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Resumen

Uno de las principales cuestiones por resolver en biologia del desarrollo es
el origen de la informacion necesaria para que ocurran los procesos del desa-
rrollo, que constan de los procesos de diferenciacién celular y morfogénesis. En
particular, interesa entender la manera en que se genera la informacién posi-
cional que subyace la determinacién de tipo celular en plantas y animales. Por
otra parte, aunque en anos recientes se han caracterizado algunas propiedades
potencialmente genéricas de los sistemas de desarrollo (modularidad, robustez,
capacidad de evolucionar, etc.), ain es necesario entener cémo surgen, evolu-
cionan y se relacionan entre si dichas propiedades. En este trabajo se abordan
estas cuestiones desde un enfoque de modelacién de red de regulacion genética
y se toma como sistema modelo al de determinacién de tipo celular en la epi-
dermis de Arabidopsis thaliana. Este es uno de los sistemas vegetales mejor
descritos genética, celular y anatémicamente. Como parte de este trabajo se
recabd la evidencia experimental reportada en la literatura y se integré en mo-
delos dinamicos de redes discretas. Dichos modelos permitieron postular una
explicacion al origen de la informacion posicional asociada a la determinacion
y arreglo de las células epidérmicas, descubriendo un médulo funcional que es
suficiente para la generacion de los patrones de expresién genética observados
en sistema de estudio. El analisis tedrico del sistema permitié también mostrar
que la definicién clédsica de informacién posicional es, aunque 1til, insuficiente
para entender sistemas de desarrollo en que el contexto celular (posicién rela-
tiva) es generado dindmicamente por factores intra y extracelulares. Por otra
parte, los modelos analizados dieron lugar a predicciones verificables experi-
mentalmente, algunas de las cuales han sido confirmadas. El analisis de estos
modelos contribuyé también a entender el origen de la robustez en el sistema
de estudio y en las redes de regulacion genética en general. Esto llevé a vislum-
brar el papel de la redundancia dinamica en estas redes y a plantear nuevas
preguntas respecto a la evolucién de los sistemas de desarrollo.






Abstract

One of the main issues in current developmental biology is the understand-
ing of positional information required for cell differentiation and morphogenesis
to take place. In particular, it is central to understand how positional infor-
mation underlying cell-fate determination is generated in different plant and
animal systems. Also, although some potentially generic properties are begin-
ing to be uncovered and understood in gene regulatory networks (modularity,
robustness, evolvability, etc.), it is still necessary to comprenhend the way
these properties emerge, evolve and relate to each other. This study adopts a
modeling approach and explores such questions by using as a model system
one of the best characterized developmental plant systems: that of cell-fate de-
termination and patterning in the epidermis of Arabidopsis thaliana. As part
of this work, a vast amount of experimental evidence was gathered and inte-
grated into dynamic models of discrete gene networks. Such models enabled
explaning the origin of the positional information underlying cell-fate determi-
nation and patterning, uncovering a functional module that is both necessary
and suffiecient for pattern generation in the epidermis of Arabidopsis thaliana.
Moreover, the theoretical analysis of the system under study showed that the
classic definition of positional informatios is, although useful, insufficient to
study developemental systems in which cell context (relative position) is dy-
namically generated by intra and extracellular factors. These models also yield-
ed predictions that are experimentally testable, some of which have already
been confirmed. Finally, analizing the proposed models contributed to under-
standing the origin of robustness in the system under study, as well as in gene
regulatory networks in general. This helped to further comprehend the role of
dynamic redundancy in such networks, opening new questions regarding the
evolution of developmental systems.
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Capitulo 1

Introduccion

1.1. Estudios tedricos en biologia evolutiva y
del desarrollo

La biologia del desarrollo es una ciencia de procesos, de cambio. Estudia
la transformacién de cigotos unicelulares en embriones y luego en organis-
mos adultos de una gran complejidad estructural y functional (Gilbert 2006).
Ademas, en el caso de las plantas, estudia también el surgimiento y modi-
ficacion de 6rganos y estructuras (hojas, flores, semillas, etc.) a lo largo de
toda la vida del organismo. Contrario a lo que ha planteado el llamado pre-
formacionismo en sus diferentes versiones (Oyama 2000, Lewontin 2000) —
incluyendo areas de la genémica — el desarrollo de los seres vivos no estd pro-
gramado a priori ni consiste en el desenvolvimiento o decodificacién de formas
preexistentes, sino en el surgimiento mismo de las formas y de las heterogenei-
dades que caracterizan a los organismos (Waddington 1957, Oyama 2000).
Asi, una de las preguntas centrales para la biologia del desarrollo es la de
cémo surgen estas formas y patrones a partir de interacciones entre factores
hereditarios, fisicoquimicos y ambientales, entre otros. En el intento de res-
ponder esta pregunta, la biologia del desarrollo de nuestros dias integra areas
como genética, biologia molecular, fisiologia, ecologia, matemética y las recién
llegadas gendémica y protedmica.

El estudio de la biologia del desarrollo es fundamental para el entendimiento
de la embriologia humana y el concomitante diseno de terapias y aplicaciones
clinicas, por lo que las posibles aplicaciones de la biologia del desarrollo, que
son muchas y de gran alcance, la han llevado a ocupar un papel central en la

11



12 CAPITULO 1. INTRODUCCION

biologia contemporanea. Ademas, se ha enfatizado su estudio e importancia
debido a su estrecha relacién con la biologia evolutiva. Esta relacion tiene su
base en que unicamente entendiendo los procesos que dan lugar a las formas
vivas durante el desarrollo sera posible entender el origen, conservacion y di-
versificacion de los fenotipos, es decir, la evolucién de los seres vivos. El papel
clave del desarrollo en la evolucién no se refleja en la llamada nueva sintesis,
que en los anos treinta y cuarenta integré la propuesta darwiniana de seleccion
natural con la genética clasica y de poblaciones, pero que dejo fuera una larga
tradicion en embriologia y anatomia comparada. Sin embargo, empieza a vis-
lumbrase otra sintesis, una en que se integran la evolucién y el desarrollo. Esta
sintesis es comunmente conocida como evo-devo, por evolucion y desarrollo en
inglés (Miiller 2007, Sommer 2009).

Algunos de los conceptos que dirigen la investigacién actual en el area
de evo-devo son aquéllos relacionados con las propiedades organizativas de los
sistemas de desarrollo. Estas propiedades se refieren a caracteristicas sistémicas
de la dindamica o estructura de los procesos de desarrollo y algunas de las mas
estudiadas hasta ahora son modularidad, robustez, plasticidad y capacidad de
evolucionar .

La modularidad consiste en la organizacién de un sistema en subunidades
semiauténomas y se observa frecuentemente en los seres vivos, tanto en aspec-
tos morfolégicos, como metabdlicos o de regulacién genética. Esta carateristica
permite que se modifiquen partes del organismo sin que se afecte al resto y
permite también que se reusen moédulos funcionales en distintas etapas del de-
sarrollo o partes del organismo (Wagner 2005, Miiller 2007). La robustez es la
capacidad de un sistema de mantener a lo largo de la evolucién alguna fun-
cién o caracteristica en presencia de perturbaciones (genéticas, ambientales,
estocdsticas, etc.), mientras que la plasticidad consiste en la capacidad de un
sistema de ajustarse para responder a cambios o sefiales ambientales. En par-
ticular, la plasticidad fenotipica permite a un organismo modificar su fenotipo
ante condiciones externas cambiantes. Finalmente, aunque existen distintas
definiciones, la capacidad de evolucionar consiste en la capacidad de un organ-
ismo de generar variabilidad e innovaciones en la escala evolutiva, mismas que
pueden estar sujetas a seleccién natural (Wagner 2005, Draghi & Wagner 2009,
Wagner 2009). Es interesante mencionar que estas propiedades parecen estar
relacionadas entre si. Por ejemplo, la modularidad puede conferir robustez (Ki-
tano 2004, Hintze & Adami 2008) o la robustez y la capacidad de evolucionar

I'En ocasiones se hace referencia a la capacidad de evolucionar como evolvabilidad
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pueden depender una de otra y aparecer juntas durante la evolucién de los
seres vivos (Wagner 2008).

Algunos de estos conceptos pueden rastrearse a las propuestas tedricas de
Conrad Hal Waddington, quien desarrollé un marco tedrico para estudiar el
desarrollo como un sistema dinamico (Waddington 1957, Slack 2002). Entre
los conceptos que desarrollé y que actualmente se han retomado para orientar
muchos de los estudios en biologia del desarrollo son los de canalizacién (aso-
ciado a robustez), plasticidad y paisaje epigenético. El paisaje epigenético en
particular es una representacién que ha permitido enmarcar preguntas sobre
la dindmica del desarrollo. Consiste en un paisaje cuya topologia esta determi-
nada por interacciones epigenéticas ? involucradas en el desarrollo; los valles
de este paisaje corresponden a los estados o secuencias estables o canalizadas
del desarrollo. Recientemente, esta representaciéon ha comenzado a aterrizarse
para algunos casos particulares (ver por ejemplo Apéndice G), lo que ha per-
mitido empezar a explorar aspectos de la dindamica global del desarrollo que
habfan permanecido poco estudiados.?

Como ya se menciond, la biologia del desarrollo estudia procesos que surgen
de interacciones entre diversos elementos, tanto genéticos como no genéticos.
Estas interacciones son tipicamente no aditivas y ocurren en un amplio inter-
valo de escalas espaciales y temporales. Dado que los modelos matematicos
permiten integrar de forma sistematica diversos y numerosos datos experi-
mentales, asi como estudiar la dinamica colectiva de elementos genéticos y no
genéticos en diferentes escalas de tiempo y espacio, este tipo de modelo se ha
vuelto sumamente importante en el estudio de los procesos del desarrollo.

Histéricamente, la elaboraciéon de modelos y trabajos tedricos en biologia

?Debido al uso reciente del término epigénesis para hacer referencia a al conjunto de
modificaciones heredables que no dependen de la secuencia de DNA (e.g. metilacién de
la cromatina), es importante mencionar que, en este trabajo, el término epigenético hace
referencias a los procesos e interacciones requeridas para que ocurra un proceso del desar-
rollo no programado, por lo que puede hacer referencia a procesos de regulacién genética,
comunicacién celular, mecanismos y restricciones fisico-quimicas, etc.

3La metéfora del paisaje en el contexto adaptativo, asi como otras metaforas comtinmente
usadas en biologia, ha sido criticada, entre otras cosas, por su ambigiiedad (Olson & Arroyo-
Santos 2009, Kaplan 2008). En contraste, la metafora del paisaje epigenético parece estar
definiéndose cada vez mas claramente en términos de los nuevos descubrimientos en las areas
de desarrollo, genética molecular y epigenética (e.g. Huang et al. 2005, Apéndice G). Esto,
sin embargo, no la pone a salvo de los peligros asociados al uso de metaforas: la reificacién
y su uso inconsciente. Citando a N. Wiener (en Lewontin 2000), el precio de las metdforas
es la eterna vigilancia.
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del desarrollo ha permitido referir cuestiones tales como el origen de patrones
y formas en los organismos (e.g. Turing 1952, Meinhardt 1982), el origen de la
robustez del desarrollo ante perturbaciones (Waddington 1957), la caracteri-
zacion de regularidades dindmicas o estructurales en los procesos del desa-
rrollo (Waddington 1957, Wagner 2005, Salazar-Ciudad et al. 2000, Newman
et al. 2006) y las fuentes de variabilidad o plasticidad en las formas de los
seres vivos (Ancel 1999, West-Eberhard 2005, Lande 2009), entre otras. Si bien
el entendimiento de estas cuestiones ha avanzado con el desarrollo de mode-
los matematicos y, mas recientemente, también computacionales, han surgido
nuevas preguntas y aun quedan muchas por resolver. Actualmente existe una
gran cantidad de informacién molecular, anatémica, morfolégica y gendmi-
ca disponible y se han desarrollado también nuevos acercamientos tedricos y
matematicos a los sistemas bioldgicos, lo que ha dado lugar a nuevos enfoques
tedricos y de modelacién, planteando nuevas lineas de trabajo en el drea de
evo-devo (Miiller 2007).

1.2. Desarrollo en plantas: la epidermis de Ara-
bidopsis thaliana como sistema modelo

Las plantas y los animales son organismos multicelulares con tipos celu-
lares, érganos y estructuras diferenciados. Pese a que las plantas y los ani-
males presentan procesos y estructuras similares durante su desarrollo, existen
diferencias importantes en el desarrollo de plantas y animales, debido, en gran
parte, a que la multicelularidad aparentemente se originé de forma indepen-
diente en estos dos linajes (Meyerowitz 2002). En contraste con lo que ocurre
en animales, las plantas se desarrollan continuamente a partir de ciimulos de
células indeferenciadas (meristemos), dando lugar a ramas, raices, hojas, flores
y frutos durante toda su vida y no sélo durante la etapa embrionaria. Por otra
parte, los animales presentan migracién celular durante desarrollo, mientras
que las paredes celulares caracteristicas de las plantas impiden la migracion
celular. Ademas, las plantas son organismos que, probablemente debido a su
naturaleza sésil, exhiben una considerable plasticidad fenotipica. El estudio
del desarrollo en plantas ofrece, entonces, la posibilidad de entender aspectos
como la plasticidad o la indeterminacién de desarrollo, pero también de llevar
a cabo un auténtico estudio comparativo que contribuya a entender el origen
de las diferentes formas de multicelularidad y a identificar aspectos genéricos



1.2. EPIDERMIS DE ARABIDOPSIS COMO SISTEMA MODELO 15

del desarrollo de organismos multicelulares (Meyerowitz 2002).

Uno de los problemas centrales en el estudio del desarrollo consiste en enten-
der cémo se genera la informacion necesaria para que ocurra la determinacion
de distintos tipos celulares a partir de interacciones genéticas y epigenéticas.
En el caso del desarrollo vegetal, se ha sugerido que la determinacién del tipo
celular depende en gran medida de la posicién de las células respecto a otras
células (Scheres 2001). Asi, en plantas, la pregunta sobre determinacién de
identidad celular estd muy relacionada con la cuestiéon de como surgen los pa-
trones espaciales, por ejemplo, de expresién genética o de concentracién de
hormonas, que constituyen informacién posicional.

Aqui es importante mencionar que la informacién posicional no es un cam-
po fijo o preestablecido, sino que emerge durante el desarrollo en un proceso en
el que intervienen diversos factores moleculares y celulares (Jaeger & Reinitz
2006). De hecho, como se ilustrard més adelante en este trabajo, la informa-
cién posicional puede ser generada en interaccion con las mismas células que
estan por diferenciarse. En otras palabras, este tipo de informacién no pre-
cede ni regula unidireccionalmente la determinacién de indentidades celulares,
sino que se genera y mantiene dindmicamente durante el proceso mismo de
determinacién del tipo celular.

Arabidopsis thaliana es una planta modelo cuyo desarrollo ha sido estudia-
do meticulosamente desde diferentes enfoques (Bowman 1994, Walbot 2000).
En particular, uno de los sistemas ahora clasicos en el estudio de la determi-
nacion de tipo celular es el de epidermis de raiz y hoja de Arabidopsis thaliana.
Dicho sistema ha sido ampliamente estudiado debido a que la epidermis— la
capa celular mds superficial — de raiz y hoja presenta dos tipos celulares,
con pelo y sin pelo, que son visibles a simple vista y cuyo desarrollo puede
ser modificado experimentalmente sin que las plantas mueran. Estos dos tipos
de células epidérmicas estan arreglados en patrones espaciales no triviales, a
saber, los tricomas o pelos de la hoja estan alejados unos de otros y presentan
una disposicion espaciada, mientras que los tricoblastos, que dan lugar a los
pelos radicales, se hallan organizados en bandas paralelas al eje de crecimiento
de la raiz (Apéndice D y referencias ahf citadas).

En este sistema, la informacion posicional que subyace la formacién de los
arreglos espaciales de células con tricomas y pelos radicales estd dada princi-
palmente por patrones espaciotemporales de expresion genética. Sin embargo,
estos patrones no estdn fijos ni son externos a las células epidérmicas que se
diferencian, por lo que el problema de la formacién de patrones epidérmicos
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Tricoblasto

Figura 1.1: La epidermis de hoja y raiz de Arabidopsis thaliana es un sistema
modelo para el estudio de diferenciacién celular en plantas. A la izquierda se
muestra el arreglo espaciado de los pelos de la hoja y a la derecha, el patron
bandeado de los pelos radicales. La posicién de las células radicales estd co-
rrelacionada con la posicion de las células de la epidermis respecto las del
cortex.
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tiene que ver, en gran parte, con el origen y mantenimiento de dichos patrones
de expresion genética como parte del proceso mismo de determinacién del tipo
celular en epidermis.

Este sistema presenta un par de caracteristicas relevantes respecto al origen
de la informacién posicional. Por un lado, se ha documentado experimental-
mente que algunas de las proteinas codificadas por elementos de la red de
regulacion genética asociada a la determinacién de pelos y no pelos se mueven
a través de orificios en la pared celular llamados plasmodesmos (Wada et al.
2002, Bernhardt et al. 2005, Kwak et al. 2005). Mediante este movimiento,
que hasta donde se sabe es pasivo, éstas porteinas afectan a las redes de regu-
lacién genética de las células epiérmicas vecinas, dando lugar a un sistema de
redes acopladas. Por otro lado, se ha encontrado que los tricoblastos se for-
man unicamente en bandas de células ubicadas sobre la unién de células de
la capa celular subyacente (cértex), lo que, aunado a detallados experimentos
de biologia molecular (Dolan 1996, Kwak & Schiefelbein 2007), muestra la ac-
tividad de una senal posicional proveniente del cértex de la raiz que sesga la
posicion de los pelos radicales.

Si bien los aspectos moleculares, y genéticos en particular, del sistema de
determinacién celular en la epidermis de Arabidopsis thaliana han sido bastante
bien caracterizados (Apéndice D), quedan ain preguntas abiertas respecto a
la manera en que la interaccién de los elementos moleculares, asi como las
interacciones epigenéticas, dan lugar a la informacién posicional que subyace
la determinacion y arreglo de los distintos tipos celulares. Mas especificamente,
es importante saber si la red de regulacién genética caracterizada hasta ahora es
necesaria y suficiente para la generacién de los patrones epidérmicos, asi como
cudl es el efecto de la comunicacién entre células de la epidermis y el de la senal
proveniente del cértex en la formacion de patrones. El objetivo principal de esta
tesis es abordar dichas preguntas mediante la elaboracién y andlisis de modelos
dindmicos, tales como los modelos de redes genéticas que se describiran en el
siguiente capitulo. Asi, la hipétesis central de este trabajo es que las redes
de regulacion genética y los procesos de comunicacion celular documentados
experimentalmente hasta ahora en el sistema de epidermis de raiz y hoja son
suficientes para la determinacion de pelos y no pelos y para la formacién de
los patrones de tricomas y tricoblastos.

Otro de los objetivos de este trabajo es hacer uso de los modelos men-
cionados para analizar propiedades organizativas de las redes de regulacion
asociadas a estos sistemas y apuntar hacia aspectos dinamicos y estructurales



18 CAPITULO 1. INTRODUCCION

que sean potencialmente comunes a los sistemas de determinacion de tipo celu-
lar y de generacién de informacién posicional de plantas y animales. Con ello
se pretende también tener informacién para discutir hipdtesis relativas a la
evolucion del desarrollo (e.g. Waddington 1953, 1957, Newman & Bhat 20009,
Salazar-Ciudad et al. 2000) y, por lo tanto, de las formas vivas.



Capitulo 2

Origen de la informacién
posicional en epidermis de
Arabidopsis thaliana

Marco Polo describe un puente, piedra por piedra.

— jPero cudl es la piedra que sostiene el puente?

— pregunta Kublai Kan.

— El puente no estd sostenido por esta o aquella piedra — respone
Marco—, sino por la linea del arco que ellas forman.

Kublai permanece silencioso, reflexionando. Después anade:

— Por qué me hablas de las piedras? Es sélo el arco que me importa.
Polo responde: — Sin piedras no hay arco.

Las Ciudades Invisibles, Italo Calvino

El sistema de determinacién del tipo celular en la epidermis de Arabidopsis
thaliana plantea, pese a su relativa sencillez, preguntas fundamentales respecto
al origen y naturaleza de la informacién posicional, la determinacién y arreglo
espacial de tipos celulares y del desarrollo en general. Con el fin de abordar
estas preguntas desde un enfoque de modelacién matematica se desarrollaron
modelos dindmicos para la determinacién de tipo celular en raiz y hoja de la
epidermis de Arabidopsis thaliana. Es importante mencionar que la gran can-
tidad de experimentos detallados que han sido reportados para estos sistemas
(caracterizacién de patrones de expresién, de fenotipos de lineas mutantes, de
interacciones entre proteinas, entre otros) ha permitido basar dichos modelos
en evidencia experimental (Apéndices A, B y D). La informacién experimen-
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tal mencionada se refiere principalmente a las relaciones de regulacién entre
un conjunto de genes involucrados en la determinacién y arreglo espacial de
tricomas y tricoblastos.

2.1. Derelaciones de regulacion genética a mode-
los de redes

Dado que la informacién posicional que subyace la determinacién de pe-
los y no pelos en el sistema de estudio parece estar dada por patrones de
expresion genética, se propone que la determinaciéon y arreglo de los tipos
celulares epidérmicos resultan en parte de las relaciones de activacién e in-
hibicién que los genes involucrados mantienen entre si. Estas relaciones de
regulacion entre genes pueden ser integradas en modelos dindamicos conocidos
como modelos de redes de regulacién genética (RRG de aqui en adelante); es-
tudiar las propiedades dindmicas y estructurales de estas redes puede ayudar a
comprender cémo las interacciones genéticas, en conjuncion con otros factores,
contribuyen a la determinacion de los destinos celulares pelo y no pelo y a la
determinacién de su arreglo espacial en la epidermis de Arabidopsis thaliana.

Es importante mencionar que, aunque los genes constituyen parte im-
portante de un sistema ontogenético, existen factores no-genéticos que son
igualmente importantes y cuya modificacién puede también generar cambios
fenotipicos. Sin embargo, la complejidad del sistema y el sesgo genético en la
informacién experimental disponible nos impide estudiar explcitamente todos
estos elementos. Modelar una red de genes es una simplificaciéon fuerte, pero
en este punto resulta sumamente 1til para el entendimiento e integracién de
los datos disponibles actualmente.

Los modelos de RRG constituyen un tipo de modelo matematico que cap-
tura la légica de la regulacion genética y que permite hacer estudios cualitativos
del comportamiento de conjuntos de genes que interactiian entre si en el tiem-
po y el espacio. Asi mismo, estos modelos abren la posibilidad de entender
y evaluar las consecuencias, no siempre intuitivas, de las interacciones entre
genes (frecuentemente no lineales).

En los modelos de RRG los nodos corresponden a genes unidos por aris-
tas o conexiones que representan las relaciones de regulacion (activaciéon o
inhibicién) entre ellos. En los organismos, estas relaciones de regulacién estdn
mediadas por numerosos procesos que involucran a enzimas, RNA, proteinas,
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y muchos otros elementos moleculares. Aunque, en principio, estos procesos
pueden ser integrados en modelos de RRG, los modelos de RRG que se plantean
aqui los omiten y se enfocan basicamente en la légica de regulacién entre genes.

En 1969, Stuart Kauffman (Kauffman 1969) propuso un tipo de modelo de
RRG que ha sido sumamente 1til en el estudio cualitativo de la actividad colec-
tiva de genes. En este modelo, conocido como de redes Booleanas, los nodos
que representan genes pueden tomar solo dos estados, 0 6 1, que corresponden
a que el gen esté inactivo (0) o activo (1). De esta manera, en las redes de
Kauffman los genes corresponden a N variables cuyo estado en el tiempo ¢ + 1
depende de una funcién del tipo:

Int+1) = Fu(ni)s In2(e)s > Gnk(e))

En esta ecuacion, gni(4), gn2(t)s ---» gnk(t) son los reguladores del gen g y F), es
una funcién conocida como regla logica. Las reglas logicas integran la informa-
ci6én disponible sobre la regulacién de los genes (ver ejemplos de especificacién
de estas reglas en Espinosa-Soto et al. 2004 y Apnidices B y J). Dados los ele-
mentos g, y funciones F,, que describen a una RRG Booleana es posible estu-
diar cémo los componentes de la red cambian sus configuraciones de activacion
y entonces puede seguirse la dindmica de los estados de activacién genética,
siendo un estado un vector de ceros y unos. Una de las caracteristicas mas
importantes de este tipo de redes es la existencia de estados estacionarios de
expresion genética. Estos estados de activacion de los componentes de la red se
conocen también como atractores y dado que son estados auto-sostenidos, una
vez que la red llega a ellos se mantiene ahi para siempre. Kauffman propuso
que estos estados estacionarios correspondian a los diferentes tipos celulares
(Kauffman 1969).

Si bien los modelos de RRG propuestos por Kauffman son relativamente
simples, se ha mostrado que pueden reproducir los aspectos cualitativos més
relevantes de la dindmica de regulaciéon genética. En particular, se ha encon-
trado que modelos de este tipo pueden explicar la formacién de diferentes tipos
celulares en distintas etapas del desarrollo de plantas y animales (Mendoza &
Alvarez-Buylla 2000, Albert & Othmer 2003, Espinosa-Soto et al. 2004, Huang
et al. 2005). Una descripciéon mas detallada de este tipo de modelos y su com-
paracion con otros enfoques de modelacion esta disponible en los apéndices E,
Hel

Siguiendo la nocién de paisaje epigenético inicialemente planteada por C. H.
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Waddington (Waddington 1957), algunos autores han representado la dindmi-
ca multidimensional de las RRG como un paisaje con crestas y valles. En este
paisaje, cada punto corresponde a configuraciones de activacion de los genes
que conforman la red, los puntos més bajos del paisaje constituyen atractores
y las cuencas o valles corresponden al conjunto de configuraciones que llegan a
cada uno de los atractores. Es importante mencionar que, siguiendo la metéafo-
ra del paisaje epigenético, la topografia de dicho paisaje es generada por los
componentes y reglas logicas que definen a la RRGs. Asi, el sistema estudiado
puede verse como un balin que, al ser colocado en algin punto del paisaje,
'rueda’ durante el procesos de desarrollo hasta alcanzar un atractor. Conforme
se han ido acumulando los datos moleculares y fisiolégicos, esta siendo posible
plantear modelos de las redes genéticas y de los paisajes epigenéticos asociados
a ellas y con ello se esta avanzando el entendimiento de rasgos distribuidos y
emergentes de los procesos del desarrollo (ver ejemplo en Apéndice G).

La metafora del paisaje epigenético planteada por Waddington (Wadding-
ton 1957) ha sido criticada por West-Eberhard (West-Eberhard 2003) princi-
palmente porque en esta metéfora el paisaje que determina la dindmica del de-
sarrollo esta dada tinicamente por interacciones entre genes. Si bien Wadding-
ton menciond que cierta trayectoria del desarrollo podia ser modificada por
factores ambientales, no consideré que este tipo de factores contribuyeran a la
determinacién de la topologia del paisaje mismo. En este paisaje, dice West-
Eberhard, las influencias ambientales son vistas como desviaciones de lo dic-
tado por los genes. West-Eberhard argumenta que, en todo caso, los valles y
crestas de dichos paisajes también son modificados y moldeados por aspectos
ambientas y que son, ademads, cambiantes incluso a lo largo de la vida de un
organismo.

Dada la evidencia experimental disponible ahora, y el reciente énfasis en
el estudio de la plasticidad fendtipica y su relacién con la evolucién (West-
Eberhard 2003, Garland & Kelly 2006, West-Eberhard 2005, Lande 2009),
probablemente pronto sera factible desarrollar modelos de paisajes epigenéticos
que consideren en el efecto de fatores ambientales, entre otros, en la topologia
(dindmica) del paisaje.
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2.2. Una red RRG minima equivalente a un
sistema activador-inhibidor

En una primera etapa de este trabajo se realizé una revisién de los datos
experimentales disponibles hasta el 2006, mismos que se integraron en un par
de modelos continuos de RRG, uno para la epidermis de hoja de Arabidopsis
thaliana y otro para la de raiz. Dichos modelos se simularon computacional-
mente y se encontrd que, pese a algunas diferencias en las reglas légicas, mis-
mas que correspondian a diferencias en la regulacién genética, ambos sistemas
presentaban una dinamica global equivalente. Esto es, ambos sistemas, el de
hoja y el de raiz, se caracterizaban por tener dos atractores que correspondian,
respectivamente, a los estados de activacion genética documentados para las
células de pelos y de no pelos. Mas aun, las cuencas de atraccion asociadas a
cada atractor (i.e. el conjunto de condiciones iniciales que llegan a cada atrac-
tor) resultaron ser muy similares en ambos sistemas (Figura 1 del Apéndice
A).

Los resultados del anélisis de las RRGs simuladas para raiz y hoja mostraron
que ambas redes exhibian una dindmica global equivalente: las dos convergieron
unicamente un a par de atractores, mismos que corresponden a las configura-
ciones de expresién genética de los tipos celulares identificados como pelo y
no pelo. Ademas, considerando también el movimiento de proteinas que afec-
ta la expresiéon de RRG en células vecinas, la dindmica de ambos sistemas
resulté ser comparable con la de un sistema de inhibicién lateral en el que
céulas inicialmente iguales interctiian entre si y adoptan destinos celulares dis-
tintos (Apéndice B). De hecho, Pesch y Hiilskapm (Pesch & Hiilskamp 2004)
plantearon que el sistema de determinacién celular en la epidermis de hoja
podia reducirse a un sistema de inhibicion lateral bien caracterizado y conoci-
do como sistema activador-inhibidor.

El sistema activador-inhibidor (Meinhardt 1982, Meinhardt & Gierer 2000)
es un tipo de sistema de reaccién-difusién que explica la formacién de patrones
espaciales, tales como puntos o bandas, a partir de la reaccién y difusién de un
par de sustancias llamadas morfégenos (Turing 1952). En el sistema activador-
inhibidor en particular, se parte de un par de morfégenos: uno de ellos (acti-
vador) promueve su propia actividad y la del otro, mientras que el otro reprime
al primero (inhibidor). Este sistema se caracteriza también porque el inhibidor
ejerce una accion lateral de largo alcance, mientras que al activador ejerce una
accién local. Si bien la determinacion de células con y sin pelos en la epidermis
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de Arabidopsis thaliana no depende unicamente de un par de morfégenos, se
ha sugerido que las RRGs asociadas a este sistema actian, colectivamente,
como un sistema activador-inhibidor (Pesch & Hiilskamp 2004). De hecho, la
RRG de determinacion de tipo celular que se estudia se caracteriza por tener
un subconjunto de elementos que actian conjuntamente como un activador y
otro subconjunto que tiene el papel de inhibidor y que tiene una accién de
largo alcance (Schnittger et al. 1999, Wada et al. 2002, Kwak et al. 2005).

Pesch y Hiilskamp (Pesch & Hiilskamp 2004) presentaron una revisién
meticulosa de las caracteristicas que un sistema activador-inhibidor debe ex-
hibir, asi como de las que se habia encontrado entonces en el sistema de deter-
minacién de tipo celular en epidermis. Una de las interacciones caracteristicas
del activador-inhibidor es, como se mencioné antes, la capacidad de autorre-
gulacion positiva del activador. Aunque hay evidencia indirecta apuntando a
que esto de hecho ocurre en el sistema de epidermis, esta interaccién no ha
sido claramente identificada en las redes de regulacién genética que aqui se
estudian. Como se discutird méas adelante, los modelos dindmicos que se han
desarrollado para este sistema (Savage et al. 2008, Apéndices A, B y D) han
permitido evaluar y discutir la importancia de esta interacciéon y probar in
stlico si es necesaria para que se generen los patrones de pelos espaciados y
bandeados.

2.2.1. Resultados del analisis de la red reducida a un
sistema activador-inibidor

Una vez que se analizaron las dos redes de regulacion genética y se encon-
tré que eran dindmicamente equivalentes entre si, y que se mostré que ambas
se comportaban como un sistema de tipo activador-inhibidor, se redujeron las
RRGs documentadas para epidermis de hoja y raiz a un modelo de red minima
compuesta tnicamente por dos elementos: un activador de accién local y un
inhibidor con efectos de largo alcance. Este modelo fue elaborado mediante
el uso de ecuaciones diferenciales parciales acopladas (Apéndice A) que per-
mitié abordar una de las preguntas que resultaba de interés para la biologia
del desarrollo: si un mismo sistema de regulacién genética puede dar lugar a
patrones espaciales distintos al encontrarse en diferentes contextos celulares,
pero sin cambios en los valores de parametros. Con el fin de responder esta pre-
gunta, se realizaron simulaciones computaciones en que la misma red minima
se encuentra en un contexto tipo hoja (sin sefiales provenientes de otras capas
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Figura 2.1: Representacion grafica de la red que fue reducida a un sistema
genérico del tipo activador-inhibidor

celulares y con células que en promedio tienen el mismo ancho que largo) y
en un contexto tipo raiz (con senales como las provenientes del cértex y célu-
las rectangulares). Se encontré que, dada esta red y los contextos celulares
contrastantes, es posible obtener los patrones bandeados y espaciados de pe-
los. De hecho, un andlisis de bifurcacién realizado en colaboracién con el Dr.
José Diaz reveld que los patrones bandeados observados en raiz dificilmente
podrian aparecer variando los parametros del modelo y sin la intervencién de
una sefial posicional (Apéndice A).!

Estos resultados sugieren que existen mddulos de regulaciéon genética que
pueden ser reusados en distintas regiones y momentos del desarrollo de los
organismos y que, al formar parte de distintos contextos celulares, pueden
dar lugar a patrones muy diversos (von Dassow & Munro 1999), ain cuando
los valores de parametros asociados a la cinética de regulacién permanezcan
constantes. Ademas, sugieren que los elementos de RRGs pueden actuar colec-
tivamente como un sistema tipo activador-inhibidor y que los morfégenos de
Turing pueden, de hecho, ser colecciones de genes interactuando de forma com-
pleja.

'El analisis del sistema activador-inhibidor es también parte de la tesis doctoral de Carlos
Espinosa Soto y los resultados se presentan en el articulo de Benitez et al. 2007.
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Diversos autores han planteado el papel de aspectos genéricos tales como
efectos fisico-quimicos en el surgimiento de patrones y formas a lo largo del
desarrollo (Goodwin 2001, Newman et al. 2006, Newman & Bhat 2009). El
modelo de red minima permitié referir también preguntas relacionadas con
estos planteamientos, en particular, con el papel de la geometria celular en el
patrén de pelos de la epidermis de raiz. Para ello se simulé la dindmica de la
red minima en dos condiciones, una en la que las células de la raiz se suponen
rectangulares, como de hecho son, y otro en que se suponen células cuadradas.
Los resultados mostraron que aunque un patron que recuerda a bandas puede
surgir con células cuadradas, las bandas se vuelven mucho més estables cuando
se consideran células rectangulares, sugiriendo que la geometria celular puede
reforzar o contribuir a la estabilizacién de patrones espaciales, en particular el
de células radicales con pelos.

El modelo de red minima que se comporta como un sistema activador-
inhibidor produjo patrones espaciales que son cualitativamente iguales a los
patrones de pelos obsevados en hoja y raiz, permitiendo probar el papel de
modulos de regulacion y del contexto y geometria celulares en la formacién de
dichos patrones. Sin embargo, esta red reducida no reproduce todos los aspectos
del sistema de estudio. Por ejemplo, el modelo de red minima se utilizé para
probar diversas hipdtesis respecto al gen blanco de la senal del cértex y los
resultados de este andalsis (Resultados y Tabla en Apéndice A) apuntaron a que
la senal del cértex debia impactar a la red de regulacién genética regulando
positivamente a los elementos activadores en las bandas en que se forman
los tricomas. Sin embargo, esta prediccién fue refutada por experimentos que
demostraron que el efecto de la senal era sobre uno de los activadores, pero
negativo. Ademas, la red reducida no consideraba muchas de las interacciones
documentadas, mismas que podrian ser importantes para la robustez y riqueza
dindmica del sistema global, y suponia un espacio continuo no celularizado. Por
ello, se desarrollé un modelo que considera espacio celularizado y RRGs tan
completas como es posible definir con los datos experimentales disponibles.
Este modelo se presenta en la siguiente seccion.
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Figura 2.2: Patrones caracteristicos resultantes de dinamicas de reaccién-
difusién. El rojo representa alta concentracién del complejo activador, mientras
que el azul representa baja concentracién del mismo. A la izquierda se muestra
el patron que representa al de los tricomas de una hoja y el de la derecha el
patrén bandeado de los tricoblastos.

2.3. Un sistema de RRG acopladas en un do-
minio celularizado

Si bien el modelo de red minima similar a un sistema activador-inhibidor
permitié avanzar en el entendimiento del sistema de estudio, dicho modelo deja
fuera aspectos relevantes de la determinacién de tipo celular en epidermis de
Arabidopsis thaliana. Por ello, se elaboré un modelo con los siguientes compo-
nentes: un dominio bidimensional formado por celdas que representan células
de la epidermis, una red de regulacién genética detallada representada en cada
celda 2 del dominio, comunicacién intercelular entre células vecinas y una senal
asociada a la unién de células del cortex en el caso de raiz. A continuacién se
describe cada elemento de este modelo, pero puede encontrarse una descripcion
mas detallada en el Apéndice B.

El dominio espacial estd representado como una rejilla cuadrada de 20 x 20
células que corresponde a una seccién cuadrada de la epidermis de hoja y a
una seccién cilindrica de la epidermis de raiz. En el caso de hoja, se definieron
condiciones de frontera de flujo cero en todos los lados del cuadrado, mien-

2Las celdas del dominio espacial son representaciones simplificadas de células de la epi-
dermis, sin embargo, de aqui en adelante se hablara indistintamente de celdas o células del
dominio.
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tras que en el de raiz se definieron condiciones periddicas para los dos bordes
verticales y de flujo cero para los horizontales, simulando un cilindro.

En cada caso, epidermis de hoja y de raiz, se definié una red de regulacién
genética generada a partir de los datos experimentales reportados en la lite-
ratura hasta junio del 2007 (revisién actualizada en Apéndice D). La evidencia
experimental, parte de la cual no estaba disponible cuando se propuso el mode-
lo de red minima descrito en la seccién anterior, muestra que ambas redes, la
de hoja y la de raiz, comparten ciertos genes e interacciones, pero también
que tienen algunos elementos especificos de cada red, por lo que en este caso
se mantuvieron como redes distintas. La arquitectura asociadas a cada una de
estas redes puede verse en la figura 2.3 (detalles en Apéndice B).

La comunicacion celular se modelé mediante una versién discreta de di-
fusién y representa el movimiento pasivo de proteinas a través de plasmo-
desmos que comunican a células vecinas. Para cada una de las dos redes, se
ha descrito un conjunto distinto de elementos de la red que tienen un efecto
no auténomo, es decir, que afectan a células vecinas. Asi, en cada caso, los
elementos modviles son distintos. Al implementarse la comunicacién celular en
el modelo, se tiene un sistema de redes acopladas, ya que los elementos moviles
modifican el estado de ciertos elementos de la red en células vecinas. Por ello,
llamamos a este modelo un modelo de meta-red (figura 2.3).

Finalmente, en el caso del modelo de epidermis de raiz, se modeld la senal
posicional proveniente del cortex, cuya identidad y efecto habian sido ya bien
descritos para cuando se elaboré el modelo de meta-red. Esta senal se intodujo
como un regulador negativo de WER, uno de los genes de la red de raiz, en las
células epidérmicas ubicadas sobre la unién de dos células del cortex.

En las simulaciones, los modelos de meta-red se iniciaron con estados de
activacion de los genes dados aleatoriamente, posteriormente se realizaron ite-
raciones en que, alternadamente, se actualizaba el estado de los genes de cada
célula aplicando las reglas légicas y se difundian los elementos moviles del
sistema (figura 2.4).

2.3.1. Resultados del modelos de redes acopladas

Una vez especificados los modelos de meta-red para epidermis de hoja y
de raiz, se realizaron simulaciones con el fin de investigar si los elementos
considerados en estos modelos eran suficientes para dar lugar a dos estados
estacionarios de expresion genética en las células (correspondientes a células
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Figura 2.3: Representacion grafica del modelo de redes acopladas. (A) Patrén
de pelos en la hoja y (B) patrén de pelos en la raiz; el asterisco indica la posicién
en la que surgen los tricoblastos. (C y D) Cada una de las celdas contiene una
RRG y éstas estan acopladas a través del moviemiento de ciertas proteinas.
(E y F) Detalle de redes de regulacién genética asociadas a las determinacion
de tipo celular en la epidermis de hoja y raiz, respectivamente.
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Figura 2.4: Diagrama de pasos seguidos en la simulacién del modelo de redes
acopladas.
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de pelos y no pelos) y a un arreglo de células similar al que se observa en
epidermis de hoja y de raiz.

Las simulaciones mostraron que ambos modelos eran capaces de repro-
ducir cualitativamente el arreglo espacial de las células con pelos y sin pelos
observado en cada tipo de epidermis. El modelo de raiz generd sélo dos con-
figuraciones genéticas estacionarias que coinciden con los perfiles de expresion
genética reportados para tricoblastos y atricoblastos y, mas ain, gener6 arreg-
los bandeados de estos dos tipos de células. Por su parte, el modelo del sistema
de hoja gener6 configuraciones celulares estacionarias equivalentes a tricomas
y células de cementacién (no pelos) arreglados en patrones como los observados
en la hoja. Ambos patrones se mantuvieron constantes ante variaciones en el
tamano del dominio espacial y en el parametro asociado a la tasa de difusién
de elementos moviles y, en el caso del sistema de raiz, en la intensidad de la
senial correspondiente a la senal del cortex.

En ambos casos se llevd a cabo una evaluacién cuantitativa de la similitud
entre los patrones obervados y los generados por el modelo. En el caso de raiz
se midio la proporcion de células correspondientes a tricoblastos y atricoblas-
tos que se encontraban en una posicién equivocada. Esta es una medida de
error que se utiliza comunmente en los analisis experimentales de este sistema,
por lo que fue posible compararla con datos empiricos. Se encontrd que el
porcentaje de células ectépicas es comparable (mismo orden de magnitud) en
el sistema real y el simulado. Para el caso de la hoja se obtuvo una medida
del espaciamiento entre células correspondientes a tricomas que también se
ha reportando para hojas reales, y se encontré que esta medida efectivamente
reflejaba un patrén espaciado de los tricomas.

Con el fin de validar los modelos de determinacién y arreglo de tipo celular
en ambos sistemas, se simularon los mutantes que han sido reportados experi-
mentalmente y se compararon los patrones generados por las simulaciones de
mutantes con los fenotipos reportados en cada caso. Los mutantes simulados
reprodujeron cualitativamente los mutantes sencillos, dobles y triples que se
probaron (figuras 2.5 y 2.6, discusién en Apéndice B), lo que sugiere que el
modelo reproduce adecuadamente la dindmica de determinacion de tipo celular
en cada caso y constituye un médulo funcional que es suficiente para que este
proceso del desarrollo se lleve a cabo.

Es importante mencionar que para las RRGs asociadas a raiz y a hoja se
suposo que ciertos elementos, a saber GLABRA1 (GL1, especifico de hoja) y
WERWOLF (WER, especifico de raiz), presentan una asa de autorregulacién
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Figura 2.5: Patrones resultantes de la simulacién del sistema de hoja (wt) y

de las lineas mutantes del mismo.
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Perfil de activacién genética Célula
WER GL3 EGL3 TTG CPC TRY ETC1 GL2
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Figura 2.6: Patrones resultantes de la simulacién del sistema de raiz (wt) y de
las lineas mutantes del mismo.
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positiva, ya sea directa o indirecta. Si bien cuando se adopto esta suposicion no
habia datos que la apoyaran directamente, si se contaba con evidencia indirecta
que sugeria que esto ocurre. Por ejemplo, ambos genes se encuentran activos en
el mismo sitio que algunos de sus inhibidores. Uno de los resultados derivados
del analisis de mutantes consiste en que se observé que la autorregulacion
positiva de WER y GL1 es importante para la reproduccién de los patrones
observados en todos los mutantes.

Algunos autores han propuesto mecanismos que no requieren de la autoac-
tivacion de estos genes, en particular de WER y presentan resultados tedricos
y experimentales que apoyan su propuesta (Savage et al. 2008). Sin embargo,
esta evidencia es, como se discute con detalle en el Apéndice B, insuficiente
para probar su afirmacién. De hecho, ahora hay evidencia experimental de una
autorregulacion positiva de WER a través de otro elemento del sistema de raiz,
SCRAMBLED (SCM) (Kwak & Schiefelbein 2008). La relacién del mecanismo
que se propone en esta tesis con otros mecanismos propuestos para la forma-
cién de patrones de pelos en Arabidopsis thaliana se discute en el siguiente
capitulo.

Los resultados descritos arriba alentaron el uso de estos modelos para pro-
bar hipdtesis v generar nuevas predicciones. A continuacién se presenta uno de
los andlisis disenados en esta direccion y en el siguiente capitulo de discuten
otros andlisis de este tipo.

Desde el trabajo con la red minima referido en el capitulo anterior, se pro-
puso que la geometria celular tiene un efecto estabilizador del patrén espacial
que caracteriza la disposicién de tricoblastos en la raiz de Arabidopsis thaliana.
Esta hipétesis se puso a prueba mediante el uso del modelo de meta-red del
sistema de epidermis de raiz. Para ello, se simul6 una diferencia en la tasa de
difusién de los elementos moéviles en diferentes direcciones, haciendo la tasa
de difusién en la direccién horizontal mayor que aquélla de la direccién verti-
cal (correspondiente al eje apico-basal de la planta). Este cambio en las tasas
de difusién vertical y horizontal corresponde al hecho de que las células de la
epidermis de raiz se alargan en la direccion apico-basal durante su desarro-
llo, haciendo que sus ntcleos, donde se transcriben los elementos de la red, se
encuentren mas alejados entre si en la direccion vertical que en la horizontal.
Como resultado de estas simulaciones se encontré que efectivamente una ma-
yor tasa de difusién en el eje apico-basal genera patrones con menos errores,
es decir, una menor proporcién de células correspondientes a tricoblastos o
atricoblastos ectépicos (Figura 5 del Apéndice B).
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Estos resultados muestran que un mecanismo que genere esta diferencia
en las tasas de difusién vertical y horizontal efectivamente estabiliza el patrén
bandeado que se observa en epidermis de raiz. En este trabajo se propone que
tal mecanismo esta dado por el alargamiento de las células en una direccién.

Del analisis de los modelos de meta-red para epidermis de raiz y hoja puede
entonces concluirse que los elementos que conforman el modelo (la RRG docu-
mentada experimentalmente, el dominio espacial celularizado, la comunicaién
celular de corto alcance y la senal del cértex en raiz) conforman un sistema
epigenético que es suficiente para la determinacién de los tipos celulares con y
sin pelo, asi como para su disposicion espaciada y bandeada. Ademas, puede
concluirse que la informacién posicional necesaria para la determinacién y arre-
glo espacial de células con pelos y no pelos se genera durante el proceso mis-
mo de diferenciacién celular y con la intervencién de las células que han de
diferenciarse.

Por ello, se concluye que la deficinicién tradicional de informacién posi-
cional (Wolpert 1996), en la que la ésta se entiende como fija e independiente
de las células que se diferencian, es una definicién limitada e insuficiente para
el estudio de sistemas del desarrollo. A su vez, la nociéon de informacién posi-
cional suele contraponerse a la de diferenciacion por linaje celular. Sin embargo,
los resultados aqui presentados invitan a revisar algunas de las dicotomias que
comunmente se manejan en biologia del desarrollo, tales como innato-adquirido
o bien, posicién-linaje, teniendo en mente que la diferenciacién celular es un
proceso en el que los factores intra y extracelulares se retroalimentan y que las
células mismas participan en su diferenciacion. Por otra parte, se mostré que
la formacién de patrones de tricomas y tricoblastos no depende de valores
de parametros, sino, al parecer, de la dindmica colectiva de una poblacién de
células con RRGs acopladas. Esto resuena con la nocién de morfogénesis que
plantea S. Oyama en su libro, The Ontogeny of Information (Oyama 2000):

Form emerges in successive interactions. Far from being im-
posed on matter by some agent, it is a function of the reactivity
of matter at many hierarchical levels, and of the responsiveness of
those interactions to each other.
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Capitulo 3

Propiedades organizativas del
sistema de determinacion de
tipo celular en epidermis de
Arabidopsis thaliana

Como se menciono en la introduccion, algunos de los conceptos centrales en
el area de evo-devo son aquéllos relacionados con las propiedades organizativas
de los sistemas de desarrollo, es decir, con propiedades como la modularidad,
plasticidad y robustez. Estas se refieren a caracteristicas sistémicas, dindmicas
o estructurales, de los procesos de desarrollo y su estudio es imprescindible para
el entendimiento de la evolucién del desarrollo en organimos muticelulares. Es-
to se debe a que el entendimiento de estas propiedades y el estudio de su
origen permitird comprender mejor cudles son los cambios genéticos, ambien-
tales o de otros tipo que pueden originar nuevas formas, cudles son factores
que determinan el que un proceso pueda repetirse de forma estereotipada en
distintas condiciones, cuales son los procesos genéricos que se repiten en dis-
tintos linajes de seres vivos y como éstos dan cuenta de formas y estructuras
recurrentes en las formas vivas, etcétera. En este capitulo se discute el papel
de ciertas propiedades organizativas en el desarrollo y se plantean las pregun-
tas relacionadas con estas propiedades que han sido referidas mediante el uso
del modelo de meta-red. Finalmente, se presentan los resultados de andlisis
de robustez, modularidad, plasticidad y redundancia del modelo de meta-red,
mismos que se discuten en el marco de evo-devo. Los detalles de este capitulo
pueden consultarse en los Apéndices B y C.
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3.1. Modularidad

La modularidad es una propiedad que parece comun a los mas diversos
sistemas bioldgicos (Wagner 2005, Wagner et al. 2007), ya sea en aspectos
morfolégicos, fisiologicos, etoldgicos o genéticos. Consiste en que un sistema
bioldgico puede dividirse en subconjuntos con algin grado de autonomia, ya
sea funcional, morfolégica o de otro tipo. Se ha planteado que la modularidad
es importante para el mantenimiento de un organismo o sistema biolégico, pues
la organizacién modular evita que el dano o alteracién de un mdédulo afecte
a otras partes del sistema. Por otra parte, se ha propuesto que los mdédulos
pueden ser reusados o combinados de distintas formas a lo largo de los procesos
evolutivos, dando lugar a sistemas que son robustos ante dafos o alteraciones
y también flexibles (von Dassow & Munro 1999). Algunas de las preguntas
abiertas respecto a la modularidad en sistemas de desarrollo, y en sistemas
bioldgicos en general, estan relacionadas con el origen de esta propiedad. Mas
especificamente, pese a que se han propuesto algunos mecanismos que podrian
subyacer la generaciéon de modularidad en redes complejas (Kashtan & Alon
2005), ain no se sabe cémo surge durante la evolucién de redes de regulacién
genética o de los seres vivos, ni si es una consecuencia inevitable de su evolucion
o0 si es una propiedad que pueda resultar de la accién de la de seleccién positiva.

