

Vniver4dad Nacional AvFnºma de Mexico UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

PROGRAMA DE MAESTRIA Y DOCTORADO EN INGENIERIA

FACULTAD DE INGENIERIA

"DISEÑO DE POZOS PARA LAS FORMACIONES DEL PERIODO TERCIARIO (MIOCENO), DE LA ESTRUCTURA CAMARONERO"

TESIS

QUE PARA OBTENER EL GRADO DE:

MAESTRO EN INGENIERIA

INGENIERIA PETROLERA Y GAS NATURAL - PERFORACION

P R E S E N T A :

RÓMULO ARANGO LALO

TUTOR: JAIME ORTIZ RAMIREZ

2010

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

Presidente:	Jaime Ortíz Ramírez
Secretario:	Daniel García Gavito
Vocal:	José Angel Gómez Cabrera
1 ^{er.} Suplente:	Fernando Samaniego Verduzco
2 ^{do.} Suplente:	David Trujillo Morales

México, D. F. a Febrero 2010

Ciudad Universitaria.

TUTOR DE TESIS

JAIME ORTIZ RAMIREZ

FIRMA

Agradezco a todos y cada uno de mis Profesores, Amigos y Compañeros, y queda una vez mas demostrado que cuando se tiene un poco de fe, se puede volar, dedicado a todos los que como yo tenemos mucha fe en nosotros mismos y el apoyo de todos nuestros seres queridos, que nos han visto crecer y nos verán llegar alto, porque una vez aprendiendo a volar el cielo será muy pequeño para mis alas....los quiere su amigo Rómulo.

Agradecer ante todo a Dios Padre, Profesores, Mis Padres Rómulo e Irma Mi Esposa Mónica Mis Hijas Saromy, Amelié y Xunaxí Mis Hermanas Patricia y Araceli Mis Suegros Juan y Sonia Mis Sobrinos Diego, Alex, Ayumí, Galy y Moy Mis Cuñados Alex, Katya, Juan y Oscar Mis Amigos y Compañeros Y a la UPMP.

"DISEÑO DE POZOS PARA LAS FORMACIONES DEL PERIODO TERCIARIO (MIOCENO), DE LA ESTRUCTURA CAMARONERO"

TABLA DE CONTENIDO:

Resumen

1 Plante	eamiento del Problema y Toma de Información
a)	Introducción1
b)	Objetivo4
2 Anális	is Conceptual5
a)	Conceptos Básicos6
3 Desar	rollo del Problema
a)	Antecedentes del Problema17
b)	Planteamiento del Problema45
c)	Desarrollo del Problema47
4 Resul	tados Obtenidos
a)	Conclusión90
5 Obser	vaciones
a)	Recomendaciones94
6 Apéno	dice96
a)	Fórmulas97
b)	Ilustraciones
c)	Software108
d)	Glosario109
7 Biblio	grafía110

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

<u>Resumen</u>

Primeramente para el estudio del análisis geomecánico, se solicitaron los registros de apoyo contando con las curvas de profundidad, rayos gamma, caliper, densidad, tiempo de transito, potencial espontáneo, resistividad profunda y media, neutron porosidad, factor fotoeléctrico, neutron; entonces para la construcción del modelo geomecánico se genero la curva de sobrecarga (Sv) con el registro sonico y de ahí se tomo el perfil de densidad, con una densidad promedio de la roca de 2.6 gr/cc, el carril de los rayos gama nos indica de una línea promedio al lado derecho lutitas y al lado izquierdo arenas; de aquí se genera la grafica de esfuerzos TVD contra la de sobrecarga (Sv).

Para la obtención de la Presión de Poro se tomaron los registros sonico, resistividad y densidad, para determinar las presiones de cierre de las fracturas y así obtener el esfuerzo horizontal mínimo. Apoyado con pruebas de fracturamientos para determinar el esfuerzo horizontal mínimo con los datos de la presión de cierre en el registro de densidad en (gr/cc).

Para la obtención del esfuerzo horizontal máximo se considero el mapa de orientación regional de esfuerzos; Así como del análisis de las resistencias de las rocas con el registro sonico para la obtención del cálculo de UCS (psi) se considera tomar un registro de imágenes a 360^a.

Para dar la validación al modelo se empleo el registro de caliper y la experiencia de perforación en el campo.

Para los datos de la Relación de Poisson, Coeficiente de Biot, Coeficiente de Angulo de Fricción Interno, Esfuerzo de Tensión, UCS, se deben realizar los análisis de esfuerzos triaxiales en núcleos convencionales.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. En resumen para un estudio integral que incluya Petrofísica, Geología y Geomecánica, nos puede guiar y ayudar en el campo Camaronero a identificar la raíz de la causa de los problemas de perforación. En la mayoría de los pozos se presenta una inconsistencia de diseño, en el cual no se toman en consideración ninguna propiedad petrofísica y geológica de la formación.

Un diseño optimizado reduciría los riesgos de perforación. Que es el tema que nos lleva a este trabajo, dar las bases para realizar un diseño óptimo.

A.- INTRODUCCIÓN

Antes de adentrarnos al tema en específico, haremos una remembranza principalmente de donde viene el fondo de todo este estudio que realizare, y como hoy en día es un tema principal para diversas áreas, tanto para nosotros los Petroleros como para las Industrias de la Construcción, Minería, Civil, etc.

No podemos hoy en día realizar un análisis o estudio de los pozos sin tener en cuenta un tema tan importante, la Geomecánica.

GEOMECANICA: disciplina que estudia el comportamiento de los materiales geológicos ante campos de esfuerzos y cambios en el ambiente físico.

El estado de esfuerzos que actualmente está en el subsuelo puede conocerse de manera indirecta mediante la interpretación de los efectos que dejan las herramientas de perforación sobre las rocas. La orientación preferente de elipticidad del agujero del pozo y las fracturas inducidas observadas con imágenes de pozo (FMI), permiten conocer la orientación del mínimo esfuerzo (Shmin).

La Geomecánica tiene su origen en la Ingeniería Civil, principalmente en el uso del suelo y rocas como material de construcción, posteriormente se usa en obras civiles, tales como túneles de vialidad, etc. Luego se utilizó para fines Mineros, en la construcción de túneles de la minería subterránea, estabilidad de taludes, en minería a cielo abierto, etc. En la década de los 60's, se comienza a utilizar la Geomecánica en las actividades Petroleras, para Fracturamiento Hidráulico, Estabilidad de Hoyos, Compactación y Subsidencia, etc.

Haciendo reseñas importantes de la aplicación de la Geomecánica tenemos:

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

~ 5000 ac	Minas en China
~ 3000 ac	Presas de Rocas en la India
~ 1000 ac	Templos Egipcios y Griegos (Vigas Planas)
~ 500 ac	Construcciones Romanas con Arcos
Siglo III	Domos y Contrafuertes
Siglo XVIII	Ley de Darcy (Flujo) Ley de Coulomb (Fricción)
Siglo XIX	Revolución Industrial (Minas de Carbón)

La Geomecánica Petrolera entonces tuvo sus comienzos para los finales de los 50's, pero adquiere su mayor importancia para la década de los 70's y 80's, en la Primer Conferencia de la SPE-ISRM de 1992.

Nos interesa el estado actual de esfuerzos en la roca y sus propiedades mecánicas; una cuenca sedimentaria esta sujeta a:

- Esfuerzos Tectónicos que originan levantamientos, depresiones, basculamientos, fallamiento.
- Erosión, Meteorización, Ambiente Deposicional.
- Tasa de Sedimentación.

- Diagénesis.
- Solución, Precipitación de Agentes Cementantes.
- Cambios Térmicos.

Capitulo I

B.- OBJETIVO

Elaborar un programa estratégico para el Diseño de Pozos Profundos en el área Camaronero, que permita perforar nuevas localizaciones exploratorias, reduciendo los tiempos y costos incurridos en los pozos Camaronero-1 y Camaronero 1-A, así como evaluar las propiedades mecánicas de la roca para poder caracterizar mejor al yacimiento, lo que permitirá optimizar el Diseño de Pozos; así como determinar las zonas altamente geopresionadas, para prevenir la perdida de grandes volúmenes de fluido de perforación, con apoyo de geopresiones a partir de registros geofísicos convencionales.

II.- Análisis Conceptual

Objetivo de la Geomecánica.- estudia las características mecánicas de los materiales geológicos, que se interrelacionan como se indica:

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

A.- CONCEPTOS BASICOS

- PRESION: La fuerza que un fluido ejerce uniformemente en todas direcciones dentro de un recipiente, tubería, pozo, etc, tal como la que se ejerce contra la pared de un tanque o como la que ejerce en el fondo de un pozo el fluido de perforación. La presión se expresa en términos de fuerza ejercida por una unidad de área, como kilogramos por centímetros cuadrados, o libras por pulgada cuadrada o en el sistema CGS dina por centímetro cuadrado. Ec. # 1, Ver Fig. # 1
- ESFUERZO: Mientras que las fuerzas son transferidas a través de líquidos por la presión, las fuerzas son transferidas a través de los sólidos por los esfuerzos. El Esfuerzo es la fuerza divida por el área y tiene las mismas unidades que la presión. Se representa por la letra griega σ. Ec.# 2. El esfuerzo puede ser positivo o negativo. Un sólido puede estar sujeto a los siguientes esfuerzos:
- ESFUERZO COMPRESIVO.- Este ocurre cuando el material esta sujeto a Compresión.
- ESFUERZO DE TENSIÓN.- Este ocurre cuando el materia esta sujeto a Tensión.
- ESFUERZO CORTANTE (CIZALLA).- Este resiste el movimiento lateral dentro del material; Ver Fig. # 2.

Un sólido puede estar sujeto a los tres esfuerzos simultáneamente. Es importante observar que la mayoría de fallas en el agujero del pozo ocurren por excesivos esfuerzos de corte. Los esfuerzos de corte aumentan mientras que la diferencia entre esfuerzos perpendiculares aumenta. La diferencia entre esfuerzos perpendiculares causa que un objeto se deforme. El orden para que el objeto se deforme, el movimiento lateral debe ocurrir entre los elementos dentro del objeto. Los esfuerzos de corte cusan este movimiento lateral y se representa por la letra griega T. Ver Fig # 2-A.

ESFUERO EFECTIVO.- no todos los esfuerzos en la formación son transmitidos por la matriz de roca. Algo de este esfuerzo es transmitido por el líquido atrapado en los espacios de poro dentro de la roca, Ver Fig. # 3. Según lo mencionado previamente, cuando la lutita primero se deposita, esta agua es expulsada fuera. Sin embargo, la secuencia de lutita es a veces demasiado gruesa o la permeabilidad llega a ser tan reducida que el líquido no puede salir fuera de la lutita mientras se compacta. Cuando esto ocurre, el líquido en los espacios de poro comienza a aceptar algo de carga, similar como la presión de aire en un neumático que apoya la carga del coche. El esfuerzo total que siente la formación se divide entre el esfuerzo transmitido por la matriz de roca y el esfuerzo transmitido por el líquido en el poro.

Una parte del esfuerzo que siente la matriz de roca es llamada esfuerzo efectivo, esfuerzo intergranular y esfuerzo de matriz son otros nombres para el esfuerzo efectivo. El esfuerzo transmitido por el líquido en los espacios de poro se expresa como presión del poro. La combinación de presión de poro y el esfuerzo efectivo es el esfuerzo total.

ESFUERZO TOTAL= PRESION DE PORO + ESFUERZO EFECTIVO

La deformación y la resistencia de un espécimen de roca es dependiente solamente del esfuerzo efectivo. Es el esfuerzo que se siente entre los granos el que controla el movimiento de estos granos en relación con otros. El resbalamiento y la deformación intergranulares son independientes de la presión de poro.

- DEFORMACIÓN: La Deformación se define como un material que cambia de longitud o de anchura bajo la influencia de un esfuerzo. Se representa por la letra griega ε. A mayor esfuerzo que este sujeta la roca, mayor deformación experimenta. Ec. # 4, Ver Fig. # 4
- DEFORMACION NORMAL.- cuando el material se deforma por elongación o contracción.
- DEFORMACION CORTANTE.- cuando el material se deforma de manera angular.
- PERMEABILIDAD: La habilidad de un fluido para fluir dentro de la red de poros interconectados de un medio poroso. La permeabilidad puede ser Absoluta, Efectiva o Relativa. Ec. # 5, Ver Fig. # 5.
- PERMEABILIDAD ABSOLUTA.- medida de la habilidad que posee un solo fluido (como agua, gas, aceite) para pasar a través de una roca cuando está saturada completamente por el fluido. La permeabilidad medida en una roca saturada con un solo fluido, es diferente de la permeabilidad medida en la misma roca saturada con dos o más fluidos.
- PERMEABILIDAD EFECTIVA.- medida de la habilidad de una roca de permitir el flujo de un fluido cuando los espacios porosos no están completamente saturados por éste.
- PERMEABILIDAD RELATIVA.- la medida de la habilidad de un fluido, como agua, gas o aceite, para fluir a través de una roca, cuando ésta se encuentra saturada con dos o más fluidos. El valor de la permeabilidad en una roca saturada con dos o más fluidos es distinto del valor de permeabilidad de la misma roca saturada con un solo fluido, Ec. # 6, Ver Fig. # 6.

