

POSGRADO EN CIENCIAS DEL MAR Y LIMNOLOGÍA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

ANÁLISIS DE SEDIMENTOS SUPERFICIALES DE LA PLATAFORMA CONTINENTAL

SOMERA EN LA PORCIÓN CENTRAL DEL ESTADO DE GUERRERO, MÉXICO.

TESIS

Que para obtener el grado académico de

MAESTRA EN CIENCIAS

(GEOLOGÍA MARINA)

Presenta

ING. ANA PILAR MARÍN GUZMÁN

Director de tesis: Dr. Arturo Carranza Edwards

Comité tutoral: Dr. Liberto de Pablo Galán

Dra. Elena Centeno García

Dra. Ofelia Morton Bermea

Dr. John S. Armstrong Altrin

MÉXICO, D.F.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

DEDICATORIAS

Siempre hay personas que nos acompañan a lo largo de la vida o durante una temporada y que de una u otra manera nos alientan a ser mejores personas o a emprender nuevos proyectos, pero quienes siempre han estado ahí son mis padres quienes siempre tienen una palabra de aliento, un abrazo de felicidad o uno de consuelo, en fin, siempre resultan mis incondicionales, los cómplices de muchas cosas que se me ha ocurrido hacer. Los amo...

Gracias a mis padrinos porque siempre están ahí y porque sé que siempre puedo contar con ellos para un consejo, un abrazo, en fin. Porque siempre están presentes en mi vida.

Mis más viejos amigos, Álvaro y Susy, saben que los quiero y que les agradezco enormemente todo lo que hemos vivido juntos y todas las veces que me han alentado, aconsejado o respetado mis decisiones aunque no siempre las compartan. Gracias por estar siempre ahí y por lo que nos falta por vivir.

Amiguitos preparatorianos, Alina, Claudia, Gabita, Mayra, Bruno y Fabián, no saben lo feliz que me hace que después de tantos años, nuestra amistad siga viva y sigan vivos sus consejos y sus regaños. Los quiero.

Marlencita, te quiero mucho y me da mucho gusto que hayamos podido compartir estos últimos años pasándola bien dentro y fuera del laboratorio. Espero que nuestra amistad sea duradera. Gracias por tantas risas, por tu compañía y por siempre estar dispuesta a ayudarme cuando lo he necesitado.

Alonso y Mayumy, muchas gracias por todos los buenos ratos que pasamos en el laboratorio y en los cruceros. Me dio mucho gusto compartir este tiempo con ustedes y les agradezco infinitamente su orientación con el microscopio y con las materias y trabajos que nos tocaba realizar. Gracias, de corazón.

Otros amigos han estado también conmigo a lo largo del camino, Panchito, Paty, Toñito, han hecho más ameno el camino. Saben que se les quiere y que siempre les deseo lo mejor.

Ale, comenzamos hace ya varios años siendo buenos amigos y la vida finalmente nos unió y es así como nos hemos acompañado a lo largo de varias aventuras, la de nuestra amistad, la de nuestras vidas, la de la maestría y cuanta aventura venga por vivir. Muchas gracias por apoyarme en todo lo que hago, porque nunca me pones obstáculos, al contrario, siempre me impulsas y crees en mí. También te agradezco porque eres un excelente novio y una bella persona. Gracias por compartir tantas cosas lindas conmigo, por hacerme reír y por compartir este amor conmigo.

AGRADECIMIENTOS

Antes que nada quiero agradecer a Dios y a la vida por ser tan generosos conmigo y por permitirme emprender siempre nuevas aventuras y nuevos retos.

Agradezco de todo corazón a mi director de tesis, el doctor Arturo Carranza, por compartir conmigo sus conocimientos, sus experiencias, su tiempo. Porque llegué al instituto siendo pequeña y él me brindó siempre su apoyo incondicional para emprender nuevos retos, para crecer como persona y como profesional. Le agradezco por todos los buenos ratos, las risas, en verdad lo respeto, lo admiro y valoro y agradezco infinitamente su amistad.

Le doy las gracias al proyecto "Sedimentología de la plataforma continental" a cargo del doctor Arturo Carranza Edwards ya que es de este proyecto que se desprende el trabajo que yo realicé.

De manera especial, me siento agradecida con el CONACyT quien se encargó de becarme durante los dos años que pasé realizando mi proyecto de maestría, haciendo posible que yo aceptara el reto.

Agradezco a las autoridades del Instituto de Ciencias del Mar y Limnología por abrirme las puertas desde que llegué hace algunos años a realizar mi servicio social y porque desde entonces me ha brindado un espacio agradable donde trabajar así como muchas alegrías.

Mi más sincero agradecimiento al Posgrado en Ciencias del Mar y Limnología y a quienes laboran en el (Dra. Vilaclara, Diana, Gaby, Lupita y Chantal) porque son como la parte invisible que mueve al posgrado, uno muchas veces no lo sabe ver, pero ustedes siempre están ahí para apoyarnos y facilitarnos las cosas.

Agradezco al M. en C. Eduardo Morales de la Garza por la ayuda que me brindó al procesar para su análisis granulométrico las muestras utilizadas en este proyecto. También agradezco los consejos que me llegó a dar a lo largo de mi estancia en el Instituto.

Gracias también a quienes conforman mi comité tutoral; la doctora Ofelia Morton, por la identificación de tierras raras que realizó para algunas de mis muestras así como la disposición que siempre tuvo para resolver mis dudas; el doctor John S. Armstrong quien además de ser mi profesor, dedicó una parte de su tiempo a asesorarme en la elaboración de este manuscrito y quien siempre dejó la puerta abierta para preguntarle cualquier duda. También agradezco al doctor Liberto de Pablo y a la doctora Elena Centeno quienes me brindaron su tiempo para revisar los avances de tesis y el manuscrito final.

Por último quiero agradecer a aquellos que fueron mis profesores en la maestría quienes siempre resultan una inspiración para mí como estudiante y a quienes agradezco los conocimientos que compartieron conmigo.

ÍNDICE

Página

RESUMEN

I.	INTRODUCCIÓN	1
II.	ANTECEDENTES	3
III.	HIPÓTESIS Y OBJETIVOS	6
	Hipótesis	6
	Objetivo general	6
	Objetivos particulares	6
IV.	ÁREA DE ESTUDIO	7
	Descripción general	7
	Hidrología del área de estudio	9
	Geología	9
V.	MATERIALES Y MÉTODOS	13
VI.	ANÁLISIS GRANULOMETRÍCO Y PARÁMETROS TEXTURALES	29
VII.	PETROLOGÍA DE LA FRACCIÓN ARENOSA	34
	DE SEDIMENTOS SOMEROS	
VIII.	CARBONATOS Y MATERIA ORGÁNICA EN MUESTRA TOTAL	40
IX.	GEOQUÍMICA DE SEDIMENTOS	44
	Elementos mayores	44
	Elementos traza	50
	Tierras raras	60
X.	CONCLUSIONES	72
	BIBLIOGRAFÍA	76
	ANEXOS	84

ÍNDICE DE FIGURAS

Página

Figura 1. Área de estudio.	7
Figura 2. Patrones de desplazamiento de agua superficial.	8
Figura 3. Mapa geohidrológico del área de estudio.	12
Figura 4. Mapa batimétrico.	13
Figura 5. Cañón submarino frente al Río Atoyac.	14
Figura 6. Perfil correspondiente al cañón ubicado frente al Río Atoyac.	14
Figura 7. Análisis de color del sedimento en húmedo.	16
Figura 8. Análisis de color del sedimento en seco.	16
Figura 9. Mapa de estaciones con lámina delgada.	20
Figura 10. Método de conteo por puntos.	21
Figura 11. Mapa de ubicación de muestras con elementos mayores y traza.	24
Figura 12. Mapa de ubicación de muestras con tierras raras.	25
Figura 13. Clasificación textural del sedimento de acuerdo con Folk (1980).	29
Figura 14. Mapa de distribución de arenas en porcentaje.	30
Figura 15. Mapa de distribución de limos en porcentaje.	31
Figura 16. Mapa de distribución de arcillas en porcentaje.	32
Figura 17. Correlación negativa entre batimetría y Mzφ.	32
Figura 18. Mapa de distribución de Mzø.	33
Figura 19. Correlación positiva entre hierro y minerales pesados.	36
Figura 20. Biotita alterada a clorita.	37
Figura 21. Diagrama ternario de acuerdo con Folk (1980).	38
Figura 22. Diagrama ternario en base a fragmentos de roca	39
Figura 23. Mapa de concentración de carbonatos en porcentaje	40
Figura 24. 10X-NC Lámina delgada. Muestra 91.	41
Figura 25. Mapa de concentración de materia orgánica en porcentaje.	42
Figura 26. Correlación entre TiO ₂ y MP.	48
Figura 27. Correlación entre $SiO_2 y Al_2O_3$.	48

Figura 28. Correlación entre TiO_2 y Al_2O_3 .	48
Figura 29. Correlación entre SiO ₂ y Fe ₂ O _{3.}	48
Figura 30. Correlación entre TiO ₂ y Fe ₂ O _{3.}	49
Figura 31. Correlación entre TiO ₂ y MnO.	49
Figura 32. Correlación entre TiO ₂ y MgO.	49
Figura 33. Correlación entre Al ₂ O ₃ y Fe ₂ O _{3.}	49
Figura 34. Correlación entre Al ₂ O ₃ y MgO.	49
Figura 35. Correlación entre Fe ₂ O ₃ y MnO.	49
Figura 36. Correlación entre SiO ₂ y MgO.	50
Figura 37. Correlación entre Fe ₂ O ₃ y MgO.	50
Figura 38. Correlación entre Al ₂ O ₃ y Na ₂ O.	50
Figura 39. Normalización de elementos traza contra granitos.	53
Figura 40. Normalización de elementos traza contra sienitas.	54
Figura 41. Normalización de elementos traza contra dioritas.	54
Figura 42. Normalización de elementos traza contra granodioritas.	55
Figura 43. Normalización de elementos traza contra ortogneisses.	55
Figura 44. Normalización de elementos traza contra paragneiss.	56
Figura 45. Normalización de elementos traza contra el promedio de ellos mismos.	57
Figura 46. Muestras con Mzø menor al promedio.	58
Figura 47. Muestras con Mzø mayor al promedio.	59
Figura 48. Diagramas de tierras raras normalizadas con condrita. Grupo 1.	62
Figura 49. Diagramas de tierras raras normalizadas con condrita. Grupo 2.	62
Figura 50. Diagramas de tierras raras normalizadas con condrita. Grupo 3.	62
Figura 51. Diagramas de tierras raras normalizadas con NASC.	64
Figura 52. Diagramas de tierras raras normalizadas con NASC.	64
Figura 53. Diagramas de tierras raras normalizadas con NASC.	64
Figura 54. Diagrama de comparación entre tierras raras normalizadas con	65
condrita y con NASC.	
Figura 55. Variogramas de tierras raras.	66
Figura 56. Diagrama de tierras raras totales.	70

ÍNDICE DE TABLAS

Página

Tabla 1. Escala de tamaño de Wentworth.	17
Tabla 2. Composición mineralógica de la fracción arenosa en porcentaje.	34
Tabla 3. Valores obtenidos para elementos mayores.	44
Tabla 4. Características de los elementos traza.	51
Tabla 5. Valores obtenidos para elementos traza.	52

ANEXOS

	Página
Anexo I Ubicación de las estaciones y profundidad.	84
Anexo II Análisis granulométrico.	86
Anexo III. Análisis de color de sedimento húmedo.	88
Anexo IV. Análisis de color de sedimento seco.	89
Anexo V Materia orgánica y carbonatos.	90
Anexo VI Valores de tierras raras normalizados con condrita.	92
Anexo VII Valores de tierras raras normalizados con NASC.	93
Anexo VIII Fotografías de láminas delgadas.	94

RESUMEN

El objetivo de este trabajo es analizar la posible relación entre parámetros texturales. petrológicos y geoquímicos en sedimentos superficiales de la plataforma continental somera del estado de Guerrero. Para el análisis textural y de color de sedimentos se utilizaron 114 muestras superficiales de la plataforma continental somera obtenidas en la porción central del estado de Guerrero a bordo del B/O El Puma. Se elaboró un mapa batimétrico de la zona y se realizaron láminas delgadas de la fracción arenosa del sedimento para su análisis petrológico. Elementos mayores y traza del sedimento se determinaron por fluorescencia de rayos X y las tierras raras por espectrometría de masas con fuente de plasma acoplado inducido (ICP-MS). A partir de los resultados obtenidos se puede decir que las isobatas se alinean paralelamente con la línea de costa, excepto cuando hay cañones submarinos donde incluso las isobatas se estrechan. Al elaborar los mapas del sedimento en húmedo se observa una franja verde indicadora de altos contenidos de clorita frente a la Bahía de Acapulco, mientras que del análisis del sedimento en seco, se nota una tendencia del sedimento a desplazarse hacia el noroeste. Las arenas se concentran en zonas de mayor energía mientras que los lodos se concentran hacia mayores profundidades. Frente a la Laguna de Coyuca se exhibe una alta concentración de biógenos que sugieren influencia lagunar. Los feldespatos, cuarzos, fragmentos de roca y minerales pesados son abundantes en la fracción arenosa. Al normalizar elementos trazas con diversas rocas de la vertiente meridional de la Sierra Madre del Sur se observa que el sedimento no presenta semejanzas con las rocas plutónicas y metamórficas consideradas. No obstante, al normalizar tierras raras con condrita y con la lulita norteamericana (NASC), se observan tres grupos.

Palabras clave: sedimentos, granulometría, petrología, geoquímica, plataforma continental Pacífico mexicano.

ABSTRACT

The purpose of this job is to analyze the possible relationship between textural, petrological and geochemical parameters in surface sediments of the continental shelf of the state of Guerrero. For the textural analysis and color of sediment analysis were used 114 surface samples obtained in the shallow shelf central portion of the state of Guerrero on board of oceanographic research ship "El Puma". It was developed a bathymetric map of the area and thin films were made of sandy sediment fraction for petrological analysis. Major and trace elements of sediment be determined by X-Ray fluorescence while rare earth elements be determined by inductively coupled plasma mass spectrometry (ICP-MS). From the results it can be said that the isobaths are aligned parallel with the shoreline except in presence of submarine canyons where the isobaths tends to narrow. By drawing up the maps of wet sediment it can be observed a green strip indicating high levels of chlorite in front of the Acapulco bay, while the dry sediment analysis shown a trend of sediment to move to the northwest. The sands are concentrated in areas of higher energy while the mud is concentrated at greater depths. In front of Coyuca lagoon it is exhibit a high concentration of biogenic material suggesting lagoon influence. Feldspar, quartz, rock fragments and heavy minerals are abundant in the sand fraction. By normalized trace elements in various types of rocks of the southern slope of the Sierra Madre del Sur, is observed that the sediment has not similarities with the plutonic and metamorphic rocks considered. However, by normalized rare earth elements with chondrite and north american shale composite (NASC), three groups where identified.

Key words: sediments, granulometry, petrology, geochemistry, continental shelf, Mexican Pacific.

I. INTRODUCCIÓN

En geología existen diversas disciplinas, una de las cuales es la sedimentología, la cual se encarga, entre otros tópicos, del suministro, transporte y depósito de sedimentos.

De acuerdo con Pettijohn (1975), los estudios sedimentológicos son necesarios para interpretar las condiciones físicas, tales como el relieve, marco geológico y clima que son responsables de las características texturales y composicionales de los sedimentos.

El estudio del tamaño de las partículas que constituyen a los sedimentos es de gran utilidad no solamente en trabajos sedimentológicos, sino también en investigaciones interdisciplinarias. Las diferencias entre tamaños de partículas se relacionan con el tipo de rocas del área fuente y con la distancia entre ésta y el área de depósito. También los diferentes tipos de energía que existen en el área de depósito van a influir en las características granulométricas del sedimento (Carranza-Edwards, 1997). El estudio de las características químicas del sedimento permite evaluar los procesos que producen diferentes tipos de sedimento (Rosales-Hoz *et al.*, 2005).

Según Pettijohn *et al.* (1987), las arenas derivadas del intemperismo de las rocas son transportadas por gravedad y posteriormente por vía fluvial hacia las playas. Las partículas menores incluso alcanzarán regiones del piso submarino: plataforma continental, talud e incluso dominios abisales. Dichas arenas son de gran utilidad ya que a pesar de su tamaño, del transporte y de los procesos diagenéticos a los que son sometidas, conservan la composición y textura original y pueden ser observadas a través del microscopio (Sánchez-Zavala y Centeno-García, 2000).

Por otra parte, los estudios geoquímicos sobre el contenido de elementos (mayores, traza y tierras raras), sirven para proporcionar información sobre las condiciones de depósito y la

1

procedencia del sedimento (Madhavaraju *et al.*, 2010). La caracterización de ambientes sedimentarios recientes es de gran valor ya que a través de ella se puede generar información útil para la interpretación de ambientes antiguos análogos.

II. ANTECEDENTES

A lo largo del Pacífico mexicano se han realizado diversos trabajos enfocados al estudio de sedimentos de playa y de organismos marinos (Padilla y Solís, 1992; Gío-Argaez *et al.*, 1995; Machain-Castillo *et al.*, 1995; Tapia-García *et al.*, 2007); sin embargo, el estudio de sedimentos de plataforma es escaso. No obstante, se mencionan algunos trabajos relacionados tanto con el área de estudio como con la metodología que se siguió en este estudio.

Carranza-Edwards *et al.*, propusieron en 1975 una clasificación morfo-tectónica de las costas mexicanas, estableciendo nueve unidades continentales y la descripción para cada una de ella de acuerdo con factores geomorfológicos y genéticos.

Carranza-Edwards *et al.* (1985) estudiaron los sedimentos de la plataforma continental del estado de Guerrero para determinar la morfología de la plataforma, así como la distribución del sedimento y su importancia económica, obteniendo que los sedimentos superficiales de esta plataforma se presentan en franjas paralelas a la línea de costa, interrumpidas por cañones submarinos.

