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Abstract

In this thesis, an experimental an theoretical study of laminar vortical flows
continuously driven by electromagnetic forcing in a shallow layer of an electrolyte,
is presented. The driving Lorentz force is generated by the interaction of elec-
tric currents injected in the thin fluid layer and the magnetic field distribution
produced by one or several dipolar permanent magnets. Velocity profiles are
obtained through Particle Image Velocimetry. In addition, flow visualization and
Lagrangian particle tracking are performed. First, the steady dipolar flow pro-
duced by the interaction of a uniform dc current and a single permanent magnet
is studied. The flow is explored in planes parallel and perpendicular to the bot-
tom wall. A quasi-two-dimensional (Q2D) numerical model that introduces the
non-uniformity of the magnetic field is used to reproduce the experimental ob-
servations. Also, by injecting an alternate electric current, an oscillating dipolar
vortex is explored. The attention is initially focused on the motion of the oscilla-
tory layer that, incidentally, is analogous to the Stokes’s oscillating plate problem
but with a body (Lorentz) force driving the motion. Experimental results are
compared with a simple analytical solution and a full three-dimensional (3D)
numerical simulation. Further, the flow in horizontal planes is analyzed and a
resonant behavior for the oscillating vortex flow is found. The study is then ex-
tended to oscillating vortex flows produced by an alternate current and different
arrays of permanent magnets. In particular, three-dimensional characteristics of
these flows are explored. By comparing experimental results with both Q2D and
3D numerical models, the Q2D assumption is corroborated under the explored
conditions. The mixing properties of flows in multipolar magnetic fields are also
analyzed. Numerical Lagrangian particle tracking is compared with experimental
visualization. In ordered arrays of magnets, flow patterns exhibit symmetry lines
that inhibit the mixing which is enhanced when symmetries are destroyed by the
use of a disordered array of magnets or by injecting two electric currents in or-
thogonal directions. The convection-diffusion transport of a passive scalar is also
addressed through the Diffusive Strip Method. A good qualitative agreement
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between numerical and experimental observations is found. In addition, mixing
efficiency is quantified by calculating the probability density function.



Preface

Fluid mixing is a very important subject for multiple applications in geo-
physics, chemestry and biology, as well as in many relevant industrial devices.
Of particular interest are non-intrusive methods that rely on the use of elec-
tromagnetic forces (Lorentz forces) to produce stirring and eventually mixing in
electrically conducting fluids. Electromagnetic forcing has been widely used ex-
perimentally to stir shallow layers of liquid metals or electrolytes. The idea is to
generate a rotational Lorentz force by the injection of electric currents in a thin
fluid layer exposed to a steady external magnetic field. In this way, it is possible
to create vortical structures which, under certain conditions, may show a quasi-
two-dimensional behavior (Q2D). Incidentally, these flow structures present sim-
ilarities with those found in atmospheric and oceanic flows (Mc Williams 2006),
such as tidal jets in bays and estuaries (Fujiwara et al. 1992), where nutrients
(Wolansky et al. 1988) and particle transport (Brown et al. 2000) are of great
importance.

Electromagnetic stirring in shallow layers of electrolyte is a versatile experi-
mental method that allows the exploration of many vortical flows. Incidentally,
by varying the number and size of permanent magnets and controlling the in-
jected electric current (either dc or ac), different flow structures and regimes have
been explored. For instance, steady (Figueroa et al. 2009) or time-dependent
(Akkermans et al. 2008, Figueroa et al. 2010) vortex dipoles can be produced
using a single magnet, while the use of severeal magnets of different sizes can
lead to the the generation of fully controlable multi-scale vortical flows in labo-
ratory (Rossi et al. 2006a; 2006b). In fact, electromagnetically driven shallow
flows generated with an array of magnets have also been used to promote Q2D
turbulent flows (Paret & Tabeling 1997; Tabeling 2002) and, particularly, to ex-
plore its decaying properties (Cardodo et al. 1994; Clercx et al. 2002). In turn,
fundamental studies of mixing and chaotic advection have relied on a continu-

xi
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ous stirring process produced by steady or time-periodic electromagnetic forcing
(Williams et al. 1997; Rothstein et al. 1999; Voth et al. 2002; Voth et al.
2003). A deep understanding of all these phenomena requires to complement
the experimental studies with a theoretical modeling that can grasp the basic
features of electromagnetically forced flows. In particular, given the non-uniform
magnetic field distribution and the possibility of considering time-dependent cur-
rents, special care should be taken to model electromagnetic forces properly in
these flows. Evidently, a numerical simulation that aims at modeling electromag-
netically driven flows realistically must be calibrated against experimental results.
Although some advances have been reported in the past years on the modeling
of some particular flow configurations, there are still many important aspects to
be explored. The main purpose of the present work is to contribute, through
experimental studies and numerical simulations, to the understanding of the dy-
namics of laminar flows continuously driven by electromagnetic forces in shallow
electrolytic layers. We explore different configurations of localized Lorentz forces
that lead to steady and time-dependent flows. Of particular relevance are those
flows generated by time-periodic forces that help to enhance the fluid mixing.
The three-dimensionality of the shallow flows under the explored conditions is also
addressed. In fact, the influence of some factors that may promote the depar-
ture of the flow from a quasi-two-dimensional (Q2D) behavior and the formation
of three-dimensional (3D) flow patterns, such as the time-dependent nature of
the forcing, its strength, and the inhomogeneities in the magnetic field, is eval-
uated. Taking advantage of the transparency of the electrolyte, Particle Image
Velocimetry (PIV) measurements are used to explore basic flow structures such
as a vortex dipole, as well as more complex vortical flows generated with differ-
ent arrays of magnets, either with steady or time-dependent forces, in a thin (4
mm) fluid layer. The mixing properties of some flow configurations produced by
time-periodic forces are also analyzed by flow visualization and Lagrangian par-
ticle tracking, as well as by solving the scalar transport by convection-diffusion.
Numerical simulations based on a Q2D approximation and a full 3D approach are
carried out and compared against the experimental results. Whenever possible,
analytical solutions are also provided.

In Chapter 1, the steady dipolar flow produced by the interaction of a uniform
dc current and a single permanent magnet, is studied. The flow is explored
experimentally in planes parallel and perpendicular to the bottom wall. It is
important to remark that velocity profiles in the layer thickness have not been
reported in previous studies. These profiles clearly show the effect of the non-
uniform Lorentz force due to the field decay. A Q2D numerical model that
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introduces the non-uniformity of the magnetic field in the normal direction is
used to reproduce the experimental observations.

In Chapter 2, an oscillatory dipolar vortex created by the injection of an
alternate electric current and the field produced by a single magnet, is explored.
The attention is focused on the motion of the oscillatory thin layer driven by the
periodic Lorentz force. PIV measurements of velocity fields in different vertical
planes of motion (normal to both the bottom wall and the injected current)
in the neighborhood of the region exposed to the magnetic field, are analyzed.
The flow in the layer is analogous to the Stokes’s oscillating plate problem but
with a body (Lorentz) force driving the motion. Experimental results for several
forcing frequencies are compared with a simple analytical solution and a full 3D
numerical simulation that considers the 3D distribution of the magnetic field.

Oscillating vortex flows produced by an alternate current and several (from
one to five) permanent magnets, are explored in Chapter 3. Velocity fields in a
horizontal plane (parallel to the bottom wall) are obtained through PIV within
a range of forcing frequencies of 1 to 500 mHz. Identification and tracking of
elliptical and hyperbolic critical points, that appear and disappear as a result of
the flow dynamics, are used to characterize the system. Experimental results
are compared with both Q2D and 3D numerical models. Also, kinetic energies
associated to the velocity components in the horizontal and vertical planes of
motion are numerically calculated and compared in order to assess the importance
of 3D effects.

In Chapter 4, the mixing properties of flows in multipolar magnetic field dis-
tributions are analyzed. Through flow visualization and numerical Lagrangian
tracking, symmetries in multipolar flows are identified when ordered configu-
rations of permanent magnets are used. Symmetries in the flow patterns are
associated to inhibition of fluid mixing. Spatial symmetry breaking is promoted
by the use of a disordered array of magnets or by injecting two electric currents in
orthogonal directions. The transport of a passive scalar by convection-diffusion
is considered through the Diffusive Strip Method which is applied to flows in
different multipolar magnetic field distributions. Qualitative comparison with
experimental observations and quantification of mixing efficiency with the prob-
ability density function are carried out.

Finally, the main conclusions of the thesis are summarized.



Chapter 1

Steady dipolar vortex flow

In this Chapter1, steady dipolar vortices continuously driven by electromagnetic
forcing in a shallow layer of an electrolytic fluid are studied experimentally and
theoretically. The driving Lorentz force is generated by the interaction of a D.C.
uniform electric current injected in the thin layer and the non-uniform magnetic
field produced by a small dipolar permanent magnet (0.3 T). Laminar velocity
profiles in the neighbourhood of the zone affected by the magnetic field were
obtained with Particle Image Velocimetry in planes parallel and normal to the
bottom wall. Flow planes at different depths of the layer were explored for in-
jected currents ranging from 10 to 100 mA. Measurements of the boundary layer
attached to the bottom wall reveal that, due to the variation of the field in the
normal direction, a slightly flattened developing profile with no shear stresses at
the free surface is formed. A quasi-two-dimensional magnetohydrodynamic nu-
merical model that introduces the non-uniformity of the magnetic field, particu-
larly its decay in the normal direction, was developed. Vertical diffusion produced
by the bottom friction was modeled through a linear friction term. The model
reproduces the main characteristic behaviour of the electromagnetically forced
flow.

1This Chapter is mainly based on the paper: Figueroa, A., Demiaux, F., Cuevas, S.
& Ramos, E., 2009, ”Electrically driven vortices in a weak dipolar magnetic field in a shallow
electrolytic layer”. J. Fluid Mech., 641, 245–261.
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2 Chapter 1. Steady dipolar vortex flow

1.1 Introduction

Electromagnetic forcing is a common experimental method to produce stirring in
shallow layers of electrically conducting fluids. The idea is to produce a rotational
Lorentz force by the injection of electric currents in a thin fluid layer exposed
to a steady external magnetic field. This method has been widely used with
the purpose of exploring the behaviour of quasi-two-dimensional flows which,
incidentally, present similarities with those found in oceanic and atmospheric
flows.

Past investigations on electromagnetically driven flows in shallow layers can
be divided in two groups. In the first group the flow is enforced by injecting
a steady electric current through a liquid metal layer under a strong uniform
magnetic field normal to the layer (Sommeria 1986; 1988a; 1988b; Messadek &
Moreau 2002). Due to the high electrical conductivity of liquid metals and the
strong magnetic field intensities, reached through electromagnets or supercon-
ducting magnets, the Hartmann number, that estimates the ratio of magnetic
to viscous forces, can be very high. Under these conditions three-dimensional
perturbations in the normal direction are suppressed by the action of the mag-
netic field (Sommeria 1986; Messadek & Moreau 2002). Sommeria & Moreau
(1982) showed that flows between parallel insulating walls under a strong uniform
magnetic field can be described in terms of a two-dimensional core flow with a
linear friction (the Hartmann friction) that accounts for the effects of the bound-
ary layers. This approach has been successfully applied to electromagnetically
driven flows in shallow layers where the two-dimensional Navier-Stokes equation
includes both a steady forcing and a linear Hartmann friction term (Sommeria
1986; 1988a) and even inertial effects in Hartmann layers can be considered
(Potherát, Sommeria & Moreau 2000). The second group of electromagnetically
driven shallow flows corresponds to those generated by the injection of electric
currents in a thin layer of an electrolyte under a non-uniform magnetic field pro-
duced by an array of permanent magnets (Cardoso, Marteau & Tabeling 1994).
The low electrical conductivity of electrolytes compared with that of liquid met-
als, and the small magnetic field intensities produced by permanent magnets
result in low-Hartmann-number flows. The geometrical confinement imposed by
the shallow layer restricts three-dimensional perturbations in the normal direc-
tion. The use of two thin stably stratified fluid layers enhances the tendency of
the flows towards two-dimensionality since the density difference of the interface
acts to prevent vertical velocities (Marteau, Cardoso & Tabeling 1995; Paret &
Tabeling 1997). In shallow flows, the role of bottom friction is of fundamental
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importance since it promotes a vertical diffusion, associated with the exponential
damping of the flow. In purely hydrodynamic flows vertical diffusion is usually
parametrized by adding a linear friction term (the Rayleigh friction) to the two-
dimensional Navier-Stokes equation (Hansen, Marteau & Tabeling 1998; Clercx
& van Heijst 2002; Clercx, van Heijst & Zoeteweij 2003). This approach can be
applied for describing decaying vortex flows initially promoted by electromagnetic
forces. Experimentally, relaxation regimes can be studied following the applica-
tion of a short current impulse in the fluid layer (Cardoso et al. 1994; Marteau et
al. 1995; Paret & Tabeling 1997; Paret et al. 1997; Hansen et al. 1998; Clercx
et al. 2003). In this case, a purely hydrodynamic description is sufficient since
once the electric current is turned off, magnetohydrodynamic (MHD) effects can
be disregarded because induced electric currents are usually negligible. However,
for continuously electromagnetically forced shallow flows, MHD interactions can-
not be disregarded since Lorentz force is always present. The understanding and
modelling of these flows is important since fundamental applications rely on a
continuous stirring process. That is the case of mixing of a passive scalar with
steady or periodic electromagnetic forcing (Williams, Marteau & Gollub 1997;
Rothstein, Henry & Gollub 1999; Voth, Haller & Gollub 2002; Voth, Saint, Dobler
& Gollub 2003), the promotion of quasi-two-dimensional turbulence (Paret &
Tabeling 1997; Tabeling 2002) or the generation of fully controlable multi-scale
flows in laboratory (Rossi, Vassilicos and Hardalupas 2006a; 2006b). However,
to the best of our knowledge, a full magnetohydrodynamic description of these
phenomena has not been provided. The objective of the present contribution is
two fold. In the first place, the work is aimed at the experimental analysis of
a dipolar vortex created in a thin layer of an electrolyte by the interaction of a
steady, uniform electric current with the field produced by a single dipolar per-
manent magnet. This basic flow structure, usually present in a variety of scales
in natural and laboratory flows, is also the building block of more complex flow
patterns (e.g. Rossi et al. 2006a; 2006b). By controlling the intensity of the
injected current in the shallow layer, we take advantage of the transparency of
the electrolyte to explore the inner flow structure through PIV measurements in
both planes parallel and normal to the bottom wall. Secondly, this paper also pro-
vides a simplified quasi-two-dimensional model that contains the main physical
ingredients of continuously electromagnetically forced laminar flows in shallow
layers under localized magnetic fields. By taking only the dominant (normal)
component of the non-uniform magnetic field within the shallow layer, which
incidentally is fairly well reproduced analytically from the experimental distribu-
tion, the governing equations of motion are averaged in the normal direction.
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Figure 1.1: Sketch of the experimental device, not drawn to scale. a) Plan view.
b) AA’ plane, set up for recording velocities in the horizontal plane. c) AA’
plane, experimental set up for recording velocities in the vertical plane. j0 is the
imposed electrical current, F0 denotes the main direction of the Lorentz force.
Within the layer, the magnetic field B0 points mainly in the positive z-direction.

Since this average considers the decay of the field in the vertical direction, the
model allows to calculate the velocity field in planes at different depths in the
layer. The comparison of the numerical and experimental velocity profiles shows
a good quantitative agreement. The model appears to be particularly suited for
the analysis of electromagnetically driven flows in shallow electrolytic layers.

1.2 Experimental procedure and observations

The experimental setup consists of a rectangular frame of 28 cm × 38 cm × 1.6
cm; one of the long sides and the two short sides are made of plexiglass. The
fourth side is made of glass. The frame is water-tight glued to a thin floated
glass plate 0.2 cm thick to form a cell with large horizontal area and small depth.
Copper electrodes with rectangular cross section are placed along the shorter
sides of the cell and connected to an adjustable d.c. voltage power supply. A
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permanent cylindrical neodynium-iron-boron dipole magnet with a diameter of
d = 1.9 cm and 0.5 cm height is placed under the glass plate with its upper flat
face touching the lower side of the plate. The magnet is vertically magnetized
with a maximum strength of 0.33 T at its surface. The cell is partially filled
with a weak electrolytic solution of sodium bicarbonate (NaHCO3) at 8.6%
by weight. The height, width and depth of the electrolite layer are 0.4 cm, 36
cm and 28 cm respectively, with a total volume of 400 cm3. The mass density,
kinematic viscosity and electrical conductivity of the electrolyte are ρ = 1.09 ×
103 Kg/m3, ν = 10−6 m2/s, and σ = 6.36 S/m, respectively. The cell was
mounted on a three point support and leveled to get a horizontal layer of water
solution with uniform thickness. The direct current injected through the pair of
electrodes interacts with the non-uniform magnetic field distribution generating a
rotational Lorentz force that sets the fluid in motion. In the experiments electric
currents varied within the range 10 to 100 mA. Due to the distance from the
electrodes to the observation region and the small magnitude of electric currents,
the electrochemical reactions occuring at the electrodes are negligible, as are the
temperature changes due to Joule dissipation. Quantitative measurements of the
velocity field were obtained with a Particle Image Velocimetry system (Dantec
FlowMap PIV1100). We made two sets of flow measurements that required
slightly different arrangements of the optical components of the system. In the
first set, we observed the horizontal flow at different depths, while in the second,
we observed the velocity field in a vertical plane perpendicular to the horizontal
bottom wall (see figure 1.1).

1.2.1 Flow measurements in horizontal planes

In this observation, a laser sheet parallel to the bottom wall entered the cell
through the vertical glass wall and illuminated an area of 4.6 × 28 cm. The
x- and y-coordinates lay on the horizontal plane while z-coordinate points in
the normal direction. The origin was placed in the bottom wall at the point of
maximum magnetic field strength. Flow images were captured with a Kodak
model Megaplus ES1.0/Type 16 (30Hz) camera, with a trigger sincronized with
the illumination. The camera sits on a holder 20 cm above the fluid layer. The
camera has a 1008 × 1016 pixels CCD and the actual area of the captured image
is approximately 4.4 cm × 4.4 cm. The spatial deformation due to the proximity
of the camera to the liquid layer was less than 1mm in the x- and y-directions and
was compensated before making the analysis. Care was taken to ensure that the
laser sheet and the bottom of the plate were parallel. To measure the thickness
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a) b)

Figure 1.2: Velocity field for a) I = 25 mA, and b) I=50 mA. For the velocity
scale, see figures 1.7 and 1.8). The circle corresponds to the position of the
magnet. z = 3.5 mm, Bmax = 0.14 T (Ha = 0.20).

of the illuminating light, the laser sheet light was intercepted at the position
of interest by a cubic 45 deg prism which deflected the beam in the vertical
direction. The light is then captured at zero degrees of incidence by a camera
and the image digitalized. Correcting for beam dispersion, a thickness of 0.07 ±
0.01 cm was determined. In the analysis, we used interrrogation areas of 64 × 64
pixels with 50% overlap in x and y and an adaptive correlation. These conditions
gave us a spatial resolution of 0.13 cm × 0.13 cm. Preliminary experiments were
used to find that maximum velocities were approximately 0.6 cm/s and 1.5 cm/s
for electric currents of 25 mA and 100 mA, respectively. The time interval
between two subsequent images for the majority of experiments was 50 ms.
For the lowest measured velocities (corresponding to 10 mA), the time between
images was 100 ms. Measurements of the flow in horizontal planes at different
depths were obtained by lowering the stand of the laser the required distance
using fine pitch screws. The uncertainty in the vertical position of the recording
plane was precisely the width of the laser sheet. Sample PIV measurements at
selected points at different depths of the fluid layer were double-checked using
Laser Doppler anemometry (LDA) whose resolution in the vertical direction is
approximately 1 mm. The readings with the two techniques agree to within
the error of the LDA. Based on the maximum velocity near the free surface
(z = 3.5 mm) and the diameter of the magnet, the Reynolds numbers of the
flow varied from 50, for injected currents of 10 mA, to 290 for 100 mA. In
turn, the Hartmann number, Ha = Bmaxh

√
σ/ρν, was based on the maximum
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magnetic field strength, Bmax, at a height h from the bottom wall. Hence, Ha
varied from 0.32 at the bottom to 0.19 at the free surface.

