

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA

APLICACIÓN DE HERRAMIENTAS DE SIMULACIÓN PARA DIAGNOSTICO Y PROPUESTAS DE MEJORA DE LA OPERACIÓN DE LA PLANTA *FCC* 2 DE LA REFINERÍA DE SALINA CRUZ, OAXACA

T E S I S

QUE PARA OPTAR POR EL GRADO DE:

MAESTRO EN INGENIERÍA

INGENIERÍA QUÍMICA-PROCESOS

PRESENTA:

I.Q. GABRIEL TORRES MORENO

MÉXICO, D.F.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

Presidente:Dr. Pedro Roquero TejedaSecretario:Dr. Fernando Barragán ArocheVocal:Ing. José de Jesús Martínez Ruiz.1er suplente:Ing. Víctor Manuel Toledo Piñón2do suplente:Dr. Martin Guillermo Hernández Luna

Sitio donde se desarrolló el tema:

Refinería "Ing. Antonio Dovalí Jaime", Salina Cruz Oaxaca

TUTOR DE TESIS:

Dr. Martín Guillermo Hernández Luna

FIRMA

Agradecimientos:

A mis padres, Jorge y Carlota, a mis hermanos Carlos Jorge, a la familia Órnelas Torres, y a Gabrielito Torres por el cariño que siempre me brindaron y su apoyo para continuar en esta nueva etapa de mi vida.

A mi tíos Javier y Edith que también me apoyaron con sus consejos, para saber que la vida no termina por una derrota, sino que debemos de aprender de los errores para ser mejores cada día.

Al Dr. Roberto Hernández Barajas investigador de la Universidad Juárez Autónoma de Tabasco División Académica de Ciencias Biológicas por su apoyo incondicional en el desarrollo de la tesis amigo de infancia.

A mis amigos y compañeros de trabajo de la Refinería Ing. Antonio Dovali Jaime de Salina Cruz, Oaxaca, Ing. Mariano Aragón Sibaja, Ing. Gregory Catalán Salgado, Ing. Edwin Román Cruz, Ing. Jorge Valdivieso López, Ing. Alejandrino Toledo Manuel, Ing. Istven Enrique Rosas Facio y al Ing. Víctor M. Toledo Piñón, así como al Gerente Agustín Estabillo Venegas, por el apoyo que me brindaron, sus conocimientos y los ánimos que me dieron para poder participar en esta maestría, ya que esto no se pudo haber dado sin el apoyo de estas personas.

A todos los miembros del jurado por haber enriquecido esta tesis con sus valiosos comentarios.

Al Dr. Martin Hernández Luna, agradezco por todo el apoyo y asesoría y comentarios para realizar esta tesis. A todos los profesores que aportaron su grano de arena durante la formación de mi profesión en el postgrado, ha sido un privilegio haber sido alumno de la carrera de ingeniería química, UNAM.

A Pemex Refinación por haberme considerado para participar en esta maestría y poder llevar todas las herramientas adquiridas a mi desempeño laboral en el trabajo. También al personal que labora en la Torre de Pemex en el área de combustibles limpios por facilitarme el simulador comercial Petro-Sim al Ing Barenca, Ing. Angel Martin Jimenez, Ing. Victor Hugo Garcia Orta.

A la Universidad Nacional Autónoma de México por haberme abierto sus puertas brindándome la oportunidad de obtener una formación académica de calidad.

Le dedico esta tesis a mi tío Marcelino Torres Flores, que durante mi carrera universitaria siempre tuve su apoyo, y que durante el curso de la maestría partió al cielo, se que él estaría contento y satisfecho con esta nueva etapa de desarrollo profesional de su sobrino.

INTRODUCCIÓN OBJETIVOS	1 2
Capítulo 1 DESCRIPCIÓN DEL PROCESO 1.1 Descripción de la planta	3
1.1.1 Precalentamiento de carga	4
1.1.2 Convertidor Ultra – Orthoflow	5
1.1.2.1 Reactor (Riser).	6
1.1.2.2 Separador	6
1.1.2.3 Agotador	7
1.1.2.4 Regenerador	9
1.1.2.5 Salida de gases y cámara de orificios	9
2. Sistema de Fraccionamiento Principal.	12

Capítulo 2 DESCRIPCIÓN DE LOS MECANISMOS DE REACCIÓN DE DESINTEGRACIÓN CATALÍTICA Y TÉRMICA

2.1.1. Craqueo térmico	14
2.1.1.2 Mecanismo de reacciones de craqueo térmico	14
2.1.2. Descripción de mecanismo de reacción	15
2.1.2.1. Mecanismo de reacciones de craqueo catalítico 2.1.2.2. Impacto de las zeolitas	15 18
2.1.3. Cómo ocurren las reacciones en el riser	19
2.1.4 Un esquema cinético de la desintegración catalítica 2.1.5 Efecto de la calidad de las cargas en los rendimientos y en la calidad de los productos	21 25

Capítulo 3 SIMULADOR PETRO-SIM

3.1. Descripción del simulador	29
3.2. Descripción de la caracterización de la carga en el modelo del simulador Petro-Sim	30
3.2.1. Gravedad API	30

3.2.2. Contenido de nitrógeno	30
3.2.3. Contenido de azufre	31
3.2.4. Metales contaminantes	31
3.2.5 Distribución por tipo de carbono	33
3.2.6. Estimación de PNA de la carga	34
3.2.7. Distribución de anillos aromáticos	34
3.3. Requerimientos de datos para la calibración en el modelo fcc-sim (hoja de excel)	36
3.4. Descripción del reactor3.5 Importancia del balance térmico de la planta fcc2	48 55
3.6. Factores de calibración:	56
3.7 Desarrollo del modelo en Petro-Sim:	59
3.7.1 Diagrama de la torre principal f3-t1:	62
3.7.2 Remoción de calor.	62
3.7.3 Enfriamiento de fondos.	63
3.7.4 Reflujo de la columna.	64

Capítulo 4

ANALISIS DE RESULTADOS	
4.1 Análisis de variables de operación:	71
4.1.1 Temperatura del Riser	71
4.2 Reciclo Slurry	77
4.3 Temperatura de precalentamiento	81
4.4 Variación de la carga:	83
4.5 Flujo de vapor al riser (kg/h)	86
4.6 Flujo de aire al Regenerador	89
4.7 Análisis económico barril*octano	92
CAPITUIO 5 ELABORACIÓN DE UN SIMULADOR DE CARACTERIZACIÓN DE CARGA	
5.0 Antecedentes	99
5.1 Modelos cinéticos de desintegración catalítica	99
5.2. Modelo cinético propuesto:	102
5.3. Elaboración de la herramienta de simulación propuesta	104

Supraio V

PROPUESTAS DE MEJORA	115
CONCLUSIONES	121
REFERENCIAS	123
APÉNDICE A ESTIMACIÓN DE PROPIEDADES FISICOQUIMICAS Y BALANCE TÉRMICO a.1 Conversión destilación d-1160 a 10 mmhg a destilación AET.	126 129
a.2 Punto de ebullición promedio	130
a.3 Peso molecular del gasóleo	131
a.4 Presión crítica.	133
a.5 Temperatura crítica:	133
a.6 Factor acéntrico (w)	134
a.7 Densidad relativa de cada lump	135
a.8 Índice de refracción del gasóleo	135
a.9 Peso molecular para cada lump	136
a.10 Composición de parafinas, naftenos y aromáticos (PNA)	137
a.11 Entalpía de formación en estado estándar	137
a.12 Entalpías de formación evaluadas a una temperatura t	138
a.13 Determinación de cortes de TBP a partir de cortes de destilación ASTM-D86	138
a.14 Entalpía de formación en estado estándar	142
a.15 Cálculos realizados para obtener el balance térmico y el cor	143

Resumen

El presente trabajo de tesis consiste en una simulación completa de la unidad de craqueo catalítico FCC de la refinería Ing. Antonio Dovalí Jaime, incluyendo no sólo el convertidor, sino también los equipos secundarios (separadores de alta presión, torres fraccionadoras, cambiadores, compresores, etc). Para ello se empleo un simulador comercial conocido como Petro-SIM (KBC Software Solutions) es un simulador específico para la industria petrolera que incluye un módulo conocido como FCC-SIM (una versión stand-alone) que es capaz de modelar a convertidores FCC. El módulo FCC-SIM requiere de establecer una serie de casos de operación los cuales permiten la calibración del modelo. Para ello, se emplean una serie de factores de calibración que se aplican posteriormente con fines de predicción y optimización económica.

Así también se incluye el desarrollo de un modelo cinético propuesto de 7 pseudocomponentes (slurry, acite cíclico ligero, gasolina, butano-butileno, propanopropileno, gas ligero, coque) basados en las fracciones de petróleo destiladas en la torre fraccionadora principal de las FCC, así como las fracciones separadas en la torres desbutanizadora y despropanizadora. Los parámetros cinéticos del modelo serán estimados numéricamente a partir de información real de la planta que procesa 40,000 BPD de tipo Ultra-Orthoflow, cuyo objetivo de producción es optimizar la gasolina. Las predicciones del modelo cinético han sido comparadas con el modelo cinético de un simulador comercial de procesos como Petro-SIM.

INTRODUCCIÓN

El **craqueo catalítico fluido** es el proceso de conversión más importante utilizado en las refinerías de petróleo. Es ampliamente utilizado para convertir altas fracciones de hidrocarburos de alto peso molecular de los aceites crudos de petróleo a gasolinas, los gases olefínicos y otros productos más valiosos. El Craqueo de hidrocarburos de petróleo originalmente se realizaba por craqueo térmico, que ha sido casi completamente reemplazada por el craqueo catalítico, ya que produce más gasolina con un promedio más alto de octanaje. También produce gases de subproductos con mayor presencia de olefinas, y por lo tanto más valioso, que las producidas por craqueo térmico.

La materia prima a una FCC es generalmente la parte del crudo que tiene un punto de ebullición inicial cercano a 340 ° C a presión atmosférica y un peso molecular promedio de 200 a 600.

En efecto, el uso del craqueo catalítico fluidizado en las refinerías corrigió el desequilibrio entre la demanda del mercado de la gasolina y el exceso de producción de hidrocarburos pesados de alto punto de ebullición de la gama de productos resultantes de la destilación del petróleo crudo.

Desde el año del 2006, las unidades de FCC que se encuentran en funcionamiento son 400 plantas de proceso en todo el mundo, y casi un tercio del petróleo crudo refinado en las refinerías es tratado en una planta FCC para producir gasolina de alto octanaje y aceites combustibles. Durante el año 2007, las unidades de FCC en los Estados Unidos procesó un total de 5.300.000 barriles (834.300.000 litros) por día y las unidades de FCC actualmente en todo el mundo procesan dos veces esa cantidad. (Reza Sadeghbeigi,2000).

OBJETIVOS

Los objetivos del presente trabajo son el conocer las bases fisicoquímicas y la estructura que constituye la descripción en el proceso FCC del simulador Petro-Sim.

Emplear tal simulador y hacer un diagnóstico del estado y operación de la planta FCC-2 de la refinería de salina cruz, Oaxaca.

Elaborar un modelo matemático de la caracterización de la carga y analizar los resultados.

A partir de los resultados de la simulación proponer mejoras a la planta, tendientes a aumentar su rentabilidad económica.

1. DESCRIPCIÓN DEL PROCESO

1.1 Descripción de la Planta

La unidad de Desintegración Catalítica No. 2 con convertidor catalítico "ultra-orthoflow" cuenta con capacidad para procesar 40000 b/d de Gasóleo.

La alimentación a la planta de desintegración catalítica No.2 la constituye un gasóleo proveniente principalmente de la unidad de vacio, formado a partir de una mezcla de crudos de dos tipos: 75% istmo y 25% maya.

La carga fresca puede estar caliente si proviene directamente de la unidad de vacio o fría si proviene de almacenamiento, de cualquier forma, esta carga es precalentada antes de ser introducida al reactor.

Además del gasóleo de la unidad de vació, el gas y la gasolina productos de la viscorreductora puede vaporizarse y ser alimentada directamente al separador en el convertidor o directamente en la sección de recuperación de vapores. El gas de la viscorreductora siempre será alimentado en esta sección.

El convertidor de M. W. K. es de tipo "ultra-orthoflow" y utiliza un reactor elevado en donde se lleva a cabo la desintegración catalítica del gasóleo. También el proceso utiliza un sistema de combustión total de CO en el regenerador del convertidor, utilizando gases de combustión para producción de vapor de media presión. El catalizador empleado es zeolita de alta actividad para obtener diferentes productos valiosos. (Manual de la Planta Desintegradora Catalítica No. 2,1997).

Las secciones que forman parte de esta unidad son:

Sección de carga y reacción: Que comprende el sistema de recepción y precalentamiento de la carga, el convertidor, el turbosoplador de aire y el sistema de almacenamiento de catalizador.

Sección de fraccionamiento principal: Que comprende la torre fraccionadora y todos sus sistemas.

Sección de recuperación de vapores: Que comprende el compresor de gas húmedo, el absorbedor primario-agotador y el absorbedor secundario.

Sección de fraccionamiento de ligeros: Que comprende las torres, debutanizadora (F3-T5), depropanizadora (F3-T-6) y depropilenizadora (F3-T-16).

Sistema de tratamiento con amina: para las corrientes de gas seco y gas licuado.

Sección de tratamiento de aguas amargas.

1.1.1 Precalentamiento de carga:

La mayoría de las refinerías producen suficiente gasóleo para cumplir con la demanda de las unidades de desintegración catalítica. Sin embargo, en aquellas unidades en las que no se cumple la demanda de producción de gasóleos de acuerdo a la capacidad de las desintegradoras catalíticas, puede ser económico comprar un suplemento para la alimentación a la FCC o mezclar algunos residuos. El gasóleo producido por la refinería y el suplemento para la carga a FCC son generalmente combinados y enviados al tanque de balance de carga el cual provee un flujo uniforme a la bomba de carga. Este tanque puede también separar algo de agua o vapor que pudiera contener la alimentación.

Del tanque de balance, la alimentación es normalmente calentada hasta 500°F a 700°F (260°C a 370°C). La recirculación de los fondos de la fraccionadora principal y/o un calentador a fuego directo son las fuentes usuales de calor. La alimentación es primeramente enviada a través de los intercambiadores de calor usando las corrientes calientes de la fraccionadora principal. El reflujo superior de la fraccionadora principal, el aceite cíclico ligero, y la recirculación de fondos de la fraccionadora principal son comúnmente usados. La remoción de calor de la fraccionadora principal es tan importante como lo es el precalentamiento de la carga.

La carga a la planta catalítica son gasóleos procedentes de la planta primaria, se le reciben en el tanque de balance F3-D3 y es impulsada a la corona de carga previamente calentada en el tren de precalentamiento ver Fig.1.2

Fig. 1.2 Sección de Precalentamiento de carga.

1.1.2 Convertidor Ultra – Orthoflow

El convertidor consta de 6 partes principales:

- > REACTOR, TUBO ELEVADOR O RISER.
- > SEPARADOR, AGOTADOR.
- > REGENERADOR.
- ➢ CÁMARA DE ORIFICIOS
- > VÁLVULAS DESLIZANTES.
- > VÁLVULAS TAPÓN.

Es un sistema de desintegración catalítica en fase fluidizada que emplea un catalizador en polvo para promover la reacción de desintegración de la carga de gasóleo alimentado. El catalizador en polvo se dice que esta fluidizado porque cuando esta aireado adecuadamente se comporta como un fluido, el cual fluirá de un nivel alto a uno bajo, o de un recipiente a presión elevada, hacia otro con menor presión. En el convertidor de desintegración catalítica Ultra-Orthoflow tipo elevador, el catalizador debe fluir desde el reactor elevador de desintegración a

través del separador y agotador hacia el regenerador (en el cual se quema el carbón depositado en el catalizador) y de regreso al elevador.

1.1.2.1 Reactor (Riser).

Se considera desde la parte inclinada del tubo elevador hasta el extremo superior de salida de los ciclones del separador, funcionando como reactor desde la inyección de la carga hasta el extremo final.

En la parte vertical inicial, se tiene una junta de expansión EJ-1 para absorber la dilatación del tubo con el calentamiento, inmediatamente después de la junta de expansión se tienen localizadas 6 boquillas para la inyección de la carga inyectándose a través de estos, vapor de dispersión regulado por el FIC 1124 con el objeto de atomizar la carga, mejorando de esta manera el contacto íntimo con el catalizador.

En el Riser, la carga se encuentra con el catalizador regenerado que proviene de la bota por la sección lateral. El catalizador caliente vaporiza la carga, la calienta hasta la temperatura de reacción y suministra el calor necesario para que se lleve a cabo la desintegración. La temperatura de salida del riser es controlada por la cantidad de catalizador que se permite se mezcle con la carga. El flujo de catalizador es controlado mediante la válvula tapón PV-2, localizada en el fondo del Standpipe de catalizador regenerado. La válvula tapón normalmente recibe orden del TIC-1109 para mantener la temperatura del riser.

1.1.2.2 Separador

Los vapores producto de las reacciones de desintegración, los vapores del separador y los vapores del agotador suben a través del separador hacia los ciclones superiores en donde prácticamente todo el catalizador es removido.

Los vapores ya sin catalizador se van por la línea de transferencia hacia la torre fraccionadora F3-T-1, donde se llevara a cabo la separación inicial de los productos de la desintegración. El catalizador separado tanto en los ciclones de salida del riser como en los ciclones superiores del separador fluye a través de sus respectivas piernas (Fig.1.3). Se cuenta con un total de cuatro ciclones de salida del riser y cinco ciclones superiores del separador. Las piernas de los ciclones de salida del riser están sumergidas en la cama de catalizador del separador.

Las piernas de los ciclones superiores están equipadas con una válvula tipo "aleta" de no retorno para minimizar el flujo de gas hacia arriba de las piernas.

En el domo del separador se cuentan con dos anillos de vapor cuya finalidad es evitar el sobre craqueo y como consecuencia deposito de carbón en el domo por la presencia de catalizador e hidrocarburos cuyo flujo es indicado en el FI-1106 y regulado mediante una válvula manual de globo.

Fig.1.3 Diagrama mecánico de los ciclones.

1.1.2.3 Agotador

Como el catalizador gastado cae dentro del agotador, los hidrocarburos son adsorbidos en la superficie del catalizador, los vapores de hidrocarburo llenan los poros del catalizador, y los vapores que entraron en el catalizador también caen al agotador. El vapor de agotamiento a una relación de 2 a 5 lb por cada 1000 lbs de catalizador (2 a 5 kg por cada 1000 kg de catalizador) es principalmente usado para remover los hidrocarburos que entraron con el catalizador entre las partículas de catalizador. El vapor de agotamiento no está direccionado a la desorción del hidrocarburo ni al hidrocarburo que llena los poros del catalizador. Sin embargo las reacciones continúan en el agotador. Estas reacciones son manejadas por la temperatura del reactor y el tiempo de residencia del catalizador en el agotador. Temperaturas más altas y tiempos de residencia más largos permiten conversiones de hidrocarburos adsorbidos en productos "limpios más ligeros". Los diseños de agotadores con deflectores o sin deflectores (figura 1.4) están en uso comercial. Un agotador del reactor está comúnmente diseñado para una velocidad superficial de vapor de 0.75 ft/sec (0.23 m/sec) y una relación de flujo de catalizador

de 500 a 700 lb /min por ft² (2.4 kg a 3.4 kg/min. m^2). Tan alto como el flujo la caída de catalizador tiende a la entrada del vapor, reduciendo así la efectividad del vapor de agotamiento.

Fig. 1.4 Equipo del Agotador.

Esto es importante para minimizar la cantidad de vapores de hidrocarburos que son acarreados al regenerador, aunque no todos los vapores de hidrocarburos pueden ser desplazados de los poros del catalizador en el agotador. Una fracción de ellos son arrastrados hacia el regenerador con el catalizador gastado. Estos hidrocarburos vapor/líquido tienen una relación carbón-hidrógeno mayor que el carbón en el catalizador.

Las desventajas de permitir que los hidrocarburos ricos en hidrógeno entren al regenerador son las siguientes:

- ⇒ Pérdida de producto líquido. Estos hidrocarburos que se queman en el regenerador podrían ser recuperados como productos líquidos
- ⇒ Pérdida de rendimientos. La combustión de hidrógeno a agua produce 3.7 veces más calor que la combustión de carbono a bióxido de carbono. El aumento en la temperatura del regenerador causada por el exceso de hidrocarburos podría exceder la temperatura límite de los internos del regenerador y forzar a reducir la relación de carga de la unidad y modo de operación.
- ⇒ Pérdida de actividad del catalizador. Las altas temperaturas en el regenerador combinadas con la formación de vapor de agua en el regenerador reduce la actividad del catalizador al destruir la estructura cristalina del catalizador.

El flujo de catalizador gastado al regenerador es típicamente controlado por una válvula, deslizándose hacia delante y hacia atrás. Esta válvula deslizante es controlada por el nivel de catalizador en el agotador. La altura del catalizador en el regenerador provee la cabeza de presión, la cual permite que el catalizador fluya hacia el regenerador. La superficie expuesta de la válvula deslizante es usualmente forrada con refractario para resistir la erosión. En algunos diseños de unidades FCC es usado aire de levantamiento para transportar el catalizador gastado al regenerador.

1.1.2.4 Regenerador

El regenerador tiene dos funciones principales: restablecer la actividad del catalizador y suministrar el calor requerido para craquear la alimentación al reactor. El catalizador gastado entra al regenerador conteniendo entre 0.4% peso a 2.5% peso de coque, dependiendo de la calidad de la alimentación. Los compuestos de coque son: carbón, hidrogeno y trazas de azufre y nitrógeno.

El aire provee el oxigeno para la combustión del coque y es suministrado por uno o más sopladores de aire. El soplador suministra el aire a una velocidad y presión suficiente para mantener la cama catalítica en estado fluido. El aire entra al regenerador a través de un distribuidor localizado cerca del fondo del recipiente. El diseño de un distribuidor de aire es importante para alcanzar eficientemente y de manera confiable la regeneración del catalizador. Los distribuidores de aire son típicamente diseñados para una caída de presión de 1 a 2 psi (7 a 15 kPa) para asegurar el flujo de aire positivo por todas las boquillas.

Existen dos regiones en el regenerador: la fase densa y la fase diluida. A las velocidades comunes en el regenerador, 2 ft/s a 4 ft/s (0.6 a 1.2 m/s), el bulto de partículas de catalizador están en la cama densa inmediatamente arriba del distribuidor de aire. La fase diluida es la región encima de la fase densa arriba en la entrada de los ciclones y tiene una concentración sustancialmente baja de catalizador.

1.1.2.5 Salida de gases y cámara de orificios

Los gases producto de la combustión abandonan el regenerador a través de seis ciclones y es regulada su salida con las válvulas deslizantes, con la ayuda de la cámara se controla la presión del regenerador en función de la presión diferencial entre el regenerador y el separador.

La cámara dispone de 7 platos perforados los cuales proporcionan una pérdida de velocidad y una caída de presión de aproximadamente 1.2 Kg/cm2. Esto proporciona una contrapresión a la salida de las válvulas deslizantes lo que facilita su control, pues de otra manera si en la cámara

no existiera la caída de presión a través de la válvula seria casi la totalidad de presión del horno, complicando su diseño mecánico.

Durante la regeneración, los niveles de coque en el catalizador se reduce a 0.05% peso. Del regenerador, el catalizador fluye hacia abajo a una línea de transfer comúnmente referida como standpipe. El standpipe provee la presión necesaria para que el catalizador circule por la unidad.

Los standpipes están dimensionados típicamente para flujos en un intervalo de 100 a 300 lb/s/ft² (500 a 1500 kg/s/m²) de circulación de catalizador. En muchos casos se arrastra suficiente gas combustible con el catalizador regenerado para mantenerlo fluidizado. Sin embargo los standpipe muy largos requieren aireación externa para asegurar que le catalizador permanezca fluidizado. Un medio gaseoso como aire, vapor, nitrógeno o gas combustible se inyecta a lo largo del standpipe. La densidad del catalizador en un standpipe bien diseñado estará en el intervalo de 35 a 45 lb/ft³ (560 a 720 kg/m³).

El flujo de catalizador regenerado al riser es comúnmente regulado por cualquiera de los dos, la válvula deslizante o la válvula pistón. La operación de la válvula deslizante es similar a la de orificio variable. La operación de la válvula deslizante es a menudo controlada por la temperatura del reactor. Su función principal es la de suministrar suficiente catalizador para calentar la carga y alcanzar la temperatura deseada en el reactor.

Para mayor referencia se muestra en la fig. 1.5, las indicaciones de temperaturas que se tiene a lo largo del convertidor y con los cuales se realiza un monitoreo constantes, por medio del control distribuido.

Aplicación de Herramientas de Simulación para Diagnóstico y Propuestas de Mejora de la Operación de la Planta FCC 2 de la Refinería de Salina Cruz, Oaxaca

Capítulo

1

2. SISTEMA DE FRACCIONAMIENTO PRINCIPAL.

La fraccionadora de la unidad de desintegración catalítica funciona en forma semejante a otras fraccionadoras como una torre de destilación de crudo, en la Fig. 1.6 se muestra el esquema que tiene la torre principal de la planta FCC-2. En esta se lleva a cabo la separación de una mezcla de diferentes grupos de hidrocarburos. Cada uno de los cuales tiene un rango de ebullición relativamente estrecho. La mezcla contiene hidrocarburos con un amplio rango en punto de ebullición. En la fraccionadora de la planta catalítica el vapor de alimentación que entra proviene de la sección de separación del convertidor, en la fraccionadora se separa cinco fracciones que son:

La corriente que sale del fondo de la torre es conocida como aceite decantado (slurry) la cual se divide en dos flujos: uno de ellos se envía a transferir calor a los bancos de precalentadores del gasóleo de alimentación antes de entrar al riser para después regresar a la torre fraccionadora principal, el otro flujo es enfriado y transferido a tanques de almacenamiento para uso como diluvente de combustóleos. Después del aceite decantado, el siguiente corte pesado es aceite cíclico pesado (ACP), el cual es recirculado dentro de la misma torre fraccionadora; se emplea también como aceite antorcha (combustible para arranque de equipos) y como aceite de sellos a bombas durante arranques de la planta; este producto no se comercializa, únicamente se recircula en la torre principal. Por encima del ACP, se obtiene como siguiente corte al aceite cíclico ligero (ACL) el cual se conduce a una torre agotadora (torre de varios platos que emplea vapor para eliminar gases ligeros adsorbidos) para después ceder calor a los precalentadores del gasóleo y posteriormente ser enviado a tanques de almacenamiento. El siguiente corte es la nafta pesada que se divide en dos corrientes: una de ellas se recircula para perfilar la torre (procedimiento operativo que consiste en fijar las temperaturas de corte de ebullición de los productos) y la otra corriente cede calor a los rehervidores de la torre despropanizadora. Después la corriente ya fría pasa a la torre absorbedora secundaria en donde condensa C4, C5 y C6 de los gases húmedos. Los productos del domo de la torre fraccionadora consisten en gas húmedo, gasolina y agua amarga que son condensados en el sistema del domo.

Con el calor eliminado en el sistema de fondos se controla principalmente la temperatura del fondo de la torre. Esta temperatura debe ser de 342°C.Una parte de los fondos de la fraccionadora se pueden recircular hacia el Riser. Esta corriente se controla mediante el FIC-2011 y se inyecta a la boquilla de la corona de carga.

Aplicación de Herramientas de Simulación para Diagnóstico y Propuestas de Mejora de la Operación de la Planta FCC 2 de la Refinería de Salina Cruz, Oaxaca

GENIER

Aplicación de Herramientas de Simulación para Diagnóstico y Propuestas de Mejora de la Operación de la Planta FCC 2 de la Refinería de Salina Cruz, Oaxaca

Fig. 1.6 Fraccionadora Principal

2. DESCRIPCIÓN DE LOS MECANISMOS DE REACCIÓN DE DESINTEGRACIÓN CATALÍTICA Y TÉRMICA

2.1.1. CRAQUEO TÉRMICO

Antes de la llegada del proceso de craqueo catalítico, el craqueo térmico fue el proceso primario que permitió convertir las materias primas de bajo valor en productos más ligeros. Las refinerías todavía utilizan procesos térmicos, tales como retraso de coquización y *visbreaking* por craqueo de hidrocarburos residuales. A demás en los reactores catalíticos fluidizados puede presentarse también la desintegración térmica.

2.1.1.2 Mecanismo de reacciones de craqueo térmico

El craqueo térmico es una reacción que se produce cuando los hidrocarburos en la ausencia de un catalizador están expuestos a altos temperaturas en el rango de 800 a 1200 ° F (425 a 650 ° C). El paso inicial en la química de craqueo térmico es la formación de los radicales libres. Estos se forman cuando se rompe el enlace C-C; Un radical libre es una molécula neutra con un electrón no apareado. Esta división produce la ruptura de las dos especies sin carga compartiendo un par de electrones. Aquí se muestra la formación de un radical libre cuando una molécula de parafina es craqueada térmicamente. (Reza Sadeghbeigi, 2000).

$$R_{1} \xrightarrow{H} H H H H H$$

$$R_{2} \xrightarrow{H} R_{2} \xrightarrow{H} R_{1} \xrightarrow{H} C^{*} + C^{*} R_{2}$$

$$H H H H H$$

$$(2.1)$$

Los radicales libres son muy reactivos y de corta duración. Ellos pueden ser objeto de escisión en posición alfa, beta, y la polimerización. (escisión alfa es la ruptura de un enlace de carbono anexo a los radicales libres, escisión beta es la ruptura de un enlace de carbono lejos de los radicales libres). Una escisión Beta produce una de olefinas (etileno) y un radical libre primario el cual tiene dos átomos de carbono menos.

$$\mathbf{R} - \mathbf{C}\mathbf{H}_2 - \mathbf{C}\mathbf{H}_2 - \mathbf{C}\mathbf{H}_2 \rightarrow \mathbf{R} - \mathbf{C}\mathbf{H}_2 + \mathbf{H}_2\mathbf{C} = \mathbf{C}\mathbf{H}_2$$
(2.2)

Los recientes radicales libres puede volver a sufrir una escisión Beta para volver a dar más etileno, la escisión-Alfa no es favorecida termodinámicamente pero ocurre.

