longer pulled but pushed to the drop center. In a similar way, the 

particles located in an angular position corresponding to compression will change with the rotation to a 

position of stretching.  

Basically, the mechanism that generates the experimental behavior is as follows: the process of 

elongation and contraction initializes at the moment of the start of the flow, are out of phase for the same 

fluid particle, and is present as long as the flow is maintained. The time-response of the drop it different, 

developing oscillations on its shape at the beginning of the flow (or transitory) but keeping a stable shape 

in the long term (or steady states). 

 

5.2.2.1	Steady	states 

The steady state deformation can be divided in two main behaviors: 

(a) A steady state deformation independent of Ca, only determined by the type of flow ߙ and by the 

viscosities ratio ߣ. 

(b) A steady state deformation that depends only on the Ca applied, present for small values of Ca. 

In order to describe both behaviors, the steady state deformation independent from the capillary number is 

described first. 
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Steady state deformation independent from Ca 

With ߙ	and	ߣ fixed, if the steady state deformation reached by the drop is the same, regardless the 

value of Ca, it must be only due to the deformation and rotation imposed by the flow. Then, it can be 

analyzed without taking in count the interfacial tension contribution. During this deformation, the drop 

attains an elliptical shape with the major semi axis L	൐ r0 and the minor semi axis B	൏		r0 (see Fig. 5.38). 

Under steady state conditions, the drop shape does not change in dimensions nor orientation and therefore 

the length r of the vector ̂ݎ that follows, say Particle A through time, depends only on the angular position 

and has specific values at specific angles,	ݎ	 ൌ ߚ at ܮ	 ൌ 0°	and	ߚ ൌ 180° and 	ݎ	 ൌ ߚ at ܤ	 ൌ

90°	and	ߚ ൌ 270°. But it can be noticed that L	ൌ 	ܤ	 ൅  is the total change in the length of r ݎ∆ where ,ݎ∆

when the particle covers an angular displacement ∆ߚ ൌ  is the sum of the instantaneous ݎ∆ .2/ߨ

increments in the distance r while the particle is passing through an stretching or compression region  

ݎ∆ ൌ  ሻ times theߚሶሺߛ ሻ times the shear rateߚሺݎ ఉ proportional to the instantaneous lengthݎ݀ ఉ, withݎ݀∑

time spent by the particle in that angular position: ݀ݎఉ ∝  It is to say, the total elongation  .ݐሻΔߚሶሺߛሻߚሺݎ

 depends on the magnitude of the shear rate and on the time spent by the (௖௢௡௧௥ݎ∆ or contraction) ௘௟௢௡௚ݎ∆

particles in the stretching (or compression) regions. Given that the time in the deforming regions 

(stretching or compression) depends on the angular velocity in the form ∆ݐ ൌ  and that the particles ,߱/ߚ∆

are rotating at almost the same angular velocity, then ∆ݎ௘௟௢௡௚ ∝ ௖௢௡௧௥ݎ∆ and ߱/ߚ∆ሻߚሶሺߛሻߚሺݎ ∝ ሻߚሺݎ െ

௘௟௢௡௚ݎ∆ or ߱/ߚ∆ሻߚሶሺߛ ൌ െ∆ݎ௖௢௡௧௥ resulting in the stationary drop shape.  

 
Figure 5.38. Steady state ellipsoidal shape of the drop due to the elongation suffered  in the stretching 
region and the contraction suffered  in the compressing region. The magnitude of the elongation ∆࢘  is 
exactly the same to that in contraction െ∆࢘. The outer circumference has as radius the longest semi axis 
L and the inner circumference has as radius the shortest semi axis B.  
 

Now, the total extension appears to be function of the shear rate, ∆r ∝  but the , ߱/ߚ∆ሻߚሶሺߛሻߚሺݎ

magnitude of the angular velocity also depends on the shear rate and on the type of flow and is assumed 
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to have the form ߱ ൌ  ሻ. Besides, the distribution of the shear rate in the perimeter of theߙሶ௡௢௠݂ሺߛ

ellipsoid is assumed to be only function of the angular position and proportional to the shear rate applied 

in the form ߛሶሺߚሻ ൌ ݎ∆ ,ሻ.  Thenߚሶ௡௢௠݂ሺߛ ∝ ߚ∆	ሻߚሶሺߛ	ሻߚሺݎ ߱⁄ ൌ   or	ሻሻߙ݂ሺ	ሶ௡௢௠ߛሺ/ߚ∆	ሻߚ݂ሺ	ሶ௡௢௠ߛ	ሻߚሺݎ

∆r ∝ ݎ∆ ሻ which can be written asߙሺ݂/ߚ∆	ሻߚሻ݂ሺߚሺݎ ∝ ଵ݂ሺݎ, ,ߙ   .ߚ∆	ሻߚ

In this way, it can be seen that the steady state deformation does not depend on the shear rate 

applied, and is only a function of the type of flow (for ߣ fixed) that also determines both the distribution 

of the shear rate on the perimeter of the ellipsoid and the proportion of the angular velocity to the shear 

rate applied.  An increase in the shear rate would imply a large velocity of elongation and contraction but 

with these increase there is also a proportional rise in ߱ reflected in a lower time in the regions of 

stretching and compression and hence the steady state deformation remains constant.  The only effect of 

this increase is a drop spinning faster. 

Steady state deformation dependent on the Ca 

The equilibrium deformation, independent from Ca, occurs only when the contribution due to the 

interfacial tension on the drop deformation is not taken into account; as mentioned before, this is only 

possible for high Ca values.  For low Ca, the steady state deformation depends on the applied Ca, this 

behavior being the result of the time-scales of the deformation mechanisms.  The relaxation time-scale 

(due to interfacial tension) is given by ݐ௥ ൌ ଴ሺ1ߤ ൅ ଴ݎሻߣ ⁄ߪ 	, which is the time spent by the interfacial 

tension to modify (retract) the drop geometry. On the other side, the time scale for the deformation (and 

rotation) by the flow field is given by ݐ௙ ൌ  ሶ௡௢௠: the time for the elongation (caused by the stretching)ߛ/1

and for the contraction (caused by the rotation).  Now, the capillary number defined as ܽܥ ൌ ଴ݎሶߛଵߤ ⁄ߪ  can 

be written in the form: ܽܥ ൌ ሺݐ௥/ݐ௙ሻߣ/ሺ1 ൅  ሻ orߣ

ሺ1ܽܥ ൅ ሻߣ

ߣ
	ൌ 	

time	for	retraction	via	interfacial	tension
time	of	retraction	via	the	ϐlow	ϐield

,																																	ሺ5.14ሻ 

 

i.e., a relationship between the characteristic time of relaxation and the characteristic time of the flow. 

This expression is valid when ߣ ≫ 1, because the diffusion of the vorticity and, in consequence, the 

reorientation of the particles (and the retraction via rotation) also depends on ߥ଴.  This relationship means 

that when ܽܥ ≪ 1 the rotation of the drop is so slow that the time for the particles to be reoriented is long 

compared with the time of relaxation. Given this time, the particles inside cannot change of regions of 

deformation (stretching to compressing) fast enough, then they remain in the same angular position being 

elongated or contracted for long periods of time.  Despite this, an ellipsoid does not arises because it is 

contained by the interfacial tension with the consequent change in the drop geometry proportional to the 
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stresses applied by the flow, and in that way the steady state deformation depends on the Ca applied as in 

the case of low viscosities ratios.  When ܽܥ ≫ 1 then, ݐ௥ ≫  ௙, the time taken by the interfacial tension toݐ

change the drop shape becomes slow compared with the time taken by the deformation and rotation to do 

the same, i.e., the drop particles are rotated (reoriented) so fast that the deformation caused by the flow is 

canceled by the rotation in the same proportion, and the interfacial tension does not plays any roll in 

containing that deformation.  In this way, the steady state deformation is independent of Ca, and reaches 

the maximum possible.  

The maximum (critical) value of Ca at which the deformation of the drop still depends on Ca is a 

function of the type of flow, the properties of the fluids, and the drop size, apparently.  Now, when 

Ca	 ൎ 	1, all characteristics times are of the same order; thus, both contributions are important. This is 

seen more clearly in the transitory where the drop deformation time curves present overshoots in the 

deformation parameter DT and undershoots in the orientation angle ߠ, but after the transient, the steady 

state deformation still depends on Ca.  

Figures 5.39 to 5.41 present the steady state deformation and orientation values obtained with a 

TRM.  At this point, it is necessary to present a note of caution about the experiments carried out with the 

flow types ߙ ൌ 0.05 and ߙ ൌ 0.03. These results behave in an unexpected way, apparently due to effects 

of the large size of the drops used. The data used for the following discussion are under conditions 

(explained later in the drop size effects section) considered to be free of “size” effects. 

For high viscosities ratio systems and for very small capillary numbers, the steady state 

deformation depends only on the shear rate applied; for large Ca it depends only on the viscosities ratio ߣ 

and on the parameter of the type of flow ߙ values.  The steady state orientation, on the other hand, always 

depends on the applied capillary number, and unlike low viscosities value systems, it is not restricted to 

the value of the angle ߶ of the outgoing axis of the flow field.  Actually, the observed angles attain values 

below ߶ relatively fast, at very low capillary numbers, when the drop becomes oriented with the x-axis as 

Ca increases.  

Figures 5.39 to 5.41 present each a sequence of photos of the steady states, measured for the three 

types of flows and different capillary values.  The final shape attained by the drop, as well as its 

orientation, can be observed in those figures; the photos of drops corresponding to the higher capillary 

values present the same deformation but with different orientation angles.  Tables 5.1 to 5.3 present 

values of Ca and the corresponding parameters DT and ߠ of each photo on each image.  For a flow with 

ߙ ൌ 0.13, the steady state deformation reached is DT = 0.13.  For ߙ ൌ 0.05 this value decreases to DT = 

0.10 and for ߙ ൌ 0.03 it drops to DT = 0.092.  These figures show that the Ca value at which the steady 
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deformation becomes independent from Ca or when the time scale of the flow turns dominant are 

Ca ൎ 0.5 for ߙ ൌ 0.13, and Ca ൎ 0.3 for ߙ ൌ 0.05 and ߙ ൌ 0.03.  The orientation angles present 

different values for each Ca, corresponding to the lowest ߠ to the highest Ca.  

 
Figure 5.39.  Steady state drop shape and orientation attained for different capillary numbers. The drop 
has a viscosities ratio of ࣅ ൌ ૚૟	and is deformed under a flow field with ࢻ ൌ ૙. ૚૜. 
 

Table 5.2 . Steady state deformation and orientation values corresponding to Figure 5.39. 

 (a) (b) (c) (d) (e) (f) 

Ca 0.08 0.2 0.4 0.6 0.8 1.2 
DT 0.075 0.11 0.125 0.13 0.13 0.13 

θ 22.8⁰ 12⁰ 8⁰ 4.7⁰ 3.7⁰ 3⁰ 
 
 

 
Fig 5.40.  Steady state drop shape and orientation attained for different capillary numbers. The drop has 
a viscosities ratio of ࣅ ൌ ૚૟	and is deformed under a flow field with ࢻ ൌ ૙. ૙૞. 
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Table 5.3. Steady state deformation and orientation values corresponding to the Figure 5.40. 

 (a) (b) (c) (d) (e) 
Ca 0 0.26 0.5 1.0 1.2 
DT 0 0.09 0.10 0.10 0.10 
θ - 8.18⁰ 4.37⁰ 2.28⁰ 1.5⁰ 

 

 

 
Figure 5.41. Steady state drop shape and orientation attained for different capillary numbers. The drop 
has a viscosities ratio of ࣅ ൌ ૚૟	and is deformed under a flow field with ࢻ ൌ ૙. ૙૜. 

 

Table 5.4. Steady state deformation and orientation values corresponding to the Figure 5.41. 

 (a) (b) (c) (d) (e) (f) 
Ca 0.04 0.11 0.22 0.33 0.44 0.87 
DT 0.05 0.07 0.08 0.09 0.092 0.092 
θ 29⁰ 16.3⁰ 9.3⁰ 6.1⁰ 6⁰ 2.6⁰ 

 

Figure 5.42 is a comparison of the steady state orientation angle as a function of the capillary 

number, for the flow types of this work and experimental data for ߙ ൌ 0.2 from Bentley and Leal (1989b).  

The orientation does not appear to be very sensitive to the parameter of type of flow ߙ.  For the same 

capillary number, only small differences are observed in the steady state orientation, with the ߠ values a 

little higher for the most elongational flow (ߙ	0.13 =).  The plot shows that the angle also becomes 

independent from Ca but at higher values, ܽܥ	 ൐ 1.75, approaching the limit ߠ ൌ 0° when ܽܥ	 ൐൐ 1.  This 

value seems to be common for all three flow types.  In general, all three flow fields have the same 

qualitative behavior.  In fact, the experimental data for the less elongational flows, ߙ ൌ 0.05 and ߙ ൌ 0.03, 

are in good agreement with the theoretical predictions of Cox (1969) for ߙ ൌ 0.  The discrepancies with 

respect to the angles for ߙ ൌ 0.2 can be due to the fact that this flow field is capable of breaking the drop 

up; in other words, it is unable to produce an effective reorientation which inhibits the deformation.   
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Figure 5.42. Steady state orientation achieved by the deformed drop under different capillary values for 
a  viscosities  ratio ࣅ ൌ ૚૟.  The orientation  angle  appears  to have  an  asymptotic behavior  toward 0° 
when  ࢇ࡯ ൐൐ 1.  The  dotted  line  is  the  steady  orientation  predicted  by  Cox  (1969)  and  it  has  a 
remarkable coincidence with the experimental values for ࢻ ൌ ૙. ૙૞ and ࢻ ൌ ૙. ૙૜. 
	

