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Introducción

La teoŕıa de riesgo en general y la probabilidad de ruina en particular son

partes de las matemáticas de los seguros que tratan con modelos estocásticos

de una compañ́ıa de seguros. Para más detalles en teoŕıa de riesgo, buenas

referencias incluyen a Asmussen (2000) y Rolski et al. (1999). En años

recientes se ha autorizado a la comapñ́ıas aseguradoras a invertir parte de su

reserva en activos con riesgo, de donde surge el problema de encontrar una

estrategia óptima de inversión. Siguiendo la teoŕıa clásica de riesgo actuarial

el problema que se plantea es el encontrar la estrategia (si existe) que mi-

nimiza la probabilidad de ruina. Por otro lado, tenemos la teoŕıa económica

que considera a las llamadas funciones de utilidad como un enfoque adecuado

para este problema, en este caso, lo que se pretende es encontrar la estrategia

(si existe) que maximiza la utilidad esperada. Ambos puntos de vista son

parte de la teoŕıa del riesgo y del control estocástico.

El estudio de la probabilidad de ruina tiene una historia larga, la cual inició

con los art́ıculos clásicos de Cramér y Lundberg, quienes fueron los primeros

en considerar el problema de la ruina de una compañ́ıa de seguros. Cramér y

Lundberg encontraron que la teoŕıa de procesos estocásticos proporciona el

enfoque más apropiado para modelar reclamos en una compañ́ıa de seguros.

En 1903, Lundberg introdujo un modelo simple capaz de describir la dinámica

básica del portafolio de una aseguradora, desde entonces se ha llevado a cabo

mucho trabajo en esta área. Uno de los resultados más conocidos para el
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proceso de riesgo afirma que la probabilidad de ruina como función de la

riqueza inicial ψ(x) esta acotada como sigue (véase [1]):

Ce−νx ≤ ψ(x) ≤ e−νx,

Este resultado significa que la probabilidad de ruina decrece de forma ex-

ponencial con respecto a la riqueza inicial. Hipp y Plum (2000), consideraron

el proceso clásico de riesgo con la oportunidad de invertir en un activo con

riesgo modelado por el movimiento Browniano geométrico. La probabilidad

de ruina en este caso se minimiza escogiendo una estrategia de inversión ade-

cuada la cual se obtiene utilizando la ecuación de Hamilton-Jacobi-Bellman.

Gaier et al. (2003) obtuvieron una estimación de la probabilidad de ruina

de tipo exponencial con una tasa que mejora el parámetro clásico de Lund-

berg. Esta tasa fue obtenida proponiendo una estrategia que consiste en

invertir una cantidad constante de dinero en el activo con riesgo. Hipp y

Schmidli (2004) demostraron que esta estrategia es asintóticamente óptima

cuando la riqueza inicial tiende a infinito. Por otro lado, el estudio de la

función de utilidad esperada ha sido muy importante tanto en finanzas como

en riesgo. Ferguson (1965) conjeturó que maximizar la utilidad exponen-

cial de una riqueza terminal está estrictamente relacionado con minimizar la

probabilidad de la ruina. Ferguson estudio el problema del valor esperado

de la utilidad de la riqueza para un modelo discreto para el inversionista.

Browne (1965) verificó la conjetura de Ferguson para un proceso de riesgo

modelado por el movimiento Browniano con deriva y con la posibilidad de

inversión en un activo con riesgo modelado por el movimiento Browniano

geométrico, sin considerar la cuenta de banco. Browne concluyó que la es-

trategia óptima que minimiza la probabilidad de ruina es también óptima en

el problema de maximizar la utilidad exponencial de una riqueza terminal.

En la presencia de la cuenta de banco esta equivalencia no se satisface. Yang

y Zhang (2005) consideraron el modelo clásico de riesgo perturbado por el
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movimiento Browniano. Al asegurador se le permite invertir en la cuenta

de banco y en el activo con riesgo. Yang y Zhang obtuvieron una expresión

cerrada de la estrategia óptima cuando la función de utilidad es exponencial.

Fernández el al. (2008) consideraron el modelo de riesgo con la posibilidad

de inversión en la cuenta de banco y en el activo con riesgo modelado por el

movimiento Browniano geométrico. Utilizando el enfoque Hamilton- Jacobi-

Bellman, encontraron la estrategia óptima cuando las preferencias son expo-

nenciales y obtuvieron una forma cerrada de la solución. El caso en el que

el proceso de reclamaciones está modelado por un proceso de saltos puros y

el asegurador tiene la posibilidad de invertir en múltiples activos con riesgo

sin la posibilidad de una cuenta de banco fue estudiado por Wang (2008).

Wang encontró que la estrategia óptima al maximizar la utilidad exponen-

cial consiste en invertir una cantidad constante de dinero en cada activo con

riesgo. Mientras que para obtener la estrategia óptima de reaseguro de la

cedente, Guerra y Centeno (2008) estudiaron la relación entre maximizar el

coeficiente de ajuste y maximizar el valor esperado de la utilidad exponencial

de la riqueza.

El presente trabajo se encuentra organizado como sigue. El caṕıtulo 1 se

dedica al repaso de los resultados clásicos de la teoŕıa de riesgo. Se introduce

el modelo clásico de riesgo y se muestra la importancia de la teoŕıa de ecua-

ciones diferenciales en modelar la probabilidad de ruina para un asegurador

con la posibilidad de incluir pagos de reaseguro y dividendos. Finalmente, en

la última sección del caṕıtulo 1 introducimos el problema de la probabilidad

de ruina cuando al asegurador se le permite invertir en un activo con riesgo.

Se demuestran los resultados más conocidos tanto para la probabilidad de

ruina como para la función de utilidad esperada. En caṕıtulo 2 se introduce

el problema de la presente tesis. Se presenta el primer resultado impor-

tante relacionado con nuestro trabajo de investigación, el cual fue obtenido

por Rubio (2010). Este resultado consiste en un teorema de verificación, el
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cual relaciona la probabilidad de ruina con la ecuación de Hamilton-Jacobo-

Bellman. En el caṕıtulo 3 obtenemos una cota superior una cota inferior

para la probabilidad de ruina v́ıa expresiones generales de martingalas ex-

ponenciales. Para la cota superior demostramos un teorema con condiciones

generales para la existencia de una función θ, el cual afirma que la cota supe-

rior es de la forma e−θ(z)x. Ilustramos este teorema por el modelo truncado

de Scott y consideramos dos casos de funciones θ, para las cuales la es-

trategia K y la cota superior son obtenidas de forma expĺıcita. Finalmente,

obtenemos la cota inferior bajo las hipótesis usuales de reclamaciones con

distribuciones con momento exponencial uniforme (véase [13]). Los resulta-

dos de este caṕıtulo están publicados en Badaoui y Fernández (véase [2]). En

el caṕıtulo 4, proporcionamos un teorema de verificación para el problema de

optimización que relaciona la función de costo con la ecuación de Hamilton-

Jacobi-Bellman, el cual se demuestra utilizando la teoŕıa de martingalas y la

formula de Itô. También se demuestra un teorema de existencia y unicidad

cuando las preferencias del asegurador son de tipo exponencial. Se obtiene

una solución expĺıcita para la ecuación diferencial parcial. Como consecuen-

cia se obtiene una forma expĺıcita de la estrategia óptima, la cual depende

únicamente del factor externo y el tiempo. Para desarrollar algunos resul-

tados numéricos demostramos la consistencia y la estabilidad del esquema

numérico. Se demuestra que el problema de Cauchy está bien planteado

para completar las condiciones del teorema Lax de la convergencia. Presen-

tamos resultados para el modelo de Scott cuando las reclamaciones son de

tipo exponencial. Finalmente, estudiamos la reserva de la compañ́ıa de se-

guros bajo la estrategia óptima y se prueba la propiedad de supermartingala

del proceso de riesgo para obtener una cota superior de la probabilidad de

ruina en horizonte finito.

En el caṕıtulo 5, se presentan algunas conclusiones y ĺıneas de investigación

futuras. Finalmente incluimos en el Apéndice A algunos resultados sobre
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ecuaciones diferenciales parciales y ecuaciones diferenciales estocásticas y en

el Apéndice B algunos resultados sobre el método de Diferencias Finitas.



Introduction

Risk theory in general and ruin probabilities in particular are the part of

insurance mathematics that deal with the stochastic models of an insurance

business. For more details on risk theory, good references include Assmussen

(2000) and Rolski et al. (1999). In recent years, insurance companies are

allowed to invest part of their wealth in risky assets, this gives rise to the

problem of looking for an optimal strategy of investment. Following the clas-

sical theory of actuarial risk the problem is looking for a strategy (if it exists)

that minimize the ruin probability. On the other hand, we have the economic

theory which consider the so called utility functions as an appropriate ap-

proach for this problem, in this case the intention is to find the optimal

strategy (if it exists) which maximize the expected utility. Both views are

parts of risk theory and stochastic control theory.

The study of ruin probabilities has a long history that started with the classi-

cal papers of Cramér and Lundberg, which first considered the ruin problem

of an insurance company. They realized that the theory of stochastic pro-

cesses provides the most appropriate framework for modeling claims in an

insurance business [27]. In 1903, Lundberg introduced a simple model which

is capable of describing the basic dynamic of an insurance portfolio, and ever

since, much work has been carried out in this area. A well-known fact in risk

theory is that the probability of ruin as a function of initial wealth ψ(x) is
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bounded for the classical risk process as follows (see [1]):

Ce−νx ≤ ψ(x) ≤ e−νx,

which means that the probability of ruin decreases exponentially with respect

to the initial wealth.

Hipp and Plum (2000) consider the classical risk process with the opportu-

nity to invest in a risky asset modeled by a geometric Brownian motion. The

probability of ruin in this case is minimized by the choice of a suitable invest-

ment strategy, which is determined by using the Hamilton-Jacobi-Bellman

equation. Gaier et al. (2003) obtained an estimate for the ruin probability

of exponential type with a rate that improves the classical Lundberg param-

eter, by proposing a strategy that consists in investing a constant amount of

money in the risky asset. Hipp and Schmidli (2004) showed that this strategy

is asymptotically optimal as the initial wealth tends to infinity.

On the other hand, the study of the expected utility function has been very

important in both finance and insurance. Ferguson (1965) conjectured that

maximizing exponential utility from terminal wealth is strictly related to min-

imizing the probability of ruin. Ferguson studied the problem of expected

utility of wealth under a discrete model for the investor. Browne (1995)

verified the Ferguson conjecture for a risk process modeled by a Brownian

motion with drift, with the possibility of investment in a risky asset which

follows a geometric Brownian motion, but without a risk-free interest rate.

He concluded that the optimal strategy that minimizes the probability of

ruin is also optimal in maximizing the exponential utility of terminal wealth.

In the presence of a positive interest rate, this equivalence does not hold.

Yang and Zhang (2005) considered the classical risk model perturbed by a

standard Brownian motion. The insurer is allowed to invest in the money

market and a risky asset. They obtained a closed form expression of the

optimal strategy when the utility function is exponential. Fernández et al.
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(2008) considered the risk model with the possibility of investment in the

money market and a risky asset modeled by a geometric Brownian motion.

Via the Hamilton-Jacobi-Bellman approach, they found the optimal strat-

egy when the insurer’s preferences are exponential. In this case as well, a

closed form solution is given. The optimal strategy is then used to get an

estimate of the ruin probability. The case in which the claim process is a

pure jump process and the insurer has the option of investing in multiple

risky assets without the risk-free option was studied by Wang (2007). Wang

found that the optimal strategy of maximizing the exponential utility of ter-

minal wealth consists in putting a fixed amount of money in each risky asset,

while to get the optimal reinsurance from the ceding company, Guerra and

Centeno (2008) studied the relationship between maximizing the adjustment

coefficient and maximizing the expected utility of wealth for the exponential

utility function.

The organization of this dissertation is as follows. Chapter 1 is dedicated to

recalling the classical results of risk theory. We introduce the classical risk

model and we show the importance of differential equations theory in mod-

eling the probability of ruin for the insurer with the possibility of including

reinsurance and dividend payments. Finally, in the last section of Chapter

1 we introduce the problem of ruin probabilities when the insurer is allowed

to invest in a risky asset. We show the most well-known results obtained

for both the ruin probability and the expected utility function. Chapter 2

introduces our model. We present the first important result related to our

research problem, which was obtained by Rubio (2010). This result con-

sists in a verification theorem which relates the ruin probability with the

Hamilton-Jacobi-Bellman equation. In Chapter 3 we obtain upper and lower

bounds for the ruin probability by giving general expressions for exponen-

tial martingales. For the upper bound we prove a theorem with general and

abstract conditions for the existence of a function θ that guarantees that
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the upper bound is of the form e−θ(z)x. We illustrate this theorem with a

truncated Scott models, and we consider two cases of functions θ, for which

a strategy K and the bound are explicitly obtained. Finally, we obtain the

lower bound under the usual hypothesis of uniform exponential moment of

the tail distribution of the claims (see [13]). The results of this chapter are

published in Badaoui and Fernández [2]. In chapter 4, we provide a verifica-

tion theorem for the optimization problem which relates the value function

with the Hamilton-Jacobi-Bellman equation, which is proven by using mar-

tingale theory and Itô’s formula. We also prove an existence and uniqueness

theorem when the insurer’s preferences are exponential, and we obtain an

explicit solution for the partial differential equation (PDE). Consequently,

an explicit form for the optimal strategy is obtained, which depends only on

the external factor and time. To develop some numerical results, we prove

consistency and stability of the explicit scheme. The well-posedness of the

Cauchy problem is proven to complete the conditions of the Lax theorem for

convergence. We present results for the Scott model when claim-size is expo-

nentially distributed. Finally, we study the reserve of the insurance company

under the optimal strategy, and we prove a supermartingale property of the

risk process to get an upper bound for the ruin probability in finite horizon.

In Chapter 5, we present some conclusions and further research lines.

Finally we include in Appendix A some results about Partial Differential

Equations and Stochastic Differential Equations and in Appendix B some

results about the Finite Difference Method.



Chapter 1

Non-Life Insurance

1.1 The Classical Risk Model

The traditional approach in risk theory is to consider a model of the risk

business of an insurance company and study the probability of ruin, i.e., the

probability that the risk business will ever be below some specified (negative)

value. We start by formulating the usual risk model. Let (Ω,F , P ) be a

complete probability space. The Cramér-Lundberg process or classical risk

process X, is defined as

Xt = x+ ct−
Nt∑
i=1

Yi, (1.1)

where x is the initial capital, c is the premium rate, {Nt} is a Poisson process

with rate λ, and the claims {Yi} are i.i.d. and independent of {Nt}, having
a common distribution function G with G(0) = 0, and µ = E[Yi].
We denote the moment generating function by MY (r) = E[erYi ] . The claim

times are denoted by T1 < T2 < . . . , and ∀ i ≥ 1 , Ti is Γ(i, λ) distributed.

The inter occurrence times (i.e., the time periods between claims) are expo-

nentially distributed with parameter λ > 0. The following figure shows the

sample path of Xt. A classical risk process {Xt} as defined above, is a model
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X
t

Y
i

x

t
τ (Time of ruin) 

Figure 1.1: The classical risk process and claims

for the time evolution of the reserves of an insurance company. A possible

measure of risk is the probability of ruin. Let

τ =

{
inf {t > 0, Xt < 0} , if {t > 0, Xt < 0} ̸= ∅,
∞, in other case.

Then the ruin probability is defined as ψ(x) = P[τ < ∞]. Sometimes it is

convenient to use the survival probability δ(x) = 1− ψ(x) = P[τ = ∞]. An-

other important condition is c > λµ, called the net profit condition, which

means that per unit of time the premium income exceeds the expected ag-

gregate claim amount given by

E

[
Nt∑
i=1

Yi

]
= λµt.
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It can also be shown that if the net profit condition does not hold, then

ψ(x) = 1 for all x ≥ 0.

Observation 1.1 The reason to choose a classical risk process as a model of

insurance risk is mathematical, owing to the nice properties of the Compound

Poisson process from which many results often follow easily. However, the

model also admits a natural interpretation, by assuming that the insurer starts

with an initial amount of money, collects premium and pays claims. If a

problem cannot be solved for the Cramér-Lundberg model, then there is no

chance to do so for more realistic models. In the following theorem, we

prove that δ(x) satisfies an integro-differential equation which can be found

in Grandell (1991).

Theorem 1.1 The survival probability δ(x) is continuous and differentiable

everywhere except for a countable set, where G is not continuous. Moreover

δ(x) satisfies the following integro-differential equation:

cδ′(x) = λ

[
δ(x)−

∫ x

0

δ(x− y) dG(y)

]
. (1.2)

Proof. Since the Poisson process is a renewal process, let h be small. Then:

δ(x) = E[P[τ = ∞ | XT1∧h]]

= E[IT1≥hP[τ = ∞ | XT1∧h]] + E[IT1<hP[τ = ∞ | XT1∧h]]

= E[IT1≥hδ(x+ ch)] + E[IT1<hδ(x+ cT1 − Y1)]

= e−λhδ(x+ ch) +

∫ ∞

0

∫ x+ct

0

δ(x+ ct− y)λe−λt dG(y) dt

then

δ(x)− δ(x)e−λh

h
= ce−λh δ(x+ ch)− δ(x)

ch
+

1

h

∫ ∞

0

∫ x+ct

0

δ(x+ ct− y)λe−λt dG(y) dt.
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By letting h→ 0, we obtain

λδ(x) = cδ′(x) + λ

∫ x

0

δ(x− y) dG(y),

which leads to (1.2). 2

Observation 1.2 In general (1.2) cannot be solved analytically, but we can

compute the survival probability in (1.2) numerically. A solution to (1.2) can

be found using the Laplace transform (see [31]), but it is extremely difficult

to find a closed form solution for δ(x), because the inverse of the Laplace

transform cannot be found in the general case.

Now by using (1.2), we get a closed form for ψ(0) and δ(0). We have:

c

λ
(δ(x)− δ(0)) =

1

λ

∫ x

0

cδ′(s) ds

=

∫ x

0

δ(s) ds−
∫ x

0

∫ s

0

δ(s− y) dG(y) ds

=

∫ x

0

δ(s) ds−
∫ x

0

∫ x

y

δ(s− y) ds dG(y)

=

∫ x

0

δ(s) ds−
∫ x

0

∫ x−y

0

dG(y) δ(x)dx

=

∫ x

0

δ(x− s)(1−G(s)) ds.

Then
c

λ
(δ(x)− δ(0)) =

∫ x

0

δ(x− s)(1−G(s)) ds.

Letting x→ ∞, then by the bounded convergence theorem we have:

c

λ
(1− δ(0)) =

∫ ∞

0

(1−G(s)) ds = µ,

then it is easy to obtain:

δ(0) = 1− λµ

c
, ψ(0) =

λµ

c
.

In the following example, we produce an explicit formula for the ruin proba-

bility when the claim sizes Yi are exponentially distributed. This result was

first established by Lundberg (1903).
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Example 1.1 Let the claims be Exp(α) distributed. Then by equation

(1.2), we have:

cδ′(x) = λ

[
δ(x)− e−αx

∫ x

0

δ(y)αeαy dy

]
. (1.3)

Differentiating (1.3) yields

cδ′′(x) = λ

[
δ′(x) + αe−αx

∫ x

0

δ(y)αeαy dy − αδ(x)

]
= λδ′(x)− αcδ′(x),

thus producing the following ordinary differential equation:

δ′′(x) =

(
λ

c
− α

)
δ′(x).

The solution is given by:

δ(x) = A+Be(
λ
c
−α)x.

Since δ(0) = 1− λ

αc
, the solution is given by:

δ(x) = 1− λ

αc
e(

λ
c
−α)x and ψ(x) =

λ

αc
e(

λ
c
−α)x,

which gives a closed form for the survival probability and the ruin probability.

We know that in general (1.2) does not have an explicit solution, but

an upper bound for the ruin probability can be obtained. We begin by

introducing a number R > 0, called the adjustment coefficient or the

Lundberg exponent . For the classical risk process, R is defined as the

unique positive root of

θ(r) = 0,

where

θ(r) = λ (MY (r)− 1)− cr.

Provided that for some quantity γ, 0 < γ ≤ ∞, MY (r) is finite for all r < γ

with lim
r→γ−

MY (r) = ∞ (see [16]), then this is a technical condition which we

require for a turning point to exist, because θ is a decreasing function at zero

and convex.
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Observation 1.3 If the claims are exponentially distributed, we can produce

an explicit value for R, but in other cases we must solve θ(r) = 0 numerically.

The following theorem is considered a connection between the adjustment

coefficient and the ruin probability, which gives an upper bound for the latter.

This upper bound is attributed to Lundberg.

Theorem 1.2

ψ(x) < e−Rx, ∀x ≥ 0, (1.4)

where R is the adjustment coefficient.

The proof of Theorem 1.2 will be a consequence of the next lemma.

Lemma 1.1 Let r ∈ R such that MY (r) <∞, then the stochastic process{
e−rXt−θ(r)t

}
t≥0

is a martingale.

Proof. By the independent increments property of the compound Poisson

process we get:

E[e−rXt−θ(r)t | Fs] = E[e−r(Xt−Xs)]e−rXs−(λMY (r)−1)t+crs

= E[er
∑Nt

i=Ns+1 Yi ]e−rXs−λ(MY (r)−1)t+crs

= e−rXs−λ(MY (r)−1)s+crs = e−rXs−θ(r)s.

Therefore:

E[e−rXt−θ(r)t | Fs] = Xs, which finishes the proof of the lemma. 2

Proof. (Theorem 1.2) Using Lemma 1.1 for r = R, then by the stopping

time theorem we have:

e−Rx = e−RX0 = E[e−RXτ∧t ] ≥ E[e−RXτ∧t ; τ ≤ t] = E[e−RXτ ; τ ≤ t].

