

COMPARACIÓN DE LOS DATOS DE EQUILIBRIO LÍQUIDO VAPOR OBTENIDOS EN MICROESCALA Y MACROESCALA PARA LA ESTIMACIÓN DE LOS COEFICIENTES DE ACTIVIDAD Y FUGACIDAD POR MEDIO DE LOS MODELOS DE VAN LAAR Y MARGULES

> TESIS QUE PARA OBTENER EL TÍTULO DE:

> > INGENIERO QUÍMICO

PRESENTA:

SINAI ADOLFO ROLDÁN HERNÁNDEZ

ASESORES: M.C. LETICIA ZÚÑIGA GÓMEZ I.Q. GUADALUPE FRANCO RODRÍGUEZ

CUAUTITLÁN IZCALLI. EDO. DE MEX.

2010

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. "El que sabe pensar pero no sabe expresar lo que piensa esta en el mismo nivel del que no sabe pensar"Pericles.

AGRADECIMIENTOS

A mi familia:

A mi madre Rosalinda que siempre estuvo en los momentos en que sufrí caídas enseñándome con el ejemplo a que uno debe levantarse y seguir adelante aun con más ánimo sin ella no hubiera llegado a ser lo que soy ahora. A mi padre Antonio que a pesar de todo le agradezco el haberme apoyado durante una buena parte de mi vida.. A mis hermanas Lorena, Gabriela y Nayeli gracias por su apoyo y por tenerme paciencia, hemos estado en situaciones difíciles pero gracias a que hemos formado un buen equipo hemos salido adelante, a toda mi familia gracias por estar en los buenos y malos momentos.

A mis asesoras:

A M,C. Leticia Zúñiga Gómez y I.Q. Guadalupe Franco Rodríguez gracias por aceptarme como tesista y por el apoyo dado a lo largo de la elaboración de esta tesis.

A mis amigos:

Y por último no por ello menos importantes a todos mis amigos gracias por su amistad y apoyo que, a pesar de mi manera de ser un tanto inexpresiva, me brindaron con desinterés.

Objetivo general.

Modelar los datos experimentales del equilibrio líquido vapor a macroescala y microescala de los sistemas metanol-agua, acetona-cloroformo, acetato de metilometanol. Mediante los modelos de Van Laar, Margules empleando la formulación gamma-phi.

Objetivos Específicos.

- Comparación de los datos equilibrio liquido vapor obtenidos experimentalmente con los datos obtenidos mediante dos modelos termodinámicos (Margules y Van Laar) utilizando un simulador de procesos (PRO-II).
- Probar los modelos de Margules y Van Laar en la representación de los datos experimentales líquido vapor a microescala y macroescala.
- Realizar un análisis de los métodos de cálculo utilizados para la obtención de las constantes de Margules y Van Laar.
- Crear un programa que facilite el cálculo de un diagrama T-x-y (a bajas presiones) para comprobar la validez de las constantes obtenidas para los modelos de Margules y Van Laar.

Hipótesis

"Se ha observado que los datos experimentales de equilibrio liquido vapor obtenidos empleando procedimientos experimentales a microescala en comparación con los datos experimentales a macroescala tienen el mismo comportamiento en los diagramas T-x-y"

INDICE

1.	INT	RODUCCIÓN5	
2.	2. MARCO TEORICO: EQUILIBRIO LIQUIDO-VAPOR		
	2.1.	La naturaleza del equilibrio5	
	2.2.	Regla de fases. Teorema de Duhem6	
	2.3.	EVL: Comportamiento cualitativo8	
	2.4.	Relación fundamental para la evaluación de una propiedad13	
	2.5.	Potencial químico y equilibrio de fases16	
	2.6.	Propiedades parciales17	
	2.7.	Mezclas de gases ideales	
3. DETERMINACIÓN DEL COEFICIENTE DE FUGACIDAD		TERMINACIÓN DEL COEFICIENTE DE FUGACIDAD	
	3.1.	Fugacidad y coeficiente de fugacidad: Especies Puras	
	3.2.	Fugacidad de un líquido puro22	
	3.3.	Fugacidad y coeficiente de fugacidad: especies en solución23	
	3.4.	Modelos de ecuaciones cúbicas de estado25	
	3.5. de esta	Calculo del coeficiente de fugacidad para una mezcla por medio de una ecuación do cúbica genérica	
	3.6.	Reglas de mezclado40	
4. DETERMINACIÓN DE LOS COEFICIENTES DE ACTIVIDAD			
	4.1.	La solución ideal43	
	4.2.	Propiedades de Exceso44	
	4.3.	La energía de Gibbs de exceso y el coeficiente de actividad45	
5. MODELOS PARA EL EQUILIBRIO LIQUIDO VAPOR		DELOS PARA EL EQUILIBRIO LIQUIDO VAPOR	
	5.1.	La ley de Raoult49	
	5.2.	Margules	
	5.3.	Van Laar	
6. RESULTADOS			
	6.1.	Hoja de cálculo de errores promedio y desviaciones medias61	
	6.2.	Hoja de cálculo de errores del método de optimización	
7.	ANA	ALISIS DE RESULTADOS	
8.	8. CONCLUSIONES		
<i>Apéndice A</i>			
Apéndice B			
BIBLIOGRAFÍA BÁSICA			
BIBLIOGRAFÍA BÁSICA			

1. INTRODUCCIÓN

Vivimos en un mundo de mezclas: el aire que respiramos, los alimentos que comemos, la gasolina de nuestros automóviles, donde quiera que miremos, encontramos que nuestras vidas están relacionadas con materiales formados por múltiples componentes químicos. Muchas de nuestras actividades consisten en la transferencia de sustancias de una mezcla a otra: por ejemplo en nuestros pulmones, tomamos oxigeno del aire y lo disolvemos en la sangre, mientras que el dióxido de carbono abandona la sangre y se incorpora al aire. En cada una de estas experiencias de la vida cotidiana, y en muchas otras de la fisiología, y de las actividades en el hogar y en la industria, o cualquier otra, tiene lugar la transferencia de una sustancia de una fase a otra. Esto ocurre porque, cuando dos fases se ponen en contacto, tienden a intercambiar sus componentes hasta que la composición de cada fase alcanza un valor constante; cuando se alcanza este estado, decimos que las fases están en equilibrio.

El equilibrio líquido vapor tiene gran importancia en las operaciones de separación basadas en el principio de la diferencia relativa de volatilidades. El diseño de los equipos usados en estas operaciones requiere un conocimiento cuantitativo lo mas exacto posible de las propiedades parciales de equilibrio de los componentes de una mezcla. Estas estimaciones se deben basar en datos experimentales confiables para la mezcla particular de estudio a las condiciones que nos interesan.

Estos datos experimentales no tiene una utilidad práctica al momento de obtener las propiedades directamente relacionadas con el comportamiento liquido vapor como son coeficientes de fugacidad, coeficientes de actividad y presiones de vapor, para esto se requieren modelos que representen dicho comportamiento. En la presente tesis se probaran modelos como Peng-Robinson para Φ , Margules y Van Laar para γ ; asimismo se realizara un análisis de los métodos de obtención de las constantes de Margules y Van Laar.

2. MARCO TEORICO: EQUILIBRIO LIQUIDO-VAPOR.

2.1. La naturaleza del equilibrio.

Se reconoce al equilibrio como una condición estática donde ningún cambio ocurre en las propiedades macroscópicas de un sistema en el tiempo, lo que implica un balance de todos los potenciales que pueden ocasionar un cambio. Un sistema aislado que consta de fase líquida y vapor en contacto íntimo alcanza con el tiempo un estado final donde no existe tendencia para que suceda un cambio dentro del mismo. La temperatura, la presión y las composiciones de fase obtienen los valores finales que en adelante permanecen fijos por lo que el sistema se halla en equilibrio. A pesar de eso, en el nivel microscópico, no son estáticas las condiciones. Las moléculas que componen una fase en un instante dado son diferentes a las que después ocupan la misma fase. Las moléculas con velocidades lo suficiente altas próximas a zona interfacial superan las fuerzas superficiales y atraviesan a la otra fase. De cualquier modo, la rapidez promedio de intercambio de moléculas es igual en ambas direcciones, sin que ocurra transferencia neta de material a través de la zona interfacial.

2.2. Regla de fases. Teorema de Duhem.

La regla de fases para sistemas sin reacción resulta de la aplicación de una regla algebraica. De este modo, el número de variables que se fijan en forma independiente en un sistema en equilibrio es la diferencia entre el número total de variables que caracterizan el estado termodinámico del sistema y el número de ecuaciones independientes que se escriben al relacionar las variables.

El estado termodinámico de un sistema PVT con N especies químicas y π fases en equilibrio se caracteriza por las variables intensivas, temperatura T, presión P y N-1 fracciones mol para cada fase. Éstas son la variables de la regla de fases, y su número es $2 + (N - 1)(\pi)$. Las masas de las fases no son variables de la regla de fases, por que no tienen influencia sobre el estado termodinámico del sistema.

Las ecuaciones del equilibrio de fases que se pueden escribir conectando las variables de la regla de las fases, se dan mediante las ecuaciones siguientes:

$$i_{i} = i_{i} = \dots = i_{i}$$

 $f_{i} = f_{i} = \dots = f_{i}$ (i =1,2,..., N)

Son ecuaciones que conectan las variables de la regla de las fases, porque los potenciales químicos y las fugacidades son funciones de la temperatura, la presión y la composición lo cual se explicara en temas subsecuentes. Es posible escribir una

ecuación de equilibrio de fase independientemente que relacione las variables intensivas para cada una de la N especies por cada par de fases presentes. De esa manera, el número de ecuaciones de equilibrio de fase independiente es $(\pi - 1)(N)$. La diferencia entre el número de variables de la regla de las fases y de ecuaciones independientes que las relaciona es el número de variables que se fijan en forma independiente. Y se le conoce como grados de libertad del sistema F, el número es:

$$F = 2 + (N - 1)() - (-1)(N)$$

Después de simplificarla, ésta será la regla de fases:

$$F = 2 - + N$$

El teorema de Duhem es otra regla, parecida a la regla de fases, aunque menos célebre. Dicha regla se aplica a sistemas cerrados en equilibrio para los cuales se fijan los estados extensivo e intensivo del sistema. Se dice que el estado de tal sistema ésta completamente determinado, y se caracteriza no solo por las $2 + (N - 1) \pi$ variables intensivas de regla de las fases sino además por las π variables extensivas representadas por las masas (o número de moles) de las fases. De esta manera el número total de variables es:

$$2 + (N - 1)\pi + \pi = 2 + N\pi$$

El sistema es cerrado y se forma por cantidades determinadas de las especies químicas presentes, resulta viable escribir una ecuación de balance de material para cada una de las N especies químicas, las cuales además de las $(\pi - 1)N$ ecuaciones de equilibrio de fases, proporcionan un número total de ecuaciones independientes igual a:

$$(\pi - 1)\mathbf{N} + \mathbf{N} = \pi \mathbf{N}$$

Por tanto la diferencia entre el número de variables y el de ecuaciones es:

$$2 + N\pi - \pi N = 2$$

De acuerdo con este resultado, el teorema de Duhem se establece como sigue:

"Para cualquier sistema cerrado que se forma originalmente por las masas indicadas de especies químicas prescritas, el estado de equilibrio se determina por completo cuando se fijan dos variables independientes cualesquiera".

Las dos variables independientes sujetas a especificación son en general intensivas o extensivas. Sin embargo, el número de variables intensivas independientes se da por la regla de las fases. Así cuando F = 1, al menos una de las dos variables debe ser extensiva, y cuando F = 0, ambas deben serlo.

2.3. EVL: Comportamiento cualitativo

Se considera al equilibrio vapor/líquido (EVL) como el estado de coexistencia de las fases vapor-líquido. El presente análisis cualitativo se limita a estudiar los sistemas constituidos de dos especies químicas, ya que los sistemas de mayor complejidad no se presentan adecuadamente en forma gráfica.

Cuando N = 2, la regla de las fases será F = 4- π . Puesto que debe haber al menos una fase (π = 1), el número máximo de variables de la regla de las fases que debe especificarse para fijar el estado intensivo del sistema es tres: particularmente, P, T y una fracción molar (o de masa). Por esto todos los estados de equilibrio del sistema se representan con el espacio tridimensional P-T-composición. En este espacio, los estados de pares de fases coexistentes en equilibrio (F = 4 - 2 = 2) definen superficies. En la figura 2.3.1 se ilustra un diagrama esquemático tridimensional que señala estas superficies para el EVL.

Figura 2.3.1 Diagrama PTxy para el equilibrio vapor líquido.

Dicha figura indica de modo esquemático las superficies P-T-composición, los cuales contienen los estados de equilibrio de vapor y líquido saturados para un sistema binario. La superficie inferior comprende los estados de vapor saturado; es la superficie P-T-y₁. La superficie superior incluye los estados de líquido saturado; es la superficie P-T-x₁. Tales superficies se cortan transversalmente a lo largo de las líneas U B H C₁ y K A C₂, que representan las curvas de presión de vapor en función de T para especies puras 1 y

2. Además, las superficies inferiores y superiores forman un plano redondo continuo a lo largo de la parte alta del diagrama entre C_1 y C_2 , los puntos críticos de especies puras 1 y 2; los puntos críticos de las diversas mezclas de las dos especies yacen a lo largo de una línea sobre el bordo redondo de la superficie entre C_1 y C_2 . Este lugar (geométrico) crítico se define por los puntos en los cuales son idénticas las fases de vapor y líquido en el equilibrio.

La región líquida subenfriada se halla arriba de la superficie superior de la figura 2.3.1; la región de vapor sobrecalentado se sitúa debajo de la superficie inferior. El espacio interno entre ambas superficies es la región de la coexistencia de las fases de vapor y líquido. Si uno comienza con un líquido en F y reduce la presión a temperatura y composición constantes a lo largo de la línea vertical FG, la primera burbuja de vapor aparece en el punto L, que se ubica sobre la superficie superior. D e esta forma, L es un punto de burbuja, y la superficie superior es la superior de punto de burbuja. El estado de burbuja de vapor en equilibrio con el líquido en L se debe representar por un punto sobre la superficie inferior a la temperatura y presión de L. Dicho punto se indica por V. La línea VL es un ejemplo de una línea de pliegue, la cual une los puntos que representan fases de equilibrio.

Conforme más se reduce la presión a lo largo de la línea FG, más y más líquido se vaporiza hasta W donde el proceso se termina. Así W se localiza sobre la superficie inferior y representa un estado de vapor saturado que tiene la composición de la mezcla. Puesto que W es el punto en el que desaparecen las últimas gotas de líquido (rocío), es un punto de rocío, y simplemente conduce a la región de vapor sobrecalentado.

Debido a la complejidad de la figura 2.3.1, las características detalladas del EVL binario se representan comúnmente mediante gráficas bidimensionales que muestran los diversos planos que cortan el diagrama tridimensional. Los tres planos principales, cada uno perpendicular a uno de los ejes coordenados, se ilustran en la figura 2.3.2. De ese modo un plano vertical perpendicular al eje de temperatura se indica como A L B D E A. Las líneas sobre este plano forman un diagrama de fase $P-x_1-y_1$ a T constante. Si las líneas de varios de éstos se proyectan únicamente sobre un plano paralelo, se obtiene un diagrama como el de la figura 2.3.2a, que muestra gráficas $P-x_1-y_1$ para tres diferentes temperaturas. Una para Ta representa la sección de la figura 2.3.1 indicada por A L B D

E A. Las líneas horizontales son líneas de pliegue que unen las composiciones de las fases de equilibrio. La temperatura Tb se sitúa entre las dos temperaturas críticas de las especies puras identificadas por C_1 y C_2 en la figura 1.3.1, y la temperatura Td se halla por encima de las dos temperaturas críticas. Por tanto, las curvas para ambas temperaturas no se extienden más allá a través del diagrama. De cualquier modo, la primera pasa por un punto crítico de la mezcla, y la segunda a través de dos de esos puntos.

Figura 2.3.2 a)Diagrama Pxy para tres temperaturas. b)Diagrama Txy para tres presiones

Los tres puntos críticos se representan por la letra C. Cada uno es un punto tangente en el cual una línea horizontal toca la curva. Ello es así por que todas las líneas de pliegue que unen las fases en equilibrio son horizontales, y la línea que une fases idénticas (la definición de un punto crítico) debe por tanto ser la última que corte el diagrama.

Un plano horizontal que atraviesa la figura 2.3.1 perpendicular al eje P se identifica por H I J K L H. Vistas arriba, las líneas sobre este plano expresan un diagrama $T-x_1-y_1$. Cuando las líneas para varias presiones se proyectan sobre un plano paralelo, el diagrama resultante aparece como en la figura 2.3.2b. Tal figura es análoga a la 2.3.2a, excepto que simboliza valores para tres presiones constantes, P_a , P_b y P_d .

Aunque el EVL en la región crítica resulta de considerable importancia en las industrias de gas natural y del petróleo, la mayoría de los procesos químicos se realizan a

presiones muy bajas. Las figuras 2.3.3 y 2.3.4 exhiben tipos comunes de comportamiento P-x-y y T-x-y en condiciones sumamente alejadas de la región crítica.

La figura 2.3.3a la curva $P-x_1$ o de punto de burbuja sobre un diagrama $P-x_1-y_1$ se ubica por debajo de la relación lineal $P-x_1$ característica del comportamiento de la ley de Raoult. Cuando estas desviaciones negativas de la linealidad son lo suficientemente grandes respecto a la diferencia entre las dos presiones de vapor de especies puras, la curva P-x presenta un mínimo, como se ilustra en la figura 2.3.3b.

Figura 2.3.3 Diagrama Pxy a T constante. Líneas punteadas: Relación Px para la ley de Raoult.

Dicha figura señala que la curva P-y también posee un mínimo en el mismo punto. Así en este punto donde $x_1 = y_1$ las curvas de los puntos de rocío y de burbuja son tangentes a la misma línea horizontal. Un líquido en ebullición de tal composición produce un vapor de idéntica composición, y el líquido, por tanto, no cambia su composición conforme se evapora, por lo que no es posible la separación por destilación de tal solución de ebullición constante. Se emplea el término azeótropo para describir este estado.

En la figura 2.3.3c se proporciona un ejemplo de un sistema en el cual la curva P-x₁ se localiza arriba de la relación lineal P-x₁. El sistema muestra en la figura 2.3.3d exhibe desviaciones positivas de linealidad lo bastante grandes para causar un máximo en la curva P-x₁. Este estado es un azeótropo de presión máxima. A el igual que para el azeótropo de presión mínima, las fases vapor y líquido en equilibrio tienen igual composición. Las desviaciones negativas apreciables de la linealidad de P-x₁ reflejan fuertes atracciones intermoleculares en la fase líquida tanto entre pares diferentes de moléculas como semejantes. Por el contrario, las desviaciones positivas apreciables son consecuencia de soluciones para las cuales las fuerzas intermoleculares de la fase líquida entre moléculas semejantes son más fuertes que entre moléculas diferentes. Para tal caso las fuerzas entre moléculas semejantes pueden ser tan fuertes como para evitar miscibilidad total, y entonces el sistema forma dos fases líquidas separadas sobre un intervalo de composiciones.

Figura 2.3.4 Diagrama txy a 1 atm

Puesto que los procesos de destilación se efectúan con más frecuencia a presión que a temperatura constante, los diagramas de datos $t-x_1-y_1$ a P constante son de interés práctico. Los cuatro diagramas correspondientes a los de la figura 2.3.3 se indican para presiones atmosféricas en la figura 2.3.4. Observe que las curvas del punto rocío $(t-y_1)$ se sitúan arriba de las curvas del punto de burbuja $(t-x_1)$. Además, el azeótropo de presión mínima de la figura 2.3.3b aparece como un azeótropo de temperatura máxima (o de ebullición máxima) en la figura 2.3.4b. Existe una correlación análoga entre las figuras 2.3.3d y 2.3.4d.

2.4. Relación fundamental para la evaluación de una propiedad.

En la sección 2.3 se expuso las condiciones del equilibrio de una manera cualitativa, pero esto como lo relacionamos de una manera mas cuantitativa tendremos que recordar algunos principios de la termodinámica.

En cualquier proceso la energía del universo se conserva (Primer principio de la termodinámica) Por otra parte, una transformación macroscópica sólo puede tener lugar si la entropía del universo aumenta (Segundo Principio de la Termodinámica).

Considere un sistema cerrado que contiene un número arbitrario de especies e incluye un número arbitrario de fases en donde son uniformes la temperatura y la presión (aunque no necesariamente constantes). El sistema se halla en principio en un estado de no equilibrio con respecto a la transferencia de masa entre las fases. Los cambios que se suscitan en el sistema son necesariamente irreversibles, y se considera al sistema siempre muy cerca de un estado de equilibrio.

"Si la S del universo permanece constante no hay un cambio macroscópico, el sistema y los alrededores permanecen en equilibrio o cuasiequilibrio $\Delta S_{universo} = 0$ "

Pero este análisis puede resultar complicado porque hace necesario conocer además de la $\Delta S_{sistema}$ también la $\Delta S_{alrededores}$. $\Delta S_{universo} = \Delta S_{sistema} + \Delta S_{alrededores}$.

Para evitar calcular la $dS_{alrededores}$, y centrarnos sólo en lo que ocurre en el sistema, podemos suponer que los alrededores son tan grandes que cualquier transferencia de energía desde o hacia el sistema no modifica su temperatura T de tal forma que el sistema se halla en equilibrio térmico y mecánico. En consecuencia, el intercambio de calor y el trabajo de expansión se realizan de manera reversible, además como $dq_{alrededores}$ = - $dq_{sistema}$, la condición general de equilibrio se puede escribir como:

$$dS_{universo} = dS_{sistema} + dS_{alrededores} = dS_{sistema} + \frac{dq_{alrededores}}{T} = 0$$
$$dS_{sistema} = \frac{dq_{sistema}}{T}$$
(1)

La primera ley para un sistema cerrado y reversible de n moles es:

$$d(nU) = dQ_{rev} + dW_{rev}$$
⁽²⁾

Si solo hay trabajo mecánico presión volumen:

$$dW_{rev} = -Pd(nV) \tag{3}$$

Sustituyendo la ecuación 1 y 3 en 2 se tiene que:

$$d(nU) = Td(nS) - Pd(nV) \tag{4}$$

Otras propiedades adicionales, definidas por conveniencia, son la entalpía H y la energía libre de Gibbs¹.

$$H \equiv U + PV \tag{5}$$

$$G \equiv H - TS \tag{6}$$

Multiplicando por n y diferenciando 5 y 6 se tiene:

$$d(nH) = d(nU) + Pd(nV) + nVdP$$
(7)

$$d(nG) = d(nH) - Td(nS) - nSdT$$
(8)

La siguiente ecuación resulta de combinar las ecuaciones 4 y 7 en 8 esta expresa la relación básica que conecta la energía de Gibbs a la temperatura y presión en cualquier sistema cerrado.

$$d(nG) = (nV)d P - (nS)dT$$
(9)

Si dicha ecuación se aplica a un fluido de una sola fase en un sistema cerrado donde no se suscita ninguna reacción química. Para tal sistema la composición es necesariamente constante y, por tanto la derivada parcial con respecto a la presión manteniendo la temperatura y número de moles constantes es:

$$\frac{\partial}{\partial P} \left[d(nG) = nV \, dP - (nS) dT \right]_{T,n}$$

$$\left[\frac{\partial(nG)}{\partial P} \right]_{T,n} = nV \frac{\partial}{\partial P} \left[dP \right]_{T,n} - nS \frac{\partial}{\partial P} \left[dT \right]_{T,n}$$

$$\frac{\partial}{\partial P} \left[dP \right]_{T,n} = 1 \qquad \qquad \frac{\partial}{\partial P} \left[dT \right]_{T,n} = 0$$

$$\left[\frac{\partial(nG)}{\partial P} \right]_{T,n} = nV \qquad (10)$$

Y la derivada parcial con respecto a la temperatura manteniendo la presión y número de moles constantes es²:

¹ Si se desea consultar la demostración completa consultar pagina web con referencia 1 en la bibliografía.

$$\frac{\partial}{\partial T} \left[d(nG) = nV \, dP - (nS) dT \right]_{P,n}$$

$$\left[\frac{\partial(nG)}{\partial T} \right]_{P,n} = nV \frac{\partial}{\partial T} \left[dP \right]_{P,n} - nS \frac{\partial}{\partial T} \left[dT \right]_{P,n}$$

$$\frac{\partial}{\partial T} \left[dP \right]_{P,n} = 0 \qquad \qquad \frac{\partial}{\partial T} \left[dT \right]_{P,n} = 1$$

$$\left[\frac{\partial(nG)}{\partial T} \right]_{P,n} = -nS \qquad (11)$$

Ahora hay que considerar el caso más común de una sola fase, en un sistema abierto que intercambie materia con sus alrededores. La energía de Gibbs total nG es habitualmente una función de T y de P. Como el material se toma desde o se agrega a el sistema, ahora nG también es una función de los números de moles de la especie química presente. De esta manera,

$$nG = g(P, T, n_1, n_2, ..., n_i, ...)$$

donde ni es el número de moles de la especie i. La diferencial total de nG es:

$$d(nG) = \left[\frac{\partial(nG)}{\partial P}\right]_{T,n} dP + \left[\frac{\partial(nG)}{\partial T}\right]_{P,n} dT + \sum_{i} \left[\frac{\partial(nG)}{\partial n_{i}}\right]_{P,T,n_{j}} dn_{i} \quad (12)$$

La suma se efectúa sobre todas las especies presentes, y el subíndice n_j indica que todos los números de moles, excepto el i-ésimo, se mantienen constantes. La derivada en el último término es muy importante como para asignarle su propio símbolo y nombre. De modo que por definición el potencial químico de la especie i en la mezcla es:

$$_{i} \equiv \left[\frac{\partial(nG)}{\partial n_{i}} \right]_{P,T,n_{j}}$$
(13)

Con tal definición y con la primeras dos derivadas (ecuaciones 10 y 11) parciales reemplazadas por (nV) y -(nS), la ecuación (12) será:

$$d(nG) = (nV)dP - (nS)dT + \sum_{i} dn_{i}$$
(14)

La ecuación (14) es la relación fundamental para la evaluación de una propiedad para sistemas fluidos de una sola fase de masa constante o variable y de composición constante o variable, y es la ecuación fundamental a partir de la cual se construye la estructura de la termodinámica de solución. Para el caso especial de un mol de solución, $n_i + n_i = 1$ y $n_i/(n_i + n_i) = x_i$:

² Para una introducción a las matemáticas usadas en la tesis ver referencia bibliográfica 1(capitulo 6) y 2(capitulo1).

$$dG = VdP - SdT + \sum_{i} dx_{i}$$
⁽¹⁵⁾

En esta ecuación se encuentra implícita la relación funcional de la energía molar de Gibbs con sus variables canónicas, T, P y $\{x_i\}$:

$$G = G(T, P, x_1, x_2, ..., x_1...)$$

Un caso especial de la ecuación (15) es la (9), aplicable a una solución de composición constante. A pesar de que los números de moles n_i de la ecuación (14) son todos variables independientes no se aplica para las fracciones mol x_i en la ecuación (15), ya que su adición debe ser uno $\Sigma x_i=1$. Esto impide ciertas operaciones matemáticas que dependen de la independencia de las variables.

Siempre que la energía de Gibbs se exprese en función de sus variables canónicas, desempeña el papel de una función generadora, que proporciona el medio para calcular mediante operaciones matemáticas simples (diferenciación y álgebra elemental) las otras propiedades termodinámicas y en forma implícita representa la información completa de la propiedad.

2.5. Potencial químico y equilibrio de fases

Tome en cuenta un sistema cerrado que consta de dos fases en equilibrio. Dentro de tal sistema cerrado, cada fase individual es un sistema abierto, libre para transferir masa a la otra. Es posible escribir para cada fase la ecuación (14):

$$d(nG) = (nV) \ dP - (nS) \ dT + \sum_{i} dn_{i}$$
$$d(nG) = (nV) \ dP - (nS) \ dT + \sum_{i} dn_{i}$$

Donde los superíndices α y β identifican las fases. En este caso se supone que en equilibrio T y P son uniformes a través de todo sistema.

El cambio en la energía de Gibbs total del sistema de dos fases es la suma de dichas ecuaciones. Cuando cada propiedad del sistema total se expresa por una ecuación de la forma,

$$nM = (nM) + (nM)$$

La suma es: $d(nG) = (nV)dP - (nS)dT + \sum_{i} dn_i + \sum_{i} dn_i$

Puesto que es cerrado el sistema de dos fases, también la ecuación (9) resulta válida. La comparación de las dos ecuaciones señala que en equilibrio:

$$\sum_{i} i dn_i + \sum_{i} i dn_i = 0$$

Los cambios dn_i y dn_i resultan de la transferencia de masa entre las fases, así como la conservación de masa requiere que:

 $dn_i = -dn_i$

Por tanto, $\sum_{i} (i - i) dn_i = 0$

Como los dn_i son independientes y arbitrarios, la única manera en que el lado izquierdo de esta ecuación pueda ser en general cero es que cada término entre paréntesis sea cero. En consecuencia,

$$i = i$$
 (i=1,2,...,N)

donde N es el número de especies presentes en el sistema. Aun cuando no se ha dado aquí, una deducción similar pero más amplia indica (como se supone) que en equilibrio se aplican las mismas T y P a ambas fases.

Al considerar pares de fases sucesivas, podemos fácilmente generalizar a más de dos fases la igualdad de los potenciales químicos; el resultado para π fases es:

$$_{i} = _{i} = \dots = _{i}$$
 (i=1,2,...,N) (16)

De esta manera, fases múltiples a las mismas T y P se hallan en equilibrio cuando el potencial químico de cada especie es el mismo de todas las fases.

La aplicación de la ecuación (16) en problemas de equilibrio de fases determinados requiere del uso de modelos del comportamiento de la solución, los cuales proporcionan expresiones para G y μ_i como funciones de la temperatura, presión y composición.

2.6. Propiedades parciales

La definición del potencial químico a través de la ecuación (13) como la derivada de nG con respecto al número de moles sugiere que las otras derivadas de la misma clase resultarían de utilidad en la termodinámica de soluciones. De esta manera,

$$\overline{M}_{i} \equiv \left[\frac{\partial(nM)}{\partial n_{i}}\right]_{P,T,n_{j}}$$
(17)

Dicha ecuación define la propiedad molar parcial de las especie i en la solución. Ésta es una función de respuesta, que presenta el cambio de la propiedad total nM a causa de la adición a T y P constantes de una cantidad diferencial de la especie i a una cantidad finita de solución. La comparación entre las ecuaciones (13) y (17), escritas para la energía de Gibbs, señala que son idénticos el potencial químico y la energía de Gibbs molar parcial, es decir,

$$_{i} \equiv G_{i}$$
 (18)

2.7. Mezclas de gases ideales.

Un gas ideal es un modelo de gas que consta de moléculas imaginarias de volumen cero que no interactúan. De esta manera, las propiedades para cada especie química son independientes de la presencia de otras especies, y cada especie posee su propio conjunto de propiedades privadas. Está es la base para el siguiente enunciado del teorema de Gibbs.

Una propiedad molar parcial (con excepción del volumen) de una especie constitutiva en una mezcla de gas ideal es igual a la correspondiente propiedad molar de la especie como un gas ideal puro a la temperatura de la mezcla pero con una presión igual a su presión parcial en la mezcla.

Este se expresa matemáticamente para una propiedad parcial genérica $\overline{M}_{i}^{ig} \neq \overline{V}_{i}^{ig}$ por la ecuación:

$$\overline{M}_{i}^{ig}(T,P) = M_{i}^{ig}(T,p_{i})$$
⁽¹⁹⁾

Puesto que la entalpía de un gas ideal resulta independiente de la presión,

$$H_{i}^{ig}(T, p_{i}) = H_{i}^{ig}(T, P)$$

De donde
$$\overline{H}_{i}^{ig}(T, P) = H_{i}^{ig}(T, P)$$

O más simplemente,
$$\overline{H}_{i}^{ig} = H_{i}^{ig}$$
(20)

La entropía la podemos representar en función de 2 variables T y P.

$$dS = \left(\frac{\partial S}{\partial T}\right)_{P} dT + \left(\frac{\partial S}{\partial P}\right)_{T} dP$$
(21)

Si a las ecuaciones 10 y 11 se derivan nuevamente de la siguiente manera:

$$\frac{\partial}{\partial T} \left[\left(\frac{\partial (nG)}{\partial P} \right)_T = \mathbf{n} \mathbf{V} \right]_P \qquad \qquad \frac{\partial}{\partial P} \left[\left[\frac{\partial (nG)}{\partial T} \right]_P = -\mathbf{n} \mathbf{S} \right]_T \\ \frac{\partial^2 (nG)}{\partial T \partial P} = \left(\frac{\partial (nV)}{\partial T} \right)_P \qquad \qquad \frac{\partial^2 (nG)}{\partial T \partial P} = -\left(\frac{\partial (nS)}{\partial P} \right)_T$$

Por un teorema matemático tenemos que estas dos derivadas parciales son iguales.

$$\frac{\partial^2 (nG)}{\partial T \,\partial P} = \left(\frac{\partial (nV)}{\partial T}\right)_{\rm P} = -\left(\frac{\partial (nS)}{\partial P}\right)_{\rm T}$$
(22)

La entropía de un gas ideal depende de la presión, y sustituimos la ecuación 22 en 21 tenemos que para un proceso a temperatura constante y 1 mol como base.

$$dS_i^{ig} = -\left(\frac{\partial V^{ig}}{\partial T}\right)_P dP = -\left(\frac{\partial RT/P}{\partial T}\right)_P dP = -\frac{R}{P}\left(\frac{\partial T}{\partial T}\right)_P dP = -\frac{R}{P}dP$$

Como $\frac{dP}{P} = dLnP$ se tiene que: $dS_i^{ig} = -RdLnP$

Con la integración de p_i a P se obtiene:

$$S_i^{ig}(T,P) - S_i^{ig}(T,p_i) = -RLn\frac{P}{p_i} = -RLn\frac{P}{y_iP} = RLny_i$$

De donde,

$$S_i^{ig}(T, p_i) = S_i^{ig}(T, P) - RLny_i$$

Si se sustituye este resultado en la ecuación (19) escrita para la entropía se obtiene:

$$\overline{S}_{i}^{ig}(T,P) = S_{i}^{ig}(T,P) - RLny_{i}$$

$$\overline{S}_{i}^{ig} = S_{i}^{ig} - RLny_{i}$$
(23)

Para la energía de Gibbs de una mezcla de gas ideal $G^{ig} = H^{ig} - TS^{ig}$; la relación paralela para propiedades parciales es:

$$\overline{G}_i^{ig} = \overline{H}_i^{ig} - T\overline{S}_i^{ig}$$

En combinación con las ecuaciones (18),(20) y (23) ésta será:

$$\overline{G}_{i}^{ig} = H_{i}^{ig} - TS_{i}^{ig} + RTLny_{i}$$

$$_{i}^{ig} \equiv \overline{G}_{i}^{ig} = G_{i}^{ig} + RTLny_{i}$$
(24)

A T constante la ecuación (9) para un gas ideal será:

$$dG = VdP - SdT$$
(9)
$$dG_i^{ig} = V_i^{ig} dP = \frac{RT}{P} dP = RTdLnP$$
(T constante)

Integrando se obtiene: $G_i^{ig} = \Gamma_i(T) + RTLnP$ (25)

1710

Una expresión alternativa para el potencial químico se obtiene cuando G_i^{ig} se elimina de la ecuación (24) por la ecuación (9). Donde $\Gamma_i(T)$, la constante de integración a T constante, es una función solo de la temperatura. Por tanto, la ecuación (24) se escribe como:

$$_{i}^{ig} = \Gamma_{i}(T) + RT \ Ln \ y_{i}P \tag{26}$$

3. DETERMINACIÓN DEL COEFICIENTE DE FUGACIDAD.

3.1. Fugacidad y coeficiente de fugacidad: Especies Puras.

Resulta claro que a partir de la ecuación (16), el potencial químico μ_i proporciona el criterio fundamental para el equilibrio de fases, lo cual también es cierto para equilibrio de reacciones químicas. De cualquier manera, presenta características que desalientas su uso. La energía de Gibbs, y por tanto μ_i , se define en relación con la energía interna y la entropía, ambas cantidades primitivas para los cuales los valores absolutos son desconocidos. Como un resultado, no existen los valores absolutos para μ_i . Más aún, la ecuación (26) indica que para una mezcla de gases ideales μ_i tiende hacia el infinito negativo ya sea cuando P o y_i tiendan a cero, en realidad esto es cierto para cualquier gas. Mientras que estas características impidan el uso de los potenciales químicos, la aplicación del criterio de equilibrio se facilita mediante la introducción de la fugacidad, una cantidad que toma el papel de µi pero sin exhibir sus características menos convenientes.

