

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA OPTIMIZACIÓN DE UN COMPRESOR POR INYECCIÓN

TESIS

QUE PARA OBTENER EL TÍTULO DE

INGENIERO QUÍMICO

PRESENTA

VICTOR MANUEL, ANGULO CORREA

MÉXICO, D.F.

AÑO 2013

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

PRESIDENTE:Profesor: Audry Sánchez JavierVOCAL:Profesor: Morales Cabrera Juan MarioSECRETARIO:Profesor: Bucio Carrillo Emilio1er. SUPLENTE:Profesor: Vivaldo Lima Eduardo2° SUPLENTE:Profesor: Hernández Segura Gerardo Omar

SITIO DONDE SE DESARROLLÓ EL TEMA:

DOMICILIO PARTICULAR

ASESOR DEL TEMA:

M. EN C. JAVIER AUDRY SÁNCHEZ

SUSTENTANTE:

VICTOR MANUEL ANGULO CORREA

i. CONTENIDO

i.	CONTENIDOi							
ii.	ÍNDICE DE FIGURASiv							
iii.	ÍNE	DICE DE GRÁFICAS	v					
iv.	INE	DICE DE TABLAS	vi					
1	OB	JETIVOS	1					
1	.1	OBJETIVO PRINCIPAL	1					
1	.2	OBJETIVOS PARTICULARES	1					
2	INT	RODUCCIÓN	2					
3	AN	TECEDENTES	2					
3	.1	PROTOTIPO PREVIO	2					
3	.2	MODELOS DE COMPRESORES COMERCIALES	3					
3	.3	PRINCIPIO DE FUNCIONAMIENTO	8					
3	.4	DESCRIPCIÓN GENERAL DEL EQUIPO ANTERIOR	9					
3	.5	VENTAJAS	12					
3	.6	DESVENTAJAS	14					
4	TE	ORÍA DE LA COMPRESIÓN	14					
5	EF	ICIENCIA DE COMPRESIÓN	17					
5	.1	PROBLEMAS DE SOLUBILIDAD	18					
6	DIS	SEÑO DE EXPERIMENTOS	21					
6	.1	ALGUNOS COMPRESORES COMERCIALES	21					
6	.2	REPRODUCCIÓN DEL EXPERIMENTO ORIGNAL	23					
6	.3	BALANCE DE ENERGÍA EN EL EQUIPO	26					
6	.4	MODIFICACIONES AL SEPARADOR	37					
6	.5	CONSIDERACIONES	39					

OPTIMIZACIÓN DE UN COMPRESOR POR INYECCIÓN

	6.	6	VAI	RIABLES DE DISEÑO	10
	6.	7	CÁ	LCULOS GENERALES	11
		6.7.	1	CÁLCULO DEL FUJO DE AIRE	11
		6.7.	2	CÁLCULO DEL TRABAJO DE COMPRESIÓN	12
		6.7.	3	CÁLCULO DEL FLUJO DE AGUA	14
		6.7.	4	CONSIDERACIONES DE COMPRESIÓN MULTIETAPA	17
		6.7.	5	DISEÑO DE EXPERIMENTOS (resumen)	17
	6.	8	DE	SCRIPCIÓN EXPERIMENTAL	19
	6.	9	BO	MBAS	19
7		EX	PER	IMENTOS Y RESULTADOS	51
	7.	1	INY	ECTORES Y DIFUSORES	51
	7.	2	RE	SULTADOS GENERALES	53
8		AN	ÁLIS	SIS DE RESULTADOS	71
	8.	1	AN	ÁLISIS DETALLADO	71
		8.1.	1	VALOR ESTADÍSTICO	71
		8.1. DE	2 SCA	DEPENDENCIA DE LA PRESIÓN DE SUCCIÓN Y LA PRESIÓN DE RGA DE LA BOMBA	72
		8.1.	3	PRESIÓN MÁXIMA	74
		8.1.	4	VELOCIDAD DEL FLUIDO DE TRABAJO	75
		8.1.	5	PERIDA DE PRESIÓN DEL INYECTOR AL DIFUSOR	75
		8.1.	6	ANÁLISIS DE EFICIENCIA DEL EXPERIMENTO 2	75
		8.1.	7	ANÁLISIS DE EFICIENCIA DEL EXPERIMENTO 7	77
		8.1.	8	ANÁLISIS DE LOS EXPERIMENTOS 8, 9 Y 10	78
		8.1.	9	ANÁLISIS DEL EXPERIMENTO 11	78
		8.1.	10	ANÁLISIS DEL EXPERIMENTO 12	79

OPTIMIZACIÓN DE UN COMPRESOR POR INYECCIÓN

	8.1	11 ANÁLISIS DEL EXPERIMENTO 13 8	0
	8.2	RESUMEN DE MODIFICACIONES	4
9	CC	NCLUSIONES	5
10) E	IBLIOGRAFÍA 8	6
11	A	NEXOS 8	8

ii. ÍNDICE DE FIGURAS

Figura 1 Prototipo previo de compresor por inyección 3
Figura 2 Compresores de desplazamiento positivo (GOMEZ REYNOSO,
2002) 4
Figura 3 Compresores dinámicos (GOMEZ REYNOSO, 2002) 5
Figura 4 Eyectores, y eductores (líquido como fluido motriz) 6
Figura 5 Eyector reforzado de tobera múltiple7
Figura 6 Eyector de vapor7
Figura 7 Eyector simple líquido-líquido8
Figura 8 Perfiles de presión y velocidad a lo largo de un eyector
Figura 9 Esquema del inyector y difusor 11
Figura 10 Funcionamiento del ciclón anterior, mientras el agua permanece en
las paredes del tubo por centrifugación, el aire asciende por el centro . 12
Figura 11 Prototipo original del compresor por inyección
Figura 12 Mediciones necesarias para el balance de energía y cálculo de
trabajo de bomba
Figura 13 Mejoras al separador, se pueden apreciar depósitos de óxido en
los platos, posiblemente provenientes de la bomba
Figura 14 Nuevo diseño de separación centrífuga "tubo tangencial"
Figura 15 La superficie roja representa la zona hacia la que se desplaza el
agua, en el diseño anterior. (a) tiene mayores problemas de turbulencia
que si se dispone la entrada al ciclón completamente tangencial (b) 39
Figura 16 Esquema del funcionamiento básico del inyector difusor 40
Figura 19 Fotografía de los inyectores (lado izquierdo) y difusores (lado
derecho) utilizados en la experimentación 53
Figura 17 Esquema del diseño de eyector múltiple para cuatro eyectores y
una válvula reguladora de flujo bypass
Figura 18 Prototipo de compresor por inyección después del proceso de
ontimización 80

iii. ÍNDICE DE GRÁFICAS

Gráfica 1 Comparación de los datos obtenidos con los del experimento	
original	25
Gráfica 2 Comparación de la curva de la bomba obtenida con el balance y l	а
reportada por el fabricante	35
Gráfica 3 Datos reportados por el fabricante (PEDROLLO)®	36
Gráfica 4 Comparación de curvas características para la selección de la	
nueva bomba, entre paréntesis la potencia respectiva	50
Gráfica 8 Flujos de aire para los distintos experimentos	70
Gráfica 5 Eficiencia del trabajo de flujo y eficiencia del trabajo global en el	
experimento 2	77
Gráfica 6 Comparación de flujos de aire entre el equipo original y el	
optimizado	81
Gráfica 7 Comparación de la eficiencia entre el experimento 2 y el	
experimento 13	82

iv. INDICE DE TABLAS

Tabla 1 10
Tabla 2 Dimensiones del inyector original (T) 10
Tabla 3 Dimensiones del difusor original (T) 10
Tabla 4 Cálculo del volumen expulsado por mililitro de agua a distintas
presiones
Tabla 5 Potencia consumida en la recirculación de aire
Tabla 6
Tabla 7
Tabla 8 Datos del experimento original 24
Tabla 9 Datos del experimento reproducido
Tabla 10 28
Tabla 11 29
Tabla 12
Tabla 13 Datos calculados para la curva de la bomba a partir del balance de
Bernoulli
Tabla 14 Comparación de la regresión lineal de la curva de la bomba
Tabla 14 Comparación de la regresión lineal de la curva de la bombaobtenida experimentalmente con la obtenida de los datos del fabricante
Tabla 14 Comparación de la regresión lineal de la curva de la bomba obtenida experimentalmente con la obtenida de los datos del fabricante
Tabla 14 Comparación de la regresión lineal de la curva de la bombaobtenida experimentalmente con la obtenida de los datos del fabricante
Tabla 14 Comparación de la regresión lineal de la curva de la bomba obtenida experimentalmente con la obtenida de los datos del fabricante
Tabla 14 Comparación de la regresión lineal de la curva de la bomba obtenida experimentalmente con la obtenida de los datos del fabricante
Tabla 14 Comparación de la regresión lineal de la curva de la bomba obtenida experimentalmente con la obtenida de los datos del fabricante 33 Tabla 15 Comparación punto a punto de la curva de bomba experimental y de fabricante 34 Tabla 16 Medidas de los inyectores utilizados 51 Tabla 17 Medidas de los difusores utilizados
Tabla 14 Comparación de la regresión lineal de la curva de la bomba obtenida experimentalmente con la obtenida de los datos del fabricante
Tabla 14 Comparación de la regresión lineal de la curva de la bomba obtenida experimentalmente con la obtenida de los datos del fabricante 33 Tabla 15 Comparación punto a punto de la curva de bomba experimental y de fabricante 34 Tabla 16 Medidas de los inyectores utilizados 51 Tabla 17 Medidas de los difusores utilizados 52 Tabla 18 Resultados del experimento 1 54 Tabla 19 Resultados del experimento 2
Tabla 14 Comparación de la regresión lineal de la curva de la bomba obtenida experimentalmente con la obtenida de los datos del fabricante
Tabla 14 Comparación de la regresión lineal de la curva de la bomba obtenida experimentalmente con la obtenida de los datos del fabricante 33 Tabla 15 Comparación punto a punto de la curva de bomba experimental y de fabricante 34 Tabla 16 Medidas de los inyectores utilizados 51 Tabla 17 Medidas de los difusores utilizados 52 Tabla 18 Resultados del experimento 1 54 Tabla 20 Resultados del experimento 2 (continuación) 56 Tabla 21 Resultados del experimento 3
Tabla 14 Comparación de la regresión lineal de la curva de la bomba obtenida experimentalmente con la obtenida de los datos del fabricante 33 Tabla 15 Comparación punto a punto de la curva de bomba experimental y de fabricante 34 Tabla 16 Medidas de los inyectores utilizados 51 Tabla 17 Medidas de los difusores utilizados 52 Tabla 18 Resultados del experimento 1 54 Tabla 20 Resultados del experimento 2 (continuación) 56 Tabla 21 Resultados del experimento 3
Tabla 14 Comparación de la regresión lineal de la curva de la bomba obtenida experimentalmente con la obtenida de los datos del fabricante 33 Tabla 15 Comparación punto a punto de la curva de bomba experimental y de fabricante 34 Tabla 16 Medidas de los inyectores utilizados 51 Tabla 17 Medidas de los difusores utilizados 52 Tabla 18 Resultados del experimento 1 54 Tabla 20 Resultados del experimento 2 56 Tabla 21 Resultados del experimento 3 57 Tabla 22 Resultados del experimento 4 58 Tabla 23 Resultados del experimento 5

Tabla 25 Resultados del experimento 7	61
Tabla 26 Resultados del experimento 8	62
Tabla 27 Resultados del experimento 9	63
Tabla 28 Resultados del experimento 10	64
Tabla 29 Resultados del experimento 11	65
Tabla 30 Resultados del experimento 11 (continuación)	66
Tabla 31 Resultados del experimento 12	67
Tabla 32 Resultados del experimento 13	68
Tabla 33 Resultados del experimento 13 (continuación)	69
Tabla 34 Comparación del aprovechamiento de la bomba	73
Tabla 35 Presión máxima para el inyector T difusor T	74
Tabla 36 Presión máxima para el inyector T difusor 1	75
Tabla 37 Comparación de prototipos experimento 2 y experimento 13	84

1 OBJETIVOS

1.1 OBJETIVO PRINCIPAL

 Rediseñar y construir un compresor que mejore la capacidad y la eficiencia de compresión del prototipo existente de trabajos previos (GOMEZ REYNOSO, 2002)

1.2 OBJETIVOS PARTICULARES

- Aumentar el rango de compresión del equipo.
- Identificar y relacionar las variables de importancia en el proceso de compresión por inyección.
- Calcular la eficiencia de trabajo de compresión.

2 INTRODUCCIÓN

Una optimización es relativa a un trabajo previo y consiste en buscar la mejor manera de realizar una actividad por lo que las rutas pueden ser variadas. En la industria química una mejora marginal en el proceso lo puede hacer económicamente viable.

La mejora u optimización tiene los alcances que el diseñador decida, estos pueden ser requerimientos de proceso, normas de calidad, regulaciones ambientales, estándares de competitividad en el mercado, mejor aprovechamiento de las materias primas, entre otros.

En control, la optimización se formula alrededor de un objetivo y este depende de una o más variables, además de presentarse restricciones dentro del sistema (PERRY, Robert H.; GREEN, Don W., 2003)

Los compresores se han desarrollado para satisfacer los requerimientos de presión de gases por diversos motivos como transporte, distribución, almacenamiento y transmisión de potencia. Al buscar la optimización de este equipo se ha de tener en cuenta dichos beneficios.

Los datos se analizaron en combinación de los programas computacionales Wolfram Mathematica 7® y Microsoft Excel 2010®

3 ANTECEDENTES

3.1 PROTOTIPO PREVIO

En la Figura 1 se muestra el diseño de compresor por inyección desarrollado en un trabajo previo y que corresponde al punto de partida para la optimización

Figura 1 Prototipo previo de compresor por inyección

3.2 MODELOS DE COMPRESORES COMERCIALES

Debido al interés particular de diseñar un compresor que se separa de los modelos comerciales únicamente se mencionarán los modelos genéricos de compresores ubicando dentro de este esquema el tipo de compresor que se pretende optimizar (eyector líquido-gas o eductor de gas).

Dentro del contexto de los compresores existen variedad de tamaños tipos y modelos de acuerdo a las necesidades específicas de proceso, son equipos costosos y hay que ser cuidadosos en su mantenimiento. La presencia de altas presiones, velocidades, cambios de temperatura dentro del equipo, vibraciones, entre otros, nos hacen tener especial interés en simplificar su operación y mantenimiento.

Los métodos más usados para comprimir gases son tres, dos de flujo continuo y uno de flujo intermitente.

- Atrapar cantidades consecutivas de fluido a comprimir dentro de una cámara, reducir el volumen, por medio de aumento en la presión, y después expulsar el aire comprimido fuera del cilindro.
- Comprimir el gas mediante la acción mecánica de la rotación de impulsores o rotores de álabes, que le dan velocidad y presión al flujo de gas.
- Introducción del gas dentro de una corriente a alta velocidad, esta corriente es normalmente vapor de alta, y así convertir la alta velocidad en energía de presión.

Los compresores que usan el primer método se conocen como compresores de flujo intermitente o compresores de desplazamiento positivo, los que usan el segundo compresores dinámicos y los que usan el tercero se conocen como eyectores y eductores (GOMEZ REYNOSO, 2002).

Figura 2 Compresores de desplazamiento positivo (GOMEZ REYNOSO, 2002)

Figura 3 Compresores dinámicos (GOMEZ REYNOSO, 2002)

Figura 4 Eyectores, y eductores (líquido como fluido motriz)

Un eyector es un tipo simplificado de bomba de vacío o compresor que no tiene pistones, válvulas, rotores ni otras piezas móviles (PERRY, Robert H.; GREEN, Don W., 2003)

En términos estrictos cuando el fluido motriz es un líquido se nombra eductor (MATHEWS, 2011), también es válido usar como término genérico eyector y agregar las fases involucradas tanto del fluido de trabajo como del fluido que es arrastrado (BIRD, R. B.; STEWART, W. E.; LIGHTFOOT, E. N., 2006)

De esta forma ubicamos al compresor por inyección dentro de los eductores a dos fases (Eyector líquido-gas), como un compresor pequeño (menos de 100 HP).

En las Figura 5 6 y 7se muestran algunos diseños de eyectores, cuando se utiliza vapor como fluido de trabajo también se les llama termocompresores.

Figura 6 Eyector de vapor

Figura 7 Eyector simple líquido-líquido

3.3 PRINCIPIO DE FUNCIONAMIENTO

El núcleo de funcionamiento del equipo, el eyector, responsable de la compresión del gas, consta de tres partes

a) El inyector

Basado en el efecto Venturi, el llamado fluido de trabajo está en movimiento dentro de un conducto cerrado disminuye su presión al aumentar la velocidad después de pasar por una zona de sección transversal menor.

b) Zona de arrastre

Es una pequeña región donde el fluido de trabajo está expuesto al gas que se va a comprimir, la velocidad del fluido de trabajo permite arrastrar al gas hacia el difusor.

c) Difusor

Es la sección responsable de recuperar la presión al aplicarse el efecto Venturi a la inversa, es decir aumentando el área de sección transversal del conducto. La Figura 8 ilustra los perfiles de presión y velocidad a lo largo del eyector, tomando en cuenta que al final del dispositivo no se recupera totalmente la presión que el fluido de trabajo tenía a la entrada.

Figura 8 Perfiles de presión y velocidad a lo largo de un eyector

Se llamará presión alta a la presión correspondiente a la entrada del inyector y presión baja a la medida a la salida del difusor que como se describirá más adelante, se puede asumir como la presión de descarga de la bomba y la presión de succión respectivamente.

3.4 DESCRIPCIÓN GENERAL DEL EQUIPO ANTERIOR

En trabajos previos se utilizó un prototipo, que consta de cinco partes.

 Bomba, Proporciona el flujo de agua a presión que es alimentado al eyector se trabajó con una bomba PEDROLLO® PK65 de 0.7 HP, con la siguiente curva característica (PEDROLLO).

OPTIMIZACIÓN DE UN COMPRESOR POR INYECCIÓN

Tabla 1

flujo (l/min)	0	10	20	30	40	50
Cabeza (m)		45.0	36.0	26.0	16.0	6.0

- Intercambiador de calor. Un serpentín de tubos de cobre aletados que permite la disipación del calor generado por el equipo y un ventilador que patrocina turbulencia en el banco de tubos.
- 3. Eyector (inyector-difusor) que fue fabricado con tubería de PVC y plastilina epóxica, con las siguientes características

Tabla 2 Dimensiones del inyector original (T)

17.7	Ángulo 2 (grados)	45
10.1	Longitud de	33.2
	inyector(mm)	
3.53	Longitud de	2.3
	orificio(mm)	
90	Área del orificio	9.77
	(mm ²)	
0.20		
	17.7 10.1 3.53 90 0.20	 17.7 Ángulo 2 (grados) 10.1 Longitud de inyector(mm) 3.53 Longitud de orificio(mm) 90 Área del orificio (mm²) 0.20

*Beta (β) representa el cociente entre el díametro de boquilla y el diámetro de tubo ver sección CÁLCULO DEL FLUJO DE AGUA

Tabla 3 Dimensiones del difusor original (T)

Difusor			
Diámetro de	13.9	Diámetro de	4.42
tubo(mm)		boquilla (mm)	
Longitud de	23	Área del orificio	15.36
difusión (cm)		(mm ²)	

Figura 9 Esquema del inyector y difusor

- 4. Un deflector que canaliza el flujo de agua-aire y un separador tipo ciclón que permite la separación del agua y el aire comprimido por una serie de platos perforados que conducen el aire a una cámara superior y el agua de regreso a la bomba
- 5. Una cámara de compresión que acumula el aire que ha sido arrastrado por la corriente líquida

Figura 10 Funcionamiento del ciclón anterior, mientras el agua permanece en las paredes del tubo por centrifugación, el aire asciende por el centro

3.5 VENTAJAS

Dentro de las ventajas ya identificadas de este modelo de compresor respecto a otros están:

- El costo de los materiales de fabricación (PVC hidráulico-metal), respecto al de la mayoría de los compresores comerciales (metálicos), reduce significativamente su costo.
- La simplicidad de los elementos que lo conforman permite reducir su costo de fabricación.
- No produce fuertes vibraciones como los compresores de desplazamiento positivo.
- En ninguna parte del proceso el fluido de trabajo ni el gas, entran en contacto con sustancias lubricantes, lo que genera un gas comprimido libre de aceites.

• Los eyectores exigen muy poca atención y mantenimiento (McCabe, y otros, 1991).

Figura 11 Prototipo original del compresor por inyección

3.6 DESVENTAJAS

Por sus características las desventajas principales de este diseño son:

- Pérdidas importantes de energía por fricción.
- Calentamiento del equipo que a diferencia de otros compresores completamente metálicos puede deformar el PVC del que están hechas varias piezas.
- Si el agua (fluido de trabajo) hierve, la bomba cavita.
- El principio mismo de arrastre es un proceso friccionante.

4 TEORÍA DE LA COMPRESIÓN

Es importante diferenciar los procesos por los que se lleva a cabo la compresión, es la clave para diferenciar la forma en que trabajan los compresores y por tanto la forma de calcular su eficiencia.

En cualquier proceso continuo de compresión, la relación entre la presión absoluta, p, y el volumen V, se expresa a través de la siguiente ecuación

$$pV^n = C$$

La representación de la presión en función del volumen para cada valor de n se conoce con el nombre de curva politrópica. Dado que el trabajo W, puesto en juego para pasar de p_1 a p_2 a lo largo de cualquier curva politrópica es

$$W = \int_{p_1}^{p_2} p dV$$

De ello depende la cantidad de trabajo necesario es función de la curva politrópica que se trate y aumenta al aumentar el valor de n. (PERRY, Robert H.; GREEN, Don W., 2003).

Así se puede diferenciar tres sistemas compresión de acuerdo al valor de n

1. Compresión isotérmica

De acuerdo con la primera ley de la termodinámica se explica la compresión isotérmica en la cual el trabajo realizado para comprimir el gas es equivalente al calor extraído del mismo para mantener su temperatura constante, (LEVINE, 2004) por lo tanto se cumple que

$$Q = \Delta u + W$$

$$Q = W = \int p^* dV$$

Así por desarrollo de la ecuación para gas ideal obtenemos la expresión

$$W = p_1 * V_1 * \ln\left(\frac{p_2}{p_1}\right)$$

2. Compresión adiabática

En los procesos adiabáticos no hay intercambio de calor entre el sistema y sus alrededores por lo que $\Delta Q = 0$, en el caso de gases, el exponente n descrito en la ecuación 1 tiene el valor de n=k=Cp/Cv razón del calor específico a presión constante y el calor específico a volumen contante.

Desarrollando el cálculo de la integral para el trabajo de compresión adiabático obtenemos (SMITH, VAN NESS, ABBOOTT, 2005)

$$W = p_1 * V_1 * \frac{k}{k-1} * \left[\left(\frac{p_2}{p_1} \right)^{\left(\frac{k-1}{k} \right)} - 1 \right]$$

3. Compresión politrópica

Se puede describir como una combinación de las anteriores es decir, que no es completamente adiabática ni isotérmica, los procesos reales son por

lo general de este tipo y se modelan al proceso que más se parezca. Así n puede tomar valores mayores o menores que k

El proceso de compresión que ocurre dentro del compresor por inyección se acerca más a la compresión isotérmica, ya que la temperatura de salida del aire comprimido es apenas superior a la de entrada ya que a lo largo del difusor el agua absorbe el calor generado en la compresión y después este es disipado mediante el intercambiador de calor.

En el manual de Perry se muestran ecuaciones dimensionales para calcular la potencia de compresión (en términos de flujo de gas y potencia desarrollada) de los gases en función del trabajo isotérmico y el adiabático

Potencia isotérmica

$$kW_{isT} = 2.78 * 10^{-4} Q_1 p_1 \ln\left(\frac{p_1}{p_2}\right)$$

$$Q_{1}[=]\frac{m^{2}}{h} \quad a \text{ las condiciones de entrada}$$

$$p_{1}V_{1} = p_{2}V_{2}$$

$$p_{1}, p_{2}[=]kPa$$

Potencia adiabática

$$kW_{ad} = \frac{WH_{ad}}{10^{3}} = 2.78 * 10^{-4} \frac{k}{k-1} Q_{1} p_{1} \left[\left(\frac{p_{2}}{p_{1}} \right)^{\frac{(k-1)}{k}} - 1 \right]$$
$$Q_{1} \left[= \left[\frac{m^{3}}{h} \right] \qquad ; a \text{ las condicione s de entrada}$$
$$p_{1}V_{1}^{k} = p_{2}V_{2}^{k} \qquad \qquad k = \frac{C_{p}}{C_{v}}$$

5 EFICIENCIA DE COMPRESIÓN

Se define un número para la eficiencia de compresión de la siguiente forma:

$$\eta_{c} = \frac{trabajo \ real}{trabajo \ ideal} = \frac{W'}{W}$$

Se utilizará el cálculo para trabajo isotérmico, por ser el que más se aproxima al trabajo politrópico que está realizando el sistema

$$\eta_{c} = \frac{trabajo \; isotérmico \; necesario \; para \; comprimir \; el \; aire}{Energía \; eléctrica \; suministrada \; a \; la \; bomba} = \frac{W'}{W}$$

Debido a que se pretende hacer varias modificaciones respecto a diámetros, potencia, número de eyectores, volumen de agua, etc. esta definición de eficiencia parece ser la más adecuada.

5.1 PROBLEMAS DE SOLUBILIDAD

El fluido de trabajo es agua, que guarda una relación de solubilidad con los gases presentes en el aire de la siguiente forma (CASTELLAN, G. W., 1998).

La ley de Henry relaciona la presión parcial de un gas en la fase gaseosa que está en equilibrio con el gas disuelto en la fase líquida (HIMMELBLAU, 2002) y se puede expresar mediante la siguiente ecuación:

$$x_j = \frac{1}{K_j} * p_j$$

Donde x _j es la fracción mol del gas en el líquido, K_j la constante de Henry y p_j la presión parcial del componente j en el gas en equilibrio.

