
 
 
 

 
                

              UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO  
    
 

   POSGRADO  EN  CIENCIAS 
    MATEMÁTICAS 

 
   

              FACULTAD DE CIENCIAS 
 
 
 

                                UNA ESTRATIFICACIÓN, A TRAVÉS DE  
                                VARIEDADES DE STIEFEL COMPLEJAS                         
                                ORTOGONALES GENERALIZADAS, DEL          
                                ESPACIO TWISTORIAL DE LA 2n-ESFERA  
                                             CONFORME PARA n  3 
 
 
 
 

                   QUE PARA OBTENER EL GRADO ACADÉMICO DE                 
 

               DOCTORA EN CIENCIAS 
 

 
 
 

                               P R E S E N T A 
 

 
                               M. en C. ELSA PUENTE VÁZQUEZ 
 
 
 
 

                       DIRECTOR DE LA TESIS: DR. SANTIAGO ALBERTO VERJOVSKY SOLÁ 
 
 
 
 
                           MÉXICO, D.F.                                                                                                    OCTUBRE, 2011 
 
 



 

UNAM – Dirección General de Bibliotecas 

Tesis Digitales 

Restricciones de uso 
  

DERECHOS RESERVADOS © 

PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL 
  

Todo el material contenido en esta tesis esta protegido por la Ley Federal 
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). 

El uso de imágenes, fragmentos de videos, y demás material que sea 
objeto de protección de los derechos de autor, será exclusivamente para 
fines educativos e informativos y deberá citar la fuente donde la obtuvo 
mencionando el autor o autores. Cualquier uso distinto como el lucro, 
reproducción, edición o modificación, será perseguido y sancionado por el 
respectivo titular de los Derechos de Autor. 

 

  

 



A Mú, por su inmensa fuerza interior y porque ama la vida.

A Papalote, por escucharme durante siglos y acompa~narme en el largo

camino de regreso.

A mi sobrinita Sofı́a, por iluminar mi mundo y recordarme lo divertido

que es bailar solas.

A Susi, esperando que siempre luzca su preciosa sonrisa y que regrese

pronto al dise~no de trapos.
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Comité Tutoral y Jurado

Durante los estudios doctorales de la autora, su Comité Tutoral estuvo in-
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Resumen

Para n ≥ 1, consideremos a la esfera unitaria S2n ⊂ R2n+1 dotada de la
métrica estándar (la cual es de curvatura seccional positiva constante igual a 1)
y elijamos una orientación en dicha esfera. Reflejamos este hecho diciendo
que S2n es la 2n-esfera estándar. Llamamos 2n-esfera conforme a toda esfera
Σ de dimensión 2n que sea conformemente equivalente a la esfera estándar
S2n. Consideremos al espacio twistorial

Z(S2n) := SO(2n+ 1)/U(n)

de la 2n-esfera estándar, el cual parametriza al conjunto de todas las estruc-
turas casi-complejas ortogonales definidas en S2n que son compatibles con
la métrica y la orientación (cf. Introducción de este trabajo).

Definimos q2n+2 : C2n+2 −→ C como

(x1 , ..., xn+1 , y1 , ..., yn+1) 7−→ 2

n+1∑

j=1

x
j
y
j

El conjunto de espinores puros correspondiente a la forma cuadrática q2n+2

consiste de dos componentes irreducibles, cada una de las cuales es biholo-
morfa al espacio twistorial Z(S2n) (cf. definiciones 1.3 y 1.4, Proposición
1.11 en el Caṕıtulo 1 de esta tesis).

Denotemos por Sn+1 ≃ C
n(n+1)

2 al espacio lineal formado por todas las matri-
ces complejas antiśımetricas de tamaño (n+1)×(n+1), y porG(n+ 1, 2n+ 2)
a la variedad grassmanniana de subespacios lineales complejos (n + 1)-
dimensionales contenidos en C2n+2. Consideremos al conjunto

Γn+1 :=
{ (
Z,M(Z)

)
∈ C2n+2 | Z ∈ Cn+1,M ∈ Sn+1

}
⊂ G(n+ 1, 2n + 2)

de todas las gráficas (horizontales) de endomorfismos lineales antisimétricos
de Cn+1 y a su cerradura de Zariski

iv



RESUMEN v

Γn+1 ⊂ G(n + 1, 2n + 2)

Un resultado clásico de Geometŕıa Algebraica permite establecer que Γn+1 es

biholomorfa a Z(S2n) (cf. Caṕıtulo 6 de [23], Proposición 1.12 en el Caṕıtulo
1 de esta tesis). Utilizamos este hecho para describir una estratificación
natural del espacio twistorial Z(S2n), a través de lo que hemos llamado
el tipo de un espinor puro correspondiente a q2n+2 y variedades de Stiefel

complejas ortogonales generalizadas de Cn+1 (cf. definiciones 1.7 y 1.13,
Teorema 1.14 en el Caṕıtulo 1 de esta tesis). Los resultados que describen
a dicha estratificación se encuentran en la última sección del tercer caṕıtulo
de este trabajo. Es de esperar que dicha estratificación resulte de utilidad
para adquirir información geométrica y algebraica relevante sobre el espacio
twistorial Z(S2n) en el caso en el que n ≥ 3, por ejemplo, para calcular los
grupos de cohomoloǵıa de dicho espacio twistorial.

En el caso particular del espacio twistorial Z(S6) de la 6-esfera estándar,
es muy conocido que dicho espacio es biholomorfo a una hipersuperficie
cuádrica compleja y no singular contenida en P7

C
(cf. Caṕıtulo 8 de [28]).

Motivados por las secciones 3 y 5 de [45], describimos expĺıcitamente la cons-
trucción de una foliación real-anaĺıtica, por variedades proyectivas complejas
isomorfas al espacio proyectivo complejo tridimensional P3

C
, de la hipersu-

perficie Z(S6). El espacio cociente de esta foliación es una 6-esfera conforme
y dicha foliación resulta ser riemanniana respecto a la métrica de Fubini-
Study e isométricamente equivalente a la fibración twistorial

p6 : Z(S6) −→ S6

de S6, cuyas fibras son isomorfas a P3
C
(cf. Introducción, §4 del segundo

caṕıtulo de esta tesis).

Aclaración: Con el objetivo de que este trabajo pudiese ser accesible a
un mayor número de personas interesadas en los temas que se tratan en él,
hemos optado por redactarlo, en lo subsecuente, en Lengua Inglesa.



Abstract

A stratification, in terms of generalised complex orthogonal

Stiefel manifolds, of the twistor space of the conformal 2n-sphere
with n ≥ 3

Given n ≥ 1, let us consider the unit sphere S2n ⊂ R2n+1 endowed with
the standard metric (which is of constant positive sectional curvature equal
to 1) and let us choose an orientation on this sphere. We shall denote
this fact by saying that S2n is the standard 2n-sphere. We shall call any
2n-dimensional sphere Σ which is conformally equivalent to the standard
sphere S2n a conformal 2n-sphere. Let us consider the twistor space

Z(S2n) := SO(2n+ 1)/U(n)

of the standard 2n-sphere, which parametrises the set of all orthogonal
almost-complex structures defined on S2n which are compatible with the
metric and the orientation (cf. Introduction to this thesis).

Let us define q2n+2 : C2n+2 −→ C by

(x1 , ..., xn+1 , y1 , ..., yn+1) 7−→ 2

n+1∑

j=1

xjyj

The set of pure spinors corresponding to the quadratic form q2n+2 consists
of two irreducible components, each of them biholomorphic to the twistor
space Z(S2n) (cf. definitions 1.3 and 1.4, Proposition 1.11 in Chapter 1 of
this thesis).

Let us denote by Sn+1 ≃ C
n(n+1)

2 the linear space formed by all complex
skew-symmetric (n + 1) × (n + 1) matrices, and by G(n + 1, 2n + 2) the
Grassmannian manifold of linear (n + 1)-dimensional complex subspaces
contained in C2n+2. Let us consider the set

vi



ABSTRACT vii

Γn+1 :=
{ (
Z,M(Z)

)
∈ C2n+2 | Z ∈ Cn+1,M ∈ Sn+1

}
⊂ G(n+ 1, 2n + 2)

of all the (horizontal) graphs of skew-symmetric linear endomorphisms of
Cn+1 and its Zariski closure

Γn+1 ⊂ G(n + 1, 2n + 2)

A well-known result in Algebraic Geometry enables one to establish that
Γn+1 is biholomorphic to the twistor space Z(S2n) (cf. Chapter 6 of [23],
Proposition 1.12 in Chapter 1 of this thesis). We make use of this fact to
describe a natural stratification of the twistor space Z(S2n), in terms of what
we have called the type of a pure spinor corresponding to q2n+2 and gener-
alised complex orthogonal Stiefel manifolds of Cn+1 (cf. definitions 1.7 and
1.13, Theorem 1.14 in Chapter 1 of this thesis). The statements describ-
ing the afore-mentioned stratification are to be found in the last section
of Chapter 3 of this work. We would expect this stratification to become
useful for obtaining relevant geometric and algebraic information about the
twistor space Z(S2n) in the case when n ≥ 3. An instance of this would be
to calculate the cohomology groups of this twistor space.

In the particular case of the twistor space Z(S6) of the standard 6-sphere, it
is widely known that this twistor space is biholomorphic to a non-singular
complex quadric hypersurface in P7

C
(cf. Chapter 8 of [28]). Motivated by §3

and §5 of [45], we explicitly construct a real-analytic foliation of this quadric
hypersurface, by complex projective linear 3-folds, such that its quotient
space is a conformal 6-sphere. This foliation turns out to be Riemannian
with respect to the Fubini-Study metric and isometrically equivalent to the
twistor fibration

p6 : Z(S6) −→ S6

of S6, the fibres of which are isomorphic to the complex projective 3-dimensional
space P3

C
(cf. Introduction, §4 of the second chapter of this thesis).



Introduction

One of the most fruitful and beautiful contributions to Mathematics is the
idea of the geometric realisation of a set of objects as a manifold endowed
with some structure (differentiable, Riemannian, real-analytic, complex, al-
gebraic, etc.). For instance:

(1) Julius Plücker parametrised the set of complex projective lines contained
in P3

C
as a non-singular complex quadric hypersurface in P5

C
(cf. [39],

[27], §2 and §3 in Chapter 8 of [28]).

(2) In [20], Hermann Grassmann generalised some of Plücker’s ideas to ob-
tain the non-singular, compact, complex algebraic Grassmannian man-
ifolds which parametrise the sets of k-dimensional complex linear sub-
spaces in Cm with 0 ≤ k ≤ m.

(3) In his doctoral dissertation [32], Sophus Lie established a bijective cor-
respondence between the set of all oriented and conformal hyperspheres
Σk−1 contained in the unit sphere Sk ⊂ Rk+1 with k ≥ 2 (also called
Lie spheres), and the set of all points on a real quadric hypersurface
Q

k+1
⊂ Pk+2

R
given by the equation 〈x, x 〉 = 0 where 〈 , 〉 is an indefi-

nite bilinear form on Rk+3 with signature (k + 1, 2) (cf. [15]).

Another important instance is found in Élie Cartan’s book [14] where, given
a complex linear space V furnished with a non-singular quadratic form q,
he describes a parametrisation of the set of maximal totally null subspaces
of the quadratic space (V, q) in terms of the pure spinors for q. If V is odd-
dimensional, then the set of pure spinors for q consists of a single irreducible
component. When V is even-dimensional, this set of pure spinors consists
of two irreducible and not canonically isomorphic components. As it is
thoroughly explained by Claude Chevalley in his book [16], Cartan’s work
on pure spinors and their relationship to maximal totally null subspaces may
be elegantly generalised to the case of a non-singular quadratic form defined
on a linear space V over a field K of characteristic other than 2, and some
of Cartan’s developments on this subject may even be dealt with when K
is of characteristic 2 (cf. the review written by Jean Dieudonné contained
in [16]). In this thesis, we shall be concerned with the complex linear space

viii
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C2n+2 with n ≥ 1, furnished with the quadratic form q2n+2 : C2n+2 −→ C
given by

(x1 , ..., xn+1 , y1 , ..., yn+1) 7−→ 2

n+1∑

j=1

x
j
yj

(cf. Chapter 1). One significant fact is that each irreducible component of
the set of pure spinors corresponding to the quadratic form q2n+2 is isomor-
phic to the Riemannian symmetric space

SO(2n + 2)/U(n + 1)

of complex structures defined on R2n+2 which preserve both the orientation
and the standard inner product of R2n+2 (cf. [9], [28]).

Moreover, for n ≥ 1 one has the celebrated twistor fibration

p2n : Z(S2n) −→ S2n

where the twistor space

Z(S2n) := SO(2n+ 1)/U(n)

parametrises the set of orthogonal almost-complex structures defined on the
standard 2n-sphere S2n = SO(2n + 1)/SO(2n) which are compatible with
the orientation and the metric of this conformal 2n-sphere. The fibres of
p2n , called twistor fibres, are isomorphic to SO(2n)/U(n) (cf. [38], [37],
[11], [12], [43]). Given that there exists a diffeomorphism of Riemannian
symmetric spaces

Z(S2n) = SO(2n+ 1)/U(n) ≃ SO(2n+ 2)/U(n + 1)

we have that the fibres of p2n are isomorphic to the twistor space Z(S2(n−1))
of the standard 2(n − 1)-sphere, and, also, we get that the twistor space
Z(S2n) parametrises each of the components of the set of pure spinors corre-
sponding to the quadratic form q2n+2 . That is to say, the twistor space of the
standard 2n-sphere is a geometric realisation of each of the two connected
components of the set of maximal totally null subspaces of the quadratic
space (C2n+2,q2n+2).
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Furthermore, the twistor space Z(S2n) is always a non-singular complex

projective variety of dimension n(n+1)
2 , and it has a canonical projective

embedding, by means of the spin representation, in P2n−1
C

(cf. [25], Chapter
1 of this thesis). As examples, for n = 1, 2, 3 we have that each of the
components of the set of pure spinors corresponding to q2n+2 is, respectively,
isomorphic to Z(S2) ≃ P1

C
, to Z(S4) ≃ P3

C
, and to Z(S6) ≃ Q where Q ⊂ P7

C

is a non-singular complex quadric hypersurface (cf. chapters 1 and 2 of
this thesis).

Amongst these twistor fibrations, the most studied and understood is the
Calabi-Penrose fibration

p4 : Z(S4) := SO(5)/U(2) ≃ P3
C
−→ S4

with fibre isomorphic to P1
C
(cf. [13], [2], [40]). This fibration implies that P3

C

has a C∞-ruling by complex projective lines. This ruling is not holomorphic
since S4 does not admit a complex structure (indeed, it does not even admit
an almost-complex structure).

In the unceasing spirit of Plücker, Grassmann, Klein and Lie, the Calabi-
Penrose fibration also allows us to parametrise the set Σ2,4 formed by all ori-
ented and conformal 2-spheres contained in S4 (that is to say, 2-dimensional
spheres contained in S4 furnished with a metric of constant positive sec-
tional curvature and a chosen orientation) together with all the points in
S4, which are the non-oriented and trivial spheres in S4. If Σ ⊂ S4 is any
oriented and conformal 2-sphere, then Σ has a canonical horizontal lift to
a complex projective line ℓ+ ⊂ P3

C
. Denoting by Σ− the sphere Σ with the

opposite orientation, we have that Σ− lifts to another complex projective
line ℓ− ⊂ P3

C
such that ℓ± is the set of focal points of ℓ∓ under the normal

exponential map for the Fubini-Study metric in P3
C
(cf. [30]). We know that

each point in S4 lifts to a fibre of p4 . On the other hand, the image of any
complex projective line under p4 is either an oriented conformal 2-sphere or
a point (cf. [13], [17], [8], [5]). Thus, the afore-mentioned Plücker quadric
hypersurface in P5

C
is a geometric realisation of the set Σ2,4.

The twistor fibration p6 : Z(S6) −→ S6 is quite interesting also. It is well-
known that the twistor space

Z(S6) := SO(7)/U(3) ≃ SO(8)/U(4)
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is biholomorphic to a non-singular complex quadric hypersurface in P7
C
(cf.

§5 in Chapter 8 of [28]). We have that the fibres of p6 are isomorphic to
Z(S4) ≃ P3

C
, and that the quadric hypersurface Z(S6) parametrises each of

the following sets:

(a) The Grassmannian manifold G+(2,R8) of oriented 2-planes in R8 (cf.
[36] and [30], or §1 of Chapter 2 of this thesis).

(b) Either of the two irreducible components of the Fano variety F3,6 of

linear 3-folds contained in a smooth complex quadric hypersurface in P7
C

(cf. [23] and [24], or Theorem 1.10 in the first chapter of this thesis).

In complete analogy with the case of the Calabi-Penrose fibration, let us
consider the set Σ4,6 consisting of the oriented and conformal 4-spheres
contained in S6 and all the points in S6. The inverse image under p6 of
every point in S6 is isomorphic to P3

C
. If Σ ⊂ S6 is an oriented and conformal

4-sphere, then its inverse image p−1
6

(Σ) is a linear 3-fold Ω+ ≃ P3
C
, and the

restriction of p6 to Ω+ is isometrically equivalent to p4 . Denoting by Σ−

the 4-sphere Σ with the opposite orientation, we have that the inverse image
of Σ− under p6 is another linear 3-fold Ω− . The restriction of p6 to Ω− is,
again, isometrically equivalent to p4 (cf. [45]). We get that Ω± is the set of

focal points of Ω∓ with respect to the Fubini-Study metric in Z(S6). Thus,

the quadric hypersurface Z(S6) is a geometric realisation of the set Σ4,6 (cf.
[45], §3 of [41]).

When n ≥ 4, we have that the twistor space Z(S2n) is never a quadric hyper-
surface since 2n−1 is, precisely, the minimal dimension of a projective space

in which the n(n+1)
2 -dimensional complex variety Z(S2n) can be embedded

(cf. [25]). However, this twistor space is an intersection of a finite number
of quadric hypersurfaces in P2n−1

C
(cf. [14], [16]). Thus, one may come up to

a better understanding of the twistor space Z(S2n) with n ≥ 4, by profiting
from the study of the twistor space Z(S6) of the standard 6-sphere.

Let us briefly describe the contents of this work:

◮ In Chapter 1 we give the fundamental definitions, fix the notation, and
state some relevant known results. This chapter represents an overview
of several ways to approach the study of twistor spaces of standard even-
dimensional spheres and we give the main ideas that shall help the reader
to understand some of the afore-made claims about the twistor space Z(S2n)
of the standard 2n-sphere.

◮ In Chapter 2 we present an extended discussion of the twistor space Z(S6)
of the standard 6-sphere. The second section of this chapter contains some
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results that allow us to retrieve some relevant information regarding the
pure spinors for the quadratic form q8 : C8 −→ C, for instance, the type
of such a spinor (cf. Definition 1.7 in the first chapter) from the coordi-
nates of these spinors. This section also contains the descriptions of two
stratifications of the twistor space Z(S6), the first of which is given in terms
of graphs of skew-symmetric linear endomorphisms of C4. While dealing
with the second stratification, we shall come across a particular generalised
complex orthogonal Stiefel manifold of C4 (cf. Definition 1.13 in the first
chapter) and the manner in which this manifold provides information about
the hypersurface Z(S6). In the third section we introduce a special kind of
4× 4 complex matices which we have called Hamilton matrices. The study
of the skew-symmetric Hamilton matrices, together with sections 3 and 5 of
[45], give rise to our revisiting the twistor fibration p6 : Z(S6) −→ S6 in the
fourth section of this chapter.

◮ In Chapter 3 we generalise the ideas of §2 of the previous chapter to the
case of the twistor space Z(S2n) of the standard 2n-sphere for n ≥ 1. Our
main contribution is contained in the last section of this chapter, and it con-
sists of the description of natural stratifications of the twistor space Z(S2n) in
terms of the type of the pure spinors corresponding to q2n+2 and generalised

complex orthogonal Stiefel manifolds of Cn+1. When n+ 1 is even, we have
two stratifications of Z(S2n) while, in the case when n+ 1 is odd, it suffices
with one such stratification (cf. Proposition 1.8 in the first chapter). We
would like to aknowledge our gratitude to Dr. Gregor Weingart for having
kindly pointed out to our attention that these stratifications are reminiscent
to Wilhelm Wirtinger’s classification of the orbits of the canonical action of
the unitary group on the Grassmannian manifolds of real linear subspaces
in a complex linear space.
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CHAPTER 1

Definitions and notation

Let us begin by defining some geometric and algebraic objects which will
turn out to be fundamental in the ensuing constructions. In what follows,
unless otherwise stated, we shall define all transformations between linear
spaces using the corresponding standard bases, and we shall denote by the
same symbol a transformation between linear spaces and the corresponding
matrix representation of such transformation. We shall use standard pro-
jective homogeneous coordinates to define points in projective spaces. Our
main references regarding Clifford algebras and spinors are [14], [16], [29],
[19], and [28]. For the case of complex varieties, we shall refer the reader
to [4], [46], [44], [23], [21], [24], and [34].

Let n ≥ 1. In the standard base
{
e
j
| 1 ≤ j ≤ 2n+2

}
of the complex linear

space C2n+2, we set once and for all

H :=
n+1⊕

j=1

Ce
j

and V :=
2n+2⊕

j=n+2

Ce
j

We call H and V, respectively, the horizontal space and the vertical space of
C2n+2. Since C2n+2 = H⊕V, every point of C2n+2 may be uniquely written
as a pair (x, y) where

x =

n+1∑

j=1

x
j
e
j
∈ H and y =

n+1∑

j=1

y
j
e
j+n+1 ∈ V

For every nonzero (x, y) ∈ C2n+2, we will denote by [x : y] the point [x1 :
... : xn+1 : y1 : ... : yn+1 ] ∈ P2n+1

C
defined by (x, y).

Let us consider the C-linear canonical involution I2n+2 : C2n+2 −→ C2n+2

given by

(x, y) 7−→ (y, x)

1



2 1. DEFINITIONS AND NOTATION

We shall also denote by I2n+2 the induced involution of P2n+1
C

. We have that

the diagonal ∆ :=
{
(x, x) ∈ C2n+2 | x ∈ H

}
≃ Cn+1 is the fixed-point set

of I2n+2 .