Figure 5.43 is a plot of the steady state deformation as function of the capillary number for 

different parameters of the type of flow and a viscosities ratio of the same order.  The data for ߙ ൌ 0.13, 

ߙ ൌ 0.05 and ߙ ൌ 0.03 belong to this work, while those for ߙ ൌ 0.4 and ߙ ൌ 0.2  are those of Bentley 

and Leal (1989b).  Also the maximum steady state deformation for ߙ ൌ 0 corresponding to DT = 0.085 is 

shown (Rumscheidt and Mason 1961). The figure shows that for this value of the viscosity ratio, only 

flows stronger than ߙ ൌ 0.13 are capable of breaking up drops, while flows with a parameter ߙ lower 

than that only achieve moderate deformation, which remains constant regardless the Ca applied. As 

expected, with ߣ fixed, the only way to achieve higher deformations is with a stronger flow, i.e., 

increasing the flow type parameter ߙ. 

5.2.2.2	Transitory	states 

As mentioned before, the transient phase of systems with ߣ ≫ 1 is well known to present a 

complex damped oscillatory behavior, but further than that, the detailed characteristics of such a 

particular response and its specific dependence on the properties of the fluids are barely known.  Besides, 

since the earliest theoretical approach of Cox (1969) until numerical and experimental works nowadays, 

this oscillatory behavior has been only studied for simple shear flows given that until now there was not 

any device able to produce a flow field with constant and specific values of the parameter ߙ different 
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from zero but close to simple shear.  With that, most features of the transitory stages in flow fields other 

	ߙ ൌ 	0	are still unknown.  In this section, the transient response of a spherical drop, at rest to an 

impulsively started flow field different from simple shear flow, is described. 

 
Figure 5.43.  Steady state deformation achieved by the drop under different capillary values. Flow fields 
with ࢻ ൏ 0.2 are unable to cause breakup with this viscosities ratio  instead the deformation becomes 
independent from Ca very fast and when ࢇ࡯	 ൐൐ 1 attains the limit value that only depends on the flow 
type parameter. 
	

Drop oscillations 

The drop shape oscillations come from the combined effects of  deformation and rotation, that 

together with the initial spherical shape of the drop, cause an unbalanced state. Nevertheless, this 

unbalance is reduced slowly by the interfacial tension with the drop attaining its equilibrium shape or the 

steady state deformation. 

When the flow is suddenly applied and the drop start to be elongated, this deformation begins to 

transform the drop into an ellipsoid. Those particles situated in the stretching region will be pulled away 

from the center of the drop and those in the compressing region will be pulled back to the center of the 

drop, generating the elongation of the drop in the stretching regions and a contraction in the compression 

ones.  But at the same time, the drop is being rotated and the particles are continuously changing its 

angular position, passing from a stretching to a compression region and vice versa. Analyzing the path of 

two particles placed in the perimeter of the spherical drop, one particle placed in the point a at ߚ௔ ൌ 90° 

with a distance ݎ௔ ൌ ଴ݎ  from the center of the drop, and the other particle placed in the point b at ߚ௕ ൌ 0° 
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and with ݎ௕ ൌ  ଴ Fig. 5.44. When the flow starts and the drop begins to deform and rotate in the clock wiseݎ

direction; these particles move from their original points, changing their angular position ߚ and their 

distance r from the center.  On one hand and given its position in the stretching region, the particle at a 

traces an elliptical path going away from the center of the drop and eventually when it rotates a ∆ߚ ൌ 90° 

reaches the position a’ at ߚ௔ᇱ ൌ 0°. The distance from the center at that point is now r௔ᇱ ൌ r଴ ൅ ∆r௔ᇱ. On 

the other hand, the particle at b is in the compressing region; therefore, it traces an elliptical toward the 

center of the drop.  And because both particles are rotating at the same speed, when the particle at a reaches 

a’ the particle at b reaches b’, at ߚ௕ᇱ ൌ 270°, and with a distance relative to the center ݎ௕ᇱ ൌ ଴ݎ െ ∆r௕ᇱ.   

Now, ∆r is the total displacement of the particles while they rotate	90°; 	∆r ൌ ∑݀rஒ, with ݀ݎఉ 

proportional to the instantaneous length ݎሺߚሻ, along with the shear rate ߛሶሺߚሻ and the time spent by the 

particle in each angular position,	݀ݎఉ ∝  Even when the particles in a and b start with the  .ݐሻΔߚሶሺߛሻߚሺݎ

same initial distance ݎ ൌ 	  ଴, when the flow begins, the particle in a is placed in the stretching region andݎ

then ra starts a continuous growing while the particle in b is placed in the compressing region and then rb 

starts a continuous reduction. Given that dr is proportional to the instantaneous distance, dra, it becomes 

bigger while drb becomes smaller with time. After a rotation of 90° of the particles, ∆ݎ௔ᇱ ൐  ௕ᇱ. This isݎ∆

seen as an over-deformation of the drop shape which turns into an ellipsoid with a major semi axis L 

larger than that of steady state and a minor semi axis B smaller than that of steady state. Using the Taylor 

parameter, this initial deformation is reflected in a rapid increase in DT that overshoots the steady state 

and reaches its maximum value DTmax.  It is worth mentioning that this rotation is not reflected upon the 

orientation of the major axis L, that is measured with the angle ߠ, that is independent from the angular 

position ߚ of the particles inside the drop. As the fluid elements in the drop continue rotating, they 

describe the remaining portion of the ellipsoidal movement previously carried out; i.e., due to the last 

rotation, the particle at a’ moves through the compression region and the particle in b’ traverses the 

stretching one. Then, after another 90°	rotation they reach the position a” at ߚሺܽ˝ሻ ൌ 270° and b’’, at 

௕ᇱᇱߚ ൌ 180° with r௔ᇱᇱ ൌ rୟᇱ െ ∆r௔ᇱᇱ ൌ r଴ because of ∆r௔ᇱ ൌ െ∆r௔ᇱᇱ, and r௕ᇱᇱ ൌ rୠᇱ ൅ ∆r௕ᇱᇱ ൌ r଴,  because 

of ∆rୠᇱ ൌ െ∆r௕ᇱᇱ. Now, ܮ ൌ 	 ଴ݎ 	ൌ  and the drop shape returns to its original spherical shape.  This is ,ܤ	

reflected on the DT value that falls to zero.  In the absence of the interfacial tension action, the 

deformation parameter would be oscillating in time continuously, between a maximum value DTmax and 

zero.  
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Figure 5.44.   Maximum deformation suffered at  the start‐up  flow. The drop  is  immediately deformed 
and starts to rotate in the clockwise direction.  Particles placed in the compression region are elongated 
and  those  in  the  compressing  region  are  contracted.    As  the  drop  rotates  and  the  particles  are 
reoriented, the deformation is reduced and the drop tries to return to its initial spherical shape, but at 
the  same  time,  the  interfacial  tension  adjust  the  shape  and  takes  the  drop  to  the  steady  state 
deformation. 

 

Now, this oscillatory behavior is not permanent: oscillations are damped and eventually disappear.  

The interfacial tension ߪ is responsible for such a damping.   The interfacial tension seen as an elastic 

membrane, compress the particles inside the drop with a internal pressure pi proportional to the curvature of 

the surface (or inversely proportional to the radius of the geometry): ݌௜ ൌ  ,When the drop is at rest .ݎ/ߪ

having a spherical shape, its surface has a constant radius r0 and the pressure inside the drop is also constant 

௜݌ ൌ  ଴. But when a flow is present, it deforms the drop, with zones of maximum curvatures (smallݎ/ߪ

radius at the ends of L) and zones of minimum curvatures (maximum radius at the ends of B).   

If the ellipse were fixed (without rotation) and there were variations in the outer pressure field ݌௢, 

it would result in the unbalance between the outer pressure and the inner pressure that would be 

compensated by the interfacial tension adjusting the drop geometry. For example, an increase in the outer 

pressure in the extreme of L, ݌௢௅ , is reflected in a modification in the drop shape because the higher 

curvature in L creates a high inner pressure at the extreme of L, ݌௜௅, respect to the inner pressure in B, ݌௜஻, 

this pressure gradient generates a retraction process in which the fluid inside the drop flows from the L 
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zone to the B zone resulting in the oblateness of the ellipsoid. In that way, the equilibrium between the 

outer pressure and the inner pressure is reached again (see Fig. 5.45).  

 
Figure  5.45.  Contraction process due to the action of the interfacial tension. When the pressure out of 
the drop changes, the interfacial tension modifies the drop shape to reach a new equilibrium state. 

 

In the case of the presence of oscillations described earlier, the changes in the pressure are not 

due to variations in the flow field but because of the angular movement of the particles. When they rotate 

and the parts in the ellipse with maximum curvatures (ends of the semi axis L) formed during the 

elongation passes to compression regions, the retraction of the drop will have two components, that of the 

flow and that of the interfacial tension.  In the same way, when the zones of minimum curvature (ends of 

semi axis B) passes to the stretching region they will be more elongated because of the interfacial tension 

contribution.  This contributions modify the trajectory of the particles in a’ and b’, as mentioned before, 

the particles initially at a and b after a rotation of 90° are in the positions at a’ and b’ with ݎ௔ᇱ ൌ ଴ݎ ൅   ௔ᇱݎ∆

at  ߚ௔ᇱ ൌ 0°  and  ݎ௕ᇱ ൌ ଴ݎ െ ௕ᇱߚ  ௕ᇱ  atݎ∆ ൌ 270°. The point a’ is placed in a zone of high curvature and 

as the particle continues rotating, this high curvature zone passes to a compression region and when the 

particle describes another 90° rotation, it is compressed (pushed) to the center of the drop by two 

independent mechanisms:  

i) the retraction caused by the compression region in the flow, which causes a reduction 

in ݎ௔ᇱ of magnitude െ∆ݎ௔ᇱᇱ; and  
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ii) the retraction caused by the interfacial tension ߪ due to the high curvature zone passing 

to a high pressure region, this retraction has a magnitude െ∆ݎఙ. 

At the end, with these effects combined, the particle at a’ describes an ellipsoidal trajectory 

toward a” different from that previously described.  With the contribution of the interfacial tension the 

particle reaches the point a1’’ with ߚ௔ᇱᇱଵ ൌ 270° and a distance respect to the center of the drop ݎ௔ᇱᇱଵ ൌ

ୟᇱݎ െ ௔ᇱᇱݎ∆ െ ଴ݎ ఙ, which is not the radius of the drop, but a smaller distance in the proportionݎ∆ ൌ ௔ᇱᇱଵݎ ൅

  ఙ. The same applies to the particle in b’ that describes a trajectory to b1”. The particle at b’ is stretchedݎ∆

(pulled) from the center of the drop by: 

i) the elongation caused by the stretching region in the flow, which causes an increase in ݎ௕ᇱ 

of magnitude ∆ݎ௕ᇱᇱ; and 

ii) the expansion caused by the interfacial tension ߪ and due to the low curvature zone 

passing to a low pressure region, this expansion has a magnitude െ∆ݎఙ. 

With those contributions the distance of the particle at b1’’ (with ߚ௕ᇱᇱଵ ൌ 180°) with respect to the center 

of the drop is ݎ௕ᇱᇱଵ ൌ ௕ᇱݎ ൅ ௕ᇱᇱݎ∆ ൅  ఙ, which is not the radius of the drop but a larger distance in theݎ∆

proportion ݎ଴ ൌ ௕ᇱᇱଵݎ െ   .ఙݎ∆

In that way, the final shape of the drop after a rotation of the particles of 180° from the beginning 

is not spherical but ellipsoidal, and each time that the particles rotates 90° the contractions of Lmax are 

increased by a quantity ∆ݎఙ and the elongation of the Bmin are increases in the same quantity ∆ݎఙ in such a 

way that at ∆ݎ௔ െ ఙݎ∆ → ௕ݎ∆ and ݎ∆ ൅ 	ఙݎ∆ →  the total deformation in the steady state. With this ,ݎ∆

adjustments, the deformed ellipse approaches to that of the stationary state in which at ߚ ൌ 0°	and	180°, 

௔ݎ ൌ ௕ݎ ൌ ߚ and at 	ܮ	 ൌ 90°	and	270°,  ݎ௔ ൌ ௕ݎ ൌ  Given that those compensations in deformation are .ܤ

carried out by the interfacial tension they have the characteristic times of relaxation tr which depends only 

on the properties of the fluids and on the drop size.  Thus, the duration of the transitory is independent of 

the flow conditions and depends on how fast the interfacial tension takes the drop to the equilibrium 

shape, or how fast the interfacial tension modifies the geometry from an sphere to an ellipsoid with the 

steady state deformation.  Modifying any of the properties that define the relaxation time will increase or 

reduce the transitory duration; i.e., as the interfacial tension values diminishes —with the viscosities and 

the radius of the drop fixed— the relaxation time increases, and therefore the duration of the transitory. In 

the extreme case of an interfacial tension ߪ ൌ 0, the damping will be nil and then the oscillations will 

remain for as long as the flow is maintained.  As well for the viscosities and the interfacial tension fixed, 

bigger drops will imply a longer transitory. Fig 5.46. 
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Figure  5.46.  Damping curves only as function of the drop size and the fluids properties. As pointed by 
Torza et al. (1972), in the absence of interfacial tension there would not be damping and the oscillations 
would last all the time the flow was on. 

 

Although the 2-D analysis presented would appear limited it turns out to be appropriate, given that 

it is on the x-y plane where the mayor deformations take place; actually, the oscillations are present only in 

this plane.  Even when at this moment the experimental setup only allows the visualization of the x-y plane 

and therefore only the cross section of the drop in that plane can be measured, the missing W minor semi-

axis of the ellipsoid is easily calculated.  Considering that the drop is deformed in an ellipsoid, valid for 

small deformations, the semi-axis W can be computed from the volume conservation of the original drop. 