El estudio de la determinacion de tipo celular en epidermis de raiz y ho-
ja de Arabidopsis thaliana ha permitido descubrir conjuntos de interacciones
genéticas intra e intercelulares que se postulan como médulos funcionales aso-
ciados a la generacién de dos perfiles de expresion genética estables (pelo y no
pelo) y al surgimiento de arreglos espaciales de estos dos tipos de células.

Los modelos de meta-red descritos antes parecen efectivamente constituir
modulos semiauténomos suficientes para generar dos tipos celulares organi-
zados en distintos patrones espaciales. Es interesante mencionar que ambos
modulos comparten la mayoria de los genes que los conforman y que los que
son diferentes entre raiz y hoja pertenecen a las mismas familias multigénicas.
Maés ain, pese a que tienen diferencias, ambos mddulos parecen también com-
partir motivos de regulacién del tipo activador-inhibidor. Esto sugiere que los
médulos o meta-redes de raiz y hoja tienen un origen evolutivo comun.
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3.2. Plasticidad

Si bien los médulos descritos en este trabajo son suficientes para la determi-
nacién y arreglo espacial del tipo celular, es importante mencionar que ambos
estan relacionados con otros modulos y vias de senalamiento. Asi, estos médu-
los no se manifiestan en células de la endodermis en la raiz o del parénquima
en la hoja pues estan regulados por factores de crecimiento, hormonas u otros
factores especificos de la epidermis. De igual manera, estos médulos afectan a
modulos que tienen que ver con la diferenciacién de las células de pelos y no
pelos y que median la transformacion de una célula asignada a cierto destino
celular a una célula con las carcteristicas de dicho destino celular (e.g. vacuolas
grandes, proyecciones de la membrana, etc.).

El moédulo de determinacién de tipo celular de hecho actiia como integrador
de senales ambientales que regulan la produccién y distribuciéon de hormonas,
mismas que, a su vez, actian como entradas de las meta-redes que se han
descrito en este trabajo. De esta forma, estas redes estdn asociadas a la gene-
racién de fenotipos distintos en distintos momentos del desarrollo y ante dis-
tintas condiciones ambientales, es decir, la repuesta plastica de la Arabidopsis
thaliana.

Como parte del desarrollo plastico, la regulacién de estas meta-redes a
través de hormonas y factores ambientales puede generar mayor o menor den-
sidad de pelos, asi como cambios en su distribucion espacial. Los tricomas,
por ejemplo, se distribuyen de manera diferencial en las distintas estructuras
y érganos de la planta, e inclusive en las diferentes regiones de una misma
estructura !.

Entre las hormonas que afectan al médulo de la epidermis de hoja, se ha
identificado a las giberelinas (GA) como inductores constitutivos y necesa-
rios de tricomas en la parte aérea de Arabidopsis thaliana (Telfer et al. 1997).
Perazza y colaboradores (Perazza et al. 1998) mostraron que las GA tienen
un efecto positivo sobre la expresion de GLI, uno de los componentes de la
meta-red asociada a determinacién de tipo celular en epidermis de hoja. Sin
embargo, en principio existen muchas maneras de actuar sobre la red transcrip-
cional de manera que se aumente la densidad de tricomas y la expresién de
GL1. El papel de GL1 como promotor de tricomas se dedujo principalmente

Estos suelen ser mucho més abundantes en la cara adaxial que en la abaxial y su den-
sidad y distribucién en cada cara puede cambiar durante el desarrollo vegetal (Tsukaya &
Horiguchi 2005)
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a partir del fenotipo calvo de mutantes con pérdida de funcién y de los tri-
comas ectdpicos (por ejemplo, en pétalos) en experimentos de sobreexpresién
de GL1. No obstante, la sobreexpresion de GLI no produce un aumento claro
en la densidad de tricomas foliares (Larkin et al. 1994) y hasta ahora no hay
evidencia de que las moléculas que median la via de GA se unan al promotor
o a alguna otra region de GLI.

Por ello, y como una primera aproximacién al estudio de la plasticidad en
este sistema, se probé de manera sistematica las diferentes maneras en que las
vias de sefialamiento pueden estar afectando a la red de regulacién transcrip-
cional. Se simulé de manera dindmica el conjunto de posibles interacciones
sencillas, i.e., sobre un sélo gen, que podrian mediar el efecto de las GA so-
bre la meta-red y se compararon los resultados obtenidos para cada posible
interaccion con los fenotipos reportados para inhibicién o sobreexpresién de

GA.

Los resultados de estas simulaciones muestran que el efecto positivo de la
senal sobre los genes de la familia bHLH y negativo sobre TRY son los tinicos
que dan lugar a un aumento en la densidad de tricomas (Apéndice B). Estos
resultados apuntan a que las GA pueden estar afectando a la red de regulacion
genética no via GL1, sino via los genes bHLH o TRY, lo que da lugar a una
prediccon precisa y que puede ponerse a prueba experimentalmente. De hecho,
un par de grupos han reportado que el blanco de diversas vias hormonales,
entre las que se encuentra la de GA, es GL3 o EGLS3 (los genes bHLH) (Maes
et al. 2008, Yoshida et al. 2009), lo que confirma la prediccién derivada de las
simulaciones.

Existen atin numerosas preguntas abiertas respecto al origen de la plastici-
dad del desarrollo en plantas, asi como al papel de la plasticidad en la diver-
sificacién de los organismos durante la evolucién (Waddington 1953, Baldwin
1896, West-Eberhard 2003). Sin embargo, como se muestra en esta seccion, la
caracterizacion y modelacion dinamica de los médulos de desarrollo descritos
experimentalmente puede ayudar a entender como éstos integran las senales
del mismo organismo y del ambiente, mediando la repuesta plastica. Ademas,
este tipo de estudios promete contribuir al entendimiento de cémo el desarrollo
plastico puede estar relacionado con fenémenos como la asimilacién genética
(Waddington 1953) y el origen de novedades evolutivas.
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3.3. Robustez y redundancia dinamica

Los procesos que caracterizan el desarrollo de plantas y animales ocurren
de manera relativamente determinada ain cuando los organismos se desarro-
llan en medios muy distintos o estan sujetos a diversos tipos de fluctuaciones y
cambios ambientales. Incluso ciertos aspectos del desarrollo estan conservados
en linajes muy distantes. Por ello, se dice que el desarrollo es un proceso ro-
busto ante diversos tipos de perturbaciones. La robustez ante perturbaciones
es entonces una propiedad importante de los sistemas de desarrollo y, més
aun, parece estar asociada a otras propiedades organizativas, tales como la
capacidad de evolucionar de un sistema (Wagner 2005). En particular, en esta
seccion se presentan los resultados de andlisis de robustez para las meta-redes
que son objeto de estudio en este trabajo, asi como los resultados de un andli-
sis orientado a estudiar la relacion entre redundancia y robustez del sistema
(detalles en Apéndice C).

3.3.1. Analisis de robustez

Con el fin de evaluar la robustez de los médulos de determinacién y del
arreglo de tipo celular en epidermis de Arabidopsis thaliana ante distintos
tipos de perturbaciones, se llevaron a cabo las pruebas que se describen en los
siguientes parrafos.

Para el sistema de epidermis de hoja, se modificaron las condiciones de
frontera haciéndolas peridédicas y se verificd) que, para rejillas de 20 x 20 cel-
das, estas condiciones no afectan la determinacién y distribucién espacial de
tricomas. También se variaron sistematicamente los valores de los parametros
de difusién de elementos mébiles de la meta-red y se encontré que el patron de
espaciamiento tipico de los tricomas se mantiene para un amplio intervalo de
valores (Apéndice B). Asi mismo, el sistema de hoja resulté ser sumamente ro-
busto a alteraciones puntuales en las reglas logicas. Las reglas légicas se repre-
sentan en tablas en las que la ultima columna es la “salida” de las reglas. Estas
salidas se modificaron sisteméticamente de una en una y se encontré que el
88 % de las alteraciones sencillas de las reglas no afecta la naturaleza de los
atractores obtenidos ni la disposicién espacial de los tipos celulares.

Se realizaron anélisis similares para el caso del sistema de raiz y se encon-
tré que también este sistema es sumamente robusto ante cambios en valores de
parametros, condiciones de frontera y alteraciones puntuales de las reglas 16gi-
cas. Juntos, estos resultados muestran que el comportamiento de las meta-redes
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no depende tanto de valores precisos de parametros o de reglas particulares
como de la estructura global del sistema.

3.3.2. La redundancia dinamica confiere robustez a las
meta-redes

Los esfuerzos de modelacién de sistemas de desarrollo, en conjuncién con
numerosos trabajos experimentales, estdn descubriendo algunas propiedades de
las red de regulacién genética que se proponen como propiedades organizativas
potencialmente genéricas (e.g. von Dassow & Odell 2002, Espinosa-Soto et al.
2004, Jonsson et al. 2006). En particular, se ha propuesto a la redundancia
dindamica al interior de redes, es decir, al acoplamiento coherente de sub-redes,
como una de propiedad comin a diversos sistemas bioldgicos (Kwon & Cho
2008). Con el fin de distinguir entre redundancia de elementos idénticos en un
sistema y redundancia funcional mediada por elementos diferentes, se maneja
también el término degeneracion (Tononi et al. 1999) para hacer referencia a
lo que en este trabajo se denomina redundancia dindmica.

Durante los dltimos afnos se han propuesto, ademés de los modelos de meta-
redes presentados en este trabajo, diferentes modelos dinamicos para la deter-
minacién y arreglo de tipos celulares en la epidermis de hoja y raiz de Ara-
bidopsis thaliana (Benitez et al. 2008, Bouyer et al. 2008, Digiuni et al. 2008,
Savage et al. 2008, Kwak & Schiefelbein 2009, figura 3.1). Si bien estos mode-
los tienen diferentes enfoques, métodos y alcances, colectivamente proveen de
una vision amplia y rica de los sistemas de estudio. De hecho, cada uno de
estos modelos propone un mecanismo de determinacion y arreglo de células
epidérmicas basado en un subconjunto de las interacciones que han sido con-
sideradas en los modelos de meta-red. Es importante mencionar que cada uno
de estos mecanismos no excluyentes es, en principio, suficiente para la deter-
minacién de células con y sin pelo. Esto sugiere que los sistemas de hoja y
rafz contienen sub-mddulos funcionales que son redundates entre si (Benitez
et al. 2008, Schiefelbein et al. 2009) y que, probablemente, confieren robustez
al sistema completo.

Aunque el efecto de la redundancia genética ha sido bastante estudiado en
el contexto de RRGs, el papel de la redundancia de motivos de regulacién o
sub-redes se ha mantenido poco explorado, sobre todo en sistemas documenta-
dos experimentalmente. Entonces, con el fin de investigar si efectivamente los
sistemas estudiados presentan redundancia dindmica y si, de presentarla, ésta
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confiere robustez al sistema global, se utilizé la metodologia desarrollada para
la simulacién de redes acopladas y se simularon de forma independiente todos
los mecanismos de formacion de patrones celulares propuestos hasta ahora.
Las simulaciones se llevaron a cabo de acuerdo con los métodos establecidos
para la modelacién espaciotemporal de las meta-redes (Apéndice B).

Tras llevar a cabo la modelacién de los distintos mecanismos haciendo uso
de la misma plataforma de simulacién, se encontré que cada uno de ellos es
suficiente para la determinacion de dos tipos celulares y para la generacion de
un arreglo espaciado o bandeado de estos tipos, segun sea el caso (Apéndice
C), lo que indica que efectivamente los sistemas de determinacién y arreglo de
células de la epidermis exhiben redundancia dinamica.

Posteriormente se propusieron dos estimaciones de robustez, una que refleja
la robustez de los sistemas ante mutaciones sencillas de pérdida de funcién,
y otra que refleja su robustez ante perturbaciones estocdsticas. Tras evaluar
en estos términos la robustez de cada uno de los mecanismos propuestos y
de compararla con la de todos los mecanimos acoplados, se encontré que los
mecanismos acoplados son significativamente mas robustos que cada uno de los
mecanismos aislados. Esto confirma la hipétesis de que la redundacia dindmica
confiere robustez a los sistemas completos de determinacién y arreglo de tipos
celulares en la epidermis de Arabidopsis thaliana (Apéndice C).

Estos andlisis permiten plantear una relacién entre modularidad dinamica,
redundancia y robustez que valdra la pena estudiar en otros casos particu-
lares documentados experimentalmente. Ademéds abren numerosas preguntas
respecto al origen de esta relaciéon, tales como si la redundancia y modulari-
dad dinamicas son producto de la manera en que los sistemas de desarrollo vy,
en particular las RRG se conforman y cambian, o bien, si son seleccionadas
positivamente en caso de que los patrones que generan sean adaptativos.
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Mddulo rama de interaccione Suficiente Necesario
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Figura 3.1: Médulos que han sido propuesto como responsables de la formacion
de patrones celulares en epidermis de raiz y hoja de Arabidopsis thaliana.




Capitulo 4

Discusién y conclusiones

Como resultado de este trabajo de tesis se obtuvieron dos modelos de sis-
temas de redes acopladas, basados en evidencia experimental, que han permi-
tido proponer una explicacién dinamica al origen de la informacién posicional
en la epidermis de hoja y raiz de Arabidopsis thaliana. Estos sistemas integran
los genes y relaciones de regulacién genética reportados como relevantes en
la literatura y, méas adn, los integra en un modelo en que las redes de regu-
lacién genética de cada célula se comunican con las redes de células vecinas.
Los modelos fueron validados mediante la realizacién de pruebas en las que
se reprodujeron los arreglos de pelos y no pelos descritos para distintos tipos
de mutantes de la red. Por otra parte, se generaron distintas predicciones,
algunas de las cuales han sido verificadas experimentalmente por otros labo-
ratorios. Los resultados de este trabajo sugieren que la informacién posicional
necesaria para la determinacién de tipo celular en epidermis emerge durante
el proceso mismo de determinacién de tipo celular, a partir de relaciones de
regulacién genética y comunicacion intercelular. De esta forma, los patrones de
expresion celular que constituyen la informacién posicional son robustos ante
diferentes tipos de perturbaciones y pueden regenerarse.

Pese a que el sistema de determinacién de tipo celular en epidermis en
Arabidopsis thaliana es un sistema relativamente sencillo y aparentemente no
fundamental para la supervivencia de las plantas en el laboratorio, es uno de
los sistemas de determinacién de destino celular mejor descritos y su estudio
ha permitido avanzar en el entendimiento de los procesos celulares asociados
a la diferenciacion, asi como apuntar propiedades potencialmente genéricas de
las RRGs.

Los médulos funcionales que aqui se reportan son muy utiles como base para
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integrar nuevos datos relacionados con el sistema particular, asi como para el
analisis y comparacién de procesos del desarrollo, calibracion de nuevos méto-
dos de inferencia de redes, entre otras cosas. En particular, serdn sumamente
util para integrar los datos que se generen en relacion al papel de las hormonas
vegetales en el desarrollo, el desarrollo pldstico y la determinacién de estomas,
proceso que parece estar relacionado con la determinacion y arreglo células con
y sin pelos epidérmicos (Serna 2005 y referencias ahi citadas).

Por una parte, se encontré que los elementos de las redes, de forma colec-
tiva, actian de manera similar a un sistema del tipo activador-inhibidor. Este
resultado sugiere que los morfégenos propuestos por Turing podrian tener su
origen en colecciones de moléculas o procesos celulares y no necesariamente
corresponder a una sola sustancia. Debido a que el sistema activador-inhibidor
parace formar parte de otras redes asociadas a procesos del desarrollo (e.g.
Newman & Bhat 2007), es posible que los sistemas de activador-inhibidor sean
temas en la evolucion del desarrollo, temas que ademas podrian haber sido
fundamentales para el origen de la diversidad en plantas y animales (Newman
& Bhat 2009).

Por otra parte, se mostrd que las redes aqui estudiadas estan formadas por
subredes que, en principio, son suficientes por separado para la determinacion
de los tipos celulares y la distribucién espacial de pelos. Luego, se mostro que
dichas subredes actian de forma redundante y que en conjunto incrementan la
robustez del sistema de determinacién y arreglo de pelos en epidermis. Estos
resultados indican que la redundancia dinamica es uno de los mecanismos de
canalizacién (sensu Waddington 1957) del desarrollo y que el estudio de esta
propiedad, inexplorada hasta ahora, sera importante en el entendimiento de la
evolucién de las RRGs y del desarrollo.

4.1. Perspectivas

Una de las preguntas interesantes que pueden abordarse ahora que se cuenta
con una caracterizacién dinamica y estructural del médulo funcional asociado
a la determinacién y arreglo de tipos celulares en epidermis, es la de si dicho
modulo se halla conservado en otros linajes de plantas y, en caso de estarlo, si
cambios en este mddulo (por ejemplo en la secuencia de expresiéon de genes)
pueden explicar los diferentes arreglos de pelos observados en otras plantas.
Otra de las preguntas que se derivan de esta tesis es la de como se han integrado
durante la evolucién los submdédulos que conforman las RRGs estudiadas. En
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particular, podré ponerse a prueba la hipdtesis de Newman y Baht (Newman &
Bhat 2009), a saber, que los médulos més antiguos son aquéllos que subyacen
la diversificacién de los fenotipos y que articulan mecanismos genéricos del
tipo reaccién difusion. Ademas, sera interesante estudiar si la seleccién natural
ha tenido un papel importante en la evolucién de este médulo funcional y en
los genes que conforman las redes estudiadas y, con ello, en la evolucién del
arreglo celular de la epidermis. Este tipo de preguntas podria referirse en un
inicio con un enfoque comparativo y podria complementarse con simulaciones
de distintos tipos y, finalmente, con experimentos.

La idea de que ambos médulos tienen un origen comun y de que a lo largo de
la evolucién se han reusado en distintas estructuras de la planta esta también
sustentada en el hecho de que el hipocotilo (regién de transicién entre la parte
aérea de la planta y su raiz) presenta estomas en un patrén bandeado que
parece estar regulado por algunos de los genes involucrados en la determinacion
y arreglo de pelos en hoja y raiz (Serna 2005). Este sistema “intermedio” podria
contener elementos de los dos médulos y su mejor entendimiento ayudaria a
comprender el origen evolutivo y la regulacién durante el desarrollo de los
modulos estudiados en raiz y hoja.

Con el fin de estudiar la evoluciéon de los procesos del desarrollo, serd in-
teresante hacer uso de técnicas de biologia molecular y de bioinformética para
investigar si los médulos aqui estudiados estan conservados en otras plantas y
si pueden, al estar embebidos en distintos contextos celulares, dar lugar a la
diversidad de patrones de pelos que se observan en plantas terrestres o si en
otras plantas estan asociados a procesos del desarrollo distintos. También, en
caso de que los mdédulos no estén conservados, serd interesante estudiar si la
determinacién y arreglo de pelos y no pelos en otras plantas se lleva a cabo por
modulos dindmica o estructuralmente equivalentes a los que aqui se estudian.

En una revisién, Miiller (Miiller 2007) plantea que algunas de las preguntas
fundamentales en el area de evo-devo estan relacionadas con el entendimiento
del origen y evolucién del repertorio del desarrollo, el origen de las novedades
fenotipicas y la relacion entre condiciones ambientales y ecolégicas con el de-
sarrollo de plantas y animales. Tanto el trabajo que aqui se presenta, como
los estudios a los que da pie, abordan algunas de estas cuestiones y proponen
nuevas ideas y métodos respecto al origen de la informacién posicional, al ori-
gen de temas bésicos en el repertorio del desarrollo (e.g. el sistema activador-
inhibidor), a la relacién de redes con el ambiente a través de hormonas, el
origen de las novedades (distintos tipos de arreglos celulares) y mediante el
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estudio de mddulos redundantes y la evolucion de la robustez a la evolucion
de los procesos y repertorio del desarrollo.



Apéndice A

Equivalent genetic regulatory networks in different contexts re-
cover contrasting spatial cell patterns that resemble those in Ara-
bidopsis root and leaf epidermis: a dynamic model.

Este trabajo forma parte de la tesis doctoral de Carlos Espinosa Soto.
Publicado en el International Journal of Developmental Biology, 2007.
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Equivalent genetic regulatory networks in different contexts
recover contrasting spatial cell patterns that resemble those in
Arabidopsis root and leaf epidermis: a dynamic model
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ABSTRACT In Arabidopsis thaliana, leaf and root epidermis hairs exhibit contrasting spatial
arrangements even though the genetic networks regulating their respective cell-fate determina-
tion have very similar structures and components. We integrated available experimental data for
leaf and root hair patterning in dynamic network models which may be reduced to activator-
inhibitor models. This integration yielded expected results for these kinds of dynamic models,
including striped and dotted cell patterns which are characteristic of root and leaf epidermis,
respectively. However, these formal tools have led us to novel insights on current data and to put
forward precise hypotheses which can be addressed experimentally. In particular, despite subtle
differences in the root and leaf networks, these have equivalent dynamical behaviors. Our
simulations also suggest that only when a biasing signal positively affects an activator in the
network, the system recovers striped cellular patterns similar to those of root epidermis. We also
postulate that cell shape may affect pattern stability in the root. Our results thus support the idea
that in this and other cases, contrasting spatial cell patterns and other evolutionary morphoge-
netic novelties originate from conserved genetic network modules subject to divergent contex-
tual traits.

KEY WORDS: gene network, activator-inhibitor, hair patterning

Introduction

In multicellular organisms cell types are often arranged in a
non-random manner, resulting in spatial patterns that may have
important functional roles. Cell identity can be acquired and
maintained by at least two non-excluding mechanisms, one
involving cell-lineage and the other, positional information. The
latter seems to be the predominant mechanismin plants (Scheres,
2001). In positional information dependent systems cells attain
their identity through mediation of signals (chemical or other) that
are not homogenously distributed throughout the organism. Un-
der such circumstances, a pattern is likely to result from the
interplay between gene regulatory networks and positional infor-
mation, that includes contextual traits such as initial conditions,
cellarrangementand domain size, geometry and growth (Goodwin,
2001).

Root and leaf epidermal cell patterning in Arabidopsis thaliana

(Arabidopsis hereafter) provides a simple system to explore the
processes by which gene regulatory circuits, coupled to the action
of contextual conditions, determine spatial cell arrangement in
biological systems. In addition, this system has been the subject
of careful genetic studies and there is a vast amount of experi-
mental evidence that can be integrated in a dynamic gene
network model (see reviews in: Pesch and Hilskamp, 2004;
Serna, 2005; Dolan, 2006 and references therein). Leaf epider-
mis bears hairs (trichomes) interspersed across the leaf surface.
These structures tend to appear away from each other (Larkin et
al., 1996) resulting in dotted patterns with no clusters (Fig. 1A).
Arabidopsis root epidermis has two cell types, hair and non-hair

Abbreviations used in this paper: AC, activator complex; bHLH, basic helix-
loop-helix; CPC, CAPRICE; EGL3, ENHANCER OF GLABRAS3; GL3,
GLABRAS3; H, hair (cell); NH, non-hair (cell); SCM, SCRAMBLED; TTG,
TRANSPARENT TESTA GLABRA; TRY, TRIPTYCHON; WER, WEREWOLF.

*Address correspondence to: Dr. Elena R. Alvarez-Buylla. Laboratorio de Genética Molecular, Desarrollo y Evolucion de Plantas, Instituto de Ecologia,
Universidad Nacional Autonoma de México, Ap. Postal 70-275, 3er Circ Ext Junto Jardin Bot, CU, Coyoacan 04510, México DF, México. Fax: +562-565-56622-9013.

e-mail: elena.alvarezbuylla@gmail.com

# Note: Both authors contributed equally to this work.

0214-6282/2007/$30.00
© UBC Press

Printed in Spain
www.intjdevbiol.com



140 M. Benitez et al
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Non-hair cell
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Cortex

Activator
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Fig. 1. Networks regulating trichome and root hair patterns in
Arabidopsis. (A) Sparsely dotted trichome pattern in a wild type
Arabidopsis leaf. (B) Striped trichoblast pattern in Arabidopsis roots. Root
hairs develop on epidermal cells that contact two cortical cells. (C) Genes
that are not shared between these two networks belong to the same
gene families. Myb corresponds to GL1 in leaves and to WER in roots,
while MybD corresponds to TRY in leaves and to CPC in roots and MybD2
stands for CPC and TRY in leaves and roots, respectively. CPC and TRY
have a partially redundant inhibitory effect on the Activator Complex (AC),
these are known as the inhibitory elements of the network. The AC is
composed of the activator genes TTG, GL3, EGL3 and GL1 or WER.
Drawing (A) based on photograph from Larkin et al. (1996).

cells that develop from trichoblasts and atrichoblasts, respec-
tively. In all Brassicaceae species, including Arabidopsis, the root
exhibits an arrangement of alternating cell files composed by
either trichoblasts or atrichoblasts (Fig. 1B; Galway et al., 1994,
Dolan, 1996).

Despite the different spatial cell patterns found in leaf and root
epidermis, the gene networks that underlie cell type
subspecification in roots and leaves are very similar (Fig. 1C).
Some genes are involved in both the root and leaf systems
(Galway et al., 1994; Di Cristina et al., 1996; Payne et al., 2000;
Bernhardt et al., 2003) and few are not (Oppenheimer etal., 1991,
Lee and Schiefelbein, 1999). However, for each privative gene of
one of these systems there is a gene belonging to the same gene
family that is privative of the other one. Moreover, interactions
among the genes seem to be preserved in both cases (Pesch and
Hulskamp, 2004), despite subtle differences (Zhang et al., 2003;
Bernhardt et al., 2005; Kurata et al., 2005). Therefore, networks
with very similar architectures and molecular components yield
strikingly different spatial cell arrangements in leaf and root
epidermis (Fig. 1).

The contrasting patterns could be due to differences in the
kinetic functions of the networks in each epidermal system
(Meinhardt, 1982; Murray,1989). However, experimental data
suggest that this is not the case because, at least for two key
network components, wild type spatial cell patterns are recovered
in transgenic lines that bear constructs with promoters swapped

between leaf and root genes (Lee and Schiefelbein, 2001). An
alternative explanation would imply that different contextual traits
providing positional cues in the tissues are responsible for the
distinct spatial patterns of cell types in leaves and roots.

In Arabidopsis roots, only epidermal cells that overlie two
cortical cells become trichoblasts (Fig. 1B; Galway et al., 1994),
suggesting the presence of a positional signal that biases root
epidermal cell fate. Since root cells mainly divide in one direction,
all descendants of a root initial are arranged in a row along the
baso-apical axis (Meyerowitz, 1997), giving rise to a constant
spatial relation among distinct root cell layers. This does not
happen in leaves. Such contextual differences may be respon-
sible for the contrasting spatial cell patterns of root and leaf
epidermis.

Lee and Schiefelbein (2001) have suggested that genetic
networks underlying hair and non-hair determination and ar-
rangement are equivalent in both epidermal systems. However,
although these investigators have proven that the coding regions
of two genes (WEREWOLF, WER and GLABRAI1, GL1) are
functionally equivalent, the different promoters could still be
responsible for different transcription rates that could in turn be
critical for attaining the two patterns. It has also been proposed
that these networks can be understood as an activator-inhibitor
dynamical system, a type of Turing reaction-diffusion system
(Pesch and Hilskamp, 2004). Yet, this has not been formally
tested.

In this article we first show that despite slight differences, the
root and leaf networks are dynamically equivalent and then we
explicitly test if, assuming such genetic networks with equal
kinetics and regulatory interactions, different contextual traits are
sufficient or necessary to yield contrasting spatial cell patterns
resembling those observed in leaf and root epidermis. To achieve
this, we developed network models grounded on experimental
data for gene interactions during epidermal cell fate and then built
a single generic network for either of both systems (Fig. 1C).

We found that the gene regulatory network (Fig. 1C) exhibits
the same qualitative behavior as a simplified discrete system in
which only one activator and one inhibitor are considered. There-
fore, we reduced the network model to a type of reaction-diffusion
system. Here we report that this continuous system, under differ-
ent contexts is sufficient to recover the two spatial cellular pat-
terns and that the root striped cellular pattern is only recovered
when a positional signal affects the system in a specific manner.
Moreover, we were able to reproduce and explain empirical
results and provide novel predictions on gene interactions that
may be tested experimentally. It would not be feasible to achieve
these goals without a dynamical model that integrates the avail-
able empirical data.

Experimental Evidence

TRANSPARENT TESTA GLABRA (TTG) and bHLH proteins
(GLABRA3, GL3 and ENHANCER OF GLABRA 3, EGL3) form
functional multimers with Myb proteins GLABRAL (GL1) (Larkin et
al., 1997; Payne et al., 2000) and WEREWOLF (WER) (Lee and
Schiefelbein, 1999; Bernhardt et al., 2003, 2005) in leaf and root,
respectively. Hence we refer to the TTG, GL3, EGL3 and GL1
protein complex as the leaf activator and to the TTG, GL3, EGL3
and WER protein complex as the root activator. Both activators
promote transcription of GLABRAZ (GL2, Di Cristina et al., 1996;
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Hung et al., 1998; Szymanski et al., 1998; Lee and Schiefelbein,
1999; Payne et al., 2000; Wada et al., 2002; Costa and Dolan,
2003; Bernhardt et al., 2003, 2005;), whose expression deter-
mines leaf trichome cell-fate (Rerie et al., 1994; Szymanski et al.,
1998) and root atrichoblast identity (Di Cristina et al., 1996).
Therefore, the leaf and root activator complexes, in which GL1
and WER, respectively, take part (Larkin et al., 1993; Lee and
Schiefelbein, 1999), determine trichome cell identity in the leaf
and atrichoblast fate in the root.

TRIPTYCHON (TRY) and CAPRICE (CPC) are the main
repressors of the leaf and root activators, correspondingly
(Schnittger et al., 1999; Lee and Schiefelbein, 2002), although
both have partially redundant roles in both root and leaf epidermal
systems. ENHANCER OF TRIPTYCHON AND CAPRICE 1(ETC1)
has also been proven to play an important role in inhibiting both
activator complexes (Kirik et al., 2004). Experimental evidence
shows that CPC is upregulated by the root activator (Lee and
Schiefelbein, 1999, 2002; Wada et al., 2002; Bernhardt et al.,
2003; Costa and Dolan, 2003; Ryu et al., 2005). On the other
hand, the highest level of TRY expression occurs in the cells with
maximum GL1 and GL3 expression levels (Larkin et al., 1993;
Schellmann et al., 2002; Zhang et al., 2003), suggesting that the
leaf activator may also activate this inhibitor.

There is no experimental evidence for GL1 or WER self-
activation (Pesch and Hulskamp, 2004). However, WER and
CPC have highest levels of expression in atrichoblasts (Lee and
Schiefelbein, 1999; Wada et al., 2002), while GL1 and TRY peaks
of expression occur in trichome cells (Larkin et al., 1993;
Schellmann etal., 2002). As TRY and CPCrepress GL1and WER
expression, respectively, either direct or indirect self-activation of
the activators is needed to overcome the negative regulation of
the inhibitors. This should be tested experimentally.

GL3and EGL3 take partin the activator complexes, promoting
non-hair cell fate in root and trichome fate in leaf (Payne et al.,
2000; Bernhardt et al., 2003; Zhang et al., 2003). In yeast-two
hybrid, the GL3 and EGL3 proteins interact with CPC (Zhang et

Fig. 2. Data on bHLH expression and movement (Bernhardt et al.,
2005) are consistent with Werewolf (WER) and bHLH proteins being
mainly located in the same type of cells. (A) Schematic of a two-cell
system. WER represses the production of bHLH proteins, such as GL3
and EGL3, which tend to diffuse from high to low concentrations and can
move to neighboring cells. As bHLH proteins interact with WER in a
bHLH/WER complex, the concentration of free bHLH decreases in non-
hair (NH) cells; consequently, bHLH produced in neighboring hair (H) cells
keeps moving towards cells where WER is expressed. Since the activa-
tor complex seems to negatively regulate the expression of GL3 and
EGL3 (Bernhardt et al., 2005), no bHLH protein is actually produced in
cells where WER is present. Free GL3 dynamics were modeled accord-
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continuous system in which the WER/bHLH complex is being formed,
the total amount of bHLH protein (free and attached to WER) present in
NH cells is higher than that present in H cells.

al., 2003). Despite being included in the activator complexes, a
recent work (Bernhardt et al., 2005) has demonstrated that GL3
and EGL3 are not primarily expressed in non-hair root cells.
Surprisingly, they are expressed in the hair cells and move
towards those where the other activating elements are mainly
expressed. Bernhardt et al. (2005) proposed that GL3and EGL3
are activated by the inhibitor CPC and are repressed by the
activator complex. In contrast to these results, in leaves GL3
expression occurs in trichome cells, where GL1 maximum ex-
pression and hence maximum levels of leaf activator activity, are
found.

Although the above data indicate that root and leaf network
topologies are slightly different, it seems that the dynamical
behavior of both networks remains qualitatively the same be-
cause: i) since other elements (e.g. WER) of the activator complex
are present only in non-hair cells and are a limiting factor for the
formation of the activator complex, the concentration of such
complex is always higher in non-hair cells, ii) diffusion tends to
homogenize concentration of free GL3 or EGL3 proteins, iii) CPC,
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which interacts with GL3 and EGLS3, is expressed in hairless cells
and moves to hair cells, exhibiting an homogenous or even
atricoblast-biased concentration in root epidermal cells (Wada et
al., 2002; Kurata et al., 2005); finally, iv) the total concentration of
the GL3 or EGL3 protein is given by free protein plus that attached
to the activator complex; then the concentration of total bHLH
protein is always higher in the cells where both WER and TTG are
present in comparison to cells where these components of the
activator complex are not expressed. Thisfinal resultis equivalent
to that given by the leaf network where GL1 and GL3or EGL3are
mainly expressed in the same cell type in leaf epidermis, which
could be due to GL3/EGL3 activation by GL1. Simulation results
(Fig. 2) support and illustrate this claim.

Results

The discrete cell-autonomous network resembles the reac-
tion term of an activator-inhibitor system

Based on experimental evidence summarized above a gene
network model was proposed. The network nodes represent
genes and protein complexes involved in epidermal cell type
determination and the edges stand for interactions among them
(see Fig. 1 and Methods for a more detailed description of this
model). Such interactions were formalized in logical rules that
enabled a dynamic analysis of the network.

We considered all possible initial conditions in the network and
found only two steady states representing self-sustained gene
activity profiles (see Appendix).

€
o°

@

0000
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Fig. 3. Activator:inhibitor ratio for the leaf system at different time
steps. Attainment of stable patterns for the leaf system. Nuclei are
arranged in a regular lattice. Time periods for all small panels from left to
right: t=0, t=10 and t=100. The large panel corresponds to t=2000.
Parameter values for all simulations are:k,=0.3; k,=0.3; k;=0.4; k,=0.75.
The initial diffusion rates are: D,=0.15; D;=1.65. Red represents high
values of the activator:inhibitor concentration ratio.

Kauffman suggested that steady states, or attractors, of gene
networks correspond to cell types (Kauffman, 1969, 1996) and
this proposal has been explored with the use of some well
documented discrete gene networks grounded on experimental
data (Mendoza and Alvarez-Buylla, 1998, 2000; Mendoza et al.,
1999; Albert and Othmer, 2003; Espinosa-Soto et al., 2004).
Congruent with this hypothesis, the configuration of the nodes’
states for the two attractors matches the expression profiles of the
two cell types in Arabidopsis epidermis. In one of these attractors
the inhibitors, but also the activator complex and therefore GL2,
are not active while in the other, they all are (see Appendix). The
configuration with GL2 ‘off’ corresponds to non-trichome cells in
the leaf and to trichoblasts in the root.

We introduced a reduced network system that maintains the
relevant traits of the complete network dynamics. The reduced
network has only two elements: an activator that positively regu-
lates an inhibitor and itself and the inhibitor, which in turn,
negatively regulates the activator. The activator stands for the
activator complex (integrating the activity of WER or GL1, GL3,
EGL3 and TTG) and the inhibitor represents the joint action of
TRY and CPC. The dynamical analysis of this system led to
similar results as those obtained for the whole network: it has only
two attractors with gene activation configurations matching those
observed in either of the two cell types.

In addition, the comparison of the states diagram of the
discrete reduced system and the well-known phase plane asso-
ciated to the reactive terms of a typical activator-inhibitor continu-
ous system, strongly suggests that these are qualitatively equiva-
lent. They both have two steady states (network system) or
equilibrium points (continuous activator-inhibitor system) and
exhibit comparable trajectories (see Appendix). Hence, the re-
duction of the complete network to an activator-inhibitor systemis
justified. By doing this we propose that the cell-autonomous gene
network can be compared to the reactive terms of a continuous
activator-inhibitor system, while the spatially explicit terms of the
latter may account for positional biases and cell-cell communica-
tion via the inhibitors movement. We intend to represent a system
in which positional information and cell communication affect the
initial conditions of dynamic gene networks that ultimately attain
a steady state corresponding to a cell type.

A leaf activator-inhibitor system recovers spatial patterns
that resemble those observed for trichomes

Turing (1952) proposed systems in which reactants with differ-
ent diffusion coefficients can produce spatial patterns de novo
and maintain them. Activator-inhibitor systems are a particular
case of reaction-diffusion (Turing) systems and are based onlocal
self-activation and lateral inhibition (Meinhardt, 1982; Nijhout,
2003). Given the results obtained with the discrete system, we
introduced a spatially explicit model of thiskind. Inittwo interactors
are considered: the activator and the inhibitor, which correspond,
in the discrete system, to the AC node (WER/GL1, TTG, GL3,
EGL3) and to the partially redundant action of CPC and TRY,
respectively. The activator promotes its own synthesis and that of
the inhibitor. The inhibitor, in turn, represses the synthesis of the
activator complex (see equations and a more detailed description
of this model in Methods).

Even though it is known that activator-inhibitor systems can
produce qualitatively different patterns when subject to different
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Fig. 4. Patterns for the root system. (See Equations 3 and 4 in the Methods section). (A) Stable pattern generated in a one-dimensional ring of cells
(B) Spatially unstable root-like patterns observed for the two-dimensional root system (Equations 3 and 4 in the Methods section) considering squared
cells. Notice simulated hair cell bands are recognizable but somewhat unaligned. (C) Here, nearest neighbor of a nucleus on the x axis is closer to
it than its nearest neighbor on the y axis and hence little variation is observed in the activator:inhibitor ratio within the same column. (D) The 35S5:WER
root system also yields striped patterns. W=0.4 stands for the contribution of WEREWOLF protein due to the 35S promoter (see Equation 5 in the
Methods section). In all cases, time stable patterns at t=2000 are shown, parameter values for all simulations as in Fig. 3 and f(x)=0.06 and is included
in the system as in Equation 3 (Methods section). Red represents high values of the activator:inhibitor concentration ratio.

parameter values, we address here if an activator-inhibitor sys-
tem can produce patterns similar to those observed in leaf and
root epidermis with the same parameter values but under con-
trasting contextual conditions.

For the leaf system, we considered a squared spatial domain
and zero-flux boundary conditions, representing a leaf's section.
The system (equations (1) and (2)in Methods) was initialized with
random conditions for the concentration of the leaf activator and
a constant value for that of the inhibitor, therefore, the
activator:inhibitor ratio could never be undefined. We picked
parameter values in the Turing space and as expected for
systems of this kind, the simulations for the leaf equations
recovered dotted patterns. Figure 3 shows a color-coded graph of
the steady ratio of leaf activator over leaf inhibitor throughout the
spatial domain.

Theroot model recovers Arabidopsis-like root-hair patterns
and predicts the way the scrambled gene affects the network

In our model, contextual differences between the two epider-
mal systems are considered. The most important one concerns

the fact that only root epidermal cells that overlie two cortical cells
develop astrichoblasts, whereas the rest develop as atrichoblasts
(Galway etal., 1994). This suggests the existence of a signal from
the cortex that biases epidermal cell identity. The signal from the
cortex seems to be constant throughout the process of epidermal
cell differentiation because when occasional longitudinal anticli-
nal divisions occur in root epidermal cells, daughter cells attain
their identity according to their position relative to cortical cells
(Berger et al., 1998). This kind of signal has not been found in the
leaf epidermis. Hence, we introduced an additional constant term
into one of the root system’s equations, representing positional
cues produced by the signal from the cortex cells (equations 3 and
4 in Methods). The signal has been shown to partially depend on
the gene SCRAMBLED (SCM), which encodes a membrane
kinase receptor protein (Kwak et al., 2005). In principle, this signal
could act either positively or negatively on the inhibitor or the
activator. We tested all four possibilities (see Fig. 5 and Discus-
sion) of which, within a wide range of signal values (0.06 to 0.30),
only the one assuming a positive regulation over the activator
yielded the expected striped spatial pattern typical of Arabidopsis
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Fig.5. Root-like patterns in the model with elongated cells are spatially stable only when the signal corresponding to that going from cortical
to epidermal cells is assumed to positively regulate the activator (D). The root pattern is not recovered when the signal (A) represses the inhibitor,
(B)represses the activator or (C)activates the inhibitor. Initial conditions for each simulation were random and the parameters were the same as in
Fig. 3. Red represents high values of the activator:inhibitor concentration ratio.

root epidermis. Therefore, we present the results for this particu-
lar type of signal (equations 3 and 4 in Methods).

When considering squared root cells in a two-dimensional
domain, the resulting patterns present some bands that resemble
observed hair cell stripes; however, the concentration maxima
are not aligned as clearly as in real roots (Fig. 4B). Therefore the
obtained patterns can be described as spatially unstable root
patterns. There are a number of factors that could yield the
formation of almost perfect cell type bands in actual roots. For
instance, the intensity of the cortex signal, the effect of unknown
genetic elements or interactions in the network or the curvature of
the domain.

Another possibility is that cell geometry affects the final two-
dimensional patterns. Cell elongation, which actually takes place
in the elongation zone basal to the root meristem, may affect final
pattern formation by increasing the distance among nuclei in the
root axis direction. Thus, the cortical signal might prevail on the
activator-inhibitor mechanism in this direction. This does not
undermine the importance of the activator-inhibitor mechanism; it
stillwould be relevant for stripe generation because of it’s laterally
inhibitory effect on one direction, the one in which nuclei are
closer.

We considered a squared domain and zero-flux boundary

conditions on two of the borders and periodic boundary conditions
on the other two, simulating a cylinder. This was also initialized
with random and constant conditions for the concentration of the
activator and inhibitor, respectively. If root cells are considered
squared, the patterns obtained resemble a striped pattern, yet
such patterns are not as clear as those found in real roots (Fig.
4B).

Then, we explicitly test if once the pattern is formed in one
dimension, cell elongation can be responsible for pattern spatial
stabilization in the two-dimensional domain. To this end, we
introduced a two-dimensional root model as the one described by
equations (3) and (4) (Methods), but with cells elongated in the
baso-apical direction (its nearest neighbor along the x-axis is
closer than its nearest neighbor along the y-axis), similar to those
observed in the differentiation root zone. Although root patterning
begins before cells are elongated, we postulate that the final
striped arrangement in the two-dimensional domain may be
stabilized during cell elongation.

Once the root system was specified with elongated cells, we
tested all four possible kinds of positional signal that might
representthe SCM-dependent cue. Given arelatively weak signal
intensity (0.06), the clear pattern observed in roots is only recov-
ered when such signal acts as a positive regulator of the root
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activator (Fig. 5). The way in which SCM affects epidermal cell
identity was pointed out as one of the key issues that remain to be
clarified in order to understand pattern formation in root epidermis
(Dolan, 2006). This issue has been explored experimentally, yet
empirical data do not allow to discern the necessary and sufficient
conditions in particular concerning the magnitude and type of
signal, that may recover the observed patterns (Kwak et al. 2005).
The type of dynamic system presented here, enable predictions
that cannot be based solely on experimental data and thus
provide novel dynamical insights on this problem of pattern
formation (see Discussion).

Since the root pattern does not arise in a sheet of undifferen-
tiated cells but in a ring of small cells, we also performed
simulations of the system described in equations (3) and (4)in a
one-dimensional domain with periodic boundary conditions, simu-
lating a ring of cells. We found patterns like those observed in
rings of root cells (Fig. 4A). Arrangements obtained for two-
dimensional systems (equations 3 and 4 in Methods) with squared
and rectangular cells can be described as repetitions of the ring
patterns, although the system thatincludes elongated cells exhib-
its clearer patterns, suggesting that cell elongation or some other
stabilizing factor with a similar effect might underlie the emer-
gence of aligned cell type bands.

These results for the root system show that the gene networks
responsible for hair patterning in leaves and roots may be equiva-
lent and still able to yield different spatial patterns due to differ-
ences in the cellular contexts in which they are embedded.

In order to validate the model we tested if it recovers observed
patterns when gene expression is altered. Arabidopsis plants
constitutively over-expressing WER (35S:WER)in wild type back-
ground show wild type trichoblast and GL2 expression patterns,
while werloss of function homozygous mutants that overexpress
WER present ectopic GL2 expression (Lee and Schiefelbein,
2002). Available experimental data does not provide a clear
explanation of how the WER endogenous copy can buffer this
increase in WER expression. To address this issue and further
test the model we simulated this experiment by assuming a
constitutive production of the activator in the root system and by
modifying the root activator (equation 5 in Methods). As it hap-
pens in 35S:WER plants, columns in which the ratio of
activator:inhibitor is higher are still formed, reinforcing the com-
patibility of our model with experimental data (Fig. 4D). This result
suggests that 35S:WER-dependent inhibitor upregulation pre-
serves the activator:inhibitor ratio. Under this scenario, the pat-
tern is recovered because of spatial differences in endogenous
WER expression.

It is noteworthy that both the leaf and root patterns are robust
to strong noisy perturbations (see Appendix). This suggests that
the system is able to buffer developmental noise and canalizes
the patterns to those expected in a deterministic system. The
system’s parameters may be associated to genetic modifications
affecting production, diffusion or degradation rates of the mol-
eculesinvolved. By randomly varying parameter values, we found
that the patterns obtained do not depend on particular or rare
combinations of parameters. Both systems are considerably
robust to alterations in parameter values, although the root
system with elongated cells is more sensitive than the leaf one
(see Appendix).

Interestingly, analyses presented in the Appendix also support

that it is not likely that a system like the one presented in (1) and
(2) (Methods), without a biasing signal, is able to render striped
root-like patterns.

Discussion

Development of morphological traits depends not only on
complex interactions among an organism’s molecular constitu-
ents but also on specific properties of the domain where morpho-
genesis occurs. The complexity of such processes and the
overwhelming amount of data that is rapidly accumulating is
demanding the use of formal dynamical models that integrate
available information. These models provide a solid base to
understand biological developmental systems, as they suggest
hypotheses that can be addressed experimentally, provide tools
to interpret counterintuitive experimental data and enable the
performance of vast computer explorations on parameter values
or initial conditions that can then be tested in vivo.

Trichoblast and trichome pattern formation in Arabidopsis has
been attributed to an activator-inhibitor mechanism (Pesch and
Hulskamp, 2004). Here we provide a dynamic model that sup-
ports this. All relevant properties required for such a mechanism
are preserved in our discrete network model that integrates most
of the genes known to participate in these processes and in a
reduced version of it. The reduced network model is dynamically
very similar to the well-mixed case (no diffusion) of a typical
activator-inhibitor system. It is important to stress that the steady
states of the discrete network systems are compared to the
equilibrium points of the reactive terms of the activator-inhibitor
continuous system, suggesting that attractors or steady states of
gene networks correspond to different cell types and that contex-
tual traits (including positional information) affect the initial condi-
tions and trajectories that lead to such attractors.

Experimental data had already suggested that equivalent
networks could underlie leaf and root epidermal cell-fate determi-
nation (Lee and Schiefelbein, 2001). However, recent evidence
suggested differences in the regulation of GL3 and EGL3
(Bernhardt et al., 2005). We have shown here that despite these
dissimilarities, the root and leaf genetic networks behave qualita-
tively the same (Fig. 2).

Indeed, the model grounded on experimental data that we put
forward has enabled us to formally show that contextual traits are
sufficient to yield the contrasting Arabidopsis leaf and root
epidermal cell patterns, when equivalent networks are assumed.
These contextual conditions might be necessary for stabilizing
such patterns. The contextual traits considered were the relative
position of epidermal cells with respect to cortex cells - which in
the root epidermis determine a biasing signal - and cell shape, that
was assumed to be rectangular in the root case, but squared in the
leaf system. Cell shape is only one of the possible traits that could
stabilize the striped pattern of root epidermis, however our
simulations support that cell elongation or a mechanism with a
similar effect on the system may indeed contribute to spatially
stabilize the two-dimensional patterns.

Further experimental data and computational analyses are
needed to test if the gene networks underlying trichome and root-
hair cell determination are really equivalent. For example, genes
that are not active in both networks may have different activation
functions or behave differently in terms of transport. If the two



146 M. Benitez et al

networks were not equivalent, quantitative parameter differences
could be responsible for the attainment of the divergent spatial
cellular patterns. However, the stability analysis presented here
(see Appendix) suggest that this is not the case, given that the
structure of the equations that govern the gene network dynamics
is conserved in both systems. Since such analysis leads to the
conclusion that for this particular system, stripes are very unlikely
to form without a biasing signal, our results suggest that the
positional cue is hecessary to recover the root spatial pattern.

In this work, we provide new hypotheses that can be ad-
dressed experimentally. The first one concerns the nature of
the signal associated to SCM. This outstanding issue for the
study of pattern formation in epidermis remains unclear (Dolan,
2006). Kwak et al. (2005) suggested that the positional cue
mediated by the membrane receptor SCM could act on WER.
Still, their results are equally compatible with SCM acting on
CPC: In scm mutants the same researchers found altered
patterns of expression of CPC, GL2 and WER and suggested
that since WER regulates the expression of GL2 and CPC, the
signal could act exclusively on WER. However, CPC also
regulates the expression of GL2 (Wada et al., 2002, 1997;
Costa and Dolan, 2003) and WER (Lee and Schiefelbein,
2002), so their data does not discard the possibility that the
signal acts exclusively on CPC.

The signal associated to the position of epidermal cells
relative to cortex cells could act either on the inhibitor or the
activator, either favoring or limiting their expression. Interest-
ingly our simulations strongly suggest that assuming equal and
relatively small signal intensities, such biasing signal necessar-
ily acts positively on WER or any other component of the
activator complex in order to recover the striped pattern of root-
hair cells. Since the signal was modeled explicitly in the four
cases by including the f(x) term with different signs in both the
activator and inhibitor equations, the striped pattern can not be
an artifact derived from the inclusion of f(x). The model may be
modified in order to test alternative hypotheses concerning the
nature of the biasing signal and could guide future experiments.

Experimental evidence also supports that the biasing signal
in the root acts positively on the activator complex. Plants that
overexpress WER but preserve the wild type copy of this gene
exhibit normal root-hair and GL2 expression patterns. This
does not happen in transgenic plants over-expressing WER
with non-functional endogenous WER (Lee and Schiefelbein,
2002), showing that in order to attain normal trichoblast pat-
terns the functional wild type WER promoter is required. Also,
Blnning found that in radish epidermal cells developing inde-
pendently from other tissues bear root hairs (reviewed in Dolan
et al., 1994). These epidermal cells would be deprived from
molecular signals coming from the cortex and attain the same
cell fate that Arabidopsis root cells have when there is no
activator.

The second hypothesis we put forward states that root cell
elongation along the baso-apical axis stabilizes the root striped
pattern. This hypothesis could be tested by crossinga GL2:GUS
or GFP marker line to mutants or pharmacologically treated
plants that have altered cell shape (see for example Fagard et
al.,2000; Le etal.,2001; Ramirez-Parra etal., 2004, Campanoni
and Nick, 2005).