Se considerará al aire con una composición 0.21 fracción mol de oxígeno y 0.79 fracción mol de nitrógeno (HIMMELBLAU, 2002)

Ahora se procede al cálculo de K_j, en primer lugar se tienen datos del coeficiente de absorción de Bunsen α_j (CASTELLAN, G. W., 1998) para el oxígeno (0.0283) y para el nitrógeno (0.0143), que se relacionan con la constante de Henry mediante la ecuación.

$$\alpha_j K_j = \left(\frac{RT_0}{p_0}\right) \left(\frac{\rho}{M}\right)$$

Donde R es la constante de los gases,

$$T_0 = 273K$$
, $p_0 = 1atm$

 ρ es la densidad del disolvente y M su masa molar.

$$\alpha_{j}K_{j} = \left(\frac{RT_{0}}{p_{0}}\right)\left(\frac{\rho}{M}\right) = \left(\frac{0.082\frac{Latm}{Kmol}*273K}{1atm}\right) * \left(\frac{\frac{1000g}{1L}}{\frac{18g}{1mol}}\right) = 1243.66$$

Ahora se puede hacer el análisis del volumen de gas liberado por el chorro en la expansión súbita del inyector, tomando en cuenta que puede haber desviaciones de la idealidad a medida que la solución es cada vez más concentrada y no necesariamente se llega al equilibrio.

alfa*k	1243.67						
Concentración	55.56						
molar del							
agua (mol/l)							
	Fracción mol	alfa	K				
Oxígeno	0.21	0.0283	43945.82				
Nitrógeno	0.79	0.0175	71066.67				
Presión total	Componente	presión	x (fase	(moles/l	moles	volumen	Total
(atm)		parcial	líquida)	agua)	expulsados a	expulsado	(ml/ml
					0.79atm(mol/l)	(ml/l agua)	agua)
0.79	Oxígeno	0.17	3.78E-06	0.000210	0.00000	0	0.0000
	Nitrógeno	0.62	8.78E-06	0.000488	0.00000	0	
1	Oxígeno	0.21	4.78E-06	0.000265	0.00006	0.00172532	0.0057
	Nitrógeno	0.79	1.11E-05	0.000618	0.00013	0.00401356	
4	Oxígeno	0.84	1.91E-05	0.001062	0.00085	0.02637278	0.0877
	Nitrógeno	3.16	4.45E-05	0.002470	0.00198	0.0613501	
7	Oxígeno	1.47	3.35E-05	0.001858	0.00165	0.05102023	0.1697
	Nitrógeno	5.53	7.78E-05	0.004323	0.00384	0.11868663	

Tabla 4 Cálculo del volumen expulsado por mililitro de agua a distintas presiones

Con los datos anteriores y el flujo de agua del experimento 2 se puede calcular el trabajo desperdiciado en la compresión del aire que se recircula en el equipo.

Presión	volumen	Flujo de	Volumen	Potencia	Potencia	Porcentaje
total	expulsado/l	agua	recomprimido	(HP)	total con-	desper-
(atm)	agua	(I/min)	(l/min)		sumida (HP)	diciado
0.79	###	###	###	###	###	###
1	0.01	10	0.0573	0.00003	1.0200	0.003
4	0.09	21.2	1.8597	0.00668	0.9140	0.731
7	0.17	24.7	4.1917	0.02023	0.8368	2.417

Tabla 5 Potencia consumida en la recirculación de aire

6 DISEÑO DE EXPERIMENTOS

6.1 ALGUNOS COMPRESORES COMERCIALES

Se investigaron las características generales de algunos compresores comerciales para tener un marco de referencia de los caudales a suministrar y la eficiencia de los compresores.

DATOS TÉCNICOS					
REPORTADOS POR EL FABRICANTE					
Marca	Potencia	Presión	Caudal		
Atlas	0.75/1.0/1.5/2.0 HP	10 bar	1-2,5 l/s		
Сорсо	0.75/1.0/1.5/2.0 HP	0.75/1.0/1.5/2.0 HP 8 bar 1-2,5			
		10 bar	3-14 l/s		
DeWALT	1.5 HP	150 psi	2,6 SCFM		
	1.8 HP	200 psi	5,4 SCFM		
Mikel´s	3 HP	115 psi	6.2 CFM		
Truper	1.5 HP		192 lts/min		
	1 HP	90 psi	90 lts/min		
	2 HP		140 lts/min		
	3 HP		250 lts/min		
	2.5 HP	116psi	240 lts/min		
Fiac	1 HP	116psi	2,5 CFM		
(FIAC)					
	1.5 HP	116psi	3,8 CFM		

Tabla 6

De los datos reportados por los fabricantes hay que obtener la eficiencia de compresión recordando que la mayoría de estos compresores son intermitentes, de diferentes diseños y que en la realidad los procesos de compresión son politrópicos; por lo que se eligió realizar los cálculos como un proceso adiabático.

Por medio de la ecuación de potencia adiabática Pag. 10-53 ; Ecuación 10.65-a (PERRY, Robert H.; GREEN, Don W., 2003). Calculamos la eficiencia de compresión de estos equipos.

	DATOS TÉCNICOS				
	CALCULADOS A PARTIR DE DATOS DEL FABRICANTE				ICANTE
Marca	Potencia	Presión	Caudal	Trabajo	Eficiencia
	nominal (HP)	(psig)	ft3/min	(HP)	
Atlas Copco	0.75	145	2.12	0.464	0.619
	0.75	116	2.12	0.412	0.550
DeWALT	1.5	150	2.60	0.580	0.387
	1.8	200	5.40	1.395	0.775
Mikel´s	3	115	6.20	1.200	0.400
Truper	1	90	3.18	0.536	0.536
	2.5	116	8.48	1.648	0.659
Fiac (FIAC)	1	116	2.50	0.486	0.486
	1.5	116	3.80	0.739	0.493

Tabla 7

Obteniendo que para una optimización del compresor de este trabajo con fines de comercialización en escala doméstica hay que alcanzar la eficiencia promedio de 54.5%.

6.2 REPRODUCCIÓN DEL EXPERIMENTO ORIGNAL

Para garantizar la reproducibilidad de los experimentos se repite el correspondiente, realizado en trabajos previos (GOMEZ REYNOSO, 2002), reconstruyendo el prototipo descrito en esa referencia, tomando en cuenta las correcciones por presión y temperatura (ver cálculos en Anexo 1)

De acuerdo a la referencia se midió el aire por desplazamiento de agua, y se utilizó una válvula reguladora de presión para mantener la presión de la cámara de compresión constante, en este trabajo se calculó el flujo de aire, únicamente se requirió medir el volumen de la cámara de compresión y el cambio de la presión respecto al tiempo a medida que se va llenando la cámara con un manómetro colocado en la cámara de compresión y un cronómetro.

Obteniendo los siguientes resultados

Tabla 8 Datos del experimentooriginal

Pbaja (kg _f /cm²)	Flujo aire
	(l/min)
6.609	0.00
4.921	1.68
4.570	1.92
2.109	3.37
1.406	4.83
0.703	9.12
0.000	21.29

Tabla 9 Datos	del experimento
reproducido	

Prueba de compatibilidad				
Punto	Pbaja	Flujo aire		
	(kgf/cm ²)	(l/min)		
1	0.63	16.21		
2	1	10.13		
3	1.5	6.75		
4	2	5.07		
5	2.5	4.05		
6	3	3.38		
7	3.5	2.89		
8	4	2.53		
9	4.5	2.25		
10	5	2.03		
11	5.5	1.84		
12	6	1.69		
13	6.5	1.56		
14	6.7	1.45		

Se observa una amplia separación de las curvas obtenidas, más allá del 5% de error experimental, por lo que no es posible afirmar que los experimentos sean equivalentes, encontrar las causas de las diferencias implica suposiciones por lo que no se abordará en el presente trabajo, y la información obtenida es

únicamente de carácter comparativo, para poder dar una escala de comparación en caso de ser necesario.

Se observa que el flujo de aire obtenido en la reproducción del experimento es muy superior al reportado, y que por el método de cálculo utilizado no es posible determinar el flujo a presión manométrica de cero, a diferencia del experimento original.

Gráfica 1 Comparación de los datos obtenidos con los del experimento original

A pesar de las diferencias en los datos obtenidos el comportamiento de las curvas es bastante similar.

6.3 BALANCE DE ENERGÍA EN EL EQUIPO

Se tiene que hacer un balance de energía por cada tramo en el que se tengan

datos

$$\Delta E + \Delta \left(\frac{v^2}{2\alpha g_c}\right) + \Delta z \left(\frac{g}{g_c}\right) + \frac{\Delta P}{\rho} = Q - \sum Fr - w'_f$$

Sistema

Figura 12 Mediciones necesarias para el balance de energía y cálculo de trabajo de bomba

Se hará el balance del punto 1 al punto C que corresponden a los dos puntos donde se puede medir la presión.

1-c

$$\Delta \left(\frac{v^2}{2\alpha g_c}\right) + \Delta z \left(\frac{g}{g_c}\right) + \frac{\Delta P}{\rho} = -\sum Fr - w'_f$$
$$\Delta \left(\frac{v^2}{2\alpha g_c}\right) = \frac{1}{2gc} \left(\left(\frac{Q}{A_2}\right)^2 - \left(\frac{Q}{A_1}\right)^2\right)$$
$$\Delta z = 0$$
$$\frac{\Delta P \left(\frac{kg_f}{cm2}\right) \frac{14.696 \frac{\text{lb}_f}{\text{in}^2}}{1.0332 \frac{kg_f}{cm2}} * 144 \frac{\text{in}^2}{ft^2}}{\left|1.0332 \frac{kg_f}{cm2}\right|} = \frac{ftlb_f}{lb_m}$$

$$\sum Fr = \frac{f'\upsilon^2 L}{2gc\,d}$$

Cálculo de reducciones

$$\sum Fr = \frac{K\upsilon^2}{2gc}$$
Crane 3-4 contracción súbita

$$\sum Fr = \left(\frac{f'L}{Dm} + K\right)\frac{\upsilon^2}{2gc};$$

$$\operatorname{Re} = \frac{d(cm)\left(\frac{1m}{100cm}\right) \upsilon\left(\frac{m}{s}\right) \rho\left(\frac{kg}{m^3}\right)}{\mu(cp)\left(\frac{1*10^{-3} \frac{N}{m^2 s}}{1cp}\right)}$$

$$-w'_{f} = \Delta \left(\frac{\overline{v}^{2}}{2\alpha g_{c}}\right) + \frac{\Delta P}{\rho} + \sum Fr \qquad 1 - c$$

Tabla 10

Cálculo	Cálculos para la curva de la bomba									
(parte 1	(parte 1)									
Punto	Δz	Δp (ft lb _f /lb)	Δv^2							
			Q (ft ³ /s)	$A_2(ft^2)$	v(ft/s)	$A_1(ft^2)$	v(ft/s)	$\Delta v^2/2gc$		
1	0.00	127.47	0.0100	0.0016	6.13	0.02	0.438	0.58		
2	0.00	126.65	0.0104	0.0016	6.36	0.02	0.454	0.63		
3	0.00	123.36	0.0108	0.0016	6.62	0.02	0.473	0.68		
4	0.00	120.07	0.0112	0.0016	6.86	0.02	0.490	0.73		
5	0.00	118.42	0.0117	0.0016	7.13	0.02	0.510	0.79		
6	0.00	115.13	0.0120	0.0016	7.36	0.02	0.526	0.84		
7	0.00	113.49	0.0124	0.0016	7.61	0.02	0.544	0.90		
8	0.00	110.20	0.0128	0.0016	7.83	0.02	0.559	0.95		
9	0.00	108.55	0.0132	0.0016	8.07	0.02	0.576	1.01		
10	0.00	105.26	0.0135	0.0016	8.27	0.02	0.591	1.06		
11	0.00	103.62	0.0139	0.0016	8.49	0.02	0.607	1.12		
12	0.00	100.33	0.0142	0.0016	8.69	0.02	0.621	1.17		
13	0.00	97.04	0.0145	0.0016	8.88	0.02	0.634	1.22		
14	0.00	97.70	0.0146	0.0016	8.92	0.02	0.638	1.23		

Tabla 11

Cálcul (parte)	Cálculos para la curva de la bomba (parte 2)									
Punto	Fricciones									
	Diámetro (ft)	v(m/s)	Re	f	Longitud recta (ft)	Longitud eq. accesorios (ft)	Reducción (D1/D2)	К	Fricción reducciones	Fricciones
1	0.17	0.133	6920	0.033	2.66	5.12	· · ·			0.0045
	0.10	0.375	11608	0.029	0.79	0.00	0.60	0.28	0.0066	0.2453
	0.09	0.495	13327	0.028	7.05	21.26		1.00	0.0410	0.3667
	0.05	1.867					0.51	0.33	0.1925	0.6165
2	0.17	0.139	7184	0.033	2.66	5.12				0.0048
	0.10	0.390	12051	0.029	0.79	0.00	0.60	0.28	0.0071	0.2644
	0.09	0.514	13836	0.028	7.05	21.26		1.00	0.0442	0.3952
	0.05	1.939					0.51	0.33	0.2074	0.6644
3	0.17	0.144	7474	0.032	2.66	5.12				0.0051
	0.10	0.405	12538	0.029	0.79	0.00	0.60	0.28	0.0077	0.2862
	0.09	0.535	14395	0.028	7.05	21.26		1.00	0.0478	0.4278
	0.05	2.017					0.51	0.33	0.2245	0.7190
4	0.17	0.150	7754	0.032	2.66	5.12				0.0055
	0.10	0.421	13007	0.028	0.79	0.00	0.60	0.28	0.0083	0.3078
	0.09	0.555	14933	0.027	7.05	21.26		1.00	0.0514	0.4439
	0.05	2.092					0.51	0.33	0.2417	0.7572
5	0.17	0.155	8057	0.032	2.66	5.12				0.0059
	0.10	0.437	13515	0.029	0.79	0.00	0.60	0.28	0.0089	0.3326
	0.09	0.576	15517	0.027	7.05	21.26		1.00	0.0555	0.4793
	0.05	2.174					0.51	0.33	0.2609	0.8177

Punto	Fricciones									
	Diámetro (ft)	v(m/s)	Re	f	Longitud recta (ft)	Longitud eq. accesorios (ft)	Reducción (D1/D2)	K	Fricción reducciones	Fricciones
6	0.17	0.160	8317	0.032	2.66	5.12				0.0063
	0.10	0.451	13951	0.028	0.79	0.00	0.60	0.28	0.0095	0.3541
	0.09	0.595	16017	0.027	7.05	21.26		1.00	0.0592	0.5107
	0.05	2.244					0.51	0.33	0.2780	0.8711
7	0.17	0.166	8600	0.032	2.66	5.12				0.0067
	0.10	0.467	14425	0.027	0.79	0.00	0.60	0.28	0.0102	0.3783
	0.09	0.615	16563	0.027	7.05	21.26		1.00	0.0633	0.5461
	0.05	2.321					0.51	0.33	0.2973	0.9311
8	0.17	0.171	8844	0.031	2.66	5.12				0.0069
	0.10	0.480	14835	0.027	0.79	0.00	0.60	0.28	0.0108	0.4001
	0.09	0.632	17033	0.026	7.05	21.26		1.00	0.0669	0.5561
	0.05	2.386					0.51	0.33	0.3144	0.9631
9	0.17	0.176	9111	0.031	2.66	5.12				0.0073
	0.10	0.494	15282	0.027	0.79	0.00	0.60	0.28	0.0114	0.4246
	0.09	0.652	17546	0.026	7.05	21.26		1.00	0.0710	0.5901
	0.05	2.458					0.51	0.33	0.3336	1.0220
10	0.17	0.180	9341	0.031	2.66	5.12				0.0077
	0.10	0.507	15669	0.027	0.79	0.00	0.60	0.28	0.0120	0.4464
	0.09	0.668	17990	0.026	7.05	21.26		1.00	0.0747	0.6204
	0.05	2.521					0.51	0.33	0.3507	1.0745
11	0.17	0.185	9594	0.030	2.66	5.12				0.0078
	0.10	0.520	16093	0.027	0.79	0.00	0.60	0.28	0.0127	0.4880
	0.09	0.686	18477	0.026	7.05	21.26		1.00	0.0788	0.6544
	0.05	2.648					0.51	0.33	0.3871	1.1503

Punto	Fricciones									
	Diámetro (ft)	v(m/s)	Re	f	Longitud recta (ft)	Longitud eq. accesorios (ft)	Reducción (D1/D2)	K	Fricción reducciones	Fricciones
12	0.17	0.189	9813	0.030	2.66	5.12				0.0082
	0.10	0.532	16461	0.027	0.79	0.00	0.60	0.28	0.0133	0.4927
	0.09	0.702	18900	0.026	7.05	21.26		1.00	0.0824	0.6847
	0.05	2.648					0.51	0.33	0.3871	1.1856
13	0.17	0.193	10028	0.030	2.66	5.12				0.0086
	0.10	0.544	16821	0.027	0.79	0.00	0.60	0.28	0.0139	0.5144
	0.09	0.717	19313	0.026	7.05	21.26		1.00	0.0860	0.7150
	0.05	2.706					0.51	0.33	0.4042	1.2380
14	0.17	0.194	10081	0.030	2.66	5.12				0.0086
	0.10	0.547	16910	0.027	0.79	0.00	0.60	0.28	0.0140	0.5199
	0.09	0.721	19415	0.026	7.05	21.26		1.00	0.0869	0.7225
	0.05	2.720					0.51	0.33	0.4085	1.2511

C	Cálculos para la curva de la bomba (parte 3)								
Punto									
	Cabeza (ft lb _f /lb _m)	Cabeza (m)	HP (flujo)						
1	128.66	39.22	0.1458						
2	127.94	38.99	0.1505						
3	124.75	38.02	0.1526						
4	121.55	37.05	0.1543						
5	120.03	36.58	0.1583						
6	116.84	35.61	0.1591						
7	115.31	35.15	0.1623						
8	112.11	34.17	0.1623						
9	110.58	33.71	0.1649						
10	107.40	32.73	0.1642						
11	105.88	32.27	0.1663						
12	102.68	31.30	0.1650						
13	99.50	30.33	0.1633						
14	100.18	30.54	0.1653						

Tabla 12

Se realizaron los cálculos para el experimento 2 y se compararon con la curva de la bomba que reporta el fabricante (Pedrollo), comparando las dos líneas de tendencia de cabeza H (m) vs. Flujo (l/min).

Punto	Pbaja (kgf/cm2)	Cabeza (m)
1	0.62	5 39.22
2		1 38.99
3	1.	5 38.02
4		2 37.05
5	2.	5 36.58
6		3 35.61
7	3.	5 35.15
8		4 34.17
9	4.	5 33.71
10		5 32.73
11	5.	5 32.27
12		6 31.30
13	6.	5 30.33
14	6.5	8 30.54

Tabla 13 Datos calculados para la curva de la bomba a partir del balance de Bernoulli

Tabla 14 Comparación de la regresión lineal de la curva de la bombaobtenida experimentalmente con la obtenida de los datos del fabricante

Fabricante	y = -0.9697x + 55.067 R ² = 0.9995
Obtenida por balance de Bernoulli	y = -1.1544x + 59.227 R ² = 0.9938

Si bien las pendientes son bastante diferentes (más del 15%) ambas rectas se cruzan dentro del rango de interés.

Comparación de los cálculos de cabeza (m) calculados

	Cabeza (m)		
Flujo (l/min)	Fabricante	Balance	ERP (%)
5	50.22	53.45	6.44
10	45.37	47.68	5.10
15	40.52	41.91	3.43
20	35.67	36.14	1.31
25	30.82	30.37	-1.48
30	25.98	24.59	-5.32
35	21.13	18.82	-10.91
40	16.28	13.05	-19.81
45	11.43	7.28	-36.32
50	6.58	1.51	-77.10

Tabla 15 Comparación punto a punto de la curva de bomba experimental yde fabricante

Dentro del rango de trabajo, el modelo de regresión está dentro del intervalo de confianza esperado.

OPTIMIZACIÓN DE UN COMPRESOR POR INYECCIÓN

Gráfica 2 Comparación de la curva de la bomba obtenida con el balance y la reportada por el fabricante

CURVAS DE FUNCIONAMIENTO A n= 3450 1/min

DATOS DEFUNCIONAM	1IENTO An=345	50 1/min

MODELO	BOMBA	РОТЕ	NCIA	Q m³∕h	0	0.3	0.6	0.9	1.2	1.5	1.8	2.1	2.4	3.0
Monofásica	Trifásica	kW	HP	l/min	0	5	10	15	20	25	30	35	40	50
PKm60®	PK 60®	0.37	0.50		40	38	33.5	29	24	19.5	15	10	5	
PKm65	PK65	0.50	0.70		55	50	45.5	40.5	36	31	27	22	17	8
PKm70	PK 70	0.60	0.85	ы	65	62	57	52	47	42	37	32	27	18
PKm80	PK 80	0.75	1		70	66	61	56	51	46	41	36.5	31	22
PKm90	PK 90	0.75	1	רח	90	82	71	60	49	38	27	17	5	
PKm 100	PK 100	1.1	1.5		85	80	75	70	65	60	55	50	45	35
PKm 200	PK200	1.5	2		90	86	81	76	71	65.5	60	55	50	40
	PK 300	2.2	3		100	95	90	85	80	75	70	65	60	50

H = ALTURA MANOMETRICA TOTAL EN METROS

 $\mathbf{Q} = \mathbf{CAUDAL}$

Gráfica 3 Datos reportados por el fabricante (PEDROLLO)®

6.4 MODIFICACIONES AL SEPARADOR

En primer término se pretendió mejorar el maquinado del separador para solucionar algunos problemas operacionales como deformación, resistencia mecánica y una separación adecuada de las fases, así se optó por la extrusión de acrílico, obteniendo una mejora técnica en la fabricación.

Figura 13 Mejoras al separador, se pueden apreciar depósitos de óxido en los platos, posiblemente provenientes de la bomba.

En principio mediante la revisión textos de dinámica de fluidos se encontró la forma de fabricar un modelo más simple de separador disminuyendo así el calor

generado por fricciones y mejorando la eficiencia del equipo. (PALACIOS), apoyados en que en el difusor se desarrolla flujo tipo burbuja (GOMEZ REYNOSO, 2002).

La entrada tangencial de la mezcla aire agua permite su separación por centrifugación.

Entrada al ciclón

Figura 14 Nuevo diseño de separación centrífuga "tubo tangencial"

Figura 15 La superficie roja representa la zona hacia la que se desplaza el agua, en el diseño anterior. (a) tiene mayores problemas de turbulencia que si se dispone la entrada al ciclón completamente tangencial (b)

Se repitió el experimento original sin notar grandes cambios el flujo de aire, lo que no permite descartar la hipótesis nula de que la modificación no mejoró la eficiencia de compresión, sin embargo es de todos modos un gran avance ya que simplificó la fabricación del equipo y visualmente disminuyó la turbulencia en el ciclón.

6.5 CONSIDERACIONES

A pesar de ser una variable importante para el desarrollo completo de la optimización de un compresor, la medición de la temperatura se descarta por los siguientes motivos:

1. La diversidad de materiales, espesores y diámetros manejados durante la experimentación dificulta el análisis sistemático de la disipación viscosa.

- El intercambiador de calor construido durante el desarrollo de trabajos previos (GOMEZ REYNOSO, 2002) es adecuado para el desarrollo de los experimentos de optimización y se tienen disponibles datos a este respecto.
- 3. El calor generado por disipación viscosa queda considerado dentro de la eficiencia definida en el apartado EFICIENCIA DE COMPRESIÓN.

6.6 VARIABLES DE DISEÑO

Se pueden identificar como variables de diseño susceptibles de optimizar

- 1. Las dimensiones del eyector referidas en la Tabla 2 y la ilustración correspondiente.
- 2. El tipo de bomba utilizado (centrífuga, periférica, multietapa, etc.)
- 3. La potencia de la bomba
- 4. El número de eyectores conectados en paralelo.
- 5. Los métodos de fabricación.
- 6. El fluido de trabajo.
- 7. El número de etapas de compresión.

6.7 CÁLCULOS GENERALES

6.7.1 CÁLCULO DEL FUJO DE AIRE

Se puede calcular el flujo de aire mediante el siguiente desarrollo, únicamente se requirió medir el volumen de la cámara de compresión y el cambio de la presión respecto al tiempo a medida que se va llenando la cámara.

El volumen se midió por inundación obteniendo un valor de 1.147 litros.

Cálculo del flujo de aire

$$pV = nRT$$
$$n = \frac{V}{RT}p$$
$$\frac{dn}{dt} = \frac{V}{RT}\frac{dp}{dt}$$

Sustituyendo los valores de las constantes en la ecuación anterior

$$\frac{dn}{dt(\min)} = \frac{1.147l}{0.082 \frac{latm}{molK} 298K} \frac{dp\left(\frac{\overline{kg}}{cm^2}\right)}{dt(s)} \left(\frac{1atm}{1.0332 \frac{kg}{cm^2}}\right) \left(\frac{60s}{1\min}\right)$$
$$\frac{dV(l)}{dt(\min)} = \frac{1.147l}{0.082 \frac{latm}{molK} 298K} \frac{dp\left(\frac{\overline{kg}}{cm^2}\right)}{dt(s)} \left(\frac{1atm}{1.0332 \frac{kg}{cm^2}}\right) \left(\frac{60s}{1\min}\right) \left(\frac{22.4 l}{1mol}\right)$$

Agrupando coeficientes numéricos y simplificando unidades

$$Q\left(\frac{l}{\min}\right) = \frac{1.147*60*22.4}{0.082*298*1.0332} \frac{dp}{dt} \left(\frac{\frac{kg}{cm^2}}{s}\right)$$
$$Q\left(\frac{l}{\min}\right) = 61.0588 \frac{dp}{dt} \left(\frac{\frac{kg}{cm^2}}{s}\right)$$

La derivada dp/dt se calcula mediante la regresión polinomial de los datos obtenidos experimentalmente.

6.7.2 CÁLCULO DEL TRABAJO DE COMPRESIÓN

En este trabajo se utilizó el cálculo de trabajo de compresión isotérmico, que como se explicó en la sección TEORÍA DE LA COMPRESIÓN, es el que mejor representa el comportamiento del equipo.

A continuación se muestran las fórmulas dimensionales de cálculo de potencia consumida en el proceso de compresión, tanto isotérmica como adiabática (PERRY, Robert H.; GREEN, Don W., 2003).