The volume of the drop is given by  ଴ܸ ൌ ଴ݎߨ4
ଷ/3 and it must be the exactly the same volume of the 

ellipsoidal shape at all times: ଴ܸ ൌ 	ܹ Thus, the value of the W is given by .3/ܹܤܮ	ߨ4 ൌ ଴ݎ	
ଷ/ܤܮ.  Figure 

5.47 shows the evolution of the lengths of the three semi-axes of the deformed ellipsoid L, B and W, 

showing that the oscillations develop only in the semi-axes L and B; increments on L are compensated by 

reductions on B, and in that way, W remains almost constant, with a value close to the original radius 

ܹ ൎ  ଴. Also, the plot shows that initially, increments on the L semi-axis are bigger than reductions on theݎ

B semi-axis i.e. ∆ݎ௔ᇲ ൐  .௕ᇲݎ∆

The following Figures 5.48 to 5.70, show the transient oscillatory behavior observed in the 

experiments of drop deformation carried out for three TRM geometries and ߣ ൌ 0.13, 0.05	and	0.03.  

The plots presented are those corresponding to the deformation and orientation of the drop measured in 

terms of DT and ߠ.   
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Figs. 5.48 and 5.63, show the time evolution of the deformation parameter for low capillary 

numbers. In these cases, the stresses imposed by the flow are only balanced by the interfacial tension with 

a proportional change in the drop shape and therefore the steady state deformation depends on the Ca 

applied.  In order to achieve a low Ca, low shear rates were applied (with the same drop), so low that 

compared with the characteristic time of the flow, ݐ௙௟௢௪ (deformation and rotation), the characteristic 

relaxation time ݐఙ is smaller. Hence, the interfacial tension modifies (adjusts) the geometry on time, in a 

way that there is no overshoot in the curves of deformation nor undershot in the orientation ones, and 

therefore the transient has a monotonic evolution to the steady state.  

This behavior corresponds to the stability of the drop via the deformation mechanism mentioned 

by Blawzdziewicz et al. (2003) and Young et al. (2008) —see Fig. 5.36— and  was found to occur 

approximately for Ca	൏	0.1.  As Ca increases, the characteristic time of the flow becomes of the order of 

the relaxation time ݐఙ ൎ  ௙௟௢௪, and the vorticity competes with the interfacial tension in the retraction ofݐ

the drop.  Then, the overshoots in the deformation curves appears (the manifestation of the contraction via 

rotation), this happens approximately when Ca > 0.1.  And if Ca increases, the overshoots become bigger, 

with undershoots following later.  Nevertheless, at long times in the stationary state, DT still depends on 

Ca.  But, this time even when the stresses over the drop are mainly counteracted by the interfacial tension, 

there starts to be a contribution due to the vorticity.  This would represent the transition to the rotation 

stabilizing mechanism shown in Fig 5.37, but given that the time scales of the processes involved are of 

the same order, there is not a well defined division as that drawn in Fig 5.36.  Once Ca reaches certain 

 
Figure 5.47.   Evolution of  the  three semi axes of  the ellipsoidal shaped of a drop originally spherical 
with r0 = 0.7mm subjected to star up flow.  The oscillations are mainly present in the semi‐axes L and B, 
while W remains almost constant and with a value close to the original radius of the drop r0. 
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value, the overshoots and undershoots in the deformation curves are now damped oscillations and the 

stationary state deformation reached is the same, irrespective of Ca; see Figs. 5.49, 5.56 and 5.64.  These 

conditions were mentioned by Blawzdziewicz et al. (2003) and Young et al. (2008): if Ca achieves a 

characteristic value (which depends on the type of flow), the mechanism of stabilization changes from 

drop deformation to drop rotation, and higher Ca will not generate higher deformations in the drop but 

instead it will spin faster around its centroid.  The values of the characteristic capillary numbers for this 

transition for the different types of flow have been found to be ܽܥ	~	0.5 for ߙ ൌ  for 0.3	~	ܽܥ ,0.13

ߙ ൌ 0.05, and ܽܥ	~	0.25 for ߙ ൌ 0.03, even though more detailed experimental studies could be of 

assistance to determine these values with better precision.  Further increments in the capillary number are 

not reflected in the stationary deformation –because the rotation counteracts the elongation– but it is in 

the transitory stage.  

Figs. 5.49, 5.56 and 5.64 show that by increasing Ca, the maximum amplitude in the oscillations 

and its frequency also increases. The increase in Ca is done by augmenting the shear rate and higher shear 

rates means faster deformations, but due to the coupling of elongation and rotation this is rapidly 

contained; the higher the shear rate, the faster the rotation and the shorter the time of particle 

reorientation. The result is that by increasing the shear rate the frequency is also increased.  Table 

5.5		presents the maximum amplitude DTmax and the frequency of the oscillations for the three flow fields 

with a low and a high Ca value. 

Table 5.5  Maximum amplitudes and frequencies for the three flow types for low and high Ca values. 

Figure Type of flow ߙ 
Low Ca  High Ca  

Ca DTmax f   [1/s] Ca DTmax f   [1/s] 

5.50 0.13 0.5 0.18 0.03 1.5 0.23 0.1 

5.57 0.05 0.5 0.16 0.07 1.2 0.18 0.16 

5.65 0.03 0.44 0.14 0.12 0.87 0.16 0.23 

 

The data show that the higher frequencies belong to lower values of ߙ. The Figures also show 

that despite the value of Ca, the duration of the transitory is the same, because the compensations to the 

deformation made by the interfacial tension does not depends on the shear rates applied. Or in other 

words, the characteristic time of the envelope curve of damping depends only the properties of the fluids 

and on the drop size.  The plot of Fig. 5.49 belongs to a drop with radius r0 = 0.7 mm and the transitory 

phase last about 60s.  Figure 5.56 corresponds to a drop with r0 = 0.5 mm, and the damping time is about 

45s, while the smallest drop corresponding to Fig. 5.64 with r0 = 0.33 mm and with the shortest time of 

about 25s.  The effect of the drop size is also present in the plots presented in the drop size effects section.   
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The same behavior as for the damped oscillations is observed on the orientation angle curves but 

the stationary state always depends on Ca, approaching to zero as Ca increases.  Fig 5.50, 5.57 and 5.65 

are plots of the time evolution of the orientation of the mayor semi-axis L of the ellipsoid. Those Figures 

show the continuous reconfiguration of the shape suffered in the path toward the stationary state. This 

angle is always observed to depend on Ca because it is the remaining contribution of the interfacial 

tension that even when it does not modify the final drop shape, it still affects the distribution of the 

magnitude of the shear rate.  That is, it re-orientates the actual principal directions of deformation. When 

Ca becomes large enough, this contribution is diminished and eventually when ܽܥ ≫ 1 the effect 

disappears and the drop orientates with the x-axis.  In those figures it can be noticed that after the first 

undershot in the orientation angle, the ߠ value changes very fast.  This does not means a rapid rotation of 

the drop but a very fast contraction process and hence a rapid reconfiguration of the shape. Given that the 

deformation and reconfiguration are not independent, the frequency in the angle oscillations is the same to 

that corresponding to the deformation parameter. 

Plotting those curves in dimensionless time ߛሶݐ, Figs. 5.50, 5.52, 5.58,5.60 5.66 5.67 it can be seen 

that the frequency in each plot is very similar (not exactly the same), only depending on the type of flow 

(for ߣ fixed) because the oscillations are the result of the coupling of deformation and rotation and the 

rotation is reduced by increasing the flow type. The theoretical predictions of Cox (1969) describes 

dimensionless oscillations that have exactly the same frequency i.e. all the curves has its maximum 

amplitude at exactly the same dimensionless time and subsequent peaks in the oscillations occurs also at 

the same time.  Even when the experimental plots show very similar frequencies these are not the same; it 

can be noticed that the frequency does depend on Ca as well, or on the shear rate (it is the same drop).  

The maximum amplitude is reached in longer dimensionless times when the shear rates increases; 

besides, the dimensionless frequency becomes a little lower with for longer times. Those changes are the 

result of changes in the velocity of reorientation, implying a change in the vorticity to deformation ratio 

(that it was supposed to be constant for a fixed value of ߙ) showing the complexity of the dynamics of 

deformation.  Table 5.6 shows the maximum amplitude DTmax, the dimensionless time ߛሶݐ of these 

maximum, and the dimensionless frequency ݂∗ for low and high Ca for the three types of flow.  

Table 5.6 Maximum amplitudes and frequencies for the three flow types for low and high Ca 

Fig. 
Type of 

flow ߙ 

Low Ca High Ca 

Ca DTmax ߛሶݐ  f  Ca DTmax ߛሶݐ f 

5.54 0.13 0.5 0.18 5.8 0.07 1.5 0.23 7.3 0.06 

5.61 0.05 0.5 0.16 5 0.1 1.2 0.18 4.3 0.09 

5.69 0.03 0.44 0.14 3.8 0.12 0.87 0.16 4.5 0.11 
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The history of deformation may be better visualized using polar plots of the deformation parameter 

DT and the orientation angle ߠ; see Figures 5.53, 5.54, 5.60, 5.61, 5.68 and 5.69.  Figure 5.53 and 5.68 show 

that only for values of the capillary numbers lower than 0.05 a true monotonic evolution is observed toward 

the stationary state.  When ܽܥ	 ൐ 	0.05 the curves present overshoots in the deformation; this behavior also 

can be noticed in the dimensionless time evolution plots.  In Figures 5.53, 5.60 and 5.68 it can be seen the as 

Ca increases, the curves belonging to low capillary numbers only present one overshoot.  For larger values 

of Ca, the curves begin to present a spiral structure that illustrates the magnitude and nature on the damped 

oscillations.  This parametric representation shows that the number of cycles needed for the drop to reach 

the equilibrium conditions increase with Ca, reaching higher amplitudes in deformation and orientation but 

eventually falling to the same deformation state.  Note that these plots are a timeless evolution, and even 

when the drop deformation parameter develops more oscillations, the steady state is reached in the same 

time.  The figures show that in the oscillations developed, the drop reaches its maximum deformation when 

its orientation angle is barely above the stationary value.  Figs. 5.54, 5.61 and 5.69 are the polar plots for the 

highest capillary number of each experiment and where the number of cycles developed is the maximum. 

The letters in those Figures correspond to the set of pictures in Figs. 5.55, 5.62 and 5.70 respectively. Those 

pictures show the drop deformation and orientation at the points marked by the letter in the transient 

evolution. The values of the deformation and orientation parameter at that instant are listed in the Table 

below each figure.  

 
Figure 5.48.  Deformation evolution of a drop with ࣅ ൌ ૚૟ and ࢻ ൌ ૙. ૚૜ under low capillary numbers. 
For very low Ca the curves present a monotonic evolution toward the steady state but as Ca increases, 
the curves star to develop overshoots which eventually becomes oscillations. 
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Figure 5.49.  Deformation evolution of a drop with ࣅ ൌ ૚૟ and ࢻ ൌ ૙. ૚૜ under high capillary numbers. 
The curves present a damped oscillatory behavior. The effect of Ca it is only to modify the frequency and 
amplitude  of  the  oscillations  but  the  steady  state  deformation  reached  is  the  same.  Besides,  the 
envelope damping curve it is the same given that is the same drop and the damping of the oscillations is 
only function of the relaxation time. 
 

 
Figure 5.50.   Orientation angle evolution of a drop with ࣅ ൌ ૚૟ under a flow field with ࢻ ൌ ૙. ૚૜ and 
different capillary numbers.  The effect of Ca it is the same as in the deformation curves, by increasing 
Ca, higher frequencies and larger amplitudes are obtained but unlike the steady deformation, the steady 
orientation depends on the Ca value and approaches to 0° as Ca rises. 
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Figure 5.51.  Dimensionless time evolution of the deformation of a drop with ࣅ ൌ ૚૟ under a flow field 
with ࢻ ൌ ૙. ૚૜ and different capillary numbers. In this plot, the damping time and the amplitude of the 
oscillations depend on Ca, but the frequency is almost the same for all curves.  As well ,the steady state 
deformation is the same for the higher Ca.  
 

 
Figure 5.52.   Dimensionless time evolution of the orientation angle of a drop with ࣅ ൌ ૚૟ under a flow 
field with ࢻ ൌ ૙. ૚૜ and different capillary numbers.  In this plot, the amplitude of the oscillation also 
depends on Ca as well as the steady orientation.  The frequency is almost the same for all curves. 
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Figure 5.53.  Polar plot of the deformation DT vs the orientation angle ࣂ for ࢻ ൌ ૙. ૚૜, ૃ ൌ ૚૟ and low 
capillary numbers.   This plot  illustrates the oscillatory behavior that becomes present as Ca  increases. 
The curves start to show a spiral structure and the final states begin to be closer each time until for the 
higher Ca the curves have almost the same steady state. 
 

 
Figure 5.54.  Polar plot of the deformation DT vs the orientation angle ࣂ for ࢻ ൌ ૙. ૚૜, ࣅ ൌ ૚૟ and high 
capillary numbers.  This plot illustrates that by increasing Ca the number of cycles needed for reaching 
the  steady  state also  increases.    It must be observed  that even when  these  curves present different 
paths, the time taken to reach the final state it is exactly the same.  The letters in the curve for Ca = 1.5 
correspond to the images in Fig. 5.55.  
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Figure 5.55.      Images of the drop deformation and orientation at the  instants pointed  in the transient 
behavior  ploted  in  Fig.  5.54.  The  values  of  the  parameter  of  deformation  and  orientation  of  these 
images are listed in Table 5.7. 

