

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE CIENCIAS

APLICACIONES DE ANÁLISIS DISCRIMINANTE MEDIANTE CASANDRA

T E S I S

QUE PARA OBTENER EL TÍTULO DE:

ACTUARIA

P R E S E N T A:

Adriana Ramírez González

DIRECTOR DE TESIS: Francisco Sánchez Villarreal 2009

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

AGRADECIMIENTOS

Agradezco a la Universidad Nacional Autónoma de México por haber formado parte importante de mi desarrollo humano y profesional, a todos mis profesores por enseñarme todo lo que ahora sé, en particular a Margarita Chávez Cano quien motivó en gran medida a la elección del tema de esta tesis y a mi profesor y director Francisco Sánchez Villareal por orientarme, motivarme y darme herramientas para la realización así como también por el interés puesto en mi tanto como alumna como de tesista.

A mi familia y a mis padres por su cariño, comprensión por haberme inculcado la perseverancia, ya que con sus consejos y apoyo.

Agradezco también a mis amigas Ofelia Martínez y Cesar Carreón ya que me acompañaron durante gran parte de la carrera y fueron un excelente equipo de estudio y un gran apoyo emocional que nunca olvidaré.

INDICE

INTRODUCCIÓN	6
CAPITULO I : Análisis Discriminante	9
CAPITULO I I: Uso de CASANDRA	19
CAPITULO III:DISCRIMINANTE PARA TUMORES CANCEROSOS (CASANDRA Y SPSS) Y ASIGNACIÓN DE CRÉDITO	37
III.1 TUMOR: MALIGNO VS BENIGNO	
III.1.1 ANALISIS PARA EL CASO REDUCIDO A 7 VARIABLES	.45
. III.2 COMPARATIVO CON SPSS	
 III.3 ANALISIS DISCRIMINANTE CON CASANDRA USASNDO LAS VARIABLES QUE SPSS CONSIDERA III.4 ANÁLISIS PARA ASIGNACIÓN DE CRÉDITO 	
CONCLUSIONES	
ANEXO 1 : Análisis de Conglomerados	72
ANEXO 2 TABLAS	.76
Bibliografía	.80

INTRODUCCIÓN.

CAPITULO I : Análisis Discriminante.

CAPITULO I I: Uso de CASANDRA.

CAPITULO III: DISCRIMINANTE PARA TUMORESCANCEROSOS (CASANDRA Y SPSS) Y ASIGNACIÓN DE CRÉDITO.

III.1 TUMOR: MALIGNO VS BENIGNO.

III.1.1 ANALISIS PARA EL CASO REDUCIDO A 7 VARIABLES.

III.2 COMPARATIVO CON SPSS.

III.3 ANALISIS DISCRIMINANTE CON CASANDRA USASNDO LAS VARIABLES QUE SPSS CONSIDERA..

III.4 ANÁLISIS PARA ASIGNACIÓN DE CRÉDITO

CONCLUSIONES.

ANEXO 1: Análisis de Conglomerados.

ANEXO 2 TABLAS.

Bibliografía.

${\bf Aplicaciones~de~An\'alisis~discriminante~mediante} \\ {\bf CASANDRA}.$

INTRODUCCIÓN

En distintos ámbitos de la vida resulta útil contar con algún tipo de clasificación, esta clasificación en algunos casos resulta obvia pero en otros casos se puede tener dificultades para poder construir una representación exacta. Los elementos que se usan para una clasificación deben estar bien definidos y ordenados para que de esta manera se pueda tener un manejo objetivo. Esta clasificación se hace más útil en el campo científico cuando por ejemplo se busca la clasificación de elementos de una tabla periódica, taxonomías de especies vegetales o animales, en la apertura de un crédito bancario o inclusive en la clasificación de enfermedades en el campo de la medicina.

La discriminación es una forma de clasificar que supone la existencia de dos o más poblaciones o grupos,en este sentido la idea es tener reglas que permitan colocar a un individuo (elemento) en algún grupo.

Otra forma de clasificar es agrupar elementos de una población de manera que los grupos sean "suficientemente" diferentes.

Con la discriminación se podría clasificar a una persona como merecedora de un crédito financiero. Predecir si una persona es buena pagadora o no mediante alguna "técnica" tiene un riesgo, porque si el individuo es moroso y se le otorga algún crédito el banco habrá perdido el crédito usado por el cliente, los gastos de cobranza y gastos de administración. Pero si no otorga el crédito el riesgo puede ser perder el cliente, pero esto no quiere decir que sea menor el "costo" de error.

El análisis de conglomerados (cluster) es una técnica estadística multivariante de clasificación que usa una serie de variables para crear clases homogéneas y bien separadas entre sí, es decir se forman grupos en los que los elementos de un grupo tienen características o atributos semejantes. El análisis discriminante por otro lado presupone la existencia de grupos y se pretende incluir nuevos elementos en uno u otro grupo, esto se logra con ciertas reglas que contemplan otras que son sistemáticas y estadísticas , como por ejemplo que los elementos tengan cierta separación o distancia.

Las primeras nociones de distancia entre grupo es la que realiza Karl Pearson, el cual propuso el "coeficiente de parecido racial". En la India Mahalanobis formula otra idea de distancia entre grupos que llevaría su nombre "Distancia de Mahalanobis". Fisher uso este concepto de distancia para crear una combinación lineal de variables para discriminar entre grupos.

El análisis Discriminante se ha aplicado a múltiples campos de la actividad científica pero se ha ido modificando hasta lo que actualmente se maneja. Es

importante la función lineal Discriminante ya que interpreta los efectos observados a través de un Análisis Multivariante de la Varianza (MANOVA).

El problema básico del análisis discriminante es determinar las variables que mejor contribuyen a discriminar estre los grupos y de esta manera poder colocar un individuo en algún grupo, esta inclusión de determinado individuo tendrá asociado cierto error. El Análisis Discriminante también permite reducir el número de variables con la finalidad de poder explicar las diferencias fundamentales entre los grupos. Este análisis tiene básicamente dos propósitos.

- Describir las diferencias entre grupos.
- Predecir la pertenencia a los grupos.

Para la realización de la presente tesis se comenzó con dos problemas:

El caso de individuos que presentan tumores y que han sido medidas con un cierto número de variables. Estas variables tienen la característica de ser cuantitativas. Los tumores han sido clasificados previamente como:

- Malignos
- Benignos

Las preguntas que se tienen en este caso son:

- a) Dada la medición de un "nuevo" individuo, ¿En qué grupo estará asignado?
- b) ¿Con que probabilidad esta dicho individuo en el grupo asignado? y
- c) ¿Qué "costo" se tiene al estar "bien" o "mal" clasificado?

El individuo asignado a un grupo con una probabilidad baja de pertenencia da lugar a un "costo" el cual es traducido a que si el individuo fué clasificado con tumor maligno teniendo uno benigno probablemente se le estudiará nuevamente y con más variables, esto con la finalidad de verificar lo predicho, sin embargo esto solo tendrá un "costo" monetario al haber realizado un mayor número de análisis. Caso contrario ocurre cuando se asigna un individuo al grupo de los de tumor benigno cuando en realidad tiene uno maligno, este tipo de "error" desencadenaría el hecho de no tomar medidas para controlar el cancer , minimizarlo o erradicarlo.

El caso de individuos que acuden a un banco para solicitar un crédito, se han clasificado previamente en dos grupos:

- Crédito asignado.
- Crédito denegado.

Las preguntas que se tienen son:

- a) Dada la información de las variables de un individuo "nuevo" ¿será un individuo al que se el puede otorgar crédito o será un individuo al que no se le debe otorgar crédito?
- b) ¿Con qué probabilidad esta dicho individuo en el grupo asignado? y
- c) ¿Qué "costo" se tiene al estar "bien" o "mal" clasificado?

Si el individuo fué clasificado como "buen pagador" cuando en realidad pertenece al grupo de los que no se les debe asignar línea de crédito, se traduce como un "costo" (error de asignacion) el cual se verá reflejado cuando el individuo caiga en incumplimientos de pago, es decir , el costo en este sentido irá fuertemente relacionado con la línea de crédito asignada o bien el porcentaje de ella que se utilice.

Por otro lado si la persona fué clasificada en el grupo de los que se les niega crédito cuando en realidad pertenece al grupo de los que se les debe asignar cierta línea de crédito, querrá decir que el "costo" en este caso podría ser un tanto menor, (depende la perspectiva que se tome) ya que se puede perder un cliente y todo lo que esto implica.

Las variables también son cuantitativas en todos los ejemplos aquí utilizados.

Tanto en el ejemplo de tumor como en el de crédito se tiene cierta semejanza y es que en ambos casos se tienen grupos ya establecidos.

Al tener estos problemas de clasificación con las características anteriores, se puede pensar en utilizar un método llamado:

Análisis Discriminante

De manera paralela se discutirá si los grupos están bien clasificados (asignados) y para esto se hablará brevemente del método de conglomerados, que además nos puede auxiliar para minimizar el número de variables ya que como se verá mas adelante para el caso del tumor de pecho se cuentan con demasiadas variables donde muchas de ellas resultan redundantes y al eliminarlas se puede conservar prácticamente el mismo poder de clasificación

CAPITULO I: Análisis Discriminante

ANÁLISIS DISCRIMINANTE

Se comenzará este estudio considerando el caso de dos grupos a los que llamaremos I y II y una sola variable clasificadora llamada X. El objetivo de este análisis es clasificar a cada individuo en el grupo correcto. Se hace el siguiente supuesto; la distribución y varianza de los grupos es la misma, y solo se diferencían en la media (ya que de no ser así no tendría sentido hacer un análisis discriminante) .Con los supuestos anteriores, se cuenta con la gráfica de las dos distribuciones; la cuales se solapan, y este solapamiento da lugar a errores de clasificación. Para este análisis se considera que hay solapamiento, ya que de no ser así, nuestro análisis sería trivial. El análisis discriminante busca minimizar el riesgo de clasificación incorrecta al buscar la forma de diferenciar óptimamente los grupos.

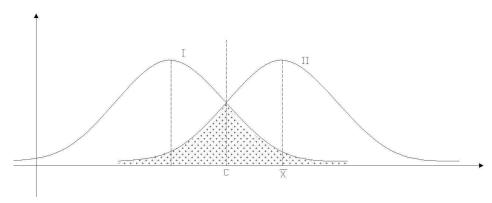


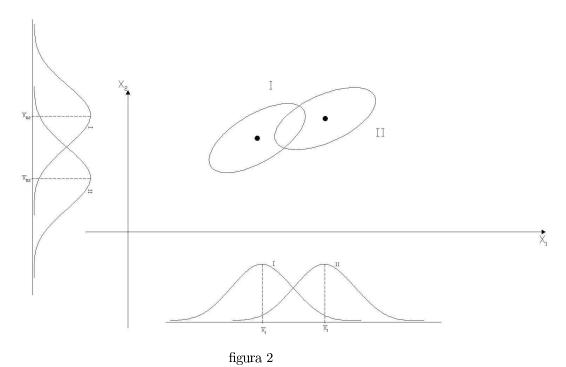
figura 1

Definamos lo siguiente:

 X_I : la media del grupo I X_{II} : la media del grupo II

 $C=\frac{X_I+X_I}{2}$: Punto de intersección de las funciones correspondientes a los grupos I y II

Al querer decidir a que población pertenece un individuo, se cuenta con el siguiente criterio de clasificación.


Si $X_i < C$ i está en I

Si $X_i > C$ i está en II

Al escoger a la variable clasificadora de la mejor manera se cometerán un menor número de errores. Esta variable describirá "bien" a las poblaciones, pero, en realidad este escenario es utópico, ya que casi nunca se tiene una variable que describa al cien por ciento el comportamiento de una población. Un ejemplo de esto es cuando se tienen dos grupos uno de hombres y el otro de mujeres, y se considera a la variable "peso", esta puede diferenciar el grupo de hombres con el de mujeres, pero definitivamente se podría caer en muchos errores de asignación, ya que se puede tener un hombre "suficientemente" delgado, tanto que al tomar una sola variable (peso), este caiga fácilmente en el grupo de las mujeres.

Por lo anterior, para obtener una mejor clasificación, y para dar una representación gráfica, se incluirá una "segunda variable de clasificación".

Esta gráfica muestra dos elipses que tienen el mismo tamaño, pero difieren en su centro. Debajo del eje X_1 se ha representado la proyección de las distribuciones univariantes marginales de la variable X_1 , análogamente con X_2 , en ambos casos se tendrá un "alto" grado de solapamiento, pero se puede minimizar esto obteniendo una mejor "función discriminante" usando las dos variables conjuntamente. Si se dibuja una línea recta a través de los puntos donde las elipses se intersectan y luego proyectar la línea sobre un nuevo eje Z, se puede decir que el solapamiento entre las distribuciones univariadas de las dos poblaciones I y II (representadas por el área de cada una de las elipses) es menor que la que podemos obtener por cualquier línea a través de las elipses.

Para encontrar una combinación lineal de las variables originales X_1 y X_2 se puede proyectar el resultado como una función discriminante.

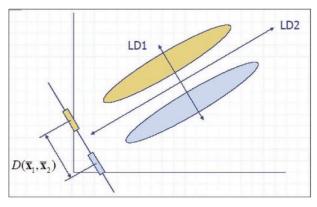


figura 3

En resumen para un problema de análisis discriminante, una combinación de variables independientes es obtenida, resultando en una serie de puntajes discriminantes para cada individuo en cada grupo.

Los puntajes discriminantes son colocados de acuerdo a la regla estadística de maximizar la varianza entre los grupos y minimizar la varianza dentro de ellos. Si la varianza entre grupos es relativamente grande con respecto a la varianza dentro de cada grupo se dice que la función discriminante separa bien a los grupos.

El análisis discriminante involucra la combinación lineal de una o más variables independientes que discriminarán mejor entre grupos definidos a priori, 1 es decir, las funciones discriminantes se construyen como combinaciones lineales de las variables independientes de tal modo que dan lugar a la máxima separación posible entre grupos al mismo tiempo que no están correlacionados entre sí. En el caso general esta función involucra k variables "explicativas" y G grupos. El número de funciones discriminantes que se pueden obtener son q donde:

$$q = min(k, G - 1)$$

Sea

$$D = u_1 X_1 + u_2 X_2 + \dots + u_k X_k$$

La función discriminante donde:

 $X_m =$ m-ésima variable explicativa $u_m =$ m-ésimo coeficiente de ponderación.

Supongamos además que se tienen

$$n = \sum_{i=1}^{G} n_i$$

Observaciones donde:

 n_l =número de individuos pertenecienteal grupo l

¹La combinación lineal para el análisis discriminante, también se conoce como función discriminante de Fisher

Sea

$$D_i = u_1 X_{1i} + u_2 X_{2i} + ... + u_k X_{ki}$$

 $i = 1, 2, \dots, n$ observaciones o individuos.

La puntuación discriminante correspondiente a la observación i-ésima es decir el valos que toma la í-esima observación en la combinación lineal, donde:

 X_{pi} = valor que toma la i-ésima observación en la p-ésima variable p = 1, ..., k

La idea principal del análisis discriminante es obtener una serie de funciones lineales a partir de las variables independientes que permitan interpretar las diferencias entre los grupos y clasificar a los individuos en algún grupo definido por la variable dependiente.

La función discriminante puede expresarse mediante un producto escalar de vectores:

$$D = u_1 X_1 + u_2 X_2 + \dots + u_k X_k$$
$$= \begin{bmatrix} u_1 & u_2 & u_k \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_k \end{bmatrix}$$

De tal forma que todas las puntuaciones discriminantes quedan expresadas de la siguiente manera. $\,$

$$\left[egin{array}{c} D_1 \ D_2 \ D_n \end{array}
ight] = \left[egin{array}{cccc} X_{11} & X_{21} & X_{k1} \ X_{12} & X_{22} & X_{k2} \ X_{1n} & X_{2n} & X_{kn} \end{array}
ight] \left[egin{array}{c} u_1 \ u_2 \ u_k \end{array}
ight]$$

Si se pretende determinar las diferencias entre medias de los grupos en la variable D podríamos recurrir a la razón F que se utiliza en el análisis de la varianza , es decir:

 $F = \frac{\text{suma de cuadrados y productos totales entre grupos}}{\text{suma de cuadrados y productos totales dentro de grupos}}$

$$F = \frac{SC_{entre\ grupos}/(g-1)}{SC_{dentro\ de\ grupos}/(n-g)}$$

$$= \frac{SC_{entre\ grupos}}{SC_{dentro\ de\ grupos}} \frac{(n-g)}{(g-1)}$$

Para analizar este cociente, definamos primerametne a la matriz 2 T

$$T = \begin{bmatrix} \vdots \\ \cdots \sum_{k=1}^{g} \sum_{m=1}^{n_k} (X_{ikm} - \bar{X}_i)(X_{jkm} - \bar{X}_j) & \cdots \\ \vdots & \vdots \end{bmatrix}$$

 $T_{k \times k}$ da información acerca de la covariación entre cada pareja de variables

 $^{^{2}}X_{jkm}$ indica variable j individuo k grupo m

$$T = \left[egin{array}{cccc} t_{11} & & & & \\ & & draingle & & \\ & & t_{ij} & & \\ & & draingle & & \\ & & & t_{kk} \end{array}
ight]$$

Como t_{ij} se obtiene de la suma de productos entre las desviaciones que presentan las puntuaciones de un individuo en las variables i y j respecto a las medias alcanzadas de dichas variables en el grupo global de individuos,

$$\frac{t_{ij}}{n-1}$$

será la covarianza entre las dos variables, notese que si i = j

$$\frac{t_{ii}}{n-1}$$

será la varianza para la variable i

 ${\cal T}$ da entonces informacion de la variabilidad total que presentan las k
 variables independientes.

Análogamente se puede definir una matriz W

$$W = \begin{bmatrix} \vdots \\ \cdots \\ \sum_{k=1}^{g} \sum_{m=1}^{n_k} (X_{ikm} - \bar{X}_{ik})(X_{jkm} - \bar{X}_{jk}) \\ \vdots \end{bmatrix}$$

$$= \left[egin{array}{cccc} & dots & dots \ & \ddots & w_{ij} & \cdots \ & dots & dots \end{array}
ight]$$

Como W tiene informacion de la variabilidad en el interior de los grupos (intragrupos, dentro del grupo), T puede descomponerse en la variabilidad dentro de los grupos y la variabilidad entre los grupos siendo esta última variabilidad expresada con la matriz B

$$T=B+W$$

 $B_{k \times k}$ entonces será la matriz de sumas de cuadrados y productos cruzados dentro de los grupos

$$\therefore B = T - W$$

Con las matrices B y W se pueden expresar las sumas de cuadrados dentro de grupos y entre grupos para la variable D_i

$$SC_{dentro\,de\,grupos} = u'Bu$$

$$SC_{entre\ de\ grupos} = u'Wu$$

$$con u = \begin{bmatrix} u_1 \\ u_2 \\ u_k \end{bmatrix}$$

$$\frac{u'Bu}{u'Wu}$$

Los valores de T, F y W ya los podemos obtener con los datos muestrales pero aún faltan los coeficientes u_i . Para la estimación de u_i Fisher utilizó lo siguiente:

$$max\lambda = (u'Bu)/(u'Wu)$$

Se usó un cociente porque al maximizarlo se estaría diciendo que la variabilidad de F es mayor que la variabilidad en W. Dicho en otras palabras, la variabilidad entre los grupos es "muy grande" respecto a la variabilidad dentro de los grupos (si este fuera "muy grande los grupos no estarían bien definidos, tanto que podrían empalmarse con los de otros grupos).

Con este criterio se trata de determinar el eje discriminante de forma que las distribuciones proyectadas sobre el mismo estén lo más separadas posibles entre sí (mayor variabilidad entre grupos) y, al mismo tiempo, cada una de las distribuciones (por separado) estén lo menos dispersas (menor variabilidad dentro de los grupos)

$$max\lambda = max \left[\frac{U'BU}{U'WU} \right]$$

Tomando en cuenta que λ es un escalar que podemos tomar como criterio para medir la discriminación de grados a lo largo de la dimensión especificada por el vector U, el objetivo será encontrar los coeficientes $u_1, u_2, ..., u_k$ que maximicen el criterio de discriminación λ . Por lo tanto hay que calcular la derivada parcial de λ respecto a cada componente del vector U, e igualar a cero.

$$\frac{\delta\lambda}{\delta U} = \frac{2\left[BU(U'WU) - (U'BU)(WU)\right]}{(U'WU)^2}$$

Dividiendo el numerador y denominador por
$$U'WU$$
 se obtiene
$$\frac{\delta\lambda}{\delta U} = \frac{2\left[\frac{BU(U'WU)-(U'BU)(WU)}{U'WU}\right]}{\frac{(U'WU)^2}{U'WU}}$$

$$\frac{\delta\lambda}{\delta U} = \frac{2\left[BU*\frac{(U'WU)}{U'WU}-\frac{(U'BU)}{U'WU}*(WU)\right]}{\frac{(U'WU)^2}{U'WU}}$$

$$\frac{\delta\lambda}{\delta U} = \frac{2\left[BU-\lambda*(WU)\right]}{U'WU}$$

$$\frac{2(BU-\lambda WU)}{U'WU} = 0$$

$$BU - \lambda WU = 0$$

$$\Rightarrow$$

$$(B - \lambda W)U = 0$$

Suponiendo que W no es una matriz singular, y que $|W| \neq 0$ (determinante distinto de cero), es posible calculare la matriz inversa W. Multiplicando por la izquierda por W^{-1} ambos miembros de la igualdad, se obtiene lo siguiente.

$$W^{-1}(B - \lambda W)U = 0$$

$$(W^{-1}B - \lambda I)U = 0$$
$$W^{-1}BU = \lambda IU$$

Por lo tanto para encontrar el vector U es necesario encontrar el valor característico asociado $W^{-1}B$ (la cual debe ser una matriz simétrica).

Cuando ya se tengan todos los valores característicos y por lo tanto todos los vectores asociados a cada valor característico, se elije el valor característico más grande junto con su respectivo vector para formar la primer función discriminante.