Lozano-Santa Cruz *et al.* (1989) analizaron la distribución de minerales en la fracción arcillosa en sedimentos del Pacífico Central Mexicano para lo cual utilizaron el método de difracción de rayos X para analizar la composición de arcillas. A partir de este análisis concluyen que en esta fracción, los minerales más abundantes son la montmorillonita, illita, caolinita y cuarzo. Además, a partir de los núcleos recolectados se infirió que los sedimentos de la dorsal exhiben un incremento en el contenido de montomorillonita, sugiriendo que en un pasado cercano existió un incremento en el volcanismo básico.

Carranza-Edwards *et al.* (2001) llevaron a cabo un estudio de arenas de playa superficiales a lo largo de 6500 km del litoral occidental de México con la finalidad de entender la relación entre la concentración de minerales pesados y el contenido de metales y tierras raras, encontrando Zn, Hf, Th, Ni y Cr.

Daesslé *et al.* (2002) estudiaron la distribución regional de hierro y manganeso en el norte del Golfo de California tanto en la fracción total del sedimento como en cada una de las fracciones obteniendo que ambos se concentran preferencialmente en la fracción fina del sedimento. En 2004, Daesslé *et al.* analizaron geoquímicamente los sedimentos localizados al norte del Golfo de California para determinar las posibles fuentes del sedimento, metales y fosfatos de la región, encontrando que el apatito es la mayor fuente de fósforo en el sedimento, siendo este de origen detrítico al igual que la barita, cuya fuente se encuentra adyacente a la costa de Sonora.

Carranza-Edwards *et al.* (2005) estudiaron la distribución geoquímica de los sedimentos en una zona tectónicamente activa al suroeste de México, haciendo estudios sobre elementos mayores, materia orgánica, carbonatos, susceptibilidad magnética, así como parámetros texturales.

Tapia-García *et al.* (2007) realizaron la caracterización ambiental de la plataforma continental en el Golfo de Tehuantepec. Por su parte, Rosales-Hoz *et al.* (2007) estudiaron las implicaciones ambientales de metales pesados en los sedimentos superficiales cercanos a la Isla de Sacrificios, Veracruz, encontrando algunos valores anormalmente altos para los metales Zn, Pb, Cu y Ni, a partir de los cuales concluyen que los metales pesados son contaminantes persistentes que pueden permanecer en el ambiente durante años.

Armstrong-Altrin (2009) realizó un estudio petrográfico y geoquímico para tres playas de México (Cazones, Acapulco y Bahía Kino) con objeto de conocer su procedencia, sugiriendo que las arenas de Cazones y Acapulco proceden de rocas félsicas e intermedias mientras que las arenas de Bahía Kino proceden de una fuente félsica. Carranza-Edwards *et al.* (2009) estudiaron playas de Colima encontrando que estas proceden principalmente de fuentes volcánicas intermedias a básicas así como de calizas, lo cual se sustenta debido al enriquecimiento de elementos como el V, Cr, Co y Zn así como por el empobrecimiento de Ba, Sr y Rb.

III. HIPÓTESIS Y OBJETIVOS

Hipótesis

En este trabajo y dentro de un marco teórico conceptual se espera encontrar respuestas a preguntas tales como: ¿Se pueden establecer variaciones texturales en función de la profundidad a partir de un muestreo denso de sedimentos? ¿Existe alguna relación entre el color y la composición del sedimento? ¿El tamaño de grano varía con la profundidad? ¿El transporte superficial dominante de las masas de agua puede influir en la distribución de parámetros texturales y colores del sedimento? ¿Existen variaciones composicionales que permitan establecer agrupamientos regionales para los sedimentos de plataforma?

Objetivo general

El objetivo general de esta tesis es estudiar las características texturales, petrológicas y geoquímicas de sedimentos de la plataforma continental de un sector del estado de Guerrero, en profundidades generalmente menores que 110m, con la finalidad de contribuir al conocimiento de los mares mexicanos así como para sus eventuales aplicaciones.

Objetivos particulares

- 1. Establecer la distribución granulométrica y textura de los sedimentos superficiales de la plataforma continental somera.
- Determinar la composición petrológica de la fracción arenosa de los sedimentos para determinar las proporciones Qt-Ft-FRt.
- Analizar la concentración de carbonatos y materia orgánica (COT) para inferir posibles aportes lagunares.
- 4. Investigar la composición de elementos mayores, traza y de tierras raras para tratar de establecer poblaciones con semejanzas geoquímicas.

IV. ÁREA DE ESTUDIO

Descripción general

El área de estudio (Fig. 1) se ubica en la plataforma continental somera de la porción central del estado de Guerrero, México, entre 17.2353° y 16.6895° de latitud norte y 101.0333° y 99.7791° de longitud oeste. Los sitios de muestreo en esta área tienen profundidades de entre 30 y 170 m., por lo que se ubican dentro de la plataforma continental interna, la cual según Rabalais *et al.* (2001) varía desde 5 hasta 60 m de profundidad y se caracteriza por tener una gran influencia continental, así como dentro de la plataforma de la plataforma continental externa, la cual se extiende según los mismos autores desde 60 m hasta el quiebre del talud. De acuerdo con Davis (1978), en este litoral se presenta un rango de marea variable entre 0.5 m y 1.0 m.

Figura 1. Mapa de ubicación de la zona de estudio.

De acuerdo con Fernández-Eguiarte *et al.* (1992), el movimiento de las masas de agua superficial, las cuales se encargan de distribuir el sedimento procedente de fuentes continentales, se desplaza dominantemente en dirección SE-NW (Fig. 2).

Figura 2. Patrones de desplazamiento de masas de agua superficial (tomado de Fernández-Eguiarte, *et al.*, 1992).

De acuerdo con el INEGI (2008) el área de estudio se encuentra en la región fisiográfica denominada Sierra Madre del Sur, mientras que de acuerdo con Carranza-Edwards *et al.* (1975), pertenece a la Unidad Morfotectónica VIII, la cual se caracteriza por una plataforma continental muy angosta que se ensancha ligeramente en las cercanías del delta de Río Balsas así como por costas rocosas abruptas excepto en las zonas que presentan alguna influencia de tipo fluvial en las cuales se desarrolla una planicie costera de escasas dimensiones.

La plataforma continental desde Jalisco hasta Guerrero corresponde con un margen activo cuyo régimen tectónico se debe a la subducción de la Placa de Cocos bajo la Placa Norteamericana (Inman y Nordstram, 1971). Dicha plataforma es angosta, cortada por cañones submarinos, que posiblemente son la continuidad de la traza de ríos o fallas (Carranza-Edwards *et al.*, 1985).

De acuerdo con Márquez-García y Morales (1984), frente al estado de Guerrero la amplitud promedio de la plataforma es de 15 km y el borde continental se localiza entre 100 y 170 m de profundidad, excepto frente a la Bahía de Acapulco donde alcanza 220 m.

Hidrología del área de estudio

El estado de Guerrero se divide en tres regiones hidrológicas con sus respectivas cuencas. La región correspondiente al área de estudio es la Región Hidrológica Costa Grande, la cual se divide en dos cuencas; la Cuenca Río Atoyac y otros y la Cuenca Río Coyuquilla y otros (INEGI, 2009).

A pesar de encontrarse fuera del área de estudio, es importante mencionar la Cuenca Río Papagayo que de acuerdo con INEGI (2009) se encuentra dentro de la Región Costa Chica-Río Verde, ya que el Río Papagayo es una de las principales fuentes de sedimento dentro del área de estudio.

Los cuerpos de agua presentes en la región (Fig. 3) son de suma importancia ya que a través de ellos se desplaza hacia el océano material originado en el continente.

Geología del área de estudio

Fisiográficamente forma parte de la Provincia de la Sierra Madre del Sur. Las rocas que afloran en esta región (Fig. 3) forman parte del Terreno Tectonoestratigráfico Xolapa, cuya formación sigue en discusión así como su composición y edad (SGM, 2000).

En 1997, Corona definió al Terreno Xolapa como un complejo metamórfico-plutónico y a partir de este estudio se determinó que este terreno consta de dos unidades; 1) la más antigua, constituida por paragneises, esquistos pelíticos, esquistos de biotita así como

cuarcita y mármoles que datan del Triásico aunque aún no se sabe exactamente su edad cuyos protolitos sedimentarios son interpretados como interestratificaciones de grauvacas, rocas pelíticas y carbonatos que datan del Proterozoico medio y 2) el segundo grupo, que es el más ampliamente distribuido consiste principalmente de ortogneises, anfibolitas y migmatitas en facies de anfibolita que datan de 66 a 46 Ma y localmente continúan hasta el Oligoceno.

Posterior a la acreción del Terreno Xolapa contra los terrenos adyacentes, se desarrolla un magmatismo, el cual se caracteriza por un patrón sistemático en las edades de cristalización entre 35 Ma, al Oeste de Acapulco hasta 27 Ma al Este de Puerto Ángel que conforman el Batolito de la Costa Chica (Paleógeno-Eoceno, Granito-Granodiorita) que se caracteriza por presentar una serie de cuerpos intrusivos de composición granítica, granodiorítica y diorítica con intemperismo esferoidal (SGM, 2000).

Por encima de los intrusivos y gneises encontrados en el terreno Xolapa se encuentran aluviones del cuaternario acumulados al pie de cerros y lomas así como en los valles de los ríos.

Contemporáneo con este evento ocurren los depósitos lacustres (aluvión del cuaternario) que están compuestos por sedimentos arcillo-limosos, interdigitados con arenas finas y que se acumulan en medios acuosos lagunares, encontrándose entrelazados con depósitos litorales cuaternarios. Esta unidad se localiza en las playas que limitan el área continental y en donde es común encontrar materia orgánica y conchas de moluscos.

De acuerdo con las condiciones geológicas del sur del estado de Guerrero, se ha determinado (SGM, 2000) que no existieron condiciones favorables que permitieran el desarrollo de yacimientos minerales metálicos, hasta el momento solamente hay indicios de

10

Pb, Zn, Cu en algunos poblados. En cuanto a yacimientos no-metálicos se tiene un potencial importante por la gran cantidad de cuerpos graníticos que se pueden explotar como rocas o agregados pétreos y por el mármol que reúne las características para la explotación de cal.

En las márgenes del río Papagayo existen varias plantas que procesan grava y arena.

No se debe descartar la importancia que pueden llegar a tener las pegmatitas del Terreno Xolapa, ya que representan la última etapa de cristalización magmática, pudiendo llegar a contener cantidades anómalas de Li, Cs, Rb, B, F, Nb, Ta, tierras de U, Th, y Zr (SGM, 2000).

Figura 3. Mapa de localización del área de estudio que incluye la geohidrología de la región. Elaborado a partir de CONABIO (2004), SGM (2007), CONABIO (2008) y CONABIO* (2008). Los puntos azules representan las estaciones de muestreo.

V. MATERIALES Y MÉTODOS

Las muestras se recolectaron durante la Campaña Oceanográfica SEDIMENTO-IV que se llevó a cabo en la plataforma continental del Estado de Guerrero, a bordo del Buque Oceanográfico El Puma, del 18 al 27 de febrero de 2008 como parte del proyecto del Instituto de Ciencias del Mar y Limnología (UNAM) titulado Sedimentología de la Plataforma Continental.

Utilizando la draga modelo Smyth MacIntyre se recolectaron 114 muestras de sedimento superficial (1 a 2 cm superficiales) a profundidades entre 30 y 170 m, con lo cual se construyó el mapa batimétrico correspondiente al área de estudio (Fig. 4) y en el que se observa una distribución de las isobatas paralela a la línea de costa con interrupciones frente a la desembocadura de los ríos Atoyac, Coyuca y El Aguacoscla, las cuales se encuentran relacionadas a la presencia de cañones submarinos en el área que dan como resultado el angostamiento de las isobatas.

-101.1 -101.0 -100.9 -100.8 -100.7 -100.6 -100.5 -100.4 -100.3 -100.2 -100.1 -100.0 -99.9 -99.8 -99.7 Figura 4. Mapa batimétrico del área de estudio con isobatas en metros. En elipses se señala la ubicación de cañones submarinos.

En 1985, Carranza *et al.* señalan la presencia de otros cañones submarinos a lo largo de la plataforma continental del estado de Guerrero. En el presente estudio, se realizó un barrido mediante el uso de la ecosonda multihaz Kongsberg EM300 a partir del cual, con los datos obtenidos y una vez procesados mediante el software CARIS, fue posible observar la imagen correspondiente al cañón ubicado frente a la desembocadura del Río Atoyac

(Fig. 5).

Figura 5. Cañón submarino frente al Río Atoyac.

Así mismo, de acuerdo con la figura 5, se realizó el perfil correspondiente al trayecto transversal número tres (Fig. 6), en el cual se observa la presencia de terrazas submarinas con una leve inclinación, las cuales son características de zonas tectónicamente activas.

Figura 6. Perfil correspondiente al trayecto transversal número tres del cañón ubicado frente al Río Atoyac.

Análisis del color del sedimento

Se analizó el color del sedimento tanto en húmedo como en seco mediante las tablas de color de Münsell (Münsell Color Company, 1975). Estos análisis son útiles para contar con una aproximación del grado de saturación de agua en el sedimento para el caso del análisis en húmedo así como para tener una primera aproximación de la composición del sedimento y de la dirección predominante de las corrientes presentes en el área, en el caso del análisis en seco.

De acuerdo con el análisis de color del sedimento, se observa que en el análisis en húmedo (Fig. 7) existe un cambio del color del sedimento en el área cercana a la bahía de Acapulco, siendo más verdoso y parece deberse a la presencia del mineral clorita que presenta dicho color (Deer *et al.*, 1993).

En el análisis en seco (Fig. 8) se observa una tendencia en las masas de agua que acarrean el sedimento que es en dirección sureste-noroeste, la cual de acuerdo con Fernández-Eguiarte, *et al.* (1992) implicaría un transporte noroeste-sureste, sin embargo se debe considerar que la tendencia dominante es hacia el noroeste donde la magnitud del transporte de masas de agua es mayor. Esto ha sido también observado para zonas de erosión y depositación en zonas litorales (Marín-Guzmán y Carranza-Edwards, 2011). En este análisis también se observan coloraciones verdes frente a la desembocadura de ríos y lagunas las cuales sugieren la presencia de materia orgánica en cantidades mayores al resto del área de estudio.

Análisis granulométrico

Las muestras de sedimento se analizaron granulométricamente en el Laboratorio de Sedimentología del Instituto de Ciencias del Mar y Limnología de la UNAM utilizando el analizador láser de tamaño de partículas Beckman Coulter que permite analizar partículas con tamaños menores que 2 mm, para lo cual previamente se colocó muestra en vasos de precipitado a los que se adicionó agua oxigenada con el propósito de eliminar la materia orgánica existente. Una vez que el sedimento suspendido en las muestras se asentó, se procedió a enjuagar las muestras con agua destilada para eliminar residuos de agua oxigenada y se procedió a agregar un antifloculante (hexametafosfato de sodio) con el propósito de disgregar la muestra.

Posteriormente se tomaron 3 gr de cada muestra y se colocaron en vasos de precipitados agregándoles 20 ml de dispersante a cada vaso. Esta mezcla se agitó hasta quitar los grumos y se dejó reposar un día. Finalmente se volvió a agitar cada muestra y se tomó un poco de ellas con un gotero, mediante el cual se colocaron de 1 a 2 gotas de muestra en el analizador láser de partículas y se esperó a obtener la lectura del equipo. El procedimiento anterior se repite para observar si existe alguna variación importante entre las lecturas, en cuyo caso se realizaría una tercera medición.

El equipo analizador se encuentra conectado a una computadora en la cual se observa la curva granulométrica obtenida para cada muestra. Dichos datos se procesan y se transfieren al programa Excel para su análisis e interpretación.

La clasificación de los sedimentos de acuerdo con su tamaño se realizó utilizando la escala de Wentworth (Tabla 1).

Escala Wentworth	Milímetros	Phi (\$)	
Gravas	> 2 mm	-1 φ	
Arenas	2 mm - 1/16 mm	4 φ	
Limos	1/16 mm - 1/256 mm	9φ	
Arcillas	> 1/256 mm	$>9 \phi$	

Tabla 1. Escala de tamaño de Wentworth (1922).

Mediante el analizador láser de tamaño de partículas Beckman Coulter, se obtuvieron, de acuerdo con Folk (1974), los siguientes parámetros texturales:

 Tamaño gráfico promedio (Mz_φ): Indica el tamaño de grano medio de una muestra de sedimento.

$$Mz_{\phi} = \frac{(\phi 16 + \phi 50 + \phi 84)}{3}$$

Sus límites son:

Grava	< - 1\$
Arena	-1 \$ -4\$
Limo	$4\phi - 8\phi$
Arcilla	$> 8\phi$

2) Desviación estándar gráfica inclusiva ($\sigma_{I\phi}$): Caracteriza el grado de clasificación de la muestra estudiada, es decir, indica el grado de homogeneidad de la muestra de sedimento.

$$\sigma_{I\phi} = \frac{(\phi 84 - \phi 16)}{4} + \frac{(\phi 95 - \phi 5)}{6.6}$$

Sus límites son:

Muy bien clasificado	< 0.035\$
Bien clasificado	$0.35\phi - 0.50\phi$
Moderadamente bien clasificado	0.50 \$\$- 0.71\$
Moderadamente clasificado	$0.71\phi - 1.00\phi$
Mal clasificado	1.00 \$\$-2.00\$
Muy mal clasificado	2.00 (-4.00)
Extremadamente mal clasificado	> 4.00\$

3) Grado de asimetría (SkI): Es una medida de dispersión de los sedimentos y nos indica

los excesos de material fino o grueso que presenta el sedimento.

$$SkI = \frac{(\phi 16 + \phi 84 - 2(\phi 50))}{2(\phi 84 - \phi 16)} + \frac{(\phi 5 + \phi 95 - 2(\phi 50))}{2(\phi 90 - \phi 5)}$$

Sus límites son:	
Muy asimétrica hacia los finos	1.00 a 0.30
Asimétrica hacia los finos	0.30 a 0.10
Casi simétricas	0.10 a -0.10
Asimétrica hacia los gruesos	-0.10 a -0.30
Muy asimétrica hacia los gruesos	-0.30 a -1.00

4) Curtosis (K_G): Es una medida de angulosidad de la curva de frecuencia como relación de proximidad entre los valores centrales, generalmente el 50% central y los valores externos, generalmente en el 90%. Para distribuciones normales la angulosidad vale 1.

$$K_G = \frac{(\phi 95 - \phi 5)}{2.44(\phi 75 - \phi 25)}$$

Sus límites son:

Muy platicúrtico	< 0.67
Platicúrtico	0.67 - 0.90
Mesocúrtico	0.90 - 1.11
Leptocúrtico	1.11 - 1.50
Muy leptocúrtico	1.50 - 3.00
Extremadamente leptocúrtico	> 3.00

Análisis petrológico

Para elaborar las láminas delgadas correspondientes a la fracción arenosa del sedimento, se tamizaron en húmedo muestras con alto contenido de arenas (40 muestras), utilizando para ello un tamiz de 4¢ (0.0625 mm) para eliminar la fracción lodosa. Se hicieron únicamente láminas delgadas de la fracción arenosa ya que las arenas se originan como partículas sólidas que se desprenden de la roca y a la vez son lo suficientemente pequeñas como para observar una muestra con un considerable número de granos en una sola lámina, además de que conservan la composición y textura original, a pesar del transporte y de los procesos diagenéticos (Sánchez-Zavala y Centeno-García, 2000).

