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Abstract

In recent years, theneed for a better understanding andmorespecific applications
in Biology, has lead to a synergy between theoretical and experimental Biology and
Systems Theory. This relatively new application field is called Systems Biology. In a
clinical context, this fusion intends to provide a systematic guideline for unveili ng the
core mechanisms of several diseases. In the present work, the dynamical study of the
mathematical model of the Extrinsic andIntrinsic ApoptosisPathways isperformed in
order to provide a better characterization of the pathways. It is important to remark
that malfunction of thiscellular processhasbeen involved with neurodegenerativedis-
easesandcancer.
In order to identify the most important reactions in the pathway andto determine the
role of each one, a descentralized controller scheme is identified and analyzed in both
pathways and a bifurcation analysis is performed to the Extrinsic Apoptosis Pathway
and finally the robustnessof the stabilit y and performancein the linearization of both
pathways is studied.



Acronymsand notation

EXAP Extrinsic ApoptosisPathway
INAP Intrinsic ApoptosisPatway
CARP Cellular ApoptosisRegulatory Protein
IAP Inhibitor of ApoptosisProtein
SSV(µ−1) Structural Singular Value
LFT Linear Fractional Transformation
[X ] Concentration of X

[E : S] Concentration of E binded to S
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Chapter 1

Introduction

In this sectionthe conceptsof SystemsBiologyandcell death processesareintroduced.
In Chapter 2, the dynamical models which reproduce the reactions dynamics in two
different apoptosispathwaysare presented. Chapter 3 shows the steady state analysis
and decentralized structureof thesystems. Then, in Chapter 4 thequalitativebehavior
of the system is explained via a bifurcation diagram and, finally, the robustnessof the
stabilit y and performanceindexesare analyzed in Chapter 5.

1.1 Systemsbiology concept

The idea of understanding the phenomena present in a living being is not new. In
the late 1940’s, Norbert Wiener in his bookCybernetics proposed the motifs present
in the living beings as a benchmark for human-made designs. Althoughin this ap-
proach some mechanisms present in the living beings are studied and understood, the
main goal is to apply this knowledge to the human-made designs rather than provide
a holistic understanding of the living being. In 1944, Schrödinger posed the question:
Can the phenomena present in the living matter be explained with the current physi-
cal knowledge?Or are they explained with a new physical law? (Schrödinger, 1944).
Certainly, the hypothesesposed in order to answer the previousquestions involved yet
undeveloped experimental work. Recent technological developmentshave provided a
means for testing some of these hypotheses and to obtain meaningful answers. How-
ever the technical availabilit y of experimental equipment and the expertise in its use,
is just one part for getting information of process occurring in a cell , for example.
A sound biochemical knowledge of the phenomenon itself and a systematic way for
testing the hypotheses have to be available, i.e., the biological knowledge can claim
how the mechanism of a certain phenomenon happensand a systematic approach pro-
vides the guideline for accepting or refusing this claim. With the identification of the
structureof DNA by Watson andCrick (Watson andCrick, 1953), the basis for under-
standinga cellular processasawell defined mechanism was set in motion. Sincethen,
the development in both the experimental and theoretical Molecular Biology has fur-
thered the understanding. As yearswent by, a wide variety of processes, ranging from
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thecellular division to the evolution of viruses, havebeen studied.
A further step is to abstract this biological knowledge into a set of dynamical and

algebraic equations. In the remaining of this thesis, the term ’model’ will refer to this
set of equations. After this model has been experimentally validated, it can be used
to explore cell behavior in computational experiments (in sili co analysis) and further
analytical studies can be performed to infer some dynamical properties. This last step
ismain the themeof this thesis.

The disciplines of Biology and Systems Theory can lead to a better biological un-
derstanding of cellular dynamics. In turn Systems Theory findsnew challengeswhich
will l ead to afurther development of thetheory. Some examplesof the collaboration of
these areascan befoundin the termsComputational PhysiologyandSystemsBiology.
This later term was first used by Kitano, who states: “Systems biology is a new field
of Biology that aims to develop a system-level understanding of biological systems.
System level understanding requires a set of principles and methodologies that links
the behaviors of molecules to system characteristics and functions. Ultimately, cells,
organisms, and human beings will be described and understood at the system level
grounded on aconsistent framework of knowledge that is underpinned by the basic
principlesof physics” (Kitano, 2001).

In contrast to Kitano, other authors define it as a synergy of different disciplines
rather than a pureBiological area. “ [ ...]Systemsbiology is the coordinated study of bi-
ological systemsby (1) investigatingthe componentsof cellular networksandtheir in-
teractions, (2) applying experimental high-throughput andwhole-genome techniques,
and (3) integrating computational methods with experimental efforts. [ ...] Systems
biology comprises experimentation andcomputational modeling. To this end, it inte-
grates approaches from diverse areas of science such as biology, chemistry, physics,
mathematics, applied science, engineering, cybernetics, andcomputer science. By de-
manding new strategies, it also stimulates their further development andcontributesto
new solutions.[ ...] “ (Klippet al., 2005)

Recently, the methods of Control Engineering have been used to provide this sys-
tematic insight, for providinga better understanding of a certain biological processes.
In (Wellstead et al., 2008) and (Sontag, 2005) a statement of Biological problemsand
the potential of applying a Systems Theory approach to them are presented in Engi-
neeringterms.

1.2 Cell death signalli ng

In general, cell death is a processas important as the cell division itself, sinceits fun-
damental aim is to keep tissuehealthy andfunctioningcorrectly viatheremoval of old,
damaged or unhealthycells. This isawell studied phenomenonwhich hasattracted the
attention of researchers from different fields. In the last decade, thestudy of themech-
anism in which a cell dieshasbeen divided into three categories(Lockshin and Zakeri,
2004): autophagy, apoptosisand necrosis.

• Autophagy
The term autophagy is derived from Greek roots: auto, meaning ’self’, and
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phagy, ’to eat’. I t is a well -known physiological process involved in routine
turnover of cells constituents. In thisprocessa specific membrane in the cytosol
engulfs the organelle to be removed and it is digested by lysosomal enzymes.
Figure 1.1 shows the relationship of this type of cell death with the outcome of
a cell: althoughautophagy mostly allows cells to adapt to stress, massive au-
tophagy can also lead to cell death. This Figure also shows the existence of a
competitive scheme between this processof adaptation and a well known cell
death processcalled apoptosis.

Figure1.1: Qualitative interactionamongautophagy andapoptosis (Imagetaken from
Lockshin and Zakeri 2004)

• Apoptosis
The term apoptosis has also Greek roots: apo which means ’off’ and ptosis,
’f alli ng’, thus apoptosis resembles leaves falli ng of a tree. It is a programmed
cell death based onthe activation of caspases. TheCaspases(Cysteine-ASPartic
Acid proteaASES) are a family of proteolytic acids which cleaves after asparte
residues in substrateproteins. There exist two typeof caspases:

– Initiator caspases
They are caspasesactivated in response to a specific triggeringevent.

∗ Caspase 8: is activated via the death-receptor ligands in the outer
membraneof the cell .

∗ Caspase9: isactivewhen bounded to aspecial protein called Apopto-
some.

∗ Caspase 2: isactivated when DNA damagehasbeen encountered.

– Effector caspases
They are activated via the initiator caspases. This subtype of caspases in-
clude theCaspases3, 6 and 7.

In the caseof apoptosis, Caspase3 is the caspasethat exertsthemost representa-
tive effect in the cell dismantling. It can be activated byeither Caspase8 or Cas-
pase 9, the extrinsic or intrinsic apoptosis pathway. The activation of caspases
is present in a wide variety of processes: from virus propagation (Wurzer et al.,
2003) to bloodclottingandwound healing(Rai et al., 2005) and, as stated above,
the coremechanism of apoptosis.
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When the apoptosis mechanism is not triggered correctly, the natural cell cy-
cle is disrupted. When apoptosis is underactivated the survival of cancer cells
can be promoted. On the other hand, the over activation of the mechanism can
kill healthy cells: in the nervous system the death of a kind of cells has been
implicated in Parkinson’sdisease.