Let us consider the quadratic form q2n+2 : C2n+2 −→ C given by

(x, y) 7−→ 2

n+1∑

j=1

x
j
y
j

Let us denote by 0n+1 and Idn+1 , respectively, the zero and the identity
(n+ 1)× (n+ 1) complex matrices. Then, the matrix corresponding to the
bilinear form B2n+2 : C2n+2 ×C2n+2 −→ C associated to q2n+2 is given as

B2n+2 =

(
0n+1 Idn+1

Idn+1 0n+1

)

and we have that q2n+2 is of maximal rank. Therefore,

Q2n+1 :=
{
(x, y) ∈ C2n+2 | q2n+2(x, y) = 0

}

is a complex affine quadric hypersurface with an isolated singularity at the
origin, and

Q2n :=
{
[x : y] ∈ P2n+1

C
| q2n+2(x, y) = 0

}

is a non-singular (or smooth) complex projective quadric hypersurface.

Let us consider the orthogonal group

O(C2n+2,q2n+2) :={
L : C2n+2 −→ C2n+2 | L is a linear automorphism, q2n+2 ◦ L = q2n+2

}

of the quadratic space (C2n+2,q2n+2), and the special orthogonal group

SO(C2n+2,q2n+2) :=
{
L ∈ O(C2n+2,q2n+2) | det(L) = 1

}

Given that I2n+2 ∈ O(C2n+2,q2n+2), we have that the quadric hypersurfaces
Q2n+1 and Q2n are preserved by I2n+2 .
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Definition 1.1. We say that a complex linear subspace U ⊂ C2n+2 is
totally null for the quadratic form q2n+2 if q2n+2(x, y) = 0 for all (x, y) ∈ U .

Given that the (n+ 1)-dimensional complex linear subspaces H,V ⊂ C2n+2

are totally null for q2n+2 , we have that any other totally null subspace for
q2n+2 has complex dimension at most n+1 (cf. I.3.4 in [16]). Then, we say
that the quadratic form q2n+2 is of maximal index n+1 and we shall denote
this fact by idx(q2n+2) = n+ 1.

Definition 1.2. If U ⊂ C2n+2 is a complex linear subspace which is
totally null for q2n+2 and dim(U) = idx(q2n+2) = n + 1, then we call U a

maximal totally null subspace of the quadratic space (C2n+2,q2n+2).

The spinors for the quadratic form q2n+2 are certain elements of the Clifford

algebra associated to the quadratic space (C2n+2,q2n+2). We shall denote
this algebra by Cℓ2n+2 , its product by ·, and we would like to state a few
facts about it. By definition, Cℓ2n+2 is an associative complex algebra with
unit 1 ∈ C, which contains as a linear subspace and is generated by C2n+2

in such a way that, for each (x, y) ∈ C2n+2, it holds that

(x, y) · (x, y) = q2n+2(x, y) · 1

Moreover, Cℓ2n+2 satisfies the following universal property: Let A be an
associative complex algebra with unit 1, which product we denote by juxta-
position. If there exists a linear transformation L : C2n+2 −→ A such that

L(x, y)L(x, y) = q2n+2(x, y) 1, for each (x, y) ∈ C2n+2,

then there exists a unique algebra homomorphism Ψ : Cℓ2n+2 −→ A which
extends L.

The complex dimension of Cℓ2n+2 is 2dim(C2n+2) = 22n+2. Since dim(C2n+2)
is even, we have that Cℓ2n+2 is a central simple algebra and it is isomorphic

to the full algebra of 2n+1 × 2n+1 complex matrices.

Let us denote by Cℓ+
2n+2

and by Cℓ−
2n+2

the complex linear subspaces of
Cℓ2n+2 generated by the products of, respectively, an even number and an

odd number of elements of C2n+2. We have that
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Cℓ±
2n+2

· Cℓ±
2n+2

⊂ Cℓ+
2n+2

and that Cℓ±
2n+2

· Cℓ∓
2n+2

⊂ Cℓ−
2n+2

Then, the Z2-graduation of Cℓ2n+2 is given as Cℓ2n+2 = Cℓ+
2n+2

⊕Cℓ−
2n+2

. Since

C · 1 ⊂ Cℓ+
2n+2

, we get that Cℓ+
2n+2

is a subalgebra of Cℓ2n+2 .

Let us set

G2n+2 :=
{
η ∈ Cℓ2n+2 | η is invertible and η · C2n+2 · η−1 = C2n+2

}

It is clear that G2n+2 forms a group under the product in Cℓ2n+2 and we call it

the Clifford group of the quadratic space (C2n+2,q2n+2). For each η ∈ G2n+2 ,

let us define a linear automorphism χ
η
: C2n+2 −→ C2n+2 by

(x, y) 7−→ η · (x, y) · η−1

Thus, for every η ∈ G2n+2 and (x, y) ∈ C2n+2, it holds that

q2n+2

(
χ

η
(x, y)

)
· 1 = (η · (x, y) · η−1) · (η · (x, y) · η−1) = q2n+2(x, y) · 1,

and we have that χ
η
∈ O(C2n+2,q2n+2). The group representation χ :

G2n+2 −→ O(C2n+2,q2n+2) given by

η 7−→ χ
η

is called the vector representation of G2n+2 . Again, since dim(C2n+2) is even,
we have that:

(a) The vector representation χ is surjective.

(b) The kernel of χ coincides with C∗ · 1.

(c) χ(G2n+2 ∩ Cℓ+
2n+2

) = SO(C2n+2,q2n+2).

(d) The set C∗ · 1 ∪ (G2n+2 ∩ C2n+2) generates G2n+2 .

(e) Furthermore, the Clifford group G2n+2 is a set of generators for the Clif-
ford algebra Cℓ2n+2 (cf. II.4.1 in [16]).
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We shall now proceed to specifying the spinors for q2n+2 . For every complex

linear subspace U ⊂ C2n+2, let us denote by Cℓ
U
the subalgebra of Cℓ2n+2

generated by U . If U is totally null for q2n+2 , then the complex algebras Cℓ
U

and the full Grassmann algebra
∧
U of U are isomorphic and, thus, may be

identified. In particular, we have

Definition 1.3. Let us consider the horizontal space H ⊂ C2n+2, and
we set

S2n+2 :=
∧

H = Cℓ
H

We say that the 2n+1-dimensional complex algebra S2n+2 is the space of

spinors for the quadratic form q2n+2 .

We shall regard the set

{
e
j0 ...jr

:= e
j0

∧ ... ∧ e
jr

| 1 ≤ j0 < ... < jr ≤ n+ 1, 0 ≤ r ≤ n+ 1
}

as the standard base for S2n+2 . The empty product is equal to 1 ∈ C and
we set

ω := e
1...(n+1)

= e1 ∧ ... ∧ en+1 = e1 · ... · en+1

as the generator of
∧n+1H ≃ C.

If s ∈ S2n+2 is nonzero, we shall denote by [s] ∈ P(S2n+2) ≃ P2n+1−1
C

the
point defined by s. The Z2-graduation of the space of spinors is given as
S2n+2 = S+

2n+2
⊕ S−

2n+2
, where

S+
2n+2

:=
⊕

0≤k≤n+1
k even

∧
kH and S−

2n+2
:=

⊕

0≤k≤n+1
k odd

∧
kH.

Then, S±
2n+2

⊂ Cℓ±
2n+2

, and we say that the 2n-dimensional complex linear

space S+
2n+2

(respectively, S−
2n+2

) is the space of even half − spinors (respec-

tively, odd half − spinors) for the quadratic form q2n+2 .

Let us describe the pure spinors for the quadratic form q2n+2 . For the
vertical space V, we set
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v := en+2 · ... · e2n+2 = en+2 ∧ ... ∧ e2n+2 ∈
∧

V = Cℓ
V

If U is any other maximal totally null subspace of (C2n+2,q2n+2) and
{
uj |

1 ≤ j ≤ n+ 1
}
is any base of U , we set

u := u1 · ... · un+1 = u1 ∧ ... ∧ un+1 ∈
∧
U = Cℓ

U

Then, up to nonzero complex multiples, u is uniquely determined by U . Fur-
thermore (cf. II.2.2 in [16]), we have that

Cℓ2n+2 · u and u · Cℓ2n+2

are, respectively, a minimal left ideal and a minimal right ideal of Cℓ2n+2

and, in particular, it holds that

Cℓ2n+2 · v = Cℓ
H
· v and v · Cℓ2n+2 = v · Cℓ

H

For every maximal totally null subspace U we have that

Cℓ
H
· v ∩ u · Cℓ2n+2

is a 1-dimensional complex linear subspace of Cℓ2n+2 (cf. III.1.1 in [16]) and,
given that Cℓ

H
= S2n+2 , this intersection may be written in the form

Cℓ
H
· v ∩ u · Cℓ2n+2 = S

U
· v

for a unique 1-dimensional complex linear subspace S
U
≃ C of S2n+2 . With

this notation, we have

Definition 1.4. We say that any generator of the complex linear space
S

U
represents the maximal totally null subspace U . Any nonzero spinor s ∈

S2n+2 which represents some maximal totally null subspace of (C2n+2,q2n+2)
is called a pure spinor for the quadratic form q2n+2 .



1. DEFINITIONS AND NOTATION 7

Now, we shall elaborate on the relationship that exists between the pure
spinors for the quadratic form q2n+2 and the maximal totally null subspaces

of the quadratic space (C2n+2,q2n+2). Let us denote by End(S2n+2) the

complex (2n+1)2-dimensional associative algebra, with unit Id, of linear en-
domorphisms of the space of spinors S2n+2 . As complex linear spaces, Cℓ2n+2

and End(S2n+2) are isomorphic (since they are of the same dimension). Fur-
thermore, there exists an irreducible (or simple) algebra representation

ρ : Cℓ2n+2 −→ End(S2n+2)

called the spin representation of Cℓ2n+2 , which also turns out to be an algebra
isomorphism (cf. [16], [29], [19], [28]), and which is obtained as follows:

(1) For each

x =

n+1∑

j=1

xjej ∈ H,

the transformation Lx : S2n+2 −→ S2n+2 given by

s 7−→ x ∧ s

belongs to End(S2n+2). For the linear transformation L : H −→ End(S2n+2)
given as x 7−→ Lx , it holds that L(x) ◦ L(x) vanishes identically on S2n+2 ,
for all x ∈ H.

(2) For each

y =

n+1∑

j=1

yjej+n+1 ∈ V,

let us consider the linear form fy : H −→ C given by x 7−→ 2B2n+2(y, x).
Then (cf. Lemma 3.3 on page 45 of [16]), there exists a unique degree −1
homogeneous derivation

Dy : S2n+2 −→ S2n+2
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that extends fy . Thus, Dy ∈ End(S2n+2), Dy(1) = 0 and Dy ◦ Dy van-
ishes identically on S2n+2 . It is clear that the transformation D : V −→
End(S2n+2) given as y 7−→ Dy is linear.

(3) Let us define a linear transformation R : C2n+2 −→ End(S2n+2) by

(x, y) 7−→ R
(x,y)

:= L(x) +D(y) = Lx +Dy

For all (x, y), (x′, y′) ∈ C2n+2 and ξ ∈ H, we get that

R
(x,y)

(
R

(x′,y′)
(ξ)
)
+R

(x′,y′)

(
R

(x,y)
(ξ)
)
=

Lx

(
L

x′
(ξ)
)
+ Lx

(
D

y′
(ξ)
)
+Dy

(
L

x′
(ξ)
)
+Dy

(
D

y′
(ξ)
)
+

L
x′

(
Lx(ξ)

)
+ L

x′

(
Dy(ξ)

)
+D

y′

(
Lx(ξ)

)
+D

y′

(
Dy(ξ)

)
=

(x ∧ x′ ∧ ξ) + 2B2n+2(y
′, ξ)x+Dy(x

′ ∧ ξ)+
(x′ ∧ x ∧ ξ) + 2B2n+2(y, ξ)x

′ +D
y′
(x ∧ ξ) =

2B2n+2(y
′, ξ)x+ 2B2n+2(y, x

′)ξ − 2B2n+2(y, ξ)x
′+

2B2n+2(y, ξ)x
′ + 2B2n+2(y

′, x)ξ − 2B2n+2(y
′, ξ)x =

2B2n+2

(
(x, y), (x′, y′)

)
Id(ξ)

Since the space of spinors S2n+2 is generated by H, for all (x, y), (x′, y′) ∈
C2n+2 and each s ∈ S2n+2 , it holds that

R
(x,y)

(
R

(x′,y′)
(s)
)
+R

(x′,y′)

(
R

(x,y)
(s)
)
= 2B2n+2

(
(x, y), (x′, y′)

)
Id(s)

and, thus, R
(x,y)

◦ R
(x,y)

= q2n+2(x, y)Id for all (x, y) ∈ C2n+2. By the
universal property of Cℓ2n+2 , we get that R may be uniquely extended to an
algebra homomorphism

ρ : Cℓ2n+2 −→ End(S2n+2)

For each η ∈ Cℓ2n+2 , we shall denote by ρ
η
the linear endomorphism ρ(η). In

particular, for every (x, y) ∈ C2n+2, we have that the linear endomorphism
ρ

(x,y)
interchanges the spaces of half-spinors for q2n+2 .

The following result is a consequence of III.1.4 in [16], and it describes
the parametrisation, by means of the pure spinors for q2n+2 , of the set of
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maximal totally null subspaces of the quadratic space (C2n+2,q2n+2) that
we mentioned in the Introduction.

Theorem 1.5. Let U be a maximal totally null subspace of the quadratic
space (C2n+2,q2n+2) and let s ∈ S2n+2 be a pure spinor for q2n+2 which
represents U . Let ρ : Cℓ2n+2 −→ End(S2n+2) be the spin representation of
Cℓ2n+2 . Then, the following statements hold:

(i) U =
{
(x, y) ∈ C2n+2 | ρ

(x,y)
(s) = 0

}
.

(ii) If ς ∈ S2n+2 is such that ρ
(x,y)

(ς) = 0 for all (x, y) ∈ U , then ς = cs

for some c ∈ C.

By (i) of Theorem 1.5, the spin representation of Cℓ2n+2 allows us to com-
pletely determine the points contained in a maximal totally null subspace of
(C2n+2,q2n+2) once we know a pure spinor which represents such subspace
(and, conversely, a pure spinor for q2n+2 is determined by the maximal to-
tally null subspace it represents).

It is important to remark that not every nonzero spinor for the quadratic
form q2n+2 is a pure spinor. Indeed, it may be proven (cf. III.1.5 in [16])
that a pure spinor for q2n+2 is always a half-spinor (this is the reason for
calling it “pure”) and that there exist even and odd pure spinors for q2n+2 .
Moreover, if n ≥ 3, then not all nonzero half-spinors are pure spinors for
q2n+2 (cf. [14], [16], Chapter 2 of this thesis).

By (ii) of Theorem 1.5, we have that all pure spinors which represent a
fixed maximal totally null subspace U have the same parity. We shall say,
then, that U is an even or an odd maximal totally null subspace according
to the parity of its representative spinors. This allows us to sort out all the
maximal totally null subspaces of the quadratic space (C2n+2,q2n+2) in two
families, and we would like to understand these families. As a consequence
of III.1.10 in [16], we have

Lemma 1.6. Let U and U ′ be two maximal totally null subspaces of
the quadratic space (C2n+2,q2n+2). Then, dim(U ∩ U ′) ≡ idx(q2n+2) =
n+ 1 (mod 2) if and only if U and U ′ have the same parity.

For each pure spinor s ∈ S2n+2 , we shall denote by Ks the maximal totally

null subspace of (C2n+2,q2n+2) represented by s. That is to say,

Ks :=
{
(x, y) ∈ C2n+2 | ρ

(x,y)
(s) = 0

}
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By Theorem 1.5, if c ∈ C∗, then Kcs is equal to Ks . In particular, given that
for all x ∈ H and y ∈ V it holds that

ρ
x
(ω) = x ∧ ω = 0 and ρy(1) = Dy(1) = 0,

we get that V = K
1
is always an even maximal totally null subspace of

(C2n+2,q2n+2). By Lemma 1.6, we have that H = K
ω
is an even maximal

totally null subspace if and only if n+ 1 = idx(q2n+2) is even.

The action of the orthogonal group O(C2n+2,q2n+2) on the set of maximal to-

tally null subspaces of (C2n+2,q2n+2) is transitive (cf. I.4.3 in [16]), and two
such subspaces U and U ′ belong to the same family if and only if there exists
A ∈ SO(C2n+2,q2n+2) such that A(U) = U ′. Since the twistor space Z(S2n)
parametrises each of the two families of maximal totally null subspaces of
(C2n+2,q2n+2), we have that SO(C2n+2,q2n+2) acts transitively on Z(S2n).

The orbit of the vertical space V under the action of O(C2n+2,q2n+2) con-
sists of all the even maximal totally null subspaces (cf. [9], [19]) and, hence,
we may also think of the twistor space Z(S2n) as the homogeneous space

SO(C2n+2,q2n+2)/IsotV

where Isot
V
denotes the isotropy group of V. In Chapter 3 we shall go back

to these actions of O(C2n+2,q2n+2) and SO(C2n+2,q2n+2) and, in particular,
we shall describe the isotropy group Isot

V
in terms of elements of the general

linear group GL(n + 1,C) and certain (n + 1) × (n + 1) skew-symmetric
complex matrices.

Next, we would like to elaborate on the two families of maximal totally null
subspaces of the quadratic space (C2n+2,q2n+2), and on some of the claims

made in the Introduction regarding the twistor space Z(S2n) of the standard
2n-sphere S2n.

The following construction is motivated by Hermann Schubert’s work (cf.
[42], [26]), and it is crucial to the description of the stratifications of the
twistor space Z(S2n) that we shall undertake in chapters 2 and 3 (see Remark
1.9). We would like to define certain sets of pure spinors for q2n+2 in terms
of the dimension of the incidence of the maximal totally null subspaces with
the horizontal space H and the vertical space V. For every pure spinor
s ∈ S2n+2 , let us set
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r
H
(s) := dim(H ∩Ks) and r

V
(s) := dim(V ∩ Ks)

Definition 1.7. For n ≥ 1, let k, k′ ∈
{
0, ..., n + 1

}
be such that

0 ≤ k + k′ ≤ n + 1. Let s ∈ S2n+2 be a pure spinor for the quadratic form
q2n+2 . We shall say that s is of type (k, k′) if r

H
(s) = k and r

V
(s) = k′. We

shall call the nonempty set

Tn+1(k, k
′) :=

{
s ∈ S2n+2 | s is pure of type (k, k′)

}

the (k, k′)− type set of (C2n+2,q2n+2).

If s ∈ S2n+2 is pure of type (k, k′), we shall say that the maximal totally null

subspace Ks = K
[s]

⊂ C2n+2 and that the point [s] ∈ P(S2n+2) ≃ P2n+1−1
C

are

of type (k, k′) as well.

By Theorem 1.5 we get that

Tn+1(0, n + 1) =
{
c · 1 ∈ S+

2n+2
| c ∈ C∗

}
≃
{
[1]
}
≃
{
V
}

and that

Tn+1(n + 1, 0) =
{
c · ω ∈ S2n+2 | c ∈ C∗

}
≃
{
[ω]
}
≃
{
H
}

Furthermore, as a consequence of Lemma 1.6, we have

Proposition 1.8. Let n ≥ 1. Then, the following statements hold:

(i) If idx(q2n+2) = n+ 1 is even, then the disjoint unions

⊔

0≤k,k′,k+k′≤n+1
k,k′ even

Tn+1(k, k
′) and

⊔

1≤k,k′,k+k′≤n+1
k,k′ odd

Tn+1(k, k
′)

parametrise, respectively, the family of even maximal totally null sub-
spaces and the family of odd maximal totally null subspaces of the qua-
dratic space (C2n+2,q2n+2).
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(ii) If idx(q2n+2) = n+ 1 is odd, then the disjoint unions

⊔

0≤k,k′,k+k′≤n+1
k even, k′ odd

Tn+1(k, k
′) and

⊔

0≤k,k′,k+k′≤n+1
k even, k′ odd

Tn+1(k
′, k)

parametrise, respectively, the family of even maximal totally null sub-
spaces and the family of odd maximal totally null subspaces of the qua-
dratic space (C2n+2,q2n+2).

Remark 1.9. In chapters 2 and 3 we shall study the geometry of the
(k, k′)-type set Tn+1(k, k

′) for all n ≥ 1 and k, k′ ∈
{
0, ..., n + 1

}
such that

0 ≤ k+ k′ ≤ n+1. These sets will turn out to be the building-blocks for the
stratifications of the twistor space Z(S2n) that we have already mentioned in
the Introduction.

From Proposition 1.8, it follows that:

(1) If idx(q2n+2) = n + 1 is even, then the canonical involution I2n+2 :

C2n+2 −→ C2n+2 preserves each of the two families of maximal totally
null subspaces of (C2n+2,q2n+2).

(2) If idx(q2n+2) = n + 1 is odd, then the canonical involution I2n+2 :

C2n+2 −→ C2n+2 interchanges the two families of maximal totally null
subspaces of (C2n+2,q2n+2).

To contrast with this behaviour of the canonical involution, let us consider
the C-linear involution J2n+2 : C2n+2 −→ C2n+2 given by

(x, y) = (x1 , ..., xn , xn+1 , y1 , ..., yn , yn+1) 7−→ (y1 , ..., yn , xn+1 , x1 , ..., xn , yn+1)

We shall also denote by J2n+2 the induced involution of P2n+1
C

. Given that

q2n+2 ◦J2n+2 = q2n+2 , we have that J2n+2 ∈ O(C2n+2,q2n+2). Furthermore, if

n+1 is even, then det(J2n+2) = −1 and, hence, J2n+2 /∈ SO(C2n+2,q2n+2). If

n+1 is odd, then det(J2n+2) = 1 and J2n+2 ∈ SO(C2n+2,q2n+2). Therefore:

(1’) If idx(q2n+2) = n + 1 is even, then the involution J2n+2 : C2n+2 −→
C2n+2 interchanges the two families of maximal totally null subspaces
of (C2n+2,q2n+2).
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(2’) If idx(q2n+2) = n + 1 is odd, then the involution J2n+2 : C2n+2 −→
C2n+2 preserves each of the two families of maximal totally null sub-
spaces of (C2n+2,q2n+2).

