

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN CIENCIAS MATEMÁTICAS

LÍMITES INVERSOS

PRESENTA: CARLOS SAIDT FERNÁNDEZ NASER

TUTOR: DRA. MARÍA ISABEL PUGA ESPINOSA FACULTAD DE CIENCIAS, UNAM.

MÉXICO, D.F. MARZO 2012

Índice general

Prefacio		III	
Dedicatorias			\mathbf{v}
1.	Intr	roducción	1
2.	Pre	liminares	3
	2.1.	Continuos	3
		Productos	10
3.	Lím	ites inversos	13
	3.1.	Definiciones y Propiedades	13
		Ejemplos	23
		Límites inversos indescomponibles	
		3.3.1. Definiciones y propiedades	26
		3.3.2. Ejemplos	27
4.	Lím	ites inversos generalizados	37
		Definiciones y propiedades	37
	4.2.	Límites inversos generalizados compactos	40
		4.2.1. Definiciones y propiedades	40
	4.3.	Límites inversos generalizados conexos	42
		4.3.1. Definiciones y propiedades	
	4.4.	Algunos teoremas de funciones continuas	
	4.5.	Ejemplos	

Prefacio

El estudio de los límites inversos se remonta a los años 1920 y 1930. La década de los 50 fue muy productiva, se obtuvieron importantes resultados, por ejemplo en 1954 C. E. Capel en [Ca] mostró que el límite inverso de funciones monótonas de arcos produce arcos, y que el límite inverso de curvas cerradas simples con funciones de ligadura monótonas produce curvas cerradas simples. En 1959 R. D. Anderson y G. Choquet en [AnCho]construyen un ejemplo de un continuo tipo árbol plano, que no tiene subcontinuos no degenerados homeomorfos entre sí. Usando las técnicas presentadas por R. D. Anderson y G. Choquet, J. J. Andrews en [An] produjo un continuo encadenable con la misma propiedad. En 1967 W. S. Mahavier en [Ma1] mostró que el ejemplo de Andrews no puede generarse como límite inverso del intervalo [0, 1] usando una sola función de ligadura. En 1967 G. W. Henderson en [He] mostró que el pseduo arco es el límite inverso del intervalo [0, 1] con una sola función de ligadura. A principios de la década de los 70, W. T. Ingram [In1] uso límites inversos para describir un ejemplo; un continuo no encadenable tipo árbol, para el cual todos sus subcontinuos no degenerados son arcos. A finales de esa década D. Bellamy en [Be] usando límites inversos construyó un continuo tipo árbol sin la propiedad del punto fijo.

Existen otras aplicaciones de los límites inversos en dinámica de funciones. M. Barge y J. Martin en [BaMa] demostraron que el límite inverso de [0,1] con una sola función de ligadura contiene un subcotinuo indescomponible si esa función tiene un punto cuyo período no es una potencia de 2.

En 2004 W. S. Mahavier en [Ma], presentó la definición de límites inversos generalizados (Definición 57). En esa década W. S. Mahavier, W. T. Ingram en [Ma] y [InMa], y A. Pelaez [Pe] inciaron la investigación sobre sus propiedades, ellos han obtenido varios resultados por lo que estos límites han producido un gran interés.

Dedicatorias

A mi madre Salime, que aguanto a pie firme todo este tiempo. Sin ella nada de esto hubiera sido posible

A mi hermano, que sus logros me dieron fuerzas para terminar.

A Ana, hiciste que este viaje fuera muy divertido.

A Eva, llegaste al final pero, con un nuevo y maravilloso camino.

A Beti, su paciencia fue mas grande que mis locuras.

A Sergio, por sus consejos y, principalmente por sus regaños.

A Paty, Gerardo y Raúl por leer y corregir este trabajo apesar de la redección y la otrografía.

A todos los amigos que compartieron un instante de este viaje

A la UNAM, por permitirme encontrar un lugar maravilloso llamado Facultad de Ciencias.

Capítulo 1

Introducción

El objetivo de este trabajo es presentar una introducción sobre los límites inversos y los límites inversos generalizados, mostrando algunos resultados que comparten y otros que en los primeros son ciertos pero que en los segundos no.

Este trabajo esta dividido en 3 capítulos.

En el primero se dan resultados y conceptos de teoría de continuos necesarios para ayudar a entender lo capítulos siguientes, si el lector ya ha tomado un curso de Teoría de continuos podría saltarse su lectura.

En el segundo capítulo, se presenta la definición de límite inverso, así como algunos resultados importantes. Este capítulo se concluye con la prueba de que el límite inverso del intervalo [0, 1] con función de ligadura

$$f(x) = \begin{cases} 2x, & \text{si } 0 \le x \le \frac{1}{2}; \\ 2(a-1)(x-\frac{1}{2})+1, & \text{si } \frac{1}{2} \le x \le 1 \end{cases}$$

contine un subcotinuo indescomponible.

Para finalizar, en el capítulo tercero, se presenta la definición de límite inverso generalizado. También se presentan ejemplos de resultados que son válidos en límites inversos pero que en los generalizados no lo son. Terminamos este capítulo con algunos ejemplos, que muestran que de funciones relativamente sencillas, con los límites inversos generalizados, podemos obtener espacios muy complicados.

Capítulo 2

Preliminares

Esta sección ayudará al lector que no esta familiarizado con la topología a obtener los conceptos básicos para entender los temas tratados en este trabajo. Si el lector ya tiene estos conocimientos, es recomendable que continúe leyendo la sección siguiente.

2.1. Continuos

Definición 1 Un espacio topológico X es un continuo si X es métrico, compacto, conexo y no vacío. X es un continuo de Hausdorff; si es un espacio de Hausdorff, compacto, conexo y no vacío. Si A es un subconjunto de X. y A es un continuo, decimos que A es un subcontinuo de X.

Ejemplo 2 El intervalo [a,b] es un continuo, con a, b números reales y a < b.

Ejemplo 3 Sea W igual a $\{(x,sen(\frac{1}{x})) \in \mathbb{R}^2 : 0 \le x \le 1\}$. Entonces si X es igual a la cerradura de W en \mathbb{R}^2 (\overline{W}) , X es un continuo llamado la curva sinoidal del topólogo. Observemos que \overline{W} es igual a W unión $\{(0,y) \in \mathbb{R}^2 : -1 \le y \le 1\}$.

Ejemplo 4 Sea X el continuo del ejemplo anterior y consideremos un arco Z del punto (0,-1) al punto (1,sen(1)), de tal forma que la intersección de X con Z sea $\{(0,-1),(1,sen(1))\}$. Entonces X unión Z es un continuo llamado el círculo de Varsovia.

El siguiente teorema nos muestra una forma de construir continuos.

Teorema 5 Sea $\{X_i\}_{i=1}^{\infty}$ una sucesión anidada de continuos no vacíos, entonces $X = \bigcap_{i=1}^{\infty} X_i$ es un continuo.

Demostración. El hecho de que X es no vacío, se sigue de que cada X_i es no vacío y $\{X_i\}_{i=1}^{\infty}$ es una sucesión anidada.

• Compacidad:

Cada X_i por hipótesis es cerrado. Entonces X es cerrado. Como X está contenido en X_1 y X_1 es compacto, X es compacto.

• Metrizabilidad:

X es un subespacio del espacio métrico X_i . Por lo tanto, es métrico.

• Conexidad:

Supongamos que X no es conexo. Entonces existen dos cerrados no vacíos A y B de X, tales que $A \cap B$ es vacía y X es igual a $A \cup B$. Como A y B son cerrados de X y éste es cerrado en X_1 , obtenemos que A y B son cerrados de X_1 . Al ser X_1 métrico, es normal. Por lo tanto, podemos encontrar dos abiertos U y W de X_1 tales que $U \cap W$ es vacía, A y B están contenidos en U y W, respectivamente.

Si para cada número natural i, X_i intersección $(U \cup W)^c$ es no vacía, concluímos que la sucesión $\{X_i \cap (U \cup W)^c\}_{i=1}^{\infty}$, es una sucesión anidada de espacios compactos métricos, por lo tanto $\bigcap_{i=1}^{\infty} (U \cup W)^c$ es no vacía, en consecuencia X intersección $(U \cup W)^c$ es no vacío. Pero esto no puede pasar, ya que X está contenido en $(U \cup W)$. Por lo tanto, existe un número natural k, tal que X_k intersección $(U \cup W)^c$ es vacía.

Entonces, X_k esta contenido en $(U \cup W)$. Ahora, como X_k es conexo,

2.1. CONTINUOS 5

sin pérdida de generalidad podemos suponer que X_k está contenido en U, así X está contenido en U y, en consecuencia W es vacío, lo cual es una contradicción. Por lo tanto, X es conexo.

Por todo lo anterior, obtenemos que X es un continuo.

Veamos algunos ejemplos de esta técnica de construcción de continuos.

Ejemplo 6 Empecemos dividiendo el cuadrado $S_0 = [0,1] \times [0,1]$ en nueve cuadrados congruentes y tomamos $S_1 = S_0 - ((\frac{1}{3}, \frac{2}{3}) \times (\frac{1}{3}, \frac{2}{3}))$. Análogamente, dividimos cada uno de los restantes ocho cuadrados en nueve cuadrados congruentes, llamemos S_2 al continuo que se obtiene al quitar el interior de cada uno de los ocho cuadrados centrales. Continuando de esta manera, definimos S_3 , S_4 , etc. Sea S igual a $\bigcap_{i=1}^{\infty} S_n$. Entonces por el Teorema S_i , S_i es un continuo del plano, el cuál es llamado La Curva Universal de Sierpinski.

El término universal del Ejemplo 6 se refiere al hecho de que éste continuo de dimensión uno del plano contiene una copia topológica de cualquier continuo de dimensión uno del plano. La demostración de éste hecho se puede encontrar en

[EsMaMe, Ejemplo 2,5, pág. 21].

Ejemplo 7 Consideremos primero el cubo M igual a $[0,1] \times [0,1] \times [0,1]$. Dividamos cada una de las caras de M en nueve cuadrados congruentes y hagamos un agujero a través del interior de cada cuadrado central, lo que nos da el continuo M_1 . Dividamos cada uno de los restantes cuarenta y ocho cuadrados en nueve cuadrados congruentes y hagamos un agujero a través del interior de los cuadrados centrales, de esta manera obtenemos un continuo M_2 . Repetimos este proceso para obtener continuos M_n . Sea M igual a $\bigcap_{i=1}^{\infty} M_i$. Entonces por el Teorema 5, M es un continuo, el cuál es llamado La Curva Universal de Menger.

El término universal del Ejemplo 7 se refiere, en este caso, al hecho de que M contiene una copia topológica de cualquier espacio métrico separable de dimensión uno. La demostración se puede leer en $[Ha, Teorema\ XII]$.

Definición 8 Un continuo X es un descomponible si existen dos subcontinuos propios no vacíos A y B de X tales que $X = A \cup B$. Si X no es un continuo descomponible, se dice que X es un continuo indescomponible.

Teorema 9 Un continuo X es descomponible si y sólo si X contiene un subcontinuo propio con interior no vacío.

Demostración. Si X es un continuo descomponible, existen dos subcontinuos propios no vacíos A y B de X, tales que X es igual a la unión de A y B. Por lo tanto, X - A es un abierto no vacío contenido en B. De donde B° es no vacío.

Supongamos ahora que X tiene un subcontinuo propio Y con interior no vacío. Si X-Y es conexo, entonces $\overline{X-Y}$ es un subcontinuo propio de X. Por lo que X es igual a Y unión $\overline{X-Y}$.

Si X-Y es disconexo, existen dos abiertos ajenos U y V de X tales que X-Y es igual a la unión de U y V. Como $X-(Y\cup U)$ es igual a V, se tiene que $Y\cup U$ es cerrado, por lo tanto, compacto $[EsMaMe,\ 1,45,\ p\acute{a}g.\ 17]$. Análogamente, $Y\cup V$ es compacto. Si $Y\cup U$ es disconexo, entonces $Y\cup U$ es igual a $K\cup L$, donde K y L son abiertos ajenos de $Y\cup A$. Como Y es conexo, Y está contenido en K o bien Y está contenido en L. Supongamos que Y está contenido en K. Entonces L está contenido en U, lo que implica que $L\cap \overline{V}$ es vacía. Por lo anterior, X es igual a $L\cup (K\cup \overline{V})$. Pero L y $K\cup \overline{V}$ son cerrados ajenos de X, lo que contradice la conexidad de X. Por lo tanto, $Y\cup U$ es conexo. De manera similar se prueba que $Y\cup V$ es conexo. De esta forma tenemos que X es igual a $(Y\cup U)\cup (Y\cup V)$.

Este último teorema, nos permite dar una caracterización de los continuos indescomponibles.

Corolario 10 Un continuo X es indescomponible si y sólo si todo subcontinuo propio de X tiene interior vacío.

Definición 11 Si X es un continuo y x un elemento de X, entonces la composante de x, denotada por k_x , es la unión de todos los subcontinuos propios de X que contienen a x.

2.1. CONTINUOS 7

Teorema 12 Si X es un continuo indescomponible entonces sus composantes son disjuntas.

Demostración. Sean x, y dos elementos de X y k_x y k_y las composantes de x y y respectivamente. Supongamos que k_x intersección k_y es no vacía. Sea z un elemento en esa intersección. Como z pertenece a k_x , existe un subcontinuo propio de K_1 de X tal que z y x pertenecen a K_1 . Análogamente existe un subcontinuo propio K_2 de X tal que z y y petenecen a K_2 .

Si w es un elemento de k_y , existe un subcontinuo propio K_3 de X tal que w y z pretenecen a K_3 . Como y pertenece a $K_2 \cap K_3$, se tiene que $K_2 \cup K_3$ es un continuo, el cual no es igual a X debido a que éste es indescomponible. Como z pertenece a $K_1 \cap (K_2 \cup K_3)$, resulta que $K_1 \cup K_2 \cup K_3$ es un subcontinuo de X, el cuál es propio por indescomponibilidad de X. Pero x y w son elementos de $K_1 \cup K_2 \cup K_3$, por lo que w es un elemento de k_x . Por lo tanto, k_y está contenida en k_x . Análogamente se prueba que k_x está contenida en k_y .

Teorema 13 Si X es un continuo indescoponible, entonces X tiene una cantidad no numerable de composantes distintas.

Una demostración del teorema anterior se puede encontrar en [EsMaMe, 2,30, pág 32].

Definición 14 Sean X es un espacio métrico y H_1 y H_2 dos subconjuntos cerrados de X. Un continuo K contenido en X es irreducible entre H_1 y H_2 si, $H_1 \cap K$, $H_2 \cap K$ ambas son no vacías, y para cualquier subcontinuo propio L de K se tiene que L intersección H_1 es vacía o L intersección H_2 es vacía.

El siguiente teorema es muy útil para probar que un continuo es indescomponible.

Teorema 15 Un continuo X es indescomponible si y sólo si existen tres puntos a, b, c en X tales que X es irreducible entre cada par de ellos.

Demostración. Supongamos que X es indescomponible y sean k_a, k_b y k_c tres composantes distintas de X. Si K es un subcontinuo propio de X que

contiene a a y a b, entonces K está contenido en $k_a \cap k_b$, lo cual contradice el Teorema 12, así que X es irreducible entre a y b. Análogamente, se tiene que X es irreducible entre b y c y entre a y c.

Supongamos ahora que X es descomponible y sean tres puntos a,b y c cualesquiera de X. Como X es descomponible, existen dos subcontinuos propios K y L de X tales que X es igual a $K \cup L$. Pero entonces K o L contiene a dos de los tres puntos a,b y c, por lo que, X no es irreducible entre dos de esos puntos.

Hablemos ahora un poco sobre continuos encadenables.

Definición 16 Una familia $\{U_i\}_{i=1}^n$ de subconjuntos de un espacio métrico X, es una cadena simple en X si se tiene que U_j intersección U_k es no vacía si y sólo si |j-k| es menor igual que 1. A cada U_k se le llama un eslabón de la cadena simple. Se dice que una cadena simple $\{U_i\}_{i=1}^n$ conecta a los puntos a y b en X si a pertenece a U_1 y b pertenece a U_n .

Con el siguiente resultado, obtenemos una forma de construir cadenas simples cuyos elementos sean conjuntos abiertos.

Teorema 17 Sea X un espacio métrico y conexo. Si \mathbb{U} es igual a $\{U_i\}_{i=1}^{\infty}$ es una cubierta abierta de X y a y b son dos elementos de X, entonces existe una cadena simple que conecta a a con b, cuyos eslabones son elementos de \mathbb{U} .

Demostración. Sea D el conjunto de puntos x de X tales que existe una cadena simple, con eslabones en \mathbb{U} , que conecta a a con x. Notemos que a es elemento de D. Así que, D es no vacío. Vamos a mostrar que D es abierto y cerrado en X, lo que implicaría, debido a la conexidad de X, que D es igual a X [EsMaMe, 1,25, pág. 11]. Sea x un elemento de D. Entonces existe una cadena simple $\{U_i\}_{i=1}^n$ con eslabones en \mathbb{U} , tal que a pertenece a U_1 y x es elemento de U_n . De esta manera, U_n está contenido en D. Por lo tanto, D es abierto.