La escisión alfa produce un radical metilo, que puede extraer un átomo de hidrógeno de una molécula de hidrocarburos neutral. El hidrógeno produce la extracción de metano y radicales libres secundarios y/o terciarios.

$$H_3C' + R-CH_2-CH_2-CH_2-CH_2-CH_2-CH_3$$

$$\rightarrow$$
 CH₄ + R-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃ (2.0)

Estos radicales pueden sufrir escisión Beta para dar una alfa-olefina y un radical libre

$$R - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3 \rightarrow R - CH_2 - CH_2 - CH_2 + CH_2 = CH_2 - CH_2 - CH_3$$
(2.4)

Similarmente el radical metilo, el R-CH₂, puede extraer un átomo de hidrogeno a partir de otra parafina para formar un radical secundario libre y parafina más pequeñas.

$$R - {}^{*}_{CH_{2}} + R - CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{3} \rightarrow R - CH_{3} + R - CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{3} \rightarrow R - CH_{3} + (2.5)$$

 $R-*CH_2$ es más estable que H_3*C . En consecuencia, la extracción de hidrógeno de $R-*CH_2$ es menor que la del radical metilo. Esta secuencia de reacciones forma un producto rico en C_1 y C_2 , y una buena cantidad de alfa-olefinas. Los radicales libres se someten a ramificaciones (isomerización). Uno de los inconvenientes de craqueo térmico de una FCC es que un alto porcentaje de las olefinas formadas durante las reacciones intermedias se polimerizan y se condensan directamente a la formación de coque. La distribución de productos a partir del craqueo térmico es diferente del craqueo catalítico, como se muestra en la Tabla 2.2.

2.1.2. DESCRIPCIÓN DEL MECANISMO DE REACCIÓN

El craqueo catalítico puede ser clasificado dentro de dos categorías: craqueo de las moléculas del gasóleo, y re-arreglo secundario y re-craqueo de los productos ya craqueados.

2.1.2.1. Mecanismo de reacciones de craqueo catalítico

Cuando la alimentación entra en contacto con el catalizador regenerado, la alimentación se vaporiza. Entonces, los átomos con carga positiva llamada carbocationes se forman. Un carbocatión es un término genérico para un ion de carbono con carga positivo. Los carbocationes puede ser iones carboneo o carbenio. Un ion carboneo, CH_5^+ , Se forma por adición de un ion de hidrógeno (H^+) a una molécula de parafina. Esto se logra a través de

(23)

directo ataque de un protón del catalizador sitio Bronsted. El resultado molecular tiene una carga positiva, con 5 enlaces a la misma.

$$R-CH_2-CH_2-CH_2-CH_3+H^+$$
 (ataque de protones) $\rightarrow R-C+H-CH_2-CH_2-CH_3+H_2$ (2.6)

La carga de iones carboneo no es estable y los sitios de ácido en el catalizador no son lo suficientemente fuertes para formar muchos iones de carboneo. Un ion carbenio, R-CH2+, Resulta de la adición positiva de carga a una olefinas o de la eliminación de un hidrógeno y dos electrones de una parafina.

$$R-CH = CH - CH_2 - CH_2 - CH_3 + H^+ (protonde Brönsted) \rightarrow R - CH^+ - CH - CH_2 - CH_2 - CH_3$$
(2.7)

$$R-CH_2-CH_2-CH_2-CH_3+H^+ (remoción de H^+ Sitio Lewis) \rightarrow R-C^+H-CH_2-CH_2-CH_3$$
(2.8)

Ambos el Bronsted y los sitios ácidos Lewis en el catalizador generan iones carbenio. El sitio de Bronsted dona un protón a una olefina de la molécula y el sitio de Lewis elimina electrones de la molécula de parafina.

En las unidades comerciales, las olefinas entran en la carga o se producen a través de reacciones de craqueo térmico. La estabilidad de los carbocationes depende de la naturaleza de los grupos alquilo adjunto a la carga positiva. La relativa estabilidad de los iones de carbenio se expresa de la siguiente manera y se observa una estabilidad con los iones terciario.

Terciario»Secundario»Primario»Etilo»Metilo $R - C - C^+ - C$ $C - C^+ - C$ $R - C - C^+$ $C - C^+$ C^+ ||CC $C - C^+$ C^+

Uno de los beneficios de craqueo catalítico es que los iones primario y secundario tienden a reorganizarse para formar un ion terciario (con un carbono con tres enlaces de carbono, y otros anillos adjuntos).

Una vez formados, los iones de carbenio pueden formar un número de reacciones diferentes. La naturaleza y la fuerza de la influencia de los sitios ácido del catalizador es la medida en que cada una de estas reacciones se producen. Las tres reacciones dominantes de los iones de carbenio son: *i*) el rompimiento de un enlace carbono-carbono, *ii*) Isomerización, *iii*) transferencia de hidrógeno. En la tabla 2.1 se muestra un esquema general de las reacciones generales del craqueo fluidizado.

Tabla 2.1 Reacciones Generales del Craqueo fluidizado

Tabla 2.2. Comparación de productos de craqueo térmico y catalítico.

Tipo de hidrocarburo	Craqueo térmico	Craqueo catalítico	
n-parafinas	C_2 es el producto mayor, con mucho C_1 y C_3 , y C_4 a C_{16} olefinas, poca bifurcación	C_3 y C_6 son productos mayores, pocas n-olefinas alrededor de C_4 , mas bifurcaciones	
Olefinas	Pocos dobles enlaces y pequeños esqueletos de isomerización, transferencia de H ₂ es menor y no selectivo para olefinas terciarias, pequeñas cantidades de aromáticos formados a partir de alifáticos a 932°F(500°C)	Rápida formación de anillos dobles y un esqueleto extensivo de formación de isómeros, transferencia de H2 es mayor y selectivo para olefinas terciarias, largas cantidades de aromáticos formados a partir de alifáticos a 932°F (500°C)	
Naftenos	Craqueo lento de parafinas	Si el grupo estructural es equivalente, el craqueo viene teniendo el mismo promedio a conversión de parafinas.	
Alkyl-aromáticos	Craqueo dentro de los lados de las cadenas	Craqueo cerca al anillo	

2.1.2.2. Impacto de las zeolitas

El primer catalizador para el craqueo fluidizado fue tratado con ácido (arcilla natural). Mas tarde con materiales sintéticos de silica alúmina conteniendo de 10 a 15% de alúmina reemplazando a la arcilla natural. Los catalizadores de silica alúmina son más estables y de mayor rendimiento en productos.

En el año de 1950 el porcentaje de silicato-alúmina, contenía un 25 % de alúmina y se empezó a utilizar debido a su mayor estabilidad, estos catalizadores sintéticos son amorfos cuya estructura consiste en una serie aleatoria de sílice y alúmina, tetraédricamente conectado. Algunas mejoras menores en los rendimientos y la selectividad se lograron por el cambio a los catalizadores como magnesio-sílica, y alúmina-zirconia-sílica.

El avance en el catalizador de FCC era utilización de zeolitas X v Y la durante la década de 1960. La adición de estas zeolitas sustancialmente aumento de la actividad del catalizador y la selectividad. La distribución de los componentes que contiene el catalizador de zeolita es diferente que la distribución con un catalizador amorfa de sílice-alúmina. Además, las zeolitas son 1,000 veces más activos que los catalizadores amorfos de alúmina- sílice.

La mayor actividad proviene de una mayor fuerza y organización de los sitios activos en las zeolitas. Las zeolitas son silicatos de alúmina cristalina con una estructura de poro regular. Sus elementos básicos son tetraedros de sílice y alúmina. Cada tetraedro se compone de átomos de silicio o de aluminio en el centro y con átomos de oxígeno en las esquinas. Debido a que el silicio y el aluminio están en un estado de oxidación +4 y +4, respectivamente, una carga neta de -1 debe ser equilibrado por un catión para mantener la neutralidad eléctrica.

Los cationes que sustituyen a los iones de sodio determinan la actividad y selectividad del catalizador. Las zeolitas son sintetizados en un medio alcalino como hidróxido de sodio, produciendo una zeolita soda-Y. Estos zeolitas soda-Y, tienen una estabilidad pequeña pero el sodio puede ser fácilmente intercambiado.

El intercambio del ión sodio con cationes, aumenta la acidez y la estabilidad. El compuestos más utilizado de tierras raras son de lantano (La^{3*}) y cerio (Ce³⁺). Los sitios ácidos del catalizador son Bronsted y el tipo Lewis. El catalizador puede tener sitios de Bronsted fuerte o débil, o bien, sitios de Lewis fuerte o débil. Un tipo ácido-Bronsted es una sustancia capaz de la donación de un protón. Los ácidos clorhídrico y sulfúrico son típicos de ácidos-Bronsted, el tipo acido-Lewis es una sustancia que acepta un par de electrones. El cloruro de aluminio es el ejemplo clásico de un ácido de Lewis. Disuelto en el agua, reacciona con hidroxilo, causando una caída en el pH de la solución. Las Propiedades ácidas de catalizador dependen de varios parámetros, que incluye el método de preparación, la temperatura de la deshidratación, la relación sílice-alúmina, y el radio de los sitios de Bronsted a Lewis.

2.1.3. CÓMO OCURREN LAS REACCIONES EN EL RISER

Como hemos visto de forma global el gasóleo es una mezcla de componentes que los podemos dividir en parafinas, naftenos, olefinas y aromáticos; el principal objetivo de la zona del riser es descomponer moléculas de alto peso molecular a moléculas de bajo peso molecular, durante este proceso no se puede evitar la formación de moléculas tan pequeñas como los gases y la formación de coque , primero el gasóleo es precalentado antes de entrar al riser, para después pasar por unas boquillas en donde el gasóleo se atomiza y esta atomización es favorecida por una inyección continua de vapor. Normalmente la altura del riser es de aproximadamente de 28–32 metros de longitud pero las reacciones son tan rápidas que se llevan a cabo en los primeros 5 metros de longitud. Las reacciones generales de la Tabla 2.3 se resumen en una clasificación de la siguiente forma:

Tabla 2.3 Reacciones generales del craqueo catalítico

Reacciones principales de desintegración:

Reactivos	Productos
1. $parafinas \longrightarrow$	parafina + olefina
2. $olefinas \longrightarrow$	parafina + olefina
3. $alquilaromáticos \longrightarrow$	aromáticos + olefinas
4. alquilaromáticos <u>ruptura de cadenas</u>	• aromáticos con cadenas olefínicas + parafinas
5. <i>Naftenos</i> (cicloparafinas) \longrightarrow	$parafinas + olefina + C_6 H_{12}$
Reacciones consecutivas (secundarias):	

	Reactivos		Productos
1.	naftenos + olefinas	\longrightarrow	aromáticos + parafinas
2.	isomerización (olefina, parafina)	\longrightarrow	iso–olefina,iso– parafina
3.	transferencia del grupo alquilo	\longrightarrow	naftenos
4.	condensación	\longrightarrow	dibenzotiofenos

Todas estas reacciones son promovidas en el riser por los siguientes factores:

- El gasóleo a la entrada del riser encuentran en fase gas.
- El catalizador que puede ser zeolita o alúmina-silicato cuenta con sitios activos de carácter ácido.
- Moléculas con características de atraer electrones (sitios Lewis) o dar protones (sitio Bronsted) que se comentaron anteriormente.
- Los hidrocarburos interactuaron con estos sitios mediante la adsorción en el catalizador, esto origina la rupturas de enlaces (C-C), estas rupturas dan formación a iones carbonio los cuales son más estables en carbonos terciario que primarios y secundarios, es por esto que existe un reacomodo de las estructuras moleculares.

Debido a la estabilidad del ion carbonio en carbonos terciarios es más rápido craquear las parafinas ramificadas que las parafinas lineales. En la desintegración de parafinas el contacto del catalizador en sitio activos ácidos se lleva a cabo a partir de la sustracción de un hidrógeno de la molécula de hidrocarburos lo que se conoce como sitio Lewis. Esta reacciones generan parafinas, olefinas y un sitio activo regenerado en el catalizador, pero la reacción puede continuar hasta llegar a la formación de propileno, si queremos más rendimientos de gasolinas el tiempo de contacto con el catalizador debe de ser corto , de lo contrario las reacciones continúan hasta la trasformación de parafinas a olefinas (propileno), en estas reacciones no se llega a la producción de etileno por la inestabilidad del ión carbono primario esto solo se presenta a altas temperatura lo que se conoce como craqueo térmico.

Se puede afirmar que con hidrocarburos con átomos de carbonos terciarios la rapidez de reacción es del orden de 10 veces mayor que los hidrocarburos con carbonos secundarios y 20 veces mayor que los carbonos primarios. Al contrario, en la desintegración catalítica de olefinas, la reacción también se lleva a cabo en los sitios ácidos del catalizador pero en este caso el hidrógeno entra a la molécula de hidrocarburos; esto se conoce como protonación en el doble enlace (sitios Bronsted).

La rapidez de desintegración de olefinas es mucho mayor que la desintegración de parafinas; por ejemplo, la rapidez de desintegración del n-hexadecano es de 42% y del n-hexadeceno es de 90% de rapidez. Con esto se concluye que es más fácil para el catalizador protonar que absorber electrones en los sitios ácidos.

Existen reacciones que son indeseables como son la formación de coque y la condensación, esto se debe ya que en el gasóleo existen aromáticos que no tienen ramificaciones y aromáticos que tienen ramificación (cadena lateral adherida al anillo), el hidrógeno juega un papel importante en estas reacciones lo que se conoce como transferencia de hidrógeno. Los aromáticos no ramificados que entran en contacto con el catalizador se protonan (adición de hidrógeno a la molécula) esto ocasiona uniones de anillos bencénicos hasta llegar a la policondensación de anillos aromáticos terminando en la formación de coque.

Las reacciones que se llevan a cabo con rupturas de C-C son endotérmicas por lo tanto termodinámicamente son favorecidas a altas temperaturas. Para poder entender bien lo que sucede en el riser la cinética de las reacciones será la que predomine en el proceso de las FCC en las condiciones a las cuales opera, ya que estas reacciones dentro del riser nunca alcanzan el equilibrio termodinámico.

2.1.4 UN ESQUEMA CINÉTICO DE LA DESINTEGRACIÓN CATALÍTICA

Se han desarrollado varios modelos cinéticos para predecir el comportamiento de las reacciones que suceden en el riser; por ejemplo, el esquema de agrupamiento de 10 lumps (Jacob *et al.*, 1976) en donde involucran agrupamientos de especies consistentes en parafinas, naftenos, anillos aromáticos, y grupos de aromáticos sustituyentes en fracciones ligeras y pesadas del gasóleo (ver Fig 2.1). Este modelo también incorpora el efecto de contaminación de Nitrógeno, adsorción de anillos aromáticos y el tiempo de desactivación del catalizador.

Fig. 2.1. Representación del modelo de 10 agrupamientos de Jacob. Pl, Nl, Sl y Al son compuestos que destilan entre el rango de 430-650 °F este agrupamiento conforma el producto conocido como aceite cíclico ligero que se obtiene cuando el producto del convertidor se separa en la torre de destilación principal, Ph, Nh, Sh y Ah son compuestos que destilan arriba de 650 °F+, este agrupamiento conforma el producto conocido como aceite cíclico pesado (HCO).

lumps	Descripción	Lumps	Descripción
Ph	Parafinas pesadas	SI	Aromáticos ligeros ramificados
PI	Parafinas ligeras	Ah	Aromáticos Pesados sin ramificar
Nh	Naftenos pesados	AI	Aromáticos ligeros sin ramificar
NI	Naftenos ligeros	G	Gasolina
Sh	Aromáticos pesados ramificados	С	carbón

 Tabla 2.4.
 Descripción de los agrupamiento

De acuerdo a la descripción del esquema del modelo cinético podemos clasificar a las reacciones en paralelas y consecutivas.

Reacciones paralelas: son aquellas reacciones del mismo grupo que se pueden ir directamente a gasolina o a coque.

Reacciones Consecutivas: son aquellas reacciones en la que el agrupamiento se descompone en otro agrupamiento más ligero hasta llegar a gasolina o a coque.

Para poder interpretar la rapidez de conversión de estos agrupamientos se requiere de una constante cinética (K). Se ha demostrado que, en sistemas a presión constante, el efecto de la

temperatura sobre la constante cinética se puede representar a partir de la Ecuación de Arrhenius:

$$K = A \exp(-E / RT)$$

(2.9)

donde A es el factor pre-exponencial, E es la energía de activación, R es la constante universal de los gases ideales y T es la temperatura del sistema.

El valor de la constante de velocidad se obtiene a partir de datos experimentales o de plantas pilotos. Para poder analizar cómo se lleva a cabo la velocidad de conversión de las parafinas a gasolina o a carbón se ilustra una sección del esquema de 10 agrupamientos:

Fig. 2.2. Sección del esquema del modelo anterior Parafinas a gasolinas.

Representación del esquema de reacción:

Reacciones
Paralelas
$$r_{ph\rightarrow G} = k1 @P_{ph}$$
Rapidez de formación de Gasolina
a partir de parafinas pesadas
$$r_{ph\rightarrow c} = k3 @P_{ph}$$
Rapidez de formación de carbón a
partir de parafinas pesadas
$$r_{ph\rightarrow pl} = k2 @P_{ph}$$
Rapidez de formación de parafinas
ligeras a partir de parafinas pesadas
$$r_{pl\rightarrow G} = k4 @P_{pl}$$
Rapidez de formación de Gasolina
a partir de parafinas ligeras
$$r_{pl\rightarrow c} = k5 @P_{pl}$$
Rapidez de formación de carbón a
partir de parafinas ligeras
Rapidez de formación de Gasolina
a partir de parafinas ligeras
Rapidez de formación de carbón a
partir de parafinas pesadas

Estas ecuaciones ilustran la rapidez de formación de las parafinas pesadas a parafinas ligeras, o la velocidad de formación hacia gasolina o a coque.

También se puede representar la ecuación de velocidad de desintegración de parafinas pesadas (Ph):

$$r_{ph} = (k_1 + k_2 + k_3)P_{ph}$$
(2.10)

Es necesario conocer los valores de las constantes cinéticas para saber la velocidad con que las reacciones se llevan a cabo (ver Tabla 2.5).

A partir de la Tabla 2.5 se pueden realizar varias deducciones en cuanto a la preferencia de ciertos grupos a la formación de gasolina o a coque. Observando la tabla 2.5 podemos ver que la constante de velocidad para la formación de gasolina a partir de aromáticos pesados ramificados ($K_{sh,G}$) es mayor que la velocidad de formación de gasolina a partir de aromáticos ligeros ramificados ($K_{sl,G}$),parafina ($K_{Pl,G}$) y naftenos ($K_{Nh,G}$). Otro ejemplo puede ser los aromáticos pesados ramificados ($K_{sh,C}$), que presenta una mayor velocidad de reacción para la formación de coque que los aromáticos pesados sin ramificar ($K_{sh,C}$) y esto se debe a que durante el craqueo de los aromáticos se condensan más rápido hasta la formación de carbón ya que son los compuestos que tienen menos hidrógeno.

Símbolo	A	E (Kcal/kgmol)	<i>K</i> (m ³ /kg s) a <i>T</i> = 813 K
K _{ph,pl}	1.101E+01	20298	0.00004
K _{Nh,NI}	6.500E+01	13061	0.02006
K ah,Al	3.481E+01	15815	0.00195
K sh,Sl	1.753E+02	13660	0.03733
K Ph,G	8.939E-01	5356	0.03248
K _{Nh,G}	1.397E+00	5941	0.03534
K sh,G	9.803E+03	18884	0.08232
K Ph,C	1.697E+01	12130	0.00932
K Nh,C	1.198E+02	15223	0.0096
K Ah,C	1.082E+03	17347	0.02352
K sh,c	6.398E+02	16033	0.03137
K sh,Al	2.278E+00	10151	0.00426
K _{PI,G}	1.181E+00	7776	0.00960
K _{NI,G}	2.733E+00	8016	0.01914
K si,g	3.414E+04	21396	0.06056
K PI,C	2.127E+04	19527	0.11997
K NI,C	8.644E+02	17996	0.01258
K sı,c	1.146E+04	22307	0.01157
K AI, C	2.205E+03	21437	0.00381
K _{G,C}	1.333E+03	24510	0.00034
K _h	5.689E+03	14530	45769761.52724

Tabla 2.5	Parámetros	cinéticos	de Arrhenius	para el	modelo de	10 agrupamientos
	i urumetros	Chickloos		pulu ci	moucio ac	iv ugrupulliontos

2.1.5 EFECTO DE LA CALIDAD DE LAS CARGAS EN LOS RENDIMIENTOS Y EN LA CALIDAD DE LOS PRODUCTOS

Es ampliamente conocido que la carga a una unidad de FCC, presenta la mayor influencia en rendimientos y en la calidad de los productos. Esta afirmación ha llevado a los diferentes operadores a tratar de predecir el comportamiento de la unidad. Las cargas a las unidades de FCC están compuestos por cuatro grandes familias de hidrocarburos: Parafinas, Olefinas, aromáticos y naftenos. La cinética ha desarrollado capacidades de predecir la conversión de gasolinas, ligeros (H₂, H₂S, C₁-C₄) y aceites para una amplia carga de gasóleos. Es interesante comparar algunos cocientes de la relación de constante conociendo su comportamiento de craqueo a partir de hidrocarburos puros. (Haensel, 1951; Hansford, 1952; Obladand Shankland, 1954). A continuación se presentan algunos de estos ejemplos, de la forma de cómo estos hidrocarburos presentes en la carga afectan los rendimientos y la calidad de los productos:

1. Bajo rendimiento del aceite cíclico ligero (ACL)

Si la carga de gasóleo presenta en su composición mayor porcentaje de parafinas, y conociendo la relación de constantes de velocidad tenemos que (K $_{ph\rightarrow G}$ / K $_{ph\rightarrow pl}$)= 842.1 la velocidad de conversión de parafinas pesadas es mayor hacia gasolina que a parafinas ligeras. Sabemos que de acuerdo al agrupamiento las parafinas ligeras están presentes en grandes cantidades en el corte de aceite cíclico ligero, aunque su producción sea tan pequeña en comparación a la gasolina.

2. Aumento del peso molecular de la carga:

La relación de constantes para el craqueo de fracciones pesadas de agrupamientos de Parafinas, naftenos y aromáticos son más grandes comparadas con las composiciones en la fracción de hidrocarburos ligeros. Por ejemplo la relación de contantes (K $_{ph_{\rightarrow}G}$ / K $_{pl_{\rightarrow}G}$ = 3.38), esta relación nos dice que es 3.38 más rápida la conversión de K_{ph} que K_{pl} para la formación de gasolina y esto es razonable ya que el craqueo se incrementa para parafinas y naftenos de alto peso molecular.

3. Cargas aromáticas presentan mayor tendencia a producir coque que las cargas parafínicas:

Los aromáticos con grupos sustituyentes en la sección de compuestos pesados (Sh) tienen un valor de K_{Sh} alto para la formación de coque (C). Conociendo la relación de constantes, si lo comparamos con el valor de constante de los parafinas K_{ph} a carbón tenemos que (K_{Sh₂C}/K_{ph₂C}) = 4.92 esto nos indica que los aromáticos con grupos sustituyentes forman ligeros y coque más rápido que los compuestos de parafinas pesados y esto consiste en que tienen un valor alto de craqueo por el grupo de las cadenas alquilo particularmente los C₃ y C₄ presenten en los aromáticos.

4. Selectividad de los agrupamiento a la formación de gasolinas:

Esta selectividad es medida en relación al cociente de los valores de la constante en función a la formación de gasolina y carbón, por ejemplo consideramos los siguientes cocientes (K $_{nh_{\rightarrow}g}/K_{nh_{\rightarrow}C} = 102.69$) y (K $_{ph_{\rightarrow}g}/K_{ph_{\rightarrow}C} = 94.38$), como vemos los grupos de naftenos y las parafinas pesadas presenta una gran diferencia de selectividad a gasolina que a coque. En el caso de los grupos de naftenos y parafinas ligeras la relación que es (K $_{nl_{\rightarrow}g}/K_{pl_{\rightarrow}g}$)= 2.00 significa que es más alta la reactividad de los naftenos a la formación de gasolina que las parafinas. Sin embargo el craqueo de gasolina a carbón es despreciable (K $_{g_{\rightarrow}c}$) comparado a la relación de constantes de aromáticos sustituyentes a gasolina es decir (K $_{Sh_{\rightarrow}g}/K_{g_{\rightarrow}c} = 239.0$).

5. Impacto de la temperatura con respectos a las parafinas pesadas y los aromáticos pesados con grupos sustituyentes

De acuerdo a la relación de cocientes tenemos:

$$\frac{K_{Sh \to G}}{K_{Sh \to C}} = \frac{0.082}{0.031} = 2.62 \qquad \qquad \frac{K_{Sh \to G}}{K_{Sh \to C}} = \frac{0.082}{0.031} = 2.39 \qquad \qquad \frac{K_{Sh \to G}}{K_{Sh \to C}} = \frac{0.082}{0.031} = 2.39 \qquad \qquad \frac{K_{Sh \to G}}{K_{Sh \to C}} = \frac{0.082}{0.031} = 2.8 \qquad \qquad \frac{K_{Sh \to G}}{K_{Sh \to C}} = \frac{0.082}{0.031} = 2.8 \qquad \qquad \frac{K_{Sh \to G}}{K_{Sh \to C}} = \frac{0.082}{0.031} = 2.8 \qquad \qquad \frac{K_{Sh \to G}}{K_{ph \to G}} = \frac{0.038}{0.013} = 2.86 \qquad \qquad \frac{K_{ph \to G}}{K_{ph \to C}} = \frac{0.038}{0.013} = 2.86 \qquad \qquad \frac{K_{ph \to G}}{K_{ph \to C}} = \frac{0.038}{0.013} = 2.86 \qquad \qquad \frac{K_{ph \to G}}{K_{ph \to C}} = \frac{0.038}{0.013} = 2.86 \qquad \qquad \frac{K_{ph \to G}}{K_{ph \to C}} = \frac{0.038}{0.013} = 2.86 \qquad \qquad \frac{K_{ph \to G}}{K_{ph \to C}} = \frac{0.038}{0.013} = 2.86 \qquad \qquad \frac{K_{ph \to G}}{K_{ph \to C}} = \frac{0.038}{0.013} = 2.86 \qquad \qquad \frac{K_{ph \to G}}{K_{ph \to C}} = \frac{0.038}{0.013} = 2.86 \qquad \qquad \frac{K_{ph \to G}}{K_{ph \to G}} = \frac{0.038}{0.013} = 2.86 \qquad \qquad \frac{K_{ph \to G}}{K_{ph \to G}} = \frac{0.038}{0.013} = 2.86 \qquad \qquad \frac{K_{ph \to G}}{K_{ph \to G}} = \frac{0.038}{0.013} = 2.86 \qquad \qquad \frac{K_{ph \to G}}{K_{ph \to G}} = \frac{0.038}{0.013} = 2.86 \qquad \qquad \frac{K_{ph \to G}}{K_{ph \to G}} = \frac{0.038}{0.013} = 2.86 \qquad \qquad \frac{K_{ph \to G}}{K_{ph \to G}} = \frac{0.038}{0.013} = 2.86 \qquad \qquad \frac{K_{ph \to G}}{K_{ph \to G}} = \frac{0.038}{0.013} = 2.86 \qquad \qquad \frac{K_{ph \to G}}{K_{ph \to G}} = \frac{0.038}{0.013} = 2.86 \qquad \qquad \frac{K_{ph \to G}}{K_{ph \to G}} = \frac{0.038}{0.013} = 2.86 \qquad \qquad \frac{K_{ph \to G}}{K_{ph \to G}} = \frac{0.038}{0.013} = 2.86 \qquad \qquad \frac{K_{ph \to G}}{K_{ph \to G}} = \frac{0.038}{0.013} = 2.86 \qquad \qquad \frac{K_{ph \to G}}{K_{ph \to G}} = \frac{0.038}{0.013} = 2.86 \qquad \qquad \frac{K_{ph \to G}}{K_{ph \to G}} = \frac{0.038}{0.013} = 2.86 \qquad \qquad \frac{K_{ph \to G}}{K_{ph \to G}} = \frac{0.038}{0.013} = 2.86 \qquad \qquad \frac{K_{ph \to G}}{K_{ph \to G}} = \frac{0.038}{0.013} = \frac{0.038}{0.$$

Si se observan estos resultados se establece que los aromáticos pesados al aumentar la temperatura producen más rendimientos de gasolina y las parafinas al aumentar la temperatura producen más coque, en la Fig. 2.3 por medio de este análisis de relación de cocientes se muestra cuales son los hidrocarburos que tienden a promover los rendimientos de gasolina y en la Fig. 2.4 se muestra a aquellos hidrocarburos promotores de formación de carbón. Es importante mencionar que a partir de la ecuación de Arrhenius y la energía de activación se tiene una idea de qué constante serán afectadas más que otras por la temperatura.

Fig. 2.3. Relación de cocientes de valores de la constante de velocidad cinética enfocados a los promotores de gasolinas.

Fig. 2.4. Relación de cocientes de valores de la constante de velocidad cinética enfocados a los promotores de coque.

3. SIMULADOR PETRO-SIM

3.1. DESCRIPCIÓN DEL SIMULADOR

Petro-SIM es un paquete de software de simulación riguroso que permite modelar ya sea una unidad específica o una refinería en su totalidad, desde cargas ordinarias a la mezcla de productos finales. Cuenta con una interfase completamente interactiva en donde se puede manipular variables de procesos y personalizar totalmente la simulación.

KBC ofrece una amplia gama de software de simulación y servicios asociados para la industria de hidrocarburos, incluye también modelos de unidades detalladas y la supervisión de datos por medio de una Programación lineal (LP) incluida en toda la simulación de la planta con la tecnología más actualizada disponible.

Petro-SIM [™] es un simulador de proceso completo, destacando KBC la tecnología y modelos de proceso probados. Incluyen operaciones de unidad de uso general, una biblioteca extensa de componentes, una gama de paquetes de termodinámica y métodos innovadores totalmente integrados, el software cuenta con sistemas de información de planta, bases de datos, y vínculos con Microsoft Excel y el LP.