PRESIÓN DE PORO: La presión de poro es un parámetro importante en cualquier estudio de mecánica de rocas que se realice a sistemas porosos, saturados de fluidos. El fluido alojado en los poros soportará parte de los esfuerzos totales aplicados al sistema, liberando a la matriz rocosa de parte de la carga. Como se mencionó, el esfuerzo efectivo es igual al esfuerzo total menos la presión de poro. Este concepto fue introducido por primera vez en 1923 por Terzaghi en mecánica de suelos, sobre una base empírica. Después fue redefinido por Biot.

En una formación saturada, la presión de poro se irá desarrollando conforme los sedimentos se vayan depositando sobre ésta. Si el fluido alojado en los poros puede ser expelido y migrar hacia la superficie a un ritmo aproximadamente igual que el de compactación, se mantendrá un gradiente de presión de poro normal, el cual está dado por el peso de la columna de fluido sobreyaciente. Por lo tanto, un gradiente de presión norma está dado por la densidad del agua salada (agua de mar) y se encuentra comúnmente en el rango de 1.03 a 1.07 gr/cm³.

Sin embargo, se pueden desarrollar zonas con presiones de poro mayores que las dadas por el gradiente normal. Estas zonas son llamadas zonas de presión anormal o sobrepresionadas. Altas presiones de poro en el yacimiento lo harán más prolífico. Pero, por otro lado, las formaciones sobrepresionadas representan un problema potencial durante la perforación. Si se perfora en una formación de este tipo no prevista con anterioridad, existe el peligro de que ocurra un reventón, especialmente en formaciones someras de gas a alta presión. Frecuentemente, los problemas de estabilidad durante la perforación son atribuidos a lutitas sobrepresionadas.

Debido a la baja permeabilidad de las arcillas, la cual se desarrolla durante su compactación, las zonas arcillosas se pueden sobrepresionar fácilmente. Se pueden desarrollar permeabilidades del orden de nanoDarcys o aún menos. Por lo tanto, una formación de arcillas con espesor considerable no será capaz de expulsar los fluidos al mismo ritmo que es compactada. Los cuerpo de arena intercalados o adyacentes a arcillas también se sobrepresionarán. Las presiones anormales tienden a declinar en el transcurso del tiempo geológico, sin embargo, si el cuerpo de arena se encuentra aislado o la sección de arcilla es muy gruesa, esto puede tomar un período de tiempo muy largo. La sedimentación rápida es otra posible razón de la formación de sobrepresiones. Además de las cusas litostáticas de las sobrepresiones, la actividad tectónica puede ser resuelta en una presión de poro anormal si el sistema permanece cerrado y no sufre fracturamiento. Otro ejemplo es el proceso levantamiento-erosión Ver Fig. # 7.

Si la roca mantiene su presión de poro después del levantamiento, estará anormalmente presurizada comparada con las formaciones contiguas a la misma profundidad. Otra posible de las sobrepresiones, especialmente en secciones de lutita, es la diagénesis de la montmorilonita a illita. Ésta última contiene mucho menos agua absorbida que la primera, de tal manera que la diagénesis estará acompañada por la liberación de agua a los poros libres de la misma. Esta transición depende en gran manera de la temperatura, requiriendo temperaturas de 70 a 95°C, o profundidades de 2 a 3 kilómetros en áreas con gradientes geotérmicos promedio. Ec. # 7, Ver Fig. # 8.

TIPOS DE FALLAS SEGÚN ANDERSON: Ver Fig. # 9

- NORMAL
- o INVERSA
- TRANSCURRENTE

MODULOS ELASTICOS: la teoría de la elasticidad lineal investiga las relaciones entre las cargas externas aplicadas a un cuerpo y el resultado en los cambios de su tamaño y forma; esta teoría sume desplazamientos pequeños y que el cuerpo regresa a su condición original después que la carga deja de ser ejercida. La fuerza aplicada y los cambios en tamaño y forma resultantes son descrita por los esfuerzos y las deformaciones.

Como se indico en la Fig. # 4 de la curva de esfuerzo-deformación, la cual es obtenida al aplicar diferentes magnitudes de carga o fuerza aun espécimen de prueba. Los esfuerzos por abajo del límite elástico son proporcionales a la deformación (Ley de Hooke). Las constantes de proporcionalidad difieren para diferentes condiciones de carga y son definidas como módulos elásticos los cuales son propiedades fundamentales de un material.

MODULO DE YOUNG (E).- es la relación que existe entre el esfuerzo axial (compresivo o de tensión) y la deformación axial bajo condiciones de carga uniaxial. Fig. # 4.

Fuerza	Esfuerzo	Deformación Longitudinal
F ₁	σ1	ε ₁
F ₂	σ2	ε2
F ₃	σ3	83
F4	σ4	٤4

0 <

σ

< 0.5

ROCA MUY COMPRESIBLE

ROCA COMPLETAMENTE INCOMPRESIBLE

roca	σ
shale	0.25-0.40
arena	0.15- 033
arena con gas	0.1
limestone	0.32

RELACION DE POISSON (v).- como consecuencia de la deformación axial o acortamiento longitudinal debido a un esfuerzo compresivo aplicado bajo condiciones de carga uniaxial, existirá un incremento del diámetro o deformación transversal. Es la relación entre la deformación transversal y longitudinal. Ver Fig. # 10.

 $y = \epsilon_y / \epsilon_x$

MODULO DE CORTE (G).- es una medida de la resistencia de la roca a cambiar de forma. Es la relación entre el esfuerzo de corte y la deformación de corte. Ver Fig. # 11.

$$G = \sigma_{xy} / \varepsilon_{xy}$$

MODULO DE LAMÉ (A).- es el equivalente al modulo de Young E, bajo condiciones triaxiales de carga, es decir es la relación entre el esfuerzo medio bajo condiciones de carga triaxial y la deformación volumétrica; Ver Fig. # 12, donde el esfuerzo medio se expresa como:

$$\overline{\sigma} = 1/3 (\sigma_x + \sigma_y + \sigma_z)$$

Y la deformación volumétrica se expresa como:

$$\varepsilon_v = \varepsilon_x + \varepsilon_y + \varepsilon_z$$

Por lo tanto el modulo de Lame se expresa como:

$$\lambda = \overline{\sigma/\epsilon_v}$$

MODULO VOLUMETRICO.- describe el cambio de volumen bajo una presión hidrostática, es decir es la relación entre un esfuerzo hidrostático y la deformación volumétrica, Ver Fig. # 13. Bajo condiciones de esfuerzo hidrostático tenemos que:

$$\sigma_x = \sigma_y = \sigma_z$$

Por lo que el esfuerzo medio es igual a una presión hidrostática ejercida en todo el cuerpo:

$$\overline{\sigma} = P_c$$

Por lo tanto el modulo volumétrico es:

$$K = \overline{\sigma} \epsilon_v$$

Además el inverso del modulo volumétrico nos representa la propiedad de la compresibilidad de la roca.

$$C_0 = 1/K$$

 CIRCULO DE MOHR: es la representación gráfica del estado de esfuerzos en un punto el cual incluye todas las posibilidades de rotación del sistema coordenado, Ver Fig. # 14. Para orientaciones especiales del sistema coordenada el tensor de esfuerzos tiene una forma particular y simple considerando inicialmente dos dimensiones. El esfuerzo normal (σ) y de corte (τ) orientados a una superficie es una dirección θ en el plano xy. Para que exista el equilibrio de fuerzas se debe tener:

 $\sigma_x = \sigma x \cos^2 \theta + \sigma y \sin^2 \theta + 2 \tau xy \sin \theta \cos \theta$

$$\tau = \frac{1}{2} (\sigma x + \sigma y) \operatorname{sen} 2\theta + \tau xy \cos 2\theta$$

Para un ángulo específico θ se tendrá que τ = 0 y esto ocurre cuando:

Tan $2\theta = 2 \tau_{xy}/\sigma x - \sigma y$

POROELASTICIDAD: frecuentemente, la región de validez para la elasticidad lineal es excedida en situaciones prácticas. En la mecánica de rocas relacionada con el petróleo, mucho del interés se enfoca en rocas con porosidades y permeabilidades significativas. La teoría elástica para materiales sólidos no es capaz de describir completamente el comportamiento de tales materiales. Es por esto que se debe considerar el concepto de poroelasticidad.

Generalmente, las rocas son materiales compuestos y por lo tanto, no homogéneos en escala microscópica. La manera en que la roca se comporta, su respuesta elástica, sus esfuerzos de falla, etc., dependen en gran medida de la parte no sólida de los materiales. A continuación se considerará el espacio poroso, el cual no solo es esencial para producir aceite de un yacimiento, sino que también juega un papel importante en el comportamiento mecánico de las rocas. Estos estudios fueron realizados por Maurice A. Biot.

- DETERMINACION DE LA MEDICION DE LA MAGNITUD DEL ESFUERZO HORIZONTAL MAYOR:
- En cuencas pasivas (sin tectonismo) los esfuerzos horizontales son iguales y siempre menores que el esfuerzo vertical.

$$\sigma_{H} = \sigma_{h} = \left(\frac{\nu}{1-\nu}\right)\sigma_{\nu} + u\left(\frac{1-2\nu}{1-\nu}\right)$$

- Los esfuerzos horizontales en cuencas activas pueden ser diferentes y por encima del esfuerzo vertical.
- Zona geológica compleja debido a varias inversiones tectonicas (callamiento normal, callamiento inverso, callamiento transcurrente).
- Presencia de sobrepresiones modifica la relación de esfuerzos horizontales y verticales.
- o No existen mediciones del esfuerzo horizontal mayor.
- No hay registros de imágenes en pozos del terciario que permita hacer retroanálisis de fracturas inducidas y breakouts.
- DETERMINACION DE LA DIRECCION DEL ESFUERZO HORIZONTAL MAYOR:
- o Ver Fig. # 15
- EFECTO DE SOBREPRESION EN ESTADO DE ESFUERZOS:
- En las zonas de sobrepresión el esfuerzo horizontal menor es muy alto y ligeramente superior a la presión de poro.
- Para estados de esfuerzos que producen fallas normales, inversas o transcurrentes la sobrepresión disminuye la anisotropía de esfuerzos.
- Para las altas sobrepresiones del pozo Camaronero.1A (0.98 psi/pie = 2.2638 gr/cc) no hay anisotropía de esfuerzos horizontales. El esfuerzo horizontal mayor y el esfuerzo horizontal menor se consideran iguales.

 No existe efecto del azimut del pozo en la estabilidad del agujero en la zona de sobrepresión; si puede existir un efecto de inclinación, perforar un pozo vertical es más sencillo.

III.- Desarrollo del Problema

a) Antecedentes del Problema.-

Antecedentes de Perforación de los Pozos Camaronero

UBICACIÓN GEOLOGICA

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

RASGOS ESTRUCTURALES

ESCALA DE TIEMPO GEOLOGICO

Antes de adentrarnos al Área de Estudio, primeramente recordaremos en que parte de la Historia estaremos trabajando, y esto es con apoyo de la Tabla del Tiempo Geológico; mediante el empleo de indicadores de edad relativa ha sido posible ordenar cronológicamente los distintos tramos rocosos que aparecen en la corteza terrestre construyendo una escala ordenada de eventos y materiales. De esta forma, la historia geológica de la corteza se ha dividido en distintas unidades, que de mayor a menor orden son: cinco ERAS (definidas principalmente a partir de discordancias, es decir, señalando ciclos orogénico, es decir, períodos en que hubo formación de montañas); las ERAS a su vez están subdivididas en PERIODOS (definidos principalmente mediante discordancias y contenido faunístico) y estos a su vez en EPOCAS (definidos principalmente por contenido faunístico y cambios litológicos significativos).