Sea λ_1 el valor característico más grande.

La primera función discriminante, como se dijo anteriormente será la función que maximizará más la variabilidad entre los grupos y que al mismo tiempo minimizará la variabilidad dentro de los grupos será entonces nuestro primer vector propio asociado al valor característico más grande, es decir λ_1 , son u_1 se forma:

$$D_2 = u_2 X$$

La siguiente función discriminante será no correlacionada con la primera y tendrá las mismas características de variabilidad entre grupos y dentro de grupos, además se formará con el vector propio asociado a el segundo más grande valor propio , esto es:

$$D_2 = u_2 X$$

Las siguientes funciones no deberán estar correlacionadas con las anteriores, y se irán tomando en el orden en que se fueron ordenando los valores propios, es decir, en estricto orden decreciente y respetando la no correlación de unas con otras.

De esta manera se puede estar seguro que se obtendrán q autovalores no nulos y q autovectores asociados, es decir, q funciones discriminantes.

Con lo anterior que resuelto el problema de discriminación, pero no se puede dar una interpretación directa de los coeficiente debido a que las soluciones no se han calculado bajo ninguna restricción relativa al origen y la métrica del espacio discriminante, es decir, no se han estandarizado los coeficientes. Los coeficientes estandarizados tienen la siguiente forma:

$$u_i = v_i \sqrt{(n-g)}$$

$$u_0 = \sum_{i=1}^p v_i \bar{x_i}$$

Gracias a esta transformación, se puede trasladar el origen de cada eje discriminante para hacerlo coincidir con el centroide global. De esta manera los valores de la función discriminante para los casos tendrá una media cero y una desviación típica igual a uno.

Retomando lo ya dicho, el número de funciones que se va a obtener es q=min(k,G-1),pero esto no quiere decir que necesariamente se deban tomar todas las q funciones. Es posible que baste considerar un número menor a q, por ejemplo $\alpha=q-\gamma$ con $q<\gamma$ de tal manera que existan α funciones discriminantes "significativas". Las γ funciones restantes tendrán una fuerte capacidad discriminate. Estas α funciones tendrán varianza uno y son incorrelacionadas entre si, es decir que $u_iWu_i=\delta_{ij}i,j=1,...,r$ se obtienen como soluciones de r

vectores propios de W^{-1} F asociados a los r mayores valores propios de esta matriz $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_\alpha > 0$ (los valores propios miden el poder discriminante de la i-ésima función discriminante de forma que si $\lambda_\alpha \approx 0$ la función discriminante no tendrá ningún poder discriminante). A las funciones $D_i = u_i Y$ se les llama funciones discriminantes canónicas o de Fisher.

Existe un método que ayuda a elegir las "mejores" funciones discriminantes y a eliminar aquellas funciones que no aportan suficiente información. Este procedimiento inferencial que sirve para determinar la significación de la función discriminante se llama Lambda de Wilks (Λ) , con esto se puede determinar la probabilidad de que se obtenga a partir de una muestra un grado de discriminación similar al observado, bajo la hipótesis nula de que no hay diferencias entre los grupos debidas a varias funciones discriminantes, toma en cuenta ls diferencias entre grupos debidas a varias funciones discriminantes dentro de los grupos respecto a la desviación total sin considerar grupos.

Al calcular la lambda de Wilks para la primera función, se mide la discriminación que las variables permiten entre los grupos y se decide si esta discriminación es significativa. En caso de serlo, se extrae la primera función y se examina la discriminación residual que permanece en el sistema, con la finalidad de extraer una segunda función discriminante. Este proceso se repite hasta encontrar que la información restante acerca de las diferencias entre grupos no es significativa y por lo tanto no sería necesario encontrar una nueva función discriminante.

La Lambda de Wilks para diferencias multivariadas tiene la siguiente expresión:

$$\Lambda = \frac{|T|}{|W|}$$

Este estadístico permite comprobar la significación de las diferencias entre los centroides de K grupos. Al tomar la inversa se obtiene:

$$\frac{1}{\Lambda} = \frac{|W|}{|T|} = \mid W^{-1}T \mid$$

$$\Rightarrow \mid W^{-1}(W+B) \mid = \mid I + W^{-1}B \mid$$

Con lo cual se obtiene que el determinante de esta matriz es:

$$(1+\lambda)*(1+\lambda_2)*\dots*(1+\lambda_q)$$

$$\Lambda = \begin{bmatrix} \frac{1}{1+\lambda_1} \end{bmatrix} \begin{bmatrix} \frac{1}{1+\lambda_2} \end{bmatrix} \dots \begin{bmatrix} \frac{1}{1+\lambda_q} \end{bmatrix}$$

Con esta nueva expresión para Λ , se puede ver la relación que hay con los valores propios de la función discriminante. Debido a que Λ fue calculada como una medida inversa, cuando los valores de Lambda se aproximan a 0 significará una alta discriminación, mientras que valores próximos a 1 indicarán escasa discriminación.

Si se excluye la discriminación debida a la primera función, el valor de lambda será:

$$\Lambda = \left[\frac{1}{1+\lambda_2}\right] \left[\frac{1}{1+\lambda_3}\right] \dots \left[\frac{1}{1+\lambda_q}\right]$$

Sin pérdida de generalidad, al haber extraído las primeras r funciones discriminantes, el valor de Lambda será:

$$\Lambda = \prod_{q=r+1}^{min(p,g-1)} \frac{1}{(1+\lambda_q)}$$

Cuando al llegar a la discriminación r+1 se encuentra que ya no es significativo, entonces se concluye que se habrán de tomar las r primeras funciones discriminantes, las cuales serán las que mejor explican las diferencias entre grupos. Es decir, serán necesarios solamente r dimensiones para representar las diferencias entre grupos.

Este estadístico tiene una distribución Lambda de Wilks con $p,\!g-1$ y n-g grados de libertad.

Observación:

$$\lambda_i = \sum n_g (\bar{d}^i{}_g - \bar{d}_g)^2 \qquad i = , ..., q$$

en donde d_g^i con g=1,...,G son la puntuaciones medias de las i-ésima función discriminante de los G grados. d_g es la puntuación media total.

El número de funciones significativas se determina considerando el estadístico propuesto por Bartlett que consiste en usar un contraste de hipótesis secuencial, El proceso comienza con i=0. En el paso i=r+1 del algorítmo la hipótesis nula a contrastar es:

$$Ho: \lambda_{r+1} = \dots = \lambda_{\min(p,q-1)} = 0$$

y el estadístico de contraste viene dado por:

$$(n-1-\frac{p+g}{2})\sum_{j=r+1}^{\min(p,g-1)} ln(1+\lambda_j)$$

el cual tiene una distribución χ^2 con (p-r)(g-r-1) grados de libertad si Ho es verdad.

El p-valor asociado al contraste es:

$$P\left[X_{(p-r)(g-r-1)}^2 \geqslant T_{obs}\right]$$

 T_{obs} es el valor observado de T. El contraste para el primer valor de r para el cual la hipótesis nula Ho se acepta.

Cuando ya se tienen las funciones discriminantes, el siguiente paso es analizar cuales son las variables a considerar. Se debe tomar en cuenta que para esto se analizan las variables que ya han sido estandarizadas. Las condiciones para la selección de las variables se basan en la tolerancia de las variables y en las estadísticas multivariantes parciales F con las cuales se garantiza que el incremento de discriminación debido a al variable supera un nivel fijo.

Las variables que se tomarán en cuenta no tienen que ser correlacionadas linealmente ya que de ser así se tendrá redundancia. Para evitar considerar variables que esten correlacionadas se usa la tolerancia. La tolerancia de una variable no seleccionada es 1-R donde R es la correlación multiplicada entre esa variable y todas las variables ya incluidas, cuando han sido obtenidas a partir de la matriz de correlación intragrupos. Si R tiende a 1 querrá decir que existe un alto grado de correlación entre esa variable y las otras, en otras palabras, la variable que se pretendería incluir es combinación lineal de una o más variables de las ya incluídas, por lo tanto si 1-R tiende a 0 no se deberá incluir la variable en la función discriminante.

Además de ser no correlacionadas las variables de la función Discriminante se debe tomar en cuenta dos estadísticas más: el estadístico F de entrada y el estadístico F de salida que servirá para comprobar que todas las variables seleccionadas son adecuadas y que en el proceso de ir introduciendo variables aporten la misma contribución a la separación de los grupos.

El cálculo de F (de entrada) representa el incremento producido en la incorporación de una variable respecto al total de discriminación alcanzado por las variables ya introducidas es , es por esto que una F pequeña implica el no seleccionar la variable. El cáculo de F cuando ya se tienen S variables seleccionadas es:

$$F = \left[\frac{n-g-s}{g-1}\right] \left[\frac{1-\Lambda_{s+1}/\Lambda_s}{\Lambda_{s+1}/\Lambda_s}\right]$$

 Λ_s =valor de Lambda de Wilks antes de añadir la variable

 Λ_{s+1} =Lambda de Wilks incluyendo la nueva variable.

Este estadístico se distribuye según F con (g-1) y (n-s-g+1) grados de libertad y ayuda para determinar la significación producida en la discriminación, lo anterior es más confiable cuando las poblaciones no son "tan pequeñas".

Los centroides de cada grupo ayudan a entender el comportamiento de los grupos. Las puntuaciones discriminantes de los centroides son calculadas sustituyendo en las variables por sus valores medios. Para obtener una buena interpretación es conveniente considerar a la función discriminante que tenga mayor capacidad para separar grupos.

Para clasificar a los individuos en un grupo u otro se puede utilizar el criterio de Bayes. Este método contempla el hecho de tener información a priori de la probabilidad de pertenencia a un grupo determinado, pero en caso de que no se cuente con esa información se puede considerar que la probabilidad de pertenencia al grupo i (\prod_i) es .5. Considerando el caso general de G grupos, el teorema de Bayes dice que la probabilidad de pertenencia a un grupo dado un puntaje discriminante es igual a:

$$P\left[g\mid D\right] = \frac{\prod_{i} *P\left[D\mid g\right]}{\sum \prod_{i} *P\left[D\mid i\right]}$$

Cuando se comparan todas las probabilidades de pertenencia, es claro suponer que el individuo se asignará al grupo para el cual haya presentado la probabilidad más alta.

CAPITULO II :Uso de Casandra

Antes de comenzar con el análisis discriminante de Tumor de Pecho o con el de la clasificación de los individuos a los que se les asignarán cierta línea de crédito, en este capítulo se presentará un ejemplo que tiene dos grupos en la variable sexo, dos variables y 27 elementos ,algunos de los cuales están en el grupo 0 (mujeres) y otros en el grupo 1(hombres), las variables predictoras corresponden a mediciones antropométricas:estatura, peso, longitud del pie, longitud del brazo, longitud de la espalda en hombros, circunferencia del craneo y longitud de la pierna. El propósito es ejemplificar tanto el uso de CASANDRA como el Análisis Discriminante.

Di 👝 🛭	<u> </u>	省 卷 2	1					
obs	sexo	estatura	peso	pie	brazo	espalda	cráneo	pierna
20	0	152	45	34	66	40	55	38
19	0	156	52	36	67	36	56	4
1	0	159	49	36	68	42	57	40
23	0	155	53	36	67	43	56	31
10	0	158	50	36	68.5	44	57	41
13	0	158	43	36	68	43	55	39
11	0	156	65	36	68	46	58	4
27	0	168	56	37.5	70.5	48	60	41
4	. 0	167	52	37	73	41.5	58	44
5	0	164	51	36	71	44.5	54	40
25	0	170	70	38	73	45	56	4:
3	0	172	65	38	75	48	58	4-
6	0	161	67	38	71	44	56	4:
18	0	162	68	39	72	44	59	4:
7	0	168	48	39	72.5	41	54.5	4:
2	1	164	62	39	73	44	55	4-
9	1	183	74	41	79	47.5	59.5	4
26	1	170	67	40	77	46.5	58	44.5
22	1	173	69	41	74	48	56	4
14	1	178	74	42	75	50	59	4!
16	1	182	91	41	83	53	59	4:
12	1	173	64	40	79	48	56.5	47
8	1	181	74	43	74	50	60	47

figura 4

Una vez abierto el "Sistema Estadístico CASANDRA" el primer paso es abrir alguna de las tablas para así comenzar el "Análisis", esta tabla puede ser obtenida de las tablas de ejemplos que ya trae CASANDRA; o bien, la tabla puede importarse de Excel o archivos pdf. Cuando la tabla esté en la pantalla de inicio hay que verificar que los grupos estén definidos en alguna columna, ya que posteriormente CASANDRA preguntará por la variable criterio , la cual tendrá que ser de naturaleza cualitativa.

figura 5

Para empezar a hacer un "Análisis de Clasificación" (análisis discriminante) es necesario dirigirse a menú-Inferencia-Análisis Multivariado-Análisis de Discriminante clásico y dar un "clic" para que despliegue una pantalla en la que se debe indicar las variables a usar.

 ${\rm figura}\ 6$

Dentro de la ventana "Análisis de Discriminante" se selecciona la variable indicadora de Grupos, es decir la variable que identifica la pertenencia a algún grupo (la cual es de naturaleza cualitativa). Además es necesario seleccionar las variables de análisis, las cuales son llamadas también variables predictoras. Una vez hecho esto se selecciona el boton de "Aceptar", con lo cual se abre la ventana siguiente.

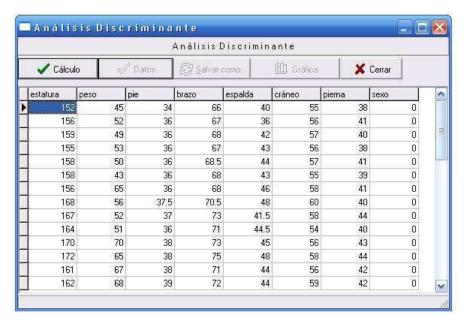


figura 7

En esta pantalla aparecen primero las variables predictoras; que en este caso son dos y al final CASANDRA coloca a la variable criterio. Al dar "clic" en "Cálculo" comenzará a hacer el cómputo de los datos, y aparecerá la siguiente ventana :

figura 8

Este Sistema Estadístico tiene la particularidad de que todo esté cálculo lo puede exportar hacia Excel. Las siguientes tablas muestran lo exportado a Excel.

En la siguente tabla se presentan las estadísticas básicas de las variables predictoras para el total de observaciones. A continuación se emite el reporte de estadísticas básicas definido por los grupos que definen las variables indicadoras.

En la siguiente tabla se hace un análisis tanto de la media como de la varianza Total, esto quiere decir que se toma en cuenta todas las observaciones.

Esta dística	a s			
Básicas				
Variable	No. Observaciones	Medía Aritmética	Varianza Muestral n-1	Desv. Est. Muest. n-1
estatura	27	168.78	103.95	10.20
peso	27	63.89	163.87	12.80
pie	27	38.98	8.20	2.86
brazo	27	73.46	24.58	4.96
espalda	27	45.85	16.17	4.02
cráneo	27	57.24	3.39	1.84
pierna	27	43.09	9.96	3.16

figura 9

En las siguientes dos tablas se contemplan por separado a los grupos, al grupo que tiene como variable indicadora "0" y a el grupo que tiene la variable indicadora igual a "1", en cada una de estas se hace el mismo análisis que en la tabla de Estadísticas Básicas, pero tomando en cuenta a los individuos involucrados en los grupos "0" y "1".

Estadisticas	i			
Básicas				
Variable Indicado	0			
Casos	15			
Variable	No. Observaciones	Media Aritmética	Varianza Muestral n-1	Desv. Est. Muest. n-1
estatura	15	161.73	37.64	6.13
peso	15	55.60	80.40	8.97
pie	15	36.83	1.92	1.38
brazo	15	70.03	7.41	2.72
espalda	15	43.33	9.42	3.07
cráneo	15	56.63	2.95	1.72
pierna	15	41.07	3.78	1.94

figura 10

Las estadísticas básicas de ambos grupos presentan una idea de el tipo del perfil de cada grupo. Por ejemplo que las mujeres son más bajas en promedio que los hombres,161.73 cm contra 177.58 de los hombres, lo cual indica que existe mayor variabilidad en el peso de la personas que en su estatura. En los dos grupos hay alta varianza muestral y desviación estandar para la variable peso.

Estadisticas	i			
Básicas				
Variable Indicado	i.			
Casos	12			
Variable	No. Observaciones	Media Aritmética	Varianza Muestral n-1	Desv. Est. Muest. n-1
estatura	12	177.58	45.54	6.75
peso	12	74.25	74.20	8.61
pie	12	41.67	2.79	1.67
brazo	12	77.75	12.57	3.55
espalda	12	49.00	6.77	2.60
cráneo	12	58.00	3.14	1.77
pierna	12	45.63	6.14	2.48

figura 11

La matriz (B) es la suma de cuadrados y productos cruzados de las desviaciones entre la media de cada grupo y la media global.

Matriz d	e Suma d	е	·			·	
Cuadrad	os Entre						
Grupos(I	3)						
Variable	estatura	peso	pie	brazo	espalda	cráneo	pierna
estatura	1,674.82	1,970.68	510.72	815.39	598.78	144.41	481.66
peso	1,970.68	2,318.82	600.94	959.44	704.56	169.92	566.75
pie	510.72	600.94	155.74	248.65	182.59	44.04	146.88
brazo	815.39	959.44	248.65	396.98	291.52	70.31	234.50
espalda	598.78	704.56	182.59	291.52	214.07	51.63	172.20
cráneo	144.41	169.92	44.04	70.31	51.63	12.45	41.53
pierna	481.66	566.75	146.88	234.50	172.20	41.53	138.52

figura 12

La matriz (W) es la matriz de suma de cuadrados y desviaciones entre cada dato y la media de su grupo.

Matrizo	de Suma d	e					
Cuadrac	dos Dentre	9					
de Grup	os(W)						
Variable	estatura	peso	pie	brazo	espalda	cráneo	pierna
estatura	1,027.85	846.65	193.67	376.88	296.33	142.53	224.39
peso	846.65	1,941.85	209.00	393.95	419.00	209.80	188.03
pie	193.67	209.00	57.50	65.83	56.33	31.08	53.17
brazo	376.88	393.95	65.83	241.98	123.83	42.43	76.84
espalda	295.33	419.00	56.33	123.83	206.33	69.08	35.92
cráneo	142.53	209.80	31.08	42.43	69.08	75.73	42.37
pierna	224.39	188.03	53.17	76.84	35.92	42.37	120.50

figura 13

Las matrices T, B y W se relacionan:

$$T = B + W$$

$$W = W_0 + W_1$$

donde W_0 y W_1 son matrices de suma de cuadrados y productos cruzados de el grupo de las mujeres y hombres respectivamente.

Matrizo	le Suma d	e					
Cuadrac	ios Total						
(T)							
Variable	estatura	peso	pie	brazo	espalda	cráneo	pierna
estatura	2,702.67	2,817.33	704.39	1,192.28	895.11	286.94	706.06
peso	2,817.33	4,260.67	809.94	1,353.39	1,123.56	379.72	754.78
pie	704.39	809.94	213.24	314.48	238.93	75.12	200.05
brazo	1,192.28	1,353.39	314.48	638.96	415.35	112.74	311.34
espalda	895.11	1,123.56	238.93	415.35	420.41	120.71	208.12
cráneo	286.94	379.72	75.12	112.74	120.71	88.19	83.90
pierna	706.06	754.78	200.05	311.34	208.12	83.90	259.02

figura 14

Lamda de Wilks	0.2286632
Grupos	2
Variables	7
Casos	27
Grados de Libertad L1	7
Grados de Libertad L2	19
F	9.15595
Probabilidad Asociada	0.0001503

figura 15

Se ha obtenido que la Lambda que tiende más hacia el cero que hacia el uno entonces se podría decir que los grupos no están solapados o que se pueden diferenciar claramente.

Análisis	de Varianza		•
las Varia	ables que		
intervie	n en Manova		
	Suma de	Cuadrados	
Variable	Entre Grupos	Dentro de Grupos	Total
estatura	1,674.82	1,027.85	2,702.67
peso	2,318.82	1,941.85	4,260.67
pie	155.74	57.50	213.24
brazo	396.98	241.98	638.96
espalda	214.07	206.33	420.41
cráneo	12.45	75.73	88.19
pierna	138.52	120.50	259.02

Cuadrac	los Medios	Grados	de Libertad
Entre Grupos	Dentro de Grupos	Entre Grupos	Dentro de Grupo:
1,674.82	41.11	1	25
2,318.82	77.67	1	25
155.74	2.30	1	25
396.98	9.68	1	25
214.07	8.25	1	25
12.45	3.03	1	25
138.52	4.82	1	25

figura 16

OC ONCORE - OL - O	0	
Análisis de V	'arianza	
las Variable:	sque	
intervien en	Manova	
Estadística	Probabilidad	Lamda de
F	Asociada	Wilks
40.736	0.000017	0.380
29.853	0.000060	0.456
67.713	0.000002	0.270
41.013	0.000016	0.379
25.938	0.000107	0.491
4.110	0.050734	0.859
28.740	0.000070	0.465

figura 17

Se tienen aquí resultados univariantes de la varianza de la varianza para las dos variables. Se puede obtener la significancia para cada variable ya que se tiene la estadística F y sus grados de libertad, y muchos se puede observar que ambas variables son y significantes y por tanto explican bien la función discriminante.

53 0000000000	e Matriz de nzas Ponder	SS 55 555		=			
Matriz	de Prod	uctos					
Cruzad							
Grupo:	0						
Variable	estatura	peso	pie	brazo	espalda	cráneo	pierna
estatura	526.93	309.40	89.33	219.13	132.83	38.53	126.27
peso	309.40	1,125.60	103.00	181.20	201.50	100.80	130.40
pie	89.33	103.00	26.83	42.83	20.83	10.58	27.67
brazo	219.13	181.20	42.83	103.73	55.83	16.43	63.47
espalda	132.83	201.50	20.83	55.83	131.83	35.83	15.67
cráneo	38.53	100.80	10.58	16.43	35.83	41.23	13.37
pierna	126.27	130.40	27.67	63.47	15.67	13.37	52.93

figura 18

En el cálculo de la matriz de varianzas y covarianzas Ponderadas, se puede observar que para el grupo 0 (grupo mujeres), existe una fuerte variabilidad con respecto a la variable estatura, la variable peso y variable brazo, pero al parecer existe en este grupo una variabilidad en cuanto a la variable craneo o pie, lo cual

indica que los individuos pertenecientes a este grupo son más parecidos en la medida de su cráneo o de su pie.

