

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Doctorado En Ciencias Biomédicas

"Identificación de genes involucrados en la génesis del cáncer de cuello uterino: análisis del genoma humano mediante microarreglos de 100,000 SNPs"

ΤΕSIS

Que para optar por el grado de: Doctor en Ciencias

PRESENTA

M. en C. Oscar Vázquez Mena

Tutor Principal: Dr. Jaime Berumen Campos Facultad de Medicina

> Comité tutor: Mauricio Salcedo Vargas Facultad de Medicina

Emilio Rojas del Castillo Instituto de Investigaciones Biomédicas

México, D. F., Enero de 2013

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

ÍNDICE DE ABREVIATURAS	1
RESUMEN	2
ABSTRACT	4
INTRODUCCIÓN	5
Aspectos epidemiológicos del Cáncer cervicouterino	5
Papilomavirus y cáncer	6
Carcinogénesis del Cáncer Cervicouterino	8
La carcinogénesis como un proceso aditivo	12
Participación de las alteraciones de número de copias y la desregulación de la	
expresión génica en la carcinogénesis	13
JUSTIFICACIÓN Y PLANTEAMIENTO DEL PROBLEMA	18
OBJETIVOS	20
MATERIALES Y METODOS	21
Líneas celulares	21
Muestras control	21
Aislamiento de DNA y RNA	22
Microarreglos de SNPs 100K	22
Genotipificación de SNPs Affymetrix Genotyping Console (GTC) 4.0	22
Análisis de número de copias en Affymetrix Genotyping Console (GTC) 4.0.	23
Análisis de número de copias en SVS Golden Helix	24
Perfiles de expresión génica y análisis de datos	25
Validación de la expresión global por qPCR	26
Hibridación fluorescente in situ (FISH)	29
Validación del número de copias del gen PARP1 por qPCR	29
Análisis de ontología de genes	30
Anotación de los genes e integración de datos	31
RESULTADOS	33
Identificación de genes alterados en el número de copias	33
Análisis de expresión genética de 20,741 genes en líneas celulares de cáncer de	cuello
uterino	42
Correlación de las alteraciones de número de copias con la expresión génica	46
Análisis de la expresión de genes en regiones CNA y MRR	46
Análisis de expresión genética en MRR individuales	50
Análisis de expresión genética por brazo cromosómico	52
Análisis de 5p, 3q y 1q	53
Hibridación fluorescente in situ (FISH)	61
Clasificación de los genes desregulados y/o con CNAs	63
DISCUSION	66
CONCLUSIONES	73
REFERENCIAS	74
ANEXO 1. Genes explorados en regiones ganadas o amplificadas en 3q en 1	lineas
celulares y tumores de CaCu	81
ANEXO 2. Genes explorados en regiones ganadas o amplificadas en 5q en	líneas
celulares y tumores de CaCu.	83

ÍNDICE

ANEXO 3. Regiones recurrentes mínimas (MRRs).	86
ANEXO 4. Comparación entre número de copias y expresión génica por	
citobanda	
ANEXO 5. Genes identificados en las MRRs	92

ÍNDICE DE ABREVIATURAS

- aCGH. Hibridación genómica comparativa en arreglos.
- CaCu. Cáncer cervicouterino.
- cDNA. DNA complementario.
- CGH. Hibridación genómica comparativa.
- CIN. Neoplasia Intraepitelial Cervical
- CNA. Región alterada en número de copias.
- CN-AS. SNP alterado en número de copias.
- DNA. Ácido desoxiribonucleico.
- FC. Cambio de número de veces en el valor de expresión (Fold Change).
- FDR. Tasa de falso descubrimento (False Discovery Rate).
- FISH. Hibridación fluorescente in situ.
- HPV. Virus del papiloma humano.
- MRR. Región recurrente mínima.
- PCR. Reacción en cadena de la polimerasa.
- qPCR. PCR cuantitativa (sinónimo de PCR en tiempo real)
- **RNA.** Ácido ribonucleico.
- SNP. Polimorfismo de un solo nucleótido.

RESUMEN

Diversas alteraciones de número de copia (CNAs) han sido identificadas en el genoma del cáncer cervicouterino (CaCu), en particular, amplificaciones de 3q y 5p. Sin embargo, la contribución de las alteraciones de número de copias de la carcinogénesis cervical no es clara, debido a que existe una falta de correlación a nivel global entre las alteraciones número de copias y la expresión génica. En este estudio, se investigó si las CNAs en las líneas celulares CaLo, CaSki, HeLa y SiHa estaban asociadas con cambios en la expresión génica. En promedio, el 19.2% del genoma de líneas celulares tenían CNAs. Sin embargo, sólo el 2.4% comprendían regiones recurrentes mínimas (MRRs) comunes a todas las líneas celulares. Mientras que 3q tenía pocas ganancias comunes (13%), 5p estuvo duplicado por completo de forma recurrente. A nivel genómico, sólo el 15.6% de los genes localizados en CNAs se expresaron diferencialmente, en contraste, la tasa en MRRs fue hasta 3 veces mayor. En el análisis de número de copias se observó 5p completamente amplificado, lo cual fue confirmado mediante FISH, sin embargo, solo el 33.5% de los genes explorados en 5p estuvieron desregulados. En el 3q, esta tasa fue del 13.4%. Incluso en 3q26, que tenía 5 MRRs y 38.7% de SNPs ganados de forma recurrente, la tasa fue de sólo el 15.1%. Interesantemente, 19% de los genes desregulados en 5p y 73% en 3q26 estuvieron subexpresados, lo que sugiere que factores diferentes al aumento en el número de copias estuvieron involucrados en la represión de genes. Los genes desregulados en el 3q y 5p ocurrieron en grupos, lo que sugiere que factores locales en la cromatina también pueden influir en la expresión génica. En las regiones amplificadas de forma discontinua, los genes subexpresados se van incrementando constantemente conforme el número de SNPs amplificados es mayor (p <0.01, correlación de Spearman). Por lo tanto, la amplificación parcial de un gen podría funcionar como mecanismo de silenciamiento de la expresión génica. Genes adicionales en

1q, 3q y 5p, podrían estar involucrados en la carcinogénesis del cuello uterino, específicamente en la apoptosis. Estos incluyen *PARP1* en 1q, *TNFSF10* y *ECT2* en el 3q y *CLPTM1L*, *AHRR*, *PDCD6* y *DAP* en 5p. En general, los perfiles de expresión génica y el número de copias revelan otros factores distintos de la dosis génica, como los dominios de la cromatina o epigenéticos, que podrían influir en la expresión de genes dentro de los segmentos del genoma amplificados en número de copias.

ABSTRACT

Several copy number-altered regions (CNAs) have been identified in the genome of cervical cancer, notably, amplifications of 3q and 5p. However, the contribution of copy-number alterations to cervical carcinogenesis is unresolved, because genome-wide, exists a lack of correlation between copy-number alterations and gene expression. In this study, we investigated whether CNAs in the cell lines CaLo, CaSki, HeLa, and SiHa were associated with changes in gene expression. On average, 19.2% of the cell-line genomes had CNAs. However, only 2.4% comprised minimal recurrent regions (MRRs) common to all the cell lines. Whereas 3q had limited common gains (13%), 5p was entirely duplicated recurrently. Genome-wide, only 15.6% of genes located in CNAs changed gene expression; in contrast, the rate in MRRs was up to 3 times this. Chr 5p was confirmed entirely amplified by FISH; however, maximum 33.5% of the explored genes in 5p were deregulated. In 3q, this rate was 13.4%. Even in 3q26, which had 5 MRRs and 38.7% recurrently gained SNPs, the rate was only 15.1%. Interestingly, up to 19% of deregulated genes in 5p and 73% in 3q26 were downregulated, suggesting additional factors were involved in gene repression. The deregulated genes in 3q and 5p occurred in clusters, suggesting local chromatin factors may also influence gene expression. In regions amplified discontinuously, downregulated genes increased steadily as the number of amplified SNPs increased (p < 0.01, Spearman's correlation). Therefore, partial gene amplification may function in silencing gene expression. Additional genes in 1q, 3q and 5p could be involved in cervical carcinogenesis, specifically in apoptosis. These include PARP1 in 1q, TNFSF10 and ECT2 in 3q and CLPTM1L, AHRR, PDCD6, and DAP in 5p. Overall, gene expression and copynumber profiles reveal factors other than gene dosage, like epigenetic or chromatin domains, may influence gene expression within the entirely amplified genome segments.

INTRODUCCIÓN

Aspectos epidemiológicos del cáncer cervicouterino.

El CaCu es el segundo cáncer más común en mujeres en todo el mundo, afectando a 500,000 mujeres y causando 275,000 muertes anuales. En los países en desarrollo es la primera causa de muerte en mujeres con cualquier tipo de cáncer, esto representa alrededor del 86% de los casos que ocurren en el mundo (Parkin, Bray et al. 2005).

Los programas de detección temprana han reducido el número de casos de manera significativa en los países desarrollados, sin embargo, están basados en tecnologías poco sensibles que dependen de las repetidas visitas de las pacientes durante los largos periodos pre-invasores del cáncer. En Los Estados Unidos, esto ha significado una reducción de la incidencia de entre 70-80% en los últimos 50 años, sin embargo, los altos costos de mantenimiento de estos programas y la falta de personal que interprete los datos citológicos, han llevado al sistema de salud Norteamericano a restructurar los programas de detección a un nivel molecular.

En México, de acuerdo a los datos publicados en GLOBOCAN 2008 (Ferlay, Shin et al. 2008), el CaCu se ubica en 3er lugar de incidencia de cáncer en la población general y en 2do lugar de incidencia en mujeres. A nivel mundial, México tuvo en 2008 un nivel de incidencia de 19.2% (tasa de incidencia estandarizada por edad por cada 100,000 habitantes) de este tipo de cáncer. Para poner en perspectiva este dato, en comparación con Los Estados Unidos esto representa un 70% más incidencia y un 82% más de mortalidad en el mismo periodo. La incidencia y mortalidad del CaCu es reflejo de las disparidades sociales, ya que las etapas tardías del cáncer pueden ser evitadas mediante un sistema preventivo eficiente. Se han identificado diferentes dimensiones de esta disparidad e inequidad, como falta de acceso a los servicios de salud, baja calidad e infraestructura limitada en programas de prevención en áreas rurales y/o marginadas, así como también desventajas culturales y pertenencia a ciertos grupos étnicos (Lazcano-Ponce and Allen-Leigh 2009). Es necesario entonces lograr que los programas preventivos funcionen más eficientemente y al mismo tiempo buscar nuevas estrategias que ayuden a disminuir la incidencia de este tipo de cáncer.

Figura 1. Incidencia mundial de cáncer cervicouterino en 2008. Disponible en http://globocan.iarc.fr.

Virus del papiloma y cáncer.

Los virus del papiloma (PV) son pequeños virus de DNA que inducen una gran diversidad de lesiones epiteliales benignas y malignas en el huésped infectado. Se han identificado 120 tipos de PV humanos (HPV) (Bernard, Burk et al. 2010). La infección persistente por HPVs de alto riesgo es reconocida como la causa principal de cáncer cervical (zur Hausen 2002). Más del 97% de los cánceres cervicales de alto riesgo contienen DNA genómico de HPV (Walboomers, Jacobs

et al. 1999). Al HPV también se ha implicado en el cáncer anogenital, (Moscicki, Schiffman et al. 2006) cáncer de cabeza y cuello (Kreimer, Clifford et al. 2005), e incluso cánceres de piel (Munoz, Castellsague et al. 2006).

De la gran variedad de HPVs solo unos cuantos de ellos se han asociado con el cáncer cervicouterino (CaCu). Según el potencial para inducir la transformación maligna, estos virus se clasifican además en HPV de *bajo riesgo* y de *alto riesgo*.

Los HPVs se denominan de *bajo riesgo* porque no pueden producir CaCu, sin embargo, si pueden causar verrugas genitales o cambios muy pequeños en las células del cuello uterino se clasifican como de bajo riesgo los tipos 6, 11, 40, 42, 43, 44, 53, 54, 61, 72, y 81. Los tipos 6 y 11 son los más comunes y están relacionados con aproximadamente el 90% de las verrugas genitales (Walboomers, Jacobs et al. 1999).

Existe más de una docena de tipos de HPVs de *alto riesgo* que pueden desregular a las células del cuello uterino. Los tipos HPVs clasificados como de alto riesgo mas son el 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73 y 82. Además, se consideran como probablemente oncogénicos HPV 26, 53 y 66. (Lizano, Berumen et al. 2009). Los tipos 16 y 18 están implicados en aproximadamente el 70% de los CaCu

En la **Figura 2** se muestran las prevalencias de los tipos de virus de alto riesgo más comunes encontrados en el mundo y en México. Es de destacar el HPV82 que ocupa el quinto lugar en prevalencia en México y que en el mundo no figura en los primeros diez lugares. Asimismo, según los reportes consultados, HPV35 no aparece en los 10 primeros lugares de la lista.

Figura 2. Prevalencia de HPV en mujeres con o sin lesiones. A. Diez tipos de HPV más frecuentes en el mundo. B. Diez tipos de HPV más frecuentes en México. WHO/ICO HPV information centre Human Papillomavirus and Related Cancers. Summary Report Update. September 15 2010.

Carcinogénesis del Cáncer Cervicouterino

La infección del cuello uterino por HPV es una infección de transmisión sexual muy común. La mayoría de las mujeres se infectan poco después de haber comenzado su primera relación sexual, con la mayor prevalencia en las mujeres menores de 25 años de edad (Collins, Mazloomzadeh et al. 2002). Después de esta edad, la prevalencia disminuye rápidamente. En las mujeres jóvenes y de mediana edad, las infecciones por HPV son generalmente transitorias, con detección citológica del virus de manera intermitente y diferentes tipos de ellos (Ho, Burk et al. 1995; Woodman, Collins et al. 2001). El fallo del sistema inmune para eliminar las infecciones persistentes por HPV puede conducir, después de varias décadas, al desarrollo de cáncer de cuello uterino en las lesiones que contienen HPV.

Diversos estudios epidemiológicos han concluido que la infección por cualquiera de los HPVs de alto riesgo son causa necesaria pero no suficiente de CaCu. La frecuencia con que HPV16 se encuentra en las formas integradas aumenta con la gravedad de la neoplasia cervical, a pesar de que algunas mujeres con tumores invasores solo se han detectado formas episomales. En contraste HPV18 se encuentra casi siempre en forma integrada en mujeres con Neoplasia Intraepitelial Cervical (CIN) severa y cáncer invasor.

El cáncer cervical se caracteriza por una fase premaligna bien definida que puede detectarse en el examen citológico de las células exfoliadas cervicales y confirmarse en el examen histológico de muestras cervicales. Estos cambios premalignos representan un espectro de anormalidades histológicas que van desde CIN leve (CIN1), moderada (CIN2) y severa/carcinoma in situ (CIN3). Aunque el tratamiento de las lesiones CIN es terapéuticamente eficaz, también es procesalmente ineficiente. Esta situación se ha producido debido a las incertidumbres que rodea a la historia natural de las lesiones CIN. Los exámenes citológicos e histológicos no son capaces de distinguir las pocas mujeres con citologías anormales que progresarán a cáncer invasor de la gran mayoría de aquellas cuyas anormalidades regresarán de forma espontánea.

La razón de que ciertas infecciones por HPV tienden a persistir y dar lugar a lesiones, mientras que muchos otros no lo hacen, sigue siendo materia de debate, una explicación podrían ser variaciones individuales en la capacidad de eliminar la infección mediante una respuesta inmunitaria eficaz. En este contexto, es de destacar que algunos alelos del complejo principal de histocompatibilidad clase I (HLA I) como, HLA-CGRP1 o HLA Cgrp2 y clase II, como HLADRB1 * 1301 o HLA DRB1 *1501), parecen conferir protección al desarrollo de CIN 3 (Carrington, Wang et al. 2005).

El genoma del HPV codifica solamente ocho genes (Figura 3) donde E6 y E7 ocupan un papel primordial en la carcinogénesis ya que funcionan como oncoproteínas. El ciclo de vida del virus del papiloma se distingue de otros en que requiere de la disponibilidad de células epiteliales epidérmicas o de la mucosa cervical que todavía son capaces de proliferar (capa de células basales). En estas células, la expresión de los genes virales es suprimida y solo existe una expresión limitada de los genes conocidos como "tempranos", (E5, E6 y E7) lo que resulta en una mayor proliferación de las células infectadas y su expansión lateral.

Figura 3. Organización del genoma del HPV y su integración en el DNA de la célula huésped. El genoma del HPV contiene entre 6800 y 8000 pares de bases y se divide en ocho marcos de lectura abiertos - E6, E7, E1, E2, E4, E5 y L2 y L1 – Funcionalmente codificados como "tempranos" (E) o "tardíos" (L). En el desarrollo del cáncer, la molécula viral con frecuentemente se integra en el DNA de la célula huésped. El episoma se abre más a menudo en el marco de lectura abierto de E2, interrumpiendo la continuidad de ese gen. Parte de E2 y los marcos de lectura abiertos que son adyacentes a E2 (E4, E5 y parte de L2) son normalmente eliminados después de la integración (zur Hausen H, 2002 Nat. Rev. Cancer 2: 342-350).

Una vez que el virus penetró la capa suprabasal la expresión de los genes virales "tardíos" se inicia, el genoma viral circular se replica y forma de las proteínas estructurales. Finalmente, las partículas virales completas se ensamblan y sueltan en las capas superiores de la epidermis o mucosa **(Figura 4A).**

En las lesiones que contienen HPV episomal, la proteína E2 viral directamente reprime la expresión del gen temprano como parte de un mecanismo para regular el número de copias. Esta actividad es adicional a la función de E2 como un factor de replicación. En algunos casos el genoma viral se integra al genoma de la célula huésped, rompiéndose el marco de lectura abierta del gen E2. La integración del DNA viral generalmente impide la expresión E2, que conduce a la expresión desregulada de los principales genes virales, incluyendo E6 y E7, así como una mayor capacidad proliferativa, un paso crucial en la progresión del cáncer.

Las oncoproteínas virales E6 y E7 desempeñan un papel importante en la carcinogénesis (Figura 4B). E6 inhibe p53 bloqueando la apoptosis, mientras que E7 inhibe pRB y abroga el arresto del ciclo celular En algún momento, todavía no definido en la progresión de las lesiones precancerosas, la expresión de E6 y E7 es desregulada por cambios genéticos o epigenéticos, conduciendo a su sobreexpresión en toda la lesión. La sobreexpresión de estos genes interrumpen procesos celulares fundamentales, como la apoptosis y el control del ciclo celular y conducen a la inestabilidad genómica y al desarrollo neoplásico (Yugawa and Kiyono 2009).

Figura 4. A. El ciclo de vida del virus del papiloma humano. Los HPVs infectan los queratinocitos de la capa basal del epitelio que se expone a través de microlesiones. Se muestra epitelio no infectado a la izquierda y epitelio de infectado por el HPV a la derecha. Durante la infección, los genomas virales se establecen en el núcleo como episomas de bajo número de copia mientras que los genes tempranos se expresan. El genoma viral se replica en sincronía con la replicación del DNA celular. Después de la división celular, una célula hija migra fuera de la capa basal y se diferencía. La diferenciación de las células HPV positivas induce la fase productiva del ciclo de vida del virus, lo que traduce en la síntesis de DNA usando la maquinaria celular. La expresión de E6 y E7 desregula el control del ciclo celular, lo que empuja a las células en diferenciación a la fase S, lo que permite la amplificación del genoma viral en las células que normalmente habrían salido del ciclo celular. Las proteínas de fase tardía L1 y L2 encapsidan genomas virales recién sintetizados y los viriones se desprenden de las capas superiores del epitelio (hexágonos obscuros). B. Mecanismos moleculares por los cuales las oncoproteínas del virus del papiloma humano cooperan para inducir la carcinogénesis cervical. La inducción de hiperproliferación mediante la proteína E7 desencadena apoptosis, que es bloqueada por la acción de la proteína E6. Las acciones cooperativas de E6 y E7 inmortalizan eficientemente las células, este proceso se complementa con la acción de la proteína E5. La capacidad de E6 y E7 para interaccionar con los reguladores cruciales la proliferación, la apoptosis, la inmortalización y de estabilidad genómica colectivamente promueven la aparición de una población clonal de las células con una ventaja de crecimiento y una mayor propensión a la transformación y la progresión maligna (Moody y Laimins 2010, Nat. Rev. Cancer 10:550-560). .

A pesar de los daños causados por las proteínas oncovirales, el CaCu es una complicación poco frecuente de la infección viral debido a que la mayoría de las infecciones son transitorias y no evolucionan a lesiones neoplásicas. En promedio, se requieren 12 a 15 años antes de que una infección persistente por HPV pueda llevar a CaCu (Wallin, Wiklund et al. 1999). Estos hallazgos sugieren que la infección por HPV por sí sola no es suficiente para causar la enfermedad y que otros factores, como la alteración de los genes de la célula infectada, podrían estar asociados al desarrollo de cáncer invasor. Por lo tanto, existe la necesidad de marcadores más robustos de progresión de la enfermedad que los que proporciona el examen morfológico, o pruebas para la presencia de tipos de alto riesgo del HPV. La identificación de factores virales y del huésped que modulan el riesgo de progresión de la enfermedad en las mujeres infectadas con el HPV requiere de una comprensión más completa de la historia natural de la infección por el HPV, y su relación con la adquisición de anormalidades epiteliales.

La carcinogénesis como un proceso aditivo

Para conocer los pasos que se requieren para la progresión de CIN a CaCu se han utilizado modelos *in vitro* que ha permitido conocer que existen cuatro etapas básicas con características fenotípicas propias, las cuales son; extensión de la vida de la célula, inmortalización, crecimiento con anclaje independiente y tumorigenicidad (Snijders, Steenbergen et al. 2006). Es interesante que para todos estos fenotipos, líneas celulares transformadas con HPV compartieron grupos de complementación con líneas celulares derivadas de CaCu, lo que sugiere que los defectos comunes de genes están implicados en la progresión tanto *in vitro* y la carcinogénesis cervical (Snijders, Steenbergen et al. 2006)

Participación de las alteraciones de número de copias y la desregulación de la expresión génica en la carcinogénesis.

En los últimos años, gracias a las nuevas herramientas de la genómica, se han hecho esfuerzos para caracterizar globalmente las aberraciones cromosómicas, mutaciones y expresión génica de tumores completos. Los experimentos han revelado una gran complejidad de alteraciones y cambios transcripcionales dentro de los tumores. Un fenómeno común en el cáncer es la aparición de CNAs, las cuales se producen debido a la inestabilidad genómica. Se ha recopilado una enorme cantidad de datos de miles de tumores mediante técnicas como hibridación genómica comparativa (aCGH) (Pinkel, Segraves et al. 1998), que han proporcionado resultados consistentes para la detección de las regiones alteradas en diversos análisis de CNAs (Pinkel and Albertson 2005). Con esta metodología se han podido detectar amplificaciones y supresiones comunes en diferentes tipos de cáncer. Por ejemplo, se encontró que las CNAs en el cromosoma 17q23 estaban asociadas con el mal pronóstico de cáncer de mama (Monni, Barlund et al. 2001). En otro trabajo se asoció la pérdida de 13q y ganancia de 1q y 5p con en el cáncer de próstata (Wolf, Mousses et al. 2004). A pesar de que en muchos casos se ha logrado establecer que alguna CNA esta asociada con algún tipo de cáncer, también se ha visto que cada tumor es único y típicamente alberga un gran número de aberraciones genéticas de las cuales solo algunas conducen al fenotipo tumoral. Por lo tanto, la identificación de las alteraciones asociadas al cáncer (cambios genéticos que promueven la progresión del cáncer) y distinguirlas de las accesorias (aquellos que no tienen ventaja selectiva) se ha convertido en uno de los mayores retos en la caracterización genómica del cáncer (Akavia, Litvin et al. 2010).

Diversos estudios apoyan la idea de que la expresión de los genes podría verse alterada debido a CNAs. El estudio de los cambios de número de copias, así como sus efectos en los valores de expresión génica, es un paso importante para la comprensión de la patogénesis del cáncer y muchas otras enfermedades. En un estudio de cáncer de mama (Pollack, Sorlie et al. 2002), se evaluaron paralelamente las cantidades de RNAm y el número de copias de DNA de 41 tumores mediante microarreglos de 6,691 sondas de cDNA. Se centraron en la búsqueda de genes simultáneamente amplificados en número de copias y sobreexpresados. Entre los 91 genes con alto nivel de ganancias en número de copias, 54 genes (62%) resultaron estar moderadamente sobreexpresados, y 36 genes (42%) se encontraron altamente sobreexpresados. Otro estudio (Hyman, Kauraniemi et al. 2002) proporcionó evidencia adicional de que las CNAs afectan los niveles de expresión. En este estudio, se analizaron los perfiles de expresión génica y número de copias de 14 líneas celulares de cáncer de mama. Encontraron que el 44% de los transcritos amplificados se encontraron ubicados dentro del 7% de genes altamente sobreexpresados, mientras que solo el 6% de los trascritos con número de copias normal, se ubicó en la misma lista de altamente sobrexpresados. Los estudios basados en otras enfermedades, como dermatofibrosarcoma protuberans (Linn, West et al. 2003), cáncer de próstata (Phillips, Hayward et al. 2001), y cáncer de pulmón (Tonon, Wong et al. 2005), también se infiere que las CNAs afectan los valores de expresión génica.

En el CaCu, se han identificado varias regiones del genoma con CNAs mediante el análisis del genoma de tumores, utilizando métodos como la hibridación genómica comparativa (CGH), hibridación fluorescente in situ (FISH) o microarreglos de polimorfismos de un solo nucleótido (SNPs). Entre las alteraciones mas frecuentemente reportadas, se encuentran ganancias en 1q, 3q, 5p, 8q y 20q y pérdidas en 2q, 3p, 4p, 4q, 5q, 6q, 8p, 11q, 13q, 18q y Xq tanto en tumores (Heselmeyer, Macville et al. 1997; Dellas, Torhorst et al. 1999; Kirchhoff, Rose et al. 1999; Allen, White et al. 2000; Matthews, Shera et al. 2000; Rao, Arias-Pulido et al. 2004; Huang, Kwok et al. 2005) como en líneas celulares (Thein, Trkova et al. 2000; Umayahara, Numa et al. 2002; Dowen, Neutze et al. 2003; Harris, Lu et al. 2003; Hidalgo, Monroy et al. 2003; Rao, Arias-Pulido et al. 2004; Kloth, Oosting et al. 2007).

Los desbalances genómicos en el CaCu pueden contribuir a la desregulación de la expresión de oncogenes y genes supresores de tumores en células de cáncer y la acumulación de estos genes alterados se han correlacionado con progresión tumoral (Bozic, Antal et al. 2010). Sin embargo, al igual que en otros tipos de cáncer como los mencionados anteriormente, la contribución de estas alteraciones en la carcinogénesis del cuello uterino sigue siendo un tema de debate. Las alteraciones genómicas más frecuentes en CaCu son ganancias de los cromosomas 3q (Heselmeyer, Schrock et al. 1996; Heselmeyer, Macville et al. 1997; Kirchhoff, Rose et al. 1999; Ried, Heselmeyer-Haddad et al. 1999; Allen, White et al. 2000; Matthews, Shera et al. 2000; Rao, Arias-Pulido et al. 2004) y 5p (Mitra, Murty et al. 1995; Kirchhoff, Rose et al. 1999; Scotto, Narayan et al. 2008), las cuales también se han descrito en otros tumores sólidos (Sugita, Tanaka et al. 2000; Adamowicz, Radlwimmer et al. 2006; Belloni, Veronesi et al. 2011).

La región consenso más estudiada en CaCu es una pequeña amplificación en 3q localizada en 3q26-27 (Heselmeyer, Schrock et al. 1996; Heselmeyer, Macville et al. 1997; Matthews, Shera et al. 2000; Harris, Lu et al. 2003; Rao, Arias-Pulido et al. 2004), sugiriendo que algunos genes situados en estas regiones podrían estar involucrados en la carcinogénesis cervical. Entre los más estudiados se encuentra *TERC (telomerase RNA component)* (Andersson, Wallin et al. 2006; Alameda, Espinet et al. 2009) y *PIK3CA (phosphoinositide-3-kinase, catalytic, alpha polypeptide)* (Ma, Wei et al. 2000), los cuales se consideran oncogenes en CaCu.

Regiones amplias de 3q, que incluyen los *loci* donde se encuentran *TERC* y *PIK3CA*, se han confirmado amplificadas por FISH en tumores de cuello uterino y líneas celulares (Macville, Schrock et al. 1999; Harris, Lu et al. 2003). Sin

embargo, no se ha realizado una caracterización detallada de los genes amplificados y sólo la ganancia de *PIK3CA* ha sido validada por qPCR (Ma, Wei et al. 2000). En el **Anexo 1** se muestra un resumen los genes que se han explorado de manera particular en 3q.

No se ha demostrado que *TERC* esté sobreexpresado en muestras de tumores o líneas celulares donde se encuentra amplificado, y la correlación entre la amplificación y la sobreexpresión del gen *PIK3CA* sigue siendo controversial. La amplificación de *PIK3CA* no se asocia con aumento de la expresión génica en muestras de tumores (Narayan, Bourdon et al. 2007; Wilting, de Wilde et al. 2008). Sin embargo, la amplificación del gen se ha asociado con una mayor cantidad de la proteína en líneas celulares (Ma, Wei et al. 2000), actividad creciente de la proteína en tumores de CaCu (Bertelsen, Steine et al. 2006) y líneas celulares (Ma, Wei et al. 2000). La magnitud en la que estas alteraciones cromosómicas recurrentes son relevantes para el desarrollo del tumor sigue siendo en gran medida desconocida.

Por otro lado, la amplificación completa de 5p está bien documentada por FISH en muestras de tumores y líneas celulares (Macville, Schrock et al. 1999; Dowen, Neutze et al. 2003; Kloth, Oosting et al. 2007). Se ha propuesto que algunos genes amplificados en esta región participan en la generación del CaCu. Como ejemplos tenemos a *SKP2 (S-phase kinase-associated protein 2)*, *TERT (telomerase reverse transcriptase)*, *TRIO (triple functional domain)*, *DROSHA (drosha, ribonuclease type III)* y *PRKAA1 (protein kinase, AMP-activated, alpha 1 catalytic subunit)*, se han encontrado sobreexpresados en muestras de tumores (Scotto, Narayan et al. 2008) y líneas celulares (Dowen, Neutze et al. 2003; Kloth, Oosting et al. 2007). En el **Anexo 2** se muestra una tabla con los genes en 5p que han sido explorados en su contribución al CaCu. Sin embargo, a nivel del genoma completo, no se ha observado una correlación entre el número de copias y la expresión de genes, incluso en los brazos de los cromosomas completamente amplificados como 5p o 3q. En las líneas celulares en donde se observó 5p amplificado en número de copias, sólo el 22% de los genes ubicados en este brazo estuvieron sobreexpresados. Del mismo modo, los tumores invasivos o líneas celulares en los que se amplificó 3q mostraron una menor proporción de genes sobreexpresados (Kloth, Oosting et al. 2007). La falta de correlación entre el número de copias y la expresión de genes (Kloth, Oosting et al. 2007; Wilting, de Wilde et al. 2008) puede sugerir que una parte de las regiones alteradas identificadas mediante microarreglos de SNP o CGH podrían estar alteradas en número de copias de forma discontinua y consecuentemente, no todos los genes afectados. En este estudio, investigamos si las alteraciones de número copias en genomas de líneas celulares, a nivel de gen por gen, se relacionan con cambios en la expresión génica. Para tal efecto, se exploraron en cuatro líneas celulares de CaCu (HeLa, SiHa, CaLo, CaSki), las alteraciones de número de copias totales con el microarreglo de SNPs 100K Gene chip de Affymetrix y los niveles de expresión de más de 20,000 genes con el microarreglo Human Gene 1.0 ST de Affymetrix.

JUSTIFICACIÓN Y PLANTEAMIENTO DEL PROBLEMA

Se ha establecido plenamente que la infección persistente con HPV de alto riesgo es indispensable para que se manifieste el CaCu. A pesar de esto, el cáncer no se manifiesta en todos los casos, y se ha establecido que otros factores además del virus son importantes para el desarrollo del cáncer, tales como; estado nutricional, inmunocompetencia y variedades alélicas que confieran susceptibilidad o resistencia.

Otro aspecto importante son las alteraciones de número de copia que afectan directamente el complemento cromosómico de las células afectadas por el virus. Los genes E6 y E7 del virus afectan desregulando el ciclo celular y llevando a un crecimiento descontrolado. Las células se ven afectadas tanto es el número de copias como en los niveles de expresión de múltiples genes. Algunas alteraciones genómicas también puedan contribuir a la desregulación de los niveles de expresión de oncogenes y genes supresores de tumor en las células cancerosas, la acumulación de lo que se correlaciona con la progresión tumoral (Steenbergen, de Wilde et al. 2005). Comprender la relación entre alteraciones de número de copias y perfil de expresión es un primer paso para comprender los fenómenos que ocurren en la célula cancerosa a nivel global. Las plataformas de microarreglos ofrecen la oportunidad de estudiar esta compleja correlación. Su estudio permite identificar genes que recurrentemente se encuentran afectados que podrían ser evaluados para su uso potencial en el pronóstico diagnóstico y tratamiento del CaCu.

Las alteraciones de número de copias (es decir, amplificaciones y supresiones de segmentos de DNA) han sido estudiadas con una variedad de métodos, tales como técnicas de citogenética, CGH, aCGH, y FISH, Dichas técnicas poseen limitaciones en la resolución y en la capacidad analizar al genoma completo

(Speicher and Carter 2005). El desarrollo reciente de plataformas de alto rendimiento basadas en polimorfismos de un solo nucleótido (SNP) ha mejorado la caracterización de CNAs, lo que permite ahora la genotipificación simultánea del orden de millones de SNPs lo que posibilita la exploración en alta resolución de la totalidad del genoma (Gibson 2006).