Como se ilustra en la siguiente tabla:

TABLA DE TIEMPO GEOLOGICO

ED.A	neniono	thore .		HACE	
EKA	PERIODO	EPUCA	PRINCIPALES EVENTOS	(millores de sifice)	
CENOZOICA	Cuatemario	Holoceno	Tiempo histórico y prehistórico. Se toma como punto de partida de este periodo el fin de la última glaciación. El progresivo retiro de los glaciares, produjo grandes cuencas hidrográficas que suministraron el agua, en tomo a la cual se inició el desarrollo de las grandes comunidades y civilizaciones. A comienzos del Holoceno se consolido el poblamiento de la especie humana de toda la extensión del planeta.		
		Pleistoceno	En vastas regiones del planeta (Europa, Asia) se produce una convivencia entre dos géneros de la especie humana: los Neandertal y el <i>Homo</i> sapiens sapiens. Inicio la expansión desde las tierras deserticas del África hacia zonas más beneficiosas para la vida humana. Edad del Hielo. Grandes glaciaciones. Los australopítecos y homos, convivieron y compartieron más de un milión de años, su estadia en la Tierra. Cuatro Edades de Hielo; glaciares en el hemisferio norte; elevación de cordilieras.	2	
		Plioceno	Desde hace unos 7 millones de años se inició el bipedismo en una rama de los simios antropomorfos. Se inicia con el Procónsul la separación definitiva entre los primates y la especie humana. Posteriormente surgirian el Dryopithecus, Oreopithecus y el Ramapithecus. Ancestros del Hombre o prosimios.	10	
	Terclarlo	Mioceno	Dominio de las anglospermas (apartción de las gramineas).	24	
		Oligocano	Radiación de los mamíferos, pajaros e insectos polinizadores. Los camelios se extinguen en América.	38	
		Ecceno	rapida evolución de nuevas especies de mamiferos, tales como caballos, rinocerontes, camellos, murcielagos, ardillas, primates.	55	
		Paleocano	Se forma el Atlantico Norte. Separación de Australia de la Antartica.	65	
MEBOZOICA	Cretacico	Al final del Periodo ocurrió una extinción masiva de dinosaurios y otras especies. Separación de los continentes. La placa africana se fractura de Gondwana. Extinción de reptiles acuaticos y amonites en el mar. Radiación de las plantas con flores (anglospermas).			
	Jurásico	Aparición de los mamiferos y de las aves. Desarrollo de los dinosaurios. En los manes el <i>ichtiosaurio</i> y el Plesiosaurio. En el aire el Pterosaurio y en la tierra los Allosaurios camivoros y Apatosaurios nerbivoros, pueblan el planeta. Aparición de las primeras aves o etapas evolutivas intermedias entre las aves y los dinosaurios, como el Archaeopteryx. Formación del Atantico Sur. Bosques tropicales de gimnospermas (oonfleras). A mediados del Jurasico aparecen las Androspermas (obartas con flores y frutos).			
	Triasico	Se Inida el proce da comienzo a la montañas; desier mamíferos a part Expansion de los	240		
	Permico	Aparición de los Gran difusión de	reptiles. Continentes en un solo bloque: Pangea bosques y organismos marinos. Esta situación	290	
PALEOZOICA	Carbonifero	produce que los sedimentos de este periodo son los generadores del carbón, petróleo y gas natural de hoy día. Predominio de los Anfibios, inicia glaciación hemisferio Austral. La redistribución de las aguas y tierras en <i>Gondwana</i> , producen un cambio de clima global.			
	Devónico	Surgen las gimnospermas. Surgen anfibios e insectos. Expansión de los bosques primitivos. Diversificación de peces con esqueleto interno. Este periodo se caracteriza por un clima calido que fomento el desarrollo de grandes bosques. Difusión de nelechos. Un grupo de peces desarrollaron lobulos en lugar de aletas y se convirteron en los primeros anfibios. Al final del periodo, invadieron la Tierra.			
	Silúrico	Primeras plantas y artrópodos terrestres. Surgen los peces con mandibulas. Se diversifican peces sin mandibulas. Glaciaciones hacia los extremos Norte y Sur y clima cálido hacia el Ecuador. Crecimientos de grandes arrecifes coralinos en las aguas cálidas.			
	Ordevicico	Primeros peces sin mandibuta. Abundan las algas marinas. Al principio del pertodo mares poco profundos cubrieron grandes extensiones de tierra, que al retirarse, mas avanzado el mismo, permitieron el deposito de arenisca y caliza.			
	Câmbrico	Surgimiento esponjas, gusanos, invertebrados marinos, moluscos, invasión de artrópodos (trilobites).		570	
PROTEROZOICA	Precambrico	Grandes glaciaciones. Organismos pluricelulares. Gran producción de oxigeno. Primeras algas verdes e inicia la fotosintesis. Primeras bacterias. Surgen las primeras celulas y con ellas, la vida en nuestro planeta.		2 600	
AZOICA	Arcaica	Formación de los oceanos. Formación de la corteza terrestre. Se forma la atmósfera de la Tierra. Formación de montañas. Enfritamiento del planeta. Se origina la Tierra.		4 600	

COLUMNA GEOLOGICA

OBJETIVO	CONCEPTO	CAMPO
Plioceno Inferior Mioceno Superior Mioceno Medio	Arenas canalizadas Arenas canalizadas y tabulares Arenas canalizadas y tabulares	Cocuite, Playuela, Chalpa Cocuite, Lizamba, Veinte Cocuite,Novillero, Veinte
Mioceno Inferio r	Conglomerados	Novillero, Mirador
Eoceno Superior	Conglomerados	Perdiz

Productor de gas Productor de aceite y gas

AREA DE ESTUDIO

Capitulo III

CUBOS SISMICOS

S finnes

LOCALIZACIONES EXPLORATORIAS AREA CAMARONERO

	Anton Lizardo-1	Cocuite-102	Cocuite-201	Novillero-1	Novillero-14	Mirador-1 2252-2395 2440-2465	
Manifestaciones y/o Inter. Prod.	968-937 PF. no abnó prob. 980 lodo 1.23-11.11 1064 lodo 1.60-1.20 1135 flujo a/s 8000ppm	2384-2388 2990-2993 3011-3013 3022-2025	2594-2600 2565-2571 2517-2520 2484-2490	2850 2865-2875	2862-2874 2915-2919 2952-2960 3030-3036 3055-3060		
Espesor (m)	730	750	770	57.5	440	80	
Porosidad (%)	9	25		10	10	8	
Permeabilidad (Md)							
Saturación Agua (%)		80		45	48	49	
<u>Simbología</u> Intervalo productor de Gas Manifestación de Gas	7 mm	1000 1200 1200 1200 1900		120	2200 2200 7900 1000 1000 1000 1000	100 100 100 100 100 100	

DATOS PETROFISICOS Y MANIFESTACIONES DE GAS DEL OBJETIVO MIOCENO MEDIO

Capitulo III

HISTORIA DE SEDIMENTACION Y EVOLUCION ESTRUCTURAL

LINEA SISMICA ESTRUCTURA CAMARONERO

LINEA SISMICA ESTRUCTURA CAMARONERO

PLANTA DE LA ESTRUCTURA CAMARONERO

Camaronero No.1

INCIDENTES DE ESTABILIDAD EN EL POZO CAMARONERO-1A

PESOS DE LODO ÁREA CAMARONERO

COMPARACION POZOS CAMARONERO 1 Y CAMARONERO 1A

ANALISIS DE PERFORACION ZONA PROBLEMATICA EN EL POZO CAMARONERO 1A HOYO DE 14-3/4" (2500- 2660) m REVESTIDOR 11-3/4" (2365-2623) m

ANALISIS DE PERFORACION ZONA PROBLEMATICA EN EL POZO CAMARONERO 1A HOYO DE 12-1/4" (2660- 2689) m REVESTIDOR 9-5/8"(2212- 2670) m

Capitulo III ANALISIS DE PERFORACION ZONA PROBLEMATICA EN EL POZO CAMARONERO 1A HOYO DE 8-3/8" (2689 – 2995) m REVESTIDOR 9-5/8"(2104- 2995) m

Capitulo III

ANALISIS DE PERFORACION ZONA PROBLEMATICA EN EL POZO CAMARONERO 1A

Capitulo III

POZO CAMARONERO-1A: CALIDAD DE AGUJERO

b) Planteamiento del Problema.- en este inciso desarrollare todos los cálculos que intervendrán en nuestro estudio para el Diseño de Pozos, donde determinare:

- GRAFICA DE PROCESAMIENTO DE REGISTROS CON HOJA DE CALCULO
- PRESION DE SOBRECARGA (BOURGOYNE)
- PRESION DE PORO (EATON Y BOURGOYNE)
- PRESION DE PORO CON EL METODO DEL ESFUERZO MATRICIAL EQUIVALENTE
- GRADIENTE DE FRACTURA (EATON)
- DENSIDAD EQUIVALENTE
- 🔶 ESFUERZO VERTICAL
- ESFUERZO PRINCIPAL MAYOR (TOTAL Y EFECTIVO)
- LEY DE HOOKE Y VAN EeKELEN (σ_h=s₃)
- COLAPSO SUPERIOR E INFERIOR (MAGNALLY, WADE-HORTON, J.P. SARDA-KEESLER)
- DETERMINACION DE LA MAGNITUD DEL ESFUERZO HORIZONTAL MENOR
- DETERMINACION DE LA MAGNITUD DEL ESFUERZO HORIZONTAL MAYOR
- DETERMINACION DE LA DIRECCION DEL ESFUERZO HORIZONTAL MAYOR
- PROPIEDADES MECANICAS DINAMICAS Y CONTINUAS (RELACION DE POISSON, MODULO DE YOUNG, MODULO DE CORTE)
- 🏓 COHESION DE LA ROCA
- RESISTENCIA MECANICA (MODULO DE MOHR-COULOMB)
- GRAFICAS ADICIONALES

- c) Desarrollo del Problema.-
 - Grafica de Procesamiento de Registro
 - Presión de Sobrecarga (Bourgoyne)
 - Presión de Poro (Eaton y Bourgoyne)
 - Presión de Poro con el Esfuerzo Matricial Equivalente (Sarda)
 - Presión de Poro con el Esfuerzo Matricial Equivalente (Wade)
 - Presión de Poro con el Esfuerzo Matricial Equivalente (Magnalli)
 - Gradiente de Fractura (Eaton)
 - Densidad Equivalente
 - Análisis de Estabilidad de Agujero
 - Gradiente de Esfuerzos Verticales
 - Esfuerzo Principal Mayor (total y efectivo)
 - Esfuerzo Matricial Equivalente
 - Ley de Hooke y Van Eekelen
 - Colapso Superior e Inferior (Magnally, Wade-Horton, J.P.Sarda-Keerler)
 - Determinación de la Magnitud del Esfuerzo Horizontal Menor
 - Determinación de la Magnitud del Esfuerzo Horizontal Mayor
 - Determinación de la Dirección del Esfuerzo Horizontal Mayor
 - Propiedades Mecánicas, Dinámicas y Continuas
 - Cohesión de la Roca
 - Resistencia Mecánica

- Desarrollo del Problema.-
- . Grafica de Procesamiento de Registro.