Due to the experimental configuration, a quasi-two-dimensional flow structure
was promoted where horizontal velocity components were much bigger than the
vertical component (see § 1.2.2). Since the injected current and the dominant
magnetic field component point in the positive x- and z-direction, respectively,
the force points mainly in the negative y-direction. The flow develops a transient
regime after which a well-defined steady flow pattern composed of two symmetric
counterrotating lobes (a vortex dipole) is reached. For small electric currents
(I ≈ 10 mA) convective effects are negligible and the flow is mainly governed
by diffusion so that the vortex dipole displays symmetric patterns with respect
to both x and y axes. Due to the non-slip condition at the bottom wall, the
highest velocities are located at the free surface of the electrolyte layer in a
neighbourhood above the magnet along the y-axis. In this region, the motion
is similar to a plane jet with a broad base, with fluid moving in the negative
y-direction. The velocity field for a plane at a distance of z = 3.5 mm from
the bottom and an electric current of I = 25 mA is shown in figure 1.2(a),
where the circle indicates the position of the magnet. In the plane analysed,
the magnitude of the maximum velocity is 5.8 × 10−3 m/s (Re = 110) and is
located at x = 0, y = −4.5 × 10−3 m. Figure 1.2(b) shows the velocity field
when the electric current is increased to 50 mA. Consequently, the maximum
velocity is also increased reaching a magnitude of 9.8 × 10−3 m/s (Re = 186)
at x = 0, y = −7.6 × 10−3 m, further downstream from the point of maximum
velocity for I = 25 mA. The counter-rotating vortices are elongated in the
direction of the force so that the centers of the recirculation structures (where
the magnitude of the velocity is nearly zero) are displaced downstream. This is
clearly a non-linear convective effect that breakes the symmetry of the vortex
dipole with respect to the x-axis. The general features of the velocity field are
more clearly observed in figures 1.3(a–d), where the velocity components u and
v are plotted as functions of position for I = 25 mA at two different z-planes.
Figures 1.3(a) and 1.3(b) correspond to z = 3.5 mm while 1.3(c) and 1.3(d)
to z = 1.5 mm. Each figure contains both components, 1.3(a) and 1.3(c)
as a function of x-coordinate at y = 0, and 1.3(b) and 1.3(d) as a function
of y-coordinate at x = 0. Note that, in general, the u velocity component
is approximately an order of magnitude smaller than the v-component. The
velocity distribution in the direction perpendicular to the injected current (v
component, figures 1.3(a) and 1.3(c)), is nearly symmetric in the x-coordinate.
The velocity profiles at the two z-planes are alike, the most salient difference
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Figure 1.3: Velocities in the direction perpendicular (•) and parallel ($) to the
injected electric current as a function of position for I = 25 mA. a) y = 0,
z = 3.5 mm, Bmax = 0.14 T (Ha = 0.20); b) x = 0, z = 3.5 mm, Bmax = 0.14
T (Ha = 0.20); c) y = 0, z = 1.5 mm, Bmax = 0.19 T (Ha = 0.27); d) x = 0,
z = 1.5 mm, Bmax = 0.19 T (Ha = 0.27). Note the change of scale in the
ordinates.
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Figure 1.4: a) Magnitude of the velocity component perpendicular to the injected
electric current (v) at the vertical x = 0 plane for I = 25 mA. b) Profiles of
the v velocity component as a function of the depth z at the symmetry plane
x = 0, for different positions upstream and downstream of the magnet center. $,
y=0.53d; ×, y=0.33d; ∗, y = 0.19d; •, y=0; &, y = −0.19d; ', y = −0.38d;
+, y = −0.58d. At z = 0, Bmax = 0.22 T (Ha = 0.32).

being the attenuation of velocity at the plane closer to the bottom wall. In turn,
the profile of the u component (parallel to the injected current) as a function
of the x-coordinate changes its shape from z = 3.5 mm to z = 1.5 mm as a
result of a stronger bottom friction as well as a more intense Lorentz force. As
a function of the y-coordinate, the v component shows a marked asymmetry
dictated by the main flow direction. This asymmetry is stronger at the plane
z = 3.5 mm, closer to the free surface (see figure 1.3(b)) where convective
effects displace the maximum velocity downstream from the point of maximum
magnetic field strength. The influence of the bottom friction is clearly noticed
in figure 1.3(d) where, in addition to the attenuation, the maximum v velocity is
reached at the point of maximum magnetic field strength. To estimate the rate
of attenuation as a function of the distance to the bottom wall, we made PIV
measurements at planes normal to this wall.

1.2.2 Flow measurements in vertical planes

In order to get PIV measurements at planes normal to the bottom wall, we turned
around the light sheet 90◦ to obtain a vertical light plane which entered the cell
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through the glass wall. A 50% − 50% cubic prism (2 cm × 2 cm × 2 cm)
was placed inside the cell at a distance of 15 cm from the illuminated plane.
The light reflected by the particle tracers was refracted 90◦ by the prism and
captured by the camera, as shown in figure 1.1(c). The total area of analysis in
this arrangement was 4.1 mm × 28 mm and we used interrogation areas of 16
× 64 pixels or equivalently 0.23 mm × 0.92 mm. This relatively large aspect
ratio interrogation area was used since the vertical velocity is extremely small.
An adaptive correlation with an overlap of 50% gave the best results. With this
arrangement we could get a minimum of 18 points in the vertical direction, which
is considered to resolve the boundary layer. In all reported PIV measurements,
the rejected vectors were 2 − 3% which is smaller than the recommendend 5%.
Observations in the plane normal to the bottom wall are useful to determine the
quasi-two-dimensionality of the flow. The general feature of the flow as observed
in the y − z plane is that the z-component of the velocity is three orders of
magnitude smaller than the y-component, indicating that the flow is mostly in
the horizontal direction with negligible vertical motion. In fact, no recirculations
were observed in the y − z plane within the explored range of injected currents.
Figure 1.4(a) displays the magnitude of the velocity as a function of position
in the vertical x = 0 plane at the region above the magnet for I = 25 mA.
The figure shows the reduction of velocity as the fluid gets closer to the bottom
wall, while due to convective effects, the overall maximum value is attained in
the region close to the free surface, downstream from the point of maximum
magnetic field strength. The flow development as the fluid traverses the non-
homogeneous magnetic field region is shown in figure 1.4(b), where the negative
of the y-velocity component v as function of the vertical coordinate z, is displayed
for several locations in the y-direction. All profiles are increasing functions of the
coordinate z and display ∂v/∂z = 0 at the free surface. The maximum velocity
at y = 0.53d, the most upstream location observed, is a factor of three smaller
than the corresponding value for y = −0.58d, which shows the acceleration
transmitted to the fluid by the Lorentz force in this region. The global maximum
velocity is observed downstream of the magnet center at y = −0.38d, while at
y = −0.58d, the flow has slowed down and the velocity profile almost coincides
with the profile at position y = −0.19d. Mass is of course conserved since
at this location the flow is slightly divergent (see figure 1.2(a)). Due to the
presence of the magnetic field, two distinctive features are displayed in these
profiles, namely, the flattening of the profiles, clearly observed at y = 0.33d,
y = 0.19d, and y = 0 and the appearance of incipient inflection points close
to the bottom wall. Since the Hartmann number is very small, the flattening
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cannot be attributed to induced effects but, as will be shown, to the variation of
the applied field in the normal direction.

1.3 Theoretical model

The theoretical model considers the main features of the experimental situation,
namely, a thin layer of a conducting incompressible viscous fluid with a free sur-
face, contained in a rectangular rigid box under a localized non-uniform magnetic
field, B0 = B0(x, y, z). The field is produced by a dipole magnet located at the
insulating bottom wall with its dipole moment pointing in the normal z-direction,
located in the geometrical center of the container. A uniform steady electric cur-
rent density injected in the positive x-direction interacts with the applied field
giving rise to a rotational Lorentz force that stirs the fluid. The total current
density is given by the injected current plus the current induced by the motion
of the fluid within the applied magnetic field. In turn, the total magnetic field is
composed by the applied field plus the field generated by induced currents. We
assume that the induced field remains very small in comparison with the applied
field, in other words, that the magnetic Reynolds number, Rm = µσU0L, is
much less than unity, a condition fully satisfied in the experiment. Here, σ and µ
are the electric conductivity and magnetic permeability of the fluid, respectively,
and U0 and L are a characteristic velocity and length, respectively, to be defined
below. By neglecting O(Rm) terms, the governing equations of motion can be
expressed as

∇ · u = 0, (1.1)

∂u

∂t
+ (u · ∇)u = −

1

ρ
∇p + ν∇

2u +
1

ρ
(j0 × B0 + ji × B0), (1.2)

where the last term on the right-hand side of equation (1.2) considers the Lorentz
force due to both the injected (j0 = j0x̂) and induced (ji) current densities. In
the previous equation ρ and ν denote the mass density and kinematic viscosity
of the fluid.

From the electromagnetic equations in the quasi-static approximation (Mo-
reau 1990) we can get the so-called induction equation that, neglecting O(Rm)
terms, reads
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0 =
1

µσ
∇

2b + (B0
· ∇)u − (u · ∇)B0, (1.3)

where the induced magnetic field, b, implicitly satisfies the equations

∇ · b = 0, (1.4)

∇ × b = µji. (1.5)

Ampere’s law (1.5) gives an expression to calculate induced electric currents once
b is determined and guarantees that the electric current density is divergence-free,
∇·ji = 0. Further, the applied magnetic field B0 must satisfy the magnetostatic
equations (Moreau 1990),

∇ · B0 = 0, ∇ × B0 = 0, (1.6)

which assure its solenoidal and irrotational character.

1.3.1 Quasi-two-dimensional numerical model

Vortical flows in shallow layers have been successfully modeled in both hydrody-
namic (Zavala Sansón, van Heijst & Backx 2001; Clercx, van Heijst & Zoeteweij
2003) and MHD flows (Sommeria 1988a) using a quasi-two-dimensional approach
that involves the intergration (averaging) of governing equations in the vertical
direction or along the magnetic field lines. Here, we follow an averaging ap-
proach recently presented by Cuevas et al. (2006) (see also Lavrent’ev et al.
1990 and Smolentsev 1997) in the analysis of the flow past a localized magnetic
field where both Hartmann and classic viscous boundary layers are considered.
However, in the present contribution an important difference is introduced, since
the dependence of the applied magnetic field on the z-coordinate is considered.

A fundamental ingredient of the numerical solution is the accurate modelling
of the applied magnetic field. In fact, for flows in shallow layers, a good agreement
between numerical and experimental velocity fields depends to a great extent on
a good theoretical reproduction of the dominant normal component according
with the experimental measurements. The transversal components seem to have
a weak influence. Therefore, we assume that the only non-negligible component
is the normal one (straight magnetic field approximation (Alboussière 2004)).
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For the permanent magnet used in the experiments, the normal dimensionless
magnetic field component was reproduced analytically through the expression

B0

z(x, y, z) = B0

z(x, y)g(z), (1.7)

which is normalized by the maximum magnetic field strength at a given hori-
zontal plane, Bmax. Here, B0

z(x, y) reproduces the variation of the field in the
(x− y) plane using an analytical expression for the field of a magnetized rectan-
gular surface uniformly polarized in the normal direction (McCaig 1977; Cuevas
et al. 2006). We considered the field created by the superposition of two parallel
magnetized square surfaces of side length L, with opposing polarization axes
and separated by a distance c, so that the external surfaces acted as the north
and south poles of the permanent magnet. L was taken as the characteristic
length in the (x − y) plane and was used to normalize coordinates x and y. Al-
though experiments were carried out using a cylindrical magnet, a good fit with
experimental values can be obtained using square magnetized surfaces provided
measurements correspond to planes separated from the surface of the magnet,
so that border effects are smoothed out. The strength of the normal component
of the magnetic field was measured at different planes from the magnet surface
corresponding with the flow planes explored experimentally using the PIV. For
each plane, the lengths L and c used in the fitting, were chosen so that the
distribution of magnetic field matches with the experimentally measured corre-
sponding distribution. The comparison between experimental measurements and
the fitting based on the expression by McCaig (1977) for the plane z = 3.5 mm,
is presented in figure 1.5(a). The fitting is excellent except in the nighbourhood
of one of the edges of the magnet where a small asymmetry in the field distribu-
tion is detected. Appart from this detail, the field distribution can be considered
axially symmetric. In turn, the function g(z) in equation (1.7), that introduces
the field variation in the normal direction, was obtained from the fitting of the
experimental data in the form

g(z) = exp(−γεz), (1.8)

where z is normalized by the depth of the layer, h, at a given vertical position,
and γ = 2.05. Here ε = h/L is the aspect ratio that compares the character-
istic lengths in normal and transversal directions. Figure 1.5(b) compares the
experimental measurements and the fitting obtained from equation (1.8).

In addition, we assume that the transport of momentum in the normal di-
rection is mainly diffusive, so that the dimensionless velocity components in the
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Figure 1.5: a) Normalized z-component of the magnetic field at z = 3.5 mm as a
function of x. The continuous line is the fitting based on the analytic expression
(see McCaig 1977) for magnetized surfaces of side length L = 15.2 mm separated
by a distance c = 14 mm. b) Normalized z-component of the magnetic field as
a function of the vertical coordinate z. The region z ≤ 1 corresponds to the
layer thickness. The continuous line is the fitting based on equation (1.8) with
γ = 2.05. In both figures, black dots correspond to experimental measurements.

(x − y) plane can be expressed as

u(x, y, z, t) = ū(x, y, t) f̂ , u(x, y, z, t) = ū(x, y, t) f̂ . (1.9)

The components u and v are normalized by u0 = ν/L, and time, t, is normalized
by the viscous time L2/ν. The functions ū and v̄ denote the averaged velocity
components in the (x − y) plane. The function f̂ may, in principle, depend on
x, y and z, and satisfies the normalization condition

∫ ε

0
f̂dz = 1. According

to the shallow flow approximation, ε is assumed to be less than unity (in the
experiment, the maximum value of ε, obtained at the free surface, is 0.21). The
function f̂ should reproduce the velocity profile in the normal direction both in
the neighbourhood of the magnet and far from it. The explicit form of f̂ can
be obtained from a balance between viscous and Lorentz forces generated by
both injected and induced currents. Since the applied Lorentz force points in the
negative y-direction and is maximum in the center of the magnet, we establish
the balance at the central (y − z)-plane (x = 0). Then, f must satisfy the
equation

d2f

dz2
− (HaB0

zg)2f = ε2 Re∗ B0

zg. (1.10)
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In equation (1.10) the function f has still to be normalized. In turn, the
Reynolds number Re∗ = U0L/ν, is based on the characteristic bulk veloc-
ity U0 = j0BmaxL2/ρν, obtained from a balance between viscous and applied
Lorentz forces. Note, however, that this balance only considers lateral viscous
diffusion and does not take into account the friction at the bottom wall. There-
fore, Re∗ does not coincide with the experimental Reynolds number based on
the maximum velocity at a given flow plane. The terms on the left-hand side
of equation (1.10) correspond to the viscous and induced Lorentz forces while
the term on the right-hand side is the applied Lorentz force. Since in the ex-
periments the Hartmann number is of order 10−1, the induced Lorentz force in
equation (1.10) can be neglected. Further, f must satisfy non-slip conditions at
the bottom wall (f(z = 0) = 0) and the absence of shear stresses at the free
surface (df/dz(z = ε) = 0). Once it is normalized, f̂ takes the form

f̂ =

[
e−γz + zγεe−γε2 − 1

]

1

γε(1 − e−γε2) + γε3

2
e−γε2 − ε

. (1.11)

Due to normalization, f̂ is independent of B0
z and Re∗. An averaged quasi-two-

dimensional system of equations can now be obtained if equations (1.7)-(1.9)
and (1.11) are substituted in (1.1) and (1.2) and integrated in the z-coordinate
from 0 to ε, assuming that the bottom wall and the free surface are electrically
insulated. If the electric current density and the induced magnetic field are
normalized, respectively, by j0 and RmBmax, it can be shown that the induced
Lorentz force is of order Ha2 and, consequently, can be neglected in equation
(1.2). Therefore, the averaged equations of motion in dimensionless form read

∂u

∂x
+

∂v

∂y
= 0, (1.12)

∂u

∂t
+

(
u
∂u

∂x
+ v

∂u

∂y

)
= −

∂p

∂x
+ ∇2

⊥u −
u

τ
, (1.13)

∂v

∂t
+

(
u
∂v

∂x
+ v

∂v

∂y

)
= −

∂p

∂y
+ ∇2

⊥v −
v

τ
− αRe∗B0

z , (1.14)

where the overline in the velocity components has been dropped, the pressure,
p, is normalized by ρu2

0, and the subindex ⊥ denotes the projection of the ∇2

operator on the (x − y) plane. Velocity components statisfy non-slip conditions
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at the boundaries of the container. Note that in the absence of injected current,
Re∗ = 0 and no motion exists. In the right-hand side of equations (1.13) and
(1.14) appears a linear term accounting for the effects of viscous boundary layers
at the bottom wall. This term involves a (dimensionless) characteristic time
scale, τ , for the damping of vorticity due to dissipation in the viscous layers, and
whose inverse is given by

τ−1 =
1

ε2

df̂

dz

]ε

0

=
γ(1 − e−γε2

)
1

γ (1 − e−γε2) + γε4

2
e−γε2 − ε2

. (1.15)

Further, due to the variation of the magnetic field in the normal direction, the
Lorentz force term in equation (1.14) includes the factor α given by

α =

∫ ε

0

g(z)dz =
1

γε
(1 − e−γε2

). (1.16)

The inductionless system of equations (1.12)-(1.16) was used to model the elec-
tromagnetically driven flow at different depths in the shallow layer.