También incluye modelo de reactores que a continuación se hace referencia:

- FCC-SIM[™] (para plantas FCC)
- REF-SIM[™] (para reformación)
- HCR-SIM[™] (para Hidrocraqueo)
- HTR-SIM[™] (Para hidrotatamiento)
- DC-SIM[™] (Para coquizadoras)
- VIS-SIM[™] (para viscoreductoras)
- ALK-SIM[™] (para alquilación)
- ISOM-SIM[™] (para isomerización)

Petro-SIM es el único simulador de proceso que incorpora modelos de reactor de KBC-SIM.

FCC-SIM es un modelo de software que utiliza la cinética para simular un reactor en unidades de FCC, puede ser usada para investigar cambios en los parámetros de operación como temperatura de la carga, temperatura de salida al riser, promedio de aire al regenerador, contenido de flujo de gas, cambio de catalizadores alternativo y aditivos, etc. Esto tiene una función de optimización que permite a un usuario maximizar una función económica objetiva sujeta a coacciones de unidad.

FCC-SIM modela una variedad de diseños de sistema de reactor/regenerador de varios licenciadores, y una amplia gama de configuraciones. Puede ser configurado para múltiple alimentación y reciclaje de la torre fraccionadora al convertidor. En operaciones unitarias incluye la columna de destilación, bombas, compresores, tubos, cambiadores de calor y separadores. Petro-SIM contiene una biblioteca completa de más de 1,000 componentes y 25 paquetes de termodinámica.

3.2. DESCRIPCION DE LA CARACTERIZACIÓN DE LA CARGA EN EL MODELO DEL SIMULADOR Petro-Sim

En este capítulo se explica la importancia de los parámetros de caracterización de la carga y su uso en el simulador.

Consideraciones a realizar para la caracterización de la carga:

Calidad de la carga:

- Gravedad API
- Rangos de Ebullición
- Azufre
- Tipos de Hidrocarburos (K Watson, índice de refracción, HPLC-UV, NMR, GC-MS)
- Nitrógeno
- Residuo de carbón (Conradson Carbón)
- Metales (Vanadio, Níquel, Hierro, Cobre)
- Sodio

3.2.1. Gravedad API

La gravedad API está relacionada con el tipo de hidrocarburos presente en la carga y/o en la fracción del petróleo. Es decir que a medida que gravedad API aumenta, se incrementa la presencia de hidrocarburos parafínicos, de tal forma, que se define como cargas de carácter parafínico, aquellas que presenten valores de gravedad API \ge 25.7, es decir gravedad < 0.9000. A medida que la gravedad API desciende de este valor aumenta la presencia de hidrocarburos nafténicos y aromáticos y la carga se hace cada vez más pesada y más difícil de craquear.

3.2.2. Contenido de nitrógeno

El nitrógeno total presente en las cargas de FCC es analizado por el método UOP-384-76 y puede clasificarse como nitrógeno básico y neutro. Dado el carácter ácido de los sitios activos de los catalizadores, es lógico pensar que existe una gran cantidad del nitrógeno básico por el sitio activo (ácido) y por lo tanto una tendencia a envenenar el sitio activo a medida que el nitrógeno aumenta.

El nitrógeno es conocido como un veneno temporal de los catalizadores. Estos compuestos son fuertemente adsorbidos por el sitio ácido, no permitiendo la adsorción de moléculas de hidrocarburos, es decir, disminuye el número de reacciones de craqueo y por lo tanto la actividad del catalizador. Inmediatamente el catalizador gastado pasa al regenerador, se presenta la combustión de los compuestos, produciendo óxidos de nitrógeno NOx, y nitrógeno elemental, la actividad del catalizador por efecto de este tipo de desactivación se recupera completamente.

A medida que el contenido de nitrógeno en la carga aumenta, la conversión y los rendimientos de la gasolina disminuyen, el rendimiento de ALC aumenta y la selectividad a coque aumenta.

3.2.3. Contenido de azufre

El azufre no es considerado un veneno para los catalizadores. Sin embargo, cargas con altas concentraciones de azufre, reflejan un incremento directo en los niveles de azufre en los productos líquidos de FCC y en las corrientes gaseosas provenientes del reactor y del regenerador. El contenido de azufre aumenta cuando el °API disminuye, indicando que a medida que aumenta el peso molecular de la carga, su contenido de azufre aumenta y que las cargas pesadas tienen normalmente mayores concentraciones de este contaminante y por lo tanto la gasolina, ACL y Slurry (decantando) contendrán mayores niveles de azufre.

3.2.4. Metales contaminantes

Los metales contaminantes más importantes presentes en la carga a FCC, son el níquel, vanadio, y el hierro. Su efecto sobre la actividad y selectividad de los catalizadores depende de los siguientes factores.

- Del estado de envejecimiento de la partícula de catalizador, es decir cuántos ciclos reacción-regeneración ha visto cada partícula del catalizador.
- De las condiciones de severidad del regenerador, es decir, la temperatura, el exceso de oxígeno, la concentración de vapor de agua, el tiempo de residencia, el nivel de carbón sobre el catalizador regenerado.
- Del catalizador utilizado.
- Del catalizador de estos metales en el catalizador de equilibrio.

El vanadio, a diferencia del níquel, tiene un gran efecto sobre la actividad, pues es bien reconocido que actúa sobre los sitios ácidos de la zeolita, causando una destrucción irreversible, lo cual disminuye el número de sitios activos disponibles para las reacciones de craqueo. Esta destrucción de los sitios ácidos por la acción del vanadio disminuye los rendimientos de gasolina y LPG y aumenta los del ACL y fondos. Valores típicos de esta caracterización se presenta en la tabla 3.1.

Tabla 3.1. Valores típicos de propiedades a partir de datos de laboratorios de las refinerías.

Punto de ebullición (°E - 50%)	
	645.000 - 975.000
API Gravedad	15.000 - 33.000
Azufre (wt%)	0.000 - 3.120
Nitrogeno Basico (wt %)	0.000 - 0.400
Residuo Carbon (wt% - ConradsonCarbon)	0.000 - 8.100
Metales (ppm - Vanadium Equivalent	0.000 - 100.000
Tipo de carbon (wt%- Core Aromatics)	1.000 - 60.000

En la siguiente tabla 3.2 se muestra los diferentes tipos de técnicas que son usadas para la destilación, también se incluye el alcance de cada método en cuanto a la información de grupos de hidrocarburos.

Es esta grafica se observa que los análisis que se realizan de forma cotidiana en los laboratorios de Pemex-Refinación (D86, D1160, D2892) sólo se pueden cuantificar grupos de 40 números de carbonos, sin embargo existe un modelo matemático de una simulación de destilados conocido como (Sim-Dis) que puede desglosar las estructuras y representarlos hasta 120 carbonos como se observo en la Fig. 3.1.

Fig. 3.1. Relación de número de carbono y TBP.

En esta grafica se observa en un análisis al gasóleo que a medida que el punto de ebullición se incrementa el corte por número de carbonos sea hace mayor es decir estructuras de hidrocarburos con alto peso molecular.

3.2.5 Distribución por tipo de carbono

Para la distribución se consideran los siguientes parámetros:

El porcentaje promedios de átomo de carbono en una estructura molecular varía, la clasificación de un agrupamiento en la estructura molecular está definida por:

- Ca: átomos de carbono en anillos aromáticos (también conocidos como aromáticos con núcleos)
- Cn: átomos de carbono en anillos nafténicos
- Cp: átomos de carbón en cadenas parafínicas

Esta clasificación puede ser medida usando equipos como NMR (Resonancia Magnética Nuclear) o también por HPLC-UV (Cromatografía de gas-liquido y Ultra violeta), pero para el simulador utiliza correlaciones empíricas, la distribución por carbono es un punto crítico para el modelo cinético.

3.2.6. Estimación de PNA de la carga

Para obtener el tipo de distribución por Número de carbono se requiere de la estimación de **PNA** de la carga de alimentación y existen varios métodos para representar PNA en cada porcentaje de volumen de la destilación, en este caso utilizan el método NDM para la obtención de estos datos. Por ejemplo, para el cálculo de Cn, este está en función del peso molecular, factor de Watson, el índice de refracción y el azufre.

 $C_n = ftn(MW, WatsonK, R_{INT}, S, C_o)$

 $C_a = ftn(WatsonK, C_n, C_o)$

Cp= 1 – Cn- Ca

Donde:

R_{INT} = índice de refracción

 C_0 = Contenido de olefinas en la carga

S = Azufre en la carga

Cálculo del peso Molecular

MW = 0.129*WatsonK*((FeedT50+460)/100) ^{2.167}	(3.1)

Watson $K = ((MeABP+460)^{1/3})/SG$

Si no se cuenta con R_{INT} se puede usar el modelo codificado Landee-Whittier Método calcular

(3.2)

<u>RI @ 20 °C</u>

3.2.7. Distribución de anillos aromáticos

Este modelo hace la siguiente consideración en cuanto al porcentaje de aromáticos:

• Los gasóleos VGO (650-1000 F) normalmente tiene 1/2/3/4+ de anillos

- El aceite cíclico presenta un 90% de anillos con núcleos de 2/3/4 en su composición
- Los poli-aromáticos son la clave para la predicción de rendimiento en la FCC

En la siguiente tabla 3.3 se presentan la distribución de los anillos aromáticos presentes en los diferentes cortes que se obtienen después de pasar el gasóleo en el convertidor catalítico y en la Fig. 3.2 se muestra los diferentes tipos de cortes de hidrocarburos que están presentes en función de la destilación.

Tabla 3.3. Relación de aromáticos que impacta a la formación de productos

Fig. 3.2. Composición general de las fracciones del petróleo.

En la tabla 3.4 se puede observar los análisis realizados por el equipo de laboratorio mediante UV (ultravioleta), a los diferentes tipos de cargas y su composición en cuanto a presencia de aromáticos.

Tabla 3.4. Cargas a FCC.

					Hydrotreated	Hydrotreated
1	Maya	Arab Light	WTI	НСО	VGO	VGO
SG@15 degC	0.935	0.924	0.901	1.053	0.888	0.900
API	19.8	21.6	25.6	2.90	27.9	25.7
D2887						
IBP	650.0	626.0	650.0	465.0	575.6	590.0
50%		860.0		744.0	789.0	844.0
FBP	1000.0	1049.0	1000.0	1143.0	1022.0	1126.0
S,wt%	3.20	2.57	0.62	2.46	0.14	0.24
N, ppm						
Total	1900	900	1300	1800		740
Basic	590	310	392	600		180
UV Aromatics, wt%						
mono-	2.9	4.1	2.5	4.1	4.3	7.6
di-	6.2	3.4	4.0	4.4	3.2	1.6
tri-	4.8	4.7	2.8	22.9	1.6	1.8
Tetra+-	5.8	3.8	2.6	25.0	1.1	1.1
TOTAL (Ca)	19.7	16.0	11.9	56.4	10.2	12.1
Aromatics Distribution, %						
mono-	14.8	25.6	21.5	7.3	42.2	62.8
di-	31.5	21.3	33.6	7.8	31.4	13.2
tri-	24.4	29.4	23.5	40.6	15.7	14.9
tetra-	29.4	23.8	21.8	44.3	10.8	9.1
TOTAL	100.0	100.0	100.0	100.0	100.0	100.0

3.3. Requerimientos de datos para la calibración en el modelo FCC-SIM (hoja de Excel)

FCC-SIM es un programa realizado en ambiente de Excel, que está provista de macros elaborados en Visual Basic, estas macros manda a llamar a otro programa desarrollado en lenguaje Fortran que es una programación completa en donde vienen incluidas las ecuaciones utilizadas en el riser para las conversiones de gasóleos en sus diferentes cortes de productos a continuación se muestra la forma de accesar a esta hoja de Excel:

En esta misma sección se incluye una hoja donde se cargan los datos de diseño mecánico de la planta a continuación se muestra el esquema:

Fig. 3.3 Esquema de captura de datos de FCC-SIM

1 Calibration input Copy Case Number > U 2 3 4 5 6 7 8 2 Pan SpotLad Peaker Case Number > U 2 3 4 5 6 7 8 4 SpotLad Peaker Case Number > U 2 3 4 5 6 7 8 4 SpotLad Peaker Case Number > U 2 3 4 5 6 7 8 5 Fresh Feed 2 Total > 1 Fresh Feed 3 Simulador Petro-Sim 0	12.0					TX .	-	1 101				<u> </u>		
2 Pun SpotLoadReada Copy		1 Calibration Input	Import											
3 Nn SpotLoodPlends Plan Care > y 4 SpotLoodPlends Total >> 1 Plan Care > y 5 Care Title > Opción para exportar datos a simulador Petro-Sim 5 Care Title > Opción para exportar datos a simulador Petro-Sim 6 Table > Table > 7 Fresh Feed 3 Table > 7 Fresh Feed 9 Table prevalue will bu used if a zono tree of the fresh feed 7 7 Fresh Feed 9 Table prevalue will bu used if a zono tree of the fresh feed 7 7 Fresh Feed 9 Table prevalue will bu used if a zono tree of the fresh feed 7 7 Fresh Feed 9 Table prevalue will bu used if a zono tree of the fresh feed 7 7 Fresh Feed 9 Table prevalue will bu used if a zono tree of the fresh feed 7 7 Fresh Feed 9 Table prevalue will bu used if a zono tree of the fresh feed 7		2	C	Case	Number ->	1	2	3	4	5	6	7	8	
4 SpotLoadReads Total > T PCC 5 Case Title > Opción para exportar datos 6 Case Title > Opción para exportar datos 7 Total > T Total > T 7 Tech Feed 2 Total > T 7 Tech Feed 3 Total > T 7 Tech Feed 4 Total > T 7 Tech Feed 6 Total > T 7 Tech Feed 7 Total > T 7 Tech Feed 7 Total > T 7 Tech Feed 8 Total > T 7 Tech Feed 9 Total > T 7 Tech Feed 9 Total > T 7 Tech Feed 7 Total > T 7 Tech Fe		3 Bun	Сору	В	un Case ->	U								
For the Field 2 For the Field 2 For the Field 3 F		4 Spot Load Results 🗸	Clear 🔪	Total ->	1	,								
Centre Teal Constructions C						FCC								
s Core Title - * 0 Freih Feed 2 ** 0 Freih Feed 3 ** 0 Freih Feed 5 ** 0 Freih Feed 9 **						DEMO								
S S						percent of the								
S Case Title > Ca						_								
5 Case Title > 10 Fresh Feed 2 110 Fresh Feed 3 120 Fresh Feed 3 121 Fresh Feed 5 122 Fresh Feed 6 123 Fresh Feed 7 124 Fresh Feed 7 125 Fresh Feed 7 126 Fresh Feed 8 127 Fresh Feed 9 128 Fresh Feed 9 129 Fresh Feed 7 120 Fresh Feed 9 121 Fresh Feed 9 122 Fresh Feed 9 123 Fresh Feed 9 124 Fresh Feed 9 125 Hotorader Botros Product Bee 125 Hotorader Botros Product Bee 128 Fresh Feed 9 129 Hotorader Botros Product Bee 120 Fresh Feed 9 121 Fresh Feed 9 122 Hotorader Botros Product Bee 123 Fresh Feed 9 125 Hotorader Botros Product Bee 125 Hotorader Botros Product Bee 126 Fresh Feed 9 127 Fresh Feed 9 128 Fresh Feed 9 129 Hotorader Botros Forduct Bee 129 Hotorader Botros Forduct Bee <tr< td=""><td></td><td></td><td></td><td></td><td></td><td>0 Opc</td><td>tión na</td><td>ara ex</td><td>porta</td><td>r dato</td><td>s I</td><td></td><td></td><td></td></tr<>						0 Opc	tión na	ara ex	porta	r dato	s I			
s Case Title -> a simulador Petro-Sim 1 30 Freeb Feed 3 1 30 Freeb Feed 4 1 30 Freeb Feed 5 1 30 Freeb Feed 5 1 30 Freeb Feed 6 1 30 Freeb Feed 7 1 31 Freeb Feed 9 1 32 Freeb Feed 9 1 42 Freeb Feed 9 1 43 Freeb Feed 10 1 42 Freeb Feed 10 1 42 Freeb Feed 10 1 50 Debre Feed Data 1 52 Defaul Feed Freeb Feed 7 1 53 Lift Gas 1 54 Data Freeb Feed 7 25 Defaul Feed Freeb Feed 1 55.0 1 53 Hottreeer Data 1 56 Data <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>non p</td> <td></td> <td>porta</td> <td>auto</td> <td>~ </td> <td></td> <td></td> <td></td>							non p		porta	auto	~			
5														
95 Fresh Fred 2 105 Fresh Fred 3 110 Fresh Fred 4 110 Fresh Fred 5 111 Fresh Fred 5 112 Fresh Fred 6 1130 Fresh Fred 7 1131 Fresh Fred 7 1132 Fresh Fred 7 1133 Fresh Fred 9 114 437 114 438 115 Fresh Fred 9 114 437 115 Fresh Fred 9 116 Fresh Fred 9 117 Fresh Fred 9 118 Fresh Fred 9 119 Fresh Fred 9 111 Gas 111 Gas 115 Gher Fred Data 115 Free Fred 9 115 Free Free 7 116 Free Free 7 117 Free Free 7 118 Free Free 7 119 Free 7 120 Free 7 121 Free 7 122 Free 7 123 Free 7 <td></td> <td>5</td> <td></td> <td></td> <td>see Title -></td> <td>a sii</td> <td>mulad</td> <td>lor Pei</td> <td>tro-Sir</td> <td>n</td> <td></td> <td></td> <td></td> <td></td>		5			see Title ->	a sii	mulad	lor Pei	tro-Sir	n				
1 00 Fresh Fresd 3 1 00 Fresh Fresd 4 100 Fresh Fresd 5 101 Fresh Fresd 5 102 Fresh Fresd 5 103 Fresh Fresd 6 104 Fresh Fresd 5 105 Fresh Fresd 7 106 Fresh Fresd 8 107 Fresh Fresd 9 108 Fresh Fresd 9 109 Fresh Fresd 9 101 Fresh Fresd 9 102 Fresh Fresd 9 103 Fresh Fresd 9 103 Fresh Fresd 9 104 Fresh Fresd 9 105 Uth Green Freed 7 105 Erea		55 Freeb Feed 2												
The inferent read 3		102 Freek Fred 2				H								
The Presh Feed 2 100 Presh Feed 5 125 Fresh Feed 7 131 Fresh Feed 7 133 Fresh Feed 7 134 Fresh Feed 7 135 Fresh Feed 7 136 Fresh Feed 7 137 Fresh Feed 8 138 Fresh Feed 7 139 Fresh Feed 8 131 Fresh Feed 10 132 Fresh Feed 10 133 Fresh Feed 10 1437 Breckel Stemens 1438 Fresh Feed 10 1439 Breckel Stemens 1430 Fresh Feed 10 1447 Breckel Stemens 1458 Fresh Feed 10 1459 Fresh Feed 10 1450 Fresh Feed 7 1451 Stemer 10 1452 Feed Preheal Temperature 1451 Stemer 2 1452 Feed Hydrotreater 152 Feed Hydrotreater 152 Feed Hydrotreater 1531 Feed Temperature 1532 Feed Hydrotreater 1533 <t< td=""><td></td><td>103 Fresh Feed 3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		103 Fresh Feed 3												
1 133 Fresh Fædd 3 247 Fresh Fædd 5 333 Fresh Fædd 6 334 Fresh Fædd 8 335 Fresh Fæd 9 336	±	101 Fresh Feed 4												-
42/ Fresh Feed 7 33< Fresh Feed 7	L.	199 Fresh Feed 5												-
4 25 Fresh Feed 3 4 39 Fresh Feed 8 4 39 Fresh Feed 9 4 47 Recycle Streams 5 50 1 5 <	L.	247 Fresh Feed 6												
41 343 Fresh Freed 8 43 Fresh Freed 9 44 439 447 Recycle Streams 532 Default Feed Protect Targer Attree 533 Fresh Feed 7 533 Default Feed Protect Targer Attree 533 Default Feed Protect Targer Attree 533 Feed Float 7 533 Peactor Targer QDptions 533 Feed Hydrotreater 533 Feed Targer QDptions 534 Feed Targer QDptions 535 Feed Hydrotreater 537 Feed Hydrotreater 538 Feed Targer QDptions 539 Feed Targer QDptions 531 Feed Transfer Reg QDptions 533 Feed Transfer Reg QDptions 534 Feed Transfer Reg QDptions 535 Feed Transfer Reg QDptions 537 Feed Transfer Reg QDptions 538 Feed Transfer Reg QDptions 539 Feed Transfer Reg QDptions 531 Feed Transfer Reg QDptions 533 Feed Transfer Reg QDptions 534 Feed Transfer Reg QDptions 535 Feed Transfer Reg QDptions 537 Feed Transfer Reg QDptions 538 Feed Transfer Reg QDptions 539 Feed Transfer Reg QDptions 539 Feed Transfer Reg QDptions 539<		295 Fresh Feed 7												
+ 331 Fresh Feed 10 + 437 Fresh Feed 10 + 447 Recycle Streams + 531 Lift Gas -<	+	343 Fresh Feed 8												
+ 439 Freabled 10 + 437 Freabled 10 + 438 Freabled 10 + 530 Lift Gas - 532 Default Feed Potest Temperature - 532 Default Feed Potest Temperature - 532 Default Feed Potest Temperature - 533 Hydrotreater Bottoms Froduct Rate - 533 Feed Hydrotreater 533 Feed Total TBP Cut Point <	±	391 Fresh Feed 9												
447 Recycle Streams	÷	439 Fresh Feed 10												
+ 513 Lift Gas <t< td=""><td>÷</td><td>487 Recycle Streams</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	÷	487 Recycle Streams												
528 Other Feed Data This temperature 529 Default Feed Protest Temperature This temperature is information is an optimistic in the state of t	H	513 Lift Gas												
Signature field Product Read Product Read Signature Status Signature Status Signature Status Signature Status Signature Signatu		526 Other Feed Data	This large	aratura will be used	lif a rere									
S28 Transfer Rate of Riser 2 Feed to Riser 1 S28 Transfer Rate of Riser 2 Feed to Riser 1 S28 Transfer Rate of Riser 2 S30 Hydroreater Bottoms Product TBP Cut Point S37 Feed Hydroreater Bottoms Sea Transfer Rate of Riser 2 S38 Reactor Target Options S38 Feed Hydroreater S38 Reactor Target Options S38 Feed Hydroreater S38 Reactor Target Options S38 Reactor Target S38 React	11 ·	527 Default Feed Preheat Temperature	riser inlet	temperature is ente	red for	545.0								
• 529 Hydroreater Bottoms Product Rate • 530 • 535.0 • 531 • 535.0 • 532 Feed Hydroreater Bottoms Feed Temperature • 533 Feed Hydroreater Bottoms Feed Temperature • 533 Feed Hydroreater • 533 Feed Hydroreater • 533 Feed Hydroreater • 535 • • • • • • • • • • • • • • • • • • •	1 · ·	528 Transfer Rate of Riser 2 Feed to Riser 1	any of the	fresh feeds or recv	cles.	0.0								
Image: state state between Feed Temperature Image: state state between Feed Temperature 533 Feed Hydrotreater 533 Feed Temperature 533 Feedor Conditions 533 Feedor Structure 700 Operating Conditions 703 Operating Conditions 704 Preactor Strupper 705 Preactor Strupper 704 Preactor Strupper 705 Hegenerator 1 707 Regenerator 1	11 ·	529 Hydrotreater Bottoms Product Rate				5.0								
537 Feed Hydrotreater + 538 Preaduct Target Options + 538 Product TBP Cut Point + 538 Product TBP Cut Point + 558 Product TBP Cut Point + 578 H 2 System + 580 Product TBP Cut Point + 580 Product TBP Cut Point + 580 Catalyst Activity Option + 580 Catalyst Activity Option + 580 Reactor Conditions + 580 Gas System Conditions 702 702 703 Operating Conditions + 770 771 Resctor Stripper + + 770 771 Resctor Stripper + + 771 772 Regenerator 1 - + 773 Regenerator 2 * * 810	L·	530 Hydrotreater Bottoms Feed Temperature		⁺F		535.0								
932 Feed Hydrotreater 933 Feed Hydrotreater 945 Statust 953 Feed Hydrotreater 954 Feed Hydrotreater 955 Feed Hydrotreater 956 Freduct TBP Cut Point * 957 H2 System 958 Catalyst Activity Option 959 Catalyst Activity Option 950 Gas System Conditions 950 Gas Properties 970 Operating Conditions 970 Operating Conditions 971 Feestore Stripper 972 973 Hydrotreater 974 Feestore Stripper 974 Feestore Stripper 974 Feestore Stripper 974 Feestore Profile 977 Regenerator 1 977 Regenerator 2		531												
+ 533 Fleador Target Options <t< td=""><td></td><td>532 Feed Hydrotreater</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		532 Feed Hydrotreater												
+ 560 Product TBP Cut Point*	+	533 Reactor Target Options												
+ 570 H2 System	+	568 Product TBP Cut Point												
+ 882 Catalyst Activity Option -	+	578 H2 System												
+ 602 Gas System Conditions	+	582 Catalyst Activity Option	1											
+ 612 Reactor Conditions + 603 Gae Properties 700 Operating Conditions 703 Operating Conditions 704 Reactor Stripper + 705 706 Deprating Conditions 707 Deprating Conditions 708 Deprating Conditions 709 Deprating Conditions 700 Deprating Conditions 701 Preactor Stripper + 777 Regenerator 1 + 777 Regenerator 2 + 777 Big Pressure Profile Bid Optional Gas Plant Data	+	602 Gas System Conditions	1											
# 630 Gae Properties	i i i	612 Beactor Conditions												
702 Operating Conditions 703 Operating Conditions 704 Reactor/Stripper + 777 + 777 + 778 + 778 + 778 + 777 + 778 + 778 + 778 + 778 + 778 + 778 + 778 + 778 + 778 + 778 + 778 + 778 + 778 + 778 + 778 + 778 + 788 Pressure Profile </td <td>Ē</td> <td>690 Gas Properties</td> <td></td>	Ē	690 Gas Properties												
700 Operating Conditions +1 704 Reactor Stripper +7 776 Rescue Stripper +7 777 Regenerator 1 +7 778 Regenerator 2 +8 99 Pressure Profile +8 833 Optional Gas Plant Data 833 Reference on the stripper H 4 + H Design Aditable H 4 + H Design Calibration Input/ Calibration Result / Predict Input / Predict Result / Opt Result / Comparison / Summary / Charts /		702												
100 Cuptortuning Contraction 100 Cuptortuning Contraction <t< td=""><td></td><td>703 Operating Conditions</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		703 Operating Conditions												
707 Filter 1		704 Reseted Stripper	I											
7/20 Filter 2		704 neactor surper												-
1/20 Priser 2 Modelo de trabajo que incluye 1/20 Presure Profile Modelo de trabajo que incluye 1/20 Presure Profile Otras opciones en cada hoja 1/20 Presure Profile Otras opciones en cada hoja 1/20 Presure Profile 1/20 Presure Profile <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
1 / 203 Pregenerator 1 Modelo de trabajo que incluye 1 / 77 Pregenerator 2 Modelo de trabajo que incluye 1 / 839 Pressure Profile otras opciones en cada hoja 839 Pressure Profile 831 Optional Gas Plant Data 840 Calibration Input / Calibration Result / Predict Input / Predict Result / Predict Result / Opt Result / Comparison / Summary / Charts /	L.	726 Hiser Z												-
m m	L.	733 Hegenerator I						Model	o do +~	abaia ~	un incli			-
H H		111 Hegenerator 2						would	o ue tra	analo d	ue molt	луе		
Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Plant Data Image: Stat Uptional Gas Pl	L.	819 Pressure Profile												-
8339 Participation M M Design Calibration Input Calibration Input Calibration Result Calibration Input Calibration Result	±	834 Optional Gas Plant Data						otras c	pcione	es en ca	da noja	1		
€ ◆ ▶ / Design Calibration Input / Calibration Result / Predict Input / Predict Result / Generative / Opt Result / Comparison / Summary / Charts	839													
A Predict Result A Design A Comparison A Summary A Charts A	4 4	840 Cataluet	Calibration	Boout / Drod	lict Toput	Dradict I	Pagut /	~	(Opt De		manarican	/ Cumm-	ny / Charte	
		• • \ Design \ Calibration input \	Jailoration	Result / Pred	ilee mput 7	Predict I	Kesuic /·	ope input	7 Opt Re		mparison		iry <u>A</u> Charts	1

Y después los demás datos solicitados son cargados a una hoja de Excel en el mismo archivo:

Los resultados del modelo de simulación dependen de la calidad de los datos de operación que se proporcionen, a continuación se enlista la información que se tiene que proporciona a la hoja de simulación de Excel que está basada en macros que son ejecutados con vínculos de programación de Fortran-KBC.

- a. Balance de materia de carga y productos
- b. Flujo, Temperaturas, presiones y niveles
 - Aire del soplador
 - Regenerador
 - Riser
 - Reactor
 - Fraccionador Principal
 - Compresor de gas seco

Esto incluye flujos de vapor y corrientes de carga, producto y reciclo; temperatura del vapor, regenerador, reactor, gas húmedo, temperatura ambiente y humedad del aire.

- c. Propiedades de la carga fresca, nafta y aceite cíclico ligero listado sobre las Tablas 3.5, 3.6 y 3.7, respectivamente. De la nafta y HCO proporcionar además el peso específico, destilación y contenido de azufre.
- d. En el regenerador el flujo de aire y el análisis del gas incluyendo el O2 enriquecido.
- e. Datos del catalizador que se enlistan en la Tabla 4. A menudo información del proveedor como el ECAT y del catalizador de equilibrio.