 
 

Table 5.7. Parameters of the drop evolution at the instants marked by letters in Figs. 5.54 and 5.55. 

 (a) (b) (c) (d) (e) (f) 

 Initial shape 
Maximum 

deformation 
Minimum 

angle 
Minimum 

deformation
Maximum 

angle 
Steady 
state 

t [s] 0 4.6 9 10.33 11.6 t > 70 
DT 0 0.23 0.11 0.066 0.10 0.13 
θ -- 4.5⁰ -12.7⁰ -0.4⁰ 13⁰ 1⁰ 
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Figure 5.56.  Deformation evolution of a drop with ૃ ൌ ૚૟ under high capillary numbers and a flow field 
with હ ൌ ૙. ૙૞.  The curves present a damped oscillatory behavior.  The effect of Ca it is only to modify 
the frequency and amplitude of the oscillations but the steady state deformation reached  is the same 
for  all  Ca. Besides  the  envelope  damping  curve  it  is  the  same  given  that  is  the  same  drop  and  the 
damping of the oscillations is only function of the relaxation time. 
 

 
Figure 5.57.   Orientation angle evolution of a drop with ૃ ൌ ૚૟ under a flow field with હ ൌ ૙. ૙૞ and 
different capillary numbers.  The effect of Ca it is the same as in the deformation curves, by increasing 
Ca, higher frequencies and larger amplitudes are obtained but unlike the steady deformation, the steady 
orientation depends on the Ca and approaches to 0° as Ca rises. 
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Figure 5.58.  Dimensionless time evolution of the deformation of a drop with ૃ ൌ ૚૟ under a flow field 
with હ ൌ ૙. ૙૞ and different capillary numbers.  In this plot, the damping time and the amplitude of the 
oscillations depend on Ca, but the frequency is almost the same for all curves. As well, the steady state 
deformation is the same. 
 

 
Figure 5.59.   Dimensionless time evolution of the orientation angle of a drop with ૃ ൌ ૚૟ under a flow 
field with હ ൌ ૙. ૙૞ and different capillary numbers.   In this plot, the amplitude of the oscillation also 
depends on Ca as well as the steady orientation.  The frequency is almost the same for all curves 
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Figure 5.60.  Polar plot of the deformation DT vs the orientation angle ࣂ for ࢻ ൌ ૙. ૙૞, ࣅ ൌ ૚૟ and low 
capillary numbers.   This plot  illustrates the oscillatory behavior that becomes present as Ca  increases. 
The curves start to show a spiral structure and the final states begin to be closer each time until, for the 
higher Ca, the curves have almost the same steady state. 
 

 
 
Figure 5.61.   Polar plot of the deformation DT vs the orientation angle ࣂ for ࢻ ൌ ૙. ૙૞, ࣅ ൌ ૚૟ and a Ca 
= 1.2.   This plot  illustrates how by  increasing Ca the number of cycles needed for reaching the steady 
state also increases.  The letters in the curve correspond to the images in Fig. 5.62. 
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Figure 5.62.      Images of the drop deformation and orientation at the  instants pointed  in the transient 
behavior plotted  in Fig. 5.61.   The values of  the parameters of deformation and orientation of  these 
images are listed in Table 5.8. 

 

 

 

 

Table 5.8. Parameters of the drop evolution at the instants marked by letters in Figs. 5.61 and 5.62. 

 (a) (b) (c) (d) (e) (f) 

 Initial shape
Maximum 

deformation 
Minimum 

angle 
Minimum 

deformation
Maximum 

angle 
Steady 
state 

t [s] 0 3.1 5.8 6.6 7.4 t > 30 
DT 0 0.186 0.077 0.043 0.078 0.10 
θ -- 3.9⁰ -15.8⁰ 1.89⁰ 16.5⁰ 1.5⁰ 
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Figure 5.63.   Evolution of the deformation parameter of a drop with ࣅ ൌ ૚૟ and ࢻ ൌ ૙. ૙૜ under low 
capillary numbers.  For very low Ca the curves present a monotonic evolution to the steady state but as 
Ca increases, the curves star to develop overshoots which eventually becomes oscillations. 
 

 
Figure 5.64.   Deformation evolution of a drop with ࣅ ൌ ૚૟ and ࢻ ൌ ૙. ૙૜ under high capillary numbers. 
The curves present a damped oscillatory behavior.   The effect of Ca  it  is only to modify the frequency 
and amplitude of  the oscillations but  the steady state deformation  reached  is  the same.   Besides  the 
envelope damping curve it is the same given that is the same drop and the damping of the oscillations is 
only function of the relaxation time. 
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Figure 5.65.   Orientation angle evolution of a drop with ࣅ ൌ ૚૟ and ࢻ ൌ ૙. ૙૜ under different capillary 
numbers.    The  effect  of  Ca  it  is  the  same  as  in  the  deformation  curves,  by  increasing  Ca,  higher 
frequencies  and  larger  amplitudes  are  obtained  but  unlike  the  steady  deformation,  the  steady 
orientation depends on the Ca and approaches to 0° as Ca rises. 
 

 
Figure 5.66.   Dimensionless time evolution of the deformation parameter of a drop with ࣅ ൌ ૚૟   and 
ࢻ ൌ ૙. ૙૜ under a flow field with and different capillary numbers.  The damping time and the amplitude 
of the oscillations depend on Ca, but the frequency is almost the same for all curves. As well, the steady 
state deformation is the same for the higher Ca. 
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Figure 5.67.  Dimensionless time evolution of the orientation angle of a drop with ࣅ ൌ ૚૟ and ࢻ ൌ ૙. ૙૜ 
and different capillary numbers.  In this plot, the amplitude of the oscillation also depends on Ca as well 
as the steady orientation.  The frequency is almost the same for all curves. 

 
Figure 5.68.  Polar plot of  the deformation DT vs  the orientation angle ࣂ  for ࢻ ൌ ૙. ૙૜, ࣅ ൌ ૚૟ and 
different capillary numbers.   This plot  illustrates  the oscillatory behavior  that becomes present as Ca 
increases.   The curves start to show a spiral structure and the final states begin to be closer each time 
until for the higher Ca the curves have almost the same steady state 
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Figure 5.69.  Polar plot of the deformation DT vs the orientation angle ࣂ for ࢻ ൌ ૙. ૙૜, ࣅ ൌ ૚૟ and the 
highest capillary numbers.   This plot  illustrates that by  increasing Ca the number of cycles needed for 
reaching the steady state also increases.  The letters in the curve correspond to the images in Fig. 5.70. 
 

 
Figure 5.70.      Images of the drop deformation and orientation at the  instants pointed  in the transient 
behavior  ploted  in  Fig.  5.69.  The  values  of  the  parameter  of  deformation  and  orientation  of  these 
images are listed in Table 5.9. 

 

Table 5.9. Parameters of the drop evolution at the instants marked by letters in Figs. 5.69 and 5.70. 

 (a) (b) (c) (d) (e) (f) 

 Initial shape 
Maximum 

deformation 
Minimum 

angle 
Minimum 

deformation
Maximum 

angle 
Steady 
state 

t [s] 0 2.26 3.86 4.66 5.26 t > 30 
DT 0 0.162 0.09 0.043 0.08 0.092 
θ -- 4.6⁰ -13.1⁰ -3.3⁰ 15⁰ 2.6⁰ 
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The effects of  vorticity on the deformation dynamics are seen in the following Figures, which are 

comparisons between the transient phases of the three flow field types.  The effect of the flow type on the 

deformation and orientation is independently seen in the dimensionless time evolution curves of Figs. 

5.71 to 5.75.  Observing Fig. 5.71, it can be seen that, as previous results show, the maximum amplitude 

of the oscillations on the deformation parameter as well as the steady state deformation reached are 

proportional to the parameter of type of flow ߙ.	 The oscillations have larger dimensionless periods, 

because the angular reorientation of the particles is slower and hence, the particles remain more time 

being elongated or contracted. This period of the oscillations can be considered a characteristic of each 

flow field, given that by changing Ca the frequency is barely altered (Figs 5.51, 5.58 and 5.66).  

Figure 5.72 is a plot of the parameter of deformation re-scaled with the steady state deformation 

DT/DTsteady for each flow. This figure shows that despite the flow type, the dimensionless time for reaching 

the equilibrium state is the same. As predicted by Cox (1969), the damping of the oscillations in 

dimensionless form is independent from ߙ and proportional to 1/ሺߣ	ܽܥሻ, or in dimensional form it is 

given by the relaxation time of the drop.  This case is analogous to an experiment with: a drop size fixed, 

and where changes made to the shear rate value —in order to obtain different capillary numbers— are 

reflected as change in the frequency of the oscillations.   

Now, Figure 5.73 shows the effect of the type of flow in the orientation angle.  Whereas flows 

with less vorticity have the highest amplitudes in the oscillations of the deformation parameter, they also 

have the minimum amplitudes in the oscillations of the orientation angle.  The effect of the flow type on 

both the deformation and orientation is better illustrated in polar plots.  Figure 5.74 is a polar plot of the 

scaled deformation parameter DT/DTsteady vs the orientation angle ߠ, showing that flows with more 

vorticity increase the number of cycles needed for the drop to reach the steady state.  But besides the 

difference in the number of cycles there is also a change in the form of the curves: Fig. 5.75 shows higher 

amplitudes in deformation combined with lower amplitude in angle orientation giving as a result a 

flattening in the path of the drop toward the stationary states, with curves more peaked at the extremes 

where the elongation of the drop process changes to retraction.  These effects of the type of flows have 

been also noticed by Reyes (2005) who performed numerical simulations for highly viscosities ratio and 

different values of the parameter of type o flow.  The results of Reyes were obtained for a viscosity ratio 

ߣ ൌ 25 and his plots show curves with less pronounced differences, which might indicate that the effect 

of the flow type reduces with increments of the viscosities ratio.  The latter scenarios agree well, given 

that for each flow type there is a critical value of ߣ at which breakup is possible; that is, in which an 

oscillatory behavior is not present. 
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Figure 5.71.   Evolution of the deformation parameter DT for the three types of flow.   The effect of the 
increase in the flow type parameter in the transient phase, it is to increase the amplitude and period of 
the oscillations developed.  In  the stationary state  it  is seen  that  flow  fields with  less vorticity  (higher 
values of ࢻሻ can achieve higher steady state deformations. 
 

 
 

 
Figure 5.72.   Evolution of the scaled deformation parameter DT/DTsteady for the three types of flow. This 
plot shows the duration of the transient phase is not affected by the flow type because in dimensionless 
time it only depends on the capillary number and the viscosities ratio. 
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Figure 5.73.   Evolution of the orientation angle ࣂ for the three types of flow.  The plot shows that as in 
the  deformation  parameter,  the  flow  type  also  affects  the  amplitude  and  period  of  the  oscillations 
during the transient,  but unlike the deformation parameter, the amplitude of the oscillations reduces as 
 ࢻ increase  and  the  flows with more  vorticity  present  the maximum  undershoots  (or  the minimum 
angles), besides the plots also shows that the steady state orientation only depends on Ca. 
 

 

Figure  5.74.   Polar plot of the scaled deformation parameter DT/DTsteady vs the orientation angle for the 
three types of flow.  This plot shows that even the duration of the transient phase does not depends on 
the  flow  type,  the number of  cycles needed  to  reach  the  steady  state  increases  for  flows with more 
vorticity. 
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Figure 5.75.   Polar plot of the deformation parameter DT vs the orientation angle ࣂ, for the three types 
of flow.   This plot shows more clearly the effect of the flow type parameter in both the orientation and 
deformation, higher values of ࢻ imply higher amplitudes in the deformation but lower amplitudes in the 
orientation which derives  in more  flattened curves.   The plot also shows that  in the steady state, the 
flow type parameter affects only the deformation and has a minimum effect on the orientation. 
	

5.2.2.3	Drop	size	effects 

Even when there is no exact solution for the dynamics of the deformation of drops immersed in 

flows with vorticity and with high viscosities ratios, the general features of these systems are known and 

they can be used as a benchmark for experimental studies.  Is in this way that, once the raw data of the 

experiments for the flows fields with ߙ ൌ 0.03 and ߙ ൌ 0.05 were analyzed, some discrepancies were 

noted in relation to the maximum steady state deformation. The results are not consistent with respect to 

those expected.  Since for high viscosities ratio, DT only depends on ߣ and ߙ, it was expected that with ߣ 

fixed, each flow type had one characteristic maximum steady state deformation.  However, a different 

value was observed of this parameter for each experiment carried out; i.e., the drop deformation, under 

the same conditions (ߣ,  ,attains different steady state deformation values. On the other hand ,(ܽܥ	and	ߙ

the steady state orientation appears consistent for all experiments. 

When the experiments for the flow types with ߙ ൌ 0.03 and ߙ ൌ 0.05 were carried out, the 

corresponding to the flow type with ߙ ൌ 0.13 had already been performed because this flow was used for 

the equipment testing. With that, a reference had been established and it was expected that the 
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associated with the change of flow type.  Three main features of the expected results are recalled in order 

to establish the discrepancies and similarities found; the results obtained for the flow type with ߙ ൌ 0.13 

are used to establish the reference. In this manner, for the experiments in flow fields with vorticity 

different from zero, it is expected that: 

 When ߣ exceeds a critical value, the flow is unable to cause breakup and then the drop attains a 

maximum steady state deformation DT that is only a function of the type of flow and of the 

viscosities ratio.  With ߣ fixed, the deformation is lower in flows with higher vorticity.  For these 

flows (ߙ ൌ 0.03 and ߙ ൌ 0.05), the maximum stationary deformation must be below DT = 0.13 

—the value found for ߙ ൌ 0.13 and ߣ ൌ 16—, and above DT = 0.085 —the value found for 

ߙ ൌ 0  and	17 = ߣ by Rumscheidt and Mason (1961). 

