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Chapter 1

Introduction

During the development of physics, there has been one fundamental question in its history. The question is
what are the laws that control physical systems’ behavior?

In the atomic domain, experiments based on the physical phenomenon known as scattering have been
performed and have given a variety of answers. To mention some of these we have spectroscopy, diffraction
and collision in particle accelerator experiments.

In this introductory part we speak of the scattering phenomenon. Scattering theory is a tool which helps
explain some of the phenomena in the atomic world, it forms an important part of a great physical theory
known as quantum mechanics (it is also important in classical mechanics). There are a variety of scattering
experiments, but in general those experiments consist of four essential parts:

(a)

The source, which is an apparatus that will produce particles that will interact with those in the target.
Here, it is important to mention that the source must produce particles in a recurrent, continuous way
and under practically the same conditions, that is because all scattering experiments involve recurrent
measurements for identical systems.

The preparing apparatus (for example it can be a “colimator”, the beam of an spectrometer, or a
polarizer), it serves to define initial conditions of the incident particles.

The target, it contains particles that will interact with incident particles. Conditions on the state of the
target will largely affect measurements, that is why they must be taken into consideration to be able
to give a correct interpretation. For example, if the target is thick then it will be possible to observe
multiple scattering, and if for example, the target has crystalline structure then it will be possible to
observe a diffraction pattern. On the other hand, if we deal with a moving target (for example a gas)
then that effect will be present in the measurements made. The easiest interpretation of the results is
found when the target is very thin and it contains a random distribution of particles at rest.

The detector, which is a device that is responsible of recording results and is usually found in a place
where it is possible to only detect scattered particles, in other words, if the target is taken off from the
experimental arrangement then the detector does not register anything. In practice this condition is
not so easy to have since it is not always possible to produce a sufficiently collimated beam, or because
there exists scattering remains in the material due to other interactions (This is the reason why good
calibration of the detector is important). It is also important to locate the detector sufficiently far
from the target not to detect interactions between scattered particles and particles in the target. In
almost every case the detector has a finite resolution angle, the better we can do is to make this
angle small enough to have better measurements, but it is also true that there exists certain physical
limitations that do not allow to make this resolution very precise, and the same problems happen with
the preparing apparatus.
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I The physical characteristics of scattering systems

The essential physical characteristics of a scattering system are the following:

In a scattering process we have to distinguish three moments in the temporal evolution of the system.

At the beginning, the system’s state is found in the remote past. At this time, the incident particle and
the target particle are located far enough so their mutual interaction is negligible. Thus, it is expected that
the system’s state evolves obeying the laws that govern the behavior of free particles.

During the second moment the particles will mutually interact and the evolution of the system is ruled by
a movement equation in which the interaction term plays an important role. It is in the interaction moment
that scattering occurs.

For the third moment one is placed in an analogous situation to that at the first moment. In fact, when
the scattering phenomenon has happened, the particles are far from each other such that mutual interaction
is again negligible and it has no effect in the future of the system’s evolution. At this stage, the detector,
observes the new state of the particles created by the scattering process.

The states describing scattering phenomena must be characterized in time in the remote past t = (—o0)
and in the remote future ¢ = (4+00) by quantities concerning the dynamics of free particles is known as the
asymptotic condition. To be able to describe such states in mathematical terms, it is necessary to study
the description of the evolution in time of quantum mechanical systems (it can also be done for classical
mechanical systems) and to introduce a topology (a convergence notion) that will help express the difference
between the perturbed system and the free system (in the remote past and in the remote future).

II Different types of scattering

So far we have not made any distinction between different types of scattering. The simplest process in
scattering is the elastic scattering between different particles. This process can be symbolically represented
as follows:

a+b—a+b. (I.2.1)

Expression (I.2.1) indicates that particles a and b in some initial state are scattered to the particles a
and b in some final state. We say that the scattering is elastic because it refers to the fact that the total
kinetic energy of the particles is the same before and after the scattering process. A special case of elastic
scattering is the scattering between identical particles.

a+a—a+a. (1.2.2)

When the incident or target particles have internal degrees of freedom, it is possible that during the
scattering process one of the particles undergoes a change on its internal state. If this occurs then the
kinetic energy of the particles before and after the scattering is no longer the same and we speak of inelastic
scattering. The most frequent case is the excitation of an internal state, the final kinetic energy is less than
the initial energy in a quantity equals the excitation energy. This is called hypoelastic or endoergic scattering.
However, it is also possible that some excited metastable states of one of the particles gets unexcited during
the scattering process. In this case, the final kinetic energy is grater than the initial one and we may speak
of hyperelastic or exoergy scattering.

Another type of scattering associated to the internal degrees of freedom is observed when those degree
are degenerated in energy. This is the case for particles with spin, the scattering process would be still
described by (I.2.1) but one has to take into account that the effect in dispersion over the internal degrees
of freedom of the incident particles. This gives place to a variety of interesting phenomena of polarization
which can provide significant information on the dependence-spin of the interaction.

An entirely different type of scattering is observed if the outgoing particles differ in number and class
compared with the incoming ones. For example, the constituents of the incident beam and the scattering
centers in the target cannot be elementary particles but complex structures such as « particles, hydrogen
atoms, etc., and through the scattering process the interaction can decompose such composite systems into
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some of the constituent parts or reorganize these parts into new composite systems. We speak then of
scattering reordering and we can schematically write

a+b—c+d+e+... (I.2.3)

Scattering Theory can be developed in such a way elastic, inelastic, hypoelastic, hyperelastic scattering
and scattering with reordering can be treated in a unified way. This unified theory is called multichannel
scattering theory.

A typical example of multichannel scattering is the scattering of a deuteron d by a fixed center of force.
A deuteron can be elastically scattered or can be decomposed into its constituent parts (a proton p and a
neutron n), in such a way that we have two possibilities.

d

d <

Each different collection possible of particles and composed systems after the collision determines the so
called scattering channel. In the example above, there are only two scattering channels.

Another reason for a change in the type and number of particles is the creation of new types of particles
during the scattering process. These creation processes are frequently observed in scattering at high energies;
at highly enough energies this creation processes are always present. A collision between two nucleons Ny
and Ny, for example, can be carried as in the following schemes:

p+n

N1+ Ny elastic channel
N1 + N2 —+
Ny + Ny + K+ K many inelastic channels

N1+ No

Here new particles, like mesons 7 and K, can be created, and some final channels clearly represent more
than a simple reordering of the constituents of N7 and Ns. The usual theory of multichannel scattering does
not include such collisions and its theoretical descriptions goes beyond the scope of this work.

In all these cases we have considered, so far, that the initial number of particles or composite systems,
which participate in a individual scattering is always two. It is logically possible to consider scattering
process with more than two initial particles. Such situations seldom are found in the laboratory due to
experimental difficulties to prepare such states. Those experiments play certain role in dense gas theory.
But in elementary particle physics they are not important.

Another case of importance, however, is that of one incident free particle only. Evolution of the state of
only one free stable particle does not give information on any interaction. If it is unstable, though, it will
decay in some stables and unstables fragments and it is perfectly possible to look a decay like a certain type
of scattering process degenerated in concordance to the scheme (I1.2.4):

a—b+d+... (1.2.4)

In this case one does not need any target to observe scattering. It is possible to consider such decay of
a unstable particle as part of an ordinary scattering process, because the unstable particle must have been
created in some point in the past thanks to another ordinary scattering process. This way to see unstable
systems is specially useful if the life time of the unstable particle is very short. We have then a case of
resonant scattering (formation and decay of a resonance). This is often observed and is known in nuclear
physics where resonances are associated with some excited state of an intermediate nucleus of short duration.

If the unstable particle has a life time largely enough, it is possible to produce ordinary scattering effects
with this particle and to develop a theory where the particle is treated as a stable particle with a sufficient
good approximation.
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IIT Observable quantities

Every physical theory must have an interpretation in terms of certain effects physically observable. These
effects are usually expressed giving numerical values of some quantities. The main quantities that appear
in scattering theory are the scattering cross section, life time of an unstable particle or the resonance width
and the bifurcation rate of multichannel processes. By the reasons given in sections above the life time is in
some sense a secondary quantity which can be related to the behavior of the cross section in a appropriate
scattering process.

The bifurcation rate (i.e. the probability of the scattering in a particular channel) in reality is not a
independent physical quantity, because one can obtain it if individual cross sections for different channels
are known. Often it is possible on symmetry considerations, without a detailed theory, to obtain expressions
for the bifurcation rates without the knowledge of the cross sections’ values.

There exists another theoretical approach, which is known as inverse scattering. In this Theory, it
is assumed that some experimental data, i.e., results from a scattering process are given then one finds an
interaction (usually a potential) that produces exactly the given data when one considers the direct scattering
problem.

In the following sections, we will discuss the concepts on inverse problems, first in general and then in the
context of quantum mechanics; these sections will be mainly based on the book of Chadan and Sabatier [63]
and the contents of the course “Inverse scattering in Quantum Mechanics” lectured by professor Ricardo
Weder at the spring school in classical and quantum mechanics in IIMAS-UNAM in March, 2008.

IV Inverse problems in physics

The normal work of physicists can be schematically thought with a movement prediction of the particles over
the base of known forces, or the propagation of radiation on the ground of the knowledge on the constitution
of matter. The inverse problem is to conclude what forces or components are on the basis of the observed
movement. A great part of our sensorial contact with the world that surrounds us depends on an intuitive
solutions of an inverse problem: We infer the shape, size and texture of a surface of strange objects from
scattering and absorption of light, which is detected by our eyes. When one uses scattering experiments to
know the size or the shape of particles, or the forces that some particles exert on others, the nature of the
problem is similar, or more refined. Kinematics, movements equations, usually are supposed to be known.
We research how forces are and how they change on time.

The mathematical expression of a physics law is a rule that defines a mapping M of a set of functions C,
called parameters, a set of functions £ called results. This rule is usually a set E of equations, in terms of the
parameters C, solutions to these equations are the corresponding elements of £, therefore, the definition of M
is given implicitly. Nevertheless, from the sole definition of a mapping, the solution of F must exist and to
be unique in £ for any element of C. This is the only constraint that must be asked to E. We call computed
results to elements in & which are thus obtained from those obtained from C. Deriving the computed results
for a given element of C is called to solve the direct problem. Conversely, to obtain the subset of C that
corresponds to a given element of £ is called to solve the inverse problem.

To give physical meaning to M, £ must be such that its elements can be compared with experimental
results. From now on, we assume that the result of any relevant measure is an element of a subset, &, of
&, called the subset of experimental results. £ therefore it contains the union of experimental results and
computed results. Also we assume that £ can be given the structure of a metric space. The comparison of
a given computed result e;, and an experimental result, e;, is then measured by the distance d(e;, e;).

The set C was defined as the set of functions such that £ can be solved. Greater limitations often appear
when physical properties are taken into consideration. In other words, C could be the set S of all functions
such that E can be solved and that are consistent with all the ”physical information” that comes either of
general principles or from previous measures. However, the definition of S is, in most of the cases, indirect
or difficult to be made precise, and since that, one is left the choice of C as a convenient subset of S, with a
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clear definition. On the other hand, the aim of incrementing the definition of C many times gives acces to a
new class of parameters for those the direct and inverse problem can be solved.

With these definition, it could seem that all physical problems are inverse problems. Really, one generally
reserves this name for problems with precise mathematical expressions for the generalized inverse transfor-
mations from & into C. This excludes the so called data fit process in which models that depend on some
parameters and that give a good data fitting of the experimental results are obtained by trial and error or
by another technique.

The first person that studied inverse problem of the class that we consider was Lord Rayleigh (1877) [76],
who discussed the possibility of infering the density of a string by means of their vibration frequencies. More
recently, a generalization was exposed by Marc Kac (1966) [75] in his famous paper: ”Can one hear the
shape of a drum ?7”.

V Inverse scattering in quantum mechanics

With the invention of Schrédinger equation, the applicability of spectral problems in partial differential
equations to physics problems increased: The type of equations that had only applications to problems of
mechanical vibrations in the past, now, they will be used to describe atoms and molecules.

Some experimental results in physics are quantities measured in scattering experiments, e.g., cross sections
o related quantities. Since this quantities are associated to an asymptotical behavior of wave functions, we
will always consider problems where the set £ consists of “theoretical measurements” of this asymptotical
behaviour, e.g., the scattering amplitude or the phase shift. This leads, in a natural way, to the particular
problem of building the scattering amplitude from the cross section. Leaving this discussion, the equations
E that define the transformation M consist of a wave equation (e.g., Schrodinger equation, Klein-Gordon
equation, Dirac equation with the proper conditions). The sets C of “parameters” are local or non local
potential sets, from which it is possible to predict scattering results.

Inverse scattering problems in quantum mechanics have been extensively studied since the seminal work
of W. Heisenberg in the theory of scattering theory in 1943 and 1944, [71-73]. In precise terms, there are
three problems of inverse scattering problems in quantum mechanics:

e Uniqueness. To prove that scattering operators uniquely determines potentials.
e Reconstruction. To give methods to reconstruct potentials from a scattering operator.

e Characterization. To give necessary and sufficient conditions for an operator to be the scattering
operator associated to a potential that belongs, to a certain given class.

There are different ways to provide scattering information. For example, one can give the scattering
operator for all energies, the limit of high energies of the scattering operator, or the scattering operator at
fixed energy.

Because all the information that can be obtained on nuclei, physical particles and sub-particles is gotten
from scattering experiments, these problems are of obvious physical importance. Moreover, there exists the
very related problem of inverse scattering of acoustic, electromagnetic and elastic waves, that has a lot of
technological applications, for example, tomography.

Inverse problems are related to the following mathematical tools: advanced results in differential and
integral equations theory, harmonic analysis, spectral operator theory, holomorphic functions, asymptotic
expansions, numerical analysis, etc.

The majority of contributions to inverse problems in quantum physics use stationary methods. On the
contrary, in this work we use a method that depends on time. More information on this subject is found in
Chapter 2.



Stark Effect 10

V1 Stark Effect

In 1913 Johannes Stark observed that spectral lines in the Balmer series split and shift in the presence of
a uniform electric field. This phenomenon was called Stark effect and it is the electric counterpart to the
Zeeman effect, where, by the spin of the electron and the presence of a magnetic field, spectral lines also split
and shift. One of the first applications of Schrédinger’s quantum theory was the explanation of the Stark
Effect made by Epstein in 1926 [68]. Currently the Stark Effect is referred to physical phenomena where a
uniform electric field is present.

VII Structure of this thesis

The structure of this thesis is the following: This introduction gives the physical motivation and locates the
work inside the specific area of inverse problems in non-relativistic quantum mechanics scattering theory.
Chapter 2 is an exact transcription of the paper published in the Journal of Mathematical Physics [84].

Assuming measure theory and some notions of general topology then we study Hilbert spaces (chapter
3) necessary to postulate quantum mechanics and to understand our work. We expand our understanding
of Fourier transform by studying Fourier transform on groups and we close that chapter with unbounded
operators and the construction of their evolution groups, all this material being used in chapter 2.

Finally, in the appendix we give more details on assertions made in chapter 2.



Chapter 2

High-Velocity Estimates and Inverse
Scattering for Quantum N-Body
Systems with Stark Effect

Abstract

In an N-body quantum system with a constant electric field, by inverse scattering, we uniquely
reconstruct pair potentials, belonging to the optimal class of short-range potentials and long-
range potentials, from the high-velocity limit of the Dollard scattering operator. We give a
reconstruction formula with an error term.

I Introduction

We study the direct and inverse scattering problems for an N-body quantum mechanical system in an
n > 2 dimensional space under Stark effect, i.e. in a constant electric field, with interactions given by pair
potentials (multiplication operators).

When we speak of scattering by a potential V, it is common that V is classified as being short-range
if the canonical wave operators Wi (Hy + V, Hp) exist, where Hy is the unperturbed Hamiltonian. On the
other hand, if they do not exist, we say that we have a long-range potential; in this case we have to modify
the free evolution and thus, to define modified wave operators.

As it is well known, the Coulomb potential V.(z) = ¢/|z| is long-range when Hy = —A. It is also well
known, that V. is short-range in the case of the Stark effect, where Hy = —A — E - x, and F is a constant
electric field. More generally, potentials V' that decay at infinity as V(z) & |z|~7, v < 1 are long-range when
Hy = —A and on the contrary, when there is a constant electric field, they are short-range if 1/2 < v <1
and long-range if 0 < v < 1/2.

This feature of the Stark effect is particularly interesting in inverse scattering. For example, because it
allows to prove that the Coulomb potential is uniquely determined by the scattering matrix, defined from
canonical wave operators, without having to modify the free dynamics, as first proved in [40].

We denote by m; € R+,qj € Rand x; € R",j =1,2,..., N, respectively, the masses, the charges and
the positions of the particles. The free Hamiltonian generates the free time evolution,

N N
Ho=Y (2m;)' B} +) ¢;B-%;, Bb;=—iVx,, (IL1.1)
j=1

j=1

where the electric field E = (=E,0,...,0), E = |E| > 0 is directed along minus the first coordinate direction.
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We study the system in the center of mass frame and we separate off the motion of the center of mass

Hew = (2M) ™ (Pon)? + QE - X,

N N N
where M = >~ mj, is the total mass, Xcar = (1/M) Y m;X;, is the center of mass, Poy = ) Py, is the
j=1 j=1 j=1

N
momentum of the center of mass, Q = Y g;, is the total charge.
i=1
The free Hamiltonian in the center of mass frame is Hy := Hy — Heg,

N N
Hy=> (2m;)~' p? — (2M) ' (Peu)’ + Y (g — m;Q/M)E - %;.
j=1 j=1
Hy is essentially self-adjoint in the space of Schwartz. We also denote by Hy the unique self-adjoint
extension.
In the center of mass frame the space of states is the Hilbert space, H, represented in configuration space
by wave functions ¢ in

N
LX), X=({%=(&y,...,%n)|>_m;%; =0p =RV (IL.1.2)
j=1
N 1/2
with the measure induced on X by the following norm on R™V : |||x]||| = m; X3 | . The space
j=1
N
L*(X), X=(p=(Pr.....Pn)|D_Bj =0p =RV, (I1.1.3)
j=1

J

1/2
N N
where X is equipped with the dual metric induced by lz (mj)~! f)Q»] on RV is the set of momentum
Jj=1
space wave functions ¢. Fourier transform maps unitarily L2(X) onto L%(X). The measures on X and
X are equivalent to Lebesgue measure. Given an (abstract) state ® € H we use both its configuration or
momentum space wave functions where appropriate.

As a general reference for multiparticle scattering see e.g. [36], where Jacobi coordinates are defined

. —1 .
J J
&= %41 — (Z mk> (Z mkik> . j=1,...,N—1. (I1.1.4)
k=1 k=1

These coordinates are obtained by first changing variables from (X;,X2) to £ = X2 — X; and the center
of mass of particles (1) and (2), Ria = (m1 4 ma) ' (m1%; + maXs). Then we change from (Ria,X3) to
€, = %3 — Ry and the center of mass of particles (1), (2), and (3), and so on. In the end we obtain the
Jacobi coordinates §;,1 < j < N — 1, on X and the center of mass coordinate X¢cps. In these coordinates
Hy is expressed as

N—-1
Hy =Y () 'pj +afE-&), by =—iVe,, (IL.1.5)
=1

where L

J

-1 -1 .

v; :mj+1—|—<g mk> , 1<j3<N-—-1,
k=1
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J
qf = (g1 M; —mj1Qy)/(mypa + My), My = my, (IL.1.6)
=1

J
Q= a 1<j<N-1,
k=1

v; and qJR7 1< j < N —1, are, respectively, the reduced mass and the relative charge of the particle (j + 1)
with respect to the masses and the charges of the first j particles. Formula (II.1.5) shows that the proof
that Hy is essentially self-adjoint in the space of Schwartz reduces to the one in the two-body case. The
Jacobi coordinates above are based in the pair of particles (1, 2) in the sense that we have taken as the first
coordinate §; = Xy — X; the relative distance of the particles (1) and (2). Of course, we can base Jacobi
coordinates in any pair of particles (j, k),j,k=1,2,..., N.

In order to determine the potential for a given pair we number the particles in such a way that the given
pair consists of particles one and two. By (I1.1.5) we write

Hy = (2y1)—1fﬁ_~_(q2m1_quﬂE.£1:| ® I+ 1® Hy, (I1.1.7)
mi + mo
under the decomposition of L?(X) as
N1
L(X)=L*Ry)® e [[ L*®Re)]
j=2
where
N-1
Hy =3 ((20) 70} + 4B ). (I1.1.8)
j=2

This shows that if the relative charge of the pair (1, 2), (gam1 — maq1)/(m1 +my), is different from zero
the relative distance of the pair (1, 2) is accelerated by the electric field as in the two-body case. However, if
the relative charge is zero both particles are accelerated in the same way by the electric field and the relative
distance is not accelerated, and then, with respect to the pair (1, 2), the relative scattering is as in the case
when the external constant electric field is zero. This shows that, for any given pair of particles, the inverse
scattering problem has to be formulated as in the two-body case with no electric field if the relative charge
of the pair is zero and, as in the two-body case with an electric field, if the relative charge of the pair is
different from zero.

For any given pair of particles we construct as in Enss and Weder [20] appropriate states where all
particles have high-velocity relative to each other in order to reconstruct the corresponding pair potential.
For this purpose we first introduce some kinematical notation. We use a numbering of the particles such
that the pair of interest consists of particles 1 and 2. As usual we take as one n-dimensional variable the
relative distance x and momentum p of the chosen pair (1,2).

X = 51 = )~(2 — )~(1, P = f)l = —ivx = M12[(—iv,}2/m2) - (—z'V;(l)/ml)], (1119)

where 112 is the reduced mass of the pair (1,2), u12 = mima/(m1 + ms). We also use the position x; and
the momentum p; of the jth particle, j = 1,..., N, relative to the center of mass of the pair (1,2),

X5 = ij — (mlf(l + mgig)/(ml + mg), j = 1, ey N, (11110)
p; = ui(Pj/m;—(P1+P2)/(m1+ms)), j=1,....N, (I1.1.11)

where p; is the reduced mass of the jth particle with respect to the center of mass of the pair (1,2),

M]:mj(m1+m2)/(m]+ml+m2)7 jzla"'7N7
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and p; = —iVy; is the momentum relative to some origin (see (II.1.1)). Note that x is the first Jacobi
coordinate &1, p = p12(P2/ma — P1/m1) and p;/u; are the relative velocities with respect the center of
mass of the distinguished pair (1,2). {x,x3,...xy} and {p,ps,...py} are sets of N — 1 independent n-
dimensional variables in the configuration and momentum space, respectively, relative to the center of mass
frame.
Let ®y € H be an asymptotic configuration with the product wave function of the form in momentum
space, R R
Py ~ ¢12(P)P3(P3s - - -, PN ) (I1.1.12)

where ¢ € C§°(R™) varies while ¢35 € C°(R"V-2)) is a fixed normalized function with support in
{(P3;---»Pn) & IP;| < m;}; ie., the particles 3 to N have speed smaller than one relative to the pair
(1,2). We take an 7 > 0 such that ¢ € C§°(Byian), where By, ., denotes the open ball of center zero and
radius p1am in R™.

The high-velocity state is defined as (see Enss and Weder [20])

Dy ~ d12(P — p12V)P3(P3 — H3V3,- .. Py — LNVN), (I1.1.13)

where v = vV, [V| = 1,v; = v?d;, with d; # 0, for j = 3,..., N and where we assume that d; — dj, # 0 for
j,k=3,... N. We, moreover, define vi = —vuia/my, vo = Vo /ma.
We denote the relative velocities by

Vik =Vp—Vj, Ujr=|vjl|, jk=1,...,N.
Then with dj = ‘dj|,
V1,5 U2(dj +M12{7/(m1’l})> #0 ifv> /ng/(mldj)7 7=3,...,N,
V2,5 = vz(dj — 12V /(mav)) #0  if v > M12/(m2dj), 7=3,...,N, (I1.1.14)
vig = v3(dg—d;)#0 j,k=3,...,N.

We denote v, = vjx/|vis|. We assume for all pairs (j,k) with g;x # 0 that ¥, - E| < § for some
0 <0 < 1. Tt follows that in our high-velocity states the relative average velocity of the pair (1,2) is v
while all other particles travel with minimal velocity proportional to v? relative to each other as well as with
respect to particles 1 and 2.

The relative momentum of particles j and k is

Pjr = — 1V (%,—%,) (I1.1.15)

where in the derivative the positions of all other particles, as well as of the center of mass, are kept fixed.
The relative velocity of the pair (j, k) is

Pji/Mjk = Pr/mk — D;/mj = Pr/lk — P;/ ;- (IL.1.16)

It follows from the definition that ¢o € S(R™¥~Y) and that

N
O, = itV H WiV X . (I1.1.17)
j=3
Moreover, by (11.1.10)
%k — %5| = [xp —x5] < [xu] + x50, k=1, N, [xa] < [x], [x2] < [x].

Hence, we have good initial localization uniformly in v,

(1 + %, —%;*)?®y|| <C, j,k=1,...,N. (I1.1.18)
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Additionally, by (1.15) there are functions f; € C§°(By,,n;,) such that

Dy = fik(Pjr — HikVik) Py, (I1.1.19)
where pj, is the reduced mass of the pair (j, k),

m;my

UEr— (II.1.20)
mj + my

Hik =

Furthermore, 712 = n,m1; = 2(1 + nuiz/ma),n2; = 2(1 + nuiz/me),j = 3,..., N, and n;;, = 4, for
4, k=3,...,N.
Note that by (I1.1.10)

0 0 0
X=%)— %X =i—, Xp—%Kj=i——i—1, 4 k=3,...,N, I1.1.21
Ip 7 op,  Op;’ ( )
0  pi2. 0 J 2.0
Xp—%) =i + 2,7 Ry Xy —mi— — 12,2 k=3 ... N. I1.1.22
P T opy T my ap” TP TP T Tap, ma 9p ( )

As in Enss and Weder [20] and Weder [40], (II.1.18), (II.1.19), (I.1.21) and (II1.1.22) allow us to reduce
the proofs in the N-body case to the ones for two bodies. We introduce below an appropriate class of
potentials where D?, D denotes the derivative with the usual multi-index notation.

DEFINITION II.1.1. We denote by V, the class of real-valued potentials, V°(x), defined on R™ with
values in R such that VO(x) = V%% (x) + VO I(x) with VO (x) € Vo vs, VO U(x) € V0.1, where Vg, s is the
class of real-valued potentials, Vv, that are relatively bounded with respect to the Laplacian with relative
bound zero and

/Oo dR HVO’US(X) (—A + 1)1 F(|x| > R)H < . (I1.1.23)
0

Vo1 is the class of real-valued potentials V! that satisfy V%! (x) € CL(R"), the space of all continuously
differentiable functions that tend to zero at infinity, and that

IDPVOx)| < CL+[x))™™, Bl =1L >3/2 (I1.1.24)
where without loss of generality we assume that v, < 2, otherwise V! would be of short range.

Let €g satisfy: 0 < ey < vy — % After Hormander [25], we can write, without loss of generality that, for
all VO(x) € Vo, VO(x) = VO vs(x) + VO !(x) with VO € Vy 5, VO € CHR™) and

|DVOL(x)| < C(1 + |x|) "ol 1/2) " for 9 < |y < 4. (I1.1.25)

The more intuitive condition
/ aR |F(xl > B)V* 0 (- + 1) < oo,
0

by Reed and Simon [36], is equivalent to the decay property (I1.1.23).

DEFINITION I1.1.2. [2/. We denote by Vg the class of potentials, V¥ (x), defined on R™ with values
in R such that VE(x) = VEvS(x) + VE$(x) + VEU(x) with VEvS(x) € Vi, vs, VES(x) € Vi, s, and

VE’l( ) € Vi1, where Vg s is the class of real-valued potentials, VEvs that satisfy VE VS = VE USJrVQE vs
with (1 + |x1|)V,2 "% relatively bounded with respect to the Laplacian wzth relative bound zero and Vy"*

bounded and that

/OOo dR Hva vs(x) (—A + )" F(|x| > R)H < o0. (I1.1.26)
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Vi, s is the class of real-valued potentials VE ¢ that satisfy VE *(x) € C1(R™) and that

[VE(x)
DIVE(x)

C+ )7, (11.1.27)

<
< CO+)T Bl=1, (IL.1.28)

with some 1/2 < a <y < 1. Vg, is the class of real-valued potentials VE:! that satisfy VE!(x) € C*(R")
and that

IDPVELx) < C+ x|~ H8l8 < 2, (I1.1.29)
with 0 <~vp <1/2 and 1 —vp < p < 1.

The class of potentials Vg in Definition II.1.2 is the same as in Adachi and Maehara [2]. Again we can
assume, without loss of generality by [25], that for all VE(x) € Vg, VE(x) = VE vs(x) + VE 3(x) + VE (%)
with VO € Vy o5, VE5(x) € Vg 5, VE! € CHR") with VE: ! satisfying (I11.1.29) and

|IDPVEL(x)| < C(1 + |x|) 70— HEHED/Z 3 < |5 < 4. (I1.1.30)

We call the potentials V0 ¥* and V¥ ¢ very short-range, the potential V¥ short-range and the potentials
VOl and VE ! long-range.

For a particle with mass m and charge ¢, there is a formula for the free time evolution, it was proven
simultaneously by Avron and Herbst [8] and by Veseli¢ and Weidmann [39]. There is also a generalization
for the time-dependent case considered by Kitada and Yajima [31],

o~ it(P?/(2m)—qEx1) _ iqExit,—it’¢*E?/(6m) ,—ip,qEt/(2m) —itp?/(2m) (I1.1.31)

We will also make frequent use of the following relations that are obtained under translation in configu-
ration or momentum space generated by x or p, respectively,

ePVIf(x)e PV = f(x + vi), (I1.1.32)

¢TI (D)X — f(p 4 mv), (IL.1.33)
for any measurable and bounded function f. In particular, (II.1.33) implies that

—imv-x _—itp?/(2m) eimv-x

e e = e*ip"’te*“‘ﬂ/(Qm)e*im”%/z, (I1.1.34)

where v = |v|. Since eitP?/(2m) x e=itp*/(2m) — x | tp/m and functional calculus,
eitP%/(2m) £ () e~ P%/(2m) — f(x +tp/m). (11.1.35)

We denote by e; = (1,0,...,0) the unit vector along the z; direction and E = E/|E|. We designate by
¢k = (ggmj — gjms)/(m; + my) the relative charge of the pair (j,k) and we denote by Zg<k and Z;ik,
respectively, the sum over all indices, j < k,j,k =1,..., N, with ¢;, = 0, and g, # 0.

We assume that the potential of the N-body system is a multiplication operator that is a sum of pair
potentials,

0 E
V= ViGe— %)+ Y VG — %), (11.1.36)
i<k i<k
with VﬁC € V) (see Definition I1.1.1), and VJ% € Vg (see Definition I1.1.2). By using a decomposition of Hy as
in (I1.1.7) for each pair (j, k) we see that each of the pair potentials VﬁC and Vﬁ; are relatively bounded with

respect to Hy with relative bound zero. Note that for a given pair the corresponding pair potential belongs
to Vy if the relative charge of the pair is zero and that it belongs to Vg if the relative charge is different
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from zero. Then V is relatively bounded with respect to Hy with relative bound zero and the interacting
Hamiltonian,
H=Hy+V, (I1.1.37)

is self-adjoint on D(H) = D(H,).
It is convenient to split the potential into the very short-, short- and long-range potentials. For this
purpose we define

0 E
Vysp = QVVI=D V0 — %)+ ) V(% — %) ] V5" € Vo, s, Vi " € Vi, ve (111.38)
i<k i<k
E
Ver = (V=3 VI, —%,) ’ VP evg 8, (I1.1.39)
<k
0 E
Vir = VE =S VR R = %) + YV G- %) | Vi € Vo ViR e Ve (I1.1.40)
i<k i<k
Then
V=vVSyvIiqvt, H=Hy+V=Hy+VV94+VS4+VEL (I1.1.41)

Let SP = SP(VE;VVS + V) be the Dollard modified scattering operator defined in equation (I1.2.10)
below.

Our main results are the reconstruction formulae given in Theorems I1.2.8 and I1.2.10 that we prove in
Section II. The uniqueness result given in Theorem II.1.3 follows from Theorem II.2.8.

THEOREM I1.1.3. Let 1 be as in Definition 11.1.1 and, vp and p as in Definition I1.1.2. If there are
two pairs 1 < j <k < N,1<j <k <N, with ¢; # 0 and qj;iy = 0 we assume that v, >3 —4(yp + p)/3.
Then,

1. Suppose that Vi = VVSi 4 Vi L Vi € Vysp 4+ Vsr + Vg, @ = 1,2, and that SD(VL’I;VVS’1 +
Vo) = §D(vL2, yVS2 L V2 Then, V= V2.

2. Furthermore, it is possible to uniquely reconstruct the total potential V' from any Dollard scattering
operator SP.

REMARK 1II.1.4. Note that in item 1 of Theorem II.1.3 it is enough to assume that the high-velocity
limits of SP(VL L, V'V 4 V&) and SP(VE:2,VVS 2 4 V52) are the same. Furthermore, we prove item
2 of Theorem I1.1.3 giving a method for the unique reconstruction of V' from the high-velocity limit of any
Dollard scattering operator. See the reconstruction formulae (11.2.44), (I1.2.75) and the proof of Theorem
II.1.3.

REMARK II.1.5. For a given VZ € Vyx let us define, as in [2] and [40], the scattering map S :=
SPWVL), 81(Q) = SP(VE;Q),Q € Vysr + Vsg, an operator from Vysg + Vsr into the Banach space
L(H) of all bounded operators in H. Clearly, Theorem I1.1.3 implies that S; = SP(VE;.) is injective.

REMARK II.1.6. For a given VX € Vi and a given V° € Vgp we define the scattering map S =
SP(VL 4 V9), So(VVS) = So(VE; VVS 4 V) an operator from Vygg into £(H). It is immediate that
Theorem I1.1.3 implies that Sy = SP(VE;- + V) is injective. However, as we show in Remark 11.2.11 this
result can also be proven using the reconstruction formula (I1.2.75) given in Theorem I1.2.10, that is simpler
than the formula (I1.2.44) in Theorem I1.2.8, because in (I1.2.75) it is not necessary to take the commutator
of SP with a component of the momentum operator. This is important in applications where the tail at
infinity of the potential is already known and one wishes to uniquely reconstruct V'V assuming that V*°
and V' are known.
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REMARK II.1.7. Under the Stark effect, for a pair potential where the relative charge is not zero, the
short-range decay rate at infinity of this potential depends on ~ given in our equation (I1.1.27). Theorem
I1.1.3 is proved by the first time by Weder [40], where he considers v > 3/4 and N-Body pair potentials
which are short-range if the corresponding relative charge is not zero and long-range if the corresponding
relative charge is zero. Then, for two body short-range potentials, Nicoleau [34] proves this Theorem with
~ > 1/2, the dimension of the space n > 3 and the regularity and decay of the potential:

Vo 0PV(x)| < Cs(1 +|x))T 1AL (I1.1.42)

for all multi-index f3. Later, in the two-body case, Adachi and Maehara [2] improve the results of Nicoleau [34]

because, besides v > 1/2, they relax the conditions on the derivatives on the potential and use dimension

n > 2. Furthermore, Adachi and Maehara [2] consider long-range potentials whereas Nicoleau [34] does not.
We improve the N-body results of Weder [40]. Our potential V' is given, by

0
V=3 (Vi e — %) + Vi (R — %)) +Z( Vit (& = %))+ Vi (o — %) + Vi (Re — %))
i<k i<k

where, for a111<_] <k <N, V" € Vo, Vi € Vo, Vii ™ € Vi vs, Vii'® € Ve V! € Vi1 Owr

potential vE k’ has no counterpart in [40], i.e. potentlals that are long-range with respect to the Stark effect,
when the relative charge g;i # 0, are not allowed in [40] whereas, here, we do. This is our first improvement
over [40]. Secondly, in equation (1.4) of [40] v > 3/4 and in our equation (II.1.27) we have v > 1/2, thus we
improve the results of [40] because our potential Vﬁ % is allowed to have the optimal short-range decay rate
at infinity.

We give a reconstruction formula with an error term that goes to zero as an inverse power of the velocity,
that depends on the decay rate of the potentials, see Theorems I1.2.8 and 11.2.10. If we only assume (I1.1.26),
our results coincide with those of Adachi and Maehara [2], in the case N = 2 and qi2 # 0. If, instead of
(I1.1.26), we assume (I1.2.21), we give a sharper error term than theirs. In this sense, we can say that we
obtain a new result, even in the two body case. ]

In this paper, we prove Theorem II.1.3 by extending to the N-body case the results obtained, in the
two-body case, by Adachi and Maehara [2] using the the findings published in 1993 [18], 1994 [19], 1995 [20]
by V. Enss and R. Weder where a new time-dependent method was developed. Here, physical propagation
properties of finite energy wave functions are used to estimate the high-velocity behavior of solutions of the
Schrodinger equation and solve inverse scattering problems in quantum mechanics. It is intuitive from the
point of view of the physics related to the problem. Contrary to the stationary approach, this method can
be applied to study non-linear equations [37,42-48, 50, 52-54]. Lately, this time-dependent approach [51]
has been exploited to study: Hamiltonians with electric and magnetic fields [5-7, 30], N-body systems
[19-21,40,41], the Stark effect [1,2,34,35,40], the Aharanov-Bohm effect [9-11,33,49,55,56], time-dependent
potentials [35,41], Dirac equation [16,26-29], Klein-Gordon equation [16,17,45,50], mass and charge of black
holes [12,13], amongst others.

I Reconstruction Formulae

Let us define

ws VR ifge=0, . o, if e =0, , Jviy' ifgu=0,

ik = VJE,US if o 0 Vir = VES o 0 Vir = VJE T 0 (I1.2.1)
jk ’ 1 Q_]k# I ]]g 9 1 q_]k;é ) Jjk 1 q]l€7é .

where V0 Y% and VO ! are defined in Definition IL.1.1, and VE 1;@7‘/]127 ® and VE " are defined in Defini-

tion II.1.2. Moreover the decays of Vk and Vﬁ; " are to be taken as in (II.1.25), (I1.1.29) and (II.1.30),

respectively.
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We introduce the Graf-type modifier (I1.2.2) Graf [22] and Zorbas [57], to define auxiliary wave operators,
whose existence and completeness were proven in the N body case for long-range Stark Hamiltonians by
Adachi and Tamura [3]. We note that the v dependence of the Graf-type modifier (II.2.2) is first introduced in
Adachi and Maehara [2] by taking into account the v dependence of ®,. In Graf [22] and Zorbas [57], v is taken
0 in the definiton of the Graf-type modified wave operators. We define the Graf-type modifier [2], [22], [57]
and the Dollard-type modifier by (I1.2.2), and (II.2.3), respectively

E t

Ugn(t) = exp|—iy_ / ds Vi * (Ve s + e1qinEs®/2usn)) | - (11.2.2)
j<k’0

- t

Up(t) = exp sz/ ds Vi (spji/pik + e1q;k Es®/ (2u5x)) | - (11.2.3)
j<k’0

For completeness we mention, for the short-range case, the modified Graf propagator, the modified Graf
wave operators [22], [57] and the wave operators for the free channel which are defined, respectively, by
(I1.2.4) (I1.2.5) and (I1.2.6):

Uer(t) = e "Molg, (1), (I1.2.4)
Qi,v = §— t_lzimoo eitH UG,U (t), (1125)
Wy = s— tliinoo et g=itHo, (I1.2.6)

The modified Dollard-Graf propagator, the modified Dollard-Graf wave operators [22], [57] and the
modified Dollard wave operators for the free channel are defined, respectively, by (I1.2.7) (I1.2.8) and (IL.2.9):

UD,G,v(t) _ e_itHOUD(t)0G7u(t)7 (H.2.7)
QPer = s lim M UPON(), (11.2.8)
WP = s— lim et o itHo T (1), (11.2.9)

Tamura proved the existence of the W for short range N-Body Stark systems [38], Korotyaev [32] did it
for the case N=3. Adachi and Tamura [4], and, Herbst, Mgller and Skibsted [24] proved the existence of WP
given by (I1.2.9) for the N-Body long-range case. Actually, the existence of the W and W, also follows

from our estimates. We give the simple proof of the existence of 27°“” and Q" in Proposition 11.2.6. The
Dollard scattering operator S” from the free channel to the free channel is defined as

SP = SP(WVEVYS + V) = (WP ) WP, (I1.2.10)

SP is not unique because there is more than one short- and long-range splitting of the potential. We also
mention the scattering operator S from the free channel to the free channel defined for the short-range case
as

S = (W) W_. (I1.2.11)

Proposition I1.2.1, below, shall be frequently used in this text. Its proof is given in the Proposition 2.10
in Enss [15].