2062 12 1992 12	11				#16 #21 69271 921	45,71996 43,776136	65960 507 Z9992 200 P	6610 0-	00 261	9961-08 ZE86-69
9822 IE					9686 921	66960 \V E2872 \V	2 202 19069 201 49069	0.0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	02 961	9068'69
29216					PEGZ 921	9/6ED11 SESE9.0#	9666.002 9	49100	0E 961	929 69
196/1E			_		8552 921	45 67113 49 00274	198E8 661 1	8910'0	DE #61	2122.00
BERZ LE					19090 221 1998 221	966 CP 69892 CP	LEENC BEL Z	1910.0.	08 261 08 261	1916 89
BEZ 16 ZZEZ 1E					9620 <u>72</u> 1 8 921	466963 48 9999 90 10019 97 49999	9299 <u>6</u> 961 6 92920961 2	810.0- 810.0-	09'Z6 <u>L</u> 06'Z6L	9119.85
90ZZ 46					F125 921	23 13549 24 51 449 23 3606 29 98241	20790 761 1	Ž91010- 201010-	09 161	2697 99
67121E					ZZ 89 921	29/69/29 (29861/69 26/68/16 (29861/69	59716°661 9	6610 0 8710 0	00.001	7791 89
260216			-		529921	90946'27 82260'67	17770 194 07721	9010 0-	199.60	96/9 /9
819 <u>8,1</u> 0 4593.10					1/2892/921	1 20052 10 22099 00	16761 961 1	9400 0- 0/00 0-	09.991	8779 79
8989 LE					17969'921 9296'921	98022 BE 56MED GE		0/00 0·	08.781	PZ 2924
21/29 LE				+	590'921 10#99'921	22116 EF 99022 CF	97920 B61 6	1900 0- /#0010-	0E 281	9//80129
92991E			-		10EDE 9/1	29/55 ht 68/18 ht	Z/99Z 00Z 6	E00 0	0E 981	8787 36 Fotorioc
1,99.16					610 321 657 SZL	BZCPB EP Z2592 EP	9121987202 2	B200 0	06.901	021 99
P6E9 10					8909 921	L9699 ZF 86969 ZF	69066 EDZ 0	6200 0-	06.461	2621 39
966916 872316					P0/9 9/1 F13/ 9/1	60681.95 25%54.14 50%86.04 25%54.14	66999 E0Z 6 99/9E EDZ 6	6200 0- 00 0-	183'80	98 0508 98 98 99
21,622					61910 921	1 10229 6E 72599 66	10922202 0	00.0-	107701	912 99
- 3i 6104			-		9672 921	20899 17 69890 St	62176 407 2	62000	08 181	2117 99
9969 LC					9819 921	11921 8V V8V ZV	#26#9 LOC 8	0 0045	09 081	Magr. 36
2/89'16					19602 921	61929 87 75537 87 99	9999900	1900 0·	08.091	9108 1/9
#185'12 60/9'16			-	+	17292 721	1 20668115 68918105 20625105 99116105	5/991 002 6	6010 0- 971010-	06.621	2619199
BERG LE			-		Z/90 5/1	ZEEDD 61 96622 61	191960 D0Z 9	62100	0E 021	261 PC
CH99 LC					52.921	199909 50 8689E 91	SISEP 102 P	IELO O	DE 221	9660 99
9999 16					9962 921 6509 921	10096 PV 10110 90	2 205 10102 Z	N10 0-	09.921	6961 69 6768 69
9099'16 909'16					92'921 92'921	99799177 829751	1 205 26853 5 204 31643	1910 0-	06'921	1/209 C9 C7 C9
2629 10					92.921 Geng G / L	06882'97 £8899'97	662266 10Z 6	0910 0- Spin 0-	00121	9//2 89 ZCZ1 89
921916 -		-	-		7060 921	19209 19209 19200	1 205 20211	69100	08 621	97,6679
909 12 909 12					00662 921	LOBSE EN ZVOZE VV	SECE 202 3	9010 0	08 724	899 29
C009 16		- Mar - 20	1	6	66291 221	21962 27 71799 97 26623 67 62699 87	6 EZZ ZOZ 2	6900 0·	05 221	2535,22
9997 1C		_			200 0/1	99825 67 69672 67 99837 76885 77	60901 202 6 87501 202 2	0000	06 121	25,0584
2/1/16			-	*	60009 821	CZ2005 dC /Z000 00	2 205 45P	8900 0 1470 0:	00021	906 19
1999 7 10		•	-		17606 821	36 13036 36 01 100 100 100 100 100 100 100 100 100	9 305 1909	6900 0-	06,691	21 6012
BEBALIE BEBALIE					929 921 929 921	11 18562 DV 29082 85	2 205 50000	5200'0-	00.891	1962,12
31,4422					979 021 979 921	45 68501 43 48853 45 08501 41 35563	99901 202 9 16610 202 6	6,000	06 291	9166 09
PREF LE			-	-	6/69/ 19/1 99/11/6/1	6/F/ 6F 1/2668/8F	82210 ZUZ 9	6040 D 1140 D	199 991	20653-09
BVCF LE			_		8512 621	9/// 1000000	5 505 (1389	BZIOO	08'991	PVE9'09
SETA IE					66570 081	6619507 25092 0F	28+10/202 L	100	164 80	90,2296
910k re				6	190 991	62620 ZV	99676 100 6	0#10.0- 9610.0-	05.631	01/20/09 01/26/67
6966 <u>1</u> 6 6E11 0 1					69767-181 68289-181	45.0564	2	0710 0- 2610 0-	482 90	787724 23.94
21 31 396 VS					181 [°] 348 185 [°] 33538	10122117	6	8110'0-	191,30	9297 67 Z518 67
962616					6/0/9 781	65201 2V	 6	9010 0-	191 30	9791 67
196 16					6022.081	SZ266 EV	-2	81600	06'091	899.90
PGPE IE					66626 981	46,222.47		4260 0	06.681	7595 60
BUDE LE			-		AT0.991 E2026 261	19096 67	6	460.0	06,661	18 1008
CRE 16			-		66190 681	1 81291'77 96066'97	9	6150.0- 0	08/291	960 87
31,3204					6E0/E 061	22106'99 CCIde 0#	4	6150.0	08'991	Z16/ /9
BBDE 4E		4			61211 161 61211 161	290/5167	V	6160 D	08'991	V387 /V
2.452 VE			<u></u>		86659 261	1 10560'07	7	GLED D	08/791	9181 /7
9582 LE			_		105 9654 105 12659	GBUUP OF	- 7	6160'0-	163,80	0928 97
9627.10 722'3E					163 94538 164 5284	1 16EP9'EP #25CB'5P	2	6460 0- 6160 0-	162,90	492 1544
2002'10					66/97 461	91126.27	7	6160 ⁰	195,300	9817 97 799 9189
999C 10	-	-			196,6164	2E990 19		6:000	191 30	SP11 97
347.745			-		8921 961	89927 67	7	6460.0	160.30	19.94
VERS IS			-			1 2271119		6160.0-	06.941	C909'97
9666.16					69959 961	57857 ZS	F V	6160 0·	06.841	8096 97 1002 97
31'516					97./2 002 86./16 007	\$0662"1 <u>9</u> 25209"8#	7	6160.0-	09 201 05 201	9998 M
31,2044					61919 200	20662 ZV		6160.0-	146.60	74 1430
6281 16			-	*	60206 P00	9722927	4	6160.0	09.971	1967 FF
Z191 10 -		-	-		96976 900 96976 900	C 69999 19	- 7	6460.0-	144.80	982 17
P921 1E 31 1696					62210.202 96838	23 2430E 23	7	6160 0- 6160 0-	143.80	¥3 6566
BESI LE					29696 600 606101172	ZZERS 19	7	6160 0-	143.30	¥3/9 67
2251 1E			-		515 54888	6/666 69		61E0 0-	0E 271	9148 89
50F1 10					2167 512	IEZZE ES	- 9	6160 0	0E.141	8990 67
EZT IE					715MD 615 8518h 815	C 75825 19	7	6120 0	08 09 L	45 242
2621 16	2				26999 177 21816 EZZ	2 9691 19 2 95969 29	7	6150 0- 6150 0-	08/661 06/661	45 1609 15 1609
9111.10					96927 922 7599 9277	2 9782729	4	6160.0-	136.80	45 3048 45 1654
L'IE AMAR	doubl	10.39			22907 622	2028203	10	61600	DB ZEL	ZV
OTAO NIS	M 003 RTRAA M 003 RTF	RAR M 002 AITSA9	OTAG NIS OTAG NIS	OTAG NIS IN 606 RITRA	9 M 802 ATRA9	OTAG NIS M 03 91194	PARTIR 50 M PA	M 002 RTTRAG	1 along	Stred