By the monotone convergence theorem and letting t tend to infinity, we get:
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e−Rx ≥ E[e−RXτ ; τ <∞] > P[τ <∞] = ψ(x).

2

Observation 1.4 The lower bound for the ruin probability is given by

ψ(x) ≤ Ce−Rx,

for more details, see [1, 31].

In the next theorem, we present an asymptotic behavior for the ruin proba-

bility.

Theorem 1.3 (The Cramér-Lundberg approximation) Assume that the ad-

justment coefficient exists and that
λ

c

∫ ∞

0

xeRx(1−G(x)) dx <∞. Then:

lim
x→∞

ψ(x)eRx =
c− λµ

λM ′
Y (R)− c

(1.5)

Proof. Let R be the adjustment coefficient. Then by (1.2), we have

ψ(x)eRx = eRx

∫ ∞

x

λ

c
(1−G(y)) du+

∫ x

0

ψ(x− y)eR(x−y)eRxλ

c
(1−G(y)) dy,

which is a renewal equation. Then by the renewal theorem, [11] we get:

lim
x→∞

ψ(x)eRx = κ

∫ ∞

0

eRx

∫ ∞

x

λ

c
(1−G(y)) dy dx,

where

κ =

∫ ∞

0

xeRxλ

c
(1−G(x)) dx

=
λ

c

∫ ∞

0

∫ ∞

x

xeRx dG(y) dx

=
λ

c

∫ ∞

0

∫ y

0

xeRx dx dG(y)

=
λ

cR2

∫ ∞

0

(RyeRy − eRy + 1) dG(y)

=
λRM ′

Y (R)− cR

cR2
=
λM ′

Y (R)− cR

c
,
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and ∫ ∞

0

eRx

∫ ∞

x

λ

c
(1−G(y)) dy dx =

λ

c

∫ ∞

0

∫ y

0

eRxdx(1−G(y)) dy

=
λ

cR

∫ ∞

0

(eRy − 1)(1−G(y)) dy

=
1

cR
(c− λµ).

Then the limit value follows easily from this expression. 2

Thus for large values of x, we obtain an approximation to ψ(x). This ap-

proximation is called the Cramér-Lundberg approximation.

1.2 Reinsurance and Ruin

In this section, we study the ruin problem for the classical risk model that

involves reinsurance. For most insurance companies, the premium volume

is not big enough to carry the risk, especially in the case of subexponential

claims (see Appendix A). Therefore the insurers try to share a part of the

risk with other companies. Assume that the company has the possibility

of buying proportional reinsurance. Then let bt be the retention level in

force at time t. This means that for a claim Y happening at time t the

insurer pays btY and the reinsurer covers (1− bt)Y . As compensation for the

risk, the insurer has to pay a premium at a rate of c − c(b), and thus the

premium rate left for the insurer is c(b). We assume that c(b) is increasing,

continuous, c(1) = c, and that the insurer cannot insure the whole portfolio

(c(0) < 0). We restrict bt to be smaller than one because bt > 1 would not

be realistic. Let the filtration Ft generated by X1
t and X1

t be the Cramér-

Lundberg process. Schmidli (2001), among other authors (see [20, 22, 23]),

included the reinsurance program in the classical risk model. Schmidli (2001)

considered the classical risk process with reinsurance as follows:

Definition 1.1 A reinsurance strategy is an adapted process bt with val-
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ues in [0, 1]. The risk process then becomes:

Xb
t = x+

∫ t

0

c(bs) ds−
Nt∑
i=1

bTi
Yi (1.6)

For the risk process given by (1.6), ruin time is:

τ = τb = inf
{
t ≥ 0 : Xb

t < 0
}

and the survival probability is

δb(x) = P[τb = ∞ | Xb
0 = x].

Our aim is to minimize the ruin probability or to find the optimal value

δ(x) = sup
bt

δb(x),

and finally to prove that δ(x) satisfies the following equation:

f ′(x) = inf
b∈(b̄,1]

λ

c(b)

[
f(x)−

∫ x
b

0

f(x− by) dG(y)

]
, (1.7)

where

b̄ = inf {b ∈ [0, 1] : c(b) > 0} .

Equation (1.7) is called the Hamilton-Jacobi-Bellman (HJB) equation. Now

we are going to give a motivation to study the HJB equation (1.7). For

b ∈ [0, 1] and small h, we have:

δ(x) = E[P[τ = ∞ | XT1∧h]]

= E[IT1≥hP[τ = ∞ | XT1∧h]] + E[IT1<hP[τ = ∞ | XT1∧h]]

= E[IT1≥hδ(x+ ch)] + E[IT1<hδ(x+ cT1 − Y1)]

= e−λhδ(x+ ch) +

∫ ∞

0

∫ x+c(b)t/b

0

δ(x+ c(b)t− y)λe−λt dG(y) dt,
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then

δ(x)− δ(x)e−λh

h
= c(b)e−λh δ(x+ ch)− δ(x)

c(b)h
+

1

h

∫ ∞

0

∫ x+c(b)t/b

0

δ(x+ c(b)t− y)λe−λt dG(y) dt.

By letting h→ 0, we obtain

λδ(x) = c(b)δ′(x) + λ

∫ x

0

δ(x− by) dG(y)

which leads to the HJB equation (1.7).

The main result in this section is the following theorem.

Theorem 1.4 Let f(x) be the unique solution to equation (1.7) with f(0) =

1. Then δ(x) =
f(x)

f(∞)
. The strategy (b∗(Xt)) is optimal, where b∗(x) is an

argument that minimizes the right hand side of (1.7).

Theorem 1.5 There exists a unique solution for (1.7) with f(0)=1. The

solution is bounded, strictly increasing and continuously differentiable.

Proof. It is easy to show that

f(x)−
∫ x

b

0

f(x− by) dG(y) = 1−G(x/b) +

∫ x

0

f ′(z)(1−G((x− z)/b) dz,

then let V be the operator acting on strictly positive functions g via

V g(x) = inf
b∈(b̄,1]

λ

c(b)

[
1−G(x/b) +

∫ x

0

g(z)(1−G((x− z)/b) dz

]
.

Now we show the existence of a solution. Let δ1(x) be the survival probability

without reinsurance, then by (1.2) we have

δ′1(x) =
λ

c

[
δ1(x)−

∫ x

0

δ1(x− y) dG(y)

]

=
λ

c

[
1−G(x)δ(0) +

∫ x

0

δ′1(z)(1−G(x− z)) dz

]
.
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Let g0(x) =
cδ′1(x)

λµ
and define gn(x) = V gn−1(x) recursively, then

g1(x) ≤ g0(x).

To show that gn(x) is decreasing in n, we suppose that gn−1(x) ≥ gn(x) and

let bn be the point for which V gn−1(x) attains the minimum. Then

gn(x)− gn−1(x) = V gn−1(x)− V gn(x)

≥ λ

c(bn)

∫ x

0

gn−1(z)(1−G((x− z)/bn) dz

− λ

c(bn)

∫ x

0

gn(z)(1−G((x− z)/bn) dz

=
λ

c(bn)

∫ x

0

(gn−1(z)− gn(z))(1−G((x− z)/bn) dz ≥ 0.

Then gn(x) ≥ gn+1(x), therefore limn→∞ gn(x) = g(x) exists, and by the

bounded convergence theorem we get

V g(x) = g(x).

Now we define

f(x) = 1 +

∫ x

0

g(z) dz, (1.8)

then by the bounded convergence theorem f(x) satisfies (1.7). Furthermore,

by (1.8) it follows that f(x) is increasing and continuously differentiable.

f(x) = 1 +

∫ x

0

g(z) dz

≤ 1 +
c

λµ

∫ x

0

δ′(z) dz

≤ 2,

then f(x) is bounded.

From (1.7)

f ′(0) = λ inf
b∈(b̄,1]

1

c(b)
> 0.
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Since f(x− by) ≤ f(x) because f is increasing then:

λ

c(b)

[
f(x)−

∫ x
b

0

f(x− by) dG(y)

]
≥ f(x)(1−G(x/b))

λ

c(b)
,

therefore

f ′(x) ≥ f(x) inf
b∈(b̄,1]

λ

c(b)
(1−G(x/b)) > 0.

Thus f is strictly increasing.

To show that the solution to (1.7) is unique, let f1(x) and f2(x) be two

solutions to (1.7) with f1(0) = f2(0) = 1. Denote by gi(x) = fi(x) the

derivatives and by bi(x) the point where the minimum is taken. Fix x̄ ≥ 0 and

let x1 = inf {mini c(bi(x)) : 0 ≤ x ≤ x̄} /(2λ). Then we define xn = nx1 ∧ x̄,
and thus we have f1(x) = f2(x) for n = 0 on [0, x0]. Now we suppose that

f1(x) = f2(x) on [0, xn] and let m = supxn≤x≤xn+1
| g1(x) − g2(x) |, then for

x ∈ [xn, xn+1]:

g1(x)− g2(x) = V g1(x)− V g2(x)

≤ λ

c(b2)(x)

∫ x

0

g1(z)(1−G((x− z)/b2(x)) dz

− λ

c(b2(x))

∫ x

0

g2(z)(1−G((x− z)/b2(x)) dz

≤ λ

c(b2(x))

∫ x

0

(g1(z)− g2(z))(1−G((x− z)/b2(x)) dz

≤ λ

c(b2(x))

∫ x

xn

(g1(z)− g2(z))(1−G((x− z)/b2(x)) dz

≤ λmx1
c(b2(x))

≤ m

2
.

Similarly, we get g2(x) − g1(x) ≤
m

2
. Then | g1(x) − g2(x) |≤

m

2
, which is

only possible if m = 0. This shows that:

f1(x) = f2(x) on [0, xn+1] and f1(x) = f2(x) on [0, x̄]. And because x̄ was

arbitrary, any solution must be unique. 2

Lemma 1.2 Let b(x) be the value that minimizes (1.7), then x 7−→ b(x) is

measurable.



22 Non-Life Insurance

Proof. The right hand side of (1.7) is continuous in both b and x. We

choose a ∈ (b̄, 1] and let

ma(x) = inf
b≤a

λ

c(b)

[
f(x)−

∫ x
b

0

f(x− by)

]
dG(y).

We then have {b(x) > a} = {x : f ′(x) < ma(x)}. This shows that b(x) is

measurable because f ′(x) is continuous. 2

Lemma 1.3 Let bt be an arbitrary strategy. Then with probability one either

ruin occurs or Xb
t diverges to infinity as t→ ∞

Proof. See Lemma 1.10. 2

Lemma 1.4 Let g : R → R be a twice continuously differentiable function

such that

E
Nt∑
i=1

| g(XTi
)− g(XTi−) |< ∞

for all t ≥ 0 n ∈ N. Then g is in the domain of the extended generator of A
Xt, where

Ag(x) = cg′(x) + λ(

∫ ∞

0

g(x− y) dG(y)− g(x)).

Proof. First we have to show that the process

Mt = g(Xt)− g(x)−
∫ t

0

Ag(Xs) ds

is a martingale. By Itô’s formula we obtain:

Mt =
Nt∑
i=1

g(XTi
)− g(XTi−)− λ

∫ t

0

∫ ∞

0

g(Xs − y)− g(Xs) dG(y) ds

We observe that:

Nt∑
i=1

g(XTi
)− g(XTi−) =

∫ t

0

g(Xs)− g(Xs−) dNs,
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as in the proof of Lemma 1.9 we get that Mt is a martingale. 2

The results obtained above enable us to prove the main result.

Proof. (Theorem 1.4) Let bt be an arbitrary strategy with corresponding

process Xb. Then from Lemma 1.4 the process

Yt = f(Xb
t )−
∫ t

0

(
c(bs)f

′(Xb
s) + λ

[∫ Xb
s/bs

0

f(Xb
s − bsy) dG(y)− f(Xb

s)

])
ds

is a martingale. Since τ b is a stopping time, then Yτb∧t is also a martingale.

By the stopping time theorem, we get

f(x) = E[f(Xτ∧t)]− E
[ ∫ t∧τ

0

c(bs)

×

(
f ′(Xb

s)−
λ

c(bs)
(f(Xb

s)−
∫ Xb

s/bs

0

f(Xb
s − bsy) dG(y))

) ]
ds

≥ E[f(Xτ∧t)].

because f(x) satisfies (1.7). Furthermore

E[f(Xb
t )Iτ>t] =E[f(Xb

τ∧t)] ≤ f(x).

Letting t→ ∞ yields f(x) ≥ f(∞)P[τ = ∞], then f(x)/f(∞) ≥ δ(x).

Redoing the calculation with the strategy b∗ produces f(x) = E[f(Xb
t )Iτ>t],

because {f(X∗
τ∧t)} is a martingale. Then f(x) = f(∞)δ∗(x). This shows that

δ(x) = f(x)/f(∞). 2

We show in the next lemma that under reasonable conditions reinsurance

should not be taken.

Lemma 1.5 We assume that lim infb↑1(1− b)−1(c− c(b)) > 0 and that G(x)

has a bounded density close to zero. Then there exists ε > 0 such that

b(x) = 1 for x ≤ ε.

Proof. Let H(x, b) = c(b)f ′(x) + λ(E(f(x− bY )− f(x)) then we get

H(x, 1)−H(x, b)

1− b
=
c− c(b)

1− b
f ′(x) + λE

[
f(x− Y )− f(x− bY )

1− b
IY≤x/b

]
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By Taylor’s theorem, there exists ζ(Y ) ∈ (x− Y, x− bY ) such that

f(x− bY ) = f(x− Y ) + Y (1− b)f ′(ζ(Y )),

then E
[
f(x− Y )− f(x− bY )

1− b
IY≤x/b

]
= −E

[
Y f ′(ζ(Y ))IY≤x/b

]
.

Since G(x) has a bounded density, then by the bounded convergence

theorem we get

lim
b→1

E
[
f(x− Y )− f(x− bY )

1− b
IY≤x/b

]
= −E [Y f ′(ζ(Y ))IY≤x] .

Then for small enough values of x, the right hand side can be made small.

Thus H(x, b) is strictly increasing in b at b = 1.

Now we assume that b(x) ̸= 1 close to zero, then lim supx↓0 b(x) < 1, so

that b(x) jumps at zero because b(0) = 1. Since H(x, b) is continuous in both

x and b thenH(0, b) = H(x, b) for some b < 1, butH(0, b) = c(b)f ′(x)−λf(x)
is strictly increasing in b, which is a contradiction. Thus b(x) = 1 for low

levels of capital. 2

1.3 Optimal Dividends

In this section, we extend the Cramér-Lundberg theorem so that a dividend

is paid out. A dividend process is an adapted increasing process {Dt} with

D0− = 0. The surplus process then becomes

XD
t = x+ ct−

Nt∑
i=1

Yi −Dt.

The time of ruin is defined as τD = inf
{
t : XD

t < 0
}
. The value of a dividend

strategy is defined as

V D(x) = E

[∫ τD−

0−
eδt dDt

]
.
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The value function is V (x) = supD V
D(x). Then our goal is to find an optimal

value where the supremum is taken over all increasing adapted processes.

Lemma 1.6 The function V (x) is bounded by

x+
c

λ+ δ
≤ V (x) ≤ x+

c

δ
.

Proof. We consider the dividend strategy Dt = x + ct, which means that

all of the surplus is paid out as dividends. This strategy has the value

V D(x) = E

[∫ τD−

0−
e−δt dDt

]
= x+

∫ ∞

0

∫ t

0

ce−δs dsλe−λt dt because T1 = τD

= x+
c

λ+ δ

Then V (x) = supD V
D(x) ≥ x +

c

λ+ δ
yields the lower bound. For the

upper bound, we have Dt ≤ x+ ct, otherwise ruin occurs. Then

V D(x) ≤
∫ ∞

0

Dtδe
−δt dt,

and

V D(x) <

∫ ∞

0

(x+ ct)δe−δt dt = x+
c

δ
.

This yields the upper bound. 2

Lemma 1.7 The function V (x) is locally Lipschitz continuous on [0,∞).

Moreover, for y ≤ x

x− y ≤ V (x)− V (y) ≤ V (x)
λ+ δ

c
(x− y).

Proof. Let x > y and Dt be a dividend strategy for initial capital y. We

consider the following strategy D̃t = x− y +Dt then:

V (x) ≥ V D̃(x) = V D(y) + x− y,
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then

V (x)− V D(x) ≥ x− y.

Taking the supremum over V D(y) we get:

V (x)− V (y) ≥ x− y.

Now let Dt be a strategy for initial capital x and let h = (x−y)/c denote the
time needed to reach x from y if no claims occur. For the second inequality,

we use the following strategy:

D̃t =


0 if t < h or T1 ≤ h

Dt−h if T1 ∧ t > h

D0 if t = h and T1 > h

Taking the supremum over D, we get

V (y) ≥ V D̃ = E

[∫ τ D̃−

0−

e−δt dDt

]

≥ E
[∫ T1∧h

0−

e−δt dD̃t

]
+ E

[∫ τ D̃−

T1∧h
e−δt dD̃t

]

≥ E

[
IT1≥h

∫ τ D̃−

h

e−δt dD̃t

]

≥ E

[
IT1≥h

∫ τ D̃−

h

e−δt dDt−h

]

≥ E

[
IT1≥h

∫ τD−

0−

e−δhe−δt dDt

]

≥ E

[
IT1≥hE

[∫ τD−

0−

e−δhe−δt dDt | T1

]]

≥
∫ ∞

h

e−δhE

[∫ τD−

0−

e−δs dDs | T1 = t

]
λe−λt dt

≥ e−(λ+δ)hV (x),

then we get V (x)− V (y) ≤ V (x)(1− e−(λ+δ)h ≤ V (x)λ+δ
c
(x− y). 2
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1.3.1 The Hamilton-Jacobi-Bellman Equation

As a motivation for the Hamilton-Jacobi-Bellman equation, we restrict to

dividend processes of the form Dt =
∫ t

0
us ds, where 0 ≤ us ≤ d0 is a bounded

rate. We let d0 > c , h > 0 and fix u ∈ [0, d0]. If x = 0, we assume u ≤ c;

and if x > 0, we take h small enough such that x + (c − u)h ≥ 0 (i.e., ruin

does not occur because of the dividend payments). Now we choose ε > 0,

and consider the following strategy:

ut =

{
u if 0 ≤ t ≤ T1 ∧ h
uεt−T1∧h if T1 ∧ t > h

where uεt is a strategy for initial capitalXT1∧h given by V ε(XT1∧h) > V (XT1∧h)−
ε. Because V (x) = supD V

D(x), then we get:

V (x) ≥ E
[
IT1≤h

∫ T1

0

e−δs dDs

]
+ E

[
IT1≥h

∫ h

0

e−δs dDs

]
+

E
[
IT1≤h

∫ τD

T1

e−δs dDs

]
+ E

[
IT1≥h

∫ τD

h

e−δs dDs

]
≥

∫ h

0

∫ t

0

e−δsu dsλe−λt +

∫ ∞

h

∫ h

0

e−δsu dsλe−λt+

E
[
IT1≤h

∫ τD

T1

e−δsus−T1 ds

]
+ E

[
IT1≥h

∫ τD

h

e−δsus−h ds

]
≥

∫ h

0

∫ t

0

e−δsu dsλe−λt +

∫ ∞

h

∫ h

0

e−δsu dsλe−λt+

E
[
E
[
IT1≤h

∫ τD

T1

e−δsus−T1 ds | T1, Y1
]]

+ E
[
E
[
IT1≥h

∫ τD

h

e−δsus−h ds | T1
]]

≥ e−λh
[ ∫ h

0

ue−δt dt+ e−δhV ε(x+ (c− u)h)
]
+

∫ h

0

[ ∫ t

0

ue−δs ds

+e−δt

∫ x+(c−u)t

0

V ε(x+ (c− u)t− y) dG(y)
]
λe−λt dt

≥ e−λh
[ ∫ h

0

ue−δt dt+ e−δhV (x+ (c− u)h)
]
+

∫ h

0

[ ∫ t

0

ue−δs ds

+e−δt

∫ x+(c−u)t

0

V (x+ (c− u)t− y) dG(y)
]
λe−λt dt− ε.
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Since the constant ε is arbitrary, we can let it tend to zero. Then dividing

by h yields

0 ≥ V (x+ (c− u)h)− V (x)

h
− 1− e−(δ+λ)h

h
V (x+ (c− u)h)

+e−λh 1

h

∫ h

0

ue−δt dt+
1

h

∫ h

0

[ ∫ t

0

ue−δs ds

+e−δt

∫ x+(c−u)t

0

V (x+ (c− u)t− y) dG(y)
]
λe−λt dt.

Letting h→ 0, we get

(c− u)V ′(x) + λ

∫ x

0

V (x− y) dG(y)− (λ+ δ)V (x) + u ≤ 0.

Therefore we consider the following Hamilton-Jacobi-Bellman equation:

max

{
cV ′(x) + λ

∫ x

0

V (x− y) dG(y)− (λ+ δ)V (x), 1− V ′(x)

}
= 0. (1.9)

The optimal dividend is expected to be constructed the following way. Let

B0 = {x : V ′(x− > 1)}

Bc = {x ̸∈ B0 : ∃xn, xn ↑ x} ∪ B̃c,

where B̃c = 0 if V (0) =
c

λ+ δ
and the empty set otherwise. Let

B∞ = [0,∞) \ (B0 ∪ Bc).

Now we define the following strategy D∗
t . If x ∈ B0 , we do not pay out

dividends. If x ∈ Bc , we pay out a dividend dD∗
t = cdt until the next jump.