La localización de las cuarenta muestras para las que se realizaron láminas delgadas se presenta en la figura 9. Dichas muestras están conformadas por al menos 12% de arenas ya que a partir de dicho contenido es posible realizar el conteo mineralógico aunque este presenta algunas dificultades debido al tamaño pequeño de los granos.

Para determinar la composición de la fracción arenosa, se utilizó el método cuantitativo más usual que es el petrográfico mediante un conteo de puntos, el cual, de acuerdo con Sánchez-Zavala y Centeno-García (2000), consiste en el conteo de los granos de arena en el microscopio, utilizando una platina graduada que permite el movimiento de la lámina delgada a un cierto intervalo de distancia, formando una red de puntos en un sistema coordenado (Fig. 10). En esta técnica, se registra por cada punto la composición del grano localizado en el centro de la retícula.

Figura 9. Mapa de ubicación de estaciones con lámina delgada para muestras con más de 12% de arena. En fracciones arenosas de sedimentos.

Para dichas láminas se realizó un conteo con 300 granos por lámina (Franzinelli y Potter, 1985) utilizando para ello los siguientes campos: cuarzo monocristalino (C_m), cuarzo policristalino (C_p) feldespatos potásicos (F_K), feldespatos sódicos ($F_{Plagioclasas}$), fragmentos de roca totales (FRT), minerales pesados (MP), micas (Mi) y biógenos (B).

Figura 10. Método de conteo por puntos.

Análisis de materia orgánica y carbonatos

Determinación de carbono orgánico en el sedimento

Este procedimiento sirve para diferenciar materia húmica de otras fuentes de carbono orgánico. Está basado en la reacción de oxidación de la materia orgánica del sedimento a partir de dicromato de potasio $K_2Cr_2O_7$ y ácido sulfúrico H_2SO_4 . Posteriormente se lleva a cabo la titulación del exceso de dicromato de potasio con FeSO₄NH₄ 0.5N. La desventaja de este método es que en el sedimento existen compuestos inorgánicos que consumen dicromato tales como el CaO₃, Cl⁻ solubles, Fe³⁺, óxidos de manganeso y carbono elemental, por lo que en 1992, Loring y Rantala (1992) propusieron el uso de H₂SO₄ concentrado con sulfato de plata para eliminar las interferencias del ión cloruro. La interferencia de iones férricos se elimina adhiriendo fluoruro de sodio (NaF) y finalmente para eliminar los óxidos de manganeso se adhiere ácido fosfórico.

Se describe a continuación el procedimiento llevado a cabo para determinar el carbono orgánico del sedimento:

- 1) Se pesan entre 0.2 y 0.5 g de sedimento previamente secado y molido.
- 2) Se coloca la muestra en un matraz Erlenmeyer de 500 ml y se adicionan 5 ml de solución de dicromato de potasio $K_2Cr_2O_7$ 1N y se mezclan.
- Se agregan 10 ml de una mezcla de ácido sulfúrico H₂SO₄ concentrado y sulfato de plata Ag₂SO₄ en una concentración de 2.5 g de Ag₂SO₄ por cada litro de H₂SO₄ y se mezcla.
- 4) Se deja reposar la muestra treinta minutos y se afora a 100 ml con agua bidestilada.
- Se agregan 5 ml de ácido fosfórico H₃PO₄ al 85%, 0.1 g de floruro de sodio NaF y 8 gotas de difenilamina como indicador.
- 6) Se titula con una solución de ácido ferroso amoniacal 0.5 N. Durante la titulación el color cambia de verde marrón a verde azulado oscuro y en el punto de equivalencia se torna verde brillante.
- 7) Se debe correr un análisis de referencia sin sedimento.
- 8) Finalmente se lleva a cabo el siguiente cálculo:

% Carbonoorgánico =
$$\left[\frac{(5)(1.0N)(0.003)(100)}{W}\right]\left[1-\frac{T}{S}\right]$$

En donde:

W es el peso de la muestra en gramos.

5 ml es la alícuota de la solución de K₂Cr₂O₇

1.0 N es la concentración de K₂Cr₂O₇

T son los ml de sulfato ferroso amoniacal FeSO4NH4 gastados en la titulación de la muestra.

S son los ml de sulfato ferroso amoniacal FeSO4NH4 gastados en la titulación en blanco.

Determinación de carbonatos en el sedimento

La determinación de carbonato de calcio en sedimentos marinos está basada en el principio de titulación por retroceso, en el que de acuerdo con Hesse (1971), a la muestra de sedimento se le agrega un volumen conocido de ácido clorhídrico en exceso y el ácido que no reacciona se titula posteriormente con una solución de hidróxido de sodio. De esta

manera al restar la cantidad de ácido que no reaccionó de la cantidad de ácido adicionada originalmente, se obtiene la cantidad total consumido por los carbonatos presentes en la muestra.

Se describe a continuación el procedimiento llevado a cabo para determinar el carbono orgánico del sedimento:

- 1) Se pesan por duplicado 0.2 g de sedimento previamente secado y molido.
- Se agregan 50 ml de ácido clorhídrico 0.1N (titulado previamente contra carbonato de sodio) y se calienta hasta su ebullición.
- Se titula con una solución de hidróxido de sodio 0.3N (titulado previamente contra biftalato de potasio) y se usa bromotimol como indicador que al cambiar de color amarillo a azul indica el fin del proceso.
- Para terminar el proceso se deben correr tres muestras en blanco bajo las mismas condiciones que las muestras de sedimento.
- 5) Finalmente se lleva a cabo el siguiente cálculo:

$$%CO_{3} = \left[\frac{(V_{blanco} - V_{muestra})(N_{NaOH})(meqCO_{3}^{2+})}{W_{muestra}}\right] \times 100$$

En donde:

V_{blanco} es el volumen de NaOH al punto de equivalencia de la muestra en blanco.

V_{muestra} es el volumen de NaOH al punto de equivalencia de la muestra.

N es la normalidad de la solución de hidróxido de sodio.

meq es igual a 0.050.

W es el peso de la muestra de sedimento.

Análisis geoquímicos

Se realizaron análisis geoquímicos mediante el método de fluorescencia de rayos X para obtener elementos mayores y trazas en cuarenta y tres muestras seleccionadas (Tabla 3), distribuidas de forma que abarcaran en lo posible el área de estudio y que a su vez coincidieran con las muestras con las que se cuenta con lámina delgada para establecer posibles relaciones composicionales. La distribución de los cuarenta y tres puntos de muestreo para los que se cuenta con dichos análisis se presenta en la figura 11.

Se realizaron también análisis de tierras raras para diecinueve muestras (Tabla 5) con objeto de analizar la probable procedencia del sedimento. La distribución de los diecinueve puntos de muestreo para los que se cuenta con dichos análisis se presenta en la figura 12, dichos puntos se eligieron de manera que abarcaran la mayor parte del área de estudio y a su vez coincidieran con los puntos con los que habría información de otros análisis.

Figura 11. Estaciones de muestreo con análisis de elementos mayores y trazas en muestra total de sedimentos.

Figura 12. Estaciones de muestreo con análisis de tierras raras en muestra total de sedimento.

Fluorescencia de rayos X para determinar elementos mayores y traza

El método de fluorescencia de rayos X conocido como XRF es uno de los métodos analíticos más usados para determinar elementos mayores y elementos traza. Dicho método, de acuerdo con Rollinson (1995), está basado en la excitación de la muestra mediante rayos X, para lo cual se dispara un rayo X primario que excita un rayo X secundario (fluorescencia de rayos X) el cual tiene características específicas de onda para cada uno de los elementos presentes en la muestra. La intensidad del rayo X secundario se utiliza para determinar las concentraciones de los elementos presentes de acuerdo con estándares de calibración y aplicando las correcciones apropiadas que se requieren para eliminar los errores instrumentales.

Análisis de tierras raras

El método analítico conocido como espectroscopía de emisión de masas de plasma acoplado inducido conocido como ICP-MS (espectrometría de masas con fuente de plasma acoplado inducido) es una técnica relativamente nueva, la cual de acuerdo con Rollinson (1995) tiene límites de detección muy bajos así como buena precisión, lo que ha hecho que este método sea muy empleado hoy en día. En este método, los iones son extraídos del plasma a través de un diminuto orificio a un sistema de vacío y bombeados con un lente iónico en un espectrómetro de masas.

Una vez seleccionadas las muestras a las que se decidió analizar mediante ICP-MS, se procedió a molerlas en un mortero de ágata hasta obtener un polvo fino molido a 200 mallas, es decir, con una textura parecida a la del talco. Una vez molida cada muestra, se almacenaron en bolsitas de papel etiquetadas para posteriormente realizar la digestión de cada una de ellas.

Debido a que las tierras raras no se alteran, es más fácil hacer análisis para ellas que para elementos mayores o trazas, por lo que al momento de llevar a cabo las digestiones que es el segundo paso en la preparación de las muestras, se seleccionó llevar a cabo digestiones abiertas en vez de cerradas (que se hacen en un horno) considerando la facilidad que presenta este método contra todo el trabajo que hubiese representado llevarlas a cabo en el horno debido a la calibración y al tiempo que este tarda en realizar el proceso. Se describe a continuación el procedimiento que se llevó a cabo con cada muestra para hacer las digestiones abiertas:

 Se pesaron aproximadamente 0.22 gramos de muestra y se vaciaron en vasos de teflón previamente identificados.
- Se vaciaron 10 ml de HF (ácido fluorhídrico) seguidos de 4 ml de HClO₄ (ácido perclórico) en cada vaso y se cubrieron los vasos.
- Se pusieron a calentar los vasos en una parilla a aproximadamente 60°C mientras se evaporaban los gases hasta obtener una pasta gelatinosa.
- 4) Una vez obtenida la pasta gelatinosa se procedió a agregar 5 ml de HF seguidos de 2 ml de HCLO₄ y se volvieron a poner los vasos en la parrilla mientras los gases se evaporaban hasta obtener una pasta gelatinosa.
- 5) Nuevamente obtenida la pasta gelatinosa se procedió a agregar 2 ml de HCLO₄ y se pusieron nuevamente los vasos en la parrilla hasta que se obtuvo una pasta gelatinosa.
- 6) Una vez obtenida la pasta gelatinosa, se retiraron los vasos de la parrilla y se procedió a agregarles solución de Indio preparada previamente.
- La muestra y la solución de Indio mezcladas se vaciaron en matraces de 100 ml a los que se aforó hasta obtener exactamente los 100 ml.
- 8) Se procedió a observar si las muestras presentabas alguna turbiedad y dado que este fue el caso para todas las muestras, se procedió a filtrarlas con filtros del número 41, vaciando cada muestra ya filtrada en su respectivo envase de plástico con tapa marcado previamente.
- Se procedió a refrigerar las muestras y esperar hasta poder realizar el análisis de ICP-MS.

Se utiliza una solución hecha a base de Indio a 10 ppb para evitar cualquier interferencia en el análisis, esto debido a que el Indio es un elemento que no se presenta de manera natural en ninguna muestra, por lo que no puede afectar el resultado de la lectura hecha con el aparato.

Al preparar las digestiones, se prepararon muestras adicionales a las 19 correspondientes al sedimento. La primera muestra (el primer vaso), se dejó en blanco, es decir vacío, el segundo vaso se preparó con una muestra de referencia, en este caso se utilizó un basalto de referencia (JB-1b), finalmente más o menos cada 6 muestras, se llevaba a cabo la repetición

de una muestra ya trabajada, esto con el objetivo de poder notar cualquier discordancia en los resultados del análisis.

VI. ANÁLISIS GRANULOMÉTRICO Y PARÁMETROS TEXTURALES

A partir de los datos granulométricos obtenidos para la población total de muestras, se realizó el diagrama ternario (Fig. 13) propuesto por Folk (1980) para identificar las principales clases texturales del sedimento. Se observa en la figura 13 que las mezclas de limos y arenas son dominantes del total de las muestras, seguidos por limos y arenas.

(AL) y limos arenosos (LA).

Con los datos obtenidos para el tamaño de grano se elaboraron las isolíneas correspondientes con los tamaños de arena, limos y arcillas, así como el mapa general que muestra la distribución total del sedimento. A medida que las isobatas son mayores las partículas son de menor tamaño.

La distribución tanto de las arenas (Anexo II, Fig. 14) como de los limos (Anexo II, Fig. 15) es paralela a la línea de costa y las isobatas se encuentran equidistantes entre sí, excepto

en las zonas donde hay presencia de cañones submarinos, en donde el espacio entre las isobatas se estrecha.

Las concentraciones de arenas se encuentran a partir de la línea de costa y hasta los 70 m de profundidad lo que podría estar indicando que el nivel base de la ola puede alcanzar en condiciones extremas (por ejemplo ciclones) dichas profundidades.

Las arenas (Fig. 14) se encuentran presentes en porcentajes mayores que 40% en las zonas de mayor energía, a lo largo de la costa, exceptuando el área frente a Bahía de Acapulco, donde se encontraron bajos contenidos de arenas, debidos a que la Bahía de Acapulco está actuando como una barrera, impidiendo el transporte litoral de arenas procedentes de la barrera de la Laguna de Tres Palos.

Las concentraciones mayores tanto de limos (Anexo II, Fig. 15) como de arcillas (Anexo II, Fig. 16), se distribuyen preferencialmente a mayores profundidades, en donde la energía es menor y permite el depósito de la fracción más fina del sedimento. Los limos se encuentran

distribuidos mayormente a partir de los 70 m de profundidad, en donde alcanzan concentraciones de alrededor de 40% y aún mayores concentraciones hacia los 170 m en donde las concentraciones son superiores a 60%.

En cuanto al tamaño de los limos, los más finos se localizan frente a la bahía de Acapulco en concentraciones del orden de 70%.

La fracción arcillosa (Anexo II, Fig. 16) está casi ausente pues sus concentraciones son del orden de 10%. Sin embargo, es a partir de 70 m de profundidad que se hacen presentes las arcillas, ya que a mayor profundidad la concentración de arcillas tiende a incrementarse ligeramente. Esta observación se rompe en el caso de las muestras cercanas a Bahía de Acapulco, en donde las arcillas se encuentran presentes tanto en las zonas someras como en las zonas profundas, ya que al suspenderse el transporte litoral de las fracciones gruesas, únicamente se encuentran disponibles las fracciones finas.

La correlación de Pearson entre batimetría y tamaño gráfico promedio (Mz ϕ), es negativa (Fig. 17) con lo que se observa que la distribución del sedimento se encuentra relacionada directamente con la profundidad, siendo las fracciones gruesas del sedimento las que se depositan en profundidades menores mientras que las fracciones finas (limos y arcillas) se depositan preferentemente en profundidades mayores.

Figura 17. Correlación negativa entre batimetría y Mzø.

Es importante notar que algunos puntos se encuentran fuera de la línea de tendencia de la figura 17. Al ubicar estos puntos en la figura 18 se observa que corresponden con puntos

cercanos a la bahía de Acapulco y que es en estos puntos donde se concentra el sedimento más fino existente dentro del área de estudio correspondiendo con tamaños de limos finos.

Se resalta que las clases texturales dominantes de tamaño de grano son predominante lodos arenosos y arenas lodosas. Las arenas se encuentran concentradas en las zonas someras de mayor energía, es decir, desde la linea de costa y hasta lo 70 m de profundidad, mientras que los limos y arcillas se concentran a profundidades mayores y por tanto en zonas de baja energía donde es posible el depósito de estos sedimentos.

VII. PETROLOGÍA DE LA FRACCIÓN ARENOSA DE SEDIMENTOS SOMEROS

El conteo de 300 granos de sedimento para cada una de las 40 láminas delgadas permitió elaborar la siguiente tabla.

LÁMINA	Cm	Ср	Fk	Fp	FR	Mi	MP	В	TOTAL
L7	7	3	20	16	24	4	22	3	100
L10	19	1	19	16	29	2	14	1	100
L13	14	1	24	12	36	2	9	1	100
L14	16	1	2	10	31	2	34	5	100
L16	16	0	10	17	25	1	28	3	100
L17	17	0	10	14	30	3	21	4	100
L19	18	1	14	10	25	3	23	6	100
L22	17	4	9	10	27	4	27	1	100
L25	23	2	8	10	31	2	23	1	100
L28	14	2	10	13	15	2	43	1	100
L31	14	2	8	12	22	5	37	1	100
L34	21	1	10	13	22	2	29	1	100
L37	23	0	9	9	20	1	34	3	100
L40	26	0	15	13	26	2	16	2	100
L43	22	1	12	9	17	2	35	2	100
L46	13	1	18	14	14	4	32	5	100
L49	8	3	13	20	31	3	18	3	100
L52	9	0	27	13	32	1	13	5	100
L55	9	2	24	14	33	0	10	9	100
L58	14	1	26	15	27	1	12	4	100
L59	19	0	9	9	23	3	30	8	100
L61	25	1	19	10	34	0	6	4	100
L62	13	2	7	10	23	3	32	10	100
L64	21	0	10	13	34	0	12	10	100
L67	22	2	12	9	25	3	15	13	100
L70	18	1	9	13	29	1	23	5	100
L73	14	0	8	12	28	5	29	4	100
L74	15	0	8	11	16	5	38	7	100
L75	18	0	8	13	9	3	42	7	100
L76	2	2	24	18	20	1	28	5	100
L79	16	0	9	14	17	2	42	0	100
L80	10	2	9	10	15	2	48	4	100
L82	13	0	10	13	27	3	33	0	100

Tabla 2. Análisis petrológico porcentual de la fracción arenosa.