Thus, we may use either the canonical involution I2n+2 or the involution
J2n+2 depending on whether we want to change the parity of the maximal
totally null subspaces of the quadratic space (C2n+2,q2n+2) or not.

On another matter, if 1 ≤ j ≤ n + 1 and U is a complex j-dimensional
totally null subspace of the quadratic space (C2n+2,q2n+2), then the complex

projective space P(U) ≃ Pj−1
C

is a linear subspace (or a point) of the quadric

hypersurface Q2n ⊂ P2n+1
C

defined by q2n+2 . Therefore, understanding the

maximal totally null subspaces of the quadratic space (C2n+2,q2n+2) (that
is to say, understanding the pure spinors for the quadratic form q2n+2) is
equivalent to understanding the linear n-folds contained in Q2n , and we shall
proceed to describe one way to achieve so.

For 1 ≤ j ≤ m, we shall denote byG(j+1,m+1) the Grassmannian manifold
of complex (j + 1)-dimensional linear subspaces of Cm+1. Equivalently,
G(j,m) shall denote the Grassmannian manifold of linear j-folds contained
in Pm

C
. For any complex projective variety X ⊂ Pm

C
, let us define

Fj(X) :=
{
Λ ∈ G(j,m) | Λ ⊂ X

}

We have (cf. [24]) that the set F
j
(X) is a subvariety of G(j,m), and we

shall call it the Fano variety of linear j − folds contained in X. It holds that

F
j
(X) =

⋂

H

F
j
(H)

where this intersection in G(j,m) is taken over all the hypersurfacesH ⊂ Pm
C

such that X ⊂ H. If X is itself a hypersurface of degree d ≥ 1, then

dim
(
F

j
(X)

)
= (j + 1)(m− j) −

(
j + d

d

)

If, furthermore, we consider the case when X is a non-singular quadric hy-
persurface, then we can completely understand the behaviour of the linear
subspaces contained in X as is shown in the next result (cf. p.735 in [23],
Theorem 22-13 and Theorem 22-14 in [24]).
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Theorem 1.10. For j,m ≥ 1, let Q ⊂ Pm+1
C

be a non-singular complex
quadric hypersurface. Then, the following statements hold:

(i) The Fano variety F
j,m

:= F
j
(Q) of linear j-folds contained in Q is

non-singular.

(ii) If j > m
2 , then F

j,m
is empty.

(iii) If j < m
2 , then F

j,m
is irreducible of complex dimension (j+1)

( 2m−3j
2

)
.

(iv) If j = m
2 , then F

j,m
is of complex dimension j(j+1)

2 and it consists of

two complex j(j+1)
2 -dimensional irreducible components. Moreover:

(a) For any two linear j-folds Λ,Λ′ ⊂ Q, we have that dim(Λ ∩ Λ′) ≡
j (mod2) if and only if Λ and Λ′ belong to the same irreducible
component of F

j,m
(compare to Lemma 1.6 above).

(b) For every linear (j−1)-fold contained in Q, there exist exactly two
linear j-folds in Q containing it, and such j-folds belong to opposite
irreducible components (compare to III.1.11 in [16]) .

(c) Each irreducible component of F
j,m

is isomorphic to the Fano va-
riety F

j−1(Q
′) of linear (j − 1)-folds contained in a non-singular

complex (m− 1)-dimensional quadric hypersurface Q′ ⊂ Pm
C
.

As a consequence of this theorem, we have that the Fano variety

Fn,2n := Fn(Q2n)

of linear n-folds contained in the non-singular complex quadric hypersurface
Q2n ⊂ P2n+1

C
, parametrises the set of maximal totally null subspaces of

(C2n+2,q2n+1), that is to say, it parametrises the set of pure spinors for q2n+2 .

Let us denote by F+
n,2n

(respectively, by F−
n,2n

) the component of Fn,2n which

contains the projective spaces associated to the even (respectively, odd) max-
imal totally null subspaces of (C2n+2,q2n+2). By Proposition 1.8, the canon-

ical involution I2n+2 : P
2n+1
C

−→ P2n+1
C

preserves the irreducible components

F±
n,2n

when n+ 1 is even, and it interchanges these irreducible components

when n+1 is odd. In contrast, the involution J2n+2 : P2n+1
C

−→ P2n+1
C

inter-

changes the irreducible components F± when n+1 is even, and it preserves
them when n+ 1 is odd.
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On a first point of view (as was mentioned in the Introduction), the twistor
space Z(S2n) ≃ SO(2n + 2)/U(n + 1) of the standard 2n-sphere is biholo-
morphic to each component of the space of pure spinors for the quadratic
form q2n+2 . Thus, on a second point of view, we have

Proposition 1.11. For n ≥ 1, the twistor space Z(S2n) of the standard
2n-sphere is biholomorphic to (therefore, it parametrises) each of the irre-
ducible components of the Fano variety Fn,2n := Fn(Q2n) of linear n-folds

contained in the non-singular complex quadric hypersurface Q2n ⊂ P2n+1
C

defined by the quadratic form q2n+2 .

In order to consider a third point of view, we would like to study the relation-
ship between twistor spaces of standard even-dimensional spheres and com-
plex skew-symmetric matrices. If m ≥ 1, we shall denote by M(m,C) the

algebra of all m×m complex matrices and the complex m(m−1)
2 -dimensional

subspace of skew-symmetric matrices shall be denoted by Sm .

For n ≥ 1, let us define Γ : M(n+ 1,C) −→ G(n+ 1, 2n + 2) by

M 7−→ Γ(M) :=
{ (
Z,M(Z)

)
∈ C2n+2 | Z ∈ Cn+1

}

That is to say, Γ is simply the transformation that associates to each M ∈
M(n + 1,C) the (horizontal) graph Γ(M) of the linear endomorphism M :
Cn+1 −→ Cn+1. We have (cf. Chapter 6 in [23]) that the (n+1)-dimensional
subspace Γ(M) (therefore, also its image I2n+2

(
Γ(M)

)
under the canonical

involution) is totally null for q2n+2 if and only if M ∈ Sn+1 . This is the
reason for being concerned, in this thesis, only with the set

Γn+1 := Γ(Sn+1) ≃ C
n(n+1)

2

of graphs of skew-symmetric linear endomorphisms of Cn+1. We would
like to remark that, since Idn+1 /∈ Sn+1 , we have that the fixed-point set

∆ =
{
(x, x) ∈ C2n+2 | x ∈ H

}
≃ Cn+1 of I2n+2 does not belong to Γn+1 .

For each M ∈ Sn+1 , we have that dim(Γ(M) ∩ V) = 0. By Proposition 1.8,
we get that all the maximal totally null subspaces contained in Γn+1 have
the same parity (they are even maximal totally null subspaces if and only if
n+1 = idx(q2n+2) is even). That is to say, the projective spaces associated
to the elements of Γn+1 belong to one and the same irreducible component
of the Fano variety Fn,2n .
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Let us denote the Zariski closure of Γn+1 , taken in the Grassmannian man-

ifold G(n + 1, 2n + 2), by Γn+1 . In order to obtain this Zariski closure
one adds to Γn+1 a complex projective variety of codimension at least 2
(cf. pages 18 and 19 below, Proposition 2.7 in Chapter 2, §3.2 in Chapter
3). Therefore (cf. [4], [46], [44], [23], [21], [34]), under the corresponding
Plücker embedding

G(n+ 1, 2n + 2) −→ P
(2n+2

n+1 )−1
C

the Zariski closure Γn+1 coincides with the closure of Γn+1 induced by the

Fubini-Study metric in C2n+2. Furthermore, it may be proven (cf. Chapter
6 in [23]) that the component of the Fano variety Fn,2n which parametrises

Γn+1 , coincides with the Zariski closure Γn+1 . By Proposition 1.8, we have

that F+
n,2n

≃ Γn+1 if and only if n+ 1 = idx(q2n+2) is even.

In order to construct the complex projective variety E := Γn+1 − Γn+1 ,
we recur to the following tool. Let us denote by λn+1 : Sn+1 → C the
transformation which assigns to each M ∈ Sn+1 the unique complex number
λn+1(M) such that

det(M) =
(
λn+1(M)

)2

We shall say that the complex number λn+1(M) is the Pfaffian ofM . If n+1

is even, then λn+1(M) is a complex polynomial (in the n(n+1)
2 coordinates of

M) of degree n+1
2 for all M ∈ Sn+1 . If n+1 is odd, then λn+1(Sn+1) =

{
0
}
.

Let us set

S∗
n+1

:=
{
M ∈ Sn+1 | λn+1(M) 6= 0

}
,

S0
n+1

:= Sn+1 − S∗
n+1

=
{
M ∈ Sn+1 | λn+1(M) = 0

}
,

Γ∗
n+1

:= Γ(S∗
n+1

) and Γ0
n+1

:= Γ(S0
n+1

)

That is to say, M ∈ Sn+1 is an invertible matrix if and only if M ∈ S∗
n+1

,
and S∗

n+1
= ∅ when n+ 1 is odd.

Moreover, for n+ 1 even, we have that Γn+1 = Γ∗
n+1

⊔ Γ0
n+1

and
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Γn+1 = Γn+1 ⊔ I2n+2(Γ
0
n+1

) ⊔
{
limits at infinity of the elements in Γ0

n+1

}

where I2n+2 is the canonical involution of C2n+2. In this case, we get that
the set Γ∗

n+1
is isomorphic to the type set Tn+1(0, 0).

For n+ 1 odd, we have that Γn+1 = Γ0
n+1

and

Γn+1 = Γ0
n+1

⊔
{
limits at infinity of the elements in Γ0

n+1

}

For n ≥ 1, we have that Γ0
n+1

is isomorphic to the complex affine variety S0
n+1

(which is of dimension n(n+1)−2
2 and has an isolated singularity at the zero

matrix 0n+1). In order to obtain the set of limits at infinity of the elements

in Γ0
n+1

, we projectivise and compactify S0
n+1

. By the Fundamental Theorem

of Projective Geometry, every 1-dimensional complex linear subspace of S0
n+1

intersects the hyperplane at infinity in P
n(n+1)−2

2
C in one point, and, therefore,

the locus of such points is the afore-mentioned set of limits.

We would like to remark that an easy way to determine the set of limits at
infinity of the elements in Γ0

n+1
, is to keep in mind Lemma 1.6, Proposition

1.8, and the fact that the values of (k, k′), for the type sets contained in
this set of limits, cannot be smaller than those for the type sets contained
in Γ0

n+1
(cf. theorems 3.15 and 3.16).

The fact that Γn+1 coincides with one of the irreducible components of
the Fano variety Fn,2n , together with Proposition 1.11 and [1], imply the
following

Proposition 1.12. Let n ≥ 1. Then, the following statements hold:

(i) The twistor space Z(S2n) of the standard 2n-sphere is biholomorphic
(indeed, algebraically isomorphic) to the Zariski closure Γn+1 ⊂ G(n+ 1,
2n + 2) of the set Γn+1 of graphs of skew-symmetric linear endomor-

phisms of Cn+1.

(ii) The twistor space Z(S2n) of the standard 2n-sphere is birationally equiv-

alent to the complex projective space P
n(n+1)

2
C .
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When n ≥ 3, it is a remarkable consequence of the above proposition that
the twistor space Z(S2n), being an intersection of a finite number of quadric
hypersurfaces in P2n−1

C
(see the Introduction), is a rational complex pro-

jective variety. We would also like to remark that, for n ≥ 2, this result
has proven to be a fundamental tool in the study of the moduli space of
superminimal immersions of S2 in S2n (cf. [6], [17], [33], [5]).

Let us briefly illustrate some of the arguments given above for the case when
n = 1, 2.

◮ n = 1 By Proposition 1.11, we have that the twistor space

Z(S2) := SO(3)/C∗

parametrises each of the components of the Fano variety F1,2 of complex
projective lines contained in the non-singular complex quadric hypersurface
Q2 ⊂ P3

C
defined by the quadratic form q4 : C4 −→ C. Since idx(q4) = 2 is

even, we have that the canonical involution I4 : P3
C
−→ P3

C
preserves each of

these components and the involution J4 : P3
C
−→ P3

C
interchanges them.

Given that Γ∗
2
= T2(0, 0) and Γ0

2
= T2(2, 0), we get that

Γ2 = T2(0, 0) ⊔T2(2, 0) ≃ S2 ≃ C and

{
limits at infinity of the elements in Γ0

2

}
= ∅

Then, I4(Γ
0
2
) = T2(0, 2) ≃

{
[1]
}
and we get that

F+
1,2

≃ Γ2 = Γ2 ⊔ I4(Γ
0
2
) ≃ P1

C

On the other hand, since all nonzero half-spinors for q4 are pure (cf. III.4.4
in [16]) and the spaces of half-spinors S±

2
for q4 are isomorphic to C2, we

get that

F−
1,2

≃ T2(1, 1) = P(S−
2
) ≃ P1

C

◮ n = 2 Using Proposition 1.11 again, we get that that the twistor space
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Z(S4) := SO(5)/U(2) ≃ SO(6)/U(3)

is biholomorphic to each of the components of the Fano variety F2,4 of linear

2-folds contained in the non-singular quadric hypersurface Q4 ⊂ P5
C
defined

by the quadratic form q6 : C6 −→ C. Since idx(q6) = 3 is odd, we get
that the canonical involution I6 : P5

C
−→ P5

C
interchanges the irreducible

components F±
2,4

and the involution J6 : P5
C
−→ P5

C
preserves them. By

Theorem 1.10, we know that F±
2,4

is isomorphic to the Fano variety F1(Q
′)

of complex projective lines contained in a non-singular complex quadric
hypersurface Q′ ⊂ P4

C
. In turn, F1(Q

′) is isomorphic to P3
C
(cf. [24]).

Explicitly, we have that

F−
2,4

≃ Γ3 = Γ0
3
⊔
{
limits at infinity of the elements in Γ0

3

}

Moreover,

Γ0
3
= T3(1, 0) ⊔T3(3, 0) ≃ S3 ≃ C3

and the set T3(1, 2) consists of the limits at infinity of all the elements in
this C3. Therefore, T3(1, 2) ≃ P2

C
.

To finish this chapter, let us consider 1 ≤ j ≤ m and a non-singular qua-
dratic form q : Cm −→ C. Let us denote by B : Cm×Cm −→ C the bilinear
form associated to q. Given that B is non-degenerate, if U ⊂ Cm is a com-
plex j-dimensional subspace, then we have that the orthogonal complement
of U with respect to B

U⊥
B :=

{
z ∈ Cm | B(z, u) = 0 for all u ∈ U

}

is a complex subspace of Cm of dimension m− j ≥ 0.

Definition 1.13. For m ≥ 1, let 0 ≤ k, k′ ≤ m be such that 0 ≤
k + k′ ≤ m. Let q : Cm −→ C be a non-singular quadratic form and let
B : Cm×Cm −→ C be the associated bilinear form. Then, the nonempty set

VB
C
(k, k′;m) :=

{
(U,W ) ∈ G(k,m)×G(k′,m) | U ⊥

B
W
}
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is a smooth, compact, complex subvariety of G(k,m)×G(k′,m) of dimension

m(k + k′)− kk′ − k2 − (k′)2,

and we shall call it a generalised complex orthogonal Stiefel manifold of the
quadratic space (Cm, q).

Let us denote by π1 : VB
C
(k, k′;m) −→ G(k,m) and π2 : VB

C
(k, k′;m) −→

G(k′,m) the canonical projections into the first and second coordinates,
respectively. For all (U,W ) ∈ VB

C
(k, k′;m) we have that

π−1
1

(U) =
{
(U, V ) ∈ VB

C
(k, k′;m) | V ∈ U⊥

B ≃ Cm−k, dim(V ) = k′
}
and

π−1
2

(W ) =
{
(V,W ) ∈ VB

C
(k, k′;m) | V ∈W⊥

B ≃ Cm−k′ , dim(V ) = k
}

One can verify that both π1 and π2 are holomorphic submersions and, given
that VB

C
(k, k′;m) is compact, we obtain

Theorem 1.14. For m ≥ 1, let 0 ≤ k, k′ ≤ m be such that 0 ≤
k + k′ ≤ m. Let q : Cm −→ C be a non-singular quadratic form and let
B : Cm×Cm −→ C be the associated bilinear form. Let us consider the gen-
eralised complex orthogonal Stiefel manifold VB

C
(k, k′;m) of the quadratic

space (Cm, q). Then, we have two locally trivial and holomorphic fibrations

VB
C
(k, k′;m)

π1

xxpp
pp
pp
pp
pp
p π2

''N
NN

NN
NN

NN
NN

G(k,m) G(k′,m)

The fibre of π1 is isomorphic to the complex Grassmannian manifold G(k′,m− k),
and the fibre of π2 is isomorphic to the complex Grassmannian manifold
G(k,m− k′).

Remark 1.15. Every generalised complex orthogonal Stiefel manifold is,
in fact, a standard complex partial flag manifold (cf. [35]). We hope that,
from our context in the following two chapters, it will be clear why we have
chosen to make and use Definition 1.13.



CHAPTER 2

The twistor space Z(S6) of the standard 6-sphere

Let us recall that the twistor space

Z(S6) := SO(7)/U(3) ≃ SO(8)/U(4)

of the standard 6-sphere is a 6-dimensional complex projective variety, which
is biholomorphic to a non-singular quadric hypersurface in P7

C
(cf. §5 in

Chapter 8 of [28]). This twistor space may be discussed from several points
of view, since it is a geometric realisation of each of the following sets:

(a) The set Σ4,6 of conformal and oriented 4-spheres contained in S6 to-
gether with the points in S6.

(b) The Grassmannian manifold G+(2,R8) of oriented 2-planes in R8.

(c) Either of the two irreducible components of the Fano variety F3,6 of
linear 3-folds contained in a non-singular complex quadric hypersurface
in P7

C
.

We have already described parametrisation (a) in the Introduction, and we
refer the reader to [25] for a generalisation of it. In §2.1 we shall explain
parametrisation (b).

The second section is devoted to elaborating on the parametrisations (c) (cf.
Proposition 1.11). We use these parametrisations to describe two stratifica-
tions of Z(S6). The first of these stratifications, given in terms of graphs of
skew-symmetric linear endomorphisms of C4, represents an alternative proof
of the fact that the twistor space Z(S6) is biholomorphic to a non-singular
complex quadric hypersurface in P7

C
(cf. Proposition 2.8).

In §2.3 we study a special kind of elements of M(4,C), which we have called
Hamilton matrices. In particular we show that, in the Grassmannian mani-
fold G(4, 8), the Zariski closure of the set of graphs of linear endomorphisms
of C4 defined by skew-symmetric Hamilton matrices is isomorphic to a non-
singular complex quadric hypersurface in P4

C
. The last section is motivated

21
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by our previous study of skew-symmetric Hamilton matrices and sections 3
and 5 of [45], and it consists of an explicit construction of a real-analytic fo-
liation of Z(S6), by linear 3-folds, the quotient space of which is a conformal
6-sphere. We also prove that this foliation is Riemannian with respect to
the Fubini-Study metric in Z(S6), and isometrically equivalent to the twistor
fibration p6 : Z(S6) −→ S6.

1. The Grassmannian manifold G+(2,Rm+1)

For m ≥ 1, let us consider the Fermat polynomial Fm+1 : Cm+1 −→ C
given by

(z1 , ..., zm+1) 7−→
m+1∑

j=1

z2
j

The quadratic form Fm+1 has maximal rank. Then, the complex affine
quadric hypersurface

Qaff
m

:=
{
(z1 , ..., zm+1) ∈ Cm+1 | Fm+1(z1 , ..., zm+1) = 0

}

has an isolated singularity at the origin, and the complex projective quadric
hypersurface

Qm−1 :=
{
[z1 : ... : zm+1 ] ∈ Pm

C
| Fm+1(z1 , ..., zm+1) = 0

}

is non-singular. Let S2m+1 ⊂ Cm+1 be the unit sphere and let us consider
the link

L := S2m+1 ∩Qaff
m

For each Z = (z1 , ..., zm+1) ∈ Cm+1 and 1 ≤ j ≤ m+ 1, we set

x
j
(Z) := ℜ(z

j
), y

j
(Z) := ℑ(z

j
) ∈ R and

X(Z) :=
(
x1(Z), ..., xm+1(Z)

)
, Y (Z) :=

(
y1(Z), ..., ym+1(Z)

)
∈ Rm+1
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For each Z = (z1 , ..., zm+1) ∈ Qaff
m
, we have that

‖X(Z)‖2 − ‖Y (Z)‖2 = 0 and 2〈X(Z), Y (Z)〉 = 0

where 〈 , 〉 denotes the standard inner product in Rm+1. If, furthermore,
Z = (z1 , ..., zm+1) ∈ L, we have that ‖X(Z)‖2 + ‖Y (Z)‖2 = 1. Therefore,

L =
{(
X(Z), Y (Z)

)
∈ Rm+1×Rm+1 | ‖X(Z)‖ = ‖Y (Z)‖ =

1√
2
,X(Z) ⊥ Y (Z)

}

and L is diffeomorphic to the Stiefel manifold V(2,m + 1) of oriented or-
thonormal 2-frames in Rm+1.

We would like to understand the behaviour of the points in L ≃ V(2,m+1)
as we projectivise the affine quadric hypersurfaceQaff

m
. In order to do this, we

need to consider the natural action of the circle S1 on the unit sphere Sm ⊂
Rm+1 (that is to say, coordinate-wise multiplcation by complex numbers of
modulus 1). If Π ∈ V(2,m+1), then the whole orbit of Π under this action
is contained in the oriented 2-dimensional subspace of Rm+1 spanned by Π.
Therefore, such an orbit may be identified with this oriented 2-plane, and we
get that the complex projective quadric hypersurface Qm−1 is diffeomorphic

to the corresponding Grassmannian manifold G+(2,Rm+1) of oriented 2-
planes in Rm+1. In particular, for m = 7, we have that Z(S6) ≃ Q6 is
diffeomorphic to the Grassmannian manifold G+(2,R8) of oriented 2-planes
in R8.