Para ver que D es cerrado, probaremos que D es igual a \overline{D} . Sea x un elemento de \overline{D} , la Definición ?? nos dice que \overline{D} es igual a $D \cup \partial(D)$. Si x

2.1. CONTINUOS 9

pertenece a D ya acabamos. Así, podemos suponer que x es un elemento de $\partial(D)$. Como \mathbb{U} es una cubierta de X, existe un elemento U de \mathbb{U} tal que x pertenece a U. Como x es un elemento de $\partial(D)$, existe un elemento z de $D \cap U$, por lo que existe una cadena simple $\{V_i\}_{i=1}^n$, con eslabones en \mathbb{U} , que conecta a a con z. Sea r un elemento de $\{1, ..., m\}$, el primer número natural tal que $U \cap V_r$ es no vacía. Entonces $\{V_1, ..., V_r, U\}$ es una cadena simple que conecta a a con x. Por lo tanto, x es un elemento de D.

Definición 18 Una cadena simple C de conjuntos abiertos en un espacio métrico X es llamada una

Definición 19 Un espacio métrico es encadenable si para cada número real ϵ mayor que 0, existe una ϵ -cadena que cubre a X. Si a,b son elementos de X, entonces X es encadenable de a a b, si para cada número real ϵ mayor que 0, existe una ϵ -cadena $\{C_i\}_{i=1}^n$ que cubre a X tal que a es un elemento de C_1 y b pertenece a C_n .

Teorema 20 Si X es un continuo encadenable y K es un subcontinuo de X, entonces K es encadenable.

Demostración. Sea ϵ un número real mayor que 0. Como X es encadenable, existe una ϵ -cadena C, digamos $\{C_i\}_{i=1}^n$, que cubre a X. Sean j el primer número natural tal que $C_j \cap K$ es no vacío y k el número natural más grande con la propiedad de que $C_k \cap K$ es diferente de vacío. Consideremos el conjunto $\{C_j \cap K, C_{j+1} \cap K, ..., C_k \cap K\}$ el cual denotaremos por C' Supongamos que C' no es una ϵ -cadena en K que cubre a K. Entonces existen dos eslabones C_p y C_{p+1} , con $j \leq p \leq k$, tales que $(C_p \cap K) \cap (C_{p+1} \cap K)$ es vacía. Así, $\bigcup_{j \leq m \leq p} (C_m \cap K)$ $\bigcup_{p+1 \leq m \leq k} (C_m \cap K)$ son dos abiertos ajenos de K cuya unión es K. Esto constradice la conexidad de K. Por lo tanto, K es encadenable.

2.2. Productos

La siguiente definción nos presenta un concepto importante para el desarrollo de esta tesis.

Definición 21 Sea $\{X_i\}_{i=1}^{\infty}$ una familia de espacios topológicos. Definimos el conjunto $\{(x_i)_{i=1}^{\infty}: x_i \in X_i\}$, al cual llamaremos el producto cartesiano de la familia $\{X_i\}_{i=1}^{\infty}$ y lo denotaremos como $\prod_{i=1}^{\infty} X_i$.

Con la siguiente definción le damos estructura de espacio topológico al producto cartesiano de una familia numerable de espacios topológicos. También presentamos las proyecciones, funciones que nos van a servir de herramienta para probar muchos resultados en los siguientes capítulos.

Definición 22 Sea $\{X_i\}_{i=1}^{\infty}$ una familia de espacios topológicos.

Consideremos el producto cartesiano $\prod_{i=1}^{\infty} X_i$. Definimos la función π_i :

 $\prod_{j=1}^{\infty} X_j \to X_i \ como \ \pi_i((x_j)_{j=1}^{\infty}) = x_i, \ a \ esta \ función \ la \ llamaremos \ la proyección i-ésima. A la topología más pequeña que hace que todas las proyecciones sean continuas le llamaremos la topología producto.$

En el siguiente teorema, probaremos que el producto cartesiano de una familia de continuos es un continuo.

Teorema 23 Sea $\{X_i\}_{i=1}^{\infty}$ una familia de continuos. El producto cartesiano de $\{X_i\}_{i=1}^{\infty}$ es un continuo.

Demostración. Sea $\{X_i\}_{i=1}^{\infty}$ una familia de continuos. Consideremos $\prod_{i=1}^{\infty} X_i$ su producto cartesiano. Veamos que este producto es un continuo. Notemos que, por la definición de producto cartesiano, se tiene que $\prod_{i=1}^{\infty} X_i$ es no vacío.

2.2. PRODUCTOS 11

• Conexidad:

Como el producto de espacios conexos es conexo $[Du, Teorema~1,7,~p\'ag~109], \prod_{i=1}^{\infty} X_i~es~conexo.$

■ Compacidad:

Como el producto de espacios compactos es compacto $[Du, Teorema\ 1,4,\ p\'ag\ 224], \prod_{i=1}^{\infty} X_i$ es compacto.

■ Metrizabilidad:

Como el producto numerable de espacios métricos es métrico $_{\infty}$

[Du, Corolario 7,3, pág 191],
$$\prod_{i=1}^{\infty} X_i$$
 es métrico.

Por lo tanto,
$$\prod_{i=1}^{\infty} X_i$$
 es un continuo.

El siguiente teorema, nos proporciona una forma de probar que una función definida en un producto cartesiano es continua. Esta técnica la utilizaremos varias veces durante la tesis.

Teorema 24 Sean $\{X_i\}_{i=1}^{\infty}$ una familia de espacios topológicos, Y un espacio topológico $y : Y \to \prod_{i=1}^{\infty} X_i$ una función. Entonces, f es continua si y sólo si para todo número natural i, la función $\pi_i \circ f : Y \to X_i$ es continua.

Demostración. Supongamos que f es continua. En la Definción 22, mencionamos que la topología producto hace que las proyecciones sean continuas para todo número natural i. Como la composición de funciones continuas es continua [Du, Teorema 8,2, pág 79], para todo número natural i, la función $\pi_i \circ f$ es continua.

Supongamos que la función $\pi_i \circ f$ es continua para todo número natural i. Sea U_k un abierto de X_k . Consideramos el subbásico de la topología producto $\langle U_k \rangle = U_k \times \prod_{i \neq k} X_i$. Notemos que $\pi_k^{-1}(U_k)$ es igual a $\langle U_k \rangle$. Entonces $f^{-1}(\langle U_k \rangle)$ es igual a $f^{-1} \circ \pi_k^{-1}(U_k)$, el cual es un abierto de Y ya que la función $\pi_k \circ f$ es continua. Por lo tanto, f es continua.

Corolario 25 Sean $\{Y_i\}_{i=1}^{\infty}$ una familia de espacios topológicos, X un espacio topológico y, para todo número natural i, $f_i: X \to Y_i$ una función. La función $H: X \to \prod_{i=1}^{\infty} Y_i$ definida como: $H(x) = (f_i(x))_{i=1}^{\infty}$, es continua si y sólo si f_i es continua para todo número natural i.

Demostración. Usando el Teorema 24, una función definida en un producto es continua si y sólo si la composición con cada proyección es continua. Entonces H es continua si y sólo si $\pi_i \circ H$ es continua para todo número natural i. Ahora, por la definción de H, las funciones $\pi_i \circ H$ y f_i son iguales. Por lo tanto, H es continua si y sólo si f_i es continua.

A continuación daremos la construcción del conjunto de Cantor.

Definición 26 Sea C_0 igual a [0,1]. Removemos $\left(\frac{1}{3},\frac{2}{3}\right)$ de C_0 y obtenemos C_1 igual a $\left[0,\frac{1}{3}\right] \cup \left[\frac{2}{3},1\right]$. Ahora, removemos $\left(\frac{1}{9},\frac{2}{9}\right)$ y $\left(\frac{7}{9},\frac{8}{9}\right)$ de C_1 y contstruímos C_2 igual a $\left[0,\frac{1}{9}\right] \cup \left[\frac{2}{9},\frac{1}{3}\right] \cup \left[\frac{2}{3},\frac{7}{9}\right] \cup \left[\frac{8}{9},1\right]$. Continuando con este proceso, obtenemos la sucesión $\{C_i\}_{i=1}^{\infty}$. Por la construcción, para todo número natural i, C_{i+1} está contenido en C_i . El conjunto $\bigcap_{i=1}^{\infty} C_i$ es llamado el conjunto de Cantor.

Teorema 27 Para todo número natural i, sea A_i igual a $\{0,2\}$. Entonces $\prod_{i=1}^{\infty} A_i$ es homeomorfo al conjunto de Cantor.[Du, 4,1, Pág. 104].

Capítulo 3

Límites inversos

El objetivo de este capítulo es presentar las definiciones, resultados básicos sobre límites inversos y resolver el siguiente problema:

"Sean I el intervalo [0,1] y a un número real. Consideremos la siguiente función:

$$f(x) = \begin{cases} 2x, & \text{si } 0 \le x \le \frac{1}{2}; \\ 2(a-1)(x-\frac{1}{2})+1, & \text{si } \frac{1}{2} \le x \le 1. \end{cases}$$

Pruebe que para toda $0 \le a \le \frac{1}{2}$, el límite inverso de I con esta función de ligadura, contiene un subcontinuo indescomponible", propuesto por S. B. Nadler Jr en $[Na, 2,17, p\acute{a}g, 26]$.

3.1. Definiciones y Propiedades

Empecemos esta sección con la definición del concepto central de esta tesis.

Definición 28 Llamaremos sucesión inversa a la sucesión $\{X_i, f_i\}_{i=1}^{\infty}$ donde, para cada número natural i, X_i es un espacio topológico $y f_i : X_{i+1} \to X_i$ es una función continua y suprayectiva. Definimos el límite inverso de esta sucesión como:

$$\lim_{\leftarrow} \{X_i, f_i\}_{i=1}^{\infty} = \left\{ (x_i)_{i=1}^{\infty} \in \prod_{i=1}^{\infty} X_i : f_i(x_{i+1}) = x_i, \text{ para cada número natural } i \right\}.$$

A las funciones f_i les llamaremos funciones de ligadura.

Notation 29 Si m y n son números naturales, entonces $f_m^n = f_m \circ \cdots \circ f_n$ y f_n^n es igual a la identidad en X_n .

Definición 30 Sea $\{X_i, f_i\}_{i=1}^{\infty}$ una sucesión inversa de espacios métricos y X_{∞} su límte inverso. Consideremos para cada número natural i, la proyección $\pi'_i: \prod_{n=1}^{\infty} X_n \to X_i$. Para cada número natural i, sea $\pi_i = \pi'_i|_{X_{\infty}}$; Entonces π_i es una función continua, ya que es la restricción de una función continua.

Observación 31 Sean $\{X_i, f_i\}_{i=1}^{\infty}$ una sucesión inversa de espacios métricos $y X_{\infty}$ su límite inverso. En general, aunque las proyecciones π_i sean suprayectivas, sus restricciones a un subconjunto de ellas no necesariamente lo son. Como estamos pidiendo que las funciones de ligadura sean suprayectivas para todo número natural i, obtenemos que $f_i \circ \pi_{i+1}|_{X_{\infty}}$ es suprayectiva. Ahora, $f_i \circ \pi'_{i+1}$ es igual a π'_i . Así, si las funciones de ligadura son suprayectivas entonces las proyecciones π_i restrigidas al límite inverso X_{∞} son suprayectivas para todo número natural i.

Un conjunto que utilizaremos en algunos resultados sobre límites inversos es el que se muestra en la siguiente definición.

Definición 32 Sea $\{X_i, f_i\}_{i=1}^{\infty}$ una sucesión inversa de espacios métricos no vacíos. Para cada número natural n, definimos el siguiente conjunto:

$$H_n(X_i, f_i) = \left\{ (x_i)_{i=1}^{\infty} \in \prod_{i=1}^{\infty} X_i : f_i(x_{i+1}) = x_i \text{ para } i \leq n \right\}.$$

.

En el siguiente teorema mostramos cómo, con el conjunto $H_n(X_i, f_i)$, podemos construir el límite inverso de la sucesión inversa $\{X_i, f_i\}_{i=1}^{\infty}$.

Proposición 33 Sea $\{X_i, f_i\}_{i=1}^{\infty}$ una sucesión inversa de compactos no vacíos.

3.1. DEFINICIONES Y PROPIEDADES

15

- 1. Para cada n, $H_{n+1}(X_i, f_i) \subset H_n(X_i, f_i)$.
- 2. Para cada n, $H_n(X_i, f_i)$ es homemorfo $a \prod_{i=n+1}^{\infty} X_i$.
- 3. $\lim_{\leftarrow} \{X_i, f_i\}_{i=1}^{\infty} = \bigcap_{n=1}^{\infty} H_n(X_i, f_i).$

Demostración.

- 1. Sea n un número natural y consideramos un elemento $(x_i)_{i=1}^{\infty}$ de $H_{n+1}(X_i, f_i)$. Para todo número natural i menor o igual que n+1, $f_i(x_{i+1})$ es igual a x_i . Entonces, para todo número natural i menor o igual que n, $f_i(x_{i+1})$ es igual a x_i . Así $(x_i)_{i=1}^{\infty}$ es un elemento de $H_n(X_i, f_i)$.
- 2. Fijemos un número natural n, definamos la siguiente función:

$$h: H_n(X_i, f_i) \to \prod_{i=n+1}^{\infty} X_i$$

 $como: h((x_i)_{i=1}^{\infty}) = (x_i)_{i=n+1}^{\infty}$

Vamos a probar que h es un homeomorfismo:

La función h la podemos ver de la siguiente forma:

 $h((x_i)_{i=1}^{\infty}) = (\pi_i'(x_i)_{i=1}^{\infty})_{i=n+1}^{\infty}$. Por la Definición 22, las proyecciones son continuas. Usando este resultado y el Corolario 25, h es continua.

Definamos la función:

$$g: \prod_{i=n+1}^{\infty} X_i \to H_{n+1}(X_i, f_i)$$

 $como: g((x_i)_{i=n+1}^{\infty}) = (y_i)_{i=1}^{\infty} \quad donde:$

 $y_i = x_i$ para todo número natural i mayor o igual que n + 1, $y_i = f_i^{n+1}(x_{n+1})$ para todo número natural i menor que n + 1.

Ahora como $\pi_i \circ g$ es continua para todo número natural i, por el Teorema 24, g es continua. Observemos que como $g \circ f$ es igual a la

función identidad en $H_n(X_i, f_i)$ y $f \circ g$ es igual a la función identidad en $\prod_{i=n+1}^{\infty} X_i$, así g es la función inversa de f. Por lo tanto, f es un homeomorfismo.

3. Para ver que los dos conjuntos son iguales, basta notar que:

$$\bigcap_{n=1}^{\infty} H_n(X_i, f_i) = \left\{ (x_i)_{i=1}^{\infty} \in \prod_{i=1}^{\infty} X_i : f_i(x_{i+1}) = x_i \right\}.$$

Con esto completamos la demostración de la proposición.

17

Teorema 34 Sea $\{X_i, f_i\}_{i=1}^{\infty}$ una sucesión inversa de continuos. Entonces $\lim_{\leftarrow} \{X_i, f_i\}_{i=1}^{\infty}$ es un continuo.

Demostración. Por la parte 2 de la Proposición 33, para todo número natural n, $H_n(X_i, f_i)$ es compacto. $\bigcap_{n=1}^{\infty} H_n(X_i, f_i)$ es un continuo

[Se, Teorema 1,7,2, pág. 45]. Por lo tanto, gracias a la parte 3 de la Proposición 33, $\lim_{i \to \infty} \{X_i, f_i\}_{i=1}^{\infty}$ es un continuo.

Una demostración de la siguiente proposición se encuentra en

Proposición 35 Sean $\{X_i, f_i\}_{i=1}^{\infty}$ una sucesión inversa de compactos y X_{∞} su límite inverso. Para cada número natural i, definimos:

$$L_i = \left\{ \pi_i^{-1}(U_i) : U_i \text{ es un abierto de } X_i \right\}.$$

Si L es igual a $\bigcup_{i=1}^{\infty} L_i$, entonces L es una base para topología de X_{∞} .

Antes de ver ejemplos de límites inversos, probemos un lema que nos muestra que los subconjuntos cerrados del límite inverso, son límite inverso de la sucesión inversa formada por las imágenes de las proyecciones. Este lema es útil, porque nos permite describir los subcontinuos de un límite inverso.

Lema 36 Sea $\{X_i, f_i\}_{i=1}^{\infty}$ una sucesión inversa de espacios métricos y compactos. Sean X_{∞} el límite inverso de esta sucesión inversa y A un subconjunto compacto de X_{∞} . Entonces el conjunto $\{\pi_i(A), f_i|_{\pi_{i+1}(A)}\}_{i=1}^{\infty}$ es una sucesión inversa y;

$$\lim_{\leftarrow} \left\{ \pi_i(A), f_i|_{\pi_{i+1}(A)} \right\}_{i=1}^{\infty} = \left(\prod_{i=1}^{\infty} \pi_i(A) \right) \cap X_{\infty} = A$$

Demostración.