Given that most kinetic parameter estimates are not known,

we reduced the root-hair and trichome systems to an analogous
system with only two elements. However, we did so based on
qualitative equivalence of key dynamical traits of the gene
network and the discrete version of the activator-inhibitor sys-
tem. It should also be noticed that the reduction accurately
summarizes most available experimental evidence (see Meth-
ods). However, a few factors were left out, such as genes that
seem to be upstream from the ones in these networks, for
instance REDUCED TRICHOME NUMBER (RTN;, Larkin et al.,
1996)and GLABROUS INFLORESCENCE STEMS (Gan et al.,
2006).

The plant hormones auxin and ethylene also participate in
the development of Arabidopsis root hairs (Dolan et al., 1994;
Masucci and Schiefelbein, 1996), but they act either down-
stream or in parallel of the genes included in this study (Masucci
and Schiefelbein, 1996; Mendoza and Alvarez-Buylla, 2000)
and consequently do not affect the behavior of the networks we
worked with, further supporting their dismissal for the specific
aims of this contribution. Nevertheless, future models that
incorporate all of these factors will be very useful for predicting
the relative importance of each gene or molecule in response to
different signaling pathways in root-hair and trichome pattern
formation and evolution.

Epidermal cell type determination network constitutes a
small regulatory module and in this work we address the
particular issue of how such gene network and contextual traits
giverise to cell type patterns. However, the study of this specific
and well documented system provides results that can be
discussed in terms of evolution of morphogenesis.

As previously discussed, the root and leaf networks seem to
be dynamically equivalent. This finding, along with the fact that
an activator-inhibitor mechanism coupled to contextual traits
recovers characteristic features of cell patterning, supports the
claim that few generic and relatively simple mechanisms could
be responsible for generating and maintaining heterogeneities
during morphogenesis (Turing, 1952; Meinhardt, 1982).

In order to understand how gene networks take part in the
generation of robust cellular patterns it will certainly be useful
to characterize pattern-generating regulatory modules in well
documented gene networks and point them as potentially
generic patterning mechanisms. Congruent with the proposal
stated by Pesch and Hillskamp (2004), we identify an activator-
inhibitor system that arises from the collective behavior of a
gene network and point to this mechanism as a potentially
generic one. We emphasize that simple conserved mecha-
nisms, such as the activator-inhibitor, may rely not only on
couples of elusive morphogenes, but also on the interactions
among several genes.

Our simulations also suggest that the networks underlying
root and leaf epidermis cell patterning are robust modules that
regulate cell-fate determination in different cellular contexts.
Such contexts may have evolved yielding the contrasting spa-
tial patterns found in roots and leaves. If we extrapolate this
example to thinking about evolution of pattern formation, we
may postulate that equivalent networks might render different
patterns due to the evolution of dissimilarities in contextual
traits between structures and organisms. This suggests that the
alteration of genes associated to key contextual traits could
underlie the origin of novel and diverse patterns, even if gene
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regulatory networks of cell fate determination remain qualita-
tively the same, thereby constituting developmental and evolu-
tionary robust modules (von Dassow et al., 2000). Further
analyses are required to test how frequent context-dependent
evolution could have been in the history of life.

Methods

Discrete gene regulatory network dynamics

Grounded on the experimental data summarized in the Introduction,
we defined a network in which most nodes correspond to genes and one
corresponds to the ‘Activator Complex’ (AC) node and represents a
protein complex constituted by the products of WER or GL1, GLABRA3
(GL3), ENHANCER OF GLABRA3 (EGL3) and TRANSPARENT TESTA
GLABRA (TTG). Edges stand for regulatory interactions between nodes
(activation or repression; Fig. 1C). Since this system is restrained to the
cell-autonomous ambit, space and protein movement are neglected. In
order to enable different activity thresholds when there is experimental
information suggesting their existence (Thomas, 1991), some nodes —
GL1, WER, CAPRICE (CPC), TRIPTYCHON (TRY), GL3 and AC- can
attain three states (0 corresponding to no expression, 1 mild expression
and 2 high expression), whereas the activity of two nodes (TTG and
EGL3) is defined by two states (0 no expression, 1 expression).

The experimentally documented regulatory interactions among the
nodes were formalized as logical rules (see example in Appendix). Given
these, it is possible to follow the dynamics of the network for any initial
configuration of the nodes expression states and find if the network
attains steady states representing self-sustained gene activity profiles, as
those thought to characterize cell-types (Kauffman, 1969, 1996). For
simplicity, we used synchronic updating of the nodes’ states.

In order to compare trajectories in the discrete system with the vector
field of the reaction terms in a typical activator-inhibitor system, we also
performed simulations using a reduced system where only two nodes
were kept, one representing the activator complex and the other the
inhibitor complex.

The activator-inhibitor system

We introduced a continuous activator-inhibitor system in which an
activator element, representing the activator complex, positively regu-
lates itself and an inhibitor element, that represents the joint action of
inhibitory genes, CPC and TRY. The inhibitor negatively regulates the
activator. These interactions are compatible with the available empirical
information summarized in the introduction.

For an activator-inhibitor system to create a patternitis necessary that
the inhibitor moves along awider spatial range than the activator (Meinhardt,
1982). Experimental evidence suggests that this is the case for both
systems, since the activators seem to act locally, while the inhibitors do
not. In cpc loss of function mutants the cells that overlie two cortical cells
develop as atrichoblasts, instead of trichoblasts as it occurs in wild type
plants (Wada et al., 1997). Besides, CPC mRNA is localized only in
epidermal cells located on top of a single cortical cell, but the CPC protein
is found throughout the root epidermis as assayed by green fluorescent
protein, strongly suggesting that the CPC protein moves among cells
(Wada et al., 2002). Moreover, the CPC coding sequence bears specific
motifs that allow it to move (Kurata et al., 2005). Even though the TRY
sequence does not have these motifs (Kurata et al., 2005), itis expressed
in trichome cells, but cells that normally do not develop trichomes will
develop them when TRY is absent, suggesting that this gene function is
also non-cell autonomous (Schnittger et al., 1999). Diffusion is the
simplest mechanism of protein movement and it is an important type of
intercellular communication during plant development (Kim and Zambryski,
2005). Indeed, the CPC and TRY proteins are much smaller than
components of the activator complex (Oppenheimer et al., 1991; Wada et
al., 1997; Lee and Schiefelbein, 1999; Schellmann et al., 2002), further

suggesting that CPC and TRY may move through plasmodesmata.

Genetic regulation can take place at many levels. For simplicity, we
neglected translation, in other words, we assumed transcription (NRNA
synthesis) to be the rate-limiting step for a protein to exert its function.
Although proteins are synthesized outside the nucleus, transcription
regulation requires proteins to bind the DNA and the concentration of the
modeled proteins’ is evaluated by the promoter, in the nucleus. Hence, we
considered that gene activation does not occur throughout the entire
spatial domain but only in discrete small areas (N). We arranged these in
aregular lattice throughout the whole space. As usual, degradation rate
was assumed proportional to concentration. Therefore, we considered
the following equations for the rate of activator and inhibitor concentra-
tion, respectively:
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where trepresents time, x and y the spatial coordinates, a the concentra-
tion of the activator, i that of the inhibitor and Va and Vi are the laplacians
for the activator and inhibitor, respectively, that define diffusive move-
ment of the molecules. The strength of such movement is characterized
by the diffusion coefficients Da and Di, for the activator and the inhibitor
respectively (with Da << Di). k, and k; are degradation constants for the
activator and inhibitor, respectively and k, and k, are their corresponding
production constants.

For the root system, we introduced a bias representing the signal
associated to SCM. We tried positive or negative signals either over the
activator or the inhibitor complexes. We found that of the four possibilities,
given arelatively small signal (0.06 to 0.30), only a positive signal over the
activator complex was able to recover the observed root-like pattern.
Therefore, given the specification of the activator-inhibitor dynamic sys-
tem presented here, such signal is thus necessary and sufficient to
recover the observed pattern and we show here the equations for this
case:
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where f(x) represents the positional cues coming from the cortex. f(x)
acquires the value of a small positive constant if x’is equal to one value
of an a priori defined set that corresponds to the nucleus, otherwise f(x)
equals zero. The equation for the root inhibitor is the same as that for the
leaf inhibitor and all common terms are as in the leaf equations above:
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Non-linear terms are needed in the reaction part of the reaction-
diffusion equations to attain pattern formation (Meinhardt, 1982; Murray,
1989; Meinhardt and Gierer, 2000). In fact, there is experimental evi-
dence for the inclusion of quadratic terms. It seems that TTG lacks
activation domains, unlike GL3 (Payne et al., 2000), WER (Lee and
Schiefelbein, 1999) and GL1 (Oppenheimer et al., 1991). Moreover,GL3
activity apparently depends on WER as the hairy phenotype on roots
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over-expressing GL3 is suppressed when WER is non-functional

(Bernhardt et al., 2003), while GL3 function does not depend on TTG

(Payne et al., 2000; Bernhardt et al., 2003; Zhang et al., 2003). This data

supports that in order to form functional multimers, at least functional GL3

(or a redundant protein, EGL3) and either GL1 or WER must be present

According to this and to the mass-action law the quadratic nature of the
2

N XY 2
activation terms k2 i and k4a><y follows.
X,y

To discard that differences in boundary conditions were the cause of
differences in pattern we also modeled the root system using zero-flux
boundary conditions in all borders (data not shown); the patterns were
identical to those discussed above.

Equation 3 was modified to simulate constituve expression or WER,
yielding

da,, |D,V%a,-ka,,+k "’;” FE+W  if (oY) eN
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where W represents the constant production rate of WER protein simu-
lating its production in 35S:WER transgenic plants.

In order to address if the patterns attained were sensitive to stochastic
transient perturbations in the concentration of the molecules involved in
the system, we repeated the simulations adding a stochastic term in
equations (1) and (3) for both the leaf and root systems. Given that diverse
patterns may arise when varying parameter values in Turing systems, we
also tested deviations in single parameter values in order to test if results
depend on a specific combination of parameter values (see Appendix).
Equations were solved numerically using Euler's method (Burden and
Faires, 1997) with a timestep equal to 0.01 or 0.001. Both timestep values
resulted in equivalent patterns. Programs were written in C++ and are
available upon request. Results were graphed using MATLAB.
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Note added in proof

A paper published while the proofs of this manuscript were being
prepared, provides evidence thatthe gene SCRAMBLED (SCM)encodes
a very important component of the biasing signal and that this inhibits the
transcription of WER, which is a component of the activator complex

TABLE 1
Sign Target 0.06 0.3 0.6 6.0
+ Activator Y Y Y Y
+ Inhibitor N N N N
- (degradation) Inhibitor N N Y Y
- (less production)  Inhibitor N N N N
- (degradation) Activator N N N N
- (less production)  Activator N N N N

Y, simulations in which the root-like pattern was recovered; N, simulations in which the root-like
pattern was not recovered. All other parameters kept the same. We considered two kinds of
negative signals; degradation of target proteins/mRNA or decreased production of target.

(Kwak & Schiefelbein, 2006, Dev. Biol. In press). Our work suggests that,
given relatively low biasing signal intensities (up to 0.3), root-like patterns
arise only when the biasing signal acts positively on the activator. Hence,
our prediction seems to conflict with the experimental evidence provided
by Kwak & Schiefelbein (2006). However, Kwak & Schiefelbein (2006)
also show that in the absence of SCM, the spatial root pattern of alternate
atrichoblast and trichoblast columns is not lost completely. This suggests
that there are additional components of the biasing signal which act
through an SCM-independent pathway, and that the biasing signal is
more complex than we had thought according to previous data. This is
also supported by additional simulations (see Table 1 below, added
during proof stage) which show that, given the assumptions of our model,
root-like patterns are not recovered when the signal acts exclusively by
repressing the activator, even with a 100-fold increase in signal intensity.
We are thus extending our model to enable explorations of the necessity
and sufficiency of different types of biasing signals. Such analyses are
only possible with a dynamic model as the one presented here.
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Appendix

Analysis ofthenumber and profiles of the steady states
for both the complete network and thereduced system.

TABLE S1

STATE OF THE ACTIVATION COMPLEX AS A DEPENDENT VARI-
ABLE OF THE ACTIVATION STATE OF WER (IN ROOT) OR GL1
(IN LEAF), TTG, GL3 AND EGL3.

Activator genes

WER/GL1 TTG GL3 EGL3 Activator complex
0 X X X 0
1,2 0 0,1 X 0
1,2 1 0 0 0
1,2 0 2 X 1
1,2 1 0 1 1
1,2 1 1 X 1
1,2 1 2 X 2
A TABLE S2

Initial condition Steady state

CPCinroot TRYinroot Activator CPC in root TRY inroot  Activator
TRY in leaf CPC in leaf complex TRY in leaf CPC in leaf complex
0 X 1 1 1 1
1 0,1 1 1 1 1
X X 0 0 0 0
2 X 1 0 0 0
X X 2 0 0 0
1 2 1 0 0 0

Initial condition Steady state

Activator complex Inhibitor complex Activator complex Inhibitor complex

N B R O R
X o N X P
o o o o
o o o o

Steady states for the complete network (A) and for the reduced network of an activator and an
inhibitor (B). In both cases, the initial conditions from which each steady state is attained are
listed. The GL2"on" state corresponds with the activator complex being in a state different from
0.

The reduced network is dynamically equivalent to the
reactive terms of a classic activator-inhibitor system
(see Fig. S1).

We compare both the equilibrium points for the well-mixed case
(no diffusion) and the reduced network stationary states. In a
typical activator-inhibitor system with no sources, there are two
equilibria: the origin, which is unstable and another one, as-
ymptotically stable (see for instance the standard reference by
Murray (1989) on mathematical biology).

For fixed time intervals, a well known theorem (continuous
dependence with respect to parameters and initial conditions)
guarantees that a discretization can be made as accurate as
possible. However, this is not the case when long times are
involved. In our case, the scenario cannot be avoided, since the
nontrivial equilibrium point is asymptotically stable and there-
fore acts as a global attractor. However, from the phase portrait,
we can observe that for moderately long times and initial
conditions not near this nontrivial equilibrium, the behavior of a
system with a limit cycle and the behavior of the system with a
stable spiral are very similar. In other words, when approximat-
ing a continuous dynamical system by a discrete one, there can
be several possibilities, depending on the time-scale at which
the system is to be approximated.

Another important issue here is that, if no limit cycle is intro-
duced and one tries to reason in the opposite direction, that is,
to recover the continuous dynamical system from the given
discrete approximation, an spurious equilibrium point is intro-
duced as implied by the Poincaré-Bendixon theorem.

Solving the simplified system is a useful approach thatis further
justified because:

1. If after solving the simplified system meaningful dynamics
are recovered, this serves as a posteriorijustification of the fact
that the reduction is valid.

2. Provided that the genes in the activator complex play a
similar role (directly or indirectly), the reactive functions in a full
model (including all of them) become functions depending,
besides the inhibitor, on only one of the activator genes (the
other two being functionally related). Therefore, the three
reaction diffusion equations corresponding to each of the acti-
vator genes in the activator complex can be added to obtain an
single equation for an “effective” activator. In other words, given
that the three activator genes are highly correlated, the equa-
tion for any of them, or as just explained, an effective equation
for the three can be used.
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Fig. S1. Trajectories for the discrete reduced system (C) are qualitatively equivalent to those of the activator-inhibitor system (A) and to those obtained

for a discretized activator-inhibitor system (B).

Analysis of robustness of the model in the presence of
transient perturbations and changes in the parameter
values

In order to test the robustness of the system in the presence of
transient perturbations, we introduced a stochastic variable into
equations 1 and 3 from the main text. The simulations were
repeated for different intervals of this variable and in both cases,
patterns equivalent to those obtained in the deterministic system
were obtained for relatively strong noisy perturbations (0.3).
We also addressed the question of whether our results depended
on a specific combination of the parameter values. We found that
this was not the case by picking random values of each parameter
(see Table S3). The system’s parameters may be associated to
production, diffusion or degradation rates of the molecules in-
volved. As shown in table S3, we found that the patterns obtained
do not depend on particular or rare combinations of parameters.
Both systems are considerably robust to alterations in parameter
values, although the root system with elongated cells is more
sensitive than the leaf one, especially regarding inhibitor’s diffu-
sion. However, it is not surprising that the root system with
elongated cells is sensitive to the increase in this parameter since
cell elongation mainly affects the communication among nuclei in
the baso-apical direction. The leaf system is considerably more
robust to parameter changes (results not shown).

TABLE S3

PARAMETER (P)

Inhibitor’'s  Activator’s Inhibitor’s Activator’s Inhibitor’s
diffusion production production degradation degradation
coefficient

Successful values 28 100 4 72 4

(%) in [P/2, P]

Successful values 0 36 96 4 2

(%) in [P, 2P]

The root system is robust when confronted with variations in the parameters. Each parameter (D,
k,, k,, k;and k,in equations 3 and 4) was varied randomly on a one-by-one basis, with a uniform
distribution in the intervals [P/2, P] and [P, 2P] [N=25 for each interval], where P is the parameter
value for which simulations are shown in this investigation [Activator diffusion rate (D,) = 0.15;
inhibitor diffusion rate (D)) = 1.65; activator degradation rate (k;) = 0.3; activator production
constant (k,) = 0.3; inhibitor degradation rate (k;) = 0.4; inhibitor production constant (k) = 0.75].
The table presents the percentage of values for which the patterns resembling those in
Arabidopsis are maintained. Parameters for the leaf system are more robust than those for the
root system in the face of changes (results not shown).

Stability analysis I: reactive part of the model for the
nuclear interactions

From the original set of equations (1) and (2) of the main text,

2
a—az —kla+kza—'+D Va
ot i a
j (S1)
% =—kji+ka +DV’i

we propose the following reassignment of variables in order to
obtain an adimensional set of equations from the original system
(S1):

(S2)

This set leads to

0’4 0°4
2 + 2

Ju Jov

CEE

ou? ﬁ

2
a—A:‘P —ocA+,BA— +e
ot I

%z‘}’(—y1+Az)+

(S3)

where
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Ik,
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ki
4102 — 1
k2au
Da
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D

(S9)

When the system (S3) is linearized in the neighborhood of the
steady state (S5), assuming small perturbations 6A and“8/ from
this value, the Jacobian matrix of the perturbed system is:

o
a —_
J=V¥ p -
2
By y
o

Using (S6), we can write the linearized reactive system as:

9 [s4]_ [s4
or|51) |1

(87)
With the characteristic equation
Az+‘P(y—oe)ﬂ+‘P2ay =0 (S8)
the corresponding eigenvalues can be computed from:
Aoy (oc—y) s (a—y)2—4a)/
2 2 (S9)

0.8

0.4
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o 0-‘2 0.4 0.6 0.8 1 1.2 1.4
a

Fig. S2. In this figure: k, =k; = 0.4, withk, = 0.3 andk, = 0.75 from the
original system of equations (S1), which corresponds too. =y = 1.33 in
system (S3). The set of equations (S1) were numerically integrated using
the Runge-Kutta 45 method, without any consideration being given to the
diffusive part. ¥ = 1 in both cycles. For the red curve, the initial conditions
werei = 1anda = 1; for the black curve, the initial conditions werei = 0.8
anda = 0.5.

1.4 a=09y

o 0.2 o4 0.6 0.8 1

Fig. S3. Here, k1 =0.3591, k2 = 0..3’I<3 =0.4, k4, =0.75, which corresponds
toa. = 0.9y and ¥ = 1. For the red curve, the initial conditions werei = 1
anda = 1 and for the black curve, the initial conditions werei = 0.8 and
a=05>5

12
=117y

10 .

Fig. S4. In this figure, k; = 0.4389, k, = 0.3ky = 0.4, k, = 0.75, which
correspondtoo. = 1.7y and ¥ = 1. For the red curve, the initial conditions
werei = 1 anda = 1 and for the black curve, the initial conditions were i
=0.8anda =0.5.
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If we take yas the bifurcation parameter, we can characterize the
temporal behavior of the system (S3) from the behavior of the
eigenvalues computed from equation (S9). In this case, we have
the following dynamical features of the system:

1) If =y, then (S9) has two pure imaginary conjugated roots A=
* Pyi. In this case the steady state point becomes a center and
the system evolves into a cycle with angle velocity w = ¥y.

2) If a < y and the discriminant part of (S9) is such that o?- 6ay +
¥2< 0, then (S8) has two conjugated complex roots with Re(4) <

0. Thisis true for all values o e ((3 - 2\/5)3/,7/) . Inthis case the

system evolves to a stable steady state through a spiral trajectory.
3) If a*> yand the discriminant part of (S9) is such that o?- 6oy +
¥2< 0, then (S8) has two conjugated complex roots with Re(A) >

0. This is true for all values a e ()/,(3 + 2\/5))/) . In this case, the

system escapes from the unstable steady state through a spiral
trajectory.

4) If a < yand the discriminant part of (S9) is such that o?- 6oy +
¥?> 0, then (S8) has two negative real roots. This is true for all

values o € (—00,(3— 2\/5)}/) . In this case, the steady state is

stable.
5) If a > yand the discriminant part of (S9) is such that o?- 6ay +
¥2> 0, then (S8) has two positive real roots. This is true for all

values a € ((3+2\/5)J/,°°). In this case, the steady state is
unstable.

In Fig. S5, we present the bifurcation diagram corresponding to
equation (S8). The bifurcation parameter is yand we use the linear
relation o = by, where b takes the corresponding value indicated
in the abscissa axis of the figure.

A A A A
Real negative Complex with Complex with Real positive
or zero Re(A) <0 Re(d) >0
Stable steady Stable steady Unstable Unstable

state state steady state steady state
Incoming
spiral

trajectories

Outcoming
spiral
trajectories

0 0.1716 1.0 5.83 ¥

Complex with Re(A) =0
Cycles

Fig. S5. Bifurcation diagram for the reactive part of the model.

Stability analysis IlI: diffusive part of the model for the
nuclear interactions

If the system (S3) is now linearized around the steady state (S5),
then in considering the diffusive component, we obtain the vector
expression:

%6W= Jow +nVSw (S10)
where:
Sw = 04 . e 0

SI 0 1 (S11)

If we now define the operator: H=J + nV? , then we have the
following linear problem with boundary conditions:

ic‘iw= Héw

5 subject to (n . V)Ew = 0 at the boundary
T

(s12)

We now can propose as the solution to this linear problem the
vectorial function given by

Sw=C,,e" cos [mu cos| 1V
p q

which leads to

C,. cos(m—u] cos[ Lm] A" = JC,’meM cos(m—u] cos[ mn’v]
P q P q (S14)

| Pt Imu mmv) m'm’ Imu mmy
-nC, e ~—cos| — |cos +———cos| — |cos
' p p q q p q

and

(O cos[lﬂl] cos[ mﬂ'v}/l_ JC,, cos(m—uj cos( mn’vj =
' P q ' p q
I ImTu mnv) m'm’ Imtu mnv ) | (S15)
-nC, | S—cos| — |cos| — |+ ———cos| — |cos| —
' P P q q p q

Finally,

2,2 2.2
Al—J=—n{l” + 17 }

(S13)

2 2 (S16)

p q

where

(S17)
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and

J-Al-nk*=0- (S18)

Thus:

5w<u,v,1) = ZZECI mel’ (<)r cos(m—uj cos( mﬂvj (S19)
ST m p q

The characteristic equation of the non-diffusive part of the linear-
ized system has two eigenvalues, thus the solution to equation
(S12), subject to the given boundary conditions, indicates that j =
1,2;1=0,%#1,42,43,...; m=0, %1, £2, £3,..., withp=g=1 and
that the system wave number is given by (S17).

Based on (S12) to (S19), we can give the secular equation of the
linearized system as:

det(J —nK? - /11) )

(S20)

Taking the following values from the main text:
k,=0.3,k,=0.3,k;=0.4, k,=0.75, L = 1.5; D,= 1.65; D, = 0.15,
we get: w=0.41, a=1, y=1.333, £¢=0.09

Substituting these values into equation (S20), we find that there
is no set of values of 2 for which there are eigenvalues with a real

positive part. Thus, the system is stable and the probability of
pattern formation is very small near the steady state.

maxRe())
0,

-0.5- o

R id

-1.51

-2

-2.51

30
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.4 o
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S 10 20 - 30 a0 50

Fig. S6. /n the absence of a biasing signal, all eigenvalues of equation
(S18) have a negative real part, indicating that the steady state is stable
against any perturbation and that spatial patterns may not arise for any
value of k2 withL = 1.5

However, if the size of the system is increased to L = 10, which
leads to ¥ = 18.18, there is a set of k? values for which there are
eigenvalues with a real positive part. The maximum value is
obtained when x® ~ 80 (see Fig. S7).

maxRe(1)
5

-5 L L . s .
60 80 100 120 140 160

-]
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Fig. S7. Real parts of the eigenvalues of equation (S18) as a function of
the wave number k2 for the cells in the absence of a biasing signal and
forL = 10.

This value of ¥? corresponds to the mode /=2 and m= 2. The
expected type of spatial pattern for this value of k2 is of the form:

|“s00
0.a
700
00 0.z
L]
500
0.2
a0
100 -4
- 0.8
- 0.8
T -1
00 [

Fig. S8. Expected dissipative spatial pattern expected for the maximum
positive real part of the eigenvalue corresponding tox? ~ 80. In this case,
the modes are | =2 and m = 2.

- £
a0 2
u

1000 800

As we increase L, the value of y increases, fixing the values of k,
and D;. When ¥ is ~100, which corresponds to a size of ~29, the
maximum real positive part of the eigenvalues of equation (S18)
is obtained when x2 = 404, which corresponds to the mode
numbers: /=5and m=4. The spatial pattern expected in this case
is:
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Fig. 89. Expected dissipative spatial pattern for the maximum positive
real part of the eigenvalue corresponding to x? ~ 404. In this case, the
modes are |=5 and m=4. L=29.

CONCLUSION

From this stability analysis we may conclude that it is quite
unlikely that banded root-like patterns arise in the absence of a
biasing signal similar to the one coming from the cortex cells
towards the root epidermis. Therefore, such a biasing signal f(x)
seems to be not only sufficient but also necessary for the forma-
tion of the striped pattern of hair and non-hair cells in the root
epidermis.
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Abstract

Background: Dynamical models are instrumental for exploring the way information required to generate
robust developmental patterns arises from complex interactions among genetic and non-genetic factors.
We address this fundamental issue of developmental biology studying the leaf and root epidermis of
Arabidopsis. We propose an experimentally-grounded model of gene regulatory networks (GRNs) that are
coupled by protein diffusion and comprise a meta-GRN implemented on cellularised domains.

Results: Steady states of the meta-GRN model correspond to gene expression profiles typical of hair and
non-hair epidermal cells. The simulations also render spatial patterns that match the cellular arrangements
observed in root and leaf epidermis. As in actual plants, such patterns are robust in the face of diverse
perturbations. We validated the model by checking that it also reproduced the patterns of reported
mutants. The meta-GRN model shows that interlinked sub-networks contribute redundantly to the
formation of robust hair patterns and permits to advance novel and testable predictions regarding the
effect of cell shape, signalling pathways and additional gene interactions affecting spatial cell-patterning.

Conclusion: The spatial meta-GRN model integrates available experimental data and contributes to
further understanding of the Arabidopsis epidermal system. It also provides a systems biology framework
to explore the interplay among sub-networks of a GRN, cell-to-cell communication, cell shape and domain
traits, which could help understanding of general aspects of patterning processes. For instance, our model
suggests that the information needed for cell fate determination emerges from dynamic processes that
depend upon molecular components inside and outside differentiating cells, suggesting that the classical
distinction of lineage versus positional cell differentiation may be instrumental but rather artificial. It also
suggests that interlinkage of nonlinear and redundant sub-networks in larger networks is important for
pattern robustness. Pursuing dynamic analyses of larger (genomic) coupled networks is still not possible.
A repertoire of well-characterised regulatory modules, like the one presented here, will, however, help
to uncover general principles of the patterning-associated networks, as well as the peculiarities that
originate diversity.
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Background

Complex interactions among diverse elements underlie
the appearance of robust cell patterns during develop-
ment. Understanding how the topology and dynamics of
these interactions are related to phenotypical traits repre-
sents one of the most important challenges in systems
biology, and is necessary to build a more general theory of
development and evolution [1].

Cell-type determination and patterning are key develop-
mental processes. Two overall modes of cell-type determi-
nation have been distinguished. The first is the lineage-
based mode, which depends on factors transmitted from
progenitor to daughter cells. The second one depends on
positional information in the context of differentiating
cells [2]. The definition of these two types of cell fate
determination is instrumental for studying and interven-
ing in developmental systems, especially if one focuses on
a particular spatio-temporal interval. The model we
present here, however, suggests that the emergence of
information needed for cell fate determination results
from a dynamic process that depends upon molecular
components that are both inside and outside cells. In
other words, such information is dynamically generated
by the interaction among molecular components within
the undetermined cells and those in their context.

Since the generation and maintenance of most cellular
patterns may depend on the interplay among gradients,
cellular communication, environmental signals and line-
age-related mechanisms, the intrinsic vs. extrinsic distinc-
tion that could be identified with lineage vs. positional
modes of fate determination is sometimes blurred (see
more examples of this claim in [3]). Models that consider
gene regulatory networks (GRNs), coupled by cell com-
munication and subject to environmental signals, are thus
helpful for an understanding of the emergence of the
information needed for cell patterning. Such models will
be useful in evaluating to what extent positional or line-
age-related mechanisms are distinguishable, independent
of undetermined cells, and necessary or sufficient for cell
determination and patterning in a particular system.

Dynamical GRN models have been fruitfully used to study
cell-fate determination [4-7]. In such models, the steady
gene activation states (attractors) to which the dynamic
system converges correspond to the multigene configura-
tions that characterise different cell types [8]. A discrete
approach to modelling the dynamics of such genetic net-
works was first introduced by Kauffman [8] in order to
describe qualitatively the concerted action of several genes
during cell differentiation. This approach has been proven
to capture the logic of regulatory interactions key to cell-
type specification in several biological systems (e.g. [5-9]).
Nevertheless, data availability has limited most GRN
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models to intracellular behaviour, and therefore cellular
communication and other important features of pattern
formation have been omitted from most models. On the
other hand, mesoscopic models that have considered the
latter features [10-12] do not usually incorporate complex
intracellular networks that regulate cell-type determina-
tion.

The epidermis of the model plant Arabidopsis thaliana is
one of the most thoroughly studied cell-type determina-
tion and patterning systems. Such experimental efforts
have enabled the postulation of GRNs for cell-fate deter-
mination in this system (see recent reviews in [13-15]).
Moreover, relatively simple models may capture relevant
aspects of this system as it may be accurately represented
in a two-dimensional domain, and because Arabidopsis
epidermal cells attain their fate in a fixed domain before
they elongate. Actually, some theoretical studies on this
system have been published [16-20]. Of these studies,
only one [20] has considered the spatio-temporal dynam-
ics of cell-fate determination by explicitly modelling
GRNS, yet it focused on leaf patterning and was mainly
aimed at presenting a useful modelling platform rather
than studying a particular patterning mechanism.

We put forward a spatio-temporal model of coupled
GRNs that integrates updated experimental evidence for
cell-fate determination in Arabidopsis epidermis and incor-
porates cellular communication, domain characteristics
(size and boundary conditions) and cell shape. We intend
to provide a better understanding of how the dynamics of
genetic interactions within a cell, in conjunction with cell-
to-cell communication, give rise to robust spatial patterns
of gene expression and, concomitantly, to cell type deter-
mination and arrangement.

Arabidopsis leaf epidermis bears hairs (trichomes) that
tend to appear away from each other (Figure 1A; [21]),
while root epidermis exhibits trichoblast (root hair pre-
cursors) and atrichoblasts arranged in bands of a single
cell type (Figure 1B; [22,23]). Despite the contrasting spa-
tial patterns, epidermal cell type determination in root
and leaf appears to be associated with similar GRNs (Fig-
ures 1E and 1F). Furthermore, although root and leaf
GRNs exhibit some differences, they seem to be qualita-
tively equivalent in dynamical terms [18,24].

The GRNs associated with epidermal cell type determina-
tion have been thought to behave as a so-called activator-
inhibitor system [25,26] and some theoretical work has
been done in this direction [17-19]. In a previous paper,
we simplified these GRNs to an activator-inhibitor sys-
tem, so that we could explore the role of cell contextual or
positional traits in cellular spatial patterns [18]. It is often
the case, however, that the structure of the GRN confers
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Cellular patterns and meta-gene regulatory network models for leaf and root Arabidopsis epidermis. Spaced-out
pattern of trichome distribution in the leaf of Arabidopsis thaliana (A). Root-hairs (green) are arranged in bands that overlie the
junction of two cortex cells (yellow) (B). Coupled gene regulatory network (GRN) model for cell type determination in leaf
epidermis (C). GRN underlying cell-fate determination in root epidermis (D). (E) and (F) represent the GRN for leaf and root
epidermis, respectively. In both networks, nodes correspond to genes, arrows stand for positive regulatory interactions and
flat-end edges stand for negative ones. Red nodes represent elements that are able to move among cells and couple the GRN
into meta-GRN. Red lines stand for intercellular interactions established by mobile elements. Asterisks in (B) and (D) indicate
the H position where the cortex-related signal is acting.
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important dynamic properties on the system and that
these properties are not recovered by simplified versions
of the system [27]. For example, coupled GRNs in cellular-
ised spatial domains do not necessarily recover the attrac-
tors of single-cell GRNs. Moreover, some recent results
indicate that the processes giving rise to the epidermal pat-
terns may be richer than an activator-inhibitor system, as
different nonlinear sub-networks of the GRN may gener-
ate or reinforce such patterns (e.g. [28]). A meta-GRN
model that encompasses these sub-networks is required to
explore whether coupled GRNs in cellularised spatial
domains recover the expected and robust gene activation
configurations, and to study the role of sub-network
redundancy in pattern formation.

Here we have modelled the meta-GRN by integrating the
updated experimental data (Figures 1C-1F) into models
that explicitly consider GRNs coupled via cell-to-cell com-
munication in a cellularised domain. Interestingly, the
attractors for the single cell GRN [18] were qualitatively
preserved in the meta-GRN and the simulated spatial pat-
terns of steady states corresponding to hair and non-hair
cells matched those observed in actual Arabidopsis wild-
type plants. The proposed model therefore accounts for
the formation of cellular patterns from initially homoge-
neous domains containing cells with the same GRN. The
model presented here is also useful for exploring the sta-
bility of such patterns in the face of environmental and
developmental perturbations.

We validated the model by simulating mutant networks
and comparing our results with reported gene expression
profiles of mutant phenotypes. Then we used the model
to postulate novel and testable predictions regarding addi-
tional regulatory interactions, the effect of cell shape on
patterning and the link between the simulated GRN and
the Gibberelic acid signalling pathway. Our results suggest
that the proposed GRN constitutes the core of a complex
regulatory module associated with Arabidopsis epidermal
cell type-determination and patterning. Finally, this study
contributes to uncovering both generic and specific
aspects of GRN coupling mechanisms and patterning
processes in biological systems.

Methods

The gene regulatory network model we postulate here is
grounded on available experimental data up to June 2008.
This evidence is summarised in the following paragraphs.
In both root and leaf epidermis, TRANSPARENT TESTA
GLABRA 1 (TTG1), bHLH proteins, GLABRA3 (GL3) and
ENHANCER OF GLABRA 3 (EGL3), and Myb proteins,
GLABRA1 (GL1) and WEREWOLF (WER) in leaf and root,
respectively, form a complex that positively regulates the
transcription of GLABRA2 (GL2). In turn, the expression
of GL2 determines leaf trichome cell-fate and root atri-
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choblast identity. TRIPTYCHON (TRY), CAPRICE (CPC)
and ENHANCER OF TRIPTYCHON AND CAPRICE 1, 2
and 3 (ETC1, 2 and 3) repress the leaf and root activators
in partially redundant ways. All of these inhibitors are
upregulated, directly or indirectly, by the root and leaf
activators. Interestingly, GL2 positively regulates TRY in
both root and leaf epidermis [29,30].

WER and GL1 are assumed to be directly or indirectly
upregulated by themselves. TTG1 is expressed in all the
epidermal cells during hair and non-hair determination
and the TTG1 protein moves through plasmodesmata
among neighbouring cells in the leaf epidermis, accumu-
lating in trichomes [29,30]. The fact that TTG1 moves
among leaf epidermal cells and binds GL3 in the forma-
tion of a protein complex has recently led Bouyer and col-
laborators [28] to postulate a TTGI-trapping/depletion
mechanism that could explain the accumulation of TTG1
in cells with GL3 (trichomes) and could suffice for tri-
chome pattern formation. This mechanism is discussed
later in the context of other experimental data and our
results.

Despite being part of the activator complexes, GL3 and
EGL3 are primarily expressed in root hair cells and their
proteins move towards cells in which the other compo-
nents of the complex are present. GL3 and EGL3 also seem
to be activated by the inhibitor CPC and repressed by the
root activator complex [31,32]. In leaves, GL3 expression
occurs in trichome cells, where GL1 maximum expression
is reported. Transcription of GL3 seems to be downregu-
lated by itself and the localisation of the GL3 protein
within the cell nucleus is regulated by TTG1 and GL1 [31].
Experimental evidence also shows that TRY acts non-cell
autonomously in leaves and that the CPC protein moves
through plasmodesmata among cells in both leaf and root
epidermis [33,34]. In the root, SCRAMBLED (SCM) seems
to be a crucial component of a positional signal downreg-
ulating WER in root-hair bands and therefore biasing the
cellular pattern [35,36].

In the proposed GRN model, elements or nodes of the
network correspond to genes. The ETC node summarises
the partially redundant activity of the three enhancers of
TRY and CPC. Edges of the network stand for regulatory
interactions between nodes (activation or repression; Fig-
ures 1E and 1F). Nodes representing genes for which there
is enough information can attain three different states (0,
no expression; 1, mild expression; 2, strong expression).
In the leaf system, only ETC can either be expressed, 1, or
not expressed, 0, and only ETC and TRY are binary in the
root system. For simplicity, the state of all nodes was
updated synchronically. In single-cell GRNs, the updating
scheme does not seem to affect attractors when these are
fixed-point type [37]. Since the attractors of our GRN
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model are indeed fixed-point ones, it could be the case
that asynchronicity does not affect them, yet this issue has
not been explored in coupled GRN models.

In the GRN model, each node's state depends on that of
other nodes, its regulators. The level of expression of a
given gene is represented by a discrete variable g (0, 1 or
2) and it depends on the level of expression of other com-
ponents of the network, g, &,, ..., gy The state of every
gene g therefore changes according to:

gn(t+1) = Fn(gnl(t)' gnz(t)' e gnk(t))‘ (1)

In this equation g,;, &,y --- & are the regulators of gene
8, and F, is a discrete function known as logical rule (log-
ical rules were grounded on available experimental data
and are graphically represented in Figures 1E, 1F, [see
Additional file 1]). Given the logical rules, it is possible to
follow the dynamics of the network for any initial config-
uration of the nodes expression states. Since the GRN is
simulated as discrete, all possible combinations of gene
activation states may be explored. One of the most impor-
tant dynamical traits of a GRN is the existence of attrac-
tors. Starting out from an initial state, the reiterated
application of equation (1) generates dynamics in which
genes go through transient states until the whole network
enters into a stationary or periodic profile of multi-gene
expression. Such stationary or periodic expression profiles
constitute the GRNS' attractors, which correspond to gene
expression profiles characteristic of particular cell types.

In order to couple the GRNs in a compartmentalised (cel-
lular) domain, we considered a discrete lattice of n x n ele-
ments, in which each element (i, j) represents a cell with a
GRN. As in real organisms, all cells bear the same GRN.
Modelled lattices are a simplified representation of leaf or
root epidermal sections. Cells in the lattice have exactly
four neighbours and there is no difference in permeability
between them.

According to experimental data, some proteins codified
by elements of the network move to neighbouring cells
and affect gene expression in a non-cell-autonomous fash-
ion (TRY, CPC and TTG1 in the leaf epidermis and CPC,
GL3 and EGLS3 in the root epidermis), giving rise to a net-
work of coupled networks (herein meta-GRN). Although
empirical evidence supporting cell-to-cell motion rather
than aplopastic transport only exists for CPC and TTG1,
all available data are congruent with the assumption that
all mobile elements of the GRN move in a cell-to-cell
manner. In the spatial model we therefore allowed for cer-
tain elements to move among neighbouring cells (Figures
1C, 1D and 2) following the equation:
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8Oy 1= HE&®yiy it D801y j1+8(Diay iy + 8Dy
G+ 8O o 4D i) (2)

where g(t)7 ;) ;) Is the total amount of protein g in cell (i,
j). D is a continuous variable that determines the propor-
tion of g that can move from any cell to neighbouring
ones and is correlated to the diffusion rate of g. H is a step
function that converts the continuous values correspond-
ing to the amount of g diffused into each cell into a dis-
crete variable that may attain values of 0, 1 or 2. In order
to simulate the effect on diffusion of protein attachment
to a protein complex, our simulations consider that the
mobile elements of the network diffuse with a lower rate
from inside to outside when the other protein complex
components are inside the same cell. So, for instance,
when there is GL3 in a cell, the term -4(g(t)}; ;.1)) in the
diffusion equation of TTG1 is removed or decreased (see
also [28]). More generally, we defined a term -A(g(t) 3 ;)
in which de value of A depends on the presence of trap-
ping proteins in a cell (i, j) at time ¢ (A = 4 when no trap-
ping proteins are present and A < 4 when these are
present).

D was systematically varied from 0.0 to 0.25 with a step
size of 0.01, enabling the generation of parameter spaces
in which we plotted the average number of ectopic tri-
choblasts and atrichoblasts for every combination of
parameter values. Four types of 'trapping' diffusion terms
were also tested (-A(g(1); ), with A = 0,1,2,3; see
Results). In the leaf system, boundary conditions were
simulated as zero-flux, while in the root system, two bor-
ders were identified and two were kept at zero-flux, simu-
lating a root-like cylinder. In the root model, the
positional signal associated with SCM was simulated as a
constant downregulation of WER every three cell files
(two NH files between H files) [36].

Then, g(t)r (i ;) was considered in order to estimate the
8(1)yi 1jy value, which was then used to update the logical
rules, according to the equation below:

8'(Dgiy 1 = 8(Dyiy i) +8(Dr 13y ) - o (3)

where k stands as a degradation constant. g'(t) was taken
as an input to evaluate the logical rules and obtain

8+ 1)y -

In brief, each cell's GRN is initialised with a random gene
activation profile. Then, three steps are sequentially
repeated until the whole lattice reaches a steady state (dia-
grammatic representation in Figure 2): (1) application of
logical rules, (2) diffusion of mobile elements and (3)
integration of diffused protein into the GRN inputs for the
next updating step according to the logical rules.
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Figure 2

Diagrammatic representation of the model structure. In every time-step, the nodes' states are updated according to
logical rules [see Additional file I], then the mobile elements are allowed to diffuse and, finally, diffusion is considered to recal-
culate the states of mobile elements. These new values are entered into the logical rules in the next iteration. The state of non-
mobile elements is only determined by the logical rules applied every time-step.

In order to test the model, we also simulated networks
that correspond to reported mutants. The loss and gain of
function simulations were done by fixing the expression
value of the altered gene to 0 or 2, respectively. The ran-
dom seed was the same for both wild-type and mutant
simulations so that results were comparable.

It should be noted that there are several dozens of genes
involved in hair determination, patterning and differenti-
ation in Arabidopsis [38]. We have, however, incorporated
in the GRN models only the elements that seem to be
responsible for the decision: hair vs. non-hair. Changes in
expression states of these elements do indeed yield
changes on epidermal cell identity. In contrast, most of
the genes that were not included seem to act downstream

of the GRNs modelled here and may play important roles
in morphogenesis once cells are committed to a particular
fate. A few other genes that are not considered seem to act
upstream of the GRN postulated here, probably linking
the GRNs with signalling pathways or tissue-specific fac-
tors. Our simulations of both wild-type and mutant net-
works indeed suggest that the GRNs modelled here
incorporate the necessary components to render the
robust gene activation profiles characteristic of epidermal
hair and non-hair cells in both roots and leaves, and thus
uncover the core of a regulatory module that regulates epi-
dermal cell patterning in Arabidopsis.

Graphics were elaborated in MATLAB and programs in C

(codes available upon request).
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Results

Gene expression profiles and wild-type spatial patterns
are robustly recovered by the leaf GRN model

The spatial model of the leaf system (Figure 1C) was ini-
tialised by random assignment of activation states (0, 1 or
2) to the nodes in the GRNSs. In this case, TRY, CPC and
TTG1 were allowed to move among cells according to
experimental data (see previous section). After a few iter-
ations, the GRNs in all cells in the lattice reached one of
two attractors. One of these attractors exhibits a GRN acti-
vation profile that matches the characteristic profile of tri-
chome precursor cells (black cells in Figure 2A), in which
the expression of all network elements peaks. The other
attractor matches the gene activation profile reported for
pavement or non-trichome cells, in which the networks'
elements are less expressed than in trichomes or not
expressed at all (white cells in Figure 2A). This result indi-
cates that the GRN structure, interaction rules and protein
diffusion functions considered in the leaf GRN model are
sufficient to generate the two, and no more, stable expres-
sion profiles that mimic those reported for leaf hair and
non-hair precursor cells in Arabidopsis.

Simulated spatial domains show a dotted pattern similar
to that of trichomes in actual leaves. Moreover, the simu-
lated trichome distribution was also significantly more
spaced out than expected in a random spatial distribution,
as is the case in actual leaves. This was found by calcula-
tion of the R-value ([39,21]: R = 1 in a random distribu-
tion; R > 1 in a pattern with elements more spaced out
than in a random case; and R < 1 in a clustered distribu-
tion). Arabidopsis trichomes of the Col ecotype have an R
= 1.40 and the clustering probability (C) is around 0.08
[21], while the typical values we found in our simulations
are 1.2 <R < 1.40 and C < 0.02 (Table 1). Since our model
does not consider growth or proliferation, it is important
to note that the R-values estimated in real leaves were
measured before growth and proliferation affected tri-
chome distribution [21] and are overall comparable to
those obtained in our simulations.

Table I: The leaf meta-GRN recovers the spaced-out pattern
characteristic of leaf trichomes.

<R> <C>

Random | 0.5
Clustered <l |
Spaced-out > | 0

WT leaf 1.4 0.08
Simulation 1.3 0

Measures for matrices with different 'hair' arrangements are
presented. R indicates how clustered or spaced-out the arrangement
is [21], while C indicates the clustering probability. Simulations of the
leaf meta-GRN model were carried out with D = 0.08, Dz = 0.08,
Dy = 0.06.
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We then asked if the simulated pattern depended on gene
interaction details, particular domain characteristics
(boundary conditions and size), or specific diffusion
parameters, or if it depended on the overall coupled GRNs
system. We found that the simulated leaf pattern was
robust to changes in boundary conditions. Diffusion
parameters Dy, Depe and D, were also systematically
varied and the simulated trichome pattern (R > 1, C = 0)
was not altered significantly for a wide range of parameter
values. The pattern was maintained for 0.01 <Dypycpc <
0.26, independently of the D, value. Interestingly, this
result indicates that, although the TTG1-trapping/deple-
tion mechanism suffices to generate a trichome-like pat-
tern [28], in the context of the whole GRN it may not be a
necessary mechanism. This is also suggested by experi-
ments showing that plants overexpressing GL3 are able to
recover a wild-type phenotype in a ttgl mutant back-
ground [40]. The interplay among different potential pat-
terning sub-networks is discussed in more detail below. As
mentioned above, diffusion of mobile proteins from a cell
[i] [j] to neighbouring cells was restrained when other
interacting proteins were present in the [i] [j] cell. This was
done by taking the term -4(g(t);; ;) in equation (1) as
A(8(1)ij j) with A < 4. We varied such a term by taking A
=0, 1, ..., 4 and no differences in the simulated wild-type
patterns were observed.

Interestingly, the spaced-out pattern was also found to be
robust to point alterations of the gene interaction func-
tions. We tested the latter by modifying the output of all
logical rules, one at a time. We found that 88% of the
alterations yielded the same attractors and trichome-like
spatial pattern as the original model. Together these
results suggest that the overall GRN topology and the cou-
pling mechanisms, rather than detailed aspects of the net-
work kinetics or specific parameter values, underlie the
emergence and stability of the cell patterns in Arabidopsis
leaf epidermis.

The root GRN model robustly recovers the profiles and
patterns characteristic of the wild-type root epidermis

In the root meta-GRN model, CPC and bHLH proteins
(GL3 and EGL3) were allowed to diffuse, as suggested by
experimental data (see Methods). In this case, the cortical
signal associated with SCM was simulated every two cell
files as a downregulating input on WER. GRNs were also
randomly initialised and two network attractors were
found. In the first (white cells in Figure 3), WER, TIG,
CPC, TRY and ETC are expressed, and owing to diffusion
GL3 and EGL3 proteins are also present. This profile cor-
responds to that reported for cells committed to the non-
hair fate (atrichoblasts). The other attractor matches the
characteristic profile of cells that will bear root-hairs (tri-
choblasts), as GL3, EGL3 and TTG are expressed in it and
the CPC protein is present.
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Figure 3

The model renders cellular patterns similar to those observed in the leaf epidermis. The simulated cellular pat-
terns for wild-type (wt) and mutant networks are consistent with the patterns reported in the literature. Black squares corre-
spond to trichomes and white ones to pavement cells (non-hair cells). Captions under the matrixes indicate the simulated
genotype that gave rise to each of them (++ stands for overexpression, while lower case italics indicate loss of function). The
table shows that the network profiles typical of hair and non-hair cells are recovered by the meta-GRN model. These simula-
tions were all performed in 20 x 20 matrices with parameter values Dpc = 0.05, Dyzgz = 0.05, D7 = 0.03.
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Figure 4

The model renders cellular patterns similar to those observed in the root epidermis. Cellular patterns obtained
from simulations of wild-type (wt) and mutant networks are consistent with the patterns reported in the literature. Black
squares correspond to trichoblasts and white ones to atrichoblasts. Captions under the matrixes indicate the simulated geno-
type that gave rise to each of them (lower case italics indicate loss of function, -> indicates the simulation of a positive
upstream signal, while -| stands for a negative one). Asterisks indicate the hair (H) position. The table shows that the network
profiles characteristic of hair and non-hair cells are recovered by the coupled GRN model (B). These simulations were all per-
formed in 20 x 20 matrices with the following parameter values: Do = 0.01, Dg;3 = 0.01, D¢ 3= 0.01.
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Spatial root-like pattern is stabilised by differential diffusion in the x and y axes. The pattern generated by the cou-
pled GRN model gives rise to a striped pattern with some 'errors' that would correspond to ectopic hairs (A). A similar pat-
tern but with fewer or no errors is obtained when diffusion rate in the x axis is larger than that in the y axis (D, ,,; = 0) and the
same random seed is taken (B). The parameter spaces for each case are presented below their typical cell arrangements (C),
(D). The colour scale indicates the logarithm of the average number of ectopic cell-types for every combination of parameters.
Note that, overall, the parameter space obtained for differential diffusion exhibits fewer ectopic trichoblasts.
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The simulated spatial cellular pattern of hair and non-hair
young cells is very similar to that observed in Arabidopsis
roots. It is characterised by bands of trichoblasts (black
cells in Figure 4) in the H position, where the positional
cue is simulated, and bands of atrichoblasts (white cells in
Figure 3) in the NH position. This pattern is recovered
within a wide range of parameter values (Figure 5). In
most of the parameter space generated by varying the dif-
fusion values D p- and Dy, from 0 to 0.25 (step size
0.1), the percentage of errors (cells in the NH position
without activator complex) is approximately 0.16% (Fig-
ure 5). Such positional errors would correspond to ectopic
hairs in the root and are smaller than those reported in
actual wild-type Arabidopsis roots (Col) [41].