We would like to remark that some of the implications of the existence of
these diffeomorphisms

Qm−1 ≃ G+(2,Rm+1)

are to be found in the study of minimal surfaces (cf. [17], [10], [8]).
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2. Two stratifications of the twistor space Z(S6)

We recall that the quadratic form q8 : C8 −→ C given by (x, y) 7−→
2
∑4

j=1 xj
y
j
is of maximal rank 8 and maximal index 4. Therefore, we

have that

Q6 :=
{
[x : y] ∈ P7

C
| q8(x, y) = 0

}

is a non-singular complex quadric hypersurface.

The space of spinors

S8 = S+
8
⊕ S−

8
⊂ Cℓ8

for the quadratic form q8 (cf. Definition 1.3) has complex dimension 16.
Then, for each s ∈ S8 , there exist unique a1 , ..., a16 ∈ C such that s =
ς + κ where

ς := a1 · 1+ a6e12 + a7e13 + a8e14 + a9e23 + a10e24 + a11e34 + a16 · ω ∈ S+
8
,

κ := a2e1 + a3e2 + a4e3 + a5e4 + a12e123 + a13e124 + a14e134 + a15e234 ∈ S−
8
,

and the form ω = e1∧e2∧e3∧e4 is considered as the generator of
∧4 H ≃ C.

We shall denote these facts by

ς = (a1 , a6 , a7 , a8 , a9 , a10 , a11 , a16) ∈ S+
8
,

κ = (a2 , a3 , a4 , a5 , a12 , a13 , a14 , a15) ∈ S−
8
,

and s = (a1 , ..., a16) ∈ S8

For every (x, y) = (x1 , ..., x4 , y1 , ..., y4) ∈ C8 and s = (a1 , ..., a16) ∈ S8 , we
have that the spin representation ρ : Cℓ8 −→ End(S8) of the Clifford algebra
Cℓ8 of the quadratic space (C8,q8) is given by
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ρ
(x,y)

(s) = 2(a2y1 + a3y2 + a4y3 + a5y4) · 1

+(a1x1 − 2a6y2 − 2a7y3 − 2a8y4)e1 + (a1x2 + 2a6y1 − 2a9y3 − 2a10y4)e2

+(a1x3 + 2a7y1 + 2a9y2 − 2a11y4)e3 + (a1x4 + 2a8y1 + 2a10y2 + 2a11y3)e4

+(a3x1 − a2x2 + 2a12y3 + 2a13y4)e12 + (a4x1 − a2x3 − 2a12y2 + 2a14y4)e13

+(a5x1 − a2x4 − 2a13y2 − 2a14y3)e14 + (a4x2 − a3x3 + 2a12y1 + 2a15y4)e23

+(a5x2 − a3x4 + 2a13y1 − 2a15y3)e24 + (a5x3 − a4x4 + 2a14y1 + 2a15y2)e34

+(a9x1 − a7x2 + a6x3 − 2a16y4)e123 + (a10x1 − a8x2 + a6x4 + 2a16y3)e124

+(a11x1 − a8x3 + a7x4 − 2a16y2)e134 + (a11x2 − a10x3 + a9x4 + 2a16y1)e234

+(a15x1 − a14x2 + a13x3 − a12x4)ω

(cf. [14], [16], [29], [19], [28], Chapter 1 of this thesis).

Not all nonzero half-spinors for q8 are pure spinors but, one of the remark-
able consequences of the Principle of Triality (cf. Chapter IV of [16], Lecture
20 of [19], Appendix B of [28]) is that, when dealing with an 8-dimensional
complex linear space endowed with a quadratic form which is of maximal
rank 8 and maximal index 4, we can determine all pure spinors for such a
quadratic form in a nice geometric way as follows.

Let us define γ : S8 −→ C by
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(a1 , ..., a16) 7−→ 2(a1a16 +a2a15 −a3a14 +a4a13 −a5a12 −a6a11 +a7a10 −a8a9)

The quadratic form γ has maximal rank 16 and maximal index 8. In order
to get the parametrisations (c), we need to consider the restrictions γ± of
the quadratic form γ to each of the spaces of half-spinors for q8 . Given that
the quadratic form γ± has rank 8 and idx(γ±) = 4, IV.1.1 in [16] implies

Proposition 2.1. Let s ∈ S8 = S+
8
⊕S−

8
be any spinor for the quadratic

form q8 . Then, s is a pure spinor for q8 if and only if s is a nonzero half-
spinor and γ(s) = 0.

Let us consider the non-singular complex quadric hypersurfaces

Q+
6
:=
{
[ς] ∈ P(S+

8
) ≃ P7

C
| γ+(ς) = 0

}

and Q−
6
:=
{
[κ] ∈ P(S−

8
) ≃ P7

C
| γ−(κ) = 0

}

By Proposition 2.1, we get that Q+
6
(respectively, Q−

6
) parametrises the set

of all even (respectively, odd) half-spinors for q8 which are pure. Therefore
(cf. Theorem 1.10 and Proposition 1.11), the irreducible component F±

3,6
of

the non-singular 6-dimensional complex projective variety F3,6 = F3(Q6) is

biholomorphic to Q±
6
. That is to say,

F±
3,6

is biholomorphic to Q6

(the kind of algebraic variety which we started with) which, in turn, is
biholomorphic to the twistor space Z(S6).

Since idx(q8) = 4 is even, we know (cf. Chapter 1) that the involution
J8 : C

8 −→ C8 given by

(x, y) = (x1 , ..., x4 , y1 , ..., y4) 7−→ (y1 , y2 , y3 , x4 , x1 , x2 , x3 , y4)

changes the parity of the maximal totally null subspaces of the quadratic
space (C8,q8). Hence, the involution of P7

C
induced by J8 interchanges

the irreducible components F±
3,6

≃ Q±
6
, and, in this sense, we say that the
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complex quadric hypersurfaces Q±
6

are indistinguishable. In the next two
subsections we will recur to Proposition 1.8 and the type sets T4(k, k

′) ⊂ S8 ,
with k, k′ ∈

{
0, 1, 2, 3, 4

}
, (cf. Definition 1.7) to distinguish Q+

6
from Q−

6
,

and to obtain the two afore-mentioned stratifications of Z(S6).

Let us go back to the involution J8 : C8 −→ C8. Given a maximal totally
null subspace U of the quadratic space (C8,q8) and a pure spinor s ∈ S8

which represents U , we would like to determine a pure spinor which repre-
sents the maximal totally null subspace J8(U).

Let us define C-linear involutions ϕ± : S±
8
−→ S∓

8
by

(a1 , a6 , a7 , a8 , a9 , a10 , a11 , a16)
ϕ

+

7−→ (−2a9 , 2a7 ,−2a6 , 4a16 ,
a1

2
,−a11 , a10 ,−a8)

(a2 , a3 , a4 , a5 , a12 , a13 , a14 , a15)
ϕ

−

7−→
(
2a12 ,

−a4

2
,
a3

2
,−a15 ,

−a2

2
, a14 ,−a13 ,

a5

4

)

Then, ϕ : S8 = S+
8
⊕ S−

8
−→ S−

8
⊕ S+

8
= S8 given by

s = ς + κ
ϕ7−→ ϕ+(ς) +ϕ−(κ)

is a C-linear involution such that

−γ
(
ϕ(s)

)
= 2γ+(ς) +

γ−(κ)

2

for all s = (a1 , ..., a16) = ς + κ ∈ S8 . By Proposition 2.1, we have that ϕ

transforms pure spinors into pure spinors. Since ϕ interchanges the spaces
of half-spinors for the quadratic form q8 , we have that no pure spinor for q8

is fixed by ϕ. For each (x, y) ∈ C8, we get that

ρ
(x,y)

(s) = 0 if and only if ρ
J8 (x,y)

(
ϕ(s)

)
= 0

where ρ : Cℓ8 −→ End(S8) is the spin representation. By Theorem 1.5, we
have the following

Proposition 2.2. Let U be a maximal totally null subspace of the qua-
dratic space (C8,q8) and let s ∈ S±

8
be a pure spinor for q8 which represents
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U . Then, the pure spinor ϕ(s) ∈ S∓
8

represents the maximal totally null
subspace J8(U).

Corollary 2.3. If U ⊂ C8 is a 4-dimensional complex linear subspace
which is invariant under the involution J8 , then U is not totally null for q8 .

On the other side, the canonical involution I8 : C8 −→ C8 preserves the
parity of the maximal totally null subspaces of the quadratic space (C8,q8)
(since idx(q8) = 4 is even). Given a maximal totally null subspace U of
(C8,q8) and a pure spinor s ∈ S8 which represents U , we would like to de-
termine a representative spinor for I8(U). Let us define C-linear involutions
±ג : S±

8
−→ S±

8
by

(a1 , a6 , a7 , a8 , a9 , a10 , a11 , a16)
→−7+ג
(
4a16 ,−a11 , a10 ,−a9 ,−a8 , a7 ,−a6 ,

a1

4

)

(a2 , a3 , a4 , a5 , a12 , a13 , a14 , a15)
→−7−ג
(
2a15 ,−2a14 , 2a13 ,−2a12 ,

−a5

2
,
a4

2
,
−a3

2
,
a2

2

)

For the C-linear involution ג : S8 = S+
8
⊕ S−

8
−→ S+

8
⊕ S−

8
= S8 given by

s = ς + κ
→−7ג (ς)+ג + ,(κ)−ג it holds that

γ
(
(s)ג

)
= γ+(ς) + γ−(κ)

for each s = ς + κ ∈ S8 . By Proposition 2.1, we get that ג transforms
pure spinors into pure spinors and, since ג preserves S±

8
, we have that ±ג ∈

SO(S±
8
,γ±) ≃ SO(C8,q8). For each (x, y) ∈ C8, we get that

ρ
(x,y)

(s) = 0 if and only if ρ
I8 (x,y)

(
(s)ג

)
= 0

Hence, Theorem 1.5 implies the following

Proposition 2.4. Let U be a maximal totally null subspace of the qua-
dratic space (C8,q8) and let s ∈ S±

8
be a pure spinor for q8 which represents

U . Then, the pure spinor (s)ג ∈ S±
8

represents the maximal totally null
subspace I8(U).
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To finish this preamble, let us consider two distinct maximal totally null
subspaces U and U ′ of the quadratic space (C8,q8). By Lemma 1.6, we
know that dim(U ∩ U ′) ∈

{
0, 2

}
if and only if U and U ′ have the same

parity. The (non-degenerate) bilinear form

β : S8 × S8 −→ C

associated to the quadratic form γ : S8 −→ C, also allows us to determine
the value of dim(U ∩ U ′), as is shown in the next result (cf. III.2.3, III.2.4
and III.1.12 in [16]).

Proposition 2.5. Let U and U ′ be distinct maximal totally null sub-
spaces of the quadratic space (C8,q8) and let s, s′ ∈ S8 be pure spinors for q8

which represent U and U ′, respectively. Then, the following statements hold:

(i) If U and U ′ are of opposite parity, then β(s, s′) = 0.

(ii) We have that dim(U ∩ U ′) 6= 0 if and only if β(s, s′) = 0. Hence, if
U and U ′ have the same parity, then dim(U ∩ U ′) = 2 if and only if
β(s, s′) = 0.

(iii) We have that dim(U ∩ U ′) = idx(q8) − 2 if and only if s + s′ is a
pure spinor for q8 . Furthermore, in this case we have that the nonzero
complex linear combinations cs + c′s′ are pure spinors for q8 which
represent all the maximal totally null subspaces U ′′ of (C8,q8) such
that either U ′′ ∩ U = U ′ ∩ U or U ′′ = U .

We shall denote by β± the restrictions of β to the spaces S±
8
of half-spinors

for q8 .

2.1. The first stratification of Z(S6).

By Proposition 1.11, we know that the twistor space Z(S6) of the standard
6-sphere is algebraically isomorphic to each of the irreducible components
F±

3,6
of the Fano variety

F3,6 =
{
Ω ∈ G(3, 7) | Ω ⊂ Q6

}
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where Q6 ⊂ P7
C
is the non-singular quadric hypersurface defined by the

quadratic form q8 : C8 −→ C. In this subsection, we shall only consider the
even component F+

3,6
. Since idx(q8) = 4, Proposition 1.8 implies that

F+
3,6

≃
⊔

k,k′,k+k′∈{ 0,2,4 }

T4(k, k
′)

We know that T4(0, 4) ≃
{
[1]
}

and that T4(4, 0) ≃
{
[ω]
}
. Regarding

T4(k, k
′) with k, k′ ∈

{
0, 2

}
, we have

Proposition 2.6. Let ς = (a1 , a6 , a7 , a8 , a9 , a10 , a11 , a16) ∈ S+
8
be a pure

spinor for the quadratic form q8 : C8 −→ C such that ς /∈ T4(0, 4)⊔T4(4, 0).
Then, the following statements hold:

(i) ς ∈ T4(0, 0) if and only if a1 , a16 6= 0.

(ii) ς ∈ T4(0, 2) if and only if a1 6= 0 and a16 = 0.

(iii) ς ∈ T4(2, 0) if and only if a1 = 0 and a16 6= 0.

(iv) ς ∈ T4(2, 2) if and only if a1 = a16 = 0.

Proof. Since the maximal totally null subspace Kς ⊂ C8 represented by ς
is different from the horizontal space H and the vertical space V, we have
that r

H
(ς) = dim(Kς ∩ H), r

V
(ς) = dim(Kς ∩ V) ∈

{
0, 2

}
. Given that ς is

pure, Proposition 2.1 implies that a1 , a6 , ..., a11 , a16 ∈ C are not all zero, and
that a1a16 − a6a11 + a7a10 − a8a9 = 0. Hence, if a1a16 = 0, then we have
that a6 , ..., a11 ∈ C are not all equal to zero. Since

β+(ς,ω) = a1 and β+(ς,1) = a16

Proposition 2.5 implies that r
H
(ς) = 2 if and only if a1 = 0, and that

r
V
(ς) = 2 if and only if a16 = 0. �

On the other hand, given that idx(q8) = 4, propositions 1.11 and 1.12 imply
that F+

3,6
coincides with the Zariski closure Γ4 ⊂ G(4, 8) of the set

Γ4 =
{
Γ(M) |M ∈ S4

}
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of (horizontal) graphs of skew-symmetric linear endomorphisms of C4. For
every 1 ≤ i < j ≤ 4, let us define Mij ∈ S4 to be the matrix with ij-
coordinate equal to 1, therefore, its ji-coordinate equals −1, and the other
coordinates are all equal to 0. We shall regard

{
Mij | 1 ≤ i < j ≤ 4

}

as the standard base of S4 . Then, for each M ∈ S4 , there exist unique
mij ∈ C with 1 ≤ i < j ≤ 4, such that M =

∑
1≤i<j≤4

mijMij. We shall

denote this fact by

M = (m12 ,m13 ,m14 ,m23 ,m24 ,m34) ∈ S4

and, if M 6= 04 , we shall denote by [M ] ∈ P(S4) ≃ P5
C
the point defined

by M .

The Pfaffian transformation λ4 : S4 −→ C is given by

(m12 ,m13 ,m14 ,m23 ,m24 ,m34) 7−→ m12m34 −m13m24 +m14m23

The quadratic form λ4 is of maximal rank 6 and maximal index 3. Thus,
the complex affine quadric hypersurface

Qaff
5

:= S0
4
=
{
M ∈ S4 | λ4(M) = 0

}

has an isolated singularity at the zero matrix 04 , and the non-singular com-
plex quadric hypersurface

Q4 :=
{
[M ] ∈ P(S4) | λ4(M) = 0

}

is projectively equivalent to the Plücker quadric hypersurface F1(P
3
C
) ⊂ P5

C

(cf. Introduction and Chapter 1).

Recalling that S∗
4
=
{
M ∈ S4 | λ4(M) 6= 0

}
, that Γ∗

4
= Γ(S∗

4
) and that

Γ0
4
= Γ(S0

4
), we have that



32 2. THE TWISTOR SPACE Z(S6) OF THE STANDARD 6-SPHERE

Γ4 = Γ∗
4
⊔ Γ0

4
⊔ I8(Γ

0
4
) ⊔

{
limits at infinity of the elements in Γ0

4

}

where I8 is the canonical involution of C8. Thus,

T4(0, 0) ≃ Γ∗
4
,

T4(2, 0) ≃ Γ0
4
−
{
Γ(04) = H

}
,

T4(0, 2) ≃ I8

(
Γ0

4
−
{
Γ(04)

})
and

T4(2, 2) ≃
{
limits at infinity of the elements in Γ0

4

}

Hence, we have

Proposition 2.7. The following statements hold:

(i) The type set T4(0, 0) is a complex affine variety isomorphic to complex
6-dimensional affine space A6

C
. Therefore, T4(0, 0) ⊂ Z(S6) is a Zariski

open and dense subset.

(ii) The type sets T4(2, 0),T4(0, 2) ⊂ Z(S6) are complex affine varieties bi-
holomorphic to the non-singular and non-compact quadric hypersurface
Qaff

5
−
{
04

}
.

(iii) The type set T4(2, 2) is a complex projective variety isomorphic to
the non-singular quadric hypersurface Q4 ⊂ P5

C
. Thus, T4(2, 2) is

biholomorphic to the Plücker quadric hypersurface in P5
C
.

Proposition 2.8. The twistor space Z(S6) of the standard 6-sphere is
biholomorphic to a non-singular quadric hypersurface in P7

C
.

Proof. The facts that T4(0, 4) ≃
{
[1]
}

and that T4(4, 0) ≃
{
[ω]
}

to-
gether with Proposition 2.7 imply that

Z(S6) ≃ Γ4 ≃
⊔

k,k′,k+k′∈{ 0,2,4 }

T4(k, k
′)

is algebraically equivalent to

A6
C
⊔ Qaff

5
⊔ Q4
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That is to say, the twistor space Z(S6) is biholomorphic to the disjoint
union of A6

C
and the cone over the Plücker quadric hypersurface in P5

C
. In

turn, this disjoint union is biholomorphic to a non-singular complex quadric
hypersurface in P7

C
. �

To continue our analysis of the type sets T4(k, k
′) with k, k′ ∈

{
0, 2

}
, we

would like to explicitly describe the pure spinors for the quadratic form q8

which belong to each of these sets (cf. §2.4).

By Definition 1.7, Proposition 2.1 and (iv) of Proposition 2.6, we have that
T4(2, 2) is given as

{
η = (0, ca6 , ..., ca11 , 0) ∈ S+

8
| c ∈ C∗, a6 , ..., a11 ∈ C not all zero, γ+(η) = 0

}

Recalling that the involution +ג : S+
8
−→ S+

8
is given by

(a1 , a6 , a7 , a8 , a9 , a10 , a11 , a16) 7−→
(
4a16 ,−a11 , a10 ,−a9 ,−a8 , a7 ,−a6 ,

a1

4

)
,

we have that T4(2, 2) remains invariant under .+ג The set of points in
T4(2, 2) which are fixed by +ג is of the form

{
(0, a, b, c,−c, b,−a, 0) ∈ S+

8
| a, b, c ∈ C not all zero , a2 + b2 + c2 = 0

}

That is to say, this set of fixed points is parametrised by the non-singular
conic Q1 ⊂ P2

C
defined by the Fermat polynomial F3 : C3 −→ C (cf. §2.1

and §2.3).

To describe the pure spinors contained in the type sets T4(0, 0), T4(0, 2) and
T4(2, 0) (and to give a specific biholomorphism between T4(2, 2) and the
Plücker quadric hypersurface in P5

C
), we proceed to determine a pure spinor,

for the quadratic form q8 , which represents the graph Γ(M) ∈ Γ4−
{
H,V

}
.

We begin by associating to each even pure spinor ς ∈ S+
8
a couple of elements

in S4 as follows. Let us define Ê, Ě : S+
8
−→ S4 by

ς = (a1 , a6 , a7 , a8 , a9 , a10 , a11 , a16) 7−→ Êς :=




0 −a11 a10 −a9
a11 0 −a8 a7

−a10 a8 0 −a6
a9 −a7 a6 0


 and
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ς = (a1 , a6 , a7 , a8 , a9 , a10 , a11 , a16) 7−→ Ěς :=




0 a6 a7 a8
−a6 0 a9 a10
−a7 −a9 0 a11
−a8 −a10 −a11 0




Then, Ê and Ě are C-linear and holomorphic transformations. For each even
pure spinor ς = (a1 , a6 , a7 , a8 , a9 , a10 , a11 , a16), we have that

λ4(Êς ) = λ4(Ěς ) = a1a16 −
γ+(ς)

2

and that Êς Ěς = λ4(Êς )Id4 = Ěς Êς . For a pure spinor ς ∈ S+
8
, propositions

2.1 and 2.6 imply that

Êς , Ěς ∈ S∗
4

if and only if ς ∈ T4(0, 0)

Given that the C-linear transformation Ě : S+
8

−→ S4 is holomorphic
and that

[Ěη ] ∈ Q4 for all η ∈ T4(2, 2),

we have a holomorphic transformation ε : T4(2, 2) −→ Q4 given by

η 7−→ [Ěη ]

Conversely, let M = (m12 ,m13 ,m14 ,m23 ,m24 ,m34) ∈ S4 be nonzero and
such that [M ] ∈ Q4 . Then,

η
M

:= (0,m12 ,m13 ,m14 ,m23 ,m24 ,m34 , 0) ∈ S+
8

is a nonzero half-spinor for q8 . Since

γ+(η
M
) = −λ4(M) = 0,

Proposition 2.1 implies that η
M

is a pure spinor for q8 . By (iv) of Proposition
2.6, we have that
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η
M

∈ T4(2, 2) for all nonzero M ∈ Sk0
4

If M ′ ∈ S4 is another representative of [M ] ∈ Q4 , then ηM′ = cη
M

for some
c ∈ C∗, and we have that η

M′ and ηM define the same point in T4(2, 2) (cf.
Theorem 1.5). With this notation, let us define η : Q4 −→ T4(2, 2) by

[M ] 7−→ η
M

Then, η is a well-defined holomorphic transformation. For all η ∈ T4(2, 2)
and [M ] ∈ Q4 , we have that

η
(
ε(η)

)
= η and ε

(
η([M ])

)
= [M ]

Thus, ε : T4(2, 2) −→ Q4 is a biholomorphism.