L83	13	4	8	12	24	8	27	4	100
L85	13	0	14	11	15	2	42	3	100
L88	8	1	13	8	27	3	25	15	100
L91	19	1	10	8	19	1	12	31	100
L94	11	1	24	13	30	2	13	7	100
L113	17	4	9	5	38	2	23	2	100
L114	12	3	13	4	37	2	27	2	100
Promedio	15	1	13	12	25	2	26	5	
Desv. E.	5.3	1	6	3	7	2	11	5	

Cm (cuarzo monocristalino), Cp (cuarzo policristalino), Fk (feldespato potásico), Fp (feldespato plagioclasa), FR (fragmentos de roca), Mi (mica), MP (minerales pesados) y B (biógenos).

De acuerdo con el conteo mineralógico realizado (Tabla 2), se observó que en orden de abundancia, los fragmentos de roca totales y los minerales pesados tienen mayor presencia en el total de las muestras, lo cual sugiere que la procedencia del sedimento es de origen continental.

De los fragmentos de roca que se observaron al microscopio, los fragmentos más abundantes son los fragmentos de roca plutónicos y metamórficos. Se encontró presencia de algunos fragmentos volcánicos y escasos fragmentos sedimentarios.

Se encontró una correlación positiva entre el hierro (Tabla 3) y los minerales pesados (Fig. 19, Tabla 2), lo cual coincide con el hecho de que al hacer una prueba manual mediante el uso de un imán, se encontró presencia de magnetita en las muestras recolectadas en el área de estudio.

Los minerales pesados se relacionan en algunas zonas con la presencia de barras de lagunas costeras y de ríos, además de que se encuentra una relación directa entre los minerales pesados con los fragmentos totales de roca. Cuando es mayor el contenido de fragmentos de roca, menor es el contenido de minerales pesados, pues los minerales pesados aún se encuentran como parte del fragmento de roca; sin embargo, esta relación solo se cumple para las muestras en las cuales los minerales pesados son más abundantes por encontrarse disgregados.

Figura 19. Correlación positiva entre hierro y minerales pesados.

Como se verá posteriormente, también el Zn, Th, Cu y Zr (Tabla 5) se encuentran asociados con el contenido de minerales pesados, de tal forma que a mayor contenido de minerales pesados es mayor el contenido de estos elementos.

Llevando los porcentajes de cuarzos, feldespatos y fragmentos de roca a un cien por ciento, se observa que el cuarzo monocristalino es más abundante que el policristalino (en proporciones del orden de 16 veces). En las láminas delgadas también se pudieron observar contenidos de cuarzo tanto monocristalino como policristalino, siendo el más abundante el cuarzo monocristalino. Este último se encuentra distribuido en proporciones similares (alrededor de 25%) a lo largo del área de estudio, excepto en las muestras 61, 64 y 67 cuyo contenido de cuarzo es de alrededor de 40%. Dicho incremento parece corresponder con la región donde se encuentran porcentajes altos de arena en el sedimento, frente a la Laguna

Dichas muestras parecen estar indicando un cambio en la litología del área (Fig. 3), lo cual provoca un enriquecimiento de cuarzo en esta zona.

Los feldespatos alcalinos y plagioclasas a menudo se encuentran alterados a sericita y en algunos casos se observan casi totalmente alterados a arcillas (Anexo IX).

En cuanto al contenido de micas, estas se clasificaron como biotitas, sin embargo, se observaron muy pocas de ellas ya que en su mayoría se encuentran alteradas a clorita (Fig. 20), (Deer *et al.*, 1993) y al realizar el conteo dichos granos se incluyeron como parte de los minerales pesados.

Figura 20. Lámina delgada muestra 10. Biotita con alteraciones a clorita (10X, NC).

Los biógenos son los menos abundantes en las láminas delgadas, con excepción de las láminas 91 y 88, en las cuales el contenido de biógenos, principalmente moluscos, es muy alto en relación con el resto de las láminas y puede deberse a la presencia de la laguna de Coyuca la cual parece estar permitiendo el intercambio entre las aguas oceánicas y las de la laguna aportando dichos biógenos al ambiente marino.

En la figura 21 se muestra el diagrama ternario de Folk (1974). Las muestras de la fracción arenosa se ubican dentro de los campos de arcosa lítica y litarenita feldespática. Se observa

una tendencia hacia el campo de los feldespatos totales así como de los fragmentos de roca, lo cual podría estar relacionado con el hecho de que la zona de estudio es una región tectónicamente activa, en la que la abundancia de feldespatos podría explicarse debido al intemperismo existente en la zona, el cual produce que los granos de feldespatos y micas se desprendan de los fragmentos de roca y que a su vez, como se observó en las láminas delgadas. Dichos minerales se encuentren fuertemente alterados o completamente alterados; sin embargo, aún se encuentran presentes en el sedimento debido a que el área fuente se encuentra próxima al área de muestreo.

De acuerdo con la figura 21, el contenido de cuarzo es bajo si se le compara con muestras de playas (Carranza-Edwards, 1986, 1988), las cuales están sujetas a una mayor energía del oleaje, no así en el caso de la plataforma continental.

Figura 21. Diagrama ternario de acuerdo con Folk (1980).

En la figura 22 se aprecia la influencia de los diversos fragmentos de roca, siendo los más abundantes los fragmentos de roca volcánica (FRV) y en segundo lugar los metamórficos (FRM), los cuales están principalmente constituidos por esquistos y gneises. Esto se explica porque se trata de sedimentos superficiales de la plataforma continental donde la energía es más baja que en playas, lo cual permite que pequeños detritos líticos todavía reflejen la roca fuente de la cual proceden.

Figura 22. Diagrama ternario elaborado a partir de fragmentos de roca volcánicos (FRV), metamórficos (FRM), plutónicos (FRP) y sedimentarios (FRS).

VIII. CARBONATOS Y MATERIA ORGÁNICA EN MUESTRA TOTAL

De acuerdo con Libes (2000), los carbonatos son responsables de regular el pH del océano. Gran parte de los carbonatos presentes en sedimentos marinos, deben su formación a la presencia de organismos tales como moluscos, foraminíferos y cocolitofóridos, cuyos restos están formados por minerales carbonatados (Libes, 2000).

De acuerdo con la figura 23, se observa que las mayores concentraciones de carbonatos se encuentran relacionadas con lagunas costeras, ya que es frente a ellas donde se encuentran altas concentraciones de carbonatos. Sin embargo, es frente a Laguna Mitla así como frente a la Laguna de Coyuca que se registran los valores más altos de carbonatos (mayores que 12%), lo cual podría deberse a la presencia de restos de moluscos asociados con las lagunas costeras como se puede observar en la figura 24 correspondiente a la lámina 91 ubicada frente a Laguna de Coyuca.

Figura 24. Lámina delgada de la muestra 91, donde se observan restos de moluscos (10X, NC).

Los contenidos mayores de carbonatos de calcio se encontrarán depositados dentro del área de estudio en las zonas más someras ya que el CaO no es resistente a condiciones de humedad ni de alta energía por lo que en condiciones de alta energía y climas húmedos como el del área de estudio el CaO se pierde fácilmente.

La materia orgánica expresada como carbono orgánico total (COT), es la principal fuente de nutrientes para los organismos que habitan en el mar y en las zonas costeras, sin embargo, un exceso de nutrientes genera agotamiento de oxígeno. De acuerdo con Libes (2000), la materia orgánica es un buen receptor de metales traza debido a su capacidad de atrapar los metales que se encuentran suspendidos en la columna de agua. Además, algunas propiedades del sedimento, tales como la granulometría pueden cambiar la distribución del tamaño de partículas inorgánicas del sedimento.

La materia orgánica presente en la plataforma continental somera e intermedia tiene como origen fuentes continentales tanto naturales como antropogénicas y es acarreada principalmente por los ríos que finalmente la depositan en el mar (Schulz y Zabel, 2000). De acuerdo con la figura 25, la acumulación de materia orgánica no se relaciona directamente con el tamaño de grano del sedimento a pesar de que las mayores concentraciones se encuentran en los sedimentos finos; tal vez por ello se presenta una relación directa entre el contenido de carbono orgánico total y la presencia de minerales pesados.

Se observó que las mayores concentraciones de materia orgánica se encuentran relacionadas directamente con el aporte lagunar ya que en las muestras frente a los esteros la Barra y el Tular (que es donde desemboca el río San Luis), al estero Boca Chica y Cucuyachero (que se encuentran en la desembocadura del río Tecpan) y a la laguna de Coyuca, se encuentran concentraciones de materia orgánica de entre 3 y 4%.

Frente a la bahía de Acapulco se esperaba obtener valores altos de materia orgánica debidos a las descargas residuales presentes en el área, sin embargo, se registraron bajas concentraciones (alrededor de 1%), las cuales no reflejan dicho aporte, lo anterior puede atribuirse a que las altas concentraciones de materia orgánica se encuentran encerradas dentro de la Bahía de Acapulco la cual está actuando como una barrera, impidiendo la salida de materia orgánica hacia la plataforma continental. No obstante, los valores altos de carbono orgánico total sí parecen relacionarse con las lagunas costeras como se observa en la figura 25.

No se encuentra correlación entre minerales pesados de la fracción arenosa y los parámetros texturales. Tal vez esto se deba a lo extenso de la región, a las variaciones en la profundidad, a los aportes fluviales o lacustres y a la gran diversidad litológica observada en la zona costera.

La presencia de biógenos en el área es poco abundante excepto en las zonas donde existe la presencia de lagunas costeras, donde tanto las concentraciones de carbonatos y carbono orgánico total se incrementan.

IX. GEOQUÍMICA DE SEDIMENTOS

Elementos mayores

El estudio de los elementos mayores, junto con la granulometría y la petrografía, permite evaluar el grado de influencia de las descargas terrígenas en el área así como interpretar la procedencia de los sedimentos terrígenos. Los valores obtenidos para elementos mayores (Tabla 3) permiten inferir que los sedimentos proceden de tres tipos de rocas predominantes: granitos (ricos en feldespatos alcalinos y en menor cantidad ricos en plagioclasas, así como saturados en cuarzo), granodioritas (saturadas en cuarzo, con abundantes plagioclasas y pocos feldespatos alcalinos) y dioritas (con abundancia de feldespatos alcalinos).

Est.	SiO ₂	TiO ₂	Al_2O_3	F_2O_3	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	PxC	Suma
4	54.126	0.752	15.435	5.541	0.063	2.058	4.605	3.559	2.51	0.15	11.07	99.869
7	58.634	0.769	15.604	5.407	0.068	1.916	3.606	3.648	2.663	0.135	7.420	99.870
10	65.155	0.522	12.094	3.536	0.053	1.339	4.757	3.191	2.760	0.111	6.39	99.908
13	79.203	0.328	8.541	2.306	0.030	0.788	1.824	2.372	2.926	0.081	2.05	100.45
14	62.746	0.729	13.910	4.674	0.068	1.577	3.668	2.983	2.704	0.235	6.01	99.300
16	73.204	0.491	9.840	2.899	0.039	0.985	3.213	2.483	2.943	0.078	3.35	99.525
17	54.699	0.811	16.814	6.333	0.063	2.282	2.822	3.393	2.798	0.081	9.26	99.360
19	68.005	0.616	11.441	3.899	0.051	1.477	3.762	2.706	2.876	0.086	4.85	99.770
22	57.287	0.767	16.090	5.596	0.063	2.306	3.053	3.711	3.007	0.154	7.51	99.544
25	56.903	0.764	16.199	5.882	0.069	2.166	2.901	3.617	2.886	0.148	7.93	99.470
28	57.278	0.784	15.762	5.678	0.061	2.307	2.945	3.738	2.991	0.150	7.97	99.664
31	55.965	0.722	15.493	5.555	0.066	2.077	2.912	3.933	2.858	0.134	9.71	99.420
34	58.586	0.704	15.244	5.012	0.067	2.087	3.380	3.654	2.937	0.142	7.71	99.523
37	61.415	0.647	14.379	4.839	0.060	1.826	3.506	3.229	3.152	0.160	6.51	99.720
40	69.361	0.440	11.030	3.077	0.037	1.151	3.787	2.773	3.211	0.099	4.80	99.766
43	60.025	0.708	15.385	5.226	0.066	2.206	3.530	3.199	3.065	0.197	5.92	99.530
46	55.966	0.750	15.527	5.436	0.064	2.215	4.175	3.250	2.868	0.153	9.59	99.994
49	65.944	0.485	12.072	3.530	0.045	1.431	4.249	2.770	3.054	0.086	5.83	99.500
52	71.376	0.408	10.077	2.703	0.030	1.090	3.682	2.305	2.955	0.094	4.89	99.610
55	69.935	0.488	10.667	3.034	0.039	1.137	3.575	2.621	3.039	0.041	4.83	99.410

Tabla 3. Porcentajes de elementos mayores en muestras seleccionadas*.

58	71.988	0.583	10.880	2.924	0.051	1.139	3.238	2.905	3.183	0.080	2.60	99.571
59	59.115	0.656	14.674	5.068	0.056	2.005	4.137	3.186	2.971	0.061	7.66	99.590
61	73.772	0.231	10.243	2.187	0.026	0.943	2.814	2.891	3.856	0.002	3.40	100.37
62	56.369	0.757	15.809	5.514	0.062	2.079	4.226	3.180	2.838	0.147	8.60	99.580
64	68.544	0.527	10.779	2.879	0.042	1.213	4.265	2.856	3.051	0.105	5.25	99.511
67	68.631	0.740	9.742	3.097	0.054	1.195	5.453	2.172	2.546	0.002	5.81	99.440
70	60.518	0.675	12.704	4.304	0.053	1.946	6.371	3.008	2.783	0.135	7.14	99.637
73	58.386	0.596	12.163	4.212	0.052	1.861	7.918	2.889	2.695	0.122	8.75	99.640
74	55.543	0.839	16.589	6.295	0.067	2.405	3.296	3.228	2.939	0.215	8.13	99.550
75	54.491	0.831	16.085	6.279	0.065	2.367	3.518	3.242	2.896	0.176	9.46	99.410
76	65.259	0.504	11.535	3.376	0.040	1.580	5.733	2.853	3.038	0.116	5.58	99.614
79	63.559	0.713	14.382	4.843	0.067	1.965	3.225	3.507	2.923	0.137	4.18	99.50
80	55.757	0.847	15.923	6.180	0.065	2.367	3.321	3.356	2.836	0.157	8.77	99.580
82	62.737	0.624	14.163	4.268	0.050	1.821	2.608	3.428	3.114	0.116	6.99	99.919
83	59.514	0.712	14.848	4.990	0.055	1.787	3.613	3.003	2.874	0.094	7.83	99.320
85	63.598	0.669	13.697	4.425	0.060	1.753	3.681	2.927	2.913	0.066	5.17	98.960
88	58.275	0.527	12.276	3.917	0.043	1.677	7.824	2.832	2.792	0.132	9.47	99.765
91	58.384	0.404	10.158	3.320	0.034	1.431	10.763	2.401	2.487	0.139	10.99	100.51
94	64.019	0.350	10.890	2.891	0.028	1.329	7.055	2.601	2.936	0.095	7.35	99.544
100	51.163	0.858	18.198	6.489	0.046	2.161	2.048	2.907	3.232	0.228	12.19	99.520
107	56.212	0.927	16.585	6.321	0.052	2.058	1.786	2.372	3.123	0.186	10.05	99.672
113	68.841	0.790	12.303	4.416	0.081	1.473	2.052	2.164	2.616	0.153	4.80	99.69
114	68.249	0.781	12.359	4.338	0.069	1.591	2.036	2.256	2.546	0.126	5.45	99.801
Prom.	62.296	0.647	13.456	4.481	0.054	1.734	3.975	3.007	2.916	0.123	6.95	
D. E.	6.5071	0.162	2.472	1.255	0.013	0.454	1.772	0.463	0.237	0.051	2.35	

*Se eligieron las mismas muestras para las que se elaboraron láminas delgadas (Ver la figura 11).

Los compuestos SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO y MgO (Fig. 26) se correlacionan positivamente con los minerales pesados (MP) observados al microscopio. Aún cuando no se hace un análisis detallado de minerales pesados, dentro de los conteos realizados se incluyeron anfíboles, piroxenos, clorita, zircón y minerales opacos en general.

Algunos minerales pesados, como el zircón, se encuentran en forma de inclusiones dentro del cuarzo. Mientras que en los anfíboles y los piroxenos se pueden encontrar contenidos los compuestos mencionados, siendo el más abundante el SiO₂.

Existe correlación positiva entre el Al_2O_3 y los minerales pesados (MP), ya que al haber abundancia de arcillas, compuesta por aluminio, debido a su tamaño, estas se convierten en buenas almacenadoras de minerales pesados

La correlación negativa entre SiO₂ y Al₂O₃ (Fig. 27) podría reflejar la disminución de feldespatos en presencia de cuarzo, pero también podría estar indicando la disminución de cuarzo en presencia de arcillas ya que el cuarzo se encuentra depositado en ambientes de alta energía y profundidades someras mientras que las arcillas se encuentran depositadas a mayores profundidades en zonas de baja energía que permiten su depósito. Las muestras 73, 88 y 91 son pobres en aluminio pero están enriquecidas en carbonatos pues aunque se trata de pocos biógenos estos se encuentran en tamaños muy grandes como se observa en la figura 25.