 The steady state orientation angle approaches zero as Ca increases. In this point, there is no 

specific values expected but a similar behavior with respect to the stationary angle of ߙ ൌ 0.13. 

 When Ca reaches certain value, the stationary deformation is achieved after a damped oscillatory 

behavior, its value is the maximum possible and is no longer dependent on Ca.  For ߙ ൌ 0.13 this 

happens when Ca ~0.5 and a similar value is expected with other flow types. 

The above characteristics were all observed, except for the one corresponding to the maximum 

steady state deformation as a function of ߣ and ߙ only.  In a deformation experiment with the same drop 

and where the shear rate was stepwise increased in order to achieve higher Ca values, it was expected that 

eventually, for some shear rate the transient oscillatory behavior to be observed, and the steady state 

deformation reached after this transitory was the maximum possible, independent from the shear rate and 

common for all the experiments (for the same type of flow).  However, even when the general behavior 

was accomplished (damped oscillations, stationary angles closer to zero and a maximum value in the 

stationary deformations), it was found that the maximum stationary deformation was different for each 

experiment, i.e., for each drop.   

Thus, this difference must be an effect of the drop size.  Consequently, it is necessary, and is the 

aim of this part, to evaluate maximum steady deformations.  That is, to study the maximum steady state 

deformation for the flows with ߙ ൌ 0.03 and ߙ ൌ 0.05, and to seek a better understanding of its 

dependence on the size of the drop.  Figure 5.76 shows two plots of the time evolution of the deformation 

of experiments with the flow type ߙ ൌ 0.13, the plot to the left corresponds to a drop with d = 0.72 mm 

and the plot to the right to a drop with d = 1.4 mm.  These drop evolution shows the expected behavior: 

the maximum steady state deformation for both diameters is DT ൌ 0.13, regardless the Ca applied. The 

only difference between these plots is the damping time which depends on r0. But for the experiments 
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with the smaller flow types, this behavior does not occur.   That is, the results are different depending on 

the diameter of the drop.   

The effect of the drop size will be analyzed using the parameter of the confinement ratio d/g defined 

in the low viscosities ratio section as the ratio of the drop diameter d = 2r0 to the gap g in the TRM 

geometry.  The gap corresponding to the geometry for ߙ	0.05 = is g = 5 mm and for the geometry with 

ߙ ൌ 0.03  is g = 3 mm.  Figure 5.77 shows two plots of the time evolution of the deformation experiments 

with the flow type ߙ ൌ 0.03, the plot to the left corresponds to an drop with d = 0.62 mm, d/g = 0.2, and the 

plot to the right to a drop with d = 1.1 mm, d/g = 0.36.   The only difference between those plots should be 

the damping time of the oscillations because it depends on the drop radius.  Beyond that, the stationary 

deformation should be the same.  Observing the plots it is noted that there is a remarkable difference in the 

values achieved in both experiments, the plot with d/g = 0.2 presents a maximum steady state deformation 

of DT = 0.92 while in the plot with d/g = 0.36 this value appears to be DT ൎ 0.105.   Fig. 5.78 show the 

same case for the flow type ߙ ൌ 0.05, the plot to the left corresponds to a drop with d = 0.44 mm, d/g = 

0.09, and the plot at the right to a drop with d = 1.78 mm, d/g = 0.36, the plot with d/g = 0.09 presents a 

maximum steady state deformation of DT = 0.08 and in the plot with d/g = 0.09 DT ൎ 0.11.  These figures 

show that the behavior is qualitatively similar in all three flow fields but with a maximum steady state 

deformation proportional to the drop size.  Figs. 5.79 and 5.80 are plots of steady state deformation and 

orientation as function of the capillary number for low, medium and high confinement ratios for the flow 

types ߙ ൌ 0.05	and	ߙ ൌ 0.03, respectively.  The figures show that the stationary angle is not affected by 

the drop size (except for the lowest value of d/g in the plot for ߙ ൌ 0.03) and that the stationary 

deformations depend on the drop size characterized by the parameter d/g.  

 
Figure 5.76.   Evolution of the deformation parameter for two drops under a flow field with ࢻ ൌ ૙. ૚૜ 
and different capillary numbers.   The plot to the left corresponds to a drop with d = 0.72 mm and the 
plot to the right to a drop with d = 1.4 mm, in both plots the steady state deformation is the same DTsteady 
= 0.13 for all the capillary numbers. 
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Figure 5.77.   Evolution of the deformation parameter for two drops under a flow field with ࢻ ൌ ૙. ૙૞ 
and different capillary numbers.   The plot to the  left corresponds to a drop with d = 0.62 mm —d/g = 
0.2— and reaches a steady deformation DTsteady = 0.92.  The plot to the right corresponds to a drop with 
d = 1.1 mm or, d/g = 0.36, and has a steady deformation DTsteady = 0.105. 

 

 

 
Figure 5.78.   Evolution of the deformation parameter for two drops under a flow field with ࢻ ൌ ૙. ૙૞ 
and different capillary numbers.   The plot to the  left corresponds to an drop with d = 0.44 mm, d/g= 
0.09, and the plot at the right to a drop with d = 1.78 mm, d/g=0.36, the plot with d/g=0.09 presents a 
maximum steady state deformation of DT = 0.078 and in the plot with d/g = 0.36  DT ൎ 0.11. 
 

0 10 20 30 40
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

 Ca 0.87
 Ca 0.66
 Ca 0.55
 Ca 0.44

D
T

t [s]
0 10 20 30 40 50 60

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

 Ca 0.2
 Ca 0.36
 Ca 0.53
 Ca 0.7
 Ca 0.9
 Ca 1.1

D
T

t [s]

0 5 10 15 20 25 30
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

 Ca 0.78
 Ca 0.46
 Ca 0.23
 Ca 0.16
 Ca 0.1
 Ca 0.03

D
T

t[s]
0 10 20 30 40 50 60

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Ca 0.13
Ca 0.25
Ca 0.44
Ca 0.7
Ca 1.2

D
T

t [s]



130 
 

 
Figures 5.79.   Steady  state deformation and orientation as  function of  the  capillary number  for  low, 
medium and high confinement ratios for the flow types ࢻ ൌ ૙. ૙૞. The plot shows that the stationary 
angle  is not affected by  the drop  size and  that  the  stationary deformations depend on  the drop  size 
characterized. 
 

 
Fig 5.80.  Steady state deformation and orientation as function of the capillary number for low, medium 
and high confinement ratios for the flow types ࢻ ൌ ૙. ૙૜.   The plot shows that the stationary angle is 
only affected by  the drop size  for  the confinement  ratio d/g = 0.1 while  the  stationary deformations 
depend on the drop size for all d/g. 
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where DT is the deformation suffered by the confined drop and ்ܦ,௕௨௟௞ is the deformation reached without 

confinement effects.  Even when this equation establishes that only very small drops are not affected by 

close boundaries, literature points out that the confinement effect is relevant when d/g > 0.3 (Vananroye 

et al. 2006a).  Shapyra and Haber (1990) showed as well, that the effect is always to raise the values of 

the deformation in a continuous way i.e., ݀ଶሺ்ܦሻ ݀ሺ݀/݃ሻଶ⁄ ൐ 0 for all d/g values.   

Consequently, drop-size effects should only be reflected by a continuous increase in the drop 

deformation, ruled by a cubic behavior.  Fig. 5.81 is a plot of the maximum steady state deformation data 

as function of the confinement parameter for the two flows, it shows that the dependence of the maximum 

stationary deformation is not a linear function of the drop size and the best fitted curve is a cubic order 

polynomial, which at first instance agrees with general theory.   

 
Figure  5.81.      Maximum  steady  state  deformation  data  as  function  of  the  confinement  ratio  for 
ࢻ ൌ ૙. ૙૜ and ࢻ ൌ ૙. ૙૞.        It shows that the dependence of the maximum stationary deformation  is 
not a linear function of the drop size and the best fitted curve is a cubic order polynomial. 

But the fitted curves on the plot are not at all as predicted: those curves have a zone with 

݀ଶሺ்ܦሻ ݀ሺ݀/݃ሻଶ⁄ ൏ 0, and unlike expected results, the deformation is not independent from d/g.  That is, 

for a typical experimental curve of confinement effects, that derivative has a value very close to zero in 

the range of 0 ൏ ݀/݃ ൏ 0.3 approximately. According to Fig. 5.81, ݀ሺ்ܦሻ ݀ሺ݀/݃ሻ⁄ ൌ 0 when the 

confinement parameter d/g has a value close to 0.3, that means that in that point the deformation suffered 

by the drop is only due to the flow conditions or that DT = DT,bulk.  The plot shows that when ݀/݃	~	0.3, 
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the deformations of the two flow types are almost the same; even more, for ߙ ൌ 0.03 the deformation 

seems to be higher than that for ߙ ൌ 0.05, which cannot be possible (in absence of confinement effect). 

Then, it is necessary to make some other considerations. Fortunately, there are some previous 

useful experimental results that can be used as reference parameters.  Thus, knowing that: the maximum 

steady state deformation in absence of confinement effects, DT,bulk, is a value that only depends on the 

viscosities ratio ߣ and on the type of flow ߙ; and that for the same ߣ, DT,bulk rises as ߙ increases while for 

the same ߙ DT,bulk diminishes as ߣ rises. The considerations made in order to decide the value of 

maximum steady state deformation for the parameters of type of flow ߙ ൌ 0.03 and ߙ ൌ 0.05  without 

effect of the drop size, are: 

 DT,bulk for ߙ ൌ 0.05 must be higher than DT,bulk for ߙ ൌ 0.03 for the same viscosities ratio. 

 Rummscheid and Mason (1961), reported a value of DT,bulk = 0.085 for a drop with 17 = ߣ deformed 

under simple shear flow, ߙ ൌ 0. Therefore, for flows with 	ߙ ൌ 0.03 and ߙ ൌ 0.05 with a 

viscosities ratio 	ߣ ൌ 16, DT,bulk  might be higher than DT  = 0.085.  

 Since a flow with ߙ ൌ 0.13 and ߣ ൌ 16 has a DT,bulk = 0.13, in flows with ߙ ൌ 0.03 and ߙ ൌ 0.05 

and the same viscosities ratio, the DT,bulk must be lower than D = 0.13. 

 Cox theory (Cox 1969) predicts a DT = 0.079 and even when it has been showed here that its 

predictions have an excellent qualitative agreement with experiments, it is well know that Cox 

deformation values are below the experimental ones, which supports the lower limit taken from 

Rummscheidt and Mason (1961). 

 In general, the literature report that the confinement effects are important when ݀/݃	 ൐ 0.3	and 

therefore the values of DT,bulk  for 	ߙ ൌ 0.03 and ߙ ൌ 0.05 must belong to values where d/g < 0.3. 

Under those considerations, it was decided that the values taken as the maximum steady drop 

deformation for the types of flow are: DT bulk = 0.092 for  ߙ ൌ 0.03, and DT bulk = 0.10 for  ߙ ൌ 0.05; see 

Fig. 5.82. 

The increase in the drop deformation is explained by the near-walls effect and is consistent with the 

behavior reported in the literature, but the observed decrease is unexpected and, in fact, a behavior that 

theoretically should not happen. Then, a plausible explanation could be due to the experimental device, 

and goes as follows. It was established that for ߣ ≫ 1, the drop deformation is only determined by the 

value of the parameter of type of flow; and the only option left is a change in the parameter of the type of 

flow ߙ linked to the drop size.   
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Figure 5.82.     Considerations made to decide the values corresponding to non confinement conditions.  
The values taken as the maximum steady drop deformation are:  DT,bulk = 0.092 for  ࢻ ൌ ૙. ૙૜ and  DT,bulk 
= 0.10 for  ࢻ ൌ ૙. ૙૞, which are pointed in the plot. 

This change can be explained in terms of an average or effective value of ߙ in the flow field 

acting to deform the drop.  The capillary number is defined as ܽܥ ൌ ሶ	ߛ	  fixed. The ߪ ଵandߤ with ,ߪ/ଵߤ	଴ݎ

only way to control Ca is by modifying the product ߛ	ሶ  ଴. Thus, it is clear that the smallest drops requireݎ

the highest values in the shear rate to achieve moderate values in the capillary number.  High shear rates 

imply high angular velocities in the flow cell cylinders and therefore in the bulk velocity of the drop 

movements.  Due to these higher velocities, and even when the implemented control scheme has proven 

to be very robust, the trajectories followed by any drop during its wandering about the stagnation point 

are slightly longer.  As well, the time under nominal conditions is slightly less when compared with those 

for low shear rates. The control scheme tracks only the center of mass of the drop and therefore these 

trajectories are independent of the drop size and depend only on the shear rate applied; when the 

trajectories of two drops with the same shear rate are compared, the maximum displacements of the drop 

centroid are of the same order of magnitude. But if the trajectories are scaled in terms of the drop 

diameter, smaller drops will have longer trajectories while bigger drops will have the shorter ones.  

When the drop is big enough, this is not a mayor problem –actually, the testing of the equipment 

during the control implementation showed that the drop deformation is insensitive to the relocation of the 

center of mass of the drop–, but when the drop is very small, the length of this trajectory is so large that at 
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some instants the drop is far away from the stagnation that it lies out of the drop circumference. In 

consequence, the drop is no longer under the action of the value of the nominal type of flow but instead a 

lower value (strictly speaking, the value of this parameter is only definite at the stagnation point of each 

flow field.).   