The root-like spatial pattern is also robust to different
kinds of perturbations. It is resilient to the intensity of the
SCM signal, measured as a probability value P, and is also
robust to alterations in the output of logical rules: in 20%
of the tested changes the number of ectopic cell-types
increases, yet the root-like pattern is still clearly discerni-
ble. Only 0.06% of the changes modify the nature of
attractors or drastically disorganise the spatial arrange-
ment. All simulations shown were performed in a 20 x 20
(rows x columns) lattice. As for the leaf system, variations
of the -A(g(t);; ;) term do not affect the wild-type pattern.

Twenty is a fair approximate of the number of epidermal
cells in a transversal root section. Given, however, that the
pattern may arise in rings of cells, we also tested lattice
sizes from 1 x 20 to 40 x 20 and recovered the same
results. This suggests that, for a wide range of domain
sizes, the root pattern is not sensitive to changes in the
number of cells nor to the root section where epidermal
cells attain their fate.

Simulation of mutant GRNs renders spatial patterns that
match those observed in actual mutants

In order to validate further the meta-GRN models, we sim-
ulated mutations in the GRN and compared the resulting
patterns with the reported phenotypes. Mutations were
modelled by fixing the state of a node at 0 (loss of func-
tion) or 2 (gain of function) throughout the simulations.
Overall, the simulated mutants qualitatively resembled
those reported in the literature.

We illustrate these simulations with some examples (Fig-
ures 3 and 4; [see Additional file 1]) and discuss a few
cases in which quantitative differences between simulated
and observed patterns were encountered. For the leaf case
(Figure 3), the ttgl loss of function simulated mutant
gives rise to a homogeneous pattern of no GL2 expression
that corresponds to a hairless leaf. The simulated cpc
mutant gives rise to more trichomes than observed in the
wild type, but not to more trichome clusters. This is con-
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sistent with the available experimental evidence but the
increase in hair number that we recover (around 5% more
trichomes than in wild type) is smaller that that observed
in real cpc mutants. As in real plants, the simulated single
etc mutant does not affect trichome number or distribu-
tion, but the cpc phenotype is enhanced in the double cpc
etc simulated mutant. Also compatible with experiments,
in the triple cpc etc try simulated mutant, the trichome
number and clustering probability greatly increase in
comparison with the wild-type simulated leaf section. The
recovery of a wild-type arrangement in ttg simulated
mutants overexpressing GL3 was also reproduced by our
model.

There are two mutant simulations that partially differ
from reported leaf phenotypes. The double cpc etc simu-
lated mutant gives rise to few clusters, yet not as many as
the try simulated mutant, while in the actual cpc etc
mutant trichome clusters are extremely rare. This discrep-
ancy could be because of the fact that in our model all
ETCs (ETC1, 2 and 3) were summarised in one node. On
the other hand, simulated overexpression of GL1 and GL3
genes generates a totally hairy domain that resembles the
extremely hairy epidermis of the double overexpression
line. A few non-hair cells are still observed, however, in
real plants overexpressing GL1 and GL3. This could be
explained if in real plants the overexpression of GL1 and/
or GL3 is not as effective as assumed in the model.

The root meta-GRN patterns of simulated mutants are
also very similar to those observed in plants (Figure 4).
For instance, the simulated mutant for cpc loss of function
displays a pattern that matches the increase of ectopic atri-
choblasts observed in these mutants. The scm simulation
gives rise, as in real roots, to a disorganised pattern of tri-
choblasts and atrichoblasts. The simulated wer loss of
function shows a hairy phenotype similar to that observed
in actual wer mutants. Finally, this model also recovers
that etc enhances ¢pc mutant phenotypes. The leaf and
root mutant simulations show that the meta-GRN model
is able overall to recover qualitative aspects of the system
behaviour and that, in this context, may be helpful for an
understanding of pattern formation and providing novel
qualitative predictions.

Novel predictions: the role of cell shape, GL1, GL3 and
WER upregulation and GRN interactions with the
gibberelic acid pathway and cortex-associated signals
The model we present reproduces documented gene activ-
ity configurations in wild-type and mutant plants and also
constitutes a powerful predictive tool regarding cellular
and genetic mechanisms that may affect the Arabidopsis
epidermal system.
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Cell growth and the root hair pattern

In a previous work [18], we postulated that elongation of
root epidermal cells could stabilise the early striped pat-
tern by increasing the distance between neighbouring
nuclei in the baso-apical direction of the root, thus giving
rise to an effective increase of the diffusion rate along this
axis. We used the meta-GRN model to simulate a higher
diffusion rate on the baso-apical direction than in the
radial one. Interestingly, such bias makes the spatial pat-
tern more stable and reduces the average number of
ectopic cell-types for the whole parameter space (Figure
5). These new results therefore support the idea that either
cell elongation or differential diffusion rates between the
longitudinal and radial axes in the root epidermis contrib-
ute to stabilising the observed cellular spatial configura-
tion.

Trichome patterning and the gibberellin signalling pathway
Density and distribution of root and leaf hair cells change
during development and are affected by diverse internal
and external signals. Some of these signals are hormones
that may affect the GRN modelled here [16,42,43]. We
explore the interaction of the leaf GRN and the Gibberelic
acid (GA) hormone signalling pathway. Leaf trichome
density is positively regulated by GA, among other hor-
mones. Recently, Gan and collaborators [43] found that
some transcription factors (GIS, GIS2 and ZFP8) act as GA
receptors and act upstream of some elements of the GRN
modelled here, biasing cell fate towards trichomes.
Indeed, GA receptors upregulate GL1, although it is still
unknown whether transcription factors like GIS act
directly on GL1 and if such upregulation would suffice to
make the leaves hairy.

Several interactions of the GRN could in principle cause
GL1 upregulation and, at the same time, yield a denser tri-
chome pattern. We simulated GA up and downregulation
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for all the possible targets within the GRN. We did this by
fixing a constant minimum expression of each tested tar-
get to 1 (upregulation) or by fixing the node's state to 0
(downregulation) with a probability P, (equal for all
cells) in all cells in the lattice. For simplicity, we assumed
that GA is homogeneously distributed in the modelled
spatial domain and that the signalling pathway regulates
only one of the network's components at a time. We also
assume that this hormone does not cause an overexpres-
sion effect on its target (i.e. it does not fix the expression
state to 2). This last assumption is based on the fact that
overexpression of the network components often leads to
drastic phenotypes that are not observed in wild-type Ara-
bidopsis development and during which GA signalling is
present. Results in Table 2 were generated by simulation
of two particular P, values (1 and 0.01), each one repre-
senting one of two broad ranges of values that render
qualitatively different results.

The simulation results suggest that an increase in GL3 and
EGL3 or a decrease in TRY or CPC expression leads to a
higher density of trichomes and, therefore, to a higher
GL1 expression levels (Table 2). Both the complete and
partial repression of TRY, however, yield a higher cluster-
ing probability (Table 2). Given that (i) GA partially
underlies the differences in trichome density exhibited by
certain regions of the plant throughout development,
even under normal growth conditions [43,44] and that
(ii) clusters are very rare in wild-type plants, it is unlikely
that the GA pathway acts directly on TRY. In contrast,
bHLH genes and CPC are likely targets of the GA pathway.
Although the trichome number increase for CPC down-
regulation is small, it seems that the meta-GRN model
underestimates the increase in hair numbers observed in
the cpc mutant (see previous section in Results) and there-
fore CPC is also a good candidate for GA regulation.

Table 2: Simulation of possible interactions of the GA pathway and the GRN.

Trichome number

Trichomes adjacent to another one

wt 19
bHLH(+)* 44
bHLH (+) 400
GLI (+) 19
TTGI (+) 19
GL2 (+) 0
GL2 (+)* I
CPC (-)* 19
CPC(-) 20
TRY (-) 28
ETC () 19

0
2

SN
o
o

O WO OO0 OoOoOOo

Only a positive interaction on bHLH genes or a negative one on CPC (rows in grey) produces an increase in trichome density and maintains the
spaced-out pattern. The sign of interaction is in parentheses. Asterisks indicate an interaction probability Pc, < |, while no asterisk means that this
probability was equal to one. The two cases Pg, = | and P¢, < | are only shown when their results are different. These simulations were performed
in 20 x 20 matrices with the following parameter values: D¢pc = 0.05, Dgg = 0.05, D17 = 0.03.
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Possible cortex-related signals in the root system

We modelled the signal associated with SCM as a negative
regulation on WER, as suggested by recent experimental
data [36]. Nevertheless, this may not be the only posi-
tional cue biasing the root GRN and it does not affect cell-
type patterning in hypocotyls [36], which seems to share
the root GRN and also exhibits a striped cell-type arrange-
ment. It is likely that there are additional SCM-independ-
ent signals and our model may be used to predict the
nature of such signals. We made some predictions con-
cerning the possible targets of such signals among GRN
nodes.

We simulated several possible targets of both positive and
negative putative signals. We thus simulated: upregula-
tion of WER in the NH position, upregulation of CPC in
the H position and downregulation of CPC in the NH
position. In our model, the negative regulation of SCM
over WER is the one that best recovers the observed root-
like striped arrangement (wt in Figure 4). This was the sig-
nal used throughout all the simulations mentioned in
previous sections, as it is the only one empirically docu-
mented. Upregulation of CPC, however, also gives rise to
a striped pattern (-> CPC in Figure 4), although a signifi-
cantly less stable pattern than the one recovered with the
negative signal on WER. Negative regulation of CPC (->
CPC in Figure 4), and upregulation of WER (-> WER in
Figure 4) render, on the other hand, uniform patterns that
are very different from the observed banded ones. Our
model therefore suggests that if there were additional sig-
nals associated with the root striped cellular patterns,
these should act positively on CPC.

GL3, WER and GLI1 positive regulation

GL3 expression peaks in the cells committed to the tri-
chome identity in leaf epidermis. This suggests that it
could be upregulated by the activator complex or by mem-
bers of such a complex. Yet it was recently shown that its
transcriptional regulation is GLI-independent [31],
although GL1 and TTG1 seem to regulate the location of
the GL3 protein within the cell. Since CPC upregulates
GL3 in the root epidermis, and given that its expression
peaks coincide with that of GL3, CPC could be responsible
for GL3 activation. We therefore used our model to test
whether the simulated trichome pattern remained the
same if CPC was assumed to activate GL3. Our simula-
tions suggest that the upregulation of GL3 by CPC would
cause a drastic increase in trichome density and a cluster-
ing probability close to one, contrasting with observed
patterns. This result suggests that, if CPC upregulated the
transcription if GL3 in leaf epidermis, another unknown
factor would have to restrain GL3 expression to trichomes.

As mentioned above, we performed a systematic explora-
tion of the effect of alterations in the logical rules. Inter-
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estingly, our simulations suggest that the self-activation of
WER and GL1 is necessary to recover all the wild type and
mutant patterns. This prediction is consistent with the fact
that these two genes peaks of expression are in the same
cells where their inhibitors are also expressed at the high-
est levels.

Discussion

We put forward an experimentally-grounded dynamical
model that integrates experimental evidence and helps us
to study the concerted action of multiple molecular com-
ponents during Arabidopsis hair pattern formation. This
constitutes one of the best experimental systems to
address questions concerning cell differentiation and spa-
tio-temporal arrangement of cell types. This study uncov-
ered a regulatory module that is sufficient to recover the
cell types and spatial configurations characteristic of Ara-
bidopsis root and leaf epidermis. The model of coupled
GRNs in a cellularised spatial domain was used to provide
predictions regarding the effect of unknown interactions,
signalling mechanisms acting on the GRNs and cell shape
on such epidermal patterning.

Besides the insights of our meta-GRN model concerning
the particular cell patterning system under consideration,
it makes a general contribution to a fundamental issue in
developmental biology: the origin of the information
needed for the emergence of cell-type patterns from
homogeneous domains. In contrast with single-cell mod-
els previously published, we achieved this by coupling
single-cell GRNs by explicitly incorporating cell-to-cell
communication in a cellularised spatial domain. This ena-
bled us to evaluate whether the observed gene activation
profiles are recovered in the meta-GRN.

In the case considered here, the information needed for
cell-type arrangement consists of heterogeneous patterns
of gene expression and is determined by complex interac-
tions among multiple intra- and extra-cellular factors. Our
model therefore recovers the de novo formation of posi-
tional information from such complex GRNs and suggests
that the appearance of this information is very robust. It
does not depend on particular initial conditions or
domain size, and is resilient in the face of single perturba-
tions in the logical rules, as well as changes in the protein
diffusion rates. Robustness has been documented as well
for single-cell GRN models [5,6].

As mentioned above, our model also enabled testable pre-
dictions on the behaviour of the particular system under
study. The first prediction states that cell elongation, or
other processes that could alter or bias diffusion rates in
the x and y axes of the root (for example, differential trans-
port rate), have a relevant role in stabilising the spatial
pattern generated early in root development. This predic-
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tion points at a precise way in which cellular morpholog-
ical traits may affect cellular patterning and could be
tested by crossing a GL2:GUS or GFP marker line plants
with altered cell shapes (e.g. [45,46]) and search for alter-
ations in the spatial pattern of this genetic marker of epi-
dermal cell type.

Another prediction concerns the action of GA signalling
on the GRN, suggesting that this hormone signalling
pathway acts on CPC or bHLH genes. This prediction is
consistent with recent experiments with bHLH inducible
overexpression lines [47] that suggest that an increase in
bHLH expression suffices to produce more trichomes.
Both bHLH and CPC actually have GA response motives
(PLACE, http://www.dna.affrc.go.jp/PLACE/), but this
does not imply that they respond directly to GA. Accord-
ing to our prediction, mutagenesis of the GA response
motives should cause trichome density alterations in
response to GA treatments. As data on other signal trans-
duction pathways accumulate, the framework put forward
here could be useful for an understanding of how diverse
environmental cues are integrated by the regulatory mod-
ule during epidermal cell-fate determination. This would
contribute to a better comprehension of the plastic devel-
opmental responses of plant and animals to environmen-
tal cues.

The GRN modelled here is sufficient to recover the gene
activation profiles and the hair spatial patterns typical of
wt and mutants' root and leaf epidermis. Our results there-
fore support the idea that developmental processes, such
as cell-type determination and patterning, depend on reg-
ulatory modules, which are semi-autonomous with
respect to the rest of the genome [48]. According to this
and other studies (e.g. [6]) the outputs of these modules
(i.e. attractors that correspond to the possible alternative
multigene expression profiles) are highly robust in the
face of diverse perturbations, suggesting that these may act
as patterning modules for a wide range of parameter val-
ues in kinetic functions of the network. Moreover, it seems
that these modules may have been co-opted during evolu-
tion to regulate the decision underlying cell-fate determi-
nation of different structures in diverse tissues/organs
(e.g. root, hypocotyl and leaf). Indeed, the latter could be
the case in plant species with contrasting cellular patterns,
in which local traits, such as cell size and shape, positional
cues or domain geometry, may affect the type of pattern,
even if the regulatory modules have been largely con-
served during evolution.

The results presented here also support the idea that the
coupled-GRNs system modelled here includes smaller
coupled sub-networks that could themselves constitute
mechanisms that contribute to the formation or mainte-
nance of cellular patterns. In the leaf system, these mech-
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anisms are: (i) the regulatory and protein-protein
interactions between GL3 and TTG1 that give rise to the
TTG1-trapping/depletion mechanism postulated by
Bouyer and collaborators [28], (ii) the so-called activator-
inhibitor system conformed by the activators of GL2 and
its inhibitors [17,18], and (iii) the feedback loop estab-
lished between TRY and GL2 [29,30]. Although these sub-
networks or motifs could be important or even sufficient
for the generation and maintenance of the epidermal cel-
lular patterns, independently of the rest of the GRN, it is
likely that they all act redundantly in the generation of
such patterns in a robust manner. The latter seems to be
the case as, for instance, our results suggest that TTG1 dif-
fusion is not necessary for patterning when the whole
GRN is present. Experimental data also show that wild-
type cell configurations are observed in ttg1 mutants when
GL3 is overexpressed [40]. Since these mechanisms are
not independent of each other, the meta-GRN model
encompassing them all in conjunction with cell-cell com-
munication is useful for studying the spatio-temporal pat-
terning. The interlinkage of redundant sub-networks
found in this system supports the hypothesis that inter-
connection among feed-back loops or small nonlinear
systems confers robustness to biological networks and
may constitute an important trait in network evolution
[49].

Conclusion

The model and results presented enable us to conclude
that cell-type determination and patterning in leaf and
root epidermis of Arabidopsis are regulated by a complex
GRN that encompasses redundant sub-networks. Since all
these sub-networks involve cell-to-cell communication,
the spatial meta-GRN model is central to studying how
these interact with each other, giving rise to the informa-
tion needed for cellular patterning. Unlike the importance
of gene redundancy, the relevance and implications of
sub-network redundancy remain largely unexplored. This
work is one of the first contributions regarding this issue.

We could also conclude that the meta-GRN qualitatively
reproduces pattern formation in the system under study.
This is why this model could be used to state precise pre-
dictions, namely, that the GA pathway acts on CPC or the
bHLH genes, that GL1 and WER are self-upregulated, that
root cell shape has a stabilizing role on the banded pattern
and that new cortex-related biasing signals may upregu-
late CPC.

Future developments of the meta-GRN model proposed
here should allow for cell proliferation or continuous gra-
dients in pattern formation. Nevertheless, the model pre-
sented here constitutes a starting-point from which to
integrate future experimental evidence of the intracellular
GRNs themselves (e.g. epigenetic regulation), as well as
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diverse cellular processes. As further meta-GRN models
are postulated and validated for diverse biological sys-
tems, we will be able to evaluate which types of intracel-
lular GRNSs, regulatory motifs or sub-networks, as well as
coupling mechanisms, underlie patterning and morpho-
genesis in living organisms.

As exemplified by the GRN studied here, development
depends upon non-additive interactions occurring in a
wide range of spatial and temporal scales. Accomplishing
the paramount task of understanding how robust patterns
arise during development may therefore be facilitated by
computational or mathematical models that bridge the
divide between dynamics of interactions at the micro-
scopic level and the origin and evolution of morphologi-
cal qualities. Indeed, models like the one put forward here
constitute useful tools for integrating experimental work,
hinting at new experiments and providing novel insights
into the complex interactions that underlie patterning
processes and, therefore, into developmental and evolu-
tionary biology.
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Note added in proof

In the root meta-GRN model we assume that WER acti-
vates itself. This interaction is not essential for the forma-
tion of wild-type pattern, but it is required for the
formation of the pattern observed in the absence of SCM.
While this paper was under review, Savage and collabora-
tors (2008) [50] put forward a mathematical model and a
patterning mechanism that do not involve WER's self-acti-
vation. These authors also provide new data regarding
WER regulation that are consistent with their proposal.
However, the data does not reject the possibility that WER
self-activates, as they are also consistent, for instance, with
the combined activity of a self-activating loop and
another input activating WER. According to available
empirical data, both the model presented here and that
proposed by Savage and collaborators (2008) [50] appear
to be plausible. Further tests could help find if a mecha-
nism involving WER's self-activation, another mecha-
nism, or the coupled activity of more than one
mechanism are important for cell-type arrangement in

http://www.biomedcentral.com/1752-0509/2/98

Arabidopsis root epidermis. Interestingly, the existence of
more than one patterning mechanisms would emphasize
the importance of sub-network redundancy in develop-
mental networks.

Additional material
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This file contains the thorough topology and updating GRN functions.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
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Abstract

Redundancy among dynamic modules is emerging as a potentially generic trait in gene regulatory
networks. Moreover, module redundancy could play an important role in network robustness to
perturbations. We explore the effect of dynamic-module redundancy in the networks associated to
hair patterning in Arabidopsis root and leaf epidermis. Recent studies have put forward several
dynamic modules belonging to these networks. Here, we define these modules in a discrete
dynamical framework that was previously reported. Then, we addressed whether these modules
are sufficient or necessary for recovering epidermal cell types and patterning. We achieved this
by defining two quantitative estimates of robustness. We also compared the robustness of each
module with that of a network coupling all the hair or root modules. We found that, considering
certain assumptions, all the dynamic modules proposed so far are sufficient on their own for
pattern formation, but reinforce each other during epidermal development. Furthermore, we found
that networks of coupled modules are more robust to perturbations than single modules. These
results suggest that dynamic-module redundancy might be an important trait in gene regulatory
networks and points at central questions regarding network evolution, module coupling, pattern

robustness and the evolution of development.
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Introduction

Joint experimental and modeling approaches have contributed to understanding gene regulatory
networks (GRN) involved in cell-fate determination and patterning (e.g. von Dassow et al., 2002;
Espinosa-Soto et al. 2004; Jonsson et al, 2006) and are helping uncover generic GRN traits.

One of these GRN traits is dynamic-module redundancy (Kwon and Cho, 2008; Benitez
et al., 2008), which implies the coherent coupling of regulatory modules that exhibit similar or
equivalent behaviors. The partial or complete redundancy of interlinked modules or sub-networks
has proven to result in highly robust global dynamics of signaling networks (Kwon and Cho,
2008). This characteristic could also be and important feature of development-related GRNs as
semi-autonoumous dynamic modules may constitute building blocks in the evolution of
developmental mechanisms. However, in contrast to gene redundancy, the origin and effect of
dynamic-module redundancy in GRNs remains to be explored.

Cell-fate determination and patterning in root and leaf epidermis of the model plant
Arabidopsis thaliana constitutes a very useful system to address key questions in the study of
GRNs underlying development. In both types of epidermis, there are hair and non-hair cells
arranged in non-trivial patterns: spaced-out in the leaf and striped in the root. The work of several
laboratories has yielded a thorough characterization of the molecular aspects of this system (see
reviews in Ishida et al., 2008; Schellmann et al., 2007; Schiefelbein et al., 2009) and some
dynamical models for leaf and root epidermal patterning have been proposed (Mendoza and
Alvarez-Buylla, 2000; Benitez et al., 2007, 2008; Bouyer et al., 2008; Savage et al., 2008;
Digiuni et al., 2008). Such modeling efforts are now providing a rich view of the overall system’s
dynamics and suggest that this particular system exhibits dynamic-module redundancy (Benitez
et al., 2008; Schiefelbein et al., 2009). Indeed, six non-exclusive and mutually reinforcing
dynamic modules that may suffice for cell-type patterning have been described for the leaf and
root epidermis (Benitez et al., 2008; Bouyer et al., 2008 and Digiuni et al., 2008 for the leaf; and

Savage et al., 2008; Benitez et al., 2008; Schiefelbein and Kwak, 2008 for the root. See Table 1).



In order to study the role of module redundancy in this developmental process, we
simulated each of the proposed mechanisms by means of a previously presented modeling
framework (Benitez et al., 2008). We then put forward a method to assess whether the modules
are necessary or sufficient for patterning and to compare the robustness of each single with that of
the GRN with all modules coupled.

We found that the dynamic modules are indeed redundant as they all suffice for pattern
formation. Moreover, our results show that dynamic-module redundancy contributes to the
robustness of cell-fate determination and patterning in the face of mutations and stochastic

perturbations.

Methods

We modeled all of the systems summarized in Table 1 with the use of a previously reported
framework that enables exploring the spatio-temporal dynamics of discrete GRNs (Benitez et al.,
2008). In this model, each GRN node's changes according to:

8(t+1) = Fi(8 (1), & ual1), s & u3 (7)),

where g,; are the regulators of gene g ,, and F, is a discrete function or logical rule. The model
considers a discrete lattice of n x n elements in which each element (i, j) represents a cell with its
own GRN. It has been experimentally shown that some proteins codified by elements of the
GRNs under study are able to move among neighboring cells (e.g. Wada et al., 2002). Thus, in
the spatial model certain elements are allowed to move among neighboring cells following the
equation:

8z iy iy = H(8(1) iy i+ D(&(Y) fivry iy +8(1) gty i+ 8(1) iy w1y +8() iy gioa 481 fig i)

where g(t)7 ;;;;1s the total amount of protein g in cell (i, j). D is a continuous variable that
determines the proportion of g that can move from any cell to neighboring. H is a step function

that converts the continuous values corresponding to the amount of g diffused into a discrete



variable that may attain values of 0, 1 or 2. Finally, g(t); ,; ; is considered in order to estimate the
8(1);i; iy value according to the equation:

8 (Dr i = 8(1) i+ 8(Wr iy~ %

where k stands as a degradation constant and g'(z) is taken as an input to evaluate the logical rules
and again calculate g(t) ;;;; until a steady state is reached for the whole lattice. In the steady state,
each cell in the lattice exhibits a node activation profile that corresponds to a gene activation
profile characterizing hair or non-hair cells. The GRN logical rules were all grounded on

available experimental data (see Benitez et al., 2008 for detailed review).

In order to study the sufficiency and necessity, as well as the robustness of the different
patterning modules put forward up to now, all the GRN and patterning mechanisms presented in
Table 1 were modeled as described above (Benitez et al. 2008). According to empirical data,
nodes modeled as mobile elements were GL3, EGL3, CPC and TRY in the root system, and TTG,
CPC and TRY in the leaf one. Since there is no experimental information suggesting a particular
regulatory sequence and for simplicity, all simulations were performed under synchronic updating
schemes. Diffusion constants were always D, y=0.03, D¢pe=0.05, D,y=0.05. Initial conditions
were set randomly. GRN graphs were elaborated with Graphviz. Programs were elaborated in C

and are available upon request.

Results

Single dynamic modules are sufficient to recover leaf and root epidermal cell determination and
patterns that resemble those observed in real plants.

We used the modeling framework described in Methods (see Benitez et al., 2008 for further
details) in order to simulate the different patterning mechanisms that have been put forward for
leaf and root epidermal hairs (Benitez et al., 2008; Bouyer et al., 2008; Digiuni et al., 2008;
Savage et al., 2008; Schiefelbein and Kwak, 2008; see table 1 for graphic description and main

assumptions of each proposed module). By comparing simulated and observed patterns, we first



evaluated whether each of the modules summarized in Table 1 was able to render GRN activation
profiles that typify hair and non-hair cell types and whether these showed dotted and banded
patterns typical of leaf and root epidermis. All the isolated modules that we simulated were able
to do this (Table 1). It is important to note that the TTG-trapping/depletion mechanism (Bouyer et
al., 2008) makes a strong assumption by not including GLI, a component of the leaf epidermis
GRN. However, if the TTG-trapping/depletion assumptions are considered in the simulations, this
mechanism alone also generates a dotted hair pattern. This mechanism may be the only one that is
not strictly sufficient, but it is certainly important for patterning reinforcement as it enhances
robustness of the GRN that couples this and other module (details below).

Given that more than one patterning modules are sufficient for epidermal cell-type
determination and arrangement, none of these sub-modules is, in principle, absolutely necessary
for pattern formation. All of them might be, however, contribute to the overall robustness of this
developmental process.
Redundancy of dynamic modules confers robustness to GRNs underlying epidermal cell-fate
determination and patterning.
In order to evaluate the contribution of dynamic modularity and redundancy to the robustness of
the GRNs under study, we defined two measures of robustness. The first one estimates the
robustness to single loss-of-function mutations and is obtained by dividing the neutral mutations
(m) by all the possible single loss-of-function mutations in the module (M). Neutral mutations
were defined in two ways. In the first one, m considers mutations that affect neither cell-fate
determination nor pattern formation (FD&P column in Table 2). In the second more flexible
definition of m, neutral mutations are taken as those that may or may not affect the pattern, but do
not affect cell type determination (i.e. hair or non-hair cell types are formed). An average of these
two estimations of m/M was also calculated (<> column in Table 2).

The second measure of module robustness was established in terms of the tolerance to

random perturbations in the logical rules governing the GRNs dynamics. In order to obtain this



measure, all the outputs of the logical rules were randomly modified from their correct value with
a probability p. All outputs were modified with the same probability in each run, but each output
was perturbed independently of the others. We systematically tested values of p ranging from
0.00001 to 0.1 and took the value for which noise was high enough to alter the wild-type patterns.

Benitez and collaborators (2008) used the so-called R value (Larkin et al., 1996) and the
hair clustering probability (C) to analyze if the simulated pattern was similar to that observed on
in leaves, which has R>/ and C=0. In the case of the root epidermis, the number of misplaced
cells in the lattice, which would correspond to ectopic hairs, was used as an estimator of pattern
accuracy”’. These same measures were used to analyze if single mutations or noisy perturbations
in the dynamic modules affected the typical leaf and root spatial patterns.

We found that for both the leaf and root GRN the systems containing all the dynamic
modules were more robust to mutations and noise than single modules (Table 2). As it could be
expected, it is clear from robustness analyses that simple modules that render the pattern with a
minimum mechanism are more sensible to single loss-of-function mutations than modules
integrating partially redundant genes. Then, robustness of the GRNs that couple all the modules
could, in principle, have its origin on gene redundancy alone and not necessarily on redundancy
of dynamic modules. However, the root GRN that couples all the modules does not have more
redundant or partially redundant nodes than one of the single modules (GL3/EGL3 and
CPC/TRY, Table 1), but still exhibits higher values of robustness. Therefore, overall robustness
does not only depend on the presence of gene redundancy, but is also a consequence of dynamic-

module redundancy.

Discussion
Our results show that the GRN underlying cell patterning in leaf and root epidermis of
Arabidopsis thaliana incorporates several redundant dynamic modules that are each sufficient for

cell-fate determination and spatial patterning. Furthermore, our simulations demonstrate for a



specific biological system that redundancy of such dynamic modules enhances the robustness of a
developmental process in the face of different types of perturbations. Then, the behavior of the
genetic system involved in epidermal cell-fate determination and pattering actually seems to
reflect the coherent integration of several dynamic redundant modules, rather than the dynamics
of a single patterning module. This will be an important consideration for future experiments and
modeling efforts, as well as for evolutionary analyses. In particular, it would be interesting to
study the dynamics of single and coupled modules by performing experiments in which these are
selectively uncoupled or blocked.

It is worth noting that for the analyses of robustness regarding stochastic perturbations,
all the logical rules underlying the GRNs dynamics were perturbed with the same probability.
However, not all the rules or the nodes are equally sensible to this kind of perturbation.
Moreover, in some modules, such as that put forward by Savage and collaborators (2008), noise
in some of the rules may actually be required for pattern stabilization. This fact could explain the
high tolerance of this particular module to stochastic perturbations (Table 2). Further explorations
of the effect of noise in particular genes and in complete GRNs will be needed for a better
understanding of how and in what ranges stochasticity may contribute to developmental
processes.

In the leaf GRN it appears that the two measures of robustness, the one related to
mutations and the one related to noise, are correlated. In the root GRN, however, this tendency is
not conserved. Further analysis in other documented GRNs will be needed to establish the
relation between these measures and the origin of the two types of robustness.

Importantly, in a recent contribution Kang and collaborators (2009) uncovered another positive
feedback loop in the GRN underlying cell-fate determination in the root epidermis. As the authors
mention, this loop, which involves the MYB23 gene, could be part of another set of interactions

that further enhance the overall GRN robustness.



The fact that all simulated modules were able to render the expected patterns when
modeled with a common mathematical framework, different to that in which they were originally
described, suggests that these modules are indeed dynamically relevant and relatively robust on
their own, not depending on precise implementations or modeling details.

Our results open novel questions regarding module and network evolution. First, given
that module redundancy reinforces the patterning process under study, and assuming that hair
patterning or the presence of hair and non-hair cells is somehow adaptive, it could constitute a
selected trait throughout GRN evolution. It is also possible that dynamic-module redundancy
emerges as a consequence of how GRNs evolve and that gene duplication and divergence
contribute to generating modularity (structural or dynamic).

The role of selection and of structural or historical restrictions in the origin and evolution
of dynamic-module redundancy remains to be studied. It would also be relevant in terms of
module evolution and coupling, to explore if these dynamic modules are represented in other
plant species and if they are, whether the combinations of different modules are correlated with
contrasting epidermal cell patterning phenotypes. Finally, different environmental cues of
stressful conditions could perturbate the GRNs or the modules in different ways. Then, it would
be helpful to study how redundancy of dynamic modules contributes to the response to these
particular cues and conditions. In this work, we put forward a relatively simple method to

investigate dynamic modularity that could help address some these issues.
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Tablel. Summary of the graphs and conditions for sufficiency and necessity for each sub-

module put forward up to now. *See, however, Morohashi et al., 2007 and further details in

Results.
Module Sufficient for Necessary
description spaced out pattern
TTGI1- Yes* No
trapping/depletion (Assumes that AC (GL3
mechanism activates GL3 and overexpresion
(Bouyer et al., GL2inaGLI- recovers ftg loss
2008) independent manner) of function)
Double (ot _ Yes No
competitive @ (assumes that TTG (Activator-
inhibition (Digiuni — is present in all inhibitor-like
Leaf et al., 2008) —h cells) system also
epidermis & "_‘ED renders the
(TTG, TRY dotted pattern)
and CPC are Meta-GRN Yes No
able to move (Benitez et al., (Assumes that GL/ (Double
among cells) 2008); also the is directly or competitive

coupled system of

indirectly self-

inhibition also

submodules. activated) generates the
dotted pattern)
WER-self- Yes No
activation model (Assumes WER’s (Other proposed
(Benitez et al., direct or indirect mechanisms
2008) self-activation) render the root
pattern)
Root
epidermis Mutual support Yes No
(bHLH, TRY mechanism (Assumes that WER (Other proposed
and CPC (Savage et al., “_"‘D and GL3 are mechanisms
proteins 2008) - constantly expressed render the root
diffuse; in all A with a basal rate) pattern)
cases SCM —
inhibits WER SCM- ~(san) Yes No
inthe H accumulation l (Assumes that WER (The two other
position) system D) and bHLH have a proposed
(Schiefelbein and i constant basal mechanisms
Kwak 2008) [/ expression) render the root
/S pattern)
>
Coupled system of Yes No
sub-modules (Incorporates (Single sub-
assumptions of modules are
single sub-modules) sufficient)




Table 2. Results for robustness assessment of each dynamic module. From left to right,
columns indicate the type of epidermal system under study, the particular dynamic module,
measure of robustness in the face of single loss-of-function mutations and measure of robustness
to stochastic perturbations. In all the columns, values range goes from O to 1 (0 represents low
robustness and 1 high robustness). For the FD&P column, neutral mutations, m, are taken as those
that do not affect neither cell-fate determination or pattern formation. In the FD column, neutral
mutations are taken as those that may or may not affect the pattern, but do not affect cell type
determination (i.e. one of the two cell types is no longer formed). An average of these two
estimates of m/M is presented in the <> column. *For this system, noise within certain range,
particularly in the expression of WER, actually contributes to pattern formation. For this analysis,

noise was considered for all elements and in addition to noise originally considered.

Regulatory GRN tested Robustness to loss of function Robustness to stochastic
mutations: m/M perturbations
FD&P FD <>

Leaf TTG-trapping/depletion module 0 0 0 0.001818
epidermis (Bouyer et al., 2008)

TTG-independent mechanism 0 0.333 0.166 0.001428

(Digiuni, et al., 2008)

Meta-GRN (Benitez et al., 2008) 0.625 0.75 0.687 0.003333

considering TTG trapping and
TRY double competitive

inhibition.
Root Mutual support mechanism 0 0.5 0.25 0.01
epidermis | (Savage et al., 2008)
WER-self-activation model 0.125 0.875 0.5 0.0005
(Benitez et al., 2008)
SCM-accumulation model 0 0.75 0.352 0.001

(Schiefelbein&Kwak, 2008)

All modules coupled 0.625 0.875 0.75 0.033
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Abstract

The leaf and root epidermis in Arabidopsis provide ideal systems in which to explore the mechanisms that underlie the
patterned assignment of cell fates during development. Extensive experimental studies have uncovered a complex
interlocked feedback network operates within the epidermis that coordinates the choice between hair and non-hair fates. A
number of recent studies using mathematical models have begun to unpick this network, highlighting new mechanisms that
have subsequently been confirmed in model-directed experiments. These studies illustrate the potential of integrated
modelling and experimentation to shed new light on developmental processes.

Introduction

The patterned assignment of alternative cell fates lies at the heart of many developmental processes. Understanding how
neighbouring cells in a developing tissue adopt distinct fates therefore presents a key challenge in development. In principle,
a range of mechanisms can contribute to patterned fate assignment, including cell lineage, imposition of spatial information
from neighbouring tissues (induction), and pattern-generating interactions within the tissue being patterned.

Plant development provides many instances of patterned cell fate assignment. These provide attractive systems in which to
explore the mechanisms underlying the emergence and maintenance of patterning, since patterning takes place throughout
the entire life of the plant (often reiteratively) and does not involve cell rearrangement due to migration. Among the best
studied examples are the leaf and root epidermis of Arabidopsis thaliana (Ishida et al., 2008; Schiefelbein et al., 2009).
During early stages

of development of the epidermis, cells undergo a binary fate decision, with a subset adopting a fate leading to later
differentiation as a hair-bearing cell. In the leaf, these trichome-bearing cells arise in a two-dimensional spacing pattern
(Fig. 1a); in the root, trichoblasts—which have the potential to form root hair cells—arise in the meristem and form
continuous files aligned along the long axis of the root, separated by files of atrichoblasts (Fig. 1b).

Advances in methodologies for probing the molecular state of cells have helped to provide increasingly detailed models of a
range of dynamic cellular processes. However, these methodologies largely depend on the availability of uniform
populations of cells or on single cell culture systems. Patterned fate assignment presents a more challenging problem: since
the central feature under study is the emergence of differences between neighbouring cells, and changes in cell state are
integrated with spatial patterning, it remains difficult to obtain detailed data on the dynamics of pattern formation. In spite
of these challenges, a number of models have been developed recently that illustrate the

value of a range of mathematical and computational approaches in exploring the dynamics of regulatory networks in
multicellular tissues (see reviews in Reeves et al., 2006; Alvarez-Buylla et al,. 2007; Jaeger et al., 2008; Grieneisen and
Scheres, 2009; Oates et al., 2009; Jonsson and Krupinski, 2010). Indeed, the difficulty in obtaining detailed information on
individual cell states in a multicellular context provides excellent opportunities to use iterative cycles of modelling and
experimentation to refine understanding of the mechanisms underlying the patterning of these systems.

In this review we summarise a number of recent models of root and leaf epidermal patterning in Arabidopsis. After
outlining the key features of the experimentally determined epidermal patterning network, we illustrate how each model
allows distinct aspects of this network to be explored in detail, generating a range of specific predictions that have been
confirmed by directed experiments. Finally, we discuss some general conclusions that can be drawn from the models about
the robustness, plasticity and evolution of spatial pattering in Arabidopsis and other organisms.



Similar regulatory networks underlie fate choice in the root and leaf

Although patterning takes place in quite different contexts in the root and leaf epidermis, strikingly similar genetic
regulatory networks (GRNs) operate in both (Lee and Schiefelbein, 2001; Ishida et al., 2008; Schiefelbein et al., 2009). The
networks are centred on two classes of trimeric protein complexes comprising the WD40 repeat protein TRANSPARENT
TESTA GLABRA 1 (TTG1), a basic-helix-loop-helix (bHLH) protein and a MYB protein. In both the root and the leaf, the
bHLH proteins GLABRA3 (GL3) and ENHANCER OF GLABRA 3 (EGL3) play functionally equivalent roles in the
complexes. The two classes of complexes are distinguished by the nature of the MYB protein. One—which we refer to as
the Activator Complex (AC)—involves a R2R3 MYB protein (GLABRA1 (GL1) and WEREWOLF (WER) in the leaf and
root, respectively).

The other complex—which we refer to as the Inhibitor Complex (IC)—involves a single R3 MYB protein. This role is filled
primarily (albeit redundantly) by TRIPTYCHON (TRY) in the leaf and by CAPRICE (CPC) in the root (Schellmann et al.,
2007). However, the three proteins ENHANCER OF TRIPTYCHON AND CAPRICE 1, 2 and 3 (ETC1, ETC2 and ETC3)
can also contribute to the IC (Esch et al., 2004; Kirik et al., 2004a; Kirik et al., 2004b; Wester et al., 2009). Mutations in the
genes coding for the single R3 MYB proteins show a range of severity of patterning defects in the leaf and

root.

The AC is localised in the cell nucleus and up-regulates the transcription of the homeodomain transcription factor
GLABRAZ2 (GL2) in both tissues (Larkin et al., 1997; Lee and Schiefelbein, 1999; Payne et al., 2000; Zhao et al., 2008).
GL2 regulates a series of transcriptional events leading to the determination of the hair (trichome) fate in the leaf and the
non-hair (atrichoblast) fate in the root (Di Cristina et al., 1996; Hung et al., 1998; Szymanski et al., 1998; Lee and
Schiefelbein, 1999; Rerie et al., 1994; Szymanski et al., 1998; Payne et al., 2000). The IC, in contrast, does not have the
capacity to regulate transcription. Accumulation of AC in atrichoblasts (root) and in nascent trichomes (leaf) is thus a key
step in the patterning of cell fates. Establishment of these patterns depends on a combination of regulatory feedback and
movement of a subset of proteins between epidermal cells.

Because the single R3 MYB proteins can compete for binding to GL3/EGL3 with the R2R3 MYB proteins, the two
complexes are mutually competitive. A central feedback in the epidermal GRN results from the direct up-regulation of the
single R3 MYB genes by the AC (Schnittger et al., 1999; Lee and Schiefelbein, 2002; Kirik et al., 2004; Srinivas, 2004;
Koshino-Kimura et al., 2005; Ryu et al., 2005; Morohashi et al., 2007; Simon et al., 2007). Thus, the AC enhances
production of its own competitor,

resulting in negative feedback. In contrast, the AC represses transcription of GL3 (Lee and Schiefelbein, 2002; Morohashi et
al., 2007).

Coordination of levels of AC between epidermal cells depends on the intercellular movement of single R3 MYB proteins.
Genetic data show that TRY acts non-cell autonomously in leaves and experiments with fluorescent fusion proteins show
directly that CPC protein moves between cells in both leaf and root epidermis (Wada et al., 2002; Kurata et al., 2005; Zhao
et al., 2008). In contrast, the R2ZR3 MYB proteins do not move between cells (Zhao et al., 2008). The mobility of
GL3/EGL3 and TTG1 is currently unclear. While fluorescent GL3 fusion proteins do not move between leaf epidermal cells
(Zhao et al., 2008), their distribution in the root epidermis is suggestive of cell-to-cell movement (Bernhardt et al., 2005).
Experiments using fluorescent TTG1 fusion proteins are currently inconclusive (Bouyer et al., 2008; Zhao et al., 2008), and
there are no data pertaining to TTG1 movement in the root.

In the leaf, all evidence suggests that the epidermal GRN operates to generate the trichome spacing pattern independent of
cell lineage and without any imposed bias. In contrast, in the root, the pattern of trichoblasts is strongly biased by positional
information from the underlying cortical cells (Dolan et al., 1994; Berger et al., 1998).

The putative membrane receptor SCRAMBLED (SCM) appears to be a crucial component required in the epidermis to
receive this bias (Kwak et al., 2005; Kwak and Schiefelbein, 2007). Although SCM is expressed uniformly in all epidermal
cells during the initial establishment of cell fate, it acts to down-regulate WER transcription in epidermal cells overlying
clefts between cortical cells (in the ‘H position’), thus biasing the state of the epidermal GRN (Kwak et al., 2005; Kwak and
Schiefelbein, 2007).

The regulatory interactions and protein movements outlined above have been integrated into spatially-distributed GRNs that
are summarized in Fig. 2. Although a “parts list” of the epidermal GRNs has been mapped out, this is not sufficient to
furnish a full explanation of the mechanisms underlying the emergence and robustness of the spatial patterns of cell fate.



Efforts towards such an explanation have recently involved a number of studies that have integrated mathematical
modelling with directed experiments in an attempt to identify and answer a number of key outstanding mechanistic
questions.

These studies, described below, have provided both unexpected insights into the regulatory logic of epidermal patterning,
and a valuable framework in which to explore the origin and evolution of epidermal patterning in Arabidopsis and other
plants.

Models of epidermal cell fate patterning

The Arabidopsis epidermis provides an attractive system in which to develop approaches that integrate modelling and
directed experimentation. Extensive experimental studies have provided a detailed picture of the components of the
epidermal GRN, together with many of their regulatory interactions. Furthermore, the nature of the emergent patterns is
simple, and can be characterized in terms of the expression of a single gene (GL2). This allows specific mechanistic
questions to be posed with a clarity that is difficult in many other developmental processes. However, most of the available
data provide only qualitative information on the GRN, while mechanistic mathematical models require specific quantitative
representations and associated kinetic parameters (Reeves et al., 2006; Oates et al., 2009).

In the absence of appropriate quantitative data, phenomenological models that aim to capture the core regulatory logic of the
epidermal GRNs provide a valuable starting point. These have the advantage of requiring only a few parameters to be
specified, while allowing general mechanistic questions to be addressed. However, such models are unsuitable for probing
mechanistic details. An iterative approach has thus been adopted, in which initial phenomenological modelling has been
used to direct the

development of reduced mechanistic models. The results of the phenomenological modelling gives initial insight into the
patterning potential of these models, allowing appropriate parameters to be determined by scanning.

Phenomenological models

The most basic question that can be addressed using modelling is whether the known reactions and movements of
components of the epidermal GRNs are sufficient to generate spatial patterns. The epidermal GRNs exhibit some of the
features of an activator-inhibitor system—a specific class of reaction-diffusion network that can generate spatial patterns
(Turing, 1952; Gierer and Meinhardt, 1972). This led to the proposal that an activator-inhibitor mechanism may underlie the
spacing patterns of trichomes and atrichoblasts, with GL1/WER and TRY/CPC playing the roles of the ‘activator’ and
‘inhibitor’, respectively. (Pesch and Hulskamp, 2004).

To explore this proposal, Benitez et al. (2007) set out to determine whether appropriate tissue-specific conditions in a single
activator-inhibitor system could account for pattern formation in both the root and leaf epidermis. After demonstrating that
discrete models of the root and leaf epidermal GRNs were equivalent in terms of key dynamical properties, they proposed a
consensus GRN for both tissues, which was represented by a continuous activator-inhibitor model (see Box 1). They then
confirmed

that the consensus model could account for root- and leaf-like patterns, given appropriate positional cues or cellular
geometries, suggesting that cell geometry may play a role in the stabilisation of spatial cellular patterns.

While this phenomenological model supports the proposed activator-inhibitor mechanism, it has three important limitations.
First, it assumes self-activation of the activator (GL1/WER), for which there is currently no experimental support. Second,
the reduction of the epidermal GRNSs to a two-variable model does not allow the expression patterns of all GRN components
to be assessed. Third, model reduction results in the loss of important dynamic traits—such as robustness—of the original
patterning processes.

Genetic Regulatory Network models for root hair patterning

Many of the limitations of phenomenological models can be overcome by using mechanistic models (Reeves et al., 2006).
These are based on specific mathematical representations of basic regulatory and provide a valuable tool for exploring
dynamic processes in terms of their steady states, dynamic transitions, robustness to perturbations, etc. (Alon, 2007). The
first GRN model of Arabidopsis root hair patterning was developed by Mendoza and Alvarez-Buylla (2000), who developed
a discrete model (in which each network component can take either two or three values—see Box 1) integrating the root
epidermis GRN known at the time with the ethylene signalling pathway (a key plant hormone that acts after the fate
assignment network). This integration allowed quantitative predictions of hair density and arrangement in the context of
different pharmacological treatments to be made.

Since this model, many additional components of the root epidermal GRN have been identified. This additional information
was used by Savage et al. (2008) to construct a more detailed model of fate assignment in young root epidermal cells. The



model took advantage of the highly stereotypical cross-sectional geometry of the early root epidermis in Arabidopsis (Dolan
et al., 1994) to reduce the relevant geometry of the epidermis to a one-dimensional ring of cells (Savage et al., 2008). Given
the lack of quantitative data on expression levels and the detailed nature of regulatory interactions, the GRN was initially
represented using a discrete model in which each mRNA and protein variable can take one of two values (“on” or “off”) and
regulatory interactions are represented by logical rules (see Box 1). The majority of these rules encode cell-autonomous
regulation; movement of CPC and GL3 between cells was incorporated by allowing the mRNA levels in one cell to
influence the corresponding protein levels in the neighbouring cells.

While the previous phenomenological model (Benitez et al., 2007) assumed self-activation of WER expression, no evidence
exists to support this. Genetic data, however, indicate that WER expression is down-regulated by CPC and by SCM activity
in H position cells (Kwak et al., 2005; Kwak and Schiefelbein, 2007). A key question addressed by this the model was the
nature the regulation of WER transcription. Two possibilities were considered: self-activation of WER, with CPC repression
operating via competitive complex formation, or constitutive transcription of WER and direct

repression by CPC. To avoid having to arbitrarily assign dominance to one of the two regulators of WER, the state of WER
mRNA was represented by a random variable, that adopts the “on” and “off” states with probabilities that depend on the
states of both of its regulators. This allows the relative strengths of the two regulators to be varied continuously (Savage et
al., 2008).

Savage et al. demonstrated that both mechanisms of WER regulation could robustly generate appropriate expression
patterns in wild type and mutant roots, showing that WER self-activation was not necessary for the root epidermal GRN
model to drive appropriate cell fate patterning. Furthermore, some mutant phenotypes could be reproduced by the model
only when WER self-activation was not incorporated, suggesting that a mutual support model—in which WER does not
self-activate— provides a better representation of early root epidermal fate assignment.

An alternative discrete GRN model for epidermal patterning was developed by Benitez et al. (2008). This model was
formed on a two-dimensional array of cells, allowing exploration of the potential interactions between cell geometry and
signalling pathways to be explored. As in the model of Savage et al., it was found that WER self-activation is not necessary
for wild-type expression patterns to arise; however, in the two-dimensional model, it was required to recover all mutant-like
patterns (Benitez et al., 2008). Finally, the model results suggested that cell geometry may play an important role in pattern
stabilization—as proposed in the earlier phenomenological model (Benitez et al., 2007). The model of Benitez et al. (2008)
suggests that the mutual support mechanism proposed by Savage et al. may act redundantly with an activator-inhibitor
mechanism incorporating WER self-activation to contribute to the formation and maintenance of robust root-hair patterns.

To explore directly the nature of WER regulation, Savage et al. carried out a careful examination of the expression pattern
of a marker driven by the WER promoter in the meristem of wild type and mutant roots (Savage et al., 2008). Marker
expression in the mutants was found to be indistinguishable from wild type, demonstrating that in the early stages of
epidermal fate assignment, WER transcription does not depend on the presence of either functional WER protein or a
functional AC. Furthermore, WER is

initially expressed uniformly in the youngest epidermal cells, supporting the idea that WER transcription is uniformly up-
regulated in all epidermal cells at the start of the patterning process. These results provide strong evidence that WER self-
activation does not play a significant role in early fate assignment, lending support to the mutual support model (Savage et
al., 2008).