		PARTIR 500 M PARTIR 50 M PARTIR 50 M			PARTIR 508 M	PARTIR 508 M SIN R.E.		PARTIR 500 M PARTIR 500 M PARTIR 500 M SIN R.F							
PROF [m]	Prof [pie]	CALIPER	DRHO	DT	GR	GREC	SP	ILD	ILM	LLD LLS MSFL	NPH	PEF	RHOB	Rī	TEMP
505 0393 505 1916 505 344 505 4954	1 666 877 1 667 377 1 667 877 1 668 377	14 34977 14 48735 14 51567 14 56039	-001393	135 26445	33 22553 33 22575 34 52974 37 52165	66 3529 66 3148 69 06914 70 72698		D 43881 D 41918 D 6658 D 94137	0 75067 0 88405 0 95505 1 10495			2 22211 2 21912 2 22039 2 1 225	-0 01389 -0 0101 -0 0 110 -0 0 10		
505 64 55 505 85 35 509 105 509 2554	1668 877 1669 377 1669 877 1670 377	10 59752 10 6315 10 6703 10 67657 10 67657	-0 0 1 8 -0 0 93 -0 0 93	135 807	40,13793 41,18494 4206284 4339059 4506707	70 50200		1 20031 1 30613 1 30029 1 37105 1 36777	1 00001 1 50010 1 50010 1 50055		0 47095	2 17868 2 2189 2 32437 2 46034 7 46034	0.00737		74
509 3108 509 5632 509 7186	1 67 1 377 1 67 1 877 1 67 2 377 1 67 2 877	10 62526 10 62621 10 62613 10 62511	-0 0 17 -0 0 08 -0 0 92	136 320 136 320 136 737	48 51872 44 35045 42 14526 39 5157	10 10 10		1 27828 1 27882 1 31828 1 42422	1 4 27 6 1 4 4 28 4 1 4 4 27 4 1 4 1 3 3			2 4 6 2 3 2 4 8 6 4 6 2 8 8 2 8 2 8 7 2 6	0.00697		45.1626
510 1726 510 3252 510 4776	673 377 673 877 674 377 674 877	14 65416 14 65416 14 6555 14 56476		137 927	36 62466 35 97572 35 60655 34 65012	98 71/17371		1 00312 1 00251 1 00305 1 30055 1 30055	1 39059 1 3905 1 39213 1 39213		0 00012 0 00710 0 02003 0 02003 0 00707 0 000707	2 70779 2 70779 2 69231 2 69546 2 69546			
510 7820 510 9308 511 0872 511 3396	675 877 676 377 676 877	14 4771 14 40975 14 34695 14 30553	-00128	138 380	33 18279 33 6732 34 66249 32 64647	12.01000		1 37172 1 37288 1 37518 1 37618	1 3965 1 3965 1 39492 1 39344		D 52494 D 50007 D 45161 D 45205	2 58625 2 71792 2 55359 2 86103	-0.0		1673
511 393 511 5444 511 5455 511 5493 511 5493	1 677 877 1 678 377 1 678 877 1 678 877	14 27127 14 23574 14 19207 14 11416 14 05152	9,95218	130 010	30 37 277 29 7 294 30 32 213 30 8 3 8 2	71 D#207 68 #1688 67 D4888 66 28508 66 28508		1 37624 1 376 1 376 1 37659 1 37659	1 39260 1 3926 1 3926 1 39319		0 49278 0 50328 0 51383 0 513654 0 51654	2 95634	991973		55 55 11 54
512 150 512 3060 512 4555 512 6112	1 68 0 377 1 68 0 877 1 68 1 377 1 68 1 877	13 99697 13 99338 13 78565 13 68265	001012	135 111 134 326 133 67712 133 29791	27 95170 23 80531 19 76083 17 84267	65 71 09 64 011 09 61 85783 64 50575		1 3809 1 38264 1 38417 1 39131	1 3975			2 6 2 6 8 4 4 7			120
512 /030 513 0550 513 0550 513 2205 513 3732	100 2 377 1083 377 1083 377	13 50050 13 60107 13 21053 13 11176	-0.0237	132 0001	12 36 233 24 31 734 24 67 268 24 41 829	60 83760 59 76649 59 57501 60 62273		1 4165 1 4165 1 43025 1 4477 1 46043	1 4 28 2 1 4 4 21 8 1 4 5 27 2 1 5 2 2 5 5		0 50/0 0 53137 0 51301 0 50159 0 45977	2 00010 3 50015 4 71051 4 50235 4 75702	8 9 98 1 *		45 2041
513 5356 513 678 513 678	1 684 877 1 685 378 1 685 878 1 686 378	13 06042 13 0614 13 0683 13 01433	-0 0 1 0 7 5 -0 0 2 1 6 6 -0 0 7 3	132 593	23 88438 21 88478 19 42466 18 80087	56 49737		1 5000 1 51927 1 50882 1 57883	1 5364 1 56084 1 5898 1 61679		0 47654 0 49653 0 5159	4 5053 3 22889 3 29027 3 36232	-0.003		48 2087 48 211 48 2133 48 2133
514 2576 514 44 514 5924 514 5924	687 378 687 878 687 878	12 81886 12 88671 13 93933	001774		18 14 222 20 332 23 68 279 28 16 508	23.40+43 54.40+		1 61 207 1 61 499 1 60 501 1 599 62	1 64331 1 64806 1 64811 1 6385		0 80731 0 80164 0 49683 0 49683	3 97903 4 64699 4 47137 4 13013	0,00035		48 2225 48 2225 48 2225
510 5972 515 5005 515 202 515 3500	682 378 682 878 680 378 680 878	127772			24 921 55 23 991 03 24 35 001 25 991 03	54 55 54 58 54 58		1 58875 1 58227 1 57802 1 57802	1 62277 1 62267 1 61901 1 60773			3 23737 3 14 295 3 14	35935		2294 2317 5224 2363
515 6592 515 5116 515 960 516 1160	1691 878 1692 378 1692 878 1693 878	2 772 2,772 12 76C 12 74		133 0531 1 133 151 133 263 7 133 431 7	26 79616 24 27252 23 03826 23 12185	49 25741 48 20056 47 59275 51 92665		1 55742 1 55704 1 55704 1 55765 1 55526	1 59326 1 59136 1 5926 1 59279		0 56348 0 5479 0 53526 0 52661	3 4 6 4 7 8			10.78
516 4212 516 5736 516 726 516 726	694 378 694 878 695 378	12 660 12 554 12 525 12 525		134 166 134 722 135 211 135 577	23 27967 23 75212 25 29015 27 87782	56 73232 54 5535 53 59247 54 52125		1 88684 1 8868 1 8889 1 88891 1 88122	1 8555 1 87652 1 87652 1 877552			360576	-0 0 21 -7 0 07 -0 0 52		48 2524 48 2547 48 257 48 2593
517 1335 517 3355 517 488 517 488	1 696 878 1 697 378 1 697 378			135 8541 135 8541 135 880	25 40222 25 34 42 25 77624 25 36361	55,62035 55,22026 53,0515 52,777		1 54255 1 5262 1 5262 1 52634 1 49045	1 55020 1 50000 1 50000 1 52057			3 21813 3 34997 3 47978 3 47978			48 268
517 7935 517 9452 515 0976 515 0976	1028 878	12,4121	-00 79	115121	28 61796 28 40532 28 25183 27 87888	53 53473 54 45871 52 51178 53 01485		1 47803 1 46913 1 45785 1 45785	1 80339 1 49443 1 48095 1 4715		0 53052 0 51655 0 50457 0 5173	373876 373887 373287 373287	-0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		48 2731 48 2754 48 2777 48 2777
518 5548 518 7072 518 5566 519 013	1701 378 1701 878 1703 378 1703 878	12 415 12 576	-0 2 83	134 121	28 02696 28 38369 23 08693 24 86448	55 0795 58 01305		1 45165 1 45565 1 47371 1 466322	1 07353 1 07535 1 09933 1 51913		0 53112 0 52054 0 51055 0 50155	3 6 1 5 1 3 5 4 5 4 7 3 4 6 1 5 6 3 5 6 7 3 5			
519 1030 519 3165 519 3693 519 6316 519 773	1703 378 1704 378 1704 378 1705 378	1230837 1230837 1230837 12308037	8.87891	134 07	20 05/01 27 65235 27 65555 26 95044 26 95044	55 57749 55 59633 55 14056		1 69773 1 50274 1 5059 1 5059 1 5059	1 53759 1 54107 1 53943 1 53467 1 53907		0 010/2 0 51053 0 52545 0 40072 0 40295	3 31918 3 36281 3 36333 3 33742			48 2961
510 0768 520 0768 520 3512 520 3535	706 879	12 30832 12 30881 12 30814 12 3014	-0 0 4 6 4 -0 0 1 2 2		23.62361 20.70114 21.32167 22.42064	57 58544 58 28545 53 26475 53 25013		1 4 9 957 1 45 9 99 1 45 1 17 1 45 0 0 1	1 52350 1 511 1 50112 1 50173		0 50209 0 51122 0 52035 0 52035	3 23 30 5 3 23 22 5 3 21 16 3 3 21 72			
520 6004 520 5405 520 9932 521 1455	708 378		-0 0 0 3 1 -0 0 1	51 51 12 505	20 20 00 20 20 20 20 20 20 20 20 20 20 2	57 50638 57 56638 57 56638		1 47732 1 47732 1 4746 1 471	5071 50752 50745		0 53773 0 53773 0 53778 0 54813	3 27644	-D Q 23		48 3141 48 3141 48 3214 48 3237
521 4504 521 6028 521 7552 521 7552	710 379 711 379 711 379 1711 379	120000000000000000000000000000000000000	0.0+00		21 78 25	56 5943 52 07169 50 09465 52 73361		1 400 20 1 4070 21 1 473 23 1 473 23 1 424 20	1 0 2071 1 0 2511 1 0 2552 1 5131 1 50522		0 55151 0 52151 0 50227 0 50227				
522 21 24 522 31 24 522 3645 522 3645	1712 879	12 39426 12 3677 12 34429 12 32819 12 32819	-0 0 01 -0 0 28 -0 0 17 -0 0 27		25 97 1 57 26 238 47 25 78 299 24 899 81	52 54055 51 50332 53 59576 55 54363		1 50007 1 50494 1 51555 1 53262	1 56643 1 58 1 59189 1 6025		5149 5089 5746 6163				48 3375 48 3398 48 3421 48 3444
522 822 523 9744 523 1268 523 2792	718 379	12 28957 13 27007 13 25304 13 25035	-0.0 44	133 3333 133 33994 133 38196 133 38196	22 22508 21 24 995 21 17 965 22 25 534	55 62996 52 1337 51 18126 51 65901		1 5425 1 54725 1 53607 1 53754	1 61471 1 61537 1 6033 1 60183		9.97389	4 10897 3 88922 3 87871 3 48389	-00.031		48 349 48 3513 48 3536 48 3559
523 556 523 7364 523 7364 524 0412	717 878 718 878 718 878 718 878	12 250/2 12 25234 12 25234 12 25335 12 27155		133 05021 133 05113 133 051 134 051	23 51 56 23 524 23 92237 23 76816	55 27772 56 29129 56 1865 55 50877		1 51 2 2 3 5 1 5 1 2 2 5 2 1 5 1 5 2 5 2 1 5 1 5 5 2 1 5 1 5	1 5534 1 5534 1 57717 1 55131 1 55125		0 7714 6 76073 0 49563	3 03 265 2 8 565 2 7 3 7 5 7 2 6 4 4 1 1			48 3608 48 3628 48 3631 48 3651
520 1936 520 306 520 0980 520 6508	1719 879 1720 379 1720 879 1721 379	12 20052 12 31391 12 37389 12 4333 12 4333		134 07	25 95007 26 35769 30 00876 31 02801 34 24 113	54 57529 53 04294 51 57127 50 71271 50 71271		1 51275 1 51427 1 51475 1 51975 1 52955 1 53955	1 55015 1 5733 1 56557 1 56557 1 565172			2 5555 2 54 232 2 53 254 2 45 24 2 2 45 24 1 2 45 27 1	0.01949		48 3697 48 373 48 3743 48 3766
525 105 525 2604 525 4125	733 379	12000 1200002 1200002 1203287 1203287		133 255	41 3632 47 97263 47 71862 41 26261	50 19963 50 19963 50 53690 51 60153		1 53912 1 53967 1 54164 1 5455	1 5755 1 58501 1 59173 1 59411		0 4 867 0 50783 0 5241 0 5154 8	2 0 0 0 0 0 2 0 0 0 1 0 2 5 1 65 1 2 7 3 0 0 0	8.839.56		
5 25 71 75 5 25 77 5 25 77 5 26 17 2 8	724 879	12 41285 12 39912 12 35518			20	54 14014 57 11193 59 26031 60 47953		1 55257 1 55257 1 55232 1 55132 1 55142				3 3 3 2 6 6 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	-5-0899		27
526 3272 526 4796 526 633 526 7544	1726 880 1727 380 1727 880 1728 380	12 34219 12 32823 12 31282 12 28266	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	132 - 098 132 - 198 177 / 087		62 0621 65 57553 75 78581 79 55035 77 50355		1 57856 1 57711 1 55723 1 59344 1 59344	1 64681 1 63518 1 60018 1 5889			3 36841	0.01003 -0.0130		10.1886
537 0893 537 3416 537 344 537 3464	739 380 739 880 730 880 730 880	12 25191 12 25143 12 25669 12 26654		134 D24 134 315		67 61307 80 20050 80 73711 80 65456		1 55506 1 57556 1 57051 1 56553	55347 55547 54523		0 4045	2 d 2 d 2 d 1 d 2 d 2 d 2 d 2 d 2 d 2 d 2 d 2 d 2 d 2			141
527 5512 525 0036 525 155 525 155	1731 880	12 27117 12 28279 12 30559 12 30559		135 818 136 142 136 546	46 40737 43 21819 38 17743	62 10745 61 88738 58 56326 68 73601		1 54 4 54 1 54 4 54 1 51 9 55 1 51 9 55	1 83376 1 53071 1 50169 1 47555		D 4 5 5 5 5 D 4 5 5 5 5 D 4 5 6 5 5 D 4 5 6 2 5	2 64593 2 69946 2	-0.0028		48 4272
520 0000 520 0132 520 0550 520 910 520 910	1733 000 1734 380 1734 880 1738 380	12 30815 12 30856 12 30856 12 30856		137 070 137 167 137 234	31 62681 31 10587 31 83439 33 18526	63 11664 64 43298 63 09948		1 40 234 1 47 63 1 46 245 1 46 751 1 43 775	1 0 0 0 0 2 1 0 2882 1 0 1 182 1 0 0 6 0 5 1 0 0 5 0 5		D 3 2 6 6 6 D 5 2 1 5 4 D 5 2 1 5 4 D 5 3 3 6 7 D 5 4 3 6 4	2 4 4 9 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8,88187		1111
520 2225 520 3752 520 5275 520 5275 520 5275	1736 380 1736 880 1737 380 1737 880	12 28978 12 28961 12 28969 12 28968 12 28968	-0.0	12 12 137 137 136 137 136	34 2461 33 56687 30 75744 29 21036	70 94505 75 52655 77 21199 76 6405		1 42941 1 42045 1 415425 1 416426 1 414267	1 30100 1 30100 1 3053 1 3055			3 1 4 8	8.850+3		
520 9545 530 1373 530 2595 530 442	1738 880 1739 380 1739 880 1739 880	12 28964 12 28963 12 28963 12 28963		137 738 137 738 137 869	35 55141 40 03654 43 08743 44 73903	65 8812 62 54742 61 04523 60 85479		1 40845 1 39656 1 3878 1 38128	1 36474 1 36933 1 36933 1 36933 1 34133				88833		10.151
530 5900 530 7065 530 5993 531 0516 531 200	1 74 0 880 1 74 1 380 1 74 1 880 1 74 2 880 1 74 2 880	12 20203		37		62 51566 63 79147 65 06786 62 71537 55 6014		1 370122 1 365222 1 365222 1 36122 1 36122	1 33126 1 32473 1 3265 1 3275 1 3275		0 5171 0 5225 0 53371 0 53492 0 55405	3 50 3 51 3 52 5 5 3 5 3 5 3 7 3 1			
531 2658 531 6612 531 612		2 28650		37	38 21 080 38 134 54 36 40332 35 024 20	61 66555 61 66555 68 56555 71 25151		1 3523 1 34679 1 34204 1 33949	1 33567 1 33195 1 31600 1 3136			4 12200 4 44795 4 35166 4 20717	8.96736		20 24 47
532 1100 532 2708 532 4232 532 4232	17 380		0.01030		38 08021 37 46379 33 6201 28 38 663	76 33704 77 54497 74 53037 73 06617		1 32030 1 32030 1 32262 1 32262	1 31 056 1 3096 1 3096			4 5279 4 50067 4 52497 4 5731	36		10
532 8800 533 0328 533 1852 533 3376	17 381	235093	-0 0 94 -0 0 17 -0 0 91	132 62123 132 65127 132 77667 132 89122	23 74 368 22 16 1 36 23 34 21 3 24 47 8 23	62 61 53 65 826 99 67 748 89 65 57298		1 36887 1 39013 1 40563 1 43555	1 34909 1 37367 1 39165 1 42829			8 01604 4 93809 4 18826 3.45471	0.05604		48 018 48 0184 48 0184
533 49 533 64 24 533 794 8 533 24 72 534 9995	1750 881 1751 881 1751 881 1752 381	12 39238	-0 0 88 -0 0 97 -0 0 91 -0 0 13	132 979 133 07211 133 22006 133 46616 133 75264	28 38794 30 97658 31 24775 31 24725 33 54725	64 64924 67 65913 65 43649 67 52659 61 41402		1 46742 1 50016 1 53235 1 53773 1 55262	1 46206 1 48176 1 48517 1 50468 1 51581			2 69 223	0.00048		48 51 23
530 252 530 4040 530 5568 530 7092	1752 881 1753 881 1753 881 1754 381	12,0051 12,03505 12,3635 12,26166		134 DADE2 134 45 134 A557 135 341	35 99707 37 07246 36 19634 34 67492	50 51847 54 59819 52 84872 51 80122		1 55209 1 55039 1 55639 1 54955	1 52351 1 52503 1 5253 1 5263		0 50549 0 52244 0 51625 0 49224	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-00+15 -00+15		48 5 26 1
535 1664 535 3188 535 3188	1755 381 1755 381 1756 381	1221166	-0 0 12 -0 0 79 -0 0 411	135 055	36 35 256 36 31 773 36 85 7 85	60 21007 61 40299 60 22696		1 80833 1 4856 1 47451 1 46535	1 47658		0 51897 0 51733 0 49266 0 46851	2 26414 2 26414 2 26922 2 26927			48.823
535 9284 535 9284 536 9284 536 9333		12 20928 12 20928 12 2098 12 2098	-0.02278	35 942 35 942 36 064	37 07390 36 07390 34 16400 31 31 153 33 13226	64 49485 67 67			1 3070			2 3670 2 36737 2 35662 2 35662 2 39705 2 42026			
536 3856 536 538 536 5438 536 5438	1752 881 1760 381 1761 381 1761 381	12 20501 12 20519 12 20357 12 20355 12 20273		136 1091 136 aC	34 86471 33 65665 37 20982 31 37504 30 91 377	12:15342		1 39852 1 39610 1 39376 1 3886 1 3886	1 37192 1 36809 1 36632 1 36231 1 36261			2 42803 2 463 2 4677 2.45869 2 46134	-D0 + 23 -D0 + 23 -D0 - 23 -D0 - 23 -D0 - 23		
537 1476 537 3 537 4524 537 6048	1762 381	12 20191 12 20109 12 20027 12 19945			30 58464 30 04306 26 6055 27 03963			1 38323 1 38328 1 38577 1 39235 1 40135	1 36575 1 3695 1 37311 1 38384 1 38384			2 4 3 6 2 2 3 7 8 3 7 2 3 4 3 0 3 2 3 4 2 0 3 2 3 4 2 0 2 3 4 2 0 2 2 3 4 2 0 2 0 2 2 3 4 2 0 2 0 2 2 3 4 2 0 2 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0	-0 0 1 4 1 -0 0 2 2 -0 0 1 2 2 -0 0 1 2 2 -0 0 1 2 1		45 5652
537 ADAC 538 2144 538 3568	1765 381	12 196	-0000000 -00071 -00000	134 36772 134 13626 135 2526 135 2526	20 00082	812		1 01000 1 02009 1 03377 1 00000	1 01033 1 03059 1 03100 1 05735		0 4 4 6 7 2 0 4 3 5 9 8 0 4 3 7 1 8 0 4 4 4 9 3	2 0 0 0 3 3 2 5 0 2 0 0 2 5 0 6 0 1 2 5 0 6 0 1	-0 01116 -0 01079 -0 00987 -0 00985		48 8767 48 879 48 5813 48 5836
535 6716 535 524 535 824 536 1255	767 382	11111	88633	133 61827 133 67678 133,36138 133,36138	24 72196 24 31 141 25 57995 26 5635	18 19 19 19 19 732 1		1 45715 1 47117 1 4745 1 47857	1 48636 1 48975 1 4813 1 4813		0 48131 0 48567 0 42704 0 4673	2 3868 2 38786 2 30756 2 30715 2 30661	-0 00804 -0 00827 -0 00826 -0 00826		
530 2012 530 4330 530 500 530 7304 530 7304	1769 383 1769 883 1770 383 1770 883	1220503 1232032 1235201 1235201 1235201		133 16368 133 07866 132 98027 132 980331 132 92393	26 10928 25 73684 25 4752 24 39485 23 60877	56 53696 56 13894 53 50504 53 50504 53 507043 55 27575		1 48365 1 48603 1 49317 1 60076 1 60769	1 4 9 3 6 3 1 4 9 3 1 3 1 5 9 3 1 3 1 5 9 1 1 9 7 1 5 3 6 3 5			2 0 0 0 1 3 2 90 0 5 1 2 0 0 3 0 2 3 0 3 0 2 2 0 3 2 2 0	-001022 -00101 -001024 -001112		48 5974
		12 38478		132 72562 132 64751 132 64751 132 64751 132 54261	24 14 199 26 53 505 28 34 015 30 50 293	50,05700 55,27600 50,57600 50,0500 50,0500 50,0500 1		1 51325 1 51746 1 52675 1 53552			9.1305	2 44576	-0 0 1 1 2 2 -0 0 1 1 2 0 -0 0 1 1 2 7		88.5779
84E 1978	774 383	12 2262			27 60 537 27 03 3 69 27 90 972 29 60 79			1 54 574 1 54 6 55 1 54 6 1 1 1 54 9 5	55138 55393 55763		0 45924 0 45626 0 44651 0 39901	2 20031 2 19766 2 31386 2 47464			48 6227
551 372 542 0244	776 383				31 41333 33 01 446 35 22618 36 95274	83 84 87 - 23		1 50 900 1 55 131 1 55 131 1 55 20 1 55 70	1 56235 1 56257 1 56142 1 56052 1 56052			2 3 3 3 9 3 3 2 3 3 2 9 4 2 3 3 2 9 4 2 3 2 5 6 5 2 3 2 6 5 5	-D 0 87 -D 0 27 -D 0 10		40.0340
542 1765 542 3292 542 4516 542 654	1778 882 1779 382 1779 882 1780 382		-0 02294 -0 02426 -0 02426 -0 02464	133 333	36 1 5 4 4 33 6 4 1 D6 32 1 1 4 32 31 1 5 57 29 91 377	55		1 8876 1 85311 1 8502 1 84721 1 84724	1 55552 1 55552 1 54359 1 54359 1 53567		0 4 9 3 9 9563 9 7416 8 6262	2 20635 2 27675 2 36665 2 36649 2 36673	-00 -00		34 48
542 9388 543 9912 543 2436 543 3456	1781 382 1781 882 1782 382 1782 882	12 13331 12 13755 12 12755	-0 0239 -0 0 31 -0 0 73 -0 0 02	135,03103	27 68508 25 82041 26 81087 28 14028	61 - 122 61 - 122		1 53657 1 52515 1 51242 1 49755	1 53453 1 51831 1 4 9957 1 4 7543		0 0 7 23 7 0 4 8 0 7 2 0 4 8 0 1 2 0 4 8 0 1 2	2 43087	-D 0 92		48 28
543 7633 544 0056 544 155	783 882	12 25560	-00 48	136 12027 136 12027 136 13637 136 93802	20 25465 26 53942 25 75605 27 33556	65 - 466 62 - 135 61 - 135		· 40954 14854 147552 147552 147552	1 45578		0 0 0 10 3 0 0 777 3 0 0 0 10 3 0 0 0 777 3 0 0 0 0 10 3 0 0 0 777 3 0 0 0 0 10 3 0 0 0 777 3 0 0 0 0 10 3 0 0 0 777 3 0 0 0 0 10 3 0 0 0 0 10 3 0 0 0 0 10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 4 3 9 2			45 54 48 57 71
500 5100 500 4025 500 7676 500 92	1 /05 882 1 786 382 1 787 382 1 787 382	1 2 28331 4 2 32551 1 2 35255 1 2 37282 1 2 39295		135 07796 135 010 135 1874 135 1874 135 012	30 36807 33 22113 35 23196 35 8882 34 93938	手 套接著		1 44955 1 4407 1 4315 1 4315 1 43257 1 43934	1 45305 1 44742 1 4245 1 40636 1 39325			2 31477 2 33304 2 40245 2 51148 2 51148	-D 0 - 73 -D 0 - 73 -D 0 - 49		
545 2245 545 3772 545 5295 645 5295	788 383 788 883 789 883 789 883 789 883	12 42018		134 240 134 240 134 120 134 120	33 1381 31 72984 29 78556 27 18549 36 99814	57 28556		1 0387 1 03851 1 038529 1 03856 1 03856	1 38555 1 40412 1 42137 1 43216 1 43260		B 1463		-D 0 424 -D 0 424 -D 0 42 -D 0 42		48 6894 48 6894 48 6917
	791 383	12 880722			28 22847 31 1554 31 24468 28 24335	54 43872 5 44851		44771 44771 467225 447176 47176	1 4 5 7 5 5 1 4 5 7 5 5 1 4 5 1 4 5 1 4 5 6 1			2 6 2 2 2 1 2 6 2 7 1 2 6 2 7 1 2 7 6 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-0.0046		
546 5464 546 7488 546 84 88 547 8536	793 883 793 883 794 383 794 883	10 07068 10 62736 14 92617 14 67274 13 27338		134 711 134 8447 135 181	27 23 29 28 874 12 31 69977 34 62888	60 01201 60 25307 62 0055 61 51015 55 65729		1 47463 1 4672 1 45846 1 45172 1 44719	1 07105 1 05529 1 05535 1 00707 1 00097			x 03738 2 54426 2 55887 3 64823 3 49185	-0.0071 -0.00795 -0.00906 -0.00973 -0.00999		78
547 3554 847 3554 847 6632 547 5155	1795 383 1795 883 1796 383 1796 383 1797 383	1 2 27953 13 02054 13 15597 13 29476 13 59535		135 39421 135 67484 136 06894 136 51096 136 57555	35 25065 35 25065 25 26076 23 26002 23 26002	55 14443 67 54473 62 66343 62 66343		1 0 00 1 0 351 1 0 2617 1 0 17 21 1 0 1 1 0 7	1 03720 1 03909 1 03317 1 01902 1 01708		0 49861 0 5004 0 5004 0 50159 0 45388	0 03586 0 56073 0 950276 0 52276 0 12185	-0 00998 -0 01017 -0 01069 -0 01178 -0 01198		7239
547 968 548 1304 548 3738 548 3738 548 5778	1797 883 1798 383 1798 883 1799 883 1799 883	15 53321 17 13911 17 47759 17 52451 17 52451	-88 21	1 37 037 1 37 037 1 37 037 1 37 037	27 87 206 38 01 072 37 66 282 30 65 03 30 21 607	57 43549 56 56399 57 53452 59 59192 63 59192		1 407 1 40823 1 40883 1 4127	1 01539 1 01003 1 00561 1 0116 1 0116			3 59595 4 07326 5 32069 5 53769 5 53769	-D 0 07 -D 0 07 -D 0 07		7354
510 0021 519 0318 519 1373		16 23506		37 037	32 32172 36 01317 31 62361 33 37368	65 53603 61 55997 86 01963		1 411 62 1 10387 1 39875 1 39875							23
	802 883 803 883 801 383	15 87228 15 87228 15 82718 15 8322		137 037	31 02813 30 02206 20 0750 20 0750	67 28613 67 28613 68 73113		, 39193 1 39163 1 39605 1 39761 1 3935	1 20202 1 30302 1 30700 1 30330 1 30330 1 30231				8 8B 81		7515
550 1016 550 253 550 355 550 3555 550 7112	1 80 1 8 8 3 1 80 5 3 8 3 1 80 6 3 8 3 1 80 6 8 8 3	1573043 1552182 1518381 1518381 1519001	-0 03004 -0 03272 -0 03278 -0 03169 -0 0207	136 5120 136 127 136 127 137 127	26 800 63 26 081 81 26 860 33 27 98 221 29 721 65	62 53189 59 303 61 21753 65 18218 63 27798		1 32003 1 33192 1 36576 1 35156 1 39467	1 22178 1 23876 1 23876 1 28387 1 28387 1 20382 1 21721		0 51051 0 50577 0 37356 0 3661 0 49145	3 60725			18 763 18 763 18 7676 18 7676
550 5636	1807 383	15 12726	-0.01973	131 203	30 10211	62 7397		1 51531	1 52611		0 18189	2 6 9 5 8 7	-0.0D(*E		18 7722