1.4 Comparison of numerical model with exper-
imental observations

1.4.1 The friction model

In shallow flows, a good quantitative numerical reproduction of experimental
results relies to a great extent in the correct assessment of bottom friction effects
that, due to the small value of the Hartmann number, in the present experiments
are mainly of viscous origin. In our simulation this is accomplished through the
linear friction model (see equations (1.11)-(1.15)) that results from the averaging
of the governing equations in the normal direction, using the velocity distribution
(1.11) in this direction. Reliability of the averaging procedure depends, in turn,
on the proper modelling of the velocity profiles in the depth of the shallow
layer. In figures 1.6(a–c), the scaled analytical profiles given by equation (1.11)
are compared against experimental profiles of the velocity component in the
y-direction (v) as functions of the z-coordinate at different y-positions and at
x = 0, corresponding to I = 25 mA. The continuous line in figures 1.6 shows the
fit of the analytical velocity profile (1.11), properly scaled by a constant, obtained
with the maximum aspect ratio, ε = 0.21. The comparison shown in figures
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Figure 1.6: The v-component of velocity as a function of z for I = 25 mA at
x = 0. a) y = 0.53d; b) y = 0; c) y = −0.58d. Dots are experimental data and
continuous lines show the scaled velocity profiles from equation (1.11).

1.6(a–c), indicates that the shape of the developing experimental observations as
the flow traverses the non-homogeneous magnetic field region can be adequately
reproduced by the velocity profile (1.11) that considers the decay of the magnetic
field strength in the vertical direction. In fact, the observed flattening of the
profile seems to be due to this effect. It is therefore expected a reasonable
assessment of the bottom friction based on this velocity profile. However, an
important point has to be noted. A careful observation of experimental velocity
profiles (see also figure 1.4(b)) reveals the existence of incipient inflection points
located very close to the bottom wall that cannot be captured with profile (1.11).

1.4.2 General features of the flow structure

The system of equations (1.12)-(1.14) with the friction model based on equa-
tions (1.11) and (1.15) and the magnetic field distribution given from the analytic
expression by McCaig (1977), was solved numerically in a rectangular domain cor-
responding to the dimensions of the experimental setup, using a finite difference
method based on the procedure described in Griebel, Dornseifer & Neunhoeffer
(1998), adapted to consider MHD flows. A detailed explanation of the numerical
procedure can be found in Cuevas et al. (2006).

In figure 1.7, the velocity components in the horizontal plane predicted by the
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theoretical model (see § 1.3) are compared with experimental results for the case
I = 25 mA at the plane z = 3.5 mm (Remax = 110). Symbols correspond to ex-
perimental values while continuous and dotted lines denote numerical predictions.
Figure 1.7(a), shows both velocity components as functions of the x-coordinate
at the center line y = 0. The velocity distribution is symmetric for the compo-
nent v, in the direction perpendicular to the injected current, and antisymmetric
for the component u, parallel to the injected current. The slight asymmetry of
the experimental (positive) values of v, reflects the corresponding asymmetry in
the magnetic field distribution of the magnet shown in figure 1.5(a). The velocity
profiles along the symmetry line (x = 0) are given in figure 1.7(b). As noted
in § 1.2.1, due to convective effects the maximum value of component v is not
reached at y = 0 but downstream. The continuous lines correspond to numerical
results obtained with the experimental conditions, I = 25 mA, Bmax = 0.14 T
and z = 3.5 mm (ε = 0.18). The numerical prediction of the v profile as a
function of x and y underestimates the magnitude of the velocity by less than
15%, hence, a quasi-two-dimensional description of electromagnetically forced
shallow laminar flows seems to be compatible with experimental results. In fact,
the model reproduces the main physical effects observed experimentally. For in-
stance, it predicts correctly the position where the profile changes from negative
to positive values (see figure 1.7(a)). Further, we observe in figure 1.7(b) that
the position of the maximum velocity is correctly predicted which indicates that
convective effects are suitably captured by the model. The dotted lines in figure
1.7, that approach closer to the experimental results, correspond to calculations
performed for the plane z = 4.0 mm (ε = 0.21). Note that the difference in
the plane position is within the uncertainity of the position of the laser sheet,
namely, ± 0.7 mm.

1.4.3 Flow features as functions of the applied current

The main effects of increasing the applied current is the elongation of the vortices
in the main direction of the localized Lorentz force. This was briefly described in
§ 1.2.1 and illustrated in figure 1.2(b). In fact, the centers of the recirculation re-
gions as well as the location of maximum velocity are convected a larger distance
in the direction of the main Lorentz force for larger electric currents. This effect
is correctly predicted by the model. In table 1.1, the experimental y-positions of
the maximum velocity as function of the electrical current are shown together
with the predictions of the model at the plane z = 3.5 mm. In all cases, the
abscissa of the maximum velocity is x = 0. The relative error is smaller than
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Figure 1.7: Experimental velocities in the direction perpendicular (•) and parallel
($) to the injected electric current as functions of position for I = 25 mA,
z = 3.5 mm. a) y = 0, b) x = 0. Continuous lines show numerical simulations
for I = 25 mA, z = 3.5 mm. Dotted lines show numerical simulations for I = 25
mA, z = 4.0 mm.
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I (mA) ye(m) yn(m) (ye − yn)/y
10 -2.1×10−3 -2.3×10−3 -0.090
15 -3.5×10−3 -3.3×10−3 0.059
20 -4.9×10−3 -4.1×10−3 0.178
25 -4.5×10−3 -4.9×10−3 -0.085
30 -4.9×10−3 -5.6×10−3 -0.133
40 -6.2×10−3 -6.6×10−3 -0.062
50 -7.6×10−3 -7.4×10−3 0.026
60 -7.6×10−3 -7.9×10−3 -0.039
70 -9.0×10−3 -8.4×10−3 0.069
80 -9.0×10−3 -8.6×10−3 0.045
90 -1.04×10−2 -8.9×10−3 0.155
100 -1.04×10−2 -9.1×10−3 0.133

Table 1.1: y-positions of the points of maximum velocity as functions of electric
current at z = 3.5 mm. The subscripts e and n indicate the experimental
measurements and numerical calculations, respectively. y = (ye + yn)/2.

18% and less than 10% for most cases.
In figure 1.8, the experimental results and numerical predictions of the ab-

solute value of the maximum flow velocity (vmax) at the plane z = 3.5 mm
are shown as a function of the imposed electric current. Four measured values
are reported in the curve for every electric current strength. The experimental
observations fit the curve |vmax| = −8 × 10−7I2 + 2 × 10−4I + 5 × 10−4. The
numerical results present a very good quantitative agreement with experimen-
tal measurements in the full range of explored electric currents. These results
indicate that the quasi-two-dimensional model is able to reproduce the steady
electromagnetically forced flow in the shallow layer.

1.5 Discussion

In this Chapter, we have presented PIV observations of laminar vortex dipoles
driven by the interaction of a uniform D.C. injected current and the field produced
by a small permanent magnet in a shallow layer of an electrolyte. In contrast
with high-Hartmann number electrolytic flows (Andreev, Heberstroh & Thess
2001), the very small values of Ha in the present experiment (O(10−1)) lead to



1.5. Discussion 21

2×10−3

4×10−3

6×10−3

8×10−3

1×10−3

1.2×10−2

1.4×10−2

1.6×10−2

0 20 40 60 80 100

| vmax |(m/s)

I (mA)

Figure 1.8: Absolute value of the maximum velocity (|vmax|) as a function of
the applied current I at the plane z = 3.5 mm. Each symbol corresponds
to an individual experimental observation. The continuous line corresponds to
numerical simulations.

negligible induced effects and to the predominance of viscous and imposed non-
uniform Lorentz forces. Although several experimental studies have addressed
the decay properties of vortical shallow flows of electrolytes initially generated
by electromagnetic forcing, the detailed exploration and modelling of flows in
shallow layers continuously stirred by localized electromagnetic forces have, to
the best of our knowledge, not been previously considered. The presumption of
quasi-two-dimensionality of these flows was corroborated by exploring flow planes
parallel to the bottom wall at different depths as well as flow planes normal to
this wall, so that an approximate three-dimensional picture of the flow structure
was reconstructed. For small injected currents, a quite symmetric dipolar vortex
structure is formed mainly by diffusive momentum transport. As the current
is increased, convective effects are manifested by the elongation of the vortices
in the main direction of the Lorentz force along with the displacement of the
point of maximum velocity downstream. The damping of velocity due to bottom
friction was measured at flow planes close to the bottom wall and by looking at
planes normal to that wall. In fact, it appears that the experimental measurement
of velocity profiles in the vertical direction in electromagnetically driven shallow
flows have been overlooked in the past. In spite of the weakness of the applied
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magnetic field, this information reveals developing velocity profiles with a shape
that depends on the location within the non-uniform magnetic field region and, in
particular, on the field strength in the normal direction. Based on the maximum
velocity near the free surface, the Reynolds numbers of the flow varied from 50,
for injected currents of 10 mA, to 290 for 100 mA. Under the explored conditions,
no recirculations were observed in planes normal to the bottom wall indicating
that the transport of momentum in the normal direction is mainly diffusive.
However, the velocity profiles at the entrance to the magnetic field region are
marked by the appearance of incipient inflection points that, for stronger injected
currents, might lead to the instability of the boundary layer. The exploration of
this effect may deserve further study.

A quasi-two-dimensional model was introduced and numerical simulations
were compared with available experimental results. This simple model, that cor-
rectly captures the main physical features of the basic flow and avoids difficulties
of a full three-dimensional approach, includes convective effects and involves the
integration (averaging) of governing equations in the vertical direction. Since
the depth of the electrolyte layer is much smaller than its horizontal extension,
the local magnetic field originated by a permanent dipole magnet can be realis-
tically approximated by considering only its component in the vertical direction.
This assumption, that greatly simplifies the analysis, seems to be more justi-
fied for shallow flows than for duct flows in non-homogeneous magnetic fields
(Alboussière 2004). The vertical field component is modeled analytically and
fitted accurately to reproduce the experimental field. The results reported in the
present study show that a quasi-two-dimensional flow description is suitable. In
general, a good quantitative comparison is found between numerical results and
experimental observations. One of the key elements that allow an accurate esti-
mation of the bottom viscous friction and the magnitude of the Lorentz force is
to consider the variation of the magnetic field strength in the vertical direction.
In fact, the observed flattened profiles in the zone of more intense magnetic
field are due precisely to this variation. The model seems to be a useful tool
for the analysis of steady electromagnetically forced flows at low-Hartmann and
intermediate Reynolds (< 300) numbers in shallow layers of electrolytes.



Chapter 2

Stokes layer in oscillatory dipolar
vortex flow

In this Chapter1, we report experimental observations of the laminar flow gen-
erated by the concurrent action of an alternate, unidirectional electric current
and a localized dipolar magnetic field in a thin (4 mm), horizontal layer of elec-
trolyte. The time-dependent Lorentz force generates a periodically oscillating
dipolar vortex which displays some spatial and temporal symmetries.

The attention is focused on the motion of the oscillatory layer in planes per-
pendicular to both the bottom wall and the injected current. The flow is anal-
ogous to the Stokes’s oscillating plate problem but with a body force (Lorentz
force) driving the motion. Velocity fields were obtained using Particle Image
Velocimetry at different flow planes in the zone of more intense magnetic field
as well as close to the edge of the magnet where the inhomogeneity of the field
is more pronounced. Four different frequencies of the injected current were ex-
plored, namely, 10, 50, 100, and 200 mHz, with a fixed amplitude of 70 mA.
Velocity profiles as functions of the normal coordinate are determined in char-
acteristic points at different phases and oscillation frequencies. Experimental
results are compared with a simple analytical solution derived from the balance
of inertial, viscous and electromagnetic forces that considers the decay of the
magnetic field in the normal direction. Further, a full three-dimensional numer-
ical simulation that reproduces satisfactorily the experimental observations, was
implemented. Under the explored conditions and available experimental resolu-

1This Chapter is mainly based on the paper: Figueroa, A., Cuevas, S. & Ramos,
E., 2010, ”Stokes layer in electromagnetically driven oscillatory dipolar vortex”. Submitted to
Phys. Fluids.
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tion, results indicate that except in the zone above of the lateral edges of the
magnet, no recirculating flows appear and vertical velocity components are neg-
ligible. In the lateral edge zone, velocity components are at least one order of
magnitude smaller than components in the central region.

2.1 Introduction

Electromagnetically driven flows in shallow layers of electrolytes have been widely
used for the study of vortex dynamics and mixing. In these flows, an injected
electric current interacts with an imposed magnetic field created by permenent
magnets to generate a Lorentz force that stirs the fluid. In the past, thin fluid
layers have been used to study the decay of quasi-two-dimensional (Q2D) tur-
bulence by assuming that the small depth of the layer as compared with its
horizontal extension ensures the quasi-two-dimensionality of the flow. In this
context, there has been a great interest in clarifying the existence and intensity
of three-dimensional (3D) structures in shallow layers driven by electromagnetic
forces. Proof of the existence of three dimensional vortical structures in a flow
generated by a pulse force in shallow layers was provided by Akkermans et al.
(2008a; 2008b). These authors studied a dipolar vortex in a shallow electrolytic
layer of 9.3 mm thickness created by a single 1 s constant current pulse of 4.4
A interacting with the nonuniform field of a disk-shaped magnet. They report
significant 3D structures and vertical motions occurring throughout the flow evo-
lution, during and after the forcing phase. These results have been confirmed
and extended by numerical simulation. In turn, Lardeau et al. (2008) analyzed
through 3D numerical simulations the flow driven by the interaction of a uniform
external current and the field created by a multiscale distribution of pairs of mag-
nets in a 5 mm electrolytic layer. Results were compared with experimental data
(Rossi et al. 2006; Ferrari et al. 2008). They concluded that 3D simulations
are required to model multiscale shallow flows driven by electromagnetic forc-
ing. In particular, they found that the usual approach of considering a Rayleigh
friction to model the bottom wall-normal friction in the form −αu, where u is
the velocity field and α is a constant friction coefficient, is not appropriate to
model the broad range of forcing intensities occurring across the shallow layer.
On the other hand, Figueroa et al. (2009) analyzed a steady dipolar vortex flow
continuously driven by the interaction of a dc uniform electric current and the
magnetic field produced by a small dipolar permanent magnet in an electrolytic
layer of 4 mm thickness, also described in Chapter 1. Velocity profiles in the
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neighbourhood of the zone affected by the magnetic field were obtained with
particle image velocimetry (PIV) in planes parallel and normal to the bottom
wall. It was found that the boundary layer attached to the bottom wall shows
a slightly flattened developing profile due to the variation of the magnetic field
in the normal direction. No recirculations were observed under the explored ex-
perimental conditions. The main characteristic behavior of the flow was suitably
reproduced through a Q2D numerical model that considers the decay of the mag-
netic field in the normal direction so that different forcing intensities across the
thin fluid layer can be evaluated.

The analysis of the boundary layer existing between the rigid bottom wall
and the upper free surface is, evidently, an essential element for determining the
3D structure of a shallow flow. Although it is clear that three-dimensionality
is favoured the thicker the fluid layer, the influence of other factors that may
promote the departure of the flow from a Q2D behavior and the formation of
3D flow patterns in electromagnetically driven flows, is worth evaluating. For
instance, the time-dependent nature of the forcing, its strength, as well as inho-
mogeneities in the magnetic field, are important elements to be explored. This
is a relevant issue since time-dependent forcing using localized magnetic fields is
interesting for mixing purposes. In the present article, we analyze the behavior of
the oscillating boundary layer created by the interaction of an alternate electric
current and the magnetic field of a disk-shaped magnet in a thin electrolytic
layer. In planes parallel to the bottom wall, the flow is visualized as an oscillating
dipolar vortex (see figure 2.1) whose behavior was briefly described by Figueroa
et al. (2008). A more complete description will be analyzed in Chapter 3. It is
worth mentioning that the study of oscillatory vortices is interesting as a model
to describe geophysical time-periodic flows (Wells et al. 2003; Kunnen et al.
2010).

Oscillatory boundary layers have been widely studied in different contexts.
Stokes’s solution (Stokes 1851) for the flow generated in a viscous fluid by an
oscillating solid wall, represents the classic example of an oscillatory boundary
layer. Owing to the invariance of the governing equations for incompressible flow
under an unsteady Galilean transformation, Stokes’s problem can be interpreted
as produced by an oscillating free stream, created by an oscillating pressure
gradient, in the presence of a fixed solid wall (Panton 2005).

Oscillatory boundary layers under magnetic fields have also been studied in
the past. Motivated by the possibility of measuring in the laboratory the effect of
a magnetic field on the propagation of sound in a tube containing mercury, Hide
& Roberts (1960) analyzed the magnetohydrodynamic (MHD) extension of the
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Stokes’s problem. These authors addressed the problem in very general terms,
considering the effect of a uniform rotation and a uniform magnetic field acting
simultaneously on the flow of a conducting fluid produced by the oscillation of a
solid insulating plane. More recently, the magnetic damping of steady streaming
generated by oscillatory flows near rigid boundaries was analyzed (Cuevas &
Ramos 1997; Cuevas et al. 2002). Oscillatory boundary layers also occur in the
damping of surfaces waves through the action of a uniform transverse magnetic
field (Srineevasan et al. 2005).

A common feature of the previous problems is that oscillatory motion is pro-
duced by a mechanical surface force, that is, an oscillating wall or piston. In
contrast, the oscillatory boundary layer analyzed in the present contribution is
generated by an imposed periodic Lorentz which is a nonuniform body force. The
structure of the boundary layer in regions of different magnetic field intensity is
explored experimentally through PIV following a methodology previously imple-
mented for the analysis of steady boundary layers, see § 1.2.2. In addition, a
Stokes-like analytic solution that reproduces qualitatively the velocity profiles in
the vicinity of the point of maximum magnetic field strength is obtained. Results
are complemented with 3D numerical simulations that present a good agreement
with experiments.

2.2 Experimental procedure and observations

The experimental setup used in the present experiments was described somewhat
in detail in § 1.2.2. The main modification with respect to the previous experi-
ments is the injection through a pair of parallel electrodes of an alternate current
instead of a dc current. The origin of coordinates is located at the bottom wall
above the center of the magnet with the z-axis pointing normally. The velocity
components in the x, y, and z-directions are denoted by (u, v, w). Once tran-
sients have died out, the flow generated by the Lorentz force that results from the
simultaneous action of the alternate electric current injected in the x-direction
and the localized magnetic field, gives rise to an oscillatory dipolar vortex in the
(x − y) plane, as shown in figure 2.1. The flow structure presents a symmetry
line along the y axis, as is clearly observed in the picture. This means that a
mirror symmetry is displayed by the flow with respect to the x coordinate:

u(x, y, t) = −u(−x, y, t),
v(x, y, t) = v(−x, y, t).

}
(2.1)
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Figure 2.1: Left picture: plan view of the flow generated by the alternate electrical
current injected in the x-direction and the field of a localized magnetic dipole
magnetized in the normal z-direction. The circle denotes the footprint of the
magnet and the visualization was made by injecting dyed water. Right picture:
zoom of the central part of the flow. Lines A, B, C, and D indicate the position
of the planes analyzed in § 2.4. The vertical velocity profiles described in figures
2.4, 2.5, 2.6, and 2.8 were obtained at points 1, 2, 3, and 4, respectively.

The formation of a pair of counter rotating lobes occurs every half cycle as
the direction of the Lorentz force, that points mainly along the y-axis, is inverted.
Therefore, the velocity components in the (x− y) plane also show the following
cyclic symmetry:

u(x, y, t) = u(x,−y, t + π),
v(x, y, t) = −v(x,−y, t + π).