El origen del concepto de fugacidad reside en la ecuación (25), válida sólo para la especie pura i en el estado del gas ideal. Para un fluido real, se escribe una ecuación análoga:

$$G_i \equiv \Gamma_i(T) + RT \ Lnf_i \tag{27}$$

en la que la presión P se reemplaza por una nueva propiedad f_i con unidades de presión. Tal ecuación proporciona una definición parcial de f_i , la fugacidad de la especie pura i.

Al restar la ecuación (25) de la (27), ambas escritas para las mismas T y P, se obtiene:

$$G_i - G_i^{ig} \equiv RT \ Ln \ \frac{f_i}{P}$$
(28)

Antes de proseguir seria conveniente recordar la definición de una propiedad genérica residual:

$$M^{R} \equiv M - M^{ig} \tag{29}$$

donde M y M^{ig} son el valor real e ideal molar (respectivamente) de cualquier propiedad termodinámica extensiva.

De acuerdo con la definición de la ecuación (29) G_i - G_i^{ig} es la energía de Gibbs residual G_i^R . La relación adimensional f_i/P es otra nueva propiedad dado que es una relación lo llamaremos coeficiente de fugacidad, dado por el símbolo \boldsymbol{q} . Así la ecuación (28) queda de esta forma,

$$G^{R} = RT \ln \Phi \tag{30}$$

donde

$$\boldsymbol{\Phi} = \frac{f_i}{P} \tag{31}$$

Expresando de diferente forma la ecuación (30) se tiene:

$$\frac{G^R}{RT} = Ln \Phi$$

Diferenciando se obtiene:

$$d\left(\frac{G^{R}}{RT}\right) = \mathrm{d}Ln \, \Phi$$

Por medio de la definición de propiedad residual: $d\left(\frac{G}{RT}\right) - d\left(\frac{G^{id}}{RT}\right) = dLn \Phi$

Una forma alternativa de expresar las diferenciales se obtiene mediante la identidad matemática:

$$d\left(\frac{G}{RT}\right) = \frac{RT(dG) - Gd(RT)}{(RT)^2} = \frac{dG}{RT} - \frac{GRdT}{(RT)^2} = \frac{dG}{RT} - \frac{G dT}{RT^2}$$
$$\frac{dG}{RT} - \frac{G dT}{RT^2} - \frac{dG^{id}}{RT} + \frac{G^{id} dT}{RT^2} = dLn\Phi$$
(32)

Combinando las ecuaciones (6) y (9) en (32)

$$\frac{VdP - SdT}{RT} - \frac{(H - TS) dT}{RT^2} - \frac{V^{ig} dP - S^{ig} dT}{RT} + \frac{(H^{ig} - TS^{ig}) dT}{RT^2} = dLn\Phi$$

$$\frac{VdP}{RT} - \frac{SdT}{RT} - \frac{HdT}{RT^2} + \frac{TSdT}{RT^2} - \frac{V^{ig}dP}{RT} + \frac{S^{ig}dT}{RT} + \frac{H^{ig}dT}{RT^2} - \frac{TS^{ig}dT}{RT^2} = dLn\Phi$$
$$\frac{VdP}{RT} - \frac{SdT}{RT} - \frac{HdT}{RT^2} + \frac{SdT}{RT} - \frac{V^{ig}dP}{RT} + \frac{S^{ig}dT}{RT} + \frac{H^{ig}dT}{RT^2} - \frac{S^{ig}dT}{RT} = dLn\Phi$$
$$\frac{VdP}{RT} - \frac{HdT}{RT^2} - \frac{V^{ig}dP}{RT} - \frac{V^{ig}dP}{RT} + \frac{H^{ig}dT}{RT^2} = dLn\Phi$$

Teniendo en cuenta que es proceso a temperatura constante:

Factorizando:

$$\frac{VdP}{RT} - \frac{V^{ig}dP}{RT} = dLn\Phi$$

$$(V - V^{ig})\frac{dP}{RT} = dLn\Phi$$

Dado que $V = \frac{ZRT}{P} y V^{ig} = \frac{RT}{P}$ tendremos: $(\frac{ZRT}{P} - \frac{RT}{P}) \frac{dP}{RT} = dLn\Phi$

Reordenando:
$$(Z-1)\frac{dP}{P} = dLn\Phi$$
 $dLn\Phi = (Z-1)\frac{dP}{P}$

Integrando desde una presión cero a una presión arbitraria P obtenemos:

$$Ln\Phi = \int_{0}^{P} (Z-1) \frac{dP}{P} \qquad (\text{T constante})$$
(33)

Los coeficientes de fugacidad (y por tanto las fugacidades) para gases puros se evalúan por está ecuación a partir de los datos PVT o de una ecuación de estado explícita en el volumen.

3.2. Fugacidad de un líquido puro.

La fugacidad de especies puras i como un líquido comprimido se calcula mediante dos pasos:

- Primero, el coeficiente de fugacidad de vapor saturado \$\mathcal{P}^t = \mathcal{P}^{ap}\$ se determina a partir de una forma integrada de la ecuación (33), evaluada en P=Pi^{sat}. A continuación por la ecuación (31) \$f_i^{sat} = \mathcal{P}_i^{at} P_i^{sat}\$, y esta es la fugacidad tanto del vapor como del líquido saturado a la temperatura del sistema.
- Segundo, se calcula el cambio de la fugacidad como resultado del aumento de la presión, Pi^{sat} a P, que cambia el estado a partir de un líquido saturado a un líquido comprimido.

Para el segundo paso, un cambio isotérmico de la presión, la ecuación (9) se integra para obtener:

$$G_i - G_i^{sat} = \int_{P_i^{sat}}^{P} V_i dP$$

Otra expresión para la diferencia del lado izquierdo se da al escribir la ecuación (27) dos veces, para ambos $G_i y G_i^{sat}$. Al restar se obtiene:

$$G_i - G_i^{sat} = RTLn \quad \frac{f_i}{f_i^{sat}}$$

Las dos expresiones para G_i - G_i^{sat} se hacen iguales:

$$RTLn \; \frac{f_i}{f_i^{sat}} = \int_{P_i^{sat}}^{P} V_i dP$$

Puesto V_i , el volumen molar de la fase liquida, es una función muy débil de P a temperaturas muy por debajo Tc, con frecuencia se obtiene una excelente aproximación cuando se supone Vi constante al valor para el líquido saturado, V_i^1 :

$$Ln \frac{f_i}{f_i^{sat}} = \frac{V_i^l (P - P_i^{sat})}{RT}$$

Si reemplazamos $f_i^{sat} = \Phi_i^{sat} P_i^{sat}$ y se resuelve para f_i se obtiene:

$$f_i = \Phi_i^{sat} P_i^{sat} \exp \frac{V_i^l (P - P_i^{sat})}{RT}$$
(34)

La exponencial se conoce como factor de Poynting.

3.3. Fugacidad y coeficiente de fugacidad: especies en solución.

La definición de la fugacidad de una especie en solución es paralela a la definición de la fugacidad de especies puras. Para la especie i en una mezcla de gases reales o en una solución de líquidos, la ecuación análoga a la (26), la expresión del gas ideal es:

$$\equiv \Gamma_i(T) + RT \ln \hat{\mathbf{f}}$$
(35)

donde $\hat{f_i}$ es la fugacidad de la especie i en la solución, reemplazando la presión parcial y_iP. Esta definición de $\hat{f_i}$ no la hace una propiedad molar parcial, y por tanto se identifica por un circunflejo más que a través de una sobrebarra.

Una aplicación directa de esta definición indica su utilidad potencial. La ecuación (16) es el criterio fundamental para el equilibrio de fases. Ya que todas las fases en equilibrio se encuentran a la misma temperatura, un criterio alternativo e igualmente general es consecuencia inmediata de la ecuación (35):

$$\hat{f_i} = \hat{f_i} = \dots = \hat{f_i}$$
 (i=1,2,...,N) (36)

En estos términos, fases múltiples a las mismas T y P están en equilibrio cuando la fugacidad de cada especie constituyente es igual en todas las fases. Este criterio de equilibrio es uno de los más utilizados en las aplicaciones de ingeniería química en la solución de problemas de equilibrio de fases.

Para el caso especifico del equilibrio vapor/liquido multicomponente, la ecuación (36) será:

$$f_i^v = f_i^l$$
 (i=1,2,...,N) (37)

La definición de una propiedad residual se da por la siguiente ecuación (29).

$$M^R \equiv M - M^{ig}$$

donde M es el valor molar (o por unidad de masa) de una propiedad termodinámica, y M^{ig} es el valor que la propiedad tendría para un gas ideal de igual composición a las mismas T y P.

La ecuación de definición para una propiedad residual parcial \overline{M}_{i}^{R} es consecuencia de esta ecuación. Al multiplicar por n moles de la mezcla, está será:

$$nM^{R} \equiv nM - nM^{ig}$$

Diferenciado con respecto a n_i a T, P y n_j constantes, se obtiene:

$$\left[\frac{\partial(nM^{R})}{\partial n_{i}}\right]_{P,T,n_{j}} = \left[\frac{\partial(nM)}{\partial n_{i}}\right]_{P,T,n_{j}} - \left[\frac{\partial(nM^{ig})}{\partial n_{i}}\right]_{P,T,n_{j}}$$

Cuando se refiere a la ecuación (17) esta señala que cada termino posee la forma de una propiedad molar parcial. Así,

$$\overline{M}_{i}^{R} \equiv \overline{M}_{i} - \overline{M}_{i}^{ig}$$
(38)

Ya que las propiedades residuales miden la desviación a partir de los valores del gas ideal, su aplicación mas natural es como propiedades de la fase gaseosa, pero además encuentran aplicación como propiedades de la fase liquida. Escrita para la energía de Gibbs residual, la ecuación (38) será:

$$\overline{G}_{i}^{R} \equiv \overline{G}_{i} - \overline{G}_{i}^{ig}$$
(39)

una ecuación que define la energía de Gibbs residual parcial.

Al restar la ecuación (26) de la (35), ambas escritas para las mismas T y P, se obtiene:

$$_{i} - _{i}^{ig} = RT Ln \frac{\hat{f}_{i}}{y_{i}P}$$

Este resultado se combina con la ecuación (38) y de la identidad $_i \equiv \overline{G}_i$ se obtiene:

$$\overline{G}_{i}^{R} = RT Ln \stackrel{\wedge}{\Phi}$$

$$\hat{\Phi}_{i} = \frac{\hat{f}_{i}}{y_{i}P}$$

$$(40)$$

donde por definición

A la relación sin dimensiones $\hat{\Phi}$ se le conoce como coeficiente de fugacidad de la especie i en la solución. Si bien se aplica usualmente la mayoría de las veces a los gases, el coeficiente de fugacidad se usa también para líquidos, y en este caso la fracción mol y_i se reemplaza por x_i.

3.4. Modelos de ecuaciones cúbicas de estado.

Tal como se dijo al final del tema 3.1 los coeficientes de fugacidad (y por tanto las fugacidades) para gases se evalúan por la ecuación (33) a partir de los datos PVT o de una ecuación de estado explícita en el volumen³.

La obtención de una ecuación de estado de carácter universal ha sido uno de los ideales mas largamente anhelados por los investigadores del campo de la termodinámica y con este objetivo se has propuesto ecuaciones basadas en diversos enfoques, con estructuras matemáticas tanto simples como complejas y muchos investigadores han dedicado una parte importante de su vida a tratar de alcanzar esta meta.

Desafortunadamente, todas las ecuaciones propuestas poseen en mayor o menor medida limitaciones severas en cuanto al tipo de propiedades o sustancias que pueden

³ Para más información de ecuaciones de estado cúbicas consultar referencia bibliográfica 3.

representar o el intervalo de presión y temperatura en el que son capaces de funcionar. La imposibilidad de contar con esta ecuación universal capaz de representar las propiedades PVT de todas las sustancias enfatiza objetivos específicos que ayudan en el análisis y selección de ecuaciones de estado. Dentro de estos objetivos, uno de los más importantes es la descripción del equilibrio líquido vapor, sobre el cual centraremos nuestra atención

El primer intento significativo por utilizar una ecuación de estado fue el de Bennedict-Webb-Rubin (BWR 1940); esta ecuación tuvo un éxito razonable para la descripción del equilibrio líquido vapor de sistemas formados por parafinas y olefinas pero su extensión a sistemas más complejos enfrentó problemas importantes como el no contar con un conjunto único de constantes para representar de manera óptima el comportamiento de los componentes puros o la necesidad de incluir constantes de interacción que incrementaban la complejidad del modelo en el caso de las mezclas.

Esta atención ayudo a que la atención de los investigadores se dirigiera a modelos más simples, impulsando de esta manera el desarrollo de las ecuaciones cúbicas. El esfuerzo realizado para describir el equilibrio líquido vapor con estos modelos puede agruparse en dos grandes áreas; en la primera tenemos el trabajo realizado para contar con una ecuación capaz de proporcionar presiones de vapor de componentes puros con un alto nivel de exactitud, en la segunda el desarrollo de regla de mezclado con la capacidad para correlacionar datos de equilibrio de sistemas binarios y de predecir con exactitud las condiciones de equilibrio de sistemas multicomponentes.

Uno de los avances más importantes en el campo de las ecuaciones cúbicas lo constituyo la ecuación propuesta por Redlich y Kwong (1949). Esta ecuación tuvo el gran merito de abrir el camino para que las ecuaciones cúbicas fueran utilizadas en cálculos ingenieriles, particularmente en el terreno del equilibrio líquido vapor.

El modelo de Redlich-Kwong impulso esfuerzos de investigación en torno a las ecuaciones cúbicas, que dos décadas más tarde conducirían a lo que podríamos llamar el paso mas importante en la descripción líquido vapor con modelos cúbicos, la modificación de Soave (1972). Esta modificación junto con la introducción de los parámetros de interacción binaria, permitió la descripción apropiada de una cantidad

apreciable de componentes puros y mezclas de interés industrial. Debido a la naturaleza de la correlación realizada por Soave, su ecuación reproduce de una manera aceptable la presión de vapor de compuestos no polares en amplios intervalos de temperatura.

Al inicio de la década de 1980, las ecuaciones cúbicas enfrentaban el problema de extender su aplicabilidad a la descripción del equilibrio líquido vapor de compuestos polares y mezclas altamente no ideales. En lo relativo a componentes puros se realizaron esfuerzos importantes, como el de Bazúa (1982) que modifica la funcionalidad del parámetro "a" con la temperatura mediante la introducción de dos parámetros característicos de cada sustancia y de esta manera logra resultados, para la presión de vapor, comparables con la incertidumbre de los datos utilizados. Otro trabajo de particular importancia es el realizado por Mathias (1983) introduciendo un factor de polaridad característico de cada sustancia y una mejor función de temperatura para el parámetro "a". Este modelo logra reproducir con errores inferiores al 1% la presión de vapor de compuestos como agua, acetona o metanol en todo el intervalo de temperatura.

Modificaciones posteriores como las propuestas por Stryjek y Vera (1986) han permitido mejorar más aun la capacidad descriptiva de las ecuaciones cúbicas en relación al equilibrio líquido vapor de compuestos puros.

Las ecuaciones cúbicas de estado hoy en día son frecuentemente usadas en la industria química y del petróleo para modelar complejos comportamientos de equilibrios de fases y en el diseño de procesos químicos. Recientemente el desarrollo de las reglas de mezclado ha incrementado la exactitud el rango de aplicabilidad de tales ecuaciones.

3.5. Calculo del coeficiente de fugacidad para una mezcla por medio de una ecuación de estado cúbica genérica.

Una expresión general bastante útil como una ecuación de estado cúbica genérica, la que se reduce a otras de interés bajo la designación de parámetros apropiados es la siguiente:

$$P = \frac{RT}{V-b} - \frac{a(T)}{(V+\epsilon b)(V+b)}$$

Para una ecuación dada, ϵ y σ son números puros, iguales para todas las sustancias, mientras que los parámetros a(T) y b dependen de la sustancia. La dependencia de la temperatura de a(T) y b dependen de la sustancia. La dependencia de la temperatura de a(T) se especifica para cada ecuación de estado.

Aunque se puede resolver en su forma explicita para sus tres raíces, la ecuación de estado cúbica genérica en la práctica usualmente se resuelve mucho más mediante procesos iterativos. Los problemas de convergencia se evitan más fácilmente cuando la ecuación se reacomoda en una forma adecuada para encontrar una raíz en particular. Para la raíz mas grande, un volumen de vapor o algo parecido se multiplica a la ecuación por (V-b)/RT. Esta entonces se puede escribir como:

$$P\frac{(V-b)}{RT} = \frac{RT}{V-b} \frac{(V-b)}{RT} - \frac{(V-b)}{RT} \frac{a(T)}{(V+\epsilon b)(V+b)}$$

$$\frac{PV-Pb}{RT} = 1 - \frac{(V-b)}{RT} \frac{a(T)}{(V+\epsilon b)(V+b)}$$

$$\frac{PV}{RT} - \frac{Pb}{RT} = 1 - \frac{(V-b)}{RT} \frac{a(T)}{(V+\epsilon b)(V+b)}$$

$$\frac{PV}{RT} = 1 + \frac{Pb}{RT} - \frac{(V-b)}{RT} \frac{a(T)}{(V+\epsilon b)(V+b)}$$

$$V = \frac{RT}{P} + b - \frac{a(T)}{P} \frac{(V-b)}{(V+\epsilon b)(V+b)}$$

Una ecuación para Z equivalente a la anterior se obtiene a través de la sustitución V=ZRT/P. Además, la definición de dos cantidades adimensionales conduce a la simplificación.

$$\equiv \frac{bP}{RT} \qquad \qquad q \equiv \frac{a(T)}{bRT}$$

Mediante estas sustituciones en la ecuación anterior de obtiene:

$$V = \frac{RT}{P} + b - \frac{a(T)}{P} \frac{(V-b)}{(V+\epsilon b)(V+b)}$$
$$\frac{ZRT}{P} = \frac{RT}{P} + b - \frac{a(T)}{P} \frac{(\frac{ZRT}{P}-b)}{(\frac{ZRT}{P}+\epsilon b)(\frac{ZRT}{P}+b)}$$

$$\begin{split} Z &= \frac{RT}{P} \frac{P}{RT} + b \frac{P}{RT} - \frac{P}{RT} \frac{a(T)}{P} \frac{(\frac{ZRT}{P} - b)}{(\frac{ZRT}{P} + \epsilon)(\frac{ZRT}{P} + \epsilon)} \\ Z &= 1 + \frac{Pb}{RT} - \frac{a(T)}{RT} \frac{(\frac{ZRT}{P} - b)}{(\frac{ZRT}{P} + \epsilon)(\frac{ZRT}{P} + \epsilon)} \\ Z &= 1 + -\left(\frac{b}{b}\right) \frac{a(T)}{RT} \frac{(\frac{ZRT}{P} - b)}{(\frac{ZRT}{P} + \epsilon)(\frac{ZRT}{P} + \epsilon)} \\ Z &= 1 + -\left(\frac{a(T)}{bRT} \frac{b(\frac{ZRT}{P} - b)}{(\frac{ZRT}{P} + \epsilon)(\frac{ZRT}{P} + \epsilon)}\right) \\ Z &= 1 + -q \frac{b(\frac{ZRT}{P} - b)\left(\frac{P}{RT}\right)\left(\frac{RT}{P}\right)}{(\frac{ZRT}{P} + \epsilon)(\frac{ZRT}{P} + \epsilon)} \\ Z &= 1 + -q \frac{(\frac{ZRT}{P} - b)\left(\frac{P}{RT}\right)\left(\frac{RT}{P}\right)}{(\frac{ZRT}{P} + \epsilon)(\frac{ZRT}{P} + \epsilon)} \\ Z &= 1 + -q \frac{(\frac{ZRT}{P} - b)\left(\frac{RT}{P} + \epsilon)}{(\frac{ZRT}{P} + \epsilon)(\frac{ZRT}{P} + \epsilon)} \\ Z &= 1 + -q \frac{(\frac{ZRT}{P} - b)\left(\frac{ZRT}{P} + \epsilon)}{(\frac{ZRT}{P} + \epsilon)(\frac{ZRT}{P} + \epsilon)} \\ Z &= 1 + -q \frac{(\frac{ZRT}{P} - b)}{(Z + \epsilon)(\frac{ZRT}{P} + \epsilon)} \\ Z &= 1 + -q \frac{(\frac{ZRT}{P} - b)}{(Z + \epsilon)(\frac{ZRT}{P} + \epsilon)} \\ Z &= 1 + -q \frac{(\frac{ZRT}{P} - b)}{(Z + \epsilon)(\frac{ZRT}{P} + \epsilon)} \\ Z &= 1 + -q \frac{(\frac{ZRT}{P} - b)}{(Z + \epsilon)(\frac{ZRT}{P} + \epsilon)} \\ Z &= 1 + -q \frac{(\frac{ZRT}{P} - b)}{(Z + \epsilon)(\frac{ZRT}{P} + \epsilon)} \\ Z &= 1 + -q \frac{(\frac{ZRT}{P} - b)}{(Z + \epsilon)(\frac{ZRT}{P} + \epsilon)} \\ Z &= 1 + -q \frac{(\frac{ZRT}{P} - b)}{(Z + \epsilon)(\frac{ZRT}{P} + \epsilon)} \\ Z &= 1 + -q \frac{(\frac{ZRT}{P} - b)}{(Z + \epsilon)(\frac{ZRT}{P} + \epsilon)} \\ Z &= 1 + -q \frac{(\frac{ZRT}{P} - b)}{(Z + \epsilon)(\frac{ZRT}{P} + \epsilon)} \\ Z &= 1 + -q \frac{(\frac{ZRT}{P} - b)}{(Z + \epsilon)(\frac{ZRT}{P} + \epsilon)} \\ Z &= 1 + -q \frac{(\frac{ZRT}{P} - b)}{(Z + \epsilon)(\frac{ZRT}{P} + \epsilon)} \\ Z &= 1 + -q \frac{(\frac{ZRT}{P} - b)}{(Z + \epsilon)(\frac{ZRT}{P} + \epsilon)} \\ Z &= 1 + -q \frac{(\frac{ZRT}{P} - b)}{(Z + \epsilon)(\frac{ZRT}{P} + \epsilon)} \\ Z &= 1 + -q \frac{(\frac{ZRT}{P} - b)}{(Z + \epsilon)(\frac{ZRT}{P} + \epsilon)} \\ Z &= 1 + -q \frac{(\frac{ZRT}{P} - b)}{(Z + \epsilon)(\frac{ZRT}{P} + \epsilon)} \\ Z &= 1 + -q \frac{(\frac{ZRT}{P} - b)}{(Z + \epsilon)(\frac{ZRT}{P} + \epsilon)} \\ Z &= 1 + -q \frac{(Z - A)}{(Z + \epsilon)(Z + \epsilon)} \\ Z &= 1 + -q \frac{(Z - A)}{(Z + \epsilon)(Z + \epsilon)} \\ Z &= 1 + -q \frac{(Z - A)}{(Z + \epsilon)(Z + \epsilon)} \\ Z &= 1 + -q \frac{(Z - A)}{(Z + \epsilon)(Z + \epsilon)} \\ Z &= 1 + -q \frac{(Z - A)}{(Z + \epsilon)} \\ Z &= 1 + -q \frac{(Z - A)}{(Z + \epsilon)} \\ Z &= 1 + -q \frac{(Z - A)}{(Z + \epsilon)} \\ Z &= 1 + -q \frac{(Z - A)}{(Z + \epsilon)} \\ Z &= 1 + -q \frac{(Z - A)}{(Z + \epsilon)} \\ Z &= 1 + -q \frac{(Z - A)}{(Z + \epsilon)} \\ Z &= 1 + -q \frac{(Z - A)}{(Z + \epsilon)} \\ Z &= 1 + -q \frac{(Z - A)}{$$

Las ecuaciones cúbicas de estado dan Z como una función de las variables independientes T y ρ (o V). Debido a eso el empleo de tal ecuación en los cálculos del EVL requiere que $\hat{\Phi}_i$ se dé por una ecuación adecuada a dichas variables. La deducción de tal ecuación inicia con la siguiente identidad matemática:

$$d\left(\frac{nG}{RT}\right) = \frac{RT(dnG) - nGd(RT)}{(RT)^2} = \frac{dnG}{RT} - \frac{nGRdT}{(RT)^2} = \frac{dnG}{RT} - \frac{nGdT}{RT^2}$$

En esta ecuación d(nG) se elimina por la ecuación (14) y G se remplaza por su definición G=H-TS. El resultado después de una reducción algebraica, es:

$$d\left(\frac{nG}{RT}\right) = \frac{d(nG)}{RT} - \frac{nG dT}{RT^2}$$
$$d\left(\frac{nG}{RT}\right) = \frac{(nV)dP - (nS)dT + \sum_i i dn_i}{RT} - \frac{n(H - TS) dT}{RT^2}$$

Donde el potencial químico de i (μ_i) se remplaza por la ecuación (18)

$$d\left(\frac{nG}{RT}\right) = \frac{(nV)dP}{RT} - \frac{(nS)dT}{RT} + \sum_{i} \frac{\overline{G}_{i}}{RT} dn_{i} - \frac{nH}{RT^{2}} dT + \frac{TnS}{RT^{2}} dT$$
$$d\left(\frac{nG}{RT}\right) = \frac{(nV)dP}{RT} - \frac{nH}{RT^{2}} dT + \sum_{i} \frac{\overline{G}_{i}}{RT} dn_{i}$$
(41)

Ya que esta ecuación es general, se puede escribir para el caso especial de un gas ideal.

$$d\left(\frac{nG^{ig}}{RT}\right) = \frac{(nV^{ig})dP}{RT} - \frac{nH^{ig}}{RT^2}dT + \sum_i \frac{\overline{G}_i^{ig}}{RT}dn_i$$

Si restamos la ecuación (41) menos la ecuación anterior para el gas ideal y teniendo en cuenta la definición de una propiedad residual tenemos:

$$d\left(\frac{nG^{R}}{RT}\right) = \frac{(nV^{R})dP}{RT} - \frac{nH^{R}}{RT^{2}}dT + \sum_{i}\frac{\overline{G}_{i}^{R}}{RT}dn_{i}$$

Sustituyendo la ecuación 40 y la ecuación para el volumen residual en la ecuación anterior.

Tenemos que:

$$d\left(\frac{nG^{R}}{RT}\right) = \frac{n(Z-1)dP}{p} - \frac{nH^{R}}{RT^{2}}dT + \sum_{i} \hat{\Phi}_{i} dn_{i}$$

Al dividir por dn_i y con la restricción a T,n/ ρ =nV y n_j constantes tenemos:

$$\begin{bmatrix} \frac{\partial (nG^R / RT)}{\partial n_i} \end{bmatrix}_{T,n/,n_j} = \frac{n(Z-1)}{p} \left(\frac{\partial P}{\partial n_i} \right)_{T,n/,n_j} + Ln \hat{\Phi}_i$$
$$Ln \hat{\Phi}_i = \begin{bmatrix} \frac{\partial (nG^R / RT)}{\partial n_i} \end{bmatrix}_{T,n/,n_j} - \frac{n(Z-1)}{p} \left(\frac{\partial P}{\partial n_i} \right)_{T,n/,n_j}$$
(42)

Por simplicidad en la notación, las derivadas parciales en el siguiente desarrollo se escriben sin subíndices, y se sobreentienden que son a $T,n/\rho=nV$ y n_j constantes de esta manera tenemos que para un gas real $P=ZRT\rho$ por lo que:

$$\frac{\partial}{\partial n_i} \left[P = \frac{(nZ)RT}{n/2} \right]$$
$$\frac{\partial P}{\partial n_i} = \frac{RT}{n/2} \frac{\partial (nZ)}{\partial n_i} = \frac{P}{nZ} \frac{\partial (nZ)}{\partial n_i}$$
(43)

Sustituyendo la ecuación (43) en la ecuación (42) produce:

$$Ln \hat{\Phi}_{i} = \left[\frac{\partial(nG^{R} / RT)}{\partial n_{i}}\right] - \frac{n(Z-1)}{p} \frac{P}{nZ} \left(\frac{\partial nZ}{\partial n_{i}}\right)$$

$$Ln \hat{\Phi}_{i} = \left[\frac{\partial(nG^{R} / RT)}{\partial n_{i}}\right] - \frac{(Z-1)}{Z} \left(\frac{\partial nZ}{\partial n_{i}}\right)$$

$$Ln \hat{\Phi}_{i} = \left[\frac{\partial(nG^{R} / RT)}{\partial n_{i}}\right] - \left(\frac{\partial nZ}{\partial n_{i}}\right) + \frac{1}{Z} \left(\frac{\partial nZ}{\partial n_{i}}\right)$$
(44)

Teniendo en cuenta que el último término de la ecuación es igual a:

$$\frac{\partial}{\partial n_i} (nZ) = n \frac{\partial}{\partial n_i} Z + Z \frac{\partial}{\partial n_i} n$$
$$\frac{\partial}{\partial n_i} (nZ) = n \frac{\partial}{\partial n_i} Z + Z \frac{\partial}{\partial n_i} (n_i + n_j)$$
$$\frac{\partial}{\partial n_i} (nZ) = n \frac{\partial}{\partial n_i} Z + Z \frac{\partial}{\partial n_i} n_i$$
$$\frac{\partial}{\partial n_i} (nZ) = n \frac{\partial}{\partial n_i} Z + Z$$

Sustituyendo este resultado en la ecuación (44) se tiene:

$$Ln \,\hat{\Phi}_{i} = \left[\frac{\partial (nG^{R} / RT)}{\partial n_{i}}\right] - \left(\frac{\partial nZ}{\partial n_{i}}\right) + \frac{1}{Z} \left(n\frac{\partial Z}{\partial n_{i}} + Z\right)$$
(45)

Para la obtención de la primera derivada se debe tener en consideración de nuevo la ecuación de estado generalizado pero con un desarrollo diferente.

$$P = \frac{RT}{V-b} - \frac{a(T)}{(V+\epsilon b)(V+b)}$$

Las derivaciones con esta ecuación son mucho más convenientes cuando se modifican para presentar a Z con densidad ρ como la variable independiente. Por tanto, se divide la ecuación entre ρRT y se sustituye V=1/ ρ . El resultado después de una reducción algebraica es:

$$\frac{P}{RT} = \frac{RT}{RT(V-b)} - \frac{a(T)}{RT(V+\epsilon b)(V+b)}$$

$$Z = \frac{1}{((1/)-b)} - \frac{a(T)}{RT((1/)+\epsilon b)((1/)+b)} \frac{b}{b}$$

$$Z = \frac{1}{((1/)-b)} - \frac{a(T)}{bRT} \frac{a(T)b}{((1/)+\epsilon b)((1/)+b)}$$

$$Z = \frac{1}{(1-b)} - \frac{a(T)}{bRT} \frac{b}{(1+\epsilon b)((1/)+b)} - \frac{a(T)b}{(1+\epsilon b)((1/)+b)} - \frac{a(T)b}{(1+\epsilon b)((1/)+b)}$$

$$Z = \frac{1}{(1-b)} - q \frac{b}{(1+\epsilon b)((1/)+b)}$$

$$Z - 1 = \frac{1}{(1-b)} - 1 - q \frac{b}{(1+\epsilon b)(1+b)}$$

$$Z - 1 = \frac{1 - (1-b)}{1-b} - q \frac{b}{(1+\epsilon b)(1+b)}$$

$$Z - 1 = \frac{b}{1-b} - q \frac{b}{(1+\epsilon b)(1+b)}$$
(46)

Combinando la ecuación 30 y 33 se tiene que:

$$\frac{G^R}{RT} = \int_0^P (Z-1)\frac{dP}{P}$$
(47)

Pero esta ecuación esta en función de P y se tiene que cambiar en función de ρ para esto se tiene que: P = Z RT

Diferenciando a T constante se obtiene: dP = RTd(Z)dP = RT(Zd + dZ)

Pero se tiene que RT=P/Z
$$\rho$$
 por lo que:

$$\frac{dP}{P} = \frac{d}{Z} (Zd + dZ)$$

$$\frac{dP}{P} = \frac{d}{Z} + \frac{dZ}{Z}$$

Sustituyendo esta última ecuación en (47) se tiene:

$$\frac{G^{R}}{RT} = \int_{0}^{R} (Z-1)\left(\frac{d}{d} + \frac{dZ}{Z}\right) \qquad \qquad \frac{G^{R}}{RT} = \int_{0}^{R} (Z-1)\frac{d}{d} + \int_{0}^{R} dZ - \int_{0}^{R} \frac{dZ}{Z} \\ \frac{G^{R}}{RT} = \int_{0}^{R} (Z-1)\frac{d}{d} + \int_{0}^{R} (Z-1)\frac{dZ}{Z} \qquad \qquad \frac{G^{R}}{RT} = \int_{0}^{R} (Z-1)\frac{d}{d} + \int_{0}^{R} dZ - \int_{0}^{R} \frac{dZ}{Z}$$

Para poder resolver las dos últimas integrales se tiene que tomar en cuenta que cuando ρ tiende a cero la presión tiende a cero y Z tiende a 1 .Por lo tanto cuando ρ sea cero Z=1.