Datos para estimación de costos y ganancias

a. Económicos:

Se puede evaluar de forma económica los costos de producción para este caso se necesita de la siguiente información:

Precios de productos:

- Gas (H₂, C₂ producto)
- Etileno si se hace una recuperación por separado
- Propano
- Propileno
- IC4
- NC4
- Butilenos (agrupamiento o por isómeros separados)
- Nafta (por cada corte de gasolina presente)
- LCO
- HCO
- Productos del fondo
- Valor del calor de enfriamiento del regenerador
- Valor de la recuperación de calor en el flujo de gas

Costos:

- Carga fresca
- Carga fresca con precalentador de reciclo
- Catalizador
- Vapor al riser y al agotador

	Propiedades	Unidad	Carga
	Flujo	bdp	37800
	Peso específico		0.912
Destilación	1% vol	°C	263
	5% vol	°C	325
	10% vol	°C	364
	30% vol	°C	416
	50% vol	°C	447
	70% vol	°C	469
	90 % vol	°C	505
	95 % vol	°C	521
	99 % vol	°C	551
	Contenido de azufre	% Wt	2.03
	Nitrógeno básico	% Wt	0.0407
	Carbón conradson	% Wt	0.22
	Metales		
	Níquel(Ni)	ppmw	0.1
	Vanadio(V)	ppmw	0.7

Tabla 3.5. Propiedades de la carga fresca

Tabla 3.6. Propiedades de la corriente de naftas

	Propiedades	Unidad	Carga
	Flujo	bdp	21000
	Peso especifico		0.8
Destilación	1% vol	°C	35
D86	5% vol	°C	
	10% vol	°C	
	30% vol	°C	
	50% vol	°C	106
	70% vol	°C	
	90 % vol	°C	193
	95 % vol	°C	
	99 % vol	°C	
	RON		92.7
	MON		79.6
	Contenido azufre	%Wt	0.22
	PONA(SI ES DISPONIBLE)		

Tabla 3.7	. Propiedades	de la	corriente	pesadas
				poodadao

		Propiedades	Unidad	LCO	SLURRY
		Flujo		5600	
		API		22.1	4.3
Destilac	ión			D86	D1160
		1% vol	°C	204	278
		5% vol	°C	221	350
		10% vol	°C	242	373
		30% vol	°C		405
		50% vol	°C	269	418
		70% vol	°C		458
		90 % vol	°C	325	498
		95 % vol	°C	341	
		99 % vol	°C	360	
		Contenido de azufre		0.81	1.053
		Nitrógeno básico		0.07	6.8
		Carbón conradson			
		Número de bromuro			
		viscosidad			
		temp. Viscosidad		30	
		Punto de anilina		81.6	

Tabla 3.8. Propiedades del catalizador FCC

Propiedades	Unidad	Equilibrio	ECAT
Taza promedio de adición	t/d	2.1	
Actividad MAT	% wt	64	80
Superficie del área	m2/g	155	170
Capacidad de calor (cp)	cal/g/°C		0.265
Carbón sobre el catalizador en el regenerador	%wt		0.06
Metales			
Níquel(Ni)	ppmw	314	
Vanadio(V)	ppmw	1888	
Hierro(Fe)	ppmw		
Cobre(Cu)	ppmw		
Sodio(Na)	ppmw		
Caracterización			
Reo	%wt	2	

Continuación			
AI2O3	%wt	27	
Zeolita	%wt	20	
Inventario de catalizador			
Total en la unidad	ton	200	
Regenerador	ton	180	
Compresor de gas seco			
Presión de succión	kg/cm2	1	
Presión de descarga	kg/cm2	3.33	
Temperatura del tambor	°C	66	
Flujo de gas inerte seco	Ton/hr	1.4	

Tabla 3.9. Información del regenerador

Propiedades	Unidad	Regenerador
Diámetro de la fase diluida	m	10.27
Diámetro de la fase densa	m	10.27
Area interna del ciclón	m2	3.03
Volumen de la fase diluida	m3	248.3
Volumen del Plenum	m3	82.76
Pérdida de calor del Plenum	mmbtu/h	0.6765
Pérdida de calor en la fase diluida	mmbtu/h	8.1188
Pérdida de calor en la fase densa	mmbtu/h	2.706
Presión		2.49
Descarga del soplador	KG/CM2	3.33
Temperatura del aire	°C	25
Humedad relativa	%	90
Flujo de aire al regenerador	NM3/H	132.4
Temperatura descarga soplador	°C	217
Temperatura de la cama	°C	704
Temperatura de fase diluida	°C	710
Temperatura del flujo de gas	°C	716
CO2 en el gas	%vol seco	16
CO en el gas	%vol seco	0.25
O2 en el gas	%vol seco	0.91
Sox en el gas	ppmw	0.22

Tabla 3.10. Información del riser

Propiedades	Unidad	Riser
Diámetro	m	0.3
longitud	m	30
Pérdida de calor	mmbtu/h	0.6765
Temperatura a la salida	°C	526
flujo Inyección de vapor	kg/h	5350
Presión de vapor	kg/cm2	17
Temperatura de vapor	°C	260
Promedio de condensado		
DATOS REACTOR/AGOTADOR		
Diámetro de la fase diluida	m	7.547
Diámetro de la fase densa	m	7.547
Área interna del ciclón	m2	1.54
Volumen de la fase diluida	m3	134.2
Volumen del agotador	m3	26.84
Pérdida de calor en la fase diluida del reactor	mmbtu/h	0.6765
Pérdida de calor en el agotador	mmbtu/h	0.6765
Presión	kg/cm2	1.73
Temperatura a la salida	°C	260
flujo Inyección de vapor	kg/hr	2350
Presión de vapor	kg/cm2	17

El programa comienza con un balance de materia de la carga y los productos, una vez ejecutado el programa de FCC-SIM se generan los parámetros de calibración y estos consisten en los siguientes resultados:

Balance de materia:

Datos a proporcionar:

• Carga fresca (BPD de alimentación a la unidad), gravedad específica y azufre Productos:

- La producción de Propano-Propileno y su composición
- La producción de butano-butileno y su composición
- La producción de gasolina, la gravedad específica y la cantidad de azufre en %wt
- La producción de ACL, la gravedad específica y la cantidad de azufre %Wt

- La producción de Slurry o aceite decantado, la gravedad especifica y el azufre %Wt
- La producción de gas seco y la composición de la misma

También incluye en el balance de materia datos del regenerador: temperatura ambiente del aire, humedad relativa, flujo de aire al regenerador y la composición de gases de combustión (O_2, CO, CO_2, SO_x) .

Resultados del Balance de Materia:

Se puede considerar desviaciones en el flujo de salida de productos. Esto es debido a fallas en la instrumentación o desgastes de las placas de orificios que se encuentras ubicados a la salida de productos en los límites de baterías. El programa realiza el ajuste necesario para cerrar el balance al 100% para después obtener la composición de la carga de gasóleo de la siguiente forma:

Composición % peso				
Hidrogeno	0.02			
Metano	0.98			
Etano	0.89			
Etileno	0.61			
Propano	2.27			
Propileno	6.30			
N-butano	0.57			
Isobutano	4.13			
Butanos Segregados	7.17			
1-butano	1.76			
C2- Butano	1.38			
T-2-butano	1.94			
Isobutano	1.97			
Isobutadieno 1,3	0.13			
Nafta total	45.16			
LCO ligero	15.53			
LCO pesado	0			
Aceite	9.13			
clarificado(slurry)				

Tabla 3.11. Composición del gas seco

Estos resultados se transfieren a otra hoja de cálculo que se conoce como Calibración, en esta hoja también se solicita información que es necesaria para generar la calibración a ser utilizada para la evaluación del convertidor. Cabe considerar que los datos proporcionados para la calibración son de un día completo de operación y se requiere que la información sea concerniente a un día de operación para que la información que calcule sea la más precisa. Los datos que se proporcionan ya fueron mencionados en la tabla anterior y los resultados que se obtienes después de ejecutar la hoja de cálculos son los siguientes:

Resultados:

- Proporciona los datos de entalpia de craqueo para el riser y el regenerador
- Calcula la gravedad , la destilación TBP, D86 de la carga
- Convierte la destilación ASTM D-1160 atmosférica, en destilación TBP
- Propiedades físicas como el factor K, contenido de H, fracción de aromáticos Di,Tri, total de carbón en la fracción de naftenos, total de carbón en la fracción de parafinas ,fracción de olefinas.

Riser:

- Calcula la temperatura de la mezcla a la entrada del reactor
- Relación cat/oil
- Circulación promedio del catalizador
- Tiempo de residencia del catalizador
- Presión parcial de hidrocarburos
- Velocidad del flujo del catalizador

Calor del craqueo:

Riser, Reactor, carga

Regenerador:

- Flujo de gas promedio
- Recalcula el contenido de O2 en el aire
- Circulación promedio del catalizador
- Velocidad de la superficie diluida
- Hidrogeno sobre el coque
- Calor de combustión
- Velocidad en los ciclones
- Oxígeno en la cama
- Delta Coke

Catalizador en equilibrio:

• Níquel, vanadio equivalente

Fig. 3.4. Diagrama esquemático del la ejecución de FCC-SIM.

Catalizador fresco:

- Contenido de zeolitas, tierras raras, alúmina y contenido de tierras raras en la zeolita Perfiles:
- Coque (carga, total, catalizador, agotador),Hidrógeno sobre el coke(total, catalizador, carga, agotador), Azufre producto(SOX,H2S,nafta,acl,acp),distribución del H2 en la (carga, producto, coke, aceites cíclico, naftas)
- Conversión (%vol,%peso)
- Propiedades de la nafta factor K, contenido de H, peso molecular, %vol en cada corte de la destilación, fracción de aromáticos, naftenos, parafinas, olefinas)
- Propiedades del ACL(anilina, índice de cetano, índice del diesel, viscosidad, factor K, contenido de H2, fracción de aromáticos, naftenos, parafinas,% vol por cada corte de temperatura)
- Cálculos del porcentaje de Naftenos, Parafinas y aromáticos de la carga y los rendimientos de los productos en % vol y % peso.
- Calcula el porcentaje de Naftenos, Aromáticos y Parafinas en el ACL, Slurry, Gasolina y la composición del Gas seco.

Los resultados obtenidos en esta hoja son utilizados para realizar los cálculos de la conversión del gasóleo en gasolinas, propano-propileno, Butano-butileno, Gas seco, ACL y Slurry o aceite decantado, utilizando el siguiente esquema de cinética de reacción

3.4. DESCRIPCIÓN DEL REACTOR:

De tal forma que el modelo de agrupamiento por especies (no. de carbono) quedaría de esta forma:

Fig. 3.4. 1 Esquema de agrupamientos por número de carbono.

Se considera que una carga a catalíticas puede tener un rango de carbonos C12 hasta C86 presentes.

Craqueo Catalítico:

Para cada agrupamiento por tipo de carbono se utiliza ecuaciones cinéticas de 1er. Orden como se muestra en la siguiente ecuación:

Para el cálculo de la rapidez de formación de N-número de carbono:

Posteriormente se establece el balance de materia:

Consideraciones:

- La velocidad del gas es la misma a los largo del tubo
- El riser se considera como un reactor tubular de flujo pistón

- El Riser se divide en 10 elementos diferenciales
- Las reacciones basadas en $C_1 C_{80}$ pseudocomponentes y sus propiedades

Evaluación de una sección para establecer el balance de materia:

Fig. 3.4.3 Corte transversal del riser.

La ecuación del balance de materia está representada de la siguiente forma:

$$\frac{\partial C_i}{\partial z} = \frac{A_t (1 - \epsilon) * \rho_{cat} * r_i * t_c}{Fg}$$
(3.3)

(1-E) = el espacio vacío que no ocupa el catalizador

pc= Densidad del catalizador

tc= Tiempo de residencia que es la relación de (volumen de catalizador/Flujo del catalizador)

At= Área tranversal del tubo

Fg= flujo del gasóleo

Ri= Es la rapidez de desintegración de un reactivo a producto.

La ecuación de balance de energía para determinar la temperatura a la que se encuentra el inicio de las reacciones de desintegración está dada por:

 $FcatCpcat(T_o - Tcat) + Fgo * Cp_{go}^{lid} (Tvap - Tgo) + FgoCp_{go}^{Vap} (T_o - Tvap) + Fgo\Delta H + Fa$ (3.4) Cpds(T - Tds) = 0

Con esta ecuación se calcula la To(temperatura inicial).

En donde:

Variables independientes:

	Fgo=	Flujo másico de gasóleo de carga
	Tgo=	Temperatura del gasóleo de carga
	Fcat =	Flujo másico de catalizador
	Tcat=	Temperatura de catalizador
	Tds=	Temperatura del vapor de dispersión
Prop	iedades:	
	Cpcat=	Capacidad calorífica del catalizador
	Tvap=	Temperatura de vaporización del gasóleo

Cp⁹go= Capacidad calorífica del gasóleo en la fase gas

Cp ^I go=	Capacidad calorífica del gasóleo en la fase líquida
∆Hvap=	Entalpia de vaporización del gasóleo de carga
Cpds=	Capacidad calorífica del vapor de dispersión
Fds =	Flujo másico de vapor de dispersión

Y el balance de calor para cualquier punto del riser será dado por:

$$(FgoCpgo + FcatCpcat)\frac{dt}{dz} = \sum_{i}^{n} r_{i}(\Delta h)_{i} (1-\epsilon)\rho_{cat}A_{t}$$
Calor sensible perdido
Rapidez de absorción de calor
(3.5)

Donde:

Fg	=	Flujo másico de la mezcla de	e gasoleo y vapor de dispersión	(kg/s)
Fcat	=	Flujo másico de catalizador	(kg/s)	
A _T	=	Área transversal del raiser	(m ²)	
δ_{cat}	=	Densidad del catalizador	(kg cat/m ³)	
3	=	Fracción del raiser que no es	stá ocupado por catalizador	
r i	=	Rapidez de reacción del con	nponente i	
$\Delta H_{\rm i}$	=	Entalpías de formación de ca	ada reacción	

Tabla 3.3.1 Relación del balance de energía

Requerimientos Calor del reactor =	Producción de calor del Regenerador =	Calor transferido por el catalizador
(+) Calor de reacción	(+)Calor de combustión de coque	
 (+)Calentamiento de carga (+) Calentamiento de reciclo (+) calentamiento de vapor de agotamiento (+) cuenta por pérdidas 	 (-)Calentamiento de Aire (-) Calentamiento de coque (-) Cuenta por pérdidas 	(COR)*(Cpcat)*(Tregen- Trx)

Fig.3.4.4 BALANCE GENERAL DE ENERGÍA SIMPLIFICADO

Fig. 3.4.5 Balance general de energía del reactor y regenerador que envuelve la velocidad de circulación del catalizador

3.5 IMPORTANCIA DEL BALANCE TÉRMICO DE LA PLANTA FCC2

Casi todas las variables del proceso asociadas con el funcionamiento de la unidad FCC, tienen efecto sobre el equilibrio de calor.

Parámetros importantes para la evaluación del proceso, como son:

- Coque
- Composición del coque
- Delta coque
- Circulación del catalizador
- Relación catalizador/ aceite

DATOS A CONSIDERAR PARA EL BALANCE TERMODINÁMICO

- Flujo de aire total
- Vapor de dispersión en la carga y de agotamiento al separador
- Temperatura fase diluida
- Temperatura gases de combustión
- Temperatura de reacción
- Temperatura de aire de combustión
- Carga total al raiser
- Orsat en los gases de combustión
- Temperatura de descarga del Soplador
- Temperatura de recirculación de slurry
- Peso Específico Carga Fresca
- Peso específico recirculación de slurry
- Calores de Formación (Btu/lb)
- Capacidades caloríficas (Cp) del coque y del catalizador
- Capacidades caloríficas del aire,O2,CO,CO2,SO2,H2O,N2,VAPOR

En el apéndice A se realiza los cálculos para el balance térmico de la planta FCC2 que es parte de los cálculos que realiza FCC-SIM para la obtención de los valores de COR y circulación promedia de catalizador .

3.6. FACTORES DE CALIBRACIÓN:

Los resultados generados de la hoja de FCC-SIM contempla la evaluación general de un día de operación de la planta catalítica, además de incluir una seria de factores que se conocen como parámetros de calibración, estos son generados cuando se comparan los datos que tiene

almacenado el programa que son valores obtenidos de una simulación en planta piloto y son comparados con los datos generador por la corrida en donde se obtiene un nuevo valor de calibración para cálculos de los demás parámetros.

Ejemplo:

Factor de calibración H2 in coke Burn Rate (XKUP 98) :

El modelo contempla un valor de la cantidad H2 en coque por lo que cuando se genera los resultados de la simulación del primer cálculo se tiene esta expresión:

H2 in coke Burn Rate = H2 en coque teórico * Promedio de H2 en coque resultado de la simulación.

Estos cálculos provienen del balance de O2 en el regenerador, el promedio de H2 en el coque debe de ser de 5 a 7% Wt, las desviaciones posibles puede ser a los resultados de laboratorio en referencia a los gases de combustión.

Grafica 3.6.1 Promedio de valores del Hidrogeno sobre el Coque.

Estos valore pueden ir cambiando a diferentes corridas o días de operación por lo que es recomendable realizar varias corridas y organizarlas para ver su comportamiento como se observa en la gráfica:

Grafica 3.6.2 Tendencia de los valores de H2 sobre coque a diferentes días.

Entonces se realiza un promedio de esos casos para ser el nuevo factor de calibración que será utilizado en la simulación de Petro-Sim.

Fig. 3.6.1 Resultado de calibración en hoja de Excel FCC-SIM.

1 Calibration Results						
2	•			•		
3 Case Number		34	35	36	37	38
4 Select Calibration Factors For Average	0					
5 Case Title		Case 34	Case 35	Case 36	Case 37	Case 38
12						
13 Total Net Profit	\$/day	0	0	0	0	0
14 Unit Net Profit	\$/kL	0.00	0.00	0.00	0.00	0.00
3193 C30 Yield (XKUP 19)			0.402	0.403	0.402	
3194 Total C2 Yield (XKUP 20)			0.992	0.990	0.993	
3195 C20 Yield (XKUP 21)			0.818	0.830	0.828	
3196 H2 on Coke (XKUP 23)			2.587	2.599	2.587	
3197 1-Butene Yield (XKUP 190)			1.135	1.135	1.135	
3198 C-2-Butene Yield (XKUP 191)			1.029	1.029	1.029	
3199 T-2-Butene Yield (XKUP 192)			0.918	0.918	0.918	
3200 Isobutylene Yield (XKUP 193)			0.956	0.956	0.956	
3201 Base Res. Time for 1, 3- Butadiene (XKUP 194)			1.084	1.082	1.084	
3202 Concentration Intercept for 1, 3-Butadiene (XKUF			4.236	4.234	4.229	
3203 C1-C5 Yield (XKUP 197)			0.802	0.812	0.794	
3204 Amylene Yield (XKUP 198)			1.005	1.005	1.005	
3205 IC5 Yield (XKUP 199)			1.064	1.065	1.064	
3206 Isoamylene Yield (XKUP 200)			0.942	0.942	0.942	
3207 Naphtha Aromatics for Benzene (XKUP 201)			-0.953	-0.952	-0.952	
3208 Benzene in Naphtha (XKUP 202)			1.257	1.247	1.247	
3209 Slurry C3-C4 (XKUP2 9)			1.000	1.000	1.000	
3210 Regen 1 Coke Burn Rate (XKUP 1)			3.713	3.713	3.713	
3211 Regen 1 CO/CO2 Rate (XKUP 2)			2.711	2.711	2.711	
3212 Regen 1 Dil Phase Temp. (XKUP 3)			10.081	10.081	10.081	
3213 Regen 1 Afterburn Rate (XKUP 6)			1.447	1.447	1.447	
3214 Max. Exit Bed 02 Vol.% (XKUP 78)			20.000	20.000	20.000	
3215 Regen 2 Coke Burn Rate (XKUP 93)			0.000	0.000	0.000	
3216 Regen 2 Bed CO/CO2 Rate (XKUP 94)			0.000	0.000	0.000	
3217 Regen 2 Dil Phase Temp. (XKUP 95)	~		0.000	0.000	0.000	
3218 Regen 2 Afterburn Rate (XKUP 97)			0.000	0.000	0.000	
3219 H2 in Coke Burn Rate (XKUP 98))		1.087	1.087	1.087	
3220 Sulfur in Coke Burn Rate (XKUP 99)	/		1.163	1.163	1.163	
3221 Bed Temp Closure Tolerance (XKUP 161)			1.000	1.000	1.000	
3222 Hydrothermal Deactivation (XKUD 179)			5.045	5.045	5.045	
3223 I CN Base 50% Point (XKLIP 118)	I		0 000	0 000	0 000	

Generados estos factores de calibración en la hoja de Excel de FCC-SIM son transportados a simulador Petro-SIM.

Para efectos de la evaluación del comportamiento del convertidor se tiene dos opciones:

Utilizar la hoja de Excel (Predic Input) en donde ya con los factores calibrados se puede mover una variable independiente y se ejecuta el programa ver el comportamiento del riser y además conocer los costos y ganancias de la operación de la planta en un día, cargándole los precios actuales de los productos.

Otra opción si se requiere evaluar la operación de la planta completa se puede realizar estos movimientos en el Simulador Petro-Sim.

3.7 DESARROLLO DEL MODELO EN PETRO-SIM:

Para esto se consideró en promedio un mes de pruebas con los días más completos en cuanto a datos que requiere este simulador y los días más estables de la planta para su evaluación.

La información generada en FCC_SIM se exporto hacia el simulador Petro-Sim para tener el convertidor en ambienta tal que representa la simulación completa incluyendo las separaciones físicas de los productos.

A continuación se muestra la imagen del esquema del convertidor en el ambiente Petro-Sim:

Debido a la configuración de la operación de la Planta se considero en el diseño la recirculación de slurry o decantado:

ScFCC2				
Design	Flue Gas Stream(s)	>	Products Stream	FCC-SIM V2004-2
Connections Subsidiary Geometry Heat Loss User Variables Notes	FCC2fluegas # Regens 1 Regen Air Stream(s) FCC2air	FCC2rxeff	# Risers 1 Recycle(s) Retroms	▼ Injection Point Biser1 Inlet
	Feed(s)	<pre>centrade file closed</pre>		Riser1 Inlet
	Feeds Injection Point FCC2_Fd Riser1 Inlet			
	<empty> Riser1 Inlet</empty>	Fluid Package Basis-1		-
		Name scFCC2		
Design Operating Da	ata Catalyst Calibration Factors Misc Data	Worksheet Results Calibration		
Delete	OK.		Run Stop) 📄 Ignored

Fig. 3.7.1 Esquema para carga los datos de diseño en Petro-Sim.

ScFCC2			
Operating Data	Riser Data		
Riser Data Regen Data Steam Data Flue Gas Data Conditions Reactor Data Pressures Feed Data	Outlet T [C] Injection Steam Rate [lb/hr] Steam T [C] Injection Steam Rate [lb/hr] Steam P [kg/cm2] Injection Steam Rate [lb/hr] Condensate Rate [barrel/day] Injection Steam Rate [lb/hr] Condensate T [C] Injection Steam Rate [lb/hr] Lift Steam Rate [lb/hr] Injection Steam Rate [lb/hr] Naphtha Recycle Stream Settings Injection Steam Rate Rate Rate Rate Rate Rate Rate Rate	1 530.0 1.146e+004 260.0 18.53 <empty> <empty> <empty> <empty></empty></empty></empty></empty>	
Design Operating Da	ta Catalyst Calibration Factors N	fisc Data Worksheet Results Calibration	
Delete	OK	Run Stop	Ignored

Fig. 3.7.2 Variables que pueden ser cambiados dentro del simulador Petro-Sim.

A 45002		
Con school		
Results		1
Beactor Yields	Air Flow Mass (Dry Basis) [lb/hr]	3.789e+005
Standard Cuts	Air Flow Gas Vol (Dry Basis) [MMSCFD]	120.8
Piper	02 Rate [MMSCFD]	5.553e-006
Begenerator	Air 02 Cont (wet basis) [vol %]	20.41
Catalust	Bed O2 (wet basis) [vol %]	2.748
Catalyst	Dense Bed Temperature [C]	675.2
Loke	Pressure [kg/cm2]	3.568
- Reactor/Stripper	Dilute Phase Temperature [C]	682.1
Pressures	Flue Gas Temperature [C]	689.0
Misc Results	Flue Gas CO:CO2 Ratio [vol/vol]	1.727e-004
Diagnostics	Flue Gas CO [vol %]	0.2407
	Flue Gas CO2 [vol %]	13.94
	Flue Gas 02 [vol %]	2.580
	Flue Gas SOx [vol %]	2.372e-002
	Catalyst Circulation Rate [lb/hr]	4.540e+006
	Dilute Phase Cat Circulation Rate [lb/hr]	1.362e+006
	Carbon on Regenerated Catalyst [wt %]	6.000e-002
	Dilute Phase Superficial Velocity [ft/s]	1.589
	Bed Cooling [Btu/hr]	0.0000
	Cyclone Inlet Velocity [ft/s]	43.39
	Dilute Phase Cooling [Btu/hr]	0.0000
	Air Blower Discharge T [C]	217.0
	Heat Of Combustion [Btu/lb]	1.790e+004
	Hydrogen on Coke [wt %]	11.36
]	
Design Operating Da	ata Catalyst Calibration Factors Misc Data 🕚	Worksheet Results Calibration
Delete	OK	Run Stop Ignored
•••		

Fig. 3.7.3 Resultados del Convertidor.

ScFCC2					
Worksheet	Name	FCC2_Fd	DECANTADO RECY	FCC2regenstm	FCC2injstm
Conditions	Vapour	0.0000	0.0000	<empty></empty>	1.0000
Discontinuons	Temperature [C]	220.0	357.4	<empty></empty>	260.0
Comparition	Pressure [kg/cm2]	1.823	2.563	<empty></empty>	4.092
Composition	Molar Flow [m3/h_(gas)]	1.502e+004	29.65	0.0000	6825
	Mass Flow [lb/hr]	5.106e+005	803.2	0.0000	1.146e+004
	Std Ideal Liq Vol Flow [barrel/day]	3.800e+004	53.08	0.0000	786.6
	Molar Enthalpy [Btu/lbmole]	-2.644e+005	-1.849e+005	<empty></empty>	-1.004e+005
	Molar Entropy [Btu/Ibmole-F]	258.7	58.43	<empty></empty>	31.93
	Heat Flow [Btu/hr]	-3.702e+008	-5.112e+005	0.0000	-6.392e+007
Design Operating Data Catalyst Calibration Factors Misc Data Worksheet Results Calibration					
		OK		Run 🦳	Stop Ignored

Fig. 3.7.4 Tabla de Condiciones, Propiedades y composición entrada y salida del Convertidor.

3.7.1 Diagrama de la Torre Principal F3-T1:

El fraccionador principal es un componente importante de la unidad FCC. Está íntimamente ligado al reactor /regenerador, ya que recibe los productos craqueados directamente del reactor. Los fraccionadores principales son actualmente unidades de condensación controlados, dado que los productos deseados son condensados del vapor de carga, por la manipulación de la remoción del calor de la torre y el reflujo. Un fraccionador principal es similar a una torre de destilación atmosférica de crudo, una que fracciona la carga craqueada en productos similares. Sin embargo la similaridad termina allí, debido a que un fraccionador principal no requiere de una zona de vaporización, puesto que la carga ya esta vaporizada y si requiere de un medio para separar el catalizador de la carga.

Los productos principales del fraccionador son C3/C4's, gasolina, aceite cíclico ligero LCO (430-650) °F, nafta pesada que se utiliza como absorverdor, y aceite cíclico pesado HCO (650-850°F) que se utiliza como corte lateral para calentamiento de la fraccionadora principal y no tienes salida comercial.

3.7.2 Remoción de calor.

Para remover el calor del fraccionador y para condensar y fraccionar los productos deseados, el calor es removido de las corrientes circulantes. Tales como de las corrientes recirculante de Slurry y HCO, por el intercambio de calor con carga fresca y con generadores de vapor. El slurry y HCO enfriados son devueltos a la columna principal para proporcionar enfriamiento y reflujo.

El enfriamiento también es proporcionado por una corriente circulante de nafta pesada. Esto es efectuado por el envío de una corriente de nafta pesada, tomada aguas abajo del agotador de vapor del absorbedor secundario. Aquí la nafta absorbe hidrocarburos livianos y vuelve a la columna principal como aceite rico. Esta corriente sirve para reflujar la columna y recuperar los hidrocarburos livianos. Los hidrocarburos livianos pasan de la cabecera de la columna, a la planta de gas para compresión y recuperación.

A continuación de muestra el diagrama de la torre principal elaborado en el simulador Petro-Sim.

Fig. 3.7.5 Diagrama de la Torres Principal en Petro-Sim.

3.7.3 Enfriamiento de fondos.

El aceite reciclado es dirigido a la sección de fondos para condensar los productos, proporcionando una depuración, de tal manera de remover los finos del catalizador de los productos craqueados ascendentes y para enfriar el líquido en el fondo a fin de prevenir la coquificación.

La sección de fondo de la torre contiene deflectores, derramadores o empaque para proporcionar buen contacto de los vapores craqueados y el reflujo. Allí los fondos los fondos de fraccionador principal, enfriados por el pasaje a través de los intercambiadores paralelos de carga fresca y los generadores de vapor, son devueltos por encima de los deflectores. El calor removido condensa el producto del fondo. Los fondos de reciclo de la columna también remueven los finos del catalizador provenientes de los productos craqueados ascendentes y de la sección de fondo de la torre. Los finos abandonan la torre con los productos del fondo.

Una porción de los fondos enfriados, es devuelta directamente al fondo de la torre para ser utilizada como enfriamiento. El enfriamiento proporciona la temperatura requerida para prevenir la coquización en el fondo de la torre. La mayoría de las modernas unidades de FCC no están equipadas con separadores de asentamiento de slurry debido a que el excedente de catalizador al fraccionador principal es pequeño, por lo tanto, no es necesario el reciclo de aceite al riser para recuperarlo.

El vapor es inyectado en el fondo de la columna por un distribuidor, para despojar los hidrocarburos livianos del producto del fondo. Esto también sirve para prevenir que se deposite catalizador y coque en la torre. La temperatura en los fraccionadores se mantiene por debajo de 700 °F para prevenir la coquización y este se puede monitorear con el filtro de succión de la bomba si hay presencia de particular de coque la temperatura del fondo deberá reducirse.