}
(2.2)

In the present experiments, the attention is focused on flow planes normal to
both the bottom wall and the injected current, in the region above the magnet
(see figure 2.2). The oscillatory behavior of the layer was investigated in four
different (y − z)-planes denoted as A, B, C, and D in figure 2.1. Planes A
and C lay along the symmetry axis covering the central and edge regions of the
magnet, respectively. In turn, plane B is located half way between the symmetry
axis and the left magnet edge, while plane D lies tangent to this magnet edge.
The oscillatory forcing was produced by injecting a sinusoidal electric current
from a DS345 function generator system that produce a voltage of ± 10 V at



28 Chapter 2. Stokes layer in oscillatory dipolar vortex flow

frequencies in the range 1 µHz to 30.2 MHz with 1 µHz frequency resolution.
Four different current frequencies were explored, 10, 50, 100, and 200 mHz, while
the amplitude of the injected current was kept fixed to 70 mA with a serially
connected potentiometer. Electric signals were monitored with an oscilloscope
and a digital multimeter ensuring their oscillatory nature. Experimental velocity
fields were obtained using a PIV system (Dantec FlowMap PIV1100) with a
double pulsed Nd : YAG laser from New Wave Research. Flow images were
captured with a Kodak model Megaplus ES1.0/Type 16 (30Hz) camera, with
a trigger sincronized with the illumination. The camera sits on a holder 10 cm
above the fluid layer. The camera has a 1008 × 1016 pixels CCD and the actual
area of the captured image is approximately 1 cm × 1 cm. The PIV software
Dantec Flow Manager was used to perform the anaysis, we used interrrogation
areas of 62 × 62 pixels with 50% overlap in x and y, cross correlation and peak
validation. These conditions gave us a spatial resolution of 0.15 mm × 0.15
mm. The time interval for the PIV measurements was T/20, where T is the
period of the forcing frequency. Avoiding the transient flow, we obtained 40
snapshots per cycle, the time interval between two subsequent images for the
majority of experiments was 30 ms. Measurements were taken not caring about
the phase of the forcing; in the data analysis they were reconstructed to fit the
signal’s phase. A minimum of 10 cycles were averaged for the frequencies 10
and 50 mHz, while only 5 cycles were averaged for the frequencies 100 and 200
mHz. This was due to a technical problem concerning the bus interconnection
device of the PVI’s flow map processor, that is, data measurements after 5 cycles
for higher frequencies was lost or corrupted. The error in the velocity data was
obtained by adjusting a normal distribution to the data at sample points.

2.3 Theoretical model

In flows driven by Lorentz forces created by the interaction of injected electric
currents with applied magnetic fields in shallow electrolytic layers, induced effects
are negligible (Figueroa et al. 2009). This means that currents induced by the
motion of the fluid in the magnetic field, as well as Lorentz forces produced by
these currents, can be completely disregarded. In this case, the flow is governed
only by the continuity equation and the Navier-Stokes equation with the Lorentz
force term. The latter is fully determined provided the injected current j0 and
the applied magnetic field B0 are known. In dimensional terms the governing
equations read
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∇ · u = 0, (2.3)

∂u

∂t
+ (u · ∇)u = −

1

ρ
∇p + ν∇

2u +
1

ρ
j0 × B0, (2.4)

where the last term on the right-hand side of equation (2.4) considers the oscil-
lating Lorentz force created by the alternate current injected in the x-direction,
namely, j0 = j0 sin(ωt) x̂ where ω = 2πf is the angular frequency and f is the
ordinary frequency. In addition, B0 = B0(x, y, z) is the applied field produced
by a permanent dipole magnet located under the insulating bottom wall with its
dipole moment pointing in the normal z-direction (see figure 2.2). The origin
of coordinates is placed at the bottom wall above the geometrical center of the
magnet.

2.3.1 Unidimensional analytic solution

Let us first address the problem in a very simplified way that allows to obtain
an analytic solution for the velocity profile in the symmetry plane of the flow
(x = 0). We consider an infinite layer of electrolyte of thickness h limited in
the lower boundary by a rigid insulating wall and in the upper boundary by a
free surface. Let us assume that the imposed magnetic field consists only of the
normal component, B0

z , and therefore, an oscillating Lorentz force is produced
in the y-direction. Since the magnetic field decays along the layer thickness, we
consider that this component is a function of the vertical coordinate z. Hence,
the Lorentz force will decrease from its maximum strength at the bottom wall
to its minimum at the free surface. If border effects are disregarded, i.e. we do
not consider any variation of the field in the x- or y-directions, the Lorentz force
will drive a unidirectional oscillating flow that will depend only on the normal
z-coordinate and time. By establishing the balance among inertial, viscous and
Lorentz forces, the equation of motion can be expressed in the form

∂v

∂t
= ν

∂2v

∂z2
−

j0

ρ
sin(ωt)B0

z(z). (2.5)

The terms on the right-hand side of equation (2.5) correspond to the viscous and
applied Lorentz forces, respectively. As assumed in equation 1.8, the magnetic
field dependence on the normal coordinate can be simply expressed as
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Figure 2.2: Sketch of the experimentally explored flow planes, not drawn to scale.
The alternate electric current is injected perpendicular to the (y − z)-plane.

B0

z(z) = Bo exp(−γz). (2.6)

The strength Bo = 0.224 T and the rate of decay γ = 138 m−1 were found with
measurements performed along the axis of the cylindrical permanent magnet
used in the experiments. Neglecting the transient flow, the solution of equation
(2.5) that satisfies non-slip conditions at the bottom wall (v(z = 0) = 0) and
the absence of shear stresses at the free surface (dv/dz(z = h) = 0) takes the
form

v(t, z) = #

{

i
j0Bo

ρν(γ2 − 2iδ−2)

[
(
√

2i/δ) cosh(
√

2i(z − h)/δ) − γe−γh sinh(
√

2i z/δ)

(
√

2i/δ) cosh(
√

2ih/δ)
− e−γz

]

ei ωt

}

,

(2.7)

where # indicates the real part of the expression inside the brackets {}, and
δ =

√
2ν/ω is the Stokes’s layer thickness. As it will be shown in the next section,

the solution (2.7) reproduces qualitatively the experimental velocity profiles in
a small neighborhood where the magnetic field presents its maximum intensity.
The main features of solution (2.7) can be better understood by analyzing a
closely related situation which can be expressed in a simpler form, when the
conducting fluid has no upper bound, as in the Stokes’s classic problem (Stokes
1851). If we impose that the fluid velocity vanishes at infinity, a situation that
is physically reasonable since the magnetic field decays as z → ∞, the velocity
profile is given by
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v(t, z) =
j0Bo

ρν(γ4 + 4δ−4)

{
e−γz

[
2

δ2
cos(ωt) + γ2 sin(ωt)

]

−e−z/δ

[
2

δ2
cos(ωt−

z

δ
) + γ2 sin(ωt −

z

δ
)

]}
. (2.8)

We can clearly identify two different damping mechanisms in solution (2.8). The
first term expresses a purely time-periodic motion modulated by the magnetic
field decay. The second term is essentially a Stokes-like flow where viscous effects
are responsible for the phase lag and the flow damping. Note that the charac-
teristic length scale in the layer is determined necessarily by both mechanisms.
The scales for the damping of the motion are γ and 1/δ. Hence, for γδ< 1, the
characteristic thickness of the oscillatory boundary layer is mainly determined by
viscous effects, while for γδ> 1, this thickness is determined by the decay of the
magnetic field.

An interesting limit is obtained when a constant magnetic field is assumed. In
that case γ = 0, and solution (2.8) presents the same time and space dependence
as in the flow created by an oscillatory free stream:

v(t, z) =
j0Boδ2

2ρν

[
cos(ωt) − e−z/δ cos

(
ωt−

z

δ

)]
. (2.9)

Although formally solution (2.9) presents a similar structure as Panton’s solution
(Panton 2005), a basic difference exists since the latter is obtained through a
surface force (an oscillatory pressure gradient) while the driving force in solution
(2.9) is an electromagnetic body force.

2.3.2 Three-dimensional numerical solution

The previous analytical solutions are helpful for the physical understanding of
the flow but their range of validity are rather limited. In fact, a simple analytical
solution that includes border effects due to the finite size of the magnet, is not
available. In general, border effects may promote the three-dimensionality of the
flow and therefore, an accurate modeling requires a 3D numerical approach. By
considering the interaction of the alternate current injected in the x-direction and
the full (3D) magnetic filed, the governing equations of motion can be expressed
as
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∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.10)
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∂t
+ u

∂u

∂x
+ v

∂u
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+ w

∂u
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1

ρ
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+ ν∇2u, (2.11)
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+ u
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+ v

∂v
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+ w

∂v
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= −

1

ρ

∂p

∂y
+ ν∇2v −

j0

ρ
sin(ωt)B0

z , (2.12)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −

1

ρ

∂p

∂z
+ ν∇2w +

j0

ρ
sin(ωt)B0

y , (2.13)

where B0
y and B0

z are the y and z components of the magnetic field, respectively.
We must note that by considering the full magnetic filed a Lorentz force in
the z-direction is created, see equation (2.13). In order to get the complete
velocity field at different locations of the flow region, the system of equations
(2.10)-(2.13) was solved numerically in a volume with a rectangular floor that
corresponds to the dimensions of the experimental setup. A finite difference
method based on the procedure described in Griebel et al. (1998) was adapted
to include electromagnetic forces. The calculation of the oscillatory Lorentz force
terms in equations (2.12-2.13) requieres the y and z components of the magnetic
field distribution of the permanent magnet. With this purpose, a superposition
of the magnetic fields produced by magnetized rectangular surfaces uniformly
polarized in the normal direction was used (McCaig 1977). If we place the
coordinate system in the center of a rectangular surface with side lengths X =
2x0 and Y = 2y0, the components of the three-dimensional field produced by a
single magnetized surface laying on the plane Z = z0, can be expressed

B0

y(x, y, z) = ςBo log

{(
(x + x0) + [(x + x0)2 + (y − y0)2 + (z − z0)2]1/2

(x − x0) + [(x − x0)2 + (y − y0)2 + (z − z0)2]1/2

)

(
(x − x0) + [(x − x0)2 + (y + y0)2 + (z − z0)2]1/2

(x + x0) + [(x + x0)2 + (y + y0)2 + (z − z0)2]1/2

)}

, (2.14)
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B0

z (x, y, z) = ςBo
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2 + (z − z0)

2
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)}

,

(2.15)

where ς is a normalization constant, Numerical solutions consider stress-free
boundary conditions at the flat free surface, while at the rest of the boundaries
no-slip conditions are satisfied. A spatial resolution of 220×170×22 was used in
calculations with a time step of 1×10−4 Tω, where Tω = 2πf .

2.4 Results

In this section, we present experimental results and provide a comparison with
analytical and numerical calculations. As mentioned in § 2.2, experimental ob-
servations correspond to four different flow planes, as shown in figure 2.1. All
observations reported here were obtained once the effects of the initial condi-
tions have died out. This required typically 10 cycles of the imposed electrical
current oscillation. The reference value for the phase in the oscillation, ϕ=0,
is taken at the point where the oscillatory external electric current is zero and
increasing as a function of time. The maximum velocity attainable experimen-
tally is U = 1.28 × 10−2 m-s−1, that corresponds to an injected steady direct
current of 70 mA (see figure 1.8). If this is taken as the velocity scale, the
maximum Reynolds number based on the layer thickness, h, Reh = Uh/ν is
equal to Reh = 50. Another relevant dimensionless parameter is the oscillation
Reynolds number, Rω = ωh2/ν, which estimates the ratio of the viscous time
and the characteristic oscillation period. The four explored current frequencies,
10, 50, 100, and 200 mHz, correspond to values of Rω equal to 1, 5, 10, and
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20, respectively. In all cases, the larger velocity component lies along the sym-
metry (y− z)-plane that passes through the origin of coordinates and is oriented
perpendicular to the direction of the imposed electric current (see figure 2.2).

For planes A, B, and C, the flow is practically unidirectional (pointing es-
sentially in y-direction) during most of the cycle with alternating direction every
half cycle. This is illustrated in figures 2.3(a-d) where the velocity field in the
symmetry plane A is shown for f = 100 mHz (Rω = 10) at different phases.
The reversal process is relatively fast, lasting approximately one fifth of the cy-
cle and, with the available experimental resolution, no recirculation zones were
detected. However, regions where the velocity almost vanishes are observed.
In most of the initial half of the cycle i.e. 0 ! ϕ ! π, the velocity field is
similar to that shown in figure 2.3(a), with the fluid moving horizontally in the
negative y-direction. At approximately ϕ = 12/10 π (figure 2.3(b)), the flow
reverses its direction; the process starts near the bottom wall, developing a re-
gion with a wedge shape where the flow moves in the opposite direction, from
left to right. In the transition region that lies between the two opposite running
streams, the fluid has a very low velocity whose magnitude our experiment is
unable to capture. At ϕ = 13/10 π (figure 2.3(c)), the right and left mov-
ing streams occupy approximately the same areas of our experimental window
and eventually, at ϕ = 14/10 π most of the fluid runs to the right, completing
the flow reversal (figure 2.3(d)). A similar transition process, but with opposite
moving flows is observed at 1/10 π ! ϕ ! 4/10 π. It is important to remark
that even during the transition, the flow remains mainly horizontal with the ver-
tical component w smaller than 4% of the horizontal v-component, which is the
threshold of accuracy of our measurements. As will be shown below, numerical
calculations confirm the general properties of the flow described above, as well
as the quantitative agreement, within the experimental error, of the horizontal
velocity component v at position (x = 0, y = 0). The maximum vertical veloc-
ity obtained with the numerical calculations is 1 × 10−4 m-s−1 and is located in
the region corresponding to the low velocity of figure 2.3. Results obtained in
this plane for all explored frequencies display the same qualitative features. In
general, velocity fields in planes B and C basically present the behavior already
described, for all the explored frequencies.

Figure 2.4 shows the profiles of the horizontal velocity component v as a
function of the vertical z-coordinate for different phases in the cycle at point 1
(x = 0, y = 0), that is, along the midline of plane A. The first column displays
the experimental observation, the plots on the second column are the results
obtained with the numerical calculations and the third column contains the pro-
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Figure 2.3: Experimental velocity field in a vertical plane passing through the
center of the magnet (x = 0) and oriented perpendicular to the direction of the
electric current (plane A in Fig. 2.1). Phases in different pictures are: a) ϕ
=11

10
π, b) ϕ = 12

10
π, c) ϕ =13

10
π, d) ϕ = 14

10
π. Forcing frequency f=100 mHz

(Rω=10). For clarity, only half the number of vectors obtained in the y-direction
is presented.
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files according to the simple analytical model (equation 2.7). In fact, point 1 is
where the assumptions made in the analytical model are better approached. The
rows correspond to cases with Rω =1, 5, 10, and 20, respectively. The profiles
are clearly symmetric and it is observed that the amplitude of the horizontal
velocity oscillation reduces as the frequency increases. Note also that, except for
Rω =20, the maximum velocity amplitude is reached at the free surface. The
numerical solution reproduces the flow behavior qualitatively and quantitatively.
The simplified analytical model captures qualitatively the oscillatory behavior of
the flow in a small vicinity of the point of maximum magnetic field strength.
However, the velocities calculated with equation (2.7) are approximately a fac-
tor of three larger than the experimental observation. This overestimation is
attributed to the fact that the idealized analytical model considers a horizontal
driving force which does not depend on the x and y-coordinates. In the exper-
iment, this is not the case. Note that the qualitative agreement is better for
higher frequencies (Rω =10 and 20). As the frequency decreases, the analytical
solution predicts velocity amplitudes larger than those observed in the numerical
and experimental profiles. In fact, for the latter profiles the maximum velocity
amplitude seems to saturate as the frequency decreases. According to solution
(2.8) for a semi-infinite fluid region, the horizontal velocity is damped vertically
due to both the magnetic field decay and viscous dissipation. In the analyzed
cases, 0.17 ! γδ ! 0.78 and therefore, the damping and the characteristic thick-
ness of the oscillatory boundary layer is determined by viscous effects. In this
case, the amplitude in the analytical solution becomes inversely proportional to
the frequency (see equation (2.9)) so that it is unbounded as ω → 0.

The experimental and numerical velocity profiles at (x = −d/4, y = 0) in
plane B (point 2 in figure 2.1), where d is the magnet diameter, are shown in
figure 2.5. The left column displays the experimental results, the right column
shows the results of numerical computations and, as in figure 2.4, the rows
correspond to the four different explored frequencies. The profiles are symmetric
and very similar to those at point (x = 0, y = 0) although due to the decrease
of the magnetic field strength, velocity amplitudes are roughly half the value at
central point 1.

Figure 2.6 shows the velocity profiles at point 3 of plane C (see figure 2.1),
that is, (x = 0, y = −d/2), where the magnetic field inhomogeneity is more pro-
nounced. In this case, the first and second columns correspond, respectively, to
the experimental and numerical velocity profiles for the horizontal v component.
The third column shows the numerical profiles of the vertical w component. The
magnitude of this component is too small to be captured with the experimental
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Figure 2.4: Profiles of the horizontal velocity component v as functions of the
vertical z-coordinate at (x =0, y =0) which corresponds to point 1 in Fig. 2.1.
Left column, experimental observations. Central column, numerical calculations.
Right column, velocity distributions according to Eq. (2.7). First row, f = 10
mHz (Rω=1), second row, f = 50 mHz (Rω=5), third row, f = 100 mHz
(Rω=10), fourth row, f = 200 mHz (Rω=20). Symbols and lines donote ex-
perimental data and theoretical predictions, respectively. In all cases, the phases
displayed are ϕ = 1
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Figure 2.5: Profiles of the horizontal velocity component v as functions of the
vertical z-coordinate at (x = −d/4, y =0) which corresponds to point 2 in
Fig. 2.1. Left column, experimental observations. Right column, numerical
calculations. First row, f = 10 mHz (Rω=1), second row, f = 50 mHz (Rω=5),
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device. A reasonable agreement between the numerical and experimental results
for the v component is found for low frequencies. At high frequencies (100 and
200 mHz) the dispersion is considerable due to limitations of our experimental
equipment. In these cases we could only capture five cycles to implement the av-
eraging procedure leading to poor signal to noise ratio. Clearly, five cycles is not
enough to smooth out the noise. A third order polynomial fit has been drawn to
guide the eye. Again, it is found that maximum amplitudes are mainly reached at
the free surface. The local asymmetry in the profiles at the corresponding phases
is due to inertial effects. As it was also observed in the electromagnetically driven
vortex flow with a direct current (Chapter 1), the maximum velocity not neces-
sarily occurs at the point of maximum magnetic field strength but downstream.
Note that the maximum negative velocities at point 3 for frequencies 10 and
50 mHz are larger than the corresponding ones at point 1. Since the magnetic
field is rather weak at the edge, inertial effects are more important than the
nonuniformity of the field in this region. Given the cyclic symmetry expressed by
conditions (2.2), corresponding profiles will be found at the oposite edge of the
magnet after half cycle. The numerical results for the w component show the
effects of the magnetic field inhomogeneity which creates a force in the vertical
direction. However, the maximum magnitude of the w component created by
this force is again smaller than 4% of the horizontal v-component.