Now, let us define ŝ : S4 −→ S+
8
by

ŝ(M) := ŝ(m12 ,m13 ,m14 ,m23 ,m24 ,m34) :=
(
2λ4(M),−m34 ,m24 ,−m23 ,−m14 ,m13 ,−m12 ,

1

2

)

Then, for each M ∈ S4 , we have that ŝ(M) ∈ S+
8

is nonzero and that

γ+
(
ŝ(M)

)
= 0. By Proposition 2.1, we have that ŝ(M) is a pure spinor

for q8 . Moreover, if M ∈ S4 and Z ∈ C4, then the point
(
Z,M(Z)

)
∈ C8

satisfies that

ρ
(Z,M(Z))

(
ŝ(M)

)
= 0

where ρ : Cℓ8 −→ End(S8) is the spin representation. By Theorem 1.5, we
get that ŝ(M) represents the horizontal graph Γ(M). By Proposition 2.4,
for each M ∈ S4 , we have that

š(M) := +ג
(
ŝ(M)

)
=
(
2,m12 ,m13 ,m14 ,m23 ,m24 ,m34 ,

λ4(M)

2

)
∈ S+

8

is a pure spinor for q8 which represents the vertical graph I8

(
Γ(M)

)
. Thus,

we have
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Lemma 2.9. Let M ∈ S4 . Then, ŝ(M) and š(M) are even pure spinors
for the quadratic form q8 which, respectively, represent the maximal totally
null subspace Γ(M) and its image I8

(
Γ(M)

)
under the canonical involution

of C8.

If M = (m12 ,m13 ,m14 ,m23 ,m24 ,m34) ∈ S4, then it holds that

Ê
ŝ(M)

= Ě
š(M)

=M and Ê
š(M)

= Ě
ŝ(M)

=




0 −m34 m24 −m23
m34 0 −m14 m13

−m24 m14 0 −m12
m23 −m13 m12 0




Thus, if M ∈ S∗
4
, then its inverse matrix is given as

M−1 =
1

λ4(M)
Ê

š(M)

and, in this case, the maximal totally null subspace I8

(
Γ(M)

)
coincides

with Γ(M−1).

Remark 2.10. Let us consider a sequence
{
Mn ∈ S∗

4
| n ∈ N

}
such

that lim
n−→∞

|λ4(Mn)| = ∞. Since

lim
n−→∞

M−1
n = lim

n−→∞

1

λ4(Mn)
Ê

š(Mn)
= 04 ,

we have that lim
n−→∞

I8

(
Γ(Mn)

)
= Γ(04) = H. Hence, lim

n−→∞
Γ(Mn) =

I8(H) = V.

By Proposition 2.6, Lemma 2.9 and the above discussion, we have

Proposition 2.11. The following statements hold:

(i) Every pure spinor for the quadratic form q8 : C8 −→ C which belongs
to the type set T4(2, 2) is of the form

η = (0, ca6 , ..., ca11 , 0)

where c ∈ C∗, a6 , ..., a11 ∈ C are not all zero, and γ+(η) = −a6a11 +
a7a10 − a8a9 = 0.
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(ii) T4(0, 0) =
{
ŝ(M) ∈ S+

8
|M ∈ S∗

4

}

Equivalently, every pure spinor for q8 which belongs to the type set
T4(0, 0) is of the form

(
2λ4(M),−m34 ,m24 ,−m23 ,−m14 ,m13 ,−m12 ,

1

2

)

for some M =
∑

1≤i<j≤4
m

ij
Mij ∈ S∗

4
.

(iii) T4(2, 0) =
{
ŝ(M) ∈ S+

8
|M ∈ S0

4
is nonzero

}

Therefore, every element of the type set T4(2, 0) is of the form

(
0,−m34 ,m24 ,−m23 ,−m14 ,m13 ,−m12 ,

1

2

)

where (m12 ,m13 ,m14 ,m23 ,m24 ,m34) ∈ S0
4
−
{
04

}
.

(iv) T4(0, 2) = +ג
(
T4(2, 0)

)
=
{
š(M) ∈ S+

8
|M ∈ S0

4
is nonzero

}

Thus, every pure spinor for q8 which belongs to the type set T4(0, 2)
is of the form

(2,m12 ,m13 ,m14 ,m23 ,m24 ,m34 , 0)

where (m12 ,m13 ,m14 ,m23 ,m24 ,m34) ∈ S0
4
−
{
04

}
.

Let ŝ(M) ∈ T4(0, 0). Since M ∈ S∗
4
, the pure spinor

š(M) = +ג
(
ŝ(M)

)
= λ4(M)ŝ(M−1)

belongs to T4(0, 0) and we have that the type set T4(0, 0) is invariant under
the involution +ג : S+

8
−→ S+

8
. The elements of T4(0, 0) which are fixed by

+ג are of the form (cf. §2.3)

(
2, a, b, c,−c, b,−a, 1

2

)
with a, b, c ∈ C such that a2 + b2 + c2 = −1
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To round up this subsection, we would like to describe the manner in which
any two even maximal totally null subspaces of (C8,q8), distinct from H
and V, intersect each other. Let us consider the bilinear form

B4 : S4 × S4 −→ C

associated to the Pfaffian transformation λ4 : S4 −→ C. We have that the
Fermat polynomial F6 : S4 ≃ C6 −→ C is given by

(m12 ,m13 ,m14 ,m23 ,m24 ,m34) 7−→
∑

1≤i<j≤4

m2
ij

Then, the bilinear form

℧ : S4 × S4 −→ C

associated to the quadratic form F6 is given as

(
(m12 ,m13 ,m14 ,m23 ,m24 ,m34), (n12 , n13 , n14 , n23 , n24 , n34)

)
7−→

∑

1≤i<j≤4

m
ij
n

ij

For M,N ∈ S4 , we get that

B4(M,N) =
1

2
℧(M, Ê

š(N)
)

Therefore, we have that

β+
(
ŝ(M), ŝ(N)

)
= β+

(
š(M), š(N)

)
= λ4(M−N) = λ4(M)+λ4(N)−2B4(M,N),

and β+
(
ŝ(M), š(N)

)
= 1 + λ4(M)λ4(N) + ℧(M,N)

For η, η′ ∈ T4(2, 2), we have that

β+(ŝ(M), η) = ℧(M, Ěη ), β+(š(M), η) = ℧(M, Êη ),

and β+(η, η′) = ℧(Êη , Ěη′
)
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These equations and Proposition 2.5 imply

Lemma 2.12. Let M,N ∈ S4 be distinct matrices and let η, η′ ∈ T4(2, 2)
be distinct pure spinors. Then, the following statements hold:

(i) dim
(
Γ(M) ∩ Γ(N)

)
= dim

(
I8

(
Γ(M)

)
∩ I8

(
Γ(N)

))
= 2 if and only if

M −N ∈ S0
4
.

(ii) If š(N) ∈ T4(0, 2), then dim
(
I8

(
Γ(N)

)
∩ Γ(M)

)
= 2 if and only if

℧(M,N) = −1.

(iii) dim(Γ(M)∩Kη ) = 2 if and only if M and Ěη are mutually orthogonal
with respect to ℧.

(iv) dim(I
(
Γ(M)

)
∩Kη ) = 2 if and only if M and Êη are mutually orthog-

onal with respect to ℧.

(v) dim(Kη ∩ K
η′
) = 2 if and only if Êη and Ě

η′
are mutually orthogonal

with respect ℧.

2.2. The second stratification of Z(S6).

In this subsection we shall study the irreducible component

F−
3,6

≃ T4(1, 1) ⊔T4(1, 3) ⊔T4(3, 1)

of the Fano variety F3,6 , which parametrises the odd maximal totally null

subspaces of the quadratic space (C8,q8) (cf. Proposition 1.8).

Since

F+
3,6

∩ F−
3,6

= ∅ and F+
3,6

≃ Γ4 ,

we have that none odd maximal totally null subspace of the quadratic space
(C8,q8) is either a graph of a skew-symmetric linear endomorphism of C4

or a limit (in the complex Grassmannian variety G(4, 8)) of such graphs.
Hence, in comparison to the nice geometric description we found in §2.2.1,
for the even maximal totally null subspaces of (C8,q8), it could be harder
to describe the odd maximal totally null subspaces.
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By Theorem 1.5, given an odd pure spinor κ ∈ S−
8
, the spin representation

ρ : Cℓ8 −→ End(S8) is a very useful tool to determine the coordinates of
the points (x, y) ∈ C8 which belong to the maximal totally null subspace
K

κ
represented by κ. Once such coordinates were made explicit, we could,

amongst other things, determine the type of the odd pure spinor κ. Nonethe-
less, there is an easier way to determine such type (cf. Proposition 2.14)
which, in turn, will help us to describe the sets T4(k, k

′) with k, k′ ∈
{
1, 3

}
.

Let us define x,y : S−
8
−→ C4, respectively, by

κ = (b2 , b3 , b4 , b5 , b12 , b13 , b14 , b15) 7−→ x
κ
:= (b2 , b3 , b4 , b5) and

κ = (b2 , b3 , b4 , b5 , b12 , b13 , b14 , b15) 7−→ y
κ
:= (b15 ,−b14 , b13 ,−b12)

Then, x and y are C-linear and holomorphic transformations. Given that
the horizontal and vertical spaces H,V ⊂ C8 are isomorphic to C4, for each
κ ∈ S−

8
, we have that (x

κ
,y

κ
) ∈ C8 and it holds that

q8(xκ
,y

κ
) = γ−(κ)

Thus, by Proposition 2.1, we have that κ is a pure spinor for q8 if and only
if [x

κ
: y

κ
] ∈ Q6 . Furthermore, in this case, we get that

ρ
(xκ ,yκ )

(κ) = 0

and Theorem 1.5 implies that (x
κ
,y

κ
) belongs to the maximal totally null

subspace K
κ
represented by κ.

On the other hand, let us define a bilinear transformation • : S−
8
×S+

8
−→ C8

as follows (cf. Chapter IV of [16], Appendix B of [28]). For each κ =
(b2 , b3 , b4 , b5 , b12 , b13 , b14 , b15) ∈ S−

8
and each ς = (a1 , a6 , a7 , a8 , a9 , a10 , a11 , a16)

∈ S+
8
, we set

κ • ς :=
(
2a16xκ

+ 2Ěς (yκ
), Êς (xκ

) + a1yκ

)
∈ C8

where Êς , Ěς ∈ S4 have been defined in §2.2.1. For all κ ∈ S−
8
and ς ∈ S+

8
it

holds that
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q8(κ • ς) = γ−(κ)γ+(ς)

Thus, by Proposition 2.1, we have that κ and ς are pure spinors for q8 if
and only if κ • ς ∈ C8 is nonzero and the point [κ • ς] ∈ P7

C
, defined by κ • ς,

belongs to Q6 . In this case, it holds that

ρ
κ•ς

(κ) = (κ • ς) • κ = 0 and ρ
κ•ς

(ς) = (κ • ς) • ς = 0

(cf. IV.2.2 and IV.2.3 in [16]). By Theorem 1.5, we have that

κ • ς ∈ K
κ
∩ Kς

Moreover, since the pure spinors κ and ς have opposite parity, Lemma 1.6
implies that dim(K

κ
∩Kς ) ∈

{
1, 3

}
. As a consequence of (i) of Proposition

2.5, IV.4.2 and IV.4.3 in [16], we have

Proposition 2.13. Let κ ∈ S−
8

and ς ∈ S+
8

be pure spinors for the

quadratic form q8 . Then, dim(K
κ
∩ Kς ) = 1 if and only if κ • ς ∈ C8 is

nonzero. Furthermore, in this case we have that κ • ς is a generator of
K

κ
∩ Kς .

Proposition 2.13 allows us to easily describe the elements belonging to the
type sets T4(k, k

′) with k, k′ ∈
{
1, 3

}
, as in shown in the next result.

Proposition 2.14. Let κ = (b2 , b3 , b4 , b5 , b12 , b13 , b14 , b15) ∈ S−
8
be a pure

spinor for the quadratic form q8 . Then, the following statements hold:

(i) κ ∈ T4(1, 1) if and only if x
κ
,y

κ
∈ C4 are both nonzero.

(ii) κ ∈ T4(1, 3) if and only if x
κ
∈ C4 is nonzero and y

κ
∈ C4 is the

origin.

(iii) κ ∈ T3(3, 1) if and only if x
κ

∈ C4 is the origin and y
κ

∈ C4

is nonzero.

Proof. We know that 1,ω ∈ S+
8

are pure spinors for the quadratic form

q8 . Since Ê
ω
= Ě

ω
= 04 = Ê1 = Ě1 , we get that
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κ • ω = (2b2 , 2b3 , 2b4 , 2b5 , 0, 0, 0, 0) := (2x
κ
, 0, 0, 0, 0) and

κ • 1 = (0, 0, 0, 0, b15 ,−b14 , b13 ,−b12) := (0, 0, 0, 0,y
κ
)

By Proposition 2.13, we have that

rH(κ) = dim(K
κ
∩H) = 1 if and only if x

κ
∈ C4 is nonzero, and that

rV (κ) = dim(K
κ
∩ V) = 1 if and only if y

κ
∈ C4 is nonzero

Since rH(κ), rV (κ) ∈
{
1, 3

}
, we have the result. �

Proposition 2.14 implies that

T4(1, 3) ∋ κ = (b2 , b3 , b4 , b5 , 0, 0, 0, 0) 7−→ [b2 : b3 : b4 : b5 ] := [x
κ
] ∈ P3

C
and

T4(3, 1) ∋ κ′ = (0, 0, 0, 0, b′
12
, b′

13
, b′

14
, b′

15
) 7−→ [b′

15
: −b′

14
: b′

13
: −b′

12
] := [y

κ′ ] ∈ P3
C

define biholomorphisms between P3
C
and, respectively, T4(1, 3) and T4(3, 1).

We recall that the involution −ג : S−
8
−→ S−

8
is given by

(b2 , b3 , b4 , b5 , b12 , b13 , b14 , b15) 7−→
(
2b15 ,−2b14 , 2b13 ,−2b12 ,

−b5
2
,
b4
2
,
−b3
2
,
b2
2

)

Hence, besides Proposition 2.4, we have in Proposition 2.14 another means
to show that −ג interchanges T4(1, 3) with T4(3, 1), and that the type set
T4(1, 1) remains invariant under .−ג The points in T4(1, 1) which are fixed
by −ג are of the form

(
b2 , b3 , b4 , b5 ,

−b5
2
,
b4
2
,
−b3
2
,
b2
2

)
with b2 , ..., b5 ∈ C not all zero,

5∑

j=2

b2
j
= 0

Therefore, this fixed-point set is parametrised by the non-singular quadric
hypersurface Q2 ⊂ P3

C
defined by the Fermat polynomial F4 : C4 −→ C.
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Regarding our description of the type set T4(1, 1), a second step is

Proposition 2.15. T4(1, 1) fibres differentiably over C3 −
{
(0, 0, 0)

}

with fibre isomorphic to P3
C
.

Proof. By Proposition 1.11, the twistor space Z(S6) of the standard 6-
sphere is biholomorphic to F−

3,6
. We know that the twistor fibration p6 :

Z(S6) −→ S6 is differentiable and its fibres are isomorphic to P3
C
. Given

that the orthogonal group O(C8,q8) acts transitively on the set of maximal
totally null subspaces, we may assume that the linear 3-folds T4(1, 3) and
T4(3, 1) are (distinct) fibres of p6 (cf. III.1.7, III.3.3 and Lemma 1 on p.
152 in [16]). Then,

T4(1, 1) = Z(S6)−
(
T4(1, 3) ⊔T4(3, 1)

)

and we have that the restriction of p6 to T4(1, 1) establishes a diffeomor-
phism between T4(1, 1) and S6 −

{
N ,S

}
, where N and S are the North

and South poles of S6, respectively.

Since S6 −
{
N ,S

}
is diffeomorphic to S5 × R which, in turn, is diffeomor-

phic to C3 −
{
(0, 0, 0)

}
, we get that the restriction of p6 to T4(1, 1) is a

differentiable fibration over C3−
{
(0, 0, 0)

}
, with fibre isomorphic to P3

C
. �

In order to continue our description of T4(1, 1), let us denote by

B4 : C
4 × C4 → C

the bilinear form associated to the Fermat polynomial F4 : C4 −→ C.
Since the quadratic form F4 has maximal rank 4, we have that B4 is non-
degenerate. Let us consider the generalised complex orthogonal Stiefel man-
ifold

V
B4
C (1, 1; 4) =

{
(L1 , L2) ∈ G(1, 4) ×G(1, 4) | L1 ⊥

B4
L2

}

of the quadratic space (C4,F4) (cf. Definition 1.13). We have thatV
B4
C (1, 1; 4)

is a complex 5-dimensional, smooth and compact subvariety of G(1, 4) ×
G(1, 4) ≃ P3

C
× P3

C
. By Theorem 1.14, we get
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Proposition 2.16. For j = 1, 2, let us denote by π
j
: V

B4
C (1, 1; 4) −→

G(1, 4) ≃ P3
C
the canonical projection

(L1 , L2) 7−→ L
j

into the jth-coordinate. Then, we have two locally trivial and holomorphic fi-
brations

V
B4
C (1, 1; 4)

π1

zzuu
uu
uu
uu
uu
u

π2

$$
II

II
II

II
II

I

P3
C

P3
C

with fibres isomorphic to P2
C
.

Let κ = (b2 , b3 , b4 , b5 , b12 , b13 , b14 , b15) ∈ T4(1, 1). By Proposition 2.14,
we know that x

κ
= (b2 , b3 , b4 , b5) and y

κ
= (b15 ,−b14 , b13 ,−b12) are both

nonzero in C4. Therefore

Lκ
1
:= Cx

κ
and Lκ

2
:= Cy

κ

belong to G(1, 4) ≃ P3
C
. By Proposition 2.1 we get that

B4(xκ
,y

κ
) =

γ−(κ)

2
= 0

and, thus, it holds that

(Lκ
1
, Lκ

2
) ∈ V

B4
C (1, 1; 4)

With this notation, let us define Ψ : T4(1, 1) −→ V
B4
C (1, 1; 4) by

κ 7−→ (Lκ
1
, Lκ

2
)

Let P = (L1 , L2) ∈ V
B4
C (1, 1; 4) be any point and let
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ℓ1
P
:= (ℓ1

1
, ℓ1

2
, ℓ1

3
, ℓ1

4
), ℓ2

P
:= (ℓ2

1
, ℓ2

2
, ℓ2

3
, ℓ2

4
) ∈ C4

be generators for L1 and L2 , respectively. Let us set

κ
P
:= (ℓ1

1
, ℓ1

2
, ℓ1

3
, ℓ1

4
,−ℓ2

4
, ℓ2

3
,−ℓ2

2
, ℓ2

1
) ∈ S−

8

Then, κ
P
∈ S−

8
is nonzero and we have that

γ−(κ
P
) = 2B4(ℓ

1
P
, ℓ2

P
) = 0,

x
κ
P
= ℓ1

P
and y

κ
P
= ℓ2

P

Again, by propositions 2.1 and 2.14, we have that κ
P
∈ T4(1, 1). Since it

holds that κ
P
and cκ

P
define the same point in T4(1, 1) for all c ∈ C∗ (cf.

Definition 1.7 and Theorem 1.5), and given that

Ψ(cκ
P
) = Ψ(κ

P
) = (L1 , L2) = P,

we get that the fibre Ψ−1(P ) is isomorphic to C∗. Recalling that

S∗
2
=

{ (
0 µ

−µ 0

)
∈ M(2,C) | µ ∈ C∗

}
≃ C∗

we have proven

Proposition 2.17. Ψ : T4(1, 1) −→ V
B4
C (1, 1; 4) is a locally trivial and

holomorphic fibration with fibre isomorphic to C∗ ≃ S∗
2
.

As a consequence of propositions 2.16 and 2.17 we have

Proposition 2.18. There exist two locally trivial and holomorphic fi-
brations
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T4(1, 1)

Ψ
��

V
B4
C (1, 1; 4)

π1

zzuu
uu
uu
uu
uu
u

π2

$$
II

II
II

II
II

I

P3
C

P3
C

with fibres isomorphic to P2
C
× C∗.

On another matter, let κ,κ′ ∈ S−
8

be distinct pure spinors for q8 and let

K
κ
,K

κ′ ⊂ C8 be the odd maximal totally null subspaces represented by κ

and κ′, respectively. By Lemma 1.6, we know that dim(K
κ
∩K

κ′ ) ∈
{
0, 2

}

and we would like to show how to determine the value of this dimension in
terms of the bilinear form B4 . Since

β−(κ,κ′) = B4

(
x(κ + κ′),y(κ + κ′)

)
= B4(xκ

+ x
κ′ ,yκ

+ y
κ′ ),

Proposition 2.5 implies the following result.

Lemma 2.19. Let κ,κ′ ∈ S−
8

be distinct pure spinors for q8 . Then, the
following statements hold:

(i) If κ,κ′ ∈ T4(1, 1), then dim(K
κ
∩ K

κ′ ) = 2 if and only if x(κ + κ′)
and y(κ + κ′) are mutually orthogonal with respect to B4.

(ii) If κ,κ′ ∈ T4(1, 3) or κ,κ′ ∈ T4(3, 1), then dim(K
κ
∩ K

κ′ ) = 2.

(iii) If κ ∈ T4(1, 1) and κ′ ∈ T4(1, 3), then dim(K
κ
∩K

κ′ ) = 2 if and only
if x

κ′ and y
κ
are mutually orthogonal with respect to B4 .

(iv) If κ ∈ T4(1, 1) ⊔T4(1, 3) and κ′ ∈ T4(3, 1), then dim(K
κ
∩ K

κ′ ) = 2
if and only if x

κ
and y

κ′ are mutually orthogonal with respect to B4.