Theorem 1.6 (Schmidli, [37]) The strategy {D∗
t } is an optimal strategy,

that is

V D∗
(x) = V (x),

and V (x) is the solution to (1.9).
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1.4 Optimal Investment

Browne (1995) considered a risk process modeled by a Brownian motion with

drift given by:

Xt = x+ αdt+ βW
(1)
t ,

with the possibility of investment in a risky asset which follows a geometric

Brownian motion given by

dSt = St(µdt+ σdWt). (1.10)

W 1
t is a Brownian motion such that E[WtW

(1)
t ] = ρt, where ρ2 ̸= 1 is the

correlation coefficient. Let K be the set of all admissible adapted strategies,

i.e., Kt is a non-anticipative function (see [30], p.40) and satisfies, for any T ,∫ T

0

K2
t dt <∞, a.s. (1.11)

Observation 1.5 The set K of all admissible strategies depends on the fil-

tration generated by Xt and St. In all of the cases studied in this chapter,

we will conserve the same notation for the set of all admissible strategies K.

Only the filtration will depend on the risk processes and the risky assets.

If the company is allowed to invest in the risky asset (1.10) at time t under

an investment strategy K ∈ K, then the wealth of the company XK
t at time

t is given by:

Xt = x+

∫ t

0

(α + µKs) ds+

∫ t

0

σKt dWt +

∫ t

0

β dW
(1)
t . (1.12)

From standard arguments in stochastic control, Browne showed that the

value function V (x) = sup
K∈K

P[XK
τ ≥ b | X0 = x], where τK = min

{
τKa , τ

K
b

}
and τKx = inf

{
t > 0 : XK

t = x
}
satisfies the following HJB equation:

max
K∈R

[
(α + µK)Vx +

1

2
(σ2K2+β2+2ρσβK)Vxx

]
= 0, for a ≤ x ≤ b. (1.13)
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When b ↑ ∞ and a ↓ 0, he arrived at a surprising result: the optimal strategy

that minimizes the ruin probability is constant (see [3], p.10).

Hipp and Plum (2000) considered the classical risk process (1.1) with oppor-

tunity to invest in a risky asset modeled by a geometric Brownian motion

(1.10). The objective in this case is to find how to invest in the risky asset

in order to minimize the probability of ruin. More precisely, let Xt be the

classical Cramér-Lundberg model

Xt = x+ ct−
Nt∑
i=1

Yi. (1.14)

Now the insurer has the possibility to invest in a risky asset described by a

geometric Brownian motion

dSt = St(µdt+ σdWt), (1.15)

where µ, σ ∈ R. The standard Brownian motion {Wt} is assumed to be

independent of the process Xt.

Let F = (Ft)t≥0 be the filtration generated by the processes X and S, and

Et[ · ] be the notation for the conditional expectation E[ · | Ft]. We will

denote by K = {Kt, t ≥ 0} the investment strategy of the insurer in each

time period t in the risky asset, and by K the same set of non-anticipative

strategies considered above. Let XK
t := X(t, x,K) be the wealth of the

insurer at time t if he chooses the admissible strategy K to invest in the

risky asset, then the process XK satisfies

XK
t = x+

∫ t

0

(c+ µKs) ds+

∫ t

0

σKs dWs −
Nt∑
i=1

Yi. (1.16)

The time of ruin is defined as

τ(x,K) = inf
{
t : XK < 0

}
,
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and the survival probability is given by

ϕ(x,K) = P [τ(x,K) = ∞] .

The problem consists in maximizing the survival probability, that is solving

ϕ∗(x) = sup
K∈K

ϕ(x,K),

and finding an optimal strategy K∗ ∈ K such that

ϕ∗(x) = ϕ(x,K∗).

Using Itô’s lemma, Hipp and Plum (2000) suggested the following HJB equa-

tion for the optimal survival probability:

sup
K∈R

{
1

2
σ2K2ϕ′′(x)+(c+µK)ϕ′(x)+λ

∫ ∞

0

ϕ(x−y)−ϕ(x) dG(y)
}

= 0. (1.17)

The following theorem relates the value function with the survival probabil-

ity:

Theorem 1.7 Assume that there exits a solution ϕ∗(x) to the HJB equation

(1.17) with the maximizing function K∗ with the following properties:

• ϕ∗(0), ϕ∗(0) > 0 and ϕ∗(x) = 0 for x < 0.

• limx→∞ ϕ∗(x) = 1.

• ϕ∗(x) is twice continuously differentiable on {x > 0}.

Then ϕ∗′(x) > 0 for x > 0, and if K(t) is an arbitrary admissible strategy for

which the reserve process XK is defined on 0 ≤ t ≤ ∞, then the corresponding

survival probability ϕ(x) satisfies:

ϕ(x) ≤ ϕ∗(x)

with equality for K∗.
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Observation 1.6 The main idea of the proof of the verification theorem in

risk theory and finance is now classic and many authors have used it [18,

35, 7]. This idea can be seen in theorem 4.1 of the present thesis. However,

to prove theorem 1.7, Hipp and Plum used a new element which consists in

proving the asymptotic behavior of the risk process on the set {τ = ∞}. This
property of the risk process was obtained by constructing a new strategy of

investment.

Theorem 1.8 Suppose that G(x) has a bounded density, then

ϕ(x) = sup
K∈K

ϕ(x,K),

solves the HJB equation (1.17) and the optimal strategy of investment is given

by:

K∗
t− = K∗(Xt−) = − µ

σ2

ϕ′(Xt−)

ϕ′′(Xt−)
. (1.18)

Proof. We will give a sketch of the proof, for more details see [18].

Step 1. The first step consists in substituting the strategy K∗
t− given by

(1.18) in the HJB equation (1.17), which leads to:

λ

∫ ∞

0

ϕ(x− y)−ϕ(x) dG(y) + cϕ′(x) =
µ

2σ2

(ϕ′(x))2

ϕ′′(x)
. (1.19)

Let H = 1−G, then (1.19) can be transformed to:

ψ′′(x)

(
λ

∫ x

0

ϕ′(x− y)H(y) dy + c(ϕ′(x)−H(x))

)
=

1

2
(ϕ′(x))2, (1.20)

which can be written for v = ϕ′ as:

v′(x)

(
−λ
∫ x

0

v(x− y)H(y) dy + c(v(x)−H(x))

)
=

1

2
(v(x))2

v(0) = 1. (1.21)

Let w(x) = v(x2), then (1.21) is transformed to:

w′(x)L[w](x) = (w(x))2, w(0) = 1, (1.22)
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where

L[w](x) = −2λx

∫ 1

0

tw(xt)H(x2(1− x2)) dt+ c
w(x)−H(x2)

x
.

Step 2. We define Qϵ := sup
0<x≤ϵ

1

x
| w′(x)−w′(0) | for ϵ > 0 and w ∈ C1[0, ϵ].

Let Rϵ := {w ∈ C1[0, ϵ], Qϵ[w] <∞} endowed with the norm

|| w ||ϵ= max {|| w ||∞, | w′(0) |, ϵQϵ}

be a Banach space, and

Dϵ,M :=

{
w ∈ Rϵ : w(0) = 1, w′(0) = − 1√

c
, || w − 1 ||∞≤ 1

3
, Qϵ[w].

}
,

be a closed subset.

Step 3. The operator T defined by:

T (w)(x) := 1 +

∫ x

0

w(y)2

L[w](y)
dy, w ∈ Dϵ,M , x ∈ [0, ϵ],

maps Dϵ,M into itself and is a contraction. By Banach’s fixed point theorem

there exists a fixed point w ∈ Dϵ,M which is a solution to (1.21) in [0, ϵ].

Step 4. This step consists in extending the solution to [0,∞]. 2

Observation 1.7 The strategy given by (1.18) is different from the one

obtained by Browne, because at time t it is a function of the wealth of the

insurance company. In the case of exponentially distributed claim size and

special parameter values, Hipp and Plum (2000) gave an explicit solution for

the HJB equation (1.17).

A follow-up paper by Schmidli (2002) considered the classical risk process

and allowed investment in a risky asset modeled by a geometric Brownian

motion and proportional reinsurance. Here the ruin probability is

ψ(x) = inf
K∈K

ψ(x,K),
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where ψ(x,K) = P[τK <∞] satisfies the following HJB equation:

inf
b∈[0,1]

[
inf
K∈R

1

2
σ2K2ψ′′(x)+(c− c(b) + µK)ψ′(x)

+λ

∫ x

0

ψ(x− y)−ψ(x) dG(y)
]
= 0. (1.23)

Via the HJB equation (1.23), Schmidli found an optimal strategy K∗(Xt−)

and b∗(Xt−), where K
∗(x) = − µ

σ2

ψ′(x)

ψ′′(x)
and b∗(x) is the argument minimiz-

ing the HJB equation (1.23) after substituting K∗(x). Numerical procedures

to solve the HJB equation (1.23) were further developed by Schmidli.

Gaier et al. (2003) obtained an estimate for the ruin probability of expo-

nential type with a rate that improves the classical Lundberg parameter, by

proposing a strategy that consists in investing a constant amount of money

in the risky asset. Let h : R+ → R+ be the moment generating function of

Y such that h(0) = 0 , h(r) =MY (r)− 1 and let:

θ(r) = λh(r)− cr − µ2

2σ2
.

We assume as in the case of the Cramér-Lundberg model without investment

that there exists r∞ ∈ (0,∞] such that h(r) <∞ for r < r∞ and lim
r→r∞

h(r) =

∞. Hence, the ruin probability is estimated as follows:

Theorem 1.9 The minimal ruin probability ψ∗(x) of an insurer investing

in a risky asset can be bounded from above by

ψ∗(x) ≤ e−r̂x,

where 0 < r̂ < r∞ is the positive solution of:

λ (MY (r)− 1) = cr +
µ2

2σ2
.

The proof of this theorem will be a consequence of the following lemma:
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Lemma 1.8 Let M(t, x,K, r) = e−rXK
t , then the process M(t, x, K̂, r̂) is a

martingale, where

K̂ =
µ

r̂σ2
, (1.24)

and r̂ is the unique solution of:

θ(r) = 0.

Proof. We define f : R× [0, r∞) → R

f(K, r) = λh(r)− (µK + c)r +
1

2
σ2K2r2 (1.25)

then f(K̂, r̂) = 0. Then we have

E[M(t, 0, K̂, r̂)] = E[e−r̂(ct−
∑Nt

i=1 Yi+µtK̂+σK̂Wt)]

= e−r̂(c+µK̂)tE[er̂
∑Nt

i=1 Yi ]E[e−r̂σK̂Wt ]

= e−r̂(c+µK̂)teh(r̂)λte(σ
2K̂2r̂2/2)t

= ef(K̂,r̂)

= 1.

Thus, M(t, 0, K̂, r̂) has a finite moment. By using the stationary and inde-

pendent increments of the process XK̂
t , we obtain for 0 ≤ t ≤ T

Et[M(T, x, K̂, r̂)] = Et[e
−r̂XK̂

T ]

= e−r̂XK̂
t Et[e

−r̂(XK̂
T−t−XK̂

t )]

= e−r̂XK̂Et[e
−r̂(XK̂

T−t−XK̂
0 )]

= e−r̂XK̂Et[e
−r̂Y (T−t,0,K̂)]

= e−r̂XK̂E[M(T − t, 0, K̂, r̂)]

= e−r̂XK̂
t

= M(t, x, K̂, r̂),

therefore M(t, x, K̂, r̂) is a martingale. 2

Proof.(Theorem 1.9) We know that M(t, x, K̂, r̂) is a martingale with
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respect to the filtration F, then the stopped process M̃(t, x, K̂, r̂) = M(t ∧
τ, x, K̂, r̂) is also a martingale, so that

e−r̂x = M̃(0, x, K̂, r̂)

= E[(M̃(t, x, K̂, r̂)]

= E[M(τ, x, K̂, r̂)11τ<t] + E[M(t, x, K̂, r̂)11t≤τ ]

≥ E[M(τ, x, K̂, r̂)11τ<t].

By using monotone convergence, we get

lim
t→∞

E[M(τ, x, K̂, r̂)11τ<t] = E[M(τ, x, K̂, r̂)11τ<∞],

then:

e−r̂x ≥ E[M(τ, x, K̂, r̂) | τ <∞]P[τ <∞],

therefore:
ψ(x, K̂) = P[τ <∞]

≤ e−r̂x

E[M(τ, x, K̂, r̂) | τ <∞]
.

Then

ψ∗(x) ≤ e−r̂x,

because M(τ, x, K̂, r̂) ≥ 1. 2

Observation 1.8 1. We know that the classical Lundberg exponent R is

the positive solution to

h(r) =
c

λ
r,

and r̂ is the positive solution of

h(r) =
c

λ
r +

µ2

2λσ2
.

The figure below shows that r̂ > R, which means that including invest-

ment in the classical risk model improves the bound given by Lundberg.
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Figure 1.2: The adjustment coefficient R.

2. The case in which the bond yields interest was considered in [13], where

by the same argument as in the case of zero interest, the authors produce

an upper bound for the ruin probability.

Hipp and Schmidli (2004) showed in the following theorem that the strategy

proposed by Gaier et al. (2003) is asymptotically optimal as initial wealth

tends to infinity.

Theorem 1.10 (Hipp and Schmidli, [21]) In the small claim case:

lim
x→∞

K∗(x) = K̂.

Liu and Yang (2004) considered the model by Hipp and Plum (2000) incor-

porating a risk-free interest rate. In this case, a closed form solution cannot

be obtained. Hence, they provided numerical results for the behavior of

investment under different claim-size distributions.
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Definition 1.2 Let < r < r∞ be given. We say that Y has a uniform

moment in the tail distribution for r if the following condition holds true

sup
z≥0

E[e−r(z−Y ) | Y > z] <∞.

Lemma 1.9 Let 0 < r < r∞ and K ∈ K. The difference of the processes

∫ t∧τ

0

M(s−, x,K, r̂)(erYNs − 1) dNs

and

E[erY − 1]

∫ t∧τ

0

M(s−, x,K, r)λ ds,

is a martingale with respect to the filtration F.

Proof. We know that N = (Nt)t≥0 is a finite variation process, then the inte-

gral with respect to N makes sense as a pathwise Lebesgue-Stieltjes integral.

Then

∫ t∧τ

0

M(s−, x,K, r̂)(erYNs − 1) dNs

=
∞∑
n=1

M(Tn−, x,K, r)(erYn − 1)11{t∧τ≥Tn}
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Now by taking the expectation for t ≤ T :

Et∧τ [

∫ T∧τ

t∧τ
M(s−, x,K, r̂)(erYNs − 1) dNs]

= Et∧τ [
∞∑
n=1

M(Tn−, x,K, r)(erYn − 1)11{T∧τ≥Tn≥t∧τ}]

= Et∧τ [
∞∑
n=1

ETn−[M(Tn−, x,K, r)(erYn − 1)11{T∧τ≥Tn≥t∧τ}]]

= Et∧τ [
∞∑
n=1

ETn−[e
rYn − 1]M(Tn−, x,K, r)11{T∧τ≥Tn≥t∧τ}]

= Et∧τ [
∞∑
n=1

E[erY − 1]M(Tn−, x,K, r)11{T∧τ≥Tn≥t∧τ}]

= E[erY − 1]Et∧τ [

∫ T∧τ

t∧τ
M(s−, x,K, r) dNs)]

= E[erY − 1]Et∧τ [

∫ T∧τ

t∧τ
M(s−, x,K, r) d(Ns − λs)+∫ T∧τ

t∧τ
M(s−, x,K, r)λ ds]

= E[erY − 1]Et∧τ [

∫ T∧τ

t∧τ
M(s−, x,K, r)λ ds].

In the last line, we used that Nt − λt is a martingale and that the integral

of any measurable and bounded process with respect to Nt − λt is also a

martingale, thus completing the proof. 2

Theorem 1.11 Suppose that Y has a uniform exponential moment in the

tail distribution for r̂. Then for each K ∈ K, the process (M̃(t, x,K, r̂))t≥0

is a uniformly integrable submartingale.

Proof. Using Itô’s lemma with jumps for arbitrary K ∈ K, we get:

M̃(t, x,K, r̂)− M̃(0, x,K, r̂)

=

∫ t∧τ

0

M(s−, x,K, r̂) ds− rb

∫ t∧τ

0

M(s−, x,K, r̂)KsdWs

+

∫ t∧τ

0

M(s−, x,K, r̂)(er̂YNs ) dNs − E[er̂Y − 1]

∫ t∧τ

0

M(s−, x,K, r̂)λ ds
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The stochastic integral with respect to the Brownian motion is integrable

because K ∈ K is integrable and M(s−, x,K, r̂) ≤ 1. It was shown by the

lemma above that the difference of the two processes

∫ t∧τ

0

M(s−, x,K, r̂)(er̂YNs ) dNs − E[er̂Y − 1]

∫ t∧τ

0

M(s−, x,K, r̂)λ ds,

is a martingale.

Finally it is easy to obtain:

f(K, r̂) =
1

2
r̂2σ2(K − K̂) ≥ 0.

So we deduce that for 0 ≤ t ≤ T ,

∫ T∧τ

t∧τ
M(s−, x,K, r̂)f(K, r̂) ds is a sub-

martingale. Then (M̃(t, x,K, r̂)) is a local submartingale. Now to show that

(M̃(t, x,K, r̂))t≥0 is a submartingale, we use the following process:

M̃∗ = sup
t≥0

| M̃(t) |,

then,

E[M∗] ≤ E[M̃(t, x,K, r̂) | τ <∞]

≤ E[M̃(t, x,K, r̂) | τ <∞, X(τ−) > 0].

Let H(dt, dy) be the joint probability distribution of τ and XK(τ−), then

E[M∗] ≤ E[M̃(t, x,K, r̂) | τ <∞, R(τ−) > 0]

=

∫ ∞

0

∫ ∞

0

H(dt, dy)

∫ ∞

y

e−r̂(y−z) dF (z)∫∞
y
dF (u)

≤ sup
y≥0

∫ ∞

y

e−r̂(y−z) dF (z)∫∞
y
dF (u)

∫ ∞

0

∫ ∞

0

H(dt, dy)

= sup
y≥0

∫ ∞

y

e−r̂(y−z) dF (z)∫∞
y
dF (u)

< ∞.

Since each

| M̃(t) | ≤ M̃∗,
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then by the dominated convergence theorem we get that M̃(t, x,K, r̂) is a

uniformly integrable submartingale. 2

Lemma 1.10 If Y has a uniform exponential distribution moment in the

tail distribution for r̂, then for an arbitrary K ∈ K and x ∈ R+, the stopped

wealth process XK
t∧τ converges almost surely on τ = ∞ to ∞ for t→ ∞.

Proof. From Theorem 1.11 and by applying Doob’s convergence theorem,

the stopped wealth process XK
t∧τ converges a.s. for t → ∞. There exists

d > 0 such that P[Y > d] > 0, then we define En := {Yn > d}. Therefore

P[Ec
n] < 1, and {Ej}∞j=1. Then :

P[
∞
∪
i=1

∪
n≥k

Ec
n] = lim

k→∞
P[ ∪

n≥k
Ec

n] = lim
k→∞

∏
n≥k

P[Ec
n] = 0,

which means that a jump of size greater than d occurs infinitely often,

and cannot be compensated by the continuous stochastic integral t
0σKs dWs.

Then the wealth stopped at the time of ruin cannot converge to a nonzero

value with positive probability. 2

Theorem 1.12 Assume that Y has a uniform exponential in the tail distri-

bution for r̂. Then for every K ∈ K:

ψ(x,K) ≥ Ce−r̂x,

where

C = inf
y≥0

∫ ∞

y

dF (u)∫ ∞

y

e−r̂(y−z)dF (z)

.

Proof. We know that M̃(t, x,K, r̂) is a uniformly integrable submartingale,

then from Doob’s optional sampling theorem we obtain:

M̃(0, x,K, r̂) = e−r̂x

≤ E[M̃(τ, x,K, r̂)]
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and

E[M̃(τ, x,K, r̂)] =

E[M̃(τ, x,K, r̂) | τ <∞]P[τ <∞] + E[ lim
t→∞

M̃(t, x,K, r̂) | τ = ∞]P[τ = ∞]

Then by Lemma 1.10, we obtain:

e−r̂x ≤ E[M̃(τ, x,K, r̂)] = E[M̃(τ, x,K, r̂) | τ <∞]P[τ <∞],

then proceeding as in the proof of Theorem 1.11, we see that:

ψ(x,K) = P[τ <∞] ≥ e−r̂x

E[M̃(τ, x,K, r̂) | τ <∞]

≥ inf
y≥0

1∫∞
y
e−r̂(y−z)

dF (z)∫∞
y
dF (u)

≥ Ce−r̂x,

where

C = inf
y≥0

∫ ∞

y

dF (u)∫ ∞

y

e−r̂(y−z)dF (z)

.

2

Finally, Hipp and Schmidli (2004) obtain an equivalent asymptotic behavior

for the ruin probability as in the case of the Cramér-Lundberg model without

investment.

Theorem 1.13 (Hipp and Schmidli, [21]) There exists a constant ξ ∈ (0,∞)

such that

lim
x→∞

ψ(x)er̂x = ξ.

1.5 Optimization and Utility Functions

The study of the optimization of the expected utility function is very im-

portant in both finance and insurance. Ferguson (1965) conjectured that
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maximizing exponential utility from terminal wealth is strictly related to

minimizing the probability of ruin. Ferguson studied the problem of ex-

pected utility of wealth under a discrete time-sapce model for the investor.

