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Introduction

Markov processes are among the most important stochastic processes from both
theory and applications. In this work We consider parameter estimation of
Markov processes when they have been observed discretely.

The objective of this work is propose methods for obtaining estimates of pa-
rameters in Markov jump processes (MJP) and diffusion models when the data
is a discrete time sample of the integral of the process.

In the first chapter, We introduce the concept of Markov process, we describe
their main properties. We define a Markov jump process, study their infinites-
imal generators and the principal properties. The limiting properties of these
systems are similar to those of Markov chains, and these results are stated and
finally we present an algorithm for simulation of Markov jump processes.

We present an overview of the diffusion processes and its main results, the
estimation of their parameters when it has been continuously and discretely ob-
served. We introduce the concept of integrated diffusion process and we propose
a method for estimating the parameters in this case. Numerical examples are
considered, We describe a diffusion bridge and describe a algorithm to simulate
diffusion bridges.

The case when the Markov jump process is observed only at discrete time points
has been studied in the last decade. An important application of MJP is in credit
risk modelling.

In the second chapter, we present an algorithm for the estimation of transi-
tion rates by a Markov Chain Monte Carlo (MCMC) approach to observations
from several Markov jump processes which conditional on an underlying Markov
jump process are independent with the same transition rates. We apply our re-
sults to analysis of credit rating transition. The algorithm generalizes the results
in [Bladt & Sørensen (2009] on estimation of transition rates by an MCMC ap-
proach to several observations.

In the rest of the work, we consider estimation for both general one-dimensional
diffusion process and integrated diffusion processes. Likelihood based estima-
tion (including Bayesian) for discretely observed diffusion processes has been
investigated in the last decade and because of its importance in this work we
return to this study assuming that we have other observations for the estimation.
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viii Chapter 0 Introduction

In the chapter three, we consider the estimation of the parameters of diffu-
sion processes when they have been continuously and discretely observed and
We propose a method for estimating the parameters in this case. We consider
maximum likelihood estimation in the situation where We do not observe the
diffusion process itself directly, but instead observe integrals of the process over
disjoint time-intervals. Moreover, the data are, assumed to be contaminated by
measurement errors. The data can be viewed as incomplete observations of a
model with a tractable likelihood function. Therefore we propose a simulated
EM-algorithm to obtain maximum likelihood estimates of the parameters in the
diffusion model. Numerical examples are considered.

Integrated diffusion processes play an important role in finance as models for
realized volatility, see e.g. [Andersen & Bollerslev (1998], [T. Andersen & Labys
(2001], [Bollerslev & Zhou (2002], and [Barndorff-Nielsen & Shephard (2002].

These processes are also used in fields of engineering and the sciences. An impor-
tant example is provided by the records of the concentration of oxygen isotopes
in ice-core data from Greenland and Antarctica, see e.g. [Ditlevsen, Ditlevsen
& Andersen (2002]. Such data are used to investigate the paleo-climate.

In the last chapter, we apply the method developed in the last section of the
previous chapter to the Ornstein-Uhlenbeck process where the parameters of
an Ornstein-Uhlenbeck model are estimated from a set of integrated paleo-
temperature data obtained from an ice-core from Greenland and a similar in-
vestigation for the Cox-Ingersoll-Ross(CIR)/square root process is presented.



Chapter 1

Markov Processes

In this chapter, we introduce the concept of Markov process which is a stochas-
tic process with the Markov property, or memorylessness. It is one for which
conditional on the present state of the system, its future and past are indepen-
dent. Also we describe the main properties of Markov processes. We define a
Markov jump process and study their properties. We present an overview of
the diffusion processes and its main results, the estimation of their parameters
when it has been continuously and discretely observed. We introduce the con-
cept of integrated diffusion process and we propose a method for estimating the
parameters in this case. Numerical Examples are considered. We describe a
diffusion bridge and describe a algorithm to simulation of diffusion bridges.

1.1 Introduction
Markov processes are among the most important stochastic processes for both
theory and applications. A Markov jump process is a stochastic process which
remains in a state for an exponentially distributed time whose rate depends on
the state.

Markov jump processes are natural candidates for modeling systems in real
time such as production and inventory systems, computer and telecommuni-
cations networks, and miscellaneous input-output systems. Many continuous-
time processes have discrete-time analogues; for instance, a birth-death process
is continuous-time analogues of discrete-time random walks. One’s choice of a
continuous-time model for a system typically depends on how realistic it is, its
easy in addressing the issues at hand, or in computing quantities of interest.

A Markov jump process is a continuous-time Markov process on a countable
state space whose sample paths are right-continuous and piecewise-constant
with finite lengths, and the number of jumps in any finite time is finite. This
type of Markov process is represented by the sequence of states it visits and the
sojourn times at the visits.

In the rest of chapter, we define a Markov jump process, we study their in-
finitesimal generator and the principal properties. The limiting properties of

1



2 Chapter 1 Markov Processes

these systems are similar to those of a Markov chain, and these results are
stated and finally we present an algorithm for simulation of Markov jump pro-
cesses.

When we want to model a stochastic Markov process in continuous time it
is almost impossible to specify in some reasonable manner a consistent set of
finite dimensional distributions. The one exception is the family of Gaussian
processes with specified means and covariances. It is much more natural and
profitable to take an evolutionary approach. A rich and useful class of such
Markov processes are the diffusion process.

The history of diffusion processes begins with the botanist Brown, who in 1826-
1827 observed that grains of pollen suspended in a water displayed a certain
type of erratic motion, which did not fit any of the contemporary mathematical
models. This motion came to be known as the Brownian motion. Einstein, in
1905, used physical principles to do mathematical analysis of this motion and
Wiener provided a rigorous mathematical foundation for the Brownian motion.

1.2 Definitions
We start with some important Definitions.
Definition 1.2.1 Let T denote the time set under consideration and let (Ω,F ,P)
be a common underlying probability space. A stochastic process X = {Xt}t∈T
is a function of two variables

X : T × Ω→ R,

with values in the state space E, where

1. Xt = X(t, ∗) : Ω→ R is a random variable for each t ∈ T ,

2. X(∗, ω) : T → R is a realization or sample path for each ω ∈ Ω.

Depending on T being a discrete or a continuous time set, we call the stochastic
process a discrete or a continuous time process. Assume that X has sample
paths in a subspace H of the space F (T,E) of all measurable functions from
T to E.
Definition 1.2.2 The finite-dimensional distributions of X = {Xt}t∈T are the
push forward measures on the product space Rk for k ∈ N defined by

P (Xt1(ω) ∈ A1, . . . , Xtk(ω) ∈ Ak) = Ft1,...,tn(A1, . . . , An),

for all ti ∈ T , Ai ⊂ E in the state space of X, ω ∈ Ω and F on the product
space.

Now, we present some important characteristics of the stochastics processes.
1. A stochastic process X = {Xt}t∈T for which the random variables Xtj+1−
Xtj with j = 1, . . . , k − 1 are independent for any finite combination of
time instants t1 < . . . < tk in T is a stochastic process with independent
increments.
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2. A stochastic process is {Xt}t∈T on a space E is stationary if, for any
s1 < . . . < sn, we have

(Xs1+t, . . . , Xsn+t)
d= (Xs1 , . . . , Xsn),

for all t ∈ T , where d= is identically distributed.

3. A stationary process X is ergodic if each of its invariant events has prob-
ability 0 or 1, ( an event A is invariant for X if there is a B ∈ H such
that {X ◦ θt ∈ A} = B, t ∈ T , where {θt}t∈T is the time-shift operator on
T and ◦ denotes the convolution operator.

4. The process X is reversible it is stationary and Xt ◦ R−t
d= Xt for all

t ≥ 0, where R− is the time-reversal on T (R−t = −t). Note that X is
reversible if and only if (Xt ◦ θt ◦R−t

d= X, t ∈ T .

Definition 1.2.3 Suppose that X and Y are stochastic processes on (Ω,F ,P).
Then we say that {Xt} is a version of (or a modification of) {Yt} if

P ({ω;Xt(ω) = Yt(ω)}) = 1

for all t ∈ T .Note that if X is a version of Y , then X and Y have the same
finite-dimensional distributions.

Here, we consider some probability space (Ω,F ,P) and T = R+, a family
X = {Xt}t≥0 of random variables Xt : Ω → E is called a continuous-time
stochastic process on the state space E.

The index t admits the convenient interpretation as time: if Xt = x, the pro-
cess is said to be in state x at time t. For some given ω ∈ Ω, the E-valued set
{Xt(ω) : t ≥ 0} is called a realization (trajectory, sample path) of the stochastic
process X associated with ω.

Now, we define a concept which is very import in the study of stochastics pro-
cesses.

Definition 1.2.4 Let (Ω,Ft,P) be a filtered probability space. Then a random
variable τ : Ω→ I is called a stopping time if {τ ≤ t} ∈ Ft for all t in I.

Definition 1.2.5 (Markov Process) A continuous-time stochastic process X =
{Xt}t≥0 on a countable state space E is a Markov process if for any t0 < t1 <
. . . < tk < tk+1 and C ⊂ E, it satisfies the Markov property:

P (Xtk+1 ∈ C|Xtk , . . . , Xt0) = P (Xtk+1 ∈ C|Xtk).

Intuitively, this means that knowing the entire history of the process does not
contain any more information than knowing its last value. Markov processes
describe the time-evolution of random systems that do not have any memory.

A Markov process is a time-homogeneous process when the last probability
does only depend on the time increment tk+1 − tk , but not on tk.
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Definition 1.2.6 The function

p : R2
+ × E × E → [0, 1]

defined by
pxy(s, t) = P (Xt = y|Xs = x)

with s < t and s, t ∈ R+ , is called the transition function.

The values pxy(s, t) are the conditional probabilities that the process is in state
y at time t given that it was in state x at time s. Given a homogeneous Markov
process, then we have that

pxy(s, t) = pxy(t− s) = P (Xt−s = y|X0 = x)

Definition 1.2.7 The probability distribution µ0 satisfying

µ0(x) = P (X0 = x)

is called the initial distribution. If there is a state x ∈ E such that µ0(x) = 1,
then x is called the initial state.

We have that the transition probabilities of a Markov process satisfy the Chapman-
Kolmogorov equation

pxz(s, v) =
∫
y

pxy(s, t)pyz(t, v) (1.1)

for all s < t < v.

Now, we define two important concepts in the study of stochastics processes, a
stochastic semigroup and stopping time.

Let K be a Banach space and B(K,K) the set of bounded operators of K
in K.

Definition 1.2.8 A family {G(t)}t≥0 ⊂ B(K,K) is a semigroup if:

1. G(0) = I

2. G(s+ t) = G(t)G(s) for all s, t ≥ 0.
And when also satisfy

3. If limt→0‖G(t) − I‖ = 0, we say that it is a uniformly continuous semi-
group, where ‖G‖ = supf∈K,‖f‖=1‖Gf‖, where ‖‖ is the usual

1.3 Markov Jump Processes
In the following, we assume that the process is time-homogeneous Markov pro-
cess with finite state space E = {1, 2, . . . ,m}, thus the term Markov process
will always refer to a homogeneous Markov process.

Definition 1.3.1 A matrix P (t) = {pxy(t))}x,y∈E i.e. the m×m matrix with
entries pxy(t) will be called a Markov transition matrix.
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The family {P (t)}t≥0 is called the transition semigroup of the Markov process.

Theorem 1.3.1 The family {P (t)}t≥0 is a stochastic semigroup, that is, it
satisfies the following:

1. P (0) = I, the identity matrix.

2. P (t) is a stochastic matrix, that is:

(a) pij(t) ≥ 0 for all i, j ∈ E.
(b)

∑m
j=1 pij(t) = 1 for all i ∈ E.

3. The Chapman-Kolmogorov equation, P (s+ t) = P (s)P (t).

Proof. For 2) we consider 1 a row vector of ones, we have that

(P (t))i1t =
m∑
j=1

pij(t) = P (
⋃
j∈E
{Xt = j}|X0 = i) = 1,

where (P (t))i is the ith row of P (t).

3) Using the Markov property

pij(s+ t) = P (Xt+s = j|X0 = i)
=
∑m
k=1 P (Xt+s = j|Xs = k,X0 = i)P (Xs = k|X0 = i)

=
∑m
k=1 pik(s)pkj(t).

And 1) is implied by 3) taking s = t = 0. �

The probabilistic behavior of a finite state, continuous time Markov process
X = {Xt}t≥0 is determined by the knowledge of stochastic semigroup {P (t)}t≥0
and the distribution of X0.

Now, the set of all stochastic matrices with respect to a fixed dimension m
will be denoted by

P = {P (t) = (p(t)ij)i,j ∈ Rm×m|0 ≤ p(t)ij ≤ 1 and
∑
j

p(t)ij = 1, t ≥ 0}.

Definition 1.3.2 The semigroup {P (t)}t≥0 is called standard if P (t) → 0 as
t ↓ 0 , which is to say that

lim
t→0+

pij(t) =
{

1 if i = j
0 if i 6= j

holds for all i, j ∈ E.

Note that the semigroup is standard if and only if its elements pij(t) are con-
tinuous functions of t.

There are some subtleties in the realm of continuous time processes that are
not present in the discrete-time case. These steam from the fact that the un-
countable union of measurable sets need not be measurable anymore.



6 Chapter 1 Markov Processes

For Example, the mapping Xt(∗) : Ω → E is measurable for every t ∈ R+ ,
i.e., {ω ∈ Ω|Xt(ω) ∈ A} ∈ F for every measurable subset A ⊂ E. However,

{ω ∈ Ω|Xt(ω) ∈ A, t ∈ R+} =
⋂
t∈R+

{ω ∈ Ω|Xt(ω) ∈ A}

need not be in F in general.

We will therefore impose some regularity conditions on the Markov process
in order to exclude pathological cases. Throughout this work, we assume that

pi,j(0) = δij (1.2)

where
δij =

{
1 if i = j
0 if i 6= j

This guarantees that no transition can take place at zero time and we consider
only Markov processes with standard semigroup of transitions probabilities, this
guarantees that the realizations of X = {Xt}t≥0 are right continuous functions,
more precisely, it implies that the Markov process is stochastically continuous,
separable and measurable on compact intervals. Moreover, there exists a sep-
arable version, being stochastically equivalentto this process. Due to the fact
that the state space is discrete, continuity from the right of the sampling func-
tions implies that they are step functions, that is, for almost all ω ∈ Ω and all
t ≥ 0 there exists ∆t(t, ω) > 0 such that

Xt+τ (ω) = Xt(ω)

for τ ∈ [0,∆t(t, ω)).

First for τ with τ < ∞ , then for unbounded τ by an easy argument. This
fact motives the name Markov jump process. Then we can describe a Markov
jump process as

Definition 1.3.3 A Markov jump process is a continuous-time Markov process
X = {Xt}t≥0 with countable state space E which starts in an initial state x0 at
time τ0 = 0 and stays in this state until some time τ1 when it makes a transitions
to a different state x1. It stays in this state until a later time τ2 > τ1 at which
is jumps to different state x2. Then if τ1, τ2, . . . are the set of jump times,
Xt = x0 for t ∈ [0, τ1),Xt = x1 for t ∈ [τ1, τ2) and so on. We assume that
limn→∞ τn =∞.

We are interested in analyzing the distribution function governing the time that
the Markov jump process stays in some state i ∈ E. We consider the time
that the Markov jump process X = {Xt}t≥0 spend in a certain state, when the
process is in a state x, the time that it stays in this state is a random variable
governed by some distribution function.

Suppose that Xt = i, the future development of Xt+s, for s > 0, goes roughly
as follows. Let

∆(t) = inf{s > 0|Xt+s 6= i} (1.3)
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be thetime until the process changes its state, then ∆(t) is a holding time.
Obviously, ∆(t) is a stopping time. Hence, conditioned on Xt and ∆(t) < ∞,
the next jump will occur at time t + ∆(t). Otherwise the Markov process will
not leave the state Xt anymore.

Proposition 1.3.1 Consider some Markov jump process X = {Xt}t≥0 being
in state i ∈ E at time t ≥ 0 . Then, there exists λ(i) ≥ 0, independent of the
time t, such that

P (∆(t) > s|Xt = i) = exp(−λ(i)s)
for all s > 0 and λ(i) is called the jump rate associated with the state i ∈ E.

Proof. Since that Markov jump process is homogeneous P (∆(t) > s|Xt = x) =
P (∆(0) > s|X0 = i) and we define h(s) = P (∆(0) > s|X0 = i), then we have

h(t+ s) = P (∆(0) > t+ s|X0 = i) = P (∆(0) > t,∆(t) > s|X0 = i)
= P (∆(0) > t|X0 = i)P (∆(t) > s|∆(0) > t,X0 = i)
= h(t)P (∆(t) > s|, Xt = i)
= h(t)h(s)

Also, h(∗) is continuous at zero, since the transition probabilities were assumed
to be continuous at zero. Moreover, 0 ≤ g(∗) ≤ 1, which finally implies that the
only solution must be

h(s) = exp(−λ(i)s)
with λ(x) ∈ [0,∞] given by λ(i) = − log(P (∆(0) > 1|X0 = i)). �

Definition 1.3.4 If i ∈ E with associated jump rate λ(i). Then, i is called

1. Permanent,if λ(i) = 0.

2. Stable, if 0 < λ(i) <∞.

3. Instantaneous, if λ(i) = ∞ (not present for Markov processes with right
continuous sample paths).

If Xt = i at time t. If i is

1. Permanent, then
P (Xs = i|Xt = i) = 1

for every s > t, hence the Markov jump process stays in x forever.

2. Stable, then
P (0 < ∆(t) <∞|Xt = i) = 1.

3. Instantaneous, then

P (∆(t) = 0|X(t) = i) = 1,

hence the Markov jump process exists the state as soon as it enters it.

Since we consider only Markov jump process with right continuous samples
paths, then the state space E does not contain instantaneous states.

For ease of notation we define the following random variables:
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Definition 1.3.5 We consider a Markov jump process X = {Xt}t≥0 then we
define

1. τ0 = 0.

2. τk = the time at which the kth jump occurs.

3. xk = the state visited during [τk, τk+1).

4. ∆k = τk+1 − τk, i.e. the time spend in state xk

5. N(t) = the largest interger n, for which τn < t.

Definition 1.3.6 Let X = {Xt}t≥0 be a Markov jump process. Then, the
Markov process is called regular if

τ∞ := sup
k∈N

τk =∞.

The next Proposition states that the time, at which the Markov process jumps
next, and the state, it jumps into, are independent.

Proposition 1.3.2 Let X = {Xt}t≥0 be a regular Markov jump process on E
with τk+1 < ∞ a.s. Then, conditioned on Xτk = i, the random variables ∆k+1
and Xτk+1 are independent, i.e.,

P (∆k+1 > t,Xτk+1 = j|Xτk = i) = P (∆k+1 > t|Xτk = i)P (Xτk+1 = j|Xτk = i)

Proof. By Bayes rule we have,

P (∆k+1 > t,Xτk+1 = j|Xτk = i)
=P (∆k+1 > t|Xτk = i)P (Xτk+1 = j|Xτk = i,∆k+1 > t).

By applying Markov property we have

P (Xτk+1 = j|Xτk = i,∆k+1 > t)
=P (Xτk+1 = j,Xs = i, τk ≤ s < τk+1|Xτk+t = i)
=P (Xτk+1+∆(τk+t) = j,Xs = i, τk ≤ s < τk+1 + ∆(τk + t)|Xτk = i))
=P (Xτk+1 = j|Xτk = i).

�

We can now define the embedded process of the Markov jump process.

Definition 1.3.7 We call the embedded process of the Markov jump process
X = {Xt}t≥0 to the process (Yn, τn)n∈N where {Yn}n∈N is a time homogeneous
Markov chain on the state space E in terms of the following transition probability
P = {pij}ij∈E. If i is permanent, set pii = 1. Otherwise, if i is stable, set

pij = P (Xτ1 = j|X0 = i) (1.4)

and consequently pii = 0



1.3 Markov Jump Processes 9

The evolution of Markov jump processes can be described in very much the same
terms as those used for a discrete-time process (Markov chains). For discrete-
time processes we write the n-step transition probabilities in matrix form and
expressed them in terms of the one-step matrix P. In a Markov jump process
there is no exact analogue of P since there is no implicit unit length of time.
The infinitesimal calculus offers one way to plug this gap. We shall see that
there exists a matrix Q, called the infinitesimal generator of the Markov jump
process, which takes over the role of P. An alternative way of approaching
the equation of a Markov jump process is to consider the embedded process
obtained by listing the changes of states of the original process.

1.3.1 Infinitesimal Generator
In this section we present to the characterization of Markov jump processes that
is not present for the discrete-time case. It is in terms of infinitesimal changes
of the transition probabilities and based on the notion of generators. We again
take a Markov jump process that satisfies the same conditions as in the previous
section.

Suppose that the Markov jump process is in state i at time t, i.e. Xt = i,
we are interested in the things that may happen in the small time interval
(t, t+ h), we have the following cases:

1. The process may stay in the same state at time t + h, this happen with
probability pii(h)+o(h), the error term taking into account the possibility
that the process moves out of i and back to i in the interval.

2. The process may move to new state j with probability pij(h) + o(h), we
are assuming here that the probability of two or more transitions in the
interval (t, t+ h) is o(h).

Then we are interested in the behaviour of pij(h) for small h, for this we we
consider the follow Proposition.

Proposition 1.3.3 Consider the semigroup P (t) of a Markov jump process.
Then, the limit

lim
h→0+

P (h)− I
h

i.e. the limits
lim
h→0+

1− pii(h)
h

= qi

lim
h→0+

pij(h)
h

= qij (1.5)

with i 6= j exists and defines the infinitesimal generator, where 0 ≤ qij <∞ and
0 ≤ qi ≤ ∞.

Proof. See [Karlin & Taylor (1975]. �

Now, considering the relation

1 = pii(h) +
∑
i 6=j

pij(h)
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dividing by h and letting h decrease to zero yield the relation

qi =
∑
i 6=j

qij .

Now, we consider the m×m matrix

Q =


−q1 q12 · · · q1m
q21 −q2 · · · q2m

...
... . . . ...

qm1 qm2 · · · −qm


By (1.5) we have

lim
h→0+

P (h)− I
h

= Q (1.6)

Using Theorem 1.3.1 and 1.6 we have

P (t+ h)− P (t)
h

= P (t)(P (h)− I)
h

= P (h)− I
h

P (t), (1.7)

we take limit when h drecrease to zero and we get that the derivate of P (t) is
given by

P ′(t) = P (t)Q = QP (t) (1.8)
where P ′(t) denotes the matrix whose elements are p′ij(t).

Equation (1.8) can be solved under the initial condition P0 = I by standard
methods of system of ordinary differential equations to yield the formula

P (t) = exp(tQ) =
∞∑
n=0

tnQn

n! . (1.9)

with exp(∗) denoting the matrix exponential function. Q is called the infinites-
imal generator of Markov process X = {Xt}t≥0.

A matrix Q ∈ Rm×m generates a continuous-time Markov process if and only if
all off-diagonal entries are nonnegative and the sum over each row equals zero
and the set of all generators with respect to a fixed dimension m will be denoted
by

Q = {Q = (qij)i,j ∈ Rm×m|qij ≥ 0 if i 6= j, qii = −
∑
i 6=j

qij}.

Theorem 1.3.2 Let Q be the infinitesimal generator of the Markov jump pro-
cess X = {Xt}t≥0 with state space E = {1, 2, . . . ,m}. Set P (t) = exp(tQ).
Then the semigroup {P (t)}t≥0 has the following properties:

1. {P (t)}t≥0 is the unique solution to the Kolmororov forward equation

d

dt
P (t) = P (t)Q,

with P (0) = I, i.e. pij(t) satisfy

p′ij(t) =
∑
k

pik(t)qkj .
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2. {P (t)}t≥0 is the unique solution to the Kolmororov backward equation

d

dt
P (t) = QP (t),

with P (0) = I, i.e. pij(t) satisfy

p′ij(t) =
∑
k

qikpkj(t).

3. For k = 0, 1, 2, . . . , we have

dk

dt
|t=0P (t) = Qk.

Proof. The results are immediate of (1.8). �

Here, we introduce another important family of parameters for Markov jump
process

Definition 1.3.8 The transition rates of the Markov jump process X = {Xt}t≥0
are

qij = qipij .

for i 6= j.

In this Definition qij are the elements of the infinitesimal generator and this
relation follows of backward and forward equations.

The following Theorem will serve as the basis for constructing a density on
the space of sample paths of Markov jump process.

Theorem 1.3.3 Let Q the infinitesimal generator of the Markov jump process
X = {Xt}t≥0 then

1. Conditioned on the Markov jump process is in the state i at time t, the
random variable ∆(t) (holding time) is exponentially distributed with pa-
rameter qi, i.e.

P (∆(t) > s|Xt = i) = exp(−qis).

2. If Xt = i and qi > 0, there is, with probability 1, a sample function
discontinuity for some t > 0, and in fact, a first discontinuity which is a
jump. If 0 < s ≤ ∞, the conditional probability that the first discontinuity
in [t, t+s) is a jump to j, given that Xt = i and that there is a discontinuity
in [t, t+ s), is qij

qi
.

Proof. 1) By Proposition 1.3.1 we have that the distribution function F∆(t) of
∆t is exponential and so 1− F∆(t) = e−λit where λi = F ′∆(0) = qi.

2) Suppose that 0 < h, t and that the process jumps only once in (t, t + h],
then

P (jump to j in some time in(t, t+ h)|Xt = i) w pij(h)
1− pii

→ qij
qi

as h ↓ 0. �
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1.3.2 Markov Properties
In this section we prove important properties about the behavior of a finite
state continuous time Markov jump process. Our first observation is a char-
acterization of a Markov jump process in terms of elementary properties of its
embedded process.

Theorem 1.3.4 A Markov jump process X = {Xt}t≥0 on E with embedded
process (Yn,∆tn)n∈N satisfies

1. {Yn}n∈N is a discrete-time Markov chain on E with transition probabilities
P = {pi,j}i,j∈E.

2. For non negative t1, t2, . . . , tk

P (∆1 ≤ t1, . . . ,∆k ≤ tk|Yn, n ≥ 1) =
k∏

n=1
P (∆t ≤ tn|Yn)

and for i ∈ E and for each n ≥ 1 we have

P (∆n ≤ t|Yn = i) = 1− e−qit

with i ∈ E and t ≥ 0.

Remark 1.3.1 If we consider a Markov jump process X = {Xt}t≥0 on E with
embedded process (Yn,∆tn)n∈N then (Yn,∆tn)n∈N is a discrete-time Markov
chain on E × R+ with transition probabilities

P (Yn+1 = j,∆n+1 ≤ t|Yn = i,∆n) = pij(1− e−qit).

Proof. To prove the Proposition, it suffices by Remark 1.3.1 show that, for
i, j ∈ E, sk, t > 0, n ≥ 0

P (Yn+1 = j,∆n+1 > t|Yk,∆k = sk, k ≤ n, Yn = i) = pije
−qit, (1.10)

for Markov properties.

Using the Markov property of X at the time

τn+1 =
n∑
k=0

∆k,

the probability on the left-hand side of (1.10) equals

P (Xτn+1 = j,∆n+1 > t|Xτn = i) = P (Xτn+1 = j|Xτn = i)
×P (∆n+1 > t|Xτn = i,Xτn+1 = j),

since
P (Xn+1 = j|Xτn = i) = pij

and

P (∆τn+1 > t|Xτn = i,Xτn+1 = j)
= P (Xu = i, u ∈ [τn, τn + t]|Xv = i, v ∈ [τn, t), Xτn+1 = j)
= P (Xu = i, u ∈ [0, t]|Xv = i, v ∈ [0, t), X∆1 = j)
= P (∆1 > t|X0 = i) = e−qit,
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we have that (1.10) is true, which prove the Theorem. �.

The following Proposition give a explicit form for the transition probabilities
of a Markov jump process.

Proposition 1.3.4 If the Markov jump process X = {Xt}t≥0 on E is such that
its embedded process satisfies conditions of Theorem 1.3.4, then its transition
probabilities satisfy

pij(t) = e−qitδij +
∫ t

o

∑
k 6=i

pkj(t− s)qike−qisds.

where
δij =

{
1 if i = j
0 if i 6= j

Proof. For fixed i, j ∈ E and conditioning on N(t) of the Definition 1.3.5, we
have

P (Xt+u = j|Xt = i,Xs, s < t)=∑∞
n=0(αn(t, u) + βn(t, u))P (N(t) = n|Xt = i,Xs, s < t)

where
αn(t, u) = P (Xt+u = j, tn+1 > t+ u|Fn(i, t))

βn(t, u) = P (Xt+u = j, tn+1 ≤ t+ u|Fn(i, t))

Fn(i, t) = {N(t) = n,Xt = i,Xs, s < t}

Since that the residual time tn+1 − t at time t is exponentially distributed with
rate qi, then

βn(t, u) = δijP (tn+1 − t > u|Fn(i, t)) = δije
−qiu.

Now, conditioning on Xn+1 and tn+1 and using Remark 1.3.1

βn(t, u) =
∑
k 6=i
∫ u
0 P (Xt+u = j|tn+1 = t+ v,Xn+1 = k, Fn(i, t))
×P (Xn+1 = k, tn+1 − t ∈ dv|Fn(i, t))

=
∑
k 6=i
∫ u
0 pkj(u− v)qipike−qivdv

using the transition rates, we have

βn(t, u) =
∑
k 6=i

∫ u

0
pkj(u− v)qike−qivdv

Substituting these expressions for and noting that they are independent of n
and t, we have

P (Xt+u = j|Xt = i,Xs, s < t) = e−qitδij +
∑
k 6=i

∫ u

o

pkj(u− v)qikeqivdv,

Since this expression is true for all t ≥ 0, by setting t = 0 on the left-hand side,
the right-hand side must equal pij(u), which completes the proof. �.
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Let Ft = σ(Xs, s ≤ t). The σ-algebra Ft consists of the measurable sets A
such that

A
⋂
{τ ≤ t} ∈ Ft

for all t ≥ 0

Definition 1.3.9 A non-negative random variable τ is called a stopping time
for {Xt}t≥0 if {τ ≤ t} ∈ Ft for all t.

Definition 1.3.10 A Markov jump process {Xt}t≥0 on a state space E satisfies
the strong Markov property if, for any stopping time τ , being finite a.s.,

P (Xs+τ ∈ A|Xτ = x,Xt, t < τ) = P (Xs ∈ A|X0 = x)

for every A ∈ F , whenever both sides are well-defined.

1.3.3 Stationary distributions and limiting probabilities
The asymptotic behaviour of X = {Xt}t≥0 for a large t is closely bound with
the existence of stationary distributions.

Definition 1.3.11 The vector π = (π1, . . . , πm) is a stationary distribution of
Markov jump process X = {Xt}t≥0 with stochastic semigroup {P (t)}t≥0 if

1. πi ≥ 0 for i = 1, . . . ,m.

2.
∑m
i=1 πi = 1

3. π = πP (t) for all t ≥ 0.

More generally, any measure π on E that satisfies π = πP (t), t ≥ 0, is an
invariant measure for Xt.

Remark 1.3.2 A vector π which satisfies π = πP (t) for all t ≥ 0 is called a
stationary distribution for it makes the process stationary. That is, if we set the
initial distribution of X0 to be such a π, then the distribution of Xt will also be
π for all t ≥ 0 i.e.

P (Xt = j) = πj

for all j ∈ E and all t > 0.

To see this, set the initial distribution of X0 to be π0 and compute P (Xt = j)
by conditioning on X0. This gives

P (Xt = j) =
∑
i∈E

P (Xt = j|X0 = i)P (X0 = i)

=
∑
i∈E

pij(t)πi = (πP (t))i = πi.

Proposition 1.3.5 For the Markov jump process X, the following statements
are equivalent.

1. X is a stationary process.
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2. Xt
d= X0, t > 0.

3. The distribution of X0 is a stationary distribution.

Proof. The basic idea of the proof following of Remark 1.3.2, for details
see [Grimmett & Stirzaker (2001].

The next Theorem give a relation of the stationary distribution and infinitesimal
generator.
Theorem 1.3.5 We have that π = πP (t) for all t if and only if πQ = 0̄, where
0̄ is a vector of zeros.
Proof. Remembering that Q0 = I then

πQ = 0̄ ⇔ πQn = 0̄

⇔
∞∑
n=1

tn

n!πQ
n = 0̄

⇔ π

∞∑
n=0

tn

n!πQ
n = π

⇔ πP (t) = π

�

We should convince yourself that the implications are true in both directions in
each of the lines above.

Thus, we see that the condition π = πP (t) for all t ≥ 0, which would be
quite difficult to check, reduces to the much simpler condition πQ = 0̄, in terms
of the generator matrix Q. The equations πQ = 0̄ are a set of m linear equations
which, together with the normalization constraint

∑
i∈E πi = 1, determines the

stationary distribution π if one exists.

The jth equation in πQ = 0̄ is given by

0 = −qjπj +
∑
i 6=j

qijπi

which is equivalent to
qjπj =

∑
i 6=j

qijπi (1.11)

Now, we can give the following interpretation:
1. On the left hand side, πj is the long run proportion of time that the process

is in state j, while qj is that rate of leaving state j when the process is
in state j. Thus, the product qjπj is interpreted as the long run rate of
leaving state j.

2. On the right hand side, qij is the rate of going to state j when the process
is in state i, so the product qijπi is interpreted as the long run rate of
going from state i to state j. Summing over all i 6= j then gives the long
run rate of going to state j. That is, the equation (1.11) is interpreted as
the long run rate out of state j equal to the long run rate into state j.
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For this reason the equations πQ = 0̄ are called the Global Balance Equations,
or just Balance Equations, because they express the fact that when the process
is made stationary, there must be equality, or balance, in the long run rates into
and out of any state.

Now, we now consider the limiting probabilities

lim
t→∞

pij(t)

Theorem 1.3.6 Let X = {Xt}t≥0 be a Markov jump process, if a stationary
distribution π exists, then it is unique and

lim
t→∞

pij(t) = πi

for all i.

Proof. See [Grimmett & Stirzaker (2001].

1.3.4 Examples
In this section we describe some standard Examples of Markov jump process.

Example 1.3.1 Poisson Process. Consider an independent and identically
distributed sequence {∆k}k∈N of exponential random variable with parameter
λ > 0 and define recursively the sequence of random variable {τk}k∈N by

τk+1 = τk + ∆k

for k ≤ 1. Here, τk is called the kth event time and ∆k the inter-event time.
Then, the sequence of random variables {Xt}t≥0 defined by

Xt =
∞∑
k=0

1{τk≤t} = max{k ≥ 0|τk ≤ t}.

for t ≥ 0 and with X0 = 0. {Xt}t≥0 is called a homogeneous Poisson process
with intensity λ.

By construction, Xt is counting the number of events up to time t and is a
Markov jump process with one-step transition probabilities

pij =
{

1 if j = i+ 1
0 if j 6= i+ 1

And exponential sojourn rates qi = λ, which are obviously P -regular.

Example 1.3.2 Birth-Death Process. Suppose that Xt represents the num-
ber of discrete items in a population at time t, where births and deaths in the
population occur as follows. Whenever the population state is 0, the time to the
next birth is exponentially distributed with rate λ0. Also, whenever there are
i ≥ 1 items in the population, the time to the next birth is exponentially dis-
tributed with rate λi , and the time to the next death is exponentially distributed
with rate µi. These times are independent and independent of the rest of the
process. Assume the birth and death rates are bounded.
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Under these conditions, it follows as in the preceding Example that Xt is a
Markov jump process on Z+ with transition rates

qij =
{
λi if j = i+ 1
µi if j = i− 1

The Xt is called a birth-death process with birth rates λi and death rates µi.
Its exponential sojourn rates are

qi = λi + µi,

where µ0 = 0, and its one-step transition probabilities are

pij =
{

λi
λi+µi if j = i+ 1
µi

λi+µi if j = i− 1

There are a variety of queueing processes and general input-output processes
that are birth-death processes.

1.3.5 Generating Markov Jump Processes
In this section we present an algorithm to simulation of Markov jump process.

The generation of Markov jump processes is quite similar to the generation of
Markov chains. Suppose X = {Xt}t≥0 is a Markov jump process on state space
E = {1, 2, . . . ,m} with infinitesimal generator Q = {qij}i,j∈E , where Q ∈ Q
and µ0 is the initial distribution.

We suppose that Y = {Yn}n∈N is the embedded Markov chain associated to
X. Remembering that the time spent in each state i ∈ E is exponentially
distributed with a parameter that may depend on i. The one-step transition
matrix, say P = {pij}i,j∈E , of Y , can be found directly from Q. Following the
results in the previous sections we have that

pij =
{ qij

qii
if i 6= j

0 if i = j

We can observe that the probabilities are simply proportional to the rates.

Remembering that the holding times as ∆1,∆2 . . . and the jump times as
τ1, τ2 . . . we can simulate a typical realization of a Markov jump process with
finite state space using the next algorithm.