$$\frac{G^{R}}{RT} = \int_{0}^{R} (Z-1)\frac{d}{d} + Z_{2} - Z_{1} - (LnZ_{2} - LnZ_{1})$$

$$\frac{G^{R}}{RT} = \int_{0}^{R} (Z-1)\frac{d}{d} + Z_{2} - 1 - (LnZ_{2} - Ln1)$$

$$\frac{G^{R}}{RT} = \int_{0}^{R} (Z-1)\frac{d}{d} + Z_{2} - 1 - (LnZ_{2} - 0)$$

$$\frac{G^{R}}{RT} = \int_{0}^{R} (Z-1)\frac{d}{d} + Z_{2} - 1 - LnZ$$

Para poder resolver la primera integral debemos sustituir la ecuación (46) en la anterior.

$$Z - 1 = \frac{b}{1 - b} - q \frac{b}{(1 + \epsilon - b)(1 + - b)}$$
(46)

$$\frac{G^{R}}{RT} = \int_{0} \left(\frac{b}{1 - b} - q \frac{b}{(1 + \epsilon - b)(1 + - b)} \right)^{d} + Z - 1 - LnZ$$

$$\frac{G^{R}}{RT} = \int_{0} \frac{b}{1 - b} \frac{d}{d} - \int_{0} q \frac{b}{(1 + \epsilon - b)(1 + - b)} \frac{d}{d} + Z - 1 - LnZ$$

$$\frac{G^{R}}{RT} = \int_{0} \frac{b}{1 - b} \frac{d}{b} - q \int_{0} \frac{b}{(1 + \epsilon - b)(1 + - b)} \frac{d}{b} \frac{d}{d} + Z - 1 - LnZ$$

$$\frac{G^{R}}{RT} = \int_{0} \frac{b}{1 - b} \frac{d(-b)}{b} - q \int_{0} \frac{d(-b)}{(1 + \epsilon - b)(1 + - b)} \frac{d(-b)}{b} + Z - 1 - LnZ$$

$$\frac{G^{R}}{RT} = \int_{0} \frac{d(-b)}{1 - b} - q \int_{0} \frac{d(-b)}{(1 + \epsilon - b)(1 + - b)} + Z - 1 - LnZ$$

$$\frac{G^{R}}{RT} = \int_{0} \frac{d(-b)}{1 - b} - q \int_{0} \frac{d(-b)}{(1 + \epsilon - b)(1 + - b)} + Z - 1 - LnZ$$

$$\frac{G^{R}}{RT} = \int_{0} \frac{d(-b)}{1 - b} - q \int_{0} \frac{d(-b)}{(1 + \epsilon - b)(1 + - b)} + Z - 1 - LnZ$$

$$\frac{G^{R}}{RT} = -Ln(1 - b) - q \int_{0} \frac{d(-b)}{(1 + \epsilon - b)(1 + - b)} + Z - 1 - LnZ$$
(48)

Donde para facilitar los cálculos a esta integral la llamaremos I.

$$I = \int_0 \frac{d(b)}{(1+\epsilon b)(1+b)}$$

La ecuación de estado genérica presenta dos casos para la evaluación de esta integral: Caso 1:∈≠

La aplicación de esta y subsecuentes ecuaciones es más simple cuando se elimina ρ a favor de Z por las siguientes ecuaciones:

$$=\frac{bP}{RT} \qquad \qquad Z = \frac{P}{RT} \qquad \qquad \text{por lo que: } \frac{1}{Z} = b$$

Esta integral se puede resolver por sustitución y aplicando una formula de la siguiente manera:

$$I = \int_{0}^{1} \frac{d(b)}{(1+\epsilon b)(1+b)} = \int_{0}^{1} \frac{d}{(1+\epsilon b)(1+b)} = \int_{0}^{1} \frac{b}{(1+\epsilon b)(1+b)} = \int_{0}^{1} \frac{d}{(1+\epsilon b)$$

Se puede resolver completando el trinomio cuadrado perfecto de la siguiente manera:

$$\frac{1}{y^2} \int_0^1 \frac{dy}{y^2 + (\frac{\epsilon}{2} + \frac{\epsilon}{2})^2 + (\frac{\epsilon}{2} + \frac{\epsilon}{2})^2 - (\frac{\epsilon}{2} + \frac{\epsilon}{2})^2 + \frac{\epsilon}{2}} = \frac{1}{2} \int_0^1 \frac{dy}{\left(y + \frac{\epsilon}{2} + \frac{\epsilon}{2}\right)^2 - \left(\left(\frac{\epsilon}{2} + \frac{\epsilon}{2}\right)^2 - \frac{\epsilon}{2}\right)^2} = \frac{1}{2} \int_0^1 \frac{dy}{\left(y + \frac{\epsilon}{2} + \frac{\epsilon}{2}\right)^2 - \left(\frac{\epsilon}{2} + \frac{\epsilon}{2}\right)^2}$$

Desarrollando el segundo termino del denominador:

$$\left(\frac{\epsilon}{2}\right)^2 - \frac{\epsilon}{2} = \frac{(\epsilon+2)^2}{(2^2)^2} = \frac{(\epsilon+2)^2}{(2^2)$$

$$\frac{\epsilon^{2} + 2}{(2)^{2}} = \frac{\epsilon^{2} + 2}{(2)^{2}} = \frac{\epsilon^{2} + 2}{(2)^{2}} = \frac{\epsilon^{2} - 2}{(2)^{2}} = \frac{\epsilon^$$

Teniendo en cuenta la siguiente formula de Integración: $\int \frac{du}{u^2 - a^2} = \frac{1}{2a} Ln \frac{u - a}{u + a}$

$$u = y + \frac{\epsilon}{2} = \frac{1}{2} \frac{1}{2 - \frac{\epsilon}{2}} Ln \frac{y + \frac{\epsilon}{2} - \frac{-\epsilon}{2}}{y + \frac{\epsilon}{2} + \frac{-\epsilon}{2}} = \frac{1}{-\epsilon} Ln \frac{y + \frac{\epsilon}{2} - \epsilon}{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}} = \frac{1}{2} Ln \frac{y + \frac{\epsilon}{2} - \epsilon}{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}} = \frac{1}{2} Ln \frac{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}}{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}} = \frac{1}{2} Ln \frac{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}}{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}} = \frac{1}{2} Ln \frac{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}}{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}} = \frac{1}{2} Ln \frac{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}}{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}} = \frac{1}{2} Ln \frac{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}}{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}} = \frac{1}{2} Ln \frac{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}}{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}} = \frac{1}{2} Ln \frac{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}}{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}} = \frac{1}{2} Ln \frac{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}}{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}} = \frac{1}{2} Ln \frac{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}}{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}} = \frac{1}{2} Ln \frac{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}}{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}} = \frac{1}{2} Ln \frac{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}}{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}} = \frac{1}{2} Ln \frac{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}}{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}} = \frac{1}{2} Ln \frac{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}}{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}} = \frac{1}{2} Ln \frac{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}}{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}} = \frac{1}{2} Ln \frac{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}}{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}} = \frac{1}{2} Ln \frac{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}}{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}} = \frac{1}{2} Ln \frac{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}}{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}} = \frac{1}{2} Ln \frac{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}}{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}} = \frac{1}{2} Ln \frac{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}}{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}} = \frac{1}{2} Ln \frac{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}}{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}} = \frac{1}{2} Ln \frac{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}}{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}} = \frac{1}{2} Ln \frac{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}}{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}} = \frac{1}{2} Ln \frac{y + \frac{\epsilon}{2} - \frac{\epsilon}{2}}$$

Teniendo en cuenta que $y = \in Z$ y que X = b

$$\frac{1}{-\epsilon} Ln \frac{y + \frac{2\epsilon}{2}}{y + \frac{2}{2}} = \frac{1}{-\epsilon} Ln \frac{y + \frac{\epsilon}{y}}{y + 1} = \frac{1}{-\epsilon} Ln \frac{\epsilon X + \frac{\epsilon}{z}}{\epsilon X + 1} = \frac{1}{-\epsilon} Ln \frac{\epsilon (X + \frac{1}{z})}{\epsilon (X + \frac{1}{\epsilon})} = \frac{1}{\epsilon (X + \frac{1}{\epsilon})} = \frac{1}{\epsilon (X + \frac{1}{\epsilon})} = \frac{1}{-\epsilon} Ln \frac{(X + \frac{1}{\epsilon})}{(X +$$

$$\frac{1}{-\epsilon}(Ln\frac{X+1}{X\epsilon+1}+Ln\frac{\epsilon}{-\epsilon}) = \frac{1}{-\epsilon}Ln\frac{X+1}{X\epsilon+1} + \frac{1}{-\epsilon}Ln\frac{\epsilon}{-\epsilon} = \frac{1}{-\epsilon}Ln\frac{b+1}{b\epsilon+1} + \frac{1}{-\epsilon}Ln\frac{\epsilon}{-\epsilon}$$

La integral así esta resulta de una forma indefinida hay que resolverla para una forma definida para $_1 = 0$ hasta $_2 =$

De este modo tendremos que:

$$\begin{split} I &= \int_{0} \frac{d(b)}{(1+\epsilon b)(1+b)} = \frac{1}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} + \frac{1}{-\epsilon} Ln \frac{\epsilon}{-\epsilon} - \left(\frac{1}{-\epsilon} Ln \frac{0b}{0b\epsilon+1} + \frac{1}{-\epsilon} Ln \frac{\epsilon}{-\epsilon} Ln \frac{\epsilon}{-\epsilon} \right) \\ &= \frac{1}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} + \frac{1}{-\epsilon} Ln \frac{\epsilon}{-\epsilon} - \left(\frac{1}{-\epsilon} Ln 1 + \frac{1}{-\epsilon} Ln \frac{\epsilon}{-\epsilon}\right) \\ &= \frac{1}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} + \frac{1}{-\epsilon} Ln \frac{\epsilon}{-\epsilon} - \left(\frac{1}{-\epsilon} 0 + \frac{1}{-\epsilon} Ln \frac{\epsilon}{-\epsilon}\right) \\ &= \frac{1}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} + \frac{1}{-\epsilon} Ln \frac{\epsilon}{-\epsilon} - \left(\frac{1}{-\epsilon} Ln \frac{\epsilon}{-\epsilon}\right) \\ &= \frac{1}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} + \frac{1}{-\epsilon} Ln \frac{\epsilon}{-\epsilon} - \left(\frac{1}{-\epsilon} Ln \frac{\epsilon}{-\epsilon}\right) \\ &= \frac{1}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} + \frac{1}{-\epsilon} Ln \frac{\epsilon}{-\epsilon} - \left(\frac{1}{-\epsilon} Ln \frac{\epsilon}{-\epsilon}\right) \\ &= \frac{1}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} + \frac{1}{-\epsilon} Ln \frac{\epsilon}{-\epsilon} - \left(\frac{1}{-\epsilon} Ln \frac{\epsilon}{-\epsilon}\right) \\ &= \frac{1}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} + \frac{1}{-\epsilon} Ln \frac{\epsilon}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} \\ &= \frac{1}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} + \frac{1}{-\epsilon} Ln \frac{\epsilon}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} \\ &= \frac{1}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} + \frac{1}{-\epsilon} Ln \frac{\epsilon}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} \\ &= \frac{1}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} + \frac{1}{-\epsilon} Ln \frac{\epsilon}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} \\ &= \frac{1}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} + \frac{1}{-\epsilon} Ln \frac{\epsilon}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} \\ &= \frac{1}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} + \frac{1}{-\epsilon} Ln \frac{\epsilon}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} \\ &= \frac{1}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} + \frac{1}{-\epsilon} Ln \frac{\epsilon}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} \\ &= \frac{1}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} + \frac{1}{-\epsilon} Ln \frac{\epsilon}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} \\ &= \frac{1}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} \\ \\ &= \frac{1}{-\epsilon} Ln \frac{2b}{2b\epsilon+1} \\ &= \frac{1}{-\epsilon} Ln \frac{$$
Caso 2: $\in =$

La ecuación de Van der Waals es la única que se considera aquí cuando se aplica el caso 2,y teniendo en cuanta que tanto ε como σ son iguales a cero.

$$I = \int_0 \frac{d(b)}{(1+\epsilon b)(1+b)} = \int_0 \frac{d(b)}{(1+0b)(1+0b)} = \int_0 \frac{d(b)}{(1)(1)} = \int_0 d(b) = \frac{1}{Z}$$

Con la evaluación de la última integral la ecuación (48) queda así:

$$\frac{G^{R}}{RT} = -Ln(1 - b) - qI + Z - 1 - LnZ$$
(48)

La ecuación (48), escrita para la mezcla y multiplicada por n, se deriva para obtener el primer término en la ecuación (45).

$$\frac{nG^{R}}{RT} = -nLn(1-b)Z - (nq)I + nZ - n$$
$$\frac{\partial}{\partial n_{i}} \left[nG^{R} / RT \right] = -nLn(1-b)Z - (nq)I + nZ - n$$
$$\frac{\partial \left(nG^{R} / RT \right)}{\partial n_{i}} = \frac{\partial}{\partial n_{i}} \left[-nLn(1-b)Z - (nq)I + nZ - n \right]$$
$$\frac{\partial \left(nG^{R} / RT \right)}{\partial n_{i}} = -\frac{\partial}{\partial n_{i}} \left[nLn(1-b)Z \right] - \frac{\partial}{\partial n_{i}} \left[(nq)I \right] + \frac{\partial}{\partial n_{i}} (nZ) - \frac{\partial}{\partial n_{i}} n$$

Teniendo en cuenta que $n = n_i + n_j$ y que n_j es constante:

$$\frac{\partial \left(nG^{R}/RT\right)}{\partial n_{i}} = -\frac{\partial}{\partial n_{i}}n[Ln(1-b) + LnZ] - \frac{\partial}{\partial n_{i}}[(nq)I] + \frac{\partial}{\partial n_{i}}(nZ) - \frac{\partial}{\partial n_{i}}(n_{i} + n_{j})$$

$$\frac{\partial \left(nG^{R}/RT\right)}{\partial n_{i}} = -\frac{\partial}{\partial n_{i}}n[Ln(1-b) + LnZ] - \frac{\partial}{\partial n_{i}}[(nq)I] + \frac{\partial}{\partial n_{i}}(nZ) - \frac{\partial}{\partial n_{i}}n_{i} - \frac{\partial}{\partial n_{i}}n_{j}$$

$$\frac{\partial \left(nG^{R}/RT\right)}{\partial n_{i}} = -n\frac{\partial}{\partial n_{i}}[Ln(1-b) + LnZ] - (Ln(1-b) + LnZ)\frac{\partial}{\partial n_{i}}n - \frac{\partial}{\partial n_{i}}[(nq)I] + \frac{\partial}{\partial n_{i}}(nZ) - 1$$

$$\frac{\partial \left(nG^{R}/RT\right)}{\partial n_{i}} = -n\left[\frac{\partial}{\partial n_{i}}Ln(1-b) + \frac{\partial}{\partial n_{i}}LnZ\right] - (Ln(1-b) + LnZ) - \frac{\partial}{\partial n_{i}}[(nq)I] + \frac{\partial}{\partial n_{i}}(nZ) - 1$$

$$\frac{\partial \left(nG^{R}/RT\right)}{\partial n_{i}} = -n\left[\frac{\partial}{\partial n_{i}}Ln(1-b) + \frac{\partial}{\partial n_{i}}LnZ\right] - (Ln(1-b)Z) - \frac{\partial}{\partial n_{i}}[(nq)I] + \frac{\partial}{\partial n_{i}}(nZ) - 1$$

$$\frac{\partial \left(nG^{R}/RT\right)}{\partial n_{i}} = -n\left[\frac{\partial}{\partial n_{i}}Ln(1-b) + \frac{\partial}{\partial n_{i}}LnZ\right] - \left(Ln(1-b)Z\right) - (nq)\frac{\partial I}{\partial n_{i}} - I\frac{\partial}{\partial n_{i}}(nq) + \frac{\partial}{\partial n_{i}}(nZ) - 1$$

También útiles para la aplicación de ecuaciones de estado a mezclas son los parámetros parciales de la ecuación de estado, que se definen por:

$$\bar{a}_{i} \equiv \left[\frac{\partial(na)}{\partial n_{i}}\right]_{T,n_{j}} \qquad \bar{b}_{i} \equiv \left[\frac{\partial(nb)}{\partial n_{i}}\right]_{T,n_{j}} \qquad \bar{q}_{i} \equiv \left[\frac{\partial(nq)}{\partial n_{i}}\right]_{T,n_{j}}$$

Tomando en cuenta la última definición la ecuación anterior queda de la siguiente forma:

$$\frac{\partial \left(nG^{R}/RT\right)}{\partial n_{i}} = -n\left[\frac{\partial}{\partial n_{i}}Ln(1-b) + \frac{\partial}{\partial n_{i}}LnZ\right] - \left(Ln(1-b)Z\right) - nq\frac{\partial I}{\partial n_{i}} - I\bar{q}_{i} + \frac{\partial}{\partial n_{i}}(nZ) - 1$$

Reordenando la ecuación queda así:

$$\frac{\partial \left(nG^{R} / RT \right)}{\partial n_{i}} = \frac{\partial (nZ)}{\partial n_{i}} - 1 - Ln(1 - b)Z - n \left[\frac{\partial Ln(1 - b)}{\partial n_{i}} + \frac{\partial LnZ}{\partial n_{i}} \right] - nq \frac{\partial I}{\partial n_{i}} - I\bar{q}_{i}$$

Sustituyendo la última ecuación en (45) se tiene que:

$$Ln \hat{\Phi}_{i} = \left[\frac{\partial(nG^{R} / RT)}{\partial n_{i}}\right] - \left(\frac{\partial nZ}{\partial n_{i}}\right) + \frac{1}{Z}\left(n\frac{\partial Z}{\partial n_{i}} + Z\right)$$
(45)

$$Ln \hat{\Phi}_{i} = \frac{\partial(nZ)}{\partial n_{i}} - 1 - Ln(1 - b)Z - n\left[\frac{\partial Ln(1 - b)}{\partial n_{i}} + \frac{\partial LnZ}{\partial n_{i}}\right] - nq\frac{\partial I}{\partial n_{i}} - I\bar{q}_{i} - \left(\frac{\partial nZ}{\partial n_{i}}\right) + \frac{1}{Z}\left(n\frac{\partial Z}{\partial n_{i}} + Z\right)$$
(45)

$$Ln \hat{\Phi}_{i} = -1 - Ln(1 - b)Z - n\left[\frac{\partial Ln(1 - b)}{\partial n_{i}} + n\frac{\partial LnZ}{\partial n_{i}}\right] - nq\frac{\partial I}{\partial n_{i}} - I\bar{q}_{i} + \frac{1}{Z}n\frac{\partial Z}{\partial n_{i}} + 1$$

$$Ln \hat{\Phi}_{i} = -1 - Ln(1 - b)Z - n\frac{\partial Ln(1 - b)}{\partial n_{i}} + \frac{n}{Z}\frac{\partial Z}{\partial n_{i}} - nq\frac{\partial I}{\partial n_{i}} - I\bar{q}_{i} + \frac{1}{Z}n\frac{\partial Z}{\partial n_{i}} + 1$$

$$Ln \hat{\Phi}_{i} = -Ln(1 - b)Z - \frac{n}{(1 - b)}\frac{\partial(1 - b)}{\partial n_{i}} - nq\frac{\partial I}{\partial n_{i}} - I\bar{q}_{i}$$

$$Ln \hat{\Phi}_{i} = -Ln(1 - b)Z - \frac{n}{(1 - b)}\frac{\partial(1 - b)}{\partial n_{i}} - nq\frac{\partial I}{\partial n_{i}} - I\bar{q}_{i}$$

$$Ln \hat{\Phi}_{i} = -Ln(1 - b)Z - \frac{n}{(1 - b)}\frac{\partial(b)}{\partial n_{i}} - nq\frac{\partial I}{\partial n_{i}} - I\bar{q}_{i}$$

Todo lo que resta es la evaluación de las dos derivadas parciales. La primera es:

$$\frac{\partial(b)}{\partial n_i} = \frac{\partial\left(\frac{nb}{n/b}\right)}{\partial n_i} = -\frac{\partial}{n}\overline{b}_i$$

La segunda es consecuencia de la derivación de I. Después de una reducción algebraica considerable ésta produce:

$$\begin{split} \frac{\partial}{\partial n_i} \left[I = \frac{1}{-\epsilon} Ln \left(\frac{1+b}{1+\epsilon} \right) \right] &= \frac{1}{-\epsilon} \frac{\partial}{\partial n_i} Ln \left(\frac{1+b}{1+\epsilon} \right) \\ &= \frac{1}{-\epsilon} \frac{\partial}{\partial n_i} Ln \left(\frac{1+b}{1+\epsilon} \right) \\ &= \frac{1}{-\epsilon} \frac{\partial}{\partial n_i} \frac{1+b}{1+\epsilon} \\ &= \frac{1}{-\epsilon} \frac{\frac{\partial}{\partial n_i} \frac{1+b}{1+\epsilon} }{\frac{1+b}{1+\epsilon} } \\ &= \frac{1}{-\epsilon} \frac{\frac{(1+\epsilon)}{\partial n_i} (1+b) - (1+b)}{\frac{1+\epsilon}{1+\epsilon} } \\ &= \frac{1}{-\epsilon} \frac{(1+\epsilon) \left((1+\epsilon) \frac{\partial}{\partial n_i} (1+b) - (1+b) \frac{\partial}{\partial n_i} (1+\epsilon) \right)}{(1+\epsilon) (1+\epsilon) (1+\epsilon)} \\ &= \frac{1}{-\epsilon} \frac{(1+\epsilon) \left((1+\epsilon) \frac{\partial}{\partial n_i} (1+b) - (1+b) \frac{\partial}{\partial n_i} (1+\epsilon) \right)}{(1+\epsilon) (1+\epsilon)} \\ &= \frac{1}{-\epsilon} \frac{(1+\epsilon) \left((1+\epsilon) \frac{\partial}{\partial n_i} (1+b) - (1+b) \frac{\partial}{\partial n_i} (1+\epsilon) \right)}{(1+\epsilon) (1+\epsilon)} \\ &= \frac{1}{-\epsilon} \frac{(1+\epsilon) \left((1+\epsilon) \frac{\partial}{\partial n_i} (1+b) - (1+b) \frac{\partial}{\partial n_i} (1+\epsilon) \right)}{(1+\epsilon) (1+\epsilon) (1+\epsilon)} \\ &= \frac{1}{-\epsilon} \frac{(1+\epsilon) \left((1+\epsilon) \frac{\partial}{\partial n_i} (1+b) - (1+b) \frac{\partial}{\partial n_i} (1+\epsilon) \right)}{(1+\epsilon) (1+\epsilon) (1+\epsilon)} \\ &= \frac{1}{-\epsilon} \frac{(1+\epsilon) \left((1+\epsilon) \frac{\partial}{\partial n_i} (1+b) - (1+b) \frac{\partial}{\partial n_i} (1+\epsilon) \right)}{(1+\epsilon) (1+\epsilon) (1+\epsilon)} \\ &= \frac{1}{-\epsilon} \frac{(1+\epsilon) \left((1+\epsilon) \frac{\partial}{\partial n_i} (1+b) - (1+b) \frac{\partial}{\partial n_i} (1+\epsilon) \right)}{(1+\epsilon) (1+\epsilon) (1+\epsilon)} \\ &= \frac{1}{-\epsilon} \frac{(1+\epsilon) \left((1+\epsilon) \frac{\partial}{\partial n_i} (1+b) - (1+b) \frac{\partial}{\partial n_i} (1+\epsilon) \right)}{(1+\epsilon) (1+\epsilon) (1+\epsilon) (1+\epsilon) (1+\epsilon) (1+\epsilon)} \\ &= \frac{1}{-\epsilon} \frac{(1+\epsilon) \left((1+\epsilon) \frac{\partial}{\partial n_i} (1+b) - (1+b) \frac{\partial}{\partial n_i} (1+\epsilon) \right)}{(1+\epsilon) (1+\epsilon) (1+\epsilon$$

$$= \frac{1}{-\epsilon} \frac{\left((1+\epsilon \ b)\left(\frac{\partial}{\partial n_i} \ b\right) - (1+\ b)\epsilon\left(\frac{\partial}{\partial n_i} \ b\right)\right)}{(1+\epsilon \ b)(1+\ b)} =$$

$$= \left(\frac{\partial}{\partial n_i} \ b\right) \frac{1}{-\epsilon} \frac{\left((1+\epsilon \ b) \ -(1+\ b)\epsilon\right)}{(1+\epsilon \ b)(1+\ b)} =$$

$$= \left(\frac{\partial}{\partial n_i} \ b\right) \frac{1}{-\epsilon} \frac{(+\epsilon \ b-\epsilon-\epsilon-\epsilon \ b)}{(1+\epsilon \ b)(1+\ b)} =$$

$$= \left(\frac{\partial}{\partial n_i} \ b\right) \frac{1}{-\epsilon} \frac{(-\epsilon)}{(1+\epsilon \ b)(1+\ b)} =$$

$$= \left(\frac{\partial}{\partial n_i} \ b\right) \frac{1}{-\epsilon} \frac{(-\epsilon)}{(1+\epsilon \ b)(1+\ b)} =$$

$$\frac{\partial I}{\partial n_i} = \frac{\partial(-b)}{\partial n_i} \frac{1}{(1+\ b)(1+\epsilon \ b)} = \frac{\overline{b}_i}{nb} \frac{b}{(1+\ b)(1+\epsilon \ b)}$$

Al sustituir estas derivadas en la ecuación (45) se reduce a:

$$Ln \dot{\Phi}_{i} = -Ln(1 - b)Z + \frac{n}{(1 - b)} - \bar{b}_{i} - nq \frac{\bar{b}_{i}}{nb} \frac{b}{(1 + b)(1 + \epsilon)} - I\bar{q}_{i}$$

$$Ln\hat{\Phi}_{i} = -Ln(1-b)Z + \frac{b_{i}}{(1-b)}\frac{b}{b} - q\frac{b_{i}}{b}\frac{b}{(1+b)(1+c-b)} - I\bar{q}_{i}$$

$$Ln\hat{\Phi}_{i} = -Ln(1-b)Z + \frac{\bar{b}_{i}}{b}\left[\frac{b}{(1-b)} - q\frac{b}{(1+b)(1+c-b)}\right] - I\bar{q}_{i}$$

La referencia a la ecuación (46) muestra que el término entre los paréntesis cuadrados es Z-1 por lo tanto.

$$Ln \dot{\Phi}_i = -Ln(1-b)Z + \frac{b_i}{b}[Z-1] - I\bar{q}_i$$

De cualquier modo,

$$=\frac{bP}{RT}$$
 $Z = \frac{P}{RT}$ de donde: $\frac{1}{Z} = b$

Así que,

De

$$Ln \overset{\wedge}{\Phi}_{i} = \frac{\overline{b}_{i}}{b} [Z-1] - Ln(Z-) - I\overline{q}_{i}$$

Ya que la experiencia ha mostrado que la ecuación de la regla de mezclado para el parámetro b es aceptable, se ha adoptado como conveniente para los propósitos actuales. De donde $b = \sum x_i b_i$ multiplicando por n ambos lados de la ecuación se tiene:

$$nb = \sum n_i b_i$$

$$\overline{b}_{i} \equiv \left[\frac{\partial(nb)}{\partial n_{i}}\right]_{T,n_{j}} = \left[\frac{\partial(n_{i}b_{i})}{\partial n_{i}}\right]_{T,n_{j}} + \sum_{j} \left[\frac{\partial(n_{j}b_{j})}{\partial n_{i}}\right]_{T,n_{j}} = b_{i}$$

Debido a eso la ecuación para el coeficiente de fugacidad queda así:

$$Ln \dot{\Phi}_i = \frac{b_i}{b} [Z-1] - Ln(Z-) - I\bar{q}_i$$

El parámetro q se define en relación con los parámetros a y b por su definición. La relación del parámetro parcial \overline{q}_i a \overline{a}_i y \overline{b}_i se encuentra al derivar esta ecuación:

$$nq = \frac{n(na)}{RT(nb)}$$

donde, $\overline{q}_i \equiv \left[\frac{\partial(nq)}{\partial n_i}\right]_{T,n_j} = q\left(1 + \frac{\overline{a}_i}{a} - \frac{\overline{b}_i}{b}\right) = q\left(1 + \frac{\overline{a}_i}{a} - \frac{b_i}{b}\right)$

39

Dos de los tres parámetros parciales cualesquiera forman un par independiente, y cualquiera de ellos se halla a partir de los otros dos.

3.6. Reglas de mezclado.

En el terreno de las mezclas, el cálculo del equilibrio líquido vapor es altamente sensible a la elección de las reglas de mezclado, en particular a la del parámetro "a", y en algunas ocasiones resulta mas importante que la selección de la ecuación de estado. En virtud de lo anterior, desde la época de Van der Waals se ha intentado establecer lo que pudiera ser las reglas optimas para la obtención de los parámetros de la mezcla⁴.

La mayoría de las reglas propuestas carecen de un fundamento suficientemente sólido y en consecuencia, todas poseen en mayor o menor grado un componente de empirismo e intuición.

Las reglas que se han utilizado con éxito en el campo de las ecuaciones cúbicas son casos particulares de la expresión cuadrática, que aplicada al parámetro "a" resulta.

$$a = \sum \sum x_i x_j a_{ij}$$

donde a es el valor del parámetro en la mezcla y "a_{ij}" representa el parámetro de interacción entre las especies "i" y "j".

En el caso del parámetro "b", ha sido práctica común adoptar una media aritmética para b_{ii} obteniendo de esta manera la expresión lineal.

$$b = \sum x_i b_i$$

esta expresión tiene la ventaja de relacionar "b" directamente con el volumen promedio de las moléculas y prácticamente todos los modelos exitosos la usan.

En relación al parámetro " a_{ij} " podemos observar que su forma de calculo ha sufrido diversas modificaciones, particularmente en los últimos años en los que se ha notado gran actividad tratando de superar el desempeño de la regla clásica que utiliza un solo parámetro de interacción binaria. Esta regla establece que el termino " a_{ij} " es independiente de la composición y de esta manera logra la correlación de datos de

⁴ Para mas información del tema consultar referencia bibliografica 3 y el articulo con referencia 1.

equilibrio liquido vapor para mezclas de hidrocarburos, pero es incapaz de hacerlo para sistemas compuestos por sustancias polares o líquidos asociados.

Esta situación ha motivado la búsqueda de reglas mas eficientes y condujo a la aparición de reglas de dos y tres parámetros en las que el termino cruzado "a_{ij}" es función de la composición. En este grupo se encuentran las reglas propuestas por Huron-Vidal (1979), Panagiotopoulos-Reid (1985), Stryjek-Vera(1986),Adachi-Sugie (1986), y Sandoval(1989).

La regla propuesta por Huron y Vidal (1979) introduce los modelos de energía libre de Gibbs de exceso como un paso intermedio para determinar la forma de la regla de mezclado aplicable al parámetro "a". Una característica importante es que fue la primera en introducir una función de composición para el cálculo del término cruzado "a_{ij}".

El desarrollo parte de identificar que los parámetros determinantes en el comportamiento de una mezcla son el covolumen "b" y el parámetro energético a/b. Posteriormente establecen una relación entre estoa y la energía de Gibbs de Exceso. La expresión matemática para el parámetro "a" de la mezcla es:

$$a = b \left[\sum x_i \frac{a_i}{b_i} - \frac{G_{\infty}^E}{C} \right]$$

donde G_{∞}^{E} es la energía de Gibbs de exceso a presión infinita y C es una constante que depende de la ecuación de estado utiliza. El número de constantes asociadas a esta regla depende del modelo utilizado para describir la energía de Gibbs de exceso.

La regla de Huron-Vidal estableció que se requerían al menos dos constantes empíricas dentro de la regla de mezclado si se quería describir las condiciones de equilibrio de sistemas altamente no ideales con las ecuaciones cúbicas disponibles. Respondiendo a esta idea, Panagiotopoulos y Reid (1985) proponen una regla lineal que corrige la media geométrica clásica de acuerdo a la expresión:

$$a_{ij} = (a_i a_j)^{0.5} \left[1 - k_{ij} + (k_{ij} - k_{ji}) x_i \right]$$

donde k_{ij} y k_{ji} son las dos constantes empíricas que se obtienen a partir de sistemas binarios. Al igual que la regla de Huron-Vidal proporciona resultados aceptables para aplicaciones a nivel industrial.

Casi en forma simultánea a la presentación de la regla de Panagiotopoulos-Reid fue presentada una regla similar (Stryjek y Vera 1986a), que denominaremos SVA. La expresión para el término de interacción es:

$$a_{ij} = (a_i a_j)^{0.5} \left[1 - k_{ij} x_i - k_{ji} x_j \right]$$

a primera vista esta regla parece equivalente a la de Panagiotopoulos-Reid y para sistemas binarios en realidad lo es, sin embargo al aplicarlas a sistemas multicomponentes la de Panagiotopoulos produce resultados aceptables mientras que la de Stryjek produce muy pobres.

Además de la regla anterior, en el mismo trabajo Stryjek y Vera (1986b) proponen otra regla (SVB) cuya expresión matemática es:

$$a_{ij} = (a_i a_j)^{0.5} \left[1 - \frac{k_{ij} k_{ji}}{k_{ij} x_i + k_{ji} x_j} \right]$$

en algunos casos, para sistemas binarios, esta regla llega a dar resultados superiores a los producidos por la de Panagiotopoulos-Reid o su equivalente Stryjek-Vera (SVA),sin embargo en general es menos confiable que la SVA. En el caso de sistemas multicomponentes también presenta limitaciones.

En el mismo año surgió otra regla de dos parámetros que constituye un intento por dar a las reglas de mezclado un mayor soporte teórico (Adachi y Sugie 1986). Los autores reportan que súrgela es equivalente con la de Panagiotopoulos-Reid para sistemas binarios y que para multicomponentes la suya es superior, sin embargo posteriormente Sandoval (1989) demuestran que ambas reglas son totalmente equivalentes. No obstante la modificación de Adachi-Sugie constituye un ejercicio interesante ya que utilizando el metodo de Whol justifican la aplicación de la regla a sistemas multicomponentes.

Con la finalidad de mejorar el comportamiento de la regla de Stryjek-Vera (SVA), Sandoval (1989) proponen una nueva expresión de dos parámetros, que denominaremos regla generalizada de dos parámetros (RG2).

$$a_{ij} = (a_i a_j)^{0.5} \left[1 - \overline{k}_{ij} - \Delta k_{ij} x_i = \Delta k_{ji} x_j \right]$$
$$\overline{k}_{ij} = \frac{k_{ij} + k_{ji}}{2}$$
$$\Delta k_{ij} = k_{ij} - k_{ji}$$

esta regla no solo mejora el comportamiento de la regla SVA, sino que además engloba a las tres reglas, Stryjek-Vera, Panagiotopoulos-Reid y Adachi-Sugie, en la descripción de sistemas binarios y a dos de ellas en la de multicomponentes, ya que la SVA no es apropiada para este tipo de sistemas. Esta deficiencia se origina en la mala dependencia de composición dada por la regla SVA que se traduce en valores inapropiados para los coeficientes de fugacidad y este efecto se acentúa a medida que uno de los componentes se diluye.