En la figura 28 se observa la correlación positiva entre el TiO₂ y el Al₂O₃, la cual podría deberse a la presencia de esfena en el área de estudio (Deer *et al.*, 1993; Melgarejo, 2003), la cual además de ser un silicato de titanio, contiene algunas impurezas de hierro y aluminio. La presencia de esfena es indicadora de rocas metamórficas tales como gneises.

La correlación negativa observada entre SiO₂ y Fe₂O₃ (Fig. 29) parece relacionarse tanto con el contenido de minerales pesados como con las condiciones de energía, ya que en el área de estudio, una gran parte del SiO₂ presente en la región se encuentra contenido en los feldespatos y plagioclasas, los cuales son menos resistentes a las condiciones de intemperismo que los minerales pesados, mientras que el Fe₂O₃ se encuentra contenido en dichos minerales, por lo que se le puede encontrar depositado en zonas de alta energía.

La correlación positiva entre Fe_2O_3 y TiO₂ (Fig. 30) es una correlación esperada ya que dichos compuestos coexisten entre sí, Además, en el caso del área de estudio parece estar

asociada con la presencia de granodioritas y de minerales pesados como ilmenita y magnetita. En la ilmenita se encuentran presentes MgO y MnO y por ello existe correlación entre estos compuestos y el titanio (Figs. 31 y 32). Esta relación ya ha sido reportada por Carranza-Edwards *et al.* (1988), quienes asocian la presencia de magnetita e ilmenita presente en playas del Pacífico mexicano con fuentes de rocas plutónicas y metamórficas.

Las correlaciones positivas entre Al₂O₃ y Fe₂O₃ (Fig. 33) y Al₂O₃ y MgO (Fig. 34) parecen coincidir con la presencia de anfíboles que se forman tanto en rocas ígneas como bajo condiciones de metamorfismo regional como en el caso de los esquistos verdes que afloran en la región. Así mismo, el Fe₂O₃ y el MnO se correlación positivamente (Fig. 35) lo que también podría sugerir la presencia de minerales del grupo de los anfíboles, cuya presencia es común en todas las rocas ígneas pero sobre todo en las rocas plutónicas o bajo condiciones de metamorfismo (Deer *et al.*, 1993; Melgarejo, 2003),

Ya que el MgO se encuentra contenido en los minerales pesados, su correlación negativa con el SiO₂ (Fig. 36) sugiere el reflejo de las condiciones de energía que rigen la depositación del sedimento, en donde mientras los minerales pesados que contienen al MgO son altamente resistentes y se pueden depositar en condiciones de alta energía, el SiO₂ que es capaz de resistir condiciones de alta energía es el presente en el cuarzo mientras que el que se encontraba presente en feldespatos y plagioclasas no es capaz de resistir estas condiciones.

Por otra parte, el Fe_2O_3 y el MgO (Fig. 37) se encuentran presentes en las dioritas así como en el grupo mineralógico de los piroxenos, los cuales son abundantes en el área de estudio.

47

Por último, la correlación positiva existente entre el Al_2O_3 y el Na_2O (Fig. 38) es un reflejo de la presencia de feldespatos y plagioclasas ya que ambos elementos coexisten en dichos minerales y a su vez dichos minerales se encuentran depositados en todas las muestras pertenecientes al área de estudio.

Figura 26. Correlación entre TiO₂ y MP.

Figura 28. Correlación entre TiO₂ y Al₂O_{3.}

Figura 27. Correlación entre SiO₂ y Al₂O_{3.}

Figura 29. Correlación entre SiO₂ y Fe₂O_{3.}

Figura 30. Correlación entre TiO₂ y Fe₂O_{3.}

Figura 32. Correlación entre TiO₂ y MnO.

Figura 34. Correlación entre Al₂O₃ y MgO.

Figura 31. Correlación entre TiO₂ y MnO.

Figura 33. Correlación entre Al₂O₃ y Fe₂O_{3.}

Figura 35. Correlación entre Fe₂O₃ y MnO.

Figura 36. Correlación entre SiO₂ y MgO.

Figura 37. Correlación entre Fe₂O₃ y MgO.

Figura 38. Correlación entre Al₂O₃ y Na₂O.

Elementos trazas

El estudio de la concentración de elementos traza en sedimentos y plantas es muy conocido por ser una herramienta útil en estudios geoquímicos y ambientales, así como por su interés económico. Tienen una densidad igual o mayor que 5 gr/cm³ y están presentes en la corteza en concentraciones menores que 0.1 %.

Elemento	Uso
Ba	Los compuestos de bario son usados por las industrias de gas y petróleo para fabricar lodos de perforación. También se usan para fabricar pinturas, ladrillos, cerámicas, vidrio y caucho.
Со	Se usa para producir aleaciones usadas en la manufactura de motores de aviones, imanes, herramientas para triturar y cortar y articulaciones artificiales para la rodilla y la cadera. Los compuestos de cobalto se usan también para colorear vidrio, cerámicas y pinturas y como secador de esmaltes y pinturas para porcelana. El cobalto radioactivo tiene usos comerciales y en medicina.
Cu	Se encuentra en la naturaleza en estado nativo y formando menas como la calcopirita CuFeS ₂ . Se emplea principalmente para usos eléctricos, especialmente cables, así como tuberías. Se utiliza extensamente en aleaciones, tales como latón (Cu-Zn) y bronce (Cu-Sn-Zn). El cobre es uno de los metales más esenciales en la civilización moderna.
Cr	Se encuentra principalmente formando menas de cromita $FeOCr_2O_3$. Se presenta en distintos estados de oxidación (+2, +3, +6). Se utiliza principalmente como pigmento para pinturas así como en la fabricación de ferroaleaciones. Es tóxico cuando está presente como Cr^{6+} .
Ni	Es un elemento natural muy abundante. Se combina con Fe, Cu, Cr y Zn para formar aleaciones, las cuales se usan para fabricar monedas, joyas y artículos como válvulas. La mayor parte del níquel se usa para fabricar acero inoxidable. Los compuestos de níquel se usan en niquelado, para colorear cerámicas, para fabricar baterías y como catalizadores.
Pb	Se usa en la fabricación de baterías, municiones, productos de metal (soldaduras y cañerías) y en láminas de protección contra los rayos X. Debido a inquietudes sobre salud pública, la cantidad de plomo en pinturas y cerámicas y en materiales para soldar se ha reducido considerablemente en los últimos años.
Sr	Sus compuestos se usan en la fabricación de cerámicas y productos de vidrio, fuegos artificiales, pigmentos para pinturas, luces fluorescentes y medicamentos. El ⁹⁰ Sr (radioactivo) se forma en reactores nucleares o durante la detonación de armas nucleares.
Th	Es usado para fabricar cerámicas, cubiertas para linternas a gas, y metales usados en la industria aeroespacial y en reacciones nucleares. El torio también puede ser usado como combustible para generar energía nuclear.
V	En la forma de óxido de vanadio es un componente de un tipo especial de acero usado en partes de automóviles, resortes y rodamientos. El vanadio también se mezcla con hierro para manufacturar partes para motores de aviones. Pequeñas cantidades de vanadio se utilizan para manufacturar caucho, plásticos, cerámicas y otros productos químicos.
Y	Se usa como desinfectante para limpiar superficies y envases para almacenaje, en jabones para la piel, en vendajes y para purificar agua. El yodo también se añade a la sal de mesa. El yodo radioactivo se usa en exámenes médicos y para tratar ciertas enfermedades.
Zn	Se usa en el galvanizado del acero para protegerlo de la corrosión. También se usa en baterías de Zn-AgO usadas en la industria aeroespacial, así como en piezas de fundición inyectada en la industria de automoción, en la metalurgia de metales preciosos y eliminación de la plata del plomo.

Tabla 4. Aspectos generales y usos de los elementos traza estudiados.

Datos compilados de Klaassen Curtis (2001); Figaruelo (2001) y Lewis Richard (1992).

Los resultados de elementos traza se presentan a continuación.

		<i></i>				- 14	,001		. r					
Est.	Rb	Sr	Ba	Y	Zr	Nb	V	Cr	Co	Ni	Cu	Zn	Th	Pb
4	102	317	525	31	260	10	102	60	26	26	32	91	9	16
7	95	304	532	27	297	9	93	83	14	21	33	79	9	16
10	129	393	632	48	235	24	62	121	81	30	28	68	7	9
13	84	217	626	18	106	3	48	178	11	12	17	20	4	9
14	96	285	518	25	262	8	16	50	13	19	31	72	8	13
16	123	262	648	37	188	17	51	60	58	22	18	46	6	11
17	119	255	528	29	204	9	58	82	14	26	44	103	10	16
19	98	306	559	26	270	6	82	38	14	18	26	54	9	11
22	135	292	556	34	226	12	103	70	23	25	31	102	9	15
25	125	274	525	32	237	8	126	63	17	24	37	99	10	16
28	124	190	545	32	207	6	98	101	29	26	34	104	8	13
31	122	283	541	31	244	8	66	60	15	23	38	94	10	15
34	123	215	558	34	205	7	85	64	37	27	34	98	9	11
37	119	295	586	30	228	8	117	88	16	21	29	78	9	13
40	151	310	656	45	187	23	61	43	63	22	19	52	5	11
43	125	281	532	30	235	8	42	215	15	22	24	83	8	14
46	130	208	513	35	200	8	108	118	36	28	28	111	8	14
49	114	320	552	29	206	6	12	40	21	19	25	58	5	16
52	129	292	612	38	145	17	59	29	47	21	18	51	5	15
55	104	287	604	26	194	6	<2	35	17	16	20	44	6	16
58	141	302	668	45	215	23	54	27	61	21	12	42	6	11
59	112	296	506	28	197	9	96	60	12	23	28	82	7	15
61	118	284	753	24	104	2	61	18	16	13	17	29	4	13
62	114	265	476	28	218	10	12	71	9	22	28	94	9	17
64	136	360	608	42	191	19	53	54	56	24	16	52	6	13
67	86	365	493	24	212	7	63	57	13	15	18	43	9	11
70	116	419	517	37	249	14	70	46	35	24	18	80	7	12
73	96	557	463	25	245	7	16	51	13	17	19	62	7	14
74	128	238	488	33	232	11	68	73	14	26	31	109	8	18
75	129	234	453	34	222	11	47	77	15	26	33	112	9	16
76	138	388	551	44	184	16	55	29	51	21	16	70	7	11
79	117	270	501	32	260	8	11	50	15	18	23	79	10	12
80	122	248	484	33	269	10	142	88	15	24	31	105	10	16
82	176	223	567	58	187	17	82	67	73	32	26	118	7	11
83	116	256	519	30	243	9	52	70	13	21	30	87	10	15
85	113	280	515	31	282	9	<2	75	12	18	23	75	9	13
88	110	518	497	34	192	12	76	42	36	23	18	74	6	14

Tabla 5. Elementos traza en los sedimentos analizados mediante el método de fluorescencia de rayos X en ppm.

91	79	639	450	20	173	5	<2	37	12	15	19	51	5	13
94	113	447	546	31	150	13	50	32	36	20	16	63	5	13
100	132	115	633	33	144	9	153	121	14	32	42	138	12	26
107	128	94	676	36	170	9	137	93	19	34	39	127	11	23
113	108	152	597	35	317	13	51	64	15	24	26	84	10	17
114	114	143	590	40	288	14	90	75	27	26	22	91	8	16
Prom.	118	295	556	33	216	11	71	69	27	22	26	78	8	14
D. E.	18	106	66	8	47	5	35	38	19	5	8	27	2	3

Para inferir la procedencia del sedimento presente en el área de estudio, se llevaron a cabo normalizaciones contra diferentes tipos de roca presentes en la región, tomando como base los datos geoquímicos obtenidos por otros autores en la Sierra Madre del Sur.

Se utilizaron los valores obtenidos por Hernández-Pineda (2006) para normalizar los valores del presente trabajo contra valores de granitos (Fig. 39) y sienitas (Fig. 40) presentes en el área de Acapulco, para ello se obtuvo el promedio de las muestras citadas por el autor para cada tipo de roca, sin embargo, a pesar de que en ambos casos se encuentra semejanza entre los valores de Rb, Ba, Y y Pb, el resto de los elementos presentan grandes diferencias de acuerdo con los valores presentados en la Tabla 5.

Figura 39. Valores normalizados de acuerdo con los granitos referidos por Hernández-Pineda (2006).

Se utilizaron también los valores obtenidos por Hernández-Pineda (2006) para normalizar los valores del presente trabajo contra valores de dioritas (Fig. 41) y granodioritas (Fig. 42) presentes también en el área de Acapulco, en este caso existen más elementos para los que se encuentra semejanza entre los valores de las rocas y los valores de sedimento presentados en la Tabla 5. Estos elementos son Rb, Ba, Y, Zr, Th y Pb, el resto de los elementos presentan notables diferencias.

Figura 41. Valores normalizados de acuerdo con las dioritas referidas por Hernández-Pineda (2006).

referidas por Hernández-Pineda (2006).

Se realizó una última normalización de las muestras de sedimento contra valores de ortogneisses (Fig. 43) y paragneisses (Fig. 44) migmatíticos obtenidos por Pérez-Gutiérrez *et al.* (2009). Sin embargo, los valores obtenidos no se asemejan a ninguno de estos tipos de rocas, sobre todo en los valores de cromo (Cr) y de cobalto (Co), los cuales están empobrecidos y enriquecidos respectivamente en relación con el ortogneiss utilizado.

Figura 43. Valores normalizados referidos con ortogneisses migmatíticos según Pérez-Gutiérrez, *et al.* (2009).

Al realizar la normalización de los valores obtenidos para un área determinada, resulta fundamental elegir los valores de referencia utilizados en las normalizaciones. En la literatura, es muy común encontrar que los valores más utilizados como referencia son los valores conocidos para la corteza continental superior, sin embargo, estos valores presentan una desventaja; fueron obtenidos mediante el análisis de algunas muestras recolectadas en ciertos puntos a lo largo de la superficie del planeta, por lo que se decidió que para el caso de este trabajo, resulta más exacto llevar a cabo normalizaciones utilizando diferentes tipos de rocas que diferentes autores han encontrado dentro del área de estudio y que por tanto tenderán a dar un resultado más concordante con la geoquímica de la región, en vez de un resultado basado en un promedio general mundial.

Al observar que los valores para elementos traza de las muestras de sedimento no se asemejan a ninguna de las normalizaciones contra las rocas anteriores, se optó por normalizar los valores del sedimento contra el promedio de ellos mismos (Fig. 45) tomando como criterio de discriminación el promedio obtenido para el tamaño de grano (Mz_{ϕ}), el cual es de 3.8 ϕ , para así poder ubicar posibles grupos a lo largo del área de estudio.

Figura 45. Normalización de los valores de las muestras de sedimento contra el promedio de ellos mismos.

Esta normalización se dividió en dos grupos; el grupo conformado por muestras de sedimento con Mz ϕ menor que el promedio (3.8 ϕ), (Fig.46) y el grupo formado por las muestras con Mz ϕ mayor que el promedio (3.8 ϕ), (Fig. 47).

Figura 45. Muestras con sedimento fino menor que 3.8ϕ , normalizadas con respecto al promedio de las mismas muestras.

Al formar los grupos se observó que en las muestras con tamaño de grano fino $(Mz\phi>3.8\phi)$, (Fig. 46) existe una distribución más uniforme de los elementos traza, en donde dichos elementos se acercan más al valor de referencia (1.0), mientras que en las muestras con tamaño de grano grueso $(Mz\phi<3.8\phi)$, (Fig. 47) la dispersión de datos en relación al valor de referencia es mayor. Esto parece indicar que los sedimentos en fracciones más finas tienden a uniformar su composición.

Figura 47. Muestras con sedimento grueso mayor que 3.8ϕ , normalizadas con respecto al promedio de las mismas muestras.

Se puede decir que los elementos cromo (Cr), cobalto (Co), niobio (Nb), cobre (Cu) y zinc (Zn) se acumulan preferencialmente en muestras con sedimento fino, en donde el contenido de minerales pesados es mayor, mientras que los elementos níquel (Ni), y plomo (Pb) se encuentran en mayor cantidad en muestras con sedimento grueso. Esto podría deberse a que la concentración de minerales pesados es mayor en los tamaños finos que se pueden asociar con los primeros mientras que el níquel y el plomo podrían estar contenidos en los fragmentos de roca en fracciones más gruesas.

En cuanto al vanadio (V), no se encontró una tendencia preferencial con el tamaño de grano, sin embargo, las mayores concentraciones están en la fracción más gruesa del sedimento. Los valores más altos de cromo (Cr) se encuentran en las muestras 13 y 43 (Fig. 11), las cuales podrían estar sugiriendo su posible influencia volcánica, la cual, de acuerdo con el mapa geológico (Fig. 3) coincide con un área en la que se presentan rocas volcánicas en la parte alta de las cuencas.

Por otra parte, los valores más bajos de Nb y Cr se ubican en la muestra 61 (Fig. 11) sugiriendo que la disminución de estos elementos puede deberse a la posible influencia de intrusivos presentes en la región. En esta localidad es donde se presenta un cambio entre la región plutónica y la región metamórfica.

El resto de los elementos muestran poca variación y se comportan de manera muy similar al valor de referencia.

Es importante tomar en cuenta que la interpretación de los análisis geoquímicos para rocas no necesariamente se puede aplicar en sedimentos lo cual puede conducir a interpretaciones erróneas ya que los sedimentos derivados de las rocas expuestas en el continente se ven afectados por diversos procesos tales como el transporte, las condiciones climáticas, el relieve, el intemperismo y la composición de la cuenca.