An outstanding question is whether the results obtained in the one-dimensional model of Savage et al. (2008) can be
reproduced in a growing two-dimensional geometry that would more accurately reflect the root epidermis. In particular, the
model of Savage et al. encodes an implicit assumption that communication along the apical-basal axis of the epithelium can
be neglected. The results of Benitez et al. (2008) suggest that some form of local self-activation may be necessary to
stabilize patterning in a two-dimensional geometry. Interestingly, two separate forms of self-activation have recently been
shown to operate later in root epidermal patterning, following the initial fate assignment process modelled by Savage et al.
First, both SCM mRNA and SCM protein accumulate in H position epidermal cells as they age, providing positive feedback
on WER expression that is necessary for normal patterning of hair cells (Kwak and Schiefelbein, 2008). Second, expression
of the MYB23 gene—which codes for a R2ZR3 MYB protein that can functionally substitute for WER—is regulated by the
components of the AC and IC, such that MYB23 accumulates in the nuclei of developing non-hair cells. MYB23 positively
regulates its own expression, and thus generates a WER-induced local self-activation that operates downstream of the initial
fate assignment GRN (Kang et al., 2009). Both SCM- and MYB23-dependent self-activation appear to act to reinforce the
early-emerging complementary expression patterns of WER and CPC.

The root epidermal GRN models of Savage et al. (2008) and Benitez et al. (2008), taken together with expression data,



suggest that a mutual support mechanism acts early in the fate assignment process, and that the resulting expression patterns
are then reinforced by at least two distinct local self-activation mechanisms. This redundancy may play an important role in
allowing epidermal patterning to combine robustness and flexibility (Benitez et al., 2008; Schiefelbein et al., 2009).

Genetic Regulatory Network models for leaf hair patterning

As outlined above, the GRNs underlying epidermal patterning in leaves and roots are strikingly similar. A number of models
investigating different aspects of leaf trichome patterning have been developed recently, each based on an explicitly two-
dimensional cellular representation of the leaf epidermis, with diffusive movement of a subset of proteins between
neighbouring cells (Benitez et al., 2008; Bouyer et al., 2008; Digiuni et al., 2008).

Digiuni et al. (2008) used a combination of modelling and experiments to address the open question of the nature of the
competition between the AC and IC. Using a continuous model based on just four variables, representing GL1, GL.3, AC
(GL1-GL3 complex), and TRY, three possible forms of TRY-mediated inhibition of AC formation were explored.
Simulations of the model demonstrated that while all three mechanisms were compatible with the wild type spacing pattern,
not all were able to account for the results of over-expression of GL3 and TRY. Focused experiments, together with
extensive simulations using a wide range of parameter values, allowed the authors to show that the binding of TRY to free
GL3 was the most likely competitive inhibition mechanism, even though TRY can also bind to GL1 (Digiuni et al., 2008).
Furthermore, while the model allows both TRY and GL3 to move between cells, simulations in which GL3 was cell
autonomous more closely matched the observed degree of order in the trichome pattern. Using microparticle bombardment
of cells with fluorescent fusion proteins, the authors were able to confirm that while TRY (and CPC) can move between
leaf epidermal cells, GL3 is cell autonomous. This model demonstrated that competitive complex formation could provide a
specific realisation of the proposed phenomenological activator-inhibitor models (Pesch and Hiilskamp, 2004; Benitez et al.,
2007).

In a separate combined modelling and experimental study, Bouyer et al. (2008) focused on the potential role of TTG1
movement between epidermal cells. The model of Digiuni et al. (2008) assumed implicitly that TTG1 plays only a
permissive role in complex formation (Schnittger et al., 1998). In contrast, Bouyer et al. explored an alterative mechanism
of pattern formation based on substrate depletion—whereby the AC effectively self-activates by depleting a mobile
component (TTG1) of the complex from neighbouring cells (Gierer and Meinhardt, 1972; Schnakenberg, 1979).
Exploration of the role of TTG1 was motivated by seemingly contradictory ttg1 mutant phenotypes; while strong ttg1 alleles
result in the loss of trichomes, clusters of trichomes form in weak alleles (Schnittger et al., 1999; Larkin et al., 1999).

Using a continuous model of a highly reduced GRN incorporating only binding of GL3 and TTG1 to form AC and diffusion
of TTG1 between neighbouring cells, Digiuni et al. demonstrated that local self-activation of AC (via positive regulation of
GL3 14 expression), together with TTG1 diffusion could alone account for patterning similar to that observed in the leaf
epidermis (Bouyer et al., 2008). Importantly, the model was able to reproduce the observed phenotypes of different ttg1
alleles. Bouyer et al. went on to show using microparticle bombardment that fluorescent TTG1 fusion proteins

accumulate in developing trichomes, while being depleted in their immediate neighbours.

Taken together, the model and experiments suggest that a TTG1 depletion mechanism may act in parallel to an activator-
inhibitor mechanism based on TRY-mediated inhibition (Bouyer et al., 2008). These two mechanisms may well be
redundant, since bHLH over-expression can recover a wild-type phenotype in ttg1 loss of function mutants (Schnittger et
al., 1998). Furthermore, similar microparticle bombardment experiments reported by Zhao et al. (2008) found no evidence
of TTG1 movement between leaf epidermal cells. The extent to which TTG1 movement contributes to trichome patterning
therefore remains an open question.

A third model of the leaf epidermal GRN was proposed by Benitez et al. (2008), using the same discrete formalism as in
their root epidermis model (see above). In common with the models of Digiuni et al. and Bouyer et al., this model
incorporated GL1 self-activation and diffusive protein movement. In addition to accounting for patterning in a detailed
GRN model, this study identified the GL3/EGL3 and CPC genes as the most likely direct targets of plant hormone pathways
(such as gibberelic acid and jasmonic acid) that can regulate the density of trichomes (Traw and Bergelson, 2003). This
prediction is consistent with recent data showing that GL3 is directly regulated by hormonal pathways (Yoshida et al.,
2009), and opens up new avenues for exploring the potential role of the fate assignment GRN as a signal integrator and an
important regulator of plastic responses.

Generic features of epidermal patterning models
The recent crop of quantitative models and associated experimental studies suggest that epidermal patterning in Arabidopsis
relies on redundant dynamic modules or sub-networks, each being sufficient (in principle) for cell-type determination and



pattern formation (Benitez et al., 2008; Bouyer et al., 2008; Digiuni et al., 2008; Savage et al., 2008). The full epidermal
patterning networks comprise multiple interlocked feedback loops, making experimental assessment of their relative
contributions to patterning difficult. In such circumstances, models provide invaluable exploratory tools. Each model

uses a reduced representation of the full GRN to focus on different sub-networks centered on specific types of feedback. In
addition to showing the sufficiency of each sub-network, each model highlights specific outstanding mechanistic questions,
many of which have been answered by associated focused experimental studies.

Importantly, while all the proposed models are consistent with current molecular and genetic data, the validity of some of
their assumptions remains unclear. All models apart from that developed by Savage et al. (2008) rely on some form of cell
autonomous positive feedback that allows cells to “lock in” to a state of high AC activity and inhibit their neighbours from
doing the same. In the model of Savage et al. the two alternative cell states mutually support each other, allowing model
cells to change state in response to a change in position relative to the imposed spatial bias from the cortex. Such plasticity
has been observed in response to both cell division and cell ablation in the root epidermis (Berger et al., 1998; Kidner et al.,
2000). The recently reported local positive feedback loops involving SCM and MYB23 (Kwak and Schiefelbein, 2008;
Kang et al, 2009) act at a later developmental stage than the initial fate assignment network modeled by Savage et al.,
suggesting that root epidermal cells first attain a labile state which is then reinforced, providing a balance between plasticity
and robustness.

An additional feature that is highlighted by all the models is the importance of the intercellular mobility of a subset of
proteins. It has been demonstrated convincingly, in both leaf and root, that single R3 MYB proteins can move between cells,
while R2R3 MYB proteins cannot, and these features are incorporated in all the models. In contrast, the existence and
potential importance of GL3/EGL3 and TTG1 movement remains unclear, and provides an important issue to be explored in
future models. Another important outstanding question is how the actions of multiple single R3 MYB proteins—

which show only partial functional redundancy—are integrated in the leaf epidermis. A recent combined modelling and
experimental study has suggested that the mobility of single R3 MYB proteins is modulated by their binding affinity to
GL3, providing an intriguing potential link between protein complex formation and protein mobility (Wester et al., 2009).
Future detailed modelling studies should help to clarify whether these differences play a significant role in trichome
patterning.

Outstanding issues

A simplification that is common to all the models discussed above is the assumption that the cellular array on which
patterning occurs is static. In reality, however, epidermal patterning occurs in tissues comprising cells undergoing division
and shape changes. The models of Benitez et al. (2007, 2008) show that cell geometry and other related traits— such as cell
tension or cytoskeletal arrangement—could be important for the formation and stability of patterns. These features have
been incorporated in a general modelling framework developed by Dupuy et al. (2007), who show that a reduced leaf
epidermal GRN (with feedback and protein movement, but without explicit complex formation) can

reproduce typical trichome spacing patterns on a growing leaf.

Although the initial pattern of fate assignment in the root apical meristem is robust, the later stages of epidermal
development show significant plasticity. Not all root trichoblasts go on to differentiate as hair cells, the likelihood of
differentiation being dependent on the details of the growth conditions such as nutrient availability (L6pez-Bucio et al.,
2003; Muller and Schmidt, 2004). Savage and Schmidt (2008) proposed that an activator-inhibitor mechanism acting
downstream of fate assignment might account for plasticity. In one of the few modelling studies to consider interactions
between a GRN

and environmental factors, it is shown how a phenomenological model can recapitulate the observed dependence of the
pattern of differentiated root hairs on levels of nutrients such as phosphate (Savage and Schmidt, 2008). The model provides
an organising framework for a wealth of data and acts as a guide for the design of additional experiments. For example,
different hypotheses concerning the interaction of nutrients and patterned cell fate with the activator-inhibitor mechanism
predict different spatial distributions of root hairs (Savage and Schmidt, personal communication).

Conclusions

The studies of epidermal patterning outlined above provide specific illustrations of the potential of mathematical models to
enhance our understanding of complex developmental processes. By focusing on reduced networks, the models allow
interlocked regulatory feedbacks to be uncoupled, providing a conceptual decomposition of the full network into a set of
dynamic patterning modules, each in principle capable of generating pattern. The theoretical insights gained provide a
valuable complement to empirical data, since such a decomposition is difficult (if not impossible) to achieve experimentally.
Importantly, by focusing squarely on specific features of the patterning network, the models yield specific predictions that



can (and have) been used to validate and refine the models.

The theoretical redundancy of the dynamic modules studied in the reduced network models raises the question of the
potential role of module redundancy in development and evolution (Schlosser, 2004). A recent analysis has shown that
while all the proposed dynamic epidermal patterning modules are indeed sufficient for pattern formation, the GRN model
integrating all the modules is more robust to single mutations and stochastic perturbations than any of the single dynamic
modules (Benitez and

Alvarez-Buylla, 2010).

These results suggest that redundancy of dynamic modules could have important consequences for the robustness of
epidermal patterning. Modular redundancy could also contribute to flexibility, allowing the epidermal patterning networks
to generate diverse patterns when subject to different cellular contexts (Meir et al., 2002; Benitez et al., 2007; Munteanu and
Solé, 2008). In the context of Arabidopsis epidermal patterning, conserved redundant modules can generate contrasting cell
types and spatial patterns in the leaf, root, and probably the hypocotyl (Dolan and Scheres, 1998). This suggests that
patterning outcomes can depend on key contextual qualities (cell and domain geometry, positional bias, mechanical
restrictions, etc.) and supports the idea that evolutionary changes in key contextual traits could underlie the origin of novel
and diverse patterns, even if gene regulatory networks of cell fate determination remain unchanged. Experimental
approaches that allow modules to be selectively uncoupled or disabled would help to provide further insight into the
importance of modularity for

robust and flexible pattern formation.

A future challenge remaining for modelling studies of epidermal patterning (and other developmental processes) is their
integration into a wider framework that considers not only genetic elements and cellular dynamics, but also factors such as
geometry, environmental elements, stochasticity and mechanical forces (see, for example, Dupuy et al, 2007; Grieneisen
and Scheres, 2009; Jonsson and Krupinski, 2010).

Box 1: Modelling glossary

Activator-inhibitor system. A class of a reaction-diffusion system that requires a self-
activating substance (activator) that either does not diffuse or does so at short distances,
and a long-range antagonist (inhibitor). The activator up-regulates the inhibitor, creating
a mechanism of local activation and lateral inhibition that can spontaneously generate
spatial patterns of activator concentration (Gierer and Meinhardt, 1972)

Continuous model. A type of model in which variables take continuous values.
Typically based on differential equations, continuous models allow detailed quantitative
analyses of physical, chemical and biological systems.

Deterministic model. A class of model in which the value of every variable is
determined for all time, given an initial state.

Discrete model. A class of model in which one or more variables take only a discrete set
of values (e.g. “on” or “off”). Model evolution is typically performed in discrete time
steps.

Gene regulatory network (GRN) model. A class of network models used to study the
collective dynamics of mutually-regulating genes. The nodes of the network represent
genes, mRINAs, proteins or molecular complexes, while the edges represent regulatory
interactions among the nodes.

Reaction-diffusion system. A continuous model describing the concentration in time and
space of substances (morphogens) that diffuse and react at different rates. Under certain
conditions, these systems can spontaneously generate patterns of morphogen
concentration, such as spots, stripes, labyrinths, and spirals. First proposed as a potential
mechanism for generating patterns in biology by Turing (1952), they have been widely
used to model pattern formation during development.

Figure legends



Figure 1. Root and leaf hair patterns in Arabidopsis. (A) Leaf trichomes are arranged

in two-dimensional spacing pattern. (B) Root epidermal cells are organized in alternating
files of hair and non-hair cells.

Figure 2. Schematic representations of the epidermal patterning gene regulatory
networks. The GRN underlying epidermal patterning in the leaf (A) and in the root (B).
Ovals represent genes and red nodes represent genes that encode proteins that may move
between neighboring epidermal cells. In the root, N and H position cells touch one and
two underlying cortical cells, respectively.
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Introduction
T'he way in which the concerted action of multiple genes,
along with environmental factors, regulates cell differen-

tation and development is still an open question in
biology. Given the overwhelming number of genes and
complexity of interactions that are involved in these
processes, schematic and intuitive models are not suffi-
cient to describe them. Hence, quantitative and integra-
tive tools, such as mathematical representations and
computational simulations, are becoming paramount.
These tools enable structural and dynamic studies of
complex assemblages of interconnected genes, proteins
and other molecules, which we refer to as gene regulatory
networks (GRN).

In Box 1 (see also [1]), we summarize some mathematical
and simulation approaches that have been used recently to
integrate experimental data on GRN. Such formal theory
and methods provide improved understanding of biologi-
cal systems. During the 20th century, several mathema-
tical models for development were proposed (see timeline
in Figure 1). These constitute a solid theoretical frame-
work that might help to pose hypotheses about the con-
ditions that are necessary and sufficient for cell
differentiation and pattern formation, but they incorpo-
rated unrealistic assumptions about genetic mechanisms
or, until very recently, could not be validated because of
the scarcity of data. For example, the first GRN models [2],
which aimed to represent dynamic and structural aspects
of collections of interacting genes, assumed randomly
connected networks with the same average number of
regulatory interactions per node. By contrast, recent data
suggest that actual GRN exhibit skewed distributions and
preferred local connectivity patterns [3,4].

The accumulation of data from classical molecular
genetic studies of development and functional genomics
enables more realistic dynamic GRN models of cell
differentiation and morphogenesis. In GRN models,
genes, mRNA or proteins correspond to the network
nodes and the links among nodes stand for regulatory
interactions. These models are being developed with two
main approaches. One uses functional genomics to
reverse engineer the identity of the network nodes and
the regulatory interactions among them (e.g. [5°°]). The
second approach uses detailed molecular genetic experi-
ments to propose models of GRN architectures for rela-
tively small gene networks (e.g. [6°°]). Such networks can
be studied thoroughly in relative isolation from the whole,
allowing direct functional interpretations. They have
enabled analyses of the temporal change of concerted
gene activities (i.e. network dynamics) and of the way in
which genes are connected to each other (i.e. network
structure or architecture).

www.sciencedirect.com
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Box 1 From genes and molecules to gene regulatory networks: mathematical models.

There is always tension between generality and level of detail (and thus
tractability) in a model. Depending on the scale involved and the nature
of the available information, a suitable mathematical framework can be
selected. We present basic terminology and concepts in GRN models
and, in this context, introduce different types of models (see review in
[48]). As development involves a wide range of scales and mechan-
isms, a combination of the models presented below, and others, will
surely become necessary to understand fundamental aspects of
morphogenesis.

Gene regulatory network models

In GRN models, the nodes correspond to genes, messengers or
proteins and the edges represent regulatory interactions (activations or
inhibitions) among the network components. In these models, gene
regulatory interactions are translated into a set of updating rules that
determines the nodes’ states at every moment (Box Figure 1). These
rules make it possible to follow the trajectory from one gene activity
configuration to another, starting in each one of the possible
configurations of gene activities (initial conditions). Configurations can
be tracked until they reach a state that, given the network rules,
remains unchanged. This state is called a fix point attractor.
Configurations can also follow a trajectory that leads to a so-called
periodic attractor, which corresponds to a collection of states among
which the configuration cycles indefinitely once it is reached. The set of
all initial configurations that lead to a specific attractor, be it fix point or
periodic, conform the attractor’s basin of attraction. A frequently used
analogy is that of a landscape with valleys, in which the bottom of the
valleys correspond to attractors and the valley’s basin to the basins of
attraction. Continuing with the analogy, every point on the landscape
matches a gene activity configuration and if a bead were located on
one of these points, it would follow a path on the rugged landscape, a
trajectory, until it reached a valley. Finally, the topography of the valley,
i.e. the number and identity of attractors, is determined by the set of
logical rules and network architecture. Cell states that can be
characterized by a certain fixed or cyclic gene activity configuration
might indeed correspond to the attractors of a complex dynamic
system [2,49°].

Discrete versus continuous GRN models

GRN models might incorporate continuous functions (differential
equations; e.g. [22]) or discrete functions (difference equations; e.g.
[6°°]) to describe the rules that govern gene activation kinetics.
Continuous implementations can include more detail and yield
quantitative predictions, but experimental data that provide parameter
estimates for such models are scarce. Despite this, continuous models
have proven to be very useful for investigating signal transduction
pathways and the circadian clock, both relevant processes in plastic
plant development ([34°*,35°,50,51°]; see [52] for review).

Different analyses of topologically equivalent continuous and discrete
models have shown that both yield equivalent dynamic results ([24,53],
although see [54]). In networks that have many non-linearities, the
behaviour of the system seems to depend mostly on the GRN topology
rather than on specific parameter values. In addition, if gene
expression functions and pattern formation time scales are consider-
ably distinct, qualitative discrete systems might be useful. Finally,
recent experimental evidence suggests that gene expression is digital

Here, we review studies of these two approaches for plant
systems, also touching upon relevant animal examples.
We then highlight the general findings that are emerging
from these studies, the efforts to model morphogenesis
from coupled GRN in explicit spatiotemporal domains,
and the utility of formal dynamical analyses for evolu-

and stochastic at the individual cell level, although in cell aggregates
gene expression might appear to be continuous [55,56,57°]. Given this,
qualitative GRN models that have discrete kinetics of gene activation
(e.g. [6°°]) (O ['OFF’] or 1 ['ON’] in the simplest Boolean case [32]) might
be the most appropriate representation of complex gene regulatory
logics.

Deterministic versus stochastic GRN dynamics

If logical rules or equations that govern the updating of the network
states allow us to determine the fates of all states at every moment, the
system is deterministic (e.g. [22]). By contrast, stochastic models [58]
consider the noise inherent to natural systems that is caused by small
numbers of molecules or other sources of uncertainties. In these
models, the updating depends partially on a stochastic variable, which
introduces a certain amount of uncertainty into the system dynamics.

Box Figure 1
(a)
X))  Y(t) [X(t+1) Y(t+1) Y
0 0 1 4]
5| 0 1 1 Q
0 1 0 0
1 1 1 1 N
(b)
Y Y
X=FXY) X=FAXY)+e
Y= G(X) s Y= G(X)+&'
o) & (d) 2
Current Opinion in Plant Biolegy

Example of a simple two-gene GRN dynamic model. (a) Two (X and Y)
element GRN with positive (arrowhead edges) and negative (flat end
edges) regulatory interactions. (b) Logical rules and graphical
representation of a two-dimensional discrete trajectory that results
from applying the set of rules (explicit only for the 0,1, Boolean case).
Note that the 1,1 corresponds to a fix point attractor and the rest of
the conditions that lead to this state to its basin of attraction. (c)
Continuous deterministic case, given by differential equations, and
graphical representation of a dynamic scenario qualitatively
equivalent to that presented for the Boolean case. (d) Stochastic case
of a similar dynamical scenario (¢ and ¢’ are sufficiently small
stochastic variables).

tionary studies. We conclude that the two approaches are
complementary for understanding the interplay between
the structure and dynamics of GRN;, and for uncovering
general rules in the logic of the regulation of develop-
mental processes and its links with signalling pathways
and other cellular processes.

Current Opinion in Plant Biology 2007, 10:83-91
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Some of the twentieth century theoreticians of development and their contributions. The boom of functional genomic technologies and system

biology approaches is framed in the red rectangle.

From functional genomic data to gene
regulatory networks

Recent powerful experimental technologies and novel
statistical methods are being developed to infer GRN
architectures from genomic data obtained in microarray
experiments (reviewed in [7,8,9°]; for plants see [10]; and
see Figure 2). Efficient reverse engineering of GRN
architectures depends on collecting data that guarantee
a wide exploration of perturbation conditions [11] or
phenotypic variations of a cell type [12°°], so that correla-
tions among expression levels of different genes can be
thoroughly investigated.

Two GRN architecture inference methods are widely
accepted and have a particularly sound theoretical basis
(Figure 2). More importantly, networks obtained by these
two methods have been extensively validated with
experimental data; although to our knowledge, they have
not been applied to data from plant systems. The first
method is based on Bayesian inference theory ([13];
Figure 2). When applied to gene regulation, the goal of
this theory is to find the most probable GRN given the
observed expression patterns of the genes to be consid-
ered in the network. Thus, the regulatory interactions
among genes and their directions are derived from expres-
sion data. Different network structures are proposed and
then scored on the basis of how well they explain the data.
T'his method has been applied, for example, to infer
regulatory modules in Saccharomyces cerevisiae [14].

The second method uses ‘mutual information’ as a mea-
sure of correlation between gene expression patterns

([15,16]; Figure 2). A regulatory interaction between
two genes is established if the mutual information on
their expression patterns is significantly larger than a
P-threshold value calculated from the mutual information
between random shufflings of the same patterns. In
contrast to the Bayesian theory, which tries out whole
networks and selects the one that best explains the
observed data, the mutual information method constructs
a network by selecting or rejecting regulatory interactions
between pairs of genes or GRN nodes. This method does
not provide the direction of regulatory interactions and
has been tested for GRN that underlie the differentiation
of human cell types [12°°].

Recently, a third method for inferring GRN has been put
forward (Figure 2). It assumes that GRN operate near a
steady state and approximates its dynamics by a system of
linear differential equations. The matrix of the linear
system gives the type and strength of regulatory interac-
tions. The system is solved to yield a matrix of gene
interactions that matches the gene expression data. This
method has been improved to take into account sparcity
of connections and to incorporate different sets of micro-
array data [17]. To our knowledge, this is the first method
that has been used to model the structure of an Arabi-
dopsis thaliana GRN [5°°].

Other recent methods have been tested using detailed
data for relatively small model networks (for plant exam-
ples see [18,19], and for Drosophila [20°]) and might be
useful as complementary techniques. Reverse engineer-
ing methods, in general, should be part of a recursive

www.sciencedirect.com

Current Opinion in Plant Biology 2007, 10:83-91



86 Growth and development

Figure 2
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The organism whose GRN is to be inferred is exposed to different conditions and microarray data is obtained accordingly. (a) A known or ‘real’
GRN consisting of A, B, C, D and E genes. Note that the expression patterns of the genes vary under different environmental conditions

(cond1, ..., cond4); the ‘richness’ of the patterns, which depends in part on the conditions tested, is important to discover gene interactions.

(b) In Bayesian Network inference, different architectures are discriminated by calculating the probability of a network architecture given the
observed data, P(network/data). The network that has the highest probability is selected. In this case, we see that the network that best explains

Current Opinion in Plant Biology 2007, 10:83-91
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process in which previous or additional functional data are
also considered to propose and validate former and novel
regulatory interactions.

Dynamic models for small GRN of
developmental modules

Development consists of processes that can be logically
isolated, probably because of an underlying modularity in
the global GRN [21]. This encourages the analysis of
gene sub-networks for modules that are structurally and
functionally isolated from the rest and that have been
thoroughly studied in terms of molecular genetics, there-
fore allowing the introduction of dynamic models.

Pioneering work on this approach, developed in Odell’s
laboratory [22,23], shows that the gene network that
determines Drosophila segment polarity is robust for
different initial conditions or parameter values that affect,
among other things, the strength of interactions and the
exact kinetic functions of the genes (or proteins) [22].
Robustness to initial conditions supports evidence sug-
gesting that the studied GRN performs its function semi-
autonomously, irrespective of its interactions with other
genes outside the network [21]. The robustness of the
GRN studied by von Dassow and collaborators is further
supported by the fact that a Boolean model of the seg-
ment polarity GRN recovers the same patterns for the
Drosophila segment polarity genes as those recovered by
the continuous model [22,24]. Similarly, the neurogenic
and proneural GRN in Drosophila, also studied in Odell’s
laboratory [25,26], is a robust module. This latter study
further suggested that structural alterations, and not only
parameter changes, are tolerated by the GRN.

Few similar studies have been put forward for plant
systems. The first dynamic models of plant GRN were
proposed for the specification of floral organ and root
epidermis cell types in A. #haliana [27,28]. These studies
used Boolean models, grounded on available experimen-
tal data, to describe the gene activity profile that char-
acterizes the state of single cells. Thomas [29] proposed a
logical approach to analyze the dynamics of Boolean GRN
(Box 1) that was based on identifying functional positive
and negative feedback loops. Such analyses might also be
used to identify functional sub-modules within GRN and
were applied to A. thaliana floral identity GRN [30]. The
results mostly coincided with predictions made by the
now classical ABC model of floral organ specification [31]
or with the steady states predicted by a different approach
[28].
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The ABC model postulates that the combination of three
classes of genes (A, B and C) underlies the specification of
primordial floral organ cells in plants; with A genes alone
specifying sepal primordia, A+B petals, B+C stamens and
C alone carpel. Furthermore, ABC functions seem to be
conserved over a wide array of flowering plant species.
The ABC combinatorial model does not, however,
explain the conservation of this model, or the logic and
dynamics of gene regulation involving ABC and non-ABC
genes that underlie the gene activation profiles observed
in floral organ specification. An updated GRN floral
model [6°°] showed that, given the interaction rules
extracted from experimental information, all possible
initial gene activity configurations converge to few fixed
gene activity states, also called attractors (Box 1). Such
attractors match the gene expression profiles of the cells
of inflorescence meristems and of sepal, petal, stamen and
carpel primordia. In addition, genetic perturbations of this
GRN reproduce patterns observed in reported mutants
([6°°]; Figure 3a). By recovering all of the gene activation
profiles that correspond to either inflorescence meristem
cells or cells of each one of the four floral organs, and no
more, this GRN model [6°°] provides a dynamic explana-
tion for the ABC model. It seems to incorporate the key
elements of a developmental module that underlies the
ABC model of floral organ specification. This study also
showed that the steady states are robust to changes in the
interaction rules [6°°,32], consistent with the fact that the
overall floral plan is widely conserved among flowering
plants. Furthermore, this study suggests that, even
though qualitative models do not consider the detailed
kinetic functions of gene activation (Box 1), such models
might provide an adequate representation of the logic of
regulation, and are useful integrative tools for detecting
holes in experimental data and for generating novel
predictions. For example, the floral organ identity
GRN ([6°°]; see [28,30] for other examples) predicted
that the gene AGAMOUS should self-activate. This was
confirmed by independent parallel experiments [33].

Another recent example of a relatively small plant net-
work that has been grounded on detailed experimental
data has identified the essential components of the absci-
sic acid signal transduction pathway, which controls sto-
matal opening and closure depending on the water
balance of the plant [34°°]. Although this GRN controls
a physiological rather than a developmental process, it
constitutes another example of the power of qualitative
representations to integrate data into a dynamic analysis.
The model outputs are consistent with experimental

(Figure 2 Legend continued) the data is the third one (P[network/data] = 0.40). (c) Using Singular Value Decomposition, the family of feasible
solution architectures, constricted by the data, are obtained. The final network is selected on the assumption that the most (biologically) relevant
network is the sparsest one. The example shows the family of solution networks that are consistent with the data. At the end, the sparsest

one is selected. (d) The Mutual Information (I) of different pairs of genes is measured. If | is lower than a P-threshold value, then the interaction
is rejected (red links in the example network). If | is larger than the P-threshold value, the interaction is accepted (blue links). In this way, the

GRN is constructed interaction by interaction.
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Gene regulatory network models for plants. (a) Single cell GRN dynamic model for cell specification in Arabidopsis floral organs [6°°]. The topology
of the 15 gene GRN is shown according to [6°°], with activations as arrowheads and repressions as flat heads. Below the GRN, the basins of
attraction that lead to each of the four floral primordial cell types (sepals, green; petals, red; stamens, yellow; and carpels, purple) are

shown. Each attractor is defined by the steady-state activations of the fifteen genes (OFF - ‘0’ and ON - ‘1’), and they match those observed
experimentally and predicted by the ABC model. Shaded genes in the GRN correspond to those active (‘1’) in the petal attractor. (b) Continuous
spatiotemporal model for the mRNA expression pattern of the WUSCHEL (WUS) gene in the Arabidopsis SAM [22]. The simple GRN proposed

is shown with nodes and edges as in (a). The equations of the model proposed are shown, with concentration of WUS (W) and A, Y and B as variables
of a reaction-diffusion Brussellator system. Below the equations, WUS protein concentration is shown in a cellular lattice simulation of the SAM
(modified from [45°°)).
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data on stomata dynamics in wildtype and in mutant
or pharmacologically treated plants. The model also
allowed a number of clear and novel predictions, some
of which have been tested experimentally. This work also
suggests that network modules of signal transduction
pathways are robust in the face of diverse perturbations

(see also [35°]).

From GRN to morphogenetic patterns and
evolution

Experimentally supported GRN models have made it
possible to propose some generic aspects of development.
For example, dynamic GRN models of the functional
gene modules studied to date suggest that cell-type
determination depends mainly on global aspects of
GRN architecture and dynamics, rather than on the
precise values of parameters for kinetic functions such
as gene activation or protein degradation. Additionally,
GRN characterization in diverse systems tends to support
the claim of some theoreticians (Figure 1) that a limited
number of mechanisms are capable of generating and
maintaining heterogeneities during morphogenesis. For
example, the so-called activator—inhibitor system has
been frequently found among documented GRN [36].
"T'his system is a type of reaction—diffusion system, which
has been widely used to address how spatial heterogene-
ities or patterns might arise in living organisms. In acti-
vator—inhibitor systems, two eclements interact (the
activator element positively regulates itself and the inhi-
bitor element, whereas the latter negatively regulates the
activator) and diffuse, giving rise to different spatial
patterns.

As described above, GRN that are grounded on experi-
mental data generally also seem to be functionally robust
under perturbations. Apparently, particular structural
traits (e.g. feedback loops) could underlie such generic
robustness [29,37]. Further documentations of GRN
should provide a more complete analysis of the interplay
between structure and function. This might be more
feasible in small and well-characterized sub-networks
or modules in which functional and evolutionary inter-
pretations are more direct than in global networks that
have been inferred from genomic data. Nonetheless, the
modular and reverse engineering genomic approaches
should feedback from each other, and from more theore-
tical approaches that aim at uncovering general principles
for network assemblage and dynamics [38,39°].

Comparative approaches are promising in searching for
generalities, and, in their broadest sense, these
approaches should consider both plants and animals
[40]. Correlations of structural and dynamic aspects of
GRN with variation in the morphological traits that are
regulated by such networks [41°°,42] are already being
explored. For example, von Dassow and collaborators
[21,22] suggested that the robustness and alterations of
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the segment polarity gene network in insects could
underlie the overall conservation of body plan and the
origin of long and short germ-band insects, respectively.
Also, the GRN for floral organ specification ([6°°],
Figure 3a) seems to be robust even in the face of gene
duplications, and thus could underlie the conserved basic
floral plan of Eudicot flowering plants. At the same time,
it could also account for the observed divergent pheno-
types of mutants of flowering species that have duplicated
floral genes [6°°].

Conclusions

Mathematical models have proven to be very useful in
developmental biology, but we still lack a formulation
based on experimental facts that can account for biolo-
gical phenomena at different scales and, most impor-
tantly, for the emergence of robust yet evolvable
spatiotemporal patterns. There has been a recent burst
of mathematical models invoking non-linear dynamic
mechanisms to address spatiotemporal patterns of mor-
phogens in plants (see review in this issue, e.g. [43°]) and
animals (e.g. [44°]). However, these do not incorporate
explicit complex GRN. The first efforts in this direction
for plant systems are being made by Jonsson and colla-
borators [45°°]. These authors used quantitative gene
expression data from 7z vivo live confocal microscopy
to create dynamic and spatially explicit computational
templates. They have explicitly incorporated a small
GRN that regulates shoot apical meristem (SAM) size
and maintenance and have modeled the expression pat-
tern of the gene WUSCHEL in a simulated SAM domain
(Figure 3b). For this end, they applied the so-called
‘connectivist model’ [46,47], which unfortunately has
the limitation of allowing only for paired gene-gene
interactions.

Although simplified versions of GRN are relatively tract-
able, they might not be helpful in recovering the robust
patterns observed in organisms [25,26,37]. 'This
encourages the consideration of experimentally
grounded complex GRN coupled in realistic cellular
contexts. To this end, multidisciplinary work aimed at
building hybrid models (see Box 1) and at incorporating
available empirical information will definitely help to
address the major task of building models that accurately
capture the essential aspects of multi-scale processes
during development.
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The paper, “Evolution and development of inflorescence architectures” by
Przemyslaw Prusinkiewicz, Yvette Erasmus, Brendan Lane, Lawrence D. Harder
and Enrico Coen [Science, 316, 1452-1456 (2007)], sets to accomplish a
longstanding goal: to explain, for the first time, how and to what extent
developmental constraints restrict phenotypic evolution. Prusinkiewicz and
collaborators provide a relatively simple model that accounts for the variety of
patterns of inflorescence architecture found among angiosperms, in which only a
few of all possible types are observed. [DOI: 10.2976/1.2749445]

Why are certain phenotypic types, the oc-
currence of which is theoretically possible, ac-
tually not observed? In general, the absence of
certain phenotypical types that have equivalent
fitness effects than those observed among
present living organisms, may be due to con-
straints of developmental processes. Develop-
ment involves interactions among parts (genes,
cells, tissues, etc.) which affect phenotypic
traits in nonindependent manners, thus gener-
ating correlated changes among morphoge-
netic relevant variables. Such developmental
constraints could explain the absence of certain
phenotypic types.

Until the last decades, developmental pro-
cesses could not be understood in terms of the
interactions of molecular and structural factors
at different levels of organization. Such levels
go from gene regulatory networks, to collec-
tions of cells bearing such networks coupled in
spatio-temporal dynamics by intercellular
communication processes. At the same time,
structural characteristics of the system’s com-
ponents and emerging organs limit the patterns
arising during morphogenesis. Mathematical
and computational models are required to inte-
grate the concerted action of the many interact-
ing components with correlated and nonlinear
behaviors that underlie the complex nature of
development. Some recent models of this kind
are showing that the whole structure and col-
lective dynamics of gene regulatory networks

are important to obtain robust morphogenetic
patterns (Hogeweg, 2000). This implies that
models which oversimplify development may
predict phenotypic patterns that are superfi-
cially similar to those observed in nature, but
may not underlie the formation of robust pat-
terns in real organisms.

Prusinkiewicz and co-workers acknowl-
edge that studying the variational properties
of developmental processes is important in or-
der to understand phenotypic evolution. Such
an endeavor entails postulating explicit mo-
lecular genetic models of development that
explain why and how the configuration of a
morphospace is restricted during the course of
evolution. Prusinkiewicz and collaborators
propose an imaginative model that yields inflo-
rescence two-dimensional branching patterns
that coincide with those observed among
angiosperms: panicles, cymes and racimes
(Fig. 1). They then provide molecular data for
two genes that have been shown to be key in
controlling inflorescence branching patterns:
LEAFY (LFY) and TERMINAL FLOWERI
(TFL1) to justify their proposed model for
morphogenetic mechanisms. Finally, they map
the inflorescence types in a plane with two or-
thogonal variables and construct a fitness land-
scape which provides predictions on expected
inflorescence types under contrasting environ-
ments and enables speculations on evolution-
ary changes of types.
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Figure 1. Alternative simple model that yields the three main
types of inflorescence architectures. Types of inflorescences:
panicles, racemes and cymes from left to right (A). Network under-
lying the proposed ‘toy model’ (B). Dynamics of the toy model, which
also renders the inflorescence architectural types observed among
real plants (C).

The paper of Prusinkiewicz and collaborators is certainly
an innovative and important effort in the direction of inte-
grating development and phenotypic evolutionary models.
However, we argue that their model might be one of several
ad-hoc models yielding inflorescence structures similar to
those observed in nature. Thus, it might not be relevant for
studying the generation of inflorescence architecture in
plants, unless the proposed mechanism could be validated
with a broader set of experimental evidence.

The most relevant trait that distinguishes racemose and
cymose inflorescences is the relationship between location
and age of floral meristems. In racemose inflorescences the
youngest flowers are located in the distal part of the inflores-
cence, just beneath the indeterminate inflorescence main
(apical) meristem. In contrast, the main meristem in cymose
inflorescences is the first one to become determinate and turn
into a flower, while the lateral meristems keep on branching
reiterating the same rules: the main meristem terminates in a
flower and the derived meristems branch. This results in the
youngest flowers occurring farthest from the tip of the main
stalk. Hence, any mechanism in which there is a structure
that grows by branching will render racemes if, after a bifur-
cation, the younger tip turns into a floral (determinate) mer-
istem, and the older one does not. In contrast, if the older tips
turn into floral (determinate) meristems before the younger
ones, cymes will be formed.

The “transient mechanism” proposed by Prusinkiewicz
and collaborators is an algorithmical rewrite of the definition
of cymes, racemes and panicles. The authors consider two
kinds of meristems: young (B) and old meristems (A), and
each kind requires different lengths of time to achieve flow-
ering (7, and Tg). When T, < Tj, the older meristem within
an inflorescence transits to flowering before derived lateral
meristems, hence cymes are formed. When 7,> Ty, the
younger lateral meristems turn into flowers before the apical
meristem that maintains its indeterminacy, and so racemes
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are formed. Panicles are branched racemose inflorescences
where the flower stalk divides into two or more parts, and
therefore flowers are arranged in groups of two or more.
When T7,=Tjp, either the two resulting meristems of a
branching event develop as floral meristems or they do not,
giving rise to panicles.

Prusinkiewicz and collaborators attempt to use the tran-
sient mechanism to explain some experimental data for two
floral meristem identity genes in Arabidopsis, LFY and
TFLI. In order to do that, it is necessary to make some as-
sumptions about the interactions between these two genes
and the rest of the system’s components. The authors recover
activity patterns of LFY and TFLI that resemble those re-
ported experimentally: LFY is expressed in young mer-
istems, while TFL1 is not, but in older meristems LFY is not
expressed, while 7FLI is. The authors conclude from this
data that their model provides an explanation for the expres-
sion patterns observed in Arabidopsis. However, this is not
the case, since they had assumed, in order to construct this
version of the model, that TFL 1 activity is repressed and LFY
expression is enhanced in young, but not in older, meristems.
The model is fed with the observed expression patterns as
assumptions, and therefore, does not explain them. In con-
clusion, what the authors call the transient mechanism is a
description of the pattern and not an explanatory mechanism.

It is important to explore and explicitly model develop-
mental processes because only then can we begin to under-
stand how morphological patterns arise as a consequence of
the variational properties of such processes, thus enabling
the study of phenotypic evolution. However, a valid and use-
ful hypothetical mechanism would have to generate observed
patterns from interactions at a lower scale, otherwise, the
model would be descriptive but it would not be explanatory.
For instance, consider a chessboard pattern. We could pro-
pose that the “mechanism” that leads to it consists of alter-
nately placing white and black squares. Such simple recipe
would certainly yield the pattern, but would not provide any
information regarding underlying proximal causes of the pat-
tern because it only describes or “draws” it. Moreover, this
hypothesis cannot be tested because the only way to achieve
this would imply showing that such a pattern does not exist.
However, this is impossible because this would be done once
such patterns are documented and thus makes such a hypoth-
esis scientifically futile. Alternatively, we could propose that
the edges of white squares have a high affinity for the edges
of black squares and vice versa. In such a system, a chess-
board is the only two-dimensional pattern that is steady and
stable if there are as many black as white squares. In this
alternative mechanism we are explaining the pattern as a
consequence of the properties of the system’s components.
This hypothetical mechanism could be tested experimentally,
and hence it is scientifically useful. For example, we could
test it by designing white squares with black edges and mix
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them with “wild type” white squares and analyze the patterns
achieved.

The lack of explanatory power of the morphogenetic
mechanism for inflorescence types proposed in the paper by
Prusinkiewicz and co-workers is not the main limitation of
the paper. Indeed, the transient mechanism restrains develop-
mental possibilities to a set that excludes many variants not
found in nature. However, it seems likely that there are a
number of different mechanisms that could recover a similar
set of inflorescence two-dimensional architectural types. The
necessary rules of all such alternative mechanisms would
imply producing, after a branching event, exclusively one of
three types of structures: (1) those in which older meristems
develop into flowers and younger ones do not, (2) those in
which younger meristems develop into flowers and older
ones do not, and (3) those in which old and young meristems
flower at the same time. These cases correspond to cymes,
racemes and panicles, respectively.

Here we provide an example of a set of rules that, just as
the transient mechanism, produces the observed types of in-
florescences. Consider a hypothetical protein “7” that is syn-
thesized in leaves and travels through the phloem towards
shoot meristems. Some real molecules, such as the messen-
ger RNA of the FLOWERING LOCUS T (FT) gene, show
this kind of behavior (Wigge et al., 2005). Let us also assume
two proteins, “A” and “L,” that are synthesized and are en-
abled to exert their function only in meristematic cells. 4 pro-
motes its own synthesis, and that of L. L is a small protein
that inhibits the synthesis of 4, and diffuses to nearby mer-
istems, where it can also repress the synthesis of 4.

It is reasonable to consider that main (apical) meristems
receive an amount of 7 that is higher than that received by
derived (lateral) meristems, maybe because of differences in
the width of vascular bundles in the main and derived shoots.
Besides, we consider that T promotes 4 activity. Hence, in
the apical meristems there will be a high level of 4 and L
expression, and in nearby lateral meristems there will only be
L activity, because of the diffusive and regulatory properties
of 4 and L. This mechanism suffices to distinguish between
apical and derived meristems. Now, let us also assume that
the activity of 4 affects somehow the decision of turning into
a floral meristem. If 4 represses flowering, then the apical
meristems will remain indeterminate and lateral meristems,
where there is L but not 4 activity, will turn into floral mer-
istems; hence racemes will arise. In contrast, if 4 promotes
flowering, then the apical meristems will flower and lateral
meristems will keep on branching; therefore cymes will re-
sult. Different kinds of racemes and cymes could be obtained
by tuning parameter values such as branching, decay and dif-
fusion rates. We will refer to this hypothetical process of in-
florescence development as our “toy model” (Fig. 1).

We are not claiming that the transient mechanism, by
Prusinkiewicz and collaborators, is wrong and our toy
mechanism corresponds to a more accurate description of in-
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Figure 2. Different developmental models give rise to different
morphospaces which may include the same types of “pheno-
types” (“blue but no red” is not observed in either case), but
these have different distributions in the morphospace and dif-
ferent transition probabilities among them. Blue and red tri-
angles stand for the presence of a certain phenotypic trait. Whereas
in the top panel a single genetic change suffices to transit from “red
but no blue” phenotype to the “neither red nor blue” phenotype, two
changes are required for the same change in the bottom panel. ‘B’
denotes a functional allele, and ‘b’ denotes a null nonfunctional al-
lele of the B locus, whereas ‘A’ denotes a functional allele, and ‘@’
denotes a null nonfunctional allele of the A locus.

florescence development. The point we are trying to make is
that there might be several alternative mechanisms, such as
the transient and toy ones, that could reproduce similar sets
of patterns. Hence, the replication of patterns observed in na-
ture does not guarantee that the mechanism that underlies it
in the real world has been discovered or explained. More im-
portantly, two different mechanisms that produce the same
structures might generate different adaptive landscapes if
the relative positions of the structures inside the landscape
depend on the developmental model being postulated (see
Fig. 2). Hence, development does not restrain evolution just
by limiting the set of available forms, but also by making
some structures more probable than others given an ancestral
phenotype, therefore biasing the production of variation
(Lewontin, 1974; Maynard-Smith et al., 1985). It follows
that not any mechanism that generates the set of observed
structures will be useful to predict the proximity of phe-
notypes within the morphospace, and hence the likelihood
of going from one to another one during the course of evolu-
tion.

There are two nonexclusive and mutually supporting
ways to discern among alternative developmental mecha-
nisms. The first one is to ground the model on experimental
evidence. This implies incorporating all interactions that
have been supported experimentally, and not only taking a
priori components which behaviors seem to be sufficient to
generate similar patterns to those of structures found in na-
ture. Then, such models can be validated by altering them in
silico and addressing if such alterations recover observed
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patterns in mutants. Recently, gene network models
grounded on experimental data aiming at uncovering the
logic of gene regulation, that underlies observed patterns of
gene expression during development in plants and animals,
have been proposed (e.g. von Dassow et al., 2000; Albert and
Othmer, 2003; Espinosa-Soto et al., 2004; Jonsson et al.,
2005; Li et al., 2006; Benitez et al., 2007). However, these
gene regulatory network models have not yet been explicitly
incorporated in evolutionary models of the studied struc-
tures.

The second way to validate if a proposed mechanism is
congruent with experimental data is to test if predicted be-
haviors derived from the models assumptions are indeed
found in nature or can be induced in some way. For example,
the model by Prusinkiewicz and collaborators creates pat-
terns because each meristem is able to sense its own age and
follow some rules accordingly. Hence, it is assumed that the
fate of a meristem depends only on its intrinsic dynamics and
not on interactions with other meristems or on communica-
tion mechanisms between this and the other parts of the
plant. If the transient mechanism indeed operates in plants
during inflorescence development, one would predict that it
would be possible to find somatic mutations that could
change the behavior of some meristems resulting in chimeric
inflorescences. However, this might not be the case because
communication mechanisms, such as diffusion of morpho-
gens (Crick, 1970; Kim and Zambryski, 2005), active trans-
port such as that of the phytohormone auxin; (Vieten et al.,
2007), signaling among cell layers (as in meristem patterning
by WUS and CLV proteins; Doerner et al., 2000) among
many others, might constitute mechanisms important for co-
ordinated responses in organisms. However, our skepticism
is not sufficient to discard the transient mechanism, and ex-
periments would be needed to this end.

In an attempt to validate their transient mechanism, the
authors postulate a developmental model that incorporates
the action of only two genes (LF'Y and TFL) on a continuous
hypothetical variable (veg) which levels determine if shoots
are vegetative or reproductive and may therefore represent a
flower identity factor. LFY and TFLI are components of a
larger and complex regulatory network of which many more
components have been characterized already. To reduce all
the known elements and regulatory interactions relevant
for this system to a pair of interacting genes implies averag-
ing, at least, the genetic context in which these genes are em-
bedded. But biological systems are typically nonadditive
and, therefore, the loss of information due to averaging is
hard to justify, especially in a case where a large amount of
experimental information is available. To elaborate on this
issue, to us critical, we mention below just some of the ele-
ments and interactions that were mistakenly obviated in the
developmental account presented by Prusinkiewicz and col-
laborators.

It has been shown that LFY activates different targets

HFSP Journal

COMMENTARY

depending on its interactions with other factors (e.g., Parcy
et al., 2002) whose spatio-temporal expression patterns are
far from trivial. Furthermore, LFY and TFLI themselves
are regulated in a complex manner by other genes that are
not included in the author’s account, such as APETALAI. Im-
portantly, the genes that regulate 7FL] and LFY do not seem
to be all acting in the same direction as plant age in their
model and, more importantly, some of them are also regu-
lated by TFL1 or LFY, so they cannot be collapsed in one
input with no feedback. LFY, TFL1 and other floral and shoot
meristem identity genes have been shown, instead, to hold
complex interactions (Baurle and Dean, 2006; and refer-
ences in Prusinkiewicz et al., 2007).

In the transient mechanism the levels of a hypothetical
substance, veg, define whether a meristem is reproductive or
vegetative. However, we argue that the available experimen-
tal evidence suggests very different properties for a meristem
identity crucial factor. For example, the MADS-box gene,
APETALAI, is a floral identity marker, however veg may not
represent AP1 because the effect of LFY and TFLI over AP
is opposite to that proposed for veg and 4P does not change
gradually as veg and LFY do. The existence of veg could be
compatible with the existence of AP/ if veg mediated the in-
teractions between LFY and API, but this is not the case,
since LFY binds directly to the AP promoter (Wagner et al.,
1999). Furthermore, the activity of 4P1 does not depend
only on LFY and TFLI, but also on other independent fac-
tors, such as FT and FD (Wigge et al., 2005). Therefore,
there is no reason to reduce the network by excluding 4P/
among other characterized genes that affect inflorescence ar-
chitecture. Moreover, including AP could avoid making up
a new variable, such as veg, which behavior may not be
monitored in real plants. Furthermore, other genes, such as
AGL24 seem to have an important role on the decision of
vegetative vs. floral meristems in Arabidopsis inflorescences
and has a feedback regulation with LFY (Yu et al., 2004),
being only one more of the factors that should be included in
a model that addresses inflorescence patterning.