- El conjunto $\{\pi_i(A), f_i|_{\pi_{i+1}(A)}\}_{i=1}^{\infty}$ es una sucesión inversa: Por la Observación 31, para todo númeo natural $n, f_{n+1} \circ \pi_{i+1} = \pi_i$. De aquí se sigue que $\{\pi_i(A), f_i|_{\pi_{i+1}(A)}\}_{i=1}^{\infty}$ es una sucesión inversa.
- - Consideremos un punto $(x_i)_{i=1}^{\infty}$ del límite inverso:

$$\lim \left\{ \pi_i(A), f_i |_{\pi_{i+1}(A)} \right\}_{i=1}^{\infty}$$

Entonces, por la Definición 28, para todo número natural i, x_i es un elemento de $\pi_i(A)$, así, $(x_i)_{i=1}^{\infty}$ pertenece al conjunto $\prod_{i=1}^{\infty} \pi_i(A)$.

Ahora, por la Observación 31, para todo número natural i, $f_i(x_{i+1})$ es igual a $f_i|_{\pi_{i+1}(A)}(x_{i+1})$ que, al ser igual a x_i , nos permite concluir que, $f_i(x_{i+1})$ y x_i son iguales. Por lo tanto, $(x_i)_{i=1}^{\infty}$ es un elemento del límite inverso X_{∞} .

- Consideremos un punto $(x_i)_{i=1}^{\infty}$ de $\left(\prod_{i=1}^{\infty} \pi_i(A)\right) \cap X_{\infty}$. Para todo número natural i, x_i es un elemento de $\pi_i(A)$ y $f_i(x_{i+1})$ es igual a x_i . Como $f_i(x_{i+1})$ y $f_i|_{\pi_{i+1}(A)}(x_{i+1})$ son iguales, gracias a la Definición 28, $(x_i)_{i=1}^{\infty}$ pertenece al límite inverso $\lim_{k \to \infty} \left\{ \pi_i(A), f_i|_{\pi_{i+1}(A)} \right\}_{i=1}^{\infty}$.
- - Consideremos un punto x del conjunto compacto A. Por hipótesis, x es un elemento de X_{∞} . Ahora, como X_{∞} es un subconjunto del producto cartesiano $\prod_{i=1}^{\infty} X_i$, $x = (x_1, x_2, ...)$, es un elemento de $\prod_{i=1}^{\infty} \pi_i(A)$. Por lo tanto, x pertenece a $\left(\prod_{i=1}^{\infty} \pi_i(A)\right) \cap X_{\infty}$.

• Consideremos un punto $(x_i)_{i=1}^{\infty}$ que pertenezca a:

$$\left(\prod_{i=1}^{\infty} \pi_i(A)\right) \cap X_{\infty}.$$

Para cada número natural i, definimos al conjunto K_i como la intersección de A y $\pi_i^{-1}(x_i)$. Como x_i es un elemento de $\pi_i(A)$, existe un elemento x de A, tal que $\pi_i(x)$ es igual a x_i . En consecuencia, la intersección de A y $\pi_i^{-1}(x_i)$ es no vacía. Al tener $\prod_{i=1}^{\infty} X_i$ la topología producto, π_i es una función continua para todo número natural i, de donde, como $\{x_i\}$ es cerrado en X_i , $\pi_i^{-1}(x_i)$ es un conjunto compacto para todo número natural i. Así para todo número natural i, el conjunto K_i es compacto y no vacío.

Ahora, veamos que $\{K_i\}_{i=1}^{\infty}$ es una sucesión anidada de compactos. Para esto, sólo nos falta probar que, para todo número natural i, K_{i+1} está contenido en K_i . Sea y un elemento de K_{i+1} , entonces $\pi_{i+1}(y)$ y x_{i+1} son iguales. Como $(x_i)_{i=1}^{\infty}$ es un elemento de X_{∞} , $f_i(\pi_{i+1}(y))$ es igual a $f_i(x_{i+1})$, que es igual a x_i , así, $\pi_i(y)$ y x_i son iguales. Por lo tanto, K_{i+1} está contenido en K_i .

Como $\{K_i\}_{i=1}^{\infty}$ es una sucesión anidada de espacios compactos no vacíos, $\bigcap_{i=1}^{\infty} K_i$ es no vacía. Denotemos por K a la $\bigcap_{i=1}^{\infty} K_i$. Sea p un elemento de K. Como p pertenece a A y, para todo número natural i, $\pi_i(p)$ y x_i son iguales, entonces p y $(x_i)_{i=1}^{\infty}$ son iguales.

Con todo lo anterior queda probada la proposición.

Proposición 37 Sea $\{X_i, f_i\}_{i=1}^{\infty}$ una sucesión inversa de continuos con X_{∞} su límite inverso. Sean A y B subconjuntos compactos de X_{∞} y C la intersección de A con B. Para cada número natural i, sea C_i la intersección de $\pi_i(A)$ y $\pi_i(B)$. Entonces lím $\{C_i, f_i|_{C_{i+1}}\}_{i=1}^{\infty}$ es igual a C.

Demostración. Por la forma como se definieron los subconjuntos C_i , $\left\{C_i, f_i|_{C_{i+1}}\right\}_{i=1}^{\infty}$ es una sucesión inversa. Denotemos por C_{∞} a su límite inverso.

- Para todo número natural i, C_i está contenido en $\pi_i(A)$, así, C_∞ está contenido en el límite inverso lím $\{\pi_i(A), f|_{\pi_{i+1}(A)}\}_{i=1}^\infty$, el cual, gracias al Lema 36, es igual a A. Análogamente, C_∞ es subconjunto de B. Por lo tanto, C_∞ está contenido en C.
- Sea $(x_i)_{i=1}^{\infty}$ un punto de C. Para todo número natural i, x_i es un elemento de $\pi_i(A)$ y de $\pi_i(B)$, por consecuencia $(x_i)_{i=1}^{\infty}$ es un elemento de C_{∞} , ya que $f_i(x_{i+1})$ y x_i son iguales para todo número natural i.

Entonces, el límite inverso lím $\{C_i, f_i|_{C_{i+1}}\}_{i=1}^{\infty}$ es igual a C.

Teorema 38 Sean $\{X_i, f_i\}_{i=1}^{\infty}$ una sucesión inversa de continuos y X_{∞} su límite inverso. Sea $\{i_1, i_2, ...\}$ un subconjunto de números naturales tales que $i_1 < i_2 < \cdots$ Entonces X_{∞} es homeomorfo al límite inverso lím $\{X_{i_k}, g_{i_k}\}_{k=1}^{\infty}$, donde, para todo número natural k:

$$g_{i_k}: X_{i_{k+1}} \to X_{i_k}$$
 está definida como: $g_{i_k} = f_{i_k}^{i_{k+1}}$

Demostración. Definimos la siguiente función:

$$H: X_{\infty} \to \lim \{X_{i_k}, g_{i_k}\}_{k=1}^{\infty} \text{ como: } H((x_i)_{i=1}^{\infty}) = (x_{i_k})_{k=1}^{\infty}$$

Veamos que H es un homeomorfismo:

■ H está bien definida:

Sea $(x_i)_{i=1}^{\infty}$ un punto de X_{∞} . Como se definió g_{i_k} , para cada número natural k, $g_{i_k}(x_{i_{k+1}})$ es igual a $f_{i_k}^{i_{k+1}}(x_{i_{k+1}}))$, el cuál, al ser igual a x_{i_k} , nos permite afirmar que, $g_{i_k}(x_{i_{k+1}})$ y x_{i_k} son iguales. Por lo tanto, H está bien definida.

• H es continua:

La función H la podemos redefinir como: $H((x_i)_{i=1}^{\infty}) = (g_{i_k}(x_{i_{k+1}}))_{k=1}^{\infty}$. Ahora, para cada número natural k, g_{i_k} es continua. Así, por el Corolario 25, H es continua.

Ahora definimos la función:

$$L: \lim_{K \to \infty} \{X_{i_k}, g_{i_k}\}_{k=1}^{\infty} \to X_{\infty} \text{ como: } L((x_{i_k})_{k=1}^{\infty}) = (x_i)_{i=1}^{\infty}, \text{ donde: } L(x_i)_{i=1}^{\infty}$$

$$x_1 = x_{i_1}$$
, $x_n = f_{i_2-(n-1)}(x_{i_1})$

L es continua por el Corolario 25, además como $L \circ H$ es igual a la indentidad en X_{∞} y $H \circ L$ es igual a la identidad en lím $\{X_{i_k}, g_{i_k}\}_{k=1}^{\infty}$, obtenemos que H es un homeomorfismo.

Con la siguiente proposición, obtenemos una forma de construir funciones entre límites inversos.

Proposición 39 Sean $\{X_i, f_i\}_{i=1}^{\infty}$ y $\{Y_i, g_i\}_{i=1}^{\infty}$ dos sucesiones inversas de compactos. Denotemos por X_{∞} y Y_{∞} al límite inverso de $\{X_i, f_i\}_{i=1}^{\infty}$ y $\{Y_i, g_i\}_{i=1}^{\infty}$ respectivamente. Supongamos que tenemos el siguiente diagrama:

Donde, para todo número natural $i, \varphi_i : X_i \to Y_i$ es una función tal que $\varphi_i \circ f_i$ y $g_i \circ \varphi_{i+1}$ son iguales. Definimos la función $\varphi_\infty : X_\infty \to Y_\infty$ como $\varphi((x_i)_{i=1}^\infty) = (\varphi_i(x_i))_{i=1}^\infty$. Entonces:

- 1. φ_{∞} está bien definida.
- 2. Si para cada número natural i, φ_i es una función continua, entonces φ_{∞} es una función continua.

- 3. Si para cada número natural i, φ_i es una función inyectiva, entonces φ_{∞} es una función inyectiva.
- 4. Si para cada número natural i, φ_i es una función continua, suprayectiva y X_i es un espacio compacto métrico, entonces φ_{∞} es una función suprayectiva.

Demostración.

- 1. Sean $\{x_i\}_{i=1}^{\infty}$ un elemento de X_{∞} y $\{\varphi_i(x_i)\}_{i=1}^{\infty}$ su imagen bajo φ_{∞} . Para ver que $\{\varphi_i(x_i)\}_{i=1}^{\infty}$ es un punto de Y_{∞} basta notar que $g_i(\varphi_{i+1}(x_{i+1}))$ es igual a $\varphi_i(f_i(x_{i+1}))$. Por lo tanto $g_i(\varphi_{i+1}(x_{i+1}))$ es igual a $\varphi_i(x_i)$.
- 2. Supongamos que para cada número natural i, φ_i es una función continua. Entonces, por el Corolario 25 φ_{∞} continua.
- 3. Supongamos que para cada número natural i, φ_i es una función inyectiva. Vamos a considerar dos puntos diferentes (x_i)[∞]_{i=1} y (y_i)[∞]_{i=1}, del límite inverso X_∞. Entonces existe un número natural n, tal que x_n y y_n son distintos, así, φ_n(x_n) es diferente a φ_n(y_n). Por lo tanto, las imágenes bajo φ_∞ de los puntos (x_i)[∞]_{i=1} y (y_i)[∞]_{i=1} son diferentes, es decir φ_∞ es inyectiva.
- 4. Sea V_n un abierto de Y_n , entonces por la Prosposición $35, \pi_n^{-1}(V_n)$ es una abierto básico en Y_∞ . Como φ_n es suprayectiva, existe un elemento z_n de X_n tal que $\varphi_n(z_n)$ pertenece a V_n . Por la Observación 31, existe un elemento $(x_i)_{i=}^\infty$ de X_∞ tal que $\pi_n((x_i)_{i=1}^\infty)$ es igual a z_n . De aquí concluimos que $\varphi_\infty((x_i)_{i=1}^\infty)$ pertence a $\pi_n^{-1}(V_n)$. Por lo tanto, $\varphi_\infty(X_\infty)$ es denso en Y_∞ . Como X_∞ es compacto, $\varphi_\infty(X_\infty)$ es igual a Y_∞ .

Definición 40 Sea $\{X_i, f_i\}_{i=1}^{\infty}$ una sucesión inversa de arcos. Entonces el límite inverso X_{∞} de $\{X_i, f_i\}_{i=1}^{\infty}$ es llamando un continuo tipo arco.

Una prueba del siguiente teorema se encuentra en [Se, Teorema 2,4,22, pág. 114].

3.2. EJEMPLOS 23

Teorema 41 Si X es un continuo, las siguientes afirmaciones son equivalentes:

- 1. X es encadenable.
- 2. X es tipo arco.

Definición 42 Sea X un continuo. Diremos que X es unicoherente si al escribir X como $H \cup K$, donde H y K son subcontinuos de X, se tiene que $H \cap K$ es conexo. Diremos que X es hereditariamente unicoherente si todo subcontinuo de X es unicoherente.

Una demostración de los dos siguientes teoremas se pueden encontrar en $[Se, 2,1,25, p\acute{a}g. 81]$ y $[Se, 2,1,26, p\acute{a}g. 81]$ respectivamente.

Teorema 43 Sean $\{X_i, f_i\}_{i=1}^{\infty}$ una sucesión inversa y X_{∞} su límite inverso. Si para todo número natural i, X_i es un continuo unicoherente entonces X_{∞} es unicoherente.

Teorema 44 Sean $\{X_i, f_i\}_{i=1}^{\infty}$ una sucesión inversa y X_{∞} su límite inverso. Si para todo número natural i, X_i es un continuo hereditariamente unicoherente entonces X_{∞} es hereditariamente unicoherente.

3.2. Ejemplos

Cuando consideremos una sucesión inversa $\{X_i, f_i\}_{i=1}^{\infty}$, donde para todo número natural i, X_i es el mismo espacio y f_i es la misma función f, denotaremos a esta sucesión inversa por $\{X, f\}$.

Proposición 45 Sea X un continuo. Consideramos la sucesión inversa $\{X, Id_X\}$, donde Id_X denota la función identidad en X. Entonces el límite inverso de esta sucesión inversa es homeomorfo a X.

Demostración. Denotemos por X_{∞} al límite inverso de nuestra sucesión inversa. Observemos que por la forma como se define el límite inverso, los elementos de X_{∞} son de la forma (x, x, x, ...). Definamos la función:

$$h: X_{\infty} \to X$$
 $como: h(x, x, ..., x) = x$

■ h es continua:

Como h y π_1 son iguales, h es continua.

■ h es abierta:

Por la Proposición 35, un abierto básico de X_{∞} es de la forma $\pi_i^{-1}(V_i)$ con V_i un abierto de X_i . Por la definición de h, $h(\pi_i^{-1}(V_i))$ es igual a V_i . Por lo tanto h es abierta.

• h es inyectiva:

Sean (x, x, ...) y(y, y, ...) puntos de X_{∞} . Supongamos que las imágenes bajo h de (x, x, ...) y(y, y, ...) son iguales, entonces x y y son iguales. Por lo tanto, (x, x, ...) es igual a(y, y, ...). Así, h es inyectiva.

• h es suprayectiva:

Consideremos z un elemento de X. Entonces el punto (z, z, z...) de X_{∞} , es tal que h((z, z, z...)) y z son iguales. Por lo tanto, h es suprayectiva.

De todo lo anterior se tiene que h es un homeomorfismo. Por lo tanto, X_{∞} es homeomorfo a X.

Definición 46 Sea x un número real. Definimos $[x] = máx \{n \in \mathbb{N} : n \leq |x|\}$, la función máximo entero.

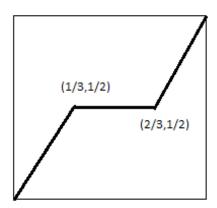
3.2. EJEMPLOS 25

Teorema 47 Para cada número natural n, sea X_n igual al conjunto $\{0,1,...,2^n-1\}$ con la topología discreta. Definimos $f_n:X_{n+1}\to X_n$ como: $f_n(x)=\left[\frac{x}{2}\right]$. Sea X_∞ igual al lím $\{X_n,f_n\}$, entonces X_∞ es homeomorfo al conjunto de Cantor. [Se, Teorema 2,2,2., pág 93].

Ejemplo 48 Consideremos la función $f:[0,1] \rightarrow [0,1]$ definida como:

$$f(x) = \begin{cases} \frac{3}{2}x, & si \ 0 \le x \le \frac{1}{3}; \\ \frac{1}{2}, & si \ \frac{1}{3} \le x \le \frac{2}{3}; \\ \frac{3}{2}x - \frac{1}{2}, & si \ \frac{2}{3} \le x \le 1 \end{cases}$$

cuya gráfica es la siquiente figura:



Conjunto M del Ejemplo 48

Denotemos por X_{∞} al límite inverso de $\{[0,1],f\}$. Observemos que X_{∞} tiene los siguientes puntos: $(0,0,0,\ldots),(1,1,1,\ldots)$ y $(\frac{1}{2},\frac{1}{2},\frac{1}{2},\ldots)$. Ahora vamos a fijarnos en el cuadrado de $[0,1]\times[0,1]$ que tiene como vértices a los puntos $(0,0),(\frac{1}{2},0),(\frac{1}{2},\frac{1}{2}),(0,\frac{1}{2})$, denotemos por C_1 a este cuadrado.