As already mentioned, the flow in planes A, B, and C is essentially unidi-
rectional, the magnitude of the velocity component v being substantially larger
than the vertical component w. Likewise, the mass entrainment across planes A
and C is practically zero while it is negligibly small across plane B. This situation
changes drastically in plane D where the three velocity components seem to have
approximately the same magnitude. However, this magnitude is smaller than the
experimental resolution and a clear velocity field in this region is not available
with the present experimental equipment. Instead, we present results from the
numerical simulation in order to provide a picture of the flow structure in plane
D. Figure 2.7 shows the velocity field in this plane for Rω = 10 at different phases
of the cycle. In this case, the mesh used in the numerical calculation was refined
to 1320 × 1020 × 40 and the domain was reduced to the window observed in
the experiments. Clearly the flow is not unidirectional, and at some phases the
vertical component appears to be comparable with the horizontal one.

Figure 2.8 shows the velocity profiles of components v (left column) and w
(right column) at point 4 (x = −d/2, y = 0) at different phases in the cycle
for the four explored frequencies. It is interesting to observe that the maximum
amplitude of v is not reached at the free surface but rather close to the bottom
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Figure 2.6: Velocity profiles as functions of the vertical z-coordinate at (x = 0,
y = −d/2) which corresponds to point 3 in Fig. 2.1. Left column, experimental
observations of v horizontal component. Central column, numerical calculations
of v component. Right column, numerical calculation of vertical w component.
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wall while that of w is reached at the mid layer position. Note also that the
maximum amplitude of component v is four to ten times larger than that of
w. However, the magnitude of component v is at least one order of magnitude
smaller than the corresponding one in point 1.

2.5 Discussion

In this Chapter, the laminar flow generated in a thin electrolyte layer by the os-
cillatory Lorentz force produced by the interaction of a localized magnetic field
and an imposed alternate electric current, has been studied with theoretical and
experimental tools. The investigated region embraces mainly the extent of the
magnet where the flow is more intense. The analysis was focused on exploring
the structure of the induced oscillatory boundary layer in planes perpendicular to
both the bottom wall and the injected current. The maximum Reynolds number
of the flow based on the layer depth was Reh = 50. PIV measurements were
complemented with 3D numerical simulations to provide velocity fields in differ-
ent planes, as well as velocity profiles as a function of the normal coordinate at
characteristic points. In addition, a simple analytical model that approximately
reproduces the behavoir of the Stokes-like oscillatory layer in the zone of maxi-
mum magnetic field strength, was derived. It has been observed that in contrast
to the classical Stokes layer, the change in the direction of motion takes place
as an advancing front which is tilted with respect to the horizontal lower wall.
An emphasis was put in the search of three-dimensional structures formed as a
result of the cycling forcing. Under the considered experimental conditions, it is
possible to conclude that the flow is mostly Q2D in the planes A, B, and C (see
figure 1), with regions where small vertical velocities are present at the phases
in the cycle where flows with opposite directions meet, as illustrated in figure
2.3. Unfortunately, due to the smallness of the magnitude of the vertical velocity
in these regions, our experimental equipment is unable to give reliable data. In
plane D, located above the lateral edge of the magnet, we found that the mag-
nitude of all velocity components is smaller than our experimental resolution.
This result was confirmed by numerical calculations which also indicate that 3D
structures do exist in this region.

To the best of our knowledge, there is no other available study on the 3D
characteristics of shallow flows driven by oscillatory electromagnetic forces. Nev-
ertheless, it is interesting to contrast our results and conditions with reported
works on electromagnetically driven flows. For instance, in the unsteady inertial
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vortex dipole reported by Akkermans et al. (2008a; 2008b), the flow is generated
by a current pulse in a localized magnetic field that leads to a maximum forcing
term |j × B/ρ| of 0.88 m-s−2. The resulting ratio of vertical to horizontal ki-
netic energies is q = Ev/Eh = 0.08 while the characteristic Reynolds number is
Reh = 520. In contrast, our flow is generated by an oscillatory Lorentz force with
a maximum forcing term |j×B/ρ|= 0.02 m-s−2 leading to q = Ev/Eh = 0.0002
while Reh = 50. These differences may account for the fact that while in the
experiments by Akkermans et al. intrinsic three-dimensionality was found in the
flow, in the present study 3D structures appear mainly in the neighborhood of
the lateral edge of the magnet (plane D in figure 1) while a Q2D behavior was
found in the other analyzed regions. Our numerical results indicate that vertical
velocities do exist in the flow, but they are too small to be measured with our
present experimental technique.

Rossi and colleagues have made experimental observations and numerical
simulations of flows driven my multiscale electromagnetic forcing (Lardeau et
al. 2008). Although there are many differences in the geometrical and physical
conditions between their analysis and ours, some common features of the flows
are worth discussing. They emphasize that in order to correctly modeling the
flow, it is necessary to take into account the vertical variation of the magneic
field, and consequently, of the Lorentz force (Lardeau et al. 2008). This fea-
ture is definitely borne out by the analysis reported here. They also point out
that a 3D model of the flow is required for accurately reflecting the experimen-
tal observations, and this conclusion is reached by comparing information from
horizontal velocity fields. They mention, however, that in the whole range of
forcing intensities considered, the ratio of the magnitudes of the vertical to the
horizontal velocity components is very small, varing between 0.35% and 0.84%.
Therefore, compared with the mean energy in the horizontal direction, the mean
energy in the wall-normal direction can be considered negligible and the flow, in
this sense, is Q2D. This observation is coincident with our own measurements
and numerical results.

Although the dipolar vortex owes its characteristic structure to the inhomo-
geneity and localization of the magnetic field, locally the field gradients in the
horizontal plane seem to have a less pronounced effect than the vertical gradi-
ent. Our results show a clear effect of the magnetic field inhomogeneity in the
vertical direction. In fact, the decay of the field influences the form of the ver-
tical velocity profiles since the driving force diminishes with the increase in the
vertical distance from the magnet, as was also found in the analysis of a steady
vortex dipole (Figueroa et al. 2009). Incidentally, Akkermans et al. (2008a),
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reported that the vertical structure of the flow does not relax to a Poiseuille-like
flow. On the other hand, the inhomogeneity of the field in horizontal planes is
more pronounced around the edge of the magnet and creates a vertical force that
promotes flow three-dimensionality. However, in plane C (see figure 2.1), along
the y-direction which coincides with the main direction of the horizontal force,
the vertical force seems to be overcome by inertial effects. In turn, at the lateral
edge of the magnet (plane D) the vertical force along with the mass entrainment,
appear to promote noticeable 3D effects though flow strength is rather low.

In the context of elucidating the importance of three-dimensionality in the
oscillating flow under the explored conditions, our general conclusion is that
although vertical motion and consequently 3D structures were detected in our
experiment, owing to their relative small magnitude, the flow presents a Q2D
behavior.
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Chapter 3

Dynamics of oscillatory vortex
flows in multipolar magnetic fields

In this Chapter1, vortices formed by the concurrent effect on a localized magnetic
field and an externally imposed, oscillatory electric current in a shallow (4mm)
layer of an electrolyte are experimentally analyzed. Alternate currents with fre-
quencies in the range of 1-500 mHz and amplitude of 80 mA, are explored.
Horizontal velocity fields were obtained using Particle Image Velocimetry. For a
single dipolar magnetic field and a single electric current, the dominant struc-
ture of the flow is an oscillating dipole vortex, composed by a pair of alternating
lobes located co-linear with the generated Lorenz force. The flow presents a res-
onant behavior when the forcing frequency is around 10 mHz. When multipoles
are used to generate the magnetic field distribution more complicated vortical
flows composed by sets of syncronous alternating lobes are obtained. When two
antiparallel magnetic dipoles are close enough, a tripole-like structure is found.
The flow patterns were successfully described using a quasi-two-dimensional nu-
merical model. A three-dimensional numerical integration of the conservation
equations models corroborates the theoretical results obtained with the simpler
model.

1This Chapter is mainly based on the paper: Figueroa, A., Cuevas, S. & Ramos, E.,
2010, ”Dynamics of oscillatory vortex multipoles”. In preparation.

47
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3.1 Introduction

Vortical flows generated by the injection of electric currents in a thin layer under
a non-uniform magnetic field produced by an array of permanent magnets have
been studied as models for two-dimensional turbulence decaying (Cardoso et al.
1994; Clercx et al. 2002). These electromagnetically driven flows have also
been studied with other applications in mind since they present similarities with
those found in atmospheric and oceanic and flows, such as tidal jets in bays
and estuaries (Fujiwara et al. 1992), where nutrient (Wolansky et al. 1988)
and particle transport (Brown et al. 2000) are of great importance. For shallow
layers, steady flows and small driving forces, the motion can be described in terms
of a two-dimensional core flow with a linear friction that accounts for the effects
of the boundary layers, since the small depth of the layer as compared with its
horizontal extension ensures the quasi-two-dimensionality (Q2D) of the flow. A
usual approach consists of considering a Rayleigh friction to model the bottom
wall-normal friction in the form −αu, where u is the velocity field and α is a
constant friction coefficient. Several studies have been performed to clarify the
degree to which these flows are Q2D. In decaying vortex flows initially promoted
by electromagnetic forces, Paret et al. (1997) determined the time constant
associated with the transfer of momentum across the layer, after comparing it
with the characteristic time for the decay of energy, these authors stated that
after a small transitory time these flows are two-dimensional (2D). Satijn et al.
(2001) established that since the no-slip boundary implies a vertical shear which
leads to secondary circulations within the planar vortices, these flows necessarily
possess a three-dimensional structure. Lardeau et al. (2008) analyzed using
three-dimensional (3D) numerical simulations a multiscale flow with turbulent-
like properties, and concluded that even if the flow is Q2D in terms of enegy, a
full 3D approach is required to simulate these shallow layer flows. Akkermans et
al. (2008a, 2008b) studied a dipolar vortex in an electrolytic layer of 9.3 mm
thickness created by a single one second current pulse of 4.4 A interacting with
the nonuniform field of a disk-shaped magnet. They found that vertical motion
occurs throught the flow evolution, during and after the forcing phase so that
they cannot be quantified as Q2D. In turn, Figueroa et al. (2009) analyzed a
steady dipolar vortex flow continuously driven by the interaction of a 5-100 mA
dc uniform electric current and the magnetic field produced by a small dipolar
permanent magnet in an electrolytic layer of 4 mm thickness. A Q2D model was
succesfully compared with experimental velocity profiles in planes parallel and
normal to the bottom wall, in the neighbourhood of the zone influenced by the
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magnetic field. They found that the boundary layer attached to the bottom wall
shows a slightly flattened developing Poiseuille profile. It was demonstrated that
the flattening of the profile is due to the variation of the magnetic field in the
normal direction. In Chapter 2, the oscillating dipolar vortex flow generated by
a sinusoidal electric current was studied. It was observed that, anagously to the
problem of the flow attached to a bottom wall produced by an oscillating free
stream (Panton 2005), in the central part of the magnet, the velocity profile in
the normal direction behaves as a Stokes-like velocity profile. It was also showed
that even for a time dependent flow, small recirculations are present but in the
vecinity of the magnet, where velocity components are at least one order of
magnitude smaller than components in the central region, so that flow behaves
as Q2D.

In this Chapter, the flow created in a thin layer of an electrolytic fluid by
the interaction of an alternate electric current and different arrays of dipolar
magnets is studied both experimentally and theoretically. We observed that the
dominant flow pattern is an alternate two-lobe dipole vortex which is suitably
represented with a quasi-two-dimensional (Q2D) numerical model that contains
the main physical ingredients of the electromagnetically forced laminar flows in
shallow layers. The model incorporates a bottom wall friction obtained with a
Stokes-like analytic solution that reproduces qualitatively the velocity profiles in
the vicinity of the point of maximum magnetic field strength (see Chapter 2 for
details). The Q2D model appears to be particularly suited for the analysis of elec-
tromagnetically driven flows in shallow electrolytic layers, since the comparison of
the numerical and experimental velocity profiles shows a good quantitative agree-
ment. The results are complemented with 3D numerical simulations that present,
in general, a fairly good agreement with experiments. Three-dimensionality of
the different flows depending on the magnet array is quantified with a kinetic
energy analysis.

3.2 Experimental procedure

Only a brief account of the experimental setup used in these experiments will be
given, since more detailed descriptions have already been given in § 1.2 and § 2.2.
Oscillatory electric currents with frequencies ranging from 1 to 500 mHz were
injected through the electrodes and the amplitude of the electric current was 80
mA. Experiments were performed with two permanent magnets. In the first set of
experiments, the magnet is cylindrical with a diameter of 19 mm, height of 5 mm
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and maximum strength of 0.33 T. In the second set, the magnet is a rectangular
parallelepiped with a side length of 25.4 mm, height of 12.7 mm and maximum
strength of 0.38 T. Quantitative measurements of the horizontal velocity field on
the flow plane at a distance from the bottom wall of 3.5 mm (z=3.5 mm) were
obtained with a Particle Image Velocimetry system (Dantec FlowMap PIV1100).
We recorded 20 velocity fields per cycle with a spatial resolution of 2.24 mm. A
minimum of 5 cycles were averaged, for each reported data set.

3.3 Theoretical model

Weak electrolite flows electromagnetically driven can be mathematically modeled
through the continuity equation (2.3) and the Navier-Stokes equations (2.4)
with the Lorentz force as source term. The last term on the right-hand side
of equation (2.4) considers the oscillating Lorentz force created by the three-
dimensional magnetic field distribution B0 = B0(x, y, z) and the sinusoidal
injected electrical current distribution, j0 = j0 sin(ωt) x̂, where ω = 2πf is the
angular frequency, and f is the ordinary frequency.

Following the averaging approach and the dimensionless variables presented in
Chapter 1 for the analysis of the dipole vortex shallow flow where the stationary
classic viscous boundary layers is considered, we assume that the transport of
momentum in the normal direction is mainly diffusive, so that the dimensionless
velocity components in the (x − y) plane can be expressed as

u(x, y, z, t) = ū(x, y, t) f̂(z, t), v(x, y, z, t) = v̄(x, y, t) f̂(z, t), (3.1)

where time t is normalized by ω. We also assume that the only non-negligible
component of the magnetic field is the normal one B0

z (straight magnetic field
approximation (Alboussière 2004)). For the permanent magnets used in the ex-
periments, the normal dimensionless magnetic field component were reproduced
analytically through the expression (1.7). In turn, for the function g(z) in equa-
tion (1.7), γ=2.53 and 2.16 was obtained by experimental fitting for cylindrical
and squared shaped magnets, respectively. Dropping the overline, the averaged
quasi-two-dimensional system of equations read

∂u

∂x
+

∂v

∂y
= 0, (3.2)
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where the parameters Re∗ = U0L/ν and Rω = ωL2/ν, stand for the Reynolds
and oscillation Reynolds numbers, respectively. The characteristic bulk velocity
U0 is obtained from a balance between viscous and Lorentz forces, see § 1.3.1.
The Rayleigh friction term in equations (3.3) and (3.4) involves a characteristic
time scale, τ for the damping of vorticity due dissipation in the viscous layers
(eq. (1.15)). In order to obtain the friction term we must first calculate the
function f̂ , which should reproduce the velocity profile in the normal direction.
The Stokes velocity profile in equation (2.7) is used as a explicit form of function
f̂ . Once it is normalized with condition

∫ ε
0

f̂dz = 1, function f̂ takes the form

f̂ = #
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where a = iRω, and # indicates the real part of the expression inside the brackets.
Using equation (1.15), the friction parameter can be calculated as

τ−1 = #
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(3.6)

Further, due to the variation of the magnetic field in the normal direction,
the Lorentz force term in equation (3.4) includes the factor α given by equation
(1.16). According to the shallow flow approximation, ε is assumed to be less
than unity. In the experiment, the maximum value of ε, obtained at the free
surface for the cylindrical magnet is 0.21.

The system of equations (3.2)-(3.4), along with the friction model, equation
(3.6), the factor α (eq. (1.16)) and the bidimensional distribution of the magnetic
field (B0

z(x, y)), was solved numerically using a finite difference method based on
the procedure described in Chapter 1. The velocity components satisfy non-slip
conditions at the boundaries of the container. Aditionally to the quasi-two-
dimenional model, the full three-dimensional system of equations (2.10-2.13)
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was solved using a numerical algorithm also based in the projection technique
(Griebel et al. 1998). The three-dimensional numerical solutions consider the
full magnetic field from the dipolar magnets and stress-free boundary conditions
at the flat free surface, while at the rest of the boundaries no-slip conditions
are satisfied. The quasi-two and three dimensional models were solved in a
rectangular domain corresponding to the dimensions of the experimental setup.

3.4 Results

3.4.1 Flow analysis

In order to describe the properties of the flow, we make use of the identification of
special points in the velocity fields with the methodology presented by Ouellette
& Gollub (2007). The nature of the critical points is discerned through the
Okubo-Weiss (OW) criterion in two dimensions (Weiss 1991). When the OW
parameter is positive, the region is dominated by rotation, identifying elliptical
points. In contrast, if OW parameter is negative, local deformation dominates,
indicating that the critical point is hyperbolic.

Oscillating dipole vortex

When a single magnet is used, the flow promoted by the alternate Lorentz
force consist of a central jet that generates two counter-rotating vortices that
oscillate in the y-direction, namely, the oscillating dipole vortex (see Chapter
2). Figure 3.1 shows four snapshots representing the dynamics of a half cycle
of the experimental velocity field of the oscillating dipole vortex with a forcing
frequency f=50 mHz. The reference value for the phase in the oscillation, ϕ=0,
is taken at the point where the oscillatory external electric current is zero and
increasing as a function of time. The Lorentz force generates a dipole vortex with
the main stream pointing in the negative y-direction, figure 3.1(a). As the force
is increased with time, the centers of the vortical regions as well as the location
of maximum velocity (denoted by the symbol •) are convected in the direction of
the main Lorentz force, elongating the vortices, see figures 3.1(b)-3.1(c). When
the Lorentz force is reduced, after ϕ = π/2, the vortices dissipate reducing the
flow velocity and elongating further, figure 3.1(d). Finally, the Lorentz force is
inverted, generating a pair of vortices in the opposite direction while the vortices
generated in the previous half cycle move away from the magnet and dissipate.



3.4. Results 53

Along with the vector velocity field, in figure 3.1 we can observe the dynamics
of the critical points and the instantaneous maximum velocity of the flow. Every
half cycle, two elliptical points (asteriscs ∗) are generated each at the center of a
vortex. Up to four elliptical points can be identified in the area displayed at any
given time. The hyperbolic point (cross ×) is located at the vertical mid-line
that separates the vortices that rotate in opposite directions. The instantaneous
maximum velocity point moves along the y-axis close to the central line joining
the centers of the stronger dipole vortex. Note that the points of instantaneous
maximum velocity are generated alternatively every half cycle on the upper and
lower half of the (x,y) region analyzed.

Figure 3.2(a) shows the instantaneous maximum velocity vmax as a function
of time during a cycle of the applied Lorenzt force. Experimental data are repre-
sented by circles (') and Q2D and 3D theoretical predictions are represented by
continuous and dashed lines, respectively. As expected, the instantaneous maxi-
mum velocity displays a periodic bahavior but the graph is composed of disjoint
segments since the points of maximum velocity arise at locations different from
where they disappear. As can be appreciated from the figure, the fit of Q2D
and 3D models is very good for the location of maximum velocity points. Figure
3.2(b) shows the absolute amplitude of the maximum velocity signal | vmax |
as a function of the forcing frequency f . For large frequencies, the amplitude
of the maximum velocity signal decreases when f is increased. As f → 0, the
amplitude | vmax |→ 1.38 × 10−2 m-s−1, which is the corresponding velocity of
an injected steady direct current of 80 mA (see figure 1.8). The amplitude of
maximum velocity signal shows resonant response around f ) 10mHz, which
was unexpected. Both models show a good agreement with experiments, but
the Q2D model predicts a value which is 10% smaller than the experimental.
It is remarkable that the Q2D model reproduce the resonant behavior, implying
that at least it is not entirely a 3D effect.