PROPOSITION I1.2.1. For any f € C3°(R™) with supp f C By, for some m,ny > 0 and any | =
1,2,3,... there is a constant C; such that the following estimate is true:

HF(X e M') e~ itP*/2m) f(p vy F(x € M)H <O+t

for every v € R, t € R and any measurable sets M', M such that r := dist(M’, M + vt) —no|t| > 0.
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To treat the case whether or not the relative charge g;. is zero, we define

-
5o 4O i #0 (IL.2.12)
0, ifg;r=0.

where ¢ is such that |V, E| <0 < 1, for all integers 1 < j < k < N with g, # 0.
A cornerstone throughout this work is the existence of 0 < d1,d2 < 1 such that

[Vt + e1q12Bt? /(2u12)| > /01 [0t2 + 82 (q12E/ (2p112))2t* > /61wt (I1.2.13)

When ¢12 = 0, we can take 01 = d2 = 1, and if ¢12 # 0, we use §; = §o = 1 — 9, Moreover, if 0 < 5 < 1, q12 #
0, |p| < p12m, and /v < /1 —§/4, from a simple computation, there exist two positive constants ¢; and ¢y
such that

tp/p2 + vt + €112 Bt/ (2pu10)| > e fot],
[t p/pi2 + vt + e1qiaEt? ) (2p12)| > cot?,
tp/pi2 + vt + elqlgEt2 2u12)| > % cr 0wt 2(1-9), 11.2.14
162
For any pair (j, k), we establish three conditions: (% as “y; < 2 and there is, at least, one pair (5, k'
Jk
with gjipr = 0, V), o # 0, and either j" = jorj’ = kor k' = jor k' = kor j/ 4+ j = 37, (§) as “y = 2
and there is, at least, one pair (j/,k") with ¢ = 0, V%, 0, and either 7/ = jorj = kor k' =
J 7'k

jork' = korj +j = 3", and (5, as “there is no pair (j',%') with g;r = 0, V}Z,JC, # 0, and either
j=jorj =kork'=jork =korj +j=3". We define the following constant, for any ¢ > 0:

2— Y1, if C]['Lka
;1 = | ¢, if ¢%, (11.2.15)
0, if 5.

LEMMA 11.2.2. Let Up(t) be given as in (11.2.3). Then there exists a constant C, such that for allt € R,
for every vji, € R, as in (IL1.14), with v, > 415 /+/1 — 01 and v = via, for all fjr € C§° (B, for
all integers 1 < j < k < N, for allk > 0 and 0 < € < min{4eq, 2vp + 5u + €9 — 5/2, 2yp + 6 — 3}, one
has that

A]k = (ik — 5{]) UD(t) H fj/k/(pj/k’ — :uj/k’vj’k/)(l + |5{k _ ij‘2)71/2
jl<k/
1+ ,Uj*k(2771/2)|Ujkt‘2——y17 if C](‘Lkv
< Cl1+optn(+ v, Plopt]), if ¢y, < C (1 +v;,§2‘“/2>|vjkt|9jk) . (11.2.16)
1, if C5,.
By = ||F(%k—%;| > 6l Up(t) T] fire @ — minrviom ) (1 + Rk — %57) 7
j/<k/
< O+ vt >C. (I1.2.17)
Proor.

By (I1.1.21) and (I1.1.22), for 1 < a < 4, multiplication by (X — X;)” becomes derivatives in the p, pj, k =
3,..., N variables.
The norm

(%x —%;)" Up(t) H Fi P — by Ve ) (1 + % — %5]%) 7/
G/ <k’
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is bounded by a finite sum of terms of the form C'[[;_, I3,, with Iz, = 1 if the multi-index 8, = 0 and if

|6b‘ > 07

t
Iﬁ = H/O ‘S“ﬁbl (Dﬁb‘/jl’k/) (S(pj/k’/,uj/k' —|—Vj/k/) —+ elqj'k/ESZ/(z,Urj’k/)) ds gj/k/(pj’k’)

(11.2.18)

where (j', k") is a pair of integers 1 < j' < k¥’ < N suchthat jy =jorj =kor k' =jor k¥ =kor j/+j =3,

gj'k € C’g"(BMj,k,nj/k,) and gj5» = 1 in the support of fj/. Note that > ,_, |By] < a.
Below, we take ¢ = 0, if gy, # 0 and ¢ = 1, if gj,r = 0. We define

1 + ‘Uj/k/3|)_717 1f qj’k' = O and |/6b‘ = 17
1+ ‘Uj/k/5|)—1—|ﬁb|(éo+1/2)7 if gy =0 and 2 <[5, < 4,
1+ ‘5|2)*’7D*H|ﬁb|, if qjops £0and 1< 3] <2,

(
, (
iByy0,030 (8) 1= (
(14 [s|?) 7o CHAD2 i g # 0 and 3 < |By] < 4,

(11.2.19)

It follows from (II.1.24), (I1.1.25), (11.1.29), (11.1.30), (I1.2.13), (I1.2.14), (I1.2.18) and (I1.2.19) that

g/(2—6&
DAt

o -
I, < o/ Alig ,(s) dsgcv;l(c\/ﬁbprl)a/@fa)/
0 0

Let us assume |G| = 1 in (I1.2.20). If g5 # 0,
Il
I, < C/ T(1+7)*emmar < C.
0

If ¢j/1» = 0, we have that

L+ oyt ifn <2,

v ’k"t|
I < Cw.2, / T(14+7)""dr < CvS2,
o= i’k 0 ( ) -k In(1+ |Uj/k/t|), if 1 = 2.

1+ U;k2|vjkt|2’71, if v4 < 2 and either (5, k") = (5,k) = (1,2),

or (j', k') # (1,2) and (j,k) # (1,2),
L 0B gt i <2, (7 K) # (1,2) and (k) = (1,2),
< C 1+ U;k(2_71/2)|vjkt|2i’h’ if 1 <2, ( k/) = (1,2) and (5, k) # (1,2)

N v 2 In(1 + |vjpt if 71 = 2 and either =(j,k) =
e (L + Jot]), "= (' k) =, k) = (1,2),

or (j', k') # (1,2) and (j, k) # (1,2),
v (L + o7 t)), lf%—?( k') #(1,2) and (5,k) = (1,2),
vip In(1 + Jo; %), if 1 =2, (5, k') = (1,2) and (j,k) # (1,2).

This implies that (I1.2.16) is true.
In the other hand, similarly to (I1.2.20), we have that,
It] v/
Is, < C/ |[3b|2ﬂ s)ds < Cv~ (1Bl+1)5/(2— 0)/ TlﬂbliﬂbJ(T)dT
0

1 + |ut|lPel(—eo+1/2) if gy =0 and 1 < |By] < 4,

IN

C 1a ifQj’k?’ #Oandlg |ﬁb| §27
14+ |,Ut|rnax{|ﬂb|+1—2fyp—(\5b\+2)p,O}’ if g # 0 and 3 < |By] < 4.

‘Wzﬁ (1) dr.

(11.2.20)
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Then, it follows that

4
C 1] s < CU+ ot
b=1
hence

“ortl* Bie < ||[Re — % [P F (%% — %51 > sloit]) Up(®) [ Fiw Py — maow vy )1+ [Ri — %5[%) 72
j/<k/

< O+t~ < OO+ |uwt)*™°
This proves Equation (11.2.17). [ |
Lemma (I1.2.3), below, is a generalization of equations (3.8) and (3.17) in Weder [40]. Note that conditions

(11.1.23) and (I1.1.26) imply that
[V (x)g(p)F(|x] = R)|

is an integrable function of R for all g € C§°(R™) (see Corollary 2.4 in Enss [15]). Tt follows that potentials
in Vg s and Vg .5, satisfy condition (I1.2.21) below with p = 0. Of course, larger p means faster decay.

LEMMA 11.2.3. Suppose that Vj;® is given as in (11.2.1) and satisfies
(1+ RV} (% — %) 9(pjr) F (1% — %5 = R)|| € L'((0,00),dR), (11.2.21)

for some 0 < p < 1 and all g € C§°(R™), UD(t) is given as in (11.2.3). Then, for all functions fj €
C3%(Byuysmye) with 1 < j" < k' < N, there is a function hjx with (14 7)"hj,(7) € LY((0,00)) such that
for every v, € R™ with vj, > c for some constant 0 < ¢, we have the following estimate, for all integers
1<j<k<N:

Djk = V;;:(S(k — )N(]) e_itHoﬁD(t> H fj'k’ (pj'k’ - Mj'k’vj’k')(l + |)~Ck - ile)_2 S h]k(lvjkﬂ) (11222)
<k’

PROOF.  Let us take gjx € CG°(By,;,y,,) that satisfies g;p = 1 on the support of fjy.
Dy, < Li+1)+ 13, (11.2.23)
where, for any positive constant A,

= V¥ &k — %) 95005 — mevir) || |F Kk — %5 — virt — e1qju Bt/ (2uie)| = Alvjt]5/8) e~ o
X gik(Pjr — ik Vik) F (X — %5 < Muvjit]/8) ||

< |[Up(t) TT Firw 0y — yrnrvion ) (1 + [ = %51%) 72
G<k’

= ||V Rk = %5) g5 (P — kv i) F (1% — X; — Vit — e1qu B /(2n)| > Avjit|5/8) e~ 0|

F(%% = %5| = Mojitl/8) Un(t) [] fik(jonr — tionrviow ) (1 + [ R — %517) 72
j/<k/

H 'UG

%) 9k (P — Mikvin) F(|%k — X — Vet — e1q;n Bt/ (2u51)| < Avjxt|5/8)]]

% 6fitH0 UD(t) H fj’k’ (pj’k/ — ,uj’k’vj/k’)(l + ‘ik — ij|2)72
j/<k/
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We give the proof for the pair (1,2), the other cases are similar, using Jacobi coordinates based in the
pair (j,k). Let us set x = X2 — X1, p = —iVx we obtain as in (II.1.7) that

Ho = [(2v1)7'p” + q12E - x] ®I+1® Hy,

where I ® H, conmutes with X, by virtue of Hy’s independence from x. Note that 11 = pyo. Let us write
v = v12 = |v|. Therefore, thanks to commutativity
o~ itHo e~ t[2v) T PP HanEx]@I—itIofo _ —it[(201) 7 PP +a2Ex] o —itHo

We observe that the second factor in the tensorial product above conmutes with any operator depending
on x and p. It is also unitary, thus it disappears from the following norm estimations. We define M’ =
{x € R"||x — vt| > Avt|5/8} and M = {x € R"|[x| < Avt|/8}. We proceed as in Weder [40] using
(I1.1.31)-(11.1.34).

L < C|F(x—vt—eiqu2Et?/(2u12)| > Avt|5/8) e "0 g15(p — p12v) F(|x| < Avt|/8)|
= C HF(\X — vt —e1q12FBt?/(2u12)| > Mot|5/8) e Pre1az Bt/ (2u2)

XefitPQ/@/nz)ng(p — u12v)F(‘x| < )\|'Ut‘/8)H

C HF(\X — vt| > Mot|5/8) efitp2/(2“12)g12(l) — p12v) F([x| < /\|Ut‘/8)H

= C|F(x € M')e " /Cm2) g0 (p — jiov)F(x € M|
< CA+Aot|/4+t) 2 < C(1+ |vt]) 3. (11.2.24)

To justify (I1.2.24), we will prove that r» > A|vt|/4 in Proposition I1.2.1, provided v > 4n/X. Let us take
x € M and y € M+ vt, then |x —y| = |(x—vt) — (y — vt)| > Movt|5/8 — Auvt|/8 = A|vt|/2. Thus,
r > Avt]/2 — n|t] > Avt]/2 — A|vt] /4.

Application of Lemma I1.2.2, equation (I1.2.17), yields for an e > 0,

I <O+ |vt])27¢. (11.2.25)
Then, by (I1.2.13), I3 < C|V%(x)g(p)F(|x — vt —e1qi2Et?/(2112)| < Mvt]5/8)]|
< CIViE(x)gP)F (x| > |vt|(v/61 — 5A/8))]|
= hia(|vt]), (11.2.26)
where, by (I1.2.21), hi2(7) € L1((0,00)), provided A < 8y/31/5.
Inequalities (I1.2.23), (I1.2.24), (I1.2.25) and (II.2.26) prove the Lemma. [ |

LEMMA 11.2.4. Given Vﬁs € Vg, s, where 1 < j <k <N, a as in Definition 11.1.2, UD(t) be given as
in (11.2.3). Then for all functions fjr € C5°(By,,,m,,,) with 1 < j" < k' < N, there is a constant 0 < ¢
such that for every v, € R™ with vj, > ¢, the following estimate is true for all 0 < e < 1:

o0

JK

— 00

(Vj%’s(ik —%;) = Vi (vt + elqjkEtQ/@ujk)))

i ~ . - _ O s if a < 1,
xe tHoUD(t) H fj’k?' (pj/k" — /J/j’k:'vj/k’)(l + |Xk _ X]|2) 2 f— {O( ‘7_]61-")_61 it _q (11227)
<k (,Ujk ), I o = 1.
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PrROOF.  The proof is quite similar to that of Lemma 2.2 in Adachi and Maehara [2]. To simplify the
notation let us assume, in this Lemma, that ¢12 # 0 and consider the pair (1,2), i.e. x = X2 — X1, p = —iVx.
Let us take gi1o € C§°(B,,,,) that satisfies g1o = 1 on the support of fio.

We simplify as follows, noting that Vlg * is bounded:

I = (VlEQ” b(X) — ‘/121 é(vt + e1Q12Et2/(2M12))) e_itHO UD (t) H fj’k’ (pj’k' — :u’j’k:’vj/k'>(1 + X2)_2
G<k’

< CLh+ 1+ I3),
where, for 0 < a < 1,

L = ||F(x—vt—eiq2Et?/(2u12)| = 3[v%t]) e Mo gia(p — p12v) F (x| < [0%¢])||
F(jx — vt| > 3jv%t]) 67itp2/(2“12)912(1) — 12V F (x| < [v7t])

7

I = |P(x| > ")Upt) [T fiwPjw — miwrvim) 1 +x7) 72|
jl<k)/
I = ||(Vi5700 = Vi " (vt + eraia Bt/ (242)) ) Fllx = vt = exais Bt/ (2puz)| < 31u°t)) |

= [|(Vi5 e+ vt + e1012Bt2/(2un2)) — VI5 (vt + erana Bt/ (2pm2)) ) F(Ix| < 30°¢))|

I, and I are estimated as in the proof of Lemma I1.2.3, by Proposition I1.2.1 and equation 11.2.17,
respectively:

/ (I + I) dt = O(v™%).
By lemma 2.2 of Adachi and Maehara [2] (see also page 042101-5, equation 2.10 of [2]), we get, for all
0 < & < 1 and v sufficiently large that

00 a—2a o 1
/ I3 dt — O(U’~ )7 ? « < J
O ?|Inv|), ifa=1.

—00

) if < 1)
We finish the proof by setting @ = “ 1 @ [ |
1l—¢€, ifa=1,0<¢e <1.

LEMMA 1II1.2.5. Let lek and Up(t) be given as in (I1.2.1) and (I1.2.3), respectively. Let ~v1,¢q be as in
Definition I1.1.1, yp, i be as in Definition II.1.2, 0, as in (I1.2.15). Let us define two constants o, and
- G ik - 146, .
Gik; if ¢ix # 0 and lek # 0, then oj, = 27%’”]% and 0 < Gj < 2 — maX{,yZJrJZ7 wizw 1}, else, if qjr = 0 or
lek =0, then o := ;i := 1. Then for all functions f; € Cgo(Bujrk/nj'k/) with 1 < 7/ < k' < N, and for

all integers 1 < j < k < N, there is a constant vy > 0 such that for every v, € R™ with v, > vé/gj’“, we
have the following estimate:
o0
/ dt || (Vii(%k = %) = Vit pji/ ik — 141 B/ (2111,)))
—0o0
X e_itHO 0D(t) H fj'k’ (pj'k/ - /’Lj'k’vj’k:')(l + |)~(k; - ile)_2 S O(’Uj_ko-jk). (11228)

j/<k‘/
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Proor. The proof in the case where g = 0 is quite similar to that of Lemma 3.3 in Enss and
Weder [20], and the proof in the case where g;; # 0 is quite similar to that of Lemma 3.4 in Adachi and
Maehara [2]. In this Lemma, let us denote x = X, — X;,p = —iVx. From (II.2.14), a constant is defined as
follows

_ cfjkc;_gﬂ“, if ¢jx # 0,
1/2, if ¢ = 0.

Let’s split the long-range potential lek into two parts with controllable decay properties. Let y €
C>(R™) satisfy, 0 < x < 1,x(u) = 1, for Ju| > ¢ and x(u) = 0, for |u| < ¢/2; and lekyvjkt(u) =

“Vh) € B and Vi, — Vil <

lek(u)x(u/(v;,i"|t|2_5a'k')). In consequence, supp (lek,vjkt eyt
IVll-

Choosing again g € C5°(B,,,»,,) such that g = 1 on the support of fjy, it follows that

[¢[2= %5k

(Vi (x) = Vit D/ i — eraqie B/ (2p51))) e HoUp () [ Fire Py — pirnrvion ) (1 +%7) 72

j/<k/
< L+ L+ I, (I1.2.29)
where
L = (lek,vjkt(X) — Vi (tp/pjk — elqjkEtQ/(Qujk))) e "og(p — i)
X ﬁD(t) H fj'k’(pj’lc’ — /lek/Vj/kl)(l + Xg)_2 s (11230)
j/<k/
L= (Vi = View) e g0 — v (x| < o5 1t/3)|
< || Up(t) TT firw Py — pirnrviow ) (1 +%2) 72 (I1.2.31)
j/<k./
I; = H (le - lek,vjkt) (x) e "og(p — Mjijk)H

j/<k/
If gjx #0, for q € By, ;05 Vo = 415k /+/1 — dji, by (11.2.14), we have
ta/wk + virt + e1qip Bt/ (k)| > Cvjék |t~ %x. (11.2.33)

If g5 # 0 with p in the support of g, we note, by (I1.2.33), that lek’vjkt(t P/ujkt+virtteiq B2/ (2u,k)) =

lek(t P/ujk + vikt + e1q; Et? /(2u;k)). If g;1 = 0, p belongs to the support of g(- — wjxvjx), and v > 2,y
then VJy ., (tp/ujr) = Vi (tp/1jn)-

As in Enss and Weder [20] and Adachi and Maehara [2], by (I1.1.31)-(I1.1.35) and the Baker-Campbell-
Hausdorff formula [14],



Reconstruction Formulae 26

{ (Vlek,vjkt) (sx +tp/pjk + Vit + e1q; Bt/ (2u)1)) - x

1
I]_ < / ds
0

it I
G (Av}‘lk,vjkt) (sx +tp/pjn + Vit + e1q; Bt [ (25n)) | g(p) e~ HirVar

(2p5k)
XﬁD(t) H fj/k/(pj/k, — ,uj/k/vj/k/)(l +X2)_2 . (11234)
jl<k/
For gjz = 0, ¢ < v1 — 3/2, having in consideration that in the support of lek',vjkt we must have

x| > (¢/2)|vjxt], (I1.2.16) and (I1.2.34) imply that
et —(2=m/2)), . 4105k |—1—2¢0 4 —1—2¢
L < C [|Uﬂ€t| (1 t U |vjkt| ) + [vjkt] } < Clojit] :

Then, by the fact that I; is uniformly bounded, for all ¢t € R and all vy, [dt[; = O(v;,cl).
We consider now the case when ¢;; # 0. Recall that in the support of lek,vjkt we must have |x| >

(C/Q)Uj,ik|t\27&ik for 0 < 65 < 1. For 0 < b, (I1.2.16) and (I1.2.34) imply:

I < Iy + T2, where, I13 < C”leknv

I, < C ((Uj—kﬁjk(’)’D'Fﬂ)|t‘7(275'_7'k)("/p+,u) 4 ,Uj_k&jk('YD"Fl) |t|7(2faj,c)(w+1))
x (140Dt ) B > o) + Vil F (] < 03)) and
I, < C (v;k&jk(w“ﬂ)|t|—(2—&jk)(~m+2u)+1 + vjfk&jk(wﬂ“) |t|~ (=50 (Yo +ut1)+1

+Ufkﬁjk(vD+2)|t|7(275_,»k)(7,3+2)+1) )
J

By a straightforward calculation, provided 6, < 2 — (1 +6;5)/(vp + 1),

/dtln = O(’Uj_kb),
having taken

Tk :min{ Gjk Gk +(2—7/2-0;)/(p+1) 6'jk+<2_71/2_6jk)/('7D+:“)}'

b= ~ 9 ~ ) =~
2 — 0k 2 -Gk —0jx/(yp +1) 2— 0k —Oir/(vp + 1)

26,1

Using Adachi and Maehara’s computations [2] of the last three terms of the integral of I3 in the proof of
their Lemma 3.4, assuming that &, < 2 — 2/(yp + 2u), we obtain:

/+°°dt L = O@u#/1C-ow-1/00+2)
; .
Thus we have, in general:
+oo B
/ Aty = O(v;™"). (11.2.35)

If [x] < (5/8) vj,j’“|t| and v;fgk—l < (2/5)+/1 — d;, for gji # 0, we obtain as in (II.2.33)

X + vt + e1gx Bt?/(2u,,)| > cvf]i’“ |t|2~ Ok, (11.2.36)
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by equations (I1.1.31)-(I1.1.34) and (I1.2.36) we can invoke Proposition 2.10 from Enss [15] in (I1.2.31) to
estimate I with vy > 4n;,

Iy < C[[(Vi = Viuyer) e+ Vint + e1qu B2/ (2pja)) e/ Cin) g(p) F(|x] < o2 11/8)|
VI /8, i gk £0,) , -
< C||F <|x —vipt| > { |2|/ ,f Ao f ) e~/ i) g(p — v in) F([x| < 073 [¢]/8)
vkltl/2,  if g =0,
< C(L+ojM[t)~? (11.2.37)

Again, by Lemma I1.2.2, equation (I[.2.17), we estimate I3,

I3 < C(L+ 0 [¢) 2 (11.2.38)

By (11.2.35), (I1.2.37) and (II.2.38) we finish the proof. [ |
Let us denote,

IGw.ab = €xXp —’LZ ds V *(virs + elqjkEs /QCujx)) | and Ig, = Igu,—co,00- (11.2.39)

j<kva
Observe that UG’U (t) = Ig ot

PROPOSITION 11.2.6. The wave operators QD G und Qi’” exist and, moreover,

QPG —WPIg 0200, Q5 = Wolg o400 (11.2.40)

QDGU

PrROOF.  We give only the proof for the other is similar. Note that:

s— lim "MUP G () =s— lim e o0 (t) g 00 =WE s— lim Ig,o.
t—=o0 t—doo t—do0

Furthermore, for any ® € L? we have that:

| (a0t — I6.00,400) B2 = / im0t — Lm0 eoP10P —sos O,
n

by the Lebesgue dominated convergence theorem, taking into account that the integrand is dominated by
4|®|? for all t. This proves the proposition. [ |

Now we focus in the wave operator estimates. We use Jacobi Coordinates based on the pair (1,2), where
v =|v| = |va —vi| and v;, = O(v?), for (j,k) # (1,2). Lemma I1.2.7, below, is a N-body generalization of
Lemma 3.5 in Adachi and Maehara [2]. See also Lemma 4.6 of Adachi, Kamada, Kazuno and Toratani [1],
for a generalization of Lemma 3.5 of Adachi and Maehara [2] to the case where the external electric field is
asymptotically zero in time, in the two-body case.

LEMMA 1I1.2.7. Let o be as in Definition 11.1.2, where, without loss of generality, o = 1 if q;, = 0
foralll < j <k <N Foralll <j<k<N,let0<oj, <1 beasinLemma I1.2.5. Let us take
VVS € Vysr, VS € Vsr, VI € Vpg. Then, for all ®, as in (11.1.13) with a fized normalized ¢3, where, with
0,k being defined as in (11.2.12), the relative velocities satisfy |V, - E| < 05 for all integers 1 < j <k < N
with gj . # 0, and vji, > Ué/ajk for some vg > 0 and all integers 1 < j <k < N :

sup H(QQ,GW _ eitHUD,G,v(t))(I)v
teR

= O(p~ minteon [IST<kSNE) (IL.2.41)
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In the short-range case, where Vlk =0 (see (I1.2.1)) for all 1 < j < k < N, we obtain the following result

O(v™?), ifa <land ) |gjx| >0,
i<k
sup H(Qﬁ _etyGenye, || = {O0@TUT), ifa=1and ]gk lgji| >0, (11.2.42)
S
O(v™1), if >~ lgjkl =0,
<k

forall0 < e < 1.
Proor.  We give the proof for QE’G’”. By Duhamel’s formula, (I1.1.31) and (I1.1.33):
t d

_ lim eiiE’HUD,G,v (t/) _ eitHUD,G,v(t) — lim ds — (eisHUD,G,v(S))

D .
Q+,G,v _ e1tHUD,G,v(t) / /
t'——+o00 t'—+4o00 ¢ dS

t

j<k

— V(5P tk — e1qju Es?/ (21x))]

30 [V R = %)) = Vi (Vs + erqge s/ (2pe) | | U (s).
j<k

Using that the Graf-type modifier Ug ,,(t) (I1.2.2) conmutes with any operator, and Lemmata 11.2.3, 11.2.4,
11.2.5, it follows for any 0 < €; < 1,t € R:

H (e—itHQJDr,G,v _ UD,G,v (t)) i

Vi (% = %;)

Xe—isHOU H fjlkl p_]’k’ /lek/vj//q/) 1 + |ch - le 2H ds

JI<k’
+CZ/ k(& = %;) = Vi(sps/mjk — €146 Es%/ (2p1x)))
<k’
Xe—stoUD(s) H fj’k’(p_j’k’ — /Lj/k/Vj/k;/)(l + |)~(k: - ij|2>_2H ds
J' <k’
+CZ/ X — %) — Vi (Virs + e1qin Es®/ (2u5x)))
J<k® ™
XeflsHoUD(s) H fj’k’(pj’k’ - Nj/k/Vj/k/)(]- + |)~(k - i]|2)72H ds
J' <k’
- Z(O( )+O JJA>+Z 7 ifa<].7
< . *k(l €1) )’ ifa=1.
<k i<k (25

@

The proof is finished by the use of the following arguments: a < 1 implies for v > 1 that v=! < v=¢,
0< O'Jk < 1 implies, for €; sufficiently small that O( —a- 61)) < O(vj_,:"’“), and noting that v = v and vj,
is O(v?) for j <k=3,...,N. [ |

Lemma I1.2.5 above deﬁnes two sets of exponents o;;, and &;,. Theorem I1.2.8 below needs o, > 1/2.
For this purpose we have to ask, for all 1 < j < k < N with ¢;, # 0 and lek # 0, that 0, being as in



Reconstruction Formulae 29

(I1.2.15), must hold:

1+9jk 2
X

2 4
2 — ma , 1> =0, < - +p) — 1. 11.2.43
{,YDJFM po—— } ik < 30 +h) ( )

3

In particular, inequality (IL.2.43) is always true if 0;, < 1/3 because 1/3 < 4(yp + p)/3 — 1 for all vp and
w as in Definition I1.1.2. Inequality (I11.2.43) is always met in conditions le?k and (5, see (I1.2.15), because
in the former, 0, can be taken arbitrarily small, and in the later, 6, is zero. If there is a pair (j, k) with
¢jx # 0 and the condition (f is true, (I1.2.43) is equivalent to max{3/2, 3 — 4(yp + p)/3} <y < 2. If
> lgjk| = 0 we just need 3/2 < ; < 2. Theorem II.1.3 is stated considering long-range potentials, in this
case, (fy is true for some pair (4, k) with g # 0, if and only if, there are two pairs (5%, k*) and (5, k") such
that 1 < j* < k* < N,1<j <k <N, gj=p+ # 0 and ¢;r = 0. We can also use Theorem II.1.3 with
short-range potentials: the condition 3 —4(yp + p)/3 < 71 is always true because, without loss of generality,
we can take v; = 2 in this situation.

THEOREM 11.2.8. (Reconstruction Formula) Let v, be as in Definition I1.1.1, a,yp, i be as in Definition
11.1.2, where, without loss of generality, o« =1 if qjr. = 0 for all 1 < j < k < N. If there exists two pairs
1<j<k<N, 1<j <k <N such that gjr # 0, ¢j;w = 0, le,k, # 0, and either j’ = j orj' =
kork =jork' =k orj +j=3, we additionally assume v; > 3 —4(yp + p)/3. For all1 < j < k < N,
let 0 < ojr, <1 be as in Lemma I11.2.5. Let us take VVS e Vygr, V€ Vsp, VE € Vg, where V5 satisfies
(I1.2.21) for all g € CZ°(R™), with 0 < p < 2min{a, 0, |1 <j <k < N} —1. Let us set p, =p - €, for any
l=1,...,N. Then, for all ®y, ¥y as in (I1.1.13) with the same fixzed normalized qf)g, with d;5, being defined
as in (11.2.12), the relative velocities satisfy |V, - E| < 0k for all integers 1 < j < k < N with g;, # 0, and

vk > U(l)/ajk for some vy > 0, as in Lemma I1.2.5, and all integers 1 < j <k < N :

Wi(SP P, By) = [ dr (VO T pian W) ~ (Vi G 79) 012, pye)

— 0o

. A% . . oV .
+12 (( axlf) (x—|—Tv)<I>12,\I/12) +1 (( 6xll2) (x—|—TV)@12,‘~I/12)}

o(v™), ify—-1<p<2minfa, 0, |1 <j<k<N}-1<1,
for any p;, 0 < py <2 — 1,
o(v™r), if0<p<min{ys,2a, 20,1 <j<k<N}-1,
+40w™), ifp=2min{a, o |1 <j<kE<N}—1<7y -1, (11.2.44)
o(v=r), if p=1,%l|gjx| =0 and Vi, #0,
for any py, 0 < pp <y — 1,
O(w™Y), ifp=1,3|gjx| =0 and V, = 0.

71, if ¢g12 = 0 and Vll2 # 0,
where 2 1= < yp +p, if 12 # 0, and V1l2 # 0,
2, if vV, = 0.

REMARK II.2.9. Note that the first term in the right-hand side of (11.2.44) can be written as

[ oV, .
z[m dr << 8;12) (x4 70)P12, ‘1’12>7

where Vip = V% + V5 + Vi, and the derivative %L;f is taken in distribution sense. This shows that the
high-velocity limit of v(i[S”, p;]®y, ¥y ) is independent of the decomposition of the potential V into the part
VVS £ VS that is of short range under the constant electric field E and the part V¥ that is long-range; that
is used for the definition of the Dollard scattering operator (I1.2.10).
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PROOF.

The scattering operator can be expressed as SP = (QE’G’”15270 +Oo)*(Q?’G’”IE,1U’O,_OO) =
IG’U(QE’G’U)*Q?’G’”, by (I1.2.10) and (II.2.40). Noting that [SP,p,] = [SP,p; — p12vi] = [SP — Ig.u, D) —
u12v;] and (p; — p120;) @y = (p;Po)v where p; and v; are the I-th components of the relative momentum and
the velocity v of the chosen pair (1,2), respectively. By the fact that Qg,c,v are partially isometric and the
application of Duhamel formula, (II.1.31) and (II.1.33), as in the proof of Lemma II.2.7, we obtain

* +o0 « .
i(SP — Ig,) @y = g i (QBG»“ - Q?’G’”) QP = Ig, / dt (UPC0 (1) Vi(x)e QP ey,
with X defined as (II.1.2) and V; = V3 ¢ + Via+ where
Vau(x) = S VG — %) + ViR — %) = Vi (Epj/mik — erqie B/ (251))]
J<k,3<k<N
E
+ Y ViR — %) = Vi(viet + erqin B/ (2ux))]
j<k,3<k<N
and
Vigy = VB (%) + V(%) = Vb (tp/piz — €11/ (2p112))
+Vi5(x) = Vi (vt + e1q12 Bt/ (2p12)). (I1.2.45)
Thus we have
v (i[SP, Py, Uy) = I (I(v) + R(v)) (11.2.46)
with
“+o00
I(v) = / drl,(7), (11.2.47)
where
ly(vt) = (Vlgyt(x)e_itHOUD(t) (P®o), , e tHo UD(t)\I/v)
= (Viza)e™ o lp (6)Dy, e~ Tp (1) (p ¥0), ) (I1.2.48)
and
Rw)/v = / dt | (Vaue™ ol () (p,®o), , e~ 0p (1), )

_ (Vg’te—itHoU'D(t>q)v7 e—itHoUD(t) (pl\l,0>v) + ((e—thQ?,G,U _ UD’G’U(t)) (pl(b())v’
X/}UDG’”(t)\Ilv) - ((e*inQ’f’G»” - UD7G’”(t)) O, VUPCw (1) (pl\I/O)VH . (I1.2.49)
In the derivation of (I1.2.48) and (I1.2.49) we used that Ug,,(t) commutes with any operator.

We are going to need to translate the Dollard-type modifier (I1.2.3)

N N
Up(v,t) = e v > [ e Vi Up(t) ey [ [ ersvi. (I1.2.50)
j=3 j=3

Using equations (I1.1.31)-(I1.1.35) and substituting (I1.2.45) and (I1.2.50) in (I1.2.48), it follows that
I(v) = Ji(v) — Ja(v) + iJ3(v) + iJs(v), (I1.2.51)
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where

Ji(v) = / <V1U28(X + TV + 91Q12E72/(21’2M12)) 67i7p2/(2v“12)UD(Va 7/v)PPo,

e~ iTP?/(2vm2) [T (v, T/v)\llo) dr, (I1.2.52)
Ja(v) = / (Vf’;(x + 7V + e1q12 B2/ (20%112)) TP 202) Up (v, 7 /v) @y,

e iR’/ (2upz) Up(v, T/v)pl\I/(J) dr, (I1.2.53)
Js(v) = / ((0vi5/00) (x4 7% + e1q12 B2/ (207 3)) e 70/ @082) i (v, 7/0) b,

e i7P"/(2vu12) Up(v, T/v)\Ilo) dr. (11.2.54)
Ji(v) = / ((avllz/axl) (X + 7V — e1q1a E7% /(202 112)) i7"/ (2vin2) Up(v,7/v)®,

ei7P?/(2vu12) Up(v, T/v)pl\Il()) dr. (11.2.55)
There exists C' > 0 that uniformly bounds the following expression, for all j < k:

1@ | + 1 (P1®@o)y || + [[(1 + [k = %5 *)* @y || + |1+ %6 — %51*)? (P ®o), || < C-

IN

c > /dt e (& — %p)e U () [T fie Py — wonrviow ) (1 + [ R — %5[%) 2
j<k3<k<N <k’

+Cc Y /dt (Vi &k — %5) = V3 (tpji/ 1k — €106 B/ (251)))

j<k,3<k<N

Xe—itHoUD(t) H fj’k’ (pj’k:’ — Nj’k’vj’k')(l + |)~(k — )N(jlg)—Q
j/<k}'

E
+C Z /dt (Vi — %5) = Vi (virt + e1q;n B/ (2u51)))
J<k,3<k<N

XG—itHo[j’D(t) H fj/k’ (pj’k’ — /ij/k’vj’k/)(]- —+ |)~(k — )N(j|2)—2
j/<k/

+C {Sup H (e*thQl_)’G’” — UD’G’”(t)) (p®o),
teR

+ sup H (e’thQl_)’G’” - UD’G’”(t)) o,
teR

|

« Z/dt ﬁ:(ik o ij)e*itHOUD(t) H fj/k’ (pj’k’ — ,Ufj/k’vj’k/)(]- -+ |)~(k — 5(]-‘2)72

J<k JI<k’

+ Z/dt (VieGn — %5) = Vit P/ 1k — e1q;e B/ (2151)))
i<k

% e*itH()UD(t) H fj’k/(pj’k/ — ,uj’k’vj/k’)(l + ‘ik — 5{]'|2)72
j/<k/
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E
+Z/dt (Vie&n — %;) = Vii(Virt + e1qinEt* [ (2u;1,)))
j<k

% e—itHoUD(t) H fj’k’ (pj’k’ — Nj’k’vj’k/)(l + |ik — )2]—‘2)—2
j/<k/

Thus, by Lemmata I1.2.3, 11.2.4 and 11.2.7, if lek =0forall1<j<k<N:

o(v™r), if0<p<22a—1,

O(w=r), ifp=2a—1<1, qik| >0,
R(v) = ) j;k|J|

O(U_l)7 ifp =1, Z ‘ij| =0,
i<k

Similarly, by Lemmata I1.2.3, 11.2.4, I1.2.5 and 11.2.7, if V/, # 0 for some 1 < j < k < N :

19) (,U1—2min{oz,ajk | 1§j<k§N}) , if E |ij| >0,

R(v) = LI
O(v_l)v if Z |QJ1€| =0,
i<k
o(v™r), H0<p<2min{a, 0|1 <j<k<N}-1,
— O(v="), if p=2min{a, o |1 <j<k<N}-1<1,
O(v~!

v, ifp=1,3" [girl = 0.
<k

Now, let us compute the following: lim, . v (i[S?, p;]®v, ¥y ) , using (I1.2.46):

E oo
lim I, = exp —iz lim / ds Vi (Viks + ek Fs?/(2uir)) | = 1.
J<k -

(11.2.56)

(11.2.57)

We have used the Lebesgue dominated convergence theorem: There exist 0 < 1,02 < 1 such that
ViksterqinEs® /()| > \/01|Vikt]? + 02(qjn B/ (2u5%)) 1, since, [V, E| < § < 1, by (I1.2.13), when g1 =
0, we can take §; = 02 = 1, and if q12 # 0, we use 61 = do = 1—4. We can estimate jsk(ij5+e1qjkE52/(2ujk))

as follows:

< C(1+|vjes+eiquBs®/Cui)|)
< C(1401v3s” + Gl B/ (2usn) Ps*)
< Cl+s72).

This last term is integrable in R because 1/2 < v < 1.
Note that pointwise in T,

B (7)) = (V5 (x+79) (prP12), Wrz) — (Vi (x +79) iz, (p1T12))

Vi (Viks +e1qjiEs® /(2u0))|
—/2

+i <(3V182> (x +7V) D19, \1112) + i <(3Vf2> (x +7V) D19, \1112) . (I1.2.58)

oxy Oy

We want to compute lim, .o I(v), by (I11.2.47), (I1.2.58) and the Lebesgue dominated convergence theo-

rem, thus showing the rate of convergence when p = 0 in (I1.2.21):

lim I(v) = /00 {(Vf’zs(XﬂLT‘A’) (P1P12), Vi) — (Vi5(x + 7V) P12, (P ¥12))

V—00
— 00

+i ((av&) (X + 7V) P19, \1/12> +i <<av1l2) (X + 7V) §1o, \1/12” dr, (I1.2.59)

oxy Oxy
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this means in terms of the Jy, Jo, J3, J4 functions that

lim Ji(v) = / (V2 (x + 79) (p,@12), U12) dT, (11.2.60)
lim Jy(v) = / (V2 (x + 79) ®1a, (p,V12)) dr, (I1.2.61)
lim Jy(v) = / <<0V1€’3/8x1) (x +77) @12,@12) dr, (11.2.62)
Jim Ji(v) = / ((0Viy/0m)) (x + 7%) P12, V1o dr. (I1.2.63)

ave l
D and xlf are very

To justify the use of the Lebesgue dominated convergence theorem observe that
short-range. By (I1.2.48) and Lemma I1.2.3:

(Ml < C|Vigx)e T o) TT Fiw0jone — pirweviow) (1 + x[7) 72

j/<k:/
OV \ —i(r/o)Ho T 2\-2
+C 87(?()6 Up(7/v) H firer (Pjray — pyrervirk ) (1 + [%[7)
l <k’
Vs \ it joyHo 7 2\-2
+C 87(?()6 Up(7/v) H firr (Pjriy — pjrervirk ) (1 +[x[%)
l <k’
< Chas(|7]),

where his € L'((0, 00)).