Matriz	de Cova	rianza					
Grupo:	O						
Variable	estatura	peso	pie	brazo	espalda	сгапео	pierna
estatura	37.64	22.10	6.38	15.65	9.49	2.75	9.02
peso	22.10	80.40	7.36	12.94	14.39	7.20	9.31
pie	6.38	7.36	1.92	3.06	1.49	0.76	1.98
brazo	15.65	12.94	3.06	7.41	3.99	1.17	4.53
espalda	9.49	14.39	1.49	3.99	9.42	2.56	1.12
cráneo	2.75	7.20	0.76	1.17	2.56	2.95	0.95
pierna	9.02	9.31	1.98	4.53	1.12	0.95	3.78

figura 19

Para el caso de el grupo 1 (hombres) se observa también una fuerte variabilidad en la estatura pero también la viaribilidad es grande en el peso , pero no así en la piernas o en la medida de su cráneo.

Matriz	de Prodi	uctos					
Cruzad	o s						
Grupo:	1						
Variable	estatura	peso	pie	brazo	espalda	cráneo	pierna
estatura	500.92	537.25	104.33	157.75	163.50	104.00	98.13
peso	537.25	816.25	106.00	212.75	217.50	109.00	57.63
pie	104.33	106.00	30.67	23.00	35.50	20.50	25.50
brazo	157.75	212.75	23.00	138.25	68.00	26.00	13.38
espalda	163.50	217.50	35.50	68.00	74.50	33.25	20.25
cráneo	104.00	109.00	20.50	26.00	33.25	34.50	29.00
pierna	98.13	57.63	25.50	13.38	20.25	29.00	67.56

figura 20

Matriz	de Cova	rianza					
Grupo:	1						
Variable	estatura	peso	pie	brazo	espalda	cráneo	pierna
estatura	45.54	48.84	9.48	14.34	14.86	9.45	8.92
peso	48.84	74.20	9.64	19.34	19.77	9.91	5.24
pie	9.48	9.64	2.79	2.09	3.23	1.86	2.32
brazo	14.34	19.34	2.09	12.57	6.18	2.36	1.22
espalda	14.86	19.77	3.23	6.18	6.77	3.02	1.84
cráneo	9.45	9.91	1.86	2.36	3.02	3.14	2.64
pierna	8.92	5.24	2.32	1.22	1.84	2.64	6.14

figura 21

La Matriz de Varianzas y Covarianzas (W) también llamada matriz de suma de cuadrados y productos cruzados residual, se observa que las variables estatura y peso tienen gran variabilidad.

Matriz	de Varia	nzas					
γCovar	ianzas (V	V)					
Variable	estatura	peso	pie	brazo	espalda	cráneo	pierna
estatura	41.11	33.87	7.75	15.08	11.85	5.70	8.98
peso	33.87	77.67	8.36	15.76	16.76	8.39	7.52
pie	7.75	8.36	2.30	2.63	2.25	1.24	2,13
brazo	15.08	15.76	2.63	9.68	4.95	1.70	3.07
espalda	11.85	16.76	2.25	4.95	8.25	2.76	1.44
cráneo	5.70	8.39	1.24	1.70	2.76	3.03	1.69
pierna	8.98	7.52	2.13	3.07	1.44	1.69	4.82

figura 22

Matriz	de Vari	anzas					
y Cova	rianzas						
Invers	a (W-1)						
Variable	estatura	peso	pie	brazo	espalda	cráneo	pierna
estatura	0.1389	0.0129	-0.2342	-0.1065	-0.0741	-0.0323	-0.0741
peso	0.0129	0.0325	-0.0752	-0.0282	-0.0353	-0.0352	-0.0008
pie	-0.2342	-0.0752	1.4974	0.1275	0.0191	0.0677	-0.2179
brazo	-0.1065	-0.0282	0.1275	0.2820	-0.0245	0.1032	-0.0228
espalda	-0.0741	-0.0353	0.0191	-0.0245	0.3302	-0.1433	0.1522
cráneo	-0.0323	-0.0352	0.0677	0.1032	-0.1433	0.6208	-0.1562
pierna	-0.0741	-0.0008	-0.2179	-0.0228	0.1522	-0.1562	0.4669

figura 23

Matriz	de						
Varianzas	y Covarianz	as (W)					
x							
Su Inversa	(W-1)						
Variable	estatura	peso	pie	brazo	espalda	cráneo	pierna
estatura	1	0	0	0	0	0	0
peso	0	1	O	0	0	0	o
pie	0	0	1	0	0	0	0
brazo	0	0	0	1	0	0	0
espalda	0	0	0	0	1	0	0
cráneo	0	0	0	0	0	1	0
pierna	0	0	0	0	0	0	1

figura 24

En el primer capítulo se vió que la función discriminante F0 será la que va a separar mejor a los dos grupos. En esta función también se puede notar que la variable cráneo y pie tienen un fuerte peso o puntaje discriminante. De hecho se podría hacer la pregunta hacerca de lo que sucedería si se hace un analisis discriminante solo con estas dos variables y comparar de esta manera la consistencia de clasificación.

Funciones D	iscriminantes	
Variable	FO	F1
estatura	-0.9895	-1.3030
peso	-4.3981	-4.4190
pie	17.7293	20.0421
brazo	9.5030	9.9804
espalda	-2.5148	-2.0750
cráneo	25.0769	24.3570
pierna	-4.7245	-4.3653
Constante	-1,016.1794	-1,082.5278

figura 25

Grupo		Grupo	F				
original		Asignado	Máxima	F-0	F-1	Probabilidad (F-0)	Probabilidad (F-1)
	0	0	964.61	964.61	951.46	0.999998	0.000002
	0	0	995.78	995.78	984.94	0.999980	0.000020
	0	0	1,030.23	1,030.23	1,020.54	0.999938	0.000062
	0	0	988.95	988.95	980.40	0.999807	0.000193
	0	0	1,021.82	1,021.82	1,013.90	0.999635	0.000365
	0	0	1,009.66	1,009.66	1,001.93	0.999559	0.000441
	0	σ	973.12	973.12	965.44	0.999538	0.000462
	0	0	1,101.03	1,101.03	1,093.52	0.999453	0.000547
	0	a	1,081.80	1,081.80	1,074.74	0.999141	0.000859
	0	0	963.47	963.47	956.87	0.998645	0.001355
	0	0	963.16	963.16	959.72	0.969005	0.030995
	0	0	1,040.06	1,040.06	1,037.29	0.941108	0.058892
	0	0	973.49	973.49	971.18	0.909876	0.090124
	0	0	1,070.57	1,070.57	1,068.55	0.882444	0.117556
	0	0	1,047.32	1,047.32	1,046.36	0.723356	0.276644
	1	1	996.28	994.72	995.28	0.173981	0.826019
	1	1	1,107.71	1,105.49	1,107.71	0.098122	0.901878
	1	1	1,092.03	1,089.12	1,092.03	0.051457	0.948543
	1	1	1,019.74	1,015.01	1,019.74	0.008730	0.991270
	1	1	1,085.71	1,080.78	1,085.71	0.007176	0.992824
	1	1	1,067.68	1,062.26	1,067.68	0.004373	0.995627
	1	1	1,070.78	1,065.15	1,070.78	0.003581	0.996419
	1	1	1,107.49	1,101.67	1,107.49	0.002949	0.997051
	1	1	1,102.47	1,095.62	1,102.47	0.001058	0.998942
	1	1	1,034.31	1,026.29	1,034.31	0.000331	0.999669
	1	1	1,130.79	1,119.55	1,130.79	0.000013	0.999987
	1	1	1,155.85	1,141.97	1,155.85	0.000001	0.999999

figura 26

		T02 20	
Grupo	Grupo A	signado	
Original	F-0	F-1	Suma
Ō.	15	o	15
1	0	12	12
Suma	15	12	27
Porcentaje de Consistencia	100%		

figura 27

En la tabla de Consistencia de Clasificación se presenta el grupo actual versus sus miembros asignados a los grupos "0" y "1" representados por F-0 y F-1 respectivamente.

Esta tabla presenta resultados hipotéticos de un análisis de clasificación en donde 27 fueron clasificados como hombres y mujeres, todo está basado en sus puntajes discriminantes de las variables predictoras. Leyendo esta tabla de derecha a izquierda siguiendo el renglón del grupo 0, al final, el numero 15 indica que existen 15 individuos que pertenecen al grupo 0 (análogamente con el siguiente renglón). Si se toma en cuenta la columna ${\rm F}-0$, al final el número 15 indica el número de individuos "finalmente" asignados a el grupo 0. Se puede identificar en esta tabla que ningún individuo fue clasificado erróneamente, la explicación de esto se vio en la columna de probabilidades $({\rm F}-0)$ de la tabla anterior de probabilidades de asignación.

Matriz P	roducto						
W-1 x B							
Variable	estatura	peso	pie	brazo	espalda	cráneo	pierna
estatura	-1.3250	-1.5591	-0.4041	-0.6451	-0.4737	-0.1142	-0.3811
peso	-0.0883	-0.1039	-0.0269	-0.0430	-0.0316	-0.0076	-0.0254
pie	9.7754	11.5023	2.9809	4.7592	3.4949	0.8429	2.8113
brazo	2.0177	2.3742	0.6153	0.9823	0.7214	0.1740	0.5803
espalda	1.8587	2.1871	0.5668	0.9049	0.6645	0.1603	0.5346
cráneo	-3.0424	-3.5799	-0.9278	-1.4812	-1.0877	-0.2623	-0.8750
pierna	1.5183	1.7865	0.4630	0.7392	0.5428	0.1309	0.4367

figura 28

Eigen Va	alores						
y Vecto	res						
del product	to W-1 x B						
Eigen	Eigen Vector						
Valores	V(1)	V(2)	V(3)	V(4)	V(5)	V(6)	V(7)
3.373258	0.5840	0.1137	-0.5388	0.5043	-0.2292	-0.1010	0.1969
0	0.6871	-0.0265	0.4388	-0.4958	-0.2750	-0.0403	0.1073
-7E-06	0.1781	0.1875	-0.0325	0.0669	-0.1429	0.3335	-0.8922
0	0.2843	-0.3567	-0.4466	0.3756	0.6566	-0.0171	0.1417
-5E-06	0.2088	-0.5080	0.5100	0.5853	0.2953	-0.0111	0.0912
0	0.0504	-0.0083	-0.0108	0.0178	0.0756	0.9333	0.3468
-1E-06	0.1679	0.7522	0.2376	0.1069	0.5722	-0.0745	0.0715

figura 29

La primer función explica el 100% de la varianza entre grupos, esto se corrobora con la correlación canónica y con el estadístico. El valor característico que maximiza es 3.373258, este auto valor alto indica que las variables discriminantes permiten distinguir bien entre los grupos y tiene una correlación canónica de .878258.

La correlación canónica de cada función con los grupos manifiesta la mayor asociación que presenta la primera de las funciones obtenidas, esto es, .878258 y la segunda tiene una correlación canónica de .0000163 lo que implica que prácticamente no es relevante considerar la segunda función. De hecho para este caso simple está analizando discriminantes para dos grupos, el número máximo de funciones discriminantes es uno. Como se tiene una correlación alta implica que las variables discriminantes permiten diferenciar entre los grupos.

Varianz	a		
Explica	d a		
Eigen	% de Varianza	Varianza	Correlación
Valores	Explicada	Acumulada	Canónica
3.373258	100.00%	100.00%	0.878258
-0	0.00%	100.00%	0.000163

figura 30

Esta matriz muestra la composición de las variables para cada individuo de los dos grupos. Las variables que se presentan, ya son las estandarizadas. Se puede observar en esta matriz que los individuos del grupo 0 se obtienen valores negativos para la primer variable, es decir para la variable "mujeres". Los individuos que pertenecen al grupo dos presentan en su mayoría valores positivos en su segunda variable ("hombres"). Los elementos del grupo 1 tienen la tendencia a pertenecer a dicho grupo si tienen valores positivos en la primer variable ("mujeres").

Coeficie	ntes de	
Funcione	es	
Canónica	15	
Estandar	izadas	
Variable	FCE 1	FCE 2
estatura	0.0182	0.0035
peso	0.0156	-0.0006
pie	0.0235	0.0247
brazo	0.0183	-0.0229
espalda	0.0145	-0.0354
cráneo	0.0058	-0.0010
pierna	0.0153	0.0685

figura 31

Los Coeficientes de Funciónes Canónicas Estandarizadas identifican las variables con las diferencias más grandes entre los grupos y obtiene un coeficiente de ponderación para cada variable para reflejar estas diferencias. La variable pie (estandarizada) refleja un mayor peso en la primer función, también se observa que la variable cráneo es la variable que menos peso tiene.

Matriz	de Valore	! \$					
de las '	/ariables						
Estand	arizadas						
(Z)							
Grupo	estatura	peso	pie	brazo	espalda	cráneo	pierna
C	-1.6456	-1.4756	-1.7394	-1.5054	-1.4553	-1.21 6 7	-1.6135
C	-1.2533	-0.9287	-1.0411	-1.3037	-2.4500	-0.6737	-0.6630
0	-0.9590	-1.1631	-1.0411	-1.1020	-0.9579	-0.1307	-0.9798
C	-1.3514	-0.8506	-1.0411	-1.3037	-0.7092	-0.6737	-1.6135
0	-1.0571	-1.0850	-1.0411	-1.0011	-0.4605	-0.1307	-0.6630
0	-1.0571	-1.6318	-1.0411	-1.1020	-0.7092	-1.2167	-1.2966
C	-1.2533	0.0868	-1.0411	-1.1020	0.0368	0.4123	-0.6630
0	-0.0763	-0.6163	-0.5173	-0.5977	0.5342	1.4982	-0.9798
C	-0.1744	-0.9287	-0.6919	-0.0934	-1.0822	0.4123	0.2875
C	-0.4686	-1.0068	-1.0411	-0.4968	-0.3362	-1.7597	-0.9798
C	0.1199	0.4774	-0.3427	-0.0934	-0.2118	-0.6737	-0.0293
0	0.3160	0.0868	-0.3427	0.3101	0.5342	0.4123	0.2875
0	-0.7629	0.2430	-0.3427	-0.4968	-0.4605	-0.6737	-0.3462
0	-0.6648	0.3211	0.0065	-0.2951	-0.4605	0.9553	-0.3462
C	-0.0763	-1.2412	0.0065	-0.1942	-1.2066	-1.4882	-0.0293
1	-0.4686	-0.1476	0.0065	-0.0934	-0.4605	-1.2167	0.2875
1	1.3949	0.7899	0.7048	1.1169	0.4099	1.2267	1.2380
1	0.1199	0.2430	0.3556	0.7135	0.1612	0.4123	0.4459
j	0.4141	0.3993	0.7048	0.1083	0.5342	-0.6737	0.2875
1	0.9045	0.7899	1.0540	0.3101	1.0316	0.9553	0.6043
1	1.2969	2.1179	0.7048	1.9238	1.7776	0.9553	-0.0293
1	0.4141	0.0087	0.3556	1.1169	0.5342	-0.4022	1.2380
1	1.1988	0.7899	1.4032	0.1083	1.0316	1.4982	1.2380
1	0.7084	0.7117	1.0540	0.9152	0.5342	0.4123	0.6043
1	1.1988	1.2586	1.4032	0.5118	0.7829	-0.1307	0.9211
1	1.1988	0.9461	1.4032	1.9238	1.2803	-0.1307	-0.0293
1	1.9834	1.8054	2.1016	1.7221	1.7776	2.0412	2.8221

figura 32

La matriz de valores las variables estandarizadas muestra los puntajes estandarizados para cada uno de los individuos,con estos puntajes y los valores de los Coeficientes de Funciónes Canónicas Estandarizadas es formada la funcion discriminante estandarizada.

Centro	oides de l	as					
Variab	les						
Estano	lariza das						
porGr	upo						
Grupo	estatura	peso	pie	brazo	espalda	cráneo	pierna
0	-0.6909	-0.6475	-0.7501	-0.6918	-0.6263	-0.3298	-0.6419
(4)	0.8637	0.8094	0.9376	0.8648	0.7829	0.4123	0.8023

figura 33

Es importante analizar las funciones con coeficientes estandarizados, ya que localiza a cada individuo en coordenadas que ya han sido transformadas, y que también se conocen como funciones canónicas estandarizadas.

Se promedian las puntuaciones discriminantes para todos los individuos dentro de un grupo particular, obteniendo la media del grupo es decir, el centroide, el

cual da la idea de localización en el espacio, para los centroides también es útil encontrar su puntaje discriminante ya que mientras más próximo este el puntaje de un individuo al puntaje de algún centroide será más probable la pertenencia a ese grupo.

Para las funciones canónicas estandariazadas tenemos un punto de corte igual a cero, este punto de corte es aquel punto que parte a los grupos y sirve para poder tomar la desición de clasificar a un determinado individuo en un grupo o en otro.

Valores	delas	
Funcion	ies	
Canónio	cas	
Estanda	rizadas	
Grupo	FCE 1	FCE 2
0	-0.1742	-0.0714
0	-0.1352	0.0421
0	-0.1099	-0.0363
0	-0.1250	-0.0850
0	-0.0965	-0.0349
0	-0.1265	-0.0659
0	-0.0733	-0.0521
0	-0.0326	-0.0865
0	-0.0446	0.0426
0	-0.0878	-0.0690
0	-0.0076	-0.0001
0	0.0193	-0.0141
0	-0.0431	-0.0067
0	-0.0188	-0.0040
0	-0.0507	0.0472
1	-0.0217	0.0379
1	0.1067	0.0655
1	0.0389	0.0172
1	0.0406	0.0176
1	0.0890	0.0257
1	0.1393	-0.0892
1	0.0608	0.0510
1	0.1117	0.0829
1	0.0849	0.0293
1	0.1085	0.0620
1	0.1221	-0.0529
1	0.2259	0.1470

figura 34

Una vez evaluadas la funciones canónicas estandariazadas con los valores de los centroides de las variables estandarizadas se obtiene para cada grupo una puntuacion (o score).

Valores de las
Funciones
Canónicas
en los Centroides
Estandarizados
Grupo estatura peso
Centro 0 -0.0738 -0.0263
Centro 1 0.0922 0.0328

figura 35

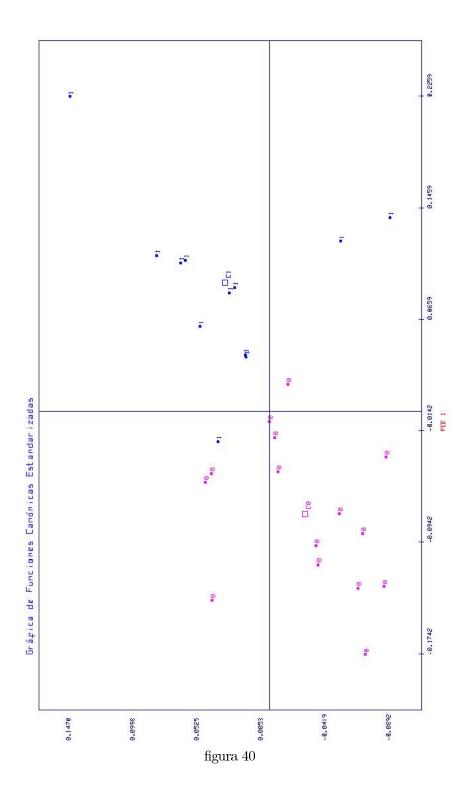
Funcione	\$	
Canónica	s	
No Estan	darizada	s
Variable	FCE 1	FCE 2
estatura	0.0028	0.0006
peso	0.0018	-0.0001
pie	0.0155	0.0163
brazo	0.0059	-0.0074
espalda	0.0051	-0.0123
cráneo	0.0033	-0.0005
pierna	0.0070	0.0312
Constante	-2.3502	-0.9324

figura 36

Valore	s de las	3
Funcio	nes	
Canón	icas	
No Est	andariz	adas
Grupo		FCNE 2
0	-0.2746	-0.1199
0	-0.2100	0.0494
0	-0.1742	-0.0617
0	-0.1966	-0.1310
0	-0.1553	-0.0594
0	-0.1962	-0.1043
0	-0.1239	-0.0831
0	-0.0580	-0.1267
0	-0.0727	0.0524
0	-0.1362	-0.1103
0	-0.0127	-0.0041
0	0.0247	-0.0242
0	-0.0574	-0.0130
0	-0.0314	-0.0052
0	-0.0700	0.0664
1	-0.0298	0.0536
1	0.1652	0.0997
1	0.0611	0.0265
1	0.0685	0.0335
1	0.1400	0.0498
1	0.2142	-0.1238
1	0.0961	0.0741
1	0.1754	0.1370
1	0.1367	0.0518
1	0.1757	0.1046
1	0.1990	-0.0650
1	0.3524	0.2328

figura 37

Valores	de las	
Funcion	e s	
Canónic	a 5	
en los Ce	ntroides	
No Estai	ndarizado	5
Grupo	FCNE 1	FCNE 2
Centro 0	-0.1170	-0.0450
Centro 1	0.1462	0.05 62


figura 38

La distancia de Mahalanobis es un tipo de distancia semejante a la distancia euclideana, pero la característica principal es que esta distancia se ve influenciada por la matriz de varianzas y covarianzas, debido a esto si un elemento pertenece al grupo 0 tendrá menor distancia a su grupo que al grupo 1.