3.7.4 Reflujo de la columna.

El reflujo tope se usa para controlar el punto final de la corriente de gasolina que sale del fraccionador, como vapor, con materiales más livianos y no condensables. La temperatura del domo de la torre es controlado ajustando el flujo de condensado del acumulador de cabecera, que vuelve a la columna como reflujo. La temperatura del domo de la torre debería de operarse a temperatura suficientemente alta para evitar los depósitos de cloruros en la columna principal. Los hidrocarburos más pesados que la gasolina son condensados por el reflujo y pasan a zonas inferiores de la columna de fraccionamiento. El producto de la cabecera del fraccionador principal, pasa a través de los condensadores, antes de entrar al acumulador, el agua de enfriamiento puede ser ajustado para mantener la temperatura deseada en el acumulador, estos operan normalmente en 105 °F. El LCO y el HCO, son removidos como productos destilados medios, de la columna.

En la siguiente gráfica se muestra las variables que se pueden modificar para perfilar la torre y realizar los ajustes necesarios para obtener los cortes de hidrocarburos de acuerdo a las necesidades de la refinería, por ejemplo el corte de la destilación al 90% de la gasolina de 180 °C ,el simulador realiza los ajustes necesarios para obtener los productos de los diferentes corte que son generadores cuando el producto craqueado entra a la torre en forma de vapor, también se cuenta con varias recirculaciones que ingresa a la torre por lo que el fraccionador debe tener los parámetros bien definidos para soportar cualquier ajuste riguroso que se le presente.

El diseño original de esta fraccionadora principal contemplaba en su interior 21 platos, sin embargo modificaciones se presentaron en el año pasado en el interior para aumentar el recontacto entre productos se cambiaron estos platos por mallas con un contacto de superficie más pequeña, así también para la disminución de los costos que se realizan en una reparación

o revisión general de la fraccionadora principal, estas variaciones también fueron contempladas en el simulador.

Especificación de condiciones Temperatura Domo y fondo de la Torre Principal:

Name Stage	Cond temp Condenser @C0L1	Name Stage	Conditemp Condenser @C0L1
Spec Value	43.00 C	Spec Value	110.0 F
Parameters St	ummary _ Spec Type	– Parameters	Summary Spec Type

Especificación de Propiedades de corrientes Gasolina, ACI, slurry:

Name Di	86 Naphtha 90%	Name	D86 Naphtha
Stream gas	oline @COL1	Stream	gasoline @COL
Stream Properties Distillation	n D86 Vol_90	Stream Properties	Distillation D86 Vol_9
Spec Value	175.0	Rec Value	3
Target Type 🔶 Stream	← Stage	Target Type 🔎	Stream C Stage
Parameters		Parameters	
Volume Concentration	90.00	Volume Concentration	90.00
Method	API 1974	Method	API 1974
Parameters Summary	Spec Type	Parameters Sun	nmary Spec Type

Column: FRACCC. PRINCIP/ Design Connections Monitor Specs Specs Summary Subcooling	AL / COL1 Fluid F I Checks It Summary C Step Equilit	Pkg: Basis-1 / Peng Robin: View Initial Estimates prium Heat / Spec	son - LK Profile Temp 25000 Press 2000 Flows 1500 0,00000 0,00000 0,0000 0,000000 0,0000 0,0000000 0,000000	Temperature vs. Tray Nu	amber		
Notes	ations	Specified Value	Current Value	Wt Error	Active	Estimate	
Bafluy	Batio	1 OOC	4 689e-002	.0.9531			
Distillat	e Bate	1 800e+004 barrel/day	1 689e+004	-6 166e-002		7	
Beflux	Bate	<pre>////////////////////////////////////</pre>	2358	<emptu></emptu>		<u>, 1</u>	
Vap Pri	od Rate	<empty></empty>	2.997e+004	<empty></empty>	Ē		
Btms P	rod Rate	<empty></empty>	2965	<empty></empty>	Ē	<u> </u>	
Tempe	rature	38.00 0	38.00	-1.564e-006	<u> </u>	<u> </u>	
GALOS	SINA D-90	180.0 0	180.0	-8.420e-006	2	V	
ACL Pr	od Flow	6000 barrel/day	9189	0.5315		V	
ACL S1	TRIPER T90	323.0 0	323.0	-9.429e-007	2	N	
ACP P/	A_Rate(Pa)	5.183e+004 barrel/day	5.183e+004	-2.305e-005		V	
ACP P/	A_TRet(Pa)	232.0 0	232.0	-2.456e-006	2	N	V
slurry P	A_1_Rate(Pa)	5.069e+004 barrel/day	5.069e+004	3.323e-007		V	V
slurry P	A_1_TRet(Pa)	232.0 0	232.0	9.070e-008		V	
ACEITE	E ESPONJA D-90	222.0 0	213.4	-1.727e-003		V	
Tempe	rature - 2	134.6 0	140.0	1.085e-002		V	
aceite	esponja Rate	1.055e+005 barrel/day	1.055e+005	8.839e-006		•	V
decant	ado	485.0 0	472.8	-2.518e-002		V	
	iew Ad	ld Spec Group Act	ive Update Inac	tive Degrees of	Freedom 0		
Design Parameters Side	e Ops Rating 1	Worksheet Performance	Flowsheet Reaction	ns Distop			
Delete Column Environm	nent	Run Reset	Со	nverged		Update Outle	ts 🔲 Ignored

 Tabla 3.7.2 Especificaciones de valores para Perfilar la Torre Principal.

Capítulo 3

_

Tabla 3.7.1 Resultados de validación del simulador

		<u>20-f</u>	eb-10	<u>19-f</u>	eb-10	<u>26-f</u>	eb-10	<u>05-f</u>	<u>eb-10</u>
		DATOS DE	SIMULADOR	DATOS DE	SIMULADOR	DATOS DE	SIMULADOR	DATOS DE	SIMULADOR
		PLANTA	PETROSIM	PLANTA	PETROSIM	PLANTA	PETROSIM	PLANTA	PETROSIM
GASOLEOS DE VACIO	bpd	29000.0	29000	28929.0	28929.0	35390	35390.0	31080	31080
GAS SECO	bpd	3359.2	4640.8	4195.4	4684.4	4850	4720.6	2932.8	4775.3
PROPANO PROPILENO	bpd	3108.0	2904.2	3100	2919.4	4483	3979.3	3235	3289.0
BUTANO BUTILENO	bpd	4846.0	4846.9	5449	4887.7	6124	5929.5	5653	5333.8
GASOLINA	bpd	18212.0	18267.7	18225	18226.4	19111	21235.7	19277	19585.8
ACEITE CICLICO LIGERO	bpd	2739.0	2790.5	2204	2773.9	3442	3582.7	2800	3016.8
RESIDUO	bpd	1014.0	1817.7	1008.0	1750.5	2611	2742.5	1479	1887.9
SUMA DE PRODUCTOS	bpd	33278.2	35267.8	34181.4	35242.2	40621.0	42190.4	35376.8	37888.6
TEMPERATRUA DE REACCION	°C	535.7	535.7	535.5	535.5	534.3	534.3	535.3	535.3
OCTANO RONC (F1)		93.8	92.7	94.4	93.7	93.4	93.2	94.1	93.6
ONTANO MONC (F2)		82	82	82.0	81.5	81.3	81.3	81.2	81.5
		RENDI	MIENTOS	RENDI	MIENTOS	RENDIMIENTOS		RENDIMIENTOS	
GAS SECO	%	11.58	16.00	14.50	16.19	13.70	13.34	9.44	15.36
PROPANO PROPILENO	%	10.72	10.01	10.72	10.09	12.67	11.24	10.41	10.58
BUTANO BUTILENO	%	16.71	16.71	18.84	16.90	17.30	16.75	18.19	17.16
GASOLINA	%	62.80	62.99	63.00	63.00	54.00	60.00	62.02	63.02
ACEITE CICLICO LIGERO	%	9.44	9.62	7.62	9.59	9.73	10.12	9.01	9.71
RESIDUO	%	3.50	6.27	3.48	6.05	7.38	7.75	4.76	6.07
TOTAL	%	114.75	121.61	118.16	121.82	114.78	119.22	113.83	121.91

Tabla 3.7.2 Corrientes utilizadas es la simulación de la Planta Catalítica No.2

Name	FCC2feed	FCC2_Feed	FCC2_Feed-2	1	2	FCC2air	FCC2fluegas	FCC2rxeff	FCC2regenstm	FCC2injstm	FCC2rxstm
Vapour Fraction	<empty></empty>	<empty></empty>	0.0000	0.0132	<empty></empty>	1.0000	1.0000	1.0000	<empty></empty>	1.0000	1.0000
Temperature [C]	201.0	<empty></empty>	224.6	125.1	<empty></empty>	217.0	689.0	515.8	<empty></empty>	260.0	260.0
Pressure [kg/cm2]	2.033	<empty></empty>	15.01	7.945	<empty></empty>	4.429	3.568	2.799	<empty></empty>	4.092	4.092
Molar Flow [m3/h_(gas)]	<empty></empty>	<empty></empty>	1.483e+004	2.681e+005	<empty></empty>	1.424e+005	1.486e+005	6.613e+004	0.0000	6825	3146
Mass Flow [lb/hr]	<empty></empty>	<empty></empty>	5.040e+005	3.250e+006	<empty></empty>	3.789e+005	3.995e+005	5.076e+005	0.0000	1.146e+004	5284
Std Ideal Lig Vol Flow [barrel/day	3.908e+004	<empty></empty>	3.776e+004	2.647e+005	<empty></empty>	2.992e+004	3.303e+004	4.549e+004	0.0000	786.6	362.6
Heat Flow [Btu/hr]	<empty></empty>	<empty></empty>	-3.615e+008	-2.725e+009	<empty></empty>	-5.846e+006	-3.317e+008	-2.057e+008	0.0000	-6.392e+007	-2.946e+007
Molar Enthalpy [Btu/lbmole]	<empty></empty>	<empty></empty>	-2.615e+005	-1.090e+005	<empty></empty>	-440.5	-2.394e+004	-3.336e+004	<empty></empty>	-1.004e+005	-1.004e+005
Name	FCC2lcoSS	FCC2fracbtmSS	FCC2_Fd	gas humedo	gasolina	decantado	ACL Prod	aceite esponja	ACL ALM.	ACLIALMACEN	GASOLINA 2
Vapour Fraction	1.0000	1.0000	0.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Temperature [C]	212.8	214.3	220.0	38.00	38.00	357.4	218.5	168.1	218.7	38.00	39.16
Pressure [kg/cm2]	20.36	21.00	1.823	2.033	2.033	2.563	2.439	2.315	4.939	4.799	25.95
Molar Flow [m3/h [gas]]	1340	2887	1.502e+004	2.997e+004	2.031e+004	2965	7261	1.024e+005	7261	7261	2.031e+004
Mass Flow [lb/hr]	2251	4850	5.106e+005	1.097e+005	1.882e+005	8.032e+004	1.278e+005	1.334e+006	1.278e+005	1.278e+005	1.882e+005
Std Ideal Lig Vol Flow [barrel/day	154.4	332.8	3.800e+004	1.468e+004	1.707e+004	5308	9189	1.057e+005	9189	9189	1.707e+004
Heat Flow [Btu/hr]	-1.273e+007	-2.743e+007	-3.702e+008	-6.011e+007	-1.666e+008	-5.112e+007	-1.005e+008	-1.094e+009	-1.005e+008	-1.202e+008	-1.663e+008
Molar Enthalpy [Btu/lbmole]	1.019e+005	-1.019e+005	-2.644e+005	-2.151e+004	-8.799e+004	1.849e+005	-1.485e+005	1.145e+005	-1.484e+005	1.775e+005	-8.781e+004
Name	HCS CONDENS	GAS BAJA PRE	GAS BAJA FBI	HCS AL TANOL	GAS A COMPR	HCS LIQ 2	AGUA1	GAS ALTA	HCS LID 3	MEZCLA 2	GAS FBIO
Vapour Fraction	0.0000	1.0000	0.9596	<emptv></emptv>	1.0000	0.0000	0.0000	1.0000	0.0000	0.5961	0.3341
Temperature [C]	38.00	67.25	37.00	<empty></empty>	37.00	37.00	37.00	169.8	37.71	85.26	37.00
Pressure [kg/cm2]	2.033	3 561	3 561	4 494	3 561	3.561	3 561	38.27	16.92	16.77	16.77
Molar Flow [m3/h_(gas)]	0.0000	2 997e+004	2.997e+004	0.0000	2 876e+004	738.8	473.2	2 876e+004	738.8	7 156e+004	7 156e+004
Mass Flow [lb/br]	0.0000	1.097e+005	1.097e+005	0.0000	1.033e+005	5593	794.9	1.033e+005	5593	3 738e+005	3 738e+005
Std Ideal Lig Vol Flow [barrel/day	0.0000	1 468e+004	1.468e+004	0.0000	1 407e+004	556.1	54 54	1 407e+004	556.1	4 274e+004	4 274e+004
Heat Flow [Btu/br]	0.0000	-5 776e+007	-6 200e+007	0.0000	-5 197e+007	-4.633e+006	-5 399e+006	-4 179e+007	-4.626e+006	-2 345e+008	-2.627e+008
Molar Enthalpy [Btu/lbmole]	-1 223e+005	-2.067e+004	-2 218e+004	-1 223e+005	-1.938e+004	-6 725e+004	-1 224e+005	-1.558e+004	-6.716e+004	-3.514e+004	-3.938e+004
Name	HCS LIQ4	AGLIA AMARG	A F3-T4	SALIDA GASOL	SALIDA GASOL	GAS EBIO 3	GASOLINA SIN	GASOLINA A D	GASOLINA OK	LPG AMABGO	LPG3
Vapour Fraction	0.0000	0.0000	1.0000	0.0000	0.0000	1.0000	0.0000	0.0436	0.0000	0.0000	0.0000
Temperature [C]	37.00	37.00	51.21	54 41	54 41	56.54	133.5	137.0	203.6	45.28	46.30
Pressure [kg/cm2]	16.77	16.77	16.32	16.77	16.77	17.27	17.48	17.34	14.83	9.830	21.22
Molar Flow [m3/h [gas]]	4 721e+004	438.1	1.661e+004	2 761e+004	2 761e+004	1 445e+004	3 276e+004	3 276e+004	2 138e+004	1 139e+004	1 139e+004
Mass Flow [lb/br]	3.068e+005	736.3	4.062e+004	2 138e+005	2 138e+005	5.114e+004	2 557e+005	2.557e+005	2.014e+005	5.427e+004	5.427e+004
Std Ideal Lig Vol Flow [barrel/day	3 218e+004	50.53	6826	2.076e+004	2.076e+004	7350	2 483e+004	2 483e+004	1.822e+004	6609	6609
Heat Flow [Btu/br]	-2 274e+008	-4 997e+006	-2.364e+007	-1 730e+008	-1.730e+008	-1.506e+007	-1 797e+008	-1.779e+008	-1 451e+008	-2 430e+007	-2 424e+007
Molar Enthalov (Btu/Ibmole)	-5 165e+004	-1 223e+005	-1.527e+004	-6.720e+004	-6.720e+004	-1 118e+004	-5.881e+004	-5.823e+004	-7.281e+004	-2 289e+004	-2.283e+004
Name	Pobre 3	Pobre 8	Pobre 9	GAS SECO	ACEITE BICO	BICO 1	GASOLINA ALM	gas frio4	pobre7	ACEITE ESPON	pobre4
Vapour Fraction	0.0000	0.0000	0.0000	0.9985	0.0000	0.0370	0.0000	1.0000	0.0000	0.0000	0.0000
Temperature [C]	127.0	75.00	37.00	44.24	53.61	101.1	196.2	56.54	127.5	124.2	127.0
Pressure [kg/cm2]	8,675	21.80	21.65	16.21	16.56	16.44	14.69	17.27	19.32	8,675	8,675
Molar Flow [m3/h [gas]]	1.024e+005	1.024e+004	1.024e+004	1.332e+004	1.353e+004	1.353e+004	2.138e+004	1.445e+004	1.024e+004	1.057e+005	9.218e+004
Mass Flow [lb/hr]	1.334e+006	1.334e+005	1.334e+005	2.721e+004	1.469e+005	1.469e+005	2.014e+005	5.114e+004	1.334e+005	1.348e+006	1.201e+006
Std Ideal Lig Vol Flow [barrel/day	1.057e+005	1.057e+004	1.057e+004	5039	1.236e+004	1.236e+004	1.822e+004	7350	1.057e+004	1.075e+005	9.513e+004
Heat Flow [Btu/hr]	-1.147e+009	-1.208e+008	-1.249e+008	-1.843e+007	-1.301e+008	-1.239e+008	-1.469e+008	-1.506e+007	-1.146e+008	-1.156e+009	-1.032e+009
Molar Enthalpy [Btu/lbmole]	1.201e+005	-1.265e+005	-1.308e+005	-1.484e+004	-1.031e+005	-9.820e+004	7.370e+004	1.118e+004	1.200e+005	1.173e+005	-1.201e+005
Name	pobre6	FCC2proplyene	FCC2propane	FCC2c4	Carga a la FCC-	mezcla20	DECANTADO /	DECANTADO2	DECANTADO F	agua amarga	FCC2 Fd Cool G
Vapour Fraction	0.0000	0.0000	0.0000	0.0000	0.0000	0.9596	0.0000	0.0000	0.0000	0.0000	<emptu></emptu>
Temperature [C]	124.2	20.00	20.00	20.00	100.0	37.00	357.4	357.4	357.4	38.00	<emptv></emptv>
Pressure [kg/cm2]	8,675	21.03	21.03	21.03	1,833	3,561	2,563	2,563	2,563	2,033	<emptu></emptu>
Molar Flow [m3/h (gas)]	1.057e+005	3406	1162	6819	1.502e+004	2.997e+004	2936	29.65	29.65	1.313e+004	<emptu></emptu>
Mass Flow [lb/hr]	1.348e+006	1.337e+004	4742	3.616e+004	5.106e+005	1.097e+005	7.951e+004	803.2	803.2	2.206e+004	<emptu></emptu>
Std Ideal Lig Vol Flow (barrel/day	1.075++005	1759	5.853	/212	3 800**004	1 //68=+00/	5255	53.08	53.08	1513	/emphy>
Streams Unit Ons											
occounter of incope											

4. ANALISIS DE RESULTADOS

4.1 Análisis de variables de operación:

En la planta existen muchas interrelaciones entre las variables de proceso que complican gradualmente los efectos que pueden tener cada una de estas variables por lo que es conveniente separarlas para poder ver los efectos en el proceso que afectan al funcionamiento de la FCC, en dos categorías: Variables independientes y variables dependientes. Hablamos de variables independientes a aquellos parámetros que pueden ser modificados por el operador por ejemplo la temperatura del riser, la temperatura de precalentamiento de la carga , flujo de carga, Recirculación de fondos de la torre principal, Flujo de Aire al regenerador y relación de adición de catalizador que de alguna forma consecuentemente impacta a otras variables que son conocidas como dependientes que no se pueden manipular y que son resultados de cambios de estas variables antes mencionadas, por ejemplo cuando la temperatura del riser (variables independientes) aumenta la velocidad de recirculación de catalizador (variable dependientes) aumentan, así también se incrementa la temperatura del regenerador.

En esta sección estudiaremos el impacto de cada una de estas variables independientes en la operación de la planta FCC.

4.1.1 Temperatura del Riser

En plantas comerciales la forma de poder hacer ajustes en la temperatura del riser es a través de un instrumento conocido como (TIC) controlador de temperatura que manda la señal al control de abertura y cierre de la válvula que se encuentra ubicada en el regenerador y es la que maneja el flujo promedio de catalizador al riser.

En la fig. 4.1.1 se muestra los efectos al incrementar la temperatura de la salida del riser en los rendimientos de gasolina % vol. Se observa un máximo de rendimiento y después una caída en el rendimiento, si mantenemos la conversión constante, cuando aumentamos la temperatura al reactor, este ajusta la relación (COR), las razones de pérdida de gasolina son el incremento de rendimiento de gas seco y coque, el rendimiento mayor de ambos productos reducen el rendimiento liquido incluyendo la gasolina, Los subproductos generados térmicamente ,LPG y coque disminuyen el rendimiento de gasolina.

Fig.4.1.1 Conversión de gasolina (%vol) vs Temp. Salida Riser (°C) (se indica recirc. Slurry).

Si observamos esta gráfica de la siguiente forma tenemos un máximo de rendimiento de gasolina:

Fig.4.1.2 Conversión de gasolina (%vol) vs Temp. Salida Riser (°C).

De la gráfica anterior obtenemos mediante una regresión polinomial la siguiente tabla:

Temperatura °C	% Vol
470	58.20
475	58.56
480	58.89
490	59.43
500	59.82
505	59.96
510	60.06
515	60.12
520	60.15
<mark>525</mark>	<mark>60.14</mark>
530	60.09
535	60.00
540	59.87
545	59.71
550	59.51

Tabla 4.1.1 Esquema del máximo rendimiento de gasolina

En este punto obtenemos que para una carga de 35000 bpd, se tiene un rendimiento máximo de 60.14 % vol de gasolina cuando se alcanza la temperatura optima de 525 ° C a la salida del riser.

La planta FCC2 cuenta con una recirculación continua de fondos hacia el riser. En esta misma gráfica se muestra la tendencia del rendimiento que se tiene al operarse la planta con recirculación y observamos que a temperatura inferiores la conversión es mayor con recirculación que la que se obtendría si no se recircularán los fondos.

En la Fig. 4.1.3 Se muestran los efectos de la temperatura del reactor en el RONC y el grado de conversión del gasóleo. Se puede observar que para un 5 % vol de aumento en la conversión, el RONC aumenta 1.0 octanos y esto significa que por cada 6 °C de incremento en la salida del riser se incrementa 1.0 octanos. La composición de la gasolina y octanaje están afectados en un alto grado por el tipo de carga.

Fig. 4.1.3 Ron (F1) octano vs Temp. Salida Riser (°C) (se indica conversión de gasóleos menos a 221 °C).

Un aumento de la temperatura en el reactor de FCC, causa también un aumento en el contenido de olefinas, el aumento del RONC en la gasolina, es principalmente debido al aumento de contenido de olefinas, como podemos ver en la fig. 4.1.4 este comportamiento también lo podemos expresar de acuerdo a la cinética de reacción. Un aumento en la temperatura de reacción se incrementa la constate de velocidad, por lo que de acuerdo a las reacciones químicas antes vista, parte de la gasolina formada se va a convertir en propileno, es decir en olefinas.

En la siguientes figuras 4.1.5 y 4.1.6 podemos ver que en la fecha 26 de febrero que se consideró para la simulación en Petro-Sim se observa que a las condiciones de temperatura de 535 °C y una carga de 35000 bpd, se tiene una COR aproximada de 11.2 y un % wt de carbón de 6.5 % . A medida que se incrementa la temperatura a la salida del riser los valores del COR y la producción de coque también se incrementa y esto es debido a la severidad a la cual se encuentra operando la planta. Valores altos de coque pueden afectar a un incremento en la delta coque del regenerador, incrementando las temperaturas en la fase densa y diluida del regenerador.

Fig. 4.1.5 Relación catalizador/aceite (COR) vs Temperatura Salida Riser (°C)

Fig. 4.1.6 Coque Generado (%Wt) vs Temperatura Salida Riser (°C)

En la fig. 4.1.7 se muestra como la temperatura del reactor afecta el rendimiento de la relación isobutano/butileno. Cuando la temperatura del reactor aumenta de 500 a 560 °C, la relación declina sustancialmente. Este es de esperarse debido a que la temperatura aumenta bastante las olefinas (butileno), a comparación del isobutano. Esta información es muy útil debido a que permite estimar cuanto isobutano requerirán de otra fuente diferente a la FCC, para balancear el requerimiento de alimentación a la unidad de alquilación.

Fig. 4.1.7 Relación IC4/C4 vs Conversión de gasóleo a 221 °C.

La relación IC4/C4= es influenciada fuertemente por la temperatura de reacción, mayor temperatura de reacción dará menos relación. Si esta relación la queremos incrementar tendríamos que incrementar el COR a las misma condiciones de temperatura a la salida del riser.

Así también observamos que a mayor conversión de gasóleo la tendencia de la reacción isobutano/butileno es a disminuir.

En la fig. 4.1.8 observamos que a medida que se incrementa la temperatura de salida del riser la tendencia de ACL % vol tiende a disminuir pero es dependiente únicamente de la función de conversión, ya que su comportamiento es lineal y no es sensible a las condiciones de operación.

Fig. 4.1.8 Rendimiento de ACL (%vol) vs Conversión de gasóleo a 221 °C.(se indica Temperatura a la salida del riser).

4.2 Reciclado de Slurry

A continuación presentamos la respuestas del simulador a los cambios en el flujo de slurry que se recircula al riser. Se puede ver en la fig. 4.2.1 que a medida que incrementamos la recirculación , las relación de COR disminuye y se incrementa la delta coque en el regenerador. Esto es debido a que el calor proporcionado por el coque adicional que el reciclo produce, además de que lleva consigo lodos de catalizador proveniente del la sección de recolección de lodos ubicado en el fondo de la torre principal, es bastante grande. Esto aumenta la temperatura de la fase densa y diluida si se mantiene fija la temperatura de la salida del riser. El efecto que tiene es disminuir el flujo de circulación de catalizador al riser, disminuyendo el contacto con mas sitios activos del catalizador teniendo su efecto principal en el rendimiento de gasolina.

Fig. 4.2.1 Rel. Aceite/ catalizador vs Recir. Slurry al convertidor.(se indica Delta Coque en el regenerador).

Como se puede observar en la fig. 4.2.2 y fig. 4.2.3 los resultados del incremento del slurry en la unidad FCC; el rendimiento de gasolina disminuye a las condiciones que tiene la planta para una recirculación de 300 bpd y un flujo constante de carga de 35000 bpd.

También se observa que el aumento en el gas seco se debe más al craqueo térmico que al craqueo cinético, el rendimiento de gasolina apenas alcanza el 60 % volumen.

Fig. 4.2.2 Rendimiento de productos (%vol) vs Recir. Slurry al convertidor.

Fig. 4.2.3 Conversión de gasolina (%vol) vs Conversión de gasóleo a 221 °C.

Sin embargo si el objetivo es maximizar en la planta la producción de ACI, se puede operar con una temperatura del reactor moderada y con un aumento del reciclo y se tendría la siguiente respuesta en la Fig. 4.2.4.

Fig. 4.2.4 Conversión de ACL (%vol) vs Conversión de gasóleo a 221 °C.

Manteniendo las mismas condiciones de temperatura en el regenerador y sin cambios de flujo de carga y con una recirculación de slurry al convertidor se observa un incremento en la producción de gas seco. La temperatura de la mezcla en el riser aumenta como resultado de un aumento en la temperatura del regenerador. Esta adición de calor externo analizándolo desde el balance de energía para obtener la temperatura de la mezcla en el riser tenemos que:

Balance térmico para el cálculo de la temperatura de la mezcla a la entrada del riser:

 $\begin{array}{l} F_{cat} * Cp_{cat} * (T-T_{cat}) & + F_{go} * Cp_{go} * (T_{vap}-T_{go}) & + F_{go} * Cp^{g}_{go} * (T - T_{vap}) & (4.1) \\ + F_{go} * \Delta H_{vap} & + F_{ds} * Cp_{ds} * (T - T_{ds}) & = 0.0 \end{array}$

Un incremento en la temperatura del gasóleo debido a una recirculación externa y disminución en la vaporización del gasóleo incrementa la temperatura de mezcla del riser. Esto ocasiona que disminuya el flujo de catalizador al riser, y se favorezca las reacciones por craqueo térmico reflejándose en el aumento de gas seco como se aprecia en la siguiente figura 4.2.5:

Fig. 4.2.5 Conversión de Gas seco (%vol) vs Conversión de gasóleo a 221 °C.

4.3 Temperatura de precalentamiento

Mientras el flujo de alimentación y la temperatura del reactor permanezcan constantes, los requerimientos de energía permanecerán inalterables. Sin embargo, ciertas variables de operación como la temperatura del regenerador y la temperatura de precalentamiento de la carga pueden ser alterados en el balance de energía del reactor. Esto es cierto ya que la salida de energía al regenerador, es una combinación de la velocidad de circulación del catalizador y temperatura.

Como observamos en la fig. 4.3.1 a medida que se incrementa la temperatura de precalentamiento la relación CO disminuye el exceso de O2 se incrementa y la temperatura de la fase densa disminuye. Todo esto ocurre por el balance térmico en el regenerador, esto se debe a que con una temperatura fija del reactor un TRC (controlador de registro de temperatura) reducirá la velocidad de circulación de catalizador cuando la temperatura de precalentamiento de carga aumente , aunque la temperatura del reactor no suba , la temperatura de la mezcla del riser si lo hace , debido a que se necesita una baja velocidad de circulación de catalizador regenerado más caliente, para satisfacer el requerimiento de calor en el reactor.

Fig. 4.3.1 Relación de catalizador/aceite (COR), O2 en el regenerador vs Temperatura de precalentamiento.

Esto sin duda afecta en el RONC de la gasolina como vemos en la fig. 4.3.2 ya que habrían menos sitios activos presentes de catalizador en la carga. Al haber un incremento en la temperatura de mezcla, las reacciones térmicas se incrementarían pero esta a su vez se vería afectadas por un incremento en la producción de gas seco despreciables.

Fig. 4.3.2 Rel. De catalizador/aceite (COR), F1 (RONC) en la gasolina vs Temp. de precalentamiento.

Fig. 4.3.3 Conversión de gasóleo, F1 (RONC) en la gasolina vs Temp. de precalentamiento.

4.4 Variación de la carga:

La fig. 4.4.1 muestra como tanto la relación COR y la temperatura del reactor influyen en la conversión de gasolina. Altos niveles de conversión, las curvas tienden a aplanarse y hacer que las ganancias de conversión sean más difíciles de alcanzar para una conversión dada, una temperatura baja da un rendimiento de gasolina alto.

Fig. 4.4.1 Conversión de gasolina a diferentes cargas vs COR.