The general features of the velocity field are more clearly observed in figures
3.3(a–d), where the velocity component v is plotted as function of position for
forcing frequency f = 50 mHz at two phases. In figures 3.3(a) and 3.3(b) veloc-
ity component v is plotted as a function of x coordinate at y=0 (v(x, 0)), while
3.3(c) and 3.3(d) v is plotted as a function of y coordinate at x=0 (v(0, y)).
The left column in figure 3.3 shows the comparison between the experimental
and the profiles provided by the Q2D model, while right column compares the
3D model profiles. Each figure contains two time phases, diamond * and con-
tinuous line: ϕ = 2/10 π; circle ' and dashed line: ϕ = 4/10 π. The velocity
distribution v(x, 0) is nearly symmetric, but the velocity profile v(0, y) shows
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Figure 3.1: Oscillating dipole vortex, experimental velocity field. The black dot •
corresponds to point of instantaneous maximum velocity. Asteriscs ∗ and crosses
× denote the elliptical and hyperbolic points in the flow, respectively. Phases
in different pictures are: a) ϕ = 2/10 π, b) ϕ = 4/10 π, c) ϕ = 6/10 π and
d) ϕ = 8/10 π. The square denotes the footprint of the magnet with its dipole
moment pointing in the positive z−direction. For the velocity scale, see figure
3.3. Forcing frequency f=50 mHz.
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Figure 3.2: Oscillating dipole vortex. a) Instantaneous maximum velocity as a
function of time t for forcing frequency f=50 mHz. b) Amplitude of the instan-
taneous maximum velocity as a function of the forcing frequency f . Experimen-
tal data and theoretical predictions are represented by open symbols and lines,
respectively. Continuous line Q2D model; dashed line 3D model. Cylindrical
magnet

a marked asymmetry dictated by the main flow direction. This asymmetry is
stronger at ϕ = 4/10 π, that is, when Lorentz force is increased and convective
effects displace the maximum velocity downstream from the point of maximum
magnetic field strength. The change of sign in the velocity is due to the exis-
tence of two dipole vortex, whose main jet points in opposite directions every
half cycle. Also, zero magnitude of velocity v(0, y) denotes the position of the
hyperbolic point of the flow. As stated in Chapter 2, the formation of the pair
of counter rotating lobes occurs every half cycle as the direction of the Lorentz
force is inverted. Therefore, the velocity components in the (x − y) plane show
the following cyclic symmetry:

u(x, y, t) = u(x,−y, t + π),
v(x, y, t) = −v(x,−y, t + π).

}
(3.7)

Both numerical predictions of the velocity profiles as a function of position
and time are compatible with the experimental results. Since the friction model
was built with the flow base, namely, the oscillating vortex dipole generated by
the interaction of the magnetic field produced by a single magnet and a transver-
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Figure 3.3: Velocity component v as a function of position for oscillating dipole
vortex. Experimental data and theoretical predictions are represented by open
symbols and lines, respectively. Diamond * and continuous line: ϕ = 2/10 π;
circle ' and dashed line: ϕ = 4/10 π. First row, v(x, 0); second row, v(0, y).
Left column: Q2D model. Right column: 3D model. Forcing frequency f=50
mHz. Rectangular magnet.
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sal electric current, the quasi-two-dimensional description reproduce satisfactorily
the main physical effects observed experimentally. Unexpectedly, when compar-
ing velocity profiles from both models, the Q2D model seems to fit better the
experimental observations than the 3D model. This is attributed to the calibra-
tion of the models. The Q2D model was calibrated with ten runs. In contrast,
for the sake of time, the 3D model was calibrated with only 3 runs. Every run
consisted in increasing from 5 to 25% the maximum magnitude of the magnetic
field distribution, since both models seem to underestimate the driving Lorentz
force. The run that best fitted the experimental observations was chosen. A
better fitting of the 3D model is expected by increasing the amount of runs for
the calibration.

Oscillating vortex flow in a quadrupolar magnetic field

When an array of two magnets symetrically aligned along the y-axis with their
dipole moment pointing in opposite directions is used, two pairs of dipole vortex
are generated, as seen in figure 3.4. In this figure, we present two snapshots at
ϕ = 4/10 π and ϕ = 14/10 π of the experimental velocity field, together with
the critical points of the oscillating vortex flow in a quadrupolar magnetic field.
The forcing frequency is f=50 mHz. This time-dependent flow presents cyclic
symmetry with a period of one cycle:

u(x, y, t) = u(x, y, t + 2π),
v(x, y, t) = v(x, y, t + 2π).

}
(3.8)

When 0 < ϕ ≤ π, central flow of the dipole vortices collide with each other
giving rise to a couple of two opposite dipole vortices in the x-direction, see
figure 3.4(a). When π <ϕ ≤ 2π, figure 3.4(b), dipole vortices move away from
each other in the y-direction. With this magnet array, up to four dipole vortices
can be identified by determining the elliptic points (asteriscs ∗), as can be seen
in figure 3.4(b). Hyperbolic points (crosses ×) are located at the central region
where two dipole vortices are connected.

Figures 3.5(a) and 3.5(b) show the velocity component v plotted as a function
of y-coordinate at x=0 (v(0, y)) for two phases. Figure 3.5(a) shows the compar-
ison between the experimental profiles and the corresponding ones with the Q2D
model, while figure 3.5(b) displays the comparison with the 3D model profiles.
The velocity distribution is nearly symmetric around the y = 0 line, showing
a maximum magnitude at the middle of each dipole vortex center. Since the
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Figure 3.4: Oscillating vortex flow in a quadrupolar magnetic field, experimental
velocity field. Asterisc ∗ and crosses × denote the elliptical and hyperbolic points
in the flow. Phases in different pictures are: a) ϕ = 4/10 π and b) ϕ = 14/10
π. The squares denote the footprint of the magnets. Continuous lines indicate
that the dipole moment points in the positive z direction. The dipole moment
of the dashed square points in the negative z direction. For the velocity scale,
see figure 3.5. Forcing frequency f=50 mHz.
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Figure 3.5: Velocity component v as a function of y coordinate at x = 0 for oscil-
lating vortex flow in a quadrupolar magnetic field. Experimental data and theoret-
ical predictions are represented by open symbols and lines, respectively. Diamond
* and continuous line: ϕ = 2/10 π; circle ' and dashed line: ϕ = 4/10 π. a)
Q2D model. b) 3D model. Forcing frequency f=50 mHz. Rectangular magnet.

Lorentz force generates the two dipole vortices in opposite directions, the magni-
tude of the velocity changes its sign. The hyperbolic points are located at points
where the magnitude of the velocity vanishes.

Oscillating vortex flow in an octopolar magnetic field

The flow generated by an array of four magnets symetrically located at each
quadrant of the (x− y) plane is shown in figure 3.6. The magnetic dipole of the
magnets in quadrants I and II point in the positive z-direction while the magnetic
dipole of magnets in quadrants III and IV are pointing in the negative z-direction.
The Lorentz force generates a complex flow structure for each half cycle. This
time-dependent flow also presents cyclic symmetry with a period of one cycle
(eq. (3.8)). Elliptical points (asteriscs ∗) show that both flow structures are
composed of a total of eight vortices. We must note that in contrast with the
vortex flows due to arrays of one and two magnets, isolated dipole vortices are
no longer distiguished in the flow in an octopolar magnetic field. Along the x
axis we can observe three hyperbolic points (cross ×) located at points where
jets collide. Four outer hyperbolic points are located at the regions connecting
the main flow structure with four dipole vortices, expelled when the Lorenz force



60Chapter 3. Dynamics of oscillatory vortex flows in multipolar magnetic fields

-0.06

-0.02

0

0.02

0.06

-0.06 -0.02 0 0.02 0.06

y
(m

)

a)

x(m)

-0.06 -0.02 0 0.02 0.06

b)

x(m)

Figure 3.6: Oscillating vortex flow in an octopolar magnetic field, experimental
velocity field. Asterisc ∗ and crosses × denote the hyperbolic and elliptical points
in the flow. Phases in different pictures are: a) ϕ = 4/10 π and b) ϕ = 14/10
π. The squares denote the footprint of the magnets. Continuous lines indicate
that the dipole moment points in the positive z direction. The dipole moment
of the dashed square points in the negative z direction. For the velocity scale,
see figure 3.7. Forcing frequency f=50 mHz.

is inverted. In figure 3.6(a) we observe that two dipole vortices were expelled in
the positive y direction, and the remaining in the negative y direction. Although
in figure 3.6(b) only two outer hyperbolic points along the y axis are observed,
indicating that two dipole vortices were expelled in the positive and negative y
direction, the remaining hyperbolic points are located along the x axis, showing
that another two dipole vortices were expelled in the positive and negative x
direction.

Figure 3.7(a) shows the comparison between the experimental and profiles
provided by the Q2D model, while figure 3.7(b) displays the comparison with the
3D model profiles. Since during the second half of the cycle two jets collide in
the central region (figure 3.6(b)), as it also happens in the flow in a quadrupolar
magnetic field (figure 3.4(a)), the profile of the v velocity component along the y
axis shows a similar behavior as the corresponding for the flow in the quadrupole
magnetic field, see figure 3.5.
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Figure 3.7: Velocity component v as a function of y coordinate at x = 0 for oscil-
lating vortex flow in an octopolar magnetic field. Experimental data and theoret-
ical predictions are represented by open symbols and lines, respectively. Diamond
* and continuous line: ϕ = 12/10 π; circle ' and dashed line: ϕ = 14/10 π. a)
Q2D model. b) 3D model. Forcing frequency f=50 mHz. Rectangular magnet.

Oscillating vortex flow due to a disordered array of five
magnets

Figure 3.8 shows two snapshots at ϕ = 4/10 π and ϕ = 14/10 π of the flow
due to a disordered array of five magnets. In contrast with the previous flow
patterns (in dipolar, quadrupolar and octopolar magnetic fields), the Lorentz
force generates complex nonsymmetric flow structures which do not follow the
rule of 2n vortices, where n is the number of magnets. Since the flow structure
is composed of only nine vortices, not ten. Magnets in the center generate two
colliding dipoles resulting in a flow structure similar to a tripole, which consist of
a linear arrangement of three vortices of alternating sign. However, strictly, this
flow pattern cannot be considered as a tripole since the flow a structure does
not rotate in the direction of the core vortex rotation (Barba & Velasco 2008).
As well as in the previous figures, hyperbolic points indicate the position of the
crossing of separatrices lines.

Figures 3.9(a) and 3.9(b) show the velocity component u plotted as func-
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Figure 3.8: Oscillating vortex flow due to a disordered array of five magnets,
experimental velocity field. Asterisc ∗ and crosses × denote the hyperbolic and
elliptical points in the flow. Phases in different pictures are: a) ϕ = 4/10 π and
b) ϕ = 14/10 π. The squares denote the footprint of the magnets. Continuous
lines indicate that the dipole moment points in the positive z direction. The
dipole moment of the dashed square points in the negative z direction. For the
velocity scale, see figure 3.9. Forcing frequency f=50 mHz.
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Figure 3.9: Velocity component u as a function of y coordinate at x = 0 for
oscillating vortex flow due to a disordered array of five magnets. Experimental
data and theoretical predictions are represented by open symbols and lines, re-
spectively. Diamond * and continuous line: ϕ = 12/10 π; circle ' and dashed
line: ϕ = 14/10 π. a) Q2D model. b) 3D model. Forcing frequency f=50 mHz.
Rectangular magnet.

tion of y-coordinate at x=0 (u(0, y)) for two phases. Figure 3.9(a) shows the
comparison between the experimental and profiles provided by the Q2D model,
while figure 3.9(a) displays the comparison with the 3D model profiles. Velocity
profiles are no longer symmetric. Clearly, the Q2D model seem to lose capability
of prediction. Nevertheless, even with these complex flows, Q2D profiles capture
most of the qualitative features of the experimentally observed structure.

In general, the both Q2D and 3D numerical results present a very good
quantitative agreement with the experimental measurements in the full range of
explored forcing frequencies and arrays of magnets used. These results indicate
that the quasi-two-dimensional model is able to reproduce the time-dependent
electromagnetically forced flows in the shallow layer. Reliability of the averaging
procedure depends, in turn, on the proper modelling of the velocity profiles in the
depth of the shallow layer. Even if the time scale dissipation (3.6) used for the
Q2D model was calculated through considering a traversal velocity profile (3.5)
generated by a single magnet, the friction model seems to be used for considering
flows with dipole vortex structures (flows in dipolar, quadrupolar and octopolar
magnetic fields), which ensures that boundary layers behave as Stokes layers. It
is therefore expected to be a reasonable assessment of the bottom friction based
on the Stokes-like velocity profile. Although the Q2D theory seem to reproduce
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satisfactorily the flow generated by the disordered array of five magnets, larger
differences in comparing the velocity components are found. As will be explained
in the following section, this is not attributed to three-dimensionality of the flow,
but rather to our friction model.

3.4.2 Three-dimensionality of the flows in terms of kinetic
energy

An estimation of the three-dimensionality of the flows calculated numerically
was obtained through the kinetic energy ratio between the kinetic energy of
the horizontal velocity components u and v, and the the kinetic energy of the
vertical velocity component w, both obtained at a given (x − y) plane. Global
instantaneous horizontal and vertical kinetic energies Eh and Ev, respectively,
are defined as (Akkermans et al. 2008b):

Eh =
1

2
h

∫ ∫

S

ρ(u2 + v2)dxdy, Ev =
1

2
h

∫ ∫

S

ρw2dxdy, (3.9)

where S denotes the horizontal plane which will be taken at z=3.5 mm. The
kinetic energy ratio is used as a measure for inherent three-dimensionality of the
flow. When the kinetic energy ratio (Eh−Ev)/Eh equals to 1, the kinetic energy
due to the velocity component w is equal to zero, thus flow is fully quasi-two-
dimensional. As the kinetic energy ratio is decreased, the kinetic energy due
to the velocity component w accounts and thus the flow is three-dimensional.
Figure 3.10 shows the kinetic energy ratio as a function of time for the oscillating
dipole vortex for different frequencies. For f=10 mHz, it is shown that three-
dimensional effects increase during the onset of the flow and when the driving
force is inverted (every half cycle), but after a short period 3D effects dissapear
and the kinetic energy ratio increases approximately to 1. This behavior agrees
with the previously stated by Paret et al. (1997): after a transient state the
flow can be treated as two dimensional. This behavior is similar for larger forcing
frequencies (f=50, 100 and 200 mHz) but delayed with a larger lag for the larger
frequencies. We also note that as increasing f from 10 to 100 mHz, 3D effects
also increase. Nevertheless, when f is 200 mHz, 3D effects are noticeable only
at starting times. We conclude that since the energy contained in the vertical
motions is in most cases less than 0.03 % of the energy of the horizontal motions,
the dipole flow structure can be considered two dimensional.
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Figure 3.10: Numerically calculated kinetic energy ratio as function of time for
dipole oscillating vortex. a) Continuous and dashed line denotes f=10 and 50
mHz, respectively. b) Continuous and dashed line denotes f=100 and 200 mHz,
respectively. Cylindrical magnet.

The kinetic energy ratio for the different flows structures is shown as a func-
tion of time in figure 3.11. The forcing frequency is f=50 mHz. From this
figure we find that the flow in the quadrupolar magnetic field is the most three-
dimensional flow. In this case, we note that a different flow structure is generated
in the first and second halves every cycle. The flow occurring in 0 < ϕ ≤ π when
the jets of the dipole vortices collide is more three-dimensional than that in the
second half (π <ϕ ≤ 2π), when the dipole vortices evolve without interacting
with each other. A similar behavior is observerd for the flow in the octopolar
magnetic field. From the previous observations we can say that when dipoles
collide, more three-dimensional effects arise in the flow. Unexpectedly, the flow
due to the disordered array of magnets is less three-dimensional than the flows
due to the quadrupolar and octopolar magnetic fields. From figures 3.10(a) and
3.11(a) we can compare the three-dimensionality for the oscillating dipole vortex
flow due to the cylindrical and the rectangular magnet for the forcing frequency
f=50mHz. According to the shallow flow approximation, which states that when
ε → 0 the flow is considered two dimensional, the flow due to the cylindrical
shape magnet ε=0.21 is slighly more three-dimensional than the generated by
the rectangular magnet ε=0.16. In terms of the energy criterium, all vortex flows
analyzed are quasi-two-dimensional.
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Figure 3.11: Numerically calculated kinetic energy ratio as function of time for
different flow patterns. a) Continuous line and dashed line denotes the flows due
to arrays of one and twor magnets, respectively. b) Continuous line and dashed
line denotes the flows due to arrays of four ordered and five disordered magnets,
respectively. Forcing frequency f=50 mHz. Rectangular magnet.

3.5 Discussion

The laminar vortex flows in a shallow layer of an electrolytic solution were studied
experimentally and theoretically. The flow patterns were generated by the inter-
action of magnetic distributions due to arrays of dipolar magnets and a uniform
alternate current. Under the explored forcing, from f=1 to 500 mHz, the base
flow generated by a single magnet, namely, the oscillating vortex dipole, shows
an unexpected resonant behavior around f=10 mHz. When multipoles are used
to generate the magnetic field, complex flow patterns are obtained. Convective
effects were observed by the elongation of the vortices in the main direction of
the Lorentz force along with the displacement of the point of maximum velocity
and geometrical points.

Since the depth of the electrolyte layer (4 mm) is much smaller than its
horizontal extension (360×280 mm), a relatively simple quasi-two-dimensional
theory that correctly compares with available experimental results is proposed.
The Q2D model includes convective effects and involves the integration (aver-
aging) of governing equations in the vertical direction. It describes the flows
in terms of a two-dimensional core flow with a linear friction that accounts for
the effects of the boundary layers. The damping of velocity due to bottom
friction was calculated through an analytical velocity profile normal to the wall
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(Chapter 2). The magnetic field distribution originated by a dipole permanent
magnet was realistically approximated by considering only its component in the
normal direction. The numerical quasi-two-dimensional scheme can be extended
to consider several magnets. This simple Q2D model greatly simplifies modelling
flows, offers reasonable results and avoids difficulties of a full three-dimensional
approach. In order to corraborate the quasi-two-dimensional predictions, a full
three-dimensional numerical model was built. With the three-dimensional calcu-
lated vectorial fields, the presumption of quasi-two-dimensionality of these flows
was corroborated by an analysis of kinetic energy at the z=3.5 mm plane.

The results reported indicate that a quasi-two-dimensional description is suit-
able for time-dependent electromagnetically driven shallow flows. In general, a
good quantitative comparison is found between numerical results and experi-
mental observations. For the Q2D model, the key elements are the accurate
estimation of the bottom viscous friction and the magnetic field distribution, in
both considering the variation of the magnetic field strength in the normal direc-
tion. Whereas for the 3D model, a good representation of the three-dimensional
magnetic field distribution is the key element.