Cuadrado	o de
Distancia	a s
Mahalan	obis
a su Cent	roide
Grupo	Valor
O	0.1525
0	0.4254
0	0.0592
0	0.1141
0	0.0996
0	0.1577
0	0.3251
0	0.3841
0	0.2636
0	0.2577
0	0.3020
0	0.2081
O	0.2104
0	0.3798
O	0.4060
1.	0.2437
1	0.3141
1	0.1542
1	0.1301
10	0.1086
1	0.5109
1	0.3537
1	0.2849
1	0.0559
1	0.2367
1	0.4593
Î l e	0.4026

figura 39

La gráfica de las funciones canónicas estanarizadas muestra los centroides de cada grupo, mostrar claramente la separación de los grupos,
además muestra los pesos que los individuos tienen.

CAPÍTULO III: DISCRIMINANTE PARA TUMORES CANCEROSOS (CASANDRA Y SPSS) Y ASIGNACIÓN DE CRÉDITO

III.1 TUMOR: MALIGNO VS BENIGNO.

A continuación se presentará el caso de dos grupos que representan tipos de tumor:

Maligno y Benigno.

Los datos para realizar este ejemplo fueron extraidos de una página de internet (http://www.cs.wisc.edu/~olvi/uwmp/mpml.html) que se dedica a analizar datos multivariantes, en ella se da una ligera explicación de los datos así como también de las variables utilizadas.

Entre las 30 variables se encuentran las siguientes:

- a) Radius (mean of distances from center to points on the perimeter).
- b) Texture (standard deviation of gray-scale values).
- c) Perimeter.
- d) Area.
- e) Smoothness (local variation in radius lengths).
- f) compactness (perimeter² / area 1.0).
- g) concavity (severity of concave portions of the contour).
- h) concave points (number of concave portions of the contour).
- i) symmetry.
- j) fractal dimension ("coastline approximation" 1).

Casandra hace un análisis estadístico para las estadísticas básicas. Si la media de una variable es significativamente diferente en varios grupos puede decirse que esta variable discrimina entre grupos.³

³Para permitir una mejor visualizacion se han ocultado algunos renglones de las tablas.

Manova de Grupos	8				
Estadis	sticas				
Básica	5				
Variable	No. Observaciones	Media Aritmética	Varianza Muestral n-1	Desv. Est. Muest. n-1	coeficiente variacion
X1	569	14.127	12.419	3.524	0.2494
x2	569	19.290	18.499	4.301	0.2230
x3	569	91.969	590.440	24.299	0.2842
x4	569	654,889	123843.554	351,914	0.5374
x5	569	0.096	0.000	0.014	0.1480
x6	569	0.104	0.003	0.053	0.5062
x7	569	0.089	0.006	0.080	0.8978
8x	569	0.049	0.002	0.039	0.7932
x9	569	0.181	0.001	0.027	0.1513
x10	569	0.063	0.000	0.007	0.1124
x11	569	0.405	0.077	0.277	0.6844
x12	569	1.217	0.304	0.552	0.4533
x13	569	2.866	4.088	2.022	0.7054
x14	569	40.337	2069.432	45.491	1.1278
x15	569	0.007	0.000	0.003	0.4265
x16	569	0.025	0.000	0.018	0.7029
x17	569	0.032	0.001	0.030	0.9464
x18	569	0.012	0.000	0.006	0.5231
x19	569	0.021	0.000	0.008	0.4024
x20	569	0.004	0.000	0.003	0.6972
x21	569	16.269	23.360	4.833	0.2971
x22	569	25.677	37.776	6.146	0.2394
x23	569	107.261	1129.131	33,603	0.3133
x24	569	880.583	324167.385	569.357	0.6466
x25	569	0.132	0.001	0.023	0.1725
x26	569	0.254	0.025	0.157	0.6188
x27	569	0.272	0.044	0.209	0.7665
x28	569	0.115	0.004	0.066	0.5735
x29	569	0.290	0.004	0.062	0.2133
x30	569	0.084	0.000	0.018	0.2152

figura 41

En el Análisis Discriminante se realizan diferentes desgloses de varianzas para someterlos a pruebas estadísticas y determinar el grado de asociacion entre esas varianzas y por lo tanto entre las variables. Se busca determinar cuál de las variables contribuyen a la mejor discriminacion entre grupos

En las dos tablas siguientes se contemplan estadísticas básicas tomando los grupos por separado y para cada una de las variables.

Si se desea se puede calcular el coeficiente de variación para observar que tanto contribuye cierta variable. Este Coeficiente de variación sirve para tener una medida de dispersión no afectada por unidades

Estadi	sticas				
Básica	1				
Variable Ir	В				
Casos	357				
Variable	No. Observaciones	Media Aritmética	Varianza Muestral n-1	Desv. Est. Muest. n-1	coeficiente variacion
X1	357	12.147	3.170	1.781	0.147
x2	357	17.915	15.961	3.995	0.223
x3	357	78.075	139.416	11.807	0.151
×4	357	462.790	18033.030	134.287	0.290
x5	357	0.092	0.000	0.013	0.145
x6	357	0.080	0.001	0.034	0.421
×7	357	0.046	0.002	0.043	0.943
x8	367	0.026	0.000	0.016	0.619
x9	367	0.174	0.001	0.025	0.142
x10	367	0.063	0.000	0.007	0.107
x11	367	0.284	0.013	0.113	0.396
x12	357	1.220	0.347	0.589	0.483
x13	357	2 000	0.595	0.771	0.386
×14	357	21.135	78.207	8.843	0.418
x15	357	0.007	0.000	0.003	0.425
x16	357	0.021	0.000	0.016	0.763
x17	357	0.026	0.001	0.033	1.266
x18	357	0.010	0.000	0.006	0.579
x19	357	0.021	0.000	0.007	0.340
x20	357	0.004	0.000	0.003	0.808
x21	357	13.380	3.926	1.981	0.148
×22	357	23.515	30.184	5.494	0.234
×23	357	87,006	182.982	13.527	0.155
x24	357	558.899	26765.426	163.601	0.293
x25	357	0.125	0.000	0.020	0.160
×26	357	0.183	0.008	0.092	0.505
×27	357	0.166	0.020	0.140	0.844
x28	357	0.074	0.001	0.036	0.481
x29	357	0.270	0.002	0.042	0.154
x30	357	0.079	0.000	0.014	0.174

figura 42

Estadi	sticas				
Básica	1				
Variable Ir	M				
Casos	212				
Variable	No. Observaciones	Media Aritmética	Varianza Muestral n-1	Desv. Est. Muest. n-1	coeficiente variacion
X1	212	17.463	10.265	3.204	0.183
x2	212	21.605	14.284	3.779	0.175
x3	212	115.365	477.626	21.855	0.189
×4	212	978.376	135378.355	367.938	0.376
x5	212	0.103	0.000	0.013	0.123
x6	212	0.145	0.003	0.054	0.372
x7	212	0.161	0 006	0.075	0.467
x8	212	0.088	0.001	0.034	0.391
x9	212	0.193	0.001	0.028	0.143
x10	212	0.063	0.000	0.008	0.121
x11	212	0.609	0.119	0.345	0.566
x12	212	1.211	0.233	0.483	0.399
x13	212	4.324	6.597	2.569	0.594
×14	212	72.672	3764 469	61.355	0.844
x15	212	0.007	0.000	0.003	0.426
x16	212	0.032	0.000	0.018	0.570
×17	212	0.042	0.000	0.022	0.517
x18	212	0.015	0.000	0.006	0.366
x19	212	0.020	0.000	0.010	0.492
x20	212	0.004	0.000	0.002	0.502
x21	212	21.135	18.349	4.284	0.203
×22	212	29.318	29.537	5.435	0.185
×23	212	141.370	867.718	29.457	0.208
x24	212	1422 286	357565.422	597.968	0.420
x25	212	0.145	0.000	0.022	0.151
x26	212	0.375	0.029	0.170	0.455
×27	212	0.451	0.033	0.182	0.403
x28	212	0.182	0.002	0.046	0.254
x29	212	0.323	0.006	0.075	0.231
x30	212	0.092	0.000	0.022	0.235

figura 43

Se usa el estadístico de Lambda de Wilks para determinar la significancia de las variables que se introducen. Como se puede ver en esta tabla, la Lamda de Wilks es más cercana a cero y esto indica un solapamiento bajo, lo suficiente como para poder separar bien a los grupos con las 30 variables.

Lamda de Wilks	0.225675347
Grupos	2
Variables	30
Casos	569
Grados de Libertad L1	30
Grados de Libertad L2	538
F	61.531852
Probabilidad Asociada	0

figura 44

Las siguientes dos tablas son procedimientos preliminares a la prueba F y a la Lambda de Wilks. MANOVA se usará para comparar medias.

las Varia	Variables que				
intervi	intervien en Manova				
	Suma de Cuadrados			Cuadrados Medios	
Variable	Entre Grupos	Dentro de Grupos	Total	Entre Grupos	Dentro de Grupos
×	3,759.34	3294.605	7053.947	3759.342	5.811
x2	1,811.25	8696_130	10507.380	1811.250	15.337
×3	184,959,19	150411.006	335370.192	184959, 186	265.275
×4	35,358,547,15	34984591,698	70343138.852	35358547,155	61701 220
x5	0.014444	860.0	0.112	0.014	0.000
×6	0.563762	1.020	1.584	0.564	0.002
×7	1.750444	1.859	3.610	1.750	0.003
×	0.515805	0.339	0.855	0.516	0.001
6×	0.046627	0.380	0.427	0.047	0.001
×10	0.000006	0.028	0.028	0.000	0.000
×11	14.049441	29.631	43.681	14,049	0.052
×12	0.011917	172.840	172.851	0.012	0.305
×13	718.153896	1603.771	2321.925	718.154	2.829
×14	353,292.50	822144.642	1175437,139	353292.497	1449.991
×15	0.000023	0.005	0.005	0.000	0.000
×16	0.015638	0.167	0.182	0.016	0.000
×17	0.03332	0.484	0.518	0.033	0.001
×18	0.003601	0.018	0.022	0.004	0.000
×19	0.000002	0.039	0.039	0000	0000
×20	0.000024	0.004	0.004	0.00	0.000
x21	7,999,38	5269.223	13268.607	7999.384	9.293
×22	4,479.38	16977.666	21457.042	4479.376	29.943
×23	393,116.14	248230.178	641346.321	393116.143	437.796
×24	99,152,279,11	84974795.630	184127074.738	99152279.108	149867.364
×25	0.052599	0.244	0.296	0.053	0.000
×26	4.911109	9.150	14.061	4.911	0.016
×27	10.756049	13.966	24.722	10.756	0.025
×28	1.545513	606.0	2.454	1.546	0.002
×29	0.376768	1.797	2.174	0.377	0.003
×30	0.019435	0.166	0.185	0.019	0.000

figura 45

Análi					
las V					
inter					
	Grados de Libertad	3	Estadística	Probabilidad	Lamda de
Variable	Entre Grupos	Dentro de Grupos	F	Asociada	Wilks
X1	1	567	646.981	0.000	0.467
x2	1	567	118.096	0.000	0.828
x3	1	567	697.235	0.000	0.448
x4	1	567	573.061	0.000	0.497
x5	1	567	83.651	0.000	0.871
x6	1	567	313.233	0.000	0.644
x7	1	567	533.793	0.000	0.515
x8	1	567	861.676	0.000	0.397
x9	1	567	69.527	0.000	0.891
x10	1	567	0.093	0.758	1.000
x11	1	567	268.840	0.000	0.678
x12	1	567	0.039	0.838	1.000
x13	1	567	253.897	0.000	0.691
x14	1	567	243.652	0.000	0.699
x15	1	567	2.558	0.106	0.996
x16	1	567	53.247	0.000	0.914
x17	1	567	39.014	0.000	0.936
x18	1	567	113.263	0.000	0.834
x19	1	567	0.024	0.871	1.000
x20	1	567	3.468	0.060	0.994
x21	1	567	860.782	0.000	0.397
x22	1	567	149.597	0.000	0.791
x23	1	567	897.944	0.000	0.387
x24	1	567	661.600	0.000	0.462
x25	1	567	122,473	0.000	0.822
x26	1	567	304.341	0.000	0.651
x27	1	567	436.692	0.000	0.565
x28	1	567	964.385	0.000	0.370
x29	1	567	118.860	0.000	0.827
x30	1	567	66.444	0.000	0.895

figura 46

Las funciones discriminantes están formadas por los puntajes discriminantes de cada una de las 30 variables con su respectiva constante. CASANDRA nos proporciona estos valores, pero más adelante se mostrará la función discriminante estandarizada.

Funciones D	Discriminantes	
Variable	FB	FM
X1	132.685	128.878
x2	3.008	3.078
x3	-1.147	-0.778
×4	-0.917	-0.911
x5	-786.143	-776.462
x6	-2733.014	-2802.852
x7	478.288	502.380
x8	-1036.595	-992.185
x9	507.416	510.336
×10	19110.246	19028.810
x11	119.200	123.663
x12	1.296	1.021
x13	-16.886	-16.826
×14	0.625	0.610
x15	4929.690	-4578.475
×16	2543.499	2500.537
×17	-299.919	-375.282
×18	212.679	384.099
x19	644.562	680.810
×20	-15142.580	-14820.736
x21	-37.099	-33.158
x22	-0.389	-0.237
x23	3.249	3.164
x24	0.083	0.064
x25	1548,181	1553.288
x26	110.912	115.418
x27	-51.616	-42.338
x28	-10.084	0.161
x29	-114.471	-103.873
x30	-1481.869	-1436.323
Constante	-1005.756	-1045.988

figura 47

En la figura 66 se pueden observar las funciones discriminantes evaluadas para cada individuo de la población y junto a esto la probabilidad de que dicho elemento de el grupo tenga un tumor maligno o benigno. Es claro ver que para una probabilidad de asignacion alta en el grupo de los que tienen tumores malignos se le asigna ese grupo, aunque pueden existir algunos errores de asignación debido al solapamiento de los grupos en donde se encuentran sujetos no fácilmente diferenciables.

Grupo	Grupo	F			B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
original	Asignado	Máxima	F-B	F-M	Probabilidad (F - B)	Probabilidad (F - M)
M	M	1,093.72225	1,083.07635	1,093.72225	0.00002	0.99998
M	M	1,067.45118	1,061.32642	1,067,45118	0.00218	0.99782
M	M	1,027.42913	1,015.29278	1,027.42913	0.00001	0.99999
M	M	1,157,43922	1,145,38191	1,157,43922	0.00001	0.99999
M	M	991.82529	985.19914	991.82529	0.00132	0.99868
M	M	1,039,30366	1,035.59218	1,039.30366	0.02386	0.97614
M	M	1,046.02222	1.039.44895	1,046.02222	0.00140	0.99860
M	M	1,078.38821	1,076.40249	1,078.38821	0.12071	0.87929
M	M	1,033.15793	1,029.17057	1,033.15793	0.01821	0.98179
M	M	942.79078	930.32015	942.79078	0.00000	1.00000
M	M	1,042,22459	1,041,42046	1,042.22459	0.30914	0.69086
M	M	1,013.60307	1,006.63185	1,013,60307	0.00094	0.99906
M	M	1,105.64559	1,102.47365	1,105.64559	0.04024	0.95976
M	В	974.60822	974.60822	973.82910	0.68549	0.31451
M	M	1,016.34582	1,013.65518	1,016.34582	0.06353	0.93647
M	M	1,127,41982	1,118 29875	1,127,41982	0.00011	0.99989
M	M	1.047.67068	1.042.15227	1.047.67068	0.00400	0.99600
M	M	1,053.32882	1,043.80516	1,053.32882	0.00007	0.99993
M	M	1.045.78581	1.034.49079	1.045.78581	0.00001	0.99999
В	В	979.13154	979.13154	976.31347	0.94364	0.05636
В	В	1.052.63574	1.052.63574	1.042.43465	0.99996	0.00004
В	В	1.006.03480	1.006.03480	993 80262	1.00000	0.00000
В	В	1.027.31684	1.027.31684	1.021.65288	0.99654	0.00346
В	В	990.49218	990 49218	979 12083	0.99999	0.00001
В	В	1.033.25461	1.033.25461	1.023 34740	0.99995	0.00005
В	В	1.056.59164	1.056.59164	1.052.40264	0.98507	0.01493
В	В	954.51012	954.51012	942.78608	0.99999	0.00001
В	В	1.029.16220	1.029.16220	1.024.57472	0.98992	0.01008
В	В	908.27631	908 27631	901.43922	0.99893	0.00107
В	В	966.26570	966.26570	952 97530	1.00000	0.00000
В	В	906.92622	906.92622	897.73737	0.99990	0.00010
В	В	990.78050	990.78050	982.21698	0.99981	0.00019
В	В	976 13519	976.13519	970.11358	0.99758	0.00242
В	В	974.44376	974.44376	971.40844	0.95414	0.04586
В	В	943.99540	943.99540	932.70523	0.99999	0.00001
M	M	1.015.27965	1,001.12088	1.015.27965	0.00000	1.00000
M	M	1,072,23137	1.060.12108	1,072.23137	0.00001	0.99999
M	M	1,072,23137	1,042,31469	1,072.23137	0.00001	1.00000
	M					
M		1,081.98365	1,073,61563	1,081,98365	0.00023	0.99977
M	M	1,044,69066	1,043,46690	1,044,69066	0.22728	0.77272
M	M	1,061.66432	1,041,01124	1,061,66432	0.00000	1.00000
В	В	750.41061	750.41061	738.52040	0.99999	0.00001

figura 48

La consistencia de clasificación verifica el grupo en que fueron asignados los elementos en base a las funciones discriminantes. De los 569 elementos analizados el 96% fueron asignados de manera exitosa. Se realizará un ejercicio con estos mismos datos,pero tomando en cuenta la variables con un mayor peso discriminante para ver si con ellas se puede llegar a un resultado suficientemente satisfactorio y más fácil de obtener al requerir menos variables.

Grupo	Grupo Asignado		
Original	F-B	F-M	Suma
В	355	2	357
M	18	194	212
Suma	373	196	569
Porcentaje de Consistencia	96%		

figura 49

La primer Función Discriminante explica el 99.99% de la varianza entre gurpos, esto se corrobora con la correlación canónica alta (.999517).

Varianza Explicada			
Eigen	% de Varianza	Varianza	Correlación
Valores	Explicada	Acumulada	Canónica
1,034.68	99.99%	99.99%	0.999517
0.074325	0.01%	100.00%	0.263027

figura 50

Las Funciones Canónicas Estandarizadas proveen un panorama más gráfico de la posicion de las variables en un plano bidimensional dado por dos funciones discriminantes.

Coeficientes de		
Funciones		
Canonicas		
Estandarizadas		
Variable	FCE 1	FCE 2
X1	0.000154	0.000000
×2	0.000000	0.010724
x3	0.000095	0.000000
×4	0.000085	0.000000
x5	0.000000	0.000000
x6	-0.008494	0.000000
×7	0.006923	0.000000
×8	0.016094	0.000000
×9	0.000000	0.000000
×10	0.000000	0.000000
×11	0.000000	0.000000
x12	0.000000	0.000000
x13	0.000000	0.000000
×14	0.000039	0.000000
×15	0.029795	0.000000
×16	0.000000	0.000000
×17	-0.001518	0.000000
x18	0.068831	0.000000
x19	-0.028475	0.000000
×20	-0.085164	0.000000
x21	0.000000	0.000000
×22	0.000000	0.000000
×23	0.000095	0.000000
×24	0.000094	0.000000
x25	0.000000	0.000000
x26	0.000000	0.000000
x27	0.000000	0.000000
x28	0.000000	0.000000
x29	0.000000	0.000000
×30	0.000000	0.000000

figura 51

III.1.1ANALISIS PARA EL CASO REDUCIDO A 7 VARIABLES.. Como se dijo anteriormente el analisis de tumor se hará ahora pero con las variables $X_1,X_3,X_7,X_8,X_{21},X_{23}$ y $X_{28}.$

Manova de Grupos	*************				
Estadísticas Básicas					
Variable	No. Observaciones	Media Aritmética	Varianza Muestral n-1	Desv. Est. Muest. n-1	coeficiente vanacion
X1	569	14.13	12.42	3.52	0.2494
×3	569	91.97	590.44	24.30	0.2642
×7	569	0.09	0.01	0.08	0.8978
×3 ×7 ×8 ×21	569	0.05	0.00	0.04	0.7932
x21	569	16.27	23 36	4.83	0.2971
×23	569	107.26	1129.13	33.60	0.3133
x28	569	0.11	0.00	0.07	0.5735

figura 52

Nuevamente Casandra hace un análisis para las estadisticas básicas para cada grupo.

Estadísticas					
Básicas					
Variable Indicadora (DIAGNT) ->					
Casos	357				
Variable	No. Observaciones	Media Aritmética	Varianza Muestral n-1	Desv. Est. Muest. n-1	coeficiente variacion
X1	367	12.15	3.17	1.78	0.1466
×3 ×7	357	78.08	139.42	11.81	0.1512
×7	357	0.05	0.00	0.04	0.9432
×8	357	0.03	0.00	0.02	0.6186
x21	367	13.38	3.93	1.98	0.1481
x23 x28	357	87.01	182.98	13.53	0.1555
×28	367	0.07	0.00	0.04	0.4809

figura 53

Se realizará un breve analisis de algunos coeficientes de varialación.

Estadísticas					
Básicas					
Variable Indicadora (DIAGNT) ->	M				
Casos	212				
Variable	No. Observaciones	Media Aritmética	Varianza Muestral n-1	Desv. Est. Muest. n-1	coeficiente variacion
X1	212	17.46	10.27	3.20	0.1835
×3	212	115.37	477.63	21.85	0.1894
×3 ×7	212	0.16	0.01	0.08	0.4666
×8	212	0.09	0.00	0.03	0.3907
x21	212	21.13	18.35	4.28	0.2027
x23 x28	212	141.37	867.72	29.46	0.2084
x28	212	0.18	0.00	0.05	0.2541

figura 54

La Lamda de Wilks es muy similar al analisis realizado con 30 variables pero al contemplar siete variables , se puede concluir qe los grupos también se pueden separar de manera exitosa con una lamda de Wilks igual a 0.300984.

