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 Abstract

volutionary Algorithms have proved to be well suited for optimization problems with multiple 

conflicting objectives. In this PhD thesis a new Multi-Objective Evolutionary Algorithm called 

RankMOEA is proposed; it involves the design of innovative niching and ranking-mutation procedures 

which avoid the need of parameters definition and are compliant with search structure space; such 

procedures outperform traditional diversity-preservation mechanisms under spread-hardness situations.  

Several quality indicators have been proposed in Evolutionary Multi-Objective Optimization literature and 

some studies have been performed in order to evaluate their inferential power. However, such inferential 

power becomes restricted at the time of dealing with approximations to the Pareto-optimal front with 

similar convergence, therefore one will be interested in how well such approximations achieve one or more 

of the multi-objective evaluation goals (convergence, uniformity and spread) by means of which quality 

differences can be inferred. Most of the existent quality indicators have been conceived in the scope of 

such goals, therefore it will be helpful to use them in order to untie incomparable approximation to the 

Pareto-optimal front. Although, a study of how appropriate the quality indicators measure what they claim 

to assess has not been performed. In this PhD thesis is presented a summarized review and an empirical 

taxonomy framework based on multi-objective evaluation goals of most of the quality indicators found in 

literature (about 38 indicators). Two additional contributions are reported: a new quality indicator to 

measure spread within the approximation to the Pareto-optimal front and a methodology to compare 

performance of stochastic multi-objective optimizers. 

Additionally, RankMOEA is applied to approximate the Pareto Front of a Dynamic Principal-Agent model 

with discrete actions posed in a Multi-Objective Optimization framework, cutting edge modelling that 

allows to consider more powerful assumptions than those used in the traditional single-objective 

optimization approach. Within this new framework a set of feasible contracts is described, while other 

similar studies focus only on one single contract; hence a better economic analysis can be accomplished by 

characterizing contracts in the trade-off surface. RankMOEA performance is compared with those of 

other state of the art Multi-Objective Evolutionary Algorithms using the comparison methodology 

developed, the results suggest that RankMOEA is very effective in sampling from along the entire Pareto-

optimal front and distributing the generated solutions over the trade-off surface, this by showing better 

spread and minor convergence error. 
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 Chapter 1 Introduction 

 

 

 

[Where the world ceases to be the scene of our personal hopes and 

wishes, where we face it as free beings admiring, asking and observing, 

there we enter the realm of Art and Science…] 

Albert Einstein 
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1.1 MULTI-OBJECTIVE OPTIMIZATION 

nnumerable situations in the real world involve in natural way problems with multiple criteria or 

objectives to be optimized, such picture emerges frequently in scientific and engineering areas. Multi-

Objectives Optimization (MO), also called Multi-Criteria Optimization, studies the process of simultaneously 

taking optimal decisions in the presence of trade-offs between two or more conflicting objectives. This 

mathematical discipline was conceived in the middle of last century, starting from principles proposed by 

Koopmans [1] and Kuhn & Tucker [2], whose inspiration was based on Edgeworth [3] and Pareto’s [4] 

earlier works. MO is considerably more elaborate than the classical optimization approach, where the 

decision of an optimal point is trivial. 

Maximizing profit and minimizing the cost of a product, maximizing performance and minimizing fuel 

consumption of a vehicle, and minimizing weight while maximizing the strength of a particular component 

are examples of Multi-Objective Optimization Problems (MOPs). Since MO implies to optimize conflicting 

objectives subject to certain constraints, most of the time it is impossible to determine a unique solution. 

Hence, MOPs are characterized by a set of alternative optimal solutions that must be considered as 

equivalents given the lack of information about relevance of one objective with regard to the others; such 

set of solutions is discriminated based on dominance relations which entail a pre-order structure in a 

multidimensional objective function space. 

In MO a space for decision variables and a space for their objective functions evaluation are considered. In 

real valued functions, those two spaces are related by a mapping        . It is assumed that a solution 

to the MOP can be defined in terms of a decision vector   ,          -
  in the decision space   . 

The set of imposed constraints defines a feasible region      in the decision space along with its 

corresponding image      on the objective space, which involves the evaluation of every point in   

with the     conflicting objective functions  ( )  ,  ( )   ( )     ( )- that constitute the MOP, 

see Figure 1.1. 

By definition, there is a possibly infinite set of optimal solutions which are found at the frontier of   and 

are called the Pareto Optimal Front (   ), while their corresponding decision variables values in   are 

called the Pareto Optimal Set (   ). A solution   in     is Pareto optimal (also called non-dominated with 

respect to  ), which means that there is no other solution     for which  ( ) dominates  ( ) 

I 
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(denoted by  ( )   ( )).  ( ) is said to dominate  ( ) if and only if   improves any objective to 

optimize with respect to   without inducing some simultaneous deterioration in at least another objective, 

e.g. assuming only minimization  ( ) is partially less than  ( ), i.e.,          ( )    ( )      

    ( )    ( ). 

 

Figure 1.1 Decision and objective spaces in MO. A solution parameterization   is mapped by a vector function   into 
a vector in the objective space. 

In mathematical terms, without loose of generality, a MOP can be written as: 

   
 

 ( )

       
 (1.1) 

Since each Pareto optimal solution represents a different compromise among objectives, finding different 

Pareto optimal solutions implies finding the structure of the trade-off surface involved in the MOP. 

 

1.2 EVOLUTIONARY OPTIMIZATION 

Evolutionary Algorithms (EAs) are stochastic methods of search often applied to optimization [5]. As the 

history of the field suggests there are many variants of EAs. The common underlying idea behind all these 

techniques is an evolutionary analogy of the “survival of the fittest” which takes its inspiration from the 

  

𝒙 

𝑥  𝑥  

𝑓  

𝑓  

Ω   𝑛 Λ   𝑘 

Pareto Optimal Set 

𝑭(𝒙) 

𝑭 

decision space objective space 

𝑥3 
Pareto Front 
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modern evolutionary synthesis, where natural selection can be seen as a learning process which a long the 

time generates fittest individuals to survive in a defined environment. 

An EA maintains a set of individuals  ( ) or population of strings at each stage or generation  , each 

string    ( ) is also called chromosome and encodes a candidate solution to the problem’s domain 

(classically encoded in a binary string or real vector, but now in almost any conceivable representation). A 

mapping function   encapsulates the decoding algorithm to derive the decision vector    ( ) from  . 

As in nature, every individual has a fitness value associated to its performance in the environment, which is 

defined as an abstract measure of the maximizing quality function of the problem.  ( ) is evolved from 

generation   to generation     attempting to adapt itself to the difficulties of the environment by varying 

and selecting  the genetic material of the individuals (notion of inheritance), environment pressure causes 

natural selection, thus a rise in the fitness of the population is induced. Selection weeds out poor candidate 

solutions in generation   by favouring individuals according to their fitness, desirably fittest individuals are 

chosen to seed a pool of parents   ( ). Genetic material variation from parents is used to generate 

offspring, which compete based on their fitness with their parents for a place in generation    . This 

cycle of birth/death influenced by fitness is iterated until a candidate solution with sufficient quality is 

found or a previously set computational limit is reached. 

The combined application of genetic material variation and selection commonly leads to improving fitness 

values in consecutive generations, thus biasing solutions towards promising regions of the search space. It 

is easy to see such process as if the evolution is optimizing, or at least approximating, by approaching 

optimal values closer and closer over its course. Alternatively, evolution is often seen as a process of 

adaptation; from this perspective, the fitness is not seen as an objective function to be optimized but as an 

expression of environmental requirements, matching these requirements more closely implies an increased 

viability reflected in a higher number of offspring. The evolutionary process makes the population adapt to 

the environment better and better. 

The ability of EAs to maintain a diverse set of candidate solutions not only provides a way to escape from 

local optimum, but a way to cope with large and discontinuous search spaces. Besides, if several copies of a 

good solution can be maintained, it provides a natural and robust way of dealing with problems where 

there is noise or uncertainty associated with the assignment of fitness to candidate solutions. 



1  INTRODUCTION  
 

   6  

Genetic Algorithms (GAs) are one of the best known approaches in EAs, their abstraction of the modern 

evolutionary synthesis is at the level of individuals [6], thus mating and mutation are involved as methods 

of genetic material variation, with a pre-eminence of mating over mutation. Selected parents   ( ) are 

mated among them by swapping parts of their genetic material producing the intermediate generation 

   ( ); this mechanism accelerates search process by exploitation of the gathered information. Mutation 

provides diversity by performing a small random variation to a single element of    ( ), i.e. exploration of 

new regions in the search space, the offspring achieved after mutation is stored in     ( ). 

 

1.3 EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION 

In recent years, several stochastic search strategies have been developed and adapted in order to deal with 

MO, because most of the time the complexity of the underlying MOPs prevents close solution methods 

from being applicable [7], since generating     can be computationally expensive and often infeasible. 

Such strategies find Pareto Front approximations based on multiple execution of their optimizer algorithm. 

It is in the late 1960s, when Rosenberg suggested with a study in his PhD thesis [8] to apply EAs to MO, 

that the area known as Evolutionary Multi-Objective Optimization (EMO) was born. 

EAs viability to deal with MO is related to their population approach that suits well to find multiple 

solutions in the same algorithm execution, their diversity-preservation mechanism that can be exploited to 

keep heterogeneous candidate solutions, their ability to deal with search and multiple decision 

simultaneously, their implicit parallelism, among other some well-known intrinsic EAs advantages. 

Aforesaid features constitute EMO as a reliable methodology to achieve two ideal goals of MO: attaining 

good convergence to     and maintaining the distribution of the Pareto Front approximation as diverse as 

possible. 

Interest in EMO has considerably increased during the last two decades, when many Multi-Objective 

Evolutionary Algorithms (MOEAs) have been proposed. MOEAs constitute a promising approach to deal 

with real world MOPs [9], even they usually do not guarantee to identify optimal trade-offs, but to find 

good assessments, i.e., sets of solutions whose objective vectors are not too far away from    .  

One of the major heuristic experimental goals within EMO research is to compare well-engineered 

MOEAs in terms of efficiency and effectiveness as regards selected MOPs through the use of appropriate 
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metrics. These metrics are an essential part of a successful experimental methodology able to characterize 

accurately the performance of different algorithms. A trade-off between efficiency and effectiveness is 

always present in heuristic approaches. How to measure efficiency in the sense of computational effort has 

been widely studied along Computer Sciences history. Contrariwise, how to measure effectiveness in the 

sense of the accuracy and convergence of experimental outcomes is still an open problem in EMO. 

 

1.4 STATEMENT OF THE PROBLEM 

MOEAs have evolved by reformulating and improving some of their inherent elements as fitness 

assignment, diversity-preservation mechanism and elitism, a continuous improvement process is pursued. 

When solving real MOPs, good assortment of the Pareto Front approximation (       
 , outcome of the 

MOEA) is preferred since wider variety of heterogeneous solutions could give a better sight of the trade-

off surface. Thus, better spread and dispersion of the candidate solutions in        
  with good 

convergence towards     will contribute with important information of the approximated structure of 

   , giving rise to better informed decision making process by choosing the solutions in        
  that 

best meet with compromises among objectives. 

Therefore, the design of a MOEA that involves a robust diversity-preservation mechanism with non-

parameter definition compliant with search structure space and, consequently, able to achieve        
 s 

with low convergence error and good spread and dispersion is desirable. Furthermore, how to compare the 

performance of stochastic multi-objective optimizers is not clear at this time, since several effectiveness 

metrics (referred as quality indicators hereinafter) have been designed. Thus, a statistically confidence 

methodology which may discriminate and involve a suitable subset of quality indicators in order to assess 

MOEAs outcomes compliant with dominance relations between non-dominated sets could provide a first 

attempt to the problem of measuring outcomes effectiveness in EMO. 

1.4.A How to improve the diversity of MOEAs? 

Diversity-preservation mechanisms impulse divergence in tangential direction to the promising regions 

discovered by the MOEA, this through probability selection bias in less conglomerated regions. Most of 

the designed diversity mechanisms in EMO require parameters specification or are unable to deal with 
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incommensurable objectives or were not designed to be compliant with the search space. Hence, three 

premises are considered in order to design a new MOEA which emphasizes spread and dispersion of 

       
  and preserves equilibrium between exploitation and exploration: 

 Since Pareto dominance rules sort candidate solutions in a certain order according to their 

proximity to the frontier of  , some advantage can be taken from such arrangement by 

intensifying exploration in candidate solutions far from the frontier and reducing exploration in 

candidate solutions close to the frontier. This assuming that the first type of solutions does not 

have much information about     structure and need more effort to achieve a good performance. 

 The structure of the search is defined by   and not by  , thus, diversity preservation mechanisms 

should work better in   if they are compliant with   structure. Hence, exploitation of the 

information could be successful by mating nearby candidate solutions in   since such process is 

less disruptive. 

 In most of the cases, after a certain threshold in the evolutionary process of MOEAs, the number 

of non-dominated solutions grows rapidly, thus reduced mutation in solutions closer to the 

frontier of   that are less conglomerated in   should improve performance by controlling 

exploration and preserving the emphasized exploitation in such regions. 

1.4.B How to measure outcomes quality of MOEAs? 

A wide number of quality indicators (quality features of the found non-dominated solutions set or 

       
  expressed in a quantitative way) have been proposed in EMO literature along history, even 

though it is not obvious which of such indicators must be used in practice [10] [11]. Zitzler et al [12] 

propose that the number of indicators to use should be proportional to the number of objectives to be 

optimized; however, a wide stock of indicators does not guarantee a precise and detailed        
  

description. In addition, several studies have been performed in order to discriminate quality indicators by 

their inferential power, though, such inferential power becomes restricted at the time of dealing with 

       
 ’s with similar convergence, therefore one will be interested in how well        

  achieves one or 

more of the MO evaluation goals (convergence, uniformity and spread) by means of which quality 

differences can be inferred. Most of the existent quality indicators have been conceived in the scope of 

such goals, therefore it will be helpful to use them in order to untie incomparable        
 ’s. 
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Actually, several papers have included analysis from some indicators [10] [12] [13] [14] [15] [16] [17] [18].  

Although, a study of how accurately the quality indicators measure what they claim to assess has not been 

performed (in this case one or more MO evaluation goals), an important concern at the time to select the 

most adequate quality indicator(s). Thus, a summarized review and an empirical taxonomy framework 

based on multi-objective evaluation goals of most of the quality indicators found in literature should be 

accomplished in order to compose a methodology to compare performance of stochastic multi-objective 

optimizers. 

 

1.5 DISSERTATION CONTRIBUTIONS 

The main contributions of this thesis to achieve the degree of PhD in Computer Sciences are: 

 A new efficient and effective MOEA called RankMOEA, which includes a robust diversity-

preservation mechanism with non-parameters definition compliant with search space structure 

and able to accomplish good performance over spread-harness situations.  

 A methodology to compare the quality of outcomes of MOEAs, covering the analysis of most of 

the quality indicators known at the present, for this purpose the following sub-targets are 

achieved: 

 An empirical taxonomy framework of quality indicators based on MO evaluation goals 

accuracy, i.e. how well the quality indicator measures the MO evaluation goals, including 

important features (some have already been reported for a few indicators but not studied 

for all of them e.g. set dependence, evaluated characteristics, monotony, relativity, 

computational complexity), attempting to develop a guide to choose suitable quality 

indicators according to experimental goals. 

 A new quality indicator to measure spread within        
 s, achieving a more accurate 

assessment since former indicators offer a superior bound or are susceptible to 

convergence error and uniformity variation. 

 A methodology to quantify the outcomes quality of stochastic multi-objective optimizers 

and compare their performance, conceived as statistically confident and compliant with 

dominance relations between non-dominated sets, using only a suitable subset of quality 

indicators that fulfil requirements according to MO evaluation goals. 
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 Additionally, RankMOEA is applied to approximate the Pareto Front of a Dynamic Principal-

Agent model with Discrete Actions posed in a multi-objective optimization framework, cutting 

edge modelling that allows to consider more powerful assumptions than those used in the 

traditional single objective optimization approach. Within this new framework a set of feasible 

contracts is described, while others similar studies only focus on one single contract. The results 

achieved with RankMOEA show better spread and minor error than those obtained by already 

well-known MOEAs, allowing to perform better economic analysis by characterizing contracts in 

the trade-off surface. 

 

1.6 DISSERTATION OUTLINE 

The remainder of this PhD thesis is organized as follows. Chapter 2 includes a description of the key 

concepts in EMO, a brief overview of most relevant state of the art MOEAs and a summary of most of 

the MO quality indicators found in the literature. The proposed MOEA, called RankMOEA, which 

includes a new diversity-preservation mechanism with non-parameters definition is described in detail and 

tested over spread-harness situations in Chapter 3. A complete study of the summarized MO quality 

indicators with regard to the outperformance relations and the MO evaluation goals is shown in Chapter 4, 

also an experimental methodology to compare stochastic multi-objective optimizers is proposed and 

tested. Chapter 5 presents the performance comparison of RankMOEA versus some well-known MOEAs 

over various theoretical MOPs. Chapter 6 introduces the Dynamic Principal-Agent problem as a MOP, 

shows the outstanding        
  achieved with RankMOEA and presents some conclusions that can be 

deduced from the analysis of the achieved results. Finally, conclusions and future work are drawn in 

Chapter 7. 
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[It is not the strongest of the species that survives, nor the most 

intelligent that survives. It is the one that is the most adaptable to 

change…] 

Charles Darwin 





2 REVIEW OF THE LITERATURE  
 

   13  

2.1 INTRODUCTION 

n order to propose alternatives solution to the two main goals posed in this PhD thesis: improve 

MOEAs diversity and compose a methodology to compare performance of stochastic multi-objective 

optimizers, this chapter presents the review of the state of the art concerning to key issues in EMO, the 

idea behind some well-known successful MOEAs and a summarized review of most of the quality 

indicators found in literature (38 indicators). 