Potencia isotérmica

$$kW_{isT} = 2.78 * 10^{-4} Q_1 p_1 \ln\left(\frac{p_1}{p_2}\right)$$
$$Q_1 \left[= \left(\frac{m^3}{h}\right) \quad a \text{ las condiciones de entrada}$$
$$p_1 V_1 = p_2 V_2$$
$$p_1, p_2 \left[= \right] kPa$$

Potencia adiabática

Robert H. Perry et. al., *Manual del ingeniero químico, vol. 2,* séptima ed., España: McGraw Hill: 2003

Pag. 10-53 ; Ecuación 10.65-a

Potencia adiabática

$$kW_{ad} = \frac{WH_{ad}}{10^3} = 2.78 * 10^{-4} \frac{k}{k-1} Q_1 p_1 \left[\left(\frac{p_2}{p_1}\right)^{\frac{(k-1)}{k}} - 1 \right]$$

$$Q_{1}\left[=\left(\frac{m^{3}}{h}\right) ; a \text{ las condiciones de entrada}$$

$$p_{1}V_{1}^{k} = p_{2}V_{2}^{k}$$

$$Q_{1}\left(\frac{m^{3}}{h}\right) = Q\left(\frac{l}{\min}\right) * \left(\frac{60\min}{1h}\right) \left(\frac{1m^{3}}{1000 l}\right) \left(\frac{1}{0.79666}\right) = 0.07532Q\left(\frac{l}{\min}\right)$$

$$k = 1.4$$

$$p_{1}[=]kPa \quad ; p_{2} = p_{baja}$$

$$p_{1} = p_{atm} = 586mmHg = 0.79666 \frac{kg}{cm^{2}} \left(\frac{100000Pa}{1.0197 \frac{kg}{cm^{2}}}\right) = 78126.9Pa = 78.1269kPa$$

6.7.3 CÁLCULO DEL FLUJO DE AGUA

Requisitos para el cálculo de flujo de agua en el inyector

Diámetro interno de sección recta	D_EI
Diámetro de boquilla	D _{SI}
Presión justo antes de entrar al inyector	P_{alta}
Presión atmosférica	P _{atm}

Balance de Bernoulli

Se parte de la ecuación de Bernoulli en sistema inglés para después transformar la forma simplificada a las unidades utilizadas en este trabajo.

$$\Delta E + \Delta \left(\frac{\overline{v}^2}{2\alpha g_c}\right) + \Delta z \left(\frac{g}{g_c}\right) + \frac{\Delta P}{\rho} = Q - \sum Fr - w'_f$$

Simplificando

- No hay trabajo de bomba
- No se transfiere calor
- No hay cambio de altura
- No hay cambio en la energía interna

$$\Delta \left(\frac{\overline{v}^2}{2\alpha g_c}\right) + \frac{\Delta P}{\rho} = -\sum Fr$$

Considerando las fricciones como un factor de caída de presión

$$\frac{\Delta P}{\rho} * (1 - \kappa) = \Delta \left(\frac{\overline{v}^2}{2\alpha g_c}\right)$$

$$\Delta \upsilon^2 = 2\alpha g_c \frac{\Delta P}{\rho} * (1 - \kappa) \qquad (1 - \kappa) = C^2$$

Donde C es una constante que se obtiene experimentalmente

$$\Delta \upsilon^{2} = \upsilon_{SI}^{2} - \upsilon_{EI}^{2}$$
$$\upsilon_{EI} = \upsilon_{SI} * \left(\frac{A_{SI}}{A_{EI}}\right)$$
$$\upsilon_{EI} = \upsilon_{SI} * \left(\frac{D_{SI}}{D_{EI}}\right)^{2}$$

$$\upsilon_{SI} = \sqrt{\frac{2\alpha g_c \frac{\Delta P}{\rho} * (1 - \kappa)}{(1 - \left(\frac{D_{SI}}{D_{EI}}\right)^4)}} \qquad \alpha = 1; \quad flujo \quad turbulento; \quad \beta = \left(\frac{D_{SI}}{D_{EI}}\right)$$
$$\upsilon_{SI} = C \sqrt{\frac{2g_c \Delta P}{\rho(1 - \beta^4)}}$$

El factor 0.9755 Corresponde al prototipo de trabajos previos (GOMEZ REYNOSO, 2002) calculado para el inyector T a las condiciones del experimento correspondiente, por lo que solo es una aproximación dentro del proceso de optimización.

$$A_{SI}\upsilon_{SI} = A_{SI}C\sqrt{\frac{2g_c\Delta P}{\rho(1-\beta^4)}}$$
$$Q = C\pi D_{SI}^2 / 4\sqrt{\frac{2g_c\Delta P}{\rho(1-\beta^4)}}$$
$$Q = C\pi D_{SI}^2 \sqrt{\frac{g_c\Delta P}{8\rho(1-\beta^4)}}$$

$$Q\left(\frac{ft^{3}}{s}\right) = C\pi D_{SI}^{2}(m^{2}) * 3.28084^{2} \sqrt{\frac{32.17 \frac{lbft}{lbfs^{2}} \Delta P\left(\frac{kg}{cm^{2}}\right) \frac{14.5038 psia}{1.0197 \frac{kg}{cm^{2}}} \left(\frac{144in^{2}}{1ft^{2}}\right)}{8*62.4 \frac{lb}{ft^{3}} (1-\beta^{4})}}$$

$$Q\left(\frac{ft^{3}}{s}\right) = 10.7639 * C\pi D_{SI}^{2}(m^{2}) \sqrt{\frac{131.99 * \Delta P\left(\frac{kg}{cm^{2}}\right)}{(1-\beta^{4})}}}$$

$$Q\left(\frac{ft^{3}}{s}\right) = 123.66 * C * \pi * D_{SI}^{2}(m^{2}) \sqrt{\frac{\Delta P\left(\frac{kg}{cm^{2}}\right)}{(1-\beta^{4})}}}$$

$$Q\left(\frac{lt}{\min}\right) = 123.66 * 1699 * C * \pi * D_{SI}^{2}(m^{2}) \sqrt{\frac{\Delta P\left(\frac{kg}{cm^{2}}\right)}{(1-\beta^{4})}}}$$

$$Q\left(\frac{lt}{\min}\right) = 210098 * \pi * C * D_{SI}^{2}(m^{2}) \sqrt{\frac{\Delta P\left(\frac{kg}{cm^{2}}\right)}{(1-\beta^{4})}}}$$

6.7.4 CONSIDERACIONES DE COMPRESIÓN MULTIETAPA

Debido a la complejidad de diseño de compresores multietapa se descarta esta vía de optimización a este nivel de trabajo, es esencial considerarla en procesos más avanzados.

Se puede observar en la Gráfica 1 Comparación de los datos obtenidos con los del experimento original, que los mayores flujos de aire corresponden a la menor diferencia de presión entre la entrada y la salida del difusor, por lo que al aumentar el número de etapas, mejorará la eficiencia de compresión global.

Las bombas disponibles están diseñadas para trabajar por debajo de los 6.5 bar (ver Anexo 2) por lo que no es seguro operar una segunda etapa de compresión donde la bomba se sometería a presiones superiores a 12 bar.

6.7.5 DISEÑO DE EXPERIMENTOS (resumen)

 El aire es arrastrado por el cilindro de agua formado por el inyector, analizando la relación de perímetro área observamos que el área varía con el diámetro al cuadrado mientras que el perímetro con el diámetro a la primera potencia, varios inyectores de diámetro menor tendrán un mayor efecto de arrastre que uno solo de diámetro mayor,

Ejemplo

$$A_{1} = \pi \frac{d_{1}^{2}}{4}$$
$$A_{2} = A_{1} = 4 \left(\pi \frac{\left(\frac{d_{1}}{2}\right)^{2}}{4} \right)$$

$$P_1 = \pi d_1$$
$$P_2 = 4\pi \frac{d_1}{2} = 2P_1$$

Donde A corresponde al área transversal de la boquilla del inyector y P a su perímetro

Para una misma área y aproximadamente un mismo flujo (por efecto de la fricción de secciones más angostas), se duplica el perímetro de arrastre.

- 2. La distancia inyector difusor es una variable de diseño que permite aumentar el área de arrastre, a costa de la capacidad que tiene el difusor de retener la presión de la cámara y de recibir el flujo que se le proporciona, además de la expansión del chorro por efecto del cambio súbito en la presión.
- La longitud de difusión nos permite convertir la velocidad en presión, con la limitación de los efectos de fricción.
- 4. Se buscará mejorar la calidad de los maquinados ya que un sistema múltiple requiere de la reproducibilidad del elemento unitario.
- 5. El área de la boquilla del difusor tiene que ser mayor a la del inyector, ya que necesita recibir agua no canalizada y el flujo de aire adicional que fue arrastrado por el agua, esta también es una variable de optimización.
- 6. Controlar la velocidad del chorro de agua que arrastra al aire.
- 7. Se requiere optimizar el uso de la bomba.

6.8 DESCRIPCIÓN EXPERIMENTAL

6.9 BOMBAS

En el diseño del compresor por inyección hay que considerar que el fluido de trabajo es impulsado por una bomba, Hay diversos diseños de bombas (centrífugas, periféricas, de inyección, multietapa, peristáltica, etc.) y en general se pueden clasificarlas en las que están diseñadas para generar presión en el fluido y las que destinan la energía principalmente a flujo.

Es así que dentro de los diseños disponibles hay que encontrar la bomba que tenga la relación adecuada entre estas dos variables, siendo la utilizada en el compresor original (PK65m (0.7HP)) el punto de partida para la selección.

A continuación se muestra un gráfico donde podemos apreciar las curvas características de varios modelos.

Gráfica 4 Comparación de curvas características para la selección de la nueva bomba, entre paréntesis la potencia respectiva

Criterios

- En base a la curva calculada por el balance de energía observamos que se aprovecha un rango muy estrecho respecto a la cabeza (30-40 metros) y por tanto la nueva bomba deberá estar dentro de este rango (descartadas CP(0.85), 3CPm(0.85))
- Se desea que la bomba genere el mayor trabajo de flujo dentro del rango mencionado (descartada CP650 h (1.35))
- La que parece tener mejores características para este diseño es la CP650m de 1.5HP pero se encuentra descontinuada por lo que se utilizará la JCRm de 1.5 HP.

Con la selección anterior podemos estimar que la bomba dará al menos el doble de flujo de agua a presiones bajas (la cabeza de 40m corresponde a cuando la cámara de compresión está a cero kg_f/cm^2) y más del triple, a presiones altas (30m corresponde a cuando la cámara de compresión se encuentra a 6.5 kg_f/cm^2)

Para ver los datos completos de la curva calculada ver Tabla 15.

7 EXPERIMENTOS Y RESULTADOS

7.1 INYECTORES Y DIFUSORES

En esta sección se muestran las medidas de diseño de los inyectores y difusores utilizados en la experimentación acorde a lo mostrado en la Figura 9.

Tabla 16 Medidas de los inyectores utilizados

Inyector original (T)			
Diámetro de tubo(mm)	17.7	Ángulo 2 (grados)	45
Diámetro 1(mm)	10.1	Longitud de inyector(mm)	33.2
Diámetro 2 (boquilla)(mm)	3.53	Longitud de orificio(mm)	2.3
Ángulo 1 (grados)	90	Área del orificio (mm ²)	9.77
Inyector 1			
Diámetro de tubo(mm)	14.22	Ángulo 2 (grados)	50
Diámetro 1(mm)	0	Longitud de inyector(mm)	0
Diámetro 2 (boquilla)(mm)	5.00	Longitud de orificio(mm)	2.8
Ángulo 1 (grados)	0	Área del orificio (mm ²)	19.63
Inyector 2			
Diámetro de tubo(mm)	13.9	Ángulo 2 (grados)	45
Diámetro 1(mm)	8.08	Longitud de inyector(mm)	22.5
Diámetro 2 (boquilla)(mm)	2.97	Longitud de orificio(mm)	2.62
Ángulo 1 (grados)	60	Área del orificio (mm ²)	6.94

OPTIMIZACIÓN DE UN COMPRESOR POR INYECCIÓN

Inyector 3			
Diámetro de tubo(mm)	13.88	Ángulo 2 (grados)	20
Diámetro 1(mm)	8.08	Longitud de inyector(mm)	19
Diámetro 2 (boquilla)(mm)	3.00	Longitud de orificio(mm)	0.8
Ángulo 1 (grados)	60	Área del orificio (mm ²)	7.06

Tabla 17 Medidas de los difusores utilizados

Difusor T			
Diámetro de tubo(mm)	13.9	Diámetro de boquilla	4.42
Longitud de difusión (cm)	23	Ángulo de captación	sin cachucha
Tramo recto(cm)	0	Área del orificio	15.36
Difusor 1			
Diámetro de tubo(mm)	13.9	Diámetro de boquilla	4.41
Longitud de difusión (cm)	17.5	Ángulo de captación	sin cachucha
Tramo recto(cm)	0	Área del orificio	15.24
Difusor 2			
Diámetro de tubo(mm)	14.7	Diámetro de boquilla	5.81
Longitud de difusión (cm)	26	Ángulo de captación	15
Tramo recto(cm)	0	Área del orificio	26.49
Difusor 3			
Diámetro de tubo(mm)	13.9	Diámetro de boquilla	3.84
Longitud de difusión (cm)	21.5	Ángulo de captación	20
Tramo recto(cm)	1.3	Área del orificio	11.60

Figura 17 Fotografía de los inyectores (lado izquierdo) y difusores (lado derecho) utilizados en la experimentación

7.2 RESULTADOS GENERALES

A continuación se muestran las tablas obtenidas a partir de la hoja de cálculo y los datos procesados en Mathematica 7®

Tabla 18 Resultados del experimento 1

Exp 1		1							
Inyector	Τ		k(Cp/Cv)	1.4					
Difusor	Т		Patm(Pa)	78.13					
Distancia (mm	1		Patm(kgf/cm2)	0.80					
					lsotérmico)			
Bunto	Pbaja	Palta	Tiompo (s)	Flujo			Flujo agua	Velocidad	Flujo agua
	(kgf/cm2)	(kgf/cm2		aire			(l/min)	de chorro	/flujo de aire
1	0.63	4.65	3.60	14.50	0.0137	0.0184	17.28	41.5	1.19
2	1.00	5.00	5.90	9.06	0.0121	0.0162	17.92	43.1	1.98
3	1.50	5.35	10.50	6.04	0.0105	0.0140	18.54	44.5	3.07
4	2.00	5.85	17.10	4.53	0.0093	0.0125	19.38	46.6	4.28
5	2.50	6.25	25.40	3.62	0.0084	0.0113	20.04	48.1	5.53
6	3.00	6.65	33.70	3.02	0.0077	0.0103	20.67	49.7	6.84
7	3.50	7.05	43.80	2.59	0.0071	0.0096	21.28	51.1	8.22
8	4.00	7.45	56.90	2.27	0.0067	0.0089	21.88	52.6	9.66
9	4.50	7.90	71.10	2.01	0.0062	0.0084	22.53	54.1	11.19
10	5.00	8.30	86.60	1.81	0.0059	0.0079	23.09	55.5	12.74
11	5.50	8.75	103.00	1.65	0.0056	0.0075	23.71	57.0	14.39
12	6.00	9.15	121.30	1.51	0.0053	0.0071	24.24	58.3	16.05
13	6.50	9.55	143.40	1.39	0.0051	0.0068	24.77	59.5	17.77
14	7.00	9.95	172.40	1.29	0.0048	0.0065	25.28	60.7	19.53

Tabla 19 Resultados del experimento 2

Exp 2							
Inyector	Т]	k(Cp/Cv)	1.4			
Difusor	Т		Patm(Pa)	78.13			
Distancia							
(mm)	3		Patm(Kgf/cm2)	0.80			1
						Isotérmico	
	Pbaja	Palta			Flujo aire		
Punto	(kgf/cm2)	(kgf/cm2)	Tiempo (s)	А	(l/min)	P(kW)	P(HP)
1	0.63	4.65	3.40	6.33	16.21	0.0154	0.0206
2	1.00	4.95	5.80	6.24	10.13	0.0135	0.0181
3	1.50	5.35	10.60	6.07	6.75	0.0117	0.0157
4	2.00	5.75	17.10	5.98	5.07	0.0104	0.0140
5	2.50	6.20	24.80	5.88	4.05	0.0094	0.0126
6	3.00	6.60	32.70	5.78	3.38	0.0086	0.0116
7	3.50	7.00	42.70	5.68	2.89	0.0080	0.0107
8	4.00	7.45	55.10	5.63	2.53	0.0074	0.0100
9	4.50	7.85	68.10	5.53	2.25	0.0070	0.0094
10	5.00	8.25	82.00	5.44	2.03	0.0066	0.0088
11	5.50	8.75	97.30	5.38	1.84	0.0062	0.0084
12	6.00	9.15	114.10	5.30	1.69	0.0059	0.0079
13	6.50	9.55	134.70	5.20	1.56	0.0056	0.0076
14	6.70	9.70	146.90	5.14	1.45	0.0053	0.0071

Punto	Flujo agua	Trabajo de	Velocidad de	Eficiencia en	Potencia eléctrica	Eficiencia	Flujo agua
	(l/min)	flujo (HP)	chorro (m/s)	el flujo %	consumida (HP)	global %	/flujo de aire
1	17.28	0.1458	41.5	14.1%	1.0186	2.02	1.07
2	17.83	0.1505	42.8	12.0%	1.0041	1.80	1.76
3	18.54	0.1526	44.5	10.3%	0.9768	1.61	2.74
4	19.22	0.1543	46.2	9.0%	0.9623	1.45	3.79
5	19.96	0.1583	48.0	8.0%	0.9462	1.33	4.92
6	20.59	0.1591	49.5	7.3%	0.9301	1.24	6.10
7	21.20	0.1623	51.0	6.6%	0.9140	1.17	7.33
8	21.88	0.1623	52.6	6.1%	0.9060	1.10	8.64
9	22.45	0.1649	54.0	5.7%	0.8899	1.05	9.97
10	23.02	0.1642	55.3	5.4%	0.8754	1.01	11.36
11	23.71	0.1663	57.0	5.0%	0.8657	0.96	12.87
12	24.24	0.1650	58.3	4.8%	0.8529	0.93	14.36
13	24.77	0.1633	59.5	4.6%	0.8368	0.90	15.89
14	24.96	0.1653	60.0	4.3%	0.8271	0.86	17.25

Tabla 20 Resultados del experimento 2 (continuación)

Tabla 21 Resultados del experimento 3

Exp 3									
Inyector	Т		k(Cp/Cv)	1.4					
Difusor	Т		Patm(Pa)	78.13					
Distancia (mm	5		Patm(Kgf/cm2)	0.80					
					Isotérmico)			
	Pbaja	Palta		Flujo aire		- (Flujo agua	Velocidad de	Flujo agua
Punto	(kgf/cm2)	(kgf/cm2)	Tiempo (s)	(l/min)	P(kW)	P(HP)	(l/min)	chorro (m/s)	/flujo de aire
1	0.63	4.60	3.60	15.92	0.0151	0.0202	17.19	41.3	1.08
2	1.00	4.95	6.30	9.95	0.0132	0.0178	17.83	42.8	1.79
3	1.50	5.30	11.20	6.64	0.0115	0.0154	18.45	44.3	2.78
4	2.00	5.70	17.80	4.98	0.0102	0.0137	19.13	46.0	3.85
5	2.50	6.15	25.50	3.98	0.0092	0.0124	19.88	47.8	4.99
6	3.00	6.55	33.80	3.32	0.0085	0.0114	20.51	49.3	6.18
7	3.50	7.00	43.40	2.84	0.0078	0.0105	21.20	51.0	7.46
8	4.00	7.35	54.80	2.49	0.0073	0.0098	21.73	52.2	8.73
9	4.50	7.80	67.50	2.21	0.0069	0.0092	22.38	53.8	10.12
10	5.00	8.20	81.10	1.99	0.0065	0.0087	22.95	55.1	11.53
11	5.50	8.65	96.60	1.81	0.0061	0.0082	23.57	56.6	13.03
12	6.00	9.00	114.70	1.66	0.0058	0.0078	24.04	57.8	14.49
13	6.07	9.05	117.60	1.64	0.0058	0.0077	24.11	57.9	14.70
14	6.00	8.95	119.90				23.98	57.6	
15	5.75	8.75	133.00				23.71	57.0	

Tabla 22 Resultados del experimento 4

Exp 4												
Inyector	Т		k(Cp/Cv)	1.4								
Difusor	1		Patm(kPa)	78.13								
Distancia (mm)	1.85		Patm(Kgf/cm	0.80								
						lsotérmico						
	Pbaja	Palta			Flujo aire			Flujo	Potencia	Velocidad	Eficiencia	Flujo agua
			Tiempo (s)	А		P(kW)	P(HP)	agua	electrica	de chorro		/flujo de
	(kgf/cm2)	(kgf/cm2)			(l/min)			(l/min)	consumida (HP)	(m/s)	%	aire
1	0.63	4.50	4.0	7.51	7.44	0.0071	0.0095	17.00	1.2085	29.0	0.8%	2.28
2	1.00	4.85	8.3	7.46	4.65	0.0062	0.0083	17.65	1.2005	30.1	0.7%	3.79
3	1.50	5.25	15.1	7.32	3.10	0.0054	0.0072	18.36	1.1779	31.3	0.6%	5.92
4	2.00	5.65	26.2	7.19	2.33	0.0048	0.0064	19.05	1.1570	32.5	0.6%	8.19
5	2.50	5.95	39.8	7.06	1.86	0.0043	0.0058	19.55	1.1361	33.4	0.5%	10.51
6	3.00	6.50	56.7	6.93	1.55	0.0040	0.0053	20.43	1.1152	34.9	0.5%	13.18
7	3.50	6.95	76.4	6.89	1.33	0.0037	0.0049	21.13	1.1087	36.0	0.4%	15.90
8	4.00	7.39	100.6	6.74	1.16	0.0034	0.0046	21.79	1.0846	37.2	0.4%	18.73
9	4.50	7.75	126.9	6.66	1.03	0.0032	0.0043	22.31	1.0717	38.1	0.4%	21.58
10	5.00	8.15	161.6	6.57	0.93	0.0030	0.0041	22.88	1.0572	39.0	0.4%	24.59
11	5.50	8.60	205.6	6.39	0.85	0.0029	0.0038	23.50	1.0283	40.1	0.4%	27.79
12	6.00	9.00	276.9	6.23				24.04	1.0025	41.0		
13	6.25	9.20	343.0	6.14				24.31	0.9880	41.5		
14	6.38	9.25	401.6	6.11				24.37	0.9832	41.6		

Tabla 23 Resultados del experimento 5

Exp 5												
Inyector	Т		k(Cp/Cv)	1.4								
Difusor	1		Patm(Pa)	78.13								
Distancia (mm)	3.42		Patm(Kgf/cm2)	0.80								
						lsotérmico						
	Pbaja	Palta			Flujo			Flujo	Potencia	Velocidad	Eficiencia	Flujo agua
Punto			Tiempo (s)	A	aire	P(kW)	P(HP)		electrica	de chorro		/flujo de
	(kgf/cm2)	(kgf/cm2)			(l/min)			agua(l/min)	consumida (HP)	(m/s)	%	aire
1	0.63	4.55	4.10	7.05	9.41	0.0089	0.0120	17.32	1.1345	29.6	1.1%	1.84
2	1.00	4.85	8.70	6.9	5.88	0.0078	0.0105	17.88	1.1103	30.5	0.9%	3.04
3	1.50	5.30	16.80	6.78	3.92	0.0068	0.0091	18.70	1.0910	31.9	0.8%	4.77
4	2.00	5.70	27.10	6.67	2.94	0.0060	0.0081	19.39	1.0733	33.1	0.8%	6.59
5	2.50	6.15	40.30	6.54	2.35	0.0055	0.0073	20.14	1.0524	34.4	0.7%	8.56
6	3.00	6.50	54.20	6.45	1.96	0.0050	0.0067	20.70	1.0379	35.3	0.6%	10.56
7	3.50	7.00	69.90	6.34	1.68	0.0046	0.0062	21.49	1.0202	36.7	0.6%	12.79
8	4.00	7.40	88.70	6.26	1.47	0.0043	0.0058	22.09	1.0074	37.7	0.6%	15.03
9	4.50	7.80	109.70	6.15	1.31	0.0041	0.0054	22.68	0.9897	38.7	0.5%	17.35
10	5.00	8.25	133.50	6.07	1.18	0.0038	0.0051	23.33	0.9768	39.8	0.5%	19.83
11	5.50	8.65	162.10	5.96	1.07	0.0036	0.0048	23.88	0.9591	40.8	0.5%	22.34
12	6.00	9.05	202.80	5.89				24.43	0.9478	41.7		
13	6.25	9.20	245.50	5.83				24.63	0.9382	42.0		
14	6.38	9.30	287.70	5.77				24.77	0.9285	42.3		

Tabla 24 Resultados del experimento 6

Exp 6												
Inyector	Т		k(Cp/Cv)	1.4								
Difusor	1		Patm(Pa)	78.13								
Distancia (mm)	5		Patm(Kgf/cm2)	0.80								
						lsotérmico						
	Pbaja	Palta			Flujo aire			Flujo	Potencia	Velocidad	Eficiencia	Flujo agua
Punto			Tiempo (s)	А		P(kW)	P(HP)	agua	electrica	de chorro		/flujo de
	(kgf/cm2)	(kgf/cm2)			(l/min)			(l/min)	consumida (HP)	(m/s)	%	aire
1	0.63	4.75	3.80	6.78	10.36	0.0098	0.0132	17.70	1.0910	30.2	1.2%	1.71
2	1.00	5.00	8.00	6.7	6.47	0.0086	0.0116	18.16	1.0782	31.0	1.1%	2.80
3	1.50	5.40	15.50	6.58	4.32	0.0075	0.0100	18.87	1.0589	32.2	0.9%	4.37
4	2.00	5.80	25.40	6.49	3.24	0.0067	0.0089	19.56	1.0444	33.4	0.9%	6.04
5	2.50	6.20	36.50	6.34	2.59	0.0060	0.0081	20.22	1.0202	34.5	0.8%	7.81
6	3.00	6.65	48.80	6.23	2.16	0.0055	0.0074	20.94	1.0025	35.7	0.7%	9.70
7	3.50	7.05	62.80	6.15	1.85	0.0051	0.0068	21.56	0.9897	36.8	0.7%	11.66
8	4.00	7.45	80.00	6.08	1.62	0.0048	0.0064	22.17	0.9784	37.8	0.7%	13.69
9	4.50	7.95	99.00	5.99	1.44	0.0045	0.0060	22.90	0.9639	39.1	0.6%	15.91
10	5.00	8.30	122.30	5.92	1.29	0.0042	0.0056	23.40	0.9526	39.9	0.6%	18.07
11	5.50	8.65	159.50	5.81				23.88	0.9349	40.8		
12	5.60	8.70	170.90	5.78				23.95	0.9301	40.9		