Browne (1995) verified the conjecture in the same model mentioned above,

but without the risk-free interest rate, by assuming that the investor has an

exponential utility function:

u(x) = ν − γ

θ
e−θx, (1.26)

where γ > 0 and θ > 0. Since −u
′′(x)

u′(x)
= θ > 0, then this utility function

features risk aversion. According to Browne:

Such utility functions play a prominent role in insurance mathematics and

actuarial practice, since they are the only functions under which the

principle zero utility gives a fair premium that is independent of the level of

reserves of an insurance company (see [14], p. 68).

Let K be the set of non-anticipative functions satisfying (1.11). The value

function considered in [3] is given by: V (t, x) = sup
K∈K

E[u(XK
T ) | XK

t = x],

which consists in maximizing utility from terminal wealth at a fixed terminal

time. V (t, x) satisfies the following HJB equation: Vt+max
K∈R

[
(α+µK)Vx+

1

2
(σ2K2+β2+2ρσβK)Vxx

]
= 0, t < T.

V (T, x) = 1 for x ∈ [0,∞[

(1.27)

Browne arrived at the result that the optimal strategy that minimizes

the ruin probability is also optimal in maximizing exponential utility from

terminal wealth. In the presence of a positive interest rate, this equivalence

does not hold. Yang and Zhang (2005) considered the classical risk process

perturbed by a standard Brownian motion W 1
t such that E[WtW

(1)
t ] = ρt,

where ρ2 ̸= 1. The insurer is allowed to invest in the money market and a
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risky asset given by (1.10). The money market is modeled by:

dS0
t = rS0

t dt. (1.28)

If Kt is the amount invested at time t in the risky asset and the rest of the

wealth (Xt−Kt)t≥0 is invested in the money market, then the wealth process

evolves as:

XK
t = x+

∫ t

0

c+
(
(µ− r)Ks + rXs

)
ds+

∫ t

0

σKs dWs + β

∫ t

0

dW 1
t −

Nt∑
i=1

Yi.

Let u be the exponential utility function given by (1.26), and let K be the

same set considered by Browne (1995), then the value function

V (t, x) = sup
K∈K

E[u(XK
T ) | XK

t = x]

satisfies the following HJB equation:
Vt + sup

K∈R

[
(c+ rx+ (µ− r)K)Vx +

1

2
(σ2K2 + β2 + 2ρσβK)Vxx

]
+λ

∫ x

0

V (t, x− y)− V (t, x) dG(y) = 0, t < T,

V (T, x) = 1 for x ∈ [0,∞[.

(1.29)

By assuming that the HJB equation (1.29) has a classical solution V , which

satisfies Vx > 0 and Vxx < 0, then differentiating with respect to K, they

obtained a closed form expression of the optimal strategy:

K∗(t) = −µ− r

σ2

Vx
Vxx

− ρβ

σ
. (1.30)

By inserting (1.30) into the HJB equation (1.29) and after simplifying, we

obtain the following nonlinear PDE:
Vt +

[
α+ rx− ρβ(µ− r)

σ

]
Vx −

1

2

(
µ− r

σ

)2
V 2
x

Vxx
+

1

2
β2(1− ρ2)Vxx

+λ

∫ x

0

V (t, x− y)− V (t, x) dG(y) = 0, t < T,

V (T, x) = 1 for x ∈ [0,∞[.

(1.31)
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To solve (1.31), Yang and Zhang – inspired by Browne (2005) – tried to find

a solution of the form:

V (t, x) = c− γ

θ
exp

{
θxer(T−t) − 1

2

(
µ− r

σ

)2

(T − t) + w(T − t)

}
(1.32)

Plugging (1.32) into equation (1.31), w(t) satisfies the following ordinary

differential equation:
w′(t) = −θ

[
α− ρβ(µ− r)

σ

]
er(T−t) +

1

2
θ2β2(1− ρ2)e2r(T−t)

+ λ

∫ ∞

0

[
exp

{
θyer(T−t)

}
− 1
]
dG(y), t < T,

w(0) = 0.

(1.33)

It is clear that a closed form solution of w(·) depends on the distribution of

Y . Finally, the optimal strategy of investment is given by:

K∗(t) =
µ− r

θσ2
e−r(T−t) − ρβ

σ
.

Fernández et al. (2008) considered the same model as Yang and Zhang (2005)

but without perturbation (β = 0). The wealth process can then be written

as:

XK
t = x+

∫ t

0

c+
(
(µ− r)Ks + rXs

)
ds+

∫ t

0

σKs dW1s −
Nt∑
i=1

Yi.

In this case, the set of admissible strategies K is defined as follows:

Definition 1.3 We say that K = (Kt)t≥0 is an admissible strategy if it is

an Ft-progressively measurable process such that:

P[| Kt |≤ CK , 0 ≤ t ≤ T ] = 1,

where CK is a constant which may depend on the strategy K. We denote the

set of admissible strategies as K.
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Let u be a utility function, then the value function to maximize is:

ψ(t, x) = sup
K∈K

E[u(XK
T ) | XK

t = x],

which consists in maximizing the expected utility of wealth with finite horizon

T > 0. Via the Hamilton-Jacobi-Bellman approach, under suitable condi-

tions of integrability

ψ(t, x) = sup
K∈K

E[u(XK
T ) | XK

t = x]

satisfies the following Hamilton-Jacobi-Bellman equation:
ψt + sup

K

[
(c+ rx+ (µ− r)K)ψx +

1

2
σ2K2ψxx

]
+λ

∫ x

0

ψ(t, x− y)− ψ(t, x) dG(y) = 0, t < T,

ψ(T, x) = 1 for x ∈ [0,∞[.

(1.34)

To gain precision in the study of the utility function, Fernández et al. (2008)

considered the case in which the insurer’s preferences are exponential, i.e.,

u(x) = −e−αx and α > 0. In this case, the HJB equation given by (1.34) has

an explicit solution which can be written in closed form as

ψ(t, x) = −ξ(t) exp
{
−αxer(T−t)

}
,

where ξ(t) is the solution to the following ordinary differential equation:

ξt −
[
1

2

(µ− r)2

σ2
− λθs + cαer(T−t)

]
ξ = 0,

and θt =

∫ ∞

0

(
exp

{
αyer(T−t)

}
− 1
)
dG(y). The optimal expected utility

function is given by:

ψ(t, x) = exp

{
−1

2

(µ− r)2

σ2
(T − t) +

cα

r
(1− er(T−t))+ λ

∫ T

t

θs ds

}
. exp

{
−αxer(T−t)

}
. (1.35)
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A candidate for the optimal strategy is:

K∗(t) =
µ− r

ασ2
e−r(T−t). (1.36)

Finally, Fernández et al. (2008) considered the wealth process XK∗
t under

the optimal strategy (1.36). They obtained the following estimation for the

ruin probability:

ψ(x) ≤ e−ν∗x,

where ν∗ is the positive solution to the equation:

hr(ν) = −ν
(
c+

(µ− r)2

ασ2

)
e−rT +

ν2

2

(µ− r)2

α2σ2
e−2rT + λ(MY (ν)− 1) = 0.

Observation 1.9 If the interest rate of the money market r = 0, the ap-

proach by Fernández et al. (2008) can be used to recover some known results

in risk theory (the upper bound by Gaier et al. (2003) and the optimal strat-

egy by Hipp and Schmidli (2004)). The idea consists in considering for each

α > 0, the root ν(α) of h0(ν). By using the implicit function theorem, they

showed that ν(α) reaches its maximum when ν(α) = α, and this is precisely

the value for which the upper bound obtained by Gaier et al. (2003), and the

asymptotically optimal strategy by Hipp and Plum (2004) can be recovered.

The case in which the claim process is a pure jump process and the insurer

has the option of investing in multiple risky assets without a risk-free op-

tion was studied by Wang (2007). Wang found that the optimal strategy

of maximizing the exponential utility of terminal wealth consists in invest-

ing a fixed amount of money in each risky asset, while to get the optimal

form of reinsurance from the ceding company, Guerra and Centeno (2008)

studied the relationship between maximizing the adjustment coefficient and

maximizing the expected utility of wealth for the exponential utility function.



Chapter 2

The Stochastic Volatility Model

This chapter is devoted to formulating the problem of our research, which

consists in a model of an insurance company allowed to invest in a risky asset

and a bank account in the presence of stochastic volatility. Let (Ω,F ,P) be a
complete probability space which carries the following independent stochastic

processes:

• A Poisson process {Nt}t≥0 with intensity λ > 0 and jump times {Ti}i≥1.

• A sequence {Yi}i≥1 of i.i.d. positive random variables with common

distribution G.

• W1t and W2t are independent standard Brownian motions.

• The filtration Ft is defined by

Ft = σ
{
W1s,W2s, Yi1[i≤Ns], 0 ≤ s ≤ t, i ≥ 1

}
with the usual conditions.

In previous articles ([7, 13, 18, 20, 42]), the asset price was modeled by a

geometric Brownian motion given by

dSt = St(µdt+ σdWt). (2.1)
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Empirical observations of financial markets show that some indicators of

market volatility behave in a highly erratic manner, which makes it unrealistic

to assume µ, σ and r are constant over long periods of time. This fact has

motivated several authors to study the so-called stochastic volatility models

(see among others [8, 38, 43]). Here, we consider an extension of this model.

If the parameters in (2.1) are stochastic (see [4, 9]), then the asset price

satisfies the following stochastic differential equation:

dSt = St(µ(Zt)dt+ σ(Zt)dW1t) with S0 = 1 (2.2)

where µ(·) andσ(·) are respectively the return rate and volatility functions.

Z is an external factor modeled as a diffusion process solving

dZt = g(Zt)dt+ β(ρdW1t + εdW2t) with Z0 = z ∈ R (2.3)

where | ρ |≤ 1, ε =
√
1− ρ2 and β ̸= 0.The parameter ρ is the correlation

coefficient between W1t and W̃ = ρW1t + εW2t, thus the external factor can

be written as

Zt = z +

∫ t

0

g(Zs)ds+ β

∫ t

0

dW̃s. (2.4)

Our model also contains a bank account given by the equation

dS0
t = S0

t r(Zt)dt, (2.5)

where r(·) is the interest rate function. The process Zt can be interpreted as

the behavior of some economic factor that has an impact on the dynamics

of the risky asset and the bank account (see for example [2, 4, 9, 30]). For

instance, the external factor can be modeled by the mean reverting Ornstein-

Uhlenbeck (O-U) process:

dZt = δ(κ− Zt) dt+ β dW̃t, Z0 = z

where δ and κ are constant and the risky asset price can be given by the

Scott model [30]:

dSt = St(µ0dt+ eZtdW1t) with S0 = 1. (2.6)
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Here, we assume that µ0 is constant.

Let K be the set of all admissible adapted strategies, i.e., Kt is a non-

anticipative function (see [30], p.40) and satisfies, for any T ,∫ T

0

K2
t σ

2(Zt) dt <∞, a.s. (2.7)

Then if Xt is the insurer’s wealth, and he invests an amount Kt ∈ K in the

risky asset and the remaining reserve Xt −Kt in the bank account, then the

wealth process XK
t := X(t, x, z,K) can be written as:

XK
t = x+

∫ t

0

c+
(
(µ(Zs)−r(Zs))Ks+r(Zs)Xs

)
ds+

∫ t

0

Ksσ(Zs) dW1s−
Nt∑
i=1

Yi, (2.8)

where x ≥ 0 is the initial reserve of the insurance company and c is the

constant premium rate. The time of ruin for the risk process given by (2.8)

is defined as:

τK := τ(x, z,K) = inf
{
t > 0, XK

t < 0
}
.

The ruin probability and the survival probability are given, respectively, by:

ψ(x, z,K) = P[τK <∞],

δ(x, z,K) = P[τK = ∞].

The main purpose of risk theory is the study of the following value functions:

ψ(x, z) = inf
K∈K

ψ(x, z,K), (2.9)

and

δ(x, z) = sup
K∈K

δ(x, z,K). (2.10)

Rubio (2010) recently studied a control problem in his Ph.D. disserta-

tion, which consists in the optimization of the ruin probability for an insurer

allowed to invest in a risky asset defined by the stochastic volatility model



51

given above. He obtained a verification theorem which relates the optimiza-

tion problem with the HJB equation. The proof of the verification theorem

is inspired in the works of Hipp and Plum (2000) and Schmidli (2002). Since

volatility problems are very difficult to solve using traditional theory, he ap-

plied a technique based on stopping times to get the convergence property

of the risk process, which was the key to solving the asymptotic behavior

of wealth on {τ = ∞}. Because of the importance of the results of Rubio

(2010) and their strong connection with our work, we will recall his main

result with a sketch of the proof he provided. First we start by introducing

some hypotheses and lemmas which will be useful in this chapter.

Hypothesis 2.1 1. r = 0.

2. g is Lipschitz continuous with linear growth and satisfies:∫ x

0

exp

{
−
∫ z

0

g(u)

}
dz −→ ∞

x→±∞
.

3. µ, σ : R → R are bounded Lipschitz continuous and satisfy:

0 < σ0 < σ(·) < σ1, 0 < µ0 ≤ µ(·),

for some constants µ0, σ0, σ1.

Hypothesis 2.2

g is Lipschitz continuous with linear growth and satisfies:∫ x

0

exp

{
−
∫ z

0

g(u)

}
dz → ∞

x→±∞
.

Observation 2.1 Hypothesis 2.1 implies that the process Zt is recurrent,

i.e., for all a, b ∈ R
Pa [Zt = b i.o] = 1.

Since its diffusion coefficient never vanishes, the process satisfies

P
[
sup
t>0

Zt = ∞
]
= P

[
inf
t>0

Zt = −∞
]
= 1.
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The main purpose is to characterize the value function δ(x, z). Following the

same arguments of classical control theory, Rubio (2010) related the value

function given by (2.10) with the following HJB equation:

sup
K∈R

{
L K(f) + λ

∫ ∞

0

(f(t, x− y, z)− f(t, x, z)) dG(y)

}
(2.11)

where

L K(f) = ft +
1
2
σ2(z)K2fxx +

1
2
β2fzz + ρβKσ(z)fxz

+(c+ (µ(z)− r(z))K + r(z)x)fx + g(z)fz.

If fxx < 0, the supremum is attained at

K∗(x, z) =
µ(z)fz + ρβσ(z)fxz

σ2(z)fxx
. (2.12)

More details about the derivation of this equation are given in Chapter 4.

Theorem 2.1 (Verification Theorem, Rubio 2010) Assume Hypothesis 2.1

or 2.2. Assume also that there exists a solution f(x, z) of the HJB given by

(2.11) with a maximizing function given by K∗(x, z), that is locally Lipschitz

continuous, with the following properties:

1. f(x, z) = 0 for (x, z) ∈ (−∞, 0)× R.

2. f ∈ C2[(0,∞)× R] ∩ C[[ 0,∞ ) × R].

3. fx > 0 and fxx < 0.

4. K∗(0, ·) = 0.

Then f is bounded. Furthermore, f(∞, z) is constant and for any admissible

strategy K, the following inequality is satisfied:

δ(x, z,K) ≤ f(x, z)

f(∞, z)
≤ δ(x, z,K∗),

where K∗
t = K∗(Xt−, Zt), and hence we obtain the equality for this strategy.
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To prove this theorem, we need the following lemmas.

Lemma 2.1 We consider the stochastic processes γt, µt and σt such that 0 <

µ0 ≤ µt, 0 < σ0 ≤ σt ≤ σ1 for some constants µ0, σ0, σ1. We also assume

that µt and σt are continuous processes. For a, b, c > 0 we define the process:

πt = γt + a+ b

∫ t

0

µs ds+ c

∫ t

0

σs dWs.

If γt ≥ 0 for some K ∈ F , then:

πt →
t→∞

∞

over the set K.

Lemma 2.2 Let

πt = x+ α

∫ t

0

µs ds+ β

∫ t

0

σs dWs,

with 0 < σ < σ1 and 0 ≤ µ0 ≤ µ, then:

P[for some t; πt < 0] ≤ exp

{
−2αµ0

β2σ2
1

x

}
.

Proof.(Verification Theorem)

Case 1: Assume Hypothesis 2.1.

Step 1. The lower bound:

Let K ∈ K be any admissible strategy and XK
t be the risk process given

by (2.8). To prove that f is bounded over
{
τK = ∞

}
, the idea consists in

showing that the process XK
t →

t→∞
∞. Hence, we consider a family of risk

processes asymptotically close to the process Xε
t , with the property Xε

t →
t→∞

∞ over the set
{
τK = ∞

}
. This idea was motivated by Hipp and Plum in

[18] and [19].

Define Kε as Kε
t = Kt + ε, and Xε(0) = x + ε with ruin time τ ε. Now we
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analyze the process Xε
t given by:

Xε
t = x+ ε+

∫ t

0

c+
(
(µ(Zs)− r(Zs))(Ks + ε2) + r(Zs)Xs

)
ds

+

∫ t

0

(Ks + ε2)σ(Zs) dW1s −
Nt∑
i=1

Yi.
(2.13)

Since {
τ ε < τK

}
⊂
{
∃ t, ε+ ε2

∫ t

0

µ(Zs) ds+ ε2
∫ t

0

σ(Zs) dW1s < 0

}
,

by Lemma 2.2 we have:

P[τ ε < τK ] ≤ exp

{
−2µ0

σ2
1

}
.

Then, thanks to Lemma 2.1 we obtain Xε
t →

t→∞
∞ over the set

{
τK = ∞

}
.

To prove the boundness of f we follow the approach by Schmidli (2002). We

consider the following stopping times. Let a ∈ R, and n,m,M ∈ N. Let

αε
n := inf {t > 0, Xε

t /∈ [0, n]} ,

γM := inf {t > 0, Zt /∈ [−M,M ]} ,

νam := inf {t > m,Zt = a} .

From the non-explosion in finite time of the process Zt and Observation 2.1,

we have the following properties:

γM →
M→∞

∞, a.s,

νam <∞, νam →
m→∞

∞, a.s,

and

αε
n →

n→∞
τ ε, a.s.

For ease of notation, XK
t := XK(t). The process{

f(Xε, Z)(t ∧ αε
n ∧ γM ∧ νam)−

∫ t∧αε
n∧γM∧νam

0

L Kε
s (Xε(s−), Zs) ds

}
t≥0

.
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is a local martingale. More details about this fact can be seen in Chapters 3

and 4.

Let {πk}∞k=1 be a sequence of localization times such that limk→∞ πk = ∞,

a.s. Since for 0 < s < t ∧ αε
n ∧ γM ∧ νam ∧ πk:

L Kε
s ≤ 0,

then for all t ≥ 0, n,m,M, k ∈ N

E[f(Xε, Z)(t ∧ αε
n ∧ γM ∧ νam ∧ πk)] ≤ f(x+ ε, z).

Over the set ] −∞, n] × [−M,M ], f is bounded, so by the dominated con-

vergence theorem:

f(x+ ε, z) ≥ E[f(Xε, Z)(t ∧ αε
n ∧ γM ∧ νam)].

Since f ≥ 0, Fatou’s lemma for n→ ∞ and M → ∞ implies:

f(x+ ε, z) ≥ E[f(Xε, Z)(t ∧ τ ε ∧ νam)].

Letting t→ ∞, and since νam <∞, a.s.

f(x+ ε, z) ≥ E[f(Xε(νam), a)11{τε=∞}].

Then

f(x+ ε, z) ≥ E[f(Xε(νam), a)11{τε=∞,τK=∞}].

Letting m→ ∞, we get:

f(x+ε, z) ≥ f(∞, a)P[τ ε = ∞, τK ] ≥ f(∞, a)

(
P[τK = ∞]− exp

(
−2µ0

σ1ε

))
.

Finally:

P[τK = ∞] = P[τ ε = ∞, τK = ∞] + P[τ ε = ∞K , τ ε < τK ]

≤ P[τ ε = ∞, τK = ∞] + P[τ ε < τK ].



56 The Stochastic Volatility Model

Letting ε ↓ 0:

f(x, z) ≥ f(∞, a)P[τK = ∞].

For the strategy K ≡ 0, P[τ 0 = ∞] > 0, since f(x, z) is finite, for all a ∈ R,
f(∞, z) is finite and:

0 < P[τ 0 = ∞] ≤ f(x, z)

f(∞, a)

which implies that lim supa→±∞ f(∞, a) <∞, so f(∞, a) is a bounded func-

tion. Since f is increasing in x f(x, z) ≤ f(∞, a), then f is bounded. Finally,

for any admissible strategy K and a ∈ R:

δ(x, z,K) ≤ f(x, z)

f(∞, a)
.

Step 2. The upper bound:

Let X∗ be the risk process with investment strategy K∗. For this process,

we define the following stopping times:

α∗
n := inf {t > 0, X∗

t /∈ [0, n]} ,

γM := inf {t > 0, Zt /∈ [−M,M ]} ,

νam := inf {t > m,Zt = a} .

Proceeding as in step 1, for 0 < s < t ∧ α∗
n ∧ γM ∧ νam we have that

{f(X∗, Z)(t ∧ α∗
n ∧ γM ∧ νam)}t≥0 .

is a martingale. Then, for all t ≥ 0, n,m,M ∈ N,

f(x, z) = E[f(X∗, Z)(t ∧ α∗
n ∧ γM ∧ νam)].

By letting n→ ∞,M → ∞, we get

f(x, z) = E[f(X∗, Z)(t ∧ τ ∗ ∧ νam)].
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Letting t→ ∞, we have:

f(x, z) = E[f(X∗, Z)(τ ∗ ∧ νam)].

f(x, z) = E[f(X∗, Z)(τ ∗, νam)
(
11{τ∗=∞} + 11{τ∗<∞}

)
]

≤ f(∞, a)P[τ ∗ = ∞] + E[f(X∗, Z)(τ ∗ ∧ νam)11{τ∗<∞}].