To finish this section, let us briefly go back to the type sets T4(k, k
′) with

k, k′ ∈
{
0, 1, 2, 3

}
. We would like to determine, in terms of the relevant

elements of S4 , the dimension of the intersection of any two opposite-parity
maximal totally null subspaces of (C8,q8) which are different from the hor-
izontal space H and the vertical space V.
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If η ∈ T4(2, 2), κ ∈ S−
8
and M ∈ S4 is nonzero, then we have that

κ • ŝ(M) = (x
κ
+ 2Ě

ŝ(M)
(y

κ
),M(x

κ
) + 2λ4(M)y

κ
),

κ • š(M) = (λ4(M)x
κ
+ 2M(y

κ
), Ê

š(M)
(x

κ
) + 2y

κ
),

and κ • η =
(
2Ěη (yκ

), Êη (xκ
)
)

These equations and Proposition 2.13 imply the following

Lemma 2.20. Let M ∈ S4 be nonzero. Let η ∈ T4(2, 2) and let κ ∈ S−
8

be a pure spinor for q8. Then, the following statements hold:

(i) If κ ∈ T4(1, 1) and M ∈ S∗
4
, then dim(Γ(M) ∩ K

κ
) = 3 if and only if

M(x
κ
) = −2λ4(M)y

κ
.

(ii) If κ ∈ T4(1, 3) ⊔T4(3, 1) and M ∈ S∗
4
, then dim(Γ(M) ∩K

κ
) = 1.

(iii) If κ ∈ T4(1, 1) and M ∈ S0
4
, then dim(Γ(M) ∩ K

κ
) = 3 if and only if

x
κ
= −2Ě

ŝ(M)
(y

κ
).

(iv) If κ ∈ T4(1, 3) and M ∈ S∗
4
, then dim(Γ(M) ∩ K

κ
) = 1.

(v) If κ ∈ T4(3, 1) and M ∈ S0
4
, then dim(Γ(M) ∩ K

κ
) = 3 if and only if

y
κ
∈ Ker(Ě

ŝ(M)
).

(vi) If κ ∈ T4(1, 1) and M ∈ S0
4
, then dim(I8

(
Γ(M)

)
∩ K

κ
) = 3 if and

only if Ê
š(M)

(x
κ
) = −2y

κ
.

(vii) If κ ∈ T4(1, 3) and M ∈ S0
4
, then dim(I8

(
Γ(M)

)
∩ K

κ
) = 3 if and

only if x
κ
∈ Ker(Ê

š(M)
).

(viii) If κ ∈ T4(3, 1) and M ∈ S0
4
, then dim(I8

(
Γ(M)

)
∩ K

κ
) = 1.

(ix) If κ ∈ T4(1, 1), then dim(K
κ
∩Kη) = 3 if and only if Ěη (yκ

) = Êη(xκ
)

is the zero vector.

(x) If κ ∈ T4(1, 3), then dim(K
κ
∩ Kη) = 3 if and only if x

κ
∈ Ker(Êη ).

(xi) If κ ∈ T4(3, 1), then dim(K
κ
∩ Kη) = 3 if and only if y

κ
∈ Ker(Ěη ).



48 2. THE TWISTOR SPACE Z(S6) OF THE STANDARD 6-SPHERE

3. The complex algebra of Hamilton matrices

In the standard base of S4 , let us define I := −(M12 +M34), J := −(M13 −
M24), and K := −(M14 +M23). That is to say,

I :=

( 0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

)
, J :=

( 0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

)
, and K :=

( 0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

)

We have that λ4(I) = λ4(J) = λ4(K) = 1 and that I2 = J2 = K2 = −Id4 .
Therefore, the linear automorphisms of C4 defined by I, J, and K induce
(orthogonal) complex structures on R4 ⊂ C4.

Let us consider the complex linear space

H :=
{
rId4 + aI+ bJ+ cK ∈ M(4,C) | r, a, b, c ∈ C

}

generated by
{
Id4 , I,J,K

}
. We have that

∗ Id4 I J K

Id4 Id4 I J K
I I -Id4 K -J
J J -K -Id4 I
K K J -I -Id4

where ∗ denotes matrix multiplication and we multiply the corresponding
element on the first column by the corresponding element on the first row.

Thus, H is a 4-dimensional complex, noncommutative, associative algebra
with unit Id4 . Given that the multiplication table for the generators of H is
reminiscent of that for the generators

{
1, i, j, k

}
of the Hamilton quaternion

algebra H, we shall call H the complex algebra of Hamilton matrices.

For each (r, a, b, c) ∈ C4, we have that

det(rId4 + aI+ bJ+ cK) = (r2 + a2 + b2 + c2)2

and it holds that
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(rId4 + aI+ bJ+ cK) ∗ (rId4 + aI+ bJ+ cK) =

(r2 − a2 − b2 − c2)Id4 + 2r(aI+ bJ+ cK)

The analogue in H to quaternion conjugation is the C-linear involution κ :
H −→ H given by

rId4 + aI+ bJ+ cK 7−→ rId4 − aI− bJ− cK

Indeed, for all (r, a, b, c), (r′, a′, b′, c′) ∈ C4 it holds that

(rId4 +aI+ bJ+ cK) ∗κ(rId4 +aI+ bJ+ cK) = (r2+a2+ b2+ c2)Id4 and

κ
(
(rId4 + aI+ bJ+ cK) ∗ (r′Id4 + a′I+ b′J+ c′K)

)
=

κ(r′Id4 + a′I+ b′J+ c′K) ∗ κ(rId4 + aI+ bJ+ cK)

Thus, rId4 + aI + bJ + cK ∈ H is an invertible matrix if and only if r2 +
a2 + b2 + c2 6= 0 and, in this case, the inverse matrix is given as

(rId4 + aI+ bJ+ cK)−1 =
1

r2 + a2 + b2 + c2
κ(rId4 + aI+ bJ+ cK)

We are mainly interested on discussing the set H∩S4 of all skew-symmetric
Hamilton matrices. We would like to remark that this interest springs from
the fact that the skew-symmetric Hamilton matrices were, precisely, the
first ones we studied and this study allowed us to discern the relationship
between skew-symmetric matrices and twistor spaces in higher dimensions.

Let us define H : C3 −→ S4 by

(a, b, c) 7−→
(

0 −a −b −c
a 0 −c b
b c 0 −a
c −b a 0

)

Then, H ∩ S4 = H(C3) and we shall say that the matrix H(a, b, c) ∈ H(C3)
is the Hamilton matrix for the point (a, b, c) ∈ C3.

For each (a, b, c) ∈ C3, it holds that λ4

(
H(a, b, c)

)
= a2 + b2 + c2, therefore,
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λ4

(
H(a, b, c)

)
= F3(a, b, c)

where F3 : C3 −→ C is the Fermat polynomial defined in §2.1.

For each (a, b, c) ∈ C3, we also have that

H(a, b, c)H(a, b, c) = −λ4

(
H(a, b, c)

)
Id4 = −F3(a, b, c)Id4

Hence, H(a, b, c) ∈ S0
4
if and only if H(a, b, c) is a step-2 nilpotent ma-

trix in S4 . That is to say, H(a, b, c) ∈ S0
4
if and only if Im

(
H(a, b, c)

)
=

Ker
(
H(a, b, c)

)
.

For all (a, b, c), (a′, b′, c′) ∈ C3 it holds that

H(a, b, c)H(a′, b′, c′) ∈ H(C3) if and only if

0 = ℧
(
H(a, b, c),H(a′, b′, c′)

)
= aa′ + bb′ + cc′

where ℧ : S4 × S4 −→ C is the bilinear form associated to the Fermat
polynomial F6 : S4 ≃ C6 −→ C. In this case, we have that

H(a, b, c)H(a′, b′, c′) = H(bc′ − cb′, ca′ − ac′, ab′ − ba′)

Now, we would like to describe the Zariski closure

Γ
H
⊂ G(4, 8)

of the set

Γ
H
:=
{
Γ
(
H(a, b, c)

)
∈ Γ4 | (a, b, c) ∈ C3

}

of all horizontal graphs of linear endomorphisms of C4 defined by skew-
symmetric Hamilton matrices. Let us set

Γ0
H
:=
{
Γ
(
H(a, b, c)

)
∈ Γ

H
| F3(a, b, c) = 0

}

Then (cf. §2.2.1), we have that
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Γ
H
= Γ

H
⊔ I8(Γ

0
H
) ⊔

{
limits in T4(2, 2) of the elements in Γ0

H

}

We have that Γ
H

≃ C3. Since I8(Γ
0
H
) is isomorphic to the complex affine

quadric hypersurface Qaff
2

⊂ C3 defined by F3 , we get (cf. Proposition 2.7)
that the set of limits in

T4(2, 2) ≃ Q4 ⊂ P5
C

of the elements in I8(Γ
0
H
) is isomorphic to the non-singular conic Q1 ⊂ P2

C

defined by F3 .

Therefore, Γ
H

is obtained by adding to the complex affine 3-dimensional
space A3

C
a complex quadric hypersurface, which is compact with an isolated

singularity, in P3
C
. Thus, we have proven

Proposition 2.21. The Zariski closure

Γ
H
⊂ G(4, 8)

of the set Γ
H
of all horizontal graphs of linear endomorphisms of C4 defined

by skew-symmetric Hamilton matrices is biholomorphic to a non-singular
complex quadric hypersurface in P4

C
.

4. The twistor fibration p6 : Z(S6) −→ S6 revisited

Let us begin by stating

Definition 2.22. Let (M, g) be a complete Riemannian manifold and
let F be a foliation of (M, g). We say that F is Riemannian if any two leaves
of F are locally equidistant.

Equivalently, F is a Riemannian foliation if and only if every geodesic of
(M, g) orthogonal to one leaf, is orthogonal to every leaf it meets (cf. [18]).

Let us consider the non-singular complex quadric hypersurfaces



52 2. THE TWISTOR SPACE Z(S6) OF THE STANDARD 6-SPHERE

Q6 ⊂ P7
C

and Q+
6
⊂ P(S+

8
) ≃ P7

C

respectively defined by the (maximal rank 8 and maximal index 4) quadratic
forms q8 : C8 −→ C and γ+ : S+

8
−→ C (cf. §2.2). We endow Q6 ≃ Q+

6

with the Fubini-Study metric, which we shall denote by g
F−S

.

In this section, inspired by §3 and §5 of [45], we will explicitly construct a
real-analytic fibration

Φ : Q6 −→ Σ6

with fibres isomorphic to P3
C
, where Σ6 ⊂ Q+

6
is a conformal 6-sphere.

The fibration Φ will turn out to be isometrically equivalent to the twistor
fibration p6 : Z(S6) −→ S6 of the standard 6-sphere. In this way, we will
produce a Riemannian foliation of (Q6 , gF−S

).

Let us consider the R-linear transformation A : C3 −→ S4 given by

(a, b, c) 7−→
(

0 −a −b −c

a 0 −c b
b c 0 −a

c −b a 0

)

Remark 2.23. If (a, b, c) ∈ C3, then A(a, b, c) ∈ S4 coincides with the
Hamilton matrix H(a, b, c) for the point (a, b, c) if and only if (a, b, c) ∈ R3.
This is the motivation for defining the transformation A as we have done.

For all (a, b, c) ∈ C3 it holds that

λ4(a, b, c) := λ4

(
A(a, b, c)

)
= |a|2 + |b|2 + |c|2 ∈ R

Hence, A(a, b, c) ∈ S∗
4
if and only if (a, b, c) 6= (0, 0, 0). In this case, the

inverse matrix is given as

A−1(a, b, c) =
−1

|a|2 + |b|2 + |c|2A(a, b, c)
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For each (a, b, c) ∈ C3, we shall denote the graph Γ
(
A(a, b, c)

)
of the linear

endomorphism A(a, b, c) : C4 −→ C4 by Γ(a, b, c). By Lemma 2.9, we
have that

ŝ(a, b, c) := ŝ
(
A(a, b, c)

)
=
(
2(|a|2 + |b|2 + |c|2), a, b, c, c,−b, a, 1

2

)
and

š(a, b, c) := š
(
A(a, b, c)

)
=
(
2,−a,−b,−c,−c, b,−a, |a|

2 + |b|2 + |c|2
2

)

are even pure spinors for q8 which represent, respectively, the graph Γ(a, b, c)
and its image I8

(
Γ(a, b, c)

)
under the canonical involution I8 : C

8 −→ C8.

If (a, b, c) 6= (0, 0, 0), then we have that I8

(
Γ(a, b, c)

)
= Γ

(
A−1(a, b, c)

)

and, hence,

š(a, b, c) = ŝ
(
A−1(a, b, c)

)

Let (a, b, c), (a′, b′, c′) ∈ C3 be distinct points. Since a− a′, b− b′, c− c′ 6= 0,
we have that A(a− a′, b− b′, c− c′) ∈ S∗

4
. Therefore,

dim
(
Γ(a, b, c) ∩ Γ(a′, b′, c′)

)
= 0

Let us consider a sequence
{
(an, bn, cn) ∈ C3 | n ∈ N

}
such that lim

n−→∞
λ4(an, bn, cn) =

∞. Then, by Remark 2.10, we have that

lim
n−→∞

Γ(an, bn, cn) = V

where V ⊂ C8 is the vertical space.

Since C3 ∪
{
∞
}
is diffeomorphic to the standard 6-sphere S6, we get that

the transformation Γ ◦A : C3 ∪
{
∞
}
−→ G(4, 8) given by

(a, b, c) 7−→ Γ(a, b, c) for (a, b, c) ∈ C3 and ∞ 7−→ V

defines a diffeomorphism between S6 ≃ C3∪
{
∞
}
and its image under Γ◦A.
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Therefore, we have that S6 is a geometric realisation of each of the follow-
ing sets:

(1) The family of graphs

G(4, 8) ⊃
{
Γ(a, b, c) | (a, b, c) ∈ C3

}
⊔ V

Every member of this family is an even maximal totally null subspace
of the quadratic space (C8,q8), and the dimension of the intersection of
any two distinct members of this family is zero.

(2) The family of projectivised graphs

G(3, 7) ⊃
{
P
(
Γ(a, b, c)

)
| (a, b, c) ∈ C3

}
⊔ P(V)

Every member of this family is a linear 3-fold contained in Q6 , and any
two distinct members of this family are disjoint. The members of this

family will be the leaves of the foliation we are constructing.

(3) The family of representative spinors

Q+
6
⊃
{
[̂s(a, b, c)] | (a, b, c) ∈ C3

}
⊔
{
[1]
}

The members of this family are pairwise distinct even pure spinors for
the quadratic form q8 : C8 −→ C. Certain members of this family

will be the images of the points in the quadric hypersurface

Q6 ⊂ P7
C
under the fibration Φ.

Remark 2.24. Considering parametrisations (1) and (2) above (or through
direct calculation), it can be proven that if (x, y) ∈ C8 is such that x ∈ H is
nonzero and q8(x, y) = 0, then there exists a unique point

(
a(x, y), b(x, y), c(x, y)

)
∈ C3

such that

(x, y) ∈ Γ
(
a(x, y), b(x, y), c(x, y)

)
⊂ C8
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Equivalently, [x : y] ∈ P
(
Γ
(
a(x, y), b(x, y), c(x, y)

))
⊂ Q6.

Remark 2.25. Considering parametrisation (3) above, let us define φ
H
, φ

V
:

C3 ∪
{
∞
}
−→ Q+

6
by

φ
H
(a, b, c) = [̂s(a, b, c)] for all (a, b, c) ∈ C3, and φ

H
(∞) = [1];

φ
V
(a, b, c) = [̌s(a, b, c)] for all (a, b, c) ∈ C3, and φ

V
(∞) = [ω]

Then, we have that φ
H

and φ
V
are real-analytic embbedings. Given that

φ
H
(0, 0, 0) = [ω] = φ

V
(∞) and φ

V
(0, 0, 0) = [1] = φ

H
(∞),

we get that the images of C3 −
{
(0, 0, 0)

}
under φ

H
and φ

V
coincide. In

particular, it holds that φH and φV are homeomorphisms from C3 ∪
{
∞
}
≃

S6 into its respective images.

Next, let us describe the base space of the fibration Φ, by considering
the conjugate C-linear involution f : S+

8
−→ S+

8
given by

ς = (a1 , a6 , a7 , a8 , a9 , a10 , a11 , a16) 7−→ (a1 , a11 ,−a10 , a9 , a8 ,−a7 , a6 , a16)

For each ς ∈ S+
8
, we have that

γ+
(
f(ς)
)
= γ+(ς)

and, hence, f transforms even pure spinors into even pure spinors (cf. Propo-
sition 2.1). Let us consider the bilinear form β+ : S+

8
×S+

8
−→ C associated

to γ+. Given that for all ς, ς ′ ∈ S+
8
it holds that

β+
(
f(ς), f(ς ′)

)
= β+(ς, ς ′),

we have that f is a real form of the quadratic space (S+
8
,γ+). Moreover, the

fixed-point set
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Fix(f) :=
{
ς ∈ S+

8
| f(ς) = ς

}

is a real vector space isomorphic to R8, and the restriction of β+ to Fix(f)
has signature (or is of Lorentz type) (1, 7).

Let us set

Σ6 :=
{
[ς] ∈ Q+

6
| ς ∈ Fix(f) ≃ R8

}

It is immediate that

T4(0, 4) ⊔T4(4, 0) =
{
[1], [ω]

}
( Σ6

By Proposition 2.11, we get that

(
T4(0, 2) ⊔T4(2, 0) ⊔T4(2, 2)

)
∩Σ6 = ∅ and

T4(0, 0) ∩Σ6 =
{
[̂s(a, b, c)] ∈ Q+

6
| (a, b, c) ∈ C3 is nonzero

}

By remarks 2.24 and 2.25, we get a diffeomorphism

S6 ≃ C3 ∪
{
∞
}
≃ Σ6,

and also that the embeddings φ
H
and φ

V
are real-analytic coordinate charts

of Σ6.

Since the real form f has signature (1, 7), we have that the group formed by
all those isometries of (Q+

6
, g

F−S
) which preserve the 6-dimensional sphere

Σ6 is isomorphic to the real spin group Spin(7,R). Hence, Σ6 is of constant
Gaussian curvature.

With the above notation, let us define the fibration Φ : Q6 −→ Σ6 by
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Φ([x : y]) =

{
[1], if x ∈ H is zero;

[̂s(a(x, y), b(x, y), c(x, y))], if x ∈ H is nonzero

Let F be the foliation of (Q6 , gF−S
) the leaves of which are the linear 3-folds

{
P
(
Γ(a, b, c)

)
| (a, b, c) ∈ C3

}
∪ P(V)

(cf. Remark 2.24). Moreover, since there exists (cf. [22], [7], [36]) an
irreducible group representation

̺ : Spin(7,R) −→ Aut(R8)

of the real spin group Spin(7,R) (where Aut(R8) denotes the group of lin-
ear automorphisms of R8), we have that the representation ̺ acts on the
Grassmannian manifold G+(2,R8) of oriented 2-planes in R8. By §2.1, we
know that

G+(2,R8) ≃ Z(S6)

Thus, ̺ acts on the twistor space Z(S6) of the standard 6-sphere. This
action is transitive with isotropy group isomorphic to the unitary group
U(3). Therefore,

Z(S6) ≃ Spin(7,R)/U(3)

Since the non-singular complex quadric hypersurface Q6 ⊂ P7
C
is biholo-

morphic to Z(S6), we have that Spin(7,R) acts on Q6 , and this action is
transitive on the set of leaves of the foliation F . The isotropy group of
a given leaf is isomorphic to the special unitary group SU(4). Hence, the
transformation

Z(S6) ≃ Spin(7,R)/U(3) −→ Spin(7,R)/SU(4) ≃ S6

coincides with the twistor fibration p6 of the standard 6-sphere.

With this notation, we summarise the above discussion in the form of
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Theorem 2.26. Let Q6 ⊂ P7
C
be the non-singular complex quadric hy-

persurface defined by the quadratic form q8 : C8 −→ C. We endow Q6 with
the Fubini-Study metric g

F−S
. Let F be the foliation of Q6 the leaves of

which are the linear 3-folds

G(3, 7) ⊃
{
P
(
Γ(a, b, c)

)
| (a, b, c) ∈ C3

}
∪ P(V)

Then, the following statements hold:

(i) The foliation F is real-analytic.

(ii) The foliation F is invariant under the action of the real spin group
Spin(7,R) on Q6. This action is by isometries of (Q6 , gF−S

) and, fur-
thermore, it is transitive on the space of leaves of F (cf. [22], [7], [36]).

(iii) The space of leaves of F may be identified with the 6-dimensional sphere

Σ6 :=
{
[ς] ∈ Q+

6
| ς ∈ Fix(f) ≃ R8

}
=

{
[1], [ω]

}
⊔
{
[̂s(a, b, c)] | (a, b, c) ∈ C3 is nonzero

}

Therefore, we may endow Σ6 with the standard metric (of constant
positive sectional curvature) in such a way that the canonical projection
(that is to say, the twistor fibration)

p6 : Q6 ≃ Z(S6) −→ S6 ≃ Σ6

is a Riemannian submersion with fibre isomorphic to a linear 3-fold.

(iv) The fibration

Φ : Q6 −→ Σ6

is Riemannian with respect to the Fubini-Study metric g
F−S

and, up
to scaling, it is isometrically equivalent to the twistor fibration p6 :
Z(S6) −→ S6.
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4.1. The set of “non-fibres” of the fibration Φ : Q6 −→ Σ6.

Let us recall that the conjugate C-linear involution f : S+
8
−→ S+

8
is given by

(a1 , a6 , a7 , a8 , a9 , a10 , a11 , a16) 7−→ (a1 , a11 ,−a10 , a9 , a8 ,−a7 , a6 , a16)

Let s = (a1 , a6 , a7 , a8 , a9 , a10 , a11 , a16) ∈ S+
8

be a pure spinor for the qua-

dratic form q8 : C8 −→ C such that s 6= f(s). Therefore,

s ∈ T4(0, 2) ⊔T4(2, 0) ⊔T4(2, 2) or

s ∈ T4(0, 0) −
{
ŝ
(
Γ(a, b, c)

)
| (a, b, c) ∈ C3

}

We know that f(s) ∈ S+
8

is also a pure spinor for q8 . Let Ks and K
f(s)

be

the (even) maximal totally null subspaces of (C8,q8) represented by s and
f(s), respectively. Given that

[s], [f(s)] ∈ Q+
6
−Σ6,

we have that the linear 3-folds

P(Ks),P(Kf(s)
) ⊂ Q6

are not leaves of the foliation F described in Theorem 2.26. Equivalently,
P(Ks) and P(K

f(s)
) are not fibres of the fibration Φ : Q6 −→ Σ6.