Figure 5.83 is a diagram of the visual field of the flow field corresponding to the maximum 

magnification of the equipment, 1.46  1.09 mm2. The figure shows the recorded experimental 

trajectories followed by the center of mass of two drops in experiments carried out with a flow field with 

ߙ ൌ 0.03 and with the same shear rate of 1 s-1.  The drops are proportionally depicted.  The smaller drop 

has a diameter of d = 0.3 mm and corresponds to the smallest value of d/g in Figs. 5.81 and 5.82: d/g = 

0.1. The larger drop has a diameter of d = 0.615 mm and corresponding to a d/g = 0.2, and whose 

deformation value was taken to determine the DT,bulk in this flow.   

 
Figure  5.83.  Scheme  of  the  visual  field  of  an  experiment,  the  recorded  experimental  trajectories 
followed  by  the  center  of mass  of  two  drops.  The  represented  drops  are  proportionally  drawn,  the 
smaller has a diameter of d= 0.3 mm and the bigger one has a diameter of d = 0.615mm. When the drop 
center is made to coincide with the farthest distance from the stagnation point marked by its trajectory, 
the smaller drop is completely out of the stagnation point whereas the bigger drop it is not. 
	

It can be seen in the Figure that for the same shear rate, when the drop center is made to coincide 

with the farthest point from the stagnation point marked by its trajectory, the stagnation point is 

completely outside the domain of the smaller drop, whereas the bigger drop case still contains it.  These 

different environments imply different mean values for the flow parameters; these environments should 
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be reflected upon the drop deformation.  Of course, due to the size, the capillary number of the smaller 

drop is half the value of the Ca for the bigger one, if the same capillary were required, then higher shear 

rates would be necessary with the consequent effect in the drop deformation. Given this situation, for 

future experiments it is highly recommended to use drops with a d/g value in the range of 0.2	 ൏	d/g	൏

	0.3, for the geometries with ߙ ൌ 0.03	and	ߙ ൌ 0.05. 

5.2.2.4	Confinement	effects 

This section present experimental data on the transient behavior for a confined drop, induced by a 

suddenly imposed flow field, with ߙ ൌ 0.03.  The confinement effect is due to the presence of nearby 

walls that modify the nominal external stress field upon the drop.  This confinement effect in transient 

phases has barely been studied, with most of the works carried out using simple shear flows: ߙ ൌ 0.  

Because of the difficulty to achieve well defined and continuous strong flow fields, the only previous 

study on confined drop deformation, under flows other that simple shear, are the numerical simulations 

performed by Reyes (2005).  Beyond that –albeit only for simple shear flows– the experimental data are 

rather few.   

Now, given the non-linearity of two-phase flows, the transient phases are complicated enough by 

themselves and adding the inherent complexities of near wall effects make them particularly difficult and 

a detailed analysis is also out of the scope of this work.  However, the following figures reveal some 

interesting features worth to investigate in a more detailed and systematic study and they are presented 

with the purpose of underlying the capabilities of the experimental setup. 

In order to study the dynamics of drop deformation in confined flows, many single drop 

experiments have been carried out in simple shear flows (Vananroye et al 2006b, 2007; Sibillo et al 

2006). Those experiments have exposed some specific effects of confinement on drop deformations for 

high viscosities ratios and are important when the confinement ratio exceeds values of 0.3: that is, a drop 

size about a third the size of the flow gap. This coincides with the results presented by Reyes (2005) who 

reported that for a confined drop with ߣ ൌ 25.8 immersed in a flow filed with ߙ ൌ 0.1, the deformation 

and orientation parameters are affected when ݀ ݃ ൐ 	0.25⁄ .  

In general the effect of confinement, when ߣ ൐ 1, enhances the deformation and reduces the 

critical Ca.   Besides, under confinement conditions in shear flows, the breakup of a drop can be achieved 

for viscosities ratios that exceed the critical value for non-confined conditions (ߣ ൐ 4ሻ. For viscosities 

ratios ranging from 0.3 to 5, confinement induces both an increase in the steady state deformation and a 

stronger alignment towards the flow direction (Sibillo et al 2006; Vananroye et al 2007).  For viscosities 
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ratios both below and above unity, the steady state deformation parameter is in agreement with the 

predictions of the theory by Shapira and Haber (1990) (Sibillo et al. 2006; Vananroye et al. 2007), but 

these theories are limited to small deformations and yield a constant orientation angle of ߠ ൌ 45°.   

Data on the transient dynamics of confined drops are scarce in the literature. On the other hand, 

numerical simulations have been capable of predicting the complete shape of highly confined drops in 

simple shear flows (Janssen and Anderson, 2007; Renardy, 2007). Sibillo et al. (2006) performed an 

experimental study of confinement drop in simple shear flows with a viscosity ratio of unity and reported 

complex oscillating transients and very elongated drop shapes.  More recently, Vananroye et al. (2008), 

studied the transient dynamics of drops in simple shear flows with different viscosities ratios and under 

different confinement ratios.  Their main conclusions are that: for high viscosities ratios, a deformation 

enhancement as well as an increased orientation towards the flow direction is seen for ݀ ݃ ൐ 	0.3⁄ ; and in 

confinement conditions, the steady state regime is reached after a longer time period respect to 

unconfined cases.  They also showed that the confinement ratio affects the overshoots developed in the 

transient stages but their conclusions are less clear in this topic.  

Figure 5.84 shows the dimensionless time evolution of the deformation parameter for different 

confinement ratios. It can be seen that the degree of confinement affects the amplitude and the 

dimensionless period of the oscillations. Also, the steady state deformation reached is enhanced. This 

effect is more accentuated on the curve corresponding to a confinement ratio d/g = 0.66.  With regards to 

the orientation angle, Fig. 5.85 shows that confinement reduces the amplitude of the oscillations and 

delays the undershoots during the transients phase, but the steady state orientation seems to be less 

sensitive to the confinement and still depends mostly on the applied Ca.  Fig 5.86 shows the plot of the 

evolution of the deformation parameter scaled with the steady state deformation DT/DTsteady, and contrary 

to the conclusion of Vananroye et al. (2008), the transitory phase duration is independent from the 

confinement ratio or from the flow conditions and only depends on the Ca (for the same ߣ). The behavior 

described by those plots is very similar to that found in the plots corresponding to the comparisons 

between the transient phases for different type of flows.  

Figure 5.84 can be compared with Fig. 5.71, in both plots the amplitude as well as the period of 

the oscillations increase and the steady state deformation is larger.  Fig. 5.85 can be compared with Fig. 

5.73 where the amplitude of the oscillations in the angle are reduced and the undershoot is delayed; 

besides in both plots the steady state orientation depends only on Ca. Comparing Fig. 5.86 with Fig. 5.72, 

it can be observed that the duration of the transient phase does not depends on the characteristics of the 

flow fields but only on the Ca (or in dimensional time, on the properties of the fluids and on the drop 
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size).  Then, the increase of the confinement ratio has the same effect that the increase of the parameter of 

the type of flow.  It means that even when the quantity of vorticity in the flow is not changed, for ߣ ≫ 1 

the confinement inhibits its action and in consequence, the capability of the flow to re-orient the particles 

diminishes.  This explains why the drop breakup is possible for viscosities ratios above the critical values 

in unbounded conditions. Fig 5.87 is the analogous to Fig. 5.75; this polar plot shows the coupling 

between the drop deformation and the drop orientation and it can be seen that with the increase in the 

confinement ratio the curves develop less cycles on its evolution toward the steady state. As in the case of 

Fig 5.75, its trace becomes narrowed at the ends with smaller amplitudes in the angle. Those plots (Fig. 

5.87 and 5.75) show that a reduction or increment in the vorticity (either by changing the quantity via 

modifying the type of flow or by inhibiting its action via confinement effects) is more evident in the drop 

deformation, whereas the drop orientation is scarcely affected. 

 

 
Figure  5.84.   Dimensionless  time  evolution  of  the  deformation  parameter  for  different  confinement 
ratios.   The degree of  confinement  increases  the amplitude and period of  the oscillations during  the 
transient,  and  enhances  the  steady  state  deformation  reached.    This  effect  is  accentuated  as  the 
confinement ratio increases. 
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Figure  5.85.    Dimensionless  time  evolution  of  the  orientation  parameter  for  different  confinement 
ratios.   The confinement  reduces  the amplitude of  the oscillations and delays  the undershoots  in  the 
transients stages but the steady state orientation seems to be less sensitive to the confinement of the 
drop and still depends almost only on the Ca applied. 
 

 
Figure 5.86.   Dimensionless time evolution of the deformation parameter scaled with the steady state 
deformation.   The transient phase duration is independent from the confinement ratio or from the flow 
conditions and only depends on the Ca (for the same ࣅ). 
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Figure 5.87.   The polar plot of deformation parameter vs the orientation angle for different confinement 
ratios.    It  shows  the  coupling  between  the  drop  deformation  and  the  drop  orientation.   With  the 
increase in the confinement ratio the curves develop less cycles on its evolution toward the steady state 
and as  in the case of Fig. 5.75  its  form becomes narrowed at the ends with smaller amplitudes  in the 
angle. 
 

Figs. 5.88 to 5.91 show the evolution of the deformation and orientation parameters for different 

values of the capillary number for the two highest confinement ratios achieved in the experiments d/g = 

0.63 and d/g=0.66.  Even though they are very similar, the effect on the drop behavior presents important 

differences.  In both cases the main effects of the confinement ratio are present during the first oscillation, 

and as Vananroye (2008) mentions, the effect increases when Ca rises.  This is clearly shown in the 

highest capillary numbers in Figs. 5.88 and 5.89 with Ca = 2.1 for d/g = 0.63 and Ca = 1.57 for d/g = 0.66 

where actually, the breakup of the drop is achieved.  The orientation angle behavior is also mainly 

affected in the first oscillation. Fig. 5.90 shows that unlike unbounded conditions (Fig. 5.65), in this case 

the curves of the evolution for the higher Ca values, crosses the zero value almost at the same time at 

ݐ ൎ ݐ for the plot with d/g = 0.63 and ݏ15 ൎ  for the plot with d/g = 0.66. But, still as in Fig. 5.65, the ݏ25

minimum values of each curve is reached faster for the higher Ca.  Fig. 5.91 shows the orientation angle 

evolution in dimensionless time and as in the previous plot, and unlike the unbounded conditions (Fig. 

5.67), the curves crosses the zero at different dimensionless times. And as in Fig. 5.67, the minimums are 

reached at longer dimensionless times.   
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Figure 5.88.   Evolution of the deformation parameter for different values of the capillary number for the 
two highest confinement ratios achieved in the experiments d/g = 0.63 and d/g = 0.66.  Even when they 
are very  similar,  the effect on  the drop behavior has  important differences.    In both  cases  the main 
effects  of  the  confinement  ratio  are  present  during  the  first  oscillation  and  as  Vananroye  (2008) 
mentions, the effect increases with Ca. 
 
 

 

 
Figure  5.89. Dimensionless  time  evolution  of  the  deformation  parameter  for  different  values  of  the 
capillary number for the two highest confinement ratios achieved in the experiments d/g = 0.63 and d/g 
= 0.66.  The plot shows that contrary to unconfined conditions, the period of the first oscillation is not 
the  same  than  the  following  oscillations  but  longer  and  this  effect  increases  with  Ca  and  the 
confinement ratio. 
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Figure 5.90.   Evolution of the orientation angle parameter.   The curves are also mainly affected in the 
first oscillation and unlike unbounded conditions  (Fig. 5.67),  the curves  for  the higher Ca, crosses  the 
zero value almost at the same time at ࢚ ൎ ૚૞ܛ for the plot with d/g = 0.63 and ࢚ ൎ ૛૞ܛ for the plot with 
d/g = 0.66. The inflexion points in the curves for the highest Ca values are clearly shown. 
 
 

 
Figure 5.91.     Dimensionless time evolution of the orientation angle parameter.     The angle curves are 
also mainly  affected  in  the  first  oscillation  and  unlike  unbounded  conditions  (Fig.  5.67),  the  curves 
crosses the zero at different dimensionless times and as in Fig. 5.67 the minimums are reached at longer 
dimensionless times.   Also as in the previous figure, the inflexion points in the curves for the highest Ca 
values are clearly shown. 

 

The evolution of the orientation angle is plotted in detail in Fig. 5.92, where the effect of the Ca 

and d/g in the first oscillation is shown.  By observing the curves corresponding to Ca = 1.4 for the two 

confinement ratios, for (a) d/g = 0.63 the minimum value is achieved at ߛሶݐ ൎ 21, with an orientation 

angle of ߠ ൌ െ5.8° and (b) in the plot for d/g = 0.66, the curve has a minimum values of ߠ ൌ െ3.4° and 

is reached after ߛሶݐ ൎ 31.  But once the first oscillation has developed, all subsequent oscillations reduce 

their period and become the same, which is almost constant for all Ca values and for the same 

confinement ratio.   
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Figure 5.92.  Detail of the evolution of the orientation angle showing the effect of Ca and d/g in the first 
oscillation.  The curves corresponding to Ca = 1.4 in the plot for d/g = 0.63 achieves the minimum value 
at ࢽሶ ࢚ ൎ ૛૚ with an orientation angle of ࣂ ൌ െ૞. ૡ° whereas and the plot for d/g = 0.66, the minimum 
value  is  ࣂ ൌ െ૜. ૝°  and  is  reached  at  ሶࢽ ࢚ ൎ ૜૚.  But  once  the  first  oscillation  has  developed,  the 
subsequent oscillations reduce its period and all they have the same (which is almost constant) for all Ca 
values in the same confinement ratio. 