Since νam →
m→∞

∞ a.s, and letting m→ ∞:

f(x, z) ≤ f(∞, a)P[τ ∗ = ∞] = E[f(0, Zτ∗)11{τ∗<∞,X∗(τ∗)=0}],

thus P[τ ∗ < ∞, X∗(τ ∗) = 0], which is true since the process (X∗, Z) is a

strong Markov process. Finally, we obtain:

δ(x, z,K) ≤ f(x, z)

f(∞, z)
= δ(x, z,K∗).

Case 2 Assume Hypothesis 2.2.

In this case, 0 < r0 ≤ r(·). Again, we follow the idea set forth by Hipp and

Plum in [18] and [19]. Define Xε
t with initial wealth x+ ε, ruin time τ ε and

strategy Kt. Thus, we have:

Xε
t −XK

t = ε+

∫ t

0

r(Zs)(X
ε
s −Xs) ds,

then:

Xε
t = XK

t + ε exp

{∫ t

0

r(Zs) ds

}
.

Over the set
{
τK = ∞

}
, it must be that XK

t ≥ 0, then:

Xε
t ≥ ε exp

{∫ t

0

r(Zs) ds

}
≥ ε exp {r0t} →

t→∞
∞

We have Xε
t ≥ XK

t a.s., and then:

P[τ ε < τK ] = 0.



58 The Stochastic Volatility Model

Since the proof is exactly the same as when r = 0, we only prove that there

exists a strategy K such that P[τK = ∞] > 0. We consider the following

processes:

X0
t = x− ε+ ct−

Nt∑
i=1

Yi

and

X1
t = x+

∫ t

0

(c+ r(Zs))X
K
s− ds−

Nt∑
i=1

Yi.

Then {X0
t −X1

t }t≥0 is a continuous process. Over the set {τ0 = ∞}, we

obtain that:

X0
t −X1

t = −ε−
∫ t

0

r(Zs)X
1
s− ds

≤ +ε−
∫ t

0

r(Zs)(X
0
s −X1

s−) ds.

An application of Gronwall’s lemma (see Appendix A), over the set {τ0 = ∞}
leads to:

X0
t −X1

t ≤ −ε exp
{
−
∫ t

0

r(Zs) ds

}
,

thus:

X1
t ≥ X0

t .

Finally, we conclude that:

P[τ1 = ∞] ≥ P[τ0 = ∞].

2



Chapter 3

The Ruin Probability

In this chapter, we consider a model for an insurance company where the

insurer has to face a claims process, which follows a compound Poisson pro-

cess with finite exponential moments. The insurer is allowed to invest in a

bank account and in a risky asset described by a geometric Brownian motion

with stochastic volatility that depends on an external factor modeled as a

diffusion process. The main purpose is to obtain upper and lower bounds for

the ruin probabilities that recover the known bounds for constant volatility

models. Finally, we apply the results to a truncated Scott model.

3.1 Introduction

Let XK
t be the wealth of an insurer given by (2.8). Our aim in this chapter

is to obtain bounds for the expression

ψ(x, z) = inf
K∈K

ψ(x, z,K),

defined in chapter 2, under the following hypothesis:

Hypothesis 3.1 1. The functions µ(·), σ(·) and g(·) are such that there

exists a strong solution for equations (2.2) and (2.4). The function r(·)
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is continuous, positive, and

r(z) < µ(z), for all z ∈ R.

2. Let Y be a random variable with the common distribution G of the

claims. There exists θ∞ ∈ (0,∞] such that MY (θ) = E[eθY ] < ∞ for

all θ ∈ [0, θ∞), and h(θ) =MY (θ)− 1 satisfies

lim
θ→θ∞

h(θ) = ∞.

Hypothesis 3.1 will be implicitly assumed in what follows.

3.2 Decomposition of e−θ(Zt)X
K
t

In this section, we will introduce some notation that will be used throughout

the rest of this chapter. We will denote by

αt :=

∫ t

0

r(Zs) ds.

Let θ : R →]0,∞[ in C2
b (R) (twice differentiable functions with bounded

derivatives), and K be an admissible strategy, then Itô’s lemma implies that:

e−αtθ(Zt)X
K
t = θ(z)x+

∫ t

0

e−αsθ(Zs)(c+ (µ(Zs)− r(Zs))Ks) ds+∫ t

0

e−αs(θ(Zs)Ksσ(Zs) + ρβθ′(Zs)Xs) dW1s+∫ t

0

εβe−αsθ′(Zs)Xs dW2s +

∫ t

0

e−αsθ′(Zs)Xsg(Zs) ds+

1

2

∫ t

0

β2e−αsθ′′(Zs)Xs ds+

∫ t

0

ρβσ(Zs)Kse
−αsθ′(Zs) ds−∫ t

0

∫ ∞

0

yθ(Zs)e
−αs N̄(dy, ds).

where N̄ is the Poisson random measure on R+ × [0,∞[ defined by

N̄ =
∑
n≥1

δ(Tn,Yn).
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Proposition 3.1 For each function θ ∈ C2
b ((R) and K ∈ K, let

HK,r
θ (t, x, z) = exp

{
−e−αtθ(Zt)X

K
t

}
.

Then

HK,r
θ (t, x, z) = e−θ(z)xeD

K
θ (t)+Eθ(t)e

∫ t

0

fθ,r(e
−αs , Xs, Zs, Ks) ds

,

where

fθ,r : [0, 1]× R× R× R → R,

is given by

fθ,r(u, x, z,K) = λh(θ(z)u)−(c+ (µ(z)− r(z))K)θ(z)u− xuθ′(z)g(z)

−1
2
β2xuθ′′(z) + 1

2
(Kuσ(z)θ(z) + ρβuθ′(z)x)2

+1
2
ε2β2u2x2θ′2(z)− ρβuKσ(z)θ′(z).

(3.1)

DK
θ (t) and Eθ(t) are the local martingales given by

DK
θ (t)=−

∫ t

0

e−αs(θ(Zs)Ksσ(Zs)+ρβθ
′(Zs)Xs)dW1s−

∫ t

0

εβe−αsθ′(Zs)XsdW2s

−1

2

∫ t

0

e−2αs(θ(Zs)Ksσ(Zs) + ρβθ′(Zs)Xs)
2ds− 1

2

∫ t

0

ε2β2e−2αsθ′2(Zs)X
2
s ds,

(3.2)

Eθ(t) =
∫ t

0

∫ ∞

0

yθ(Zs)e
−αs N̄(dy, ds)−λ

∫ t

0

∫ ∞

0

(eθ(Zs)ye−αs−1) dG(y) ds. (3.3)

The proof of Proposition 3.1 is not shown, as it is straightforward.

When the rate r = 0, we have the following corollary that will be used in

Example 3.1 and in the estimation of the lower bound.

Corollary 3.1 If r = 0, then:

HK,0
θ (t, x, z) = e−θ(z)xeD

K
θ (t)+Eθ(t)e

∫ t

0

f ∗
θ (Xs, Zs, Ks) ds

,

with

f ∗
θ (x, z,K) := fθ,0(1, x, z,K).
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3.3 The Upper Bound

Our aim in this section is to get an upper bound for the ruin probabilities of

the form e−θ(z)x, for some function θ.

Theorem 3.1 If there exists an admissible strategy K ∈ K and θ : R →
]0,∞[ in C2

b (R), such that HK,r
θ (t, x, z) is a supermartingale with respect to

the filtration (Ft)t≥0, then:

ψ(x, z) ≤ Cre
−θ(z)x,

with

0 ≤ Cr = inf
K∈K

1

E[HK,r
θ (τK , x, z) | τK <∞]

≤ 1.

Proof. Since for each strategy K ∈ K,

XK
t < 0 if and only if e−αtθ(Zt)X

K
t < 0,

it is equivalent to study the ruin probability for this process. By hypothesis,

HK,r
θ (t, x, z) is a supermartingale. Then by the optional sampling theorem,

we obtain:
e−θ(z)x ≥ E[HK,r

θ (t ∧ τK , x, z)]

≥ E[HK,r
θ (τK , x, z)1{τK<t}].

Now, letting t→ ∞,

e−θ(z)x ≥ E[HK,r
θ (τK , x, z) | τK <∞]P[τK <∞],

therefore

ψ(x, z,K) = P[τK <∞] ≤ e−θ(z)x

E[HK,r
θ (τK , x, z) | τK <∞]

,

and

ψ(x, z) = inf
K∈K

ψ(x, z,K) ≤ inf
K∈K

e−θ(z)x

E[HK,r
θ (τK , x, z) | τK <∞]

,
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then

ψ(x, z) ≤ Cre
−θ(z)x,

with

Cr = inf
K∈K

1

E[HK,r
θ (τK , x, z) | τK <∞]

.

2

Observation 3.1 1. Observe that given a function θ, for each x, z ∈ R
fixed, the function fθ,r(u, x, z,K) given by expression (3.1) is a quadratic

form in K. This suggests taking K as a root of this equation. The point

here is to emphasize the existence of this root. Example 3.1 is a partic-

ular case of this result.

2. If we can take K as a root, then from Proposition 3.1:

HK,r
θ (t, x, z) = e−θ(z)xeD

K
θ (t)+Eθ(t).

Then we have that HK,r
θ (t, x, z) is a local martingale, since it is the

product of a continuous and a pure jump local martingale. Furthermore,

because it is positive, it is a supermartingale.

In the following example, we consider a function θ for a truncated Scott

model. We could consider a truncation via the stochastic volatility in such a

way that it belongs to C2
b ([−m,m]) (see [4]). However, to avoid technicalities

we stop the process Z.

Example 3.1 We assume that the claims are exponentially distributed with

parameter η > 0, and also that ρ = 1 and r = 0. We consider a truncated

Scott model in the following sense:

Let Zt, t ≥ 0 be given by

dZt = γ(δ − Zt)dt+ βdW1t, Z0 = z
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and for each m > 0, define the stopping time τm as follows

τm = inf{t > 0, | Zt |> m}.

Let Zm
t = Zt∧τm, and

dSm
t = Sm

t (µ0dt+ eZ
m
t dW1t), Sm

0 = 1.

From the convex property of h and Hypothesis (3.1) ( lim
θ→θ∞

h(θ) = ∞), we

have that for each

−m ≤ z ≤ m, θ(z) is defined as the positive solution of:

λh(θ(z)) = cθ(z) +
µ2
0

2e2z
, with θ(z) < η. (3.4)

Straightforward calculations show that θ(z) satisfies:

θ2(z) +
1

c

(
λ− ηc+

µ2
0

2
e−2z

)
θ(z)− ηµ2

0

2c
e−2z = 0, (3.5)

and is given by:

θ(z) =
1

2

−1

c

(
λ−ηc+ µ2

0

2
e−2z

)
+

√
1

c2

(
λ−ηc+µ

2
0

2
e−2z

)2

+
2ηµ2

0

c
e−2z

 . (3.6)

It is clear that θ(z) ∈ C2
b , for z ∈ [−m,m] and θ(z) ≤ η. Then from

the exponential decomposition given in Corollary 3.1, we define the following

equation:

f ∗
θ (x, z,K) =

1

2
θ2(z)σ2(z)K2 + b(x, z)K + a(x, z) = 0, (3.7)

where

a(x, z) =
1

2
β2θ′2(z)x2 −

(
g(z)θ′(z) +

1

2
β2θ′′(z)

)
x+

µ2
0

2
e−2z,

and

b(x, z) =
(
− µ0θ(z)− βσ(z)θ′(z) + βxσ(z)θ(z)θ′(z)

)
.
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Then from Observation 3.1, we can define K∗(x, z) as the solution of (3.7)

given by

K∗(x, z) =
−b(x, z) +

√
b2(x, z)− 2a(x, z)θ2(z)σ2(z)

θ2(z)σ2(z)
,

if this root exists. We do not have general conditions on the coefficients for its

existence; however this indeed holds in some particular cases. For example,

if we take

µ0 = 0.01, c = 1, λ = 1, β = 10, g(z) = 0.01(1− z), η = 1.1,

with the help of Mathematica v.7 it can be shown that for m = −1
2
log(2µ0cη+

2µ0λ), equation (3.7) admits a positive solution. The following figures show

the behavior of the function θ(z) and the strategy K∗(x, z) for different values

of z.

Η
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Figure 3.1: The function θ(z)
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Figure 3.2: The admissible strategy K∗(x, z)
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The following corollary gives an upper bound for the ruin probability when

the return from the bound and the risky asset is bounded from below.

Corollary 3.2 We assume that there exists a constant R1 > 0 such that

0 < R1 ≤
µ(z)− r(z)

σ(z)
∀z ∈ R. (3.8)

Then the ruin probability ψ(x, z) of an insurer investing in a risky asset can

be bounded from above by

ψ(x, z) ≤ e−θ̂x,

where 0 < θ̂ < θ∞ is the unique positive solution of

λh(θ) = cθ +
1

2
R2

1. (3.9)

Proof. The existence of θ̂ is a consequence of the convex property of h(θ)

and the second part of Hypothesis (3.1). Using Theorem 3.1, we only need

to prove that the process HK̂,r

θ̂
(t, x, z) is a supermartingale, where

K̂t =
µ(Zt)− r(Zt)

θ̂σ2(Zt)
.

Since θ̂ is constant, we can see that the function fθ̂,r given in Proposition

3.1 is reduced to

fθ̂,r(e
−αs , x, z, K̂) = λh(θ̂e−αs)−(c+(µ(z)−r(z))K)θ̂e−αs+

1

2

(
K̂e−αs θ̂σ(z)

)2
= λh(θ̂e−αs)−

(
cθ̂ +

(µ(z)− r(z))2

σ2(z)

)
e−αs +

1

2
e−2αs

(µ(z)− r(z))2

σ2(z)

≤ λh(θ̂e−αs)−
(
cθ̂ +

1

2

(µ(z)− r(z))2

σ2(z)

)
e−αs

≤ e−αs

(
λh(θ̂)− cθ̂ − 1

2

(µ(z)− r(z))2

σ2(z)

)
.
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The last inequality follows from the fact that the function q(x) = epx − pex,

with x ≥ 0 and 0 ≤ p ≤ 1 fixed, is decreasing, and by taking x = θ̂y,

p = e−αs . Finally, from the definition of θ̂ we have

fθ̂,r(e
−αs , Xs, Zs, K̂s) ≤ 0,

and then we get that HK̂,r

θ̂
(t, x, z) is a supermartingale. 2

Observation 3.2 1. If c > λµ, then the Lundberg coefficient ν > 0

exists and θ̂ > ν.

2. If inf
z

µ(z)− r(z)

σ(z)
= 0 , following a similar procedure as in Corollary

3.2, we can obtain that:

ψ(x, z) ≤ e−νx, under the assumption that c > λµ.

3. Observe that µ(z)− r(z) represents the premium return from investing

in the risky asset. Therefore, small values of
µ(z)− r(z)

σ(z)
correspond

to very large volatilities. Thus R1 can be viewed in some sense as a

measure of the risk aversion of the investor.

4. When µ(z) and σ(z) are constants and r = 0, we obtain the same bound

as in [13]:

ψ(x, z) ≤ e−θ̂x,

where θ̂ is the unique positive solution of:

λh(θ) = cθ +
µ2

2σ2
.

5. The case in which µ, σ and r are constant was studied in [13] under

the restriction that the interest force is equal to the inflation force, and

only the prime and the claims are affected by inflation. In this case,
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the wealth process becomes

XK
t = x+

∫ t

0

(cers +Ksµ+ (Xs −Ks)r) ds

+

∫ t

0

Ksσ dW1s −
Nt∑
i=1

erTiYi.

This assumption is not so clear to us, as it seems that it is used only

for technical reasons. In our case, we can deal without it .

Example 3.2 As an application of Corollary 3.2, we consider another trun-

cated Scott model. Assume

0 < r < µ0 is constant, and let Zt, S
1,m
t t ≥ 0 be given by

dZt = γ(δ − Zt)dt+ βdW1t, Z0 = z,

and for each m > 0,

dS1,m
t = S1,m

t (µ0dt+ σ(Zt)dW1t), S1,m
0 = 1,

with

σ(z) =



ez if z ∈ [−m,m],

em if z ∈]m,∞[, for some m > 0.

e−m if z ∈]−∞,−m[,

Then R1 = (µ0 − r)e−m. In particular, if the claims are exponentially

distributed with parameter η, we have that (3.9) becomes:

λ

(
η

η − θ
− 1

)
= cθ +

(µ0 − r)2

2
e−2m

which leads to:

θ2 +
1

c

(
λ− ηc+

(µ0 − r)2

2
e−2m

)
− η(µ0 − r)2

2c
e−2m = 0.
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Then

θ̂ =
1

2

[
−1

c

(
λ− ηc+

(µ0 − r)2

2
e−2m

)

+

√
1

c2

(
λ− ηc+

(µ0 − r)2

2
e−2m

)2

+
2η(µ0 − r)2

c
e−2m

 .
The admissible strategy is given by:

K̂t =
µ0 − r

θ̂σ2(Zt)
.

Then by Corollary 3.2, we get that for all (x, z) ∈ [0,∞[×R

ψ(x, z) ≤ e−θ̂x.

3.4 The Lower Bound

In this section, we assume r = 0, i.e., the bank account is not taken in

consideration. Then, in order to get a lower bound for the ruin probabilities,

we assume the following:

Hypothesis 3.2 There exists a constant R2 > 0 such that:

0 <
µ(z)

σ(z)
≤ R2 ∀z ∈ R. (3.10)

Definition 3.1 Let 0 < θ < θ∞ be given. We say that Y has a uniform

exponential moment in the tail distribution for θ if the following condition

holds:

sup
z≥0

E[e−θ(z−Y ) | Y > z] <∞.

Theorem 3.2 Assume that Y has a uniform exponential moment in the tail

distribution for θ∗. Then:

ψ(x, z) ≥ C∗e−θ∗x ∀z ∈ R,
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with

0 < C∗ = inf
y≥0

∫ ∞

y

dG(u)∫ ∞

y

e−θ∗(y−z)dG(z)

≤ 1,

and θ∗ is the unique positive solution of:

λh(θ) = cθ +
1

2
R2

2. (3.11)

To prove Theorem 3.2, we need the following lemma. For ease of notation,

we will denote the ruin time as τ := τK .

Lemma 3.1 Suppose that Y has a uniform exponential moment in the tail

distribution for θ∗. Then for each K ∈ K, the process HK,0
θ∗ (t ∧ τ, x, z) is a

uniformly integrable submartingale.

Proof. The proof will be given in two steps. In Step 1, we will prove that

HK
∗ = supt≥0H

K,0
θ∗ (t ∧ τ, x, z) has a finite first moment, and in Step 2, that

HK,0
θ∗ (t ∧ τ, x, z) is a local submartingale.

Step 1. The existence of θ∗ is a consequence of the convex property of h(θ)

and Hypothesis 3.1. Our aim is to prove that HK
∗ has a first finite moment.

We observe that:

HK
∗ =



HK,0
θ∗ (τ, x, z) > 1 on [τ <∞] ∩ [X(τ−, x, z) > 0],

HK,0
θ∗ (τ, x, z) = 1 on [τ <∞] ∩ [X(τ−, x, z) = 0],

supt≥0H
K,0
θ∗ (t, x, z) ≤ 1 on [τ = ∞].

Then

E[HK
∗ ] = E[HK

∗ 11[τ=∞] +HK
∗ 11{[τ<∞]∩[X(τ−,x,z)=0]}]

+E[HK
∗ 11{[τ<∞]∩[X(τ−,x,z)>0]}]

≤ 2 + E[HK
∗ 11{[τ<∞]∩[X(τ−,x,z)>0]}] (3.12)
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On the other hand, given that ruin occurs at a jump in time, then the jump

is conditioned to be greater or equal than XK(τ−, x, z) > 0. More precisely,

let Y be an independent copy of (Yi)i≥1, then

E[HK,0
θ∗ (τ, x, z) | τ = t,X(τ−, x, z) = v]

= E[e−θ∗(X(τ−,x,z)−Y ) | τ = t,X(τ−, x, z) = v]

= E[e−θ∗(v−Y ) | τ = t,X(τ−, x, z) = v]

= E[e−θ∗(v−Y ) | Y > v] =

∫ ∞

v

e−θ∗(v−u) dG(u)∫∞
0
dG(s)

. (3.13)

Now let M(dt, dv) be the joint distribution of (τ,X(τ−, x, z)), then from

(3.12) and (3.13) we have

E[HK
∗ ] ≤ 2 + E[E[HK

∗ 11[τ<∞]∩[XK(τ−,x,z)>0]| τ,XK(τ−, x, z)]]

= 2 +

∫ ∞

0

∫ ∞

0

M(dt, dv)

∫ ∞

v

e−θ∗(v−u) dG(u)∫∞
v
dG(s)

≤ 2 + P[τ <∞, XK(τ−, x, z) > 0] sup
v≥0

∫ ∞

y

e−θ∗(v−u) dG(u)∫∞
v
dG(s)

≤ 2 + sup
v≥0

∫ ∞

v

e−θ∗(v−u) dG(u)∫∞
v
dG(s)

<∞,

where the last inequality follows from the hypothesis that Y has a uniform

exponential moment in the tail distribution.

Step 2. We know that

HK,0
θ∗ (t, x, z) = e−θ∗xeD

K
θ∗ (t)+Eθ∗ (t)e

∫ t

0

f ∗
θ∗(Xs, Zs, Ks) ds

.