Las alteraciones de número de copias son comunes en el CaCu y no hay ningún cromosoma que carezca de alteraciones en al menos un pequeño porcentaje de las muestras. La manera en la que las CNAs participarían en la carcinogénesis del CaCu es todavía materia de debate, pero una posibilidad es que el desequilibrio en un grupo de genes podría ser suficiente para desencadenar la inestabilidad celular que conduce a alteraciones cromosómicas adicionales, explicando de esta manera las propiedades de las células tumorales que no pueden ser explicadas por la actividad de genes específicos (Stock and Bialy 2003; Speicher and Carter 2005). Diversos estudios han descrito muchas CNAs por medio de la CGH (Aubele, Zitzelsberger et al. 1998; Dellas, Torhorst et al. 1999; Allen, White et al. 2000; Yang, Shyong et al. 2001; Hidalgo, Monroy et al. 2003; Rao, Arias-Pulido et al. 2004; Wilting, Snijders et al. 2006), aCGH (Lockwood, Coe et al. 2007) y cariotipo espectral (spectral karyotyping) (Macville, Schrock et al. 1999) todos ellos con una resolución por arriba de 10 Mb. En el caso del CaCu, existe un trabajo en el que utilizan microarreglos de 10,000 SNPs, reportan el hallazgo de nuevas regiones de genes amplificados, como la co-amplificación de BIRC2 (baculoviral LAP repeat containing 2) y MMP3 (matrix metallopeptidase 3) en 11q22 (Lockwood, Coe et al. 2007). La lógica detrás de todos estos estudios es que la alteración de los niveles de transcripción suelen estar relacionados con cambios de número de copia (Pinkel and Albertson 2005).

OBJETIVOS

OBJETIVO GENERAL.

Determinar la correlación de las alteraciones de número de copias con los perfiles de expresión génica en el cáncer de cuello uterino.

OBJETIVOS ESPECÍFICOS.

Caracterizar a nivel genómico las alteraciones de número de copia de cuatro líneas celulares derivadas de tumores de cuello uterino.

Identificar los genes que se encuentren dentro de las regiones alteradas en número de copia, especialmente los que se encuentren dentro de regiones recurrentes mínimas.

Correlacionar los genes dentro de regiones alteradas en número de copias con los perfiles de expresión de las mismas líneas celulares.

Identificar los genes que concomitantemente se encuentren alterados en número de copias y desregulados en la expresión génica.

MATERIALES Y MÉTODOS

Líneas celulares.

Las líneas celulares de cáncer de cuello uterino HeLa, SiHa, CasKi (ATCC, Rockville, MD) y CaLo se mantuvieron en medio RPMI 1640 (Life Technologies, Grand Island, NY), suplementado con suero fetal bovino al 10% y antibióticos. Fueron mantenidas a 37° C en una atmósfera húmeda con 5% de CO₂.

Muestras control.

Un total de 38 muestras DNA extraído de sangre periférica de mujeres sanas se utilizaron como muestras control para los análisis de número de copias mediante el microarreglo GeneChip 100K de Affymetrix. Las condiciones de extracción, características de las pacientes y carta de consentimiento informado ya ha sido previamente publicado (Velazquez-Cruz, Orozco et al. 2007).

Un segundo grupo control con un total de 10 muestras de epitelio cervical normal se utilizaron como controles para el análisis de la expresión génica. Las muestras se obtuvieron de cérvix de pacientes sometidas a histerectomía, debido a miomatosis, en el Servicio de Ginecología en el Hospital General de México. Previamente, las pacientes fueron diagnosticadas con un cuello uterino normal por colposcopia y citología. El epitelio del cuello uterino fue disecado con un bisturí inmediatamente después de recibir un fragmento de cuello uterino de la sala de operaciones. Luego fue congelado en nitrógeno líquido y se almacenó a - 80°C hasta su uso. El protocolo fue aprobado por los comités éticos y científicos del Hospital General de México con el número de autorización DIC/03/311/04/051 y fue realizado de acuerdo con las normas éticas establecidas en la Declaración de Helsinki 1964. Todos los participantes firmaron una carta consentimiento informado por escrito antes de su inclusión en el estudio.

Aislamiento de DNA y RNA.

El DNA fué aislado mediante el kit PureLink genomic DNA (Invitrogen, Carlsbad, CA) y mantenido a -20°C hasta su análisis. El RNA total fue aislado utilizando el reactivo TRIzol (Invitrogen, Carlsbad, CA) de acuerdo a los protocolos del fabricante. La calidad del RNA fue confirmada por electroforesis en gel de agarosa.

Microarreglos de SNPs 100K.

El microarreglo GeneChip100K explora 116,204 SNPs con una distancia media entre marcadores de of 23.6 kb. Los experimentos se realizaron de acuerdo a los protocolos estándar del Affymetrix GeneChip 100K (Affymetrix Inc., Santa Clara, CA, EE.UU.). 250 ng de DNA fueron digeridos con la enzima de restricción adecuada (*XbaI* o *Hind*III), se amplificó mediante PCR, los productos amplificados fueron fragmentados y posteriormente marcados. El DNA tratado se hibridó con el microarreglo correspondiente a la enzima *XbaI* o *Hind*III.

Los microarreglos se hibridaron durante 16 horas a 45° C y 60 rpm, luego se lavaron y se tiñeron con el conjugado estreptavidina-ficoeritrina en la estación de fluidos *Gene Chip fluidics station 450*. Finalmente, los microarreglos fueron leídos en el *Gene Chip Scanner 3000*. Los datos obtenidos fueron analizados con el software *Affymetrix GeneChip Command Console* (AGCC). Este software generó los archivos que concentran los valores de intensidad de señal (*.CEL). Los archivos *.CEL se transfirieron a una estación de trabajo con el software *Affymetrix Genotyping Console* (GTC) 4.0 donde fueron analizados.

Genotipificación de SNPs Affymetrix Genotyping Console (GTC) 4.0.

Los genotipos de SNPs fueron generados con un Modelo Lineal Bayesiano Robusto con Algoritmo Clasificador de Distancia Mahalanobis (BRLMM). Este algoritmo realiza un análisis simultaneo con el conjunto de microarreglos, permitiendo la estimación conjunta de los efectos y señales de la sondas y en su caso, toma la información de otros SNPs, para predecir con mayor certeza los genotipos. Para maximizar la precisión de la genotipificación, el análisis se realizó en una única corrida que incluyó los 38 controles y las 4 líneas celulares.

Análisis de número de copias en *Affymetrix Genotyping Console* (GTC) 4.0.

El cálculo del número de copias en cada SNP se basó en la intensidad de la señal de hibridación para cada una de ellos. Dentro del microarreglo, cada SNP está representado por un conjunto de sondas específicas, el DNA de la muestra a analizar se une específicamente a las sondas que le son complementarias, la unión de las sondas es detectada como una señal fluorescente que está directamente relacionada con el número de copias del SNP. Si el SNP interrogado posee muchas copias en la muestra analizada, se observará una mayor intensidad de señal. Todo el conjunto de señales generadas fueron analizadas mediante el software GTC 4.0. Son este software se estimó en base a un algoritmo el número de copias específico para cada SNP.

Para conocer el número de copias de las líneas celulares, las comparamos con un conjunto de 38 muestras de sangre periférica de mujeres normales. Para este análisis, se establecieron los siguientes parámetros de análisis en el software GTC 4.0: Tipo de muestras; *un-paired samples*. Normalización; *quantile normalization at perfect match (PM) probe level; summarization of the signal intensity for each allele of each SNP*. El parámetro *Genomic smoothing* fue ajustado a 0.5 Mb. Se aplicó un Modelo Oculto de Markov (HMM) de cinco estados para el suavizado y segmentación de los datos de número de copias. Los diferentes estados se definieron de la siguiente manera: 0=deleción homocigota; 1=deleción heterocigota; 2=diploide normal; 3=ganancia de una copia y 4=amplificación. Cada SNP fue clasificado en uno de los posibles estados de número de copia con un *transition decay* de 10 Mb. Se determinó el umbral para SNPs de valor atípico *(SNPs outliers)* en 1,000 pb. El

software generó los archivos de número de copias (.CNCHP) que contiene la estimación de los cambios de número de copias en las líneas celulares, de acuerdo a los parámetros anteriormente descritos. Finalmente las regiones alteradas en número de copias (CNAs) fueron construidas mediante la herramienta *Copy number segment tool (STR)*. Las CNAs fueron definidas como segmentos de DNA donde se localizaron 2 o más SNPs alterados en número de copias (**Figura 5**). Los SNPs alterados en forma aislada, es decir, aquellos que estaban rodeados por SNPs no alterados, se consideraron como CNAs de un solo SNP.

Figura 5. Construcción de CNAs y MRRs. En el panel A se muestra una sucesión de 10 SNPs amplificados (triángulos rellenos), los cuales marcan la localización de una CNA amplificada (barra rellena), todos los genes que se encuentren dentro de una CNA, se consideraron como alterados. En el panel B las CNAs de las 4 líneas celulares fueron alineadas de acuerdo a su posición en el genoma, la región común a todas ellas fue considerada como una MRR (región entre líneas punteadas).

Análisis de número de copias en SVS Golden Helix.

Adicionalmente, las alteraciones de número de copia se analizaron con el software *SVS version 7.1* de Golden Helix. Los archivos de intensidad de señal CEL de las cuatro líneas celulares y los 38 controles se importaron en el módulo

de análisis de número copia de *SVS*. Los datos crudos de intensidad de los microarreglos *Xba*I y *Hind*III de cada muestra fueron normalizados por cuartiles. Después de la normalización se calculó el *log₂ ratio* utilizando las intensidades normalizadas contra controles como referencia. La relación *log₂* calculado de los cromosomas 1, 3 y 5 de las líneas celulares CaSki, HeLa, SiHa y CaLo se graficó y se suavizó con la mediana con un valor de radio de ventana de 99.

Perfiles de expresión génica y análisis de datos

El perfil de expresión génica fue explorado en experimentos por triplicado en las líneas celulares CaLo, CaSki, HeLa y SiHa y 10 controles epitelio cervical, utilizando el *Human Gene 1.0 ST oligonucleotide microarray* (Affymetrix, Santa Clara, CA). Este microarreglo contiene 33,297 sondas que corresponden aproximadamente a 20,741 genes de la base de datos de referencia (UCSC Genome Broser Assembly Mar 2006 NCBI 36/hg18, disponible en http://genome.ucsc.edu/)

Para la síntesis de cDNA, se utilizó un total de 300 ng de RNA de cada línea celular o muestra control. Lo anterior se realizó con transcriptasa inversa *SuperScript II y primer oligo(dT)*, utilizando el *GeneChip WT cDNA synthesis kit* (Affymetrix, Santa Clara, CA). Posteriormente, la transcripción *in vitro* se llevó a cabo durante toda una noche utilizando el *GeneChip Amplification kit* (Affymetrix, Santa Clara, CA). El DNA complementario fue marcado al azar con dUTP y el DNA de cadena sencilla se fragmentó con uracil DNA glucosilasa (UDG), seguido de Exonucleasa 1 (EXO1). El DNA fragmentado se marcó posteriormente, utilizando desoxi-nucleotidil transferasa terminal (TDT) y nucleótidos biotinilados *de GeneChip Terminal Labeling Kit* (Affymetrix, Santa Clara, CA). Se preparó un cóctel de hibridación que incluyó el DNA marcado y las sondas de hibridación control. Los microarreglos se hibridaron durante 16 horas a 45° C y 60 rpm, luego se lavaron y se tiñeron con el conjugado estreptavidina-

ficoeritrina en la estación de fluidos Gene Chip fluidics station 450. Por último, los microarreglos fueron escaneados en el Gene Chip Scanner 3000. La hibridación, escaneado y análisis de imágenes se realizó de acuerdo a los protocolos del fabricante (Affymetrix GeneChip Expression Assay manual). Sólo los microarreglos con calidad óptima se incluyeron en el análisis posterior. Los parámetros de calidad fueron definidos como: Expresión de los controles poliA exógenos, presencia de oligo B2 utilizado para hacer la alienación de la malla, y valores del área bajo la curva (AUC) por encima de 0.8.. Los microarreglos se normalizaron utilizando el algoritmo de RMA (Robust Multichip Average) en la consola de expresión de Affymetrix. Los valores de la intensidad normalizada fueron referidos como unidades de intensidad (IU). La identificación de genes que se expresaron de forma diferencial entre las líneas celulares y los controles se realizó con el algoritmo "Significance Analysis of Microarrays" (SAM versión 3.0, http://www.stat.stanford.edu/~TIBS/SAM/.) usando valores de "fold change" (FC) de corte de \geq 1.5, un *"false discovery rate"* global (FDR) de 0%, y un FDR local <10% (Tusher, Tibshirani et al. 2001). Los 3 experimentos de cada línea celular o todos los experimentos de las líneas celulares juntos (n = 12) fueron comparados con el conjunto de los controles (n = 10). Se realizó un análisis de agrupamiento jerárquico no supervisado y análisis de componentes principales con los genes desregulados de 5p y 3q26-29. Para el primero se utilizó, el software dChip (versión 1.6; www.dCHIP.org) y para los componentes principales, una implementación de lenguaje R en la plataforma Java.

Validación de la expresión global por qPCR.

La transcripción inversa del RNA total se realizó utilizando *High Capacity cDNA* (Applied Biosystems, CA) en un volumen total de 20 μ l. La mezcla incluyó 2 μ g de RNA, 2 μ l de buffer RT 10X, 0.8 μ l de dNTPs 100 mM, 2 μ l de *random primers* RT 10X, 1 μ l de *MultiScribeTM* RT (5 U/ μ l) y 1 μ l de inhibidor de RNasa (2 U/ μ l). Las reacciones se incubaron a 37°C durante 120 minutos y se almacenaron

a -20°C. Se realizaron experimentos de validación en cuatro líneas celulares y 10 controles sanos de epitelio cervical en 23 genes previamente utilizados en muestras de tumores de cérvix. En la **Tabla 1** se muestran las sondas TaqMan (Applied Biosystems, CA) utilizadas para los ensayos de expresión genética.

Los genes localizados en 1q (PARP1), 3q (MCM2, TNFSF10, ECT2, NLGN1, NAALADL2, RFC4) y 5p (TRIO, CLPTM1L) fueron seleccionados por ubicarse en los cromosomas seleccionados en este estudio. El resto de los genes están localizados en otros cromosomas y fueron seleccionados para validar la expresión génica debido a que la mayoría de ellos se posicionaron en los primeros 100 lugares de genes desregulados en las líneas celulares (Tabla S4).

Los experimentos se realizaron por duplicado en un volumen final de 20 µl, incluyeron 200 ng de cDNA, 10 µl de *TaqMan Universal PCR Master Mix 2X* (Applied Biosystems, CA), 1 µl de *TaqMan Gene Expresión Assay 20X* y 7 µl de agua libre de RNAasa.

Las reacciones se corrieron en un *Rotor-Gene* (Corbett Research, Sydney, Australia) de la siguiente manera: activación inicial de PCR a 50°C durante 2 min seguido de 95°C durante 10 minutos, luego 40 ciclos a 95°C durante 15 segundos con hibridación/extensión a 60°C durante 1 min. Las mediciones de la expresión génica se basaron en una curva estándar relativa construida a partir de 10 diluciones seriadas de una mezcla de cDNA de las cuatro líneas celulares, en un rango entre 500 a 0.05 ng/µl. La expresión del gen blanco se normalizó en cada línea celular y las muestras de control, a la intensidad media de las referencias internas conforme al método descrito previamente (Pfaffl 2001). El cambio en la expresión (*Fold Change*) se calculó dividiendo la intensidad normalizada de cada línea celular entre la intensidad media normalizada de las muestras de control.

Tabla 1. Sondas TaqMan utilizadas para la validación por qPC	CR.
--	-----

Gen	Citob ^a	Nombre Oficial	Sonda TaqMan
CCNB2	15q22.2	Cyclin B2	Hs00270424_m1
POLD1	19q13.3	Polymerase (DNA directed), delta 1,	Hs00364293_m1
		catalytic subunit 125kda	
CDC20	1p34.1	Cell division cycle 20 homolog (S.	Hs00415851_g1
		Cerevisiae)	
CDKN2A	9p21	Cyclin-dependent kinase inhibitor 2A	Hs00233365_m1
		(melanoma, p16, inhibits CDK4)	
CDKN3	14q22	Cyclin-dependent kinase inhibitor 3	Hs00193192_m1
CKS2	9q22	CDC28 protein kinase regulatory subunit 2	Hs00854958_g1
MCM2	3q21	Minichromosome maintenance complex	Hs00170472_m1
		component 2	
MKI67	10q25-qter	Antigen identified by monoclonal antibody	Hs00606991_m1
		Ki-67	
NUSAP1	15q15.1	Nucleolar and spindle associated protein 1	Hs00251213_m1
PRC1	15q26.1	Protein regulator of cytokinesis 1	Hs01597831_m1
RFC4	3q27	Replication factor C (activator 1) 4, 37kda	Hs00427469_m1
TOP2A	17q21-q22	Topoisomerase (DNA) II alpha, 170kda	Hs01032127_g1
TYMS	18p11.32	Thymidylate synthetase	Hs00426591_m1
ZWINT	10q21-q22	ZW10 interactor	Hs00199952_m1
PARP1	1q41-q42	Poly (ADP-ribose) polymerase 1	Hs00242302_m1
NAALADL2	3q26.31	N-acetylated alpha-linked acidic	Hs00822484_m1
		dipeptidase-like 2	
POLD1	19q13.3	Polymerase (DNA directed), delta 1,	Hs00172491_m1
		catalytic subunit 125kda	
CLPTM1L	5pter-p15.3	CLPTM1-like	Hs00363947_m1
TRIO	5p15.2	Triple functional domain (PTPRF	Hs00179276_m1
		interacting)	
TNFSF10	3q26	CDC28 protein kinase regulatory subunit 2	Hs00921974_m1
NLGN1	3q26.31	Neuroligin 1	Hs00208784_m1
ECT2	3q26.1-	Epithelial cell transforming sequence 2	Hs00216455_m1
	q26.2	oncogene	
RFC5	12q24.23	Replication factor C (activator 1) 5, 36.5kda	Hs00738859_m1
$GAPDH^{\flat}$	12p13	Glyceraldehyde-3-phosphate	Hs02758991_g1
	12p13.31	dehydrogenase	
,	15q22.31		
ACTB [®]	7p15-p12	Actin, beta	Hs01064292_g1

a. Citobanda en la que se localiza el gen

b. Controles de normalización

La diferencia estadística entre cada línea celular y el conjunto de los controles se midió con la prueba no paramétrica de Mann-Whitney. El nivel de correlación entre los resultados de microarreglos y datos de qPCR se midió con el coeficiente de correlación de Pearson.

Hibridación fluorescente in situ (FISH).

Las preparaciones de interfases y metafases de CaSki, HeLa y SiHa se obtuvieron de acuerdo a los procedimientos estándar (Barch and Knutsen 1997). Los experimentos de FISH de doble color se realizaron para determinar el número de copias de tres regiones, 5p15.3, 5p15.2 y 3q26. Para 5p, se utilizaron dos cócteles de sondas (Abbott Laboratories. Abbott Park, Illinois, E.U.A). El primero ubicado en 5p15.3 (locus C84c11/T3, marcado con SpectrumGreen) y una sonda control situada en 5q35.3 (locus D5S2907, marcado con SpectrumOrange). La segunda incluyó una sonda ubicada en 5p15.2 (locus LSI D5S23, D5S721, marcado con SpectrumGreen) y la sonda de control (locus LSI EGR1, marcado con SpectrumOrange) situada en 5q31.1-31.3. Para 3q, se utilizó un cóctel de sondas (IBC-10110, diagnóstico Kreatech. Amsterdam), que incluyó una sonda para el locus hTERC, situado en 3q26.2, (marcado conPlatinumBright 550-rojo) y la sonda centromérica 3q11 (marcado con PlatinumBright 595-verde) como control. La preparación de laminillas, hibridación de DNA y lavados poshibridación, se llevaron a cabo utilizando los métodos estándar descritos en el manual. Al menos 20 células se analizaron mediante la visualización directa al microscopio y análisis de imágenes digitales para verificar el número de señales y ubicación de la sonda. Los cambios de número de copias se midieron calculando el cociente entre el número medio de señales de las sondas blanco y el control correspondiente.

Validación del número de copias del gen PARP1 por qPCR.

El número de copias de gen *PARP1* se calculó en las cuatro líneas celulares, utilizando 10 muestras de DNA de linfocitos como controles de referencia. Los experimentos se llevaron a cabo por triplicado en un Rotor-Gene 6000 Corbett detection system (Corbett Life Science), utilizando los ensayos TaqMan. El número de copias de los genes *PARP1* y *RNase P* se determinó en conjunto en un solo ensayo. Utilizamos 6.4 ng de DNA genómico en 20 µl de mezcla de reacción que consta de *TaqMan Genotyping Master Mix* (Applied Biosystems), *TaqMan Copy Number Reference Assay RNaseP* (4401631) y *TaqMan Copy Number Assay PARP1* (Hs 05725717_cn). Las condiciones de amplificación fueron 10 min iniciales a 95°C, seguido por 40 ciclos de 95°C durante 15 segundos y 60°C durante 60 segundos. La cuantificación se realizó utilizando tanto el método de la curva estándar y el método comparativo Ct. Los valores de *PARP1* se normalizaron en todas las muestras con los valores de la *RNase P*. El número de copias se calculó dividiendo los valores normalizados de *PARP1* de cada línea celular entre los valores medios de las muestras de control multiplicado por 2.

Análisis de ontología de genes

Se utilizaron dos plataformas de clasificación ontológica para la identificación de los procesos biológicos más importantes. Por un lado, *DAVID functional annotation tool* (http://david.abcc.ncifcrf.gov) (Huang, Sherman et al. 2009; Huang, Sherman et al. 2009), esta herramienta resume sistemáticamente la información encontrada en diversas bases de datos de genes y presenta los patrones y clasificaciones mas relevantes de un conjunto de genes junto con un valor de p. De esta manera, se pueden analizar los procesos biológicos más relevantes de un conjunto de genes identificados en un experimento de microarreglos. En el presente trabajo se utilizó *DAVID* para el análisis ontológico de "Procesos Biológicos" (*Biological Process*).

Para realizar la clasificación de los genes, *DAVID* hace uso del proyecto de ontología de genes <u>http://www.geneontology.org/</u> es una iniciativa bioinformática, con el objetivo de estandarizar la representación de los atributos de los productos génicos y genes entre especies y bases de datos. El proyecto

proporciona un vocabulario controlado de términos para describir las características productos génicos y anotaciones de genes

Por otro lado, también se analizó la ontología de los genes con la herramienta *Ingenuity Pathway Analysis* (IPA; Ingenuity® Systems, <u>www.ingenuity.com</u>) en principio funciona de manera muy similar a *DAVID*, su principal característica es que la base de datos que utiliza para la clasificación es mantenida, actualizada y "curada" de manera manual, lo que permite un mayor nivel de confianza en los resultados de clasificación de genes. Con esta herramienta se analizaron las vías canónicas *(canonical pathways)* involucradas en las listas de genes desregulados.

Anotación de los genes e integración de datos

La posición física los SNPs, segmentos de DNA y genes se asignaron de acuerdo a UCSC Genome Browser Assembly Mar. 2006 NCBI 36/bg18, disponible en http://genome.ucsc.edu/. Los segmentos alterados en número de copias de cada línea celular se alinearon según la posición en el genoma y se identificaron las regiones recurrentes mínimas (MRR) comunes a las cuatro líneas celulares (Figura 5). El análisis de SNPs, segmentos de DNA, MRRs, genes y los alineamientos de todos ellos en relación a la posición en el genoma, se realizó con Access 2010 (Microsoft Inc.). Los datos crudos de microarreglos tanto de SNPs como de expresión han sido depositados en el sitio web de NCBI Gene Expression Omnibus http://www.ncbi.nih.gov/geo y están disponibles en el número de acceso GSE29245. Los programas Sigma Stat y SSPS se utilizaron para las comparaciones estadísticas entre los grupos. Para determinar si la tendencia de los datos tenían valores significativos se utilizó la prueba de chi cuadrada Mantel-Haenszel de asociación lineal.

Para identificar los brazos, citobandas o MRRs con mayor número de alteraciones, se realizó un análisis de enriquecimiento basado en una prueba de chi cuadrada. Las frecuencias de los SNPs y genes alterados en número de copias,

así como de los genes desregulados en cada una de estas regiones se compararon con las frecuencias totales que se encontraron en el genoma de todas las líneas celulares. Según el caso, se utilizó la prueba de chi cuadrada o la prueba exacta de Fisher para evaluar la significancia estadística de las diferencias encontradas. Adicionalmente, se evaluó el enriquecimiento de genes desregulados en brazos cromosómicos y citobandas mediante el método de *"Parametric Gene Set Enrichment Analysis"* (PAGE) (Kim and Volsky 2005). Este procedimiento se basa en el cálculo de la puntuación Z, que toma en cuenta el número de genes desregulados y el *fold change* (FC). Para el cálculo del Z score se procedió de la siguiente manera:

Se calculó la media (μ) y desviación estándar (δ) del FC del total de genes desregulados (3,122) y la media del fold change (Sm) de los genes desregulados (m) localizados en un brazo dado. Después, el *Z score* fue calculado como *Z* = (Sm- μ)*m^{1/2}/ δ . Se utilizó Microsoft Excel para calcular los valores de p del *Z score*. Los conjuntos que tuvieron menos de 10 genes fueron descartados. Valores de p de dos colas < 0.05 fueron considerados significativos (Kim and Volsky 2005).
RESULTADOS

Identificación de genes alterados en el número de copias.

Cada línea celular tuvo un promedio de 49,167 SNPs alterados en número de copias, lo que equivale a 42.6% de todos los SNPs explorados (CN-AS). Las alteraciones fueron principalmente ganancias (45.5%) y deleciones simples (48.5%). Las amplificaciones (5.5%) y deleciones dobles (0.5%) fueron eventos raros. En la **Figura 6** y **Figura 7** se muestra la localización de todos los CN-AS debido a la escala de las figuras, los SNPs muy cercanos parecen formar líneas continuas.

La distancia media en el genoma entre los SNPs explorados por el microarreglo *Affymetrix GeneChip100K* es de aproximadamente 23.6 kb. Sin embargo, no hay certeza de que todo el DNA situado entre SNPs contiguos esté en realidad alterado. Una posibilidad es que los CN-AS sean parte de pequeñas deleciones o ganancias intercaladas sucesivamente con grandes segmentos de DNA normal. En cualquier caso, la región de DNA situada entre el primero y el último CN-AS fue considerada como una región potencialmente alterada en el número de copias (CNA). Un total de 1,065 regiones CNA diferentes fueron identificadas en las cuatro líneas celulares exploradas, las ganancias de 599 y 466 deleciones. En promedio, cada línea celular tuvo 273 \pm 32 (intervalo de 240 a 317) regiones CNA y el porcentaje de alteración por genoma estuvo en 19.2%. La distancia promedio entre SNPs fue de 74 kb para todo el conjunto, 89 kb en las deleciones y 62 kb en las ganancias. Cuando las regiones CNA de las cuatro líneas celulares fueron alineadas, se identificaron un total de 108 regiones recurrentes mínimas **(Anexo 3).**

Figura 6. Panorama general de SNPs con alteraciones en número de copias en cuatro líneas celulares de cáncer cervicouterino. Los mapas fueron hechos de acuerdo a UCSC Genome Browser Assembly Mar. 2006, NCBI 36/hg18, disponible en http://genome.ucsc.edu/.

Figura 7. Panorama general de SNPs con alteraciones en número de copias en cuatro líneas celulares de cáncer cervicouterino. Los mapas fueron hechos de acuerdo a UCSC Genome Browser Assembly Mar. 2006, NCBI 36/hg18, disponible en http://genome.ucsc.edu/.

Existe una diversidad de algoritmos que permiten el análisis de número de copia, por lo que decidimos analizar nuestros datos con un método diferente para averiguar si habría diferencias entre métodos de análisis alternativos. Los datos fueron analizados también mediante el software SVS versión 7.1 de Golden Helix. Este software utiliza un algoritmo de segmentación para el análisis de número de copias, el cual es muy diferente del utilizado por el software GTC 4.0. En la **Figura 8, Figura 9** y **Figura 10** se muestran que los perfiles Log₂ de los cromosomas 1, 3 y 5 respectivamente. Los valores de Log₂ representan la magnitud del cambio en el número de copias respecto a los controles. Los resultados que se muestran en las figuras muestran que los perfiles de número de copias obtenidos por el software de Affymetrix (líneas de colores) y el de Golden Helix (líneas de color gris al fondo) son casi idénticos, lo que indica la consistencia de los datos independientemente del software con que fueran analizados. En lo sucesivo los datos presentados estarán basados en los resultados del software *Command Console* de Affymetrix.

Figura 8. Perfil de *log2 ratio* del cromosoma 1. La figura muestra el comparativo de valores de número de copia expresados en valores de *log2* mediante dos métodos de análisis. En cada panel se muestran los valores de número de copia de HeLa (azul), CaSki (rojo), SiHa (verde) y CaLo (morado), obtenidos mediante el software *Command Console de Affimetrix* (puntos de colores) y el *SVS* de *Golden Helix* (puntos color gris). Valores por arriba de 0 indican ganancia, por debajo de 0 indican pérdida.

valores de numero de *log2* expresados en valores de *log2* ¹... mérodos de análisis. En cada panel se muestran los valores de número Figura 9. Perfil de log2 ratio del cromosoma 3. La figura muestra el comparativo de valores de número de copia de copia de HeLa (azul), CaSki (rojo), SiHa (verde) y CaLo (morado), obtenidos mediante el software Command Console de Affimetrix (puntos de colores) y el SVS de Golden Helix (puntos color gris). Valores por arriba de 0 indican ganancia, por debajo mediante dos métodos de 0 indican pérdida.

expresados en valores de *log2* mediante dos métodos de (rojo), SiHa (verde) y CaLo del cromosoma 5. La figura muestra el comparativo de valores de número de copia (morado), obtenidos mediante el Affimetrix (puntos de colores) y el SVS de Golden Helix (puntos Figura 10. Perfil de log2 ratio análisis. En cada panel se muestran los valores de número color gris). Valores por arriba de de copia de HeLa (azul), CaSki software Command Console de 0 indican ganancia, por debajo de 0 indican pérdida.

Figura 11 Comparación de los cambios de número de copias y la expresión génica por brazo cromosómico. En la parte izquierda se indica el número de SNPs localizados en cada brazo cromosómico, explorados con el microarreglo GeneChip 100K. En el lado derecho se indica el número total de genes localizados en cada brazo, en los que se exploraron los cambios en la expresión génica mediante el microarreglo de expresión HGST1.0. Cada barra representa el porcentaje de recurrencia de SNPs alterados (a la izquierda) o de genes desregulados (derecha), en las cuatro líneas celulares. El brazo cromosómico se indica en la columna central. Los brazos marcados con asteriscos tuvieron un promedio de CN-AS más alto y estadísticamente significativo (p < 0.05, prueba de chi cuadrada) en comparación con la media de todo el genoma. Los brazos con enriquecimiento significativo de genes están identificados con letras minúsculas en cursivas, ya sea con la letra "a", (identificados con PAGE).

La mayoría de ellas (n=106) tuvieron menos de 500 SNPs (47 deletadas, 51 ganadas o amplificadas, 8 comportamiento mixto) y sólo dos tenían más de 500 SNPs (ambas amplificadas). Tuvieron un tamaño promedio de 787 kb (rango = 3.4 a 16,755 kb) y la el porcentaje del ADN total incluido en el conjunto de MRR corresponden al 2.4% del genoma. En comparación con el conjunto de regiones CNA, la distancia media entre los SNPs se redujo más de dos veces (34 kb). Los SNPs recurrentes que integran las MRR representan únicamente el 5.8% de todos los SNPs explorados. Sólo diez brazos cromosómicos tuvieron una tasa mayor y estadísticamente significativa a este porcentaje (1q, 3q, 4p, 5p, 11q, 13q, 18q, 20p, 21p, Xq, marcados con un asterisco en la Figura 11A. Tres de ellos tenían exclusivamente SNPs ganados (1q, 3q y 5p), seis tenían únicamente SNPs deletados (4p, 13q, 18q, 20p, 21p, Xq) y solo uno (11q) tuvo tanto SNPs ganados como deletados. Es notable que el 94% de los 2,045 SNPs explorado en 5p ganaron número de copias, lo que sugiere que el brazo completo se duplicó (Figura 16A). El porcentaje de SNPs alterados en los otros brazos fué mucho menor que en 5p, excepto en 21p, que tuvo un 100% de SNPs alterados. Hay que hacer notar que sólo cinco SNP fueron explorados en este brazo (Figura 11A).

Se asumió que las regiones CNA y MRR son regiones alteradas continuas, por lo que para identificar genes con alteraciones en el número de copias, se alinearon con la base de datos del genoma humano. El número de genes alterados por línea celular varió de 6,864 en CaLo a 17,829 en SiHa (media=11.669 genes, **Tabla 2**). Curiosamente, 14 MRR carecieron de genes y el número de genes en las MRR restantes (n = 94) fue de 1 a 103. Un total de 1,264 genes fueron localizados dentro de MRR, 619 deletadas, 626 ganadas y 19 con un comportamiento mixto, es decir, deletadas en algunas líneas celulares y ganadas en otras **(Anexo 3)**.

				genes	nes desregulados ^a					
		CN+			CN-			Tod	Todos	
Línea celular	$Genes^{\flat} CN+$	n	EX+	%	п	EX+	%	EX+	%	
CaLo	6,864	4,487	532	11.9	16,254	1,686	10.4	2,218	10.7	
CaSki	7,706	4,912	728	14.8	15,829	2,197	13.9	2,925	14.1	
HeLa	14,276	8,875	2,207	24.9	11,866	3,088	26	5,295	25.5	
SiHa	17,829	11,120	1,125	10.1	9,621	944	9.8	2,069	10	
Promedio	11,669	7,349	1,148	15.6	13,393	1,979	14.8	3,127	15	
Genes recurrentes	1,264°	783	147	18.8	19,958	2975	14.6	3,122 ^d	15.1	

Tabla 2. Influencia de las alteraciones de número de copia en la regulación génica de líneas celulares de cáncer cervicouterino.

a. Se exploraron los cambios en la expresión de 20,741 genes con microareglos HG-ST1.0. En promedio, 7,349 de ellos estuvieron alterados en número de copias (CN+) y 13,393 no tuvieron alteraciones del número de copias (CN).

b. Genes potencialmente en el número de copias (CNA) de acuerdo a los datos obtenidos con los microarreglos 100K. En promedio sólo el 63% de estos genes fueron explorados para cambios en la expresión génica.

c. Los genes que estuvieron alterados en el número de copias en las cuatro líneas celulares.

d. Los genes desregulados se definieron como aquellos que en las cuatro líneas celulares estuvieron subexpresados o sobreexpresados en comparación a las muestras control.

