

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN

DETERMINACIÓN DE LAS CONSTANTES DE ACIDEZ DE LOS COMPUESTOS LQM: 344, 345 Y 351 POR ELECTROFORESIS CAPILAR Y ESPECTROFOTOMETRÍA DE UV-VIS.

TESIS

QUE PARA OBTENER EL TITULO DE: QUÍMICA FARMACÉUTICA BIOLÓGA PRESENTA: ANA LAURA PÉREZ PACHECO

ASESORES: Q.F.B. VICTOR HUGO ÁBREGO REYES DR. ENRIQUE R. ÁNGELES ANGUIANO DRA. ANA MARÍA VELÁZQUEZ SÁNCHEZ

CUAUTITLAN IZCALLI, EDO. DE MEX

2010

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLAN UNIDAD DE ADMINISTRACION ESCOLAR DEPARTAMENTO DE EXAMENES PROFESIONALES

DRA. SUEMI RODRIGUEZ ROMO DIRECTORA DE LA FES CUAUTITLAN PRESENTE

ATN:L.A. ARACELI HERRETE HERNANDEZ Jefa del Departamento de Exámenes Profesionales de das frase Cuautitlán.

Con base en el Art. 28 del Reglamento General de Exámenes, nos permitimos comunicar a usted que revisamos la Tesis:

Determinación de las constantes de acidez de los

compuestos LQM:344, 345 y 351 per Electroforesis Capilar

y Espectrofotometría de UV-Vis

Que presenta la pasante Ana Laura Pérez Pacheco

Con número de cuenta: 09714437-9 para obtener el título de:

Química Farmacéutica Bióloga

Considerando que dicho trabajo reúne los requisitos necesarios para ser discutido en el EXAMEN PROFESIONAL correspondiente, otorgamos nuestro VOTO APROBATORIO.

ATENTAMENTE "POR MI RAZA HABLARA EL ESPIRITU" Cuautitlan Izcalli, Mex. a

PRESIDENTE	Dra. Luisa Martinez Aguilar	2.43.a.
VOCAL	Q. Sonia Rincón Arce	Jr.
SECRETARIO	QFB. Victor Hugo Abrego Reyes	
ler SUPLENTE	Dra. Gabriela Vargas Martínez	funct
2° SUPLENTE	MC. Eva Hernández Godinez	Fractemind &

AGRADECIMIENTOS

En especial al Dr. Enrique Ángeles Anguiano por haberme permitido formar parte de su grupo de trabajo, por el apoyo académico y amistad brindado a lo largo de mi estancia en el LQM y por todos aquellos momentos de dicha en el laboratorio. ¡Gracias por brindarme la oportunidad de conocerlo como el gran ser humano y académico que es!

Al Dr. Victor Hugo Ábrego Reyes, por no soltarme de la mano en los momentos en los cuales me era difícil seguir, por todo lo mostrado a lo largo de la experimentación y por enseñarme que la vida es más linda si hacemos lo que verdaderamente nos gusta.

A la Dr. Ana María Velazquez Sánchez, por todos aquellos días en los cuales sus palabras de aliento me entusiasmaban a ser mejor profesionista.

A mis sinodales la Dra. Luisa Martínez Aguilar, Q. Sonia Rincón Arce, Dr. Gabriela Vargas Martínez MC. Eva Hernández Godinez por la dedicación, paciencia y comentarios hechos al revisar este trabajo, sus aportaciones fueron muy valiosas para mí, ya que admiró su trayectoria académica dentro de esta facultad.

A los profesores que transcendieron a lo largo de mi formación profesional, José A. Garduño Rosas y Ma. Eugenia Posada Galarza, por la manera en que dirigen su conocimiento al impartir clases.

Al Dr. Benjamin Velazco Bejarano por la oportunidad de formar parte de su grupo de trabajo y por la paciencia al permitirme concluir esta tesis.

DEDICATORIAS

Para mis padres que tanto me apoyan, gracias por ser como son conmigo, a mis hermanos por que son parte trascendental en mi objetivo de vida, a mi cuñado y sobrinos por que para ellos también quiero ser importante.

A mis tíos, por el cariño y palabras de aliento para continuar.

A ti amor o puchunguis, por todos aquellos momentos vividos, por que deseo crecer a tu lado y también aprender de ti.

A mis amigos Victor, Lucia, Asaf, Ara, Bladi por compartir la hermosa experiencia de ser universitario y por que a pesar de que no nos frecuentemos seguido se que cuento con ustedes y se que saben que los aprecio.

A todos esos amigos de la facultad ya que aunque no los nombre, gracias por formar parte de todos esos momentos llenos de experiencias inolvidables.

A mis amigas de toda la vida Rosario, Miriam.

A mis nuevos amigos del Laboratorio Nacional Antidopaje.

ÍNDICE

Índice	i
Abreviaturas y Símbolos. Índice de figuras. Índice de tablas. Índice de gráficas.	I IV IV VI
Introducción	1
Antecedentes Química Medicinal. Desarrollo de nuevos fármacos.	4 5
Hipótesis	7
Objetivos Generales. Particulares.	8
Justificación	9
Generalidades	
Hipertensión arterial. Arritmias.	10 12
Constantes de acidez.	13
Electroforesis Capilar.	
Aspectos y componentes instrumentales. Fundamentos de separación. Descripción de algunos aspectos instrumentales. Modos de separación en Electroforesis Capilar. Determinación de constantes de acidez por Electroforesis Capilar.	15 19 24 28 31
UV-Vis. Espectro de absorción UV-VIS. Ley de Lambert-Beer. Aditividad de las absorbancias. Valoraciones espectrofotométricas. Determinación de las constantes de acidez por UV-Vis.	35 37 38 39 39
LQM's Compuestos estudiados.	43

i

ÍNDICE (cont.)

Desarrollo experimental

Material, instrumentos y reactivos.	45
Preparación de disoluciones y estándares para Electroforesis Capilar.	47
Metodología empleada para la determinación pKa´s por Electroforesis Capilar.	50
Preparación de disoluciones y estándares para UV-Vis.	51
Metodología empleada para la determinación de pKa´s por UV-Vis.	52
Determinación de pKa's por ACD-Labs.	53

Resultados y discusión

Determinación de las constantes de acidez por la técnica de Electroforesis Capilar.	54
Determinación de las constantes de acidez por la técnica de UV-Vis.	74
Comparación entre los valores obtenidos por las diferentes técnicas analíticas.	99

Conclusiones	100
Bibliografía	102
Anexos	

Tablas utilizadas para el cálculo de la movilidad efectiva y sus parámetros estadísticos.	Α
Comportamiento electroforético de los compuestos LQM: 344, 345 351.	A
Valores de absorbién en las valoragiones égido base y geoficiente de absortividad	

Valores de absorción en las valoraciones ácido-base y coeficiente de absortividad calculados por el programa SPPS.

Β

ABREVIATURAS Y SÍMBOLOS

LQM	Compuestos sintetizados en el Laboratorio de Química Medicinal. FESC-Campo 1.
QSAR	Estudio de relación cuantitativa estructura-actividad.
PA	Presión arterial.
GC	Gasto cardiaco.
RVP	Resistencia vascular periférica.
FC	Frecuencia cardiaca.
IECA	Inhibidor de la enzima convertidota de angiotensina.
ACD	Advanced Chemistry Development.
SPSS	Stadistical Product and Service Solutions.
ANOVA	Prueba estadística para el análisis de varianza.

Abreviaturas utilizadas en las diferentes técnicas instrumentales.

UV-Vis	Rango de absorción del ultra violeta al infrarrojo cercano.	
Α	Absorbancia.	
Т	Transmitancia.	
HPLC	Cromatografía de líquidos de alta resolución.	
CE	Electroforesis Capilar.	
MDQ P/	ACE Methods Development System of Capillary Electrophoresis.	
BGE	Electrolito de fondo (background electrolyte).	
EOF	Flujo electroosmótico.	
ECZ	Electroforesis Capilar de Zonas.	
CCEM	Cromatografía Micelar Electrocinética.	
CEC	Electrocromatografía Capilar.	
ECG	Electroforesis Capilar de Gel.	
ECEI	Electroforesis Capilar de Enfoque Isoeléctrico.	
ITP	Isotacoforesis.	
MS	Espectroscopia de Masas.	
DAD	Detector de arreglo de diodos.	
LFI	Fluorescencia inducida por láser.	
MES	Ácido 2-N-morfolino–etanosulfónico.	
MOPS	Ácido 3-morfolinopropanosulfónico.	
HEPES	Ácido 2-(4-(2-Hidroxietil)-1 piperazina)etanosulfónico.	
TRIS	Tris(hidroximetil) amino metano.	
CHES	Ácido 3-(ciclohexilamino) etanosulfónico.	
CAPSO	Ácido 3-ciclohexilamino-2-hidroxi-1-propanosulfónico.	
CAPS	Ácido 3-ciclohexilamino-1-propanosulfónico.	

Abreviaturas y símbolos

ABREVIATURAS Y SÍMBOLOS

Magnitudes utilizadas en las ecuaciones.

α	Grado de ionización.		
ε	Coeficiente de absortividad.		
λ	Longitud de onda (óptica).		
λ_{max}	Longitud de onda máxima (óptica).		
l	Espesor de la celda.		
E	Intensidad del campo eléctrico.		
I	Fuerza iónica.		
Fe	Fuerza eléctrica.		
Ff	Fuerza friccional.		
Hg	Mercurio.		
q	Carga iónica.		
ľ	Radio iónico.		
V	Velocidad de migración.		
3	Constante dieléctrica de la solución.		
η	Viscosidad.		
ζ	Potencial zeta.		
μ_{ep}	Movilidad efectiva o electroforética del analito.		
μ_{eof}	Movilidad del flujo electroosmótico.		
μ_{ap}	Movilidad aparente.		
$\boldsymbol{\alpha}_{i} \boldsymbol{\mu}_{i}$	Fracción molar de cada especie.		
t	Tiempo.		
t _{ini}	Tiempo de inyección.		
ť	Tiempo de migración del analito.		
t _{meof}	Tiempo de migración del flujo electroosmótico.		
min	Minutos.		
° C	Grados Celsius		
v	Voltaie.		
kV	Kilovolts (10^{3} V).		
Ld	Longitud del capilar desde el punto de invección al detector.		
Lt	Longitud total del capilar.		
рКа	Logaritmo de la constante de acidez.		
pН	Potencial de Hidrógeno.		
Μ	Concentración molar.		
mМ	Concentración milimolar (10 ⁻³ M).		

ABREVIATURAS Y SÍMBOLOS

Magnitudes utilizadas en las ecuaciones.

A-	Par conjugado de la especie ácida.
HA	Especie acida.
[A ⁻] [HA]	Concentración del par conjugado de la especie ácida. Concentración de la especie acida.
mø	miligramos $(10^{-3}$ Kg).

miligramos	$(10^{\circ} \text{Kg}).$
microgramos	$(10^{-6} \text{Kg}).$
nanogramos	$(10^{-9} \text{Kg}).$
mililitros	$(10^{-3}L).$
microlitros	$(10^{-6}L).$
nanolitros	$(10^{-9}L).$
centímetros	$(10^{-2}m).$
micrometros	$(10^{-6}m)$.
nanómetros	$(10^{-9}m)$.
	miligramos microgramos nanogramos mililitros microlitros nanolitros centímetros micrometros nanómetros

Índice	de	gráficas
--------	----	----------

ÍNDICE DE FIGURAS

Figura 1. Abajo Software y equipo de Electroforesis Capilar, arriba equipo de UV-Visible	
(Beckman Coulter).	2
Figura 2. Equipo Comercial Beckman Coulter MDQ P/ACE.	16
Figura 3. Componentes básicos del sistema de Electroforesis Capilar.	18
Figura 4. Representación del EOF, producido al aplicar un campo eléctrico en los extremos	
del capilar cuando se encuentra lleno con muestra y electrolito soporte.	20
Figura 5. Carga de los grupos silanoles.	21
Figura 6. Formación de la doble capa electroquímica que genera el EOF.	21
Figura 7. Perfil del flujo del disolvente en HPLC y CE.	22
Figura 8. Vectores producidos por el EOF para los diferentes analitos.	23
Figura 9. Modalidades de introducción hidrodinámica.	24
Figura 10. Introducción electrocinética.	25
Figura 11. Detector de arreglo de diodos.	27
Figura 12. Esquema de detección directa UV-Vis.	27
Figura 13. Esquema de detección indirecta UV-Vis.	28
Figura 14. Comportamiento electroforético de la relación existente entre [A ⁻] y [HA] en función del pH.	33
Figura 15. Frecuencia de onda.	35
Figura 16. División del espectro electromagnético y de la región del ultra violeta-visible.	36
Figura 17. Niveles energéticos que explican la estructura de los espectros de absorción y emisión.	37
Figura 18. Punto de isoabsorción ubicado mediante la integración de espectros de absorción.	40
Figura 19. Hoja de cálculo utilizada para establecer la fuerza iónica experimental.	49
Figura 20. Hoja de procesamiento programa ACD/ChemSketch 12.01.	53
Figura 21. Equilibrios representativos para el compuesto LQM 344.	58
Figura 22. Equilibrios representativos para el compuesto LQM 345.	64
Figura 23. Equilibrios representativos para el compuesto LQM 351.	70

ÍNDICE DE TABLAS

Tabla 1. Detectores utilizados en Electroforesis Capilar.	25
Tabla 2. Electrolitos utilizados habitualmente para Electroforesis Capilar de Zonas.	29
Tabla 3. Parámetros a través de los cuales se manipula el flujo electroosmótico (EOF).	30
Tabla 4. Principales transiciones electrónicas en espectroscopia UV-Vis.	37
Tabla 5. Par ácido-base de los electrolitos utilizados.	48
Tabla 6. Método instrumental empleado en el equipo de electroforesis capilar.	54
Tabla 7. Concentraciones de los LQM's en la muestra a analizar.	55
Tabla 8. Longitudes de onda máximas de los diferentes compuestos.	55
Tabla 9. Valores de movilidad efectiva (cm ² V ⁻¹ min ⁻¹) en función del pH, LQM 344.	57
Tabla 10. Valores de movilidad efectiva predichos por el programa SPSS en función del pH, LQM 344.	59
Tabla 11. Parámetros estadísticos estimados por el programa SPSS, LQM 344. EC.	60
Tabla 12. Determinación de ANOVA, LQM 344. EC.	60
Tabla 13. Valores de movilidad efectiva (cm ² V ⁻¹ min ⁻¹) en función del pH, LQM 345.	63
Tabla 14. Valores de movilidad efectiva (cm ² V ⁻¹ min ⁻¹) predichos por SPSS en función del pH, LQM 345.	65
Tabla 15. Parámetros estadísticos estimados por el programa SPSS, LQM 345. EC.	67
Tabla 16. Determinación de ANOVA, LQM 345. EC.	67
Tabla 17. Valores de movilidad efectiva (cm ² V ⁻¹ min ⁻¹) en función del pH, LQM 351.	69

ÍNDICES DE TABLAS

Tabla 18. Valores de movilidad efectiva (cm ² V ⁻¹ min ⁻¹) predichos por SPSS en función del pH, LQM 351.	71
Tabla 19. Parámetros estadísticos estimados por el programa SPSS, LQM 351. EC.	72
Tabla 20. Determinación de ANOVA, LQM 351. EC.	72
Tabla 21. Parámetros estadísticos, valoración del sistema básico al ácido. LQM 344. UV-Vis.	77
Tabla 22. Determinación de ANOVA, valoración del sistema básico al ácido. LQM 344. UV-Vis.	77
Tabla 23. Parámetros estadísticos, valoración del sistema ácido al básico. LQM 344. UV-Vis.	80
Tabla 24. Determinación de ANOVA, valoración del sistema ácido al básico. LQM 344. UV-Vis.	80
Tabla 25. Parámetros estadísticos para la integración de las valoraciones. LQM 344. UV-Vis.	82
Tabla 26. Determinación de ANOVA, para la integración de las valoraciones. LQM 344.UV-Vis.	82
Tabla 27. Resultados y diferencias de las constantes determinadas por las diferentes técnicas, LQM 344.	82
Tabla 28. Parámetros estadísticos, valoración del sistema básico al ácido. LQM 345. UV-Vis.	85
Tabla 29. Determinación de ANOVA, valoración del sistema básico al ácido. LQM 345. UV-Vis.	85
Tabla 30. Parámetros estadísticos, valoración del sistema ácido al básico. LQM 345. UV-Vis.	87
Tabla 31. Determinación de ANOVA, valoración del sistema ácido al básico. LQM 345. UV-Vis.	87
Tabla 32. Parámetros estadísticos para la integración de las valoraciones. LQM 345. UV-Vis.	88
Tabla 33. Determinación de ANOVA, para la integración de las valoraciones. LQM 345.	88
Tabla 34. Resultados y diferencias de las constantes determinadas por las diferentes técnicas, LQM 345.	89
Tabla 35. Parámetros estadísticos, valoración del sistema ácido al básico, primera parte. LQM 351.	
UV-Vis.	92
Tabla 36. Determinación de ANOVA, valoración del sistema ácido al básico, primera parte. LQM 351.	92
Tabla 37. Parámetros estadísticos, valoración del sistema ácido al básico, segunda parte. LQM 351.	
UV-Vis.	94
Tabla 38. Determinación de ANOVA, valoración del sistema ácido al básico., segunda parte. LQM 351.	94
Tabla 39 Parámetros estadísticos, valoración del sistema básico al ácido, primera parte. LQM 351.	
UV-Vis.	96
Tabla 40. Determinación de ANOVA, valoración del sistema básico al ácido, primera parte. LQM 351.	96
Tabla 41. Parámetros estadísticos, valoración del sistema básico al ácido, segunda parte. LQM 351.	
UV-Vis.	97
Tabla 42. Determinación de ANOVA, valoración del sistema básico al ácido, segunda parte. LQM 351.	9 7
Tabla 43. Parámetros estadísticos, valoración del sistema básico al ácido, tercera parte. LQM 351.	
UV-Vis.	98
Tabla 44. Determinación de ANOVA, valoración del sistema básico al ácido, tercera parte. LQM 351.	98
Tabla 45. Resultados y diferencias de las constantes determinadas por las diferentes técnicas, LQM 351.	98
Tabla 46. Resultados de las constantes de acidez determinados por las diversa técnicas.	99

ÍNDICE DE GRÁFICAS

Gráfica 1. Comportamiento electroforético en función del pH de la disoluciónelectrolítica., LQM 344.	56
Gráfica 2. Movilidad efectiva experimental del LQM 344 en función del pH del electrolito soporte.	58
Gráfica 3. Movilidad efectiva (cm ² V ⁻¹ min ⁻¹) del LQM 344 calculada por el programa SPSS en función	
del pH.	60
Gráfica 4. Gráfica comparativa de los valores experimentales y los predichos (programa SPSS), LQM 344.	61
Gráfica 5. Comportamiento electroforético en función del pH de la disolución electrolítica, LQM 345.	62
Gráfica 6. Movilidad efectiva experimental del LQM 345 en función del pH del electrolito soporte.	63
Gráfica 7. Movilidad efectiva (cm ² V ⁻¹ min ⁻¹) del LQM 345 calculada por el programa SPSS en función	
del pH.	65
Gráfica 8. Gráfica comparativa de los valores experimentales y los predichos (programa SPSS), LQM 345.	67
Gráfica 9. Comportamiento electroforético en función del pH de la disolución electrolítica., LQM 351.	68
Gráfica 10. Movilidad efectiva experimental del LQM 351 en función del pH del electrolito soporte.	69
Gráfica 11. Movilidad efectiva (cm ² V ⁻¹ min ⁻¹) del LQM 351 calculada por el programa SPSS en función	
del pH.	71
Gráfica 12. Gráfica comparativa de los valores experimentales y los predichos (programa SPSS), LQM 351.	72
Gráfica 13. Espectros de absorción de la valoración del sistema básico al ácido, LQM 344.	75
Gráfica 14. Coeficiente de absortividad ε (407 nm) en función del pH del sistema, valoración de base	
a ácido.	76
Gráfica 15. Comparación de los valores de ε (407 nm), valoración del sistema básico al ácido. LQM 344.	77
Gráfica 16. Espectros de absorción de la valoración del sistema ácido al básico, LQM 344.	78
Gráfica 17. Coeficiente de absortividad ε (392 nm) en función del pH del sistema, valoración de	
ácido-base.	79
Gráfica 18. Comparación de los valores de ε (392 nm), valoración del sistema ácido al básico. LOM 344,	80
Gráfica 19. Curva de integración de las dos valoraciones. LOM 344.	81
Gráfica 20. Comparación de los valores de e experimentales y los predichos (programa SPSS) LOM 344	81
Gráfica 21 Espectros de absorción de la valoración del sistema básico al ácido LOM 345	83
Gráfica 22. Coeficiente de absortividad E (425 nm) en función del pH del sistema valoración de	00
base-ácido	84
Gráfica 23 Comparación de los valores de 8 (425 nm) valoración del sistema básico al ácido I OM 345	84
Gráfica 24 Espectros de absorción de la valoración del sistema ácido al básico. LOM 345	85
Gráfica 25. Coeficiente de absortividad s (388 nm) en función del pH del sistema valoración de	05
ácido-base	86
Gráfico 26 Comparación de los valores de c (388 nm) valoración del sistema ácido al básico. LOM 345	86
Gráfica 27. Curra de integración de las des valoraciones I OM 345.	00 97
Gráfica 29. Componencián de los valoraciones, EQUI 545.	0/
Gráfica 20. Comparación de los valores de El experimentales y los predictos (programa SPSS), LQM 545.	00
Gráfica 20. Cooficiente de absortividad e (205 nm) on función del all del sistema relevación de	90
Granca SU. Coenciente de adsortividad & (SUS IIIII) en funcion del pH del sistema, valoración de	01
actuo-base. Créfice 21 (reficients de characteridad o (205 mm) et finite de la distribution de la distributicion de la distributici de la distributici de la dist	91
Granca 51. Coefficiente de absortividad & (505 nm) en funcion del pH del sistema, valoración de	01
acido-dase, primera parte. LQM 551.	91

Índice de gráficas

ÍNDICE DE GRÁFICAS

Gráfica 32. Comparación de los valores experimentales y los predichos por el programa, primera parte.	92
Gráfica 33. Coeficiente de absortividad ε (305 nm) en función del pH del sistema, valoración de	
ácido-base, segunda parte. LQM 351.	93
Gráfica 34. Comparación de los valores experimentales y los predichos por el programa, segunda parte.	93
Gráfica 35. Espectros de absorción de la valoración del sistema básico al ácido, LQM 351.	94
Gráfica 36. Coeficiente de absortividad ε (241 nm) en función del pH del sistema, valoración de	
base-ácido.	95
Gráfica 37. Comparación entre los valores experimentales y los predichos por programa SPSS,	
valoración de base a ácido primera parte. LQM 351.	95
Gráfica 38. Comparación entre los valores experimentales y los predichos por programa SPSS,	
valoración de base a ácido segunda parte. LQM 351.	96
Gráfica 39. Coeficiente de absortividad ε (241 nm) en función del pH del sistema, valoración de	
base-ácido, tercera parte. LQM 351.	97
· -	

INTRODUCCIÓN

La investigación y desarrollo de medicamentos no se compara con la de ningún otro tipo de producto, no sólo por su especial valor social, sino por ser un proceso en el que deben intervenir numerosos profesionistas, así como instituciones de investigación, hospitales, empresas y organizaciones gubernamentales.

Las organizaciones comerciales tienen que justificar el enorme gasto de la producción de un nuevo medicamento, asegurándose primero de que exista un mercado para el cual vaya dirigido y que le proporcione un retorno financiero beneficioso. Por lo que es de total importancia desarrollar nuevos principios activos que proporcionen el efecto terapéutico deseado, para las enfermedades que prevalecen en la población. ^(1, 2)

En nuestro país, las enfermedades cardiovasculares son la primera causa de fallecimientos, debido a la existencia de diversos factores que contribuyen a la mortalidad producida por la hipertensión arterial, ⁽³⁾ además no existe un tratamiento curativo por lo que el mayor beneficio en el desarrollo de un fármaco, es la producción de un compuesto para tratar un cuadro relativamente común para el que no existen terapéutica con un éxito total.

En el Laboratorio de Química Medicinal ubicado en la Facultad de Estudios Superiores Cuautitlán de la Universidad Nacional Autónoma de México, surgió el proyecto de diseño de nuevas moléculas bajo la coordinación general del Dr. Enrique R. Ángeles Anguiano, con la finalidad de generar compuestos con actividad terapéutica más específica. Como uno de los resultados del proyecto, se obtuvo una serie de compuestos derivados del fenol, con actividad antihipertensiva y antiarrítmica, denominados LQM´s serie 300, por las siglas del Laboratorio de Química Medicinal, entre los que podemos citar a los tiomorfilinicos, piperidinicos y morfolínicos; los cuales se han sometido a diversas evaluaciones para confirmar sus características estructurales, sus propiedades fisicoquímicas y farmacológicas.

El conocimiento de las propiedades fisicoquímicas de los nuevos compuestos es de total importancia para su posterior estudio refiriéndonos a la etapa preclínica y clínica y su posible acondicionamiento para comercializarlo como medicamento, por lo que en el presente trabajo se determinarán sus propiedades ácido-base así como los valores de las constantes de acidez para los compuestos LQM's 344, 345 y 351 a través del desarrolló de un método analítico mediante la técnica de electroforesis capilar y UV-Vis con la finalidad de obtener valores representativos para cada compuesto.

La electroforesis capilar como una versión instrumental de la electroforesis convencional, es una técnica de separación basada en el fenómeno de la migración diferencial, es decir la diferencia de velocidad que presenta partículas cargadas y no cargadas en el seno de una disolución amortiguadora, cuando se someten a la acción de un campo eléctrico. Los mecanismos de separación han sido modificados ampliamente, dando lugar a diversos modos de operación y consecuentemente al campo de aplicación. ⁽⁵⁻⁹⁾

En la actualidad esta técnica se ha introducido como una alternativa para llevar a cabo las mediciones de las constantes de acidez de nuevos principios activos, a partir del cálculo de la movilidad efectiva después de la separación electroforética en función directa del pH, usando una serie de disoluciones amortiguadoras a diferentes concentraciones de iones hidronio, pero con una fuerza iónica constante así como, un marcador del flujo electro osmótico. ⁽¹²⁻¹⁶⁾ Esta técnica ha alcanzado un estado de madurez, prueba de ello es su paulatina aplicación en diversas áreas de la investigación y la aceptación de los primeros métodos oficiales de análisis.

Figura 1. Abajo Software y equipo de Electroforesis Capilar, arriba equipo de UV-Visible. (Beckman Coulter)

El desarrollo del método se realizó para la técnica de electroforesis capilar, ya que esta técnica posee ciertas ventajas con respecto a otras como HPLC y UV-Vis, entre las que podemos mencionar; el nivel de automatización del instrumento, el tiempo de análisis, la flexibilidad, ⁽¹⁴⁾ la eficiencia, la resolución en la separación, la disminución de disolventes y residuos y por lo tanto del costo.⁽⁸⁾ En cuanto a la muestra no importa su pureza, su baja solubilidad en agua, ni su concentración, además las cantidades requeridas se encuentran en el rango de µg.⁽¹²⁾

La espectrofotometría de UV-Vis es una de las técnicas más usadas para la determinación de las constantes de acidez, por la reproducibilidad de los datos, además de ciertas ventajas en cuanto a compuestos con baja solubilidad, pero un inconveniente importante es la pureza de la muestra ya que las impurezas pueden absorber en el rango UV-Vis e interferir traslapándose en el espectro de absorción del compuesto.⁽¹²⁾ Sin embargo, la practicidad del desarrollo experimental nos permite obtener una serie de datos a través de la recopilación de barridos en un rango de 200 a 800 nm, obtenidos durante el curso de la modificación del pH del sistema, las variaciones de absorbancia mostradas son el resultado de los cambios de concentración de las especies (neutras y ionizadas) características de cada compuestos.

Por lo que en el presente trabajo de tesis, se determinará la relevancia de los datos obtenidos a través de su comparación entre la técnica de electroforesis capilar y la técnica tradicionalmente utilizada como lo es la espectrofotometría de UV-Vis.

QUIMICA MEDICINAL

El campo de la química medicinal ha evolucionado desde el aislamiento y caracterización hasta un mayor conocimiento de la bioquímica de los estados patológicos, así como el diseño de nuevos compuestos para la prevención de enfermedades. Aunque en sus orígenes la Química Medicinal se centró fundamentalmente en las modificaciones químicas simples de las moléculas de origen natural, las tendencias actuales están orientadas hacia el estudio de las interacciones de los fármacos con sus estructuras *diana** a nivel molecular, con la finalidad de generar nuevos compuestos que resulten más potentes, con mayor selectividad y menos tóxicos en su acción terapéutica.⁽¹⁸⁾

Un aspecto importante de la química medicinal ha sido establecer una relación entre estructura química y actividad biológica. En los últimos años se ha considerado más la correlación entre la estructura molecular y la reactividad química o las propiedades físicas y esta correlación puede referirse, a su vez, a su acción terapéutica.

El desarrollo de un nuevo principio activo con actividad específica, comienza en el estudio de los efectos de los productos naturales o de fármacos sintéticos en distintos sistemas biológicos, que conducen a una actividad biológica particular. Una vez identificado el efecto de un compuesto, por medio de estudios en biología molecular y medicina, el químico medicinal y el farmacéutico trabajaran conjuntos para mejorar la actividad conocida de la molécula denominada "molécula guía". En la actualidad se conoce mejor la estructura de los receptores y la función de enzimas que pueden participar en la patogenia de una enfermedad, a su vez, estas moléculas se usan como blancos en el diseño de compuestos que actúan como agonistas o antagonistas de los receptores o inhibidores de las enzimas.

Este proceso normalmente atraviesa un ciclo: el diseño del compuesto - síntesis - prueba biológica – diseño del compuesto – síntesis - prueba biológica hasta obtener un compuesto con la actividad deseada. ⁽¹⁾ Se auxilia de la tecnología computacional, la cual detalla de manera tridimensional las entidades químicas así como los receptores o blancos biomoleculares: esta estrategia es comúnmente llamada o conocida como Diseño Racional de Fármacos. ⁽¹⁸⁻¹⁹⁾

Una de las primeras hipótesis que intento relacionar la actividad de un compuesto con un parámetro fisicoquímico fue la teoría de Meyer-Overtón (1901), observó que para los anestésicos generales, la actividad se relacionaba con el coeficiente de partición lípido / agua.

En el campo de la química teórica, Hammett fue el primero en demostrar que los valores de pK_a de los ácidos benzoicos sustituidos podían predecirse en función de los distintos sustituyentes del anillo aromático. Las investigaciones posteriores condujeron a las constantes de acidez de los sustituyentes en las cuales el efecto electrónico se separa en los términos inductivos y de resonancia.

* Diana. Estructura molecular receptora.