Algorithm generating Markov Jump Process

1. Initialize τ0. Draw Y0 from the initial distribution µ0. Set X0 = Y0 and
n = 0.

2. Set i = Yn

3. Draw ∆n+1 from Exp(qii).
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4. Set τn+1 = τn + ∆n+1.

5. Set Xt = Yn for τn ≤ t < τn+1.

6. Draw Yn+1 from the distribution corresponding to the Yn-th row of P .

7. Set n = n+ 1

8. Go to Step 2.

Simulation of a Markov Jump process.

Here, we present a simple simulation of a realization of the Markov jump process
X on the state space E = {1, 2, 3}.

We suppose that the infinitesimal generator is known:

Q =

 −0.10 0.05 0.05
0.10 −0.20 0.10
0.15 0.50 −.30

 .

Then, the corresponding transition matrix P of the embedded Markov chain
associate Y is:

P =

 0.911 0.046 0.043
0.093 0.827 0.080
0.130 0.120 0.750

 .

We use the previous algorithm for the simulation,the picture 1.1 is an illustra-
tion that a realization of X in the time interval [0, 10].

6
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A Typical realization of a Markov jump process.
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1.4 Diffusion Processes
In this section we describe a class of stochastic processes called the diffusion pro-
cesses. These are continuous-time, continuous state-space processes and their
sample paths are everywhere continuous but nowhere differentiable. Since dif-
fusions are defined through stochastic differential equations, we give a brief
introduction to stochastic differential equations. We will discuss some major
properties of diffusion processes and some common Examples of diffusion pro-
cesses.

1.4.1 Definitions.
We start considering the following Definition.

Definition 1.4.1 The continuous-time stochastic process X = {Xt}t≥0 with
continuous state space defined on the probability space (Ω,B(R), P ) where, B(R)
is the Borel σ-algebra on R , is a Markov process if it satisfies the following
Markov property:

P (Xt ∈ B|Xt1 = x1, . . . , Xtn = xn, Xs = x) = P (Xt ∈ B|Xs = x)

for all Borel subsets B ⊂ R, time instants 0 ≤ t1 ≤ . . . ≤ tn ≤ s ≤ t and all
x1, . . . , xn, x ∈ R for which the conditional probabilities are defined.

For fixed s, t ≥ and x in the state space, the transition probability P (Xt ∈
B|Xs = x) is a probability measure on the σ-algebra B(R) of Borel such that

P (Xt ∈ B|Xs = x) =
∫
B

pxy(s, t)dy

for all B ∈ B(R). The quantity pxy(s, t) is the transition density. It plays a
similar role as the transition matrix in Markov jump process.

Definition 1.4.2 Let f : R → R be a bounded measurable function. The
Markov process X = {Xt}t≥0 is ergodic if

lim
T→∞

1
T

∫ T

0
f(Xt)dt =

∫ ∞
−∞

f(y)p̄(y)dy (1.12)

where
p̄(y) =

∫ ∞
−∞

pxy(s, t)p̄(x)dx

is stationary probability density.

This means that the time average limit coincide with the spatial average. Then
is ergodic if its statistical properties can be deduced from a single, sufficiently
long sample of the process.

Definition 1.4.3 A one-dimensional diffusion process {X}t≥0 is a continu-
ous time stochastic process which possesses the strong Markov property and for
which the sampler paths are (almost always) continuous functions of t.



20 Chapter 1 Markov Processes

Every diffusion process whose state space is an interval I = [r, s] satisfies the
following condition:

lim
h↓0

1
h
P (|Xt+h − x| > ε|Xt = x) = 0 (1.13)

for all x ∈ I and every ε > 0.

Almost all diffusion process are characterized by two basic conditions which
augment (1.13) and describe the mean and variance of the infinitesimal dis-
placements. We have the existence of the limits

lim
h↓0

1
h
E(∆hXt|Xt = x) = µ(x, t) (1.14)

and
lim
h↓0

1
h
E((∆hXt)2|Xt = x) = σ2(x, t) (1.15)

where ∆hXt = Xt+h − Xt and x ∈ I. The functions µ(x, t) and σ2(x, t) are
called the infinitesimal parameters of the process, in particular µ(x, t) called the
drift parameter and σ2(x, t) the diffusion parameter.

Generally, µ(x, t) and σ2(x, t) are continuous functions of x and t, and a regular
process has σ2(x, t) positive in I and t > 0.

In other words, condition (1.13) prevents the diffusion process from having in-
stantaneous jumps. From (1.14) and (1.15) one can see that µ(x, t) and σ2(x, t)
are respectively the instantaneous rate of change of the mean and the instan-
taneous rate of change of the squared fluctuations of the process, given that
Xt = x.

Definition 1.4.4 The hitting time of the process {Xt}0≤t≤τ to the level z by

Tz =
{

∞ if Xt 6= z
inf{t ≥ 0;Xt = z} in otherwise

for 0 ≤ t ≤ τ .

Definition 1.4.5 A diffusion process {X}t≥0 whose state space is an interval
I = [r, s] is regular if

P (Tz <∞|X0 = x) > 0

for all x, z ∈ I.

Definition 1.4.6 Conservative Process Diffusion with Killing. A diffu-
sion with killing {Xt}0≤t≤τ is a process whose paths behave those of a regular
diffusion until a possibly random, possibly infinite time τ when the process is
killed. If τ = ∞ from all starting points, the process is said to be conservative
then, a regular process is conservative if

P (Xt ∈ I|X0 = x) = P (τ > t|X0 = x) = 1

for all t ≥ 0 and x ∈ I.
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A characterization of a diffusion process.

Definition 1.4.7 A standard process is a strong Markov process {X}t≥0 whose
paths posses the following regularity properties:

1. Xt is right continuous.

2. Left limits of Xt exist.

3. Xt is continuous from the left through stopping times (quasi-left continu-
ity).

A sufficient condition that a standard processes be a diffusion is the fulfillment
of the Dynkin condition:

lim
h↓0

1
h
P (|Xt+h −Xt| > ε|Xt = x) = 0

for all x ∈ I and every ε > 0.

Theorem 1.4.1 Let {Xt}t≥0 be a standard process and suppose the Dynkin
condition holds. Then {Xt}t≥0 is a diffusion process.

Proof See [Karlin & Taylor (1981].

The following Lemma gives a criterion to determine when the Dynkin condi-
tion is satisfied

Lemma 1.4.1 If a standard process satisfies the infinitesimal moment condi-
tion

lim
h↓0

1
h
E(|∆hXt|p|Xt = x) = 0

for some p > 2 uniformly for x in any compact subinterval of I and t finite,
then the Dynkin condition is satisfied.

Proof. It is direct uses the Chebyshev inequality. �

Diffusion processes are almost surely continuous functions of time, but they
need not to be differentiable. Without going into the mathematical details, the
continuity of a stochastic process can be defined in terms of continuity with
probability one, mean square continuity and continuity in probability or distri-
bution.

Theorem 1.4.2 Let the stochastic process {Xt}t≥0 be a diffusion process for
which µ(x, t) and σ2(x, t) are moderately smooth. The forward evolution of its
transition density pxy(s, t) is given by the Fokker-Planck equation also known
as the Kolmogorov forward equation

∂p

∂t
+ ∂

∂y
µ(y, t)p− 1

2
∂2

∂y2σ
2(y, t)p = 0

for a fixed initial state (x, s).
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The backward evolution of the transition density pxy(s, t) is given by the Kol-
mogorov backward equation

∂p

∂s
+ µ(x, s)∂p

∂x
+ 1

2σ
2(y, t)∂

2p

∂x2 = 0 (1.16)

for a fixed initial state (y, t).

Proof. We proof only (1.16). Consider the approximate time discrete contin-
uous state process with two equally probable jumps from (x, s) to (x + µ∆s ±
σ
√

∆s, s + ∆s), which is consistent with (1.14) and (1.15). The approximate
transition probability is then given by

p̂xy(s, t) = 1
2 p̂x+µ∆s+σ

√
∆sy(s+ ∆s, t) + 1

2 p̂x+µ∆s−σ
√

∆sy(s+ ∆s, t)

Taking Taylor expansions up to the first order in ∆s around (x, s; y, t) leads to

∂p̂

∂s
∆s+ µ

∂p̂

∂x
+ 1

2σ
2 ∂

2p̂

∂x2 ∆s+O(∆s)3/2 = 0

Since the discrete time process converges in distribution to the diffusion process,
we obtain the backward Kolmogorov equation when ∆s→ 0. �

Transformations of Processes

A continuous strictly increasing function g may be used to transform an arbi-
trary stochastic process X into a new process defined by Yt = g(Xt), if X is a
diffusion then Y is a diffusion too.

Theorem 1.4.3 Let {Xt}t≥0 be a regular diffusion whose state space is an in-
terval I = [r, s] with parameters µ(x, t) and σ2(x, t). Let g be a strictly monotone
function on I with continuous second derivative on I. Then Yt = g(Xt) defines
a regular diffusion process on the interval I∗ = [g(r), g(s)] and Y has parameters

µY (y, t) = 1
2σ

2(x, t)g′′(x) + µ(x, t)g′(x)

and
σ2
Y (y, t) = σ2(x, t)(g′(x))2.

Remark 1.4.1 These transformations of diffusion are subsumed in what is
known as the Itô transformations formula, which will be discussed later.

Proof See [Karlin & Taylor (1981].

1.4.2 Examples of diffusion processes.
Wiener processes or Brownian motion.

In 1828 the Scottish botanist Robert Brown observed that pollen grains sus-
pended in liquid performed an irregular motion. The motion was later explained
by the random collisions with the molecules of the liquid. To describe the motion
mathematically it is natural to use the concept of a stochastic process Wt(ω),
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interpreted as the position at time t of the pollen grain ω.

The Wiener process was proposed by Wiener as mathematical description of
Brownian motion. This physical process characterizes the erratic motion (i.e.
diffusion) of a grain pollen on a water surface due to the fact that is continually
bombarded by water molecules. The resulting motion can be viewed as a scaled
random walk on any finite time interval and is almost surely continuous, with
probability 1.

Definition 1.4.8 A standard Wiener process is a continuous-time Gaus-
sian Markov process W = {Wt}t≥0 with stationary and independent increments
which satisfies:

1. W0 = 0 with probability 1,

2. Wt is almost surely continuous,

3. Wt −Ws ∼ N(0, t− s),

for all 0 ≤ s ≤ t.

It is a homogeneous Markov process because its transition probability is given
by

pxy(s, t) = 1√
2π(t− s)

exp
{
−(y − x)2
2(t− s)

}
.

The standard Wiener process is also a diffusion process with drift µ(x, s) = 0
and diffusion coefficient σ2(x, s) = 1. Since ∆hW = Wh − W0 is Normally
distributed with mean zero and variance h, we have that

E(∆hW |W0 = x) = 0

and
E((∆hW )2|W0 = x) = h

Hence, the Kolmogorov forward and backward equations are given by

∂p

∂t
− 1

2
∂2p

∂y2 = 0 (1.17)

and
∂p

∂s
+ 1

2
∂2p

∂x2 = 0. (1.18)

Remark 1.4.2 The unique transition probability density function satisfying (1.17)
and (1.18) together with the appropriate initial condition at t = 0 is the Gauss
kernel

φ(t, x, y) = 1√
2πt

exp
{
− (y − x)2

2t

}
for t > 0 and −∞ < x, y <∞.

We note that the Wiener process W = {Wt}t≥0 is a martingale. Since

E(Wt −Ws|Ws) = 0,
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and
E(Ws|Ws) = Ws,

with probability 1, we have

E(Wt|Ws) = Ws

with probability 1.

Although the sample paths of Wiener processes are almost surely nowhere dif-
ferentiable. The continuity question of Brownian motion can be answered by
using another famous Theorem of Kolmogorov.

Theorem 1.4.4 (Kolmogorov’s continuity Theorem.) Suppose that the
process X = {Xt}t≥0 satisfies the following condition: For all T > 0 there exist
positive constants a, b, c such that

E[|Xt −Xs|a] ≤ c|t− s|1+b,

for 0 ≤ s, t ≤ T , then there exists a continuous version of X.

Proof. See [Øksendal (1998].

For Wiener process W we have that

E[|Wt −Ws|4|Ws = x] ≤ 3|t− s|2.

So Wiener process satisfies Kolmogorov’s condition of Theorem 1.4.4 with a =
4, c = 3 and b = 1, and therefore it has a continuous version.

Definition 1.4.9 A Wiener process with drift µ and variance σ2 is a process
Z = {Z}t≥0 taking the form

Zt = µt+ σWt

for t ≥ 0. Note that
Zt ∼ N(µt, σ2t).

Wiener measure

Definition 1.4.10 The space of Wiener, W (R), is the set of all continuous
paths w : [0,∞]→ R which satisfy w(0) = 0.

Definition 1.4.11 Let E = {Wt}t≥0 be a Wiener process, the distribution mea-
sure P induced by W (R) is the Wiener measure.

Ornstein-Uhlenbeck Process.

This diffusion process is defined on I = (−∞,∞) and that has µ(x, t) = −αx,
σ2(x, t) = σ2 as parameters, where α and σ2 are positive constants. The drift
parameter reflects a restoring force direted towards the origin and of a magni-
tude proportional to the distance.

The Ornstein-Uhlenbeck process is an alternative model of the velocity of a
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particle as a function of time. There are two factors that affect the velocity,
the frictional resistance of the surrounding medium and the random collisions
with neighboring particles. These factors be specifications by µ(x, t) = −αx,
σ2(x, t) = σ2 respectively.

If {Xt}t≥0 is an Ornstein-Uhlenbeck process with parameters µ(x, t) = −αx,
σ2(x, t) = σ2, then conditioned on Xt = x, the distribution of Xt+s is Normal
with mean

E(Xt+s|Xt = x) = xe−αs

and variance
var(Xt+s|Xt = x) = (1− e−2αs)σ2

2α .

The associated backward equation corresponding to the parameters µ(x, t) =
−αx and σ2(x, t) = σ2 is

∂p

∂t
= 1

2σ
2 ∂

2p

∂x2 − αx
∂p

∂x
, (1.19)

for t > 0 and −∞ < x <∞.

Remark 1.4.3 The unique transition probability density function satisfying (1.19)
is

px,y(t) = φ

(
σ2(1− e−2αt)

2α , xe−αt, y)
)

for t > 0 and −∞ < x, y <∞.

Identify the parameters. We abbreviate τ = σ2(e2αt−1)
2α and since the Ornstein-

Uhlenbeck process {Xt}t≥0 can be realized from standard Wiener process {Bt}
through the representation

Xt = e−αtBτ

with the appropriate change of the time clock and rescaling of the state variable.
Then we have

E(Xt+h −Xt|Xt = x)

= e−αt
{
E

[
e−αhB

(
σ2(e2αte2αh − 1)

2α

)
− xeαt|Bτ = xeαt

]}
= e−αt(e−αh−1xeαt = −αxh+ o(h).

Moreover we have that the Ornstein-Uhlenbeck process {Xt}t≥0 is a Gaussian
process, i.e., the finite-dimensional distribution is a multivariate Normal with
mean zero and covariance kernel

E(XtXs) = σ2e−α(t−s)
{
e2αs − 1

2α

}
for s < t.
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Proposition 1.4.1 For Ornstein-Uhlenbeck process {Xt}t≥0 with parameters
µ(x) = −αx and σ2(x) = σ2

lim
t→∞

P (Xt ≤ y) = P (X∞ ≤ y),

where X∞ is normally distributed with mean zero and variance σ2/2α.

Geometric Brownian Motion.

Let {Xt}t≥0 be a Brownian motion process with drift µ and diffusion σ2, then
the process defined by Yt = eXt is called geometric Brownian motion. This
process has state space (0,∞).

We use the Theorem 1.4.3 and hence the parameters for geometric Brownian
motion are

µY (y) = (µ+ 1
2σ

2)y

and
σ2
Y (y) = σ2y2.

Geometric Brownian motion is used to model prices of assets, say, shares of
stock, that are traded in a perfect market.

The Bessel Process.

Let
Zt = (X(1)

t )2 + · · ·+ (X(n)
t )2

where {X(i)
t } are independent standard Brownian motion processes. The Zt,t ≥

0 process is a diffusion with parameters µ(z, t) = n and σ2(z, t) = 4z.

The Bessel process is Yt =
√
Zt, then apply Theorem 1.4.3 to obtain the pa-

rameters
µY (y) = n− 1

2y
and

σ2
Y (y) = 1.

1.4.3 Stationary Distribution
A stationary density ψ(x) satisfies

ψ(y) =
∫
ψ(x)px,y(t)dx

for all t > 0.

Mimicking the derivation of Kolmogorov equations we have that ψ(y) satisfies

0 = 1
2
∂2

∂y2 [σ2(y, t)ψ(y)]− ∂

∂y
[µ(y, t)ψ(y)]. (1.20)
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Moreover by analogy with the fundamental limit Theorem of Markov chains we
have that the stationary density is approached to the extent

lim
t→∞

px,y(t) = ψ(y)

the existence of this limit with ψ(y) representing a bona fide probability density
on the state space (r, s) implies that the process is positive ergodic.

Calculating the Stationary Distribution

We take (1.20) and integrating gives

d

dy

[
σ2(y, t)

2 ψ(y)
]
− µ(y, t)ψ(y) = C1

where C1 is a constant. Next, taking

k(y) = exp

{
−
∫ y [2µ(z, t)

σ2(z, t)

]
dz

}
then

d

dy

[
k(y)σ2(y, t)ψ(y)

]
= C1k(y).

integrating this gives
ψ(x) = m(x)[C1K(x) + C2] (1.21)

Here the constants are determined to guarantee the constraints

ψ(x) ≥ 0

on (r, s) and ∫ s

r

ψ(y)dy = 1,

the stationary density exists only if this is possible.

Example. For the Ornstein-Uhlenbeck process (1.21) gives

ψ(x) = C1

(∫ x

0
eαz

2/σ2
dz

)
e−αx

2/σ2
+ C2e

−αx2/σ2
.

To ensure that ψ(x) is positive entails C1 = 0, then the unique stationary
measure based in (1.21) is the normal density

ψ(x) = ce−αx
2/σ2

.

1.4.4 Semigroup of Diffusion processes
Let {Xt}t≥0 be a regular time homogeneous diffusion process on the open in-
terval I = (l, r). We denote by

Px,y = P (Xt ≤ y|X0 = x)
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the transition distribution function of Xt subject to initial distribution distri-
bution

Px,y(0) =
{

1 if x ≤ y
0 x > y

We assume that Px,y(t) derives from a continuous density on (r, s), namely,

Px,y(t)
dy

= px,y(t)

for t > 0.

Consider the family of operators {Ut}t≥0 that transform each bounded con-
tinuous function f on I = (l, r) into the function Utf by the formula

(Utf)(x) = Ex(f(Xt)) = E(f(Xt)|X0 = x)

We have that this function is jointly continuous with respect to t > 0 and x in
the interval I provided f is piecewise continuous and bounded on I.

This operator satisfies the Fokker-Plank equation or Chapman-Kolmogorov equa-
tion (semigroup property)

Ut+sf = Ut(Usf) = Us(Utf)

for all t, s > 0.

We now define the associated resolvent operators Rλ of the process by

(Rλf)(x) =
∫ ∞

0
e−λt(Utf)(x)dt (1.22)

with λ > 0 and f is a bounded piecewise continuous function on (l, r). We can
write the resolvent as a kernel operator

(Rλf)(x) =
∫ r

l

Gλ(x, y)f(y)dy

where
Gλ(x, y) =

∫ ∞
0

e−λtpt(x, y)dt.

We observe that Ut → I, the identity operator as t ↓ 0. We define A as

lim
h↓0

[
Uh − I
h

]
= A.

The problem of characterization of the domain of A no easy.

Example. Standard Brownian Motion. Let f(x) be a bounded and contin-
uous on (−∞,∞), we have

(Utf)(x) = 1√
2πt

∫ ∞
−∞

e−(x−y)2/2tf(y)dy.
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The resolvent kernel is

Gλ(x, y) = 1√
2λ
e−
√

2λ|x−y|

for λ > 0.

The domain for infinitesimal operator A is the set of all bounded continuous
functions with second derivatives which are themselves bounded and continuous
and vanishing as |x| → ∞. We have that for those functions

(Af)(x) = 1
2f
′′(x).

for −∞ < x <∞.

Dynkin Formula.

Let u = Rαf and τ be a Markov time. Then

u(x) = Ex

{∫ τ

0
e−αtf(Xt)dt

}
+ Ex(e−ατu(Xτ ))

Theorem. Assume τ is a Markov time with finite expectation and u(x) ∈ D(A)
(domain of A). Then

Ex

{∫ τ

0
Au(Xt)dt

}
= Ex(u(Xτ )− u(x)).

1.4.5 Differential Equations
In this section we assume that {Xt}t≥0 is a time homogeneous diffusion process
satisfying the following conditions:

1. The state of space is an intervale I of the form [r, s], [r, s), (r, s] or (r, s)
where −∞ ≤ r < s ≤ ∞.

2. The process is regular in the interior of I.

3. The process has infinitesimal parameters µ(x) and σ2(x), for r < x < s.

4. The infinitesimal parameters µ(x) and σ2(x) are contours functions of x
and σ2(x) > 0 for r < x < s.

Let a and b be fixed with r < a < b < s and let Ty be the hitting time of y,
then we denote

T ∗ = Ta,b = min{Ta, Tb}

as the first time that the process reaches either a or b.

Now we concentrate on three problems:

1. Find
u(x) = P (Tb < Tb|X0 = x)

with a < x < b, the probability that the process reaches b before a.
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2. Find
v(x) = E(T ∗|X0 = x)

with a < x < b, the mean time to reach a or b.

3. Find

w(x) = E(
∫ T∗

0
g(Xs)ds|X0 = x)

with a < x < b and g a bounded and continuous function.

Considering the first problem we choose a time duration h sufficiently small that
the probability of reaching a or b before time h is negligible.

We now conditioner the process at time h, then by law of total probabilities
we have

u(x) = E(u(Xh)|X0 = x) + o(h).

Now write ∆X = Xh − x and assume we can expand in a Taylor series we have

u(x) = u(x) + µ(x)hu′(x) + 1
2σ

2(x)hu′′(x) + o(h),

the we have that u(x) satisfy the equation

0 = µ(x)u′(x) + 1
2σ

2(x)u′′(x) (1.23)

with u(a) = 0 and u(b) = 1.

Again, we choose a short time duration h as before and at time h we condi-
tion on Xh = z and then we have

E(
∫ T∗

h

g(X(t)dt|Xh = z) = E(
∫ T∗

0
g(X(t)dt|X0 = z) = w(z)

the first equality by the Markov property and stationary. Then we have

w(x) = E(
∫ h

0
g(X(t)dt|X0 = x) + E(w(Xh)|X0 = x) (1.24)

where
E(
∫ h

0
g(X(t)dt|X0 = x) = g(x)h+ o(h)

because the process has continuous sample paths and g are continuous.

We now take a expand in a Taylor serie, so that equation (1.24) becomes

w(x) = g(x)h+ w(x) + µ(x)w′(x)h+ 1
2σ

2(x)w′′(x)h+ o(h)

the we have that w(x) satisfy the equation

g(x) = µ(x)w′(x) + 1
2σ

2(x)w′′(x), (1.25)
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with w(a) = w(b) = 0.

Following the idea we have

−1 = µ(x)v′(x) + 1
2σ

2(x)v′′(x), (1.26)

with v(a) = v(b) = 0.

Now let
k(x) = exp

(
−
∫ x 2µ(t)

σ2(t)dt
)

(1.27)

for r < x < s.

We now introduce the scale function of the process

K(x) =
∫ x

k(τ)dτ =
∫ x

exp

(
−
∫ x 2µ(t)

σ2(t)dt
)
dτ (1.28)

and speed density
m(x) = 1

σ2(x)s(x) (1.29)

for r < x < s.

We have that the equations (1.23), (1.25) and (1.26) each involve the differ-
ential operator L defined by

Lf(x) = µ(x)f ′(x) + 1
2σ

2(x)f ′′(x),

with f(x) twice continuously differentiable function on (a, b).

If we use l(x) = 1/s(x) as an integrating factor and we separate variables,
we have

Lf(x) = 1
2
d

dM

(
df(x)
dK

)
(1.30)

where k(x) and m(x) are written in a differential given by

dK = k(x)dx

and
dM = m(x)dx.

Then the solution of these equations follows from two successive integrations.

The canonical representation of the Problem 1 is given by

1
2
d

dM

(
df(x)
dK

)
= 0

subject to the boundary conditions

u(a) = 0
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and
u(b) = 1,

then the solution is
u(x) = K(x)−K(a)

K(b)−K(a) (1.31)

for a ≤ x ≤ b.

Remark 1.4.4 Since K is strictly monotone and twice continuous differen-
tiable, if we define Y (t) = K(X(t)) on the interval (K(r),K(s)), then the The-
orem 1.4.3 establishes that the infinitesimal parameters of the {Yt} process are

µY (y) = 1
2σ(x)K ′′(x) + µ(x)K ′(x) = 0

and
σY (y) = σ(x)(K ′(x))2 = σ(x)k2(x).

A process Y whose scale function is linear is said to be in natural o canonical
scale because the probabilities

P (Tb < Tb|X0 = x) = b− y
b− a

are manifestly proportional to actual distances for a < y < b.

We now proceed to Problem 3. In the canonical representation, the differential
equation is written

1
2
d

dM

(
df(x)
dK

)
= −g(x)

for a < x < b and subject to the boundary conditions

w(a) = w(b) = 0,

we get that the solution is

w(x) = 2
(
u(x)

∫ b

x

[K(b)−K(t)]m(t)g(t)dt+ [1− u(x)]
∫ x

a

[K(t)−K(a)]m(t)g(t)dt
)

(1.32)
For the problem 3 we have the case g(x) = 1 and we have that the solution is

v(x) = 2
(
u(x)

∫ b

x

[K(b)−K(t)]m(t)dt+ [1− u(x)]
∫ x

a

[K(t)−K(a)]m(t)dt
)

(1.33)

Examples of the Functional Calculations

Standard Brownian Motion

Let {Xt}t≥0 be standard Brownian motion, then we have

k(x) = 1
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and the scale function is
K(x) = 1

then
u(x) = x− a

b− a
(1.34)

for x ∈ [a, b]. The speed density is

m(τ) = 1

and the Green function for the interval [a, b] is

G(x, τ) =


2(x−a)(b−τ)

(b−a) a ≤ x ≤ τ ≤ b

2[(b−x)(τ−a)
(b−a) a ≤ τ ≤ x ≤ b

using equation (1.33) we have

v(x) = (x− a)(b− x) (1.35)

for x ∈ [a, b].

Brownian Motion with Drift

Let {Xt}t≥0 be Brownian motion with nonzero drift µ(x) = µ and diffusion
σ2, then

k(x) = exp

(
−2µx
σ2

)
,

K(x) = Aexp

(
−2µx
σ2

)
+B

and
u(x) = e−2µx/σ2 − e−2µa/σ2

e−2µb/σ2 − e−2µa/σ2

for A and B constants.

Conditioned Diffusion Processes

Let {Xt}t≥0 be a regular diffusion process with state space [0, 1] and infinitesimal
parameters µ(x, t) and σ2(x, t), we assume that 0 and 1 are the exit boundaries.
We concentrate only in realizations of the process that lead to absorption at 1.
Let {X∗t }t≥0 be the process confined to the sampler paths involving ultimate
absorption at 1 which is a diffusion process.

Assume that the boundaries are attainable in finite expected time, i.e.,

Ex(T0,1) <∞.

Moreover we have that the functions K(x) and k(x) are finite. Then we have
that infinitesimal parameters of the process {X∗t }t≥0 are

µ∗(x) = µ(x) + k(x)
K(x)σ(x) (1.36)

and
σ∗(x) = σ(x). (1.37)
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1.4.6 Stochastic Differential Equations
The ordinary differential equation dx/dt = µ(x, t) can be viewed as a degenerate
form a stochastic differential equation as no randomness is involved. It can be
written in symbolic differential form

dx = µ(x, t)dt (1.38)

or as an integral equation

x(t) = x0 +
∫ t

t0

µ(xs, s)ds (1.39)

where the solution satisfying the initial condition x0 = xt0 . For some regularity
conditions on µ, this solution is unique, which means that the future is com-
pletely defined by the present given the initial condition.

If we consider that the motion of a particle in a fluid is influenced by two forces.
One, a nonrandom motion can be engendered by the nature of the underling
fluid flow and another, the general interaction relationships with other particles
cause random movements which over short time duration are well described by
Brownian motion.

We consider a small duration time t to t + ∆t, then the displacement of the
particle is approximated by

Xt+∆t −Xt ≈ µ(x, t)∆t+ σ(x, t)∆Wt, (1.40)

where Xt = x is the location of particle at time t,µ(x, t) is the instantaneous
velocity of the fluid at time t and the position x, ∆Wt is the incremental change
associated with the standard Wiener process Wt and σ2(x, t) > 0 is the instan-
taneous variance associated with the coalitions of the Xt process.

We can infer that Xt is a continuous Markov process and that µ(x, t) and σ(x, t)
are appropriately continuous deterministic functions, then from equation (1.40)
we infer that Xt constitutes a diffusion process with drift coefficient µ(x, t) and
diffusion coefficient σ2(x, t).

To assign meaning to the limit of the relation equation (1.40) we make

dXt

dt
= µ(x, t) + σ(x, t)dW

dt
, (1.41)

it is necessary to developed an extended version of stochastic differentials equa-
tions. The equation (1.41) is preferably written in the differential notation
Stochastic Differential Equation (SDE)

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt (1.42)

or as an integral equation

Xt(ω) = Xt0(ω) +
∫ t

t0

µ(Xs(ω), s)ds+ +
∫ t

t0

σ(Xs(ω), s)dWt (1.43)
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and we usually model systems by stochastic differential equations of the form
of equation (1.42).

The problem with this formulation is that the Wiener process Wt is (almost
surely) nowhere differentiable. As a result, the second integral in equation
(1.43) cannot be understood as an ordinary (Riemann or Lebesgue) integral.
Worse, it is not a Riemann-Stieltjes integral since the continuous sample paths
of a Wiener process are not of bounded variation for each sample path. Hence,
it is at this point that Itô’s stochastic integral comes into play!

1.4.7 Itô Stochastic Integral
In this section, we consider a probability space (Ω,F , P ), a Wiener process
W = {Wt}t≥0 and an increasing family {Ft}t≥0 of sub-σ-algebras of F such
that Wt is Ft-measurable for each t ≥ 0 and with

E(Wt|F0) = 0

and
E(Wt −Ws|Fs) = 0,

with probability one, for 0 ≤ s ≤ t.

We have that for constant σ(x, t) = σ the second integral in (1.43) is expected
to be equal to σ̄[Wt(ω)−Wt0(ω)].

We consider the integral of the random function f : Ω×T → R on the unit time
interval:

I[f ](ω) =
∫ 1

0
f(ω, s)dWs(ω). (1.44)

We have the following remarks about equation (1.44)

1. If the function f is a nonrandom step function, that is f(ω, t) = fj(ω) on
tj ≤ t < tj+1 for j = 1, 2, . . . , n− 1 with 0 = t1 < t2 < . . . t < tn = 1, then
we have

I[f ](ω) =
n−1∑
j=1

fj(ω)(Wtj+1(ω)−Wtj (ω))

with probability one. Note that this integral is a random variable with
zero mean as it is a sum of random variables with zero mean. Furthermore,
we have the following result

E(I[f ](ω)) =
n−1∑
j=1

f2
j (tj+1 − tj).

2. If the function f is a random step function, that is f(ω, t) = fj(ω) on
tj ≤ t < tj+1 for j = 1, 2, . . . , n − 1 with t1 < t2 < . . . < tn and the
function is Ftj -measurable and mean square integrable over Ω, that is

E(fj) <∞
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for j = 1, 2, . . . , n. The stochastic integral I[f ](ω) is defined as follows:

I[f ](ω) =
n−1∑
j=1

fj(ω)(Wtj+1(ω)−Wtj (ω)) (1.45)

with probability one.

Lemma 1.4.2 For any a, b ∈ R and any random step functions f, g such
that fj , gj on tj ≤ t < tj+1 for j = 1, 2, . . . , n − 1 with 0 = t1 < t2 <
. . . t < tn = 1, is Ftj -measurable and mean square integrable, the stochas-
tic integral equation (1.45) satisfies the following properties:

(a) I[f ] is F1-measurable,
(b) E(I[f ]) = 0,
(c) E(I2[f ]) =

∑
j E(f2

j )(tj+1 − tj),
(d) I[af + bg] = aI[f ] + bI[g], with probability one.

Proof. Since fj is Ftj -measurable and Wtj+1 −Wtj is Ftj+1 -measurable,
each term fj{Wtj+1 −Wtj} is Ftj+1-measurable and thus F1-measurable.
Hence, I[f ] is F1-measurable.

From the Cauchy-Schwarz inequality and the fact that each term in equa-
tion (1.45) is mean square integrable, it follows that I[f ] is integrable.
Hence, I[f ](ω) is again a zero mean random variable:

E(I[f ]) =
n−1∑
j=1

E(fj{Wtj+1 −Wtj}) =
n−1∑
j=1

E(fjE{Wtj+1 −Wtj}|Ftj ) = 0

Furthermore, I[f ] is mean square integrable:

E(I2[f ]) =
n−1∑
j=1

E(f2
j )E({Wtj+1 −Wtj}2|Ftj ) =

n−1∑
j=1

E(f2
j )(tj+1 − tj).

And, af + bg is a step random step function for any a, b ∈ R. Therefore,
we obtain (d), with probability 1. �

3. If the (continuous) function f is a general integrand such that ft(∗) is
Ft-measurable and mean square integrable, then we define the stochastic
I[f ] integral as the limit of integrals I[f (n)] of random step functions f (n)

converging to f . The problem is thus to characterize the limit of the
following finite sums:

I[f (n)](ω) =
n−1∑
j=1

f
(n)
tj (ω)(Wtj+1(ω)−Wtj (ω))

with probability one, on tj ≤ t < tj+1 for j = 1, 2, . . . , n − 1 with t1 <
t2 < . . . < tn. from (c). we get

E(I2[f (n)]) =
n−1∑
j=1

E((f (n)
tj (∗))2)(tj+1 − tj).
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This converges to the Riemann integral
∫ 1
0 E(f2(s, ∗))ds for n→∞. This

result, along with the well-behaved mean square property of the Wiener
process, i.e., E{(Wt − Ws)2} = t − s, suggests defining the stochastic
integral in terms of mean square convergence.

Theorem 1.4.5 The Itô stochastic integral I[f ] of a function f : Ω×T →
R is the unique mean square limit of sequences I[f (n)] for any sequence of
random step functions f (n) converging to f :

I[f ](ω) = lim
n→∞

n−1∑
j=1

f
(n)
tj (ω)(Wtj+1(ω)−Wtj (ω)),

with probability one.

The properties (a),(b) and (c) from Lemma 1.4.2 still apply, but we write

E(I2[f ]) =
∫ 1

0
E(f2(∗, t))dt

for (d) and call it the Itô isometry on the unit time interval. Now, we present
the Itô integral.

Definition 1.4.12 The time-dependent Itô integral is a random variable de-
fined on any interval [t0, t]:

Xt(ω) =
∫ t

t0

f(ω, s)dWs(ω) (1.46)

which is Ft-measurable and mean square integrable.

From the independence of non-overlapping increments of a Wiener process, we
have

E(Xt −Xs|Fs) = 0,
with probability 1, for any t0 ≤ s ≤ t. Hence, the process Xt is a martingale.

As the Riemann and the Riemann-Stieltjes integrals, equation(1.46) satisfies
conventional properties such as the linearity property and the additivity prop-
erty.

However, it has also the unusual property that∫ t

0
Ws(ω)dWs(ω) = 1

2W
2
t (ω)− 1

2 t, (1.47)

with probability 1, where W0 = 0, with probability 1.

Note that this expression follows from the fact that∑
j

Wtj (Wtj+1 −Wtj ) = 1
2W

2
t (ω)− 1

2
∑
j

(Wtj+1 −Wtj )2,

where the second term converges to t in mean square sense.
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The Itô Formula

A consequence is that stochastic differentials, which are interpreted as stochas-
tic integrals, do not follow the chain rule of classical calculus.

Roughly speaking, an additional term is appearing due to the fact that dW 2
t is

equal to dt in the mean square sense.

We consider the stochastic process Y = {Yt = U(Xt, t)}t≥0 with U(x, t) having
continuous second order partial derivatives.

If Xt were continuously differentiable, the chain rule of classical calculus would
give the following expression:

dYt = ∂U

∂t
dt+ ∂U

∂x
dXt. (1.48)

This follows from a Taylor expansion of U in ∆Yt and discarding the second
and higher order terms in ∆t.

When Xt is a process of the form equation (1.46), we get

dYt = (∂U
∂t

+ 1
2f

2 ∂
2U

∂x
)dt+ ∂U

∂x
dXt. (1.49)

where dXt = fdWt is the symbolic differential form of equation (1.46).