EX+ =genes que estuvieron subexpresados o sobreexpresados en las líneas celulares en comparación con la muestras control.

Análisis de expresión genética de 20,741 genes en líneas celulares de

cáncer de cuello uterino.

Se compararon los niveles de expresión de 20,741 genes entre las líneas celulares individuales, o el conjunto de las cuatro líneas celulares, y 10 controles normales del epitelio cervical. Los datos crudos se estandarizaron con el método de RMA mediante el software *FlexArray* y los genes diferencialmente expresados se identificaron con el método SAM, utilizando los valores de corte \geq 1.5 veces el cambio y el *False Discovery Rate* (FDR), de 0% (ver materiales y métodos). El promedio de genes expresados diferencialmente entre líneas celulares y el grupo control fue de 3,127; el intervalo fue de 2,069 (10%) en SiHa hasta 5,295 (25.5%) en HeLa **(Tabla 1).** Cuando los experimentos de las cuatro líneas celulares fueron tomados conjuntamente, se encontraron 3,122 genes (15.1%) expresados

diferencialmente en comparación con el grupo control; 1,434 sobreexpresados y 1,688 subexpresados (Figura 12A).

Vale la pena señalar que, en las muestras control, la cantidad de RNAm fue diferente independientemente de si los genes estaban sobre o subexpresados, en las líneas celulares (Figura 12A). El promedio de las cantidades de RNAm de los genes subexpresados fue del doble en los conjuntos de genes sobre-expresados y no desregulados (n=17,645; Figura 12A).

Figura 12. Intensidad de expresión en genes subexpresados, sin cambios y sobreexpresados en líneas celulares y controles. El panel А muestra la intensidad de expresión media de genes subexpresados, sin cambios y sobreexpresados en líneas celulares en relación a la expresión en muestras control. Los números encima de las barras indican el número de genes en cada grupo. El panel B muestra la frecuencia de distribución de los genes, los cuales tuvieron expresión similar entre las líneas celulares y controles, agrupados por rangos de intensidad de expresión.

43

Esto sugiere que la mayoría de los genes que estuvieron subexpresados en las líneas celulares, se transcriben activamente en las muestras de control. Por otra parte, la distribución de frecuencias de los genes no desregulados, de acuerdo a la cantidad de RNAm, fue similar tanto en las muestras de control como en las líneas celulares (Figura 12B). Más del 50% de los genes tuvieron niveles de expresión en el intervalo más bajo, entre 1 a 100 unidades de intensidad (UI), después, la frecuencia se reduce mucho a medida que la cantidad de RNAm se incrementa. De hecho, sólo el 30% de ellos se distribuyeron por arriba de 200 UI de RNAm. La distribución sugiere que los genes no desregulados que cayeron en el intervalo más bajo están escasamente transcritos, y que aquellos que se ubicaron por arriba de 200 UI se transcribieron activamente, tanto en los controles como en las líneas celulares. Se observó un patrón de distribución de frecuencias similar en los genes sobreexpresados de las líneas celulares.

La frecuencia de genes desregulados fue calculada en cada brazo cromosómico. Solo siete brazos (4q, 5p, 15q, 16q, 16q, 18q y 19p) mostraron un mayor porcentaje de genes desregulados comparado con el promedio de todo el conjunto (15.1%; **Figura 11B**; p<0.05, chi cuadrada). El brazo 5p tuvo el mayor porcentaje (33.5%) de genes desregulados, seguido de 16q (22.1%), 16p (21.3%), 18q (21%), 15q (20.8%), 19p (20.4%) y 4q (18.9%). En 5p, 16p, 16q y 19p predominaron los genes sobreexpresados, mientras que en 4q, 15q y 18q fueron más frecuentes los subexpresados (**Figura 11**). Sólo 10 de 297 citobandas (3.4%) resultaron estadísticamente significativas para la frecuencia de genes desregulados, la mayoría de ellas ubicadas en los brazos arriba mencionados (**Anexo 4**). Las citobandas con mayor índice fueron 19p12 (61,8%), 15q11 (52,5%) y 5p15 (45,1%). En lo que se refiere a la evaluación del enriquecimiento de genes desregulados en brazos cromosómicos y citobandas, algunos que fueron

detectados inicialmente con la prueba de chi cuadrada fueron confirmados por el método de PAGE (Figura 11 y Anexo 4) el cual considera, el valor promedio de *fold change* (FC) y el número de genes desregulados (ver materiales y métodos). Finalmente, hubo un grupo citobandas enriquecidas con genes que solo fue detectado por el método de PAGE, este grupo incluyó el cromosoma 8 y 29 citobandas adicionales (marcados con la letra "c" en la Figura 11 y Anexo 4), indicando que a diferencia del porcentaje, los valores medios de FC fueron significativamente diferentes en comparación con el promedio global.

Se encontró una alta correlación positiva estadísticamente significativa (p <0.01, chi cuadrada) entre los valores de qPCR y microarreglos, en los 23 genes explorados con ambas metodologías. Los coeficientes de correlación variaron de 0.61 a 1.0 y la media fue de 0.82. En la **Figura 13** se muestran los resultados de intensidad media por qPCR de 9 genes localizados en 1q (*PARP1*), 3q (*MCM2*, *ECT2*, *NAALDL2*, *NLGN1*, *TNFSF10*, *RFC4*) y 5p (*TRIO*, *CLPTM1L*). En términos generales la figura muestra que las diferencias observadas en los niveles de expresión de los experimentos de microarreglos, son reproducibles cuando se realizan experimentos de expresión gen por gen mediante qPCR. Estos experimentos sugieren que los datos obtenidos los microarreglos HG1.0ST son confiables.

Figura 13. Comparación de la expresión génica de PARP1, MCM2, ECT2, NAALADL2, NLGN1, TNSF10, RFC4, TRIO y CLPTM1L en líneas celulares y controles. El panel A muestra los niveles de expresión de los genes señalados en el microarreglo de expresión HGST1.0 y en el panel B se encuentran los resultados de los mismo genes explorados mediante qPCR. Los paneles muestran la media ± error estándar de la intensidad de la expresión de 9 genes CNA localizados en 1q (PARP1), 3q (MCM2, ECT2, NAALADL2, NLGN1, TNSF10 y RFC4) y 5p (TRIO, CLPTM1L).Para ambos métodos las intensidades se expresaron en unidades relativas (ver materiales y métodos).

Correlación de las alteraciones de número de copias con la expresión génica.

Análisis de la expresión de genes en regiones CNA y MRR.

Sólo el 63.4% de los genes alterados en número de copia estaban representados en el microarreglo de expresión HG1.0ST. Por otra parte, de los 20,741 genes explorados en cambios de expresión, en promedio el 35.4% de ellos se

identificaron con posibles alteraciones en el número de copias en las líneas celulares (Tabla 1). De forma global, la proporción de genes desregulados fue similar en el grupo de genes con alteraciones de número de copia que en el grupo de genes sin alteraciones (15.6% vs 14.8% respectivamente, p >0.05, chi cuadrada). Una diferencia mayor se encontró en el grupo de genes alterados recurrentemente (18.8% vs 14.9% respectivamente, p = 0.0035, chi cuadrada). Estas podrían sugerir, ya sea que la mayoría de los genes identificados con posibles alteraciones en el número de copias no están suprimidos o ganados realmente, o bien que están alterados en el número de copias, pero sin cambios en la expresión génica. En el primer caso, las regiones CNA pudieran estar alteradas de forma discontinua. En el segundo caso, se esperaría que las regiones CNA estuvieran alteradas continuamente, pero su expresión modulada por otros factores. De manera interesante, en promedio el 69.1% de los genes CNA en cada línea celular no tuvieron SNPs alterados en número de copias dentro de su secuencia de nucleótidos, sino que se encontraron flanqueados por dos SNPs dentro de la región CNA. El resto de los genes (30.9%) tuvieron desde 1 hasta 282 SNPs (promedio = 6 ± 10).

Se puede suponer que a medida que el número de SNPs alterados en una región CNA o MRRs, hay una mayor probabilidad de que la región se encuentre efectivamente alterada. Además, se esperaría que los genes situados en una región alterada en número de copias, estuvieran desreguladas de manera similar. Para poner a prueba esta hipótesis se investigó si el porcentaje de genes desregulados aumenta a medida que aumenta el número de SNPs/gen o región. Después de comparar estas dos variables, se encontró que el porcentaje de genes desregulados aumentó linealmente con el número de SNP por gen alterado, desde el 14 % en genes sin SNPs alterados en número de copias (SNPs ANC) a 22% en el grupo de genes con más de 10 SNPs ANC (p <0.001, asociación lineal; **Figura 14A**). Este incremento fue aún mayor en el conjunto de genes alterados

recurrentemente, desde 15% en los genes sin CN-AS a 26% en el grupo de genes con más de 10 CN-AS (p=0.006, asociación lineal; **Figura 14A**). En el total de regiones CNA, esta tasa aumentó ligeramente conforme el número de SNPs por CNA aumentó, de 15% en el intervalo de 1-100 a 17% en el intervalo de 101-500 (p<0.01, asociación lineal; **Figura 14B**).

Por el contrario, en las MRR, la tendencia se elevó con una pendiente superior, fue de 14.5% en los genes con 1 a 100 SNPs, a 36% en los que tuvieron más de

Figura 14 Tendencia de los genes desregulados conforme se incrementa el número de CN-AS por gen o por región. La figura muestra el porcentaje de genes desregulados conforme el número de SNPs por gen (panel A) o por región (panel B) se incrementa. MRR, son los genes que se encuentran en las regiones recurrentes mínimas comunes a las cuatro líneas celulares.

500 SNPs (p <0,001, de asociación lineal; Figura 14B). Estos datos sugieren que las MRRs con un mayor número de SNPs alterados tendrían una mayor probabilidad de estar completamente alteradas en número de copias. Sin

embargo, el hecho de que el porcentaje de genes desregulados incrementó linealmente conforme se incrementó el número de SNPs por gen alterados (p < 0.01 Mantel–Haenszel asociación lineal, prueba de chi-cuadrada), sugiere que muchas de estas regiones estarían alteradas de manera discontinua.

En el conjunto de genes alterados recurrentemente, la tendencia fue diferente dependiendo si se encontraban localizados en MMRs con menos o más de 500 SNPs. En el primer grupo, la tendencia se comportó de manera similar a la observada en todas las regiones CNA (p<0.05, prueba de asociación lineal; Figura 15A), sugiriendo también que se alteraron de manera discontinua. Es notable que en las regiones MRR, se identifica una tendencia ascendente, tanto en MRR perdidas ($p \le 0.01$, correlación de Spearman; Figura 15B) o MRR ganadas (p < 0.01, correlación de Spearman; Figura 15C). En el caso de las dos MRR amplificadas con más de 500 SNPs, aunque la tendencia de SNPs/gen de genes desregulados se redujo ligeramente, del 40.8% al 28.6%, (Figura 15A), la diferencia no fue estadísticamente significativa (p=0.33, prueba de asociación lineal). Es notorio que este subconjunto de MRRs mostró el mayor porcentaje de genes desregulados (36.1%, 39 de los 108; Figura 15D), con 89.7% de genes sobreexpresados (35 de 39; Figura 15D). Estos datos sugieren que estas MRR tienen una mayor probabilidad de estar completamente alteradas en número de copias. Interesantemente, estas dos MRR se ubicaron en 5p, que ya se había visto totalmente amplificado. Una de ellas (MRR 5-1) estuvo localizada en 5p15, tuvo 870 SNPs, con una extensión de 16.8 Mb (posiciones 208,367 a 16,963,605) e incluyó 103 genes. La otra (MRR 5-4) estuvo localizada en 5p14, tuvo 665 SNPs, y abarcó 15.9 Mb (posiciones 21,828,353 a 37,700,867) e incluyó 83 genes (Anexo 3).

Figura 15 Tendencia de los genes subexpresados y sobreexpresados conforme se incrementa el número de SNPs ANC/gen en MRR deletadas o amplificadas. En el panel A, el porcentaje de genes desregulados se comparó entre los genes localizados en MRRs con rangos de SNPs de; 1 a 100, 101 a 500 a más de 500. Las tendencias de los genes sub y sobreexpresados se muestran en los paneles B (47 MRR deletadas <500 SNPs), C (51 MRR amplificadas <500 SNPs) y D (2 MRR amplificadas 500 >SNPs). El número total de genes explorados en la expresión, que se incluyeron en los análisis de los grupos B, C y D fue de 390, 267 y 108, respectivamente. Los números por encima de las barras indica el número de genes desregulados.

Análisis de expresión genética en MRR individuales.

Otra forma de obtener información sobre el número de copias número real de las MRR es comparar el porcentaje de genes desregulados en cada MRR con el porcentaje de genes desregulados en el todas las MMR. En principio, se esperaría que en caso de que las MRR estuvieran efectivamente perdídas o ganadas, la mayoría de los genes situados dentro de esa MRR deberían cambiar su expresión en el mismo sentido que la alteración de número de copias. Solo 61.9% (783 de 1264) de los genes localizados en 85 MRR fueron explorados en la expresión génica. El porcentaje de genes desregulados fue 18.8% (147 de 783), y

únicamente 32 MRR tuvieron un porcentaje de genes desregulados más alto que el porcentaje anterior. Sin embargo, en solo 4 de ellas, dos ganadas (MRR 3-13 y 5-1; **Anexo 3**) y dos perdidas (MRR 4-4 y 13-2, **Anexo 3**), el porcentaje de genes desregulados fue significativamente mayor a 18.8 %. Es especialmente notoria la MRR 5-1, ya que el 43.8% de los genes explorados (28 de 64) estaban desregulados, con una diferencia estadística muy significativa (4.5×10^{-6} ; prueba de chi cuadrada). De ellos, 27 genes estaban sobreexpresados y solamente uno (*FBXL7*) subexpresado (único en color azul, **Figura 16B**). Como se esperaba, el porcentaje de genes sobreexpresados fue similar en los subgrupos de genes con SNPs alterados (50%) o sin SNPs alterados (38.9%) (p > 0.05 prueba de chi cuadrada).

A pesar de que la distancia media entre SNPs en esta región es de 19.3 kb, el alto porcentaje de genes sobreexpresados en ambos sub-grupos de genes sugiere que esta MRR está completamente duplicada. Las otras 3 regiones (MRR 3-13 4-4 y 13-2) tuvieron un mayor porcentaje de genes desregulados (57, 75 y 46%, respectivamente), pero tenían pocos genes explorados para la expresión y los valores de significancia estadística estuvieron justo por debajo de p=0.05 (**Anexo 3**). Es importante notar que si todos los genes localizados en MRRs fueran explorados y los genes desregulados se encontraran en las mismas proporciones, las diferencias de la media de estas 3 MRRs se fortalecerían, y se habrían identificado 2 MRRs adicionales (MRRs 1-4 y 19-2, **Anexo 3**). También hay que hacer notar que 3-13 está localizada en 3q26, una citobanda frecuentemente amplificada en CaCu.

La otra MRR potencialmente ganada contenía más de 500 SNPs (MRR 5-4), identificada en el análisis anterior, no tuvo un porcentaje de genes desregulados que fuera estadísticamente significativo (p > 0.05; prueba de chi cuadrada), ya que sólo el 25% (n = 11) de los 44 genes exploradas en la expresión estuvieron desregulados, 8 sobreexpresados y 3 subexpresados.

Análisis de expresión genética por brazo cromosómico.

La correlación entre número de copias y expresión génica analizada a nivel de brazos cromosómicos fue muy pobre. Sólo 5p mostró una clara correlación entre número de copias y expresión génica (Figura 11A y B), ya que el alto porcentaje de SNPs recurrentemente ganados (94%) se correlacionó con una alta proporción de genes sobreexpresados (27.7%). La correlación fue especialmente alta en 5p15 y 5p12 donde la tasa de genes sobreexpresados llegó al 45.1 y 41.2% respectivamente (Anexo 4). En menor medida, un mayor porcentaje de SNPs perdidos se correlacionaron con el enriquecimiento de los genes subexpresados en 4p, 13q y 18q (Figura 11). Los otros 6 brazos y 37 de 43 citobandas identificadas con un alto porcentaje de CN-AS, no mostraron ningún tipo de enriquecimiento de genes en comparación con el genoma completo, incluyendo 3q (13.4%) y 3q26 (15.1%), que tenían exclusivamente SNPs ganandos, pero con predominancia de genes subexpresados (7.8% en 3q y 11% en 3q26, Anexo 4). Cuando 3q se analizó por separado en cada línea celular, se encontró una alta proporción de SNPs ganados CaLo (93.5%) y HeLa (87.2%; Figura 17). Sin embargo, la proporción de genes desregulados aumentó sólo alrededor de 2 veces en HeLa (23.4%) pero no en CaLo (12.7%) en comparación con la de CaSki (13.9%) y SiHa (9.4%). Por otro lado los brazos 4q, 5q, 6q, 14q, 15q, 16q, 16p, 17q, 19p y 20q, que también habían mostrado un enriquecimiento de los genes desregulados, tenían un porcentaje muy bajo o ningún CN-AS (Figura 11). Este también fue el caso de 31 de 39 citobandas que mostraron un enriquecimiento importante de los genes desregulados; especialmente en 15q11 y 19p12, que no tenían SNPs alterados recurrentemente, pero sí subexpresión de más de 50% de los genes explorados (Anexo 4).

Análisis de 5p, 3q y 1q.

Aunque el brazo 5p pareció estar completamente amplificado (Figura 16A), alrededor del 67% de los genes localizados en este brazo no estuvieron desregulados y que de estos, 9 se encontraron subexpresados (en color azul Figura 16B-D). Por otra parte, la proporción de genes desregulados no se distribuyó uniformemente a lo largo de 5p, ya que fue mucho mayor en la MRR 5-1 (5p15; 43.8%; Figura 16B), que en MRR 5-4 (5p14.3-5p13.2; 25%; Figura 16C) y la MRR 5-5 (5p13.1-5p12; 24.3%; Figura 16D). Los genes subexpresados estuvieron casi ausentes en la MRR 5-1, y su proporción fue mayor en la MRR 5-4 y 5-5. Es notorio que la mayoría de los genes desregulados que se encontraron en la MRR 5-1 estaban distribuidos en grupos de 2 más genes vecinos desregulados (Figura 16B), lo que sugiere que además de la amplificación del segmento, la localización de los genes dentro de la misma región de la cromatina, tal vez a nivel de bucle, pudiera influir en la expresión génica. Varios genes previamente reportados como posibles participantes en la carcinogénesis del cuello uterino, como TERT, BRD9, POLS, SDHA y TRIO, se ubicaron en la MRR 5-1 y se reportaron como sobreexpresados (Figura 16B).

Figura 16. Amplificación del genoma y la desregulación de la expresión génica en el cromosoma 5p. El panel A muestra el número de copias (expresado en *log2 ratios*) de los SNPs explorados en el cromosoma 5 en HeLa, CasKi, SiHa y CaLo con el microarreglo de SNPs 100K. Los paneles B al D muestran el cambio del FC de los genes explorados en tres MRR de 5p, mediante el microarreglo de expresión ST1.0. B MRR 5-1 (n = 64), C MRR 5-4 (n = 44) y D MRR 5.5 (n = 37). Las barras representan los genes subexpresados, sobreexpresados y sin cambios en la expresión. Los genes fueron ordenados según su posición en el genoma. Se utilizó el método SAM y valores de corte mayor que 1.5 de FC. EL umbral límite se fijó en ≤ 0.66 para los genes sub o sobreexpresados, el FDR, menor al 0%. Los genes

previamente reportados como asociados a CaCu están marcados con asteriscos (búsqueda en*IPA system*) o con círculos (búsqueda en PubMed).

En la Figura 17se muestra la intensidad de señal relativa (log₂ ratio) de los SNPs explorados en el cromosoma 3 (Figura 17A) y el cambio de expresión de los genes explorados en 3q26-29 (Figura 17B-D), región donde se han identificado anteriormente genes asociados con el cáncer cervicouterino. Sólo 3q26 tuvo MRR (MRR 3-11, 3-12, 3-13, 3-14, Figura 17B). Se encontró un porcentaje muy bajo de genes desregulados por citobanda (~13%), especialmente en 3q28/3q29. Sin embargo, los genes desregulados, de manera similar a los explorados en 5p, se encontraron frecuentemente en grupos de dos o más genes intercalados con varios genes sin cambios en la expresión génica. En el caso de 3q26 (Figura 17B), hay un grupo, alineado con las MRR 3-13 y 3-14, que incluyen tres genes subexpresados (TNFSF10, NLGN1, NAALADL2) y dos sobreexpresados (AADACL1, ECT2). Por otra parte, hubo una MRR (3-12), que tenía genes sin cambios de expresión. En 3q27 hubo un agrupamiento de 5 genes sobreexpresados (ALG3, ECE2, CAMK2N2, PSMD2, EIF4G1). Cabe señalar que los genes como TERC, PIK3CA (3q26) y LAMP3 (3q27) no estuvieron alterados en número de copia de forma recurrente ni estuvieron sobreexpresados (Figura 17B, C). Con en fin conocer la capacidad de clasificación del panel de genes desregulados en 5p y 3q, se realizó un agrupamiento jerárquico no supervisado y análisis de componentes principales (PCA) con los valores de expresión de los genes desregulados ubicados en 5p (Figura 18A y D), 3q26-29 (Figura 18B y E) y las MRRs 3-13 y 3-14 (Figura 18C y F) con ambos tipos de análisis se observó que los niveles de expresión claramente separaron las líneas celulares del grupo de control.

del Fold Change (FC) de los genes explorados en tres loci de 3p, mediante el microarregio de expresión ST1.0. B 3q26 (n = 73), C 3q27 (n = 63) y D 3q28-29 (n = 66). Las barras representan los genes Figura 17. Amplificación del genoma y la desregulación de la expresión génica en el cromosoma.
3p. El panel A muestra el número de copias (log2 ratio) de los SNPs explorados en el cromosoma 3 en HeLa, CaSki, SiHa y CaLo con el microarreglo de SNPs 100K. Los paneles B al D muestran el cambio subexpresados, sobreexpresados Y sin cambios en la expresión. Los genes fueron ordenados según su

posición en el genoma. Se utilizó el método SAM y valores de corte mayor que 1.5 de FC. EL umbral límite se fijó en ≤ 0.66 para los genes sub o sobreexpresados, el FDR, menor al 0%. Los genes previamente reportados como asociados a CaCu están marcados con asteriscos (búsqueda en *IPA system*) o con círculos (búsqueda en PubMed).

Figura 18. Cluster jerárquico y análisis de componentes principales (PCA) de los genes desregulados en 5p y 3q. Paneles del A al C muestran los clusters jerárquicos no supervisados de los genes desregulados ubicados en 5p (49 genes), 3q26-p29 (26 genes) y MRRs 3-13 y 3-14 en 3q26 (5 genes). Los paneles D al F muestran los PCA de los mismos datos en el mismo orden.

La Figura 19 muestra la intensidad (log₂ ratio) de los SNPs tipificados en Chr. 1 (Figura 19A) y MRR 1-15 (Figura 19F), el cambio de expresión de los genes evaluados en 4 MRRs (1-8, 1-9, 1-14 y 1-15; Figura 19B-E) y el número de copias del gen PARP1 evaluado por qPCR (Figura 19G). Al igual que en el 3q, el porcentaje de genes desregulados por citobanda en el 1q fue muy baja (media = 13%) y sólo 1q21 tuvo una tasa superior a la totalidad del genoma (22.2%, Anexo 4). Incluso en los MRRs, un promedio de 17% de los genes estaba desregulado (calculado a partir del Anexo 3), en comparación con el total de genes desregulados en 1q (14.5%; Figura 11), la pequeña diferencia de 2.5% no fue estadísticamente significativa. En la Figura 19B-E se muestran las MRRs (1-8, 1-9, 1-14 y 1-15) que tuvieron el mayor número de genes con cambios en la expressión (Anexo 3). En MRR 1-9 (Figura 19C). Es interesante hacer notar que que ninguno de los 27 genes de MRR 1-9 se encontrara sobreexpresado, y que 2 de ellos estuvieran subexpresados; (MNDA y DARC). En cambio, en MRR 1-15 (Figura 19E), 7 de 33 (21.2%) genes se sobreexpresaron, incluyendo PARP1. Al igual que en 5p y 3q, los genes desregulados (37.9%) a menudo se ubicado en grupos de 2 o más genes, intercalados con varios genes sin cambios en la expresión génica. Esto se ve claramente en MRR 1-8 (Figura 19B), 1-14 (Figura **19D)**, y 1.15 (Figura 19E). La amplificación del gen *PARP1* fue validada en las cuatro líneas celulares con un ensayo de TaqMan qPCR (Figura 19G). Interesantemente, el número de copias correlacionó con la intensidad media (log. ratio) de los SNPs 110 ubicados en la MRR 1-15 explorada con el microarreglo GeneChip 100K (Figura 19F). Mientras que el CaLo, CaSki y HeLa tuvieron alrededor de 4 copias del gen *PARP1* y un log₂ ratio de cerca de 0.2, SiHa tuvo 10 copias y un *log*, ratio de 0.4.

Figura 19. Amplificación del genoma y la desregulación de la expresión génica en Cromosoma. 1q. El panel A muestra el número de copias (log_2 ratio) de SNPs explorados en el cromosoma 1 en HeLa, CasKi, SiHa y CaLo con el microarreglo de SNPs *Gene Chip 100K*. Los paneles B a D muestran el cambio del FC de los genes explorados por el microarreglo de expresión ST1.0 localizados en las MRRs 1-8, 1-9, 1-14 y 1-15. Las barras representan los genes subexpresados, sobreexpresados y sin cambios en la expresión. Los genes fueron ordenados según su posición en el genoma. Se utilizó el método SAM y valores de corte mayor que 1.5 de FC. EL umbral límite se fijó en ≤ 0.66 para los genes sub o sobreexpresados, el FDR, menor al 0%. Los genes previamente reportados como asociados a CaCu están marcados con asteriscos (búsqueda en *IPA system*) o con círculos (búsqueda en PubMed). En el panel F, se muestran las medias \pm D.E. de log2 ratio de 110 SNPs situados en la MRR1-5 de cada línea celular analizada. En el panel G se muestra el número de copias del gen *PARP1* calculado por qPCR en experimentos hechos por triplicado.

Hibridación fluorescente in situ (FISH).

El número de copias de la región 5p15, donde se encuentra la MRR 5-1, se exploró en tres líneas celulares (CaSki, SiHa y HeLa) con FISH utilizando una sonda sub-telomérica en 5p15.33 y una sonda de locus específico en 5p15.2 (señales verdes en Figura 20, ver materiales y métodos). El número de copias se calculó mediante la comparación de la señal de las sondas blanco con la señal de las sondas de control interno localizadas en 5q35.3 y 5q31 (señales rojas, Figura 20). Las dos sondas mostraron amplificación de la región 5p15, pero la tasa de señal fue mayor con la sonda ubicada en 5p15.33 (Figura 20). La tasa de señal fue de 2.3 (intervalo de 2.3 a 2.4) en 5p15.33 y 2 (intervalo de 1.8 a 2.2) en 5p15.2. La diferencia fue más notoria en CaSki (2.4 vs 1.8), pero en plena concordancia con los datos de microarreglos, ya que en 5p15.3 se encontró altamente amplificada, mientras que el resto de 5p15 se encontró menos amplificada (Figura 16A). Los experimentos mostraron una evidente inestabilidad genómica en todas las líneas celulares analizadas, aberraciones complejas del cromosoma 5 incluyendo isocromosomas de 5p, fragmentos céntricos, acéntricos y dobles minutas (Figura 20). De acuerdo con los datos de microarreglos, 3q26.2 se confirmó como amplificado en CaSki y HeLa, pero no en SiHa (Figura 20). Sin embargo, la tasa de señal en HeLa (1.2) y CaSki (1.7) fue menor que la observada en 5p15.

Figura 20. Análisis de las citobandas 5p15 y 3q26 con FISH. Se muestran experimentos representativos de FISH en las citobandas 5p15.33, 5p15.2 y 3q26 en 3 líneas celulares (CaLo, CaSki, HeLa). Se utilizaron dos juegos de sondas para el análisis de 5p15 y un juego para el análisis de 3q26 (ver material y métodos). Los juegos de 5p15, contenían una sonda blanco (señales verdes) y una sonda de control (señales de color rojo). El juego de 3q26 incluyó una sonda blanco (señales verdes) y una sonda de control (señales rojas) localizadas en el centrómero. Los núcleos en interfase (primera, tercera y cuarta fila) y los cromosomas en metafase (segunda fila) fueron contrastados con DAPI.

Clasificación de los genes desregulados y/o con CNAs.

Se utilizó la herramienta de anotación funcional de DAVID (functional annotation *tool;* http://david.abcc.ncifcrf.gov) para identificar los procesos biológicos en los 3,122 genes expresados diferencialmente, los genes alterados en número de copias encontrados en cada línea celular y en 147 genes desregulados y alterados recurrentemente. Se utilizaron los parámetros de análisis estándar de la herramienta, excepto la astringencia de clasificación, la cual se fijó al máximo (*Classification stringency=maximum*). Los resultados mostraron que, en comparación con la base de datos del genoma humano, los tres procesos fisiológicos más enriquecidos en el primer grupo (3,122 genes) con los más bajos valores de p fueron; ciclo celular (169 genes, FC = 1.9, $p = 6 \times 10^{-18}$), adhesión celular (178 genes, FC =1.5, p = 1.2×10⁻⁶) y proceso metabólico de DNA (121 genes, FC = 1.5, $p = 1.2 \times 10^{-6}$). En el grupo de genes recurrentemente alterados con expresión desregulada (147), los tres procesos fisiológicos más enriquecidos fueron proceso metabólico de fósforo (20 genes FC = 2.7, p = 9×10^{-5}), regulación positiva de la transducción de señales (10 genes FC=4.5, p=3.5×10-4) y regulación de la comunicación celular (19 genes, FC=2.4, p=6×10⁴). Interesantemente, en el subconjunto de genes sobreexpresados (n=28) pertenecientes a la duplicación de MRR 5-1, la apoptosis fue el único proceso enriquecido (FC = 5.2; p = 0.03). Esto se explica por cinco genes conocidos que participan en procesos relacionados a la apoptosis, CLPTM1-like (CLPTM1L), Represor del receptor arylhidrocarbono (AHRR), Muerte celular programada 6 (PDCD6), proteína asociada a muerte (DAP) y Triple dominio funcional (TRIO). Por otro lado, el análisis del conjunto de genes localizados en las regiones CNA no mostró un enriquecimiento de los genes relacionados con el cáncer (datos no presentados). Estos datos también apoyan la hipótesis de que la mayoría de genes PNAC en realidad no están alterados en el número de copias o desregulados.

Para corroborar los hallazgos hechos con la herramienta *DAVID*, los datos también fueron analizados con el *IPA Ingenuity system*, se obtuvieron resultados muy similares, por lo menos en los grupos más grandes. Las vías canónicas principales (*top canonical pathways*) del grupo de 3,122 genes fueron del ciclo celular, seguidas de vías del sistema inmune (Figura 21A) y en el grupo de 147 genes se posicionaron en primeros lugares vías de señalización celular y ciclo celular. (Figura 21B)

Figura 21. Vías canónicas de genes desregulados. En el panel A se muestran las 25 vías canónicas más importantes en el grupo de 3,122 desregulados en las 4 líneas celulares y en el panel B se encuentran en el subgrupo de 147 genes desregulados y recurrentemente alterados en número de copias. Las vías canónicas fueron identificadas con el *Ingenuity Pathway Analysis System (IPA)* El valor de $-\log_{(p)}$ -value) (barras grises) y el Ratio (puntos negros), fueron calculados comparando el número de genes encontrados en la vía versus el número de genes de la vía en el genoma humano. El valor de p fúe calculado con la prueba de chi cuadrada o prueba exacta de Fisher según fuera apropiado y los valores de log (p value) > 1.3 (línea punteada) corresponde a una p < 0.05.

DISCUSIÓN

En este trabajo, encontramos una pobre correlación entre las alteraciones de número de copia y cambios en la expresión génica. En primer lugar, sólo un pequeño porcentaje de los genes localizados en regiones CNAs estuvieron desregulados (15.6%) y solo existió una pequeña diferencia (0.8%) en comparación con el subconjunto de los genes sin alteraciones en el número de copias (14.8%). En el subgrupo de genes alterados en número de copia y desregulados, el sentido de la desregulación no fue necesariamente el mismo que de la alteración en número de copias, es decir, los genes amplificados no siempre estuvieron sobreexpresados, sino que a menudo estuvieron subexpresados, y algunos genes clasificados como suprimidos se encontraron sobreexpresados.

Este análisis se basó esencialmente en la comparación de las alteraciones de número de copias y la expresión génica global de líneas celulares derivadas de CaCu versus epitelio no afectado por el cáncer. Además de la caracterización de algunas regiones particulares mediante FISH y qPCR. Al usar líneas celulares nos hemos asegurado que solo analizamos un tipo celular, sin el peligro de contaminación que enmascare los verdaderos valores de número de copias como ocurre cuando se realiza este tipo de análisis en tumores completos. Si bien es cierto que las líneas celulares no representan la complejidad de un tumor, son un muy buen modelo porque por lo general conservan sus propiedades genéticas (Wang, Huang et al. 2006; Kao, Salari et al. 2009; van Staveren, Solis et al. 2009). El epitelio sano del cuello uterino podría no ser el mejor control para medir el nivel de expresión génica en líneas celulares. Sin embargo, es difícil seleccionar un control adecuado, debido a que estas líneas celulares se han mantenido en cultivo durante muchos años. El uso de cultivos primarios de epitelio cervical normal pudo haber sido un mejor control, pero no hay ninguno disponible en el

mercado. Por otro lado, en un estudio en paralelo (comunicación personal) al presente se han observado resultados globales similares en carcinomas utilizando el mismo conjunto de controles sanos normales (datos no presentados).