4. DETERMINACIÓN DE LOS COEFICIENTES DE ACTIVIDAD.

4.1. La solución ideal.

El gas ideal es un modelo útil del comportamiento de gases, y sirve como una norma para la cual es factible comparar el comportamiento del gas real, y además se formaliza por la introducción de las propiedades residuales. Otro modelo útil es la solución ideal, que sirve como una norma con la cual resulta posible comparar el comportamiento de la solución real.

La ecuación (24) establece el comportamiento de la especie i en una mezcla de gas ideal:

$$\overline{G}_{i}^{ig} = G_{i}^{ig} + RTLny_{i}$$

Tal ecuación adquiere una nueva dimensión cuando G_i^{ig} , la energía de Gibbs de la especie pura i en el estado de gas ideal, se reemplaza por G_i , la energía de Gibbs de la especie pura i como realmente existe en la mezcla a T y P y en el mismo estado físico que la mezcla. Por tanto esta se aplica a la especie en las soluciones reales. Por esto definimos una solución ideal como una para la cual:

$$\overline{G}_{i}^{id} = G_{i} + RTLn \mathbf{x}_{i} \tag{46}$$

donde el superíndice id denota una propiedad de una solución ideal. En este caso la fracción mol se representa por x_i para reflejar el hecho de que la aplicación es más frecuente en líquidos. Todas las demás propiedades termodinámicas para una solución ideal son derivadas de la ecuación (46).

4.1.1. La regla de Lewis/Randall.

Una sencilla ecuación para la fugacidad de una especie en una solución ideal es consecuencia de la ecuación (46). Escrita para el caso particular de la especie i en la solución ideal, la ecuación (35) se convierte en:

$$\hat{f}_{i}^{id} = \overline{G}_{i}^{id} = \Gamma_{i}(T) + RT \operatorname{Ln} \hat{f}_{i}^{id}$$

Cuando esta ecuación y la (27) se combinan con la ecuación (46), $\Gamma_i(T)$ se elimina y la expresión que resulta se reduce a:

$$\hat{f_i^{id}} = x_i f_i \tag{47}$$

Dicha ecuación, conocida como la regla de Lewis/Randall, se aplica a cada especie en una solución ideal en todas las condiciones de temperatura, presión y composición. Se observa que la fugacidad de cada especie en una solución ideal es proporcional a su fracción mol; la constante de proporcionalidad es la fugacidad de la especie pura i en el mismo estado físico de la solución y las mismas T y P.

4.2. Propiedades de Exceso.

La energía de Gibbs residual y el coeficiente de fugacidad se encuentran directamente relacionados con los datos experimentales PVT por las ecuaciones (32) y (33). Donde tales datos están correlacionados de manera adecuada por las ecuaciones de estado, la información de las propiedades termodinámicas es ventajosamente proporcionada por las propiedades residuales. En realidad, si fuera posible el tratamiento conveniente de todos los fluidos por medio de las ecuaciones de estado, serían suficientes las relaciones de las propiedades termodinámicas ya presentes. Sin embargo, las soluciones líquidas a menudo se tratan mas fácilmente con propiedades que miden sus desviaciones, no desde

su comportamiento de gas ideal, sino a partir de su comportamiento como solución ideal. En esos términos, el formalismo matemático de propiedades de exceso es análogo al de las propiedades residuales.

Si M representa el valor molar (o por unidad de masa) de cualquier propiedad termodinámica extensiva, una propiedad de exceso se (M^E) define como la diferencia entre el valor real de la propiedad de una solución y el valor que tendría como una solución ideal a las mismas temperatura, presión y composición. Así que,

$$M^E = M - M^{id} \tag{48}$$

La relación de propiedad parcial análoga a la ecuación (38) es:

$$\overline{M}_i^E \equiv \overline{M}_i - \overline{M}_i^{ig}$$

donde \overline{M}_i^E es una propiedad de exceso parcial.

4.3. La energía de Gibbs de exceso y el coeficiente de actividad.

La energía de Gibbs molar parcial es de particular interés. La ecuación (35) se escribe

como:
$$\overline{G}_i = \Gamma_i(T) + RT \operatorname{Ln} \hat{\mathrm{f}}$$

De acuerdo con la ecuación (47) para una solución ideal, esta será:

$$\overline{G}_i^{id} = \Gamma_i(T) + RT \operatorname{Ln} \mathbf{x}_i f_i$$

Por la diferencia,

De donde,

$$\overline{G}_i - \overline{G}_i^{id} = RT \operatorname{Ln} \frac{\hat{f}}{\mathbf{x}_i f_i}$$

El lado izquierdo de esta ecuación es la energía libre de Gibbs de exceso parcial \overline{G}_i^E ; la relación adimensional $\frac{\hat{f}}{\mathbf{x}_i f_i}$ que aparece en el lado derecho es el coeficiente de

actividad de la especie i en la solución, cuyo símbolo es γ_i . Así, por definición,

$$\Gamma_i \equiv \frac{\hat{f}}{\mathbf{x}_i f_i} \tag{49}$$

$$\overline{G}_{i}^{E} = RT \operatorname{Ln}\Gamma_{i}$$
(50)

Estas ecuaciones establecen un fundamento termodinámico para el coeficiente de actividad, el cual aparece como un factor introducido en la ley de Raoult al considerar la fase líquida no ideal.

Una forma alternativa se obtiene por medio de la siguiente identidad matemática:

$$d\left(\frac{nG}{RT}\right) = \frac{RT(dnG) - nGd(RT)}{(RT)^2} = \frac{dnG}{RT} - \frac{nGRdT}{(RT)^2} = \frac{dnG}{RT} - \frac{nG dT}{RT^2}.$$

Donde nG se reemplaza por la ecuación (14) y G se reemplaza por su definición H-TS.

$$d\left(\frac{nG}{RT}\right) = \frac{(nV)dP - (nS)dT + \sum_{i} dn_{i}}{RT} - \frac{(nG - TnS)dT}{RT^{2}}$$
$$d\left(\frac{nG}{RT}\right) = \frac{(nV)dP}{RT} - \frac{(nS)dT}{RT} + \sum_{i} \frac{i}{RT} dn_{i} - \frac{(nH)dT}{RT^{2}} + \frac{(nS)dT}{RT}$$

Donde por definición $_{i} \equiv \overline{G}_{i}$ tendremos que:

$$d\left(\frac{nG}{RT}\right) = \frac{(nV)dP}{RT} - \frac{(nS)dT}{RT} + \sum_{i} \frac{\overline{G}_{i}}{RT} dn_{i} - \frac{(nH)dT}{RT^{2}} + \frac{(nS)dT}{RT}$$
$$d\left(\frac{nG}{RT}\right) = \frac{(nV)dP}{RT} + \sum_{i} \frac{\overline{G}_{i}}{RT} dn_{i} - \frac{(nH)dT}{RT^{2}}$$

Si restamos a esta ecuación su ecuación análoga para una solución ideal:

$$d\left(\frac{nG}{RT}\right) - d\left(\frac{nG^{id}}{RT}\right) = \frac{(nV)dP}{RT} - \frac{(nV^{id})dP}{RT} + \sum_{i} \frac{\overline{G}_{i}}{RT} dn_{i} - \sum_{i} \frac{\overline{G}_{i}^{id}}{RT} dn_{i}$$
$$+ \frac{(nH)dT}{RT^{2}} - \frac{(nH^{id})dT}{RT^{2}}$$

Donde por definición $M^E = M - M^{id}$

$$d\left(\frac{nG^{E}}{RT}\right) = \frac{(nV^{E})dP}{RT} + \sum_{i} \frac{\overline{G}_{i}^{E}}{RT} dn_{i} - \frac{(nH^{E})dT}{RT^{2}}$$

Por la ecuación (50) se tiene que:

$$d\left(\frac{nG^{E}}{RT}\right) = \frac{(nV^{E})dP}{RT} + \sum_{i} Ln\Gamma_{i}dn_{i} - \frac{(nH^{E})dT}{RT^{2}}$$

La generalidad de tales ecuaciones impide su aplicación directa práctica. Es más, su uso está hecho de formas restringidas, una forma de peculiar importancia para equilibrio vapor líquido se deduce por simple inspección:

$$\left[\frac{\partial \left(nG^{E}/RT\right)}{\partial n_{i}}\right]_{P,T,n_{j}} = Ln\Gamma_{i}$$
(51)

Las formas siguientes de las ecuaciones de la sumatoria y Gibbs/Duhem son producto de la situación de que ln γ_i es una propiedad parcial con referencia a G^E/RT :

$$\frac{G^{E}}{RT} = \sum_{i} x_{i} Ln \Gamma_{i}$$
(52)
$$\sum_{i} x_{i} dLn \Gamma_{i} = 0 \quad (T, P \text{ constantes})$$

Tales ecuaciones tienen importantes aplicaciones en la termodinámica de equilibrio de fases. La deducción de tales ecuaciones parte de la observación de que las propiedades termodinámicas de una fase homogénea son funciones de la temperatura, la presión y de los números de moles de cada especie que constituye la fase. De esta manera para una propiedad termodinámica en este caso G^E se tiene que:

$$nG^{E} = G^{E}(T, P, n_{1}, n_{2}, ..., n_{i}, ...)$$

La diferencial total de nG^E es:

$$d(nG^{E}) = \left[\frac{\partial(nG^{E})}{\partial P}\right]_{T,n} dP + \left[\frac{\partial(nG^{E})}{\partial T}\right]_{P,n} dT + \sum_{i} \left[\frac{\partial(nG^{E})}{\partial n_{i}}\right]_{P,T,n_{j}} dn_{i}$$

donde el subíndice n denota que todos los números de moles se mantienen constantes, y el subíndice n_j que todos los números de moles, excepto n_i , también se conservan constantes. Como las dos primeras derivadas parciales en la derecha se evalúan a n constante y ya que la derivada parcial el último término se da por la ecuación (17) esta ecuación tiene la forma simple:

$$d(nG^{E}) = n \left[\frac{\partial (G^{E})}{\partial P} \right]_{T,x} dP + n \left[\frac{\partial (G^{E})}{\partial T} \right]_{P,x} dT + \sum_{i} \overline{G}_{i}^{E} dn_{i}$$

donde el subíndice x indica la diferenciación a composición constante.

Puesto que $n_i = x_i n$, $dn_i = x_i dn + n dx_i$

Cuando se sustituye dn_i por esta expresión, y $d(nG^E)$ por la identidad,

$$d(nG^{E}) = ndG^{E} + G^{E}dn$$

La ecuación será:

$$ndG^{E} + G^{E}dn = n \left[\frac{\partial(G^{E})}{\partial P}\right]_{T,x} dP + n \left[\frac{\partial(G^{E})}{\partial T}\right]_{P,x} dT + \sum_{i} \overline{G}_{i}^{E}(x_{i}dn + ndx_{i})$$

Los términos con n se unen y se separan de aquellos que contienen a dn para obtener:

$$\left[dG^{E} - \left[\frac{\partial(G^{E})}{\partial P}\right]_{T,x}dP - \left[\frac{\partial(G^{E})}{\partial T}\right]_{P,x}dT - \sum_{i}\overline{G}_{i}^{E}dx_{i}\right]n + \left[G^{E} - \sum_{i}x_{i}\overline{G}_{i}^{E}\right]dn = 0$$

En las aplicaciones, se es libre de elegir un sistema de cualquier tamaño que se representa por n, y de seleccionar alguna variación en su tamaño, que se representa por dn. Así n y dn son independientes y arbitrarios. Por tanto, la única manera de que el lado izquierdo de esta ecuación sea, en general, cero, es que cada termino entre paréntesis sea también cero. Por tanto,

$$dG^{E} = \left[\frac{\partial(G^{E})}{\partial P}\right]_{T,x} dP + \left[\frac{\partial(G^{E})}{\partial T}\right]_{P,x} dT + \sum_{i} \overline{G}_{i}^{E} dx_{i}$$
(53)

$$G^{E} = \sum_{i} x_{i} \overline{G}_{i}^{E}$$
(54)

Dividiendo la ecuación (54) entre RT a ambos lados de la ecuación y comparando el resultado con la ecuación (50) se tiene:

$$\frac{G^E}{RT} = \sum_i x_i Ln \Gamma_i$$

Puesto que la ecuación (54) es una expresión general para G^E , al diferenciar se obtiene una expresión general para dG^E :

$$dG^{E} = \sum_{i} x_{i} d\overline{G}_{i}^{E} + \sum_{i} \overline{G}_{i}^{E} dx_{i}$$
(55)

Si se compara esta ecuación (55) con la (53), otra ecuación general para dG^E , se obtiene:

$$\sum_{i} x_{i} d\overline{G}_{i}^{E} + \sum_{i} \overline{G}_{i}^{E} dx_{i} = \left[\frac{\partial(G^{E})}{\partial P}\right]_{T,x} dP + \left[\frac{\partial(G^{E})}{\partial T}\right]_{P,x} dT + \sum_{i} \overline{G}_{i}^{E} dx_{i}$$

Simplificando:

$$\sum_{i} x_{i} d\overline{G}_{i}^{E} = \left[\frac{\partial(G^{E})}{\partial P}\right]_{T,x} dP + \left[\frac{\partial(G^{E})}{\partial T}\right]_{P,x} dT$$

Para el caso especial de cambios a T y P constante, se simplifica a:

$$\sum_{i} x_i d\overline{G}_i^E = 0$$

Si se multiplica por 1/RT a ambos lados de la ecuación y comparando el resultado con la ecuación (50) se tiene:

$$\sum_{i} x_{i} dLn \Gamma_{i} = 0 \quad (T, P \text{ constantes})$$

5. MODELOS PARA EL EQUILIBRIO LIQUIDO VAPOR.

Cuando la termodinámica se aplica al equilibrio vapor/líquido, al objetivo es encontrar mediante el cálculo a las temperaturas, presiones y las composiciones de las fases en equilibrio. Realmente, la termodinámica proporciona la estructura matemática para la sistemática correlación, extensión, generalización, evaluación e interpretación de datos. Además, es el medio por el cual las predicciones de varias teorías de física molecular y de mecánica estadística se utilizan para propósitos prácticos; ninguna se realiza sin modelos del comportamiento se sistema en equilibrio vapor/líquido. Los dos más sencillos son la ley de Raoult y la de Henry

5.1. La ley de Raoult.

Las dos principales suposiciones que se requieren para reducir los cálculos de EVL a la ley de Raoult son:

- La fase de vapor es un gas ideal
- La fase liquida es una solución ideal

La primera suposición significa que la ley de Raoult se aplica sólo a presiones de bajas a moderadas. La segunda implica que se tiene validez aproximada siempre y cuando las especies que componen el sistema sean químicamente semejantes. Al igual que el gas ideal es útil como un modelo con el cual se puede comparar el comportamiento del gas real, la solución ideal representa un modelo con el que se puede comparar el comportamiento de una solución real. El comportamiento de la solución ideal se aproxima por lo regular por fases líquidas donde las especies moleculares no son muy distintas en tamaño, pero sí en la misma naturaleza química.

La expresión matemática que revela las dos conjeturas listadas y que proporciona por tanto una expresión cuantitativa de la ley de Raoult es:

$$y_i P = x_i P_i^{sat}$$
 (i=1,2,...,N)

Donde x_i es una fracción mol de fase líquida, y_i es una fracción mol de fase vapor, y P_i^{sat} es la presión de vapor de las especies puras i a la temperatura del sistema. El producto y_i P en el lado izquierdo de la ecuación se conoce la presión parcial de la especie i .

El modelo simple para EVL que se representa por la ecuación proporciona una descripción evidente del comportamiento real para una clase relativamente pequeña de sistemas. No obstante, considera útil para mostrar cálculos de EVL en su forma más simple, y también es adecuada como una norma de comparación para sistemas más complejos. Una limitación de la ley de Raoult es que se aplica sólo a especies que se les conoce una presión de vapor, para ello se requiere que las especies sean "subcríticas", es decir, que la temperatura de aplicación sea menor que la temperatura crítica de las especies. Una característica importante y útil de la ley de Raoult es que resulta válida para cualquier especie presente con una fracción mol que se aproxime a la unidad, siempre que la fase vapor sea un gas ideal. Aquí la similitud química de las especies constituyentes no es un requerimiento.

Para presiones de bajas a moderadas una ecuación mucho más efectiva para el EVL se obtiene cuando se abandona la segunda suposición importante de la ley de Raoult, y se toman en cuenta las desviaciones con respecto a la solución idealizada en la fase líquida mediante la inserción de un factor en la ley de Raoult, que se modifica para escribirse como:

$$y_i P = x_i \Gamma_i P_i^{sat} \quad (i = 1, 2..., N)$$

El factor γ_i se llama coeficiente de actividad. Los cálculos de punto de burbuja y de punto de rocío hechos con esta ecuación son únicamente un poco más complejos que los mismos cálculos realizados con la ley de Raoult. Los coeficientes de actividad son funciones de la temperatura y de la composición de la fase líquida, y finalmente se basan en la experimentación.

La ley de Raoult modificada incluye el coeficiente de actividad para explicar las no idealidades de la fase líquida, pero se limita por la suposición de la idealidad de la fase de vapor, la cual se supera por la introducción del coeficiente de fugacidad de la fase vapor. Para la especie i en una mezcla de vapor la fugacidad del vapor se escribe como:

$$\hat{f_i^V} = y_i \hat{\Phi}_i P$$

Para la especie i en la fase líquida, la ecuación de la fugacidad queda como sigue:

$$\hat{f_i}^l = x_i \Gamma_i f_i$$

La condición de equilibrio de fases requiere que estas dos ecuaciones sean iguales:

$$y_i \, \boldsymbol{\Phi} P = x_i \boldsymbol{\Gamma}_i f_i \qquad (i=1,2,...,N)$$

En este caso, los superíndices v y l no se usan debido a la suposición de que $\hat{\Phi}_i$ se refiere a la fase vapor y que γ_i y f_i son propiedades de la fase líquida. Al sustituir para f_i usando la ecuación (34) se obtiene:

$$y_i \Phi_i P = x_i \Gamma_i P_i^{sat}$$
$$\Phi = \frac{\hat{\Phi}_i}{\Phi_i^{sat}} \exp\left[-\frac{V_i^l (P - P_i^{sat})}{RT}\right]$$

donde

Puesto que el factor de Poynting (que se representa por la exponencial) a presiones de bajas a moderadas difiere de la unidad por tan solo unas milésimas, su omisión introduce un error insignificante y dicha ecuación con frecuencia se simplifica:

$$\Phi = \frac{\hat{\Phi}_{l}}{\Phi_{l}^{at}}$$

5.2. Margules.

La estimación de las condiciones del equilibrio Líquido Vapor en los sistemas de soluciones no ideales es un tema de especial interés para la Ingeniería Química. Existen varios procedimientos establecidos en ese sentido.

La estimación de las constantes para el modelo de Margules a partir de datos experimentales se calcula de la siguiente manera. Se requiere que se grafique G^E / RTx₁x₂ vrs x₁ (fig3.8.1), y se describa mediante el polinomio más exacto (que dependiendo de cada caso puede llegar a tener hasta 9 constantes (orden 8) en el caso de tener 9 datos experimentales que describan el sistema binario) después que se evalúe dicho polinomio en los extremos x1=0 y x1=1 y del resultado se despejen las constates de Margules y Van Laar. Para mejorar el ajuste de datos es conveniente no tomar en

cuenta algunos puntos experimentales, especialmente en los extremos de la grafica, consiguiéndose de esta forma correlaciones adecuadas.

Por otra parte, Sandler⁵ nos indica que a partir de la data experimental, aunque se pueden estimar los coeficientes de actividad, en la mayoría de los casos es difícil decidir si esos datos ajustan mejor al modelo de Margules o al de Van Laar. Agrega que una forma para tomar esta decisión es graficar G^E/x_1x_2 versus x_1 y x_1x_2/G^E versus x_1 y determinar cual de las dos gráficas se aproxima más a una línea recta. Si es la primera, la data ajusta mejor al Modelo de Margules de dos constantes y si es la segunda, se deberá utilizar el Modelo de van Laar.

Fig 3.8.1 Propiedades de la fase líquida y su correlación

De los conjuntos de puntos que se presentan en la figura (3.8.1), aquellos para G^{E}/x_1x_2RT se ajustan en forma mas compacta a una relación matemática simple. De ese modo, una línea recta proporciona una aproximación razonable a este conjunto de puntos y la expresión matemática se da por la relación lineal de la ecuación:

$$\frac{G^E}{x_1 x_2 RT} = A_{21} x_1 + A_{12} x_2 \tag{56}$$

donde A12 y A21 son las constantes en cualquier aplicación particular. Alternativamente,

$$\frac{G^E}{RT} = (A_{21}x_1 + A_{12}x_2)x_1x_2$$
(57)

Las expresiones para Ln γ_1 y Ln γ_2 se deducen de la ecuación (57) mediante la ecuación (51). Puesto que lo anterior requiere de la derivación de nG^E/RT con respecto al número

⁵ Referencia bibliografica 4

de moles, la ecuación (57) se multiplica por n y todas las fracciones mol se convierten a números de mol. De esta manera, el lado derecho se reemplaza a x_1 por $n_1/(n_1+n_2)$ y x_2 por $n_2/(n_1+n_2)$. Puesto que $n=n_1+n_2$, da como resultado:

$$\frac{G^{E}}{RT} = (A_{21}n_{1} + A_{12}n_{2})\frac{n_{1}n_{2}}{(n_{1} + n_{2})^{2}}$$
(58)

Al derivar la ecuación (58) con respecto a n_1 de acuerdo con la ecuación (51) se obtiene:

$$Ln\Gamma_{i} = \left[\frac{\partial \left(nG^{E}/RT\right)}{\partial n_{i}}\right]_{P,T,n_{j}}$$
$$= n_{2}\left[\left(A_{21}n_{1} + A_{12}n_{2}\right)\left(\frac{1}{\left(n_{1} + n_{2}\right)^{2}} - \frac{2n_{1}}{\left(n_{1} + n_{2}\right)^{3}}\right) + \frac{n_{1}A_{21}}{\left(n_{1} + n_{2}\right)^{2}}\right]$$

Regresando de las n_1 a x_i ($n_i=nx_i$)es:

$$Ln\Gamma_{1} = x_{2}[(A_{21}x_{1} + A_{12}x_{2})(1 - 2x_{1}) + A_{21}x_{1}]$$

Una reducción adicional, al observar que $x_2=1-x_1$, conduce a:

$$Ln\Gamma_{1} = x_{2}^{2} [A_{12} + 2(A_{21} - A_{12})x_{1}]$$

Del mismo modo, la diferenciación de la ecuación (52) con referencia n_2 da como resultado:

$$Ln\Gamma_{2} = x_{1}^{2} [A_{21} + 2(A_{12} - A_{21})x_{2}]$$

Estas son las ecuaciones de Margules, y representan un modelo empírico del comportamiento de la solución empleado usualmente. Para las condiciones limite de la dilución infinita estas serán:

$$Ln \Gamma_1^{\infty} = A_{12}(x_1 = 0)$$
 y $Ln \Gamma_2^{\infty} = A_{21}(x_2 = 0)$

El principal problema de este método es numérico ya que el cálculo de las constantes de un polinomio de Lagrange, resulta un poco tedioso si no se dispone de un dispositivo de cálculo electrónico. Mediante el método⁶ que se presentara es posible el cálculo de dichas constantes utilizando únicamente una ecuación de regresión lineal, la de mínimos cuadrados. Esta se encuentra disponible en casi todas las calculadoras estándar y su utilización como ya se sabe es sencilla.

A continuación se verá que es posible reducir algebraicamente el modelo de Margules y

⁶ Para mayor información ver artículo 2 en la referencia bibliografica.

a una línea recta, para obtener las constantes de los mismos con la ecuación de mínimos cuadrados. La energía de Gibbs residual se define como la suma de las multiplicaciones de las fracciones molares con el logaritmo natural de los coeficientes de actividad.

$$\frac{G^E}{RT} = x_1 Ln \Gamma_1 + x_2 Ln \Gamma_2$$

Multiplicando a ambos lados de la ecuación por 1/RT se obtiene:

$$\frac{G^E}{RTx_1x_2} = \frac{x_1 Ln \Gamma_1 + x_2 Ln \Gamma_2}{x_1x_2}$$

Ahora bien, el modelo de Margules se puede aproximar por medio de la ecuación:

$$\frac{G^E}{x_1 x_2 RT} \approx A_{21} x_1 + A_{12} x_2$$

Donde A12 y A21 son constates que hay que encontrar. Multiplicando todo por 1/x2 se obtiene:

$$\left[\frac{G^{E}}{x_{1}x_{2}RT} \approx A_{21}x_{1} + A_{12}x_{2}\right] \times \frac{1}{x_{2}}$$
$$\frac{G^{E}}{x_{1}x_{2}^{2}RT} = A_{12} + A_{21}\frac{x_{1}}{x_{2}}$$

En este caso se puede aproximar esto a una recta de la forma: y = mx + b donde m=A₂₁,

b=A₁₂ y x=x₁/x₂. Si se grafica $\frac{G^E}{x_1 x_2^2 RT}$ vrs $\frac{x_1}{x_2}$ y se obtiene la línea recta que la describa

se tienen fácilmente las constantes de Margules.

5.3. Van Laar.

Otra ecuación bien identificada se obtiene cuando la expresión recíproca x_1x_2RT/G^E se expresa como una función lineal de x_1 :

$$\frac{x_1 x_2}{G^E / RT} = A' + B'(x_1 - x_2) = A' + B'(2x_1 - 1)$$

Esta también se puede escribir como:

$$\frac{x_1 x_2}{G^E / RT} = A'(x_1 + x_2) + B'(x_1 - x_2) = (A' + B')x_1 + (A' - B')x_2$$

Una forma equivalente resulta si los nuevos parámetros se definen por las ecuaciones, A'+B'= $1/A'_{21}$ y A'-B'= $1/A'_{12}$.En consecuencia,

$$\frac{x_{1}x_{2}}{G^{E}/RT} = \frac{x_{1}}{A'_{21}} + \frac{x_{2}}{A'_{12}} = \frac{A'_{12}x_{1} + A'_{21}x_{2}}{A'_{12}A'_{21}}$$
$$\frac{G^{E}}{x_{1}x_{2}RT} = \frac{A'_{12}A'_{21}}{A'_{12}A'_{21}}$$

Los coeficientes de actividad implicados por esta ecuación son:

$$Ln\Gamma_{1} = A_{12}^{'} \left(1 + \frac{A_{12}^{'} x_{1}}{A_{21}^{'} x_{2}} \right)^{-2}$$
$$Ln\Gamma_{2} = A_{21}^{'} \left(1 + \frac{A_{21}^{'} x_{2}}{A_{12}^{'} x_{1}} \right)^{-2}$$

Conocidos también como ecuaciones de van Laar. Cuando $x_1=0$, ln $\gamma_1^{\infty}=A_{12}$; cuando $x_2=0$, ln $\gamma_2^{\infty}=A_{21}$.

A continuación se verá que es posible reducir algebraicamente el modelo de Van Laar a una línea recta, para obtener las constantes de los mismos con la ecuación de mínimos cuadrados.

La ecuación de Van Laar para sistemas binarios es la siguiente:

$$\frac{G^{E}}{x_{1}x_{2}RT} = \frac{A_{12}A_{21}}{A_{12}x_{1} + A_{21}x_{2}}$$

Si se eleva todo a la -1 se obtiene:

$$\left[\frac{G^{E}}{x_{1}x_{2}RT} = \frac{A_{12}A_{21}}{A_{12}x_{1} + A_{21}x_{2}}\right]^{-1}$$
$$\frac{x_{1}x_{2}RT}{G^{E}} = \frac{A_{12}x_{1} + A_{21}x_{2}}{A_{12}A_{21}}$$

Esto se puede expandir algebraicamente y se obtiene:

$$\frac{x_1 x_2 RT}{G^E} = \frac{A_{12} x_1}{A_{12} A_{21}} + \frac{A_{21} x_2}{A_{12} A_{21}}$$

Se reduce a:

$$\frac{x_1 x_2 RT}{G^E} = \frac{x_1}{A_{21}} + \frac{x_2}{A_{12}}$$

Pero $x_2=1-x_1$

$$\frac{x_{1}x_{2}RT}{G^{E}} = \frac{x_{1}}{A_{21}} + \frac{(1-x_{1})}{A_{12}}$$
$$\frac{x_{1}x_{2}RT}{G^{E}} = \frac{x_{1}}{A_{21}} + \frac{1}{A_{12}} - \frac{x_{1}}{A_{12}}$$
$$\frac{x_{1}x_{2}RT}{G^{E}} = \frac{x_{1}A_{21}}{A_{21}} + \frac{1}{A_{12}} + \frac{1}{A_{12}}$$
$$\frac{x_{1}x_{2}RT}{G^{E}} = \left(\frac{A_{12}}{A_{21}} - \frac{A_{21}}{A_{12}}\right) \times x_{1} + \frac{1}{A_{12}}$$

Esto se puede aproximar a una línea recta de la forma: y = mx + b

Donde
$$m = \left(\frac{A_{12} - A_{21}}{A_{21}A_{12}}\right), b = \frac{1}{A_{12}}, x = x_1.$$

Entonces, esta recta se puede obtener mediante el método de mínimos cuadrados. Primero se evalúa A'_{12} y se introduce en m para la obtención de A'_{21} .

6. RESULTADOS

A continuación se presentaran los datos experimentales⁷ tanto en macroescala como en microescala y los datos obtenidos con el simulador⁸.

MAC	CROESCALA		MICROESCALA		
Temperatura (ºC)	X ₁ (Metanol)	Y ₁ (Metanol)	Temperatura(°C)	x1(metanol)	y1(metanol)
94	0	0	92	0	0
90	0.027	0.12	87	0.065	0.19
86	0.062	0.235	82	0.125	0.33
82	0.09	0.42	77	0.19	0.47
78	0.12	0.53	74	0.275	0.55
75.5	0.155	0.585	72	0.315	0.595
72.5	0.21	0.66	69	0.43	0.66
71	0.235	0.705	66	0.49	0.725
69	0.29	0.75	64	0.595	0.793
66.5	0.4	0.815	62	0.705	0.84
64	0.57	0.88	58	1	1
63.1	0.64	0.9			
61.5	0.76	0.95			
60	0.88	0.98			
59.5	1	1			

Datos experimentales sistema Metanol (1)- Agua (2).

Diagrama Txy Metanol/Agua 585mmHg

 ⁷ Datos experimentales obtenidos de la referencia bibliografica 5
 ⁸ Nota: Los datos obtenidos con el simulador se obtuvieron utilizando la ecuación de Margules y Van Laar obteniéndose una grafico sin variación por lo que se opto por graficar solamente la de Margules.

MARGULES PROII (metanol/agua)				
x1 metanol	Temperatura(°C)	y1 metanol	Temperatura(°C)	
0	92.839958	0	92.839958	
0.05	89.53167	0.16130956	89.53167	
0.1	86.543724	0.29163286	86.543724	
0.15000001	83.828117	0.39843005	83.828117	
0.2	81.345787	0.48706397	81.345787	
0.25	79.064812	0.56146067	79.064812	
0.3000001	76.958916	0.62454313	76.958916	
0.34999999	75.006248	0.67852104	75.006248	
0.4000001	73.18853	0.72508907	73.18853	
0.44999999	71.490318	0.76556379	71.490318	
0.5	69.898552	0.80098015	69.898552	
0.55000001	68.401146	0.83216101	68.401146	
0.6000002	66.99041	0.85973972	66.99041	
0.64999998	65.657005	0.8843084	65.657005	
0.69999999	64.393761	0.90627569	64.393761	
0.75	63.194328	0.92600244	63.194328	
0.8000001	62.053185	0.94378841	62.053185	
0.85000002	60.965477	0.95988417	60.965477	
0.89999998	59.926872	0.97450072	59.926872	
0.94999999	58.933525	0.98781651	58.933525	
1	57.981987	0.99998367	57.981987	

Datos experimentales sistema Cloroformo (1)- Acetona (2).

MACR	OESCALA		MICROESCALA		
Temperatura (ºC)	X ₁ (CHCl ₃)	Y ₁ (CHCl ₃)	Temperatura(°C)	X ₁ (CHCl ₃)	Y ₁ (CHCI ₃)
49.5	0	0	49	0	0
51.5	0.075	0.025	50	0.058	0.035
52	0.145	0.06	51.3	0.125	0.101
52.6	0.207	0.11	52	0.178	0.14
55.6	0.332	0.22	53	0.269	0.225
56.8	0.38	0.27	54	0.32	0.269
57.4	0.395	0.34	55	0.405	0.33
58.7	0.51	0.48	56	0.455	0.4
58.6	0.587	0.585	57	0.55	0.485
59	0.64	0.66	57.5	0.572	0.56
58	0.715	0.745	58	0.628	0.628
57.2	0.8	0.81	57.5	0.695	0.7
56	0.86	0.885	57	0.77	0.79
52.5	1	1	56	0.84	0.855
			55	0.92	0.93
			54	1	1

N	MARGULES PROII(cloroformo/acetona)					
X1(CHCl3)	Temperatura(°C)	Y1(CHCl3)	Temperatura(°C)			
0	48.67733	0	48.67733			
0.05	49.466881	0.02402098	49.466881			
0.1	50.282097	0.05209349	50.282097			
0.15000001	51.112144	0.08464816	51.112144			
0.2	51.943565	0.12206665	51.943565			
0.25	52.760399	0.16463837	52.760399			
0.30000001	53.544395	0.21250837	53.544395			
0.34999999	54.275383	0.26562035	54.275383			
0.4000001	54.932274	0.32366192	54.932274			
0.44999999	55.493919	0.38602215	55.493919			
0.5	55.940666	0.451774	55.940666			
0.55000001	56.255913	0.51969314	56.255913			
0.6000002	56.427605	0.58831906	56.427605			
0.64999998	56.449791	0.65605778	56.449791			
0.69999999	56.323326	0.72131222	56.323326			
0.75	56.056358	0.78262013	56.056358			
0.80000001	55.66378	0.83877492	55.66378			
0.85000002	55.166283	0.88890868	55.166283			
0.89999998	54.588921	0.93252695	54.588921			
0.94999999	53.959465	0.96949553	53.959465			
1	53.306786	0.99999094	53.306786			

MACR	MACROESCALA			MICROESCALA		
Temperatura (°C)	x(acetato)	y(acetato)	Temperatura(℃)	X1(acetato)	Y1(acetato)	
60	0	0	60	0	0	
57	0.02	0.08	59	0.03	0.055	
54	0.055	0.17	57	0.05	0.11	
53	0.095	0.22	56	0.075	0.13	
52	0.13	0.292	54	0.125	0.2	
50.5	0.19	0.37	53	0.16	0.27	
50	0.24	0.4	51	0.25	0.37	
48.5	0.32	0.47	50.5	0.28	0.42	
48	0.39	0.525	50	0.365	0.46	
47.5	0.42	0.62	49.5	0.41	0.505	
47	0.635	0.675	49	0.505	0.595	
47.5	0.73	0.711	48.5	0.595	0.65	
48	0.81	0.76	48	0.675	0.695	
48.5	0.92	0.83	49	0.83	0.785	
50	1	1	50	0.88	0.845	
			51	1	1	

Datos experimentales sistema Acetato de Metilo (1)- Metanol (2).