The unjustified reduction of a complex network consti-
tuted by several genetic and nongenetic elements, to a pair
of interacting genes, leads to conclusions that might not be
accurate. The evolution of development and phenotypical
traits is a longstanding question in evolutionary biology.
However, to address this issue by studying the variational
properties of a developmental mechanism, this has to be in-
dependently validated. Otherwise, even if the evolutionary
assumptions and formalisms are correct, and if the fitness
value associated to each genotype is accurate, we can end
up studying the evolutionary consequences of a mechanism
that has never existed. Therefore, the inferred dynamics
and transitions might be misleading. In conclusion, the tran-
sient mechanism, by Prusinkiewicz et al., seems too simplis-
tic and ad hoc to yield the observed types of inflorescence
architectures.
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In conclusion, we think that the paper has the merit of
addressing how developmental processes constrict pheno-
typic morphospaces and how fitness values can be associated
with every point in these morphospaces for a specific case. In
doing so it attempts to integrate an architectural model, some
molecular genetic data for the trait under analyses and a fit-
ness landscape for evolutionary inferences under contrasting
environments. Such an integrative approach could in turn be
used to make predictions about which transitions among
phenotypes are possible and more probable during evolution.
The latter should be approached by evolutionary develop-
mental biology studies in which transitions among types as-
suming alternative developmental models are mapped onto
phylogenetic trees. This is certainly important, innovative
and necessary in order to understand phenotypic evolution.
However, a developmental approach to this issue should cap-
ture the complexity of the processes underlying morphoge-
netic restrictions, and be validated with data other than the
expected results. The challenge remains ahead.
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Floral morphogenesis: stochastic explorations of a gene network
epigenetic landscape

Este trabajo forma parte de la tesis doctoral de Alvaro Chaos Cador. Publi-
cado en PloS ONE, 2008.
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Abstract

In contrast to the classical view of development as a preprogrammed and deterministic process, recent studies have
demonstrated that stochastic perturbations of highly non-linear systems may underlie the emergence and stability of
biological patterns. Herein, we address the question of whether noise contributes to the generation of the stereotypical
temporal pattern in gene expression during flower development. We modeled the regulatory network of organ identity
genes in the Arabidopsis thaliana flower as a stochastic system. This network has previously been shown to converge to ten
fixed-point attractors, each with gene expression arrays that characterize inflorescence cells and primordial cells of sepals,
petals, stamens, and carpels. The network used is binary, and the logical rules that govern its dynamics are grounded in
experimental evidence. We introduced different levels of uncertainty in the updating rules of the network. Interestingly, for
a level of noise of around 0.5-10%, the system exhibited a sequence of transitions among attractors that mimics the
sequence of gene activation configurations observed in real flowers. We also implemented the gene regulatory network as a
continuous system using the Glass model of differential equations, that can be considered as a first approximation of
kinetic-reaction equations, but which are not necessarily equivalent to the Boolean model. Interestingly, the Glass dynamics
recover a temporal sequence of attractors, that is qualitatively similar, although not identical, to that obtained using the
Boolean model. Thus, time ordering in the emergence of cell-fate patterns is not an artifact of synchronous updating in the
Boolean model. Therefore, our model provides a novel explanation for the emergence and robustness of the ubiquitous
temporal pattern of floral organ specification. It also constitutes a new approach to understanding morphogenesis,
providing predictions on the population dynamics of cells with different genetic configurations during development.
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in both plants and animals (e.g., [1-3]). Such profiles correspond
to the attractors of these networks, and have been interpreted as
cell fates [4-7].

Some studies have explored cell-fate decisions by modeling

Introduction

“All [the] epistemological value of the theory of probability is based on this:
That large scale random phenomena in their collective action create strict, non

random regularity”. (From: B.V. Gnedenko and A.N. Kolmogorov,
Limit Distributions for Sums of Independent Random Variables,
Reading, Ma: Addison-Wesley, 1954).

The development of multicellular organisms consists of cell
differentiation and spatiotemporal patterning. Since these pro-
cesses arise from complex interactions among genetic and non-
genetic elements, mathematical and computational models are
useful to study the concerted action of these elements. Gene
regulatory network (GRN) models, which are grounded in
experimental data, have been able to recover fixed profiles of
gene activation, that mimic those characterizing different cell types

@ PLoS ONE | www.plosone.org

transitions among attractors with stochastic gene regulatory
networks (e.g. [8,9]); however, models grounded in experimental
data that are able to recover patterns of cell-fate attainment for a
particular living system are only now starting to appear. Herein,
we attempted to construct an integrative model driven by noise
that explores the patterns of temporal cell-fate attainment in the
experimental plant, Arabidopsis thaliana (L.) Heynh.

In plants, morphogenesis takes place during the entire life cycle
from groups of undifferentiated cells called meristems. Within
meristems, cell fate is mostly determined by position rather than by
cell lineage [10]. Flower meristems are formed from the flanks of
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the inflorescence meristem, which is found at the apex of an
Arabidopsis thaliana plant once it has reached a reproductive stage
(Figures 1A and B). Early in flower development, a floral meristem
is sequentially partitioned into four regions, from which the floral
organ primordia are formed and eventually give rise to sepals in
the outermost whorl, then to petals in the second whorl, stamens in
the third, and carpels in the fourth whorl in the central part of the
flower (Figures 1B and C). This spatio-temporal sequence is widely

Stochastic Flower Model

conserved among the quarter of a million flowering plant species
[11]; however, the dynamic mechanisms underlying this robust
pattern are not yet understood.

In this study, we used a previously characterized Boolean GRN,
which converges to ten attractors (Figure 1), to explore the
dynamics of cell-fate decisions during the early stages of flower
development. The ten attractors correspond to the main cell types
observed during early flower development, namely, meristematic
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Figure 1. Flower development and gene network underlying primordial floral organ cell-fate determination in Arabidopsis thaliana.
(A) The inflorescence meristem (IM in the Scanning Electron Micrography) is found at the apex of a reproductively mature plant. Within the IM, four
regions can be distinguished. Interestingly, the experimentally observed gene activation configurations of each one of these regions are mimicked by
the 11, 12, 13, and 14 attractors of the 15-gene GRN. Flower meristems arise in a helicoidal pattern from the flanks of the IM. The order in which floral
meristems appear is indicated with numbers (1, oldest; 5, youngest). (B) Young flower meristems can be subdivided into four regions, each one
containing the primordial cells that will eventually develop into the flower organs. In each floral meristem, the outermost region, which is first
determined, will give rise to the sepal (se) primordium, the next to petals (pe) and finally, the primordial corresponding to stamens (st) and carpels
(car) are determined in the center third and fourth whorls of the flower bud, respectively. (C) The mature flower of Arabidopsis thaliana. (D) 1, 12, 13,
and 14 regions of the IM correspond to four of the attractors of the 15-gene GRN model. The expressed genes for each attractor are represented as
gray circles, while the non-expressed genes correspond to white circles. (E) The other six attractors of the GRN model match gene expression profiles
characteristic of sepal, petal (p1 and p2), stamen (st1 and st2), and carpel primordial cells. Black circles represent a gene (UFO) that can be either
expressed or not expressed in the petal and stamen attractors, thus yielding two attractors for petal and stamen primordial cell-type. The gene
activation profiles of the attractors recovered for the 15-gene GRN are congruent with the combinatorial activities of A, B, and C-type genes predicted
by the ABC model of floral organ determination. See the Results section and [3,12] for details. (F) Gene regulatory network model underlying cell fate
determination in the IM and the flower meristem. A-genes (red), B-genes (yellow), and C-genes (blue) from the ABC model are indicated in the
network.

doi:10.1371/journal.pone.0003626.g001
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cells of the inflorescence, which is itself partitioned into four
regions (I1, 12, I3, and I4; Figures 1A and D), and sepal, petal (P1
and P2), stamen (S1 and S2), and carpel primordial cells within
flower meristems (Figures 1B and E) [3,12]. This network was
grounded in experimental data for 15 genes, wherein their
interactions were formalized as logical functions. Among the 15
genes, five are grouped into three classes (A-type, B-type, and C-
type), whose combinations are necessary for floral organ cell
specification [13]. A-type genes (AP and AP2) characterize sepal
identity, A-type together with B-type (AP35 and PI) petal identity,
B-type and C-type (AGAMOUS) stamen identity, and the C-type
gene (AG) alone for carpel primordia cell identity. The so-called
ABC model describes such combinatorial activities during floral
organ determination (Figures 1E and F) [13].

Different sets of initial conditions (basins of attraction) of the 15-
gene regulatory network converge to the ABC-gene combinations
necessary for floral organ determination [3,12] (Figures 1E and F);
however, this deterministic GRN does not enable studies of the
transitions among the attractors. In this study, we investigated the
temporal sequence with which attractors are visited in this GRN
when noise or random perturbations to the output of the updating
rules drive the system from one attractor to any other.

The obtained results demonstrate that noise alone is able to
drive transitions among attractors with temporal patterns that
mimic the sequence with which ABC-genes are activated (first A
genes, then B genes, and finally the C gene) during early flower
development [13]. These results are in line with the finding that
the GRN in question is a robust developmental module that is
widely conserved among flowering plant species [3]. Furthermore,
the temporal cell-fate pattern during early stages of flower
development seems to emerge from such a robust network in the
presence of noisy perturbations. The results presented herein
support the idea that random fluctuations in a system may be
important for physiological adaptation, plasticity, and cell
differentiation (examples in: [14-24]).

Results

A stochastic Boolean model of the GRN enables the

study of transitions among network attractors

We first present the results obtained from the Boolean model of
the GRN, and in the next section, we present the equivalent results
obtained from a continuous model. The Boolean approach focuses
on the state of genes’ expression rather than on the concentration
of their products. Thus, each gene in the network is represented by
a Boolean variable x that takes the value x= 1, if the corresponding
gene is expressed, and the value x=0, if it is not expressed. The
state of expression of the genes in the entire network (herein,
configurations of the GRN, which correspond to “dynamic state of
the network” used by some authors), is then represented by a
vector with the set of Boolean variables {xi,xo,...,xx}, where x, is
the state of expression of the n” gene and N is the total number of
genes in the network. The state of expression of each gene changes
in time according to the dynamic equation:

Xn (14 7) = Fy (X, (1), (1), - - - 0, (1)) (1)

In the above equation, {xp, (¢),Xy,(2),..., %, ()} are the
regulators of the gene x,, and F, is a Boolean function, also called
a logical rule, which is constructed according to the combinatorial
action of the regulators of x,. The additional parameter 7 is a
measure of the relaxation time, namely, of the time that it takes for a
gene to change its state of expression under a change in the
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expression of its regulators. In the Boolean model, it is common to
take T=1. Each gene in the network has its own associated
Boolean function. This particular GRN includes 15 genes
(Figure 1) whose logical functions are grounded in experimental
biological data, as explained in [3]. The updated truth tables used
here are available in [12].

Note that the dynamics given by Eq. (1) is deterministic: For a
given set of Boolean functions, the configuration of the network at
time ¢ completely determines the configuration of the network at
the next time step #1. Also note that since the number of dynamic
states or configurations of the network is finite (Q= oM, under the
dynamics given in Eq. (1), the network will eventually come back
to a previously visited configuration, after which the network
enters into a periodic pattern of expression. Such a periodic
pattern is called an attractor, and all the initial configurations that
eventually fall into that attractor constitute its basin of attraction. The
deterministic  version of the Boolean GRN modeled here
recovered 10 fixed point attractors, each with a period equal to
one, implying that the GRN remains in one of the 10 fixed 15-
gene configurations after it reaches one of them.

Therefore, in the deterministic model defined in Eq. (1), once the
system reaches an attractor, it remains there for all subsequent
iterations; however, if noise is introduced into the logical rules, there
is a finite probability for the system to “jump” from one basin of
attraction to another. Our central aim herein was to address
whether noisy perturbations of the logical rules in A. thaliana GRN
are sufficient to recover the observed sequences of transitions among
attractors (i.e., gene activity configurations characteristic of the
primordial cell types within the floral meristem) during the
development of this particular biological system.

The ten attractors of the 15-node GRN used here are as follows
(Figure 1): Four corresponding to the four regions of the
inflorescence meristem (I1, 12, 18, and 14), and six to the four
floral organ primordial cells within the flower meristem (S, P1, P2,
S1, 82, and C). The two attractors corresponding to petals (P1 and
P2) are identical except for the state of activation of the UFO gene,
and the same holds for the two stamen attractors (S1 and S2).

In the simulations of the stochastic versions of the GRN
presented in this work, we did not consider the inflorescence
attractors (I1-14) because they are substantially separated from the
floral primordia attractors. The distance between the two sets of
attractors (inflorescence and floral) is clearly depicted by the way
they are grouped in a phenogram (Figure 2). This is a branching
diagram that groups entities according to their similarity (sce
Methods). The inflorescence meristem and floral organ primordia
attractors cluster into two clearly distinct groups (Figure 2).
Indeed, in simulations that considered all of the attractors, we
found that, for a wide range of noise levels, the system never
leaped out of the inflorescence attractors. On the other hand,
when large noise magnitudes were considered, the system went
from the inflorescence attractors to the carpel or stamen attractors,
without visiting the sepal and petal attractors. Dismissing the 11-14
attractors in the simulations allows for a better exploration of the
temporal pattern in which the attractors corresponding to each of
the four floral organ primordial cells are attained.

We used the GRN depicted in Figure 1 to examine which of the
attractors (S, P1, P2, S1, S2, and C) the system is most likely to
reach when it is initialized at a particular attractor and then is
driven by noise to a different one. In order to obtain the transition
probabilities among the different attractors (i.e., the entries of the
so-called Markov matrix, see the detailed description below), the
possible initial configurations of the system were exhaustively
explored. Given any possible configuration (defined by an array of
15 entries with zeros and ones representing the activation states of
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Figure 2. Heat map of the similarity matrix among the ten
attractors of the GRN. A strict consensus phenogram was obtained
for the GRN attractors (vectors of zeros and ones) by using the
Manhattan distance similarity index (see Methods). This phenogram is
shown below the attractors that are ordered along the X and Y axes of
the heat map. Attractors that group together had the highest similarity
indexes between them (i.e. the lowest Manhattan distance). Color scale:
darker colors indicate more similar, while lighter ones indicate more
different attractors in the pairs compared.
doi:10.1371/journal.pone.0003626.9g002

the genes), the system was updated every iteration step according
to the deterministic logical rules [12] with an error probability #.
In other words, at each time step, each gene “disobeys” its
Boolean function with a probability #, such that the dynamic rule
in the presence of noise can be given by:

F,(t)  with prob. 1—p

x”(t”):{ |—F,(1) withprob. 1 @

Note that the above equation reduces to Eq. (1) for n=0. [In
order to simplify the notation, we have written just £,({/) instead of
Fy(x, (£),%0, (1), . . . ;X (£)).] These perturbations are applied
independently and individually to each gene at each iteration.

If, after applying noise in one time step, the system remains in
the same attractor or the same basin of attraction that it was before
the noise was applied, one count is added to the main diagonal in
the entry of the Markov matrix corresponding to that basin of
attraction. If the configuration ended up in a different basin, a
count is added to the row corresponding to the recipient basin in
the Markov matrix (Table 1). This was repeated 10000 times for
each of the Q=2" possible initial conditions. The number of
realizations was fixed to a considerably larger number than that at
which the matrix entries become stable (data not shown). The
transition probabilities An|m) of the Markov matrix (Table 1) give
the probability that a network in attractor m jumps to attractor n in
the presence of noise, and are calculated by dividing the number of
counts in each matrix entry by the total number of configurations
that started in the corresponding matrix row.

Since we wanted to find the most probable sequence of
transitions among the attractors representing the various cell types,
we followed the changes in the probability of reaching a certain
attractor throughout time given that the system was initialized in a
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Table 1. Markov matrix.

sep pel pe2 st1 st2 car
sep 0.939395 0.001943 0.009571 0.000083 0.00049 0.048517
pel 0.036925 0.904162 0.00925 0.0339 0.000488 0.015275
pe2 0.009067 0.000464 0.941609 0.000024 0.048374 0.000461
st1 0.000084 0.001893  0.00002 0.936514  0.00996 0.05153
st2 0.00002 0.000001 0.002074 0.000356 0.987953 0.009597
car  0.002045 0.000034 0.00002  0.001951 0.01002  0.98593

Matrix of transition probabilities among all possible pairs of attractors. The
entries of each column in this matrix correspond to the probabilities P(n|m) of
reaching attractor n, given that the system is at attractor m at time t=0 (see
Results and Methods, noise magnitude used for this case is 1%).
doi:10.1371/journal.pone.0003626.t001

particular attractor at time ¢= 0 (see Figure 3). In order to achieve
this, note that the Markov matrix (herein denoted as M) in Table 1
contains the conditional probabilities An|m) of reaching attractor n
at time #t, given that the system is at attractor m at time £ In
order to obtain the temporal sequence in which attractors are most
likely reached, it is necessary to repeatedly multiply the Markov
matrix M by the vector ¥(¢), whose entries contain the fraction of
cells at each attractor in a given population at time ¢ In other
words, ¥(£) = (v1(£),v2(?), . . . ,ym(2)), where () is the fraction of
cells in the population whose configurations at time ¢ are in the
basin of attraction of the first attractor, vo(f) is the fraction of cells at
time / in the basin of attraction of the second attractor, and so on.
Starting out from a population with a given distribution ¥(0) of
cells among the attractors, the distribution of cells at time ¢ is given
by: #(t) =v(0)[M]".

Since we did not consider the four inflorescence attractors, only
six attractors are involved in the dynamics. Therefore, M is a 6 X6
matrix and ¥ is a 6-dimensional vector. We also assumed that the
total number of cells in the population always remains constant;
hence, the sum of the six components of ¥ must sum to 100 (there
are no “probability leaks™ because transitions to the inflorescence
attractors are extremely rare for the error levels used).

It is worth noting that the different attractors have basins of
vastly different sizes. For instance, the basins of attraction of sepals
and petals are very small in comparison to those of stamens and
carpels. Therefore, the absolute probabilities for the attractors of
sepals and petals are inevitably smaller than those of stamens and
carpels; hence, in order to clearly observe the time at which each
attractor attains its maximum probability, we divided each
absolute probability value by the maximum of each attractor’s
curve, and plotted the relative probabilities for each attractor
probability distribution. Note that since each curve was normal-
ized in relation to its own maxima, the probabilities in these graphs
no longer add up to 1 at every moment.

It is important to notice that although the Markov matrix M
provides information about the probability of going from any
attractor m at time £ to any attractor n at time #t, this matrix alone
is not sufficient to derive the most probable sequence of transitions
among attractors. The latter is only evident when the matrix M is
recursively multiplied by the vector ¥ containing the fraction of
cells per attractor, ideally until the system reaches a steady
probability distribution.

Since sepal cells are the first to attain their fate in flower
development, we used an initial vector ¥(0) with v,(0)= 100 and
0,(0) =0 in all of the other entries (the first entry corresponds to the
sepal configuration). Thus, initially, all of the population of cells
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Figure 3. Temporal sequence of cell-fate attainment patterns under the Boolean dynamics with noise. Maximum relative probability
(“Y” axis) of attaining each attractor, as a function of iteration number or time (“X" axis). (A) Probability of attaining each attractor (i.e., cell type)
obtained by multiplying the Markov matrix M by a population vector ¥ initialized at the sepal attractor. The error probability in computing this graph
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was 1 =0.03. The most probable sequence of cell attainment is: Sepals, petals, carpels, and stamens. (B) Probability of attaining each attractor (i.e., cell

I

type) at each iteration when 80000 randomly chosen “sepa

configurations were selected and followed for 140 steps. Noise was introduced in the

updating of each gene independently, with a 1 =0.03 probability at each iteration. The probabilities for the petal (p) and stamen (st) attractors
correspond to the sum of p1+p2 and st1+st2, respectively. All maxima correspond to 100 because each absolute probability value was divided by the
maximum of each attractor’s curve (see Results and Methods). Equivalent graphs to those in (A) and (B) for n=0.01 are shown in (C) and (D),

respectively.
doi:10.1371/journal.pone.0003626.g003

within a floral primordia is in the sepal attractor. We then followed
the changes in the probability of reaching each one of the other
attractors over time, given that the entire system started in the
sepal configuration (see Figure 3A). Every attractor has a
maximum or peak in the probability of being reached at particular
times. This maximum corresponds to the moment at which the
corresponding primordial cell fate is most likely.

The use of the probability peaks to determine the time at which
cach cell multigenic configuration is most probable follows the
standard reasoning in deriving maximum likelithood estimators in
statistics [25]. The time at which the probability peak appears
corresponds to the maximum of the associated transition
probability for that particular attractor. The order of appearance
of the peaks shown in Figure 3 matches the order of formation of
the maxima of the transition probabilities. Recall that when using
the maximum likelihood methodology [25], the main assumption
is that the set of real data is precisely observed because they are
more likely to happen than other possible data sets. In other
words, they maximize the probability of being observed among all
possible samples of the same size. Conversely, if we want to know
when a specific event is more likely to happen, the most natural
assumption is that it will be at a maximum of the corresponding
probability distribution. This is precisely what we claim based on
the graphs of the frequencies of visits to each attractor. Also notice
that the locations of the maxima are not affected by normalization.

This interpretation hence implies that, given that a particular
attractor will be reached (i.e. that a specific event will occur), it is
natural to assume that the most likely time for it to occur is when
the probability of reaching that particular attractor is maximal.
Therefore, we propose that the temporal sequence in which
attractors are attained will correspond to the sequence in which
their maximum probabilities are reached.

A related important issue has to do with the interpretation of the
transition probabilities. There are at least two possibilities that are
consistent with the traditional approaches in statistical studies of
collective behavior [26]. First, it is possible to consider that each
agent (in this case, a single cell) will spend some time at each
equilibrium configuration and then will jump to another with a
certain probability. This would imply that each cell transits through
different configurations. In our case, for example, a particular cell
might attain a sepal primordia identity, then transit to a petal
primordial cell, then to a stamen primordial cell, and finally to a
carpel primordial cell. An alternative interpretation is that, from a
given initial population of cells, the number of individual cells at a
certain attractor at any given time, is proportional to the transition
probability of reaching that particular attractor.

These two interpretations are equivalent or are assumed to be so
(ergodic hypothesis) in many applications of statistical physics.
This is often summarized by saying that averaging quantities in
time is the same as averaging them in space [26]; however, in the
case we have considered here, the second interpretation seems
more appropriate. Future experimental studies that actually follow
gene configurations over time at the individual cellular level will
directly test these two alternative interpretations. For now, if we
accept the overall population of undifferentiated cells in the floral
meristem as our system, it is consistent to assume that the
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proportion of them reaching a particular configuration will be in
accordance with the transition probabilities.

Therefore, we present a stochastic GRN that can be interpreted
as a model of cell population dynamics. This model describes the
dynamics of cells within the flower meristem, in which different
fractions of cells sequentially attain distinct configurations.
Therefore, it does not imply that individual cells transit through
different identities or configurations, but rather that once in a
floral meristem, one set of cells attains a certain identity first (sepal
primordia) and then, from the remaining cells, another fraction
attains a second cell fate (petal primordia), and so on, until all the
cells in the floral primordium have reached an identity
corresponding to each of the four floral organ primordia. Later
in development, primordia will grow and differentiate to form the
four floral mature organs: Sepals, petals, stamens, and carpels. The
latter events are regulated by other GRNs. We explored whether
the observed dynamics of cell-fate attainment can be recovered by
the stochastic Boolean GRN model presented here.

Simulated temporal transitions among attractors (cell
types) mimicked the sequence in which A, B, and C genes
are expressed in real flower meristems

By following the procedure presented above, we found that, by
starting from the gene configuration associated with sepal
primordial cells (t=0 in Figures 3 A and C), the next maximum
probability was observed in the petal curves, P1 plus P2 (t=18 in
Figure 3A). Afterwards, the peaks for the probability of attaining
first the carpel and then the stamen (S1 plus S2) identity appeared
(t=45, t=100 in Figures 3A and C). Interestingly, the same
sequence was observed when applying a range of noise magnitudes
from 0.5 to 10%; however, the peaks corresponding to the stamen
and carpel cell fates became closer, almost simultaneous, as the
noise magnitudes increased (compare Figures 3A—C). Nonetheless,
it is noteworthy that the probability peak of the carpel configuration
appeared before the peak of the stamen configuration.

The sequence resulting from the aforementioned model mimics
the observed temporal pattern for A, B, and C gene expression: A-
genes are expressed first, followed by B-genes, and finally by the C-
gene [27,28]. Furthermore, our model predicts that the gene
configuration characteristic of carpels most probably appears before
that corresponding to stamens during early flower development.
This would, in fact, be the case if the C gene was first expressed in
the flower center and then its expression expanded to the peripheral
whorls. This should be tested experimentally by gathering data on
the population dynamics of cells with different genetic configura-
tions during early stages of flower development.

It is noteworthy that, among all of the tested noise levels, the only
non-trivial temporal sequence of A, B, and C gene combinations
recovered was: A, then AB, then C and finally BC. Although the
latter two appeared almost simultaneously as error magnitudes used
increased. This sequence is congruent with the ABC temporal
pattern in Arabidopsis thaliana (Figures 3A and C) in which the A
genes are turned on first, then the B and finally the C genes; hence
BC and C combinations are defined at the same time. The trivial
behaviors are: 1) remaining in the initial configuration forever, and
ii) transitions depending only on the size of the basins of attraction
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(i.e., the system behaves according to only noise). If the magnitude of
the noise is increased, for example to 50%, the system goes from
sepal to stamenl or carpel configurations directly. This is because
the basins of attraction corresponding to petals are very small in
comparison to those of stamens and carpels.

In addition to the Markov matrix approach, we also performed
simulations by directly following trajectories starting in randomly
chosen configurations from the basin of attraction corresponding
to the “sepal” configuration. We followed each of 80000 such
configurations for 140 iterations in order to compute the
probabilities of directly attaining each attractor at each iteration
(see Methods). This latter simulation is directly comparable to that
performed for the Glass system discussed in the following section.
It is noteworthy that the sequence of probability peaks we found
for each attractor over time is the same as the one that we had
obtained using the Markov Matrix approach: Sepal, petal, carpel,
and stamen (Figures 3B and D).

Continuous GRN model with noise

In order to develop a continuous model based on the differential
equations of the flower development GRN considered here, one
would need to know all of the kinetic reaction constants, promoter
affinities, degradation rates, and many other parameters involved in
the dynamics. To the best of our knowledge, these have not yet been
identified; however, a first step towards a continuous description of
this GRN is to implement the Glass dynamics in the network [29].
This can be accomplished by considering the parameter 7 in Eq. (1)
as a small quantity, and expanding the left-hand side of that
equation to the first order in powers of 7, which gives:

dx, (1)
dt

= [ F (X, (1), (1) - 20, () =20 ()], (3)
where a=1/7 is a measure of the “relaxation” time in the gene
expression profile. Although the above equation is formally correct,
it has the problem that the Boolean function F, on the right-hand
side has to be evaluated using discrete variables, whereas the
derivative on the left-hand side treats the x,’s as continuous
variables. Therefore, each continuous variable x, has to be
transformed into a discrete variable in order to evaluate the
Boolean function. This is accomplished by introducing the discrete
variables %, defined as:

X, =H(x,—0,), (4)

where 0, is a threshold, and H(x) is the Heaviside function. (H(x) =1
if ¥=0 and H(x)=0 if x<0). Thus, each continuous variable x,,
representing the level of expression of a given gene, has an associated
discrete variable £, that represents the state of expression of that gene:
“ON” if x, is above the threshold 0,, and “OFF” if x, is below 0,. In
principle, each gene x, could have its own threshold 0,. Our
simulations show that the results are qualitatively the same if we
randomly assign the thresholds in the interval 0,€[0.35,0.65]. Thus,
in what follows, we fixed 0, = 0.5 for all of the genes.

The continuous piece-wise linear Glass dynamics of the network
can thus be given by:

dx, (1)
dt

= 0By (X, (£), %, (8), - - 5% (1)) — 2 (2))] (5)

We will refer to the set of continuous values {x,(9),x2(f),...,x\(?)}
as the microscopic configuration of the network, and to the set of

@ PLoS ONE | www.plosone.org

Stochastic Flower Model

corresponding discrete values {%(¢),%s(0),...,x0(0)} as the Boolean
configuration of the network. Note that there are infinitely many
microscopic configurations compatible with the same Boolean
configuration. Finally, we will refer to the dynamics generated by
Eq. (5) as Glass dynamics.

It has been pointed out that the discrete model given in Eq. (1)
and the corresponding continuous piece-wise linear model defined
in Eq. (5) are not necessarily equivalent, since the attractors of the
two models can be different, even when the Boolean functions F,
are the same in both cases. Nonetheless, our numerical simulations
show that for the A4. thaliana network, the Glass dynamics generate
exactly the same ten point attractors obtained in the Boolean
model, and only those ten attractors. Therefore, from now on, we
will make no distinction between the attractors of the Boolean
model and the attractors of the continuous model, referring to
them simply as the attractors of the floral GRN.

Even when the Boolean dynamics and the Glass dynamics
produce the same ten attractors, their basins of attraction do change
from one model to the other. This is so because two different initial
microscopic configurations that correspond to the same Boolean
configuration may end up in two different attractors under the Glass
dynamics. In order to show that this is indeed the case, for each of
the Q=2" Boolean configurations of the network, we probed
10,000 compatible microscopic configurations. We evolved these
10,000 microscopic configurations in time until an attractor was
reached, and determined the configuration in which the network
fell. Figure 4 depicts in a color map the probability Pg(n|m) that the
network ends up in attractor » under the Glass dynamics, given that
it started in a microscopic configuration whose corresponding
Boolean configuration was in the basin of attraction of attractor m.
As can be seen, the highest probabilities lie along the diagonal;
however, the non-vanishing off-diagonal elements indicate that two
different microscopic configurationss corresponding to the same
Boolean configuration may end up in two different attractors.

On the other hand, Table 2 shows the fractional sizes of the
basins of attraction in both the Boolean and the continuous

P(n|m)
weq

Attractors in the Boolean model

Attractors in the Glass model

Figure 4. Changes in the basins of attraction of the continuous
model with respect to the Boolean model. Color map of the
probability P(n|m) that a microscopic configuration whose associated
Boolean configuration belongs to the basin of attraction of attractor m,
ends up in attractor n using Glass dynamics. Note that the main
transitions occur along the diagonal where attractors are reached by
both dynamics (Boolean and Glass); however, the non-diagonal
elements indicate that two microscopic configurations that correspond
to the same Boolean configuration may end up in different attractors.
doi:10.1371/journal.pone.0003626.g004
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Table 2. Basins of attraction.

Attractor Boolean Dynamics Glass Dynamics
Inflorescence 1 0.0156 0.0500
Inflorescence 2 0.0156 0.0500
Inflorescence 3 0.0078 0.0380
Inflorescence 4 0.0078 0.0381
Carpel 0.4404 0.2622
Sepal 0.0185 0.0670
Stamen 1 0.4570 0.3331
Stamen 2 0.0166 0.0710
Petal 1 0.0195 0.0786
Petal 2 0.000976 0.0116

This table shows the fractional sizes of the basins of attraction in the Boolean
and Glass models. The data for the Glass dynamics were obtained by sampling
10,000 microscopic configurations for each of the Q=2" Boolean
configurations, and by counting the frequency with which these microscopic
configurations end up in each of the ten attractors.
doi:10.1371/journal.pone.0003626.t002

models. It is apparent from this table that, when passing from the
Boolean to the continuous description, the largest basins of
attraction (carpel and stamenl) lose about 30 to 40 percent of their
configurations, which are redistributed among the smaller basins
of attraction. Thus, even when the predicted cell types (attractors)
are the same in the two models, the basins of attraction are not.

The stochastic continuous model of the GRN yields a cell-
fate attainment sequence similar to the Boolean
stochastic model

In order to implement noise in the continuous model, we followed
a procedure similar to the one indicated in Eq. (2); namely, with a
probability #, each gene will disobey its Boolean function £,
replacing it by 1
governed by differential equations, this “perturbation” will occur
during a finite time interval Al,, rather than being instantaneous. In
other words, if at time ¢ one particular gene x,, is perturbed and chosen

—F,; however, since the system in this case is
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to disobey its Boolean function, then from time £ to time #+Ad, its state
will not be determined by Eq. (5), but rather by the equation:

B0 o1 Byl ()50 0, () 0] (@

After the time interval Af, the state of x, will be determined
again by Eq. (5), and a new set of “disobeying genes” will be
chosen. We will call these disobeying genes the perturbed genes.

We have to choose the value of A#, in such a way that the gene has
enough time to relax to its new state after the perturbation has been
produced. In other words, A#, has to be larger (or at least of the same
order of magnitude) than the relaxation time 7 =o' appearing in
Eq. (5). Figure 5 shows two typical noisy realizations of the temporal
evolution of a particular x,(/) as a function of time, for two different
choices of T and At One for A4, =2.5 and t=1 (black curve), and
the other for At,= 2.5 and t = 1/20 (red curve). The two realizations
started out from the same initial conditions, and underwent the
same set of perturbations. The only difference was the value of 7. As
can be seen from this figure, the trajectories are qualitatively the
same as long as Az,>71. In what follows, we selected Az, =2.5 or 1
(Figures 6A and B, respectively), and t=1 to simulate Glass
dynamics with noise (see methods for further details).

In order to determine the cell-fate attainment patterns in the 4.
thaliana network under Glass dynamics with noise, we analyzed the
transitions between attractors over time in a population of
80 000 cells subject to the perturbations described above. At time
t=0, all of the cells were initialized in different random
microscopic configurations corresponding to the sepal basin of
attraction. In every cell, each gene was independently chosen to be
perturbed with a probability #=0.03. The non-perturbed genes
then evolved in time according to Eq. (5), whereas the perturbed
genes evolved following Eq. (6). After a time interval Az, =2.5 or 1
(for Figures 6A and B, respectively), a new set of perturbed genes
in the entire population was chosen again, and so on.

At each unit of time, we looked at the microscopic configuration
of each cell and determined to which attractor this microscopic
configuration would have evolved in the absence of perturbations.
This allowed us to associate a given attractor at each unit of time
to each cell configuration. The results of this simulation are

Figure 5. Effects of the choice of the relaxation time on Glass dynamics with noise. Two typical realizations of Glass dynamics for a given
gene X, showing that the choices of the relaxation time 7 and the perturbation time At, do not affect the qualitative dynamics, so long as At,>1.
Both trajectories started from the same initial conditions, and were followed through the same set of perturbations. The black trajectory corresponds
to At,=2.5 and =1, whereas the red trajectory corresponds to At,=2.5 and 7=1/20.

doi:10.1371/journal.pone.0003626.g005
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Figure 6. Temporal sequence of cell-fate attainment patterns under the Glass dynamics with noise. Maximum relative probability (“Y”
axis) of attaining each attractor as a function of iteration number or time (“X” axis). (A) The maxima of the cell-fate curves are attained in a particular
sequence in time, which in this case is sepal, petal, stamen, and carpel. Parameters used: dt=0.01, t=1, and At, = 2.5. (B) When the simulations mimic
the Boolean case (dt=1, =1 and At, = 1; see Results and Methods), a temporal pattern identical to that of the Boolean dynamics was obtained, with
a sequence of sepal, petal, carpel and stamen. The noise used in both cases was n=0.03. Although the Boolean and Glass dynamics need not
coincide in general, for the case of the A. thaliana GRN, both models provide similar predictions. Simulations show that the order of emergence of the
stamen and carpel maxima, as compared to the Boolean model, may depend on the precise values of the kinetic constants.

doi:10.1371/journal.pone.0003626.g006

reported in Figure 6, which shows the evolution in time of the
population of cells, and shows how the cells redistribute among the
sepal, petal, stamen, and carpel attractors. Similar patterns were
recovered for other values of noise (data not shown), ranging
between #=0.005 and #=0.1, as well as for other values of A,

As can be observed in Figure 6, the results obtained using Glass
dynamics are analogous to those obtained for the Boolean model,
in that the addition of noise to the dynamics produces the
emergence of cell-fate attainment patterns in a population of cells
in a specific temporal order. Thus, the use of the Glass model,
based on piece-wise linear differential equations, reveals that the
time ordering in the emergence of the cell-fate patterns is not an
artifact of the synchronous updating in the Boolean model;
however, the stamen and carpel peaks are reversed in time
between the Boolean and Glass models (Figure 3 vs. Figure 6A).

In real flowers, A genes are first “ON”’, followed by the B genes
that turn “ON,” thus defining the A (sepal) to AB (petal) transition.
This is recovered by both models (Figures 3 and 6), and is observed
in real flowers. The C genes then turn “ON,” and hence, the BC
(stamens) and C (carpels) configurations are defined at the same
time. While the Boolean dynamics predict that the carpel
primordia cell fate (C alone) will be attained before that of the

@ PLoS ONE | www.plosone.org 9

stamen (BC), in the Glass model, these two are reversed (Figure 3
vs. Figure 6A). Interestingly, when this model is simulated to
mimic the Boolean model (Figure 6B), both systems recover the
same sequence: ‘“‘Sepal-petal-carpel-stamen” (Figure 3 vs.
Figure 6B) and in both cases the time at which stamen and carpel
configurations are determined converge as noise levels are
increased. Detailed experimental data on the precise spatio-
temporal dynamics of the gene activation profiles of cells in the
developing flower meristem are needed to test which of the two
peaks is observed first in real floral buds. Such data will also be
useful to determine which of the two models predicts the most
realistic frequency distributions of cell types over time. The latter
will be related to the relative sizes of the basins of attraction.

Glass system simulations indicate that the order of appearance
of the two peaks (stamen or carpel) may depend on the precise
values of the reaction-kinetic constants and degradation times, as
well as some other epigenetic processes not taken into consider-
ation in the simple analysis presented here. The important
conclusion of both models is that noise in the gene-expression
dynamics is necessary and sufficient to qualitatively recover the
temporal transitions among the ABC-gene configurations ob-
served during early flower development.

November 2008 | Volume 3 | Issue 11 | 3626



Discussion

Robust morphogenetic patterns that are recreated over the life
cycles of individuals from the same species, or even from distantly
related species, have led to the prevailing view of development as a
deterministic process; however, we have shown here that the
stereotypical temporal pattern with which floral organs are
determined may result from a stochastic dynamic system
associated with a highly non-linear GRN.

This study supports recent work that has concluded that
random fluctuations in a system may be important for cell
behavior and pattern formation ([14-21]), and contrasts with
deterministic and preprogrammed views of development. Intrinsic
noise (noise arising from the system itself) has its origin in
molecular fluctuations due, for example, to slight modifications in
temperature, and in random events due to sampling, given that the
number of molecules is not infinite during transcription and
translation [16,19,14].

Stochastic implementations of a GRN model as pursued in this
study were proposed by C. H. Waddington many years ago ([22];
see review in [23]). He understood development as a complex
dynamic system, with genes, proteins, metabolites, and environ-
mental factors constituting complex dynamic networks. The
attractors of such networks represent a specific configuration of
the system (e.g. cell types). The number, depth, width, and relative
position of these attractors are represented by the hills and valleys
of his “Epigenetic Landscape” metaphor [22,7]. The study
presented here actually explored such an Epigenetic Landscape
for the flower organ determination GRN (Figures 1 and 7). Other
recent studies have also explored this idea for GRNs [30].

Stochastic Flower Model

In the case presented here, a GRN generates the overall temporal
morphogenetic pattern (Figures 3 and 6) observed during flower
development of Arabidopsis thaliana [31,32]: A genes are expressed first,
followed by B genes, and finally C genes, in a rather broad range of
noise magnitudes, and in two different modeling approaches.
Therefore, our results provide a possible explanation for the
conservation, among many flowering plant species [27,28,31-34],
of the temporal transitions of A, B, and C-gene expression, and to
some extent, of the observed cell fate attainment patterns.

Our results support the hypothesis that biological systems may
not only cope with random perturbations, but that the noise may
have been incorporated during evolution in the generation of
biological patterns (e.g. [30,35-37]). Central to the constructive
role of noise is the existence of non-linear dynamic systems [38]
that converge to robust attractors for a range of noise magnitudes.
Stochastic implementations of GRNs, such as the one presented
here, may guide predictions of actual noise magnitudes experi-
enced in biological systems.

Nevertheless, deterministic signals or inducers of flower
development cannot be dismissed. Indeed, our results hold when
focusing on the attractors corresponding to the four types of floral
organ primordia. However, if all of the attractors (including 11-14)
are considered, and the system is initialized in one of the
inflorescence basins, the system hardly ever transits into the floral
basins when small noise levels are used, or else it directly jumps to
one of the largest basins (stamensl or carpels) when larger
magnitudes of noise are simulated. These results enable us to
speculate on the role of reported non-random inducing signals in
the transition from cell fates in the inflorescence meristem to those
in the flower meristem. Genes such as FLOWERING LOCUS T,

Figure 7. Schematic representation of the epigenetic landscape generated by a stochastic exploration of the GRN for flower
development. This schematic landscape is equivalent to the Epigenetic Landscape proposed by C.H. Waddington (1957). Basins comprise the cell
genetic configurations that lead to attractors (in this case, gene arrays characteristic of floral organ primordial cell-types: Sepals, petals, stamens, and
carpels. See Figure 1 and Discussion). Each cell fate is associated to the GRN configuration corresponding to each of the attractors. The arrows
represent transitions among attractors. The transition from inflorescence to sepal attractor might be biased or determined by an inducer. The
numbers associated to the arrows represent the sequence of transitions among attractors: From sepals to petals, and then to carpels and stamens.

doi:10.1371/journal.pone.0003626.9g007
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SUPPRESSOR OF OVEREXPRESSION OF CO 1, or CONSTANS
(see [39] for a review) could constitute or mediate such signals.

The type of model put forward here will enable the predictions
of the real magnitudes of stochastic fluctuations once such
deterministic biasing signals are considered. They will also be
useful to test what mutations may cause alterations in the
epigenetic landscape and alter the temporal order with which
attractors are visited. Such models will guide the search of genetic
alterations underlying atypical morphogenetic patterns during the
evolution of flowering plant species [40].

One possible interpretation of our model is to assume that, once
most cells have attained a certain attractor within a primordium,
these are canalized to develop into a particular organ type. One
possible explanation for this is that noise does not drive the cells
out of each configuration once a certain proportion of them attain
an attractor, or that the noise is “frozen” at some point, maybe
because irreversible differentiation or synchronization events take
place. We may speculate that, in the developmental system we
have studied, non-autonomous cell function of key transcription
factors [41-44] could play a relevant role in this process, as it
could effectively freeze the stochastic fluctuations or synchronize
the configuration of the cells within a primordium, and thus,
contribute to the formation of the observed spatio-temporal
patterns. We could further speculate that the activity of pre-
patterning genes (e.g., WUSCHEL or UNUSUAL FLORAL
ORGANS; [43,45,46]) may play important roles during spatio-
temporal pattern formation.

Models such as those presented here enable novel predictions
about the genetic regulation of cell differentiation and morphoge-
netic patterns. For example, the stochastic GRN dynamic system
eventually attains a stationary distribution of attractor probabilities.
The distribution reflects the probability of the cells being in each
attractor, and may be interpreted as the proportion of primordial
cells fixed to ecach GRN configuration. In the floral organ
specification network, such proportions would correspond to the
regions within the floral meristem with A, A+B, B+C, and C
function configurations; however, this distribution may only be
observed at the very early stages of the partitioning of the floral bud
into four concentric rings. This event occurs before cells committed
to a certain cell-type start further differentiation and acquire distinct
division and elongation rates; hence, the final amount of cells in a
certain organ or organ primordium would not necessarily coincide
with that predicted by the models presented herein.

Another prediction derived from this model states that the
carpel attractor appears either before (Figure 3) or after (Figure 6A)
that of stamens. This prediction does not contradict the fact that,
in most plants, carpels are the last organs to be fully formed
because, again, cells have different division and elongation rates
after cell-type differentiation, and therefore, the order in which
organogenesis takes place may not match the sequence in which
organ primordia cells are determined during early flower
development, before the primordia actually emerge.

The discussion above suggests that models that incorporate
GRN associated to cellular growth and proliferation, as well as
spatial aspects of the system presented here, will eventually be
needed to understand the dynamics by which cells attain their fate
and proliferate in the floral spatio-temporal domain. In this paper,
we have restricted ourselves to exploring the temporal patterns of
cell-fate establishment early in flower development, assuming that
cells differentiate independently of one another; however, in real
organisms, cell-cell communication, cellular dynamics, domain
geometry, and growth or mechanical interactions, are all likely to
alter the proportion of cells across space and time that are set aside
for each type in early flower development [10].

@ PLoS ONE | www.plosone.org
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Kauffman’s Boolean model for cell differentiation has been
criticized because it is said to oversimplify the gene regulatory
interactions and the way activation states of all genes are updated
(synchronically in Kauffman’s proposal); however, Boolean GRN
models grounded in experimental data have been able to recover
observed multi-gene expression arrays characteristic of certain cell
types in several biological systems [2,3,7,36]. These results suggest
that the logic of regulation considered in Boolean networks suffices
to qualitatively reproduce the dynamics of biological GRN.
Furthermore, theoretical studies have suggested that the details of
the kinetic functions are not relevant in determining the system’s
attractors. In particular, updating schemes do not seem to affect the
number and identity of fixed-point attractors [47], as is the case of
the attractors recovered in the network used here.

Given that the identity of the attractors and the temporal
sequence in which these were attained are the same (Figures 3A-C
vs Figure 6B) or very similar (Figures 3A-C vs Figure 6A) using
Boolean and Glass dynamics, this study reveals that the time
ordering in the emergence of cell-fate patterns is not an artifact of
synchronous updating in the Boolean model; however, the sizes of
the basins of attraction differ between the two models. In Glass
dynamics, the basins corresponding to stamen and carpel
primordia cells are smaller, and those of sepals and petals are
larger (Table 2); hence, the proportion of cells at each fate along
time predicted by the Glass and Boolean dynamics differ, which
suggests that the updating schemes might be relevant to recovering
the actual temporal cell population dynamics in biological systems.
Experimental data on the temporal fluctuations of primordial cells
with different multi-gene expression arrays will test which of the
two systems and updating hypotheses better reproduces the real
system.

Eventual formalizations of stochastic multicellular GRN
dynamics in explicit spatial domains may require ‘“hybrid”
approximations that enable large computational explorations,
and allow, for instance, the explicit incorporation of developmen-
tal processes into models of network or phenotypic evolution [48],
or the study of the epigenetic landscapes that emerge from GRN
related to complex diseases, such as cancer [9].

In conclusion, we put forward a stochastic approach to model
the Boolean and continuous dynamics of an experimentally-based
GRN, and thus, take Waddington’s Epigenetic Landscapes into a
specific biological framework: Flower organ specification in
Arabidopsis thaliana. The theoretical framework of this proposal
could also be useful for studying the behavior of other networks,
including, for instance, ecological, epidemiological, immunologi-
cal, engineering, or social networks. Finally, our results emphasize
that complex networks and stochastic processes are central to
understanding the biological development and emergence, as well
as the stability, of morphogenetic patterns.

Methods

Construction of phenogram of attractors

We obtained six phenograms by estimating the Manhattan
distance index to infer the relationships among the 10 attractors
for the 15-gene system. This index was obtained by comparing the
vectors of zeros and ones of cach attractor. We then used the
clustering method by the unweighted pair-group method with
arithmetic average (UPGMA) to group the attractors. We obtained
six different phenograms, with which we constructed a strict
consensus that kept the branches that were recovered in all of the
six phenograms. In Figure 2, the consensus phenogram is shown
below the attractors ordered along the X and Y-axes of the heat
map, corresponding to the Similarity Matrix.

November 2008 | Volume 3 | Issue 11 | 3626



Implementation of noise in the GRN model

The GRN has 15 elements; two of them (LUG
and CLF) are constitutively expressed in the flower meristem, and
thus, their activation states were fixed to 1. The transition
probabilities among  attractors in  the Boolean GRN
implementation were obtained by introducing noise to the updating
logical rules in 10, 000 realizations for each possible configuration of
the system. The analyses of the Boolean model were performed with
the “Atalia” software, which is publically available (http://www.
ecologia.unam.mx/achaos/Atalia/atalia.htm).

Another equivalent method to obtain the Markov matrix entries
would be to follow the system’s trajectory for every possible initial
configuration. For certain levels of noise, the system never remains
at a particular basin, and it is hard to determine when to stop the
computation for the corresponding initial condition. Nonetheless,
we performed a similar type of simulation in order to mimic that of
the Glass system. We selected a random configuration from those
in the “sepal” basin. Each gene was updated according to its true
table, except that with a certain probability (0.01 and 0.03), the
rule was violated, and if the true table predicted that a state should
be “1,” it was set to “0,” and vice versa. The new basin was
registered, and this procedure was continued for 140 iterations.
80,000 such realizations were obtained (i.e., 80,000 randomly
chosen configurations from the “sepal” basin were chosen).

Glass system. The model is explained in the Results section.
We numerically integrated the set of differential equations (5) and
(6) using the Euler method with an integration step d¢=0.01. The
results do not change by choosing smaller values of df; however, if
we take dt=1=At¢,=1, then the continuous model given in
equations (5) and (6) becomes completely equivalent to the
Boolean model given in Eq. (2). The results for this latter case are
shown in Figure 6B. In order to recover the temporal sequence, in
which attractors (cell-fate) were attained in the 4. thaliana network
using Glass dynamics with noise, we followed transitions for 140

Boolean case.
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time-steps, starting with a population of 80 000 cells
(configurations from the “sepal” basin of attraction), in which
each gene was independently chosen not to be updated according
to its logical functions (set to “1” if the predicted value was “0,”
and vice versa), with a probability #=0.03; hence, the non-
perturbed genes evolved in time according to Eq. (5), while the
perturbed genes evolved following Eq. (6). After a time interval
At,=2.5 for Figures 6A, and 1 for Figure 6B, a new set of
perturbed genes in the entire population was chosen again, and so
on until 140 iterations were completed. Qualitatively similar
results were obtained for a noise of 0.01. The code for the Glass
system simulations was developed in JAVA, and is available upon
request.
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ARTICLE INFO ABSTRACT

Article history: The ABC model postulates that expression combinations of three classes of genes (A, B and C) specify the

Available online 13 November 2009 four floral organs at early stages of flower development. This classic model provides a solid framework to
study flower development and has been the foundation for multiple studies in different plant species, as

Keywords: well as for new evolutionary hypotheses. Nevertheless, it has been shown that in spite of being necessary,

Gene regulatory networks these three gene classes are not sufficient for flower organ specification. Rather, flower organ specification

Flower morphogenesis models
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depends on complex interactions of several genes, and probably other non-genetic factors. Being useful
to study systems of complex interactions, mathematical and computational models have enlightened
the origin of the A, B and C stereotyped and robust expression patterns and the process of early flower

Stochastic models morphogenesis. Here, we present a brief introduction to basic modeling concepts and techniques and
review the results that these models have rendered for the particular case of the Arabidopsis thaliana
flower organ specification. One of the main results is the uncovering of a robust functional module that is
sufficient to recover the gene configurations characterizing flower organ primordia. Another key result
is that the temporal sequence with which such gene configurations are attained may be recovered only
by modeling the aforementioned functional module as a noisy or stochastic system. Finally, modeling
approaches enable testable predictions regarding the role of non-genetic factors (noise, mechano-elastic
forces, etc.) in development. These predictions, along with some perspectives for future work, are also

reviewed and discussed. © 20009 Elsevier Ltd. All rights reserved.
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1. ABCs of flower development: from schemes to dynamic
models

Although 20 years have passed since the publication of the
ABC model of flower development [1-3], we still do not know
why it works. We now have a thorough description of the spa-
tiotemporal patterns of ABC gene expression patterns and mutant
phenotypes (e.g., [4,5]) yet we do not know how the interactions
among these and other genes dynamically render such patterns.
Completely unraveling the dynamic mechanisms that underlie the
ABC gene expression patterns and the stable ABC gene combi-
nations necessary for floral organ specification and arrangement
is still a challenge. These are, indeed, major issues since gene
expression patterns, which are required for development to take
place, are not a fixed or predetermined background field. Neither
are they specified by single or simple combinations of genes, but
are originated and dynamically maintained by several genetic and
non-genetic factors that interact among themselves in non-linear
manners [6,7]. Thus, in order to fully understand development,
evolution and phenotypic transformation, it is essential to under-
stand how gene expression patterns arise, and how such expression
patterns coordinate with non-genetic factors during develop-
ment.