-20

Capitulo III

PRESION DE SOBRECARGA (BOURGOYNE)

Representación Gráfica SOBRECARGA

• S/D (r promedio) • S/D (BOURGOYNE)

PRESION DE PORO (EATON Y BOURGOYNE)

COMPARACION GRADIENTES PRESION DE POROS

PRESION DE PORO CON EL METODO DEL ESFUERZO MATRICIAL EQUIVALENTE (SARDA)

Colapso superior e inferior

PRESION DE PORO CON EL METODO DEL ESFUERZO MATRICIAL EQUIVALENTE (WADE)

Colapso superior e inferior

PRESION DE PORO CON EL METODO DEL ESFUERZO MATRICIAL EQUIVALENTE (MAGNALLI)

I GRADIENTE DE FRACTURA (EATON)

60
DENSIDAD EQUIVALENTE

Densidad Equivalente

Análisis de Estabilidad de Agujero para el Pozo Camaronero-1A, mostrando ventana operacional de pesos del lodo y puntos de asentamiento de TR's.

L

ESFUERZO PRINCIPAL MAYOR (TOTAL Y EFECTIVO)

Profundidad vs. Esfuerzos

ESFUERZO MATRICIAL EQUIVALENTE

Esfuerzo Matricial Equivalente

🔹 LEY DE HOOKE Y VAN EeKELEN (σ_h=s₃)

66

COLAPSO SUPERIOR E INFERIOR (MAGNALLY, WADE-HORTON, J.P. SARDA-KEESLER)

Colapso superior e inferior

Pp Colapso superior Colapso inferior — Pfrac — B/D

Colapso superior e inferior

Colapso superior e inferior

Pp • Colapso superior • Cotapso inferior + Pfrac + S/D

DETERMINACION DE LA MAGNITUD DEL ESFUERZO HORIZONTAL MENOR

Las pruebas de microfracturamiento, son el método probablemente el más confiable para determinar los esfuerzos in situ. Consiste en crear microfracturas en las zonas de interés introduciendo un empacador y bombeando un volumen de 1 a 2 bls de fluido de perforación, monitoreando y registrando las presiones en la TP y espacio anular, gasto, volumen bombeado en cada etapa y volumen acumulado. Una vez creada la microfractura se corta un núcleo orientado del fondo del pozo para medir las propiedades físicas y mecánicas de la roca. Uno de los propósitos de estas pruebas es el determinar la magnitud y dirección del esfuerzo principal de la formación. Las pruebas son desarrolladas comúnmente mediante inyección en una pequeña zona aislada (de 4 a 15 ft) a bajos gastos (1 a 0.25 gal/min). El esfuerzo in situ mínimo es determinado normalmente del análisis de la declinación de la presión después del cierre, pero algunas veces se determina del análisis del incremento de presión al principio del ciclo de inyección. Como la presión de cierre de la fractura o la presión para reabrir la fractura es igual a un esfuerzo aplicado que normalmente podría abrir una fractura existente y de esta forma superar el esfuerzo principal mínimo, estas dos presiones son definidas generalmente iguales a el esfuerzo mínimo horizontal.

Las pruebas de microfactura son comúnmente desarrolladas con tres o cuatro ciclos de inyección usando volúmenes de fluido del rango de 30 a 200 gal/min. El azimut de la fractura (dirección del esfuerzo horizontal mínimo) puede ser determinado de una prueba de microfractura en agujero descubierto. Cuando la prueba de microfractura se esta efectuando en una zona aislada en el fondo del pozo, una porción de esta fractura inducida puede ser recuperada mediante un núcleo orientado. La dirección de la fractura creada puede ser correlacionada con las orientaciones del núcleo, proporcionando azimut de la fractura.

En casos donde la permeabilidad de la formación es muy baja, la fractura no cierra instantáneamente y la PCI es mayor que σ_h se debe observar la gráfica de presión contra tiempo para analizar la declinación de la presión y obtener la presión de cierre o magnitud del esfuerzo principal mínimo.

En los análisis de clasificación de las ovalidades convencionales se utilizan los criterios de la calidad del Mapa Mundial de Esfuerzos, conforme a Zoback (1992), donde los resultados se categorizar según las calidades A, B, C, D, E en función del estándar de desviación, del azimut y de la profundidad acumulada de ovalidades, conforme se específica a continuación:

Calidad A.- Pozos con más de 300 m de ovalidades, con valores de desviación <12° Calidad B.- Pozos con más de 100 m de ovalidades, con valores de desviación ≤20° Calidad C.- Pozos con más de 30 m de ovalidades, con valores de desviación <25° Calidad D.- Pozos con más de 30 m de ovalidades, con valores de desviación >25° Calidad E.- Pozos con extrema dispersión de orientaciones de ovalidades.