Analizando desde el balance de materia tenemos que:

$$\frac{dW_i}{dz} = \frac{A_T (1-\varepsilon) \delta_{cat} r_i}{Fg}$$
(4.2)

Al hacer mayor el valor de Fg (flujo de carga + vapor de dispersión) el lado derecho de la ecuación se haría más pequeño lo cual quiere decir que los cambios de composiciones (dW/dz) de los componentes a lo largo del riser serian menores; por lo tanto, la conversión total de gasóleos disminuye, del mismo modo los rendimientos de ligeros y gasolina en la salida disminuyen, esto como consecuencia del menor tiempo de residencia, es decir menor tiempo de contacto entre el catalizador y el gasóleo de carga.

Analizando desde el balance de energía tenemos que:

$$\left(F_g C p_g + F_{cat} C p_{cat} \right) \frac{dT}{dZ} = \sum_{i=1}^n r_i (-\Delta H_i) (1-\varepsilon) \delta_{cat} A_T$$
(4.3)

Ordenando:

$$\frac{dT}{dZ} = \frac{\sum_{i=1}^{n} r_i (-\Delta H_i) (1-\varepsilon) \delta_{cat} A_T}{\left(F_g C p_g + F_{cat} C p_{cat}\right)}$$
(4.4)

Al aumentar la carga el lado derecho de la ecuación se hace menor lo cual nos dice que la diferencia de temperatura dT /dz es menor por lo cual la temperatura de salida del raiser aumentará ligeramente y esto es debido a que al haber menor conversión baja el requerimiento de calor de las reacciones endotérmicas y esto ocasiona un ajuste del balance térmico por lo que el controlador de temperatura a la salida del riser manda la señal de cierre de la válvula que se encuentra en el regenerador para minimizar el flujo de catalizador al riser. Esto trae como consecuencia un aumento en el ACL y en Slurry y disminución de gas seco, con un ligero incremento en el propano y butano.

Al disminuir la relación de COR disminuye el flujo de catalizador al riser entonces se presenta un aumento en el tiempo de residencia del catalizador en el regenerador si se mantiene el mismo flujo de aire el O2 empieza a disminuir debido a la combustión total del coque y las temperatura de la fase densa y diluida empieza a aumentar en el regenerador como se presenta en la fig. 4.4.2.

Fig. 4.4.2 CO2, O2 en el regenerador vs Temperatura de fase densa en el regenerador.

En la siguiente gráfica tenemos el incremento de la delta coque este terminó se define como el rendimiento de coque dividido por la relación C/O. Es también la diferencia entre el porcentaje en peso de carbón en el catalizador gastado fuera del stripper (agotador) y el porcentaje de carbón del catalizador saliendo del regenerador. En la Fig. 4.4.3 muestra que la delta coque varia con la relación de COR a medida que aumenta el COR la delta coque disminuye. Sin embargo se puede observar que se presenta alta relación de COR y la unidad está operando a su máxima capacidad de despojamiento y la delta coque mínima es de 0.55 % wt, esto pudiera mejorarse aun mas para disminuir la delta coque. Esto puede mejorar las condiciones de operación del regenerador.

Fig. 4.4.3 Delta Coque vs Temperatura de fase densa en el regenerador.

En la fig. 4.4.4 se muestra como varía la producción de propano- propileno con la carga, la relación de COR y el aumento de temperatura. Si observamos a detalle presenta una tendencia lineal. Por eso se dice que el rendimiento de C3 cae en una línea simple, sin importar como se alcance la conversión, bien sea por la relación COR o por la temperatura del reactor. La temperatura a la salida del riser tiene usualmente un moderado impacto en la selectividad total de C3.

4.5 Flujo de vapor al riser (kg/h)

En la gráfica 4.5.1 se observa claramente que no es muy conveniente el aumento del flujo de vapor al riser a Temperatura constante a la salida del riser y a flujo constante de carga. A mayor flujo de vapor también se incrementa la producción de slurry, y esto sucede porque el exceso de vapor afecta directamente a la temperatura de la mezcla al interior del riser, el efecto que tiene es la tendencia a disminuir.

Fig. 4.5.1 Flujo de vapor al riser vs COR (Referencia a diferentes cargas).

Balance térmico para el cálculo de la temperatura de la mezcla a la entrada del riser:

$$F_{cat} * Cp_{cat} * (T-T_{cat}) + F_{go} * Cp_{go} * (T_{vap}-T_{go}) + F_{go} * Cp^{g}_{go} * (T - T_{vap})$$
(4.5)
+ $F_{go} * \Delta H_{vap} + F_{ds} * Cp_{ds} * (T - T_{ds}) = 0.0$

Para compensar esta pérdida de calor por enfriamiento se incrementa el flujo de COR al riser. Las reacciones deberían de incrementarse pero hay un efecto en la presión parcial de HC's que tiende a disminuir, por lo que disminuye la capacidad de que el gasóleo penetre en los sitios más ácidos del catalizador, disminuyendo la conversión de gasolina, gas seco, propano y butano y se incremente la producción de slurry y ACL, ver Fig. 4.5.2 Aparte el tiempo de residencia en el riser también disminuye.

Fig. 4.5.2 Rendimiento de gasolina (%vol), Presión parcial de Hc's vs Conversión de gasóleo a 221 °C.

A medida que se incrementa el flujo de catalizador al riser debido al incremento del flujo de vapor también disminuye las temperaturas del regenerador ver figura 4.5.2.

Fig. 4.5.2 Temperatura fase densa, diluida (°C) vs Flujo de vapor (kg/hr).

4.6 Flujo de aire al Regenerador

El requerimiento de aire para quemar el coque del catalizador gastado se vuelve una variable independiente cuando se requiere ajustar la velocidad del aire para modificar el grado de combustión del CO a CO2.

Vamos a observar primero que efecto tiene en el regenerador un incremento en el flujo de aire, en la fig. 4.6.1. Las temperaturas de la fase densa y la fase diluida disminuyen, esto es debido a un exceso de O2 presente en el regenerador, el flujo de catalizador de aire se incrementa ligeramente para compensar este enfriamiento en el regenerador.

Fig. 4.6.1 Temperatura fase densa, diluida (°C) vs Flujo de aire (nm3/h).

En la fig. 4.6.2 se observa que este exceso de aire provoca enfriamiento y disminuye las reacciones de combustión, el CO se incrementa ya que no todo pasa a CO2

Fig. 4.6.2 CO2, CO, vs Flujo de aire (nm3/h).

En la grafica. 4.6.3 el increment0 del rendimiento de gasolina es muy pequeño y podríamos concluir que despreciable.

Fig. 4.6.3 Rendimiento de gasolina, butano-butileno (%vol) vs Conversión gasóleo a 221 °C.

Si decidiéramos mantener estos flujos de aire altos, se incrementaría la velocidad del catalizador en los ciclones. Los posibles efectos contribuirían una atricción del catalizador a bajas temperatura y vemos también que el (% wt) de coque se incrementa, ver. Fig.4.6.4.

Fig. 4.6.4 Rendimiento de gasolina, butano-butileno (%vol) vs Conversión gasóleo a 221 °C.

Los efectos no solo llegan a un enfriamiento del regenerador. Si vemos en la siguiente figura 4.6.5, paulatinamente se incrementa el vanadio en el catalizador y otros contaminantes, además de que en los gases de combustión baja la producción de SOx. Pero este azufre que no se observa, ya que se queda en los productos principalmente, en el aceite cícliclo ligero.

4.7 ANÁLISIS ECONÓMICO BARRIL*OCTANO

Los productos que se obtienen, derivados del craqueo del gasóleo son tan importantes como el barril*octano, ya que mayoría de ellos tienen un aporte significante en el pool de gasolinas. Por esta razón debemos de realizar un análisis completo de los costo y ganancias de la operación de la FCC-2 y su impacto en la refinería. Comenzaremos con una descripción del aporte de la planta al pool de gasolinas como se ve en la fig. 4.7, Observamos que una parte del propileno que se produce en la planta, el 70 % se utiliza como carga a la plantas de MTBE-TAME y el otro 30 % se comercializa. La mezlca que sale por el fondo de la torre que es propano se considera como producto final LPG, el butano-butileno prácticamente toma el valor de precio de la gasolina Pemex-premium ya que se utiliza como carga de MTBE y Alquilación. La gasolina sin estabilizar se convierte en Pemex-Magna ya que pasa como carga a las planta Hidrodesulfuradoras y Reformadoras catalíticas. Los productos que tienen un impacto muy bajo son el ACL y el Slurry aunque tienen un costo alto son devaluados para ser utilizados como diluentes en la preparación del combustóleo.

Fig. 4.7 Distribución final de los productos que se generan en la planta FCC2 .

En función de este análisis y con información del catálogo de precios resultados de la operación del mes de febrero solicitada en oficinas centrales para la refinería de Salina Cruz, se realizó el siguiente reporte de la tabla.1. Los resultados de costos y condiciones de operación aquí mostrados se obtuvieron con fecha de operación del 19 de febrero del 2010:

Caso I: Análisis de variables de operación sin ajustes en la carga

19-feb-10	Catalítica 2 Total Precios		Total	Aportación al margen	
Volumen B	PD		DPB	MDIs/D	DPB
Carga de gasóleos de vacío	28,973	28,973	84.42	2,446	84.42
Adicion Catalizador (ton/dia)	4		4,035.0 Dls/día	16	
Producción					
Gas seco M3/D	248,400	248,400	5.59	44	1.53
Propano Propileno	3,263	3,263	73.10	238	8.23
Butano Butileno	4,465	4,465	67.94	303	10.47
Gasolina Catalítica	18,251	18,251	89.30	1,630	56.25
Aceite cíclico ligero	2,903	2,903	70.75	205	7.09
Aceite decantado	1,740	1,740	70.75	123	4.25
Coque catalítico	267	267	5.59	52	1.81
Total productos	30,621			2,597	89.63
Barril*Octano	1,692,806				
Octano F1	92.75				
Diferencia				135	5.21

Tabla. 4.7.1 Balance volumétrico y económico de la planta Catalítica FCC-2

MDLs/D= Miles de dólares por día

DPB= Dólares por barril.

BPD= Barriles por día

Tabla 4.7.2. Condiciones de operación

RISERS			1	REGENERADOR			1
Temp. Carga		°C	185.10	Temp- fase densa		°C	697.00
Temp. De Mezcla interna		°C	583.59	Temp flujo de gas		°C	703.97
Temperatura de salida		°C	535.00	Gas CO2		vol %	11.88
Cat/Oil Ratio		wt/wt	11.47	Gas CO		vol %	0.07
CCR		tonne/min	31.85	Gas O2		vol %	4.16
Vapor Promedio		kg/hr	5407.01	Gas SOX		vol %	0.23
				CRC		wt %	0.04
				Flujo de aire m3/h		knm3/h	162.75
PRESION		1	1	REACTOR/AGOTADOR		1	
Presion descarga del con	npresor	bar_g	3.33	Temperatura de salida		°C	534.00
Regenerador		bar_g	2.20	Tiempo de residencia		seconds	5.75
RISERS		bar_g	1.91	Velocidad en ciclones		cm/s	1565.00
Reactor		bar_g	1.53	Flujo Prom. De vapor agotamiento		kg/hr	3299.00
Succion compresor gas seco		bar_g	1.07		agotamonto		
CATALIZADOR			FRESH	ECAT			
Actividad		Mat %	82.00	72.00			
Area superficial		m2/g	353.00	142.00			
Promedio de adicion		t/d	4.00				
PROPERTIES	1			Tot Naph		LCO	CLO
°API				60.31		16.44	-4.72
Gravedad esp.				0.738		0.957	1.12
Azufre	wt %			0.172		2.780	4.84
Nitrogeno Basico	wt %					0.00	0.02
ConCarbon	wt %					0.02	4.84
Indide de refraccion						1.56	0.00
K Factor				11.83		10.23	10.32
Contenido de H2	wt %			13.97		9.35	8.36
RVP	kPa			54.75			
RON				94.66			
Viscosity @ 100 degC	cSt					4.80	73.00
Fraccion aromaticos				0.232		0.610	0.641
Fraccion de naftenos				0.122		0.073	0.011
Fraccion Parafinas				0.201		0.317	0.348
Fraccion Olefinas				0.446			

Capítulo 4

En base a estos resultados generados el día 19 de febrero se procedió a encontrar las mejores condiciones de operación para generar la mayor producción de gasolina en función del barril-octano manteniendo la misma carga en el simulador de Petro-Sim, de los cuales se presentan la siguiente tabla 3:

Tabla.	4.7.3	Balance volu	métrico y ec	onómico de l	a planta	Catalítica FCC-2.	Simulador (F	Petro-Sim)
			····· , ···					,

19-feb-10	Catalítica 2 Total Precios		Total	Aportación al margen	
Volumen Bl	PD		DPB	MDIs/D	DPB
Carga de gasóleos de vacío	28,973	28,973	84.42	2,446	84.42
Adición Catalizador (ton/dia)	4		4,035.0 dls/día	16	
Producción					
Gas seco M3/D	257,760	257,760	5.59	46	1.59
Propano Propileno	3,391	3,391	73.10	248	8.56
Butano Butileno	4,659	4,659	67.94	317	10.92
Gasolina Catalítica	18,245	18,245	89.30	1,629	56.23
Aceite cíclico ligero	2,855	2,855	70.75	202	6.97
Aceite decantado	1,516	1,516	70.75	107	3.70
Coque catalítico	274	274	5.59	54	1.86
Total productos	30,666			2,603	89.83
Barril*Octano	1,700,258				
Octano F1	93.19				
Diferencia				141	5.41

MDLs/D= Miles de dólares por día

DPB= Dólares por barril.

BPD= Barriles por día

Tabla 4.7.4 . Condiciones de operación (Petro-Sim)

RISERS			1	REGENERADOR	REGENERADOR		
Temp. Carga		°C	175.10	Temp- fase densa		°C	698.02
Temp. De Mezcla interna		°C	587.33	Temp flujo de gas		°C	705.42
Temperatura de salida		°C	540.00	Gas CO2		vol %	13.38
Cat/Oil Ratio		wt/wt	11.54	Gas CO		vol %	0.15
CCR		tonne/min	33.33	Gas O2		vol %	2.00
Vapor Promedio		kg/hr	5407.01	Gas SOX		vol %	0.28
				CRC		wt %	0.04
				Flujo de aire		knm3/h	159.10
PRESION		1	1	REACTOR/AGOTADOR		1	
Presion descarga del con	npresor	bar_g	3.33	Temperatura de salida		°C	537.00
Regenerador		bar_g	2.20	Tiempo de residencia		seconds	5.75
RISERS		bar_g	1.91	Velocidad en ciclones		cm/s	1565.00
Reactor		bar_g	1.53	Flujo Prom. De vapor agotamiento		kg/hr	3299.00
Succion compresor gas seco		bar_g	1.07				
CATALIZADOR			FRESH	ECAT			
Actividad		Mat %	82.00	72.00			
Area superficial		m2/g	353.00	146.27			
Promedio de adicion		t/d	3.89				
PROPERTIES	1			Tot Naph		LCO	CLO
°API				60.86		15.97	-5.97
Gravedad esp.				0.736		0.960	1.13
Azufre	wt %			0.173		3.296	5.30
Nitrogeno Basico	wt %					0.00	0.02
ConCarbon	wt %					0.02	5.52
Indide de refraccion						1.57	0.00
K Factor				11.86		10.20	10.25
Contenido de H2	wt %			14.05		9.27	8.15
RVP	kPa			54.87			
RON				95.06			
MON				81.69			
Fraccion aromaticos				0.235		0.640	0.660
Fraccion de naftenos				0.090		0.015	0.002
Fraccion Parafinas				0.201		0.345	0.337
Fraccion Olefinas				0.447			

Capítulo 4

Caso II: Análisis de variables de operación con ajustes en la carga

En esta sección se obtendrá los mejores resultados de operación en función de ajustes de la carga y la temperatura a la salida del riser. En la fig. 4.7.1, se observa que a medida que se incrementa la carga a temperatura constante la conversión total del gasóleo disminuye, a diferencia del barril*octano como se ve en la fig. 4.7.2 que se va incrementando a medida que se incrementa la carga.

Grafica 4.7.1 Conversión total vs Cagar gasóleo (MBPD).

Gráfica 4.7.2 Barril*Octano (RONC) vs Cagar gasóleo (MBPD).

Un análisis del efecto del incremento de carga a temperatura constante se puede ver en la gráfica 4.7.3 como impacta al octano, el cual va disminuyendo con el incremento de carga.

Gráfica 4.7.2 Octano (RONC) vs Cagar gasóleo (MBPD).

5. ELABORACIÓN DE UN SIMULADOR DE CARACTERIZACIÓN DE CARGA

5.1.0 ANTECEDENTES.

En esta sección nos referiremos a los diversos trabajos publicados acerca del proceso FCC, especialmente en el modelado cinético y matemático. A continuación presentamos los modelos cinéticos propuestos para la desintegración catalítica. La mayoría de estos modelos están basados en la teoría del *lumping* que consiste en agrupar varias especies químicas de acuerdo a su punto de ebullición. Puesto que la desactivación catalítica es la causante de que las reacciones en el *riser disminuyan*, es importante mostrar las funciones de desactivación que se encuentran disponibles en la literatura abierta. Los modelos cinéticos de combustión son modelos que presentan una cinética más simple que la cinética de desintegración catalítica dado que las especies de los gases de combustión son plenamente identificables. En este trabajo únicamente se logró caracterizar la carga, posteriormente sería deseable que se elabore la etapa de simulación del riser, también en esta sección se propone un modelo cinético de 7 lumps, que permita evaluar el comportamiento del riser en la planta FCC2, este esquema esta propuesto de acuerdo a los productos que son obtenidos en esta proceso.

5.1 MODELOS CINÉTICOS DE DESINTEGRACIÓN CATALÍTICA

Un desarrollo teórico formal de lumping fue presentado por Kuo y Wei (1969). Posteriormente, diversos trabajos sobre cinética FCC fueron presentados y los más relevantes son discutidos enseguida.

Modelo cinético de 3 *lumps*

El modelo cinético de 3 pseudocomponentes fue propuesto por Nace et al. (1971). Ellos consideran que la conversión de gasóleos durante la desintegración catalítica puede representarse a partir de una reacción de pseudo-segundo orden acoplada con un decaimiento de primer orden de la actividad del catalizador, y suponen una reacción de pseudo-primer orden para la gasolina. Además, consideran flujo pistón para la fase gaseosa y tiempos de residencia pequeños del vapor con relación al tiempo de desactivación del catalizador, resolviendo la ecuación diferencial de continuidad para producir un modelo isotérmico de la conversión en reactores de lecho fluidizado.

El modelo fue resuelto analíticamente y aplicado a gasóleos de diferentes composiciones y propiedades. Con esto, se mostró el efecto de diferentes cargas en las constantes cinéticas, correlacionándolas con la relación de aromáticos y nafténicos presentes en estas cargas. Los autores determinaron sus parámetros cinéticos usando experimentos sin regeneración del catalizador con tiempos de contacto entre 1 y 5 segundos. Los cálculos de las conversiones y rendimientos de los productos fueron promediados con el tiempo de contacto.

Modelo cinético de 4 lumps

El modelo de 4 pseudocomponentes fue propuesto por Yen *et al.* (1987) y Lee *et al.* (1989) y es similar al de Nace. La diferencia consiste en que la formación de coque se considera como un *lump* independiente, ver Fig. 2.2. Los autores suponen que el gasóleo se desintegra en gasolina, gases y coque y resuelven analíticamente considerando operación isotérmica. Una característica importante, común a estos modelos, es que las constantes cinéticas dependen del tipo de alimentación. Además, Lee *et al.* Consideran que no existe desintegración de los gases para formar coque con lo cual desaparece una ruta de reacción.

Modelo cinético de 10 lumps

El modelo cinético de 10 pseudocomponentes fue sugerido por Jacob *et al.* (1976) y se basa en la incorporación de las concentraciones de parafinas, naftenos, anillos aromáticos y radicales en aromáticos tanto en las fracciones ligera como pesada de la alimentación. Los autores aseguran que las constantes cinéticas son únicas y no dependen de la composición de la carga. Este modelo cinético es uno de los más utilizados hoy en día

pues ha probado ser superior a los modelos de 3, 4, 5 y 6 *lumps*. Infortunadamente, no predice los rendimientos de gases ligeros y es necesario usar correlaciones empíricas, las cuales tienen un intervalo de aplicabilidad restringido. En la sección 2.13 se encuentra la nomenclatura para este modelo.

En lo que se refiere al regenerador distintos modelos empíricos han sido reportados en la literatura, Mcfarlane et. Al. (1993) y Elshishini et . Al. (1990,1993) describieron el reactor y al regenerador como un sistema formado por fases gas-sólido y sujetas a los fenómenos presentes en la interfase como transferencia de masa y energía.

Se han propuestos distintos esquemas para modelar el regenerador, algunos autores propones modelos heterogéneos en las que se consideran todas las interacciones entre la fase del gas y del catalizador. Otros propones el empleo de simplificaciones basadas en su experiencia en modelar y simular este tipo de reactores se desprecia la resistencia a la transferencia de masa y calor entre una fase y otra.

Los modelos de Arbel (1995) y de Krishna(1985) son pseudo homogéneos por lo que se requiere menor cantidad de datos. Ambos modelos incluyen la fase diluida y los efectos

del catalizador arrastrado y la postcombustión del CO, así como la pérdida de calor al exterior.

5.2. MODELO CINÉTICO PROPUESTO:

Para un esquema de 10 lumps el número máximo de constantes cinéticas es 45 por lo que es evidente que el esfuerzo computacional es significativamente mayor cuando se consideran todas las rutas de reacción posibles. Dado que la cinética determina la cantidad y calidad de los productos, debe comprenderse que el control y optimización del proceso dependen íntimamente del esquema cinético seleccionado.

El estudio para este modelo cinético se realizó en base al esquema general de la planta catalítica No. 2 de la refinería de Salina Cruz, Oaxaca tomando como consideración la simulación de la planta elaborada en Petro-Sim.

El análisis se realizó de la siguiente manera:

- 1. Los productos que se obtienen de la planta son : Aceite decantado, Aceite cíclico ligero, nafta ligera, Butano-Butileno, Propano-Propileno, Gas húmedo(c1-c2,H2,H2S).
- 2. La nafta pesada conocida también como aceite esponja únicamente se re-circula y su uso es de diluente o para enfriamiento en bombas de fondos.
- 3. El aceite cíclico pesado no sale del proceso de la planta, únicamente re-circula en la torre y a otros equipos.
- 4. Se considera la formación de coque en el modelo.

De acuerdo a esto se puede despreciar la producción de ACP y de la nafta pesada puesto que no se tiene uso de estos corrientes en la refinería, por lo tanto no tiene un impacto económico para su evaluación.

Con base a lo anterior, a continuación se desarrolla un nuevo modelo cinético que cumplirá con los siguientes requerimientos:

1. Caracterizar detalladamente los productos y subproductos FCC.

- 2. Encontrar una relación entre las constantes cinéticas y los productos.
- 3. Evitar demasiadas rutas de reacción que simplifique excesivamente el modelo.
- 4. Disminuir el esfuerzo computacional en la evaluación de los parámetros cinéticos.

El modelo aquí propuesto se basa en inferir que las constantes cinéticas, con las cuales una especie j se desintegra catalíticamente en otras moléculas de menor peso molecular, responden a una función continua de alguna variable independiente. Para ello, se considera que los factores de frecuencia de una expresión tipo Arrhenius pueden representarse a partir de una distribución de probabilidad.

Tabla 5.2 Descripció	de componentes de	I diagrama de Agrupamiento:
----------------------	-------------------	-----------------------------

Número de lump	Nombre	Número de carbonos	Intervalo de ebullición (°C)
1	Aceite Ciclico Pesado (ACP)	C_{21}^{+}	> 360
2	Aceite cíclico ligero (ACL)	$C_{13} - C_{21}$	220 – 360
3	Nafta ligera (NL)	$C_5 - C_{12}$	36 – 220
4	Butano-Butileno (C4)	C ₄	Lump semi-continuo
5	Propano-Propileno (C3)	C ₃	Lump semi-continuo
6	Gas húmedo	$C_1 - C_2$, H_2S , H_2	Lump semi-continuo
7	Coque	No Aplica	No Aplica

5.3.0 ELABORACIÓN DE LA HERRAMIENTA DE SIMULACIÓN PROPUESTA

Es difícil poder conocer las fracciones o grupos de carbono que tiene el gasóleo, y estos solo se tienen con nuevas técnicas en equipos de Resonancia magnética Nuclear y Espectrometría de masas, pero son análisis muy caros. Para la caracterización de gasóleo se consideraron parte de los datos de laboratorio de Pemex, como es la destilación al vacio D-1160, el azufre, el peso específico, en algunos momentos se tuvo que transformar estas destilación a destilaciones equivalentes atmosféricas para después pasarla de destilaciones TBP.

La herramienta aquí expuesta surge de la inquietud de conocer como se llevan a cabo las reacciones cinéticas en el riser y poder tener un mejor conocimiento de la operación de la planta FCC-2 de la refinería de Salina Cruz, Oaxaca. El simulador está basado en correlaciones empíricas desarrolladas a lo largo del los años por científicos muy destacados en esta área.

El simulador está elaborado en ambiente de hoja de cálculo Excel 2007 y los gráficos se realizaron con el apoyo del paquete de programación Visual Basic. Las subrutinas de cálculos se encuentran en macros de visual basic.

En la gráfica 5.3.1 se presenta la formar de capturar los datos mecánicos que requiere el simulador para la evaluación del convertidor:

Menú Principal			-	b		3
Convertidor Gasóleo Nafta Ligera A	ceite Cíclico Ligero				1	
5	Vaporización	Dimensiones del Riser				
	Base	[Longitud total [m]	31.5			
Y	Separador	Diámetro [m]	0.965			
	Agotador	Inventario de catalizador [kg]				
	Linea Riser-Reactor					
	Línea de Productos PCC					
	Regenerador					
	Linéas de Gases de Combustión					
	Válvula reactor-regenerador					
	Linea del flujo de aire					
						=

Gráfica 5.3.1 Presentación General del simulador.

Se cuenta con dos formas de cargar los datos solicitados:

Todos estos datos son necesarios para evaluar el convertidor, riser, separador, Agotador, Línea riser-Reactor, Línea de productos de FCC, Regenerador, Línea de gases de combustión, válvulas reactor- regenerador, Línea de flujo de aire.

1. Señalando el botón de cada sección que aparecen el marco.

Vaporización	Dimensiones del Riser	
Riser	Longitud total [m]	31.5
Separador	Diámetro [m]	0.965
Agotador	Inventario de catalizador [kg]	
Línea Riser-Reactor		
Línea de Productos FCC		
Regenerador		
Líneas de Gases de Combustión		
Válvula reactor-regenerador		
Línea del flujo de aire		

Gráfica 5.3.2 Presentación de la ventana de captura de datos mecánicos.

2. Posesionando el cursor del mouse en la figura del convertidor, en donde en automático aparece en un marco en rojo la sección escogida:

Después de cargar los datos mecánicos se procede a caracterizar la carga, el programa cuenta con unas cejas en la parte superior para seleccionar la casilla a utilizar:

М	enú Principal		
	Convertidor	Gasóleo	Nafta Ligera Aceite Cídico Ligero
	PROPIED	ADES FÍS	SICAS MĚTODO

Gráfica 5.3.3 Presentación de la ventana de pestaña para ir a otra hoja.

Se cuenta con la facilidad de ir de una hoja a otra hoja o seleccionando el botón ctrl + G para ir a la hoja de caracterización del gasóleo:

ctrl + G	Gasóleo	ctrl + A	Aceite cíclico ligero
ctrl + N	Nafta	ctrl + C	Convertidor

Hoja Gasóleo:

Convertidor Gasóleo Nafta Ligera Aceite Cíclico Liger	ro			
- PROPIEDADES FÍSICAS	- MÉTODOS DE EST	MACIÓN		
Depaided relative a gaset @ 1595/1595 -	Peso molecular	Kesler-Lee 🔻	Presión Crítica	Kesler-Lee 🔻
	Densidad relativa	K Watson constante -	Temperatura Crítica	Kesler-Lee 🔻
Azume (% peso) 2.0	<u> </u>		Factor Acéntrico	Kesler-Lee V
Curva de Destilación ASTM D-1160 @ 10 mmHg				Kesiel-Lee
% Volumen Temperatura (°C) 🔺	ESTIMAR	Exportar Resultados		Cerrar
0 260 5 345		STIMACIÓN DE PROPIEDAD		
10 374	RESOLIADOS DE L	STIMACION DE PROFILDAD	LS TERMOTISICAS	
20 404	% vol AET (°C) In	tervalo (%) TB (°C) SG (15/1	5) MW Tc(K) Pc(barg)	ω SSU 99°C
30 421				
40 436				
60 448 ≡				=
70 479				
80 498				
RESULTADOS				
No. de decimales 4				
densidad relativa (15°C/15°C)				
densidad relativa (20°C/ 4°C)				-
densidad [g/cm³] @ 15°C				
densidad [g/cm³] @ 20°C	RESULTADOS DE	OMPOSICIÓN Y DISTRIBUC	IÓN PNA	
Puntos de Ebullición	Intervalo (%) fi	acción vol. fracción masa	fracción mol P (%)	N(%) A(%) 🔶
No. de decimales				
VABP (°C) CABP (°C)				
WABP (°C) MeABP (°C)				=
MABP (°C)				
Eactor Watron				
Composición PNA P (%)				
N (%)				
A (%)				-
		1		
MW promedio				

Gráfica 5.3.4 Presentación de la ventana de cálculos para la caracterización del gasóleo.

Además cuenta con una barra en la parte derecha para poder desplazar hacia arriba y/o abajo y ver más información calculada por el simulador:

							Barra E	spaciado	ra			
Г	RESUL	TADOS D	E ESTIMACIÓ	N DE PR	OPIEDADES	5 TERM	OFÍSIC/	\s				
	% vol	AET (°C)	Intervalo (%)	ТВ (°С)	SG (15/15)	MW	Тс (К)	Pc (barg)	ω	SSU 99		
											-	

Los datos que pide el simulador para el gasóleo son:

- Destilación D-1160 al vació
- Azufre
- La presión a la que se genero los resultados de laboratorio

Se cuenta con la opción de escoger el método para calcular el peso molecular, presión crítica, temperatura crítica, densidad relativa, etc. Ya sea por el método de Kesler-Lee, Whitson u otros.