Lamda de Wilks	0.30098418
Grupos	2
Variables	7
Casos	569
Grados de Libertad L1	7
Grados de Libertad L2	561
F	186.126477
Probabilidad Asociada	0

figura 55

Como antes se analizan la varianza de las variables que intervienen en el MANOVA

Anális	sis	de Varian.	z a				
las Va	ria	blesque					
interv	ien	en Manov	а				
	Sun	na de Cuadrado	S		(Cuadrados Medio	os
Variable	Entr	re Grupos	Dentro de Grupos	Tota	al E	Entre Grupos	Dentro de Grupo
X1		3,759.34	3,294.60	7,	053.95	3,759.34	5.81
x3		184,959.19	150,411.01	335	370.19	184,959.19	265.28
x7		1.75	1.86		3.61	1.75	0.00
x8		0.52	0.34		0.86	0.52	0.00
x21		7,999.38	5.269.22	13.	268.61	7,999.38	9.29
x23		393,116.14	248,230.18	641	346.32	393,116.14	437.80
x28		1.55	0.91		2.45	1.55	0.00
An	áli						
la	s V						
int	ter						
		Grados de Lib	ertad		Estadísti	ca Probabilidad	Lamda de
Var	iable	Entre Grupos	Dentro de Gru	pos	F	Asociada	Wilks
	X1	1	567		646.98	1 0.000	0.467
	x3	1	567		697.23	5 0.000	0.448
	x7	1	567		533.79	3 0.000	0.515
	×8	1	567		861.67	6 0.000	0.397
3	x21	1	567		860.78	2 0.000	0.397
3	×23	1	567		897.94	4 0.000	0.387
3	×28	1	567		964.38	5 0.000	0.370

figura 56

He aquí las probabilidades de asignación para algunos de los individuos de ambos grupos, se puede observar que algunos están claramente asignados ya que las probabilidades de asignacion son relamente altas, algunos otros son colocados en el grupo que esté mas "cercano" es decir al grupo al que tenga la probabilidad de asignacion más alta.

	Discriminante: dades de Asig					
Grupo	Grupo	F				
original	Asignado	Máxima	F-B	F-M	Probabilidad (F-B)	Probabilidad (F - M
M	M	34.07	22 39	34.07	0.00	1.0
M	M	53.57	46.92	53.57	0.00	1.0
M	M	45.20	35.63	45.20	0.00	1.0
M	M	22.96	16.99	22.96	0.00	1.0
М	M	39.83	36.31	39.83	0.03	0.9
M	M	19.29	17.58	19.29	0.15	0.8
M	M	42.06	36.54	42.06	0.00	1.0
M	M	21.94	20.92	21.94	0.26	0.7
M	M	21.07	18.38	21.07	0.06	0.9
M	M	27.06	23.39	27.06	0.02	0.9
M	В	33.12	33.12	32.12	0.73	0.2
M	M	31.82	27.93	31.82	0.02	0.9
M	M	22 04	20.51	22.04	0.18	0.8
M	В	31.08	31.08	28.73	0.91	0.0
M	M	28.32	26.86	28.32	0.19	0.8
M	M	27.69	26.36	27.69	0.21	0.7
M	M	31.53	28.81	31.53	0.06	0.9
M	14	26.72	20.37	26.72	0.00	1.0
M	M	50.15	39.22	50.15	0.00	1.0
В	В	26.36	26.36	24.49	0.87	0.1
В	В	19.11	19.11	13.65	1.00	0.0
В	В	14.39	14.39	7.08	1.00	0.0
M	М	36.08	30.84	36.08	0.01	0.9
M	M	52.75	41.74	52.75	0.00	1.0
M	M	32.71	21.97	32.71	0.00	1.0
M	M	28.17	18.72	28.17	0.00	1.0
M	M	33.79	27.93	33.79	0.00	1.0
M	M	40.37	37.77	40.37	0.00	0.9
M	M	28.57	24.13	28.57	0.07	0.9
M	M	31.89	30.39	31.89	0.18	0.8
M	M	32.49	26.24	32.49	0.00	1.0
M	M	20.10	19.05	20.10		0.7
M	M	33.46	27.29	33.46	0.26	1.0
M	M	42.97	37.60	42.97	0.00	1.0
M	M	30.83	26.71	30.83	0.02	0.9
M	M	40.24	37.25	40.24	0.02	0.9
M	B	30.71	30.71	29.19	0.82	0.1
В	В	24.69	24.69	-	1.00	0.0
M	В			18.15		1 7 7 7
M	M	28.94 35.37	28.94 33.15	21.89 35.37	1.00	0.0
M	B	29.32	29.32		0.10	0.9
	В	The second secon	and the second s	26.83		
M		15.99	15.99	14.03	0.88	0.1
M	M	45.47	37.79	45.47	0.00	1.0
M		19.48	18.12	19.48	0.20	0.8
M	M	25.84	24.97	25.84	0.30	0.7
M	M	46.21	38.11	46.21	0.00	1.0
В	В	9.95	9.95	0.20	1.00	0.0
M	M	29.42	26.44	29.42	0.05	0.9
В	В	20.09	20.09	14.61	1.00	0.0
В	В	28.82	28.82	26.59	0.90	0.1

figura 57

Haciendo este análisis se puede observar que el porcentaje de consistencia se redujo, de un 96% con 30 variables a un 94%. Este análisis podría tomarse como primer estudio. En los casos en los que el individuo haya obtenido una probabilidad de asignación "baja" para su grupo(el investigador decidirá qué es lo que se pude considerar bajo), cabe la posibilidad de realizar un análisis más amplio ya que con una probabilidad de asignación baja es más fácil caer en errores de clasificación. Es importante mencionar que el costo de error de una mala selección puede ser literalmente de vital importancia, ya que de no detectarse pronto un tumor maligno este puede evolucionar.

Grupo	Grupo As	ignado	
Original	F-B		Suma
В	355	2	357
M	31	181	212
Suma	386	183	569
Porcentaje de Consistencia	94%		

figura 58

Esta tabla explica que la primer función explica casi el 100% de la varianza entre gurpos(el 100% exacta se debe a un redondeo de decimales), esto se corrobora con la correlación canónica alta (.836566).

Varianza			
Explicad	а		
Eigen	% de Varianza	Varianza	Correlación
Valores	Explicada	Acumulada	Canónica
2.33158	100.00%	100.00%	0.836566
0.000002	0.00%	100.00%	0.001573

figura 59

Aquí tenemos el cuadrado de las distancias de Mahalanobis a su centroide. A cada individuo se le ha asignado una distancia, la cual nos da una idea de que tan "cerca" un individuo esta de la media de su grupo.

Cuadra	ado de
Distan	cias
Mahali	anobis
a su Ce	entroide
Grupo	Valor
M	0.063742
M	0.019119
M	0.01875
M	0.036536
M	0.011179
M	0.010809
M	0.005805
M	0.011937
M	0.012711
M	0.033606
M	0.010773
M	0.007063
M	0.069784
M	0.01267
M	0.027697
M	0.013255
M	0.008566
M	0.019933
M	0.033948
В	0.006208
В	0.006642
В	0.003916
M	0.010923
M	0.032244
M	0.062018
M	0.023768
M	0.03268
M	0.005539

figura 60

III.2 COMPARATIVO CON SPSS.

Análogamente a lo que sucede en en el sistema estadístico CASANDRA, SPSS puede utilizar bases de datos con extención xls (Excel). Cuando ya se encuentra la base de datos de SPSS que se importarse elige de el menu Analyze \rightarrow Classify \rightarrow Discriminant... tal y como se muestra en la figura:

	9 9 6	101 =	10 4	CARLES OF	orts		•			
2 : diag			1	Des	criptive Stat	tistics				
	IDNUM	DIAGNT	diagno		ies npare Mean			х3	х4	x5
13	846226	M			eral Linear			132.4	1123	.0974
14	846381	M		2000	ed Models	Model		103.7	783	.0840
15	84667401	M			SS (1) (0) (0)			93.6	578	.113
16	84799002	M			relate			96.7	659	.1139
17	848406	M		3100	ression			94.7	685	.0987
18	84862001	M		The second second	linear		١,	109.1	700	1170
19	849014	M		Clas	sify		١.	TwoStep	Cluster	0983
20	8510426	В		Data	a Reduction			K-Means	Cluster	0978
21	8510653	В		Sca	le			Hierarchi	cal Cluster	107
22	8510824	В		Non	parametric	Tests		Tree		102
23	8511133	M		Tim	e Series		٠	Discrimin	MARK	1073
24	851509	M		Sun	rival			Discrimin	aritim	094
25	852552	M		Mult	tiple Respon	nse	,	110.0	905	.112
26	852631	M			ing Value A			116.0	913	.1186
27	852763	M			nplex Samp		,	97.4	645	.1054
28	852781	M		77	18.61	20.25		122.1	1094	.094
29	852973	M		1	15.30	25.27		102.4	732	.1083
30	853201	M		1	17.57	15.05		115.0	955	.0984

figura 61

Con lo que aparecerá una ventana en la que se elige quien será la variable de agrupamiento y quien o quienes serán las variables independientes. Es importante definir cual será el rango de la variable de agrupamiento , ya que sin esto no se podrá tener el cálculo de salida.

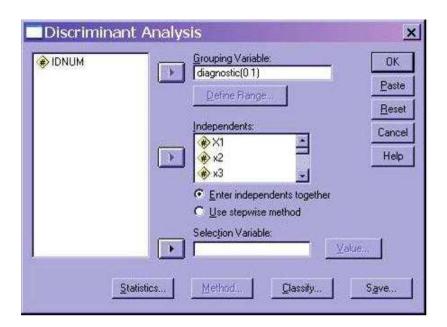


figura 62

Si se prentende tener un mayor detalle de las estadísticas de salida, SPSS preguntará que es lo que necesitas exactamente tener en el "output", como el tipo de probabilidades a priori, el uso de la matriz de covarianza o incluso si se requiere hacer una depuración de la base de datos en el sentido de intercambiar un dato nulo por la media con la finalidad de no alterar demasiado la base misma.

Para este ejemplo se ha seleccionado todo lo que se muestra en la figura de abajo para poder comparar todas las estadísticas de salida de SPSS con CASANDRA.

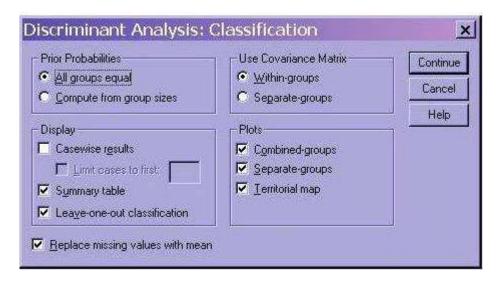


figura 63

También se pueden elegir estadísticas descriptivas ,matrices o inclusive los coeficientes de Fisher's y los no estandarizados.

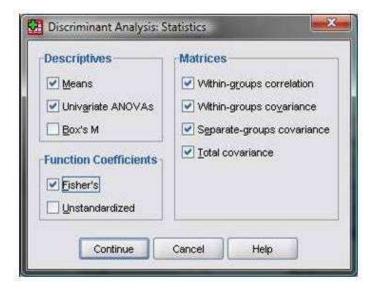


figura 64

SPSS analiza primeramente cuales han sido los datos tomados, cuales han sido escluidos y su total, de manera que el usuario podra percatarse si ha perdido en este primer proceso de analisis informacion importante y de ser así se dará a la tarea de verificar su base y de ser posible depurarla.

Unweighted Cases		N	Percent	
Valid	T	569	100.0	
Excluded	Missing or out-of-range group codes	0	.0	
	At least one missing discriminating variable	0	.0	
	Both missing or out-of-range group codes and at least one missing discriminating variable	0	.0	
	Total	0	.0	
Total		569	100.0	

figura 65

Tal y como ocurre para el sistema CASANDRA , este proporciona estadisticas de grupo, es decir , estadisticas para cada uno de los grupos de análisis. Para el las pruebas de igualdad de medias SPSS tiene la siguiente vista:

Tests of Equality of Group Means

	Wilks' Lambda	F	df1	df2	Sig.
X1	.467	646.981	1	567	.000
x2	.828	118.096	1	567	.000
хЗ	.448	697.235	16	567	.000
×4	.497	573.061	1	567	.000
x5	.871	83.651	1	567	.000
х6	.644	313.233	1	567	.000
x7	.515	533.793	1	567	.000
x8	.397	861.676	1	567	.000
х9	.891	69.527	1	567	.000
x10	1.000	.093	1	567	.760
x11	.678	268.840	1	567	.000
x12	1.000	.039	1	567	.843
x13	.691	253.897	1	567	.000
x14	.699	243.652	1	567	.000
x15	.996	2.558	16	567	.110
x16	.914	53.247	1	567	,000
x17	.936	39.014	1	567	.000
x18	.834	113.263	1	567	.000
x19	1.000	.024	1	567	.877
x20	.994	3.468	1	567	.063
x21	.397	860.782	1	567	.000
x22	.791	149.597	1	567	.000
x23	.387	897.944	1	567	,000
x24	.462	661.600	1	567	.000
x25	.822	122.473	1	567	.000
x26	.651	304.341	10	567	.000
x27	.565	436.692	1	567	,000
x28	.370	964.385	1	567	.000
x29	.827	118.860	1	567	.000
x30	.895	66.444	1	567	.000

figura 66

Se hace un análisis de las matrices de suma de cuadrados entre grupos, y análisis de las matrices de covarianzas y correlaciones total 4

Después de el encabezado "Analysis 1" se presenta la siguiente tabla de variables que no pasan la prueba de tolerancia:

 $^{^4}$ vea anexo 2 para el detalle figura A_1
y A_2

Analysis 1

	Within-Groups Variance	Tolerance	Minimum Tolerance
x13	2.829	.041	.001
x18	3,18E-005	.202	.001
x19	6.85E-005	.502	.001
x21	9.293	.011	.001
x22	29.943	.103	.001
x24	149867.364	.024	.001
x25	.000	.197	.001
x26	.016	.138	.001
x27	.025	.133	.001
x28	.002	.190	.001
x29	.003	.370	.001
x30	.000	.159	.001

All variables passing the tolerance criteria are entered simultaneously.

a. Minimum tolerance level is .001.

figura 67

SPSS hace una prueba de tolerancia que permite no considerar a las variables que resulten redundantes. Como se puede ver a partir de este momento , ya no contemplará a las variables $X_{13}, X_{18}, X_{19}, X_{21}, X_{22}, X_{23}, X_{24}, X_{25}, X_{26}, X_{27}, X_{28}, X_{29}$ y X_{30} y tomará como base el complemento de esas variables. Dará valores para las funciones discriminantes, coeficinetes caconicos de la funcion discriminante y otros.

Summary of Canonical Discriminant Functions

Eigenvalues

Function	Eigenvalue	% of Variance	Cumulative %	Canonical Correlation
1	2.705a	100.0	100.0	.854

 First 1 canonical discriminant functions were used in the analysis.

Wilks' Lambda

Test of Function(s)	Wilks' Lambda	Chi-square	df	Sig.
1	.270	730.777	18	.000

figura 68

Desde un inicio se sabía que el máximo de funciones discriminantes sería 1 y por lo tanto la función explica el 100% de la varianza entre grupos, lo cual hace sentido con una correlación canónica alta de .854 . Por su parte CASANDRA llega a resultados semejantes cuando contempla otras variables $(X_1, X_3, X_7, X_8, X_{21}, X_{23}$ y X_{28}). ⁵⁶

La Lambda de Wilks tiene con SPSS .270 mientras que para CASANDRA es .2256 . 7 $^{8}{\rm CASANDRA}$ es muy claro en decir cuantas variables está usando para el cálculo de lambda de Wilks.

SPSS proporciona los coeficientes de la función canónica estandarizada (standardized Canonical Discriminant function coefficients) sin contemplar a las variables de la figura 67.

 $^{^{5}}$ vea sección III.1 figura 59

⁶Cabe decir que el cuando se hizo el análisis con CASANDRA en un grupo reducido de variables, se consideraron a las variables que no presentaban correlaciones altas con las demás, por otro lado es mucho más fácil trabajar con seis variables que con 30 o inclusive con las que termina usando spec

 $^{^7\}mathrm{Existe}$ en SPSS una duda en cuanto a si se consideran las 30 variables o no

 $^{^8\}mathrm{En}$ la siguiente seccion se presentará un resultado contemplando las variables que SPSS usa para hacer el discriminante.

Standardized Canonical Discriminant Function Coefficients

	Function	
	1	
X1	5.427	
x2	.334	
x3	-4.496	
x4	-1.623	
x5	.094	
х6	430	
x7	.952	
x8	.280	
х9	.112	
x10	,190	
x11	.327	
x12	110	
x14	330	
x15	.166	
x16	.169	
x17	479	
x20	086	
x23	1.091	

figura69

La matriz de estructura que ordena todos los puntajes discriminantes de mayor a menor de todas las variables 9

 $^{^9\}mathrm{Esta}$ estructura da una idea clara del peso o importancia que tiene cada variable en la función discriminante.

Structure Matrix

9	Function	
	1	
x23	.765	
x8	.750	
x21ª	.738	
x24ª	.676	
x3	.674	
X1	.650	
x28ª	.646	
x4	.611	
×7	.590	
х6	.452	
x11	.419	
x13ª	.412	
x27ª	.410	
x14	.399	
x26 ⁸	.319	
x2	.277	
x18ª	.251	
x5	.234	
x22ª	.229	Pooled within-
x9	.213	groups correlations
x16	.186	between
x17	.159	discriminating variables and
x25 ⁸	.149	standardized
x29ª	.107	canonical discriminant
x30 ^a	.060	functions Variables
x20	.048	ordered by
x15	041	absolute size of correlation
x19 ^a	036	within function.
x10	008	a. This variable
x12	005	not used in the analysis.

figura 70

Los coeficientes de la función canónica discriminante sin estandarizar.

Canonical Discriminant Function Coefficients

	Function 1	
X1	2,251	
x2	.085	
x3	276	
x4	007	
x5	7.117	
х6	-10.128	
x7	16.626	
x8	11.453	
x9	4.317	
x10	26.876	
x11	1.430	
x12	199	
x14	009	
x15	55.443	
x16	9.845	
x17	-16.404	
x20	-32,574	
x23	.052	
(Constant)	-13.493	

Unstandardized coefficients

figura 71

Los centroides de cada grupo, un proceso que depura la base de datos y contempla solo los individuos que tengan toda la información. 10

Functions at Group Centroids

	Function	
diagnostic	1	
0	-1.265	
1	2.130	

Unstandardized canonical discriminant functions evaluated at group means

figura 72

 $^{^{10} \}rm Los$ centroides dan una visión gráfica que permite identificar como estan colocados los grupos y por lo tanto los individuos

Las probabilidades apriori de los grupos la cual se puede manipular dependiendo de si el problema que se trata cuenta con informacion de alguna probabilidad más alta de pertenencia a algún grupo.

Classification Statistics

Classification Processing Summary

Processed		569
Excluded	Missing or out-of-range group codes	0
	At least one missing discriminating variable	0
Used in Outpu	ut	569

figura 73

Prior Probabilities for Groups

		Cases Used in Analysis		
diagnostic	Prior	Unweighted	Weighted	
0	.500	357	357.000	
1	.500	212	212.000	
Total	1.000	569	569,000	

figura 74

La función lineal discriminante de Fisher es importante para la obtención de los puntajes discriminantes para luego poder hacer la clasificacion en el grupo que más semejanza tenga. CASANDRA a diferencia de SPSS muestra las variables que se hayan seleccionado para el análisis multivariado.

Classification Function Coefficients

	diagnostic		
	0	1 31	
X1	80.535	88.179	
x2	2.463	2.753	
х3	3.475	2.538	
x4	837	859	
х5	452.540	476.705	
х6	-2487.882	-2522.274	
х7	367.637	424.091	
х8	-837.777	-798.887	
х9	460.388	475.046	
x10	15751.569	15842.828	
x11	-56.709	-51.854	
x12	-1.752	-2.428	
x14	.840	.811	
x15	3463.719	3651.982	
x16	2080.353	2113.783	
x17	-234.073	-289.774	
x20	-15798.3	-15908.9	
x23	.594	.771	
(Constant)	-936.653	-983.938	

Fisher's linear discriminant functions

figura 75

En la tabla 75 se muestra el porcentaje clasificación correctamente, tanto para las 30 variables como para las variables que SPSS selecciona como no dependientes y de mayor importancia en el sentido de aporte de información para la creación de las funciones discriminantes. En el primer caso 11 hay un resultado muy semejante 12 . Para poder hacer una comparación real en cuanto al porcentaje de consistencia del "Cross validation"es necesario comparar lo que ocurriria si se usan las mismas variables.

 $^{^{11}}$ Variables originales

 $^{^{12}\}mathrm{Vea}$ figura 49

		diagnostic	Predicted Member		
			0	1	Total
Original	Count	0	357	0	357
		1	17	195	212
84	%	0	100.0	.0	100.0
		1	8.0	92.0	100.0
Cross-validated ^a	Count	0	355	2	357

24

99.4

11.3

188

88.7

.6

212

100.0

100.0

Classification Resultsb.o

- a. Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the functions derived from all cases other than that case.
- b. 97.0% of original grouped cases correctly classified.

0

1

c. 95.4% of cross-validated grouped cases correctly classified.

figura 76

III.3 ANALISIS DISCRIMINANTE CON CASANDRA USASNDO LAS VARIABLES QUE SPSS CONSIDERA.

Al hacer uso de las mismas variables de SPSS, CASANDRA llega a una lambda igual a .27992¹³ mientras que SPSS a .270, ambos valores son bastante semejantes y por lo tanto llegan al mismo resultado: los grupos se encuentran suficientemente separados ¹⁴

Lamda de Wilks	0.26992
Grupos	2
Variables	18
Casos	569
Grados de Libertad L1	18
Grados de Libertad 12	550
F	82.64750
Probabilidad Asociada	0

figura 77

Si se hace el comparativo con las funciones discriminantes, se llega a que son (como se esperaba) muy parecidos los resultados, como por ejemplo: para la variable X1 CASANDRA obtiene 75.95 y el otro paquete un 80.53, para X& un -2,475.94 contra 2,487, o por último x23 = 0.32 contra un .594 de SPSS. En resumen se puede afirmar que se obtiene básicamente el mismo resultado.