Los resultados de este trabajo sugieren que la mayoría de las regiones CNA encontradas en las líneas celulares, identificadas inicialmente con el microarreglo 100K, no son alteraciones continuas de DNA. Por el contrario, parecen estar compuestas por supresiones o ganancias parciales, alternadas con secciones de DNA normal. Por otro lado, las MRR tuvieron una mayor probabilidad de estar completamente alteradas, ya que la proporción de genes desregulados aumentó hasta 3 veces, especialmente en aquellas que tenían una mayor densidad de SNPs (especialmente más de 500 SNPs). En las MRR con mayor densidad de SNPs, la proporción de genes desregulados no cambió con el número de SNP por gen; lo que apoya que se encuentran totalmente alteradas. De hecho, se confirmó mediante FISH que las dos MRR con más de 500 SNPs (5-1 y 5-4), situadas en 5p, estaban completamente amplificadas. En contraste, en las MRRs con menos de 500 SNPs, el hallazgo de que el porcentaje de genes desregulados fue directamente proporcional al número de SNPs/gen, sugiere que las regiones se encuentran alteradas en número de copias de una manera discontinua. Sin embargo, no se puede excluir que algunas MRR con menos de 500 SNPs están completamente alteradas, como la MRR 5-5 ubicada en 5p, que tuvo 346 SNPs y se confirmó que estaba completamente amplificada mediante FISH.

El cromosoma 5p se ha encontrado frecuentemente amplificado en el cáncer cervicouterino y líneas celulares derivadas. Diferentes genes situados en la región se han involucrado en el cáncer cervicouterino (Mitra, Murty et al. 1995; Huang, Chiu et al. 2006; Kloth, Oosting et al. 2007; Narayan, Bourdon et al. 2007; Scotto, Narayan et al. 2008). Sin embargo, se ha encontrado una escasa correlación entre la amplificación y la expresión de genes en esta región, tanto en líneas celulares

(22%) (Kloth, Oosting et al. 2007), como en tumores invasivos (18.9%) (Scotto, Narayan et al. 2008). Aunque en el presente estudio, encontramos un mayor porcentaje de genes desregulados (32.9%). Debido a que por FISH se demostró que todo el brazo 5p estaba amplificado (Figura 20), es evidente que no todos los genes amplificados están sobreexpresados, algunos de ellos podrían estar reprimidos mediante otros mecanismos, por ejemplo, de tipo epigenético. Por otra parte, en el caso de los genes sin cambios en la expresión, algunos de ellos podrían ser genes que regularmente están poco expresados en el epitelio del cuello uterino y el resto, genes implicados en el metabolismo basal. El agrupamiento de los genes desregulados, sugiere que, además de la amplificación de la región, la localización de los genes dentro de la misma región de la cromatina, quizás a nivel de los bucles, podría influir en la expresión de genes (Sproul, Gilbert et al. 2005; de Wit and van Steensel 2009).

Los genes sobreexpresados de la MRR 5-1 como TERT, que codifica la subunidad catalítica del complejo de la telomerasa (*bTERT*), se ha encontrado amplificada o sobreexpresada en más del 90% de los carcinomas de células escamosas del cuello uterino y el 40% de las lesiones CINIII (Snijders, van Duin et al. 1998). Otros genes sobreexpresados podrían tener un papel en el proceso carcinogénico, como *BRD9* y *POLS*, que participan en la reparación del DNA y la regulación del ciclo celular, también *SDHA* involucrado en la fosforilación oxidativa mitocondrial (Scotto, Narayan et al. 2008) y *TRIO*, que promueve el intercambio de GDP por GTP y que podría desempeñar un papel importante en la coordinación de los reordenamientos de la matriz celular y del citoesqueleto, necesarios para la migración celular y el crecimiento celular. El gen *TRIO* se ha asociado con la progresión del cáncer de vejiga (Zheng, Simon et al. 2004), adicionalmente, en sarcomas de tejidos blandos ha demostrado una clara correlación entre la amplificación del gen y sobreexpresión (Adamowicz, Radlwimmer et al. 2006). Otro gen sobreexpresado que se encuentra en esta
misma región es *CEP72*, que regula la localización de proteínas del centrosoma involucradas en la formación del huso acromático (Oshimori, Li et al. 2009). Este gen se ha encontrado frecuentemente amplificado en el cáncer de pulmón de células no pequeñas (Kang, Koo et al. 2008). La concordancia entre los genes sobreexpresados encontrados en 5p, en este y los anteriores trabajos, fue cerca del 60% (Kloth, Oosting et al. 2007; Scotto, Narayan et al. 2008). La mayoría de los genes restantes detectados como sobreexpresados en otros estudios, tuvieron sobreexpresión 1.5 veces mayor en este estudio, pero no pasaron los valores umbrales de delta (**Figura 16B-D**, ver material y métodos). Otros genes vinculados a los procesos de cáncer también se encontraron desregulados en este estudio; incluyendo *AHRR*, *C7*, *CLPTM1L* y *MRPS30* implicados en la apoptosis, *CDH6* en la adhesión celular y *GOLPH3* en la proliferación celular.

El perfil del número de copias en el cromosoma 3 dice que en general 3p esta suprimido y 3q amplificado. El fenómeno de amplificación en 3q parece ser bastante diferente al de 5p. Por ejemplo, los niveles de ganancia o amplificación fueron menores que en 5p y no incluyeron la totalidad del 3q en todas las líneas celulares, se encontraron escasas regiones con alteraciones recurrentes. Se encontró amplificado el brazo completo (CaLo, HeLa) o varias regiones (CaSki, SiHa) de 3q (Figura 6), de manera similar a los hallazgos observados en otros trabajos (Kirchhoff, Rose et al. 1999; Ried, Heselmeyer-Haddad et al. 1999; Allen, White et al. 2000; Rao, Arias-Pulido et al. 2004). Estos datos podrían explicar la menor proporción (13.4%) de genes desregulados encontrados en 3q en comparación con 5p (33.5%). Sin embargo, incluso en las líneas celulares donde la mayoría de 3q se ganó, la proporción de genes desregulados no se elevó (CaLo) o solo fue ligeramente mayor (HeLa). Además, en 3q la proporción de genes subexpresados fue mayor que la proporción de genes sobreexpresados, especialmente en 3q26, donde 8 de los 11 genes desregulados estuvieron subexpresados, incluso algunos de ellos se ganaron recurrentemente. Por otra

parte, al igual que 5p, los genes desregulados parecen estar agrupados en *chasters* o racimos a lo largo de 3q26-29. Estos hallazgos indican que un aumento en el número de copias no significa necesariamente que los genes situados en estas regiones deben estar sobreexpresados. Lo anterior sugiere que, en esas regiones amplificadas, los mecanismos epigenéticos podrían estar involucrados en la represión de genes. Por otro lado, el aumento de la frecuencia de los genes subexpresados en relación al número de SNPs amplificados en el subconjunto de los genes localizados en las MRR (con menos de 500 SNPs; **Figura 15C**), sugiere que la amplificación del gen parcial puede ser un mecanismo de silenciamiento de genes. Esta idea ya ha sido propuesta teóricamente en un trabajo anterior (Henrichsen, Chaignat et al. 2009).

La región 3q26 ha sido anteriormente identificada como ganada o amplificada en tumores o líneas celulares derivadas de cáncer cervicouterino mediante FISH, CGH (Heselmeyer, Macville et al. 1997; Dellas, Torhorst et al. 1999; Allen, White et al. 2000; Wilting, Snijders et al. 2006). También se encuentran algunos genes reconocidos previamente como tumorales, como *EV11* y *MDS1* (Futreal, Coin et al. 2004) y genes asociados previamente con el cáncer de cervicouterino (*TERC*, *TNFSF10*, *PIK3CA*). Sin embargo, aún no se ha demostrado que estos genes se encuentren sobreexpresados (Kirchhoff, Rose et al. 1999; Ried, Heselmeyer-Haddad et al. 1999; Allen, White et al. 2000; Rao, Arias-Pulido et al. 2004), sobre todo en las mismas muestras donde se encontraron las alteraciones de número de copia. En este estudio, *EV11*, *TERC*, *PIK3CA* y *LAMP3* no fueron encontrados recurrentemente alterados en número de copias ni sobreexpresados en las líneas celulares estudiadas. *TERC* se encontró ganado en CaLo, CaSki y HeLa pero sobreexpresado solo en HeLa (datos no presentados).

De manera interesante, el factor de necrosis tumoral (ligando) miembro 10 de la superfamilia (*TNFSF10*), una proteína que induce la apoptosis en células

transformadas y tumorales, se encontró subexpresado en las cuatro líneas celulares, a pesar de que el gen estaba ganado recurrentemente (MRR 3-13; **Figura 17B**). Este gen se encuentra en la misma región junto a otros dos genes subexpresados (*NLGN1*, *NAALADL2*) y dos sobreexpresados (*AADACL1*, *ECT2*), que no han sido previamente asociados al CaCu. La proteína codificada por el gen *ECT2* es una proteína transformadora que funciona como un factor nuclear intercambiador de guanina (GEF) que regula la muerte celular mediada por RhoB después de daño al DNA en líneas celulares del cuello uterino (Srougi and Burridge 2011). La expresión de este gen se eleva con el inicio de la síntesis de DNA y permanece elevada durante las fases G2 y M (Justilien and Fields 2009). El aumento de la dosis génica mediante amplificación de DNA es un mecanismo común para lograr la sobreexpresión de genes en los tumores (Santarius, Shipley et al. 2010). *ECT2* mostró la mayor diferencia de expresión de todos los genes clasificados como sobreexpresados en 3q, por lo que es un buen candidato para analizar su papel en el cáncer de cuello uterino.

En 1q la correlación entre el CN y la expresión génica también fue escasa y similar a lo observado en 3q (Figura 19). Sin embargo, 3 genes; *IQGAP3, CENPF y PARP1*, estuvieron sobreexpresados más de 3 veces en comparación con los controles. La proteína codificada por el gen *PARP1* (poli ADP-ribosa polimerasa-1) es una proteína de unión al DNA que detecta cortes generados por agentes citotóxicos a la cadena de DNA. Mientras que la activación de *PARP-1* por los estímulos genotóxicos facilita la reparación del DNA y la supervivencia celular, un daño grave al DNA dispara la activación diferentes vías de la muerte celular, incluyendo la muerte celular mediada por PARP (Peralta-Leal, Rodriguez et al. 2008). Células con pérdida de función de *BRCA1* son deficientes en la reparación de DNA de doble cadena, por lo que activan PARPs cuya actividad catalítica es inmediatamente estimulada por los rompimientos de doble cadena (Arechaga-Ocampo, Pereira-Suarez et al. 2008). Aunque en estas líneas celulares

de la expresión de los genes *BRCA1* y *BRCA2* no cambió (datos no mostrados), *PARP1* podría ayudar a estos genes en ese mecanismo de reparación del DNA.

CONCLUSIONES

La correlación general entre las alteraciones del número de copias y los cambios en la expresión génica fue alrededor del 15% en líneas celulares de CaCu. Esta baja correlación podría estar relacionada con el hallazgo de que en los segmentos genómicos como 5p, confirmados como amplificados, el porcentaje de genes desregulados fue de más de 33% y no todos ellos estuvieron sobreexpresados. Por lo tanto, es evidente que no todos los genes amplificados debieran estar sobreexpresados, algunos de ellos podrían estar reprimidos, posiblemente por mecanismos epigenéticos. En el caso de los genes sin cambios en la expresión, una parte de ellos podrían ser genes que regularmente están poco expresados en el epitelio cervical y líneas celulares y el resto, genes implicados en el metabolismo basal. En tercer lugar, los genes desregulados se encuentran en racimos, lo que sugiere que además de la amplificación del segmento de DNA, la ubicación en la región de la cromatina podría influir en la expresión génica. En cuarto lugar, la tendencia en aumento de genes subexpresados conforme aumentó el número de SNPs amplificados, sugiere que la amplificación genética parcial podría ser un mecanismo de silenciamiento de la expresión génica.

Fueron identificados genes adicionales sobre y subexpresados en 5p, 3q y 1q que podrían estar involucrados en la carcinogénesis del cuello uterino, especialmente los implicados en el proceso de apoptosis, los cuales incluyen *CLPTM1L*, *AHRR*, *PDCD6*, *DAP* en 5p y *TNFSF10*, *ECT2* en 3q y *PARP1* en 1q.

REFERENCIAS

- Adamowicz, M., B. Radlwimmer, et al. (2006). "Frequent amplifications and abundant expression of TRIO, NKD2, and IRX2 in soft tissue sarcomas." <u>Genes Chromosomes Cancer</u> **45**(9): 829-838.
- Akavia, U. D., O. Litvin, et al. (2010). "An integrated approach to uncover drivers of cancer." <u>Cell</u> **143**(6): 1005-1017.
- Alameda, F., B. Espinet, et al. (2009). "3q26 (hTERC) gain studied by fluorescence in situ hybridization as a persistence-progression indicator in low-grade squamous intraepithelial lesion cases." <u>Hum Pathol</u> **40**(10): 1474-1478.
- Allen, D. G., D. J. White, et al. (2000). "Progressive genetic aberrations detected by comparative genomic hybridization in squamous cell cervical cancer." <u>Br J Cancer</u> 83(12): 1659-1663.
- Andersson, S., K. L. Wallin, et al. (2006). "Frequent gain of the human telomerase gene TERC at 3q26 in cervical adenocarcinomas." <u>Br J Cancer</u> **95**(3): 331-338.
- Anedchenko, E., N. Oparina, et al. (2008). "Activation of the hTERT expression in squamous cell cervical carcinoma is not associated with gene amplification." <u>Oncol Rep</u> 20(2): 469-474.
- Arechaga-Ocampo, E., A. L. Pereira-Suarez, et al. (2008). "HPV+ cervical carcinomas and cell lines display altered expression of caspases." <u>Gynecol</u> <u>Oncol</u> 108(1): 10-18.
- Atkin, N. B. (2000). "Significance of chromosome 5 and 17 changes in the development of carcinoma of the cervix uteri." <u>Cytogenet Cell Genet</u> **91**(1-4): 44-46.
- Aubele, M., H. Zitzelsberger, et al. (1998). "Distinct cytogenetic alterations in squamous intraepithelial lesions of the cervix revealed by laser-assisted microdissection and comparative genomic hybridization." <u>Cancer</u> 84(6): 375-379.
- Barch, M. and T. Knutsen (1997). <u>The AGT cytogenetics laboratory manual.</u>, Lippincott-Raven Publishers.
- Belloni, E., G. Veronesi, et al. (2011). "Genomic characterization of asymptomatic CT-detected lung cancers." <u>Oncogene</u> **30**(9): 1117-1126.
- Bernard, H. U., R. D. Burk, et al. (2010). "Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments." <u>Virology</u> 401(1): 70-79.
- Bertelsen, B. I., S. J. Steine, et al. (2006). "Molecular analysis of the PI3K-AKT pathway in uterine cervical neoplasia: frequent PIK3CA amplification and AKT phosphorylation." Int J Cancer **118**(8): 1877-1883.

- Beskow, A. H., M. Moberg, et al. (2005). "HLA class II allele control of HPV load in carcinoma in situ of the cervix uteri." Int J Cancer 117(3): 510-514.
- Bozic, I., T. Antal, et al. (2010). "Accumulation of driver and passenger mutations during tumor progression." <u>Proc Natl Acad Sci U S A</u> 107(43): 18545-18550.
- Carrington, M., S. Wang, et al. (2005). "Hierarchy of resistance to cervical neoplasia mediated by combinations of killer immunoglobulin-like receptor and human leukocyte antigen loci." J Exp Med **201**(7): 1069-1075.
- Collins, S., S. Mazloomzadeh, et al. (2002). "High incidence of cervical human papillomavirus infection in women during their first sexual relationship." <u>BJOG</u> **109**(1): 96-98.
- de Wit, E. and B. van Steensel (2009). "Chromatin domains in higher eukaryotes: insights from genome-wide mapping studies." <u>Chromosoma</u> **118**(1): 25-36.
- Dellas, A., J. Torhorst, et al. (1999). "Prognostic value of genomic alterations in invasive cervical squamous cell carcinoma of clinical stage IB detected by comparative genomic hybridization." <u>Cancer Res</u> **59**(14): 3475-3479.
- Dowen, S. E., D. M. Neutze, et al. (2003). "Amplification of chromosome 5p correlates with increased expression of Skp2 in HPV-immortalized keratinocytes." <u>Oncogene</u> **22**(16): 2531-2540.
- Ferlay, J., H. Shin, et al. (2008). GLOBOCAN 2008 v1.2, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10 [Internet]. Lyon, France, International Agency for Research on Cancer.
- Futreal, P. A., L. Coin, et al. (2004). "A census of human cancer genes." <u>Nat Rev</u> <u>Cancer</u> 4(3): 177-183.
- Gibson, N. J. (2006). "Application of oligonucleotide arrays to high-content genetic analysis." <u>Expert Rev Mol Diagn</u> **6**(3): 451-464.
- Harris, C. P., X. Y. Lu, et al. (2003). "Comprehensive molecular cytogenetic characterization of cervical cancer cell lines." <u>Genes Chromosomes</u> <u>Cancer</u> 36(3): 233-241.
- Henrichsen, C. N., E. Chaignat, et al. (2009). "Copy number variants, diseases and gene expression." <u>Hum Mol Genet</u> **18**(R1): R1-8.
- Heselmeyer, K., M. Macville, et al. (1997). "Advanced-stage cervical carcinomas are defined by a recurrent pattern of chromosomal aberrations revealing high genetic instability and a consistent gain of chromosome arm 3q." <u>Genes Chromosomes Cancer</u> **19**(4): 233-240.
- Heselmeyer, K., E. Schrock, et al. (1996). "Gain of chromosome 3q defines the transition from severe dysplasia to invasive carcinoma of the uterine cervix." <u>Proc Natl Acad Sci U S A</u> **93**(1): 479-484.
- Hidalgo, A., M. Baudis, et al. (2005). "Microarray comparative genomic hybridization detection of chromosomal imbalances in uterine cervix carcinoma." <u>BMC Cancer</u> 5: 77.

- Hidalgo, A., A. Monroy, et al. (2003). "Chromosomal imbalances in four new uterine cervix carcinoma derived cell lines." <u>BMC Cancer</u> **3**: 8.
- Ho, G. Y., R. D. Burk, et al. (1995). "Persistent genital human papillomavirus infection as a risk factor for persistent cervical dysplasia." <u>J Natl Cancer</u> <u>Inst</u> 87(18): 1365-1371.
- Hopman, A. H., W. Theelen, et al. (2006). "Genomic integration of oncogenic HPV and gain of the human telomerase gene TERC at 3q26 are strongly associated events in the progression of uterine cervical dysplasia to invasive cancer." <u>I Pathol</u> 210(4): 412-419.
- Huang, D. W., B. T. Sherman, et al. (2009). "Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists." <u>Nucleic Acids Res</u> 37(1): 1-13.
- Huang, D. W., B. T. Sherman, et al. (2009). "Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources." <u>Nat Protoc</u> 4(1): 44-57.
- Huang, F. Y., P. M. Chiu, et al. (2006). "Semi-quantitative fluorescent PCR analysis identifies PRKAA1 on chromosome 5 as a potential candidate cancer gene of cervical cancer." <u>Gynecol Oncol</u> **103**(1): 219-225.
- Huang, F. Y., Y. K. Y. Kwok, et al. (2005). "Genetic abnormalities and HPV status in cervical and vulvar squamous cell carcinomas." <u>Cancer Genet</u> <u>Cvtogenet</u> **157**(1): 42-48.
- Hyman, E., P. Kauraniemi, et al. (2002). "Impact of DNA amplification on gene expression patterns in breast cancer." <u>Cancer Res</u> **62**(21): 6240-6245.
- Justilien, V. and A. P. Fields (2009). "Ect2 links the PKCiota-Par6alpha complex to Rac1 activation and cellular transformation." <u>Oncogene</u> **28**(41): 3597-3607.
- Kang, J. U., S. H. Koo, et al. (2008). "Gain at chromosomal region 5p15.33, containing TERT, is the most frequent genetic event in early stages of non-small cell lung cancer." <u>Cancer Genet Cytogenet</u> 182(1): 1-11.
- Kao, J., K. Salari, et al. (2009). "Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery." <u>PLoS One</u> 4(7): e6146.
- Kim, S. Y. and D. J. Volsky (2005). "PAGE: parametric analysis of gene set enrichment." <u>BMC Bioinformatics</u> 6: 144.
- Kirchhoff, M., H. Rose, et al. (1999). "Comparative genomic hybridization reveals a recurrent pattern of chromosomal aberrations in severe dysplasia/carcinoma in situ of the cervix and in advanced-stage cervical carcinoma." <u>Genes Chromosomes Cancer</u> **24**(2): 144-150.
- Kloth, J. N., J. Oosting, et al. (2007). "Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex genetic alterations in cervical cancer." <u>BMC Genomics</u> 8: 53.

- Kreimer, A. R., G. M. Clifford, et al. (2005). "Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review." <u>Cancer Epidemiol Biomarkers Prev</u> 14(2): 467-475.
- Lazcano-Ponce, E. and B. Allen-Leigh (2009). "Innovation in cervical cancer prevention and control in Mexico." <u>Arch Med Res</u> **40**(6): 486-492.
- Linn, S. C., R. B. West, et al. (2003). "Gene expression patterns and gene copy number changes in dermatofibrosarcoma protuberans." <u>Am J Pathol</u> 163(6): 2383-2395.
- Lizano, M., J. Berumen, et al. (2009). "HPV-related carcinogenesis: basic concepts, viral types and variants." <u>Arch Med Res</u> **40**(6): 428-434.
- Lockwood, W. W., B. P. Coe, et al. (2007). "Whole genome tiling path array CGH analysis of segmental copy number alterations in cervical cancer cell lines." <u>Int J Cancer</u> **120**(2): 436-443.
- Ma, Y. Y., S. J. Wei, et al. (2000). "PIK3CA as an oncogene in cervical cancer." Oncogene **19**(23): 2739-2744.
- Macville, M., E. Schrock, et al. (1999). "Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping." <u>Cancer Res</u> **59**(1): 141-150.
- Matthews, C. P., K. A. Shera, et al. (2000). "Genomic changes and HPV type in cervical carcinoma." Proc Soc Exp Biol Med **223**(3): 316-321.
- Mitra, A. B., V. V. Murty, et al. (1995). "Genetic alterations at 5p15: a potential marker for progression of precancerous lesions of the uterine cervix." J <u>Natl Cancer Inst</u> 87(10): 742-745.
- Monni, O., M. Barlund, et al. (2001). "Comprehensive copy number and gene expression profiling of the 17q23 amplicon in human breast cancer." <u>Proc Natl Acad Sci U S A</u> 98(10): 5711-5716.
- Moscicki, A. B., M. Schiffman, et al. (2006). "Chapter 5: Updating the natural history of HPV and anogenital cancer." <u>Vaccine</u> **24 Suppl 3**: S3/42-51.
- Munoz, N., X. Castellsague, et al. (2006). "Chapter 1: HPV in the etiology of human cancer." <u>Vaccine</u> 24 Suppl 3: S3/1-10.
- Muralidhar, B., L. D. Goldstein, et al. (2007). "Global microRNA profiles in cervical squamous cell carcinoma depend on Drosha expression levels." J <u>Pathol</u> 212(4): 368-377.
- Narayan, G., V. Bourdon, et al. (2007). "Gene dosage alterations revealed by cDNA microarray analysis in cervical cancer: identification of candidate amplified and overexpressed genes." <u>Genes Chromosomes Cancer</u> **46**(4): 373-384.
- Ng, G., D. Winder, et al. (2007). "Gain and overexpression of the oncostatin M receptor occur frequently in cervical squamous cell carcinoma and are associated with adverse clinical outcome." J Pathol 212(3): 325-334.
- Oshimori, N., X. Li, et al. (2009). "Cep72 regulates the localization of key centrosomal proteins and proper bipolar spindle formation." <u>Embo J</u> **28**(14): 2066-2076.

- Parkin, D. M., F. Bray, et al. (2005). "Global cancer statistics, 2002." <u>CA Cancer J</u> <u>Clin</u> 55(2): 74-7108.
- Peralta-Leal, A., M. I. Rodriguez, et al. (2008). "Poly(ADP-ribose)polymerase-1 (PARP-1) in carcinogenesis: potential role of PARP inhibitors in cancer treatment." <u>Clin Transl Oncol</u> **10**(6): 318-323.
- Pfaffl, M. W. (2001). "A new mathematical model for relative quantification in real-time RT-PCR." <u>Nucleic Acids Res</u> **29**(9): e45.
- Phillips, J. L., S. W. Hayward, et al. (2001). "The consequences of chromosomal aneuploidy on gene expression profiles in a cell line model for prostate carcinogenesis." <u>Cancer Res</u> **61**(22): 8143-8149.
- Pinkel, D. and D. G. Albertson (2005). "Array comparative genomic hybridization and its applications in cancer." <u>Nat Genet</u> **37 Suppl**: S11-17.
- Pinkel, D., R. Segraves, et al. (1998). "High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays." <u>Nat Genet</u> **20**(2): 207-211.
- Pollack, J. R., T. Sorlie, et al. (2002). "Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors." <u>Proc Natl Acad Sci U S A</u> 99(20): 12963-12968.
- Rao, P. H., H. Arias-Pulido, et al. (2004). "Chromosomal amplifications, 3q gain and deletions of 2q33-q37 are the frequent genetic changes in cervical carcinoma." <u>BMC Cancer</u> 4: 5.
- Ried, T., K. Heselmeyer-Haddad, et al. (1999). "Genomic changes defining the genesis, progression, and malignancy potential in solid human tumors: a phenotype/genotype correlation." <u>Genes Chromosomes Cancer</u> 25(3): 195-204.
- Santarius, T., J. Shipley, et al. (2010). "A census of amplified and overexpressed human cancer genes." <u>Nat Rev Cancer</u> **10**(1): 59-64.
- Scotto, L., G. Narayan, et al. (2008). "Integrative genomics analysis of chromosome 5p gain in cervical cancer reveals target over-expressed genes, including Drosha." <u>Mol Cancer</u> 7: 58.
- Seppo, A., G. R. Jalali, et al. (2009). "Gain of 3q26: a genetic marker in low-grade squamous intraepithelial lesions (LSIL) of the uterine cervix." <u>Gynecol</u> <u>Oncol</u> 114(1): 80-83.
- Snijders, P. J., R. D. Steenbergen, et al. (2006). "HPV-mediated cervical carcinogenesis: concepts and clinical implications." J Pathol 208(2): 152-164.
- Snijders, P. J., M. van Duin, et al. (1998). "Telomerase activity exclusively in cervical carcinomas and a subset of cervical intraepithelial neoplasia grade III lesions: strong association with elevated messenger RNA levels of its catalytic subunit and high-risk human papillomavirus DNA." <u>Cancer Res</u> 58(17): 3812-3818.

- Soder, A. I., S. F. Hoare, et al. (1997). "Amplification, increased dosage and in situ expression of the telomerase RNA gene in human cancer." <u>Oncogene</u> 14(9): 1013-1021.
- Sokolova, I., A. Algeciras-Schimnich, et al. (2007). "Chromosomal biomarkers for detection of human papillomavirus associated genomic instability in epithelial cells of cervical cytology specimens." J Mol Diagn **9**(5): 604-611.
- Speicher, M. R. and N. P. Carter (2005). "The new cytogenetics: blurring the boundaries with molecular biology." <u>Nat Rev Genet</u> **6**(10): 782-792.
- Sproul, D., N. Gilbert, et al. (2005). "The role of chromatin structure in regulating the expression of clustered genes." <u>Nat Rev Genet</u> **6**(10): 775-781.
- Srougi, M. C. and K. Burridge (2011). "The nuclear guanine nucleotide exchange factors Ect2 and Net1 regulate RhoB-mediated cell death after DNA damage." <u>PLoS One</u> 6(2): e17108.
- Steenbergen, R. D., J. de Wilde, et al. (2005). "HPV-mediated transformation of the anogenital tract." <u>J Clin Virol</u> **32 Suppl 1**: S25-33.
- Stock, R. P. and H. Biały (2003). "The sigmoidal curve of cancer." <u>Nat Biotechnol</u> 21(1): 13-14.
- Sugita, M., N. Tanaka, et al. (2000). "Molecular definition of a small amplification domain within 3q26 in tumors of cervix, ovary, and lung." <u>Cancer Genet</u> <u>Cytogenet</u> 117(1): 9-18.
- Thein, A., M. Trkova, et al. (2000). "The application of comparative genomic hybridization to previously karyotyped cervical cancer cell lines." <u>Cancer Genet Cytogenet</u> **116**(1): 59-65.
- Tonon, G., K. K. Wong, et al. (2005). "High-resolution genomic profiles of human lung cancer." Proc Natl Acad Sci U S A **102**(27): 9625-9630.
- Tusher, V. G., R. Tibshirani, et al. (2001). "Significance analysis of microarrays applied to the ionizing radiation response." <u>Proc Natl Acad Sci U S A</u> **98**(9): 5116-5121.
- Umayahara, K., F. Numa, et al. (2002). "Comparative genomic hybridization detects genetic alterations during early stages of cervical cancer progression." <u>Genes Chromosomes Cancer</u> **33**(1): 98-102.
- van Staveren, W. C., D. Y. Solis, et al. (2009). "Human cancer cell lines: Experimental models for cancer cells in situ? For cancer stem cells?" <u>Biochim Biophys Acta</u> **1795**(2): 92-103.
- Velazquez-Cruz, R., L. Orozco, et al. (2007). "Association of PDCD1 polymorphisms with childhood-onset systemic lupus erythematosus." <u>Eur J Hum Genet</u> 15(3): 336-341.
- Walboomers, J. M., M. V. Jacobs, et al. (1999). "Human papillomavirus is a necessary cause of invasive cervical cancer worldwide." <u>J Pathol</u> 189(1): 12-19.
- Wallin, K. L., F. Wiklund, et al. (1999). "Type-specific persistence of human papillomavirus DNA before the development of invasive cervical cancer." <u>N Engl J Med</u> 341(22): 1633-1638.

- Wang, H., S. Huang, et al. (2006). "Comparative analysis and integrative classification of NCI60 cell lines and primary tumors using gene expression profiling data." <u>BMC Genomics</u> 7: 166.
- Wilting, S. M., J. de Wilde, et al. (2008). "Integrated genomic and transcriptional profiling identifies chromosomal loci with altered gene expression in cervical cancer." <u>Genes Chromosomes Cancer</u> 47(10): 890-905.
- Wilting, S. M., P. J. Snijders, et al. (2006). "Increased gene copy numbers at chromosome 20q are frequent in both squamous cell carcinomas and adenocarcinomas of the cervix." <u>I Pathol</u> **209**(2): 220-230.
- Wolf, M., S. Mousses, et al. (2004). "High-resolution analysis of gene copy number alterations in human prostate cancer using CGH on cDNA microarrays: impact of copy number on gene expression." <u>Neoplasia</u> **6**(3): 240-247.
- Woodman, C. B., S. Collins, et al. (2001). "Natural history of cervical human papillomavirus infection in young women: a longitudinal cohort study." <u>Lancet</u> 357(9271): 1831-1836.
- Yang, Y. C., W. Y. Shyong, et al. (2001). "Frequent gain of copy number on the long arm of chromosome 3 in human cervical adenocarcinoma." <u>Cancer</u> <u>Genet Cytogenet</u> 131(1): 48-53.
- Yugawa, T. and T. Kiyono (2009). "Molecular mechanisms of cervical carcinogenesis by high-risk human papillomaviruses: novel functions of E6 and E7 oncoproteins." <u>Rev Med Virol</u> 19(2): 97-113.
- Zhang, A., S. Maner, et al. (2002). "Genetic alterations in cervical carcinomas: frequent low-level amplifications of oncogenes are associated with human papillomavirus infection." Int J Cancer 101(5): 427-433.
- Zhang, A., C. Zheng, et al. (2002). "Amplification of the telomerase reverse transcriptase (hTERT) gene in cervical carcinomas." <u>Genes</u> <u>Chromosomes Cancer</u> **34**(3): 269-275.
- Zheng, M., R. Simon, et al. (2004). "TRIO amplification and abundant mRNA expression is associated with invasive tumor growth and rapid tumor cell proliferation in urinary bladder cancer." <u>Am J Pathol</u> **165**(1): 63-69.
- zur Hausen, H. (2002). "Papillomaviruses and cancer: from basic studies to clinical application." <u>Nat Rev Cancer</u> **2**(5): 342-350.

Anexo 1. Genes explorados en regiones ganadas o amplificadas en 3 q en lineas celulares y tumores de CaCu.

Gen	Localizacion	Detección inicial de CN	Sobreexpresión	Correlación directa	Muestras	Demostración experimental	Correlacion clínica	Otros datos	Referencia
TERC	3q26.2	FISH	ND	ND	33 tumores 1 AdCA, 32 SCC 3 grupos: CIN 2/3=17 CIN3 y mCA=13 invCA=7 Muestras de citolología a ciegas de 235 pacientes,	ND	ND	Amplificado en 2/33 Correlacionaron ganancia de 3q26 vs integración de hpv Correlacionaron HPV+ con incremento de CN en 3q26 y	(Soder, Hoare et al. 1997) (Hopman, Theelen et al. 2006) (Sokolova, Algeciras- Schimnich et al. 2007)
					diferentes tipos de lesiones 257 citologías líquidas (97 Neg, 135 LSIL 25 HSIL)			8q24 (TERC y cMYC) ninguno	(Seppo, Jalali et al. 2009)
PIK3CA	3q26.32	CGH PCR competitiva	Western blot	Positive correlation PCR vs WB (cell lines)	55 CaCu and 3 CCCL LC (C33- A, ME-180, SIHA)	ND	ND	La ganancia mas comun fué 3q (10/18)	(Ma, Wei et al. 2000)
		qPCR (TaqMan)	ND	ND	46 especímenes en parafina,10 (CIN 3), 24 invSCC; 5 con tumores pareados, y 7 adenocarcinoma, representando 41 pacientes LC (CCCL:ME- 180 y C-33A)	ND	ND	Amplificación + en 28/40 casos	(Bertelsen, Steine et al. 2006)
		FISH	ND	ND	90 casos, 85 invSCC, 4 CINs y un carcinoma in situ	ND	ND	Se observaron 3–7copias del gen en 43% de los CaCu. La alteración de PIK3CA se observe mas frecuente en tumores avanzados vs tumores tempranos (64% vs 33%)	(Zhang, Maner et al. 2002)
		CGH FISH SKY	ND	Correlación positiva CGH vs FISH, en LC (C-41, CASKI,ME- 180)	Ca Ski, C-33A, C-4I, HT-3, ME- 180, MS751, SiHa, and SW756	ND	ND	(04% VS 33%).	(Harris, Lu et al. 2003)

Gen	Localizacion	Detección inicial de CN	Sobreexpresión	Correlación directa	Muestras	Demostración experimental	Correlacion clínica	Otros datos	Referencia
		CGH	ND	ND	77tumores; 5 AdCA, 72 SCC	ND	ND	3q ganado en 54.5%	(Rao, Arias- Pulido et al. 2004)
LAMP3	3q26.33- q27.2	CGH array	ND	ND	CCCL (ME-180, MS751, SiHa, Ca Ski, C-4 I, DoTc2 4510, SW756 y HeLa)	ND	ND		(Lockwood, Coe et al. 2007)
DTX3L, PIK3R4, ATP2C1 y SLC25A36.	3q21.1- 23	ACE-it	Microarray RT-PCR DIGMAP	Correlación positiva ACE-it vs RT-PCR DIGMAP	Para microareglos 10 SCCs, 5 AdCAs, y 6 epitelios normales	ND	ND	Validacion de microarreglos por qPCR	(Wilting, de Wilde et al. 2008)
RBP1, RBP2 & Tp63	3q21- q22	CGH array	ND	ND	3 lesiones premalignas, 10 tumores invasores y LC CaSki, SiHa, HeLa, CaLo, ViBo, INBL y RoVa	ND	ND	RBP1- RBP2 amplificados en 58.8%, Tp63 en 52.9%	(Hidalgo, Baudis et al. 2005)

Anexo 2. Genes explorados en regiones ganadas o amplificadas en 5q en lineas celulares y tumores de CaCu.