By using Hypothesis 3.2 and (3.11), we get that for all T ≥ 0 such that

t ≤ T :

f ∗
θ∗(Xt, Zt, Kt) ≥

1

2
θ∗2σ2(Zt)

(
Kt −

µ(Zt)

θ∗σ2(Zt)

)2

≥ 0.
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Following a similar procedure as in the proof of Corollary 3.2, we obtain that

HK,0
θ∗ (t∧ τ, x, z) is a local submartingale. By using Step 1 and the dominated

convergence theorem, we get that HK,0
θ∗ (t ∧ τ, x, z) is a uniformly integrable

submartingale (see [29], Theorem I.51). 2

Lemma 3.2 If Y has a uniform exponential distribution moment in the tail

distribution for θ∗, then for an arbitrary K ∈ K and (x, z) ∈ R+ × R, the
stopped wealth process XK(t ∧ τ, x, z) converges almost surely on τ = ∞ to

∞ for t→ ∞.

Proof. Lemma 3.1 implies that HK,0
θ∗ (t ∧ τ, x, z) is a uniformly integrable

submartingale. By Doob’s convergence theorem (see [32],Theorem II.69.1),

lim
t→∞

HK,0
θ∗ (t ∧ τ, x, z) exists a.s.

Then, Xt∧τ converges when t→ ∞. Now to prove that

P[ lim
t→∞

Xt∧τ = ∞ | τ = ∞] = 1,

we work toward a contradiction. We assume that

P[ lim
t→∞

Xt∧τ <∞, τ = ∞] > 0,

then there exists m0 > 0 such that

P[sup
t≥0

Xt ≤ m0, τ = ∞] > 0, because it is a downward jump. We consider

the following event [

N(1)∑
i=1

Yi > 2m0 + c]. Since the compound Poisson process

has an unbounded support, then:

P[
N(1)∑
i=1

Yi > 2m0 + c] = p0 > 0.

Let (tk)k≥0 be a sequence of points given by:

t1 < t1 + 1 < t2 < t2 + 1 < . . .
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Because the compound Poisson process has stationary and independent in-

crements, then (
∑Ntk+1

i=Ntk
+1 Yi)k≥0 is a sequence of i.i.d. random variables and

represents the number of claims in an interval of length one. Now we consider

the following sequence of r.v. (Dk)k≥0 defined by:

Dk = 1{∑Ntk+1

i=Ntk
+1 Yi>2m0

}

By the strong law of large numbers, we get that:

1

n

n∑
k=1

Dk
a.s−→ p0,

then

P

[
∞∑
k=1

1{∑Ntk+1

i=Ntk
+1 Yi>2m0

} = ∞

]
= 1,

which implies that

P

∩
n

∪
k≥n

Ntk+1∑
i=Ntk

+1

Yi > 2m0

 = 1.

Now let

A = [sup
t≥0

Xt ≤ m0, τ = ∞],

and

B = [∩
n

∪
k≥n

Ntk+1∑
i=Ntk

+1

Yi > 2m0].

Observe that on A, we have that for Ti ≤ t < Ti+1

Xt = XTi
+ c+

∫ t

Ti

µ(Zs)Ks ds+

∫ t

tk

σ(Zs)Ks dW1s < m0, (3.14)

and then ∫ t

Ti

µ(Zs)Ks ds+

∫ t

Ti

σ(Zs)Ks dW1s ≤ m0 − c on A.
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On the other hand, the following occurs on B infinitely often:

Xtk+1 = Xtk + c+

∫ tk+1

tk

µ(Zs)Ks ds+

∫ tk+1

tk

σ(Zs)Ks dW1s −
Ntk+1∑

i=Ntk
+1

Yi

≤ Xtk+ c+

∫ tk+1

tk

µ(Zs)Ks ds+

∫ tk+1

tk

σ(Zs)Ks dW1s − 2m0. (3.15)

Then from (3.14) and (3.15), we get that P [A ∩ B] = 0. Since P [B] = 1,

then P [A] = 0. 2

Proof. (Theorem 3.2.) Since HK,0
θ∗ (t ∧ τ, x, z) is a submartingale, then

e−θ∗x ≤ E[HK,0
θ∗ (t ∧ τ, x, z)]

and

E[HK,0
θ∗ (t ∧ τ, x, z)] = E[HK,0

θ∗ (τ, x, z), τ < t] + E[HK,0
θ∗ (t, x, z), τ > t].

By letting t→ ∞

e−θ∗x ≤ E[HK,0
θ∗ (τ, x, z) | τ <∞]P[τ <∞]+E[ lim

t→∞
HK,0

θ∗ (t, x, z) | τ = ∞]P[τ = ∞].

By Lemma 3.2, we get that:

e−θ∗x ≤ E[HK,0
θ∗ (τ, x, z) | τ <∞]P[τ <∞],

and

ψ(x, z,K) = P[τ <∞] ≥ e−θ∗x

E[HK,0
θ∗ (τ, x, z) | τ <∞]

≥ inf
y≥0

1∫ ∞

y

e−θ∗(y−z) dG(z)∫ ∞

y

dG(u)

≥ C∗e−θ∗x.

Finally,

ψ(x, z) ≥ C∗e−θ∗x,
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with

C∗ = inf
y≥0

∫ ∞

y

dG(u)∫ ∞

y

e−θ∗(y−z)dG(z)

.

2

As a consequence of Corollary 3.2 and Theorem 3.2, we get the following

estimations for the ruin probability when initial capital tends to infinity.

Corollary 3.3 If θ+ is the positive solution of (3.9) when r = 0, then:

C∗e−θ∗x ≤ ψ(x, z) ≤ e−θ+x.

Furthermore, for all z ∈ R:

−θ∗ ≤ lim inf
x→∞

1

x
ln(ψ(x, z)) ≤ lim sup

x→∞

1

x
ln(ψ(x, z)) ≤ −θ+.



Chapter 4

Optimization and Utility

Functions

The main purpose of this chapter is to extend the results obtained for a geo-

metric Brownian motion in [7] to the stochastic volatility model introduced in

Chapter 2. Following the same approach as [7], first we will establish the con-

nection between the optimization problem and a Hamilton-Jacobi-Bellman

equation, via a verification theorem.

When the utility function is of exponential type, we prove an existence

theorem for he HJB equation, which is expressed as the product of an ex-

ponential term and the solution of a parabolic partial differential equation.

We also prove an existence and uniqueness theorem when the insurer’s pref-

erences are exponential, and we obtain an explicit solution for the partial

differential equation (PDE). Consequently, a closed form for the optimal

strategy is obtained, which depends only on the external factor and time.

To develop some numerical results, we prove consistency and stability of the

explicit scheme. The well-posedness of the Cauchy problem is proven to com-

plete the conditions of the Lax theorem for convergence. We present results

for the Scott model when claim-size is exponentially distributed. Finally, we
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study the reserve of the insurance company under the optimal strategy, and

prove a supermartingale property of the risk process to get an upper bound

for the ruin probability in finite horizon.

4.1 The Optimization Problem

In this section we will introduce the problem that will be studied along this

chapter.

Definition 4.1 We say that K = (Kt)t≥0 is an admissible strategy if it is

an Ft-progressively measurable process such that:

P[| σtKt |≤ CK , 0 ≤ t ≤ T ] = 1,

where CK is a constant which may depend on the strategy K. We denote the

set of admissible strategies as K.

We consider the same problem described in chapter 2 of an insurer with

wealth XK
t that invests an amount Kt ∈ K in the risky asset and the remain-

ing reserve Xt −Kt in the bank account. If at time s < T the wealth of the

company is x and the external factor is z, then the wealth process satisfies:

Xs,x,z,K
t = x+

∫ t

s

(
c+ (µ(Zv)− r(Zv))Kv + r(Zv)Xv

)
dv

+

∫ t

s

σ(Zv)Kv dW1v −
Nt∑

i=Ns+1

Yi

Zs = z,

(4.1)

with the convention that
0∑

i=1

= 0, and that when s = 0 we write XK
t .

A utility function U : R → R is defined as a twice continuously differentiable

function, with the property that U(·) is strictly increasing and strictly con-

cave. Now we consider the optimization problem consisting in maximizing
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the expected utility wealth at time T, i.e., we are interested in the following

value function:

V (s, x, z) = sup
K∈K

E
[
U(Xs,x,z,K

T )
]
. (4.2)

We say that an admissible strategy K∗ is optimal if

V (s, x, z) = E
[
U(Xs,x,z,K∗

T )
]
.

4.2 Verification Theorem

Our aim is to relate the value function given in (4.2), which is associated

to a stochastic control problem, to a well suited PDE. This allows for an

explicit solution in good cases and a set of verification arguments. In view of

the Markovian structure of the model given by (XK
t , Zt), the HJB associated

with the control problem (4.2) is given by:

λ

∫ ∞

0

(f(t, x− y, z)− f(t, x, z)) dG(y) + sup
π∈R

L πf(t, x, z) = 0, (4.3)

with terminal condition f(T, x, z) = U(x) and

L πf(t, x, z) = ft +
1
2
σ2(z)π2fxx +

1
2
β2fzz + ρβπσ(z)fxz

+(c+ (µ(z)− r(z))π + r(z)x)fx + g(z)fz.

Now we establish a verification theorem, which relates the value function ψ

with the HJB equation.

Theorem 4.1 (The Verification Theorem)

Assume that there exists a classical solution f(t, x, z) ∈ C1,2,2([0, T ]×R×R)
to the HJB equation (4.3) with terminal condition f(T, x, z) = U(x). Assume

also that for each K ∈ K∫ T

0

∫ ∞

0

E|f(s,XK
s− − y, Zs)− f(s,XK

s−, Zs)|2 dG(y) ds <∞; (4.4)
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∫ T

0

E|Ks−fx(s,X
K
s−, Zs)|2 ds <∞; (4.5)

∫ T

0

E|Ks−fz(s,X
K
s−, Zs)|2 ds <∞. (4.6)

Then for each s ∈ [0, t], (x, z) ∈ R2

f(s, x, z) ≥ V (s, x, z).

If, in addition, there exists a bounded measurable function K∗(t, x, z) such

that:

K∗(t, x, z) ∈ argmaxπ∈R

{
1

2
σ2(z)π2fxx + ρβπσ(z)fxz + (µ(z)− r(z))πfx

}
,

then K∗
t = K(t,Xt, Zt) defines an optimal strategy and

f(s, x, z) = V (s, x, z) = E[U(Xs,x,z,K∗

T )].

Proof. Let K ∈ K. Itô’s formula implies that for any v ∈ [s, T ],

f(v,Xs,x,z,K
v , Zv) = f(s, x, z) +

∫ v

s

ft(t,X
s,x,z,K
t− , Zt) dt

+

∫ v

s

(
c+ (µ(Zt)− r(Zt))Kt− + r(Zt)X

s,x,z,K
t−

)
fx(t,X

s,x,z,K
t− , Zt) dt

+

∫ v

s

g(Zt)fz(t,X
s,x,z,K
t− , Zt) dZt +

∫ v

s

σ(Zt)Kt−fx(t,X
s,x,z,K
t− ) dW1t

+

∫ v

s

βfz(t,X
s,x,z,K
t− , Zt) dW̃t +

1

2

∫ v

s

σ2(Zt)K
2
t−fxx(t,X

s,x,z,K
t− ) dt

+
1

2

∫ v

s

β2fzz(t,X
s,x,z,K
t− ) dt+

∫ v

s

ρβσ(Zt)Kt−fxz(t,X
s,x,z,K
t− , Zt) dt

+

∫ v

s

∫ ∞

0

(
f(t,Xs,x,z,K

t− − y, Zt)− f(t,Xs,x,z,K
t− , Zt)

)
N̄(dy dt)

(4.7)

where N̄ is the Poisson random measure on R+ × [0,∞[ defined by

N̄ =
∑
n≥1

δ(Tn,Yn).
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Compensating (4.7) by:

λ

∫ v

s

∫ ∞

0

(f(t, x− y, z)− f(t, x, z) dG(y)) dt,

we obtain the following:

f(v,Xs,x,z,K
v , Zv) = f(s, x, z) +

∫ v

s

L Ktf(t,Xs,x,z,K
t− , Zt) dt

+

∫ v

s

σ(Zt)Kt−fx dW1t +

∫ v

s

βfz(t,X
s,x,z,K
t− , Zt) dW̃t

+

∫ v

s

∫ ∞

0

(
f(t,Xs,x,z,K

t− − y, Zt)− f(t,Xs,x,z,K
t− , Zt)

)
N̄(dy dt)

+λ

∫ v

s

∫ ∞

0

(f(t, x− y, z)− f(t, x, z)) dG(y) dt

(4.8)

The assumptions of the verification theorem ((4.5),(4.6)) imply that all the

stochastic integrals with respect to the Brownian motion are matingales. By

assumption (4.4) of the verification theorem:∫ v

s

∫ ∞

0

f(t,Xs,x,z,K
t− − y, Zt)− f(t,Xs,x,z,K

t− , Zt)N̄(dy dt)

−λ
∫ v

s

∫ ∞

0

f(t,Xs,x,z,K
t− − y, Zt)− f(t,Xs,x,z,K

t− , Zt) dG(y) dt

is a martingale (see [24], p.63). Then, taking expectations in (4.8) yields:

E
[
f(v,Xs,x,z,K

v , Zv)
]
= f(s, x, z) + E

[∫ v

s

L Ktf(t,Xs,x,z,K
t− , Zt) dt

]
+λE

[∫ v

s

∫ ∞

0

(
f(t,Xs,x,z,K

t− − y, Zt)− f(t,Xs,x,z,K
t− , Zt)

)
dG(y) dt

]
.

Since f satisfies the HJB equation (4.3), we obtain that

E[f(v,Xs,x,z,K
v , Zv)] ≤ f(s, x, z), (4.9)

and letting v = T in (4.9), we get that

f(s, x, z) ≥ V (s, x, z).
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To justify the second part of the theorem, we repeat the above calculations

for the strategy given by K∗
t . Then we have

f(s, x, z) = E[U(Xs,x,z,K∗

T )] ≤ V (s, x, z),

and with the first part of the proof we get that

f(s, x, z) = E[U(Xs,x,z,K∗

T )] = V (s, x, z).

2

In the next section, we present a closed representation of the solution to the

HJB equation (4.3) when the insurer has exponential preferences. We also

obtain a closed form of the optimal strategy of investment.

4.3 Existence of a Solution for the Exponen-

tial Utility Function

In this section, we prove that (4.3) has a unique solution when the the in-

surer’s preferences are exponential, i.e., the utility function is given by:

U(x) = −e−αx, α > 0.

In addition to parts 1 and 2 of Hypothesis (3.1), we will assume the follow-

ing:

Hypothesis 4.1 1. r(z) = r is constant and ρ = 0;

2. g is uniformly Lipschitz and bounded;

3.
(µ(z)− r)2

σ2(z)
has a bounded first derivative.
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In view of the form of the utility function, we conjecture the following func-

tion as a solution to the HJB equation (4.3) :

f(t, x, z) = −ξ(z, t) exp
{
−αxer(T−t)

}
, (4.10)

where ξ(z, t) will be defined below as a solution to a Cauchy problem. From

the definition of ϕ(t, x, z), we have:

ft(t, x, z) = (−ξt − αxrξer(T−t)) exp
{
−αxer(T−t)

}
(4.11)

fx(t, x, z) = αξer(T−t) exp
{
−αxer(T−t)

}
(4.12)

fxx(t, x, z) = −α2ξe2r(T−t) exp
{
−αxer(T−t)

}
(4.13)

fz(t, x, z) = −ξz exp
{
−αxer(T−t)

}
(4.14)

fzz(t, x, z) = −ξzz exp
{
−αxer(T−t)

}
(4.15)

Substituting the last expressions in (4.3), we get:

0 = −ξt −
1

2
β2ξzz + cαer(T−t)ξ − λξ

∫ ∞

0

(exp
{
αyer(T−t)

}
− 1) dG(y)

− g(z)ξ + sup
π∈R

{
−1

2
σ2(z)π2α2e2r(T−t) + αξer(T−t)(µ(z)− r)π

}
(4.16)

and the maximum is achieved at:

K∗(t, z) =
µ(z)− r

ασ2(z)
e−r(T−t)

Now we substitute K∗ in (4.16) to obtain the following Cauchy problem:
ξt +

1
2
β2ξzz + g(z)ξz −

(
1

2

(µ(z)− r)2

σ2(z)
+ cαer(T−t) − λθt

)
ξ = 0

ξ(z, T ) = 1

(4.17)

where

θt =

∫ ∞

0

(
exp

{
αyer(T−t)

}
− 1
)
dG(y).
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Theorem 4.2 (Existence and Uniqueness Theorem)

Assume that ∫ ∞

0

exp
{
8αyerT

}
dG(y) <∞ (4.18)

and ∫ ∞

0

y exp
{
8αyerT

}
dG(y) <∞. (4.19)

Then the Cauchy problem given by (4.17) has a unique solution, which sat-

isfies the following conditions:

|ξ(z, t)| ≤ C1(1 + |z|) (4.20)

|ξz(z, t)| ≤ C2(1 + |z|) (4.21)

where C1 and C2 are constants.

Proof. In order to prove this theorem, first we verify that the Cauchy

problem given by (4.17) satisfies the conditions of Theorem A.1 (see Appendix

A):

Since β is constant, then it is Lipschitz continuous, Hölder continuous, and

the operator 1
2
β2∂zz is uniformly elliptic.

By Hypothesis 4.1, we know that g(z) is bounded and uniformly Lipschitz

continuous.

Now we prove that:

d(z, t) = −1

2

(µ(z)− r)2

σ2(z)
− cαer(T−t) + λθt

is bounded and uniformly Hölder continuous in compact subsets of R× [0, T ].

ByHypothesis 4.1, it is easy to check that the first term of d(z, t) is bounded

by
1

2

(µ1 − r)2

σ2
0

. The second term is bounded by cαerT . To prove that θt is
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bounded, we observe that

| θt | = |
∫ ∞

0

(
exp

{
αyer(T−t)

}
− 1
)
dG(y) |

≤
∫ ∞

0

exp
{
αyer(T−t)

}
dG(y)

≤
∫ ∞

0

exp
{
αyerT

}
dG(y) <∞.

In the last line, we used (4.18), thus d(z, t) is bounded. Now we prove that

d(z, t) is uniformly Hölder continuous in compact subsets of R× [0, T ]. Let

l(z) =
1

2

(µ(z)− r)2

σ2(z)
.

Since by Hypothesis 4.1 l′(z) is bounded, then by Lemma A.1 l(z) is uni-

formly Hölder continuous with exponent h = 1/2, i.e., for all (z, z0) ∈ R2

| l(z)− l(z0) |≤ C | z − z0 |
1
2 .

For the second term of d(z, t), we use the mean value theorem to obtain that

for all (t, t0) ∈ [0, T ]2:

| cαer(T−t) − cαer(T−t) |≤ αrcerT | t− t0 |,

then cαer(T−t) is uniformly Lipschitz in [0, T ]. Therefore cαer(T−t) is uni-

formly Hölder continuous in the compact set [0, T ]. For the third term of

d(z, t), the mean value theorem implies that there exists t∗ ∈]t0, t[ such that:

| θt − θt0 | = |
∫ ∞

0

exp
{
αyer(T−t)

}
− exp

{
αyer(T−t0)

}
dG(y) |

=

(∫ ∞

0

αyerT exp
{
αyer(T−t∗)

}
dG(y)

)
| t− t0 |

≤ αerT
(∫ ∞

0

y exp
{
αyerT

}
dG(y)

)
| t− t0 | .

By (4.19), we get that θt is uniformly Lipschitz continuous in [0, T ], and then

d(z, t) is uniformly Hölder continuous in compact subsets of R× [0, T ].
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Since the Cauchy problem (4.17) is homogeneous with a constant terminal

condition, then the right hand side of (4.17) has the property of linear growth.

Finally, the conditions of Theorem A.1 are satisfied, and thus the Cauchy

problem (4.17) has a unique solution ξ(z, t) which satisfies (4.20) and (4.21).

2

The next theorem relates the value function with the HJB equation.

Theorem 4.3 (Main Theorem)

If ( (4.18),(4.19)) are satisfied, then the value function defined by (4.2) has

the form:

V (t, x, z) = −ξ(z, t) exp
{
−αxer(T−t)

}
,

where ξ(t, z) is the unique solution of (4.17), and

K∗(t, z) =
µ(z)− r

ασ2(z)
e−r(T−t)

is an optimal strategy. When r = 0, we have:

V (t, x, z) = −ξ(z, t) exp {−αx},

and

K∗(t, z) =
µ(z)

ασ2(z)
.

Proof. We have already checked that

f(t, x, z) = −ξ(z, t) exp
{
−αxer(T−t)

}
,

solves the HJB equation (4.3). Then to prove that f(t, x, z) is the true value

function, we shall verify that assumptions ((4.4), (4.5) (4.6)) of Theorem 4.1

are satisfied by f(t, x, z). First, we consider the case in which r = 0. Let

K ∈ K be an admissible strategy, then:∫ ∞

0

E|f(t,XK
t− − y, Zt)− f(t,XK

t−, Zt)|2 dG(y)

=

(∫ ∞

0

(eαy − 1)2 dG(y)

)
E
[
ξ2(Zt, t) exp

{
−2αXK

t−
}]
.
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To get condition (4.4), we need only obtain an estimate of:

E
[
ξ2(Zt, t) exp

{
−2αXK

t−
}]
.

We observe that

E
[
ξ2(Zt, t) exp

{
−2αXK

t−
}]

≤ C2
1E
[
(1 + |Zt|)2e−2αXK

t

]
≤ C2

1

[
E(1 + |Zt|)4

]1/2 [E e−4αXK
t−

]1/2
.

In the first line, we used (4.20). From the first line to the second, we used

Hölder’s inequality. By Theorem A.2 (see Appendix B), we know that

E( sup
0≤t≤T

Z4
t ) ≤ C(1 + |z|4).

Then we only have to estimate E
[
e−4αXK

t−

]
. Let

Lt = −8α

∫ t

0

σ(Zs)Ks dW1s −
64α2

2

∫ t

0

σ2(Zs)K
2
s ds.