En la actualidad se han realizado numerosos intentos para correlacionar matemáticamente la estructura molecular con la actividad de los compuestos. Uno de los investigadores con mayor éxito en este campo es Hansch, que junto a sus colaboradores (1993) sentó las bases de lo que hoy conocemos como Relaciones Cuantitativas Estructura-Actividad (o estudios QSAR) los cuales correlacionan la actividad biológica con parámetros fisicoquímicos como el momento dipolar, el calor de formación, el pKa, el coeficiente de partición (transporte biológico), parámetros electrónicos (densidades electrónicas de posibles sitios activos en la molécula), energías de unión compuesto/enzima y las propiedades de los grupos funcionales (tanto electrónicos como estéricos) presentes en la molécula. ⁽¹⁸⁻¹⁹⁾

Por lo tanto, el diseño de nuevos compuestos, busca encontrar moléculas capaces de interaccionar o unirse a determinados blancos macromoleculares. El diseño de fármacos asistido por computadoras es una estrategia nueva, esta disciplina es mejor conocida como Modelaje Molecular que incluye todas aquellas técnicas computacionales que tienen como finalidad el estudio estructural (tridimensional) de las moléculas. Los programas de modelaje molecular permiten simular su estructura y calcular la estabilidad de los distintos confórmeros posibles, ^(19 y 21) todo ello recurriendo a modelos teóricos que permitan resolver las ecuaciones planteadas para un determinado sistema de leyes físicas aplicados a los sistemas moleculares.⁽²²⁾

Por consiguiente la Química Medicinal se ha visto beneficiada y ha logrado avances significativos en la construcción y síntesis de moléculas más complejas gracias al progreso en los procesos de síntesis orgánica, así como en lo relativo a las técnicas de identificación estructura.^(4-5, 21)

EL DESARROLLO DE NUEVOS FÁRMACOS

El termino desarrollo identifica toda aquella fase de investigación por la que se pretende establecer si el compuesto es eficaz y seguro para ser empleado en alguna patología.⁽²⁰⁾

Las nuevas moléculas surgen de las modificaciones de los compuestos guía o cabeza de serie, que pueden atribuirse, al menos en parte, al desarrollo en la Química Orgánica durante las últimas décadas. En especial al desarrollo de nuevos métodos estéreo sintéticos selectivos. procesos sintéticos automatizados. métodos cromatográficos de elevada resolución (tanto métodos de identificación como preparativos) y técnicas de análisis estructural (resonancia magnético nuclear, espectroscopia de masas, infrarrojo, difracción de rayos X, etc.), por otra parte, el desarrollo de la Biología Molecular y de la Ingeniería Genética ha permitido el estudio de la relación entre moléculas *diana** y diversos compuestos.⁽²¹⁾

El desarrollo de un nuevo compuesto no sólo esta condicionado por lo antes mencionado, sino también debe tener otros aspectos, entre los que destacan lo económico, el interés científico y la terapéutica que justifiquen el desarrollo de un nuevo fármaco frente a otros fármacos ya existentes con la misma o parecida actividad terapéutica, así como la prioridad del proyecto dentro de una línea de investigación.⁽¹⁸⁾

Si en el transcurso de la investigación se está en presencia de una serie de compuestos nuevos, debe de hacerse una selección preliminar con el fin de distinguir rápidamente los compuestos que cumplan con algunas de las características requeridas y los que no, y en el primer caso para determinar a que categoría de fármacos corresponden.

El tiempo en que se realiza la investigación y el desarrollo de un medicamento nuevo varía en gran medida, pero la mayoría de las actividades que se llevan a cabo son constantes.

El principio activo pasa por las siguientes etapas:

- Estudio General
- Modelaje Molecular
- Síntesis Orgánica
- Análisis Fisicoquímico
- Actividad Farmacológica
- Determinación Farmacocinética y Toxicológica
- Investigaciones Clínica (fase *I*,*II*,*III* y *IV*)
- Estudios de acondicionamiento
- Registro Sanitario
- Difusión y comercialización
- Farmacovigilancia⁽²⁰⁾

De esta manera y de acuerdo con los antecedentes mencionados, los compuestos sintetizados en el Laboratorio de Química Medicinal de la FES-Cuautitlán se encuentran en la etapa de análisis fisicoquímico y actividad farmacológica.

Dentro de este trabajo se analizarán algunos de los compuestos que han presentado actividad farmacológica semejante a otros principios activos utilizados para la hipertensión arterial y arritmias cardiacas.

HIPÓTESIS

Si la potencia y versatilidad de la técnica de electroforesis capilar demuestra ser una alternativa para la determinación de las constantes de acidez, la metodología planteada arrojará valores de pKa's muy similares a los obtenidos por la técnica tradicionalmente utilizada como lo es la espectrofotometría de UV-Vis.

La metodología empleada en la determinación de los valores de pKa's para la técnica de electroforesis capilar podría superar a la establecida para espectrofotometría de UV-Vis, en cuanto al nivel de automatización, el tiempo de análisis, la flexibilidad, la eficiencia, la resolución en la separación, la disminución de disolventes y residuos y por lo tanto de costos, además la pureza, concentración y cantidad necesaria de analito serán importantes para determinar ventajas y desventajas de ambas técnicas.

OBJETIVOS

General:

 Determinar las constantes de acidez de los compuestos piperidinicos derivados del fenol de la serie LQM: 344, 345 y 351 con actividad antihipertensiva y antiarritmica, para la obtención de un parámetro fisicoquímico de total relevancia en la evaluación de moléculas con actividad terapéutica, mediante la comparación de dos técnicas analíticas la Electroforesis Capilar y la Espectrofotometría de UV-Vis.

Particulares:

- Desarrollar un método analítico adecuado para una determinación eficiente de las constantes de acidez de diversos compuestos de la serie LQM 300's mediante la obtención de la movilidad efectiva del analito a diferentes valores de pH, por la técnica de Electroforesis Capilar.
- Aplicar un método analítico para la determinación de los coeficientes de absortividad a través de barridos espectrofotométricos de los compuestos sometidos a estudio, empleando la técnica de Espectrofotometría de UV-Vis.
- Determinar las constantes de acidez a través del análisis de regresión no lineal con el programa SPSS, a partir de los valores de movilidad efectiva obtenidos por la técnica de electroforesis capilar y de los coeficientes de absortividad por UV-Vis.
- Comparar los resultados de las constantes de acidez obtenidos por la técnica de Electroforesis Capilar y Espectrofotometría de UV-Vis, para definir las ventajas y desventajas en la elección de la técnica.
- Definir la trascendencia de los valores de pKa obtenidos, para deducir su comportamiento en un sistema biológico.
- Obtener alternativas instrumentales para la determinación de los parámetros fisicoquímicos de las nuevas moléculas sintetizadas en el Laboratorio de Química Medicinal y colaborar en el desarrollo de nuevos principios activos para una patología de alta incidencia a nivel mundial.

Justificación

JUSTIFICACIÓN

La investigación de nuevos compuestos en el Laboratorio de Química Medicinal en la Facultad de Estudios Superiores Cuautitlán, pretende aportar nuevas alternativas medicamentosas para patologías con un alto índice de incidencia tanto a nivel mundial como nacional. La hipertensión arterial es una de las patologías que contribuye con un amplio porcentaje de morbilidad y mortalidad a nivel mundial. En México, las enfermedades cardiovasculares son la primera causa de fallecimientos, ya que sumado al factor genético se encuentran los ambientales y los hábitos alimenticios.

A través del desarrollo de la química medicinal en el área de síntesis e identificación, así como los avances a nivel tecnológico, se ha logrado esclarecer la interacción de las diversas moléculas con su sitio de acción a nivel molecular, por consiguiente estos avances son la plataforma para que el investigador realice modificaciones a nivel estructural de las moléculas guía (diseño racional de medicamentos), con la finalidad de generar nuevos compuestos que resulten más potentes, selectivos y menos tóxicos en su acción terapéutica.

En los últimos años se ha considerado más la correlación entre la estructura molecular y la reactividad química o las propiedades físicas, y esta correlación puede referirse, a su vez, a su acción terapéutica. Es por ello que una de las etapas que abarca el desarrollo de nuevos principios activos es la caracterización de sus propiedades físicoquímicas.

La velocidad con la que se sintetizan nuevos compuestos, ha causado un incremento en la demanda de métodos analíticos con un alto nivel de automatización para la determinación de las propiedades fisicoquímicas de manera eficiente; estas propiedades tienen que ser rápidamente determinadas, muchas veces con pequeñas cantidades de materia disponible y un bajo nivel de pureza, para poder descartar compuestos que no cumplen los requerimientos para una segura evaluación.

La importancia de conocer las propiedades fisicoquímicas de un compuesto reside en el conocimiento de la reactividad química, así como la determinación de su comportamiento a nivel biológico, es decir el grado de ionización que presente en los diversos compartimentos biológicos, y su afinidad por los lípidos de las membranas, estos le proveerán de características biofarmacéuticas que en una pertinente evaluación dará paso a los siguientes estudios clínicos para su desarrollo como nuevo medicamento.

Por lo anterior, en el presente trabajo de tesis se determinará las constantes de acidez de una serie de compuestos piperidinicos, a través de un relevante método analítico para Electroforesis Capilar y un método tradicional como lo es la técnica de UV-Vis, con la finalidad de obtener valores trascendentales para estudios posteriores

HIPERTENSIÓN

Existen diversos padecimientos que día a día van disminuyendo la calidad de vida del ser humano, uno de estos, es la hipertensión arterial. La hipertensión se define como el incremento sostenido de las cifras tensiónales diastólicas y sistólicas por encima de 90 y 140 mm. Hg, respectivamente, resultando un aumento del tono del músculo liso de la vasculatura periférica, lo cual lleva a un incremento en la resistencia arteriolar y reduce la capacidad de las venas. ^(3, 18)

Esta patología contribuye de manera significativa a las causas de morbilidad y mortalidad a nivel mundial. ⁽²¹⁾ En nuestro país las enfermedades cardiovasculares son la primera causa de fallecimientos (próximas al 50 % de todas las causas de muerte). En la población mexicana existen diversos factores que contribuyen a la mortalidad producida por la hipertensión, como son: los genéticos, la obesidad, el estrés, la inactividad física, la ingesta excesiva de alcohol, tabaco y sodio. ^(3, 18 y 25)

Aunque muchos de los individuos no tienen síntomas, la hipertensión crónica puede llevar a la aterosclerosis hialina y coronaria, insuficiencia cardiaca congestiva, isquemia, arritmias, infarto del miocardio, glomeruloesclerosis, insuficiencia renal y accidente vascular cerebral. ^(3,18)

En la actualidad no existe un tratamiento curativo por lo que los principios activos que actualmente se comercializan sólo contribuyen a un tratamiento supresivo que debe continuarse indefinidamente. Se ha tratado de desarrollar nuevos principios activos que aporte beneficios sobre la terapéutica de esta patología.⁽²⁴⁾

Presión Arterial

La presión arterial (PA) es directamente proporcional al producto del flujo sanguíneo (gasto cardiaco, GC) por la resistencia vascular periférica (RVP), es decir presión ejercida por la sangre sobre las paredes de las arterias.

$PA = GC \times RVP$

Por lo tanto la presión arterial se incrementa cuando aumenta el gasto cardiaco o cuando disminuye el diámetro de los vasos sanguíneos (principalmente en las arterias). El gasto cardiaco es el producto de la frecuencia cardiaca (FC) y del volumen de sangre bombeado con cada latido. ^(18 y 25)

La presión arterial en la circulación sistémica, presión arterial media es alta y constante, pero existen oscilaciones o pulsaciones, que reflejan la actividad pulsátil del corazón; la expulsión de sangre durante la sístole y reposo durante la diástole, por lo tanto, cada ciclo de pulsaciones en las arterias coincide con un ciclo cardiaco. La presión sistólica es la presión arterial más alta medida durante el ciclo cardiaco, referida a la presión de las arterias después que la sangre es expulsada del ventrículo izquierdo. La presión diastólica es la presión arterial más baja medida durante un ciclo cardiaco y correspondiente a la presión en las arterias cuando el ventrículo izquierdo no expulsa sangre.

La presión arterial está regulada dentro de un estrecho margen que le permite la adecuada perfusión de los tejidos sin causar daño al sistema vascular, en particular a la capa intima de las arterias. $^{(25 y 26)}$

Etiología

La hipertensión no es una patología aislada, suele presentarse por una combinación de varias anormalidades, en la mayoría de los casos la causa permanece desconocida, a este tipo de hipertensión se le denomina esencial o primaria.

La hipertensión secundaria es determinada por una patología específica como son: vasoconstricción arterial renal, coartación de la aorta, feocromocitoma, enfermedad de Cushing, aldosteronismo primario, glomerulonefritis, estenosis de la arteria renal, síndrome de Liddle, estrés agudo, hipertiroidismo, y mixedema.^(18, 26 y 27)

Antihipertensivos (terapia farmacológica)

Los antihipertensivos pueden clasificarse según sus sitios o mecanismos de acción: teniendo en cuenta los cinco factores que rigen la presión arterial; fuerza de contracción cardiaca, volumen sanguíneo, tono venomotor, regulación arterial central y regulación periférica, en los siguientes grupos de fármacos: ^(3, 24-28)

- Diuréticos:
 - Diuréticos de asa
 - Diuréticos tiazídicos
 - Diuréticos ahorradores de potasio
- Bloqueadores del sistema nervioso simpático:
 - De receptores alfa
 - De receptores beta
 - De acción central
 - Periféricos
- Bloqueadores de los receptores de la angiotensina II (ARA II).
- Inhibidores de la enzima convertidora de la angiotensina (IECA)
- Inhibidores de la vasopeptidasa
- Antagonistas del calcio
- Vasodilatadores directos

Se encuentran en fase de investigación clínica dos nuevos grupos: los antagonistas de la endotelina $^{\rm (3)}$

ARRITMIAS

Las arritmias cardiacas son un problema frecuente en la práctica clínica, ocurren hasta en 25% de los pacientes tratados con digitálicos, en 50% de los anestesiados y más de 80% en los que sufren infarto agudo de miocardio. ⁽²⁶⁾

Electrofisiología

El impulso eléctrico desencadena una contracción cardiaca normal, se origina a intervalos regulares en el nodo sinoauricular, por lo general a una frecuencia de 60 a 100 pulsaciones por minuto. Este impulso se disemina con rapidez por las aurículas y entra al nodo auriculoventricular, que normalmente es la única vía de conducción entre las aurículas y los ventrículos. Esta conducción a través del nodo auriculoventricular es lenta, ya que requiere unos 0.15 seg. El impulso se propaga hasta el sistema de His-Purkinje y llega a todas las partes de los ventrículos, comenzando con la superficie endotelial cercana al ápex y finalizando con la superficie epicárdiaca en la base del corazón. La activación ventricular se completa en menos de 0.1 seg.^(3,26)

Las arritmias consisten en despolarizaciones cardiacas que se desvían de la descripción anterior en uno o más aspectos, es decir, existen una normalidad en el sitio de origen del impulso, su frecuencia, su regularidad o su conducción.

Etiología

En mayoría de los casos es propiciada por: isquemia, hipoxia, acidosis o alcalosis, anomalías electrolíticas,⁽³⁾ exposición excesiva a las catecolaminas, influencias autónomas, toxicidad de fármacos, sobre estiramiento de las fibras cardiacas y presencia de tejido cicatrizal. Englobando son el resultado de: trastornos en la formación de impulsos, trastornos en la conducción de impulsos, o ambos.⁽²⁶⁾

Antiarrítmicos específicos (terapia farmacológica)

El tratamiento farmacológico de las arritmias cardiacas tiene como objetivo principal reducir los síntomas de las arritmias continuas, restaurar y mantener el ritmo sinusal, así como prevenir la ocurrencia o recurrencia de las arritmias sintomáticas.⁽³⁰⁾

La clasificación más popular de estos fármacos es la de Vaughan Williams que considera cuatro clases: ^(3,28)

Clase 1: su acción consiste en el bloqueo del canal de sodio.

Subdivide en 1A, 1B, 1C.

Clase 2: su acción es simpaticolítica, actúan bloqueando receptores β - adrenergicos.

Clase 3: su acción se manifiesta por prolongación de la DPA.

Clase 4: su acción consiste en el bloqueo de la corriente de calcio.

Agentes antiarrítmicos que no comparten las características mencionadas.^(26, 29-30)

*Un medicamento dado puede tener múltiples clases de acción.

CONSTANTES DE ACIDEZ

Los conocimientos modernos de los ácidos y las bases parten de 1834, cuando el físico inglés Michael Faraday descubrió que ácidos y bases eran electrolitos, ya que al encontrarse disueltos en agua se disocian en partículas con carga, iones que pueden conducir la corriente eléctrica.

En 1887 Arrhenius concluyó que la mejor definición de ácido y base es: "los ácidos son compuestos que en disoluciones acuosa se disocian para producir iones hidronio y las bases como sustancias que al ionizarse en agua produce iones hidroxilo". La fuerza de un ácido se relacionó con su capacidad para disociarse en agua. La ionización trae como consecuencia la conductividad eléctrica, lo que proporciona un medio conveniente para medir la fuerza de los ácidos. ⁽³⁴⁻³⁶⁾

En 1923 Johannes Bronsted y Thomas Lowry propusieron una teoría ácido-base o teoría protónica que se derivó del comportamiento de los iones hidrógeno. Definieron a un ácido como una sustancia que dona un protón (ion hidrógeno H⁺), y a una base como una sustancia que acepta un protón. ⁽³⁴⁻³⁶⁾

Una teoría más general es la desarrollada por Gilbert N. Lewis, en las interacciones ácidos-bases, los ácidos son las sustancias capaces de aceptar electrones de las bases, las que se caracterizan por poseer pares de electrones libres. Aunque esta teoría electrónica tiene aplicaciones más amplias, la teoría de Bronsted y Lowry resulta más adecuada para el tratamiento de los equilibrios ácido-base en Química Analítica.

Tanto los ácidos como las bases débiles no se disocian del todo, es por esto que debemos cuantificar el equilibrio de disociación con un parámetro que nos indique cuanto esta desplazada la reacción de disociación, como lo es la constante Ka o constante de disociación para los ácidos y Kb o constante de basicidad para las bases: ^(34, 38)

Equilibrios representativos:

[HA] [H₂O]

HA + H₂O
$$\rightleftharpoons$$
 H ₃O⁺ + A⁻
B⁻ + H₂O \rightleftharpoons HB + OH
Ec. 1 y 2
Constantes de equilíbrio:
K = [HB] [OH]

[B⁻] [H₂O]

En disoluciones diluidas, la concentración de agua permanece constante y se puede incluir en la Keq, quedando así una nueva cantidad denominada constate de acidez, Ka o Kb para las bases:

$$K_{a} = K_{eq} [H_{2}O] = \underline{[H_{3}O^{+}][A^{-}]} [HA]$$

$$K_{b} = K_{eq} [H_{2}O] = \underline{[HB] [OH]} [B^{-}]$$
Ec. 5 y 6

La fuerza de los ácidos se expresan normalmente usando valores de pKa en lugar de valores de Ka, donde:

Ec. 7

La disociación de los ácidos y de las bases también pueden determinarse con otro parámetro: el grado de disociación α .⁽³⁴⁻³⁶⁾

Las propiedades ácido-base de los principios activos son de fundamental importancia, para caracterizar la capacidad de ionización de las moléculas, ya que de este parámetro depende el paso a través de membranas biológicas y por lo tanto su absorción.

ELECTROFORESIS CAPILAR

La electroforesis (*elektro* = electricidad y *phorésis* = acción de llevar) ^(8, 10) Es una técnica de separación basada en la diferente velocidad de migración de las especies cargadas y no cargadas en el seno de una disolución conductora o también referido como electrolito soporte, a través del cual se aplica la acción de un campo eléctrico.⁽⁸⁾ La separación, en consecuencia, se basa en las diferencias en la relación carga-masa y estructura entre los diferentes analitos presentes en la muestra,^(4,31) así como de las características y parámetros operativos del sistema.^(32, 33)

El desarrollo de esta técnica se debe a la utilización de un nuevo soporte donde se realiza la separación: los capilares de sílice fundida.

Las ventajas del uso de estos capilares son las siguientes:

- Los capilares son de material con propiedades anticonvectivas, por lo que no es necesario la utilización de gel como medio de soporte.
- El pequeño diámetro interno de 10 200 μm, de 100 400 μm de diámetro externo y longitud de 40–100 cm que facilita la disipación del calor generado por la resistencia eléctrica (efecto Joule) del electrolito dentro del capilar.
- Se pueden aplicar altos voltajes, por tanto, se consigue una reducción del tiempo de análisis y aumento de la eficiencia.
- Se tiene la posibilidad de realizar la detección con una interfase o en línea con detectores espectrofotométricos y electroquímicos.
- Existen variaciones en cuanto al diseño de la ventana de detección.
- Existen gran variedad de capilares con recubrimientos covalentes o polímeros hidrofílicos.
- Tienen tiempos prolongados de funcionamiento óptimo.
- Provee separaciones muy eficientes en micro volúmenes de disolución de muestra (0.1-10 nL) sin necesidad del sistema de bombeo a alta presión. ⁽⁴⁾

Aspectos Instrumentales

Esquema representativo de un instrumento de Electroforesis Capilar

Figura 2. Equipo comercial Beckman Coulter MDQ P/ACE.

Componentes del instrumento de Electroforesis Capilar^(5,8, 11 y 31)

Los componentes característicos de los aparatos comerciales utilizados en electroforesis capilar son:

- El capilar debe de disipar bien el calor, ser química y eléctricamente inertes, así como ionizables, transparentes al UV-VIS, flexibles, robustos y económicos. Los capilares de sílice fundida son los que mejor cumplen estas condiciones y por ello son los más ampliamente utilizados. Aunque también se pueden emplear otros materiales como el pirex o el teflón. El capilar hace de puente de contacto entre el cátodo y el ánodo cerrando el circuito eléctrico. Las dimensiones de un capilar de sílice fundida son 10 -200 µm de diámetro interno, de 100 400 µm de diámetro externo y de 20 100 cm. de longitud que puede estar refrigerado por aire o líquido. Los capilares son recubiertos (parte externa) con una película de poliamidas, para protegerlos de los daños mecánicos y para aumentar su flexibilidad y resistencia, una pequeña sección del recubrimiento es eliminada para hacer viable la detección en línea (ventana de detección).
- Los electrodos de platino (ánodo y cátodo).
- Una **fuente de poder de alto voltaje**, capaz de generar hasta 30 kV., manejo de polaridad positiva y negativa, así como de controlar corrientes de hasta 300 μ A.
- **Bandejas** para muestra y disoluciones amortiguadoras.
- **Viales** para muestra, electrolitos soporte y disolventes; son inertes y ofrecen varias capacidades de volumen. En ellos se introducen los extremos del capilar para que se llene con el medio electroforético que contienen, en el vial de entrada y salida se encuentra sumergido el electrodo positivo (ánodo) y el electrodo negativo (cátodo) respectivamente, los cuales están conectados a la fuente de alto voltaje que proporciona la energía necesaria para la electroforésis.
- Sistema de introducción de la muestra en el capilar. Existen dos formas la hidrodinámica y la electrocinética.
- Sistema de enfriamiento. Necesario para disipar el exceso de calor producido en el capilar por el efecto Joule. Líquido refrigerante puede mantener la temperatura de 4 a 60 °C.
- **Sistema de detección.** Permite determinar y cuantificar los diferentes componentes de la muestra previamente separados. Los detectores se pueden situar en uno de los extremos (fuera) o bien en el mismo capilar (en línea). Se clasifican en función de la técnica, es decir, óptico, electroquímico, espectro o radiométrico.

• Sistema de registro y procesamiento (*Software*) incluye una sofisticada interfase gráfica para simplificar la programación, permitiendo introducir instrucciones, variar parámetros del sistema, interpretar las señales del detector, realizar cálculos y presentar los datos obtenidos en el análisis posterior a la separación electroforética.

Figura 3. Componentes básicos del sistema de Electroforesis Capilar.

Fundamentos de la separación

Las moléculas en disolución cargadas o no, poseen ciertas características que al aplicar un campo eléctrico se diferenciaran por la relación existente entre su carga, masa y estructura, es por ello que las partículas cargadas positivamente se desplacen hacía el cátodo las negativas hacia el ánodo y las neutras son llevadas por la fuerza del electrolito soporte a través de lo que se denomina flujo electroosmótico. (EOF)⁽⁴⁾

La velocidad de migración depende del equilibrio resultante de la fuerza impulsora del campo eléctrico sobre los iones y de la fuerza de fricción que provoca cierto retardo entre las moléculas que migran y el medio que las rodea.

Por lo tanto la velocidad de migración de un ión v (cm/s) sometido a la acción de un campo eléctrico, es igual al producto de la intensidad del campo eléctrico E (V cm⁻¹) por la movilidad electroforética μ_e (m² V⁻¹s⁻¹), esto es: ^(10, 31 y 32)

$$v = \mu_{\rm e} E = E = V/L$$

La separación de las diferentes especies iónicas se realiza en función de sus distintas movilidades electroforéticas dentro de un capilar cuando se aplica una diferencia de potencial entre los extremos del mismo. La movilidad electroforética (μ_e) es una constante que puede ser determinada a partir del coeficiente friccional a través de un medio elegido.^(30, 31)

 $Fe = q \cdot E$

Ec. 9

Ec. 8

Siendo: la fuerza eléctrica

Donde **q** : es carga iónica **E** : es la intensidad del campo eléctrico

Ec. 10

y para la ecuación de Stokes aplicada a un ión esférico la fuerza friccional es:

Ec. 11

Cuando se logra una velocidad constante, es decir, *Fe* = *Ff*:

$$\mathbf{q} \cdot \mathbf{E} = \mathbf{6} \cdot \boldsymbol{\pi} \cdot \boldsymbol{\eta} \cdot \boldsymbol{r} \cdot \boldsymbol{\mu}_{ef} \cdot \boldsymbol{E}$$

Ec. 12

y por tanto

Ec. 13

La μ_e depende a su vez de la carga del ión (q), de su radio (r) y de la viscosidad de la disolución (η).

Con lo expuesto queda en evidencia que la velocidad con la que viaja un ión es mayor cuanto mayor es su carga y menor su radio. Si el analito presente en la disolución se encuentra en diferentes formas en equilibrio dinámico (Ej.,debido a un equilibrio ácido – base), la movilidad electroforética es una combinación de las movilidades de las posibles especies (*i*) en equilibrio, considerando la fracción molar (αi) de cada una de ellas.

$$\mu_e = \sum_{i=0}^n \alpha_i \mu_i$$

Ec. 14

No obstante la movilidad electroforética real no coincide con lo predicho por la **ecuación 4** debido a la existencia del flujo electroosmótico o también denominado fuerza electroendosmótica (EOF). El EOF es el flujo de líquido en el interior del capilar originado como consecuencia de aplicar un campo eléctrico que genera una doble capa entre la disolución y la pared del capilar (**Figura 4**). En el caso de capilares de sílice fundida esta superficie cargada es generada por la ionización de los grupos silanol. ^(5, 10 y 11)

Figura 4. Representación del EOF, producido al aplicar un campo eléctrico en los extremos del capilar cuando se encuentra lleno con muestra y electrolito soporte.

La superficie interna del capilar de sílice, con cargas negativas atrae hacia si iones positivos del electrolito soporte (capa de Gouy-Chapman). Los iones de la capa difusa experimentan una fuerza paralela a la superficie y migran hacia el cátodo al aplicar una diferencia de potencial entre los extremos del capilar. Estos al estar solvatados, generan un movimiento global del flujo hacia el cátodo. Este movimiento del flujo constituye el EOF.

En condiciones acuosas, la fase sólida posee un exceso de cargas negativas, como resultado de dos procesos fisicoquímicos. Uno es la ionización de la superficie (que es un equilibrio ácido - base) grupos silanol (pKa 6) y otro es la adsorción de especies iónicas sobre la superficie del capilar, por lo tanto el flujo electroosmótico se encuentra altamente controlado por los numerosos grupos SiO⁻.

Figura 5. Carga de los grupos silanoles.

La movilidad del flujo electroosmótico (μ_{eof}) viene dada por la siguiente expresión:

$$\mu_{eof} = \frac{v_{eof}}{E} = \frac{\varepsilon \zeta}{4 \pi \eta}$$

Ec. 15

Donde η: es la viscosidad ε: constante dieléctrica de la disolución ζ : el potencial zeta

El potencial zeta es el potencial existente en el plano de separación de ambas capas, depende esencialmente de la naturaleza y cantidad de iones en la superficie interna del capilar. Este potencial decrece de forma lineal dentro de la capa de Stern, y decrece exponencialmente dentro de la capa difusa. **Figura 6.** ^(9, 11)

Figura 6. Formación de la doble capa electroquímica que genera el EOF.

El perfil del EOF es plano como consecuencia del grosor de la doble capa, la fuerza conductora está uniformemente distribuida a lo largo de todo el capilar. El ensanchamiento de banda debido a la transferencia de masa es mínimo lo que permite obtener altas resoluciones en la separación. En los sistemas conducidos por presión hidrodinámica (HPLC) el perfil del flujo es parabólico, dando lugar a picos más anchos, en la **Figura 7** se puede apreciar la diferencia existente entre HPLC y EC.^(5 y 31)

Figura 7. Perfil del flujo del disolvente en HPLC y CE.

El EOF puede controlarse de varias maneras: eliminado, suprimido e incluso invertido, en función de las necesidades de la separación. $^{(8,31)}$ La existencia del EOF hace que se modifique la velocidad total con la que los analitos se mueven a través del capilar por lo tanto la **ecuación 8** se reescribe: $^{(4, 5y 11)}$

$$v = (\mu_e \pm \mu_{eof}) E$$

Ec. 16

La relación existente de la movilidad efectiva y la movilidad del flujo electro osmótico se denomina movilidad aparente (μ_a). Por lo que es necesario determinar la movilidad efectiva y esto se logra con la siguiente ecuación:

$$\frac{\mu_{ef}}{V} = \frac{Lt \ Ld \ (1/tm - 1/t_{eof})}{V}$$

Ec. 17

Siendo Ld: la longitud al detector o efectiva. Lt: la longitud total del capilar tm: el tiempo de migración del analito teof: el tiempo de migración del EOF V: el voltaje aplicado
Si el EOF es mayor que las movilidades electroforéticas (μ_{ef}) de los aniones, éstos se pueden separar en una misma inyección junto a los cationes y las moléculas neutras contenidas en la muestra. Todo ellos se mueven hacia el cátodo, si la carga de la pared del capilar es negativa (polaridad normal). Los cationes son atraídos electroforéticamente hacia el polo negativo y a esta velocidad se le suma la del EOF, en el mismo sentido. Como ya se menciono todas las moléculas neutras migran a la velocidad del EOF y por último, los aniones migran con una velocidad igual a la diferencia entre la velocidad del EOF y sus velocidades electroforéticas hacia el ánodo. La diferencia en los tiempos de migración dentro del grupo de los cationes o de los aniones viene dada por la diferencia en sus movilidades electroforéticas. Aunque todos los analitos migran según su carga, masa y estructura dentro del capilar, la velocidad del flujo electroosmótico es normalmente suficiente como para arrastrar a todas las especies, las cargadas positivamente, las neutras y las cargadas negativamente hacia el mismo extremo del capilar, de tal modo que todas ellas pueden detectarse al pasar por un punto en común.^(5,8)

Figura 8. Vectores producidos por el EOF para los diferentes analitos.