 

2.2 KEYS ISSUES IN EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION 

Zitzler [19] reformulates, in a general way, the optimization aspiration pursued when optimizing MOPs 

based on three goals: 

 The distance of the resulting        
  to     should be minimized. 

 The distribution of        
  should be uniform in most cases. 

 The spread of        
  should be maximized, i.e. for each objective a wide range of values should 

be covered by the non-dominated solutions. 

According to Zitzler, in the intention of achieving the aforesaid goals, two major problems must be 

addressed when an EA is applied to MO: 

 How to accomplish fitness assignment and selection, respectively, in order to guide the search 

towards    . 

 How to maintain a diverse population in order to prevent premature convergence and achieve a 

well distributed and well spread        
 . 

In the following, a categorization of general techniques which deal with these issues is presented; the 

modified usage of elitism is also included, given that its notion interacts with both situations. 

 

 

I 
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2.2.A Fitness Assignment and Selection 

Within EMO, the way in which fitness is assigned and selection is performed is modified in order to deal 

with several objectives simultaneously.  Three types of fitness assignment and selection are distinguished in 

the state of the art [9] [19]: aggregation-based, objective-based and Pareto dominance-based. 

Aggregation-Based Fitness Assignment 

The objectives to be optimized are combined into one single linear or nonlinear parameterized function; 

the parameters of such function are not changed for different optimization runs, but systematically varied 

during the same run. The potential bias towards convex portions of     may restrict the effectiveness of 

this approach. 

Objective-Based Fitness Assignment 

The most suitable sequence of the objective(s) to be optimized is chosen during the selection phase, i.e., 

only one subset of objectives is optimized at the time by the entire population or by portions of the entire 

population. E.g. initially only the most important objective is optimized, as the population evolves more 

objectives are consecutively considered in the process according to their pre-eminence [20]; the mating 

pool (selected parents) is filled with equal portions according to the distinct objectives [21]. This approach 

may have bias towards extreme solutions and be sensitive to non-convex    . 

Pareto Dominance-Based Fitness Assignment 

Every individual in the population is ranked according to the Pareto dominance concept, the rank of an 

individual determines its fitness value where it is clearly related to the whole population, contrariwise to the 

abovementioned techniques where the raw fitness of an individual is calculated independently of the other 

individuals. Several distinctive rules to rank have been conceived along EMO history, the first one was 

proposed by Goldberg [5], whose idea is to assign rank one to all non-dominated individuals in the 

population and temporarily remove them from the population, then, the next non-dominated individuals 

are assigned rank two and also temporarily remove them from the population, then, the next non-

dominated individuals are assigned rank three and so forth (see Figure 2.1 a). Equation (2.1) describes this 

recursive Pareto rank rule where    ( ) and    ( ). 
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     (   )  8
 iff     ( )  ( )   ( )

   
   ( )  ( )  ( )

[     (   )]   otherwise  (2.1) 

Fonseca & Fleming [22] proposed a Pareto rank rule where every individual has a rank equivalent to the 

number of individuals that dominate it increased by one, thus non-dominated individuals have rank one 

(see Figure 2.1 b). This Pareto rank rule is defined in Equation (2.2). 

      (   )  |*   ( )  ( )   ( )+|    (2.2) 

In 1998, an innovative Pareto rank rule which involves an off-line population       
 ( ) that stores all 

non-dominated individuals found up to generation   was proposed by Zitzler & Thiele [23]. The rank for 

each individual in  ( ) is computed with the strength of the individuals in       
 ( ) that dominate it, the 

strength of an individual   in       
 ( ) is proportional to the number of population members it 

dominates,          
  |*     ( )   ( )   ( )+| where    ( ) (see Figure 2.1 c). Equation 

(2.3) describes this Pareto rank rule. 

      (   )  ∑
         

 

| ( )|   
        

 ( )  ( )  ( )

   (2.3) 

Van Veldhuizen [24] proposed in his PhD thesis a simpler Pareto rank rule defined in Equation (2.4), here 

non-dominated individuals get rank zero and dominated individuals get rank one (see Figure 2.1 d).  

      (   )  2
 iff |*   ( )  ( )   ( )+|   
 otherwise

 (2.4) 

Later, Zitzler & Thiele [25] improved their previously proposed Pareto rank rule in order to avoid the 

situation that individuals dominated by the same       
 ( ) members have identical fitness values, within 

this new approach for each individual dominating and dominated individuals are taken into account (see 

Figure 2.1 e). In detail, the rank of an individual in  ( ) is composed by a redefined strength value 

         
   |*    * ( )        

 ( )+   ( )   ( )+| of individuals in  ( ) and       
 ( ) that 

dominate it and a density estimate incorporated as the inverse of the distance in the objective space to the 

k-nearest neighbour in  ( ) and       
 ( ). As a common setting, they proposed to use k as the square-

root of the sample size. Equation (2.5) describes this Pareto rank rule, where two is added in the 

denominator of the density estimate to ensure that its value is greater than zero and less than one. 
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       (   )  ∑          
  

  { ( )       
 ( )}  ( )  ( )

 
 

          
 

  
 (2.5) 

 

Figure 2.1 Graphic examples of Pareto rank rules: a) Goldberg b) Fonseca & Fleming c) Zitzler & Thiele first version 
d) Van Veldhuizen e) Zitzler & Thiele improved version. 

2.2.B Elitism 

Elitism or an elitist strategy is a mechanism which ensures that the chromosome(s) of the most highly fit 

member(s) of  ( ) are passed on to the next generation without being altered in order to prevent losing 

them due to sampling effects or operators disruption. In EMO, elitism is extended to the concept of an 

offline population       
 ( ), which stores all non-dominated solutions found up to epoch  . The set of 

decision vectors decoded from       
 ( ) is        ( ), and its corresponding image in   is 

       
 ( ). Since generally     is an infinite set, the maximum size of       

 ( ) must be taken in 

consideration by physical memory restrictions, thus most of the time its growth is controlled, e.g. using 
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mechanisms of clustering or truncation. Two classes of elitism can be distinguished within the EMO 

approach: isolated and interactive. 

Isolated Elitism 

      
 ( ) can act only as a repository unit to store non-dominated individuals, it is updated along the 

evolutionary process. 

Interactive Elitism 

      
 ( ) can be interactive, which means that besides being updated it can cooperate in the evolutionary 

process by selecting new parents from it to generation    . 

2.2.C Diversity Preservation Mechanisms 

A simple EA tends to converge towards a single solution and often losses solutions due to three effects: 

selection pressure, selection noise and operator disruption [23]. To overcome this problem, which is 

known as genetic drift, several methods called diversity-preservation mechanisms have been developed, the 

ones most frequently used in EMO are briefly summarized here. A diversity-preservation mechanism 

attempts to impulse divergence in tangential direction to the promising regions discovered by the MOEA, 

this through probability selection bias towards less conglomerated regions. 

Fitness Sharing 

Fitness sharing is a niching mechanism which was proposed by Goldberg & Richardson [26]; a niche 

describes the relational position of a species or population in its ecosystem to each other, i.e., how an 

organism or population responds to the distribution of resources and competitors and how it in turn alters 

those same factors. In EMO, individuals in the same niche have presumably similar features and, as in 

nature, they have to share available resources; thus the fitness value of a certain individual is more 

degraded as more individuals are located in the same niche; such idea allows to maintain stable 

subpopulations (niches) providing additional selective pressure. The niche size        defines a 

neighbourhood in terms of distance between individuals and can be measured in the genotype ‖   ‖, the 

phenotype ‖   ‖ or the objective space ‖ ( )  ( )‖ (see Figure 2.2 a). Mathematically, the shared 

fitness     of an individual   is equal to its raw fitness divided by its niche count, see Equation (2.6). 
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∑   (‖   ‖)   ( )
 (2.6) 

An individual’s niche count is a measure of how saturated is its niche, it is computed as the sum of sharing 

function values   (‖   ‖) between itself and the individuals in  ( ), sharing functions commonly used 

are of the form shown in Equation (2.7) where        regulates the shape of the function   (‖   ‖). 

  (‖   ‖)  ,  4
‖   ‖

      
5

      

if ‖   ‖        

 otherwise

 (2.7) 

Restricted Mating 

Restricted mating [22] is a mechanism which ideally limits mating to individuals with similar genetic 

material, thus it is expected that offspring with similar features to their parents can be generated. It is 

preferred to mate individuals within the same niche since it may avoid the formation of lethal individuals 

and therefore improve the online performance by controlling diversity (see Figure 2.2 b). In a homologous 

way to fitness sharing, the parameter of niche size       should be defined. 

Reinitialization 

Reinitialization of the whole or parts of  ( ) after a certain number of generations or whenever the search 

stagnates is a way to prevent premature convergence that was proposed by Fonseca & Fleming [27]. 

Clustering 

Zitzler & Thiele [23] proposed to involve a hierarchical clustering as a mechanism to maintain diversity. In 

their approach the offspring in generation   and the individuals in       
 ( ) compete for a place in 

generation    , thus a selection of survivors compliant with their good distribution in the objective space 

should be used. Initially every individual is seen as a cluster, distance between clusters is computed in  , 

the two clusters with the minimum distance between them are combined into a single cluster, this process 

continues until there are as many clusters as individuals that can be preserved to generation    . The 

centroid in every cluster is selected as the individual to be preserved. The main drawback of this approach 

is that tends to delete individuals whose projection in        
 ( ) is an exterior solution. 
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Grid Mapping 

A mechanism that attempts to maintain a uniform sampling of the solutions over     using a grid 

mapping was suggested by Knowles & Corne [28]. This procedure recursively divides   into hypercubes, 

so it is possible to compute the density of every hypercube as the number of individuals that it contains 

(see Figure 2.2 c), thus an individual with high density in the hypercube that contain it has less probability 

to survive when        
 ( ) is redefined. A priori knowledge of the geometric structure of     is 

necessary in order to define the most appropriate number of divisions in every dimension of   . 

 

Figure 2.2 Graphic examples of diversity-preservation mechanisms: a) Fitness sharing b) Restricted Mating c) Grid 
Mapping d) Crowding e) Truncation. 

Crowding 

Crowding, proposed by Deb et al [29], was conceived with the idea of non-parameter definition; this 

mechanism estimates the density of the projection in   of an individual by taking the average distance of 

the two points on either side of such projection along each of the objectives. This quantity, called 
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crowding distance, serves as an estimate of the size of the largest cuboid enclosing the aforesaid individual 

without including any other individual in  ( ). The higher the crowding distance of an individual, the 

higher the disaggregation of the points surrounding its projection in  , whereas lower the crowding 

distance of an individual, higher the concentration of the points surrounding its projection in   (see Figure 

2.2 d). The crowding distance can be used to bias selection in the evolutionary process towards a uniformly 

spread out        
 . 

Truncation 

In order to improve the clustering approach, Zitzler & Thiele [23] proposed to use a truncation 

mechanism when       
 ( ) exceeds its limit size. The idea is to maintain a highly representative sampling 

of       
 ( ) by deleting iteratively an individual of       

 ( ) until its size is suitable. The individual to 

be deleted is the one with the minor distance to its closest neighbour in  , in case of a tie, the distance to 

the second closest neighbour is considered and so forth (see Figure 2.2 e). 

 

2.3 SOME WELL-KNOWN MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 

Six MOEAs whose diversity-preservation mechanisms and features have had significant contributions to 

EMO research are briefly summarized in the following. Such MOEAs have been chosen with the purpose 

of studying their advantages and drawbacks in order to propose a new MOEA in this PhD thesis. Table 

2.1 draws the most relevant features (evolutionary approach, fitness assignment, diversity-preservation 

mechanism, parents’ selection and elitism) of every MOEA here described.  

VEGA 

The Vector Evaluated Genetic Algorithm (VEGA) was proposed by Schaffer [21], it is a GA with objective-

based fitness assignment and generational elitism, i.e., no offline population is used. VEGA modifies the 

selection process in order to favour survival of the best individuals in every objective and those that are 

better than the average in more than one objective.   ( ) is generated by shuffling   subpopulations, every 

subpopulation is formed by | ( )|  ⁄  individuals chosen with regard to one of the   objectives to be 

optimized. VEGA evolves  ( ) until build a suitable set of solutions to the MOP. Although some serious 

drawbacks are known, as instability to search in concave    s and inability to create middling individuals, 

this algorithm has been used as a strong point of reference up to now. 
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MOGA 

The Multi-Objective Genetic Algorithm (MOGA) was proposed by Fonseca & Fleming [27] [30], it is a GA 

with Pareto dominance-based fitness assignment and isolated elitism. MOGA was innovative with its 

fitness assignment process by attempting to avoid the genetic drift effect. Fitness assignment is performed 

with Fonseca & Fleming’s Pareto rank rule using an interpolation function (usually linear but no 

necessary). Then fitness sharing is applied in order to maintain a controlled selective pressure, the niche 

count is computed in   with an infinity norm ‖ ‖ , thus it is expected that  ( ) may evolve with a 

uniform distribution. In order to generate   ( ), restricted mating and reinitialization are utilized. 

NPGA 

The Niched Pareto Genetic Algorithm (NPGA) was proposed by Horn et al [31], it is a GA with Pareto 

dominance-based fitness assignment and generational elitism. NPGA enhances selection process by using 

a modified version of tournament selection with replacement called tournament by Pareto dominance. In 

tournament by Pareto dominance two candidates to tournament and a comparison subset     ( )  

 ( ) are randomly chosen, |    ( )|  *       | ( )|   +, every candidate is compared with     ( ), 

if any of both is dominated by     ( ) and the other is not, the one that is non-dominated is the winner., 

contrariwise if both are dominated or non-dominated a fitness sharing modification called equivalence 

class sharing is used, here the winner is the candidate whose niche count in the phenotypic space is lower. 

NSGA-II 

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) was proposed by Deb et al [29], it is a GA with 

Pareto dominance-based fitness assignment and interactive elitism. NSGA-II was one of the first attempts 

to avoid parameter definition; the main idea is to create layers of individuals (also called sub-Pareto Fronts 

approximations) according to its dominance using Goldberg’s Pareto rank rule and crowding.   (   ) is 

generated from       
 ( ) and     ( ) using a binary tournament with replacement considering in a 

hierarchical pre-eminence the rank and crowding distance. NSGA-II outstanding efficiency is because of 

reducing multiple objectives optimization to one single criterion using the non-dominated sorting. 

SPEA2 

The Strength Pareto Evolutionary Algorithm 2 (SPEA2) was proposed by Zitzler et al [25], it is an EA with 

Pareto dominance-based fitness assignment and interactive elitism. SPEA2 is inspired in immune systems 

approach; it uses       
 ( ) to evaluate  ( ) fitness with Zitzler & Thiele’s improved Pareto rank rule, 
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while       
 ( ) is updated with non-dominated individuals in       

 (   ) and  (   ). Given that 

      
 ( ) should always keep the same size that  ( ), two situations can occur: if       

 ( ) exceeds 

such size a truncation process is used to achieve a reduced representation, if       
 ( ) lacks of such size 

it is complemented with dominated individuals. In order to generate   ( ), a binary tournament with 

replacement is performed over       
 ( ); non exceptional modifications over mating or mutation are 

used. 

Table 2.1. Summarized features of VEGA, MOGA, NPGA, NSGA-II, SPEA2 and PAES. 

MOEA 
Evolutionary 

Approach 
Fitness 

assignment 

Diversity-
preservation 
mechanism 

Parents’ 
Selection 

Elitism 
Offline 

population 
growth 

VEGA 
Genetic 

Algorithm 
Objective-

based 
– 

Cooperative 
subpopulations 

– – 

MOGA 
Genetic 

Algorithm 

Fonseca & 
Fleming’s 

Pareto rank 
rule 

Fitness sharing, 
restricted 

mating and 

reinitialization 

Proportional 
selection 

Isolated No limit 

NPGA 
Genetic 

Algorithm 
Pareto rank 

rule 
Equivalence 
class sharing 

Tournament by 
Pareto 

dominance 
– – 

NSGA-II 
Genetic 

Algorithm 

Goldberg’s 
Pareto rank 

rule 
Crowding 

Binary 
tournament with 

replacement 
from offline 
population 

Interactive 
Limited by non-

dominated 
sorting 

SPEA2 
Evolutionary 

Algorithm 

Zitzler & 
Thiele’s 

improved 
Pareto rank 

rule 

Truncation 

Binary 
tournament with 

replacement 
from offline 
population 

Interactive 
Limited by 
truncation 

PAES 
Evolutionary 

Strategy 
– Grid mapping – Interactive 

Limited by 
sorted inclusion 

 

PAES 

The Pareto Archived Evolution Strategy (PAES) was proposed by Knowles & Corne [28], it is an Evolutionary 

Strategy with Pareto dominance-based fitness assignment and interactive elitism. PAES is conceived under 

a reproductive scheme (   ), i.e., a unique parent generates a unique offspring, thus only mutation can 

be conceptualized.       
 ( ) is used as an historical record of comparison versus every offspring. Once 
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an offspring is generated by mutation,       
 ( ) update is performed if such offspring is non-dominated 

by the parent or by any individual in       
 ( ), when       

 ( ) exceeds its maximum size, grid mapping 

is used to eliminate an individual within the region of higher density. The offspring becomes the parent in 

the next generation only if it dominates the parent or it is located in a region with lower density according 

to grid mapping in the current generation. 