Let us find the rate of convergence of (I1.2.59) when p > 0 in (I1.2.21). We estimate the rate of convergence
of, Jp, the first term in the right-hand side of (I1.2.51) (i.e. (I1.2.52)) to its limit. From (I1.2.52) and (I1.2.60)
we have:

—0o0
Jiv) = lim Ji(v) = / dr (Vf’;(x + 7V + e1q12 B /(207 1)) e ) U (v, 7 /) (p, D),
—0o0
e~iTP"/ (2vpa2) UD(V,T/v)xpO) - / dr (Vi (x + 79) (P P12), V12)

— / dr [(ij(x 4 9o iPrera B/ (202 2) =i/ (20m12) 7 (v 7 f0) (p, Do),
e*ip-elqlgETQ/(2’UQ,u12) efi‘rp2/(2vu12) UD (V, 7./,0)\1/0)

_ (V”S(x + 7v)e  Peran BT/ (20 ns) o—irp?/(2vm) 7 (v, 7 v) (p, Do), ‘I’O)]

+ [[dr = (i), Vi (x4 79)00)
(oot Ot omiret @) (1 (v, ) (pr o). Vi (¢ + 79) o )|
The latter calculations suggest us to define:
WO = (Vig o ro)em e e @ i o) G (v, 7/ 0) (pio).
(6*ip-91q12E72/(202#12) e iTP?/(2vp12) UD(V,T/U) _ ]) \I;0> , (I1.2.64)

hD = ((e_ip.elq12E72/(21,2,“2) o—iTP?/(20112) Up(v,7/v) — I) (p,;®0), V% (x + Tf/)\llo) . (11.2.65)
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With this notation

V—00

Ji(v) — lim Ji(v) = / dr (h<V1> +h$,2>). (11.2.66)
Let us analyze the rate of convergence of hs,l). On one hand, with t =7 /v :

H(eﬂ'plq12ET2/(2u12u2)efipzr/(mmv)[jD(V’ /v) — ])%H2 < [C‘T/U‘ (1 n ‘T/UMQ’
On the other hand:
H(e—iplqlerz/@mzv?)e—iPQT/(muzv) Up(v,7/v) — I)\IJOH < 2| Ul
Consider two cases, with 0 < a < 1 in mind:

(a) |T/v| < 1: Clearly we have that |7/v|* > |7 /v], therefore:
H(e_iplq”ETz/(2’“2”2)6_@27/(2“12”) Up(v,7/v) — I)\IIOH < C’T/U‘ (1 + ‘T/UD < C‘T/’U’ . (11.2.67)
(b) |7/v| > 1: In this case |7/v|* > 1, thus:

. . ~ a
H(e*wlquT?/ (2p120%) o =iP*7/ (24120) {1 (v, 7 /) — I)%H <C< C’T/v] . (11.2.68)
Now we study |h$,1)(r)|’s decay as v — oo applying Lemma 11.2.3, and (I1.2.67), (I1.2.68) with a = p:

P ~
WO < Clro| [V (x+ 70/ (mev) + eri2 Br/ (20%m)) Up (/o)

X H fj/k/(pj,k, — Mj’k’Vj’k’)(l + |x|2)—2 )
j/<k/
Then
v?|R{Y (7)| < C|7)Phya(|7]) € L (=00, 00). (11.2.69)
Hence, for p =1

v/|h£,1)(7)|d7 <C.

For 0 < p < 1, by Lebesgue dominated convergence theorem

lim v / RV (7)dr = / lim v”h{M (7)dr =0,

V—00 V—00

where we used that lim,_, s v"hs,l)(r) = 0, since by (I1.2.67) and (I1.2.68) with a = 1 we have U”|h£,1)(7')| <
Clr|vP=L.
As a result

+o0 - H
1 ~Jo(wTr), if0<p<l,
/W drh (M (1) = {O(U_l) fpo1. (I1.2.70)

At this moment, we turn our attention to the rate of convergence of h? . When |x 4+ 7v| < |7|/2, we
have |x| > |7| — |x + 7V| > |7]/2. With the last inequality we can estimate the second factor in the scalar
product of (I1.2.65). Let g be a C§°(R™) such that g(p)y12 = 112. By (I1.2.67) and (I1.2.68):

o] +o0
v [ @@l < o[ ar (Ve vngm)F(x v > fr1/2)]

— 00

+IVig (x +v7)g(P) [ 1 F (x| = [7]/2)Wizl]) - (IL.2.71)
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Due to the short-range condition (I1.2.21), the first integral in (I1.2.71) is finite; the fast decay in config-
uration space of W15 makes the second integral in (I1.2.71) be bounded:

o0

/ drlrl? |F (] > [rl/2) 0] = / drlrlP (1 + 7))~

— 00 — 00

(14 71 F(lxd = T | < o

Hence, for p =1
v [ i <c.

and for 0 < p < 1, by Lebesgue dominated convergence theorem

lim U"/hg)(r)dT z/ lim v”h? (1)dr = 0,

vV— 00 V— 00

where we used that lim,_, vphg,z)(T) = 0, since by (II.2.67) and (I1.2.68) with a = 1 we have vp|h£,2)(7)| <
Clr|vP~1L.

As a result

— 00

Feo o(v™r), f0<p<l,
/ drh® (1) = {O(v_l) P (11.2.72)

We have just estimated the rate of convergence of .Jy, the first term in the right-hand side of (I1.2.51).

Since g1 € C§°(Byiy,n), We have that (plqglg) € C§°(By,,n), therefore, we can apply the same treatment to

Ja, the second term in the right-hand side of (I1.2.51). For J3, in the right-hand side of (I1.2.51), when we
estimate the term with 8/8xz;V,5* we have that

(1 + |l‘|)ps 8/a$l‘/1§75(x)‘ < C(l + |x|)—1—(>4_t,_pS

satisfies the very short-range condition if ps < o < 1. Nevertheless, when ¢12 # 0, we do not have an extra
error term of the form o(v~"¢) because in (I1.2.56) and (I1.2.57) p < a, for that reason one can always choose
ps such that p < ps < a < 1. Regarding J; in (I1.2.51), we estimate the term with 9/9x;V},, one sees that

1+ |z))o=rteif gy # 0,
1 AYr) Vl <C (
(1 +[2])?"|0/ 0 Vip(@)] < {(1 + |z])~ter if g12 =0,

—1, if
Yo +u—1, if g2 #0, Therefore, we have another error

satisfies the very short-range condition if p; < .
7 -1, if 12 =0.

term of the form
o(v™r1). (I1.2.73)

Moreover, when there is at least one pair with non-zero relative charge, we have to estimate the following
error, see (I1.2.39) and (I1.2.46). In this case, p < 1, and —(2y — 1) < —(2a — 1) < —p, where 7 is as in
Definition II.1.2. By equation (I1.2.13):

E o
Igu—1] < 3 / ds V3 (vies + exqn B/ (2usn))| < C
j<kY T>®

{o(v_p), if 0 < p<2min{a, o5 [1<j<k<N}—1,

v =D 1/2 <y < 1,
Inv
v )

ify=1,

I1.2.74
O(w="), if p=2min{e, o3 |1 <j<k<N}—-1<1 ( )

Finally, to prove the convergence rate given in (I1.2.44) we sum the terms, corresponding to I(v), R(v),
I¢ ., respectively, in (I1.2.46), recalling (I1.2.56), (I1.2.57), (I11.2.66), (11.2.70), (11.2.72), (I1.2.74) and taking
in consideration (II.2.73) with the highest possible values of p; in order to have the optimal error rate in all
the cases enounced in Theorem II.2.8. [ ]
The following reconstruction formula is of independent interest.
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THEOREM 11.2.10. Assume the same hypothesis as in Theorem I1.2.8, Then

o0

v(i[SP — Ig.,]®y, Uy) — I, / vdt (Vi (x) — Vi (vt + e1q12Et? /(2p12)) + Vi (x)

— 0o

Vi (tp/mi2 — e1qi2 Bt/ (2u12))) e U () @y, efitHOUD(t)‘I’v) = / dr(Viy "*(x + 7V) @12, U12)

— 00

o(v™"), H0<p<2minf{e, 0|1 <j<k<N}—-1,
+{0w"), ifp=2min{a, o;|1<j<k<N}—1<1, (I1.2.75)
O(w™'), ifp=1, and Y |qx| = 0.

PrOOF.  The left hand side of (I1.2.75) can be written as equal to the right hand side of (II.2.46)
exactly with the same I, but with

“+o0 B ) -
1<v>::13/’ dt (Vi (x)e™ 00 (g =0 U (1), )

— 00

and, with the same V3, and V; as in the proof of Theorem II.2.8,

R(v)jv = /mdt[(vg,,te—“HoUD(t)@V,e—“HoﬁD(t)xpv)

— 00

(e —ppn) n, v o)

The convergence rate of I(v) is computed like that one of .J;, see equations (11.2.52), (11.2.64), (I1.2.65),
(I1.2.70), (I1.2.72). R(v) and I, are estimated like in (I1.2.57) and (I1.2.74), respectively. [ |
Proof of Theorem 11.1.3: R R X . o

Let us consider the states ® ~ ¢12(p)ds(ps,...,pn), ¥ ~ ¥12(p)ds3(ps, ..., pN), such that ¢1a,112 €
C5°(R™) and @3 is like in (IL.1.12). Let y be an element of a two dimensional subspace of R™, for instance,
we associate each y = (y1,72) € R? with the vector y1e; + yoea € R™. We express by

DY = PYD & Y = Pra(x —y)ds(xs, ..., Xy), VY =e PYU S Y =h5(x —y)ds(xs,...,XN),
(I1.2.76)
the states, translated in the configuration space by y, considered as an vector in R™.
Suppose that Vi = VVS i1 VS i VEi € Yysp+Vsp+Vir, i = 1,2, and that SP (VL1 VS 1py98 1) =
SP(VE:2, V52 4 V92) Then, we can write the potentials V%, i = 1,2,

V= Z Vk(xkij) Vjik:VvSl+‘/jskl+V;‘l];ia
1<j<k<N

with, for all 1 <j <k <N, V' € Vygr, V3" € Vog, and Vi' € Vig.
It is enough to prove uniqueness for the pair (1 2). Let us assume q12 # 0, the other case is similar and
simpler. Note that as q12 # 0, V5" i e VE vss Vi e Vg, s, and V12 € Vg, 1. We define

75(x) = V1v2S Q(X) - V17125 1(x),
Q72(x) 52 (x) — Vit (%),

() —Wﬂw Vi ), (270
Q12(x) U5(x) + Qia(x) + Qs (x).

With ®¥ and Y as in (I1.2.76), and p; = p - ey, the function f : R? — C is defined as

fy) = hH®G)+ f20) + f3(¥), (I1.2.78)
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where

Hy) = (Qi3(x)p, @Y, ¥Y),
_( ?S(X)(I)y7p1‘lly)a

((9Q1y | 9Q%,
1 <( 8,(61 + 81)1) (X)@y,\lly> .

Let us focus on f1. Let g1 be a C5°(R™) function such that g (p)dia(p) = d12(p),

[
=
|

=
=
[

A < ClRE)g (P (I1.2.79)
LI < ClRQisx)g(P) F (x| = [yl/2)]l
+ 1R (P)IEF(Ix] < [y]/2)¢12(x = y)II) - (I1.2.80)

Inequality (I1.2.79) shows that f; is bounded. By the very short range condition (I1.2.21):

1Q73(x)g1(P)F (x| > [yl/2)| € L*(R?).

Additionally
1
1P < ¥/t =91 = || s Pl < W1/ + - yP)oratx-3)|
c 2 2
e

Then, fi(y) € L%(R?). Moreover, f;(y) is continuous because the operator e ~P*¥ is strongly continuous
on L?(R?).

Working with f5 and f3 is analogous to the case of f1, remarking that (I1.1.28) and (II.1.29) imply that

s 1
faa?clf + 88%112 belongs to our very short-range class Vg 5. Thus f(y) € L?(R?) and it is a bounded continuous
unction.

The Radon transform of f(y), for any v in the y-plane satisfying |v - E| < 1, is given by

o0

foy) = [y = [ (@i om0

— 00

—(Qi3(x + 79)2¥, p, W)

9Q,  9Q!
- (< 863:112 * a%;?) (X+T°)‘I’yv‘1’y)] : (11.2.81)

By Theorem I1.2.8 applied to the pair (1,2), we have that
fry) = lim [o(i[sP(VRLVYST L VD) pey, 0Y)
vV—00

—v(i[SP(VE2VVE2 L V2 p 6y, BY)]
= 0.

Then, the Plancherel formula associated with the Radon transform [23] implies that f(y) = 0. From
(I1.2.78) we have that
0
. Y W) — )
o (Q129Y,9Y) if(y)
This implies that (Q12®Y¥,¥Y) does not depend on y;. Moreover, lim|,, | o (Q12®Y, ¥¥) = 0 by (I1.1.26),
(I1.1.27) and (I1.1.29). Therefore, (Q12®Y,¥¥) = 0. In particular (Q12®°, ¥°) = (Q12¢12,%12) = 0, what
implies by the density of the states ¢12,112 that Q12(x) = 0 a.e. We conclude that the total potential V'



Reconstruction Formulae 38

is uniquely determined by the high-velocity limit of the commutator of any Dollard scattering operator S
and some component of the momentum.

We consider the reconstruction problem of the total potential V' as in (II.1.36), by means of Theorem
I11.2.8. We assume qio # 0 because the case qj = 0 is easier. Let us compute Vip := V% + Vi% + Vi, €
Vvsr + Vsr + Vg from the high-velocity limit of [SP,p;]. We substitute Q5 by V%, Q35 by Vi% and
Q' by Vi in (I1.2.78). We know lim, . v(i[SP, p;]®Y, UY) for all ¥ and Y as in (I1.2.76). Then, by
Theorem I1.2.8 and (I1.2.81) we reconstruct f(v;y) and by the inversion of the Radon transform [23], we
uniquely reconstruct f(y). From (I1.1.26), (I1.1.27), (I1.1.28) and (II.1.29) f is integrable along any line and
limy oo ((Vi2)®Y, ¥¥) = 0. Then we have

(Vizd12,v12) = i/o f(y1,0)dy1,

in a dense set in L?. Hence Vi3 is obtained almost everywhere as a function. Repeating this process for all
pairs we reconstruct V. |

REMARK II.2.11. As we have already mentioned in Remark I1.1.6 the reconstruction formula (II.2.75)
from Theorem I1.2.10 is simpler than the formula (I1.2.44) in Theorem I1.2.8. Let us show how (I1.2.75)
can be used. Let us suppose that ¢12 # 0. The case ¢12 = 0 follows in the same way. The potentials
VE”’S € VE, vs) Vlg’s € Vg, s, Vlg’ € Vg, are the very short-, short- and long-range potentials, respectively,
for the pair (1,2). Let us assume that we want to recover V5 ** knowing V;5'*, V{5'! and the high-velocity
limit of S for each ®¥ and ¥ as in (I1.2.76). Defining

h(y) = (Vi3 ** (%)Y, ¥), (11.2.82)

using Theorem I1.2.10 and inverting the Radon transform we obtain h(y). Then, we can compute (Vlg Y% P12, 112)
= h(0) in a dense set in L2. This implies that we recover Vlg’vs almost everywhere as a function.
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Chapter 3

Linear operators in Hilbert space

This chapter contains the mathematical material used in chapters 2 and the appendix. A brief description
of LP spaces is given in section I. In section II we introduce Hilbert space, where we discuss some of its
elementary properties, which are illustrated in the case of L? spaces. Hilbert space is a basic mathematical
object, which is necessary to describe particles in quantum mechanics. In section III many simple results
concerning linear operators in Hilber space are presented. We develop Fourier transform in sections IV
and V, we have chosen the approach taken by Rudin to generalize Fourier transforms to Groups (where a
manifold is a group).

In sections VI, VII, IX and X we deal with bounded and unbounded operators, the spectral theorem
applied to both types of operators and tensorial products of them. We present, in section, VIII the Stone
theorem used to prove the existence of evolution group of self-adjoint operators. For the writting of this
chapter we have used Amrein books such as [58] and [59].

I LP Spaces

Briefly we collect here a few definitions and results from the theory of LP spaces. Let (M;u) be a measure
space, in other words let 1z be a measure defined on a g-algebra R of subsets of the set M. If A is a measurable
subset of M (i.e. an element of R), we denote by xa the characteristic function of A, which is defined as
follows:

xals) :{ : j;i. (ITL1.1)

For p € [1, 00|, LP(M;du) is the set of all equivalence classes of measurable functions f : M — C satisfying
[If]l, < oo, where two functions are said equivalent if they are equal p-almost everywhere, and where || f1],
is defined as follows:

1/p
£l = [ / |f<s>|ﬂdu<s>} if p < o0 (I11.1.2)

and
1flloo := ess sup | £(s)]. (I11.1.3)
seM

Here ess sup f(s) is the infimum of sup h(s) as h varies over all functions that are equal to f almost
everywhere. In other words ess sup f(s) is the infimum of all m such that the measure p(A,,) of the set
A, ={s€ M |f(s) > m} is zero. If for example, M is the closed interval M = [a,b], u Lebesgue measure
and f is continuous in [a,b], then || f|loc = maxgepq 4 |f(2)].
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LP(M;dp) is a complete normed linear space with respect to the norm || - ||,. If f € LP(M;dp),g €
LP(M;dp) and 1/r =1/p+ 1/q, entonces f(-)g(:) € L"(M;du) and

I£gllr < I £1lpllgllq (IL.1.4)

Inequality (II1.1.4) is known as the Hoélder inequality. The following facts about LP spaces are often
useful:

LEMMA IIL.1.1. (a) If A is a measurable subset of M with finite measure, p € [1,00] and f € LP(M;du),
then xa(-)f(-) € L"(M;du) for each r € [1,p]. (b) If 1 < p < q < oo, then LP(M;du) N LYM;du) C
L™ (M;duy) for each r € [p,q].

An important theorem, which allows one to interchange a limit with an integral, is the Lebesgue Domi-
nated convergence Theorem. We use it only for p =1:

THEOREM 111.1.2. Lebesgue Dominated convergence Theorem
i g, fr € L"(M;dp)(t € R),
it |fi(s)| < g(s) for almost all s € M and all t,
151 limy_y, f:(s) = f(s) for almost all s € M.
Then f € L*(M;du) and
i [ () = [ fu(o)dn(s).

t—to

Instead of using functions with values in C, one could also consider functions from M into some complete
normed space Ho and define the spaces LP(M, Ho; dp).

II Hilbert Space

DEFINITION IIL.2.1. A Hilbert space is a set H of elements f,g,h,... called vectors satisfying the
following three axioms:

I H is a linear vector space over the field C of complex numbers: Whenever f,g € H and o, 3 € C, then
af + Bg is an element of H, and

(@) f+9=9+f (f+g+h=Ff+(g+h),

(0) alf+g)=af+ag, (a+B)f=af+pf,

(c) a(Bf) =(ap)f, 1-f=F,

and there exists a vector 0, called the zero vector and often written as 0, such that
(d) f+0=1Ff, and0- f =0 for all f € H.

II There exists on H a positive definite scalar product, i.e. a mapping from H x H to C, denoted by (-, ),
such that for all f,g,h € H and o, 3 € C:

(f,9) = (g, /), (111.2.5)

(fyg+ah)=(f,g9)+a(f,h) for all complez «, (I11.2.6)

(f, )Y2 >0, and (f, f)/2 =0 only for f = 0. (IT1.2.7)

The scalar product induces a metric on H. The distance d(f, g) between two vectors f and g is d(f,g) =

Ilf — gll, where the norm || - || is defined as

£l = (f, £)Y>. (I11.2.8)
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IIT H is complete with respect to the norm (I11.2.8): If {f,} is a Cauchy sequence in H, i.e such that
lfn — full = 0 as n,m — oo, there exists a vector f € H such that || f, — f|| — 0 as n — oo.

DEFINITION II1.2.2. Let ‘H be a Hilbert space:

IV H is separable if there exists a dense numerable subset in H. A set D is dense in H if for all f € H
and any n > 0 there exists an element f, in D such that ||f — fy| <n.

Throughout this thesis, H is assumed to be a separable complex Hilbert space.
Before introducing the L? spaces as explicit examples of Hilbert spaces, we give some additional definitions
and some basic results that follows from the previous axioms.

PROPOSITION 111.2.3. Schwarz Inequality. For all f,g in H

(£l < f[ gl (I11.2.9)

A consequence of (I11.2.9) is the triangle inequality:
PROPOSITION 111.2.4. Triangle Inequality. For all f,g in 'H

1f+ gl < [Ifl+ llgll- (I11.2.10)

The triangle inequality with the Axioms I and IT imply that a Hilbert space be a normed space.

Since the vectors of H will be interpreted as the pure states of some physical system, two states f and g
are practically indistinguishable if ||f — ¢g|| is very small. By this reason we will examine the properties of
convergence of sequences {f,} of elements of H.

DEFINITION II1.2.5. The convergence of a sequence of vectors in the norm || - || has already been used
in Axiom III. In Hilbert space theory this is called strong convergence. In this case, we write s-lim f, = f as
n — oo. The strong limit [ es unique.

A necessary and sufficient condition for strong convergence is that the sequence be Cauchy in the sense
defined in Axiom III.
The convergence in H obtained by means of the scalar product is called weak convergence.

DEFINITION II1.2.6. A sequence {fn} converges weakly to a limit f if for every g € H the sequence of
scalar products {(fn,9)} converges to {(f,g)}. If this is the case, we write w-lim f,, = f as n — oo. The
weak limit f is unique.

Strong convergence implies weak convergence, but the converse is not true. If fact one has the following
relation which is often very useful:

PROPOSITION II1.2.7. s-lim f,, = f if and only if w-lim f,, = f and lim || f,,]| = || /]|
We have to introduce the notion of orthogonality and mutually orthogonal subsets.
DEFINITION III.2.8. Two vectors f and g are said to be orthogonal to each other if (f,g) = 0.

DEFINITION II1.2.9. Two subsets My and Ms of H are mutually orthogonal if (f1,f2) = 0 for all
f1 € My and fg € Ms.

An important relation concerning mutually orthogonal vectors is the following:

THEOREM 111.2.10. Pythagoras Theorem.

IST 817 = SOUFN2 if (Fir f5) = 0 for alli # 5. (IT1.2.11)
i=1 i=1
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DEFINITION II1.2.11. An orthonormal sequence of vectors {h;} is characterized by the property that
(hi,hj) = (S@j where 5ij =1 ZfZ :j and 51']' =0 ZfZ # _]

PROPOSITION II1.2.12. Bessel Inequality. Let {h;}$2, be a orthonormal sequence of vectors in H then
forallm e N, feH:

n

> I, HIF < N1£1P (I11.2.12)

i=1
DEFINITION II1.2.13. An orthonormal set of vectors {e;} is called an orthonormal basis of H if the set
of all linear combinations of vectors belonging to {e;} is dense in H.

In a separable Hilbert space an orthonormal basis is always a countable set. The existence of an or-
thonormal set basis can be established by choosing a subset of linearly independent vectors of a countable
dense set D and applying to it the Schmidt orthogonalization process.

DEFINITION II1.2.14. The dimension of a separable Hilbert space is equal to the number N of vectors of
an orthonormal basis if this basis is finite, otherwise, if this basis is an infinite countable set, the dimension
of this separable Hilbert space is equal to Ng.

One can prove that any two orthonormal bases of the same Hilbert space have the same cardinal, therefore,
the dimension of a Hilbert space is well defined. Hilbert space Axioms apply to finite or infinite dimensional
spaces. Nevertheless, in the finite dimension case, Axioms III and IV are consequence of Axiomas I and II;
furthermore, in this case, strong convergence coincides with weak convergence.

THEOREM II1.2.15. Parseval Relation. If {e;} is an orthonormal basis of vectores in H and f € H, then

o0

1A= Ies I (I11.2.13)

i=1
Parseval relation implies that each f € H can be expressed as the strong limit of the sequence {f,},

where f, = S0 (ei, fes.

PROPOSITION II1.2.16. Let D be a dense set in H and f € H. If (f,g) =0 for all g € D, then f =90.

DEFINITION II1.2.17. A linear manifold is a subset M of H that satisfies Axziom I but not necessarily
Axiom IIT (M will always verify Axioms IT and IV, since it is a subset of H). A subset of H that satisfies
all four Azioms will be called a subspace.

An important example of a closed linear manifold (i.e. a subspace) is given in Definition I11.2.18.

DEFINITION II1.2.18. The orthogonal complement N+ of a subset N of H is the set of all vectors f € H
such that (f,g) =0 for all g € N.

It is worth noticing the following fact known as the Projection Theorem.

THEOREM II1.2.19. Projection Theorem. If M is a subspace and M= is its orthogonal complement,
then each vector f in H has a unique decomposition f = fi + fo with fi € M and fo € M*.

A simple but very important consequence is the following:

PROPOSITION 1I11.2.20. Density criterion. If M is a linear manifold such that the unique vector of H
that is orthogonal to M is the vector 6, then M is dense in H.

DEFINITION III.2.21. A linear bounded functional in a Hilbert space H, is a linear function ® from H
into C, which is bounded with respect to the norm in H, i.e.,

e
11 ==

< 0
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If g is a fixed vector in H, one may associate with it a bounded linear functional ®4 in H by ®,(f) = (g, f).
The converse is true and known as:

THEOREM II1.2.22. Riesz representation Theorem. Let ® : H — C be a bounded linear functional. Then
there exists a uniquely determined vector g € H such that ®(f) = (g, f) for all f € H, and ||®|| = ||g]|-

We present one of the most concrete and useful examples of Hilbert spaces: The set of all functions in
L?(R™) form a linear vectorial space if we define the sum and multiplication by scalar as follows:

(fi+ f)(@) = fi(@) + f2(2),  (af)(z) = af(z).
The scalar product between two function is defined by

(fr9)= [ [fla)g(z)d"x.

R~

This integral can be shown to be finite by Holder Inequality.

The Hilbert space L?(R™) does not consist of individual functions by themselves but rather of classes of
equivalent functions. Two functions are defined to be equivalent if they differ only on a set of measure zero.
It is in most cases possible to transfer all operations in the Hilbert space L?(R™) to individual functions (a
practice which we shall frequently follow in the traditional manner). There are occasional situations where
the above remark is essential and must be borne in mind.

Completeness of L?(R™) is a classic result of analysis known as the Riesz-Fischer Theorem. Separability
of L?(R™) can also be proved.

III Linear operators in Hilbert space

DEFINITION II1.3.1. A linear operator in a Hilbert space H is a linear mapping between vectors of H.

A linear operator is defined giving its domain, i.e. a linear manifold D(A) in H, and a linear mapping A
of D(A) in H. The following notation is widely used: If M is a subset of D(A), then AM is the subset of
all vectors f in H such that f = Ag for a g in M. The subset AD(A) is known as the range of the operator A.

Two linear operators A and B are equal if and only if D(A) = D(B) and Af = Bf for all f € D(A).

DEFINITION II1.3.2. A linear operator A’ is called an extension of A if D(A) C D(A’) and A'f = Af
for all f € D(A). In such case we write A C A’. One can say that A is the restriction of A" in D(A). A
linear operator is usually called an operator.

DEFINITION 1I11.3.3. Let A be an operator in H. We say that A is closable if the following condition
holds: Whenever { f,} and {f.} are two Cauchy sequences in D(A) that strongly converge to the same limit
f, and both {Af,} and {Af]} are also Cauchy, then s-lim Af, and s-lim A’ f,, are equal.

Since A is linear, we have the following equivalence:

PROPOSITION II1.3.4. An operator A is closable if and only if {f.} is a sequence in D(A), such that
fn — 0 and Af, is strongly Cauchy implies Af, — 6.

A very natural way to define an extension A of an operator A is the following:

DEFINITION II1.3.5. If an operator A is closable we define la closure A of the operator A whose domain
is D(A). We say that f € D(A) if f is the strong limit of a Cauchy sequence {f,} of elements in D(A)
such that {Af,} is also Cauchy and strongly converges to g. We define Af = g. The closure is well defined

because A is closable.
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If an operator A is closable, then its closure A is its smallest closed extension, i.e. if A’ is an arbitrary
closed extension of A, then A C A’.
A very important class of closable operators is the class of bounded operators.

DEFINITION III1.3.6. We say that a linear operator A is bounded if there exists a number M < oo such
that ||Af|| < M| f]| for all f € D(A). If there does not exist such M, A is called unbounded. For A bounded
one defines its norm || A|| as

A
4= sup A (IIL.3.14)
renay.s20 ISl
We denote by B(H) the set of all bounded operators A in H such that D(A) = H.
In consequence, one has that for f € D(A):
LAFI < IAAL, (I1.3.15)

this implies the following result very important in scattering theory.

PROPOSITION II1.3.7. If A is an bounded linear operator in a Hilbert space H, then it has a unique
bounded extension A in the subspace generated by D(A) (i.e. the closure D(A) of D(A)). A is closed, and
Al = ||A]|]. In particular, if D(A) is dense in H, then D(A) ="H.

We will define the concept of adjoint operator A* of a linear operator A.

DEFINITION II1.3.8. Assume that D(A) is dense in H. First, we define the domain D(A*) : A vector
g € H belongs to D(A*) if there exists a vector g* € H such that

(9. Af)=(g",f)  VfeD(A. (111.3.16)
The mapping A* is then defined as A*g = g*.
Equation (IT1.3.16) can be rewritten in the following way:

(9, Af) = (A"g, f) Vf e D(A),g € D(AY). (IT1.3.17)

One can show that A* is well defined, i.e. the vector ¢* in (II.3.16) is unique. Clearly, A* is linear.
Some of the properties of the adjoint operator of a linear operator are the following:

(a) The adjoint of a linear operator A is always a closed operator.

(b) If A is closable and D(A) is dense, then
A* = (A = A~ (I11.3.18)

If D(A*) is also dense in H, then A** = (A*)* exists. We have the following result:

PROPOSITION III.3.9. Let A be a linear operator such that D(A) and D(A*) are dense in H. Then A
is closable and A = A**.

DEFINITION II1.3.10. A is symmetric if D(A) is dense in H and A C A* (i.e. if D(A) C D(A*) and
A*f = Af for each f € D(A)).

Condicién A C A* can also be written as follows:
(Af,g) = (f, Ag) for all f,g € D(A). (I11.3.19)

DEFINITION III1.3.11. Self-adjointness. A is self-adjoint if D(A) is dense in H and A = A* (i.e. if
D(A) = D(A*) and A*f = Af for all f € D(A)).
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Clearly every self-adjoint operator is symmetric. If A is bounded and D(A) = H, then A is symmetric if
and only if it is self-adjoint. If A is not bounded, the condition A to be self-adjoint is a very strong condition,
because it requires that D(A*) be exactly equal to D(A). Condition (II1.3.19) which is easy to verify in
applications, it is not sufficient for the self-adjointness of A.

DEFINITION II1.3.12. A symmetric operator A is called essentially self-adjoint if A is self-adjoint.

An equivalent definition of essential self-adjointness is that A* = A**. An essentially self-adjoint operator
has one and only one self-adjoint extension. The notion of essentially self-adjointness is important because
in applications one often has a non closed symmetric operator. If it is shown that such operator is essentially
self-adjoint it follows that it determines a unique self-adjoint operator.

Each self-adjoint operator in a naturally way induces a decomposition of the underlying Hilbert space H
in a direct sum of two orthogonal subspaces.

DEFINITION III1.3.13. Let A be an operator on H. We define H,(A) as the subspace generated by all
the eigenvectors of A, i.e., the closure of the linear manifold of all linear combinations of eigenvectors of A.
Alternatively, H,(A) is the direct sum of all eigenspaces of A : H,y(A) =P M; = P N(A—X\;), where {\;}
are the eigenvectors of A.

DEFINITION IIIL.3.14. We define H.(A) as the orthogonal complement of H,(A).
We see that H is the orthogonal direct sum of H,(A) and H.(A):

H="H,(A) ®H.(A). (111.3.20)
Thus, each vector f in H has a unique decomposition as

f=hof (I11.3.21)

with f, € H,(A), fo € He(A) and (fp, fo) = 0. The indexes p and ¢ are abbreviations of “puntual spectrum”
and “continuous spectrum”. If H,(A) = H, H.(A) = {0}, we say that A has a pure puntual spectrum.
An example is the Hamiltonian of the harmonic oscillator A = P? + Q% in L?(R"). If, on the other hand,
Hy(A) = {0}, He(A) = H, we say that A has a pure continuous spectrum. An example is the free Hamiltonian
Hy = P? in non-relativistic quantum mechanics.

PROPOSITION II1.3.15. Let A be a self-adjoint operator in a Hilbert space H. Let A, and A. be the
restrictions of A in D(A)N'H,(A) and D(A)NH(A), respectively. Then A, leaves H,(A) invariant and A,
leaves Ho(A) invariant. Therefore, we can see A, as an operator in H,(A) and A, as an operator in H.(A).
With this convention, A, and A. are self-adjoint operators in H,(A) and H.(A), respectively, and we can
write, in the decomposition (I11.3.20) of H.:

A=A, & A.. (111.3.22)

DEFINITION II1.3.16. Let A be a closed linear operator. The complex number z is called a reqular point
of A if

(i) (A — zI) is invertible,
(i) D((A = 2I)7") = H,
(iii) (A — 2I)~1 is bounded.

In other words if (A — 2I)~1 exists and belongs to B(H). The set of all reqular points is called the resolvent
set of A and is denoted by p(A).
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The complement o(A) of p(A) in C is called the spectrum of A :
o(4) = C\p(4)

The spectrum of the operator A, is called the puntual spectrum o,(A) of A and the spectrum of A, the
continuous spectrum o.(A) of A. Thus, by definition,

op(A) =0(Ap),  0c(A) = o(A).
PROPOSITION II1.3.17. Let A = A* and z = x + iy with z,y € R and y # 0 then z € p(A).

If X is an eigenvalue of an operator A from H (into itself), N(A — \) is a nonempty subspace of H, in
consequence A — Al is not invertible. If A is not an eigenvalue but it belongs to the continuous spectrum
of A, then A — I is invertible but either D((A — AI)~1) is only a proper subset of H or (A — A\I)~! is not
bounded.

DEFINITION II1.3.18. Let A be a closed operator. Then the operator-valued function: z — (A — zI)~1
from p(A) into B(H) is called the resolvent of A.

PROPOSITION II1.3.19. Let A be a closed operator and z,z1, 25 € p(A). Then
(a) (A—zI)"! maps H onto D(A) and
A(A =217V f = (A—2I)7YAf, Vf € D(A).

(b) The following identity, called the first resolvent equation:
(A — 21[)71 — (A — ZQI)71 = (Zl — ZQ)(A — 2’1)71(14 — 22)71
(c) (A—2z1 1) HA—200)7t = (A— 2D) Y (A —21)7L, i.e. the resolvent in the point z; € p(A) commutes
with the resolvent in any other point zo € p(A).
PROPOSITION 111.3.20. Let A be a closed operator. Then

(a) The mapping z v+ (A — zI)~! is continuous in the operator norm on p(A) = {z : (A — 2I)~!
exists and lies in B(H)} d.e. wlim,, . ;. epa) [[(A—2)"t =(A—2)7Y=0

(b) The resolvent is differentiable in the operator norm and

i(A —z)7t = w—lim (2 —2) (A —z) T = (A—2)7Y

dz 21—z

= (A- ZI)_2

DEFINITION II1.3.21. Let A be an open set in R™ and a : A — C be a measurable function. The
multiplication operator A associated with a is the following linear operator in L?(A):

D(A) = {f € I*(A) /A la(@)21f () Pd"e < oo} ¢

(Af)(Z) = a(Z)f(Z) for each f € D(A).
Clearly D(A) is the maximal domain whereby multiplication by a(Z) makes sense.

PROPOSITION IIL.3.22. Let a : A — R be measurable and |a(Z)] < co almost everywhere. Then the
multiplication operator associated is a self-adjoint operator in L*(A).
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PROPOSITION 1I11.3.23. Let A be the multiplication operator associated with a function a : A — C.
Then A is in B(L?(A)) if and only if ||a||c < 0o in which case

Al = llallc- (I11.3.23)
DEFINITION II1.3.24. An orthogonal projection (a projection, briefly) is a linear operator E that satisfies
D(E)="H and
FE*=FE=FE". (I11.3.24)
We establish
M(E)={f€eH|IEf= [} (111.3.25)

Tt is easy to see that M (FE) is a subspace. Moreover, if g L M(E), we have that for any h € H
(Eg,h) = (9, E*h) = (g, Eh). (I11.3.26)

Now E?h = Eh, in consequence Eh € M(E), in such a way that (II1.3.26) implies that (Eg,h) = 0.
Therefore Eg = 0 by proposition II1.2.16. This shows that E is not nothing else that the orthogonal
projection operation of H over M (E).

Below, we define the concept of isometry. This approach was taken from Amrein [59]:

An isometry (or isometric operation) is a linear operator €2 in B(H) that satisfies

Q=1 (111.3.27)

In, Reed and Simon [77], an isometry is defined as in (I111.3.29).
PROPOSITION 1I1I1.3.25. Let 2 be an isometry. Then

(a) Q preserves scalar products:

(Qf,Qg9) = (f,9) for all f,g € H. (I11.3.28)

In particular
1Qf[| = [IfI| for all f € H. (111.3.29)

b) |9 = 1.
c) QO is a projection, and M (QQ*) = R(Q).
d) Q is invertible.

Q

(
(
(
(e) W =Q71fif fe R(Q), and Q*f =0 if f L R().

Proposition I11.3.25 shows that every isometric operator {2 maps the Hilbert space H onto a subspace
M (Q€*) while it preserves the length of vectors and the angles between vectors. A special case is the unitary
operators U such that M (UU*) = H. Thus, U is unitary if it is isometric and F' = UU* = I; in other words
U is unitary if

U'U=1 and UU*=1. (I11.3.30)

In this case U* = U~ ! in H

A generalization of the notion of isometry is the partial isometry. An operator 2 € B(H) is called a

partial isometry if
Q0 =F, (111.3.31)

where F is a projection. Some properties of partial isometries are given in the following proposition:

PROPOSITION 1I11.3.26. Let Q) a partial isometry. Then

(a)

QF =Q (111.3.32)

)
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(0)
(Qf,Q9) = (Ef,Eg) Vf,g€™H, (I11.3.33)

(¢) |92 =1 unless that E =0,
(d) QQ* is a projection, and M (Q2*) = R(€2).

IV Fourier Transform

The Fourier transform is an element ubiquitous in quantum mechanics.

DEFINITION III.4.1. We denote by C5°(R™) the set of all functions infinitely differentiable f : R™ — C
each of them being identically zero in the complement of a compact subset of R™. Last, if I' C R™ is closed
and with zero Lebesgue measure, we denote by C5°(R™\I') the set of all functions in C5°(R™) whose support
lies in R™M\T.

To define Fourier transform, besides infinitely differentiable functions, we need to define functions of

rapidly decrease.

DEFINITION II1.4.2. A function [ belongs to S(R™) if it is infinitely differentiable and if for each tuple
of 2n coordinates of non-negative integers {j1,..., jn, M1, ..., My} one has that
a\mlerern\

sup |9 -zl

> J (L1,...,T < Q.
ZCRn n 636?“83:?" f( 1, 9 n)

Such functions are also called rapidly decreasing functions. One example is the function e’

DEFINITION II1.4.3. If f € S(R™), we can define a new function f : R™ — C by means of the formula

f(k) = (2ﬂ)‘"/2/d”we‘i’_“'ff(:i), (k e R™). (I11.4.34)

We have the following properties of C§°(R™ \ T') and S(R") :
LEMMA II1.4.4. (a) S(R™) is dense in LP(R™),1 < p < oo.
(b) S(R™) is invariant under Fourier transforms.

LEMMA IIL.4.5. LetT' C R™ be closed and with Lebesque measure zero, then the set C5°(R™\T') is dense
in LP(R™),1 < p < oo. In particular C§°(R™) is dense in LP(R™),1 < p < cc.

The result of lemma I11.4.4 can still be strengthened. In fact, Fourier transform is a map of S(R™) onto
S(R™). This can be seen defining the inverse Fourier transform in S(R™) by

F(@) = (2m) 2 / ' EFTRR), f € S(RM) (I11.4.35)

Equation (II1.4.35) defines the inverse of (I11.4.34). From this point on, we will denote the map f — f

by F. Then we have that f = F~1f = f. In the following sections F and F~! will be extended over the
whole space L?(R").

We have that both F are F~! isometric in S(R"), i.e.