We know that the ABC model works in Arabidopsis thaliana,
Antirrhinum majus [3], as well as in other flowering species [8].
This suggests a robust underlying mechanism that resists envi-
ronmental variations and that has been conserved throughout
evolution. We have also learned from molecular genetics exper-
iments that the genes involved in this model are necessary for
the specification of the primordial cells that will eventually form
sepals, petals, stamens and carpels from the floral primordium
periphery to the center as flower development progresses [9]. How-
ever, we also know that these genes alone are not sufficient for
this process [10,11]. Mathematical and computational models that
integrate information systematically and help studying the dynam-
ical aspects of flower development are useful for understanding
how steady gene expression patterns, like those characterizing
the ABC model, are generated. Actually, models that are able to
follow the concerted and dynamic action of the ABCs with sev-
eral other interactors have been used to postulate a regulatory
module that is sufficient to recover ABC combinations in con-
junction with other genes and proteins that have been shown to
co-express with them (see review [12]). In contrast to schematic
representations that depict gene regulatory interactions, dynamic
models may consider the non-linear aspects of regulation and
explore the way gene expression changes in time, both in wild type
and perturbed simulated systems. Certainly, these models have
helped to provide a dynamic account of the ABC model, as well
as novel predictions and input for experimental studies. Never-
theless, important challenges, such as a complete understanding
of the mechanisms and processes that lead to the observed mor-
phogenetic patterns characteristic of flower development, are still
open.

1.1. The gene regulatory module underlying cell-fate
determination and morphogenesis during early flower
development: the ABC genes are necessary, but not sufficient for
flower organ specification

The ABC model integrates three classes of genes (A, B and C
genes) and postulates that the combined expression of subsets of

these classes specifies the different flower organs at early stages
of flower development: A genes are necessary for sepal specifica-
tion; A and B for petals; B and C for stamens; and C for carpels
(reviewed in: [1,3-5], and elsewhere in this issue). A rather com-
plete set of data concerning the interactors of the ABC genes has
been gathered [5,12-15] for the model plant A. thaliana and, there-
fore, most modeling efforts concerning the ABCs have been done
for this species.

Most plant species, including A. thaliana (Fig. 2), and especially
eudicots, share an overall conserved flower body plan consist-
ing of concentric whorls of organs: the two outermost rings
are non-reproductive organs (sepals and petal) and the inner-
most are the reproductive organs (stamens and carpels) [9]. The
temporal order with which ABC genes are expressed and the
corresponding floral organ types specified are also quite con-
served among higher eudicots. The A genes are turned on and
the sepals determined first, then the B genes, and hence the AB
combination and petals, and almost at the same time, the sta-
men and carpel cells are specified once the C genes are turned
on and both BC and C genes alone are expressed ([16]; see
Fig. 3).

Developmental processes, such as flower development, are
often organized in a modular way, so different semi-autonomous
processes or functions may be defined [17]. In this review, we focus
on the regulatory module responsible for primordial cell-fate deter-
mination during early stages of flower development, in which the
floral meristem is subdivided into the four concentric rings of cells
that will form the floral organs [12,18,19]. We define a regulatory
module as a set of molecules, signals or other kinds of interact-
ing entities that constitute a functional unit and are sufficient for
a process to occur. As units, modules can function fairly robustly
and independently from other regulatory modules or entities (see,
for e.g., [20,21]). Importantly, the gene regulatory module associ-
ated with cell-fate determination during the early stages of flower
development seems to integrate environmental and internal sig-
nals (e.g., plant hormones) that also affect the flower meristem
behavior, as well as to connect with other genetic modules involved
in later stages of flower development (see review in [12]), for
instance, in cell-type sub-differentiation and organogenesis pro-
cesses.

Since the description of the ABC model, many other genes
involved in flower organ determination have been described
(reviewed in[14,15]). Several experiments have now demonstrated
that flower organ determination depends on the expression and
inter-regulation of the ABC genes (Fig. 2), but also of several non-
ABC genes like FLOWERING LOCUS T (FT), LEAFY (LFY), TERMINAL
FLOWERT (TFL1), SEPALLATA genes (SEP1, SEP2, SEP3) and WUSCHEL
(WUS). The study of all of these genes has been instrumental
for understanding flower development (e.g., [22-26]; and other
reviews in this special issue) and has pointed at the genes and gene
interactions that are fundamental to flower organ determination.
Nevertheless, the characterization of isolated genes or of paired
interactions is not enough to fully describe and understand the reg-
ulatory module that is necessary and sufficient for the spatial and
temporal processes associated with flower organ determination.
As we will review, studies of the collective action of many interact-
ing genes are required and such studies have used mathematical
models.

We now turn to the basic concepts and definitions of the models
proposed by us and other groups in order to integrate molecular
genetic experimental data on development. We then review the
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achievements of such models, especially for understanding the ABC
model.

2. GRN models for understanding development

Developmental processes involve complex interactions among
multiple genetic and non-genetic elements, interactions that occur
in a wide range of spatiotemporal scales. Consequently, different
kinds of mathematical formalisms may be chosen depending on
the scales relevant to the system under study and on the nature of
the available data. Integrative approaches aiming at further under-
standing development may, however, encompass more than one
type of model. Here, we summarize some of the basic mathemati-
cal methods and conceptsrelated to gene regulatory network (GRN)
modeling (see reviews by: [27,28]).

GRN models have been widely used to study gene collec-
tive dynamics as these and their regulatory interactions may be
intuitively represented as dynamic networks. Moreover, these rel-
atively simple models capture the non-linear character of the
interactions associated with the logic of gene regulation and seem
to be valid abstractions of such complex regulatory interactions,
as they recover important features of their dynamics and observed
stable multigenic configurations of cells at different stages of devel-
opment. In these models, the nodes of the network correspond to
genes, RNA, proteins or complexes that take part in gene regula-
tion, while the edges stand for the positive or negative regulatory
interactions among the network elements.

2.1. Discrete and continuous GRN models

There are two main approaches to modeling GRNs, namely, the
discrete and continuous methods. These two approaches differ in
scope; yet, they often yield equivalent qualitative results when
applied to concrete biological systems (e.g., [21]). This equivalence
suggests that the logic and overall dynamics of gene regulation
depend mostly on the network architecture and signs of the inter-
actions, rather than on the details of the mathematical specification
of the GRN.

2.1.1. Discrete models

The simplest case of discrete GRNs is that of the so-called
Boolean networks, first put forward by Kauffman ([29]; see Fig. 1).
In such models, nodes can be in one of two activation states in
time t, O (off) or 1 (on), depending on the state at time t — 1 of the
elements that regulate each of them. The regulatory interactions
determining the changes in gene activation states are defined as
logical rules in which logical connectors such as OR, AND or NOT
are used. Equivalently, the logical rules might be represented as
tables providing a corresponding output for a given input gene
profile.

For GRNs based on empirical evidence, the information needed
to define logical rules is obtained from diverse experimental results
(gene expression patterns, loss and gain of function phenotypes,
protein interaction assays, etc.). Then, the activation state of every
gene is given by:

gn(f+1)=Fn(gn1(f)7gn2(t)v---vgnkn(t))s (1)

where {gn,, &n,, - - - » 8n,, } are the regulators of the gene g, and Fy
is the discrete function or logical rule.

Given the set of logical rules defining the GRN dynamics, it
is possible to update the gene states. In many cases of interest,
they all eventually attain a steady or equilibrium state. Those GRN
steady states at which all of the nodes (initial conditions) end up
are usually referred to as attractors. Kauffman [29] suggested that
GRN attractors corresponded to sustained gene activation profiles

characteristic of particular cell types and this has been substanti-
ated experimentally and validated in a handful of modeled systems
(e.g.,[21,30,31]; see Fig. 2). Additional experimental and theoreti-
cal studies suggest that regulation at the transcriptional level might
be better represented by discrete, rather than continuous models
(e.g. [32)]).

2.1.2. Continuous models

Continuous GRNs are defined by coupled non-linear differen-
tial equations describing changes in the concentration (rather than
the state of expression) of the molecules involved in the gene reg-
ulation processes. In continuous GRNs, nodes can take an infinite
number of state values and the equilibrium points may be found
by analytic means. Just like the attractors of discrete GRNSs, these
equilibrium points are thought to match gene activation configu-
rations typical of particular cell types. This description stands on
largely developed analytical tools and is especially useful when the
system under consideration has few nodes, since large networks
become intractable with this approach.

The continuous approach can incorporate effects such as active
transport, diffusion, and elastic or mechanical phenomena, among
others. Moreover, this kind of implementation can include more
detail on the kinetics of gene regulation and yield quantitative
predictions that have provided insights into signal transduction
and oscillatory systems. The detailed experimental data to obtain
parameter values for the differential equations representing such
models are, however, extremely scarce.

As mentioned above, both discrete and continuous GRN models
enable a characterization of the collective gene regulatory dynam-
ics in terms of, among other features, the number and nature of
attractors and equilibrium points.

2.2. Deterministic and stochastic GRN dynamics

Deterministic GRNs are those for which it is possible to know
the state of every node at every moment, given an initial configu-
ration. In contrast, stochastic GRNs consider the noise originated,
for instance, by small numbers of molecules (example of a source of
intrinsic stochastic fluctuation due to the small sample sizes), envi-
ronmental fluctuations (example of a source of external stochastic
fluctuations) or other sources of uncertainties. In stochastic mod-
els, the updating rules, discrete or continuous, depend partially
on a stochastic variable, which, instead of attaining a fixed value,
has a distribution of possible values or states. This is, in fact, a
more realistic representation of a biological system (review in[33]).
Introducing stochasticity into GRN models has provided interesting
results suggesting, for example, that noise may play a constructive
role in biological systems (details below and in [34]).

3. Morphogenetic models encompassing GRNs

Even though GRN models are indeed useful to study develop-
ment and other biological processes, these generally constitute
abstractions of the one-cell level gene regulatory processes and
do not consider cell-to-cell communication, spatial components of
development or cellular dynamics, among other important aspects
of morphogenesis. In general, to understand cell-fate determina-
tion, one has to explain how identical cells become sufficiently
different as to appear as a particular type of cell (Fig. 1). Itis an unde-
niable fact that the expression of genes, through their organization
in GRNs, is a central issue in the whole process of differentiation:
undifferentiated cells share the same gene expressions and differ-
entiated ones certainly express their genes differently. However, it
is evident that the genes by themselves have no means of canaliz-
ing which attractors of their GRN to “choose”, and it is mostly seen
that this “decision” is driven by the situation (e.g., depending on its
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Fig. 1. The dynamic modeling of gene regulatory networks (GRNs). (A) GRNs are established by the non-linear cross-regulation of genes. Here, three transcription factors that
regulate a target gene are exemplified. Each gene or node in a GRN is regulated by k transcription factors. If GRNs are modeled with discrete dynamic models, each gene has
a truth table as the one shown here, in which the combinations of gene activation states (gene configurations of k entries, in this example, k=3) leading to an “ON" or “OFF”
activation state of the target gene are tabulated. Hence, the dynamics of the expression state of each gene is given by a Boolean logical function (Fn), which, in turn, depends
on the expression states in previous time steps, of the genes that regulate it. Each gene configuration (conformed in the Boolean case of 0’s and 1’s or initial configuration of a
GRN, will lead to a stable configuration, which is called an attractor state. Attractors can be of the fixed-point type (a single configuration), or cyclic (several configurations).
Kauffman proposed that GRNs underlying cell differentiation may attain fixed-point attractors, in which configurations correspond to multigenic profiles characterizing each
cell type. (B) In this figure, we show a diagram for the set of initial configurations that lead to the sepal and petal stable configurations or attractors. All of the configurations
that lead to a given attractor are called basins of attraction. Hence the basins of attraction of sepal and petal primordial cells are shown in the form of colored fan diagrams
with the attractors’ configurations in the point in the central part or to which all other converge via connecting lines in these fan diagrams and all the possible configurations
in the points around such central one. The colors, lengths or angles of the lines in the fan diagrams do not have any meaning and are drawn as such just for design reasons.
However the number of points and lines do indicate the number of configurations that lead to each attractor (point to which all others converge). In tabular form, to the
right of the basins of attraction, an example of how different initial configurations (“ON” in green and “OFF” states in black) lead to different attractors is shown. On the right,
scanning electron micrographs of sepal (top) and petal (bottom) cell types are shown.

lineage) or position of the cell in the organism. Therefore, it is essen-
tial that each cell extracts temporal and positional information
from its environment, and for this we need to postulate processes
that generate this positional information at all times, and produce
changes in the operation of the identical GRN accordingly (Fig. 4).
That is, short-range (cell-to-cell) and long-range communication
are needed to allow a complete relative positional information and
the regulation of sizes and dimensions of tissues, as well as the
relative position of organs.

This is why one of the challenges ahead consists of rendering
spatio-temporal models that consider GRNs in cellularized domains
and that encompass cellular dynamics, chemical gradients, cell-
to-cell communication, etc. (Fig. 4). There have now been some
efforts in this direction (e.g., [35,36]). For instance, GRN models
have recently contributed to specify the metaphor of epigenetic
landscapes [37,38] for particular systems. In such a metaphor, devel-
opmental processes are viewed as a ball rolling through pathways
in a landscape, and the topology of the landscape is defined by the
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Fig. 2. The Arabidopsis thaliana flower has the stereotypical floral arrangement of eudicots, with sepals, petals, stamens and carpels from the periphery to the flower center.
(a) Flower meristems form in the axils of rudimentary bracts that appear in the flanks of the inflorescence meristem of which a scanning electron micrograph is shown in
(b). Here a flower meristem in which the sepal primordia are already visible is colored with the primordial cells of sepals in green (A function alone), those of petals in brown
grey (green and red from A +B functions), the stamens in orange (yellow and red from B+ C functions) and the carpels in yellow (C function alone). In (c), the ABC model
and the floral organ determination GRN (FOS-GRN) stable configurations that correspond to A, A+B, B+C and C gene combinations necessary for sepal, petal, stamen and
carpel development, respectively. The activation states correspond to each of the GRN nodes starting on the left with “EMF1” and consecutively progressing clockwise the
rest of the genes in the GRN shown in (d). (d) The FOS-GRN that underlies the dynamic attainment of the ABC combinations, with the A, B and C genes colored as in (c). In the

FOS-GRN, arrows correspond to activations and blunt ended edges to repressions.

interactions among genes and other elements (Fig. 3). Continuing
with the metaphor, the bottoms of valleys correspond to steady
states or final stages of development (e.g., the attractive states of
GRNs as defined above). Yet further work needs to be done in order
to generate integrative morphogenetic models. Some general ideas
for advancing these kinds of models for the case of flower develop-
ment will be discussed below.

4. The floral organ specification GRN (FOS-GRN): recovering
the ABC gene configurations characteristic of primordial
cell types during early flower development

We have modeled the experimentally grounded GRN model
for flower organ specification (FOS-GRN) that integrates molec-
ular genetic data for the ABC genes and their main interactors
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Fig.3. The four floral organs appear in a well-defined temporal sequence that is recovered by a stochastic GRN model. Sepal primordial cells are the first to be specified (green),
then petals (brown) and finally, almost at the same time, stamens (orange) and carpels (yellow). (A) Alvarez-Buylla et al. [34] demonstrated that stochastic perturbations
in the FOS-GRN in Fig. 2 are sufficient to recover the observed temporal sequence of ABC gene expression and floral organ specification. (B) A schematic representation of
the epigenetic landscape generated by a stochastic exploration of the FOS-GRN for flower development. This schematic landscape is equivalent to the epigenetic landscape
proposed by Waddington [37]. Basins comprise the cell genetic configurations that lead to attractors (in this case, gene configurations characteristic of floral organ primordial
cell-types: sepals, petals, stamens, and carpels. Se: Sepals (green), pe: petals (brown), st: stamens (orange), car: carpels (yellow).

([30,34,39,40]; Figs. 1 and 2). This GRN includes key regulators
underlying the transition from shoot apical meristem once it
produces the apical inflorescence (we call it the inflorescence
meristem, IM) to flower meristem (FM) (FT, TFL, EMF, LFY, AP1, FUL),
the ABCs and some of their interacting genes (AP1, AP3, PI, AP2,
AG, SEP), as well as some genes that link floral organ specification
to other modules regulating primordia formation and homeostasis
(AG, CLF and WUS), and some regulators of organ boundaries (UFO
and LUG).

Interestingly, the postulated discrete regulatory module has
over 130,000 different 15-gene activation configurations, but it
only converges to ten attractors: four corresponding to gene com-
binations characteristic of four sub-regions in the IM, and the rest
to gene activation states configurations observed in sepal (one

attractor), petal (two attractors; with and without UFO “ON"), sta-
men (two attractors; with and without UFO “ON”) and carpel (one
attractor) primordia (Figs. 1 and 2; see [30]). This first result is out-
standing, as it is extremely rare that randomly generated complex
networks of the size of this one attain so many fixed-point attrac-
tors (ten in this case). This result also suggests that the postulated
regulatory module is robust to certain alterations (i.e., those stem-
ming from its connections to other components not considered
here and which modify the initial configurations of the FOS-GRN)
and that this GRN is sufficient to specify gene configurations char-
acteristic of primordial cells during the first stages of flower organ
development, thus constituting a functional module.

Various robustness analyses were performed on the FOS-GRN
and showed that the recovered attractors are also robust in the
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face of permanent alterations of the logical functions of gene inter-
actions and gene duplications [30,40,41]. These results suggest that
the multigenic configurations that are sufficient for flower organ
specification, dynamically and robustly emerge from complex net-
works of molecular components, rather than from a series of linear
or hierarchical gene interactions, or from the action of particular
genes or simple gene combinations. Moreover, the robustness anal-
yses indeed support that such a GRN could account for the overall
widespread conservation of the ABC patterns and floral bauplan
(particularly that of eudicots; see [9,42,43]).

Since the first publications of the FOS-GRN [39,44], this GRN
has been continuously updated. However, the basic structural
characteristics of it have been stable and the additions, while
providing important new insights, have not substantially altered
the main conclusions originally put forward. Recent updates have
been implemented with the new software, ATALIA (available at:
http://www.ecologia.unam.mx/~achaos/Atalia/atalia.htm), devel-
oped in the Alvarez-Buylla laboratory by Alvaro Chaos. This
software can run a GRN dynamics and obtain its attractors, basins of
attraction, among other significant dynamic signatures (see exam-
plesin [12]).

In conclusion, the basic FOS-GRN proposed has provided a suf-
ficient explanation for the observed ABC patterns and the stable
gene expression configurations observed in IM and FM during early
flower development in A. thaliana. Such dynamic account of the
robustness and overall dynamic effects of particular genetic alter-
ations would have been impossible to achieve without integrative
approaches considering mathematical models and computer sim-
ulations.

5. Temporal and spatial patterns of cell-fate attainment
during early flower development

The FOS-GRN reviewed above only considers a deterministic,
single-cell GRN that is able to recover different gene configura-
tions, which can be compared to observed gene profiles in different
primordial cell types at early stages of flower development. How-
ever, in real developmental processes, groups or populations of
cells attain distinct fates with certain spatial and temporal pat-
terns. Thus, as mentioned above, we need morphogenetic models
that are able to recover and enlighten such temporal and spatial
morphogenetic patterns.

We have addressed the challenge of studying the temporal pat-
tern of flower organ determination by exploring the sequence with
which attractors for primordial flower organs are attained. We
achieved this goal by introducing stochasticity into the GRN model
described in the previous section. Since biological systems have
evolved in inherently noisy environments, it is postulated that
GRNs have been assembled in such a way that observed patterns are
recoverable under noisy conditions. Indeed, recent studies show
that stochasticity at the molecular scale may actually contribute
to the formation of spatio-temporal patterns at higher levels of
organization during development in other systems (see reviews in
[33,45]).

Considering that noise could trigger transitions among attrac-
tors, we expected that in a stochastic model for a population of
cells initialized in the sepal state (A genes expressed), the next
most probable state would be AB (petals), then BC (stamens) and
C (carpels) [9,46,47]. By introducing a certain degree of error in
the updating of the dynamical rules of the FOS-GRN we actually
recovered such a temporal sequence of cell-fate and ABC gene acti-
vation combinations ([34]; Fig. 3). In the latter study, this result
was repeated with two GRN versions: the Boolean one described
above and a continuous implementation that mimics the discrete
case.

6. Recovering the epigenetic landscape of the FOS-GRN

Having shown that noisy fluctuations alone are able to drive
transitions among attractors and that those transitions follow tem-
poral patterns that reproduce the sequence with which ABC-genes
are activated, it is reasonable to use the stochastic GRN model
to postulate an epigenetic landscape (EL; [37,38]) associated with
flower organ determination. Such an EL would be generated by the
stochastic GRN dynamics and the GRN attractors would constitute
the landscape’s valleys (Fig. 3). It is interesting to note that, far
from what could be intuitively expected, noise should not always
be considered as a perturbation favoring disorder or instability. On
the contrary, in view of these results, noise should be considered
as a necessary factor in order for some developmental features to
emerge in a robust way; in this case, the typical temporal sequence
of activation of some genes, and probably also the spatial arrange-
ment of gene configurations to some extent.

Studies with the stochastic version of the FOS-GRN also con-
cluded that the relative position of the landscape’s basins (GRN
attractors)is important in determining the most probable temporal
sequence of cell-fate attainment referred above [34]. This fascinat-
ing result certainly suggests that the stereotypical temporal pattern
of cell-fate specification within the floral meristem at early stages of
flower development may be an emergent and robust consequence
of the complex GRN underlying cell-fate determination. In princi-
ple, such temporal sequence of cell differentiation could take place
in the absence of inductive signals, emerging only as a result of the
stochastic fluctuations that occur during transcriptional regulation
[12].

Conceptually, this analysis was performed in a population of
cells (or GRNs), updating each genetic configuration independently
of each other. The next modeling step will be the integration of a
collection of these networks, corresponding to the meristem, in a
spatio-temporal framework (Fig. 4). This will allow a better under-
standing of the morphogenetic implications of the structure of the
ELand is the object of current research. Moreover, this approach can
alsobe used to test specific hypotheses. Questions of special interest
are: (i) what is the mechanism by which the spatial disposition of
the floral whorls is established, and (ii) what is the minimum num-
ber of necessary changes in the FOS-GRN and in the corresponding
EL required for the whorls corresponding to stamens and carpels
to be exchanged as in the atypical plant Lacandonia schismatica
([48,49]).

In another theoretical study, Lenser et al. [50] formulated a
computational model that enabled the testing of the role of joint
self-regulation of DEF-like and GLO-like floral homeotic genes in
the robustness of petal and stamen development when stochas-
tic noise is considered. In accordance with the results reviewed
above, the authors found that the heterodimerization of these
B floral homeotic proteins enhanced the robustness of cell-fate
organ determination in the presence of stochasticity. Further-
more, their analysis suggests that mechanisms such as protein
heterodimerization may play a central role in the canalization of
flower development and evolution. This kind of prediction can
hardly be formulated or tested without the aid of dynamical mod-
els.

7. Not in the genes: the role of geometrical and mechanical
forces during development

A complete understanding of flower morphogenesis will con-
tinue to require multidisciplinary approaches and modeling tools
that help at underpinning the coupling of such single-cell GRNs
in explicit spatial and cellularized domains (e.g., [35,36,51]), with
aspects like morphogen (e.g., auxin) metabolism, signaling path-
ways, gradients, cell growth and proliferation, mechanical forces,



E.R. Alvarez-Buylla et al. / Seminars in Cell & Developmental Biology 21 (2010) 108-117 115

Fig. 4. Feedback between the FOS-GRN and physical fields could lead to the establishment of different regions within the meristem, each reaching the same stable multigene
expression configurations or attractors. An idealized diagram illustrating the coevolution process of cell differentiation in a meristem is shown. A group of undifferentiated
or stem cells (in yellow) secrete substances that produce a physical field of concentrations (¢) that forms a spatial pattern. According to the value of this field, the GRN of
each cell (encircled) attains a different attractor, with a particular gene expression configuration that locally modifies the field, as well (double red arrows). Eventually, such a
feedback process will allow cells to attain a different fate and become, for example, committed to form sepals or petals (cells with different colors at the bottom), depending

on their relative position in the meristem.

and cell-cell communication mechanisms. All such aspects are
likely to interact in non-linear ways both to and from the intra-
cellular GRNs regulating cell differentiation and proliferation.

A central question in developmental biology is whether and how
mechanical forces serve as cues for cellular behavior and thereby
regulate morphogenesis [52]. Perhaps the most challenging aspect
in understanding how mechanics, geometry and growth contribute
to the formation of functional and robust structures is that these
aspects not only influence each other, but are also coupled with at
least two other fundamental interactions, genetic regulation and
the cell cycle, at different time and spatial scales.

Several processes of cell communication may be relevant to
understanding development, either by direct contact through their
membranes, by the release of chemicals to the intercellular space,
by electrical signals [53] or by the detection of pressure gradi-
ents and changes of curvature in tissue or organ surfaces [54].

Let us concentrate on the chemical signals, because meristem-
atic cells are continuously exchanging and releasing all sorts of
compounds (such as mRNAs, proteins, amino acids, hormones,
etc.) to the extracellular matrix. These compounds must arrange
themselves in space to form a macroscopic pattern of molecules,
which, in turn, should be detected by GRNs in each cell altering
their gene expression configurations accordingly. In other words,
in order to accomplish this extraordinary choreography (without a
choreographer!), the behavior of the chemicals and communication
mechanisms should be coupled to the dynamics of the GRN in such
a way that the chemical composition dictates the attractor of the
GNR, and at the same time, the modified gene activity configuration
of the GRN regulates the spatial pattern of chemical concentrations.

As mentioned before, the famous ABC model is able not only
to predict the specification of the four whorl types in the flower,
but also the different mutations found when one or several of the
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ABC gene functions is lost. The problem is that this model does
not explain why the spatial disposition of organs is ordered in con-
centric regions with the correct geometry or spatial arrangement
and in the correct temporal sequence, that is, it does not address
the central problem of self-organization in space-time during cell
differentiation. In our opinion, this central issue remains unsolved.

The problem could be stated as follows: the GRN in each cell
in the meristem is in a state of undifferentiated complacency, yet
producing certain chemicals that act as transcription factors. These
substances move in the intercellular space and respond to some
physical field that dictates their concentrations in different regions
of space, forming a geometrical pattern in space, which, in turn,
provides each genetic network with a chemical environment that
depends on this geometry (Fig. 4). The pertinent GRN for flower
development in each cell senses this composition of chemicals and
changes its configuration, expressing its genes in a different way,
reaching a particular attractor (stable configuration of gene expres-
sion states), and consequently differentiating.

One could think of various physical fields that provide the size
and form of the macroscopic domain where the microscopic pro-
cesses (pertaining to the intracellular GRN dynamics) take place. A
Turing mechanism is the mostimmediate and simple way of obtain-
ing spatial stationary patterns through the diffusion of chemicals
[51,55], but other mechanisms could be involved. In an ongoing
work, we have proposed that a phase field with spontaneous curva-
ture could be one of the mechanisms on which the accommodation
of the ABC genes in space relies.

In other attempts to integrate physical fields and forces into
models of development, meristem growth has been modeled using
the principles of continuum mechanics (see review in [56-58]).
Also, some quantitative mesoscopic models for flower develop-
ment and growth in A. thaliana and other angiosperms have been
put forward (e.g., [59-62]). More recently, it was shown that cells
in the A. thaliana shoot apical meristem orient their microtubules
along mechanical stress patterns generated during tissue forma-
tion, and this then affects the mechanical properties of the cell,
thus establishing a feedback loop [52].

Even though, during the last years, genetics based approaches
have been favored, it is recently being accepted that the richness
and robustness of biological forms are not encoded only in the
genes. Recent research is consistently showing that there are non-
trivial interactions at all the levels mentioned above and, therefore,
in order to achieve a global understanding of development, an inte-
grated view has to be adopted [63,64].

If this program is to be carried out, the implementation of math-
ematical models becomes necessary. From the methodological
perspective, modeling should be done in a multi-scale framework
[65]. For the mechanical effects, the standard tool is continuum
mechanics. There are several possibilities for GRN modeling, and
assessing the performance of different models is still the subject of
intensive research. However, we can safely say that no matter what
formal mathematical description is used (a Boolean network, a sys-
tem of ordinary differential equations, etc.), a non-linear dynamical
system will account for the behavior of the genetic interactions.

However, this is only part of the required mathematical models,
since, as it was pointed out before, all these three complexity levels
interact non-trivially. We already mentioned that a central issue
is how such levels of complexity are coupled. For example, what
might have been considered as a parameter at some level becomes
a variable dependent on variables at the other scales.

8. Conclusions
Understanding the emergence of spatiotemporal patterns that

underlie organ formation during development remains a major
challenge in biology. Moreover, understanding the origin and evo-

lution of such patterns and developmental processes remains
central to comprehending phenotypic transformations and is thus
key to evolutionary biology in general [66-69]. Mathematical and
computational modeling are playing a key role in the study of these
central aspects of evolutionary developmental biology, as they (i)
provide ways to uncover functional modules that are necessary and
sufficient for developmental processes to occur, and (ii) can then be
used to test how genetic or other kinds of variation in these mod-
ules that render new phenotypes. Pursuing this type of study could
indeed shed light on the problem of the origin of morphological
themes in plant and animals, this is, on the origin of structures that
are observed in several lineages and that remain unchanged under
awide range of environmental conditions. Moreover, such research
could help account for the origin of variations of these themes and
morphogenetic novelties.

Modeling has proven particularly useful in the study of plant
morphogenetic themes, specifically that of flower organ specifica-
tion and arrangement. As reviewed above, theoretical efforts based
on a vast set of experimental data resulted in the formulation of a
functional module that includes the ABC genes and underlies cell-
fate determination during early flower development. Furthermore,
a morphogenetic model that could account for the spatiotemporal
patterns that characterize flower organ arrangement is now being
developed. We are starting to understand how the collective action
of ABC genes, other genes and non-genetic factors give rise to the
robust flower development theme. It is now possible to perform
joint theoretical and experimental work aimed at exploring the
variations that could underlie diversification and the generation
of novelties throughout flower evolution.
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Chapter 1
Gene Regulatory Models for Plant Development
and Evolution

E.R. Alvarez-Buylla, M. Benitez, M. Aldana, G.J. Escalera-Santos, A. Chaos,
P. Padilla-Longoria, and R. Verduzco-Vazquez

1.1 Introduction: the Need for Mathematical Models
to Understand Plant Development

During development, complex interactions amongst genelic and non-genetic ele-
ments give rise to robust spatiotemporal patterns. Moreover. an important feature of
biological systems is the nontrivial flow of information at several scales. When we
consider the scale determined by the cell, we observe that it integrates information
coming from gene regulatory networks (GRNs), biochemical pathways, and other
microscopic processes. If we consider larger scales, then intercellular communica-
tion, mechanical and geometric effects (such as growth, shape, and size), and
environmental influences have to be taken into account. This is why understanding
how patterns arise during development requires the use of formal dynamicul
models able to follow the concerted action of so many elements at different
spatiotemporal scales.
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The fact that biological entities and scales often interact nonlinearly makes
mathematical modeling of biological systems. and in particulir of gene regulatory
networks, a nontrivial problem. From the mathematical point of view, the incor-
poration of all these interactions can be taken into account only by implementing
hybrid models, that is, by incorporating both discrete and continuous elements, as
well as deterministic and stochastic frameworks. In fact, depending on the specific
space-lime scale at which a process is being observed. it might appear discrete or
continuous, deterministic or random. For instance, the levels of gene expression
might be taken as discrete (the gene is “on™ or “of ™) when seen at rough space-time
scales, but when observed with a finer gauge, these levels appear as continuously
varying.

Mathematical models of GRNs provide an integrative tool. a systematic way of
pulting together and interpreting experimental information about the concerted
action of gene activity. They also offer new insights on the mechanisms underlying
biological processes, in particular developmental ones, as well as a means to make
informed predictions on the behavior of such complex systems.

1.2 Dynamic GRN Models

Today. one of the most important challenges in systems biology is to relate the gene
expression pattems of an organism with its observed phenotypic traits. Since these
patterns result from the mutual activation and inhibition of all the genes in the
genome in a coordinated way, the above problem is equivalent (o relating the
dynamical properties of the underlying genetic network with the organism’s pheno-
type (Hasty el al. 2001; Levine and Tjian 2003). In order to achieve this goal, one
must decide first how to model the dynamics of the genetic network.

Amongst the several theoretical approaches that have been proposed to maodel
the genetic dynamics. two stand out, namely. the centinuons and the discrete
(Smolen et al. 2000; Bower and Bolouri 2001). The continuous approach is based
on systems of coupled nonlinear differential equations that describe the temporal
evolution of the concentration of the chemicals involved in the gene regulation
processes (profeins. enzymes, transcription factors, metabolites). This description is
particularly suitable when the systems under consideration consist of a small
number of components (Arkin et al. 1998; Vilar et al. 2003). However. large-
scale genome analysis has revealed that the coordinated expression of dozens, or
even hundreds of genes is required for many cellular processes to oceur, such as cell
division or cell differentiation (Whitfield et al. 1992: Rustici et al. 2004), For such
processes, the continuous approach becomes intructable due 1o the great number of
components and equations involved.

The discrete approach to model the dynamics of genetic networks was first
introduced by Kauffman to describe, in a qualitative way. the processes of gene
regulation and cell differentiation (Kauffman 1969). This approach focuses on the
state of expression of the genes, rather than on the concentration of their products.
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Thus, the level of expression of a given gene is represented by a discrete variable
¢ that usually takes the values g=0if the gene is not expressed, and g=1 if the gene
is fully expressed. The genome is considered then as a set of N discrete variables,
24 B2v ...« 2p, their values changing in time according to:

galt+ 1) = Fp[gn, (0). gs(0) - g, (1)) (1.1)

In this equation, (g, . €. - . - . g, ) are the k, regulators of the gene g,,. and F, is a
discrete function (also known as a logical rule) constructed according to the nature
of the regulators. The advantage of the discrete model is that it can incorporate a
much larger number of components than the continuous models. Furthermore.
recent work shows evidence that, in spite of the simplicity of the discrete approach,
it is able to reproduce the gene expression patterns observed in several organisms
{Huang and Ingber 2000; Mendoza and Alvarez-Buylla 2000; Albert and Othmer
2002; Espinosa-Soto et al. 2004: Davidich and Bornholdt 2008), This evidence has
been obtained for relatively small genetic networks for which both the regulators
and the logical rules are known for each pene,

Accumulated data on molecular genetics and current high-throughput technology
(see next section) have made available a great amount of data regarding GRNs, yet
information for all the regulators and logical rules in entire genomes is not available
vel for any organism. Nonetheless, it is important to emphasize that, for the small
genetic modules or sub-networks that have been thoroughly documented experi-
mentally, the discrete approach gives accurate predictions.

Arguably, one of the most important results of the discrete model is the existence
of dynamical attractors. Starting out from an initial state [g,(0),g2(0).. . . ,g5(0}] in
which some genes are active and some others inactive. Eq. (1.1) generates dynam-
ics in which each gene goes through a transient series of active/inactive states until
the whole network enters into a periodic pattern of expression (Fig. 1.1). Some
genes reach a constant value that does not change in time anymore, whereas some
others keep “blinking™ in a periodic way. This periodic state of expression of the
entire network is the dynamical attractor, The set of all the possible initial states that
after a transient time fall into the same attractor is called the basin of attraction of
that attractor. Each attractor is uniquely identified by its set of active genes. In other
words, particular sets of genes are expressed in different attractors, and this is
precisely the characteristic that identifies the different functional states ol the cell.
For this reason, Kauffman formulated the hypothesis—confirmed experimentally—
that the dynamical attractors of the genetic network correspond to the different cell
types or cell fates observed in the organism.

Since the level of expression of each gene is discretized into a finite number of
values. the total number, £, of dynamical states in which the network can be found
is also fimite, and is given by € = I—['I_i m,,, where m,, is the number of discrete
values that g, can acquire. Under Eq. (1.1). the dynamical space of the network (i.e.,
the possible £ states) is partitioned into disjoint sets consisting of the attractors and
their corresponding basins of attraction (Fig. 1.1), This structure of the dynamical
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Fig. 1.1 Auractors and auractor basin in o GRN. (a) Visual representation of the dynamical
attractors of a genetic network, Each square represents a gene, in gray il it is expressed, and in

lack if it is nol. The genes are lined up honzontally so that each row represents the state of

expression of the entire genome at a given time, Time flows downward. After o (ransient time
(indicated with a vertical fine), the whole network reaches a periodic patiern of expression, which
is the dynamical attractor. As shown, two different initial states (the uppermost rows) can lead to
different attractors. The attractor on the left has period six. whereas the atiractor on the right
consists of only one state. (h) Visual representation of the attractor landscape for a randomly
constructed network with A= 12 genes. Each dor represents a dynamical state of the network (ie.,
one of the rows in a), and the ites represent discrete time sieps. Two dots are connected if they are
successive states under the dynamics given by Eq. (1.1). The fan-like structures reflect the fact that
many states can have the same successor in time (the dynamics are dissipative). The arrows
ir1tliéalc the direction of the dynamical flow, In this particular example, the state-space of possible
dynamical states organizes into four disjoint sets consisting of the attractors and their respective
basins of altraction
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space is called the atrractor landscape, and constilutes a representation of the
epigenelic landscape conceived by Waddington (1957) to qualitatively understand
the different functional states of the cell. It has been shown recently for several
cases that many important phenotypic traits of the organism, such as the cell type or
the cell cycle, are encoded in the entire attractor landscape.

1.3 Inference of GRN Topology from Microarray
Experiments

GRN architecture inference is the process by means of which information on the
regulators is obtained from experimental data. [n some cases. network structure has
been inferred from thorough data of molecular genetics experiments, enabling
novel insights and predictions for particular developmental systems (Mendoza
and Alvarez-Buylla 2000; Albert and Othmer 2002: Espinosa-Solo et al. 2004),
Nevertheless, the current available technology enables the generation of large sets
of genomic information. commonly acquired from microarray experiments. This
experimental technique allows observing the expression pattern of a set of genes at
different sample points in time or under different experimental conditions, and has
generated a vast data base.

Although powerful, microarray experiments and their data have two difficulties.
First, an enormaus number of experiments are necessary in order o conlidently
infer all the logical rules in a given genome. Second, the data obtained are very
noisy, which is why uncovering structural or dynamic information is anything but
trivial. We briefly introduce some of methods and approaches that have addressed
the need of formal frameworks in this area.

Reverse engineering is the process of discovering the functional principles of a
device, object, or system through analysis of its structure, function, or operation. In
the context of GRNs, it constitutes the process of network structure inference from
the analysis of experimental data on gene expression under diverse conditions.
often derived from microarray experiments. Despite the particular method o be
used 10 analyze microarray data, the overall goal of GRN reverse engineering is (o
find mathematical evidence supporting the proposition of an interaction between
the nodes of the network,

Two main classes of methods have been proposed to infer GRN architectures via
reverse engineering methods, The first class relies on probability theory, and its
objective is to find the most probable network architecture given a genetic expres-
sion pattern, or to quantify the existent correlation between pairs of genes. Bayesian
networks, both traditional and their dynamic variant, fall into the first approach,
while mutual information methods fall into the second one. The second class of
methods is based on continuous analysis. It involves ordinary differential equations
(ODEs). and is supported by the theory and methods from stability analysis of
dynamic systems.
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1.3.1 Bayesian Networks

A Bayesian network is an aeyelic graph of a joint probability distribution where the
nodes are the random variables, and the directed edges are causal influences.
Bayesian network models have proven 1o be useful to infer a GRN structure
(Imoto e al, 2002). However. one of the major drawbacks of traditional Bayesian
models is that, by definition, cycles cannot be found, and cycles or feedback loops
constitute a very important feature of biological GRNs. However, dynamical
Bayesiun network models (Kim et al. 2003) allow both the inclusion of cycles
and the representation of a different temporal behavior for each gene of the
network. and offer a promising alternative for reverse engineering of GRNs.

1.3.2  Mutual Information

Mutual information is @ technique that allows inferring GRN architecture with
more general criterion than that of the more common statistical methods, which
focus mainly on linear correlations, as it enables consideration of any functional
relationship (see review in Steuer et al. 2002). Despite the advantage ol being
rooted in a well-known probabilistic framework, these methods are computational-
lv intensive, due to the high amount of nodes, and the estimation of the unknown
temporal delays for each node, which has to be approximated, thus limiting the
possibility of studying GRNs composed of a large number of nodes,

1.3.3  Continuous Analysis Models

These methods consider a network of # genes as a system of ODEs where the
change in the level of expression of gene i is denoted as (x;). and its dynamic is
described as:

L—E—' = fi{xp, X2y ) FOri=(1,2,....7) (1.2)
Thus. the influence that node x; inflicts on node x; is obtained by computing the
partial derivative of f; with respect to x;. Moreaver. the sign of each of these partial
derivatives determines whether the interaction between a couple of nodes corre-
sponds to up- or downregulation. The set of all so-defined partial derivatives
constitutes the Jacobian matrix of the system, and hence. the GRN architecture is
obtained as a graphical representation of the signs of the elements of the Jacobian
matrix (Aguda and Goryachev 2007). An alternative method 1o compute the sign of
these derivatives consists of perturbing each f] (see Kholodenko et al. 2002; Sontag
et al. 2004: Andrec et al. 2005). In fact, near a steady state, both the perturbation and
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the Jacobian matrix methods are theoretically equivalent, and thus yield the same
results.

A slightly different approach is suggested by Cho et al. (2006), In this method, each
column of a matrix represents the expression profile of gene j at times . o, ... 1.
This may be regarded as a set of measuremenis of a random variable x,. Each
time series v; is then plotted in a phase portrait against each and every x; such that
Jj#i. In this case, the direction of the inmeraction is given by a winding index W1 and
the type of interaction by a slope index SI. For instance, considering a two-node
network with components v, and vy whose time-series expression profiles are
measured at k even sampling points, ST and W1 of v, and x» are given by:

: = xali 4 1) = xa(d)]
SI{xy,x3) = —— sion | —— :
W) =2 ;“"*”[.qn~ = .r,mJ (1.3)
e
WI{x.x2) = z.sr';m [d(1)] (1.4)
= =l

where

) i+ 1) (i +2)
d(i) = det| xalf) xali+1) xali+2) (1.5)
| | |

There are still very few examples of successful applications of these methods of
reverse engineering to plant data (cl. review in Alvarez-Buylla et al. 2007). In
contrast. dynamic GRN models grounded on detailed molecular genetic plant data
have been successful at reproducing observed patterns of gene expression.
We, therefore, focus here on such an approach for small sub-networks of plant
development.

1.4 GRN Models for Modules of Plant Development

Dynamic network models have been recently used to study plant development,
since they are able to capture important aspects of biological complexity. Further-
more, these models integrate empirical evidence, and thus provide a useful tool for
novel hypothesis testing by detecting missing or contradictory data, generating
predictions, and delimiting future experiments. As mentioned above. most of
such models have been based on relatively small and thoroughly described sub-
networks associated to 4 particular developmental process. This has enabled a
rather direct interpretation of the model results, and a more profound understanding
of certain aspects of development.
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1.4.1 Single-Cell Gene Regulatory Network Models: the Case
of Arabidopsis Flower Organ Primordial Cell Specification

In plants. the flower is the most complex and well-studied structure from a deve-
lopmental perspective. It characterizes angiosperms or flowering plant species, and
exhibits a stereotypical conserved structure in the great majority of Howering plant
species (Rudall 1987), Early during flower development. the bud or flower meristem
is partitioned into four concentric regions, each one comprising the primordia that
will eventually form mature floral organs. Floral organs appear from the outermost
to the inner part of the plant in the sequence sepals, petals, stamens, and carpels.

There is a great amount of detailed and high-quality data for the molecular
interactions that regulate lower development. In fact, on the base of these data,
a now classical model of flower development has been proposed, namely, the
“ABC" model. This model establishes that the combinatorial activities of genes
grouped in three types or functions (A type. A type, and C type) are needed to
specify floral organs. A genes alone are needed for sepal identity, A+8 for petal.
B+C for stamen, and C alone for carpel identity (Coen and Meyerowitz 1991).

A GRN Boolean model grounded on experimental data (Mendoza and Alvarez-
Buylla 1998; Mendoza et al. 1999: Espinosa-Soto et al. 2004; Chaos et al. 2006)
recovers the profiles of gene activation that characterize primordial sepal, petal,
stamen, and carpel cells during early Arabidopsis thaliana (L.) Heynh. flower
development (Fig. 1.2). This was the first published Boolean GRN model that
was validated with experimental data. and generated testable predictions. Since
then, other systems have been studied with the sume approach.

The results of the floral GRN model coincide with the ABC model. but also
provide a dynamic explanation for the robust attainment of the combinatorial gene
activations involved in floral organ determination. In addition, this GRN model
enabled hypotheses on the sufficiency and necessity of particular gene regulatory
interactions among the ABC and other genes. Computer simulations of this flower
GRN also show that its attractors are robust to random perturbations on the logical
rules (Espinosa-Soto et al, 2004; Chaos et al. 2006), hinting on an explanation for
the evolutionary conservation of flower structure. In conclusion, this model incor-
porates the key components of the GRN underlying the ABC model, and provides a
dynamical explanation for cell type determination in flower buds.

1.4.2 Spatiotemporal Models of Coupled GRN Dynamics

The models presented above are useful o explore cell-fate attainment in isolated
cells. However, in order to understand the emergence of spatiotemporal cell
patterns during development, models that couple such single-cell GRN models in
explicit spatial domains are needed.

Mosl models addressing the origin of cellular patterns consider “toy networks™,
or dismiss intracellular GRN topology altogether, and provide only mesoscopic

1 Gene Regulatory Maodels for Plant Development and Evolution i

Fig. 1.2 Gene regulatory network underlying cell type determination during early flower devel-
opment in Arwbidopsis. (a) Mature flower showing the four floral organs: sepals. petals, stamens,
and carpels. (h) The GRN depicted here underlies the atainment of the primordial cellular
identities during flower development. Nodes represent genes, and edges denote regulatory inter-
actions among them (arrows correspond 1o positive regulation, “flar arrows™ 1o negative reguli-
tion). (e) The GRN represented in b attains steady states that match the gene activation profiles
characteristic of the Tour primordial cell types. {n a schematic landscape, cach cell type corre-
sponds 10 a local minimum, and is associated 10 a particular GRN configuration (nodes in whire are
“ofT”, those in gray are “on”, and those in black may be in either of the two states)
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models of morphogenctic dynamics, while the majority of experimentally grounded
GRN models ignore cellular-scale interactions. Therefore, one of the challenges
remaining today is to achieve multi-scale models, most likely by the postulation of
hybrid models that integrate GRNs in cellular contexts,

During plant development, cells commit to a certain fate according mainly to
their position in a region of the plant, rather than in relation to their cellular lincage
as is the case in most animal systems (Scheres 2001). Hence. understanding how
positional information is generated and maintained comprises a paramount task for
developmental biology. GRN dynamics, geometry of the domain, mechanical
restrictions. and hormonal and environmental factors all play relevant roles in this
process. Below we present iwo developmental models that partially incorporate
some of these aspects.

The GRNs responsible for cell type determination in the leaf and root epidermis
of A, thaliena have been thoroughly described, and provide an excellent system for
addressing the origin of cellular patterning during development. It has been sug-
gested that this network may behave qualitatively as an activator-inhibitor system
(Pesch and Hiilskamp 2004), which is able 1o generate stable complex patterns
de novo. This has been further explored with the use of a dyvnamic spatial model
(Benitez et al. 2007). In this approach, the authors first used a discrete GRN model,
and found that its attractors maich two epidermal cell types, corresponding 1o hair
and non-hair cells. Then. the authors simulated a simplitied version of the network
in a spatial domain, and provided evidence supporting that leaf and root GRNs,
although slightly different, are qualitatively equivalent in their dynamics. This
study also showed that cell shape may have a relevant role during cell pattern
formation in the root epidermis. '

Another model that considers 2 GRN in a spatial domain is that proposed by
Jonsson et al. (2005), in which the authors used in vivo gene expression data to
simulate a cellularized template incorporating a relatively small GRN. This GRN,
which includes the gene WUSCHEL (WUS), seems to regulate the meristem’s size
and maintenance, and was modeled with the use of the so-called connectionist
model (Mjolsness et al. 1991). By doing this, the authors postulated a mechanism
that could underlie the spatial gene expression pattern of WUSCHEL (WUS) in the
A, thaliana shoot apical meristem, and provided a useful experimental and compu-
tational platform to improve developmental models. Recently, several platforms
helpful for integrating GRNs in a cellularized domain and modeling plant develop-
ment have been proposed (Holloway and Harrison 2007; Buck-Sorlin et al. 2008;
Dupuy et al. 2008). These will be useful for further models of coupled GRNs.

1.4.3  Auxin Transport Is Sufficient to Generate Morphogenetic
Shoot and Root Patterns

Morphogene gradients are the key for pattern formation. In plants, auxin is
a hormone that provides important positional information during A. thaliana
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development (Vieten et al. 2007). Recently, some mesoscopic models for
auxin-driven pattern formation in the shoot and root have integrated the accu-
mulated experimental evidence, and contributed to the understanding of these
syslems.

In the growing A. thaliana shoot, new leaves and flower primordia emerge at
defined positions along the flanks of the shoot apical meristem. Primordia pattern-
ing, and therefore phyllotactic arrangements, seem to be determined by auxin peaks
that determine site or primordia initiation and activation. On the base of empirical
data, Jonsson e al, (2006) suggested a mechanism in which this plant hormone
influences its own polarized flux within the shoot apical meristem by directing
localization of its own transporters (PIN and AUX proteins). The mathematical
maodel for auxin transport proposed by Jonsson et al. (2006) recovered peaks of
auxin concentration at positions where actual new primordia emerge. Their
cell-based model revealed that the auxin feedback loop, in which the hormone
regulates its own transport, is sufficient 1o generate the regular spatial patterning of
primordia.

The above model is able 10 generate the complex phyllotactic patterns observed
in plants under different parameters. However, in contrast to what has been observed
in a great majority of plants, the patterns generated by this model are not stable. We
hypothesize that the stability of observed phyllotactic patterns may depend upon the
complex GRNs that underlie PIN, AUX. and other protein regulation.

A recent paper (Gricneisen et al. 2007) proposed a computational model
that addresses the generation of a robust and information-rich auxin pattern in
AL thaliana roots. This model assumes certain internal distribution of the PIN
auxin transport facilitators, and incorporates diffusion and permeability, as well
as the A. thaliana root structure. Interestingly, the patterns recovered by this root
model are robust to alterations on several parameters, as well as to cell division and
expansion. Given the PIN layout in the root, the model is useful to explain the
phenotypes of pin loss-of-function mutants, and also accounts for slow changes in
root zonation (meristematic and elongation zones) when feedback from cell divi-
sion and expansion are introduced, According to this work, the auxin pattern
depends on a capacitor-like mechanism that may buffer the absence of auxin
from the shoot, or auxin leakage and decay.

The study of Griencisen et al. (2007) is a wonderful example of how a mathe-
matical and computational model can be useful 1o provide explanations aboul
developmental mechanisms and patterns, and to generate novel hypotheses that
can be tested experimentally. Yet, this model stands on the assumption that the
auxin transporters maintain a fixed polarized distribution within the cell. Since it
has been shown that the transporters” localization is affected by the auxin flux itself,
a more general model should incorporate a dynamic mechunism for the mutual
regulation ol transporter position and auxin fux.