Tabla 25 Resultados del experimento 7

Exp 7												
Inyector	1		k(Cp/Cv)	1.4								
Difusor	2		Patm(kPa)	78.13								
Distancia (mm)	2.5		Patm(Kgf/cm2)	0.80								
						lsotérmico						
	Pbaja	Palta			Flujo aire			Flujo	Potencia	Velocidad	Eficiencia	Flujo agua
			Tiempo (s)	A		P(kW)	P(HP)	agua	electrica	de chorro		/flujo de
	(kgf/cm2)	(kgf/cm2)			(l/min)			(l/min)	consumida (HP)	(m/s)	%	aire
1	0.63	3.75	2.6	5.25	21.66	0.0205	0.0275	31.41	0.8448	26.7	3.3%	1.45
2	1.00	4.05	4.7	5.11	13.53	0.0180	0.0241	32.64	0.8223	27.7	2.9%	2.41
3	1.50	4.40	7.6	4.98	9.02	0.0156	0.0210	34.03	0.8014	28.9	2.6%	3.77
4	2.00	4.75	12.0	4.88	6.77	0.0139	0.0186	35.35	0.7853	30.0	2.4%	5.22
5	2.50	5.15	17.5	4.75	5.41	0.0126	0.0169	36.81	0.7644	31.2	2.2%	6.80
6	3.00	5.55	22.7	4.64	4.51	0.0115	0.0155	38.21	0.7467	32.4	2.1%	8.47
7	3.50	5.95	29.1	4.55	3.87	0.0107	0.0143	39.57	0.7322	33.6	2.0%	10.23
8	4.00	6.30	37.5	4.48	3.38	0.0099	0.0133	40.71	0.7209	34.6	1.8%	12.03
9	4.20	6.40	43.4	4.42	3.22	0.0097	0.0130	41.04	0.7113	34.8	1.8%	12.73

Tabla 26 Resultados del experimento 8

Exp 8									
Inyector	2		k(Cp/Cv)	1.4					
Difusor	3		Patm(Pa)	78.13					
Distancia (mm)	1		Patm(Kgf/cm2	0.80					
					lsotérmico				
Dunto	Pbaja	Palta	Tiompo (a)	Flujo aire		(חוו)	Flujo agua	Velocidad de	Flujo agua
Punio	(kgf/cm2)	(kgf/cm2	nempo (s)	(l/min)	P(KVV)	P(NP)	(l/min)	chorro (m/s)	/flujo de aire
1	0.63	5.15	4.50	17.15	0.0162	0.0218	12.92	31.0	0.75
2	1.00	5.50	8.10	10.72	0.0143	0.0191	13.35	32.1	1.25
3	1.50	5.90	13.50	7.14	0.0124	0.0166	13.83	33.2	1.94
4	2.00	6.35	20.30	5.36	0.0110	0.0148	14.34	34.5	2.68
5	2.50	6.75	28.10	4.29	0.0100	0.0134	14.79	35.5	3.45
6	3.00	7.15	37.20	3.57	0.0091	0.0122	15.22	36.6	4.26
7	3.50	7.60	46.90	3.06	0.0084	0.0113	15.69	37.7	5.12
8	4.00	8.00	57.40	2.68	0.0079	0.0106	16.10	38.7	6.01
9	4.50	8.45	68.70	2.38	0.0074	0.0099	16.55	39.8	6.95
10	5.00	8.85	80.30	2.14	0.0070	0.0093	16.93	40.7	7.90
11	5.50	9.30	93.50	1.95	0.0066	0.0088	17.36	41.7	8.91
12	6.00	9.80	109.00	1.79	0.0063	0.0084	17.82	42.8	9.98
13	6.50	10.05	127.00	1.65	0.0060	0.0080	18.04	43.4	10.94
Tabla 27 Resultados del experimento 9

Exp 9									
Inyector	2		k(Cp/Cv)	1.4					
Difusor	3		Patm(Pa)	78.13					
Distancia (mm)	3		Patm(Kgf/cm2)	0.80					
					lsotérmico)			
Bunto	Pbaja	Palta	Tiompo (c)	Flujo aire		D/UD)	Flujo agua	Velocidad de	Flujo agua
	(kgf/cm2)	(kgf/cm2	nempo (s)	(l/min)	P(KVV)		(l/min)	chorro (m/s)	/flujo de aire
1	0.63	5.10	5.30	16.64	0.0158	0.0211	12.85	30.9	0.77
2	1.00	5.45	9.40	10.40	0.0138	0.0186	13.29	31.9	1.28
3	1.50	5.80	14.90	6.93	0.0120	0.0161	13.71	32.9	1.98
4	2.00	6.20	21.90	5.20	0.0107	0.0143	14.17	34.1	2.73
5	2.50	6.65	29.90	4.16	0.0097	0.0130	14.68	35.3	3.53
6	3.00	7.05	38.50	3.47	0.0089	0.0119	15.11	36.3	4.36
7	3.50	7.55	48.70	2.97	0.0082	0.0110	15.64	37.6	5.26
8	4.00	7.95	59.40	2.60	0.0076	0.0102	16.05	38.6	6.17
9	4.50	8.40	70.90	2.31	0.0072	0.0096	16.50	39.6	7.14
10	5.00	8.80	83.70	2.08	0.0068	0.0091	16.88	40.6	8.12
11	5.50	9.25	97.70	1.89	0.0064	0.0086	17.31	41.6	9.16
12	6.00	9.70	114.20	1.73	0.0061	0.0082	17.73	42.6	10.23
13	6.50	10.10	130.70	1.60	0.0058	0.0078	18.09	43.5	11.31

Tabla 28 Resultados del experimento 10

Ехр 10									
Inyector	2		k(Cp/Cv)	1.4					
Difusor	3		Patm(Pa)	78.13					
Distancia (mm)	5		Patm(Kgf/cm2)	0.80					
					lsotérmic	0			
Dunto	Pbaja	Palta	Tiempe (e)	Flujo aire		חווים)	Flujo agua	Velocidad de	Flujo agua /flujo
	(kgf/cm2)	(kgf/cm2)	nempo (s)	(l/min)	F(KVV)	F(NF)	(l/min)	chorro (m/s)	de aire
1	0.63	5.20	5.30	17.15	0.0162	0.0218	12.98	31.2	0.76
2	1.00	5.55	9.30	10.72	0.0143	0.0191	13.41	32.2	1.25
3	1.50	5.90	14.70	7.14	0.0124	0.0166	13.83	33.2	1.94
4	2.00	6.35	21.20	5.36	0.0110	0.0148	14.34	34.5	2.68
5	2.50	6.80	29.10	4.29	0.0100	0.0134	14.84	35.7	3.46
6	3.00	7.20	37.40	3.57	0.0091	0.0122	15.27	36.7	4.28
7	3.50	7.60	46.80	3.06	0.0084	0.0113	15.69	37.7	5.12
8	4.00	8.05	57.40	2.68	0.0079	0.0106	16.15	38.8	6.03
9	4.50	8.45	68.00	2.38	0.0074	0.0099	16.55	39.8	6.95
10	5.00	8.90	79.70	2.14	0.0070	0.0093	16.98	40.8	7.92
11	5.50	9.35	92.50	1.95	0.0066	0.0088	17.40	41.8	8.93
12	6.00	9.75	107.70	1.79	0.0063	0.0084	17.77	42.7	9.95
13	6.25	10.00	115.80	1.65	0.0059	0.0079	18.00	43.3	10.92

Tabla 29 Resultados del experimento 11

Exp 11			
Inyector	3	3'	3"
Difusor	3	3'	3"
Distancia (mm)	min	min	min

					Isotérmico
	Pbaja	Palta		Flujo aire individual	
Punto	(kgf/cm2)	(kgf/cm2)	Tiempo (s)	(l/min)	P(kW)
1	0.63	4.75	2.20	10.72	0.0102
2	1.00	5.15	3.90	6.70	0.0089
3	1.50	5.55	6.30	4.47	0.0077
4	2.00	6.00	9.60	3.35	0.0069
5	2.50	6.40	13.50	2.68	0.0062
6	3.00	6.80	17.80	2.23	0.0057
7	3.50	7.30	22.90	1.91	0.0053
8	4.00	7.75	28.40	1.67	0.0049
9	4.50	8.15	34.40	1.49	0.0046
10	5.00	8.60	41.30	1.34	0.0043
11	5.50	9.05	48.90	1.22	0.0041
12	6.00	9.45	56.90	1.12	0.0039
13	6.50	9.95	77.90		
14	6.90	10.25	98.60		

Tabla 30 Resultados del experimento 11 (continuación)

k(Cp/Cv)	1.4
Patm(Pa)	78.13
Patm(Kgf/cm2)	0.80

				Flujo		
		Flujo agua	Velocidad de	aire	Flujo agua	Flujo agua
Punto	P(HP)	(l/min) ind.	chorro (m/s)	(l/min)	(l/min) Global	/flujo de aire
1	0.0136	12.41	29.8	32.15	37.22	1.16
2	0.0119	12.92	31.0	20.09	38.75	1.93
3	0.0104	13.41	32.2	13.40	40.23	3.00
4	0.0092	13.94	33.5	10.05	41.83	4.16
5	0.0083	14.40	34.6	8.04	43.20	5.37
6	0.0076	14.84	35.7	6.70	44.53	6.65
7	0.0071	15.38	37.0	5.74	46.14	8.04
8	0.0066	15.85	38.1	5.02	47.54	9.46
9	0.0062	16.25	39.0	4.47	48.75	10.92
10	0.0058	16.69	40.1	4.02	50.08	12.46
11	0.0055	17.12	41.1	3.65	51.37	14.06
12	0.0052	17.50	42.0	3.35	52.49	15.67
13		17.95	43.1		53.86	
14		18.22	43.8		54.67	

Tabla 31 Resultados del experimento 12

Exp 12									
Inyector	1		k(Cp/Cv)	1.4					
Difusor	2		Patm(kPa)	78.13					
Distancia (mm)	2.5		Patm(Kgf/cm2)	0.80					
					lsotérmico				
	Pbaja	Palta	Tiempo (s)	Flujo aire			Flujo agua	Velocidad de	Flujo agua
	(kgf/cm2)	(kgf/cm2)		(l/min)		. ()	(l/min)	chorro (m/s)	/flujo de aire
1	0.63	4.95	1.7	53.29	0.0505	0.0677	36.09	30.6	0.68
2	1.00	5.30	2.9	33.31	0.0443	0.0594	37.34	31.7	1.12
3	1.50	5.80	4.6	22.20	0.0385	0.0516	39.07	33.2	1.76
4	2.00	6.20	6.8	16.65	0.0342	0.0459	40.39	34.3	2.43
5	2.50	6.65	9.2	13.32	0.0310	0.0415	41.83	35.5	3.14
6	3.00	7.10	11.8	11.10	0.0284	0.0380	43.22	36.7	3.89
7	3.50	7.55	14.6	9.52	0.0262	0.0352	44.57	37.8	4.68
8	4.00	8.00	17.8	8.33	0.0245	0.0328	45.88	38.9	5.51
9	4.50	8.40	21.1	7.40	0.0229	0.0308	47.01	39.9	6.35
10	5.00	8.85	24.4	6.66	0.0216	0.0290	48.26	41.0	7.24
11	5.50	9.30	28.5	6.06	0.0205	0.0275	49.47	42.0	8.17
12	6.00	9.80	34.0	5.55	0.0195	0.0261	50.78	43.1	9.15
13	6.50	10.20	40.4	5.12	0.0186	0.0249	51.81	44.0	10.11
14	7.00	10.70	48.1	4.76	0.0178	0.0238	53.06	45.0	11.15
15	7.05	10.75	50.0	4.72	0.0177	0.0237	53.18	45.1	11.26

Tabla 32 Resultados del experimento 13

Exp 13						
Invector	1		k(Cp/Cv)	1.4		
Difusor	2		Patm(kPa)	78.13		
Distancia						
(mm)	2.5		Patm(Kgf/cm2)	0.80		r
Γ		1	Γ		Γ	Isotérmico
	Pbaja	Palta			Flujo aire	
	(kgf/cm2)	(kgf/cm2)	Tiempo (s)	А	(l/min)	P(kW)
1	0.63	5.00	64.0	11.7	54.53	0.0517
2	2 1.00	5.30	114.5	11.6	34.08	0.0453
3	1.50	5.70	184.8	11.7	22.72	0.0394
4	2.00	6.10	265.8	11.7	17.04	0.0350
5	2.50	6.50	369.6	11.7	13.63	0.0317
6	3.00	6.95	495.3	11.7	11.36	0.0290
7	3.50	7.35	638.3	11.6	9.74	0.0268
ü	4.00	7.80	791.7	11.6	8.52	0.0250
U)	4.50	8.20	948.7	11.6	7.57	0.0235
10	5.00	8.60	1114.5	11.7	6.82	0.0221
11	5.50	9.05	1279.1	11.7	6.20	0.0210
12	6.00	9.55	1460.7	11.6	5.68	0.0199
13	6.50	9.95	1687.6	11.7	5.24	0.0190
14	7.00	10.40	1971.3	11.7	4.87	0.0182
15	7.50	10.90	2290.0	11.7	4.54	0.0174
16	7.80	11.10	2491.5	11.7	4.37	0.0170

Tabla 33 Resultados del experimento 13 (continuación)

Vol(L)	49.35
Factor	2627.07
Factor	
anterior	60.69

		Flujo agua	Potencia electrica	Velocidad de	Eficiencia	Flujo agua
	P(HP)	(l/min)	consumida (HP)	chorro (m/s)	%	/flujo de aire
1	0.0693	36.27	1.8747	30.8	3.7	0.67
2	0.0608	37.34	1.8667	31.7	3.3	1.10
3	0.0528	38.73	1.8779	32.9	2.8	1.70
4	0.0469	40.06	1.8747	34.0	2.5	2.35
5	0.0425	41.36	1.8779	35.1	2.3	3.03
6	0.0389	42.76	1.8747	36.3	2.1	3.76
7	0.0360	43.98	1.8651	37.3	1.9	4.52
8	0.0336	45.30	1.8618	38.5	1.8	5.32
9	0.0315	46.45	1.8683	39.4	1.7	6.13
10	0.0297	47.57	1.8860	40.4	1.6	6.98
11	0.0281	48.80	1.8795	41.4	1.5	7.87
12	0.0267	50.13	1.8618	42.6	1.4	8.82
13	0.0255	51.17	1.8795	43.4	1.4	9.76
14	0.0244	52.31	1.8860	44.4	1.3	10.74
15	0.0234	53.55	1.8828	45.5	1.2	11.78
16	0.0228	54.04	1.8812	45.9	1.2	12.37

Gráfica 5 Flujos de aire para los distintos experimentos

8 ANÁLISIS DE RESULTADOS

8.1 ANÁLISIS DETALLADO

8.1.1 VALOR ESTADÍSTICO

(WALPOLE; et. al., 2007)

Establecemos que para dar validez experimental a los datos obtenidos se sugiere un intervalo de confianza del 95% (α =0.05) para pruebas de dos colas, definiendo los siguientes términos.

Valor p (p-value)

Nos permite estimar la probabilidad de que el valor estimado esté fuera del intervalo de confianza, la hipótesis nula de que el valor real sea distinto del estimado, así $P \le \alpha$ es aceptable y $P > \alpha$ nos indica que no podemos rechazar la hipótesis nula (Walpole, 2007 pag.334 y sgs.).

Si P es mucho menor a α aumenta la significancia del valor estimado del coeficiente, es decir con un intervalo de confianza mayor al 95%, si P está cerca de la región crítica P= α nos permite tomar decisiones al respecto.

Error estándar

Se calcula dividiendo la desviación estándar por la raíz cuadrada del tamaño muestral.

```
Error relativo porcentual (ERP)
```

Nos permite valorar la separación entre el valor medido experimentalmente y el valor esperado para alguna variable, ya sea este el valor reportado por el fabricante o el valor real.

 $ERP = \frac{Valor\ medido - Valor\ esperado}{Valor\ esperado}*100$

8.1.2 DEPENDENCIA DE LA PRESIÓN DE SUCCIÓN Y LA PRESIÓN DE DESCARGA DE LA BOMBA

Se encontró que la dependencia más adecuada entre la presión de succión de la bomba y la presión de descarga está dada por:

$$P_{descarga} \propto A_{iny} * P_{succión}$$
$$P_{descarga} = A_{iny} * P_{succión} + c$$

Donde Pdescarga es la presión de descarga de la bomba, Ainy es el área transversal de la boquilla del inyector y Psucción es la presión de succión de la bomba y corresponde prácticamente a la presión de la cámara de compresión, se agrega una constante c para completar la igualdad.

Esta dependencia está directamente relacionada con la curva de la bomba pero queda en términos de las variables de optimización del equipo

En base a esta ecuación se obtuvieron los siguientes resultados para los experimentos

		Ecuación				
		obtenida				
Experimento	Área de	Ordenada	Pendiente	r	Bomba	Diseño
	iny	al origen				
1	9.77	4.1490	0.0851	0.9998	PK65(0.70)	Original
2	9.77	4.1349	0.0842	0.9985	PK65(0.70)	Original
3	9.77	4.0922	0.0840	0.9997	PK65(0.70)	Original
4	9.77	3.9738	0.0860	0.9988	PK65(0.70)	Original
5	9.77	4.0198	0.0863	0.9998	PK65(0.70)	Original
6	9.77	4.1778	0.0844	0.9992	PK65(0.70)	Original
7	19.63	3.2799	0.0383	0.9994	PK65(0.70)	Original
8	6.94	4.6388	0.1217	0.9995	PK65(0.70)	Original
9	6.94	4.5341	0.1233	0.9996	PK65(0.70)	Original
10	6.94	4.6583	0.1224	0.9998	PK65(0.70)	Original
11	21.18	3.2799	0.0355	0.9994	JCRm (1.5)	Modificado
12	19.63	4.4103	0.0456	0.9998	JCRm (1.5)	Modificado
13	19.63	4.3968	0.0436	0.9995	JCRm (1.5)	Definitivo

Tabla 34 Comparación del aprovechamiento de la bomba

Queda bastante soportada la hipótesis de la linealidad del modelo y que es muy apropiado ya que todos los valores entran dentro del mismo orden de magnitud aun cambiando el tipo de bomba y el inyector.

Apoyados en los experimentos y esta tabla podemos aseverar que para la bomba PK65 (0.70) los mejores resultados se encuentran con inyectores de área grande y esto se refleja en ordenadas al origen menores y pendientes menores.

La comparación de los experimentos 11, 12 y 13 debe ser más cuidadosa, el experimento 11 cuenta con mayor área de inyección porque es el resultado de tres inyectores clonados 7.06mm²*3=21.18mm² y se esperaría que diera mayor flujo que los experimentos 12 y 13 por lo mencionado en el punto 1 de DISEÑO DE EXPERIMENTOS (resumen) pero al parecer al disminuir el diámetro de los inyectores se tiene mayor superficie de tubería y contracciones más pronunciadas generando mayores pérdidas por fricción, por lo que el flujo es considerablemente menor (ver Gráfica 5).

8.1.3 PRESIÓN MÁXIMA

Se puede concluir a partir de experimentos consecutivos de cambio en la distancia inyector difusor, (1,2,3; 4,5,6) que la presión máxima que se alcanza en la cámara de compresión tiene proporcionalidad con la distancia entre inyector y difusor; y la velocidad del chorro.

A mayor distancia menor será la presión máxima alcanzada.

Tabla 35 Presión máxima para el inyector T difusor T

	Exp 1	Exp 2	Exp 3
Distancia (mm)	1	3	5
Pmax (kgf/cm2)	7.00	6.70	6.07

	Exp 4	Exp 5	Exp 6
Distancia (mm)	1.85	3.42	5
Pmax (kgf/cm2)	6.38	6.38	5.60

Tabla 36 Presión máxima para el inyector T difusor 1

8.1.4 VELOCIDAD DEL FLUIDO DE TRABAJO

Como se mencionó en el apartado de cálculos generales, el flujo de agua se calcula a partir de la presión antes de entrar al inyector y a la salida de este, y la relación de áreas correspondiente, si dividimos ese flujo entre el área de sección transversal obtenemos la velocidad a la que viaja el chorro.

La velocidad del chorro es la directa responsable del arrastre del aire y como se puede ver en la Tabla 19 y Tabla 20, va cambiando a lo largo del eyector a la par de la presión, se muestran los resultados de velocidad del fluido de trabajo a la salida del inyector dentro de las tablas de resultados de cada experimento.

8.1.5 PERIDA DE PRESIÓN DEL INYECTOR AL DIFUSOR

Obteniendo el promedio de la ordenada al origen de la Tabla 34 es posible encontrar la pérdida de presión promedio del inyector al difusor siendo esta de $4.16 \text{ kg}_{f}/\text{cm}^{2}$ que es inherente al proceso mismo, parte de esta energía se transforma en trabajo de compresión y parte se pierde por disipación viscosa.

8.1.6 ANÁLISIS DE EFICIENCIA DEL EXPERIMENTO 2

Los experimentos 1, 2 y 3 representan las pruebas para reproducir el trabajo de la referencia (GOMEZ REYNOSO, 2002) siendo el experimento 2 el más representativo.

El experimento 2 cuenta con la mayor cantidad de información recolectada, el análisis de eficiencia alrededor de este experimento visible en la

Tabla 19 deriva en la Gráfica 6 en la que se observa la eficiencia global definida en el apartado EFICIENCIA DE COMPRESIÓN y otra eficiencia obtenida a partir del balance de Bernoulli, que consiste en el trabajo de compresión dividido entre el trabajo de flujo, es decir, la energía aprovechada en la compresión del total de energía disponible en el flujo de agua.

La eficiencia de flujo permite examinar el caso de la energía que se aprovecharía en caso de cambiar el suministro del fluido de trabajo, ya que en este diseño la mayor parte de la energía se pierde en poner en movimiento el fluido de trabajo (92.6% en promedio) otra parte se pierde en la transmisión del energía del agua al aire (6.2% en promedio) y un porcentaje muy pequeño se convierte en trabajo de compresión (1.2% en promedio).

El porcentaje correspondiente a la recompresión del aire (ver PROBLEMAS DE SOLUBILIDAD), podría considerarse dentro del 92.6% correspondiente al movimiento del agua, destacando que cuando la diferencia de presión entre la cámara de compresión y la presión atmosférica es grande, (~7 kg_f/cm²) la energía necesaria para recircular el aire que se absorbe y se desorbe del agua es mayor que la que se utiliza en la compresión neta de aire, por lo que esa región de trabajo es el límite para el proceso de una sola etapa.

Gráfica 6 Eficiencia del trabajo de flujo y eficiencia del trabajo global en el experimento 2

8.1.7 ANÁLISIS DE EFICIENCIA DEL EXPERIMENTO 7

Después de múltiples pruebas con distintos arreglos incluidos los experimentos 4, 5 y 6 se encontró que el correspondiente al experimento 7 satisfacía el requerimiento de aumentar la eficiencia de compresión (2.3% en promedio) casi duplicando la del equipo original, esto a costa de otra cualidad importante que es la presión máxima alcanzada, lo que redujo drásticamente el rango de operatividad del equipo. Debido a esto se continuó analizando la efectividad de eyectores múltiples en los experimentos subsecuentes 8, 9 y 10 y 11

8.1.8 ANÁLISIS DE LOS EXPERIMENTOS 8, 9 Y 10

Estos experimentos muestran los resultados de un arreglo de inyector y difusor que aunque es relativamente similar en eficiencia al original, su diseño permite la clonación de las piezas con relativa precisión. Estos experimentos fueron útiles para verificar tendencias como la dependencia de la presión máxima alcanzada respecto a la distancia entre inyector y difusor.

8.1.9 ANÁLISIS DEL EXPERIMENTO 11

Obtenida la unidad de trabajo para generar el eyector múltiple a partir de los experimentos 8, 9 y 10 se procedió a generar el diseño correspondiente, lo que implicó además el diseño de un ciclón de entradas múltiples, que permitiera la separación del agua y el aire en una misma canalización y evitando que el aire llegara a la bomba provocando problemas operativos.

Al triplicar los eyectores fue necesario incluir una bomba de mayor potencia discutida en la sección de BOMBAS (JCRm de 1.5 HP), generando así un nuevo prototipo que solo conservó el intercambiador de calor del diseño original. A continuación se muestra un esquema del diseño, en el que se implementaron tomas adicionales para darle flexibilidad a la experimentación.

El diseño de válvulas check a la entrada de aire implicó una dificultad adicional ya que no se encontraron válvulas adecuadas para el rango de operación del equipo.

Figura 18 Esquema del diseño de eyector múltiple para cuatro eyectores y una válvula reguladora de flujo bypass

En la Tabla 29 se muestran los resultados detallados de este experimento destacando que ocupa el tercer lugar en flujo pero representa un desempeño muy bajo respecto al flujo que aporta cada eyector individualmente. Se concluye que la relación entre perímetro y área de cada chorro tiene asociada también un área de tubería adicional lo que implica mayores fricciones y mayor disipación viscosa, el sistema múltiple tal como fue propuesto no es una alternativa de optimización.

8.1.10 ANÁLISIS DEL EXPERIMENTO 12

En este experimento se probó el sistema de inyector y difusor correspondiente al experimento 7 incorporando el nuevo ciclón y la bomba JCRm de 1.5 HP y el separador centrífugo sin platos, dando los resultados de la Tabla 31, conjunta los requerimientos de optimización como aumento del flujo de aire, simplicidad, eficiencia y reproducibilidad.

Se optó por buscar la compactación del prototipo por lo que las secciones de tubería se acortaron al mínimo y por otro lado, al aumentar el flujo de aire, la

cámara de compresión utilizada resultaba demasiado pequeña para efectuar lecturas con precisión suficiente para los cálculos de eficiencia por lo que se eliminó y se optó por conectar el equipo a un tanque de almacenamiento de 49.35 litros comparados con los 1.15 litros de la cámara de compresión original esto dio lugar al prototipo del experimento 13.

8.1.11 ANÁLISIS DEL EXPERIMENTO 13

El experimento 13 incorpora todas las mejoras encontradas a lo largo de las actividades realizadas en la presente tesis, y que se explicaron a media que se desarrollaron los distintos experimentos, los resultados obtenidos se muestran en la Tabla 32 y el prototipo final en la Figura 19.

Figura 19 Prototipo de compresor por inyección después del proceso de optimización

A continuación se analizan los distintos puntos de optimización y datos obtenidos.