1Al =11 =171 feS®RM, (I11.4.36)
(f7§) = (fvg) = (f7 g) f7g € S(Rn)a (111437)

Before enouncing Proposition 111.4.6 which is a partial version of Theorem 7.2 from Rudin’s book [80],
we define the following:
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(a) Por each y € R™, the character e, is the function defined by

ey(x) = T = ¢t 2j= vi%i o p e R
(b) The translation operators 7, are defined by
(2 /)y) = fly—x), x,yecR"
PROPOSITION II1.4.6. Suppose f,g € L*(R™), x € R™. Then, denoting” as the Fourier transform,
(@) (rmfy=ef,
(b) (exfV=Tulf,

() (f=g)= 13

PrROOF.  The proof of (a) and (b) are detailed in Theorem 7.2 [80], (c) is obtained by Fubini’s Theorem
and one explicit proof of (c¢) can be found in Reed and Simon [77] Theorem IX.3. [ |

Even though the set {f|f € L?(R™)} is again L?(R"), it is convenient to distinguish between these two
representations of L2(R™), because variables Z and k have different interpretations in quantum mechanics.
Multiplication of f(Z) by x; corresponds to the i-th component of the position operator, and multiplication
of f(k) by k; corresponds to the i-th component of the momentum operator. Therefore, we will denote
the set of functions {f|f € L2(R™)} by L2(R") and the set {f|f € L%(R™)} of their Fourier transforms
by L2(R™). In other word, we do not considerate L2(R™) as an abstract space but as the set of all square
integrable quantum mechanical wave functions defined in the n dimensional configuration space.

One can apply Proposition II1.3.7 to show that Fourier transform F defined in D(F) = S(R") with norm
equals 1 can be extended to a bounded operator with norm 1 defined in all L?(R"). For functions also in
LY(R™) N L?(R™) Fourier transform is also defined by (I11.4.34). For any f in L?(R") one has to define Ff
as Ff = s-lim Ff,, as m — oo, where f,, € L*(R") N L?(R") and f,, — f. Similarly 7! can be extended
to whole L?(R™) and again this extension will be denoted by F~!. One application of Proposition I11.3.7
implies that ZF~! = F~'F = I in the whole L*(R").

Now let us see some very important examples in quantum mechanics:

Example 111.4.7. Q,,,(m = 1,...,n) the multiplication operator by x,, in L*(R™):

(Qm[)(Z) = zm f(Z) (I11.4.38)

It is called the m-th component of the position operator in quantum mechanics.
Example I11.4.8. P,,,(m = 1,...,n) the multiplication operator by k, in L*(R™):
(F P f)(k) = ke f (k) (I11.4.39)
Py, is called the m-th component of the momentum operator.
Example I11.4.9. Let Hy be the multiplication operator by |k|? in EQ(R”):
(FHof)(k) = [k|* f(k). (I11.4.40)

This operator is called the free Hamiltonian of Schrédinger in quantum mechanics.

Hy=P>=) P2 (I11.4.41)
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Example I11.4.10. If v : R™ — R is any measurable function then it determines a multiplication operator
V in L2(R™). We will use letters v and V for such operators when we have in mind the interaction operator
of a mon-relativistic quantum particle, and function v will be called a potential.

The Hamiltonian for a particle that moves under the influence of a potential v formally is given by
H=H,+V.

PROPOSITION II1.4.11. (a) Hy is a non-bounded positive operator, its spectrum is [0, 00) and is purely
continuous. In particular H,(Hy) = {0}, He(Ho) =H.

(b) D(Hg) lies in D(P,,), and P,,(Ho — zI)~! belongs to B(H) for each complex z outside of [0, 00).
(¢) The resolvent of Hy is the multiplication operator by (k* — z)~' in L*(R™).
PROPOSITION II1.4.12. (a) If f € S(R"), then f € D(Hy) and
(Hof)(@) = (D 1)(@), (IT1.4.42)
where A =" _ 8%/0x2, is the Laplacian.
(b) (Hoy + I) transforms onto S(R™) in S(R™).
(¢) The restriction Hy of Hy in S(R™) is essentially self-adjoint, and HE = H.

REMARK 1I11.4.13. There exist other linear sub-manifolds of D(Hy) on which, Hy is essentially self-
adjoint. We mention two of these sub-manifolds:

(a) The set C3°(R™) of all infinitely differentiable compactly supported functions.

(b) The set C'gO(R”) of all functions f : R™ — C whose Fourier transform f are infinitely differentiable
and compact supported.

V  Fourier Analysis on Groups

When we map the space L?(X) in (I1.1.2) onto the space L?(X) in (IL.1.3) we use, in fact, a more general
notion of Fourier transform than the one we have described in Section IV. To understand more this, we
include the material from Rudin [79].

V.1 Topological Groups

DEFINITION II1.5.1. An Abelian Group is a set G in which a binary operation, +, is defined with the
following properties:

(a) z+y=y+z foralxz,y €G.
0) e+ (y+z2)=(x+y)+z foralzyzeqG.
(¢) G contains an element 0 such that x +0 = for all z € G.
(d) To each x € G corresponds an element —x such that x+ (—x) = 0. We write x —x in place of x + (—x).
A homomorphism of a group G into a group G is a map ¢ from G into GG7 such that
plx+y)=p@)+ely) z,yeq.

A homomorphism which is one to one is an isomorphism. If there is an isomorphism of a group G into a
group GG, then G and G are isomorphic groups, and for many purposes one need not to distinguish between
them.
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The kernel of a homomorphism ¢ is the set ¢ ~1(0); the kernel is always a subgroup.

If H is a subgroup of G, the sets H + x, x € G are the cosets of H. Two cosets H + x and H + y are
identical if and only if x — y € H; otherwise H + x and H + y are disjoint. The set of all cosets of H is
denoted by G/H and G/H becomes an Abelian group (the quotient group of G modulo H) if we define

(H+z)+(H4+y)=H+ (z+vy), zyed.

The map z — H + x is a homomorphism of G into G/H, with kernel H.

DEFINITION 1I11.5.2. A Topological Abelian Group is a Hausdorff space G which is also an Abelian
group, provided the map (x,y) — x — y is a continuous map of the product space G x G onto G. If, in
addition, the topology of G is locally compact, then G is a locally compact Abelian (LCA) group.

THEOREM I11.5.3. Suppose that G is LCA, ¢ is the natural homomorphism of G onto G/H, where H
is a closed group of G, and a subset of G/H is declared open if and only if it is the image under ¢ of an
open subset of G. Then G/H is an LCA group.

If {G4} is a collection of Abelian groups, their complete direct sum is the group G defined as follows:
G, as a set, is the Cartesian product of the sets G, and addition is performed coordinatewise: If z and y
belong to G, then = + y is the element of G whose ath coordinate is z(a) + y(a) € G,.

The direct sum of the groups G,, is the subgroup of their complete direct sum which consists of all z
which have z(«) # 0 for only finitely many «.

By the Tychonoff Theorem: The direct sum of any finite collection of LCA groups is a LCA group. The
complete direct sum of any collection of compact Abelian groups is a compact Abelian group.

If G = Hy + Hs, where Hy and Hy are subgroups of GG, the G is (isomorphic to) the direct sum Hy & Ho
of these two subgroups if and only if H; N Hy = {0}.

V.2 Weak topology and continuous functions

We commence with recalling some definitions from topology.

If 71 and 75 are two topologies on a set S and if 71 C 7o, then 7y is said to be weaker than 75.

If F is a family of maps of S into a topological space Y, the collection of all finite intersections of sets of
the form f~1(V), with f € F and V open in Y, forms a base for a topology 7 on S. Each f € F is evidently
continuous with respect to 7, and 75 is the weakest topology on S with this property; 7 is called the weak
topology induced in S by F.

F is said to separate points on S if to every pair of points p; and py in S there corresponds an f € F
such that f(p1) # f(p2). If F separates points on S and if Y is a Hausdorff space then S with the weak
topology induced by F' is also a Hausdorff space.

DEFINITION II1.5.4. If S is a topological space, C(S) denotes the set of all bounded continuous complex-
valued functions in S. The set of all f € C(S) whose support is compact is denoted by C.(S). If, for each
€ > 0, the inequality | f(p)| < € holds for all p in the complement of some compact set in S, then f is said to
vanish at infinity. The set of all f in C(S) such that f vanishes at infinity is denoted by Co(S).

The spaces C(5), Cy(S) and C.(S) are closed under pointwise addition, multiplication, and scalar mul-

tiplication: (f + ¢)(p) = f(p) + 9(»); (f9)(p) = f(p)9(p); (af)(p) = a(f(p)). Since the usual commutative,
associative, and distributive laws holds, these spaces are algebras over the complex field.
If we introduce a norm in C(s) by setting

[fllec =sup[f(p)l,  feC(9),
peS

The metric ||f — gljeo turns C(S) and Cy(S) into complete metric spaces, since they are closed under the
formation of limits of uniformly convergent sequences.
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THEOREM II1.5.5. Stone-Weierstrass Theorem. Let S be a locally compact Hausdorff space and let A be
a subalgebra of Cy(A)(S) which separates points on S, which is self-adjoint (i.e., f € A implies f € A, where
f is the complex conjugate of f) and which contains, for each py € S, a function f such that f(pg) # O.
Then A is dense in Cy(A)(S).

V.3 Haar measure

Let X be a locally compact Hausdorff space, B be the family of Borel subsets of X and pu a measure defined
n (X, B). With each measure p on X there is associated a set function |u|, the total variation of u, defined

by
ul(E) = sup > |u(E

the supremum being taken over all finite collections of pairwise disjoint Borel sets F/; whose union is . Then
|| is also a measure on X. If

|| (E) = sup |p|(K) = inf [u[(V)

for every Borel set E, where K ranges over all compact subsets of E and V ranges over all open supersets
of E, the p is called regular.

DEFINITION II1.5.6. We put
llall = [ (X)

and define M (X) to be the set of all complez-valued reqular measures pu on X for which ||u| is finite.

On every LCA group G there exists a non-negative regular measure m, the so called Haar measure of G,
which is not identically zero and which is translation invariant. That is to say

m(E + x) = m(E)

for every x € G and every Borel set E in G. For the construction of that measure see [79] section 1.1.1 and
the references given therein.
There is a uniqueness theorem for the Haar measure.

THEOREM II1.5.7. If m and m’' are two Haar measures on G, then m’ = Am where X is a positive
constant.

As usual, for 1 < p < oo, LP(G) = LP(G, B, m) is the space of complex valued functions f defined on G

such that
1/p
11l = ( / f(x)l”dm(x)) “

L?(G) is a Hilbert space with the customary scalar product (f, g) fG g(x) dm(z).
DEFINITION IIIL.5.8. Convolution. For any pair of Borel functions f and g on the LCA group G we

define their convolution f * g by the formula

(f * 9)( / f(z — y)g(y) dm(y) = /G (ry D) (@) (y) dm(y).

provided f(z)g(y) € L'(y € G).
We have the following theorem

THEOREM I11.5.9. For any LCA group G, L*(G) is a commutative Banach algebra, if multiplication is
defined by convolution.

PrROOF.  Look at Theorem 1.1.7 in Rudin [79]. [ |
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V.4 The Dual Group and the Fourier Transform

DEFINITION III1.5.10. Characters. A complex function v on a LCA group G is called a character of G
if |[v(x)| =1 for all x € G and if the functional equation,

Yz +y) =v@)(y) z,y€G,

is satisfied. The set of all continuous characters of G forms a group T', the dual group of G, if addition is
defined by

(m +72)(x) =n(@)12(z) z€G 7,2 el.

Throughout this section, the letter I' will denote the dual group of the LCA group G. In view of the
duality between G and I' which will be established in Subsection V.6 below, it is customary to write

(z,7)

in place of v(x).
We identify the relation that exists between I' and L'(G).

THEOREM IIL5.11. If~y €T and if
fo) = [ r@)a)an@). 1 e, (ITL5.43)

then the map f — f(’y) is a complex homomorphism of L'(G), and is not identically zero. Conversely, every
non-zero complex homomorphism of L*(G) is obtained in this way, and distinct characters induce distinct
homomorphisms. PROOF.  See Theorem 1.2.2 in Rudin [79]. [ |

DEFINITION II1.5.12. The Fourier Transform. For all f € LY(G), the function f defined on T' by

(I11.5.43) with v € T s called the Fourier transform of f. The set of all functions [ so obtained will be
denoted throughout by A(T).

Since f : ' — C, we give I' the weak topology induced by A(T).
We limit ourselves to enounce some results from Theorem 1.2.4 in Rudin [79].

THEOREM II1.5.13. (a) A(T') is a separating self-adjoint subalgebra of Co(T'), so that A(I") is dense
in Co(T), by the Stone Weierstrass Theorem.

(b) The Fourier transform, considered as a map of L*(G) into Co(T), is norm-decreasing and therefore
continuous: || fllee < ||f]|1-

At present, we have that I' is a group and a locally compact Hausdorff space
By an alternative description of the topology of I' one can prove the following:

THEOREM 1II1.5.14. (a) (z,7) is a continuous function on G x T

(b) Let K and C be compact subsets of G and T, respectively, let U, be the set of all complex numbers z
with |1 — z| < r, and put

N(K,r) = {y:(z,7) €U Vz e K},
N(C,r) = A{x:(x,y)eU,VyeC}.

Then N(K,r) and N(K,r) are open subsets of I' and G, respectively.
(¢) The family of all sets N(K,r) and their translates is a base for the topology of T.
(d) T is a LCA group.
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V.5 The inversion theorem

DEFINITION II1.5.15. Let B(G) be the set of all functions f on G which are representable in the form

ﬂ@=£@mwmwa£G,

for some € M(X).
Let us denote dy the Haar measure in the LCA group T'.
THEOREM IIL5.16. (a) If f € L'(G) N B(G), then f € L*(G).

(b) If the Haar measure of G is fized, the Haar measure of I' can be so normalized that the inversion
formula,

f@ = [ fo)@drn cea.
r
is valid for every f € LY(G) N B(Q).

If the Haar measure of G given, the inversion theorem singles out a specific Haar measure of I'; adjusted
so that the inversion theorem holds.

From now on, it will always be tacitly assumed that the Haar measure of G and I" are so adjusted that
the inversion theorem holds.

THEOREM I11.5.17. Plancherel Theorem. The Fourier transform, restricted to L'(G) N L*(G), is an
isometry (with respect to the L*-norms ) onto a dense linear subspace of L?(T'). Hence it may be extended,
in a unique manner, to an isometry of L*>(G) onto L*(T).

The above extension of the Fourier transform to L?(G) is sometimes referred to as the Plancherel trans-
form; the symbol f will be used in this context as well.

V.6 The Pontryagin duality Theorem

Since I' is a LCA group, it has a dual group, say I, and everything we have proved so far for the ordered
pair (G,T) holds equally well for the pair (I',I"). The value of a character 4 € I at the point v € I will be
temporarily written (7,%). By Theorem II1.5.14 (a) every x € G may be regarded as a continuous character
on T', and thus there is a natural map a of G into I, defined by

(z,7) = (v,(z)) z€G,yel.

THEOREM II1.5.18. The Pontryagin duality Theorem. The above map « is an isomorphism and a
homeomorphism of G onto I.

Thus: Every LCA group is the dual of its dual group.

V.7 Duality between subgroups and quotient groups

Suppose H is a closed subgroup of the LCA group G, and A is the set of all v € T’ (the dual group of G)
such that (x,v) =1, for all x € H. We call A the annihilator of H.

For any fixed @ € H, the continuity of (z,v) shows that the set of all v with (x,) =1 is closed, so that
A is an intersection of closed sets. Since A is evidently a group, we conclude that A is a closed group of I'.

THEOREM III1.5.19. With the above notation A and T'/A are (isomorphically homeomorphic to) the dual
groups of G/H and H, respectively.
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V.8 Direct sums

In subsection V.1 above we have already defined the direct sum and complete direct sum of LCA groups.
The direct sum of G; and G5 will be written G & G4, and the direct sum of n copies of G will be denoted
by G™.

THEOREM II1.5.20. IfG = G1®...®G, andT; is the dual group of G;, 1 < i < n, thenl =T1®...®T,.
COROLLARY II1.5.21. R™ is its own dual.

V.9 Fourier transforms on subgroups and on quotient groups

Throughout this section, H will be a closed group of G, and A will be the annihilator of H.

THEOREM I11.5.22. The functions belonging to B(A) are precisely the restrictions to A of the functions
belonging to B(T).

Suppose ma, mpy, and mg, g are the Haar measures of the indicated groups.
THEOREM I11.5.23. The functions belonging to A(A\) are precisely the restrictions to A of the functions
belonging to A(T'). For f € LY(G), f vanishes on A if and only if

/ f(@ + 1) dmp (y) = 0
H

for almost all x € G.

In the last theorem the Haar measures can be adjusted so that

/G Fame= [ dmeyu(©) [ 1o+ dmio),

G/

where f € C.(G), and & = £(x) is the coset of H (an element in G/H ) which contains z and z € G.

V.10 Normalization of the Haar measure

Now, we are going to develop in more detail the case where G = R with the Haar measure.

Theorem 1.18 in Folland [69] shows that every Lebesgue-Stieltjes measure in R is regular, in particular
Lebesgue measure is Lebesgue-Stieltjes. Since Lebesgue measure is translation invariant we can conclude
that:

THEOREM I11.5.24. The Haar measure in the Real line is the Lebesge measure up to a positive factor.

Take G = R. Let I" the dual group of the group G. Fix v € I'. Because 7 is not identically zero, by means
of the fundamental Theorem of calculus, there exists an § > 0 such that

/ng) dt = a,

Yz +t) =~(x)v(t) =zt R, (I11.5.44)

for some « # 0.
By the functional equation

then it implies that

4 ) 46
orla) = [ an@at= [Caraa= [ e
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Since « is continuous, the last expression is differentiable, and so v has a continuous derivative /. We
differentiate (I11.5.44):

setting ¢ = 0, we obtain

V(@) = (@) (0), (ITL5.45)
Since |y(z)| = 1, there exists a differentiable function § : G = R — R such that y(z) = ¢”®) moreover
6(0) = 0 because v(0) = 1. Equation (III.5.45) becomes
ei@(z)igl(x) _ ei@(a:) eiO(O)iel(O)
0 (x) = 6(0)
O(z) = 0'(0)x (I11.5.46)
(z) = ay

where y € R is such that 6’(0) = y. Thus, we have a map ¢ : I' — R, such that v — y. Let v,71,72 € T,
so y(z) = 9@y (z) = @) and yy(z) = ) with 6;,0, : G = R — R being differentiable and
v =71 + 2. We know that for all z € R the sum in I' goes as follows:

V(@) = (1 +72)(2) = n(@)e@),
this implies that
0(x) = (61 + 02)(x).
Hence ( is a homomorphism between I'" and R. Let us see that it is one to one. Suppose that {(v1) = ((y2)

then 01 (0) = 65(0), by (I11.5.46) 01(x) = 02(x), for all x € R, finally 3 = 72. Then, for all v € T" there exist
a unique y € R such that, for all x € G =R,

v(z) = ", (I11.5.47)

Therefore, I" are R are isomorphic.

We use the topology of I' described in Theorem II1.5.14, known also as the Gelfand topology, to give a
topology (the Gelfand topology) to the real line R. That is a set O is open in R if and only if (71(O) is open
in I'. Then the collection of images (N (K, r)) and their translates is a base for R. Let us take any open set,
in the Gelfand topology of R, V' that contains 0, then it exists K compact in R with the usual topology and
an 7 > 0 such that 0 € ((N(K,r)) C V. There exists n € A such that |z| < n for all z € K. If we denote
V(n,r) = {y € R: |1 —e¥*| < r V]x| < n} and B, denotes the open ball of center zero and radius r in
R™. We have that 0 € V(n,r) = ((N(B,,r)) C ((N(K,r)) C V. This proves that the sets V(n,r) form a
neighborhood base at zero with respect to the Gelfand topology in R.

At this moment, we want to show for 0 < r < 2 that y € V(n,r) < |y| < 2 arcsin £. This means that

_J\n 2'n 2
V(n,r

) (—ZarcsinZ, 2 arcsin ), if r < 2,
R if r > 2.

So, the Gelfand and the usual topologies are the same. Meaning also that I' with the Gelfand topology and
R with the usual are isomorphic and homeomorphic.
First we do the following calculations with 0 < |z] < n and we take arcsin : [0, 1] — [0, 7] :

1—e"| < re

(1 —cos(yx))? +sin’(yz) < r’ &

2 —2cos(yr) < e
sin(yz/2) < (r/2)? <
|sin(yz/2)] < r/2<

lyx/2| < arcsin(r/2)
ly| < %arcsin(r/Q)
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Assume y € V(n,r), then, for all |z| < n we have that |1 — e¢®?| < r, in particular for z = n this implies
that |y| < 2 arcsin(r/2). Conversely, take |y| < 2 arcsin(r/2), because 2 arcsin(r/2) < 2 arcsin(r/2) with
0 < |z| < n we have that |1 — e¥*| < r, for all |z] <n.

Now we have established that the dual group of R is I' ~ R. Let adx, Odp the Haar measures in G and
in I'; where o, 8 > 0 and dz and dp denote the ordinary Lebesgue Measure on the real line.

By a straightforward computation

2 e ;

Because e~ P! and % are L' functions (see theorem 7.7 in Rudin [80]) and the inversion Theorem for
Fourier transform in R, we have that

i Tl
e Pl = 2aﬂ/ e "Pdx,
oo L a2

Setting p = 0,

— 00

oo 1 00
1= QQﬁ/ o2 dr = 2af arctan = 2maf. (I11.5.48)

Two of the possible choices that are frequently used: a =1/(27), f=1or a = = (2r)" /2
We can generalize to the case G = I' = R". Following the same idea, let adz; - - - dx,, Bdpy - - - dp, the

Haar measures in G and in I', where o, 8 > 0

n 0o
/ e 2i=1 Pl gt 20w Bdp: ---dp, = f H </ e~ IPilgizip; dpj>
n ']71 —0o0

[\S]

<

n = 1
=2 ﬂHl%—x
j=1

By the inversion theorem

n
e~ Tioalesl = / 28 [ ——y ¢TI ada, - da,
R™ i

j=1

Setting py =---=p, =0:

1 = (2m)"ap. (I11.5.49)

VI Unbounded operators

Many of the most important operators which occur in mathematical physics are not bounded. The Hellinger-
Toeplitz Theorem (see Theorem I11.6.8) says that an everywhere-defined operator A which satisfies (A¢, ¢) =
(¢, Avp) is necesarily a bounded operator suggesting that a general unbounded operator T' will only be defined
on a dense linear subset of the Hilbert space H. To identify an unbounded operator on a Hilbert space one
must give the domain on which it acts and the specify how it acts on that space. Before (the Hellinger-
Toeplitz) Theorem IIT.6.8 is enounced we give a Definition and a Theorem to help us to understand how
Reed and Simon prove Hellinger-Toeplitz’s Theorem.
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DEFINITION I11.6.1. Let T be a mapping of a normed linear space X into a normed linear space Y. The
graph of T, denoted by T'(T), is defined as

D(T) = {{z,y) € X x Y |y = Tx}.
If T is unbounded operator in X then we modify the later definition
(T) = {{z,y) }a: eD(T)CX,y="Tx}.

T is a closed operator if T'(T) is a closed subset in the Hilbert space H x H with the scalar product:
((P1, 1), (b2,%2)) = (¢1, P2) + (¥1,92) -

DEFINITION III.6.2. An Alternative way to define closable operators. An operator T is closable if it
has a closed extension. Every closable operator has a smallest closed extension, called its closure, which we
denote by T'.

PROPOSITION I11.6.3. If T is closable, then I'(T) = T'(T).

THEOREM II1.6.4. Let T be a densely defined operator on a Hilbert space H. Then:
(a) T* is closed.
(b) T is closable if and only if D(T*) is dense in which case T = T**.
(c) If T is closable, then (T)* = T*.

As aremainder: A symmetric operator is always closable, since D(T*) D D(T') is dense. If T' is symmetric,
T* is a closed extension of T', so the smallest closed extension T** of T' must be contained in 7%. Thus for
symmetric operators, we have

TCcT™CT . (I11.6.50)
For closed symmetric operators,

T=T"CT". (I11.6.51)
For self-adjoint operators,

T=T"=T". (I11.6.52)

From this we can easily see that a closed symmetric operator is self-adjoint if and only if 7 is symmetric.
The distinction between closed symmetric operators and self-adjoint operators is very important. It is only
for self-adjoint operators that the spectral theorem holds and it is only self-adjoint operators that may be
exponentiated to give the one-parameter unitary groups which give the dynamics in quantum mechanics.

If T is essentially self-adjoint, then it has one and only one self-adjoint extension, for that suppose that S
is a self-adjoint extension of 7. Then S is closed, and thereby, since S O T, .S D T**. By Definitions I11.3.10
and I11.3.12, T and T* are symmetric and applying (II1.6.50) to both T" and T* we have that (7T7*)* = T**.
Thus, S = S* C (T**)* = T**. By the results in Section X.1 of Reed and Simon [78] the converse is also
true; namely, if 7" has one and only one self-adjoint extension, then 7' is essentially self-adjoint. This follows
by the corollary of Theorem VIII.3 in Reed and Simon [77] and the corollary of Theorem X.2 in Reed and
Simon [78].

Since T* =T = T*** T is essentially self-adjoint if and only if

TCcT™=T"

The importance of essential self-adjointness is that one is often given a non-closed symmetric operator 7.
If T' can be shown to be essentially self-adjoint, then there is uniquely associated to T a self-adjoint operator
T = T**. Another way of saying this is that if A is a self-adjoint operator, then to specify A uniquely one
need not give the exact domain of A (which is often difficult) but just some core (see Definition II1.6.9) for

A.
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THEOREM III1.6.5. The basic criterium for self-adjointness. Let T be a symmetric operator on a Hilbert
space H. Then the following three statements are equivalent:

(a) T is self-adjoint.
(b) T is closed and ker(T* + i) = {0}.
(¢) Ran (T £1i) =H.
We give the simple proof of Corollary I11.6.6 below, in view that Reed and Simon omitted it.

COROLLARY 1I11.6.6. The basic criterium for essential self-adjointness. Let T be a symmetric operator
on a Hilbert space H. Then the following three statements are equivalent:

(a) T is essentially self-adjoint.
(b) ker(T* +4) = {0}.
(¢) Ran (T £1) is dense.

—k

PROOF. Assume T is essentially self-adjoint. Then T is self-adjoint. By Theorem II1.6.4, T* = T
and then, Theorem II1.6.5 implies ker(T™ £+ i) = {0}.

Let us suppose that ker(T* &) = {0}, then T is closed and ker(T" +14) = {0}. (¢) in Theorem IIL6.5 tell
us that Ran (T +i) = H. Let g be any element in H, then there exists a f € D(T 41) such that g = (T +1i) f.
Because T+ is the closure of T'+4 there exists a sequence in f,, € D(T) such that f, — f and (T+i)f, — g.
This concludes that Ran (T =+ ) is dense.

Conversely, If Ran (T = i) is dense, then Ran (T 4 i) = H. Using Theorem IIL.6.5 we obtain that T is
self-adjoint. [ ]

THEOREM 1I11.6.7. Closed graph Theorem. Let X and Y be Banach spaces and T a linear map of X
ito Y. Then T is bounded if and only if the graph of T is closed.

THEOREM II1.6.8. Hellinger-Toeplitz Theorem. Let A be an everywhere-defined linear operator on a
Hilbert space H with (x, Ay) = (Ax,y) for all x and y € H. Then A is bounded.

PrROOF.  Reed and Simon [77] prove that the graph of A is closed. [ ]

We summarize the concept of adjointness. The distinction between closed symmetric operators and self-
adjoint operators is very important. It is only for self-adjoint operators that the spectral theorem holds and
it is only self-adjoint operators that may be exponentiated to give the one parameter unitary groups which
give the dynamics in quantum mechanics.

We give the notion of a core for an operator.

DEFINITION II1.6.9. If T is a closed symmetric operator, a subset D C D(T) is called a core for T if

TID=T.

VII The spectral Theorem for unbounded operators

We will transcript some theorems from Kato [70] and Reed and Simon [77]. Kato’s book is used because he
shows directly how we can define by functional calculus ¢(H ) where ¢ is any complex continuous function (
in Kato’s book [70], page 356 mentions that more general functions ¢ can be allowed) and H is a self-adjoint
operator. Theorems from [77] section VIIL.3 are helpful because they are used throughout this entire thesis
and because in the case of functional calculus we arrive to define h(A) by a strong limit of h,,(A) with h,, a
sequence of bounded measurable functions.
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VII.1 Approach in Kato’s book

Let T an operator in H. The numerical range of ©(T) of T is the set of all complex numbers (T'u,u) where
u changes over all u € D(T') with |ju|| = 1. (We assume dimH > 0. )

A symmetric operator T is said to be bounded from below if its numerical range (which is a subset of
the real axis) is bounded from below, that is, if

(Tu,u) > y(u,u), we D(T). (I11.7.53)

In this case we simply write T" < . The largest number ~ with this property is the lower bound of 7'

An operator is said to be accretive if the numerical range ©(T') is a subset of the right half-plane, that
is, if Re(Tu,u) > 0 for all uw € D(T).

An operator T satisfying (I11.7.54) will be said to be m-accretive:

(T+N)"'eB(H), |(T+N7Y < ReN)™t,  forRed > 0. (I11.7.54)

An m-accretive operator T' is maximal accretive, in the sense that T is accretive and has no proper
accretive extension. An m-accretive operator T' is necessarily densely defined.

We shall say that T is quasi-accretive if T+ « is accretive for some scalar «. This is equivalent to the
condition that ©(T) is contained in a half-plane of the form Rel > const. In the same way we say that T is
quasi-m-accretive if T'+ « is m-accretive for some a.

For some quasi-accretive operators T, the numerical range ©(T") is not only a subset of the half-plane
ReC > const. but a subset of a sector | arg(¢ —v)| < 6 < 7/2. In such a case T is said to be sectorially-valued
or simply sectorial; v and 6 will be called a vertex and a semi-angle of the sectorial operator (these are not
uniquely determined). T is said to be m-sectorial if it is sectorial and quasi-m-accretive.

DEFINITION III1.7.1. Let H be a Hilbert space, we define a form t defined for u and v both belonging to
a linear manifold D of H by the following: tlu,v] is complex valued and linear in u € D for each fized v € D
and semilinear in v € D for each fized w € D. D will be called the domain of t and is denoted by D(t). t is
densely defined if D(t) is dense in H.

A form t is said to be symmetric if
tlu, v] = tv,u. (I11.7.55)

We write t[u] instead of ¢[u, u]. We call t[u] the quadratic form associated with ¢[u, v].

DEFINITION II1.7.2. A symmetric form h is said to be bounded from below if the set of (real) values
hlu] for ||u|| =1 is bounded from below or, equivalently,

hlu] > ~|lull?, w e D(h). (I11.7.56)
This will be simply written h > .

Let us now consider a nonsymmetric form ¢. The set of values of t[u] for v € D(¢t) with ||u]| = 1 is called
the numerical range of ¢ and will be denoted by ©(t).
t will be said to be sectorial if ©(t) is a subset of a sector of the form

¢ € C such that |arg(¢ —v)| <0, 0<6<m/2, -~ real (IT1.7.57)

The number v and 6 are not uniquely determined by t.

Let t be a sectorial form. A sequence {u, } of vector will be said to be t-convergent (to u € H), in symbol:
Uy —¢ Uy, N — 00, if uy € D(t), uy, — w and t{u, — upy] — 0 for n,m — oco.

A sectorial form is said to be closed if u,, —; u implies that v € D(t) and t[u,, —n] — 0. A sectorial form
is said to be closable if it has a closed extension. The closure of a closable sectorial form t is the smallest
closed extension of t. When ¢ is a closed sectorial form, a linear submanifold D’ if D(t) is called a core of ¢
if the restriction ¢ of ¢ with domain D’ has the closure t.



The spectral Theorem for unbounded operators 61

THEOREM II1.7.3. The first Representation Theorem Let t[u,v] be a densely defined, closed, sectorial
sesquilinear form in H. There exists a m-sectorial operator T such that
(i) D(T) C D(t) and
tu,v] = (Tu,v) (I11.7.58)

for every w € D(T') and v € D(t),
(it) D(T) is a core of t.

(#i1) if u e D(T) and w € H and
tu, v] = (w,v)
holds for every v belonging to a core of t, then u € D(T) and w = Tu. The m-sectorial operator T is
uniquely determined by the condition (i).

We define the order relation hy > hs for any two symmetric forms h; and ho bounded from below by
D(hl) - D(hg) and hy [u] > hg[u} foru € D(hl) (111759)

Let Hq, H5 be the selfadjoint operators bounded from below associated respectively with closed symmetric
forms h1, ho bounded from below. We write H; > Hs if hy > ho in the sense defined above.

Let H be a Hilbert space, and suppose there is a nondecreasing family {M(\)} of closed subspaces of H
depending on a real parameter A\, —oo < A < oo, such that the intersection of all the M () is 0 and their
union is dense in H. By “nondecreasing” we mean that M (X)) C M(\”) for X < \.

For any fixed A, then, the intersection M (X + 0) of all M()X) with A’ > X contains M (\). Similarly, we
have M(\) D M(X — 0), where M (X — 0) is the closure of the union of all M()\’) with A < A\. We shall say
that the family {M ()} is right continuous at A if M (A+0) = M(A), left continuous if M(A—0) = M(\) and
continuous if it is right as well as left continuous. As it is easily seen, {M (X + 0)} has the same properties
as those required of {M(\)} above and, moreover, it is everywhere right continuous.

These properties can be translated into properties of the associated family {E()\)} of orthogonal projec-
tions on M (). We have:

EN) < E\) for N < N, (I11.7.60)
s— lim E()\)=0, s— lim BE(\) = 1. (T11.7.61)
A——00 A—00

Equation II1.7.60 is equivalent to
E(p)E(N) = E(N)E(p) = E(min{u, A}). (I11.7.62)

A family {E(X)} of orthogonal projections with the properties (IT1.7.60) and (II1.7.61) is called a spectral
family or a resolution of the identity.
The projections E(A +0) on M (A £ 0) are given by
EA£0)=s— lim E(A£e).

e—0t

For any semiclosed interval I = (A, \’] of the real line we set
E(I) = E(X") = E(\),

If S is the union of a finite number if intervals (open, closed or semiclosed) on the real line, S can be
expressed as the union of disjoint sets of the form I stated below. If we define E(S) as the sum of the
corresponding E(I), it is easily seen that E(S) has the property that E(S")E(S”) = E(S'NS"). E(S) is
called a spectral measure on the class of all sets S of the kind described. This measure E(S) can then be
extended to the class of all Borel sets S of the real line by a standard measure-theoretic construction.

For any u € H, (E(\)u,u) is a nonnegative, nondecreasing function of A and tends to zero for A — —oo
and to |lu|? for A — +oo. For any u,v € H, the polar form (E(\)u,v) is a linear combination of functions
of the form (E(A\)w,w). Hence the complex-valued function (E(A)u,v) of A is of bounded variation. See
Kato [70] for more details.
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The selfadjoint operator associated with a spectral family

To any spectral family F(\), there is associated a selfadjoint operator H expressed by
“+oo
H :/ AAE(N). (I11.7.63)
D(H) is the set of all u € H such that

+o00o
/ NA(E(\)u,u) < oo.

— 00

For such u, (Hu,v) is given by

+oo
(Hu,v) = / M(EM\)u,0),

— 00

These two last integrals are Stieltjes integrals. This type of integrals, measure the length of intervals by
using a increasing function and uses a similar approach to the Riemann integral. For the proof please check
Kato [70].

More generally, we can define operators

+o0o
G(H) = / (N dE(N). (111.7.64)

— 00

Where ¢ may be any complex-valued, continuous function. More general functions ¢ can be allowed, but
then the integral (¢(H)u,v) = [ ¢(\) d(E(N)u,v) must be taken in the sense of the Radon-Stieltjes integral,
where by the use of increasing functions a measure can be defined in the real line and applied to the Lebesgue
approach of integrals.

An operation calculus can be developed for the operators ¢(H). ¢(H) is in general unbounded if ¢(\) is
unbounded; D(¢(H)) is the set of all u € H such that [ |p(\)[2d(E(N)u,u) < .

THEOREM I11.7.4. The Spectral Theorem Every spectral family {E(N)} determines a selfadjoint operator
by (I11.7.63). The spectral theorem asserts that every selfadjoint operator H admits an expression (I111.7.63)
by means of a spectral family {E(X)} which is uniquely determined by H.

VII.2 Approach in Reed and Simon’s book
PROPOSITION III.7.5. Let (M, u) be a measure space with pu a finite measure. Suppose that f is a
measurable, real-valued function on M which is finite a.e [u]. Then the operator qﬁifqb on L?(M,du) with

domain
D(Ty) = {¢| f¢ € L*(M, p)}

is self-adjoint.

PROPOSITION IIL.7.6. Let f and Tf obey the conditions in Proposition III.7.5 above. Suppose in
addition that f € LP(M,du) for 2 < p < oco. Let D be any dense set in LI(M,du) where ¢~ +p~t = 1/2.
Then D is a core for T}.

Unless f € L>°(M, u) the operator T described in Propositions 1 et 2 will be unbounded. Thus, we have
found a large class of unbounded self-adjoint operators. In fact, we have found them all.

THEOREM II1.7.7. Spectral Theorem-multiplication operator form. Let A be a self-adjoint operator on a
separable Hilbert space H with domain D(A). Then there is a measure space (M, p) with u a finite measure,
a unitary operator U : H — L*(M, 11), and a real-valued function f on M which is finite a.e. so that
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(a) ¥ € D(A) if and only if f(-)U(4)(-) € L*(M, ).
(b) If ¢ € UID(A)], then (UAU™'¢)(m) = f(m)d(m).

There is a natural way to define functions of a self-adjoint operator by using the above theorem. Given a
bounded Borel function h on R we define h(A) = U~ T}, 5)U where T,(y) is the operator on L?(M, 1) which
acts by multiplication by the function h(f(m)). Using this definition, Theorem II1.7.8 below follows easily
from Theorem I11.7.7. In Theorem II1.7.8 below ¢ does not mean Fourier transform apart from the rest of
this thesis.

THEOREM II1.7.8. Spectral Theorem-functional calculus form. Let A be a self-adjoint operator on 'H.
Then there is a unique map ¢ from the bounded Borel functions on R into L(H) so that

(a) ¢ is an algebraic *-homeomorphism.
(b) & is norm continuous, that is, ||qz§(h)||L(H) < ||| so-
(¢) Let hy(x) be a sequence of bounded Borel functions with hn(x) — x as n — oo, for each x and
|hn ()] < |z| for all x and n. Then, for any ¢ € D(A), lim, oo ¢(hn)tp = Atp.
(d) If hn(z) — h(z) pointwise and if the sequence ||hy||so is bounded, then ¢(hy) — G(h) strongly.
In addition
(e) If AY = X, $(h) = h(A)).
(f) if h >0, then ¢(h) > 0.

The functional calculus is very useful. For example, it allows us to define the exponential e
easily many of its properties as a function of ¢.

Finally, the spectral Theorem in its projection-valued measure form follows easily from the functional
calculus. Let Py be the operator xo(A) where xq is the characterized function of the measurable set 2 C R.
The family of operators { Po} has the following properties:

(a
(b

#4 and prove

Each Py is an orthogonal projection.

)
) P@:0a P(—oo,oo):I

(¢) B Q=] _, Q, with Q, N Q,, = if n # m, then Py = s-limy .o >0_, P

(d) Pa, N Pa, = Pa,nq,-

THEOREM II1.7.9. Spectral Theorem-projection valued measure form. There is a one-to-one correspon-
dence between self-adjoint operators A and projection valued measures {Po} on H, the correspondence given

by
A= / AdPy.

If g(-) is a real-valued Borel function on R, then

a4 = [ gyap.
defined on D, (Theorem II1.7.8) is self-adjoint. If g is bounded, g(A) coincides with #(g) in Theorem IT1.7.8.

We have the following remark: The spectrum of an unbounded self-adjoint operator is an unbounded set
of the real axis. We note that the measure space of Theorem II1.7.7 can always be chosen so that Proposition
II1.7.6 is applicable:

PROPOSITION I11.7.10. Let A be a self-adjoint operator in a separable Hilbert space H. Then the
measure space (M, ) and the function [ of Theorem II.7.7 can be chosen so that [ € LP(M,u) for all p
with 1 < p < 0.

n
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VIII Stone’s Theorem

In this section we prove a theorem due to Stone which, like the spectral Theorem, is fundamental for quantum

mechanics. Suppose that A is a self-adjoint operator on H. If A is bounded, we can define the exponential
of A by

pa S0 0 A”

n!
n=0

since the series converges in norm. If A is unbounded and self-adjoint, we cannot use the power series
directly, but we can use the functional calculus developed in the last section to define e**4.