SinceKs andK
f(s)

are distinct even maximal totally null subspaces of (C8,q8),
Lemma 1.6 implies that

dim(Ks ∩ K
f(s)

) ∈
{
0, 2

}

By Proposition 2.11, we get that:

◮ If s ∈ T4(0, 2) ⊔T4(2, 0) ⊔T4(2, 2), then
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β+(f(s), s) = −
11∑

j=6

|a
j
|2

◮ If s ∈ T4(0, 0)−
{
ŝ
(
Γ(a, b, c)

)
| (a, b, c) ∈ C3

}
, then there exists a unique

M = (m12 ,m13 ,m14 ,m23 ,m24 ,m34) ∈ S∗
4

such that s = ŝ(M). Hence,

β+(f(ς), ς) = −
(
|m12 −m34 |2 + |m13 +m24 |2 + |m14 −m23 |2

)

In both cases we have that

β+(f(ς), ς) 6= 0

which, by Proposition 2.5, implies that dim(Ks ∩K
f(s)

) = 0. Thus,

P(Ks) ∩ P(K
f(s)

) = ∅

and we have proven

Proposition 2.27. Let s ∈ S+
8

be a pure spinor for the quadratic form

q8 : C8 −→ C such that s 6= f(s). Let Ks and K
f(s)

be the even maximal

totally null subspaces of the quadratic space (C8,q8) which are represented
by s and f(s), respectively. Then, the linear 3-folds

P(Ks),P(Kf(s)
) ⊂ Q6

are not fibres of the fibration Φ : Q6 −→ Σ6, and they are disjoint.
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4.2. Odd pure spinors for q8 and the foliation F.

Let us consider an odd pure spinor

κ = (b2 , b3 , b4 , b5 , b12 , b13 , b14 , b15) ∈ S−
8

for the quadratic form q8 : C8 −→ C. Let K
κ
⊂ C8 be the maximal totally

null subspace represented by κ. Inspired by §5 of [45], we would like to
show how to assign a canonical linear 2-fold

Π
κ
≃ P2

C

to the linear 3-fold P(K
κ
) ⊂ Q6 . We remark that this linear 3-fold is not a

leaf of the foliation F of (Q6 , gF−S
) described in Theorem 2.26.

◮ If κ ∈ T4(1, 3), then K
κ
∩ V ≃ C3. By propositions 2.13 and 2.14, we

know that

x
κ
= (b2 , b3 , b4 , b5) ∈ C4

is nonzero and it is a generator of K
κ
∩ H. Using the spin representation

ρ : Cℓ8 −→ End(S8) for the Clifford algebra Cℓ8 (cf. §2.2) and Theorem 1.5,
we get that

Π
κ
:= P(K

κ
∩ V) =

{
[−ab3 − bb4 − cb5 : ab2 : bb2 : cb2 ] ∈ P3

C
| (a, b, c) ∈ C3 is nonzero

}

is a linear 2-fold contained in P(K
κ
) ≃ P3

C
.

◮ If κ ∈ T4(3, 1), then K
κ
∩H ≃ C3 and

y
κ
= (b15 ,−b14 , b13 ,−b12) ∈ C4

is a generator of K
κ
∩ V (by propositions 2.13 and 2.14). In this case,

a calculation using the spin representation for Cℓ8 and Theorem 1.5 give
us that
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Π
κ
:= P(K

κ
∩H) ={

[ab14 − bb13 + cb12 : ab15 : bb15 : cb15 ] ∈ P3
C
| (a, b, c) ∈ C3 is nonzero

}

is a linear 2-fold contained in P(K
κ
) ≃ P3

C
.

◮ If κ ∈ T4(1, 1), let us assume that for each nonzero (a, b, c) ∈ C3 it
holds that

dim(Γ(a, b, c) ∩ K
κ
) = 1

where Γ(a, b, c) := Γ
(
A(a, b, c)

)
. Since H = Γ(0, 0, 0),

∞ Γ◦A7−→ V and

dim(K
κ
∩H) = dim(K

κ
∩ V) = 1,

we conclude that the diffeomorphism

(Γ ◦A)
(
C3 ∪

{
∞
})

≃ S6

establishes a homeomorphism between S6 and P(K
κ
) ≃ P3

C
, which is a con-

tradiction.

Hence, by Lemma 1.6, there exists a nonzero (a, b, c) ∈ C3 such that

dim(Γ(a, b, c) ∩ K
κ
) = 3

Let us assume that there exists another nonzero (a′, b′, c′) ∈ C3 such that

dim(Γ(a′, b′, c′) ∩ K
κ
) = 3

Therefore,

dim
(
Γ(a, b, c) ∩ Γ(a′, b′, c′)

)
≥ 2
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which is also a contradiction. Thus, this nonzero (a, b, c) ∈ C3 is unique.

Let (x, y) = (x1 , x2 , x3 , x4 , y1 , y2 , y3 , y4) ∈ C8 be any point. Using the
spin representation for Cℓ8 and Theorem 1.5, we get that (x, y) belongs
to Γ(a, b, c) ∩ K

κ
if and only if y = A(a, b, c)(x) and

(ab3+bb4+cb5)x1−(ab2−cb4+bb5)x2−(bb2+cb3−ab5)x3−(cb2−bb3+ab4)x4 = 0

All the coefficients in this last equation are zero if and only if x
κ
= (b2 , b3 , b4 , b5)

∈ C4 is the origin. Given that κ ∈ T4(1, 1), Proposition 2.14 implies that
x

κ
is nonzero. Therefore, in this case we have that

Π
κ
:= P(Γ(a, b, c) ∩K

κ
)

is a linear 2-fold contained in P(K
κ
). We may summarise the above discus-

sion in the following

Proposition 2.28. Let κ ∈ S−
8

be an odd pure spinor for the quadratic

form q8 : C8 −→ C. Let K
κ

⊂ C8 be the maximal totally null subspace
represented by κ. Then, the following statements hold:

(i) The linear 3-fold

P(K
κ
) ⊂ Q6 ≃ Z(S6)

is not a fibre of the fibration Φ : Q6 −→ Σ6 described in Theorem
2.26. Moreover, under the twistor fibration p6 : Z(S6) −→ S6, P(K

κ
)

projects surjectively onto S6 (cf. Remark 5.7 in [45]).

(ii) P(K
κ
) ≃ P3

C
contains a canonical linear 2-fold

Π
κ
≃ P2

C

such that Π
κ
is contained in a fibre of p6 and, thus, collapses to a point.

The restriction of p6 to the complement, in this twistor fibre, of Π
κ

is injective. Hence, this restriction is a differentiable blow-down

P3
C
−→ S6.



64 2. THE TWISTOR SPACE Z(S6) OF THE STANDARD 6-SPHERE

(iii) Furthermore, the construction of Π
κ
gives us a real-analytic subbundle

of the twistor fibration p6 with typical fibre isomorphic to P2
C
.

To finish this section, let us recall that the standard 6-sphere S6 admits a
natural orthogonal almost-complex structure induced by the product in the
algebra of octonions O ≃ R8 (cf. [3], [31]). The above construction of

Π
κ
≃ P2

C

for every odd pure spinor κ ∈ S−
8
, gives us a continuous selection of a linear

2-fold in each fibre of the twistor fibration p6 : Z(S6) −→ S6. For each ζ ∈ S6,
let us denote this canonical linear 2-fold, contained in the fibre p−1

6
(ζ), by

P2
ζ
. With respect to the Fubini-Study metric d

F−S
on P3

C
≃ p−1

6
(ζ), there is

a unique focal point

F (ζ) ∈ p−1
6

(ζ)

with the property that d
F−S

(F (ζ),P2
ζ
) is maximal. This, in turn, gives a

section of the twistor space Z(S6) and, therefore, determines an orthogonal
almost-complex structure on the standard 6-sphere S6. We would like to
remark that the construction of this section is achieved without recuring to
the product in O.



CHAPTER 3

The twistor space Z(S2n) with n ≥ 1

For n ≥ 1, let us recall that the horizontal and vertical spaces H,V ⊂ C2n+2

are defined as

H :=

n+1⊕

j=1

Cej and V :=

n+1⊕

j=1

Cen+1+j

where
{
e
j
| 1 ≤ j ≤ 2n+2

}
is the standard base of C2n+2. Let us denote the

standard base of Cn+1 by
{
ẽ
j
| 1 ≤ j ≤ n + 1

}
. As complex linear spaces,

H, V and Cn+1 are isomorphic and, thus, may be identified. From now on,
we shall assume that this has been done through the linear transformations
defined by

H ∋ e
j

ϕ17−→ ẽ
j
∈ Cn+1, and

Cn+1 ∋ ẽ
j

ϕ27−→ e
n+1+j

∈ V

Let us recall (cf. Chapter 1 and §2.1) that the maximal rank quadratic
forms q2n+2 : C2n+2 −→ C and (the Fermat polynomial) Fn+1 : Cn+1 −→ C
are given by

(x, y) = (x1 , ..., xn+1 , y1 , ..., yn+1)
q2n+27−→ 2

n+1∑

j=1

x
j
y
j

and z = (z1 , ..., zn+1)
Fn+17−→

n+1∑

j=1

z2
j

Thus, the (non-degenerate) bilinear forms B2n+2 : C2n+2×C2n+2 −→ C and

Bn+1 : Cn+1 × Cn+1 −→ C associated, respectively, to q2n+2 and Fn+1 are
given as

65



66 3. THE TWISTOR SPACE Z(S2n) WITH n ≥ 1

B2n+2

(
(x, y), (x′, y′)

)
=

n+1∑

j=1

(x
j
y′
j
+ x′

j
y
j
)

and Bn+1(z, z
′) =

n+1∑

j=1

z
j
z′
j

Let us consider the canonical involution I2n+2 : C2n+2 −→ C2n+2, and let

x =

n+1∑

j=1

x
j
e
j
∈ H and y =

n+1∑

j=1

y
j
e
n+1+j

∈ V

be any points. We have that

x
I2n+27−→ `

x :=

n+1∑

j=1

x
j
e
n+1+j

∈ V ≃ Cn+1

and y
I2n+27−→ a

y :=

n+1∑

j=1

y
j
e
j
∈ H ≃ Cn+1

Therefore,

Bn+1(x,
a

y) = Bn+1(
`

x, y) =
1

2
q2n+2(x, y)

which, in turn, implies that

x ⊥
Bn+1

a

y if and only if q2n+2(x, y) = 0

Let k, k′ ∈
{
0, ..., n+1

}
be such that 0 ≤ k+k′ ≤ n+1, and let us consider

a pure spinor s ∈ S2n+2 for the quadratic form q2n+2 such that s is of type
(k, k′) (cf. definitions 1.4 and 1.7). Let Ks be the maximal totally null
subspace, of the quadratic space (C2n+2,q2n+2), represented by s. We set

Us := Ks ∩H and Ws := I2n+2(Ks ∩ V)

Since s ∈ Tn+1(k, k
′) and Us ,Ws ⊂ H ≃ Cn+1, we have that
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Us ∈ G(k, n + 1) and Ws ∈ G(k′, n+ 1)

For all u ∈ Us and w ∈Ws , it holds that

(u,
`

w) ∈ Ks

and, since Ks is totally null for q2n+2 , we get that

Us ⊥Bn+1
Ws

Thus (cf. Definition 1.13),

(Us ,Ws) ∈ V
Bn+1
C (k, k′;n+ 1)

for all s ∈ Tn+1(k, k
′).

By Proposition 1.8, we know that the type sets

Tn+1(k, k
′) ⊂ S2n+2 with 0 ≤ k, k′, k + k′ ≤ n+ 1

are the bulding-blocks of the twistor space Z(S2n) of the standard 2n-sphere.

Hence, in order to get a better understanding of Z(S2n), it would be fruitful
to discuss the relationship between the (k, k′)-type setTn+1(k, k

′) of the qua-

dratic space (C2n+2,q2n+2) and the generalised complex orthogonal Stiefel

manifoldV
Bn+1
C (k, k′;n+1) of the quadratic space (Cn+1,Fn+1). We shall do

so in §3.2, after we have taken a closer look at the actions of the orthogonal
group O(C2n+2,q2n+2) and the special orthogonal group SO(C2n+2,q2n+2)
on the set of maximal totally null subspaces of (C2n+2,q2n+2).

1. The action of O(C2n+2,q2n+2) on the twistor space Z(S2n)

Let us recall that, for n ≥ 1, the orthogonal group O(C2n+2,q2n+2) of the

quadratic space (C2n+2,q2n+2) is the group formed (under the usual compo-
sition of linear transformations or, equivalently, matrix multiplication) by
those linear automorphisms
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L : C2n+2 −→ C2n+2

which preserve the quadratic form q2n+2 (therefore, they preserve the bi-

linear form B2n+2). The special orthogonal group SO(C2n+2,q2n+2) of the

quadratic space (C2n+2,q2n+2) consists of those L ∈ O(C2n+2,q2n+2) such
that det(L) = 1.

We know (cf. I.4.3 and III.1.6 in [16]) that the action of the orthogo-
nal group O(C2n+2,q2n+2) on the set of maximal totally null subspaces of

(C2n+2,q2n+2) is transitive, and that two such subspaces U and W have the
same parity (that is to say, they belong to one and the same family of max-
imal totally null subspaces) if and only if there exists A ∈ SO(C2n+2,q2n+2)
such that A(U) =W .

Let U and W be two isomorphic complex linear subspaces of C2n+2. We say
that a linear isomorphism φ : U −→ W is a q2n+2-isomorphism if

q2n+2

(
φ(x, y)

)
= q2n+2(x, y)

for all (x, y) ∈ U . Therefore, if L : C2n+2 −→ C2n+2 is an orthogonal
automorphism, then its restriction

L
U
: U −→ L(U)

to U is a q2n+2-isomorphism. Conversely, every q2n+2-isomorphism φ : U −→
W may be extended to an element of O(C2n+2,q2n+2) (cf. I.4.1 in [16]). If,
furthermore, we assume that U and W are totally null for q2n+2 , then every
isomorphism between them is a q2n+2-isomorphism. In particular, every

automorphism of a maximal totally null subspace of (C2n+2,q2n+2) may be

extended to an element of O(C2n+2,q2n+2).

Definition 3.1. For n ≥ 1 and 1 ≤ m ≤ n + 1 = idx(q2n+2), let us

consider an m-dimensional complex linear subspace U ⊂ C2n+2 which is
totally null for the quadratic form q2n+2 . If 1 ≤ k ≤ m and

{
u

j
| 1 ≤ j ≤

k
}
⊂ U is linearly independent over C, then we say that the finite sequence

(u1 , ..., uk
) ∈ U × ...× U

⊢ k factors⊣
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is a null k − framing of (C2n+2,q2n+2).

For n ≥ 1 and 1 ≤ k ≤ m ≤ n+1, let us consider two complexm-dimensional
subspaces U,W ⊂ C2n+2 which are totally null for the quadratic form q2n+2 ,
and let

{
u

j
| 1 ≤ j ≤ k

}
⊂ U and

{
w

j
| 1 ≤ j ≤ k

}
⊂W

be linearly independent sets over C. Hence,

(u1 , ..., uk
) ∈ U × ...× U

⊢ k factors⊣
and (w1 , ..., wk

) ∈W × ...×W
⊢ k factors⊣

are two null k-framings of (C2n+2,q2n+2). We complete these linearly inde-
pendent sets to bases

{
u

j
| 1 ≤ j ≤ m

}
and

{
w

j
| 1 ≤ j ≤ m

}

of U andW , respectively. Let L : U −→W be the linear space isomorphism
defined by

L(u
j
) 7−→ w

j
for all 1 ≤ j ≤ m

Since L is a q2n+2-isomorphism, we have that there exists L̂ ∈ O(C2n+2,q2n+2)

such that L̂ extends L. In particular, L̂(u
j
) = w

j
for all 1 ≤ j ≤ m. Thus,

(w1 , ..., wk
) =

(
L̂(u1), ..., L̂(uk

)
)

and we have proven the following two results.

Lemma 3.2. Let n ≥ 1 and let 1 ≤ k ≤ n + 1 = idx(q2n+2). Then,

the orthogonal group O(C2n+2,q2n+2) acts transitively on the set of null k-

framings of (C2n+2,q2n+2).

Lemma 3.3. Let n ≥ 1 and 1 ≤ k ≤ n + 1 = idx(q2n+2). Let U be a
k-dimensional complex linear subspace of the horizontal space H. Let W be
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a maximal totally null subspace of (C2n+2,q2n+2) and let N ⊂ W be a k-

dimensional complex linear subspace. Then, there exists L ∈ O(C2n+2,q2n+2)
such that L(W ) = H and L(N) = U .

The following result is a direct consequence of Lemma 1 on page 152 of [16].

Lemma 3.4. For n ≥ 1 and 0 ≤ r ≤ n + 1 = idx(q2n+2), let U ,
U ′, W and W ′ be maximal totally null subspaces of the quadratic space
(C2n+2,q2n+2) such that dim(U ∩ W ) = dim(U ′ ∩W ′) = r. Then, there
exists L ∈ O(C2n+2,q2n+2) such that L(U) = U ′ and L(W ) =W ′.

Recalling Definition 1.7, as a consequence of Lemma 3.4, we have

Corollary 3.5. For n ≥ 1, let k, k′ ∈
{
0, ..., n + 1

}
be such that

0 ≤ k + k′ ≤ n + 1. Then, the orthogonal group O(C2n+2,q2n+2) acts
transitively on the (k, k′)-type set Tn+1(k, k

′). Hence, Tn+1(k, k
′) may be

thought of as the homogeneous space

O(C2n+2,q2n+2)/IsotU

where Isot
U
denotes the isotropy group of U ∈ Tn+1(k, k

′).

Proof. Let U andW be two maximal totally null subspaces of the quadratic
space (C2n+2,q2n+2) both of type (k, k′). Since

dim(U ∩ V) = k′ = dim(W ∩ V)

Lemma 3.4 implies that there exists L ∈ O(C2n+2,q2n+2) such that L(V) = V
and L(U) =W . �

1.1. The action of SO(C2n+2,q2n+2) on the twistor space Z(S2n).

In this subsection, we would like to study the action of the special orthogonal
group SO(C2n+2,q2n+2) on each of the two families of maximal totally null

subspaces of the quadratic space (C2n+2,q2n+2).

Let us recall (cf. Chapter 1) that the vector representation

χ : G2n+2 −→ O(C2n+2,q2n+2)
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of the Clifford group G2n+2 ⊂ Cℓ2n+2 of the quadratic space (C2n+2,q2n+2) is
such that

χ(G2n+2 ∩ Cℓ+
2n+2

) = SO(C2n+2,q2n+2)

Let U be a maximal totally null subspace of (C2n+2,q2n+2), and let L ∈
O(C2n+2,q2n+2) be such that L(U) = U . By III.2.6 in [16], we get that

L = χ(ζ) for some ζ ∈ G2n+2 ∩ Cℓ+
2n+2

Thus, L ∈ SO(C2n+2,q2n+2) and we get that the isotropy group Isot
U
of U ,

under the action of O(C2n+2,q2n+2), is a subgroup of SO(C2n+2,q2n+2).

Therefore, as a consequence of Corollary 3.5 we have

Corollary 3.6. For n ≥ 1, let k, k′ ∈
{
0, ..., n + 1

}
be such that

0 ≤ k + k′ ≤ n + 1. Then, the special orthogonal group SO(C2n+2,q2n+2)
acts transitively on the (k, k′)-type set Tn+1(k, k

′).

Proof. Given U,W ∈ Tn+1(k, k
′), Corollary 3.5 implies the existence of

L ∈ O(C2n+2,q2n+2) such that L(V) = V and L(U) = W . Since L ∈ Isot
V
,

we get that L ∈ SO(C2n+2,q2n+2). �

On the other hand, let us recall (cf. Chapter 1) that, for m ≥ 1, M(m,C)
denotes the algebra of complex m × m matrices and that Sm ⊂ M(m,C)

denotes the m(m−1)
2 -dimensional complex linear subspace of skew-symmetric

matrices. The Pfaffian transformation λm : Sm −→ C satisfies that

det(E) =
(
λm(E)

)2

for all E ∈ Sm . We have that

S∗
m
:=
{
E ∈ Sm | λm(E) 6= 0

}
, S0

m
:=
{
E ∈ Sm | λm(E) = 0

}
,

Γ∗
m
:= Γ(S∗

m
) and Γ0

m
:= Γ(S0

m
)

where Γ : Sm −→ G(m, 2m) is the transformation which assigns to each
skew-symmetric matrix E the graph



72 3. THE TWISTOR SPACE Z(S2n) WITH n ≥ 1

Γ(E) :=
{ (
Z,E(Z)

)
∈ C2m | Z ∈ Cm

}

of the linear endomorphism E : Cm −→ Cm.

We also recall that 0m , Idm ∈ M(m,C) denote, respectively, the zero and
the identity matrices, and that the general linear group

GL(m,C) =
{
A ∈ M(m,C) | det(A) 6= 0

}

consists of all the linear automorphisms of Cm. In what follows we shall
denote matrix transposition by t.

Let n ≥ 1. For each C,C ′ ∈ M(n+ 1,C), let us define

diag(C,C ′) :=
(

C 0
n+1

0n+1 C′

)
∈ M(2n+ 2,C)

If A ∈ GL(n+ 1,C), let us set

Ã := (A−1)t = (At)−1 ∈ GL(n+ 1,C) and D
A
:= diag(A, Ã)

Then, det(D
A
) = 1 and we have that D

A
∈ GL(2n + 2,C). In particular,

Idn+2 = D
Idn+1

. For all A,A′ ∈ GL(n + 1,C), we get that:

(1) ÃA′ = Ã Ã′ and, thus, D
A
D

A′ = D
AA′ .

(2) D−1
A

= D
A−1 and Dt

A
= D

At .

(3) D
A
B2n+2D

t
A
= B2n+2 .