In recent years, thedevelopmentsin theoptoelectronic industry havemade avail -
ablepowerful automated microscopeswhich can givemeaningful informationto
the experimental biologists. In the cellular level, imaging via ionized dyes is
the ad hoc media for recovering qualitative data from a wet experiment. See
(Paul et al., 2008), for example.

• Necrosis
This term includes all the phenomena not included in the above foregoingcon-
cepts (Lockshin and Zakeri, 2004). Since it can be caused by a wide variety of
reasons, the actual classification isnot straightforward andliesbeyondthescope
of this informal introduction.

1.3 Outline of the thesis

This thesis is focused onthestudy of thedynamicsof two apoptosispathways: theEx-
trinsic Apoptosis Pathway (EXAP) (Eissing, 2007) and the Intrinsic Apoptosis Path-
way (INAP) (Rehm et al., 2006). The main aim of this study is to provide abetter
insight in the pathway and to classify the reactions according to their relevancein the
structural bistabilit y andsensitivity of the local stabilit y and local performance. Given
the complexity of the networks, no dynamical properties could be obtained and just
a numerical characterization was carried out. In previous works (Eissing, 2007) and
(Carotenuto et al., 2007) a Monte Carlo analysis and a one and two parameter bifur-
cation analysis are performed in order to identify the set of parameters that lead to a
bistablescenario, respectively. In thiswork, aoneparameter bifurcationanalysisisper-
formed in order to determine the possible behaviorsof the network and the feasibilit y
to reach them.

In the next Chapter, the dynamical modelswhich reproducethe reaction dynamics
in the two different apoptosis pathways are presented. In Chapter 3 a methodology
for identifyingthestructureof themodel ispresented andasteady state analysis isper-
formed, whichcharacterizesthebistablebehavior of themodel of theEXAP. InChapter
4 thecharacterization of thebistableproperty of theEXAP model ispresented. Finally
in Chapter 5, robust stabilit y and performanceindexesare computed for both apoptosis
pathways. To concludethisChapter, a list of the main contributions ispresented.

1.4 Main contr ibutions

• A proportional derivative control mechanism is identified arising from aparticu-
lar reaction diagram
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• A bifurcationanalysis is performed for the Extrinsic ApoptosisPathway model,
identifying some of the possible behaviors of the network. In this regard, a ro-
bustnessindex isevaluated in termsof the impact of thevariation of oneparam-
eter in thestructural bistabilit y property of thenetwork

• The sensitivity of the models analyzed is performed via the Structural Singular
Value

5



Chapter 2

Apoptosis models

This Chapter presents an overview of two Apoptosis Pathways as deterministic dynam-
ical systems. Both models are build upon the knowledge of the interaction among the
reactants present in each pathway. Both, the INAP and EXAP model, reproduce accu-
rately the concentration of the compounds involved in each mechanism. Remarkably,
the model of the EXAP has the interesting dynamical property of bistability.

2.1 Introduction

Onceidentified the chemical species interacting in a reaction network, a reaction dia-
gram can be established (e.g. A + B −−→ C). From this reaction diagram, the assig-
nation of a suitable reaction mechanism leads to a set of differential equations: the
mathematical model of the reaction network. When a nominal set of parameters is se-
lected for the model, quantitative analyses can be performed in order to determine the
particular characteristicsof thesystem: fixed pointsandstabilit y, for instance. A more
general analysis can be done in disregard of any numerical assignation to the parame-
ters. The results of this later analysis are the propertiesof the reaction network, rather
than the propertiesof a particular reaction. Consider for example thenext reactions:

0
k1−−⇀↽−−
k2

A
k3−−⇀↽−−
k4

B

Thedynamical model with the election of massactionreactionmechanism(seeSection
2.2.2 ) is:

˙[A] = k1 − (k2 + k3)[A] + k4[B]

˙[B] = k3[A] − k4[B] (2.1)

Its fixed point is:

( ¯[A], ¯[B]
)

=

(

k1

k2

,
k1k3

k2k4

)
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Ascan beseen fromthe expressionabovethefixed point isuniquefor any definition
of k1, k2, k3, k4. Thestabilit y analysisof thesystem (2.1) concludesthat thefixed point
will be stable if all the constants are positive. That is to say that the global stabilit y is
a property of the network. Neverthelessthe location of a fixed point of interest is a
characteristic of a specific system with specific constants.

Theidentification of thepropertiesof anetwork can bein general very complicated.
However, if it isachieved, aqualitative characterization of thebehavior of thenetwork
can be inferred. In Chapter 3, the identification of the structure of the two apoptosis
modelsarepresented anda further steady state analysis isperformed to find properties
of thenetwork.

The next subsection presents some basic definitions and an informal overview of
the cell death mechanisms.

2.2 Fundamentals

In comparison to traditional engineering systems, biological systems present a wider
variety of scales in both time and size in a single phenomenon. Moreover, the com-
plexity of the biological systems make them cumbersome at a first glimpse and in
particular cases difficult to analyze. Another important differenceis that dynamic test
and measurement are widely present in engineering design. However, the real-time
data acquisition of a cellular processis, in general, a technical challenge.

Despite these difficulties, the principle of biological phenomena can be explained
on a chemical basis. Some of these concepts are introduced in the following subsec-
tions. First aprotein degradationmechanism, then two reactionsmechanismandfinally
general models for reaction networkswill bepresented.

2.2.1 Protein degradation

Most of the proteins that are degraded within the cell (in the cytosol) are delivered to
large protein complexes called proteasomes, which are dispersed throughout the cell .
Each proteasome consist of a central cylinder formed from multiple distinct proteases
and acts on proteins that have been specifically marked for destruction by the attach-
ment or a protein (ubiquitin) (Albertset al., 2002). In general this is themechanism in
which a cleaved protein is degraded. In the case of apoptosis, this mechanism plays a
very important role, since, oncethe pool of activated caspase has cleaved a protein, a
final degradation has to bemade to totally removeunwanted proteins.

It isimportant to remark that morewaysof protein degradation havebeen identified,
but for the scope of the present work the knowledge of the mechanism presented will
besufficient to make aplausiblepresentation of the topic.

2.2.2 Reaction Mechanisms

• MassactionPrinciple
TheMassActionPrinciplestatesthat thereactionrateisproportional to theprob-
abilit y of the reactant S1 to meet S2. In turn, this probabilit y is proportional to

8



the concentration of the reactants to the power of the molecularity. Let R be a
reaction from n reactants tom products:

∑n

i=1
diSi

υ
−→

∑m

j=1
hjPj

where di and hj are the stoichiometric constants of the reactants Si and the
productsPj . Then theMassactionPrinciplestates that :

v α

n
∏

i=1

[Si]
di

v = k

n
∏

i=1

[Si]
di

Theproportionality constant k is defined by:

k(T ) = Ae−
Ea
RT

where:

A Arrheniusconstant Reaction dependent
Ea ActivationEnergy Reaction dependent [KJ ]
R Universal GasConstant 8.314x10−3[ kJ

molK
]

T Absolute temperature [K]

In the rest of this work, the dependenceof k on the temperaturewill be consid-
ered to benegligible.

In general, thevelocity v of reaction is therateof “vanishing” of thereactantsSi

and of “creation” of theproductsPj . Stated in mathematical terms,

d

dt
Si = −v

d

dt
Pj = v

• Catalyzed Reactions
Catalyzed reactions are performed in several steps and in the presenceof a cat-
alyzingagent, whoserole is to modify the activationenergy of the reaction. The
basic schemeof this typeor reactions is:

S+ E
k+
−−⇀↽−−
k
−

E: S
kp

−→ P+ E

where E stands for the enzyme, S for the substrate, E:S is the complex enzyme-
substrate and P, the product. Under the assumption that the total amount of
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enzyme (E:S + E) remains constant in time, the velocity of reaction from the
substrate to theproduct yields:

− rs =
k+kp[E][S]

k+[S] + k− + kp

Normally, thisequation is referred to as theMichaelis-Menten equation.