Restringimos f a C_1 y consideremos la sucesión inversa $\{C_1, f_1\}$ con $f_1(x) = \begin{cases} \frac{3}{2}x, & si \ 0 \leq x \leq \frac{1}{3}; \\ \frac{1}{2}, & si \ \frac{1}{3} \leq x \leq \frac{1}{2}; \end{cases}$ es un arco que va del punto $(0,0,0,\cdots)$ al punto $(\frac{1}{2},\frac{1}{2},\frac{1}{2},\cdots)$. Ahora, consideremos el cuadrado que tiene como vértices a los puntos $(\frac{1}{2},\frac{1}{2})$, $(\frac{1}{2},1)$, $(1,\frac{1}{2})$, (1,1). Denotemos a este rectángulo por C_2 . Con un argumento similar a C_1 , obtenemos que el límite inverso de $\{C_2,f\}$ es un arco, que va del punto $(\frac{1}{2},\frac{1}{2},\frac{1}{2},\cdots)$ al punto $(1,1,1,\cdots)$. Por lo tanto, X_{∞} es un arco.

3.3. Límites inversos indescomponibles

3.3.1. Definiciones y propiedades

Primero definiremos el concepto de sucesión inversa indescomponible.

Definición 49 Sea $\{X_i, f_i\}_{i=1}^{\infty}$ una sucesión inversa de continuos. Decimos que $\{X_i, f_i\}_{i=1}^{\infty}$ es una sucesión inversa indescomponible, si para cada número natural i y para cada par de subcontinuos no vacíos A_{i+1} y B_{i+1} de X_{i+1} tales que X_{i+1} es igual a la unión de A_{i+1} y B_{i+1} , se tiene que $f_i(A_{i+1})$ es igual a X_i o $f_i(B_{i+1})$ es igual a X_i .

El siguiente teorema, nos muestra que si tenemos una sucesión inversa indescomponible de continuos, su límite inverso es un continuo indescomponible.

Teorema 50 Si $\{X_i, f_i\}_{i=1}^{\infty}$ una sucesión inversa indescomponible de continuos, entonces su límite inverso es un continuo indescomponible.

Demostración. Denotemos por X_{∞} al límite inverso de nuestra sucesión inversa indescomponible de continuos. Supongamos que X_{∞} es descomponible. Por la Definición 8, existen dos subcontinuos A y B de X_{∞} , tales que X_{∞} es igual a la unión de A y B. Para todo número natural i, la proyección π_{i+1} es suprayectiva, ya que $\{X_i, f_i\}$ es una sucesión inversa indescomponible. De esto se sigue que, $\pi_{i+1}(X_{\infty})$ es igual a X_{i+1} . Por lo tanto, $\pi_{i+1}(A \cup B)$ y X_{i+1} son iguales. Como A y B están contenidos en X_{∞} , tenemos que $\pi_{i+1}(A)$ y

 $\pi_{i+1}(B)$ están contenidos en $\pi_{i+1}(X_{\infty})$. Así $\pi_{i+1}(A) \cup \pi_{i+1}(B)$ está contenido en X_{i+1} , lo que nos dice que X_{i+1} y $\pi_{i+1}(A) \cup \pi_{i+1}(B)$ son iguales.

Como π_{i+1} es continua, $\pi_{i+1}(A)$ y $\pi_{i+1}(B)$ son continuos. Por la Definición 49, $f_i(\pi_{i+1}(A))$ es igual a X_i o bien $f_i(\pi_{i+1}(B))$ es igual a X_i . Como las funciones $f_i \circ \pi_{i+1}$ y π_i son iguales, $\pi_i(A)$ es igual a X_i o bien $\pi_i(B)$ es igual a X_i . Sin pérdida de generalidad, supongamos que para un número infinito de números naturales $i, \pi_i(A)$ y X_i son iguales. Entonces, podemos encontrar un subconjunto $\{i_1, i_2, ...\}$ de números naturales con $i_1 < i_2 < ...$, tales que para todo número natural k, X_{i_k} es la imagen bajo π_{i_k} de A, consideramos $\{\pi_{i_k}(A), g_{i_k}\}$ donde: g_{i_k} es igual a la función $f_{i_k}^{i_{k-1}}$. Entonces, por el Teorema 38, X_{∞} es homeomorfo a lím $\{\pi_{i_k}(A), g_{i_k}\}$ y, por el Lema 36, podemos concluir que X_{∞} es igual a A. Lo cual es uan contradicción. Por lo tanto, X_{∞} es indescomponible. \blacksquare

3.3.2. Ejemplos

El siguiente teorema, nos proporciona una condición para asegurar que un límite inverso contiene un subcontinuo indescomponible.

Teorema 51 Sea $f: I \to I$ una función continua. Supongamos que existe x_0 en I, tal que $x_0 \neq f(x_0)$, $f^2(x_0) \neq x_0$ y $f^3(x_0) = x_0$ (i.e., x_0 es un punto de periodo 3 de f). Entonces, el límite inverso I_{∞} de $\{I, f\}$ contiene un subcontinuo indescomponible.

Demostración. Sea x_0 el punto de periodo 3 de f. Consideramos los siguientes puntos en I_{∞} :

$$\underline{x_0} = (x_0, f^2(x_0), f(x_0), x_0, \dots)
\underline{x_1} = (f(x_0), x_0, f^2(x_0), f(x_0), x_0, f^2(x_0), f(x_0), x_0, \dots)
\underline{x_2} = (f^2(x_0), f(x_0), x_0, f^2(x_0), f(x_0), x_0, f^2(x_0), f(x_0), x_0, \dots)$$

Como I es hereditariamente unicoherente, por el Teorema 44, I_{∞} es hereditariamente unicoherente. Sea S la intersección de todos los subcontinuos de I_{∞} que contienen al conjunto $A = \{\underline{x_0}, \underline{x_1}, \underline{x_2}\}$. Vamos a probar que S es un subcontinuo indescomponible. Para esto, basta probar que S es irreduccible entre cuales quiera dos elementos de A. Supongamos que S no es irreducible

entre $\underline{x_1}$ y $\underline{x_2}$. Entonces existe un subcontinuo propio H de S, tal que contiene a $\underline{x_1}$ y $\underline{x_2}$. Tomo H es propio, $\underline{x_0}$ no pertenece a H. En consecuencia, existe un número natural N, tal que para todo número natural n mayor que N, $\pi_n(\underline{x_0})$ no es elemento de $\pi_n(H)$, el cual denotaremos por H_n . Por otro lado, por la construcción de los elementos de A, existe un número natural m mayor que N, tal que para todo número natural $k:\pi_{(3k)m}(\underline{x_2})<\pi_{(3k)m}(\underline{x_0})<\pi_{(3k)m}(\underline{x_1})$ o $\pi_{(3k)m}(\underline{x_1})<\pi_{(3k)m}(\underline{x_0})<\pi_{(3k)m}(\underline{x_2})$. Así, $\pi_{(3k)m}(\underline{x_0})$ es un elemento de H_n . Lo cual es una contradicción. Entonces S es irreducible entre $\underline{x_1}$ y $\underline{x_2}$. Con un argumento similar, S es irreducible entre cuales quiera par de elementos de A. Por lo tanto, por el Teorema 15, S es indescomponible. \blacksquare

El siguiente ejemplo, se genera por un ejercicio propuesto por S. Nadler Jr. en $[Na, 2,17, p\acute{a}g 26]$..

Ejemplo 52 Sea I el intervalo [0,1], consideremos la siguiente función:

$$f(x) = \begin{cases} 2x, & si \ 0 \le x \le \frac{1}{2}; \\ 2(a-1)(x-\frac{1}{2})+1, & si \ \frac{1}{2} \le x \le 1 \end{cases}$$

Pruebe que para toda $0 \le a < \frac{1}{2}$, el límite inverso de I con esta función de ligadura contiene un subcontinuo indescomponible.

Para responder a este problema aplicaremos el Teorema anterior; veremos que si $0 \le a < \frac{1}{2}$, $f^3(x)$ tiene un punto fijo que no es punto fijo de las iteraciones anteriores $f^2(x)$ y f(x).

Primero calculemos $f^2(x)$.

$$f^{2}(x)$$
 :

Para calcular esta iteración, necesitamos encontrar para que puntos $f(x) \le \frac{1}{2}$ y para cuáles $f(x) \ge \frac{1}{2}$:

- Si f(x) es igual a 2x y menor o igual a $\frac{1}{2}$, despejando, x es menor o igual a $\frac{1}{4}$.
- Si f(x) es igual a $2(a-1)(x-\frac{1}{2})+1$ y menor o igual a $\frac{1}{2}$. Restando uno, $2(a-1)(x-\frac{1}{2})$ es menor o igual $a-\frac{1}{2}$. Dividiendo entre 2(a-1), $x-\frac{1}{2}$ es menor o igual $a-\frac{1}{4(a-1)}$. Por último, sumando $\frac{1}{2}$, x es menor o igual a $\frac{-1+2(a-1)}{4(a-1)}$.

- Si f(x) es igual a 2x y mayor o igual a $\frac{1}{2}$, despejando, x es mayor o igual a $\frac{1}{4}$.
- Si f(x) es igual a $2(a-1)(x-\frac{1}{2})+1$ y mayor o igual a $\frac{1}{2}$. Restando uno, $2(a-1)(x-\frac{1}{2})$ es mayor o igual $a-\frac{1}{2}$. Dividiendo entre 2(a-1), $x-\frac{1}{2}$ es mayor o igual $a-\frac{1}{4(a-1)}$. Por último, sumando $\frac{1}{2}$, x es mayor o igual a $\frac{-1+2(a-1)}{4(a-1)}$.

Con estos cálculos obtenemos lo siquiente:

$$f(x) \le \frac{1}{2} si \begin{cases} 0 \le x \le \frac{1}{4} \\ 0 \\ \frac{-1+2(a-1)}{4(a-1)} \le x \le 1 \end{cases}$$
$$f(x) \ge \frac{1}{2} si \begin{cases} \frac{1}{4} \le x \le \frac{1}{2} \\ 0 \\ \frac{1}{2} \le x \le \frac{-1+2(a-1)}{4(a-1)} \end{cases}$$

Lo anterior nos permite calcular $f^2(x)$ de la siguiente manera :

$$f^{2}(x) = \begin{cases} 2(f(x)), & si \ 0 \le f(x) \le \frac{1}{2}; \\ 2(a-1)(f(x) - \frac{1}{2}) + 1, & si \ \frac{1}{2} \le f(x) \le 1 \end{cases}$$

entonces

$$f^{2}(x) = \begin{cases} 2(2x), & si \ 0 \le x \le \frac{1}{4} \\ 2(a-1)((2x) - \frac{1}{2}) + 1 \ si \ \frac{1}{4} \le x \le \frac{1}{2} \\ 2(a-1)([2(a-1)(x - \frac{1}{2}) + 1] - \frac{1}{2}) + 1 \ si \ \frac{1}{2} \le x \le \frac{-1 + 2(a-1)}{4(a-1)} \\ 2[2(a-1)(x - \frac{1}{2}) + 1] \ si \ \frac{-1 + 2(a-1)}{4(a-1)} \le x \le 1 \end{cases}$$

Ahora,

$$2(a-1)(\left[2(a-1)(x-\frac{1}{2})+1\right]-\frac{1}{2})+1 =$$

$$= 2(a-1)(2(a-1)(x-\frac{1}{2})+\frac{1}{2})+1 =$$

$$= 4(a-1)^2(x-\frac{1}{2})+(a-1)+1 =$$

$$= 4(a-1)^2(x-\frac{1}{2})+a$$

Entonces $f^2(x)$ queda de la siguiente manera:

$$f^{2}(x) = \begin{cases} 4x, & si \ 0 \le x \le \frac{1}{4}; \\ 2(a-1)(2x-\frac{1}{2})+1, & si \ \frac{1}{4} \le x \le \frac{1}{2}; \\ 4(a-1)^{2}(x-\frac{1}{2})+a, & si \ \frac{1}{2} \le x \le \frac{-1+2(a-1)}{4(a-1)}; \\ 4(a-1)(x-\frac{1}{2})+2, & si \ \frac{-1+2(a-1)}{4(a-1)} \le x \le 1 \end{cases}$$

Para calcular $f^3(x)$ realizaremos un procedimiento parecido. Primero veamos cuando $f^2(x) \leq \frac{1}{2}$ y cuando $f^2(x) \geq \frac{1}{2}$.

- Si $f^2(x)$ es igual a 4x y menor o igual a $\frac{1}{2}$. Entonces, x es menor o igual a $\frac{1}{8}$.
- Si $f^2(x)$ es igual a 4x y mayor o igual a $\frac{1}{2}$. Entonces, x es mayor o igual a $\frac{1}{8}$.
- Si $f^2(x)$ es igual a $2(a-1)(2x-\frac{1}{2})+1$ y menor o igual a $\frac{1}{2}$. Restando uno, $2(1-1)(2x-\frac{1}{2})$ es menor o igual $a-\frac{1}{2}$. Diviendo entre 2(a-1), $2x-\frac{1}{2}$ es mayor o igual a $-\frac{1}{4(a-1)}$. Sumando $\frac{1}{2}$, 2x es mayor o igual a $\frac{-1+2(a-1)}{4(a-1)}$. Finalmente, dividiendo entre 2, x es mayor o igual a $\frac{-1+2(a-1)}{8(a-1)}$.
- Si $f^2(x)$ es igual a $2(a-1)(2x-\frac{1}{2})+1$ y mayor o igual a $\frac{1}{2}$. Restando uno, $2(1-1)(2x-\frac{1}{2})$ es mayor o igual $a-\frac{1}{2}$. Diviendo entre 2(a-1), $2x-\frac{1}{2}$ es menor o igual a $-\frac{1}{4(a-1)}$. Sumando $\frac{1}{2}$, 2x es menor o igual a $\frac{-1+2(a-1)}{4(a-1)}$. Finalmente, dividiendo entre 2, x es mayor o igual a $\frac{-1+2(a-1)}{8(a-1)}$.
- Si $f^2(x)$ es igual a $4(a-1)^2(x-\frac{1}{2})+a$ y menor o igual a $\frac{1}{2}$. Restando a, $4(a-1)^2(x-\frac{1}{2})$ es menor o igual a $\frac{1-2a}{2}$. Diviendo entre $4(a-1)^2$, $x-\frac{1}{2}$ es menor o igual a $\frac{1-2a}{8(a-1)^2}$. Sumando $\frac{1}{2}$, x es menor o igual a $\frac{1-2a+4(a-1)^2}{8(a-1)^2}$.
- Si $f^2(x)$ es igual a $4(a-1)^2(x-\frac{1}{2})+a$ y mayor o igual a $\frac{1}{2}$. Restando a, $4(a-1)^2(x-\frac{1}{2})$ es mayor o igual a $\frac{1-2a}{2}$. Diviendo entre $4(a-1)^2$, $x-\frac{1}{2}$ es mayor o igual a $\frac{1-2a}{8(a-1)^2}$. Sumando $\frac{1}{2}$, x es mayor o igual a $\frac{1-2a+4(a-1)^2}{8(a-1)^2}$.

- Si $f^2(x)$ es igual a $4(a-1)(x-\frac{1}{2})+2$ y menor o igual a $\frac{1}{2}$. Restando 2, $4(a-1)(x-\frac{1}{2})$ es menor o igual $a-\frac{3}{2}$. Dividiendo entre 4(a-1), $x-\frac{1}{2}$ es mayor o igual $-\frac{3}{8(a-1)}$. Por lo tanto, sumando $\frac{1}{2}$, x es mayor o igual a $\frac{-3+4(a-1)}{8(a-1)}$.
- Si $f^2(x)$ es igual a $4(a-1)(x-\frac{1}{2})+2$ y mayor o igual a $\frac{1}{2}$. Restando 2, $4(a-1)(x-\frac{1}{2})$ es mayor o igual a $-\frac{3}{2}$. Dividiendo entre 4(a-1), $x-\frac{1}{2}$ es menor o igual $-\frac{3}{8(a-1)}$. Por lo tanto, sumando $\frac{1}{2}$, x es menor igual a $\frac{-3+4(a-1)}{8(a-1)}$.