Diagrama Txy (acetato de metilo/metanol)585mmHg

MARGULES PROII (acetato de metilo/metanol)				
X1(acetato)	Temperatura(°C)	Y1(acetato)	Temperatura(°C)	
0	57.982018	0	57.982018	
0.05	55.364464	0.1460019	55.364464	
0.1	53.397362	0.2503458	53.397362	
0.15000001	51.896721	0.3283239	51.896721	
0.2	50.737938	0.3888056	50.737938	
0.25	49.836479	0.4373013	49.836479	
0.3000001	49.129723	0.4773797	49.129723	
0.34999999	48.57296	0.5114992	48.57296	
0.4000001	48.133385	0.5414322	48.133385	
0.44999999	47.787071	0.5685246	47.787071	
0.5	47.517204	0.5938603	47.517204	
0.55000001	47.312798	0.6183723	47.312798	
0.6000002	47.168175	0.6429269	47.168175	
0.64999998	47.082878	0.6683964	47.082878	
0.69999999	47.061974	0.6957342	47.061974	
0.75	47.117058	0.7260666	47.117058	
0.8000001	47.267845	0.7608215	47.267845	
0.85000002	47.54528	0.8019306	47.54528	
0.89999998	47.996635	0.8521754	47.996635	
0.94999999	48.695061	0.9158303	48.695061	
1	49.757713	0.9999747	49.757713	

6.1. Hoja de cálculo de errores promedio y desviaciones medias.

Primero se empezara con el cálculo de Φ que es relación entre el coeficiente de fugacidad de la mezcla entre el coeficiente de fugacidad de saturación, de acuerdo a lo consultado con la bibliografía (1,3,4 artículos 1 bibliografía complementaria 1,2, artículos complementarios 1,2) y a los datos experimentales que tenemos a nuestra disposición los modelos que se emplearan son la ecuación de estado cúbica genérica ocupando las constantes de (Peng-Robinson) y en ausencia de datos PVT sin los cuales no se pueden calcular el parámetro de interacción binario se utilizara la regla de mezclado de Van der Waals⁹.

Ecuación de estado cúbica genérica:

$$P = \frac{RT}{V-b} - \frac{a(T)}{(V+\epsilon b)(V+b)}$$

Regla de mezclado

$$b = \sum x_i b_i$$
 $a = \sum x_i x_j a_{ij}$ $a_{ij} = (a_i a_j)^{1/2}$

Para lo cual se ocuparan las siguientes constantes:

⁹ Para mayor información de la metodología de calculo consultar la presente tesis capitulo 3 y la referencia bibliografica 1 capitulos 3,11,14.

Ecuación de estado	α(T _r)	σ	e	Ω	Ψ	
Peng-Robinson(1976)	α _{PR} (T _r ;w)	$1 + \sqrt{2}$	$1 - \sqrt{2}$	0.07779	0.45724	
$P_{R}(T_{r};w) = \left[1 + (0.37464 + 1.54226w - 0.26992)(1 - T_{r}^{1/2})\right]^{2}$						

Propiedades fisicoquímicas de los compuestos puros¹⁰.

Especie química	ω	Tc/K	Pc/bar	Zc	Vc(cm3/mol)
metanol	0.564	512.6	80.97	0.224	118
agua	0.253	405.7	112.8	0.242	72.5
acetona	0.307	508.2	47.01	0.233	209
cloroformo	0.222	536.4	54.72	0.293	239
acetato de metilo	0.331	506.6	47.5	0.257	228

Constantes de la ecuación de Antoine:

$$\log_{10} Pvap(bar) = A - \frac{B}{T(^{\circ}C) + C}$$

	Constantes de Antoine			
	А	В	С	
metanol	5.20277	1580.08	239.5	
agua	5.11564	1687.537	230.17	
acetona	4.2184	1197.01	228.06	
cloroformo	3.96288	1106.904	218.552	
acetato de metilo	4.18621	1156.43	219.69	

y para validar su uso se realizaran los mismos cálculos con un segundo método la correlación de Pitzer para el segundo coeficiente virial¹¹.

Ecuaciones:

$$Z = 1 + \frac{BP}{RT} \qquad \frac{BPc}{RTc} = B^{0} + B^{1} \qquad B^{0} = 0.083 - \frac{0.422}{T_{r}^{1.6}} \qquad B^{1} = 0.139 - \frac{0.172}{T_{r}^{4.2}}$$

Reglas de combinación:

$$B_{ij} = \frac{RT_{cij}}{P_{cij}} (B^0 + {}_{ij}B^1) \qquad {}_{ij} = \frac{{}_i + {}_j}{2} \qquad T_{cij} = (T_{cj}T_{cj})^{1/2} (1 - k_{ij})$$
$$P_{cij} = \frac{Z_{cij}RT_{cij}}{V_{cij}} \qquad Z_{cij} = \frac{Z_{ci} + Z_{cj}}{2} \qquad V_{cij} = \left(\frac{V_{ci}^{1/3} + V_{cj}^{1/3}}{2}\right)^2$$

Ecuaciones para el cálculo de Φ :

$$\Delta_{ji} = 2B_{ji} - B_{jj} - B_{ii} \qquad \Delta_{jk} = 2B_{jk} - B_{jj} - B_{kk} \qquad \Phi_1 = \exp\frac{B_{11}(P - P_1^{sat}) + Py_2^2 \Delta_{12}}{RT}$$

 ¹⁰ Datos obtenidos en la referencia bibliografica 10
 ¹¹ Para mas información de la metodología de calculo ver referencia bibliográfica 1 capítulos 3,11,14.

Cabe la pena destacar que en la ecuación de Tcij, k_{ij} es un parámetro de interacción empírico que se evalúa a partir de los datos PVT, sin embargo se menciona en la bibliografía que para especies químicas similares es 0 o como una aproximación en ausencia de datos iguales a cero. Para tener una referencia de cual es el cambio de utilizar uno u otro método se calculara el porcentaje de error considerando a los datos obtenidos por medio de la correlación de B como el valor exacto y a los datos obtenidos por medio de la estado genérica como valores calculados.

$$\% error en \Phi = \frac{\Phi_{exacto} - \Phi_{cal}}{\Phi_{exacto}} \times 100$$

Sistema metanol (1)-agua (2).

MACROESCALA					
Correlaci	ones de B	Peng-R	obinson		
Φ1	Ф2	Ф1	Φ2	% Error en Φ1	% Error en Φ2
1.03495511	1.00040717	1.03142111	1.0002933	0.341463921	0.011382944
1.03029834	0.99894919	1.02685079	0.99926854	0.33461607	0.031968551
1.02585827	0.99752731	1.02258603	0.99832738	0.318975313	0.080205067
1.02170349	0.99608889	1.01855346	0.99749984	0.308311629	0.141648665
1.01766047	0.99470304	1.01485776	0.99672588	0.275407511	0.203361467
1.01521962	0.99385744	1.01268726	0.99626971	0.249439925	0.242718732
1.0123919	0.99283951	1.01020419	0.99576443	0.216093337	0.294602252
1.01101894	0.99232169	1.00900983	0.99553353	0.198721471	0.323669406
1.00921608	0.99165014	1.00747438	0.99522608	0.17257916	0.360605255
1.0070228	0.99079645	1.00563078	0.99487417	0.138230799	0.411559599
1.00488761	0.9899371	1.00387245	0.99454848	0.101022612	0.465825303
1.00413176	0.989632	1.00326024	0.99443294	0.08679316	0.485123943
1.00280727	0.98905966	1.0021959	0.99425599	0.060965381	0.52538135
1.00158246	0.98855172	1.00122893	0.99407497	0.035296908	0.558720875
1.00117846	0.98836097	1.00091253	0.99403206	0.026561364	0.573787268
	MICRO	ESCALA			
Correlaci	ones de B	Peng-R	obinson		
Ф1	Ф2	Ф1	Ф2	% Error en Φ1	% Error en Φ2
1.03250816	0.99967609	1.02916294	0.99976815	0.323989796	0.009208409
1.02692684	0.99788489	1.0236403	0.99855127	0.32003635	0.066779633
1.02160835	0.99614454	1.01862359	0.99745863	0.292163086	0.131916932
1.0166041	0.99443665	1.01403056	0.99648616	0.253151361	0.206097615
1.01373851	0.99342407	1.0114694	0.99595545	0.223835858	0.254812907
1.01187731	0.99275988	1.00984278	0.99561688	0.201065436	0.287784112
1.00916509	0.99176987	1.00751237	0.99513639	0.163771056	0.339445685
1.00654563	0.99078105	1.00530643	0.99468994	0.123114783	0.394525658
1.00485884	0.99008214	1.00389395	0.9944395	0.096022189	0.440100048
1.00319707	0.98940984	1.00254131	0.99418165	0.065366383	0.482288356
0.99997855	0.98791321	0.99998101	0.99381313	0.000245708	0.597210584

Tabla1.Comparación de la metodología de cálculo de phi en el sistema metanol/agua tanto en

macroescala como en microescala.

Sistema Cloroformo (1)- Acetona (2).

MACROESCALA					
Correlacio	ones de B	Peng-R	obinson		
Φ1	Φ2	Φ1	Φ2	% Error en Φ1	% Error en Φ2
0.99672821	1.00092596	0.9971609	1.00077341	0.043411047	0.015240541
0.99850123	1.00305208	0.99862528	1.00256429	0.01242432	0.048630344
0.99893774	1.00358917	0.99899582	1.00301956	0.005813449	0.056757442
0.99946156	1.00423731	0.99944326	1.00356999	0.001830869	0.066450814
1.00216733	1.00752191	1.00173713	1.00638876	0.042927635	0.11246876
1.00326567	1.00885921	1.00267867	1.0075483	0.058508789	0.129939979
1.00380748	1.00953823	1.00315349	1.00813564	0.065151038	0.13893392
1.0049984	1.01102437	1.00419539	1.00942473	0.079902038	0.158219715
1.00488613	1.01093168	1.00411244	1.00932719	0.076992562	0.158713945
1.00525368	1.01140217	1.00443592	1.0097289	0.081348435	0.165440402
1.00430171	1.01029357	1.00362637	1.00873565	0.067243855	0.154204122
1.00354694	1.00941443	1.00298603	1.00795068	0.055892883	0.145009432
1.00242636	1.0081022	1.00203759	1.00678839	0.038782862	0.130325564
0.99922006	1.00431877	0.99935064	1.00349984	0.013068274	0.081540178
MICROESCALA					
Correlacione	es de B	Peng-Robins	son		
Ф1	Φ2	Φ1	Φ2	% Error en Φ1	% Error en Φ2
0.99628619	1.00039938	0.99680009	1.00033307	0.051580954	0.006628103
0.99715829	1.00145473	0.99752233	1.00121671	0.036508187	0.023767021
0.99829449	1.00283989	0.9984739	1.00238327	0.017971516	0.045532534
0.99891017	1.00359225	0.99899261	1.00301991	0.008253082	0.05702834
0.99978727	1.00467733	0.99974057	1.00394011	0.004671017	0.073378791
1.00068461	1.00576889	1.00049947	1.00487238	0.018501647	0.089136152
1.00158477	1.00687164	1.00126738	1.00581743	0.031688135	0.104701915
1.00249086	1.00798563	1.00204479	1.00677539	0.044496322	0.12006555
1.00340255	1.00911271	1.00283174	1.0077466	0.056886915	0.135376814
1.00385648	1.00968703	1.0032284	1.00823787	0.06256679	0.143526314
1.00431516	1.01026394	1.00362785	1.00873242	0.06843565	0.151596553
1.00383741	1.00971968	1.0032263	1.00824145	0.060877801	0.146399774
1.00336171	1.00918493	1.00282723	1.00775458	0.053269204	0.141733764
1.00242781	1.00809244	1.00203775	1.0067873	0.038911393	0.12946618
1.00150158	1.00701405	1.001258	1.00583347	0.02432119	0.117235886
1.00058376	1.00594487	1.00048798	1.0048924	0.00957286	0.104624745

Tabla2.Comparación de la metodología de cálculo de phi en el sistema cloroformo/acetona tanto en macroescala como en microescala.

Sistema Acetat	o de Metilo	(1)- Metanol	(2).
----------------	-------------	--------------	------

MACROESCALA						
Correlaci	ones de B	Peng-Robinson				
Φ1	Ф2	Φ1	Φ1 Φ2		% Error en Φ2	
1.01110295	1.00158288	1.01061422	1.00123118	0.048337161	0.035114379	
1.00772533	0.99918711	1.00752689	0.99938124	0.019691904	0.019429387	
1.00443966	0.9968603	1.00455199	0.99764097	0.01118327	0.078313548	
1.00337564	0.99609524	1.00356137	0.99709148	0.018510089	0.100014652	
1.00233319	0.99532993	1.00255975	0.99656676	0.022603188	0.124263449	
1.00076478	0.99419556	1.00112732	0.99579515	0.036226264	0.160893069	
1.00024782	0.9938179	1.00065378	0.99554787	0.040585729	0.174072946	
0.99869685	0.99269723	0.99927774	0.99481307	0.058164434	0.213140696	
0.99819809	0.99231026	0.99879929	0.99460296	0.06022847	0.231046562	
0.99771437	0.99189846	0.99830052	0.99444294	0.058748376	0.256525977	
0.99721301	0.99150493	0.99784179	0.9942526	0.063053792	0.277121571	
0.99774351	0.99184083	0.99824664	0.99454973	0.050426281	0.273118645	
0.99827746	0.99216847	0.9986511	0.99486834	0.037428214	0.272118445	
0.99881434	0.99248039	0.99905613	0.99522336	0.024208305	0.276374812	
1.00040914	0.99344402	1.00033987	0.99627935	0.006924536	0.285404226	
MICROESCALA						
Correlacione	es de B	Peng-Robinson				
Ф1	Ф2	Φ1	Ф2	% Error en Φ1	% Error en Φ2	
1.01110295	1.00158288	1.01061422	1.00123118	0.048337161	0.035114379	
1.00998642	1.00077523	1.00952601	1.00060421	0.045585537	0.017088904	
1.00774546	0.99918501	1.00748167	0.99938595	0.026176409	0.020110379	
1.00663428	0.99840241	1.00649166	0.99879321	0.01416773	0.039142707	
1.00445934	0.99685586	1.00451057	0.99765031	0.005100669	0.079695248	
1.00340686	0.99608518	1.00349702	0.99711223	0.00898567	0.103108117	
1.00130031	0.99456465	1.00157188	0.99606469	0.027121693	0.150823064	
1.00079154	0.99417821	1.00107494	0.99582917	0.028317586	0.166063421	
1.00027847	0.99379493	1.00059435	0.99559248	0.031579295	0.180876992	
0.99976876	0.99340922	1.000115	0.99536541	0.034631785	0.196916831	
0.99927745	0.99299924	0.99960822	0.99518932	0.03310152	0.220552827	
0.9987707	0.99260381	0.99913864	0.99498938	0.036839812	0.240334048	
0.99826073	0.99221287	0.99868241	0.99478507	0.042241688	0.259238437	
0.99933165	0.99287936	0.99950478	0.99541867	0.017324163	0.255752329	
1.00039837	0.99357129	1.00036095	0.99602921	0.003740417	0.247383032	
1 0014735	0.99419068	1.00122778	0.99681183	0.024535963	0.26364672	

Tabla3.Comparación de la metodología de cálculo de phi en el sistema acetato de metilo/metanol tanto en

macroescala como en microescala.

6.2. Hoja de cálculo de errores del método de optimización.

A continuación se realizara el cálculo de las constantes de Margules y de Van Laar por el procedimiento de la regresión polinomial¹².

Sistema metanol (1)-agua (2).

MACROESCALA

Temperatura (°K)	x1	y1	Lny1	Lny2	GE/RT	GE/RTx1x2
367.15	0	0	#¡DIV/0!	-0.0408402	#¡DIV/0!	#¡DIV/0!
363.15	0.027	0.12	0.3315825	0.007425885	0.01617811	0.61581642
359.15	0.062	0.235	0.303906324	0.056614065	0.07194618	1.23712403
355.15	0.09	0.42	0.647014836	-0.03328031	0.02794625	0.34122411
351.15	0.12	0.53	0.730890126	-0.04926391	0.04435458	0.4200244
348.65	0.155	0.585	0.662495602	-0.03046498	0.07694391	0.58747023
345.65	0.21	0.66	0.588044094	-0.03700203	0.09425765	0.56815946
344.15	0.235	0.705	0.596674809	-0.08310603	0.07664247	0.42632438
342.15	0.29	0.75	0.522695708	-0.08806634	0.08905465	0.4325141
339.65	0.4	0.815	0.378746561	-0.11173922	0.08445509	0.35189622
337.15	0.57	0.88	0.197497051	-0.10047539	0.0693689	0.28302285
336.25	0.64	0.9	0.139182089	-0.06469546	0.06578617	0.28553026
334.65	0.76	0.95	0.08424901	-0.27987291	-0.00314025	-0.01721628
333.15	0.88	0.98	0.02830793	-0.43433068	-0.0272087	-0.25765818
332.65	1	1	-0.059324772	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!

Grafico 1. Propiedades de la fase liquida para el sistema metanol/agua en macroescala.

¹²Para mayor información sobre la metodología de cálculo ir a referencia bibliográfica 1 capítulos 12,14.

A partir de la correlación se tienen que A_{12} =0.3625 y A_{21} = -0.5667. Método de regresión lineal Margules¹³.

x1/x2	GE/RTx1(x2^2)
0	#¡DIV/0!
0.02774923	0.63290485
0.06609808	1.318895553
0.0989011	0.374971552
0.13636364	0.477300455
0.18343195	0.695231046
0.26582278	0.719189192
0.30718954	0.557286777
0.4084507	0.609174784
0.66666667	0.586493698
1.3255814	0.658192685
1.77777778	0.793139606
3.16666667	-0.0717345
7.33333333	-2.147151469
#¡DIV/0!	#¡DIV/0!

Metodo de regresión lineal Margules

Grafico 2 Método de regresión lineal Margules para el sistema metanol/agua en macroescala.

¹³ Para mayor información de la metodología de calculo de la constantes a partir de una regresión lineal ver la presente tesis capitulo 5.

A partir de la correlación se tienen que A_{12} =0.6792 y A_{21} = -0.3827. Método de regresión lineal Van Laar.

x1	RTx1x2/GE
0	#¡DIV/0!
0.027	1.62386057
0.062	0.80832639
0.09	2.93062525
0.12	2.38081406
0.155	1.7022139
0.21	1.76006925
0.235	2.34563172
0.29	2.31206337
0.4	2.84174693
0.57	3.53328356
0.64	3.50225579
0.76	-58.0845571
0.88	-3.88111107
1	#¡DIV/0!

Grafico 3 Método de regresión lineal Van Laar para el sistema metanol/agua en macroescala.

Donde $m = \left(\frac{A_{12} - A_{21}}{A_{21} A_{12}}\right), b = \frac{1}{A_{12}}$

$$A_{12} = \frac{1}{b} = \frac{1}{1.3183} = 0.7585 \qquad A_{21} = \frac{A_{12}}{(A_{12} * m) + 1} = \frac{0.7585}{((0.7585)(3.591) + 1)} = 0.2036$$

MICROESCALA

Temperatura (°K)	x1	y1	Lny1	Lny2	GE/RT	GE/RTx1x2
365.15	0	0	#¡DIV/0!	0.033046458	#¡DIV/0!	#¡DIV/0!
360.15	0.065	0.19	0.010888398	0.078451463	0.07405986	1.21859093
355.15	0.125	0.33	0.077417624	0.150148665	0.14105729	1.28966661
350.15	0.19	0.47	0.186603703	0.194576283	0.19306149	1.25446064
347.15	0.275	0.55	0.08151601	0.266042573	0.21529777	1.07986341
345.15	0.315	0.595	0.097260388	0.301648433	0.2372662	1.09960004
342.15	0.43	0.66	0.00099579	0.438956772	0.25063355	1.0225767
339.15	0.49	0.725	0.077926164	0.46912153	0.2774358	1.11018728
337.15	0.595	0.793	0.050494755	0.504540131	0.23438313	0.97264501
335.15	0.705	0.84	0.016608978	0.654067771	0.20465932	0.98405732
331.15	1	1	0.001095875	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!

Grafico 4. Propiedades de la fase liquida para el sistema metanol/agua en microescala.

A partir de la correlación se tienen que A_{12} =1.228 y A_{21} =1.197.

Método de regresión lineal Margules.

x1/x2	GE/RTx1(x2^2)
0	#¡DIV/0!
0.06951872	1.30330581
0.14285714	1.473904693
0.2345679	1.548716843
0.37931034	1.489466778
0.45985401	1.605255533
0.75438596	1.793994215
0.96078431	2.176837803
1.4691358	2.401592629
2.38983051	3.335787533
#¡DIV/0!	#¡DIV/0!

Grafico 5 Método de regresión lineal Margules para el sistema metanol/agua en microescala.

A partir de la correlación se tienen que $A_{12}{=}1.2598$ y $A_{21}{=}\ 0.8441$

Método de regresión lineal Van Laar.

x1	RTx1x2/GE
0	#¡DIV/0!
0.065	0.82061993
0.125	0.77539419
0.19	0.79715534
0.275	0.92604304
0.315	0.90942157
0.43	0.97792175
0.49	0.90074893
0.595	1.02812433
0.705	1.01620096
1	#¡DIV/0!

Grafico 6 Método de regresión lineal Van Laar para el sistema metanol/agua en microescala.

Donde $m = \left(\frac{A_{12} - A_{21}}{A_{21}A_{12}}\right), b = \frac{1}{A_{12}}$
$$A_{12} = \frac{1}{b} = \frac{1}{0.7704} = 1.298 \quad A_{21} = \frac{A_{12}}{(A_{12} * m) + 1} = \frac{0.7704}{((0.7704)(0.3817) + 1)} = 0.5953$$

Sistema Cloroformo(1)/Acetona(2).

MACROESCALA

Temperatura (°K)	x1	y1	Lny1	Lny2	GE/RT	GE/RTx1x2
322.65	0	0	#¡DIV/0!	-0.03082537	#¡DIV/0!	#¡DIV/0!
324.65	0.075	0.025	-1.03543522	-0.04743515	-0.12153515	-1.75185807
325.15	0.145	0.06	-0.83628319	-0.02244829	-0.14045435	-1.13292478
325.75	0.207	0.11	-0.60653018	-0.02231922	-0.14325089	-0.87267753
328.75	0.332	0.22	-0.48636576	-0.08376876	-0.21743097	-0.980408
329.95	0.38	0.27	-0.45618422	-0.11523015	-0.2447927	-1.03901824
330.55	0.395	0.34	-0.28402753	-0.21129811	-0.24002623	-1.00439891
331.85	0.51	0.48	-0.23698118	-0.28137985	-0.25873653	-1.03536026
331.75	0.587	0.585	-0.17653523	-0.33271602	-0.2410379	-0.99425361
332.15	0.64	0.66	-0.15528178	-0.40770525	-0.24615423	-1.06837772
331.15	0.715	0.745	-0.11255298	-0.42919187	-0.20279506	-0.99519107
330.35	0.8	0.81	-0.11513291	-0.34301675	-0.16070967	-1.00443546
329.15	0.86	0.885	-0.05944789	-0.44877029	-0.11395303	-0.94645371
325.65	1	1	0.029083416	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!

Grafico 7. Propiedades de la fase liquida para el sistema cloroformo/acetona en macroescala.

A partir de la correlación se tienen que A_{12} = -1.2756 y A_{21} = -0.6876.

Método de regresión lineal de Margules.

x1/x2	GE/RTx1(x2^2)
0	#¡DIV/0!
0.08108108	-1.893900616
0.16959064	-1.325058226
0.26103405	-1.100476079
0.49700599	-1.467676654
0.61290323	-1.675835869
0.65289256	-1.660163492
1.04081633	-2.112980129
1.42130751	-2.407393727
1.77777778	-2.967715892
2.50877193	-3.491898503
4	-5.022177325
6.14285714	-6.76038363
#;DIV/0!	#¡DIV/0!

Metodo de regresión lineal Margules

Grafico 8 Método de regresión lineal Margules para el sistema cloroformo/acetona en macroescala.

A partir de la correlación se tienen que A_{12} = -1.1892 y A_{21} = -0.9191.

Metodo de regresion lineal Van Laar

x1	RTx1x2/GE
0	#¡DIV/0!
0.075	-0.5708225
0.145	-0.88267113
0.207	-1.14589864
0.332	-1.01998351
0.38	-0.96244701
0.395	-0.99562035
0.51	-0.96584738
0.587	-1.0057796
0.64	-0.93599855
0.715	-1.00483216
0.8	-0.99558412
0.86	-1.05657571
1	#¡DIV/0!

Grafico 9 Método de regresión lineal Van Laar para el sistema cloroformo/acetona en macroescala.

Donde

$$m = \left(\frac{A_{12} - A_{21}}{A_{21}A_{12}}\right), b = \frac{1}{A_{12}} \qquad A_{12} = \frac{1}{b} = -\frac{1}{0.7682} = -1.3017$$

$$A_{21}^{'} = \frac{A_{12}^{'}}{(A_{12}^{'} * m) + 1} = \frac{-1.3017}{((-1.3017)(-0.3577) + 1)} = -0.8881$$

MICROESCALA

Temperatura (°K)	x1	y1	Lny1	Lny2	GE/RT	GE/RTx1x2
322.15	0	0	#¡DIV/0!	-0.01334486	#¡DIV/0!	#¡DIV/0!
323.15	0.058	0.035	-0.390307122	-0.02411585	-0.04535494	-0.83012922
324.45	0.125	0.101	-0.143172837	-0.06614194	-0.0757708	-0.6927616
325.15	0.178	0.14	-0.194038344	-0.07203435	-0.09375106	-0.64074371
326.15	0.269	0.225	-0.166451162	-0.09287551	-0.11266736	-0.57296549
327.15	0.32	0.269	-0.195127834	-0.11284369	-0.13917462	-0.63958922
328.15	0.405	0.33	-0.259730453	-0.10002983	-0.16470858	-0.68350899
329.15	0.455	0.4	-0.216928831	-0.15592905	-0.18368395	-0.74073576
330.15	0.55	0.485	-0.246770029	-0.15022762	-0.20332595	-0.82151897
330.65	0.572	0.56	-0.158560728	-0.27393776	-0.2079421	-0.84938115
331.15	0.628	0.628	-0.153653188	-0.31796944	-0.21477883	-0.91936697
330.65	0.695	0.7	-0.130192121	-0.31811503	-0.18750861	-0.88457888
330.15	0.77	0.79	-0.095362712	-0.3761108	-0.15993477	-0.90307607
329.15	0.84	0.855	-0.070403407	-0.35050115	-0.11521905	-0.85728457
328.15	0.92	0.93	-0.044134493	-0.35226158	-0.06878466	-0.93457418
327.15	1	1	-0.021529699	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!

Grafico 10. Propiedades de la fase liquida para el sistema cloroformo/acetona en microescala.

A partir de la correlación se tienen que A_{12} = -1.0232 y A_{21} = -1.2937.

Método de regresión lineal Margules.

x1/x2	GE/RTx1(x2^2)
0	#¡DIV/0!
0.06157113	-0.881241214
0.14285714	-0.791727543
0.21654501	-0.77949357
0.36798906	-0.783810514
0.47058824	-0.940572389
0.68067227	-1.148754609
0.83486239	-1.359148188
1.22222222	-1.825597712
1.3364486	-1.984535406
1.68817204	-2.471416582
2.27868852	-2.900258633
3.34782609	-3.926417714
5.25	-5.358028574
11.5	-11.68217726
#¡DIV/0!	#¡DIV/0!

Grafico 11 Método de regresión lineal Margules para el sistema cloroformo/acetona en microescala.

A partir de la correlación se tienen que A_{12} = -0.6217 y A_{21} = -0.9568.

Metodo lineal Van Laar.

x1	RTx1x2/GE
0	#¡DIV/0!
0.058	-1.20463173
0.125	-1.44349802
0.178	-1.5606864
0.269	-1.74530583
0.32	-1.56350351
0.405	-1.46303854
0.455	-1.35000907
0.55	-1.21725734
0.572	-1.17732775
0.628	-1.08770495
0.695	-1.13048143
0.77	-1.10732642
0.84	-1.16647381
0.92	-1.07000602
1	#¡DIV/0!

Grafico 12 Método de regresión lineal Van Laar para el sistema cloroformo/acetona en microescala. A partir de la correlación se tienen que:

Donde
$$m = \left(\frac{A_{12}^{'} - A_{21}^{'}}{A_{21}^{'} A_{12}^{'}}\right), b = \frac{1}{A_{12}^{'}}$$
 $A_{12}^{'} = \frac{1}{b} = -\frac{1}{1.6332} = -0.6122$

$$A_{21}^{'} = \frac{A_{12}}{(A_{12}^{'} * m) + 1} = \frac{-0.6122}{((-0.6122)(0.6599) + 1)} = -1.0271$$

Sistema Acetato de Metilo(1)/Metanol(2).

MACROESCALA

Temperatura (°K)	x1	y1	Lny1	Lny2	GE/RT	GE/RTx1x2
333.15	0	0	#¡DIV/0!	-0.07932305	#¡DIV/0!	#¡DIV/0!
330.15	0.02	0.08	1.12983586	-0.02143926	0.00158624	0.0809305
327.15	0.055	0.17	0.974537906	0.035662289	0.08730045	1.67966229
326.15	0.095	0.22	0.720515216	0.05860953	0.12149057	1.41309183
325.15	0.13	0.292	0.724926523	0.043345805	0.1319513	1.16667815
323.65	0.19	0.37	0.635166894	0.061863832	0.17079141	1.10975577
323.15	0.24	0.4	0.497311824	0.098209099	0.19399375	1.06356224
321.65	0.32	0.47	0.424744666	0.150099048	0.23798565	1.09368403
321.15	0.39	0.525	0.355650733	0.170929676	0.24297089	1.02131521
320.65	0.42	0.62	0.465979032	0.02010285	0.20737085	0.85127605
320.15	0.635	0.675	0.155826703	0.348819839	0.2262692	0.97624505
320.65	0.73	0.711	0.050088189	0.511071817	0.17455377	0.88561019
321.15	0.81	0.76	-0.005464986	0.654955473	0.1200149	0.77982392
321.65	0.92	0.83	-0.062836793	1.153498983	0.03447007	0.46834333
323.15	1	1	-0.013827558	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!

Grafico 13. Propiedades de la fase liquida para el sistema acetato de metilo/metanol en macroescala.

A partir de la correlación se tienen que A_{12} = 1.4432 y A_{21} =0.3985.

Regresión lineal Margules

x1/x2	GE/RTx1(x2^2)
0	#¡DIV/0!
0.02040816	0.082582147
0.05820106	1.777420415
0.10497238	1.561427433
0.14942529	1.341009365
0.2345679	1.370068857
0.31578947	1.399424002
0.47058824	1.608358873
0.63934426	1.674287229
0.72413793	1.467717332
1.73972603	2.674643985
2.7037037	3.280037739
4.26315789	4.10433641
11.5	5.85429163
#¡DIV/0!	#¡DIV/0!

Grafico 14 Método de regresión lineal Margules para el sistema acetato de metilo/metanol en macroescala.

A partir de la correlación se tienen que A_{12} = 1.4045 y A_{21} =0.4335.

Regresión lineal Van Laar

x1	RTx1x2/GE
0	#¡DIV/0!
0.02	12.3562804
0.055	0.59535777
0.095	0.70766809
0.13	0.85713442
0.19	0.90109916
0.24	0.94023646
0.32	0.91434086
0.39	0.97912965
0.42	1.17470707
0.635	1.02433297
0.73	1.12916497
0.81	1.28234077
0.92	2.13518574
1	#¡DIV/0!

Grafico 15 Método de regresión lineal Van Laar para el sistema acetato de metilo/metanol en macroescala.

A partir de la correlación se tienen que: Donde $m = \left(\frac{A_{12} - A_{21}}{A_{21}A_{12}}\right), b = \frac{1}{A_{12}}$

$$A_{12} = \frac{1}{b} = \frac{1}{0.6985} = 1.4316 \qquad A_{21} = \frac{A_{12}}{(A_{12} * m) + 1} = \frac{1.4316}{((1.4316)(0.6525) + 1)} = 0.7401$$

MICROESCALA

Temperatura (°K)	x1	y1	Lny1	Lny2	GE/RT	GE/RTx1x2
333.15	0	0	#¡DIV/0!	-0.07932305	#¡DIV/0!	#¡DIV/0!
332.15	0.03	0.055	0.282595767	-0.06536441	-0.05492561	-1.88747791
330.15	0.05	0.11	0.531953976	-0.02349617	0.00427633	0.09002809
329.15	0.075	0.13	0.327467459	0.021375819	0.04433269	0.63902979
327.15	0.125	0.2	0.316035056	0.075818715	0.10584576	0.96773264
326.15	0.16	0.27	0.403948589	0.066914002	0.12083954	0.89910369
324.15	0.25	0.37	0.34297014	0.117502133	0.17386914	0.92730205
323.65	0.28	0.42	0.374100737	0.096989319	0.17458052	0.86597478
323.15	0.365	0.46	0.217755945	0.172586823	0.18907355	0.81576336
322.65	0.41	0.505	0.212688133	0.180592753	0.19375186	0.80095849
322.15	0.505	0.595	0.186190486	0.17712822	0.18170466	0.72689135
321.65	0.595	0.65	0.128604719	0.253538141	0.17920275	0.74365704
321.15	0.675	0.695	0.087481335	0.357743511	0.17531654	0.79916372
322.15	0.83	0.785	-0.033657967	0.612868938	0.07625161	0.54040827
323.15	0.88	0.845	-0.054391757	0.591014631	0.02305701	0.21834289
324.15	1	1	-0.049415569	#¡DIV/0!	#¡DIV/0!	#¡DIV/0!

Grafico 16. Propiedades de la fase liquida para el sistema acetato de metilo/metanol en microescala

A partir de la correlación se tienen que A_{12} =0.6756 y A_{21} =0.5627

Método de Regresión lineal Margules.

x1/x2	GE/RTx1(x2^2)
0	#¡DIV/0!
0.03092784	-1.945853516
0.05263158	0.094766409
0.08108108	0.690843021
0.14285714	1.105980162
0.19047619	1.070361537
0.33333333	1.236402738
0.38888889	1.202742753
0.57480315	1.284666705
0.69491525	1.357556762
1.02020202	1.468467368
1.4691358	1.836190218
2.07692308	2.458965307
4.88235294	3.178872167
7.33333333	1.819524084
#¡DIV/0!	#¡DIV/0!