Catalyzed reactionsexhibit awide variety of behaviorsdepending onthedetails
of themechanism involved, for instance, it can either accelerateor slowdown the
rate in which theproduct isbeing formed (Klippet al., 2005).

2.2.3 Model of a reaction network

In general, the set of differential equations that arise from a reaction network is
nonlinear and hence can exhibit awiderangeof behaviors, such asmultistabilit y
or oscill atory responses for certain rangesof theparameters.

In general, let thisnonlinear system bedescribed by

d

dt
S = f(S(t),p) S(0) = S0

whereS is avector containingthe concentrationsof all thespecies involved and
p is a vector of parameters.

Due to the structure of a reaction network, the foregoing differential equation
has a well defined structure defined by the reaction diagram. The information
contained in thisdiagramcan besynthesizedthelinear mapg : v ∈ Re −−→ d

dt
S:

d

dt
S = N(p)v(S)

where N is a matrix whose ij − th element is the stoichiometrical coefficient
of the i − th compoundin the j − th reaction. As a convention the sign of this
element is positive if the compoundis a product and negative if it is a substrate.
This matrix is usually referred to as the stoichiometric matrix. v stands for the
velocity rateof each reaction. Note that the fact that the concentrationsare non-
negative, cannot be considered in thisapproach.

The informationcontained in thestoichiometric matrix is thelinear combination
of reactions that, althoughthey have anon-zero value, the product Nv∗ equals
zero -if v∗ ∈ ker(N)- and lead to a stationary state in the concentration of the
reactants.

Also in thisapproach, a further reduction of themodel can be achieved provided
the matrix N is not full rank, since some of the concentrations will be just a
linear combination of the linear independent ones.

Another modeling approach is presented in (Feinberg, 1979). In these notes,
the term ’specie’ is used to refer to every chemical compoundtaking part in the
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reaction network andtheterm ’complex’ iseach oneof theterm appearingthe at
headsand tailsof the reactionarrow. For instancethe reaction

2A + 3A: B −−→ 5A + 3B

has thespeciesA, A:B andB andthe complexes2A + 3A:B and 5A + 3B.

With this in mind, a linear map h : [ψ(S)] −−→ d
dt

S can be established:

d

dt
S = YAk[ψ(S)]

where Y is the molecularity matrix, whose ij − th entry is the is the stoichio-
metric coefficient of the i − th specie in the j − th complex, ψ(S) is a vector
whose components are the reaction functions of the species involved in every
entry. Where:

Ak[ψ(S)] =

n
∑

i=1

ψi(S)
∑

j∈Ii

kij(εj − εi)

εij =

{

1 if i = j

0 otherwise

whereψi(S) denotesthe i− th component of ψ(S).

Themain advantageof thismodelingapproach is that it hasagraphical interpre-
tation: each one of the species can be regarded as a node in a graph and each
reaction as an edge. This approach is further exploited by Horn, Jackson and
Feinberg (seefor example, (Feinberg, 1979)), where the propertiesof the graph
are explored in order to determine the qualitative behavior of the model. Re-
cently, Otero-Muras (Otero-Muraset al., 2009) has used this approach to find
theset of parameterswhere thenetwork exhibitsmultistablebehavior. Themain
drawback of the methodis that strongconditions on the graph have to be com-
plied.

2.3 Apoptosis models

In this section two different pathways and their respective models will be presented.
First a general model resembling the activation of an effector caspase is introduced.
Note that this simple reaction mechanism is present in both apoptosis pathways. A
simplified explanation of themechanism isgiven for each of thepathwaysandamath-
ematical model ispresented.

2.3.1 Core reactions

Thebasic interaction of caspases is represented by the followingset of reactions:

11



Ka + C
α
−→ Ca + Ka

Ca + K
β
−→ Ka + Ca

where C is the initiator caspase and K is the effector caspase. The subindex a
represents the activated version of each caspase.

The Figures 2.1-2.3 show threedifferent caspase activation mechanisms. In these
Figures, the reactants are in the tails of the arrows and the products, at the heads. The
interaction of two or more reactants occur when two arrows are meeting. As can be
seen in Figure 2.1, there is a positive feedback of mutual activating elements. Hence,
once asingle molecule of Ca is present, the whole pool of the effector caspase will
be activated and the cell will eventually die. Althoughthis model represents the basic
activation of caspases, it fails to recover the robust decision in the actual process. This
property of robustnessis important, since asignificant concentration of active caspase
3 can irreversibly cleave important proteins for the cell survival.

Themathematical model of this reaction network is:










˙[C]
˙[Ca]
˙[K]
˙[Ka]











=









−1 0
1 0
0 −1
0 1









(

α[C][Ka]
β[Ca][K]

)

Note that the rank of thestoichiometric matrix is two. Hencetwo of the concentra-
tionsare linearly dependent, for example choose [C] and [K]. Note that:

− ˙[Ca] = ˙[C] − ˙[Ka] = ˙[K]

Integratingwith respect to the time:

[C] = [Ca]0 + [C]0 − [Ca] [K] = [Ka]0 + [K]0 − [Ka] (2.2)

Together with the equations in (2.2) the two following ODEs fully describe the
system:

˙[Ca] = α[C][Ka]

˙[Ka] = β[Ca][K]

In Figure 2.4 the dynamics of the model above are presented. Note that only 15
minutes are necessary to convert the whole pool of the initiator caspase C into the
activated effector caspaseKa. It is also remarkable that a relatively small i nitial con-
centration is enoughto activate themechanism.

2.3.2 Extrinsic Apoptosis Pathway (EXAP)

Thesimplified schemeof theprocessis shown in the right column of Figure2.5.
Thereactionsare :
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C Ca

KKa

β

α

Figure2.1: Basic interaction of caspases

C Ca

β

α

KKa

Ik Ik : K

IcIc : C

Figure2.2: Simplified diagram of theEXAP

KK Ka
c

b

d

a

Ca Cp

Figure2.3: Simplified diagram of the INAP (inhibitorsandactivatorsnot shown)
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Figure 2.4: Trajectories of the states of the basic caspase interaction. The magni-
tudeof the concentrationshavebeen normalized using the following factors [C]max =
1300000, [Ca]max = 2600000, [K]max = 42000, [Ka]max = 21000.
Theparametersused in thesimulationareα = 5.8 × 10−5 andβ = 10−5.
The initial conditionsare:
x0 = [[C]0, [Ca]0, [K]0, [Ka]0] = [130000, 150, 21000, 0]

C8a + C3

k1−→ C3a + C8a C3a + C8

k2−→ C8a + C3a

C3a + IAP
k3−−−⇀↽−−−
km3

IAP : C3a C3a + IAP
k4−→ C3a

C8a
k5−→ 0 C3a

k6−→ 0

IAP : C3a
k7−→ 0 IAP

k8−−−⇀↽−−−
km8

0

C8

k9−−−⇀↽−−−
km9

0 C3

k10−−−⇀↽−−−
km10

0

C8a + CARP
k11−−−⇀↽−−−
km11

CARP : C8a CARP
k12−−−⇀↽−−−
km12

0

CARP : C8a
k13−−→ 0

Asa convention, the reaction to/from zero will beunderstoodasan efflux/influx of
asubstance. It can be thought of the inputsand outputs in an open reactor.

In thispathway theinitiator caspaseisCaspase8andthe effector caspaseisCaspase
3. CARP (Cellular ApoptosisRegulatory Protein ) represents the inhibitor of C8a; and
IAP (Inhibitor of ApoptosisProtein ), the inhibitor of C3a.

In Figure 2.2 note that defining C = C8, Ca = C8a, K = C3, Ka = C3a, the core
caspase activationmechanism ispresent in thispathway.

This model considers an initial concentration of the activated initiator caspase
present ([C8a] 6= 0), these molecules of C8a can either be degraded via its inhibitor
or can activate the effector caspaseC3. In turn, theC3a can be either degraded by its
inhibitor or can activate the initiator caspaseC8. Both IAP and CARP, inhibit the ac-
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Cell Death
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Figure2.5: ApoptosisPathwaysSchematic

tivated version of the correspondingcaspase when it bonds to the activated site of the
caspase, avoidinga further reaction.