Gen	Localizacion	Detección inicial de CN	Sobreexpresión	Correlación directa	Muestras	Demostración experimental	Correlacion clínica	Otros datos	Ref
		qPCR	RT-PCR	CN sin cambios, pero 37/46 tuvieron hTERT activado	CN: 33 SCC y 17 tejido normal adyacente. EX:46 muestras de mRNA de SCC y 20 tejido normal adyacente	ND	ND		(Anedchen ko, Oparina et al. 2008)
		FISH	ND	ND	90 tumores, 85 invSCC, 4 CINs y un carcinoma in situ	ND	ND	Amplificad o en 33% (28/84) 2 ^{do} after ampl of	(Zhang, Maner et al. 2002)
TERT	5p15.33	FISH SKY	Inmunohi stoquímic a	38/43 (88%) con hTERT normal y tinción de proteina hTERT negativa o débil. Proteína encontrada en 39% de los tumores. Tinción de proteina hTERT moderada o fuerte en 61%.	92 tumores, 76 SCC y 16 AdCa. LC: C33A, HT3, C4 II,CaSki	ND	ND	FINUA	(Zhang, Zheng et al. 2002)

ANKH

SKP2 5p13.2

83

Gen	Localizacion	Detección inicial de CN	Sobreexpresión	Correlación directa	Muestras	Demostración experimental	Correlacion clínica	Otros datos	Ref
SKP2	5p13.2			sobreexpres ion (3.6 FC)		ND	ND	ND	
BASP1		SNP 250 K Nspl	Affymetrix U133A, FISH	sobreexpres ion (6.0 FC)	219 muestras y 9 LC. 148 tumores primario, 42 paps, y 20 tejidos cervicales normales	ND	ND	ND	(Scotto, Narayan et al. 2008)
BRD9	5p15.1			sobreexpres ion (2.2 FC)		ND	ND	ND	
CTNND2	5p15.2		ND	ND	128 SCC and 30 normal cervix	ND	ND	ND	
POLS	5p15.31	PCR	ND	ND	128 SCC and 30 normal cervix	ND	ND	ND	
PRKAA1	5p13.1	diferenc ial fluoresc ente	RT-PCR semicuan titativa, inmunohi stoquímic a	Expresión en 7 tumores con amplificació n en 5p, FC de 3 a 15, confirmado con inmunohisto química	128 SCC y 30 tejidos normales	ND	ND	ND	(Huang, Chiu et al. 2006)
RNASEN (Drosha)	5p13.3	Pintado de cromos omas, CGH array	(qRT- PCR)	Ganancia de CN en 21/36 muestras clínicas y 8/10 LC.	36 muestras y 10 LC: SiHa, CaSki, C33a, C4I, C4II, SW756, MS751, HT3, DOTC2 and ME180	ND	ND	ND	(Muralidha r, Goldstein et al. 2007)
DAB2	5p13.1	Microarr ay CGH	ND	ND	3 lesiones premalignas, 10 tumores invasores y LC CaSki, SiHa, HeLa, CaLo, ViBo, INBL y RoVa	ND	ND	DAB2 amplificad o en 58.8% de los tumores invasores.	(Hidalgo, Baudis et al. 2005)
NNT	5p12	SNP 250 K Nspl	Affymetrix U133A, FISH	sobreexpres ion (3.7 FC)	219 muestras y 9 LC. 148 tumores primario, 42 paps, y 20 tejidos cervicales normales	ND	ND	ND	Scotto 2008
OSMR PDZD2	5p13.1						Estudio de	Ganancia: 5p15 33	
(PDZK3)	5p13.3 5p15.2	CGH array	FISH	Ganancia CN confirmada por FISH	29 HSILs y 15 LSILs 110 SCCs	RNA de interferen cia	follow up de 50 paciente s, la gananci	(90%), 5p15.2– 14.3 (70%), 5p13.3 (80%),	(Ng, Winder et al. 2007)

Gen	Localizacion	Detección inicial de CN	Sobreexpresión	Correlación directa	Muestras	Demostración experimental	Correlacion clínica	Otros datos	Ref
							a de OSMR y PDZK3 influye negativa mente en la sobrevid a.	5p13.2– 13.1 (70%),	
PAIP1				sobreexpres ión 2.3 FC)		ND	ND	ND	
RAD1		250 K Nspl	Affymetrix	sobreexpres ión (3.2 FC)	219 muestras y 9 LC. 148 tumores	ND	ND	ND	(Scotto
RNASEN	5p15.1	5p15.1 Nspl SNP	NSPI Affymetrix SNP U133A, chip EISH	sobreexpres ión (2.8 FC)	primario, 42 paps, y 20 tejidos	ND	ND	ND	Narayan et
SDHA		omp		sobreexpres ión (3.4 FC)	cervicales normales	ND	ND	ND	ui. 2000)
TARS				sobreexpres ión (3.2 FC)		ND	ND	ND	

MRR	Cromosoma	Citobanda	Inicio	Ŀ	CNa	SNPs	Log ₂ Ratio ^b	-Log10 (p value) ^c	Densidad (Kb/SNP)	No de genes	Genes explorados para expresión n (%) ^d	Genes desregulados n (%)
1-1	1	1p36	836727	836727	3	1	0.38	0.0	0	0		
1-2	1	1p31	69368055	69741665	3	20	0.35	10.5	18.7	0		
1-3	1	1p31	73577300	73862381	3	20	0.35	11.3	14.3	0		
1-4	1	1p21	96310152	97882546	3	67	0.26	10.8	23.5	5	2 (40)	2 (100
1-5	1	1p21	103134286	103532283	3	37	0.27	8.7	10.8	1	1 (100)	0
1-6	1	1q21	142661525	142661525	combinado	1	0.08	2.8	0	2	1 (50)	0
1-7	1	1q21	143619946	143916898	3	13	0.36	3.2	22.8	4	3 (75)	1 (33.3
1-8	1	1q22-23	154666684	155239182	3	11	0.28	7.3	52	21	20 (95.2)	5 (25)
1-9	1	1q23	156582548	157878670	3	102	0.25	11.0	12.7	50	27 (54)	2 (7.4)
1-10	1	1q23	159905154	159953885	3	3	0.20	9.2	16.2	4	2 (50)	1 (50)
1-11	1	1q31	186012986	188144554	3	112	0.27	10.4	19	1	0	
1-12	1	1q31	192702964	193944240	3	57	0.28	9.0	21.8	0		
1-13	1	1q31-32	196474640	197787205	3	76	0.27	9.8	17.3	9	5 (55.6)	1 (20)
1-14	1	1q32-41	211673806	214429760	3	189	0.23	9.3	14.6	15	7 (46.7)	2 (28.6
1-15	1	1q42	224630482	227526946	3	110	0.26	8.5	26.3	53	33 (62.3)	7 (21.2
2-2	2	2p25	9269833	10906039	1	62	-0.14	7.5	26.4	21	19 (90.5)	3 (15.8
3-2	3	3p26	315536	2882097	1	204	-0.32	13.1	12.6	8	3 (37.5)	1 (33.3
3-3	3	3p21	48947896	49870085	1	3	-0.16	0.5	307.4	40	35 (87.5)	5 (14.3
3-4	3	3p12	84207156	84210511	combinado	2	-0.24	6.0	1.7	0		
3-5	3	3p11	89399066	90193711	combinado	10	-0.19	5.3	79.5	1	1 (100)	1 (100
3-6	3	3q11	96638708	97886145	3	21	0.07	3.8	59.4	4	0	
3-7	3	3q13	112983787	113342424	3	22	0.23	10.8	16.3	9	8 (88.9)	0
3-8	3	3q24	145723253	147204962	3	102	0.25	11.0	14.5	2	0	
3-9	3	3q24	148313167	149350816	3	32	0.27	6.7	32.4	5	2 (40)	0
3-10	3	3q26	164160587	164947538	3	38	0.23	8.2	20.7	2	0	
3-11	3	3q26	166095338	168299804	3	69	0.32	11.0	31.9	5	4 (80)	1 (25)
3-12	3	3q26	169288585	170529878	3	58	0.27	10.5	21.4	8	2 (25)	0
3-13	3	3q26	173441847	175020335	3	82	0.26	11.1	19.2	10	7 (70)	4 (57.1
3-14	3	3q26	176538724	178305370	3	75	0.28	9.2	23.6	8	2 (25)	1 (50)
4-2	4	4p16-15	9217187	11988416	1	199	-0.25	13.5	13.9	20	7 (35)	0
4-3	4	4p15	24757234	25317039	1	18	-0.28	9.4	31.1	7	5 (71.4)	2 (40)
4-4	4	4q12	54580496	55305175	1	27	-0.23	8.4	26.8	6	4 (66.7)	3 (75)
5-1	5	5p15	208367	16963605	3	870	0.53	14.6	19.3	103	64 (62.1)	28 (43.
5-2	5	5p15-14	17928194	18750887	3	27	0.42	11.4	30.5	0	<u>,</u>	
5-3	5	5p14	20160287	206/0487	3	14	0.21	9.9	36.4	1	0	44 10-
5-4	5	5p14-13	21828353	37700867	3	665	0.49	13.8	23.9	83	44 (53)	11 (25
5-5 6-0	5	5p13-11	38307093	46287844	J	346	0.55	14.8	23.1	61	37 (60.7)	9 (24.3
0-2	b C	op21	30193303	300/8344	compinado	11	-0.01	1.ŏ	44.1	A	9 (100)	1 (11.1
ი-ე	b	6q23	131186056	131/83933	1	44	-0.12	ŏ./	13.6	4	∠ (50)	1 (50)

MRR	Cromosoma	Citobanda	Inicio	Ë	CN ^a	SNPs	Log ₂ Ratio ^b	-Log10 (p value)∘	Densidad (Kb/SNP)	No de genes	Genes explorados para expresión n (%) ^d	Genes desregulados n (%)
6-4	6	6q25	154704487	155897219	1	57	-0.24	8.0	20.9	12	7 (58.3)	1 (14.3)
7-1	7	7p22	250149	250149	combinado	1	0.06	1.1	0	0		
7-2	7	7p21	8822599	9327987	3	61	0.17	8.4	8.3	1	0	
7-3	7	7p15	26315503	27001472	3	47	0.21	6.7	14.6	9	2 (22.2)	0
7-4	7	7p13	44112435	45055543	3	5	0.27	6.4	188.6	22	19 (86.4)	1 (5.3)
7-5	7	7p11	54371479	55080506	3	60	0.21	8.2	11.8	6	3 (50)	0
7-6	7	7p11	57752465	57846410	3	2	0.22	1.5	47	0		
7-7	7	7q31	120494128	121062713	3	38	0.20	7.0	15	5	3 (60)	1 (33.3)
7-8	7	7q32	130250379	131611164	3	58	0.24	7.9	23.5	10	3 (30)	0
7-9	7	7q34	138945471	139972477	3	22	0.32	8.1	46.7	12	8 (66.7)	3 (37.5)
8-2	8	8p23	2569376	3199243	1	68	-0.23	10.7	9.3	1	1 (100)	0
8-3	8	8p12	29830606	31196476	1	63	-0.09	9.3	21.7	23	13 (56.5)	1 (7.7)
8-4	8	8q11	48150526	48514958	1	4	-0.13	0.7	91.1	6	1 (16.7)	0
8-5	8	8q24	134566403	135671724	3	48	0.25	8.2	23	3	2 (66.7)	0
9-2	9	9q21	75072529	75867558	3	56	0.07	7.7	14.2	1	0	
9-3	9	9q33-34	128903366	129490624	3	12	0.20	1.8	48.9	12	10 (83.3)	2 (20)
10-1	10	10p15	259695	793721	1	16	-0.11	3.6	33.4	4	3 (75)	1 (33.3)
10-2	10	10p12	27054473	28067169	1	34	-0.13	5.9	29.8	15	10 (66.7)	1 (10)
11-1	11	11p15	172958	172958	3	1	0.42	4.9	0	0		
11-2	11	11p15	2593894	2956971	3	7	0.29	1.1	51.9	9	8 (88.9)	1 (12.5)
11-3	11	11p15	18214858	18326923	combinado	3	-0.03	6.0	37.4	6	6 (100)	0
11-4	11	11q14	80347478	81301888	3	95	0.22	11.2	10	0		
11-5	11	11q22	99371373	101575849	3	155	0.54	14.9	14.2	15	9 (60)	2 (22.2)
11-6	11	11q22	102095875	102218987	3	8	0.22	8.0	15.4	6	4 (66.7)	0
11-7	11	11q23	110720724	111710681	1	37	-0.29	11.6	26.8	35	27 (77.1)	2 (7.4)
11-8	11	11q23	115209441	116561290	1	63	-0.30	12.5	21.5	14	9 (64.3)	1 (11.1)
11-9	11	11q23-24	119664262	120866225	1	37	-0.31	9.9	32.5	11	8 (72.7)	1 (12.5)
11-10	11	11q24	121872854	122658485	1	28	-0.25	11.0	28.1	13	8 (61.5)	0
11-11	11	11q24	124982588	125606142	1	14	-0.31	6.3	44.5	14	11 (78.6)	1 (9.1)
11-12	11	11q25	131004591	132120445	1	36	-0.26	7.5	31	4	2 (50)	0
12-2	12	12q12	37275672	37919908	3	36	0.19	8.1	17.9	1	1 (100)	0
12-3	12	12q12	41292654	41593672	3	34	0.14	10.2	8.9	2	0	
13-2	13	13q12	19682018	22333062	1	147	-0.28	13.0	18	31	13 (41.9)	6 (46.2)
13-3	13	13q12	22392842	30494773	1	418	-0.27	13.5	19.4	81	53 (65.4)	6 (11.3)
13-4	13	13q13-14	39243191	42266569	1	174	-0.27	13.4	17.4	32	17 (53.1)	3 (17.6)
13-5	13	13q14	45719117	46732110	1	74	-0.25	13.1	13.7	12	5 (41.7)	2 (40)
13-6	13	13q31	82863650	83430399	3	19	0.18	6.2	29.8	2	1 (50)	0
13-7	13	13q31	86432927	87501940	3	51	0.18	5.2	21	2	1 (50)	0
14-2	14	14q12	27284462	28095107	3	36	0.11	7.4	22.5	2	0	
14-3	14	14q24	72825979	73678773	1	26	-0.25	9.1	32.8	22	18 (81.8)	1 (5.6)
16-2	16	16p12	20392371	21211648	1	27	-0.25	4.4	30.3	18	15 (83.3)	0
16-3	16	16q13	56206869	56409197	3	6	0.20	2.2	33.7	8	6 (75)	1 (16.7)
17-2	17	17q25	69951819	70549727	3	13	0.23	4.3	46	26	22 (84.6)	1 (4.5)

MRR	Cromosoma	Citobanda	Inicio	Ē	CNa	SNPs	Log ₂ Ratio ^b	-Log10 (p value)⁰	Densidad (Kb/SNP)	No de genes	Genes explorados para expresión n (%) ^d	Genes desregulados n (%)
18-2	18	18q11	19366772	20723817	1	66	-0.05	8.3	20.6	13	8 (61.5)	2 (25)
18-3	18	18q21	48184688	48562430	1	39	-0.40	13.2	9.7	1	1 (100)	0
18-4	18	18q21	53094673	55926470	1	130	-0.35	10.8	21.8	31	19 (61.3)	5 (26.3)
18-5	18	18q22	69037404	71028132	1	131	-0.36	11.1	15.2	11	8 (72.7)	1 (12.5)
18-6	18	18q23	73276885	76068963	1	29	-0.36	6.9	96.3	20	10 (50)	3 (30)
19-1	19	19p13	341341	341341	1	1	-0.88	0.0	0	0		
19-2	19	19p13	12158369	12322072	1	2	-0.32	0.7	81.9	9	4 (44.4)	2 (50)
19-3	19	19p13	13425865	13445855	3	2	0.17	4.0	10	1	1 (100)	0
20-2	20	20p13	1646963	1908313	1	8	-0.15	4.6	32.7	5	2 (40)	0
20-3	20	20p12	6056749	6077268	1	4	-0.14	11.1	5.1	0		
20-4	20	20p12	10845878	11253191	1	26	-0.15	8.8	15.7	0		
20-5	20	20p12	14405834	16002582	1	135	-0.21	12.4	11.8	4	1 (25)	0
20-6	20	20p12	17452907	17538620	1	6	-0.17	9.2	14.3	2	2 (100)	0
20-7	20	20p11	21116361	21329121	1	11	-0.17	7.9	19.3	3	3 (100)	0
20-8	20	20q13	45666931	46583675	3	22	0.21	2.3	41.7	7	2 (28.6)	0
21-1	21	21p11	9928594	10039984	1	5	-0.37	2.5	22.3	2	1 (50)	0
X-1	Х	Xp22	627050	627050	combinado	1	-0.08	0.4	0	0		
X-2	Х	Xp11	46351719	46619766	1	4	-0.17	3.7	67	2	2 (100)	0
X-3	Х	Xq13	70602110	71490876	1	4	-0.26	1.1	222.2	18	13 (72.2)	1 (7.7)
X-4	Х	Xq13	73501934	73593410	1	5	-0.24	1.8	18.3	4	1 (25)	0
X-5	Х	Xq26	132488035	132815417	1	3	-0.36	2.8	109.1	2	1 (50)	0
X-6	Х	Xq26	135647385	137139847	1	32	-0.48	9.6	46.6	12	5 (41.7)	1 (20)
X-7	Х	Xq27	143263635	145188598	1	44	-0.57	10.2	43.7	13	4 (30.7)	0
X-8	Х	Xq28	147048035	147554396	1	25	-0.45	9.8	20.3	3	1 (33.3)	0
X-9	Х	Xq28	152983236	152983236	combinado	1	-0.09	3.0	0	1	1 (100)	0
X-10	Х	Xq28	154070562	154499298	1	2	-0.84	5.4	214.4	10	8 (80)	1 (12.5)

a. Combinado= suprimido en algunas líneas celulares y ganado en otras. b. El valor es el promedio del Log2 ratio de todos los SNPS incluidos en las regiones recurrentes mínimas de las cuatro líneas celulares. c. El valor es el promedio de todos los SNPS de la región recurrente mínima. Valores > 1.3 corresponden a un valor p<0.05, indicando que la diferencia en al intensidad de señal entre las líneas celulares y el grupo control es estadísticamente significativo (prueba de T). d. El porcentaje fue calculado en relación con el número de genes por MRR (columna 11).

Anexo 4. Comparación entre número de copias y expresión génica por citobanda.

A. Citobandas con un mayor número de alteraciones de CN que el genoma completo^a.

-				SNPs				Expresión gér	nica		
	Cromosoma	Citobanda	No de copias	SNPs recurrentes en no de copias % (positivos/explorados)	p-value ^b	% Subexpresados	% Sobreexpresados	Total desregulados % (positivos/explorados)	p-value ^b	Z score °	p-value ^d
-	1	1p21	3	17.2 (104/606)	1.566E-30	24.4	0	24.4 (10/41)	>0.05	-2.28	2.24E-02
	1	1q23	3	22.6 (114/505)	1.2446E-55	12.8	2.1	14.9 (21/141)	>0.05	-1.67	>0.05
	1	1q31	3	30.9 (225/727)	2.6923E-181	10.8	0	10.8 (4/37)	>0.05	-1.35	>0.05
	1	1q32	3	10.4 (56/538)	0.00013625	6.4	11.5	17.9 (28/156)	>0.05	3.37	7.42E-04
	1	1q41	3	25.4 (153/602)	5.74988E-91	5.4	5.4	10.8 (4/37)	>0.05	0.92	>0.05
	1	1q42	3	23 (110/478)	1.93958E-55	3.0	12.9	15.8 (16/101)	>0.05	0.83	>0.05
	2	2p25	1	12.7 (62/487)	3.74372E-09	13.1	0	13.1 (8/61)	>0.05	-1.93	>0.05
	3	3p26	1	25.3 (204/807)	1.4615E-120	12.5	0	12.5 (2/16)	>0.05	-1.02	>0.05
	3	3p11	Combinado	14.5 (10/69)	0.024613531	14.3	0	14.3 (1/7)	>0.05	-0.69	>0.05
	3	3q11	3	19.3 (21/109)	8.61655E-08	4.3	0	4.3 (1/23)	>0.05	-0.53	>0.05
	3	3q24	3	42.3 (134/317)	8.2384E-166	13.3	0	13.3 (2/15)	>0.05	-1.09	>0.05
	3	3q26	3	38.7 (322/831)	0	11.0	4.1	15.1 (11/73)	>0.05	-0.17	>0.05
	4	4p16	1	46.6 (117/251)	2.3401E-164	9.7	5.3	15 (17/113)	>0.05	-0.73	>0.05
	4	4p15	1	8.1 (100/1229)	0.007889079	18.0	4.0	22 (11/50)	>0.05	-0.87	>0.05
	5	5p15	3	97.2 (890/916)	0	1.4	43.7	45.1 (32/71) ^b	7.2E- 11	5.53	3.11E-08
	5	5p14	3	82.2 (287/349)	0	0	0	0 (0/8)	>0.05		
	5	5p13	3	95.1 (685/720)	0	8.5	13.6	22 (13/59)	>0.05	1.15	>0.05
	5	5p12	3	100 (59/59)	7.9274E-206	17.6	23.5	41.2 (7/17) ℃	0.028	1.24	>0.05
	6	6q23	1	10.7 (44/412)	0.000541241	18.2	1.8	20 (11/55)	>0.05	-1.70	>0.05
	6	6q25	1	10 (57/568)	0.000397442	10.8	5.4	16.2 (12/74)	>0.05	-0.88	>0.05
	7	7p11	3	49.2 (62/126)	4.33967E-93	0	14.3	14.3 (3/21)	>0.05	0.71	>0.05
	7	7q32	3	34.3 (58/169)	8.99453E-54	3.7	14.8	18.5 (10/54)	>0.05	0.66	>0.05
	7	7q34	3	14.8 (22/149)	8.00637E-05	8.6	3.4	12.1 (7/58)	>0.05	-0.85	>0.05
	8	8p23	1	8.5 (68/804)	0.018191377	12.5	0.0	12.5 (13/104)	>0.05	-2.13	3.28E-02
	8	8p12	1	16.3 (63/387)	1.47484E-16	9.5	4.8	14.3 (6/42)	>0.05	-0.44	>0.05
	11	11q14	3	9.3 (95/1022)	5.62058E-05	7.1	1.8	8.9 (5/56)	>0.05	-0.65	>0.05
	11	11q22	3	21.2 (163/768)	1.02165E-71	12.1	1.7	13.8 (8/58)	>0.05	-1.31	>0.05
	11	11q23	1	32.1 (135/420)	1.708E-114	9.6	4.0	13.6 (17/125)	>0.05	-1.02	>0.05
	11	11q24	1	15.9 (44/277)	5.24785E-11	4.0	1.0	5 (5/100)	0.047	-0.61	>0.05
	11	11q25	1	41.9 (36/86)	1.01768E-43	7.1	7.1	14.3 (2/14)	>0.05	0.27	>0.05
	12	12q12	3	16.1 (70/435)	5.96827E-18	22.2	3.7	25.9 (7/27)	>0.05	-1.30	>0.05

			SNPs				Expresión gér	nica		
Cromosoma	Citobanda	No de copias	SNPs recurrentes en no de copias % (positivos/explorados)	p-value ^b	% Subexpresados	% Sobreexpresados	Total desregulados % (positivos/explorados)	p-value ^b	Z score °	p-value ^d
13	13q12	1	88.6 (565/638)	0	13.0	3.9	16.9 (13/77)	>0.05	-1.23	>0.05
13	13q14	1	38.8 (233/600)	2.8341E-258	17.2	0	17.2 (16/93)	>0.05	-2.61	9.12E-03
16	16p12	1	12.2 (27/222)	0.001066202	6.9	6.9	13.8 (12/87)	>0.05	1.31	>0.05
17	17q25	3	13.1 (13/99)	0.0227066	1.5	17.5	19.1 (37/194)	>0.05	2.14	3.24E-02
18	18q11	1	33.7 (66/196)	1.3443E-59	9.4	3.1	12.5 (4/32)	>0.05	-0.74	>0.05
18	18q21	1	19.1 (169/883)	1.19194E-61	11.7	8.5	20.2 (19/94)	>0.05	-0.73	>0.05
18	18q22	1	18.5 (131/707)	8.00044E-45	20.8	0	20.8 (5/24)	>0.05	-1.31	>0.05
18	18q23	1	19.5 (29/149)	6.97034E-11	12.5	18.8	31.3 (5/16)	>0.05	-0.45	>0.05
20	20p12	1	22.5 (171/760)	2.87351E-83	13.0	2.2	15.2 (7/46)	>0.05	-1.33	>0.05
21	21p11	1	100 (5/5)	2.33934E-17	0	0	0 (0/3)	>0.05		
Х	Xq13	1	16.4 (9/55)	0.011387337	3.2	7.9	11.1 (7/63)	>0.05	1.74	>0.05
Х	Xq26	1	28.2 (35/124)	2.49504E-24	5.1	1.7	6.8 (4/59)	>0.05	-0.62	>0.05
Х	Xq27	1	18.5 (44/238)	6.12326E-15	2.9	0	2.9 (1/35)	>0.05	-0.79	>0.05
Х	Xq28	1	25.7 (28/109)	7.9845E-17	5.7	3.3	8.9 (11/123)	>0.05	2.60	9.33E-03

 X
 Xq26
 I
 23.7 (20109)
 1.3040E-11
 5.7
 3.3
 6.9 (1112)
 20.03
 2.00
 9.35E-03

 a. Incluye citobandas con mas de 5.8% de SNPs alterados y p-value <0.05 (chi-cuadrada) comparado con el genoma completo. Las citobandas sombreadas fueron aquellas con más de 30% de SNPs alterados en numero de copias.</th>
 b. Prueba de Chi cuadrada
 c. Incluye citobandas con mas de 15.1% de genes desregulados y p-value <0.05 (chi cuadrada) comparado con el genoma completo o Z score >1.96 o <-1.96. El Z score fue calculado como parte del "Parametric Gene Set Enrichment Analysis".</th>
 d. Prueba Z

			SNPs				Expresión a	énica		
Cromosoma	Citobanda	No. de copias	SNPs recurrentes en no de copias % (positivos/explorados)	p-value ^a	% subexpresados	% sobreexpresados	Total desregulados % (positivos/explorados)	p-value ª	Z score ^b	p-value ∘
1	1p34	2	0		1.7	8.0	9.8 (17/174)	P>0.05	4.18	2.95E-05
1	1q21	3	6.7 (14/209)	P>0.05	11.3	10.9	22.2 (51/230)	0.026	-0.67	>0.05
2	2p11	2	0		18.6	1.7	20.3 (12/59)	P>0.05	-2.11	3.50E-02
2	2q32	2	0		25.6	0.0	25.6 (11/43)	P>0.05	-2.38	1.73E-02
3	3q13	3	2.6 (22/847)	0.0010	11.8	1.1	12.9 (12/93)	P>0.05	-2.10	3.58E-02
4	4q12	1	8.4 (27/320)	P>0.05	37.1	0	37.1 (13/35)	0.004	-2.37	1.80E-02
4	4q21	2	0		14.7	0.0	14.7 (10/68)	P>0.05	-2.18	2.96E-02
4	4q32	2	0		23.5	0.0	23.5 (12/51)	P>0.05	-2.31	2.08E-02
5	5q31	2	0		19.3	6.3	25.5 (49/192)	0.001	-0.80	>0.05
5	5q33	2	0		18.2	5.1	23.2 (23/99)	P>0.05	-2.01	4.40E-02
6	6p22	2	0		4.5	11.5	16 (25/156)	P>0.05	2.96	3.12E-03
6	6q22	2	0		18.8	0.0	18.8 (12/64)	P>0.05	-2.29	2.17E-02
8	8q21	2	0		24.2	0.0	24.2 (16/66)	P>0.05	-2.60	9.38E-03
9	9q34	3	2.1 (2/94)	P>0.05	0.9	14.9	15.8 (36/228)	P>0.05	2.36	1.84E-02
10	10q21	2	0		12.7	10.9	23.6 (13/55)	P>0.05	2.30	2.14E-02
11	11q13	2	0		4.1	15.1	19.2 (52/271)	P>0.05	2.04	4.11E-02
12	12p12	2	0		24.1	1.9	25.9 (14/54)	P>0.05	-1.98	4.75E-02
14	14q32	2	0		12.6	2.1	14.7 (28/190)	P>0.05	-2.81	4.93E-03
15	15q11	2	0		52.5	0	52.5 (62/118)	4.3E-28	-5.49	4.09E-08
15	15q15	2	0		6.6	12.1	18.7 (17/91)	P>0.05	2.72	6.50E-03
15	15q21	2	0		13.8	1.3	15 (12/80)	P>0.05	-2.01	4.39E-02
16	16p13	2	0		5.3	22.1	27.4 (72/263)	6.2E-07	2.19	2.88E-02
16	16q22	2	0		3.8	21.2	25 (33/132)	0.016	4.10	4.19E-05
16	16q24	2	0		2.4	25	27.4 (23/84)	0.018	4.07	4.71E-05
17	17q11	2	0		5.2	16.5	21.6 (21/97)	P>0.05	3.18	1.47E-03
17	17q21	2	0		3.0	9.3	12.3 (37/302)	P>0.05	3.10	1.90E-03
19	19p12	2	0		61.8	0	61.8 (21/34)	1.5E-12	-3.01	2.61E-03
19	19p13	Combinado	4.9 (5/102)	P>0.05	3.0	15.0	18 (107/593)	P>0.05	3.46	5.35E-04
20	20q11	2	0		1.5	13.3	14.8 (20/135)	P>0.05	2.36	1.81E-02
20	20q13	3	3.7 (22/596)	P>0.05	2.9	18.1	21 (50/238)	P>0.05	3.63	2.84E-04
Х	Xq21	2	0		25.0	0.0	25 (10/40)	P>0.05	-2.29	2.22E-02

B. Citobandas con pocos o ningún SNP alterado en CN pero enriquecido de genes desregulados.

a. Prueba de Chi cuadrada b. Incluye citobandas con mas de 15.1% de genes desregulados y p-value <0.05 (chi cuadrada) comparado con el genoma completo o Z score >1.96 o <-1.96. El Z score fue calculado como parte del "Parametric Gene Set Enrichment Analysis". c. Prueba Z

MRR	Gen	ID gen	Cromosoma	Inicio	Citobanda	SNPs/gen	CN ^a	EX ^b
1-4	LOC100132258	100132258	1	96487119	1p21.3	9	3	NE
1-4	I OC440595	440595	1	96685074	1p213	0	3	NF
1_4	100653702	653702	1	96902064	1n21.3	ĩ	3	NE
14		58155	1	06050066	1p21.0	7	3	
1-4		1906	1	07215007	1p21.5	26	2	DOWN
1-4		1000	1	97313007	1021.5	20	3	DOWN
1-5	COLTIAT	1301	1	103114011	1p21.1	11	3	SC
1-6	LOC100133095	100133095	1	142625464	1q21.1	0	Combinado	NE
1-6	SRGAP2L	647135	1	142627521	1q21.1	0	Combinado	SC
1-7	PDE4DIP	9659	1	143562784	1q21.1	9	3	DOWN
1-7	FLJ21272	80100	1	143700513	1q21.1	0	3	NE
1-7	SEC22B	9554	1	143807764	1q21.1	2	3	SC
1-7	NUDT4P1	440672	1	143848636	1q21.1	0	3	SC
1-8	MEF2D	4209	1	154700143	1q22	0	3	SC
1-8	IQGAP3	128239	1	154761821	1q22	1	3	UP
1-8	TTC24	164118	1	154818481	1a23.1	0	3	SC
1-8	APOA1BP	128240	1	154828182	1g23 1	0	3	SC
1-8	GPATCH4	54865	1	154830903	1g23 1	Õ	3	SC
1_8		60484	1	15/855710	1023.1	õ	3	90 90
1_8	BCAN	63827	1	15/187836/	1023.1	1	3	90 90
1 0	NES	10762	1	154070504	1920.1	1	2	DOWN
1-0		10/03	1	154905179	1423.1	1	3	DOWN
1-0		1302	1	104900027	1923.1	0	3	50
1-8	ISG20L2	818/5	1	154959037	1q23.1	0	3	SC
1-8	Clortob	51093	1	154964902	1q23.1	0	3	SC
1-8	MRPL24	79590	1	154973718	1q23.1	0	3	SC
1-8	HDGF	3068	1	154978526	1q23.1	0	3	UP
1-8	PRCC	5546	1	155003898	1q23.1	0	3	UP
1-8	SH2D2A	9047	1	155042659	1q23.1	0	3	SC
1-8	NTRK1	4914	1	155052166	1q23.1	0	3	SC
1-8	INSRR	3645	1	155077289	1q23.1	0	3	SC
1-8	PEAR1	375033	1	155130147	1a23.1	0	3	DOWN
1-8	C1orf92	149499	1	155157324	1g23 1	0	3	SC
1-8	ARHGEF11	9826	1	155171256	1g23 1	6	3	SC
1_8	MIRNI765	768220	1	1551725/6	1023.1	õ	3	NE
10		012	1	156500164	1923.1	0	3	SC SC
1-9		120260	1	156624026	1923.1	0	2	30
1-9		120300	1	100004900	1923.1	0	3	50
1-9	OR IUKZ	391107	1	150050342	1q23.1	0	3	SC
1-9	ORIUTIP	79514	1	156681482	1q23.1	0	3	NE
1-9	LOC100129866	100129866	1	156682813	1q23.1	0	3	NE
1-9	OR10K1	391109	1	156701976	1q23.1	0	3	SC
1-9	OR10R2	343406	1	156716292	1q23.1	0	3	SC
1-9	OR10R3P	391110	1	156727533	1q23.1	0	3	SC
1-9	LOC649307	649307	1	156747824	1q23.1	0	3	NE
1-9	OR10R1P	79513	1	156751199	1q23.1	0	3	NE
1-9	HSP90AA3P	3322	1	156759985	1q23.1	1	3	NE
1-9	OR6Y1	391112	1	156783542	1q23.1	0	3	SC
1-9	OR6P1	128366	1	156799068	1q23.1	1	3	SC
1-9	OR10X1	128367	1	156815333	1a23.1	0	3	SC
1-9	OR10Z1	128368	1	156842853	1g23.1	0	3	SC
1-9	SPTA1	6708	1	156847120	1g23 1	11	3	SC
1_9	OR6K1P	81449	1	156930853	1023.1	0	3	NE
10	OPEKS	81//8	1	156036002	1023.1	0	3	SC
1-9		201111	1	156052500	1923.1	0	2	30
1-9		100270	1	150955562	1423.1	0	3	30
1-9		1203/0	1	150900409	1423.1	2	3	
1-9	OROKOP	391115	1	1509/8882	1q23.1	0	3	NE
1-9	UKbKb	1283/1	1	156991230	1q23.1	U	3	SC
1-9	UR6N1	128372	1	15/002158	1q23.1	0	3	SC
1-9	OR6N2	81442	1	157013096	1q23.1	0	3	SC
1-9	OR2AQ1P	81474	1	157032311	1q23.1	0	3	NE
1-9	OR10AA1P	81487	1	157044716	1q23.1	0	3	NE
1-9	MNDA	4332	1	157067792	1q23.1	0	3	DOWN
1-9	LOC646377	646377	1	157111994	1q23.1	0	3	NE
1-9	PYHIN1	149628	1	157167966	1q23.1	4	3	SC
1-9	IFI16	3428	1	157246306	1q23.1	2	3	SC
1-9	AIM2	9447	1	157298899	1q23.2	0	3	SC

Anexo 5. Genes identificados en las regiones recurrentes mínimas.