• Aumento en el flujo de aire

Es uno de los puntos más importantes, la Gráfica 7 muestra el aumento significativo del flujo de aire. Hay que tomar en cuenta que al reproducir el experimento de trabajos previos, se obtuvieron resultados distintos, pero los resultados globales de la optimización superan con creses las diferencias entre estos experimentos y los anteriores.

Gráfica 7 Comparación de flujos de aire entre el equipo original y el optimizado.

• Aumento en la eficiencia de compresión

Este punto no se puede comparar directamente con los datos de trabajos previos (GOMEZ REYNOSO, 2002), debido a que no se reportaron en ese trabajo datos sobre la energía eléctrica consumida, así que se hará la comparación con el experimento 2 que es casi equivalente.

En la Gráfica 8 se puede observar el aumento significativo en la eficiencia de compresión, lo que repercute en un aumento del flujo de aire visible en las tablas de los experimentos correspondientes y la Gráfica 7,no se debe solamente al aumento de potencia sino, también al mejor aprovechamiento de la energía invertida en los distintos procesos dentro del equipo como la selección adecuada de la bomba, rediseño del eyector y cambios en el separador.

Gráfica 8 Comparación de la eficiencia entre el experimento 2 y el experimento 13

• Aumento en la presión máxima

En la Gráfica 8 se observa el aumento significativo en la presión máxima que alcanza el equipo, esto permite garantizar un intervalo más amplio de operación, aumentando la gama de aplicaciones del sistema.

• Optimización del área de sección transversal de la boquilla del inyector

Para esta variable se encontró que no es conveniente un área de sección transversal muy pequeña (experimentos 8, 9, 10, 11) ya que se aumentan significativamente las pérdidas de energía por disipación viscosa, optándose así por el inyector de mayor área de los que fueron fabricados (experimento 7, 12 y 13).

• Optimización de la bomba

El análisis sistemático de la curva de operación de varios diseños de bombas comerciales domésticas permitió elegir un modelo más adecuado para este equipo y que además demostró que el mercado tiene posibilidad de ofrecer diseños aún más convenientes para la optimización.

• Comparación con el experimento 12

No es fácil observar en los indicadores estadísticos la diferencia entre los experimentos 12 y 13 debido a que la diferencia en la escala de los tanques de almacenamiento no permite comparar la desviación estándar ni el valor P, por tanto no es posible afirmar o negar que la compactación del equipo y la afinación del armado de las piezas permitiera una mejora entre dichos experimentos. Solo se puede afirmar que no hay diferencia significativa dentro del error experimental.

• Mejora en el separador

La incorporación de un separador centrífugo tipo ciclón de entrada y salida tangencial y de mayor diámetro dio lugar a un flujo más homogéneo, libre de burbujas de aire a la succión de la bomba, disminuyendo así problemas operativos.

El diseño tangencial es adecuado para el tipo de flujo a dos fases (flujo burbuja), que se presenta en el equipo, que a diferencia del diseño original requiere un mínimo de mantenimiento.

8.2 RESUMEN DE MODIFICACIONES

En la Tabla 37 se muestra la comparación de las distintas modificaciones realizadas durante el desarrollo de la presente tesis desde el prototipo original hasta la confluencia de estas en el prototipo utilizado en el experimento 13.

Tabla 37 Comparación de prototipos experimento 2 y experimento 13

Característica	Prototipo base	Prototipo del experimeto 13
Bomba	PK65m (0.7HP)	JCRm (1.5 HP).
Inyector (ver medidas en Tabla 16)	Т	1
Difusor (ver medidas en Tabla 17)	Т	2
Distancia entre inyector y difusor (mm)	3	2.5
Diámetro de boquilla del inyector (mm)	3.53	5.00
Diámetro de boquilla del difusor (mm)	4.42	5.81
Separador	Centrifugo de entrada recta con platos	Centrífugo de entrada tangencial
Diámetro del separador (mm)	62.1	101.5
Cámara de compresión (I)	1.147	49.35
Presión máxima (kgf/cm ²)	6.70	7.80
Flujo de aire (l/min) a P baja =1 kg _f /cm ²	10.13	34.08
Eficiencia (%) a P baja =1 kg _f /cm ²	1.80	3.3
Flujo de aire (l/min) a P baja =3 kg _f /cm ²	3.38	11.36
Eficiencia (%) a P baja =3 kg _f /cm ²	1.24	2.1
Flujo de aire (l/min) a P baja =5 kg _f /cm ²	2.03	6.82
Eficiencia (%) a P baja =5 kg _f /cm ²	1.01	1.6
Flujo de agua (l/min) a P baja =1 kg _f /cm ²	17.83	37.34

Flujo de agua (l/min) a P baja =3 kg _f /cm ²	20.59	42.76
Flujo de agua (l/min) a P baja =5 kg _f /cm ²	23.02	47.57
Intercambiador	Banco de tubos aletados con convección forzada	Banco de tubos aletados con convección forzada

9 CONCLUSIONES

- No se logró reproducir completamente los resultados del prototipo de referencia (GOMEZ REYNOSO, 2002), lo que implica un escalamiento de los resultados para dicha comparación, factible mediante el experimento 2.
- Se logró aumentar el rango de operación del equipo un 16.4% al aumentar la presión máxima de 6.7 kg_f/cm² a 7.8 kg_f/cm² como presión manométrica máxima en la cámara de compresión.
- El proceso de compresión mediante eyectores líquido-gas es altamente friccionante por lo que su eficiencia de compresión es muy baja y se genera calor adicional que debe ser disipado mediante intercambiadores de calor metálicos lo que elimina la premisa de que los materiales de fabricación de este modelo (PVC) sean más baratos que los de los compresores comerciales.
- El compresor a optimizar pertenece a la rama de los eyectores, que operan mediante la introducción de un fluido dentro de una corriente a alta velocidad, y así convertir la alta velocidad en energía de presión.
- La simplicidad de los elementos que conforman el compresor permite una más fácil fabricación que otros compresores comerciales.
- La operatividad del equipo se ve comprometida por la temperatura de ebullición del fluido de trabajo.
- La eficiencia del compresor para que pueda ser competitivo con los compresores comerciales es alrededor de 54%.
- La eficiencia de compresión del equipo es variable, y se reduce a medida que aumenta la presión de la cámara de compresión.

- La eficiencia de compresión del equipo está muy por debajo de la de los compresores comerciales de su capacidad.
- Un compresor se diseña acorde con las necesidades de proceso, siendo que aún dentro de un tipo específico de compresor puede haber variables de diseño determinantes que hacen que el compresor opere adecuadamente. Por ejemplo superar temperaturas límite dentro de una etapa de compresión.
- Se identificaron a la absorción del gas dentro del fluido de trabajo y al aumento en la diferencia de presiones entre la ambiental y la de la cámara de compresión como las principales causas de la perdida de eficiencia de compresión a lo largo de cada experimento.
- La hipótesis de que un mayor número de eyectores de menor diámetro aumentaría la eficiencia de compresión se descarta porque se comprobó que las fricciones en la tubería correspondiente disminuyen en gran medida la energía de flujo y el área de arrastre de gas que se obtuvo resultó inefectiva.

10 BIBLIOGRAFÍA

BIRD, R. B.; STEWART, W. E.; LIGHTFOOT, E. N. 2006. *Fenómenos de transporte/ Transport phenomena.* Segunda edición. D. F. , México : LIMUSA WILEY, 2006. págs. 246-247.

CASTELLAN, G. W. 1998. Fisicoquímica. Segunda edición. México : PEARSON, 1998.

Co., Crane. 1988. *Flow of Fluids Though Valves, Fitings, and Pipe, Technical Paper No. 410.* Ney York : Crane Co., 1988.

FIAC, Aircompressors. www.fiac.it. [En línea] [Citado el: 8 de septiembre de 2011.] http://www.fiac.it/wwwfiac/main.php?p=wi_pag00e.

GOMEZ REYNOSO, Rodolfo. 2002. *Diseño de un compresor por inyección.* D. F., México : El autor, 2002.

HIMMELBLAU, D. M. 2002. *Principios básicos y cálculos en ingeniería química.* Sexta edición. México : PEARSON EDUCACIÓN, 2002. págs. 28,327.

LEVINE, Ira. N. 2004. *Fisicoquímica.* [ed.] Concepción Fernández Madrid. [trad.] Ángel González Ureña. Quinta edición. Madrid, España : McGraw Hill, 2004. pág. 513. Vol. 1.

MATHEWS, J. 2011. CROLL REYNOLDS, Process vacuum, air polution control. [En línea] HTTP, 2011. [Citado el: 2 de Marzo de 2013.] http://www.croll.com/news/news_article_5.php.

McCabe, Smith y Harriott. 1991. *Operaciones Unitarias en Ingeniería Química.* Cuarta Edición. España : McGraw Hill, 1991.

NOM-178-SSA1-1998, NORMA Oficial Mexicana. 1998. *Que establece los requisitos mínimos de infraestructura y equipamiento de establecimientos para la atención médica de pacientes ambulatorios.* 1998.

Palacios, Eric. *Nociones básics de separación centrífuga,.* s.l. : WESTFALIA SEPARATOR MEXICANA, S. A. de C.V.

PEDROLLO. Pedrolo México. [En línea] [Citado el: 23 de JULIO de 2011.] http://www.pedrollo.com.mx/Catalogo/index.htm#.

-. www.pedrollo.com.mx. [En línea] [Citado el: 22 de Septiembre de 2012.] http://www.pedrollo.com.mx/Catalogo/index.htm.

PERRY, Robert H.; GREEN, Don W. 2003. *Manual del ingeniero químico.* Séptima edición. España : McGraw Hill, 2003. págs. 10-53 y sig., 8-37. Vol. 2, Teoría de la compreción y compresores industriales.

SMITH, VAN NESS, ABBOOTT. 2005. *Introduction to cheical engineering thermodynamics.* Seventh edition. USA : McGraw Hill, 2005. págs. 73-86.

WALPOLE; et. al. 2007. *Probabilidad y estadística para ciencias e ingenierías.* Octava Edición. México : PEARSON Educación, 2007.

11 ANEXOS

- a) Archivos informáticos desarrollados en Wolfram Mathematica 7®
- b) Especificaciones de las bombas tipo JCR self priming "jet" pumps
- c) Despiece bombas PK65(A) y JCR

LOS DATOS DE GOMEZ, 2002 (pag 72), CORREGIDOS POR PRESION Y TEMPERATURA SON

El flujo medido en el trabajo previo se encuentra @ 23 °C y 585 mmHg y la presión dada en psig

flujolpsRod = {0.0, 0.0367, 0.0418, 0.0734, 0.1053, 0.1987, 0.464}

{0., 0.0367, 0.0418, 0.0734, 0.1053, 0.1987, 0.464}

flujolpmRod = flujolpsRod * (585 / 760) * (296.15 / 298.15) * 60

{0., 1.68359, 1.91755, 3.36718, 4.83057, 9.11524, 21.2857}

presionpsig = {94, 70, 65, 30, 20, 10, 0}

 $\{94, 70, 65, 30, 20, 10, 0\}$

presionkf = presionpsig * 1.033 / 14.7

{6.60558, 4.91905, 4.56769, 2.10816, 1.40544, 0.702721, 0}

puntostesis = Transpose[{presionkf, flujolpmRod}]

{{6.60558, 0.}, {4.91905, 1.68359}, {4.56769, 1.91755}, {2.10816, 3.36718}, {1.40544, 4.83057}, {0.702721, 9.11524}, {0, 21.2857}}

gftesis = ListPlot[puntostesis,

```
\texttt{PlotStyle} \rightarrow \{\texttt{PointSize[0.02], Hue[0]}\}, \texttt{Joined} \rightarrow \texttt{True, GridLines} \rightarrow \texttt{Automatic}\}
```


EN ESTE ARCHIVO SE CALCULAN LOS FLUJOS DE AIRE DEL DEL EXPERIMENTO 1, CON EL INYECTOR T , EL DIFUSOR T DISTANCIA DE 1 mm

```
presionesb = {0.625, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50, 6.00, 6.50, 7.00}
{0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7.}
```

Length[presionesb]

14

```
presionesa = {4.65, 5.00, 5.35, 5.85, 6.25, 6.65, 7.05, 7.45, 7.90, 8.30, 8.75, 9.15, 9.55, 9.95}
{4.65, 5., 5.35, 5.85, 6.25, 6.65, 7.05, 7.45, 7.9, 8.3, 8.75, 9.15, 9.55, 9.95}
```

Length[presionesa]

14

```
tiempos = {3.60, 5.90, 10.50, 17.10, 25.40,
33.70, 43.80, 56.90, 71.10, 86.60, 103.00, 121.30, 143.40, 172.40}
```

 $\{3.6,\, 5.9,\, 10.5,\, 17.1,\, 25.4,\, 33.7,\, 43.8,\, 56.9,\, 71.1,\, 86.6,\, 103.,\, 121.3,\, 143.4,\, 172.4\}$

Length[tiempos]

14

mat = {presionesb, tiempos}

```
 \{ \{ 0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7. \}, \\ \{ 3.6, 5.9, 10.5, 17.1, 25.4, 33.7, 43.8, 56.9, 71.1, 86.6, 103., 121.3, 143.4, 172.4 \} \}
```

Selección de un modelo polinomialpara el ajuste de los datos

Clear[lm]

```
lm = LinearModelFit[Transpose[mat], {x, x^2}, {x}]
```

FittedModel 3.67847 - 0.593232 x + 3.44408 x²

```
lm[{"ParameterTable", "RSquared"}]
```

	Estimate	Standard Error	t Statistic	P-Value	
{ 1	3.67847	1.77995	2.06661	0.0631412	, 0.999031}
X	-0.593232	1.0875	-0.545502	0.596297	. j
x ²	3.44408	0.140154	24.5735	5.80897×10^{-11}	

Estimate : Est valor estimando para los coeficientes de cada términode la regresión.

Standard Error: Se similar a la desviación estandar, es una medida de dispersión de los datos al rededor del estimado. Est \pm Se t Statics: El estadiístico t se utiliza para construir un intervalo de confianza (1- α)100% para el coeficiente β , alternativo al ya establecido (Walpole, 2007)

P-value: Permite medir que tan alejados estamos del valor α preestablecido y tomar decisiones al respecto.

Por la interpretación del Valor - P, es posible considerar que el coeficiente del término x no es significativoen la regresión, se modifica la regresión eliminandoeste término.

Clear[lm2]

```
lm2 = LinearModelFit[Transpose[mat], {x^2}, {x}]
```

```
FittedModel 2.79927 + 3.3696 x<sup>2</sup>
```

```
lm2[{"ParameterTable", "RSquared"}]
```

		Estimate	Standard Error	t Statistic	P-Value	
l	1	2.79927	0.732915	3.81936	0.00244231	, 0.999005}
	x ²	3.3696	0.0306974	109.768	2.18912×10^{-19}	

Se observa que este modelo de regreción es aceptable con un nivel de significanciasuperior al esperado.

A CONTINUACIÓN SE COMPARAN LOS DATOS ORIGINALES CON LA REGRESIÓN

```
f[x_] = Fit[Transpose[mat], {1, x^2}, x]
```

```
2.79927 + 3.3696 x^2
```

```
grafdata = ListPlot[Transpose[mat], Joined → True, PlotStyle → {Hue[2]},
PlotLabel → "GRAFICA DE TIEMPO(s) vs PRESION(Kg/cm2), EXPERIMENTO 1", GridLines → Automatic]
```

GRAFICA DE TIEMPO(s) vs PRESION(Kg/cm2), EXPERIMENTO 1

Show[grafdata, grafreg]

GRAFICA DE TIEMPO(s) vs PRESION(Kg/cm2), EXPERIMENTO 1

A CONTINUACIÓN SE CALCULA EL FLUJO DE AIRE

f'[x]

```
6.7392 \,\mathrm{x}
```

SE CALCULA EL FLUJO DE AIRE MEDIANTE LA FORMULA Fflujo (L/min)=(dP/dt)*(1.147*22.4*60/0.082*298*1.0332) (kgf/cm2)/(s)

flujosaire = Table[(61.05878705/f'[j]), {j, presionesb}]

{14.4964, 9.06024, 6.04016, 4.53012, 3.6241, 3.02008, 2.58864, 2.26506, 2.01339, 1.81205, 1.64732, 1.51004, 1.39388, 1.29432}

Length[%]

14

r = ExportString[flujosaire, "Table"]

14.496381345788109

9.06023834111757

6.04015889407838

4.530119170558785

3.624095336447027

3.02007944703919

2.588639526033591

2.2650595852793924

2.0133862980261266

1.8120476682235136

1.647316062021376

1.510039723519595

1.3938828217103951

1.2943197630167955

Anális de dependenciade variables

Dependenca de la presión de alta con la presión de baja y el área de boquilla del inyector (mm2)

aboquilla = 9.77

9.77

fac = presionesb * aboquilla

{6.10625, 9.77, 14.655, 19.54, 24.425, 29.31, 34.195, 39.08, 43.965, 48.85, 53.735, 58.62, 63.505, 68.39}

matfac = {fac, presionesa}

{ { 6.10625, 9.77, 14.655, 19.54, 24.425, 29.31, 34.195, 39.08, 43.965, 48.85, 53.735, 58.62, 63.505, 68.39 }, { 4.65, 5., 5.35, 5.85, 6.25, 6.65, 7.05, 7.45, 7.9, 8.3, 8.75, 9.15, 9.55, 9.95 } }

Selección de un modelo polinomialpara el ajuste de los datos

Clear[lm3]

lm3 = LinearModelFit[Transpose[matfac], {x}, {x}]

FittedModel 4.14903 + 0.085119 x

lm3[{"ParameterTable", "RSquared"}]

		Estimate	Standard Error	t Statistic	P-Value	
{	1	4.14903	0.0137281	302.23	1.15888×10^{-24}	$, 0.99982 \Big\}$
	Х	0.085119	0.000329955	257.971	7.74649×10^{-24}	

EN ESTE ARCHIVO SE CALCULAN LOS FLUJOS DE AIRE DEL DEL EXPERIMENTO 2, CON EL INYECTOR T , EL DIFUSOR T DISTANCIA DE 3 mm

presionesb = {0.625, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50, 6.00, 6.50, 7.00}
{0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7.}

Length[presionesb]

14

```
presionesa = {4.65, 4.95, 5.35, 5.75, 6.20, 6.60, 7.00, 7.45, 7.85, 8.25, 8.75, 9.15, 9.55, 9.70}
{4.65, 4.95, 5.35, 5.75, 6.2, 6.6, 7., 7.45, 7.85, 8.25, 8.75, 9.15, 9.55, 9.7}
```

Length[presionesa]

14

```
tiempos = {3.40, 5.80, 10.60, 17.10, 24.80,
32.70, 42.70, 55.10, 68.10, 82.00, 97.30, 114.10, 134.70, 146.9}
```

 $\{3.4,\,5.8,\,10.6,\,17.1,\,24.8,\,32.7,\,42.7,\,55.1,\,68.1,\,82.,\,97.3,\,114.1,\,134.7,\,146.9\}$

Length[tiempos]

14

mat = {presionesb, tiempos}

 $\{ \{ 0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7. \}, \\ \{ 3.4, 5.8, 10.6, 17.1, 24.8, 32.7, 42.7, 55.1, 68.1, 82., 97.3, 114.1, 134.7, 146.9 \} \}$

Selección de un modelo polinomialpara el ajuste de los datos

Clear[lm]

```
lm = LinearModelFit[Transpose[mat], {x, x^2}, {x}]
```

FittedModel

 $-0.587044 + 3.77923 x + 2.53903 x^{2}$

lm[{"ParameterTable", "RSquared"}]

	Estimate	Standard Error	t Statistic	P-Value	
{ 1	-0.587044	1.49547	-0.392549	0.702153	, 0.999146}
ГХ	3.77923	0.913687	4.13624	0.00165454	j
xź	2.53903	0.117754	21.5622	2.38155×10^{-10}	

Estimate : Est valor estimando para los coeficientes de cada términode la regresión.

Standard Error: Se similar a la desviación estandar, es una medida de dispersión de los datos al rededor del estimado. Est \pm Se t Statics: El estadiístico t se utiliza para construir un intervalo de confianza (1- α)100% para el coeficiente β , alternativo al ya establecido (Walpole, 2007)

P-value: Permite medir que tan alejados estamos del valor α preestablecido y tomar decisiones al respecto.

Aunque la interpretación del valor P elimina el termino independiente, se eliminara el termino de x de la regreción para buscar consistencia con el experimento 1

Clear[lm2]

```
lm2 = LinearModelFit[Transpose[mat], {x^2}, {x}]
```

```
FittedModel 5.01397 + 3.01352 x<sup>2</sup>
```

lm2[{"ParameterTable", "RSquared"}]

		Estimate	Standard Error	t Statistic	P-Value	
{	1	5.01397	0.97129	5.16217	0.000236185	, 0.997818}
	x ²	3.01352	0.0406815	74.0759	2.43775×10^{-17}	

Se observa que este modelo de regreción es aceptable con un nivel de significanciasuperior al esperado y concordante con los datos del experimento 1.

A CONTINUACIÓN SE COMPARAN LOS DATOS ORIGINALES CON LA REGRESIÓN

```
f[x_] = Fit[Transpose[mat], \{1, x^2\}, x]
```

 $5.01397 + 3.01352 \, x^2$

```
grafdata = ListPlot[Transpose[mat], Joined → True, PlotStyle → {Hue[2]},
PlotLabel → "GRAFICA DE TIEMPO(s) vs PRESION(Kg/cm2), EXPERIMENTO 2", GridLines → Automatic]
```

GRAFICA DE TIEMPO(s) vs PRESION(Kg/cm2),EXPERIMENTO 2


```
 \begin{array}{l} \mbox{grafreg = Plot[f[x], {x, 0.625, 7}, PlotStyle \rightarrow {Hue[0]}, \\ \mbox{PlotLabel } & \mbox{"GRAFICA REGRESIÓN DE TIEMPO(s) vs PRESION(Kg/cm2)} \\ \mbox{, EXPERIMENTO 2,", GridLines } & \mbox{Automatic]} \end{array}
```

GRAFICA REGRESIÓN DE TIEMPO(s) vs PRESION(Kg/cm2)

Show[grafdata, grafreg]

GRAFICA DE TIEMPO(s) vs PRESION(Kg/cm2), EXPERIMENTO 2

A CONTINUACIÓN SE CALCULA EL FLUJO DE AIRE

f'[x]

 $6.02704 \mathrm{x}$

SE CALCULA EL FLUJO DE AIRE MEDIANTE LA FORMULA Fflujo (L/min)=(dP/dt)*(1.147*22.4*60/0.082*298*1.0332) (kgf/cm2)/(s)

flujosaire = Table[(61.05878705/f'[j]), {j, presionesb}]

```
{16.2093, 10.1308, 6.75387, 5.0654, 4.05232, 3.37694,
2.89452, 2.5327, 2.25129, 2.02616, 1.84197, 1.68847, 1.55859, 1.44726}
```

Length[%]

14

r = ExportString[flujosaire, "Table"]

16.209293854892643

10.1308086593079

6.7538724395386005

5.06540432965395

4.052323463723161

3.3769362197693003

2.8945167598022574

2.532702164826975

2.2512908131795335

2.0261617318615803

1.841965210783255

1.6884681098846501

1.5585859475858306

1.4472583799011287

Anális de dependenciade variables

Dependenca de la presión de alta con la presión de baja y el área de boquilla del inyector (mm2)

aboquilla = 9.77

9.77

fac = presionesb * aboquilla

{6.10625, 9.77, 14.655, 19.54, 24.425, 29.31, 34.195, 39.08, 43.965, 48.85, 53.735, 58.62, 63.505, 68.39}

matfac = {fac, presionesa}

{{6.10625, 9.77, 14.655, 19.54, 24.425, 29.31, 34.195, 39.08, 43.965, 48.85, 53.735, 58.62, 63.505, 68.39}, {4.65, 4.95, 5.35, 5.75, 6.2, 6.6, 7., 7.45, 7.85, 8.25, 8.75, 9.15, 9.55, 9.7}}

Selección de un modelo polinomialpara el ajuste de los datos

Clear[lm3]

lm3 = LinearModelFit[Transpose[matfac], {x}, {x}]

FittedModel

4.13489 + 0.0842398 x
lm3[{"ParameterTable", "RSquared"}]

		Estimate	Standard Error	t Statistic	P-Value	
{ .	1	4.13489	0.0398234	103.831	4.26383×10 ⁻¹⁹	0.998453
Σ	ĸ	0.0842398	0.000957159	88.0103	3.09209×10^{-18}	

EN ESTE ARCHIVO SE CALCULAN LOS FLUJOS DE AIRE DEL DEL EXPERIMENTO 3, CON EL INYECTOR T , EL DIFUSOR T DISTANCIA DE 5 mm

presionesb = {0.625, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50, 6.00, 6.07}
{0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.07}

Length[presionesb]

13

```
presionesa = {4.60, 4.95, 5.30, 5.70, 6.15, 6.55, 7.00, 7.35, 7.80, 8.20, 8.65, 9.00, 9.05}
{4.6, 4.95, 5.3, 5.7, 6.15, 6.55, 7., 7.35, 7.8, 8.2, 8.65, 9., 9.05}
```

Length[presionesa]

13

```
tiempos =
```

{3.60, 6.30, 11.20, 17.80, 25.50, 33.80, 43.40, 54.80, 67.50, 81.10, 96.60, 114.70, 117.60} {3.6, 6.3, 11.2, 17.8, 25.5, 33.8, 43.4, 54.8, 67.5, 81.1, 96.6, 114.7, 117.6}

Length[tiempos]

13

mat = {presionesb, tiempos}

 $\{ \{ 0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.07 \}, \\ \{ 3.6, 6.3, 11.2, 17.8, 25.5, 33.8, 43.4, 54.8, 67.5, 81.1, 96.6, 114.7, 117.6 \} \}$

Ajuste del modelo tiempo=a+b(presión)^2

Clear[lm]

```
lm = LinearModelFit[Transpose[mat], {x^2}, {x}]
```

FittedModel 4.76782 + 3.06748 <1>

lm[{"ParameterTable", "RSquared"}]

		Estimate	Standard Error	t Statistic	P-Value	
${1 \atop 1}$		4.76782	0.540448	8.82198	2.5476×10^{-6}	, 0.999139}
X	2	3.06748	0.027148	112.991	3.26329×10^{-18}	

Se observa que este modelo de regreción es aceptable con un nivel de significancia superior al esperado y consistente con los otros experimentos