Incomparisonto thefour statesmodel, thismodel hasa closer behavior to the actual
process, since the presenceof a small concentration of the activated initiator caspase
does not mean the outcome of the cell i s death. Clearly, this is due to the presenceof
the inhibitors, since they can degrade the activated version of the respective caspase
and hencemake the cell i mmune to a certain concentration of the activated caspases.
However, the pool of the inhibitorscan be consumed more rapidly than its generation,
thus the pool of the inhibitor eventually run out and the respective caspase will be
eventually activated. It is clear that for such an important decisionfor the cell to reach,
themechanism has to bevery precisely activated.

Thedynamical model haseight statesand nineteen parameters. It isbuild uponthe
MassActionPrinciple, and the equationsread as follows:

˙[C8] = −k2[C3a][C8] − k9[C8] + km9

˙[C8a] = k2[C3a][C8] − k5[C8a] − k11[C8a][CARP ] + km11[CARP : C8a]

˙[C3] = −k1[C8a][C3] − k10[C3] + km10

˙[C3a] = k1[C8a][C3] − k6[C3a] − k3[C3a][IAP ] + km3[IAP : C3a]

˙[IAP ] = km3[IAP : C3a] − k8[IAP ] + km8 − (k3 + k4)[C3a][IAP ]

˙[IAP : C3a] = −(km3 + k7)[IAP : C3a] + k3[C3a][IAP ]

˙[CARP ] = km11[CARP : C8a] − k12[CARP ] + km12 − k11[C8a][CARP ]

˙[CARP : C8a] = −(km11 + k13)[CARP : C8a] + k11[C8a][CARP ]

Thenominal parameters(Eissing, 2007) arepresented in Table2.1.
The phase portrait of this model with nominal parameters has threefixed points,

two of them arestable nodesand one isa saddle (Bullinger, 2005) and (Dunne, 2008).
Moreover, with the nominal selection of parameters the system doesnot seem to have
any strange dynamics -chaos or limit cycles- and seems to present only two global
attractors: one of them has a low concentration of C3a and the other one ahigh con-
centration of C3a. In thenext sections, thesefixed pointswill bereferred to asthe’ li fe’

15



Table2.1: Nominal parameters for theEXAP. *Mo = Molecules

Name Value Units Name Value Units

k1 5.8 x 10−5 [Mo−1 min−1] k10 3.9 x 10−3 [min−1]
k2 10−5 [Mo−1 min−1] k11 5 x 10−4 [Mo−1 min−1]
k3 5 x 10−4 [Mo−1 min−1] k12 10−3 [min−1]
k4 3 x 10−4 [Mo−1 min−1] k13 1.16x10−2 [min−1]
k5 5.8 x 10−3 [min−1] km3 0.21 [min−1]
k6 5.8 x 10−3 [min−1] km8 464 [ Mo

min
]

k7 1.73x 10−2 [min−1] km9 507 [ Mo
min

]
k8 1.16x 10−2 [min−1] km10 81.9 [ Mo

min
]

k9 3.9x 10−3 [min−1] km11 0.21 [min−1]
km12 40 [ Mo

min
]
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Figure2.6: Trajectoriesof thestatesof theEXAP. Themagnitudeof the concentrations
have been normalized to the maximum value of each of the concentrations present.
[C8]max = 1300000, [C8a]max = 89890.3, [C3]max = 21000, [C3a]max = 10683.9,
[IAP ]max = 40000, [IAP : C3a]max = 48267, [CARP ]max = 40000 , [CARP :
C8a]max = 24647.2.
The parameters used in the simulation are the nominal and the initial conditions
are: x0 = [[C8]0, [C8a]0, [C3]0, [C3a]0, [IAP ]0, [IAP : C3a]0, [CARP ]0, [CARP :
C8a]0] = [130000, 1000, 21000, 0, 40000, 0, 40000, 0]

and ’death’ fixed point, respectively.
It is important to note that the fixed point with a high level of C3a does not have a
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real biological meaning because once ahigh concentration of C3a is reached, the cell
will start to dismantle itself and themodel isnot longer valid. Neverthelessthismodel
recoversthe capacity of the cell to remain alivedespite thepresenceof relatively small
amountsof theinitiator caspaseC8a. Thenominal dynamicsof themodel arepresented
in Figure 2.6. Note that once the pools of the inhibitors have been consumed, the
activation of caspases is almost immediately. As a matter of fact oncethe mechanism
is activated, the dynamics are similar to the dynamics of the four states model (see
Figure 2.4 on page 14). Note also that the time that the inhibitors take to degrade
translates into a delay in the triggering of themechanism.

2.3.3 Intrinsic Apoptosis Pathway (INAP)

The contents of this section are based on(Rehm et al., 2006). In the recent years the
research in the INAP hasbeen very fruitful andactive. In the left column of Figure2.5
on page 15 a simplified diagram of the activation mechanism of this pathway is pre-
sented. Note that the name of thispathway relieson the origin of the triggeringsignal
of themechanism. A moredetailed explanation of theprocessispresented below.

The mitochondria are one of the organelles of the eukariotic cells which regulate
several processes of the cell and carry out the important oxidation of foodmolecules
(Albertset al., 2002). In the INAP, the activation of the effector caspases is triggered
by an input signal to the mitochondria and the subsequent release of proteins which
promote apoptosis. The release of cytochrome c (cyt-c) triggers the formation of the
apoptosome, amultiproteincomplex whoseboundwith Caspase9 activatesthe effector
Caspases 3 and 7 . As in the EXAP, the presence of inhibitors (IAP) counteract the
activation of the caspases. However, the mitochondria also releases an activator of
the process, whose role is the inhibition of IAP, promoting the final activation of the
effector caspases. This activator is referred in the literature as Smacor DIABLO. The
formation of the apoptosomeisalso regulated by theBIR.

The basic interaction of Caspases for this model is presented in Figure 2.3 and the
wholeset of equationscan besplited as follows.

Thebasic interaction of caspases in thispathway is represented by the reactions:
C9a + C3

k5
−−→ C9a + C3a

C9a + C3a
k6
−−→ C9p + C3a

C9p + C3

k7
−−→ C9p + C3a

C3 + C3a
k8
−−→ 2C3a

Note from Figure 2.3 and the aforementioned reactions that the basic interaction of
caspaseshasbeen modeled to present autoactivation of C3a.

The reactionsof XIAP and the caspasesare:
C3a + XIAP

k9
−−→ XIAP : C3a

XIAP : C3a
k10
−−→ C3a + XIAP

C3a + XIAP : C9a
k11
−−→ XIAP : C9aC3a

XIAP : C9aC3a
k12
−−→ C3a + XIAP : C9a

C3a + XIAPp2frag
k13
−−→ XIAPp2frag : C3a

XIAPp2frag : C3a
k14
−−→ C3a + XIAPp2frag

C3a + XIAP
k17
−−→ Bir12 + Bir3R + C3a
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C3a + XIAP : C9a
k18
−−→ Bir12 + Bir3R : C9a + C3a