Descripción de algunos aspectos instrumentales ^(8, 11 y 31)

Sistema de introducción de la muestra

Las cantidades de muestra introducida en el equipo de CE son muy pequeñas (del orden de los nanólitros) significando una ventaja de la técnica cuando se dispone de poca muestra. Los pequeños volúmenes de muestra analizados requieren de un sistema de introducción de la muestra, es muy diferente a los que se usan en otros métodos cromatográficos basados en jeringas o bucles de inyección, como lo son la introducción hidrodinámica y la electrocinética.

Introducción hidrodinámica

Es la modalidad más habitual, y se puede efectuar por la aplicación de una presión en el vial con muestra, realizando el vacío en el vial sin o con electrolito soporte o por efecto sifón (gravedad), al elevar el vial de muestra respecto al vial del electrolito soporte situado en el extremo contrario al de la introducción de la muestra, como se observa en la **Figura 9.** En esta modalidad el vial de entrada debe contener los analitos y el de salida un vial con electrolito soporte.

Figura 9. Modalidades de introducción hidrodinámica

Inyección electrocinética

En este modo de introducción, el vial de muestra reemplaza al vial de entrada del electrolito soporte, se aplica una diferencia de potencial entre los extremos del capilar, que suele ser de 3 a 5 veces inferior al utilizado en la separación, durante un tiempo determinado. Los diferentes solutos se introducen en el capilar por el efecto conjunto de su migración electroforética y del EOF, por lo que cada analito será introducido en distinta cantidad en función de su movilidad electroforética. No se puede usar una muestra previamente analizada por lo que es necesario remplazar la muestra en cada determinación.

Figura 10. Introducción electrocinética

Sistema de detección

La detección es un reto de la técnica, por el reducido diámetro interno de los capilares, la pequeña cantidad de muestra analizada y el hecho que la detección se realiza en el mismo capilar obliga al uso de detectores sensibles y de respuesta rápida, como lo es el detector UV-VIS con arreglo de diodos en línea como elemento fotosensible es el más usado debido a su universalidad, bajo costo, rapidez de medida y la gran cantidad de información espectral que genera aunque también presenta el inconveniente de no ser muy sensible.

En la tabla 1 se muestran algunas de las técnicas de detección utilizadas, incluyendo algunas ventajas e inconvenientes. El tipo de detector dependerá de los analitos a determinar siempre que se pueda se escogerá uno que proporcione la mayor sensibilidad a todos los compuestos a analizar. $^{(5, 6 y 10)}$

Tabla 1.	Detectores	utilizados en	Electroforesis	Capilar.
----------	------------	---------------	----------------	----------

Detectores	Comentario	Límite de detección representativo (moles) (5,6)
Espectro fotometría rango UV-VIS	Universal. Amplia información espectral con DAD. Produce espectros que ayudan a identificar analitos y su pureza ⁽⁸⁾ .	$\frac{10^{-15} - 10^{-13}}{1 - 1000}$

Detectores	Comentario	Límite de detección representativo (moles) (5,6)
Fluorescencia	Detección selectiva. Muy sensible. Compuestos fluorescentes. Se requiere fluoróforo o derivatización.	8 x 10 ⁻¹⁶ 1 – 0.01
Fluorescencia inducida por láser (FIL)	Ofrece tanto selectividad y sensibilidad 500 veces superior a un detector de ultravioleta. Longitud de onda, con disponibilidad limitada. Requiere derivación de la muestra. Precio elevado.	5 x 10 ⁻¹⁷ 1E-18
Amperometría	Altamente sensible y específico. Analitos con propiedades redox. Necesario aislar el detector de la fuente de voltaje.	7 x 10 ⁻¹⁹ 0.1
Conductimetría	Necesario aislar el detector de la fuente de voltaje. Para pequeños iones inorgánicos y ácidos carboxílicos.	1 x 10 ⁻¹⁶ 100
Espectroscopia de masas (MS)	Sensible y con información estructural. Interfase entre CE y MS complicada. Precio muy elevado.	1 x 10 ⁻¹⁷ 1 -0.01

Tabla 1. Detectores utilizados en Electroforesis Capilar. (Continuación)

Detección UV-VIS^(8,11)

El detector de UV-Vis es ampliamente usado, ya que existe gran cantidad de analitos que poseen algún grupo cromóforo que absorbe en el intervalo de longitudes de onda entre 190 - 800 nm, en el caso de CE este tipo de detectores también puede ser aplicado a compuestos no absorbentes haciendo uso de una detección indirecta. La detección se realiza en el capilar, eliminando parte del recubrimiento de poliimida (a través de calentamiento y ataque con ácido). La dependencia de la absorbancia con el camino óptimo, según la ley de Lambert-Beer, hace que la sensibilidad esté limitada como consecuencia del pequeño camino óptico que el capilar ofrece. Esto hace que el detector tenga que ser cuidadosamente diseñado para enfocar la máxima luz en el capilar y así minimizar la luz dispersa que llega al monocromador.

La utilización de un detector de diodos en línea (DAD) en lugar de la detección por única o múltiple longitud de onda tiene muchas ventajas. La luz de la lámpara de deuterio es enfocada en el capilar por medio de un sistema de lentes y al pasar por el capilar es difractada hacia un detector de diodos en línea, cada uno mide un cierto intervalo de longitudes de onda. Las ventajas son: la visualización del espectro UV-Visible en todo momento del análisis, obtención del electroferograma a cualquier longitud de onda en una sola inyección, determinación del máximo de absorbancia para todos los analitos, e identificación de compuestos y pureza del pico.

Figura 11. Detector de arreglo de diodos.

Detección directa. Es el modo de detección más usado y consiste en separar analitos absorbentes (con grupos cromóforos) en un electrolito soporte poco absorbente. La longitud de onda de referencia se coloca a longitudes donde el analito absorba pero no el electrolito soporte.

Figura 12. Esquema de detección directa UV-Vis.

De esta manera, el paso del electrolito soporte por el detector da una señal de cero (blanco) y el paso del analito se registra con un incremento de absorbancia (pico positivo).

Detección indirecta. Se emplea para determinar analitos no absorbentes. Para ello se hace uso de un electrolito soporte que contenga algún compuesto cromóforo. El caso más habitual es que el mismo electrolito soporte realice la función absorbente. En este tipo de fotometría, la longitud de onda de detección se coloca en el máximo de absorbancia del electrolito soporte y la de referencia se coloca a alguna longitud de onda donde éste no absorba. El paso del electrolito soporte por el detector provoca un señal elevada y constante que decae bruscamente cuando llega un analito a la zona de detección **Fig. 13.** Obteniéndose así picos negativos.

Figura 13. Esquema de detección indirecta UV-Vis.

Modos de separación en CE (5,6)

La electroforesis capilar ofrece una gran versatilidad que se fundamenta en gran parte en los diversos modos de operación que la técnica ofrece. Estos modos son en su mayoría fácilmente accesibles cambiando la composición del electrolito soporte o algunas condiciones de separación. Los modos de operación y su criterio de separación se mencionan a continuación:

- Electroforesis Capilar de Zonas (CZE)
- Cromatografía Micelar Electrocinética (MECK)
- Electrocromatografía Capilar (CEC)
- Electroforesis Capilar de Gel (CGE)
- Enfoque Isoeléctrico (CIEF)
- Isotacoforesis (CITP)

En el presente trabajo de tesis solo se mencionarán los fundamentos de la separación más usada en la determinación de constantes de acidez la electroforesis capilar de zonas.

Electroforesis capilar de zonas (CZE)

La separación ocurre porque los analitos migran en zonas discretas a diferente velocidad. La separación de compuestos aniónicos son arrastrados hacia el detector colocado en el cátodo (polaridad directa). En el caso contrario, por ejemplo aniones de dimensiones reducidas y muy cargados es necesario cambiar la polaridad del vial de entrada y del vial de salida (trabajar con voltajes "negativos") de tal manera que estos aniones son detectados en el ánodo (polaridad inversa). Los analitos neutros no migran y por o tanto coeluyen con el EOF. Una separación en CZE se lleva a cabo simplemente rellenando el capilar con el electrolito adecuado, en esta técnica la composición del electrolito soporte es constante en toda la zona de separación. ⁽¹¹⁾

Los electrolitos soporte más comúnmente utilizados en este tipo de fotometría se enlistan en la **Tabla 2.** Todos ellos destacan por ser transparentes en la región del ultravioleta de tal manera que la detección por debajo de los 200 nm es posible.^(8,11)

BGE	рКа	BGE	рКа
Fosfato	2.12 (pKa ₁)	MOPS*	7.20
Citrato	3.06 (pKa ₁)	Tricina	8.20
Formiato	3.75	Bicina	8.30
Citrato	4.74 (pKa ₂)	HEPES*	7.50
Acetato	4.75	TRIS*	8.30
Citrato	5.90 (pKa ₂)	CHES*	9.50
MES*	6.15	CAPSO*	9.60
Citrato	6.38 (pKa ₃)	Borato	9.24
Fosfato	7.21 (pKa ₂)	CAPS*	10.40
Fosfato	12.32 (pKa ₃)		

 Tabla 2. Electrolitos utilizados habitualmente para Electroforesis Capilar de Zonas.

* MES ácido 2-N-morfolino-etanosulfónico

* MOPS ácido 3-morfolinopropanosulfónico

* HEPES ácido 2-(4-(2-Hidroxietil)-1 piperazina)etanosulfónico

* TRIS tris(hidroximetil) amino metano

* CHES ácido 3-(ciclohexilamino) etanosulfónico

* CAPSO ácido 3-ciclohexilamino-2-hidroxi-1-propanosulfónico

* CAPS ácido 3-ciclohexilamino-1-propanosulfónico

El pH del electrolito soporte es la clave de la separación ya que determina el grado de ionización y por lo tanto la movilidad relativa de los diferentes analitos. ^(8, 31)

En consecuencia, el electrolito soporte elegido debe reunir una serie de propiedades como:

- Capacidad reguladora para mantener el pH en el rango establecido.
- Baja absorbancia en la longitud de onda empleada para la detección de la muestra.
- La movilidad del electrolito soporte debe ser similar a las movilidades de los analitos para evitar la electrodispersión.
- Baja movilidad electroforética debe de ser mínima para disminuir el calor generado por el efecto Joule (baja concentración iónica).
- La movilidad del contraión ha de ser pequeña para minimizar la producción de calor y permitir la aplicación de voltajes altos.
- Los componentes del electrolito soporte deben de generar una línea base baja y estable para conseguir una buena relación señal/ruido, excepto en detección indirecta.

La magnitud del EOF es otro parámetro clave en CZE y debe ser manipulado por el usuario, es decir, puede ser controlado: disminuido, eliminado e incluso invertido. Básicamente, el control requiere modificar la carga de la pared del capilar o la viscosidad del electrolito soporte. El pH del electrolito soporte es el modo más eficaz de variar la velocidad del EOF pero hay que tener en cuanta que también afecta a la carga del analito y por lo tanto a su movilidad, por lo que definitivamente el EOF debe de ser eficientemente manipulado.^(8,11)

Tabla 3. Parámetros a través de los cuales se manipula el flujo electroosmótico (EOF).

VARIABLE	RESULTADO	OBSERVACIONES			
Campo Eléctrico	Al incrementar el voltaje, aumenta la eficiencia, resolución, así también el efecto Joule.	Cambios proporcionales en el EOF La constante dieléctrica y la viscosidad: que son dependientes de la temperatura, alteran la velocidad del EOF			
pH del electrolito soporte	Si el pH aumenta el EOF crece.	Método más adecuado para variar el EOF. Se obtienen picos más simétricos. Reduce el tiempo de análisis.			
	Si el pH disminuye, el EOF decrece.	Se tiene que adicionar un disolvente orgánico o un surfactante catiónico al electrolito soporte.			
Fuerza iónica o Concentración del tampón	Un aumento de cualquiera de los dos disminuye el EOF y el potencial zeta.	Puede provocar aumento del efecto Joule. Fuerza iónica bajas podría provocar adsorción de la muestra.			
Temperatura	Al incrementar disminuye la viscosidad (2-3%/C) e incrementa el EOF.	Facilidad de control debido a la a automatización y termostatización.			
Adición de modificadores orgánicos	Modifican el potencial zeta y la viscosidad. Se adiciona al electrolito soporte.	Se pude disminuir, anular, o invertir el EOF, generalmente disminuye el EOF y puede alterar la selectividad. Evita la adsorción de moléculas cargadas positivamente y permite la separación de aniones			

Determinación de constantes de acidez por Electroforesis Capilar

La electroforesis capilar es una técnica que por las ventajas que ofrece con respecto a otras, ha mostrado ser una alternativa instrumental para la determinación de las constantes de acidez.⁽¹⁴⁾

Lo conveniente de esta técnica con respecto a este tipo de determinaciones es:

- La cantidad de analito necesaria para la determinación es mínima, refiriéndonos a nanolitros.
- Se pueden analizar compuesto que no poseen alto grado de pureza.⁽¹⁴⁾
- Puede ser compuestos poco solubles pero con grupos cromóforos.
- Se pueden analizar varias sustancias de manera simultánea.
- La automatización del método reduce el tiempo efectivo de trabajo del experimentador.⁽¹²⁾
- La serie de datos resultantes proporcionan gran información del carácter ácidobase de la molécula estudiada.

La determinación se logra a través de los resultados obtenidos de la movilidad efectiva, calculado a partir de los tiempos de migración del analito con referencia al tiempo de migración del flujo electroosmótico, tanto en sus formas iónicas como neutra a diferentes valores de pH, manteniendo constante la fuerza iónica, la temperatura y una serie de condiciones instrumentales.⁽¹²⁻¹⁶⁾

Para la obtención del valor de movilidad efectiva se utiliza la siguiente ecuación 17.

Los datos de movilidad efectiva son gráficados en función del pH, los valores de pKa´s y alfa se obtienen al procesar los datos a un modelo matemático de regresión no lineal.⁽¹²⁾

La ionización de un compuesto es una función directa del pH, por lo que se calcula a partir de una gráfica de movilidad efectiva contra pH del electrolito soporte. Por lo tanto, dependiendo del tipo de molécula a analizar (base o ácido) se debe determinar el tipo de disociación que se lleve a cabo de tal manera que para un ácido:

HA
$$\stackrel{\longrightarrow}{\longleftarrow}$$
 H⁺ + A⁻

Ec.1 8

Además:

$$\mathbf{K_{a}}^{\mathrm{T}} = \underline{\gamma \mathbf{A}^{*} \gamma \mathbf{H}^{+} [\mathbf{H}^{+}] [\mathbf{A}^{*}]}$$
[HA]

Ec.19

Donde K_a^T : Constante de disociación de un ácido. γA^- : Coeficiente de actividad de la base conjugada A.⁻ γH^+ : Coeficiente de actividad de ión hidronio H^+ . $[H^+]$: Concentración molar de H^+ . $[A^-]$: Concentración molar de A⁻. [HA]: Concentración molar de HA.

Reescribiendo:

$$pK_{a}^{T} = pH - \log \gamma A^{T} - \log [A^{T}]$$
[HA]

Ec. 20

Ec. 21

El coeficiente de actividad de los iones en dilución a 25 °C se estima de acuerdo con la siguiente ecuación:

$$-\log \gamma A^{-} = \frac{0.5085 z^{2} \sqrt{I}}{1 + 0.3281 a \sqrt{I}}$$

Donde *z* : carga

z : carga del ión α : diámetro del ión hidratado medido en Angstroms I : fuerza iónica de la disolución del electrolito soporte

La fuerza iónica a su vez es calculada por medio de la siguiente formula

$$\mathbf{I} = \frac{1 \sum (Z^2[\mathbf{i}])}{2}$$

Ec. 22

Donde z : carga del ion I I : concentración molar de cada uno de los iones disueltos

A partir de las ecuaciones 2.0 y 2.1 se reinscribir

$$pK_{a}^{T} = pH - \frac{\log [A]}{[HA]} + \frac{0.5085 z^{2} \sqrt{I}}{1 + 0.3281 a \sqrt{I}}$$

Ec. 23

Entonces para realizar él calculo de pKa mediante las ecuaciones anteriores, es necesario determinar la relación $[A^-]/[HA]$ en cada valor de pH, o mejor aun, determinar $[A^-] / [HA]$ como función del pH y para esta función determinar el punto en el que $[A^-] = [HA]$ debido a que en este punto pH = pKa demostrado mediante la formula de Henderson Hasselback.^(5, 6y 36)

Para un ácido $pH = pKa + log[A^{-}]$ [HA]
Ec. 24
Para una base $pH = pKa + log[HB^{+}]$ [B]
Ec. 25

La relación [A] / [HA] si [A] = [HA] es igual a 1, entonces log 1 = 0, por lo tanto las ecuaciones anteriores se reducen a la siguiente:

Ec.26

En electroforesis capilar la relación $[A^-] = [HA]$ es medida a través de la movilidad efectiva del analito con respecto al marcador del flujo eletroosmótico. Una vez obtenido el grafico de movilidad efectiva en función del pH, se determina la movilidad de $[A^-]$ a la mitad de su valor máximo en la curva, ya que en este punto se cumple la relación de $[A^-]$ =

Figura 14. Comportamiento electroforético de la relación existente entre [A⁻] y [HA] en función del pH.

Cuando un compuesto esta neutro la movilidad de éste es cero o muy cercana a cero, en cambio para las moléculas iónicas es diferente, teniendo como movilidades negativas a los aniones y como movilidades positivas a los cationes, de acuerdo a la magnitud de la carga de los iones serán los valores de movilidad, esto esta representado mediante la ecuación general de la movilidad y por lo tanto se calculará con la ecuación de movilidad efectiva.

De aquí que la movilidad dependa de la carga del ión, si en cada pH se trabaja con la misma viscosidad.

Espectrofotometría

Actualmente los métodos espectrofotométricos de titulación son ampliamente utilizados para la obtención de las constantes de disociación, para compuestos solubles en agua que tienen alta pureza o que tienen impurezas imperceptibles en la medición espectrofotométrica. La principal ventaja de estos métodos es la sensibilidad para compuestos que tienen coeficientes de absorción molar elevados.

La espectroscopia y los métodos espectrométricos hacen referencia a la medida de la intensidad de la radiación electromagnética mediante un detector fotoeléctrico o con otro tipo de dispositivo electrónico. ⁽⁴⁾

La radiación electromagnética se representa como un campo eléctrico y otro magnético, con oscilaciones sinusoidales en un ángulo recto de uno respecto al otro y a una dirección de propagación. ⁽⁵⁾ Las ondas de luz están constituidas por campos eléctricos y magnéticos oscilantes, perpendiculares entre sí. La longitud de onda λ , es la distancia entre la cresta y cresta de una onda. La frecuencia es el número de oscilaciones completas de la onda por segundo. Representado en la **Fig. 15** para un rayo de radiación electromagnética polarizada en un plano.

Espectro de Absorción UV-Vis

La región ultravioleta visible se define como la radiación asociada a la absorción en un intervalo de 200 a 700 nm, para la región de ultravioleta corresponde una longitud de onda de 200 a 400 nm y para la región visible la longitud de onda de 400 a 700 nm. ⁽⁴⁾ Fig. 16. La absorción de fotones en esta región del espectro electromagnético se debe a la presencia de grupos funcionales de la molécula a los cuales se denomina cromóforos. Este tipo de grupos pueden ser desde un par de electrones de no enlace, hasta una serie de dobles enlaces conjugados y varios grupos funcionales como el grupo carbonilo, nitro etc. ⁽⁴⁾ La absorción de una sustancia depende directamente de la cantidad de grupos absorbentes que presente el compuesto, por lo que a mayor cantidad de grupos la longitud de onda a la que absorba el compuesto será mayor. ⁽³⁹⁾

Fig. 16. División del espectro electromagnético y de la región del ultra violeta-visible.

Los fotones de energía que se emiten en la región del UV-Vis son capaces de hacer que los electrones de una molécula puedan ser elevados a un nivel de energía mayor, para que se pueda llevar a cabo la excitación de electrones de valencia de los átomos es necesario que el compuesto absorba un fotón. ⁽³⁹⁾ Cuando una partícula absorbe un fotón, la energía de la partícula se incrementa la partícula se encuentra en un estado excitado y cuando una partícula emite un fotón, su energía disminuye por lo que se encuentra en estado de menor energía denominado estado basal o fundamental, como se muestra en la **Fig. 17**.

Los espectros moleculares de UV-Vis se deben principalmente a cuatro tipos de transiciones entre los niveles de energía. En la **Tabla 4** se observan las principales transiciones que se llevan a cabo en la espectrofotometría UV-Vis, las λ a las cuales se lleva a cabo cada una de ellas y algunos ejemplos de grupos cromóforos

Tipo de Transición	Rango de Longitudes de onda λ (nm)	Ejemplos
σ → σ*	menor a 200nm	С-С, С-Н.
$n \rightarrow \sigma^*$	160-260	H ₂ O, CH ₃ OH, CH ₃ Cl
$\pi \longrightarrow \pi^*$	200-500	C=C, C=O, C=N, C <u>=</u> C
n → π*	250-600	C=O, C=N, N=N, N=O

Tabla 4. Principales transiciones electrónicas en espectrofotometría UV-Vis.

La espectroscopia de absorción se basa en la medida de la transmitancia (T) o de la absorbancia (A) de disoluciones que se encuentran en celdas transparentes que tienen un paso óptico (b) en cm. $^{(4,39)}$

Cuando una muestra absorbe luz, la potencia radiante del haz de luz disminuye. La potencia radiante (P) se evalúa como energía por segundo por unidad de área del haz de luz. La luz policromática se hace pasar por un monocromador (un filtro de absorción, una rejilla de difracción o un prisma para aislar una longitud de onda). Este rayo de luz monocromática de potencia radiante (Po) incide sobre una muestra de espesor (b) la potencia radiante del haz emergente es (P), la muestra puede absorber una fracción de la luz, de manera que $P \le Po$

La transmitancia (T) se define como la fracción de luz que traspasa la muestra, es la manera en la que se mide la atenuación de un haz luminoso basado en la comparación entre la intensidad de la radiación transmitida:

$$\mathbf{T} = \frac{\mathbf{P}}{\mathbf{P}\mathbf{o}}$$

Ec.. 27

Donde: T : transmitancia P : intensidad de la radiación que emerge después de atravesar la disolución que contiene la especie absorbente. Po : radiación de la intensidad incidente

Ley de Lambert-Beer

Una magnitud más útil es la absorbancia, la cual esta definida por la ecuación conocida como ley de Lambert-Beer. Esta ley fue establecida gracias a los trabajos del matemático francés Lambert y al físico alemán Beer, los cuales fundamentaron las bases de la fotometría. La fórmula que describe el comportamiento de la absorbancia con respecto a la concentración del analito absorbente es la siguiente:

Generalidades

$$\mathbf{A}^{(\lambda)} = \mathbf{\varepsilon}_{\mathbf{x}} {}^{(\lambda)} \mathbf{b} \mathbf{C}^{\mathbf{x}}$$

Ec.28

Donde A: absorbancia adimensional ε : coeficiente de absortividad de la especie b: longitud del paso óptico C: concentración de la especie absorbente λ : una determinada longitud de onda

La ecuación muestra la relación de proporcionalidad de la absorbancia con la concentración del analito.

El llamado coeficiente de absortividad molar también es conocido como el coeficiente de extinción y es específico para cada compuesto químico; donde la absortividad es una constante de proporcionalidad independiente de la concentración, del paso de luz e intensidad de la radiación, cabe mencionar que este coeficiente puede tomar diferentes valores debido a que depende de la temperatura, disolvente, estructura molecular y longitud de onda de la radiación a la que se realicen las mediciones, las unidades de ε se determinan a partir del espesor de la celda y de la concentración de la muestra.⁽⁴⁾

Aditividad de las absorbancias

La ley de aditividad menciona que la absorbancia total es la suma de las contribuciones de sustancias que absorben a cierta longitud de onda, como se determina en la siguiente ecuación:

$$A^{\lambda}_{T} = \Sigma^{n}_{i=1} A^{\lambda}_{i}$$

Ec. 29

Donde $A_{T}^{\lambda} = La$ absorbancia total a una longitud experimental $\Sigma_{i=1}^{n} A_{i}^{\lambda} = Suma$ total de todas las sustancias que absorben

Supongamos que tiene dos celdas del mismo espesor (b) que contiene en disolución dos sustancias diferentes por lo tanto cada una tiene una concentración Cx y Cy.

Por otra parte si se supone que se tiene una única celda de espesor (b) conteniendo a su vez las dos sustancias a las concentraciones respectivas Cx y Cy con luz monocromática. Lo que dice la ley de la aditividad que la absorbancia resultante de la celda con ambas sustancias es igual a la suma de las Ax y Ay de las otras dos celdas, como se muestra en la siguiente ecuación:

Generalidades

$$A_{x,y}^{\lambda} = -\log \underline{P}_{x,y}, A_{x}^{\lambda} = -\log \underline{P}_{x}, y A_{y}^{\lambda} = -\log \underline{P}_{y}$$

Por lo tanto

$$A^{\lambda} = A^{\lambda}_{x} + A^{\lambda}_{y}$$
Ec. 31

Por lo que la ley de la aditividad establece que independientemente de que los analitos se encuentren solos o en mezcla, se tiene el mismo valor de absorbancia

Al aplicar la ley de Beer y aditividad se obtiene la siguiente ecuación:

$$A = A_x + A_y = b \left(\varepsilon_x C_x + \varepsilon_y C_y \right)$$

Ec. 32

Ec..30

La primera componente de la igualdad se conoce como ley de aditividad y la segunda la ley de Beer para (X) y (Y). $^{(40)}$

Valoraciones espectrofotométricas

En las valoraciones se miden los cambios de absorbancia de una disolución durante los cambios de pH. Estos cambios indican diferencias en la concentración de alguna especie absorbente. ⁽⁴⁸⁾ Posee la ventaja sobre muchos otros métodos, los datos experimentales se toman lejos de la región del punto de equivalencia, así las reacciones de valoración no necesitan constantes de equilibrio tan favorables, por esa misma razón pueden valorarse soluciones relativamente diluidas. ⁽⁴⁾ Con ellas es posible la determinación de sustancias no absorbentes, puesto que sólo es necesario que absorba una de estas especies: reactivo valorante, sustancia a valorar o producto de reacción.

Determinación de las constantes de acidez por UV-Vis.

La determinación se basa en el espectro de absorción, el cual es característico de moléculas orgánicas con grupos funcionales ácidos o básicos dependientes del pH del medio.

Para la determinación de la constante es necesario conocer el valor de pH y las concentraciones (en sentido estricto de las actividades) de las formas ácidas y básicas. La relación entre (A^-) / (HA) puede determinarse espectrofotométricamente si se conocen las correspondientes absortividades molares E_{HA} y E_{A} -, las cuales pueden obtenerse desplazando el equilibrio virtualmente hacia la derecha o hacia la izquierda mediante la adición de un exceso de base y ácido respectivamente.⁽⁴⁰⁾

Cuando (HA) = (A⁻), el valor del pKa = pH y este valor de pH corresponde a la mitad de la curva de valoración fotométrica, esto es, al 50% de la valoración del ácido. Este punto puede obtenerse representando gráficamente la absorbancia a una determinada longitud de onda frente al pH. En la **Figura 18**, representa el espectro de absorción de un indicador ácido-base a distintos valores de pH. El punto donde se cruzan los espectros se denomina punto isosbéstico, la presencia de un punto isosbéstico evidencia la presencia de dos especies absorbentes. ⁽⁴¹⁾

Figura 18. Punto de isoabsorción ubicado mediante la integración de espectros de absorción.

El lado izquierdo de la gráfica representa los diferentes espectros de absorción en función del pH, al tomar la absorbancia a 392 nm se obtiene la curva de la derecha que muestra la diferencia del cambio de su forma ácida en la parte inferior y su forma básica en la parte superior. La determinación del pKa se realiza a través del punto de inflexión.

Interpretación de puntos isosbésticos

La posición de un equilibrio ácido-base varía con el cambio del pH, una especie absorbente HA se convierte en otra especie absorbente A^- a medida que el pH se vuelve más básico según:

$$HA \xrightarrow{\longrightarrow} H^+ + A^-$$

Ec. 18

La existencia de este equilibrio se corrobora experimentalmente mediante la observación de al menos un punto en el que toda la familia de espectros presenta un mismo valor de absorbancia a una longitud de onda. A este punto, donde la absortividad molar de cada especie es idéntica, se le denomina punto isosbéstico.

La aparición de dos o más puntos máximos de absorción en un espectro, puede ser el resultado de más de una transición electrónica de una especie pura o la existencia de más de una especie. (42-45)

Métodos para la determinación de pKa's

La espectrofotometría es uno de los métodos más ampliamente usados, en el caso de sistemas sencillos, es decir, los que involucran un solo equilibrio químico, el procesamiento de los datos puede ser suficientemente profundo aplicando los métodos tradicionales, pero el caso de sistemas más complicados, aquellos que involucran dos o mas equilibrios químicos, el tratamiento de los datos requiere la aplicación de métodos gráficos más desarrollados o bien de métodos computacionales.

En estos casos la molécula debe poseer grupos cromóforos cercanos a los grupos ionizables de la molécula, así como la capacidad de ser susceptibles a la influencia de la ionización, para poder obtener espectros de absorción lo suficientemente diferentes cuando la molécula esta neutra y cuando esta ionizada. Entonces para la medición del pKa por medio de espectrofotometría es necesario realizar barridos, debido a que durante la titulación los espectros de absorción cambian debido a que varía la cantidad de especie neutra y de las especies ionizadas a lo largo del proceso, estos cambios son usualmente identificados mediante la aplicación de la primera derivada a los gráficos de absorbancia contra el cambio de pH de los sistemas, o bien con la superposición de los espectros individuales que presenta la molécula en cada pH.

Para llevar a cabo la determinación de las constantes es necesario que el sistema se encuentre en equilibrio o al menos en estado estacionario, que cumpla con las leyes ideales de absorción y de la estequiometría simple.

Al existir más de un equilibrio representativo para determinar las constantes es necesario recurrir a los métodos gráficos que involucran funciones lineales desarrolladas a partir de parámetros fisicoquímicos tales como el coeficiente de absortividad molar y la constante de equilibrio. ⁽⁴⁸⁾ Entre los métodos gráficos tradicionales más usados se encuentran el método de relaciones molares y el de variaciones continúas.

El método de relaciones molares consiste en determinar valores de absorbancia a una longitud de onda para diferentes sistemas donde la fracción molar de todos los componentes, excepto uno, se mantiene constante mientras que la de este último se hace variar. La determinación de la estequiometría de la reacción de formación se estima por el cambio de pendiente en función de la absorbancia contra la fracción mol y la constante de equilibrio se estima de la desviación de las absorbancias experimentales con respecto a la absorbancia del caso límite. **El método de variaciones continúas** se mantiene constante la concentración de las especies a partir de estas se prepara una serie de disoluciones en la que la concentración total es constante, pero la relación de concentraciones de las especies es variable, se mide la absorbancia de cada uno de los sistemas de la serie a la longitud de onda óptima de absorción de complejo frente a la fracción molar. En 1941 Vosburgh y Cooper demostraron que este método se aplicaba a complejos de relación molar superior.⁽⁴⁶⁾

Los métodos gráficos presentan ciertas limitaciones como son la existencia de un solo equilibrio representativo del sistema estudiado, además que la reacción sea cuantitativa y la estequiometría de la reacción no sea muy complicada.