THEOREM II1.8.1. Let A be a self-adjoint operator and define e***. Then
(a) For eacht € R, U(t) is a unitary operator and U(t + s) = U(t)U(s) for all s,t € R.
(b) If p € H and t — to, then U(t)¢p — Ul(to)d.
(¢) For ¢ € D(A), W — 1A ast — 0.

(d) If lim;—o U= erists then 1 € D(A).

t

DEFINITION IIL1.8.2. An operator-valued function U(t) satisfying (a) and (b) is called a strongly contin-
uous one-parameter unitary group.

The following theorem says that every strongly continuous unitary group arises as the exponential of a
self-adjoint operator.

THEOREM I11.8.3. Stone’s theorem. Let U(t) be a strongly continuous one-parameter unitary group on
a Hilbert space H. Then, there is a self-adjoint operator A on H so that U(t) = ™4,

DEFINITION IIL.8.4. IfU(t) is a strongly continuous one-parameter unitary group, then the self-adjoint
operator A with U(t) = e®4 is called the infinitesimal generator of U(t).

THEOREM II1.8.5. von Neumann. Let U(t) be a one-parameter unitary group on a separable Hilbert
space H. Suppose that for all ¢, € H, (U(t)1, @) is measurable. Then U(t) is strongly continuous.

Now we have the following self-adjointness criterion:

THEOREM IIL.8.6. Let A be a self-adjoint operator on H and D be a dense linear set contained in D(A).
If for all t, €* : D — D, then D is a core for A.

Finally, we have the following generalization of Stone’s Theorem that is helpful in the case of time
dependent Hamiltonians.

THEOREM II1.8.7. Let t — U(t) = U(ty,...,t,) be a strongly continuous map of R™ into the unitary
operators on a separable Hilbert space H satisfying U(t +s) = U(t)U(s) and U(0) = I. Let D be the set of
finite linear combinations of vectors of the form

or= [ fOUR)$dt ¢€eH, feCeR").
R’IL
Then D is a domain of essential self-adjointness for each of the generators A; of the one parameter subgroups
U(0,0,...,t5,...,0), each A; : D — D and the A; commute, j =1,...,n. Furthermore, there is a projection-
valued measure Po on R™ so that

(6. U (1)) = / ¢ (6, Pry)

n

for all ¢, € H.
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IX Tensor products of Hilbert spaces

Here, we present some material taken from Reed and Simon [77]. Let H; and Hs be Hilbert spaces with scalar
products (-,-); and (-,-),, respectively. Both scalar products are linear in the first entry and antilinear in
the second one. When there is no possibility of confusion, we simply denote them as (-, -). For each ¢; € H;
and ¢g € Ha, let ¢1 ® @2 denote the conjugate (bilinear) form which acts on H; x Ha by

(d)l ® ¢2) <¢17 ¢2> = (71)1, ¢1)1 (7/12» ¢2)2 . (111965)
PROPOSITION 1I11.9.1. The form ¢1 @ ¢2 is bilinear.

Proor. Let a € R, 91,%11,%12 € Hy and 2,91, 122 € Ha.

(61 @ ¢2) (ath11 +Y12,02) = (arhir + a2, 1) (2, ¢2)
(a (Y11, ¢1) + (Y12, 61)) (Y2, P2)
= a(Y11,01) (2, 02) + (Y12, 01) (U2, ¢2)
= a(¢1® ¢2) (Y11,9¥2) + (1 @ d2) (Y12, Y2).

Then ¢1 ® ¢ is linear in the first entry. To prove linearity in the second entry we proceed as follows:

(61 ® @) (Y1, P01 +22) = (Y1, ¢1) (@tha1 + a2, P2)

(Y1, 01) (a (a1, P2) + (W22, P2))

a (Y1, 01) (Ya1, P2) + (Y1, 1) (Y2, P2)

= a(P1® ¢2) (Y1,%21) + (P1 @ P2) (Y1, 122).

|
Let & be the set of finite linear combinations of such conjugate linear forms, see (I11.9.65). We define an
inner product (-,-) on £ by defining

(p@Y,neu) = (6,n)(,n) ¢n€Hi, Y,u€ Ho. (111.9.66)

and extending it by linearity to £.
LEMMA II1.9.2. Suppose that p is a finite sum which is the zero form, then (n,u) =0 for alln € £.

PrROOF. Letn= Zf\;l ci(o; ®@1h;), then

N
(777 :u) = ( & ¢z & wz )
i=1

= Y (@), 1)

1

~.
Il

I
M=

cipt(i, i)

1

I
[ lCN

)
because p is the zero form. [ |

PROPOSITION II1.9.3. The scalar product (-,-) in & is well defined and positive definite.
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PROOF.  Let us prove that (A, \) does not depend on which finite linear combinations are used to
express A and \. Let A\, \ be written as

A= Zci¢1i ® ¢o; = Zalﬂ/’lk ®@ Yok,
N = ij’lhj@’qgj.

By Lemma II1.9.2, it follows that

(Z cid1i @ O, )\/) - (Z arpir @ Yor, )\/) = ZCi (f1: @ P2, X') — Zak (V1 @ Yor, N')
ZZQ (blz ®¢21a771] ®772])

=0 awb; (V1k ® Pk, My @ 1125)

> (Z Cidri @ P2 — Y axthir @ ok, My ® 772j)

J

= (Z cid1i @ Po; — Z arPir @ Yor, /\/)

= 0.

It is enough to consider A as having two different expressions as a linear combination. If X" had two of
them then we would have to use property (II1.2.5) to the scalar products in H; and Ho.

Now suppose A = Z% 1 dk(nk ®@ k). Then {ng }L, and {px }_, span subspaces M; C ‘Hy and My C Ha,
respectively. If we let {gb]} 2, and {’L/}l}l 22, be orthogonal bases for M; and M, we can express each n, in
terms of the gf) s and each py, in terms of the ;s obtaining:

My, M2
= > culd; ).
j=1,1=1
But
AN = (X calds @), Y ciml(ér @ vm)
= ) Gicim (&5 ® Y1, ¢ @ )
= Gicim(d5,60) (W1, ¥m)
= > leal
So, if (A, A) = 0, then all the ¢;; = 0 and ) is the zero form. n

DEFINITION II1.9.4. We define H1 ® Ha to be the completion of £ under the scalar product (-,-) defined
above (I11.9.66). H1 ® Ha is called the tensor product of Hy and Hs.

PROPOSITION II1.9.5. If {¢x} and {u;} are orthonormal basis for Hy and Ha, respectively, then {¢r &
P} s an orthonalmal basis for Hy @ Ha.

PROOF.  See Reed and Simon [77] page 50. [ |
To show how the tensor product arises naturally, we will show how it is related to Hilbert spaces with
which the reader is already familiar. First, let (My, pu1) and (Ms, us) be measure spaces. We consider
the Hilbert spaces L?(Mjy, u1) and L?(Ms, us). Let {¢r} and {¢;} be orthogonal basis in L?(Mj, 1) and
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L?(Msy, j12), respectively. We want to show that {¢x(z),4;(y)} is an orthonormal set in L?(M; x My, 11 @ i),
where j1; ® 1o is the measure product of y; and . Suppose that f(z,y) € L?(M; x Ma, 11 ® po), and

/ / f(@,9) o ()b (y)dpn (z)dpa(y) = 0 (I11.9.67)
M1 x Mo

for all £ and [. Because

j/j/ (@) e (@)n () | dpa () dpa ()
M1 X Mo

/@unU‘f@wmwwm@>wmm
M- Mo

IN

/\MWMW%Nmeﬂm@
My

A

< WWM@qu&Wﬂ%thMﬂmw
1

/ /\ﬂ@mwm@wmm
My J Mo

= Hf”%?(Ml X My, @ug) < OO

Fubini’s Theorem can be used, thus (II1.9.67) implies that, for all k£ and [

/M2 (/M |f($’y)|2¢k(x)dﬂl(m)) Di(y) dus(y) = 0,

since {¢;} is basis for L?(Msy, j12), we have that

flx,y)or(x)dp () =0

My

for all y except on a set Sy C My with us(S;) = 0. Thus, for y € My \ J Sk,

f(l', y)gbk(x)dul(x) =0

M,y

for all k, which implies that f(z,y) =0, a.e. [u1]. Thus, f = 0 a.e. [u1 ® psz]. Therefore, {pr(x),¢i(y)} is an
orthonormal set in L?(M; x Moy, juy @ p12).
Next, we present a abbreviated version of Theorem II.10 in Reed and Simon [77].

THEOREM I11.9.6. Let (M, j11) and (Ma, j12) be measure spaces so that L*(My, 1) and L*(Ma, ) are
separable. Then, there is a unique isomorphism from L?(My, 1) @ L*(Ma, po) to L2(My x Ma, 11 @ pa), s0
that f ® g — fg.

PROOF. Let
U : ér @y — dr(x)r(y).

Then U takes an orthonormal basis for L?( My, ju1)® L?(Ms, j12) onto an orthonormal basis L2(M; x Ma, 11 ®
p2), and extends uniquely to a unitary mapping of L?(My, 1) ® L?(Msy, jiz) onto L?(My x Mo, 1y @ piz).
Notice that if f € L?(My, 1) and g € L?*(Ma, p2), then

U (Z CcLor ® Zdﬂbz) =U chdl oK ® Yy
kol
= Z cedi U (o, @) = chdl br ()i (y)
) Kl
= f(z)g(x).

U(f®g)
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|

Because of this property, we often say that L?(Mi,u1) ® L?(Ma, po) and L?(M; x Mo,y ® po) are

“naturally” isomorphic. Let M; = R and u; the Lebesgue measure, then we have shown that L?(R?) is
naturally isomorphic to L?(R) ® L?(R). Comment: L?(R™") = [?(R") ®...® L?(R").

X Tensor products of bounded and unbounded operators

This section is mainly based on section VIII.10 of Reed and Simon [77]. Here we describe some aspects of
tensor products of operators in Hilbert spaces. Let A and B be densely defined operators on Hilbert spaces
H1 and Ha, respectively. We represent by D(A) and D(B) the domains of A and B, respectively. We will
denote D(A) ® D(B) the set of finite linear combinations of vectors of the form ¢ ® ¢» where ¢ € D(A) and
1 € D(B). We define A ® B on D(A) ® D(B) by

(A® B)(¢ @) = (Ap @ BY)

and extend it by linearity.

Let us prove that D(A) ® D(B) is dense in H; ® Hz. Let us take f a bilinear form in H; ® Hs such
that f{(o,¢) = (¢ @Y, f)r,en, =0, for all p € D(A) and ¢ € D(B). Then f = 0 in the Cartesian product
D(A) x D(B) which is a dense set in Hy X Ha. If f =" cridr ® ¢y then

f(o: )

> crl(o @ v, ok @ )
> crild, k) (1, 1)
el < (Xleullgelleal) o1l 1]

It follows that f is a bounded bilinear form. By Theorem II1.10.2 below f is continuous, that is why f =0
in Hy x Ha. So, D(A) @ D(B) is dense in Hy ® Ha.

Before we enounce a simplified version of Theorem 2.17 from Rudin [80], we define the following, extracted
from definition 1.8 of the same book:

A

DEFINITION III.10.1. X is an F-space if its topology is induced by a complete invariant metric d.

THEOREM II1.10.2. Suppose B : X XY — Z is bilinear and separately continuous, X is an F-space, Y
is a metric space and Z a topological vector space, it follows that B is continuous.

We define A® B on D(A) ® D(B) by

(A@B)(¢®¢) = (A¢® BY), ¢ € D(A),¢ € D(B),
and extend by linearity.

PROPOSITION II1.10.3. The operator A ® B is well defined. Further, if A and B are closable, so are
AR B and AT+ 1® B.

PROOF.  See Reed and Simon [77]. [

DEFINITION II1.10.4. Let A and B be operators in Hy, Ha, respectively. The tensor product of A and
B is the closure of the operator A ® B defined in D(A) @ D(B). We will denote the closure by A ® B also.
Usually A+ B will denote the closure of A9 I +1® B on D(A) ® D(B).

PROPOSITION II1.10.5. Let A and B be bounded operators on Hi, Hsa, respectively. Then ||A ® B|| =
IAlIBI-
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PrROOF.  Reed and Simon’s proof [77] uses orthonormal bases. [ |

We remark that both of above propositions have natural generalizations to arbitrary finite tensor products
of operators. This can be proven directly or by using the associativity of the tensor product of Hilbert spaces.

We turn now to questions of self-adjointness and spectrum. Let {4y}, be a family of operators, Ay
self-adjoint on the Hilbert space Hy, &k = 1,... N. We will denote the closure of I/ ® ... ® Ay ® ...I on
D = @Dy, by Ay also. Let P(x1,xy) be a polynomial of degree ny in 2. The the operator P(Ay,..., Ax)
makes sense on @ D(A™), since D(A™) C D(A!) for all [ < ny. In fact, P is essentially self-adjoint in that
domain.

THEOREM II1.10.6. Let Ay be a self-adjoint operator on Hy. Let P(x1,...,xNn) a polynomial with real
coefficients of degree ny in the kth variable and suppose that ch is a domain of essential self-adjointness for
Apr. Then,

(a) P(Ay,...,AN) is essentially self-adjoint on
D' =@y, DL

(b) The spectrum of P(Ay,...,AN) is the closure of the range of P on the product of the spectra of the
Ay. That is,

J(P(Ala" 7AN)) - P(U(Al)a"'aU(AN))'

PrOOF.  We will first prove that P(Aj,..., Ay) is essentially self-adjoint on D = @}, D(A}*). By the
spectral Theorem, there is a measure space (M, py) so that Ay is unitarily equivalent to multiplication by a
real-valued measurable function f; on L?(Mjy, uy). By proposition 3 in Section VIIL.3 Reed and Simon [77]
we may assume that py is finite and that fi € Ni<p<cooLl?(My, pui). Furthermore, by Theorem III.9.6,
@N_, L* (M, j1) is naturally isomorphic to L?(x_, My, ®¥_, ux). Under this isomorphism P(A1,..., Ay)
corresponds to multiplication by P(f1,..., fny) and D corresponds to the set of finite linear combinations of
finite linear combinations of functions ¢ (m1), p2(m2), ..., én(my) such that f'" ¢y € L2 (M, py)-

To prove essential self-adjointness we use Proposition II1.7.6. First, since ju, is finite and f;'* € LP(Mj,, jur)
we conclude that f! € LP(Mjy, ux), for I < p < co. From this it follows immediatly that P(fi,..., f,) is in
L? for all such p. In particular P(f1,..., f,) is in L*(x}_; My, @4, ). Since f'* is self-adjoint in Dy,
Dy, contains all the characteristic functions of measurable sets in Mj. Thus D contains all finite linear
combinations of the characteristic functions of rectangles. It is a fact that the characteristic function of any
measurable set in x_, My, is equal to such finite linear combination except on a set of arbitrarily small
®N_, i measure. Thus, the simple functions on x#_, M}, can be approximated in the L? sense (1 < p < o0)
by elements of D. In particular, D is dense in L4(><{€V:1Mk, ®,]c\’:1 k). Essential self-adjointness now follows
by Proposition I11.7.6.

To show that P is essentially self-adjoint on D! we need only show (by problem 14 in Reed and Simon’s
book [77]) that P | D! extends P | D. Suppose ®%_, ¢y, € D. Then ¢, € D(A}*), so since DY is a domain
of essential self-adjointness of A}* there is a sequence {¢%}%°, so that ¢! — ¢r, and AP* ¢l — AP .
An easy estimate shows that this implies that A7¢l — A7'¢; for all 1 < m < ng. Therefore @I ¢! —
@N_ ¢ and P(Aq,...,AN) (®kN:1¢§c) — P(Ay,...,AN) (®,1€V:1¢k) . The same argument works for finite
linear combinations of vectors of the form ®£’:1¢>k so P | D! extends P | D. This completes the proof of (a).

To prove (b), suppose that A € P(a(A1),...,0(Ax)). If I is any open interval about A then P~1(I) con-
tains a product xJ'_; Iy, of open intervals so that IyNo(Ax) # 0. Since o(Ay,) = ess range f;™*, ( ,?’“)71 (I1)]
#0 so

P[P ((fr - fn) T D] # 0.
That is, A € ess range P(f1,...,fn), which equals o(P(A;1,...,Ay)) by the first proposition in Section
VIIL3 in Reed and Simon [77]. Conversely if A\ ¢ P(0(Ay),...,0(Ax)) then (A— P(f1,...,fx)) " is
bounded a.e. on x{;’lek SONEp (P(Al, e 7AN)) . [ |

If Ay,...,Ax are bounded, P(0(A1),...,0(An)) is closed, but in general is not (Problem 43 in Reed
and Simon [77]). The following Corollary displays the two most important special case of Theorem ITI.10.6.
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COROLLARY 111.10.7. Let Ay,...,Ayx be self-adjoint operators on Hy,..., Hy and suppose that, for
each k, Dy is a domain of essential self-adjointness for Ay. Then,

(a) The operators A = A1®...@ AN and As, = A1+...+ AN are essentially self-adjoint on D = ®,]€V:1Dk.

(b) o(An) = I, 0(Ay) and o(Ax) = S}, 0(Ay).

XI Perturbation Theory. Schrodinger Hamiltonians

In this section, we give conditions on the potential v that allows to consider V, the multiplication operator
associated to v, as a ”small” perturbation of Hy, in such a way that the sum operator Hy+ V be self-adjoint.
Clearly a sufficient condition is that ||v]|s < 0o, thanks to V' € B(H). Nevertheless, it is important to deal
with unbounded operators, since these potentials appear in quantum mechanics, as an example we have
Coulomb potential.

First we give some abstract results, which will be applied to Schrédinger operators. If A and B are
self-adjoint and, at least, one of them is bounded, say B, then A + B is self-adjoint with D(A + B) = D(A).
If both A and B are unbounded but D(A + B) = D(A) N D(B) is dense in H, then A + B is symmmetric
but in general it is neither self-adjoint nor essentially self-adjoint.

Next, we introduce the concept of relative boundedness that allows to compare two unbounded operators.

DEFINITION III.11.1. Let A and B be two linear operators. We say that B is A-bounded if
(a) D(A) C D(B),
(b) There exist two numbers (3 and ~y in [0,00) such that

IBfII < BIAfI +AUfI1 VS € D(A). (ITT.11.68)

The infimum of all numbers 8 such that (I11.11.68) is true is called the A bounde of B.

REMARK II1.11.2. « in (II1.11.68) can be different for different values 8. The A bound of B is determined
uniquely considering all the possible values of (.

As an immediate consequence of Definition II1.11.1 we have that if D(A) C D(B) and A is a bounded
operator then A is B-bounded with relative bound 0, because for any ¢ € D(B),

[Agll < Of| Bl + [|A]l [|#]]- (I11.11.69)
LEMMA II1.11.3. Assume that A = A*.

(i) The following three statements are equivalent:

(a) B es A bounded.
(b) B(A—z2I)"1 € B(H) for some z € p(A).
(c) D(A) C D(B) and
IBFI? < BIIIASIP +~51 1?2 Vf e D(A), (ITL.11.70)

where [y, vo are numbers is [0,00).
The A bound of B is also equal to the infimum of all numbers By such that (1I11.11.70) holds.
(i) The following two statements are equivalent::

(d) B is A bounded with A bound v < 1.
(e) There exists a number z € p(A) such that |B(A — zI)7Y|| < 1.
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PROPOSITION I11.11.4. If B is A bounded, then B(A — 2I)~' € B(H) for all z € p(A).
Moreover, we have a more precise result taken from [64] Proposition 1.3 (a).

PROPOSITION III.11.5. Assume A to be self-adjoint and D(A) C D(B). Then B is A-bounded if and
only if B(A+14)~! is bounded. The A-bound of B is equal to

lim—ocl| B(A + i) 7.

PROPOSITION III1.11.6. Kato-Rellich Theorem. Let A self-adjoint, B symmetric and A-bounded with
A-bound v < 1. Then A+ B is self-adjoint in D(A). Moreover, if A is bounded by below, so A+ B is. (A
is called bounded by below if A+ >0, or equivalently if (—oo, 1) € p(A), for some p € R).

PROPOSITION I11.11.7. Under the hypothesis of Proposition II1.11.6, B is (A+ B) bounded. Moreover,
we have the second resolvent equation for all z € p(A) N p(A+ B):

(A+B—-27" = (A-2)'—(A—2)"'B(A+B—-2)"!
= (A-2)"'—(A+B-2)"'B(A-2)"" (IIL.11.71)

Example I11.11.8. Let A = A*, B = B* and B belong to B(H). Then we know that A+ B is self-adjoint in
D(A). This results, of course, also from Proposition III.11.6. In fact, B is A-bounded with A-bound v =0,
because we can set 3 =0,v = ||B|| in (II1.11.68).

Example IT1.11.9. Let A = A* be unbounded, and B = —AA with A > 0. Then |Bf|| < M|Af|,Vf € D(A),
in consequence B is A-bounded with A-bound \. If X < 1,A+ B = (1 — \)A which is self-adjoint. On the
other hand, if A = 1, A+ B is the restriction of the zero operator with domain H. This shows that the
hypothesis v < 1 cannot be made weaker in Proposition II1.11.6 (If v = 1, one can show, however, that
A+ B is essentially self-adjoint).

Now we will apply Proposition II1.11.6 to Schrédinger operators in L?(R™). We begin with an auxiliary
estimation.

LEMMA III1.11.10. Let D = L?(R"). Let2<p< oo and ¢, € LP(R™). Denote by &(P) the multiplica-
tion operator by ¢(k) in L*(R™), and define Apy = d(P)Y(Q), Bgy = ¥(Q)d(P). Then the closures of Agy
and Byy lie in B(L*(R™)), and

[ Agy
[ Bou |l

We introduce a class of potentials often used. A measurable function v : R®™ — R will be called class v,
if can be written as v = vy + vo with v; € L>®(R™) and vy € LP(R") for some p that satisfies p > 2 and
p>n/2.

Examples:

11l l1% 1, (I11.11.72)
18lpl1%1lp- (II1.11.73)

IN A

1. Squared well or barrier:

where Vy € R, we can take V1 =V, Vo =0o0r V1 =0,V = V.

2. Yukawa potential:
V(z) = alz| ™" exp(—pulz),

with o« € R and g > 0. If n = 3 one can take V; =0,V5 =V and p = 2.
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3. Coulomb potential:

Here, we take:

' W) = V(@) - i(@)p =2

PROPOSITION IIL11.11. Let H = L2(R"), n = 1,2, ... Let v € vy. Then D(Hy) C D(V), V is Hy
bounded with Hy bound V =0, and V (Hy — 2z)~' € B(H),Vz € p(Hy).

PROPOSITION III.11.12. Under the hypothesis of Proposition II1.11.11 H = Ho+V is self-adjoint and
bounded by below.

LEMMA III.11.13. Let H = L?*(R™). Assume that v,w € vy, let H = Ho+ V and denote by W the
multiplication operator by w(Z). Then, for z € p(H), the operator W (H —z)~ and the closure of (H—2z)"'W
belong to B(H).



Chapter 4
Appendix

In this chapter we are going to present more definitions, computations and proofs with a more depth of
detail than in the chapters below. This level of detail has not been found by the author of this thesis in the
literature even though the results are well known.

I N-Body Kinematics

PROPOSITION IV.1.1. Assertions given in (11.1.2), and in (I1.1.3) are true. In particular: Fourier
transform maps unitarily L*(X) onto L*(X).

PROOF.

This approach is based in the following references, Adachi [60], Deift et al [65], Enss [67], Rudin [79] and
Sigalov and Sigal [81].

We study a system of N distinguishable particles of masses m;, charges ¢; each moving in n-dimensional
space. The positions for the N particles can be considered as elements in the Hilbert space R™Y with the
scalar product

N
(&3 =) mi%; - ¥;, (IV.1.1)
j=1
where X = (X1,...,Xn), ¥ = (J1,.-.,¥n~) and - is the usual scalar product in R™. This scalar product
defines a norm,
1/2
N
- - < o172 -
K] = %o = (&%), = | > m; 3| . (IV.1.2)
j=1

To prove that X = R*NV=1) et us rewrite (I.1.2):

2§j§N,i:1,...,n},

Then, a Hamel base for X is the following set, B(X) := {—(mj/ml)en_i +€j(n)—i

where e, ¢ =1...,nN are the canonical vectors in R™V. The cardinality of B(X) is n(N — 1).
We can define the space Y as follows:

Y = {y(yl,...,yN) eR”N‘yl ...yNeR"} ~ R™, (IV.1.3)
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For all z = (Z1,...,2y) € R,

N

I
M
+
<

where

M
I

N N
B— MY myzg, - MY myz; | €X,
— =

N N

~ — ~ 71 ~

y = M 15 m;Zj, ..., M E m;z; | €Y.
j=1 =1

Hence, R™N is the direct sum of X and Y : R™ = X &Y. It is evident that both X and Y are closed
spaces. In physics terms, X describes the positions of the N particles with respect to the center of mass of
the whole system, i.e. the center of mass is the origin. Besides, Y represents the set of all possible centers
of mass where all particles are considered as one body, that is, all particle’s position are equal to the center
of mass. With the scalar product (-,-);, X and Y are mutually orthogonal spaces because, for x € X and
yey,

(%, ¥)1 ijxj -y1 =0.
Denote G =R"W, @ = jo where the subindex means that the variable we use in this copy of R" is Z;.

With the notation given in subsection (V.1) we have the following isomorphisms (homeomorphisms) between
locally compact Abelian (LCA) groups:

N
¢ = Ppa (IV.1.4)
j=1
G =2 XaY (IV.1.5)
X = G/Y. (IV.1.6)

At present, (IV.1.4) and (IV.1.5) are clear. To prove (IV.1.6) we establish an isomorphism between X and
G/Y. Let ( : X — G/Y such that Z — Z + Y. It is not difficult to see that {(Z + ) = {(Z) + {(y). It is one
toone: f Z,y€e Xand 2+ Y =9+ Y, then T — gy € XNY, therefore z = 3.

Let du(Z) denote the element of volume with respect to the norm ||| -|||. We can think of x as the product
measure defined in the Cartesian product R2Y =~ @ j—1 R%,. In each R the norm ||| - ||| induces the metric
ds? = (\/m;di;)?, that is the metric tensor is represented by the matrix m;l,x,, and thus, the measure
in the j-th copy of jo is = det(m;I,xn)\ where A is the Lebesgue measure in R”. By the fact that

Lebesgue measure is o—finite, that Borel o—algebra in R™V is generated by the Cartesian product of N
copies of the Borel o—algebra in R”, and the measure product Theorem [61], we conclude that

du(z) = (m}2di) - - (m 2 diy) = Hm"/2 Py diy, (IV.1.7)

where dZ; is the element of volume given by the Lebesgue measure in R".
Let I',I'; be the dual of G, G, 1 < j < N, respectively. Let X be the annihilator of Y. Then, by Theorem
II1.5.19, Theorem III1.5.20 and its corollary II1.5.21, X is the dual of X, I'/X is the dual of Y, I'; = jo,

r = @r;,

r = Xo[/X).
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By extending the calculations done to get (II1.5.47), the following is valid: For any v € T there a unique
p=(p1,...,pn) € R™ such that
1(#) = 77
where - is the usual scalar product in R™. These set of p-s are going to be considered as the elements of T'.
Having said that, the annihilator X of Y are all p € R™™ such that e”* =1 for all € Y, this implies the
following computations:

p-z = 0
Y bi-& = 0
(o) - o
> b = o

That is why the conjugated momenta p, in the center of mass frame, are elements of the dual space X, as
in (I[.1.3),

X = f):(fj17ﬁ2)'~-7ﬁN>€RnN

N
Y pj=0eR" p =RIND, (IV.1.8)
j=1

Recalling the Plancherel Theorem I11.5.17, the Fourier transform is an isometry from L?(G) = L%(R"V)
onto L?(T') = L2(R™Y), with the Haar measures p in G and v in T, both being equivalent to the Lebesgue
Measure A in R™Y by Theorem II1.5.24 (generalized to the n-dimensional case) and Theorem I11.5.7. Thus
= aXand p = A, where these a, 5 > 0 must hold (II1.5.49) and also p has to take into account (IV.1.7).
There is no a unique choice of a, 5 > 0, but we prefer that both p and v share the same factor of 27, then

N

po= Qo] w2 | A
=1
N

v = (27T)_”N/2 l—ITn;n/2 A

Jj=1

We can drop the (27)7""/2 from the measure and consider it as part of the definition on the Fourier
transform, we put in these cases, where ); is the usual lebesgue measure in the j-th copy of R",

N

o= QmiAN, (IV.1.9)
j=1
N

v o= @ m; " (IV.1.10)
j=1

Therefore, we modify (I11.5.43) and the transition to the momentum representation is, for any ¢ € L'(X) N
B(X), where B(X) is like in Definition I11.5.15,

dp) = (2m) N2 / b(x) e % du(z), peX
X

ox) = (2m) N/ / $p) e du(p), reX,
X

We conclude, by the Plancherel Theorem I11.5.17, that Fourier transform maps unitarily L?(X) onto L? (X)
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Using the same reasoning the related measure and metric as in (IV.1.7), the measure v corresponds to

the following metric in T'.
1/2

N
1Bllle = |>_m; '}
j=1

COMPUTATION 1IV.1.2. Proof of (I1I.1.5).

PROOF.

We extend the definitions of @; and M, in (I1.1.6) and set Qn = @ and My = M.

The first part is motivated in Reed y Simon [36], pp. 78. and as a problem 52b. We give here the solution
with our notation:

We consider the change of coordinates given by (II.1.4). Additionally, we set

-1

En = — <Z mk> <Z mkf(/g> , (IV.1.11)
k=1 k=1

and we write X = (X1,...,Xy) and £ = (&1,...,&N).
Let

gZR”N N RnN
% o € (IV.1.12)

be the map that transforms the X into the £ coordinates given by (I1.1.4) and (IV.1.11). It is not difficult to
see that it is a linear function and its kernel is {0}, thus, ¢ is an isomorphism (bijective map) because the
dimensions of their domain and codomain are the same. Being g an isomorphism we have that ¢~ is also
an isomorphism, in particular it is a linear map, this linearity implies ¢g is an homeomorphism with respect
the usual topology in R™V. From our further calculations, its Jacobian is equal to 1. This establishes that
the map U : L2(R™Y) — L%(R™Y), given by U = 1) o g is unitary.

Let be f any twice continuously differentiable function in IR{?N . We want to find Vg, Uf, for each
j=1,...N. To do that we compute Vg = (Vx,,..., Vz, ). By the chain rule:

V& .. V&
V;(Uf . .

(Vflf’ .- '7V§Nf)(1><nN)

qu §N e V’EN gN (nNxnN)

N
0&; 0&;
E ( ?JV@f,..., ?J ngf)
= 0%, OxXN (1xnN)

because
Vik (fj'el) 85
Vi, (&5-€n)/ (e
where
0 ifk>j+1,
a¢, S
> =<1 ifk=754+1,,
6xk
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e;,i = 1,...,n, the canonical vectors in R", and I the identity matrix.
Thus, based on [74] page 240, the first part of (II.1.1) can be written as follows.

N - N N N L0 06
D2Cm)TIBE = = Y Y (2mi) T LSV - Ve,
k=1 h—1j—1 /=1 k Ok
, %1 0%; & &
j=1j'=1
Y S g
P ] oxy, 0% 7 J
NN 1 m m
1 My
= - 90 AT, ng vg’
];j’z:l 2m1 Mj Mj/ J
N N
Yy L% Ly,
k=2 j=h—1 ka 85(]C af(k 7 7
N N N
1 0&; 0
—9 Jj YSi .
ZZ Zkaaxkaxkv§ vﬁj/
k=2j=k—1j'>j
N m N 1
1
= *Z ZZ V& Ve, Zizm AV
; k
Jj=1 J=1j">j k=2
N N
DI +Z Z Vsk L+ Ve,
k:2j:k J k=2j'>k— 1
N N N m
k
22> g Ve Ve
k=2 j=k j'>j J J
N N N " N N 1
k
- _ZZZM.M.,ij Vﬁ;/"'z Z Ve_i - Ve,
k=1j=kj'>j 777 k=2j'>k—1"
N N m N 1
k
5 D) PN i
k=1 j=k J k=2
N—-1 N j m N—-1 N 1
k
- - ZZMMA,V& va'Jr ZM,VEJ VSJ/
j=1j'>jk=1""7" j=1j4'>5 7
N m N—-1 1
k
DI DY A
2 =€
=1 k=1 2Mj J = 2m]+1 J
N—-1 N 1 N—-1 N 1
= =2 > Ve Ve 2> 5V Ve,
j=1j4>j 7 g=14'>j5 7
N 1 N-1 1
_ ¢ :
; QMJ ; Qm]+1
N-1
1 1 1 1
OM T 2 (Mj+mj+1) &
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It is more convenient to replace the variable {x by the center of mass X¢ps. Because Xeopy = —€n, we
have:

(Pea)” = — Dy
Hence, by (I1.1.6),

N—-1 N
ST (@) =Y @2me) T et — (2M) 7 (Powr)’. (IV.1.13)
Jj=1 k=1

N—1 N-1
qx_;'_lMx —m '+1Q;
e - Y (Ll
=1 =1 g+t
N—1
N <Qj+1Mj + @i+1Mj41 — Qi+1Mj41 — mj+1Qj> E-¢
= J
= M1
N-1
_ Gi+1 M1 —mj1Q 41 B¢
= iYe ;
j=1 j+1

m;Q:
qy—]f/)E'fj—l
J

M= 1=

.
Il
¥

<.
||
v

Il
[]=
N /’Q\ S N\
3
QELQ
N—
=
Kol
| | .
SRANE
= M
/N
2
3
uiég
N—
S
g
N
3
e
=
>
ES

N j—1
ijj> ( 1 -
S (g e,
j=2 k_l( M; My
N N
_ m;Q Q Q; <
j=2 j=2
N—-1 N
i) ()
- > , — | B Xy,
h—1 j=kt1 M; M;j—y
N N
m;Q . QR Q ~
= Z(q] ]\})E ]JerJ(MZM])E j
7j=1 Jj=1
N—-1 N
myQk 1
Y mEes Y (- ) (5
j=1 k=j+1
N
m;Q -
_ Z<qj _ 7l )E %;
7j=1
N—-1 N
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N
m;Q .
= > (o) e
=1
N—1 N
~ Q Qj mEQy 1
FmE |5 gp - 3 (@@ - )
—1 J k=
J= =j+1
N
m;Q -
- Y (052 e
j=1
N—1 N
.| Q  Q ( mk) Qk Qr-1
+Y mE-x; | - 2~ 1——& +
Z_; ! ]{M i kz My ) M~ My
Jj= =j+1 k=j+1
N N—1 I N N
_ m;Q - .| @ M1 Q Qr-1
B Z(qj_ M )E'XJ+4 mik X M Z My My Z k-1
Jj=1 J=1 L k=j+1 k=j+2
N N—1 i N N
_ m;Q - e Qr Qr—1
= S0 E)E R e | Y e Y e
j=1 Jj=1 L k=j+1 k=j+2
N N-1 [ N1 N-1
m;Q - - Qr Qk
- 3 (o) Ex e T aps |- Y By &
= =1 | k=il F k=g R
N N
- Sums ey
=1 J=1
Therefore
N-1 N
GE-& =) (g —m;Q/ME-%;. (IV.1.14)
j=1 J=1

By (IV.1.13) and (IV.1.14) we obtain (IL.1.5).

PROPOSITION IV.1.3. The passage from the T; to x; variables.

PRrROOF.
We turn our attention, now, to the change from the variable with ™ to the ones without. Let us prove,
using (I1.1.9) and (I1.1.10) that

X=Xy := {(X,Xg,. .. ,XN) S Rn(N_l)},

We consider the change of coordinates given by (I1.1.9) and (II.1.10).
Let

h:X — RMNV-D
X (X,Xg,...,XN) (IV115)

be the map that transforms the x in X into the {x;}3<;j<ny41 coordinates given by (II.1.9) and (IL.1.10).
It is not difficult to see that it is a linear function. It is one to one because, if X,y € X such that, for all
3<j<N,

y2—y1 = Xz —Xi,
- muyi+meys o muXg + meXo

it = %

mi + mo mi1 + mo
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Then
Y2 — X2 =y1 — Xy,
and, for all 3 < j < N,

- miy1 +meys  miXy + meXp

Yim% = my + mo my + mo
o oma(y1 — X)) +ma(Y2 — X2)
o m1+m2
= y1—X1.

The condition Z _,m;(¥; —%;) = 0 implies that y; —%; =0, forall 1 < j < N.

Therefore, h is an isomorphism (bijective map) because the dimensions of their domain and codomain are
the same and it is injective. Being h an isomorphism we have that h~! is also an isomorphism, in particular
it is a linear map, this linearity implies & is an homeomorphism with respect the usual topology in RN =1,

To compute the Hamiltonian in the z; variables we have to define another mapping g that can be seen
as an extension of h given in (IV.1.15). To take advantage of the similarity between the &; and the x;
coordinates we introduce a new set of variables:

VAN = X,
z; = Xj+112§j§N_17
N = gNa

where x, {x;}3<;<n are the coordinates given by (IL.1.9), (I1.1.10) and &y is defined in (IV.1.11). The
mapping g is defined as follows:

qg: RHN _ RnN

X +— (z1,...,2ZN) (IV.1.16)

For the same reasons as h, ¢ is an homeomorphism with respect the usual topology from RV to itself. By
means of the map U : L2(R™Y) — L2(R"Y), given by Ur) = 1) o g we make the change of variables. Because
g is linear, we can take U as a unitary map by adjusting the measure in the copy of R™" considered in the
codomain of U. It is important that U is unitary in order to preserve probability when considering quantum
states, i.e., the change of variables should not change the probability of finding the particle in the Universe.

Let be f any twice continuously differentiable function in R™V. We want to find Vi, Uf, for each
j=1,...N. To do that we compute Vg = (Vg,,..., Vz, ). By the chain rule:

Dz,z1 ... Dzyz
V;(Uf = (Vzlfa“'aVZNf)(lan) .
Dsx,zy ... Dszyzn (nNxnN)
N
0% 0z
= Z( ]VZ ...,aNJVij>
= XN (1xnN)
where
vXk (ZJ el) az'
D;(kZ] = - T)E;Inxn,
Vik (Zj en)
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and
-1 ifk=1,j5=1,
. oM if1<E<2,2<j <N -1,
a?j = <1 ifk=j+1,1<j<N-1,
g 0 ifk£j+1,3<k<N,1<j<N-_1,
—5F if j =N,
e;,t =1,...,n, the canonical vectors in R, and I the identity matrix.