The additional term is due to the fact that E(dX2
t ) = E(f2)dt gives rise to

an additional term of the first order in ∆t of the Taylor expansion for U :

∆Yt = (∂U
∂t

∆t+ ∂U

∂x
∆x) + 1

2(∂
2U

∂t2
∆t2 + ∂2U

∂t∂x
∆x∆t+ ∂2U

∂x2 ∆x2) + . . .

Theorem 1.4.6 Consider the following general stochastic differential:

dXt(ω) = g(ω, t)dt+ f(ω, t)dWt(ω)

Let Yt = U(Xt, t) with U having second continuous partial derivatives, then
Y = {Yt} is again a diffusion process and the Itô’s formula is the following
stochastic chain rule:

dYt = ∂U

∂t
dt+ ∂U

∂x
dXt + 1

2
∂2U

∂x2 (dXt)2 (1.50)

with probability one and where (dXt)2 = (dXt)(dXt) is computed according to
the rules

dtdt = dtdWt = dWtdt = 0,

and dWtdWt = dt, then the Itô formula is

dYt = {∂U
∂t

+ 1
2f

2(ω, t)∂
2U

∂x2 }dt+ ∂U

∂x
dXt (1.51)
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Finally, from the Itô formula, one can recover equation (1.47). For Xt = Wt

and u(x) = xn, we have

d(Wn
t ) = nW

(n−1)
t dWt + n(n− 1)

2 W
(n−2)
t dt.

If we consider the case n = 2 we have

d(W 2
t ) = 2WtdWt + dt.

then, we have

W 2
t −W 2

s = 2
∫ t

s

WtdWt+ (t− s).

Taking s = 0, we recover equation (1.47).

The Lamperti transform.

Here, we present a particular application of the Itô formula that is of interest
in many of the simulation and estimation methods of stochastic differential
equations. We consider a diffusion process which is the solution of the equation

dXt = µ(Xt; t)dt+ σ(Xt)dWt,

where the diffusion coefficient depends only on the state variable.

We can always transform the stochastic differential equation into one with a
unitary diffusion coefficient by applying the Lamperti transform, given by

Yt = U(Xt, t) =
∫ Xt

x

1
σ(u)du, (1.52)

with x any arbitrary value in the state space of X. Using the Itô formula we
have

∂U(x, t)
∂t

= 0,

∂U(x, t)
∂x

= 1
σ(x)

and
∂2U(x, t)
∂x2 = − σ

′(x)
σ2(x) ,

then the process Yt solve the stochastic differential equation

dYt = −1
2σ
′(Xt)dt+ 1

σ(Xt)
µ(Xt; t)dt+ dWt

therefore
Yt = α(Yt, t)dt+ dWt (1.53)

where
α(Yt, t) = µ(Xt, t)

σ(Xt)
− 1

2σ
′(Xt).
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1.4.8 The Girsanov Theorem.
Basically the Girsanov Theorem says that if we change the drift coefficient of a
given diffusion process, then the law of the process will not change dramatically.
In fact, the law of the new process will be absolutely continuous with respect
to the law of the original process and we can compute explicitly the Radon-
Nikodym derivative.

Theorem 1.4.7 The Girsanov Theorem. Let X = {Xt}t≥0 be an diffusion
process on a probability space (Ω,F ,P) with values in R of the form

dXt = µ(x, t)dt+ dWt

with X0 = 0, and t ≤ T ≤ ∞ and Wt is one-dimentional Wiener process. Put

Mt = exp{−
∫ t

0
µ(x, s)ds− 1

2

∫ t

0
µ2(x, s)ds} (1.54)

and suppose that µ(x, t) satisfies the Novikov’s condition

E[exp(1
2

∫ T

0
µ2(x, s)ds)] <∞ (1.55)

where E = EP is the expectation with respect to P. Define the measure Q on
(Ω,FT ) by

dQ(ω) = MT (ω)dP(ω) (1.56)

Then X is an one-dimensional Wiener process with respect to the probability
law Q, for t ≤ T .

Remark 1.4.5 The transformation P → Q given by equation (1.56) is called
the Girsanov transformation of measures and since Mt is a martingale we
actually have that

MT dP = MtdP (1.57)

on Ft, t ≤ T .

Proof. For a proof see [Øksendal (1998].

1.4.9 Numerical Methods for Stochastic Differential Equa-
tions.

In this section we present the principal methods for the simulation of solutions
of stochastic differential equations. Simulation methods are usually based on
discrete approximations of the continuous solution to a stochastic differential
equation. The methods of approximation are classified according to their dif-
ferent properties. Mainly two criteria of optimality are used in the literature:
the strong and the weak convergence.

Strong convergence

A time-discretized approximation Xδ of a continuous-time process X, with δ the
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maximum time increment of the discretization, is said to be of general strong
order of convergence γ to X if

E[Xδ
T −XT ] ≤ Cδγ

is fixed for any time horizon T , for all δ < δ0 with δ0 > 0 and C a constant not
depending on δ.

Weak convergence

We again consider the time-discretized approximation Xδ, then Xδ is said to
converge weakly of order β to X if

|Eg(XT )− E(Xδ
T )| ≤ Cδβ

is fixed for any time horizon T , any continuous 2(β + 1) differentiable function
g of polynomial growth, with δ0 > 0 and C a constant not depending on δ.

Euler approximation.

Consider a the diffusion process X = {Xt}t≥0 solution of the stochastic differ-
ential equation

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt (1.58)
with initial deterministic value Xt0 = x0 and a time discretization

0 = t0 < t1 < . . . < tn = T

of the interval [0, T ]. The Euler approximation of X is a continuous stochastic
process Y satisfying the iterative scheme

Yti+1 = Yti + µ(Yti , ti)∆i + σ(Yti , ti)∆Wi (1.59)

for i = 0, 1, . . . , n− 1, with Y0 = x0 and

∆i = ti+1 − ti

∆Wi = Wti+1 −Wti ,

then ∆Wi ∼ N(0,∆i).

In between any two time points ti and ti+1, the process can be defined dif-
ferently. One natural approach is to consider linear interpolation so that Yt is
defined as

Yt = Yti + t− ti
ti+1

(Yti+1 − Yti)

for all t ∈ [ti, ti+1). The Euler scheme has order γ = 1/2 of strong convergence.

Euler scheme Example.

Here, we present a simulation of a diffusion process using Euler scheme, we
consider the Ornstein-Uhlenbeck process, which is a solution of the stochastic
differential equation

dXt = −αXtdt+ σdWt, (1.60)
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where α > 0 and σ > 0 are unknown parameters to be estimated, and W is
a standard Wiener process. We suppose that X0 = 0 and considering an the
interval of estimation [0, 1] with a discretization

0 = t0 < t1 < . . . < tn = 1,

where n = 100 and ∆ = ∆i = 0.01, for all i = 1, 2, . . . , n − 1, then Euler
scheme for this process is

Yti+1 = Yti − αYti∆ + σ∆W

In the Figure 1.1, we present a realization of the process when α = 0.5 and
σ = 2.5 on the interval [0, 1].

Euler approximation of the Ornstein−Uhlenbeck process

Time

Y

0.0 0.2 0.4 0.6 0.8 1.0

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

Figure 1.1: A simulated path of the Ornstein-Uhlenbeck process using a dis-
cretization of 100 subintervals of [0,10]

Milstein approximation.

The Milstein scheme makes use of Itô’s Lemma to increase the accuracy of the
approximation by adding the second-order term, we can approximate Xt by the
Milstein scheme

Yti+1 = Yti + µ(Yti , ti)∆i + σ(Yti , ti)∆Wi +
1
2σ(Yti , ti)σ′(Yti , ti)ti[(∆Wi)2 −∆i]

(1.61)
This scheme has strong and weak orders of convergence equal to one.
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Milstein scheme Example.

We present an Example of simulation of a diffusion process using Milstein
scheme, we consider the geometric Brownian motion, which is a solution of
the stochastic differential equation

dXt = θ1Xtdt + θ2XtdWt. (1.62)

For this process, µ(x, t) = θ1x, σ(x, t) = θ2x, and σ′(x, t) = θ2 and the Milstein
scheme reads

Yti+1 = Yti + θ1Yti∆i + θ2∆YtiWi + 1
2θ

2
2Yti [(∆Wi)2 −∆i] (1.63)

= Yti(1 + ∆i(θ1 −
θ22
2 )) + θ2∆Wi + θ22

2 Yti(∆Wi)2

We again suppose that X0 = 0 and considering an the interval of estimation
[0, 1] with a discretization

0 = t0 < t1 < . . . < tn = 1,

where n = 100 and ∆ = ∆i = 0.1, for all i = 1, 2, . . . , n− 1. In the Figure 1.2,
we present a realization of the process when θ = (1.0, 0.5) on the interval [0, 1].

Geometric Brownian Motion

Time

Y

0.0 0.2 0.4 0.6 0.8 1.0

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Figure 1.2: A simulated path of the Geometric Brownian motion using a dis-
cretization of 100 subintervals of [0,1]
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1.5 Markovian Bridges.
In this section we consider Markov processes subject to constraints on their ini-
tial and ending points, i.e., Markov bridges.

Markov bridges are prototypical of a variety of conditioned diffusions arising
in applications and hence it is of some interest to understand the behaviour of
MCMC methods in this context. Furthermore, the corresponding target bridges
are representative of the family of distributions defined as a change of measure
from Gaussian laws on arbitrary separable Hilbert spaces.

Markov bridges plays an important role in some very useful approaches to like-
lihood inference (including Bayesian inference) for discretely sampled diffusion
processes and other diffusion-type processes like stochastic volatility models.

1.5.1 Construction of Bridges
If we consider a Markov process X = {Xt}t≥0 with state space E, then a Marko-
vian bridge is a process obtained by conditioning a Markov process X to start
in some state x at time t0 and arrive at some state y at time t > t0 and we call
this process the (t0, x, t, y)-bridge derived from X.

Let X = {Xt}t≥0 be a Markov process with state space E, strong Markov
property and transition semigroup P (t). We assume that E is Lusinian 1, that
P (t) maps Borel functions to Borel functions, and that the paths of X are cad-
lag. This allows us to realize X as the coordinate process on the sample space
Ω of all cadlag paths from [0,∞) to E . The law of X when started at x is Px .
We write {Ft}t≥0 for the natural filtration of X and {θt}t≥0 for the usual shift
operators i.e., Xt ◦ θt = Xs+t. The transition densities of X is given by

Px,dy(t) = pxy(t)λ(dy) (1.64)

where λ is a σ-finite measure on E. We suppose that there is a second process
X̂ with strong Markov property in duality with X relative to the measure λ,
i.e., the semigroup P̂ (t) of X̂ is related to P (t) by∫

E

f(x)P (t)g(x)λ(dx) =
∫
E

P̂ (t)f(x)g(x)λ(dx) (1.65)

for all t > 0 and all positive Borel functions f and g. Then, we have that
equations (1.64) and (1.65) imply that there is a version of the density pxy(t)
that is jointly measurable in (t, x, y) and such that the Chapman-Kolmogorov
identity

pxy(t+ s) =
∫
E

pxz(t)py(s)λ(dz) (1.66)

holds for all s, t > 0 , and x, y ∈ E. By the hypothesis of duality we have that

P̂x,dy(t) = pxy(t)λ(dy). (1.67)

Here, we present an outline of Doob’s method of h-transforms to construct
bridge laws Psxy, for details see [P. Fitzsimmons & Yor (1992].

1homeomorphic to a Borel subspace of some compact metric space
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Doob’s Method

The idea is construct bridge laws Psxy, which for each x and s will serve as a
family of regular Px conditional laws for {Xt}0≤t<s given Xs− = y, which will
serve equally well as conditional laws given Xs = y.

Now, if we fix x, y ∈ E and s > 0 such that 0 < pxy(s) < ∞ by Chapman-
Kolmogorov we have that

Ht = pXty(s− t)
is a (positive) martingale under Px with 0 ≤ t < 0. Then we have that

Q(A) =
∫
A

Ht(ω)Px(dω) (1.68)

with A ∈ F defines a finitely additive set function Q = Qsxy on the algebra
G =

⋃
0≤t<s Ft such that each restriction Q|Ft is σ-additive and if we normalize

by pxy(s), Q extends to a measure on Fs− given by Psxy. Then we have the next
result
Proposition 1.5.1 If it satisfies equations 1.64,1.65, 1.66 and 0 < pxy < ∞
then there is a unique probability measure Psxy on (Ω,Fs−) such that

Psxy(F )pxy(s) = P(FpXty(s− t)) (1.69)

for all positive Ft-measurable functions F on Ω, for all 0 ≤ t < s . Under Pxy,
the coordinate process {Xt}0≤t<s is a non-homogeneous strong Markov process
with transition densities

p(y,s)(x, r; z, t) = pxz(t− r)pzy(s− t)
pxy(s− r)

0 < r < t < s. (1.70)

Moreover, if F ≥ 0 is Ft-measurable and g ≥ 0 is a Borel function on E, then

P(F (g(Xs−))) =
∫
E

P(F )g(y)pxy(s)λ(dy). (1.71)

Remark 1.5.1 We have that {Psxy}y∈E is a regular version of the family of
conditional probability distributions Px(∗|Xs− = y).

For a proof see [P. Fitzsimmons & Yor (1992]. Now, we present some results
of Proposition 1.5.1, which used in the simulation of bridges in the following
section.
Corollary 1.5.1 Suppose 0 < pxy(s) <∞, then

1. The law Psxy of the time-reversed process {X(s−t)−}0≤t<s is P̂syx, the law
of a (0, y, s, x)-bridge for the dual process X̂.

2. For each stopping time τ on {Ft}, a Psxy regular conditional distribution
for {Xτ+r}0≤r<s−τ given Ft on {τ < l} is provided by Ps−τXτy

Finally, we will mention an important remark about of this results.
Remark 1.5.2 Applied to the dual process after time reversal and condition-
ing on X, Proposition 1.5.1 implies the following decomposition of the original
Markov process X at random times τ that correspond to stopping times on the
reversed time scale.
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1.5.2 Simulation of Diffusion Bridges.
Algorithms for simulation of diffusion bridges were proposed by [Roberts &
Stramer (2001]. [Beskos et al. (2006] developed algorithms for exact simula-
tion of diffusion bridges when the drift and diffusion coefficients satisfy certain
boundness conditions. Under strong boundness conditions the algorithm is rel-
atively simple, whereas it is more involving under weaker condition.

Here, we will briefly outline of the method for simulation of diffusion bridges pro-
posed by [Bladt & Sørensen (2009] which will be used later. Let X = {Xt}t≥0
be a one-dimensional diffusion given by equation 1.42 where the coefficients are
sufficiently regular to ensure that the equation has a unique weak solution that
is a strong Markov process.

We consider two x and y points in the state space of X and suppose that
we are interested in the realization of the process in the interval [t0, t1] given
that Xt0 = x and Xt1 = y. We will call to a solution of equation 1.42 in the
interval [t0, t1] such that Xt0 = x and Xt1 = y, a (t0, x, t1, y)−bridge.

Suppose that the state space is given by (l, r) and let W 1 and W 2 be two
independent standard Wiener processes, and define X1 and X2 as the solutions
to

dXi
t = µ(Xi

t , ψ)dt+ σ(Xi
t , ψ)dW i

t

for i = 1, 2 and X1
t0 = x and X2

t0 = y, then the idea is to realize an approxima-
tion to (t0, x, t1, y)−bridge by simulating the process X1 from a forward in time
and X2 from b backward in time starting at time one. If the samples paths of
the two processes intersect, they can be combined into a realization of a process
that approximates a (t0, x, t1, y)−bridge.

Let Y 1
δi

and Y 2
δi

, i = 0, 1, . . . , N and be independent simulations of X1 and
X2 in [0,∆] with step size δ = ∆/N . Then a simulation of an approximation
to a (0, x,∆, y)−bridge is obtained by the following rejection sampling scheme.
Keep simulating Y 1 and Y 2 until the sample paths cross. Once a trajectory
crossing has been obtained, define

Bδi =
{
Y 1
δi for i = 1, . . . , τ
Y 2
δi for i = τ, . . . , N

where τ = min{i ∈ 1, . . . , N |Y 1
δi ≤ Y 2

δ(N−i)} if Y 1
0 ≥ Y 2

∆ , and τ = min{i ∈
{1, . . . , N}|Y 1

δi ≥ Y 2
δ(N−i)} if Y 1

0 ≤ Y 2
∆ and thenB approximates a (0, x,∆, y)−bridge.

Consider the diffusion bridge in the interval [0, 1] we have that the distribu-
tion of the process that is simulated by the algorithm presented above and the
sense in which it is an approximation of a diffusion bridge is seen in the following
Theorem.

Theorem 1.5.1 Let τ = inf{0 ≤ t ≤ 1|X1
t = x2

1−t}. and

Zt =
{
X1
δi if 0 ≤ t ≤ τ

X2
δi for τ < t ≤ 1
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Then the distribution of Z = {Zt}0≤t≤1 conditional on the event {τ ≤ 1} equals
the distributions of a (0, x, 1, y)−bridge conditional on the event that the bridge
is hit by an independent diffusion with stochastic differential equation 1.42 and
initial distribution with density py,∗(1).

For a proof see [Bladt & Sørensen (2009].

Remark 1.5.3 We obviously have that the quality of the approximation depends
on the probability π that a (0, x, 1, y)-bridge is hit by an independent diffusion
with initial distribution p1(y, ∗). When π is close to one, the simulated process
is essentially a (0, x, 1, y)-bridge.

Now, since that the speed measure s(x) for any one-dimensional diffusion satis-
fies the balance equation

pxy(t)s(x) = pyx(t)s(y) (1.72)

see [Ito & McKean (1965] we have followin result.

Lemma 1.5.1 The time-reversed process {X̂t}t≥0 given by X̂t = X2
1−t . The

process {X̂t} and the conditional process {Xt}t≥0 given that X1 = y have the
same transition densities and the distribution of {X̂t}t≥0 is equal to the condi-
tional distribution of the process {Xt}t≥0 with X0 ∼ ν given that X1 = y.

This result follows of Proposition 1.5.1, see [Bladt & Sørensen (2009].

The generalization of this results to an interval [0,∆], the prove that for ergodic
diffusions the probability π∆ that a (0, x,∆, y)-bridge is hit by an independent
diffusion with initial distribution p∆(y, ∗) is close to one and that the rejection
probability P (τ > ∆), where τ is the stopping time, converges to zero obviously
are presented in [Bladt & Sørensen (2009].

1.6 Integrated Diffusion Process
We consider the one-dimensional diffusion

dXt = µ(Xt;ψ)dt+ σ(Xt;ψ)dWt

where ψ is an unknown p-dimensional parameter belonging to the parameter
space Ψ ⊆ Rp and W is a one-dimensional standard Wiener process. We as-
sume that X0 is independent of W , that the stochastic differential equation
has a unique weak solution, and that X is an ergodic, stationary diffusion with
invariant measure νψ.

Suppose that the interval of observation of the paths of the diffusion is [0, T ]
but, a running integral of the process with respect to some weight function is
available. Specifically, suppose the interval of observation [0, T ] is subdivided
into n smaller intervals of length ∆ = T/n and let v be a probability measure
on the interval [0,∆]. We shall consider observations of the form

Yi =
∫ ∆

0
X(i−1)∆+sdv(s)
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for i = 1, . . . , n.

Since that, typically, v will have a density π with respect to the Lebesgue mea-
sure on [0,∆], we can write, in this case

Yi =
∫ i∆

(i−1)∆
Xsπ(s− (i− 1)∆)ds (1.73)

for i = 1, . . . , n.

Suppose that the observations are obtained by integrating uniformly over the
time axis, then v is simply the uniform distribution on [0,∆] with π = 1/∆,
then we can write equation 1.73

Yi = 1
∆

∫ i∆

(i−1)∆
Xsds

Remark 1.6.1 Since the process X is invariant under time translations by sta-
tionarity, the Y = {Yi} is a stationary process.

Here we consider the estimation of the parameter ψ when we observe a discrete-
sampling of the integrated process. Integrated diffusion processes play an im-
portant role in finance as models for realized volatility, see e.g. [Andersen &
Bollerslev (1998], [T. Andersen & Labys (2001], [Bollerslev & Zhou (2002],
and [Barndorff-Nielsen & Shephard (2002].

These processes are also used for modelling purposes in fields of engineering
and the sciences. An Example is provided by the records of the concentra-
tion of oxygen isotopes in ice-core data from Greenland and Antarctica, see
e.g. [Ditlevsen, Ditlevsen & Andersen (2002]. Such data are used to investigate
the paleo-climate.

Estimation of parameters in diffusion models is investigated when the obser-
vations are integrals over intervals of the process with respect to some weight
function. This type of observations can, for Example, be obtained when the
process is observed after passage through an electronic filter.

Parametric inference for integrated diffusion process has been considered by
[Gloter (2006], and [Bollerslev & Zhou (2002]. Nonparametric inference has
been considered in [Comte, Genon-Catalot & Rozenholc (2009].

Here, we will briefly outline of the optimal prediction-based inference for in-
tegrated diffusions.

Prediction Based Estimating Functions

We consider the diffusion define by 1.73 and again we suppose that we don’t
observe X itself but we observe a discrete sampling of integrate process Y =
(Y1, . . . , Yn) is available, but now we consider observations of the form [Ditlevsen
& Sørensen (2004]

Yi =
∫ ti

ti−1

Xsds,
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for i = 1, . . . , n.

Remark 1.6.2 Note that by stationarity, the law of the process X is invariant
under time translations, which easily implies that Y is a stationary process.

In this section we present the problem of estimating the parameter θ = (α, σ) of
the process X by applying the method of prediction-based estimating functions
introduced in [Sørensen (2000].

An estimate is a function Gn(θ) that depends on the parameter as well as
on the observations. We can obtain an estimator by solving the equation

Gn(θ) = 0.

Define the one dimensional functions fj , j = 1, . . . ,m on the state space of
Y , such that Eθ(fj(Yi)2) < ∞ with i = 1, . . . , n and we denote the expecta-
tion when θ is the true parameter value by Eθ(∗). Define Fi := σk≤i(Yk) and
Hθi = L2(Fi) and let P θi,j , j = 1, . . . ,m be closed linear subspaces of Hθi .

The subspace P θi,j can be interpreted as a set predictors of fj(Yi+1) given
Y1, . . . , Yi. We will study the estimating function

Gn(θ) =
n∑
i=1

n∑
j=1

Πi−1
j (θ)(fj(Yi)− π̂i−1

j (θ)), (1.74)

with Πi−1
j (θ) = (πi−1

1,j (θ), . . . , πi−1
p,j (θ))T a p-dimensional stochastic vector, the

coordinates of which belong to P θi−1,j and where π̂i−1
j (θ) is the minimun mean

square error predictor of fj(Yi) in P θi−1,j , then π̂i−1
j (θ) is the orthogonal projec-

tion of fj(Yi) on P θi−1,j with respect to the inner product in Hθi .

The projection exist and is uniquely determined by the normal equations

Eθ(π(fj(Yi)− π̂i−1
j (θ))) = 0

with π ∈ P θi−1,j .

We shall be particularly interested in prediction-based estimating functions
where each of the sets P θi−1,j is finite dimensional. We assume that P θi−1,j
is spanned by Zi−1

j0 , Zi−1
j1 , . . . , Zi−1

jqij
of the form Zi−1

jk = hijk(Y1, . . . , Yi−1), k =
1, . . . , qij , which are linearly independent in Hθi−1. Assume that Zi−1

j0 is con-
stant equal to 1 and thus we can write the elements of P θi−1,j in the form
aTZi−1

j with aT = (a0, . . . , aqj ) and Zi−1
j = (Zi−1

j0 , Zi−1
j1 , . . . , Zi−1

jqij
)T . When θ

is the true parameter value, we define Cj(θ) as the covariance matrix of Zi−1
j

and bj(θ) = (Covθ(Zrj1, fj(Yr+1)), . . . , Covθ(Zrjqj , fj(Yr+1)))T and by the nor-
mal equations, the minimum mean square error predictor of fj(Yi) in P θi−1,j is
given by

π̂i−1
j (θ) = âj0(θ)T + âj(θ)TZi−1

j
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where
âj(θ)T = Ci−1,j(θ)−1bi−1

j (θ) (1.75)

and
âj0(θ)T = Eθ(fj(Yi))− âj(θ)TEθ(Zi−1

j ). (1.76)

The optimal prediction-based inference for integrated diffusions

We use the results an notation in [Sørensen (2000] and [Ditlevsen & Sørensen
(2004] we have that the optimal estimating function of the type equation (1.74)
is given by

G∗n = A∗n

n∑
i=r+1

H(i)(θ),

with
H(i)(θ) = Zi−1)(F (Yi)− π̂(i−1)(θ)),

where
F (x) = (f1(x), . . . , fN (x))T ,

π̂(i−1)(θ) = (π̂(i−1)
1 (θ), . . . , π̂(i−1)

N (θ))T ,

Z(i−1) =


Z

(i−1)
1 aq1 . . . aq1
aq2 Z

(i−1)
1 . . . aq2

· · · · · · · · ·
aqN aqN . . . Z

(i−1)
N


and

A∗n(θ) = ∂θâ(θ)T C̄(θ)M̄n(θ)−1,

where

M̄n(θ) = Eθ(Hr+1(θ)Hr+1(θ)T )

+
n−r−1∑
k=1

n− r − k
n− r

× [Eθ(Hr+1(θ)Hr+1+k(θ)T ) + Eθ(Hr+k+1(θ)Hr+1(θ)T )],

C̄(θ) = Eθ(Z(i−1)(Z(i−1))T )

and
â(θ)T = (â1(θ)T , . . . , âN (θ)T )

where âj(θ) is given by equation (1.76).

Simulated Data Example

In this section we apply the method developed above to the Ornstein-Uhlenbeck
process, which is a solution of the stochastic differential equation

dXt = −αXtdt + σdWt, (1.77)

where α and σ are unknown parameters to be estimates, and W is the standard
Wiener process.
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Assume that σ > 0 for all x in the state interval.

Now, we will find the optimal prediction-based estimating function with N =
1,f1(y) = y,f2(y) = y2,Z(i−1)

1,0 = Z
(i−1)
2,0 = 1 and Z(i−1)

1,1 = Yi−1.

Then following the results in [Ditlevsen & Sørensen (2004] we have that the
optimal-based estimate is given by:

(1− e−α∆)2
2(α∆− 1 + e−α∆) =

∑n
i=2 Yi−1Yi∑n
i=2 Y

2
i−1

(1.78)

and
σ2 = α3∆2∑n

i=2 Y
2
i

(n− 1)(α∆− 1 + e−α∆) (1.79)

Remark 1.6.3 α∆−1+e−α∆ > 0 when α > 0, then is no solution if
∑n
i=2 Yi−1Yi <

0.

Output Analysis

In this section the Milstein scheme was used to simulate a Ornstein-Uhlenbeck
process with discretization level (n = 1000) with α = 0.1 and σ = 0.5 In this
the the value initial X0 has density given by (see Kutoyants Y.(2004)).

X0 ∼ N(0, σ2/2α).

Summaries of the implementation output for the simulated data set are reported
in Table III.

α σ
0.098165542 0.5093917

Table III.

Summaries of the implementation output for the simulated data set with dis-
cretization level (n = 5000) are reported in Table IV.

α σ
0.098505601 0.4707101

Table IV.

The method was implemented in Fortran 95.
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Chapter 2

Statistical inference for
Markov Jump Processes

In this chapter we present an algorithm for the estimation of transition rates
by a Markov Chain Monte Carlo (MCMC) approach to observations from sev-
eral Markov jump processes which conditional on the underlying Markov jump
process are independent with the same transition rates and apply our results to
analysis of credit rating transition.

2.1 Introduction
Markov jump processes with finite state space have many applications. The like-
lihood estimation theory based on a continuous time observation of a Markov
jump process (MJP) is well-known; see, for Example,
[Billingsley (1961], [Jacobsen (1982] and [Kuchler & Sørensen (1999]). The case
when the MJP is observed only at discrete time points has been studied in the
last decade, for Example, study of the problem for discretely observed birth pro-
cess and birth-and-death process( see [Keiding (1974] and [Keiding (1975]), [De-
hay & Yao (2006], proposed an approach based on an explicit formula for the
transition matrix of the sampled chain assuming that the intensity function is
bounded above and away from zero and [Bladt & Sørensen (2005] demonstrate
that the maximum likelihood estimator can found either by the EM algorithm
or by a Markov chain Monte Carlo procedure.

An important application of MJP is in credit risk modelling; see
[R. Jarrow & Turnbull. (1997], a method of estimating the jump intensities
from discrete observations can found in [R. Israel & Wei (2001] and [Bladt &
Sørensen (2006] demonstrated that continuous-time Markov model can also be
used to analyse discrete-time observations, where ratings have only been ob-
served at discrete points in time.

In this chapter we present the explicit likelihood function for a Markov jump
processes when its has been observed discretely and continuously and the prin-
cipal objective is discuss the problems that are related to maximum likelihood
estimation of the intensity matrix based on a discretely sampled Markov jump

53
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processes generalizing the results of Bladt and Sørensen in [Bladt & Sørensen
(2005] on estimation of transition rates by a MCMC approach to observations
from several Markov jump processes which conditional on underlying Markov
jump process are independent with the same transition rates and apply our
results to analysis of credit rating transition .

2.2 The Likelihood Function

2.2.1 Continuous Likelihood Function
Suppose that the Markov jump process X = {Xt}t≥0 with finite state space
E = {1, 2, . . . ,m} and infinitesimal generator Q has been observed continu-
ously in certain time interval [0, T ]. The process is assumed to be a separable
continuous-time homogeneous and irreducible. With probability one, all sample
paths are right-continuous step functions with a finite number of jumps in each
finite interval.

A sample path in a given interval [0, T ] is characterized by the number of jumps,
the sequence of visited states, and the time spent in each state within that in-
terval.

Using the random variables of the Definition 4.2.5, a sample path of X =
{Xt}0≤t≤T can be represented as an ordered sequence:

{Xt}0≤t≤T = {(x1,∆t1), (x2,∆t2), . . . , (xn,∆tn), xn+1}.

Note that n jumps, in all, have been made.

Then the sample path starts at x1 at time zero, remains in x1 for ∆t1 units
of time, makes a jump to x2, remains in x2 for ∆t2 units of time,. . ., jumps to
xn, remains there for ∆tn units of time and then makes the final jump to tn+1
and remains there at least until time T .

Now we can write the probability distribution:

Theorem 2.2.1 Let

rij =
{

0 if i = j
qi,j if i 6= j

then

P (N(T ) = n,Xt0 = x1,∆t1 ≤ s1, . . . , Xtn−1 = xn,∆tn ≤ sn, Xtn = xn+1) =
P (Xt0 = x1)e−qxn+1

∫
τn

∏n
i=1 d∆tirxixi+1e

−(qxi−qxn+1 )∆ti

where

τn = {(∆t1,∆t2, . . . ,∆tn) :
n∑
i=1

∆ti < T, 0 ≤ ∆ti ≤ si},

if n > 0 and P (N(T ) = 0, Xt0 = x1) = P (Xt0 = x1)e−qx1T .
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Proof. The assertions follows from Theorem 1.3.4.

Now, if we define

Ωn = (
n∏
i=1

(E ⊗ R))⊗ E

every sample path of MJP which makes n jumps can be represented as a point
in Ω.

Let λ be the Lebesgue measure on R, C be the counting measure on E and
let µn be the product measure on Ωn, defined by the relation:

µn = (
n∏
i=1

(C × λ))× C.

Then every sample path of process X = {Xt}0≤t≤T can be represented as a
point in

Ω = ∪∞n=0Ωn.
For each set W ⊆ Ω for which W ∩ Ωn is µn measurable define

µ∗(W ) =
∞∑
n=0

µn(W ∩ Ωn).

Let µ be a measure on the space of all sample functions, defined for all subsets
B whose intersection with Ω is in B (the Borel σ-field):

µ(B) = µ∗(B ∩ Ω).

The density of the Markov jump process can be written

Theorem 2.2.2 If B is a subset of the space of all sample functions over [0, T ]
which is measurable with respect to µ, then

P (B) =
∫
B

fQ(x∗)dµ(x∗),

where x∗ denote a realization of X = {Xt}0≤t≤T and

fQ(x∗) =


P (Xt0 = x1)e−qx1T if x∗ = x1
P (Xt0 = x1)e−qxn+1T

∏n
i=1 rxixi+1e

−(qxi−qxn+1 )∆ti

if x∗ = {(x1,∆t1), (x2,∆t2), . . . , (xn,∆tn), xn+1}
0 otherwise.

In second case with n > 0, xi ∈ E,∆ti ≥ 0, i = 1, 2, . . . , n and
∑n
i=1 ∆ti < t.

Proof. See [Doob (1953].

Now, we suppose that k independent realizations x∗1, x∗2, . . . , x∗k ofX = {Xt}0≤t≤T
are continuously observed. The likelihood function, L(c)

T (Q) , has been tradi-
tionally defined by the equation

L
(c)
T,k(Q) =

k∏
i=1

fQ(x∗i ).
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Let the random variable Rki (T ) be the time spent in state i before time T during
the k trials

Rki (T ) =
k∑
j=1

∫ T

0
Iji (Xs)ds

and denote by Nk
ij(T ) the number of transition from i to state j in the time

interval [0, T ] observed during the k trials. The continuous time likelihood
function L(c) of the observed trajectories x∗1, x∗2, . . . , x∗k of {Xt : 0 ≤ t ≤ T} is
given by

L
(c)
T,k(Q) = Ck

m∏
i=1

∏
i6=j

q
Nkij(T )
ij e−qijR

k
i (T ). (2.1)

Considering the log-function we have

logL(c)
T,k(Q) = Ck +

m∑
i=1

∑
i6=j

[Nij(T )k log(qij)− qijRki (T )]. (2.2)

The Halmos-Savage factorization Theorem can be applied to the last expression,
and we see that the set

{Nij(T )k, Rki (T )}i 6=j
is a sufficient statistic for Q. Then a easy calculation shows

∂ logL(c)
T,k(Q)

∂qij
= 0

if and only if

qij =
Nk
ij

Rki (T )

and
∂ logL(c)

T,k(Q)
∂qij∂qr,l

=
−Nk

ij(T )
q2ij

Ir(i)Il(j) ≤ 0

then the maximun likelihood estimator of Q is

q̂ij(T ) = Nij
Ri(T ) (2.3)

provided that Rki (T ) > 0. If the process has not been in state i, there is no
information about qij in the data, and the maximum likelihood estimator of qij
does not exist.

2.2.2 Discrete Likelihood Function
Consider the case where the process has only been observed at discrete time
points 0 = t0, t1, . . . , tn = T , then the process Y = {Yi}ni=0 = {Xti}ni=0 is
discrete time Markov chain, in general time-inhomogeneous and the discrete
likelihood function for the discrete time data is given in terms of the transition
matrix P∆i(Q) = exp(∆iQ),
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L(d)
n (Q) =

n−1∏
i=1

P∆i
xi,xi+1

(Q) (2.4)

where x0, x1, . . . , xn denote the observed values of X, ∆i = ti+1−ti and Q ∈ Q.

In the case where the Markov chain Y is time-homogeneous (when ∆i = ∆)
with transition matrix P∆(Q), so the likelihood function is given by

L(d)
n (Q) =

m∏
i=1

m∏
j=1

(P∆
ij (Q))cij(n) (2.5)

where cij(n) is the number of transition from i to j in the discrete time Markov
chain Y . In this case the discrete log-likelihood function

logL(d)
n (Q) =

m∑
i=1

m∑
j=1

(log(P∆
ij (Q)cij(n)) (2.6)

has the following derivative with respect to the entries of Q

∂

∂Q
logL(d)

n (Q) =
∞∑
k=1

k∑
l=1

∆k

k! (QT )l−1Z(QT )k−l (2.7)

where Z = (Zij)ij∈E and zij = cij(n)/exp(∆Q)ij , which has a complicated
form that can not be found analytically. Hence no analytical expression for the
maximun likelihood estimator with respect to Q is available.

On the other hand the derivative of log-likelihood with respect to the transition
matrix P can analytically be obtained and the maximum is given by

P̂ij = cij(n)∑m
j=1 cij(n)) (2.8)

The Embedding Problem.

As pointed out in the previous section the discrete likelihood function L(d)
n does

not permit an analytical maximum likelihood estimator. On the other hand,
the maximun likelihood estimator for a continuous time observation can be ob-
tained analytically, but for an incomplete observation the information between
two consecutive observations is hidden and, hence, the observables Ri(T ) and
Nij(T ) are unknown.