Por lo que se han desarrollado diversos modelos algebraicos expresados en función de los coeficientes de absorción de las diferentes especies involucradas y las constantes de equilibrio cuya complejidad depende de cada una de las incógnitas del sistema. Dichos métodos permiten determinar indirectamente estas incógnitas a partir de ecuaciones lineales que de manera directa sería imposible conocer. Entonces si el modelo es demasiado complicado se recurre a sistemas computacionales que mediante pruebas estadísticas facilita el cálculo de dichos parámetros.

Programas computacionales

Actualmente se cuenta con métodos computacionales que superan las limitaciones de los métodos gráficos. Estos métodos refinan las constantes de equilibrio en sistemas multirreaccionantes y multicoponentes complicados. Los resultados son evaluados por parámetros estadísticos como desviación estándar y suma de cuadrados. ⁽⁴⁵⁻⁴⁷⁾

De acuerdo con la naturaleza de los datos espectrofotométricos los datos están divididos dentro de tres grupos:

- Programas para el tratamiento de curvas individuales, por ejemplo: A = f (pH), curvas de relación molar, etc. (MRLET, MRFIT).
- Programas para el tratamiento de un juego de espectros de absorbancia, por un análisis de matrices de absorbancia. Estos programas permiten identificar un modelo químico que describa los datos experimentales de sistemas muy complicados. (SQUAD algoritmo Gauss-Newton, FA608+EY608).
- Programas para el tratamiento de datos espectrofotométricos y potenciométricos simultáneamente. (PSEQUA algoritmo Gauss-Newton, DALSFEK algoritmo Marquardt). ⁽⁴⁸⁾

COMPUESTOS LQM'S ESTUDIADOS

Los compuestos que se analizarán en el presente estudio son los LQM's; 344, 345 y 351 derivados del fenol, los datos reportados hasta el momento son los siguientes:

LQM 344

Sintesis: p-Nitrofenol + formaldehído + piperidina Nombre común: LQM 344 Nombre IUPAC: 4-nitro-2-(piperidin-1-ilmetil)fenol Formula condensada: $C_{12}H_{16}N_2O_3$ Peso molecular: 236.26704 g/mol Características físicas: agujas color amarillo Solubilidad: metanol, etanol.

LQM 345

Estructura Química

Sintesis: p-Nitrofenol + formaldehído + piperidina Nombre común: LQM 345 Nombre IUPAC: 4-nitro-2,6-bis(piperidin-1-ilmetil)fenol Formula condensada: $C_{18}H_{27}N_3O_3$ Peso molecular: 333.4253 g/mol Características físicas: agujas color amarillo Solubilidad: metanol, etanol.

LQM's Compuestos estudiados

LQM 351

Estructura Química

Sintesis: p-Isopropilfenol + formaldehído + piperidina Nombre común: LQM 351 Nombre IUPAC: 4-isopropil-2,6-bis(piperidin-1-ilmetil)fenol Formula condensada: $C_{21}H_{34}N_2O_1$ Peso molecular: 330.5075 g/mol Características físicas: polvo color blanco Solubilidad: metanol, etanol.

Material, instrumentos y reactivos

Material

- Barras magnéticas (Spinbar Round Pyrex)
- Espátula
- Filtros de policarbonato para membranas de 0.45 µm (Milipore)
- Matraces volumétricos de 5, 50, 100, 250, 500 y 1000 mL (Pyrex)
- Membranas de filtración de tamaño de poro de 45 µm Milipore)
- Micropipetas de 10 100 μL, 100- 1000 μL (Brand)
- Micropipetas de 1000- 10000 µL (Eppendorf)
- Picetas
- Pipetas volumétricas de 20 y 50 mL (Pyrex)
- Propipetas (Pequannock NJ)
- Viales de 2 mL con tapón (Beckman Coulter. Fullerton, CA, USA)
- Viales de 500 µL. con tapón (Beckman Coulter. Fullerton, CA, USA)
- Vasos de precipitados de 50, 100, 250 y 500 mL (Pyrex)

Instrumentos

- Agitador magnético (Ika colorquid)
- Balanza analítica (Santorius BP221S)
- Capilar de sílice fundida, longitud variable con un diámetro interno de 75 μm y 375 μm de diámetro externo (Beckman Coulter. Fullerton, CA, USA)
- Equipo de socnicador de agua (Purelab Classic)
- Espectrofotómetro UV-Vis (Beckman Coulter. Fullerton, CA, USA)
- Instrumento EC P/ACE MDQ con detector de UV-Vis de arreglo de diodos (Beckman Coulter. Fullerton, CA, USA)
- Parrilla eléctrica (Thermolyne)
- Potenciómetro (Beckman Coulter. Fullerton, CA, USA)
- Refrigerador
- Ultrasonido (LC30H Elma)

Reactivos

- Acetona (Productos Químicos Monterrey)
- Ácido acético (Productos Químicos Monterrey)
- Ácido acético glacial (Productos Químicos Monterrey)
- Ácido ortofosforico (Productos Químicos Monterrey)
- Ácido clorhidrico (Productos Químicos Monterrey)
- Agua desionizada (Purelab Classic)
- Buffer estándar pH 4, 7 y 10 (Beckam Coulter Inc)
- Tetraborato de sódio decahidratado (JT Baker AS. de CV)
- Fosfato de sódio monobásico (Reactivos Químicos Meyer)
- Fosfato de sódio dibásico (Reactivos Químicos Meyer)

Material, instrumentos y reactivos

Reactivos

- Fosfasto de sódio tribásico (Reactivos Químicos Meyer) •
- Hidroxido de sódio (Productos Químicos Monterrey) •
- Metanol grado analítico (Tecsiquim)
 Refrigerante Flurinert TM FC-77 (Beckman P/ACE TM System 2000 Capillary Cartridge Coolant)

Preparación de disoluciones y estándares para Electroforesis Capilar.

Para la determinación de las constantes de acidez por la técnica de electroforesis capilar, se mantuvo fijo el valor de pH y la fuerza iónica del electrolito soporte. Esto se logró a través de la adición de ácido clorhídrico o hidróxido de sodio (SV) respectivamente, así como la cantidad necesaria de NaCl (s).

Las disoluciones requeridas fueron:

Disolución de Borato de sodio a 0.02 M para la titulación.

Esta disolución es una parte importante de la experimentación, ya que de ella depende el grado de precisión con el que se establecerá la fuerza iónica de cada uno de los electrolitos soporte.

Se pesó con precisión 770.4 mg de borato de sodio en un matraz erlenmeyer, se adicionó la cantidad suficiente de agua para ayudar a la solubilización, se sometió a agitación, ya solubilizado se transfirió a un matraz volumétrico de 100 mL, se enjuagó el matraz erlenmeyer con agua desionizada, este procedimiento se repitió varias veces, con nuevas porciones de agua, sin que el volumen de agua se excediera a la marca de aforo del matraz, se llevó a la marca de aforo con agua desionizada, se invirtió el matraz varias veces para asegurar la homogeneización de la disolución, se vertió en un recipiente de polietileno y se determinó la concentración a través de los cálculos pertinentes.

Disolución de Ácido clorhídrico 0.1M

La preparación de la disolución de HCl, se realizó en una campana de extracción, por la volatilidad de este compuesto, se vertió en un vaso de precipitados una cantidad suficiente de HCl concentrado, se tomaron 2.10 mL, se colocaron en un matraz volumétrico (250 mL) que contiene cierta cantidad de agua desionizada, posteriormente se adicionó la cantidad de agua suficiente para poder disolver mediante una suave agitación, sin llevar a la marca de aforo. Se retiró de la campana de extracción, se añadió la última porción de agua hasta la marca de aforo. Finalmente, manteniendo apretado el tapón, se invirtió el matraz varias veces para homogeneizar la disolución, se depositó en un recipiente de polietileno. La concentración se obtuvo a través de la valoración con la disolución de tetraborato de sodio, las valoraciones se realizaron mediante el uso de indicadores visuales, así como potenciométrico.

Disolución de Hidróxido de Sodio 0.1M

Se realizó la misma serie de pasos que para la disolución de tetraborato de sodio decahidratado anexando los siguientes. La pesada por diferencia, útil para reactivos higroscópicos como el hidróxido de sodio, se pesó primero el frasco cerrado que contiene al reactivo seco después se vertió rápidamente una porción del reactivo en un recipiente, se tapó el frasco de origen y se pesó de nuevo, se determina la diferencia de masa del reactivo tomado del frasco. La cantidad pesada fue de 1.010 g para 250 mL de disolución, para la determinación de la concentración se utilizó como reactivo valorante al HCl previamente estandarizado.

Disoluciones estándar de LQM 344, 345 y 351., para Electroforesis Capilar.

Se pesó aproximadamente 0.01 g de LQM en un matraz volumétrico de 5 mL, se adicionó la cantidad suficiente de metanol para su solubilización, se sometió a agitación con ayuda de un agitador magnético hasta completar la disolución, se llevó a la marca de aforo con metanol, se invirtió el matraz varias veces para asegurar la homogeneización de la disolución. Las disoluciones se vertieron en viales obscuros con tapas de rosquilla, etiquetaron y se almacenan a una temperatura de 4 a 8° C.

Electrolitos soporte^(12, 16)

Los electrolitos soporte se prepararon dependiendo del pH a analizar, el rango estudiado fue de 2.00 a 12.50 unidades de pH, para lo cual se estableció que el intervalo de variación sería de 0.3 unidades de pH, en la siguiente tabla se muestra el par ácido – base utilizado en los diferentes rangos de amortiguamiento de la serie de compuestos elegidos:

Rango de pH	Par ácido/base	Intervalo de amortiguamiento*			
2.00 - 3.50	$H_3PO_4/H_2PO_4^-$	2.12	1.5 - 3.00		
3.50 - 5.70	CH ₃ COOH/CH ₃ COO ⁻	4.76	3.70 - 5.80		
6.00 - 8.20	$H_2PO_4^-/HPO_4^{-2-}$	7.21	5.80 - 8.20		
8.20 - 10.70	H ₃ BO ₃ /H ₂ BO ₃ ⁻	9.50	8.00 - 10.60		
10.9 - 12.00	HPO4 ^{2-/} PO4 ³⁻	12.32	10.80 - 11.80		

Tabla 5. Par ácido-base de los electrolitos utilizados.

* (8,14)

Se realizaron los cálculos necesarios para obtener la cantidad de compuesto requerido para una concentración de 20 mM, a través de una hoja de cálculo de Excel **Figura 19**, en la cual se registraron las cantidades pesadas y se obtuvo el valor de la concentración real, así como, los mililitros adicionados de HCl o NaOH (SV) para obtener la cantidad de NaCl requerida para mantener constante la fuerza iónica del sistema a 0.05*M*.

Desarrollo experimental

	Nicrosof	it Excel	- Buffer	e oure	uio e		uu pu							porm							ð 🔀
:0	Archivo	Edición	n <u>V</u> er	Insertar	Eormato	Herran	ientas (Datos I	/e <u>n</u> tana	2 Adob	e PDF						Ës	criba una p	regunta	÷ 4	e ×
113	】 ● 見入 書 凶 氏・・・ 服 Σ・ ω 📲 Callori ・ 10 ・ N X S 🗧 🗧 海河 S % 00 € 品 怨 津 崇 用・30・A・1																				
-			a lengt		*		-	-		-		e		1 - +	11.40						
: 2		-			-																
-	V15	7	Ţx	=(((J15))*(K15*2))+((L15*	M15*2))+	+((ພາຣາ	-15/2))+	((U15*R1	5/2))+((S15*12))+((515*	12)))/2					* 1		-
	Б	6		E .	-F	u	н	- 1	Dren	K		101	N	U	٣	Q.	F	3	1	0	-
1							_		Prepa	aracior	i de B	uner		_				-	_		-1
3			н			1.00	Na3PO4	-	N	asal	PC)4 sal		H+ o	Na+	CI- u	OH-	1	1000		
Ť	Escala	aH	pH	1000	Vol	k z	Concen	Na en	CONC	cargaNa	CONC		mi de	and the second		a man		concent	mg de	mg de	
4	de pH	inicial	interme	pH final	aforo	usada	tración	sal	Na sal	Sal	fosfa	carga	NaOH 0.0715M	CONC	carga	CONC	carga	racion de NaCI	NaCL nara el	NaCl	erz;
5	12.5	11.93	12.42	12.21	50	Na3PO4	0.002	3	0.011999	1	0.004	3	5.5	0.007865	1	0.0078650	1	0.018137	53.00507	88	0.
6	12.5	11.7	12.46	12.43	50	Na3PO4	0.002	3	0.012423	1	0.004141	3	9	0.012870	1	0.0128700	1	0.012284	35.89939	73.3	0.
1	12	11.79	12.26	12.1	100	Na3PU4	0.002	3	0.01203	1	0.00401	3	4	0.002860	1	0.0028600	1	0.023079	134.8972	207.9	0.
9	117	12.0	12.03	11.01	50	Na3PD4	0.002	3	0.006262	1	0.002034	3	3.0	0.0000000	1	0.00000000	1	0.032431	39.77027	0.1006	0
10	11.5	11.13	11.52	11.39	50	Na3PO4	0.002	3	0.006015	1	0.002005	3	1	0.001430	1	0.0014300	1	0.03654	106,7868	0.1069	ŏ
11	10.5	9.23	10.83	10,63	50	2B407-10H	0.002	2	0.00609	1	0.00203	2	3.2	0.004576	1	0.0045760	1	0.038319	111.9873	115.5	0.
12	10.2	9.22	9.34	9,84	50	2B407-10H	0.002	2	0.006059	1	0.00202	2	2	0.002860	1	0.0028600	1	0.040071	117.1085	117.3	0.
13	10	6.35	7.54	7.73	50	H3BO3	0.002	0	0.002253	1	0.002253	1	0.1	0.000143	1	0.0001430	1	0.047604	139,1239	0,1398	0.
14	9.5	5.53	9.46	9.51	50	H3BO3	0.002	0	0.002188	1	0.002188	1	1.1	0.001573	1	0.0015730	1	0.046239	135.1328	0.1358	
10	9.3	4./9	9.54	9.33	50	H3BU3	0.002	0	0.002092	1	0.002092		0.85	0.001216		0.0012155	1	0.046693	136,4537	0.1363	<u></u>
17	88	546	9.25	9.15	50	H3BO3	0.002	0	0.002124	1	0.002124	1	0.75	0.001073	1	0.0010725	1	0.0468771	136,5326	0.1368	0.
18	8.8	5.86	8,96	8.85	50	H3BO3	0.002	Ű	0.002156	1	0.002156	1	0.5	0.000715	1.001	0.0007150	i	0.047129	137.7344	0.1376	0.
19	8.5	6.1	8.67	8.85	50	H3BO3	0.002	0	0.00222	1	0.00222	1	0.46	0.000658	1	0.0006578	1	0.047122	137.7134	0.1382	0.
20	8.5	6.02	8.6	8.77	50	H3BO3	0.002	0	0.00206	1	0.00206	1	0.4	0.000572	1	0.0005720	1	0.047368	138.4344	0.1383	0.
21	8.4	5.92	8.29	8.3	50	H3BD3	0.002	0	0.002092	1	0.002092	1	0.29	0.000415		0.0004147	1	0.047494	138.8001	0.1392	0.
22	8	6.41	7.71	7.8	50	H3BO3	0.002	0	0.00206	1	0.00206	1	0.2	0.000286	1	0.0002860	1	0.047504	139,615	0.1401	0.
24	8.6	6.4	8.59	8.8	50	H3BO3	0.002	Ő	0.002253	1	0.002253	1	0.57	0.000815	1.011	0.0008151	1	0.046932	137,1597	0.1368	0.
25	7.5	6.25	7.13	7.73	50	H3BO3	0.002	0	0.002285	1	0.002285	1	0.9	0.001287	1	0.0012870	1	0.046428	135.6865	0.1359	0.
26	7.5	7.24	7.13	7.05	50	H3BO3	0.002	0	0.002381	1	0.002381	1	0.4	0.000572	1	0.0005720	1	0.047047	137.494	0.1378	0.
27	8.5	3.95	8.54	8.46	50	H3BO3	0.002	0	0.002349	1	0.002349	1	0.07	0.000100	1	0.0001001	1	0.047551	138.9671	0.1382	0.
28	1.5	6.36	7.54	7.45	50	H3BD3	0.002	U	0.002349	1	0.002349	1	0.07	0.000100	1	0.0001001		0.047551	138.9671	0.139	- 0.
20	Escala de pH requerid o	pH inicial	pH interme dio	pH final	Vol aforo (mL)	sal usada	Concen tración inicial	Na en sal	CONC Na sal	cargaNa Sal	CONC fosfa	carga	MI de HCI 0.05806 M	CONC	carga	CONC	carga	concent racion de NaCl para	mg de NaCL para el ajuste	l final	mj N Pi
31	11	11.63	11.52	10.31	50	Na3PD4	0.002	3	0.005984	1	0.001995	3	0.5	0.000723	1	0.0007230	1	0.037309	109.0366	0.050	10
32	11	8.22	8.22	8.31	50	Na3PO4	0.002	3	0.006157	1	0.002052	3	1	0.001446	1	0.0014460	1	0.036241	105.9138	0.050	1
33	11.2	11.43	11.31	11.23	50	Na3PO4	0.002	3	0.006157	1	0.002052	3	0.1	0.000145	1	0.0001446	1	0.037542	109.7172	0.050	1 T
34	11	11.24	11.07	10,93	50	Na3PO4	0.002	3	0.006	1	0.002	3	0.15	0.000217	1	0.0002169	1	0.037784	110.4239	0.050	-
35	10.7	11.39	11.13 11.2F	10.39	50	Na3PO4	0.002	3	0.006157		0.002052	3	0.22	0.000318		0.0003181		0.037369	109.2101	0.050	-
37	10.5	11.43	11.23	11.01	50	Na3PD4	0.002	3	0.006031	1	0.002036	3	0.25	0.000362	1	0.0003760	1	0.037405	109.3164	0.050	-
38	10.5	11.48	11.08	10,94	50	Na3PO4	0.002	3	0.006094	1	0.002031	3	0.35	0.000506	1	0.0005061	1	0.037306	109.0279	0.050	10
39	10.5	11.53	10,94	10.84	50	Na3PO4	0.002	3	0.006031	1	0.00201	3	0.64	0.000925	1	0.0009254	1	0.037013	108.1696	0.050	10
40	10.5	11.37	10.46	10.1	50	Na3PO4	0.002	3	0.006157	1	0.002052	3	0.8	0.001157	1	0.0011568	1	0.03653	106.759	0.050	1v
14	AH A I	Buffer	/ Valorad	iones /	Hoja3 /	1							4	101							2
Listo						-			_					_	-	_	_	_	NUM	2	
1	Inicio	0	0 6 (s · · ·	Tesis I	ANY5	E Tes	Is ANY5		EC		· 9 DE#	RROL	💌 Mie	rosoft E.		-		1.60	9 01/2	2.a.m.

Figura 19. Hoja de cálculo utilizada para establecer la fuerza iónica experimental.

Establecida la cantidad requerida del par ácido-base, se procedió a pesar con exactitud en un vaso de precipitado, se adicionó la cantidad suficiente de agua para ayudar a la solubilización, a la disolución se le midió la concentración de iones hidronio a través de un potenciómetro (previamente calibrado) obtenido el valor se ajustó el pH adicionando los mililitros de HCl o NaOH según los requerimientos, tomando en cuenta la relación deseada en la variación de pH (0.3 unidades). Esta disolución se mantuvo en agitación hasta que no presentara cambios bruscos en los valores de pH, ya estable se añadió la cantidad de NaCl dependiendo de los mililitros de HCl o NaOH previamente adicionados. Se sometió a agitación para posteriormente medir el pH del sistema, se vertió en un matraz volumétrico de 50 mL, se adicionó la cantidad de agua necesaria para llevar a la marca de aforo, se homogenizó la disolución a través de la inversión del matraz en varias ocasiones, se filtró utilizando una membrana de 0.45 μ m. (Milipore) ⁽⁸⁾, posteriormente se desgasificó por socnicación en un equipo de ultrasonido (ELMA ULTRASONIC LC 30H) por un lapso de 10 minutos y finalmente se volvió a medir el pH.

Cada una de los electrolitos soporte fue realizado conforme se avanzaba en la experimentación, de acuerdo al método establecido para la determinación electroforética, con la finalidad de que no existieran variaciones importantes, como es, el cambio de pH del sistema. ⁽¹⁰⁾

Metodología empleada para la determinación de las constantes de acidez por Electroforesis Capilar

Preparación de la muestra

Cada compuesto se estudió por separado, para lo cual se tomaron 80 μ L de disolución estándar de LQM se vertieron en un vial que contenía 1 mL de electrolito soporte, posteriormente se adicionó 20 μ L de acetona (grado reactivo) como marcador del flujo electroosmótico⁽¹¹⁾.

Condiciones instrumentales

- El análisis se efectuó en un instrumento de electroforesis capilar EC P/ACE MDQ (Beckman Coulter. Fullerton, CA, USA). Utilizando un detector de arreglo de diodos y UV-Visible.
- Se realizó el barrido en un intervalo de 190 a 600 nm, se habilitaron dos longitudes de onda fija a 200 y 260 nm en donde absorbe la acetona.
- El capilar utilizado fue de sílice fundida, sus dimensiones fueron, 75 μ m de diámetro interno, 375 μ m de diámetro externo, con 60 cm de longitud total y 50 cm de longitud al detector.
- Se aplicó un voltaje de 20 kV.
- Se estableció la temperatura a 25 ° C. La temperatura ejerce un papel importante en la determinación de las constantes ya que la movilidad de los analitos y del FEO están relacionados con este parámetro.
- El acondicionamiento de un capilar nuevo se efectuó introduciendo HCl por 5 min, agua por 10 min y para activar los grupos silanoles de la pared del capilar se introduce NaOH durante 10 min.
- Al finalizar el análisis, el capilar debe lavarse con agua desionizada por un lapso de 10 min y 5 min con aire, para eliminar los líquidos residuales dentro del capilar y que este quede seco.

Desarrollo experimental

La metodología experimental empleada para la determinación de la movilidad aparente de los compuestos fue la siguiente:

1. Para iniciar la metodología para la separación de una muestra fue necesario limpiar el capilar y esto se logró a través del paso de agua, NaOH (0.1M), finalizando con agua desionizada. Este se realizó al comenzar el análisis, es decir antes de la primera corrida, con la finalidad de obtener datos que entren dentro de los parámetros estadísticos para este tipo de análisis.^(9.24)

2. El acondicionamiento del capilar se logró con el electrolito soporte al hacerlo pasar a través del capilar (constituye el medio de conducción de la corriente eléctrica), con la finalidad de que los grupos silanol de la pared del capilar queden o no ionizados. Se realizó seguido del paso anterior y cuando se hizo un cambio de electrolito soporte.

3. Se introdujo la muestra de forma hidrodinámica.

4. Para la separación, el capilar debía de estar en los viales que contenían el electrolito soporte, en donde se aplicó la diferencia de potencial, en el transcurso de la separación los compuestos migraron con relación a su carga, masa y estructura hacia el extremo derecho del capilar en donde se encuentra el detector, así la acetona fue utilizada como marcador del flujo electroosmótico.

5. La separación tuvo lugar a lo largo del tiempo, para las señales establecidas en el sistema estudiado se obtuvieron los electroferogramas, los tiempos de migración del compuesto y del marcador del flujo electroosmótico para su posterior análisis. Cada compuesto fue analizado por triplicado a cada valor de pH.

Preparación de disoluciones y estándares para UV-Vis.

Disoluciones de estándares de LQM 344, 345 y 351.

Se pesó con precisión 50 mg de LQM en un vaso de precipitado, se adicionó la cantidad suficiente de metanol para solubilizar a través de la agitación con ayudad de un agitador magnético, esta disolución se vertió en un matraz volumétrico de 25 mL, se llevó a la marca de aforo con agua desionizada observando que no hubiera precipitación, esta disolución se trasvaso en un recipiente de polietileno, se tapó, refrigeró para que no existieran cambios bruscos en la concentración del LQM.

La preparación de las disoluciones para realizar la valoración son las siguientes:

Disolución ácida

Se vierten 5 mL de la disolución estándar del analito a analizar en un matraz volumétrico de 250 mL, así como la cantidad necesaria de NaCl para mantener fija la fuerza iónica, se lleva a la marca de aforo con el HCl (disolución valorada), se almacena en un recipiente de polietileno a una temperatura de 4 - 8° C.

Disolución básica

Se vierten 5 mL de la disolución estándar del analito en un matraz volumétrico de 250 mL, así como la cantidad necesaria de NaCl para mantener fija la fuerza iónica, se lleva a la marca de aforo con el NaOH (disolución valorada), se almacena en un recipiente de polietileno a una temperatura de 4 - 8° C.

Metodología empleada para la determinación de las constantes de acidez técnica de UV-Vis

Condiciones instrumentales

- Se utilizó un espectrofotómetro de UV-Visible DU-800 (Beckman Coulter), con lámpara de tusgteno y UV.
- Se fijo la longitud de onda de análisis de 200 a 800 nm.
- Se estableció como blanco agua desionizada.
- El intervalo de variación de fue de 0.30 unidades de pH.
- La temperatura se mantuvo en un intervalo de 24.5 a 25.5° C.

Valoración espectrofotométrica

1. Se montó el sistema, es decir, se colocó un vaso de precipitado de 250 mL de capacidad sobre un agitador magnético, dentro del vaso la barra magnética y el electrodo combinado para la medición de los cambios de pH, así como la disolución ácida o básica a valorar.

2. Se calibró el espectrofotómetro (Beckman Coulter) empleando agua desionizada como blanco. Se realizó una metodología para proceder al análisis de las muestras de la valoración con relación al software del equipo. Las lecturas de absorbancia se realizaron de 200-800 nm.

3. Antes de iniciar la valoración se midió el pH de la disolución ácida y básica, se tomó una muestra de 1.5 mL que se vertió en la celda del espectrofotómetro, para la realización del barrido, cada muestra fue analizada por triplicado.

4. Para la valoración ácido a base, se colocó 100 mL de la disolución ácida en el sistema, se comenzó la agitación sin dejar de observar el valor de la temperatura, posteriormente se adicionaron los mL necesarios de la disolución básica para obtener la variación de pH deseado, ya establecido el valor de pH se vertió la cantidad de 1.5 mL en la celda de cuarzo del espectrofotómetro y se realizó el barrido por triplicado.

5. Para la valoración de la disolución básica a ácida la única variante es al inicio de la titulación; la disolución contenida en el sistema es la básica y se adicionó la cantidad necesaria de la disolución ácida para obtener el valor de pH requerido.

Determinación de las constantes de acidez por el programa ACD-Labs

La versión utilizada del programa fue ACD/ChemSketch 13.00

La forma de obtener dichas constantes es, dibujar la estructura, establecer la importancia de los grupos funcionales característicos de la estructura, pedir el cálculo de pKa y automáticamente determinar los posibles valores.

Recordando que el programa tiene una limitante importante, ya que no es capaz de predecir los valores de dichas constantes si el numero de átomos excede a 25 unidades.

Eile	CD/C Edit	hemSketch (Freeware) - [noname01.sk2] Pages Tools Templates Options Documents	Add-Ons I-Lab ACD/Labs Help			- 7 X
Stru	cture	Draw 🖞 🗗 🚰 🖀 🎒 🐄 🔹	🖌 🔌 💢 👔 🔍 🔍 85.5% 💌 🎦	- * 2 # 3) 2	inChi 🐝 🎁 LogP Pub©h	em 📮 🖾
4	ð		⊕ + 1 % = 2+2 □ □ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 월 6 4 8 6	し あ ※ =	
	mm	0 50 	100 150	200	250	
A	0.					
Any			ACD/Labs Droducts			
С						-0
н			a second			
N			ACD/IC Simul	ator		t-Bu
F	50		III. ACD/ LC Summe	and i		i-Pr
Na			• Predict pKa values and retention	times		COCH3
Si			for LC separations			COOH
P	-		HPLC method optimization soft	ware		COPh
S						NO ₂
K			Visit Wahata Basistar Ordar	1.01		UAC CO H
Br	100					PD _a H _a
			Wouldn't it be great to type 'Draconic Acid' and instantly get the structure in ChemSketch?			10312
R			Now possible in commercial ACD/ChemSketch ver	sion.		
+	1		5			
IAQ						
#	1					
D.	150	<			1	~
×						More
http://	www	acdiabs.com/acdiabs-rss-feed.xml; 23:23 Can	not download RSSI http://www.acdlabs.com/acdlabs-rss	-feed.xml: 23:23 Cannot dowr	hload RSSI http://www.acdlabs	Setup RSS Properties
1-Cł	nem ^S	ketch 2-Database 3-ChemCoder				riopentes
1.01	Inte		Rit 6 Decarrollo avo - Mic 69 AcD/ck-uste	ub /Gr BC	363 4.8 4 19 4 A	11/25 n.m.

Figura 20. Hoja de procesamiento programa ACD/ChemSketch 12.01

DETERMINACIÓN DE LAS CONSTANTES DE ACIDEZ POR LA TÉCNICA DE ELECTROFORESIS CAPILAR.

Con lo que respecta al método de análisis para el equipo de Electroforesis Capilar, se establecieron algunos parámetros instrumentales obtenidos al realizar modificaciones en cuanto al tiempo de lavado y acondicionamiento del capilar, introducción de la muestra y voltaje aplicado, con la finalidad de encontrar las condiciones óptimas para la determinación de los tiempos de migración tanto de los compuestos estudiados como del marcador del flujo electroosmótico. La determinación de los parámetros instrumentales fue relevante para la obtención de las movilidades electroforéticas y su posterior análisis. La **tabla 6** muestra las condiciones a las cuales se realizó la determinación.

Parámetro	Valores			
Ciclo de lavado inicial (capilar nuevo)	5 min HCl. 10 min H ₂ O desionizada. 10 min NaOH 0.1M.			
Ciclo de lavado antes de cada sección	3 min H ₂ O desionizada. 10 min NaOH 0.1M. 2 min H ₂ O desionizada. 10 min Electrolito soporte.			
Ciclo de lavado entre muestras	5 min Electrolito soporte a 20 psi de presión.			
Introducción de la muestra	Hidrodinámica 5 psi por 5 seg. Introducción por el outlet.			
Separación	20 kV.			
Polaridad	Reversa			
Repetición	3 veces por cada valor de pH.			
Remplazó del buffer	Cada tres análisis.			
Cambio de pH del electrolito soporte	Acondicionar por un lapso de 10 min. con el buffer de corrida.			
Al finalizar el método	10 min H ₂ O desionizada. 5 min de aire.			