 

2.4 QUALITY INDICATORS IN EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION 

This section summarizes contributions accomplished by Srinivas & Deb [32], Schott [33], Gong et al [34], 

Esbensen & Kuh [35], Fonseca & Fleming [36], Van Veldhuizen [24], Van Veldhuizen & Lamont [37] [13], 

Zitzler [38], Zitzler & Thiele [39] [40], Zitzler et al [12], Hansen & Jaszkiewicz [41], Wu & Azarm [14], 

Knowles et al [18], Deb & Jain [10], Czyzak & Jaszkiewicz [42], Leung & Wang [43], Meng et al [44], 

Lizárraga et al [45] and Li & Zheng [46]. Indicators acronyms are modified in some cases to simplify its 

future categorization. Due to indicators work over        
 ( ) or        

 , in this section the term 

solution refers to a point in any of this sets. 

Spacing Distribution (SD) 

Srinivas & Deb [32] developed a measurement schema to know how well distributed each solution is over 

the non-dominated region. They propose to divide the non-dominated region in   subspaces, expressing 

distribution horizon from solutions as in Equation (2.8). 

   (∑(
    ̅ 

  
)
 

   

   

)

 
 ⁄

 (2.8) 

where  ̅  is the expected number of non-dominated solutions for the i-th subspace,    the number of 

solutions which are non-dominated within the i-th subspace, and    the standard deviation of the expected 

number of non-dominated solutions for the i-th subspace defined in Equation (2.9). 

    ̅ 4  
 ̅ 

|       
 |

5 (2.9) 
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The (q+1)–th subspace represents the dominated region, thus  ̅     . Based on a statistic study [32] 

demonstrated      to be defined as in Equation (2.10). 

     ∑  
 

 

   

 (2.10) 

Distribution is ideal if there are  ̅  solutions in each subspace      .  

Extended Spacing Efficiency (ESE) 

Schott [33] proposed a dispersion indicator based on distance variation among nearby solutions from 

       
  called Spacing Efficiency (  ). Afterward, Gong et al [34] generalized    to k–dimensions, 

amplifying the idea by proposing progressive integration of solutions cluster with minor distance.    

extension is defined in Equations (2.11) and (2.12). 

    (  

|       
 |   

 ∑ [ ̅      
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|       
 |
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(2.11) 

    
     

 ( )            
 

 ( ) {       
             

 }

∑ |  ( )    ( )|
 

   
 

(2.12) 

where            
         

          |       
 |,          

             
  * ( )+, by 

definition          
  contains the first solution in        

  and  ̅ is the minimum average distance among 

every two solutions in        
  described in Equation (2.13). 

 ̅  
∑     

 |       
 |

   

|       
 |

 (2.13) 

An equidistance spacing among every        
  point occurs       . 

Weighted-Sum Aggregation (WSA) 

Esbensen & Kuh [35] proposed an indicator based on the creation of linear combinations with certain 

probability distribution; each linear combination denotes Decision Maker (DM) possible preferences. For 

each linear combination, every vector solution from        
  is evaluated with the purpose of calculating 
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the minimum weighted-sum, the        
  quality is obtained as the average of the minimum weighted-

sums, as in Equation (2.14). 

    

∑ [    
 ( )        

 
   ( ( ))]

|  |
   

|  |
 

(2.14) 

where        is the j-th linear combination. 

Performance Assessment through Attainment Surfaces (PAAS)  

Fonseca & Fleming [36] developed a non-parametric statistical procedure to quantitatively measure the 

relative performance among different multi-criterion optimizers. Each multi-criterion optimizer is executed 

  times, storing in each iteration the achieved        
 . From each        

  is possible to divide   into 

two regions: 

 objective vectors whose correspondent decision vectors are not dominated by at least an element 

of        
 , and 

 objective vectors whose correspondent decision vectors are dominated by at least an element of 

       
 . 

Such limit function adjusts achieved objective vectors, named as attainment surface. An attainment surface 

combines information about solutions convergence and dispersion (see Figure 2.3 a). When attainment 

surfaces from each multi-criterion optimizer execution are overlapped in the same graphic, it is possible to 

visualize (see Figure 2.3 b): 

 an area from   which contains the never achieved vectors in any optimizer execution, lower left 

section, 

 an area from   which contains the always achieved and improved vectors in any optimizer 

execution, upper right section, and 

 an area from   which contains achieved vectors in some optimizer executions, section enclosed 

between extreme attainment surfaces. This area can be subdivided in smaller ones based on 

executions percentage with achieved objective vectors. 



2 REVIEW OF THE LITERATURE  
 

   26  

 

Figure 2.3 Performance Assessment through Attainment Surfaces in bi-objective  : a) comparison between 
interpolation and the attainment surface from solutions set, b) overlapping of three attainment surfaces, c) attainment 
mid-surface construction from the intersection between an attainment surfaces set and a straight line which denotes 

solutions order in the sample. 

When   executions are considered, it is possible to compute attainment mid-surfaces from using auxiliary 

straight lines, diagonal to axes and in the same direction as criteria improvement, and the sample of its 

intersections with the achieved attainment surfaces (see Figure 2.3 c). It is possible to evaluate samples 

represented by the mid-surface attainment involving convergence and dispersion statistically detailed. Such 

process gives feasible estimations to support comparison among optimizers in terms of the best 

performance optimizer; however, its disadvantages are not enough clarity to express how different the 

performance is and the fact that it was designed to bi-dimensional spaces that is why its visualization in 

more complex spaces is difficult. 

Found Ratio of Pareto Front (FRPF) 

Error Ratio (  ) was a first attempt to model this quality indicator. Gong et al [34] extended this definition 

to be able to use any set    (where    can be:    ,        
  from another MOEA, or an arbitrary set   

defined by the user), measuring the percentage of        
  solutions which form the absolute Pareto 

Front in relation to        
  and   , see Equation (2.15). 

     
|* ( )         

    ( )      ( )   ( )+|

|       
 |

 (2.15) 
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Attainment surface Interpolation 
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where   ( )         
   ( )      ( )   ( )         and   ( )         

   ( )  

    ( )   ( )        . 

Generational Distance (GD t) and Generational Convergence Velocity (GCV)  

Van Veldhuizen & Lamont [13] [24] [37] introduced     as the average distance between        
  and    

in the t-th MOEA generation; i.e. the deviation from        
  with regard to    in a specific evolution 

time, see Equation (2.16). They also modified the definition of progress measure proposed by Bäck [47] in 

order to define     from    , as in Equation (2.17). 

    
(∑ [    

 ( )   
‖ ( )   ( )‖ 

 ] ( )        
 )

 
 ⁄

|       
 ( )|

 
(2.16) 

      (
   

   
)

 
 ⁄

 (2.17) 

       
         . 

Overall Non-dominated Vector Generation (ONVG) and Overall Non -dominated 

Vector Generation Ratio (ONVGR) 

Schott [33] proposed to measure the total amount of non-dominated vectors found during MOEA 

execution, as in Equation (2.18). Later on, this indicator was extended by Van Veldhuizen & Lamont [13] 

as the percentage of non-dominated solutions, see Equation (2.19). 

     |       
 | (2.18) 

      
|       

 |

|  |
 (2.19) 

       
            . 

Generational Non-dominated Vector Generation (GNVG) 

In general, a MOEA adds at each evolutionary step non-dominated solutions found during current 

generation          
  to        

 ( ). Van Veldhuizen [24] proposed to monitor the amount of non-

dominated solutions along evolutionary process as quality measure, Equation (2.20).  
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     |         
 ( )| (2.20) 

where          
 ( ) represents non-dominated solutions found during the t-th MOEA’s generation. 

Hypervolume (H) 

Zitzler & Thiele published in [40] a        
  error measure in reference to lower boundaries (worst value) 

from each objective:   
   

          . H is obtained from covering hypervolumes merging formed by 

each solution in        
  as in Equation (2.21). 

  {⋃    (  )         
 

 

} (2.21) 

where    is the covering hypervolume for the objective vector corresponding to i-th decision vector (see 

Figure 2.4 a). 

Coverage of Two Sets (CTS) 

Zitzler & Thiele proposed in [39] [40] a relative covering comparison between two sets, based in the 

number of dominated solutions in both sets. Let       be two decision vectors sets to be compared. 

Mapping ordered pairs (   ) into the interval ,   - can be mathematically expressed as Equation (2.22). 

   (   )  
|* ( )      ( )     ( )   ( )+|

| |
 (2.22) 

In other words, previous equation computes the percentage of non-dominated elements in the second 

objective vectors set by elements from first set. By definition       if every objective vector in   is 

dominated by  .   ( )     ( )   ( )  ( )         , otherwise   ( )     ( )  

 ( )  ( )         . Both    (   ) and    (   ) must be considered, since     is not 

necessarily the empty set.     disadvantage, just like     , is its inability to express how different the 

performance is. 
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Coverage Difference of Two Sets (CDTS) 

Zitzler defined in [19] a new indicator attempting to solve     inability to express differences in 

performance magnitude. Let       be two decision vectors sets to be compared, the size of the space 

weakly dominated by   but not by   is computed in Equation (2.23). 

    (   )   (   )   ( ) (2.23) 

It is said that  ( ) strictly dominates  ( ) (denoted by  ( )    ( )) if and only if   improves all 

objectives to optimize with respect to  , e.g. assuming only minimization  ( ) is less than  ( ), i.e., 

         ( )    ( ).      if and only if   ( )     ( )     ( )    ( ). Thus      

    (   )        (   )   . 

Probability of Superiority (PS) 

Hansen & Jaszkiewicz [41] proposed to statistically measure how much better a solutions set is over 

another by computing integration over a utility functions set   , see Equation (2.24). 

  (        )  ∫  (     ) (  )   

     

 (2.24) 

where the performance comparative function between two solutions sets   and   is given by Equations 

(2.25) and (2.26). 

 (      )  ,

 if    ( )     ( )

   if    ( )     ( )

 if    ( )     ( )
 (2.25) 

   ( )     
 ( )  

  ( ( )) (2.26) 

 (  ) is an intensity function which expresses the probability of the utility function   ,          

  is DM’s preferences model which relates each point from the objective space with an utility value, it is 

assumed that DM task is to maximize utility. Therefore, it is possible to assure that    states the DM’s 

preference rate over a solutions set in reference to another.   (        )      (        ). [41] 

also suggested to use Equation (2.27). 
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   (      )    (        ) (2.27) 

such that   is an arbitrary reference set common to every set to be evaluated. Nevertheless, measurements 

produced by    will greatly depend on the defined   set. In order to eliminate such influence, it is useful 

to consider more than one   set.    drawbacks are the number of   ’s needed, their respective intensity 

functions, computational cost and the fact that it only performs comparisons in an homologous way to 

   . Two final generalizations of  (      ) were presented as alternatives in [41]: 1) more than only two 

solutions sets and 2) a group of reference sets. 

Expected Degree of Superiority (EDS) and Expected Proportion of Superiority 

(EPS) 

In order to solve the    conflict, Hansen & Jaszkiewicz [41] defined in a homologous way to     , two 

indicators to express magnitude of difference in the superiority level from a solutions set over another. 

The first one measures the expected degree of superiority, while the second one, anticipates that in certain 

cases is more significant to measure the percentage of the best profit values instead of the discrepancies. 

Mathematically, these two quality indicators can be expressed as in Equations (2.28) and (2.29). 

   (        )  ∫ (   ( )     ( )) (  )   

     

 (2.28) 

   (        )  ∫
   ( )     ( )

   ( )
 (  )   

     

 (2.29) 

   (        )      (        ). In an analogous way to    :     (      )   

   (        ) and     (      )     (        ). 

Maximum Pareto Front Error (MPFE) 

This indicator specifies the line possessing maximum error with regard to        
  containing each vector 

in    , based on the computation of the maximum distance between each objective vector in        
  

and the closest element from the corresponding     [9] [24]. Initially, it was defined for bi-objective 

problems and can be mathematically expressed as in Equation (2.30). 



2 REVIEW OF THE LITERATURE  
 

   31  

        
 ( )    

[    
 ( )        

 
,|  ( )    ( )|

  |  ( )    ( )|
 -]

 
 ⁄

 (2.30) 

However, its extension to k–dimensions is hypothetically possible.        
            . 

Non-dominated Vector Addition (NVA) 

It defines the amount of non-dominated vectors from cardinal difference between        
 s in different 

generations [24], see Equation (2.31). 

    |       
 ( )|  |       

 (   )| (2.31) 

where        
 ( ) represents non-dominated solutions found until t-th MOEA’s generation. 

Average Distance to Pareto Front (ADPF) 

Zitzler et al presented in [39] a function to measure the average distance from        
  to     using the 

Equation (2.32). 

     
∑ [    

 ( )    
‖ ( )   ( )‖] ( )        

 

|       
 |

 (2.32) 

Distribution of the Found Pareto Front (DFPF) 

Zitzler et al [39] proposed to measure        
  uniformity as combination of its distribution and its 

cardinality with Equation (2.33).  

     
∑ |* ( )         

  ‖ ( )   ( )‖   +| ( )        
 

|       
 |   

 (2.33) 

where   is a neighbourhood parameter. High uniformity exist       |       
 | and high swarming 

       . 
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Extent of the Found Pareto Front (EFPF) 

The last indicator proposed by Zitzler et al [39] takes in count        
  spread and is defined in Equation 

(2.34). 

     (∑[    
 ( )  ( )        

 
‖  ( )    ( )‖]

 

   

)

 
 ⁄

 (2.34) 

Hypervolume Difference (HD) 

Wu & Azarm [14] suggested a performance measure based on covering hypervolumes difference between 

two solutions subsets, they defined Equation (2.35). 

        ( (  )   (       
 )) (2.35) 

where      ( ) is a scaling function which maps the objective space into ,   -, (see Figure 2.4 b). 

Knowles et al [18] proposed a similar indicator but without scaling. 

Overall Pareto Spread (OPS) and k th Objective Pareto Spread (OPSk) 

Wu & Azarm [14] defined two indicators to quantify how widely dispersed        
  is in   when 

objectives are considered as a whole. The first one,    , provides a global sight of        
  uniformity, 

see Equation (2.36); the second one,     , quantitatively measures solutions range with regard to each 

objective in an individual way, see Equation (2.37). 

    
   (       

 )

   
 (2.36) 

     |    
 ( )        

 
  ( )     

 ( )        
 

  ( )| (2.37) 

where    (       
 ) defines the hypervolume formed by extreme points from        

  and     is the 

hypervolume delimited by upper and lower values of each objective (see Figure 2.4 c). 
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Figure 2.4 Bi-dimensional illustration of a) covering Hypervolumes for objective vectors b) HD between two 
objective vectors sets c) OPS and d) AOPF. 

Accuracy of the Observed Pareto Front (AOPF) 

Wu & Azarm [14] introduced      as the inverse of the frontier approximation to        
 , see 

Equation (2.38). 

     .       ( (       
 ))       (   (       

 ))/
  

 (2.38) 

where     is the superior covering hypervolumes merging of dominated solutions from        
  (see 

Figure 2.4 d).      computes the percentage of the area in white inside    , it is easy to see that 

       
  solutions better distributed and closer to superior objectives values will let       . 
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Number of Distinct Choices (NDC µ) 

High |       
 | does not necessary imply more options to the MOP, some solutions could be too close, 

i.e. variations between them can be indistinguishable. In a strict way, only strongly distinguishable solutions 

should be counted. Let   ,   - be a defined k–dimensional division value, it is possible to divide the 

scaled k–dimensional   in (  )
  

 grids, each grid is a k–dimensional hypercube,   ( ) is specified as the 

indifferent region, i.e. the space where any two solutions are considered as indistinguishable. Wu & Azarm 

[14] defined      as in Equation (2.39). 

     ∑  ∑ ∑    (                   
 )

 
 ⁄

    

 
 ⁄

    

 
 ⁄

    

 (2.39) 

   (                   
 )  {

 if   ( )         
   ( )    (           )

 otherwise
 (2.40) 

where             is the grid identifier to be explored. 

Cluster (CLµ) 

According to Wu & Azarm [14], cluster phenomenon cannot be correctly interpreted by     . Then they 

proposed Equation (2.41), an additional indicator able to achieve such phenomenon: 

    
|       

 |

    (       
 )

 (2.41) 

A        
  posseses good uniformity if every solution is found in different   ( )       . The 

       
  clustering index is greater than 1 as     is.  

Running Metric for Convergence (RMC) and Running Metric for Diversity (RMD)  

Deb & Jain [10] proposed the use of two indicators during MOEA evolutionary process, arguing that 

information about how a MOEA achieves final population has not been commonly analysed. The first 

execution indicator is    , which is defined in Equation (2.42) and computes a ratio from minimum 

normalized Euclidian distance between each element in the          
 ( ) and an arbitrary reference 

decision vectors set   to be compared on          
 ( ) cardinality. The second indicator,     defined in 
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Equation (2.43), evaluates          
 ( ) uniformity, i.e., each solution vector is projected into a hyperplane 

from the objective hyperspace, one dimension is reduced during this process. The hyperplane is divided 

into a mesh of   grids, each grid is a (k–1)–dimensional hyperarea. 