C3a + XIAP : C3a
k19
−−→ Bir3R + Bir12 : C3a + C3a

C3a + XIAPp2frag
k20
−−→ C3a + Bir12 + Bir3Rp2frag

C3a + XIAPp2frag : C3a
k21
−−→ C3a + Bir12 : C3a + Bir3Rp2frag

C3a + XIAP : C9aC3a
k22
−−→ C3a + Bir12 : C3a + Bir3R : C9a

C3a + XIAP : 2Smac
k23
−−→ C3a + Bir12 : Smac + Bir3R : Smac

C3a + XIAP : C9aC3a
k24
−−→ C3a + C9p + XIAPp2frag : C3a

C3a + XIAP : C9a
k25
−−→ C3a + C9p + XIAPp2frag

C3a + Bir3R : C9a
k26
−−→ C3a + Bir3Rp2frag + C9p

C9a + XIAP
k27
−−→ XIAP : C9a

XIAP : C9a
k28
−−→ C9a + XIAP

C9a + XIAP : C3a
k29
−−→ XIAP : C9a : C3a

XIAP : C9a : C3a
k30
−−→ C9a + XIAP : C3a

XIAPp2frag
k34
−−→ XIAP

XIAP + 2Smac
k35
−−→ XIAP : 2Smac

XIAP : 2Smac
k36
−−→ XIAP + 2Smac

XIAP : C9a + 2Smac
k37
−−→ XIAP : 2Smac + C9a

XIAP : 2Smac + C9a
k38
−−→ XIAP : C9a + 2Smac

XIAP : C3a + 2Smac
k39
−−→ XIAP : 2Smac + C3a

XIAP2Smac + C3a
k40
−−→ XIAP : C3a + 2Smac

XIAP : C9a : C3a + 2Smac
k41
−−→ XIAP : 2Smac + C3a + C9p

XIAP : 2Smac + C3a + C9p
k42
−−→ XIAP : C9a : C3a + 2Smac

XIAPp2frag + 2Smac
k51
−−→ XIAPp2frag : 2Smac

XIAPp2frag : 2Smac
k52
−−→ XIAPp2frag + 2Smac

Theregulationeffect of theBIR is represented by the reactions:
C3a + Bir12

k15
−−→ Bir12 : C3a

Bir12 : C3a
k16
−−→ C3a + Bir12

C9a + Bir3R
k31
−−→ Bir3R : C9a

Bir3R : C9a
k32
−−→ C9a + Bir3R

Bir3Rp2frag
k33
−−→ Bir3R

Bir12 + Smac
k43
−−→ Bir12 : Smac

Bir12 : Smac
k44
−−→ Bir12 + Smac

Bir3R + Smac
k45
−−→ Bir3R : Smac

Bir3R : Smac
k46
−−→ Bir3R + Smac

Bir12 : C3a + Smac
k47
−−→ Bir12 : Smac + C3a

Bir12 : Smac + C3a
k48
−−→ Bir12 : C3a + Smac

Bir3R : C9a + Smac
k49
−−→ Bir3R : Smac + C9a

Bir3R : Smac + C9a
k50
−−→ Bir3R : C9a + Smac

The influx and degradation of thedifferent reactants, with:
C3

k1
−−→ 0

0
k2
−−→ C3

XIAP
k3
−−→ 0

0
k4
−−→ XIAP
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Figure2.7: Trajectories
of the states of the INAP.
The magnitude of the
concentrations have been
normalized according
with the next factors:
[C3], [C3a] → 0.12;
[C9P ], [C9a], [Apotosome] →
0.03 and [Smac] → 0.126
The parameters used in
the simulation are the
nominal and the initial
conditions are all zero
except for [C3]0 = 0.12
and [IAP ]0 = 0.0603.

C9p
k53
−−→ 0

C9a
k54
−−→ 0

C3a
k55
−−→ 0

XIAP : C3a
k56
−−→ 0

XIAP : C9aC3a
k57
−−→ 0

XIAP : C9a
k58
−−→ 0

XIAPp2frag
k59
−−→ 0

XIAPp2frag : C3a
k60
−−→ 0

XIAPp2frag : 2Smac
k61
−−→ 0

XIAP : 2Smac
k62
−−→ 0

Bir12
k63
−−→ 0

Bir3R
k64
−−→ 0

Bir1 : 2Smac
k65
−−→ 0

Bir3R : Smac
k66
−−→ 0

Bir12 : C3a
k67
−−→ 0

Bir3R : C9a
k68
−−→ 0

Bir3Rp2frag
k69
−−→ 0

Smac
k70
−−→ 0

Thereactionspresentedabovereproducetheprocessfrom thereleaseof cyt-c to the
final activation of the effector caspase. The set of ODEs that represents the model is
presented in Appendix B and the nominal parametersare shown in Table 2.2. Finally,
Figure2.7 shows someof the trajectoriesof the relevant states.
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Table2.2: Nominal parameters for the INAP

Name Value Units Name Value Units

k1 0.0039 [min−1] k36 0.133 [min−1]
k2 k1C3ini [µM−1min−1] k37 420 [µM−2min−1]
k3 0.0116 [min−1] k38 156 [µM−1min−1]
k4 k3XIAPinit [µM−1min−1] k39 420 [µM−2min−1]
k5 6 [µM−1min−1] k40 156 [µM−1min−1]
k6 12 [µM−1min−1] k41 0 -
k7 48 [µM−1min−1] k42 0 -
k8 2.4 [µM−1min−1] k43 4.45 [µM−1min−1]
k9 156 [µM−1min−1] k44 31.9 [min−1]
k10 0.1440 [min−1] k45 0.33 [µM−1min−1]
k11 0 - k46 14.2 [min−1]
k12 0 - k47 4.45 [µM−1min−1]
k13 0 - k48 156 [µM−1min−1]
k14 0 - k49 0.3300 [µM−1min−1]
k15 156 [µM−1min−1] k50 156 [µM−1min−1]
k16 0.1440 [min−1] k51 420 [µM−2min−1]
k17 12 [µM−1min−1] k52 156 [µM−1min−1]
k18 12 [µM−1min−1] k53 0.0058 [min−1]
k19 12 [µM−1min−1] k54 0.0058 [min−1]
k20 12 [µM−1min−1] k55 0.0058 [min−1]
k21 12 [µM−1min−1] k56 0.0347 [min−1]
k22 12 [µM−1min−1] k57 0.0347 [min−1]
k23 12 [µM−1min−1] k58 0.0347 [min−1]
k24 12 [µM−1min−1] k59 0.0058 [min−1]
k25 12 [µM−1min−1] k60 0.0347 [min−1]
k26 12 [µM−1min−1] k61 0.0347 [min−1]
k27 156 [µM−1min−1] k62 0.0347 [min−1]
k28 0.1440 [min−1] k63 0.0058 [min−1]
k29 0 - k64 0.0347 [min−1]
k30 0 - k65 0.0058 [min−1]
k31 156 [µM−1min−1] k66 0.0347 [min−1]
k32 0.1440 [min−1] k67 0.0058 [min−1]
k33 0 - k68 0.0058 [min−1]
k34 0 - k69 0.0347 [min−1]
k35 420 [µM−2min−1] k70 0.0058 [min−1]
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Chapter 3

Steady StateAnalysis and
Structure Identification

Introduction

In general, dynamic models of cellular signalli ng pathways are complex and tightly
regulated. Thenetwork of reactionspresent in a pathway can be interpreted as a chain
of reactionsendowed with regulators. Asa result, every reactioncan influencethe rest
of thenetwork at the appropriatetime andamount. In thiswork, based onadeterminis-
tic representation of the pathway, a methodologyfor a systematic approach to identify
the building blocks of the network is presented, as a technique for coping with the
complexity of the network. A further analysis of the identified subsystems can define
their role in the network, thus giving insight to the network. The outline of the pro-
posed methodologyreadsasfollows: in the context of GraphTheory, areduction of the
incidencematrix bandwidth via the reverse Cuthill -McKee algorithm is done (Cuthill ,
1969). The analysis of the identified subsystems is performed, resulting in the identi-
fication of the controller of the network. In Chapter 5 robustnessanalysis is applied in
both dynamical models to characterizethe characteristic propertiesof thenetworks.

3.1 Extr insic ApoptosisPathway

3.1.1 Plant-Controller Scheme in theExtr insic ApoptosisPathway
As introduced in Chapter 2 the model of the extrinsic Apoptosis pathway (Eissing,
2007) ispresented in Equation3.1.