MINIFRAC @ (3474-3479) GASTO ESCALONADO (SRTUP-SRTDOWN)

Schlumberger

'Mark of Schlumberger

Schlumberger

'Mark of Schlumberger

MINIFRAC @ (3474-3479) GASTO CONSTANTE Y CIERRE

'Mark of Schlumberger

Schlumberger

Section 1: DataFRAC Analysis

Mark of Schlumberger

DETERMINACION DE LA MAGNITUD DEL ESFUERZO HORIZONTAL MAYOR

EN CUENCAS PASIVAS (SIN TECTONISMO) LOS DOS ESFUERZOS HORIZONTALES SON IGUALES Y SIEMPRE MENORES QUE EL ESFUERZO VERTICAL.

$$\boldsymbol{\sigma}_{H} = \boldsymbol{\sigma}_{h} = \left(\frac{\boldsymbol{\nu}}{1-\boldsymbol{\nu}}\right)\boldsymbol{\sigma}_{\nu} + \boldsymbol{u}\left(\frac{1-2\boldsymbol{\nu}}{1-\boldsymbol{\nu}}\right)$$

- LOS ESFUERZOS HORIZONTALES EN CUENCAS ACTIVAS PUEDEN SER DIFERENTES Y POR ENCIMA DEL ESFUERZO VERTICAL.
- ➤ ZONA GEOLOGICA COMPLEJA DEBIDO A VARIAS INVERSIONES TECTONICAS (FALLAMIENTO NORMAL→ FALLAMIENTO INVERSO →FALLAMIENTO TRANSCURRENTE).
- PRESENCIA DE SOBREPRESIONES MODIFICA LA RELACION DE ESFUERZOS HORIZONTALES Y VERTICALES.
- ➤ NO EXISTEN MEDICIONES DEL ESFUERZO HORIZONTAL MAYOR.
- NO HAY REGISTROS DE IMAGENES EN POZOS DEL TERCIARIO QUE PERMITA HACER RETROANALISIS DE FRACTURAS INDUCIDAS Y BREAKOUTS.

DETERMINACION DE LA DIRECCION DEL ESFUERZO HORIZONTAL MAYOR

Para determinar las direcciones principales del campo de esfuerzos que actúa en la vecindad de un pozo vertical, por medio del análisis de variación con el azimut de la velocidad de propagación de ondas P y S (compresión y cizallamiento) en un núcleo orientado.

Existen tres métodos para la determinación del análisis de la dirección del esfuerzo:

- > VELAN
- ➤ THOMSEN
- ➢ RELAJACION DE ESFUERZOS

PROPIEDADES MECANICAS DINAMICAS Y CONTINUAS (RELACION DE POISSON, MODULO DE YOUNG, MODULO DE CORTE)

> MODULO DE YOUNG (ejem plo)

MODULO DE YOUNG DINAMICO POZO PLAYUELA-101

> MODULO DE CORTE (ejemplo)

MODULO DE CORTE DINAMICO: POZO PLAYUELA-601

COHESION DE LA ROCA

D	ATOS DE E	NTRADA				CAMARONER	0
-			Produndidad	2543	m	INTERVALO	2539-2547 m
		Di	ámetro de TR	11.75	pulg.		
		Di	ámetro de TP	3.5	puly.		
		Densi	dad del fluido	1.83	g/cm ³		
		Gradiente de sobrecarga		0.219	kg/m²/m		
		Pr	esión de poro	133.48	kg/cm ²		
	Lectu	Lectura sonica compresional dtc			mmseg/pie		
	*	_ectura sónica	a de corte dts	242	mmseg/pie		
		Ángulo de fr	iccion interna	18	0		
			* Cohesión	9.3	kg/cm ²		
		Cons	stante de Bio t	0.2	adim		
		R	adio del pozo	0.489	pies		
	Radio	sin influencia	(de invasión)	1	pies		
A. Dates	e color roio		cambiar		-		

---- Impermeable

Permeable

DATOS DE E	NTRADA				CAMARONER	0
		Produndidad	2911	m	INTERVALO	2908-2913 m
	Di	ámetro de TR	7	pulg.		
 Diámetro de TP		3.5	pulg.			
	Dens	idad del fluido	2.36	g/cm ³		
	Gradiente de sobrecarga		0.242	kg/m²/m		
	Pr	esión de poro	140	kg/cm ²		
Lectu	.ectura sonica compresional dtc			mmseg/pie		
 *	* Lectura sonica de corte dts		363	mmseg/pie		
	Ángulo de friccion interna		18	0		
		* Cohesión	9.3	kg/cm ²		
 	Constante de Biot		0.2	adim		
 	R	adio del pozo	0.291	pies		
 Radio sin influencia (de invasión)			1	pies		

Ventanas de Estabilidad en función de la Profundidad

DATOS DE ENTRAD	A			CAMARONERO
	Produndidad	3477	m	INTERVALO 3474-3479
	Diámetro de TR	5	pulg.	
	Diámetro de TP	2.875	pulg.	
	Densidad del fluido	2.38	g/cm ³	
Grad	liente de sobrecarga	0.25	kg/m²/m	
	Presión de poro	160	kg/cm ²	
Lectura soni	Lectura sonica compresional dtc * Lectura sonica de corte dts Ángulo de friccion interna		mmseg/pie	
* Lectura			mmseg/pie	
Ángu			0	
	* Cohesión	9.3	kg/cm ²	
	Constante de Biot	0.2	adim	
	Radio del pozo	0.208	pies	
Radio sin inf	luencia (de invasión)	1	pies	
tos de color roio se n	ieden cambiar			

Ventanas de Estabilidad en función de la Profundidad

RESISTENCIA MECANICA (MODULO DE MOHR-COULOMB)

Datos	
φ=	18
Pconfinamiento=	8907.68
Esfuerzo Compresivo	12402.82

Datos	
φ=	18
Pconfinamiento=	10203.29
Esfuerzo Compresivo	14205.18

Datos	
φ=	19
Pconfinamiento=	12187.16
Esfuerzo Compresivo	16967.03

DISTRIBUCIÓN DE LA POROSIDAD

Distribución del tiempo de tránsito

Conclusión

a) Conclusión:

Por los análisis de las operaciones realizadas obtenemos algunas conclusiones:

Presencia de Zonas de gas con alta sobrepresión en zonas más o menos a partir de 2200 m, donde la gráfica de presión de poro vs. sobrecarga se empieza a ser mas estrecha, reduciendo la posibilidad del incremento de densidad. La presión de sobrecarga es fundamental tanto para la estimación de la presión de poro como para la estimación del gradiente de fractura. Que es crítica para el diseño de pozos; S/D es función de la densidad de los sedimentos superiores. Para el cálculo de la Presión de Poro se realizaron con los métodos de Sarda, Wade y Magnally, el primero en función de la porosidad y los dos siguientes en función del tiempo de tránsito, donde varían el exponente contra el esfuerzo matricial, y solo es considerado el esfuerzo vertical; donde los autores suponen que las formaciones son normalmente presionadas y sobrepresionadas y que siguen la misma relación de compactación o sea que tienen velocidades idénticas.

La presión de poro esta influenciada por propiedades que dependen de la compactación de la lutita, tales como porosidad, densidad, velocidad sísmica y resistividad; respecto al calculo de la presión de poro con el esfuerzo efectivo, establece que la compactación del material geológico es gobernada por la diferencia entre la presión total de confinamiento y la presión del fluido en los poros.

- Perdidas de circulación por peso excesivo de lodo que fractura hidráulicamente la formación. Debemos de tomar en cuenta la DEC que es la presión en el fondo circulando.
- Problemas de gasificación y fracturamiento, estan ocurriendo en el mismo agujero indicando ventana operacional estrecha.
- Presencia de invasión de agua salada en zonas de sobrepresión, que causa degradación del lodo y por lo tanto aligeramiento de la columna de lodo, generando así gasificaciones constantes.
- El problema de atrapamiento de sartas no se debe al colapso de las paredes del agujero. El grafico de esfuerzo vertical representa el peso de la columna de rocas vs. la profundidad.

- Perdidas de cemento por fracturamiento hidráulico de la formación.
- Mal manejo de las gasificaciones, sin aplicación de un método definido.
- No considerar la toma de registros parciales, para ir realizando ajustes de los gradientes; si no se cuenta con el uso del equipo de PWD, para ajustes de las ventanas operacionales de los pesos de lodo.
- Malas operaciones durante la cementación de las TR's, y aun malas recementaciones.
- Mal manejo de la entrada de agua por parte de la Compañía de Fluidos.
- Para estos pozos aun en la etapa de Exploratorios, no se recomienda perforar pozos desviados, debido a la falta de información de geomecánica para poder navegar, es más fácil un pozo vertical.
- Planear oportunamente el uso de Equipo Bajo Balance.
- Seguir procedimiento para liberación de sartas detectando puntos libres y posibles string shot.
- Se recomienda realizar pruebas de Goteo, o Pruebas de Integridad de Formación, en la primera arena saliendo de la zapata, si no se cuenta con el equipo de PWD.
- Se recomienda hacer un estudio detallado para la elaboración de modelos de esfuerzos y geomecánica del campo.
- Seguimiento estricto de la Densidad Equivalente de Circulación por la estrecha ventana de pesos de lodo entre la presión de poro y el gradiente de fractura.
- En zonas con altas entradas de agua se desconoce el verdadero peso del lodo debido a una densidad variable con el tiempo.
- Estricto seguimiento de las propiedades reológicas del fluido.
- En un pozo vertical los Breakouts se forman en la dirección del esfuerzo horizontal menor, en el grafico se ven los esfuerzos mínimos a partir de 2000 m donde la presión de formación también se ve incrementada.
- El Esfuerzo Matricial Equivalente que es la Presión de Poro en la pared del agujero es igual a la Presión del Pozo P_f=P_w (formación permeable).

- Interpretando la Grafica de la Ley de Hooke y Van Eekelen (σ_h=S₃) esfuerzo horizontal mínimo, obtenemos la carga litostática por los diferentes métodos Sobrecarga con Bourgoine y Sobrecarga Promedio.
- Del grafico de Colapso Superior e Inferior calculado con los 3 métodos de Magnally, Sarda y Wade nos indica que el riesgo de colapso mayor es la zona a partir de 2200.
- La grafica del Módulo de Young hallamos un valor promedio de 0.25-0.35 dentro del límite normal (0.5)
- Para el cálculo del Coeficiente de Biot que es función de la velocidad para parámetros elásticos de la roca se pueden calcular con los métodos de: Ecuación Gassman-Biot-Geertsma, Gregory-Pickett.
- La Relación de Poisson para estos análisis se halla crítica en los intervalos que van desde los 2000m, 2200m y 2600m.
- Observando las graficas y las Tablas de Ventanas de Estabilidad de los 3 intervalos analizados se encuentran dentro de la ventana operacional aceptable, entre la relación de esfuerzo horizontal/esfuerzo vertical, para el rango de densidades con las que se trabajo, por lo que se descarta el problema de deformación del agujero por esfuerzos.
- Por ultimo analizando los gráficos de resistencia Mecánica (Modulo de Mohr), de los 3 intervalos en estudio tenemos que, ocurrirá una fractura hidráulica si la envolvente se localiza al lado izquierdo del eje y esto fuese generado por un incremento excesivo del peso del lodo (esfuerzo normal vs. esfuerzo compresivo) pero nuestro caso se halla dentro de la zona estable.

Conclusión

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

a) Conclusión:

Por los análisis de las operaciones realizadas obtenemos algunas conclusiones:

Presencia de Zonas de gas con alta sobrepresión en zonas más o menos a partir de 2200 m, donde la gráfica de presión de poro vs. sobrecarga se empieza a ser mas estrecha, reduciendo la posibilidad del incremento de densidad. La presión de sobrecarga es fundamental tanto para la estimación de la presión de poro como para la estimación del gradiente de fractura. Que es crítica para el diseño de pozos; S/D es función de la densidad de los sedimentos superiores. Para el cálculo de la Presión de Poro se realizaron con los métodos de Sarda, Wade y Magnally, el primero en función de la porosidad y los dos siguientes en función del tiempo de tránsito, donde varían el exponente contra el esfuerzo matricial, y solo es considerado el esfuerzo vertical; donde los autores suponen que las formaciones son normalmente presionadas y sobrepresionadas y que siguen la misma relación de compactación o sea que tienen velocidades idénticas.

La presión de poro esta influenciada por propiedades que dependen de la compactación de la lutita, tales como porosidad, densidad, velocidad sísmica y resistividad; respecto al calculo de la presión de poro con el esfuerzo efectivo, establece que la compactación del material geológico es gobernada por la diferencia entre la presión total de confinamiento y la presión del fluido en los poros.