Una vez que se cargaron los datos, se selecciona el botón

Como vemos el simulador genera estos resultados con la finalidad de poder obtener la cantidad de Parafinas, Naftenos, Aromáticos y Olefinas presentes en la carga.

Convertidor Gasóleo Nafta Ligera Aceite Cídico Liger	o							
	- MÉTOR	OS DE ESTI	ΜΑCΤÓΝ —					
	Peso mo	olecular		Kaslar Laa	Presión Crítica		Kor	
Densidad relativa 0.9081 @ 15°C/15°C -	Densida	ad relativa		Kesier-Lee	Temperatura Cr	ítica	KCS	ler-Lee
Azufre (% peso) 2.0			K watso	n constante 💽			Kes	ier-Lee
Curva de Destilación ASTM D-1160 @ 10 mmHg					Factor Acentric	°	Kes	ler-Lee 💌
% Volumen Temperatura (°C)	ESTIN		Exports	ar Pacultados			Г	Corror
0 260			LAPOIL	II KC3ultud03				centar
5 345	RESUL	TADOS DE E	STIMACIÓ	DE PROPIEDAD	ES TERMOFÍSIO	AS		
10 374	% vol	AET (°C) In	tervalo (%)	TB (°C) SG (15/1	5) MW Tc.(K) Pc (bar	a) o	SSU 99°C
20 404	0	418.8					g/ ~	
30 421	5	514.9	0-5	466.9 0.854	1 425.0 866.9	9 7.3	4 1.2234	0.7671
40 430	10	547.0	5-10	530.9 0.878	0 514.7 918.3	3 5.9	6 1.3702	0.7900
50 440 E	20	579.7	10-20	563.3 0.889	7 561.1 943.9	9 5.3	1.4410 <mark>6</mark>	0.8020
70 479	30	598.0	20-30	588.9 0.898	6 598.0 963.9	9 4.9	3 1.4955	0.8115
80 498	40	614.1	30-40	606.1 0.904	6 623.1 977.4	4 4.6	5 1.5315	0.8180
	50	626.9	40-50	620.5 0.909	5 644.1 988.0	6 4.4	4 1.5612	0.8234
- RESULTADOS	60	643.9	50-60	635.4 0.914	5 665.8 1000.2	2 4.2	2 1.5915	0.8289
Densidades No. de decimales 4	10	670.6	70.00	660.7 0.920	0 089.7 1012.	9 3.9	9 1.0243	0.8350
densidad relativa (15°C/15°C) 0 0081	80	712.8	20-00	696.2 0.925	5 754 2 1047 (o 3.7	1 1 7107	0.8513
	95	730.2	90-95	721.5 0.942	6 790 8 1066	4 31	5 1 7584	0.8605
densidad relativa (20°C/ 4°C) 0.9045	100	748.6	95-100	739.4 0.948	2 816.5 1080.0	2.9	6 1.7914	0.8670 -
densidad [g/cm³] @ 15°C 0.9072		· ·				·		
densidad [g/cm³] @ 20°C 0.9045	RESUL	TADOS DE C	OMPOSICI	ÓN Y DISTRIBUCI	IÓN PNA ———			
Puntos de Ebullición	Interv	alo (%) fr	acción vol.	fracción masa	fracción mol	P (%)	N(%)	A(%)
No. de decimales	0-5		0.0500	0.0469	0.0706	0.9024	0.0960	0.0013
VABP (°C) 626.1 CABP (°C) 615.1	5-10		0.0500	0.0482	0.0600	0.8170	0.1548	0.0280
WABP (°C) 627.7 MeABP (°C) 616.4	10-20		0.1000	0.0977	0.1115	0.7729	0.1821	0.0447
	20-30		0.1000	0.0987	0.1050	0.7384	0.2023	0.0590
MADE (C) 617.6	40-50		0.1000	0.0993	0.0993	0.6961	0.2153	0.0779
Factor Watson 12.883	50-60		0.1000	0.1004	0.0966	0.6765	0.2361	0.0872
TEROS	60-70		0.1000	0.1010	0.0938	0.6550	0.2470	0.0977
Composición PNA P (%) 0.7011	70-80		0.1000	0.1016	0.0909	0.6319	0.2584	0.1095
N (%) 0 2196	80-90		0.1000	0.1026	0.0871	0.5980	0.2742	0.1275
	90-95		0.0500	0.0517	0.0419	0.5663	0.2881	0.1453 🖕
A (%) 0.0790	05 100		0.0500	0.0500	0.0400		0.0070	0.4500
1	1.1							

Gráfica 5.3.5 Presentación de resultados de cálculos para la caracterización del gasóleo.

Además de que te genera los datos del PONA, también te calcula las densidades relativas, los tipos de puntos de ebullición y el Peso molecular Promedio:

También se tiene la opción de incrementar el número de decimales que se desea ver en el gráfico

			Opción	para	incrementar	los
Densidades No. de de	timales 4 🐳	1	decimale	s a los r	esultados.	
densidad relativa (15°C/15°C)	0.9081					
densidad relativa (20°C/ 4°C)	0.9045					
densidad [g/cm³] @ 15℃	0.9072					
densidad [g/cm³] @ 20°C	0.9045					
Puntos de Ebullición No. de de	timales 1					
VABP (°C) 626.1 CABP (C) 615.1					
WABP (°C) 627.7 MeABP	(°C) 616.4					
MABP (°C) 617.6						
Factor Watson	12.883					
Composición PNA P (%)	0.7011					
N (%)	0.2196					
A (%)	0.0790					
MW promedio	640.4					

Los resultados generados en estos gráficos pueden ser exportados a una hoja de Excel mediante el siguiente procedimiento:

Selecciona el botón

Exportar Resultados

- MÉTODOS DE ESTI	MACIÓN		
Peso molecular	Kesler-Lee 💌	Presión Crítica	Kesler-Lee 💌
Densidad relativa	K Watson constante 💌	Temperatura Crítica	Kesler-Lee 💌
		Factor Acéntrico	Kesler-Lee 💌
ESTIMAR	Exportar Resultados		Cerrar

Gráfica 5.3.6 Presentación de barra de selección de ecuaciones para los cálculos.

Este mismo procedimiento se utiliza para calcular el PIANO en la gasolina, y el PONA en el Aceite cíclico ligero y Aceite decantado o slurry como se aprecia en las siguientes figuras:

Los datos que pide el simulador para la gasolina son:

- Destilación D-86 en °C
- Peso específico de la gasolina

Gráfica 5.3.7 Presentación de Resultados de cálculos para Nafta ligera.

Los resultados obtenidos de esta gráfica son el PIANO, la entalpia de formación y el peso molecular promedio.

		N	lo. (de (dec	timal	es 4
ı (1	15°	C/1	l5°	C)			0.73
a (2	20%	c/	49	C)			0.73
0	9 15	5°C	-				0.73
0	¢ 20)°C					0.73
ici	ión	N	lo. (de (dec	timal	es 1
03	.4		С	ABF	۰ (°	C)	72
06	.5		Μ	eAl	ЗP	(°C)	81
89	.1						
							11.6
A			Ρ	(%)		0.33
			N	(%)		0.64
			A	(%)		0.054
							-

Gráfica 5.3.8 Presentación de Resultados de cálculos para Nafta ligera 2.

Los datos que pide el simulador para el Aceite Cíclico ligero son:

- Destilación D-86 en °C
- Peso especifico del aceite cíclico ligero

Gráfica 5.3.9 Presentación de Resultados de cálculos para Aceite cíclico Ligero.

El programa también calcula la relación catalizador/ Aceite (COR), la entalpia de vaporización de la carga, los Cp (capacidad calorífica) del gasóleo, en fase líquido y vapor y también para el vapor de media ver tabla 5.3.

Fcat	673.75	kg/s
Cpcat	1.081316931	KJ/kg ⁰K
Tcat	970.15	К
Fgo	59.02356759	kg/s
Cpliqgo	3.147323213	KJ/kg K
Tfeed	458.15	К
Tb	889.525	К
Cpvaporgo	3.570391934	KJ/kg K
dHvap	200	KJ/kg
Fds	1.5019	kg/s
Cpds	2.051532	KJ/kg K
Tds	507.15	К
Tmixsupuesta	844.83	к
Tmixcalculada	853.1123943	к
Fxcarbon	0.269499417	kg/s
Cpxcarbon	2.09465604	KJ/kg K
	TCAL	
Temperatrua Calculada:	580 ºC	

Tabla 5.2 Calcula	do la Tmiv	(tomporatura	la mazala a la	antrada dal reactor	4
Tabla 5.5 Galculo		(temperatura t	le illezula a la	a enillaua uel reactor	,

En el apéndice **A** se presentan las ecuaciones utilizadas en el simulador para mejor referencia, en cuanto a la estimación de propiedades fisicoquímicas y el balance térmico que se realizó en este simulador.

PROPUESTAS DE MEJORA

Resultados:

Se verificó el método de análisis de gasóleos de carga a la FCC que se realizan en el laboratorio experimental de la refinería de Salina Cruz y se confirmó que aplican el método ASTM-D1160 - a presión reducida, sin embargo los datos que requiere el simulador FCC-SIM son a destilaciones D-1160 a 760 mmHg, por lo que es necesario convertirlos a temperaturas teóricas equivalentes en el apéndice A se ofrece el cálculo correspondientes para esta conversión de la destilación. Cabe aclarar que las simulaciones que se habían realizado hasta ahora en la refinería han estado utilizando todas las destilaciones descritas como si fueran resultados de TBP lo cual es incorrecto.

Propuestas:

- Se sugiere tomar este cálculo que se tiene en el apéndice A, para utilizarlo en la captura de datos en la hoja FCC-SIM y realizar la simulación correspondiente.
- Solicitar a KBC que incluya esta correlación en sus cálculos que realiza en FCC-SIM.

Resultados:

La simulación que se tiene actualmente en el simulador Petro-Sim, no se puede realizar alguna modificación en cuanto a la destilación de los cortes de fracciones de hidrocarburos que se tienen en la torre principal.

Propuestas:

Se sugiere utilizar la simulación que se presenta en este trabajo e incorporarlo en la simulación que se tiene actualmente en la refinería con Petro-Sim.

EVALUACIÓN ECONÓMICA DE LA PLANTA

> CASO I:

De los resultados obtenidos en el caso I, en donde se realizaron ajustes en las variables independientes sin mover la carga 28,793 bpd, se tuvo un incremento en miles de dólares de 135.0 a 141 mdls/día, es decir una ganancia neta de 6000 dólares por día. Esto se debió al incremento de gas seco, propano-propileno, butano-butileno y una ganancia en barril octano de 74532 con un aumento de octano de 92.75 a 93.19 de RONC. Este incremento se obtuvo a variaciones en la temperatura de salida del riser, adición de catalizador, disminución en la temperatura de precalentamiento y una disminución en flujo de aire.

Propuesta:

De acuerdo a la fig. 4.1.3 para poder incrementar 1 octano a la gasolina se requiere incrementar de 5 a 6 °C la temperatura del riser. Aumentar la temperatura del riser de 535 °C a 540 °C, si incrementamos la temperatura del riser aumenta la circulación de catalizador del regenerador al riser esto permite mayor contacto de la carga con los sitios activos del catalizador de acuerdo al balance de energía, la diferencial de temperatura con respecto a la altura del riser disminuye debido a las reacciones endotérmica por ello se incrementa la temperatura a salida del riser, este incremento del flujo de catalizador y temperatura lleva un sobre-craqueo del gasóleo de una manera que parte de la gasolina pasa a convertirse a propano. La disminución de flujo de aire al regenerador permite disminuir la velocidad de flujo en los ciclones y por lo tanto de la fase diluida, generando mayor conversión de CO a CO2, esta etapa genera más calor por lo que se debe de tener cuidado de monitorear la cantidad de O2 que no disminuya demasiado. Este efecto contribuye a mantener la temperatura constante de la fase densa evitando su enfriamiento por el aumento de circulación de catalizador al riser. Entonces podemos hablar de maximizar la gasolina si incrementamos la COR y mantenemos constante la temperatura de la fase densa del regenerador a carga constante a una temperatura proporcionada.

Una vez que se ha logrado los objetivos de alta temperatura del reactor y actividad del catalizador, la circulación del catalizador se debe de incrementar mediante la reducción de la temperatura de precalentamiento de la carga de alimentación de 185 °C a 175 °C hasta que la unidad FCC alcance las limitaciones del soplador de aire.

> CASO II:

En el caso II presentamos un análisis de resultados a partir de variaciones en la carga, en el flujo de aire al regenerador y la reducción de la temperatura de precalentamiento.

De las gráficas antes mencionadas en el capítulo de análisis de resultados se observa que la conversión del gasóleo disminuye con un aumento en la carga a temperatura constante, pero el barril octano aumenta con el incremento de la carga, sin embargo también observamos que el octano disminuye a mayor incremento de carga y temperatura constante.

A partir de este análisis se calcularon las ganancias que se tienen en la refinería a diferentes cargas procesadas en la planta catalítica No.2.

Fig. 1 Relación de ganancias de Miles de dólares por día a diferentes cargas de gasóleo en la operación de la planta catalítica No.2.

Tenemos un rango de aportación de márgenes de ganancias para la refinería de acuerdo a su esquema de proceso general es decir hacia donde están enfocados los derivados que salen de la planta catalítica No.2, si vemos en la gráficas el margen de mejores ganancias (160 a 180 mdls/día) es cuando la planta opera en un rango de 30,000 a 38, 500 bpd. Este efecto se debe a que un aumento en la carga disminuye la conversión de gasóleo a temperatura constante, cuando alcanzamos los 40,000 bpd y la temperatura de 540 °C de diseño la conversión del gasóleo total disminuye hasta un 78 % vol. De acuerdo al balance de materia un incremento en la carga disminuye considerablemente la conversión de cada uno de los productos con respecto a la altura del riser y esto sucede en esta planta, la relación de COR a la temperatura máxima del riser no es suficientemente alta para poder craquear el gasóleo de acuerdo a las necesidades de la planta. Por otra parte cargas a bajo de 30,000 bpd, si se mantiene temperaturas altas estamos sobre-craqueando el gasóleo es tan alta la actividad del catalizador que parte de la gasolina de acuerdo a las reacciones cinéticas se está convirtiendo a propanopropileno.

A partir de un caso base del día 19 de febrero del 2010, se buscaron las condiciones óptimas para lograr la máxima rentabilidad de la planta, en términos de valores de la producción.

Propuesta:

Los cambios de cargas en la FCC deben de contemplar consideraciones mediante el esquema general de la refinería para tomar la opción de generar más gasolina o orientarlo a la producción de gases ligeros. Como podemos ver los rangos de mayor ganancia se tiene cuando la planta opera de 30,000 a 38,500 bpd y este efecto depende también no solo de las condiciones de operación sino también del tipo de catalizador que se tenga en la planta.

Resultados:

Un parámetro importante para poder simular el comportamiento del regenerador son los datos de la composición de los gases de combustión y la lectura del O2 presente en el regenerador, por medio de estos resultados se obtiene el balance térmico del convertidor, sin embargo no se cuenta actualmente con este analizador de O2 en línea para poder comparar estos resultados de laboratorio que normalmente se realiza por análisis orsat dos veces a la semana y que tienen cierto error de lectura. Un cambio en la variación de la carga de un día para otro, la respuestas a los ajustes de operación son muy lentos, claro que no afecta a la operación de la planta porque también sabemos que el balance térmico se ajusta por la naturaleza del proceso. Sin embargo si queremos maximizar la

operación es necesario una respuestas más rápida a los ajustes de las condiciones de operación.

Propuesta:

Es recomendable contar con un analizador de O2 en el regenerador, para poder realizar un mejor análisis de la combustión, evitando las pérdidas innecesarias de calor y mejorando la relación COR, ya que un exceso de O2 contribuiría a un enfriamiento de la fase densa y diluida del regenerador.

EVALUACIÓN DEL AGOTADOR

Durante las corridas realizadas en el simulador se observó una alta relación de H2 sobre el coque de 14% wt comparado al valor del diseño (9.5 % Wt). Esta relación se mide principalmente en el regenerador sin embargo existe un equipo que se encuentra en la parte superior del regenerador que se conoce como agotado que su función principal es disminuir el paso de hidrocarburos pesados al regenerador.

El contenido de H2 de la mezcla resultante, puede variar de 6 a 10 % wt y está directamente relacionado con la eficiencia del agotador:

Valores de referencia	AGOTAMIENTO			
H2 en coque % wt	Excelente	Regular	Malo	
	6-7	8-9	10	

Es importante reducir la relación H2 sobre el coque. Cantidades altas de hidrocarburos que pasen al regenerador son quemados como coque incrementando la temperatura de la fase densa y diluida del regenerador. La combustión de hidrógeno a agua produce 3.7 veces más calor que la combustión de carbono a bióxido de carbono, esto puede originar una desactivación térmica permanente que daña la estructura del catalizador.

Propuesta:

Se puede considerar realizar ajustes en el flujo de vapor. El valor de diseño de operación es de 4 lb/ton es decir libras de vapor por tonelada de circulación de catalizador. Actualmente opera con una relación de 2.94 lb/ton. Otra sugerencia es el de incrementar el nivel de catalizador aumentando con esto el tiempo de residencia en el agotador. Se debe de tener como consideración un parámetro de control que sería cuidar que no disminuya la temperatura del regenerador y que la perdida de catalizador en el reactor no aumente.

Se debería de buscar la forma de mejorar mecánicamente la reducción del H2 en el coque y este puede ser por medio de otras tecnologías como por ejemplo el agotador empacado que su instalación es mucho más flexible, reduce la delta coque y disminuye el consumo de vapor.

Resultados:

El simulador que se elaboro en esta tesis, presenta las misma capacidades de predicción de las propiedades químicas y composiciones como PNA que se tienen en la carga y producto, estos resultados fueron comparados con los resultados obtenidos de la hoja comercial FCC-Sim para diferentes días de operación de la planta catalítica presentando una desviación de 2 % en los valores de Parafinas, naftenos, aromáticos y olefinas.

	GASOLEO		ACL		GASOLINA	
Composición	Petro-Sim	Simulador	Petro-Sim	Simulador	Petro-Sim	Simulador
Parafina (%wt)	0.69	0.70	0.32	0.28	0.31	0.33
Naftenos (%wt)	0.23	0.22	0.08	0.07	0.60	0.64
Aromáticos(%wt)	0.07	0.08	0.60	0.65	0.09	0.05
MW promedio	643.0	640.4	179	177.9	93.8	95.6

Propuestas:

Sería interesantes que este trabajo se concluyera, incluyendo los cálculos el balance térmico en el regenerador y los cálculos para la cinética de reacción que se tiene en el riser, además desarrollar una forma de transferir estos resultados a un programa como Aspen y/o Hysis para poder evaluar la torre principal y obtener los productos en Barriles por día (BPD).

CONCLUSIONES

Los resultados de estimación de parámetros obtenidos de Petro-Sim muestran que el modelo cinético es capaz de representar satisfactoriamente los casos de operación industrial. El modelo fue validado con un conjunto de casos de operación, mostrando desviaciones porcentuales no mayores al 2% en la predicción de los rendimientos másicos de gasolina ligera.

El grado de análisis se complica en el proceso, ya que existen muchas interrelaciones entre las variables independientes y su efecto puede impactar ya sea a una ó a más variables dependientes en términos de operación. Por ejemplo los movimientos que se realizan para ajustar la carga a la unidad, el operador tiene que hacer ajustes también en la temperatura del reactor, flujo de aire del soplador, el reciclo de slurry al convertidor, precalentamiento a la carga y velocidad de adición de catalizador. Todo esto puede provocar un cambio en la circulación de catalizador y esto sucede, porque los cambios realizados por el operador afectan los requerimiento de balance de energía entre el reactor y regenerador. Estos cambios en las variables de operación son necesarias para que los productos se encuentre dentro de los límites de especificación requeridas en la producción de Pemex-magna, Pemex-premium y también para incrementar la producción barril octano en la gasolina.

Se buscaron mediante el simulador mejorar las condiciones de operación con la intención de aumentar la rentabilidad, para una carga de 38,500 bpd, pero las ganancias son mínimas a pesar de cambios realizados en las condiciones de operación como la temperatura de precalentamiento y flujo del soplador de aire, además se tuvo un incremento en la producción de gasolina de 180 b/d y una diferencia de ganancia de 0.07 dls/barril, esto significa que las ganancias son mínimas de acuerdo al simulador porque la planta en el esquema actual ha hecho cambios en su operación como por ejemplo la disminución de la temperatura de precalentamiento que de diseño era de 230 hasta lo actual de 185 °C, estas condiciones incrementa la rentabilidad de la planta, bajos este esquema la planta se encuentra trabajando en condiciones de mayor ganancia de gasolina.

El empleo de herramientas como estas nos permite poder evaluar y predecir cuál sería la mejor operación de la planta en función de costos y ganancias que hoy en día es uno de los papeles importantes que se tratan en la refinería sin duda alguna la economía.

Es importante conocer los fundamentos físico-químicos y las bases de ingeniería sobre la desintegración catalítica para emplear en forma confiable el simulador Petro-Sim, así también tener la seguridad de los resultados que se obtienen.

Otro resultado del empleo del simulador fue el de explorar la rentabilidad de la planta al aumentar la carga del gasóleo y encontrar que hay un intervalo de 30,000 a 38500 bpd en la cual se alcanza los mayores rendimientos, afuera de este intervalo las pérdidas son considerables.

Las variables de operación que más afectan a la conversión del gasóleo en gasolina son: La actividad del catalizador, la tasa de circulación del catalizador y temperatura del reactor. El máximo de barriles octano se produce al incrementar la tase de circulación del catalizador y la temperatura del reactor, hasta que la conversión queda limitada por dos o más restricciones de operación de la unidad como por ejemplo la temperatura máxima en el reactor.

Una aportación adicional de este trabajo fue el inicio de la elaboración de un simulador matemático de plantas FCC. Se logró construir algoritmos y programas de cómputo que permiten caracterizar la carga y conocer su composición desglosada por tipos de hidrocarburos presentes. A su vez esta información será indispensable para plantear el modelo cinético del riser. Sería deseable continuar con este trabajo; Para concluirlo se requiere de encontrar los mejores parámetros de constantes cinéticas que nos proporcionen una aproximación más cercana de los valores de rendimientos que se tienen en la planta, así como el balance térmico para conocer la cantidad de circulación de catalizador hacia el riser. Un proyecto aun más ambicioso seria el que a partir de esto, se pueda exportar estos resultados a un simulador convencional por ejemplo Hisys o Aspen y realizar la evaluación de cualquier planta de proceso.

REFERENCIAS

Abou-Jeyab, R. A.; Gupta, Y. P. Control of the Fluidized Catalytic Cracking Process Using a Simplified Model Predictive Controller. Ind. Eng. Chem. Res. 1996, 35, 3581-3589.

Ali, H.; Rohani, S.; Corriou, J. P. Modelling and Control of a Riser Type Fluid Catalytic Cracking (FCC) Unit. Trans IchemE, 1997, 75A, 401-412.

Ali, H.; Rohani, S. Dynamic Modeling and Simulation of a Riser-Type Fluid Catalytic Cracking Unit. Chem. Eng. Technol. 1997, 29, 118-130.

Al-Khattaf, S. Difussion and Reaction of Hydrocarbons in FCC Catalysts. Tesis Doctoral. The University of Western Ontario. London, Canada, 2001.

Al-Khattaf, S; de Lasa, H. I. Activity and Selectivity of FCC Catalyst Role of Zeolite Crystal Size. Ind. Eng. Chem. Res. 1999, 38, 1350-1356.

Al-Khattaf, S; de Lasa, H. I. The role of Diffusion in Alkyl-Benzenes Catalytic Cracking. Applied Catal. A: General. 2002, 226, 139-153.

Alvarez-Ramírez, J.; Aguilar, R.; López-Isunza, F. Robust Regulation of Temperature in Reactor-Regenerator Fluid Catalytic Cracking Units. Ind. Eng. Chem. Res. 1996, 35, 1652-1659.

American Petroleum Institute (API). Technical Data Book Petroleum Refining. New York, EUA, 1969.

Arandes, J. M.; Abajo, I.; Fernández, U.; López, D.; Bilbao, J. Kinetics of Gaseous Product Formation in the Coke Combustion of a Fluidized Catalytic Cracking Catalyst. Ind. Eng. Chem. Res. 1999, 38, 3255-3260.

Arandes, J. M.; Azkoiti, M. J.; Bilbao, J.; de Lasa H. I. Modelling FCC Units under Steady and Unsteady State Conditions. The Can. of Chem. Eng. 2000, 78, 111-123.

Arandes, J. M.; de Lasa, H. I. Simulation and Multiplicity of Steady States in Fluidized FCCUs. Chem. Eng. Sci. 1992, 47, 2535-2540.

Araujo C. y López-Isunza, F. Comunicación personal, Ciudad de México. Marzo 2000.

Arbel, A.; Huang, Z.; Rinard, I. H.; Shinnar, R. Dynamics and Control of Fluidized Catalytic Crackers. 1. Modeling of the Current Generation of FCC's. Ind. Eng. Chem. Res. 1995a, 34, 1228-1243.

Arbel, A.; Rinard, I. H.; Shinnar, R. Dynamics and Control of Fluidized Catalytic Crackers. 2. Multiple Steady States and Instabilities. Ind. Eng. Chem. Res. 1995b, 34, 3014-3026.

Arbel, A.; Rinard, I. H.; Shinnar, R. Dynamics and Control of Fluidized Catalytic Crackers. 3. Designing the Control System: Choice of Manipulated and Measured Variables for Partial Control. Ind. Eng. Chem. Res. 1996, 35, 2215-2233.

Arthur, J. R. Reactions Between Carbon and Oxygen. Faraday Soc. Trans. 1951, 47, 164-178. Austin, G. T. Manual de Procesos Químicos en la Industria. McGraw-Hill, U.S.A., 1988.

Avidan, A. A.; Shinnar, R. Development of Catalytic Cracking Technology. A Lesson in Chemical Reactor Design. Ind. Eng. Chem. Res. 1990, 29, 931-942.

Blanding, F. H. Reaction rates in Catalytic Cracking of Petroleum. Ind. Eng. Chem. 1953, 45(6), 1186-1197.

Box, G. E. P.; Draper, N. R. The Bayesian Estimation of Common Parameters from Several Responses. Biometrika. 1965, 52, 355–365.

Box, G. E. P; Hunter, W. G.; Hunter, J. S. Statistics for Experimenters: An Introduction to Design, Analysis and Model Building. John Wiley & Sons, New York, 1978.

Brenan, K. E.; Campbell, S. L.; Petzold, L. R. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. Elsevier-Science Publishing, 1989.

Buchanan, J. S. Analysis of Heating and Vaporization of Feed Droplets in Fluidized Catalytic Cracking Risers. Ind. Eng. Chem. Res. 1994, 33, 3104-3111.

Corella, J.; Bilbao, R.; Molina, J. A.; Artigas, A. Variation with Time of the Mecanism, Observable Order and Activation Energy of the Catalyst Deactivation by Coke in the FCC process. Ind. Eng. Chem. Process Dev. 1985, 24, 625-636.

Corella, J.; Francés, E. Analysis of the Riser Reactor of a Fluid Cracking Unit. Fluid Catalytic Cracking II. ACS Symposium Series. 1991, 452, 165-182.

Corella, J.; García-Dopico, M.; Francés, E. An Advanced Model for a Whole FCCU based on the Kinetics and on Basic Principles. Part 1: The Model in Detail. Presentado en The AIChE Spring Nat. Meet. 1994, abril, 17-21.

J.M. Smith, Ingeniería de la cinética química, 1ª ed, CECSA, México, 1986

Jim Montgomery, La guía de craqueo catalítico fluidizado, parte uno, Grace Davison. Baltimore, Maryland Mayo 1992,

Reza Sadeghbeigi, Fluid catalytic cracking handbook , edition second , Butteworth-Heinemann. United State of America 2000,40-82, 182-205

J.P Watiquier Refino del Petróleo, Petróleo crudo productos petrolíferos Editorial ISE, 1994 . Paris Francia, 40-80.

John J. McKetta , Petroleum Processing Handbook , editorial Marcel Dekker , 1990 New York , 300-400.

Wang I; Doctoral Thesis; University of Utah; August 1974, pp. 13-15

Bruce, N. Perry , James Milton Brown, Method of characterizing feeds to catalytic cracking process units , Patent Number: 5,817,517 , octuber 6, 1998 .

FCC_SIM Training Seminar, November 2006, company KBC, 10-200.

Manual de la planta desintegradora catalítica No. 2, proyecto Pemex R-182-33-02,(bufete industrial especificaciones y dibujos de ingeniería, dibujos y manuales del fabricante)

ESTIMACIÓN DE PROPIEDADES FISICOQUÍMICAS Y BALANCE TÉRMICO

La simulación efectiva de una unidad FCC requiere de un profundo entendimiento de la cinética y la hidrodinámica combinada de los 2 reactores interconectados, el riser y el regenerador. Es más, es crucial comprender los efectos de los 2 factores principales en las reacciones catalíticas, la alimentación y el catalizador. Aunque se han hecho numerosos esfuerzos para adicionar conocimiento a través de la simulación de la operación de la FCC y desarrollar sistemas catalíticos avanzados, una brecha relativa aparece en el área de la simulación de los efectos de la alimentación en los procesos FCC. En la desintegración catalítica fluida, la calidad de la alimentación es especialmente crítica por sus efectos en el balance de calor y esencialmente en la severidad de la desintegración, además de sus efectos fundamentales en la inherente craqueabilidad de las estructuras moleculares. Las cargas a las FCC incluye corrientes directas de destilación, gasóleos de vacío, residuos atmosféricos y de vacío, los cuales son mezclas complejas de hidrocarburo, incrementando así el grado de complejidad del modelo de FCC. El número de componentes y tipos de hidrocarburos en la carga a la FCC se incrementa con el rango de ebullición, lo cual aumenta las dificultades en los grados de posibilidad de una identificación analítica.