˙[C8] =

˙[C8a] =

˙[C3] =

˙[C3a] =

˙[IAP ] =

˙[IAP : C3a] =

˙[CARP ] =

˙[CARP : C8a] =

−k2[C3a][C8] − k9[C8] + km9

k2[C3a][C8] − k5[C8a]

−k1[C8a][C3] − k10[C3] + km10

k1[C8a][C3] − k6[C3a]

−k11[C8a][CARP ] + km11[CARP : C8a]

−k3[C3a][IAP ] + km3[IAP : C3a]

km3[IAP : C3a] − k8[IAP ] + km8

−(km3 + k7)[IAP : C3a]

km11[CARP : C8a] − k12[CARP ] + km12

−(km11 + k13)[CARP : C8a]

−(k3 + k4)[C3a][IAP ]

k3[C3a][IAP ]

−k11[C8a][CARP ]

k11[C8a][CARP ]

(3.1)
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Note that the separation presented in themodel, which at first glimpsemay seem arbi-
trary, reflectsan important property of thenetwork. Thefirst four differential equations
are function almost solely of the variables which appear differentiated, i.e., these first
four equations can be regarded as a system with two exogenous input signals (the re-
maining terms).Thevery same analogycan bedone for the last four equations.
In this context, (3.1) can be written as the interconnection of two systems: the inter-
action among the caspases and the interactions due to the presence of the inhibitors
(Figure 3.1). Let this former system be called the plant and the inhibitor’s differen-
tial equations, the regulator. A closer look to (3.1) shows that this same idea can be
performedagain in theplant andthe controller, that is to say, the four differential equa-
tions in the plant can be splited again into two subsystems: the activation of Caspase
3 (third and fourth equation) and Caspase 8 (first and second equation). Even more
important, the controller can be decomposed in a similar way and the “input” to each
controller isonly oneof the activated caspases. Theregulator presented in Figure(3.1)
is decentralized (seeFigure3.2). Note that: i) the controllerscan be thought as output
controllersand ii ) the four subsystemsarenonlinear SISO, namely:

P1 :

8
><

>:

˙[C8] = −k2[C3a][C8] − k9[C8] + km9

˙[C8a] = k2[C3a][C8] − k5[C8a]−k11[C8a][CARP ] + km11[CARP : C8a]
| {z }

u1

K1 :

8
><

>:

˙[CARP ] = km11[CARP : C8a] − k12[CARP ] + km12 − k11

v1=y1

z }| {

[C8a] [CARP ]

˙[CARP : C8a] = −(km11 + k13)[CARP : C8a] + k11[C8a][CARP ]

P2 :

8
><

>:

˙[C3] = −k1[C8a][C3] − k10[C3] + km10

˙[C3a] = k1[C8a][C3] − k6[C3a]−k3[C3a][IAP ] + km3[IAP : C3a]
| {z }

u2

K2 :

8
><

>:

˙[IAP ] = km3[IAPC3a] − k8[IAP ] + km8 − (k3 + k4)

v2=y2

z }| {

[C3a] [IAP ]

˙[IAP : C3a] = −(km3 + k7)[IAP : C3a] + k3[C3a][IAP ]

Note also that the nomenclaturepresent in the definitions above is in accordancewith
the Figure 3.2 and the election of the output of each system is the activated caspase.
Note also that the output of each plant is the input to its respective controller and the
next plant, i.e., y1 = v1 = w2 and y2 = v2 = w1. Note that Figure 3.2 can be
simplified, sincethe signalsyi = vi are the same, but keeping this structure intends to
emphasizethedecoupling of thedynamics.

In order to perform thepreviousdecoupling, an heuristic approach wasused. Nev-

w y

vu

K

P

Figure3.1: A general controlled system
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P1

K1

P2

K2

v2

w2w1

u2v1

y1 y2

u1

Figure3.2: Block diagram representationfor theEXAP

ertheless, asystematic approach can be adopted as follows. Let:

lij =

{

1 , Jij 6= 0
0 , Jij = 0

(3.2)

whereJ ≡ {Jij} is the Jacobian of the full system (3.1) and the element lij shows
the dependenceof the i-th differential equation uponthe j-th variable, i.e. L ≡ {lij}
is the incidencematrix . In order to isolate the subsystems, consider the ordering of L
after applying the reverse Cuthill -McKee algorithm (Cuthill andMcKee, 1969) to L,
which is in essence areordering of thematrix’srowsandcolumns such that thebiggest
quantity of nonzero elements lie the closest to theprincipal diagonal aspossible. For a
formal statement of the problem, seeAppendix A. In order to keep some biochemical
sense, a rearrangement of this set upcan bedone. Figure3.3 showsthis rearrangement
for theincidencematrix L of thesystem (3.1). In Figure3.3, the functional form of the

Figure3.3: SparseGraph of theEXAP model.
The boxes represent a subsystem and the dots out of them, interconnection signals
amongthe systems.
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inputsand theoutputs isnot shown, but only the dependenceitself.
Oncedecomposed, themain questioniswhat arethe essential interconnection prop-

erties of the blocks such that the robust bistable properties hold. Under which sets of
parameters the evolution of C3a is bistable?What are the key reactions? The answers
to thesequestionsare considered in thefollowingchapters. In thenext sectionasimple
steady state analysiswill be carried out.

3.1.2 Steady State analysis

Let thesystem

ẋi
1

= −(kaiwi + kci)x
i
1

+ kmci

ẋi
2

= kaiwix
i
1
− kcaix

i
2

+ ui

(3.3)

yi = xi
2

= vi

represent the plant P1 with x1 ≡ (C8, C8a)T and P2 with x2 ≡ (C3, C3a)T . The
parameters for each system are listed in Table3.1.

Note that the same property holds for the regulatorsK1 andK2 and let the system
representingthem, to be as follows:

żi
1

= −[(kri + krbi)vi + kni]z
i
1

+ kmriz
i
2
+ kmni

żi
2

= kriviz
i
1
− (kmri + kcni)z

i
2

(3.4)

ui = −kriviz
i
1
+ kmriz

i
2

where z1 ≡ ([CARP ], [CARP : C8a]) and z2 ≡ ([IAP ], [IAP : C3a]). In the
following the index i will be omitted for readabilit y, except when the analysis of both
plants isbeing performed.

It is important to note that both the states and the parameters in the two systems
above can only have positive values. In the following sections, a steady state analysis

Table3.1: Parameter definition for theEXAP

P1 −K1 P2 −K2 Label Velocity parameter of the reaction
k2 k1 ka Activation of caspase
k5 k6 kca Activated caspasedegradation
k9, km9 k10, km10 kc, kmc Caspase turnover
k12, km12 k8, km8 kn, kmn Inhibitor turnover
k11, km11, k11b k3, km3, k4 kr, kmr, krb Reversible reaction
k13 k7 kcn Degradation of the complex Caspase : Inhibitor
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Figure3.4: Equili bria loci of the open loop plant (regulator)

will beperformed to theplant Pi, theregulator Ki, the interconnection of theplant and
the controller (denoted byPi −Ki) andfinally the interconnectionsof both plantsand
controllers.

Plant

Thefixed point of (3.3) is:

x̄1 =
kmc

kc + kaw̄

x̄2 =
kakmcw̄

kca(kc + kaw̄)
+

1

kca

ū (3.5)

Figure (3.4) presents the locus of the fixed point as a function of (w̄, ū), with α =
kmc/kc, β = (kmc + ū)/kca andγ = ū/kca.

Remark 3.1.

Thepair (x̄1, x̄2) is uniquefor each (w̄, ū), seetheEquation(3.5) andFigure3.4.

Claim 3.1. Let the deviation from the fixed point be represented by e ≡ x − x̄. Its
evolution in time isdetermined by:

(

ė1

ė2

)

=

(

−(kaw̄ + kc) 0
kaw̄ −kca

) (

e1

e2

)

(3.6)

Then, regarding w̄ asa parameter, (3.6) is linear andstable for w̄ ∈
(

− kc

ka
,∞

)

.

Proof. Theproof is straightforward sincethesystem is lower-diagonal.