In this section we consider the problem of how to determine the generator if
only observations at discrete time points 0 = t0, t1, . . . , tn = T are available.
There are, however, several problems here. First, from a finite number of sam-
ples it is impossible to tell if the underlying process is actually Markovian.
Second, it is not clear if the observed data originate indeed from discrete sam-
ples of a continuous-time Markov chain with some generator Q, or rather from
a discrete-time Markov chain which cannot be embedded into a time-continuous
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counterpart. In the latter case, a generator does not exist because the transition
matrix of the discrete chain does not belong to the set

P0 = {exp(Q)|Q ∈ Q},

and the problem of identifying the set P0 is very complicated when m > 2.
It is usually referred to as the embedding problem, then if we calculate P̂ by
equation (2.8) based on our discrete time observations of a continuous time
Markov jump process and P̂ ∈ P0, there is a Q̂ ∈ Q such that P∆(Q̂) = P̂ , and
the likelihood function given by equation (2.5) attains its maximal value at Q̂,
which is thus the maximum likelihood estimator. A third difficulty is the fact
that the matrix exponential function is not injective if the eigenvalues of the
generator are complex, so Q̂ need not be unique. When P̂ /∈ P0, the situation
is not clear owing to the complicated structure of P0, but it seems not to be
uncommon that the maximum likelihood estimator does not exist, in particular
when the time ∆ between observations is large. General results on the existence
and uniqueness of the maximum likelihood estimator are summarized in the next
Theorem enunciated by Bladt and Sørensen in [Bladt & Sørensen (2005]

Theorem 2.2.3 If P̂ given by equation (2.8) belongs to P0, then the maximum
likelihood estimator of the intensity matrix Q̂ exists and is the solution to P̂ =
exp(∆Q̂). If P̂ /∈ P0, then either the maximum likelihood estimator exists and
satisfies the condition that exp(∆Q̂) ∈ δP0 or the likelihood function given by
equation (2.5) has no maximum in Q. If the true transition matrix Q0 satisfies
the condition that exp(∆Q0) ∈ int(P0) and if the Markov process is ergodic,
then the probability that the maximum likelihood estimator exists goes to 1 as
n → ∞, and exp(∆Q̂) → exp(∆Q0) almost surely. Moreover, if Q0 satisfies
the condition that exp(∆Q0) ∈ int(P00), then the probability that the maximum
likelihood estimator is unique goes to 1 and Q̂ → Q0 almost surely as n → ∞.
The condition exp(∆Q0) ∈ int(P00) is satisfied when ∆ is sufficiently small.

In here δP0 denote the boundary of P0 relative to P+, then

δP0 = (∪i 6=jEij) ∪ E
where Eij is a non-empty subset of the set of exponential of intensity matrices
with qij = 0, and E is a non-empty subset of the m × m transition matrices
with fewer than m distinct eigenvalues,

P+ = {P ∈P|det(P ) > 0},

and P00 denote the subset of P0 of transition matrices P ∈ P0 , for which Q
is uniquely determined by P = exp(Q), for details of Theorem see [Bladt &
Sørensen (2005].

2.3 Markov jump processes in a random envi-
ronment

In this section we generalize the results of Bladt and Sørensen in [Bladt &
Sørensen (2005] on estimation of transition rates by an MCMC approach to ob-
servations from several Markov jump processes which conditional on underlying
Markov jump process are independent with the same transition rates.
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2.3.1 Model and Data
Let U = {Ut}t≥0 be a Markov jump process on a finite state space {1, 2, . . . , d}
and with intensity matrix Λ0 = {λ0ij}ij=1,...,d. Let Xi = {Xi

t}t≥0, i = 1, . . . , n
be Markov jump processes with finite state space E = {1, . . . ,m} which con-
ditional on U are independet and identically distributed and such that Xi has
intensity matrix ΛUt where Λk = {λkij}ij,=1,...,m. We may think of Ut as an un-
derlying environment and define Λ = (Λ0,Λ1, . . . ,Λd) the full parameter. Our
aim is to estimate the parameter Λ.
If the Xi’s have been observed continuously in the time interval [0, τ ]. The
conditional likelihood function given U is

Lτ (X1, . . . , Xn|U ; Λ) =
d∏
v=1

m∏
i=1

∏
j 6=i

λ
Nvij(τ)
vij e−λvijRvi(τ), (2.9)

where Nvij(τ) is the number of transitions from state i to state j of all the
processes Xi when the underlying environment is in state v in the time interval
[0, τ ] , and

Rvi(τ) =
n∑
k=1

∫ τ

0
Ii,v{Xk

s , Us}ds, (2.10)

is the time spent in state i of all processes Xi while the underlying environment
is in state v before time τ . The likelihood function of U is given by

Lτ (U ; Λ) =
d∏
i=1

∏
j 6=i

λ
N0ij(τ)
0ij e−λ0ijR0i(τ), (2.11)

where N0ij(τ) is the number of transitions from state i to state j of the process
U in the time interval [0, τ ] and R0i(τ) is the total time spent in state i of the
process U before time τ .

For the case when the processes have been discretely observed, we consider
three cases:

1. The case when the underlying process has been observed continuously in
the time interval [0, τ ].

2. The case when the underlying process has been observed only at discrete
time points.

3. We assume that the underlying process is a diffusion process and we will
study the rates of jumps in the Markov jump processes.

2.3.2 Observed Discretely Markov Jump Processes.
We consider the situation where the processes Xi’s have been observed dis-
cretely and suppose two cases: one is that the underlying process U has been
observed continuously and the other is that this process has been observed only
at discrete time points.
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In the first case we suppose that 0 ≤ t1 < . . . < tk ≤ τ be k time points
at which the processes Xi’s have been observed and that the Markov jump
process U has been observed continuously in the time interval [0, τ ]. The ob-
served data point of the processes Xi’s are denoted by x = {x1, . . . , xn} where
xi = {Xi

t1 = xi1, . . . , X
i
tk

= xik} and U c = {Ut|0 ≤ t ≤ τ} is the continuous
time sample paths of the process U . We assume that time points at which the
processes Xi’s have been observed and number of observations is the same for
all processes.

Markov chain Monte Carlo estimation when the underlying process
has been observed continuously.

In the MCMC approach we choose a prior φ(Λ) and find the conditional distri-
bution of Λ given the data (x, U c). In fact, this method provides draws from the
conditional distribution of (Λ, X) given (x, U c), where X = {Xi

t |0 ≤ t ≤ τ, i =
1, . . . , n} is the collection of continuous time sample paths of the processes Xi

for i = 1, . . . , n. For this we employ the Gibbs sampler with two sites λ and X
and sample by alternately drawing X given (Λ, x, U) and Λ given (X,x, U c) (x
is of course of no importance when conditioning on X). Iteration of the Gibbs
sampler results in a sequence of variables (λ(n), X(n)). Under suitable conditions
the Gibbs sampler will eventually produce a stationary and ergodic sequence,
i.e., after discarding a certain burn-in period, say the first K − 1 iterations,
the sequence (λ(n), X(n))n≥K may be considered stationary, and the stationary
distribution is exactly the conditional distribution of (Λ, X) given (x, U c). By
ergodicity, the empirical average

1
M

K+M∑
i=K

Λ(i)

converges to the true mean of Λ conditionally on (x, U c).

In situations where Λ is not uniquely determined by the distribution of the
discrete time sample, the mean of the posterior distribution may not be a
meaningful quantity. However, functional of Λ that are invariant under dif-
ferent representations of the distribution of the data can be estimated using a
method similar to that just described. Specifically, let F be some functional
which depends on the distribution of the data and is invariant under changes of
the representation by Λ (i.e., if Λ1 and Λ2 result in the same distribution of the
data, then F (Λ1) = F (Λ2)).

Then we can estimate F (Λ)

1
M

K+M∑
i=K

F (Λ(i)).

For instance, the transition matrix Pt(Λ) = exp(tΛ) can be estimated in this
way if “t“ is the time between two observations in the data (or a multiple of
such a time).
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Now, we choose the prior

φ(Λ) ∝
d∏
i=1

∏
j 6=i

λ
α0ij−1
0ij e−λ0ijβ0i

d∏
v=1

p∏
i=1

∏
j 6=i

λ
αvij−1
vij e−λvijβvi . (2.12)

Where αvij and βvi are constants to be chosen conveniently, λvij ∼ Gamma(1/βvi, αvij)
and λvij ’s are independent. In this way parameters near the critical boundary,
where det(exp(Λ)) = 0, are effectively penalized because there at least one of
the λvij ’s must go to infinity.

Thus problems of non-existence of the estimator are avoided. This family of
priors is conjugate for the model for continuous observation in the time inter-
val [0, τ ], which is an exponential family of processes, see [Kuchler & Sørensen
(1999].Then samples of Λ given (X,U c) are drawn from the posterior distribu-
tion:

p∗(Λ) ∝ φ(Λ)p(X|Λ, U)p(U |Λ)

∝
p∏
i=1

∏
j 6=i

λ
N0ij+α0ij−1
0ij e−λ0ij(R0i+β0i)

d∏
v=1

p∏
i=1

∏
j 6=i

λ
Nvij+αvij−1
vij e−λvij(Rvi+βvi).

The Gibbs sampler now works as follows

1. Draw initial Λ from the prior distribution.

2. Simulate a sample of X|U c,Λ, x.

3. Calculate the statistics Nvij and Rvi.

4. Draw a new Λ from the posterior distribution.

5. Go to 2.

Step two requires a simulation of the Markov jump processes step-by-step through
the intervals [tj , tj+1] starting from the initial condition Xi

tj = xij such that the
process will be Xi

tj+1
= xij+1 for all i = 1, . . . , n and j = 1, . . . , k − 1. This can

be done by simple rejection if the criterion it not me and acceptance otherwise.

A simulation study. In this section we present a simulation study of esti-
mation of full parameter Λ when X’s have been observed discretely and U has
been observed continuously. We suppose that we have a sample path of the
Markov jump process U with three states in the time interval [0, 500] and we
know that this process has intensity matrix

Λ0 =

 −0.10 0.05 0.05
0.10 −0.20 0.10
0.15 0.50 −.30

 .

Then the one-step transition probabilities matrix is

PU =

 0.5975 0.2358 0.16659
0.4716 0.3336 0.1947
0.4997 0.2920 0.2081
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Met./Par. λ112 λ113 λ121 λ123 λ131 λ132
TRUE 0.06 0.04 0.08 0.07 0.1 0.15
MCMC 0.0593 0.0613 0.0946 0.0516 0.0915 0.1975

0% 0.0090 0.0164 0.0350 0.0079 0.0093 0.0729
25% 0.0467 0.0489 0.0792 0.0390 0.0678 0.1648
50% 0.0576 0.0598 0.0933 0.0499 0.0879 0.1941
75% 0.0699 0.0719 0.1084 0.0623 0.1120 0.2264
100% 0.1499 0.1455 0.1920 0.1398 0.2519 0.5213

Table 2.1: TRUE, the parameter values that were used in the simulation of the
data; MCMC, estimates when applying the MCMC method to discrete time
data and the remaining rows are the quantiles of the data from the MCMC
method when the underlying process is in the state 1.

On the other hand we have simulated a sample path of the Markov jump pro-
cesses Xi with i = 1, 2 conditioned on U with three states in the time interval
[0, 500] and with known intensity matrices:

Λ1 =

 −0.1 0.06 0.04
0.08 −0.15 0.07
0.1 0.15 −0.25

 ,

while the underlying process is in state 1,

Λ2 =

 −0.05 0.025 0.025
0.07 −0.1 0.03
0.12 0.08 −0.2

 .

while the underlying process is in state 2 and

Λ3 =

 −0.15 0.08 0.07
0.06 −0.2 0.14
0.05 0.05 −0.1

 .

while the underlying process is in state 3.

The data are the states of the Xi’s processes at 500 time points, equidistantly
displaced by 1.0 and the complete path of process U .

MCMC
We present the result of a small simulation study, in which we simulated 10,000
intensity matrices including an initial burn-in of 1,000 iterations. The values
of the parameters in the prior are αlij = βli = 1. The average of the 9,000
intensity matrices is presented in Table 2.1, 2.2 and 2.3.

Markov chain Monte Carlo estimation when the underlying process
has been observed discretely.

We consider the situation where the processes Xi’s and U have been discretely
observed. We assume that time points at which the processes Xi’s have been



2.3 Markov jump processes in a random environment 63

Met./Par. λ212 λ213 λ221 λ223 λ231 λ232
TRUE 0.025 0.025 0.07 0.03 0.12 0.08
MCMC 0.0540 0.0242 0.0785 0.1130 0.1380 0.1018

0% 0.0059 0.0008 0.0037 0.0094 0.0134 0.0021
25% 0.0400 0.0142 0.0510 0.0803 0.0964 0.0647
50% 0.0519 0.0218 0.0725 0.1080 0.1301 0.0938
75% 0.0660 0.0318 0.0998 0.1400 0.1710 0.1302
100% 0.1656 0.1093 0.3356 0.3646 0.5631 0.3697

Table 2.2: The corresponding results when the underlying process is in the state
2.

Met./Par. λ312 λ313 λ321 λ323 λ331 λ332
TRUE 0.08 0.07 0.06 0.14 0.05 0.05
MCMC 0.0740 0.0388 0.1505 0.1002 0.0667 0.1011

0% 0.0044 0.0003 0.0085 0.0007 0.0002 0.0018
25% 0.0498 0.0219 0.1034 0.0613 0.0324 0.0615
50% 0.0696 0.0344 0.1418 0.0916 0.0573 0.0922
75% 0.0937 0.0513 0.1881 0.1303 0.0908 0.1321
100% 0.2343 0.2285 0.5222 0.4382 0.3813 0.5102

Table 2.3: The corresponding results when the underlying process is in the state
3.

observed and number of observations is the same for all processes. Observation
points of the underlying process are not necessarily the same as the processes
Xi’s.

Then 0 ≤ t1 < . . . < tk ≤ τ be k time points at which the processes Xi’s
have been observed and 0 ≤ tu1 < . . . < tur ≤ τ be time points at which
the process U has been observed. The observed data point are denoted by
x = {x1, . . . , xn} where xi = {Xi

t1 , . . . , X
i
tk
} and u = (Utu1

, . . . , Utur ) for the
processes Xi’s and U respectively.

We present an approach to estimating the full parameter Lambda using the
Markov Chain Monte Carlo methods. In the MCMC approach we choose a
prior φ(Λ) and find the conditional distribution of Λ given the data (x, u). We
shall study the slightly more general problem of finding the conditional distri-
bution of (Λ, X, U) given (x, u) where X = {Xi

t |0 ≤ t ≤ τ, i = 1, . . . , n} is the
continuous time sample paths of the processes Xi.

Let ϑ denote the space of intensity matrices. Let EX be the space of possi-
ble values of X and let EU denote the space of possible sample paths of U . A
Markov chain taking values in ϑd+1 × EX × EU with stationary distribution
equal to the conditional distribution of (Λ, X, U) given (x, u), and is given by
the following Gibbs sampler with three sites, Λ, X and U .

Now, we sample by alternately drawing X given (Λ, U, x), U given (Λ, X, u)
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and λ given (U,X). Here, there is the question of determination of the com-
ponent (Λv, v = 1, . . . , d) to which each of the Xi

tj , i = 1, . . . , n, j = 1, . . . , k.
belongs.

This is facilitated in mixture models, this classification expose a hidden struc-
ture in the model which may be viewed as missing data: each observation is
associated with an unobserved indicator of componet from which it originated.

Then the algorithm is a data augmentation, which consider the complete model,
namely the distribution of (zij , Xi

tj ), where zij is the component indicator such
that P ti |zij = exp(tΛzi

j
) and we complete the missing data Z = {Z1, . . . , Zn}

where Zi = {zi1, . . . , zik}, i = 1, . . . , n and j = 1, . . . , k.

Here, the Gibbs sampler works as:

1. Draw initial Λ from the prior distribution.

2. Update Z|Λ, U,X.

3. Simulate a sample of X|Z,U,Λ, x.

4. Simulate a sample of U |Z, u,Λ, X.

5. Calculate the statistics Nvij and Rvi.

6. Draw a new Λ from the posterior distribution.

7. Go to 2.

Samples of Λ.

In order to obtain samples of Λ given (U,X) we first define a prior

φ(Λ) ∝
d∏
i=1

∏
j 6=i

λ
α0ij−1
0ij e−λ0ijβ0i

d∏
v=1

p∏
i=1

∏
j 6=i

λ
αvij−1
vij e−λvijβvi ,

where αvij and βvi are constants to be chosen conveniently, λvij ∼ Gamma(1/βvi, αvij)
and λvij ’s are independent.

Then samples of Λ given (X,U) are drawn from the posterior distribution:

p∗ ∝ φ(Λ)p(X|Λ, U)p(U |Λ)

∝
p∏
i=1

∏
j 6=i

λ
N0ij+α0ij−1
0ij e−λ0ij(R0i+β0i)

d∏
v=1

p∏
i=1

∏
j 6=i

λ
Nvij+αvij−1
vij e−λvij(Rvi+βvi)

Samples of Z.

In the step 2, we sample from conditional distribution of Z. Let 0 ≤ ti1 <
. . . < tini ≤ τ be ni time points of jumps of the processes Xi, ni the number
of jumps of the processes Xi and 0 ≤ tu1 < . . . < tunu ≤ τ be nu time points of
jumps of the process U and nu the number of jumps of the process U .
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We define tioj = max{tir−1|tir ≤ tj , r = 1, . . . , ni} and tiuj = max{tur−1|tur ≤
tioj , r = 1, . . . , nu} for j = 1, . . . , k and i = 1, . . . , n.

Now, we consider the auxiliary variables Y = (Y 1, . . . , Y n) where Y i = (yi1, . . . , yik),
Xio
tj = yij and W = (W 1, . . . ,Wn) where W i = (wi1, . . . , wik), U iutj = wij for

j = 1, . . . , k and i = 1, . . . , n.. Then the conditional distribution of Z given the
observations is

P (zij = v|Λ, U,X) =
λvyi

j
xi
j

λvyi
j

λ0wi
j
v

λ0wi
j

(2.13)

where λvi =
∑n
j=1 λvij for v = 1, . . . , d and λ0i =

∑d
j=1 λ0ij .

Samples of X.

Samples of X given (Λ, U, x, Z) are obtain as follow: Simulate Markov jump pro-
cesses X, with intensity matrix (Λ1, . . . ,Λd) up to time τ such that: Xi

tj = xij
and Utiu

j
= zij . This can be done by simple rejection if the criterion it not me

and acceptance otherwise.

Samples of U .

To sampling of U given (X,Λ, u) we construct a Markov process with state-space
EU for which the stationary distribution is equal to π(U) = p(U |X,Λ, u, Z), then
the acceptance ratio is given by

α(U0, U1) = min(1, π(U1)q(U0)
π(U0)q(U1)

)

= min(1, p(X|U1,Λ)p(U1|Λ, u)p(U0|Λ, u)
p(X|U0,Λ)p(U0|Λ, u)p(U1|Λ, u)

)

= min(1, p(X|U1,Λ)
p(X|U0,Λ))

where q(U) = p(U |Λ, u).

Then samples of U given (X,λ, u) are obtain by Metropolis-Hasting algorithm:

1. Draw initial U0 from q such that Utui = ui for i = 1, . . . , r.

2. Draw initial U1 from q such that Utui = ui for i = 1, . . . , r.

3. Draw V from a uniform distribution on [0, 1].

4. If V ≤ α(U0, U1) then U0 := U1.

5. Go to 2.

The algorithm is uniformly ergodic because α(U0, U1) is bounded. Thus after a
certain number of iterations (burn-in), any further draw from the Metropolis-
Hasting algorithm may be consider as a draw from the target distribution.

A simulation study. In this section we present a simulation study of esti-
mation of full parameter Λ when X and U have been discretely observed. We
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have simulated a sample path of the Markov jump process U with three states
in the time interval [0, 500] and with intensity matrix Λ0.

On the other hand we have simulated a sample path of the Markov jump pro-
cesses Xi with i = 1, 2 conditioned on U with three states in the time interval
[0, 500] and,with intensity matrices Λ1,Λ2,Λ3 while the underlying environment
is in state 1, state 2 or state 3 respectively.

The data are the states of the processes Xi’ and U at 1000 time points, equidis-
tantly displaced by 0.5 and at the same points.

MCMC
We present the result of a small simulation study, in which we simulated 10,000
intensity matrices including an initial burn-in of 1,000 iterations. The Metropolis-
Hasting algorithm was run with an burn-in of 1,000 iterations. The values of
the parameters in the prior were simply αlij = βli = 1. The average of the 9,000
intensity matrices is

Λ0MCMC =

 −0.074071147 0.036046077 0.038025122
0.078120135 −0.2078160 0.1296959

0.1221993 0.2452670 −0.3674664



Λ1MCMC =

 −0.1218436 0.061492514 0.060351007
0.095069662 −0.1422418 0.047172237
0.087769620 0.1996901 −0.2874598

 ,

if the underlying environment is in state 1,

Λ2MCMC =

 −0.079956256 0.054756112 0.025200104
0.067239515 −0.1844493 0.1172098

0.1248880 0.1063413 −0.2312294


if the underlying environment is in state 2 and

Λ3MCMC =

 −0.1088241 0.067903571 0.040920567
0.1683657 −0.2844607 0.1160949

0.089159317 0.096346438 −0.1855058

 .

if the underlying environment is in state 3.

2.4 Analysis of credit risk data.
In this section we implement the proposed method for analyse credit rating
data.

2.4.1 MCMC of macroeconomics variables.
Here, we analyze macroeconomics variables data. The data is a monthly record
of the ratings of United States of America in the period of December 31, 1990
to December 31, 1999 of interest rate, the time serie of this data is shows in
Figure 2.1
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Figure 2.1: The data is a monthly record of the interest rate of United States
of America.

Based on the observed data of the interest rate, we define a Markov jump
process with three possible states, with respect to change in the interest rate
on the market to study the impact of a change in this variable. The states are
defined as follows: state 1 if the interest rate decreases, state 2 if it does not
change and state 3 if the rate increases. Then, we have a jump Markov process
observed in discrete time with three states and matrix of unknown intensity.
The figure shows the behavior of the interest rate according to defined pro-
cess and the data are the states of the process at 109 time points corresponding
to the monthly observations. The Figure 2.2 shows the evolution of this process.

We present the result of a small simulation study, in which we simulated
10,000 intensity matrices including an initial burn-in of 1,000 iterations. The
values of the parameters in the prior were simply αlij = βli = 1. The average
of the 9,000 intensity matrices is

INTEREST RATE

ΛINT =

 −0.4170606 0.3531195 0.06394077
0.1354001 −0.3158898 0.18048990
0.0930055 0.5632873 −0.65629440

 .
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Figure 2.2: Discrete observations of Markov jump process for the interest rate.

The one-step transition probabilities of the discrete time Markov chain with
step length 1 corresponding to ΛINT , P 1.0 = exp1.0∗Λ is

P 1
INT =

 0.67848292 0.2626306 0.05888615
0.10165440 0.7810266 0.11731905
0.08039944 0.3679999 0.55159950


and the stationary distribution is given by

πINT = (0.2309447, 0.5853302, 0.1834741).

2.4.2 Credit rating data conditional on interest rate
We analyse credit rating data drawn from Moody’s Corporate Bond Default
Database. The data is a continuous record of the ratings of 696 issuers/firms in
the period of January 1, 1990 to December 31, 1999. Data for the interest rate
are the same as the view in the previous subsection

We assume that we have only annual data observations and we used only obser-
vations at discrete time points. Assuming that rating grades migrate according
to 8-state Markov jump process in the period 1990-1999, we calculated the max-
imum likelihood estimators of the transition rates by MCMC method.

We present the result of a small simulation study, in which we simulated 10,000
intensity matrices including an initial burn-in of 1,000 iterations. The Metropolis-
Hasting algorithm was run with an burn-in of 1,000 iterations. The values of
the parameters in the prior were simply αlij = βli = 1. The average of the 9,000
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intensity matrices is

INTEREST RATE

ΛINT =

 −3.3068023 2.890275 0.4165266
1.2488606 −2.664666 1.4158056
0.5452789 3.451879 −3.9971581

 .

The intensity matrix of Markov jump processes:

Λ1 =



−0.0663 0.0160 0.0020 0.0019 0.0051 0.0372 0.0021 0.0018
0.0703 −0.1131 0.0102 0.0064 0.0065 0.0065 0.0065 0.0063
0.0178 0.0439 −0.1515 0.0183 0.0180 0.0177 0.0182 0.0173
0.0057 0.0057 0.0056 −0.1204 0.0494 0.0090 0.0338 0.0110
0.0093 0.0069 0.0071 0.0372 −0.1505 0.0734 0.0077 0.0087
0.0336 0.0025 0.0025 0.0029 0.0231 −0.0700 0.0027 0.0024
0.0589 0.0569 0.0586 0.1245 0.0652 0.0598 −0.4993 0.0750
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


,

if the underlying environment is in state 1 and

Λ2 =



−0.0457 0.0105 0.0008 0.0007 0.0041 0.0278 0.0008 0.0007
0.0493 −0.0692 0.0064 0.0026 0.0027 0.0027 0.0026 0.0026
0.0071 0.0369 −0.0805 0.0073 0.0072 0.0072 0.0073 0.0071
0.0028 0.0024 0.0024 −0.1099 0.0582 0.0056 0.0300 0.0083
0.0057 0.0027 0.0027 0.0325 −0.1180 0.0670 0.0030 0.0041
0.0235 0.0010 0.0011 0.0015 0.0213 −0.0507 0.0010 0.0009
0.0191 0.0192 0.0184 0.0623 0.0244 0.0223 −0.2137 0.0476
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


,

if the underlying environment is in state 2.

Λ3 =



−0.0457 0.0105 0.0008 0.0007 0.0041 0.0278 0.0008 0.0007
0.0493 −0.0692 0.0064 0.0026 0.0027 0.0027 0.0026 0.0026
0.0071 0.0369 −0.0805 0.0073 0.0072 0.0072 0.0073 0.0071
0.0028 0.0024 0.0024 −0.1099 0.0582 0.0056 0.0300 0.0083
0.0057 0.0027 0.0027 0.0325 −0.1180 0.0670 0.0030 0.0041
0.0235 0.0010 0.0011 0.0015 0.0213 −0.0507 0.0010 0.0009
0.0191 0.0192 0.0184 0.0623 0.0244 0.0223 −0.2137 0.0476
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


,

if the underlying environment is in state 3.

Interest matrix transition

PINT =

 0.2520553 0.5382590 0.2096855
0.2385578 0.5438604 0.2175818
0.2329981 0.5426968 0.2243050

 .

and the stationary distribution is given by

πINT = (0.2405742, 0.5422064, 0.2171204).

We calculate the transition matrix for credit rating based on the stationary
distribution of interest rate.
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Aaa Aa A Baa Ba B C D
Aaa 0.9507 0.0102 0.0015 0.0016 0.0048 0.0278 0.0013 0.0016
Aa 0.0574 0.9085 0.0076 0.0052 0.0053 0.0061 0.0042 0.0053
A 0.0149 0.0405 0.8779 0.0139 0.0135 0.0140 0.0109 0.0139

Baa 0.0065 0.0051 0.0049 0.8863 0.0524 0.0094 0.0248 0.0101
Ba 0.0085 0.0050 0.0050 0.0313 0.8768 0.0616 0.0048 0.0066
B 0.0286 0.0021 0.0023 0.0027 0.0201 0.9399 0.0017 0.0021
C 0.0343 0.0305 0.0292 0.0838 0.0369 0.0345 0.6902 0.0601
D 0 0 0 0 0 0 0 1

Table 2.4: Annual transition probabilities based on the maximum likelihood
estimate for the period 1990-1999.

2.5 Probability Default Backtesting.
A backtesting procedure typically evaluates the following characteristics of a
rating system: calibration, discrimination and stability. The dataset used in
this paper originates from a real life dataset covering 10 years (1990 to 1999).
The last 2 years are used to run the backtest on, the first 8 years are used as a
reference test.

2.5.1 Probability Default Calibration.
Correct calibration of a Probability Default rating system means that the cal-
ibrated PD estimates are accurate and conform to the observed default rates.
Hence, when backtesting PD calibration, one will typically start with a matrix
contrasting the estimated PD with the observed default rates for each rating
and time period considered.

Binomial Test.

The binomial test contrasts the forecast default rate of a rating, ˆPD versus the
observed default rate, DR using following hypothesis test : H0 : PD = ˆPD vs
H1 : PD > ˆPD.

We assume that defaults occur independently and H0 is true. In this case as
the number of observations is small we evaluated Binomial distribution directly.
Then, given the PD and n observations, the default rate DR follows a binomial
distribution and we construct a confidence interval for DR. It can be shown that
an exact confidence interval for the parameter is given by the following values:

p1 = k

(n− k + 1)Fα/2,2(n−k+1),2k + k

and
p2 =

(k + 1)Fα/2,2(k+1),2(n−k)

(n− k) + (k + 1)Fα/2,2(k+1),2(n−k)

where Fα/2,a,b is the value of a distribution of Fisher-Snedecor F with a and b
degrees of freedom left to right a probability of α/2 for a confidence interval of
(1− α)100%.
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ˆPD p1 p2 H0
Aaa 0.0016 0.0000 0.0020 accepted
Aa 0.0053 0.0000 0.0506 accepted
A 0.0139 0.0000 0.1322 accepted

Baa 0.0101 0.0090 0.1218 accepted
Ba 0.0066 0.0003 0.0729 accepted
B 0.0021 0.0000 0.0177 accepted
C 0.0601 0.0548 0.5717 accepted

Table 2.5: Confidence interval 95% for each credit rating.
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Chapter 3

On Likelihood Inference for
Diffusion-type Models

The aim of this chapter is to propose a method for obtaining maximum likelihood
estimates of parameters in diffusion models when the data is a discrete time
sample of the integral of the process, while no direct observations of the process
itself are available.

3.1 Parametric Estimation of Diffusion Processes
In this section we consider parametric estimation problem for diffusion processes
sampled at discrete times.

Diffusion processes are extensively used for modelling continuous time phenom-
ena in many scientific areas. An incomplete list with some indicative references
includes economics, biology, chemistry, physics and engineering. Their appeal
lies in the fact that the model is built by specifying the instantaneous mean and
variance of the process through a stochastic differential equation (SDE).

We consider the general one-dimensional diffusion process X = {Xt}t≥0 given
by the stochastic differential equation

dXt = µ(Xt;ψ)dt+ σ(Xt;ψ)dWt (3.1)

where W = {Wt}t≥0 is a standard Wiener process, and where the drift and dif-
fusion coefficients depend on an unknown p-dimensional parameter ψ belonging
to the parameter set Ψ ⊆ Rp. The state space of the process is denoted by
I = (l, r), and −∞ ≤ l < r ≤ ∞ is an open set.

We assume that the solution X is an ergodic, stationary diffusion with invari-
ant measure with density function νψ(x) (X0 ∼ νψ is independent of W ). We
also assume that the stochastic differential equation has a unique weak solution,
i.e. a solution exists and all solutions have identical finite-dimensional distribu-
tions. It is well-known that sufficient conditions for these assumptions can be

73
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expressed in terms of the so-called scale function and speed measure by

νψ(x) = 1
M(ψ)σ2(x, ψ)K(x, ψ)

for some x ∈ I and M(ψ) the normalizing constant. Here, K(x, ψ) is the scale
measure and m(x) = νψ(x)M(ψ) is the speed measure.

The exact dynamics of the diffusion process is governed by its transition density

px,y(t;ψ) = P (Xt ∈ dy|X0 = x;ψ)/dy (3.2)

3.1.1 Continuous observation.
We consider the infinitesimal generator of the diffusion X in the multidimen-
sional parametric case. The operator Lψ defined as

Lψ(x, ψ) = µ(x, ψ)∂f(x, ψ)
∂x

+ 1
2σ

2(x, ψ)∂
2f(x, ψ)
∂x2 (3.3)

is called the infinitesimal generator of the diffusion, where f is a twice-continuous
differentiable function f : R× ψ → R.

If the diffusion process has been continuously observeted as a function of x
is quite straightforward to estimate the parameters efficiently. The part of pa-
rameter ψ in the diffusion coefficient can be calculated rather than estimated
from the quadratic variation of the process since, for all t ≥ 0,

〈X,X〉t = lim
n→∞

2n∑
k=1

(Xt∧k/2n −Xt∧(k−1)/2n)2 =
∫ t

0
σ2(Xs, ψ)ds.

The rest of the parameters present only in the drift coefficient can be estimated
using the maximum likelihood approach. Indeed, once the diffusion coefficient
is independent of the parameter, which we just say is always true in principle
(i.e., σ(x, ψ) = σ(x)) the likelihood function of X is given by

LT (ψ) = exp
(∫ T

0

µ(Xs, ψ)
σ2(Xs)

dXs −
1
2

∫ T

0

µ2(Xs, ψ)
σ2(Xs)

ds
)
. (3.4)

Then ψ can be estimated by maximizing of LT (ψ).

3.1.2 Statistical Inference for discretely observed diffusion
process.

Now, we suppose that we only data available from a realization of the diffu-
sion process at times t1 < · · · < tn, where Xti = xi, i = 1 . . . , n. The time
increments between consecutive observations will be denoted ∆i = ti − ti−1 for
1 ≤ i ≤ n.

The aim is to estimate ψ given X̂ = {Xt1 , . . . , Xtn}. In the likelihood con-
text, estimation of ψ is based on the likelihood function of the data set X given
by

Ln(ψ|X̂) =
n∏
i=1

pXti−1 ,Xti
(∆i;ψ)p(X0;ψ), (3.5)
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where t0 = 0 and pXt,Xt+∆(∆;ψ) is the probability density function of the con-
ditional distribution of Xt+∆ given that Xt = x.

We have that the log-likelihood function is

ln(ψ|X̂) =
n∑
i=1

log(pXti−1 ,Xti
(∆i;ψ)) + log(p(X0;ψ)).

If the number of observations increases with time, we can assume that the rel-
ative weight of p(X0;ψ) in the whole likelihood Ln(ψ|X̂) decreases, so we will
assume that p(X0;ψ) = 1 from now on without mentioning it any further.

Since the corresponding maximum likelihood estimator ψ̂ for ψ is known in
many cases to have the usual good properties, see [Billingsley (1961], classical
likelihood inference about ψ based on ln(ψ|X̂) can for instance be performed
for Gaussian diffusion processes, see [Pedersen (1995], but in general this is im-
possible since that transition densities of X are usually unknown, in this case
the first approach was to perform the inference about ψ by the discretization of
the likelihood function for ψ based on continuous observation of X.

If the transition density is differentiable, we define the score function

sn(ψ|X̂) =


∑n
i=1

∂li(ψ)
∂ψ1

...∑n
i=1

∂li(ψ)
∂ψp


where li(ψ) = pXti−1 ,Xti

(∆i;ψ) for i = 1, 2 . . . , n and the Fisher information
matrix for ψ

MFn(ψ) ==
n∑
i=1

Eψ(sn(ψ|X̂)(sn(ψ|X̂))t). (3.6)

Exact likelihood inference.

In [Dacunha-Castelle & Florens-Zmirou (1986] sufficient conditions for the con-
sistency and asymptotic normality of these maximum likelihood estimators are
given. In particular consistency and asymptotic normality are proved, irrespec-
tive of the size of ∆, which seems a good property in applications. We present
a smaller set of hypotheses that are the basic set used by many methods.

1. Linear growth assumption. There exists a constant K independent of
ψ such that, for all x,

|µ(x, ψ)|+ |σ(x, ψ)| ≤ K(1 + |x|).

2. Global Lipschitz assumption. There exists a constant K independent
of ψ such that

|µ(x, ψ)− µ(y, ψ)|+ |σ(x, ψ)− σ(y, ψ)| ≤ K|x− y|.
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3. Positiveness of diffusion coefficient.

infxσ
2(x, ψ) > 0

.

4. Bounded moments. For all k > 0, all moments of order k of the diffusion
process exist and are such that

suptE(|Xt|)k <∞.

5. Smoothness of the coefficients The two coefficients µ and σ and their
derivatives in ψ are smooth in x and of polynomial growth order in x
uniformly on ψ.

This set of assumptions is also completed by technical conditions to ensure the
proper rate of convergence and the existence of Fisher information of the exper-
iment.

Inference for discretely observed diffusions has been pursued in many direc-
tions. In the rest of section we consider general methods for the statistical
analysis of discretely observed diffusion processes. The principal methods for
the estimation of unknown parameters in stochastic differential equation are
presented.

Pseudo-likelihood methods.

We can use some approximation scheme for estimation of parameters. In this
case we can not approximate the transition density directly but the path of the
process in such a way that the discretized version of the process has a likelihood
that is usable. We present the principal method of this type.

Euler method. We consider the general one-dimensional diffusion process
X = {Xt}t≥0 given by the stochastic differential equation

dXt = µ(Xt;ψ)dt+ σ(Xt;ψ)dWt.

In the case when the coefficients of the stochastic differential equation above
are constant over small intervals [t, t+∆t), then the Euler scheme produces the
discretization

Xt+∆t −Xt = µ(Xt, ψ)∆t+ σ(Xt, ψ)(Wt+∆t −Wt),

and the incrementsXt+∆t are then independent Gaussian random variables with
mean µ(Xt, ψ) and variance σ2(Xt, ψ)∆t. Therefore the transition density of
the process can be written as

px,y(t|ψ) = 1√
2πtσ2(x, ψ)

exp(− (x− y − µ(x, ψ)t)2
2tσ2(x, ψ) ). (3.7)

Then, under certain conditions, is possible obtain the maximum likelihood esti-
mator of the parameters see [Yoshida (1992]. This approximation is good if ∆t
is very small.
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Elerian method. This approximation was proposed in [Elerian (1998], the
basic idea is use the transition density from the Milstein scheme, this approx-
imation is good when the process has constan diffusion coefficient, for details
see [Elerian (1998].