     

∑ 6    
 ( )  

6∑ |
  ( )    ( )
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 ( )          
 

|         
 ( )|

 
(2.42) 

normalized with       
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 (2.43) 

where              
 is the grid identifier to be explored and 

 (             
  )  ,

 if  (             
)    

  ( )                   
 

 ( )  ( )    (             
)

 otherwise

 (2.44) 

 (             
)  {

 if   ( )         
   ( )    (             

)

 otherwise
 (2.45) 

                 
 

 ( ) represents non-dominated solutions from          
 ( ) by        

 , 

            . (             
)/ provides an evaluation by analysing  (             

) values in the 

             
 neighbourhood. 

Average Distance (AD) and Worst Distance (WD)  

Czyzak & Jaszkiewicz [42] proposed indicators to measure convergence error based on distance between 

solutions from two decision vectors sets. Let       be two decision vectors sets to be compared. The 

first proposal measures the average distance from solutions in set   with regard to the closest solution in 

set  , while the second one evaluates the worst distance instead of the average, see Equations (2.46) and 

(2.47) respectively. 
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where a weighted vector   ,          - is defined in advance    |    ( )    ( )  

    ( )    ( )|
  

. 

Indicator   (  ) 

Knowles et al [18] and Zitzler et al [12] suggested a quality indicator   which compares two solutions sets 

     . Two versions of such indicator exists: multiplicative    and additive    . The   indicator 

computes the minimum value   by which each  ( )    is modifed in order to make it worse than any 

 ( )   . The multiplicative version is defined in Equation (2.48). 

      
   

*  ( )     ( )    ( )  ( )   +     
 ( )  

6    
 ( )  

6    
         

  ( )

  ( )
77 (2.48) 

where  ( )    ( )    ( )     ( )          . It is said that  ( ) weakly dominates  ( ) 

(denoted by  ( )   ( )) if and only if  ( )   ( ) or  ( )   ( ), e.g. assuming only minimization 

         ( )    ( ).   is better than   (denoted by    ) if and only if   ( )     ( )  

   ( )   ( )     . Thus         ,          and         . The additive 

version is defined in Equation (2.49). 
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,  ( )    ( )-1] 
(2.49) 

where  ( )     ( )    ( )      ( )          ,          ,           and 

         . 
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U-measure 

Leung & Wang [43] proposed an indicator to measure uniformity by computing the discrepancy among the 

distance between neighbours of each solution in every   . First, domains in the Pareto frontier (  
   

 and 

  
   

) are determined. Next, to every    abstraction of   two extreme solutions (computed by   
   

 and 

  
   

) are added. Then for every    abstraction and every solution two nearest neighbours are found (one 

in every    direction), for every extreme solution the nearest neighbour is found. Then for every solution 

and extreme solution at every    abstraction, the distance     between its neighbours is computed in   and 

valuated using Equation (2.50). 
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 (2.50) 

where    (|       
 |   ),    |       

 | are the extreme solutions at    whose     are computed by 

the distance between them and their closest neighbour and modified by adding     non-extreme solutions 

average,        ∑ ∑      |       
 |  

 
    ⁄ . 

Uniformity of the Pareto Optimal Set (UPOS)  

Meng et al [44] suggested a quality indicator to measure uniformity in order to improve Schott [33] works. 

     is defined in Equation (2.51). 
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   (     ̅)  8
    ̅⁄ if      ̅

 ̅    ⁄ otherwise
 (2.53) 

where  ̅ is the minimum average distance among every  ( )         
 . If      gets an equal value for 

two        
 s, then each        

  is reduced by the union of the two closest solutions and      is 

recalculated. 
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Well-Extended of the Pareto Optimal Set (W-EPOS) 

Meng et al [44] also attempted to measure        
  well-extent by computing for every solution in a    

(which may be the     or the non-dominated solutions achieved by several runs) the average distance to 

the closest solution in        
 , it is mathematically expressed in Equation (2.54). 

       

∑    
 ( )        

 
‖ ( )   ( )‖ ( )   

|  |
 (2.54) 

G-metric 

Lizárraga et al [45] proposed         , a n-ary indicator that ranks        
 s based on their 

convergence and dispersion. Initially every vector in every        
  must be normalized using the 

maximum and minimum value of the non-dominated solutions product of the union: ⋃   
 
   . Then two 

components are computed for every    and combined to create a number that represents its relative 

performance respect to the others                   . The first component is calculated by means of 

the outperformance relation    [41], classifying every    according to the partial order that    gives by 

levels, e.g. the first level includes those    so that                               . The second 

component is calculated from the zone of influence of every  ( )    , computing regions of integration 

for every solution with a radius  , avoiding intersecting zones. 

Spread Assessment (SA) 

Li & Zheng [46] suggested    to quantify how widely         
  spreads over  . The idea is to compute 

the hypervolume product (with   
   

  ) of every              , set of boundary solutions in the i-th 

       
  projection      , where such projection is on *                   +. The average value of 

   is computed for every projection:    ∑   ( ) |       
 |⁄ ( )        

 . The total assessment of    is 

computed using Equation (2.55). 
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 Chapter 3 RankMOEA 

 

 

 

[Small minds are concerned with the extraordinary, great minds with 

the ordinary…] 

Blaise Pascal 
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3.1 INTRODUCTION 

iversity-preservation mechanisms impulse divergence in tangential direction to the promising 

regions discovered by the MOEA, this through probability selection bias in less conglomerated 

regions. Most of the designed diversity mechanism in EMO require the specification of parameters, or are 

unable to deal with incommensurable objectives, or were not designed to be compliant with the search 

space. Hence, three premises are considered in order to design a new MOEA (called RankMOEA) which 

emphasizes spread and dispersion of        
  and preserves equilibrium between exploitation and 

exploration: 

 Since Pareto dominance rules sort candidate solutions in a certain order according to their 

proximity to the frontier of  , some advantage can be taken from such arrangement by 

intensifying exploration in candidate solutions far from the frontier and reducing exploration in 

candidate solutions close to the frontier. This assuming that the first type of solutions does not 

have much information about     structure and need more effort to achieve a good performance. 

 The structure of the search is defined by   and not by  , thus, diversity preservation mechanisms 

should work better in   if they are compliant with   structure. Hence, exploitation of the 

information could be successful by mating nearby candidate solutions in   since such process is 

less disruptive. 

 In most of the cases, after a certain threshold in the evolutionary process of MOEAs, the number 

of non-dominated solutions grows rapidly, thus reduced mutation in solutions closer to the 

frontier of   that are less conglomerated in   should improve performance by controlling 

exploration and preserving the emphasized exploitation in such regions. 

The first and third premises are related with exploration, recent works [48] [49] have shown the advantage 

of using exploration applied with probabilities that depend on the fitness rank of a genotype or phenotype 

in single objective problems, such approach has shown to be a robust alternative since it avoids some 

questions of mutation rates tuning without having to introduce an explicit encoded self-adaptation 

mechanism. Thus, the ideas behind RankMOEA are motivated by appealing to previous theoretical 

analysis [48] that show how different landscapes and population states require different mutation rates to 

dynamically optimize the balance between exploration and exploitation. 

 

D 
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3.2 RANKMOEA DESCRIPTION 

RankMOEA extends the rank mutation presented in [48] [49] to the MO framework, overcoming the 

mutation fine tuning drawbacks and promoting a controlled diversity according to Pareto dominance and 

the degree of conglomerate. RankMOEA is described in Figure 3.1. 

RankMOEA (  ) 

1      

2 random initialization of each individual    ( ) 

3     ( ) evaluate   ( ( ))      

4           ( )       (   ( ))     ( )  

5       
 ( )              ( ( ))  

6 do while    stopping criterion 

7        ( )           ( ( ))  

8         ( )             .  ( )  ( )/  

9          ( )               .   ( )/ 

10             ( ) evaluate   ( ( ))      

11                   ( )       .   
   ( )/        ( ) 

12            
 (   )              (*      

 ( )      ( )+)  

13      if |      
 (   )|        

14                 
 (   )            (      

 (   )      ) 

15            (   )        
 (   ) 

16      else 

17           sort *    ( )        
 (   )+ by           {    ( )       

 (   )} ascendant  

18            (   )  *      
 (   )  *    ( )        

 (   )+,        |      
 (   )|-+ 

19      end if 

20            

21 end do 
 

Figure 3.1 RankMOEA. 

First, a set of       individuals are initialized as the early population    ( ) and evaluated in the set of   

objectives to be optimized (lines 1 to 3). Then, Goldberg’s ranking is used to sort non-dominated and 

dominated individuals (line 4): 



3 RANKMOEA  
 

   43  

     (   ( ))  8
 iff     ( )  ( )   ( )

   
   ( )  ( )  ( )

[     (   ( ))]   otherwise  (3.1) 

By definition, non-dominated individuals in  ( ) have ranking value of 1, thus individuals closer to such 

non-dominated individuals in   have lower ranking values. Goldberg’s ranking was preferred since it 

allows smoother ranking landscapes of Pareto domination. RankMOEA uses an interactive online file 

       
 ( ) to store continuously its approximation to     (line 5). During the evolution process only 

      ⁄  of the parents  ( ) are chosen (line 7) by the selection procedure. 

Mates of the       ⁄  parents are chosen using a minimum spanning tree niching which works over the 

phenotypic space (line 8). This mechanism builds a minimum spanning tree in   including all individuals in 

 ( ), distance in   is computed normalizing every phenotypic feature which allows to handle 

incommensurable variables. In this approach, niches are not isolated elements, moreover they are elements 

partially coupled by the tree structure (see left side of Figure 3.2). Since each individual in the minimum 

spanning tree can be connected with more than one individual, every    ( ) is weighted with Equation 

(3.2). 

   ( )  
 

     (   )  4  
 

         ( ( ))
5

 
(3.2) 

where          ( ( )) counts the number of decision vectors (produced by mapped individuals) 

connected to  ( ) in the minimum spanning tree. So individuals with lower Goldberg ranking value and 

lower arity (conglomerate measure) in   will accomplish a higher value of    ( ), a hierarchical 

preference of ranking over arity is denoted. 

In order to select the mates of the       ⁄  parents, a stochastic selection process (e.g. stochastic universal 

selection) can be used with    ( ) as the desirability of selection, including all the neighbours of the 

parent in the minimum spanning tree, then parents will be mated with less conglomerated individuals 

whose projection in   is closer to        
 . It is important to observe that there is no need to define a 

proximity value. This procedure can be performed using Chazelle’s algorithm [50] which is based on the 

soft heap, the most asymptotically efficient known structure to find the minimum spanning tree. Its 

running time is  (   (   )), where   is the number of edges and   is the classical functional inverse of 
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the Ackermann function. The function   grows extremely slowly, so that for all practical purposes it may 

be considered a constant no greater than 4; thus Chazelle’s algorithm takes very close to linear time. 

 

Figure 3.2 Minimum spanning tree niching and ranking mutation. 

The proposed rank mutation considers pre-order, the intrinsic inconvenient of MOPs. Rank mutation (line 

9) consists of the definition of a mutation rate range and the assignment of a uniformly distributed 

mutation rate to individuals according to their inherited    ( ) value, i.e. individuals with lower Goldberg 

ranking value and lower arity will get a lower mutation rate and individuals with higher Goldberg ranking 

value and higher arity will get a higher mutation rate, denoting tight exploration in the neighbourhood of 

individuals closer to     and widespread exploration in the neighbourhood of individuals farther from 

    (see right side of Figure 3.2). 

When the entire population is non-dominated, tight exploration is performed in the neighbourhood of 

individuals with lower arity and widespread exploration in the neighbourhood of individuals with higher 

arity. The mutation rate range will be specified by a minimum and maximum mutation rates,      and 

     respectively, and divided into       steps to generate the deterministic rule of choosing the mutation 

rate. So the mutation rate of the i-th individual in    ( ) sorted in descendant order according to    ( ) 

is        (         ) (       )⁄ . According to [48] a natural range to cover any eventuality is 

       and          ⁄ , where   is individual length (when working with binary representation), 

however if there is knowledge of the vicinity of the optimum, and the population is in the vicinity, then a 
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lower      may be appropriate. Mutation range remains fixed during entire evolution. Since mutation only 

requires to sort individuals in order to assign the mutation rate, this step has a complexity of 

 (             ). 

Thereafter, RankMOEA evaluates the offspring in the set of   objectives and ranks them with Goldberg’s 

ranking (lines 10 and 11).       
 ( ) is updated with new non-dominated individuals (line 12). Finally, if  

      
 ( ) size is larger than      , a truncation process proposed in [23] is used to reduce its size (lines 14 

and 15) and the  (   ) is constituted by such reduction; else  (   ) is constituted by       
 ( ) and 

a controlled insertion using ranking based selection of the best offspring that were not already included in 

      
 ( ) (lines 17 and 18). 

The speed performance of RankMOEA is ruled by the mutation process, therefore the computational 

complexity of RankMOEA can be calculated as  (             ), which makes it a fast algorithm, worthy 

to compete with other state of the art MOEAs. 

 

3.3 TESTING RANKMOEA 

In the following tests some well-known MOEAs (VEGA, MOGA, NPGA, NSGA-II, SPEA2 and PAES) 

were used to compare the performance of RankMOEA. The seven MOEAs used binary-coded 

chromosomes, one point crossover and bit-wise mutation. VEGA, MOGA and RankMOEA were tested 

using the stochastic universal sampling, PAES its natural reproductive scheme, while NPGA, NSGA-II 

and SPEA2 were tested using their tournament selection operator. MOGA’s restricted mating, NPGA’s 

equivalence class sharing, NSGA-II’s crowding, SPEA2’s k-nearest neighbour, PAES’s grid mapping and 

RankMOEA’s minimum spanning tree niching were implemented in the phenotypic space. 

The mating rates used for the seven MOEAs were: 70%, 80% and 90%. The mutation rates used for 

VEGA, MOGA, NPGA, NSGA-II and SPEA2 were 1%, 2%, 3%, 4%, 5% and 6%, whereas for 

RankMOEA      was set to 0% and      to 6%. A precision of 0.001 was set for each variable in the 

phenotype. The seven algorithms were run 30 times with each mating-mutation configuration, the average 

behavior of each configuration was assessed using a version of          [45] to work in  , the n-ary 

quality indicator that ranks        
 s based on the their attained dispersion and convergence. 
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3.3.A Spread-hardness Test 

The first test was designed to examine the robustness of the diversity-preservation mechanisms of the 

seven MOEAs by finding a good diversity of the solutions in  . A function with three reference points 

            in a bidimensional   was defined; the idea is to minimize the distance to such reference 

points, i.e.,     (  )  ,  (  )   (  )  3(  )- with   (  )  ‖      ‖ , where     (   ),     (   ), 

  3  (   ) and subject to    ,   -      . It is clear that    is formed by all the points located within 

the triangle constituted by the three reference points. It is expected that a diversity-preservation 

mechanism with good performance and compliant with   structure will achieve a quasi-uniform spread. A 

population and        
 ( ) size of 50 individuals with 20,000 objective function evaluations were 

considered. Figure 3.3 shows the best approximation to    achieved by the best run of the best mating-

mutation configuration of each MOEA according to the average of          over the 30 runs.  

The best mating-mutation configuration of MOGA, NSGA-II, SPEA2, PAES and RankMOEA found 

enough non-dominated solutions to complete        
 ( )  until its boundary size, while best mating-

mutation configuration of VEGA and NPGA only found 20.9 and 41.3 non-dominated solutions in 

average respectively. By sorting MOEAs’ performance according to the average of          over the 

30 runs of their best mating-mutation configuration, the following order is accomplished: RankMOEA, 

SPEA2, NSGA-II, PAES, MOGA, NPGA and VEGA; where clearly VEGA achieves the worst 

distribution and RankMOEA the best distribution. 

3.3.B Complicated Pareto Set Test 

The second test was performed using the UF4 problem from the CEC’09 contest [51], a MOP with 

complicated    which demonstrated to be a very hard problem even for the best algorithms that 

participated in MO contest in CEC’09. Figure 3.4 shows the best        
  achieved by the best run of the 

best mating-mutation configuration of each MOEA according to the average of          over the 30 

runs. A population and        
 ( ) size of 100 individuals with 300,000 objective function evaluations 

were considered. The best mating-mutation configuration of NSGA-II, SPEA2 and RankMOEA found 

enough non-dominated solutions to complete        
 ( )  until its boundary size, while best mating-  
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Figure 3.3 VEGA, MOGA, NPGA, NSGA-II, SPEA2, PAES and RankMOEA best approximation to Spread-
hardness test. 
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mutation configuration of VEGA, MOGA, NPGA and PAES only found 28.1, 98.8, 30.4 and 92.9 non-

dominated solutions in average respectively. By sorting MOEAs’ performance according to the average of 

         over the 30 runs of their best mating-mutation configuration, the following order is 

accomplished: RankMOEA, NSGA-II, SPEA2, MOGA, PAES, NPGA and VEGA. RankMOEA achieves 

the best spread and the lowest convergence error, followed by NSGA-II with worse spread and by SPEA2 

with worse convergence error; on other hand MOGA, PAES, NPGA and VEGA show poor performance. 