Tierras raras

Las tierras raras son elementos del Grupo IIIA de la tabla periódica (Henderson, 1996). Dichos elementos son el Ytrio (Y), Lantano (La) y los lantánidos Cerio (Ce), Praseodimio (Pr), Neodimio (Nd), Prometio (Pm), Samario (Sm), Europio (Eu), Gadolinio (Gd), Terbio (Tb), Disprosio (Dy), Holmio (Ho), Erbio (Er), Tulio (Tm), Yterbio (Yb) y Lutecio (Lu). De acuerdo con Henderson (1984), las tierras raras tienen propiedades físicas y químicas similares, las cuales se deben a su configuración electrónica. Presentan iones estables 3⁺ de tamaño semejante, sin embargo existen algunas diferencias entre ellas, tales como un

El estudio de las tierras raras tiene aplicaciones importantes en la petrología de rocas ígneas, sedimentarias y metamórficas ya que según Henderson (1996), las pequeñas diferencias en el tamaño iónico y el comportamiento de estas resulta útil para interpretar

pequeño decremento en su radio iónico y un incremento en su número atómico.

procesos petrológicos y génesis de las rocas. Las concentraciones de tierras raras, las cuales se expresan en partes por millón (ppm) se normalizan con una referencia estándar que se escoge de acuerdo al tipo de roca o sedimento analizado. Según Hernández (2006), con esto se pretende eliminar el efecto de oscilación por abundancias según su número atómico. En este trabajo se utilizaron dos normalizaciones: a) empleando los valores para condrita propuestos por Evensen *et al.* (1978) y b) utilizando los valores propuestos por Gromet *et al.* (1984) para un compuesto de lutitas de América del Norte (NASC).

Al elaborar las gráficas para los valores normalizados de tierras raras de acuerdo con la condrita, (Figs. 48, 49 y 50), se obtuvieron tres grupos: 1) el grupo de muestras comprendidas desde la parte oeste del área de estudio y hasta unos kilómetros al este del Río Atoyac (Fig. 48), dicha región presenta influencia de intrusivos, metamórficos y volcánicos (Fig. 3). Las muestras 107 y 114, en las cercanías de la bahía de Acapulco se comportan de manera similar a pesar de ubicarse en un área predominantemente granítica, 2) el grupo comprendido (Fig. 49) desde el oeste de Laguna Punta San Martín hasta el oeste de la bahía de Acapulco, influenciado por rocas de tipo metamórfico y volcánico (Fig. 3), predominando la influencia de tipo metamórfico y 3) este último (Fig. 50) corresponde con solo una muestra (61), ubicada en el flanco oeste de Laguna Punta San Martín y la cual tiene un patrón diferente al de los grupos anteriores, tal vez debido a su ubicación, entre la región granodiorítica y la metamórfica, lo cual puede estar provocando la anomalía positiva de europio que sugiere una composición menos ácida.

Figura 48. Diagrama de tierras raras normalizadas con condrita, según Evensen (1978). Grupo 1.

Figura 49. Diagrama de tierras raras normalizadas con condrita, según Evensen (1978). Grupo 2.

Figura 50. Diagrama de tierras raras normalizadas con condrita, según Evensen (1978). Grupo 3.
La presencia de torio, lantano y cerio puede sugerir la existencia de monacita en el área de estudio, además de que la presencia de rocas graníticas en la región hace posible esta teoría, al igual que algunos trabajos hechos en regiones cercanas (Barajas, 1988; Cabrera-Ramírez y Carranza-Edwards, 2002) quienes reportan presencia de monacita en Guerrero y Oaxaca. Sin embargo, en caso de existir, la monacita es un mineral moderadamente resistente al intemperismo por lo que podría encontrarse en la plataforma continental en pequeñas cantidades siendo las arenas de playa el lugar donde se depositaría la mayor cantidad de este mineral.

Posteriormente se llevó a cabo la normalización de las tierras raras con NASC. A partir de esta normalización se obtuvieron tres grupos (Figs. 51, 52 y 53), que coinciden con los grupos obtenidos a partir de la normalización con condrita (Figs. 48, 49 y 50), en donde nuevamente al comparar con el mapa geológico se observa que dichos grupos se forman de acuerdo con la composición litológica presente en el área ordenándose de oeste a este en una región granodiorítica (Fig. 51), un segundo punto (Fig. 53) marcando el contacto entre esa región granodiorítica y la tercera región que es metamórfica (Fig. 52). En el caso del tercer grupo (Fig. 53), se observa que en la normalización con NASC aparece la muestra 94 con una tendencia similar a la de la muestra 61, la cual apenas es observable al emplear la normalización con condrita (Fig. 50). Sin embargo, esta semejanza con la muestra 61 sugiere la cercanía de la muestra 94 (que se encuentra dentro de una región metamórfica) con el granito de Acapulco (Fig. 3), lo que permite su semejanza con la muestra que se encuentra en el contacto entre ambas regiones.

Figura 51. Diagrama de tierras raras normalizadas con NASC (Grupo 1).

Figura 52. Diagrama de tierras raras normalizadas con NASC (Grupo 2).

Figura 53. Diagrama de tierras raras normalizadas con NASC (Grupo 3).

Al llevar a cabo la comparación entre el valor promedio de las tierras raras en los sedimentos de plataforma, normalizados con condrita y NASC, se observa (Fig. 54) que ambas normalizaciones muestran un comportamiento similar en las tierras raras pesadas, mientras que las tierras raras ligeras se observan más enriquecidas cuando se normaliza contra la condrita. Así mismo, ambas normalizaciones presentan anomalía de europio negativa en el caso de la normalización con condrita y positiva en el caso de la normalización con condrita y positiva en el caso de la normalización con NASC.

Figura 54. Diagrama de comparación del valor promedio de tierras raras en muestra total de los sedimentos analizados normalizados contra condrita y NASC.

Esto se puede interpretar como un enriquecimiento de tierras raras en los sedimentos estudiados, los cuales están más enriquecidos si se le compara con la condrita, mientras que la muestra tipo NASC resultaría similar a las muestras estudiadas. Tal vez esto se deba a que las muestras tipo NASC sean texturalmente más parecidas a las muestras estudiadas que son mezclas de arenas, limos y arcillas.

A continuación se analizan variogramas (Fig. 55) construidos para cada elemento distribuidos de oeste a este con la finalidad de ver si existen a lo largo de la plataforma cambios importantes en los valores de cada uno de los elementos. Estos variogramas se construyeron tomando como referencia el promedio del total, el cual aparece referido a la concentración de cada uno de los elementos de tierras raras.

De acuerdo con las figuras 55 y 56, se observa que las muestras 13, 61, 91 y 94 registran una tendencia diferente al resto de las muestras, así mismo presentan bajos contenidos de cada una de las tierras raras (Fig. 55) lo cual de acuerdo con la geología de la región (Fig. 3) y con lo ya observado en este capítulo, refleja la presencia de más de un tipo de roca en el sedimento. En el caso de las muestras 61, 91 y 94, se refleja la influencia tanto metamórfica como granodiorítica que existe en dichos puntos, sin embargo, el punto 13, parece estar reflejando la influencia de fuentes granodioríticas, volcánicas y metamórficas.

Figura 56. Diagrama de tierras raras totales. Los valores en rojo pertenecen a las tierras raras ligeras, el color amarillo al europio y el verde a las tierras raras pesadas.

Se realizó un diagrama considerando diecinueve muestras para las que se realizaron análisis de tierras raras (Fig. 56) con la intención de conocer en que tierras raras se encuentran enriquecidas las muestras y se observó que todas las muestras se encuentran enriquecidas en tierras raras ligeras, lo cual puede ser un indicador de un incremento en los contenidos de magnetita presentes en el área de estudio.

El análisis de los elementos mayores como método para interpretar la procedencia de sedimentos es poco útil ya que los elementos mayores son fácilmente alterables, resulta más confiable la información obtenida a partir del uso de elementos menores y traza. Al realizar la normalización de los elementos menores con diferentes tipos de rocas existentes dentro del área de estudio, no se observó ninguna semejanza. Posteriormente, al realizar la normalización de tierras raras con condrita y con NASC se obtuvieron tres grupos prácticamente iguales para ambos casos con lo que fue posible interpretar que el sedimento

depositado en la plataforma continental somera proviene de tres fuentes, una granodiorítica, otra metamórfica y una que abarca ambos tipos.

X. CONCLUSIONES

Variaciones texturales de los sedimentos de plataforma

Las dos clases granulométricas más abundantes en los sedimentos superficiales de la plataforma son lodos arenosos y arenas lodosas.

Las arenas se depositan preferencialmente en zonas poco profundas y por tanto de alta energía, mientras que los limos y arcillas se depositan en profundidades mayores con condiciones de baja energía.

Los sedimentos más ricos en arenas (mayor que 80%) están muy próximos a la línea de costa y reflejan tres incipientes deltas cercanos a la desembocadura de ríos, no así en los ríos Atoyac y Aguacoscla que son de los más importantes. De esta manera, se puede decir que las isobatas son paralelas a la línea de costa, excepto cuando hay cañones submarinos en donde las isobatas tienden a estrecharse.

Considerando que las concentraciones de arenas se encuentran a partir de la línea de costa y hasta 70 m de profundidad, se puede inferir que el nivel base de la ola puede estar próximo a esta profundidad. Desde esta profundidad existiría entonces la posibilidad de remoción de sedimentos de fondo por la acción de ciclones o tsunamis.

En un perfil del cañón ubicado frente a la desembocadura del Rio Atoyac, se observa la presencia de terrazas submarinas características de zonas tectónicamente activas.

La Bahía de Acapulco está actuando como una barrera que impide el paso de las arenas procedentes de Laguna de Tres Palos y al mismo tiempo impide la salida de las propias arenas que se encuentran al interior de la Bahía.

Petrología

De acuerdo con el análisis de color del sedimento en húmedo (Münsell, 1975), se observa una franja verde indicadora de contenidos altos de clorita frente a la Bahía de Acapulco, mientras que del análisis del sedimento en seco, se observa la tendencia del sedimento a desplazarse con dirección NW en la época en la que se realizó el muestreo.

La fracción arenosa correspondiente con las muestras más someras cae dentro de los campos de arcosa lítica y de litarenita feldespática.

Como los fragmentos de roca y los minerales pesados son los componentes más abundantes en la fracción arenosa, en las muestras de plataforma más someras, se infiere el origen continental de los mismos. Las plagioclasas se encuentran a menudo alteradas a sericita y en las fracciones arenosas más finas la alteración se hace más evidente.

Los fragmentos de roca plutónica y de gneisses están presentes cuando los tamaños de arena son grandes mientras que cuando las partículas arenosas son finas o muy finas se reconocen solamente escasos fragmentos de rocas volcánicas, metamórficas (metavolcánicas, metasedimentarias, esquistos) y aún más escasos fragmentos de limolitas y areniscas. Esto refleja la importancia que tiene el análisis textural en relación con la respuesta observada en los análisis petrológicos. Los minerales pesados son más abundantes en las fracciones arenosas finas.

Carbonatos y materia orgánica (COT)

La presencia de carbonatos es baja con excepción de las localidades próximas a lagunas costeras en donde la presencia de biógenos (principalmente moluscos) es mayor. La materia orgánica también se encuentra relacionada con los ambientes lagunares.

Composición geoquímica

El SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO y MgO se encuentran relacionados con anfíboles y piroxenos, que son abundantes en el área de estudio.

Se observó una correlación positiva entre Fe_2O_3 y TiO_2 que podría asociarse con granodioritas e ilmenitas, en el cual se encuentran presentes el MgO y el MnO.

La correlación negativa entre SiO_2 y Al_2O_3 refleja la diferencia entre las condiciones de depósito del sedimento, pues el cuarzo se deposita en condiciones de alta energía ya sea en playas o en aguas someras. Los lodos (limos y arcillas) se observaron en profundidades mayores.

Existe una correlación positiva entre el TiO_2 y el Al_2O_3 que sugiere la presencia de esfena, la cual puede presentar impurezas de hierro y aluminio, además de que su presencia se ha reportado en la literatura siendo indicadora de rocas metamórficas.

Los elementos Zn, Th, Cu y Zr se encuentran asociados con la presencia de minerales pesados.

Al normalizar la muestra total de sedimento contra rocas plutónicas y metamórficas existentes en la Sierra Madre del Sur se observó que las firmas geoquímicas de sedimentos no corresponden necesariamente con las de rocas. Durante el depósito de los sedimentos ocurren diversos procesos que pueden enriquecer o empobrecer la concentración de elementos traza por variaciones en los niveles de energía en el área de depósito. Es importante que el sedimento no se interprete como si se tratase de rocas. De ahí la importancia que los análisis geoquímicos del sedimento se complementen con análisis texturales, petrológicos y litológicos.

No obstante, al normalizar tierras raras contra condrita y NASC se obtuvieron tres grupos que permiten inferir la procedencia del sedimento.

El primer grupo abarcó desde la parte oeste del área de estudio hasta unos kilómetros al este del Río Atoyac, en donde se refleja un origen predominantemente granodiorítico. En este grupo se incluyen las muestras localizadas en las proximidades de la bahía de Acapulco, que están influenciadas por granito.

El segundo grupo incluye desde el oeste de Laguna Punta San Martín hasta el oeste de la Bahía de Acapulco. En este grupo se observa la influencia metamórfica de la región.

El último grupo está constituido por dos muestras. Una en el flaco oeste de Laguna Punta San Martín y la otra al oeste de la bahía de Acapulco. En ellas se observa un cambio en la composición del sedimento, ya que ambas están en el límite de regiones granodioríticas y metamórficas.

El total de las muestras para las que se hicieron análisis de tierras raras se encuentran enriquecidas en tierras raras ligeras que pueden estar indicando un incremento en los contenidos de magnetita y otros minerales pesados presentes en el área de estudio.

BIBLIOGRAFÍA

- Armstrong-Altrin, J.S., 2009. Provenance of sands from Cazones, Acapulco, and Bahía Kino beaches, México. Revista Mexicana de Ciencias Geológicas, 26(3):764-782.
- Cabrera-Ramírez, M.A. y A. Carranza-Edwards, 2002. The beach environment in Mexico as a potencial source of placer minerals. Marine Georesources and Geotechnology, 20:187-198.
- Carranza-Edwards, A., M. Gutiérrez y R. Rodríguez, 1975. Unidades morfo-tectónicas continentales de las costas mexicanas. Anales del Centro de Ciencias del Mar y Limnología, UNAM, 2(1):81-88.
- Carranza-Edwards, A., A. Márquez-García y E. Morales, 1985. Estudio de sedimentos de la plataforma continental del Estado de Guerrero y su importancia dentro de los recursos minerales del mar. Anales del Centro de Ciencias del Mar y Limnología, UNAM. Contribución 465.
- Carranza-Edwards, 1986. Estudio sedimentológico de playas del estado de Chiapas, México. Anales del Instituto de Ciencias del Mar y Limnología, UNAM, 13:331-343.
- Carranza-Edwards, L. Rosales-Hoz y R. Lozano Santa Cruz, 1988. Estudio sedimentológico de playas del estado de Oaxaca, México. Anales del Instituto de Ciencias del Mar y Limnología, UNAM, 15:23-37.
- Carranza-Edwards, A., 1997. La granulometría y su uso en estudios geoquímicos y ambientales. Actas INAGEQ, 3:235-243.

- Carranza-Edwards, A., Centeno-García L., Rosales-Hoz, E. and R. Lozano Santa Cruz, 2001. Provenance of beach gray sands from western Mexico. Journal of South American Earth Science, 14:291-305.
- Carranza-Edwards, A., L. Rosales-Hoz, J. Urrutia-Fucugauchi, A. Sandoval-Fortanel, E. Morales-de la Garza y R. Lozano-Santa Cruz, 2005. Geochemical distribution pattern of sediments in an active continental shelf in Southern Mexico. Continental Shelf Research, 25(2005):521-537.
- Carranza-Edwards A., J.J. Kasper-Zubillaga, L. Rosales Hoz, E. Morales de la Garza y R. Lozano Santa Cruz, 2009. Beach sand composition and provenance in a sector of the southwestern Mexican Pacific. Revista Mexicana de Ciencias Geológicas , 26 No 2: 433-447.
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, CONABIO, 2004. Metadatos para Mapa base del estado de Guerrero, Escala de impresión 1: 1 550000.
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, CONABIO, 2008. Metadatos extraídos de Maderey-R, L. E. y Torres-Ruata, C., 1990, Mapa de Hidrología Ríos, Corrientes de agua, Atlas Nacional de México, Instituto de Geografía, UNAM, Esc. 1:4000000.
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, CONABIO*, 2008. Metadatos extraídos de Marín-C, S y Torres- Ruata, C., 1990, Mapa de Hidrogeología, Atlas Nacional México, Instituto Geografía, UNAM, Esc. 1:4000000.

- Daesslé, L. W., S.E. Ramos, J.D. Carriquiry y V.F. Camacho-Ibar., 2002. Clay dispersal and the geochemistry of manganese in the Northern Gulf of California. Continental Shelf Research, 22(2002):1311-1323.
- Daesslé, L. W., V.F. Camacho-Ibar, J.D. Carriquiry y M.C. Ortíz-Hernández, 2004. The geochemistry and sources of metals and phosphorus in the recent sediments from the Northern Gulf of California. Continental Shelf Research, 24(2004):2093-2106.
- Davis, R. A. Jr., 1978. Coastal Sedimentary Environment. Springer, 420 p.
- Deer, W.A., R.A. Howie y J. Zussman, 1993. An introduction to the Rock-Forming Minerals. London, England, Longman Scientific & Technical, 695 p.
- Evensen, N.M., P.J. Hamilton y R.K. O'Nions, 1978. Rare earth abundances in chondritic meteorites. Geochimica et Cosmochimica Acta, 42:1199-1212.
- Fernández-Eguiarte, A., Gallegos-García, A. Zavala-Hidalgo, J., 1992 b. Oceanografía física. Masas de agua y mareas de los mares mexicanos. Atlas Nacional de México (hoja IV 9.1 verano), scale 1:4,000,000, Instituto de Geografía, UNAM.
- Fernández-Eguiarte, A., Gallegos-García, A. Zavala-Hidalgo, J., 1992 a. Oceanografía física. Masas de agua y mareas de los mares mexicanos. Atlas Nacional de México (hoja IV 9.1 invierno), scale 1:4,000,000, Instituto de Geografía,UNAM.