A CONTINUACIÓN SE COMPARAN LOS DATOS ORIGINALES CON LA REGRESIÓN

```
f[x_] = Fit[Transpose[mat], \{1, x^2\}, x]
```

 $4.76782 + 3.06748 \ x^2$

```
grafdata = ListPlot[Transpose[mat], Joined → True, PlotStyle → {Hue[2]},
PlotLabel → "GRAFICA DE TIEMPO(s) vs PRESION(Kg/cm2), EXPERIMENTO 3", GridLines → Automatic]
```


grafreg = Plot[f[x], {x, 0.625, 6.07}, PlotStyle → {Hue[0]},
 PlotLabel → "GRAFICA REGRESIÓN DE TIEMPO(s) vs PRESION(Kg/cm2)
,EXPERIMENTO 3,", GridLines → Automatic]

A CONTINUACIÓN SE CALCULA EL FLUJO DE AIRE

f'[x]

6.13496x

SE CALCULA EL FLUJO DE AIRE MEDIANTE LA FORMULA Fflujo (L/min)=(dP/dt)*(1.147*22.4*60/0.082*298*1.0332) (kgf/cm2)/(s)

flujosaire = Table[(61.05878705/f'[j]), {j, presionesb}]

{15.9241, 9.95259, 6.63506, 4.97629, 3.98104, 3.31753, 2.8436, 2.48815, 2.21169, 1.99052, 1.80956, 1.65876, 1.63964}

Length[%]

13

r = ExportString[flujosaire, "Table"]

15.924143361035267

9.952589600647043

6.635059733764694

- 4.9762948003235215
- 3.9810358402588166
- 3.317529866882347
- 2.8435970287562977
- 2.4881474001617607
- 2.2116865779215646
- 1.9905179201294083
- 1.8095617455721893
- 1.6587649334411736
- 1.6396358485415223

Anális de dependenciade variables

Dependenca de la presión de alta con la presión de baja y el área de boquilla del inyector (mm2)

aboquilla = 9.77
9.77
fac = presionesb * aboquilla
{6.10625, 9.77, 14.655, 19.54, 24.425, 29.31,
34.195, 39.08, 43.965, 48.85, 53.735, 58.62, 59.3039}

matfac = {fac, presionesa}

{{6.10625, 9.77, 14.655, 19.54, 24.425, 29.31, 34.195, 39.08, 43.965, 48.85, 53.735, 58.62, 59.3039}, {4.6, 4.95, 5.3, 5.7, 6.15, 6.55, 7., 7.35, 7.8, 8.2, 8.65, 9., 9.05}}

Selección de un modelo polinomialpara el ajuste de los datos

Clear[lm3]

```
lm3 = LinearModelFit[Transpose[matfac], {x}, {x}]
```

FittedModel 4.09218 + 0.0840249 x

lm3[{"ParameterTable", "RSquared"}]

	Estimate	Standard Error	t Statistic	P-Value	
{ 1	4.09218	0.0162255	252.206	4.77911×10^{-22}	, 0.99972}
Х	0.0840249	0.000423955	198.193	6.76805×10^{-21}	

EN ESTE ARCHIVO SE CALCULAN LOS FLUJOS DE AIRE DEL DEL EXPERIMENTO 4, CON EL INYECTOR T , EL DIFUSOR 1 DISTANCIA DE 1.85 mm

presionesb = {0.625, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50}
{0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5}

Length[presionesb]

11

```
presionesa = {4.50, 4.85, 5.25, 5.65, 5.95, 6.50, 6.95, 7.39, 7.75, 8.15, 8.60}
```

 $\{4.5,\,4.85,\,5.25,\,5.65,\,5.95,\,6.5,\,6.95,\,7.39,\,7.75,\,8.15,\,8.6\}$

Length[presionesa]

11

```
tiempos = {4.00, 8.30, 15.10, 26.20, 39.80, 56.70, 76.40, 100.60, 126.90, 161.60, 205.60}
```

{4., 8.3, 15.1, 26.2, 39.8, 56.7, 76.4, 100.6, 126.9, 161.6, 205.6}

Length[tiempos]

11

mat = {presionesb, tiempos}

```
 \{ \{ 0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5 \}, \\ \{ 4., 8.3, 15.1, 26.2, 39.8, 56.7, 76.4, 100.6, 126.9, 161.6, 205.6 \} \}
```

Se eliminaron los tres últimos datos para mejorar la correlación, esto es muy usado para eliminar efectos de borde en los cálculos, en estadística formas más rigurosas incluyen la "media recortada" (Walpole, 2007)

```
elimpres = {6.00, 6.25, 6.38}
{6., 6.25, 6.38}
elimtiem = {276.9, 343.0, 401.6}
{276.9, 343., 401.6}
mat2 = {elimpres, elimtiem}
{{6., 6.25, 6.38}, {276.9, 343., 401.6}}
```

Ajuste del modelo tiempo=a+b(presión)^2

Clear[lm]

```
lm = LinearModelFit[Transpose[mat], {x^2}, {x}]
```

FittedModel -0.896676 + 6.56238 x

```
lm[{"ParameterTable", "RSquared"}]
     Estimate
                 Standard Error t Statistic
                                           P-Value
                                                       , 0.997089
11
     -0.896676 1.78123
                                -0.503403 0.626771
 x^2 6.56238
                                           1.00314 \times 10^{-12}
                 0.11819
                                55.524
lm2 = LinearModelFit[Transpose[mat], {x, x^2}, {x}]
FittedModel
              7.8058 - ≪1≫ + 7.69562 ≪1≫
lm2[{"ParameterTable", "RSquared"}]
     Estimate Standard Error t Statistic P-Value
     7.8058
                3.30769
                               2.35989
                                         0.045966
 1
                                                       , 0.998567
 Х
     -7.22239 2.51499
                               -2.87173 0.0207735
 x^2 \mid 7.69562
                0.404305
                               19.0342
                                         6.00882 \times 10^{-8}
```

Auque el valor P para lm es mayor para la ordenada al origen el error estandar, t estadística y el valor P para el término cuadrático siguen favoreciendo al modelo lm sobre el lm2 que considera el término lineal.

Aquí se observan las primeras consecuencias de cambios en el diseño, no solo se modifica la escala, también la dependencia de las variables.

A CONTINUACIÓN SE COMPARAN LOS DATOS ORIGINALES CON LA REGRESIÓN

```
f[x_] = Fit[Transpose[mat], {1, x^2}, x]
```

 $-0.896676 + 6.56238 x^{2}$

```
grafdata = ListPlot[Transpose[mat], Joined → True, PlotStyle → {Hue[2]},
PlotLabel → "GRAFICA DE TIEMPO(s) vs PRESION(Kg/cm2), EXPERIMENTO 4", GridLines → Automatic]
```

GRAFICA DE TIEMPO(s) vs PRESION(Kg/cm2), EXPERIMENTO 4


```
grafreg = Plot[f[x], {x, 0.625, 6.38}, PlotStyle → {Hue[0]},
PlotLabel → "GRAFICA REGRESIÓN DE TIEMPO(s) vs PRESION(Kg/cm2)
,EXPERIMENTO 4,", GridLines → Automatic]
```

GRAFICA REGRESIÓN DE TIEMPO(s) vs PRESION(Kg/cm2)

grafelim = ListPlot[Transpose[mat2], Joined → True, PlotStyle → {Hue[2]},
 PlotLabel → "Datos recortados, EXPERIMENTO 4", GridLines → Automatic]

Show[grafdata, grafreg, grafelim]

El modelo es confiable por debjo de los 6 kgf/cm2

A CONTINUACIÓN SE CALCULA EL FLUJO DE AIRE

f'[x]

 $13.1248 \,\mathrm{x}$

SE CALCULA EL FLUJO DE AIRE MEDIANTE LA FORMULA Fflujo (L/min)=(dP/dt)*(1.147*22.4*60/0.082*298*1.0332) (kgf/cm2)/(s)

flujosaire = Table[(61.05878705/f'[j]), {j, presionesb}]

{7.4435, 4.65219, 3.10146, 2.32609, 1.86087, 1.55073, 1.3292, 1.16305, 1.03382, 0.930437, 0.845852}

Length[%]

11

r = ExportString[flujosaire, "Table"]

7.443497169822909

4.652185731139319

3.1014571540928793

2.3260928655696596

1.8608742924557273

1.5507285770464396

1.3291959231826624

1.1630464327848298

1.033819051364293

0.9304371462278637

0.8458519511162398

Anális de dependenciade variables

Dependenca de la presión de alta con la presión de baja y el área de boquilla del inyector (mm2)

aboquilla = 9.77

9.77

fac = presionesb * aboquilla

 $\{6.10625,\,9.77,\,14.655,\,19.54,\,24.425,\,29.31,\,34.195,\,39.08,\,43.965,\,48.85,\,53.735\}$

```
matfac = {fac, presionesa}
```

```
 \{ \{ 6.10625, 9.77, 14.655, 19.54, 24.425, 29.31, 34.195, 39.08, 43.965, 48.85, 53.735 \}, \\ \{ 4.5, 4.85, 5.25, 5.65, 5.95, 6.5, 6.95, 7.39, 7.75, 8.15, 8.6 \} \}
```

Selección de un modelo polinomialpara el ajuste de los datos

```
Clear[1m3]
```

lm3 = LinearModelFit[Transpose[matfac], {x}, {x}]

FittedModel 3.9738

3.9738 + 0.0859874 x

lm3[{"ParameterTable", "RSquared"}]

		Estimate	Standard Error	t Statistic	P-Value
{	1	3.9738	0.0323811	122.72	8.04613×10^{-16} , 0.99884
	Х	0.0859874	0.000976804	88.0294	1.59647×10^{-14}

EN ESTE ARCHIVO SE CALCULAN LOS FLUJOS DE AIRE DEL DEL EXPERIMENTO 5, CON EL INYECTOR T, EL DIFUSOR 1 DISTANCIA DE 3.4 mm

presionesb = {0.625, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50} $\{0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5\}$

Length[presionesb]

11

```
presionesa = {4.55, 4.85, 5.30, 5.70, 6.15, 6.50, 7.00, 7.40, 7.80, 8.25, 8.65}
\{4.55, 4.85, 5.3, 5.7, 6.15, 6.5, 7., 7.4, 7.8, 8.25, 8.65\}
```

Length[presionesa]

11

```
tiempos = {4.10, 8.70, 16.80, 27.10, 40.30, 54.20, 69.90, 88.70, 109.70, 133.50, 162.10}
{4.1, 8.7, 16.8, 27.1, 40.3, 54.2, 69.9, 88.7, 109.7, 133.5, 162.1}
```

Length[tiempos]

11

mat = {presionesb, tiempos}

```
\{\{0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5\},\
 \{4.1, 8.7, 16.8, 27.1, 40.3, 54.2, 69.9, 88.7, 109.7, 133.5, 162.1\}\}
```

Se eliminaron los tres últimos datos para mejorar la correlación, esto es muy usado para eliminar efectos de borde en los cálculos, en estadística formas más rigurosas incluyen la "media recortada" (Walpole, 2007)

```
elimpres = {6.00, 6.250, 6.375}
\{6., 6.25, 6.375\}
elimtiem = {202.80, 245.50, 287.70}
\{202.8, 245.5, 287.7\}
mat2 = {elimpres, elimtiem}
\{\{6., 6.25, 6.375\}, \{202.8, 245.5, 287.7\}\}
```

Ajuste del modelo tiempo=a+b(presión)^2

Clear[lm]

```
lm = LinearModelFit[Transpose[mat], {x^2}, {x}]
```

FittedModel 5.2442 + 5.19118 x²

```
lm[{"ParameterTable", "RSquared"}]
     Estimate Standard Error t Statistic P-Value
                                         0.000172922 , 0.998925
11
     5.2442
               0.855547
                               6.12964
                                        1.13371 \times 10^{-14}
 x<sup>2</sup> 5.19118 0.056768
                               91.4454
lm2 = LinearModelFit[Transpose[mat], {x, x^2}, {x}]
FittedModel | 0.28928 + ≪1≫ + 4.54594 ≪1≫
lm2[{"ParameterTable", "RSquared"}]
     Estimate Standard Error t Statistic P-Value
     0.28928
              1.21233
                              0.238615 0.817403
ſ1
                                                        , 0.999692
 Х
     4.1122
               0.921787
                              4.46112 0.00210793
 x<sup>2</sup> 4.54594 0.148185
                                       1.38489 \times 10^{-9}
                              30.6776
```

En este experimento se ve observa que la correlación lm es aceptable el comparación con lm2

A CONTINUACIÓN SE COMPARAN LOS DATOS ORIGINALES CON LA REGRESIÓN

f[x_] = Fit[Transpose[mat], {1, x^2}, x]

```
5.2442 + 5.19118 x^2
```

```
grafdata = ListPlot[Transpose[mat], Joined → True, PlotStyle → {Hue[2]},
PlotLabel → "GRAFICA DE TIEMPO(s) vs PRESION(Kg/cm2), EXPERIMENTO 5", GridLines → Automatic]
```

GRAFICA DE TIEMPO(s) vs PRESION(Kg/cm2), EXPERIMENTO 5


```
 \begin{array}{l} \mbox{grafreg = Plot[f[x], {x, 0.625, 6.4}, PlotStyle \rightarrow {Hue[0]}, \\ \mbox{PlotLabel} \rightarrow \mbox{"GRAFICA REGRESIÓN DE TIEMPO(s) vs PRESION(Kg/cm2)}, \\ \mbox{EXPERIMENTO 5,", GridLines} \rightarrow \mbox{Automatic} \end{array} \right]
```

GRAFICA REGRESIÓN DE TIEMPO(s) vs PRESION(Kg/cm2)

grafelim = ListPlot[Transpose[mat2], Joined → True, PlotStyle → {Hue[2]},
PlotLabel → "Datos recortados, EXPERIMENTO 5", GridLines → Automatic]

Show[grafdata, grafreg, grafelim]

GRAFICA DE TIEMPO(s) vs PRESION(Kg/cm2), EXPERIMENTO 5

A CONTINUACIÓN SE CALCULA EL FLUJO DE AIRE

f'[x]

 $10.3824 \,\mathrm{x}$

SE CALCULA EL FLUJO DE AIRE MEDIANTE LA FORMULA Fflujo (L/min)=(dP/dt)*(1.147*22.4*60/0.082*298*1.0332) (kgf/cm2)/(s)

flujosaire = Table[(61.05878705/f'[j]), {j, presionesb}]

{9.40963, 5.88102, 3.92068, 2.94051, 2.35241, 1.96034, 1.68029, 1.47025, 1.30689, 1.1762, 1.06928}

Length[%]

11

```
r = ExportString[flujosaire, "Table"]
```

- 9.40962611197502
- 5.881016319984388
- 3.9206775466562584
- 2.940508159992194
- 2.352406527993755
- 1.9603387733281292
- 1.6802903771383964
- 1.470254079996097
- 1.306892515552086
- 1.1762032639968776
- 1.0692756945426158

Anális de dependenciade variables

Dependenca de la presión de alta con la presión de baja y el área de boquilla del inyector (mm2)

```
aboquilla = 9.77
9.77
fac = presionesb * aboquilla
```

 $\{\texttt{6.10625}, \texttt{9.77}, \texttt{14.655}, \texttt{19.54}, \texttt{24.425}, \texttt{29.31}, \texttt{34.195}, \texttt{39.08}, \texttt{43.965}, \texttt{48.85}, \texttt{53.735}\}$

matfac = {fac, presionesa}

 $\{ \{ 6.10625, 9.77, 14.655, 19.54, 24.425, 29.31, 34.195, 39.08, 43.965, 48.85, 53.735 \}, \\ \{ 4.55, 4.85, 5.3, 5.7, 6.15, 6.5, 7., 7.4, 7.8, 8.25, 8.65 \} \}$

Selección de un modelo polinomialpara el ajuste de los datos

Clear[lm3]

```
lm3 = LinearModelFit[Transpose[matfac], {x}, {x}]
```

FittedModel 4.01981 + 0.0863084 x

lm3[{"ParameterTable", "RSquared"}]

	Estimate	Standard Error	t Statistic	P-Value	
$\left\{ \begin{array}{c} 1 \end{array} \right.$	4.01981	0.0150192	267.645	7.22125×10^{-19} '	0.999752}
Х	0.0863084	0.000453066	190.499	1.53959×10^{-17}	

EN ESTE ARCHIVO SE CALCULAN LOS FLUJOS DE AIRE DEL DEL EXPERIMENTO 6, CON EL INYECTOR T , EL DIFUSOR 1 DISTANCIA DE 5 mm

presionesb = {0.625, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50, 5.00}
{0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5.}

Length[presionesb]

10

```
presionesa = {4.75, 5.00, 5.40, 5.80, 6.20, 6.65, 7.05, 7.45, 7.95, 8.30}
```

 $\{4.75, 5., 5.4, 5.8, 6.2, 6.65, 7.05, 7.45, 7.95, 8.3\}$

Length[presionesa]

10

```
tiempos = {3.80, 8.00, 15.50, 25.40, 36.50, 48.80, 62.80, 80.00, 99.00, 122.30}
```

```
{3.8, 8., 15.5, 25.4, 36.5, 48.8, 62.8, 80., 99., 122.3}
```

Length[tiempos]

10

mat = {presionesb, tiempos}

```
{{0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5.},
{3.8, 8., 15.5, 25.4, 36.5, 48.8, 62.8, 80., 99., 122.3}}
```

Se eliminaron los dos últimos datos para mejorar la correlación, esto es muyusado para eliminar efectos de borde en los cálculos, en estadística formas más rigurosas incluyen la "media recortada" (Walpole, 2007)

```
elimpres = {5.50, 5.60}
{5.5, 5.6}
elimtiem = {159.50, 170.90}
{159.5, 170.9}
mat2 = {elimpres, elimtiem}
{{5.5, 5.6}, {159.5, 170.9}}
```

Ajuste del modelo tiempo=a+b(presión)^2

Clear[lm]

```
lm = LinearModelFit[Transpose[mat], {x^2}, {x}]
```

FittedModel 4.7604 + 4.71515 x²

```
lm[{"ParameterTable", "RSquared"}]
     Estimate Standard Error t Statistic P-Value
                                       0.000432366 , 0.998441
11
     4.7604
              0.828879
                              5.74318
 x<sup>2</sup> 4.71515 0.0658712
                                       1.61578 \times 10^{-12}
                              71.5813
lm2 = LinearModelFit[Transpose[mat], {x, x^2}, {x}]
FittedModel 0.0338876 + ≪1≫ + 3.98845 ≪1≫
lm2[{"ParameterTable", "RSquared"}]
     Estimate
                Standard Error t Statistic P-Value
     0.0338876 1.18649
                               0.0285613 0.978012
ſ1
                                                         , 0.999576
```

x4.246590.9817414.325570.00345653 x^2 3.988450.17197223.19257.02871 × 10^{-8}

En este experimento la correlación lm tiene un intervalo de confianza mayor al establecido.

A CONTINUACIÓN SE COMPARAN LOS DATOS ORIGINALES CON LA REGRESIÓN

```
f[x_] = Fit[Transpose[mat], {1, x^2}, x]
```

```
4.7604 + 4.71515 x^2
```

```
grafdata = ListPlot[Transpose[mat], Joined → True, PlotStyle → {Hue[2]},
PlotLabel → "GRAFICA DE TIEMPO(s) vs PRESION(Kg/cm2), EXPERIMENTO 6", GridLines → Automatic]
```

GRAFICA DE TIEMPO(s) vs PRESION(Kg/cm2),EXPERIMENTO (


```
 \begin{array}{l} \mbox{grafreg = Plot[f[x], {x, 0.625, 5.6}, PlotStyle \rightarrow {Hue[0]}, \\ \mbox{PlotLabel } & \mbox{"GRAFICA REGRESIÓN DE TIEMPO(s) vs PRESION(Kg/cm2)} \\ \mbox{, EXPERIMENTO 6, ", GridLines } \mbox{Automatic} \end{array}
```

GRAFICA REGRESIÓN DE TIEMPO(s) vs PRESION(Kg/cm2)

grafelim = ListPlot[Transpose[mat2], Joined → True, PlotStyle → {Hue[2]},
 PlotLabel → "Datos recortados, EXPERIMENTO 6", GridLines → Automatic]

Show[grafdata, grafreg, grafelim]

El modelo es confiable por debjo de los 5 kgf/cm2

A CONTINUACIÓN SE CALCULA EL FLUJO DE AIRE

f'[x]

9.43029x

SE CALCULA EL FLUJO DE AIRE MEDIANTE LA FORMULA Fflujo (L/min)=(dP/dt)*(1.147*22.4*60/0.082*298*1.0332) (kgf/cm2)/(s)

flujosaire = Table[(61.05878705/f'[j]), {j, presionesb}]

 $\{10.3596,\, 6.47475,\, 4.3165,\, 3.23737,\, 2.5899,\, 2.15825,\, 1.84993,\, 1.61869,\, 1.43883,\, 1.29495\}$

Length[%]

10

r = ExportString[flujosaire, "Table"]

10.359597941981747

6.474748713738591

4.316499142492394

3.2373743568692954

2.5898994854954367

2.158249571246197

1.849928203925312

1.6186871784346477

1.4388330474974649

1.2949497427477183

Anális de dependenciade variables

Dependenca de la presión de alta con la presión de baja y el área de boquilla del inyector (mm2)

aboquilla = 9.77

9.77

fac = presionesb * aboquilla

{6.10625, 9.77, 14.655, 19.54, 24.425, 29.31, 34.195, 39.08, 43.965, 48.85}

matfac = {fac, presionesa}

 $\{ \{ 6.10625, 9.77, 14.655, 19.54, 24.425, 29.31, 34.195, 39.08, 43.965, 48.85 \}, \\ \{ 4.75, 5., 5.4, 5.8, 6.2, 6.65, 7.05, 7.45, 7.95, 8.3 \} \}$

Selección de un modelo polinomialpara el ajuste de los datos

```
Clear[lm3]
```

lm3 = LinearModelFit[Transpose[matfac], {x}, {x}]

FittedModel 4.17

4.17783 + 0.0843719 x

lm3[{"ParameterTable", "RSquared"}]

 $\begin{cases} Estimate & Standard Error t Statistic P-Value \\ 1 & 4.17783 & 0.0249615 & 167.371 & 1.81689 \times 10^{-15} , 0.99924 \\ x & 0.0843719 & 0.000822923 & 102.527 & 9.14786 \times 10^{-14} \end{cases}$

EN ESTE ARCHIVO SE CALCULAN LOS FLUJOS DE AIRE DEL DEL EXPERIMENTO 7, CON EL INYECTOR 1 , EL DIFUSOR 2 DISTANCIA DE 2.5 mm

```
presionesb = {0.625, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.2}
{0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.2}
Length[presionesb]
9
presionesa = {3.75, 4.05, 4.40, 4.75, 5.15, 5.55, 5.95, 6.30, 6.40}
{3.75, 4.05, 4.4, 4.75, 5.15, 5.55, 5.95, 6.3, 6.4}
Length[presionesa]
9
tiempos = {2.6, 4.7, 7.6, 12.0, 17.5, 22.7, 29.1, 37.5, 43.4}
```

 $\{2.6, 4.7, 7.6, 12., 17.5, 22.7, 29.1, 37.5, 43.4\}$

Length[tiempos]

9

mat = {presionesb, tiempos}

 $\{\{0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.2\}, \{2.6, 4.7, 7.6, 12., 17.5, 22.7, 29.1, 37.5, 43.4\}\}$

Ajuste del modelo tiempo=a+b(presión)^2

```
Clear[lm]

lm = LinearModelFit[Transpose[mat], {x^2}, {x}]

FittedModel[2.43939 + 2.25566 \ll 1 \gg]

lm[{"ParameterTable", "RSquared"}]

\left\{ \begin{array}{c} Estimate Standard Error t Statistic P-Value \\ 1 & 2.43939 & 0.457367 & 5.33355 & 0.00108327 \\ x^2 & 2.25566 & 0.0468016 & 48.1961 & 4.33136 \times 10^{-10} \end{array} \right\}, 0.996996

lm2 = LinearModelFit[Transpose[mat], {x, x^2}, {x}]

FittedModel[1.59739 + \ll 1 \gg + 2.08671 \ll 1 \gg]
```

```
lm2[{"ParameterTable", "RSquared"}]
```

		Estimate	Standard Error	t Statistic	P-Value	
{	1	1.59739	1.30159	1.22726	0.265689	, 0.997219}
L	Х	0.859951	1.23756	0.694876	0.513129	· J
	x ²	2.08671	0.247952	8.41577	0.000153441	

En este experimento la correlación lm tiene un intervalo de confianza mayor al establecido, no fué necesario eliminar efectos de borde.