In Chapter 5 several additional experiments with different MOPs are shown. 

 

Figure 3.4 VEGA, MOGA, NPGA, NSGA-II, SPEA2, PAES and RankMOEA best approximation to Complicated 
Pareto Set test. 
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[Common sense is not so common…] 

Voltaire 
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4.1 INTRODUCTION 

everal quality indicators classifications have been proposed in EMO field attempting to described 

dissimilarities among them and discriminate which ones should be used in practice. A very early 

quality indicators classification divides them in: unary indicators, which take a single        
  as argument 

and assign a real number that reflects a quality aspect; binary indicators, which take two        
 s as 

arguments and assign them a real number that reflects the relative quality of the first one with regard to the 

other one; n-ary indicators, which, in analogous way to binary indicators, analyse more than two        
 s at 

the same time; and a last branch which assess performance through attainment surfaces. Despite this 

classification and indicators variety, quality indicators advantages and drawbacks are not clear, hence 

Hansen & Jaszkiewicz [41] proposed a first attempt to inferential power quantification by means of three 

“outperformance relations”: 

 Complete outperformance. Let   and   be two different        
 s,   completely outperforms   (      ) if 

  ( )   ,   ( )     ( )   ( ). 

 Strong outperformance.   strongly outperforms   (      ) if   ( )   ,   ( )     ( )   ( )  

 ( )   ( ) and   ( )  (  )  ( )     (  )    such  ( )   (  ). 

 Weak outperformance.   weakly outperforms   (      ) if   ( )   ,   ( )     ( )   ( )  

 ( )   ( ) and   ( )    such  ( )   . 

It is clear that         . Additionally, Hansen & Jaszkiewicz [41] studied whether certain quality 

indicators were compatible with each outperformance relation. In order to enhance Hansen & Jaszkiewicz 

[41] study, Zitzler et al [12] provided a rigorous analysis of quality indicators inference power limitations, 

aiming to define what statements can be made on the basis of the information provided by quality 

indicators. 

Zitzler et al [12] first important contribution was the formal definition of comparison method, conceived 

from a boolean function which combines one or more quality indicators in order to offer measures 

interpretation. Let         *          + be a function mapping vectors with length   of real 

numbers to boolean values,   the feasible solutions space,    an  -ary quality indicator:      
   , and 

  (          ) a combination of quality indicators. A comparison method that only considers unary 

indicators is defined as     (   )   ( ( )  ( )), meanwhile one that only considers binary indicators is 

S 
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defined as:      (   )   ( (   )  (   )), where  (  )  (  ( 
 )   ( 

 )     (  )) and  (     )  

(  ( 
    )   ( 

    )      (     )),        . The second important contribution of Zitzler et al [12] 

was coupling comparison method concept with dominance relations, i.e., the agreement with the most 

general notions in terms of dominance relations between        
 s (see Table 4.1) under two conditions. 

Let   be a dominance relation between        
 s: 

 Compatibility. The comparison method      is denoted as  -compatible, if either for any      : 

    (   )      or     (   )     , sufficient condition. 

 Completeness. The comparison method      is denoted as  -complete if either for any      : 

        (   ) or         (   ), necessary condition. 

Table 4.1. Dominance relations between sets of non-dominated solutions. 

Dominance Relation Description 

  strictly dominates          ( )     ( )     ( )    ( ) 

  dominates         ( )     ( )     ( )   ( ) 

  is better than         ( )     ( )     ( )   ( )      

  weakly dominates         ( )     ( )     ( )   ( ) 

  and   are incomparable     neither     nor     

 

Despite that Zitzler et al [12] gave a proof to verify a theorem that states that in the general case, it is not 

possible to create a compatible and complete unary comparison method, Lizárraga et al [52] recently 

demonstrated that under practical conditions, the afore mentioned theorem does not hold, giving two 

possibilities: to find another demonstration for theorem or to demonstrate that a compatible and complete 

unary comparison method is possible in practice. 

In spite of such deductions, a compatible and complete comparison method is restricted in its inference 

power, as it is unable to distinguish among        
 s with incomparable dominance between them but 

with features that clearly make one better than other one in a none preference objective space. Because in 

many cases when none of the compared        
 s improves the other within dominance relations, one 

will be interested in whether there are MO evaluation goals by means of which quality differences can be 
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inferred. Such features have been already defined [39] [34] in order to compute quality in a quantitative way 

(       
 s accuracy, tendency and concordance): 

 Convergence, it describes how well and how fast        
  progress towards    (where    can be: the 

real Pareto front    ,        
  from another MOEA, or an arbitrary set   defined by the user), i.e. 

how close        
  is from    (error) and how quick        

  approximates to    in relation to the 

evolution process (speed). 

 Uniformity, it describes how appropriate        
  distribution is, meaning the relative distance among 

solutions; most of the time a homogeneous dispersion is ideal.  

 Spread, it describes how appropriate        
  extension is; a wider        

  involves more options. 

 

Figure 4.1 Two incomparable approximation to the Pareto Front by a compatible and complete comparison method, 

  is clearly preferable over   by MO evaluation goals. 

Uniformity and spread imply broader solution choices. Convergence requires a search towards    , while 

uniformity and spread  require  a search along    , thus convergence could be seen as orthogonal to 

uniformity and spread. These MO evaluation goals allow to establish certain judgments when        
 s 

have similar closeness to    . Figure 4.1 shows an example of two Pareto fronts indistinguishable by 

dominance relations (or a compatible and complete comparison method) but clearly distinguishable by 

MO evaluation goals. Using MO evaluation goals to untie incomparable        
 s requires an 

appropriated knowledge of indicators accuracy with regard to evaluation goals, though, as it was 
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mentioned before, such study has not been performed. The present empirical framework is proposed as a 

guide to know how well an indicator measures what it claims to assess, e.g. each one of the MO evaluation 

goals. 

This chapter presents a new indicator to measure spread, the experimental design and conditions that 

attempt to classify quality indicators according to the MO evaluation goals, a detailed analysis and 

discussion of achieved results, and also the description and test of a proposed methodology to compare 

stochastic multi-objective optimizers. 

 

4.2 A NEW INDICATOR: AVERAGE SPREAD OF THE FOUND PARETO FRONT (ASFPF) 

Since some quality indicators assess only a superior bound with similar    , and others are susceptible to 

uniformity (as it will be seen in the experiments section), we propose a new quality indicator that attempts 

to achieve a more accurate measure of spread independent of        
  uniformity and/or convergence. 

Average Spread of the Found Pareto Front (     ) is an improved quality indicator inspired in Lizárraga et al 

[45] and Li & Zheng [46] works, conceived as an n-ary indicator.       is computed as follows: 

1. To avoid convergence dependence,        
 s are classified according to the partial order that    

gives by levels as in         . Let     be the  -th        
  in the dominance level  , where 

              . 

2.    sets of     are obtained from every     as in         is the set of boundary solutions in the  -

th     projection       where only *                   + are involved.  

3.     computation can be seen as the non-dominated solutions choice of     in the projection 

subspace   by minimizing and maximizing dominance,          (   
 )       (   

 ). Due 

to different number of solutions can be expected from both process according to     distribution, 

it is necessary to normalize the amount of boundary solutions implicated in order to avoid 

uniformity dependence. It is achieved by computing the minimum number of solutions in the 

dominance process of minimization and maximization of every     of     by level, by calculating 

       
  

|     (   
 )| and        

  
|     (   

 )|, and restricting      (   
 ) and 
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     (   
 ) cardinality to such bounds by truncation process [25], obtaining    

 , which are new 

    versions keeping original spread but with homogeneous cardinality in the projection   and the 

dominance level  . 

4. Every    
  is normalized within the subspace defined by minimum and maximum projection 

      computed only with    
  from the same projection   and the same dominance level  . 

5. The     spread is calculated as the size of the space covered by    
 , measured by Hypervolume 

indicator, over    
  centroid. The total assessment result       for     is computed as in 

Equation (4.1). 

      (∏
 (   

 )

∑   ( ) |   
 |⁄ ( )    

 

 

   
)

 
 ⁄

 (4.1) 

When comparing        
 s, the        

  with a larger       value has a wider spread. 

 

4.3 EXPERIMENT DESIGN 

The aim of this section is to describe the experiments performed to study quality indicators previously 

shown within MO evaluation goals (convergence, uniformity and spread) in order to perform an empirical 

taxonomy framework, this through analysing the accuracy and stability of the achieved quality assessment 

in different    s. 

4.3.A Experiment Goal 

Four experiments are performed with the aim of visualizing the effectiveness of quality indicators. The 

first experiment attempts to detect if indicators performance is affected by        
  shape. The second 

experiment evaluates if indicators performance is affected by        
  relative position. The third 

experiment pursues to determine indicators performance with regard to MO evaluation goals. The fourth 

experiment evaluates how robust are the indicators that measure spread. 
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4.3.B Experiment Description 

Experiment 1 

Two        
 s are used to evaluate quality indicators sensitivity shape:          and         with the 

same convergence, uniformity, spread and number of solutions but different convexity (see Figure 4.2 a) 

[53]. 

Experiment 2 

Five        
 s are used to evaluate quality indicators sensitivity to        

  relative position with regard 

to    :   ,   ,  3,    and    with the same convergence, uniformity, spread and number of solutions but 

they are located in different zones in relation to     (see Figure 4.2 b) [53]. 

 

Figure 4.2 Pareto Fronts used in a) Experiment 1 and b) Experiment 2. 

Experiment 3 

Several synthetic        
 s with representative characteristics with regard to MO evaluation goals are 

generated. Thus starting in a       (initial    ) with specific characteristics, several artificial        
 s are 

constructed through       degeneration on each MO evaluation goal (see Figure 4.3 a). Such process can 

be viewed as the construction of artificial        
 s cube formed by circumscribed cubes, where each 

inner cube represents a synthetic        
 , the origin contains       and as it moves away, MO evaluation 

goals are deteriorated (see Figure 4.3 b). Any        
  located at the same distance from the origin with 
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regard to an axis, has the same value in the evaluation goal related to such axis.      s with different shape 

(concave, concave-convex and disjoined) in two and three dimensions are used (see Figure 4.4), 

normalizing them  within an unitary square or cube. Synthetic        
 s construction can be 

contextualized as three nested procedures: convergence error increase, uniformity loss and spread 

deterioration, hence such procedures can be viewed as creating synthetic        
 s vectors parallel to 

error axis. Procedures to degenerate MO evaluation goals are explained as follows. Let         be a 

synthetic        
  with spread deterioration level  , uniformity loss level   and convergence error level  . 

As       has the best feasible convergence, uniformity and spread:              . 

 

Figure 4.3 Synthetic Pareto Fronts generation: a) describes evaluation criteria dimensions b) represents the total set of 
synthetic Pareto Fronts generated. 

Spread is degenerated by                   , where      is the forbidden boundary subspace at 

the spread deterioration level  . By definition      * +,      { ( )       |  ( )  

        
  ( )     (   )    ( )          

  ( )     (   )      }, where    (   )  

 (            )⁄  [        
  ( )          

  ( )],              and          is the 

amount of circumscribed cubes by goal axis, gathering         
3
 synthetic        

 s (see Figure 4.3 b). 

Spread is degenerated by gradually deleting solutions sections at the boundaries of       (see Figure 4.5 a). 

Uniformity is lost by                         , where        is the forbidden inner subspace at the 

uniformity loss level   within        , by definition        * +,        2 ( )       |  ( )  
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  ( )     (     )    ( )            

  ( )         3, where    (     )  

 (          )⁄  0          
  ( )            

  ( )1. Uniformity is lost by gradually deleting 

solutions within a subspace located at the extreme of         keeping boundary points to guarantee 

controlled spread degeneration (see Figure 4.5 a). 

Since this experiment pursues to find out how well quality indicators measure each MO evaluation goal in 

independent way, a “good uniformity” is kept despite spread degeneration, “good uniformity” in the sense 

of an appropriated (equidistant) distribution within the         boundary solutions progressive 

degenerated, not in the sense of an appropriated distribution according to      . This approach will allow 

to determine indicators sensibility to spread and uniformity correlation. It is easy to observe that the 

cardinality of synthetic        
 s decrease according to spread and uniformity deterioration, which is why 

      with cardinality large enough to allow synthetic        
 s generation with at least            was 

used. In a similar way, aiming to avoid comparative inequality by having        
 s with low spread-

uniformity deterioration level and high cardinality in one hand, and in the other one        
 s with high 

spread-uniformity deterioration level and low cardinality, a truncation process [25] was performed before 

starting incremental error phase, guarantying artificial        
 s with homogenous cardinality. As       

was created using a known function, every solution in any         is equidistance over the hyper-curve to 

its closest neighbours, except for the outer and inner boundary solutions in         (it is important to 

remark that such distance is measured over the hyper-curve and not as Euclidian distance). 

Finally, the convergence error is increased by           {       
         

           
    

       
 }, where        

          and 2       
 

        
 3

               
  ,  such sets are created by 

inclusion of vectors belonging to         according to a lexicographic sorting where the sorting index will 

associate every  ( )          to an specific        
 , preserving homogeneous cardinality in every 

       
 . At every  , convergence error level is augmented as   ( )         

(   )    
   ( )    ( )  

            , where the increasing rate           {    ( )  ( )      
|  ( )    ( )|       }. 

Note than despite of alternate error increase, initial lexicographic sorting is not affected due to        

definition. Convergence error is increased by incrementing a specific        
  at every iteration process 
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Figure 4.4 Experiment 3: PFinis used with different shape (concave, disjoined and concave-convex) in two and three 
dimensions. 
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with        (see Figure 4.5 b), such error expression was conceived instead of a simple progressive 

deterioration attempting to include performance improvement relations described in [41]. For this 

experiment two configurations are used:               and      to visualize a detailed 

performance panorama, and              and     to visualize a general performance panorama. 

 

Figure 4.5 Graphic illustration of synthetic Pareto Fronts degeneration, lowest curve represents PFini: a) progressive 
error degeneration is showed aiming to clearly view extension and dispersion degeneration b) error alternate increase 

with L=2 and edge_size=4. 

Experiment 4 

Four        
 s are used to evaluate quality indicators robustness in measuring        

  spread:   ,   , 

 3 and    with the same convergence, number of solutions and extreme solutions in each axis, 

equidistance solutions but different spread (see Figure 4.6). Even Experiment 3 is able to determine if 

quality indicators measure spread with no influence of convergence or uniformity, some indicators can 

only get a superior bound for some    s family, thus this experiment is added with the aim to show 

      superior performance over other spread indicators.  
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Figure 4.6 Pareto Fronts used in Experiment 4. 
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uniform distribution ,   - is used to create them using a proportional intensity function for each vector 
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maximum aggregation sum and Chebyshev distance). ‖ ‖  is used for every indicator that uses a non-

predefined norm.      and      indicators are not included in experimentation due to their graphics as 

values of utility are difficult to interpret. Concerning to indicators which measure convergence speed 

(   ,     ,     and    ), they are not evaluated through synthetic        
 s, rather a MOEA 
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applied to a specific MOP is used. Experiment 3 only involves quality indicators that measure spread. 

Finally, neither      nor       are included in Experiment 4 due to their evaluated characteristics are 

not compatible with the MO evaluation goals, since        
 s with same indicator value could have very 

different MO evaluation goals levels. 

 

4.4 RESULTS AND DISCUSSION 

4.4.A Results of Experiments 1 and 2 

Results of Experiment 1 and 2 are shown in Table 4.2, and summarized in Table 4.4 columns 9 and 10. A 

quality indicator independent of        
  convexity gets the same value for          and        , 

meanwhile, a quality indicator independent of        
  relative position gets the same value for every 

        . Quality indicators that show convexity and relative position independence are:   ,    , 

    ,     ,      ,    ,     ,     ,     ,    ,          and      . 

4.4.B Results of Experiment 3 

As a result of evaluating quality indicators with synthetic        
 s, three behaviour graphics were obtained 

by every       by every experiment configuration for each indicator in a three-dimensional space: 

uniformity-convergence, spread-convergence and spread-uniformity. In every case, the axis   represents 

quality indicator estimation, whose value is computed as the average of the synthetic        
 s contained 

in the parallel vector to the MO evaluation goal absent in the graphic. Goal axis scale of behaviour 

graphics is denoted by 1 as the best synthetic        
  and 0 as the worst synthetic        

  in the related 

MO evaluation goal. Due to      s with different shape-scalability were used and that most of the 

indicators show normal changes in their behaviour according to       type, graphics of 3D-concave       

are included and indicated only in situations where different      s shape clear up extra information. The 

same applies to experiment configuration, most of the time a general panorama is visualized; only when 

detailed panorama gives extra information such graphic is shown and explained. Every behaviour graphic  
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Table 4.2. Results of Experiment 1 and 2. 