El número teóricamente posible de los isómeros de parafinas nos da una idea de la complejidad del problema: pueden existir 75 isómeros con 10 átomos de carbono, así como para un número de carbono de 20, se pueden encontrar 36,600 isómeros parafínicos mientras que para un número de carbono de 100 el número de isómeros posiblemente existentes aumenta a 5.92x10³⁹.

Idealmente, el último objetivo en los procesamientos de FCC podría estar relacionado a la composición de la alimentación y obtener calidad y rendimiento de productos para condiciones particulares de operación. Sin embargo, como no es práctico por razones técnicas y económicas obtener una caracterización completa de las alimentaciones a las FCC, la industria desarrollo métodos para correlacionar propiedades combinadas de las propiedades de la carga con los productos de salida de la FCC.

Los métodos de caracterización pueden variar ampliamente en las técnicas sofisticadas. Se requieren diferentes métodos para los diferentes usos finales (por ejemplo, rutinas diarias para las unidades en operación, simulación de procesos, diseño de procesos, desarrollo de catalizadores, etc). Cualquiera que sea el propósito, el entendimiento de las

propiedades de la alimentación, la caracterización de la carga y las limitaciones analíticas es crucial.

Generalmente, uno puede distinguir 3 mayores tendencias en el área de la caracterización de la alimentación a las FCC:

- ⇒ Modelos paramétricos, el cual incorpora propiedades importantes de la carga en modelos matemáticos sin adicionar mucho conocimiento a cerca de el efecto actual de cada propiedad.
- ⇒ Modelos de Agrupamiento (lump's), en el cual los diferentes tipos de hidrocarburos son seleccionados en grupos que son supuestos para caracterizar el comportamiento de la carga total de acuerdo a esquemas de pseudo-reacciones.
- ⇒ Cinética moderna de "eventos simples" para representar la carga, la cual permite la descripción de un mecanismo de desintegración catalítica basado en un mecanismo bien conocido de varias reacciones que envuelven la formación de iones carboneo.

Cada enfoque parece tener sus propias ventajas y desventajas según su finalidad y su aplicabilidad en el nivel de proceso real. Los modelos paramétricos son fácilmente aprobados en la industria para operaciones en tiempo real, porque implican propiedades que son fáciles de medir sobre una base diaria en cualquier laboratorio de refinería, Como la densidad de la alimentación, su punto de ebullición, índice de refracción, etc. La principal desventaja de modelos paramétricos es que son totalmente empíricos, y su falta de fundamento lo hace aplicable sólo para el proceso específico para los que fueron desarrollados, mientras que la gama de los datos de diseño originales restringe su exactitud.

Por otro lado, el modelo de agrupamiento esta dirigido a proporcionar información de cómo afecta la calidad de la alimentación a las reacciones de desintegración. La idea general de esos modelos es definir agrupamientos de las parafinas, naftenos y aromáticos mientras se separa la carga total de la FCC en dos fracciones:

- a) La fracción pesada que contiene las cadenas largas de moléculas parafínicas, moléculas nafténicas y aromáticos poli cíclicos de alto número de carbono.
- b) La fracción ligera que envuelve moléculas de hidrocarburos con un número de carbono promedio de hasta 20.

La clara ventaja de este tipo de modelos es que ellos son consistentes con la teoría general de como cada grupo de hidrocarburos contribuye a la desintegración catalítica y por supuesto con evidencia experimental. Sin embargo los requerimientos de laboratorio para mediciones experimentales complejas no son convenientes y a menudo no son una opción práctica del todo para las refinerías, desde el punto de vista tanto económico como de capacidad de los laboratorios.

Finalmente, el más moderno y avanzado modelo cinético de eventos simples se aproxima a liderar lo relacionado a los parámetros cinéticos que son verdaderamente independientes de las calidades de bulto de la carga. Los análisis en la alimentación son realizados por cromatografía líquida y Cromatografía de gases-Espectrometría de masas (GC-MS), sin embargo, la aplicación de cada modelo para la desintegración catalítica de cargas industriales de la FCC están lejos de ser prácticas, como resultado de la complejidad de los análisis y la correspondiente limitación computacional.

En paralelo a estas tres mayores tendencias en caracterización de la carga, se está haciendo un esfuerzo significativo para interrelacionar las propiedades de bulto de las fracciones de petróleo y producir técnicas para su caracterización molecular para fácil medición de propiedades del petróleo. En la caracterización de las fracciones de petróleo, se tienen dos esquemas de clasificación diferentes dominantes:

La primera es la clasificación de hidrocarburos de acuerdo a elementos estructurales, como son anillos aromáticos o nafténicos, carbones aromáticos, etc., el cual se lleva a cabo principalmente por resonancia magnética nuclear (1H NMR, 13C NMR) espectroscopia y es pronosticado exitosamente por el método empírico de Van Ness y Van Westen comúnmente conocido como el método NDM.

La segunda clasificación corresponde al tipo molecular de los hidrocarburos contenidos en una fracción del petróleo, el cual es manejado por espectroscopia de masas con lo cual se predice satisfactoriamente las correlaciones empíricas de Riazi y Daubert. Es más, se han presentado nuevas correlaciones para la caracterización estructural y molecular de las fracciones de petróleo en la literatura en años recientes. Dhulesia presentó la ecuación total, la cual afirmó para anular el problema con la predicción del método ndM, mientras que el método G-L de Guilyazetdinov y el concepto DBE presentado por Korsten apuntó a una caracterización analítica de las fracciones de petróleo más parecida en base a un número de suposiciones lógicas sobre la estructura promedio de los hidrocarburos

Cada tipo de hidrocarburo reacciona bajo las condiciones de desintegración catalítica de una manera definida. La mayor diferencia entre los hidrocarburos de un tipo en particular está en su craqueabilidad o alcance de la conversión para unas condiciones de operación

definidas. En todo caso, para cada tipo de molécula, al aumentar el peso molecular o número de carbono se incrementa la craqueabilidad. Una variedad de reacciones primarias y secundarias se dan lugar durante la desintegración catalítica, estas incluyen ruptura de anillos, isomerización, ciclización, des hidrogenación, polimerización, transferencia de hidrógeno y condensación de poli aromáticos. Por lo tanto, los resultados de desintegración aun para una molécula simple como una parafina normal son complejos.

Para la caracterización del gasóleo se requiere de varias ecuaciones y métodos aplicados para la estimación de propiedades físicas y químicas involucradas en el proceso de FCC. Como sabemos hasta la fecha es difícil de tener una análisis completo de la carga, muchos avances se tienen con nuevas técnicas en equipos de Resonancia magnética Nuclear y Espectrometría de masas pero son análisis muy caros y no rutinarios por ello la mayor parte de los procedimientos aquí descritos están basados en correlaciones empíricas.

A.1 CONVERSION DESTILACION D-1160 A 10 mmHg A DESTILACION AET.

El método ASTM-D1160 ,cubre la determinación a presiones reducidas , el intervalo de temperaturas de ebullición para productos de petróleo pesados(gasóleos pesados, residuo atmosférico y de vacío) que pueden ser parcialmente o completamente vaporizados a una temperatura máxima de liquido a 400 °C. Los resultados que nos proporciona laboratorio en cuanto a la destilación del gasóleo están basados en el método ASTM D-1160, por lo que es necesario pasarlos a destilación AET (temperatura equivalente atmosférica) que es equivalente a una curva hipotética TBP , para continuar con el análisis de propiedades del gasóleo.

$$AET = (748.1 * A) / (1/(VT, °K) + 273.16) + 0.3861 * A - 0.00051606) - 273.1$$
 (b.1)

$$A = (5.9991972 - (0.9774473 * LOG(P)))/(2663.129 - (95.76 * LOG(P)))))$$
(b.2)

$$A = (5.143886 - (0.9774473 * LOG(p)))/(2579.129 - (95.76 * LOG(p)))))$$
(b.3)

A= valor obtenido de ecuación b.2,b.3

P= presión en sistema en mmHg.

p =presión del sistema en kPas.

A.2 PUNTO DE EBULLICIÓN PROMEDIO

Dado que las fracciones de petróleo son una mezcla de hidrocarburos de diferente naturaleza, es comprensible que sus propiedades representen el comportamiento global de tales fracciones. A diferencia de las especies puras, las fracciones de petróleo son representadas con propiedades promediadas tales como el punto de ebullición promedio. Existen diferentes puntos de ebullición promedio para las fracciones de petróleo. El punto de ebullición molar promedio (MABP, del inglés: Mean average boiling point) es evaluado a partir del conocimiento de las fracciones molares de cada especie y sus respectivos puntos de ebullición:

$$MABP = \sum_{i=1}^{n} y_i T_{Bi} \tag{b.4}$$

El punto de ebullición promedio cúbico se evalúa a partir de las fracciones volumen de cada especie de la mezcla (CABP, punto de ebullición promedio cúbico):

$$CABP = \left(\sum_{i=1}^{n} y_{Vi} T_{Bi}^{1/3}\right)^{3}$$
(b.5)

En la práctica es común utilizar el promedio aritmético de MABP y CABP (MeABP, punto de ebullición medio):

$$MeABP = \frac{MABP + CABP}{2}$$
(b.6)

Por lo general no se conocen las fracciones mol y volumen de las mezclas complejas de hidrocarburos por lo que el punto de ebullición es empíricamente correlacionado con alguna curva de destilación de la mezcla ya sea TBP, ASTM D86 o ASTM D1160. Una correlación útil para el MeABP utiliza los puntos de la curva ASTM D1160 (Sadeghbeigi, 1995):

$$MeABP = VABP + \frac{5}{9} \left[2 - \left(\frac{9}{5} * \left(\frac{T_{90} - T_{10}}{135.5 + 0.135VABP} + 1.5\right)\right)^3 \right]$$
(b.7)

Donde VABP es el punto de ebullición volumétrico y se expresa como:

$$VABP = \frac{T_{10} + T_{30} + T_{50} + T_{70} + T_{90}}{5}$$
(b.8)

A.3 PESO MOLECULAR DEL GASÓLEO

En la literatura abierta existen varias correlaciones empíricas para la determinación del peso molecular. En este estudio analizamos la capacidad de predicción de las correlaciones mostradas en las Tabla A.1 y A.2. El banco de datos con el cual comparamos la predicción de las correlaciones empíricas proviene del simulador comercial FCC-SIM[™], que es una de las herramientas más utilizadas en la simulación de unidades FCC. Esta información incluye las características físicas de 16 **gasóleos mexicanos**. El resultado de esta comparación conduce a considerar que las correlaciones de Sim-Daubert, Whitson, y Katz- Firoozabadi rinden la mejor predicción del peso molecular de los gasóleos mexicanos, ver Tabla A.3. En este estudio se considera la posibilidad de utilizar cualquiera de estas correlaciones para el cálculo del peso molecular del gasóleo.

Tabla B.1. Características de las correlaciones analizadas para la predicción de peso molecular.

Autor		Base de datos	Intervalos de uso
1.	Katz- Firoozabadi, 1978	No publicado	No publicado
2.	Huang, 1977	Especies puras	No publicado
3.	Riazi y Daubert, 1980ª	Especies puras	No publicado
4.	Sim y Daubert, 1980	Especies puras	No publicado
5.	Riazi- Daubert, 1987	Especies puras	Peso molecular: 70- 300 T. de ebullición: 305-616
			N
6	Whitson	Gasóleos	No publicado
•	1983	Gasóleos y crudos del petróleo	D
7.	. Ancheyta, 1998		Peso molecular: 60- 650
8.	Kesler-Lee		

De esta relación de correlación se encontró en la literatura que el porcentaje de desviación más pequeña es la correlación de Kesler-Lee, que es la ecuación que se muestra a continuación:

$$\begin{split} &Mw = -12272.6 + 9486.4 * \rho + ((4.6523 - 3.3287 * \rho) * (T_b * 1.8 + 492.7)) + (1 - 0.77084 * \rho - 0.02058 * \rho^2) * ((1.3437 - (720.79/(T_b * 1.8 + 492.7))) * 10^7)/(T_b * 1.8 + 492.7) + (1 - 0.80882 * \rho - 0.02226 * \rho^2) * ((1.8828 - (181.98/(T_b * 1.8 + 492.7))) * 10^{12})/(T_b * 1.8 + 492.7)) * \end{split}$$

A.4 PRESION CRÍTICA.

$$(Pc) = EXP(8.3634 - 0.0566/\sigma - (0.24244 + 2.2898/\rho + 0.11857/\sigma^{2}) * 10^{\circ} - 3 * (T_{b}$$
(b.10)
* 1.8 + 492.7) + (1.4685 + 3.648/\rho + 0.47227/\sigma^{2}) * 10^{\circ} - 7 * (T_{b} * 1.8 + 492.7)^{\circ} 2 - (0.42019 + 1.6977/\rho^{\circ}2) * 10^{\circ} - 10 * (T_{b} * 1.8 + 492.7)^{\circ} 3)

A.5 TEMPERATURA CRÍTICA:

 $Tc = 341.7 + 811.1 * \rho + (0.4244 + 0.1174 * \sigma) * (T_b * 1.8 + 492.7) + (0.4669 - 3.26238 * (b.11))$ $\rho) * 10^{5}/(T_b * 1.8 + 497.2)$

 $\rho = gravedad \ especifica$

 $T_b = Punto \ de \ ebullicion \ en \ ^R$

El factor acéntrico se obtuvo a partir de la definición del factor de caracterización de Watson (K)

 $K = ((MeBP * 1.8)^{(1/3)})/S_G$

(b.12)

 S_{G} = Gravedad especifica.

A.6 FACTOR ACENTRICO (w)

Proponen la siguiente ecuación para el cálculo del factor acéntrico (w):

 $w = -7.904 + (0.1352 * Kw) - (0.007465 * Kw^2) + 8.359 * Ø + ((1.408 - 0.01063 * (b.13) Kw)/Ø)$

Para φ < 0.8

$$W \frac{= -\ln\left(\frac{Pc}{14.7}\right) - 5.92714 + \frac{6.09}{\emptyset} + 1.28862 \ln\left(\emptyset\right) - 0.16937 \,\emptyset^{^{6}}}{15.2518 - \frac{15.867}{\emptyset} - 13.471 \ln\left(\emptyset\right) + 0.45577 \,\emptyset^{^{6}}}$$
(b.14)

Donde:

pc = critical pressure, psia

Tc = critical temperature, °R

Tb = boiling point, °R

w= acéntrico factor

M = Peso molecular

A.7 DENSIDAD RELATIVA DE CADA LUMP

Un procedimiento útil para predecir las densidades relativas del pseudocomponente *i* es utilizar el Factor *KUOP* de la carga conocido también como Factor de Watson:

$$K_{uop} = \frac{(1.8MeABP_{gol})^{0.3}}{SG_{GOL}}$$
(b.15)

Una vez calculado este factor, se puede usar para evaluar las densidades relativas dependiendo del punto de ebullición promedio de cada lump. Como la naturaleza química de cada lump es variable, sería conveniente considerar también variación en el Factor *K*. En este trabajo se propone tomar en cuenta esta variación a partir de un parámetro, *fK*, que se correlaciona con las densidades relativas de los lumps de planta para los 16 gasóleos mexicanos.

$$SG_I = fx \frac{(1.8MeABP_{gol})^{0.3}}{K_{uop}}$$
 (b.15)

Donde:

$$Fx = 0.14672T_b^{0.3243}$$
 (b.16)

A.8 ÍNDICE DE REFRACCIÓN DEL GASÓLEO

En la literatura se encontraron 3 correlaciones que predicen el índice de refracción: dos de Riazi y Daubert (1980b, 1987) y una de Dhulesia (1986), ver Tabla A.4. Un análisis realizado en esta investigación mostró que, para los 16 gasóleos mexicanos, la correlación de Dhulesia es superior a las correlaciones de Riazi-Daubert. Esto puede deberse a que, en principio, la correlación de Dhulesia es específica para predecir el índice de refracción de gasóleos mientras que las correlaciones de Riazi-Daubert se basan en propiedades de especies puras. La información que se ha utilizado para efectos de comparación proviene del simulador comercial y las desviaciones absolutas para el cálculo del índice de refracción se muestran en la Tabla A.5. Una carga con n=1.5105 es más difícil de crackear que una carga con un n= 1.4990

Tabla B.2. Desviaciones medias absolutas para la evaluación del índice de refracción.

Autor	Desviación promedio absoluta
Dhulesia (1986)	0.0040
Riazi-Daubert (1980b)	0.0117
Riazi-Daubert (1987)	0.0128

$$n = 1 + 0.8447 * (Sg^{1.2056}) * ((AET + 273.16)^{-0.0557}) * (Mw^{-0.0044})$$
(b.17)

A.9 PESO MOLECULAR PARA CADA LUMP

Como en el caso de la estimación del peso molecular del gasóleo, se ha estudiado la capacidad de predicción de varias correlaciones de peso molecular. La información necesaria para este análisis proviene de las propiedades físicas de especies puras del *Technical Data Book Petroleum Refining* (1969). En el análisis se consideraron 666 especies de diferentes familias químicas tales como: parafinas, mono olefinas, di olefinas, ciclo parafinas, aromáticos, alquilciclopentanos, alquilciclohexanos, alquilbencenos y alquilnaftalenos. El análisis fue realizado por regiones de peso molecular de 20 y 30 daltons y los resultados por familia química se muestran en las Tablas A.7 y A.8. Como puede apreciarse, la capacidad de predicción de las correlaciones para el peso molecular depende del intervalo de peso molecular y, en consecuencia, del punto de ebullición así como también de la familia química. En este estudio consideramos la posibilidad de seleccionar cualquiera de estas correlaciones para la evaluación del peso molecular promedio de cada agrupamiento en el modelo cinético.

A.10 COMPOSICIÓN DE PARAFINAS, NAFTENOS Y AROMÁTICOS (PNA)

La composición molar PNA es una de las maneras más utilizadas para caracterizar fracciones de petróleo. Algunos modelos cinéticos utilizan directamente correlaciones para la composición PNA con el fin de representar las reacciones de desintegración catalítica. En este trabajo la composición PNA se usa únicamente como información adicional y no forma parte del desempeño del modelo. La composición PNA es calculada a partir de las correlaciones desarrolladas por Riazi-Daubert (1980b) las cuales se usan como estándar del Método API.

Tabla b.3 Parámetros para calcular la composición de PNA por cada fracción de Volumen.

	А	В	С
Р	2.5737	1.0133	-3.573
N	2.464	-3.6701	1.96312
A	-4.0377	2.6568	1.60988

A.11 ENTALPÍA DE FORMACIÓN EN ESTADO ESTÁNDAR

Las entalpías de formación de cada lump dependen íntimamente de la composición del mismo. Para los gases ligeros esta composición puede obtenerse directamente de los datos de planta. Sin embargo, en el caso de lumps de peso molecular elevado (superiores a C6) no se dispone de tal composición ya que se requieren técnicas analíticas sofisticadas que no se realizan rutinariamente en una planta industrial. En este estudio se ha desarrollado una correlación empírica basada en información disponible en literatura. Los datos experimentales se basan principalmente en los resultados de Pekediz *et al.* (1997). Estos datos incluyen las entalpías de formación en estado estándar (1 bar, 298 K) para cortes pesados del gasóleo en el intervalo de ebullición de 540 a 800 K. Para tomar en cuenta las fracciones ligeras se ha incluido como información experimental a las entalpías de formación resultante es de carácter lineal con respecto al peso molecular y es expresada en kJ/kgmol.

$$\Delta H_F^{\circ} = -1952.041M + 134954.77 \tag{b.18}$$

A.12 ENTALPÍAS DE FORMACIÓN EVALUADAS A UNA TEMPERATURA T

Las entalpías de formación de cada pseudocomponente a cualquier temperatura pueden calcularse a partir de la entalpía de formación en estado estándar evaluada a una temperatura de referencia y la capacidad calorífica de cada lump:

$$(H_F)_i = (\Delta H_F)_i + \int_{Tref}^T (Cp)_i dT$$
(b.19)

Para obtener la entalpia de formación en el caso de los productos, la destilación con la que se cuenta por parte de laboratorio es la siguiente:

Tabla b.4 Métodos de destilación aplicadas en laboratorios de la Refinería.

productos	Destilación
GASOLINA LIGERA	ASTM-D86
ACL	AST-D86
ACEITE DECANTADO	D-1160

A.13 DETERMINACIÓN DE CORTES DE TBP APARTIR DE CORTES DE DESTILACIÓN ASTM-D86

(b.20)

 $Y_i = A * X_i^B$

Donde:

Yi= diferencia en destilación TBP entre dos cortes de la destilación en °F.

Xi= diferencias observadas en ASTM-D86 dos cortes de la destilación en °F.

A,B= constantes que van variando en los rangos del punto de ebullición que se muestran en la siguiente tabla:

i	Rangos (%)	A	В
1	10-0	7.4012	0.60244
2 3	30% -10% 50-30	4.9004 3.0305	0.71644 0.80076
4 5	70-50 90-70	2.5282 3.0419	0.82007 0.7549
6	100-90	0.11798	1.6606

Tabla B.5 Tabla de parámetros para pasar de destilación D-1160 a TBP.

Posteriormente se realizan el siguiente cálculo:

OBJETIVO	CÁLCULOS
	IBP(50)-Y4-Y5-Y6
TBP(10)	TBP(50)-Y4-Y5
TBP(30)	TBP(50)-Y4
TBP(70)	TBP(50)+Y3
TBP(90)	TBP(50)+Y3+Y2
TBP(100)	TBP(50)+Y3+Y2+Y1

En base de cálculo de 1 cm³ del gasóleo se procede a calcular para cada fracción o corte el porcentaje en masa y posteriormente el porcentaje en mol considerando que en cada fracción de corte existen grupos de parafinas, olefinas, naftenos y aromáticos los datos para los cálculos de obtuvieron de las propiedades físicas de especies puras del *Technical Data Book Petroleum Refining* (1969).

PARAFINAS			Se elige	en componentes m	nodelos
	Número de carbonos		Parafina	as (normales)	kJ/kgmol
			ТВ		2
		MW	(°C)	SG	DHf
	5	72.2	36.1	0.631	-146760
	6	86.2	68.7	0.664	-166940
	7	100.2	98.4	0.688	-187650
	8	114.2	125.7	0.707	-208750
	9	128.3	150.8	0.722	-228740
	10	142.3	174.1	0.734	-249460
	11	156.3	195.9	0.744	-270430
	12	170.3	216.3	0.753	-290720

DH f parafinas	-184789.7
MW promedio	98.5

OLEFINAS						
	No. De		OLEFINAS (mono-			
	carbono		olefinas)		kJ/kgmol	
			TB		-	
			(°C)	SG	DHf	
	5	70.1	30.0	0.646	-21300	
	6	84.2	63.5	0.678	-42000	
	7	98.2	93.6	0.702	-62800	
	8	112.2	121.3	0.719	-83600	
	9	126.2	146.9	0.733	-104000	
	10	140.3	170.6	0.745	-124700	
	11	154.3	192.7	0.757	-145300	
	12	168.3	213.4	0.762	-165900	

DH f olefinas	-64164.3
MW promedio	98.8

NAFTENOS					
	No. De		NAFTEN	IOS	
	carbono	MW	(ALQUIL	CICLOPENTAN	IOS)
			ТВ		DHf
			(°C)	SG	kJ/kgmol
n-			. ,		· ·
ciclopentano	5	70.14	35.9	0.6891	-77028
metil	6	84.16	71.8	0.754	-106197
etil	7	98.19	103.5	0.7712	-126897
propil	8	112.22	131.0	0.7811	-148097
butil	9	126.24	156.6	0.7893	-168294
pentyl	10	140.27	180.5	0.7954	-188994
hexil	11	154.30	202.9	0.8006	-209688
HEPTIL	12	168.32	223.9	0.8051	-230296

DH f naftenos	-119301.0
MW promedio	94.9

AROMÁTICO	S				
	No. De carbono	MW	AROM/ (ALQU TB (°C)	ÁTICOS ILBENCENOS) SG	DHf kJ/kgmol
BENCENO metil	6	78.11	80.1	0.8832	82880
benceno	7	92.14	110.6	0.8741	50170
etil benceno	8	106.17	136.2	0.8737	29920
propil	9	120.20	159.2	0.8683	7900
butil	10	134.22	183.3	0.866	-13140
pentil	11	148.25	205.5	0.8624	-33810
hexil	12	162.28	226.1	0.8622	-54310

DH f aromáticos	19849.2
MW promedio	104.8

A.14 ENTALPÍA DE FORMACIÓN EN ESTADO ESTÁNDAR

Las entalpías de formación de cada lump dependen íntimamente de la composición del mismo. Para los gases ligeros esta composición puede obtenerse directamente de los datos de planta. Sin embargo, en el caso de lumps de peso molecular elevado (superiores a C6) no se dispone de tal composición ya que se requieren técnicas analíticas sofisticadas que no se realizan rutinariamente en una planta industrial. En este estudio se ha desarrollado una correlación empírica basada en información disponible en literatura. Los datos experimentales se basan principalmente en los resultados de Pekediz *et al.* (1997). Estos datos incluyen las entalpías de formación en estado estándar (1 bar, 298 K) para cortes pesados del gasóleo en el intervalo de ebullición de 540 a 800 K. Para tomar en cuenta las fracciones ligeras se ha incluido como información experimental a las entalpías de formación resultante es de carácter lineal con respecto al peso molecular y es expresada en kJ/kgmol:

$$\Delta H f^{\circ} = -1952.041M + 134954.77 \tag{b.21}$$

A.15 CÁLCULOS REALIZADOS PARA OBTENER EL BALANCE TÉRMICO Y EL COR:

BASE DE DATOS.

Calores Normales de Combustión. (a 24 85 oC y 101 325 KPa = 1 atm)

Formación	KCal/gmol
C a CO	26.4157
C a CO2	94.0518
S a SO2	70.96
H2 a H2O	57.796

Capacidades Caloríficas

	KCal/Kg °C
Coque	0.5003
Catalizador	0.262

Cn	KCal/Kgmol °C
Aire	7.0745
02	7.6148
СО	7.3447
CO2	11.2171
SO2	11.4673
H2O	8.8556
N2	7.7949
Vapor	0.49

CÁLCULOS.

Gravedad Específica de la carga	0.9081
Gravedad Específica de la	
Recirculación	1.0600
Carga Fresca (lb/gal)	7.58
Recirculación (lb/gal)	8.85
Carga Fresca (Kg/lt)	0.91
Recirculación (kg/lt)	1.06

PRODUCCIÓN DE COQUE ESTEQUIOMÉTRICO.

Cantidad aire seco (Kgmol/h)	7663.71
Cantidad gases de comb (kgmol/h)	7208.08
Cantidad gases de combustión (m3/h)	170615.22
Flujo de gases de combustión	
Combustión de O2 (Kgmol/h)	201.83
Combustión de CO (Kgmol/h)	14.42
Combustión de CO2 (Kgmol/h)	922.63
Combustión de SO2 (Kgmol/h)	7.21
Combustión de N2 (Kgmol/h)	6061.99
O2 a la entrada (Kgmol/h)	1609.38
O2 a la salida (kgmol/h)	1138.88
H2O por diferencia (Kgmol/h)	941.01

Cálculo de Velocidades de

Quemado

Carbón (Kg/h)	11254.91
Hidrógeno (Kg/h)	1900.83
Azufre (Kg/h)	231.12
Coque Total (Kg/h)	13386.86

BALANCE DE CALOR EN EL REGENERADOR

Calor a la Entrada	
Temperatura Base = 15.6 C	
Combustión del Coque	
C a CO (MKCal/h)	380.81
C a CO2 (MKCal/h)	86775.39
S a SO2 (MKCal/h)	511.49
H2 a H2O (MKCal/h)	54386.33
Calor Total de Combustión (MKCal/h)	142054.02
Calor Sensible del Coque (MKCal/h)	3478.65
Calor Sensible del Aire (MKCal/h)	10024.71
Calor Neto de Entrada (MKCal/h)	155557.38

GASES DE COMBUSTIÓN

O2 (MKCal/h)	1064.13
CO (MKCal/h)	73.31
CO2 (MKCal/h)	7165.84
SO2 (MKCal/h)	56.79
H2O (MKCal/h)	5769.88
N2 (MKCal/h)	32717.73
Calor Total gases de Comb. (MkCal/h)	46847.67
Pérdidas por Radiación	5682.16
Calor al Vapor por enfriamiento	
(MKCal/h)	79.85
Calor Neto de Salida (MKCal/h)	52609.68
Calor Neto al Reactor (MKCal/h)	102947.70

Cálculo de Cambio de Entalpía en la Carga Fresca.

Temperatura del Reactor (F)	995
Temp.de la Carga Combinada (F)	365
Entalpías de la Carga Fresca en:	
La fase de Vapor (Btu / lb)	653.69
Entrada al Raiser (Btu / lb)	142.97

Cambios de la Entalpía en:

Carga Fresca	(Btu / lb)	510.71
Carga Fresca	(Kcal /Kg)	283.73

Cálculo de Cambio de Entalpía en la Recirculación

La fase de Vapor (Btu / lb)	575.90
Entrada al Raiser (Btu / lb)	126.66
Cambio de la Entalpía en:	
Recirculación (Btu / lb)	449.24
Recirculación (Kcal / Kg)	249.58

FLUJOS

Carga Fresca (Kg / d)	5099636
Recirculación (kg/d)	0
Vapor Total (kg / hr)	8,707

(COR)

11.41

BALANCE GENERAL DE CALOR EN EL REACTOR CALOR A LA ENTRADA

Calor de Catalizador Regenerado (MKcal	
/ hr)	102947.70

CALOR A LA SALIDA

Calor de la Carga Fresca (MKCal / hr)	60288.32
Calor de la Recirculación (MKCa l/ hr)	0.00
Vapor de Dispersión, Radiación y Pérdidas	2573.69
SUBTOTAL	62862.01
Calor de Reacción (MKCal/hr)	40085.69
Calor de Reacción por Kg de Carga Fresca	
(Kcal / Kg)	188.65
Circulación del Catalizador (Ton / min)	40.42
Relación Catalizador/Alimentación Total	