A CONTINUACIÓN SE COMPARAN LOS DATOS ORIGINALES CON LA REGRESIÓN

```
f[x_] = Fit[Transpose[mat], {1, x^2}, x]
```

```
2.43939 + 2.25566 x^2
```

```
grafdata = ListPlot[Transpose[mat], Joined → True, PlotStyle → {Hue[2]},
PlotLabel → "GRAFICA DE TIEMPO(s) vs PRESION(Kg/cm2), EXPERIMENTO 7", GridLines → Automatic]
```


grafreg = Plot[f[x], {x, 0.625, 4.20}, PlotStyle → {Hue[0]},
 PlotLabel → "GRAFICA REGRESIÓN DE TIEMPO(s) vs PRESION(Kg/cm2)
,EXPERIMENTO 7,", GridLines → Automatic]

GRAFICA REGRESIÓN DE TIEMPO(s) vs PRESION(Kg/cm2)

Show[grafdata, grafreg]

El modelo es confiable en todo el intervalo experimental y no fué necesario eliminar efectos de borde en la correlación

A CONTINUACIÓN SE CALCULA EL FLUJO DE AIRE

```
f'[x]
```

 $4.51131 \,\mathrm{x}$

SE CALCULA EL FLUJO DE AIRE MEDIANTE LA FORMULA Fflujo (L/min)=(dP/dt)*(1.147*22.4*60/0.082*298*1.0332) (kgf/cm2)/(s)

flujosaire = Table[(61.05878705/f'[j]), {j, presionesb}]

{21.6553, 13.5346, 9.02306, 6.7673, 5.41384, 4.51153, 3.86703, 3.38365, 3.22252}

Length[%]

9

```
r = ExportString[flujosaire, "Table"]
```

21.6553481929081

13.534592620567564

9.023061747045041

- 6.767296310283782
- 5.413837048227025
- 4.511530873522521
- 3.867026463019304
- 3.383648155141891
- 3.2225220525160867

Anális de dependenciade variables

Dependenca de la presión de alta con la presión de baja y el área de boquilla del inyector (mm2)

aboquilla = 19.63

19.63

fac = presionesb * aboquilla

 $\{12.2687, 19.63, 29.445, 39.26, 49.075, 58.89, 68.705, 78.52, 82.446\}$

matfac = {fac, presionesa}

```
 \{ \{ 12.2687, 19.63, 29.445, 39.26, 49.075, 58.89, 68.705, 78.52, 82.446 \}, \\ \{ 3.75, 4.05, 4.4, 4.75, 5.15, 5.55, 5.95, 6.3, 6.4 \} \}
```

Selección de un modelo polinomialpara el ajuste de los datos

Clear[lm3]

```
lm3 = LinearModelFit[Transpose[matfac], {x}, {x}]
```

FittedModel 3.27989 + 0.0382918 x

```
lm3[{"ParameterTable", "RSquared"}]
```

	Estimate	Standard Error	t Statistic	P-Value
{ 1	3.27989	0.0199652	164.281	8.17187×10 ⁻¹⁴ , 0.999354
Х	0.0382918	0.000367909	104.079	1.99226×10^{-12}

EN ESTE ARCHIVO SE CALCULAN LOS FLUJOS DE AIRE DEL DEL EXPERIMENTO 8, CON EL INYECTOR 2 , EL DIFUSOR 3 DISTANCIA DE 1 mm

presionesb = {0.625, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50, 6.00, 6.50}
{0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5}

Length[presionesb]

13

```
presionesa = {5.15, 5.50, 5.90, 6.35, 6.75, 7.15, 7.60, 8.00, 8.45, 8.85, 9.30, 9.80, 10.05}
{5.15, 5.5, 5.9, 6.35, 6.75, 7.15, 7.6, 8., 8.45, 8.85, 9.3, 9.8, 10.05}
```

Length[presionesa]

13

```
tiempos =
```

{4.50, 8.10, 13.50, 20.30, 28.10, 37.20, 46.90, 57.40, 68.70, 80.30, 93.50, 109.00, 127.00} {4.5, 8.1, 13.5, 20.3, 28.1, 37.2, 46.9, 57.4, 68.7, 80.3, 93.5, 109., 127.}

Length[tiempos]

13

mat = {presionesb, tiempos}

 $\{ \{ 0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5 \}, \\ \{ 4.5, 8.1, 13.5, 20.3, 28.1, 37.2, 46.9, 57.4, 68.7, 80.3, 93.5, 109., 127. \} \}$

Ajuste del modelo tiempo=a+b(presión)^2

Clear[lm]

```
lm = LinearModelFit[Transpose[mat], {x^2}, {x}]
```

FittedModel 8.52228 + 2.84889 ≪1≫

lm[{"ParameterTable", "RSquared"}]

Estimate Standard Error t Statistic P-Value

ł	1	8.52228	1.22531	6.95518	0.0000240658	, 0.995281}
	x ²	2.84889	0.0591453	48.1677	3.78711×10^{-14}	

```
lm2 = LinearModelFit[Transpose[mat], {x, x^2}, {x}]
```

FittedModel 0.0445409 + <1> + 2.02815 <1>

lm2[{"ParameterTable", "RSquared"}]

	Estimate	Standard Error	t Statistic	P-Value	
{ 1	0.0445409	0.869224	0.0512422	0.960142	, 0.999623}
۲ ک	6.10132	0.568361	10.7349	8.26766×10^{-7}	,
x	2 2.02815	0.0784388	25.8564	1.7213×10^{-10}	

La correlación lm satisface los valores esperados con un intervalo de confianza mayor al establecido, no fué necesario eliminar efectos de borde en este experimento

A CONTINUACIÓN SE COMPARAN LOS DATOS ORIGINALES CON LA REGRESIÓN

```
f[x_] = Fit[Transpose[mat], {1, x<sup>2</sup>}, x]
```

```
8.52228 \pm 2.84889\,x^2
```

grafdata = ListPlot[Transpose[mat], Joined → True, PlotStyle → {Hue[2]},
PlotLabel → "GRAFICA DE TIEMPO(s) vs PRESION(Kg/cm2), EXPERIMENTO 8", GridLines → Automatic]

 $\begin{array}{l} \mbox{grafreg = Plot[f[x], {x, 0.625, 6.5}, PlotStyle \rightarrow \{Hue[0]\}, \\ \mbox{PlotLabel} \rightarrow "GRAFICA REGRESIÓN DE TIEMPO(s) vs PRESION(Kg/cm2), \\ \mbox{EXPERIMENTO 8,", GridLines} \rightarrow Automatic] \end{array}$

Show[grafdata, grafreg]

El modelo es confiable en todo el intervalo experimental

A CONTINUACIÓN SE CALCULA EL FLUJO DE AIRE

f'[x]

 $5.69778 \,\mathrm{x}$

SE CALCULA EL FLUJO DE AIRE MEDIANTE LA FORMULA Fflujo (L/min)=(dP/dt)*(1.147*22.4*60/0.082*298*1.0332) (kgf/cm2)/(s)

flujosaire = Table[(61.05878705/f'[j]), {j, presionesb}]

{17.146, 10.7162, 7.14417, 5.35812, 4.2865, 3.57208, 3.06179, 2.67906, 2.38139, 2.14325, 1.94841, 1.78604, 1.64865}

Length[%]

13

r = ExportString[flujosaire, "Table"]

17.145999483655956

10.71624967728497

7.144166451523314

5.358124838642485

4.286499870913989

3.572083225761657

3.06178562208142

2.6790624193212427

2.381388817174438

2.1432499354569945

1.9484090322336312

1.7860416128808285

1.6486537965053802

Anális de dependenciade variables

Dependenca de la presión de alta con la presión de baja y el área de boquilla del inyector(mm2)

aboquilla = 6.94

6.94

fac = presionesb * aboquilla

 $\{4.3375,\,6.94,\,10.41,\,13.88,\,17.35,\,20.82,\,24.29,\,27.76,\,31.23,\,34.7,\,38.17,\,41.64,\,45.11\}$

matfac = {fac, presionesa}

 $\{\{4.3375, 6.94, 10.41, 13.88, 17.35, 20.82, 24.29, 27.76, 31.23, 34.7, 38.17, 41.64, 45.11\}, \\ \{5.15, 5.5, 5.9, 6.35, 6.75, 7.15, 7.6, 8., 8.45, 8.85, 9.3, 9.8, 10.05\}\}$

Selección de un modelo polinomialpara el ajuste de los datos

Clear[lm3]

lm3 = LinearModelFit[Transpose[matfac], {x}, {x}]

FittedModel 4.63882 + 0.121733 x

lm3[{"ParameterTable", "RSquared"}]

		Estimate	Standard Error	t Statistic	P-Value
ł	1	4.63882	0.0235645	196.856	7.29083×10^{-21} , 0.999457
	Х	0.121733	0.000855282	142.331	2.5796×10^{-19}

EN ESTE ARCHIVO SE CALCULAN LOS FLUJOS DE AIRE DEL DEL EXPERIMENTO 8, CON EL INYECTOR 2 , EL DIFUSOR 3 DISTANCIA DE 3 mm

presionesb = {0.625, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50, 6.00, 6.50}
{0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5}

Length[presionesb]

13

```
presionesa = {5.10, 5.45, 5.80, 6.20, 6.65, 7.05, 7.55, 7.95, 8.40, 8.80, 9.25, 9.70, 10.10}
{5.1, 5.45, 5.8, 6.2, 6.65, 7.05, 7.55, 7.95, 8.4, 8.8, 9.25, 9.7, 10.1}
```

Length[presionesa]

13

tiempos =

{5.30, 9.40, 14.90, 21.90, 29.90, 38.50, 48.70, 59.40, 70.90, 83.70, 97.70, 114.20, 130.70} {5.3, 9.4, 14.9, 21.9, 29.9, 38.5, 48.7, 59.4, 70.9, 83.7, 97.7, 114.2, 130.7}

Length[tiempos]

13

mat = {presionesb, tiempos}

 $\{ \{ 0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5 \}, \\ \{ 5.3, 9.4, 14.9, 21.9, 29.9, 38.5, 48.7, 59.4, 70.9, 83.7, 97.7, 114.2, 130.7 \} \}$

Ajuste del modelo tiempo=a+b(presión)^2

Clear[lm]

```
lm = LinearModelFit[Transpose[mat], {x^2}, {x}]
```

FittedModel 9.51292 + 2.93587 ≪1≫

lm[{"ParameterTable", "RSquared"}]

Estimate Standard Error t Statistic P-Value

```
lm2 = LinearModelFit[Transpose[mat], {x, x^2}, {x}]
```

FittedModel 1.15632 + <1> + 2.12686 <1>

```
lm2[{"ParameterTable", "RSquared"}]
```

	Estimate	Standard Error	t Statistic	P-Value	
{ 1	1.15632	0.519154	2.22731	0.0500701	, 0.999873
X	6.01414	0.33946	17.7168	6.99545×10^{-9}	,
x ²	2.12686	0.0468484	45.3986	6.47199×10^{-13}	

La correlación lm satisface los valores esperados con un intervalo de confianza mayor al establecido, no fué necesario eliminar efectos de borde en este experimento

A CONTINUACIÓN SE COMPARAN LOS DATOS ORIGINALES CON LA REGRESIÓN

```
f[x_] = Fit[Transpose[mat], \{1, x^2\}, x]
```

```
9.51292 + 2.93587 x^2
```

grafdata = ListPlot[Transpose[mat], Joined → True, PlotStyle → {Hue[2]},
PlotLabel → "GRAFICA DE TIEMPO(s) vs PRESION(Kg/cm2), EXPERIMENTO 9", GridLines → Automatic]

grafreg = Plot[f[x], {x, 0.625, 6.5}, PlotStyle → {Hue[0]},
 PlotLabel → "GRAFICA REGRESIÓN DE TIEMPO(s) vs PRESION(Kg/cm2)
,EXPERIMENTO 9,", GridLines → Automatic]

Show[grafdata, grafreg]

El modelo es confiable en todo el intervalo experimental

A CONTINUACIÓN SE CALCULA EL FLUJO DE AIRE

f'[x]

 $5.87174 \,\mathrm{x}$

SE CALCULA EL FLUJO DE AIRE MEDIANTE LA FORMULA Fflujo (L/min)=(dP/dt)*(1.147*22.4*60/0.082*298*1.0332) (kgf/cm2)/(s)

flujosaire = Table[(61.05878705/f'[j]), {j, presionesb}]

{16.638, 10.3988, 6.93251, 5.19938, 4.1595, 3.46625, 2.97107, 2.59969, 2.31084, 2.07975, 1.89068, 1.73313, 1.59981}

Length[%]

13

r = ExportString[flujosaire, "Table"]

16.63801399412603

10.398758746328769

6.932505830885845

5.199379373164384

4.159503498531508

3.4662529154429227

2.971073927522505

2.599689686582192

2.310835276961948

2.079751749265754

1.8906834084234123

1.7331264577214613

1.5998090378967333

Anális de dependenciade variables

Dependenca de la presión de alta con la presión de baja y el área de boquilla del inyector(mm2)

aboquilla = 6.94

6.94

fac = presionesb * aboquilla

 $\{4.3375,\,6.94,\,10.41,\,13.88,\,17.35,\,20.82,\,24.29,\,27.76,\,31.23,\,34.7,\,38.17,\,41.64,\,45.11\}$

matfac = {fac, presionesa}

 $\{\{4.3375, 6.94, 10.41, 13.88, 17.35, 20.82, 24.29, 27.76, 31.23, 34.7, 38.17, 41.64, 45.11\}, \\\{5.1, 5.45, 5.8, 6.2, 6.65, 7.05, 7.55, 7.95, 8.4, 8.8, 9.25, 9.7, 10.1\}\}$

Selección de un modelo polinomialpara el ajuste de los datos

Clear[lm3]

lm3 = LinearModelFit[Transpose[matfac], {x}, {x}]

FittedModel 4.53409 + 0.123349 x

lm3[{"ParameterTable", "RSquared"}]

<i>.</i>	Estimate	Standard Error	t Statistic	P-Value
{ 1	4.53409	0.0196832	230.353	1.29494×10^{-21} , 0.999631
Х	0.123349	0.000714408	172.659	3.08429×10^{-20}

EN ESTE ARCHIVO SE CALCULAN LOS FLUJOS DE AIRE DEL DEL EXPERIMENTO 10, CON EL INYECTOR 2 , EL DIFUSOR 3 DISTANCIA DE 5 mm

presionesb = {0.625, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50, 6.00, 6.25}
{0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.25}

Length[presionesb]

13

```
presionesa = {5.20, 5.55, 5.90, 6.35, 6.80, 7.20, 7.60, 8.05, 8.45, 8.90, 9.35, 9.75, 10.00}
{5.2, 5.55, 5.9, 6.35, 6.8, 7.2, 7.6, 8.05, 8.45, 8.9, 9.35, 9.75, 10.}
```

Length[presionesa]

13

tiempos =

{5.30, 9.30, 14.70, 21.20, 29.10, 37.40, 46.80, 57.40, 68.00, 79.70, 92.50, 107.70, 115.80} {5.3, 9.3, 14.7, 21.2, 29.1, 37.4, 46.8, 57.4, 68., 79.7, 92.5, 107.7, 115.8}

Length[tiempos]

13

mat = {presionesb, tiempos}

 $\{ \{ 0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.25 \}, \\ \{ 5.3, 9.3, 14.7, 21.2, 29.1, 37.4, 46.8, 57.4, 68., 79.7, 92.5, 107.7, 115.8 \} \}$

Ajuste del modelo tiempo=a+b(presión)^2

Clear[lm]

```
lm = LinearModelFit[Transpose[mat], {x^2}, {x}]
```

FittedModel 9.61758 + 2.77572 << 1>

lm[{"ParameterTable", "RSquared"}]

Estimate Standard Error t Statistic P-Value

```
lm2 = LinearModelFit[Transpose[mat], {x, x^2}, {x}]
```

FittedModel 0.774281 + «1» + 1.88344 «1»

```
lm2[{"ParameterTable", "RSquared"}]
```

	Estimate	Standard Error	t Statistic	P-Value	
{ 1	0.774281	0.540789	1.43176	0.182717	$, 0.999842 \Big\}$
X	6.50004	0.361921	17.9599	6.12757×10^{-9}	
xź	1.88344	0.0508969	37.0049	4.94341×10^{-12}	

La correlación lm satisface los valores esperados con un intervalo de confianza mayor al establecido, no fué necesario eliminar efectos de borde en este experimento

A CONTINUACIÓN SE COMPARAN LOS DATOS ORIGINALES CON LA REGRESIÓN

```
f[x_] = Fit[Transpose[mat], {1, x^2}, x]
```

```
9.61758 + 2.77572 \, x^2
```

```
grafdata = ListPlot[Transpose[mat], Joined → True, PlotStyle → {Hue[2]},
PlotLabel → "GRAFICA DE TIEMPO(s) vs PRESION(Kg/cm2), EXPERIMENTO 10", GridLines → Automatic]
```


grafreg = Plot[f[x], {x, 0.625, 6.25}, PlotStyle → {Hue[0]},
PlotLabel → "GRAFICA REGRESIÓN DE TIEMPO(s) vs PRESION(Kg/cm2)
,EXPERIMENTO 10,", GridLines → Automatic]

Show[grafdata, grafreg]

El modelo es confiable en todo el intervalo experimental

A CONTINUACIÓN SE CALCULA EL FLUJO DE AIRE

f'[x]

 $5.55144 \,\mathrm{x}$

SE CALCULA EL FLUJO DE AIRE MEDIANTE LA FORMULA Fflujo (L/min)=(dP/dt)*(1.147*22.4*60/0.082*298*1.0332) (kgf/cm2)/(s)

flujosaire = Table[(61.05878705/f'[j]), {j, presionesb}]

{17.598, 10.9987, 7.33249, 5.49936, 4.39949, 3.66624, 3.14249, 2.74968, 2.44416, 2.19975, 1.99977, 1.83312, 1.7598}

Length[%]

r = ExportString[flujosaire, "Table"]

17.145999483655956

10.71624967728497

7.144166451523314

5.358124838642485

4.286499870913989

3.572083225761657

3.06178562208142

2.6790624193212427

2.381388817174438

2.1432499354569945

1.9484090322336312

1.7860416128808285

1.6486537965053802

Anális de dependenciade variables

Dependenca de la presión de alta con la presión de baja y el área de boquilla del inyector(mm2)

aboquilla = 6.94

6.94

fac = presionesb * aboquilla

 $\{4.3375,\,6.94,\,10.41,\,13.88,\,17.35,\,20.82,\,24.29,\,27.76,\,31.23,\,34.7,\,38.17,\,41.64,\,43.375\}$

matfac = {fac, presionesa}

 $\{ \{ 4.3375, 6.94, 10.41, 13.88, 17.35, 20.82, 24.29, 27.76, 31.23, 34.7, 38.17, 41.64, 43.375 \}, \\ \{ 5.2, 5.55, 5.9, 6.35, 6.8, 7.2, 7.6, 8.05, 8.45, 8.9, 9.35, 9.75, 10. \} \}$

Selección de un modelo polinomialpara el ajuste de los datos

Clear[lm3]

lm3 = LinearModelFit[Transpose[matfac], {x}, {x}]

FittedModel 4.65826 + 0.122395 x

lm3[{"ParameterTable", "RSquared"}]

_		Estimate	Standard Error	t Statistic	P-Value
ł	1	4.65826	0.0149448	311.698	4.65284×10^{-23} , 0.999781
	Х	0.122395	0.000546696	223.882	1.77155×10^{-21}

EN ESTE ARCHIVO SE CALCULAN LOS FLUJOS DE AIRE DEL DEL EXPERIMENTO 11, SISTEMA DEINYECTOR MÚILTIPLE CLONES DEL INYECTOR 2, EL DIFUSOR 3 DISTANCIA MÍNIMA

presionesb = {0.625, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50, 6.00}

 $\{0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6.\}$

Length[presionesb]

12

presionesa = {4.75, 5.15, 5.55, 6.00, 6.40, 6.80, 7.30, 7.75, 8.15, 8.60, 9.05, 9.45}

 $\{4.75, 5.15, 5.55, 6., 6.4, 6.8, 7.3, 7.75, 8.15, 8.6, 9.05, 9.45\}$

Length[presionesa]

12

```
tiempos = {2.20, 3.90, 6.30, 9.60, 13.50, 17.80, 22.90, 28.40, 34.40, 41.30, 48.90, 56.90}
{2.2, 3.9, 6.3, 9.6, 13.5, 17.8, 22.9, 28.4, 34.4, 41.3, 48.9, 56.9}
```

Length[tiempos]

12

mat = {presionesb, tiempos}

{{0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6.}, {2.2, 3.9, 6.3, 9.6, 13.5, 17.8, 22.9, 28.4, 34.4, 41.3, 48.9, 56.9}}

elimpres = {6.50, 6.9}

 $\{6.5, 6.9\}$

elimtiem = {77.90, 98.60}

 $\{77.9, 98.6\}$

mat2 = {elimpres, elimtiem}

 $\{\{6.5, 6.9\}, \{77.9, 98.6\}\}$

Se eliminaron los dos últimos datos para mejorar la correlación, eliminando efectos de borde.

Ajuste del modelo tiempo=a+b(presión)^2

```
Clear[lm]

lm = LinearModelFit[Transpose[mat], {x^2}, {x}]

FittedModel[ 3.24962 + 1.51933 ≪1≫]

lm[{"ParameterTable", "RSquared"}]

{ Estimate Standard Error t Statistic P-Value

{ 1 3.24962 0.402061 8.08241 0.0000107628 , 0.99779}

x<sup>2</sup> 1.51933 0.0226104 67.1961 1.29794×10<sup>-14</sup>
```

```
lm2 = LinearModelFit[Transpose[mat], {x, x^2}, {x}]
FittedModel 0.440422 + <1>> + 1.2056 <1>>
lm2[{"ParameterTable", "RSquared"}]
      Estimate Standard Error t Statistic P-Value
                                           9.73143×10<sup>-10</sup> , 0.99997}
ſ 1
      0.440422 0.119682
                                 3.67994
                0.0841557
                                 25.735
 Х
      2.16574
 x<sup>2</sup>
                                           7.01785 \times 10^{-15}
                0.012499
                                96.4557
      1.2056
```

En este experimento se ve observa que la correlación lm es aceptable el comparación con lm2 que también representa el comportamiento de los datos, la correlación lm satisface los valores esperados con un intervalo de confianza mayor al establecido, se eliminaron efectos de borde.

A CONTINUACIÓN SE COMPARAN LOS DATOS ORIGINALES CON LA REGRESIÓN

f[x_] = Fit[Transpose[mat], {1, x^2}, x]

```
3.24962 + 1.51933 \, x^2
```

```
grafdata = ListPlot[Transpose[mat], Joined → True, PlotStyle → {Hue[2]},
PlotLabel → "GRAFICA DE TIEMPO(s) vs PRESION(Kg/cm2),EXPERIMENTO 11", GridLines → Automatic]
```

FRAFICA DE TIEMPO(s) vs PRESION(Kg/cm2), EXPERIMENTO 1


```
grafreg = Plot[f[x], {x, 0.625, 6.9}, PlotStyle → {Hue[0]},
PlotLabel → "GRAFICA REGRESIÓN DE TIEMPO(s) vs PRESION(Kg/cm2)
,EXPERIMENTO 11,", GridLines → Automatic]
```

GRAFICA REGRESIÓN DE TIEMPO(s) vs PRESION(Kg/cm2)

grafelim = ListPlot[Transpose[mat2], Joined → True, PlotStyle → {Hue[2]},
 PlotLabel → "Datos recortados, EXPERIMENTO 11", GridLines → Automatic]

Show[grafdata, grafreg, grafelim]

El modelo es confiable en todo el intervalo experimental

A CONTINUACIÓN SE CALCULA EL FLUJO DE AIRE

f'[x]

3.03866 x

SE CALCULA EL FLUJO DE AIRE MEDIANTE LA FORMULA Fflujo (L/min)=(dP/dt)*(1.147*22.4*60/0.082*298*1.0332) (kgf/cm2)/(s)

flujosaire = Table[(61.05878705/f'[j]), {j, presionesb}]

 $\{32.1504,\ 20.094,\ 13.396,\ 10.047,\ 8.0376,\ 6.698,\ 5.74114,\ 5.0235,\ 4.46533,\ 4.0188,\ 3.65346,\ 3.349\}$

Length[%]

- r = ExportString[flujosaire, "Table"]
- 32.150408559374966
- 20.094005349609358
- 13.396003566406238
- 10.047002674804679
- 8.037602139843742
- 6.698001783203119
- 5.741144385602674
- 5.023501337402339
- 4.465334522135413
- 4.018801069921871
- 3.6534555181107917
- 3.3490008916015594

Anális de dependenciade variables

Dependenca de la presión de alta con la presión de baja y el área de boquilla del inyector (mm2)

```
aboquilla = 7.06 * 3
```

21.18

fac = presionesb * aboquilla

 $\{13.2375, 21.18, 31.77, 42.36, 52.95, 63.54, 74.13, 84.72, 88.956\}$

matfac = {fac, presionesa}

 $\{ \{ 13.2375, 21.18, 31.77, 42.36, 52.95, 63.54, 74.13, 84.72, 88.956 \}, \\ \{ 3.75, 4.05, 4.4, 4.75, 5.15, 5.55, 5.95, 6.3, 6.4 \} \}$

Selección de un modelo polinomialpara el ajuste de los datos

```
Clear[lm3]
```

```
lm3 = LinearModelFit[Transpose[matfac], {x}, {x}]
```

FittedModel 3.27989 + 0.0354895 x

lm3[{"ParameterTable", "RSquared"}]

 $\begin{cases} \hline \text{Estimate} & \text{Standard Error t Statistic P-Value} \\ \hline 1 & 3.27989 & 0.0199652 & 164.281 & 8.17187 \times 10^{-14} \text{, } \textbf{0.999354} \\ \hline x & 0.0354895 & 0.000340985 & 104.079 & 1.99226 \times 10^{-12} \\ \end{cases}$

EN ESTE ARCHIVO SE CALCULAN LOS FLUJOS DE AIRE DEL DEL EXPERIMENTO 12, CON EL INYECTOR 1 , EL DIFUSOR 2 DISTANCIA DE 2.5 mm

presionesb =

{0.625, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50, 6.00, 6.50, 7.00, 7.05} {0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7., 7.05}

Length[presionesb]

15

presionesa =

{4.95, 5.30, 5.80, 6.20, 6.65, 7.10, 7.55, 8.00, 8.40, 8.85, 9.30, 9.80, 10.20, 10.70, 10.75} {4.95, 5.3, 5.8, 6.2, 6.65, 7.1, 7.55, 8., 8.4, 8.85, 9.3, 9.8, 10.2, 10.7, 10.75}

Length[presionesa]

15

```
tiempos = {1.7, 2.9, 4.6, 6.8, 9.2, 11.8, 14.6, 17.8, 21.1, 24.4, 28.5, 34.0, 40.4, 48.1, 50.0}
{1.7, 2.9, 4.6, 6.8, 9.2, 11.8, 14.6, 17.8, 21.1, 24.4, 28.5, 34., 40.4, 48.1, 50.}
```

Length[tiempos]

15

mat = {presionesb, tiempos}

 $\{ \{ 0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7., 7.05 \}, \\ \{ 1.7, 2.9, 4.6, 6.8, 9.2, 11.8, 14.6, 17.8, 21.1, 24.4, 28.5, 34., 40.4, 48.1, 50. \} \}$

Ajuste del modelo tiempo=a+b(presión)^2

Clear[lm]

```
lm = LinearModelFit[Transpose[mat], {x^2}, {x}]
```

FittedModel 2.50852 + 0.916596 ≪1≫

lm[{"ParameterTable", "RSquared"}]

```
Estimate Standard Error t Statistic P-Value

{
1 2.50852 0.451851 5.55166 0.0000935837, 0.995486}

x<sup>2</sup> 0.916596 0.0171185 53.5443 1.23614×10<sup>-16</sup>

lm2 = LinearModelFit[Transpose[mat], {x, x^2}, {x}]
```

FittedModel 2.27033 + <1>> + 0.89777 <<1>>

```
lm2[{"ParameterTable", "RSquared"}]
```

	Estimate	Standard Error	t Statistic	P-Value	
{ 1	2.27033	1.10437	2.05577	0.0622339	, 0.995507}
Х	0.155646	0.653289	0.23825	0.815707	, j
x ²	0.89777	0.0809912	11.0848	1.16442×10^{-7}	

En este experimento la correlación lm tiene un intervalo de confianza mayor al establecido, no fué necesario eliminar efectos de borde.