Then

E
[
e−4αXK

t−

]
≤ E

[
exp

{
−4α

∫ t

0

σ(Zs)Ks dW1s+4α
Nt−∑
i=1

Yi

}]

≤ E

[
exp

{
−4α

∫ t

0

σ(Zs)Ks dW1s + 4α
Nt−∑
i=1

Yi

}]

≤ E

[
exp

{
1

2
Lt + 16α2

∫ t

0

σ2(Zs)K
2
s ds+ 4α

Nt−∑
i=1

Yi

}]
and

E
[
e−4αXK

t−

]
≤ e16α

2C2
KTE

[
exp

{
1

2
Lt + 4α

Nt−∑
i=1

Yi

}]

≤ e16α
2C2

KT [E [exp{Lt}]]1/2
[
E

[
exp{8α

Nt−∑
i=1

Yi}

]]1/2
.
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Since exp{Lt} is a martingale and using (4.18), we obtain:

E
[
e−4αXK

t−

]
≤ e16α

2C2
KT

[
E

[
exp{8α

Nt−∑
i=1

Yi}

]]1/2

≤ e16α
2C2

KT exp

{
λt

2

(∫ ∞

0

(e8αy − 1) dG(y)

)}
<∞,

which proves (4.4). In order to prove conditions (4.5) and (4.6), we observe

that:

E|fx(t,XK
t , Zt)|2 ≤ C1

[
E [1 + |Zt|]4

]1/2 [E [e−4αXK
t−

]]1/2
and

E|fz(t,XK
t , Zt)|2 ≤ C2

[
E [1 + |Zt|]4

]1/2 [E [e−4αXK
t−

]]1/2
.

Then by the same arguments as above, we get conditions (4.5) and (4.6).

For the case in which the interest rate r ̸= 0, let X̃K
t = er(T−t)XK

t . An

application of Itô’s formula shows that X̃ satisfies the following SDE:

X̃K
t = xerT +

∫ t

0

er(T−s)(c+ (µ(Zs)− r)Ks) ds∫ t

0

er(T−s)Ks dW1s −
∫ t

0

∫ ∞

0

er(T−s)yN̄(dsdy),

(4.22)

which corresponds to the case in which the interest rate is zero with drift

er(T−t)(c+ (µ(Zt)− r)Kt), and the result can be derived in a similar way to

the first part of the proof. 2

4.4 Exponential Claim Distribution

In this example, we solve the Cauchy problem (4.17) by using the finite-

difference method. First, we assume that the claims are exponentially dis-

tributed with parameter b, then for T < 1
r
log(b/α) we get that:

θt =
αer(T−t)

b− αer(T−t)
,
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and (4.17) becomes:

ξt+
1

2
β2ξzz+g(z)ξz−

(
1

2

(µ(z)− r)2

σ2(z)
+cαer(T−t)− λαer(T−t)

b− αer(T−t)

)
ξ = 0. (4.23)

Since the numerical computations can only be performed on finite domains,

the first step is to reduce the Cauchy problem (4.17) to a bounded domain,

i.e., R is replaced by [−a, a], and to add artificial boundary conditions. Then

the Cauchy problem to solve is the following:

ξt +
1
2
β2ξzz + g(z)ξz −

(
1

2

(µ(z)− r)2

σ2(z)
+ cαer(T−t) − λθt

)
ξ = 0

ξ(z, T ) = 1, ∀z ∈]− a, a[,

ξ(z, t) = 1, ∀z /∈]− a, a[×[0, T ].

(4.24)

From [12], we know that the solution of (4.24) exists and is unique. The

imposed boundary conditions give a good error estimate for large values of

a. This result was shown in [15] by using the Feynman-Kac formula for

parabolic PDE.

The first step is to discretize (4.24) in the domain D := [−a, a] × [0, T ]. A

uniform grid on D is given by:

zi = −a+ (i− 1)h, i = 1 . . . N, h = 2a/N − 1,

tj = (j − 1)k, j = 1 . . .M, k = T/M − 1.

The space and time derivatives are discretized using finite differences as fol-

lows:

ξt(zi, tj) ≃ ξ(zi, tj)− ξ(zi, tj − k)

k

ξz(zi, tj) ≃ ξ(zi + h, tj)− ξ(zi − h, tj)

2h

ξzz(zi, tj) ≃ ξ(zi + h, tj)− 2ξ(zi, tj) + ξ(zi − h, tj)

h2
.

Since our Cauchy problem is given with a terminal condition, we follow the

same procedure as [30], but backward in time. We denote by ξji := ξ(zi, tj)
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the solution on the discretized domain. Then by substituting the derivatives

by the expressions given above, (4.24) becomes:

ξji − ξj−1
i

k
+

1

2
β2 ξ

j
i+1 − 2ξji + ξji−1

h2
+ g(zi)

ξji+1 − ξji−1

2h

−
(
(µ(zi)− r)2

2σ2(zi)
+ cαer(T−tj) − λαer(T−tj)

b− αer(T−tj)

)
ξji = 0

then

−ξ
j−1
i

k
+

(
1

k
− β2

h2
−
(
(µ(zi)− r)2

2σ2(zi)
+ cαer(T−tj) − λαer(T−tj)

b− αer(T−tj)

))
ξji

+

(
β2

2h2
+

1

2h
g(zi)

)
ξji+1 +

(
β2

2h2
− 1

2h
g(zi)

)
ξji−1 = 0

Then for j = 2 . . .M and i = 2 . . . N − 1 , ξji satisfies the following explicit

scheme:

ξj−1
i =

(
1− kβ2

h2
− k

(
(µ(zi)− r)2

2σ2(zi)
+ cαer(T−tj) − λαer(T−tj)

b− αer(T−tj)

))
ξji(4.25)

+

(
kβ2

2h2
+

k

2h
g(zi)

)
ξji+1 +

(
kβ2

2h2
− k

2h
g(zi)

)
ξji−1.

The final condition is given by:

ξMi = 1, for all i = 1 . . . N.

The imposed boundary conditions will be given by:

ξj1 = 1 for all j = 1 . . .M − 1,

ξjN+1 = 1 for all j = 1 . . .M − 1.

Our algorithm given by the explicit scheme, final condition and the imposed

boundary conditions is backward in time, forward in space, and hence, by

the explicit scheme, the numerical solution can be computed.

Consistency: Let

L ξ = ξt +
1

2
β2 + g(z)ξz +GN(t, z)ξ,
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where

GN(z, t) = −
(
(µ(z)− r)2

2σ2(z)
+ cαer(T−t) − λαer(T−t)

b− αer(T−t)

)
.

The difference operator is given by:

Lh,kξ =
ξji − ξj−1

i

k
+

1

2
β2 ξ

j
i+1 − 2ξji + ξji−1

h2
+ g(zi)

ξji+1 − ξji−1

2h
+GN(zi, tj)ξ

j
i .

By Taylor’s series expansion:

ξji = ξj−1
i + kξt +

1

2
k2ξtt +O(k3),

ξji±1 = ξji ± hξz +
1

2
h2ξzz ±

1

6
h3ξzzz +O(h4).

The derivatives on the right hand side are all evaluated at (zi, tj). Then

ξji − ξj−1
i

k
= ξt +

1

2
kξtt +O(k2),

1

2
β2 ξ

j
i+1 − 2ξji + ξji−1

h2
=

1

2
β2ξzz +O(h2)

and

g(zi)
ξji+1 − ξji−1

2h
= g(zi)ξz +

1

6
h2g(zi)ξzz +O(h3).

Then:

Lh,kξ = ξt+
1

2
kξtt+

1

2
β2ξzz+g(z)ξz+

1

6
h2g(zi)ξzz+GN(zi, tj)+O(h

2+h3+k2),

and

Lh,kξ − L ξ =
1

2
kξtt +

1

6
h2g(zi)ξzz +O(h2 + h3 + k2)

−→ 0 as (h, k) → 0.

Therefore the explicit scheme given by (4.25) is consistent.

Stability: Now we explore the stability of the explicit scheme, which is an

important property that ensures that the numerical solution at a given point
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does not blow up when (△z,△t) → 0. From von Neumann (see [39, 40]), a

numerical scheme is stable if the module of the gain (amplification factor) is

less than the unit. Now, to determine if the explicit scheme given by (4.25)

is stable for the parameters given above, we use an idea adapted from the

Fourier method. Hence, since our PDE involves variable coefficients, then

the stability condition obtained for the constant coefficients scheme can be

used to give stability conditions for the same scheme applied to parabolic

PDE with variable coefficients (see [39]). The partial differential equation

given by (4.24) is linear, thus we only need to consider one Fourier mode (see

[40]), i.e., we admit that the solution of the explicit scheme has the form:

ξni = Aneqνi△z, (4.26)

where ν is the wave number and q =
√
−1. The function A will be specified

below. Let ω = ν△z, then for each zi, tn fixed, the amplification factor is a

function of ω defined as:

P (ω) =
ξn−1
i

ξni
.

Then substituting (4.26) into (4.25) gives:

P (ω) =
ξn−1
i

ξni
=

1

A(ω)

=

(
1− kβ2

h2
+ kGN(zi, tn)

)
ξni
ξni

+

(
kβ2

2h2
+

k

2h
g(zi)

)
ξni+1

ξni

+

(
kβ2

2h2
− k

2h
g(zi)

)
ξni−1

ξni

=

(
1− kβ2

h2
+ kGN(zi, tn)

)
+

(
kβ2

2h2
+

k

2h
g(zi)

)
eqω

+

(
kβ2

2h2
− k

2h
g(zi)

)
e−qω

Hence, the module of P is such that:

| P (ω) |2=
(
1− kβ2

h2
+ kGN +

kβ2

h2
cos(ω)

)2

+
k2

h2
g2(zi) sin

2(ω) (4.27)
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The stability condition | P (ω) |2≤ 1 must hold for every ω. Now to get an

explicit condition for which | P (ω) |2≤ 1 we proceed as follows. Let

1. M1 = min
(z,t)∈D

1

2

(µ(z)− r)2

σ2(z)
,M2 = max

(z,t)∈D

1

2

(µ(z)− r)2

σ2(z)
.

2. T <
1

r
ln

(
b

α

(
M1 + cα

λ+M1 + cα

))
.

Notation

M4 =M1 + cα− λαerT

b− αerT

M5 =M2 + cα− λα

b− α

Main purpose

If:

k2 < min

((
2M4h

2

h2M2
4 +M3

)2

,
h4

M2
5h

4 + (M3 + 4β2M5)h2 + 4β4

)

then:

| P |2≤ 1

Step 1. First we prove that

−M5 < GN < −M4 < 0.

Since the function
λαer(T−t)

b− αer(T−t)

is decreasing because:

d

dt

(
λαer(T−t)

b− αer(T−t)

)
= − λαer(T−t)

(b− αer(T−t))2
< 0,

then the minimum is reached at t = T and the maximum at t = 0. Hence:



4.4. Exponential Claim Distribution 93

GN ≤ −M1 − cα+
λαerT

b− αerT

and

GN < −M4.

To get GN > −M5 we proceed similarly as above .

Step 2.

−2kβ2

h2
− kM5 ≤

(
1 +

kβ2

h2
(cos(ω)− 1) + kGN

)
≤ 1 + kGN < 1− kM4.

Then:(
1 +

kβ2

h2
(cos(ω)− 1) + kGN

)2

≤ max

[
(1− kM4)

2,

(
2kβ2

h2
+ kM5

)2
]
,

furthermore:

| P |2≤ max

[
(1− kM4)

2 +
k2

h2
M3,

(
2kβ2

h2
+ kM5

)2

+
k2

h2
M3

]
.

Then

(1− kM4)
2 +

k2

h2
M3 < 1,

implies

k <
2M4h

2

k2M2
4 +M3

.

Now (
2kβ2

h2
+ kM5

)2

+
k2

h2
M3 < 1,

leads to

k2 <
h2

4β4h−2 + 4β2M5 + h2M2
5 +M3

Finally, a sufficient condition for stability is given by:

k2 < min

((
2M4h

2

h2M2
4 +M3

)2

,
h4

M2
5h

4 + (M3 + 4β2M5)h2 + 4β4

)
(4.28)
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Observation 4.1 The stability condition given by (4.28) can be written as:

k2 < Ch4

where:

C = max

((
2M4

M3

)2

,
1

4β2

)
Well-posedness: The well-posedness condition is given for the initial parabolic

PDE (see [39]). First we make the following substitution:

ω(z, t) = ω(z, T − t),

then the parabolic PDE given by (4.17) can be written as:
−ωt +

1
2
β2ωzz + g(z)ωz −

(
1

2

(µ(z)−r)2

σ2(z)
+ cαert − λαert

b− αert

)
ω = 0,

ω(z, 0) = 1, ∀z ∈ R.
(4.29)

Let

HN(z, t) = −
(
1

2

(µ(z)−r)2

σ2(z)
+ cαert − λαert

b− αert

)
,

then by the Feynman-Kac formula, we have:

ω(z, t) = E
[
ω(Zt, 0) exp

(∫ t

0

HN(Zs, s)

)
ds | Z0 = z

]

≤ e
λα

∫ t

0

ers

b− αers
ds

E

ω(Zt, 0)e
−
1

2

∫ t

0

(µ(Zs)− r)2

σ2(Zs)
∣∣∣Z0 = z


≤ e

λα

∫ t

0

ers

b− αers
ds

E [ω(Zt, 0)]

≤ CT =e
λα

∫ T

0

ers

b− αers
ds

=e
−
λ

r
log

(
b− αerT

b− α

)
=

(
b− α

b− αerT

)λ
r

.
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From the first line to the second line, we used e
−

∫ t

0

cαers ds
≤ 1. From the

second line to the last line, we used ω(Zt, 0) = 1. Now to complete the proof

of well-posedness, we have:

ω(z, t) ≤ CTω(z, 0)

ω2(z, t) ≤ C2
Tω

2(z, 0)

and then

∫ ∞

−∞
ω2(z, t) dz ≤ C2

T

∫ ∞

−∞
ω2(z, 0) dz, ∀ 0 ≤ t ≤ T,

which proves the well-posedness of the problem given by (4.17) (see [39]).

Since the explicit scheme given by (4.25) is consistent, stable and well-posed,

then from the Lax theorem, it is also convergent (see [40]).

Example 4.1 In this example, we consider the case in which µ, σ and r are

constant i.e., the external factor does not affect the insurer preferences. This

model was studied in [7]. The utility function in the absence of the external

factor will be denoted as V (t, x) and is given by:

V (t, x) = − exp

{
−1

2

(µ− r)2

σ2
(T−t)+ cα

r
(1− er(T−t))−

∫ T

t

λαer(T−s)

b− αer(T−s)
ds

}
. exp

{
−αxer(T−t)

}
. (4.30)

Let µ = 0.3,σ = e−1, r = 0.04, b = 2, c = 5, λ = 3,α = 0.02 and T = 5.

The following figure shows the behavior of the analytic solution:
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Figure 4.1: The analytic solution V (t, x)

To make sure that our algorithm given by the explicit scheme recovers

the solution given by (4.30), we take δ = 0, κ = 0,β = 0 , µ = 0.3,σ = ez,

r = 0.04, b = 2, c = 5, λ = 3,α = 0.02, T = 5, a = 2,h = 0.01 and

k = 0.0001. Then the numerical solution is obtained by substituting z = −1

in the explicit scheme.
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Figure 4.2: The numerical solution V (t, x)
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Observation 4.2 From Figures 4.1 and 4.2, we conclude the following:

1. The analytic solution given by (4.30) and the numerical solution given

by the explicit scheme (4.25) have the same behavior.

2. The utility function for an insurer investing in a risky asset following

a geometric Brownian motion is increasing in wealth and decreasing in

time.

3. If in addition to Hypothesis 4.1, we assume that µ, σ are constant,

g(z) = 0, and β = 0, then the Cauchy problem (4.17) is reduced to an

ordinary differential equation, which can be solved explicitly. Further-

more, we recover the results obtained in [7].

Example 4.2 In this example, we consider the stochastic volatility model

described by the Scott model with

δ = 0.1, κ = 1, µ = 0.3, σ(z) = ez, r = 0.04, β = 0.3, b = 2, c = 5,

λ = 3, α = 0.02, T = 5 a = 2, h = 0.01 and k = 0.0001. (4.31)

The main purpose is to study the behavior of the insurer’s utility function

and his optimal investment strategy by checking how it is affected by the

external factor. To obtain a general conclusion, we make several simulations,

which are illustrated by the following figures for different fixed values of x

and t:
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Figure 4.3: The numerical solution at t = 0
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Figure 4.4: The numerical solution at t = 2
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Figure 4.5: The numerical solution at t = 4

From Figures 4.3, 4.4 and 4.5, we conclude the following observations:

Observation 4.3 1. The utility function as a function of x is increasing.

2. The utility function as a function of t is decreasing.

3. For x and t fixed, the utility function is increasing for small values of

z. When the impact of the external factor impact is small the utility

function is increasing. However as the external factor increases, the

utility function decreases because of the higher risk involved.

The following figure shows the behavior of the optimal strategy.
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Figure 4.6: The optimal strategy K∗(t, z)

Observation 4.4 1. The optimal strategy is decreasing as a function of

the external factor, as we can see from Figure 4.6 and the the insurer

will invest less in the risky asset due to the higher risk involved. The

utility function as a function of time is increasing.

2. The optimal strategy depends only on time and the external factor.

3. The insurer’s wealth does not affect his decision.

4.5 Ruin Probability

In this section, we obtain an upper bound for the ruin probability when the

insurer follows the optimal strategy outlined in the previous section. First, in

addition to the previous hypothesis, we will make the following assumptions:
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Hypothesis 4.2 1. σ0 ≤ σ(·) ≤ σ1 for some constants σ1 > σ0 > 0;

2. r < µ0 ≤ µ(·) ≤ µ1;

The risk process associated with the optimal strategy K∗ is given by:

XK∗
t = x+ ct+

∫ t

0

(
(µ(Zs)− r)2

ασ2(Zs)
e−r(T−s) + rXK∗

s

)
ds

+

∫ t

0

(µ(Zs)− r)

ασ(Zs)
e−r(T−s) dW1s −

Nt∑
i=1

Yi.

(4.32)

For this problem, the time of ruin in finite horizon is defined as

τ ∗(x, z) =

{
inf
{
0 ≤ t ≤ T : XK∗

t < 0
}
, if

{
0 ≤ t ≤ T : XK∗

t < 0
}
̸= ∅

∞, in other case.

and the ruin probability is given by:

P[τ ∗(x, z) < T ].

Let

X̄∗
t = e−rtXK∗

t .

An application of Itô’s lemma leads to

X̄∗
t = x+

∫ t

0

e−rT

(
c+

(µ(Zs)− r)2

ασ2(Zs)

)
ds

+

∫ t

0

e−rT (µ(Zs)− r)

ασ(Zs)
dW1s −

Nt∑
i=1

e−rTiYi.

(4.33)

Before stating the main theorem of this section, we assume that:

The law of random variables (Yi)i≥1 admits a Laplace transform MY (γ) for

γ ∈ (0, γ∞] and

lim
γ→γ∞

MY (γ) = ∞, (4.34)

with the following safety loading condition:(
c+

(µ0 − r)2

ασ2
1

)
e−rT − λE[Y1] > 0.
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Now we define the function G : [0, γ∞) → R by:

G (γ) = −γ
(
c+

(µ0 − r)2

ασ2
1

)
e−rT +

γ2

2

(µ1 − r)2

α2σ2
0

e−2rT + λ(MY (γ)− 1).

The following theorem gives an upper bound for the ruin probabilities in

finite horizon.

Theorem 4.4 (The Upper Bound)

The ruin probability can be bounded from above by

P[τ ∗(x, z) < T ] ≤ e−γ∗x,

where γ∗ is the unique positive root of:

G (γ) = 0.

To get the proof of the theorem, we need the following lemma.

Lemma 4.1 The exponential process

Ht = exp
{
−γ∗X̄∗

t

}
is a supermartingale.

Proof. The existence of γ∗ is a consequence of the convex property of G (γ)

and (4.34). In order to prove that Ht is a supermartingale, first we prove

that Ht has a first finite moment. We observe that

−γ∗X̄∗
t = −γ∗x− γ∗

∫ t

0

(
c+

(µ(Zs)− r)2

ασ2(Zs)

)
e−rT ds

−γ∗
∫ t

0

(µ(Zs)− r)

ασ(Zs)
e−rT dW1s + γ∗

Nt∑
i=1

e−rTiYi

Compensating the last equation by:

γ∗2

2

∫ t

0

(µ(Zs)− r)2

α2σ2(Zs)
e−2rT ds,
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we get that:

−γ∗X̄∗
t = −γ∗x− γ∗

∫ t

0

(
c+

(µ(Zs)− r)2

ασ2(Zs)

)
e−rT ds

−γ∗
∫ t

0

(µ(Zs)− r)

ασ(Zs)
e−rT dW1s −

γ∗2

2

∫ t

0

(µ(Zs)− r)2

α2σ2(Zs)
e−2rT ds

+
γ∗2

2

∫ t

0

(µ(Zs)− r)2

α2σ2(Zs)
e−2rT ds+ γ∗

Nt∑
i=1

e−rTiYi.

Using Hypothesis (4.2) and observing that

exp

{
−γ∗

∫ t

0

(µ(Zs)− r)

ασ(Zs)
e−rT dW1s −

γ∗2

2

∫ t

0

(µ(Zs)− r)2

α2σ2(Zs)
e−2rT ds

}
(4.35)

is a martingale, and that the compound Poisson process has stationary inde-

pendent increments, we get that

E[Ht] = E[exp
{
−γ∗X̄∗

t

}
]

≤ e−γ∗xE
[
exp

{∫ t

0

−γ∗
(
c+

(µ0 − r)2

ασ2
1

)
e−rT+

γ∗2

2

(µ1 − r)2

α2σ2
0

e−2rT ds

}
× exp {λt(MY (γ

∗)− 1)}
]

≤ e−γ∗xE

e
∫ t

0

G (γ∗) ds


≤ e−γ∗x <∞.