Tabla 6. Método instrumental empleado en el equipo de electroforesis capilar.

El acondicionamiento entre las diferentes disoluciones amortiguadoras fue de 10 min, con el electrolito soporte a utilizar de tal manera que no existieran cambios bruscos en la carga que le confiriera a la pared del capilar, se realizaron variando 0.3 unidades de pH por debajo del pH anteriormente analizado. Entre la serie de repeticiones de una misma muestra se realizó un lavado por un lapso de tiempo de dos minutos con la finalidad de que no quedaran posibles remanente, así como lograr obtener un valor de movilidad reproducible.

La introducción de la muestra se realizó del lado del detector ya que de esta manera se redujo notablemente el tiempo de análisis, refiriéndonos al tiempo en el cual eluyen tanto el analito como el marcador del flujo electroosmótico.

La concentración de los analitos en el vial de muestra fue la siguiente

LQM	Concentración final (µg/mL)
344	145.45
345	145.45
351	28.57

Tabla 7. Concentraciones de los LQM´s en la muestra a analizar.

La variación con respecto a la concentración del LQM 351 fue por la insolubilidad que presentaba en medio básico, por lo que se tuvo que reajustar la manera de preparación de la muestra a analizar.

Los resultados de esta técnica son mostrados a través de la elección de canales a cierta longitud de onda del espectro electromagnético, así como un max plot que muestra el espectro de absorción de 200 a 600 nm en todo momento del análisis y un espectro en tercera dimensión.

Los espectros de absorción muestran una longitud de onda de máxima absorción para cada analito, en la tabla 8 se muestran las longitudes de onda máxima a pH básico y ácido.

LQM	Longitud de onda máxima de absorción a pH ácidos	Longitud de onda máxima de absorción a pH básicos
344	317	407
345	386	403
351	284	294

Tabla 8. Longitudes de onda máximas de los diferentes compuestos.

Compuesto LQM 344

La determinación de las constantes de acidez se logró, a través de la evaluación del comportamiento electroforético de los compuestos con respecto al marcador del flujo electroosmótico, es decir la acetona.

El comportamiento electroforético del compuesto LQM 344 se representó a través de la evaluación de los tiempos de migración de los diversos electroferogramas obtenidos a los diferentes valores de pH del electrolito soporte, la consecuente gráfica muestra la variación existente entre la movilidad del compuesto y el tiempo de migración de la acetona, en todo el rango estudiado.

Gráfica 1. Comportamiento electroforético en función del pH de la disolución electrolítica, LQM 344. La

estrella representa la movilidad aparente de la acetona.

En la gráfica se puede observar la variación existente entre las especies predominantes en cada rango de pH estudiado, a valores de pH básicos que van desde 12.32 a 9.88 el compuesto se encuentra ionizado en su forma aniónica ya que migra después de la acetona, en el rango de pH de 9.69 a 6.72 el compuesto no muestra carga por lo que migra al mismo tiempo que la acetona y a valores por debajo de 6.22 se vuelve a ionizar pero ahora en su forma catiónica ya que el pico del LQM 344 migra antes que la acetona.

Capturados los tiempos de migración tanto del compuesto como de la acetona se procedió a calcular los valores de la movilidad efectiva sustituyendo los datos y condiciones experimentales en la siguiente ecuación:

$$\mu ef = \frac{LtLd}{V1} (1/tm - 1/teof)$$

Ec. 18.

Algunos de los valores experimentales que permanecieron constantes fueron, la longitud total del capilar 60 cm, la longitud al detector 10 cm y el voltaje aplicado de 20 kV.

El calculo de la movilidad efectiva para cada valor de pH, se determinó obteniendo el valor promedio de los tres análisis realizados a una misma muestra. En el **anexo** A se muestran los datos de la movilidad de cada compuesto, la movilidad de la acetona y los parámetros estadísticos determinados a los datos experimentales obtenidos.

La tabla 9 contiene los valores de movilidad efectiva para el compuesto LQM 344 con su correspondiente pH, así como la gráfica resultante.

LQM 344 (longitud de onda 200nm)													
pН	meef	pН	meef	pН	meef	pН	meef						
12.32	-0.0533041	10.33	-0.0123823	7.80	0.0000000	5.00	0.0354807						
12.21	-0.0527890	10.13	-0.0090497	7.73	0.0000000	4.88	0.0357178						
12.18	-0.0512450	9.88	-0.0076258	7.65	0.0000000	4.58	0.0394851						
11.91	-0.0486501	9.70	-0.0036585	7.45	0.0000000	4.20	0.0430671						
11.63	-0.0419994	9.69	-0.0039625	7.11	0.0000000	3.98	0.0482478						
11.39	-0.0410761	9.51	0.0000000	7.05	0.0000000	3.67	0.0573735						
11.23	-0.0337079	9.33	0.0000000	6.72	0.0000000	3.62	0.0502997						
11.01	-0.0277024	9.27	0.0000000	6.42	0.0037968	3.19	0.0458571						
10.93	-0.0218407	8.85	0.0000000	6.24	0.0036300	3.06	0.0528715						
10.90	-0.0202919	8.82	0.0000000	6.09	0.0029997	2.94	0.0524909						
10.84	-0.0157227	8.46	0.0000000	5.85	0.0033418	2.64	0.0527004						
10.77	-0.0249431	8.30	0.0000000	5.62	0.0044113	2.40	0.0550812						
10.63	-0.0188062	8.23	0.0000000	5.32	0.0310469	2.01	0.0554506						

Tabla 9. V	alores d	e movilidad	efectiva (cm ² V	1 min ⁻¹)	en función del	pH, LQ	OM 344.
			,					

Resultados y discusión

Gráfica 2. Movilidad efectiva (cm² V⁻¹min⁻¹) experimental del LQM 344 en función del pH del electrolito soporte.

Por la forma en que se distribuyeron los datos se puede observar un par de equilibrios ácido-base, el primero en un rango de pH de 12.50 a 8.00 que muestra el cambio del compuesto de su forma aniónica a su forma neutra y el segundo de 8.00 a 2.00 de su forma neutra a la catiónica, por lo que se comporta como un compuesto monobase-monoácido.

La técnica de Electroforesis Capilar muestra grandes ventajas para la predicción de los valores de pKa, ya que como técnica de separación diferencia las especies presentes en los diversos medios evaluados.
La obtención de las constantes se puede hacer a través del trazo de dos tangentes paralelas a la curva simoidal, posteriormente unirlas y en la mitad de la recta que las une tomar el valor en donde intercepta la curva, logrando determinar los valores de los pKa's experimentales. Los datos obtenidos al realizar la medición a través del trazo de tangentes son pKa 1 = 5.20 y pKa 2 = 11.00

Para obtener datos de mayor confiabilidad en cuanto a la tendencia establecida en la gráfica anterior se recurrió al análisis de regresión no lineal con modelos matemáticos definidos, usando diferentes parámetros estadísticos. Para dicho fin se utilizó el programa SPSS (versión 5.0) mediante el cual se realizó el ajuste de los datos al modelo matemático establecido para un compuesto con comportamiento monobásico–monoácido.

La representación matemática para este tipo de equilibrio es:

$$meff = \frac{\alpha_1 x (10^{-pH})^2 + \alpha_2 x 10^{-pKa1} x 10^{-pKa2}}{(10^{-pH})^2 + 10^{-pKa1} x 10^{-pH} + 10^{-pKa1} x 10^{-pKa}}$$

Dondeα1 : movilidad máxima del catiónα2 : movilidad máxima del aniónpKa : la constante de acidez según el subíndicepH : valor de pH experimental.

Ec. 33

Los resultados de movilidad efectiva fueron los siguientes.

Tabla 10. Valores de la movilidad efectiva ($\text{cm}^2 \text{ V}^{-1}\text{min}^{-1}$) predichos por el programa SPSS en función del pH, LQM 344.

LQM 344 (longitud de onda 200 nm)							
pН	meef *	pН	meef *	pН	meef *	pН	meef *
12.32	-0.0524480	10.33	-0.0093310	7.80	0.0000872	5.00	0.0311958
12.21	-0.0517350	10.13	-0.0062800	7.73	0.0001131	4.88	0.0346238
12.18	-0.0515120	9.88	-0.0037160	7.65	0.0001463	4.58	0.0418277
11.91	-0.0487880	9.70	-0.0025120	7.45	0.0002537	4.20	0.0476345
11.63	-0.0442150	9.69	-0.0024570	7.11	0.0005772	3.98	0.0495906
11.39	-0.0385980	9.51	-0.0016470	7.05	0.0006635	3.67	0.0512175
11.23	-0.0340590	9.33	-0.0010970	6.72	0.0014081	3.62	0.0513935
11.01	-0.0272090	9.27	-0.0009570	6.42	0.0027407	3.19	0.0523195
10.93	-0.0246830	8.85	-0.0003590	6.24	0.0040418	3.06	0.0524641
10.90	-0.0237460	8.82	-0.0003340	6.09	0.0055353	2.94	0.0525646
10.84	-0.0219000	8.46	-0.0001250	5.85	0.0089302	2.64	0.0527229
10.77	-0.0198130	8.30	-0.0000670	5.62	0.0135663	2.40	0.0527907
10.63	-0.0159320	8.23	-0.0000440	5.32	0.0215631	2.01	0.0528453

*Datos calculados por el programa SPSS.

Al trazar los valores determinados por el programa se obtuvo el siguiente grafico.

Gráfica 3. Movilidad efectiva (cm² V⁻¹min⁻¹) del LQM 344 calculada por el programa SPSS en función del pH.

En el cual se observa la tendencia ácido-base del compuesto LQM 344 a los diferentes valores de pH del electrolito soporte. Las **tablas 11 y 12** engloban los resultados estadísticos que muestran la confiabilidad del método para la determinación de las constantes de acidez y los valores de alfa para este analito.

Parámetro	Estimación	Intervalo de confianza 95%	Error estándar
a1	0.052882884	<u>+</u> 0,002202665	0.001095507
a2	-0.055078585	<u>+</u> 0,003864496	0.001922028
pKa1	5.157895967	<u>+</u> 0,114012323	0.056704641
pKa2	11.02040345	<u>+</u> 0,103706248	0.051578862

Tabla 11. Parámetros estadísticos estimados por el programa SPSS, LQM 344. EC.

1 abia 12. Determination de f 11 (d), DOM JTT. DO
--

Fuente	Suma de cuadrados	df	Cuadrados medios
Regresión	0.049575457	4	0.012393864
Residuales	0.000503375	48	1.0487E-05
Total sin corregir	0.050078833	52	
Total corregido	0.049423558	51	

 $R^2 = 1$ - (Suma de cuadrados residuales) / (Suma de cuadrados corregidos) = 0.990

Gráfica 4. Gráfica comparativa de los valores experimentales y los predichos (programa SPSS), LQM 344.

El método elegido es adecuado en un 99 % por lo que los valores de las constantes de acidez y alfas son confiables, pero para verificar su trascendencia se compararon posteriormente con los valores obtenidos a través de la metodología empleada para la técnica de UV-Vis.

Compuesto LQM 345

El comportamiento del LQM 345 fue muy diferente al LQM 344 ya que es un compuesto disustituido, por lo tanto se espera que existan tres valores de pKa, por ser un compuesto dibásico-monoácido.

La integración de los diferentes electroferogramas se muestra en la siguiente gráfica, la cual representa el comportamiento electroforético de un compuesto en su forma aniónica, neutra y catiónica, pero la diferencia en la cantidad de especies se determinará con la gráfica de la movilidad efectiva en función del pH del electrolito soporte.

Gráfica 5. Comportamiento electroforético en función del pH de la disolución electrolítica, LQM 345. La

estrella representa la movilidad aparente de la acetona.

Las variación existente entre las especies predominantes en cada rango de pH estudiado fueron, a valores de pH básicos que van desde 12.32 a 11.34 el compuesto se encuentra ionizado en su forma aniónica ya que migra después de la acetona, en el intervalo de pH de 11.11 a 10.64 no presenta carga por lo que es neutro y a valores por debajo de 10.33 se encuentra como catión.

Obtenidos los datos de movilidad tanto del compuesto como de la acetona se procedió a calcular los valores de la movilidad efectiva de la misma forma que se realizaron para el LQM 344. (Ec 18) Los datos calculados se encuentran en la tabla 13, así como la gráfica resultante.

LQM 345 (longitud de onda 200 nm)							
pН	meef	pН	meef	pН	meef	pН	meef
12.32	-0.0372198	10.33	0.0048627	7.65	0.0365728	4.58	0.0387020
12.20	-0.0331292	10.10	0.0216291	7.35	0.0373381	4.27	0.0383678
12.18	-0.0338248	9.88	0.0186607	7.11	0.0389310	3.97	0.0415894
11.91	-0.0289360	9.70	0.0233625	7.05	0.0362084	3.67	0.0445458
11.63	-0.0214825	9.51	0.0279663	6.72	0.0376541	3.62	0.0426999
11.34	-0.0168541	9.26	0.0347344	6.42	0.0357928	3.19	0.0519043
11.11	-0.0059769	8.91	0.0327275	6.22	0.0359034	3.06	0.0469801
11.00	-0.0052055	8.80	0.0323224	6.00	0.0346169	2.94	0.0483879
10.93	0.0000000	8.46	0.0349581	5.85	0.0342989	2.64	0.0548918
10.84	0.0000000	8.30	0.0361699	5.62	0.0372427	2.60	0.0538568
10.80	0.0000000	8.20	0.0350190	5.32	0.0370724	2.40	0.0584348
10.77	0.0000000	7.80	0.0363257	5.00	0.0370810	2.01	0.0628993
10.64	0.0000000	7.73	0.0366999	4.88	0.0361435		

Tabla 13. Valores de movilidad efectiva (cm² V⁻¹min⁻¹) en función del pH, LQM 345.

Gráfica 6. Movilidad efectiva experimental del LQM 345 en función del pH del electrolito soporte.

Por la forma en que se distribuyeron los datos se puede observar tres equilibrios ácido- base, el primero en un rango de pH de 12.32 a 10.84 que muestra el cambio del compuesto de su forma aniónica a su forma neutra, el segundo de 10.84 a 7.35 de su forma neutra a la catiónica y de 7.35 a 2.00 el de la forma protonada a biprotonada, su comportamiento es de un monoácido - dibase.

Los equilibrios representativos para este tipo de compuesto muestra la perdida del hidrogeno del fenol y posteriormente la protonación de los anillos piperidínicos.

Figura 22. Equilibrios representativos para el compuesto LQM 345.

Para el análisis de los datos por el programa SPSS se utilizó la ecuación para un compuesto monoácido-dibásico:

$$meff = \frac{\alpha_1 \ x \ (10^{-pH})^3 + \alpha_2 \ x \ 10^{-pKa1} \ x \ (10^{-pH})^2 + \alpha_3 \ x \ 10^{-pKa1} \ x \ 10^{-pKa1} \ x \ 10^{-pKa2} \ x \ 10^{-pKa3}}{(10^{-pH})^3 + 10^{-pKa1} \ x \ (10^{-pH})^2 + 10^{-pKa1} \ x \ 10^{-pKa2} \ x \ 10^{-pKa1} \ x \ 10^{-pKa2} \ x \ 10^{-pKa3} \$$

Donde

α_{1:} movilidad posible de su forma bicatiónica.
 α₂: movilidad posible de su forma catiónica.
 α₃: máxima movilidad del anión
 pKa: la constante de acidez según el subíndice
 pH: valor de pH experimental.

Ec.34

Los resultados y la gráfica de movilidad efectiva (valores predichos por el programa SPSS) en función del pH se muestran a continuación.

LQM 345 (longitud de onda 200 nm)							
рН	meef	pH	meef	pH	meef	рН	meef
12.32	-0.0369020	10.33	0.0102712	7.65	0.0365225	4.58	0.0374499
12.20	-0.0346190	10.10	0.0155704	7.35	0.0366031	4.27	0.0382026
12.18	-0.0342040	9.88	0.0205933	7.11	0.0366383	3.97	0.0395485
11.91	-0.0277300	9.70	0.0243446	7.05	0.0366446	3.67	0.0418344
11.63	-0.0199090	9.51	0.0277126	6.72	0.0366692	3.62	0.0423262
11.34	-0.0119310	9.26	0.0310703	6.42	0.0366844	3.19	0.0477855
11.11	-0.0063240	8.91	0.0339562	6.22	0.0366946	3.06	0.0497132
11.00	-0.0038800	8.80	0.0345321	6.00	0.0367089	2.94	0.0514920
10.93	-0.0023860	8.46	0.0356688	5.85	0.0367223	2.64	0.0555231
10.84	-0.0005120	8.30	0.0359755	5.62	0.0367529	2.60	0.0559876
10.80	0.0003104	8.20	0.0361188	5.32	0.0368248	2.40	0.0579980
10.77	0.0009252	7.80	0.0364565	5.00	0.0369793	2.01	0.0605125
10.64	0.0035943	7.73	0.0364901	4.88	0.0370726		

Tabla 14. Valores de la movilidad efectiva (cm² V⁻¹min⁻¹) predichos por el programa SPSS en función del pH, LQM 345.

Gráfica 7. Movilidad efectiva (cm 2 V $^{-1}$ min $^{-1}$) del LQM 345 calculada por el programa SPSS en función del pH.

En la gráfica se puede observar que el programa marca la existencia de la especie neutra en un intervalo de pH muy corto, lo cual es congruente con lo mostrado en los electroferogramas elegidos entre los valores de 11.11 a 10.64, en donde se encontró la transición de la especie aniónica a la neutra y de la neutra a la catiónica Los electroferogramas en tercera dimensión ayudaron a determinar la existencia de la forma neutra del compuesto, a través del espectro de absorción tanto del compuesto como de la acetona, en el intervalo de 11.29 a 10.66, a continuación se detalla la transición:

A pH 11.29; el espectro del compuesto se localiza después del espectro de la acetona, por lo tanto el compuesto se encuentra en su forma aniónica.

A pH 10.75; el espectro del compuesto y de acetona se traslapó, por consiguiente el compuesto se encuentra en su forma neutra.

D:\32Karat\Projects\Default\Methods\ana\electrolitos\pH 10 75\LQM 345\03LQM 34

A pH 10.66; el espectro del compuesto migro antes que el de la acetona, por lo que el compuesto está en su forma catiónica.

En la comparación gráfica de los valores de movilidad efectiva experimentales y los calculados por el programa, se observa que en el intervalo de pH de 10.88 a 10.75 el compuesto permanece neutro.

La confiabilidad del método se muestra en la tabla 15 y 16.

|--|

Parámetros	Estimados	Intervalo de confianza 95%	Error estándar
α1	0.062615347	<u>+</u> 0,004974675	0.002469921
α2	0.036682433	<u>+</u> 0,001093949	0.000543144
α3	-0.046371705	<u>+</u> 0,007019852	0.003485348
pKa1	3.064309395	<u>+</u> 0,129625125	0.134472227
pKa2	10.00691214	<u>+</u> 0,11200474	0.055610224
pKa3	11.72511722	<u>+</u> 0,18118765	0.089959459

Tabla 16. Determinación de ANOVA, LQM 345. EC.

Fuente	Suma de cuadrados	df	Cuadrados medios
Regresión	0.063245292	6	0.010540882
Residuales	0.000275809	45	6.12909E-06
Total sin corregir	0.063521101	51	
Total corregido	0.032287455	50	

 $R^2 = 1 - (Suma de cuadrados residuales) / (Suma de cuadrados corregidos) = 0.991$

Por lo que se puede establecer que el método es adecuado para la determinación de las constantes de acidez del compuesto disustituido, sin embargo para este compuesto los valores no son suficientes para que se pudiera refinar el pKa 1 y 3, no obstante nos da una idea del valor real.

Compuesto LQM 351

El compuesto LQM 351 presentó dificultades para solubilizarse en el electrolito soporte a valores de pH's básicos, este fenómeno se observó al adicionar la cantidad de estándar al vial que contenía el electrolito soporte (medio de transporte), por lo que fue necesario replantear la manera de procesar la muestra antes de su introducción.

Con la finalidad de determinar la solubilidad del analito se realizaron muestras con las condiciones previamente establecidas y las realizadas con las modificaciones pertinentes para la detección del analito y de la acetona.

Cabe mencionar que se analizó la muestra que presentaba turbidez, para corroborar que el compuesto se encontraba en su forma neutra, al adicionar el marcador del flujo electroosmótico y en ausencia de él.

La integración de los diferentes electroferogramas se muestra en el siguiente grafico, en el cual el compuesto siempre migra antes que la acetona.

Gráfica 9. Comportamiento electroforético en función del pH de la disolución electrolítica, LQM 351. El asterisco representa a la acetona.

La migración del compuesto en todo el rango de pH estudiado determina que el compuesto se encuentra en su forma catiónica, a valores muy básicos el compuesto precipitaba por lo que se encuentra no ionizado, por ese motivo es de suponerse que existe un valor de pKa por arriba de pH 12 para el equilibrio representativo de la especie aniónica a la neutra; el cual no fue posible determinar con las condiciones establecidas.

Obtenidos los tiempos de migración del LQM 351 y de la acetona se procedió a calcular los valores de la movilidad efectiva.

En la siguiente tabla se muestran los valores de movilidad efectiva con su correspondiente pH, así como la gráfica resultante.

LQM 351 (longitud de onda 200nm)						
рН	meef	рН	meef	pН	meef	
11.63	0.0000000	7.80	0.0345171	4.88	0.0498293	
11.34	0.0000000	7.73	0.0356287	4.58	0.0517188	
10.33	0.0000000	7.65	0.0354199	4.27	0.0546716	
10.10	0.0000000	7.35	0.0362251	3.67	0.0570255	
9.88	0.0000000	7.05	0.0362159	3.19	0.0575098	
9.69	0.0000000	6.42	0.0365043	3.06	0.0576365	
9.51	0.0000000	6.22	0.0385873	2.94	0.0580841	
9.26	0.0000000	5.62	0.0464960	2.60	0.0534706	
8.30	0.0320254	5.32	0.0484210	2.40	0.0662862	
8.20	0.0345062	5.00	0.0495438			
					-	

Tabla 17. Valores de movilidad efectiva (cm² V⁻¹min⁻¹) en función del pH, LQM 351.

De acuerdo con la gráfica anterior, los datos representan probablemente dos equilibrios ácido - base, el primero entre los valores de pH de 10.10 a 7.73 de su forma neutra a la protonada y el segundo equilibrio de pH 7.73 a 2.00 de su forma protonada a la biprotonada.

Figura 23. Equilibrios representativos para el compuesto LQM 351.

Para este compuesto el análisis de los datos a través del programa SPSS se realizaron con el ajuste a un modelo matemático para una dibase ya que la parte ácida no es contemplada por la falta de valores representativos del equilibrio entre la especie neutra y la aniónica. Los resultados obtenidos se determinaron con la **ecuación 32**:

meff =
$$\frac{\alpha_1 \times (10^{-pH})^2 + \alpha_2 \times 10^{-pKa1} \times 10^{-pH}}{(10^{-pH})^2 + 10^{-pKa1} \times 10^{-pH} + 10^{-pKa1} \times 10^{-pKa2}}$$

Ec. 35

Los valores numéricos calculados por el sistema así como la representación gráfica se muestran a continuación.

LQM 351 (longitud de onda 200 nm)						
pН	meef	pН	meef	pН	meef	
11.63	0.0000747	7.80	0.0343741	4.88	0.0513649	
11.34	0.0001453	7.73	0.0347354	4.58	0.0536242	
10.33	0.0014344	7.65	0.0350943	4.27	0.0550773	
10.10	0.0023715	7.35	0.0360615	3.67	0.0562870	
9.88	0.0037753	7.11	0.0365811	3.19	0.0565807	
9.69	0.0055356	7.05	0.0366954	3.06	0.0566190	
9.51	0.0077780	6.72	0.0373376	2.94	0.0566455	
9.26	0.0118785	6.42	0.0381424	2.64	0.0566873	
8.91	0.0190003	6.22	0.0389364	2.60	0.0566910	
8.46	0.0276323	5.62	0.0433786	2.40	0.0567051	
8.30	0.0299404	5.32	0.0466896			
8.20	0.0311432	5.00	0.0502152			

Tabla 18. Valores de la movilidad efectiva (cm² V^{-1} min⁻¹) predichos por el programa SPSS) en función del pH, LQM 351.

Gráfica 11. Movilidad efectiva (cm² V⁻¹min⁻¹) del LQM 351 calculada por el programa SPSS en función del pH.

La tendencia muestra los dos equilibrios existentes para sus formas catiónicas, el primero de pH 10.10 a 7.35 en el cual pasa de su forma neutra a la catiónica, y de pH 7.35 a 2.00 se observa el segundo equilibrio representativo de su forma protonada a biprotonada.

Fabla 19. Parámetros estadísticos estimados por el programa SPSS, LQM 351. EC.						
Parámetros	Estimados	Intervalo de confianza 95%	Error estándar			
α1	0.05529869	<u>+</u> 0,003647485	0.00178341			
α2	0.03667162	<u>+</u> 0,00382405	0.00186974			
pKa1	5.42234353	<u>+</u> 0,607024999	0.29680041			
pKa2	8.94139031	<u>+</u> 0,270375887	0.1321983			

Los valores estadísticos calculados por el programa SPSS son los siguientes:

El valor del pKa 3 para la especie neutra a la aniónica no se calculo por la falta de datos.

Tabla 20. Determinación de ANOVA, LQM 551. EC.							
Fuente	Suma de cuadrados	df	Cuadrados medios				
Regresión	0.04848415	4	0.012121037				
Residuales	0.00062895	29	2.16878E-05				
Total sin corregir	0.04911309	33					
Total corregido	0.01367028	32					

Tabla 20. Determinación de ANOVA, LQM 351. EC.

 $R^2 = 1 - (Suma de cuadrados residuales) / (Suma de cuadrados corregidos) = 0.954$

El valor de correlación para este compuesto muestra que la metodología planteada no es la más adecuada para la determinación de dichos parámetros, por lo que será necesario establecer pruebas de solubilidad o cambios en los parámetros instrumentales que proporcionen una mayor confiabilidad de los valores estimados. Por lo antes expuesto la metodología planteada se puede aplicar a compuestos que presenten la transición de especies entre valores de pH 5.00 a 11.00, ya que la gráfica muestra la posible tendencia de los valores por arriba y por debajo del pH estudiado sin que esa tendencia arroje un calculo inadecuado de dichos parámetros.

Para finalizar se muestra la gráfica comparativa de los valores experimentales y los calculados por el programa SPSS.

Gráfica 12. Gráfica comparativa de los valores experimentales y los predichos (programa SPSS), LQM 351.

Los valores tienen cierta discrepancia por lo que es necesario que se sometan a comparación con los obtenidos por ACD-Labs y UV-Visible., además se evaluará la modificación realizada en la muestra a analizar a pH básicos para el compuesto LQM 351, por lo que es necesario corroborar que los valores de las constantes obtenidas pueden ser trascendentales.

DETERMINACIÓN DE LAS CONSTANTES DE ACIDEZ POR LA TÉCNICA DE ESPECTROFOTOMETRIA DE UV-VIS.

La determinación de los valores de las constantes se realizó a través de la valoración de los sistemas ácido y básico de las disoluciones de los analitos, en cada uno de las variaciones de pH se realizaron tres barrido para así sacar un valor medio de la absorbancia mostrada a cierta longitud de onda, la integración de los espectros obtenidos a lo largo de cada una de las valoraciones define la transición de las especies presentes.

El sistema se adecuo para que la muestra tomada fuera representativa a cada valor de pH. Las condiciones establecidas fueron, el volumen de cada una de las disoluciones a preparar, el volumen inicial del sistema a valorar, la cantidad adicionada de valorante, el tiempo para esperar que el sistema llegara a un equilibrio, la temperatura, la velocidad de agitación así como la alícuota vertida en la celda del espectrofotómetro.

Los datos de absorbancia fueron procesados para la obtención de los coeficientes de extinción, tomando en consideración la concentración, la longitud del paso óptico y la longitud de onda, así como su análisis por el programa SPSS para la adecuación del modelo no lineal.

Los resultados para la determinación de las constantes de acidez, así como su análisis estadístico, se encuentran en las tablas mostradas en el anexo B; para la cual se realizaron tres barridos de una misma muestra en el rango de absorción del ultra violeta – visible.

En las siguientes gráficas se observara la tendencia presentada a lo lago de cada un de las valoraciones para los diferentes analitos, así como el análisis estadístico obtenido a través del programa SPSS, así como, la comparación entre los valores experimentales y los calculados por el programa.

COMPUESTO LQM 344

Los resultados mostrados a continuación fueron emanados el mismo día de la preparación de las disoluciones ácida, básica y del estándar, con la finalidad de no tener variación en los valores de concentración y fuerza iónica.

El valor promedio de la absorbancia de cada sistema se graficó en función de la longitud de onda, obteniendo la siguiente gráfica para la valoración del sistema básico al ácido del compuesto LQM 344.

Gráfica 13. Espectros de absorción de la valoración del sistema básico al ácido, LQM 344.

La grafica muestra un punto de máxima absorción a los diferentes valores de pH establecidos, este valor es transformado a través de la ley de Lamber y Beer a coeficientes de absortividad, sustituyendo los datos y condiciones experimentales en la ecuación 26:

Ec. 26

Donde ε : coeficiente de absortividad de la especie

- A : absorbancia adimensional
- **b** : longitud del paso óptico
- *C* : concentración de la especie absorbente
- λ : una determinada longitud de onda

La longitud de onda elegida para el cálculo de los coeficientes de absortividad fue la de 407 nm, los resultados de coeficiente de extinción en función del pH se muestran en la curva que es representativa del equilibrio entre las diferentes especies.

Gráfica 14.Coeficiente de absortividad \mathcal{E} (407 nm) en función del pH del sistema, valoración de base a ácido LQM 344.

La gráfica muestra el segundo equilibrio entre la especie aniónica y la neutra, la tendencia es favorable para el calculo del pKa 2, aunque a terminación de la curva sugiere que la valoración se lleve a un exceso de disolución básica para así poder determinar la existencia de la forma aniónica en un mayor porcentaje.

El valor del pKa 2 se obtuvo a través del programa SPSS con la adecuación del sistema no lineal, la sintaxis utilizada fue para un compuesto monobásico.

La representación matemática para este tipo de equilibrio monobásico es:

$$E cal = \frac{E_1 + E_2}{10^{-pKa1} + 10^{-pH}} \frac{x \cdot 10^{-pH}}{10^{-pH}}$$

DondeE1: coeficiente de extinción de la especie anionicaE2: coeficiente de extinción de la especie neutrapKa: la constante de acidez según el subíndicepH: valor de pH experimental.

Ec.37

Los valores de E calculados por el programa se graficaron en función del pH, así como, los obtenidos experimentalmente. La comparación existente se representa en el siguiente grafico.

Gráfica 15. Comparación de los valores de E (407 nm), valoración del sistema básico al ácido LQM 344.

Los datos estadísticos obtenidos por el programa se muestran en las tablas 21 y 22.