In general, when comparing velocity profiles from both models, the Q2D
model seems to fit better the experimental observations than the 3D model. This
is attributed to the calibration of the models with the experimental observations
for the oscillating dipole flow. The Q2D model was calibrated with ten runs. In
contrast, for the sake of time, the 3D model was calibrated with only 3 runs.
Every run consisted in increasing from 5% to 25% the maximum magnitude
of the magnetic field distribution, since both models seem to underestimate the
driving Lorentz force. The run that best fitted the experimental observations was
chosen. A better fitting of the 3D model is expected by increasing the amount
of runs for the calibration.
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Chapter 4

Mixing in oscillatory vortex flows
in multipolar magnetic fields

In this Chapter1, we study, experimentally and theoretically, the mixing in con-
tinuously driven laminar flows produced by oscillating electromagnetic forces in a
thin electrolytic fluid layer. We analyze the mixing properties of some of the mul-
tipolar vortex flows studied in Chapter 3 and, in addition, new flows produced
by the injecting two time-dependent electric currents in orthogonal directions
are also considered. First, the stretching and folding process is analyzed by
comparing flow visualizations with dyed water and numerical Lagrangian particle
tracking. It is found that multipolar flows present symmetries, according to the
magnetic field distributions, that inhibit the fluid mixing. Symmetries can be
destroyed (and the fluid mixing enhanced) by the use of a disordered array of
magnets (Voth et al. 2002; 2003) or by injecting two electric currents perpen-
dicular to each other. In addition, the convection-diffusion of a passive scalar
in multipolar flow fields was determined by the use of the diffusive strip method
(Meunier & Villermaux 2010) which allows to solve the diffusion phenomena in
a two-dimensional field at high Péclet numbers.

1This Chapter is mainly based on the paper: Figueroa, A., Meunier, P., Cuevas, S.
& Villermaux, E., 2010, ”Mixing in electromagnetically driven oscillatory multipolar vortex
flows”. In preparation.
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4.1 Introduction

Fluid mixing is a very important subject for multiple applications in geophysics,
chemestry and biology, as well as in many relevant industrial devices. Recently,
significant research efforts have been devoted to find methods to quantify and
accelerate mixing. Some methods take advantage of mechanical interactions
to mix fluids, for instance, by turning a propeller in a container or through
the periodic displacement of the container’s walls (Chien et al. 1986). The
mixing obtained in the annular region between rotating concentric cylinders has
also received attention (Aref & Balachandar 1986). Of particular interest are
non-intrusive methods that rely on the use of electromagnetic forces to produce
stirring and eventually mixing in electrically conducting fluids. In particular,
electromagnetic forcing has been widely used experimentally to produce mixing
in shallow layers of liquid metals (Sommeria 1988a; 1988b) or electrolytes (Voth
et al. 2003). The idea is to generate a rotational Lorentz force by the injection
of electric currents in a thin fluid layer exposed to a steady external magnetic
field. In this way, it is possible to explore flows that under certain conditions may
present a quasi-two-dimensional behavior. Incidentally, these flows are similar
to those found in the ocean and the atmosphere (McWilliams 2006) where the
transport of particles (Brown et al. 2000) or nutrients (Wolansky et al. 1988)
are of great importance.

Dynamical systems approaches based on flow kinematics have provided a
first insight into chaotic mixing (Aref 1984; Leong & Ottino 1989). Extensive
studies of mixing have yielded important insights into the geometric structures
that govern the mixing process, particularly in two-dimensional flows. A central
goal of the study of fluid mixing is to understand and predict the rate at which an
initially inhomogeneous fluid is homogenized. This can be done, for instance, by
the measuring scalar concentration fields. Experimental (Rothstein et al. 1999)
and numerical (Fereday et al. 2002) studies have obtained an exponential decay
for the variance of a diffusive scalar concentration field in a chaotic mixer, that
results in a global exponential decay of the dye’s spatial contrast. These studies
show that mixing rates are more accurately predicted by an effective diffusion
model than by a model based on finite time Lyapunov exponents. While turbulent
flows lead to highly efficient mixing, it can be greatly enhanced in laminar flows
by subjecting the fluid to chaotic flow kinematics (Aref 1984).

The importance of the stirring mechanism relative to the molecular diffusion
of a scalar in a given mixing problem is measured through a nondimensional
parameter called the Péclet number, defined as Pe = UL/D, where U is a
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typical flow speed, L is a characteristic length scale, and D is the molecular
diffusivity. Physically, the condition Pe ! 1 implies that the stretching of the
fluid interface by convection proceeds for a substantial amount of time before
diffusive effects eventually smear out the interface and mix the fluids at small
length scales. However, large Pe values also render the numerical solution of the
convection-diffusion equation extremely challenging (Gleeson 2005). Chaotic
mixing devices aim to achieve exponential growth of the total interface length in
time by stretching and folding the fluids in similar fashion to the transformation
maps of chaotic dynamics theory (Ottino 1989).

In order to quantify mixing efficiency one has to define what is mixing on
mathematical grounds. Indeed, perfect mixing requires the scalar concentration
to be uniform. A spatial criterion is not sufficient to quantify mixing efficiency,
since the required time to reach a satisfactory dye distribution has to be set
as small as possible. A central question in scalar mixing is the satisfactory
description of the histogram or probability density function (PDF) P (c) of the
concentration levels c of a substance being mixed.

In electromagnetically driven flows, mixing can be enhanced by increasing the
number of magnets and by injecting an oscillating electrical current which, under
certain conditions, can lead to a resonant flow (Solomon et al. 2001). However,
as it will be shown below, lines of symmetry that inhibit material transport and
thus mixing, are inherent in these kind of flows due to symmetries of the magnetic
field distribution. This is particularly clear when ordered arrays of magnets are
used. It has been found that symmetry lines can be broken by using a disordered
array of magnets or by increasing the intensity of the applied current to create a
strong Lorentz force (Voth et al. 2003) which also breaks time-reversal symmetry.
In these cases, the mixing rates are substantially increased. In fact, even if an
ordered array of magnets is used, instability conditions can be reached when
a sufficiently strong direct current is injected, leading to spatio-temporal chaos
(Ouellette & Gollub 2007). Moreover, strong currents can be avoided if alternate
currents are applied in both cardinal directions, which leads to chaotic mixing
that is typically barrier-free (Solomon et al. 2008). In the following sections,
we explore the mixing characteristics of electromagnetically driven multipolar
vortex flows by analayzing the kinematic Lagrangian trajectories as well as the
convection-diffusion of a passive scalar in quasi-two-dimensional (Q2D) flows.
We start with a brief explanation of the experimental procedure.
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4.2 Experimental procedure

Essentially, dyed water visualization experiments were carried out in two different
cases. The first case involves the multipolar flows already described in Chapter 3
where a one-directional alternate current is injected in the thin fluid layer in the
presence of one or several permanent magnets. Using similar magnetic field dis-
tributions, in the second case two alternate currents were injected in orthogonal
directions. In order to achieve this condition, the experimental setup already de-
scribed somewhat in detail in the previous Chapters, was slightly modified. Here
we only emphasize the modifications implemented to the experimental device.
Avoiding short circuits, two pairs of copper electrodes were placed along the in-
ner borders of the rectangular container. Each pair of electrodes are connected
to a DS345 function generator for obtaining independent electric signals. Each
function generator allows to modify the frequency and the phase of the signals.
The amplitude of the electric current in both directions was fixed to 80 mA with
frequencies of f=50, 100 and 200 mHz. Arrays of rectangular parallelepiped mag-
nets with a side length of 25.4 mm, height of 12.7 mm and maximum strength
of 0.38 T were placed underneath the bottom wall. Depending on the number of
magnets and their geometrical position, Lorentz force generated different oscil-
lating vortical flow structures in the (x−y) plane. In order to analyze the mixing
properties of the electromagnetically driven flows, in a first set of experiments,
drops of dyed water of different colors (food colors) were injected at each geo-
metrical quadrant on the surface of the layer. In a second set of experiments,
a uniform blob of dye with radius r ≈5 mm was deposited on the surface of
the quiescent electrolyte layer. The dye was disodium fluoresceine with initial
concentration c0 ≈10−5 mol l−1 and molecular diffusivity D = 5 × 10−10 m2/s.
Since fluorescein has a maximum absorption at a wavelength of 494 nm and a
maximum emission at 521 nm (in water), experiments were undertaken in a dark
room illuminated with two symmetrically placed ultraviolet lamps. Moreover, as
the electrolite is a transparent medium, the bottom wall was covered with a black
sheet for ensuring the contrast in the visualization. Images of the fluoresceine’s
concentration field in the whole container domain were recorded every 5 s with
a Nikon D80 camera with a AF micro-nikkor 60mm f/2.8D lens. The resulting
background subtracted grey levels are proportional to the dye concentration.
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4.3 Theoretical model

4.3.1 Quasi-two-dimensional numerical model

The velocity fields of the explored experimental flows were numerically simulated
using a Q2D model as the one presented in Chapter 3 but extended to consider
Lorentz forces in both x- and y-directions. As stated in the previous Chapter,
the Q2D model is based on an averaging approach and flows are described in
terms of two-dimensional core variables with a linear friction that accounts for the
effects of the oscillating boundary layer. Using the same dimensionless variables
of Chapter 3, the governing equations read

∂u
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+

∂v

∂y
= 0, (4.1)
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where the parameters Re∗ = U0L/ν and Rω = ωL2/ν, stand for the Reynolds
and oscillation Reynolds numbers, respectively. The characteristic bulk velocity
U0 is obtained from a balance between viscous and Lorentz forces, see § 1.3.1.
The last terms on the right-hand side of equations (4.2-4.3) consider the oscillat-
ing Lorentz force created by the magnetic field distribution B0

z , and the injected
currents in the x- and y-direction, namely, sin(Ωxt + φx) x̂ + sin(Ωyt + φy) ŷ,
which is normalized by the current amplitude j0. The dimensionless angular fre-
quencies are denoted by Ωx=fx/f and Ωy=fy/f , where f = (fx + fy)/2. The
phase-shifts of the electrical signals are denoted by φx and φy. Time t is normal-
ized by ω, where ω = 2πf . The inverse of the characteristic time scale τ and the
parameter α are calculated from equations (3.6) and (1.16), respectively, with
γ=2.16. According to the shallow flow approximation, the aspect ratio ε = h/L,
where h is the layer thickness and L the characteriztic length of the magnet, is
assumed to be less than unity (in the experiment, the maximum value of ε was
0.16). This Q2D model was solved using a numerical scheme alreday described
in Chapter 1. The numerical velocity fields were used to calculate the Lagrangian
trajectories, as well as the convection-diffusion equation for a passive scalar using
the Diffusive Strip Method explained below.
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4.3.2 Diffusive Strip Method (DSM)

A central question in scalar mixing is the satisfactory description of the histogram
or probability density function (PDF) P (c) of the concentration levels c of a
substance being mixed. The concentration c, which acts as a passive scalar,
satisfies the convection diffusion equation that in dimensionless terms can be
expressed as

Rω
∂c

∂t
+ (u · ∇) c =

Re∗
Pe

∇
2c, (4.4)

where the previously introduced Péclet number, Pe,(based on the characteristic
velocity U0 and the magnet side length) is a dimensionless parameter which rep-
resents the ratio between convective and diffusion effects. In order to obtain the
concentration field and document the mixing properties of the electromagnetic
stirring, we use the Diffusive Strip Method (DSM) (Meunier & Villermaux 2010)
which allows to solve the convection-diffusion of a scalar in a two-dimensional
velocity field of an incompressible fluid for large Péclet numbers. Essentially, in
this method the scalar is introduced as a material strip represented by an array
of Lagrangian passive tracers whose position (xi) is computed by integrating the
equation of motion

Rω
dxi

dt
= ui, (4.5)

where ui is the velocity of the flow at the tracer position and the subindex i
denotes the number of each particle conforming the filament or strip line. In
order to solve equation (4.4) a change of frame of reference is performed, so
that the new frame is mounted on the i-esim particle of the strip line, as shown
in figure 4.1. By introducing the change of variables

dξi

dt
=

Re∗
Rω Pe

1

s2
i

, Y =
Y

si
, (4.6)

where ξ is a dimensionless time, s is the striation thickness and Y is the ordinate
of the new reference system, the convection-diffusion equation transforms into a
standard diffusion equation (Meunier & Villermaux 2010)

∂c

∂ξ
=

∂2c

∂Y2
. (4.7)
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Figure 4.1: Reference frame change.

Using the initial condition c(0,Y) = exp(−Y2) for equation (4.7), the solution
becomes

c =
1

√
(1 + 4ξi)

exp

(
−Y2

s2
i (1 + 4ξi)

)
. (4.8)

Solution (4.8) can be extended to include transport in the X-direction. In fact,
this method solves the associated convection-diffusion problem by computing
the local stretching rate along the strip. Thus, the concentration field c is
reconstructed by adding small Gaussian ellipses centered on each tracer. The
succession of ellipses forms a filament that represents the scalar distribution. In
two dimensions the solution for the scalar field c is

c =
∑

i

1/1.77264√
1 + 4ξi

exp

(

−
[(x − xi) · σ̂i]

2

∆l2
−

[(x − xi) · n̂i]
2

s2
i (1 + 4ξi)

)

, (4.9)

where the term s2
i (1 + 4ξi) is the local width of the filament, and ∆li is the

distance between two consecutive tracers. The local tangent and normal unitary
vectors are denoted by σ̂i and n̂i, respectively. The striation thickness si can be
calculated from

si = s0 ∆x0

i /∆xi, (4.10)

where s0 is the initial thickness of the strip and ∆x0
i is the initial separation

between consequtive tracers.
A Fortran code was developed to implement the DSM method. Positions of

particles are calculated through a second order expansion of equation (4.5). A
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detailed explanation of the numerical procedure for the reconstruction of the 2D
scalar field (eq. (4.9)) as a function of time with equations (4.6) and (4.10),
along with the strip refinement and cusps treatment, can be found in Meunier &
Villermaux (2010).

4.4 Results

4.4.1 Lagrangian trajectories and spatial symmetry break-
ing

In this subsection, pure Lagrangian trajectories (without diffusion effects) cal-
culated numerically by solving equation (4.5) are presented and compared with
visualization experiments. Dyed water experimental visualization on the surface
of the layer (z=4mm) was mimicked numerically by tracking the motion of a
circle with radius r=5 mm, composed initially by an array of 10000 advective
particles, uniformly placed in the geometrical center of the flow domain. Once
the velocity field is calculated with the Q2D model, these particles are advected
by the flow field according to the equation of motion (4.5). Positions of particles
are calculated by solving this equation through a second order expansion. Smooth
trajectory curves were obtained by inserting new particles if distance between two
consecutive particles was larger than a constant. As mention before, this tracking
technique does not take into account the diffusion effect of the scalar. Initially,
in most of the analyzed flows the circle is divided in four lines, each one lying on
a different quadrant. Every line is coulored mimicking the experimental visual-
ization where a drop of different color was set on each quadrant. Figure 4.2(a)
shows an experimental picture of the oscillating dipole vortex, whereas figure
4.2(b) shows the corresponding numerical Lagrangian visualization or tracking.
In this case, the initial circle was divided in two lines (green for x < 0 and red
for x > 0) since two color drops were used in the experiment. As time passes,
the Lorentz force stirs the fluid and the flow evolves to form the characteristic
dipole vortex that oscillates in the y-direction, clearly showing that the dye is
being spread in the spatial domain. Apart from diffusion effects, the Lagrangian
tracking reproduces the experimental observation very well. It is clear that fluid
mixing occurs, however, it is not homogeneous since a symmetry line exists along
the y-axis. This line does not allow the mass to be transported between the left
and the right side of the flow domain. Incidentally, this fact is contained in the
spatial symmetry of the oscillatory vortex flow stated in Chapter 2, namely,
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Figure 4.2: Oscillating vortex in a dipolar magnetic field at phase ϕ = 8/10 π.
a) Experimental visualization. b) Numerical Lagrangian particles tracking. The
square denotes the footprint of the magnet. The black dot (•) denotes a magnet
with its dipole moment pointing in the positive and negative z-direction. Forcing
frequency fx = 50 mHz. Phase-shift φx = 0.

u(x, y, t) = −u(−x, y, t),
v(x, y, t) = v(−x, y, t).

}
(4.11)

Figure 4.3 shows the experimental visualization and numerical Lagrangian
tracking of an oscillatory vortex flow created when two magnets with opposing
polarization are placed along the y-axis, separated by distance slightly larger
than the magnet side length. Again, numerical results present a good qualitative
comparison with the experiment. It can be observed that, due to the quadrupole
magnetic field distribution, the mixed area is larger than in the previous case.
Even if the magnetic field is extended with an array of two aligned magnets, the
oscillating vortex flow keeps the symmetry line along the y-axis which inhibits
mixing between left and right sides. Moreover, a second symmetry line along
the x-axis arises. These two symmetry lines prevent mass transport between
quadrants, so that mixing occurs indepently at every quadrant. Mathematically,
spatial symmetries are expressed in the following way:

u(x, y, t) = −u(−x, y, t) = −u(−x,−y, t) = u(x,−y, t),
v(x, y, t) = v(−x, y, t) = −v(−x,−y, t) = −v(x,−y, t).

}
(4.12)
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Figure 4.3: Oscillating vortex in a quadrupolar magnetic field at phase ϕ =
8/10 π. a) Experimental visualization. b) Numerical Lagrangian particles track-
ing. The squares denote the footprint of the magnets. The black dot (•) and the
cross (×) denote a magnet with its dipole moment pointing in the positive and
negative z-direction, respectively. Forcing frequency fx=100 mHz. Phase-shift
φx = 0.

In figure 4.4, the oscillatory vortex flow created by an ordered rectangular ar-
ray of four magnets, is shown. Althoug this octopolar magnetic field distribution
generates complex flow structures and increases the mixed area, the oscillating
vortex flow keeps the same symmetry lines along the x- and y-axis (equation
(4.12)), as the vortex flow in the quadrupolar magnetic field distribution does.

Previous magnetic field distributions generate ordered flow patterns where
the mixing is spatially increased as the number of magnets increases, although
mixing homogeneity seems to be inhibited by the symmetry conditions. Keeping
in mind that flows are in laminar regime and instabilities are avoided, spatial
symmetries can be broken when a disordered array of magnets is used (Voth et
al. 2003). Figure 4.5 shows the experimental visualization and the numerical
Lagrangian tracking of the flow generated by a disordered array of five magnets.
It can be easily seen that symmetry lines in the x and y-axis are vanished and
therefore, mass transport beween quadrants is allowed. In fact, every color can
be appreciated at each quadrant and the homogeneity of the mixing is greatly
enhanced. Note that the numerical Lagrangian tracking reproduces most of the
main flow structures of the time-dependent flow.

Spatial symmetries can also be broken using two orthogonal electric currents.
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Figure 4.4: Oscillating vortex in an octopolar magnetic field at phase ϕ =
18/10 π. a) Experimental visualization. b) Numerical Lagrangian particles track-
ing. The squares denote the footprint of the magnets. The black dot (•) and the
cross (×) denote a magnet with its dipole moment pointing in the positive and
negative z-direction, respectively. Forcing frequency fx=100 mHz. Phase-shift
φx = 0.