Con estos cálculos obtenemos lo siquiente:

$$f^{2}(x) \leq \frac{1}{2} si \begin{cases} 0 \leq x \leq \frac{1}{8} \\ 0 \\ \frac{-1+2(a-1)}{8(a-1)} \leq x \leq \frac{1}{2} \\ 0 \\ \frac{1}{2} \leq x \leq \frac{1-2a+4(a-1)^{2}}{8(a-1)^{2}} \\ 0 \\ \frac{-3+4(a-1)}{8(a-1)} \leq x \leq 1 \end{cases}$$

$$f^{2}(x) \ge \frac{1}{2} si \begin{cases} \frac{1}{8} \le x \le \frac{1}{4} \\ o \\ \frac{1}{4} \le x \le \frac{-1+2(a-1)}{8(a-1)} \\ o \\ \frac{1-2a+4(a-1)^{2}}{8(a-1)^{2}} \le x \le \frac{-1+2(a-1)}{4(a-1)} \\ o \\ \frac{-1+2(a-1)}{4(a-1)} \le x \le \frac{-3+4(a-1)}{8(a-1)} \end{cases}$$

Entonces, $f^3(x)$ queda de la siguiente manera:

$$f^{3}(x) = \begin{cases} 2(f^{2}(x)), & si \ 0 \le f^{2}(x) \le \frac{1}{2}; \\ 2(a-1)(f^{2}(x) - \frac{1}{2}) + 1, & si \ \frac{1}{2} \le f^{2}(x) \le 1 \end{cases}$$

entonces

$$f^{3}(x) = \begin{cases} 2(4x), & si \ 0 \le x \le \frac{1}{8}; \\ 2(a-1)(4x-\frac{1}{2})+1, & si \ \frac{1}{8} \le x \le \frac{1}{4}; \\ 2(a-1)([2(a-1)(2x-\frac{1}{2})+1]-\frac{1}{2})+1, & si \ \frac{1}{4} \le x \le \frac{-1+2(a-1)}{8(a-1)}; \\ 2[2(a-1)(2x-\frac{1}{2})+1], & si \ \frac{-1+2(a-1)}{8(a-1)} \le x \le \frac{1}{2}; \\ 2[4(a-1)^{2}(x-\frac{1}{2})+a], & si \ \frac{1}{2} \le x \le \frac{1-2a+4(a-1)^{2}}{8(a-1)^{2}}; \\ 2(a-1)([4(a-1)^{2}(x-\frac{1}{2})+a]-\frac{1}{2})+1, & si \ \frac{1-2a+4(a-1)^{2}}{8(a-1)^{2}} \le x \le \frac{-1+2(a-1)}{4(a-1)}; \\ 2(a-1)([4(a-1)(x-\frac{1}{2})+2]-\frac{1}{2})+1, & si \ \frac{-3+4(a-1)}{4(a-1)} \le x \le \frac{-3+4(a-1)}{8(a-1)}; \\ 2[4(a-1)(x-\frac{1}{2})+2], & si \ \frac{-3+4(a-1)}{8(a-1)} \le x \le 1 \end{cases}$$

Ahora,

$$2(a-1)([2(a-1)(2x - \frac{1}{2}) + 1] - \frac{1}{2}) + 1 =$$

$$= 2(a-1)(2(a-1)(2x - \frac{1}{2}) + \frac{1}{2}) + 1 =$$

$$= 4(a-1)^2(2x - \frac{1}{2}) + (a-1) + 1 =$$

$$= 4(a-1)^2(2x - \frac{1}{2}) + a$$

$$2(a-1)([4(a-1)^{2}(x-\frac{1}{2})+a]-\frac{1}{2})+1 =$$

$$= 8(a-1)^{3}(x-\frac{1}{2})+2a(a-1)-(a-1)+1 =$$

$$= 8(a-1)^{3}(x-\frac{1}{2})+(2a-1)(a-1)+1$$

$$2(a-1)([4(a-1)(x-\frac{1}{2})+2]-\frac{1}{2})+1 =$$

$$= 2(a-1)(4(a-1)(x-\frac{1}{2})+\frac{3}{2})+1 =$$

$$= 8(a-1)^2(x-\frac{1}{2})+3(a-1)+1 =$$

$$= 8(a-1)^2(x-\frac{1}{2})+3a-2$$

En conclusión $f^3(x)$ queda definida de la siguiente manera:

$$f^{3}(x) = \begin{cases} 8x, & si \ 0 \leq x \leq \frac{1}{8}; \\ 2(a-1)(4x-\frac{1}{2})+1, & si \ \frac{1}{8} \leq x \leq \frac{1}{4}; \\ 4(a-1)^{2}(2x-\frac{1}{2})+a, & si \ \frac{1}{4} \leq x \leq \frac{-1+2(a-1)}{8(a-1)}; \\ 4(a-1)(2x-\frac{1}{2})+2, & si \ \frac{-1+2(a-1)}{8(a-1)} \leq x \leq \frac{1}{2}; \\ 8(a-1)^{2}(x-\frac{1}{2})+2a, & si \ \frac{1}{2} \leq x \leq \frac{1-2a+4(a-1)^{2}}{8(a-1)^{2}}; \\ 8(a-1)^{3}(x-\frac{1}{2})+(2a-1)(a-1)+1, & si \ \frac{1-2a+4(a-1)^{2}}{8(a-1)^{2}} \leq x \leq \frac{-1+2(a-1)}{4(a-1)}; \\ 8(a-1)^{2}(x-\frac{1}{2})+3a-2, & si \ \frac{-1+2(a-1)}{4(a-1)} \leq x \leq \frac{-3+4(a-1)}{8(a-1)}; \\ 8(a-1)(x-\frac{1}{2})+4, & si \ \frac{-3+4(a-1)}{8(a-1)} \leq x \leq 1 \end{cases}$$

Ahora veamos si $f^3(x)$ tiene algún punto fijo que no sea un punto fijo de $f^2(x)$, consideremos dos casos:

a)
$$0 \le a \le \frac{1}{4}$$

- Sea $f^3(x)$ igual a 8x. Para que 8x sea igual a x, x debe ser igual a 0. Como 0 es punto fijo de $f^2(x)$, $f^3(x)$ igual a 8x no nos sirve.
- Sea $f^3(x)$ igual a $2(a-1)(4x-\frac{1}{2})+1$. Un punto fijo para este valor de $f^3(x)$, es aquél que $2(a-1)(4x-\frac{1}{2})+1$ es igual a x, esto es lo mismo que, si [8(a-1)-1]x-(a-1)+1 es igual a 0, continuando con este argumento, lo anterior, es igual a pensar que [8(a-1)-1]x es igual a-2, así, obtenemos que x es un punto fijo de $2(a-1)(4x-\frac{1}{2})+1$, si es igual a $\frac{a-2}{8(a-1)-1}$.

Veamos para que valores de a, se cumple: $\frac{1}{8} \le \frac{a-2}{8(a-1)-1} \le \frac{1}{4}$.

- Pensar para qué valores de a, $\frac{a-2}{8(a-1)-1}$ es mayor o igual que $\frac{1}{8}$, es pensar, para que valores, a-2 es menor o igual a $a-1-\frac{1}{8}$. Despejando, lo anterior se cumple, puesto que 2 es mayor igual que $\frac{9}{8}$.
- Para la otra desigualdad, obtenemos que, $\frac{a-2}{8(a-1)-1}$ es menor igual que $\frac{1}{4}$, si a es menor igual que $\frac{1}{4}$.

Lo anterior nos dice; que para todo valor de a en el intervalo $\left[0,\frac{1}{4}\right]$, el punto $\frac{a-2}{8(a-1)-1}$ es punto fijo de $f^3(x)$. Solo falta ver si $\frac{a-2}{8(a-1)-1}$ es punto fijo

Veamos para que valores de a, $\frac{a-2}{8(a-1)-1}$ es punto fijo de $2(a-1)(2x-\frac{1}{2})+1$:

$$2(a-1)(2(\frac{a-2}{8(a-1)-1}) - \frac{1}{2}) + 1 =$$

$$= 2(a-1)(\frac{-4a+1}{2[8(a-1)-1]}) + 1 =$$

$$= \frac{-4a(a-1) + (a-1)}{8(a-1)-1} + 1 =$$

$$= \frac{-4a(a-1) + 9(a-1) - 1}{8(a-1)-1}$$

Ahora, $\frac{-4a(a-1)+9(a-1)-1}{8(a-1)-1}$ es igual a $\frac{a-2}{8(a-1)-1}$ si, -4a(a-1)+9(a-1)-1 es igual a a-2. Entonces, para encontrar los valores de a, debemos calcular, para cuáles valores de a; -4a(a-1) + 9(a-1) igual a 0. Simplificando, tenemos el polinomio $-4a^2 + 11a - 8$. Como las raíces del polinomio anterior son $\frac{-11+7i}{-8}$ y $\frac{-11-7i}{-8}$, concluimos que no exiten valores de a, tales que el punto $\frac{a-2}{8(a-1)-1}$ sea punto fijo de $2(a-1)(2x-\frac{1}{2})+1$.

Entonces el punto $\frac{a-2}{8(a-1)-1}$ es un punto fijo de $f^3(x)$ pero no de $f^2(x)$.

$$b) \frac{1}{4} \le a \le \frac{1}{2}$$

Trabajemos con la función $8(a-1)^2(x-\frac{1}{2})+3a-2$. Un punto fijo x de esta función, es aquél que cumple; $8(a-1)^2(x-\frac{1}{2})+3a-2$ igual a x. Despejando, convertimos la igualdad anterior en: $[8(a-1)^2-1]x-4(a-1)^2+3a-2$ igual a 0. Realizando otro despeje, obtenemos: x es igual a $\frac{4(a-1)^2-3a+2}{8(a-1)^2-1}$

Veamos para que valores de a, el punto $\frac{4(a-1)^2-3a+2}{8(a-1)^2-1}$ se encuentra en el

 $intervalo \xrightarrow{\frac{-1+2(a-1)}{4(a-1)}} \le x \le 1.$ $\frac{4(a-1)^2-3a+2}{8(a-1)^2-1} \ es \ mayor \ o \ igual \ a \ \frac{-1+2(a-1)}{4(a-1)}, \ siempre \ y \ cuando, \ -8(a-1)^2+16(a-1)^3+1-2(a-1) \ sea \ menor \ o \ igual \ a \ 16(a-1)^3-12a(a-1)+8(a-1).$ Ahora, despejando la desigualdad anterior obtenemos que necesitamos la siguiente desigualdad: $-8(a-1)^2 + (12a-10)(a-1)$ menor o igual a 0. Así, obtenemos que los valores de a que estamos buscando, son aquellos que cumplen la desigualdad: $4a^2 - 6a + 2$ menor o igual a 0.

Este polínomio tiene soluciones para $\frac{1}{2} \leq a \leq 1$. Como estamos en la tercera iteación y $f^2(a) = 2a$. Entonces, este polinomio tiene solución para $\frac{1}{4} \leq a \leq \frac{1}{2}$.

Ahora veamos si el punto $\frac{4(a-1)^2-3a+2}{8(a-1)^2-1}$ es punto fijo de $f^2(x)$. Evaluando, obtenemos:

$$4(a-1)\left(\left[\frac{4(a-1)^2 - 3a + 2}{8(a-1)^2 - 1}\right] - \frac{1}{2}\right) + 2 =$$

$$= \frac{16(a-1)^3 - 12a(a-1) + 8(a-1) - 16(a-1)^3 + 4(a-1)}{8(a-1)^2 - 1} + 2 =$$

$$=\frac{16(a-1)^3 - 12a(a-1) + 8(a-1) - 16(a-1)^3 + 4(a-1) + 16(a-1)^2 - 2}{8(a-1)^2 - 1}$$

Para ver si el punto $\frac{4(a-1)^2-3a+2}{8(a-1)^2-1}$ es punto fijo de $f^2(x)$, debemos probar que, $\frac{4(a-1)^2-3a+2}{8(a-1)^2-1}$ es igual a $\frac{16(a-1)^3-12a(a-1)+8(a-1)-16(a-1)^3+4(a-1)+16(a-1)^2-2}{8(a-1)^2-1}$. Esto es cierto si la siguiente igualdad se cumple: $16(a-1)^3-12a(a-1)+8(a-1)-16(a-1)^3+4(a-1)+16(a-1)^2-2$ igual a $4(a-1)^2-3a+2$. Simplificando, obtenemos que los valores de a que estamos buscando, son las raíces del polinomio $-4a^2+11a-8$.

Como este polinomio tiene raíces complejas, el punto $\frac{4(a-1)^2-3a+2}{8(a-1)^2-1}$ no es punto fijo de $f^2(x)$.

Al encontrar que la función f(x) tiene puntos de orden 3, el Teorema 51 nos dice; si $0 \le a < \frac{1}{2}$, el límite inverso de I con función de ligadura f contiene un subcontinuo indescomponible.

Capítulo 4

Límites inversos generalizados

En esta sección, trabajeremos con el concepto de límite inverso generalizado. Este concepto fue intruducido por W. S. Mahavier en 2004. Lo que hace es ampliar a funciones semicontinua superiormente, el concepto de límite inverso. Como veremos en la sección de ejemplos, el considerar este tipo de funciones, nos permite obtener resultados tan variados, lo que hace que sea muy interesante su estudio.

4.1. Definiciones y propiedades

Empezaremos con el concepto de función semicontinua superiormente. Para esto necesitamos lo siguiente:

Definición 53 Sea X un espacio de Hausdorff y compacto. Denotaremos por $2^X = \{A \subseteq X : A \text{ es cerrado}, A \neq \emptyset\}.$

Definición 54 Sean X y Y espacios de Hausdorff y compactos y $f: X \to 2^Y$ una función. Decimos que f es semicontinua superiormente en el punto x de X si para cada conjunto abierto V de Y tal que f(x) está contenido en V, existe un subconjunto abierto U de X tal que x es elemento de U y si u es elemento de U entonces f(u) está contenido en V.

Definición 55 Sean X y Y espacios de Hausdorff y compactos y $f: X \to 2^Y$ una función. La gráfica G(f) de f es el conjunto de todos los puntos (x, y) tales que y es un elemento de f(x).

Ejemplo 56 Sea $f: X \to Y$ una función continua. Si Y es T_1 , definimos $f^*: X \to 2^Y$ como $f^*(x) = \{f(x)\}$. Entonces f^* es semicontinua superiormente.

Ahora, presentaremos la definción de un límite inverso generalizado.

Definición 57 Sea $\{X_i, f_i\}_{i=1}^{\infty}$ una sucesión de espacios métricos, donde $f_i: X_{i+1} \to 2^{X_i}$ es una función semicontinua superiormente para todo número natural i. El límite inverso generalizado de la sucesión $\{X_i, f_i\}_{i=1}^{\infty}$ se define como:

$$\lim_{\longleftarrow} \{X_i, f_i\} = \left\{ (x_i)_{i=1}^{\infty} \in \prod_{i=1}^{\infty} X_i : x_i \in f_i(x_{i+1}) \right\}.$$

Decimos que $\{X_i, f_i\}_{i=1}^{\infty}$ es una sucesión inversa con funciones de ligadura semicontinuas superiormente f_i . Si para todo número natural i, $f_i(x_{i+1})$ contiene un solo punto, esta definición coincide con la Definición 28.

Observación 58 Observemos que la Definición 28, es un caso particular de la Definición 57 cuando para todo número natural i la función $f_i: X_{i+1} \to X_i$.

Con el siguiente teorema, obtenemos una forma fácil de construir funciones semicontinuas superiormente.

Definición 59 Como en la Definición 30, para los límites inversos generalizados podemos definir las proyecciones i-ésimas. Sea $\{X_i, f_i\}_{i=1}^{\infty}$ una sucesión de espacios métricos con funciones de ligaduras semicontinuas superiormente. Consideremos para cada número natural i, la proyección π'_i : $\prod_{n=1}^{\infty} X_n \to X_i. \text{ Para cada número natural } i, \text{ sea } \pi_i = \pi'_i|_{\underset{i=1}{\text{lim}}\{X_i,f_i\}}; \text{ Entonces } \pi_i \text{ es una función continua, ya que es la restricción de una función continua.}$

Teorema 60 Sean X y Y espacios de Hausdorff y compactos, M un subconjunto de $X \times Y$ tal que si x es elemento de X entonces existe y en Y tal que la pareja (x,y) pertenece a M. Entonces M es un subconjunto cerrado si y sólo si M es la gráfica de una función semicontinua superiormente $f: X \to 2^Y$.

Demostración. Supongamos que M es cerrado. Para cada $x \in X$, definimos el siguiente conjunto:

$$f(x) = \{ y \in Y : (x, y) \in M \}$$
.

Notemos que f(x) es igual a $\pi_2((\{x\} \times Y) \cap M)$. Como $X \times Y$ es compacto y cerrado, $(\{x\} \times Y) \cap M$ es compacto. Dado que π_2 es continua, $\pi_2((\{x\} \times Y) \cap M)$ es un subconjunto compacto de Y. Por lo tanto, $\pi_2((\{x\} \times Y) \cap M)$ es un subconjunto cerrado de Y. Así que, f(x) es un subconjunto cerrado de Y y f está bien definida.

Supongamos que f no es semicontinua superiormente en un elemento x de X. Entonces existe un subconjunto abierto V de Y tal que f(x) está contenido en V y, para cada subconjunto abierto U de X tal que x es un elemento de U, existe z en U tal que (z,y) está en M y y no es elemento de V. Definimos $M_U = \{(p,q) \in M : p \in \overline{U} \ y \ q \notin V\}$. Notemos que: $M_U = (\overline{U} \times (Y-V)) \cap M$.