Metodo de regresión lineal Margules

Grafico 17 Método de regresión lineal Margules para el sistema acetato de metilo/metanol en microescala.

A partir de la correlación se tienen que A_{12} = 1.0108 y A_{21} =0.4869. Método de regresión lineal Van Laar.

x1	RTx1x2/GE
0	#¡DIV/0!
0.03	-0.52980752
0.05	11.1076445
0.075	1.56487226
0.125	1.03334326
0.16	1.11221877
0.25	1.07839727
0.28	1.15476804
0.365	1.22584569
0.41	1.24850415
0.505	1.37572142
0.595	1.34470589
0.675	1.25130805
0.83	1.85045281
0.88	4.5799522
1	#¡DIV/0!

Grafico 18 Método de regresión lineal Van Laar para el sistema acetato de metilo/metanol en microescala.

Donde
$$m = \left(\frac{A_{12} - A_{21}}{A_{21}A_{12}}\right), b = \frac{1}{A_{12}}$$
 $A_{12} = \frac{1}{b} = \frac{1}{0.955} = 1.0471$

$$A_{21}^{'} = \frac{A_{12}}{(A_{12}^{'} * m) + 1} = \frac{1.0471}{((1.0471)(0.7188) + 1)} = 0.5974$$

,

Sistema Metanol(1)/Agua(2)	MACROESCALA		MICROESCALA	
	A12	A21	A12	A21
Regresión polinomial	0.3625	-0.5667	1.228	1.197
Regresión lineal Margules	0.6792	-0.3827	1.2598	0.8441
Regresión lineal Van Laar	0.7585	0.2036	1.298	0.5953
Optimización Margules	0.7488949	0.90646161	0.2074608	0.86580295
Optimización Van Laar	0.7520622	0.9170251	0.3776673	0.99190823
Constantes PROII	-0.020256	0.04155609		
Sistema Cloroformo(1)/Acetona(2)	MACRO	DESCALA	MICROESCALA	
	A12	A21	A12	A21
Regresión polinomial	-1.2756	-0.6876	-1.0232	-1.2937
Regresión lineal Margules	-1.1892	-0.9191	-0.6217	-0.9568
Regresión lineal Van Laar	-1.3017	-0.8881	-0.6122	-1.0271
Optimización Margules	-0.97771	-1.0454736	-0.68467	-0.91563338
Optimización Van Laar	-0.964221	-0.964221 -1.099031		-1.1256038
Constantes PROII	-0.679668	-0.679668 -0.7164894		
Sistema Acetato de	MACROESCALA		MICROESCALA	
metilo(1)/Metanol(2)	A12	A21	A12	A21
Regresión polinomial	1.4432	0.3985	0.6756	0.5627
Regresión lineal Margules	1.4045	0.4335	1.10108	0.4869
Regresión lineal Van Laar	1.4316	0.7401	1.0471	0.5974
Optimización Margules	1.2113036	0.68010413	0.6809645	0.58785963
Optimización Van Laar	1.1739757	0.84602549	0.6545829	0.65799564
Constantes PROII	1.0567672	0.89410551		

Tabla 4. Constantes de Margules y Van Laar obtenidas a partir de los datos experimentales y los datos del simulador.

	MACROESCALA	MICROESCALA
Sistema Metanol(1)/Agua(2)	R^2	R^2
Regresión lineal Margules	0.9767	0.9813
Regresión lineal Van Laar	0.9388	0.7958
Sistema Cloroformo(1)/Acetona(2)	R^2	R ²
Regresión lineal Margules	0.9805	0.9975
Regresión lineal Van Laar	0.477	0.7889
Sistema Acetato de metilo(1)/Metanol(2)	R ²	R ²
Regresión lineal Margules	0.8575	0.9242
Regresión lineal Van Laar	0.8404	0.9072

Tabla 5. Coeficientes de determinación de las regresiones lineales tanto de Van Laar como de Margules.

Sistema Matanal(1)(Agua(2)	MACROESCALA		MICROFSCALA	
Sistema Metanol(T)/Agua(2)	MACKC	ESCALA	MICKOLSCALA	
Error promedio absoluto	%T	%у	%Т	%у
R.P. Margules	1.4189571	14.8623192	1.3275386	38.5050236
Desviación media	0.8421021	11.5737246	0.7496475	30.0495995
R.P Van Laar	No soporta	a el modelo	1.3271804	38.500834
Desviación media	No soport	a el modelo	0.7494463	30.0458383
R.L. Margules	1.0489594	15.4173311	1.0241024	35.6588744
Desviación media	0.6333628	6.92985794	0.7093657	29.5149775
R.L. Van Laar	0.824924	14.476582	0.6462629	30.5602627
Desviación media	0.5307592	7.22023552	0.5171726	26.4042068
Optimización Margules	0.2591697	10.5546489	0.1930395	19.100659
Desviación media	0.0785438	9.71341589	0.0926981	6.19091989
Optimización Van Laar	0.2630454	10.5959637	0.2184632	22.2447096
Desviación media	0.0775633	9.74446292	0.1584378	10.8494708
Sistema Cloroformo(1)/Acetona(2)	MACRC	ESCALA	MICRO	ESCALA
Error promedio absoluto	%Т	%у	%Т	%у
R.P. Margules	0.267072	5.79603287	0.4394688	17.2478091
Desviación media	0.0946979	3.72250652	0.2820732	15.0872938
R.P Van Laar	0.2883199	7.13162167	0.4249832	16.9524146
Desviación media	0.1086896	4.6918096	0.2697051	14.9203674
R.L. Margules	0.1855475	4.73239425	0.0965095	10.8706951
Desviación media	0.0995854	2.07411216	0.0531873	9.57647515
R.L. Van Laar	0.2174188	5.31956147	0.0980889	10.4529946
Desviación media	0.1020772	2.52761883	0.0619261	9.05535638
Optimización Margules	0.1258816	5.29029816	0.1128354	11.0136198
Desviación media	0.0878885	3.63589268	0.0377007	10.1580008
Optimización Van Laar	0.1212552	5.27667703	0.1001453	11.641978
Desviación media	0.0896012	3.67884181	0.0405794	10.0162297
Sistema Acetato de	MACRO	DESCALA	MICRO	FSCALA
Error promedio absoluto	%1	%y	%1	%y
R.P. Margules	0.2689756	11.6800102	0.2904342	8.32864882
Desviacion media	0.0937312	7.59190568	0.1193742	7.77503082
R.P Van Laar	0.4649126	9.73971387	0.2953095	8.22855143
Desviación media	0.223541	4.29375622	0.1192318	7.70805601
R.L. Margules	0.2505529	10.7223361	0.312664	20.6971601
Desviación media	0.0905196	6.78535782	0.2157565	21.4785131
R.L. Van Laar	0.1749645	9.5812827	0.2665206	17.5881629
Desviación media	0.1052464	7.06711191	0.2093866	18.782601
Optimización Margules	0.1510528	6.23880908	0.2787798	8.59751866
Desviación media	0.0791824	4.4384431	0.1209004	7.98997972
Optimización Van Laar	0.1227863	5.70521887	0.264421	8.37267357
Desviación media	0.0735722	3.79987582	0.1277986	7.59022769

Tabla 6. Errores promedio y desviaciones medias de T y composición de vapor (y) encontrados a partir de las constantes obtenidas en comparación con los datos experimentales¹⁴.

¹⁴ Para mayor información de la metodología de cálculo de los errores promedio y desviaciones promedio ir a apéndice A y B.

7. ANALISIS DE RESULTADOS

A través del tiempo se han desarrollado diferentes modelos de ecuaciones que finalmente permiten representar el ELV teniendo resultados variables. Uno de los cuales es el uso de modelos de ecuaciones de estado para calcular los coeficientes de fugacidad para la fase vapor y liquida que permiten representar el equilibrio liquido-vapor, otro es utilizando una combinación de modelos, es decir, utilizar un modelo de ecuación de estado para calcular los coeficientes de fugacidad de la fase vapor y modelos basados en la energía libre de Gibbs que son para el calculo de los coeficientes de actividad. En base a una consulta bibliografica (1,3,4,8,9,10), artículos (1,2,3) paginas de Internet (2,3,4) se encontró que una combinación de modelos resulta ser lo mas adecuado y didáctico, para la fase vapor la ecuación de PR y para la fase liquida se ha dado preferencia a los modelos de Margules y Van Laar, una pequeña explicación de esto se da a continuación.

Para poder estimar el coeficiente de fugacidad, el campo de estudio es demasiado amplio que seria imposible incluir todos los criterios de selección posibles. Se podría fácilmente pensar que como la experimentación la cual se llevo acabo a una presión de aproximadamente 0.7 bar; el vapor pueda seguir la ley de los gases ideales, pero se encontró en la consulta bibliográfica que ha presiones moderadas la fase vapor de ciertos gases no siguen un comportamiento ideal.

Por esta razón se considero a la ley de los gases ideales como inadecuada para el calculo de los coeficientes de fugacidad y se dio preferencia a una ecuación cúbica especialmente a la de Peng-Robinson, debido a que esta ecuación contiene mejoras en lo que respecta a equilibrios liquido vapor¹⁵, además de que se puede programar con cierta facilidad en comparación con otros modelos que al aumentar la precisión aumenta la dificultad de manejo.

Se ha optado por las reglas de mezclado de Van der Waals sin tomar en cuenta el parámetro de interacción binario, debido a que no se tienen datos de volumen de vapor experimentales que son necesarios para poder obtenerlo mediante datos enteramente

¹⁵ Referencia bibliografica 8 capitulo 14 y articulo 4.

experimentales, sin embargo como dice $Prausnitz^{16}$ "A presiones moderadas la no idealidad de la fase vapor es normalmente pequeña en comparación de la no idealidad de la fase liquida "o lo que lo mismo a bajas presiones la formación de complejos por asociación o solvatación es despreciable por lo que suponemos que la no introducción del parámetro de interacción binaria en la fase vapor no afecte de manera significativa.

Es mas complicado encontrar algún modelo de ecuación cubica de estado que prediga los coeficientes de fugacidad de la fase liquida debido a que no se obtuvo el volumen del liquido experimental sin el cual no se podrían obtener los parámetros de interacción binaria que son una parte importante en el modelado ya que la fase liquida es una mezcla no ideal. Por esto se opto para la fase liquida los modelos basados en la energía libre de Gibbs de exceso para calcular los coeficientes de actividad.

Haciendo caso de las consideraciones expuestas por Balzhiser¹⁷ para la selección de una expresión que evalué los coeficientes de actividad, se tienen los siguientes puntos o condiciones a observar:

- La necesidad de simplicidad de las ecuaciones
- La disponibilidad de datos con los cuales evaluar los parámetros
- La necesidad de hacer predicción sin datos extensos
- El deseo de correlaciones exactas
- El deseo de atribuir significado físico a los parámetros
- No idealidades excepcionales, incluyendo la inmicibilidad de componentes en ٠ algunos intervalos de concentración.

Se seleccionaron a Margules y Van Laar principalmente por que presentan las siguientes ventajas:

- Se utilizan para sistemas binarios a bajas presiones.
- Reducen enormemente la cantidad de datos experimentales a unos pocos parámetros empíricos.
- Proveen una ecuación que puede ser utilizada con cierta facilidad.

 ¹⁶ Referencia bibliografica 9 Capitulo6.11 pag 216
 ¹⁷ Referencia bibliografica 7

- Se utilizan en mezclas que no deben ser fuertemente disímiles •
- Deben existir como líquidos puros a las condiciones utilizadas. •

Para la determinación del las constantes de estos modelos se tienen diferentes métodos de obtención como por ejemplo el de regresión polinomial, lineal y para esta tesis también se empleo un método que ocupa un algoritmo de optimización¹⁸ para este fin se ocupo el Solver de Excel que trae preprogramados varios de estos.

Para llevar a cabo un programa que facilite los cálculos de equilibrio líquido vapor; se selecciono un algoritmo encontrándose que uno de los más completos y desarrollados en su totalidad es el siguiente¹⁹ (el programa se realizo en Excel ocupando el lenguaje de programación de VBA).

- 1.-Lea P y x que son constantes
- 2.-Ajuste todos los $\Phi=1$

3.-Calcule
$$T_i^{sat} = \frac{B_i}{A_i - LnP} - C_i$$

4.-Calcule $T = \sum_{i} x_i T_i^{sat}$

5.-Evalúe P_i^{sat} y Γ_i e identifique la especie j

6.-Calcule
$$P_j^{sat} = \frac{P}{\sum_i \left(\frac{x_i \Gamma_i}{\Phi_i}\right) \left(\frac{P_j^{sat}}{P_i^{sat}}\right)}$$

7.-Calcule
$$T1 = \frac{B_j}{A_j - LnP_j^{sat}} - C_j$$

8.-Evalúe P_i^{sat}

9.-Calcule
$$y_i = \frac{x_i \Gamma_i P_i^{sat}}{\Phi_i^{sat} P}$$

10.-Evalúe Φ_i y Γ_i , el valor de Φ_i fue calculado con una ecuación de estado genérica mismo método utilizado anteriormente.

¹⁸ Para mayor información ir al apéndice B
¹⁹ Para mayor información ir a la referencia bibliográfica 1 capitulo 14.

11.-Calcule
$$P_j^{sat} = \frac{P}{\sum_i \left(\frac{x_i \Gamma_i}{\Phi_i}\right) \left(\frac{P_j^{sat}}{P_i^{sat}}\right)}$$

12.-Calcule $T2 = \frac{B_j}{A_j - LnP_j^{sat}} - C_j$; es T1= T2
no T2=T1 ir paso 8

Esto fue en grandes rasgos la selección de la metodología utilizada ahora nos abocaremos a los datos obtenidos.

Al observar los datos experimentales T-x-y del sistema metanol/agua podemos notar que la temperatura de saturación del metanol en macroescala esta en 59.5°C, en microescala 58°C y la calculada por el simulador esta en 57.9°C, asi mismo la temperatura de saturación del agua en macroescala es 94°C, en microescala 92°C y la del simulador esta en 92.8°C de lo cual notamos que la diferencia esta alrededor de 2°C

entre los métodos experimentales y el simulador lo que es una diferencia poco significativa. Algo importante que notamos en el diagrama T-x-y es que ni en microescala ni en macroescala se tiene una similitud del comportamiento entre los puntos experimentales y el simulador sin que esto signifique que los datos experimentales estén mal esto puede ocurrir por una mala elección del modelo que se utilizo.

En los datos experimentales T-x-y del sistema Cloroformo –Acetona podemos notar que la temperatura de saturación del cloroformo en macroescala esta en 52.5° C, en microescala es 54°C y en el simulador 53.3° C, asi mismo la temperatura de saturación de la acetona en macroescala esta en 49.5° C, en microescala 49.5° C y en simulador 48.6° C de los cual notamos que la diferencia esta entre 1°C y 3°C lo cual es una variación poco significativa. En lo que se refiere a la ubicación del azeótropo notamos en el diagrama T-x-y que en macroescala esta alrededor de en X=0.6 y T=59°C, en microescala X=0.65 y T=58°C, el del simulador esta en X=0.65 y T=57°C. De todo lo anterior podemos inferir que no existe una diferencia significativa entre los métodos. También es importante hacer notar que el método a microescala guarda una mejor relación entre este y los datos del simulador lo cual nos da un indicio que los modelos elegidos pueden representar el sistema de manera adecuada..

Diagrama Txy (acetato de metilo/metanol)585mmHg

Al observar los datos experimentales T-x-y del sistema Acetato de metilo-metanol podemos notar que la temperatura de saturación del acetato en macroescala es 50°C, en microescala es 51°C y en los datos del simulador es de 49.7°C, asi como la temperatura de saturación del metanol en macroescala y en microescala esta en 60°C, la del simulador esta en 57.9°C. En lo que se refiere al azeótropo en microescala esta ubicado en X=0.7 y T=48°C, en macroescala y en el simulador esta en X=0.68 y T=47°C. A causa de todo lo anterior podemos decir que no existe una diferencia significativa entre métodos; además de esto es importante hacer notar que los datos experimentales a macroescala guarda una mejor relación con los datos obtenidos con el simulador lo cual nos da un indicio que los modelos elegidos pueden representar el sistema de manera adecuada.

Al observar las tablas 1,2 y 3 que son las comparaciones entre los dos modelos²⁰ usados (correlacion de B y ecuación cubica de peng robinson) para el cálculo de phi(Φ) que es la relación entre el coeficiente de fugacidad en la mezcla y el de saturación notamos que el cambio entre utilizar uno u otro varía alrededor de 1% por lo que se puede utilizar cualquiera de estos sin una diferencia apreciable.

²⁰ Para mayor información de los métodos utilizados ir a la sección 6.1

Grafico 1. Propiedades de la fase liquida para el sistema metanol/agua en macroescala.

En el grafico 1 propiedades de la fase liquida para el sistema metanol-agua a macroescala con una ecuación polinómica de 3er grado se obtuvo una relación de R^2 =0.9147 lo cual se considera como aceptable para la obtención de las constantes de los modelos.

Grafico 2 Método de regresión lineal Margules para el sistema metanol/agua en macroescala. En el grafico 2 el método de regresión lineal de Margules en los datos del sistema metanol/agua a macroescala para obtener una buena relación lineal de R^2 =0.9767 se tuvieron que quitar 4 datos de 13 disponibles, los datos que se omitieron fueron principalmente en los extremos con lo que podríamos decir que este sistema sigue el modelo de Margules en intervalo de desde X=0.062 hasta X=0.29. El que se omitieran 4 puntos nos da un indicio de que el modelo de Margules no es muy adecuado para representar el sistema.

Grafico 3 Método de regresión lineal Van Laar para el sistema metanol/agua en macroescala. En el grafico 3 en el método de regresión lineal de Van Laar para el sistema metanol/agua en macroescala para obtener una buena relación lineal de R^2 =0.9388 se tuvieron que quitar 5 datos de 15 disponibles, los datos omitidos principalmente fueron de los extremos con lo que se podría decir que este sistema sigue el modelo de Van Laar en el intervalo de X=0.155 hasta X=0.64. El que se omitieran 5 puntos nos da un indicio de que el modelo de Van Laar no es muy adecuado para representar el sistema.

Grafico 4. Propiedades de la fase liquida para el sistema metanol/agua en microescala.

En el grafico 4 propiedades de la fase liquida para el sistema metanol-agua a microescala con una ecuación polinomica de 3er grado se obtuvo una relación de $R^2=0.8002$ no se intento mejorarla aumentando el grado del polinomio porque se considero que la ecuación seguía una tendencia adecuada. También es importante hacer notar que los datos experimentales nada mas se llego hasta una composición del liquido de X=0.7 lo pudo afectar al calculo de las constantes.

Metodo de regresión lineal Margules

Grafico 5 Método de regresión lineal Margules para el sistema metanol/agua en microescala. En el grafico 5 método de regresión lineal de Margules del sistema metanol/agua en microescala se obtuvo una relación lineal de R^2 =0.9813 sin quitar ningún dato lo cual nos podría dar un indicio de que el modelo de Margules pueda ser adecuado para representar este sistema sin embargo se tienen que tomar en cuenta que nada mas se tienen 9 datos y estos datos se encuentran principalmente en un intervalo de X=0.065 hasta X=0.7 lo que podría ser no muy representativo del sistema.

Grafico 6 Método de regresión lineal Van Laar para el sistema metanol/agua en microescala.

En el grafico 6 en el método de regresión lineal para Van Laar se obtuvo una relación lineal R^2 =0.7985 este se quedo así sin quitar ningún dato porque se considero que 9 datos eran pocos para quitar mas. De lo anterior también se puede inferir que el modelo de Van Laar no es adecuado para representar este sistema.

Grafico 7. Propiedades de la fase liquida para el sistema cloroformo/acetona en macroescala. En el grafico 7 propiedades de la fase liquida para el sistema cloroformo-acetona en macroescala se tuvo que quitar 1 dato ya que este hacia que la ecuación en el extremo x=0 variara con respecto a tendencia que seguía en los valores centrales, es decir, este criterio atiende a la recomendación que hace Sandler²¹ en su libro "Para mejorar el ajuste de datos es conveniente no tomar en cuenta algunos puntos experimentales, especialmente en los extremos de la gráfica, consiguiéndose de esta forma correlaciones adecuadas". Obteniéndose para una ecuación de 3er grado con una relación de $R^2=0.267$

Grafico 8 Método de regresión lineal Margules para el sistema cloroformo/acetona en macroescala.

²¹ Referencia bibliografica 4

En el grafico 8 en el método de regresión lineal de Margules para el sistema cloroformo /acetona se obtuvo una R^2 =0.9805 sin quitar ningún punto lo cual se considera como una buena relación. Esto también nos da un cierto nivel de confianza de que el modelo de Margules es adecuado para representar este sistema.

Grafico 9 Método de regresión lineal Van Laar para el sistema cloroformo/acetona en macroescala. En el grafico 9 se obtuvo una $R^2=0.477$ esta se dejo asi porque al momento de quitar datos experimentales no mejoraba el valor de la relación lineal. Esto nos indica que el modelo de Van Laar no es adecuado para este sistema.

Grafico 10. Propiedades de la fase liquida para el sistema cloroformo/acetona en microescala.

En el grafico 10 propiedades de la fase liquida del sistema cloroformo-acetona a microescala se obtuvo una R^2 =0.9827 con una ecuación polinomica de 6 grado esto permaneció así porque al momento de analizar el grafico se notaba que no sigue una tendencia clara para poder quitar algunos puntos de una manera confiable.

Grafico 11 Método de regresión lineal Margules para el sistema cloroformo/acetona en microescala. En el grafico 11 en método de regresión lineal de Margules se obtuvo una $R^2=0.9975$ que es una relación mas que aceptable. Lo cual también nos muestra que el modelo de Margules es adecuado para representar el sistema.

Grafico 12 Método de regresión lineal Van Laar para el sistema cloroformo/acetona en microescala.

En el grafico 12 método de regresión de Van Laar se obtuvo una relación lineal R^2 =0.7889 la cual se dejo así porque al momento de quitar puntos de la recta no mejoraba la relación lineal. Lo cual nos muestra que el modelo de Van Laar no es adecuado para este sistema.

Grafico 13. Propiedades de la fase liquida para el sistema acetato de metilo/metanol en macroescala. En el grafico 13 propiedades de la fase liquida para el sistema acetato de metilo-metanol en macroescala se tuvieren que eliminar 4 puntos experimentales de 13 disponibles principalmente en los valores extremos esto fue porque al analizar el grafico se notaba que estos afectarían la tendencia central de la ecuación que repercutiría en el valor de las constantes obteniéndose una ecuación de 3er grado con una R^2 =0.8025.

Grafico 14 Método de regresión lineal Margules para el sistema acetato de metilo/metanol en macroescala.

En el grafico 14 método de regresión lineal Margules se obtuvo una R^2 =0.8575 con solo eliminar un punto lo cual se puede considerar como algo aceptable para realizar el caculo de las constantes, esto también nos indica que Margules es aceptable para realizar el modelado del sistema.

Grafico 15 Método de regresión lineal Van Laar para el sistema acetato de metilo/metanol en macroescala.

En el grafico 15 se obtuvo una R^2 =0.8405 quitando solamente 3 puntos experimentales de 13 disponibles principalmente 2 en los extremos y 1 intermedio, lo cual se considero como aceptable sin embargo el modelo de Margules demostró mejores resultados que el de Van Laar.

Grafico 16. Propiedades de la fase liquida para el sistema acetato de metilo/metanol en microescala

En el grafico 16 propiedades de la fase liquida en el sistema acetato de metilo-metanol en microescala se opto por quitar 3 puntos experimentales de 14 disponibles y con una ecuación de 3er grado con una R^2 =0.555 se calcularon las constantes

Metodo de regresión lineal Margules

Grafico 17 Método de regresión lineal Margules para el sistema acetato de metilo/metanol en microescala.

En el grafico 17 método de regresión lineal se obtuvo una R^2 =0.9242 quitando 3 puntos experimentales de 14 disponibles principalmente en los valores extremos lo cual es una buena relación también nos indica que Margules es modelo adecuado para representar el sistema.

Grafico 18 Método de regresión lineal Van Laar para el sistema acetato de metilo/metanol en microescala.

En el diagrama 18 método de regresión de Van Laar para obtener una buena relación R^2 =0.9072 se tuvieron que quitar 6 puntos experimentales de 14 disponibles lo cual nos indica que el modelo de Van Laar no es adecuado para representar este sistema.

Sistema Metanol(1)/Aqua(2)	MACROESCALA		MICROESCALA	
	A12	A21	A12	A21
Regresión polinomial	0.3625	-0.5667	1.228	1.197
Regresión lineal Margules	0.6792	-0.3827	1.2598	0.8441
Regresión lineal Van Laar	0.7585	0.2036	1.298	0.5953
Optimización Margules	0.7488949	0.90646161	0.2074608	0.86580295
Optimización Van Laar	0.7520622	0.9170251	0.3776673	0.99190823
Constantes PROII	-0.020256	0.04155609		
Sistema Cloroformo(1)/Acetona(2)	MACRO	DESCALA	MICROESCALA	
	A12	A21	A12	A21
Regresión polinomial	-1.2756	-0.6876	-1.0232	-1.2937
Regresión lineal Margules	-1.1892	-0.9191	-0.6217	-0.9568
Regresión lineal Van Laar	-1.3017	-0.8881	-0.6122	-1.0271
Optimización Margules	Optimización Margules -0.97771 -1.045		-0.68467	-0.91563338
Optimización Van Laar	-0.964221	-1.099031	-0.661183	-1.1256038
Constantes PROII	-0.679668	-0.679668 -0.7164894		
Sistema Acetato de	MACROESCALA		MICROESCALA	
metilo(1)/Metanol(2)	A12	A21	A12	A21
Regresión polinomial	1.4432	0.3985	0.6756	0.5627
Regresión lineal Margules	1.4045	0.4335	1.10108	0.4869
Regresión lineal Van Laar	1.4316	0.7401	1.0471	0.5974
Optimización Margules	1.2113036	0.68010413	0.6809645	0.58785963
Optimización Van Laar	1.1739757	0.84602549	0.6545829	0.65799564
Constantes PROII	1.0567672	0.89410551		

Tabla 4. Constantes de Margules y Van Laar obtenidas a partir de los datos experimentales y los datos del simulador.

En la tabla 4 podemos observar que en el sistema metanol-agua en macroescala las constantes A_{12} obtenidas por el método de regresión lineal y el optimización no muestran una variación significativa, y entre estas y las obtenidas por la regresión polinomial existe una mayor variación. En lo que se refiere a la constante A_{21} podemos observar que tanto en macroescala como en microescala en el método de obtención por optimización tienen muy poca variación los valores de las constantes.

En la misma tabla 4 podemos observar que para el sistema cloroformo acetona en macroescala en la constante A_{12} no hay una gran diferencia significativa con los métodos de obtención, en la constante A_{21} hay una diferencia entre el método de

obtención por la ecuación polinomial y los de mas, sin embargo estos últimos no difieren en gran medida. En microescala se observa un comportamiento similar incluso si comparamos las constantes A_{21} obtenidas en macroescala y microescala son relativamente parecidos.

En la tabla 4 en lo que se refiere al sistema Acetato de metilo-metanol a macroescala en podemos observar que no existe una diferencia apreciable en las constantes A_{12} obtenidas por los diferentes métodos incluso con las obtenidas con ayuda del simulador. En las constantes A_{21} en los métodos de optimización y de regresión lineal de Van Laar no existe una diferencia apreciable, entre estos y los de regresión lineal de Margules y polinomial existe una mayor variación.

En el mismo sistema a microescala al momento de evaluar la constante A_{12} los métodos polinomial y optimización difieren con los obtenidos por la regresión polinomial, en las constantes A_{21} no hay una gran discrepancia en todos los métodos de obtención utilizados, incluso si comparamos las constantes A_{21} obtenidas en microescala y macroescala no existe una diferencia apreciable.

Sistema Metanol(1)/Agua(2)	MACROESCALA		MICRC	ESCALA
Error promedio absoluto	%Т %у		%Т	%у
R.P. Margules	1.4189571	14.8623192	1.3275386	38.5050236
Desviación media	0.8421021	0.8421021 11.5737246 (30.0495995
R.P Van Laar	No soporta el modelo		1.3271804	38.500834
Desviación media	No soporta el modelo		0.7494463	30.0458383
R.L. Margules	1.0489594	15.4173311	1.0241024	35.6588744
Desviación media	0.6333628	6.92985794	0.7093657	29.5149775
R.L. Van Laar	0.824924	14.476582	0.6462629	30.5602627
Desviación media	0.5307592	7.22023552	0.5171726	26.4042068
Optimización Margules	0.2591697 10.5546489		0.1930395	19.100659
Desviación media	0.0785438 9.71341589		0.0926981	6.19091989
Optimización Van Laar	0.2630454	0.2630454 10.5959637		22.2447096
Desviación media	0.0775633	9.74446292	0.1584378	10.8494708

Sistema Cloroformo(1)/Acetona(2)	MACROESCALA		MICROESCALA	
Error promedio absoluto	%Т %у		%Т	%у
R.P. Margules	0.267072	5.79603287	0.4394688	17.2478091
Desviación media	0.0946979	3.72250652	0.2820732	15.0872938
R.P Van Laar	0.2883199	7.13162167	0.4249832	16.9524146
Desviación media	0.1086896	4.6918096	0.2697051	14.9203674
R.L. Margules	0.1855475	4.73239425	0.0965095	10.8706951
Desviación media	0.0995854	2.07411216	0.0531873	9.57647515
R.L. Van Laar	0.2174188	5.31956147	0.0980889	10.4529946
Desviación media	0.1020772	2.52761883	0.0619261	9.05535638
Optimización Margules	0.1258816	0.1258816 5.29029816		11.0136198
Desviación media	0.0878885 3.63589268		0.0377007	10.1580008
Optimización Van Laar	0.1212552	5.27667703	0.1001453	11.641978
Desviación media	0.0896012	3.67884181	0.0405794	10.0162297
Sistema Acetato de				
metilo(1)/Metanol(2)	MACRC	ESCALA	MICRO	ESCALA
metilo(1)/Metanol(2) Error promedio absoluto	MACRC %T	ESCALA %y	MICRO %T	ESCALA %y
metilo(1)/Metanol(2) Error promedio absoluto R.P. Margules	MACRC %T 0.2689756	DESCALA %y 11.6800102	MICRO %T 0.2904342	ESCALA %y 8.32864882
metilo(1)/Metanol(2) Error promedio absoluto R.P. Margules Desviación media	MACRC %T 0.2689756 0.0937312	DESCALA %y 11.6800102 7.59190568	MICRO %T 0.2904342 0.1193742	ESCALA %y 8.32864882 7.77503082
metilo(1)/Metanol(2) Error promedio absoluto R.P. Margules Desviación media R.P Van Laar	MACRC %T 0.2689756 0.0937312 0.4649126	DESCALA %y 11.6800102 7.59190568 9.73971387	MICRO %T 0.2904342 0.1193742 0.2953095	ESCALA %y 8.32864882 7.77503082 8.22855143
metilo(1)/Metanol(2) Error promedio absoluto R.P. Margules Desviación media R.P Van Laar Desviación media	MACRC %T 0.2689756 0.0937312 0.4649126 0.223541	DESCALA %y 11.6800102 7.59190568 9.73971387 4.29375622	MICRO %T 0.2904342 0.1193742 0.2953095 0.1192318	ESCALA %y 8.32864882 7.77503082 8.22855143 7.70805601
metilo(1)/Metanol(2) Error promedio absoluto R.P. Margules Desviación media R.P Van Laar Desviación media R.L. Margules	MACRC %T 0.2689756 0.0937312 0.4649126 0.223541 0.2505529	DESCALA %y 11.6800102 7.59190568 9.73971387 4.29375622 10.7223361	MICRO %T 0.2904342 0.1193742 0.2953095 0.1192318 0.312664	ESCALA %y 8.32864882 7.77503082 8.22855143 7.70805601 20.6971601
metilo(1)/Metanol(2) Error promedio absoluto R.P. Margules Desviación media R.P Van Laar Desviación media R.L. Margules Desviación media	MACRC %T 0.2689756 0.0937312 0.4649126 0.223541 0.2505529 0.0905196	DESCALA %y 11.6800102 7.59190568 9.73971387 4.29375622 10.7223361 6.78535782	MICRO %T 0.2904342 0.1193742 0.2953095 0.1192318 0.312664 0.2157565	ESCALA %y 8.32864882 7.77503082 8.22855143 7.70805601 20.6971601 21.4785131
metilo(1)/Metanol(2) Error promedio absoluto R.P. Margules Desviación media R.P Van Laar Desviación media R.L. Margules Desviación media R.L. Van Laar	MACRC %T 0.2689756 0.0937312 0.4649126 0.223541 0.2505529 0.0905196 0.1749645	DESCALA %y 11.6800102 7.59190568 9.73971387 4.29375622 10.7223361 6.78535782 9.5812827	MICRO %T 0.2904342 0.1193742 0.2953095 0.1192318 0.312664 0.2157565 0.2665206	ESCALA %y 8.32864882 7.77503082 8.22855143 7.70805601 20.6971601 21.4785131 17.5881629
metilo(1)/Metanol(2) Error promedio absoluto R.P. Margules Desviación media R.P Van Laar Desviación media R.L. Margules Desviación media R.L. Van Laar Desviación media	MACRC %T 0.2689756 0.0937312 0.4649126 0.223541 0.2505529 0.0905196 0.1749645 0.1052464	DESCALA %y 11.6800102 7.59190568 9.73971387 4.29375622 10.7223361 6.78535782 9.5812827 7.06711191	MICRO %T 0.2904342 0.2953095 0.1192318 0.312664 0.2157565 0.2665206 0.2093866	ESCALA %y 8.32864882 7.77503082 8.22855143 7.70805601 20.6971601 21.4785131 17.5881629 18.782601
metilo(1)/Metanol(2) Error promedio absoluto R.P. Margules Desviación media R.P Van Laar Desviación media R.L. Margules Desviación media R.L. Van Laar Desviación media Optimización Margules	MACRC %T 0.2689756 0.0937312 0.4649126 0.223541 0.2505529 0.0905196 0.1749645 0.1052464 0.1510528	DESCALA %y 11.6800102 7.59190568 9.73971387 4.29375622 10.7223361 6.78535782 9.5812827 7.06711191 6.23880908	MICRO %T 0.2904342 0.2953095 0.1192318 0.312664 0.2157565 0.2665206 0.2093866 0.2787798	ESCALA %y 8.32864882 7.77503082 8.22855143 7.70805601 20.6971601 21.4785131 17.5881629 18.782601 8.59751866
metilo(1)/Metanol(2) Error promedio absoluto R.P. Margules Desviación media R.P Van Laar Desviación media R.L. Margules Desviación media R.L. Van Laar Desviación media Optimización Margules Desviación media	MACRC %T 0.2689756 0.0937312 0.4649126 0.223541 0.2505529 0.0905196 0.1749645 0.1052464 0.1510528 0.0791824	DESCALA %y 11.6800102 7.59190568 9.73971387 4.29375622 10.7223361 6.78535782 9.5812827 7.06711191 6.23880908 4.4384431	MICRO %T 0.2904342 0.2953095 0.1192318 0.312664 0.2157565 0.2665206 0.2093866 0.2787798 0.1209004	ESCALA %y 8.32864882 7.77503082 8.22855143 7.70805601 20.6971601 21.4785131 17.5881629 18.782601 8.59751866 7.98997972
metilo(1)/Metanol(2) Error promedio absoluto R.P. Margules Desviación media R.P Van Laar Desviación media R.L. Margules Desviación media R.L. Van Laar Desviación media Optimización Margules Desviación media Optimización Van Laar	MACRC %T 0.2689756 0.0937312 0.4649126 0.223541 0.2505529 0.0905196 0.1749645 0.1052464 0.1510528 0.0791824 0.1227863	DESCALA %y 11.6800102 7.59190568 9.73971387 4.29375622 10.7223361 6.78535782 9.5812827 7.06711191 6.23880908 4.4384431 5.70521887	MICRO %T 0.2904342 0.1193742 0.2953095 0.1192318 0.312664 0.2157565 0.2665206 0.2093866 0.2787798 0.1209004 0.264421	ESCALA %y 8.32864882 7.77503082 8.22855143 7.70805601 20.6971601 21.4785131 17.5881629 18.782601 8.59751866 7.98997972 8.37267357

Tabla 6. Errores promedio y desviaciones medias de T y composición de vapor (y) encontrados a partir de las constantes obtenidas en comparación con los datos experimentales²².