Figure 4.5: Flow due to a disordered array of five magnets at phase ϕ = 8/10 π.
a) Experimental visualization. b) Numerical Lagrangian particles tracking. The
squares denote the footprint of the magnet. The black dot (•) and the cross (×)
denote a magnet with its dipole moment pointing in the positive and negative
z-direction, respectively. Forcing frequency fx=50 mHz. Phase-shift φx = 0.
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Figure 4.6: Oscillating vortex flow in a dipolar magnetic field created by the
injection of two orthogonal currents (phase ϕ = 18/10 π). a) Experimental
visualization. b) Numerical Lagrangian particle tracking. The square denotes
the footprint of the magnet. The black dot (•) denote a magnet with its dipole
moment pointing in the positive and negative z-direction, respectively. Forcing
frequencies fx = 50 mHz and fy = 200 mHz. Phase-shifts φx = φy = 0.

In the simplest case, namely, the oscillating vortex flow in a dipolar magnetic
field with a single current (see figure 4.2), the Lorentz force generates a flow
pattern with a symmetry line along the y-axis. When an additional orthogonal
current is injected, a Lorentz force in the x-direction that breaks the symmetry
line appears and then, mass transport occurs between the left and right sides of
the flow. Figure 4.6 shows both the experimental visualization and the numerical
Lagrangian tracking of the flow created by two orthogonal currents under the
field of a single magnet. Phase-shifts (φ) of both currents are zero and their
frequencies are fx = 50 mHz and fy = 200 mHz. Note that mixing is clearly
improved with respect to the case of a single current.

Even if a single magnet is used, unexpected flow patterns can arise from the
combination of the electrical parameters, namely the amplitude, the frequency
and the phase-shift for each current. Figure 4.7 shows the vortex flow created
when the frequencies of both currents are equal to 50 mHz but with a phase-shift
of π/2, that is, φx = 0 and φy = π/2. In other words, sine and cosine current
signals are used. These injected currents interacting with the dipolar magnetic
field create an effective counter-clockwise rotating Lorentz force that produces
an oscillating vortex monopole. Evidently, the Lorentz force distribution breaks



4.4. Results 81

Figure 4.7: Oscillating monopolar vortex flow in a dipolar magnetic field created
by the injection of two orthogonal currents (phase ϕ = 18/10 π). a) Experimen-
tal visualization. b) Numerical Lagrangian particles tracking. The square denotes
the footprint of the magnet. The black dot (•) denotes a magnet with its dipole
moment pointing in the positive z-direction. Forcing frequencies fx = fy = 50
mHz. Phase-shifts φx = 0, φy = π/2.

the spatial symmetries and enhance the fluid mixing.
In general, visualization based on numerical Lagrangian particle tracking

agrees qualitatively with the experiments. Nevertheless, this visualization method
presents the problem of superposition of the coulored lines when symmetry break-
ing occurs (figures 4.5, 4.6 and 4.7), and does not allow to fully discern the
color distribution as the experimental visualization does. On the other hand,
Lagrangian tracking only considers convection effects and disregards diffusion ef-
fects. In the following subsection, the transport of a scalar by convection-diffusion
effects is addressed with the DSM.

4.4.2 Convection-diffusion of a scalar: DSM results

In this subsection, the numerical results of the scalar transport in electromagneti-
cally driven vortex flows calculated with the Diffusive Strip Method are compared
with experiments. Only flows generated in multipolar magnetic fields with a sin-
gle alternate electric current and a fixed frequency, are considered. In principle,
the maximum velocity that can be reached in the experiments is U = 1.4×10−2

m-s−1 , that corresponds to an injected steady direct current of 80 mA (see
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figure 1.8). With this velocity scale, the maximum Reynolds number based
on the magnet side length is equal to Re = UL/ν = 350. In turn, the os-
cillation Reynolds number based on the experimental forcing frequency (f=50
mHz) corresponds to Rω = ωL2/ν = 200, while the Péclet number is equal to
Pe = UL/D = 7 × 105. In Chapter 3, the Q2D numerical model was validated
with velocity fields of multipolar flows with an electrical current amplitude of 80
mA, while in the experiments described here, the maximum current amplitude
reached was 60 mA. The smaller amplitude is attributed to the influence of the
fluoresceine used in the experiments. It appears that it modifies slighly the phys-
ical properties of the electrolite, in particular, the effective electrical conductivity
seems to be reduced. It is important to mention that the DSM has been validated
with the Lamb-Oseen vortex flow, for which a theoretical prediction exists (Me-
unier & Villermaux 2003). Figure 4.8 shows the experimental visualization and
numerical simulation of the oscillatory flow in the field of a single magnet. The
initial condition (t = 0 s) is established by situating a blob of dye at (x ≈0,y ≈0).
At this time, concentation of the blob is uniform, as can be observed in the first
column of figure 4.8. As time increases, the tracer is deformed as the oscillating
dipolar vortices evolve. At t = 25 s, dye concentration is no longer uniform, it is
weaker in the magnet region where the Lorentz force stretches the scalar more
intensively. In turn, in the outer region where fluid is almost at rest, the con-
centration is close to the initial one. We can observe that every half-cycle, the
scalar is pushed away from the magnet zone forming a kind of semicircles around
the central zone (second column in figure 4.8). At t = 60 and t = 75 s, diffusion
effects are clearly observed and the thickness of the lines formed by the dye is not
constant (third and fourth columns in figure 4.8). For longer times, due to the
continuous electromagnetic stirring, the dye concentration decreases everywhere,
indicating the mixing of the fluoresceine with the electrolite. Numerically, the
scalar is located initially forming a circle with radius r=5 mm and width s0=4
mm around the origin. It can be seen that the numerical simulation reproduces
quite well the experimental observations (note the scale of gray at the right-hand
side of the figure where the normalized concentration of the scalar is shown).

As expected, the scalar transport gets more complicated for flows in multipo-
lar magnetic fields. In fact, stretching and folding produced by a more complex
time-dependent flow field along with diffusion effects, promote mixing enhance-
ment. Figure 4.9 shows the experimental visualization and numerical simulation
of the scalar transport at a fixed time (t = 20 s) in oscillating flows produced by
a time-periodic Lorentz force in ordered arrays of two and four magnets and a
disordered array of five magnets. At this time, that corresponds to one period,
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Figure 4.8: Oscillating dipolar vortex flow. First row, experimental visualization,
second row, numerical simulation. First column, t=0 s, second column, t=25 s,
third column, t= 60 s, fourth column, t= 75 s. The square denotes the footprint
of the magnet polarized in the positive z direction. Forcing frequency fx = 50
mHz. Phase-shift φx = 0.
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Figure 4.9: Oscillating vortex flows at t=20 s in multipolar magnetic fields. First
row, experimental visualization, second row, numerical simulation. First column,
vortex flow in a quadrupolar magnetic field. Second column, vortex flow in an
octopolar magnetic field. Third column, vortex flow in a disordered array of
five magnets. Continuous and dashed squares denote the footprint of magnets
polarized in the positive and negative z direction, respectively. Forcing frequency
fx = 50 mHz. Phase-shift φx = 0.
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Figure 4.10: PDF of the experimental scalar distribution due to the oscillating
vortex dipole. a) t=0 s (circles and continuous line), t =300 s (15 cycles)
(squares and dashed line). b) Zoom of the figure. The lines are spline fits to
guide the eye.

the dye concentration in the elongated strips for the flows in the quadrupole and
octopole magnetic fields, is still close to the initial concentration. In contrast, in
the flow with the disordered array of magnets, dye concentration has considerably
diminished which indicates that the mixing rate has been increased.

In order to quantify the mixing efficiency, we make use of a spatial and
temporal criterium, namely, the histogram or probability density function (PDF)
P (c) of the concentration levels c. P (c)dc is defined as the normalized number
of pixels whose concentration is in the interval [c, c + dc]. Figure 4.10 shows
the PDF for experimental visualizations of the oscillating vortex dipole at two
time instants. At the initial state (t = 0 s), the histogram shows the well known
U-shape. It comes from the larger number of pixels of the background (c=0)
and the maximal initial concentration (c=1). After 15 cycles (t=300 s), a large
amount of low concentration pixels surrounds the small maximum at c ≈0.04,
and the PDF shows a thin gaussian profile which is an indicative that the scalar
concentration is uniform. Since the dye is pushed away from the magnet zone
to the outer region where fluid is almost at rest, some pixels in this region still
have high concentration levels up to c=0.8

Figure 4.11 shows the PDF of the experimental visualizations for the flows in
a dipolar magnetic field and a disordered array of magnets at two time instants.
At t=20 s (figure 4.11(a)), the scalar in the dipolar vortex flow has not reached
the mixing time so that the maximal concentration is almost everywhere equal to
the initial concentration. In turn, for the flow in the disordered array of magnets



86 Chapter 4. Mixing in oscillatory vortex flows in multipolar magnetic fields

a)

P(
c)

 0  0.2  0.4  0.6  0.8  1

 10

 10

 10

 10

 10

7

6

4

3

5

c

b)

 0  0.2  0.4  0.6  0.8  1 10

 10

 10

 10

 10

 10

 10

 1

 2

 3

 4

 5

 6

 7

c

Figure 4.11: PDF of the experimental scalar distribution due to the oscillating
vortex flow in a dipolar field and a disorder array of five magnets. a) t=20 s
(1 cycles) . b) t =160 s (8 cycles). PDF due to dipolar flow is denoted by
circles and continuos line. PDF due to disordered flow is denoted by triangles
and dashed line. The lines are spline fits to guide the eye.

the scalar has started to mix, filling the low levels of concentrations in the PDF.
With the disordered array, the PDF becomes a decreasing function of c, with an
inverted S-shape characteristic of flows with a broad distribution of stretchings
(Duplat et al. 2009). After 8 cycles (t=160 s), the scalar concentration in the
disordered array is more uniform and the average concentration is smaller. PDFs
corresponding to flows in quadrupole and octupole magnetic fields are omitted
since their curves are located between the dipolar and disordered vortex flow.
Nevertheless, at early stages flow in a quadrupole field mixes better than the
octopole case. Indeed, the disordered flow is the best mixer since it achieves a
uniform scalar concentration in a shorter time than flows in dipolar, quadrupolar
and octopolar fields. However, we must note that at late stages (t >160 s),
quadrupole show similar mixing results as the disordered flow.

Figure 4.12 shows the PDF of concentration for strips advected by the os-
cillating dipole and disordered vortex flows at the initial time (t = 0) and after
one period (t = 20). The DSM allows to predict the shape of the PDFs at
the different time stages, a U-shaped PDF between c = 0 and c = 1 as a ini-
tial condition and a S-shape PDF as a decreasing function of c at intermediate
times. However, numerics refinement must be acomplished in order to reach a
quantitative agreement.

Along with the numerical dispersion of the scalar, the DSM method allows to
compute the total length of the strip SL as it is convected by the flows. Figure
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Figure 4.12: PDF of the numerical scalar distribution due to the oscillating flows
in a dipolar magnetic field and disorder array of five magnets. a) t=0 s. b) t =20
s (1 cycles). PDF due to dipolar flow is denoted by circles and continuos line.
PDF due to disordered flow is denoted by triangles and dashed line. The lines
are spline fits to guide the eye.

4.13 shows the lenght of the strip as a function of time for different flows. As
flow evolves, the strip is stretched and folded so that its length tends to grow
exponentially from 3 cm to 20 m in approximately 8 cycles (t=160 s) for the
dipolar flow, and in only 1 cycle (t=20 s) for the disordered flow. The exponential
growth in time of SL by stretching and folding is an indicative of chaotic mixing
in the flows (Ottino 1989).

4.5 Discussion

In this Chapter, we have analyzed experimentally and theoretically the mixing
in laminar time-periodic vortex flows in a shallow electrolytic layer. The flow
patterns were generated by the interaction of multipolar magnetic field distribu-
tions produced by arrays of magnets and a uniform alternate current. First, using
the flow fields calculated numerically through the Q2D model, the Lagrangian
particle tracking of different flows was compared with experimental visualization
using dye. It was found that the mixing produced by electromagnetically driven
flows is strongly influenced by the magnetic field distributions used. With a single
magnet or ordered arrays of two and four magnets, clear symmetry lines appear
in the flow patterns. The displayed flow symmetries, acting as mixing inhibitors,
are originated by symmetric Lorentz forces that, in turn, appear as a consequence
of inherent symmetries in the magnetic field distribution. In fact, the magnetic
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Figure 4.13: Numerically calculated total strip length SL as a function of time
t. Continuous line, dipole flow; dotted line, disordered vortex flow.

field generated by a permanent dipole magnet has a symmetric 3D Gaussian-
like distribution. When ordered arrays of magnets are used, the total magnetic
field distribution is symmetric too. If a one directional current is present, only a
non-symmetric magnetic distribution (as the one given by a disordered array of
magnets) is able to break the flow symmetries. On the other hand, in an ordered
array of magnets, the driving force generated by one electrical current is not
able to break these symmetries. However, an additional current in an orthogonal
direction breaks the symmetry and enhances the fluid mixing. In general, a good
qualitative agreement between the numerical Lagrangian particle tracking results
and the visualization experiments was found. Although this numerical procedure
does not consider diffusion effects, it clearly shows the convective mixing mech-
anism based on stretching and folding. It is important to notice that the Q2D
model that introduces a linear friction with the bottom wall leads to satisfac-
tory results not only with a single electrical current is present but also when two
orthogonal currents are considered.

On the other hand, the convection-diffusion transport of a scalar was ad-
dressed by implementing the Diffusive Strip Method (Meunier & Villermaux
2010). In this new model, the position of an advected material strip is com-
puted kinematically, and the associated convection-diffusion problem is solved
by using the computed local stretching rate along the strip, assuming that the
diffusing strip thickness is smaller than its local radius of curvature. This widely
legitimate assumption reduces the numerical problem to the computation of a
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single variable along the strip, thus making the method extremely fast and ap-
plicable to high Péclet numbers. This numerical method makes the link between
the standard fluid dynamics simulation methods which are limited to small Péclet
numbers and the Lagrangian tracking methods which do not model the diffusion
of a scalar. The DSM model correctly captures the main physical features of the
scalar mixing in electromagnetically driven flows in multipolar magnetic fields. In
general, a good qualitative comparison is found between numerical results and
experimental observations. Also, the model predicts correctly the U-shape of the
PDFs for the initial condition and the inverted S-shape at intermediate times.
Further, as the strip is stretched and folded, the method allows to calculate the
total length of the strip which was found to grow exponentially, indicating that
chaotic mixing is inherent in this kind of flows.
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Concluding remarks

In this thesis, the experimental study of laminar vortex flows continuously driven
by electromagnetic forces in shallow (4 mm) electrolytic layers, has been com-
plemented with numerical simulations with the aim at contributing to the un-
derstanding of the dynamic and mixing properties of these flows. In contrast
with high-Hartmann number electrolytic (Andreev et al. 2001) or liquid metal
(Messadek & Moreau 2002) flows, the very small values of Ha in the present ex-
periments (O(10−1)) lead to negligible induced effects and to the predominance
of viscous and imposed non-uniform Lorentz forces. Although several experi-
mental studies have addressed the decay properties of vortical shallow flows of
electrolytes initially generated by electromagnetic forcing, the detailed explo-
ration and modelling of flows in shallow layers continuously stirred by localized
electromagnetic forces have been poorly explored previously.

Several configurations of localized Lorentz forces generated by injected (steady
or alternate) electric currents interacting with magnetic fields produced by arrays
of permanent magnets, were studied through PIV measurements, dyed water vi-
sualization, and Lagrangian particle tracking. Steady and time-dependent flows
were explored in flow planes parallel to the bottom wall at different depths as well
as in flow planes normal to this wall, so that an approximate three-dimensional
picture of the flow structure was reconstructed. In particular, by looking at these
planes close to the bottom wall, the damping of velocity due to bottom friction
was measured acurately. It appears that the experimental measurement of ve-
locity profiles in the vertical direction in electromagnetically driven shallow flows
have been overlooked in the past. In spite of the weakness of the applied mag-
netic field distributions, this information reveals velocity profiles with a shape
that depends on the location within the non-uniform magnetic field region and,
consequently, on the varying forcing intensity. Our results show a clear effect
of the magnetic field inhomogeneity in the vertical direction. In fact, the decay
of the field influences the form of the vertical velocity profiles since the driving
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force diminishes with the increase in the vertical distance from the magnet, as it
is clearly shown in the flattened Poiseuille-like and Stokes-like profiles measured
for steady and oscillatory forcing, respectively. In turn, the inhomogeneity of
the field in horizontal planes is more pronounced around the edge of the magnet
and creates a vertical force that promotes a slight three-dimensionality in the
flows. However, under the explored conditions of layer thickness, current am-
plitude, and magnetic field strength, no recirculations were observed in planes
normal to the bottom wall, indicating that the transport of momentum in the
normal direction is mainly diffusive. Three-dimensional numerical results reveal
that vertical velocities do exist in the flow but are too small to be detected
experimentally. Although experimental results corroborate the presumption of
quasi-two-dimensionality of these flows, a word of caution should be mentioned
since variation of the experimental conditions, particularly on the layer thickness
and current amplitude that are more easily varied, may lead to important 3D
effects.

Numerical modeling included development of Q2D and 3D models from which
numerical simulations were carried out and compared quantitatively with avail-
able experimental results. It is interesting to mention that the simple Q2D model
correctly captures the main physical features of the basic flows in both steady
and time-periodic forcing cases and avoids difficulties of a full 3D approach.
Moreover, good quantitative comparisons were found not only with flows gen-
erated under the magnetic field of a single magnet but also under multipolar
magnetic fields. The Q2D model includes convective effects and involves the
integration (averaging) of governing equations in the vertical direction, including
a linear term that accounts for the friction with the bottom wall. Since the
depth of the electrolyte layer is much smaller than its horizontal extension, the
local magnetic field originated by a permanent dipole magnet can be realistically
approximated by considering only its component in the vertical direction. The
vertical field component was modeled analytically and fitted accurately to repro-
duce the experimental field, so that the decay of the field in the vertical direction
was considered. The results reported in the present study show that a Q2D de-
scription of electromagnetically forced laminar steady and time-dependent flows
at low-Hartmann numbers in shallow layers of electrolytes, is suitable. Although
some previous Q2D models have been reported for steady flows, to the best of
our knowledge, a Q2D model for continuously driven oscillating flows has not
been presented before.

The analysis of the mixing properties of laminar flows produced by time-
periodic electromagnetic forces under magnetic field distributions created by one
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or several magnets, revealed interesting behaviors that may deserve further stud-
ies for chaotic mixing applications. Although some previous works have addressed
experimentally the mixing of electroyltes with time-periodic forces (Voth et al.
2003), to our knowledge no previous theoretical modeling of such flows has been
reported. Numerical tools developed for the convective Lagrangian particle track-
ing in electromagnetically driven flows clearly showed the stretching and folding
mechanism and allowed a good comparison with visualization experiments, which
demonstrated that mixing is inhibited when symmetric magnetic field distribu-
tions and a single injected current are used. It was found that mixing is enhanced
by using a disordered (non-symmetric) magnetic field distribution or by injecting
an additional orthogonal current. Finally, the Diffusive Strip Method (Meunier
& Villermaux 2010) implemented to analyze the convection-diffusion transport
of a scalar, correctly captures the main physical features of the scalar mixing in
electromagnetically driven flows in multipolar magnetic fields and set the basis
for deeper studies and developing of specific applications.
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