Sean U y W dos subconjuntos abiertos de X tales que x pretenece a $W \cap U$. $M_{U \cap W}$ está contenido en $M_U \cap M_W$, ya que, $(\overline{U \cap W} \times (Y - V)) \cap M$ es subconjunto de $((\overline{U} \cap \overline{W}) \times (Y - V)) \cap M$. Por lo tanto, la familia $\{M_U\}$ de subconjuntos cerrados de M, tiene la propiedad de la intersección finita.

Como $X \times Y$ es compacto, existe (a,b) que pertenece a todos los M_U . Entonces, (a,b) es un elemento de M. Como x es el único elemento en común para todos los \overline{U} , a es igual a x y, b no pertenece a V. Esto contradice el hecho de que b pertenecía a f(x). Por lo tanto, f es semicontinua superiormente.

Supongamos que f es semicontinua superiormente. Veamos que G(f) es un subconjunto cerrado de $X \times Y$. Sea (x,y) elemento de $(X \times Y) - G(f)$. Como Y es un espacio de Hausdorff y compacto, Y es normal. Por lo tanto, existen dos subconjuntos abiertos U y V de Y tales que, y es un elemento de U, f(x) es un subconjunto de V, $\overline{U} \cap V$ y $\overline{V} \cap U$ son vacíos. Como f es semicontinua superiormente, existe un subconjunto abierto H de X tal que x es un elemento de H y para todo elemento z de H, f(z) está contenido en V. Entonces, $H \times U$ es un abierto de $X \times Y$ tal que (x,y) pertenece a $H \times U$ y $(H \times U) \cap G(f)$ es vacío. Por lo tanto, G(f) es un cerrado de $X \times Y$.

Observación 61 La condición que se le pide al conjunto M en el Teorema 60 se puede traducir como: $\pi_1(M)$ igual a X. Sean $\{X_i, f_i\}_{i=1}^{\infty}$ una sucesión inversa de espacios métricos con funciones de ligadura semicontinuas superiormente con límite inverso X_{∞} y M igual a $G(f_1)$, entonces $\pi_1(X_{\infty})$ es igual a $\pi_2(M)$ y $(\pi_2 \times \pi_1)(X_{\infty})$ es igual a M.

4.2. Límites inversos generalizados compactos

4.2.1. Definiciones y propiedades

Definición 62 Sea $\{X_i, f_i\}_{i=1}^{\infty}$ una sucesión inversa de espacios de Hausdorff y compactos con funciones de ligadura semicontinuas superiormente. Para cada número natural n, definimos:

$$G_n = \left\{ \{x_i\}_{i=1}^{\infty} \in \prod_{i=1}^{\infty} X_i : x_i \in f_i(x_{i+1}) \text{ para todo n\'umero natural } i \text{ menor que } n \right\}$$

.

Estos conjuntos, son análogos a los conjuntos H_n de la Definición 32, de igual manera nos permitirán aproximar el límite inverso generalizado. Pero antes, debemos probar que, para todo número natural n, G_n es compactos y no vacíos.

Teorema 63 Para cada número natural n, G_n es un conjunto compacto y no vacío.

Demostración.

■ Para todo número natural n, G_n es no vacío.

Para ver que G_n es no vacío. Sean y_{n+1} un elemento de X_{n+1} y y_n un elemento de $f(y_{n+1})$. De forma inductiva, definimos un punto y_{n-i} de $f_{n-i}(y_{n-i+1})$, para cada número natural i menor que n. Para cada número natural i mayor o igual que n, y_i es cualquier punto de X_i . De esta manera tenemos que $(y_i)_{i=1}^{\infty}$ es un elemento de G_n .

■ Para todo número natural n, G_n es compacto. El conjunto $\prod_{i=1}^{\infty} X_i$ es compacto, ya que es un producto de compactos. Sólo necesitamos probar que G_n es cerrado en $\prod_{i=1}^{\infty} X_i$. Sea $(x_i)_{i=1}^{\infty}$ un elemento de $\left(\prod_{i=1}^{\infty} X_i\right) - G_n$. Entonces existe un número natural k menor o igual a n, tal que x_k pertenece a $f_k(x_{k+1})$. Como $f_k(x_{k+1})$ es un espacio de Hausdorff compacto, existe un subconjunto O abierto de X_k , tal que x_k es un elemento de O y $O \cap f_k(x_{k+1})$ es vacía. En consecuencia, $\pi_k^{-1}(O)$ es un subconjunto abierto de $\prod_{i=1}^{\infty} X_i$ tal que x pertenece a $\pi_k^{-1}(O)$ y $\pi_k^{-1}(O) \cap G_n$ es vacía. Por lo tanto, G_n es cerrado.

El teorema anterior, nos permite hacer la siguiente observación, la cual es un resultado análogo a la Proposición 33.

Observación 64 Por la Definición 62 y el Teorema 63, $\lim_{\leftarrow} \{X_i, f_i\}$ es igual $a \bigcap_{i=1}^{\infty} G_i$.

Teorema 65 Sea $\{X_i, f_i\}_{i=1}^{\infty}$ una sucesión inversa de espacios de Hausdorff compactos con funciones de ligadura semicontinuas superiormente. Entonces, el límite inverso lím (X_i, f_i) es un conjunto no vacío y compacto.

Demostración. Como G_n es igual a $\bigcup_{x \in X_2} f_1(x) \times \bigcup_{x \in X_3} f_2(x) \times \cdots \times \bigcup_{x \in X_{n+1}} f_n(x) \times \prod_{i=n+1}^{\infty} X_i$, $\{G_i\}_{i=1}^{\infty}$ es una sucesión anidada de espacios compactos en el producto cartesiano $\prod_{i=1}^{\infty} X_i$, $\bigcap_{i=1}^{\infty} G_i$ es un conjunto compacto y no vacío. Entonces, por la Observación 64, el límite inverso lím (X_i, f_i) es un conjunto no vacío y compacto. \blacksquare

4.3. Límites inversos generalizados conexos

4.3.1. Definiciones y propiedades

Los resultados de esta sección dan algunas condiciones que son suficientes para que el límite inverso generaliazdo de espacios métricos sea conexo.

El siguiente teorema nos muestra un condición suficiente para que el límite inverso generalizado sea no conexo.

Teorema 66 Sean M un subconjunto cerrado y no conexo de $[0,1] \times [0,1]$ tal que $\pi_1(M)$ es igual a [0,1] y $f:[0,1] \to 2^{[0,1]}$ la función semicontinua superiormente que tiene como gráfica a M. Entonces $\lim_{\leftarrow} \{[0,1],f\}$ es no conexo.

Demostración. Sea X_{∞} igual al lím $\{[0,1], f\}$. Supongamos que X_{∞} es conexo. Como π_1 y π_2 son funciones continuas $\pi_2 \times \pi_1 : X_{\infty} \to [0,1] \times [0,1]$ es continua. Por la Observación 61 $(\pi_2 \times \pi_1)(X_{\infty})$ es igual a G(f). Pero esto contradice el hecho de que G(f) sea no conexa. Por lo tanto, K es no conexo.

Primero daremos algunas condiciones para que G(f) sea un conjunto conexo, esto nos va a permitir dar condiciones para saber cuándo G_n es un conjunto conexo.

Teorema 67 Sean X y Y espacios de Hausdorff y compactos, donde X es conexo y $f: X \to 2^Y$ una función semicontinua superiormente. Supongamos que f(x) es conexo para todo elemento x de X. Entonces G(f) es conexa.

Demostración. Supongamos G(f) no es conexa. Entonces existen dos subconjuntos cerrados no vacíos H y K de $X \times Y$, tales que G(f) es igual a $H \cup K$ y $H \cap K$ es vacía. Si x pertenece a X, $\{x\} \times f(x)$ es un subconjunto conexo de G(f). Por lo tanto, $\{x\} \times f(x)$ está contenido en H o bien $\{x\} \times f(x)$ está contenido en K. Ahora definimos:

1.
$$H_1 = \{x \in X : \{x\} \times f(x) \subseteq H\}$$

2.
$$K_1 = \{x \in X : \{x\} \times f(x) \subseteq K\}$$

Gracias al Teorema 60, G(f) es cerrado en $X \times Y$, por ser la gráfica de una función semicontinua superiormente. Ahora, como $H_1 = \pi_1(G(f) \cap H)$ y $K_1 = \pi_1(G(f) \cap K)$, H_1 y K_1 son cerrados. En consecuencia, H_1 y K_1 son compactos tales que, X es igual a $H_1 \cup K_1$. Como X es conexo, existe un elemento z en $H_1 \cap K_1$ tal que, $\{z\} \times f(z)$ está contenido en $H \cap K$. Esto contradice la hipótesis de que H y K son conjuntos ajenos. Por lo tanto, G(f) es conexa.

Definamos el inverso de un subconjunto.

Definición 68 Sea M un subconjunto de $X \times Y$ con X y Y espacios de Hausdorff y compactos. Definimos $M^{-1} = \{(y, x) \in Y \times X : (x, y) \in M\}$.

El siguiente teorema nos presenta una condición suficiente para saber, cuándo la gráfica de una función semicotinua superiormente es conexa.

Teorema 69 Sean X y Y espacios de Hausdorff y compactos, donde Y es un conjunto conexo. Supongamos que $f: X \to 2^Y$ es un función semicontinua superiormente tal que, para todo elemento y de Y, $A_y = \{x \in X : y \in f(x)\}$ es un subconjunto no vacío y conexo de X. Entonces, G(f) es conexa.

Demostración. G(f) es un subconjunto de $X \times Y$. Definimos M igual a $G(f)^{-1}$, como en la Definición 68. Entonces M^{-1} , que es igual a G(f), es la gráfica de una función semicontinua superiormente. Usando el Teorema 67, M^{-1} es conexo. Por lo tanto, G(f), es conexo.

En la siguiente definición generalizaremos el concepto de gráfica.

Definición 70 Sean $\{X_i\}_{i=1}^{n+1}$ una colección finita de espacios de Hausdorff compactos y $f_i: X_{i+1} \to 2^{X_i}$ una función semicontinua superiormente para todo número natural i, tal que i pertenece al intervalo [1, n]. Definimos:

$$G(f_1, f_2, f_3, ..., f_n) = \left\{ x \in \prod_{i=1}^{n+1} X_i : x_i \in f_i(x_{i+1}), \text{ donde } 1 \le i \le n \right\}$$

El siguiente teorema, es una generalización del Teorema 69.

Teorema 71 Sean $\{X_i\}_{i=1}^{n+1}$ una colección finita de continuos de Hausdorff $y \{f_i : X_{i+1} \to 2^{X_i}\}_{i=1}^n$ una colección de funciones semicontinuas superiormente. Supongamos que para todo x e i, elementos de X_{i+1} $y \{1, 2, ..., n\}$ respectivamente, $f_i(x)$ es un conjunto conexo. Entonces, $G(f_1, f_2, f_3, ..., f_n)$ es conexa.

Demostración. Demostraremos el teorema por inducción sobre n.

Para n = 1 es el Teorema 67.

Supongamos que para cualesquiera dos colecciones $\{X_i\}_{i=1}^{n+1}$ y $\{f_i: X_{i+1} \to 2^{X_i}\}_{i=1}^n$, tales que, para todo x e i, elementos de X_{i+1} y

 $\{f_i: X_{i+1} \to 2^{X_i}\}_{i=1}^n$, tales que, para todo x e i, elementos de X_{i+1} y $\{1, 2, ..., n\}$, respectivamente, $f_i(x)$ es un conjunto conexo, $G(f_1, f_2, f_3, ..., f_n)$ es conexo. Sean $\{X_i\}_{i=1}^{n+2}$ un colección finita de continuos de Hausdorff y $\{f_i: X_{i+1} \to 2^{X_i}\}_{i=1}^{n+1}$ un colección de funciones semicontinuas superiormente. Supongamos que para todo x e i, elementos de X_{i+1} y $\{1, 2, ..., n+1\}$, respectivamente, $f_i(x)$ es un conjunto conexo. Por hipótesis de inducción, $G(f_2, f_3, f_4, \cdots, f_{n+1})$ es un conjunto conexo.

Definimos:

$$h: G(f_1, f_2, f_3, ..., f_{n+1}) \to G(f_2, f_3, f_4, ..., f_{n+1})$$

como: $h(x_1, x_2, x_3, ..., x_{n+1}) = (x_2, x_3, x_4, ..., x_{n+1}).$

■ h es una función continua:

Para todo elemento i de $\{1, 2, ..., n\}$, la función $\pi_i \circ h$ es continua. Entonces por el Teorema 24, h es continua.

■ h es una función suprayectiva:

Sea $(x_2, x_3, ..., x_{n+1})$ un elemento de $G(f_2, f_3, f_4, ..., f_{n+1})$. Si z es elemento $f_1(x_2)$, podemos concluir que, $(z, x_2, ..., x_{n+1})$ es elemento de $G(f_1, f_2, ..., f_{n+1})$ y $h(z, x_2, ..., x_{n+1})$ es igual a $(x_2, x_3, ..., x_{n+1})$.

Supongamos que $G(f_1, f_2, f_3, ..., f_{n+1})$ es un conjunto no conexo. Entonces existen dos cerrados H y K del producto cartesiano $\prod_{i=1}^{n+2} X_i$ tales que $G(f_1, f_2, ..., f_{n+1})$ es igual a $H \cup K$ y $H \cap K$ es vacía. Como h es suprayectiva, $h(H \cup K)$ es igual a $G(f_2, f_3, f_4, ..., f_{n+1})$, en consecuencia, existe un punto $p = (p_1, p_2, ..., p_{n+1})$ en $h(H) \cap h(K)$. Así, el conjunto:

$$\{(x_1, p_2, ..., p_{n+1}) \in G(f_1, f_2, f_3, ..., f_{n+1}) : x_1 \in f_1(p_2)\}$$

es un conjunto conexo que intersecta a H y a K. Esto contradice el hecho de que H y K son ajenos. Por lo tanto, $G(f_1, f_2, f_3, ..., f_{n+1})$ es conexa.

Ahora estamos listos para probar que G_n es conexo, para todo número natural n.

Teorema 72 Sean $\{X_i\}_{i=1}^{\infty}$ una colección de continuos de Hausdorff y $\{f_i: X_{i+1} \to 2^{X_{i+1}}\}_{i=1}^{\infty}$ una familia de funciones semicontinuas superiormente. Supongamos que para todo elemento x de X_{i+1} y todo número natural i, $f_i(x)$ es conexo. Entonces, para todo número natural n, G_n es un conjunto conexo.

Demostración. Por el Teorema 71, $G(f_1, f_2, f_3, ..., f_{n+1})$ es conexa y, como G_n es igual a al producto cartesiano $G(f_1, f_2, f_3, ..., f_n) \times X_{n+2} \times X_{n+3} \times \cdots$, G_n es conexo para todo número natural n.

Teorema 73 Sean $\{X_i\}_{i=1}^{n+1}$ una colección finita de continuos de Hausdorff $y \{f_i : X_{i+1} \to 2^{X_i}\}_{i=1}^n$ una colección de funciones semicontinuas superiormente. Supongamos que para toda $y \in X_i$, $B_y = \{x_{i+1} \in X_{i+1} : y \in f_i(x_{i+1})\}$ es un subconjunto no vacío y conexo de X_{i+1} . Entonces $G(f_1, f_2, f_3, ..., f_n)$ es un conjunto conexo.

Demostración. Demostraremos el teorema por inducción sobre n.

 $Para \ n = 1 \ es \ el \ Teorema \ 69.$

Supongamos el resultado cierto para n. Sean $\{X_i\}_{i=1}^{n+2}$ una colección finita de continuos de Hausdorff y $\{f_i: X_{i+1} \to 2^{X_i}\}_{i=1}^{n+1}$ una colección de funciones semicontinuas superiormente. Supongamos que para todo elemento y de X_i , $B_y = \{x_{i+1} \in X_{i+1}: y \in f_i(x_{i+1})\}$ es un subconjunto no vacío y conexo de X_{i+1} . Supongamos que $G(f_1, f_2, f_3, ..., f_{n+1})$ es no conexo. Entonces existen dos cerrados H y K del producto cartesiano $\prod_{i=1}^{n+2} X_i$, tales que $G(f_1, f_2, ..., f_{n+1})$ es igual a $H \cup K$ y $H \cap K$ es vacía. Definimos:

$$h: G(f_1, f_2, f_3, ..., f_{n+1}) \to G(f_1, f_2, f_3, ..., f_n)$$

como:
$$h(x_1, x_2, x_3, ..., x_{n+1}) = (x_1, x_2, x_3, ..., x_n)$$

Usando un argumento similar al dado en el Teorema 71, h es continua y sobre, y $G(f_1, f_2, f_3, ..., f_n)$ es igual a $h(H) \cap h(K)$. Sea $p = (p_1, p_2, ..., p_n)$ elemento de $h(H) \cap h(K)$. En consecuencia:

$$\{x \in G(f_1, f_2, f_3, ..., f_{n+1}) : x_i = p_i \ 1 \le i \le n \ y \ x_n \in f_n(x_{n+1})\}$$

es un conjunto conexo que intersecta a H y K. Esto contradice el hecho de que H y K son ajenos. Por lo tanto, $G(f_1, f_2, f_3, ..., f_{n+1})$ es conexa.