Remark 3.2. Recall (3.3) is themodel of a chemical reaction network.

i Sincew isa concentrationit isalwayspositiveand hence(3.6) isalwayssteady-
state stable.
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ii Sincep ∈ ℜp, the eigenvaluesarereal numbers. Hencethefixed point isa node.

iii The input u does not affect the stabilit y of (3.6), yet determines the location of
thefixed point of (3.3)

Regulator

As in thepreviousanalysis, let themodel of both regulatorsbe represented by:

ż1 = −[(kr + krb)v + kn]z1 + kmrz2 + kmn

ż2 = krvz1 − (kmr + kcn)z2

(3.7)

u = −krvz1 + kmrz2

whoseuniquefixed point is:

z̄1 =
(kcn + kmr) kmn

kn (kcn + kmr) + (krkcn + krb(kmr + kcn)) v̄

z̄2 =
krkmnv̄

kn (kcn + kmr) + (krkcn + krb(kmr + kcn)) v̄
(3.8)

Despitethe complexity of thepreviousexpressions, they havethesamefunctional form
as (3.5). ThusFigure3.4 also represents theequili brium loci for the regulator with the
definition of α = kmn/kn, β = [krkmn]/[kn (kcn + kmr)+(krkcn + krb(kmr + kcn))]
andγ = 0.

Claim 3.2. Let r ≡ z − z̄, being its the evolution in time:
(

ṙ1

ṙ2

)

=

(

− ((kr + krb)v̄ + kn) kmr

v̄kr − (kcn + kmr)

) (

r1

r2

)

(3.9)

Assumingv asa parameter, (3.9) isa linear stablesystem.

Proof. The characteristic polynomial of (3.9) is:

s2+s [(kr + krb)v̄ + kn + kcn + kmr]+[(kr + krb)v̄ + kn] [kcn + kmr]+kmrkr v̄ = 0

From the Routh criterion, thestabilit y of (3.9) is guaranteed for:

v̄ > max

{

−
kn + kcn + kmr

kr + krb

,−
kn [kcn + kmr]

[kr + krb] [kcn + kmr] + krkmr

}

(3.10)

Sincev is a concentration, it is positive. So this condition is always satisfied and the
claim isproven.

In order to precisetheregulator’saction ontheplant, consider thenext proposition.

Proposition 3.1. Let W be the reaction network described by the reactions
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Ca + I
v+
−−⇀↽−−
v
−

Ca : I

Ca
kc−→ 0

I
ki−→ 0

Ca : I
kci−−→ 0

Then [Ca] ([I]) is controlled by the function

u =
d

dt
[Ca : I] + kci[Ca : I] ≡ P∂kci

{[Ca : I]}

That is to say, theregulator isa classical Proportional Derivative(PD) controller .

Proof. Let v = v+ − v−. Themathematical model of W is:

d

dt
[Ca] = −v − kc[Ca]

d

dt
[I] = −v − ki[I]

d

dt
[Ca : I] = v − kci[Ca : I]

let u = d
dt

[Ca : I] + kci[Ca : I] ≡ P∂kci
{[Ca : I]} = v , thenW becomes

d

dt
[Ca] = −u − kc[Ca]

d

dt
[I] = −u − ki[I]

Then u can beregarded asan input to the concentration of Ca (I). For ablock diagram
of this scheme, seeFigure3.5.

Remark 3.3. Note that:

• The last proposition isvalid regardlessof theassignation of thereactionmecha-
nism to thenetwork

• This reaction network leads to a negativefeedbackscheme

• [Ca : I] can be considered asanerror signal.

Claim 3.3. The regulator Ri is a proportional derivative controller.

Proof. Note from the reaction mechanism (in Section 2.3.2) in Ri has the same reac-
tionsasW in Proposition3.1.
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−Controller

Pi

vi

yiwi

ui

Ri

vi

ui

︸ ︷︷ ︸

Ki

P∂

z
i
2

Figure3.5: PDcontroller structure, wherethesubindex i standsfor each of thesubsys-
tems.

Remark 3.4. ( 3.7 on page26) can berewritten in the followingway (seeFigure3.5).

R :

{

ż1

ż2

=
=

−knz1 + kmn + u

krvz1 − (kmr + kcn)z2

u = −

(

kcnz2 +
d

dt
z2

)

Closed Loop

Claim 3.4. Consider the interconnection of Pi (3.3) andKi (3.4):

ẋ1 = −(kaw + kc)x1 + kmc

ẋ2 = kawx1 − kcax2 − krx2z1 + kmrz2

ż1 = −[(kr + krb)x2 + kn]z1 + kmrz2 + kmn

ż2 = krx2z1 − (kmr + kcn)z2
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Thefixed point of this interconnection is:

x̄1 =
kmc

kc + kaw̄

x̄2 =
1

2

[

−b(w̄) +
√

b2(w̄) + 4c(w̄)
]

z̄1 =
(kcn + kmr) kmn

kn (kcn + kmr) + (krkcn + krb(kmr + kcn)) x̄2

z̄2 =
krkmnx̄2

kn (kcn + kmr)
︸ ︷︷ ︸

d1

+ (krkcn + krb(kmr + kcn))
︸ ︷︷ ︸

d2

x̄2

where b andc aredefined in (3.12) and (3.13), respectively.

Proof. Solving (3.11), thefixed points satisfy:

x̄1 =
kmc

kc + kaw̄

x̄2 =
kaw̄

kca + kr z̄1

x̄1 +
kmr

kca + kr z̄1

z̄2 (3.11)

z̄1 =
kmr

kn + (kr + krb)x̄2

z̄2 +
kmn

kn + (kr + krb)x̄2

z̄2 =
krx̄2

kmr + kcn

z̄1

From (3.5) x̄1 and form (3.8) z̄1, z̄2 are:

x̄1 =
kmc

kc + kaw̄

z̄1 =
(kcn + kmr) kmn

kn (kcn + kmr) + (krkcn + krb(kmr + kcn)) x̄2

=
(kcn + kmr) kmn

d1 + d2x̄2

z̄2 =
krkmnx̄2

kn (kcn + kmr)
︸ ︷︷ ︸

d1

+ (krkcn + krb(kmr + kcn))
︸ ︷︷ ︸

d2

x̄2

=
krkmnx̄2

d1 + d2x̄2

Replacing them in x̄2:

x̄2

2
+ bx̄2 − c = 0

Where

b ≡ (kcad2)
−1

[

kakn(kcn + kmr) + krkmnkcn −
d2kakmcw̄

kc + kaw̄

]

(3.12)

c ≡
d1ka

d2kca

kmcw̄

kc + kaw̄
> 0 (3.13)
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Thus thesolutionsfor x̄2 are:

x̄2 =
1

2

[

−b(w̄) ±
√

b2(w̄) + 4c(w̄)
]

Since c > 0, the solutionsare always real and only the positivesign of the square root
leads to anonnegativesolution. Thus thefixed point isunique. This last equationwith
the choiceof a positivesign, together with (3.5) and (3.8) complete theproof.

Note that all the entriesof the fixed point in closed loopareparameterized only by
the exogenousinput w.

Interconnection of systemsP1 −K1 and P2 −K2

Let xi
j denote the j-th entry of thestate vector in the i-th system. From (3.11):

fi(wi) ≡
1

2

[

−bi(w̄i) +
√

b2

i (w̄i) + 4ci(w̄i)

]

= x̄i
2

For readabilit y the definitionsof the constantsand variables in (3.11) aredefined next:

bi(wi) = γ1i − k−1

caiδ(wi)

ci(wi) = γ3iδ(wi) > 0

γ1i =
1

kcaid2i

[kaid1i + kmnikrikcni] > 0

γ3i =
d1i

kaid2i

> 0

d1i = kn(kcni + kmri) > 0

d2i = krikcni + krbi(kmri + kcni) > 0

δ(wi) = kaikmci

wi

kci + kaiwi

≥ 0

Recall the unitary positive feedback of P1 − K1 and P2 − K2 (seeFigure 3.2 on
page23) isdefined by:

f1(w1) = x̄1

2
= w2 f2(w2) = x̄2

2
= w1

and the appropriate constants for each system are defined in Table 3.1. Closing the
loop:

f2 ◦ f1(w1) = w1 (3.14)

With thenominal parameters, thesolution for w1 to (3.14) is:

w1 = 0., w1 = 0.393609, w1 = 5161.58

In Figure3.6 thefunctionf2 ◦f1(w1) is shown with nominal parameters. In Figure3.7
and 3.8 thesolutionsof f2 ◦ f1(w1) − w1 = 0 arepresented.
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Figure3.6: f2 ◦ f1 with thenominal parameters

Figure3.7: f2 ◦ f1 − w1 = 0 Detail for w1 < 1

Figure3.8: f2 ◦ f1 − w1 = 0 Detail for w1 aroundthe saturation of f2 ◦ f1
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Note from (3.14) that all the fixed points can be parameterized by w1. i.e., the eight
coordinatesof thefixed point can beparameterized by only one coordinate. In Chapter
4, thebistability propertiesof thenetwork will be explored.