En la tabla 6 que es una comparación entre los datos experimentales (temperatura y composición de vapor) con respecto a los datos obtenidos por medio de las constantes de Van Laar y Margules (con ayuda del programa elaborado²³) para las mismas variables, se puede observar que en el sistema metanol-agua en macroescala y en microescala no existe una diferencia entre usar Margules o Van Laar, sin embargo entre usar las constantes obtenidas por optimización o por los demás métodos si existe una diferencia favoreciendo a las constantes obtenidas por optimización.

²³ Para mayor información del programa elaborado ir apéndice A

En la tabla 6 en el sistema cloroformo-acetona tanto en macroescala como en microescala no existe una diferencia apreciable entre utilizar Margules o Van Laar, sin embargo entre utilizar un método de optimización y los demás si.

En la misma tabla 6 podemos observar en el sistema acetato de metilo-metanol existe la misma tendencia a excepción que en microescala las constantes obtenidas por regresión polinomial y optimización obtuvieron mejores resultados que la obtenida por regresión lineal.

8. CONCLUSIONES

En general la metodología a microescala demostró que sigue el mismo comportamiento que a macroescala por lo que es adecuada para obtener datos experimentales para el equilibrio vapor liquido. También se demostró que el programa elaborado es funcional en la elaboración de diagramas Txy.

También se expuso que en los sistemas acetona-cloroformo, acetato de metilo-metanol el modelo de Margules presento una ligera ventaja al de Van Laar. En el sistema metanol-agua presento una mayor diferencia entre los datos experimentales y los del simulador además de en las regresiones lineales se tuvieron que quitar entre 4 a 6 datos experimentales para obtener buenas relaciones lineales aparte que este sistema tanto en macroescala como en microescala presento en promedio el mas alto índice de error en la tabla 6 además de que las constantes obtenidas en macroescala con el modelo de Van Laar no corrió el programa con las constantes obtenidas por regresión lineal de Van Laar en macroescala de todo esto nos puede llevar a las siguientes conclusiones; el error puede haber sido ocasionado por la no introducción del parámetro de interacción binaria o por que ni los modelos de Margules ni de Van Laar representan al sistema de una manera adecuada. Para esto se puede hacer el siguiente análisis con respecto al modelo utilizado en la fase vapor.

En la fase vapor haciendo un análisis se tienen que a presiones bajas los parámetros de interacción binaria no deberían afectar significativamente a los coeficientes de fugacidad a menos que las sustancias químicas en la fase vapor se dimerizen pensando

en esto se realizo otra consulta bibliográfica mas detallada encontrandose que²⁴ si hay presentes sustancias que contienen grupos capaces de formar fuertes enlaces de hidrogeno, la fase vapor se comportara de un modo tan alejado de la idealidad que las ecuaciones de tres o mas parámetros (P-R,S-R-K,B-W-R,etc) no son capaces de describir adecuadamente su comportamiento, las sustancias que son capaces de describir este comportamiento en la fase vapor son ciertos alcoholes, aldehidos, acidos y esteres que tienden a formar dimeros, trimeros y codimeros en la fase vapor. Sin embargo también se menciona que empiezan a dimerizarse apreciablemente solo a presiones normales (próximas a 1 bar) por lo que al tener nosotros presiones menores que la atmosférica debería ser una buena aproximación, muy probablemente el problema se encontré en la fase liquida para esto se hace el siguiente análisis.

	Metanol	Agua
Densidad	0.7866 g/ml (25/4°C)	1 g/ml (4°C)
Masa molar	32.04 g/mol	18.01g/mol
Volumen molar	40.73ml/mol	18.01ml/mol
Estructura Molecular		5° (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

El metanol y el agua tienen propiedades²⁵ semejantes en tamaño, forma y naturaleza quimica por lo que los modelos de Margules y Van Laar pueden se adecuados, sin embargo falta algo por considerar muy importante la variación de los coeficientes de actividad con la temperatura que pocos libros la consideran, en la referencia²⁴ se menciona que no debe haber una variación significativa de las temperaturas de ebullición para las sustancias puras involucradas ya que afecta a los coeficientes de actividad y por lo tanto a las constantes de Margules y Van Laar. Aunque no se menciona que tanto es significativo podemos darnos una idea con esta referencia en el artículo con referencia 3 se logro representar al sistema etanol-agua con el modelo de Wilson que también sus constantes varían con la temperatura, no obstante, la variación de temperatura entre estos es de alrededor de 22°C y para el sistema metanol-agua

²⁴ Referencia bibliografica 10

²⁵ Propiedades encontradas en las paginas de internet 5,6,7.

existe una diferencia de temperaturas de ebullición es de alrededor de 35°C que puede ser suficiente para que las constantes no sean adecuadas. Otra manera de representar este tipo de sistemas es utilizar modelos más complejos como NRTL, UNIQUAC, UNIFAC.

En lo que se refiere a una mejora a la metodología seria más que adecuado en sistemas como el de metanol/agua tomar los datos del volumen molar para poder calcular los parámetros de interacción binaria y así poder determinar la relación Φ (phi) con una mejor aproximación.

En la comparación de métodos se demostró que la obtención por medio de regresión lineal es adecuado, ya que el método polinomial demostró tener algunas deficiencias practicas al momento de elegir si quitar o no algún dato experimental.

Apéndice A

El siguiente estudio comparativo se llevara con la finalidad de obtener un medio por el cual comparar los diferentes modelos y métodos de obtención de las constantes de Margules y Van Laar con respecto a los datos experimentales y ver así cual se ajusta mejor. Se realizara obteniendo la temperatura de burbuja y composición de vapor de equilibrio a la misma composición del líquido de los datos experimentales (se obtendrán los valores con ayuda del programa elaborado). Para después compararlos con la Temperatura de burbuja y composición de vapor experimental y así calcular un error promedio absoluto con las siguientes formulas.

MACROE	SCALA				
Experim	Experimentales		lados		
Temperatura		Temperatura		Error Absoluto en	Error Absoluto
(°K)	Y ₁ (Metanol)	(°K)	Y ₁ (Metanol)	T(K)	en y
367.15	0	366.0413784		0.301953318	
363.15	0.12	363.4201649	0.119958254	0.074394855	0.034788379
359.15	0.235	360.7622492	0.232915948	0.448906906	0.886830815
355.15	0.42	359.0521207	0.301573701	1.098724668	28.1967378
351.15	0.53	357.5066224	0.361289911	1.810229938	31.83209224
348.65	0.585	355.9710556	0.418730907	2.099829524	28.42206711
345.65	0.66	353.9416388	0.492209756	2.398853989	25.42276429
344.15	0.705	353.1219176	0.521196154	2.606978821	26.07146747
342.15	0.75	351.4553069	0.578938424	2.71965713	22.80821013
339.65	0.815	348.379194	0.680426346	2.57005564	16.51210484
337.15	0.88	343.576707	0.817324577	1.906186275	7.122207178
336.25	0.9	341.4808105	0.865765496	1.555631383	3.803833729
334.65	0.95	337.7806804	0.932958376	0.935508851	1.793855111
333.15	0.98	334.198282	0.977028736	0.314657664	0.30319023
332.65	1	331.1770648		0.442788265	

Sistema metanol (1)/agua (2) MACROESCALA

 Tabla 1 Cálculos de errores en temperatura y composición "y" utilizando las constantes de Margules obtenidas por regresión polinomial y el modelo de Margules.

	%T(K)	%у
Error Promedio Absoluto	1.41895715	14.8623192
Desviación media	0.8421	11.5737

Tabla 2 Cálculo del error promedio absoluto y desviación media.
MACROE	SCALA				
Experime	Experimentales Calculados				
Temperatura		Temperatura		Error Absoluto en	Error Absoluto
(°K)	Y ₁ (Metanol)	(°K)	Y ₁ (Metanol)	T(K)	en y
367.15	0	366.0413784		0.301953318	
363.15	0.12	362.3569415	0.155167116	0.218383163	29.30593025
359.15	0.235	358.9326578	0.284942496	0.060515715	21.25212606
355.15	0.42	356.8928087	0.3566675	0.490724671	15.07916671
351.15	0.53	355.1581079	0.414970683	1.141423299	21.70364465
348.65	0.585	353.5340563	0.467777713	1.400847929	20.03799786
345.65	0.66	351.5277447	0.531399597	1.700490285	19.48490958
344.15	0.705	350.756495	0.555582369	1.919655686	21.19399015
342.15	0.75	349.2419318	0.602902684	2.072755177	19.61297553
339.65	0.815	346.5603064	0.686302115	2.034537423	15.79115151
337.15	0.88	342.4442499	0.807199878	1.570295085	8.27274113
336.25	0.9	340.6276083	0.853884233	1.301890946	5.12397412
334.65	0.95	337.3479444	0.923285611	0.806198836	2.812040956
333.15	0.98	334.0559386	0.972604371	0.27193114	0.754656047
332.65	1	331.1770648		0.442788265	

 Tabla 3 Cálculos de los errores en temperatura y composición "y" utilizando las constantes de Margules obtenidas por regresión lineal.

	%T(K)	%у
Error Promedio Absoluto	1.0489594	15.4173311
Desviación media	0.6333	6.9298

MACRO	ESCALA				
Experim	entales	Calcul	ados		
Temperatura		Temperatura		Error Absoluto en	Error Absoluto
(°K)	Y ₁ (Metanol)	(°K)	Y ₁ (Metanol)	T(K)	en y
367.15	0	366.0413784		0.301953318	
363.15	0.12	362.2021564	0.15974595	0.261006081	33.12162483
359.15	0.235	358.8487748	0.286012724	0.083871709	21.70754228
355.15	0.42	356.8461795	0.356401849	0.477595239	15.14241693
351.15	0.53	355.0775746	0.415838877	1.118489137	21.53983444
348.65	0.585	353.3210295	0.472560967	1.339747453	19.22034758
345.65	0.66	350.9662548	0.545223911	1.538045654	17.39031652
344.15	0.705	350.0048418	0.573809567	1.701247082	18.60857202
342.15	0.75	348.0536122	0.629898507	1.725445632	16.01353239
339.65	0.815	344.6156628	0.72228765	1.461994043	11.37574852
337.15	0.88	340.0838563	0.830953907	0.870193178	5.573419672
336.25	0.9	338.4185464	0.867030443	0.644920855	3.663284127
334.65	0.95	335.7809116	0.919918206	0.337938633	3.166504648
333.15	0.98	333.3786194	0.963610262	0.068623575	1.672422213
332.65	1	331.1770648		0.442788265	

Tabla 4 Calculo del error promedio absoluto y desviación media.

 Tabla 5 Cálculos de los errores en temperatura y composición "y" utilizando las constantes de Van Laar obtenidas por regresión lineal.

	%T(K)	%у
Error Promedio Absoluto	0.82492399	14.476582
Desviación media	0.5307	7.2202

Tabla 6 Cálculo del error promedio absoluto y desviación media.

MICROE	ESCALA				
Experim	nentales	Calcula	ados		
Temperatura		Temperatura		Error Absoluto	Error Absoluto
(°K)	y1(metanol)	(°K)	Y ₁ (Metanol)	en T(K)	en y
365.15	0	366.0413784		0.244112938	
360.15	0.19	353.0440475	0.437735384	1.97305359	130.3870444
355.15	0.33	346.8673014	0.587063178	2.332169099	77.89793259
350.15	0.47	342.8485515	0.669530471	2.085234464	42.45329166
347.15	0.55	339.6588105	0.72939409	2.157911418	32.6171073
345.15	0.595	338.6186567	0.748449181	1.892320242	25.78977831
342.15	0.66	336.5127226	0.788027259	1.647604099	19.39806948
339.15	0.725	335.7189325	0.804137563	1.011666664	10.9155259
337.15	0.793	334.5705005	0.830336168	0.765089573	4.708217897
335.15	0.84	333.5225466	0.859977257	0.485589542	2.378244856
331.15	1	331.1770648		0.008172984	

Sistema metanol (1)/agua (2) MICROESCALA

 Tabla 7 Cálculos de los errores en temperatura y composición "y" utilizando las constantes de Margules obtenidas por regresión polinomial.

	%T(K)	%у
Error Promedio Absoluto	1.3275386	38.5050236
Desviación media	0.7496	30.0495

Tabla 8 Calculo del error promedio absoluto y la desviación media.

MICROES	SCALA				
Experime	ntales	Calcul	ados		
Temperatura		Temperatura		Error Absoluto	Error Absoluto en
(°K)	y1(metanol)	(°K)	Y ₁ (Metanol)	en T(K)	У
365.15	0	366.0413784		0.244112938	
360.15	0.19	353.0449431	0.437713414	1.972804902	130.3754808
355.15	0.33	346.8690944	0.587029278	2.331664266	77.88765999
350.15	0.47	342.8508707	0.669494477	2.084572112	42.44563338
347.15	0.55	339.6612189	0.72936402	2.157217646	32.61164001
345.15	0.595	338.6209441	0.7484237	1.891657507	25.78549587
342.15	0.66	336.5143771	0.788017458	1.647120539	19.3965845
339.15	0.725	335.7202095	0.804135966	1.011290126	10.91530565
337.15	0.793	334.5712088	0.830346417	0.764879477	4.7095104
335.15	0.84	333.5228737	0.859993639	0.485491972	2.380195107
331.15	1	331.1770648		0.008172984	

 Tabla 9 Calculo de los errores de temperatura y composición "y" utilizando las constantes de Van Laar obtenidas por regresión polinomial

	%T(K)	%у
Error Promedio Absoluto	1.32718041	38.500834
Desviación media	0.7494	30.0498

Tabla 10 Calculo del error promedio absoluto y la desviación media.

MICROES	SCALA				
Experime	Experimentales Calculados		ados		
Temperatura		Temperatura		Error Absoluto en	Error
(°K)	y1(metanol)	(°K)	Y ₁ (Metanol)	T(K)	Absoluto en y
365.15	0	366.0413784		0.244112938	
360.15	0.19	353.2007838	0.433235437	1.929533863	128.0186511
355.15	0.33	347.5444745	0.573010709	2.141496699	73.63960874
350.15	0.47	344.0162781	0.649238082	1.751741216	38.13576218
347.15	0.55	341.2485279	0.705679447	1.699977564	28.30535405
345.15	0.595	340.3229133	0.724513665	1.398547505	21.76700251
342.15	0.66	338.3013967	0.767320395	1.124829267	16.26066591
339.15	0.725	337.4407937	0.787016719	0.503967667	8.554030264
337.15	0.793	336.0600692	0.82181116	0.323277714	3.633185381
335.15	0.84	334.6825686	0.86197112	0.139469321	2.615609564
331.15	1	331.1770648		0.008172984	

 Tabla 11 Cálculo de los errores en temperatura y composición "y" utilizando las constantes de Margules obtenidas por regresión lineal.

	%T(K)	%у
Error Promedio Absoluto	1.02410243	35.6588744
Desviación media	0.7093	29.5149

Tabla 12 Calculo del error	promedio absoluto	y desviación media.
----------------------------	-------------------	---------------------

MICROE	SCALA				
Experime	entales	Calcula	ados		
Temperatura		Temperatura		Error Absoluto	Error Absoluto
(°K)	y1(metanol)	(°K)	Y ₁ (Metanol)	en T(K)	en y
365.15	0	366.0413784		0.244112938	
360.15	0.19	353.9759702	0.413027245	1.714293979	117.3827605
355.15	0.33	349.2971829	0.536437095	1.647984531	62.55669549
350.15	0.47	346.3653357	0.607359694	1.080869435	29.22546674
347.15	0.55	343.8081984	0.667547131	0.9626391	21.37220572
345.15	0.595	342.8375754	0.690475386	0.669976694	16.04628335
342.15	0.66	340.4303786	0.748579133	0.50259284	13.42108075
339.15	0.725	339.3033504	0.776680139	0.045216109	7.128295027
337.15	0.793	337.4521974	0.824361079	0.089632916	3.95473885
335.15	0.84	335.6306055	0.873220639	0.143400128	3.954838034
331.15	1	331.1770648		0.008172984	

 Tabla 13 Cálculos de los errores de temperatura y composición "y" utilizando las constantes de Van Laar obtenidas mediante una regresión lineal.

	%T(K)	%у
Error Promedio Absoluto	0.64626288	30.5602627
Desviación media	0.5171	26.4042

Tabla 14 Cálculo del error promedio absoluto y desviación media.

Sistema Cloroformo (1)/Acetona (2) MACROESCALA

MACROE	SCALA				
Experim	Experimentales		ulados		
Temperatura		Temperatura		Error Absoluto en	Error Absoluto
(K)	Y ₁ (Cloroformo)	(K)	Y ₁ (Cloroformo)	T(K)	en y
322.65	0	321.7695863		0.272869579	
324.65	0.025	323.5774411	0.024516154	0.330373924	1.935382777
325.15	0.06	325.4602476	0.062338068	0.095416763	3.896780194
325.75	0.11	327.1256238	0.110478629	0.422294335	0.435117641
328.75	0.22	329.9173881	0.251178882	0.355099056	14.17221893
329.95	0.27	330.6443472	0.317984912	0.210440137	17.77218957
330.55	0.34	330.824179	0.339819242	0.08294629	0.053164057
331.85	0.48	331.4466897	0.512495864	0.121533915	6.769971745
331.75	0.585	331.2019953	0.622783985	0.165186045	6.458800776
332.15	0.66	330.8063308	0.691940488	0.40453688	4.839467831
331.15	0.745	330.0383719	0.778250893	0.335687176	4.463207053
330.35	0.81	329.0105868	0.859750382	0.405452757	6.142022447
329.15	0.885	328.2509361	0.908134532	0.27314718	2.614071367
325.65	1	326.5097922		0.264023411	

Utilizando las constantes de regresión polinomial y la ecuación de Margules.

 Tabla 15 Cálculos de los errores en temperatura y composición "y" utilizando las constantes de Margules obtenidas por regresión polinomial.

	%T(K)	%у
Error Promedio Absoluto	0.26707196	5.79603287
Desviación media	0.0946	3.7225

Tabla 16 Cálculo del error promedio absoluto y desviación media.

MACRO	ESCALA				
Experimentales		Calculados			
Temperatura				Error Absoluto en	Error Absoluto
(K)	Y ₁ (Cloroformo)	Temperatura (K)	Y ₁ (Cloroformo)	T(K)	en y
322.65	0	321.7695863		0.272869579	
324.65	0.025	323.5892373	0.025838869	0.326740383	3.355475951
325.15	0.06	325.4320338	0.06677511	0.086739596	11.29185026
325.75	0.11	326.9875688	0.117935303	0.379913681	7.213912184
328.75	0.22	329.440509	0.259766801	0.210040748	18.07581868
329.95	0.27	330.0563963	0.324258561	0.032246179	20.09576317
330.55	0.34	330.208961	0.345089997	0.103173195	1.49705786
331.85	0.48	330.7756266	0.508107901	0.323752727	5.855812698
331.75	0.585	330.6342359	0.613163595	0.336326791	4.814289773
332.15	0.66	330.3485056	0.680551543	0.542373759	3.11387021
331.15	0.745	329.7486261	0.767176925	0.423184031	2.976768461
330.35	0.81	328.8801332	0.852034179	0.44494226	5.189404814
329.15	0.885	328.1949623	0.903580008	0.290152725	2.099435957
325.65	1	326.5097922		0.264023411	

 Tabla 17 Calculo de los errores en temperatura y composición "y" utilizando las constantes de Van Laar obtenidas por regresión polinomial.

	%T(K)	%у
Error Promedio Absoluto	0.28831993	7.13162167
Desviación media	0.1086	4.6918

Tabla 18 Cálculo del error promedio absoluto y la desviación media.

MACROE	ESCALA				
Experimentales		Calc	Calculados		
Temperatura		Temperatura		Error Absoluto en	Error Absoluto
(K)	Y ₁ (Cloroformo)	(K)	Y ₁ (Cloroformo)	I(K)	en y
322.65	0	321.7695863		0.272869579	
324.65	0.025	323.4971504	0.025270266	0.355105375	1.081065366
325.15	0.06	325.2877727	0.061703666	0.042372048	2.839442609
325.75	0.11	326.9082039	0.106583039	0.355549924	3.106328461
328.75	0.22	329.8393886	0.236963053	0.331372946	7.710478857
329.95	0.27	330.7091228	0.30021821	0.230072062	11.1919298
330.55	0.34	330.9413282	0.321187827	0.118386983	5.532992153
331.85	0.48	332.0073796	0.493138612	0.047424906	2.737210769
331.75	0.585	331.9984594	0.608948787	0.074893567	4.093809664
332.15	0.66	331.6910137	0.683634098	0.138186462	3.580923974
331.15	0.745	330.9233366	0.778039304	0.068447348	4.43480593
330.35	0.81	329.7324525	0.866204678	0.186937354	6.93884917
329.15	0.885	328.7812757	0.916336915	0.112023182	3.540894306
325.65	1	326.5097922		0.264023411	

 Tabla 19 Cálculos de los errores en temperatura y composición "y" utilizando las constantes de Margules obtenidas por regresión lineal.

	%T(K)	%у
Error Promedio	0.18554751	4.73239425
Desviación media	0.0995	2.0741

Tabla 20 Cálculo del error promedio absoluto y desviación media.

MACROE	ESCALA				
Experim	xperimentales Calculados				
Temperatura				Error Absoluto en	Error Absoluto
(K)	Y ₁ (Cloroformo)	Temperatura (K)	Y ₁ (Cloroformo)	T(K)	en y
322.65	0	321.7695863		0.272869579	
324.65	0.025	323.5951251	0.023952368	0.324926825	4.19052944
325.15	0.06	325.4983146	0.060748352	0.107124282	1.247253936
325.75	0.11	327.1911476	0.107253475	0.442409099	2.496840612
328.75	0.22	330.1158398	0.242770373	0.415464569	10.3501695
329.95	0.27	330.9308605	0.307638263	0.29727549	13.94009731
330.55	0.34	331.1419028	0.328978145	0.179066029	3.241722187
331.85	0.48	332.0252113	0.501036293	0.052798344	4.382560959
331.75	0.585	331.9193386	0.614578265	0.051044052	5.056113595
332.15	0.66	331.5727881	0.687243592	0.173780478	4.127816938
331.15	0.745	330.7899429	0.779020901	0.108729307	4.566563917
330.35	0.81	329.6248703	0.865356458	0.219503453	6.834130597
329.15	0.885	328.7061458	0.915098307	0.13484862	3.400938599
325.65	1	326.5097922		0.264023411	

Tabla 21 Calculo de los errores en temperatura y composición "y" utilizando las constantes de Van Laar obtenidas por regresión lineal.

	%T(K)	%у
Error Promedio Absoluto	0.21741882	5.31956147
Desviación media	0.1020	2.5276

Tabla 22 Calculo del error promedio absoluto y desviación media.

Sistema Cloroformo (1)/Acetona (2) MICROESCALA.

MICROE	SCALA				
Experimentales Calculados					
Temperatura (K)	Y ₁ (Cloroformo)	Temperatura (K)	Y ₁ (Cloroformo)	Error Absoluto en T(K)	Error Absoluto en y
322.15	0	321.7695863		0.118085891	
323.15	0.035	322.971284	0.020106835	0.055304337	42.55189896
324.45	0.101	324.4849562	0.050543104	0.010773993	49.95732246
325.15	0.14	325.7572453	0.081397347	0.186758516	41.85903755
326.15	0.225	328.0103939	0.151658818	0.570410503	32.59608104
327.15	0.269	329.2467451	0.202057301	0.640912467	24.88576187
328.15	0.33	331.105444	0.304865115	0.900638111	7.616631885
329.15	0.4	331.9912079	0.37558698	0.863195479	6.103255094
330.15	0.485	333.0295657	0.524242748	0.87219921	8.091288265
330.65	0.56	333.1260007	0.559854131	0.748828265	0.026047952
331.15	0.628	333.1051436	0.649304952	0.590410274	3.392508205
330.65	0.7	332.5867551	0.748939949	0.585741738	6.991421306
330.15	0.79	331.4569168	0.843633247	0.395855464	6.789018622
329.15	0.855	330.0390096	0.912032407	0.270092532	6.670457015
328.15	0.93	328.2372945	0.966628955	0.026602016	3.938597304
327.15	1	326.5097922		0.195692423	

 Tabla 23 Cálculos de los errores en temperatura y composición "y" utilizando las constantes de Margules obtenidas por regresión polinomial.

	%T(K)	%у
Error Promedio Absoluto	0.43946883	17.2478091
Desviación media	0.2820	15.0872

Tabla 24 Calculo del error promedio absoluto y desviación media.

MICRC	DESCALA				
Experi	Experimentales Calculados				
Temperatura (K)	Y ₁ (Cloroformo)	Temperatura (K)	Y ₁ (Cloroformo)	Error Absoluto en T(K)	Error Absoluto en y
322.15	0	321.7695863		0.118085891	
323.15	0.035	322.972417	0.020216813	0.054953737	42.23767683
324.45	0.101	324.4856188	0.051009516	0.010978216	49.49552914
325.15	0.14	325.7523385	0.082249308	0.185249413	41.25049432
326.15	0.225	327.980942	0.153129118	0.561380341	31.94261412
327.15	0.269	329.1961202	0.203691292	0.625437941	24.27833028
328.15	0.33	331.0155477	0.306223193	0.873243231	7.205092903
329.15	0.4	331.8818642	0.376423542	0.829975459	5.894114456
330.15	0.485	332.9058398	0.523633891	0.834723542	7.965750728
330.65	0.56	333.0044204	0.558907073	0.712058183	0.195165451
331.15	0.628	332.9982072	0.647657394	0.55811784	3.130158286
330.65	0.7	332.5101352	0.746943293	0.562569227	6.706184718
330.15	0.79	331.4183014	0.841935688	0.384159151	6.574137671
329.15	0.855	330.0269672	0.911010161	0.266433911	6.550895988
328.15	0.93	328.2375245	0.966341239	0.026672087	3.907660134
327.15	1	326.5097922		0.195692423	

Tabla 25 Cálculos del los errores en temperatura y composición "y" utilizando las constantes de Van Laar obtenidas por regresión polinomial.

	%T(K)	%у
Error Promedio Absoluto	0.42498316	16.9524146
Desviación media	0.2697	14.9203

Tabla 26 Cálculo del error promedio absoluto y desviación media.

MICRO	ESCALA				
Experir	nentales	Calc	ulados		
Temperatura		Temperatura		Error Absoluto en	Error Absoluto
(K)	Y ₁ (Cloroformo)	(K)	Y ₁ (Cloroformo)	T(K)	en y
322.15	0	321.7695863		0.118085891	
323.15	0.035	322.687107	0.028236628	0.143243996	19.32391911
324.45	0.101	323.7952846	0.066265254	0.201792375	34.39083772
325.15	0.14	324.7025558	0.10133059	0.13761164	27.62100692
326.15	0.225	326.2889133	0.173910732	0.042591855	22.70634138
327.15	0.269	327.1645639	0.222337387	0.004451762	17.34669622
328.15	0.33	328.5240271	0.316277815	0.113980525	4.158237783
329.15	0.4	329.2176167	0.378981071	0.02054283	5.254732326
330.15	0.485	330.1857725	0.509999386	0.010835213	5.154512648
330.65	0.56	330.3273485	0.54175117	0.097580975	3.258719559
331.15	0.628	330.5231606	0.62303363	0.189291693	0.790823246
330.65	0.7	330.4269019	0.71756399	0.067472588	2.50914145
330.15	0.79	329.897099	0.813653556	0.076601851	2.994121064
329.15	0.855	329.0592454	0.889041043	0.027572413	3.981408541
328.15	0.93	327.8323366	0.955102866	0.096804341	2.69923289
327.15	1	326.5097922		0.195692423	

 Tabla 27 Cálculo de los errores en temperatura y composición "y" utilizando las constantes de Margules obtenidas por regresión lineal.

	%T(K)	%у
Error Promedio Absoluto	0.09650952	10.8706951
Desviación media	0.0531	9.5764

MICRO	ESCALA				
Experin	nentales	Calc	ulados		
Temperatura		Temperatura		Error Absoluto	Error Absoluto
(K)	Y ₁ (Cloroformo)	(K)	Y ₁ (Cloroformo)	en T(K)	en y
322.15	0	321.7695863		0.118085891	
323.15	0.035	322.6789207	0.028699333	0.145777287	18.00190547
324.45	0.101	323.7705375	0.067561032	0.209419794	33.10788959
325.15	0.14	324.65625	0.103256643	0.151852988	26.24525465
326.15	0.225	326.1888802	0.176245058	0.011920967	21.66886322
327.15	0.269	327.0299207	0.224269188	0.036704649	16.62855461
328.15	0.33	328.3409681	0.3163269	0.058195382	4.143363693
329.15	0.4	329.0213382	0.377333086	0.039089122	5.666728379
330.15	0.485	330.0162707	0.504894788	0.04050563	4.102018226
330.65	0.56	330.1748488	0.535998879	0.143702163	4.285914459
331.15	0.628	330.4297468	0.616247394	0.217500581	1.871434074
330.65	0.7	330.4212463	0.711055773	0.06918304	1.57939621
330.15	0.79	329.9785626	0.80935054	0.051927117	2.44943548
329.15	0.855	329.1758887	0.887591052	0.007865315	3.811818994
328.15	0.93	327.913732	0.955847927	0.071999995	2.779346978
327.15	1	326.5097922		0.195692423	

Tabla 28 Calculo del error promedio absoluto y desviación media.

 Tabla 29 Calculo de los errores en temperatura y composición "y" utilizando las constantes de Van Laar obtenidas por medio de una regresión lineal.

	%T(K)	%у
Error Promedio Absoluto	0.0980889	10.4529946
Desviación media	0.0619	9.0553

Tabla 30 Calculo del error promedio absoluto y desviación media.

Sistema Acetato de metilo (1)/Metanol (2) MACROESCALA

MACRO	ESCALA				
Experim	entales	Calculados			
Temperatura		Temperatura		Error Absoluto en	Error Absoluto
(K)	y(acetato)	(K)	y(acetato)	T(K)	en y
333.15	0	331.1770648		0.592206262	
330.15	0.08	329.1720733	0.0966862	0.296206794	20.85780998
327.15	0.17	326.737112	0.2079489	0.126207537	22.32290114
326.15	0.22	324.9908472	0.285553	0.355404821	29.79683701
325.15	0.292	324.0013869	0.3301479	0.353256387	13.06435562
323.65	0.37	322.9593328	0.3801733	0.213399399	2.749529185
323.15	0.4	322.4388762	0.4085663	0.220059981	2.141576211
321.65	0.47	321.9190754	0.4438064	0.083654713	5.573114889
321.15	0.525	321.6252008	0.4724709	0.147968488	10.00554354
320.65	0.62	321.5296272	0.4854257	0.27432626	21.70553432
320.15	0.675	321.382553	0.6128805	0.384992356	9.202890988
320.65	0.711	321.6627635	0.6967866	0.315847031	1.999069153
321.15	0.76	322.0275232	0.7812841	0.273244039	2.800537473
321.65	0.83	322.5450902	0.9098496	0.278280791	9.620433499
323.15	1	322.7635787		0.119579548	

 Tabla 31 Calculo de los errores en temperatura y composición "y" utilizando las constantes de Margules obtenidas por regresión polinomial.

	%T(K)	%у
Error Promedio Absoluto	0.26897563	11.6800102
Desviación media	0.0937	7.5919

Tabla 32 Calculo del error promedio absoluto y desviación media.

MACROE	SCALA				
Experime	Experimentales		ados		
Temperatura		Temperatura			Error Absoluto
(K)	y(acetato)	(K)	y(acetato)	Error Absoluto en T(K)	en y
333.15	0	331.1770648		0.592206262	
330.15	0.08	329.3668342	0.0885668	0.237215136	10.70853163
327.15	0.17	327.5911709	0.1751978	0.134852782	3.057508167
326.15	0.22	326.4874349	0.2319165	0.103460028	5.416604026
325.15	0.292	325.8606371	0.2670869	0.218556687	8.531894147
323.65	0.37	325.1056576	0.3155063	0.449762904	14.72803148
323.15	0.4	324.632637	0.3517258	0.458807673	12.06854915
321.65	0.47	324.0396416	0.40842	0.742932249	13.10212266
321.15	0.525	323.6364973	0.4591546	0.774247953	12.54198234
320.65	0.62	323.4904959	0.4814727	0.885855563	22.34310753
320.15	0.675	322.8168648	0.6537068	0.833004786	3.154550873
320.65	0.711	322.6895167	0.737095	0.636056983	3.670179324
321.15	0.76	322.6486212	0.8109058	0.466642119	6.698131287
321.65	0.83	322.680916	0.9179392	0.320508631	10.59508771
323.15	1	322.7635787		0.119579548	

 Tabla 33 Cálculos de los errores en temperatura y composición "y" utilizando las constantes de Van Laar obtenidas por regresión polinomial.