Teorema 74 Sea $\{X_i\}_{i=1}^{\infty}$ una colección de continuos de Hausdorff y $\{f_i: X_{i+1} \to 2^{X_i}\}_{i=1}^{\infty}$ una familia de funciones semicontinuas superiormente. Supongamos que para todo elemento y de X_{i+1} y para todo número natural i, el conjunto:

$$B_y = \{x_{i+1} \in X_{i+1} : y \in f_i(x_{i+1})\}\$$

es un subconjunto no vacío y conexo de X_{i+1} . Entonces para todo número natural n, G_n es conexo.

Demostración. Por el Teorema 73, $G(f_1, f_2, f_3, ..., f_{n+1})$ es conexa y, como G_n es igual al producto cartesiano $G(f_1, f_2, f_3, ..., f_n) \times X_{n+2} \times X_{n+3} \times \cdots$ G_n es conexo para todo número natural n.

En los siguientes dos teoremas, daremos condiciones para saber cuando el límite inverso generalizado es un continuo.

Teorema 75 Sean $\{X_i\}_{i=1}^{\infty}$ una colección de continuos de Hausdorff y $\{f_i: X_{i+1} \to 2^{X_i}\}_{i=1}^{\infty}$ una familia de funciones semicontinuas superiormente Supongamos que para todo elemento x de X_{i+1} y todo número natural i, $f_i(x)$ es conexo. Entonces, lím $\{X_i, f_i\}$ es un continuo de Hausdorff.

Demostración. Para todo número natural n, por los Teoremas 63 y 72, G_n es compacto y conexo. Por la Observación 64, $\varprojlim(X_i, f_i)$ es igual a $\bigcap_{n=1}^{\infty} G_n$. Por lo tanto, $\liminf(X_i, f_i)$ es un continuo de Hausdorff.

Teorema 76 Sean $\{X_i\}_{i=1}^{\infty}$ una colección de continuos de Hausdorff y $\{f_i: X_{i+1} \to 2^{X_i}\}_{i=1}^n$ una familia de funciones semicontinuas superiormente. Supongamos que para todo elemento x de X_i y todo número natural i, $B_y = \{x_{i+1} \in X_{i+1}: y \in f_i(x_{i+1})\}$ es un subconjunto no vacío y conexo de X_{i+1} . Entonces, lím (X_i, f_i) es un continuo de Hausdorff.

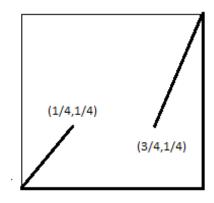
Demostración. Para todo número natural i, por los Teoremas 63 y 74, G_i es conexo. Por la Observación 64, $\varprojlim \{X_i, f_i\}$ es igual a $\bigcap_{i=1}^{\infty} G_i$, Por lo tanto $\varprojlim \{X_i, f_i\}$ es un continuo de Hausdorff.

El hecho de que G(f) sea conexa no nos asegura que límite inverso sea conexo, tenemos el siguiente ejemplo:

Ejemplo 77 Sean S_1 y S_2 , los segmentos de recta en $I \times I$ que unen a (0,0) con $(\frac{1}{4}, \frac{1}{4})$ y $(\frac{3}{4}, \frac{1}{4})$ con (1,1) respectivamente,

$$M = (I \times \{0\}) \bigcup (\{1\} \times I) \bigcup S_1 \bigcup S_2$$

 $f:[0,1]\to 2^{[0,1]}$ la función semicontiua superiormente definida por M y X_∞ igual a lím $\{[0,1]\,,f\}$.



Conjunto M del Ejemplo 77

Definimos el siguiente conjunto:

$$N = \left\{ (p_1, p_2, \dots) \in K : p_1 = p_2 = \frac{1}{4} \ y \ p_3 = \frac{3}{4} \right\}.$$

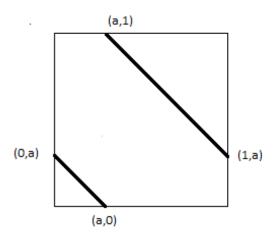
Sea x un elemento de N. Consideremos $R = R_1 \times R_2 \times R_3 \times \mathcal{H}$, la región del cubo de Hilbert (\mathcal{H}) dada por los intervalos $R_1 = R_2 = (\frac{1}{8}, \frac{3}{8})$ y $R_3 = (\frac{5}{8}, \frac{7}{8})$. Notemos que N está contenido en R.

Veamos que N es igual a $R \cap X_{\infty}$. Supongamos que existe un elemento $y = (y_1, y_2, ...)$ de $(R \cap K) \setminus N$. Por la definición de R, y_1, y_2 pertenecen a $(\frac{1}{8}, \frac{3}{8})$, en consecuencia, y_2 es menor o igual a $\frac{1}{4}$. Como y no pertenece a N, y_2 es menor que $\frac{1}{4}$, por consiguiente y_3 es igual a 1. Esto es una contradicción, ya que y era elemento de R. Por lo tanto, $R \cap X_{\infty}$ es igual a N. Entonces X_{∞} es no conexo.

El siguiente Teorema nos va ayudar a describir de forma mas sencilla un límite inverso. Una prueba de éste se puede encontrar en [Ingram, Teorema 2,4, pág 357].

Teorema 78 Sean X un espacio de Hausdorff y compacto y $f: X \to 2^X$ una función semicontinua superiormente. Si Y es un subconjunto de X y $g: Y \to 2^Y$ una función semicontinua superiormente tal que, G(g) está contenido en G(f). Entonces, $\lim_{\leftarrow} \{Y,g\}$ es un subconjunto cerrado de $\lim_{\leftarrow} \{X,f\}$.

Ejemplo 79 Sean un elemento a del intervalo (0,1), M el subconjuto cerrado de la celda $I \times I$ formado por; las rectas en $I \times I$ que une los puntos (0,a) con (a,0) y (a,1) con (1,a) respectivamente.



Conjunto M del Ejemplo 79

Sea $f:[0,1] \to 2^{[0,1]}$ la función semicontinua superiormente que tiene como gráfica el conjunto M y K igual a lim([0,1],f).

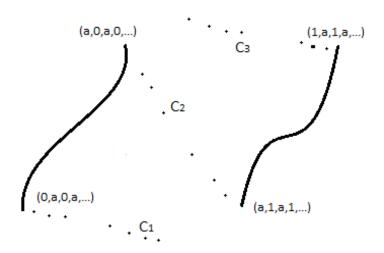
K no es conexo. Sean D_1 el cuadrado que tiene como vértices a los puntos (a,1),(a,a),(1,1),(1,a) y $f_1:[a,1]\to 2^{[a,1]}$ la función semicontinua superiormente que tiene como gráfica a $D_1\cap M$. Entonces lím $\{[0,a],f_1\}$, el cuál es un arco que va del punto (a,1,a,1,...) a el punto (1,a,1,a,...), está contenido en lím $\{[0,1],f\}$. De la misma forma, sean D_2 el cuadrado que tiene por vértices (0,0),(a,0),(0,a),(a,a) y $f_2:[0,a]\to 2^{[0,a]}$ la función semicontinua superiormente que tiene como gráfica a $D_2\cap M$. Entonces lím $\{[0,a],f_1\}$, el cuál es un arco que va del punto (a,0,a,0,...) a el punto (0,a,0,a,...), está contenido en lím $\{[0,1],f\}$.

Si un punto en K tiene como primer coordenada a 0, tiene la forma (0, a, x, a, x, a, x, ...), donde x es un elemento de $\{1, 0\}$. Este conjunto lo podemos ver como: $\{0\} \times \{a\} \times \{0, 1\} \times \{a\} \times \{0, 1\} \times \cdots$, que es homeomorfo a un conjunto de Cantor (C_1) . El cuál tiene como un punto extremo al punto (0, a, 0, a, 0, ...).

Si el punto tiene como primer coordenada a 1, es de la forma (1, a, x, a, x, ...), donde x es un elemento de $\{0, 1\}$, de la misma forma, este conjunto podemos verlo como: $\{1\} \times \{a\} \times \{0, 1\} \times \{a\} \times \{0, 1\} \times ...$ Este conjunto también es homeomorfo a un conjunto de Cantor (C_2) , el cuál tiene como un extremo al punto (1, a, 1, a, ...).

Finalmente, si el punto tiene como primer coordenada a a, tiene la forma (a, x, a, x, a, ...) con $x \in \{0, 1\}$. El conjunto formado por estos puntos es de la forma $\{a\} \times \{0, 1\} \times \{a\} \times \{0, 1\} \times \cdots$, que es homeomorfo a un conjunto de Cantor (C_3) . C_3 tiene como puntos extremos a los puntos $(a, 0, a, 0, \cdots)$ y(a, 1, a, 1, ...).

Así, K esta formado por dos arcos; uno que une al punto (1, a, 1, a, ...) con (a, 1, a, 1, ...) y otro que une al punto (0, a, 0, a, ...) con el punto (a, 0, a, 0, ...), tres conjuntos de cantor; C_1 que tiene como uno de sus puntos extremos al punto (0, a, 0, a, ...), C_3 que tiene como uno de sus puntos extremos al punto (1, a, 1, a, ...), C_2 que tiene como puntos extremos los puntos (a, 0, a, 0, ...) y (a, 1, a, 1, ...).



Limite inverso del Ejemplo 79

4.4. Algunos teoremas de funciones continuas

Empecemos esta sección con una la definición de composición de funciones semicontinuas superiormente.

Definición 80 Sean $X, Y \ y \ Z$ espacios de Hausdorff, $f: X \to 2^Y \ y \ g: Y \to 2^Z$ funciones semicontinuas superiormente. Definimos $g \circ f: X \to 2^Z$ como: $(g \circ f)(x) = \{z \in Z : existe \ un \ punto \ y \ en \ Y \ tal \ que \ y \in f(x) \ y \ z \in g(y)\}$.

Una demostración de los siguientes 2 lemas se puede encontrar en [InMa, Sección 5, pág 7] y [InMa, Sección 5, pág 7] respectivamente.

Observación 81 Sea $\{X_i\}_{i=1}^{\infty}$ una sucesión de espacios de Hausdorff compactos $y\{n_i\}_{i=1}^{\infty}$ una sucesión creciente de naturales. Entonces la función

$$F: \prod_{i=1}^{\infty} X_i \to \prod_{i=1}^{\infty} X_{n_i}$$
 Definida como:

$$F(x_1, x_2, x_3, \cdots) = (x_{n_1}, x_{n_2}, x_{n_3}, \cdots)$$

es continua.

Observación 82 Sean $\{X_i, f_i\}_{i=1}^{\infty}$ una sucesión inversa de espacios de Hausdorff compactos con funciones de ligadura continuas, $g_i = f_{n_i} \circ f_{n_i+1} \circ \cdots \circ f_{n_{i+1}-1}$ y F la función definida en la Observación 81. Entonces

$$F|_{lim(X_i,f_i)}: lim(X_i,f_i) \to lim(X_{n_i},g_i)$$

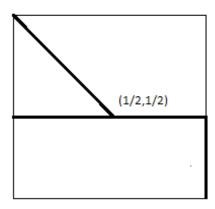
es un homeomorfismo.

Si consideramos el límite inverso de la Definición 57, no siempre la restricción de la Observación 82 es un homeomorfismo. Veamos el siguiente ejemplo:

Ejemplo 83 Sean S el segmento de recta que une a (0,1) y $(\frac{1}{2},\frac{1}{2})$:

$$M = I \times \left\{\frac{1}{2}\right\} \bigcup \left\{1\right\} \times \left[0, \frac{1}{2}\right] \bigcup S$$

 $y \ f: [0,1] \to 2^{[0,1]}$ la función semicontinua superiormente que determina M.



Conjunto M del Ejemplo 83

Analicemos primero como es f^2 :

- Si x es igual a 0, f(x) es igual a $\left\{\frac{1}{2},1\right\}$. Calculando la segunda iteración obtenemos: $f^2(x)$ es igual a $\left\{\frac{1}{2},\left[0,\frac{1}{2}\right]\right\}$.
- Si x es elemento de $(0,\frac{1}{2})$, f(x) pertenece a $\left\{\frac{1}{2},(x,1-x)\right\}$. La segunda iteración, $f^2(x)$, es igual a $\left\{\frac{1}{2}\right\}$.
- Si x es igual a $\frac{1}{2}$, f(x) es igual a $\left\{\frac{1}{2}\right\}$. Lo que nos dice que la segunda iteración, $f^2(x)$, es igual a $\left\{\frac{1}{2}\right\}$.
- Si x pertenece $a\left(\frac{1}{2},1\right)$, f(x) es igual $a\left\{\frac{1}{2}\right\}$. En consecuencia, $f^2(x)$ es igual $a\left\{\frac{1}{2}\right\}$.
- Si x es igual a 1, f(x) es igual a $\left[0, \frac{1}{2}\right]$. Entonces $f^2(x)$ es igual a $\left\{\frac{1}{2}, (x, 1-x)\right\}$.

Esto nos dice que $G(f^2)$ es la unión de las rectas $\{0\} \times \left[0, \frac{1}{2}\right]$, $I \times \left\{\frac{1}{2}\right\}$ $y \in \{1\} \times \left[\frac{1}{2}, 1\right]$.

 $Sea~X_{\infty}$ igual a lím $\{I, f^2\}$. X_{∞} es un arco. [InMa, Ejemplo~3, pág,9]. $Sea~L~igual~a~lím~\{I, f\}$. Definimos los siguientes conjuntos de L:

• Sea A_1 igual $a \{ x \in L : x_1 \in (\frac{1}{2}, 1] \}$.

Notemos que si x es un lemento de A_1 , x es de la forma $(x_1, r, 1, 0, 1, 0, 1, 0, ...)$, donde r es un elemento del intervalo $\left[0, \frac{1}{2}\right)$. Probemos que $\overline{A_1}$ es igual a $A_1 \cup \left\{\left(\frac{1}{2}, \frac{1}{2}, 1, 0, 1, 0, 1, 0, ...\right)\right\}$.

Sea un elemento x de $\overline{A_1}$. Supongamos que x no pertenece a $A_1 \bigcup \left\{ \left(\frac{1}{2}, \frac{1}{2}, 1, 0, 1, 0, \ldots\right) \right\}$, así x_1 es menor igua a $\frac{1}{2}$ y $x_2 = 1$. De esto, se sigue que x es de la forma $(x_1, 1, 0, 1, 0, \ldots)$. Sea $U = [0, 1] \times \left(\frac{3}{4}, 1\right] \times$

 $\prod_{i=3}^{\infty} \left[0,1\right]_i$ un abierto de $\prod_{i=1}^{\infty} \left[0,1\right]_i$. Por la elección de $x,\,x$ es un elemento

de U, pero $U \cap A_1$ es vacío, ya que todos los elementos de A_1 tiene la segunda coordenada menor a $\frac{1}{2}$. Esto contradice el hecho de que x es un elmento de $\overline{A_1}$. Por lo tanto, x pertenece a $A_1 \cup \left\{ \left(\frac{1}{2}, \frac{1}{2}, 1, 0, 1, 0, \ldots \right) \right\}$.

Para probar que $A_1 \cup (\frac{1}{2}, \frac{1}{2}, 1, 0, 1, 0, 1, 0, ...)$ esta contenido en $\overline{A_1}$, basta probar que el punto p de la forma $(\frac{1}{2}, \frac{1}{2}, 1, 0, 1, 0, ...)$ es un elemento de $\overline{A_1}$. Sea $U = U_1 \times U_2 \times \prod [0, 1]$ un abierto de $\prod [0, 1]$ que contiene a p. Como U_1 es un abierto de [0, 1] que contiene a $\frac{1}{2}$, podemos encontrar un punto x_1 de tal manera que, x_1 sea mayor que $\frac{1}{2}$. Entonces en U_2 , podemos encontrar un punto x_2 tal que, la pareja (x_1, x_2) pertenezca a M. En consecuencia, el punto q de la forma $(x_2, x_1, 1, 0, 1, 0, ...)$ pertenece a $U \cap A_1$. Por lo tanto, p es un elemento de $\overline{A_1}$.

En consecuencia de todo lo anterior, $\overline{A_1}$ es un arco que va del punto $(1,0,1,0,1,0,\ldots)$ al punto $(\frac{1}{2},\frac{1}{2},1,0,1,0,\ldots)$.

• Sea A_2 igual $a \{ x \in L : x_1 = \frac{1}{2} = x_2 \ y \ x_3 \in (\frac{1}{2}, 1] \}$.