Therefore, Ht has a finite first moment. Denote the conditional expectation

E[. | Ft] by Et[ · ]. Let 0 ≤ s ≤ t . Then proceeding as above, we get:

Es[Ht] = Es[e
−γ∗(X̄∗

t −X̄∗
s )]e−γ∗X̄∗

s

≤ E

e
∫ t

s

G (γ∗) dv

Hs

≤ Hs.

From the first line to the second, we used (4.35) and the fact that the com-

pound Poisson process has independent increments. Therefore Ht is a super-

martingale. 2
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Proof. (Theorem 4.4) We know that Ht is a supermartingale with re-

spect to the filtration (Ft)t≥0. Then by the optional sampling theorem for

supermartingales, we get:

e−γ∗x ≥ E[Hτ∗∧T ]

≥ E[Hτ∗Iτ∗<T ]

≥ E[Hτ∗ | τ ∗ < T ]P[τ ∗ < T ].

Then

e−γ∗x ≥ E[Hτ∗ | τ ∗ < T ]P[τ ∗ < T ],

therefore

P[τ ∗(x, z) < T ] ≤ e−γ∗x

E[Hτ∗ | τ ∗ < T ]
,

and then

P[τ ∗(x, z) < T ] ≤ e−γ∗x,

because Hτ∗ ≥ 1 on [τ ∗ < T ]. 2



Chapter 5

Conclusion And Further

Research

The risk model with investment described in this article is more general in

the sense that the coefficients µ and σ depend on an external factor modeled

as a diffusion process. Using the same approach as Gaier et al. (2003), we

get an upper bound and a lower bound for the ruin probabilities. When the

risky asset price is given by the Scott model, we obtain an upper bound which

depends on the external factor. We make some observations concerning how

our model allows to recover the known bounds for ruin probabilities.

The problem of the expected utility of the insurer was successfully solved

by using stochastic control techniques. When the insurer’s preferences are

exponential, the value function is related to a parabolic PDE. We develop

an explicit numerical scheme to solve the parabolic PDE, and we observe

that the utility function depends on the external factor. When the impact of

the external factor is small the utility function is increasing. However as the

external factor increases, the utility function decreases because of the higher

risk involved. Finally, we use the optimal strategy of investment to produce

an upper bound for the ruin probability.
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We conclude by outlining further research directions from the present work:

• The inclusion of dividend payments in the risk model with investment.

• The study of the ruin problem by using the PDE approach.

• The asymptotic behavior of the ruin probability.

• The study of the expected utility under more complex utility functions,

for example Hara and Logarithmic.

• The implementation of an implicit scheme, the finite elements method.

• The implementation of Monte Carlo methods.



Appendix A

Parabolic PDE

A.1 Parabolic Partial Differential Equations

To clarify the statement of our research problem, we shall devote this section

to a short introduction to some concepts of parabolic PDE’s. The goal is to

avoid technicalities and communicate only the basic terminology, definitions

and important results of existence and uniqueness for parabolic PDE’s, which

will be useful in chapter 4.

Definition A.1 Let E =
n∑

i,j=1

aij(x, t)∂xi
∂xj

.

1. We say that E is uniformly elliptic, if there exist λ0, λ1 > 0 such that

λ0 | y |2≤
n∑

i,j=1

aij(x, t)yiyj ≤ λ1 | y |2

for all y ∈ Rn and all (x, t)Rn × [0, T ].

2. A function f on Rn × [0, T ] is called Hölder continuous in x with ex-

ponent 0 < h ≤ 1, uniformly with respect to t in compact subsets of

Rn× [0, T ], if for each compact set D ⊂ Rn there is a constant cD such
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that

| f(x, t)− f(y, t) |≤ cD | x− y |h, ∀x, y ∈ D ,∀t ∈ [0, T ].

3. f is said to be uniformly Hölder continuous in (t, x) in compact subsets

of Rn×[0, T ] if for each compact set D ⊂ Rn×[0, T ] there is a constant

C such that

| f(x, t)− f(y, s) |≤ C(| x− y |h + | t− s |h/2), ∀(x, t), (y, s) ∈ D.

Theorem A.1 (Friedman 1975, [12])

We consider the following Cauchy problem:{
ut(x, t) + Lu(x, t) = f(x, t) in Rn × [0, T )

u(x, T ) = h(x) in Rn
(A.1)

where L is given by:

Lu =
1

2

n∑
i,j=1

aij(x, t)uxixj
+

n∑
i=1

bi(x, t)uxi
+ c(x, t)u.

If the Cauchy problem (A.1) satisfies the following conditions:

1. the coefficients of L are uniformly elliptic;

2. the functions aij, bi are bounded in Rn × [0, T ] and uniformly Lipschitz

continuous in (x, t) in compact subsets of Rn × [0, T ];

3. the functions aij are Hölder continuous in x, uniformly with respect to

(x, t) in Rn × [0, T ];

4. the function c(x, t) is bounded in Rn× [0, T ] and uniformly Hölder con-

tinuous in (x, t) in compact subsets of Rn × [0, T ].
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5. f(x, t) is continuous in Rn × [0, T ], uniformly Hölder continuous in x

with respect to (x, t) and

|f(x, t)| ≤ B(1 + |x|γ);

6. h(x) is continuous in Rn and

|h(x)| ≤ B(1 + |x|γ),

with γ > 0;

then there exists a unique solution u of the Cauchy problem (A.1) satisfying:

|u(x, t)| ≤ const(1 + |x|γ) and |ux(x, t)| ≤ const(1 + |x|γ).

Lemma A.1 Let f be a real positive bounded function with bounded deriva-

tive, then f is uniformly Hölder continuous with exponent h = 1
2
i.e.,

| f(x)− f(y) |≤ C | x− y |1/2 .

Proof. By the mean value theorem and using that f ′(x) is bounded, we

have:

| f 2(x)− f 2(y) |≤ K | x− y |,

where K is a constant. Then

| f(x)− f(y) |≤ K | x− y |1/2,

because f is positive. 2

Theorem A.2 (Pham, [28])

Let Xt be a stochastic processes defined by the following SDE:

Xt = x+

∫ t

0

f(Xs) ds+

∫ t

0

g(Xs) dWs,
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with a standard Brownian motion Wt. We assume that for some L > 0, the

coefficients satisfy:

| f(x)− f(y) | + | g(x)− g(y) |≤ L | x− y |

| f(x) | + | g(x) |≤ L(1+ | x |),

for all (x, y) ∈ R2. Let T > 0 and p ≥ 2. Then, there exists Cp > 0 such

that for all (t, x) ∈ [0, T )× R we have:

E[ sup
0≤t≤T

| Xt |p] ≤ Cp(1+ | x |p).

A.1.1 Itô’s Formula For Jump Diffusion Processes

Itô’s formula is an important tool to derive the HJB equation. Since the

processes involved in this research paper are diffusions with jumps, we recall

the following result in stochastic calculus.

Proposition A.1 Let Xt, t ≥ 0 be a diffusion process with jumps defined

as the sum of a drift term, a Brownian stochastic integral and a compound

Poisson process:

Xt = X0 +

∫ t

0

bs ds+

∫ t

0

σs dWs +
Nt∑
i=1

△Xi, (A.2)

where bt and σt are continuous non-anticipating processes with:

E
[∫ T

0

σ2
t dt

]
<∞.

Then, for any C1,2 function F : [0, T ] × R → R, the process Yt = F (t,Xt)

can be represented as:

F (t,Xt)− F (0, X0) =

∫ t

0

[
∂F

∂s
(s,Xs) + bs

∂F

∂x
(s,Xs)

]
ds

+
1

2

∫ t

0

σ2
s

∂2F

∂2s
(s,Xs) ds+

∫ t

0

σs
∂F

∂x
(s,Xs) dWs

+
∑

i≥1,Ti≤t

[
F (Ti, XT−

i +△Xi
)− F (Ti, XT−

i
)
]
. (A.3)
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Lemma A.2 (Gronwall’s Lemma) Let α ∈ R, k(t) ≥ 0 continuous and γ ∈
C(R). If

γ(t) ≤ α +

∫ t

0

k(s)γ(s) ds,

then

γ(t) ≤ α exp

{∫ t

0

k(s) ds

}
.
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The Finite Difference Method

It is a well-known fact that in general a closed smooth solution of parabolic

PDE’s does not exist, especially when the coefficients are not constant.

Therefore, one is forced to use a numerical method. In this section, we

recall some basic notions about numerical methods such as consistency, sta-

bility and convergence of numerical schemes, and how to estimate the error

between the analytic solution and the numerical solution. We present the

basic material necessary to do scientific computation. The difference scheme

is an approximation of the parabolic PDE, which can be written as a lin-

ear system to be solved at each time step starting at the initial condition.

The basic idea of finite difference schemes is to replace derivatives by finite

differences in the parabolic PDE.

Now we introduce some notation which will be useful in understanding

the basic theory of numerical analysis. To avoid the complexity of operators

depending on n variables, the following results will be announced only for an

operator depending on two variables, time t and space x ∈ R.

Notation B.1 1. Let F and G be functions of the same parameter x.
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We write

F = O(G) as x→ 0,

if

| F
G

|≤ D,

for some constant D and x sufficiently small.

2.

Qu(x, t) = ut + βuxx + g(x)ux + Λ(t, x)u. (B.1)

3. uji := u(i△x, j△t).

4. uj+1 := (· · · , uj+1
−1 , u

j+1
0 , uj+1

1 , · · · )T .

5. û(ω, t) =
1√
2π

∫ ∞

−∞
e−iωxu(x, t) dx is the Fourier transform of u(x, t).

6. v̂(ω) =
1√
2π

∞∑
m=−∞

e−imωvm is the discrete Fourier transform of

v = (· · · , v−1, v0, v1, · · · )T , for ω ∈ [−π, π].

7. L2(R) =
{
v : R → C :

∫
R
| v(x) |2 dx <∞

}
with the norm:

∥v∥2 =

√∫
R
| v(x) |2 dx.

The domain of functions in L2 can be R or [−π, π].
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8. l2 =

{
v = (· · · , v−1, v0, v1, · · · )T :

∞∑
k=0

|vk|2 <∞

}
with the norm

∥u∥2 =

√√√√ ∞∑
k=−∞

|uk|2.

l2,△x vectors are the solution to our difference scheme at time step j.

The l2,△x norm is given by:

∥u∥2,△x =

√√√√ ∞∑
k=−∞

|uk|2△x.

To clarify the conditions that must be met for the implementation of the

finite difference method, we start by working with the known heat equation:

Example B.1 {
ut(x, t) = νuxx in R× [0, T )

u(x, 0) = h(x) in R
(B.2)

The first step is to discretize the domain. A uniform grid on the domain is

given by:

x(i) = i△x = ih i ≥ 0

t(j) = j△t = jk j ≥ 0.

The basic idea of replacing derivatives by finite differences can be motivated

as follows:

ux(x, t) = lim
ϵ→0

u(x+ ϵ, t)− u(x, t)

ϵ
.

Then some basic formulas that can be used are the following:

ux(x, t) ≈
u(x+ h, t)− u(x, t)

h
(B.3)

ux(x, t) ≈
u(x+ h, t)− u(x− h, t)

2h
(B.4)
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ut(x, t) ≈
u(x, t+ k)− u(x, t)

k
(B.5)

uxx(x, t) ≈
u(x+ h, t)− 2u(x, t) + u(x− h, t)

h2
. (B.6)

Naturally there are more formulas, but each one just gives a different degree

of precision. Now we substitute equations (B.5) and (B.6) in problem (B.2).

Thus we obtain the following discrete problem:

u(x, t+ k)− u(x, t)

k
= ν

u(x+ h, t)− 2u(x, t) + u(x− h, t)

h2
.

To simplify the notation, we take x = x(i), t = t(j) and u(x(i), t(j)) := uji .

The result is then given by:

uj+1
i − uji
k

= ν
uji+1 − 2uji + uji−1

h2
, (B.7)

which can be rewritten as:

uj+1
i = ν

k

h2
(uji+1 − 2uji + uji−1) + uji . (B.8)

The initial condition is discretized as:

u0i = h(x(i)).

Through equation (B.8), the numerical solution can be computed by advanc-

ing in the direction of t.

However, the problem that still remains is to determine how well the solution

to the difference equation approximates the solution to the parabolic PDE.

Definition B.1 The finite difference scheme Qk,hu
j
i = 0 is pointwise con-

sistent with the partial differential equation Qu = 0 at point (x, t) if for any

smooth function ψ(x, t),

Qψ |ji −Qk,hψ (i△x, j△t) → 0
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as △x,△t → 0 and (i△x, j△t) → (x, t), where Qk,h is the difference oper-

ator obtained after substituting the derivatives by their corresponding Taylor

expansion in (B.1).

Observation B.1 Consistency means that the discrete equation approxi-

mates the continuous equation, i.e., the difference between the exact solution

of the numerical and mathematical models should vanish as the grid spacing

approaches zero. The principal tool used to sketch the proof of consistency is

based on Taylor’s series expansion.

Example B.2 In this example, we will investigate the consistency of (B.2).

Let

L ψ = ψt − νψxx,

then the difference operator is given by:

Lk,hψ =
ψj+1
i − ψj

i

k
− ν

ψj
i+1 − 2ψj

i + ψj
i−1

h2
.

By Taylor’s series we have:

ψj+1
i = ψj

i + kψt +
1

2
k2ψtt +O(k3),

ψj
i±1 = ψj

i ± hψx +
1

2
h2ψxx ±

1

6
h3ψxxx +O(h4).

The derivatives on the right hand side are all evaluated at x(i), t(j). Then:

Lk,hψ = ψt +
1

2
kψtt − νψxx +O(h2) +O(k2).

Thus

L ψ − Lk,h =
1

2
kψtt +O(h2) +O(k2)

−→ 0 as (h, k) → 0.

Therefore the scheme is consistent.
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Definition B.2 The difference scheme uj+1 =Muj, where M is an infinite

matrix, is said to be stable with respect to the norm || · ||2,△x if there exist

positive constants △x∗ and △t∗, and non-negative constants N and ϑ such

that:

|| uj+1 ||2,△x≤ Neϑ(j+1)△t || u0 ||2,△x, (B.9)

for 0 < △x ≤ △x∗ and 0 < △t ≤ △t∗.

Observation B.2 Since it can be shown that || u ||2,△x=
√
△x || û ||2,(see

[40], p. 99), an equivalent definition of stability is given by:

Definition B.3 The difference scheme uj+1 =Muj, where M is an infinite

matrix, is said to be stable with respect to the norm || · ||2 if there exist positive
constants △x∗ and △t∗, and non-negative constants N and ϑ such that:

|| ûj+1 ||2≤ Neϑ(j+1)△t || û0 ||2, (B.10)

0 < △x ≤ △x∗ and 0 < △t ≤ △t∗.

Proposition B.1 The sequence {un} is stable in l2,△x if and only if {ûn}
is stable in L2 ([−π, π]).

In the next example, we analyze the stability of the difference scheme given

by (B.8).

uj+1
i = ν

k

h2
(uji+1 − 2uji + uji−1) + uji .

Example B.3 First we start by taking the discrete Fourier transform on
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both sides of (B.8).

ûj+1(ω) =
1√
2π

∞∑
m=−∞

e−imωuj+1
m

=
1√
2π

∞∑
m=−∞

e−imω

(
ν
k

h2
(ujm+1 − 2ujm + ujm−1) + ujm

)
=

1√
2π

νk

h2

∞∑
m=−∞

e−imωujm+1 −
1√
2π

2νk

h2

∞∑
m=−∞

e−imωujm

+
1√
2π

νk

h2

∞∑
m=−∞

e−imωujm−1 +
1√
2π

∞∑
m=−∞

e−imωujm,

then:

ûj+1(ω) =
νk

h2
eiωûj(ω)− 2νk

h2
ûj(ω) +

νk

h2
e−iωûj(ω) + ûj(ω)

=

(
2νk

h2
cos(ω) + 1− 2νk

h2

)
ûj(ω)

=

(
1− 2νk

h2
(1− cos(ω))

)
ûj(ω)

=

(
1− 4νk

h2
sin2(ω/2)

)j+1

ûj(ω).

Note that if we restrict ν
k

h2
such that:∣∣∣∣1− 4νk

h2
sin2(ω/2)

∣∣∣∣ ≤ 1, (B.11)

then we can choose N = 1 and ϑ = 0 and thus satisfy inequality (B.10):∣∣∣∣1− 4νk

h2
sin2(ω/2)

∣∣∣∣ ≤ 1.

Condition (B.11) is equivalent to

−1 ≤ 1− 4νk

h2
sin2(ω/2) ≤ 1.

We observe that 1− 4νk

h2
sin2(ω/2) ≤ 1 is always true, and

1− 4νk

h2
sin2(ω/2) ≥ 1,
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or
4νk

h2
sin2(ω/2) ≥ 2,

which is true when ν
k

h2
≤ 1/2. Then ν

k

h2
≤ 1 is a sufficient condition for

stability.

If ∣∣∣∣1− 4νk

h2
sin2(ω/2)

∣∣∣∣ > 1,

then ∣∣∣∣1− 4νk

h2
sin2(ω/2)

∣∣∣∣j+1

is greater than Neϑ(j+1)△t for any N and ϑ, because for large values of j,

Neϑ(j+1)△t is bounded, while

∣∣∣∣1− 4νk

h2
sin2(ω/2)

∣∣∣∣j+1

is not. Finally, ν
k

h2
≤ 1

is both a necessary and sufficient condition for stability.

Observation B.3 Instead of studying stability as we did above, the ap-

proach for linear PDE’s is to consider a discrete Fourier mode, i.e., the

solution of the explicit scheme has the form (see [40]):

uji = Aj(ω)ei
√
−1ω△x.

Definition B.4 The initial value problem for the first-order partial differ-

ential equation Qu = 0 is well-posed if for any time T ≥ 0, there is a constant

CT such that any solution u(t, x) satisfies:∫ ∞

−∞
| u(t, x) |2 dx ≤ CT

∫ ∞

−∞
| u(0, x) |2 dx (B.12)

for 0 ≤ t ≤ T.

Observation B.4 After applying the Fourier transform in space any equa-

tion of first order in the time derivative can be expressed in the following

form:

ût = q(ω)û(t, ω), (B.13)
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then the initial value problem for this equation has the form

û(t, ω) = eq(ω)tû(0, ω),

where û(0, ω) is the Fourier transform of the initial condition.

Theorem B.1 The necessary and sufficient condition for equation (B.13) to

be well-posed, i.e., to satisfy the estimate (B.12), is that there exist a constant

q̄ such that:

Re(q(ω)) ≤ q̄, for all values of ω. (B.14)

Example B.4 In this example, we investigate the well-posedness of the

problem given by (B.2). First, we apply the Fourier transform in space

to (B.2), then we get:∫ ∞

−∞
ut(t, x)e

−iωx dx = ν

∫ ∞

−∞
uxx(t, x)e

−iωx dx.

Integration by parts implies

∂

∂t

∫ ∞

−∞
u(t, x)e−ωx dx = νuxe

−iωx
]∞
−∞

+ iνω

∫ ∞

−∞
ux(t, x)e

−iωx dx.

Assuming that u(−∞, x) = u(∞, x) = 0 for all x ∈ R, and by repeating the

process of integration by parts we obtain:

ût(t, ω) = −νω2û(t, ω),

which is an ordinary first order differential equation with the following solu-

tion:

û(t, ω) = e−νω2tû(0, ω).

Then by taking q(ω) = −νω2 and q̄ = 0, the conditions of theorem (B.1) are

satisfied. Finally, problem (B.2) is well-posed.

The following theorem shows how convergence, consistency and stability are

connected.
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Theorem B.2 (The Lax Equivalence Theorem, [40])

A consistent, two level difference scheme (a scheme involving only the nth

and the (n+1)-th time levels) for a well-posed linear initial-value problem is

convergent if and only if it is stable.

Observation B.5 Since a Cauchy problem can only be solved numerically

in a bounded domain, we first study the approximation of the solution of the

corresponding localized problem. Since this approximation implies a certain

error, the theorem below will give an estimation between the solution of the

Cauchy problem and the localized problem.

We consider the following Cauchy problem and assume that the conditions

of Theorem A.1 are satisfied:{
ut(x, t) +Qu(x, t) = 0 in R× [0, T )

u(x, T ) = 1 in R
(B.15)

The localization of the Cauchy problem (B.15) is done by imposing the

Dirichlet boundary conditions as follows. Let a > 0, then the localized

problem is given by:
ut(x, t) +Qu(x, t) = 0 in ]− 2a, 2a[×[0, T )

u(x, T ) = 1 in ]− 2a, 2a[

u(x, t) = 1 in {−2a, 2a} × [0, T ]

(B.16)
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The following theorem gives an estimation for the localization error.

Theorem B.3 (Gonçalves, [15])

Let u be the unique solution of problem (B.15) in C2,1(]−2a, 2a[)× [0, T ] and

ua the unique solution of problem (B.16) in C2,1(] − 2a, 2a[×[0, T ]). Then,

for all q ≥ 1, t ∈ [0, T ] and x ∈ [−2a, 2a],

|ua(x, t)− u(x, t)| ≤ N(1 + |x|q+γ + |x|qaγ)a−q,

where N is a constant depending on T, q, and γ is the growth condition im-

posed over both functions f and h in Theorem A.1.
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