Both models show that transport-dependent auxin gradients constitute a power-
ful mechanism to generate developmental information, and will certainly provide a
solid base 1o incorporate the genetics of PIN distribution, as well as the role of other
components of plant morphogenesis.
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1.4.4 Signal Transduction Models

In living organisms, GRNs are often interacting with other sub-networks, or with
signaling pathways that act as an input to GRNs, This is particularly clear in plants—
being sessile, they respond 1o environmental challenges by plastic developmental
responses. Signaling pathways frequently integrate environmental cues, and are the
key for developmental plasticity. These pathways are usually hierarchical, and in a
first approximation may be represented as cascade processes. However, these path-

iays often show complex dynamics. e.g.. oscillations and chaos, and crosstalk
among them seems o be the rule in plants, which is why dynamical models will
certainly be useful for a better understanding of these processes. Some recent models
aim at simulating the dynamics of pathways in plants. plastic processes of develop-
ment, and the coupled dynamics of pathways and GRNs.

Diaz and Alvarez-Buylla (2006) proposed a continuous model that endeavors at
studying the signaling pathway associated to the hormone ethylene in A. thaliana.
as well as the effect of different ethylene concentrations on downstream transcrip-
tion factors. This model predicts dose-dependent gene activity curves that are
congruent with the dose-dependent observed phenotypes, and interestingly. it also
leads to the prediction that signaling pathways may filter certain stochastic or rapid
fluctuations of hormone concentration.

Also focusing on the dynamics of plant hormones is the model presented by
Liet al. (2006). Their model consists of a Boolean network approach that integrates
the great amount of experimental findings related to the abscisic acid pathway, and
stomata opening and closure dynamics. Such a model is able to predict and test
network alterations leading to qualitative changes in the behavior of stomata.
Models like this contribute to a better understanding of plant physiology, as well
as 1o the development of better techniques for crop management.

As mentioned above, cell type determination in the A, thaliana epidermis has
heen thoroughly studied, and it has been found that root hair arrangement is plastic
with respect 1o nutrient availability, Savage and Schmidt (2008) present a hypothe-
sis that is congruent with available molecular and physiological data, and that
attempts to account for root hair arrangement in a context of developmental
plasticity. The mechanism they postulate and simulate relies on a well-known
Turing-like patterning mechanism, and remains to be tested experimentally, This
is an example of how computational models of plant development may lead to, or
eventually support. precise and novel non-intuitive hypotheses.

1.5 The Constructive Role of Stochasticity in GRN
and Other Complex Biological Systems

All the above models are deterministic. Historically, noise has been considered as a
nuisance, and efforts to control or minimize it have been undertaken. However, the
pioneering works of Benzi et al. (1981) and Nicolis (1981, 1982) changed this
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perspective, as they showed that noise may play an important role in the appearance
of patterns in complex systems.

Benzi et al. (1981) introduced the concept of stochastic resonance (SR) for
processes, in which the presence of random fluctuations (noise) amplifies the effects
of a weak deterministic signal (Gammaitoni et al. 1998), More recently, the number
of studies addressing the interaction of noise and deterministic signals in complex
systems has increased (Gang et al, 1993; Pikovsky and Kurths 1997; Russell et al.
1999), and numerous new constructive roles of noise have been acknowledged in
diverse natural processes.

Noise is ubiquitous in genelic processes (Rao et al. 2002; Blake et al. 2003;
Paulsson 2004; Cai et al. 2006). It can arise from at least two different sources in
cells. First, statistical fluctuations from a finite number of molecules make the
transcriptional and trunslational processes intrinsically stochastic (Blake et al.
2003). Second, small variations in temperature and environmental perturbations
provide the source for extracellular noise. It appears that GRNs are not only robusl
to stochastic fluctuations, but in some cases they incorporate noise in a constructive
way (Wang et al. 2007). Most studies of this phenomenon have documented noise-
enhanced heterogeneity (Rao et al, 2002), which has been proposed as a means for
improving sensitivity of intracellular regulation to external signals (Paulsson et al.
2000). A related phenomenon is noise-induced selection of attractors (Kaneko
1998; Kraut et al. 1999), which enables dynamical switching 1o multistability in
systems that are deterministically monostable.

In the context of developmental biology, it has been postulated that cell-fate
differentiation can be driven by noise (Huang and Ingber 2007). Therefore,
considering noise in dynamic models could be important for analyzing the
spatiotemporal sequence with which cell fates are determined during develop-
ment. For instance. GRNs that underlie cell determination could be viewed as
a stochastic dynamical system (Davidson et al. 2002). This approach rescues
the original proposal of an epigenctic landscape explored by random pertur-
bations (Waddington 1957) as a metaphor for understanding the dynamical
patterns of transitions among different functional states of the cell during
development.

1.6 GRN Structure and Evolution

Besides the use of GRNs for understanding the development of extant organ-
isms, such models are uselul for exploring hypotheses on organismal evolution.
A particularly interesting phenomenon recently reported is that, after the dupli-
cation and divergence (through mutations) of a single gene in a network, new
attractors can appear (Aldana et al. 2007). Thus, not only can the duplicated and
diverged gene acquire a new function (Li and Graur 1991), e.g., a new signaling
molecule or structural protein, but also the entire genetic network can develop
new phenotypes and functional states. Attractors of GRNs can be interpreted as
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characters. cell types, or functions (Huang and Ingher 2000; Espinosa-Soto et al.
2004: Huang et al, 2005), and the number of these affect the possibilities 1o
evolve and adapt. Thus, the emergence of new attractors allows for the possi-
bility of evolving, constituting the raw material upon which natural selection
could act.

A second possibility for GRN evolution is the integration of two networks in a
way similar to that of an engineer working with capacitors, transistors, and other
modular elements. These are combined in various ways 1o create new devices. This
evolutionary process may occur by duplicating the whole network, or by linking
two or more independent networks, each one with a particular set of functions. In
this way. both networks can continue to yield their original functions, but the
interaction between them can originate new functions,

In the different types of GRNs, and thus organismal evolution. particular restric-
tions operate, Under the second one (network coupling), the resulting network mus!
maintain its original attractors, or at least most of them. If the original attractors
were eliminated, it would be very difficult for the organism to survive, because its
phenotype would be drastically affected. This mechanism could underlic key
evolutionary events—for example, the appearance of eukaryotic cells from the
combination of prokaryotic cells. or that of multicellularity from combining uni-
cellular organisms (Margulis and Sagan 1986). Indeed, multicellular organisms are
ensembles of complex networks that could have originally underlied single-celled
organisms. Therefore, methods enabling the dissection of large networks into sub-
networks or modules that have a shared history will be useful to understanding the
evolution of large and complex GRNs.

Biological networks are modular and composed of some reiterating sub-
graphs, but little is known about the evolutionary origin of such components or
GRN building blocks. Several contributions on modularity have attempted 1o
understand the connectivity, topology, synchronization, and organization of mod-
ules (Ravasz et al. 2002: Kashtan and Alon 2005; Quayle and Bullock 2006;
Arenas et al. 2006; Irons and Monk 2007; Wang and Zhang 2007: Sicgal et al.
2007). For instance, initial approaches to understanding how networks are locally
connected have identified certain types ol sub-graphs, called motifs, with a
particular connection pattern. The simplest motils are of three nodes. If the graphs
are directed, there are 13 different motifs or connective configurations of three
nodes. The relative abundance of these motifs in real networks is not random:
different types of networks have dilferent motifs over- or underrepresented (Milo
etal. 2004).

Such molif representation patterns may have been selected for, or maybe have
resulted as a byproduct of the way networks are assembled—in other words, as a
result of neutral processes (Solé and Valverde 2006). Evidence to support both
cases exists, and therefore it is still unclear why some motifs are more, or less,
common than others. Nevertheless, understunding how biological networks have
assembled during the course of evolution is fundamental to comprehend how
changes in GRNs map unto evolutionary alterations of developmental processes,
and therefore, unto organismal phenotypes.
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1.7 Conclusions

Mathematical models grounded on experimental data are now both possible and
necessary in order 1o study the concerted action of the many entities that, at several
spatiotemporal scales, intervene during development. Plants are becoming paradig-
matic systems to meet the challenge of building these models.

We have reviewed two widely used types of models, discrete and continuous.
Nevertheless, the central task of considering the various levels at which develop-
mental processes oceur in integrative and realistic models still remains ahead, and it
is likely that hybrid models will be needed. So far. dynamical models, and more
precisely, gene regulatory network models have provided a powerful means to
integrate vast empirical information, test or postulate hypotheses and predictions,
and reach novel insights on the nature and evolution of plant developmental
processes. Such models will certainly continue to be useful tools as feedback 1o
and from experimentul approaches in plant developmental biology.
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Apéndice J

Flower Development

Publicado por la American Society of Plant Biologists en el libro The Ara-
bidops Book, 2010.
Nota: Por razones de espacio, se incluyen iinicamente la caratula de este capitu-
lo y la seccién de modelos matematicos del mismo.
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Flowers are the most complex structures of plants. Studies of Arabidopsis thaliana, which has typical eudicot flowers,
have been fundamental in advancing the structural and molecular understanding of flower development. The main pro-
cesses and stages of Arabidopsis flower development are summarized to provide a framework in which to interpret the
detailed molecular genetic studies of genes assigned functions during flower development and is extended to recent
genomics studies uncovering the key regulatory modules involved. Computational models have been used to study
the concerted action and dynamics of the gene regulatory module that underlies patterning of the Arabidopsis inflores-
cence meristem and specification of the primordial cell types during early stages of flower development. This includes
the gene combinations that specify sepal, petal, stamen and carpel identity, and genes that interact with them. As a dy-
namic gene regulatory network this module has been shown to converge to stable multigenic profiles that depend upon
the overall network topology and are thus robust, which can explain the canalization of flower organ determination and
the overall conservation of the basic flower plan among eudicots. Comparative and evolutionary approaches derived

from Arabidopsis studies pave the way to studying the molecular basis of diverse floral morphologies.

1. INTRODUCTION: WHEN DID THE FLOWER EVOLVE?

The flower is the most complex structure of plants. Flowers distin-
guish the most recently diverged plant lineage, the angiosperms
or flowering plants, from the other land plants (Figure 1). Embryo-
phytes originated approximately 450 million years before present
(MYBP) and have as distinctive features a thick cuticle resistant
to desiccation, sporopollenin, pores or true stomata that aid in
gas exchange, a glycolate oxidase system that improves carbon
fixation at high oxygen tensions, and importantly, distinctive mul-
ticellular diploid (sporophytic) and haploid (gametophytic) stages
within their life cycles (Judd et al., 2002). The major extant land
plant lineages are Bryophytes (Liverworts, Hornworts and Moss-
es), which do not have a vascular system, and Tracheophytes,
vascular plants. Within the large latter group, Lycophytes, ferns,
and seed bearing plants (Spermatophytes) can be distinguished.

The Spermatophyte group has been further divided into Gymno-
sperms (originating 380-325 MYBP) and Angiosperms. Accord-
ing to the fossil record, flower-like structures originated 160-147
MYBP (Frohlich, 2006). A general trend within land plant evolution
is the appearance of heterospory: the existence of a megaga-
metophyte, including the female gametes, and a microgameto-
phyte, including the male gametes, a progressive reduction in
gametophyte size (sexual reproductive structures), and within
the seed plants, the presence of a diploid embryo. While these
characteristics are shared among both extant and extinct seed
plant lineages, the defining features of the angiosperm flower are:
(1) a closed carpel bearing the ovules, which are each generally
comprised of two integuments and (2) a nucellus that contains the
embryo sac within which, after double fertilization, a diploid em-
bryo and a triploid endosperm (nutritional tissue for the embryo)
will develop to form a seed (Judd et al., 2002). Another character-



3.4.7 Nectaries

Little is known about the molecular genetics of nectary develop-
ment. It is clear that nectaries are ABC-independent because ap2-2
pi-1 ag-1 triple mutant flowers develop nectaries, although in these
mutants nectaries are clearly smaller. However, ABC genes may
play a role in nectary patterning as pi-1 ag-1 and ap3-3 ag-3double
mutants lack them (Baum et al., 2001). Also, single mutant /fy and
ufo plants show reduced nectary formation (Lee et al., 2005a).

Several genes have been found to be expressed in the nec-
taries (e.g., SHP1, ALC, SPL, MS35 and XAL1), but no detect-
able defect is observed in their respective mutants (Figure 5G;
Schiefthaler et al., 1999; Roeder and Yanofsky, 2006; Yang et al.,
2007b; Tapia-Lopez et al., 2008). The only gene that has been
clearly related to nectary development is CRC, which is also im-
portant for gynoecial development (Alvarez and Smyth, 1999;
Bowman and Smyth, 1999). The regulation of CRC in the nectar-
ies seems to be independent of its expression in the gynoecium.
Expression of this gene is already detectable at stage 6 of flow-
er development in the area where the nectaries will be formed.
Thus, CRC may be important for the early specification of nectary
cells (Bowman and Smyth, 1999). CRC may also be necessary
for maturation or maintenance of the nectaries, because it is ex-
pressed at high levels when they develop (Bowman and Smyth,
1999) and crc mutants have defects in nectary development. But
CRCi s not sufficient for nectary development, because its ectopic
expression does not yield ectopic nectaries (Lee et al., 2005b).
Bioinformatic and functional molecular genetic approaches have
been taken to discover components of the regulatory network in
which CRC participates during nectary and carpel development.
A combination of floral homeotic gene activities acting redundant-
ly with each other, involving AP3, Pl and, AG and in combina-
tion with SEP proteins, activate CRC in both organs (Lee et al,,
2005a). Interestingly in another study, CRC was also found to be
a direct target gene of AG (Gémez-Mena et al., 2005) and to be
indirectly regulated by LFY and UFO (Lee et al., 2005a). A model
has been proposed in which LFY and UFO activate downstream
MADS-box genes which could be working in conjunction with
region-specific factors to activate CRC during nectary and carpel
development (Lee et al., 2005a).

Evolutionary studies have indicated that the CRC gene may
have been recruited as a regulator of nectary development in the
core eudicot plant lineage, but its ancestral function could have
been related to carpel development (Lee et al., 2005b).

4. THEORETICAL MODELS: INTEGRATIVE AND DYNAMIC
TOOLS FOR UNDERSTANDING FLOWER DEVELOPMENT

As shown throughout this chapter, morphogenetic patterns under-
lying flower development arise from complex, often non-additive,
interactions among several molecular and other kinds of compo-
nents (e.g., cells) and factors (e.g., morphogen gradients, physi-
cal and geometrical constraints) at different levels of organization.
Dynamical models can be used to study the concerted action of
many elements at different spatio-temporal scales and levels of
organization; an approach which is becoming both necessary
and possible for understanding how morphogenetic patterns
emerge and are maintained during development in general, and
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in particular, in flower development (for reviews Alvarez-Buylla et
al., 2007; Grieneisen and Scheres, 2009). At the level of GRN,
mathematical and computational models provide useful tools for
integrating and interpreting molecular genetic information, or for
detecting gaps and contradictions in the evidence for particular
functional regulatory modules. At other levels, two or three-di-
mensional morphogenetic models of coupled GRNs within cells
or among cells are useful for understanding spatiotemporal cell
patterning in individual organs and overall plant architecture; and
this enables novel insights into the mechanisms underlying de-
velopmental processes to be made. Such morphogenetic models
are also a way of posing informed non-trivial predictions, testing
hypotheses, uncovering potentially generic mechanisms under-
lying conserved features, and performing in silico investigations
that guide novel experiments in biological development.

As the amount of experimental evidence increases and novel
theoretical approaches and techniques develop, there continue
to arise experimentally-grounded models of development and
theoretical tools useful in posing predictions amenable to further
experimental testing. These advances contribute to discussions
of central issues in developmental and evolutionary biology (e.g.,
Kauffman, 1969; Berg et al., 2004; Milo et al., 2004; Wagner, 2005;
Alvarez-Buylla et al., 2007; Balleza et al., 2008). In Arabidopsis,
early flower development has been studied using dynamic gene
regulatory network (GRN) models. Such models have helped
capture the logic of gene regulation, mostly at the transcriptional
level, during cell-type specification in various systems (e.g. von
Dassow et al., 2000; Espinosa-Soto et al., 2004; Huang and Ing-
ber, 2006; Li et al., 2006; Benitez et al., 2008). In this section we
focus on this modeling approach and present some of the main
results derived from network modeling in flower development.

4.1 Gene Regulatory Network Models

In this section we review some central notions in GRN theory
and the main assumptions that are made and present some of
the main results derived from network modeling in flower devel-
opment. GRN models are composed of nodes, which stand for
genes or proteins, and edges or connections, which represent
the interactions among nodes (arrows for upregulation and bars
for downregulation; for an example see Figure 20). Genes in the
GRN model may take different activation states, depending on
the activation states of their inputs. Given the architecture of the
network and the sign of the interactions, it is possible to define
a set of rules or kinetic functions that govern the GRN dynam-
ics, that is, the way activation states of the genes change over
time. These rules or kinetic functions may be defined and stud-
ied in the context of different mathematical frameworks, some of
which have been thoroughly reviewed elsewhere (Gibson and
Mjolsness, 2004; Alvarez-Buylla et al., 2007). In experimentally-
based GRNs, the dynamic rules may be obtained from reported
molecular genetics data as well as from functional genomics
datasets.

The kinetic functions of gene activation depend on the states
of the input nodes and are multivariate. These may be modeled
with discrete or continuous functions. In the former, Boolean
functions that allow only “0” (OFF; not expressed) or “1” (ON;
expressed) values for the nodes have been successfully used
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Figure 20. Floral organ specification gene regulatory network (FOS-GRN)
model.

The diagram shows GRN topology where circles or nodes correspond to
genes or proteins, and arrows and bars correspond to positive and nega-
tive regulatory interactions, respectively. The SEP node represents the
SEP1, 2, and 3 genes together. The interactions are updated with respect
to previous publications (Espinosa-Soto et al., 2004; Chaos et al., 2006).
The GRN attractors or steady states match the gene expression profiles
that characterize inflorescence meristem regions and flower organ primor-
dia. See text and Table 1 for details and experimental data supporting this
model (and Table S2 for the dynamics truth tables).

to recover the key qualitative aspects of GRNs (e.g., Albert and
Othmer, 2003; Espinosa-Soto et al., 2004). In Boolean networks,
parameters of specific kinetic functions are not required. It is ap-
propriate to assume that the GRN nodes are Boolean variables
given that: (1) transcriptional regulation may be discrete and take
place in the form of pulses, rather being continuous (Ross et al.
1994, Fiering et al., 2000, Ozbudak et al., 2002); (2) the experi-
mental data at hand can be readily formalized as logical rules
(see detailed discussions in Albert and Othmer, 2003; Espinosa-
Soto et al., 2004; Chaos et al., 2006), while there are no or very
few available data on parameters required to postulate continu-
ous functions; and (3) in complex GRNs with many components
interacting in non-linear manners, the overall topology of the GRN
and the form of the logical rules of gene interaction, rather than
the details of the kinetic functions, are what determine the qualita-
tive network dynamics.

Independently of the mathematical formalism used, dynamical
analyses of GRNs mostly focus on finding the steady gene activa-
tion profiles, that is, the configurations of the network that, once
reached, remain in that configuration. These configurations are
called attractors. The GRN model may be initialized on a particu-
lar gene-activation configuration known as an initial condition and

then the elements of the GRN change their activation state ac-
cording to the dynamic rules until they reach an attractor. Kauff-
man (1969) proposed that Boolean GRN attractors correspond
to the activation profiles typical of different cell types and there-
fore that exploring the GRN architecture and dynamics is funda-
mental to understanding cell-type determination processes. This
idea has now been verified experimentally and explored further
(e.g. Albert and Othmer, 2003; Huang and Ingber, 2006; Alvarez-
Buylla et al., 2007).

Another helpful notion in GRN dynamical studies is that of
basins of attraction. Given the dynamic rules of the network,
the set of initial conditions that lead to each of the attractors is
known as its basin of attraction. As we discuss below, the con-
cepts of GRN - attractor, initial condition and basin of attraction
- may be useful in addressing some pertinent aspects of flower
development.

4.1.2 Functional Modules in Flower Development

The functional data on genes involved in flower development re-
viewed in this Chapter suggest several regulatory modules exist
that act at different stages and in different structures (Figures
9, 15-17 and 19). We define a regulatory module as a set of in-
teracting genes that have more interactions among themselves
than with other genes. These modules are semi-autonomous,
meaning that their dynamic outcomes are fairly independent of
other modules. In Figure 15 we have presented the best-studied
modules associated with flower development. The approach
described here for the functional module that includes the ABC
genes could in principle be used for all of these modules as sulffi-
cient nodes have been identified and their regulatory interactions
characterized. Eventually, models of coupled GRN that consider
several such models together, both within and among cells, will
be possible. For now, we have focused in just one such regula-
tory module.

In previous studies, we have proposed and analyzed the regu-
latory module, which includes the ABC genes as well as other
components, that is sufficient to regulate the partitioning of the
inflorescence and floral meristems into subregions of primordial
cells. In the case of the flower meristem, each one of the four
subregions is composed of the primordial cells that eventually
give rise to each of the four types of floral organs: sepals, petals,
stamens and carpels.

We use this functional module as a working example of the
protocol that has been used in order to assemble an experi-
mentally grounded gene regulatory network (GRN) model cor-
responding to a functional module. Then we demonstrate how
once such a GRN model is postulated, it is possible to follow its
dynamics, and explore how the concerted action of multiple inter-
connected molecular components eventually lead to stable gene
expression profiles that may be compared to those characterizing
different cell types. Then we delineate some theoretical approach-
es put forward to model coupled GRN dynamics that may underlie
pattern formation and morphogenesis during the early stages of
flower development, when the floral meristem is partitioned into
four concentric rings of primordial cells. Finally, we review other
modeling approaches that are useful to study signal transduction
pathways.



4.2 Arabidopsis Flower Organ Specification GRN (FOS-GRN)

Soon after flowering is induced, the flower meristem is partioned
into four concentric regions of primordial cells from which floral
organs will later form. During the last decade, an experimentally-
grounded GRN model for flower organ specification (FOS-GRN)
has been built and investigated (Figure 20; Mendoza and Alva-
rez-Buylla 1998; Espinosa-Soto et al., 2004; Chaos et al., 2006;
Alvarez-Buylla et al., 2008). This model incorporates the intri-
cate regulatory interactions among ABC genes themselves and
among ABC and non-ABC genes that are key to this process.
This functional module includes: some key regulators underlying
the transition from IM to FM (FT, TFL, EMF, LFY, AP1, FUL); the
ABCs and some of their interacting genes (AP1, AP3, PI, AP2,
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AG, SEP); some genes that link floral organ specification to other
modules regulating primordia formation and homeostasis (AG,
CLF and WUS); and some regulators of organ boundaries (UFO
and LUG; Figures 9, 15 and 20).

The main result obtained from analyzing this GRN is that the
postulated network converges to only ten attractors—even though
it can be initialized in more than 130,000 different configurations of
gene activation. Furthermore, the attractors—the stable configura-
tions recovered—match gene activation profiles typical of the four
inflorescence meristem regions (i.e., a region lacking WUS and
UFO, two regions with either one of these two genes turned on,
and a fourth region with both genes turned on; see Espinosa-Soto
et al., 2004), as well as those of primordial sepal, petal, stamen
and carpel cells (Figure 21). This shows that the FOS-GRN is suf-

Figure 21. Arabidopsis inflorescence and flower development and FOS-GRN.

(A) SEM colored where four regions 11, 12, 13 and |4 are distinguished within the IM. FMs are also seen arising from the flanks of the IM,1 the oldest and

5 the youngest.

(B) 11, 12, 13 and 14 regions of the IM correspond to four of the FOS-GRN attractors. Expressed genes for each attractor are represented as green circles,
while non-expressed genes correspond to red circles (nodes are in the same relative position as in Figure 20). Note that this model recovers the respective
regions in the IM with both WUS and UFO, with either one of these two genes, or with neither expressed.

(C) SEM colored to distinguish four types of primordial cells in young flower meristems. Each will eventually develop into the different flower organs, from
the flower periphery to the center, sepals (se), petals (pe), stamens (st) and carpels (car).

(D) The six attractors of the FOS-GRN model match gene expression profiles characteristic of sepal, petal (p1 and p2), stamen (st1 and st2) and carpel
primordial cells. The gene activation profiles of the attractors are congruent with the combinatorial activities of A, B, and C genes described in the ABC

model of floral organ determination (adapted from Alvarez-Buylla et al., 2008).
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Sepal

Stamen 2

Figure 22. Basins of attraction for the four flower organ FOS-GRN attractors.

Petal 2

Attractors of FOS-GRN match the gene expression profiles of the four types of floral organ primordia of young floral buds (sepal, petal, stamen and carpel).
The fan diagrams depict the GRN configurations (combinations of Os and 1s corresponding to gene activation profiles) that lead to each of the attractors.
Points in the outermost layers of these fan diagrams correspond to initial configurations of the network and they are linked to the transitory configurations.
Petal2 and Stamen2 stand for one of the two possible attractors for each one of these organs. Relative position of nodes and their colors as in Figure 20.

ficient to recover the gene activation profiles required to specify
primordial cells during the first stages of flower organ develop-
ment. Therefore the GRN itself constitutes a functional module
that robustly leads to the gene configurations that characterize dif-
ferent regions of inflorescence and flower meristems during early
flower development; and this independently of the activation states
of additional genes that are connected to this elucidated regulato-
ry module. Furthermore, various robustness analyses have been
performed showing that the recovered attractors are also robust in
response to permanent alterations in the logical functions of gene
interactions and the inclusion of gene duplications. Therefore,
these results (Espinosa-Soto, et al., 2004; Chaos et al., 2006) sug-
gest that FOS dynamically and robustly emerges from complex
networks of molecular components, rather than from a series of
linear or hierarchical gene interactions or from the action of partic-
ular genes. The FOS-GRN model not only recovers the ABC gene
combinations that are necessary for FOS, but it also provides a
dynamic explanation for the formation of such gene combinations,

and postulates a set of gene interactions with the ABC genes, that
are also sufficient for FOS. The functions and interactions of the
genes included are reviewed earlier in this chapter.

The FOS-GRN was validated by using this model to simulate
the effect of loss-of-function mutations or overexpression, and
comparing the results recovered from the model with the gene
activation profiles determined experimentally in mutant or over-
expressor lines. The mutants were simulated by fixing the state
of the gene to 0 for loss of function, and to 1 for gain of function
or overexpression (Figure 20; Table 1 and Table S2). In all cases
tested, the simulated and empirically-reported profiles matched
(Espinosa-Soto et al., 2004).

In addition, this GRN model has enabled investigations to be
made into the sufficiency and necessity of particular gene regula-
tory interactions, which have led to novel predictions. For example,
these analyses predicted that AG upregulate itself (Espinosa-Soto
el al., 2004), which seemed somewhat counterintuitive at the time,
but which was then verified by independent experiments (Gémez-



Mena et al., 2005). Also, computer simulations of the FOS-GRN
that show that its attractors are robust to different types of pertur-
bation and to duplications (Espinosa-Soto et al., 2004; Chaos et
al., 2006) can account for the overall conservation of the flower
structure throughout angiosperm (particularly eudicot) evolution
(Rudall, 2007; Whipple et al., 2004; Adam et al., 2007).

Since the FOS-GRN model was based on thorough molecular
data and is one of the few well-characterized regulatory modules,
it has been used as a “model GRN” for further methodological,
theoretical and conceptual developments in GRN and systems bi-
ology research (Table 2). The main conclusions obtained from the
first versions of this GRN have been confirmed. New data regard-
ing FOS are continuously being generated (novel data are also
summarized in Table 1) and the FOS-GRN constitutes a basic the-
oretical framework in which to integrate it alongside previous data.
Here, we have updated the FOS-GRN taking these novel data into
account and conclude that the basic module originally put forward
(Espinosa-Soto et al., 2004; Chaos et al., 2006) is robust to the
addition of these newly discovered interactions. We consider, for
instance, that EMF1 downregulates AG (Calonje et al., 2008), and
AP3/PI downregulate AP1 (Sundstrém et al., 2006), so the postu-
lated module seems to be robust to the addition of intermediary
components or previously missing interactions.

Simulations of the updated FOS-GRN have been performed
with the new software, ATALIA (http://www.ecologia.unam.
mx/~achaos/Atalia/atalia.htm) developed in the Alvarez-Buylla
laboratory by A. Chaos-Cador. This tool can be used to readily
update this and other GRN models and explore their dynamics.
We illustrate the use of this software with a visualization of the at-
tractors’ basins (Figure 22) and a simulation of the updated wild-
type and certain mutant FOS-GRN dynamics (Figure 23).

In the simulated FOS-GRN, genes can take only two activation
states: 0 for no expression and 1 for expression. Hence, by using
combinations of 0s and 1s, we can describe all the possible initial
conditions of the GRN. Figure 22 presents the so-called fan dia-
grams that show all the GRN configurations leading to each of the
attractors. Knowing the relative sizes of the basins of attraction of
each steady state is the key to exploring the robustness of each
attractor in the face of perturbations.

ATALIA can also calculate the attractor that every possible ini-
tial condition will eventually reach and show this information in a
tapestry of destinies. In such tapestries, each possible configu-
ration of the GRN is represented by a square in a lattice and is
colored according to the attractor it reaches. Moreover, ATALIA
can draw a tapestry that represents the difference between the
original wild-type tapestry and a mutant one (Figure 23). For ex-
ample, if we want to know whether an ap2 mutation has a more or
less drastic effect in terms of the GRN dynamics than a pi muta-
tion, we can analyze the tapestries of ap2 and pi shown in Figure
23 and conclude that ap2 mutation has stronger dynamic effects
than pi given the GRN postulated up to now. Given the complexity
of the network involved, such predictions are impossible to make
without a tool like ATALIA. As the regulatory interactions in other
modules that participate in flower development are gradually un-
covered, for each one the experimental data can be exhaustively
mined and formalized in the form of a GRN topology and logi-
cal rules governing its components’ interactions. ATALIA can then
be used to explore their dynamics, validate the proposed GRN
models by simulating experimental reports of mutants or overex-
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pressing lines, and to postulate novel interactions. Eventually, two
or more functional modules may be interconnected via common
components to postulate GRN aggregates. Such an approach will
be useful in beginning to uncover the types of microtopological
trait that characterize the nodes connecting different functional
modules, for example.

We have illustrated the potential of using dynamic GRN mod-
els to understand cell differentiation using a relatively small and
well-characterized module. Approaches used for small regulatory
modules that are well-characterized in terms of molecular genet-
ics, should feedback from functional genomic efforts that span the
dynamics of a larger number of genes or proteins under diverse
conditions and developmental stages or tissues.

4.2. Temporal and Spatial Patterns of Cell-fate Attainment
During Early Flower Development

In real biological systems, populations of meristematic cells differ-
entiate into different cell types in stereotyped temporal sequences
and spatial patterns. The first primordial cells to be determined
in the flower meristem are those of sepals, then those of petals,
stamens and carpels going from the periphery to the center of
the floral meristem. This suggests that in the population of meri-
stematic cells the most probable temporal order in which each
attractor is visited follows the same sequence (Alvarez-Buylla et
al., 2008). Recent results from another theoretical approach show
that the sequence of floral organ determination can be recovered
by introducing some level of stochasticity (random noise) in the
GRN dynamics, namely, a degree of error in the updating dynami-
cal rules of the GRN (Alvarez-Buylla et al., 2008). These results
are consistent with a handful of other recent studies showing that
stochasticity at the molecular scale may contribute to the forma-
tion of spatiotemporal patterns in development (see review in Raj
and van Oudenaarden, 2008). Studies with the stochastic version
of the FOS-GRN also concluded that the relative position of the
basins is important in determining the most probable temporal
sequence of cell-fate attainment referred to above (Alvarez-Buylla
et al., 2008). This fascinating result certainly suggests that the
stereotypical temporal pattern of cell fate specification at early
stages of flower development may be an emergent and robust
consequence of the complex GRN underlying cell-fate determi-
nation and that, in principle, it could take place in the absence
of inducing signals, emerging only as a result of the stochastic
fluctuations that occur during transcriptional regulation (Alvarez-
Buylla et al., 2008). Ongoing modeling efforts are explicitly focus-
ing on spatial domains, and exploring the need and sufficiency of
different cell-cell communication mechanisms or physical fields
(e.g., created by curvature or tension forces) that could provide
positional information for spatio-temporal cell patterning during
early stages of flower development.

It is important to mention that the FOS-GRN modeled up to
now is an abstraction of the qualitative regulatory logic underlying
the IM and FM subregionalization during early stages of flower
development when the ABC patterns are established. However,
other regulatory modules for meristem positioning, growth and
polarity, among others, still need to be considered in order to fully
understand spatiotemporal cell patterning and morphogenesis of
IM and FM. Some genes interacting with FOS-GRN components
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Figure 23. Simulation results for wild type (WT) and two mutants.
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(A) Simplified representation of the FOS-GRN. The mutated genes are in red (nodes are in the same relative position as in Figure 20). Mutations were
simulated by constitutively turning “off” (loss-of-function) mutated genes regardless of the dynamical rules.
(B) Floral diagrams showing floral organs of the simulated WT and mutant plants. These correspond to the steady-state gene expression arrays (attractors)

attained in the simulation.

(C) Tapestries of gene configuration destinies corresponding to the simulated WT and mutant lines. In the WT simulation each square in the tapestry
represents an initial condition and they are colored according to the attractor they eventually reach. In the mutant simulation for ap2 and pi, the tapestries
illustrate the difference between the WT tapestry of destinies and that obtained for the mutant simulations. Yellow squares, configuration attained is the
same attractor as in the WT; red squares, configurations that reached a new attractor; purple squares, configurations that attained a pre-existing attractor
but not the same one reached in the WT simulations. Images generated with ATALIA (http://www.ecologia.unam.mx/~achaos/Atalia/atalia.htm).

(e.g. AGL24, BEL, RBE and those described in the last section of
Table 1) that do not seem to directly affect cell-type determination
in the floral meristem, could link the FOS-GRN with: a) signaling
pathways (e.g. Diaz and Alvarez-Buylla, 2006); b) genes involved
in cell growth and proliferation both before and after the partition-
ing of the floral meristem into the four concentric regions; and c)
other types of downstream genes or modules that are important
during cell sub-differentiation and organogenesis at later stages
of flower development.

A complete understanding of flower morphogenesis will con-
tinue to require multidisciplinary approaches and modeling tools

that help unravel how such single-cell GRNs are coupled in ex-
plicit cellularized spatial domains and physicochemical fields
(e.g. Jonsson et al., 2005, Savage et al., 2008; Benitez et al.,
2008), including metabolism, signaling, and emergent gradients
of morphogens (e.g., auxin), cell growth and proliferation, me-
chanical forces and cell-cell communication mechanisms. All of
these are likely to feedback in non-linear ways from and to the
GRNs underlying cell differentiation or proliferation (for example
see Hamant et al., 2008).

It is important to keep in mind, for example, that plant cell
growth in meristems is symplastic. This implies that the contacts
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Table 1. Summary of evidence for the FOS-GRN gene interactions shown in Figures 20-23 (ChIP, chromosome immunoprecipitation; EMSA, electropho-
retic mobility shift assays; arrows indicate gene induction and bars repression; Espinosa-Soto et al., 2004; Chaos et al., 2006).

INTERACTIONS

AG (ATAG18960) > AG

AP1 (AT1G69120) --| AG

CLF (AT2G23380) --| AG

LFY (AT5G61850) > AG

LUG (AT4G32551)--1 AG

SEP3 (AT1G24260) > AG

TFL1 (AT5G03840) --| AG

WUS (AT2G17950) > AG

AG - AP1

FT (AT1G65480) > AP1

LFY > AP1

TFL1--1 AP1

TFL1 --| AP2 (ATAG36920)

AG > AP3 (AT3G54340)

AP1-> AP3

AP3 > AP3

EXPERIMENTAL EVIDENCE

ChlP shows that AG interacts in vivo with predicted regulatory sequences of AG .

Sepals are replaced by carpels, and petals by stamens in ap7 mutants. AG mRNA
found in all flower primordia of ap7-7 plants. First whorl organs are sometimes carpel-
loid, and second whorl organs are staminoid in ap7 mutants.

In clf mutants, first whorl sepals are frequently carpelloid, second whorl organs are
staminoid petals and AG mRNA is detected in sepals. It is likely that CLF is part of a
complex with EMF2, MSI1, and FIE that epigenetically regulate AG.

Expression of AG is reduced in Ify-6 flowers.

The expression of LFY fused to a strong activation domain produces increased and
ectopic AG expression.

LFY binds to the first intron of AG, and cooperates with the WUS homeodomain to
activate it.

AG is ectopically expressed in lug-1 mutants.
LUG functions as a repressor of AG via its the second regulatory intron.

There is AG expression in rosette leaves of 35S5:SEP3 plants. In addition, 35S:AG
358:SEP3 plants have more pronounced carpelloid features.

Stigmas and styles of terminal flowers in Ify ap1 double mutants are normal if the tf/1
mutation is added.

wus mutants lack carpels and most stamens. In AP3:WUS transgenic plants, second
whorl organs are carpelloid stamens instead of petals, whereas in AP3:WUS ag
plants, second and third whorl organs do not differentiate into carpelloid stamens.

AP1 mRNA accumulates uniformly in ag-7 mutant flowers.

In ft Ify double mutants, there is no AP1 mRNA unlike in the respective single mutants,
suggesting that at least one of these two genes needs to be active for AP1 activation

AP1 expression is delayed in /fy-6 null mutants, ectopic in 35S:LFY plants and in-
creased when LFY-VP16 is induced.
LFY directly binds the AP1 promoter and activates this gene.

In tfi1 mutants, AP1 is ectopically expressed in the basal lateral meristems and in
terminal flowers. AP1 expression is also retarded in 35S:TFL1

The absence of petals in tfl1 ap2 flowers and the presence of petals in tf/1 single mu-

tants suggest there is ectopic AP2 activity in the terminal flowers of tfl1 single mutants.

There is weaker GUS expression in the third whorl of ag-1 AP3:GUS flowers than in
the transgenic control.

AG may maintain AP3 expression because cauline leaves of 35S:P/ 35S:AP3
355:SEP3 35S:AG are converted into stamen-like organs.

ChIP shows that AG interacts in vivo with predicted regulatory sequences of AP3.
Also, AP3 RNA is absent from the center of the ag-1 meristem.

AP3 expression is quite normal in ap1 mutants but is almost undetectable in Ify ap1
double mutants, indicating that AP7 can act with LFY to regulate AP3 expression.
Futhermore, AP1 seems to bind AP3 cis-regulatory elements.

Endogenous AP3 s upregulated in 35S:AP3-GR plants induced with dexamethasone,
supporting the notion that AP3 self-activates.
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Table 1. (continued)

INTERACTIONS

LFY+UFO (AT1G30950)
> AP3

SEP (AT5G15800,
AT3G02310, AT1G24260,
AT2G03710) > AP3

LFY --| EMF1 (AT5G11530)
EMF1 | FT

AP1 -| FUL (AT5G60910)

TFL1--1 FUL

AP1-> LFY

EMF1 -1 LFY

FUL > LFY

TFL1--1 LFY

LFY-> P (AT5G20240)

PI> PI
LFY > SEP
AP1 - TFL1
AP2 | TFL1
EMF1-> TFL1
LFY - TFL1
AG | WUS

EXPERIMENTAL EVIDENCE

Both the amount and the domain of AP3 expression are reduced in /fy-6 mutants.
ufo-2 plants have less AP3 protein and less AP3 mRNA.

Both LFY and UFO have to be overexpressed to induce ectopic expression of AP3.
EMSA show that LFY binds directly to sequences in the AP3 promoter.

ChlIP shows that UFO associates with the AP3 promoter. This association was
abolished when ChIP was performed using extracts from /fy-26 plants harboring the
35S8:UFO-Myc transgene.

In AP3:GUS 35S:PI 35S5:AP3 35S5:AP1 mutants, AP3-GUS is expressed throughout
the plant supporting the idea that full activation of the B-function genes requires tetra-
mer formation to include SEP.

The ectopic expression of SEP3 resulted in the induction of ectopic AP3 expression.
Stronger 35S:SEP3 lines are also capable of activating AP3:GUS ectopically

Ectopic LFY expression in emfl-1 mutants increases the severity of the emf phenotype.

FT RNA levels are higher in the emf1-1 mutant and are detected earlier than in the
wild type.

FRUITFULL is ectopically expressed in ap1 mutants.

TFL1 has been postulated to be an inhibitor but it also is possible that other factors
have this posttranscriptional inhibitory role. This interaction is necessary as when the
negative posttranscriptional regulation of FUL by TFL1 is not considered, the nonfloral
gene steady states disappear. No experimental evidence.

In ap1 and ap1 cal double mutants, LFY expression is reduced. Additionally, LFY'is
activated earlier in 35S:AP1 plants than in the wild type.

Double mutants of the weak emf1-1 allele and Ify-1 bear Ify-like flowers suggesting
that, for this trait, /fy is epistatic. These genes have antagonistic activities.

Even though LFY expression is the similar in wild type and LFY:GUS ful-2 plants,
there is less expression in ful ap1 cal triple mutants than in ap1 cal, suggesting that
the role of FUL in LFY upregulation is only important when AP1 is inactive.

In tfl1 mutant plants LFY is ectopically expressed in the shoot apex.

Amount and domain of P/ expression are reduced in /fy-6 mutants. There is no GUS
expression in early Ify PI:GUS flowers.

AP3 and PI co-immunoprecipitate.

AP3 and PI mRNA levels are not maintained in ap3-3 pi-1 double mutants.

In AP3:GUS 35S:PI 35S:AP3 355:AP1 mutants, AP3:GUS is expressed throughout
the plant supporting the idea that full activation of the B-function genes requires PI

Microarray experiments show that the group of LFY dependent genes includes the
homeotic cofactors SEP1-3.

In 35S:AP1, TFL1 expression is greatly diminished. TFL1 is ectopically expressed in
ap1 cal double mutants.

The tfl1-1 mutation partially suppresses the ap2-1 ap1-1 inflorescence phenotype.

In emf1-2 tfl1 double mutants, the emf1-2 mutation is epistatic with respect to flower
initiation. These genes do not have antagonistic activities. This suggests that EMF1
upregulates TFL1.

The 35S:LFY plants resemble the tfl1 mutant and have no TFL1 expression.
LFY can inhibit TFL1 at the transcriptional level. TFL1 is also ectopically expressed in
Ify mutants.

There is strong WUS expression in the center of ag floral meristem.

REFERENCE
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Table 1. (continued)

INTERACTIONS
SEP--| WUS
Wus --| WUSs

EXPERIMENTAL EVIDENCE

SEP activity is required for WUS downregulation by AG because sep1 sep2 sep3
triple mutant plants bear indeterminate flowers.

No experimental evidence. Assumption of model.

UPDATES (Chaos et al., 2006 and this chapter)

EMF1--1 AG

AP3--| AP1

PI--| AP1

MiR172 (AT2G28056,
AT5G04275, AT3G11435) +
HENT (ATAG20910) --| AP2

LFY > SEP1-3

In ChIP experiments, EMF1 is associated with sites in the promoter and second
intron of AG. EMF1 interferes with transcription by RNA polymerase Il and T7 RNA
polymerase in vitro.

AP1 transcript levels are significantly higher in ap3-3 mutant plants than in both WT
and 35S5:AP3.

ChlP shows that PI binds to target sequences in the AP1 promoter

Elevated miR172 accumulation results in floral organ identity defects similar to those
in loss-of-function ap2 mutants. On the other hand, the miR172 abundance depends
on the activity of DICER-like protein HUA ENHANCER 1 (HEN1), which is expressed
through the plant. This observation suggests that a cofactor expressed in the inner
floral whorls is required to give specificity to the HEN1-dependent repression of AP2.
The need for AG inactivity for AP2 function is added to the AP2 logical rules

Microarray experiments show that the group of LFY dependent genes includes the
homeotic cofactors SEP1-3.

INTERACTIONS NOT INCLUDED IN THE MODEL

AGL24 (AT4G24540) +
SVP (AT2G22540) --| AG

BLR (AT5G02030) --| AG

RBE (AT5G06070) --| AG

SEU (AT1G43850) --| AG

AGL24+SVP --| AP3

LFY > CAL(AT1G26310)

AP3--| FUL

FT--| FUL

PNY (AT5G02030) > LFY

PNF (AT2G27990) > LFY

AP2-> PI

AG --- SEP3

FT > SEP3

In the agl24 svp double mutant, AG mRNAs are detected in the inflorescence and
floral meristems as early as stage 1, indicative of early AG expression. In later stages,
AG is still expressed in all floral organs. Probably, this interaction is part of a different
GRN that ocurs before the cell fate determination

AG is expressed ectopically in blr mutants. BLR directly binds to AG cis elements
(identified by EMSA). This interaction is probably important in organogenesis.

In rbe mutants, there is ectopic expression of AG in second-whorl cells. This interac-
tion may be important in organogenesis.

The direct in vivo association of SEUSS (SEU) with the AG cis-regulatory element
was shown by ChIP. SEU interacts with LUG in a repressor complex to regulate AG,
and LUG is already considered in the GRN model.

An in situ analysis shows that in the agl24 svp double mutant, AP3 is expressed in all
parts of the floral meristem and later in all floral organs. Probably, this interaction is
part of a different GRN occurring before the cell fate determination.

Using posttranslational activation of LFY-GR, it is demonstrated that CAL is a direct
LFY target. cis-regulatory elements in the putative CAL promoter are bound by LFY.
AP1 forms heterodimers with CAL and AP1 is already included.

The domain of FUL expression is expanded to the third whorl in stage-3 ap3 mutants,
but no direct interaction is detected by ChlIP analysis.

FUL is expressed at higher levels in 35S:FT-VP16. It is not considered because this
interaction could be mediated by TFL1 and LFY.

The transcripts of LFY are substantially reduced in shoot apices of pny pnf double
mutants after floral induction. pny pnf double mutants do not produce flowers but,
35S:LFY pny pnf plants do produce flowers. This interaction is part of a different GRN.

In situ hybridization shows there is less PI RNA occupying a smaller area in ap2-2
flowers than in wild type. Probably an indirect effect.

ChlP shows that AG interacts in vivo with predicted regulatory sequences of SEP3.
Insufficient experimental data.

Overexpression of FT causes ectopic expression of SEP3in leaves. No further experi-
mental evidence.
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Table 2. Some of the contributions that have used the flower organ specification GRN model in order to test, advance or discuss novel conceptual or

methodological approaches.

Contribution

Logical analysis of the flower organ specification (FOS) GRN.

Introduction of the transsys formalism to represent GRN and implementation of FOS-GRN in this framework.

Method for gene network inference based on nonlinear differential equations and logical approaches.

Predictions were tested using FOS-GRN.

New method for automatically inferring gene regulation functions modeled as logical functions.

The method is applied to FOS-GRN.

Automatic Petri-net-based method, applied to FOS-GRN, for finding stationary states.

Analysis of the dynamic role of feedback loops in networks including FOS-GRN.

Application of the GenYsis software to model the discrete and multiple valued FOS-GRN.

Analysis of the effect of feedback loops on the robustness of Boolean networks, such as that of flower organ specification.
Dynamic study of FOS-GRN and other GRNs with the finding that these exhibit a property known as criticality.

Formal analysis of the main sources of perturbation and their effects in biological regulatory networks, with the

FOS-GRN as example.

Reference

Mendoza et al., 1999
Kim, 2001

Perkins et al., 2004

Bozek et al., 2006

Gambin et al., 2006
Kwon and Cho, 2007
Garg et al., 2007

Kwon and Cho, 2008
Balleza et al., 2008
Demongeot et al., 2008

between cells are preserved because there is no displacement
or sliding at middle lamellas that join neighboring cells (Priestley,
1930 and Erickson, 1986; cited in Kwiatkowska, 2008). Therefore,
overall plant growth could be modeled using the principles of
solid body mechanics (see review in Kwiatkowska, 2008). How-
ever plant cells also grow anisotropically which implies a variation
in the directional growth rates at a given point (Baskin, 2005).
Hence, meristem growth has rather been modeled using the prin-
ciples of continuum mechanics, computing variables that char-
acterize plastic strain (Goodall and Green, 1986; for review see
Green, 1999).

Some quantitative mesoscopic models for flower develop-
ment and growth in Arabidopsis and other angiosperms have
been put forward (e.g., Rolland-Lagan et al., 2003; Lee et al.,
2004; Skryabin et al., 2004; Mundermann et al., 2005). A finite
element model of the SAM has also shown, for example, that lat-
eral bulging of the meristem surface leading to the formation of a
primordium results in a gradient of shear stresses with high shear
stress at the point where the future primordium emerges (Selker
et al., 1992; reviewed in Kwiatkowska 2008). More recently, it was
shown that cells in the Arabidopsis SAM orient their cortical mi-
crotubules along lines of mechanical stress generated during tis-
sue formation, and this then affects the mechanical properties of
the cell, thus establishing a feedback loop (Hamant et al., 2008).
This seems to be particularly relevant during the formation of the
groove between the apical meristem and the primordium of lat-
eral organs, but less so during growth and differentiation, because
the lateral organ primordia are not affected when the microtubular
network is disintegrated by a drug (Hamant et al., 2008). This im-
plies that the mechanical feedback loop described is likely to act
in parallel with the previously described auxin-mediated patterning
mechanism (Laufs et al., 2009). Similar morphogenetic mecha-
nisms are likely to be at work in flower meristem and floral organ
development, and both morphogenetic mechanisms connected to
the functional regulatory modules, including FOS-GRN and others
that have been partly elucidated and reviewed in this Chapter.

5. CONCLUSIONS AND PERSPECTIVES

Arabidopsis has been indispensable in unraveling the molecu-
lar genetic bases of the stereotypical and most conserved as-
pects of flower development. It has also been used to resolve
some basic mechanisms of floral meristem determination, as
well as floral organ cell differentiation and morphogenesis. The
challenge ahead will be to understand how modules regulating
each aspect of flower development are interconnected among
themselves and with signal transduction pathways that respond
to environmental and internal cues to yield coupled GRN spa-
tiotemporal dynamics during flower development. Such dynam-
ics likely involve feedback from physical or mechanical forces,
structural and geometric characteristics of domains of activity
and from cell dynamics (cell growth and division) in complex
ways still requiring multiple theoretical multilevel models and
coordinated experimental research. Different functional mod-
ules are now being characterized (Figure 24 and Table S1) and
shown to regulate some of the main processes involved in flower
development. Some of these modules or their components may
participate in one or more flower developmental process and
data on the functions and interactions of genes are becoming
available to enable new dynamic computational models of GRN
and signaling pathways during flower development (Figure 24
and Table S1).

Computational models for the gene regulatory module that
underlies patterning of the inflorescence meristem and determi-
nation of the primordial cell types during early stages of flower
organ specification, have demonstrated the potential and need of
theoretical dynamic approaches in understanding complex GRN
underlying flower development. But information on each regula-
tory module and the interconnections between modules and with
signal transduction pathways is still scanty.

It would be fascinating to unravel which molecular compo-
nents, circuits, or sub-networks underlie the development and
evolution of the diversity of flower forms and the variations
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