¹³CASANDRA lo hace con seis variables

 $^{^{14}\}mathrm{Vea}$ la figura 58

Funciones D)iscriminantes	W.C.	
Variable	FO	F1	
X1	75.953169	83.585227	
x2	2.494365	2.783458	
x 3	3.488269	2.53012	
x4	-0.771209	-0.792651	
x 5	791.533949	818.135562	
хб	-2,475.94	-2,503.91	
x7	347.769514	404.817223	
x8	-932.218651	-893.748932	
x9	416.809946	431.918384	
x10	15,641.93	15,676.25	
x11	-31.092076	-26.602023	
x12	0.331866	-0.348111	
x14	0.703202	0.675078	
x15	263.889841	450.880252	
x16	2,313.29	2,333.95	
x17	-224.841579	-283.176111	
x20	-15,823.79	-15,788.06	
x23	0.323341	0.502301	
Constante	-914.6151464	-958.4943285	

figura 78

En el caso de la varianza explicada CASANDRA toma las variables que se le den. Son igules los eigenvalores en este caso porque SPSS al proporcionarle las 30 variables, son esas precisamente las que toma para su calculo. Algunas ocacionesSPSS usa las 30 variables y en otras usa solo las que para el programa considere "importantes" .

Ahora bien, comparando este resultado con el que se tiene con CASNDRA de las 30 variables, se concluye que son prácticamnete iguales. 15

Varianza Explicada			
Eigen Valores	% de Varianza Explicada	Varianza Acumulada	Correlación Canónica
514.793705	99.95%	99.95%	0.99903
0.250975	0.05%	100.00%	0.447911

figura 79

 $^{^{15}\}mathrm{Vea}$ figura 50 y 76

En cuanto al porcentaje de consistencia, CASANDRA tiene un 95% mientras que SPSS llega a un 95.4% lo cual indica que ambos paquetes estadísticos se podrían usan indistintamente, pero la diferencia es el control que se puede tener en CASANDRA. Es importante decir que no se deben eliminar las variables solo con un algorítmo sin pensar en las implicaciones que se puede tener.

Consistencia de Clasificación				
Grupo	Grupo A	signado		
Original	F-0	F-1	Suma	
0	357	0	357	
1	26	186	212	
Suma	383	186	5 69	
Porcentaje de Consistencia	95%			

figura 80

III.4 ANÁLISIS PARA ASIGNACIÓN DE CRÉDITO

Caso de crédito.

Para un banco que se dedique al otorgamiento de créditos es importante saber a quién se le asignará cierta línea. Existe información de la cual se puede valer, como por ejemplo el "Buró de Crédito" que le da a cada persona un score o calificación, la cual indica que tan buen pagador es. Pero esta información en algunas ocasiones no viene completa, como por ejemplo el hecho de no tener un score asignado, esto se debe a dos razones principales, la primera que el sujeto nunca ha solicitado un crédito y la segunda que el sujeto solo ha tenido crédito en determinados bancos los cuales por política no comparten su información crediticia. Pero aún con un score asignado este podría no ser del todo exacto, ya sea por un mal reporte de los bancos o simplemente por la actualización de la información en el Buró. 16

 $^{^{16}}$ Buró de Crédito es una empresa que ofrece un servicio para agilizar el proceso de evaluación de riesgo y asignación de créditos, fomenta empresas más rentables y procura un manejo transparente de la información entre consumidores e instituciones otorgantes de crédito.

Por ello, la información que maneja Buró de Crédito permite ampliar las oportunidades de acceso al crédito para un mayor número de personas y empresas mexicanas.

Buró de Crédito integra información histórica de los datos generales y el comportamiento crediticio de personas físicas y empresas.

Toda la información es proporcionada por los usuarios* y se conservará en la base de datos durante un plazo de 72 meses o seis años para personas físicas y morales.

La base de datos está resguardada garantizando con ello su confidencialidad e integridad.

La información completa acerca de los clientes, contenida en su historial crediticio, únicamente se presenta en el Reporte de Crédito Especial, documento al que sólo tiene acceso el cliente. Para el caso de los usuarios e instituciones que hacen uso de nuestros servicios, la información es presentada a través del Reporte de Crédito Ordinario y éste no muestra el nombre de los otorgantes de crédito.

La información utilizada en este ejemplo de Análisis de crédito es de una base de datos la cual, considerando el hecho de que muchos de los individuos nunca antes habían solicitado una tarjeta de crédito (por su nivel socioeconómico), como primer método de análisis se uso el de discriminante ya que se tienen clasificados dos grupos:

- (1) Sujetos a los que se les asignará línea de crédito.
- (2) Sujetos a los que NO se les asignará línea de crédito.

Es necesario decir que para que una persona solicite crédito en alguna institución, este deberá aportar datos cualitativos así como cuantitativos, dentro de los primeros se pueden agrupar las variables:

- Estado civil
- Profesión.
- Lugar en donde radica
- Dirección (la cual da un indicativo del tipo de estus social que tiene).

Para las variables que pertenecen al conjunto de variables cuantitativas se consideran para la solicitud de crédito las siguientes (entre otras):

- Capacidad de pago (lo que la persona declara poder pagar mensualmente).
- Edad.
- Número de carros.
- Ingresos mensuales (serán los ingresos mensuales promedio).

Para esta tesis se consideraron las variables cuantitativas (nota: si se pretende realizar un análisis en el que se incluyan las variables cualitativas se puede realizar un análisis de discriminante logístico). Contemplando entonces estas variables se pretende hacer un primer acercamiento a lo que podría ser una buena clasificación de individuos a los que se les dará un crédito.

Primero se analizaran las variables estadísticas básicas, tal y como se hizo anteriormente.

Estadísti Básicas	ca	S			
Variable	No.	Observaciones	Media Aritmética	Varianza Muestral n-1	Desv. Est. Muest. n-1
capag		2,558	1,051.71	3,964,911.13	1,991.21
Edad		2,558	34.83	125.87	11.22
numcar		2,558	0.32	0.27	0.52
ingremens		2,558	7,539.20	48,507,447.64	6,964.73

figura 81

En la base de datos se ha etiquetado al grupo de los malos pagadores como M y al de los buenos pagadores como B.

^{*} Usuarios: Bancos, arrendadoras, empresas de financiamiento automotriz, hipotecario, y de bienes en general, tiendas departamentales, empresas comerciales y compañías de servicios (ej. Televisión por cable, telefonía), entre otras.

Estadísticas	i-						-
Básicas							
Variable Indicadora	(clas) -> B						
Casos		1957					
Variable	No	Observaciones	Media Aritmética	-	Varianza Muestral n-1	Desv. Es	st. Muest. n-1
capag		1,957	994.6	57	3,160,721.18		1,777.84
Edad		1,957	35.0	02	129.04		11.36
numcar		1,957	0.3	32	0.27		0.52
ingremens		1,957	7.438.0	03	46.298,895.64		6.804.33

figura 82

Estadísticas					
Básicas					
Variable Indicadora (clas)> M				
Casos	Cooker to the status	601			
Variable	No	Observaciones	Media Aritmética	Varianza Muestral n-1	Desv. Est. Muest. n-
capag		601	1,237.77	6,547,854.35	2,558.8
Edad		601	34.22	115.29	10.7
numcar		601	0.31	0.27	0.5
ingremens		601	7,868.63	55,646,081.90	7,459.6

figura 83

Si se comparan las medias aritméticas de cada una de los grupos , se nota lo siguente:

- La capacidad de pago de los individuos que pertenecen al grupo de los buenos pagadores es "extrañamente" menor al del grupo de los malos pagadores
- La edad es muy semejante en los grupos.
- El número de carros es también muy parecido, aunque ligeramente menor el de los malos.
- Nuevamente se presenta un aspecto raro en el comportamiento de los ingresos mensuales ya que los malos pagadores reportan tener (en promedio) ingresos más altos que el de los buenos pagadores.

A diferencia de los análisis anteriores en esta tesis, se puede observar que se tiene una lamda de Wilks muy alta, lo cual puede implicar que los grupos estan muy solapados y que por lo tanto este análisis puede presentar dificultades para separar bien los grupos.

Lamda de Wilks	0.995780234
Grupos	2
Variables	4
Casos	2.558
Grados de Libertad L1	4
Grados de Libertad L2	2,553
F	2.704679
Probabilidad Asociada	0.02843819

figura 84

Como análisis complementario se efectua el analisis de varianza multiple que nos permite probar la hipótesis de igualdad de grupos.

Haciendo pruebas de hipótesis para cada una de las variables se observa que para edad, número de carros e ingresos, se rechaza la hipótesis de diferencia entre las medias de las variables de cada grupo ya que la probabilidad es mayor a 0.05.

	de Varianza							
	bles que							
intervien	en Manova							
	Suma de	Cuade	rados			Cuar	drad	os Medios
Variable	Entre Grupos	Dent	ro de Grupos	Total	1	Entre Grupo	35	Dentro de Grupos
capag	27, 194, 519, 19	10.1	11,083,231.04	10,138,277.	750.23	27, 194, 519	19	3,955,822,8
Edad	290.17		321,569,53	321	859.70	290	17	125.8
numcar	0.02		696.40		696.42	Ó	02	0.2
ingremens	85,254,610.46	123,9	48,289,005,45	124,033,543,	615.91	85,254,610	46	48,493,070 8
	Gra	ados d	e Libertad	Estadistica	Probabilio	dad Lamda	de	
	Entre Gru	pos D	Pentro de Grupos	F	Asociac	da Wilk	\$	
		1	2,556	6.874554	0.008	678 0.997	318	
		1	2,556	2.30644	0.124	831 0.999	098	
		1	2.556	0.081151	0.772	876 0.999	968	
		4	2.556	1.758078	0.181	613 0.999	242	

figura 85

Para poder colocar a un nuevo individuo son necesarias las Funciones Discriminantes

Variable	FB	FM
capag	0.00022	0.00027
Edad	0.27250	0.26594
numcar	-0.17631	-0.23464
ingremens	0.00009	0.00010
Constante	-5.44988	-6.51783

figura 86

Si pretendemos entonces colocar a un sujeto en alguno de los grupos es necesario evaluar en las funciones discriminantes y asignar a esa persona al grupo que halla presentado mayor probabilidad de pertenencia.

	Discriminantes lades de Asigi					
Grupo	Grupo	F				
original	Asignado	Máxima	F-B	F-M	Probabilidad (F - B)	Probabilidad (F+M)
В	В	4.949846	4.949846	3.713799	0.774875197	0.225124803
M	В	6.681781	6.681781	5.432451	0.777183903	0.222816097
В	В	0.648263	0.648263	-0.501683	0.759501198	0.240498802
В	В	0.657573	0.657573	-0.405614	0.74329915	0.25670085
M	В	1.525846	1.525846	0.406961	0.753781784	0.246218217
В	В	1.695039	1.695039	0.636769	0.742359864	0.257640136

figura 87

La consistencia de clasificación sólo es de un 77%, y eso puede representar un costo muy alto para el banco, tanto si se prentende otorgar crédito como si se pretende denegar el crédito. De hecho con estas variables se observa que casi todos los individuos que son del grupo de los buenos pagadores se ha clasificado correctamente casi al 100%, pero clasificar mal a esta clase de individuos no representa un "costo" tan importante, como el error que existe al clasificar mal a los individuos que pertenecen al grupo de los malos pagadores. En este caso practicamente todos los individuos del grupo de los malos pagadores fueron clasificados como buenos. lo cual rectifica lo que se encontró en la Lambda de Wilks. El grupo M está traslapado en el grupo de los del grupo B. Es en casos como este que el porcentaje de clasificación puede ser en terminos "absolutos" no tan malo como lo es analizando los grupos uno a uno.

Consistencia de Clasificación	n		
Grupo Original	Grupo A		Suma
B M	1,956 600	1	1957 601
Suma	2,556	2	2558
Porcentaje de Consistencia	77%		

figura 88

Continuando con el output de CASANDRA, se puede verificar que la primer función discriminante explica casi el 100%, pero en este caso aunque la función explique dicho porcentaje el lector se habrá percatado que esta , no basta para poder tener una buena regla de clasificación.

Varianz Explica			
Eigen	% de Varianza	Varianza	Correlación
Valores	Explicada	Acumulada	Canónica
0.004273	100.00%	100.00%	0.065230
0	0.00%	100.00%	0.000016

figura 89

Coeficier Funcione		
Canónica	S	
Estandar	izadas	
Variable	FCE 1	FCE 2
capaq	-0.000005	0.000009
Edad	0.000003	0.000015
numcar	0.000001	-0.000011
ingremens	-0.000002	-0.000001

figura 90

Matriz d	e Valores			
de las V	ariables			
Estanda	rizadas			
(Z)				
Grupo	capag	Edad	numcar	ingremens
В	-0.402626	0.104219	-0.612749	-0.220999
В	-0.025970	-1.411019	-0.612749	0.066162
M	-0.126412	-1.054493	-0.612749	-0.220999
В	0.476237	-1.054493	-0.612749	-0.364580

figura 91

Centro	ides de	las		
Variab				
Estano	darizada	S		
por Gr	upo			
Grupo	capag	Edad	numcar	ingremens
В	-0.028696	0.016636	0.003122	-0.014526
M	0.093440	-0.054171	-0.010166	0.047300

figura 92

Valore	s de las	
Funcio	nes	
Canón	icas	
Estano	darizada	8
Grupo	FCE 1	FCE 2
В	0.000002	0.000005
В	-0.000007	-0.00002
M	-0.000001	0.000004
В	-0.000001	-0.000014
В	-0.000005	-0.000015
M	-0.000002	-0.00001
В	-0.000005	-0.000005

figura 93

Valore	s de las	- 1									
Funciones											
Canóni	cas										
en los C	en los Centroides										
Estand	Estandarizados										
Grupo	capag	Edad									
Centro B	0.000000	0.000000									
Centro M	-0.000001	0.000000									

figura 94

En los ejemplos anteriores el porcentaje de clasificación resultó ser adecuado, pero en este caso desde los estadísticos básicos , los grupos parecían estar solapados , es decir, no existía una diferencia a "simple vista" suficientemente grande, lo cual quedó demostrado con las pruebas de hipótesis.

En la vida real no siempre se puede aplicar este método para la clasificación de individuos, aunque se tengan los elementos para su uso. En este caso se puede tener errores desde la originación de llenado de la solicitud de crédito hasta problemas con la creación de ciertos campos en la base de datos o inclusive, la captura de la misma.

CONCLUSIONES

El análisis discriminante es una técnica del análisis multivariado que se encarga de clasificar a individuos que provienen de dos o más grupos. Esta técnica necesita dar información precisa de los grupos , es decir, se requiere saber de primera instancia a que grupo pertenecen los individuos, o bien realizar un análisis previo como un cluster (análisis de conglomerados) para saber el número de grupos que se necesite. En algunos casos se tiene información a priori de las probabilidades de pertenencia a un determinado grupo, pero cualquiera que sea el caso es importante decir que aunque existen paquetes estadísticos como SPSS,SAS, CASANDRA, R etcétera que determinan si un individuo pertenece al grupo X, el trabajo de verificar la pertenencia a un grupo a otro se debe validar de acuerdo al interés del investigador y no a un algoritmo del programa. Es por lo anterior que se ha decidido mostrar a CASANDRA como una buena herramienta de cálculo ya que se tiene control total de lo que se pretende analizar.

En el ejemplo de tumor maligno y benigno, se mostró el uso tanto de CASAN-DRA como de SPSS y se puede ver que se llega a datos muy semejantes, la variante aquí es que con SPSS algunas veces es ambiguo el uso de variables originales o variables con cross validated , sin embargo cuando se corrió el proceso con desde CASANDRA con las mismas variables de SPSS se llega a resultados casi iguales. El investigador tiene la facilidad de usar uno u otro paquete pero hay que recordar que SPSS no es un paquete de uso libre. Por otra parte CASANDRA actualmente se encuentra instalado en muchas de las máquinas de la facultad de ciencias y está en constante actualización.

El investigador debe saber qué porcentaje de consistencia de clasificación está dispuesto a soportar. Un porcentaje bajo tiene distintos costos que pueden afectar drásticamente el objetivo del uso del análisis discriminante. Es importante decir que el uso del análisis discriminante no debe ser usado para cualquier problema. Dado un problema se busca un modelo que pueda dar respuesta a lo que se busca.

ANEXO 1 : Análisis de Conglomerados

El objetivo básico en el análisis de conglomerados es descubrir los grupos naturales de los elementos (o variables). Este método puede ser usado para la reducción de datos, y de esta manera se pueden definir agrupaciones inesperadas que sugieran relaciones a ser investigadas. Se debe descubrir primero una escala cuantitativa en el, para medir la asociación (similaridad) entre objetos.

Existen distintos tipos de cluters (conglomerados):

Algoritmos jerárquicos: producen dendogramas y comienzan con el cálculo de distancias de cada objeto con los demás, los grupos son formados por un proceso de aglomeración o división. Los de aglomeración parten de los elementos individuales (comienzan siendo uno solo), los grupos cercanos son gradualmente mezclados hasta que finalmente todos los objetos forman un único grupo. En el algoritmo de la división, todos los objetos comienzan en un grupo (parten del conjunto de elementos total), este grupo se divide en dos grupos y estos a la vez se dividen en dos más y así sucesivamente hasta llegar a los elementos individuales, es decir el número de grupos al final es igual al número de objetos que tenemos.

Métodos clásicos de partición (métodos no jerárquicos): Las técnicas no jerárquicas son diseñadas para agrupar puntos, más que variables, en una colección de K clusters (conglomerados). El número de conglomerados K pueden ser especificados en avances o determinados como partes de un procedimiento de cluster. Debido a que una matriz de distancias (similaridades) no tiene que ser determinada y las bases de datos no tienen que estar almacenadas mientras la computadora está ejecutando, los métodos no jerarquicos pueden ser aplicados a muchos conjuntos de datos grandes que el de los métodos jerarquicos. Los métodos no jerarquicos empiezan de cualquier partición de puntos en grupos o empiezan de un conjunto inicial de puntos semilla (seleccionados previamente) los cuales formaran el núcleo del conglomerado. Una forma de comenzar es seleccionar las semillas de puntos de forma aleatoria de entre los puntos o aleatorizar la partición de puntos en grupos iniciales.

Algoritmos jerárquicos. Los métodos jerárquicos parten de una matriz de distancias o similaridades entre los elementos de la muestra y construyen una jerarquía basada en estas distancias. Si todas las variables son continuas la distancia más utilizada en la distancia euclídea entre las variables estandarizadas univariantemente. La distancia de Mahalanobis, no es muy recomendable ya que la única matriz de covarianzas disponible es la de toda la muestra que puede mostrar unas correlaciones muy distintas a las que existen entre las variables dentro de los grupos. Si no estandarizamos, la distancia euclídea dependerá sobre todo de las variables con valores más grandes. Si estandarizamos, estamos dando a priori un peso semejante

a las variables con independencia de su variablidad original, lo que puede no ser siempre adecuado.

Cuando en la muestra existen variables continuas y atributos el problema se tendrá que abortar con mucho cuidado ya que la variables binarias tomarán valores igual a cero o a uno dependiendo si el atributo esta o no, y al compararlas con variables estandariazadas continuas pueden tener un peso mayor. Para efectos de esta tesis, no se considerarán este tipo de casos ya que se trabajará solo con variables cuantitativas.

Las técnicas jerárquicas de conglomerados proceden de cada una de las series de una unión sucesiva o de una serie de divisiones sucesivas. Los métodos de aglomeración Jerárquica comienzan con objetos individualizados. De esta manera hay tantos conglomerados como objetos (elementos). Los objetos más similares son agrupados primero y estos grupos iniciales son unidos de acuerdo a sus similaridades. Eventualmente, a la vez que las similaridades decrecen, todos los grupos son fusionados en un único conglomerado.

Los métodos de división jerárquica trabajan en forma opuesta. Un solo grupo inicial de objetos es dividido en dos grupos tal que los objetos en un subgrupo estén "lejos de" los objetos en el otro. Estos subgrupos son divididos más adelante en grupos no similares, el proceso continua hasta que son tantos grupos como objetos, es decir hasta que cada objeto forma un grupo.

El resultado de ambos métodos aglomerativos y divisivo pueden mostrarse en la forma de un diagrama de dos dimensiones (dendograma). El dendograma ilustra las uniones o divisiones que han sido hechas en niveles sucesivos.

Los métodos de enlace (linkage methods) son apropiados para conglomerados de elementos, como para variables. Esto no es cierto para todos los procedimientos de aglomeración jerárquica.

La unión simple se da cuando los grupos son fusionados de acuerdo a la distancia entre sus miembros más cercanos. La unión completa (complete linkage) se presenta cuando los grupos son fusionados de acuerdo a la distancia entre sus más lejanos miembros. Para la unión promedio (average linkage) o unión media los grupos son fusionados de acuerdo a la distancia promedio entre las parejas miembros en sus respectivos conjuntos.

Los pasos para aglomeración jerárquica de conglomerados para grupos de N objetos (elementos o variables) son:

(1) Comenzar con N conglomerados, cada uno contiene una sola entidad y una matriz de distancias (similaridades), dada por:

$$D = \{d_{ik}\}$$

(2) Buscar la matriz de distancias para las parejas de conglomerados (clusters) mas cercanos (más similares). La distancia entre los conglomerados y "más similares" es d_{uv}

$$d[C;(UV)] = min(d_{CU}, d_{CV})$$

- (3) Unir los conglomerados U y V. Etiquetar el conglomerado recientemente formado por (UV). Actualizar las entradas de la matriz de distancias de la unión simple borrando los renglones y columnas correspondientes a los conglomerados U y V para la unión completa agregar una columna dando las distancias entre el conglomerado (UV) y los conglomerados que quedan.
- (4) Repetir los pasos 2 y 3 un total de N-1 veces (todos los objetos deben ser un conglomerado simple después de terminar el algoritmo). Registrar la identidad de los conglomerados que son unidos y los niveles (distancias o similaridades) para los cuales las uniones toman lugar.