Local linearization methods. Another way to approximate the solution
of stochastic differential equation is to use a local linearization method. There
are two principals methods in this type of approximation, the Ozaki method for
homogeneous stochastic differential equations and the Shoji-Ozaki method for
the non-homogeneous case. Then, if the Ozaki method is for a homogeneous
diffusion process with constant diffusion coefficient and the Shoji-Ozaki method
return the value of transition density.

Approximated likelihood methods.

The are methods that differ from the previous in that they do not try to ap-
proximate the paths of a diffusion but instead provide direct approximation of
the likelihood. The principal methods of this type are

1. Kessel method. Here, Kessel proposed to use of a higher-order Itô-
Taylor expansion to approximate the mean and variance of the conditional
density, see [Kessler (1997].

2. Simulated likelihood method. The idea in this method is as follows;
Let px,y(t|ψ) be the true transition density of Xt + ∆ at point y given
Xt = x. When the time step ∆ is too large, we have seen that the Euler
approximation usually gives a poor estimate of px,y(∆|ψ). The idea is then
to consider a smaller δ << ∆ and then use the Chapman-Kolmogorov
equation as follows:

px,y(∆|ψ) =
∫
pz,y(δ|ψ)px,z(∆− δ|ψ) = E(z,y(δ|ψ)|∆− δ).

which means that px,y(∆|ψ) is seen as the expected value over all possible
transitions of the process from time t + (∆ − δ) to t + ∆, taking into
account that the process was in x at time t. This method was proposed
in [Pedersen (1995].

Solve Fokker-Planck equation.

Since that the Markovian property of equation (3.1) ensures that the transitional
probability density function pXt,Xt+∆(∆;ψ) satisfies the Fokker-Planck equation

∂p

∂t
= ∂

∂x
(1
2
∂(σ2(x;ψ)p)

∂x
− µ(x;ψ)p) (3.8)

with suitable initial and boundary conditions, then the maximum-likelihood
estimation relies crucially on the ability to compute the value of the transitional
probability density function through numerical solution of the Fokker-Planck
equation, see details in [Jensen & Poulsen. (2002].
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Hermite polynomial expansion approaches.

[Aı̈t-Sahalia & Mykland. (2004] develops two estimation procedures in which
the unknown transitional probability density function pXt,Xt+∆(∆;ψ) is approx-
imated by means of an expansion based on modified Hermite polynomials, for
datails see [Aı̈t-Sahalia & Mykland. (2004].

Bayesian estimation.

The basic idea a Bayesian estimator of a parameter ψ is obtained as the expected
value of the posterior probability distribution of ψ,

p(ψ|x) = Ln(ψ)p(ψ)∫
Ln(ψ)p(ψ)dψ .

where p(ψ) is a prior distribution for ψ and x denotes the discrete-time obser-
vations from the diffusion process. Recently a new stream of results based on
Markov chain Monte Carlo (MCMC) algorithms have been proposed. Approxi-
mations p were proposed by [Roberts & Stramer (2001], [Eraker (2001],
[Beskos et al. (2006] and [Elerian, Chib & Shephard (2001] who used Markov
chain Monte Carlo methods.

Approximation by Markov Chain Monte Carlo

Consider a the diffusion process given by equation (3.1) and a time discretization

0 = t0 < t1 < . . . < tn

Put
∆i = ti+1 − ti

∆Wi = Wti+1 −Wti

Then ∆Wi ∼ N(0,∆i) and we can approximate Xt by the Euler scheme.

Under this approximation, the transition density pXti−1 ,Xti
(∆i; θ) is

f(Xti |Xti−1 , θ) = φ(Xti ;Xti−1 + µ(Xti−1 ;ψ)∆i, σ
2(Xti−1 ;ψ)∆i). (3.9)

where φ(u; a1, a2) denotes the density of the Normal distribution with mean a1
and variance a2 evaluated at u.

Now we assume for notational simplicity that the time gap ∆i = ∆∗ is in-
dependent of t and consider between any two consecutive points (ti, ti+1), im-
puting M auxiliary points X∗ti = (X∗ti,1 , ..., X

∗
ti,M ) at times ti,1 < ... < ti,M with

{ti,1, . . . , ti,M} between (ti, ti+1) and X∗ti,j = x∗i,j for j = 1, . . . ,M , denote the
latent observation. We assume that the points are evenly spaced, with time gap

∆ = ti,j+1 − ti,j = ∆∗
M + 1

for all i, j.

Then, an approximation of the true transition density is given by
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fM (Xti |Xti−1 , ψ) =
∫
f(Xti |X∗ti−1,M

, ψ)[
M∏
j=2

f(X∗ti−1,j
|X∗ti−1,j−1

, ψ)]

×f(X∗ti−1,1
|Xti−1 , ψ)dX∗ti−1,M

, ...dX∗ti−1,1

=
∫
f(Xti |X∗ti−1

, ψ)f(X∗ti−1
|Xti−1 , ψ)dX∗ti−1

(3.10)

where

f(X∗ti−1,j
|X∗ti−1,j−1

, θ) = φ(X∗ti−1,j
;X∗ti−1,j−1

+µ(X∗ti−1,j−1
;ψ)∆, σ2(X∗ti−1,j−1

;ψ)∆).

is the transition density using the Euler approximation. As M →∞, this tran-
sition density converges to the true transition density (see [Pedersen (1995].
One can, therefore, developed an estimation scheme that utilizes these auxiliary
variables to minimize the error of the Euler discretization.

We have the problem that in general, the density fM (Xti |Xti−1 , ψ), cannot
be computed exactly, but an effective way of dealing with this difficulty is to
consider the joint posterior distribution of the parameters and the augmented
data X∗ = (X∗t1 , . . . , X

∗
tn). To analyze the posterior density of ψ,X∗|X̂ we can

utilize Markov chain Monte Carlo this density is achieved by sampling in turn
the full conditional distributions X∗|X̂, ψ, and ψ|X∗, X̂.

Simulation of the auxiliary variables
Consider the question of sampling X∗ from

f(X∗|X,ψ) =
T−1∏
i=1

f(X∗ti |Xti , Xti+1 , ψ),

where we have used the fact that the X∗ti are conditionally independent, given
Xti and Xti+1 . It therefore suffices to consider the simulation of X∗ti from

f(X∗ti |Xti , Xti+1 , ψ)

.
The target density of interest is

f(X∗ti |Xti , Xti+1 , ψ) =
M∏
k=0

f(X∗ti,k+1|X∗ti,k, ψ)

where X∗ti,0 = Xti and X∗ti,M+1
= Xti+1 . Each conditional density in this ex-

pression can be derived from the discrete-time Euler approximation.

A computationally effective approach for sampling X∗ti from this density can be
developed by working in sequence with contiguous subsets of X∗ti . Let X∗ti,(k,m)
denote a block of length m that starts at X∗ti,k and ends at X∗ti,k+m−1

, i.e.,

X∗ti(k,m) = (X∗ti,k , X
∗
ti,k+1

, ..., X∗ti,k+m−1
)
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with density conditioned on (X∗ti,k−1
, X∗ti,k+m , ψ) given by

f(X∗ti |Xti , Xti+1 , ψ) =
k+m∏
j=k−1

f(X∗ti,j+1
|X∗ti,j , ψ).

The idea now is to sampler each of the m dimensional vectors X∗ti(k,m) in se-
quence by the Metropolis-Hastings algorithm (see [Chib & Greenberg (1995]).

Then, let q(X∗ti(k,m)|X
∗
ti,k−1, X

∗
ti,k+m, ψ) denote the proposal density condi-

tioned on (X∗ti,k−1, X
∗
ti,k+m, ψ) and suppose that the current value of X∗ti(k,m)

at the end of the nth iteration of Markov chain is X∗(n)
ti(k,m), then the Metropolis-

Hasting step for X∗ti(k,m) is implemented as follows

1. Drawing a candidate value w ∼ q(X∗ti(k,m)|X
∗
ti,k−1, X

∗
ti,k+m, ψ).

2. Accept the proposed value with probability

min(1,
f(w|X∗ti,k−1, X

∗
ti,k+m, ψ)q(X∗(n)

ti(k,m)|X
∗
ti,k−1, X

∗
ti,k+m, ψ)

f(X∗(n)
ti(k,m)|X

∗
ti,k−1, X

∗
ti,k+m, ψ)q(w|X∗ti,k−1, X

∗
ti,k+m, ψ)

).

Otherwise X∗(n+1)
ti(k,m) = X

∗(n)
ti(k,m).

, Since that the probability of moving is based only on ratios of densities, one
does not need the normalizing constant of the target density.

Remark 3.1.1 The Metropolis Hasting algorithm proposed here is referred to
as an independence Metropolis Hasting sampler (see [Chib & Greenberg (1995])
because the proposal density does not depend on the current value of w. However,
because the mean of the proposal depends on the immediate neighbours of w and
because the underlying process for the observations is continuos, the mean of the
proposal is typically close to w. Then the algorithm proposed will normally have
high acceptance probability and is unlikely to get stuck in the tails of the target
distribution.

The proposal density A method of specifying such a proposal density is to
approximate the target density at the mode a multivariate-normal or multi-
variate distribution with location given by the mode of f(w|X∗t,k−1, X

∗
t,k+m, ψ),

obtained by a few Newton-Raphson steps, and dispersion given by the negative
of the inverse Hessian evaluated at the model.

To develop the proposal density let

X∗t(k,m) = (X∗t,k, X∗t,k+1, ..., X
∗
t,k+m−1) = (w1, ..., wm) = w

denote the block of latent values with neighbors w0 = X∗t,k−1 and wm+1 =
X∗t,k+m.
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The approximate log density for w given its neighbours is then

l(w) = log f(w|w0, wm+1) = c+
m∑
j=0

log f(wj+1|wj) = c+
m∑
j=0

lj

where lj is given by the Euler approximation

lj = log f(wj+1|wj) = −(1/2) log(σ2∆)− (wj+1 − wj(1 + α∆))2)
2σ2∆

for j = 0, ...,m.

To deal with the non-Gaussian element of the likelihood, we propose to perform
a second order Taylor expansion of l(w) around a fixed value of w, denoted by
ŵ = (ŵ1, ..., ŵm) where the (j + 1)st element of ŵ us given by

ˆwj+1 = w0 + (j + 1)(wm+1 − w0)
m+ 1 .

Then we have

l(w) ≈ c+ x
′
u− 1

2x
′
V x = c

′
− 1

2(x− V −1u)
′
V (x− V −1u)

where x = (w − ŵ) and

u = ∂l(w)
∂w

= {uj}

V = − ∂
2l(w)
∂w∂w′

= {Vij}

for i, j = 1, ...,m.

denote the gradient and negative Hessian matrix respectively, of the log tar-
get density. Then l(w) is approximately the log of a multivariate Gaussian
density with mean α̃ = ŵ + V −1u and variance matrix Σ̃ = V −1. To obtain
expressions for these parameters, define

aj = b(wj+1)

gj = 1
σ2(wj+1)

dj = X∗t,k+j+1 − (X∗t,k+j + aj∆) = wj+2 − (wj+1 + aj∆)

cj = 1 + a′∆

for j = −1, 0, ...,m− 1.

Now, we consider a given element, wj+1 of the block, the only terms in l(w)
involving wj+1 are

lj = 1
2 log( gj−1

∆ − gj−1
2∆ (wj+1 − (wj + aj−1∆)]2
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lj+1 = 1
2 log( gj∆ −

gj
2∆ (wj+2 − (wj+1 + aj∆)]2

which implies that Bayesian estimation

∂l(w)
∂wj+1

= ∂lj
∂wj+1

+
∂l(j + 1)
∂wj+1

= − 1
∆(gj−1dj−1 − gjdjcj + 1

2g
′

jd
2
j −

∆g′j
2gj

)

and for the second derivatives we have

∂2l(w)
∂w2

j+1
= − 1

∆(gj−1 − gjc2j − gjdja
′′

j∆− 2g
′

jdjcj + 1
2g
′′

j d
2
j −

∆(gjg
′′

j − (g′j)2)
2g2
j

).

The only term involving wj+1 and wj+2 is lj+1, implying that

∂2l(w)
∂wj+1∂wj+2

= − 1
∆(g

′

jdj − gjcj).

In summary, the proposal density q(w|w0, wm+1) obtained from the second-order
Taylor expansion of l(w) is Gaussian with mean

α̃ = ŵ + V −1u

and variance matrix
Σ̃ = V −1

where u is an m× 1 vector with elements

uj+1 = ∂lj+1

∂wj+2
+ ∂lj+2

∂wj+2

for j = 0, ...,m− 1, and V is an m×m matrix with elements

Vj+1,j+1 = − 1
∆

[
gj−1 − gjc2j − gjdja′′j∆− 2g′jdjcj +

g′′j d
2
j

2 +
(gjg′′j−1 − (g′j)2)∆

2g2
j

]
,

Vj+1,j+2 = Vj+2,j+1 = − 1
∆(g′jdj − gjcj)

and
Vj+1,j+s = 0

for all j and s > 2.

Monte Carlo Methods, where the diffusion is simulated a large number of times
has been studied in [Pedersen (1995] and [Durham & Gallant (2002].

EM Algorithm.

The EM-algorithm has been used in [Beskos et al. (2006] and [Bladt & Sørensen
(2009]. Here, consider the general one-dimensional diffusion processX = {Xt}t≥0
given by the stochastic differential equation (SDE)

dXt = b(Xt;α)dt+ σ(Xt;β)dWt (3.11)
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where α and β are unknown parameters to be estimate, W is the standard
Wiener process and we assume that σ(x;β) > 0 for all x in the state interval.

Now, we suppose that the data available from a realization of the diffusion
process at times t1 < · · · < tn, xi = Xti , i = 1 . . . , n.

It is essential that we first transform the diffusion process (3.11) into an SDE
of unit diffusion coefficient by applying the 1-1 transformation

Xs → h(Xs;β) = Ys,

where
h(x;β) =

∫ x

x∗

1
σ(y;β)dy (3.12)

is any antiderivate of σ−1(∗, β) and x∗ is some arbitrary point (but appropriately
chosen point in the state interval). We assume that σ(∗;β) is continuously
differentiable and apply Itô’s formula to find that Yt = h(x;β), solves

dYt = µ(Yt;α, β)dt+ dWt, (3.13)

where
µ(y;α, β) = b{h−1(y;β);α}

σ{h−1(y;β);β} −
σ′{h−1(y;β);β}

2
Now, we have that in (3.13) the diffusion coefficient does not depend on the pa-
rameters, so the probability measures are equivalent, then the likelihood func-
tion can be found, see [Roberts & Stramer (2001] and [Beskos et al. (2006].

Finding the likelihood We define the function

g(x;α, β) = s(x;α, β)− log(σ(x;β))
2 ,

where
s(x;α, β) =

∫ x

x∗

b(z : α)
σ2(z;β)dz.

Remark 3.1.2 We have that
∫ y
y∗
µ(z;α, β) = g(h−1(y;β);α, β)−g(h−1(y∗;β);α, β)

and the functions g(∗;α, β) and s(∗, α, β) are closely related to density φ(∗;α, β)
of the stationary distribution of the original diffusion model given by (3.11),
see [Bladt & Sørensen (2009]. Bayesian estimation

Then if the stationary density is know, we only need find h(∗;β) and its inverse,
see [Forman & Sørensen (2008].

To keep the original discrete time data fixed when running the EM-algorithm
we define

Y ∗t (β, β̃) = Z
(i,α̃,β̃)
t +(ti − t)(h(xi−1;β)− h(xi−1; β̃) + (t− ti−1)(h(xi;β)− h(xi; β̃)

ti − ti−1
,

for ti−1 ≤ t ≤ ti, i = 2, . . . , n, where Z(i,α̃,β̃)
t denotes the (ti−1, h(xi−1; β̃), ti, h(xi; β̃))-

bridge for the diffusion given by equation (3.13), with parameter value α̃, β̃ and
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Z
(i,α̃,β̃)
t are independent for i = 2, . . . , n .

Now, let α̃, β̃ be the initial values of the parameters, the E-M algorithm is:

EM Algorithm

1. (E-step) Calculate the function

q(α, β) = g(xn;α, β)− g(x1;α, β)− 1
2

n∑
i=2

[h(xi;β)− h(xi−1;β)]2
(ti − ti−1)

−
n∑
i=2

log(σ(xi;β))−1
2

n∑
i=2

EZ(i,α̃,β̃)(
∫ ti

ti−1

[µ′(Y ∗t (β, β̃;α, β))+µ(Y ∗t (β, β̃;α, β))2]dt).

2. (M-step) α̃, β̃ = argmaxα,βq(α, β).

3. go to 1.

Here EZ(i,α̃,β̃) means that the data points are fixed so that only the diffusion
bridge is random, and the expectation is with respect to the distribution of the
diffusion bridge. The expectations are approximated by simulating independent
diffusion bridges.

Following [Beskos et al. (2006], the conditional expectation can be calculated
as

EZ(i,α̃,β̃),U (µ′α,β(Y ∗U (β, β̃)) + µα,β(Y ∗U (β, β̃))2),

where U ∼ U[ti−1,ti] independent of Z(i,α̃,β̃) and the data. If the drift parameter
of the diffusion given by equation (3.11) can be written as a linear combination
of the vector of parameters α

b(x;α) = α1a1(x) + . . . αkak(x)

then the maximization is less complicated if also the diffusion parameter β is
fixed, the model for continuous time observations ofX as well as the transformed
process Y is an exponential family of the stochastic process, see [Kuchler &
Sørensen (1999]. In this case for the E-M algorithm we have

q(α, β) =
k∑
i=1

αiH(∗; i, β)− 1
2

k∑
i=1

k∑
j=1

αiαjB(∗; i, j, β) +G(∗, β),

with
H(∗; i, β) = s(xn; i, β)− s(x1; i, β)

+
n∑
j=2

EZ(
∫ tj

tj−1

[ai(h−1(Y ∗t (β, β̃);β))(logσ(∗;β)′(h−1(Y ∗t (β, β̃);β)))−1
2a
′
i(h−1(Y ∗t (β, β̃);β))]dt),

where
s(x; i, β) =

∫ x

x∗

ai(y)
σ2(y;β)dy,
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B(∗; i, j, β) =
n∑
j=2

EZ(i,α̃,β̃)(
∫ tj

tj−1

[ai(h
−1(Y ∗t (β, β̃);β))aj(h−1(Y ∗t (β, β̃);β)))

σ2(h−1(Y ∗t (β, β̃);β))
]dt),

and

G(∗;β) = −1
2 log(σ(xn;β)/σ(x1;β))−1

2

n∑
i=2

[h(xi;β)− h(xi−1;β)]2
ti − ti−1

−
n∑
i=2

log(σ(xi;β))

+1
4

n∑
j=2

EZ(i,α̃,β̃)(
∫ tj

tj−1

[σ′′(h−1(Y ∗t (β, β̃);β))σ(h−1(Y ∗t (β, β̃);β))−1
2(σ(h−1(Y ∗t (β, β̃);β)))2]dt).

If β is fixed, then the function α→ q(α, β) is maximal for

α̂(β) = B−1(∗;β)H(∗;β),

with α̂ = (α̂1, . . . , α̂k)T , H(∗;β) = (H1(∗;β), . . . ,Hk(∗;β))T and B(∗;β) =
{B(∗; i, j, β)}. And B(∗;β) is invertible if the functions ai, i = 1, . . . , k are lin-
early independent, then q(α, β) attains its maximal value at (α̂(β̂), β̂) and β̂
maximizes

β → q(α̂(β), β) = 1
2H

T (∗;β)B−1(∗;β)H(∗;β) +G(∗;β).

Simulated Data Example In this section we apply the method presented
above to the Ornstein-Uhlenbeck process, which is a solution of the stochastic
differential equation

dXt = −αXtdt + σdWt,

where α and σ are unknown parameters to be estimates, and W is the standard
Wiener process.

Assume that σ > 0 for all x in the state interval.

Consider the transformation (3.12) we have

h(x;σ) =
∫ x

x∗

1
σ(y)dy = x

σ
,

with x∗ = 0. If we use the Itô’s formula, then Yt = x
σ solves the SDE

dYt = −αYtdt + dWt.

then µ(y;α, σ) = −αy.

The likelihood

Doing some simple calculations we have

s(x;α, σ) = −αx
2

2σ2 ,
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and hence
gα,σ(x) = −αx

2

2σ2 −
1
2 log(σ).

Let be Zi,j = Z
(i,α̃,σ0)
j the jth point of the bridge (ti−1,

Xi−1
σ0

, ti,
Xi
σ0

), with
j = 1, ...,M , i = 2, ..., n, M is the number of points of the bridge. In addition
we define Zi,0 = Yi−1 and Zi,M+1 = Yi for all i = 2, ..., n, then we can define

Y ∗j (σ, σ0) = Zi,j + 1
ti − ti−1

(
∆Xi,j

σ
− ∆Xi,j

σ0

)
,

where ∆Xi,j = Xi−1(1 − j∆) + j∆Xi for i = 2, ..., n, j = 0, 1, ...,M + 1 and
∆ = 1

M+1 .

The EM algorithm works as follow.

E-STEP

We calculate the function

q(α, σ) = α(X2
1 −X2

n)
2σ2 − 1

2

n∑
i=2

(Xi −Xi−1)2
σ2(ti − ti−1)

−
n∑
i=2

log(σ)− 1
2

n∑
i=2

E
Z

(i,α̃,σ0)
t

(∫ ti

ti−1

−α+ α2(Y ∗t (σ, σ0))2dt
)

. where∫ ti

ti−1

α2(Y ∗t (σ, σ0))2dt = α2
M∑
j=0

∫ ti−1+(j+1)∆

ti−1+j∆
(Y ∗j+1)2dt

= α2
M∑
j=0

∫ ti−1+(j+1)∆

ti−1+j∆
a1,i,j + a2,i,j

σ2 + a3,i,j

σ
dt

= α2∆(a1,i,. +
a2,i,.

σ2 + a3,i,.

σ
)

where
a1,i,j = (Z2

i,j+1 −
∆Xi,j

σ0
)2,

a2,i,j = (∆Xi,j)2

a3,i,j = 2Zi,j+1∆Xi,j −
2(∆Xi,j)2

σ0
,

and

ak,i,. =
M∑
j=0

∫ ti−1+(j+1)∆

ti−1+j∆
ak,i,j

for k = 1, 2, 3 and i = 2, ..., n, and taking ti − ti−1 = 1.

Then we can write

q(α, σ) = aα

σ2 −
f

σ2 − b log(σ) + bα

2 −
α2

2 (a1 + a2

σ2 + a3

σ
)
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where
a = X2

1 −X2
n

2 ,

b = n− 1,

f = 1
2

n∑
i=2

(Xi −Xi−1)2
ti − ti−1

and
ak =

n∑
i=2

ak,i,..

for k = 1, 2, 3 and i = 2, ..., n.

M-STEP

We get the following partial derivatives

∂q(α, σ)
∂α

= a

σ2 + b

2 − α(a1 + a2

σ2 + a3

σ
), (3.14)

and
∂q(α, σ)
∂σ

= −2αa
σ3 + 2 f

σ3 −
b

σ
+ a2α

2

σ3 + a3α
2

2σ2 . (3.15)

From equations (3.14) and (3.15) we get the follow equations system

a+ bσ2

2 − α(a1σ
2 + a2 + a3σ) = 0 (3.16)

4aα− 4f + 2bσ2 − α2(2a2 + a3σ) = 0 (3.17)

Thus from equation (3.16), we get

α̃ =
a+ bσ2

2
a1σ2 + a3σ + a2)

, (3.18)

Now replacing expression (3.18) in equation3.17 we get the polynomial

c6σ
6 + c5σ

5 + c4σ
4 + c3σ

3 + c2σ
2 + c1σ + c0 = 0 (3.19)

where
c6 = a2

1,
c5 = 2a1a3 − ba3

8 ,

c4 = aa1 − ba2
4 −

2a2
1f
b + a2

3 + 2a1a2,

c3 = aa3
2 −

4fa1a3
b + 2a2a3,

c2 = 2a2a1
b − 2fa3

b −
4f1a2
b + a2

2,

c1 = 3a2a3
2b −

4fa3a2
b ,

c0 = a2a2
b −

2fa2
2

b .

the solution of this polynomial is σ̃.



88 Chapter 3 On Likelihood Inference for Diffusion-type Models

EM Output Analysis.

Here, the Milstein scheme was used to simulate a Ornstein-Uhlenbeck process
with discretization level (n=1500). The method developed by [Bladt & Sørensen
(2009] was used to build the Ornstein-Uhlenbeck bridges.

Summaries of the EM output for the simulated data set are reported in Ta-
ble OU-I. The EM algorithm is run for N=10,000 iterations. The real values of
the parameters are α = 0.1,σ = 0.5

M α σ

10 0.1027678 0.4996258
25 0.09914815 0.4988454
50 0.0967 0.4971465

Table OU-I.

Summaries of the EM output for the simulated data set are reported in Table
OU-II with discretization level (n=3000).

M α σ

10 0.1166107 0.5127427
25 0.1119799 0.5116187
50 0.110897 0.5093764

Table OU-II.

Real Data Example We now consider the analysis of a diffusion model
specified by a Ornstein-Uhlenbeck process and we used the climate data which
consist of 3000 observations.

Summaries of the EM output for the simulated data set are reported in Ta-
ble OU-III . The EM algorithm is run with M=30,50, for N=10,000 iterations.

Parameter M=30 M=50
α 0.047059234 0.046296176
σ 0.9415721 0.9411101

Table OU-III.

Sample DNA matching procedures.

There another kind of methods which may be loosely labelled as sample DNA
matching procedures. This encompass methods which differ greatly in their
mode of implementation, but which all have in common the fact that they
attempt to match some feature or characteristic of the data to a theoretical
counterpart of the model by choice of parameters. A pertinent case in point is
estimation based on the characteristic function.

The principal methods in this category are

1. General Method of Moments, see [Hansen & J.Scheinkman (1995].

2. Indirect Estimation, see [Gallant & Tauchen (1996].

3. Characteristic Function, see [Chacko & Viceira (2003].
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4. Match to Marginal Density, see [Aı̈t-Sahalia (1996].

5. Estimating Functions, martingale estimating functions for discretely
observed diffusions are reviewed in [Sørensen (1997] and [Sørensen (2010].

Here, we present an outline of the method developed in [Sørensen (2000].

Estimating functions.

Prediction Based Estimating Functions
An estimating is a function Gn(θ) that depends on the parameter as well as

on the observations. We can obtain an estimator by solving the equation

Gn(θ) = 0.

Defined the one dimensional functions fj , j = 1, . . . ,m on the state space of X̂,
such that Eθ(fj(Xi)2) < ∞ with i = 1, . . . , n and we denote the expectation
when θ is the true parameter value by Eθ(∗). Define Fi := σk≤i(Xk) and
Hθi = L2(Fi) and let P θi,j , j = 1, . . . ,m be closed linear subspaces of Hθi . The
subspace P θi,j can be interpreted as a set predictors of fj(Xi+1) givenX1, . . . , Xi.
We will study the estimating function

Gn(θ) =
n∑
i=1

n∑
j=1

Πi−1
j (θ)(fj(Xi)− π̂i−1

j (θ)),

with Πi−1
j (θ) = (πi−1

1,j (θ), . . . , πi−1
p,j (θ))T is a p-dimensional stochastic vector,

the coordinates of which belong to P θi−1,j and where π̂i−1
j (θ) is the minimun

mean square error predictor of fj(Xi) in P θi−1,j , then π̂i−1
j (θ) is the orthogonal

projection of fj(Xi) on P θi−1,j with respect to the inner product in Hθi . The
projection exist and is uniquely determined by the Normal equations

Eθ(π(fj(Xi)− π̂i−1
j (θ))) = 0

with π ∈ P θi−1,j .

We shall be particularly interested in prediction-based estimating functions
where each of the sets P θi−1,j is finite dimensional. We assume that P θi−1,j
is spanned by Zi−1

j0 , Zi−1
j1 , . . . , Zi−1

jqij
of the form Zi−1

jk = hijk(X1, . . . , Xi−1), k =
1, . . . , qij , which are linearly independent in Hθi−1. Assume that Zi−1

j0 is con-
stantly equals to 1 and thus we can write the elements of P θi−1,j in the form
aTZi−1

j with aT = (a0, . . . , aqj ) and Zi−1
j = (Zi−1

j0 , Zi−1
j1 , . . . , Zi−1

jqij
)T . When θ

is the true parameter value, we define Cj(θ) as the covariance matrix of Zi−1
j

and bj(θ) = (Covθ(Zrj1, fj(Xr+1)), . . . , Covθ(Zrjqj , fj(Xr+1)))T and by the Nor-
mal equations, the minimum mean square error predictor of fj(Xi) in P θi−1,j is
given by

p̂i
i−1
j (θ) = âj0(θ)T + âj(θ)TZi−1

j

where âj(θ)T = Ci−1,j(θ)−1bi−1
j (θ)

and âj0(θ)T = Eθ(fj(Xi))− âj(θ)TEθ(Zi−1
j )
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3.2 Maximum likelihood estimation for integrated
diffusion processes.

In this section we propose a method for obtaining maximum likelihood estimates
of parameters in diffusion models when the data is a discrete time sample of
the integral of the process, while no direct observations of the process itself are
available. The data are, moreover, assumed to be contaminated by measurement
errors.

3.2.1 Introduction
We consider maximum likelihood estimation in the situation where we do not
observe the process X itself directly, but instead observe integrals of the process
over disjoint time-intervals. These observations are, moreover, assumed to be
contaminated by measurement errors.

The likelihood function for a discretely sampled integrated diffusion with ob-
servation error is in almost all cases not explicitly available. Moreover, the
integrated process is not a Markov process, so there is no easily calculated
martingales. Therefore martingale estimating functions are not a feasible alter-
native, but prediction-based estimating function can be applied, see [Sørensen
(2000]. We note instead that the data can be viewed as incomplete observations
from a model with a tractable likelihood function. The full data set is a contin-
uous time record of the diffusion process and the observation errors.

We can therefore find maximum likelihood estimates by applying the Expectation-
Maximization (EM) algorithm, see [Dempster, Laird & Rubin (1977]. To do so
we need to calculate the conditional expectation of the log-likelihood function
for the full model given the observations. We do this by simulating sample paths
of the diffusion process given the data using ideas from [Chib, Pitt & Shephard
(2006]. An essential step in doing this is to simulate a part of a sample path
given the rest, which corresponds to simulation a diffusion bridge. This is done
by applying the method for approximate diffusion bridge simulation recently
proposed by [Bladt & Sørensen (2009].

3.2.2 Model and data
We consider likelihood estimation the general one-dimensional diffusion process
X = {Xt}t≥0 given by the stochastic differential equation

dXt = µ(Xt;ψ)dt+ σ(Xt;ψ)dWt (3.20)

where W = {Wt} is a standard Wiener process, and where the drift and diffu-
sion coefficients depend on an unknown p-dimensional parameter ψ belonging
to the parameter set Ψ ⊆ Rp. We assume that the solution X is an ergodic, sta-
tionary diffusion with invariant measure with density function νψ(x) (X0 ∼ νψ
is independent of W ). We also assume that the stochastic differential equation
has a unique weak solution, i.e., a solution exists and all solutions have iden-
tical finite-dimensional distributions; see e.g. [Karatzas & Shreve (1991]. It is
well-known that sufficient conditions for these assumptions can be expressed in
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terms of the so-called scale function and speed measure.

In this section we consider the situation where the process X has not been
observed directly. Instead the data are integrals of Xt over intervals [ti−1, ti]
observed with measurement error, i.e.

Yi =
∫ ti

ti−1

Xsds+ Zi, i = 1, . . . , n, (3.21)

where Zi ∼ N(0, τ2), i = 1, . . . , n are mutually independent and independent of
X.

We assume that t0 = 0, so the total interval of observation is [0, tn]. Note
that the variance of the measurement error, τ2, is an extra unknown parameter.

Thus we now need to estimate the p+ 1-dimensional parameter θ = (ψ, τ2).

Conditionally on the sample path of X, the observations Yi, i = 1, . . . , n are
independent and Normal distributed:

Yi |Xt : t ∈ [0, tn] ∼ N
(∫ ti

ti−1

Xsds, τ
2

)
, (3.22)

We assume that the coefficients of the stochastic differential equation (3.20)
satisfy the following conditions which we need in the following sections.

Condition 3.2.1 The drift and diffusion coefficients of (3.20), µ(x;ψ) and
σ(x;ψ) satisfy that for all ψ ∈ Ψ

µ(x;ψ) is continuously differentiable with respect to x
σ(x;ψ) is twice continuously differentiable with respect to x
σ(x;ψ) > 0 for all x in the state space of X

3.2.3 The likelihood function and the EM-Algorithm
We can think of the data set Y = (Y1, . . . , Yn) as an incomplete observation of
a full data set given by the sample path Xt, t ∈, [0, tn] and the measurement
errors Z1, · · · , Zn, or equivalently Xt, t ∈ [0, tn] and Y = (Y1, . . . , Yn). There-
fore likelihood based estimation can be done by means of the EM-algorithm or
MCMC-methods. In this section we concentrate on the EM-algorithm.

We need to find the likelihood function for the full data set and the con-
ditional expectation of this full log-likelihood function given the observations
Y = (Y1, . . . , Yn).

Likelihood with full diffusion observation

The full observation of a diffusion sample path in the time interval [0, tn] is an
element in the space C of continuous functions from [0, tn] to R. We equip this
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space with the usual σ-algebra, C, generated by the cylinder sets, and consider
the probability measures induced on (C , C) by the solutions to (3.20). These
measures are in general singular because the diffusion coefficient depends on the
parameter ψ.

In order to obtain a likelihood function, we use the Lamperti transformation

h(x;ψ) =
∫ x

x∗

1
σ(u;ψ)du, (3.23)

where x∗ is some arbitrary element of the state space of X. By this parame-
ter dependent transformation, we obtain a diffusion process with unit diffusion
coefficient. Specifically, we obtain (by Itô’s formula) that

Ut = h(Xt;ψ)

satisfies the stochastic differential equation

dUt = α(Ut;ψ)dt+ dWt, (3.24)

with
α(u;ψ) =

µ
(
h−1(u;ψ);ψ

)
σ (h−1(u;ψ);ψ) −

σ′
(
h−1(u;ψ);ψ

)
2 ,

where σ′ denotes the derivative of σ with respect to x.

Note that in (3.24) the diffusion coefficient does not depend on the parame-
ters, so the probability measures induced on (C , C) by the solution to (3.24) are
equivalent and the likelihood function can be found.

We can express the observations Yi in terms of the process U . By inserting
Xs = h−1(Us;ψ) in (3.21), we find that

Yi =
∫ ti

ti−1

h−1(Us;ψ)ds+ Zi, i = 1, . . . , n.

Therefore we will think of the full dataset as Ut, t ∈ [0, tn] and Y = (Y1, . . . , Yn).
Since conditionally on the sample path of U the observations Yi, i, . . . , n are
independent, we have that the likelihood of Y conditional on the sample path
of U in [0, tn] is

L(Y1, . . . , Yn |Ut, t ∈ [0, tn]) =
n∏
i=1

φ(Yi;
∫ ti

ti−1

h−1(Us;ψ)ds, τ2) (3.25)

Let Pψ be the probability measure induced by U = {Ut}t∈[0,tn] on (C, C), i.e.
the probability measure with respect to which the coordinate process has the
same distribution as U , and let Q be the Wiener measure on (C, C). We assume
that the coefficient µ satisfies conditions ensuring that the Girsanov Theorem
holds so that we have the Radon-Nykodym derivative

dPψ
dQ

(B) = exp
{∫ tn

0
α(Bt;ψ)dBt −

1
2

∫ tn

0
α2(Bt;ψ)dt

}
. (3.26)
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The evaluation of dPψ
dQ is difficult because of the Itô integral term. To simplify

the likelihood function, we apply the transformation

a(x;ψ) =
∫ x

α(u;ψ)du

(any antiderivative of µ), which under Condition 3.2.1 is twice continuously
differentiable. By Itô’s formula∫ tn

0
α(Bt)dBt = a(Btn ;ψ)− a(B0;ψ)− 1

2

∫ tn

0
α′(Bt;ψ)dt,

where α′ denotes the derivative of α(u;ψ) w.r.t. u.

We can now write the likelihood function (3.26) as

dPψ
dQ

(B) = exp
{
a(Btn ;ψ)− a(B0;ψ)− 1

2

∫ tn

0
[α(Bt;ψ)2 + α′(Bt;ψ)]dt

}
.

By combining this expression and (3.25), we see that the log-likelihood function
for θ based on the full data set Ut, t ∈ [0, tn] and Y = (Y1, . . . , Yn) is given by

logL(θ;Y1, . . . , Yn, Ut, t ∈ [0, tn]) =
n∑
i=1

log φ(Yi;
∫ ti

ti−1

h−1(Us;ψ)ds, τ2)

+ a(Utn ;ψ)− a(U0;ψ)− 1
2

∫ tn

0

(
α(Ut;ψ)2 + α′(Ut;ψ)

)
dt.