Figaruelo, J., 2001. Química física del medio ambiente. Ed. Reverte, 286-306.

- Folk, R.L, 1980. Petrology of sedimentary rocks. Austin, Texas, Hemphill Publising Company, 182 p.
- Franzinelli, E., P.E. Potter, 1985. Petrology, chemistry and texture of modern river sands, Amazon River system. Journal of Geology, 91:23-29.

- Gío-Argáez, R., M. L. Machain-Castillo, J.A. Alcalá-Herrera y D. Rodríguez V., 1995. Ostrácodos de la Plataforma Continental de Sinaloa y Nayarit, México. Rev. de la Soc. Mex. de Hist. Nat., Vol. XLVI 225-242.
- Gromet L. P., R.F. Dymek, L.A. Haskin y R.L. Korotev, 1984. The "North American shale composite": Its compilation, major and trace element characteristics. Geochimica et Cosmochimica, (48):2469-2482.
- Henderson, P., 1984. General geochemical properties and abundances of the rare earth elements. Rare earth element geochemistry. Elsevier, Amsterdam, 510 p.
- Henderson, P., 1996. The rare earth elements: introduction and review. Rare Earth Minerals: Chemistry, origin and ore deposits. Chapman & Hall, London, UK. 357 p.
- Hernández-Pineda, G.A., 2006. Geoquímica y geocronología de granitoides en el área de Tierra Colorada, Guerrero. Universidad Nacional Autónoma de México, Facultad de Ingeniería, Tesis Licenciatura (Ingeniero Geólogo), 84 p.

Hesse, P., 1971. A textbook of soil chemical analysis, Ed. John Murray.

- Instituto Nacional de Estadística, Geografía e Informática, México, INEGI, 2008. Mapa de regiones fisiográficas.
- Instituto Nacional de Estadística, Geografía e Informática, México, INEGI, 2009. Mapa de regiones hidrológicas.
- Inman, D. J. y C. E. Nordstram, 1971. On the tectonic and morphologic classification of coast. Journal Geology, 70(1):1-21.
- Kabata-Pendias, A., 2001. Trace elements in soils and plants, CRC Press, 3a ed., 331 p.
- Klaassen-Curtis, D., 2001. Manual de Toxicología, 5ª ed., McGraw Hill, México, ISBN: 970 10 2819 8.

- Lewis Richard, J., 1992. SAX'S. Dangerous properties of industrial materials. Ed. Van Nostrad Reinhold, pp. 75, 106, 225.
- Libes, S. M., 2000. An Introduction to Marine Biogeochemistry. Ed. John Wiley & Sons, Inc., 734 p.
- Loring, H. y Rantala, T., 1992. Manual for the geochemical analyses of marine sediments and suspended particulate matter, V. 32, Earth Science Reviews.
- Lozano-Santa Cruz, R., P. Altuzar, A. Carranza-Edwards y L. Rosales-Hoz, 1989. Distribución de minerales en la fracción arcillosa de sedimentos del Pacífico Central Mexicano. Anales del Instituto de Ciencias del Mar y Limnología, UNAM, 16(2):321-330.
- Machain-Castillo, M. L., R. Gío-Argáez y J. A. Alcalá-Herrera, 1995. Los ostrácodos del Golfo de Tehuantepec, México. Rev. de la Soc. Mex. de Hist. Nat. Vol. XLVI :.243-252. p.
- Mackenzie, W.S., y C. Guilford, 1980. Atlas of rock forming minerals in thin section. Ed. Longman, 98 p.
- Madhavaraju, J., C.M. González-León, Y.I. Lee, J.S. Armstrong-Altrin y L.M. Reyes-Campero, 2010. Geochemistry of the Mural Formation (Aptian-Albian) of the Bisbee Group, Northern Sonora, Mexico. Cretaceous Research, 31(2010):400-414.
- Marín-Guzmán y A. Carranza-Edwards, 2011. Inferencia del transporte litoral dominante del Golfo de México. *In*: F. Raúl Gío Argaez y M.T. Leticia Rosales Hoz (Eds.)
 Interacciones en el Planeta Tierra. ICML, UNAM:39-46. México D.F., 250 p.

- Márquez-García, A. y E. Morales-de la Garza, 1984. Sedimentología de la plataforma continental del Estado de Guerrero. Tesis de Licenciatura, Facultad de Ingeniería, UNAM, 53 p.
- Martín-Barajas, A., 1980. Distribución de minerales pesados en placeres de playa en una porción del litoral de los estados de Guerrero y Oaxaca. VIII Seminario interno del Consejo de Recursos Minerales, reporte interno, consejo de recursos minerales, (México):183-211.
- Melgarejo, J.C., 2003. Atlas de asociaciones minerales en láminas delgadas. Publicacions de la universitat de Barcelona, Barcelona.
- McLennan, S., 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust, Geochemistry Geophysics Geosystems, V(2).
- Münsell Color Company, 1975. Münsell Soil Color Charts. Münsell Color Company Inc., Macbeth Division of Kollmorgen Corporation, Baltimore MD USA, 34 p.
- Padilla-Galicia E. y V. Solís-Weiss, 1992. Distribución y nuevos registros de anélidos poliquetos en la plataforma continental del estado de Sinaloa, costa Pacífica de México. In: Eds: S. P. Darwin & A. L. Welden. "Biogeography of Mesoamerica". Tulane Studies in Zoology and Botany, Suppl. Publ. 1. 249-264.
- Pérez-Gutiérrez, R., L. A. Solari, A. Gómez-Tuena y U. Martens, 2009. Mesozoic geologic evolution of the Xolapa migmatitic complex north of Acapulco, southern Mexico: implications for paleogeographic reconstructions. Revista Mexicana de Ciencias Geológicas, 26(1), p. 201-221.

Pettijohn, F. J., 1975. Sedimentary Rocks. Harper and Row Publishers, New York.

- Pettijohn, F. J., P. E. Potter y R. Siever, 1987. Sand and sandstone. Springer-Verlag, New York.
- Rabalais, N., E. Turner y W. Wiseman, 2001. Hypoxia in the Gulf of Mexico. Environ. Qual., 30:320-329.
- Rollinson, H. 1995. Using geochemical data: evaluation, presentation, interpretation. Longman Science & Technology, New York, 344 p.
- Rosales-Hoz, L., A. Carranza-Edwards, S. Santiago-Pérez y E. Morales de la Garza, 2005. Spatial trends in the geochemical composition of sediments in the Panuco River discharge area, Gulf of Mexico. Environmental Geology, 48:496-506.
- Rosales-Hoz, L., A. Carranza-Edwards y O. Celis-Hernández, 2007. Environmental implications of heavy metals in surface sediments near Isla de Sacrificios, Mexico. Bull Environ Contam Toxicol., 78:353-357.
- Sánchez-Zavala, J. L. y E. Centeno-García, 2000. Técnicas y aplicaciones del estudio de los sedimentos terrígenos de grano fino: procedencia y tectónica. Instituto de Geología, UNAM.
- Servicio Geológico Mexicano, 2000. Carta Geológico Minera Acapulco E14-11, Guerrero, Oaxaca, Esc. 1:250,000.
- Servicio Geológico Mexicano, 2007. Carta Geológico Minera Estado de Guerrero, Esc. 1:500,000.
- Schulz, H.D. y M. Zabel, 2000. Marine Geochemistry. Springer, New York, 455 pp. ISBN:3-540-66453-X.

- Tapia-García, M., M. C. García-Abad, A. Carranza-Edwards y F. Vázquez-Gutiérrez, 2007. Environmental characterization of the continental shelf of the Gulf of Tehuantepec, México. Geofísica Internacional., 46(4):249-260.
- Taylor, S.R., S.M, Mc Lennan, 1985. The continental crust: Its composition and evolutionan examination of the geochemical record preserverd in sedimentary rocks (Geoscience Texts). Blackwell, Oxford, 312 p.
- Wentworth, C. K., 1922. A scale of grade and class terms for clastic sediments. Journal of Geology, 377-392. 30.

ANEXOS

ANEXO I. Ubicación de las estaciones y profundidad de muestreo.

Est.	Longitud	Latitud	Prof. (m)	Est.	Longitud	Latitud	Prof. (m)
1	-101.0333	17.2353	-65.0	58	-100.3996	17.0300	-50.8
2	-101.0333	17.2263	-82.0	59	-100.3995	17.0184	-80.2
3	-101.0338	17.2203	-88.0	60	-100.3997	17.0039	-96.4
4	-101.0000	17.2206	-63.0	61	-100.3639	17.0189	-48.1
5	-101.0005	17.2096	-78.0	62	-100.3664	17.0032	-77.8
6	-101.0003	17.2068	-86.0	63	-100.3598	16.9923	-94.0
7	-100.9668	17.2148	-55.0	64	-100.3326	17.0040	-56.0
8	-100.9670	17.2046	-79.0	65	-100.3340	16.9900	-78.0
9	-100.9678	17.1994	-87.0	66	-100.3335	16.9768	-97.0
10	-100.9331	17.2049	-47.1	67	-100.3001	16.9896	-58.0
11	-100.9336	17.1902	-75.5	68	-100.2999	16.9784	-78.0
12	-100.9332	17.1868	-89.2	69	-100.3002	16.9648	-97.0
13	-100.9004	17.1947	-46.3	70	-100.2681	16.9789	-58.0
14	-100.8997	17.1850	-73.9	71	-100.2671	16.9679	-76.0
15	-100.9071	17.1851	-91.2	72	-100.2665	16.9535	-96.3
16	-100.8656	17.1854	-49.3	73	-100.2336	16.9701	-52.0
17	-100.8673	17.1724	-81.0	74	-100.2365	16.9560	-75.0
18	-100.8660	17.1645	-95.3	75	-100.2335	16.9430	-94.5
19	-100.8325	17.1734	-54.6	76	-100.1988	16.9600	-44.7
20	-100.8334	17.1611	-81.5	77	-100.2002	16.9341	-66.5
21	-100.8334	17.1524	-99.0	78	-100.2008	16.9307	-91.5
22	-100.7997	17.1600	-55.5	79	-100.1591	16.9527	-41.6
23	-100.8000	17.1495	-79.4	80	-100.1668	16.9351	-67.3
24	-100.7997	17.1410	-99.2	81	-100.1665	16.9210	-91.9
25	-100.7663	17.1449	-56.7	82	-100.1330	16.9365	-42.0
26	-100.7669	17.1359	-83.6	83	-100.1331	16.9230	-72.0
27	-100.7664	17.1280	-103.9	84	-100.1329	16.9095	-170.0
28	-100.7330	17.1354	-48.0	85	-100.1000	16.9250	-53.0
29	-100.7335	17.1245	-88.9	86	-100.0999	16.9121	-81.0
30	-100.7332	17.1146	-101.2	87	-100.0997	16.8975	-106.0
31	-100.7001	17.1232	-53.0	88	-100.0670	16.9148	-58.0
32	-100.6999	17.1111	-83.5	89	-100.0671	16.8999	-90.0
33	-100.7002	17.1029	-100.7	90	-100.0664	16.8839	-116.0
34	-100.6666	17.1151	-52.0	91	-100.0339	16.9047	-56.6
35	-100.6670	17.1053	-78.0	92	-100.0362	16.8859	-40.0

36	-100.6675	17.0960	-96.8	93	-100.0339	16.8694	-127.0
37	-100.6337	17.1068	-55.0	94	-100.0006	16.8893	-58.0
38	-100.6327	17.0960	-78.0	95	-99.9984	16.8798	-87.8
39	-100.6338	17.0844	-100.6	96	-99.9996	16.8654	-109.0
40	-100.6003	17.0987	-47.5	97	-99.9665	16.8616	-79.7
41	-100.6004	17.0854	-79.0	98	-99.9661	16.8535	-89.4
42	-100.6002	17.0739	-102.0	99	-99.9668	16.8452	-97.1
43	-100.5672	17.0851	-56.0	100	-99.9326	16.8349	-76.1
44	-100.5666	17.0709	-81.5	101	-99.9334	16.8241	-82.4
45	-100.5672	17.0604	-105.5	102	-99.9336	16.8153	-88.7
46	-100.5341	17.0664	-71.9	103	-99.9329	16.8015	-104.2
47	-100.5331	17.0605	-82.7	104	-99.9002	16.8093	-71.2
48	-100.5335	17.0494	-104.1	105	-99.9003	16.8006	-71.3
49	-100.4944	17.0633	-55.9	106	-99.8990	16.7873	-80.3
50	-100.4995	17.0478	-85.7	107	-99.8656	16.7837	-45.0
51	-100.4992	17.0381	-127.1	108	-99.8658	16.7662	-57.3
52	-100.4663	17.0484	-57.6	109	-99.8652	16.7501	-82.4
53	-100.4668	17.0378	-84.6	110	-99.8236	16.7570	-64.9
54	-100.4664	17.0262	-103.5	111	-99.8175	16.7522	-65.0
55	-100.4330	17.0399	-53.8	112	-99.8665	16.7259	-109.0
56	-100.4331	17.0282	-79.9	113	-99.7771	16.6895	-43.0
57	-100.4335	17.0150	-100.4	114	-99.8002	16.7598	-30.0

Est.	А	L	а	Μzφ	Est.	А	L	a	Mzø
1	41.42	51.91	6.67	4.67	58	97.83	1.76	0.41	1.92
2	20.11	69.49	10.41	5.43	59	76.63	20.13	3.24	3.44
3	23.09	67.81	9.10	5.29	60	13.30	73.76	12.94	5.81
4	43.69	49.44	6.87	4.67	61	98.52	1.18	0.30	1.74
5	18.31	71.58	10.11	5.49	62	66.39	29.06	4.55	3.93
6	20.45	68.24	11.32	5.48	63	28.20	62.80	9.01	5.25
7	64.80	30.85	4.35	3.91	64	87.81	10.07	2.12	2.56
8	18.33	71.16	10.51	5.51	65	42.87	49.15	7.98	4.81
9	16.53	71.85	11.62	5.60	66	37.28	54.63	8.10	4.94
10	96.65	2.75	0.60	2.01	67	79.79	16.88	3.34	3.11
11	15.55	72.03	12.42	5.70	68	40.20	50.91	8.90	4.94
12	17.05	71.73	11.22	5.61	69	33.34	56.76	9.90	5.12
13	97.92	1.68	0.40	1.30	70	83.12	14.26	2.62	3.09
14	41.79	50.95	7.26	4.70	71	31.84	57.04	11.12	5.25
15	10.84	75.53	13.63	5.87	72	26.28	62.4	11.32	5.41
16	81.01	16.67	2.32	2.95	73	84.13	13.24	2.62	3.01
17	31.37	60.55	8.08	5.01	74	51.60	41.23	7.17	4.53
18	16.05	72.93	11.02	5.60	75	49.77	43.26	6.97	4.53
19	70.92	25.46	3.62	3.52	76	95.46	3.74	0.80	2.49
20	33.70	58.63	7.67	4.90	77	47.31	44.50	8.18	4.70
21	26.57	64.34	9.10	5.14	78	22.90	64.27	12.83	5.54
22	59.76	35.40	4.84	4.09	79	92.66	6.03	1.31	2.92
23	37.43	55.61	6.96	4.73	80	54.93	38.20	6.87	4.39
24	18.81	69.58	11.61	5.51	81	10.49	71.23	18.28	6.11
25	44.94	48.30	6.76	4.57	82	92.04	6.35	1.61	2.71
26	22.98	65.02	12.01	5.40	83	59.04	32.49	8.47	4.22
27	4.48	75.22	20.30	6.40	84	8.76	69.44	21.80	6.37
28	70.49	25.79	3.72	3.65	85	81.92	14.76	3.32	3.11
29	24.85	60.12	15.03	5.56	86	14.22	71.43	14.36	5.88
30	8.59	71.23	20.18	6.23	87	1.51	72.63	25.86	6.87
31	79.65	17.63	2.72	3.31	88	50.21	38.27	11.52	4.66
32	20.69	65.28	14.03	5.63	89	5.49	72.39	22.13	6.57
33	8.40	72.03	19.58	6.23	90	0.64	67.13	32.23	7.30
34	86.48	11.41	2.11	3.04	91	64.89	25.62	9.50	4.10
35	34.72	55.29	9.98	5.04	92	3.76	70.79	25.45	6.77
36	5.96	71.53	22.50	6.47	93	0.49	68.99	30.52	7.26
37	81.86	15.61	2.52	3.11	94	11.64	64.84	23.53	6.34

ANEXO II. Porcentajes de arena (A), limo (L) y arcilla (a) y tamaño gráfico promedio.