Quality 
Indicator 

                                

   10 10 10 10 10 10 10 

    0.0120 0.0120 0.0068 0.0068 0.0068 0.0068 0.0068 

    0.3762 0 0.452 0.451 0.4 0.2 0 

     0 0 0 0 0 0 0 

   0.2189 0.1812 0.2708 0.2310 0.2161 0.2310 0.2708 

     17 17 12 12 12 12 12 

      1.7 1.7 1.2 1.2 1.2 1.2 1.2 

  0.2972 0.4390 0.1669 0.2866 0.3266 0.2866 0.1669 

    1 1 1 1 1 1 1 

     0.7027 0.5609 0.8330 0.7133 0.6733 0.7133 0.8330 

   0.6772 0.3781 1 0.9845 0.7564 0.9845 1 

   -0.002 -0.003 0.001 -0.002 -0.003 -0.002 0.001 

    0.001 0.002 0.001 0.002 0.003 0.002 0.001 

     0.8413 0.7868 0.9083 0.8495 0.8495 0.8495 0.9083 

     0.8977 0.7377 0.9363 0.7995 0.7486 0.7995 0.9363 

     15 15 6.5454 6.5454 6.5454 6.5454 6.5454 

     0.9995 0.9995 0.6321 0.6321 0.6321 0.6321 0.6321 

   0.7027 0.5609 0.8330 0.7133 0.6733 0.7133 0.8330 

    0.4990 0.4990 0.1996 0.3193 0.3592 0.3193 0.1996 

     3.8130 3.8130 1.5567 2.4822 3.0958 2.4822 1.5567 

     17 17 12 12 12 12 12 

    0.5882 0.5882 0.8333 0.8333 0.8333 0.8333 0.8333 

    6.321 6.982 5.269 5.257 5.789 5.257 5.269 

   0.501 0.501 0.801 0.601 0.5521 0.601 0.801 

   0.501 0.501 0.801 0.601 0.5521 0.601 0.801 

   0.4995 0.4995 0.7992 0.5994 0.4685 0.5994 0.7992 

    -0.504 -0.504 -0.207 -0.405 -0.534 -0.405 -0.207 

  measure 1.2623 1.2623 1.3044 1.2841 1.2748 1.2841 1.3044 

     4.5244 3.6043 1.1142 1.2032 3.6983 1.2032 1.1142 

       0.0416 0.0364 0.0687 0.0601 0.0601 0.0601 0.0687 

         0.7831 0.7831 0.6624 0.6624 0.6624 0.6624 0.6624 

   1.7093 2.4200 1.7622 1.8849 1.9015 1.8849 1.7622 

      6 6 18 18 18 18 18 
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is interpreted according to optimum value of quality indicator (  ,     and     imply     in the 

evaluation set   ). For facilitating discussion understanding use Table 4.4. 

After analysing every indicator behaviour three possible views in MO evaluation goals were found: 1) the 

indicator measures only one MO evaluation goal; 2) the indicator measures more than one MO evaluation 

goal considering them with the same pre-eminence; and 3) the indicator measures more than one MO 

evaluation goal considering them with different pre-eminence level; such views are determined by 

observing slope of behaviour graphics, e.g. largest slope implies highest pre-eminence. With Pareto 

compliant indicators conception [18], indicators classification by MO evaluation goals is not complete, thus 

overlapping classes are possible, that is why through experimentation three types of assessments are 

defined. Indicators characterization under situations 1 and 2, and the indicator connection with the MO 

evaluation goal of highest hierarchy in the situation 3 will be called strong assessment. In the other hand, MO 

evaluation goals whose relation with the indicators is not the highest hierarchy will be called weak and 

weakest assessment according to their measurement hierarchy. Monotony and relativity of quality indicators 

are also analysed; (weak) monotony is defined as the fact of given a non-dominated set, adding a non-

dominated point improves (does not degrade) its evaluation; meanwhile (weak) relativity is related to     

evaluations as (non)-uniquely optimal [15]. Results of Experiment 3 and discussion of the whole 

experimentation are presented in the following. 

Quality Indicators measuring Convergence error 

Indicators that only assess convergence error are:     ,   ,    ,     ,    and    .      measures 

the non-dominated solutions proportion from        
  with regard to   , hence not relevant information 

is provided when the        
  does not include any non-dominated solutions with regard to   , it is seen 

in behaviour graphics as convergence error increases (see Figure 4.7 a and b). Furthermore      

measurement could be highly subjective due to defining    is not a trivial task. As      is based on    

definition, it is not monotonic but weak relative [15].    measures effectively convergence error as it is 

seen in behaviour graphics (see Figure 4.7 c and d), however according to [15] this indicator is not 

monotonic but weak relative. 

    was measured by    (           ), i.e. solutions percentage in     that dominate solutions in the 

synthetic        .     behaviour graphics show its capability to measure convergence but its inability to 

measure uniformity and spread (see Figure 4.7 e and f);     behaviour is disruptive in relation to 
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uniformity and spread, since a better achievement of such goals produces that more solutions in     

dominate         letting      . In its unary version     violates relativity, given two subsets, the first 

one a     subset and the second an arbitrary non-Pareto optimal subset but with wider spread than the 

    subset;     will favor the second subset over the first. Otherwise     exhibits weak monotony, due 

to adding solutions to a non-dominated subset could not improve     evaluation. 

     measures convergence error (see Figure 4.7 g and h), slight variation in top of behaviour graphics is 

explained by uniformity-spread degeneration.      is not monotonic but weak relative for the same 

reasons that    is.    and     show total independence from uniformity and spread, computing effectively 

convergence error by performing uniformity-convergence and spread-convergence monotonic behaviour 

graphics with regard to convergence error. Such performance is due to    and     compute the infimum 

(see Figure 4.7 i, j, k and l). Unary versions of both indicators are weak relative and weak monotonic, since 

any     subset has an optimal value and the addition of solutions to a non-dominated subset may not 

improve their value. 

Quality Indicator measuring Spread 

     and       are the only indicators formulated able to isolate spread estimation from convergence 

and uniformity; however as it will be shown in Experiment 4,      only computes a spread superior 

bound, meanwhile       achieves a more accurate measurement. Only      graphics are shown (see 

Figure 4.8 a and b) given that both indicators get exactly the same behaviour in this experiment. Due to 

adding a non-dominated solution does not degrade quality indicator and a        
  with wider extension 

in the objective space than     does not imply better performance,      and       are both weak 

monotonic but not relative. 

Quality Indicators measuring Convergence error and Spread 

Indicators that assess convergence error and spread are:    ,   ,    ,    ,    ,     and   .     

measures convergence and spread (see Figure 4.8 c, d and e), though the hierarchy level of both goals is 

highly dependent of the distribution used to generate   ; the main drawback of this indicator is that the 

quality assessment by linear combination is defined only by the worst solution. As     is    dependent it 

is neither monotonic nor relative. 
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  ,     and     perform estimations over   . Consequently, according to utility functions type the 

efficiency of measurement and computed MO evaluation goals may vary. In this experiment aggregative 

addition functions and Chebyshev functions are used, the first one allows to compute convergence error 

and spread (see Figure 4.8 f, g, h, l, Figure 4.9 a, b, f, g and h), meanwhile the second one allows to 

compute convergence error and misunderstand spread (see Figure 4.8 i, j, k, Figure 4.9 c, d, e, i, j and k). 

    and     complement    by expressing how much the difference between solutions sets is, 

computing discrepancy of expected degree of superiority and the expected proportion of superiority. Due 

to a wide    variety is required, these indicators are in general computationally expensive. As   ,     

and     are    dependent, they are neither monotonic nor relative. 

    denotes hierarchical distinction between spread and convergence. Giving a major preeminence to 

spread, such fact is induced because    ( ) is defined by boundary solutions, influencing mainly     

sensitivity to        
  spread (see Figure 4.9 l, Figure 4.10 a and b).     is weak monotonic and weak 

relative, because of adding solutions to a non-dominated subset could not improve    , and a nonempty 

    subset could have an optimal    .     was implemented with neighbourhood analysis schema 

suggested by the author, whose definition is by itself very subjective. As it is seen in behaviour graphics 

(see Figure 4.10 c and d),     measures spread over convergence and fails to measure uniformity; it is 

shown when spread is close to the maximum. Due to neighbourhood definition and     susceptibility to 

       
  position, it is weak monotonic but not relative.  

   measures correctly convergence over spread and erroneously uniformity. This is due to 1) using   

within   , 2) as uniformity is reduced, the average value of    computed for every projection (  ) is 

affected,  producing a bias towards the region with the highest solutions concentration (see Figure 4.10 e, f 

and g), making it disturbed by uniformity variation.    exhibits weak monotony and weak relativity, 

because adding non-boundary solutions to a non-dominated subset does not improve   , and a     

subset could achieve    optimal value. 

Quality Indicators measuring Convergence error and Uniformity 

Indicators that assess convergence error and uniformity are:     ,   ,    and       .      

measures the maximum error between    and        
 , as it is shown in behaviour graphics (see Figure 

4.10 h and i),      measures convergence error and uniformity with a hierarchical distinction favoring 



4 INFERENTIAL POWER OF QUALITY INDICATORS IN E MO  
 

   67  

convergence; however spread estimation is misunderstood, such fact is deduced by not monotony in its 

measurements as in Figure 4.10 j, and explained by      susceptibility to        
 s location.  

   and    were designed aiming to offer information about divergence between        
  and   , 

measuring the average and the major separation respectively. Due to synthetic        
 s continuous 

degeneration in MO evaluation goals and artificial equidistance solutions, behaviour graphics from both 

indicators are equal in the scope of Experiment 3. However in a non-controlled environment,    

decrease could be a more fortuitous because it computes the worst distance. Even    and    were 

created to measure only convergence, they measure uniformity with a minor hierarchy and misunderstand 

spread; such behaviour is more evident for a concave-convex        
  (see Figure 4.10 k, l and Figure 

4.11 a). This performance is due to average and worst distance are computed from every solution in    to 

the closest solution in        
 , as        

  spread decreases some solutions in    will compute a bigger 

distance to the closest solution in        
 . As     ,        measures convergence error over 

uniformity (see Figure 4.11 b and c); misunderstanding spread (see Figure 4.11 d), fact explained by their 

susceptibility to        
 s location. Due to     ,   ,    and        have similar conception 

they share weak relativity and their absence of monotony. They are not monotonic, because given a non-

dominated set, the addition of a non-dominated solution with a large enough convergence error could 

degrades evaluation; and exhibit weak relativity, since any    subset has an optimal quality indicator value. 

Quality Indicators measuring Uniformity and Spread 

Indicators that assess uniformity and spread are:   ,    ,     ,     ,    ,     ,   measure and 

    .    measures spacing between        
  solutions within indifference regions. In the experiment 

indifference regions as those defined by      and     were used. Due to regions definition is quite 

subjective, as soon as        
  drives enough away from   ,    measurement becomes useless (see 

Figure 4.11 e and f).    with a maximum convergence error minor to the size of the indifference region is 

showed in Figure 4.11 g and h in order to visualize    instability. 

    computes spacing between solutions using Euclidian distance, even     measures correctly 

uniformity, spread is improperly computed (see Figure 4.11 i, j and k). It is mainly caused by     

sensitivity to uniformity-spread correlation, widespread synthetic        
 s will allow a wider uniformity 

variation impacting     assessment. Besides,     is unstable before disjoined        
 s (see Figure 4.11 



4 INFERENTIAL POWER OF QUALITY INDICATORS IN E MO  
 

   68  

l, behaviour graphic achieved with a disjoined      ). To avoid its degeneration, distance exclusion 

between limit points in     formed from two or more Pareto curves is needed. Due to     could be 

disjoined,     is neither monotonic nor relatively. 

     measures properly uniformity and spread (see Figure 4.12 c); nevertheless it is unstable with regard 

to convergence (see Figure 4.12 a and b) due to its measurement is highly dependent on        
  location 

within normalized objective space, i.e. the hypervolume computed by boundary solutions varies as 

       
  position does. Figure 4.12 d shows two        

 s with the same uniformity and spread but 

different position generating dissimilar      measurement. As      is based on  , it is monotonic but 

not relative, since its        
  location dependence. 

     and     measure uniformity and spread using a grid of hypercubes to define indifferent regions. 

Both indicators show roughness in their behaviour graphics (see Figure 4.12 e, f, g, h, i and j) due to the 

grid concept they utilize and        
 s location, conceiving a conditioned measurement and giving raise to 

no reflexivity. The principal difference between      and    , is     capacity to give higher priority to 

uniformity over spread. In the other hand,      is not susceptible to        
 s location, as a result of 

indifferent regions conceptualization as hyperspheres, allowing to achieve smoother behaviour graphics 

(see Figure 4.12 k, l and Figure 4.13 a) and as a consequence, a better inference power about uniformity. 

  ,     ,     and      compute their assessment considering only solutions located in the same 

indifference region. Thus indifference regions definition is very important to these indicators 

characterization, since in an environment with a very small or very large indifference region none measure 

could be achieved. Such indicators are highly susceptible to indifference space resolution, factor defined by 

 ,   or  .   ,     ,     and      are weak monotonic because adding solutions to a non-dominated 

subset could not improve indicator value.      and     are not relative due to a non-dominated subset 

far from     with wider extension and more solutions could get a better value than    . Due to    uses 

indifferent regions fixed to    and that      can be conceived under an appropriated definition of 

resolution factor, both indicators are weak relative, since non-dominated subsets could achieve at most the 

same assessment than    . 

Finally,   measure and      measure uniformity and spread too; as   measure sets a slightly preference 

of spread over uniformity (see Figure 4.13 b, c and d),      does in a stronger way of uniformity over 
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spread (see Figure 4.13 e, f and g).      improves     by both,    ( ) function and        
  

reduction in case of tide. Due to both indicators are sensible to disjoined        
 s, they are neither 

monotonic nor relatively. 

Quality Indicators attempting to measure Convergence Error, Uniformity and Spread 

Indicators that assess convergence error, uniformity and spread are:  ,   ,      and         . On 

the basis of experimentation none indicator is able to measure with the same hierarchy the three MO 

evaluation goals.   (see Figure 4.13 h, i and j) and    (see Figure 4.13 k, l and Figure 4.14 a) are able to 

measure convergence error, spread and uniformity; convergence error with the highest level, spread with 

medium level and uniformity with the lowest level. Due to by experiment definition    dominates weakly 

any solution in the synthetic        
 s,      has the same performance that   . As  ,    and      

are based on hypervolume computation they are monotonic and relative. 

         measures in hierarchical order convergence error, spread and uniformity (see Figure 4.14 b, c 

and d). This indicator is monotonic and relative and overcomes a drawback common in  ,    and     : 

their inability to distinguish between        
 s with the different level of complete outperformance, since 

         does not allow to a nondominate subset get a better assessment than another if the first 

subset does not outperformance the second one. Despite, a new disadvantage rises with          

projection, Figure 4.14 e shows a concave-convex        
  with equidistance solutions. Figure 4.14 f is 

Figure 4.14 e projection; such graphic supports          susceptibility to mix up uniformity in relation 

to        
  shape, since center solutions in the projection are closer than the remaining solutions. 

Quality Indicators measuring Convergence speed 

Indicators that assess MOEAs convergence speed according to its evolution through generations are: 

    ,    ,     and    .      and     are independent from any other MO evaluation goal; 

regardless, they provide poor information since they describe in a limited sense        
  robustness. 

     measures effectiveness of evolutionary process, meanwhile     measures the evolutionary steps 

certainty given through evolutionary process (see Figure 4.14 h). In the other hand,     and     get the 

speed ratio from          
 ( ) approximation to        

  (see Figure 4.14 g). 
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Figure 4.7 Behaviour graphics: FRPF a) and b); GD c) and d); CTS e) and f); ADPF g) and h); Iε i) and j); Iε+ k) and l). 
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Figure 4.8 Behaviour graphics: EFPF a) and b); WSA c), d) and e); PS f), g), h), i), j) and k); EDS l). 
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Figure 4.9 Behaviour graphics: EDS a), b), c), d) and e); EPS f), g), h), i), j) and k); OPS l). 
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Figure 4.10 Behaviour graphics: OPS a) and b); RMD c) and d); SA e), f) and g); MPFE h), i) and j); AD k) and l). 
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Figure 4.11 Behaviour graphics: AD a); WEPOS b), c) and d); SD e), f), g) and h); ESE i), j), k) and l). 
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Figure 4.12 Behaviour graphics: AOPF a), b), c) and d); NDCμ e), f) and g); CLμ h), i) and j); DFPF k) and l). 
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Figure 4.13 Behaviour graphics: DFPF a); U-measure b), c) and d); UPOS e), f) and g); H h), i) and j); HD k) and l). 
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Figure 4.14 Behaviour graphics: HD a); G b), c) and d); e) concave-convex Pareto Front and f) its projection. 
Performance from quality indicators measuring convergence speed: g) GCV and RMC, h) GNVG and NVA. 

4.4.C Results of Experiment 4 

Results of Experiment 4 are shown in Table 4.3. This experiment validates       robustness, since it is 

the only indicator able to distinguish among the four different        
 s and order them from    to   . 
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4.4.D Quality Indicators Summary 

Table 4.4 summarizes relevant characteristics from each of the thirty-eight quality indicators reviewed and 

      (proposed in this research). For each quality indicator information about type, reference set 

requirement, MO evaluation goals achieved, evaluated characteristic (cardinality gets its index value from 

solution sets or solution subsets elements counting to be evaluated; distance is founded in the use of 

norms to measure length; volume calculates solution quality based on dominance hypervolume), sensitivity 

Table 4.3. Results of Experiment 4. 