EM Algorithm.

We can now apply the EM-algorithm to the full log-likelihood function to obtain
the maximum likelihood estimate of the parameter θ.

As the initial value for the algorithm, let θ̂ be any value of the parameter vector
θ = (ψ, τ2) ∈ Ψ× (0,∞). Then the EM-algorithm works as follow.

1. E-STEP.

Generate M sample paths of the diffusion process X, X(k), k = 1, . . . ,M ,
conditional on the observations Y1, . . . , Yn using the parameter value θ̂ =
(ψ̂, τ̂2), and calculate

g(θ) = 1
M −M0

M∑
k=M0+1

logL(θ;Y1, . . . , Yn, h(X(k)
t ; ψ̂), t ∈ [0, tn]),

for a suitable burn-in period M0 and M sufficiently large.

2. M-STEP.

θ̂ = argmax g(θ).

3. Go to 1.
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To implement this algorithm, the main issue is how to generate sample paths
of X conditionally on Y1, . . . , Yn, where the relation between the Yis and X is
given by (3.21). The algorithm must produce a sequence X(k), k = 1, . . . ,M ,
that is sufficiently mixing to ensure that g(θ) approximates the conditional ex-
pectation of the full log-likelihood function (3.27) given the data. This problem
is discussed at the next section.

3.2.4 Conditional diffusion process simulation.
In this section we present a method for generating a sample from

{Xt; t ∈ [0, tn]}|(Y1, . . . , Yn)

for a given value of the parameter vector θ, i.e., for simulating the diffusion X
conditional on the observations Y = (Y1, . . . , Yn) of integrals of X over subin-
tervals [tj−1, tj ], j = 1, . . . , n perturbed by measurement errors.

This can be done by means of a Metropolis-Hastings algorithm, see e.g. [Chib
& Greenberg (1995] or [Gilks, Richardson & Spiegelhalter (1996]. However, if
the sample path in the entire time interval [0, tn] is updated in one step, the
rejection probability is typically very large. Therefore it is more efficient to
randomly divide the time interval into subintervals and update the sample path
in each of the subintervals conditional on the rest of the sample path. This
corresponds to simulating a (conditional) diffusion bridge in each subinterval
(except the end-intervals).

The method outlined in this section is a modification of the method in [Chib,
Pitt & Shephard (2006], where we use the algorithm for approximate diffusion
bridge simulation proposed by [Bladt & Sørensen (2009].

In the following the parameter value θ = (ψ, τ2) is fixed.

Algorithm 1

1. Generate an initial unrestricted stationary sample path, {X(0)
t : t ∈

[0, tn]}.

2. Set l = 1.

3. Generate a sample path {X(l)
t : t ∈ [0, tn]} conditional on Y by updating

the subsets of the sample path:

(a) Randomly split the time interval from 0 to tn in K blocks, and write
these subsampling times as

0 = τ0 ≤ τ1 ≤ . . . ≤ τK = tn,

where each τi is one of the end-points of the integration intervals, tj ,
j = 0, . . . , n. Let Y{k} denote the collection of all observations Yj for
which τk−1 < tj ≤ τk.
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(b) Draw X
(l)
0 from the stationary distribution, νψ, and simulate the

conditional subpath

{X(l)
t : t ∈ [τk−1, τk]} |Y{k}, X(l)

τk−1
, X(l−1)

τk
(3.27)

for k = 1, . . . ,K − 1. Finally, simulate a sample path from

{X(l)
t : t ∈ [τK−1, τK ]} |Y{K}, X(l)

τK−1
.

4. l = l + 1.

5. Go to 3.

The idea (in the case of a diffusion bridge in the time interval [0, 1]) is to
let one diffusion process move forward from time zero out of one given point,
a, until it meets another diffusion process that independently moves backwards
from time one out of another given point, b. Conditional on the event that the
two diffusions intersect, the process constructed in this way is an approximation
to a realization of a diffusion bridge between a and b.

The diffusions can be simulated by means of simple procedures, used the Mil-
stein scheme. The method is therefore very easy to implement.

The resulting sample path is an approximation to a diffusion bridge in the
sense that it has the distribution of a diffusion bridge from a to b conditional
on the event that the bridge is hit by an independent diffusion with stochastic
differential equation (3.20) and initial distribution with density p1(b, ·). Simu-
lation studies in [Bladt & Sørensen (2009] indicate that the approximation is
very good for bridges between points that are likely to appear on a sample path
of the diffusion, which is the type of bridges that are relevant to this section.

Alternative methods that provide exact diffusion bridges have been proposed
by [Beskos, Papaspiliopoulos & Roberts (2007] and [Beskos, Papaspiliopoulos &
Roberts (2006]. When the drift and diffusion coefficients satisfy certain bound-
edness conditions, this algorithm is relatively simple, but under weaker condition
it is more complex.

A simulation study in [Bladt & Sørensen (2009] indicates that for the method
which we use here, the CPU-time is linear in the length of the interval where the
diffusion bridge is defined, whereas for the method in [Beskos, Papaspiliopou-
los & Roberts (2007], the CPU time increases exponentially with the interval
length. This is an advantage of the method in [Bladt & Sørensen (2009] in
the present context. MCMC algorithms for simulation of diffusion bridges were
proposed by [Roberts & Stramer (2001], [Durham & Gallant (2002], and [Chib,
Pitt & Shephard (2006].

To generate the random subintervals in step 3 (a) of Algorithm 1, we use the
following algorithm, where the number of integration subintervals [tj−1, tj ] in-
cluded in one of the random subintervals is a Poisson distributed random number
plus 1. The draws in the algorithm are independent. First choose the expecta-
tion of the Poisson distribution, λ ≥ 1.
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Algorithm 2

1. Draw k1 ∼ Poisson(λ) + 1 : if k1 ≥ n set k1 = n, K = 1 and stop,
otherwise set i = 2.

2. Draw ki ∼ Poisson(λ) + 1, if
∑i
j=1 kj ≥ n set ki = n, K = i and stop,

else set i = i+ 1 and repeat 2.

Finally define τi = tki , i = 1, . . . ,K.

We have discussed how to simulate diffusion bridges, but we need diffusion
bridges conditional on the data Y . Sample paths of the conditional bridges
(3.27) can be obtained by the following Metropolis-Hastings algorithm. By
a (t, a, s, b)–bridge, we mean a diffusion bridge in the time interval [t, s] with
Xt = a and Xs = b. After a burn-in period the following algorithm will output
samples from a (τk−1, a, τk, b)–bridge conditional on Y{k}, the data in (τk−1, τk].

To formulate the algorithm we need to specify that the end-point τk−1 is equal
to tj , and that there are nk observations in the interval (τk−1, τk], namely,
Yj+1, . . . , Yj+nk .

Algorithm 3

1. Simulate a (τk−1, a, τk, b)–bridge, X(0), and set l = 1.

2. Propose a new sample paths by simulating a (τk−1, a, τk, b)–bridge, X(l).

3. Accept the proposed diffusion bridge with probability

min

1,
nk∏
i=1

φ(Yj+i;
∫ tj+i
tj+i−1

X
(l)
s ds, τ2)

φ(Yj+i;
∫ tj+i
tj+i−1

X
(l−1)
s ds, τ2)

 .

Otherwise set X(l) = X(l−1).

4. Set l = l + 1 and go to 2.

As previously, φ(x;µ, τ2) denotes the density function of the Normal distribution
with mean µ and variance τ2.

3.2.5 The Ornstein-Uhlenbeck process.
In this section we apply the method developed in the previous section above to
the Ornstein-Uhlenbeck process, which is a solution of the stochastic differential
equation

dXt = −αXtdt+ σdWt, (3.28)

where α > 0 and σ > 0 are unknown parameters to be estimated, and W
is a standard Wiener process. We investigate the bias of the estimators in a
simulation study.
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The likelihood and the EM-algorithm

The transformation (3.23) is here given by

h(x;σ) = x

σ
,

so h−1(x;σ) = σx. Hence Ut = h(Xt;σ) = Xt/σ, solves the stochastic differen-
tial equation

dUt = −αUtdt+ dWt.

We have µ(u;α, σ) = −αu, so

a(u;α, σ) = −1
2αu

2.

Thus the full log-likelihood function (3.27) is given by

logL(θ;Y1, . . . , Yn, Ut, t ∈ [0, tn]) (3.29)

=
n∑
i=1

log φ
(
Yi;σ

∫ ti

ti−1

Usds, τ
2

)
+ α

2 (U2
0 − U2

tn + tn)−
α2

2

∫ tn

0
U2
t dt,

where θ = (α, σ, τ2).
Now, the EM algorithm works as follow.

E-STEP

The objective function g(θ) is for the Ornstein-Uhlenbeck process given by

g(θ) = 1
M −M0

M∑
k=M0+1

n∑
i=1
−

(Yi − σ
∫ ti
ti−1

U
(k)
t dt)2

2τ2 − n

2 log(2πτ2) + α

2 tn

+ α

2(M −M0)

M∑
k=M0+1

((U (k)
0 )2 − (U (k)

tn )2)− α2

2(M −M0)

M∑
k=M0+1

n∑
i=1

∫ ti

ti−1

(U (k)
t )2dt.

Here U (k)
t = X

(k)
t /σ̂, where X(k)

t is the m-th sample path of the process X
simulated conditionally on the data Y using the Algorithms 1 – 3 with the pa-
rameter value obtained in the previous step (α̂, σ̂, τ̂2).

M-STEP

The maximum θ̂ is obtained as the solution to the following system of equa-
tions

∂g(θ)
∂α

= 1
2 tn+

∑M
k=M0+1

[
(U (k)

0 )2 − (U (k)
tn )2

]
2(M −M0)

−
α
∑M
k=M0+1

∑n
i=1
∫ ti
ti−1

(U (k)
t )2dt

M −M0
= 0,

(3.30)
∂g(θ)
∂σ

=
∑M
k=M0+1

∑n
i=1(Yi − σ

∫ ti
ti−1

U
(k)
t dt)(

∫ ti
ti−1

U
(k)
t dt)

τ2(M −M0)
= 0 (3.31)

and

∂g(θ)
∂τ2 =

∑M
k=M0+1

∑n
i=1(Yi − σ

∫ ti
ti−1

U
(k)
t dt)2

2τ4(M −M0)
− n

2τ2 = 0. (3.32)
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From (3.30) we have

α̂ =
tn(M −M0) +

∑M
k=M0+1

[
(U (k)

0 )2 − (U (k)
tn )2

]
2
∑M
k=M0+1

∑n
i=1
∫ ti
ti−1

(U (k)
t )2dt

,

and from (3.31)

σ̂ =
∑M
k=M0+1

∑n
i=1 Yi

∫ ti
ti−1

U
(k)
t dt∑M

k=M0+1
∑n
i=1(

∫ ti
ti−1

U
(k)
t dt)2

. (3.33)

Now inserting σ̂ given by (3.33) in (3.32) we obtain

τ̂2 =
(M −M0)(

∑n
i=1 Y

2
i )
[∑M

k=M0+1
∑n
i=1(

∫ ti
ti−1

U
(k)
t dt)2

]
−
[∑M

k=M0+1
∑n
i=1 Yi

∫ ti
ti−1

U
(k)
t dt

]2
n(M −M0)

∑M
k=M0+1

∑n
i=1(

∫ ti
ti−1

U
(k)
t dt)2

.

The Hessian matrix of g(θ) evaluated at θ̂ is negative define, so θ̂ is maximum.

A simulation study

In this section we present the result of a small simulation study, in which we
simulated 1000 datasets and for each of them obtained estimates by means
of the EM-algorithm proposed in the present paper. Each data set was ob-
tained by simulating a sample path of length 1500 with initial distribution
X0 ∼ N(0, σ2/(2α)), and then calculating data Yi, i = 1, . . . , 1500 by (3.21)
with ti = i, i = 0. . . . , n. The parameter values were α = 0.1, σ = 0.5 and
τ2 = 1.25.

The EM-algorithm was run with M = 10000 and M0 = 1000 and for three
different values of λ, namely λ = 10, 20, 30. The average of the estimates ob-
tained for the 1000 dataset are given in Table 3.1. The bias is small, and is
overall most satisfactory for λ = 20. We have presented an EM-algorithm for

λ α σ τ2

10 0.106 0.523 1.229
20 0.101 0.507 1.235
30 0.084 0.458 1.252

Table 3.1: Average of parameter estimates obtained from 1000 simulated
datasets with parameter values α = 0.1, σ = 0.5 and τ2 = 1.25.

obtaining maximum likelihood estimates of parameters in diffusion models when
the data is a discrete time sample of the integral of the diffusion process con-
taminated by measurement errors, while no direct observations of the process
itself are available. This was done by viewing the data as an incomplete obser-
vation, where the full data set includes a continuous time record of the diffusion
process.



Chapter 4

Applications of Maximun
likelihood estimation for
Integrated diffusion
processes

In this chapter we apply the method developed in the last section of the previous
chapter to the Ornstein-Uhlenbeck process where the parameters of an Ornstein-
Uhlenbeck model are estimated from a set of integrated paleo-temperature data
obtained from an ice-core from Greenland and we present a similar investigation
for the CIR/square root process is presented.

4.1 Analysis of ICE-CORE data by Integrated
diffusion processes

4.1.1 Introduction
Glaciers and ice caps exert a strong influence on the Earth’s physical envi-
ronment. During the last glacial period and earlier glacial stages as well, the
expanded ice sheets in the Northern Hemisphere experienced periodic surges,
which released extensive icebergs into the North Atlantic, which, in turn, may
have initiated abrupt oscillations in climate the so-called Dansgaard-Oeschger
cycles and Heinrich Events see [Broecker (1994]. Perhaps the most versatile
attribute of massive glacier ice, however, is its tendency to preserve a detailed
record of past environmental changes, frequently at a high temporal resolution,
through the successive accumulation of annual increments of snow, which, under
overburden pressure, become converted to solid ice. Each annual increment of
snow deposited on a cold ice-cap surface entraps atmospheric gases and asso-
ciated impurities as it becomes converted to solid ice, preserving a sample of
the physical constituents of the former air column over the ice surface. As they
wax and wane they can instigate significant changes in eustatic sea-level, earth
surface albedo and the shape of the land over which they are generated.

99
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Since the 1960s several long ice cores have been extracted from the polar ice
caps, including those from Camp Century, Dye-3, Crete, Milcent and Summit in
Greenland, and from Byrd, Vostok and Dome in Antarctica. Numerous quan-
tities have been measured in ice cores to make inferences about earth history,
such as oxygen isotope ratios, carbon dioxide concentration, methane concen-
tration, electrical conductivity, and dust particle concentration. As the oxygen
isotope variations spanning the last glacial cycle and the Holocene derived from
ice-core records for Greenland and Antarctica show strong similarities, this sug-
gests that the dominant influence on oxygen isotope variations reflected in the
ice-sheet records was regional climatic change. Differences in detail between the
records probably reflect the effects of basal deformation in the ice as well as
geographical gradients in atmospheric isotope ratios.

Probably the most important measurement used in the study of climate has
been the ratio of oxygen 18 to oxygen 16 (18O/16O). The isotope ratio 18O/16O
in the ice, measured as an average in each piece of ice, is a proxy for paleo-
temperatures averaged over the time interval in which the snow that formed the
ice fell. The difference, δ18O, between the 18O content in the ice and the 16O
content in present day’s ocean water has been shown empirically to to have an
approximately constant linear relationship with the air temperature where the
precipitation falls. The variation of the paleo-temperature can be modelled by
a stochastic differential equation, and it is natural to model the ice-core data as
an integrated diffusion process. In this chapter we use the method proposed in
the previous chapter to model ice-core data.

4.1.2 Ice cores
An ice core is a core sample from the accumulation of snow and ice over many
years that have recrystallized and have trapped air bubbles from previous time
periods. The composition of these ice cores, especially the presence of hydrogen
and oxygen isotopes, provides a picture of the climate at the time.

Because water molecules containing heavier isotopes exhibit a lower vapor pres-
sure, when the temperature falls, the heavier water molecules will condense
faster than the normal water molecules. The relative concentrations of the
heavier isotopes in the condensate indicate the temperature of condensation at
the time, allowing for ice cores to be used in local temperature reconstruction
after certain assumptions.

Typical ice cores are removed from an ice sheet, most commonly from the polar
ice caps of Antarctica and Greenland. As the ice forms from the incremental
buildup of annual layers of snow, lower layers are older than upper, and an ice
core contains ice formed over a range of years. The properties of the ice or
inclusions within the ice can then be used to reconstruct a climatic record over
the age range of the core.

The length of the record depends on the depth of the ice core and varies from
a few years up to 800 kyr 1 for the EPICA 2 core. An ice core from the right

1for the unit of one thousand years
2European Project for Ice Coring in Antarctica
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site can be used to reconstruct an uninterrupted and detailed climate record
extending over hundreds of thousands of years, providing information on a wide
variety of aspects of climate at each point in time. It is the simultaneity of
these properties recorded in the ice that makes ice cores such a powerful tool in
paleoclimate research.

Many materials can appear in an ice core. Layers can be measured in several

Figure 4.1: Ice-core

ways to identify changes in composition. Small meteorites may be embedded in
the ice. Volcanic eruptions leave identifiable ash layers. Dust in the core can be
linked to increased desert area or wind speed.

Isotopic analysis of the ice in the core can be linked to temperature and global
sea level variations. Analysis of the air contained in bubbles in the ice can reveal
the palaeocomposition of the atmosphere, in particular CO2 variations.

4.1.3 Connection with the temperature.
In the 1950s, Willi Dansgaard investigated the relationship between the mean
annual temperature and the δ18O of precipitation at a large number of locations
worldwide. He found a close correspondence in modern samples of precipitation,
and it is believed that this relationship holds in the past, at least qualitatively.
The main reason for this is the basic fact that the maximum amount of moisture
that air can hold drops with decreasing temperatures.

The ratio (18O/16O) provides a record of ancient water temperature. Water
10 to 15 degrees Celsius (18 to 27 degrees Fahrenheit) cooler than present rep-
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Figure 4.2: The ice-core record

resents glaciation. Precipitation and therefore glacial ice contain water with a
low 18O content. Since large amounts of 16O water are being stored as glacial
ice, the 18O content of oceanic water is high. Water up to 5 degrees Celsius
warmer than today represents an interglacial, when the 18O content is lower.

The difference, δ18O, between the 18O content in the ice and the 16O con-
tent in present day’s ocean water is a measure of the ratio of stable isotopes
(18O :16 O). It is commonly used as a measure of the temperature of pre-
cipitation, as a measure of ground water/mineral interactions, as an indicator
of processes that show isotopic fractionation, like methanogenesis. In paleo-
sciences, (18O :16 O) data from foraminifera and ice core are used as a proxy
for temperature. The Definition is, in per mil:

δ18O =
( ( 18O

16O

)
sample( 18O

16O

)
standard

− 1
)
∗ 1000h

where the standard has a known isotopic composition, such as Vienna Standard
Mean Ocean Water (VSMOW).

The ratio of 18O to 16O is used to tell the temperature of the surrounding
water of the time solidified, indirectly. The ratio varies slightly depending on
the temperature of the surrounding water, as well as other factors such as the
water’s salinity, and the volume of water locked up in ice sheets. δ18O also
reflects local evaporation and freshwater input, as rainwater is 16O enriched as
result of 160 preferential evaporation from seawater. Consequently, the surface
ocean contains greater amounts of 18O around the subtropics and tropics where
there is more evaporation, and lesser amounts of 18O in the mid-latitudes where
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it rains more. Similarly, when water vapor condenses, heavier water molecules
holding 18O atoms tend to condense and precipitate first. The water vapor gra-
dient heading from the tropics to the poles gradually becomes more and more
depleted of 18O.

The conversion of δ18O values to palaeotemperature estimates.

Palaeotemperature estimates have been obtained from the records using: infer-
ences based on the measured relationship between mean annual δ18O of snow
and of mean annual surface temperature over Greenland, modelled inversion of
the borehole temperature profile constrained either by the dated isotopic profile
and by using Monte Carlo simulation techniques.

A direct link between stable isotope ratios in precipitating snow and temper-
ature of water vapour at the time of precipitation is thus implied, assuming
unchanged temperature and humidity at the moisture source areas and uni-
form deposition of snow throughout the year. Over the Greenland ice-sheet at
the present time, mean annual δ18O of snow is closely related to mean annual
surface temperature, T(◦C), by the equation:

δ18O = 0.67 × T − 13.7h (4.1)

This relationship, however, may not hold for the temporal changes in isotope
values measured along the Greenland ice-cores. The temporal relationship be-
tween the δ18O and contemporaneous surface temperature (T) can, however,
be inferred by modelling the borehole temperature profile, using parameters de-
rived from instrumental measurements of modern temperature history and the
well-dated near-surface δ18O profile. The assumed T and δ18O relationship is
as follows

T = α+ βδ18O + γδ18O2 (4.2)

with α, β, γ, and being determined, along with the geothermal heat flux, by a
least-squares fitting of the modelled temperature profile to the measured tem-
perature profile.

4.1.4 Ice-core data
Here, we consider as an Example a preliminary analysis of ice-cores data. Ice-
cores from Greenland and Antarctica are cut in pieces each of which represents
a time interval in the past, with time increasing as a function of the depth. The
deep ice cores retrieved in Antarctica and Greenland are becoming increasingly
important for the understanding of past climate.

The ice cores obtained in Antarctica have provided paleoclimatic records that
cover more than 800 kyr of climate history whereas the Green land ice cores
roughly cover the last glacial cycle (North Greenland Ice Core Project mem-
bers, 2004). In order to interpret the climatic signal provided by the ice cores
and to enable comparison with other paleo-climatic records accurate time scales
are crucial. Because of their high accumulation rates, the Greenland ice cores
are well suited for obtaining a chronology based on annual layer counting of
the last glacial cycle. In addition, the Greenland ice cores very strongly reflect
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the abrupt climatic shifts of the last glacial period, the Dansgaard-Oeschger
events, and they contain many reference horizons that enable comparison to
other paleo-archives.

The most widely applied Greenland ice core time scales are the Meese-Sowers
GISP2 (Greenland Icecore Project 2) stratigraphic time scale and the modeled
ss09sea time scale that has been applied to the GRIP(Greenland Icecore Project)
and NorthGRIP ice cores. Those time scales agree within 750 years back to 40
kyr, but beyond this point the disagreement becomes several thousands of years.
So far, there has thus been no consensus for the Greenland ice core time scales
in the glacial period. We consider a data set obtained from an ice core obtained
from the Greenland ice-sheet, see [A. Svensson et al. (2008], where, was used the
extension of the GICC05 (Greenland Ice Core Chronology 2005)3 back to 60 kyr.

The record of integrated δ18O goes 60,000 years back in time, and each data
point is the average over a time interval of length 20 years. Thus there are 3000
data points. These data correspond to the Quaternary Period, that is the most
recent of the three periods of the Cenozoic Era in the geologic time scale of the
ICS4. It follows the Neogene Period, spanning 2.588 million years ago to the
present. The Quaternary includes two geologic epochs:

1. The Pleistocene, that is epoch of glacial cycles, evolution of modern hu-
mans and megafauna extinction. The Pleistocene is divided into four
stages or ages, the Gelasian, Calabrian, Ionian and Tarantian.

2. The Holocene,that is the epoch of the end of Ice Age and the emergence
of modern civilization.

The Table 4.1 shows the subdivisions of the Quaternary period. Then, the data
correspond only to the Holocen epoch and the last two ages of the Pleistocene
epoch. The variation of the paleo-temperature can be modelled by a stochastic

Epoch Ages Older (myr)
Holocene 0-0.0117

Pleistocene Tarantian 0.0117-0.126
Pleistocene Ionian 0.126-0.781
Pleistocene Calabrian 0.781-1.806
Pleistocene Gelasian 1.806-2.588

Table 4.1: Subdivisions of the Quaternary Period.

differential equation, see [Ditlevsen, Ditlevsen & Andersen (2002], where con-
sider as a first approximation, the generic way of describing the variations on
climatic time-scales is that each of the states can be described as resulting from
a simple linear auto-regressive process

xn+1 − x̄ = (1− σ∆t)(xn − x̄) + σνn+1. (4.3)
3GICC05 is a time scale based on annual layer counting of high-resolution records from

Greenland ice cores.
4International Commission on Stratigraphy
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This is the discrete version of linear Langevin equation. The δ18O climate vari-
able is denoted xn, and the discrete time-steps are tn = n∆t, where ∆t is the
resolution of the record. The first term on the righthand side represents the
’stiffness’ of the stable climate state in restoring the equilibrium state x̄ when
the system is perturbed by noise. The second term on the right hand side is cli-
matic noise which on these timescales act as stochastic forcing. The strength of
the atmospheric forcing on the climate state is represented by stationary white
noise σν(t) of intensity σ2 discretized in equation (4.3) to stationary sequence
{σνn} where νn has variance ∆t.

In [Ditlevsen, Ditlevsen & Andersen (2002] assumed that the record is generated
by the process 4.3 and ∆t → 0, then the continuous version is the Ornstein-
Uhlenbeck process.

Statistical inference for observations of integrated diffusions with application
on ice-core records has been studied in [Ditlevsen & Sørensen (2004] where,
prediction-based estimating functions are applied to estimate parameters in the
underlying diffusion model.

The time series is plotted in Figure 4.3. It is obviously not stationary, so in
a preliminary analysis we divide it into three subintervals, [-60000, -30000], [-
30000, -10000], and [-10000, 0].

Since that the variation of the paleo-temperature can be modelled by a
stochastic differential equation, it is natural to model the ice-core data as an
integrated diffusion process, then we here consider the ice-core data as an ob-
servation of type

Xi = 1
∆

∫ ti

ti−1

Xtdt

and each of these intervals we model the observations by integrated diffusion
observations where X is an Ornstein-Uhlenbeck process, and the integrals are
over intervals of length 20. We apply the method developed in the previous
chapter for the analysis of this time serie. The EM algorithm is run with
M = 10000,M0 = 1000, and λ = 20 for each of the three blocks of data.
The resulting estimates are reported in Table 4.2. The parameter α1 can be
interpreted as a correlation time, and σ/

√
2α is the standard deviation of the

stationary distribution. When compared to the plot, these parameter values
seem reasonable. Now, we use the equation 4.2 and obtain a least squares ad-

Parameter [−10000, 0] [−30000, 10000] [−60000,−30000]
α−1 205.3 669.8 321.1
σ 0.0303 0.1167 0.1395

σ/
√

2α 0.307 2.136 1.767
τ2 0.1062638 0.6966518 0.225974

Table 4.2: Estimates obtained by the EM-algorithm for an Ornstein-Uhlenbeck
model for three subintervals.
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Figure 4.3: δ18Oh-values integrated over 20 years intervals obtained from ice
core data from the Greenland ice-sheet.

justment for temperature, here, we consider only the last interval of observation,
i. e., [-10000, 0], which is the actual epoch, then the corresponding equation is

T = 20.45 + 1493δ18O + 1.051× (10−10)δ18O (4.4)

Now, using the results of the estimation of the integrated process of diffusion
can make an estimate of annual observations using Milstein scheme and pa-
rameter estimates, then we can obtain the annual average temperatures for the
correspondig period using equation 4.4, we present this temperatures in Figure
4.4.

4.2 Analysis of volatility by Integrated diffusion
processes.

In this section we present a overview of stochastic volatility models, we apply
the method of maximum likelihood estimation developed in the previous chapter
for the CIR process a simulation study for this model is reported.

4.2.1 Introduction
Stochastic volatility models are used heavily within the fields of financial eco-
nomics, probability theory and econometrics blending to produce methods that
aid our understanding of option pricing, efficient portfolio allocation and accu-
rate risk assessment and management.
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Annual average temperature 
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Figure 4.4: Annual Average temperature of the last 10,000 years in degrees
celsius

Stochastic volatility models are one approach to resolve a shortcoming of the
Black-Scholes model. In particular, these models assume that the underlying
volatility is constant over the life of the derivative, and unaffected by the changes
in the price level of the underlying security. However, these models cannot ex-
plain long-observed features of the implied volatility surface such as volatility
smile and skew, which indicate that implied volatility does tend to vary with
respect to strike price and expiry. By assuming that the volatility of the under-
lying price is a stochastic process rather than a constant, it becomes possible to
model derivatives more accurately.

Since the mid-1980s continuous-time stochastics volatility has dominated the
option pricing literature but early on econometricians struggled with the diffi-
culties of estimating and testing these models. Only in the 1990s were novel
simulation strategies developed to efficiently estimate stochastic volatility mod-
els. These computationally intensive methods enable us, given enough coding
and computing time, to efficiently estimate a broad range of fully parametric
stochastics volatility models. This has lead to refinements of the models, with
many earlier tractable models being rejected from an empirical viewpoint. The
resulting enriched stochastics volatility literature has brought us much closer to
the empirical realities we face in financial markets.

From the late 1990s stochastics volatility models have taken center stage in the
econometric analysis of volatility forecasting using high-frequency data based
on realized volatility and related concepts. The reason is that the econometric
analysis of realized volatility is tied to continuous-time processes, so stochastics
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volatility is central. The close connection between stochastics volatility and re-
alized volatility has allowed financial econometricians to harness the enriched
information set available through highfrequency data to improve, by an order
of magnitude, the accuracy of their volatility forecasts over that traditionally
offered by ARCH models based on daily observations. This has broadened the
applications of stochastics volatility into the important arena of risk assessment
and asset allocation.

4.2.2 Stochastic volatility models.
Here, we describe the most popular stochastic volatility models proposed in the
literature to represent different aspects observed in volatility.

We suppose that the stock price S and its variance ν satisfy the following
stochastic differential equations:

dSt = µSt dt+√νtSt dWt (4.5)

dνt = αS,t dt+ vβS,t
√
νt dBt (4.6)

with
〈Wt, Bt〉 = ρ

where µ is the instantaneous drift of stock price returns,v is the volatility of
volatility is the volatility of volatility and ρ is the correlation between random
stock price returns and changes in νt. W and B are Wiener processes.

The stochastic process given by equation (4.5) followed by the stock price is
equivalent to the one assumed in the derivation of [Black & Scholes (1973].
This ensures that the standard time-dependent volatility version of the Black-
Scholes formula may be retrieved in the limit v → 0. In practical applications,
this is a key requirement of a stochastic volatility option pricing model as practi-
tioners intuition for the behavior of option prices is invariably expressed within
the framework of the Black-Scholes formula.

The Heston model.

The Heston model corresponds to choosing

αS,t = −λ(νt − ν̄

and
βS,t = 1

in equations (4.5) and (4.6), then we have

dSt = µSt dt+√νtSt dWt (4.7)

dνt = λ(νt − ν̄αS,t dt+ v
√
νt dBt (4.8)

where λ is the speed of reversion of νt to its long term mean ν̄.

The process followed by νt may be recognized as a version of the square root
process described by Cox, Ingersoll, and Ross (CIR). It is a special case of a
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so-called affine jump diffusion (AJD) which is roughly speaking a jump-diffusion
process for which the drifts and covariances and jump intensities are linear in
the state vector. AJD processes are analytically tractable in general. The solu-
tion technique involves computing an extended transform which in the Heston
case is a conventional Fourier transform.

Chen model

A model for interest rate dynamics and is thus different than those considered
previously. The dynamics of the instantaneous interest rate {rt}t≥0 , the mean
level of the interest rate {α}t≥0 , and the volatility {σt}t≥0 are specified by the
following stochastic differential equations:

drt = (θt − αt) dt+√rt σt dWt,

dαt = (ζt − αt) dt+√αt σt dWt,

dσt = (βt − σt) dt+√σt ηt dWt.

In finance, the Chen model is a mathematical model describing the evolution
of interest rates. It is a type of ”three-factor model” (short rate model) as it
describes interest rate movements as driven by three sources of market risk. It
was the first stochastic mean and stochastic volatility model and it was published
in 1994 by the economist Lin Chen.

GARCH model

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model
is another popular model for estimating stochastic volatility. It assumes that the
randomness of the variance process varies with the variance, as opposed to the
square root of the variance as in the Heston model. The standard GARCH(1,1)
model has the following form for the variance differential:

dνt = θ(ω − νt)dt+ ξνt dBt.

4.2.3 Maximum likelihood estimation for the CIR process
and a stochastic volatility model

In this section we apply the method of the previous chapter to the CIR process,
which solve

dXt = (α− βXt)dt+ σ
√
XtdWt, (4.9)

The CIR process plays important roles in financial mathematics, where it has
been used to describe the model the volatility, where the dynamics of the loga-
rithm of the price, Pt , of a financial asset is given by

dPt = (κ+ νXt)dt+
√
XtdBt,

where the volatility process X is given by equation (4.9), and where the standard
Brownian motion B may possibly be correlated with the Brownian motion W
in equation (4.9). If high frequency observations of the asset price are available
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at the time points jδ,j = 0, . . . , N , then the integrated volatility over longer
time intervals of length ∆ = mδ (e.g. hours or days)∫ i∆

(i−1)∆
Xtdt,

i = 1, . . . , n = [N/m], can be estimated by the quadratic variation/realized
volatility

Vi =
im∑

j=(i−1)m+1

(Pjδ − P(j−1)δ)2

i = 1, . . . , n We can therefore estimate the parameters α, β, σ in the volatility
process (4.9) by treating the realized volatilities Vi, i = 1, . . . , . . . , n as observa-
tions Yi of the type (3.21) with X given by (4.9) and ti = i∆.

A simulation study.

We simulated 1500 datasets, and for each of them obtained estimates by means
of our EM-algorithm. Each data set was obtained by simulating a sample path
of length 1500 with initial distribution X0 ∼ Γ(2α/σ2, σ2/β), then calculating
data Yi, i = 1, . . . , 1500 by (3.21). The EM-algorithm was run with M = 10000
and M0 = 1000 and for three different values of λ, namely λ = 10, 20, 30.

4.2.4 The likelihood and the EM-algorithm
We apply the Lamperti transform

h(x;σ) = 2
√
x

σ
,

so h−1(x;σ) = σ2x2

4 . Hence Ut = h(Xt;σ) = 2
√
Xt
σ , solves the stochastic differ-

ential equation
dUt = µ(Ut;α, β, σ)dt+ dWt.

We have
µ(u;α, β, σ) = 4α− βσ2u2 − σ2

2σ2u
,

so
a(u;α, β, σ) = log(u)

(
2α
σ2 −

1
2

)
− βu2

4 .

Here, we have that the full log-likelihood function (3.27) is given by

logL(θ;Y1, . . . , Yn, Ut, t ∈ [0, tn]) (4.10)

=
n∑
i=1

log φ
(
Yi;

σ2

4

∫ ti

ti−1

(Us)2ds, τ2

)
+ log

(
Utn
Ut0

)(
2α
σ2 −

1
2

)
+ β

4 (U2
t0 − U

2
tn) + αβtn

σ2 ,

−β
2

8

∫ tn

t0

U2
t dt−

2α2

σ4

∫ tn

t0

1
U2
t

dt− 3
8

∫ tn

t0

1
U2
t

dt+ 2α
σ2

∫ tn

t0

1
U2
t

dt,

where θ = (α, β, σ, τ2).
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Now, we apply the EM algorithm.

E-STEP

The objective function g(θ) is for the CIR process given by

g(θ) = 1
M −M0

M∑
k=M0+1

n∑
i=1
−

(Yi − σ2

4
∫ ti
ti−1

(U (k)
t )2dt)2

2τ2 − n

2 log(2πτ2) + αβtn
σ2

+
(

2α
σ2 −

1
2

)
1

M −M0

M∑
k=M0+1

log
(
U

(k)
tn

U
t
(k)
0

)
+ β

4(M −M0)

M∑
k=M0+1

((U (k)
t0 )2 − (U (k)

tn )2)

+ 2ασ2 − 2α2

σ4(M −M0)

M∑
k=M0+1

n∑
i=1

∫ ti

ti−1

1
(U (k)

t )2
dt− 3

8(M −M0)

M∑
k=M0+1

n∑
i=1

∫ ti

ti−1

1
(U (k)

t )2
dt

− β2

8(M −M0)

M∑
k=M0+1

n∑
i=1

∫ ti

ti−1

(U (k)
t )2dt.

Here U (k)
t = 2

√
X

(k)
t /σ̂, where X(k)

t is the k-th sample path of the process X
simulated conditionally on the data Y using the Algorithms 1 – 3 with the pa-
rameter value obtained in the previous step (α̂, β̂, σ̂, τ̂2).