- Perdidas de circulación por peso excesivo de lodo que fractura hidráulicamente la formación. Debemos de tomar en cuenta la DEC que es la presión en el fondo circulando.
- Problemas de gasificación y fracturamiento, estan ocurriendo en el mismo agujero indicando ventana operacional estrecha.
- Presencia de invasión de agua salada en zonas de sobrepresión, que causa degradación del lodo y por lo tanto aligeramiento de la columna de lodo, generando así gasificaciones constantes.
- El problema de atrapamiento de sartas no se debe al colapso de las paredes del agujero. El grafico de esfuerzo vertical representa el peso de la columna de rocas vs. la profundidad.

- Perdidas de cemento por fracturamiento hidráulico de la formación.
- Mal manejo de las gasificaciones, sin aplicación de un método definido.
- No considerar la toma de registros parciales, para ir realizando ajustes de los gradientes; si no se cuenta con el uso del equipo de PWD, para ajustes de las ventanas operacionales de los pesos de lodo.
- Malas operaciones durante la cementación de las TR's, y aun malas recementaciones.
- Mal manejo de la entrada de agua por parte de la Compañía de Fluidos.
- Para estos pozos aun en la etapa de Exploratorios, no se recomienda perforar pozos desviados, debido a la falta de información de geomecánica para poder navegar, es más fácil un pozo vertical.
- Planear oportunamente el uso de Equipo Bajo Balance.
- Seguir procedimiento para liberación de sartas detectando puntos libres y posibles string shot.
- Se recomienda realizar pruebas de Goteo, o Pruebas de Integridad de Formación, en la primera arena saliendo de la zapata, si no se cuenta con el equipo de PWD.
- Se recomienda hacer un estudio detallado para la elaboración de modelos de esfuerzos y geomecánica del campo.
- Seguimiento estricto de la Densidad Equivalente de Circulación por la estrecha ventana de pesos de lodo entre la presión de poro y el gradiente de fractura.
- En zonas con altas entradas de agua se desconoce el verdadero peso del lodo debido a una densidad variable con el tiempo.
- Estricto seguimiento de las propiedades reológicas del fluido.
- En un pozo vertical los Breakouts se forman en la dirección del esfuerzo horizontal menor, en el grafico se ven los esfuerzos mínimos a partir de 2000 m donde la presión de formación también se ve incrementada.
- El Esfuerzo Matricial Equivalente que es la Presión de Poro en la pared del agujero es igual a la Presión del Pozo P_f=P_w (formación permeable).

- Interpretando la Grafica de la Ley de Hooke y Van Eekelen (σ_h=S₃) esfuerzo horizontal mínimo, obtenemos la carga litostática por los diferentes métodos Sobrecarga con Bourgoine y Sobrecarga Promedio.
- Del grafico de Colapso Superior e Inferior calculado con los 3 métodos de Magnally, Sarda y Wade nos indica que el riesgo de colapso mayor es la zona a partir de 2200.
- La grafica del Módulo de Young hallamos un valor promedio de 0.25-0.35 dentro del límite normal (0.5)
- Para el cálculo del Coeficiente de Biot que es función de la velocidad para parámetros elásticos de la roca se pueden calcular con los métodos de: Ecuación Gassman-Biot-Geertsma, Gregory-Pickett.
- La Relación de Poisson para estos análisis se halla crítica en los intervalos que van desde los 2000m, 2200m y 2600m.
- Observando las graficas y las Tablas de Ventanas de Estabilidad de los 3 intervalos analizados se encuentran dentro de la ventana operacional aceptable, entre la relación de esfuerzo horizontal/esfuerzo vertical, para el rango de densidades con las que se trabajo, por lo que se descarta el problema de deformación del agujero por esfuerzos.
- Por ultimo analizando los gráficos de resistencia Mecánica (Modulo de Mohr), de los 3 intervalos en estudio tenemos que, ocurrirá una fractura hidráulica si la envolvente se localiza al lado izquierdo del eje y esto fuese generado por un incremento excesivo del peso del lodo (esfuerzo normal vs. esfuerzo compresivo) pero nuestro caso se halla dentro de la zona estable.

- a) Recomendaciones
- Cambiar la prueba de Goteo por pruebas de Goteo Extendida para poder tener mediciones de Esfuerzos Horizontales y mejorar los cálculos de Gradiente de Fractura.
- No utilizar el registro CBL en pozos con fuertes acuíferos cerca de intervalos productores de gas, utilizar registros de calidad de cemento tales como el registro USIT, SBT, CASTV, que evalúan la presencia del mismo por sectores radiales lo que permite detectar canales pequeños que pueden transportar agua desde otros intervalos.
- Tomar mediciones de esfuerzo mínimo con herramienta MDT modificada para pruebas de Microfrac.
- Realizar ensayos Geomecánicos de laboratorio para definir la Resistencia Mecánica.
- Calibrar correlaciones de DrawDown (que es la diferencia entre la presión estática y la presión de fondo fluyendo), crítico en arenas productoras con la resistencia mecánica de ensayos de laboratorio.
- Calibrar modelo de esfuerzos totales con mediciones por pruebas de inyectividad para determinar gradiente de fractura.
- Metodología y Capacitación al personal de Diseño y Técnico sobre la Geomecánica en Pozos.
- Los lodos a base de agua tienen una presión de propagación de fracturamiento más alta que uno de base aceite y por eso crean menos problemas de pérdida de circulación.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

- Optimizar los puntos de asentamiento de TR's y pesos de lodos utilizando Geomecánica para definir los gradientes de Fractura, Colapso y Presión de Poro.
- Tomar núcleo geológico para caracterizar las rocas y poder realizar ensayos geomecánicos de laboratorio.
- Los modelos de sobrepresiones dependen de una comprensión completa del ambiente geológico de la cuenca, y del mecanismo de la sobrepresión, más la permeabilidad de las rocas de grano fino en las cuales es creada y retenida (por sellos).
- El Modulo de Young (Y) es la relación de esfuerzos aplicada entre la deformación longitudinal ó la resistencia de la roca a ser deformada bajo una condición de carga (para prevenir las fracturas durante la perforación) y si se incrementan los valores se generaran las fracturas.
- Por falta de imágenes la orientación de los esfuerzos horizontales no se determinó con 100% de certidumbre. Teniendo apenas información de la tectónica regional que indica una orientación N-S para SHmax.
- Núcleos no pudieron ser tomados y por esta razón las propiedades de resistencia de las arenas no pudieran ser calculadas más precisamente. Quedándose apenas las estimadas con datos de sónico, que para estudios de estabilidad de pozo (con modelos elásticos y analíticos) se puede usar sin grandes implicaciones, pero estudios de arenamiento con elementos finitos requieren más precisión en la descripción de los parámetros de resistencia de la roca.

VI.- <u>Apéndice</u>

- Fórmulas
- Ilustraciones
- Software
- Glosario

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

VI.- Apéndice

a) Fórmulas

Ecuación # 1.- Presión

P=F/A

Ecuación # 2.- Esfuerzo

 σ = F/A; (F/A) α (L/ΔL) \therefore (F/A)=E(ΔL/L) Ley de Hooke

Ecuación # 3.- Esfuerzo total

Esfuerzo Total= Presión de Poro + Esfuerzo Efectivo

Ecuación # 4.- Deformación

```
\epsilon = Cambio de Longitud/Longitud Original= lim \Delta L_{\bullet} 0 \delta L/\Delta L
```

Ecuación # 5.- Permeabilidad

 $k = q/A \mu L/\Delta P$

Ecuación # 6.- Permeabilidad Relativa

 $k_{rw} = k_w/k$

k_{ro}= ko/k

Ecuación # 7.- Presión de Poro

 $dp/dz_{TVD}=\rho_f g$

- VI.- Apéndice
- b) Ilustraciones

Fig. # 1.- Efecto de la Presión.

La resistencia aparente de la roca se incrementa cuando incrementamos la presión de confinamiento aplicada.

Fig. # 2.- Estado de Esfuerzos.

Fig. # 2-A.- Estado de Esfuerzos en Sitio.

Fig. # 3.- Esfuerzo Efectivo y Presión de Poro.

Fig. # 4.- Relación Esfuerzo-Deformación.

Fig. # 5.- Permeabilidad.

Fig. # 6.- Variación típica de la permeabilidad relativa, en función de la saturación de agua.

Fig. # 7.- Esfuerzos residuales debido a levantamiento y erosión.

Fig. # 8.- Gráfica de Presión de Poro.

Fig. # 9.- Tipos de Fallas según Anderson.

Fig. # 10.- Relación entre la deformación transversal y deformación axial.

Fig. # 11.- Relación entre el esfuerzo de corte y la deformación de corte.

Fig. # 12.- Relación entre el esfuerzo medio y la deformación volumétrica bajo condiciones de carga triaxial.

Fig. # 13.- Cuerpo sujeto bajo una condición de carga hidrostática.

- VI.- Apéndice
- c) Software:
 - Interpretación de Registros (Excel)
 Autor: Dan Krigowski / 2003
 - Cálculo de Esfuerzos Camaronero (Excel)
 - Análisis de Sobrecarga Camaronero (Excel)
 - Circulo de Mohr Camaronero (Excel)
 - Ventanas de Estabilidad Camaronero (Excel)

VI.- Apéndice

- d) Glosario
 - ACROSS.- por, a través de , sobre.
 - **ATTEMPTING.** intentan.
 - **BECAME.** volverse, llegar a ser, hacerse.
 - **BEHAVIOR.-** comportamiento.
 - BELIEVED.- pensar, creer.
 - **BENT.-** inclinación, tendencia.
 - BREAKOUTS.- zona de menor esfuerzo, existe derrumbes, romper.
 - BRIEF.- informe.
 - BROADLY.- ampliamente.
 - CASED.- revestido (TR)
 - CROOKEDNESS.- desviación.
 - DRAWDOWN.- Abatimiento, es la diferencia entre la presión estática y la presión de fondo fluyendo.
 - ENCOMPASSED.- comprendiendo.
 - GAUGE.- calibre.
 - **HELD.** sostener, tener, poseer.
 - INHIBITOR.- Aditivo empleado para retardar una indeseable acción química de un producto.
 - **IMPROVEMENTS.** mejoras, progreso, mejoramiento.
 - ISIP.- Presión al momento del paro en superficie (minifrac)+Ph= P cierre en el fondo de la fractura. (pero reflejada en la superficie).
 - KNOWN.- saber, conocer.

- LAST.- ultimo, durar, por fin.
- LED.- llevar, conducir, guiar.
- LITTLE.- pequeño, poco.
- MOL.- La unidad fundamental de masa de una sustancia. Una mole de cualquier sustancia es el número de gramos o libras indicado por su peso molecular.
- **OFTEN.** a menudo, frecuentemente, muchas veces.
- **OVERWHELMED.** agobiar, colmar, inundar.
- PATH.- trayectoria.
- **PURSUIT.** seguimiento, ocupación, empleo, búsqueda.
- **REGARD.** contemplar, tomar en cuenta.
- SCREENOUTS.- taponamiento con sustentante.
- **SLEEVE.** casquillo.
- SLIDING.- deslizar.
- **SMOOTH.** suavidad.
- STATED.- declaro.
- **STILL.** aún, todavía.
- SUGGESTED.- sugerido.
- **THUS.** así, de esta manera, tan, tanto, de este modo.
- **TRULY.** en verdad, realmente, sinceramente.
- WISDOM.- sabiduría, juicio, prudencia.
- WHILE.- mientras, aún.
- WOULD.- haría, podría.

VII.- Bibliografía

- a) Artículos:
 - Well Bore Breakouts and in Situ Stress
 Mark D. Zoback, Daniel Moos, and Larry Mastin
 Journal of Geophysical Research, Vol. 90, No. B7 pag 5523-5530, June 10,1985.
 - Development of in-situ Stress Measurement Techniques for Deep Drill Holes
 Development Devtoe Access (1999)

By Colleen Barton, August, 1998.

- Log Calculation Spreadsheet (Simple Well Log Analisis Algorithms)
 Dan Krygowski
- Formation Characterization: Rock Mechanics
 M.C.Thiercelin, J.C.Roegiers
- Formation Characterization: Well Logs Jean Desroches, Ton Bratton

b) Talleres:

- Taller de Geomecánica
 Dr. Andres R. Vazquez[†]
 Reynosa, Tamaulipas.
- Seminario de Geomecánica
 Halliburton Energy Services
 Región Norte

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. c) Materias de Apoyo de la Maestría de Ingría. Petrolera y G.N.:

Seminario de Investigación
 M.I. José Manuel Reyes Aguirre

Geomecánica
 M.I. Joaquín Mendiola Sánchez

Fluidos de Control
 M.C. Jaime Ortiz Ramírez

Perforación Avanzada I y II
 Dr. Rubén Nicolás López

Registros Geofísicos Avanzados
 M.I. Héctor Ricardo Castrejon Pineda

Trabajos de Investigación I, II y III
 M.C. Jaime Ortiz Ramírez

d) Unidades de Apoyo para Información:

Subgerencia de Ingeniería, R.N.
 Nicolás Rodríguez Saucedo
 Salvador Becerra Rosillo
 Roberto Ariel Guzmán Guzmán
 Agustín Jardinez Tena

Subgerencia de Control y Soporte Operativo, R.N.
 Moisés Esteban Cuellar Vázquez
 Gabriel Armando Sosa Alva

Subgerencia de Servicio a Pozos, R.N.
 Luís Fernando Aguilera Naveja