MRR	Gen	ID gen	Cromosoma	Inicio	Citobanda	SNPs/gen	CN ^a	EX ^b
1-9	LOC100129690	100129690	1	157317546	1q23.2	2	3	NE
1-9	TRNAR-UCU	100126526	1	157378025	1q23.2	0	3	NE
1-9	CADM3	57863	1	157408044	1q23.2	2	3	SC
1-9	LOC100131825	100131825	1	157433988	1q23.2	0	3	NE
1-9	DARC	2532	1	157441134	1g23.2	0	3	DOWN
1-9	LOC649458	649458	1	157502757	1g23.2	1	3	NE
1-9	OR10.12P	391117	1	157515358	1g23.2	3	3	NE
1_0	ECER1A	2205	1	157526128	1023.2	0	3	SC
10		1/1011	1	157550084	1923.2	0	3	80
10		201110	1	157500004	1920.2	0	2	NE
1-9		391119	1	10/00/000	1923.2	0	3	INE
1-9	OR TUJ8P	343409	1	15/6024/5	1q23.2	1	3	NE
1-9	ORIUJ9P	391120	1	15/641/3/	1q23.2	0	3	NE
1-9	OR10J4P	391121	1	157668518	1q23.2	0	3	NE
1-9	OR10J1	26476	1	157676173	1q23.2	0	3	SC
1-9	OR10J5	127385	1	157771492	1q23.2	0	3	SC
-9	LOC646430	646430	1	157793209	1q23.2	0	3	NE
1-9	OR10AE1P	81486	1	157817937	1q23.2	0	3	NE
-9	APCS	325	1	157824240	1a23.2	0	3	SC
-9	OR10.16P	401973	1	157834612	1n23 2	0	3	NF
-10	ECGR2B	2213	1	159899564	1a23.3	1	3	DOWN
-10	LOC100128856	100128856	1	159908392	1023.3	'n	3	NE
10	1006/120000	6/120000	1	150000002	1022.0	0	5	
-10	LUC041311	041311	1	159920109	1923.3	0	3	INE
-10		04024	1	109943380	1423.3	U	3	50
-11	LOC100131147	10013114/	1	18/368104	1q31.1	1	3	NE
-13	NEK7	140609	1	196468306	1q31.3	10	3	SC
-13	ATP6V1G3	127124	1	196758975	1q31.3	0	3	SC
-13	PTPRC	5788	1	196874760	1q31.3	3	3	DOWN
-13	LOC100129570	100129570	1	196914886	1q31.3	3	3	NE
-13	MIRN181B1	406955	1	197094624	1a31.3	0	3	SC
-13	MIRN181A1	406995	1	197094795	1n31.3	0	3	SC
_13	100100131234	100131234	1	10713/7/7	1031.3	0	3	NE
12	100100121204	100121204	1	107104756	101.0	0	2	
10	LOC 100 13 1000	647000	1	197 1047 30	1431.3	0	3	
-13	LUC047202	047202		19/00/043	1932.1	0	3	INE
-14	LOC643330	643330	1	211668674	1q32.3	1	3	NE
-14	PROX1	5629	1	212228483	1q41	4	3	SC
-14	LOC100131420	100131420	1	212502492	1q41	0	3	NE
1-14	SMYD2	56950	1	212521199	1q41	3	3	SC
-14	PTPN14	5784	1	212597634	1q41	16	3	UP
-14	LOC643454	643454	1	212722172	1q41	0	3	NE
-14	KRT18P12	643471	1	212772161	1a41	0	3	NE
-14	CENPE	1063	1	212843155	1041	q	3	UP
-14	100648359	648359	1	212845405	1041	Ő	3 3	NE
14	100100120658	100120658	1	212040400	10/1	0	3	NE
-14	LOC 100 12 90 00	201162	1	212032324	1941	0	2	
-14	LOC391102	391102	1	213111100	1941	0	3	INE
- 14		3/10	1	213245508	1941	10	3	50
-14	LOC643536	643536	1	213616471	1q41	0	3	NE
-14	KCTD3	51133	1	213807358	1q41	1	3	SC
-14	USH2A	7399	1	213862859	1q41	47	3	SC
-15	PARP1	142	1	224615015	1q42.12	3	3	UP
-15	LOC391168	391168	1	224692885	1q42.12	0	3	NE
-15	LOC391169	391169	1	224746799	1a42.12	0	3	SC
-15	C1orf95	375057	1	224803124	1g42.12	1	3	SC
-15	ITPKB	3707	1	224886014	1042.12	6	3	SC
15		5664	1	225124806	1042.12	3	3	90
-1J 4F		5004	1	223124090	1442.13	5	5	30
-10		20997		225194501	1042.15	0	3	50
-15	LUC/286/6	/286/6	1	225230030	1q42.13	0	3	NE
-15	CDC42BPA	84/6	1	225244189	1q42.13	45	3	SC
-15	LOC100130466	100130466	1	225664497	1q42.13	0	3	NE
-15	LOC100128258	100128258	1	225684850	1q42.13	0	3	NE
-15	LOC503543	503543	1	225688052	1q42.13	0	3	SC
-15	LOC391171	391171	1	225747344	1q42.13	0	3	NE
-15	LOC255208	255208	1	225760506	1a42 13	0	3	NF
-15	ZNE678	339500	1	225817867	1042 13	5	3	SC
15	MDD63D3	350700	1	225011001	10/0 10	5	5	NE
10	NICF03F2	JJJ129	1	220020004	1442.13	0	3	
-10		100130813	1	220002/40	1442.13	U	3	NE
-15	LOC100130093	100130093	1	225982879	1q42.13	0	3	UP
-15	JMJD4	65094	1	225985558	1q42.13	0	3	UP
-15	C1orf142	116841	1	225989320	1q42.13	0	3	UP
-15	MPN2	339501	1	226070041	1q42.13	1	3	SC
-15	WNT9A	7483	1	226175320	1q42.13	0	3	UP
1-15	LOC729028	729028	1	226221316	1g42.13	0	3	NE
· -						-		

MRR	Gen	ID gen	Cromosoma	Inicio	Citobanda	SNPs/gen	CN ^a	EXp
1-15	LOC728728	728728	1	226221665	1q42.13	0	3	NE
1-15	LOC100132885	100132885	1	226225097	1q42.13	0	3	NE
1-15	LOC729033	729033	1	226227675	1a42.13	0	3	NE
1-15	LOC100131767	100131767	1	226228519	1a42 13	0	3	NF
1-15	LOC648262	648262	1	226230326	1042 13	Ő	3	NE
1_15	W/NIT3A	80780	1	226261375	10/2.13	ů 0	3	SC
1 15		375	1	220201070	10/2.13	1	3	90
1-15		3/3	1	220330904	1442.13	1	3	30
1-10	C 101135	19109	1	220300001	1042.13	0	3	50
1-15	MIRPL55	128308	1	226361003	1q42.13	0	3	50
1-15	LOC391174	391174	1	226369215	1q42.13	0	3	NE
1-15	LOC644862	644862	1	226389006	1q42.13	0	3	NE
1-15	GUK1	2987	1	226394605	1q42.13	0	3	SC
1-15	GJC2	57165	1	226404176	1q42.13	0	3	SC
1-15	C1orf69	200205	1	226420139	1q42.13	0	3	SC
1-15	OBSCN	84033	1	226462484	1q42.13	3	3	SC
1-15	TRIM11	81559	1	226648000	1q42.13	0	3	UP
1-15	TRIM17	51127	1	226662264	1q42.13	0	3	SC
1-15	HIST3H3	8290	1	226679169	1a42.13	0	3	UP
1-15	100391175	391175	1	226703492	1042 13	Ő	3	NF
1 15		02815	1	220700432	10/12.10	0	3	SC
1 15	LICTSUSDD	32010	1	220111000	1042.10	0	ა ი	30
1-10		120312	1	220112431	1442.13	U	3	30
1-15	HIST 3H2BA	33/8/2	1	226718540	1q42.13	0	3	NE
1-15	RNF187	149603	1	226740900	1q42.13	0	3	SC
1-15	LOC100129094	100129094	1	226762191	1q42.13	0	3	NE
1-15	DUSP5P	574029	1	226847280	1q42.13	0	3	SC
1-15	FTHL2	2497	1	226889682	1q42.13	0	3	NE
1-15	RHOU	58480	1	226937492	1q42.13	0	3	SC
1-15	RAB4A	5867	1	227473502	1q42.13	2	3	SC
1-15	SPHAR	10638	1	227506752	1a42.13	0	3	SC
1-15	C1orf96	126731	1	227523382	1a42 13	2	3	SC
2-2	DDEE2	8853	2	9264345	2n25 1	3	1	SC
2.2	ITCB1BD1	9270	2	9/6326/	2p20.1 2p25_1	1	1	00 SC
2-2	CDSE2	5270	2	0401210	2p20.1	0	1	80
2-2		005440	2	9401319	2p25.1	0	1	30
2-2		285148	2	9532121	2p25.1	1	1	50
2-2	ADAM17	6868	2	9546843	2p25.1	8	1	SC
2-2	LOC100127913	100127913	2	9613388	2p25.1	0	1	NE
2-2	YWHAQ	10971	2	9641557	2p25.1	5	1	SC
2-2	TAF1B	9014	2	9901024	2p25.1	8	1	SC
2-2	GRHL1	29841	2	10009273	2p25.1	4	1	DOWN
2-2	UNQ5830	400943	2	10061078	2p25.1	0	1	SC
2-2	KI F11	8462	2	10101133	2n25 1	0	1	SC
2-2	LOC100131506	100131506	2	10114051	2n25 1	0	1	SC
2-2	CYS1	192668	2	10116317	2n25 1	ů.	1	SC
2-2	MDD2	62/1	2	1012018/	2p25.1	0	1	00 90
2-2		0241	2	10100104	2p25.1	1	1	30
2-2	UD0414	340/30	2	10198960	2p25.1			50
2-2	HPCAL1	3241	2	10360491	2p25.1	1	1	SC
2-2	ODC1	4953	2	10497959	2p25.1	3	1	SC
2-2	NOL10	79954	2	10628345	2p25.1	4	1	SC
2-2	ATP6V1C2	245973	2	10779226	2p25.1	0	1	DOWN
2-2	LOC100130910	100130910	2	10825372	2p25.1	0	1	NE
2-2	PDIA6	10130	2	10840968	2p25.1	7	1	DOWN
3-2	CHL1	10752	3	213650	3p26.3	14	1	SC
3-2	00100129909	100129909	3	223628	3n26.3	4	1	NF
3-2	LOC402123	402123	3	634472	3n26 3	, 0	1	NE
30	CNITNE	702120	5	1100600	3020.0	27	1	00
J-2		21200	3	109029	3µ20.3	51	1	30
J-∠	LUUJ91504	391504	3	1012421	3p26.3	U		NE
3-2	LUC/2/810	/2/810	3	1922335	3p26.3	0	1	NE
3-2	CNTN4	152330	3	2117247	3p26.3	75	1	DOWN
3-2	LOC100130346	100130346	3	2378942	3p26.3	0	1	NE
3-3	ARIH2	10425	3	48931285	3p21.31	1	1	SC
3-3	PH-4	54681	3	49002345	3p21.31	0	1	SC
3-3	WDR6	11180	3	49019830	3p21 31	0	1	SC
3_3		55152	2	10010000	3n21 21	n n	1	200
33	MIDN/05	10/007	5	10021403	3021.01	0	1	
3-3	WIIKIN425	494337	3	49032584	3p21.31	U		UP
১- ১	C30IT6U	25915	3	49032912	3p21.31	U	1	SC
3-3	MIRN191	406966	3	49033054	3p21.31	0	1	SC
3-3	IMPDH2	3615	3	49036762	3p21.31	0	1	SC
3-3	QRICH1	54870	3	49042146	3p21.31	0	1	SC
3-3	QARS	5859	3	49108369	3p21.31	0	1	SC
3-3	USP19	10869	3	49121112	3p21 31	0	1	SC
3-3	LAMB2	3913	3	49133551	3n21.31	0 0	1	SC
~ ~ ~		0010	5		0021.01	0	1	00

MRR	Gen	ID gen	Cromosoma	Inicio	Citobanda	SNPs/gen	CN ^a	EXp
3-3	CCDC71	64925	3	49174972	3p21.31	0	1	SC
3-3	KLHDC8B	200942	3	49184072	3p21.31	0	1	SC
3-3	LOC646498	646498	3	49190073	3p21.31	0	1	NE
3-3	CCDC36	339834	3	49210865	3p21.31	0	1	SC
3-3	LOC100131840	100131840	3	49211221	3p21.31	0	1	NE
3-3	STGC3	474171	3	49273050	3p21.31	0	1	SC
3-3	C3orf62	375341	3	49281223	3p21.31	0	1	SC
3_3		7375	3	/0280007	3n21 31	õ	1	
2.2		2076	2	40260612	2021.01	0	1	50
0-0	GFAI	2070	3	49309013	3µ21.31	0		30
3-3	RHUA	387	3	49371582	3p21.31	0	1	SC
3-3	LOC100131951	100131951	3	49424265	3p21.31	0	1	NE
3-3	TCTA	6988	3	49424643	3p21.31	0	1	SC
3-3	AMT	275	3	49429215	3p21.31	0	1	SC
3-3	NICN1	84276	3	49434770	3p21.31	0	1	SC
3_3	DAG1	1605	3	49482569	3n21 31	1	1	SC
33	100100132677	100132677	3	40566006	3p21.01	0	1	
0-0	DON	0007	5	49500000	3µ21.31	0	1	
3-3	BSN	8927	3	49566926	3p21.31	0	1	50
3-3	APEH	327	3	49686439	3p21.31	0	1	SC
3-3	MST1	4485	3	49696391	3p21.31	0	1	SC
3-3	RNF123	63891	3	49701994	3p21.31	0	1	SC
3-3	AMIGO3	386724	3	49729969	3p21.31	0	1	UP
3-3	GMPPB	29925	3	49733936	3n21 31	0	1	SC
33		0807	3	40736732	3p21.01	õ	1	00 90
0-0		3007	3	49730732	3p21.31	0	1	00 NF
3-3	PHEDER	450239	3	49/0/002	3p21.31	0	1	INE
3-3	LOC389118	389118	3	49810669	3p21.31	0	1	SC
3-3	C3orf54	389119	3	49815691	3p21.31	0	1	SC
3-3	UBA7	7318	3	49817642	3p21.31	0	1	DOW
3-3	TRAIP	10293	3	49841032	3p21.31	0	1	UP
3-5	EDHQ3	2042	3	89239364	3n11 2	2	Combinado	DOW
36	100285216	2072	3	06876345	3011.2	0	2	NE
3-0	100203210	203210	5	90070343	0411.Z	0	5	
3-0	LUC644063	644063	3	97550894	3011.2	0	3	INE
3-6	LOC391556	391556	3	97767846	3q11.2	0	3	NE
3-6	LOC644082	644082	3	97819033	3q11.2	0	3	NE
3-7	PLCXD2	257068	3	112876213	3q13.2	9	3	SC
3-7	LOC100128035	100128035	3	113059529	3a13.2	0	3	SC
3-7	PHI DB2	90102	3	113085500	3a13.2	6	3	SC
37		55347	3	113180580	3013.2	õ	3	90
37		00111	3	113100303	3q13.2	1	3	00
3-7	TAGLIN3	29114	3	113200276	3q13.2	1	3	50
3-7	LOC100132753	100132753	3	113232468	3q13.2	0	3	NE
3-7	TMPRSS7	344805	3	113241155	3q13.2	1	3	SC
3-7	C3orf52	79669	3	113287929	3q13.2	3	3	SC
3-7	GCET2	257144	3	113322378	3a13.2	1	3	SC
3-8	GM2AP	2761	3	146884966	3a24	0	3	NE
38	1 00380156	380156	3	147024714	3024	õ	3	
2.0	7104	04407	3	14/024/14	3q24 2~24	0	3	
3-9	ZIC4	84107	3	148586527	3q24	0	3	50
3-9	ZIC1	7545	3	148609871	3q24	0	3	SC
3-9	LOC100132739	100132739	3	148610194	3q24	0	3	NE
3-9	FLJ30375	440982	3	148620221	3q24	2	3	NE
3-9	LOC646849	646849	3	148791466	3a24	0	3	NF
3-10	LOC100131548	100131548	3	164302521	3a26 1	Ō	3	NF
3-10	100647100	647100	2	164400057	3026.1	ñ	2	
3 11	CI CI	6476	5	166170300	2~26 1	0	5	
J-11		04/0	3	1001/9380	3420.1	U	3	50
3-11	SLITRK3	22865	3	166387202	3q26.1	0	3	SC
3-11	BCHE	590	3	166973386	3q26.1	2	3	DOM
3-11	LOC100133259	100133259	3	168010328	3q26.1	0	3	NE
3-11	LOC131055	131055	3	168266284	3q26.1	0	3	SC
3-12	GOLIM4	27333	3	169210348	3g26.2	1	3	SC
3_12	100380174	38017/	2	160/50000	3420.2	2	2	
0-12 0 10	MIDNEE1D	602426	3	160750000	2020.2	2	3	
J-12	INITRINOO IB	093130	3	109/52335	3y2b.2	U	3	NE
3-12	LOC647158	647158	3	169867041	3q26.2	0	3	NE
3-12	LOC253820	253820	3	169992623	3q26.2	0	3	NE
3-12	C3orf50	93556	3	170012777	3q26.2	0	3	NE
3-12	EVI1	2122	3	170283981	3a26.2	1	3	SC
3_12	MDS1	1107	2	1703/0520	3420.2	11	2	
J-12		419/	3	170349300	3420.2	44	3	INE
		04//8	3	1/3312936	3q26.31	11	3	SC
3-13	LOC391592	391592	3	1/3625780	3q26.31	0	3	NE
3-13 3-13		0600	2	1736/56/5	3a26 31	0	3	SC
3-13 3-13 3-13	GHSR	2093	3	173043043	0420.01	•	•	
3-13 3-13 3-13 3-13	GHSR TNFSF10	2093 8743	3	173706158	3q26.31	Ő	3	DOW
3-13 3-13 3-13 3-13 3-13	GHSR TNFSF10 LOC339858	2095 8743 339858	3 3	173706158	3q26.31 3q26.31	0	3	
3-13 3-13 3-13 3-13 3-13 3-13	GHSR TNFSF10 LOC339858	2095 8743 339858 57552	3 3 3	173706158 173803915 173821120	3q26.31 3q26.31 3q26.31	0	3 3 3	DOW NE

MRR	Gen	ID gen	Cromosoma	Inicio	Citobanda	SNPs/gen	CNª	EX
3-13	RNU4P4	26840	3	173996892	3q26.31	0	3	NE
3-13	SPATA16	83893	3	174089841	3q26.31	11	3	SC
3-13	NLGN1	22871	3	174598938	3q26.31	52	3	DOWN
3-14	NAALADL2	254827	3	176059805	3q26.31	46	3	DOWN
3-14	LOC100128870	100128870	3	176875061	3q26.31	0	3	NE
3-14	LOC730052	730052	3	176918479	3q26.31	0	3	NE
3-14	LOC442097	442097	3	177177975	3q26.31	0	3	NE
3-14	LOC100129423	100129423	3	177268503	3a26.31	0	3	NE
3-14	LOC100131216	100131216	3	177309705	3a26.32	0	3	NE
3-14	100730168	730168	3	177618664	3026.32	3	3	NE
3-14	TBI 1XR1	79718	3	178221867	3g26.32	6	3	SC
4_2	100100128096	100128096	4	9260227	4n16 1	0	1	NE
42	100728708	728708	4	0262406	4p10.1	0	1	
4-2	100644517	644617	4	0202400	4p10.1	0	1	
4-2	LOC044017	4004200000	4	9200403	4p10.1	0	1	
4-2	LOC 100 132066	100132066	4	9313415	4010.1	0	1	NE
4-2	LOC100129927	100129927	4	935/4/8	4016.1	0	1	NE
4-2	OR7E35P	391632	4	9365514	4p16.1	0	1	SC
4-2	DRD5	1816	4	9392701	4p16.1	0	1	SC
4-2	SLC2A9	56606	4	9436946	4p16.1	8	1	SC
4-2	LOC100131256	100131256	4	9523815	4p16.1	1	1	NE
4-2	WDR1	9948	4	9685061	4p16.1	6	1	SC
4-2	LOC100130161	100130161	4	9777697	4p16.1	0	1	NE
4-2	LOC100129344	100129344	4	9810587	4p16.1	3	1	NF
4-2	RAF1P1	348910	4	9865548	4n16.1	0	1	NE
1_2	7NE518B	85/60	1	10050602	/n16.1	ů 0	1	50
4-2		100120072	4	10030002	4p10.1	0	1	
4-2	LUC 100 130072	100130072	4	10009202	4p10.1	10	1	
4-2		110449	4	10100934	4p10.1	10	1	50 NE
4-2	LOC643446	643446	4	10972081	4p15.33	0	1	NE
4-2	MIRN572	693157	4	10979548	4p15.33	0	1	NE
4-2	HS3ST1	9957	4	11009086	4p15.33	1	1	SC
4-2	LOC644753	644753	4	11356249	4p15.33	2	1	NE
4-3	SEPSECS	51091	4	24732820	4p15.2	1	1	SC
4-3	PI4K2B	55300	4	24844773	4p15.2	0	1	SC
4-3	ZCCHC4	29063	4	24923494	4p15.2	1	1	SC
4-3	ANAPC4	29945	4	24987946	4p15.2	6	1	DOW
4-3	LOC645433	645433	4	25115717	4p15.2	0	1	NF
4-3	SLC34A2	10568	4	25266533	4n15 2	0	1	
4-3	I OC100129902	100129902	4	25289570	4n15 2	õ	1	NF
1_1	CHIC2	26511	4	5/570712	4010.2	1	1	
4-4 1 1		20011	4	54570713	4y12	1	1	
4-4 1 1	LUUU43913	170005	4	54047050	4412	U	ا ا	INE
4-4	GSX2	1/0825	4	54660955	4q12	U	1	SC
4-4	LUC442108	442108	4	54782047	4q12	U	1	NE
4-4	PDGFRA	5156	4	54790204	4q12	0	1	DOW
4-4	KIT	3815	4	55218852	4q12	7	1	DOW
5-1	PLEKHG4B	153478	5	193373	5p15.33	3	3	SC
5-1	LOC389257	389257	5	244626	5p15.33	0	3	SC
5-1	FLJ44896	401166	5	252099	5p15.33	0	3	SC
5-1	CCDC127	133957	5	257875	5p15.33	3	3	UP
5-1	SDHA	6389	5	271356	5p15 33	Ő	3	UP
5-1	PDCD6	10016	5	324736	5n15 33	1	3	IP
5-1	100100120064	100120064	5	2/1000	5p 10.00	0	2	
5-1	100 100 123004	57/01	5	357901	5p15.00	2	2	
J-1 E 1		100100404	э г	307291	00 10.00	2	3	UP
5-1	LOC100129491	100129491	5	361380	5p15.33	U	3	NE
5-1	LOC116349	116349	5	494613	5p15.33	U	3	UP
5-1	EXOC3	11336	5	496334	5p15.33	1	3	UP
5-1	LOC25845	25845	5	525222	5p15.33	0	3	UP
5-1	SLC9A3	6550	5	526425	5p15.33	0	3	SC
5-1	CEP72	55722	5	665405	5p15.33	0	3	UP
5-1	TPPP	11076	5	712977	5p15.33	0	3	SC
5-1	LOC100132605	100132605	5	720759	5p15 33	0	3	NF
5-1	7DHHC11R	653082	5	769818	5n15 33	1	3	
51		70011	5	03010 040700	5p15.00	0	5	INE CO
U-1		/ 9044	5	040/22	50 15.33	U	3	50
5-1	LOC100129204	100129204	5	903921	5p15.33	U	3	NE
5-1	LOC100132536	100132536	5	906865	5p15.33	0	3	NE
5-1	BRD9	65980	5	916856	5p15.33	0	3	UP
5-1	TRIP13	9319	5	946004	5p15.33	0	3	UP
5-1	NKD2	85409	5	1062168	5p15.33	0	3	SC
5-1	SLC12A7	10723	5	1103489	5p15 33	Ő	3	SC
5-1	SI C6A19	340024	5	1254766	5n15 33	0 0	3	IP
51		100100007	F	1075600	5p15.00	0	2	
U-1		100120907	3	1210000	50 15.33	U	3	
D-1	SLUDAID	348932	5	12/84/0	5D15.33	U	3	SC

MRR	Gen	ID gen	Cromosoma	Inicio	Citobanda	SNPs/gen	CN ^a	EX
5-1	TERT	7015	5	1306282	5p15.33	0	3	SC
5-1	CLPTM1L	81037	5	1370999	5p15.33	0	3	UF
5-1	SLC6A3	6531	5	1445909	5p15.33	0	3	SC
5-1	LPCAT1	79888	5	1514542	5p15.33	0	3	UF
5-1	LOC100128216	100128216	5	1518150	5p15.33	0	3	NE
5-1	LOC728613	728613	5	1650672	5p15.33	2	3	UF
5-1	LOC100132773	100132773	5	1667951	5p15.33	0	3	NE
5-1	MRPL36	64979	5	1851499	5p15.33	0	3	SC
5-1	NDUFS6	4726	5	1854509	5p15.33	0	3	U
5-1	IRX4	50805	5	1930549	5n15.33	0	3	SC
5-1	100731559	731559	5	1936597	5n15.33	Ő	3	NF
5-1	LOC100133292	100133292	5	2635298	5n15 33	4	š	NI
51	IDV2	153572	5	2700880	5p15.33	0	3	90
5-1	CEorf29	153572	5	2199000	5p15.55	0	2	00
0-1		1000710	5	2003202	5p15.55	0	3	00
5-1	LOC100130748	100130748	5	2840558	5p15.33	0	3	INE
5-1	LOC100132531	100132531	5	2919173	5015.33	0	3	N
5-1	IRX1	79192	5	3649168	5p15.33	0	3	SC
5-1	LOC340094	340094	5	5087497	5p15.32	3	3	N
5-1	ADAMTS16	170690	5	5193443	5p15.32	15	3	S
5-1	LOC442131	442131	5	5428734	5p15.32	0	3	N
5-1	KIAA0947	23379	5	5475807	5p15.32	2	3	S
5-1	LOC651419	651419	5	6300049	5p15.31	0	3	N
5-1	FLJ33360	401172	5	6363554	5p15.31	0	3	S
5-1	MED10	84246	5	6425039	5p15.31	0	3	Ű
5-1	FL 125076	134111	5	6490460	5p15 31	2	3	N
5-1	1 00255167	255167	5	6636390	5n15 31	0	3	N
5_1	NSUN2	5/888	5	6652352	5n15 31	1	š	11
51		6715	5	6686500	5p15.31	0	3	
J-1 E 1		11044	5	6767749	5p15.51	0	2	0
D-1		11044	5	0/0//10	5p 15.51	0	3	UI
5-1	LOC 100 130063	100130063	5	7341037	5p15.31	0	3	INI
5-1	LOC442132	442132	5	/35248/	5p15.31	0	3	S
5-1	ADCY2	108	5	7449343	5p15.31	14	3	S
5-1	LOC134121	134121	5	7884511	5p15.31	1	3	N
5-1	FASTKD3	79072	5	7912272	5p15.31	1	3	S
5-1	MTRR	4552	5	7922217	5p15.31	2	3	S
5-1	LOC729506	729506	5	8510640	5p15.2	2	3	N
5-1	LOC100128382	100128382	5	8892871	5p15.2	0	3	N
5-1	SEMA5A	9037	5	9088138	5p15.2	59	3	S
5-1	SNORD123	100113384	5	9601939	5p15.2	0	3	N
5-1	TAS2R1	50834	5	9682109	5p15.2	0	3	S
5-1	100134145	134145	5	10279438	5n15 2	2	3	S
5_1	CCT5	220/18	5	102/ 3400	5p15.2	1	3	11
5-1	CMPI	12/1/7	5	10220202	5p15.2	4	2	
5-1		104147	5	10330707	5p15.2	0	3	
U-1 E 1		10299	5	10400020	5015.2	1	3	50
0-1	KUPNIL	83853	5	10495015	5p15.2	U	3	S
5-1	LUC651746	651746	5	10615464	5p15.2	0	3	S
5-1	LOC100128645	100128645	5	10705631	5p15.2	0	3	N
5-1	LOC645763	645763	5	10717124	5p15.2	0	3	N
5-1	DAP	1611	5	10732342	5p15.2	2	3	U
5-1	CTNND2	1501	5	11024952	5p15.2	77	3	S
5-1	LOC391738	391738	5	13691024	5p15.2	0	3	N
5-1	DNAH5	1767	5	13745039	5p15.2	25	3	S
5-1	TRIO	7204	5	14196829	5p15.2	27	3	Ű
5-1	LOC100133299	100133299	5	14395545	5p15.2	0	3	S
5-1	LOC100131749	100131749	5	14558736	5p15 2	0 0	3	N
5-1	FAM1054	54491	5	14634932	5n15.2	ñ	3	Si.
5-1	100100120180	100120180	5	146682226	5p15.2	0	2	N
51	100301720	201720	5	1/600520	5p15.2	0	5	INI NI
U-1	LUUJ91/39	391/39	э Г	14092532	5p15.2	U	3	INI
D-1	EEF IALTT	133283	5	14704289	5p15.2	U	3	N
5-1	LUC/28178	/28178	5	14/16208	5p15.2	Û	3	N
5-1	FAM105B	90268	5	14717783	5p15.2	0	3	U
5-1	ANKH	56172	5	14762019	5p15.2	8	3	U
5-1	LOC100130744	100130744	5	14767825	5p15.2	1	3	S
5-1	LOC100128508	100128508	5	14828804	5p15 2	0	3	N
5-1	1 0C642954	642954	5	14849290	5p15.2	Ő	3	N
5-1	10000-2004	402108	5	14957002	5p15.2	2	2	N
51	100301744	2017/1	5	15502024	5p15.2	0	5	IN N
U-1	LUUJ91/41	391/41	э Г	10003824	5p15.1	0	3	INI DOI
5-1	FBXL/	23194	5	15553305	5p15.1	27	3	DOI
5-1	MIKN887	100126347	5	15988290	5p15.1	U	3	N
5-1	MARCH11	441061	5	16120474	5p15.1	3	3	S
5-1	LOC100131397	100131397	5	16232833	5p15.1	0	3	N