M-STEP

The maximum θ̂ is obtained as the solution to the following system of equa-
tions

∂g(θ)
∂α

= 2
σ2(M −M0)

M∑
k=M0+1

log
(
U

(k)
tn

U
t
(k)
0

)
+βtn
σ2 + 2σ2 − 4α

σ4(M −M0)

M∑
k=M0+1

n∑
i=1

∫ ti

ti−1

1
(U (k)

t )2
dt = 0,

(4.11)
∂g(θ)
∂β

= 1
4(M −M0)

M∑
k=M0+1

((U (k)
t0 )2−(U (k)

tn )2)+αtn
σ2 −

β

8(M −M0)

M∑
k=M0+1

n∑
i=1

∫ ti

ti−1

(U (k)
t )2dt = 0,

(4.12)

∂g(θ)
∂σ

= 1
M −M0

M∑
k=M0+1

n∑
i=1

(Yi − σ2

4
∫ ti
ti−1

(U (k)
t )2dt)σ

∫ ti
ti−1

(U (k)
t )2dt

2τ2 − 2αβtn
σ3 (4.13)

+ 4α
σ3(M −M0)

M∑
k=M0+1

log
(
U

(k)
tn

U
t
(k)
0

)
+ 4α(2α− σ2

σ5(M −M0)

M∑
k=M0+1

n∑
i=1

∫ ti

ti−1

1
(U (k)

t )2
dt = 0,

and

∂g(θ)
∂τ2 = 1

M −M0

M∑
k=M0+1

n∑
i=1
−

(Yi − σ2

4
∫ ti
ti−1

(U (k)
t )2dt)2

2τ4 − n

2τ2 = 0. (4.14)

The solution of system equations is given by

α̂ = C5(2C2C4 + 2C1C4 + C3tn)
C6(C4C2 − t2n)

, (4.15)
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β̂ = C3C2 + 2C2tn + 2C1tn
C4C2 − t2n

, (4.16)

σ̂ =
√

4C5/C6, (4.17)

τ̂2 = C7C6 − C2
5

n(M −M0)C6
, (4.18)

where the values of the constans Ci is given in the Table 4.3.

constant values

C1
1

M−M0

∑M
k=M0+1 log

(
U

(k)
tn

U
t
(k)
0

)
C2

∑M
k=M0+1

∑n
i=1
∫ ti
ti−1

1
(U(k)
t )2

dt

C3
∑M
k=M0+1((U

(k)
t0 )2 − (U (k)

tn )2)
C4

∑M
k=M0+1

∑n
i=1
∫ ti
ti−1

(U (k)
t )2dt

C5
∑M
k=M0+1

∑n
i=1
∫ ti
ti−1

Yi(U (k)
t )2dt

C6
∑M
k=M0+1

∑n
i=1(

∫ ti
ti−1

(U (k)
t )2dt)2

C7
∑M
k=M0+1

∑n
i=1 Yi

Table 4.3: Values of the constans Ci.

Now, we present data for our illustration is simulated from the above CIR-
model, which we simulated 1500 datasets and for each of them obtained esti-
mates by means of the EM-algorithm proposed in the present paper. Each data
set was obtained by simulating a sample path of length 1500 with initial distribu-
tion X0 ∼ gamma(2α/σ2, σ2/β), and then calculating data Yi, i = 1, . . . , 1500
by (3.21) with ti = i, i = 0. . . . , n. The parameter values were α = 0.5, β = 0.2,
σ = 0.5 and τ2 = 1.25.

The EM-algorithm was run with M = 10000 and M0 = 1000 .We specify
a design to represent typical weekly and daily financial data sets. Using ∆ =
ti−ti−1 = 1 for daily series and ∆ = ti−ti−1 = 5 for weekly data. Here âĂă can
be thought of as the time interval in the observed data and determines the bias
in the discretized time gap. The average of the estimates obtained for the 1000
dataset are given in Table 4.4. We have presented an EM-algorithm for obtaining

λ α β σ τ2

30 0.4802 0.2056 0.4787 1.2432
20 0.4727 0.2043 0.4698 1.2406
10 0.4587 0.1965 0.4609 1.2287

Table 4.4: Average of parameter estimates obtained from 1000 simulated
datasets with parameter values α = 0.1, σ = 0.5 and τ2 = 1.25.

maximum likelihood estimates of parameters in diffusion models when the data
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is a discrete time sample of the integral of the diffusion process contaminated
by measurement errors, while no direct observations of the process itself are
available. This was done by viewing the data as an incomplete observation,
where the full data set includes a continuous time record of the diffusion process.
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Chapter 5

Concluding and Outlook

The initial idea of this work was the estimation of Markov processes. This work
is focused on propose methods for obtaining estimates of parameters in Markov
jump processes and diffusion models when the data is a discrete time sample of
the integral of the process.

We have presented two important results, the first, an algorithm for the es-
timation of full parameters to observations from several Markov jump processes
which conditional on an underlying Markov jump process, in this work we have
studied the case when the Markov jump processes have been discretely observed
and the case when the underlying process has been observed continuously in a
time interval and the case when the underlying process has been observed only
at discrete time points.

In this part of the work we discussed the problems that are related to maxi-
mum likelihood estimation of the intensity matrix based on a discretely sampled
Markov jump processes generalizing the results of Bladt and Sørensen in [Bladt
& Sørensen (2005] on estimation of transition rates by a MCMC approach to
observations from several Markov jump processes which conditional on under-
lying Markov jump process are independent with the same transition rates and
apply our results to analysis of credit rating transition. An real example with
credit rating data conditional on interest rate was presented.

As a natural extension, we can assume that the underlying process is a diffu-
sion process and we will study the rates of jumps in the Markov jump processes.

For another hand, we have presented an EM-algorithm for obtaining maxi-
mum likelihood estimates of parameters in diffusion models when the data is
a discrete time sample of the integral of the diffusion process contaminated by
measurement errors, while no direct observations of the process itself are avail-
able. This was done by viewing the data as an incomplete observation, where
the full data set includes a continuous time record of the diffusion process.

It is not difficult to generalize the method presented in this work to the sit-
uation, where the diffusion process is integrated with respect to a more general
measure than the Lebesgue measure considered in this work. This would al-
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low analysis of e.g. weighted averages of diffusion processes, and discrete time
observation would be a particular case. Note also that a Gibbs sampler could
easily be set up in close analogy to the EM-algorithm used in the present work.
This would be much closer to the approach in Chib, Pitt and Shephard.

Finally, we present two applications of the method developed to integrated
diffusion processes to the Ornstein-Uhlenbeck process where the parameters
of an Ornstein-Uhlenbeck model are estimated from a set of integrated paleo-
temperature data obtained from an ice-core from Greenland and a similar in-
vestigation for the Cox-Ingersoll-Ross(CIR)/square root process was presented.



Appendix A: Code in
Fortran of Markov jump
processes

Here, we present the code that was used to the estimation of parameters in the
analysis of credit data of chapter 2.

! program Markov jump proce s s e s

implicit none

! PARAMETERS

INTEGER dstate s , numobs , numiter , numpro , g i b i t e r , burn MH , burn Gibbs , numcom
parameter ( g i b i t e r =10000)
parameter (numpro=696)
parameter (numcom=2169)
parameter ( d s t a t e s =3)
parameter (numobs=10)
parameter ( numiter=1000)
parameter ( burn Gibbs=1000)

! VARIABLES

REAL Col1 , Col2 , Col3 , Col4 , Col5 ,DELTA,TIMESPAN, timer , x , long , suma ,XGMJ
REAL t imeobs (10000) ,HV0(10000) ,HV1(10000) ,HV(10000) ,HVO(10000)
REAL HTMJPOBS(10000) ,HUMHJP(10000) , timemjp (10000)
REAL GIMJP(10 ,10∗ ds t a t e s ) ,BETA(10) ,ALPHA(10 ,10∗ ds t a t e s )
REAL P(10 ,10∗ ds t a t e s ) ,QMJ(10 ,10∗ ds t a t e s ) ,GIMJP0(10 ,10∗ ds t a t e s )
REAL MVQhechi (10 , 10 ) ,STC(10 , d s t a t e s ) ,TSTC(10 , d s t a t e s )
REAL RHT(10 , d s t a t e s ) ,RH(10 , d s t a t e s ) ,MCH(10 ,10 ) ,AVERAGE(10 ,10∗ ds t a t e s )
REAL TIM(10 ,10∗ ds t a t e s ) , timemjpto (10000 , numpro ) ,MVEQC(10 ,10∗ ds t a t e s )
REAL Q( dstate s , d s t a t e s ) ,Q0( ds tate s , d s t a t e s ) ,MVQ( dstate s , d s t a t e s )
REAL BETA0( d s t a t e s ) ,ALPHA0( dstate s , d s t a t e s ) ,QIM( dstate s , d s t a t e s )
REAl STMJP( d s t a t e s ) , averaQ ( dstate s , d s t a t e s ) ,mev(numobs )
REAL t i m e f i r s t (numobs ) , t i n s t a t e (numobs ) ,HoldUMJP( d s t a t e s )
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! INTEGER
INTEGER i , j , l , cont , na , s t a r i , i n i tp , njumpsobs , den ,mod , ns tate s , dimen
INTEGER NJT1 ,NJT0 ,NJT,NJTO,NJUMPS,NJUMH, nobser , ndate , company , gib ,FIRM
INTEGER MJC(10000) ,MJPOBS(10000) ,MCU0(10000) ,MCU1(10000) ,MCU(10000)
INTEGER MJPES(10000) ,UMHJP(10000) ,TNJC(10 ,10∗ ds t a t e s ) ,Y(numobs )
INTEGER STATES(10000 , numpro ) ,MJPEST(10000 , numpro ) ,NJC(10 ,10∗ ds t a t e s )
INTEGER us t a t e s (numobs ) , numdata (numpro ) ,MJP(numobs , numpro )
INTEGER JUMPO(10 ,10 ) ,NJTU(10 ,10∗ ds t a t e s ) , orgdata (numcom, 10 )
INTEGER YT(numobs , numpro ) ,WT(numobs , numpro ) ,JUMP1( dstate s , d s t a t e s )
INTEGER Z(numobs , numpro ) ,STEMJP(numcom, 1 1 ) , dimenpro (numpro )
INTEGER NJCU(10 ,10∗ ds t a t e s ) ,MJMJP( dstate s , d s t a t e s )
INTEGER numfirm (numcom) , numdat (numcom) ,datMJP(numobs )
INTEGER JUMP0( dstate s , d s t a t e s ) , J0 ( ds tate s , d s t a t e s ) ,W(numobs )
INTEGER MJUMJP( dstate s , d s t a t e s ) ,NJCU1(10 ,10∗ ds t a t e s )

! ALLOCATABLE
INTEGER, allocatable : : JP0 ( : ) , JP1 ( : ) , JPO( : ) ,UJP ( : )
REAL, allocatable : : t imes1 ( : ) , t imes ( : ) , t imes0 ( : )
REAL, allocatable : : HMJO( : ) ,HMJ0( : ) ,HMJ1( : ) ,HU( : )

! CHARACTER
CHARACTER∗10 codigo

! Ex terna l Functions
REAL gengam , genexp
external gengam , genexp

! Reading the data o f Markov Jump Processes .
OPEN(UNIT=3,FILE=’datamoodys . txt ’ ,STATUS=’old ’ ,ACTION=”READ” )

READ( 3 ,∗ ) TIMESPAN
READ( 3 ,∗ ) n s t a t e s
READ( 3 ,∗ ) DELTA

endfi le (10)
CLOSE (UNIT=10)
FIRM=0
i=1
do while ( i<=numcom)

read ( 3 ,∗ ) numdat ( i )
do j =1,numdat ( i )

read ( 3 ,∗ ) numfirm ( i ) , ndate ,STEMJP( i , j ) , cod igo
enddo
f i rm=f i rm+1
i=i+1

enddo

! Using only the companies wi th 10 ob s e r va t i on s
company=1
do i =1,numcom

i f (numdat ( i )==10)then
do j =1,numobs
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MJP( j , company)=STEMJP( i , j )
enddo
company=company+1

else
company=company

endif
enddo

! Read the data o f under l y in proces s
OPEN(UNIT=10,FILE=’datmvcr ’ ,STATUS=’old ’ ,ACTION=”READ” )
do i =1,numobs

read (10 ,∗ ) Col1 , Col2 , Col3 , Col4 , Col5
mev( i )=Col2

enddo
endfi le (10)
CLOSE (UNIT=10)
ca l l Cla s t a t e s (numobs ,mev , datMJP)
l=ns t a t e s ∗ ds t a t e s
nobser=numobs
long=(numobs−1)∗1.0
t imer=(numobs−1)∗1.0
TNJC=0
TSTC=0.0

! INITALIZE PARAMETERS MJP
ca l l I a l b e ( ns tate s , ds tate s , alpha , beta )

! INITALIZE PARAMETERS Under ly ing
ca l l Unalbe ( ds tate s , alpha0 , beta0 )

! I n i t i a l po in t o f UMJP
ca l l i p o i n t ( ds tate s , i n i t p )

! Ca l cu l a t e the time spent in each s t a t e
do i =1,numobs−1

t i m e f i r s t ( i )=( i −1)∗1.0
t i n s t a t e ( i )=1.0

enddo
t i m e f i r s t (numobs)=(numobs−1)∗1.0
t i n s t a t e (numobs)=0.0

! MCMC for I n t e s i t y Matrix
! I n i t i a l i z e I n t e n s i t y Matrix
ca l l priorIM ( nstate s , ds tate s ,ALPHA,BETA,GIMJP0)
ca l l priorQ ( dstate s ,ALPHA0,BETA0,Q0)

GIMJP=GIMJP0
Q=Q0

! I n i t i a l Under ly ing Markov jump process
ca l l MJPCU(numobs , ds tate s , datMJP , t ime f i r s t ,Q0 ,HV0,MCU0,NJT0)
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do i =1,NJT0+1
HUMHJP( i )=HV0( i )
UMHJP( i )=MCU0( i )

enddo
ca l l t imet (NJT0 ,HV0, timeobs )

NJUMH=NJT0

! I n i t i a l Markov jump proce s s e s
i=1
do while ( i<=numpro )
ca l l MJPCDO(numobs , ns tate s , ds tate s ,NJT0 ,UMHJP, timeobs , t im e f i r s t ,&

&,GIMJP0,MJP( : , i ) ,MJPES, timemjp , dimen )
MJPEST( : , i )=MJPES
timemjpto ( : , i )=timemjp
dimenpro ( i )=dimen
ca l l a u x i l i a r (numobs ,MJPES,UMHJP, dimen−1,NJT0 , timemjp , timeobs , t im e f i r s t ,Y,W)
YT( : , i )=Y
WT( : , i )=W

enddo

! I n i t i a l a u x i l i a r v a r i a b l e s
ca l l augdata (numobs , numpro , ds tate s , ns tate s ,YT,WT,MJP,Q0,GIMJP0, Z)

! Gibbs Sample
averaQ=0.0
AVERAGE=0.0
g ib=1
den=g i b i t e r−burn Gibbs
do while ( gib<=g i b i t e r )

na=0
ca l l t imet (NJUMH,HUMHJP, timeobs )
i=1
do while ( i<=numpro )

ca l l MJPCDO(numobs , ns tate s , ds tate s ,NJUMH,UMHJP, timeobs ,&
&, t ime f i r s t ,GIMJP,MJP( : , i ) ,MJPES, timemjp , dimen )

MJPEST( : , i )=MJPES
timemjpto ( : , i )=timemjp
dimenpro ( i )=dimen
i=i+1

cont=1
do while ( cont<=numiter )

ca l l i p o i n t ( ds tate s , i n i t p )
ca l l MJPCU(numobs , ds tate s , datMJP , t ime f i r s t ,Q,HV1,MCU1,NJT1)

i f ( cont==1 . and . g ib==1)then
NJUMPS=NJT0
do i =1,NJT0+1

HUMHJP( i )=HV0( i )
UMHJP( i )=MCU0( i )

enddo
else
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NJUMPS=NJUMH
endif
al locate (HU(NJUMPS+1))
allocate (UJP(NJUMPS+1))
do i =1,NJUMPS+1

HU( i )=HUMHJP( i )
UJP( i )=UMHJP( i )

enddo
allocate (HMJ1(NJT1+1))
allocate (JP1(NJT1+1))
do i =1,NJT1+1

HMJ1( i )=HV1( i )
JP1( i )=MCU1( i )

enddo
ca l l mhunderlying (NJUMPS,NJT1 , ns tate s , ds tate s , numpro ,GIMJP,UJP, JP1,&

&,MJPEST,HU,HMJ1, timemjpto , dimenpro ,NJUMH,UMHJP,HUMHJP, na )
i f ( cont==numiter ) then

RHT=0.0
NJTU=0
i=1

do while ( i<=numpro )
ca l l s tat ime (NJUMH, dstate s , ns tate s ,UMHJP,MJPEST( : , i ) ,&

&,HUMHJP, timemjpto ( : , i ) , dimenpro ( i ) ,RH)
ca l l stajump (NJUMH, dstate s , ns tate s ,UMHJP,MJPEST( : , i ) ,&

&,HUMHJP, timemjpto ( : , i ) , dimenpro ( i ) ,NJCU)
RHT=RHT+RH
NJTU=NJTU+NJCU
i=i+1
enddo

else
continue

endif
deallocate (UJP,HU, JP1 ,HMJ1)
cont=cont+1

enddo
ca l l jumpsU( dstate s ,NJUMH,UMHJP,MJUMJP)
ca l l spentU ( dstate s ,NJUMH,UMHJP,HUMHJP,HoldUMJP)
ca l l poste r io r IM ( nstate s , ds tate s ,NJTU,RHT,BETA,ALPHA,GIMJP)
ca l l poste r io rQ ( dstate s ,MJUMJP,HoldUMJP,ALPHA0,BETA0,Q)

i f ( gib>burn Gibbs ) then
do i =1, d s t a t e s

do j =1, d s t a t e s
averaQ ( i , j )=(averaQ ( i , j )+Q( i , j ) )

enddo
enddo
do i =1, n s t a t e s

do j =1, l
AVERAGE( i , j )=AVERAGE( i , j )+GIMJP( i , j )

enddo
enddo
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else
continue

endif
g ib=gib+1
enddo

averaQ=averaQ/den ∗1 .0
AVERAGE=AVERAGE/den ∗1 .0
endfi le (1 )
close (1 )
ca l l system ( ”R CMD BATCH intda t . r intda . out ” )

end

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! Subrout ines ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! D i s c re t e Observat ions o f MJP
subroutine Datapoint ( jumps , time , numobs , hold ,CMJP, Obs)
implicit none
INTEGER jumps , i , j , numobs ,CMJP( jumps+1) ,Obs ( 0 : numobs )
REAL time , hold ( jumps+2)

Obs(0)=CMJP(1)
i=1
do while ( i<=numobs )

do j =1, jumps+1
i f ( i ∗1.0>=hold ( j ) ) then

Obs( i )=CMJP( j )
else

goto 1
endif

enddo
1 i=i+1
enddo
Obs(numobs)=CMJP( jumps+1)
return
end subroutine

! Ca l cu l a t e the MVE of 0MJP
subroutine MVEMJP( s ta t e s ,mjump , mspent ,MVQ)
implicit none
INTEGER i , j , s t a t e s , njumps ,mjump( s ta t e s , s t a t e s )
REAL mspent ( s t a t e s ) ,MVQ( s ta t e s , s t a t e s )

do i =1, s t a t e s
do j =1, s t a t e s

MVQ( i , j )=(mjump( i , j ) )∗1 . 0 / mspent ( i )
enddo

enddo
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do i =1, s t a t e s
MVQ( i , i )=0.0

DO J=1, s t a t e s
IF ( i .NE. j ) THEN

MVQ( i , i )=MVQ( i , i )−MVQ( i , j )
ENDIF

ENDDO
ENDDO
return
end subroutine

! ! S imulate the i n i t i a l po in t o f UMJP
subroutine i p o i n t ( s t a t e s , po int )
implicit none
INTEGER s t a t e s , point , j
REAL Unif

j=1
ca l l random number ( Unif )

do while ( j<=s t a t e s )
i f ( ( ( j −1)∗1.0)/( s t a t e s ∗1.0)<=Unif . and . ( ( j ) ∗ 1 . 0 ) / ( s t a t e s ∗1.0)>Unif ) then

po int=j
j=s t a t e s+1

else
j=j+1

endif
enddo
return
end subroutine

! I n i t i a l BETA and ALPHA of MJPO
subroutine I a l b e (n , d , alpha , beta )
implicit none
INTEGER n , l , i , j , d
REAL beta (n ) , alpha (n , d∗n)

l=n∗d

do i =1,n
BETA( i )=1.0
do j =1, l

ALPHA( i , j )=1.0
enddo

enddo
return
end subroutine

! I n i t i a l BETA and ALPHA of Under lyin
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subroutine Unalbe (d , alp , be )
implicit none
INTEGER i , j , d
REAL be (d ) , a lp (d , d)

do i =1,d
BE( i )=1.0
DO j =1,d

ALP( i , j )=1.0
enddo

enddo
return
end subroutine

! Generate a Markov jump proces s
subroutine UMJP( i n i t ,m, time ,Q,Y,NJT,HT)
INTEGER m, i , j ,Y(0 : 10000 ) ,NJT, JT0(m,m) , i n i t
REAL Q(m,m) ,NJ(m) ,HT(10000) ,P(m,m) ,T(0 : 100000 ) , time ,TT,HTT(m)
REAl genexp
external genexp

Y(0)= i n i t
T(0)=0.0
NJT=0
! Trans i t ion Matrix
do i =1,m

do j =1,m
i f ( i .NE. j ) then

P( i , j )=−(Q( i , j )/Q( i , i ) )
else

P( i , i )=0.0
endif

enddo
enddo

TT=0.0
j=1
! Jump proce s s e s
do while (TT<=time )

do i =1,m
i f (Y( j−1)==i ) then

HT( j )=genexp (−1.0/Q( i , i ) )
T( j )=T( j−1)+HT( j )

else
continue

endif
enddo
TT=TT+HT( j )
i f (TT<time ) then

ca l l newpoint (Y( j −1) ,P,m,Y( j ) )
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NJT=NJT+1
j=j+1

else
continue

endif
enddo
suma=0.0
do i =1,NJT
suma=suma+HT( i )
enddo
HT(NJT+1)=time−suma
HTT=0.0
j=1
do while ( j<=m)

do i =0,NJT
i f (Y( i )==j ) then

HTT( j )=HTT( j )+HT( i +1)
else

continue
endif

enddo
j=j+1
enddo
JT0=0
j=1
do while ( j<=m)

do i =0,NJT−1
i f (Y( i )==j ) then

i f (Y( i +1).NE. j ) then
JT0( j ,Y( i +1))=JT0( j ,Y( i +1))+1

else
JT0( j , j )=0

endif
else

continue
endif

enddo
j=j+1
enddo

return
end subroutine

! Generate the new po in t in the MJP
subroutine newpoint ( old ,P, numstates , new)
implicit none
REAL P( numstates , numstates ) , suma ,U
INTEGER i , numstates , old , new

ca l l random number (U)
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suma=0.0
i=1
do while ( i<=numstates )

suma=P( old , i )+suma
i f (U<suma) then

new=i
i=numstates+1

else
i=i+1

endif
enddo

return
end subroutine

! Draw a Q of Under ly ing from the p r i o r d i s t r i b u t i o n
subroutine priorQ (d ,ALPHA,BETA,Q)
implicit none
INTEGER d , i , j , k , kk
REAL alpha (d , d ) , beta (d ) ,Q(d , d)
! . . Ex terna l Functions . .
REAL gengam
external gengam
Q=0.0

do i =1,d
do j =1,d

Q( i , j )=gengam( beta ( i ) , alpha ( i , j ) )
enddo

enddo

do i =1,d
Q( i , i )=0.0
DO J=1,d

IF ( i .NE. j ) THEN
Q( i , i )=Q( i , i )−Q( i , j )

ENDIF
ENDDO

ENDDO

return
end subroutine

! Draw a Q of Under ly ing from the p o s t e r i o r d i s t r i b u t i o n
subroutine poste r io rQ (d ,MJUMJP,HoldUMJP,ALPHA,BETA,Q)
implicit none
INTEGER d , i , j , k , kk ,MJUMJP(d , d)
REAL alpha (d , d ) , beta (d ) ,Q(d , d ) ,HoldUMJP(d)
! . . Ex terna l Functions . .
REAL gengam
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external gengam

Q=0.0
do i =1,d

do j =1,d
Q( i , j )=gengam ( ( beta ( i )+HoldUMJP( i ) ) , alpha ( i , j )+MJUMJP( i , j ) )

enddo
enddo

do i =1,d
Q( i , i )=0.0
DO J=1,d

IF ( i .NE. j ) THEN
Q( i , i )=Q( i , i )−Q( i , j )

ENDIF
ENDDO

ENDDO
return
end subroutine

! Ca l cu l a t e the s t a t s o f jumps o f under l y ing proces s
subroutine jumpsU(d , njumps , jumpU ,MJUMJP)
implicit none
INTEGER d , njumps , jumpU(njumps+1) ,MJUMJP(d , d ) , i

MJUMJP=0
do i =1,njumps

MJUMJP(jumpU( i ) , jumpU( i +1))=MJUMJP(jumpU( i ) , jumpU( i +1))+1
enddo
return
end subroutine

! Ca l cu l a t e the s t a t i s t i c s o f time o f under l y ing proces s
subroutine spentU (d , njumps , jumpU ,hU,HoldUMJP)
implicit none
INTEGER d , njumps , i , jumpU(njumps+1)
REAL hU( njumps+1) ,HoldUMJP(d)

HoldUMJP=0.0
i=1
do while ( i<=njumps+1)

HoldUMJP(jumpU( i ))=HoldUMJP(jumpU( i ))+hU( i )
i=i+1

enddo
return
end subroutine

! Draw a QMJP from the p r i o r d i s t r i b u t i o n
subroutine priorIM (n , d ,ALPHA,BETA,QMJ)
implicit none



128 Chapter 5 Appendix A: Code in Fortran of Markov jump processes

INTEGER n , d , l , i , j , k , kk
REAL alpha (n , n∗d ) , beta (n ) ,QMJ(n , n∗d)
! . . Ex terna l Functions . .
REAL gengam

external gengam

l=n∗d
QMJ=0.0

do i =1,n
do j =1, l

QMJ( i , j )=gengam( beta ( i ) , alpha ( i , j ) )
enddo

enddo

do i =1,n
do j =1, l

do k=1,d
i f ( j . eq . ( i +(k−1)∗n ) ) then

QMJ( i , j )=0.0
endif

enddo
enddo
do k=1,d

kk=i +(k−1)∗n
do j=kk−i +1,kk−i+n

i f ( j . ne . kk ) then
QMJ( i , kk)=QMJ( i , kk)−QMJ( i , j )

endif
enddo

enddo
enddo
return
end subroutine

! Ca l cu l a t e the i n t e n s i t y matrix o f MJPs
subroutine poste r io r IM (n , d ,MNJ,MTS, beta , alpha ,QMJ)
implicit none
INTEGER n , d , l ,MNJ(n , n∗d ) , i , j , k , kk ,mod
REAL alpha (n , n∗d ) , beta (n ) ,QMJ(n , n∗d ) ,MTS(n , d)
REAL gengam
external gengam
l=n∗d
QMJ=0.0
do i =1,n

do j =1, l
ca l l modu( j , n ,mod)
QMJ( i , j )=gengam( beta ( i )+MTS( i ,mod+1) , alpha ( i , j )+MNJ( i , j ) )

enddo
enddo
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do i =1,n
do j =1, l

do k=1,d
i f ( j . eq . ( i +(k−1)∗n ) ) then

QMJ( i , j )=0.0
endif

enddo
enddo
do k=1,d

kk=i +(k−1)∗n
do j=kk−i +1,kk−i+n

i f ( j . ne . kk ) then
QMJ( i , kk)=QMJ( i , kk)−QMJ( i , j )

endif
enddo

enddo
enddo
return
end

! Metropo l i s−ha s t i n g s o f under l y ing proces s
subroutine mhunderlying ( jumpU0 , jumpU1 , n , d , numpro ,QMJ, JP0 , JP1 ,MJP,HMJ0,HMJ1,&

&,timeMJ , dimen ,NJU,UMHJP,HUMHJP, num acep )
implicit none
INTEGER jumpU0 , jumpU1 , jumpMJ , n , d , numpro , i , j , l ,modd ,modn ,NJU,MH,UMHJP(10000)
INTEGER NJCU0(n , n∗d ) ,NJCU1(n , n∗d ) , JP0( jumpU0+1) ,JP1( jumpU1+1) ,MJP(10000 , numpro )
INTEGER num acep , dimen (numpro ) ,NJT0(n , n∗d ) ,NJCU(n , n∗d ) ,NJT1(n , n∗d)
REAL QMJ(n , n∗d ) , p robab i l i t y , prob , Unif , tim0 ( jumpU0+2) ,suma , tim1 ( jumpU1+2)
REAL HMJ0( jumpU0+1) ,HMJ1( jumpU1+1) ,timeMJ(10000 , numpro ) ,RH0(n , d ) ,RH1(n , d)
REAL RHT1(n , d ) ,RHT0(n , d ) ,RH(n , d ) ,HUMHJP(10000)

ca l l t imet ( jumpU0 ,HMJ0, tim0 )
ca l l t imet ( jumpU1 ,HMJ1, tim1 )
RHT0=0.0
RHT1=0.0
NJT0=0
NJT1=0
i=1
do while ( i<=numpro )

ca l l s tat ime ( jumpU0 , d , n , JP0 ,MJP( : , i ) ,HMJ0, timeMJ ( : , i ) , dimen ( i ) ,RH0)
ca l l stajump (jumpU0 , d , n , JP0 ,MJP( : , i ) ,HMJ0, timeMJ ( : , i ) , dimen ( i ) ,NJCU0)
ca l l s tat ime ( jumpU1 , d , n , JP1 ,MJP( : , i ) ,HMJ1, timeMJ ( : , i ) , dimen ( i ) ,RH1)
ca l l stajump (jumpU1 , d , n , JP1 ,MJP( : , i ) ,HMJ1, timeMJ ( : , i ) , dimen ( i ) ,NJCU1)
RHT0=RHT0+RH0
RHT1=RHT1+RH1
NJT0=NJT0+NJCU0
NJT1=NJT1+NJCU1
i=i+1

enddo
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l=n∗d
prob=1.0
RH=RHT1−RHT0
NJCU=NJT1−NJT0
ca l l sumv(n , d ,RH, suma)
do i =1,n

do j =1, l
ca l l modu( j , n ,modn)
i f ( i==j−modn∗n) then

prob=prob
else
prob=QMJ( i , j )∗∗ (NJCU( i , j ) )
prob=prob∗exp(−QMJ( i , j )∗RH( i ,modn+1))∗ prob

endif
enddo

enddo
p r obab i l i t y=min ( 1 . 0 , prob )
ca l l random number ( Unif )

i f ( Unif<=probab i l i t y ) then
MH=1
NJU=jumpU1
do i =1,NJU+1

UMHJP( i )=JP1( i )
HUMHJP( i )=HMJ1( i )

enddo
num acep=num acep+1

else
MH=0
NJU=jumpU0
do i =1,NJU+1

UMHJP( i )=JP0( i )
HUMHJP( i )=HMJ0( i )

enddo
endif
return
end subroutine

! sum times
subroutine t imet ( t ,V, tim )
implicit none
INTEGER t , i
real V( t +1) , tim ( t +2) ,sum

tim (1)=0.0
sum=0.0
i=2
do while ( i<=(t +2))

sum=sum+V( i −1)
tim ( i )=sum
i=i+1
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enddo

return
end subroutine

! Ca l cu l a t e the s t a t i s t i c s o f the time spent in each s t a t e cond
subroutine s tat ime (a , d , n ,U,MJ,TU,TMJ, dimen ,RS)
implicit none
INTEGER a , b , n , d ,U( a+1) ,MJ(10000) , i , j , k , kk , l , npro , mark , dimen
REAL TU(a+1) ,TMJ(10000) ,RH(d , n ) , timesU ( a+2) ,RS(n , d ) , suma

ca l l t imet ( a ,TU, timesU )
RS=0.0
i=1
j=1
suma=0.0
do while ( i<=dimen )

do while ( j<=a+1)
k=U( j )
kk=MJ( i )
i f (TMJ( i+1)<=TimesU( j +1))then

RS(kk , k)=RS(kk , k)+TMJ( i+1)−suma
suma=TMJ( i +1)
goto 15

else
RS(kk , k)=RS(kk , k)+timesU ( j+1)−suma
suma=timesU ( j +1) !
j=j+1

endif
enddo

15 i=i+1
enddo
return
end subroutine

! Ca l cu l a t e the s t a t i s t i c s o f the number o f jump
subroutine stajump (a , d , n ,U,MJ,TU,TMJ, dimen , numjump)
implicit none
INTEGER a , b , n , d ,U( a+1) ,MJ(10000) , i , intjump , numjump(n , n∗d ) , npro , k , l , j ,mod , dimen
REAL TU(a+2) ,TMJ(10000) , timesU ( a+2)

l=n∗d
ca l l t imet ( a ,TU, timesU )
numjump=0
j=1
do while ( j<=dimen )

i=1
do while ( i<=a+1)
i f ( timesU ( i+1)>TMJ( j +1))then
k=U( i )
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numjump(MJ( j ) ,MJ( j +1)+(k−1)∗n)=numjump(MJ( j ) ,MJ( j +1)+(k−1)∗n)+1
i=a+2

else
continue
endif
i=i+1
enddo
j=j+1

enddo

do i =1,n
do j =1, l

ca l l modu( j , n ,mod)
i f ( i==j−mod∗n) then

numjump( i , j )=0
else

continue
endif

enddo
enddo
return
end subroutine

! S imulate a MJP cond i t i oned
subroutine MJPC(numobs , n , d ,NJ ,UMJ, times ,QMJ,MJPCU,TSMJPCU,JMJPCU)
implicit none
INTEGER numobs , i , j , l , n , d , k ,mod ,NJ ,MJPCU(numobs ) ,UMJ(NJ+1) , i n i t p
INTEGER a , b ,NJT,JMJPCU(n , n∗d ) ,CMJP(100000)
REAL QMJ(n , n∗d ) ,HTCU(numobs ) ,P(n , n∗d ) , t imes (NJ+2) , time ,PCU(n , n)
REAL QCU(n , n ) , suma ,TSMJPCU(n , d ) ,mean , x ,CHT(100000)
REAL gengam , genexp
external gengam , genexp
INTEGER , allocatable : : CMJPA( : )
REAL , allocatable : : CHTUA( : )

JMJPCU=0
l=n∗d
TSMJPCU=0.0
do i =1,n

do j =1, l
ca l l modu( j , n ,mod)
i f ( i==j−mod∗n) then

P( i , j )=0.0
else

P( i , j )=−(QMJ( i , j )/QMJ( i , i+mod∗n ) )
endif

enddo
enddo

ca l l i p o i n t (n , i n i t p )
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CMJP(1)= i n i t p
time=0.0
j=1
NJT=0
suma=0.0
! Jump proce s s e s
do while ( time<=times (NJ+2))

i=1
do while ( i<=NJ+1)
i f ( t imes ( i+1)>=time ) then

k=UMJ( i )
do a=1,n

do b=1,n
PCU(a , b)=P(a , b+(k−1)∗n)
QCU(a , b)=QMJ(a , b+(k−1)∗n)

enddo
enddo
CHT( j )=genexp (−1.0/QCU(CMJP( j ) ,CMJP( j ) ) )
time=time+CHT( j )
i=NJ+2
i f ( time<=times (NJ+2))then

TSMJPCU(CMJP( j ) , k)=TSMJPCU(CMJP( j ) , k)+CHT( j )
else

TSMJPCU(CMJP( j ) , k)=TSMJPCU(CMJP( j ) , k)+times (NJ+2)−suma
endif
suma=suma+CHT( j )

else
continue

endif
i=i+1

enddo

i f ( time<t imes (NJ+2))then
ca l l newpoint (CMJP( j ) ,PCU, n ,CMJP( j +1))
NJT=NJT+1
j=j+1

else
continue

endif
enddo
allocate (CMJPA(NJT+1))
allocate (CHTUA(NJT+2))

suma=0.0
do i =2,NJT+1

suma=CHT( i−1)+suma
CHTUA( i )=suma

enddo

do i =1,NJT+1
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CMJPA( i )=CMJP( i )
enddo