Parámetro	Estimación	Intervalo de Confianza 95%	Error estándar
E1	3781.32068	<u>+</u> 31.4368	15.0197943
E2	-741.162628	<u>+</u> 30.104153	14.3830902
pKa2	10.852434	<u>+</u> 0.0586801	0.02803606

Tabla 21. Parámetros estadísticos, valoración del sistema básico al ácido. LQM 344. UV-Vis.

Tabla 22. Determinación de ANOVA, valoración del sistema básico al ácido. LQM 344. UV-Vis.

Fuente	Suma de cuadrados	df	Cuadrados medios
Regresión	240470551	3	80156850.3
Residuales	3617.44718	19	190.391957
Total sin corregir	240474168	22	
Total corregido	1143256.41	21	

 $R^2 = 1$ - (Suma de cuadrados residuales) / (Suma de cuadrados corregidos) = 0.997.

La valoración del sistema ácido al básico se muestra la gráfica 16, en donde se integran los valores de absorción en cada variación de pH.

Gráfica 16. Espectros de absorción de la valoración del sistema acido al básico, LQM 345.

La distribución de los datos muestra dos puntos de isoabsorción, en donde se llevan las transiciones de las especies representativas del equilibrio estudiado. La aparición de la segunda longitud de máxima absorbancia se da a valores de pH ácidos.

La longitud de onda elegida para la determinación de los coeficientes de absorción fue de 392 nm, ya que a esta longitud de onda existe una mayor variación en la absorbancia a cada valor de pH, lo cual facilita el cálculo de los valores de las constantes de disociación.

La tendencia de los espectros muestra lo establecido por la técnica de electroforesis capilar, ya que a valores de pH básicos la determinación comienza con un espectro de pico de máxima absorbancia a 406 nanometros, así como el mostrado a valores de pH ácidos, para el cual su máxima absorbancia se estableció a 317 nanometros.

Los valores de absorbancia se procesaron para obtener los valores de los coeficientes de absortividad, para así realizar el cálculo de los valores de las constantes para las valoraciones realizadas de manera individual.

En la grafica 17 se representan los valores obtenidos al procesar los coeficientes experimentales, de un modelo no lineal para adecuar la tendencia y deducir los valores de las constantes.

Gráfica 17. Coeficiente de absortividad \mathcal{E} (392 nm) en función del pH del sistema, valoración ácido-base, LQM 344.

La tendencia muestra la existencia del primer equilibrio ácido-base, a través del cual se puede determinar el valor del pKa 1 de la especie neutra a la cationica, con el ajuste a un sistema lineal para un compuesto monoácido.

La determinación fue más precisa para este valor de pKa ya que los extremos de la grafica tienden a ser constantes y por lo tanto el cálculo a través del programa es más certero.

La representación matemática para este tipo de equilibrio monoácido es:

$$\mathbf{E} \text{ cal} = \underline{\mathbf{E}_1 + \mathbf{E}_2 \times \mathbf{10}}_{\mathbf{10} \text{ }^{\text{-pKa}} + \mathbf{10} \text{ }^{\text{-pH}}}$$

Donde E₁: coeficiente de extinción de la especie neutra
 E₂: coeficiente de extinción de la especie catiónica
 pKa: la constante de acidez según el subíndice

pH: valor de pH experimental.

Ec. 38

En el siguiente grafico se integran los valores experimentales y los predichos por el programa.

Gráfica 18. Comparación de los valores de E (392), valoración del sistema ácido al básico. LQM 344.

Los valores resultantes se registran en las tablas 23 y 24:

|--|

Parámetro	Estimación	Intervalo de Confianza 95%	Error estándar
E1	3164.51278	<u>+</u> 37.73711	18.6411908
E2	101.545254	<u>+</u> 22.6145003	11.1709966
pKa1	5.52701481	<u>+</u> 0.0216086	0.01067411

Tabla 24. Determinación de ANOVA, valoración del sistema ácido al básico. LQM	M 344. UV-Vis.
---	----------------

Fuente	Suma de cuadrados	df	Cuadrados medios
Regresión	125619988	3	41873329.2
Residuales	62972.3406	38	1657.16686
Total sin corregir	125682960	41	
Total corregido	53184689.1	40	

 $R^2 = 1$ - (Suma de cuadrados residuales) / (Suma de cuadrados corregidos) = 0.999

La integración de las dos valoraciones da como resultado el gráfico correspondiente a un compuesto monoácido-mobasico, que corrobora las características previamente mostradas por la técnica de electroforesis capilar.

Gráfica 19. Curva de integración de las dos valoraciones, LQM 344.

Para determinar los valores de pKa´s se recurrió nuevamente al programa SPSS, utilizando la sintaxis para un compuesto monoácido–monobasico; demostrando que la metodología empleada es adecuada para la determinación de dichas constantes. La comparación grafica se observa a continuación:

Gráfica 20. Comparación de los valores de \mathcal{E} experimentales y los predichos (programa SPSS), LQM 344.

Los valores de las pKa´s, así como los datos estadísticos obtenidos por el programa SPSS se engloba en la **tabla 25 y 26**.

Parámetro	Estimación	Intervalo de Confianza 95%	Error estándar
E1	487008.734	<u>+</u> 4988853.43	2309260.23
E2	5713.00651	<u>+</u> 143.07414	66.2267251
E3	1.3090625	<u>+</u> 0.04600851	0.0212966
pKa1	5.39419197	<u>+</u> 0.07723706	0.0357518
pKa2	10.601028	<u>+</u> 0.2949127	0.13651035

Tabla 25. Parámetros estadísticos para la integración de las valoraciones, LQM 344. UV-Vis.

Tabla 26.	Determinación de	ANOVA.	para la integración de l	las valoraciones.	LOM 344. UV	VVis.
1 ublu 20.	Determinueron de	1110111,	pulu lu integración de l	ub vuloiuciones.	LQM J II. U	••••10.

Fuente	Suma de cuadrados	df	Cuadrados medios
Regresión	583022272	5	116604454
Residuales	331809.118	13	25523.7783
Total sin corregir	583354081	18	
Total corregido	76289622.7	17	

 $R^2 = 1$ - (Suma de cuadrados residuales) / (Suma de cuadrados corregidos) = 0.996.

La tendencia es clara, por lo que solo restaría verificar y comparar los valores determinados por ambas técnicas, así como los valores al realizar el cálculo con ayuda del programa ACD-Labs.

Determinación	рКа 1	pKa 2
Electroforesis Capilar	5.1578 <u>+</u> 0.11	11.0204 ± 0.10
Ultravioleta Visible	$5.527 \pm 0.02 \\ 5.394 \pm 0.07$	$\frac{10.852 \pm 0.05}{10.601 \pm 0.29}$
ACD-Labs	6.13 <u>+</u> 0.16	8.46 ± 0.2
Δ ΕС-UV	0.3692 0.2362	0.1684 0.4194
Δ UV-ACD-Labs	0.603 0.736	2.392 2.141

Tabla 27. Resultados y diferencias de las constantes determinadas por las diferentes técnicas, LQM 344.

Los resultados de la **tabla** anterior muestran que se aproxima a los valores obtenidos por la técnica de electroforesis capilar y la espectrofotométrica es muy cercana, por lo tanto la relación existente entre las diversas metodologías empleadas logró una adecuada determinación de dichas constantes, con lo que respecta a la comparación existente entre la técnica espectrofotométrica y la computacional, existe una significativa diferencia, por lo que el valor obtenido experimentalmente es de mayor relevancia por las limitaciones del programa ACD-Labs.

LQM 345

El LQM 345 es una molécula bisustituida con dos piperidinas en las posiciones 2 y 6, por lo cual se espera que pierda un hidrógeno del grupo fenol y gane dos hidrógenos en los ciclos nitrogenados.

La determinación de las constantes de acidez para este compuesto, se realizó con las dos valoraciones correspondientes de base a ácido y de ácido a base para la obtención de los valores de absorbancia para posteriormente realizar el calculo del coeficiente de absortividad a través de la ecuación 26, al sustituir los valores experimentales e instrumentales; los resultados obtenidos se muestran en las siguientes gráficas.

Se obtienen los datos promedio de la absorbancia en cada valor de pH, se grafican para obtener el valor de la longitud de onda más adecuada para realizar el cálculo de los coeficientes de absortividad, la siguiente valoración es la del sistema básico al ácido.

Gráfica 21. Espectros de absorción de la valoración del sistema básico al ácido, LQM 345.

Los espectros muestran el traslado del punto de máxima absorción al decrecer el valor de pH, para la obtención de los coeficientes de absortividad se eligió la longitud de onda de 425 nm.

La determinación del pKa se estableció con la valoración del sistema básico al ácido, para el cual las especies representativas pudieran ser la neutra a la aniónica, es decir la pérdida del protón del grupo fenol, o la ganancia de un protón en alguna de las piridinas.

Gráfica 22. Coeficiente de absortividad E (425 nm) en función del pH del sistema, valoración de base a ácido. LQM 345.

La tendencia muestra que el valor de pKa se encuentra por arriba de 10.8 para este sistema. La integración de los valores experimentales y los obtenidos a través del análisis por el programa se representan en la gráfica 23.

Gráfica 23. Comparación de los valores de E (425), valoración del sistema básico al ácido. LQM 345.

Los parámetros estadísticos obtenidos para esta serie de datos se muestran en la **tabla 28 y 29,** para el cual el método experimental resultó adecuado.

Parámetro	Estimación	Intervalo de Confianza 95%	Error estándar
E1	5670.22609	<u>+</u> 495.28478	230.92496
E2	2445.99974	<u>+</u> 222.86655	103.910825
pKa2	11.1961985	<u>+</u> 0.1859303	0.08668943

Tabla 28. Parámetros estadísticos, valoración del sistema básico al ácido. LQM 345. UV-Vis.

Tabla 29.	Determinación de ANOVA,	valoración del siste	ma básico al ácido.	LQM 345. UV	-Vis.

Fuente	Suma de cuadrados	df	Cuadrados medios
Regresión	344964853	3	114988284
Residuales	1540810.37	14	110057.883
Total sin corregir	346505663	17	
Total corregido	80319143.1	16	

 $R^2 = 1$ - (Suma de cuadrados residuales) / (Suma de cuadrados corregidos) = 0.981

Para la valoración del sistema ácido al básico se eligió la longitud de onda de máxima absorción a 388 nm, se tomaron los valores de absorbancia y procedió a calcular los coeficientes de absortividad.

Gráfica 24. Espectros de absorción de la valoración del sistema acido al básico, LQM 345.

Gráfica 25. Coeficiente de absortividad \mathcal{E} (388 nm) en función del pH del sistema, valoración de ácido-base. LQM 345.

Para la obtención de este valor se propuso la adición de dos puntos más al inicio de la valoración, para los cuales los valores del coeficiente tendieran a cero, con la finalidad de que el programa lograra calcular con una mejor correlación el valor de este pKa. La adición de ciertos valores nos muestra el **gráfico 26**, así como los valores predichos por el programa.

Gráfica 26. Comparación de los valores de E (388 nm), valoración del sistema ácido al básico. LQM 345.

El análisis estadístico de los datos se muestra en la grafica 30 y 31.

Parámetro	Estimación	Intervalo de Confianza 95%	Error estándar
E1	9237.07661	<u>+</u> 312.96768	145.920188
E2	-2195.85243	<u>+</u> 316.68468	147.653225
pKa1	1.89565035	<u>+</u> 0.03559847	0.01659767

Tabla 30. Parámetros estadísticos, valoración del sistema ácido al básico. LQM 345. UV-Vis.

Fabla 31.	Determinación de	e ANOVA,	valoración de	el sistema	ácido al	básico. I	LQM 345.	UV-Vis.
-----------	------------------	----------	---------------	------------	----------	-----------	----------	---------

Fuente	Suma de cuadrados	df	Cuadrados medios
Regresión	718085672	3	239361891
Residuales	29685.8762	14	2120.41973
Total sin corregir	718115358	17	
Total corregido	51295655.7	16	

 $R^2 = 1$ - (Suma de cuadrados residuales) / (Suma de cuadrados corregidos) = 0.999

La integración de las dos valoraciones muestra los siguientes resultados para los cuales los valores de las constantes difieren de los obtenidos al realizar el análisis por separado, en la gráfica se observa la existencia de dos pendientes a través de las cuales se calcularan los valores de los pKa's, por lo que es relevante definir correctamente que pKa's se están determinando ya que se trata de un compuesto bisustituido.

Los valores se transcribieron a la hoja de cálculo del programa SPSS en esta ocasión se realizó la determinación de los parámetros a través de la ecuación que representa a un compuesto monoácido-dibásico, la integración de los valores experimentales y los estimados por el programa se muestran en la siguiente gráfica:

Gráfica 28. Comparación de los valores de E experimentales y los predichos (programa SPSS). LQM 345.

Los parámetros estadísticos que determinó el programa se muestran en las **tablas 32** y **33**.

abla 32. Parámetros estadísticos	para la integración de las	s valoraciones. LQM 345. UV-Vis.
----------------------------------	----------------------------	----------------------------------

Parámetro	Estimación	Intervalo de Confianza 95%	Error estándar
E3	3.3870505	<u>+</u> 0.26969798	0.13004556
E2	2388.99291	<u>+</u> 156.03566	75.2387717
E1	1597461.65	<u>+</u> 731575.065	352757.878
pKa1	2.59986814	<u>+</u> 0.53487	0.25790875
pKa2	11.170804	<u>+</u> 0.1611741	0.07771649

	Tabla 33.	Determinación	de ANOVA.	para la integració	ón de las valoraciones.	LOM 345.
--	-----------	---------------	-----------	--------------------	-------------------------	----------

Fuente	Suma de cuadrados	df	Cuadrados medios
Regresión	1	-0.77618464	-0.06006959
Residuales	-0.77618464	1	0.07739063
Total sin corregir	-0.06006959	0.07739063	1
Total corregido	-0.23646548	0.30465036	0.30810401

 $R^2 = 1$ - (Suma de cuadrados residuales) / (Suma de cuadrados corregidos) = 0.98

Los resultados obtenidos a través de ambas técnicas, así como los calculados por el programa ACD-Labs se engloban en la **tabla 34**.

Tabla 34. Resultados y diferencias de las constantes determinadas por las diferentes técnicas, LQM 345.

Determinación	рКа 1	рКа 2	рКа 3
Electroforesis Capilar	3.064 <u>+</u> 0.12	10.006 <u>+</u> 0.11	11.725 <u>+</u> 0.18
Ultravioleta Visible	$\frac{1.895^* \pm 0.03}{2.599 \pm 0.53}$		$\frac{11.196^{*}\pm0.18}{11.170\pm0.16}$
ACD-Labs	6.85 ± 0.5	8.36 <u>+</u> 0.2	9.56 <u>+</u> 0.5
Δ ΕС-UV	1.895 0.465		0.529 0.555
Δ UV-ACD-Labs	4.955 4.251		1.636 1.610

Los resultados mostrados determinan que la metodología empleada para la técnica de electroforesis capilar con respecto a la de UV- Vis no establecen las mismas constantes, ya que la técnica de electroforesis capilar logra la determinación de la primera protonación no así la técnica espectrofotométrica de UV-Vis, en la comparación de esta ultima con ACD-Labs los valores dejan de ser precisos ya que la limitante del programa es fundamental para proveer valores confiables solo para moléculas con un numero menor a 25 átomos en su estructura.

LQM 351

Las constantes de acidez para este compuesto fueron determinadas teniendo especial cuidado, ya que en la experimentación para la técnica de electroforesis capilar se presentó precipitación del compuesto en el medio de disolución por arriba de 9.50 unidades de pH.

La experimentación se inicio con la valoración del sistema ácido al básico, con la finalidad de observar la precipitación del compuesto en el medio de disolución del sistema, la integración de los barridos obtenidos a lo largo de la valoración se grafican en la siguiente representación.

Gráfica 29. Espectros de absorción de la valoración del sistema ácido al básico LQM 351.

En la gráfica 23, muestra cuatro máximos de absorbancia, a las longitudes de 217, 241, 284 y 305 nanometros, además se elige la longitud a 305 nanometros por que existe una variación considerable en los valores de absorbancia a lo largo de la valoración. Se procedió a calcular los valores de los coeficientes de absortividad sustituyendo los parámetros instrumentales en la ecuación 26, la grafica 28, resultante muestra una curva a través de la cual se determinaron dos de los pka's, esto al dividir la valoración antes y después del valor de 9.26 unidades de pH y realizar la determinación por el programa SPSS.

El siguiente grafico muestra todos los valores y el porque gráficamente fue adecuado realizar el análisis dividiendo la curva.

Gráfica 30. Coeficiente de absortividad \mathcal{E} (305 nm) en función del pH del sistema, valoración de ácido a base.

La siguiente representación muestra que a valores entre 2 y 9 unidades de pH la existencia del pKa representativo para la especie biprotonada a la protonada es clara, además, que se corrobora lo obtenido por la técnica de electroforesis capilar.

Gráfica 31. Coeficiente de absortividad \mathcal{E} (305 nm) en función del pH del sistema, valoración de ácido a base, primera parte.

Para lo cual se grafican los valores obtenidos a través de la experimentación y la adecuación a través del programa SPSS.

Gráfica 32. Comparación de los valores experimentales y los predichos por el programa, primera parte.

Valores estadísticos calculados por el programa.

Tabla 35. Parámetros estadísticos, valoración del si	istema ácido al básico, primera parte. LQM 351.
--	---

Parámetro	Estimación	Intervalo de Confianza 95%	Error estándar
E1	157.200702	<u>+</u> 30.63984106	11.1638338
E2	4778.85829	<u>+</u> 41.66649989	15.1814409
pKa1	5.73659697	<u>+</u> 0.017857592	0.00807194

 Tabla 36.
 Determinación de ANOVA, valoración del sistema ácido al básico, primera parte.
 LQM

~	_	
3	5	1
0	J	1

Fuente	Suma de cuadrados	df	Cuadrados medios
Regresión	189244324	3	63081441.3
Residuales	9777.48605	13	752.114312
Total sin corregir	189254102	16	
Total corregido	74641490.3	15	

 $R^2 = 1$ - (Suma de cuadrados residuales) / (Suma de cuadrados corregidos) =1.00

Resultados y discusión

Para la valoración en la zona básica, se obtiene posiblemente el valor del pKa 3, la determinación estadística arroja datos favorables para el manejo de los datos por separado, es decir, antes y después del valor máximo del coeficiente de absortividad.

Gráfica 33. Coeficiente de absortividad \mathcal{E} (305 nm) en función del pH del sistema, valoración de ácido a base asegunda parte, LQM 351.

Gráfica 34. Comparación de los valores experimentales y los predichos por el programa, segunda parte.

abla 37. Parámetros estadísticos, valoración del sistema ácido al básico, segunda parte. LQM 35				
Parámetro	Estimación	Intervalo de Confianza 95%	Error estándar	
E1	8688.00065	<u>+</u> 92.4730794	73.3827212	
E2	-5773.63616	<u>+</u> 210.818308	179.866198	
pKa1	11.5101991	<u>+</u> 0.079981539	0.04656863	

Los valores estadísticos calculados por el programa SPSS se reportan en las tablas 37

Tabla 38. Determinación de ANOVA, valoración del sistema ácido al básico, segunda parte .LQM	1351.
--	-------

Fuente	Suma de cuadrados	df	Cuadrados medios
Regresión	422551162	3	140850387
Residuales	147106.914	14	10507.6367
Total sin corregir	422698269	17	
Total corregido	27449873.4	16	

 $R^2 = 1$ - (Suma de cuadrados residuales) / (Suma de cuadrados corregidos) = 0.995

Para la valoración del sistema básico al ácido, se obtuvieron los valores representados en el grafico 35.

Gráfica 35. Espectros de absorción de la valoración del sistema básico al ácido, LQM 351.
Se eligió la longitud de 241 nm, para la realización del análisis, la tendencia de la curva muestra que a valores por arriba de los 6.45 el valor de absorbancia comienza a disminuir considerablemente debido a la precipitación del compuesto, seguido de un incremento que posiblemente ayude a discernir el valor del segundo pka.

Gráfica 36. Coeficiente de absortividad \mathcal{E} (241 nm) en función del pH del sistema, valoración de base a ácido LQM 351.

El análisis se realizó por separado para una mejor adecuación del programa.

Gráfica 37. Comparación entre los valores experimentales y los predichos por programa SPSS, valoración de base a ácido primera parte LQM 351.

Los valores resultantes al analizar los valores experimentales a través del programa muestran la concordancia con los valores calculados para el valor del primer pKa.

Tabla 39. Parámetros estadísticos, valoración del sistema básico al ácido, primera parte.LQM 351.

Parámetro	Estimación	Intervalo de Confianza 95%	Error estándar		
E1	10465.0236	<u>+</u> 161.05	62.6526653		
E2	-10112.3602	<u>+</u> 164.41	63.9613254		
pKa1	5.60109122	<u>+</u> 0.026	0.01026594		

 Tabla 40. Determinación de ANOVA, valoración del sistema básico al ácido, primera parte. LQM

351.

Fuente	Suma de cuadrados	df	Cuadrados medios
Regresión	116046271	3	38682090.3
Residuales	7907.92378	5	1581.58476
Total sin corregir	116054179	8	
Total corregido	80384400.1	7	

 $R^2 = 1$ - (Suma de cuadrados residuales) / (Suma de cuadrados corregidos) = 1.00

Para el segundo pka los resultados son los siguientes.

Gráfica 38. Comparación entre los valores experimentales y los predichos por programa SPSS, valoración de base a ácido segunda parte LQM 351.

Los valores estadísticos se registraron en las tablas 41 y 42.

Parámetro	Estimación	Intervalo de Confianza 95%	Error estándar
E1	3808.91292	<u>+</u> 212.899	49.4808697
E2	5505.03884	<u>+</u> 403.211	93.7122144
pKa2	9.87982481	<u>+</u> 0.202	0.04698819

Tabla 41. Parámetros estadísticos, valoración del sistema básico al ácido, segunda parte LQM 351.

Tabla 41. Parámetros estadísticos, valoración del sistema básico al ácido, segunda parte LQM 351.

Fuente	Suma de cuadrados	df	Cuadrados medios
Regresión	196318052	3	65439350.5
Residuales	13694.4463	2	6847.22314
Total sin corregir	196331746	5	
Total corregido	28487285.2	4	

 $R^2 = 1$ - (Suma de cuadrados residuales) / (Suma de cuadrados corregidos) = 1.00

La última parte de la valoración se muestra en la grafica 39.

Gráfica 39. Coeficiente de absortividad \mathcal{E} (241 nm) en función del pH del sistema, valoración de base a ácido, tercera parte LQM 351.

Los parámetros estadísticos calculados por el programa se engloban en las tablas 43 y 44.

Parámetro	Estimación	Intervalo de Confianza 95%	Error estándar
E1	9207251.76		1.1989E+10
E2	-9203965.07		1.1989E+10
pKa3	16.4808786		576.069844

Tabla 43. Parámetros estadísticos, valoración del sistema básico al ácido, tercera parte. LQM 351.

Tabla 44.	Determinación de	ANOVA,	valoración del	l sistema básio	co al ácido, te	ercera parte. LQM 35	1.
-----------	------------------	--------	----------------	-----------------	-----------------	----------------------	----

Fuente	Suma de cuadrados	df	Cuadrados medios
Regresión	94832508.7	3	31610836.2
Residuales	194942.879	1	194942.879
Total sin corregir	95027451.6	4	
Total corregido	6084460.19	3	

 $R^2 = 1$ - (Suma de cuadrados residuales) / (Suma de cuadrados corregidos) = 0.968

Por lo antes mostrado los valores obtenidos para el pka 1 y 3 se tomaron de la valoración del sistema ácido al básico y para el pka 2 se tomo de la valoración del sistema básico al ácido, por la adecuación que mostró el programa SPSS.

Los resultados obtenidos en las diferentes técnicas se engloban en la tabla 45.

Tabla 45. Resultados y diferencias en cuanto a las constantes determinadas para el compuesto LQM 351.

Determinación	pKa 1	pKa 2	рКа З
Electroforesis Capilar	5.422 <u>+</u> 0.60	8.941 <u>+</u> 0.27	
Ultravioleta Visible	5.736 <u>+</u> 0.017	9.879 <u>+</u> 0.202	11.510 <u>+</u> 0.079
ACD-Labs	6.66 <u>+</u> 0.2	9.02 ± 0.2	10.61 <u>+</u> 0.5
Δ EC-UV 1	0.314	0.938	
Δ UV-ACD-Labs	0.924	0.859	0.9

En base a los resultados se determina que la metodología empleada para la técnica de electroforesis capilar con respecto a la de UV-Vis no son reproducibles, la técnica de electroforesis capilar solo ayudo a la determinación de dos de las constantes mientras que a través de la técnica de UV-Vis se logró determinar los tres valores de pKa´s, por lo tanto, las técnicas pueden complementarse para la obtención de los valores de pKa´s para compuestos bisustuidos.

Compuesto	Estructure	Determinación					
Compuesto	Estructura	Electroforesis Capilar	Ultravioleta Visible	ACD-Labs			
LQM 344	OH NO2	pKa 1= 5.1578 <u>+</u> 0.11 pKa 2= 11.0204 <u>+</u> 0.10	pKa 1= 5.527 * ± 0.02 pKa 2= 10.852* ± 0.05 pKa 1= 5.394 ± 0.07 pKa 2= 10.601 ± 0.29	рКа 1=6.13 ± 0.16 рКа 2=8.46 ± 0.2			
LQM 345	OH N N NO ₂	pKa 1= 3.064 ± 0.12 pKa 2= 10.006 ± 0.11 pKa 3= 11.725 ± 0.18	pKa 1= 1.895* ± 0.03 pKa 2= 11.196* ± 0.18 pKa 1= 2.599 ± 0.53 pKa 2= 11.170 ± 0.16	pKa 1=6.85 <u>+</u> 0.5 pKa 2=8.36 <u>+</u> 0.2 pKa 3=9.56 <u>+</u> 0.5			
LQM 351		pKa 1= 5.422 ± 0.60 pKa 2= 8.941 ± 0.27 pKa 3= No determino	pKa 1= 5.736 <u>+</u> 0.017 pKa 2= 9.879 <u>+</u> 0.202 pKa 3= 11.510 <u>+</u> 0.079	pKa 1=6.66 ± 0.2 pKa 2=9.02 ± 0.2 pKa 3=10.61± 0.5			

Tabla 40. Resultados de las constantes de acidez determinados por las diversa técnicas.

*Determinación realizada en las valoraciones ácido-base de manera individual.

CONCLUSIONES

El desarrollo del método analítico para la determinación de las constantes de acidez por la técnica de electroforesis capilar se estableció a través de las siguientes particularidades:

- El valor óptimo de las variables instrumentales del método se eligió respecto a la señal del compuesto sometido a estudio y del marcador del flujo electroosmótico.
- El equipo cuenta con un sistema de detección espectrofotométrico, de tal modo que los analitos fueron detectados de manera directa ya que presentan absorción en la región ultravioleta-visible.
- La determinación de la longitud del capilar no fue de gran relevancia al modificar la manera de introducir la muestra, ya que se puede realizar por ambos extremos del capilar y por lo tanto se consigue trabajar de forma bidireccional. La introducción se realizó en el extremo más cercano al detector lo cual disminuyó notablemente el tiempo de análisis.
- La corriente que generó la fuerza iónica del sistema o electrolito soporte más la cantidad de cloruro de sodio, vario entre 80 y 100 µA, con lo que constatamos que las velocidades electroforéticas y electroosmóticas no se modificaron drásticamente por esta variable y además se verificó que el capilar presentara las mismas condiciones de trabajo en el transcurso del análisis.
- El ciclo de lavado se estableció al introducir un blanco después de cada corrida, logrando así identificar interferencias y/o contaminantes, así como, el adecuado acondicionamiento del capilar a los diferentes valores de pH analizados.
- Las características de los electrolitos soporte: pH, capacidad reguladora, fuerza iónica, fueron decisivas en la determinación electroforética de cada analito, por lo que se realizaron el día en el cual se analizarían.

Se logró aplicar un método para la determinación del comportamiento ácido-base a través de espectrofotometría de UV-Vis.

• La metodología planteada para la determinación de pKa's arroja resultados favorables, ya que se logró montar el sistema de manera adecuada y tener la habilidad suficiente para realizar la valoración de los diferentes sistemas.

Se logró calcular el valor de las diferentes constantes de acidez de cada compuesto a través del análisis de regresión no lineal, utilizando el programa SPSS versión 13.0. Ver **tabla 40** pp.99.

• El manejo de los datos se realizó eligiendo los valores de la movilidad efectiva en función del pH en los diversos electroferogramas para la técnica de electroforesis capilar, así como los valores en el punto de absorción máxima en función del pH para la técnica de UV-Vis.

Se determinó la capacidad y limitaciones de cada una de las técnicas con relación a los valores obtenidos.

La comparación entre las técnicas nos conlleva a que la determinación por EC presenta enormes ventajas, permite separaciones rápidas y eficientes de componentes cargados y neutros que se encuentren presentes en concentraciones muy pequeñas, no importando la pureza de la muestra, además se distinguen por un bajo costo derivado de los requerimientos de reactivos, por consiguiente abaratamiento del análisis, sobre todo de análisis en los que se tiene que determinar las constantes de pKa's de moléculas que podrían ser posibles principios activos. Estas características, sumadas a la propiedad de ser una técnica fácilmente automatizable en las distintas etapas del proceso de separación, hacen de la E.C. especialmente atractiva para la determinación de dichos parámetros fisicoquímicos.

Sin embargo no hay que dejar de lado la utilidad para llegar a un resultado confiable, los datos obtenidos por la técnica de UV-Vis ya que la comparación ayudo a corroborar lo determinado por la técnica de electroforesis capilar, además de fijar algunas de las limitaciones de ambas técnicas.

La trascendencia en la obtención de dichos valores de pKa radica en la forma en la cual el organismo va a absorber estos posibles principios activos, por tal motivo los compartimentos biológicos presentan diversos valores de pH con dependencia al fluido biológico presente, dos de los compuestos analizados en este trabajo de tesis, se pueden encontrar ionizados en los compartimentos donde se da una absorción inmediata, por lo que no es adecuado administrarlos por estas vías, no obstante, dependiendo de la efectividad terapéutica se puede adecuar su absorción a través del diseño farmacéutico.

El desarrollo de métodos alternativos para la determinación de las constantes de acidez es de suma importancia para el Laboratorio de Química Medicinal, ya que la determinación de las propiedades fisicoquímicas de nuevas moléculas con actividad terapéutica nos ayuda a discernir cuales pueden llegar a tener expectativas para su aprobación como principios activos.