El método de unión simple (encadenamiento simple o vecino más próximo) tiene el inconveniente de que no puede discernir o identificar conglomerados mal separados.

En el método de la unión completa (encadenamiento completo o vecino mas alejado). La distancia entre los nuevos grupos es la mayor de las distancias entre grupos antes de la fusión.

Este método sigue siendo de la misma manera que el anterior, con la diferencia de que en cada estado, la distancia entre los conglomerados esta determinada por la distancia entre los elementos, uno de cada conglomerado, que son los mas distantes. Por lo tanto la unión completa asegura que todos los puntos en el conglomerado son de distancia máxima (o mínima similitud) uno a otro.

El algoritmo general aglomerativo comienza de nuevo encontrando la mínima entrada en:

$$D = \{d_{ik}\}$$

Y si unimos los correspondientes objetos como U y V, los cuales serán los conglomerados (UV). Para el paso 3 del algoritmo general la distancia entre (UV) y cualquier otro cluster es calculada de la siguiente manera:

$$d_{(UV)W} = max(d_{UW}, d_{VW})$$

Aquí d_{UW} y d_{VW} son distancias entre los miembros del conglomerado U y V respectivamente.

Como ocurre en la unión simple, una "nueva" asignación de distancias que tienen el mismo orden relativo como la distancia inicial no cambiará la configuración de la unión completa.

La unión promedio considera la distancia entre dos conglomerados como el promedio de la distancia entre todos los pares de puntos donde un miembro de una pareja pertenece a cada conglomerado. El método puede ser usado para agrupar objetos (elementos) o variables. El algoritmo de la unión promedio precede en la manera general. Empezamos buscando la matriz de distancias $D = \{d_{ik}\}$ para encontrar los objetos más cercanos por ejemplo U y V. Estos objetos son fusionados para formar el cluster (UV). Por el paso 3 del algoritmo general aglomerativo las distancias (UV) y los otros clusters W son determinados por:

$$d_{(U,V)W} = \frac{\sum_{i} \sum_{k} d_{ik}}{N_{UV} N_{W}}$$

Donde d_{ik} son las distancias entre el objeto i en el cluster UV y el objeto k del cluster

 N_{UV} es el número de puntos (elementos) en el cluster (UV) y

 N_w número de puntos en el cluster W

Algoritmos NO jerárquicos. Dentro de estos algoritmos encontramos al Método de las K – medias, y recibe ese nombre porque hace referencia a que cada cluster tiene un centroide más cercano (media).

Este algoritmo es:

- (1) Particionar los puntos en K conglomerados iniciales.
- (2) Para el conjunto de observaciones, se vuelve a calcular las distancias a los centroides de los clusters y se reasignan a los que estén más próximos. Se vuelven a re-calcular los centroides de los k clusters después de las reasignaciones de los elementos.
- (3) Se repiten los dos pasos anteriores hasta que no se produzca ninguna reasignación, es decir, hasta que los elementos se estabilicen en algún grupo.

ANEXO 2 TABLAS

Pooled Within-Groups Matrices* 15.337 374 2,220 -205 6.316 1,407 386 ±404 39392 2 220 266:275 3941.365 - 043 1.027 1,062 13.787 374,106 11745 -126 583,630 40.524 1940.385 61701.220 - 383 3.220 802 -882 32,338 236.879 8507.E16 837 5,940E-5 1506E-5 191E-6 -010 028 032 002 003 001 2,7846.4 386 268 064 022 5 408 466 002 100 305 2004 856 14625-6 501 200 100 200 3.730 201 4.856E-6 313 501 435 468 9.302E-6 ,001 ,000 206 -042 -043 000 001 133 9.3000-5 -316 .682 5,8636-6 .000 4.855E-F 9.388E-6 4,993E-5 450E-E 001 157 8.5186-6 139E-6 1 627 naz 259 22,366 1,4508-5 .057 5.099 000 11,745 102 442 4.316 13,787 374,105 D44 856 255 2,919 (09 (0) x13 x14 x15 x16 x17 1,974 235 679 003 .023 422 001 2,622 54,301 1927 8.999 88.301 .001 50.900 R597,616 392 350 051 1449 581 441 4928-5 9.302E-E 1227E-6 53188-6 8 500E-0 015 005 506 014 081 5.396E-E ,001 001 001 7.1096-6 .001 200 2003 1 6186-5 000 6.099E-5 2001 9.015E-5 001 .014 .004 181 2.554E-5 000 001 296 300 .000 0% 181 194508 000 pht -002 4379E-6 1.512E-6 6.103E 6 .000 1347E-6 .067 478 425 -003 018 198 2,396E-5 ,000 3.227E-6 2017E-5 311 202 1005 \$52 1,0278-5 5,582E-5 1451E-6 9/531E-6 7.22KE-5 910 000 -004 -070 2.027E-0 1.290E-0 010 3.443E-6 705E-5 6.371 702,452 362 -281 2,998 46.219 .018 71.058 -002 -000 102 103 104 1.402 -293 19,129 5.427 -79.875 - 000 -110 45,123 101 46,690 1376 516 155 496 :097 -.046 5.573 19.439 017 619 4784 356 324 508.881 814.784 95,360 496,352 2.964 7.502 5.306 1,022 57,045 24.259 572.022 10614,559 88193 673 .010 1,411 000 004 007 002 000 8,242E-5 .033 000 2,8546-5 256E.5 127 127 -010 003 055 -1.586 .004 400 -002 -108 -392 7.5498-4 m 374 1,806 /005 202 .911 -007 223 8.844E.6 100 .022 000 000 000 291 8,6258-6 104 4 55364 .018 .001 .191 -081 002 300 .001 100. 343 360 414 001 000 000 9.455E-5 .504 .500 -015 434 25 1031 4,806 200 1.478E-5 132 M15-5 0.65CE-6 1000 995 -145 -077 -012 052 057 240 786 436 486 360 241 245 219 155 594 .054 .491 .569 428 -120 -186 142 803 -252 -015 312 -251 650 .087 .508 433 -578 038 396 7,000 .974 -317 · 375 · 389 406 612 #31 714 482 - 142 -125 -203 -015 094 272 414 690 094 491 491 491 491 105 491 105 491 107 491 491 491 491 -:117 -:184 1 008 384 1,000 468 726 595 388 346 1,000 510 149 139 166 054 222 360 280 128 241 676 664 114 160 363 219 380 614 125 -389 1,000 842 359 462 401 114 458 360 203 679 741 608 254 552 356 029 281 513 1,000 961 - 071 1 000 044 139 500 164 594 ,496 149 532 - 145 578 584 428 .471 -134 569 567 128 978 125 1,000 3800 274 \$30 139 400 344 285 1,000 274 139 386 #12 #12 #13 #14 #15 #16 #17 1.000 1.860 .134 .185 502 127 699 402 590 465 910 227 -288 -012 244 1,000 1,600 ,786 ,715 ,415 245 204 256 412 .163 .284 .165 397 519 DOT x18 x15 x15 x21 x21 x21 3125 -139 -872 691 -387 -851 281 167 464 262 507 #19 538 #11 570 ,143 314 573 101 629 1110 -103 - 111 .314 -327 568 413 238 239 593 787 707 183 918 274 -060 132 432 -094 120 £56 620 431 d4 05 171 ,509 130 -513 577 720 139 118 225 303 -139 .037 253 397 085 571 283 185 304 010 162 27 28 040 .701 .701 507 762 472 -164 083 019 .082 203 - 166 229 225

is. The coverance making has 567 degrees of headow

414	305	156	307	mit.	305	- 60	101		63	44	45	45	107	10		-01
53.862	002	.000	.001	990	601	200	#875	:790	45.690	85476k	.015	-859	400	- 114	- 1004	- 25
6,216	dist	506	- 585	000	901	200	.628	18325	4776	95360	-0.0	800	554	-419	-418	-00
31(196	011	.014	504	219	013	504	46219	540	116.437	1491.002	-010	365	350	281	-,191	-18
are from	328	(83)	288	161	-194	286	792.412	-31.0%	4716.294	88111873	-1411	-1 586	2,596	1894	-1.5%	-145
615	10060	53HE6	LOWEA	233760	23964	911/E-6	-314	1811	-505	-452	/005	881	/901	910	201	9.751E
210	27986-5	.001	/011	000	(000	8.4016-6	.48	-2011	219	2.166	(001	204	005	301	2001	- 30
100	14054	[00]	311	100	(950	5347E-0	.057	-200	495	7.902	991	204	1017	966	101	01
486	93695-6	206	592	CHIES	3227E-5	232/E6	.013	-855	:324	5.50%	.091	801	.002	.001	301	\$224E
.000	1,7270.4	Cto	931	4,1798-0	(00)	22240-5	-315	-,010	-651	-1,022	991	861	:001	101	.001	.00
-807	45HE4	7.1966	9400E4	1.91SE 6	2107E-6	1.290E-5	-019	-800	-581	356	12051	201	.001	14055-5	200	HASSE
6250	800	001	913	100	001	100	.361	-112	2,57.5	55,046	040	-500	1001	301	-862	- 21
2319	001	.062	1933	001	012	500	-291	1,402	1.778	-24299	900	106	-007	1354	:004	00
54361	100	000	(0.54	504	1005	2001	2591	+819	19-627	272,509	-901	204	.023	216	-386	-31
148351	2015	201	.181	864	. 652	210	T9:054	15.125	566.381	19514.539	ant.	-190	207	319	1438	-31
215	3,506-0	121000	289404	63000	12076.4	34056	-813	200	-0117	-228	23546-5	-0.046-e	-8.8465-6	-04930-6	-0.878E-0	1000
.901	131964	000	000	69196-6	5,9826-5	3.7092.6	012	801	ma-	760	429664	201	907	808	800	-04
363	21046-5	000	001	,000	72198-3	9.8626-6	:+0f1	-807	1004	287	12006-8	310	.901	.004	DOS	.50
254	4.2606-4	6408-6	633	3.196-5	16026-5	8.474E-6	110	.004	.014	353	4.02E-I	860	001	500	440964	1,000%
160	12226-6	6.602E-6	27me4	13125-0	11456-5	0.2185-6	-015	-304	-027	406	-1.874E-4	6.858.5	7.1985.6	1.3746-1	.000	1.1990
810	14004	3,73190-0	134214	6.4NE-6	1,0000-6	63716-6	-981	660	-005	-121	13ME4	200	.000	2,6739-4	1.290E-6	27106
72.666	.007	-D60	-001	001	-005	1001	9.293	.155	12.770	1541.014	-012	.013	.nm	366	-024	- 01
155,122	000	001	-011	100	-004	000	133	29.145	1627	37.003	005	866	2886	-001	310	- 21
\$38,381	-017	£10	028	Din	-027	-,006	62.776	1,527	437,796	7724,606	-072	353	.7%	412	-,318	. 67
10614.589	-228	- 160	037	151	-495	1329	1141 914	37.663	7754.505	149657.364	-1.504	412	7.055	6.188	-3.400	160
.110	2,1640.6	A216E-6	12495-8	0.0266	1,6140,6	83346-6	-012	.106	-072	-1.904	.000	861	.001	886	.000	. 56
-210	7,00004	CD1	911	031	8 2530-5	000	013	200	357	415	031	215	817	565	.004	n
213	4,5446.4	000	917	100	7.1966-5	000	.962	166	756	7.099	001	217	.029	406	.009	- 00
309	9.00004	000	000	000	-1374E-5	2472E-0	455	-001	432	6.169	000	200	003	000	100	60
-454	9.418E-0	500	000	1.023E-6	.000	12906.5	-024	516	1113	-3.405	000	204	201	661	503	- 00
192	0.0000.0	450	200	1.1816-6	3,1996-4	27960	-014	JOS.	-074	-1,699	.003	860	.002	966	.000	68
567	203	-012	014	126	100	1166	933	190	929	873	- 333	- 602	098	310	1296	- 11
842	.038	Cer	343	-007	,012	.024	.953	355	,058	Dist	-118	244	.040	-012	062	-81
A02	-224	012	961	170	-115	+095	371	161	934	872	-267	881	147	40.	-197	-31
100	-199	007	941	129	-094	-107	928	-166	921	916	-274	-860	089	371	-236	333
264	363	246	174	275	210	200	-331	-154	-072	-2008	773	346	283	788	209	43
190	219	716	540	544	.291	574	.542	-,634	247	:132	402	790	.701	791	350	41
302	200	829	741	800	254	252	325	-325	413	339	210	195	107	737	183	42
802	127	4/6	397	519	169	314	573	-,111	932	560	.229	410	907	747	.090	11
	201	260	291	300	A79	325	-518	-372	-067	-102	316	365	304	200	100	337
204 200	NG.	500	415	370	.345	601	-307	.161	-314	155	393	178	472	316	ATA	31
336	248	241	237	370	297	224	529	-186	538	505	133	-572	810	MI	- 1308	12
	.394	240	214	258	412	201	-347	464	154	1113	977	100	-504	191	197	- 14
.129 .510	227	219	275	434	395	242	507	-273	552	571	-538	220	.00	325	-191	-31
	150	116	143	251	.145	101	629	-879	618	720	139	-565	3552	259	-201	-25
1,000	T090	374	m	201	414	439	-284	-150	-296	-1100	379	415	-079	-210	-200	10
114	319	1,000	799	715	415	819	-334	211	652	204	122	106	829	401	.179	34
110	107.37	.716	1 AC 10 7 P.	715	9142	354	-817	410	047	261	4/9	£9	585	A10	366	9
.165	291		1,000	250.00	303	1000			121		813	386	401	307	-632	2
261	391	716	191	1,000	286	636	872	-123	3,775	000	B	1000000	1,010,016		1.05.50	19
.766	A14	415	322	346	1.000	871	-765	.064	-169	-196	-0211	176	.000	-547	211	1 5
.561	405	815	734	636	301	1,000	5386	1864	-301	-188	352	429	434	211	1777.272	
129	1294	-018	-897	172	195	- 166	1.000	309	994	.000	194	80	381	847	(120	- 2
-373	-097	D11	-316	-125	-594	1044	209	1,000	.013	287	.041	325	756	-000	.053	1
A56	-201	012	947	134	-198	130	984	.815	1.000	364	165	.533-	218	315	1,566	19
725	-396	-638	913	160	-355	318	394	311	954	1,000	-,363	200	736	389	-25%	
-319	379	450	679	865	-011	150	194	561	1995	1,943	1001	.406	363	360	.366	- 5
-840	-300	854	-421	265	1079	ADR	831	317	535	208	.436	1.506	301	877	542	
357	-319	625	A81	A10	963	439	.331	.900	218	315	361	129	1,009	791	389	
238	-091	431	411	102	-341	253	447	-805	-575	309	381	327	.124	1996	311	1 3
-20%	1000	179	195	- 757	431	167	-131	813	-,105	-156	281	859	377	391	1,860	1 1
-300	130	546	390	207	086	600	-211	:165	1395	-246	3911	188	805	385	440	10

Learner	. 1	. so	1294	40	207.309	-05+	-	- a-	4	-	377	X2.	-02	457	44	elance March	100
	#17	3.170	1294	20,905			204	207	252	-516	- 60G	-006	-596	991	X (80	-080	1 3
	40	26.005	10905	135,415	100 MGA 100 MG TG F	1699	-894 054	-504	- 369	-067	-662 -656	-3/4	9.744	394	32,361	-020	1 6
		917766-	45953	1920297	10001000	-367	237	533	362	-794	-477	-140	44.600	1,274	*19:000	-227	
	2	1004	017	1600	1007	200	200	300	18736-6	200	Smet c	500	.000	2000	969	1.7398-6	5.352
	4	004	000	(054	,207	000	881	.001	200	366	960	001	3000	610	004	3.557E-0	1
	9	667	4004	1076	500	900	1997	-002	200	366	2000	.004	000	.041	663	1,7866.6	1 3
	-	616	995	001	960 - 20a	99726-5 099	994	268	1.0316-5	0.004E-E.	3:3076/6 7:0146/6	.000 .001	000	2006	804	1.3476-4	1
	40	-800	1990	1936	- 677	54966	201	100	32678-6	7 61145-6	4.000E-0.	500	201	501	-160	110050	die
	MAL.	-006	- 043	-044	1,549	000	801	601	905	361	000	493	1007	side	907	244	1
	41E	1996	1100	-9:101	44.129	1.004	300	102	946	169	.004	2067	367	166	3.664	- 491	1 0
	MED.	1001	306	467	1,674	7,000	216	251	204	3906	001	469	-146	286	C065	261	
	MTT.	6.160	6.391	36,761	416690	009	264	261	163	394	1000	507	1,854	1.000	78.207	\$400E4	
	utf uts	-000	900	-9400 -9411	-262	17995-6	111111	17665-5	33475-6	23470-6	1.9400.0	A00	604	501	100	1 Sect 4	15
	W15	-100	2000	1000	-6%	4.546-5	001	.601	200	000	.000	.001	400	000	000	19166-0	L.J
	XTE	100	900	1006	910	2.4256-6	793	500	4.4396-6	A ADREC	Y BOSC C	-000	601	.000	ose	3.200E-4	749
	×96	-905	000	-6506	-,200	1,8236-6	13145-4	8.029E-6	-2,3645-6	7,2564-4	13096.6	-000	ote	nee.	D94	1,0416.4	3.40
	ser	5001	000	-607	-1996	6/8576-41	3 9396-5	8 DE3E-6	TANKE E	2.0016-6	1.6400-0-	000	,400	001	.007	X 8336-4	14107
	407	2447	1,000	22,901	259.052	1000	417	.006	111	-017	-007	.004	1.584	500 273	4,002	-566	
	477	25.500	20.197	2017 104 600	25.00t	-859	274	-505	211	-012	1904	000	1,600	1.107	43.643	-202	
	404	J90/104	17301	1007,000	21474.756	-800	314	642	1.004	960	-000	760	24.004	9.040	967973	- 214	
	400	100	014	.064	606	3000	999	500	3278E-4	ocu	8 900E 6	.noe-	1000	-001	ots	3.062614	2.00
	424	801	005	240	1,490	-000	692	2001	801	.000	000	.000	-000	819	1013	31,71040.4	1000
	407	109	100%	2011	2,210	.000	911	.00%	801	.001	.000	-000	1,004	615	006	3.251E4	
	424	1007	-016	491	1 5666	.000	001	-861	395	,006	AMMEN	1.0005.6	- 00%	1009	199	7 SAME.8	133
	425	1017	1014	1060	- 857	000	201	100	4.386E-6	001, 6305E-6	6,6720 6 1 0000 6	. 000 TARRES	1006	1900	000	3.00xE7	4.96
_	101	19.266	1,290	10.042	-1 fay fail	1006	829	.116	874	5.300E-6	150056	.TARREST.	.073	5.142	136,104	1353419	-
	40	1200	15290	9.142	148.007	-007	924	519	802	-005	-000	.000	566	9.742	111,004	200	1
	40	48.691	9142	attage	P096-613	-014	291	810	341	- 000	-066	4.952	Ass	24.060	944.979	265	1
	wit .	1767,167	KAKDRY.	7936,410	100378-068	-890	3.285	13.612	4.564	822	7.007	eX-060	9,740	P43.566	17076228	564	100
	+8	-506	.007	3014	.eti)	/000	201	861	300	.006	7.178E h	.0101	700	004	ate:	1.14(6.6	586
	+6	0.00	907	-3016	5.300	,000	891	.003	201	1001	,000	.006	-,004	(46	724	1.104E-0	
	47	1110	.000	996	tsets	/905	0.03	204	807	001	(90) Taspés	0.1	1007	(90.0	1347	1,0000.0	
	10	3074	.000 ether	.040	820	909	991	598	801	2001	000	1007	1000	010	563	3.14HE.E.	
	173	-009	-000	-955	11,000	Y 3 F8E 45	221	.000	7.5326-5	200	a reed at	000	000	600	- Dem	2.675.0	100
	411	ren	090	4.900	67 (80)	.001	931	212	397	.001	800	.119	044	660	25.234	266	138
	410	010	det	Yes	9(149)	-011	004	.562	893	,000	1001	-044	198	409	6.879	.001	1
	eff.	5140	(Next	36,963	-133.665	7004		.799	580	016	.000	860	406	4.067	142.000	860	
	414	736 104	11260	967,076	17096.222	gns.	724	2.147	1,197	283	. Ne	20.094	3,374	147.05/9	\$794.465	507	
	+10		(9(9)	(66)	.046 7007	1.1406.6 6.6496.6	1765-0	9.348E-8	1.901E-6	6.7486-R	14990.6	900	001 004	015	2007	4.368E-4	230
	417	.016	3877	122	1.007	990	997	807	100	200	KANDE D	500	2004	1922	2004	17616-8	1
	+28	004	401	0000	458	1.3846-5	201	.000	9.257E-5	42566.5	0.0075 6	501	.001	1007	710	0.071E-0	6.76
	419	0019	1002	1000	124	5.38 m. 6	5911	.000	THREE	066	2:RMS-0	500	600	Doe-	116	9.1925.6	900
	129	.000	3001	100	(526)	1,30,85-6	7.3145-5	7,9498.5	23816-8	230963	1.0006.6	.000	.000	.001		2,8216-6	6.74
	481	12 (40)	2,040	100 720	1400000	-094	341	349	160	3007	.011	.376	1.106	6.698	169,066	-881	
	+2.0	1.548	£17,000°	-Yo.776	1800,475	-000	282	3,758	-318 293	(000	1000	- 500	361	10,000	1290.144	-591 -596	
	427 424	1757,004	75-200 266-307	17616300	9024 905 26000 773	-998	1,281	12.574	12,585	-1.842	-0.600	161,006	-12.861	199,130	21005.470	-101	
	423	-1005	7002	17070-2700	2.700	.000	201	201	205	ree	1850	-001	200	-80	-240	12796.6	8.00
	101	-069	2007	1788	4,777	-001	317	257	200	762	100	-006	- 5000	- 601	-750	14556-0	100
	ADP.	048	3076	2808	5.192	.005	907	.839	.883	2005	.001	.500	200	2016	5007	1.4216.9	
	129	- 667	(000)	A40	5577	-000	.792	.101	967	.061	.000	2006	-200	.005	790	723967	
	1075	201	1929	-1876-	7.497	.000	(992)	-291	188	(001	350	1000	-004	1057	1,000	0.2015-0	
_	elit.	-006 12,415	4.000	1159	1224.463	,000	221	.197	1.1516-0	214	100	-500	.199	4.004	117 568	-2 1461.6	-
	45	4,000	19,900	34,640	1224.465 485.954	-911	554 534	194	172	008	100	320	917	2,440	25.541	4.041E-0	1
	0	65,467	38.690	700-640	6408.772	(673	715	1382	100	152	-046	3,000	1.000	24,658	503,495	-579	1
	48	1224749	405.094	9439,752	123943.564	1.476	11.231	78265	11242	1466	-78	75.695	-12867	0.073(0)	12008350	- 99	10
	10	time	-4011	-811		- 000	311	261	.190	.000	5,8015-5	1961	.001	NON	756	1,6998.9	8.00
	48	254	Jes	715	8,205	.090	331	3114	360	201	800	907	361	000	1000	2.141E-1	
	40	112	.194 Jan	1367	11245	.001	. 234 962	300	397 292	200	43750.0	.019 .008	ines	2006	1216	3300E-6	1
	-0	000	200	722	1,400	.000	383	261	207	201	8.2000 A	200	166	017	216	1.5425-0	1
	-m	-006	1952	-595	-793	5.9075-5	311	.00	45736-3	\$288E-6	4 3000 0	21067	ilet	861	-529	X.621E-6	tar
	483	084	399	+401	71,400	-800	317	294	306	.002	4.1796.7	3117	3070	586	12,000	200	1
	-652	-116	367	-6.163	-12107	,000	391	.000	340	/62	001	310	304	249	1.000	891	
	200	4304	2845	34.055	511.010	100	1,030	2238	1219	279	-629	12,000	2.600	+ 1000 en 242	2019.432	291	
	A115	117,966	55.591 6.5955.5	R23-493	12008.510	1.4046.5	1.000	2,3596-1	12006-0	17425.6	-825 8-5255-6	12,000	2800	66-545	200 F.A.72	1011E	100
	ett.	013	0.5410-0	100	1390	60336-0	21100-1	2,70961	12335-0	.000	111mg.6	200	.000	607	216	180000	1
	,e17	1461	965	361	2,206	1000	317	552	202	069	201903	Josh.	-001	120	376	2.4316.9	
	40	806	7004	.061	acte	3.8000.5	201	100	100	6.0538.8-	1.4000-0	.001	301	.007	210	\$365E4	100
	401	-000	1000	1,0100	-211	23346-0	191	866	3,0000-0	.000	20145 5	.061	7000	1004	168	1,0048-0	5.04
	.621	000	1001	- 000	-019	1.0300-6	7.0990-0	SAME C	28435-6	5-3110 h S	12960-6	.000	.000	001	915	3.200E/A	199
	(421	15,514	7300	115-898	1101301	1,013	437	285	195	.505	-000	458	-236	6.813	116.022	-069	
	407	6.433	24,710	45-25A PN2-33M	11347.706	1000	381	1254	372	,015	-860	530	1,507	2,410	54340 1703400	-091	1
	(04	114286 1649.227	041,295	1902-329 12095-146	16341.750	1.600	13303	32.682	17.867	2.709	-09	110,562	-08.130	887.750	21015211	-267	1
			200	1200,00	300	1,900	331	30.862	17.867	2766	8,1400-0	. 112,002	300	000	336	2 1146.0	100
		4000															
	421	819 229	Jane		21.647	306	687	200	304	.000	001	678	-200	198	2.627	13 KETE-5	
	421			1342	21 667 57 654	301 301	587 339	868 815	304 308	990, 990,	.001 (30)	673 669	200	198	3 666	13.025E-7 13.026-7	
	421 (01	229	Sanc	1.742													