 

Figure 5.93.  Polar plot of DT vs the orientation angle ࣂ for a confinement ratio d/g = 0.63 and different 
capillary  numbers.    The  breakup was  not  achieved  even with  a  Ca  =  2.1, where  although  the  curve 
present a very peaked,  the vorticity  is enough  to  stop  the growth of  the deformation  the oscillatory 
behavior makes present, taking to the drop to the same steady state. 
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Figure 5.94.  Polar plot of DT vs the orientation angle ࣂ for a confinement ratio d/g = 0.66 and different 
capillary numbers.  The inhibition of the vorticity is enough to disable the reorientation of the particles 
for Ca=1.57 and hence  the  curve  shows  an evolution  that appears develop an  spiral but  suddenly  it 
shows  an  abrupt  inflexion, meaning  that  the  drop  is  not  going  to  be  contracted  but will  continue 
elongating and eventually will break up. 
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for Ca = 1.4, but the inflexion point does not occurs and hence the angle reaches a minimum about 

ߠ ൌ 4° and begins to rise.  This is more clear in the polar plot in Fig. 5.94 where the curve for Ca = 1.57 

shows an evolution that initially appears to develop an spiral path but suddenly, when DT surpasses a 

value about 0.4 and seems that is reaching its maximum deformation, the curve shows an abrupt 

inflexion, meaning that the drop is not going to be contracted but will continue elongating. With that, it is 

shown that in a flow field with ߙ ൌ 0.03 the critical capillary number for the breakup of a drop with 

ߣ ൌ 16 is lower than Ca = 1.57 and higher than Ca = 1.4 when d/g =0.66 (a more exact value of Ca 

would require a more systematic experimentation).  It is possible that with d/g = 0.63 the breakup occurs, 

but then Ca must be higher than Ca = 2.1.  A characteristic noted that is worth emphasizing, is that the 

oscillatory behavior was never suppressed; i.e., it was not observed a transition from a damped oscillatory 

behavior to a monotonic evolution or even to a transient evolution with just one overshoot. 
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6 Interfacial tension  

In this chapter the methodology to measure the interfacial tension of the fluids based on drop 

deformation is presented.  The measuring principle is the interplay between shear-induced viscous 

stresses acting to deform drop shape and the restoring effect of interfacial tension.  Experimental data on 

drop shape under both steady-state and transient deformation were compared to classical theories of drop 

deformation, being the interfacial tension the only fitting parameter. 

6.1 Interfacial tension measurement 

Interfacial tension is an important physical property that characterizes the interfacial free energy 

between two immiscible liquids.  It plays a dominant role in multi-phase systems, such as polymer blends 

and alloys, found in many scientific and industrial applications.  Many attempts have been made to 

develop accurate and convenient techniques to measure the interfacial tension (Guido et al. 2002; Megias-

Alguacil et al. 2004; Mo et al. 2000). The general principle of these techniques is based on a balance 

between a driving force (Brownian forces, gravitational and inertia forces, or viscous forces) and a 

resistance due to the interfacial force that tends to minimize the contact area between the phases. The 

different techniques can generally be divided in two catalogues: equilibrium methods or steady states and 

dynamic methods or drop retraction.  With equilibrium methods the interfacial tension value is obtained 

by measuring the shape of the liquid-liquid interface when it is equilibrated by some external force. 

Dynamic methods make it possible to determine the interfacial tension from the time evolution shape of a 

distorted fluid particle toward its equilibrium form. The latter are based on the shape evolution of fluid 

drop from a non-equilibrium state to an equilibrated state. 
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6.1.1 Interfacial tension from steady states 

Conventional equilibrium methods (Drelich et al 2002), require the accurate measurement of the 

density difference between two liquids; however, in many cases the density difference is very small or 

inexistent. Additionally these conventional methods are not recommended for high viscous liquids 

because of the long time required for the system to reach the equilibrium. For such cases, the equilibrium 

methods, like steady state deformation (Guido et al. 2002; Megias-Alguacil et al, 2004, 2006) and steady 

state orientation (Guido et al. 2002; Megias-Alguacil et al. 2004, 2006; Rust and Manga 2002), constitute 

an alternative to the traditional ones.   Existing theories on drop deformation under simple shear flow 

were employed for calculating the interfacial tension. Even though the TRM flow type it is not simple 

shear flow, it is very close to it and those theories represents an excellent benchmark, as well as a test for 

the fluid mechanics of two-phase flows under a novel set of deformation-orientations. 

The measuring principle is the interplay between flow-induced viscous stresses, acting to deform 

drop shape, and the restoring effect of interfacial tension. An initial spherical drop placed in a low 

Reynolds number flow, deforms with a time-dependent shape and orientation until it reaches a steady-

state geometry. For a simple shear flow, the steady drop shape and orientation depends on the viscosities 

ratio and the capillary number Ca.  The steady state deformation of the drop was first analyzed by Taylor 

(1932, 1934) and can be described using the following well-known equation: 

்ܦ ൌ ܽܥ
ߣ19 ൅ 16
ߣ16 ൅ 16

ൌ ሶߛ ଴ݎ	
ଵߤ
ߪ
	
ߣ19 ൅ 16
ߣ16 ൅ 16

ൌ ௌ௟௢௣௘ܭ
் ሶߛ	  	ሺ6.1ሻ																																																		଴,ݎ	

from this Equation, the interfacial tension is then given by the slope of ்ܦ vs 	ߛሶ  :଴ in the formݎ

ߪ ൌ
ଵߤ

ௌ௟௢௣௘ܭ
் 	

ߣ19 ൅ 16
ߣ16 ൅ 16

		,																																																																				ሺ6.2ሻ 

where ܭௌ௟௢௣௘
்  is the constant value (of the slope) for Taylor´s theory.  Associated with the deformation of 

the drop under flow conditions, there is an orientation process which makes the deformed drop reach a 

certain angle θ with respect to the flow direction. This angle depends on the capillary number and 

decreases as the applied shear rate increases and the drop becomes more and more aligned with the flow 

direction. An equation relating the angle ߠ to the capillary number under steady state conditions was 

derived by Chaffey and Brenner (1967), 

ߠ ൌ
ߨ
4
െ
ሺ19ߣ ൅ 16ሻሺ2ߣ ൅ 3ሻ

80ሺ1 ൅ ሻߣ
ܽܥ ൌ

ߨ
4
െ
ሺ19ߣ ൅ 16ሻሺ2ߣ ൅ 3ሻ

80ሺ1 ൅ ሻߣ
	
ଵߤ
ߪ
γሶ  ሺ6.3ሻ																								଴,ݎ	

with ߠ in radians. From Eq. (6.3) the interfacial tension is also given by the slope of ሺ	 െ ߨ 4⁄ ሻ vs 	ߛሶ  ଴ inݎ

the form: 
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ߪ ൌ െ
ଵߤ

ௌ௟௢௣௘ܭ
஼௛஻

ሺ19ߣ ൅ 16ሻሺ2ߣ ൅ 3ሻ

80ሺ1 ൅ ሻߣ
	.																																																								ሺ6.4ሻ 

where ܭௌ௟௢௣௘
஼௛஻  is the slope constant for Chaffey and Brenner model.  Cox (1969) also developed a 

theoretical analysis and provided expressions for the steady state deformation parameter and the steady 

state orientation angle ߠ as a function of Ca and ߣ for simple shear flows.  It is important to point out that 

the most appropriate range of applicability of Cox theory is at ߣ ≫ 1 valid for small Ca vs. DT and any 

value of Ca for ߠ. The equations obtained from Eqs. (5.12) and (5.13) are: 

்ܦ ൌ
5ሺ19ߣ ൅ 16ሻ

4ሺ1 ൅ ሻଶߣሻටሺ19ߣ ൅ ቀ20ܽܥቁ
ଶ
	,																																																							ሺ6.5ሻ 

and 
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 ሺ6.6ሻ																																																											,	൰ߣ	ܽܥ

with ߠ in rad.  Eq (6.6) can be written as: 
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which presents a linear relation and then, as in previous cases, the interfacial tension can be computed as 

ߪ ൌ
19
20

ߣ	ଵߤ

ௌ௟௢௣௘ܭ
஼ 	.																																																																												ሺ6.8ሻ 

6.1.2 Interfacial tension from drop retraction 

Dynamic methods are more convenient, especially when carried out under the conditions above 

mentioned.  In our case, an additional disadvantage, important to mention, is the fact that these methods 

do not have an explicit dependence on the flow type, but only on the properties of the fluids. 

Here Three main approaches are studied in the context of flow generated by TRMs: Breaking 

Thread method (BT) (Guillermo and Demarquette 2005), Imbedded Fiber Retraction method (IFR) 

(Carriere and Cohen 1991) and Deformed Drop Retraction method (DDR) (Mo et al. 2000; Luciani et al. 

1997; Guido and Villone 1999; Son and Yoon 2001; Son and Migler 2002; Liu et al. 2005; Megias-

Alguacil et al. 2006) are included in this catalogue.  BT method (based on Tomotika’s (1935) equation) 

has the inconvenient that the conditions needed for carrying it out are not easy to attain in practical 

experiments (Son and Migler 2002).  IFR method, although it does not have the limitations of BT method, 

the mathematical model used requires some extra empirical parameters (Son and Migler 2002). 

Fortunately, the DDR method, as proposed firstly by Luciani et al. (1997) and Guido and Villone (1999) 
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overcome the limitations of BT and IFR methods.  The principle of DDR is to measure the dimensions of 

an ellipsoidal drop deformed in its evolution to a sphere shape.  

Luciani et al. (1997) and Guido and Villone (1999) measured the interfacial tension by observing 

the shape evolution of a drop initially deformed by an external shear force.   From a general equation 

derived by Rallison (1984), they get the following equation describing the evolution of a deformed drop 

—after the flow has stopped— towards an equilibrium spherical form:  

்ܦ ൌ ݁ି௧	଴்ܦ ⁄ 	,																																																																													ሺ6.9ሻ 

where 
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An equivalent equation is obtained by Mo et al., (2000), from the evolution equation proposed by 

Maffetonne et al., (1998).  In this method the drop shape is described by a symmetric, positive-definite, 

second rank tensor S whose eigenvalues Λ represent the square semi-axes of the ellipsoid that represents 

the deformed drop.  Hence to describe de drop relaxation, the shape parameter ΛଵെΛଶ is used (Mo et al. 

2000): 
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According to the definition of S, Λଵ ൌ ,ଶܮ Λଶ ൌ  ; which are the semi-axes of the ellipsoidal	ଶܤ

deformed drop.  In both cases, the retraction process is characterized by a relaxation time t, and can be 

expressed as: 

݁݌݄ܽݏ	ݐ݊ܽݐݏ݊ܫ
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again with 
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Using Luciani and Guido method, the shape is described by the Taylor deformation parameter DT 

Eq. (1.18), and using Mo et al., method, the shape is described by  

ெܦ	 ൌ ሺܮଶ െ                                                                      (6.15)	ଶሻܤ

In the process of a drop retraction, ߣ, ,	ଵߤ  can be	ߪ ଴ are constant, then we have thatݎ	and	ߪ

calculated using Eq. (6.13) in the form: 
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from the slope of the linear plot. The interfacial tension then is given by 
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6.2 Interfacial tension for low viscosities ratio 

Figure 6.1 is an example of the deformation and orientation data obtained for an experiment of a 

drop with low viscosities ratio ߣ ൌ 0.012. The transitory and steady states can be observed in the plots.  

Steady-state conditions are maintained as long as the flow is applied and once the flow is stopped the drop 

recovers its spherical shape (region of retraction in Fig. 6.1). 

 
Figure 6.1.  Deformation and orientation parameters evolution.  The plots corresponds to an experiment 
with a drop with r0 = 0.41 mm and under a shear rate ࢽሶ ൌ 1.0 s‐1 , the viscosities ratio of the system is 
ࣅ ൌ ૙. ૙૚૛ and the flow type is ࢻ ൌ ૙. ૚૜. 
 

Steady-state deformation 

Figure 6.2 shows a plot for the experimental data of the steady state deformation DT as function 

of the applied shear rate for the three types of flow and for l	 ൌ 	0.012. The figure shows a straight line 

with the slope of a linear fit from which the value of interfacial tension can be obtained using Eq. (6.2) 

with ߤଵ ൌ 5.1	Pa ∙ s, . For these plots, only the values of DT ൏ 0.2 were use —in order to ensure the 

validity of Taylor’s theory— and the condition of DT = 0 at	ߛሶ ൌ 	0 was imposed in the linear fitting. As 

expected the slope for the linear fit of a ൌ 0.13 is slightly higher than the ones for the other two flow 

types a ൌ 0.05 and a ൌ 0.03, which are the closest to simple shear flow and whose slopes almost 

overlaps.  Table 6.1 shows the values of the interfacial tension calculated from the slope of this plots as:  
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																																																																																ሺ6.18ሻ 

 
Table 6.1 Values of the interfacial tension for the canola oil and the PDMS T35. 

Flow Type α Interfacial Tension [mN/m] 

0.13 2.71 

0.05 2.79 

0.03 2.78 

 

 

Figure 6.2.  Steady‐state deformation as function of the shear rate applied and the drop size.  
 

 

Steady-state orientation 

Considering that drop orients under the action of the flow, and that the orientation angle depends 

on the capillary number, it is also possible to calculate the interfacial tension from the experimental data 

available. By observing the plots of q as function of the shear rate applied, it is clear that the most 

appropriate theory for calculating the interfacial tension is that from Chaffey and Brenner (1967) that 

presents a linear relationship between the orientation angle and the shear rate applied.  Fig. 6.3 shows a 

plot for the experimental data of the steady-state orientation as a function of the shear stress applied for 

the three flow types and l	 ൌ 	0.012.  The value of interfacial tension can be calculated from the slope of 

a linear fit and using Eq. (6.4).   For these plots —and due to large experimental uncertainties in 

measuring the orientation when the shape of the drop is close to a sphere— only values of q  between p/9 
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and 2p/9 (20°	 ൏ 	q	 ൏ 	40°) were used; and the condition of q	 ൌ 	p/4 at 	gሶ ൌ 	0 was imposed. In this 

case the difference in the drop orientation due to the flow type is more evident as can be seen in the linear 

fit of a ൌ 0.03 where the slope is slightly higher than the other two. Table 6.2 shows the values of the 

interfacial tension calculated from this plot using Eq. ( 6.4) with ߤଵ ൌ 5.1 Pa s. 