	%T(K)	%у
Error Promedio Absoluto	0.46491262	9.73971387
Desviación media	0.2235	4.2937

Tabla 34 Calculo del error	promedio absoluto	y desviación media.
----------------------------	-------------------	---------------------

MACROE	ESCALA				
Experim	entales	Calculados			
Temperatura				Error Absoluto	Error Absoluto
(K)	y(acetato)	Temperatura (K)	y(acetato)	en T(K)	en y
333.15	0	331.1770648		0.592206262	
330.15	0.08	329.253429	0.0936893	0.271564741	17.11161461
327.15	0.17	326.8821042	0.2033928	0.081887755	19.64284528
326.15	0.22	325.1486563	0.2814336	0.307019388	27.92434816
325.15	0.292	324.148213	0.3270428	0.308099949	12.00097335
323.65	0.37	323.0725714	0.3790851	0.178411441	2.455420133
323.15	0.4	322.5237415	0.4090579	0.193798069	2.264473685
321.65	0.47	321.9680544	0.4463544	0.098882125	5.030980264
321.15	0.525	321.6519698	0.476257	0.156303845	9.284390048
320.65	0.62	321.5484867	0.4895723	0.280207936	21.03672488
320.15	0.675	321.3419363	0.6164498	0.372305589	8.674097307
320.65	0.711	321.5913944	0.6984472	0.293589399	1.76551593
321.15	0.76	321.9403842	0.7810459	0.246110593	2.769196748
321.65	0.83	322.4809085	0.9082672	0.258326917	9.429788846
323.15	1	322.7635787		0.119579548	

Tabla 35 Cálculos de los errores en temperatura y composición "y" utilizando las constantes de Margules obtenidas por regresión lineal.

	%T(K)	%у
Error Promedio Absoluto	0.2505529	10.7223361
Desviación media	0.0905	6.7853

Tabla 36 Calculo del error promedio absoluto y desviación media.

MACROES	SCALA				
Experimentales		Calculados			
Temperatura		Temperatura		Error Absoluto en	Error Absoluto
(K)	y(acetato)	(K)	y(acetato)	T(K)	en y
333.15	0	331.1770648		0.592206262	
330.15	0.08	329.219505	0.0948356	0.281840084	18.54454644
327.15	0.17	326.8796645	0.202901	0.082633492	19.35355118
326.15	0.22	325.1952586	0.2790771	0.29273077	26.85324178
325.15	0.292	324.2099994	0.3243833	0.289097521	11.09018224
323.65	0.37	323.0965685	0.378663	0.170996907	2.34135
323.15	0.4	322.4768916	0.4123275	0.208295958	3.08188699
321.65	0.47	321.7852035	0.4569523	0.042034349	2.776099976
321.15	0.525	321.3568557	0.4929382	0.064410919	6.107009665
320.65	0.62	321.2094607	0.5083931	0.174477066	18.00111931
320.15	0.675	320.7015499	0.6342618	0.172278594	6.035284917
320.65	0.711	320.81331	0.7047218	0.050930922	0.883007549
321.15	0.76	321.1058374	0.7747474	0.013751406	1.940448256
321.65	0.83	321.8725945	0.8926563	0.069203937	7.548946846
323.15	1	322.7635787		0.119579548	

 Tabla 37 Cálculos de los errores en temperatura y composición "y" utilizando las constantes de Van Laar obtenidas por regresión lineal.

	%T(K)	%у
Error Promedio Absoluto	0.17496452	9.5812827
Desviación media	0.1052	7.0671

Sistema Acetato de metilo (1)/Metanol (2) MICROESCALA.

MICROES	SCALA				
Experimentales		Calculados			
Temperatura		Temperatura		Error Absoluto	Error Absoluto
(K)	Y1(acetato)	(K)	y(acetato)	en T(K)	en y
333.15	0	331.1770648		0.592206262	
332.15	0.055	330.0572191	0.0730559	0.630071018	32.82890005
330.15	0.11	329.3976878	0.1155013	0.22786983	5.001216091
329.15	0.13	328.6569649	0.1628458	0.149790401	25.26601336
327.15	0.2	327.4067579	0.2426325	0.07848324	21.31624883
326.15	0.27	326.6801837	0.2894911	0.162558247	7.218913409
324.15	0.37	325.2228711	0.3873041	0.330979834	4.676777503
323.65	0.42	324.8380555	0.4148134	0.367080346	1.234904478
323.15	0.46	323.9464177	0.4841149	0.246454487	5.242373626
322.65	0.505	323.5696648	0.5172957	0.285034791	2.43479972
322.15	0.595	322.9410369	0.5832807	0.245549247	1.969628842
321.65	0.65	322.5192475	0.6444266	0.2702464	0.857453148
321.15	0.695	322.272584	0.7005838	0.349551312	0.803426677
322.15	0.785	322.1593946	0.8232842	0.002916234	4.876962462
323.15	0.845	322.2437422	0.8692808	0.280444922	2.873465319
324.15	1	322.7635787		0.427709797	

 Tabla 39 Cálculos de los errores en temperatura y composición "y" utilizando las constantes de Margules obtenidas mediante una regresión polinomial.

	%T(K)	%у
Error Promedio		
Absoluto	0.29043415	8.32864882
Desviación media	0.1193	7.775

Tabla 40 Calculo del error promedio absoluto y desviación media.

MICROE	SCALA				
Experimentales		Calculados			
Temperatura		Temperatura		Error Absoluto en	Error Absoluto
(K)	Y1(acetato)	(K)	y(acetato)	T(K)	en y
333.15	0	331.1770648		0.592206262	
332.15	0.055	330.0589863	0.072972	0.629538964	32.67639918
330.15	0.11	329.402013	0.1153038	0.226559733	4.821665881
329.15	0.13	328.6652909	0.1624831	0.147260846	24.98703377
327.15	0.2	327.4237924	0.2419572	0.083690182	20.97861342
326.15	0.27	326.702809	0.2886543	0.169495309	6.909013206
324.15	0.37	325.2554788	0.3863341	0.341039265	4.414630636
323.65	0.42	324.8724907	0.4138823	0.377719976	1.456590784
323.15	0.46	323.9826811	0.4834584	0.257676337	5.099651074
322.65	0.505	323.6053786	0.5168495	0.296103691	2.346444426
322.15	0.595	322.9735119	0.5833228	0.255629944	1.962553296
321.65	0.65	322.5471416	0.6448692	0.278918579	0.789359657
321.15	0.695	322.2955535	0.7012406	0.356703568	0.897928682
322.15	0.785	322.1703642	0.8238146	0.006321336	4.944534585
323.15	0.845	322.2504182	0.8696343	0.278379007	2.915301394
324.15	1	322.7635787		0.427709797	

 Tabla 41 Calculo de los errores en temperatura y composición "y" utilizando las constantes de Van Laar obtenidas mediante una regresión polinomial.

	%T(K)	%у
Error Promedio		
Absoluto	0.29530955	8.22855143
Desviación media	0.1192	7.7080

Tabla 42 Calculo del error promedio absoluto y la desviación media.

MICROES	SCALA				
Experimentales		Calcula	dos		
Temperatura		Temperatura		Error Absoluto en	Error Absoluto
(K)	Y1(acetato)	(K)	y(acetato)	T(K)	en y
333.15	0	331.1770648		0.592206262	
332.15	0.055	329.2395351	0.1029987	0.876250168	87.27029023
330.15	0.11	328.2235764	0.1555242	0.583499512	41.38566044
329.15	0.13	327.1855123	0.208618	0.596836611	60.47537374
327.15	0.2	325.6626313	0.2868838	0.454644265	43.44187593
326.15	0.27	324.8990391	0.3274079	0.383553847	21.26219174
324.15	0.37	323.6005913	0.4029113	0.169492123	8.894953116
323.65	0.42	323.3019731	0.4228505	0.107531875	0.678681996
323.15	0.46	322.6660385	0.4731968	0.149763719	2.868862336
322.65	0.505	322.4185653	0.4984218	0.071729338	1.302613309
322.15	0.595	322.0429938	0.5532603	0.033216263	7.015083614
321.65	0.65	321.8510309	0.6113476	0.062499906	5.946519092
321.15	0.695	321.8145814	0.6707992	0.206938004	3.482132957
322.15	0.785	322.0991522	0.8118593	0.015783891	3.421569978
323.15	0.845	322.2743643	0.864557	0.270968799	2.31443279
324.15	1	322.7635787		0.427709797	

 Tabla 43 Cálculos de los errores en temperatura y composición "y" utilizando las constantes de Margules obtenidas por medio de una regresión lineal.

	%T(K)	%у
Error Promedio Absoluto.	0.31266402	20.6971601
Desviación media	0.2157	21.4785

Tabla 44 Calculo del error promedio absoluto y la desviación media.

MICROES	SCALA				
Experimentales		Calculados			
Temperatura		Temperatura		Error Absoluto en	Error Absoluto
(K)	Y1(acetato)	(K)	y(acetato)	T(K)	en y
333.15	0	331.1770648		0.592206262	
332.15	0.055	329.3840706	0.0975751	0.832735043	77.40922343
330.15	0.11	328.4476744	0.14754	0.515621862	34.12724485
329.15	0.13	327.4884281	0.1984823	0.504806896	52.67866139
327.15	0.2	326.0603061	0.2752315	0.333086946	37.61572897
326.15	0.27	325.3227579	0.3163282	0.253638531	17.15860305
324.15	0.37	323.9976328	0.3969291	0.047005162	7.278144354
323.65	0.42	323.6733588	0.4192041	0.007217297	0.189503672
323.15	0.46	322.9495256	0.4765365	0.062037557	3.594885172
322.65	0.505	322.6535453	0.5052015	0.001098805	0.039897471
322.15	0.595	322.1783469	0.5655048	0.008799283	4.957174913
321.65	0.65	321.8917087	0.6253883	0.075146503	3.786407998
321.15	0.695	321.7664545	0.6830681	0.191952217	1.716816053
322.15	0.785	321.9029199	0.8133712	0.076697215	3.614163046
323.15	0.845	322.0688386	0.8624731	0.334569503	2.067825707
324.15	1	322.7635787		0.427709797	

 Tabla 45 Calculo de los errores en temperatura y composición "y" utilizando las constantes de Van Laar obtenidas por medio de una regresión lineal.

	%T(K)	%у
Error Promedio Absoluto	0.26652056	17.5881629
Desviación media	0.2093	18.7826

Tabla 46 Calculo del error promedio absoluto y desviación media.

Apéndice B

Ahora se realizara el cálculo de las constantes de Margules y de Van Laar por medio de un método de optimización para esto se ocupara el solver de Excel. Ocupando la ecuación de equilibrio de la siguiente forma:

$$P_{cal} = \frac{x_1 I_1 P_1^{sat} + x_2 I_2 P_2^{sat}}{y_1 \Phi_1 + y_2 \Phi_2}$$

Para la función a optimizar se ocupara la desviación media de los errores absolutos de la

presión²⁶. Error absoluto=
$$|\Delta P\%| = 100 \times \left|\frac{P_{exp} - P_{cal}}{P_{exp}}\right|$$

MACROE	SCALA				
Experimentales		Calculados			
Temperatura		Temperatura		Error Absoluto en	Error Absoluto
(°K)	Y ₁ (Metanol)	(°K)	Y ₁ (Metanol)	T(K)	en y
367.15	0	366.0413784		0.301953318	
363.15	0.12	361.8212188	0.173254132	0.365904222	44.37844326
359.15	0.235	357.440701	0.328689936	0.475929003	39.86805785
355.15	0.42	354.5900374	0.418020402	0.157669327	0.471332884
351.15	0.53	352.0202951	0.491417152	0.247841418	7.279782598
348.65	0.585	349.5122828	0.557167269	0.247320455	4.757731816
345.65	0.66	346.3631346	0.632469467	0.206316954	4.171292816
344.15	0.705	345.176779	0.659002943	0.298352176	6.524405224
342.15	0.75	342.971702	0.706090387	0.240158415	5.854615026
339.65	0.815	339.7340192	0.771475402	0.02473699	5.340441493
337.15	0.88	336.4571414	0.837605295	0.205504553	4.817580151
336.25	0.9	335.4303399	0.860066082	0.243765075	4.437101949
334.65	0.95	333.8842643	0.898307712	0.228816891	5.441293424
333.15	0.98	332.4820717	0.942090099	0.200488762	3.868357294
332.65	1	331.1770648		0.442788265	

Sistema metanol (1)/ agua(2)MACROESCALA.

 Tabla 47 Cálculos de los errores en temperatura y composición "y" utilizando las constantes de Margules obtenidas mediante una optimización.

	%T(K)	%у
Error Promedio Absoluto	0.25916972	10.5546489
Desviación media	0.07854378	9.71341589

Tabla 48 Calculo del error promedio absoluto y la desviación media.

²⁶ Para este método se necesita insertar en excel un valor inicial que pueden ser las constantes obtenidas por cualquier otro método.

MACROES	SCALA				
Experime	Experimentales		Calculados		
Temperatura				Error Absoluto en	Error Absoluto
(°K)	Y ₁ (Metanol)	Temperatura (°K)	Y₁(Metanol)	T(K)	en y
367.15	0	366.0413784		0.301953318	
363.15	0.12	361.8121359	0.17353216	0.368405362	44.61013358
359.15	0.235	357.434082	0.328813887	0.47777195	39.92080278
355.15	0.42	354.5899653	0.417936789	0.157689624	0.491240696
351.15	0.53	352.0281808	0.491138787	0.250087088	7.332304407
348.65	0.585	349.5284773	0.556733617	0.251965387	4.831860338
345.65	0.66	346.3878043	0.631944969	0.213454157	4.250762205
344.15	0.705	345.2032124	0.658486857	0.306032949	6.597608866
342.15	0.75	342.9978173	0.705667768	0.247791126	5.910964286
339.65	0.815	339.7473968	0.771392076	0.028675634	5.350665563
337.15	0.88	336.4440039	0.837975198	0.209401184	4.775545681
336.25	0.9	335.4105721	0.860491779	0.24964399	4.389802377
334.65	0.95	333.8624886	0.898590864	0.235323899	5.411488002
333.15	0.98	332.4680514	0.942031377	0.204697166	3.87434931
332.65	1	331.1770648		0.442788265	

 Tabla 49 Calculos de los errores en temperatura y composición "y" utilizando las constantes de Van Laar obtenidas mediante optimización.

	%T(K)	%у
Error Promedio Absoluto.	0.26304541	10.5959637
Desviación media	0.07756331	9.74446292

Tabla 50 Calculo del error promedio absoluto y desviación media.

Sistema metanol (1)/ agua(2)MICROESCALA.

MICROE	SCALA				
Experim	Experimentales		ados		
Temperatura		Temperatura		Error Absoluto en	Error Absoluto
(°K)	y1(metanol)	(°K)	Y ₁ (Metanol)	T(K)	en y
365.15	0	366.0413784		0.244112938	
360.15	0.19	360.4061301	0.250743132	0.071117607	31.97006933
355.15	0.33	355.6883189	0.421532623	0.151575073	27.73715855
350.15	0.47	351.2372717	0.555391176	0.310515972	18.1683353
347.15	0.55	346.4658444	0.674382704	0.197077804	22.61503709
345.15	0.595	344.6000177	0.715084435	0.159345867	20.18225803
342.15	0.66	340.3710492	0.797662216	0.519933007	20.85791147
339.15	0.725	338.7116588	0.827326473	0.129247011	14.11399624
337.15	0.793	336.4642464	0.866620194	0.203397193	9.283757187
335.15	0.84	334.7178622	0.898610225	0.12893862	6.977407701
331.15	1	331.1770648		0.008172984	

 Tabla 51 Calculos de los errores en temperatura y composición "y" utilizando las constantes de Margules obtenidas por medio de una optimización.

	%T(K)	%у
Error Promedio Absoluto	0.19303946	19.100659
Desviación media	0.09269811	6.19091989

Tabla 52 Calculo del error promedio absoluto y la desviación media.

MICROES	CALA				
Experimer	Experimentales		ados		
Temperatura		Temperatura		Error Absoluto en	Error Absoluto
(ºK)	y1(metanol)	(ºK)	Y₁(Metanol)	I(K)	en y
365.15	0	366.0413784		0.244112938	
360.15	0.19	358.8020802	0.294345092	0.374266211	54.91846953
355.15	0.33	353.8649746	0.456698776	0.3618261	38.39356838
350.15	0.47	349.7500876	0.572284563	0.114211726	21.76267296
347.15	0.55	345.6645162	0.672241449	0.427908325	22.22571798
345.15	0.595	344.107295	0.707088952	0.302101977	18.83847937
342.15	0.66	340.5351507	0.781849238	0.471971139	18.46200583
339.15	0.725	339.0652992	0.81119376	0.024974422	11.88879443
337.15	0.793	336.9353327	0.853493224	0.06367117	7.628401493
335.15	0.84	335.116895	0.891107924	0.009877679	6.0842767
331.15	1	331.1770648		0.008172984	

 Tabla 53 Cálculos de los errores en temperatura y composición "y" utilizando las constantes de Van Laar obtenidas por medio de una optimización.

	%T(K)	%у
Error Promedio Absoluto	0.21846315	22.2447096
Desviación media	0.15843778	10.8494708

Tabla 54 Calculo del error promedio absoluto y desviación media.

Sistema Cloroformo(1)/Acetona(2).MACROESCALA

MACRO	ESCALA				
Experimentales		Calculados			
Temperatura		Temperatura		Error Absoluto	Error Absoluto
(K)	Y ₁ (Cloroformo)	(K)	Y ₁ (Cloroformo)	en T(K)	en y
322.65	0	321.7695863		0.272869579	
324.65	0.025	323.3111209	0.028808207	0.412406938	15.2328266
325.15	0.06	324.8733593	0.066081229	0.085080962	10.13538138
325.75	0.11	326.3019693	0.109188481	0.169445693	0.737744626
328.75	0.22	329.0488649	0.229406899	0.090909476	4.275863235
329.95	0.27	329.9552788	0.287674694	0.001599891	6.546183084
330.55	0.34	330.2119303	0.307148626	0.102274901	9.662168936
331.85	0.48	331.627888	0.471651233	0.066931452	1.739326551
331.75	0.585	331.9239282	0.588561858	0.052427502	0.608864671
332.15	0.66	331.8013196	0.666769607	0.104976795	1.025698074
331.15	0.745	331.2065892	0.768282192	0.017088701	3.125126427
330.35	0.81	330.0546832	0.864191324	0.089395127	6.690286856
329.15	0.885	329.0416714	0.917781351	0.032911619	3.704107443
325.65	1	326.5097922		0.264023411	

 Tabla 55 Cálculos de los errores en temperatura y composición "y" utilizando las constantes de Margules obtenidas mediante una optimización.

	%T(K)	%у
Error Promedio Absoluto	0.12588157	5.29029816
Desviación media	0.08788847	3.63589268

Tabla 56 Calculo del error promedio absoluto y desviación media.

MACRO	ESCALA				
Experimentales		Calcu	Calculados		
Temperatura (K)	Y ₁ (Cloroformo)	Temperatura (K)	Y ₁ (Cloroformo)	Error Absoluto en T(K)	Error Absoluto en y
322.65	0	321.7695863		0.272869579	
324.65	0.025	323.297894	0.028934662	0.416481144	15.73864675
325.15	0.06	324.8461182	0.065917359	0.093458956	9.862264292
325.75	0.11	326.2674707	0.10841898	0.158855175	1.437290494
328.75	0.22	329.0343144	0.226737983	0.086483473	3.062719704
329.95	0.27	329.9640625	0.284285556	0.004262001	5.290946672
330.55	0.34	330.2297192	0.303567472	0.09689329	10.71544936
331.85	0.48	331.7319389	0.467593254	0.035576661	2.584738708
331.75	0.585	332.0842006	0.58543126	0.100738688	0.073719671
332.15	0.66	331.9877975	0.664753536	0.048834104	0.720232753
331.15	0.745	331.4022403	0.768049525	0.076171014	3.093896013
330.35	0.81	330.2173553	0.865477944	0.040152767	6.849128921
329.15	0.885	329.1591271	0.919436156	0.002772923	3.891091034
325.65	1	326.5097922		0.264023411	

 Tabla 57 Calculo de los errores en temperatura y composición "y" utilizando las constantes de Van Laar obtenidas mediante una optimización.

	%T(K)	%у
Error Promedio Absoluto	0.12125523	5.27667703
Desviación media	0.0896012	3.67884181

Tabla 58 Calculo del error promedio absoluto y la desviación media.

Sistema Cloroformo(1)/Acetona(2).MICROESCALA.

MICRO	ESCALA				
Experimentales Calculados					
Temperatura (K)	Y ₁ (Cloroformo)	Temperatura (K)	Y ₁ (Cloroformo)	Error Absoluto en T(K)	Error Absoluto en y
322.15	0	321.7695863		0.118085891	
323.15	0.035	322.7375307	0.027038175	0.127640194	22.74807192
324.45	0.101	323.9085474	0.064674602	0.166883223	35.96574019
325.15	0.14	324.8619605	0.10012861	0.088586651	28.47956459
326.15	0.225	326.5039265	0.174556669	0.10851648	22.41925803
327.15	0.269	327.3907983	0.224449645	0.07360485	16.56147012
328.15	0.33	328.7298282	0.320914749	0.176696075	2.753106487
329.15	0.4	329.3889619	0.384797454	0.072599692	3.800636603
330.15	0.485	330.2593011	0.516627132	0.033106494	6.521058111
330.65	0.56	330.3754286	0.548236303	0.083039883	2.10066012
331.15	0.628	330.5088269	0.628607217	0.193620135	0.096690641
330.65	0.7	330.3535537	0.721268795	0.089655623	3.038399328
330.15	0.79	329.7926463	0.814987811	0.108239813	3.163014092
329.15	0.855	328.9635014	0.888708661	0.056660682	3.942533475
328.15	0.93	327.780049	0.954184405	0.112738373	2.600473627
327.15	1	326.5097922		0.195692423	

Tabla 59 Calculo de los errores en temperatura y composición "y" utilizando las constantes de Margules obtenidas por optimización.

	%T(K)	%у
Error Promedio Absoluto	0.11283541	11.0136198
Desviación media	0.03770069	10.1580008

Tabla 60 Calculo del error promedio absoluto y desviación media.

MICROE	SCALA				
Experimentales Calculados					
Temperatura (K)	Y ₁ (Cloroformo)	Temperatura (K)	Y ₁ (Cloroformo)	Error Absoluto en T(K)	Error Absoluto en y
322.15	0	321.7695863		0.118085891	
323.15	0.035	322.7185577	0.027441899	0.133511481	21.59457297
324.45	0.101	323.864262	0.064939095	0.180532583	35.70386612
325.15	0.14	324.798931	0.099688798	0.107971395	28.79371587
326.15	0.225	326.4264705	0.171537696	0.08476789	23.76102412
327.15	0.269	327.3246225	0.219314843	0.053376885	18.47031852
328.15	0.33	328.7301948	0.311808328	0.176807811	5.51262788
329.15	0.4	329.4607551	0.37363334	0.094411395	6.591665017
330.15	0.485	330.5232371	0.503824405	0.113050775	3.881320535
330.65	0.56	330.6897047	0.535683442	0.01200808	4.342242499
331.15	0.628	330.9472987	0.61792546	0.061211324	1.604226188
330.65	0.7	330.9046906	0.714868924	0.077027245	2.12413195
330.15	0.79	330.3743669	0.814530576	0.067959092	3.105136249
329.15	0.855	329.4526375	0.892581713	0.091945155	4.395521964
328.15	0.93	328.0385425	0.958898097	0.033965411	3.107322218
327.15	1	326.5097922		0.195692423	

Tabla 61 Calculo de los errores en temperatura y composición "y" utilizando las constantes de Van Laar obtenidas por optimización.

	%T(K)	%у
Error Promedio Absoluto	0.1001453	11.641978
Desviacion media	0.04057941	10.0162297

Tabla 62 Calculo del error promedio absoluto y desviación media.

MACROES	CALA				
Experiment	tales	Calculad	los		
				Error Absoluto en	Error Absoluto
Temperatura (K)	y(acetato)	Temperatura (K)	y(acetato)	T(K)	en y
333.15	0	331.1770648		0.592206262	
330.15	0.08	329.6188631	0.0801668	0.160877452	0.208519568
327.15	0.17	327.5342338	0.1829083	0.117448822	7.593132985
326.15	0.22	325.8449242	0.2637907	0.093538487	19.90486981
325.15	0.292	324.7722079	0.3151458	0.116190108	7.926640325
323.65	0.37	323.4943516	0.3784489	0.048091591	2.283475372
323.15	0.4	322.7730927	0.4171155	0.116635392	4.278879056
321.65	0.47	321.9922051	0.4653659	0.106390508	0.985983679
321.15	0.525	321.5328005	0.5013489	0.119196799	4.504968862
320.65	0.62	321.3787746	0.5162165	0.227280406	16.73927074
320.15	0.675	320.8470149	0.6353983	0.217715116	5.866919564
320.65	0.711	320.9551895	0.7048365	0.095178389	0.866874227
321.15	0.76	321.2485783	0.7756938	0.030695404	2.064972166
321.65	0.83	321.9869874	0.8954041	0.104768351	7.880011701
323.15	1	322.7635787		0.119579548	

Sistema Acetato de Metilo(1)/Metanol(2) MACROESCALA.

Tabla 63 Calculo de los errores en temperatura y composición "y" utilizando las constantes de Margules obtenidas por optimización.

	%T(K)	%у
Error Promedio Absoluto	0.15105284	6.23880908
Desviación media	0.07918238	4.4384431

Tabla 64 Calculo del error p	promedio absoluto	y desviac	ión media.
------------------------------	-------------------	-----------	------------

MACROE	SCALA				
Experime	entales	Calculados			
Temperatura				Error Absoluto en	Error Absoluto
(K)	y(acetato)	Temperatura (K)	y(acetato)	T(K)	en y
333.15	0	331.1770648		0.592206262	
330.15	0.08	329.6834719	0.0777611	0.141307925	2.798667167
327.15	0.17	327.6512468	0.179229	0.153216193	5.4288321
326.15	0.22	325.9634558	0.2609712	0.057195843	18.62325771
325.15	0.292	324.8633611	0.3140024	0.088155908	7.535054637
323.65	0.37	323.5098045	0.3809016	0.043317002	2.946382409
323.15	0.4	322.7172232	0.4226343	0.133924432	5.658586121
321.65	0.47	321.8306591	0.4751331	0.056166353	1.092155869
321.15	0.525	321.2962436	0.5136863	0.045537478	2.154990472
320.65	0.62	321.1151611	0.5292378	0.145068168	14.63906674
320.15	0.675	320.437122	0.6443106	0.08968358	4.54658243
320.65	0.711	320.4919574	0.7069251	0.049288201	0.573120905
321.15	0.76	320.7662426	0.7710083	0.11949474	1.448459494
321.65	0.83	321.6253861	0.8857983	0.007652385	6.722689191
323.15	1	322.7635787		0.119579548	

Tabla 65 Calculo de los errores en temperatura y composición en "y" utilizando las constantes de Van Laar obtenidas mediante optimización.

	%T(K)	%у
Error Promedio Absoluto	0.12278627	5.70521887
Desviación media	0.07357222	3.79987582

Tabla 66 Calculo del error promedio absoluto y desviación media.

Sistema Acetato de Metilo(1)/Metanol(2) MICROESCALA.

MICROES	CALA				
Experimer	Experimentales		Calculados		
Temperatura		Temperatura		Error Absoluto	Error Absoluto en
(K)	Y1(acetato)	(K)	y(acetato)	en T(K)	У
333.15	0	331.1770648		0.592206262	
332.15	0.055	330.0463691	0.0734799	0.633337604	33.59985532
330.15	0.11	329.3794007	0.1161951	0.233408834	5.631894276
329.15	0.13	328.6294269	0.1638524	0.15815679	26.04031926
327.15	0.2	327.361616	0.2441645	0.064684698	22.08223945
326.15	0.27	326.6238508	0.2913046	0.145286155	7.890584632
324.15	0.37	325.1430693	0.3895207	0.306361052	5.275864284
323.65	0.42	324.7521664	0.4170683	0.340542689	0.69803111
323.15	0.46	323.8475967	0.4862458	0.215873948	5.705610403
322.65	0.505	323.4662849	0.5192357	0.25299391	2.818959008
322.15	0.595	322.8322863	0.5845794	0.211791486	1.751362401
321.65	0.65	322.4099094	0.6448909	0.236253492	0.786008015
321.15	0.695	322.1663654	0.7002151	0.316476834	0.750377316
322.15	0.785	322.0747283	0.8216237	0.023365426	4.665442927
323.15	0.845	322.1739989	0.8675506	0.302027278	2.668712875
324.15	1	322.7635787		0.427709797	

Tabla 67 Calculo de los errores en temperatura y composición "y" utilizando las constantes de Margules obtenidas mediante una optimización.

	%T(K)	%у
Error Promedio Absoluto	0.27877977	8.59751866
Desviacion media	0.12090039	7.98997972

Tabla 68 Calculo del error promedio absoluto y desviación media.

MICROE	ESCALA				
Experim	Experimentales		Calculados		
Temperatura		Temperatura		Error Absoluto en	Error Absoluto
(K)	Y (acetato)	(K)	y(acetato)	I(K)	en y
333.15	0	331.1770648		0.592206262	
332.15	0.055	330.0835411	0.0721633	0.622146297	31.20594812
330.15	0.11	329.4287008	0.1146512	0.218476212	4.228348865
329.15	0.13	328.6833989	0.1624997	0.141759404	24.99979748
327.15	0.2	327.401426	0.2440877	0.076853443	22.04386892
326.15	0.27	326.6426487	0.292427	0.151049747	8.306302256
324.15	0.37	325.09337	0.393636	0.291028831	6.388099735
323.65	0.42	324.6794631	0.4219805	0.318079129	0.471545678
323.15	0.46	323.7170619	0.492615	0.175479476	7.09021794
322.65	0.505	323.3108261	0.5258634	0.204812067	4.131360853
322.15	0.595	322.6374186	0.5906106	0.151301766	0.737716839
321.65	0.65	322.1920865	0.6490877	0.168533018	0.14035624
321.15	0.695	321.9383809	0.7020109	0.245486819	1.008760672
322.15	0.785	321.866286	0.8184827	0.088068919	4.265315341
323.15	0.845	321.9939476	0.8635882	0.35774482	2.199790992
324.15	1	322.7635787		0.427709797	

Tabla 69 Calculo de los errores en temperatura y composición "y" utilizando las constantes de Van Laar obtenidas por optimización.

	%T(K)	%у
Error Promedio Absoluto	0.264421	8.37267357
Desviacion media	0.12779864	7.59022769

Tabla 70 Calculo del error promedio absoluto y la desviación media.

BIBLIOGRAFÍA BÁSICA.

- Smith, J.M., H.C.Van Ness y Abbot M.M. "Introducción a la Termodinámica para Ingeniería Química". 6ªed. McGraw Hill Series. Nueva York. 2003.
- 2. Levine, I."Fisicoquimica", Volumen1.5ed.Mc Graw-Hill.España.2004.
- 3. Orbey.H. SADLER,S.I.. "Modeling vapor-liquid equilibria: cubic equations of state and their mixing rules". Cambridge University Press. Nueva York.1998.
- Sandler, S.I. . "Termodinámica Química y de Ingeniería". 3^a ed. John Wiley & Sons, Inc. Nueva York.1999.
- Peña.U.,J.J.Sanchez,A.I.Romero.,L.E.Benitez.,"Equilibrio liquido vapor comparación de procedimientos macroescala y microescala".Sociedad Mexicana de Termodinámica. Tlaxcala, México septiembre 2005.
- Poling, Bruce; Prausnitz, John & O'conell, John. "The Properties of Gases and Liquids". 5th edition. McGraw Hill. New York. 2001.
- 7. Balzhiser, S.R.E,"Termodinamica para Ingenieros". Prentice Hall.EUA.1977.
- 8. Holland, C.D. "Fundamentos de destilación de mezclas multicomponente". Limusa. Mexico. 1988.
- Prausnitz.J.M.,R.N.Lichtenthaler. "Termodinamica Molecular de los equilibrios de fases".3^a ed.Prentice Hall.España.2000.
- Scenna.N. "Modelado, Simulación y Optimización de Procesos Químicos". Publicaciones de la Universidad Tecnológica Nacional. Primera Edición. Argentina, 2002
- 11. Etheridge, Denise. "Microsoft Office: Excel 2007 Programming" 1ed. Wiley Publishing. Indianapolis. 2007.
- 12. Cuaderno de apuntes curso de simulación de procesos PROII

Articulos

- Sandoval,R,G.Bazua,E,R."Reglas de mezclado para ecuaciones cúbicas" Tecnología Ciencia y Educación. ed.IMIQ. Volumen 5 parte(1):pag39-44(1990).
- Lainfiesta, D. "Estimación de las constantes de Margules y Vann Laar para sistemas binarios por correlación lineal", Boletín electronico, 3. Universidad Rafael Landivar, Guatemala
- Rios,G."Modelos termodinámicos para el equilibrio liquido vapor a bajas presiones:Fase liquida modelos de Wilson".Scientia Técnica.No.24. Mayo 2004.Universidad Tecnologica de Pereira.

4. Chorng H.Twu., John E.C."Selection of Equations of State Models for process simulator" Simulation Sciences Inc, Volumen 8, numero 3.1994.

Paginas Web

- 1. http://joule.qfa.uam.es/beta-2.0/temario/tema3/tema3.php.
- 2. http://www.iq.uva.es/termoap/2_Ecuaciones_de_Estado.pdf
- 3. http://catarina.udlap.mx/u_dl_a/tales/documentos/leip/camacho_c_i/capitulo3.pdf
- http://www.frro.utn.edu.ar/repositorio/catedras/quimica/4_anio/integracion4/apuntes
 _catedra/Estimacion%20de%20Propiedades%20Fisicoquimicas%20%20 %20prop_termodinamicas.pdf
- 5. http://es.wikipedia.org/wiki/Metanol
- 6. http://www.quimica.unam.mx/IMG/pdf/9metanol.pdf
- 7. http://es.wikipedia.org/wiki/Mol%C3%A9cula_de_agua

BIBLIOGRAFIA COMPLEMENTARIA

- 1. Ahmed, T. "Equations of State and PVT Análysis". Gulf Publishing Company. Huston Texas, 2007.
- Sengers.J.V,.Kayser.R.F."Equations of State for Fluids and Fluid Mixtures"Volumen 5.ElservierAmsterdam.2000.

Artículos

- N.Kleiman.F.Barragan.E.Bazua."Estudio comparativo de la predicción de propiedades termodinámicas de sustancias polares con modelos recientes de ecuaciones de estado cúbicas".Revista Mexicana de Ingeniería Química(UAM). Volumen1, numero3,pag119-135.2002.
- Chorng H.T, John E.C."A New Equation of State Mixing Rule for the Prediction of Phase Equilibria from Available Activity Coefficient Model Parameters". Simulation Sciences Inc, Volumen 7,numero 26.1994.
- Shacham.M ,Wisniak.J. "Error Analysis of Linearization Methods in Regression of Data for the Van Laar and Margules Equations". *Ind. Eng. Chem. Res.* 1993,32, 2820-2825.