Therefore,

D2n+2 :=
{
D

A
:= diag(A, Ã) | A ∈ GL(n+ 1,C)

}

is a subgroup of SO(C2n+2,q2n+2), and we have a group monomorphism

ψ : GL(n+ 1,C) →֒ SO(C2n+2,q2n+2) given by A 7−→ D
A
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Let A ∈ SO(n + 1) ⊂ GL(n + 1,C). Then, AAt = Idn+1 and we have that

Ã = A. Hence, D
A
= diag(A,A) ∈ SO(2n + 2) and the restriction of ψ to

SO(n+1) defines a group monomorphism SO(n+1) →֒ SO(C2n+2,q2n+2).

More generally, let A ∈ U(n+1) ⊂ GL(n+1,C). Then, AA∗ = A∗A = Idn+1

where A∗ := A
t
denotes the conjugate transpose matrix. We have that

Ã = A. Thus, D
A
= diag(A,A) and the restriction of ψ to U(n+ 1) defines

a group monomorphism U(n+ 1) →֒ SO(C2n+2,q2n+2).

Let us get on to describing the isotropy groups Isot
H
, Isot

V
⊂ SO(C2n+2,q2n+2)

corresponding to the horizontal and vertical spaces H,V ⊂ C2n+2, under the
action of O(C2n+2,q2n+2). If L ∈ SO(C2n+2,q2n+2), then we may write

L =
(

A1 A2
A3 A4

)

where A
j
∈ M(n + 1,C) for all 1 ≤ j ≤ 4. Given that L preserves the

bilineal form B2n+2 : C2n+2×C2n+2 −→ C associated to q2n+2 , we have that

A2A
t
1
, A3A

t
4
∈ Sn+1 and A2A

t
3
+A1A

t
4
= Idn+1

Therefore:

◮ L preserves the horizontal space H ⊂ C2n+2 if and only if A3 = 0n+1 ,

A1 ∈ GL(n+1,C), A4 = (A−1
1

)t, A2 ∈ M(n+1,C) and A2A
t
1
∈ Sn+1 . That

is to say,

Isot
H
=

{ (
A M

0n+1 Ã

)
| A,M ∈ M(n+ 1, C),det(A) 6= 0,MAt ∈ Sn+1

}

◮ L preserves the vertical space V ⊂ C2n+2 if and only if A2 = 0n+1 ,

A1 ∈ GL(n + 1,C), A4 = (A−1
1

)t, A3 ∈ M(n + 1,C) and A3A
−1
1

∈ Sn+1 .
Thus,

Isot
V
=

{ (
C 0n+1

N C̃

)
| C,N ∈ M(n+ 1, C),det(C) 6= 0, NC−1 ∈ Sn+1

}

◮ L preserves bothH and V if and only ifA2 = A3 = 0n+1 , A1 ∈ GL(n+1,C)

and A4 = (A−1
1

)t. Hence, we get that
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D2n+2 ⊂ Isot
H
∩ Isot

V

Therefore, D2n+2 acts transitively on the type sets Tn+1(0, n + 1) ≃
{
V
}

and Tn+1(n+ 1, 0) ≃
{
H
}
.

If (x, y) ∈ C2n+2 is such that x ∈ H is nonzero and y ∈ V is nonzero, and
A ∈ GL(n+ 1,C), then

D
A
(x, y) =

(
A 0n+1

0n+1 Ã

)(
x
y

)
=

(
A(x)

Ã(y)

)
/∈ H,V

Therefore, we have

Proposition 3.7. Let n ≥ 1. Then, the following statements hold:

(i) The group D2n+2 is the subgroup of O(C2n+2,q2n+2) of those elements
which preserve, precisely, the horizontal space H and the vertical space V.

(ii) The group D2n+2 preserves the type of every maximal totally null sub-

space of the quadratic space (C2n+2,q2n+2).

For n ≥ 1, by Theorem 1.10, Proposition 1.11 and the above discussion, we
may think of the twistor space Z(S2n) of the standard 2n-sphere as either of
the homogeneous spaces

SO(C2n+2,q2n+2)/IsotH or SO(C2n+2,q2n+2)/IsotV

By Corollary 3.6, Proposition 1.11 and (i) of Proposition 1.12, we have (cf.
Chapter 7 of [28])

Proposition 3.8. For n ≥ 1, the special orthogonal group SO(C2n+2,q2n+2)

of the quadratic space (C2n+2,q2n+2) acts transitively on each of the two ir-
reducible components of the Fano variety Fn,2n of linear n-folds contained in

the non-singular quadric hypersurface Q2n ⊂ P2n+1
C

defined by the quadratic
form q2n+2 . Moreover:

(i) If idx(q2n+2) = n+ 1 is even, then
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SO(C2n+2,q2n+2)/IsotV ≃ F+
n,2n

≃ Γn+1

= Γn+1 ⊔ I2n+2(Γ
0
n+1

) ⊔
{
limits at infinity of the elements in Γ0

n+1

}

(ii) If idx(q2n+2) = n+ 1 is odd, then

SO(C2n+2,q2n+2)/IsotH ≃ F−
n,2n

≃ Γn+1

= Γ0
n+1

⊔
{
limits at infinity of the elements in Γ0

n+1

}

To continue our study of the groups Isot
H

and Isot
V
, let us define

N
H
:=

{ (
Idn+1 M

0
n+1 Id

n+1

)
∈ GL(2n + 2,C) |M ∈ Sn+1

}

and

NV :=

{ (
Idn+1 0n+1

N Idn+1

)
∈ GL(2n + 2,C) | N ∈ Sn+1

}

Then, NH ⊂ IsotH and NV ⊂ IsotV . It is clear that

NH ∩ D2n+2 =
{
Id2n+2

}
= NV ∩ D2n+2

We have that bothNH andNV are Abelian groups isomorphic to the additive

group of complex (n+1)× (n+1) skew-symmetric matrices Sn+1 ≃ C
n(n+1)

2 .
Furthermore, N

H
is a normal subgroup of Isot

H
and N

V
is a normal sub-

group of Isot
V
.

LetA,C,M,N ∈ M(n+1,C) be such that det(A),det(C) 6= 0 andMAt, NC−1

∈ Sn+1 . Then, we have that

Isot
H
∋
(

A M

0n+1 Ã

)
=
(

Idn+1 MAt

0n+1 Idn+1

)(
A 0n+1

0n+1 Ã

)
∈ N

H
D2n+2

and
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Isot
V
∋
(

C 0n+1

N C̃

)
=
(

Idn+1 0n+1

NC−1 Idn+1

)(
C 0n+1

0n+1 C̃

)
∈ N

V
D2n+2

Therefore, we have proven

Proposition 3.9. Let n ≥ 1. Then, the following statements hold:

(i) The isotropy group Isot
H

of the horizontal space under the action of
the orthogonal group O(C2n+2,q2n+2), on the set of maximal totally

null subspaces of the quadratic space (C2n+2,q2n+2), is the semidirect
product of N

H
and D2n+2 .

(ii) The isotropy group Isot
V
of the vertical space under the action of the

orthogonal group O(C2n+2,q2n+2), on the set of maximal totally null

subspaces of the quadratic space (C2n+2,q2n+2), is the semidirect prod-
uct of NV and D2n+2 .

Definition 3.10. For n ≥ 1, let U and W be two maximal totally
null subspaces of (C2n+2,q2n+2) such that dim(U ∩ W ) = 0. Then, we
say that U and W are linearly independent subspaces of the quadratic space
(C2n+2,q2n+2).

For instance, if M ∈ Sn+1 , then the vertical space V and the horizontal

graph Γ(M) are linearly independent subspaces of (C2n+2,q2n+2). Thus,

the vertical graph I2n+2

(
Γ(M)

)
and the horizontal space H are also linearly

independent subspaces of (C2n+2,q2n+2).

We would like to remark that if U andW are linearly independent subspaces
of (C2n+2,q2n+2), then Lemma 1.6 implies that U and W are of the same
parity if and only if n+ 1 = idx(q2n+2) is even.

Proposition 3.11. Let n ≥ 1. Then, the following statements hold:

(i) The group N
V

acts transitively on the set Γn+1 of graphs of skew-

symmetric linear endomorphisms of Cn+1.

(ii) The group N
H
acts transitively on the image I2n+2(Γn+1) of Γn+1 under

the canonical involution I2n+2 : C2n+2 −→ C2n+2.
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Proof. For each M ∈ Sn+1 we have that

(
Idn+1 0n+1

−M Id
n+1

)
∈ N

V
and

(
Idn+1 −M

0
n+1 Id

n+1

)
∈ N

H

where −M ∈ Sn+1 denotes the additive inverse matrix of M . For each

Z ∈ Cn+1, we get that

(
Idn+1 0n+1

−M Idn+1

)(
Z

M(Z)

)
=
(

Z
0̂n+1

)
and

(
Idn+1 −M

0
n+1 Id

n+1

)(
M(Z)
Z

)
=
(

0̂
n+1

Z

)

where 0̂n+1 ∈ Cn+1 denotes the origin. Hence, every element of Γn+1 may
be taken to H by a matrix in NV , and every element of I2n+2(Γn+1) may be
taken to V by a matrix in NH . �

Corollary 3.12. Let n ≥ 1. Then, the following statements hold:

(i) The coordinate-wise action of the orthogonal group O(C2n+2,q2n+2) on
the set

P :=
{
(U,W ) | U and W are linearly independent subspaces of (C2n+2,q2n+2)

}

is transitive.

(ii) The isotropy group Isot
(U,W )

of (U,W ) ∈ P is isomorphic to D2n+2 .

Therefore (cf. Theorem 1.10), the Fano variety Fn,2n may be thought

of as the homogeneous space O(C2n+2,q2n+2)/D2n+2 .

Proof. Let (U,W ) ∈ P. Then, there exists L ∈ O(C2n+2,q2n+2) such that
L(U) = V. Thus, dim(L(W ) ∩ V) = 0 and L(W ) ∈ Γn+1 . By Proposition

3.11, there exists L′ ∈ NV ⊂ IsotV such that L′
(
L(W )

)
= H. Hence,

L′ ◦ L ∈ O(C2n+2,q2n+2) is such that

(U,W )
L′◦L7−→ (V,H)
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and we have (i). Since (V,H) ∈ P, by (i) of Proposition 3.7, we have that
Isot

(V,H)
= D2n+2 , which proves (ii). �

2. The stratifications of Z(S2n) with n ≥ 1

Let n ≥ 1. Recalling Definition 1.7, by Proposition 1.8, we know that
the twistor space Z(S2n) of the standard 2n-sphere may be decomposed (or
stratified) as

⊔

0≤k,k′,k+k′≤n+1
k,k′ even

Tn+1(k, k
′) or

⊔

1≤k,k′,k+k′≤n+1
k,k′ odd

Tn+1(k, k
′)

when n+ 1 = idx(q2n+2) is even, and as

⊔

0≤k,k′,k+k′≤n+1
k even, k′ odd

Tn+1(k, k
′) or

⊔

0≤k,k′,k+k′≤n+1
k even, k′ odd

Tn+1(k
′, k)

when n+ 1 = idx(q2n+2) is odd.

To finish our present discussion of the twistor space Z(S2n) of the stan-
dard 2n-sphere, we would like to describe each type set Tn+1(k, k

′) for the

quadratic space (C2n+2,q2n+2) (that is to say, each of the building-blocks
of the strata in the above decompositions) in terms of the correspond-
ing generalised complex orthogonal Stiefel manifold of the quadratic space
(Cn+1,Fn+1), where Fn+1 : Cm −→ C is the Fermat polynomial introduced
in §2.1 (cf. Definition 1.13).

Given that the bilinear form Bn+1 : C
n+1 ×Cn+1 −→ C, associated to Fn+1 ,

is non-degenerate, we have that

V
Bn+1
C (0, n+1;n+1) =

{
(U,W ) ∈ G(0, n+1)×G(n+1, n+1) | U ⊥B

n+1
W
}

≃ Cn+1 ≃ V and

V
Bn+1
C (n+1, 0;n+1) =

{
(U,W ) ∈ G(n+1, n+1)×G(0, n+1) | U ⊥B

n+1
W
}

≃ Cn+1 ≃ H
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◮ Therefore, for all n ≥ 1, there exists a locally trivial and holomorphic

fibration Θ : Tn+1(0, n+1) −→ V
B
n+1

C (0, n+1;n+1) with fibre isomorphic
to a point.

There also exists a locally trivial and holomorphic fribration Θ′ : Tn+1(n+ 1, 0)

−→ V
Bn+1
C (n+ 1, 0;n + 1) with fibre isomorphic to a point. ◭

More generally, let n ≥ 1 and let k, k′ ∈
{
0, ..., n + 1

}
be such that

0 < k + k′ = n+ 1 = idx(q2n+2)

Then k′ = n+1− k and let us consider the generalised complex orthogonal
Stiefel manifold

V
Bn+1
C (k, n+1−k;n+1) =

{
(U,W ) ∈ G(k, n+1)×G(n+1−k, n+1) | U ⊥

Bn+1
W
}

of the quadratic space (Cn+1,Fn+1). If (U,W ) ∈ V
B
n+1

C (k, n+1− k;n+1),
then there exists a unique s ∈ Tn+1(k, k

′) = Tn+1(k, n + 1− k) such that

U = Us := Ks ∩H and W =Ws := Ks ∩ V

whereKs is the maximal totally null subspace of the quadratic space (C2n+2,q2n+2)
represented by s.

◮ Thus, for all n ≥ 1 and 0 ≤ k ≤ n + 1, there exists a locally trivial and
holomorphic fibration

Φ : Tn+1(k, n+ 1− k) −→ V
B
n+1

C (k, n + 1− k;n+ 1)

with fibre isomorphic to a point. ◭

Now let us consider n ≥ 1 and k, k′ ∈
{
0, ..., n + 1

}
such that

0 ≤ k + k′ < n+ 1

and let us set
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r := (n+ 1) − (k + k′)

Then, 0 < r ≤ n+ 1. Furthermore, by Proposition 1.8, we have:

(1) If n + 1 = idx(q2n+2) is even, then k and k′ are both even or both

odd. Hence, 0 < r is an even integer.

(2) If n + 1 = idx(q2n+2) is odd, then k and k′ are of opposite parity.
Hence, 0 < r is an even integer.

By (1) and (2) above (cf. page 16 above), we have that

S∗
r
:=
{
M ∈ Sr | λr(M) 6= 0

}
6= ∅

Let us consider the generalised complex orthogonal Stiefel manifoldV
Bn+1
C (k, k′;

n+ 1) of (Cn+1,Fn+1), and a point (U,W ) in this manifold. Since k + k′ <
n + 1, we have that there exist, at least, two distinct pure spinors s, s′ ∈
Tn+1(k, k

′) such that

Ks ∩H := Us = U = U
s′
:= K

s′
∩H

and

Ks ∩ V :=Ws =W =W
s′
:= K

s′
∩ V

where Ks and K
s′

are the maximal totally null subspaces of (C2n+2,q2n+2)
represented, respectively, by s and s′. In order to recover the maximal totally
null subspace Ks from the (k + k′)-dimensional complex linear and totally
null subspace of (C2n+2,q2n+2) generated by Us = U and Ws =W , we have

to specify an r-dimensional complex linear subspace N ⊂ C2n+2 such that:

(a) N is totally null for the quadratic form q2n+2 .

(b) It holds that

ρ
(x,y)

(s) = 0 for all (x, y) ∈ N

where ρ : Cℓ2n+2 −→ End(S2n+2) is the spin representation of the Clifford
algebra Cℓ2n+2 (cf. Theorem 1.5).
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(c) It holds that dim(N ∩H) = 0 = dim(N ∩ V).

Therefore, N is isomorphic to the graph

Γ(M) =
{ (
Z,M(Z)

)
∈ C2r | Z ∈ Cr

}

for a unique M ∈ S∗
r
.

◮ Therefore, for all n ≥ 1 and k, k′ ∈
{
0, ..., n + 1

}
such that 0 ≤ k + k′ <

n+ 1, there exists a locally trivial and holomorphic fibration

Ψ : Tn+1(k, k
′) = Tn+1(k, n+ 1− k − r) −→ V

Bn+1
C (k, n+ 1− k − r;n+ 1)

with fibre isomorphic to S∗
r
. ◭

Recalling (cf. Definition 1.13) that dim
(
V

Bn+1
C (k, k′;n+ 1)

)
is equal to

(n+ 1)(k + k′)− kk′ − k2 − (k′)2,

we may summarise the above argumentation in the following result (cf.
Proposition 2.17).

Proposition 3.13. For n ≥ 1, let k, k′ ∈
{
0, ..., n + 1

}
be such that

0 ≤ k + k′ ≤ n + 1. We set r := (n + 1) − (k + k′). Thus, 0 ≤ r is
an even integer. Let us consider the type set Tn+1(k, k

′), for the quadratic

space (C2n+2,q2n+2), and the generalised complex orthogonal Stiefel manifold

V
Bn+1
C (k, k′;n+1), of the quadratic space (Cn+1,Fn+1). Then, the following

statements hold:

(i) If k + k′ = n + 1, then there exists a locally trivial and holomorphic

fibration Φ : Tn+1(k, n+1−k) −→ V
Bn+1
C (k, n+1−k;n+1) with fibre

isomorphic to a point.

Hence, Tn+1(k, n+1− k) coincides with the k(n+ 1− k)-dimensional

complex manifold V
B
n+1

C (k, n + 1− k;n + 1).

(ii) If k + k′ < n + 1, then there exists a locally trivial and holomorphic

fibration Ψ : Tn+1(k, k
′) −→ V

Bn+1
C (k, k′;n+1) with fibre isomorphic to
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S∗
r
. Hence, this fibre is a Zariski open and dense subset in Sr ≃ C

r(r−1)
2 ,

and we have that dim
(
Tn+1(k, k

′)
)
= n(n+1)+k+k′−k2−(k′)2

2 .

By (iii) of Proposition 2.7 and (i) of Proposition 3.13 we have

Corollary 3.14. The generalised complex orthogonal Stiefel manifold

V
B4
C (2, 2; 4) of the quadratic space (C4,F4) is biholomorphic to the Plücker

quadric hypersurface in P5
C
.

Taking into account the discussion on page 17 above, regarding the set

{
limits at infinity of the elements in Γ0

n+1

}
,

propositions 1.8, 1.11, 3.13, (i) of Proposition 1.12 and definitions 1.7 and
1.13, we may summarise our description of the stratifications of the twistor
space Z(S2n), given in terms of the type sets Tn+1(k, k

′) of the quadratic
space (C2n+2,q2n+2) and the corresponding generalised complex orthogonal

Stiefel manifolds V
Bn+1
C (k, k′;n+ 1) of the quadratic space (Cn+1,Fn+1), in

the following two theorems.

Theorem 3.15. Let n ≥ 1 be such that n+1 = idx(q2n+2) is odd. Then,
the following statements hold:

(i) The twistor space Z(S2n) of the standard 2n-sphere is biholomorphic to

F−
n,2n

≃
⊔

0≤k,k′,k+k′≤n+1
k even, k′ odd

Tn+1(k
′, k) ≃

Γn+1 = Γ0
n+1

⊔
{
limits at infinity of the elements in Γ0

n+1

}

(ii) F+
n,2n

= I2n+2(F
−
n,2n

) where I2n+2 : P2n+1
C

−→ P2n+1
C

is the canonical
involution.

(iii) There exists a locally trivial and holomorphic fibration Φ : Tn+1(1, n) −→
V

Bn+1
C (1, n;n + 1) with fibre isomorphic to a point. Thus, Tn+1(1, n)

is an n-dimensional complex manifold. Furthermore, Tn+1(1, n) is a
Zariski open and dense subset of
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{
limits at infinity of the elements in Γ0

n+1

}
= Γn+1 − Γ0

n+1

and we have that Tn+1(1, n) is the stratum of biggest dimension in F−
n,2n

.

Theorem 3.16. Let n ≥ 1 be such that n + 1 = idx(q2n+2) is even.
Then, the following statements hold:

(i) The twistor space Z(S2n) of the standard 2n-sphere is biholomorphic to

F−
n,2n

≃
⊔

0≤k,k′,k+k′≤n+1
k,k′ odd,

Tn+1(k, k
′)

Moreover, there exists a locally trivial and holomorphic fibration Ψ :

Tn+1(1, 1) −→ V
Bn+1
C (1, 1;n + 1) with fibre isomorphic to S∗

n−1
(cf.

Proposition 2.17). Thus, dim
(
Tn+1(1, 1)

)
= n(n+1)

2 . We get that
Tn+1(1, 1) is a Zariski open and dense subset of F−

n,2n
, and it is the

stratum of biggest dimension.

(ii) The twistor space Z(S2n) of the standard 2n-sphere is biholomorphic to

F+
n,2n

≃
⊔

0≤k,k′,k+k′≤n+1
k,k′ even,

Tn+1(k, k
′) ≃

Γn+1 = Γn+1 ⊔ I2n+2(Γ
0
n+1

) ⊔
{
limits at infinity of the elements in Γ0

n+1

}

where I2n+2 : C2n+2 −→ C2n+2 is the canonical involution. Moreover:

(a) Tn+1(0, 0) is isomorphic to S∗
n+1

. Therefore, Tn+1(0, 0) is a Zariski

open and dense subset of F+
n,2n

(cf. (i) of Proposition 2.7).

(b) The set I2n+2(Γ
0
n+1

) is a Zariski open and dense subset of Γn+1 −
Γn+1 (cf. (ii) of Proposition 2.7).

(c) The set Λ :=
{
limits at infinity of the elements in Γ0

n+1

}
is bi-

holomorphic to the complex projective variety defined by the equa-
tion λn+1(M) = 0.
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That is to say, Λ is obtained when we projectivise and compactify

the complex n(n+1)−2
2 -dimensional affine variety S0

n+1
:=
{
M ∈

Sn+1 | λn+1(M) = 0
}
.

(d) There exists a locally trivial and holomorphic fibration Φ : Tn+1(2, 2)

−→ V
Bn+1
C (2, 2;n + 1) with fibre isomorphic to S∗

n−3
.

Thus, dim
(
Tn+1(2, 2)

)
= n(n+1)−4

2 and Tn+1(2, 2) is a dense subset
of Λ (cf. (iii) of Proposition 2.7).
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