 

 
Figure 6.3.  Steady‐state orientation as function of the shear rate applied and the drop size 
 

 
Table 6.2.   Values of the interfacial tension for the canola oil and the PDMS T35 from drop orientation. 

Flow Type parameter α Interfacial Tension [mN/m] 

0.13 3.12 

0.05 2.78 

0.03 2.72 

 

Drop retraction 

Given that the retraction process is independent from the deformation process, the data for all 

experiments can be used regardless the flow type.  Unlike previous methods, in this case, it is possible to 

obtain a value of the interfacial tension every time the drop is deformed.  Each retraction process has a 

characteristic curve for the exponential relaxation.  
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When the deformation is large enough and since the deformation parameter used is only a two 

dimensional parameter, at this point it is difficult to describe the degree of distortion due to 3-D effects.  

Fig. 6.4 shows the retraction process for the longest and shortest axis of a drop, for different initial 

deformations.  Measuring the deformation with the Taylor parameter, the assumption for equal-short-axis 

is made (B = W); however, perhaps for large deformations, this condition it is not necessarily present. 

Deformed drops with unequal-short-axis vs. equal-short axis, may have different retraction traces, 

although they have the same interfacial tension. Many authors used the Taylor deformation parameter DT 

as a measure of the deformation in the retraction process, however, that this is not always the best choice, 

instead, the use of DM  in Eq. (6.15) appears to be a better option. Figs. 6.5 and 6.6 show that after 

plotting the data for ݈݊ሺܦ/ܦ଴ሻ, one can see that the distortion from a straight line increases as the initial 

deformation increases, and this effect is attenuated when the DM parameter is taken rather than Taylor 

parameter.  Nevertheless, Taylor parameter gives acceptable results when the initial Taylor deformation 

DT ൏ 	0.2; if this condition is fulfilled, there is not much difference in taking any parameter (see Fig. 6.7). 

If not the latter case, DM, has been proved to give acceptable measures of the interfacial tension Liu et al. 

(2005). 

 

 
Figure 6.4.  Retraction process of the longest and shortest axes for different initial Taylor deformations 
of the same drop, r0  = 0.4 mm and ࣅ ൌ ૙. ૙૚૛. 
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Figure 6.5.  Retraction of the drop taking Mo parameter DM for characterizing the drop shape r0 = 0.4mm 
and λ = 0.012.  The initial deformation is measured with the Taylor parameter DT. 

 

 

 
Figure 6.6.  Retraction of the drop taking Taylor parameter for characterizing the drop shape r0 = 0.4mm 
and λ = 0.012. 
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Figure 6.7. Comparison of the Taylor and Mo parameters for characterizing the drop shape r0 = 0.2 mm 
and λ = 0.012 
 

If the conditions for the experiments are mଵ and l are constant, then only one common value for 

the interfacial tension in all the measurements is obtained. Liu et al. (2005) carried out an extensive 

revision for the calculation of the interfacial tension using the DDR method, and compared their results 

with those form available in literature (obtained by different methods). They found that the retraction 

scale—or the initial deformation D0— is important for  an accurate determination of the interfacial 

tension. Liu and coworkers also found that when taking values for DT ൏ 0.2 produces acceptable 

measures (i.e. error ൏ 10 %).  

In order to calculate a more reliable value, the optimum retraction scale is ்ܦ	@	0.15. They also 

found that by choosing this scale, the effects for unequal-short-axis are small.  Figs 6.8 and 6.9 show the 

retraction process for two different drops and for different initial deformations.  It can be seen that the 

value for the interfacial tension calculated from the slope is different even for the same drop depending on 

the initial deformation.  Table 6.3 shows the value for the interfacial tension taken different values of the 

initial deformation D0 measured with the Taylor parameter. 

 
Table 6.3.  Interfacial tension between the Canola Oil and the PDMS T35 calculated from different initial 
deformations measured in terms of Taylor deformation. 

Values for D0 Interfacial tension [mN/m] Standard deviation  [mN/m] 
D0 = 0.15 2.72 0.023 
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Figure 6.8.   Drop  retraction  for  r0 = 0.4 mm and λ = 0.012. The  interfacial  tension  is  computed  from 
deformation data measured with the Mo parameter DM. 
 

 
Figure 6.9.   Drop retraction for r0 = 0.25 mm and λ = 0.012.   The  interfacial tension  is computed from 
deformation data measured with the Mo parameter DM. 
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negligible effect in the drop deformation that only depends on the ratio of viscosities and the flow field 

type, and the steady deformation is reached at relatively low capillary numbers. On the other side, the 

drop orientation has a wider range in which depends on the Ca number, which means that the interfacial 

tension plays an important role and therefore it can be used to calculate ߪ; see Fig. 6.10. 

 
Figure 6.10.  Deformation and orientation parameters evolution. Plots corresponding to an experiment 
with a drop with r0 = 0.47 mm under a shear rate ࢽሶ ൌ1.0 s‐1, the viscosities ratio of the system is ࣅ ൌ ૚૟ 
and the flow field type is ࢻ ൌ ૙. ૚૜. 
 

Steady-state orientation 

Having ߣ ൌ 16,  the most appropriate way to calculate the interfacial tension is through Eq. (6.7) 

where the orientation of the drop is strongly related with the capillary number as well as the viscosities 

ratio.  Figure 6.11 shows the values of the orientation angle for the three types of flow and the linear 

fitting for each one as well as the values for the interfacial tension obtained using Eq. (6.8) with the slopes 

of each fitted line.  In these case, the differences between them are remarkable large, even for the closest 

ones ߙ	 ൌ 	0.03 and 	ߙ	 ൌ 	0.05. 
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Figure 6.11. Steady‐state orientation for different flow types and λ = 16. 
 

Drop retraction  

As mentioned before, when the viscosities ratio is high, the maximum deformation of a drop 

depends on the value of ߙ and ߣ only when the drop surface is far enough from any frontier. Since the gap 

in the geometries for the flow types ߙ	 ൌ 	0.03 and ߙ	 ൌ 	0.05 is small and because of the drop size 

effects mentioned in Chapter 5, the retraction process may also be affected by the presence of nearby 

frontiers. So in order to avoid mistakes in the calculation of the interfacial tension due to drop size effects, 

only the retraction process obtained for the flow field type with ߙ	 ൌ 	0.13 were used.  In these case, the 

maximum deformation reached for the drops was DT =0.13.   Fig. 6.12 shows a plot for the data obtained 

during the retraction processes of a drop and the linear fit for each one, as well as the interfacial tension 

obtained from them. From that plot the average value for the interfacial tension is 3.5 mN/m  ±0.13 

mN/m. 
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Figure 6.12.  Drop retraction for r0 = 0.47 and λ = 15.9 
 

Summarizing, the theories used in equilibrium methods were developed for simple shear flow.  

Thus, the values obtained using them were only expected to be a benchmark.  Nevertheless, for low 

viscosities ratio ߣ ≪ 1, all methods have proven to produce acceptable values for interfacial tension even 

when there are differences in the values calculated.  Steady state deformation appeared to be more reliable 

than steady state orientation given that the differences found due to the flow field type are less strong than 

those for the orientation methods where the values are more dependent on the flow type. For high 

viscosities ratio	ߣ ≫ 1, steady-state orientation was the only equilibrium method that could be 

implemented and the values founded do not seem to be very accurate. The dynamic methods are most 

suitable and have some advantages over the equilibrium methods, they do not have the restriction in 

regard to the flow field type or the viscosities ratio and, on the other hand, only one experiment would be 

sufficient to obtain a useful value for the interfacial tension, whereas in equilibrium methods a 

considerable amount of data are needed for calculating a reliable value of the interfacial tension.  Table 

6.4 summarizes the results of the values of the interfacial tension for the low and high viscosities ratio 

used in this work. 
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3 -0.004 9.056 -0.09659 1.09985E 0.99974
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Table 6.4. Interfacial tension values calculated for the two viscosities ratio used in thes work. The values 
taken for the computing of the capillary number are those in the shaded cells. 

Viscosities 
ratio 

Measurement  method Flow Field Type Interfacial Tension [mN/m] 

λ=0.012 
Equilibrium 

Steady state 
Deformation 

0.13 2.71 

0.05 2.78 
0.03 2.79 

Steady state  
Orientation 

0.12 3.12 
0.05 2.78 
0.03 2.72 

Dynamic Drop retraction ---------------- 2.72 േ 0.02 

λ=16 
Equilibrium 

Steady state  
Orientation 

0.13 5 

0.05 4.2 
0.03 3.9 

Dynamic Drop retraction ---------- 3.5  േ 0.13 
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7 Conclusions 

In this work, studies of drop embedded in a fluid are carried out with a novel flow device —the 

Two-Roll Mill, capable of a wide range of flow similar to simple shear flow up to elongational flow with 

significant vorticity— that produces a history of deformations not accessible with viscometric flow or 

elongational flow of the type of four-roll mills.  The experimental implementation of a computer 

controlled TRM is firstly described.  In Chapters 2-4 the computer-controlled Two-Roll Mill flow cell is 

presented, requiring of a highly accurate device, and the implementation of the control algorithm for the 

position and maintaining of a drop under well characterized kinematic conditions.  In the second part of 

this work —Chapters 5-7— experimental results of a single drop deformation in flow fields generated 

with the TRM are presented.  

The computer-controlled TRM flow cell, presented allows studies of drop and particle dynamics 

in flow fields with values of the flow type parameter ߙ not accessible for any other device. The flow 

parameter type indicates the relative strength of the vorticity of the flow relative to the rate of 

deformation.  With this device, flows with a vorticity 6 percent less than those present simple shear flows 

are possible, up to elongational flows with a reduction of vorticity larger 60 percent.  The experimental 

characterization performed of the TRM geometries showed that the flow fields generated have a well 

defined and constant value of the flow type parameter in at the stagnation point. The continuous real-time 

control process, based on the non-linear control algorithm implemented (whose feedback is provided by 

the real-time digital image analysis) along with the computer-controlled servo motors, has proven to be 

robust enough to retain a drop in the desired region for long experimental times and under the specified 

flow conditions; besides, the results shown that this control has no effect on the deformation dynamics. 

This control process together with the high performance components of the setup, make it possible to 

perform long-time deformation experiments of drops with high accuracy. 
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The results presented show the dynamics of deformation of drops embedded in flow fields with 

ߣ for two extreme values of viscosities ratio 0.03 =	ߙ and 0.05 =	ߙ ,0.13 =	ߙ ൌ 0.012 and ߣ ൌ 16. The 

results for the low viscosities ratio present a smooth transition with respect to previous data available for 

	ߙ ൌ 	0 and ߙ	 ൌ 	0.2, with the expected critical capillary numbers values, lower than those found in 

simple shear flows and higher than the corresponding to more elongational flows.  The transient phases 

for the three flow fields present a monotonic evolution toward the steady state deformation and 

orientation.  The plots of the steady states as function of Ca show that those states are always linearly 

proportional to the Ca applied.  In those plots, a remarkable agreement between the experimental results 

for ߙ ൌ 0.13 and the Taylor theory for ߙ ൌ 0 was found. For the high viscosities ratio the behavior was 

completely different. For very low capillary numbers the transient stages presented a monotonic evolution 

with a final steady sate deformation proportional Ca, whereas for high capillary numbers, this transients 

are characterized by a complex damped oscillatory behavior and the steady states do not depend on the Ca 

anymore. Those behaviors are consequence of the non linear coupling between the drop rotation caused 

by the vorticity tensor and the elongation caused by the rate of deformation tensor. A precise division 

between one behavior and the other is not well defined and theoretically has been only studied for simple 

shear flows and the computer-controlled TRM flow cell is an excellent experimental device which brings 

a unique opportunity for the study of these highly complex transient stages where the transition from one 

behavior to another can be experimentally studied in detail for different flow fields and under well 

controlled flow conditions. Another relevant feature of the TRM device is the feasibility to perform 

detailed experimental studies on drop deformation under confinement conditions in flow fields other than 

simple shear for both steady and transient stages. This topic has recently gained importance and the 

experimental of the transitory behavior are rather inexistent.  

Another important characteristic of the TRM is that the experiments allow the measure of the 

interfacial tension, a very important parameter needed to characterize the flow conditions. Given that 

there was not available data for the interfacial tension in the fluids used, it was possible to calculate it 

with high accuracy from the relaxation stage through Deformed Drop Relaxation DDR method using the 

data provided by the TRM experiments. This method is easily applicable in the TRM and overcomes the 

problems that appear in other methods when high viscous fluids are used or when very low difference of 

densities are present. 

The present flow cell can be used to perform numerous experiments including the study of drop 

deformation and breakup for a wider range of viscosities under flow fields covered by the TRM —not 

feasible until now— or with non-Newtonian fluids. Other possible experiments include the dynamics of 

drops near walls with elongational conditions —conditions not amenable to study with earlier flow 
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devices— and with the presence of surfactants or other polymeric additives, which are of technological 

relevance. Drop phenomena analyzed with this experimental setup, are similar kinematically, from the 

point of view of the applicable boundary conditions, as well as dynamically to the slow flow 

hydrodynamics of two-phase flows trough pores and fractures. 
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