A CONTINUACIÓN SE COMPARAN LOS DATOS ORIGINALES CON LA REGRESIÓN

```
f[x_] = Fit[Transpose[mat], {1, x^2}, x]
```

```
2.50852 + 0.916596 \, x^2
```

```
grafdata = ListPlot[Transpose[mat], Joined → True, PlotStyle → {Hue[2]},
PlotLabel → "GRAFICA DE TIEMPO(s) vs PRESION(Kg/cm2), EXPERIMENTO 12", GridLines → Automatic]
```



```
 \begin{array}{l} \mbox{grafreg = Plot[f[x], {x, 0.625, 7}, PlotStyle \rightarrow {Hue[0]}, \\ \mbox{PlotLabel } & \mbox{"GRAFICA REGRESIÓN DE TIEMPO(s) vs PRESION(Kg/cm2)} \\ \mbox{, EXPERIMENTO 12, ", GridLines } & \mbox{Automatic} \end{array}
```

GRAFICA REGRESIÓN DE TIEMPO(s) vs PRESION(Kg/cm2)

Show[grafdata, grafreg]

El modelo es confiable en todo el intervalo experimental y no fué necesario eliminar efectos de borde en la correlación

A CONTINUACIÓN SE CALCULA EL FLUJO DE AIRE

f'[x]

 $1.83319 \,\mathrm{x}$

SE CALCULA EL FLUJO DE AIRE MEDIANTE LA FORMULA Fflujo (L/min)=(dP/dt)*(1.147*22.4*60/0.082*298*1.0332) (kgf/cm2)/(s)

flujosaire = Table[(61.05878705/f'[j]), {j, presionesb}]

{53.2918, 33.3074, 22.2049, 16.6537, 13.3229, 11.1025, 9.51639, 8.32684, 7.40164, 6.66147, 6.05589, 5.55123, 5.12421, 4.7582, 4.72445}

Length[%]

- r = ExportString[flujosaire, "Table"]
- 53.29179768392753
- 33.307373552454706
- 22.20491570163647
- 16.653686776227353
- 13.322949420981882
- 11.102457850818235
- 9.516392443558487
- 8.326843388113677
- 7.4016385672121565
- 6.661474710490941
- 6.05588610044631
- 5.551228925409117
- 5.124211315762262
- 4.758196221779244
- 4.724450149284356

Anális de dependenciade variables

Dependenca de la presión de alta con la presión de baja y el área de boquilla del inyector (mm2)

aboquilla = 19.63
19.63
fac = presionesb * aboquilla
{12.2687, 19.63, 29.445, 39.26, 49.075, 58.89, 68.705,
78.52, 88.335, 98.15, 107.965, 117.78, 127.595, 137.41, 138.391}

matfac = {fac, presionesa}

{ {12.2687, 19.63, 29.445, 39.26, 49.075, 58.89, 68.705, 78.52, 88.335, 98.15, 107.965, 117.78, 127.595, 137.41, 138.391}, {4.95, 5.3, 5.8, 6.2, 6.65, 7.1, 7.55, 8., 8.4, 8.85, 9.3, 9.8, 10.2, 10.7, 10.75} }

Selección de un modelo polinomialpara el ajuste de los datos

Clear[1m3]

lm3 = LinearModelFit[Transpose[matfac], {x}, {x}]

FittedModel 4.4103 + 0.0455819 x

lm3[{"ParameterTable", "RSquared"}]

	Estimate	Standard Error	t Statistic	P-Value	
{ 1	4.4103	0.0147261	299.489	2.4206×10^{-26}	, 0.999826}
Х	0.0455819	0.00016675	273.355	7.93153×10^{-26}	

EN ESTE ARCHIVO SE CALCULAN LOS FLUJOS DE AIRE DEL DEL EXPERIMENTO 13, CON EL INYECTOR 1 , EL DIFUSOR 2 DISTANCIA DE 2.5 mm

presionesb =

{0.625, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50, 6.00, 6.50, 7.00, 7.50, 7.80} {0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7., 7.5, 7.8}

Length[presionesb]

16

presionesa = {5.00, 5.30, 5.70, 6.10, 6.50, 6.95,

7.35, 7.80, 8.20, 8.60, 9.05, 9.55, 9.95, 10.40, 10.90, 11.10}

 $\{5., 5.3, 5.7, 6.1, 6.5, 6.95, 7.35, 7.8, 8.2, 8.6, 9.05, 9.55, 9.95, 10.4, 10.9, 11.1\}$

Length[presionesa]

16

```
tiempos = {64.0, 114.5, 184.8, 265.8, 369.6, 495.3, 638.3,
791.7, 948.7, 1114.5, 1279.1, 1460.7, 1687.6, 1971.3, 2290.0, 2491.5}
```

{64., 114.5, 184.8, 265.8, 369.6, 495.3, 638.3, 791.7, 948.7, 1114.5, 1279.1, 1460.7, 1687.6, 1971.3, 2290., 2491.5}

Length[tiempos]

16

mat = {presionesb, tiempos}

{{0.625, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6., 6.5, 7., 7.5, 7.8}, {64., 114.5, 184.8, 265.8, 369.6, 495.3, 638.3, 791.7, 948.7, 1114.5, 1279.1, 1460.7, 1687.6, 1971.3, 2290., 2491.5}}

Ajuste del modelo tiempo= $a+b(presión)^2$

Clear[lm]

```
FittedModel[ 116.893 + 38.5387 ≪1≫ ]
Im[{"ParameterTable", "RSquared"}]

{    Estimate Standard Error t Statistic P-Value
{    1 116.893 16.2035 7.21402 4.4664×10<sup>-6</sup>, 0.99734}
x<sup>2</sup> 38.5387 0.531941 72.4492 1.9768×10<sup>-19</sup>
Im2 = LinearModelFit[Transpose[mat], {x, x^2}, {x}]
FittedModel[ 42.7511 + ≪1≫ + 33.4945x<sup>2</sup> ]
```

lm = LinearModelFit[Transpose[mat], {x^2}, {x}]

```
lm2[{"ParameterTable", "RSquared"}]
```

		Estimate	Standard Error	t Statistic	P-Value	
_ { 1		42.7511	31.4639	1.35874	0.197339	, 0.998256}
۲ ۲		45.0137	17.2219	2.61375	0.0214391	,
Х	2	33.4945	1.98094	16.9084	3.12419×10^{-10}	

En este experimento la correlación lm tiene un intervalo de confianza mayor al establecido, no fué necesario eliminar efectos de borde.

A CONTINUACIÓN SE COMPARAN LOS DATOS ORIGINALES CON LA REGRESIÓN

```
f[x_] = Fit[Transpose[mat], {1, x^2}, x]
```

```
116.893 + 38.5387 \, x^2
```

```
grafdata = ListPlot[Transpose[mat], Joined → True, PlotStyle → {Hue[2]},
    PlotLabel → "GRAFICA DE TIEMPO(s) vs PRESION(Kg/cm2), EXPERIMENTO 13", GridLines → Automatic]
```



```
 \begin{array}{l} \mbox{grafreg = Plot[f[x], {x, 0.625, 8}, PlotStyle \rightarrow \{\mbox{Hue[0]}\}, \\ \mbox{PlotLabel } & \mbox{"GRAFICA REGRESIÓN DE TIEMPO(s) vs PRESION(Kg/cm2)}, \\ \mbox{EXPERIMENTO 13,", GridLines } & \mbox{Automatic} \end{array}
```


Show[grafdata, grafreg]

El modelo es confiable en todo el intervalo experimental y no fué necesario eliminar efectos de borde en la correlación

A CONTINUACIÓN SE CALCULA EL FLUJO DE AIRE

f'[x]

 $77.0774 \,\mathrm{x}$

SE CALCULA EL FLUJO DE AIRE MEDIANTE LA FORMULA Fflujo (L/min)=(dP/dt)*(49.35*22.4*60/(0.082*298*1.0332))(kgf/cm2)/(s)

flujosaire = Table[(2627.072/f'[j]), {j, presionesb}]

{54.5337, 34.0835, 22.7224, 17.0418, 13.6334, 11.3612, 9.73816, 8.52089, 7.57412, 6.81671, 6.19701, 5.68059, 5.24362, 4.86908, 4.54447, 4.36969}

Length[%]

- r = ExportString[flujosaire, "Table"]
- 54.53367034737325
- 34.083543967108284
- 22.722362644738855
- 17.041771983554142
- 13.633417586843313
- 11.361181322369427
- 9.738155419173795
- 8.520885991777071
- 7.574120881579619
- 6.816708793421657
- 6.197007994019688
- 5.680590661184714
- 5.243622148785889
- 4.869077709586898
- 4.544472528947772
- 4.3696851239882415

Anális de dependenciade variables

Dependenca de la presión de alta con la presión de baja y el área de boquilla del inyector (mm2)

aboquilla = 19.63

19.63

fac = presionesb * aboquilla

{12.2687, 19.63, 29.445, 39.26, 49.075, 58.89, 68.705, 78.52, 88.335, 98.15, 107.965, 117.78, 127.595, 137.41, 147.225, 153.114}

matfac = {fac, presionesa}

```
{ {12.2687, 19.63, 29.445, 39.26, 49.075, 58.89, 68.705,
    78.52, 88.335, 98.15, 107.965, 117.78, 127.595, 137.41, 147.225, 153.114},
    {5., 5.3, 5.7, 6.1, 6.5, 6.95, 7.35, 7.8, 8.2, 8.6, 9.05, 9.55, 9.95, 10.4, 10.9, 11.1}}
```

Selección de un modelo polinomialpara el ajuste de los datos

Clear[lm3]

lm3 = LinearModelFit[Transpose[matfac], {x}, {x}]

FittedModel 4.39677 + 0.0435752 x

lm3[{"ParameterTable", "RSquared"}]

	Estimate	Standard Error	t Statistic	P-Value	
$\left\{ \begin{array}{c} \hline 1 \end{array} \right.$	4.39677	0.0247094	177.939	6.90194×10^{-25}	$, 0.999496 \Big\}$
Х	0.0435752	0.000261413	166.691	1.72115×10^{-24}	

JCR Self-priming "JET" pumps

PERFORMANCE RANGE

- Flow rate up to **80 l/min** (4.8 m³/h)
- Head up to 72 m

APPLICATION LIMITS

- Manometric suction lift up to 9 m (HS)
- Liquid temperature between -10 °C and +40 °C
- Ambient temperature up to +40 °C
- Max. working pressure 6.5 bar
- Continuous service **S1**

CONSTRUCTION AND SAFETY STANDARDS

EN 60335-1 IEC 60335-1 CEI 61-150 EN 60034-1 IEC 60034-1 CEI 2-3

CERTIFICATIONS

INSTALLATION AND USE

Suitable for use with clean water and liquids that are not chemically aggressive towards the materials from which the pump is made. The self-priming JCR pumps are designed to pump water even in cases where air is present. As a result of their reliability and the fact that they are easy to use, they are recommended for use in domestic applications such as the distribution of water in combination with small or medium sized pressure sets, and for the irrigation of gardens and allotments, etc.

The pump should be installed in an enclosed environment, or at least sheltered from inclement weather.

PATENTS - TRADE MARKS - MODELS

• European Patent n° 1 510 696

OPTIONALS AVAILABLE ON REQUEST

• Other voltages or 60 Hz frequency

GUARANTEE

1 year subject to terms and conditions

МО	DEL	PO۱	NER	m³/h	0	0.3	0.6	0.9	1.2	1.5	1.8	2.1	2.4	3.0	3.6	4.2	4.8
Single-phase	Three-phase	kW	HP	l/min	0	5	10	15	20	25	30	35	40	50	60	70	80
JCRm 1C	-	0.37	0.50		35	32	27	24	21	19	17	16	15	13			
JCRm 1B	JCR 1B	0.50	0.70		41	36	31	27	24	22	20	19	17	15			
JCRm 1A	JCR 1A	0.60	0.85		47	42	38	34	31	28.5	26	24	22	19			
JCRm 10H	JCR 10H	0.75	1	H metres	56	50	45	41	37	33	30	27	25	22			
JCRm 15H	JCR 15H	1.1	1.5		72	67	61	56	51	47	43	40	37	32			
JCRm 10M	JCR 10M	0.75	1		46	44	41	39	37	35	32	30	28	25	22	21	19
JCRm 15M	JCR 15M	1.1	1.5		55	53	50	48	46	43	41	39	37	34	31	29	27

 $\mathbf{Q} = Flow rate \ \mathbf{H} = Total manometric head \ \mathbf{HS} = Suction height$

Tolerance of characteristic curves in compliance with EN ISO 9906 App. A.

INSTALLATION EXAMPLE

JCR

POS.	COMPONENT	CONSTRUCTION CH	ARACTERIST	ICS			
1	PUMP BODY	Stainless steel AISI 304,	complete with t	threaded p	oorts in compliance	with ISO 228/1	I
2	BODY BACKPLATE	Stainless steel AISI 304					
3	NOZZLE ASSEMBLY	Noryl GFN2V					
4	IMPELLER	Noryl GFN2V					
5	MOTOR SHAFT	Stainless steel EN 10088	3-3 - 1.4104				
6	MECHANICAL SEAL	Pump	Seal	Shaft		Materials	
		Model	Model	Diameter	Stationary ring	Rotational ring	Elastomer
		JCR 1C-B-A	AR-12	Ø 12 mm	Ceramic	Graphite	NBR
		JCR 10-15	AR-14	Ø 14 mm	Ceramic	Graphite	NBR
7	BEARINGS	Pump	Model				
		JCR 1C-B-A	6201 ZZ / 620	1 ZZ			
		JCR 10H-M / 15H-M	6203 ZZ / 620	3 ZZ			
8	CAPACITOR	Pump	Capacitance				
		Single-phase	(230 V or 240 V)		(110 V)		
		JCRm 1C	10 μF 450 VL		25 μF 250 VL		
		JCRm 1B	10 μF 450 VL		30 μF 250 VL		
		JCRm 1A	14 μF 450 VL		30 μF 250 VL		
		JCRm 10H-M	20 μF 450 VL		60 μF 300 VL		
		JCRm 15H-M	25 μF 450 VL		60 μF 300 VL		
		ICRm: single-phase 23	0 V - 50 Hz with	thermal o	verload protector b	uilt-in to the w	vinding

CTRIC MOTORJCRm: single-phase 230 V - 50 Hz with thermal overload protector built-in to the winding.JCR:three-phase 230/400 V - 50 Hz.

Pumps fitted with the three-phase motor option offer IE2 (IEC 60034-30) class high performance

- Insulation: F class.
- Protection: IP 44.

DIMENSIONS AND WEIGHT

м	DDEL	PO	RTS				DIMENSIONS mm						kg	
Single-phase	Three-phase	DN1	DN2	a	f	h	h1	h2	n	n1	w	s	1~	3~
JCRm 1C	-												5.6	-
JCRm 1B	JCR 1B	1″	1″	90	345	174	122	52	160	120	88	9	6.4	6.3
JCRm 1A	JCR 1A												6.9	6.4
JCRm 10H-M	JCR 10H-M	41/11		117	100	200	145		10.4	125	110	10	9.4	9.3
JCRm 15H-M	JCR 15H-M	1 1/4."	1"		406	206	145	55	184	135	110	10	10.5	10.3

ABSORPTION

PALLETIZATION

MODEL	VOLTAGE (single-phase)							
Single-phase	230 V	240 V	110 V					
JCRm 1C	2.4 A	2.2 A	4.8 A					
JCRm 1B	3.2 A	2.9 A	6.5 A					
JCRm 1A	3.6 A	3.3 A	7.3 A					
JCRm 10H	4.7 A	4.5 A	9.4 A					
JCRm 15H	6.6 A	6.0 A	13.2 A					
JCRm 10M	5.0 A	4.6 A	10.0 A					
JCRm 15M	6.6 A	6.0 A	13.2 A					

MODEL	VOLTAGE (three-phase)								
Three-phase	230 V	400 V	690 V	240 V	415 V	720 V			
JCR 1B	2.1 A	1.2 A	0.7 A	2.0 A	1.2 A	0.7 A			
JCR 1A	2.8 A	1.6 A	0.9 A	2.7 A	1.6 A	0.9 A			
JCR 10H	3.5 A	2.0 A	1.2 A	3.4 A	2.0 A	1.2 A			
JCR 15H	5.5 A	3.2 A	1.8 A	5.3 A	3.1 A	1.8 A			
JCR 10M	3.6 A	2.1 A	1.2 A	3.5 A	2.0 A	1.2 A			
JCR 15M	5.5 A	3.2 A	1.8 A	5.3 A	3.1 A	1.8 A			

мс	DEL		GROUP	AGE		CONTAINER			
n° H kg			n°	Н	k	g			
Single-phase	Three-phase	pumps	(mm)	1~	3~	pumps	(mm)	1~	3~
JCRm 1C	-	98	1440	570	-	154	2180	880	-
JCRm 1B	JCR 1B	98	1440	650	640	154	2180	1010	990
JCRm 1A	JCR 1A	98	1440	700	650	154	2180	1080	1010
JCRm 10H-M	JCR 10H-M	72	1460	700	690	96	1900	920	910
JCRm 15H-M	JCR 15H-M	72	1460	780	760	96	1900	1030	1010

N°	Codice Code Reference Codigo	PK 65	Descrizione	Description	Description	Descripción
1	116045	Х	Vite corpo pompa	Pump body screw	Vis du corps de pompe	Tornillo del cuerpo bomba
2	850CRPK65N	Х	Corpo pompa	Pump body	Corps de pompe	Cuerpo bomba
3	11514201360	Х	Guarnizione OR per corpo pompa	Pump body O-Ring	Joint torique du corps de pompe	Junta tórica del cuerpo bomba
4	860GRPK65	Х	Girante	Impeller	Roue	Rodete
5	114800	Х	Linguetta inox per girante	Stainless steel impeller key	Clavette de la roue en acier inox	Chaveta del rodete en acero inoxidable
6	114600	Х	Anello di sicurezza Ø 12 mm	Circlip Ø 12 mm	Circlips Ø 12 mm	Anillo de seguridad Ø 12 mm
7	114700P	Х	Rondella	Washer	Rondelle	Arandela
8	11516101201	Х	Tenuta meccanica Ø 12 mm	Mechanical seal Ø 12 mm	Garniture mécanique Ø 12 mm	Sello mecánico Ø 12 mm
9	14CL06	Х	Copriventola	Fan cover	Capot de ventilateur	Tapa del ventilador
10	14VN06	Х	Ventola	Fan	Ventilateur	Ventilador
11	SC0600	Х	Scudo	End shield	Flasque arrière	Tapa motor
12	SC065LN	Х	Lanterna di raccordo	Motor bracket	Lanterne de raccordement	Soporte motor
13	RTP061C15B	Х	Albero con rotore	Shaft with rotor	Arbre avec rotor	Eje con rotor
14	115104	Х	Deflettore	Deflector	Deflecteur	Deflector
15	114000	Х	Molla di compensazione	Compensation spring	Ressort de compensation	Muelle de compensación
16	113001	Х	Cuscinetto a sfere	Ball bearing	Roulement à billes	Rodamiento
17	14COK06IPA	Х	Coprimorsettiera	Terminal box	Couvercle de boîtier à bornes	Tapa bornes
18	117050	Х	Guarnizione	Gasket	Joint	Junta
19	117106	Х	Fermacavo	Cable stop	Ferme-étoupe	Fija cable
21	117110	Х	Pressacavo	Cable gland	Presse étoupe	Prensacable
24	114402	Х	Morsettiera	Terminal board	Boîte à bornes	Placa bornes
25	CA061CP0A	Х	Cassa motore con statore avvolto (V 230/400)	Motor casing with windings (V 230/400)	Carcasse moteur avec bobinage (V 230/400)	Caja motor con estator bobinado (V 230/400)

VERSIONE MONOFASE - SINGLE PHASE VERSION - VERSION MONOPHASE - VERSION MONOFASICA

11	SC0603	X	Scudo	End shield	Flasque arrière	Tapa motor
13	RFP061M04B	Х	Albero con rotore	Shaft with rotor	Arbre avec rotor	Eje con rotor
20	117060	Х	Passacavo	Cable grommet	Passe câble	Pasacable
22	111014F	Х	Condensatore 14 µF	Capacitor 14 µF	Condensateur 14 µF	Condensador 14 µF
23	114421	Х	Morsettiera	Terminal board	Boîte à bornes	Placa bornes
25	CA061MP0A1	Х	Cassa motore con statore avvolto (V 230)	Motor casing with windings (V 230)	Carcasse moteur avec bobinage (V 230)	Caja motor con estator bobinado (V 230)

01.15.00

Con riserva di modifiche. Technical modifications reserved. Sous réserve de modification technique. Reservado el derecho a introducir modificationes.

PK 65(A)

JCR 1C JCR 1B JCR 1A

N°	Codice Code Reference Codigo	JCR 1C	JCR 1B	JCR 1A	Descrizione	Description	Description	Descripción
1	1160041	х	X	X	Vite corpo pompa	Pump body screw	Vis du corps de pompe	Tornillo del cuerpo bomba
2	154CRJSX1	х	х	X	Corpo pompa in acciaio inox	Stainless steel pump body	Corps de pompe en inox	Cuerpo bomba inox
3	11514201583	х	X	X	Guarnizione OR per corpo pompa	Pump body O-Ring	Joint torique du corps de pompe	Junta tórica del cuerpo bomba
4	121065	х	х	X	Eiettore completo di corona direttrice	Ejector with vane diffuser	Ejecteur avec diffuseur à pales	Eyector con difusor a palas
5	116910A	х	X	X	Dado di bloccaggio girante	Impeller nut	Ecrou de blocage de roue	Tuerca de fijación del rodete
6	164GRJSP1C	х			Girante	Impeller	Roue	Rodete
6	164GRJSP1B		X		Girante	Impeller	Roue	Rodete
6	164GRJSP1A			X	Girante	Impeller	Roue	Rodete
7	114800	х	X	X	Linguetta inox per girante	Stainless steel impeller key	Clavette de la roue en acier inox	Chaveta del rodete en acero inoxidable
8	11516101201	х	х	X	Tenuta meccanica Ø 12 mm	Mechanical seal Ø 12 mm	Garniture mécanique Ø 12 mm	Sello mecánico Ø 12 mm
9	851IN3CP80I	х	×	×	Coperchio del corpo pompa	Pump body cover	Couvercle de corps de pompe	Tapa del cuerpo bomba
10	14CL06	х	х	X	Copriventola	Fan cover	Capot de ventilateur	Tapa del ventilador
11	14VN06	х	X	X	Ventola	Fan	Ventilateur	Ventilador
12	SC0600	х	Х	X	Scudo	End shield	Flasque arrière	Tapa motor
13	SC066LN	х	X	X	Lanterna di raccordo	Motor bracket	Lanterne de raccordement	Soporte motor
14	RTP061B02B	х	х		Albero con rotore	Shaft with rotor	Arbre avec rotor	Eje con rotor
14	RTP061C02C			X	Albero con rotore	Shaft with rotor	Arbre avec rotor	Eje con rotor
15	115104	х	х	X	Deflettore	Deflector	Deflecteur	Deflector
16	114000	х	X	X	Molla di compensazione	Compensation spring	Ressort de compensation	Muelle de compensación
17	113001	х	х	X	Cuscinetto a sfere	Ball bearing	Roulement à billes	Rodamiento
18	14COK06IPA	х	X	X	Coprimorsettiera	Terminal box	Couvercle de boîtier à bornes	Tapa bornes
19	117050	х	х	X	Guarnizione	Gasket	Joint	Junta
20	117106	х	X	X	Fermacavo	Cable stop	Ferme-étoupe	Fija cable
22	117110	х	х	X	Pressacavo	Cable gland	Presse étoupe	Prensacable
25	114402	х	X	X	Morsettiera	Terminal board	Boîte à bornes	Placa bornes
26	119060	х	Х	X	Piede di appoggio	Supporting foot	Pied d'appui	Pie de apoyo
27	CA061AF0A	х	X		Cassa motore con statore avvolto (V 230/400)	Motor casing with windings (V 230/400)	Carcasse moteur avec bobinage (V 230/400)	Caja motor con estator bobinado (V 230/400)
27	CA061CF0A			X	Cassa motore con statore avvolto (V 230/400)	Motor casing with windings (V 230/400)	Carcasse moteur avec bobinage (V 230/400)	Caja motor con estator bobinado (V 230/400)
	VERSIONE MONOFASE - SINGLE PHASE VERSION - VERSION MONOPHASE - VERSION MONOFASICA							
10	CC0/02				Cauda			Tone motor

12	SC0603			Х	Scudo	End shield	Flasque arrière	Tapa motor
14	RFP061A02B	Х			Albero con rotore	Shaft with rotor	Arbre avec rotor	Eje con rotor
14	RFP061C02B		X		Albero con rotore	Shaft with rotor	Arbre avec rotor	Eje con rotor
14	RFP061L02B			Х	Albero con rotore	Shaft with rotor	Arbre avec rotor	Eje con rotor
21	117060	Х	X	Х	Passacavo	Cable grommet	Passe câble	Pasacable
23	111010F	Х	х		Condensatore 10 µF	Capacitor 10 µF	Condensateur 10 µF	Condensador 10 µF
23	111014F			Х	Condensatore 14 µF	Capacitor 14 µF	Condensateur 14 µF	Condensador 14 µF
24	114421	Х	х	Х	Morsettiera	Terminal board	Boîte à bornes	Placa bornes
27	CA061AF0A1	Х			Cassa motore con statore avvolto (V 230)	Motor casing with windings (V 230)	Carcasse moteur avec bobinage (V 230)	Caja motor con estator bobinado (V 230)
27	CA061CF0A1		х		Cassa motore con statore avvolto (V 230)	Motor casing with windings (V 230)	Carcasse moteur avec bobinage (V 230)	Caja motor con estator bobinado (V 230)
27	CA061LF0A1			Х	Cassa motore con statore avvolto (V 230)	Motor casing with windings (V 230)	Carcasse moteur avec bobinage (V 230)	Caja motor con estator bobinado (V 230)

01.15.00

Con riserva di modifiche. Technical modifications reserved. Sous réserve de modification technique. Reservado el derecho a introducir modificationes.

JCR 1C JCR 1B JCR 1A