 $\rho_{\rm c}$ This Model constraints in the field despects of Seedon.

	\$786 -004 -004 -007 000 -006 -001 3.447 -344 23.58 262.514 -6/1 821 822 827 -011															
205					100	920	-91			124		10%	40		105	
3,391	-265	-,004	-007	900	-000	000	-200	30.167	23,156	17.831	-,011	- 865	-233	-815	-011 -014	-009
35.751	-020	-011	-000	905	-054	-007	22,000	-2.611	154,902	1567.540	.064	210	245	205	1096	-042
ATD DOC	-222	-266	-455	into-	-200	- 096	358.062	-26.501	1740,704	21424.756	1.624	1,000	220	5308	3857	- 399
000	17246-5	1,0526-6	a 1006-5	24236-6	1,8236-5	\$ 657E-6	-005	-016	-607	-430	160	999	999	990	.000	61006-5
064	5.687E-6	.000	3001	000	1.0546-5	£300E-5	.005	018	2074	314	.000	592	999	301	,000	900
991	1,7866.5	.001	001	.000	4.0006-6	8.563E-S	900	-3006	100	642	660	583	945	901	000	
063	1547E-E	.000	900	6,4596-6	-2:364E-6	1,4665-5	015	-,018	1000	1,006	9.2735-5	591	861	300	5,9656.5	7.1996-6
480	2:387E-E	,000	.000	1.4566-5	7,2056-5	2,0036-5	-011	-013	- 066	- 668	.000	501	993	300	201	9.3036-6 7.0096-6
- bbg 660	11456-5	6.9436-0	000	1.8536-5	1.0000-5	1.4425-6	-,007	- 564 564	- 042 D40	-67a 762	6.885E-5	561	993	4.404E-5 4.497E-5	8.4726.6	1,0006-6
1464	001	002	903	2001	000	000	- 384	1,866	-2.664	41.016	505	-209	-209	- 005	1005	000
5,695	001	606	000	902	.002	001	068	071	1.167	4.048		311	0.13	300	1002	.001
78.207	003	.038	965		ote	060	4.662	258	41.842	847.671	- 631	813	939	939	-096	une.
000	9-367E-4	1494F-6	19540-6	6,9666-6	1,0016-6	3.8125-6	-004	008	1022	-264	2.550E-5	47045-6	425-54	-1.5905-5	-0.586E/7	1,3235-6
056	1.60cF-5	1000	1000	1.2286-6	3.4666-6	4.004E-5	-004	100	-000	-491	2.6586-5	341	893	990	A.700E-6	.000
.066	1.6168-6	000	001	,000	6.8796-6	7.1406-5	-,607	-000	-569	- Sep	3.8776-6	202	954	901	000	000
0016	25526-4	72066-6	900	9,2696-6	10966-6	1.174E-6	4,2386-5	-,000	506	-1006	1.568E-6	200	.000	990	8.4996-7	8.1486-5
016	1,001E-5	3.4896-5	5.5796.6	1.0366-5	4,000E-5	7.6726-6	006	-500	- 042	-812	1.122E-6	4.1995-5	rs 1146-6	44926-5	8,9776-6	84406-6
6.652	1.6126-6	4.0145-5	7.5006-6	1,1146-6 4,2386-6	7,679E-6 -006	6.6336.4	1,002	,500 540	26.406	122 056	7.004E-4	501 202	999	3.5396-5	3.7826-6	27966-6
256	266	.005	-002	-003	-000	000	140	30 164	161	922 538	-667	292	929	997	.000	-002
43.647	-522	-007	-3020	005	-042	-006	28,406	191	162,862	2165.668	- 554	342	469	289	- 029	1,039
462,671	-584	237	- 900	-006	-612	122	392 196	1074	2765.666	26765.426	- 848	2.387	3345	2.885	-702	-819
-083	7.842E E	2.6666.6	38066	1.9885.6	1.1296-6	1.0946-6	-010	.662	266	644	800	381	291	390	-000	000
017	4.789E-4	.001	000	.000	6.190E-6	1000	.052	.013	38.7	2.897	861	248	611	392	- 001	.001
006	-2.251E-6	900	004	2000	6114E6	600	.042	tox	466	9.35%	601	211	829	393	3002	.001
000	1.688E-6	.000	.001	000	60886-6	2.5886.6	008	.007	.258	2.686	699	312	934	991	900	2000
066	S 184E-7	4.794E-S	900	940667	RBOYER	1,7826-4	1000	.006	-009	262	.000	201	997	900	002	000
016	12296-6	.000	.000	5,1466-6	8.4406.6	17866-6	-007	-000		-816	.00%	361	895	900	/000	. 000
136,104	.000	,006 ,009	,014 ,009	.004	-001	.000	12,649	13.864	16,346	1712.684 286.537	623	245	979	a97	-094	.026
944 979	200	.009	722	385	016	.001	86.726	15:384	583,586	288.337 11616.352	126	181	599	40	-,078	,012 714
17035.222	544	807	1.862	458	124	.001	1450,505	163.419	5924 593	200822779	2.388	4222	5.152	0.572	7,437	2,904
070	1.1426.8	6.8466.6	000	1.3896-6	1.280E-6	12006-8	.004	2008	.066	496	800	201	991	300	(900	000
724	3.768E-8	.001	3001	200	2000	7.514E-6	041	.006	467	5.588	861	247	937	002	602	.001
2,147	1.540E 0	.001	.001	.000		7.9456.9	140	000	1.186	19.074	591	595	910	443	901	.001
1.167	1,861E-8	.006	3999	6.007E-9	9,0896.6	2,5616.9	.668	-076	201	12,665	660	252	991	805	900	8.853E-6
.683	1.148E-6.	.000	900	4350E-5	2000	2,5096.9	-507	.009	. 313	1.142	200	242	992	891	/991	.000
066	187554	7,6586-6	6.8996.6	0.3675.6	1,866.6	1.0826-6	-013	000	.064	7.431	600	891	861	-890	,000	.000
29.254	500	1001	.003	001	2001	900	528	396	6.847	181 224	1,001	-255	1995	3934	-996	-,002
5,374	.061	.004	504	.001	0001	500	-108	.901	246	12.881	000	-205	-999	1992	+094	.000
147,066 3764 466	562	915	.025	007	006	001	6,830	-1.918	70.556	366.155	571	1887	938	416	-/03/5	-3011
2754 466	4.955E-6	2000E-6	37418.6	same a	9.1908-6	2 821E-e	185,068	-41,076 -201	1292,144	37585.479	12766-8	1.4035-6	1.4216-0	7.2105.7	1.038	2 mass in
226	2.300E-8	500	,002	6.3625-5	9.000E-6	3 Tage &	560	2004	262	128	4.5526-8	242	192	500	.000	,000
364	3.7416-5	1000	999	8.660E-5	000	3.166E-2	.008	.nee	116	1.048	4.678E-5	002	992	300	7000	.000
112	8.878E-6	6.380E-6	8,000000	3.04KE-5	2.8836-0	5.6636-6	.008	.066	.034	413	-5 STEE-6	200	997	9.9236-5	-2.998E-5	4.2916-T
112	9.152E-8	9.000E-8	.000	2,5898.5	3000	8.8176.6	-,008		-,003	474	4.550E-4	399	252	6.496E-5	.006	1.7996-8
019	2,5216-8	3.1826.5	3LtoseE-o	6.6638-6	5,8178.6	4.1685-6	.000	3.7388-5	100	-119	1545E-5	351	999	2.8998-5	2,8275.6	2,6686.6
165.006	567	000	.008	803	-000	.006	18,240	34%	124.716	2525,218	-517	218	895	391	-052	-3025
41,076	-561	8004	-005	-005	-007	-7.738E-8	346	29,537	3,752	191,078	825	218	384	999	2016	.024
1352,144	-568	129	1.040	834 413	-505	-001	124,158	8:182	887,716	17194.256	- 694	301	1.191	723	-267	-130
27665,476	12768-8	8.050E-8	6,000	-0.9198-6	-6.030E-6	1.043E-6	2626.218	181 578 505	17104,256	857565,422 -2.661	-2.961 560	-2,835 942	83.299 992	12,270	7,991	-5.356 .000
-768	-1,4036-6	5002	.002	000	000	000	-010	258	384	2.002	500	823	126	.995	.008	1003
667	1,4218-5	200	002	200	200	000	056	184	1.751	12,230	202	226	-322	.994	.006	003
Jee	72198-7	1900	3000	9.3236-0	6,4868-6	2,8966.8	.093	.000	723	12,270	200	202	328	992	.001	.000
-1,086	-1.5068-5	000	.000	4.0085-5	.000	2,6275-6	082	.544	-267	7361	501	205	300	991	.006	.001
-324	-2,6468-6	,000	.000	4.2916-7	1,7996.5	2.5846-5	-,525	.024	-532	-3.238	500	.093	933	290	7001	.000
117.968	062	013	.021	908	-003	000	16.514	6.453	114.258	1688,227	910	223	387	172	.036	,000
50.541	8.541E-5	615	019	004	000	001	7.329	24.110	51,746	841284	500	158	279	685	/928	3009
823.453 12658.518	-515 -175	1,340	2206	.061 .606	-016 -211	000 010	113388	49 256 82 1,825	762,326 11341,706	13526 146 100192 588	584 597	7.742	2.859 37.534	1,232	2,126	,022 ,024
158	14648.5	8,0038.6	2.206	3,3008.5	2.334E-5	1 050B.e	837,521	521,825 263	11341.700	150192.588	500	20,817	37.534	96,702	2.126	.000
1.056	2.14195.5	100	901	200	000	7.0000 A	137	561	1047	18.333	861	397	222	503	992	300
2,250	2.355E-5	001	002	900	500	5.478E-0	265	1147	1364	50.862	891	200	935	.995	902	2001
1201	122254	,000	1001	000	3,0585-6	1,545E-c	.158	bre	1.116	17.867	800	294	991	.882	(001	.900
270	15425-5	.000	000	6.6538-6	3000	9.407E-8	003	015	255	2,784	200	592	992		(001	7900
-00%	1.591b-6	TOTRE-5	9.5196.6	1.4666-5	2.0146-6	1.2866-8	-500	-060	.046	-532	8.141E-5	.891	- 991	8,5975-5	,000	9.7845-S
12,006	560	.002	,000	.001	,001	,000	358	332	6.706	118.882	,501	213	922	819	.002	,000
2.800	261	002	003	001	7102	000	-296	1,367	-1.895	-26.130	200	-308	-193	+994	-004	.000
86.292	201	.515	022	001	3004	601	6,615	2.400	48.066	841,166	,000	389	172	. 674	014	3003
2069.452	ROISE &	232	372 24998-5	6.0000-6	1.0098-6	0.55 5.565E-6	166,525	84,946	1183.606	21515.071	130 2.1365.0	2.827 -2.825E-6	3,055	1.699	1.09AE-0	
010 232	1,6106.5	1.6108.6	2,4398.5	6.085E-6 6.222E-5	5.8438-5	3.806E-6	015	.001 .016	163	2.003	T 2588-7	-2,625E-6	-1652E-5	2-30135-5 200 200	1,994E-8	5,50006-6
372	2.438E-5	.000	900	8,2236-6	1.7216-6	5,8700-6	016	010	226	1 237	7.290E-1	992	992	991	2007	,000
137	8-045E-E	6,2225-8	,900	3.8078-5	1.5056-6	5,9716-6	011	2003	762	1,250	7.554E-5	293	991	992	5.4690.5	3.4026.5
060	1,0000.5	5.843E-6	T.7218-6	1,8896-5	5,6336-6	8.073E-6	-005	-504	-009	-519	-2.368B-4	7 9378-4	0.4618-0	-14538-5	,000	1.1666-0
015	3.3858-6	3.806E-5	5,8100.6	Barries	5.0736-0	7.000E-6	2000	-silven-s	4,688.5	-034	1.5315-5	200	303	0.7405-5	1.8195-6	28885-5
186,522	-003	.016	027	011	-005	.005	23,360	16.550	161,367	2767.854	.024	362	579	290	.073	.000
54,940	+661	.016	.019	003	-004	-8-196E-6	10,602	37,776	75.454	1210.246	931	349	472	145	.089	.024
1183,680	-602	157	.230	.007	-,029	4.0000-5	161.567	75.404	1125:131	16762.876	163	2,739	4.135	1.003	560	2004
176.81033	-311	2.033	31231	1.202	-510	034	2797.864	1216.246	(6762,675	324197395	2,219	39.253	94,338	27.572	7.507	.019
.130	2.154E-5	92986-5	900	3,0340.6	-2.3000-6	1,0010-5	024	7,000	180	2.710	.001	592	392	. 991	.001	.000
2.027	-2.6252-8	.002	.002	.000	7.6078-6	500	382	340	2,750	30.283	961	525	929	998	.000	.002
3,685	3.682E-5	.002	3904	001	6,4016-5	.000	.579	472	4,338	64.508	562	252	954	812	.007	.005
1.600	-2,013E-S	2001	901	.000	4.6536-5	2.7438-6	256	148	1,503	27,570	,001	.508	0.12	934	.002	100
209	-1,0546.5	2000	.000	5.4636-5	000	5.3916.1	073	,040	566	7.367	.100	204	997	002	304	1001
	5-560E-6	.000	.000	5.4626-5-	1.1665-5	2,8086-6	,006	1024	7064	466	866	992	1993	90.5	,001	.000

figura A_2

Bibliografía

- (1) ANDERSON,T.W (1984). AN INTRODUCTION TO MULTIVARIATE ANALYSIS. NEW YORK WILEY
- (2) EVERIT, B.S Y DUNN, G(2001). APPLIED MULTIVARIANTE DATA ANALYSIS EDWARD ARNOLD, LONDON.
- (3) FAHRMEIR, LUDWING J.(2004). MULTIVARIATE STATISTICAL METHODS. CHAPMAN & HALL/CRD.
- (4) FLORES, J GIIL (2001). ANÁLISIS DISCRIMINANTE CUADERNOS DE ESTADÍSTICA. HESPÉRIDES.
- (5) HAIR, J.F. ANDERSON, R.E., (1999). ANÁLISIS MULTIVARIANTE. PRENTICE-HALL, MADRID .
- (6) HUBERTY, C.J. (1994). APPLIED DISCRIMINANT ANALYSIS. WILEY. INTERSCIENCE.
- (7) JIMENEZ ,E.URIEL.(1995). ANALISIS DE DATOS:SERIES TEMPORALES Y ANÁLISIS MULTIVARIANTE. AC, MADRID.
- (8) JOHNSON RICHARD A.& WICHERN DEAN (1998). APPLIEDMULTIVARIATE STATISTICAL ANALYSIS. PRENTICE-HALL
- (9) JOHNSON,D.E.(2000). MÉTODOS MULTIVARIADOS APLICADOS AL ANÁLISIS DE DATOS. INTERNATIONAL THOMSON EDI
- (10) MARDIA, K.V. (1995). MULTIVARIATE ANALYSIS. ACADEMIC PRESS.
- (11) PEÑA,D(2002).ANÁLISIS DE DATOS MULTIVARIANTES. MCGRAW-HILL.
- (12) TINSLEY HOWARD E. A.. HANDBOOK OF APPLIED MULTIVARIATE STATISTICS AND MATHEMATICAL MODELING.
- (13) VICENTE Y OLIVA (1999). ANÁLISIS MULTIVARIANTE PARA LAS CIENCIAS SOCIALES. DYKINSON,S.L
- (14) http://portal.acm.org/citation.cfm?id=1273633.
- (15) http://www.ucm.es/info/socivmyt/paginas/ D_departamento/materiales/
- (16) http://www.ugr.es/~bioestad/_private/cpfund8.pdf.
- (17) http://www.ugr.es/~bioestad/_private/cpfund8.pdf.
- (18) http://www.seh-lelha.org/clasifica.htm#STEPWISE
- (19) http://www.uam.es/personal_pdi/economicas/rmc/documentos/cluster.PDF
- (20) http://www.psychstat.missouristate.edu/multibook/mlt03.htm
- (21) http://www.dtreg.com/lda.htm
- (22) http://www.ece.osu.edu/~aleix/pami06.pdf
- (23) http://www2.uca.es/serv/ai/formacion/spss/ Imprimir/21conglk.pdf

BIBLIOGRAFÍA 80

- (24) http://es.geocities.com/r_vaquerizo/Manual_R11.htm
- (25) http://www.emis.de/journals/RCE/V30/ v30n2a06PardoDelCampo.pdf
- (26) http://halweb.uc3m.es/esp/Personal/personas/jmmarin/esp/AMult/tema5am.pdf
- (27) http://marketing.byu.edu/htmlpages/tutorials/discriminant.htm
- (28) http://portal.acm.org/citation.cfm?id=1273633
- (29) http://www.ucm.es/info/socivmyt/paginas/ D departamento/materiales
- (30) http://www.ugr.es/~bioestad/ private/cpfund8.pdf
- (31) http://www.ugr.es/~bioestad/ private/cpfund8.pdf
- (32) http://www.seh-lelha.org/clasifica.htm#STEPWISE
- (33) http://www.uam.es/personal_pdi/economicas/rmc/documentos/cluster.PDF
- (34) http://www.psychstat.missouristate.edu/multibook/mlt03.htm
- (35) http://www.dtreg.com/lda.htm
- (36) http://www.ece.osu.edu/~aleix/pami06.pdf
- (37) http://zonecours.hec.ca/documents/200589. AnalyseDiscriminante.ppt #257,2, Qu'est-ce qu'une analyse discriminante?
- (38) http://geo.polymtl.ca/~marcotte/glq3402/chapitre5.pdf
- (39) http://www.aiaccess.net/French/Glossaires/GlosMod/f_gm_analyse_discriminante.htm
- (40) http://halweb.uc3m.es/esp/Personal/personas/jmmarin/esp/AMult/tema6am.pdf
- (41) http://www.pilando.com/categorias/administracion/ASIG.5%5B1%5D.doc.