BIBLIOGRAFÍA *

- 1. Roman, F.D.: **Innovación y desarrollo farmacéutico.** Asociación Farmacéutica Mexicana A.C., 1990, pp. 35-65
- Amos, H.F.: Reacciones alérgicas a los medicamentos. El Manual Moderno, S.A., México, D.F. 1978, pp. 6-10
- Florez, J., Armijo, J.A., et al.: Farmacología humana. 3^a Ed. Masso, México, D.F. 2000. pp. 649 – 669 y Florez, J., Armijo, J.A., et al.: Farmacología humana. 4^a Ed. Masso, México, D.F. 2003, pp. 697-708.
- Skoog, D.A., Holler F.J., Nieman, T.A.: Principios de análisis instrumental. 8^a Ed. International Thomson. México. D.F. 2001, pp. 843-862.
- Skoog, D.A., West, D.M., Holler, F.J., Crouch, S.R.: Fundamentos de química analítica. 8ª Ed. International Thomson, México, D.F. 2005, pp. 1016-1029.
- 6. Daniel, H.C.: **Análisis químico cuantitativo.** 3^a Ed. Reverte S.A., Barcelona, España. 2007, pp. 654-672.
- 7. Li, S.Y.: Capillary electrophoresis principles, practice and applications. J. Chromatography Library. 52: 1-608, 1992
- 8. Fernández, G.A., Segura. C.A.: Electroforesis capilar: aproximación según la técnica de detección. Editorial Universidad de Granada, España, 2005, pp. 54-71 y 126-187.
- 9. Castillo, R.M., Alma, R.V., Raquel, L.A., Patricia, R.G.: Fundamentos de electroforesis capilar. UNAM. México, D.F.: 2005, pp. 1-64, 101-135.
- 10. Frank, A. S., Handbook off instrumental techniques for analytical chemistry. Upper Saddle River, EUA. New Jersey: 1997, pp. 165-182.
- Blanco, M., Valverde, I.: Choice of chiral selector for enantiomer separation by CE. J. Pharmaceutical and Biomedical Analysis. 31: 431-438, 2003.
- 12. Poole, S., et al.: **Determination of acid dissociation constants by capillary** electrophoresis. J. Chromatography A. 1037: 445-454, 2004.
- 13. Babic, S., et al.: **Determination of pKa values of pharmaceutical ingredients**. Trends in Analytical Chemistry. 26: 1043-1061, 2007.
- 14. Foulon, C., et al.: Determination of ionization constant of N-imidazole derivatives, aromatase inhibitors, using electrophoresis and influence of susbstituents on pKa shifts. J. Chromatography A. 1035: 131-136, 2004.
- 15. Uhrova, M., et al.: Determination of dissociation constants by separation methods (H-PLC and CE). Theorical background and guidelines for applications. Process Control and Quality. 10: 151-157, 1997.
- Fuguet, E., et. al.: Critical Evaluation of buffering solutions for pKa determination by capillary electrophoresis. Electrophoresis. 29: 2841-2851, 2008.
- 17. Pérez Urquiza M.: Determination of the dissociation constants of sulfonated azo dyes by capillary zone electrophoresis and spectrophotometry methods. J. Chromatography A, 917: 331-336, 2001.
- Herrera, S.A.: Evaluación de la actividad hipotensora de 8 compuestos dimorfilínicos en rata wistar. México Edo. Mex.: FES Cuautitlán, UNAM: 2005. pp.5-39. Tesis para obtener el grado de licenciatura en Químico Farmacéutico Biólogo.

BIBLIOGRAFÍA *

- Ordoñez, G.E.: Modelaje molecular y síntesis de compuestos con posible actividad inmunoestimulante. México Edo. Mex.: FES Cuautitlán, UNAM: 2005. pp.3-20. Tesis para obtener el grado de licenciatura en Químico Farmacéutico Biólogo.
- 20. Rojas, S.C.: **Investigación farmacocinética básica de un nuevo fármaco.** México Edo. Mex.: FES Cuautitlán, UNAM: 2006. pp. 7-25. Tesis para obtener el grado de licenciatura en Químico Farmacéutico Biólogo.
- 21. Crik, D.J.: NMR in Drug Design. CRC Press inc., USA., Florida. 1995, pp.1-13.
- Delgado, A.C., Minguillón, L.C., Juglar, T.J.: Introducción a la química terapéutica. 2ª Ed. Ediciones Díaz Santos, Madrid, España. 2003, pp. 169-181.
- 23. Martín, R. y Pastelón G.; **Hipertensión arterial en México.** Instituto Nacional de Cardiología Ignacio Chávez. 74. No. 2. Abril-Junio, 2004.
- 24. Litter, M.: Farmacología: experimental y clínica. 7^a Ed. Librería "El Ateneo" editorial, Buenos Aires, Argentina.1980, pp. 297 335.
- 25. Lionel, O.H.: **Fármacos en cardiología**. 3^a Ed. Mc Graw Hiill Interamericana, México, D.F. 2002, pp. 231-271
- 26. Katzung, B.G.: Farmacología básica y clínica. 10^a Ed. Manual Moderno, México, D.F. 2005, pp. 163-182, 217-240 y 283 - 302
- 27. Remington, A.G.: Farmacia. 20^a Ed. Editorial Médica Panamericana. México, D.F. 2003, pp. 527-538, 1502-1513
- 28. Goodman, & Gilman.: Las bases farmacológicas de la terapéutica. 10^{ed} Ed. México, D.F. 2003, pp. 736-760 y 882 897.
- 29. **The Merck Index: an encyclopedia of chemicals, drugs and biological.** Ed Susan Budavari. USA., New York. 1996.
- 30. Kalant, H.: **Principios de farmacología médica**. 6^a Ed. Walter E. Roschiau, México, D.F. 2002, pp. 434 448 y 459 476.
- 31. Vargas, G.: **Teoría y aplicaciones de la electroforesis capilar**. FES Cuautitlán, UNAM: Edo. Mex., 2007.
- 32. Rojas, C.M.E.: Desarrollo de un método analítico por electroforesis capilar para la determinación de bromhexina y ampicilina de cápsulas. México Edo. Mex.: FES Cuautitlán, UNAM: 2008. pp. 11-23. Tesis para obtener el grado de licenciatura en Químico Farmacéutico Biólogo
- 33. **The United States Pharmacopeia**, USP 30. Rockville Maryland: Emitted States Pharmacopeia Convection. 2007.
- Ma.del Pilar, C.M.: Fundamentos de química analítica, teoria y ejercicios. 2^a Ed. UNAM, México D.F. 2009, pp. 174-183.
- Carey, F.A.: Química orgánica. Mac Graw Hill, México, D.F. 2006, pp. 126-131.
- 36. Martha, A. V.: Ácidos y bases, efectos estereoelectrónicos sobre la acidez. Facultad de Química. UNAM., México, D.F. 2007, pp. 17-42.
- 37. Harcourt, B.: **Problemas de laboratorio químico y farmacéutico.** Juan Ruiz Soriano. México, D.F. 1997, pp. 131-151.

BIBLIOGRAFÍA *

- 38. Vazquez, M.S.: Equilibrios iónicos y sus aplicaciones analíticas. Manual Sintesis. Madrid, España. 2002, pp.18-126.
- 39. Harvey, D.: Química analítica moderna. Mc.Graw Hill Interamericana, México, D.F. 2002, pp. 259-282.
- 40. Charlot, G.: **Curso de química analítica general.** Vol II Métodos Químicos absorciométricos y cromatografía. Toray Masson., Barcelona, España. 1977, pp. 166-187.
- 41. Hernández, H.L., González, P.C.: Introducción al análisis instrumental. Ariel. Barcelona, España. 2002, pp. 45-91.
- 42. Sommer, L.: Analytical absorption spectrophotometry in the visible and ultraviolet the principles. Elservier. Amsterdam, 1989, pp. 13-45.
- 43. Christian, G.D: Analytical Chemistry. John Wiley. USA. New York.1994, pp. 115-143.
- 44. Nava, N.G.: Determinación de las constantes de ácidez del fármaco antiinflamatorio Meloxicam. México Edo. Mex.: FES Cuautitlán, UNAM: 2010, pp. 26-37. Tesis para obtener el grado de licenciatura en Químico Farmacéutico Biólogo.
- 45. Herrera, C. N.: Determinación de constantes de acidez del fármaco antiinflamatorio isoxicam. México Edo. Mex.: FES Cuautitlán, UNAM: 2007. pp 10-38. Tesis para obtener el grado de licenciatura en Químico Farmacéutico Biólogo.
- 46. Legget, D. J., W.A.E. Mc Bryde, Anal. Chem. 47: 1065. 1975
- 47. Cruz, L.E.: Determinación de la constante acida por el método de mínimos cuadrados parciales. México Edo. Mex.: FES Cuautitlán, UNAM: 2010. pp.1-17. Tesis para obtener el grado de licenciatura en Químico Farmacéutico Biólogo.
- 48. Juana, M.P.: Determinación de las constantes de acidez de la serie de compuestos LQM: 301, 305 y 337, por espectrometría UV-Vis. México Edo. Mex.: FES Cuautitlán, UNAM: 2008. pp.4- 23.Tesis para obtener el grado de licenciatura en Químico Farmacéutico Biólogo.

* Estructura de la bibliografía referida en el Sistema American National Standard for Bibliographic Referentes IANSI.

	LQM 344 (datos a 200 nm)									
рН	Acetona	1/to	LQM	1/tm	LtLd/V(1/tm-1/to)	meef /1000	media	desv estandar	CV	
12.32	1.06300	0.94073	1.70400	0.58685	-53.08190	-0.05308	-0.05330	0.00038	-0.72189	
	1.06300	0.94073	1.70400	0.58685	-53.08190	-0.05308				
	1.06300	0.94073	1.71700	0.58241	-53.74839	-0.05375				
12.20	1.03800	0.96339	1.60000	0.62500	-50.75867	-0.05076	-0.05124	0.00043	-0.83303	
	1.06300	0.94073	1.67500	0.59701	-51.55783	-0.05156				
	1.04200	0.95969	1.62100	0.61690	-51.41846	-0.05142				
12.18	1.21200	0.82508	2.10800	0.47438	-52.60488	-0.05260	-0.05279	0.00016	-0.30026	
	1.20800	0.82781	2.10400	0.47529	-52.87941	-0.05288				
	1.20800	0.82781	2.10400	0.47529	-52.87941	-0.05288				
11.91	1.06300	0.94073	1.61700	0.61843	-48.34569	-0.04835	-0.04865	0.00026	-0.54197	
	1.06300	0.94073	1.62500	0.61538	-48.80237	-0.04880				
	1.06300	0.94073	1.62500	0.61538	-48.80237	-0.04880				
11.63	1.01700	0.98328	1.42900	0.69979	-42.52412	-0.04252	-0.04200	0.00049	-1.17841	
	1.01700	0.98328	1.42100	0.70373	-41.93316	-0.04193				
	1.01300	0.98717	1.40800	0.71023	-41.54093	-0.04154				
11.34	1.02500	0.97561	1.43300	0.69784	-41.66596	-0.04167	-0.04108	0.00059	-1.43873	
	1.02500	0.97561	1.42500	0.70175	-41.07831	-0.04108				
	1.02500	0.97561	1.41700	0.70572	-40.48402	-0.04048				
11.11	0.98300	1.01729	1.26700	0.78927	-34.20420	-0.03420	-0.03371	0.00058	-1.71486	
	0.97500	1.02564	1.25000	0.80000	-33.84615	-0.03385				
	0.97500	1.02564	1.24200	0.80515	-33.07321	-0.03307				
10.84	0.98800	1.01215	1.10000	0.90909	-15.45823	-0.01546	-0.01572	0.00023	-1.45674	
	0.97900	1.02145	1.09200	0.91575	-15.85493	-0.01585				
	0.97900	1.02145	1.09200	0.91575	-15.85493	-0.01585				
10.80	1.00830	0.99177	1.17080	0.85412	-20.64772	-0.02065	-0.02029	0.00032	-1.57308	
	1.00830	0.99177	1.16670	0.85712	-20.19749	-0.02020				
	1.01250	0.98765	1.17080	0.85412	-20.03062	-0.02003				
10.64	1.04580	0.95621	1.20420	0.83043	-18.86684	-0.01887	-0.01881	0.00023	-1.20021	
	1.04170	0.95997	1.20000	0.83333	-18.99539	-0.01900				
	1.04170	0.95997	1.19580	0.83626	-18.55636	-0.01856				

	LQM 344 (datos a 200 nm)										
pН	Acetona	1/to	LQM	1/tm	LtLd/V(1/tm-1/to)	meef /1000	media	desv estandar	CV		
9.88	1.00418	0.99584	1.05833	0.94488	-7.64288	-0.00764	-0.00763	0.00003	-0.42132		
	1.00830	0.99177	1.06250	0.94118	-7.58878	-0.00759					
	1.00416	0.99586	1.05833	0.94488	-7.64586	-0.00765					
9.69	0.95830	1.04351	0.98330	1.01698	-3.97964	-0.00398	-0.00396	0.00002	-0.61061		
	0.96250	1.03896	0.98750	1.01266	-3.94542	-0.00395					
9.51	1.00830	0.99177	1.00830	0.99177	0.00000	0.00000	0.00000	NA	NA		
	1.00830	0.99177	1.00830	0.99177							
	1.01250	0.98765	1.01250	0.98765							
9.26	1.02500	0.97561	1.02500	0.97561	0.00000	0.00000	0.00000	NA	NA		
	1.02080	0.97962	1.02080	0.97962							
	1.02080	0.97962	1.02080	0.97962							
8.91	1.00830	0.99177	1.00830	0.99177	0.00000	0.00000	0.00000	NA	NA		
	1.00830	0.99177	1.00830	0.99177							
	1.00830	0.99177	1.00830	0.99177							
8.80	0.98330	1.01698	0.98330	1.01698	0.00000	0.00000	0.00000	NA	NA		
	0.97920	1.02124	0.97920	1.02124							
	0.97920	1.02124	0.97920	1.02124							
8.46	0.96670	1.03445	0.96670	1.03445	0.00000	0.00000	0.00000	NA	NA		
	0.96250	1.03896	0.96250	1.03896							
	0.96250	1.03896	0.96250	1.03896							
8.30	1.01250	0.98765	1.01250	0.98765	0.00000	0.00000	0.00000	NA	NA		
	1.01250	0.98765	1.01250	0.98765							
	1.01250	0.98765	1.01250	0.98765							
8.20	0.99170	1.00837	0.99170	1.00837	0.00000	0.00000	0.00000	NA	NA		
	0.99170	1.00837	0.99170	1.00837							
	0.99600	1.00402	0.99600	1.00402							
7.80	0.96250	1.03896	0.96250	1.03896	0.00000	0.00000	0.00000	NA	NA		
	0.95830	1.04351	0.95830	1.04351							
	0.95420	1.04800	0.95420	1.04800							
7.73	1.03750	0.96386	1.03750	0.96386	0.00000	0.00000	0.00000	NA	NA		
	1.00830	0.99177	1.00830	0.99177							
	1.00000	1.00000	1.00000	1.00000							

	LQM 344 (datos a 200 nm)										
pН	Acetona	1/to	LQM	1/tm	LtLd/V(1/tm-1/to)	meef /1000	media	desv estandar	CV		
7.65	0.95830	1.04351	0.95830	1.04351	0.00000	0.00000	0.00000	NA	NA		
	0.96250	1.03896	0.96250	1.03896							
	0.95830	1.04351	0.95830	1.04351							
7.35	0.96250	1.03896	0.96250	1.03896	0.00000	0.00000	0.00000	NA	NA		
	0.96250	1.03896	0.96250	1.03896							
	0.95000	1.05263	0.95000	1.05263							
7.11	1.08700	0.91996	1.08700	0.91996	0.00000	0.00000	0.00000	NA	NA		
	1.08300	0.92336	1.08300	0.92336							
	1.07920	0.92661	1.07920	0.92661							
7.05	0.95000	1.05263	0.95000	1.05263	0.00000	0.00000	0.00000	NA	NA		
	0.96250	1.03896	0.96250	1.03896							
6.72	1.08750	0.91954	1.08750	0.91954	0.00000	0.00000	0.00000	NA	NA		
	1.08750	0.91954	1.08750	0.91954							
	1.08750	0.91954	1.08750	0.91954							
6.22	1.08180	0.92439	1.05420	0.94859	3.63020	0.00363	0.00363	0.00001	0.36247		
	1.08190	0.92430	1.05420	0.94859	3.64301	0.00364					
	1.08180	0.92439	1.05430	0.94850	3.61670	0.00362					
6.00	1.03330	0.96777	1.01252	0.98763	2.97925	0.00298	0.00300	0.00002	0.66519		
	1.03323	0.96784	1.01230	0.98785	3.00161	0.00300					
	1.03325	0.96782	1.01220	0.98795	3.01906	0.00302					
5.85	1.07011	0.93448	1.04529	0.95667	3.32834	0.00333	0.00334	0.00003	0.76277		
	1.06250	0.94118	1.03772	0.96365	3.37119	0.00337					
	1.05822	0.94498	1.03396	0.96716	3.32585	0.00333					
5.32	1.24580	0.80270	0.99580	1.00422	30.22810	0.03023	0.03105	0.00074	2.37397		
	1.25000	0.80000	0.99170	1.00837	31.25542	0.03126					
	1.25420	0.79732	0.99170	1.00837	31.65727	0.03166					
5.00	1.34580	0.74305	1.02080	0.97962	35.48570	0.03549	0.03548	0.00026	0.73151		
	1.34170	0.74532	1.01670	0.98357	35.73768	0.03574					
	1.33550	0.74878	1.01670	0.98357	35.21866	0.03522					
4.88	1.20420	0.83043	0.93750	1.06667	35.43597	0.03544	0.03572	0.00024	0.68321		
	1.20830	0.82761	0.93750	1.06667	35.85864	0.03586					
	1.20830	0.82761	0.93750	1.06667	35.85864	0.03586					

					LQM 344 (datos a 200	nm)			
pН	Acetona	1/to	LQM	1/tm	LtLd/V(1/tm-1/to)	meef /1000	media	desv estandar	CV
4.58	1.31670	0.75947	0.97920	1.02124	39.26511	0.03927	0.03949	0.00038	0.96487
	1.31670	0.75947	0.97920	1.02124	39.26511	0.03927			
	1.31670	0.75947	0.97500	1.02564	39.92499	0.03992			
4.27	1.49170	0.67038	1.04580	0.95621	42.87445	0.04287	0.04307	0.00033	0.77484
	1.48330	0.67417	1.03750	0.96386	43.45245	0.04345			
	1.49170	0.67038	1.04580	0.95621	42.87445	0.04287			
3.97	1.89170	0.52863	1.17920	0.84803	47.91113	0.04791	0.04825	0.00046	0.95975
	1.91670	0.52173	1.18750	0.84211	48.05628	0.04806			
	1.97920	0.50525	1.20420	0.83043	48.77583	0.04878			
3.67	2.79170	0.35820	1.36250	0.73394	56.36104	0.05636	0.05737	0.00090	1.56356
	2.86250	0.34934	1.36250	0.73394	57.69000	0.05769			
	2.92080	0.34237	1.37080	0.72950	58.06936	0.05807			
3.62	2.31667	0.43165	1.30830	0.76435	49.90449	0.04990	0.05030	0.00063	1.26112
	2.35833	0.42403	1.32080	0.75712	49.96320	0.04996			
	2.41250	0.41451	1.32500	0.75472	51.03138	0.05103			
3.19	3.55830	0.28103	1.72920	0.57830	44.59035	0.04459	0.04586	0.00113	2.45599
	3.60830	0.27714	1.70830	0.58538	46.23577	0.04624			
	3.69170	0.27088	1.71670	0.58251	46.74526	0.04675			
3.06	3.74580	0.26697	1.61670	0.61854	52.73674	0.05274	0.05287	0.00024	0.45989
	3.81250	0.26230	1.62920	0.61380	52.72547	0.05273			
	3.92500	0.25478	1.64170	0.60912	53.15214	0.05315			
	4.02500	0.24845	1.65830	0.60303	53.18700	0.05319			
2.94	2.72080	0.36754	1.39580	0.71644	52.33441	0.05233	0.05249	0.00014	0.25940
	2.87920	0.34732	1.43330	0.69769	52.55579	0.05256			
	3.10830	0.32172	1.48750	0.67227	52.58245	0.05258			
2.64	7.05420	0.14176	2.02080	0.49485	52.96410	0.05296	0.05270	0.00024	0.45638
	7.05000	0.14184	2.02920	0.49281	52.64416	0.05264			
	7.25420	0.13785	2.05000	0.48780	52.49306	0.05249			
2.60	9.81670	0.10187	2.14170	0.46692	54.75774	0.05476	0.05458	0.00069	1.26651
	9.90000	0.10101	2.13330	0.46876	55.16208	0.05516			
	10.07500	0.09926	2.18330	0.45802	53.81500	0.05382			

	LQM 344 (datos a 200 nm)													
рН	Acetona	1/to	LQM	1/tm	LtLd/V(1/tm-1/to)	meef /1000	media	desv estandar	CV					
2.40	8.92920	0.11199	2.09170	0.47808	54.91319	0.05491	0.05508	0.00015	0.27187					
	9.04580	0.11055	2.09170	0.47808	55.12972	0.05513								
	9.16250	0.10914	2.09580	0.47714	55.20064	0.05520								
2.01	8.76670	0.11407	2.07080	0.48291	55.32557	0.05533	0.05545	0.00047	0.85423					
	8.85000	0.11299	2.08330	0.48001	55.05200	0.05505								
	8.87500	0.11268	2.05830	0.48584	55.97427	0.05597								

	LQM 345 (datos a 200 nm)													
рН	Acetona	1/to	LQM	1/tm	LtLd/V(1/tm-1/to)	meef /1000	media	desv estandar	CV					
12.32	1.07500	0.93023	1.46670	0.68180	-37.26448	-0.03726	-0.03722	0.00005	-0.12397					
	1.07080	0.93388	1.45830	0.68573	-37.22269	-0.03722								
	1.06670	0.93747	1.45000	0.68966	-37.17233	-0.03717								
12.2	1.03330	0.96777	1.33750	0.74766	-33.01644	-0.03302	-0.03313	0.00053	-1.60440					
	1.03330	0.96777	1.33330	0.75002	-32.66316	-0.03266								
	1.03330	0.96777	1.34580	0.74305	-33.70810	-0.03371								
12.18	1.22500	0.81633	1.69170	0.59112	-33.78078	-0.03378	-0.03382	0.00010	-0.28136					
	1.22080	0.81913	1.68330	0.59407	-33.75957	-0.03376								
	1.21250	0.82474	1.67080	0.59852	-33.93399	-0.03393								
11.91	1.05000	0.95238	1.31670	0.75947	-28.93598	-0.02894	-0.02894	0.00000	0.00000					
	1.05000	0.95238	1.31670	0.75947	-28.93598	-0.02894								
	1.05000	0.95238	1.31670	0.75947	-28.93598	-0.02894								
11.63	1.02920	0.97163	1.21250	0.82474	-22.03293	-0.02203	-0.02148	0.00050	-2.30545					
	1.02500	0.97561	1.20000	0.83333	-21.34146	-0.02134								
	1.02080	0.97962	1.19170	0.83914	-21.07297	-0.02107								
11.34	0.99170	1.00837	1.11900	0.89366	-17.20716	-0.01721	-0.01685	0.00040	-2.35694					
	0.99170	1.00837	1.11670	0.89550	-16.93107	-0.01693								
	0.99170	1.00837	1.11250	0.89888	-16.42396	-0.01642								
11.11	1.05830	0.94491	1.05830	0.94491	0.00000	0.00000	0.00000	NA	NA					
	1.05420	0.94859	1.05420	0.94859										
	1.05000	0.95238	1.05000	0.95238										
11.00	1.01670	0.98357	1.01670	0.98357	0.00000	0.00000	0.00000	NA	NA					
	1.01250	0.98765	1.01250	0.98765										
	1.01670	0.98357	1.01670	0.98357										
10.93	0.97920	1.02124	0.97920	1.02124	0.00000	0.00000	0.00000	NA	NA					
	0.97920	1.02124	0.97920	1.02124										
	0.97080	1.03008	0.97080	1.03008										
10.84	0.95830	1.04351	0.95830	1.04351	0.00000	0.00000	0.00000	NA	NA					
	0.96250	1.03896	0.96250	1.03896										
	0.95830	1.04351	0.95830	1.04351										

	LQM 345 (datos a 200 nm)													
рН	Acetona	1/to	LQM	1/tm	LtLd/V(1/tm-1/to)	meef /1000	media	desv estandar	CV					
10.80	1.02080	0.97962	1.02080	0.97962	0.00000	0.00000	0.00000	NA	NA					
	1.01670	0.98357	1.01670	0.98357										
	1.01670	0.98357	1.01670	0.98357										
10.77	0.97080	1.03008	0.97080	1.03008	0.00000	0.00000	0.00000	NA	NA					
	0.96670	1.03445	0.96670	1.03445										
	0.96670	1.03445	0.96670	1.03445										
10.64	1.01670	0.98357	1.01670	0.98357	0.00000	0.00000	0.00000	NA	NA					
	1.02080	0.97962	1.02080	0.97962										
	1.02080	0.97962	1.02080	0.97962										
10.33	1.01665	0.98362	0.98759	1.01256	4.34103	0.00434	0.00486	0.00083	17.13396					
	1.01252	0.98763	0.98316	1.01712	4.42342	0.00442								
	1.00891	0.99117	0.97088	1.02999	5.82355	0.00582								
10.10	0.96250	1.03896	0.85000	1.17647	20.62643	0.02063	0.02163	0.00098	4.51508					
	0.95830	1.04351	0.83750	1.19403	22.57729	0.02258								
	0.95830	1.04351	0.84170	1.18807	21.68358	0.02168								
9.88	1.00377	0.99624	0.89018	1.12337	19.06957	0.01907	0.01866	0.00043	2.30652					
	1.00836	0.99171	0.89575	1.11638	18.70104	0.01870								
	1.00834	0.99173	0.89836	1.11314	18.21158	0.01821								
9.70	1.00000	1.00000	0.86670	1.15380	23.07027	0.02307	0.02336	0.00025	1.08336					
	0.99170	1.00837	0.85830	1.16509	23.50865	0.02351								
	0.99170	1.00837	0.85830	1.16509	23.50865	0.02351								
9.51	0.99580	1.00422	0.84170	1.18807	27.57811	0.02758	0.02797	0.00046	1.63859					
	0.99170	1.00837	0.83750	1.19403	27.84906	0.02785								
	0.99580	1.00422	0.83750	1.19403	28.47182	0.02847								
9.26	0.99580	1.00422	0.80830	1.23716	34.94201	0.03494	0.03473	0.00036	1.03515					
	0.99580	1.00422	0.80830	1.23716	34.94201	0.03494								
	0.99170	1.00837	0.80830	1.23716	34.31924	0.03432								
8.91	0.99580	1.00422	0.82080	1.21832	32.11588	0.03212	0.03273	0.00053	1.61846					
	0.99580	1.00422	0.81670	1.22444	33.03332	0.03303								
	0.99580	1.00422	0.81670	1.22444	33.03332	0.03303								

					LQM 345 (datos a 200	nm)			
рН	Acetona	1/to	LQM	1/tm	LtLd/V(1/tm-1/to)	meef /1000	media	desv estandar	CV
8.80	0.96660	1.03455	0.80000	1.25000	32.31688	0.03232	0.03232	0.00001	0.02867
	0.96660	1.03455	0.80000	1.25000	32.31688	0.03232			
	0.96670	1.03445	0.80000	1.25000	32.33294	0.03233			
8.46	0.96250	1.03896	0.78330	1.27665	35.65335	0.03565	0.03496	0.00060	1.72250
	0.95000	1.05263	0.77920	1.28337	34.61040	0.03461			
	0.95000	1.05263	0.77920	1.28337	34.61040	0.03461			
8.3	1.00830	0.99177	0.81250	1.23077	35.85014	0.03585	0.03617	0.00055	1.53122
	1.00830	0.99177	0.80830	1.23716	36.80941	0.03681			
	1.00830	0.99177	0.81250	1.23077	35.85014	0.03585			
8.2	0.98336	1.01692	0.79554	1.25701	36.01270	0.03601	0.03502	0.00197	5.63277
	0.98751	1.01265	0.81237	1.23096	32.74728	0.03275			
	0.97922	1.02122	0.79164	1.26320	36.29716	0.03630			
7.8	0.95830	1.04351	0.77920	1.28337	35.97795	0.03598	0.03633	0.00060	1.65812
	0.95830	1.04351	0.77500	1.29032	37.02120	0.03702			
	0.95830	1.04351	0.77920	1.28337	35.97795	0.03598			
7.73	0.98750	1.01266	0.79580	1.25660	36.59084	0.03659	0.03670	0.00019	0.51494
	0.98750	1.01266	0.79580	1.25660	36.59084	0.03659			
	0.98330	1.01698	0.79170	1.26310	36.91816	0.03692			
7.65	0.95830	1.04351	0.77500	1.29032	37.02120	0.03702	0.03657	0.00039	1.06173
	0.95420	1.04800	0.77500	1.29032	36.34864	0.03635			
	0.95420	1.04800	0.77500	1.29032	36.34864	0.03635			
7.35	0.96670	1.03445	0.77920	1.28337	37.33807	0.03734	0.03734	NA	NA
	0.96670	1.03445	0.77920	1.28337	37.33807	0.03734			
	0.96670	1.03445	0.77920	1.28337	37.33807	0.03734			
7.11	1.07920	0.92661	0.84170	1.18807	39.21892	0.03922	0.03893	0.00050	1.28113
	1.07920	0.92661	0.84170	1.18807	39.21892	0.03922			
	1.07920	0.92661	0.84580	1.18231	38.35504	0.03836			
7.05	0.97080	1.03008	0.78750	1.26984	35.96445	0.03596	0.03621	0.00021	0.58359
	0.96670	1.03445	0.78330	1.27665	36.33045	0.03633			
	0.96670	1.03445	0.78330	1.27665	36.33045	0.03633			

	LQM 345 (datos a 200 nm)													
рН	Acetona	1/to	LQM	1/tm	LtLd/V(1/tm-1/to)	meef /1000	media	desv estandar	CV					
6.72	1.07920	0.92661	0.85000	1.17647	37.47874	0.03748	0.03765	0.00030	0.80659					
	1.07920	0.92661	0.85000	1.17647	37.47874	0.03748								
	1.08330	0.92311	0.85000	1.17647	38.00479	0.03800								
6.42	1.05830	0.94491	0.84580	1.18231	35.61014	0.03561	0.03579	0.00061	1.70643					
	1.05830	0.94491	0.84170	1.18807	36.47402	0.03647								
	1.06250	0.94118	0.85000	1.17647	35.29412	0.03529								
6.22	1.05417	0.94861	0.84170	1.18807	35.91872	0.03592	0.03590	0.00001	0.03691					
	1.05400	0.94877	0.84170	1.18807	35.89577	0.03590								
	1.05400	0.94877	0.84170	1.18807	35.89577	0.03590								
6.00	1.03750	0.96386	0.83750	1.19403	34.52616	0.03453	0.03462	0.00045	1.31066					
	1.04170	0.95997	0.84170	1.18807	34.21537	0.03422								
	1.04170	0.95997	0.83750	1.19403	35.10909	0.03511								
5.85	1.05000	0.95238	0.84580	1.18231	34.48975	0.03449	0.03430	0.00061	1.78660					
	1.05000	0.95238	0.85000	1.17647	33.61345	0.03361								
	1.04590	0.95611	0.84170	1.18807	34.79361	0.03479								
5.62	1.22916	0.81356	0.94170	1.06191	37.25184	0.03725	0.03724	0.00015	0.39147					
	1.23750	0.80808	0.94580	1.05731	37.38378	0.03738								
	1.24170	0.80535	0.95000	1.05263	37.09261	0.03709								
5.32	1.24580	0.80270	0.95000	1.05263	37.49018	0.03749	0.03707	0.00049	1.33245					
	1.25000	0.80000	0.95420	1.04800	37.19975	0.03720								
	1.25000	0.80000	0.95830	1.04351	36.52718	0.03653								
5.00	1.33750	0.74766	1.00420	0.99582	37.22310	0.03722	0.03708	0.00050	1.35511					
	1.32920	0.75233	1.00420	0.99582	36.52280	0.03652								
	1.33330	0.75002	1.00000	1.00000	37.49719	0.03750								
4.88	1.21250	0.82474	0.93750	1.06667	36.28866	0.03629	0.03614	0.00037	1.01658					
	1.22080	0.81913	0.94170	1.06191	36.41615	0.03642								
	1.22080	0.81913	0.94580	1.05731	35.72565	0.03573								
4.58	1.40420	0.71215	1.02920	0.97163	38.92188	0.03892	0.03872	0.00021	0.53331					
	1.42500	0.70175	1.04170	0.95997	38.73223	0.03873								
	1.43750	0.69565	1.05000	0.95238	38.50932	0.03851								