Notemos que si x es un elemento de A_2 , x es de la forma $(\frac{1}{2},\frac{1}{2},x_3,r,1,0,1,0,1,0,\ldots)$, donde r es un elemento del intervalo $\left[0,\frac{1}{2}\right)$ Usando un argumento similar al que se utilizó para A_1 , pero ahora sobre la tercera coordenada. Obtenemos que $\overline{A_2}$ es igual a $A_2 \cup \left\{\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},1,0,1,0,\ldots\right)\right\}$. Por lo tanto, $\overline{A_2}$ es un arco que va del punto $\left(\frac{1}{2},\frac{1}{2},1,0,1,0,1,0,\ldots\right)$ al punto $\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},1,0,1,0,\ldots\right)$.

■ Sea A_3 igual a $\{x \in L : x_1 = \frac{1}{2} \ y \ x_2 \in [0, \frac{1}{2})\}$. Notemos que si x es un elemento de A_3 , x es de la forma $(\frac{1}{2}, x_2, 1, 0, 1, 0, ...)$. Usando un argumento similar al que se utilizó para A_1 , $\overline{A_3}$ es igual a $A_3 \cup \{(\frac{1}{2}, \frac{1}{2}, 1, 0, 1, 0, 1, 0, ...)\}$. Entonces $\overline{A_3}$ es un arco que va del punto $(\frac{1}{2}, \frac{1}{2}, 1, 0, 1, 0, 1, 0, ...)$ al punto $(\frac{1}{2}, 0, 1, 0, 1, 0, ...)$.

Lo que obtenemos es un triodo contenido en L, formado por la unión de los arcos $\overline{A_1}$, $\overline{A_2}$ y $\overline{A_3}$. Así K y L no son homeomorfos.

Con los siguientes resultados, daremos condiciones para que la restricción de la Observación 82 sea un homeomorfismo.

Observación 84 Sean $\{X_i\}_{i=1}^{\infty}$, $\{Y_i\}_{i=1}^{\infty}$ dos sucesiones de espacios de Hausdorff. Supongamos que para cada número natural $i, \varphi_i : X_i \to Y_i$ es una función continua. Entonces la función $\Phi: \prod_i X_i \to \prod_i Y_i$, definida como: $\Phi(x) = (\varphi_1(x_1), \varphi_2(x_2), \ldots)$, es continua ya que cada φ_i lo es. Además, si cada φ_i es inyectiva, Φ es inyectiva.

Teorema 85 Sean $\{X_i\}_{i=1}^{\infty}$ y $\{Y_i\}_{i=1}^{\infty}$ dos sucesiones de espacios métricos, $f_i: X_{i+1} \to 2^{X_i}$ y $g_i: Y_{i+1} \to 2^{Y_i}$ funciones semicontinuas superiormente para cada número natural i. Supongamos que para cada número natural i, $\varphi_i: X_i \to Y_i$ es una función continua , tal que $\varphi_i \circ f_i = g_i \circ \varphi_{i+1}$. Entonces la función $\varphi: l\acute{tm}(X_i, f_i) \to l\acute{tm}(Y_i, g_i)$ definida como: $\varphi((x_i)_{i=1}^{\infty}) = (\varphi_i(x_i))_{i=1}^{\infty}$, está bien definida y es continua. Además, si para todo número natural i, φ_i es inyectiva y suprayectiva entonces φ es suprayectiva.

Demostración. Como $\varphi = \Phi|_{\underset{\leftarrow}{lim}(X_i,f_i)}$, gracias a la Observación 84, solo tenemos que verificar dos cosas:

1. Si x es un elemento de lím (X_i, f_i) entonces $\varphi(x)$ pertenece a lím (Y_i, g_i) .

Para probar esto, veamos que $\varphi_i(x_i)$ es un elemento de $g_i(\varphi_{i+1}(x_{i+1}))$ para cada número natural i. Esto se cumple, ya que $\varphi_i(x_i)$ es un elemento de $\varphi_i(f(x_{i+1}))$ que es igual a $g_i(\varphi_{i+1}(x_{i+1}))$.

2. Si φ_i es inyectiva y suprayectiva entonces φ es suprayectiva. Sea y un punto de lím (Y_i, g_i) , entonces x de la forma $(\varphi_1^{-1}(y_1), \varphi_2^{-1}(y_2), \varphi_3^{-1}(y_3), ...)$ es un punto en $\prod_i X_i$ y $\varphi(x)$ es igual a y. Sólo falta ver que x pertenece a lím (X_i, f_i) Sean un número natural j y $f_j(x_{j+1})$. Como y_{j+1} es igual a $\varphi_{j+1}(x_{j+1})$ y y_j pertenece a $g_j(y_{j+1})$, entonces y_j es un elemento de $g_i(\varphi_{j+1}(x_{j+1})) = \varphi_j(f_j(x_{j+1}))$. Por lo tanto, existe t elemento de $f_j(x_{j+1})$, tal que $\varphi_j(t)$ es igual a y_j , como φ_j es inyectiva, t es igual a x_i y φ es suprayectiva.

Para concluir esta sección necesitamos la siguiente definición.

Definición 86 Sean X un espacio de métrico, $f: X \to 2^X$ $y g: X \to 2^X$ dos funciones semicontinuas superiormente. Diremos que f y g son conjugados topológicos, si existe un homeomorfismo $h: X \to X$, tal que $h \circ f = g \circ h$.

Usando el resultado del Teorema 85, obtenemos el siguiente resultado.

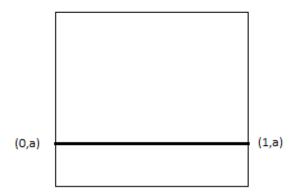
Teorema 87 Sean X un espacio métrico, $f: X \to 2^X$ y $g: X \to 2^X$ funciones semicontinuas superiormente. Si f y g son conjugados topológicos, entonces $\lim_{\leftarrow} (X, f)$ es homeomorfo a $\lim_{\leftarrow} (X, g)$.

Demostración. Como f y g son conjugados topológicos, existe un homeomorfismo $h: X \to X$ tal que $h \circ f = g \circ h$. Ahora, usando el Teorema 85, $\varphi: \lim_{\leftarrow} (X, f) \to \lim_{\leftarrow} (X, g)$ es continua, inyectiva y sobreyectiva. Así, la función $\varphi^{-1}: \lim_{\leftarrow} (X, g) \to \lim_{\leftarrow} (X, f)$ definida como: $\varphi^{-1}(y) = (h^{-1}(x_1), h^{-1}(x_2), h^{-1}(x_3), \cdots)$, es continua. Entonces, φ es un homeomorfismo. \blacksquare

4.5. EJEMPLOS 57

4.5. Ejemplos

Ejemplo 88 Sean M igual a $I \times \{a\}$ con a un elemento de [0,1] y $f:[0,1] \rightarrow 2^{[0,1]}$ la función semicontinua superiormente definida por M.

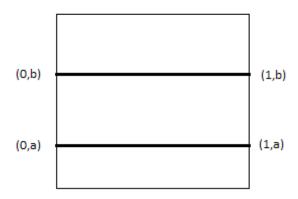


Conjunto M del Ejemplo 88.

Sea x un elemento de lím([0,1], f), entonces x_n no puede ser diferente de a, ya que si lo fuera, no existiría x_{n-1} . Por lo tanto el punto x es de la forma (a, a, a, ...). Así, lím([0,1], f) es igual a $\{(a, a, a, ...)\}$.

Ejemplo 89 Sean $M = (I \times \{a\}) \bigcup (I \times \{b\})$ con $a, b \in [0, 1]$ y a < b, $f: [0, 1] \rightarrow 2^{[0, 1]}$ la función semicontinua superiormente definida por M y K

igual a lim([0,1], f).



Conjunto M del Ejemplo 89

Sea x un elemento de K. Si x_n es igual a a, entonces x_{n-1} es igual a a o x_{n-1} es igual a b, en cuyo caso x_{n+1} es igual a a o x_{n+1} es igual a b. De esta manera x es de la forma $(t_1, t_2, ..., a, t_{n+1}, ...)$, donde para todo número natural n, t_n es un elemento de $\{a,b\}$. Por lo tanto, K es igual a $\prod_{i=1}^{\infty} \{a,b\}_i$. Con la función $h:\{a,b\}\to\{0,2\}$, definida como h(a)=0 y h(b)=2, obtenemos que K es homeomorfo a $\prod_{i=1}^{\infty} A_i$, con A_i igual a $\{0,2\}$ para todo número natural i. Entonces, por el Teorema 27, K es homeomorfo al conjunto de Cantor.

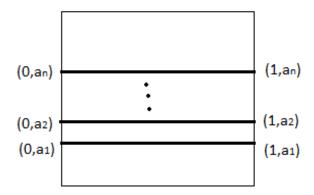
Ejemplo 90 Siquiendo con la idea de los ejemplos anteriores, sean

$$A = \{a_1, a_2, ..., a_n \in [0, 1] : a_i < a_{i+1} \text{ para toda } i\},$$

Migual a $\bigcup\limits_{1=1}^{n}\left([0,1]\times\{a_{i}\}\right),~f:[0,1]\rightarrow~2^{[0,1]}$ la función semicontinua

4.5. EJEMPLOS 59

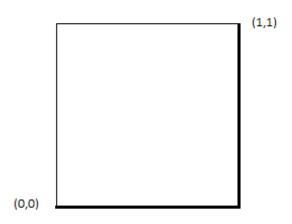
 $superiormente\ definida\ por\ M\ \ y\ K\ \ igual\ a\ lim\left\{[0,1],f\right\}.$



Conjunto M del Ejemplo 90.

Sea x un elemento de K. Si x_i es igual a a_i , entonces x_{i-1} y x_{n+1} son elementos de A. De aquí pordemos concluir que x es de la forma $(x_1, x_2, ..., x_n, x_{n+1}, ...)$ donde para todo número natural i, x_i es un elemento de A. Por lo tanto, K es igual a $\prod_{i=1}^{\infty} A$, el cuál se puede demostrar que es isomorfo al conjunto de Cantor..

Ejemplo 91 Sean M igual a $(\{1\} \times [0,1]) \bigcup ([0,1] \times \{0\})$, $f:[0,1] \to 2^{[0,1]}$ la función semicontinua superiormente que tiene como gráfica a M y K igual a $\lim \{[0,1],f\}$.



Conjunto M del Ejemplo 91

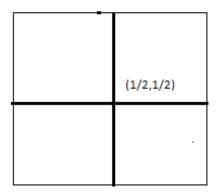
Sean K_0 igual a $\{x \in K : x_k = 1 \text{ si } k > 1\}$ y p_0 un punto de K_0 de la forma $\{1, 1, 1, 1, ...\}$. Para todo número natural n, definimos:

$$K_n = \{x \in K : x_k = 0 \text{ si } 1 \le k \le n \text{ y } x_k = 1 \text{ si } k > n+1\}$$

Sea p_n un elemento de K, tal que $\pi_k(p_n)$ es igual a 0 si $1 \le k \le n$ y $\pi_k(p_n)$ es igual a 1 si k es mayor que n. Observemos que K_n es un arco para todo n, y $K_i \cap K_{i+1}$ es igual a $\{p_{i+1}\}$. Entonces K es igual a $(\bigcup_{i \ge 0} K_i) \cup \{(0,0,0,...\}$. Así, todo punto distinto de (0,0,0,...) y (1,1,1,...) de K separa a K. Entonces K es un continuo con a lo mas dos puntos de no corte. Por lo tanto K es un arco $[HoYo, Teorema\ 1-18,\ pág.\ 49]$ y $[HoYo, Teorema\ 2-27,\ pág.\ 54]$.

4.5. EJEMPLOS 61

Ejemplo 92 Sean M igual a $\left(\left\{\frac{1}{2}\right\} \times [0,1]\right) \cup \left([0,1] \times \left\{\frac{1}{2}\right\}\right)$, $f:[0,1] \rightarrow 2^{[0,1]}$ la función semicontinua superiormente que tiene como gráfica a M y $K = \lim \left\{[0,1],f\right\}$.

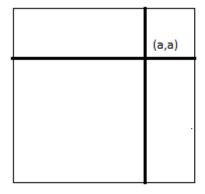


Conjunto M del Ejemplo 92

Sea x un punto de K de la forma $(x_1, x_2, x_3, ...)$. Supongamos que x_n es igual a a, con a un elemento del intervalo [0,1]. Por construcción del límite inverso, x_{n-1} es igual a x_{n+1} y ambos son iguales a $\frac{1}{2}$, lo que nos dice que x es de la forma $(t_1, \frac{1}{2}, t_2, \frac{1}{2}, \cdots)$ donde para todo número natural i, t_i es un elemento de [0,1]. Por lo tanto, K es igual $[0,1] \times \{\frac{1}{2}\} \times [0,1] \times \{\frac{1}{2}\} \times \cdots$. Entonces K es homeomorfo al cubo de Hilbert.

El ejemplo anterior no depende de que hayamos escogido al punto $\frac{1}{2}$, entonces tenemos lo siguiente:

Ejemplo 93 Sean $a \in (0,1)$ $M = (\{a\} \times [0,1]) \cup ([0,1] \times \{a\})$, $f:[0,1] \rightarrow 2^{[0,1]}$ la función semicontinua superiormente que tiene como gráfica a M y K = lím([0,1],f)



Conjunto M del Ejemplo 93

Sea x un punto de K de la forma $(x_1, x_2, x_3, ...)$. Supongamos que x_n es igual a a, con a elemento de [0,1]. Por construcción del límite inverso, x_{n-1} es igual a x_{n+1} y ambos son iguales a a., lo que nos dice que x es de la forma $(t_1, a, t_2, a, ...)$, donde para todo número natural i, t_i es un elemento de [0, 1]. Por lo tanto, K es de la forma $[0, 1] \times \{a\} \times [0, 1] \times \{a\} \times [0, 1] \times \{a\} \times \cdots$. Así, K es homeomorfo al cubo de Hilbert.

Bibliografía

- [AnCho] R. D. Anderson y G. Choquet, A plane continuum no two of whose nondegenerate subcontinua are homeomorphic: An application of inverse limits, Proc. Amer. Math. Soc. 10 (1959), 347-353.
- [An] J. J. Andrews, A chainable continuum no two of whose nondegenerate subcontinua are homeomorphic, Proc. Amer. Math. Soc. 12 (1961), 333-334.
- [BaMa] M. Barge y J. Martin, Chaos, periodicity, and snakelike continua, Trans. Amer. Math. Soc. 289 (1985), no. 1, 355-365.
- [Be] D. P. Bellamy, Tree-likeness and the fixed-point property, Applicable Anal. 8 (1978/79), no. 1, 97-98.
- [Ca] C. E. Capel, Inverse limit spaces, Duke Math. J. 21 (1954), 233-245.
- [Du] J. Dugundji, Topology, Allyn and Bacon INC, 1966.
- [EsMaMe] R. Escobedo, S. Macías y H. Méndez, Invitación a la teoría de los continuos y sus hiperespacios, Aportaciones Matemáticas, Investigación #31, Sociedad Matemática Mexicana, 2006.
- [Ha] C. L. Hagopian, Disk-like Products of λ Connected Continua, I, Proc. Amer. Math. Soc, 51 (1975), 448–452.
- [He] G. W. Henderson, The pseudo-arc as an inverse limit with one binding map, Duke Math. J. 31 (1964), 421-425.
- [HoYo] J. G. Hocking y G. S. Young, Topology, Addison-Wesley, Reading, Ma, 1961.

64 BIBLIOGRAFÍA

[In] W. T. Ingram, Inverse limits with .upper semi-continuous bonding functions: Problems and some partial solutions, Topology Proceeding 36 (2010), 253-273.

- [In1] W. T. Ingram, An atriodic tree-like continuum with positive span, Fun. Math. 77 (1972), no. 2, 99-107.
- [In2] W. T. Ingram, An introduction to Inverse Limits with Set-valued Functions, Springer, 2012.
- [InMa] W. T. Ingram y W. S. Mahavier, Inverse limits of upper semicontinuous set valued functions, Houstun J. Math 32 (2006), 119-130.
- [InMa1] W. T. Ingram y W. S. Mahavier, Inverse Limits: From Continuo to Chaos, Developments in Matematics, Springer, 2011.
- [Se] S. Macías, Topics on Continua, Chapman & Hall/CRC, 2005.
- [Ma] W. S. Mahavier, Inverse limits with subsets of $[0,1] \times [0,1]$, Topology and its applications 141 (2004), 225-231.
- [Ma1] W. S. Mahavier, Arcs in inverse limits on [0, 1] with only one bonding map, Proc. Amer. Math. Soc. 21 (1969), 587-590.
- [Me] Karl Menger, Über die Dimension von Punktmengen, Monasth. Math. Phys. 34 (1926), no. 1, 137-161.
- [Na] S. B. Nadler, Jr, Continuum Theory: An Introduction, Monographs and textbooks in Pure and Applied Math., Vol. 158, Marcel dekker, New York, Basel, Hong Kong, 1992.
- [Pe] A. Peláez, Generalized inverse limits, Houston J. Math. 32 (2006), no. 4, 1107-1119 (electronic).
- [Si] W. Sierpinski, On a Cantorian curve which contains a bijective and continuous image of any give curve, Mat. Sb.30 (1916), 267-287.