Quality 
Indicator 

            

   10 10 10 10 

    0.0001 0.0001 0.0001 0.0001 

   0.0857 0.0857 0.0857 0.0857 

  0.0270 0.0178 0.0441 0.0578 

     0.9729 0.9821 0.9558 0.9421 

   1 1 1 1 

    -0.001 -0.001 -0.001 -0.001 

    0.001 0.001 0.001 0.001 

     1.0045 1.0048 1.0050 1.0051 

     76 76 76 75.955 

     1.7311 1.7311 1.7311 1.7296 

   0.9729 0.9821 0.9558 0.9421 

    0.9970 0.9970 0.9970 0.9970 

     1.0461 1.0566 1.0813 1.0965 

     76 76 76 66 

    0.0735 0.0735 0.0735 0.0793 

    21 21 21 21 

  measure 0.6594 0.5974 0.5928 0.7315 

     0.0509 0.0443 0.5745 0.5034 

         6.9134 6.9134 6.7960 6.0926 

   5.0597 4.9180 4.8200 6.9181 

      12.9310 10.3346 8.1016 3.1871 
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Table 4.4. Taxonomy of studied Quality Indicators. 
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to convexity, sensitivity to relative position, additional parameters, monotony, relativity, value ranges, 

optimum value and computational complexity is given. First column specifies quality indicator acronym. 

Second column denotes type of indicator (u = unary, b = binary and  n = n-ary). Third column indicates 

whether the indicator needs any type of   . From the fourth column to the seventh MO evaluation goals 

are related ( = strong assessment, * = weak assessment, ** = weakest assessment). Eighth column 

describes what kind of evaluated characteristic use the indicator (d = distance, c = cardinality and v = 

volume). Ninth column indicates whether the indicator is sensible or not to        
  convexity. Tenth 

column indicates whether the indicator is sensible or not to the relative position of the        
 . Eleventh 

column shows indicators parameters that need be specified by the user (     = analysis of neighborhood). 

Twelfth and thirteenth columns specify whether the indicator exhibits monotony or relativity ( = 

monotony/relativity, * = weak monotony/weak relativity). Fourteenth and fifteenth columns detail the 

range of possible values achieved by the quality indicator and the best value that the non-dominated set 

under assessment could achieve. Sixteenth column describes computational complexity estimated for the 

quality indicator. 

 

4.5 A PERFORMANCE COMPARISON METHODOLOGY TO STOCHASTIC MULTI-

OBJECTIVE OPTIMIZERS 

In EMO, how to evaluate        
  quality that different MOEAs generate is still an open problem. Based 

on that fact, it is suggested in this PhD thesis an approach to solve such problem. The proposed 

methodology summarizes        
 s achieved on certain number of MOEA runs to accomplish an average 

       
  achieved by the MOEA, then it compares MOEAs results in the context of [12] and [41] 

relations and finally untied incomparable front using MO evaluation goal, i.e., it is proposed to combine 

attainment surfaces, a binary comparison method compatible and complete, and unary indicators in order 

to discriminate among        
 s quality. The methodology is shown below: 

Step 1: For each                   to be compared, use its   runs to compute a summary 

attainment surface. Since such process can take a long time [54], it is suggested to use an approximation 

method as the one presented in [54], where an approximated summary attainment surface is computed in 
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polynomial time with regard to   and              |           
 | with a fixed total number of sampling 

lines,            
  is the        

  achieved by       in its  -th run. 

Step 2: Use a binary comparison method  -compatible and  -complete in order to sort summary 

attainment surfaces according to  -relation.        (   ) and      
  (   ) are  -compatible and  -

complete comparison methods computationally not too expensive that could be used, where    

(   (   )    ⋀    (   )   ) and     (  (   )   ⋀   (   )   ) [12]. Step 1 is included in 

this methodology since it reduces Step 2 complexity from  (   )   to  (   ).  

Step 3: Calculate MO evaluation goals mean and variance using unary indicators and    over the   runs of 

each      ;  
  is formed as the total Pareto Front taking in count every run from every MOEA. On the 

basis of this research it is suggested to use:    or     to assess convergence error,      to assess 

uniformity and       to assess spread. 

Step 4: Rank MO evaluation goals using a statistical measure, e.g.    presented in [48] and shown in 

Equation (4.2). 

    
    

(

 
        

         

√        

          

 

)

  (4.2) 

where the numerator is the difference in average of indicator   between       and      , and the 

denominator is the variance difference. If we assume a normal distribution then,     
    corresponds to a 

95% confidence interval which will take to mean that it is statistically significant that       is leading to 

better   values than      . The rank process of every indicator   can be performed with Equation (4.3). 

     (     )  ,
 if         |    

   

   
            

   
[     (     )]   otherwise  (4.3) 

Step 5: Combine binary comparison method assessment and MO evaluation goals rank using a 

lexicographical approach, giving the highest hierarchy to binary comparison method and then to MO 

evaluation goals in some predefined order. In this PhD thesis it is suggested to use the following 

lexicographical order: 1) binary comparison method, 2) convergence error, 3) uniformity and 4) spread. 
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Detailed analysis in each of the unary quality indicators is possible; however discrimination among their 

measurements constitutes itself a MOP. So we propose to combine the MO quality indicators in order to 

discriminate among        
 s quality. Since linear combination of the quality indicators could smooth 

differences and hide trade-offs when there is no an absolute winner-MOEA in all indicators, we propose a 

lexicographic combination of their preference according to expectations of the user, hence providing a 

suitable framework of analysis from the point of view of the user. It is easy to see that the MOEA with the 

best performance according to the defined order of the MO quality indicators will have the highest ranking 

value. 

 

Figure 4.15 NSGA-II performance measured using the proposed methodology to compare stochastic multi-objective 
optimizers, mutation and mating percentages are varied from 1% to 99%. a) Performance achieved using only steps 1 

and 2, b) Performance achieved using the five steps. 

This suggested methodology is clearly statistically confidence and compliant with dominance relations 

between non-dominated sets, showing a superior inference power. In order to test correctness of the 

proposed methodology, it is applied to measure NSGA-II performance over Kursawe’s MOP [9]. The 

performance landscape generated by using different combinations of mating and mutation is showed in 

Figure 4.15, for each mating-mutation combination 50 runs of NSGA-II were executed, a higher value in 

the graphic indicates better performance. Figure 4.15 a shows the performance achieved using only steps 1 

and 2, it is evident how a binary comparison method  -compatible and  -complete is limited in its 

inference power, since results produced with mutation between 1% and 15% are indistinguishable among 

them. On other hand, Figure 4.15 b shows the performance achieved using the five steps, amplifying 
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inference power and suggesting than the best NSGA-II outcomes in Kursawe’s MOP can be achieved 

within the intersection of mating from 60% to 95% and mutation from 7% to 11%. 
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 Chapter 5 Approaching the Pareto 

Front of Theoretical MOPs 

 

 

[Everything is theoretically impossible, until it is done…] 

Robert Heinlein 
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5.1 INTRODUCTION 

n order to broaden RankMOEA’s assessment several theoretical MOPs suggested in EMO literature 

were included to test RankMOEA’s performance. Due to the results presented in Section 3.3, besides 

RankMOEA, only NSGA-II and SPEA2 were included in this comparison. The same algorithmic 

specifications described in Section 3.3 were used. A precision of 0.0001 was required for each variable in 

the phenotype, the size of the binary chromosomes varies according to MOP specifications, a population 

and       
 ( ) size of 100 individuals with 100,000 objective function evaluations were considered. The 

three algorithms were run 50 times with different mating and mutation rates combination, the comparison 

methodology described in Section 4.5. was utilized to show MOEAs’ performance. 

The mating rates used for NSGA-II, SPEA2 and RankMOEA were: 50%, 60%, 70%, 80% and 90%. The 

mutation rates used for NSGA-II and SPEA2 were 1%, 2%, 3%, 4%, 5% and 6%, whereas for 

RankMOEA      was set to 0% and      to 6%. In the following sections test results over different 

benchmarks of unconstrained numeric MOPs are presented. 

 

5.2 BASIC BENCHMARK OF MOPS  

Fonseca2 
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 (5.1) 

Fonseca2 [9] has a connected and symmetric     and a connected and concave     curve, which are 

plotted in Figure 5.1 a and b. The performance of the three MOEAs in Fonseca2 using the comparison 

process is plotted in Figure 5.1 c, d and e. The NSGA-II and SPEA2’s performance seems to be highly 

affected by the mutation rate. The best        
 s achieved by SPEA2 and RankMOEA with their best 

mutation-mating configuration are plotted in Figure 5.1 f, in order to facilitate visualization only such 

MOEAs are included in the graphic since their performance is better than NSGA-II. It is possible to see 

how RankMOEA achieves a slightly better uniformity than SPEA2 in this simple test problem. 

I 
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Figure 5.1 Fonseca2: a) PF*, b) PS*, c) NSGA-II performance, d) SPEA2 performance, e) RankMOEA performance 
and f) SPEA2 and RankMOEA’s best achieved outcome. 
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Kursawe 
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Kursawe [9] has a disconnected and symmetric     and disconnected and concave     curves, which are 

plotted in Figure 5.2 a and b. The performance of the three MOEAs in Kursawe using the comparison 

process is plotted in Figure 5.2 c, d and e. The NSGA-II’s performance seems to be clearly affected my 

mutation rate, while SPEA2’s performance attaints a more stable performance landscape. The best 

       
 s achieved by SPEA2 and RankMOEA with their best mutation-mating configuration are plotted 

in Figure 5.2 f, in order to facilitate visualization only such MOEAs are included in the graphic since their 

performance is better than NSGA-II. SPEA2 and RankMOEA achieve similar        
 s. 
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Poloni [9] has a disconnected     and disconnected and concave     curves, which are plotted in Figure 

5.3 a and b. The performance of the three MOEAs in Poloni using the comparison process is plotted in 

Figure 5.3 c, d and e. SPEA2 seems to be very sensitive to mutation rate changes, whereas NSGA-II is 

more robust to such changes achieving its best performance with medium mutation-mating rates. The best 

       
 s achieved by NSGA-II and RankMOEA with their best mutation-mating configuration are 

plotted in Figure 5.3 f, in order to facilitate visualization only such MOEAs are included in the graphic 

since their performance is better than SPEA2. RankMOEA clearly outperforms NSGA-II uniformity.  
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Figure 5.2 Kursawe: a) PF*, b) PS*, c) NSGA-II performance, d) SPEA2 performance, e) RankMOEA performance 
and f) SPEA2 and RankMOEA’s best achieved outcome. 
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Figure 5.3 Poloni: a) PF*, b) PS*, c) NSGA-II performance, d) SPEA2 performance, e) RankMOEA performance and 
f) NSGA-II and RankMOEA’s best achieved outcome. 
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Viennet1 
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Viennet1 [9] has a connected and symmetric     and a connected and convex     surface, which are 

plotted in Figure 5.4 a and b. The performance of the three MOEAs in Viennet1 using the comparison 

process is plotted in Figure 5.4 c, d and e. The NSGA-II and SPEA2’s performance seems to be highly 

affected by mutation rate. The best        
 s achieved by NSGA-II and RankMOEA with their best 

mutation-mating configuration are plotted in Figure 5.4 f, in order to facilitate visualization only such 

MOEAs are included in the graphic since their performance is better than SPEA2. RankMOEA clearly 

achieves a better spread in   than NSGA-II. 

 

Viennet2 
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Viennet2 [9] has a connected     and a connected and concave     surface, which are plotted in Figure 

5.5 a and b. The performance of the three MOEAs in Viennet2 using the comparison process is plotted in 

Figure 5.5 c, d and e. The SPEA2’s performance seems to be affected by mutation rate, whereas NSGA-II 

attains a more flat performance landscape. The best        
 s achieved by SPEA2 and RankMOEA with 

their best mutation-mating configuration are plotted in Figure 5.5 f, in order to facilitate visualization only 

such MOEAs are included in the graphic since their performance is better than NSGA-II. RankMOEA  
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Figure 5.4 Viennet1: a) PF*, b) PS*, c) NSGA-II performance, d) SPEA2 performance, e) RankMOEA performance 
and f) NSGA-II and RankMOEA’s best achieved outcome. 
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Figure 5.5 Viennet2: a) PF*, b) PS*, c) NSGA-II performance, d) SPEA2 performance, e) RankMOEA performance 
and f) SPEA2 and RankMOEA’s best achieved outcome. 
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clearly achieves a better spread in   than SPEA2. 

 

5.3 OKA’S MOPS 
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OKA1 [55] has a connected     and a     curve no piecewise linear in parameter space, which are 

plotted in Figure 5.6 a and b. The performance of the three MOEAs in OKA1 using the comparison 

process is plotted in Figure 5.6 c, d and e. The SPEA2’s performance is clearly affected by mutation rate, 

whereas NSGA-II’s performance is less susceptible to such variations. The best        
 s achieved by 

SPEA2 and RankMOEA with their best mutation-mating configuration are plotted in Figure 5.6 f, in order 

to facilitate visualization only such MOEAs are included in the graphic since their performance is better 

than NSGA-II. RankMOEA outcome clearly outperforms SPEA2 in uniformity and spread. 
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OKA2 [55] has a connected     and a     curve no piecewise linear in parameter space, which are 

plotted in Figure 5.7 a and b. The performance of the three MOEAs in OKA2 using the comparison 

process is plotted in Figure 5.7 c, d and e. The best        
 s achieved by NSGA-II and RankMOEA 
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Figure 5.6 OKA1: a) PF*, b) PS*, c) NSGA-II performance, d) SPEA2 performance, e) RankMOEA performance and 
f) SPEA2 and RankMOEA’s best achieved outcome. 
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Figure 5.7 OKA2: a) PF*, b) PS*, c) NSGA-II performance, d) SPEA2 performance, e) RankMOEA performance and 
f) NSGA-II and RankMOEA’s best achieved outcome. 
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with their best mutation-mating configuration are plotted in Figure 5.7 f, in order to facilitate visualization 

only such MOEAs are included in the graphic since their performance is better than SPEA2. RankMOEA 

outcome clearly outperforms NSGA-II in uniformity. 

 

5.4 DTLZ’S MOPS 
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For all DTLZ MOPs discussed in this chapter we adopted  =3. DTLZ1 [56] is a  -objective MOP with a 

linear     surface, the functional  (  ) requires |  |    variables. It is recommended to use    , the 

total number of variables is        . A good sample of      surface is plotted in Figure 5.8 a. The 

performance of the three MOEAs in DTLZ1 using the comparison process is plotted in Figure 5.8 b, c 

and d. The NSGA-II and SPEA2’s performance is clearly affected by mutation rate. The best        
 s 

achieved by SPEA2 and RankMOEA with their best mutation-mating configuration are plotted in Figure 

5.8 e and f, in order to facilitate visualization only such MOEAs are included in the graphic since their 

performance is better than NSGA-II. SPEA2 and RankMOEA achieve similar outcomes, however in this 

particular problem SPEA2 achieves a slightly better spread than RankMOEA does. 
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Figure 5.8 DTLZ1: a) PF*, b) NSGA-II performance, c) SPEA2 performance, d) RankMOEA performance, e) 
SPEA2’s best achieved outcome and f) RankMOEA’s best achieved outcome. 
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DTLZ2 
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DTLZ2 [56] is a  -objective MOP with a spherical     surface, the functional  (  ) requires |  |    

variables. It is recommended to use     , the total number of variables is        . A good 

sample of      surface is plotted in Figure 5.9 a. The performance of the three MOEAs in DTLZ2 using 

the comparison process is plotted in Figure 5.9 b, c and d. The NSGA-II, SPEA2 and RankMOEA’s 

performance is clearly affected by mutation rate. The best        
 s achieved by SPEA2 and RankMOEA 

with their best mutation-mating configuration are plotted in Figure 5.9 e and f, in order to facilitate 

visualization only such MOEAs are included in the graphic since their performance is better than NSGA-

II. RankMOEA achieves minor error and better uniformity than SPEA2. 
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Figure 5.9 DTLZ2: a) PF*, b) NSGA-II performance, c) SPEA2 performance, d) RankMOEA performance, e) 
SPEA2’s best achieved outcome and f) RankMOEA’s best achieved outcome. 

a) b) 

c) d) 

e) f) 

0

0.5

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

 

f
1f

2

 

f 3

PF*

0

0.5

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

 

f
1f

2

 

f 2

SPEA2*

0

0.5

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

 

f
1f

2

 

f 2

RankMOEA



5 APPROACHING THE PARETO FRONT OF THEORETICAL MOPS  
 

   102  

DTLZ3 [56] is a  -objective MOP with a concave     surface, the functional  (  ) requires |  |    

variables. It is recommended to use     , the total number of variables is        . A good 

sample of      surface is plotted in Figure 5.10 a. The performance of the three MOEAs in DTLZ3 using 

the comparison process is plotted in Figure 5.10 b, c and d. The NSGA-II and SPEA2’s performance is 

clearly affected by mutation rate. The best        
 s achieved by SPEA2 and RankMOEA with their best 

mutation-mating configuration are plotted in Figure 5.10 e and f, in order to facilitate visualization only 

such MOEAs are included in the graphic since their performance is better than NSGA-II. RankMOEA 

achieves minor error, better spread and uniformity than SPEA2. 
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DTLZ4 [56] is a  -objective MOP with a concave and separable     surface, the functional  (  ) 

requires |  |    variables. It is recommended to use       and     , the total number of 

variables is        . A good sample of      surface is plotted in Figure 5.11 a. The performance 

of the three MOEAs in DTLZ4 using the comparison process is plotted in Figure 5.11 b, c and d. The 

NSGA-II and SPEA2’s performance is clearly affected by mutation rate. The best        
 s achieved by 

SPEA2 and RankMOEA with their best mutation-mating configuration are plotted in Figure 5.11 e and f, 

in order to facilitate visualization only such MOEAs are included in the graphic since their performance is 

slightly better than NSGA-II. RankMOEA achieves minor error than SPEA2. 
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Figure 5.10 DTLZ3: a) PF*, b) NSGA-II performance, c) SPEA2 performance, d) RankMOEA performance, e) 
SPEA2’s best achieved outcome and f) RankMOEA’s best achieved outcome. 
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Figure 5.11 DTLZ4: a) PF*, b) NSGA-II performance, c) SPEA2 performance, d) RankMOEA performance, e) 
SPEA2’s best achieved outcome and f) RankMOEA’s best achieved outcome. 
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In the experiments presented in this Chapter, NSGA-II and SPEA2 showed to be more susceptible to 

mutation rate changes than mating rate changes in most of the cases; this suggests that mutation rate is a 

key feature to maintain equilibrium between exploration and exploitation in order to be compliant with the 

structure of the search space. Even RankMOEA is not the absolute MOEA-winner in every problem that 

was presented in this Chapter (or can be conceivable), the attained results in the above subset of problems 

suggest that RankMOEA is more robust to deal with changes in the structure of search space of the 

problems. Thus, using a robust technique, as RankMOEA, could be an important advantage in the case of 

time-consuming scenarios where the resources needed to tune a super specialized algorithm whose 

performance could overcome RankMOEA’s performance is not feasible.  
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 Chapter 6 Approaching the Pareto 

Front of a Dynamic Principal-Agent 

Model 

 

 

[The eyes of the Lord preserve knowledge…] 

Proverbs 22:12a 
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6.1 INTRODUCTION 

he Principal-Agent problem is a political science and economics well known problem which analyses 

a situation of asymmetric information where a risk neutral Principal delegates tasks to a risk averse 

Agent, i.e., it treats the difficulties that arise under asymmetric information conditions when a Principal 

hires an Agent, such as the problem that the two may not have the same interests, while the Principal is, 

presumably, hiring the Agent to pursue the interests of the former. 