MRR	Gen	ID gen	Cromosoma	Inicio	Citobanda	SNPs/gen	CN ^a	ΕX
5-1	LOC100132778	100132778	5	16245040	5p15.1	0	3	N
5-1	ZNF622	90441	5	16504628	5p15.1	1	3	U
5-1	FAM134B	54463	5	16526147	5p15.1	3	3	S
5-1	MYO10	4651	5	16715016	5p15.1	15	3	U
5-1	LOC643003	643003	5	16955321	5p15.1	0	3	N
5-3	LOC266786	266786	5	20339680	5p14.3	0	3	N
5-4	LOC100132788	100132788	5	21531072	5p14.3	14	3	N
5-4	CDH12	1010	5	21786911	5p14.3	27	3	S
5-4	LOC643300	643300	5	21908032	5p14.3	1	3	Ň
5-4	PMCHI 1	5369	5	22178218	5n14.3	0	3	S
5-4	LOC100128381	100128381	5	23336788	5n14.2	ů 0	3 3	N
5-4	LOC391771	391771	5	23339125	5n14.2	0	3	N
54		56070	5	235/3/81	5p14.2	0	3	0
5-4		50373	5	23343401	5p14.2	0	2	
5-4	LOC303340	505540	5	24203904	5p14.2	0	3	IN N
5-4	LOC100130746	100130746	5	24206045	5p14.2	0	3	N
5-4	CDH10	1008	5	24522967	5p14.2	16	3	S
5-4	MSNL1	4479	5	25945176	5p14.1	0	3	N
5-4	TRNAK-CUU	100126514	5	26234296	5p14.1	0	3	N
5-4	LOC100132866	100132866	5	26705212	5p14.1	0	3	N
5-4	LOC100131678	100131678	5	26747417	5p14.1	0	3	N
5-4	CDH9	1007	5	26916466	5p14.1	10	3	S
5-4	LOC100128659	100128659	5	28249458	5p14.1	0	3	N
5-4	LOC729862	729862	5	28961462	5p14 1	Ő	3	S
5-4	LOC100130528	100130528	5	28964634	5n14.1	3 3	3 3	N
54	100100131250	100131250	5	20304004	5p14.1	0	3	N
5-4	100100131233	100131239	5	20141420	5p14.1	0	2	IN N
J-4 E 4	LOC 100 130003	267006	5	23030471	5p13.5	0	5	IN N
5-4	PGBD3P2	207000	5	29917468	5p13.3	0	3	IN N
5-4	HPRTP2	3254	5	30284138	5013.3	0	3	N
5-4	LOC391774	391774	5	31046985	5p13.3	3	3	N
5-4	LOC100128783	100128783	5	31101389	5p13.3	10	3	N
5-4	CDH6	1004	5	31229553	5p13.3	11	3	DO
5-4	RNASEN	29102	5	31436358	5p13.3	7	3	S
5-4	C5orf22	55322	5	31568158	5p13.3	1	3	U
5-4	PDZD2	23037	5	31834788	5p13.3	10	3	S
5-4	LOC728523	728523	5	31858425	5p13.3	0	3	Ň
5-4	LOC100131466	100131466	5	31944224	5n13 3	Ő	3 3	N
54		100120608	5	31050230	5p13.3	0	3	N
5-4	COLDU2	64092	5	20160501	5p13.5	0	2	
5-4 5-4	GOLPHS	04003	5	32 10030 1	5p13.5	0	3	0
5-4	LOC202122	202122	5	32257795	5013.3	0	3	N
5-4	MTMR12	54545	5	32262868	5p13.3	3	3	U
5-4	ZFR	51663	5	32390213	5p13.3	4	3	S
5-4	MIRN579	693164	5	32430240	5p13.3	0	3	N
5-4	LOC646616	646616	5	32558511	5p13.3	0	3	N
5-4	SUB1	10923	5	32621434	5p13.3	0	3	S
5-4	NPR3	4883	5	32747422	5p13.3	6	3	S
5-4	C5orf23	79614	5	32824702	5p13.3	0	3	ŝ
5-4	LOC340113	340113	5	32983306	5n13.3	1	3	N
5-1	100728553	728552	5	33102007	5n12 2	Ó	2	IN N
5-4 5 /	TVD6	20000	5	33130001	50 10.0 En 12.2	1	5	IN II
J-4 E /		646620	5 F	33410000	50 13.3 En 13.3	í C	3	U
0-4 5 4		040039	5	3353/934	5p13.3	U	3	N
5-4 5-4	ADAMIS12	81/92	5	33563043	5p13.3	23	3	S
5-4	RXFP3	51289	5	33972246	5p13.3	0	3	S
5-4	SLC45A2	51151	5	33980478	5p13.3	1	3	S
5-4	LOC100128218	100128218	5	34006725	5p13.3	0	3	N
5-4	AMACR	23600	5	34023652	5p13.3	0	3	S
5-4	C1QTNF3	114899	5	34053720	5p13.3	1	3	S
5-4	LOC643373	643373	5	34204948	5p13 3	0	3	Ň
5-4	100729915	720015	5	34224715	5n13 3	õ	3	
5-4	100100132524	100132524	5	34408801	5n12.0	0 0	2	N
5 /	100/01/100	100102024	5	34603469	5p10.2	1	5	IN N
J-4 E 1	LUU401100	401100	5 F	34092100	5p13.2	4	3	IN O
D-4	KAI 14	20004	5	34092275	5p13.2	11	3	S
5-4	FLJ25439	153657	5	34875026	5p13.2	4	3	S
5-4	RAD1	5810	5	34941122	5p13.2	0	3	U
5-4	BXDC2	55299	5	34951577	5p13.2	0	3	U
5-4	DNAJC21	134218	5	34965455	5p13.2	3	3	S
5-4	AGXT2	64902	5	35033963	5p13.2	4	3	S
5-4	PRIR	5618	5	35099985	5n13 2	8	3	יחח
	SPEF2	79025	5	35653716	5n12 2	4	2	00
5-4		13323	5	00000140	0p10.2	+	5	3
5-4 5-4	II 7P	257F	5	32803240	5n12 0	0	2	<u></u>
5-4 5-4	IL7R	3575	5	35892748	5p13.2	2	3	S

MRR	Gen	ID gen	Cromosoma	Inicio	Citobanda	SNPs/gen	CN ^a	EX
5-4	UGT3A2	167127	5	36070881	5p13.2	3	3	SC
5-4	LMBRD2	92255	5	36139171	5p13.2	1	3	SC
5-4	MIRN580	693165	5	36183750	5p13.2	0	3	NE
5-4	SKP2	6502	5	36187946	5n13.2	0	3	IP
54 51	CEorf33	133686	5	36228451	5p13.2	5	3	901 901
)-4 - 4	COULOS	133000	5	30220431	5015.Z	5	3	30
o-4	RANBP3L	202151	5	36284861	5p13.2	10	3	SC
5-4	SLC1A3	6507	5	36642446	5p13.2	9	3	SC
5-4	LOC646719	646719	5	36900284	5p13.2	0	3	NE
5-4	NIPBL	25836	5	36912742	5p13.2	4	3	SC
5-4	KRT18P31	646723	5	36921065	5p13.2	0	3	NE
5-4	100391777	391777	5	37120915	5n13.2	õ	3 3	NE
54	C5orf/2	65250	5	371/20010	5p13.2	3	3	90
J-4		03230	5	27044005	5µ13.2	5	5	30
5-4	UFDIPI	23/38	5	37244805	5p13.2	0	3	INE
5-4	LOC100132000	100132000	5	37266320	5p13.2	0	3	NE
5-4	NUP155	9631	5	37327698	5p13.2	0	3	UP
5-4	WDR70	55100	5	37415169	5p13.2	14	3	SC
5-4	LOC100129916	100129916	5	37500514	5n13 2	0	3	NF
5_1	LOC728707	728707	5	375/1/2/	5n13.2	ñ	3 3	NE
/-4 . E		120101	5	20204200	5p13.2	14	2	
<i>i</i> -5	EGFLAM	133584	5	38294290	5013.1	14	3	50
)-5	LIFR	3977	5	38510822	5p13.1	4	3	SC
j-5	LOC100132789	100132789	5	38799004	5p13.1	0	3	NE
j-5	LOC729989	729989	5	38879379	5p13.1	0	3	NE
5-5	OSMR	9180	5	38881893	5n13 1	5	3	SC
5.5	RICTOR	252260	5	38073770	5p10.1	1	2	00 00
		200200	5	00010119	5p13.1	10	5	30
)-0	FYB	2533	5	39141114	5p13.1	16	3	DOM
5-5	C9	735	5	39320758	5p13.1	11	3	SC
5-5	DAB2	1601	5	39407537	5p13.1	8	3	SC
5-5	100100129040	100129040	5	39607333	5n13 1	Ô	3	NF
55	100205624	205624	5	20754507	5p12.1	1	2	NE
-5		203034	5	10710010	5p15.1	0	5	
)-5	LOC 100127944	100127944	5	40712946	5p13.1	0	3	INE
-5	PTGER4	5734	5	40715789	5p13.1	0	3	SC
-5	TTC33	23548	5	40747435	5p13.1	0	3	SC
i-5	PRKAA1	5562	5	40795238	5p13.1	0	3	SC
5-5	RPI 37	6167	5	40867187	5n13 1	0	3	SC
55	SNODD72	610564	5	10060515	5p10.1	0	2	60
5-5	SNURD12	019304	5	40000010	5p15.1	0	3	30
J-5	CARDb	84674	5	40877167	5p13.1	3	3	SC
5-5	C7	730	5	40945356	5p13.1	9	3	DOM
5-5	FLJ40243	133558	5	41033879	5p13.1	6	3	SC
5-5	C6	729	5	41178093	5p13.1	4	3	SC
5-5	PLCXD3	345557	5	41342805	5n131	19	3	SC
50	TCD1L2	6052	5	41621540	5p12.1	2	2	
5-5		0902	5	41021040	5p15.1	2	3	
)-5	OXCIT	5019	5	41765924	5p13.1	4	3	SC
5-5	LOC285636	285636	5	41940227	5p13.1	0	3	SC
5-5	FBXO4	26272	5	41961113	5p13.1	0	3	SC
5-5	LOC100130676	100130676	5	41987172	5p13.1	0	3	NE
5_5	LOC1001300/2	100130042	5	12002006	5n13 1	0	3	NE
55	100100100042	100100042	5	424502330	5510.1	0	5	
J-J	LOC 100 129030	100129030	5	42409201	5p12	0	3	INE
5-5	GHK	2690	5	42459783	5p12	1	3	DOM
5-5	LOC100130942	100130942	5	42502689	5p12	0	3	NE
5-5	LOC100129792	100129792	5	42765152	5p12	4	3	NE
5-5	SEPP1	6414	5	42835739	5n12	2	3	DOM
5-5	100402213	402213	5	42028175	5n12	0	à	
		402213	5	423201/3	5012	0	5	
0-0	LOC100130593	100130593	5	42930232	5p12	U	3	NE
5-5	LOC100132940	100132940	5	42951245	5p12	0	3	NE
5-5	LOC100130869	100130869	5	42986021	5p12	0	3	NE
5-5	LOC100129186	100129186	5	42988699	5n12	0	3	NF
5-5	100730074	73007/	5	43006800	5n12	õ	à	
		130914	5	4000000	5012	0	5	
J-D	FLJ32255	643977	5	43018222	5p12	U	3	NE
5-5	LOC648987	648987	5	43051907	5p12	0	3	UP
5-5	C5orf39	389289	5	43074939	5p12	0	3	SC
5-5	LOC153684	153684	5	43077417	5n12	Ó	3	
5.5	10010012225	100120256	Ē	13100079	5p12	õ	2	110
)-J - F	LUG 100 132330	100132330	5	431009/0	5p12	0	3	UP
D-D	ZNF131	7690	5	4315/399	5p12	2	3	SC
5-5	MGC42105	167359	5	43228084	5p12	2	3	SC
5-5	LOC100130165	100130165	5	43242547	5p12	0	3	NE
5-5	LOC100131430	100131430	5	43267671	5n12	0	3	NE
55		2157	F	12205050	5012	1	5	00
ງ-:) ເເ		315/	5	43325250	5p12	1	3	50
ა-ხ	CCL28	56477	5	43417357	5p12	1	3	SC
j-5	C5orf28	64417	5	43480111	5p12	0	3	SC
	CE and 24	275///	F	13522567	5n12	0	3	
5-5	6501154	3/3444	i)	40022007		0	0	UF

MRR	Gen	ID gen	Cromosoma	Inicio	Citobanda	SNPs/gen	CN ^a	EX ^b
5-5	PAIP1	10605	5	43562126	5p12	0	3	SC
5-5	LOC728931	728931	5	43622209	5p12	0	3	NE
5-5	NNT	23530	5	43638548	5p12	3	3	SC
5-5	LOC283412	283412	5	43702489	5p12	0	3	NE
5-5	LOC100129791	100129791	5	43754717	5p12	0	3	NE
5-5	FGF10	2255	5	44340854	5p12	7	3	DOWN
5-5	MRPS30	10884	5	44844784	5p12	0	3	UP
5-5	HCN1	348980	5	45295109	5p12	3	3	SC
6-2	MAPK13	5603	6	36206240	6p21.31	0	Combinado	DOWN
6-2	BRPF3	27154	6	36272528	6p21.31	0	Combinado	SC
6-2	PNPLA1	285848	6	36318923	6p21.31	1	Combinado	SC
6-2	C6orf222	389384	6	36391516	6p21.31	0	Combinado	SC
6-2	EIV/	51513	6	36441949	6p21.31	1	Combinado	SC
6-2	PXT1	222659	6	36466306	6p21.31	0	Combinado	SC
6-2	KCTD20	222658	6	36518522	6p21.31	2	Combinado	SC
6-2	51K38	11329	6	30509047	6p21.31	3	Combinado	50
6-2	55853	0428	6	30070144	6~22.1	1	Combinado	50
0-3	LUG200700	200700	6	121202100	6a22.1	2 15	1	INE SC
6.2		2037	0	121202100	6a22.2	15	1	
63	ANAF7	9400 100131853	6	131500104	6a23.2	1	1	DOWN
6.4	DID3 E	26034	0	15/517/38	6g25.2	8	1	
6-4		15/0/3	6	15/768125	6g25.2	1	1	SC
6-4	100100128473	100128/173	6	15/88303/	6g25.2	0	1	NE
6-4	100100120475	100120475	6	15/0123/3	6a25.2	0	1	NE
6-4	1006/6269	6/6269	6	15/030118	6g25.2	0	1	NE
6-4	1006/627/	646274	6	155060/75	6g25.2	0	1	NE
6-4	RBM16	22828	6	155096204	6g25.2	4	1	SC
6-4	100729436	729436	6	155196171	6g25.2	6	1	NE
6-4	TIAM2	26230	6	155453115	6q25.3	2	1	SC
6-4	TFB1M	51106	6	155620482	6q25.3	8	1	SC
6-4	CLDN20	49861	6	155626839	6q25.3	õ	1	SC
6-4	NOX3	50508	6	155758194	6q25.3	11	1	SC
7-2	LOC100129634	100129634	7	8940209	7p21.3	0	3	NE
7-3	SNX10	29887	7	26298040	7p15.2	1	3	SC
7-3	LOC100129036	100129036	7	26378164	7p15.2	0	3	NE
7-3	LOC100130672	100130672	7	26404744	7p15.2	4	3	NE
7-3	LOC100132943	100132943	7	26436059	7p15.2	0	3	NE
7-3	LOC100129051	100129051	7	26542897	7p15.2	0	3	NE
7-3	LOC285941	285941	7	26644015	7p15.2	0	3	NE
7-3	SKAP2	8935	7	26673212	7p15.2	20	3	SC
7-3	LOC442660	442660	7	26923860	7p15.2	0	3	NE
7-3	LOC442661	442661	7	26988912	7p15.2	1	3	NE
7-4	AEBP1	165	7	44110485	7p13	1	3	DOWN
7-4	POLD2	5425	7	44120812	7p13	0	3	SC
7-4	MYL7	58498	7	44144988	7p13	0	3	SC
7-4	GCK	2645	7	44150395	7p13	0	3	SC
7-4	YKT6	10652	7	44207103	7p13	0	3	SC
7-4	CAMK2B	816	7	44225416	7p13	0	3	SC
/-4	NUDCD3	23386	7	44388490	/p13	0	3	SC
/-4	LOC644907	644907	7	44473967	/p13	0	3	NE
/-4	LOC100128072	100128072	(4451/146	7p13	U	3	NE
/-4 7.4	NPC1L1	29881	(44518659	/p13	U	3	SC
/-4 7 /		54606	1	445/1928	7p13	U	3	50
/-4 7/		222068	1	44585287	7p13	U	3	50
/-4 7/		4307	1	44012090	7013	1	3	30
1-4 7 /		03031 5/70	1 7	44100000	7010	0	ა ა	30
1-4 7 /		04/0 04000	1 7	44002/00	7p13	0	3 2	30
7_1		J4209 EQ11	7	44033013	7010	0	2	00 00
7_4	MRPS22D1	352200	7	44002417	7p13	0	3 2	
7_4	MYO1G	64005	7	44968786	7p13	0	2	SC
7-4	C7orf40	285958	7	44989152	7p13	0	3	SC
7_4	SNORAG	677708	7	44001502	7p13	0	2	50
7-4	CCM2	83605	7	45006312	7n13	1	3	SC
7-5	LOC222005	222005	7	54453055	7p11 2	Ó	3	NF
7-5	VSTM2A	222000	7	54577513	7n11 2	Ř	3	SC
7-5	LOC392030	392030	7	54670773	7p11.2	10	3	ŇĒ
7-5	SEC61G	23480	7	54787434	7p11.2	0	3	SC
7-5	LOC643168	643168	7	54968633	7p11.2	2	3	NE
7-5	EGFR	1956	7	55054219	7p11.2	12	3	sc

MRR	Gen	ID gen	Cromosoma	Inicio	Citobanda	SNPs/gen	CNa	EX
7-7	C7orf58	79974	7	120415987	7q31.31	18	3	DOW
7-7	WNT16	51384	7	120752657	7q31.31	0	3	SC
7-7	FAM3C	10447	7	120776141	7q31.31	3	3	SC
7-7	CYCSP19	360174	7	120825744	7q31.31	0	3	NE
7-7	LOC392979	392979	7	120868124	7q31.32	12	3	NE
7-8	LOC442723	442723	7	130577891	7q32.3	0	3	NE
7-8	MKLN1	4289	7	130663175	7q32.3	3	3	SC
7-8	PODXL	5420	7	130835561	7q32.3	0	3	SC
7-8	LOC647030	647030	7	130997174	7q32.3	0	3	NE
7-8	LOC647034	647034	7	131000878	7q32.3	0	3	NE
7-8	LOC100128596	100128596	7	131088952	7q32.3	5	3	NE
7-8	LOC100130704	100130704	7	131227902	7q32.3	0	3	NE
7-8	LOC100132328	100132328	7	131421565	7q32.3	0	3	NE
7-8	PLXNA4	91584	7	131458631	7q32.3	28	3	SC
7-8	LOC100129705	100129705	7	131464993	7q32.3	0	3	NE
7-9	HIPK2	28996	7	138907915	7a34	1	3	SC
7-9	LOC653052	653052	7	139059616	7a34	1	3	NE
7-9	TBXAS1	6916	7	139175421	7a34	8	3	DOW
7-9	PARP12	64761	7	139370018	7a34	1	3	SC
7-9	.IHDM1D	80853	7	139431015	7n34	1	3	DOW
7-9	LOC100130972	100130972	7	139557049	7n34	2	3	NF
7-9	SI C37A3	84255	7	139680021	7n34	0	3	SC
7-9	100100127007	100127997	7	139748800	7 q34 7 a 34	0	3	
7.0	DAD10	100127337	7	130753016	7434	0	3	SC.
7-9	100640255	640255	7	120701502	7434	0	2	NE
7-9	LUC042333	042000	7	120700220	7434	0	2	
7-9		23000	7	139799320	7434	0	3	50
7-9	DENNDZA	2/14/	/	139804089	/q34	1	3	DOW
8-2	CSMD1	64478	8	2780282	8p23.2	282	1	SC
8-3	MAP2K1P1	29778	8	30005971	8p12	0	1	NE
8-3	I MEM66	51669	8	30040173	8p12	2	1	SC
8-3	LEPROTL1	23484	8	30072487	8p12	0	1	SC
8-3	LOC648729	648729	8	30094396	8p12	0	1	NE
8-3	MBOAT4	619373	8	30109001	8p12	0	1	SC
8-3	DCTN6	10671	8	30133355	8p12	1	1	SC
8-3	LOC392209	392209	8	30214338	8p12	0	1	NE
8-3	LOC642319	642319	8	30226560	8p12	0	1	NE
8-3	LOC92755	92755	8	30308375	8p12	1	1	NE
8-3	LOC100128441	100128441	8	30309019	8p12	0	1	NE
8-3	LOC100131210	100131210	8	30315133	8p12	1	1	NE
8-3	LOC100128750	100128750	8	30360188	8p12	0	1	NE
8-3	RBPMS	11030	8	30361486	8p12	9	1	DOW
8-3	LOC100129846	100129846	8	30545233	8p12	0	1	NE
8-3	GTE2E2	2961	8	30555573	8n12	5	1	SC
8-3	GSR	2936	8	30655977	8n12	Õ	1	SC
8-3	UBXD6	7993	8	30721232	8n12	1	1	SC
8-3	PPP2CB	5516	8	30762668	8n12	0	1	20
8-3	TEX15	5615/	8	30808602	8n12	2	1	00
8-3	100100120202	100120202	Q Q	30000002	8n12	2	1	
8-3	DIBC	200129390	0 Q	30300314	8n12	3 1	1	
8-3	WPN	23342 7/26	0 Q	31010220	8n12	I Q	1	30
0-0		640540	0	2110520	0012	4	4	30
0-0	LUU042513	042013	ŏ	31195240	op 12	1	1	50
0-4	KPL IUAPZ	203980	ŏ	4010///0	0-44.04	U		NE
0-4	ATPOVIGP2	019450	ŏ	48224100	8q11.21	U		NE
ŏ-4	LOC100128541	100128541	8	48224788	8q11.21	U	1	NE
ŏ-4	LOC392217	392217	8	48233219	8q11.21	0	1	NE
ŏ-4	LOC100129954	100129954	8	48333807	8q11.21	0	1	NE
8-4	KIAA0146	23514	8	48336095	8q11.21	3	1	SC
8-5	ST3GAL1	6482	8	134540312	8q24.22	3	3	SC
8-5	LOC100129104	100129104	8	134650165	8q24.22	0	3	NE
8-5	ZFAT1	57623	8	135559213	8q24.22	11	3	SC
9-2	LOC138971	138971	9	75278974	9q21.13	0	3	NE
9-3	RALGPS1	9649	9	128716874	9q33.3	5	3	SC
9-3	ANGPTL2	23452	9	128889449	9q33.3	1	3	DOW
9-3	GARNL3	84253	9	129066967	9g33.3	6	3	DOW
9-3	LOC100130058	100130058	9	129102190	9g33.3	Ō	3	NF
9-3	SLC2A8	29988	9	129199286	9a33 3	Ő	3	SC
9-3	ZNF79	7633	ğ	129226482	9a33.3	0 0	3	SC
9-3	RPI 12	6136	q	129249776	9n33 3	ñ	3	50
9-3	SNORA65	26783	q	129250602	9033 3	0	3	20
0_3		20703	5	120250002	0422.2 0422.2	0	2	00
0.2		50070	3	12020010	0,24,14	4	3	30
y-J	LAMI172B	04000	9	129307439	9034.11	1	3	SC

MRR	Gen	ID gen	Cromosoma	Inicio	Citobanda	SNPs/gen	CN ^a	EX ^b
9-3	LOC100130250	100130250	9	129358051	9q34.11	0	3	NE
9-3	STXBP1	6812	9	129414390	9q34.11	1	3	SC
10-1	ZMYND11	10771	10	170643	10p15.3	5	1	SC
10-1	DIP2C	22982	10	311432	10p15.3	5	1	DOWN
10-1	LOC642278	642278	10	660410	10p15.3	0	1	NE
10-1	C10orf108	414235	10	685976	10p15.3	0	1	SC
10-2	PDSS1	23590	10	27026601	10n121	2	1	SC
10_2	ABI1	10006	10	27075531	10p12.1	4	1	50
10-2	C10orf51	387644	10	27260146	10p12.1	- 0	1	
10-2		307044	10	27200140	10012.1	0	1	
10-2	LUC 100131912	100131912	10	21212291	10012.1	0	1	NE
10-2	ANKRD26	22852	10	27333051	10p12.1	0	1	SC
10-2	LOC100129044	100129044	10	27429522	10p12.1	0	1	NE
10-2	YME1L1	10730	10	27439389	10p12.1	0	1	SC
10-2	MASTL	84930	10	27484298	10p12.1	1	1	UP
0-2	ACBD5	91452	10	27524149	10p12.1	0	1	SC
0-2	LOC387646	387646	10	27574788	10p12.1	0	1	SC
0-2	LOC729549	729549	10	27648641	10p12.1	1	1	NE
0-2	LOC100131328	100131328	10	27678647	10n12.1	0	1	NE
0_2	PTCHD3	37/308	10	27727206	10p12.1	ů 0	1	90
0.2		22024	10	21121200	10012.1	0	1	00
0-2		22931	10	21033233	10012.1	2	1	30
0-2	WINA KONOL	2030/0	10	20001809	10012.1	4	1	50
1-2	KCNQ1	3784	11	2422797	11p15.4	2	3	SC
1-2	KCNQ10T1	10984	11	2674977	11p15.5	0	3	NE
1-2	KCNQ1DN	55539	11	2848503	11p15.4	0	3	SC
1-2	CDKN1C	1028	11	2861441	11p15.4	0	3	SC
1-2	SLC22A18AS	5003	11	2864750	11p15.4	0	3	SC
1-2	SI C22A18	5002	11	2877527	11n154	0	3	SC
1-2	PHI DA2	7262	11	2906079	11n15.4	Ő	3	SC
10		4676	11	2000010	11p10.1	4	ž	80
1-2		4070	11	2922230	11p15.4	4	2	
1-2	SINURA04	0//033	11	2941577	11015.4	1	3	DOW
1-3	SAA4	6291	11	18209479	11p15.1	1	Combinado	SC
1-3	SAA2	6289	11	18223365	11p15.1	0	Combinado	SC
1-3	FAM10A5	144106	11	18239907	11p15.1	0	Combinado	SC
1-3	SAA1	6288	11	18244348	11p15.1	0	Combinado	SC
1-3	HPS5	11234	11	18256793	11p15.1	1	Combinado	SC
1-3	GTF2H1	2965	11	18300719	11p15.1	1	Combinado	SC
1-5	CNTN5	53942	11	98397081	11a22.1	126	3	SC
1-5	LOC100128632	100128632	11	99712799	11022 1	0	3	NF
1_5	100440063	440063	11	1000/2/06	11022.1	Ő	3	
1.5	100100128386	100128386	11	100042400	11022.1	0	3	
1 5	EUC 100 120000	142070	11	100000102	11,22.1	20	2	
1-0	FLJ32010	143072	11	100063620	11922.1	22	3	30
1-5	LOC100129602	100129602	11	100354978	11q22.1	1	3	NE
1-5	TMEM133	83935	11	100368021	11q22.1	0	3	SC
1-5	PGR	5241	11	100414313	11q22.1	5	3	DOWN
1-5	TRPC6	7225	11	100827584	11q22.1	10	3	DOWN
1-5	LOC100127938	100127938	11	100969961	11q22.1	0	3	NE
1-5	LOC100129471	100129471	11	101141873	11a22.1	0	3	NE
1-5	ANGPTI 5	253935	11	101266615	11a22 1	1	3	SC
1-5	KIAA1377	57562	11	101290956	11022 1	2	3	SC
1-5	C11orf70	85016	11	101423400	11022 1	ñ	3	30
1_5	VAD1	10/12	11	101/265/1	11022.1	6	2	er
1-0		10413	11	101400041	11422.2	0	3	30
1-0		4317	11	102000040	11422.2	2	3	30
1-0	LUC100128088	100128088	11	10212/283	11q22.2	0	3	NE
1-6	MMP10	4319	11	102146444	11q22.2	0	3	SC
1-6	MMP1	4312	11	102165861	11q22.2	3	3	SC
1-6	LOC120321	120321	11	102182877	11q22.2	0	3	NE
1-6	MMP3	4314	11	102211738	11q22.2	2	3	SC
1-7	POU2AF1	5450	11	110728190	11a23.1	0	1	SC
1-7	LOC100132078	100132078	11	110790177	11a23.1	0	1	NE
1-7	100644277	644277	11	110804433	11023 1	1	1	NE
1_7	BTGA	5/766	11	1108/3/65	110221	6	1	0C
17		700400	11	110040400	11420.1	0	1	30
1-1	LUC/20190	120190	11	110666535	11023.1	U		SC
1-/	MIRN34B	407041	11	110888872	11q23.1	0	1	SC
1-7	MIRN34C	407042	11	110889373	11q23.1	0	1	SC
1-7	FLJ46266	399949	11	110890720	11q23.1	0	1	SC
1-7	LAYN	143903	11	110916443	11q23.1	1	1	DOW
1-7	SNF1LK2	23235	11	110978380	11a23.1	4	1	SC
1-7	PPP2R1R	5519	11	111102842	11023.1	1	1	SC
1_7	AL G9	79706	11	111158120	11022 1	2	1	90 90
17	CNC5D2	100101022	11	111240144	1120.1	0	1	
1-1		01002	11	111240141	11023.1	0	1	
11-/	LOCA 1983	91893	11	111249990	11023.1	U	1	SC

MRR	Gen	ID gen	Cromosoma	Inicio	Citobanda	SNPs/gen	CNa	EX
11-7	C11orf1	64776	11	111255158	11q23.1	0	1	SC
11-7	CRYAB	1410	11	111284560	11q23.1	0	1	SC
11-7	HSPB2	3316	11	111288709	11q23.1	0	1	SC
11-7	C11orf52	91894	11	111294811	11q23.1	1	1	SC
11-7	DIXDC1	85458	11	111313137	11q23.1	1	1	SC
11-7	DLAT	1737	11	111401381	11q23.1	1	1	SC
11-7	PPIHP1	246731	11	111405380	11q23.1	0	1	NE
11-7	PIH1D2	120379	11	111439944	11q23.1	0	1	SC
11-7	C11orf57	55216	11	111450178	11q23.1	0	1	SC
11-7	TIMM8B	26521	11	111461079	11q23.1	0	1	SC
11-7	SDHD	6392	11	111462832	11q23.1	0	1	SC
11-7	IL18	3606	11	111519186	11q23.1	2	1	SC
11-7	TEX12	56158	11	111543305	11q23.1	1	1	SC
11-7	BCDO2	83875	11	111551418	11q23.1	2	1	SC
11-7	LOC728291	728291	11	111556485	11q23.1	0	1	NE
11-7	MRPS36P4	347702	11	111584530	11q23.1	0	1	NE
11-7	PTS	5805	11	111602309	11q23.1	0	1	SC
11-7	LOC100128923	100128923	11	111611304	11q23.1	0	1	NE
11-7	C11orf34	349633	11	111624732	11q23.1	0	1	SC
11-7	LOC100132686	100132686	11	111636197	11q23.1	0	1	DOWN
11-7	LOC399950	399950	11	111643223	11q23.1	0	1	NE
11-8	LOC728842	728842	11	115299565	11q23.2	0	1	NE
11-8	LOC100128347	100128347	11	115326118	11q23.2	0	1	NE
11-8	BUD13	84811	11	116124099	11q23.3	4	1	SC
11-8	ZNF259	8882	11	116154486	11q23.3	0	1	UP
11-8	APOA5	116519	11	116165296	11q23.3	0	1	SC
11-8	APOA4	337	11	116196628	11q23.3	0	1	SC
11-8	APOC3	345	11	116205834	11q23.3	0	1	SC
11-8	APOA1	335	11	116211679	11q23.3	0	1	SC
11-8	KIAA0999	23387	11	116219328	11q23.3	14	1	SC
11-8	LOC100129905	100129905	11	116411642	11a23.3	0	1	NE
11-8	LOC100132676	100132676	11	116493657	11a23.3	0	1	NE
11-8	LOC653303	653303	11	116511452	11a23.3	Ō	1	NE
11-8	PAFAH1B2	5049	11	116520250	11a23.3	0	1	SC
11-8	SIDT2	51092	11	116555149	11a23.3	1	1	SC
11-9	POU2E3	25833	11	119616161	11a23.3	1	1	SC
11-9	100649133	649133	11	119634838	11023.3	1	1	NE
11-9	TMEM136	219902	11	119701226	11023.3	0 0	1	SC
11_9	ARHGEE12	23365	11	110713156	11023.3	3	1	SC
11-0		20000	11	120036238	11a23.3	7	1	00 SC
11 0		210800	11	120000200	11023.3	1	1	00 80
11-0	TECTA	213033	11	120400040	11a23.3	F 6	1	00 SC
11-5	SCEDI	6300	11	120470505	11023.3	2	1	00 80
11-5	100283155	283155	11	1200000000	11a24.1	2	1	NE
11-5	100645470	645470	11	1207 30203	11a24.1	0	1	
11-9	LUC040470	040470	11	120002437	11424.1	0	1	
11-9		100106510	11	120020130	11024.1	5	1	
11-1U 11-10		100120513	11	121900000	11/24.1	0	1	
11-10	GLULLJ	401/08	11	121989362	11024.1	U	1	NE
11-10	OBASHJB	04909	11	122031040	11024.1	5	1	50
11-1U 11-10		20253	11	122214405	11024.1	3	1	50
1 I-IU 11 10		19864	11	122258683	11024.1	2	1	SU
11-10	LUC 100128516	100128516	11	122336090	11024.1	U		NE
11-10	BSX	390259	11	122353567	11q24.1	U	1	SC
11-10	LUU341056	341056	11	122393557	11q24.1	U	1	NE
11-10	HSPA	3312	11	122433410	11q24.1	2	1	SC
11-10	LUC85391	85391	11	122433837	11q24.1	1	1	SC
11-10	LUC85390	85390	11	122434/49	11q24.1	1	1	NE
11-10	LOC85389	85389	11	122435180	11q24.1	0	1	SC
11-10	ASAM	79827	11	122448230	11q24.1	2	1	SC
11-11	STT3A	3703	11	124967967	11q24.2	1	1	SC
11-11	CHEK1	1111	11	125001547	11q24.2	0	1	UP
11-11	ACRV1	56	11	125047439	11q24.2	0	1	SC
11-11	PATE	160065	11	125121398	11q24.2	0	1	SC
11-11	C11orf38	399967	11	125151235	11q24.2	0	1	SC
11-11	FLJ41047	399968	11	125208427	11q24.2	0	1	NE
11-11	HYLS1	219844	11	125258719	11q24.2	1	1	SC
11-11	PUS3	83480	11	125268590	11a24.2	1	1	SC
11-11	DDX25	29118	11	125279613	11a24.2	0	1	SC
11-11	LOC338667	338667	11	125321161	11a24.2	0	1	NE
11-11	CDON	50937	11	125331923	11a24.2	2	1	SC
11-11	LOC729561	729561	11	125442648	11n24 2	0	1	NF
		1 20001	11	120172070	11967.6			