Then the free Hamiltonian without considering the electric field in (I1.1.1) is

N p? NN X 0z; 0z;
k _ 9 —1 Y4y Y4, .
Z oMy ZZ Z( ) 0%y 0% Vz; - Vaz,
k=1 k=1 j=1j/=1
N N
8Z‘ 6Z;/
— _ 2 —1 J J
Z Z( 1) 0%, 0%, Ve, VZ]’
Jj=1j'=1

|
M=
M=
o
]
Q
[\%41
Q
l%{z
<]
N
<
&

<
Il
—
<.
I
—

|
M=
M=
-'MZ
o
T
k,N
<]
&

k=3 j=1j5'=1
N 2 N-1 N
Oz 0z; 0z
_ 7}: -1 j Z —19%Z; 0Z;
= (le) (8~1> AZ] 2 : 4 (2 1) ail 85{1 VZ] VZJ/
Jj=1 Jj=13j'>j
N 2 N-1 N
Oz 0z; 0z
= (2my)7! L) NAg —2 2mg) =L =
;( ) <83~<2> ” j=1 J;J( ) 0%y 0% Va;  Va,

I
[]=
[]=
o
3
L
N
Q| Q
Y| N
> |
S~
[\
N
I
[N
=2
M7
[]=
o
L
Q| Q
Q| Q
<]
N
<]
N

-
Il
w

-
I
-

— aZ y az -7 B 8z ) aZN
) 2 1Y4; j 9 5 . ’
z—:2 Z( ) 0x1 0% VZJ Va, — ( ) 0x1 0% vZJ VZN
=2 73'>) =
0z, 0z N-1 97 Oz Ozn Oz
_ -1 1 71 _ 1 j j B . N 7N
(2my) %5 0%5 Nz, Z (2ms) s 0%, Az, — (2ms) 5% 5 .
Jj=2
N—1 90 Oa o o
_ _1 071 0Zj . B _, 0z, Ozy |
2]"2:2(2”12) 0%y 0%2 Va, VZJ/ 2(2m3) 0%y 0Xg Vz, - Vay
2N-1 Nt

— _,0z; 0z _,0z; Ozn
-2 (2mg) ' 2L L Vg, Vg, —2 ) (2mg) ' 2 Vgz. -
JZ::z Jz>:J 0%z 0%y = i=2
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N N-1 N
_ Z (2 )_1 OZJ aZj 2(2 )_1 6ZN 8ZN ”
k=3 j—1 55(k 8xk ’ prt 3)~(k 8xk N
N N—-2N-1 N N-—1
0z; 0z 0z; 0z N
-2 2my) 'L LV, -V 2 2my) 2L Vg -V
2 @) g g V% V2 2 Z( M) 5ROy VB VB
k=3 j=1 j'>j k=3 j=1
N—-1 m m
= -2 A L _Ng ———A
( ml) Z; ; 2(m1 _|_m2)2 Z; IM?2 Zn
5 ! A\ \Y% L \Y% \Y%
Ly A T
N—-2N-1 m N—-1 1 m
1 1
— Vg, Vg, — —Vgz. -V
— Z (ml +m2)2 % Z; z_: my +mo M = on
J=2 j'>j Jj=2
N—-1 m m
—(2 A 2 _Ng ———A
( m2) Z, ; 2(m1 +m2)2 Z; YW ZN
N—-1 1
+ Va, - Vz, +—Vg -V
=~ my + Mo Z Z M Z ZN
N—-2N-1 m N—-1 m
2 2
535> RIS Vs, Vi
2 J 37 M J N
i= =y A me) j= (ma+ma)
N 1 N m
=D 5 Ba =Y gaslas
P 2my, P 2M
N N-2N-1
—22 (ka) 1(0)VZJ VZJ-/
k=3 j=1 j'>j
N m
_ k
_2Z(ka) 1(1) M vZk 17 VZN
k=3
N—-1 m m
= —(@2m)7 A L Ny ———A
(2ma) Z zz:z 2(mq +ms)? Zi T op2 TN
5 ! \% \% L \% \%
- VAR Zj/ Z, ZN
oo’ mi + mo M
N—-2N-1 m N—-1 1 m
1 1
_ Vg, Vg, — - v
= JZ>] (mi+mg)? "% 7% g; matmy M H TR
N—-1 m m
—(2 Ny, — 2 _Ng — —=A
( mQ) Z, ; 2(m1 _|_m2)2 Z; IM?2 Zn
—|-N_1 ! \% Vz., + ! \% \%
Z, Zj/ VAR ZnN
oo’ mi + mo M
N—-2N-1 m N—-1 m
2 2
— Vz. Vg, Vgz. -V
<m1+m2)2 z; Z; Z (m1+m2)M z; Zn
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e N N-1
k
- o Z; — Z N2 Az + Z MVZJ- Vizy (IV.1.17)
j=2 <t k=3 j=2
N-1
1 1 1 1 1 mq mo
= ——|—4+— ) Az, — = + + AV
2 (m1 m2> % 32:22 2 [mj+1 (m1 + m2)2 (m1 + m2)2 =
N
Limi  mg >3 my 1 1
aaEtar T T | ) Ve Ve
. m N-2N-1
1 2
_ Vz. Vg,
L(m1+m2)*  (my +m2)2] JZ:Q 2 e
m m 17 %=
1 2
— — Vz. -V
_(m1 +m2)M (m1 —|—m2)M M:| Jz:; Z; ZN
N-1
1 1
— — Vz,-Vz,
mi + Mo m1+m2]j/z_:2 A VA
N-1 N-2N-1
1 1 1
= — — Ny, — — Vz. -V
1 Z . Z, ZNn Z; Z Y
2p12 = 241 7 2M (my +ma) o St !
1 Ny 1 N-1 N
= - — —ANx, — — A Vx, - Vx, (IV.1.18
2”12 X JXZ:B 2:”’] X 2M En T (ml + m2 = JZ>:] X; " VX )

It is important to remark that in (IV.1.18), there are neither Vx - V¢ nor Vx, - Ve, terms, as Reed
and Simon’s book [36] requires in the section named “Quantum scattering II: N-Body case”.
To change variables electric in the field part of in (II.1.1), we perform the following computations:

QX

N
> 4%, —
j=1

PROPOSITION IV.

N

N 1 N
IEVOILIEDS
k=1 =1

) (o mmn

N

o> m

Qmj
M

(-
)

m1Xy + maXa

)

N
> 4% -
j=1
N

> (o

j=1

Qm;
M

m1Xy + maXo

mi + meo

N
D4~
j=1

- mi + mo
_ Qmy —ma2 ~ ~ Qmo my ~ ~
= (Q1 M) s (X2 —%1) + | ¢2 i m1+m2(X2 X1)
N
Qm;
#3057 )
J=3
Qmimeo Qmm X al Qm
[ 1 1M2 j '
(o ) (o)
gami —qm al Qm
211 — 1 M2 j
= — = i ; 1vV.1.19
o x+§(qj )%, (v.1.19)
|

1.4. (I1.1.9)-(11.1.22) are true.
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PROOF.
We recall that p = —iV,. Besides, p; = —iV;;, must be true because p and x are conjugate variables
and so they are, p; and x;. By (IV.1. 18) and a dlrect computation we have that:

p = 2ui[Hy, x|, (IV.1.20)
pj == Q/.I/ji[Ho, Xj]7 ] == 1,. .. ,N. (IV121)

By (IV.1.28) and (IV.1.29) below, we can obtain (IV.1.21) for j = 1, 2. In general, we can construct momen-
tum operators by equations similar to (IV.1.20) and (IV.1.21). For more details, please check Berg [62].
Similarly, because p; = —iV3z,, we have that

f)j = 2mj i[Ho, )Ej}, ] = 1, .. .,N. (IV122)

Therefore, we have (I1.1.9) by substituting x := X3 — %; and (IV.1.22) into (IV.1.20). Equation (II.1.10)
is true by definition, if we substitute (I1.1.10) and (IV.1.22) into (IV.1.21) we obtain (II.1.11).

Considering that p; /15 is the velocity operator of the jth particle with respect to the center of mass of
the pair (1,2), pj/m; is the velocity operator of the jth particle and (p1 + p2)/(m1 + ms) is the velocity
operator of the pair (1,2), we obtain (IL.1.11). Moreover, x;,p;, j = 3,..., N, x and p satisfy commutation
relations. To see that, and without loss of generality, let us assume that n =1,

[xj, ;] = [Xj — (miX1 +maXa)/(m1 +m2), p;(Pj/mj — (P1 + P2)/(m1 + ma))]
ﬂr a1 Hj Hj
m; my +my mj(m1 +ma)

([x1, P1] + [%1, P2]) +

(%), pul + [%5, P2]) — (m1[x1, Bj] + ma[X2, P;)
M2
(m1 + ma2)
_ _MiTm2 +me 655 — . m i (015 + 025) — —1 i (m1d1; + mada;)

my + mo +m; my + mo +m; my +ma +m;
T (i) + T (i)
1+m2+m])(m1 +m2) (m1—|—m2—|—mj)(m1 —|—m2)
(ma +my)o1; + (m2 + mj)52j>
my + mo +m;

Tl
(-
{ ifj=3,...,N,

5 (X2, P1] + [X2, P2])

if j =1,
if j = 2.

m1+mz+m ’

m1+mz+m ’

x,p] = [X2—X1, p12(P2/m2 — P1/m1)]
= &[im p2] — @[5(27 pi] — &[5{1, p2] + &[ih pi] = Mz, M2y
mi ma my ma mi

If 3 <j,k < N,j# k then x; and p; are independent variables, so are x and p;, and x; and p.
In summary {x,xs,...xy} and {p,ps,...Px} satisfy canonical commutation relations. Please also see
Enss [16] equations 3.2 and 3.3, and equations 393-395 in Dollard [66].

Now, let us see why {p, ps,...py} is linearly independent is a set of N — 1 independent n-dimensional
variables relative to the center of mass frame. We identify the n-dimensional variables p;, j = 1,...,N as
variables in a (N — 1)n dimensional space as follows

P~ e, Dj~ Y Biiei—zmis, J=2,...,N, (Iv.1.23)
=1 =1
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where Py = (Pr,1,---sPkn) €ER", k=1,...,N, and e(;_2y4s, = 1,...,m, j = 2,..., N, are the canonical
vectors in RY=17_ On the other hand, we have

N N
P = | my'Patmi' Y By | =pa | (mit+myt) P2t mi Y b
j=2 j=3
- N
~ 2 ~
= S EE— i Iv.1.24
P2 + L+ ]z::gpj ( )

From (I1.1.11), (IV.1.23) and (IV.1.24) we get the wanted linearly independence. To prove that {x, x3,... Xy}
is linearly independent we use (II.1.11).

For the proof of (II.1.14), we note that vi = —vuj2/my and vo = viga/ms mean that in the center of
mass frame of particles 1 and 2, these particles have momenta equal in magnitude and are in exactly opposite
directions.

We commence with vy ;, for j =3,4,..., N :

vij = v;—vi=d;jv’ - (—Vopa/mi) = v?(d; + Vurz/(miv))
= v?(dj + Y12/ (mv)).
Similarly, for j = 3,4,..., N :
va,; = 0% (dj — Vpz/(mav)).
If (d; + Vi /(mav)) = 0, then |d;| = [Vu12/(mav)], ie. v = paa/(mid;). Thereby, if we ask v > p19/(mad;)

we have vy ; # 0. Likewise, if v > p112/(mad;) then vo ; # 0.
As a consequence we have that v;, = O(?), for 1 <j<kand3<k<N\. [ |

PROPOSITION IV.1.5. Inequality (I1.1.18) is true.
Proor.  First, we use (II.1.10)

- N - N - - 1 - -
X —Xi| = |Xp — ——(mM1X1 + MoXg) — |Xj — ——— (M1 X1 + meX
= %] = |81 = (ko) — [ — e (mka m”
:|Xk_xj‘§|xk‘+|xj|a jak:]-v"‘»N7
and
X1 =X — —————(M1X1 + MaXg)| = ———— |m1X1 + moX1 — (M1X1 + MaX
x1] 1m1+m2(11 2X2) mler2|11 2X1 — (mixy 2%2)|
ma
= ——[x[ < [x],
mi + meo
x| = |% (11 + ma%a)| = ———— 1%z + maKs — (m1%; + M)
Xo| = |Xg — ———— (11X meXs)| = —— |m1X meXg — (M1X meoX
2 2m1+m211 2X2 R 1X2 2X2 1X1 2X2
my
= x| < x|
my + me

At this moment, we estimate the left hand side of (I1.1.18). Because ¢o € S(R™N-1), we have for any
1<, <k<N:
(14 (Ixk] + [%51)2)° v (%, %3, ..., xn)||, f4,k=3,...,N,
(1+ (|xi| + 1x[)2)° by (5, x5, ..., xn)|[, fj=1,2andk=3,...,N,
(1+ [x12)* v (x,x5,- -, xn) |, if j=1and k=2.
Cj
C.

IN

(1 + % — %5 °)*®y ||

IN A
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We can think of p;;, the momentum as an operator of the kth particle with respect to the jth one,
as being a multiplication operator in the momentum space and as a derivative, with respect the relative
coordinate of the kth particle with respect to the jth one, in the configuration space. This justifies (II.1.15).
The relative velocities do not depend on the frame of reference chosen to compute them, that is why (I1.1.16)
should be true. To prove (II.1.16), by an easy permutation of the change or variables, where now x := ), —Z;,
(IV.1.18) can be written as:

N p2 1 3'#5.5' #k 1 1 {5330 {j,k}=0

ko= Ax — Nx., — —Ne, —C Vx, Vx,. IV.1.25
Zkal 2 Z 2y aM e Z Har o R ( )
klzl 1§J’SN - j“#]l

From (IV.1.25), we get (IV.1.26) in a similar fashion as (IV.1.20) was gotten:

pjk: = Qﬂjki[H(h i’k - ‘%j]v (IV126)

from which it follows the first equality in (II.1.16). The second equality can be derived from (II.1.11).
|
We have to notice that, for j = 3,..., N, x; and p; are the relative position and the relative momenta

operators with respect the center of mass of the pair (1,2). Then, we have that x; = iVp,. To prove (I1.1.21)
we use (IL.1.10) to get X — X; = X}, — X;.
Let us take k=3, ..., N.

Xp— X1 = X — (miX1 +maXa)/(my + ma) + (m1Xy + maxa)/(my +ma) — X1
ma ~ ~ Hi12 .0 Hi12 . 0
= X+t —Xe— X)) =Xp+ —X=1—+ —1—,
"y + ma (&2 = %) = my op, mi Op
Xy — X2 = X — (MaXq +maXa)/(m1 + ma) + (MaXy + meXa)/(mq +ma) — X2
o M (g w) mx o M2 Oz 0
mi + mo mo op, mg Op’

Hence we have proved (11.1.22).

COMPUTATION 1V.1.6. Determination of nji, for 1 < j < k < N wused to define the support of the
functions fjj, in (11.1.19).

PrOOF.  Let us rewrite (I.1.19). By the use (II.1.16), there are functions fj, € C§°(By,,n,,) such
that, forall 1 < j <k < N,
G12(P — 1112V)P3(Pg — 3V3, - -, Py — UNVN)
= ik (sel(Pr/ 1 = vie) = (pj/ 115 = v5)]) G12(P — 112V)P3(P3 — p3Vs, ..., Py — hnv). (IV.1.27)
We want to find a R > 0 such that if g € R" \ B, g, then fi2(q) = 0. Let us analyze the following cases:
(a) (k) = (1,2).
By (IV.1.27):
P12(P — p112V) 93 = fi2 (P — p12V) ¢12(P — p12Vv)P3.
From here, we see that we can choose supp fi2 such that supp leg C supp fi2 C Bu,,y- Thus R =1.
(b) (4:k), J <k;3<k<N.
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Here, it is important to realize that p; and p, are the momenta operators in the center of mass frame
of particles 1 and 2, respectively. Thus, by physics arguments, p = f%pl = %pQ. Let us verify
these equalities, by (II.1.9) and (IT.1.11):

mi mims ~ ~ mi ~ ~ -
P+—pP1 = —(P2/m2—p1/m1)+ —p1(P1/m1 — (P1+ P2)/(m1 + mg
e = (b )+ =B/~ (B1 + B2)/( )
o mi - mo - + - mi ~ mi -
= m1+m2p2 m1+m2pl P1 m1+m2p1 i+ o
p = —@pp (IV.1.28)
M1
mo mimso - - mo - ~ ~
P——P2 = ——— (P2/m2 —pi/m1)— —p2(P2/m2 — (P1 + P2)/(m1 + ma2
P i ) =2 a2/ ma — (B + B2) )
- ma - mo - - n meo ~ + mo ~
= m1+m2P2 m1+m2p1 P2 m1+m2pl mlerzpz
m
p = JPT (IV.1.29)
M2

In the particular case where j =2, k= 3,..., N, (IV.1.27) and (IV.1.29) imply that

P12(P — 112V)d3(Ps — 13V, ..., Py — LNVN)

= for (2l (Pi/ i — Vi) — (P/m2 — Vi12/m2)]) d12(p — 112V)d3(Pg — p13Vs, - .., Py — UNVN).

We want for, = 1 for p;, p such that (ﬁlg(p — p12v) and qgg(p?, — 13V3,..., Py — UNVN) are supported.

i.e.
|p — piav| < pa2n
pok |P/mo — piav/ma| < (porpiz/ma)n,
Py — meve| < g
pok [P/t — Vil < ok,
Then

pak |(Pr/ 1 — Vi) — (P/m2 — vz /ma)| < por(1 + npiz/mz).

Similarly when j =1, k=3,..., N, ¢312(p — p112v) and (ﬁg(pg) — [13V3,..., PNy — UNVN) are supported

if
pak |(Pr/ e — Vi) + (P/m1 — vz /ma)| < par (1 + npaz/ma).

Inthecase 3<j< k<N (]A512(p — p12v) and ¢23(p3 — [3Vs,..., Py — UNVN) are supported if

i |(Pr/ ke — Vi) + (P /15 — v5)| < 240

By setting 71; = 2(1 + nuia/m1), n2; = 2(1 + nuia/me) and, for 3 < j < k < N, nj, = 4, we define,
for 1 <j<k,3<k<N, fir € C5°(Buypn;.) with fix(a) = 1if |a| < prnje/2.

II Dynamics

Next, we turn our attention to the subject of self-adjointness of the Hamiltonian in (I1.1.41) and why we
impose some restrictions to the potentials involved wherein.

LEMMA 1V.2.1. Let A and B be operators in a Hilbert space. If b is any non-negative constant, then A
is (B/b)-bounded with relative bound ab if and only if A is B-bounded with relative bound a.
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PROOF.  Let ¢ € D(B). Then, there exist o and 8 non-negative such that

[Ad]| < || Bol| + 8|6l = abdl[(B/b)d|| + Bl o]l
The result follows. [ |

LEMMA 1V.2.2. Assume © — V(x) is a real-valued function defined in R™ with x = (x1,...,2zy). If
(1 + |z1|)V is relatively bounded with respect to the Laplacian with relative bound a, then x1V is relatively
bounded with respect to the Laplacian with relative bound not greater that a and V is relatively bounded with
respect to the Laplacian with relative bound not greater that a.

PROOF. By assumption, there are non-negative real numbers a and 3 such that
1L+ [z )Vg||* < a® |As]* + 5% (¢l Vo € D(D), (Iv.2.30)

with a being the infimum of all « such that (IV.2.30) is true. Take ¢ € C§°(R™) then

eVel? = [ dele Vo)
< [ de (U PV @) = (1 Vel
< a®||Agl® + 67 |l¢l®, (IV.2.31)
and
ol = [ deleaPlv @)t
< [ o V@) = |0+ Vel
< a?l|agl + 52 . (IV.2.32)
From (IV.2.31) and (IV.2.32) we obtain the result. [ |

Now we put Lemma 2 in section 8 “Electric Fieds” in Simon [82] which we can use it to justify the
hipothesis imposed on the potential by Adachi and Maehara [2]. We have included the mass m and the
magnitud of the electric field E to adjust the lemma for our purposes.

LEMMA 1V.2.3. Let us define Hy = —A/(2m) — Exy where m and E are non-negative real numbers.
Suppose that V = Vi + Vo with Va bounded, Vi /AA-bounded with relative bound a and Vixzy A-bounded. Then
V is Ho-bounded with relative bound 2ma.

PROOF.  Recall that the Laplacian A is represented in the momentum space as p* = 3 p?. We first
observe that

0
Op1
0

= i pl(A/(Qm)Jrib)l} (Ho +ib) ™"

z [(=A/(2m) + ib) "' (Ho +ib) ']

[(=A/(2m) +ib) ™" (Ho +ib) ']

op1
= i [-1(p*/(2m) +ib)*(py /m)] (Ho +ib) ™"
+(=A/(2m) + ib) " [w1(Ho +ib) '] .

+(=A/(2m) +ib) ! [z‘a(Ho + ib)l}
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Then
~AJ(2m) +ib) tey(Ho +ib) ™' = x1(=A/(2m) +ib) " (Hy +ib) ™
+i(py/m)(=A/(2m) +ib)"2(Hy +ib) "', (IV.2.33)
Now we decompose Vi(Hg +ib)~1 by (IV.2.33) and estimate it by using Proposition II1.11.5 as follows
Vi(Ho+ib)™t = Vi(=A/(2m) +ib) " (=A/(2m) +ib)(Hy + ib)~*
= Vi(=O/(2m) +ib) " (=A/(2m) — Exy +ib)(Hy + ib) ™"
+Vi(=A/(2m) +ib) " Exy (Hy 4 ib) "
= ( Af(2m) + Z'b)*1 + EVi(—=A/(2m) + ib) " ay (Ho + ib)
= —A/(2m) +ib)"t + EViz (=A/(2m) +ib) " (Ho + ib) !
—HE Vi(=A/(2m) +ib) " (py /m)(—A/(2m) 4 ib) "' (Ho + ib) ™"
Calculating the norm:
IVi(Ho +ib) | < [Vi(=4/(2m) +ib) | + E|Vizy (=A/(2m) + i) || | (Ho +ib) |
B|[Va(=2/@m) +ib) 7 [ [[(py/m)(=A/(2m) +ib) [ [|(Ho + ib) |

Jim [[Vi(Ho +ab) M| < lim [Vi(=A/(2m) +ib) "M + B | lim [Vizy(=A/(2m) +ib) |

+ lim IVi(=L/(2m) +ib) | Jm [(py/m)(—p?/(2m) +ib) ||
x lim || (Ho +ib) 71|
= 2ma+F |lim [Vizy (=) (2m) +ib) 7|

+ lim [Vi(=A/(2m) +ib) 1 (0)| (0)
= 2ma.
Finally, by (I11.11.69)
Jim [V (Ho +ib)~H | < 2ma+ lim [Va(Ho +ib)~"|
< 2ma.

|
In Lemma IV.2.3 we take V = V; + V5 because there are bounded operators V5 such that Voxq are not A-
bounded. Example: the identity operator. Let us take y = (y1,0,...,0), ¢ € Cg° with supp ¢ € By, |/2(0).

Recall that 7y¢(x) = ¢(x — y).
[dslerote - P

_ / dz|(z1 + 1) |6(2)]?
Bly,1/2(0)

/ dz | |y2] — | ? 16(2)
Biy,1/2(0)

[ e
Bly1/2(0)

(Wi /D|6]I> — oo as |y1]| — oo.

w1 (7)1

2

Y
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On the other hand, by Proposition I11.4.6,

AmOl = 1P F o)l = [p2(re) || = %P3
o 1/2 ) 1/2 )
_ (/ dp|p2e-%<p>|2) :(/ dp|p2¢><p>|2) _ Ip%|
)

Hence, ||A(1y¢)]| is constant whereas ||z1(7,¢)|| goes to oo as |y1| goes to co. That is the reason why Iz is
not A-bounded.

At this moment we are prepared to justify the hypotheses over the boundedness of the potential given
in Definitions I1.1.1 and II.1.2 that allow the perturbed Hamiltonian to be essentially self-adjoint and thus
we can apply Stone’s Theorem in order to define the propagator e~ with H given in (I1.1.37). We will
assume that the relative charge ¢f, given by (II.1.6), is not zero when Jacobi coordinates are based on every
pair 1 < j < k < N. The case where ¢f is zero is similar and simpler. We define

Hip = (211)7'pT + ¢ E - &1, (IV.2.34)
thus we compactly reexpress (II.1.7) as
Hy=H,®I+1® H,.

First we take ¢; € C5°(R™), ¢ € Cg°(R(™~DN). The beauty of having based Jacobi coordinates is that
this procedure applies to all pairs. Let us consider the potential V® given in (I1.2.1). Therefore,

Vig (e —%5) = Vi? (§) @ L.

By Definition I1.1.2 and Lemmas IV.2.1, IV.2.2 and IV.2.3 there exist non-negative constants a; and J; such
that

(Vi@ D@ @)l = Viegull 19l

|l [ Hizgull + Billvll ||

al|(Hiz @ I) (g1 @ 1) + Billdr @ |

al|(Hiz @ I +1® Ho)(dr @ )| + Billon @ il + aull g @ Hon|

aullEo(dn ® )l + (B -+ aall Fotsll /) 11 @ 1,

IN

IN

IN

where the infimum of all such «; is zero by assumption in Definition I1.1.2.
Taking linear combinations of the ¢; ® v there exist a and 3 such that for any 7 in a dense set of L?(X)

IVisnll < aellHonll + BjxlInll-

We can conclude that the Ho-bound of V}}7 is zero. This applies also to V and lek as in (I1.2.1) because they
are bounded. Thus, summing up and using the fact that for all 1 < j < k£ < N, Vﬁg and Vfi are relatively
bounded with respect to Hy with relative bound zero, we obtain that the operator V, given in (II.1.41) is
Hy-bounded with relative bound zero and, hence, H, also given in (I.1.41), is essentially self-adjoint by the
celebrated Kato-Rellich Theorem II1.11.6. Therefore we can invoke Theorem III1.8.1 to get a propagator.

PROPOSITION 1V.2.4. The following estimations are true for y = (y1,...,yn) € R™.
oo < lylp < n'/P|y|s, (IV.2.35)

with p > 1 and [y[h =327, y?.
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ProoF.  First inequality follows from |y|, > |y:|, V 1 < i < n. For the second:

Yoo = yil, V1<i<n

n
nlyl% > Yl
=1

Y

7yl [Ylp-

|

The following Lemma is a slightly modified version of Lemma 3.3 in Hérmander [25]. It is used to add
more regularity to long range potentials.
LEMMA 1V.2.5. Let V € CFR") and assume that |D°V(x)] < C(1 + |z|)~™UeD |a| < k, where
m(0),...,m(k) are positive numbers, and suppose that 0 < § < maxg<j<k m(jj)fl, 6 < 1. Then, one can
split V. =Vy + Vs, so that for some € > 0, |Vy(x)| < C(1+ |z|)~17¢, thus V; is of short-range, and for all c,
|DVa(z)| < Co (1 + |z) =™ 1D where m/(§) = max;<j.i<k (m(i) + 6(j — i)).
COMPUTATION 1IV.2.6. Decay of the second, third and fourth derivatives of the potential VO given in
(I1.1.25).

PROOF. Let us assume (I1.1.24) and consider 1 < ¢ < n. Then, by the fundamental Theorem of
calculus and the fact that V% !(y) — 0 as y — oo :

1. Case y; <0
0,1 v 0,1
VO iy, ym)| = ’ OV Y1y Yie 1,80, Yitds -+ Yn) &
— 0o
Yi 0.1
< / |6ZV ' (yla'"ayi—17€i7yi+17"'ayn)|dfi
Yi
é C/ (1+ |(y177y2717£27y7,+177yn)|)771 d&
Yi _
< of asleh g
Yi -C Yi
- C 17i_71di: 172_—’)’1-"-1
J A e T R
= g Q)™
2. Case y; >0
’VO,l(yla"'vyn” = / 81'V0J(y17"'ayi—17€i7yi+17~--7yn)d£i
Yi
< / 0V (Y1, vt & Yirts - yn) | dE
Yi
< C/ L+ W1 Yie1: &is Yigrs -5 yn)]) T dE
Yi
< C (L+ &)™ dés
Yi
< of areyra=—Ccare
> " 7 7 7,_)/14»1 7 i

¢ ~(n-1)
— 1 i Y1
g ()



Dynamics

92

Thus, by (IV.2.35)

|V0’l(y17'- '7yn)|

IN

|V0’l(y17"'7yn)| <
<

That is why we can assume that

C

C

A+ ly) Y vi<i<n

( n —(71—1)
: N—nm=b _ .
min (1 + |y;|) C <1 + 121%}(” |yl|>

1<i<n

C

A+ ]ylee) ™V <c@+y)y .

VO < C (a8 <,

with 3/2 <y < 2.
Let us define:

Let us apply Lemma 3.3 from Hoérmander

m(0) = =~y —1,

m(l) = .
ax m(j.—l _ m(l) —1
0<j<1 j 1

= m—1L

Let ¢ be such that 0 < 6 < 73 — 1 and 0 < 1. This is equivalent to choose an 0 < ¢y < 1/2 with
d=e+1/2,then0<e<y —3/2<1/2.
Now we compute the new exponents

m'(0)
m'(0)

(1)
m(0) +d
m(1)+0

m’(1)

max_(m(i) +6(0 — 7))

i<0,i<1
m(0)
7 —1
max (m(i) + (1 — 1))

i<1,i<1
M—1+e+1/2=v—(1/2-¢€)
71

Y1-

So far, we have recovered the same exponents we already had, now we will obtain the new ones. Because

2¢p < €+ 1/2:

Because 3ep + 1/2 < 2¢p + 1 :
m'(3)
m(0) + 39
m(1) 4+ 26
m'(3)

max (m(i) + (2~ 1)

v —142(eg+1/2) =71 + 2¢

71+ (0 +1/2)

71+ (€0 +1/2)
e0+3/2+e0+1/2=1+2(eg+1/2).

max (m(i) + 0(3 —i))

i<3,i<1

vy —14+3(eg+1/2) =71 + 36y +1/2

M +2(e0 +1/2)

Y1+ 2(e0 +1/2)

€o+3/2+2(co +1/2) = 1+ 3(co + 1/2).
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Because 4eg + 1 < 3eg + 3/2:

m'(4) = Jax (m(i) 4+ 6(4 —1))
m(0)+46 = vy —1+4(eo+1/2) =71 +4eo+1
m(1)+36 = m +3(co+1/2)

m'(4) = 7 +3(e+1/2)

> e +3/2+3(e0+1/2) =1+4(ep + 1/2).
Therefore, we can additionally assume without loss of generality that

020V < C (14 [o]) Il g < ag| <4, VO e CHRM).

|
COMPUTATION 1V.2.7. Decay of the third and fourth derivatives of the potential VE given in (11.1.30).

PROOF.
‘We know that
|85VE,1

with 0 <vyp <1/2and 1 —~vp < p <1
Let us define:

<C<z >—’m—u\5\’ 18] <2

m(O) = 7D,
m(l) = YD t+ U,
m(2) = yp+2u.

m(j) —1 max{m(lil m(2)1}

0<j<2 j ' 2
2u—1
_ maX{’YD"‘M‘LW}
oo F2u -1
5 .
Because
+2u—1
%*(’}/DJrufl) = (Wb+2u—1-27p—2u+2)/2
— (=)
> 1/4
> 0.

We have to choose  such that 0 < § < 22F24=1 and § < 1. Let § be equal to /2. Clearly 0 < & < 1. To
prove that § < %2“_1 we do the following estimation:

Yy +p > 1
p+2u—1 > 14+pu—1
2 —1
o t2p =1 11/2 = 6.

2
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Now we compute the new exponents

m'(0) = Jax, (m(i) 4+ (0 — 7))
m'(0) = m(0)
= 7D
m'(1) =  Joax (m(i) 4+ (1 —1))
m(0)+46 = vp+p/2
m(1)+0 = ~vp+up
m'(1) = p+p
m'(2) = JJax (m(i) 4+ (2 —1))
m(0)+20 = yp+p
m(l)+0 = ~p+3u/2
m(2)+0 = yp+2u
m'(2) = yp+2pu

(@) = mas (nli)+(3-9)
m(0)+30 = ~p+3u/2
m(l)+20 = ~p+2u
m(2)+06 = vyp+5u/2
2+3
m(E) = e+l
/ B . .
W) = mas (i) +0(4—9)
m(0)+4d = ~yp+2u
m(l)+30 = ~p+5u/2
m(2)+20 = ~p+3u
2+4
m'(4) = p+ 5 M

Therefore, we can additionally assume without loss of generality that

2+18]

|0PVEY < C < x>0 T2 3< |8 <4, VELeCYRM).

|
Proposition IV.2.8 below has been taken from Cycon et Al [64]. Some computations has been added to
render the proof even more clear. This proposition proves (I1.1.31).

PROPOSITION 1V.2.8. Let Kq be the closure of p?/(2m) + qEx1 on S(R™). Then Ky is self-adjoint,
and the time evolution is

67it(p2/(2m)7qu1) _ einxltefit3q2E2/(6m) efiplthQ/(Qm) efitpz/(Zm)
- )

fort eR.
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ProoF.  Consider the decomposition L?(R") = L?(R) ® L?(R"~!), according to the coordinate de-
composition p = (py,p, ) and x = (x1,X ), in configuration space as well as in momentum space. Let ¢(p)
belong to S(R™). Since z acts as i0/9p1,

¢~ iPL/(6maE) (g By ) 1/ (6maE) gy —  —ipl/(6mgE) (in@/@pl (eipi/wmqm)
+igEe™i/(6mak) 8/8p1) o(p)
= PO (jgB(ip?/(2mgE))e Pt/ i)
4/ 6m8) 4 ) o(p)

= (igE(ip?/(2mqE)) + qBx1) 6(p)

e~/ (6maB) (p2 J(9m) — qEay) 1/ OmE) g(p) = (p? /(2m) + p?/(2m) — ¢Ba1) ¢(p)
— Kod(p). (IV.2.36)

So, we have that K is unitarily equivalent to the operator (pi/(2m) +p?/(2m) + qul) which, by Fourier
transform in the z variable, in its turn becomes a multiplication operator in the (z1,p,) variables. We
conclude that Ky is self-adjoint.

Let 1 (x) belong to S(R™) and ¢ € R. Since p, acts as —id/0x1,

Biinmlt P, einmlt w(x) _ efinzlt (7ia/8$16inrlt + ein’zltpl) ’l/)(l‘)
= (qBt+py)¥(x),
then, in S(R™) A A
e*’Lqult o equX1t =p; + th (IV237)

By (IV.2.36) and (IV.2.37) and functional calculus, we have in S(R™)
e—itKo _  ,—ip}/(6mqE) efit(pi/@m)quxl) oiP1/(6mqE)

e~ iP1/(6mqE) JitqEx1 ,ip}/(6mgE) ,—itp? /(2m)

—  pitaBxy g—itqEx e—ip?/(equ) citaEx: eip‘;’/(ﬁqu) e—z‘tp’j/(zm)

pitaEx1 ,—i(p1+qEt)*/(6mqE) ,ip]/(6mqE) ,~itp? /(2m)

pitaBx1 ,—i(p}+3piaEt+3¢> B>t p, +(¢B1)°) /(6mqE) ,ip}/(6mqE) ,—itp? /(2m)

eith’xl e—int/(Qm,)p1 e—itquEz/(Gm) e—itp?/(2m) e—itpi/(Qm)

_ einxlte—itquEz/(Gm)e—iplthZ/(Qm)e—itpz/@m)

Finally we take closures on both sides of the equation. [ ]

PROPOSITION 1IV.2.9. Relations that are obtained under translation in configuration or momentum
space. Proof of Equations 11.1.32, 11.1.33, 11.1.34 and II.1.35.

PROOF.
Let us denote by F and by " the Fourier transform in R™. Let us take ¢ € L'(R"), and g € L>(R"). We
note that g (ry¢¢) € L*(R™). Then, by proposition II1.4.6,

9@ +vi)p(z) = 7_vi(9(z) (ved(2)))
= F v (g(@) (rveg(2))))
= F PV Fg(@)F I F (rvid(x))
= FlePVig(x)e PV IFH(x)
glx +vt) = Fﬁleip"’tg(x)efip"’tf
Fglz +vt)F 1 = ePVig(x)e PV

g(x + Vf) _ eip~vtg(x)e—ip.vt
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and
glp+mv)g = Flglp+mv)Fe
= F o (90)0p — mv))

= F o (F0)dp —mv))
= ].‘—1 (e—imv-x.}——lg(p)(i(p _ mv))A
= R ) FF i d()

= e*"mv'xg(p)ffl (ezmv-xgb)A

e g(p)e
Then, in L*(R™) N L?(R™) which is a dense set in L?(R"), one has that g(x + vt) = ePVig(x)e PVt and

imv~x¢.

g(p +mv) = e "™MVXg(p)e!™V* in particular
X+vt = ePVixge PVH (Iv.2.38)
p+mv = e "MVXpemvix (IV.2.39)
Now, Let ¢ € Cg°(R™). We compute as follows:
2 o2 ~ .9 o2 i ~ . _itn2/(2m . ~
(itP?/(2m) y o=itp?/(2m) Gpy = itp?/(2m) (e,np /@m0 d(p) + i~ P/ M) (_itp /m) ¢(p))
= (x+tp/m)d(p).
Then, in C3°(R") :
e—itpz/(2m) (X + tp/m) eith/(2m) - x
eitp®/(2m) (x) e~/ m) — x4 tp/m. (IV.2.40)

This means that the operator x 4+t p/m is diagonalizable.
By functional calculus, i.e, by (IIL.7.64), (IV.2.38), (IV.2.39) and (IV.2.40) we obtain (II.1.32), (II.1.33)
and (I1.1.35):

fx+vt) = ePVif(x)e PV (11.1.32)
fp+mv) = e ™V f(p)e™v™, (I1.1.33)
fx+tp/m) = e'tp/(2m) ¢ (x) e~ itp/(2m) (I1.1.35)

We remark that in (II1.7.64), f can be any complex measurable function, not necessarily bounded nor
continuous.

Finally, by (I1.1.33) we get (I1.1.34),

e—imv'xe—itpz/(Qm)eimv-x — e—it(p+mv)2/(27n) — e—it(p2+2mv'p+m2v)/(27n)
e—itp2/(2m) e itvp e—ith2/2
efip~vt€7itp2/(2m)e*imUQt/Z. (IV241)
|

IIT Baker-Campbell-Hausdorff Formula

The Baker-Campbell-Hausdorff formula is used in Valencia and Weder [84] (I1.2.34). Therein, we mention
that our source is Enss [14]. In this section, we will clarify what Baker-Campbell-Hausdorff version we are
using and the reason why we need it.
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We recall that x and tp/m do not commute in Quantum Mechanics. For this reason, in order to
compute e*+HtP/M)d e uge (I1.1.35) with the function f equals the exponential function: e¢74®*. Then, we
apply (IV.2.41).

eiTa (xHtp/m)  _ itp?/(2m) jiTax o —itp?/(2m)
—  eitp?/(2m) j—iT(=q)x —i(tT/m)p®/(27) iT(—q) X yiTg-x

(i1P?/(2m) =i+ (—a) (t7/m) ,—i(t7/m)P? / (27) , —iTa? (i /m) /2 yiTa

eiTq'(p/m)tez'que—iTzqzt/(2m). (IV342)
Our (IV.3.42) is equivalent to equation (13) in Enss [14], taking his velocity operator as p/m.

LEMMA IV.3.1. Let V be a real function with domain R™. If V(x) and its first and second order derivatives
are continuous and decay towards infinity, m > 0 and t is real, then

Vx+tp/m)-V(tp/m) = /Ods {(VV)(SX—}—tp/m)-x—&—;:TL(AV)(sx—i—tp/m) . (IV.3.43)

ProOOF. Let us denote ~ as Fourier Transform. Because V is measurable and bounded, and both
x +tp/m and t p/m are self-adjoint operators in S(R™), we can apply functional calculus:

1 .
_ n i(x+tp/m)-q
Vx+tp/m) = CORE /d qV(q)e (Iv.3.44)
_ n. i i(tp/m)-q
V(tp/m) = CORE /d qV(q)e . (IV.3.45)
By (IV.3.42), for any 0 real
ol (0x+tp/m)-q _ itp/m-q ibx-q ,~igkq® (IV.3.46)

Therefore, by (IV.3.45) and (IV.3.46),

1 o . »
V(x+tp/m)—V(tp/m) = @2 /d"q V(q)ettP/ma | gixa etz 1} . (Iv.3.47)
™
By Duhamel formula:
, 2 ! d T o6 it 2 ! t 0(i 2
Xl =iz d _ ] :/ de@ [e (ixq—i55q )} :/ d@i(x - %QZ)e (ix-q—izeq ). (IV.3.48)
0 0
Substituting (IV.3.46), (IV.3.48) into (IV.3.47):
1 PN itp/m-q i0x-q ,—itq> . Lo, n
Vet tp/m) = Viep/m) = oo [ [ V@ etemadn i g - gogtyioay
by (IV.3.46), Fubini and inverting Fourier transform:
L ' it p/m-q+ifx-q; t o
_ = megbx cq— —q°)dfd"
Veettp/m) = Vie/m) = oo [ [ P i(x-q— 5q)db d"g,

|
(2m)n/2

L |

27)n/2

, L it
1tp/m'q+19x~qv oy ? 2 d"q do
/e (q) (ix - ¢ = 5—-q")d"q db,

/ei(tp/m-i-ex)'q (x~ (Z'q) + %(_q2))‘7(q)dnq de,

1

o— S — >—

(x - Vi + ;;(Ax))v] (tp/m + 0x) df,

1 (VV)(tp/m+6x)-x+ ;—;(AV)(tp/m+9x) de.