Asymmetric information, a specific aspect of imperfect information in markets, arises when one individual 

to an economic decision has different information to that of another, i.e. the Principal cannot observe the 

effort level that the Agent chooses, due to monitoring the Agent is too costly for the Principal. 

Thus, the idea behind the Principal-Agent problem is to try to align the interests of the Agent in solidarity 

with those of the Principal using a compensation plan, though the existence of uncertainty in the 

production process makes the design of the Agent’s compensation plan a non-trivial problem [57]. In 

theory, and assuming perfect competition, both parties to an exchange would be acting for their own 

interests but would also be aware of the basis on which the other was operating, the resulting exchange 

would benefit both parties to an equal degree (see Figure 6.1). 

 

Figure 6.1 Principal-Agent’s problem interaction. 
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A dynamic problem can be modelled when the Principal-Agent relationship is recurrent, i.e., the 

relationship goes on for infinite periods [58] [59]. In such context, the Agent’s compensation plan has two 

components: present and future compensation. Both components of the Agent’s compensation plan aim 

to link the Agent’s wealth with the Principal’s wealth. In the Dynamic Principal-Agent problem, the 

Principal maximizes his discounted expected utility subject to two fundamental constraints: the 

participation constraint (i.e. the contractual relationship should be accepted by the Agent), and the 

incentive compatibility constraint (i.e. the level of effort implemented by the Principal in every period 

should be chosen by the Agent given the unobservability of his effort). 

 

6.2 A MULTI-OBJECTIVE APPROACH 

The contractual arrangement between the Principal and the Agent affects how the economic surplus is 

divided and the sheer magnitude of such surplus. Hence, characterizing a Pareto Front where the Principal 

and the Agent have different levels of bargaining power is an interesting exercise to shed light into how the 

economic surplus is affected by those different contractual arrangements. Demougin & Helm [60] analyse 

this problem using a static Principal-Agent model where the Principal and the Agent are risk neutral. They 

found that the same set of contracts emerge by varying the Agent’s reservation utility in the frame of the 

Principal-Agent model, by varying the discount factor in the Rubinstein game [61], or by varying the 

bargaining power coefficient in the Nash bargaining game. These authors obtain a Pareto Frontier that is 

concave, thus the previous equivalence result is not surprising; however, they find that the variation in the 

ratio of the bargaining power of individuals affects the outcome of the negotiation. 

Given that in MO, each Pareto optimal solution represents a different compromise among objectives, 

finding different Pareto optimal solutions implies finding the structure of the trade-off surface involved in 

the problem. Thus, since the Principal-Agent model represents a situation of conflict of interests, the 

characterization of its     will allow: 

 to consider diverse contractual arrangements between the Principal and the Agent in which they 

have dissimilar levels of bargaining power, 

 to achieve a better insight on how the creation of economic surplus is affected by the diverse 

contractual arrangements, and  
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 to obtain a better idea of how the conflict of interest and asymmetry of information between the 

Principal and the Agent affect the creation of economy surplus. 

The difference with regard to the same exercise in a static model is that the contracts derived from the 

dynamic model have two components (present and future compensations), and thus the interrelation of 

these two components of managerial compensation with all the variables mentioned above can be 

analysed. Given the difficulty of obtaining analytical results with dynamic Principal-Agent models, close 

solutions methods are not applicable, hence it is common in the literature to numerically approximate the 

optimal contracts, see e.g. Wang [59] and Fernandes & Phelan [62]. Now, if we envision the dynamic 

Principal-Agent as a MOP in which both the Principal and the Agent’s expected discounted utilities are 

maximized subject to the usual constraints, then the proposed RankMOEA can be used to approximate 

the dynamic Principal-Agent problem’s    . 

 

6.3 MATHEMATICAL MODEL 

In order to reconceive the Dynamic Principal-Agent model in a MO framework, two objectives are 

considered: maximize the Principal’s discounted expected utility  , and maximize the Agent’s discounted 

expected utility  . The Dynamic Principal-Agent model is about choosing an action plan, a compensation 

plan for each level of production and a future utility plan such that   and   are simultaneously maximized. 

It can be stated as in Equations (6.1). 

   
 ( )  (   )  ̃(   )

*   + 
(6.1) 

As in Wang [59], it is considered an infinite horizon Principal-Agent model where time is discrete and 

denoted by          , and     is the initial period contract. There is only one perishable 

consumption good, which is consumed by both individuals. The Principal and the Agent are assumed to 

be risk neutral and risk averse, respectively.  

The Agent’s expected utility at time   is   ( ( )  (   ̅)), it is assumed to be closed, strictly increasing 

and concave with respect to the current compensation  (   ̅), and strictly decreasing with respect to 

action  ( ); where  (   ̅) is consumption or salary at the current period, and  ( ) is the action chosen 
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by the Agent, which is not observed by the Principal. The Principal’s expected utility at time   is 

  (   (   ̅)), it associates the realization of the production activity output   and the current 

compensation  (   ̅). Thus, the Principal and Agent’s discounted expected utility by   can be modeled as 

in Equations (6.2) and (6.3). 

   ∑ (   ( ))  (   (   ̅))       . ̃(   ̅)/

   

 
(6.2) 

   ∑ (   ( ))  ( ( )  (   ̅))    ̃   (   ̅)

   

 
(6.3) 

where  (   ( )) is the probability function that associates action  ( ) and the output  ,  ̅ is the 

Agent's reservation utility,  ̃(   ̅) is the state variables for tomorrow on, and   is the discount factor. 

This Dynamic Principal-Agent model with Discrete Actions can be represented as a Bellman equation 

given [58] methodology. This model is subject to the participation constraint, 

∑ (   ( )) ( ( )  (   ̅))    ̃(   ̅)

   

  ̅ 
(6.4) 

to the fact that the actions are in the space of feasible actions,  

 ( ̅)    (6.5) 

where   is the action set, to the inability of temporal borrow, 

   (   ̅)        (6.6) 

where   is the output set, and to the fact that the future compensation is in the feasible space. 

 ̅(   )        (6.7) 
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6.4 APPROXIMATING THE PRINCIPAL AGENT MODEL 

6.4.A Finding the Optimal Contract: a Numerical Example 

The same functional forms and parameters of Wang [59] are used. In particular, the Agent’s expected 

utility function is assumed to be exponential, i.e.   ( ( )  (   ̅))     ( ( )   (   ̅)) because the 

Agent is risk averse, where     is the coefficient of absolute risk aversion and       measures the 

relative cost for the Agent of exercising a unit of effort. On the other hand, the Principal’s expected utility 

is   (   (   ̅))     (   ̅) because risk neutral is assumed. 

For the standard model       and two feasible action levels   *             + are assumed, 

i.e., the Agent can choose either to shirk or to work. Hence,       indicates that shirking is less costly 

than working. Also, it is assumed that there are two levels of output: low or high   *          

   +, and the probability function that associates effort and output is defined as in Equation (6.8).  

 (     )   (     )    ⁄

 (     )   (     )    ⁄
 (6.8) 

These probabilities capture the idea that the more diligently the Agent works, the greater the likelihood of 

the realization of the high output level. Finally, the Principal and the Agent’s common discount factor was 

set to       . 

The numerical solution of the Bellman equation is *     ̂( )  (    ̅)  (    ̅)  ̃(    ̅)  ̃(    ̅)+ 

where  ̂( ) is the optimal action. Given a finite horizon, the chromosome of the individuals in the 

population is characterized by 3 substrings of length  , where   is the number of periods of time an 

individual lives, i.e. the length of each chromosome is   . The first substring indicates the history of 

actions of the individual, the second and third one show the history of compensations conditional on a 

high or low output level respectively. Therefore, the phenotype of an individual is defined as in Equation 

(6.9). 
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,  ( )   ( )     ( )   (    ̅)   (    ̅)     (    ̅)   (    ̅)   (    ̅)     (    ̅)- 
(6.9

) 

In order to compute   and   a backward induction must be used [63]. The number of periods in the 

Agent’s life-span was set as     . 

6.4.B Experimental Results 

In this test, besides NSGA-II, SPEA2 and RankMOEA, MOGA was included as an inferior bound. The 

same algorithmic specifications described in Section 3.3 were used. A precision of 0.0001 was required for 

each variable in the phenotype, thus binary chromosomes of 1820 bits were used, a population and 

      
 ( ) size of 200 individuals with 100,000 objective function evaluations were considered. The four 

algorithms were run 50 times with different mating and mutation rates combination, the comparison 

methodology described in Section 4.5. was utilized to show MOEAs’ performance. 

The mating rates used for MOGA, NSGA-II, SPEA2 and RankMOEA were: 40%, 50%, 60%, 70%, 80% 

and 90%. The mutation rates used for MOGA, NSGA-II and SPEA2 were 1%, 2%, 3%, 4%, 5%, 6%, 7% 

and 8%, whereas for RankMOEA      was set to 0% and      to 8%. For the four algorithms, 

constraints were handled with the idea of superiority of feasible points proposed in [64]. The performance 

of the four MOEAs in the Dynamic Principal-Agent model with Discrete Actions using the comparison 

process is plotted in Figure 6.2. 

MOEA’s configuration with performance ranking values lower than 2 did not achieved feasible solutions 

by violating some constraints. MOGA shows a bad performance, since only four configurations achieved 

feasible solutions but with very low ranking value, i.e. poor convergence and spread, besides mutation 

percentage seems to affect the performance of MOGA in an erratic way. 

Mutation percentage seems to have an important role in the performance of NSGA-II and SPEA2, since 

lower mutations rates allow to achieve a better performance. In NSGA-II higher values of mating rate 

seem to offer a better        
 , while in SPEA2, medium values of mating rate subjugated to a low 

mutation rate is clearly a key to achieve better        
 s. Both algorithms have analogous average 

behavior over all the combinations of mutation and mating rates. About RankMOEA’s performance, 

lower values of mating rates allow to achieve a better performance, even better than those obtained by 
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NSGA-II and SPEA2. A remarkable fact of RankMOEA’s performance contrary to the other three 

MOEAs, is that it always achieves feasible solutions. Even worst approximations of RankMOEA are 

comparable to best approximations of NSGA-II and SPEA2. 

 

Figure 6.2 Performance in Principal-Agent model: a) MOGA, b) NSGA-II, c) SPEA2 and d) RankMOEA. 

In order to have a better idea of MOEAs performance, the best        
  achieved by every MOEA with 

its best mutation-mating configuration is plotted in Figure 6.3. The success of the proposed comparison 

process is confirmed by the correct classification of the quality of the achieved MOEA’s outcomes. 

RankMOEA clearly enhances the convergence and spread achieved by MOGA, NSGA-II and SPEA2. 

a) b) 

c) d) 
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Figure 6.3 Best Pareto Front approximations achieved by the best configuration of every MOEA tested in the 
Dynamic Principal-Agent model with Discrete Actions. 

6.4.C Analysis of the Achieved Approximation to the Pareto Front 

As a result, a concave     is numerically approximated, which is consequence of the information 

asymmetry between the Principal and the Agent, see Figure 6.3. As contracts vary in the trade-off surface 

towards those that are more advantageous to the Agent, it is observed the prevalence of compensation 

plans in which the Principal assumes most of the risk of the productive activity. When the Principal and 

the Agent are more patient, both obtain higher values of their discounted expected utilities, which 

generates a higher level of economic surplus. The Agent faces lower variability in future compensation 

when it is costlier for him to exert an additional effort unit. In Figure 6.4 the current compensation 

schedules of the most advantageous contract for the Principal (PC) and the most advantageous contract 

for the Agent (AC) can be observed over the periods of time. Low and high salaries of AC are higher than 

those of PC, moreover, in most of the cases the low level of the salary for AC is higher than the high level 

of the salary for PC. Note that the low salary schedules of these two contracts do not vary, i.e., both PC 

and AC provide incentives to the Agent through variability in the high levels of salary. 

0 2 4 6 8 10 12
-25

-24

-23

-22

-21

-20

-19

-18

-17

-16

-15

Principal

A
g
e
n
t

 

 

MOGA

SPEA2

NSGA-II

RankMOEA



6 APPROACHING THE PARETO FRONT OF A DYNAMIC PRINCIPAL -AGENT MODEL  
 

   117  

 

Figure 6.4 Agent’s current compensation for PC and AC. 
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 Chapter 7 Conclusions and Future 

Work 

 

 

[The beginning of wisdom is this: Get wisdom. Though it cost all you 

have, get understanding. Cherish her, and she will exalt you; embrace 

her, and she will honour you. She will give you a garland to grace your 

head and present you with a glorious crown…] 

Proverbs 4:7-9 
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7.1 CONCLUSIONS 

n this thesis we have proposed a new efficient and effective MOEA called RankMOEA, which was 

designed using a minimum spanning tree niching and a ranking-mutation procedure. The new 

diversity-preservation mechanism involved does not need extra parameters to work and is compliant with 

the structure of the search space. RankMOEA outperforms traditional diversity-preservation mechanisms 

under spread-hardness situations, showing good spread and lower convergence error compared with other 

state of the art MOEAs. RankMOEA was tested with benchmarks of theoretical MOPs observing in most 

of the cases an outstanding performance. 

An empirical taxonomy framework of quality indicators based on MO evaluation goals accuracy, including 

important features as computation complexity, monotony, relative, sensitivity to shape and position is 

presented. Table 4.4 is the result of such analysis (discussed in Chapter 4), attempting to be a helpful guide 

for EMO researchers at the time of choosing suitable quality indicators according to experimental goals, 

since the wide variety of published quality indicators. Besides, a new quality indicator to measure spread 

called Average Spread of the Found Pareto Front was proposed; overcoming general spread indicators 

drawbacks and offering a more accurate assessment by being not sensible to uniformity, showing a robust 

behaviour. 

Within the scope that a unique indicator cannot completely describe the Pareto Front quality and that 

besides outperformance relations, MO evaluation goals may be helpful to untie non-dominated sets, an 

alternative methodology to compare performance of stochastic multi-criterion optimizers statistically 

confident and compliant with dominance relations between non-dominated sets was proposed and tested. 

Such methodology is accurate, reliable, consistent and adjustable with regard to the included 

lexicographical order. 

In addition, RankMOEA is applied to approximate the Pareto Front of the Dynamic Principal-Agent 

model with Discrete Actions. The results achieved with RankMOEA show better spread and minor error 

than those obtained by some well-known MOEAs, allowing to perform better economic analysis by 

characterizing contracts in the trade-off surface. The achieved approximation of the Pareto Front allows to 

observe different compensation plans at different levels of bargaining power of the Agent and the 

Principal, and how the different contractual arrangements affect the generation of economic surplus. 

I 
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7.2 FUTURE WORK 

RankMOEA was designed with mechanisms that are compliant with search space structure, in spite of that 

more tests about its robustness and how it can be affected by MOPs with many objectives could be 

performed in the future. Also a combination of RankMOEA with an objective reduction technique could 

provide a good solution to MO with many objectives. 

Parallelization of RankMOEA using GPGPU maybe an interesting future work in order to execute 

demanding computing tasks faster, thus achieving good results in shorter time. 

RankMOEA was also tested within an autonomous robot navigation system and within a feature selection 

procedure in data mining; even though these works were not included in this document. The application of 

RankMOEA to the solution of other real MOPs is likely to produce significant improved results 
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