MRR	Gen	ID gen	Cromosoma	Inicio	Citobanda	SNPs/gen	CN ^a	EXp
11-11	RPUSD4	84881	11	125577519	11q24.2	1	1	SC
11-11	FAM118B	79607	11	125586829	11q24.2	1	1	SC
11-12	HNT	50863	11	130745581	11q25	30	1	SC
11-12	C11orf39	399980	11	131035347	11q25	0	1	NE
11-12	LOC729229	729229	11	131252784	11q25	0	1	NE
11-12	OPCML	4978	11	131790085	11q25	21	1	SC
12-2	CPNE8	144402	12	37332269	12012	16	3	SC
12-3	LOC100121005	390308	12	41310001	12q12	0	3	NE
12-5	GIB6	100131303	12	1060/101	12012	0	1	
13-2	CRYL1	51084	13	19875806	13a12.11	10	1	SC
13-2	IFT88	8100	13	20039208	13a12.11	4	1	DOWN
13-2	IL17D	53342	13	20175482	13a12.11	0	1	SC
13-2	LOC100130979	100130979	13	20183671	13q12.11	0	1	NE
13-2	LOC100132131	100132131	13	20184771	13q12.11	0	1	NE
13-2	N6AMT2	221143	13	20201070	13q12.11	1	1	SC
13-2	XPO4	64328	13	20249468	13q12.11	5	1	SC
13-2	LOC100130563	100130563	13	20393608	13q12.11	0	1	NE
13-2	LOC728031	728031	13	20416396	13q12.11	1	1	NE
13-2	LOC440125	440125	13	20420090	13q12.11	0	1	NE
13-2	LATS2	26524	13	20445175	13012.11	3	1	UP
13-2	LUU3300/U SAD19	3300/U 10204	13	20566433	13012.11	U	1	NE
13-2	C13orf3	221150	13	20012003	13g12.11	0	1	IP
13-2	MRP63	78988	13	20648372	13g12.11	0	1	UP
13-2	ESRRAP2	144832	13	20731913	13a12.11	0	1	NE
13-2	LOC650794	650794	13	20759602	13a12.11	Ő	1	NE
13-2	GRK6PS	2871	13	20791191	13q12.11	0	1	NE
13-2	LOC729697	729697	13	20791295	13q12.11	2	1	NE
13-2	ZDHHC20	253832	13	20848508	13q12.11	4	1	SC
13-2	LOC100130907	100130907	13	20955970	13q12.11	0	1	NE
13-2	EFHA1	221154	13	20964839	13q12.11	8	1	SC
13-2	FNTAL2	2341	13	21002728	13q12.11	0	1	NE
13-2	LOC100128060	100128060	13	21100529	13q12.11	1	1	NE
13-2		2254	13	21143875	13012.11	0	1	DOWN
13-2		2000	13	22100001	13012.11	0	1	NE
13-2	LOC100131224	100131224	13	22775516	13g12.11	0	1	NE
13-2	LOC401730	401730	13	22308934	13a12 12	0	1	NE
13-2	LOC100129167	100129167	13	22322179	13q12.12	Ő	1	NE
13-3	LOC100130029	100130029	13	22606417	13q12.12	0	1	NE
13-3	SGCG	6445	13	22653091	13q12.12	11	1	SC
13-3	SACS	26278	13	22800966	13q12.12	3	1	SC
13-3	TNFRSF19	55504	13	23042723	13q12.12	0	1	SC
13-3	MIPEP	4285	13	23202328	13q12.12	6	1	SC
13-3	PCOTH	542767	13	23361028	13q12.12	0	1	SC
13-3	LUU38/911	38/911	13	23363428	13q12.12	U	1	SC
13-3	FLJ40300	400110 100100007	13	23413070	13012.12	U 1	1	
13-3	SPATA13	100120337 221178	10 12	23093103	13q12.12	1 15	1	INE SC
13-3	C1QTNF9	338872	13	23781716	13a12.12	0	1	SC
13-3	LOC724034	724034	13	23795007	13g12.12	õ	1	NE
13-3	YDD19	11049	13	23800348	13q12.12	Ő	1	NE
13-3	LOC646357	646357	13	23810993	13q12.12	0	1	NE
13-3	CYCSP33	221180	13	23872850	13q12.12	0	1	NE
13-3	PARP4	143	13	23893069	13q12.12	7	1	SC
13-3	LOC374491	374491	13	24052346	13q12.12	0	1	SC
13-3	ATP12A	479	13	24152695	13q12.12	4	1	SC
13-3	IRX1P1	646390	13	24212992	13q12.12	0	1	NE
13-3	LOC100129891	100129891	13	24223916	13q12.12	U	1	NE
13-3		50103	13	24236301	13012.12	1	1	50
13-3		00000 646405	13	24004412	13a12.12	U 1	1	
13-3	10010103228/	10012228/	13	24090010	13012.12	0	1	
13-3	PABPC3	5042	13	24568276	13g12.13	0	1	SC
13-3	FAM123A	219287	13	24640660	13q12.13	1	1	SC
13-3	MTMR6	9107	13	24718339	13q12.13	0	1	SC
13-3	LOC646482	646482	13	24772262	13q12.13	0	1	NE
13-3	NUPL1	9818	13	24773666	13q12.13	0	1	SC
13-3	LOC246717	246717	13	24837837	13q12.13	0	1	NE
13-3	ATP8A2	51761	13	24844209	13a12.13	32	1	SC
MRR	Gen	ID gen	Cromosoma	Inicio	Citobanda	SNPs/gen	CNª	EXt
------	--------------	-----------	-----------	----------	-----------	----------	-----	------------
3-3	TMEM46	387914	13	25516735	13q12.13	1	1	SC
13-3	LOC100129595	100129595	13	25589682	13q12.13	4	1	NE
13-3	RNF6	6049	13	25684905	13q12.13	2	1	SC
13-3	LOC100128764	100128764	13	25705383	13q12.13	0	1	NE
13-3	CDK8	1024	13	25726756	13q12.13	16	1	SC
13-3	WASF3	10810	13	26029840	13a12.13	3	1	SC
13-3	LOC646527	646527	13	26049017	13a12.13	0	1	NE
13_3	GPR12	2835	13	26230960	13a12 13	ů.	1	SC
13_3	100100129306	100129306	13	26489688	13a12.13	0	1	NE
12 2	119012	210333	13	26540433	13012.10	0	1	90
12.2	DDI 21	219555	13	20340433	13012.13	9	1	90
10-0		0144	10	20723092	12012.2	0	1	30
10-0	SNURDIUZ	20771	10	20727201	13012.2	0	1	50
13-3	SNURAZ/	619499	13	20727538	13012.2	0	1	50
13-3	RASLITA	387496	13	26742464	13q12.2	0	1	SC
13-3	GTF3A	2971	13	26895849	13q12.2	1	1	SC
13-3	MTIF3	219402	13	26907780	13q12.2	2	1	SC
13-3	LNX2	222484	13	27018050	13q12.2	4	1	SC
13-3	LOC100133110	100133110	13	27091896	13q12.2	0	1	NE
13-3	POLR1D	51082	13	27094003	13q12.2	11	1	SC
13-3	LOC100128903	100128903	13	27168527	13q12.2	0	1	NE
13-3	GSX1	219409	13	27264780	13012.2	0	1	SC
13-3	PDX1	3651	13	27392157	13a12.2	0	1	SC
13-3	LOC432369	432369	13	27417343	13a12.2	õ	1	SC
13_3	LOC100132234	100132234	13	27425669	13a12.2	ů 0	1	NE
12 2	CDY2	10/15	13	27420000	13a12.2	0	1	90
10-0		646625	10	27454270	12/12.2	0	1	00
10-0		040020	13	27430243	13412.2	0	1	30
13-3	FLI3	2322	13	2/4/5411	13012.2	0	1	50
13-3	LOC646630	646630	13	2/5/9/32	13q12.2	0	1	NE
13-3	PAN3	255967	13	27646417	13q12.2	5	1	DOV
13-3	FLT1	2321	13	27774389	13q12.2	14	1	DOM
13-3	LOC341784	341784	13	28054893	13q12.3	1	1	NE
13-3	POMP	51371	13	28131251	13q12.3	3	1	SC
13-3	SLC46A3	283537	13	28172217	13q12.3	0	1	DOM
13-3	CYP51P2	83530	13	28195506	13q12.3	0	1	NE
13-3	KIAA0774	23281	13	28496748	13q12.3	21	1	SC
13-3	SLC7A1	6541	13	28981551	13a12.3	3	1	SC
13-3	LOC100131766	100131766	13	29064863	13g12 3	0	1	SC
13-3	UBL3	5412	13	29236542	13g12 3	7	1	DOW
13_3	ΚΔΤΝΔΙ 1	84056	13	29674767	13012.3	4	1	
13_3	PRDX2P1	359844	13	29768112	13a12.3	0	1	NE
12 2		171000	13	20000122	13a12.3	0	1	
10-0		21/6	10	29900122	12012.0	0	1	
10-0		0140	13	29930077	13412.3	1	1	
13-3	LUC646755	040755	13	30013456	13012.3	0	1	INE
13-3	LOC646758	646758	13	30025808	13q12.3	0	1	NE
13-3	USPL1	10208	13	30089920	13q12.3	5	1	SC
13-3	TRNAN-GUU	100126512	13	30146101	13q12.3	0	1	NE
13-3	ALOX5AP	241	13	30207669	13q12.3	3	1	DOM
13-3	LOC440132	440132	13	30334794	13q12.3	1	1	NE
13-3	C13orf33	84935	13	30378328	13q12.3	3	1	SC
13-3	C13orf26	122046	13	30404834	13q12.3	3	1	SC
13-4	FOXO1	2308	13	40027801	13q14.11	5	1	SC
13-4	LOC100133016	100133016	13	40090875	13q14.11	0	1	NE
13-4	MRPS31	10240	13	40201433	13014 11	2	1	SC
13-4	SI C25A15	10166	13	40261507	13014 11	0	1	20
13_/	SUGT11 1	282507	12	10260107	1301/11	1	1	00
12 /	MIDN621	200001	10	40203121	12014.11	í O	1	
13-4		093200	13	40282901	13414.11	U	4	INE NUT
13-4	0103234	300102	13	40335730	13914.11	U		NE
13-4	LOC100130423	100130423	13	40384023	13q14.11	U	1	NE
13-4	ELF1	1997	13	40404164	13q14.11	1	1	SC
13-4	LOC100128628	100128628	13	40464872	13q14.11	0	1	NE
13-4	TRNAE-UUC	100126517	13	40532874	13q14.11	0	1	NE
13-4	WBP4	11193	13	40533697	13q14.11	2	1	SC
13-4	KBTBD6	89890	13	40599709	13q14.11	0	1	SC
13-4	CALM2P3	807	13	40640529	13a14 11	0	1	NF
13-4	KBTBD7	84078	13	40663711	13a14 11	õ	1	SC
13-4	100100130634	10013063/	13	40666456	13014 11	ñ	1	
12 /	MTDE1	0617	10	10600400	12014.11	0	1	
13-4		9017	13	40000010	13414.11	U	4	50
13-4	KAUTP3	492295	13	40/58/15	13014.11	U	1	NE
13-4	NARG1L	79612	13	40783418	13q14.11	0	1	SC
13-4	LOC647000	647000	13	40856173	13q14.11	0	1	NE
13-4	OR7E36P	26637	13	40903300	13q14.11	0	1	NE

MRR	Gen	ID gen	Cromosoma	Inicio	Citobanda	SNPs/gen	CNa	EXb
13-4	OR7E155P	403297	13	40911873	13q14.11	0	1	NE
13-4	OR7E37P	26636	13	40915060	13q14.11	0	1	SC
13-4	IRNAE-CUC	100126518	13	40928061	13q14.11	0	1	NE
13-4	C13orf15	28984	13	40929542	13q14.11	3	1	DOW
13-4	KIAAU564	23078	13	41038961	13q14.11	23	1	DOW
13-4		160851	13	41520889	13014.11	28	1	DOW
13-4	MAPK6PS3	31/684	13	41539746	13014.11	0	1	NE
13-4	AKAP11	11215	13	41744289	13014.11	5	1	SC
13-4	FABP3P2	1/000	13	41841250	13014.11	0	1	NE
13-4	INFSF11	8600	13	42043795	13014.11	0	1	SC
13-4	01301130	144009	13	42200/01	13014.11	0	1	30
10-0	LOC220410	220410	13	40004004	13414.12	5	1	30
13-5	C13orf18	290403 20123	13	40742210	13q14.12	0	1	
13-5	100728070	728070	13	45004157	13014.12	0	1	
13-5	LOC720970	721022	13	45909059	13014.13	0	1	
10-0	00751932	01120	13	45950001	12014.13	0	1	
13-5	UC100132033	100132033	13	45952571	13014.13	0	1	
13-5	COV17P	81003	13	45963066	13q14.13	0	1	
13-5	EKBD1D3	2284	13	45905000	13q14.13	0	1	
13-5		2204	13	46025304	13q14.13	10	1	
13-5	ESD	20140	13	40020004	13014.13	10	1	
13-5		2050	13	40245592	13q14.2	4	1	50
13-5	SUTRK1	11/708	13	83340344	13014.2	0	3	30 SC
13.6		347075	13	83370337	13031.1	0	3	
13-0		26050	13	87122871	13031.1	0	3	
13-7	CYYC6P1	441662	13	873/0/28	13031.2	1	3	NE
1/-2	BNID3D	310138	1/	27803285	1/012	0	3	
14-2	DIVIL OF	326208	14	28028761	1/012	0	3	
14-2	NELZOF 5	8650	14	72811671	1/1/2/3	8	1	
14-3		300671	14	720110/1	14924.3	1	1	80
14-3	C1/orf160	79697	14	73074343	14q24.3	0	1	30 SC
14-3		6/1371	14	73073681	1/1/24.3	0	1	00 SC
14-3	NT5CP2	326611	14	73075/32	1/1/24.3	0	1	NE
14-3		10965	14	73105525	1/1/24.3	0	1	SC
14-3	NT5CP1	326609	14	73107355	1/1/24.3	0	1	
14-3		1220003	14	73128163	14924.3	0	1	SC
14-5	ACO14 ACO16	6/1372	14	73153301	14424.3	0	1	80
14-5		226606	14	72167021	14424.3	0	1	
14-5		83544	14	73181/55	14424.3	0	1	SC
14-3		0240	14	732/8230	14924.3	0	1	80
14-5	C1/orf/3	017/8	14	73251578	14424.3	1	1	80
14-5		1/5/02	14	72200424	14424.3	0	1	80
14-5		57862	14	73/03220	14424.3	5	1	00 90
14-5	C14orf44	1/5/83	14	73423335	14424.3	0	1	80
14-5	01401144	F1001	14	72496206	14424.3	0	1	00
14-3	ENTPOS	057	14	725020250	1/10/ 2	1	1	30
1/-3		326308	14	73530700	14924.0	4	1	
14-0	C14orf45	320300 80197	14	735860109	14424.3 14024 2	0	1	INE CO
14-3		/1220	14	72506622	1/10/ 2	0	1	30
1/1_3		91750	14	73601022	1/29/ 2	6	1	
16-2	ACSM2A	123876	16	20370360	16n12 3	1	1	0F QC
16-2	100100120188	100120/88	16	20070000	16p12.0	1	1	00 00
16-2	ACSM2B	3/8158	16	20400323	10p12.3	0	1	30 SC
16.2		646805	10	20400001	10p12.3	0	1	
16.2	ACSM1	116285	10	20500202	10p12.2	3	1	SC
16-2		6/6810	10	20042000	16p12.2	2	1	
16_2		55623	16	20652/87	16p12.2	0	1	SC
16-2		730020	10	20662486	16p12.2	1	1	
16_2	ACSM3	6206	16	20002400	16p12.2	3	1	SC
16-2	FYOD1	112/70	10	20602015	16p12.2	0	1	00 SC
16-2	10081691	81601	16	20030010	16p12.2	2	1	00 00
16-2	DCUN1D3	123870	16	20776807	16p12.2	2	1	00 00
16-2	I VRM1	571/0	16	20110031	16p12.2	<u>د</u> 1	1	00
16-2		51 149	10	20019921	16p12.2	2	1	30
16-2	TMEM150	571/6	10	20031977	16p12.2	2	1	30
16.2		7700	10	210//001	10p12.2	2	1	30
10-2		1100	10	211102/4	10p12.2	2	1	30
16.0		(5/h/M	in	2115/51/	10012.2	U	1	50
16-2	ANK34B CDVM	1/00	10	01177040	16-100	ò	4	00
16-2 16-2	CRYM	1428	16	21177343	16p12.2	2	1	SC

MRR	Gen	ID gen	Cromosoma	Inicio	Citobanda	SNPs/gen	CN ^a	EX
16-3	GPR97	222487	16	56259672	16q13	1	3	S
16-3	CCDC135	84229	16	56286227	16q13	0	3	S
16-3	LOC100132786	100132786	16	56317579	16q13	0	3	N
16-3	KATNB1	10300	16	56327161	16q13	0	3	S
16-3	KIFC3	3801	16	56349630	16g13	0	3	U
16-3	LOC388282	388282	16	56402050	16a13	0	3	S
17-2	GPRC5C	55890	17	69939262	17a25 1	1	3	S
17_2		1131/	17	6007/117	17a25.1	0	3	5
17-2	CD300A	12/500	17	70028008	17a25.1	2	3	6
17-2	CD300LD	10071	17	70020500	17425.1	2	5	0
17-2		10071	17	70040042	17925.1	0	3	5
17-2	LUC441800	441800	17	70057133	1/q25.1	0	3	IN
17-2	LOC100130520	100130520	17	70067905	1/q25.1	0	3	N
17-2	LOC100131439	100131439	17	70087099	17q25.1	0	3	S
17-2	C17orf77	146723	17	70092652	17q25.1	0	3	S
17-2	CD300E	342510	17	70120307	17q25.1	0	3	S
17-2	RAB37	326624	17	70178865	17q25.1	1	3	S
17-2	CD300LF	146722	17	70202047	17a25.1	1	3	S
17-2	SI C9A3R1	9368	17	70256373	17g25 1	1	3	S
17_2	NATO	26151	17	70278281	17a25.1	0	3	50
17-2		20101	17	70270201	17925.1	2	2	0
17-2		04000	1/	10204211	17,05.1	3	3	50
17-2	GRINZU	2905	1/	10349759	1/q25.1	U	3	S
1/-2	FDXR	2232	17	70370214	17q25.1	0	3	S
17-2	FADS6	283985	17	70385068	17q25.1	0	3	S
17-2	USH1G	124590	17	70423771	17q25.1	0	3	S
17-2	OTOP2	92736	17	70431965	17g25.1	0	3	S
17-2	OTOP3	347741	17	70443492	17g25.1	0	3	S
17-2	C17orf28	283987	17	70458434	17a25.1	0	3	S
17.2	0170120	200507	17	70/05322	17 92 5.1	0	3	11
17-2		30030	17	70495522	17425.1	0	5	01
17-2		3390	17	70520375	17q25.1	1	3	50
17-2	TRNAR-CCU	100126527	17	70542121	1/q25.1	0	3	N
17-2	TRNAR-UCG	100126524	17	70542803	17q25.1	0	3	N
17-2	ATP5H	10476	17	70546550	17q25.1	2	3	S
18-2	NPC1	4864	18	19365461	18q11.2	3	1	S
18-2	ANKRD29	147463	18	19433975	18a11.2	0	1	DO\
18-2	LOC100129556	100129556	18	19506212	18g11 2	0	1	N
18-2	1 4M43	3909	18	19523560	18g11.2	7	1	
10 2	C19orf17	105/00	10	10020000	10011.2	ĥ	1	00
10-2		120400	10	19020733	10411.2	0	1	0
18-2	CABIR	20250	18	19972953	18011.2	0	1	50
18-2	OSBPL1A	114876	18	19996007	18q11.2	1	1	S
18-2	IMPACT	55364	18	20260680	18q11.2	4	1	S
18-2	HRH4	59340	18	20294591	18q11.2	1	1	S
18-2	LOC646629	646629	18	20325694	18q11.2	0	1	N
18-2	LOC390843	390843	18	20356232	18a11.2	3	1	N
18-2	LOC729950	729950	18	20492438	18a11 2	Ó	1	N
18-2	RAC1P1	387612	18	20510341	18011.2	ñ	1	NI
18-3		1620	10	18100560	12/01/12	102	1	INL C(
10-0	CTOCIA 2	E1046	10	40120009 52170710	10421.2	100	1	5
10-4	5105IA3	51046	18	531/0/19	18021.31	U	1	S
18-4	ONECUT2	9480	18	53253915	18q21.31	6	1	U
18-4	FECH	2235	18	53366535	18q21.31	2	1	S
18-4	NARS	4677	18	53418889	18q21.31	0	1	S
18-4	ATP8B1	5205	18	53464656	18q21.31	4	1	DO
18-4	LOC100129408	100129408	18	53475558	18g21.31	0	1	N
18-4	MRPS17P7	342776	18	53582026	18g21 31	0	1	N
18-4	10028/288	28/288	19	53656706	18021 21	1	1	0
10-4		204200	10	53030700	10421.01	1	1	5
10-4	LUC 100132992	100132992	10	53836226	10021.31	U	1	S
10-4	NEDU4L	23327	18	53862778	18q21.31	18	1	U
18-4	MIRN122	406906	18	54269285	18q21.31	0	1	S
18-4	ALPK2	115701	18	54299459	18q21.31	0	1	U
18-4	LOC100128163	100128163	18	54488221	18q21.32	0	1	N
18-4	MALT1	10892	18	54489598	18a21 32	0	1	S
18-4	7NE532	55205	18	54681041	18021 32	2	1	
10 /		300050	10	5/01/040	10421.02	<u>^</u>	1	001
10-4		390050	IŎ	54014940	10421.32	U		N.
18-4	LOC10013029/	100130297	18	54901886	18q21.32	U	1	Ň
18-4	SEC11C	90701	18	54958105	18q21.32	2	1	S
18-4	GRP	2922	18	55038380	18q21.32	0	1	S
18-4	RAX	30062	18	55085247	18q21.32	0	1	S
18-4	CPLX4	339302	18	55113634	18g21 32	4	1	S
18_4	Ι ΜΔΝ1	3008	19	551/12022	18021 32	2	1	00
18 /	CODE1	1/7070	10	55757174	180121.02	24	1	00
10-4		14/3/2	10	00202124	10421.32	24		50
18-4	LOC100131971	100131971	18	55579770	18q21.32	U	1	NE
18-4	GLUDP4	2750	18	55596630	18g21.32	0	1	NE

MRR	Gen	ID gen	Cromosoma	Inicio	Citobanda	SNPs/gen	CN ^a	EX
18-4	LOC390860	390860	18	55642237	18q21.32	0	1	NE
18-4	PMAIP1	5366	18	55718172	18q21.32	0	1	SC
18-4	LOC100128022	100128022	18	55745724	18q21.32	1	1	NE
18-4	LOC642996	642996	18	55770448	18q21.32	0	1	NE
18-4	SDCCAG3L	388478	18	55828098	18q21.32	0	1	NE
18-4	LOC728115	728115	18	55832836	18q21.32	0	1	NE
18-5	FBXO15	201456	18	69891585	18q22.3	7	1	SC
18-5	C18orf55	29090	18	69966726	18a22.3	0	1	SC
18-5	CYB5A	1528	18	70071507	18a22.3	4	1	SC
18-5	DKFZP781G0119	644041	18	70134026	18g22 3	2	1	NF
18-5	FAUP1	140623	18	70208099	18g22.3	0	1	NF
18-5	C18orf51	125704	18	70253943	18a22.3	ž	1	SC
18.5	CNIDD2	557/8	18	70200040	18022.0	0	1	90
10-5		84735	10	70352672	18022.3	1	1	90
10-0		04733	10	70332072	10422.3	1	1	30
18-5	LUC400657	400657	18	70414638	18q22.3	0	1	50
18-5	ZNF407	55628	18	70471907	18q22.3	25	1	DOV
18-5	C18orf33	100113406	18	70946828	18q22.3	0	1	NE
18-6	LOC724038	724038	18	73272904	18q23	1	1	NE
18-6	LOC100132713	100132713	18	74359201	18q23	0	1	NE
18-6	LOC645321	645321	18	74839339	18q23	0	1	NE
18-6	SALL3	27164	18	74841263	18a23	0	1	SC
18-6	LOC100128256	100128256	18	74902324	18a23	0	1	NF
18-6		374868	18	74930385	18a23	1	1	
18-6	NEATC1	1772	18	75256760	18a23	ů.	1	50
10-0		4//2	10	75250700	10420	0	1	
10-0	LOC100127994	100127994	10	75357000	10423	0	1	
18-6	LUC 10012/98/	10012/98/	18	75416691	18q23	0	1	INE
18-6	CTDP1	9150	18	75540789	18q23	1	1	UF
18-6	LOC100132893	100132893	18	75615699	18q23	0	1	NE
18-6	LOC100130453	100130453	18	75615801	18q23	0	1	NE
18-6	KCNG2	26251	18	75724656	18q23	0	1	SC
18-6	PQLC1	80148	18	75763475	18a23	0	1	SC
18-6	I OC100131178	100131178	18	75804534	18g23	0	1	NF
18-6		10907	18	75833855	18a23	õ	1	SC
18.6	C18orf22	70863	18	75805346	18023	0	1	90
10-0		22050	10	75053340	10420	1	1	11
10-0		22000	10	70000000	10423	1	1	
18-0	LUC 100130522	100130522	18	76000958	18q23	0	1	INE
18-6	PARD6G	84552	18	76016106	18q23	1	1	SC
19-2	ZNF136	7695	19	12134919	19p13.2	1	1	DOV
19-2	LOC730651	730651	19	12166904	19p13.2	0	1	NE
19-2	LOC100129686	100129686	19	12218929	19p13.2	0	1	NE
19-2	LOC729279	729279	19	12231941	19p13.2	0	1	NE
19-2	ZNF44	51710	19	12243623	19p13.2	0	1	DOV
19-2	1 0C729274	729274	19	12256152	19n13 2	0	1	NF
19-2	ZNE563	147837	19	12289291	19n13.2	õ	1	SC
10_2	100720280	720280	10	12203231	10p10.2	ů 0	1	
10.0	ZNE 440	70072	10	10001105	10-12.2	1	1	
10.2		19910	19	12021100	10-40.42	1	1	30
19-3		113	19	131/8256	19p13.13	2	3	SC
20-2	LOC441938	441938	20	1593952	20p13	8	1	NE
20-2	LOC728018	728018	20	1819559	20p13	0	1	NE
20-2	SIRPA	140885	20	1822813	20p13	0	1	SC
20-2	LOC727993	727993	20	1875856	20p13	1	1	NE
20-2	PDYN	5173	20	1907402	20p13	1	1	SC
20-5	MACROD2	140733	20	13924146	20p12 1	147	1	SC
20-5	RNF11B	170543	20	14475731	20p12.1	0	1	NF
20-5	PDS10D2	1/0759	20	1/686100	20p12.1	õ	1	NIC
20-0		170511	20	14000109	200012.1	0	1	
20-0	ENGAP DECD1	1/0011	20	10040024	20p12.1	U	1	INE
20-0	BESEL	031	20	1/422550	20p12.1	2	1	SC
20-6	DSTN	11034	20	17498599	20p12.1	0	1	SC
20-7	C20orf19	55857	20	21054646	20p11.23	2	1	SC
20-7	XRN2	22803	20	21231942	20p11.22	8	1	SC
20-7	NKX2-4	644524	20	21324005	20p11.22	0	1	SC
20-8	NCOA3	8202	20	45564064	20a13 12	1	3	50
20-8	SUI F2	55959	20	45710550	20013 12	1	3	20
20-0		100100070	20	45740050	20413.12	0	2	50 NI
20-0	LUG 100129872	100129872	20	45/40052	20413.12	U	3	INE
2U-0	SKINPI	1/0552	20	45921839	20q13.13	U	3	N
20-8	LOC100130589	100130589	20	46039891	20q13.13	U	3	NE
20-8	LOC100130372	100130372	20	46126687	20q13.13	0	3	NE
20-8	LOC284749	284749	20	46430840	20q13.13	0	3	NE
.	TPTE	7179	21	9928612	21p11.1	1	1	SC
21-1								
21-1 21-1	CYCSP41	360186	21	9957846	21p11 2	0	1	NF

MRR	Gen	ID gen	Cromosoma	Inicio	Citobanda	SNPs/gen	CN ^a	EX ^b
X-2	RP2	6102	Х	46581320	Xp11.3	1	1	SC
X-3	INGX	27160	Х	70628254	Xq13.1	0	1	SC
X-3	OGT	8473	Х	70669658	Xq13.1	0	1	SC
X-3	ACRC	93953	Х	70714986	Xq13.1	0	1	SC
X-3	CXCR3	2833	Х	70752491	Xq13.1	0	1	SC
X-3	LOC100129291	100129291	Х	70799566	Xq13.1	0	1	NE
X-3	FLJ46446	441501	Х	70837379	Xq13.1	0	1	NE
X-3	LOC100130361	100130361	Х	70851080	Xq13.1	0	1	NE
X-3	LOC100132994	100132994	Х	70899692	Xq13.1	0	1	NE
X-3	LOC100132741	100132741	Х	70915154	Xq13.1	0	1	NE
X-3	RPS26L1	441502	X	71180984	Xq13.1	0	1	SC
X-3	RGAG4	340526	X	71263688	Xq13.1	0	1	SC
X-3	NHSL2	340527	X	71270224	Xq13.1	0	1	SC
X-3	FLJ44635	392490	X	71280759	Xq13.1	0	1	SC
X-3	PIN4	5303	X	71318251	Xq13.1	0	1	SC
X-3		54821	X	71341232	Xq13.1	0	1	UP
X-3	RPS4X	0191	X	71409178	Xq13.1 Xa12.1	0	1	50
A-3 V 2		4400	×	71450220	Xq13.1 Xq12.1	0	1	50
A-3 V 4		202407	Ň	71400091	Xq13.1 Xq12.2	2	1	SC NE
A-4 V /	LOC392497	392497 728748	Ŷ	73533261	Xq13.2 Xq13.2	0	1	
∧-4 × 4	LOC646109	6/6109	Ň	73533201	Xq13.2 Xq12.2	0	1	
A-4 V /	SI C16A2	6567	Ŷ	73557810	Xq13.2 Xq13.2	3	1	NE SC
X-4 X-5	GPC3	2710	Ŷ	132/07/30	Xq15.2 Xq26.2	1	1	30 SC
X-5 X-5		100130183	Ŷ	132632665	Xq20.2 Xq26.2	0	1	NE
X-5 X-6		Q/5Q	Ŷ	135575375	Xq20.2 Xq26.3	1	1	
X-0 X-6		728062	X	135608103	Xq20.3	0	1	NE
X-6	LOC100130621	100130621	x	135717048	Xq20.0	0	1	NE
X-6	LOC100128416	100128416	x	135723383	Xq26.3	õ	1	NE
X-6	RBMX	27316	x	135783285	Xq26.3	õ	1	SC
X-6	SNORD61	26787	x	135789024	Xg26.3	0	1	SC
X-6	LOC100132625	100132625	X	135818101	Xa26.3	Õ	1	NE
X-6	LOC100130190	100130190	X	135886164	Xa26.3	0	1	NE
X-6	GPR101	83550	Х	135939973	Xq26.3	0	1	SC
X-6	RAC1P4	286472	Х	136350772	Xq26.3	0	1	NE
X-6	LOC100129230	100129230	Х	136460666	Xq26.3	0	1	NE
X-6	ZIC3	7547	Х	136476012	Xq26.3	0	1	SC
X-7	LOC100129229	100129229	Х	143729990	Xq27.3	0	1	NE
X-7	CYCSP44	349391	Х	144065794	Xq27.3	0	1	NE
X-7	SPANXN1	494118	Х	144136799	Xq27.3	0	1	SC
X-7	LOC347422	347422	Х	144499923	Xq27.3	0	1	NE
X-7	SLITRK2	84631	Х	144707042	Xq27.3	0	1	SC
X-7	LOC100129095	100129095	Х	144707553	Xq27.3	0	1	SC
X-7	CXorf1	9142	Х	144716620	Xq27.3	0	1	SC
X-7	MIRN890	100126303	X	144883484	Xq27.3	0	1	NE
X-/	MIRN888	100126306	X	144883993	Xq27.3	0	1	NE
X-/	MIRN892A	100126342	X	144885878	Xq27.3	0	1	NE
λ-1 × 7	MIRN092B	100126307	X	144886407	Xq27.3 Xa27.2	0	1	NE
X-1 X 7	MIDN801A	100120304	×	144090202	Xq27.3	0	1	
X-1 X 8		100120341	Ŷ	144917003	Xq27.5	0	1	
A-0 X-8	100347509	3/7500	Ŷ	147007221	Xq20	0	1	
X-0 X-8	ΔEE2	2334	X	1/7380831	Xq20 Xq28	21	1	SC
X-0 X-9	MECP2	4204	X	152940458	Xq20 Xq28	1	Combinado	SC
X-10	VRP1	7411	x	154097744	Xq20 Xq28	0	1	SC
X-10	RAB39B	116442	x	154140720	Xn28	ő	1	SC
X-10	CLIC2	1193	x	154158694	Xa28	õ	1	DOWN
X-10	PHF10P1	158905	x	154174358	Xn28	õ	1	NE
X-10	LOC553939	553939	X	154231158	Xa28	õ	1	NE
X-10	H2AFB2	474381	X	154263630	Xa28	Ō	1	SC
X-10	F8A2	474383	Х	154264958	Xq28	0	1	SC
X-10	F8A3	474384	Х	154340340	Xq28	0	1	SC
X-10	H2AFB3	83740	Х	154342274	Xq28	0	1	SC
X-10	TMLHE	55217	Х	154372967	Xq28	0	1	SC

 X-10
 INILITE
 32/17
 A
 134-37/2507
 Ages
 0
 1

 a. Status de número de copias. 1= Suprimido, 3= Ganado, Combinados= genes suprimidos en algunas líneas celulares y ganados en otras.
 b. Status de expresión del gen. NE=no explorado, UN SC= sin cambios, UP= sobreexpresado, DOWN=subexpresado.
 DOWN=subexpresado.