CHTUA(1)=0.0
CHTUA(NJT+2)=times (NJ+2)
ca l l Datapoint (NJT, t imes (NJ+2) ,numobs−1,CHTUA,CMJPA,MJPCU)
deallocate (CMJPA,CHTUA)

return
end subroutine

! Ca l cu l a t e the en ter o f i n t e g e r l e s s o equa l to jump
subroutine integer jump ( timejump , numjump , times , intjump )
implicit none
REAL t imes (numjump+2) ,comp
INTEGER timejump , numjump , intjump , i

comp=timejump ∗1 .0
i=1
do while ( i<=(numjump+2))
i f (comp<=times ( i ) ) then
intjump=i

goto 12
else
i=i+1
endif
enddo

12 return
end

! Transpose Matrix
subroutine Transmat (a , b ,OM,TM)
implicit none
INTEGER a , b , i , j
REAL OM(a , b ) ,TM(b , a )

do i =1,b
do j =1,a

TM( i , j )=OM( j , i )
enddo

enddo
return
end

! c a l c u l t e module
subroutine modu(a , b ,mod)
implicit none
REAL div
INTEGER a , b ,mod , i
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div=a ∗1 .0/b∗1 .0

i=0
do while ( i <=100000)

i f ( i<=div . and . div<=i +1)then
mod=i
goto 13

else
i=i+1

endif
enddo
13 return
end subroutine

! sum of e lemenst o f v e c t o r
subroutine sumv( r e l e , c e l e , vector , suma)
implicit none
INTEGER r e l e , c e l e , i , j
REAL vec to r ( r e l e , c e l e ) , suma

suma=0.0
do i =1, r e l e

do j =1, c e l e
suma=suma+vector ( i , j )

enddo
enddo
return
end subroutine

! D i s t r i b u t i o n o f MT
subroutine DMT(n , d ,Q,QU, vector , vq )
implicit none
INTEGER n , d , l ,mod , i , j , k ,m, r
REAL Q(n , n∗d ) ,P(n , n∗d ) , Vector ( ( n−1)∗n∗d ) ,QU(d , d ) , vq (d∗(d−1))
REAL PU(d , d)

l=n∗d
k=(n−1)∗n∗d
do i =1,n

do j =1, l
ca l l modu( j , n ,mod)

i f ( i==j−mod∗n) then
P( i , j )=0.0

else
P( i , j )=−(Q( i , j )/Q( i , i+mod∗n ) )

endif
enddo

enddo
m=1
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do i =1,n
do j =1, l

ca l l modu( j , n ,mod)
i f ( i==j−mod∗n) then

continue
else

vec to r (m)=P( i , j )
m=m+1

endif
enddo

enddo

do i =1,d
do j =1,d
i f ( i==j ) then

PU( i , j )=0.0
else

PU( i , j )=−(QU( i , j )/QU( i , i ) )
endif
enddo

enddo

r=1
do i =1,d

do j =1,d
i f ( i==j ) then

continue
else

vq ( r)=PU( i , j )
r=r+1

endif
enddo

enddo
return
end subroutine

! c a l c u l a t e the MVE of MJPC
subroutine MVEMJPC(n , d ,mjump , mspent ,MVQ)
implicit none
INTEGER i , j , n , d , l ,mjump(n , n∗d ) ,mod , k , kk
REAL mspent (n , d ) ,MVQ(n , n∗d)

l=n∗d
do i =1,n

do j =1, l
ca l l modu( j , n ,mod)
MVQ( i , j )=(mjump( i , j ) )∗1 . 0 / mspent ( i ,mod+1)

enddo
enddo
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do i =1,n
do j =1, l

do k=1,d
i f ( j . eq . ( i +(k−1)∗n ) ) then

MVQ( i , j )=0.0
endif

enddo
enddo
do k=1,d

kk=i +(k−1)∗n
do j=kk−i +1,kk−i+n
i f ( j . ne . kk ) then

MVQ( i , kk)=MVQ( i , kk)−MVQ( i , j )
endif
enddo

enddo
enddo
return
end subroutine

! S imulate paths o f MJPC
subroutine MJPCDO( nobs , n , d ,NJ ,UMJ, times , timed ,QMJ,MJPDO,MJPCU, timemjp , dimen )
implicit none
INTEGER numobs , i , j , l , n , d , k , kk ,mod ,NJ ,UMJ(NJ+1) , i n i tp ,CMJP(100000)
INTEGER a , b ,NJT,JMJPCU(n , n∗d ) , s ta te , mjpdo ( nobs ) ,CMJPC(100000)
INTEGER nobs ,MJPCU(100000) , c r i t , z , r , dimen
REAL QMJ(n , n∗d ) ,P(n , n∗d ) , t imes (NJ+2) , time ,PCU(n , n ) ,CHT(100000) ,CHTC(100000)
REAL QCU(n , n ) , suma ,TSMJPCU(n , d ) ,mean , timed ( nobs ) , timemjp (100000) , x , t imec (100000)
INTEGER , allocatable : : CMJPA( : )
REAL , allocatable : : CHTUA( : ) , t imecont ( : )
REAL genexp
external genexp

CHTC=0.0
CHT=0.0
CMJPC=0
CMJP=0
JMJPCU=0
l=n∗d
TSMJPCU=0.0 ,&
do i =1,n

do j =1, l
ca l l modu( j , n ,mod)

i f ( i==j−mod∗n) then
P( i , j )=0.0

else
P( i , j )=−(QMJ( i , j )/QMJ( i , i+mod∗n ) )

endif
enddo

enddo
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! Jump proce s s e s
s t a t e=1
kk=1
NJT=0
CMJP(1)=MJPDO( s t a t e )
CMJPC(1)=MJPDO( s t a t e )

do while ( s ta te<nobs )
c r i t=kk
CMJPC(kk)=MJPDO( s t a t e )

time=timed ( s t a t e ) ,&
j=1
CMJP(1)=MJPDO( s t a t e )

suma=timed ( s t a t e )

do while ( time<=timed ( s t a t e +1))
i=1

do while ( i<=NJ+1)
i f ( t imes ( i+1)>=time ) then

k=UMJ( i )
do a=1,n

do b=1,n
PCU(a , b)=P(a , b+(k−1)∗n)
QCU(a , b)=QMJ(a , b+(k−1)∗n)

enddo
enddo
mean=−1.0/QCU(CMJP( j ) ,CMJP( j ) )
CHT( j )=genexp (mean)
time=time+CHT( j )
i=NJ+2

i f ( time<=timed ( s t a t e +1))then
CHTC(kk)=CHT( j ) ,&

else
CHTC(kk)=timed ( s t a t e+1)−suma

endif
suma=suma+CHT( j )

else
continue

endif
i=i+1
enddo
i f ( time<timed ( s t a t e +1))then

z=1
do while ( z<=NJ+1)
i f ( t imes ( z+1)>=time ) then

k=UMJ( z )
z=NJ+2

else
continue
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endif
z=z+1

enddo
ca l l newpoint (CMJP( j ) ,PCU, n ,CMJP( j +1))
CMJPC(kk+1)=CMJP( j +1)
j=j+1
kk=kk+1

else
continue

endif
enddo
i f (CMJP( j)==MJPDO( s t a t e +1))then

s t a t e=s t a t e+1
kk=kk+1

else
s t a t e=s t a t e
kk=c r i t
do r=kk+1,9

CHTC( r )=0.0
CMJPC( r )=0

enddo
endif

enddo

NJT=kk−2
ca l l t imet ( njt ,CHTC, timec )
allocate (CHTUA(NJT+1))
allocate (CMJPA(NJT+1))
allocate ( t imecont (NJT+2))
CHTUA=0.0
CMJPA=0

j=1
do i =1,NJT+1

do while ( j <=99999)
CHTUA( i )=CHTC( j )+CHTUA( i )
CMJPA( i )=CMJPC( j )
i f (CMJPC( j)==CMJPC( j +1))then

continue
else

j=j+1
goto 14

endif
j=j+1

enddo
14 j=j
enddo

i=1
do while ( i<=(NJT+1))

i f ( i==NJT+1)then
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dimen=NJT
else
i f (CMJPA( i )==0)then

dimen=i−1
i=NJT+2

else
continue

endif
endif
i=i+1

enddo

ca l l t imet ( njt ,CHTUA, timecont )
do i =1,dimen

MJPCU( i )=CMJPA( i )
timemjp ( i )=timecont ( i )

enddo
timemjp ( dimen+1)=timecont ( dimen+1)
deallocate (CHTUA,CMJPA, timecont )
return
end subroutine

! S imulate paths o f MJPC
subroutine MJPCU( nobs , d ,DOMJP, times ,Q,CHTUA,CMJPA,NJT) ,&
implicit none
INTEGER nobs , i , j , l , n , d , k , kk , c r i t , s ta te ,NJ ,NJMJP(d , d ) , IND,NJT
INTERGER DOMJP( nobs ) ,CMJPC(10000) ,CMJPA(10000)
REAL t imes ( nobs ) ,Q(d , d ) ,HT(10000) ,P(d , d ) ,ST(10000) ,RH(d ) ,CHTUA(10000)
REAl genexp , suma , time , x
external genexp

do i =1,d
do j =1,d

i f ( i==j ) then
P( i , j )=0.0

else
P( i , j )=−(Q( i , j )/Q( i , i ) )

endif
enddo

enddo

! Jump proce s s e s
s t a t e=1
kk=1
suma=0.0
IND=0
do while ( s ta te<nobs )

NJ=0
c r i t=kk
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CMJPC(kk)=DOMJP( s t a t e )
suma=0.0
time=times ( s t a t e )
do while ( time<=times ( s t a t e +1))

do i =1,d
i f (CMJPC(kk)==i ) then

HT(kk)=genexp (−1.0/Q( i , i ) )
else

continue
endif
enddo
time=time+HT(kk )
i f ( time<t imes ( s t a t e +1))then

ca l l newpoint (CMJPC(kk ) ,P, d ,CMJPC(kk+1))
suma=suma+HT(kk )
kk=kk+1,&
NJ=NJ+1

else
continue

endif
enddo
i f (CMJPC(kk)==DOMJP( s t a t e +1))then

HT(kk)=1.0−suma
kk=kk+1
s t a t e=s t a t e+1

else
s t a t e=s t a t e
kk=c r i t

endif
enddo

NJT=kk−nobs
j=1
CHTUA=0.0

do i =1,NJT+1
do while ( j <=10000)

CHTUA( i )=HT( j )+CHTUA( i )
CMJPA( i )=CMJPC( j )
i f (CMJPC( j)==CMJPC( j +1))then

continue ,&
else

j=j+1
goto 14

endif
j=j+1

enddo
14 j=j
enddo

ca l l t imet (NJT,CHTUA,ST)
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RH=0.0

do i =1,kk−1
RH(CMJPC( i ))=RH(CMJPC( i ))+HT( i )

enddo

NJMJP=0
do i =1,kk−2

NJMJP(CMJPC( i ) ,CMJPC( i +1))=NJMJP(CMJPC( i ) ,CMJPC( i +1))+1
enddo
do i =1,d

do j =1,d
i f ( i==j ) then

NJMJP( i , j )=0
else

continue
endif

enddo
enddo
return
end

! Aux i l i a r Var iab l e
subroutine a u x i l i a r ( nobs ,MJPS,UNMJP,NJM,NJU, timeMJ , timeU , time ,Y,W)
implicit none
INTEGER nobs ,NJM,NJU,MJPS(NJM+1) ,UNMJP(NJU+1) , i , s ta te ,Y( nobs ) ,W( nobs )
REAL timeMJ(NJM+2) , timeU (NJU+2) , time ( nobs ) ,Yt( nobs ) ,Wt( nobs ) , suma

Y(1)=MJPS(1)
Yt(1)=0.0
W(1)=UNMJP(1)
Wt(1)=0.0
s t a t e=2
do while ( s ta te<=nobs )

suma=time ( s t a t e )
i=1
do while ( i<=NJM+1)

i f ( timeMJ( i+1)<suma) then
i=i+1

else
i f ( i==1)then

Y( s t a t e )=MJPS( i )
Yt( s t a t e )=timeMJ( i )

else
Y( s t a t e )=MJPS( i −1)
Yt( s t a t e )=timeMJ( i )

endif
i=NJM+2

endif
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enddo
s t a t e=s t a t e+1

enddo

s t a t e=2
do while ( s ta te<=nobs )

suma=Yt( s t a t e )
i=1
do while ( i<=NJU+1)
i f ( timeU ( i+1)<suma) then

i=i+1
else

i f ( i==1)then
W( s t a t e )=UNMJP( i )
Wt( s t a t e )=timeU ( i ) ,&

else
W( s t a t e )=UNMJP( i −1)
Wt( s t a t e )=timeU ( i )

endif
i=NJU+2

endif
enddo
s t a t e=s t a t e+1

enddo

return
end subroutine

! Augmentation data
SUBROUTINE augdata ( nobs , npro , d , n ,Y,W,MJP,Q, IM,Z)
implicit none
INTEGER nobs , npro , d , n ,Y( nobs , npro ) ,W( nobs , npro ) ,Z( nobs , npro )
INTEGER i , j ,WA( nobs , npro ) , l ,mod ,MJP( nobs , npro ) , k
REAL Q(d , d ) , IM(n , d∗n ) ,P(d , d ) ,PMJP(n , d∗n ) , vprob (d ) , suma

do i =1,d,&
do j =1,d

i f ( i==j ) then
P( i , j )=0.0

else
P( i , j )=−(Q( i , j )/Q( i , i ) )

endif
enddo

enddo

l=n∗d
do i =1,n

do j =1, l
ca l l modu( j , n ,mod)
i f ( i==j−mod∗n) then
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PMJP( i , j )=0.0
else

PMJP( i , j )=−(IM( i , j )/IM( i , i+mod∗n ) )
endif

enddo,&
enddo
do j =1,npro

do i =1,nobs
k=1
suma=0.0
do while (k<=d)

vprob (k)=PMJP(Y( i , j ) ,MJP( i , j )+n∗(k−1))∗P(W( i , j ) , k )
suma=vprob (k)+suma

k=k+1
enddo
i f ( suma==0)then

Z( i , j )=W( i , j )
else

vprob=vprob/suma
ca l l newvec (W( i , j ) , vprob , d , Z( i , j ) )

endif
enddo

enddo
return
end subroutine

! S imulate paths o f MJPC
subroutine MJPCAUX( nobs , n , d ,NJ ,UMJ, times , timed ,QMJ,MJPDO,MJPCU,&

&,timemjp , dimen )
implicit none
INTEGER numobs , i , j , l , n , d , k , kk ,mod ,NJ ,UMJ(NJ+1) , i n i tp , nobs , dimen , z , r
INTEGER a , b ,NJT,JMJPCU(n , n∗d ) , s ta te , mjpdo ( nobs ) , c r i t
INTEGER CMJPC(100000) ,MJPCU(100000) ,CMJP(100000)
REAL QMJ(n , n∗d ) ,P(n , n∗d ) , t imes (NJ+2) , time ,PCU(n , n)
REAL QCU(n , n ) , suma ,TSMJPCU(n , d ) ,mean , timed ( nobs ) , x
REAL CHT(100000) ,CHTC(100000) , t imec (100000) timemjp (100000)
INTEGER , allocatable : : CMJPA( : )
REAL , allocatable : : CHTUA( : ) , t imecont ( : )
REAL genexp
external genexp

CHTC=0.0
CHT=0.0
CMJPC=0
CMJP=0
JMJPCU=0
l=n∗d
TSMJPCU=0.0
do i =1,n

do j =1, l
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ca l l modu( j , n ,mod)

i f ( i==j−mod∗n) then
P( i , j )=0.0

else
P( i , j )=−(QMJ( i , j )/QMJ( i , i+mod∗n ) )

endif
enddo

enddo

! Jump proce s s e s
s t a t e=1
kk=1
NJT=0
CMJP(1)=MJPDO( s t a t e )
CMJPC(1)=MJPDO( s t a t e ) !

! ! ! ! ! ! !
do while ( s ta te<nobs )

c r i t=kk
CMJPC(kk)=MJPDO( s t a t e )

time=timed ( s t a t e )
j=1
CMJP(1)=MJPDO( s t a t e )
suma=timed ( s t a t e )
do while ( time<=timed ( s t a t e +1))

i=1
do while ( i<=NJ+1)
i f ( t imes ( i+1)>=time ) then

k=UMJ( i )
do a=1,n

do b=1,n
PCU(a , b)=P(a , b+(k−1)∗n)
QCU(a , b)=QMJ(a , b+(k−1)∗n)

enddo
enddo
mean=−1.0/QCU(CMJP( j ) ,CMJP( j ) )
CHT( j )=genexp (mean)
time=time+CHT( j )
i=NJ+2
i f ( time<=timed ( s t a t e +1))then

CHTC(kk)=CHT( j ) ,&
else

CHTC(kk)=timed ( s t a t e+1)−suma
endif

suma=suma+CHT( j )
else

continue
endif

i=i+1
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enddo

i f ( time<timed ( s t a t e +1))then
z=1
do while ( z<=NJ+1)
i f ( t imes ( z+1)>=time ) then

k=UMJ( z )
z=NJ+2

else ,&
continue

endif
z=z+1
enddo
ca l l newpoint (CMJP( j ) ,PCU, n ,CMJP( j +1))
CMJPC(kk+1)=CMJP( j +1)
j=j+1
kk=kk+1

else
continue

endif
enddo
i f (CMJP( j)==MJPDO( s t a t e +1))then

s t a t e=s t a t e+1
kk=kk+1

else
s t a t e=s t a t e
kk=c r i t
do r=kk+1,9

CHTC( r )=0.0
CMJPC( r )=0

enddo
endif

enddo
NJT=kk−2

ca l l t imet ( njt ,CHTC, timec )
allocate (CHTUA(NJT+1))
allocate (CMJPA(NJT+1))
allocate ( t imecont (NJT+2))
CHTUA=0.0
CMJPA=0

j=1
do i =1,NJT+1

do while ( j <=99999)
CHTUA( i )=CHTC( j )+CHTUA( i )
CMJPA( i )=CMJPC( j )

i f (CMJPC( j)==CMJPC( j +1))then
continue

else
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j=j+1
goto 14

endif
j=j+1
enddo

14 j=j
enddo
i=1
do while ( i<=NJT)

i f (CMJPA( i )==0)then
dimen=i−1

i=NJT+1
else

continue
endif
i=i+1

enddo
ca l l t imet ( njt ,CHTUA, timecont )

do i =1,dimen
MJPCU( i )=CMJPA( i )
timemjp ( i )=timecont ( i )

enddo
timemjp ( dimen+1)=timecont ( dimen+1)
deallocate (CHTUA,CMJPA, timecont )
return
end subroutine

! C l a s i f i c a t i o n o f s t a t e s
subroutine Cla s t a t e s (n , dat , s t a t e s )
implicit none
INTEGER n , s t a t e s (n ) , i
REAL dat (n ) , x1 , x2 , d1 , d2 , r

x1=minval ( dat )
x2=maxval ( dat )
r=(x2−x1 )/3 . 0
d1=x1+r
d2=d1+r
do i =1,n

i f ( dat ( i )<=d1 ) then
s t a t e s ( i )=1

e l s e i f ( dat ( i )>d1 . and . dat ( i )<=d2 ) then
s t a t e s ( i )=2

else
s t a t e s ( i )=3

endif
enddo
return
end subroutine
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Appendix B: Code in
Fortran of Integrated
Diffusion Processes

Here, we present the code that was used to parameter estimation of integrated
diffusion processes.

! Program In t e g r a t e D i f f u s i o n s

implicit none
INTEGER numdat , rep metro , numaux , a l l , n , burn , rep em
parameter (numdat=1500)
parameter ( burn=1000)
parameter ( rep metro =10000)
parameter ( rep em=100)
INTEGER i , j , num col , or , i t e r , acc , i t ,mc ,ms(numdat ) ,mm, p1 , p2 , d i f
REAL co e f ( 5 ) ,mu( rep em+1) , s i g ( rep em+1) , i n t v a l , nor va l ,mu0 , average
REAL Col , Col1 , Col2 , Col3 , Col4 , cons , S0 , del , de l ta , sigma0 , as ( 5 ) , a coe f (5 )
REAL sigma ( rep em+1) , s ig up , mu up , datup ( 0 : numdat ) , normals (numdat )
REAL dat ( 0 : numdat ) , datas (numdat ) , i n t d i f (numdat ) , d a t i n i ( 0 : numdat )
REAL tau0 , tau ( rep em+1) , r e c va l , lambda , hes , val , dat2 ( 0 : numdat )
REAL up sigma , up mu , up tau , gennor , i n i t , inte , i n t e c
REAL, allocatable : : dat pro ( : ) , Bridge ( : ) , cur rent ( : ) , path ( : )
REAL, allocatable : : B2 ( : ) , normalpar ( : ) , b r i e xa ( : )
character∗20 answer , f i l e 1 , f i l e 2
external advnst , gennor

! Ex terna l Functions
REAL genchi , genbet
integer i gnpo i
EXTERNAL genchi , ignpoi , genbet
! Ex terna l sub rou t ine s
external setgnm , genmn

! SIZE OF BLOCK
de l t a =1.0
lambda=20.0
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! REAL PARAMETERS
sigma0=0.5
mu0=0.1
tau0=sq r t ( 1 . 2 5 )

! INITIAL PARAMETERS

tau (1)= tau0
mu(1)=0.1
sigma (1)=0.5

! Simul ing the hidden data
ca l l s im i l ( i n i t , de l ta , numdat ,mu0 , sigma0 , dat )
ca l l mean( dat , numdat+1, average )
dat=dat−average
ca l l int com (numdat , de l ta , dat , tau0 , i n t d i f )
i n t d i f=i n t d i f −average
write ( 1 ,∗ ) dat
write ( 2 ,∗ ) i n t d i f
endfi le (1 )
endfi le (2 )
close (1 )
close (2 )

! EM−ALGORITHM
i t e r=1

do while ( i t e r<=rep em )
ca l l s im i l ( i n i t , de l ta , numdat ,mu( i t e r ) , sigma ( i t e r ) , datup )
ca l l mean( datup , numdat+1, average )
acc=0
coe f =0.0
i n t e c =0.0
i t=1
do while ( i t<=rep metro )

ca l l s e l b l o c k ( lambda , numdat ,mc ,ms)
mm=1
do while (mm<=mc)

ca l l pps (mm, numdat ,ms , p1 , p2 )
d i f=p2−p1
allocate ( Bridge ( d i f +1) , cur r ent ( d i f +1) , path ( d i f +1) ,B2( d i f ) )
allocate ( normalpar ( d i f ) , b r i e xa ( d i f +1))
i f (mm==1)then

de l =1.0/( d i f ∗1 . 0 )
ca l l ou2 ( datup ( p2 ) , d i f ,mu( i t e r ) , de l ta , sigma ( i t e r ) ,B2)
ca l l com bri1 ( datup ( p2 ) , d i f , B2 , Bridge )

else i f (1<mm . and . mm<mc) then
i f ( d i f==2)then
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goto 1
endif
ca l l b r i ( datup ( p1 ) , datup ( p2 ) , d i f −1,mu( i t e r ) , de l ta , sigma ( i t e r ) , Bridge )
else

de l =1.0/( d i f ∗1 . 0 )
ca l l ou1 ( datup ( p1 ) , d i f ,mu( i t e r ) , de l ta , sigma ( i t e r ) ,B2)
ca l l com bri2 ( datup ( p1 ) , d i f , B2 , Bridge )

endif
1 ca l l i n i t i a l ( p1 , p2 , d i f , numdat , datup , cur rent )
ca l l accept ( de l ta , acc , tau ( i t e r ) , p1 , d i f +1,numdat , i n t d i f ,&

&, current , Bridge , path , normalpar )
! update the data

ca l l up data (numdat , p1 , p2 , path , datup )
ca l l up normal (numdat , p1 , p2 , normalpar , normals )
deallocate ( Bridge , current , path ,B2 , normalpar , b r i e xa )
mm=mm+1

enddo
ca l l mean( datup , numdat+1, average )
i f ( i t>burn ) then

ca l l p a r c o e f f ( rep metro , burn , sigma ( i t e r ) , numdat , de l ta , i n t d i f , datup , as )
c o e f=as+coe f

endif
i t=i t+1

enddo
ca l l update ( coe f , sigma0 , numdat , up mu , up sigma , up tau )
i t e r=i t e r+1
mu( i t e r )=up mu
sigma ( i t e r )=up sigma
tau ( i t e r )=up tau

enddo

end program

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! ! ! ! ! Subrout ines ! ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! M i l s t e i n scheme
subroutine s im i l ( i n i , del , a ,mu, s ig , data ) ! ( i n i t , d e l t a , numdat ,mu0, sigma0 , dat )
implicit none
INTEGER a , i
REAL data ( 0 : a ) , s i g ,mu, j , del , nor ( a )
REAL gennor , i n t e r , i n i , sv , inva den
external gennor

sv=sq r t ( de l )
i n t e r =0.0
inva den=sq r t ( ( s i g ∗∗2)/(2∗mu) )
print ∗ , ’ in ’ , inva den
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data(0)=gennor ( 0 . 0 , inva den )

do i =1,a
nor ( i )= s i g ∗gennor ( 0 . 0 , sv )
data ( i )=data ( i −1)∗(1.0−mu∗ de l )+nor ( i )
i n t e r=i n t e r+nor ( i )

enddo

i n t e r=i n t e r /( a ∗1 . 0 )

return
end subroutine

! I n t e g r a t e d data

subroutine i n t e g r a t e ( del , y1 , y2 , tau , rect , nor , fun )
implicit none
INTEGER i
REAL rect , y1 , y2 , fun , gennor , tau , nor , de l
external gennor

nor=gennor ( 0 . 0 , tau )
r e c t =((y2+y1 )∗ de l ) / ( 2 . 0 )
fun=r e c t+nor
return
end subroutine

! complete i n t e g r a t e data

subroutine int com (n , del , dat , tau , in td ) ! (numdat , de l t a , dat , tau0 , i n t d i f )
implicit none
INTEGER i , n
REAL dat ( 0 : n ) , tau , in td (n ) , r e c va l , nor va l , i n t v a l , de l

do i =1,n
ca l l i n t e g r a t e ( del , dat ( i −1) , dat ( i ) , tau , r e c va l , nor va l , i n t v a l )
in td ( i )= i n t v a l

enddo
return
end subroutine

! p a r t i a l c o e f f o f po lynomia l
subroutine p a r c o e f f ( rep , burn , sigma , numdat , del , intdat , dat , as )
implicit none
INTEGER numdat , numaux , rep , burn , i
REAL dat ( 0 : numdat ) , c o e f ( 0 : 6 ) , as ( 5 ) , i n tda t (numdat ) , in tdat2 (numdat )
REAL del , dat2 ( 0 : numdat ) , nor2 (numdat ) , tau , gennor , sigma
REAL inte1 , inte2 , rect1 , rect2 , norm , fun , a1 , a2 , a3 , a4 , a5

do i =0,numdat
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dat2 ( i )=dat ( i )∗∗2
enddo

a3=0.0
i n t e1 =0.0
i n t e2 =0.0
do i =1,numdat

ca l l i n t e g r a t e ( del , dat ( i −1) , dat ( i ) , 0 . 2 , rect1 , norm , fun )
ca l l i n t e g r a t e ( del , dat2 ( i −1) , dat2 ( i ) , 0 . 2 , rect2 , norm , fun )
a3=intdat ( i )∗ r e c t 1+a3

in t e1=in t e1+rec t1 ∗∗2
in t e2=in t e2+rec t2

enddo

do i =1,numdat
in tdat2 ( i )= in tda t ( i )∗∗2

enddo
as (1)=(( dat2 (0)−dat2 (numdat ))+(( sigma )∗∗2)∗ ( numdat ) ) / ( rep−burn )
as (2)=(2∗ i n t e2 )/ ( rep−burn )
as (3)=a3 /( sigma ∗( rep−burn ) )
as (4)= in t e1 /( ( sigma ∗∗2)∗ ( rep−burn ) )
as (5)=sum( intdat2 )/ ( rep−burn )

return
end subroutine

! c o e f f po lynomia l
subroutine update ( as , s i g , n ,mu, sigma , tau )
implicit none
INTEGER n
REAL as ( 5 ) ,mu, sigma , tau , s i g

mu=as (1)/ as (2 )
sigma=as (3)/ as (4 )
tau=sq r t ( ( as (5)∗ as (4)− as (3 )∗∗2 )/ ( n∗ as ( 4 ) ) )

return
end subroutine

! c a l c u l a t e the mean
subroutine mean( dat , numdat , average )
implicit none
INTEGER i , numdat
REAL dat ( 0 : numdat−1) , average

average =0.0
do i =0,numdat−1

average=dat ( i )+average
enddo
average=average / (1 . 0∗ numdat )
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return
end subroutine

! Metropo l i s−Hast ing
subroutine accept ( del , acc , tau , p1 , numdat , ndat , intdat , dat1 , dat2 ,&

&,path , normals )
INTEGER acc , numdat , i , p1 , ndat
REAL i n tda t ( ndat ) , dat1 (numdat ) , dat2 (numdat ) ,num,dem , prob acc , uni f , aux
REAL rect1 , rect2 , fun , mean1(numdat−1) ,mean2(numdat−1) , tau , path (numdat )
REAL nor1 , nor2 , normal1 (numdat−1) , normal2 (numdat−1) , del , normals (numdat−1)

prob acc =1.0
do i =1,numdat−1

ca l l i n t e g r a t e ( del , dat1 ( i ) , dat1 ( i +1) , tau , rect1 , nor1 , fun )
mean1( i )= re c t1
normal1 ( i )=nor1
ca l l i n t e g r a t e ( del , dat2 ( i ) , dat2 ( i +1) , tau , rect2 , nor2 , fun )
mean2( i )= re c t2
normal2 ( i )=nor2
num=exp ((−( i n tda t ( i+p1)−mean2( i ) )∗∗2 )/ (2∗ ( tau ∗∗2) ) )
dem=exp ((−( i n tda t ( i+p1)−mean1( i ) )∗∗2 )/ (2∗ ( tau ∗∗2) ) )
prob acc=(num/dem)∗ prob acc

enddo

prob acc=min ( prob acc , 1 . 0 )
ca l l random number ( un i f )

i f ( uni f<prob acc ) then
path=dat2
normals=normal2
acc=acc+1

else
path=dat1
normals=normal1

endif

return
end subroutine

! choose the s i z e o f b l o c k
subroutine s e l b l o c k ( l , b ,mc ,ms)
implicit none
integer mc, st , b ,R,ms ( 1 : b ) , poi , i
real l

mc=1
s t=1
ms=0.0
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ca l l genpoi ( l , po i )
ms(mc)=1+poi
i f (ms(mc)>=b) then

ms(mc)=b
else

mc=2
do while ( st <2)

ca l l genpoi ( l , po i )
ms(mc)=1+poi

i f (sum(ms ( 1 :mc))>=b) then
ms(mc)=b−sum(ms ( 1 :mc−1))
s t=2

else
mc=mc+1

endif
enddo

endif

do i=mc+1,b
ms( i )=0

enddo

return
end subroutine

! Subpaths
subroutine pps (a , b , v , p1 , p2 )
implicit none
INTEGER p1 , p2 , a , b , v ( 1 : b)

i f ( a==1)then
p1=0
p2=v( a )

else
p1=sum(v ( 1 : a−1))
p2=sum(v ( 1 : a ) )

endif

return
end subroutine

! Direc t path
subroutine ou1 ( in i , b , dr i , de , s i g , B1)
implicit none
integer b , i
real i n i , nor (b ) ,B1(b ) , dr i , s i g , de , sd
real gennor
external gennor
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sd=sq r t ( de )
do i =1,b

nor ( i )=gennor (0 , sd )
enddo

B1(1)= i n i ∗(1− d r i ∗de)+ s i g ∗nor (1 )
i=2
do while ( i<=b)

B1( i )=B1( i −1)∗(1− d r i ∗de)+ s i g ∗nor ( i )
i=i+1

enddo

return
end subroutine

! Inver se path
subroutine ou2 ( in i , b , dr i , de , s i g ,B2) ! ( datup ( p2 ) , d i f ,&

&,mu(1 ) , de l ta , sigma (1 ) ,B2)
implicit none

integer b , c , i
real i n i , nor (b ) ,B1(b ) , dr i , s i g , de ,B2(b ) , sd
real gennor
external gennor

i=1
do while ( i<=b)
sd=sq r t ( de )

nor ( i )=gennor (0 , sd )
i=i+1
enddo

B1(1)= i n i ∗(1− d r i ∗de)+ s i g ∗nor (1 )

i=2
do while ( i<=b)

B1( i )=B1( i −1)∗(1− d r i ∗de)+ s i g ∗nor ( i )
i=i+1

enddo
do i =1,b

B2( i )=B1(b+1− i )
enddo

return
end subroutine

! Bridge
subroutine b r i ( in f , inb , a , dr i , de , s i g , Bridge )
implicit none
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integer a , cr , i
real dr i , de , s i g , i n f , inb
real X(a ) ,Y( a ) , Bridge ( a+2) , br id ( a )

ca l l ou1 ( in f , a , dr i , de , s i g ,X)
cr=0
do while ( cr<1)

ca l l ou2 ( inb , a , dr i , de , s i g ,Y)
i=1
do while ( i<=a )

! f i r s t case

i f (X(1)<Y(1 ) ) then
cr=0
i f (X( i )>Y( i ) ) then

cr=i
i=a+1

endif
endif

! second case
i f (X(1)>Y(1 ) ) then

cr=0

i f (X( i ) <Y( i ) ) then
cr=i
i=a+1
endif

endif
i=i+1

enddo
enddo

Bridge (1)= i n f
Bridge ( a+2)=inb
do i =1, cr−1

br id ( i )=X( i )
enddo
do i=cr , a

br id ( i )=Y( i )
enddo

do i =2,a+1
Bridge ( i )=br id ( i −1)
enddo

return
end subroutine
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! The i n i t i a l
subroutine i n i t i a l ( i n f , sup ,num, numdat , dat , cur r ent )
implicit none
INTEGER i n f , sup ,num, i , numdat
REAL dat ( 0 : numdat ) , cur r ent (num+1)

cur rent (1)=dat ( i n f )
cur r ent (num+1)=dat ( sup )
do i =2,num

current ( i )=dat ( i n f+i −1)
enddo

return
end subroutine

! Update data
subroutine up data (numdat , p1 , p2 , path , updata )
implicit none
INTEGER p2 , p1 , numdat , i
REAL path (p2−p1+1) , updata ( 0 : numdat )

do i=p1 , p2
updata ( i )=path ( i−p1+1)

enddo

return
end subroutine

! Update normals
subroutine up normal (numdat , p1 , p2 , parnor , normals )
implicit none
INTEGER p2 , p1 , numdat , i
REAL parnor (p2−p1 ) , normals (numdat )

do i=p1+1,p2
normals ( i )=parnor ( i−p1 )

enddo

return
end subroutine

! Poisson
subroutine genpoi ( lambda , po i s son )
implicit none
REAL lambda , uni f1 , uni f2 , ex
INTEGER po i s son

po i s son=0
un i f 1 =1.0
ex=exp(−lambda )
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do while ( uni f1>=ex )
ca l l random number ( un i f 2 )
un i f 1=un i f 1 ∗ un i f 2
po i s son=po i s son+1

enddo

return
end subroutine

! Complete the b r i d g e to f i r s t b l o c k
subroutine com bri1 ( point , d i f , br i , b r idge ) ! ( datup ( p2 ) , d i f ,B2 , Bridge )
implicit none
INTEGER i , d i f
REAL point , b r i ( d i f ) , br idge ( d i f +1)

do i =1, d i f
br idge ( i )=b r i ( i )

enddo
br idge ( d i f+1)=point

return
end subroutine

! Complete the b r i d g e to l a s t b l o c k
subroutine com bri2 ( point , d i f , br i , b r idge )
implicit none
INTEGER i , d i f
REAL point , b r i ( d i f ) , br idge ( d i f +1)

do i =2, d i f+1
br idge ( i )=b r i ( i −1)

enddo
br idge (1)= point

return
end subroutine

! Hessian
subroutine hes s i an (mu, sigma , coe f , hes )
implicit none
REAL mu, sigma , val , hes , c o e f (5 )

i f ( c o e f (3)<0.0) then
co e f (3)=− co e f (3 )

endif
hes=(mu∗∗2)∗ ( c o e f (4)∗∗2)−mu∗ co e f (3 )∗ co e f (4)+ coe f (3)∗∗2
va l=−2∗co e f ( 4 ) / ( sigma ∗∗2)

return
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end subroutine

! Function
subroutine eva fun ( coe f ,mu, s ig , va l )
implicit none
REAL co e f ( 5 ) ,mu, s ig , va l

va l=( co e f (3 )∗mu)/( s i g ∗∗2)−( c o e f ( 4 )∗ (mu∗∗2) )/ ( s i g ∗∗2)+ coe f (5)∗mu

return
end subroutine
! Exact
subroutine ou ( a1 , a2 , a , d , theta , s i g ,Y) ! ( da t t r an ( num col ) , da t t r an ( num col+1) ,numaux , de l t a ,mu(1 ) , 0 . 5 , exac t )
implicit none
INTEGER a , b , i , c
REAL X(a+2) ,Y( a+2) ,W(a+1) , sd , theta , s i g , d , gennor , a1 , a2 , b r i ( a )
external gennor

d=1.0/(( a+1)∗1.0)
X(1)=a1

sd=( s i g ∗ s q r t ((1−exp(−2∗ theta ∗d ) ) ) / ( 2∗ theta ) )

do i =1,a+1
W( i )=gennor (0 , sd )

enddo
do i =2,a+2

X( i )=exp(− theta ∗d)∗X( i−1)+W( i −1)
enddo

do i =1,a+2
Y( i )=X( i )+(a2−X(a+2))∗( exp ( theta ∗ ( ( i −1)∗d))−exp(− theta ∗ ( ( i −1)∗d ) ) ) / ( exp ( theta )−exp(− theta ) )

enddo

do i =1,a
b r i ( i )=Y( i +1)

enddo

return
end subroutine
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