High-velocity estimates 98

The Fourier step is justified by the following relations (given in Enss [16] equation 2.5), with x and q
being the conjugate variables:
—iVx «— q <= Vx < 1igq,

and
—iVyx(—iVy) — q(q) = —Oy — ¢°.

|
IV High-velocity estimates
COMPUTATION IV.4.1. Proof of (11.2.14).
PROOF.
Let us show (I1.2.13). Let r; and 73 be two vectors in R™. Please note that
=2|ri[|ra| = —rf — 3. (IV.4.49)
By (IV.4.49):
I + 1] = \/7“% +r342r re >\ /12415 — 2 vy > \/r% + 13 = 2|ry||ra| |1 - Pol
el > \[rE 4131 [y ). (IV.4.50)
Taking, 71 = vt, ro = e1q12Ft%/(2p12) and noting, by (I11.2.12), that 1 — |1 - 75| > 1 — & > 0, we obtain
(I1.2.13).
For all » € R",
Sl =1—f-el. (IV.4.51)
i=2
Forr = (r-e;, 7 e, ...,7-€,) € R" we can define a vector r, = (r-es, ..., 7-e,) € R""! By
(IV.4.51),
lri?=|r]® —|r- e (IV.4.52)

We have the following equivalency: There exists 0 < Ay < 1 such that [r - e;| < Aq|r|, if and only if,
there exists 0 < Ay < 1 such that |r; | > Ag|r|. We note that A3 =1 — A2

Now, we make r1 = v + p/u12, 12 = e1qi2Et/(2u12), with |p| < wiam, and n/v < /1 —9§/4. Using
(IV.4.52):

711

v+ D/pz) ] = Vil = [ (p/mz) L | = V1= 020 = | (p/mz) L | = (VI8 = VI=8/4)v

(V1+5—1/4)\/1—5u23m@/4= 3mv/4lnl >3 L—ov/4 1]
|V +p/ 2] [v| + [P/ 2]

3WV1-4 |r|_3\/1—6(4—\/1—6)|r|_12\/1—6—3+36
A4VI—o 16— (1—96) e 15+0

From (IV.4.53), we define Ay = 12v1-0-3+30 w. Clearly 0 < As. To see that Ay < 1, it is enough to note

that: § <1 < 3, then 12¢/1 —§ < 12 < 18 — 24, then 12y/1 —§ — 34+ 30 < 15+ 4.
Let us observe the following estimate:

Y

1) (IV.4.53)

r1l = v+ p/pal = |v] = [p/pmzl > (1= VI=3/4) 0> (1= 1/4)v = 30/4 (IV.4.54)
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Hence, by our equivalency above:

‘TA1-61|SA1=\/1—A§<1. (IV455)

We can now estimate what we want. By (IV.4.50), (IV.4.54) and (IV.4.55);
3V1I—A
Iry + 7ol [t] = |riV/1— Aqft] > fl vt|, (IV.4.56)
VI = AlqE
I ol [t > |rolV/1— A ] = Yo D1U27 2 (IV.4.57)

24112
This proves (I1.2.14) with ¢; = 284 and ¢ = 21028,
|
LEMMA 1V.4.2. More details for the proof of Lemma II.2.2.
PRrROOF. In the proof of Lemma I1.2.2, the norm of the operator
ij; = ()N(k - )N(j)a UD(t) H fj’k’ (pj’k' - ,uj’k’vj’k:’)(l + ‘)N(k - ij|2)_a/2 (IV458)

j'<k}’

is estimated. Let us see why this estimation is correct.
We rewrite:

ij = (ik — ij)a UD(t) ij, where ij = H fj/k’ (pj/k’ — ,uj/k/Vj/k/)(l + |)~(k — ij|2)7a/2.
j/<k/
If a is an odd number, we notice that G;; is a mapping from a dense subset of L?(R") to (L? (R"))n
More explicitly, if a is an odd number and ¢ is a function in a dense set L?(R™), we note that:
Gir o = (o — %) - e1 (e = %;)" " Op(t) T 6y -y (R = %) - en (R = %;)" " Up(t) T 6)

If @ is an odd number, the norm of G, ¢ is

n _ 2
Gk 0lI> = /n > ’(ik —%;) e (R — %)) Up(t) Jjx ¢
=1

Z/R Gk -er ¢ = Z |Gk e ¢l (IV.4.59)
1=1 /K" =1

Otherwise, if @ is an even number:

HQWW:/

The norm ||G,|| is computed in the customary way:

IGixll = sup [|Gjr 9.
loll=1

(Xk — %;)" Up(t) Ji ¢>’2 : (IV.4.60)

When a is even, (X — X;)” is a polynomial of degree a, and when a is odd is a vector in R™ whose entries
are polynomials of degree a. These polynomials are of the form:

(i — ;)% = (xk—%j) €1, ..., (Xk—X;)-en), ifa=1,
’ S (R~ %) ) (R —Xj) - en)”, ifa=4.
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Therefore, a being 1 or 4, ||G,x|| can be estimated by linear combinations of the norm of

(X — %) Up(t) Jjk, (IV.4.61)
where the multi-index o, = (1, ..., apy) and (X — %)™ = ((Xp — X;) - €1)™" -+ (X, — X;) - €,)"", with
g, an even number for all 1 < r <mn, if a = 4.

We reproduce equations (I1.1.21) and (I1.1.22)
- e, _ _ .0 e .
X =Xy — X3 :z%, Xp — X :za—pk —za—pj, j,k=3,...,N, (IL1.21)
0 Hi2 . 0 ~ ~ .0 Hi2 . 0
X =i— + —i—, —X9o=i— ——i—, k=3,...,N. (IL.1.22
X — X1 = Z@pk + my op X — X2 Z@pk mglap ( )
Similarly, we recall that
p = —Mp (IV.1.28)
M1
p = 2p,. (IV.1.29)
M2

We start with the case a = 1, by (I1.1.21) and (I1.1.22), for 1 < I < n, ((Xx —X;) - €;) are first order
derivatives. Then, by (IV.4.61) and the Leibnitz rule,

Gl < OZ[H( (R = %;) - e0) Un(0)) | + ||T0.0) (G = %5) - e0) T

IN

n
CZ ((ik —)NCJ) el> H fj/k' pj/k?/ :u’j/k/v]'k'>
=1

JI<k’

% — %,
(1 + [ — %;]2)1/2

(e = %)) -e) T fiw Pjnr — i viow) || +
j/<k/

Because fj/s are compactly supported infinitely differentiable functions for all j/, k" we have that:
IGiell < cz [1+ ]| = %) - e) Un(0)] ] - (IV.4.62)

We remember that V : R® — R, (y1,...,9yn) — V(y1,-..,Yn). We are composing it after the mapping

g, from {(pap3a---7pN) ‘p: _%pl = %m} ~ RMN=D < R™N onto R™, (p,p3,...,pn) — s(pr/pr —

pi/1;) +e1qikEs®/(2p;1), with s any real. The derivative D(V o g) is the following:

dg T dg T dg T
D(Vog) = (vv(g(p7p3aapN)))1><n a. '\ 9. [N
dpa Op.2 OPNn
nxn(N—-1)
B - 67‘/ 89 e, dg - e,
- (z:l 6yr(g(p7p37“'7pN 8p1 ) Z ppSvapN)) apNJL>
r= 1xn(N-1)

B °)% dg - eq °)% dg - e,
= (St ) ) S

ov 0g - eq oV dg - en)
ayl (g(p7p377pN)) 3pN71 ) 6yn (g(pﬂpdava)) 8pN7n L N .

PR PICICIEEY

PRI
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Having computed the derivative of the potential, we have that, for 3 < 1" < n, gjer € C§°(Byuypmyins)
and gj» = 1 in the support of fj/.

(COLD)
0

t
< I fiw®jn — wiwvim)| = [Upt) Y /0 ds Opur (Vi (s(owr /e — pjo [ 1g7)

J' <k’ j' <k’

+erqyu Bs*/2uyn))) TT fiw (P = mirnovinn)

j/<k/
' l
§ Z gj/k/(pj/k/ 7ﬂj/klv‘j/k/)/ ds V‘/‘vj/k/ (Spjlk//lu’]k
J' <K' 0
2 dg
+e1qj/klE8 /(2/'1/]/]9')) . 87, H fj'k)’(pj/k’ — l’[’j’klvj’k’)
Pr .1 fony
¢ a‘/'l/k/
S C Z gj/k/ (pj’k’ — /u'j’k’vj’k’)/ dS |S| 8] (Spj/k//ﬂj/k/
3 <K’ 0 Y1
1//1‘16’7 if I = k/,
+e1qyw B/ (i) { Vg, i1 =7,
0. IS and AN,
toovh,,
S C Z /0 |S| a;l (S(pj’k’/,“j’k’ —|— Vj’k’)

j’<k’, l/E{j/,k/}
ety B/ (2pgrn) gy (Pyie) dsl] (IV.4.63)

Likewise, by (IV.1.28) and (IV.1.29),

P N LoV,
(8 : el) Up(t) [T fiw @i — mywvin)|| < C > / sl aj (s(Pjrkr /grr + Virar)
p <k’ i<k, jref1,2} 1170 Yi

+e1qj/k/E52/(2uj/k/)) gj'k/(pj’k/) ds” . (IV464)

In both (IV.4.64) and (IV.4.63), we could interchange the derivative with the integral by using the same
estimations given in (I1.2.20) that allow to dominate the integrand and its derivatives with respect to the

parameters p, ps, ..., Py by an integrable function depending only on the integration variable s.
Hence, by (IV.4.62), (IV.4.63) and (IV.4.64), for 1 < j < k < N, with Ig, is as in (II.2.18),

(%i = %;) Up(t) ] fire Py — mirmrviow ) (L + [R — %) 72 < C {1+ ) Is, | (IV.4.65)
J' <k’ [Bo]=1

Let us write Ij;k/ instead of I, is as in (I1.2.18). Then, the terms that are summed in the right hand
side of (IV.4.65) are those pairs (j/,k’) such that 1 < j' < k¥ < N, and either {j/,k'} N {j,k} # Dor j =
land j =2o0rj=2and j' = 1.
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Let us define a new set of pairs,
Nji :=={(j",K') |1 <j <k < N and either j'=jor j'=kor k' =jor k' =kor j/+j=3}. (IV.4.66)

Then, (I1.2.18) can be reformulated as:

[Bb|=1
(ik — )2]) UD<t) H fj’k’ (pj’k" — ,u‘j’k"vj/k/)(]' -+ |ik - )Ej|2)71/2 § C 1 —+ Z Iébk . (IV467)
JI<K! (4",k")EN;k

The presence of gj/x (p;/4) allows us to only consider [p,/ /| < f1j/xm;/%, necessary to apply the estima-
tions given by (I1.2.13) and (I1.2.14). We use the definition of (I1.2.18) and (I1.2.19) and the decay of the
potentials given in (II.1.24), (I1.1.25), (II.1.29), (I1.1.30). Remember that we take & = 0, if ¢;/5» # 0 and
6 =1, if gjsir = 0. In inequality (I1.2.20), we make the change of variable 7 = v7/(2=%) 5. Then

[¢]
Iﬂb S C/ S‘ﬁb‘iﬁb,vj/k/(s) ds
0

. oot . _ _ . .
- 1)o/(2—0 g/(2—0c . g/(2—0c g/(2—0c
= C’?JJ-,,(J,ﬁb|+ 7/ )/0 (vj/k(, )s)w*"zﬁb,l(vj,g, )s) d(vj/k(, )s)

G5/(2-5) It]

- cuj‘,,g',ﬁb'“)&/@‘&)/” TPlig ((r)dr.  (11.2.20).
0

Let us compute Ig,, focusing in |G| = 1.
If gj13r # 0, then we have, 2(—yp — ) +2 < 0, that

IN

[t] [t] |t]
I3 C’/ 7(1+ 72)77’37” dr < C/ 7(1+ 7)2(775’7") dr < C’/ (1+ 7)2(77’37“”1 dr
0 0 0

b
It
< Cc(+ T)2<—WD—H>+2‘O < C(1 4 [t)2re-m+2 < O (IV.4.68)

else, if g;j/r = 0 then we have that

Ly vt [¢] B . v |t] —
%bSC%M[: TO+T)“dT§%w[: (L+7) " dr

Uj/k/|t‘

(1+ T)*”*Q’ , ify <2, 1 N2 ify < 2
< vl oy < cu2, J P Tt iy <20y )
J In(1 + 7) itk J In(1 + v t]), ify=2
0

) ify=2,

We want to pass from v;r to v in (IV.4.69). We have three cases:

(a) Either (5/,&") = (j,k) = (1,2), or (j',k') # (1,2) and (j, k) # (1,2). In the first instance, v/ = vj =
v, and in the second, v, = Cv?, vjr = Cv?. In both cases, vji;r = Cvjg. Then

’Uj_/’%/|’l]j/k/t‘27vl = CUj_kQ"Ujk-ﬂZi’yl.
(b) (5, k) # (1,2) and (5, k) = (1,2). Here, vy = Cv?, vji = v, therefore, vjj = Cv?k and

U;i/|0j/k/t|277l = C’U;k4|’l)j2-kt|2771 = C’L}ﬁg4+27,yl |’Ujkt|2771 = C’Uj_k(2+’yl)|?)jkt|27’yl.
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(¢) (5',K) = (1,2) and (j, k) # (1,2). In this case, vjr = v, v;, = Cv?, therefore, v = 00%2 and

vj_/i/|vj’k/t|2 Cv]_k1|v1/2t|2 7 Cv;k1—1+v1/2|vjkt|2fvl = CU;k(2—71/2)|vjkt|2—v1.

By L’Hopital rule:

_ ~1/2 ~1/2
v 2 In(1 4 7) T . 71/214”%/7 . 4/2%*1%/
lim Y lim Vig — i = lim Vi T lim Vi T =
T—00 4 kl ln( + v ) T—00 v.,il/2 T—00 1+7 T—00 -+ 1
1+vjk T
1/2
. Jk4 In(1 +vj,7) . _3 1::):” . —3/2 T+wy, 12 _3
lim 1/2 = lim v ——7— = lim v =V,
T—00 Ujlcl 11’1(1 4 v; ) T—00 vy T—00 14+ w7
l+vj_k1/27'
and
po1/2
1/2 —
jkl In(1 4 vy, / T) B 1o /2 1o, 2 r
im /7 = lim Vjg —
T—00 1+U Y1 T—00 €T
(1-71)/2
= Gk lim S =0.
€ T—00 Te—l + vj_krl/276
Then, by (IV.4.69)
1+ vj_,f\vjkt|2_71, if 71 < 2 and either (§/, k") = (j,k) = (1,2),
or (j', k') # (1,2) and (j,k) # (1,2),
Lo Bt P70 <2, (7 K) # (1,2) and (k) = (1,2),
Lo o N T P i < 2,(7,K) = (1,2) and (k) £ (1,2)
= 'Uj_,f In(1 + |v,xt]), if v4 = 2 and either (§/, k") = (j,k) = (1,2),
or (j', k') # (1,2) and (j, k) # (1,2),
Vi (1 + vk vjxt]), ify1=2,(5,K) # (1,2) and (j,k) = (1,2),
o (L og Ploget]), i =2, K) = (1,2) and (4,k) # (1,2),
_ 1+ U;k(2*71/2)|vjkt‘2—'h’ if v, < 2,
B v In(1 + Uj_kl/2|vjkt|)a ify =2
y (IV.4.68) and (IV.4.71)
1+ v;k(2771/2)|vjkt\2_71, if 1 <2, Qi #0,
o < C Lt (L4 v Plogit]), iy =2, g £0,
1, if qi'k = 0.
Finally (IV.4.67), (IV.4.70) and (IV.4.72) imply that
Aje = ||Re = %) Up(t) T Fire Py — pirnrvion) (1 + [Ri — %)~/
j/<k/
1+v*(2*71/2)|v t|2—71 if
< Cql+oy, 1n(1—|—v |v]kt|) if le?k,
1, lf Jk;v
< C (1 + v, (2 "/2) |vj;€t|9““) .

(IV.4.70)

(IV.4.71)

(IV.4.72)
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This completes the proof of (I1.2.16).
At this moment, we are particularly interested in (Xj — ij)4

(% — %))" = (Z((ikij)'el)2>
=1

= Y (G—%)-e)+2 D (Rr—%)-e) (%)) em)’

=1 1<I<l’<n

I
M=

4 -3 - ~2 =2 - =3 | =4
(X — 4%5 %50 + 6Xy X5, — 4Xp X5, + xjyl)

=1

22 =2 22 =~ o 22 =2 B - = & =
+2 Z (Xk,lxk,l’ = 2K Xk 1 X1+ X X5 — 2Xp 1 X5 0 + AR 1 XX, 1 X 1
1<i<l/<n
- = =2 _2 =2 2 - = ~2 =2
=2 1 X5 1XG XX — 2K Xk v Xy + Xj,lxj-,l/) :

We continue with the case a = 4. By the same argument used to obtain (IV.4.62), we have that, for
non-negative integers a, as such that a; +as <4 and all 1 <1[,l” <n,

1((%k —%5) - €)™ (R — %) €)™ Tjel| < C. (Iv.4.73)
By (IL.1.21), (I1.1.22), (IV.4.61), (IV.4.73) and the Leibnitz rule, for 1 < 1,1’ <mn,

1<1,l<n
Gl < C{1+ D (R —%;)-e)™ (&n—%;) - ep)?Up(t)) Jl | . (AV.474)

1<ai+az2<4
It is convenient to write our Dollard-type modifier as

t
Up(t) =eM®  M(t) = —zZ/ ds V}lk(Sij/Mjk +e1qjnEs®/(2ujk))- (IV.4.75)
j<k0

Let us compute the derivatives of our Dollard-type modifier:

(R —%;) - e) Up(t) = Up(t) (R — %5 - ) M(D). (IV.4.76)

(R — %;) - ) (ki —%;) - ep)Up(t) = Up(t) (R —%;)-e)) M(t) (% — X;) - ey ) M(t)

—|—UD(t) ((ik — ij) . el) ((f(k — )~(j) . elu) M(t) (IV477)

((%k —%;) @)’ (R —%;) - ep) Up(t) = Up(t) (R —%;) - er) M () (ki — %) - epr) M(t)
+0 () ((Re = %5) - e0)* M(1)) (i = R;) - er) M(2)
+Up(t) (R — %) - €) M(t))

X (ke —%j) - er) ((%p —%;) - epr) M(t)
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(k= %;) - &) (R — %;) - er)* Up(t) = Up(t) (R — X;) - err) M(1))* (R — %;) - e2) M (1)
+0p(8) (((Ree = R5) - ew) M(1)) (R = %5) - €0) M(1)
+20p () (ki — ;) - e1r) M (1))
X ((xe — %) - er) (Xe — %) - e) M(t)
+Up () (Rp — %;) - e)* (R — %) - ) M(t).  (IV.4.79)

(R —%;) - e)” (R —%;) - er)? Up(t) = Up(t) (ke —X;) - ) M(1)* (Rn — %;) - e1) M(t))?
+2Up (1) (((%k — %) - ) M (1))
x (%K — %5) - &) (Xi — %) - er) M(t))
X ((Xk —x;) - e) M(2)
+UD () (Re — %;) - err) M(1))* (R — %;) - e)” M ()
+0 (1) (R — %) - e0) M(8)) (R = R5) - e1) M(2))
+Up(t) (((%—ig‘) er) (Xk —%X;) - er) M(t))
x (X —%;) - e) M(t)
U (1) (R = %) - e)* M(1)) (i = %) - e0)” M (1)

+Up(t) (R — %;) - er)? (R — %) - €)° M(t).  (IV.4.80)
We note that

x M) [T i@y — mjnrvion)
j/<k./

((%k —%5) -er)™ (X — %5) - €)™

IN

: gortoayl,
/ |s|a1+a2 J (S(pj/k//u'j'k/ +Vj’k’)
0

e

c 2

(47.k")ENj

+e1qj Bs® [ (2pn)) gy (D) ds||

[By|=a1+asz
=C >
(4" ,E")EN;ik
+61Qj’k’E32/(2Mj’k'))gj’k’ (pj’k:’) dSH
[Bb|=a1+a2

j,7k;l

c S B (TV.4.81)
(j/,k/)GN]‘k

t
A |s|‘ﬁb‘ (Dﬁb‘/jl’k’) (S(pj/k’/ﬂj/k’ +Vj’k/)

IN
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We attain (IV.4.82) in a similar way as in (IV.4.67) by (IV.4.66), (IV.4.74), (IV.4.75), (IV.4.76), (IV.4.77),
(IV.4.78), (IV.4.79), (IV.4.80) and (IV.4.81):

4
IGull < cl1i+> I >, ©* (IV.4.82)
b'=137(Bs|=b" (4,k")EN ik
Next, we dedicate ourselves to compute Ié;’k/, for 2 < |6| < 4,

If g;/5r = 0, then we have 2(—yp — 2u) + 3 < 0. This is possible because yp + ¢ > 1 and g > 1/2. Then,
for |By] = 2,

I3

IN

b

It] ||
C’/ 72(1 + 72)_7’3_2“ dr < C/ 7'2(1 + 7)2(_717_2“) dr
0 0

Il

IN

]
c/ (14 7)20 72012 47 < O(1 4 7)o 720043
0 o 0

C(1 + |t))2e=2043 < ¢, (IV.4.83)

IN

for 3 < |By| = 4,

b

olt olt]
L, < C/ 71081 (1 4 72)=1D=n(ZHBD/2 g < c/ BI(1 4 )2 vo =281 /2] g
0 0

Il

IN

vlt| v
C/ (14 7)2mp=HCHBD/2HB] 47 < O(1 + 7)1 —1EHIB D /2 +18s 141
0 - 0

< C(1 + |ut|)1Bel+1=270=@+1Bep (IV.4.84)

We note that |Gy + 1 —2yp — (24 |8y|)pe can either be positive or non-positive. For |G| = 4,
min{5 — 2yp — 6u} =5 —2(1/2) —6 = =2, and sup{b —2yp —6u} =5—2(1) —4(1/2) = 1.
Therefore, for 3 < |G| = 4, and by (IV.4.84):

Iﬁb < C (1 + |,Ut|max{|ﬁb\+1—27D—(2+\Bb|)u,O}) ]

Else, i.e. If gj5r = 0, then we have that, for 2 < |G| =4,

vl vl
Iz, < c/ rlBel(1 4 7)== 1Bel(e0+1/2) dTSC/ (1 + 7)1 1Belcotr/2-1) g

0 0
vl

< OB < 01+ ut]) 0 o012,

Finally, we want to estimate the right hand side of (IV.4.82). For that matter, we form the following
combinations:

(a) All the charges gj/x/, with (j', k') € Nji, are equal to zero,

4

4
> 11 S < o) PICotD < O+ ut]) 10t < C(1+ |ut])>F,
b'=13" |8y |=b" (j',k")EN; b=1

with 0 < € < 4e.
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(b) All the charges g;, with (j/,k") € Njj, are different from zero. Observe that 4 — 2yp — bu <

5 —2vyp — 6p,
4 4
./7k/ '/7kl
> I > mr=<cx I > 1
V=L 1Bt (57 R €Ny D=3 5 G l=b (57 K)EN
4
< C Z (lJr|rvt‘|/8b|+1*2’YD*(2+|Bb‘)M)
[Bb]=3
< C ((1 + Jut]) TP (1 |vt|)5‘2”3‘6”> < O (1 + |ut])?~ 20 —0n
< C(1+ut])*c,

provided 2 > 2 — € > 5 — 2yp — 6y, that is 0 < € < 2yp + 6p — 3. Note that inf{2yp + 6u — 3} =
24+4(1/2) — 3 = 1.

(¢) There are two pairs (7', k'), (”,k") € N, such that ¢;/,» = 0 and gy # 0:

4
> I > &t

V=137 1Bp|=b" (47K )EN K

4 (1+ |Ut‘)|/3b|(—50+1/2)’ if gy =0and 1 <|[3,] <4,

= CZ H Z L iqu‘/k/ #Oandlg |ﬂb| <2,

V=L 1B|=b (77K ENG | (1 + [ut])lPol+1=290=(Bel+2)0 if gy #£ 0 and 3 < |By] < 4.
4 4 4

< C Z 1+ Z 1+ |,Ut|)|5b\(—€o+1/2) + Z (1+ |,Ut|)|Bb|+1_2’YD_(2'HBbDU
b'=1%7[Bs|=b By |=1 [Bu]=3

< C(1+(1+]wt]) €D+1/2+(1+|vt‘)2(—60+1/2)+(1+‘vt|)3(—60+1/2)+(1+|,Ut|)4*2’yD75H

(0 o)D) (L o) 2 (1 [ot) 2 (1 fot])P 0O
< C (1 +(1+ \vt| 4(_”""1/2) + (14 |vt])~ co+1/2 1+ |Ut|)4 2yp—5p +(1+ |vt|)5 2yp— GM)
< C(+ o)

with 0 < € < min{4eg, 2vp + 5+ €9 — 5/2, 2vp + 61 — 3}, because,
(1) 2>2—€>9/2—2yp — 5 — €, that is 0 < € < 2yp + 5+ €9 — 5/2. Note that inf{2yp + 5 +
€ —5/2} =2+3(1/2) —5/2=1.
(2) 2>2—€>4—2vp —5pu, that is 0 < € < 2yp + 5u — 2. Recall that 4 —2vp —5u < 5—2vp — 6p.

(3) Note that if 0 < eg < 1/4 and 1 > pu > 3/4, then 2yp 4+ 5u+ €9 — 5/2 < 2yp + 6 — 3, conversely,
if 1/4 <e¢ <1/2and 1/2 < p < 3/4, then 2vp + 5+ €9 —5/2 > 2yp + 6p — 3.

(4) Note that if 0 < ey < 1/4, then 4eg < 1 < 2yp + 6 — 3. On the other hand, if ¢g = yp = 7/15
and p = 9/15, which are possible values, then 4ep = 28/15 > 14/15+3/5 = 14/15+6(9/15) —
2vp + 6p — 3.

In general we take

0 < € < min{dey, 2yp + 5+ €9 — 5/2, 2vp + 6 — 3} < 2,
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where the last inequality is true because 0 < ¢y < 1/2.

If gjrpr = 0 for all (j/,k’), then we can take yp = 1/2 and p = 1; in this case min{4ey, 2yp + 5+ €9 —
5/2, 2yp + 641 — 3} = 4. On the contrary, If g # 0 for all (5’ k’) then we can take €y so big such that
min{4eg, 2vp + 5p + €0 — 5/2, 2vp + 6 — 3} = min{2, 2vp + 6 — 3}. It is important that € be less than 2
to assure the last step in the proof of Lemma I1.2.2, i.e.,

C(1+ |vt)* ¢ < C(1+ |vjxt])* ¢
At this moment we have the estimations that finish the proof of Lemma I1.2.2.
|
LEMMA 1V.4.3. Completion of the proof of Lemma II.2.5.

ProOF.  Actually, we do not have that supp (lek vt V ) CB a”lt\2 5, » but supp (ij’vjkt — ka)

CcB

cv

then X(x/( JFt27%k)) #£ 1, and so, |z| < cv J[t2=% and

ajkmz,&_k, where the line over means topologlcal closure. Let us take x € {y| jk it jlk)(y) # 0},

{y|(‘/jk;’l}jkt - jk (y 7é O} cB C’Uigkﬁﬁ_&jk. (IV485)
J
The following estimations are straightforward'
Vot = Virll S IV =00 < 1V

It is not difficult to realize that the sentence “If g;;, # 0 with p in the support of g, we note, by (I1.2.33),
that V}y ,  (6P/kjk + Vit + e1qiu B/ (2pjx)) = Vi (69 /pjk + vt + e1qjp E? /(2p;x))” is true.

In the other hand, the sentence “If ¢;;, = 0, p belongs to the support of g(- — p;rv;x), and vo > 2n;s
then V}, TP/ i) = V}.(tp/pjk)” requires some easy computations. Let us prove the sentence: v, >
vy > 21k 1mplies that —n;, > —v;,/2. The fact that p belongs to the support of ¢g(- — pjxv;i) means that
P — wikvjKl < wjkmjk, then:

Pl = lwpvie — (P = pirvje)| = pwiwvje — [P — pjrvjnl
> Wik — HikNjk > KikVik — KikVsk/2 > [ikVjk /2.
This implies lekm]-kt(t P/ k) = lek(t P/ k).

If ¢jr = 0, p belongs to the support of g(- — pjxv;i), and vg > 2n;;, then ij ot P/ k) = lek(t P/ k)
By equations (II1.1.31)-(II.1.35):

e gt (Vi () = V(D i — erqg B/ (250)) ) e g(p — v
= TRV G Qi) i esayk B Rie) gk et (ij vt (%) = Vi (tD/pjn — elekEt2/(2/‘jk)))
weltic Bt j—ip-e1q;r Bt/ (2pjk) ,—itp?/(2p151) 9(P = pikvie)
= T T () iprerap B (i) (lek,vjkt(x) ~ Vie(t/pjn + e1ijEt2/(2ujk)))
w e~ iPe1djrBt?/(2u5k) o —itp?/(2psk) 9(p — 145 Vi)
— e iHIRViEX gitP?/(2ujk) (lek,vjkt(x + e1qp Et*/ (2pk)) — lek(t P/ ik + e1ijEt2/(2/~ij))) e itP"/ (1)
xg(P — KjkVik)
= e (Vi (4 D/ e+ @1k B (200)) = V(R + 10 B/ (21130))
x9(P — HjkVik)
= (lek,vjkt(x + D/t + ikt + e1qk Bt /(2051)) = Vi, 8P/ 1k + Vit + e1qJ'kEt2/(2Mjk)))
x g(p) e HikVikX, (TV.4.86)
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The Baker-Campbell-Hausdorff formula [14] gives us the following equality (equation (IV.4.87) is com-
pletely justified by (IV.3.43))

(lek,vjkt(x + P/ ik + Virt + €1 B/ (2u51)) — Vi oo (6 D/ 1k + Vikt + elekEt2/(2Mjk))>

1
- / ds Kv‘/}'lk,um> (sx +tp/pjr + Vjrt + e1q B /(2u;1)) - X
0
it 1 2
+— (Aij}Ujkt) (sx +tp/ujr + Virt + e1qin Et*/(2151)) | - (IV.4.87)
(205x)

From the Leibniz rule we have that,
‘V‘/jlk),vjkt(x)l
AVt 00 (%))]

Focusing in the case g;; = 0, we compute, having in consideration that in the support of lek’vjkt we must
have |x| > (¢/2)|v;rt| :

IN

|Vlek(X)| +O(v;kc'jk|t‘—(2—5'jk))“/jlk(x)‘7
—0; —(2—6&. —25; — —Gir
|Avjlk| + O(vj e~ ‘7k))|vvjlk(x)| +O(v; M t] 2 J’”))|lek(x)|.

IN

YV kot (Ol < C (L [0t ) ™7+ ogut| 1 (1 + Jogat)) ™) < Cllugat) ™,
[AV iyt (OIS0 C (L Jugaet) 72720 4 Jugat | 7L+ Jugat) ™ + ogut]| 721+ Jogut]) )
< Ofout]) 7272,
where 3/2 <y < 2,0 < ¢y <71 —3/2 are as in Definition II1.1.1 and (11.1.25), respectively.

As in Enss and Weder [20], (I11.2.17), (IV.4.86), (IV.4.87), (IV.4.88), (IV.4.88) and ¢y < 1 — 3/2 imply,
for g = 0O:

1
Il S / ds
0

it — ik Vi X
+(2u-k) (Avy‘lk,mt) (sx +tp/pji, + Vit + e1q;r B>/ (2x)) | g(p) e HirVir
J

{ (v‘/jlk,vjkt) (sx +tp/pjk + Vikt + e1q;n Bt/ (2u)1)) - x

<Up(t) T] firw 0y — myrnvjrwe) (1 +x%)72

j/<k/

S C |’Ujk:t‘_'71 XﬁD(t) H fj/k/(pj/k/ _Nj'klvj/k’)(1+x2)_1/2 +|Ujkt|_1_2€0
j/<k"
L+ ot if3/2<m <2,
e lww {( + ot P<n<d ] o oo

14+ In(1+ |vxt]), ifyn =2,

The justification of Equation (IV.4.88) is straightforward. To show (IV.4.88) we note, as in Definition
II.1.1 that 1 4+ 2e9 < 3/2+ €9 < 71, then 2+ 2¢5 < 71 + 1, thus let us estimate as follows:

AV (] <0 C (U Jogat]) 72720 4 fogut 711+ [ojat]) ™7 + [ugwt]| 721+ Joget) 71 F)
< C (\vjktr?fzeo + |vjkt|*“/1*1 + |’Ujkt|77171) < C|'Ujk,t|727260.

In both (IV.4.88) and (IV.4.88) we note that it is important to have |v;,t| > 1.
When ¢ = 0, the estimation of I;, given by (II.2.30) is easily followed, but we want to do some
computations to make it even more clear. We have to cases:
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(a) 3/2 <1 < 2. We know that ey < 71 —3/2. Then 3 < 2v; — 2¢¢ which is equivalent to —y; < 2—2v; <
—-1-— 260.

b) v1 = 2. Here, it is enough to show that: lim,_ . % < C. By L’Hopital rule and the fact that
8 g p o
<y —3/2=2-3/2=1/2:
1

o PIn(l+7) o In(l4T) o o
A T e = i g e <G T =0

Because of the presence of the natural logarithm and the estimation in case (b) above, we need a large M > 1
such that that |v;,t| > M in order to conclude that

I < O|Ujkt‘717260.
Additionally, directly from (I1.2.30) we have that,

I <2C sup |V(y)| < C. (IV.4.88)
yeR™

That is, I; is uniformly bounded
Then, we compute the integral of Iy,

/ Lidt < / Ildt+/ L dt < Cuy! / d7'+/ s
—o0 gl <M gkt >M Irl<m IrI>M

o0 1
7260\M> = Cuy,! (2M + €OM’ZEO) = O(vy)

IN

-1
2 2M + 2
Cvjk ( + —260

Now, we will consider ¢;;, # 0. Thus we complete the details of the estimation of I; :

1
Il < / ds
0

it Cipv
e (AViyer) (5% + 10/ pajnc + Vit + elekEt2/(2Mjk))} g(p) e
"

{ (Vle/c,u]-kt) (sx +tp/pjr + Vjrt + e1q;r B /(2u;1)) - x

xUp(t) H Firer (P — o Vi ) (14 x%) 72
jl<k)/

IN
Q

((1 + U?,ik |t|2—5jk)—(’YD+#) + Uj_k:&jk |t|—(2—5jk)(1 =+ ’U?,ik |t|2_&jk)—’YD)

% xTp(t) T Firwe @y — rnevion ) (145372 1] (14 7 1f2~20r) =020
<k

—‘r’l}j_k&jk|t‘_(2_6jk)(1+U§T]zk|t|2_&jk)_(’yD+“)+’Uj_k2&jk‘t|_2(2_5jk)(1+U?]ik‘t|2_&jk)_’yD>

We apply (I1.2.16). Thus we arrive to the estimation given in the text,

Iy < Iy + Iho.
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While computing the integral of I11, we require &, < 2— (1+6,%)/(vp + ). This inequality is equivalent
to the following inequalities:

2-6 > (1+6)/(yp+n)
(2=a)yp+p) > 1405
0 > == +p)+0k+1
> —(2-0)(vp+1)+05 + 1.

Furthermore, because 0 < 7;, < 1,

0 > Q25w+ +1,
0 > ~@2-&m)p+1)+1L

Then,
thm +— (=) (yp+m) 05 +1 thm 1~ 2=+ D+0+1
—00 — 00
lim ¢~ Q=% p+m)+1 — {jy ¢~ @) (p+D+L —
t—o0 t—o0
b

Let us show that [ dt I, = O(vy;) and determine the value of b :

I, < C((Uflcﬁjk(VD+u)‘t|—(2—&jk)('m+u)+Ufkﬁjk(7D+1)|t|—(2—&jk)(»yD+1))
= j j

—(2=71/2 . — -
x (140Dt ) Bl > vi?) + Vil (1 < 03))

< C (Uj—k&jk(’YD-l-#)|t|f(2f&jk)('yD+u) + v;kﬁjk(7D+1)|t|,(2,5—jk)(,yD+1)
_;'_Uj_lc&jk('YD+N)_(2_"/l/2)+9jk |t|—(2—&jk)("‘{D+'Ll.)+0jk + Uj_k&jk(’7D+1)—(2—"/1/2)+9]‘k |t‘_(2_&jk)('YD+1)+0jk)
X F(|t] > vi)) + F([t] < v3)).
Integrating,

G —(2=6,&)(vyp+p)+1 & —(2=6;r)(yp+1)+1
/dtlll < C (Ujk: jk(YD+1) <Uj7cb) ik) (YD +Ujk (yp+1) (’U;kb) k) (YD

D)2 /2405 ( 4) ~(@=85) (yp )0kt

ik Uik

—5; —(2— ; —(2-6;1K)(rp+1)+0;5+1
+Ujk ik(yD+1)—(2—v1/2)+0,x (U;kb) k) (YD ik +vjkb>

/dt[ll < Cvj_kb (1+v][';&jk+b(2*5jk)](’YD+M) +U§;&jk+b(2*&jk)](7D+1)

+U£_;5jk+b(2*&jk)](7£)+u)*(2*71/2)+9jk*b9]’k + vj[_;‘}ijrb(?*&jk)](7D+1)*(2*71/2)+9]’k*b9]’k) .

Provided vj; > 1, let us find b such as [dt I;; < Cv;kb :

6-,
(65 +b(2—G0)] (yp + 1) O b< —I5
270’]’1@

_Ojk

(=G +0(2=G5)] (Y0 +1) 0= b < o
.

)
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(=6 +0(2—65,)] (vp + 1) = (2—=71/2) + 0k — b0 < 0
b(2—a)vp+1)— 0] < Gi(yp+p)+(2—7/2) -
p < Gkt (@Z=m/2-0)/(p +p)
- 2—Gjk—O/(p+p)
and, similarly,
[k +b2 =) (vp+1) = (2—=71/2) + 0 — b0 < 0
p < Gkt (Z=m/2-0)/(p +1)

2—0jk —bir/(yp +1)
By p<1and2—~;/2—0j, >0, we have that

Gjk +(2—=7/2=0;)/(vp +1) < Gjk + (2= 71/2 = )/ (7D + 1),
likewise,
0<2-=0jk—b/(yp+p) <2—06j1—0j/(yp+1).

Then,

ik + (2 =m/2 = 0i)/(yp + 1) _ G+ (2= 7/2 = 031)/(yp + 1)

2—6jk —0r/(yp+1) - 2 =65k — Ojr/ (v + 1)
On the other hand, it is straightforward that,
Gik o Okt (2=m/2=0)/(yp +1)
2—=0jk — 2—6jk—0/(yp+1)

We conclude that in order to estimate f dtI;; < C’v;kb, we should take

po ik _ min{ Gjr G+ (2=7/2-0;)/(yp+1) Gk +(2—7/2—01)/(vp + 1) } .
2-Gjk 2—Gj  2-0Gp—Op/(yp+1) T 2—6,—0u/(yp+p)

We know that 0 < &5, < 1, then 2 — G > 1 and

_ ik

205, <2 =0, <2—-0j, <0< <1,
2 — U]k
then b = 57— satisfies 0 < b < 1.
We have to verify that we can choose 6, such that 0 < ¢, < 2 —max{ }v—;ijz 7D+2#, 1}. We have three
cases:
(a) max{itox 1} = 1+9”“ . Then, we should have in this case that 0 < 2— 1+a“‘ . This true because

YD+p’ 'VD+2#’
2(yp +p) > 2 and 3/2 > 1 +0]k

+

(b) max{ Ltk 21} = 7D2 . Then, 0 < 6,5 <2 — This is possible because 2(yp + 2u) >

Yot yp+2p’ +2u ’YD+2N
3> 2.
(¢) max{ ?jﬁl’j vD+2u’ 1} = 1. Then, 0 < 6, < 1, which we have by hipothesis.

The cases above show that our hypothesis on 7;;, are perfectly plausible.
146,

YD +7u 7D+2u’
~ ;,L and

It is also a good moment to see that max{ 1} can be cither - +”“ or —2— or 1. If we
Iz YD+2p

~ 1. Thus, when 0;r = 0, we have that
1+0jk >

consider the minimum values for vp and p, then
1405k 2 2
YD+ YD+2p Tp+p T yp+2p

146, 2 2

the maximum values for yp = 1/2 and =1, and 6, = 0, we have that oin = 3 < ipymi % <1.

Because we are using Adachi and Maehara’s computations [2] of the last three terms of the integral of I3
in the proof of their Lemma 3.4, we want to verify these computations.