					LQM 345 (datos a 200	nm)			
рН	Acetona	1/to	LQM	1/tm	LtLd/V(1/tm-1/to)	meef /1000	media	desv estandar	CV
4.27	2.34670	0.42613	1.46250	0.68376	38.64456	0.03864	0.03837	0.00028	0.73798
	2.37917	0.42031	1.48330	0.67417	38.07867	0.03808			
	2.41250	0.41451	1.49170	0.67038	38.38025	0.03838			
3.97	2.02080	0.49485	1.30000	0.76923	41.15659	0.04116	0.04159	0.00055	1.31073
	2.05830	0.48584	1.31250	0.76190	41.41004	0.04141			
	2.11250	0.47337	1.32500	0.75472	42.20163	0.04220			
3.67	2.35417	0.42478	1.40418	0.71216	43.10719	0.04311	0.04455	0.00135	3.02743
	2.46667	0.40540	1.42100	0.70373	44.74874	0.04475			
	2.58766	0.38645	1.44580	0.69166	45.78136	0.04578			
3.62	2.44580	0.40886	1.44580	0.69166	42.41916	0.04242	0.04270	0.00027	0.62435
	2.45830	0.40679	1.44580	0.69166	42.73101	0.04273			
	2.49170	0.40133	1.45420	0.68766	42.94963	0.04295			
3.19	3.66250	0.27304	1.61670	0.61854	51.82596	0.05183	0.05190	0.00007	0.13175
	3.78300	0.26434	1.63750	0.61069	51.95198	0.05195			
	3.52500	0.28369	1.58750	0.62992	51.93500	0.05193			
3.06	4.07500	0.24540	1.80830	0.55301	46.14102	0.04614	0.04698	0.00098	2.09081
	4.12080	0.24267	1.80420	0.55426	46.73864	0.04674			
	4.22920	0.23645	1.79580	0.55685	48.06053	0.04806			
2.94	3.21250	0.31128	1.60420	0.62336	46.81194	0.04681	0.04839	0.00162	3.34780
	3.35420	0.29813	1.61250	0.62016	48.30320	0.04830			
	3.47080	0.28812	1.60830	0.62177	50.04848	0.05005			
2.64	8.26250	0.12103	2.07920	0.48095	53.98882	0.05399	0.05489	0.00095	1.72166
	8.17080	0.12239	2.05000	0.48780	54.81268	0.05481			
	8.24170	0.12133	2.02500	0.49383	55.87395	0.05587			
2.60	9.77080	0.10235	2.17920	0.45888	53.48073	0.05348	0.05386	0.00037	0.68016
	9.85420	0.10148	2.17080	0.46066	53.87701	0.05388			
	9.81250	0.10191	2.15830	0.46333	54.21252	0.05421			
2.40	9.25830	0.10801	2.00830	0.49793	58.48836	0.05849	0.05843	0.00047	0.79624
	9.30000	0.10753	2.00000	0.50000	58.87097	0.05887			
	9.30000	0.10753	2.02500	0.49383	57.94504	0.05795			

	LQM 345 (datos a 200 nm)													
рН	Acetona	1/to	LQM	1/tm	meef = LtLd/V(1/tm-1/to)	meef /1000	media	desv estandar	CV					
2.01	8.91250	0.11220	1.89580	0.52748	62.29198	0.06229	0.06290	0.00054	0.86235					
	9.19580	0.10875	1.88330	0.53098	63.33563	0.06334								
	9.24580	0.10816	1.89170	0.52863	63.07017	0.06307								

	LQM 351 (datos a 200 nm)													
pH	Acetona	1/to	LQM	1/tm	LtLd/V(1/tm-1/to)	meef /1000	media	desv estandar	CV					
11.63	1.20830	0.82761	1.05830	0.94491	17.59539	0.01760	0.01806	0.00040	2.23045					
	1.20420	0.83043	1.05000	0.95238	18.29312	0.01829								
	1.20420	0.83043	1.05000	0.95238	18.29312	0.01829								
11.34	0.95000	1.05263	0.80420	1.24347	28.62603	0.02863	0.02927	0.00056	1.90203					
	0.95000	1.05263	0.80000	1.25000	29.60526	0.02961								
	0.95560	1.04646	0.80410	1.24363	29.57452	0.02957								
11.00	0.98330	1.01698	0.98330	1.01698	0.00000	0.00000	0.00000	NA	NA					
	0.98330	1.01698	0.98330	1.01698										
	0.97920	1.02124	0.97920	1.02124										
10.77	0.96670	1.03445	0.96670	1.03445	0.00000	0.00000	0.00000	NA	NA					
	0.95830	1.04351	0.95830	1.04351										
	0.95830	1.04351	0.95830	1.04351										
10.10	0.98357	1.01671	0.83330	1.20005	27.50076	0.02750	0.02722	0.00041	1.50496					
	0.97876	1.02170	0.83330	1.20005	26.75222	0.02675								
	0.98301	1.01728	0.83330	1.20005	27.41512	0.02742								
9.69	0.94580	1.05731	0.83750	1.19403	20.50858	0.02051	0.02065	0.00012	0.59335					
	0.94170	1.06191	0.83330	1.20005	20.72080	0.02072								
	0.94170	1.06191	0.83330	1.20005	20.72080	0.02072								
9.26	0.98750	1.01266	0.80830	1.23716	33.67593	0.03368	0.03389	0.00037	1.09594					
	0.99170	1.00837	0.80830	1.23716	34.31924	0.03432								
	0.98750	1.01266	0.80830	1.23716	33.67593	0.03368								
8.91	0.96670	1.03445	0.80420	1.24347	31.35370	0.03135	0.03126	0.00017	0.53711					
	0.97080	1.03008	0.80830	1.23716	31.06292	0.03106								
	0.96670	1.03445	0.80420	1.24347	31.35370	0.03135								
8.46	0.94170	1.06191	0.77080	1.29735	35.31661	0.03532	0.03497	0.00061	1.74141					
	0.94170	1.06191	0.77500	1.29032	34.26199	0.03426								
	0.94170	1.06191	0.77080	1.29735	35.31661	0.03532								
8.30	1.08330	0.92311	0.87920	1.13740	32.14385	0.03214	0.03203	0.00017	0.52311					
	1.05000	0.95238	0.85830	1.16509	31.90693	0.03191								

	LQM 351 (datos a 200 nm)													
рН	Acetona	1/to	LQM	1/tm	LtLd/V(1/tm-1/to)	meef /1000	media	desv estandar	CV					
8.20	0.95000	1.05263	0.77920	1.28337	34.61040	0.03461	0.03451	0.00018	0.52309					
	0.95000	1.05263	0.77920	1.28337	34.61040	0.03461								
	0.95420	1.04800	0.78330	1.27665	34.29776	0.03430								
7.80	0.95830	1.04351	0.78330	1.27665	34.97033	0.03497	0.03452	0.00052	1.50727					
	0.95830	1.04351	0.78750	1.26984	33.94901	0.03395								
	0.96250	1.03896	0.78750	1.26984	34.63203	0.03463								
7.73	0.97920	1.02124	0.79580	1.25660	35.30330	0.03530	0.03563	0.00056	1.58180					
	0.97920	1.02124	0.79170	1.26310	36.27943	0.03628								
	0.97920	1.02124	0.79580	1.25660	35.30330	0.03530								
7.63	0.94580	1.05731	0.77500	1.29032	34.95249	0.03495	0.03542	0.00040	1.14290					
	0.95000	1.05263	0.77500	1.29032	35.65365	0.03565								
	0.95000	1.05263	0.77500	1.29032	35.65365	0.03565								
7.35	0.95420	1.04800	0.77920	1.28337	35.30538	0.03531	0.03623	0.00086	2.38663					
	0.95420	1.04800	0.77500	1.29032	36.34864	0.03635								
	0.95830	1.04351	0.77500	1.29032	37.02120	0.03702								
7.11	1.26670	0.78945	1.00420	0.99582	30.95470	0.03095	0.03082	0.00023	0.73789					
	1.26670	0.78945	1.00420	0.99582	30.95470	0.03095								
	1.26250	0.79208	1.00420	0.99582	30.56075	0.03056								
7.05	0.94990	1.05274	0.77080	1.29735	36.69165	0.03669	0.03622	0.00041	1.13778					
	0.95830	1.04351	0.77920	1.28337	35.97795	0.03598								
	0.95830	1.04351	0.77920	1.28337	35.97795	0.03598								
6.72	1.40416	0.71217	1.07920	0.92661	32.16641	0.03217	0.03208	0.00025	0.76467					
	1.44170	0.69363	1.10420	0.90563	31.80112	0.03180								
	1.46250	0.68376	1.11250	0.89888	32.26736	0.03227								
6.42	1.25420	0.79732	0.96250	1.03896	36.24601	0.03625	0.03650	0.00023	0.62666					
	1.27920	0.78174	0.97500	1.02564	36.58537	0.03659								
	1.28750	0.77670	0.97920	1.02124	36.68142	0.03668								
6.22	1.29170	0.77417	0.97080	1.03008	38.38571	0.03839	0.03859	0.00028	0.71270					
	1.29270	0.77357	0.97080	1.03008	38.47554	0.03848								
	1.31250	0.76190	0.97920	1.02124	38.90056	0.03890								

					LQM 351 (datos a 200) nm)			
рН	Acetona	1/to	LQM	1/tm	LtLd/V(1/tm-1/to)	meef /1000	media	desv estandar	CV
5.62	1.44580	0.69166	1.00000	1.00000	46.25121	0.04625	0.04650	0.00034	0.73070
	1.44580	0.69166	0.99580	1.00422	46.88387	0.04688			
	1.41250	0.70796	0.98330	1.01698	46.35285	0.04635			
5.32	1.92080	0.52062	1.18750	0.84211	48.22333	0.04822	0.04842	0.00028	0.57739
	1.94170	0.51501	1.19170	0.83914	48.61871	0.04862			
5.00	1.59580	0.62664	1.04578	0.95622	49.43687	0.04944	0.04954	0.00015	0.30523
	1.62080	0.61698	1.05487	0.94798	49.65073	0.04965			
	1.62709	0.61459	1.05417	0.94861	50.10292	0.05010			
4.88	1.48750	0.67227	0.99580	1.00422	49.79232	0.04979	0.04983	0.00005	0.10501
	1.51670	0.65933	1.00830	0.99177	49.86632	0.04987			
	1.52080	0.65755	1.01250	0.98765	49.51585	0.04952			
4.58	1.63750	0.61069	1.04580	0.95621	51.82781	0.05183	0.05172	0.00015	0.29818
	1.65420	0.60452	1.05420	0.94859	51.60972	0.05161			
	1.65420	0.60452	1.05420	0.94859	51.60972	0.05161			
4.27	1.84580	0.54177	1.10420	0.90563	54.57938	0.05458	0.05467	0.00013	0.23862
	1.85000	0.54054	1.10420	0.90563	54.76387	0.05476			
	1.83750	0.54422	1.10420	0.90563	54.21230	0.05421			
3.67	2.79170	0.35820	1.36250	0.73394	56.36104	0.05636	0.05703	0.00094	1.64788
	2.86250	0.34934	1.36250	0.73394	57.69000	0.05769			
	2.92080	0.34237	1.37080	0.72950	58.06936	0.05807			
3.19	3.67920	0.27180	1.53330	0.65219	57.05848	0.05706	0.05751	0.00064	1.10981
	3.76250	0.26578	1.53330	0.65219	57.96110	0.05796			
	3.86660	0.25863	1.55000	0.64516	57.98042	0.05798			
3.06	4.30000	0.23256	1.62500	0.61538	57.42397	0.05742	0.05764	0.00030	0.52136
	4.38330	0.22814	1.62920	0.61380	57.84893	0.05785			
	4.40000	0.22727	1.62920	0.61380	57.97882	0.05798			
2.94	3.85830	0.25918	1.55000	0.64516	57.89697	0.05790	0.05808	0.00026	0.45557
	3.89580	0.25669	1.55000	0.64516	58.27119	0.05827			
	3.97500	0.25157	1.55830	0.64172	58.52289	0.05852			

Anexo A

	LQM 351 (datos a 200 nm)													
рН	Acetona	1/to	LQM	1/tm	LtLd/V(1/tm-1/to)	meef /1000	media	desv estandar	CV					
2.64	6.34170	0.15769	2.10420	0.47524	47.63304	0.04763	0.04833	0.00098	2.02768					
	6.28750	0.15905	2.05830	0.48584	49.01882	0.04902								
	6.53330	0.15306	2.05000	0.48780	50.21143	0.05021								
2.60	8.17059	0.12239	2.10400	0.47529	52.93425	0.05293	0.05347	0.00076	1.41866					
	8.39561	0.11911	2.08700	0.47916	54.00702	0.05401								
	8.77100	0.11401	2.11250	0.47337	53.90410	0.05390								
2.40	9.77920	0.10226	1.83750	0.54422	66.29398	0.06629	0.06629	0.00001	0.01650					
	10.38750	0.09627	1.85830	0.53813	66.27850	0.06628								
	10.82080	0.09241	1.88750	0.52980	65.60801	0.06561								

	Valores obtenidos por la técnica de UV-Vis. LQM 344 (407nm)									
рН	Absorbancia	Coeficiente de Absortividad	Coeficiente predicho por el programa	рН	Absorbancia	Coeficiente de Absortividad	Coeficiente predicho por el programa			
11.61	0.63420	3690.63507	3671.07000	10.50	0.55657	3273.08508	3268.12000			
11.50	0.62080	3650.83168	3645.12000	10.08	0.53430	3142.13816	3147.24000			
11.41	0.61510	3617.31084	3620.56000	9.89	0.53110	3123.31944	3113.03000			
11.30	0.60810	3576.14489	3586.41000	9.77	0.52830	3106.85306	3096.78000			
11.20	0.60173	3538.70347	3551.59000	9.60	0.52447	3084.30980	3079.41000			
11.11	0.59587	3504.20249	3517.52000	9.33	0.52240	3072.15604	3061.77000			
11.02	0.58937	3465.97696	3481.36000	9.19	0.52080	3062.74668	3055.94000			
10.92	0.58863	3461.66434	3439.51000	9.02	0.52017	3059.02214	3050.90000			
10.80	0.57403	3375.80393	3388.40000	8.78	0.51720	3041.57562	3046.38000			
10.71	0.57173	3362.27797	3350.51000	8.43	0.51627	3036.08683	3042.95000			
10.60	0.56273	3309.35032	3305.97000	8.18	0.51150	3008.05478	3041.73000			

		Valores obter	nidos por la técnica o	de UV-V	is. LQM 344 (392	nm)	
рН	Absorbancia	Coeficiente de Absortividad	Coeficiente predicho por el programa	рН	Absorbancia	Coeficiente de Absortividad	Coeficiente predicho por el programa
6.96	0.54720	3218.00112	3153.45000	5.02	0.15707	923.68551	852.54000
6.90	0.54267	3191.34127	3137.44000	4.91	0.13253	779.40865	717.19000
6.81	0.53363	3138.21759	3109.29000	4.81	0.11310	665.12414	610.95000
6.74	0.53063	3120.57504	3083.45000	4.72	0.09747	573.18685	528.47000
6.66	0.52223	3071.17590	3049.05000	4.60	0.07930	466.35141	436.31000
6.58	0.51420	3023.93307	3008.73000	4.51	0.06783	398.91766	379.14000
6.47	0.49933	2936.50443	2942.15000	4.40	0.05980	351.67483	321.35000
6.37	0.48257	2837.90218	2868.81000	4.33	0.05187	305.02009	290.58000
6.25	0.45893	2698.91809	2762.50000	4.23	0.04447	261.50180	253.57000
6.13	0.43770	2574.04805	2634.23000	4.11	0.03817	224.45244	218.22000
6.00	0.40853	2402.52325	2469.27000	4.03	0.03377	198.57670	199.20000
5.89	0.38003	2234.91903	2309.05000	3.93	0.02970	174.66125	179.61000
5.78	0.35177	2068.68700	2132.05000	3.80	0.02453	144.27685	159.79000
5.68	0.32910	1935.38774	1959.64000	3.72	0.02163	127.22239	150.14000
5.59	0.30140	1772.48819	1798.34000	3.61	0.01913	112.52026	139.40000
5.46	0.27287	1604.68794	1561.97000	3.52	0.01743	102.52282	132.38000
5.46	0.26580	1563.12993	1561.97000	3.40	0.01527	89.78098	124.99000
5.38	0.24137	1419.44116	1418.52000	3.30	0.01393	81.93984	120.20000
5.32	0.22703	1335.14898	1313.68000	3.20	0.01257	73.90268	116.38000
5.25	0.20520	1206.75042	1195.62000	3.10	0.01157	68.02183	113.34000
5.13	0.17743	1043.45882	1007.07000				

	Valores obtenidos por la técnica de UV-Vis. LQM 344									
nH	Absorbancia	Coeficiente de	Coeficiente predicho	nH	Absorbancia	Coeficiente de	Coeficiente predicho			
pm	Rosoroanera	Absortividad	por el programa	PII	7105010aneia	Absortividad	por el programa			
11.61	0.63420	3729.63507	3664.64000	7.30	0.50253	2955.32315	2935.66000			
11.50	0.62080	3650.83168	3642.90000	7.23	0.49913	2935.32826	2926.75000			
11.41	0.61510	3617.31084	3621.92000	7.10	0.49397	2904.94387	2906.13000			
11.30	0.60810	3576.14489	3592.13000	6.96	0.48197	2834.37367	2876.36000			
11.20	0.60173	3538.70347	3560.96000	6.90	0.47800	2811.04630	2860.61000			
11.11	0.59587	3504.20249	3529.66000	6.81	0.46940	2760.47099	2832.95000			
11.02	0.58937	3465.97696	3495.55000	6.74	0.46657	2743.80858	2807.58000			
10.92	0.58863	3461.66434	3454.86000	6.66	0.45893	2698.91809	2773.84000			
10.80	0.57403	3375.80393	3403.32000	6.58	0.45183	2657.16406	2734.34000			
10.71	0.57173	3362.27797	3363.74000	6.47	0.43830	2577.57656	2669.21000			
10.60	0.56273	3309.35032	3315.62000	6.37	0.42317	2488.57969	2597.62000			
10.50	0.55657	3273.08508	3273.30000	6.25	0.40223	2365.47390	2494.11000			
10.08	0.53430	3142.13816	3128.65000	6.13	0.38310	2252.95364	2369.64000			
9.89	0.53110	3123.31944	3084.82000	6.00	0.35733	2101.42373	2210.20000			
9.77	0.52830	3106.85306	3063.52000	5.89	0.33193	1952.05014	2056.06000			
9.60	0.52447	3084.30980	3040.35000	5.78	0.30713	1806.20506	1886.56000			
9.33	0.52240	3072.15604	3016.30000	5.68	0.28687	1687.01984	1722.26000			
9.19	0.52080	3062.74668	3008.16000	5.59	0.26213	1541.56681	1569.25000			
9.02	0.52017	3059.02214	3000.93000	5.46	0.23903	1405.71918	1346.26000			
8.78	0.51720	3041.57562	2993.95000	5.46	0.23093	1358.08429	1346.26000			
8.43	0.51627	3036.08683	2987.06000	5.38	0.20947	1231.84205	1211.64000			
8.18	0.51150	3008.05478	2982.34000	5.32	0.19690	1157.93937	1113.58000			
8.02	0.51083	3004.13421	2978.60000	5.25	0.17760	1044.43896	1003.50000			
7.97	0.51163	3008.83889	2977.22000	5.13	0.15317	900.75019	828.42000			
7.91	0.50940	2995.70499	2975.39000	5.02	0.13510	794.50284	685.61000			
7.69	0.50767	2985.51152	2966.51000	4.91	0.11353	667.67250	561.01000			
7.60	0.50917	2994.33279	2961.51000	4.81	0.09630	566.32586	463.53000			
7.50	0.51087	3004.33024	2954.70000	4.72	0.08240	484.58204	388.04000			
7.47	0.50990	2998.64542	2952.35000	4.60	0.06653	391.27255	303.89000			
7.41	0.50877	2991.98045	2947.16000	4.51	0.05627	330.89583	251.81000			

Anexo B

Valores de coeficientes de absortividad empleados en las graficas

-	Valores obtenidos por la técnica de UV-Vis. LQM 344									
рН	Absorbancia	Coeficiente de Absortividad	Coeficiente predicho por el programa	pН	Absorbancia	Coeficiente de Absortividad	Coeficiente predicho por el programa			
4.40	0.04947	290.90605	199.22000	3.20	0.00763	44.89049	13.81000			
4.33	0.04233	248.95598	171.27000	3.10	0.00693	40.77389	11.29000			
4.23	0.03580	210.53443	137.67000	3.01	0.01287	75.66694	9.63000			
4.11	0.03027	177.99373	105.61000	2.90	0.00687	40.38184	8.33000			
4.03	0.02637	155.05841	88.37000	2.81	0.00693	40.77389	7.89000			
3.93	0.02263	133.10324	70.63000	2.71	0.00627	36.85333	8.18000			
3.80	0.01823	107.22750	52.70000	2.62	0.00600	35.28510	9.33000			
3.72	0.01557	91.54523	43.98000	2.51	0.00540	31.75659	12.35000			
3.61	0.01330	78.21531	34.28000	2.41	0.00523	30.77645	17.41000			
3.52	0.01190	69.98212	27.97000	2.33	0.00510	29.99234	23.82000			
3.40	0.00997	58.61247	21.35000	2.26	0.00463	27.24794	31.93000			
3.30	0.00880	51.75148	17.11000	2.16	0.00523	30.77645	49.38000			

-	Valores obtenidos por la técnica de UV-Vis. LQM 345 (425 nm)									
рН	Absorbancia	Coeficiente de Absortividad	Coeficiente predicho por el programa	pН	Absorbancia	Coeficiente de Absortividad	Coeficiente predicho por el programa			
13.21	1.02300	8526.29580	8061.82000	8.71	0.28810	2401.19826	2464.45000			
12.71	0.96710	8060.39166	7947.69000	8.20	0.27570	2297.84922	2451.71000			
12.20	0.88090	7341.94914	7604.84000	7.71	0.27500	2292.01500	2447.85000			
11.71	0.74400	6200.94240	6786.56000	7.23	0.27940	2328.68724	2446.61000			
11.19	0.61160	5097.44136	5260.88000	6.73	0.27660	2305.35036	2446.19000			
10.73	0.52910	4409.83686	3890.46000	6.26	0.27650	2304.51690	2446.07000			
10.21	0.42980	3582.21108	2976.56000	5.76	0.27850	2321.18610	2446.02000			
9.74	0.35160	2930.44536	2637.63000	5.24	0.27460	2288.68116	2446.01000			
9.24	0.30960	2580.39216	2508.03000							

	Valores obtenidos por la técnica de UV-Vis. LQM 345 (388 nm)									
pH	Absorbancia	Coeficiente de Absortividad	Coeficiente predicho por el programa	pН	Absorbancia	Coeficiente de Absortividad	Coeficiente predicho por el programa			
0.50	0.00000	0.00000	-359.75000	5.00	0.84530	7045.23738	6929.72000			
1.00	0.00000	0.00000	39.02000	5.50	0.84510	7043.57046	6935.62000			
1.52	0.06520	543.41592	1114.63000	6.03	0.84920	7077.74232	6937.54000			
2.02	0.36880	3073.80048	3011.24000	6.52	0.85290	7108.58034	6938.08000			
2.52	0.63110	5259.96606	5003.67000	7.00	0.85760	7147.75296	6938.26000			
3.02	0.77280	6440.97888	6195.50000	7.53	0.84100	7009.39860	6938.32000			
3.50	0.81590	6800.20014	6674.91000	8.01	0.83930	6995.22978	6938.34000			
4.00	0.83300	6942.72180	6852.99000	8.53	0.83720	6977.72712	6938.34000			
4.53	0.83970	6998.56362	6912.95000	9.06	0.84170	7015.23282	6938.34000			
4.51	0.83870	6990.22902	6911.76000	11.93	0.63080	5257.46568	6938.34000			

	Valores obtenidos por la técnica de UV-Vis. LQM 345									
pН	Absorbancia	Coeficiente de Absortividad	Coeficiente predicho por el programa	pН	Absorbancia	Coeficiente de Absortividad	Coeficiente predicho por el programa			
13.21	1.02300	8526.29580	8040.03000	7.71	0.27500	2292.01500	2390.95000			
12.71	0.96710	8060.39166	7931.51000	7.53	0.26550	2212.83630	2390.27000			
12.20	0.88090	7341.94914	7604.05000	7.23	0.27940	2328.68724	2389.60000			
11.71	0.74400	6200.94240	6813.27000	6.73	0.27660	2305.35036	2389.03000			
11.19	0.61160	5097.44136	5303.28000	6.26	0.27650	2304.51690	2388.55000			
10.73	0.52910	4409.83686	3905.89000	5.76	0.27850	2321.18610	2387.37000			
10.21	0.42980	3582.21108	2951.54000	5.24	0.27460	2288.68116	2383.55000			
9.74	0.35160	2930.44536	2592.91000	4.51	0.24920	2076.98232	2359.97000			
9.24	0.30960	2580.39216	2455.10000	4.53	0.24930	2077.81578	2361.27000			
9.06	0.33830	2819.59518	2432.84000	4.00	0.25150	2096.15190	2297.57000			
8.71	0.28810	2401.19826	2408.66000	3.50	0.22850	1904.45610	2122.10000			
8.53	0.30570	2547.88722	2402.00000	3.02	0.22950	1912.79070	1732.51000			
8.20	0.27570	2297.84922	2395.08000	1.52	0.19680	1640.24928	1640.40000			
8.01	0.27770	2314.51842	2392.92000							

	Valores obtenidos por la técnica de UV-Vis. LQM 351 (305 nm)							
рН	Absorbancia	Coeficiente de Absortividad	Coeficiente predicho por el programa	pН	Absorbancia	Coeficiente de Absortividad	Coeficiente predicho por el programa	
Primera parte				Segunda parte				
1.72	0.01013	208.45687	235.71000	9.06	0.29843	6139.19204	6135.60000	
2.00	0.01177	242.05683	236.23000	9.27	0.29830	6136.44918	6125.59000	
2.84	0.01153	237.25684	242.65000	9.28	0.29837	6137.82061	6124.98000	
2.99	0.01283	263.99966	245.75000	9.58	0.29783	6126.84920	6098.63000	
3.24	0.01347	277.02821	253.98000	10.08	0.28933	5951.99228	5988.29000	
3.59	0.01420	292.11391	277.14000	10.33	0.28063	5773.02108	5869.89000	
5.26	0.08040	1653.94071	1718.56000	10.56	0.27513	5659.87837	5695.24000	
5.71	0.15203	3127.53880	3108.61000	10.70	0.26753	5503.53572	5547.47000	
6.35	0.24630	5066.73629	5002.56000	10.92	0.25760	5299.19313	5238.72000	
6.84	0.27690	5696.22118	5730.62000	11.11	0.24320	5002.96494	4893.29000	
7.30	0.28993	5964.33512	6006.05000	11.24	0.23183	4769.13667	4620.17000	
7.60	0.29757	6121.36349	6083.66000	11.42	0.20650	4247.99449	4210.55000	
8.43	0.29850	6140.56346	6151.78000	11.61	0.18190	3741.93800	3771.27000	
8.52	0.29960	6163.19201	6154.02000	11.79	0.15227	3132.33879	3384.06000	
8.85	0.30010	6173.47771	6159.20000	11.92	0.14883	3061.71031	3137.05000	
9.06	0.29843	6139.19204	6160.95000	12.27	0.12860	2645.48228	2640.12000	
				12.43	0.12840	2641.36800	2489.95000	

	Valores obtenidos por la técnica de UV-Vis. LQM 351 (241 nm)							
рН	Absorbancia	Coeficiente de Absortividad	Coeficiente predicho por el programa	рН	Absorbancia	Coeficiente de Absortividad	Coeficiente predicho por el programa	
Primera parte					S	egunda parte		
13.05	0.33177	6824.90543	6824.90543	5.59	0.25977	5343.76450	5344.28000	
12.66	0.21007	4321.36582	4321.36582	3.39	0.02063	424.45659	414.48000	
12.32	0.19067	3922.28063	3922.28063	2.96	0.02120	436.11372	375.72000	
11.96	0.18440	3793.36651	3793.36651	2.96	0.01740	357.94239	375.72000	
11.50	0.18973	3903.08065	3937.83000	2.61	0.01583	325.71386	362.97000	
	Т	ercera parte		2.09	0.01527	314.05674	355.78000	
12.32	0.19067	3922.28063	3922.28063	2.00	0.01857	381.94236	355.20000	
11.96	0.18440	3793.36651	3793.36651					
11.50	0.18973	3903.08065	3903.08065					
9.36	0.39093	8042.04671	8042.04671					
6.49	0.45250	9308.55936	9308.55936					

	Valores obtenidos por la técnica de UV-Vis. LQM 351 (241nm)								
рН	Absorbancia	Coeficiente de Absortividad	Coeficiente predicho por el programa	pН	Absorbancia	Coeficiente de Absortividad	Coeficiente predicho por el programa		
Primera parte				Segunda parte					
6.49	0.45250	9308.55936	9308.40000	12.32	0.19067	3922.28063	3828.82000		
5.59	0.25977	5343.76450	5344.28000	11.96	0.18440	3793.36651	3854.31000		
3.39	0.02063	424.45659	414.48000	11.50	0.18973	3903.08065	3937.83000		
2.96	0.02120	436.11372	375.72000	9.36	0.39093	8042.04671	8036.67000		
2.96	0.01740	357.94239	375.72000	6.49	0.45250	9308.55936	9311.71000		
2.61	0.01583	325.71386	362.97000						
2.09	0.01527	314.05674	355.78000						
2.00	0.01857	381.94236	355.20000						