38	30.26	59.43	10.31	5.19	95	2.36	69.76	27.89	7.03
39	7.62	74.41	17.97	6.18	96	0.36	68.50	31.14	7.29
40	89.07	9.12	1.81	2.62	97	0.96	70.44	28.60	7.08
41	27.53	62.26	10.21	5.32	98	2.43	71.62	25.95	6.87
42	8.79	77.47	13.74	5.99	99	1.38	71.46	27.16	6.97
43	73.76	22.61	3.64	3.66	100	0.78	69.81	29.41	7.18
44	32.33	58.56	9.11	5.13	101	1.41	71.21	27.38	6.98
45	9.20	76.34	14.46	6.01	102	0.61	69.88	29.51	7.19
46	52.04	41.19	6.77	4.48	103	1.08	69.92	29.00	7.13
47	37.38	53.72	8.90	4.97	104	1.47	72.57	25.96	6.91
48	11.45	75.21	13.34	5.90	105	2.12	74.23	23.65	6.77
49	66.34	28.31	5.35	3.83	106	1.00	72.93	26.08	6.91
50	23.28	65.19	11.53	5.50	107	4.26	75.51	20.23	6.47
51	8.07	76.66	15.27	6.10	108	3.20	75.39	21.42	6.57
52	68.85	25.89	5.26	3.66	109	3.06	75.21	21.73	6.61
53	39.10	52.82	8.08	4.91	110	17.58	65.87	16.56	5.86
54	8.55	77.29	14.17	6.03	111	12.65	70.38	16.97	5.93
55	72.42	22.83	4.75	3.54	112	8.10	75.85	16.06	5.99
56	38.90	52.01	9.10	4.97	113	72.95	24.43	2.62	3.71
57	32.38	58.94	8.68	5.09	114	72.65	24.13	3.22	3.71
Prom.	36.06	51.86	12.08	5.06					
D. E.	30.54	23.52	8.49	1.42					

Est.	Color	Est.	Color	Est.	Color
1	Gris olivo oscuro	39	Gris olivo oscuro	77	Gris olivo oscuro
2	Gris olivo oscuro	40	Gris olivo oscuro	78	Gris olivo oscuro
3	Gris olivo oscuro	41	Gris olivo oscuro	79	Gris olivo oscuro
4	Gris olivo oscuro	42	Gris olivo oscuro	80	Gris olivo oscuro
5	Gris olivo oscuro	43	Gris olivo oscuro	81	Gris olivo oscuro
6	Gris olivo oscuro	44	Gris olivo oscuro	82	Gris olivo oscuro
7	Gris olivo oscuro	45	Gris olivo oscuro	83	Gris olivo oscuro
8	Gris olivo oscuro	46	Gris olivo oscuro	84	Gris olivo oscuro
9	Gris olivo oscuro	47	Gris olivo oscuro	85	Gris olivo oscuro
10	Gris olivo oscuro	48	Gris olivo oscuro	86	Gris olivo oscuro
11	Gris olivo oscuro	49	Gris olivo oscuro	87	Gris olivo oscuro
12	Gris olivo oscuro	50	Gris olivo oscuro	88	Gris olivo oscuro
13	Olivo	51	Gris olivo oscuro	89	Gris olivo
14	Gris olivo oscuro	52	Gris olivo oscuro	90	Gris olivo
15	Gris olivo oscuro	53	Gris olivo oscuro	91	Gris olivo oscuro
16	Gris olivo oscuro	54	Gris olivo oscuro	92	Gris olivo
17	Gris olivo oscuro	55	Gris olivo oscuro	93	Gris olivo
18	Gris olivo oscuro	56	Gris olivo oscuro	94	Gris olivo oscuro
19	Gris olivo oscuro	57	Gris olivo oscuro	95	Gris olivo
20	Gris olivo oscuro	58	Olivo	96	Gris olivo
21	Gris olivo oscuro	59	Gris olivo oscuro	97	Gris olivo
22	Gris olivo oscuro	60	Gris olivo oscuro	98	Gris olivo
23	Gris olivo oscuro	61	Olivo	99	Gris olivo
24	Gris olivo oscuro	62	Gris olivo oscuro	100	Gris olivo
25	Gris olivo oscuro	63	Gris olivo oscuro	101	Gris olivo
26	Gris olivo oscuro	64	Gris olivo oscuro	102	Gris olivo
27	Gris olivo oscuro	65	Gris olivo oscuro	103	Gris olivo
28	Gris olivo oscuro	66	Gris olivo oscuro	104	Gris olivo
29	Gris olivo oscuro	67	Gris olivo oscuro	105	Gris olivo
30	Gris olivo oscuro	68	Gris olivo oscuro	106	Gris olivo
31	Gris olivo oscuro	69	Gris olivo oscuro	107	Gris olivo
32	Gris olivo oscuro	70	Gris olivo oscuro	108	Gris olivo
33	Gris olivo oscuro	71	Gris olivo oscuro	109	Gris olivo
34	Gris olivo oscuro	72	Gris olivo oscuro	110	Gris olivo
35	Gris olivo oscuro	73	Gris olivo oscuro	111	Gris olivo oscuro
36	Gris olivo oscuro	74	Gris olivo oscuro	112	Gris olivo
37	Gris olivo oscuro	75	Gris olivo oscuro	113	Gris olivo oscuro
38	Gris olivo oscuro	76	Gris olivo oscuro	114	Gris olivo

ANEXO III. Color de los sedimentos en estado húmedo.

Est.	Color	Est.	Color	Est.	Color
1	Gris olivo	39	Gris pardo claro	77	Gris olivo
2	Gris olivo claro	40	Gris olivo claro	78	Gris pardo claro
3	Gris pardo claro	41	Gris olivo	79	Gris olivo
4	Gris olivo	42	Gris pardo claro	80	Gris olivo
5	Gris pardo claro	43	Gris olivo	81	Gris pardo claro
6	Gris pardo claro	44	Gris pardo claro	82	Gris olivo claro
7	Gris olivo	45	Gris pardo claro	83	Gris olivo
8	Gris olivo	46	Gris olivo	84	Gris pardo claro
9	Gris pardo claro	47	Gris pardo claro	85	Gris olivo
10	Gris pardo claro	48	Gris pardo claro	86	Gris pardo claro
11	Gris pardo claro	49	Gris olivo	87	Gris pardo claro
12	Gris pardo claro	50	Gris pardo claro	88	Gris olivo
13	Olivo	51	Gris pardo claro	89	Gris pardo claro
14	Gris olivo	52	Gris olivo	90	Gris pardo claro
15	Gris pardo claro	53	Gris pardo claro	91	Gris pardo claro
16	Gris olivo	54	Gris pardo claro	92	Gris pardo claro
17	Gris pardo claro	55	Gris pardo claro	93	Gris pardo claro
18	Gris pardo claro	56	Gris pardo claro	94	Gris olivo
19	Gris olivo claro	57	Gris olivo	95	Gris pardo claro
20	Gris olivo	58	Gris olivo	96	Gris pardo claro
21	Gris pardo claro	59	Gris olivo	97	Gris pardo claro
22	Gris olivo	60	Gris pardo claro	98	Gris pardo claro
23	Gris olivo claro	61	Palo de olivo	99	Gris pardo claro
24	Gris olivo	62	Gris olivo	100	Gris pardo claro
25	Gris olivo claro	63	Gris olivo	101	Gris pardo claro
26	Gris pardo claro	64	Gris olivo	102	Gris pardo claro
27	Gris pardo claro	65	Gris olivo	103	Gris pardo claro
28	Gris olivo	66	Gris olivo claro	104	Gris pardo claro
29	Gris pardo claro	67	Gris olivo	105	Gris pardo claro
30	Gris pardo claro	68	Gris olivo claro	106	Gris pardo claro
31	Gris olivo	69	Gris olivo claro	107	Gris pardo claro
32	Gris pardo claro	70	Gris olivo	108	Gris pardo claro
33	Gris pardo claro	71	Gris olivo	109	Gris pardo claro
34	Gris olivo	72	Gris olivo claro	110	Gris pardo claro
35	Gris pardo claro	73	Gris olivo claro	111	Gris pardo claro
36	Gris pardo claro	74	Gris olivo	112	Gris pardo claro
37	Gris pardo claro	75	Gris olivo	113	Gris olivo
38	Gris pardo claro	76	Gris olivo	114	Gris pardo claro

ANEXO IV. Color de los sedimentos en estado seco.

Est.	COT	CO ₃	Est.	СОТ	CO ₃	Est.	COT	CO_3
1	0.911	3.750	39	1.350	4.480	77	2.082	2.615
2	1.347	1.405	40	0.320	3.550	78	2.983	3.360
3	1.319	0.935	41	0.700	4.970	79	0.019	1.980
4	0.913	0.950	42	1.240	4.750	80	2.268	3.515
5	1.333	1.175	43	0.780	5.410	81	2.970	3.510
6	1.081	1.550	44	0.380	5.470	82	0.019	1.765
7	0.486	3.535	45	1.140	5.425	83	1.808	4.170
8	0.919	2.840	46	1.760	5.210	84	3.001	2.840
9	0.865	2.365	47	2.280	5.195	85	1.512	2.875
10	0.290	3.075	48	0.920	4.485	86	3.176	2.660
11	3.526	2.115	49	0.740	6.335	87	2.967	3.100
12	2.717	3.295	50	0.540	5.875	88	0.816	12.54
13	0.127	3.555	51	1.300	3.535	89	2.860	4.415
14	0.339	3.790	52	0.270	5.455	90	2.442	4.405
15	1.135	1.995	53	0.270	6.120	91	0.326	17.230
16	0.307	3.055	54	1.140	4.025	92	2.618	4.630
17	0.541	2.850	55	0.320	4.285	93	2.535	5.305
18	1.081	3.060	56	2.120	5.665	94	0.565	9.040
19	0.373	4.495	57	0.650	5.630	95	2.346	5.285
20	0.703	2.585	58	0.060	2.080	96	2.368	4.160
21	0.919	3.050	59	1.120	7.935	97	2.116	5.990
22	1.538	2.985	60	0.970	6.625	98	2.002	4.965
23	1.081	4.465	61	0.090	4.870	99	2.266	4.000
24	0.919	4.985	62	2.010	8.150	100	2.009	4.870
25	1.676	4.935	63	2.370	8.430	101	1.964	4.195
26	2.216	4.495	64	0.420	7.885	102	1.664	3.490
27	2.595	5.180	65	1.620	8.335	103	1.954	3.305
28	1.676	4.485	66	2.450	7.215	104	1.817	5.510
29	4.177	4.970	67	0.530	9.545	105	1.709	3.945
30	3.498	4.975	68	1.960	6.770	106	1.490	3.545
31	2.686	3.555	69	2.680	7.420	107	1.438	3.325
32	3.062	4.010	70	0.600	7.955	108	2.011	2.860
33	2.378	3.800	71	1.900	3.765	109	1.527	3.335
34	0.200	4.245	72	3.050	3.755	110	1.001	3.125
35	3.452	4.485	73	0.620	16.56	111	0.797	2.485
36	3.062	4.460	74	1.830	3.535	112	1.422	2.255
37	0.607	5.915	75	2.150	4.155	113	0.159	2.705
38	1.081	5.185	76	0.360	4.300	114	1.023	3.295

ANEXO V.- Porcentajes de carbono orgánico total (COT) y de carbonatos (CO₃).

Prom.	1.493	4.599	
D. E.	0.962	2.505	

Est.	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
7	93.18	71.35	63.29	52.53	30.83	21.02	18.12	14.87	12.48	11.53	9.38	8.93	9.35	9.67
13	46.17	25.00	22.54	18.40	9.95	7.85	5.51	4.43	3.82	3.70	3.25	3.29	3.94	4.39
19	111.51	70.51	63.95	51.91	28.01	16.14	15.50	11.57	9.32	8.24	6.52	6.06	6.33	6.49
25	94.04	72.21	65.26	53.17	31.50	20.49	18.56	15.15	12.52	11.36	9.22	8.74	9.11	9.39
31	65.19	51.28	47.03	37.76	22.93	15.08	13.39	11.26	9.68	9.08	7.60	7.58	8.56	8.98
37	76.79	56.19	50.76	41.38	24.44	15.55	13.93	11.03	9.06	8.21	6.75	6.57	7.40	7.61
43	85.37	66.31	60.12	48.83	29.28	18.55	16.76	13.49	11.08	10.00	8.05	7.53	7.85	8.07
49	74.46	56.29	51.44	41.45	23.85	16.27	13.09	10.51	8.61	7.62	6.10	5.74	5.99	5.97
55	89.27	59.13	53.91	43.53	24.55	15.87	14.02	11.18	9.00	8.05	6.53	6.24	6.72	6.99
61	18.15	23.04	21.99	16.97	14.56	19.05	9.66	4.56	3.37	3.10	3.07	3.07	4.08	4.46
67	59.12	76.50	71.99	56.33	33.78	26.54	32.16	14.22	9.36	7.53	6.95	5.84	6.80	6.58
73	63.23	87.11	81.66	64.14	36.00	25.89	31.79	15.18	9.89	7.75	7.01	5.41	5.97	5.65
79	51.07	71.81	67.14	52.88	30.87	22.56	27.35	13.66	9.43	7.79	6.88	6.00	6.83	6.92
85	58.40	79.77	75.27	58.74	35.91	25.88	30.30	15.86	10.85	9.08	7.82	6.52	7.08	6.84
91	38.29	47.47	43.52	34.96	18.86	16.40	16.28	7.60	5.24	4.35	4.02	3.44	4.01	4.16
94	39.64	51.07	47.26	37.60	23.28	21.45	18.86	9.44	6.71	5.59	4.89	4.10	4.48	4.42
100	51.85	72.66	67.32	53.50	29.87	21.67	24.88	12.62	8.81	7.44	6.86	6.09	7.20	7.44
107	83.89	64.38	55.53	47.40	27.35	17.06	15.29	11.41	8.92	8.03	6.75	6.66	7.74	8.22
114	98.99	81.92	70.46	60.31	33.24	19.67	18.35	13.04	9.99	8.62	6.93	6.43	6.83	7.14

ANEXO VI. Concentración de tierras raras (ppm) normalizadas con condrita.

Est.	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
7	0.73	0.68		0.82	0.79	0.97	0.67	0.66	0.57		0.48		0.50	0.54
13	0.36	0.24		0.29	0.26	0.36	0.20	0.20	0.18		0.16		0.21	0.24
19	0.88	0.67		0.81	0.72	0.75	0.58	0.51	0.43		0.33		0.34	0.36
25	0.74	0.69		0.83	0.81	0.95	0.69	0.67	0.57		0.47		0.48	0.52
31	0.51	0.49		0.59	0.59	0.70	0.50	0.50	0.44		0.39		0.45	0.50
37	0.60	0.53		0.64	0.63	0.72	0.52	0.49	0.42		0.34		0.39	0.42
43	0.67	0.63		0.76	0.75	0.86	0.62	0.59	0.51		0.41		0.42	0.45
49	0.59	0.54		0.65	0.61	0.75	0.49	0.46	0.40		0.31		0.32	0.33
55	0.70	0.56		0.68	0.63	0.73	0.52	0.49	0.41		0.33		0.36	0.39
61	0.14	0.22		0.26	0.38	0.88	0.36	0.20	0.15		0.16		0.22	0.25
67	0.46	0.73		0.88	0.87	1.23	1.19	0.63	0.43		0.35		0.36	0.37
73	0.50	0.83		1.00	0.93	1.20	1.18	0.67	0.45		0.36		0.32	0.31
79	0.40	0.68		0.82	0.79	1.04	1.02	0.60	0.43		0.35		0.36	0.39
85	0.46	0.76		0.92	0.92	1.20	1.13	0.70	0.50		0.40		0.38	0.38
91	0.30	0.45		0.54	0.49	0.76	0.60	0.33	0.24		0.20		0.21	0.23
94	0.31	0.49		0.59	0.60	0.99	0.70	0.42	0.31		0.25		0.24	0.25
100	0.41	0.69		0.83	0.77	1.00	0.92	0.56	0.40		0.35		0.38	0.41
107	0.66	0.61		0.74	0.70	0.79	0.57	0.50	0.41		0.34		0.41	0.46
114	0.78	0.78		0.94	0.86	0.91	0.68	0.57	0.46		0.35		0.36	0.40

ANEXO VII. Concentración de tierras raras (ppm) normalizadas con NASC.

ANEXO VIII. Selección de fotografías en láminas delgadas de muestras analizadas tomadas con luz polarizada (LP).

Lámina 1. Muestra de la estación 7. Se observan fragmentos de mica (Mi), feldespatos (Fk) y minerales pesados (MP). Objetivo10X y LP.

Lámina 2. Muestra de la estación 10. Se observan fragmentos de biotita (Mi), clorita, plagioclasa (Fp) y un fragmento de roca plutónica (FRP) formado por cuarzo (C) y plagioclasa (Fp). Objetivo 10x y LP.

Lámina 3. Muestra de la estación 13. Se observan fragmentos de minerales pesados (MP), plagioclasa (Fp), plagioclasa alterada a sericita y cuarzo policristalino (Cp). Objetivo10X y LP.

Lámina 4. Muestra de la estación 14. Se observan fragmentos de cuarzo (C), cuarzo policristalino (Cp) y un fragmento de roca volcánico (FRV). Objetivo 10x y LP.

Lámina 5. Muestra de la estación 16. Se observa un fragmento de roca plutónico (FRP). Objetivo10X y LP.

Lámina 7. Muestra de la estación 25. Se observa un fragmento de molusco (B) gasterópodo. Objetivo10X y LP.

Lámina 6. Muestra de la estación 19. Se observan fragmentos de plagioclasas (Fp) y feldespatos (Fk). Objetivo 10x y LP.

Lámina 8. Muestra de la estación 31. Se observan fragmentos de plagioclasas (Fp) y feldespatos (Fk), así como de mica (Mi) y cuarzo (C). Objetivo 10x y LP.

Lámina 9. Muestra de la estación 37. Se observa un fragmento de roca metamórfico

Lámina 10. Muestra de la estación 40. Se observan fragmentos de plagioclasas (Fp),

(FRM). Objetivo10X y LP.

Lámina 11. Muestra de la estación 43. Se observa un fragmento de biógeno (B). Objetivo2.5X y LP.

clorita, mica (Mi) y un fragmento de roca plutónico (FRP) formado por plagioclasa (Fp) y cuarzo (C). Objetivo 10x y LP.

Lámina 12. Muestra de la estación 58. Se observan fragmentos de plagioclasa (Fp), feldespato (Fk), minerales pesados (MP) y un fragmento de roca sedimentario (FRS). Objetivo 10x y LP.

Lámina 13. Muestra de la estación 58. Se observa un fragmento de roca metamórfico (FRM) con fragmentos de epidota. Objetivo 10X y LP.

Lámina 14. Muestra de la estación 67. Se observa fragmento de plagioclasa (Fp) con alteración a sericita. Objetivo 10x y LP.

Lámina 15. Muestra de la estación 70. Se observa un fragmento de roca metamórfico (FRM) con fragmentos de epidota. Objetivo 10X y LP.

Lámina 16. Muestra de la estación 85. Se observa fragmento de plagioclasa (Fp) con alteración a sericita. Objetivo 10x y LP.

Lámina 17. Muestra de la estación 94. Se observan fragmentos de cuarzo (C), biógeno (B), pedernal y un fragmento de roca metamórfico (FRM) Objetivo 10X y LP.

Lámina 18. Muestra de la estación 113. Se observan fragmentos de minerales pesados (MP), así como cuarzo (C) y plagioclasas (Fp). Objetivo 10x y LP.