2
Yp+2u 7D+u

1< and when 6, = 2, (a possible value) we have that

> 1. Else, if we consider
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e First integral. Let a > 0 be a constant to be determined.
By the hypothesis we have that 6,, <2 —2/(yp +2u) & —(2 — ;i) (vp + 21) + 2 < 0, we obtain:

|t|~ (2= (o +20)42 oo

dt v -G D20 —(2=a) (2w +1 — ~Fik(p+20) _
/|t>v " d I —(2=0j1)(vp + 2p) + 21vye

v ik (YD+2n)—a(—(2=6;r) (YD +21)+2)

(2—Gjx)(yp +2u) — 2

. . Gix(Yp+2p1)
Then, with a = (2,522)(7#”),17

/Oo dtvfkf?MwHM)‘t|—<2—&jk>(m+2u)+1 - 0 (U—&jk<7D+2u)—a(—(2—ﬁjk)(7D+2u)+2)) +0 (v
J

- 0 (,U*&jk('YD+2H)/[(27&jk,)(’YD+2u)fl]) )

e Second integral.

Because of 1 > 1, we have that 2—2/(yp+p+1) > 2—2/(yp+2p), therefore 6,5 < 2—2/(yp+p+1),
then by similar computations made for the first integral, in the previous item, we have that,

/oo dt v 7R ORI —@-a) (ot DAL ()(U*CEk(7D+u+1)/[(2*5jk)(VD+AL+1)*1])_
J

e Third integral.
We again use 1 > pu, to deduce that 2 —2/(yp +2) >2—2/(vp +p+1),

-k ¥2) ) ~(2-65) (Yo +2) 41 ~&ik(vp+2)/[(2=8x) (yp+2) 1]
dt It|~ O (v .
a

Then, we observe that

max{—a;x(vp +21)/[(2 — 7j1) (vp + 20) — 1],
—0ik(yp +p+1)/[(2 = G5%)(vp + p+ 1) =1,
—0ik(yp +2)/[(2=6x)(vp +2) = 1]} = —6/[(2—5x) —1/(vp +2)].

To prove this fact, let us prove only one inequality because the other is similar. Because 1 > pu, <
Yp +2 > ~vp + p+ 1, we have that,

(2=Gk)(vp+2) -1
1/[(2 = Gjk)(vp +2) — 1]

(vp +2)/[(2 = Gjx)(vp +2) — 1]
—0ik(vp +2)/[(2 = Gj1)(vp +2) — 1]

(2=0j)p+p+1)=1>0

1/[(2=65)(yp + p+1) — 1]

(o +p+1)/[2=050) (0 +p+1) —1]
—0k(vp + 4+ 1)/[2 =) (o +p+1) - 1].

IV IA N IV

Finally, fj-oc: dt Iy = O v;}q&jk/[@—@k)*1/(’YD+2)]) )
To get the result (I1.2.35), we have to simply note that —

@7 S 36

For gji, # 0, if |x| < (5/8) J]k|t\ and UU““ b < (2/5)/1— d;k, we obtain (I1.2.36) as in (I1.2.33), taking x
instead of ¢ q/u;, and 5v7;" /8 instead of 7, then Zj—z < (505" /8)v j_kl < (5/8)(2/5)\/1 = bj = /1= bji/4
By (I1.2.36) we have that (vjlk ~ VL t) (x + Vit + e1qin B2/ (2u5)) = 0 if g # 0, x| < (5/8) 077" |¢]

IR,V
and vaj’“ ! <(2/5)y/1 — 0.
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If |x| < vjxlt]/2, then [x+ v it| > |vjit| —|x| > v t]/2. If, additionally, we assume that ¢;; = 0 we have
that (Vi = Vi) 0 Vet + e1gu Bt/ (2u;0)) = 0.

We define M' = {x € R" | |x — v;t| > |vajkt|/2} and M = {x € R" | |x| < [v7}"t[/8}. We will prove
that r > |v;,g’“t|/4 in Proposition 11.2.1, provided v? G > 4njk, Let us take 2 € M and y € M + vjit, then
x =yl = [(x—vjut) = (y = vst) | > [ji"t]/2 — 7" t]/8 = 3Jvji"t|/8. Thus, r > 3vji"t|/8 — it >

3T /8 — ol /4 = [0S/,

Therefore we estlmate I, as follows:

L, < C H (lek v v]kt) (x)e —ip-e1q;i Bt /(2;1) e—itpz/(Qujk)g(p — wirvip) F (x| < v%‘k|t|/8)H
2 ) o
= C[[(Vh = Viayee) (x + exain B2/ (2puze)) e /@0 g — pipevie) F(lx| < 0%+ [t)/3)|
(

= CH(‘/]lk ]kv k:t) x+vjkt+e1quEt /(2uir)) e th2/(2#jk)g( V(x| <U‘7Jk|t|/8 H

5 J"‘t 8, ifqir#0 ; o
Ia <|X| Z{ v; | |/ I gjk # a) e—ztpz/(Qujk)g(p)F(|X| <v Jk|t|/8)

l
< clv; /2 gy =0,

C

5077%(t/8, if gjr # 0 . .
Flx—vjt| > Yjk [t1/8, 1 4k 7 0, e—ltpz/(Qij)g(p — pipvin) F(Ix| < v E1t]/8)
viklt]/2, if gjr, =0,

C||F(x € M') e/ i) g(p — v ) F(x € M|
C+r+[th2 <O+ t/8+[t) 2 < CL+ v [t])~

IAIA

We think that we have to mention that (ij 1%

v kt) is a bounded function to complete the justification
of (I1.2.38).

|
COMPUTATION 1IV.4.4. Constraints to assure that o > 1/2 in Theorem II.2.8.
PROOF. Without loss of generality we assume throughout this computation that ¢;i; # 0. With this
140,k 2 1}

Yp+p’ Yp+2u’
Then, 2 — 61, < 261 © Gjk > %, and in consequence, (IV.4.89) below has to be true,

1+ 05 2 4

new requirement o, and &;, must hold: 1/2 < o, = fg’“k and 0 < G5 < 2 — max{
IR

ax , 1) <o IV.4.89
{’YD +u vp+2u } 3 ( )
Please observe, in view of vp + 2 > 14 p > 3/2, that
4
max{—————, 1} < —. 1vV.4.90
(g 1< (1V.4.90)

We have two cases:

(a) 2% < max{_—2_
on 0jy, is

o +2u 1}. In this case, we have that (IV.4.90) implies (IV.4.89). Then, the condition

Ojk < (’)’D + ,Uz) max{ 1} —1. (IV491)

Yo +2u’

(b) 1+i”; > max{—=>5- D+2 , 1}. In order to satisfy (IV.4.89), 6, must hold: 1‘;9”‘ < 4 30, < 3(yp+p) -
Then, the condltlon on 0, is

2 4
(vp + 1) max{ 1} 1<6, < g(fyD +p) —1, (Iv.4.92)

which is never empty by (IV.4.90).
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Finally, by the two cases above (IV.4.91) and (IV.4.92), (IV.4.89) is equivalent to 6, < 3(yp +p) —1. W

PROPOSITION 1IV.4.5. The three logical propositions Py, Py and Ps, defined below, are equivalent for
N > 1.

Py : There exist two pairs (j1,k1) and (ja, ko) with 1 < j; < ky < N and 1 < jo < ko < N, such that
dj1ky 7& 0 and Qjsks = 0.

P, : There exist two pairs (j,k) and (j', k") with 1 < j <k < N, 1< j <k < N such that gj; # 0,
gk =0 and, at least one of the following is true, j' = j or k' = k.

P5 : There exist two pairs (j,k) and (j', k") with1 < j <k < N, 1< j <k < N such that gji # 0,
¢/ = 0 and, at least one of the following is true, j' =j orj =k or k' =j or k' =k or j' +j =3.

PROOF.

P, =)P, N=1,2; true by vacuity. N > 3; without loss of generality, assume that (ji,%k1) = (1,2), i.e, ¢12 # 0.
We know that there exists a pair (jq, k2), such that jo < ko, 3 < kg and gj,%, = 0.

(a) gk, =0.Let usset ' :=j:=1, k' :=ky, k:=2.
(b) qig, # 0. Let us set j' :=ja, j:=1, k' :=k:=ko.
Then, in both cases, gjx # 0, g =0, j <k, j' < k', and either j' = j or k' = k.
P, =)P; Trivial.

Ps :>)P1 Trivial.

LEMMA 1V.4.6. More details to render clearer the proof of Theorem I1.2.10.

PrOOF.  In Valencia’s Thesis [83] Calculo 8.5, it is shown the simple proof of [SP,p,] = [SP,p, —
pizv] = [SP — Ig.w, p; — pi2v] and (p; — p12v)®y = (p;®o)y where p; and v; are the l-th components
of the relative momentum and the velocity v of the chosen pair (1,2), respectively. We justify (I11.2.46)
by interchanging the integral with the scalar product because of the existence of the wave operators in the
strong topology:

1
IG,'U

(i[SP,p )@y, Uy) = ([(IG,U)_li (SP —Ic.),p — ,U12Ul} ‘I)v,‘llv>

“+oo
([(/ dt (UD’G’”(t))* V}e_thQ?’G’U) P — ,U12Ul:| Py, qjv)

— 00

+oo
_ </ dt (UD,G,U (t))* ViefthQ?,G,v (pl(I)O)v , \Ijv)

— 00

+oo
- < / di (UD’G’“(w)*VteZ‘thi’*@’“@w(pl%n)

+o0 +oo
:/ dt(VtUD’G’”(t)(pléo)v,UD’G’”(t)\I'V)—/ dt (VU9 (4)®y,, UP9"(t) (p,To),)

— 00 — 00

+/+oo i (Vt (e_thQ?,G,v B UD,G,v(t)) (p, ), . UD,G,v(t)\Ijv>

— 00

- / o (Vt (e":H"‘Q?’G’” - UD’G’”(t)> o, UDGo (1) (pl%)v) .

— 00
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Let us compute the following expression:
e—itHopleitHg _ (e—it[((Qulz))71p2+q12E-x] ® e—itﬁo) (Pl) (eit[((zulz))71p2+q12E-x] ®eitH0)

_ (e*it[((2#12))_192+q12E'X] it[((2#12))_192+q12E-X])

P

_ (eiqlemlte—it3q%2E2/(6mz)e—iplqletz/(2u12)e—itpz/@mz) D, itP?/(2u12)
.eimqlet2/(2M12)eitgfﬁzEz/(ﬁulz)e—’iqleﬁclt)

_ (eiqumt P, 6*1'!1121536125) =(p; — 5171(]12Et) . (IV.4.93)

Let V% be either the operator V;% or V/,. Remembering that p, = —id/0x; and using (IV.4.93):

; ((a‘ilv@ (x)e‘“HOUD(t)@v,e_itHOU'D(t)\Ilv> + (Vlsgl(x)e_itHOUD(t)q)we_itHOUD(t)(pl\IIO)V)
- ((prfZl) (X)e_itH"ﬁD(t)q)v,e_itH“UD(t)\I/V) + (e”HUVle(X)e_itHUUD(t)(Pv,

U ()1 — pzu) ¥y )

— ((PVig) (e o Up ()@, e HoTp (1), ) + (e Hopye oV (x)e™ 0 U (1),

( )
Ty ) + (" T0VE (x)e T Up (1) (~pzv) @y, Up (1) )

)

-

_ ((pr12)(X) —itHo [T, (B, e~ HO T ()0, +( | — O1qua ) VEL(x)e o U (1),
Up()v) + (Vg (x)e™ ™ Up(t) (~przv) @y, Up (1))

= — (Vi) e o Up )@y, e U)Wy ) + ((p,Vi3) (x)e ™ Tp (1) Dy, e HoUp (1) W, )

+ (Vfg (x) (D, — S1.1q12t) et U (1) By, e~ 10 7 (t)\I/v>

+ (Vi (x)e 0T p (1) (— pzvr) By, Up ()0 )

(Vf; (x)e~ o peitHo =itHo T (1), e~ itHo T, (t)\IJV>

+ (szl (x)e” U (1) (—pa2vi) By, e~ o UD(t)\I’v) :

7’LtH0

This implies that:
. 9 s —1i 7 —1 7 s —1i 7 —1i 7
v ((8:@ 12[) (x)e" U (1)Dy, e tHOUD(t)‘I’v) = (VIQZ(X)B Mo U5 (1) (p1®o)v, € tHOUD(t)‘I’v>
- (Vfé (x)e Mo UD(t)<I>v,e*“H"U*D(t)(pl\I/o)v) : (IV.4.94)

By equations (II1.1.31)-(I1.1.35), we have the following

eitHo Vllésl(x) e~ itHo eitp2/(2M12)eip'(Q12Et2/(2M12))91 Vlvzsl(x) e—ip-(q12Et2/(2u12))e1e—itp2/(2u12)
—  (itP?/(2u12) Vil (x + e1qio Bt/ (2p12)) e itp?/(2u12)
= VPUx+tp/mz +e1q12EBt? )/ (2p12)), (IV.4.95)

where V%*! represents any of the following operators V%, Vi3, or Vi, defined in (I1.2.1).
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Using equations (I1.1.31)-(11.1.35) and substituting (I1.2.45) , (IV.4.94), (IV.4.95) and (I.2.50) in (I1.2.48),
we get:

ot) = (Vf’;() ST (1) (pro), e T ()8 ) — (Vi (x)e D (6, e~ 0T (1) (py o))

(a le2> ”H"Up(t)‘bv,e“HOUD(t)\I/v>

i vl (x)e HO T () By, e HHO T (1),
)

= (Ve o Up (1) (p1®0)y, Up ()W ) = (e"0V5 (x)e 0T (0)Dy, Up(t)(pyTo)v)

AV o 3
i (e S e O 0)8,, Up o),

OV o -
+i (e”HO 2 (x)e” Mo Up (1) @y, UD(t)\va>
83:1
- <6_m12v'x Viy (x + tp/pna + e1q12 B8/ (2p12)) €412V *Up (v, t)py®o, Un(v, t)%)
- (eﬂmzv'x Vg (x +tp/p2 + e1q12 Bt/ (212)) €42V *XUp (v, £)®o, Up (v, t) Pz‘I’0>
i A%
+1 <€_W12V'x 8712()(4— tp/,U12 + 91Q12Et2/(2u12)) UREAS xUD(V t)q)o, UD V t \IJO)
l
. —1 v-x aVllQ 2 7 VX
+1 (e H12 7ax (X+tp/,LL12 +61Q12Et /(2‘[112)) K12 UD(V t)q)o, UD V t \IIO
l
= (Vl’UQS(X'FVt + elqlgEt2/(2M12)) —itp /(QHIQ)UD(V t)pl(I)O e_”p /( 2M12)UD V t \I/O

- (Vlvzs(XJr vt + e1qi2 Et? /(2p112)) e P /(2’“2)UD(V t)®g, e P /(2’“2)UD(V t)pz‘I’o)

oV, ) A )
+1 < 8$l (X + vt + e1q12Et /(2N12)) *ltpz/(2H12)UD (V, t)(I)o, 671tp2/(2ﬂ12)UD (V’ t)\I,())

v,
+1 ( oz, (x—|—vt—|—e1q12Et /(2M12)) —itp /(2#12)UD(V t)(bo e~ it /(2#12)UD(V t) ) (IV496)

it follows that (I1.2.51) is true.

Moreover,

R(v - o
Woo @ (VG- %)e () (o), e T (0,
v j<k3<k<N

+ Z /dt ( (R — %) = Vi (Virt + e1qin B/ (2u51))) e HoUp (1) (pr®o),, »
j<k.3<k<N

¢~ itHo UD(t)\IIV)

+ > / dt ( (X — %) = Vit / ik — e1gii B/ (2p51))) e Up (1) (9, Do),
j<k,3<k<N

e~ itHo [T, (t)\IIV)

- Y /t(vjs (% — %j)e ™ 0p (1)@, e~ Up(t) (b Vo), )

j<k,3<k<N
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E
-2 /dt ((Vjsk(ik —%;) = Vi (vjrt + erqn Bt /(2u;1))) e o Up (1) Dy,
j<k.3<k<N

e o (1) (Pz‘I’O)v)

p> /dt ((lek(ik = %) = Vit pji/ ik — e1q;u B/ (2u1))) o Up (1) @y,
j<k,3<k<N

e 0 (1) (py Vo), )
+ Z/dt ((efthQ?,G,v _ UD’G’U(ZL)) (pl(I)O)v ’ Vy;cs(ik _ ij)UD,Gm (t)\I/V)
j<k
_E:/}ﬁ(@—“”Q?GW—zﬂl@%w)@wvﬁﬂik—i»UDG”aﬂpﬂ%x)
j<k
E
+ Z/dt ((efthQl_lG,v i UD,G,v(t)) (pl(I)O)vﬂ

i<k
(Vi (Fe — %5) = Vi (virt + erqin B /(2u51))) UP S0 (1) 0y,
E
_Z/dt e—thQ?7G,v _ UD,G,U(t) q)‘”
RN )
(Vi e — %) — Vi (virt + erqji B2 /(211,))) UP 90 (t) (p,W0) )
+ Z/dt (<€7thQ£)’G’U N UD,G',v(t)) (qu)o)va
i<k
(Vi — %) = V(¢ pjr/in — e1q; B/ (2ur))) UP 0 (4) Ty,
_Z/dt e—thQ?,G,v . UD’G’U(t) q)‘”
el )
(Vi —%5) = Vi3t pji/ ik — 1 B/ (2051))) UP 0 (8) (py o)) -

Thus, by Lemmata I1.2.3, 11.2.4 and 11.2.7, if V}, =0 forall 1 <j <k < N :

O(v—2%), ifa<l, > |gkl>0,
R(v) — 0w+ j<k3<k<N
v O(w=20-a)y ifa=1, Y |gxl>0,
j<k,3<k<N
O(v™e), if a <1, > lgjx] >0, O(v™), ifa<1,) |gx] >0,
j<k,3<k<N j<k
$ 0@ ) ifa =1, X gl >0,  J O ), ifa=1, 3 |g| >0,
j<k,3<k<N j<k
O(vil)’ if Z |Qj1€| =0, O(Uil)’ if Z |ij| = 0.
j<k,3<k<N j<k
Then,
O(vt=29), if o <1, |gju| >0,
j<k
R(U) = O(’U—H_Qq)? if o = 1, Z |(Ijk| >0,
j<k
O(v™1), if > lgjx| = 0.

i<k
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Finally, the convergence rate of R(v) as v — oo is

v1+p72a, if a < 17 Z |QJk| > Oa

i<k
limsupo?|R(v)] < Climsup{ v’ % ifa=1 3 |gl >0,
V—00 V—00 i<k
v Y (gl = 0.

j<k
0, if0<p<2a—1,

C, ifp=2a—-1<1,> |gx >0,
j<k
ifp=a=15 |gr =0,
j<k

IA
Q

oo, ifp=a=1 73 |grl >O0.
i<k

Then,

o(v™r), f0<p<2a—1,
O(Uip% lfP:2Oé—1<1,Z |q4k|>0a
R(v) = j<k !

O(U_l)v ifp =1, Z |QJ]€| =0,
i<k

(11.2.56)

Similarly, by Lemmata 11.2.3, I1.2.4, I1.2.5 and 11.2.7, if lek #0forsomel <j<k<N:

R(v) O(v=2%), if o <1, > lgjx| >0,
[ _ _ : ) : < <k, 3<k<N
= Ofv 2 + 0] (’U 2min{o;x ‘J<k’3§k§N}) + J<K,3Sk<
v ( ) O(v—2(1—61)), ifa=1, E |Q7k| >0,
j<k,3<k<N

10 (v’ min{a, o | 1§j<k§N}>

O(v™?), ifa <1, |gjx| >0,
j<k
x [ 0@ + 0 (v mintosn I1ss<keny) 4 JO@TETY), i a=1, 32 Jasu] > 0,
j<k
O(v™1), if > lgjxl=0.
j<k

Then,

10) (1}172min{04,0j1C | 1§j<k§N}) , if Z |q]k| > 0’

R v _ i<k
v Yow, 5 lal =0,
i<k
o(v™F if0<p<2min{a, o5 |1 <j<k<N}-1,

R(v) = O(v="), ifp=2min{a, 0, |1 <j<k<N}-1<1, (I1.2.57)
O(v™)

s ifpzl,z ‘ij‘:()-
i<k
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Let us analyze the rate of convergence of hs,l). On one hand, with t = 7/v :
[(emsprs ety iy v, ) — 1y

= /dpdpg < dpy |(e—ip1Q12Et2/(2/L12)e—iPZt/(Q/uz) ﬁD(v,T/v) _ 1)1/}12(1,)1&3(2)37 o 7pN)‘2

t d : 2 . 2 ~ 2 ~ ~ 2
= /dpdp3-~dpzv / ds— (e‘”’”“"‘ES /@imz) g=ip"s/(2inr2) UD(V,S)) wm(p)w:s(p?,,-.-,pzv)’
0
¢ d . 2 . 2 ~ 2 ~ ~ 2
< /dpdp3 -~ -dpn [/ ds‘% (efzplqus /(2p12)—ip®s/(2p12) Up(v, 5)) ” 1/112(?)11)3(]93,-..,171\7)’
0
2
t
< / / ds [prq12Es /a2 + p*/(2um2) + Y Vi (s(pe/pix + vie) + e1¢Es*/(25x))
0 j<k
~ N 2
X ¢12(P)¢3(p37--~,pN)‘ dpdps - - - dpn
N 2
< /dp [IP1q12 Bt/ (2p12) + (*/ (2p12) + C)t]2 ‘7/112(1))‘
2
< [efrre] (L4 o)

On the other hand:

e s g 1] < 21l

Now we study |h$,1)(7)|’s decay as v — oo applying Lemma I1.2.3, and (I1.2.67), (I1.2.68) with a = p:

‘hgl) (7’)‘ < Hvlvgs (X + ‘A,T)efiplq12E72/(2u12v2)efip2‘r/(2,ulzv) UD (V, T/U)pl(bo H
x| (e*ip1‘I12E72/(2/‘«12U2)677;1'-’27/(2/4'121)) [jD (v,7/v) — 1)Uy

P . ~
Clr/o|” Vi (x+ 0/ (z0) + 97 + erais Br/(20%mna)) e #02¥ = Up (/) (pi o),

IN

IA

P ~
C‘T/U‘ Viy (X +7p/(p2v) + 61Q12E7’2/(2U2M12)) Up(7/v)

X H fj’k' (pj’k' — ,Uj’k’vj’k:’)(l + ‘X|2)—2
G <k’

Then
0P[RV ()| < C|7)Phaa(|7]) € Lt (—o0, 00). (I1.2.69) (Iv.4.97)

Hence, for p =1
v/|h<vl>(r)|dr <c.

For 0 < p < 1, by Lebesgue dominated convergence theorem

lim o / rV (1)dr = / lim v?h{M (1)dr =0,

vV— 00 V— 00

where we used that lim,_, vphg,l)(T) = 0, since by (II.2.67) and (I1.2.68) with a = 1 we have vp|h£,1)(7)| <
Clr|vP~1L.



High-velocity estimates 121

As a result

O(w™Y), ifp=1.

— 00

o0 —p : <
/ dThE,l)(T){O(v ) H0So<l 1579

At this moment, we turn our attention to the rate of convergence of h?. When |x + 7v| < |7|/2, we
have |x| > |7| — |x + 7V| > |7|/2. With the last inequality we can estimate the second factor in the scalar
product of (I1.2.65). Let g be a C§°(R™) such that g(p)y12 = ¢12. By (I1.2.67) and (I1.2.68):

o / dr |h@(7)|

IN

C/ dr |7|P[Vi3 (x + 7)o

IN

+oo
CK dr|r|” ([Vi5’ (x +¥7)g(p) F(Ix + v7| = [7]/2)]|
+ V5 (x +¥7)g(P)|| [ F(1x] = |7]/2)W1a]]) . (TL.2.71)

Due to the short-range condition (11.2.21), the first integral in (I1.2.71) is finite; the fast decay in config-
uration space of W15 makes the second integral in (I1.2.71) be bounded:
il

1+ |7])3F(]x| > 7)\1112

oo o0
[ ariepipxl = 2wl = [ i)

—00 — 00

|l S+ )P

o0 dr
C — < 0.
/oo<1+r|>2 >

IN

IN

Hence, for p =1
v [ i <c.

and for 0 < p < 1, by Lebesgue dominated convergence theorem

lim v”/hS,Q)(T)dT :/ lim v”h? (7)dr =0,
where we used that lim,_, UPhE,Q)(T) = 0, since by (I1.2.67) and (I1.2.68) with a = 1 we have vp|h£,2)(7')| <
C|rlvr=t.

As a result

oo ), f0<p<1
/ drh@(ry = 4O O =P (m272)
oo Ow™), ifp=1.

Moreover, when there is at least one pair with non-zero relative charge, we have to estimate the following
error, see (I1.2.39) and (I1.2.46). In this case, p < 1, and —(2y — 1) < —(2a¢ — 1) < —p, where 7 is as in
Definition II.1.2. By equation (I1.2.13):

E oo
gw—1] < Z/ ds |Vji.(vjks + e1q;n Es®/ (2p5))]
J<k T

IN

E fo%e) 00
CZ/ ds (1+ |vjrs +eiquEs?/(2un)]) | < C’/ ds (1+|vs|+s%)"7
j<k /= 0

v > - =D if1/2 1
= C[/ ds (1+|vs|)_7+/ ds (14 s?) 7} SC{ZU ’ %f / T7< ’
0 v v y=1

v 7
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o(v™P), ifl/2<y<landp<2y—1lor~vy=1,
O(w="r), ifl/2<y<landp=2y—1,
o(v™?), H0<p<2min{a,oj,|1<j<k<N}-1, (11.2.74)
O(w="), ifp=2min{a, oj, |1 <j<k<N}-1<1.
One of the main results of Valencia and Weder [84] (and this thesis) is the error term in (I1.2.44). Let us
see in detail why this is true. We define e(v), the error term, for large v, as:

e(v) = v (i[SP,p)®y, Ty) — lim v (i[SP,p) Py, Ty) . (IV.4.98)

vV—00

First, until we say the opposite, we will assume that we do not know whether or not V% = 0.
By assumption of Theorem II.2.8,

0<p<2min{o, o3 [1<j<k<N}—1. (IV.4.99)

Moreover, from Lemma II.2.5, when ¢, # 0, one has 0 < 0 < 1. Then, (IV.4.99) implies that if we do
not know that whether V' = 0 and we know that > |gjx| > 0, we must have that

j<k
0<p<2minfa, ojp[1<j<k<N}—1<1. (IV.4.100)
Conversely, if we have p = 1 then Z lgjx| = 0 must be true, because in this case, « = 1, and o, = 1,
forall 1 < j < k < N, see the hypothje:i]; of Theorem I1.2.8. We will usually write p =1 and ) |g;x| =0

i<k
together even though p = 1 is enough when we do not know that whether V' = 0.

Yo +p—1, if 12 #0,

By (11.2.46), (11.2.51), (11.2.57), (11.2.66), (11.2.73) and (11.2.74), for all p; < .
v —1, if qi12 = 0,

and ps < a.

le(v)]

[T, (1(0) + R(v)) = lim Ie, (I(0) + R(v))]

< |(ew —1) (I(v) + R(v))|
+[(1w) + R@w) = 1 Te, (1) + R(v))|
4
< Clllaw =D+ Y| h(w) = Jim Ji(w)| + |R()
=1
v~ D12 <y <1, and Y |gjk| > 0,
i<k
- C lnT”7 if y=1, and ) [gx| >0,
i<k
0, if Z |ij‘ =0,
<k
o(v™F), f0<p<l, . o(v=rs), if g2 #0, . o(v=rt), if Vi, #0,
O(wv™1), ifp=1. 0, if g2 = 0, 0, if Vi, =0,

o), f0<p<2min{e, op|1<j<k<N}-—1,
+0@™"), ifp=2min{a, oj[1 <j<k<N}p-1<1,
)

, ifp=1,3" lgjx| = 0.
j<k
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From (I1.2.57), we see the need of having o, > 1/2 for all 1 < j < k < N in order to have R(v) — 0 as
v — 00.
Furthermore, if v < 1,

lim ﬂ — lim v~ ®—D
v—00 VP v—00
0, f0<p<2min{e, ox|1<j<k<N}-1<2y-1,
= or0<p<2min{e, oj,[1<j<k<N}—-1=2y—-1,
C, ifp=2min{a, 0 |1 <j<k<N}-1=2y-1,

we know that 1/2 < a < v < 1, then, by (IV.4.99), p < 2min{e, 0j5 |1 < j <k < N}-1<2a-1<
2y —1<y< 1. If y=1 by L’Hopital’s rule,

Inv

e 1 -1 p—1
lim — = lim —— = lim ———— = lim —— = 0.
v—o0 PP v—o0 PL—P v—00 (1 — p)q}—/’ v—00 (1 — p)

Then, in view that ) |g;x| > 0 (which implies p < 1),
j<k

o(v™r), ifl1/2<~vy<1, and ) |gjx| >0, and
i<k
0<p<2min{a, o, |1 <j<k<N}—-1,p<2y—-1,
O(w="), ifl1/2<~y<1, and ) |gjx] >0, and
i<k
p=2min{e, 0j; |1 <j<k<N}—-1=2y-1,

Igy—1)| =
e, ) o(v™?), ify=1, and > |gjx] >0, and
i<k
0<p<2min{a, oj, |1 <j<k<N}-1,
0, if > |gjx] =0 and
i<k

0<p<2min{e, oj; |1 <j<k<N}-1,

o(v™"), f0<p<2min{a, 0|1 <j<k<N}—-1,
_ O(v="), if p=2min{a, o |1 <j<k<N}-1<1, (IV.4.101)
O(w™), ifp=1,3 lgul =0.
i<k

We give more details to the argument given in Valencia and Weder [84]: When ¢12 # 0, we do not have an
extra error term of the form o(v~—"+) because in (I1.2.56) and (I1.2.57) p < a. Let us prove this last statement:
First case, assume that p < 2min{a, 0|1 <j <k < N}—1then p < 2min{a, 0, |1 <j<k<N}—-1<
2a — 1 < «, which implies that p < a. Second case p = 2min{c, 0;,|1 < j <k < N} —1 < 1. Hence we
have two possibilities: p = 2a — 1 < 1 this implies that 2a — 1 < o < 1, thus p < «; the second possibility
is p<2a—1but 2a —1 < a gives us p < a. If p < @, one can always choose ps such that p < ps < a < 1.
Therefore,

o(v™r), if0<p<2min{a, o, |1 <j<k<N}—1,
{O(U—ps), a2 70, _ Jow="r), ifp=2min{a, oj|1<j<k<N}—1<1, (IV.4.102)
0, if 12 =0, O(w™), ifp=1,% |g| =0.
i<k

If p < 1, and we do not know whether or not any charge ¢, is different from zero, then we only know
that 0 < p < 2min{e, o) |1 < j <k < N} —1 must hold. If 0 < p < 2min{e, o5 |1 < j <k < N} -1
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then automatically p < 1, else, if p = 2min{a, 0j,|1 < j < k < N} — 1, then, by p being less than 1,

p=2min{a, oj1 |1 <j<k<N}-1<

1 is true. Now, it is no difficult to see that,

o(v=?), H0<p<l, o(v™"), f0<p<2min{e, 0|1 <j<k<N}—-1,p<l1,
{O(vl)7 if p=1, - O(w™'), ifp=1, Z gkl =0
i<k
o(v™r), H0<p<2min{a, o, |1 <j<k<N}-1,
_ O(v="), if p=2min{a, o |1 <j<k<N}-1<1,
O(v1),

it p=1,> |gjx| =0.
<k

Let us recall the definition of v5 given in the the hypothesis of Theorem I1.2.8:

Y1, lf qi12 = O and V1l2 7& O,
V2=V +p, if g1z #0, and Vi, # 0,
2, if Vi, = 0.
Let us define two functions,
o(v™r), if Vi, #0, forall p; < 72 — 1
er(v) = o
0, if Vi, =0,
o(v™r), H0<p<2min{a, o, |1 <j<k<N}-1,
er(v) = O(w="), if p=2minfa, 0j5 |1 <j<k<N}—-1<1,
Ow™Y), ifp=1,3 |gjk| =0.

j<k
So far we have proven that
le(v)] < [ex(v)| + [e2(v)].
Let us estimate this two errors. We have the following cases:

(a) Case V!5 = 0(y2 = 2). This case applies when we only know that the pair potential, that we are
reconstructing, has a long-range part equals zero, but we do not know whether V* = 0. Then

o(v™"), if0<p<min{ye,2a,20,,|1<j<k<N}-—1,
le(v)] = le2(v)| =S O0wP), ifp=2min{a, oj5 |1 <j<k<N}—-1<~—1,
O(w™Y), if p=1,"l|gx| =0 and Vi, = 0.
In this case 72 — 1 < p < 2min{a, 0j5|1 < j <k < N} —1 < 1 and Vi, # 0 are not true. Then we

can say that

o(v™r), fy—-1<p<2min{e, o, |1<j<k<N}-1<1,
for any p;, 0 < p; <72 — 1,
o(v™r), if0<p<min{vys,2a,20;,|1<j<k<N}-—1,
le(v)] = O(w="), ifp=2min{a, oj, |1 <j<kE<N}—-1<ry —1,
ov™), if p=1,2 ;x| = 0 and Vi, # 0,
for any p;, 0 < p; <y — 1,
O(w™Y), ifp=1,|gjx| =0 and Vi, =0.
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(b) Case V/y # 0.

It is obvious that either v —1 < por p < 4o —1. If p satisfies 0 < p < 2min{a, 0j |1 < j <k < N}—1
then p satisfies one of the following subcases:

(1) v2—1<p<2minfe, o, |1 <j<k<N} -1

(14) 0 < p <2min{e, 0|1 <j <k <N} —1and p <y, — 1. We can bind these two inequalities
together by writting 0 < p < min{ys,2q, 20, |1 <j <k <N} —1.

On the other hand, if p satisfies p = 2min{«, o |1 < j <k < N} —1 < 1 then p satisfies one of the

following subcases:

(iii) y2— 1< p=2min{fo, o [1<j<k<N}—1< 1L
(tv) p=2min{a, 0, |1 <j<kE<N}—-1<7y,—1L

Then, we can estimate ey as follows:

o(v™"), ifyn—-1<p<2min{a, 0|1 <j<k<N}-1,

o(v™r), i 0<p<min{ye,2q, 20,1 <j<k<N}-1,

O(w™"), ifyp—-1<p=2min{a, o, |1 <j<k<N}-1<1,
lea(v)] = O(v™"), ifp=2min{a, o |1 <j<kE<N}—1<7y —1,

O(w™Y), ifp=1,3"|gjx| =0 and Vi, #0,

O(v™), it p=1,>"|g;x] =0 and Vll2:O_

It is not difficult to see that o(v ™~

o(v=r), if py < p,
O(vip% if Pl > p-

Assume that p; < p.

N ORI OIS

PO +o(v=P) = o(v™ ™in{rril) We need to prove that o(v=)+O(v—"r) =

Let f(v) = o(v™"") and g(v) = O(v™") :

f() ﬂ:()Jrliliimvm*p:C(o):O-

V—00 VPl v—o00 YT Pl ’UHOO v—PL v—00 VP v—o00

Conversely, suppose that p; > p. Then,

i 1O T90) _ 1)

V—00 VP

lim v + lim g( )

v—o00 PPl v—o0 v—0o0 U

=0+C=C.

In order to count e;(v), we need Viy # 0, py < 42 — 1 and p; < p. Besides, e;(v) does not count
neither when we have p < min{vs,2a, 20,; |1 < j < k < N} — 1 because we can choose p; such that
p < pymin{ys,2a, 20,5 |1 < j <k < N}—1,nor when p=2min{e, 03 |1 <j<k<N}—-1<r—1

because we can choose p; such

that p = 2min{a, 05 |1 < j <k < N} —1 < p; < 72 — 1, nor when

p=1and V], = 0. Hence e(v) can be estimated as follows:

ifp<y—-1<p<2min{a, o, |1 <j<k <N} -1,

if 0 < p <min{ys,2a, 20, |1 <j<k<N}—1,
ifpp<y—1<p=2min{a, 0|1 <j<k<N}-1<1,
if p=2min{e, oj |1 <j<k<N}-1<m—1,
ifpr<y2—1=m—-1<p=13 g =0and Vi, #0,
if p=1,3lgu| =0 and Vi, =0,
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o(v™), ifyp—-1<p<2min{e, o, |1 <j<k<N}-1<1,
for any p;, 0 < py < y2 — 1,
, if 0 < p <min{ye,2a, 20, |1 <j <k <N} -1,
= 00w, ifp=2min{e, 0|1 <j<k<N}-1<7y -1, (IV.4.103)
o(v=r), if p=1,3"|gjk| =0 and Vi, # 0,
for any p;, 0 < py <71 — 1,
O™, if p=1,3"|gx| =0 and V, = 0.

Now, we consider the special case where we suppose that VX = 0. If @ < 1 then Y |g;x| > 0 because

i<k
when )" |g;x| = 0 necessarily o = 1. But, if @ = 1 either ) |gx| = 0 or Y |g;x| > 0. By (I1.2.56) we
i<k j<k i<k
cannot have p = a = 1 and ) |g;x| > 0. That is why in (I1.2.44) we always put p = 1 and Y |g;x| = 0
Jj<k i<k

together in order to avoid p =1 and ) |gjx| > 0. We note that we can have p < 2o — 1 < o < 1 whether

j<k
2. lajkl = 00r 3 [gkl > 0.
Jj<k i<k
Following the same reasoning used to get (IV.4.101) and recalling that in this situation oj; =1 :

o(v™r), if1/2<~y<1, and > [gx| >0, and
i<k
0<p<2a—1,p<2y—1,
O(w="r), ifl1/2<~vy<1, and ) |gjx| >0, and
i<k
p=2a0—1=2y—-1,

Ie, —1)| =
e, ) o(v™), ify=1, and > |gjx| >0, and
i<k
OSPSQCY_L
0, it > [gjx| = 0 and
j<k
o), f0<p<2min{a, ojp|l1<j<k<N}—-1,
— O(v="), if p=2min{a, O‘jk|1§j<k‘§N}—1<l, (IV.4.104)
O™, ifp=1,3 |gkl =0.
i<k

Also, (IV.4.102) is valid. Then, if VE = 0, (IV.4.98) is estimated by (11.2.46), (I1.2.51), (I1.2.56), (I1.2.66),
(11.2.73), (11.2.74), (IV.4.102) and (IV.4.104) for all p, < c.

le(v)] g,y (I(v) + R(v)) = lim Ig, (I(v) + R(U))}

vV—00

IN

((Igo = 1) (I(v) + R(v))| + |(I(v) + R(v)) = lim I, (I(v) + R(v))
v if1/2 <y <1, and Y |gjx] > 0,
j<k B _
lny if y=1, and Y |g;x| > 0, +{O(U 7), f0<p<l,

v J<k O(w™h), ifp=1.
0, it > [kl =0,

j<k
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o(vr), H0<p<2a-—1,
o(v™Ps), if g2 #0, Ow="r), ifp=2a—1<1, |gjx| >0
o if gy =0, sk
’ ' O™, ifp=1,3 |gx| =0.
j<k
o(v™?), H0<p<2min{a, oj|l1<j<k<N}-1,
— JO(w™), ifp=2min{a, o, |1 <j<k<N}-1<1, (IV.4.105)
O(w™), ifp=1,3 lgx| = 0.
j<k

Because V¥ = 0, meaning that there are not long-range forces, we have that V5 = 0, obviously Vi, # 0 is
not true, and o = 2 is true. This makes impossible to have 7o —1 < p < 2min{a, 0, |1 <j <k < N}-1<
1. Besides 0 < p < 2min{a, 0 |1 <j <k <N} —1and 0 < p < min{ys,2a, 20, |1 <j <k <N} —1are
equivalent, so are p = 2min{a, 0 |1 < j <k < N}—-1<land p=2min{e, 04|11 <j<k<N}—-1<

Yo—1:

o(v™"), ifre—1<p<2min{a, o5 |1<j<k<N}-1<1,
for any p;, 0 < p; < v2 — 1,

o(v™"), if0<p<min{ys,2a, 2051 <j<k<N}-—1,

le()] = 0@, if p=2min{a, o5 [1<j<k<N}—1<p—1,

o(v=r), if p=1,%lgjx| =0 and Vi, # 0,

for any p;, 0 < py <y — 1,

jfp:172|qjk|:0andVll2=0.

S
—~
@I
[
~—

By (IV.4.103) and (IV.4.106) we obtain the error term given in (I1.2.44).

(IV.4.106)
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