3.1.3 Methodology summary

A summary of the procedure followed to identify the structure of the network is pre-
sented next.

S.1 Obtain the incidencegraphwith thematrix L (See3.2)

S.2 Reorder the labeling of thenodes in order to reducethebandwidth

S.3 Reorder the labelingso biochemical meaning ispreserved (heuristic)

S.4 Identify thesubsystemspresent as the blocks in the main diagonal and the inter-
connectionsignalsas theoff-diagonal terms

S.5 Analyzethe (open loop) identified subsystems

S.6 Generate theblock structureof thenetwork

3.2 Intr insic Apoptosis Pathway

The reactions of this pathway are presented in Section 2.3.3 and the mathematical
model, in Appendix B.

3.2.1 Plant-Controller Scheme in the Intr insic Apoptosis Pathway

Followingthemethodology presented in Section3.1.3, theanalysisof themodel of the
INAP isas follows:

S.1-4 The reduction of the bandwidth and the identification of the subsystems and
interconnectionsignalsareshown in Figure3.9.

S.5 Structure identification. Let

P1 :

{

˙[C9a] = −k54[C9a] − k6[C3a][C9a] + uP1−P1
+ uK1

+ u1

˙[C9P ] = −k53[C9P ] + k6[C3a][C9a] − uP1−P1

P2 :

{

˙[C3] = −(k1 + k5[C9a] + k7[C9P ] + k8[C3a])[C3] + k2

˙[C3a] = (k5[C9a] + k7[C9P ] + k8[C3a]) [C3] − k55[C3a] + uK2

Claim 3.5. Theregulators of P1 andP2 areproportional derivative controllers.
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Figure3.9: Sparsegraph of the INAP model

_

_ _

_

P1

P∂ P∂

R2R1

R3

u1

w1 w2

y1 = v2

u2

y2

v1

r1 r2

α

r3

P2

s1

s3−1 s3−2

s2

p1,2

q3

Figure3.10: Block diagram representationfor the INAP
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The proof of Claim 3.5 is presented in Appendix C where is also stated that the
error signalsare:

e1 = ([XIAP : C3a : C9a], [XIAP : C9a], [Bir3R : C9a])

e2 = ([XIAP : C3a : C9a], [XIAPp2frag : C3], [XIAP : C9a], [Bir12 : C3a])

S.6 Theblock diagram of thenetwork is shown in Figure3.10.

Thedefinition of the interconnectionsignals is:

v1 = uApoptosome

y1 = ([C9a], [C9P ])T

w1 = [C9a]

s1 = [Bir3R : C9a]

s3−1 =

(

[XIAP : C9a]
[XIAP : C9aC3]

)

r1 =









[Bir3R]
[Bir3Rp2frag]
[Bir3R : Smac]
[Bir3R : C9a]









α =

(

[XIAPp2frag]
[XIAPp2frag : C3]

)

p1,2 =





[C3a]
[C9a]
[C9P ]





y2 = [C3a]

w2 = [C3a]

s2 =

(

[XIAPp2frag : C3]
[Bir12 : C3a]

)

s3−2 =

(

[XIAP : C3a]
[XIAP : C9a : C3]

)

r2 =

















[Bir12]
[Bir12 : C3a]

[Bir12 : Smac]
[XIAPp2frag : Smac]

[XIAPp2frag]
[XIAPp2frag : C3]

















q3 = uSmac

3.2.2 Steady State Analysis

As can be seen from Appendix B, the complexity of the mathematical model makes it
difficult to be analyzed. Moreover the system does not have any special characteris-
tic with the nominal parameters, but reproducing the triggering of Intrinsic Apoptosis
Mechanism. However, the basic interaction of caspases will be analyzed in order to
provide apoint of comparison with the EXAP. In the following sections, the analysis
of thesubsystemschosen asplantswill beperformed.

Caspase9

Let x = ([C9a], [C9P ])T andw = [C3a], then

ẋ1 = −(k54k6w)x1 − k53x2 + uK1
+ u1 + uP1−P1

ẋ2 = −k53x2 + k6wx1 − uP1−P1

34



Fixed point

x̄1 =
ūP1

+ ūK1 + ū1

w̄k6 + k54

x̄2 =
k6w̄(ūK1 + ū1) − k54ūP1

k53(k6w̄ + k54)

The equili brialoci isplotted in Figure3.4 with definingα = (ūP1+ūK1
+ū1)/k54,

β = (ūK1
+ ū1)/k53, γ = −ūP1/k53.

Err or var iables
Let n1 = x1 − x̄1, n2 = x2 − x̄2. Thedeviation dynamicsare:

(

ṅ1

ṅ2

)

=

(

−(k54 + k6w) 0
k6w −k53

) (

n1

n2

)

Note that this system is the same as the one presented in Claim 3.1, hence this
system is linear andstable, regardingw asa parameter.

Caspase3

Let z = ([C3], [C3a])T andv = ([C9a], [C9P ])T .

ż1 = −(k1 − k5v1 − k7v2 − k8z2)z1 + k2

ż2 = (k5v1 + k7v2 + k8z2) z1 − k55z2 + uK2
(3.15)

Fixed points
Thefixed point of (3.15) is:

z̄1 =
k55z̄2 − uK2

θ + k8z̄2

z̄2 =
1

2

(

−µ +

√

µ2 +
4

k8k55

(k2θ + ūK2
[k1 + θ])

)

where:

θ = k5v̄1 + k7v̄2

µ =
1

k8

(k1 + θ) −
1

k55

(k2 + ūK2
)

Note that there is a selection of parameters that give apositive fixed point. Note also,
that thispositivefixed point isunique.

Without the exogenousinputsto thesystem (cyt-c andtheformation of theApopto-
some) andthenominal parameterstheonly fixed point hasall the entries set to zero ex-
cept for those correspondingto Caspase3 andIAP, whosenumerical valuesare0.1282
and 0.0603, respectively.
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3.3 Conclusions

It has been shown that the formation, dissociation and degradation of a reactant can
berepresented as a regulating proportional-derivative action in a network of reactions.
This effect is present in both pathways in the networks presented. It is a well known
fact that inappropriateselection of the controller’sparametersmay lead to a undesired
closed-loop behavior. In this regard, the selection of parameters is fundamental to
guaranteethenominal performanceof thenetwork. In thiswork, theparametersarenot
freely eligible, but they are characteristic of the chemicals taking part in the network.
This fact shows the level of organization present in living beings: the chemicals are
not only being created and degraded in the appropriate quantity, but the way they do
it, influence and regulate other compounds in the network. Note that the proportional
gain of the controller is the rateof degradation of theso-called ’error signal’.

The conclusionsobtained alongthe chapter can besummarized as follows:
EXAP

• Despite the complexity of themodel, it can beregarded asasimple interconnec-
tion of four two-states systems

• Themodel can be analyzed asa decentralized control system

• Each of the four subsystems are open-loopstable, assuming the positivenessof
the constants

• Each of the four subsystemshasonly one(stable) fixed point

• Both regulatorspresent in the interconnected system can be viewed as PD con-
trollers

INAP

• The mathematical model of this pathway does not seem to present any peculiar
dynamical characteristic, but reproducesaccurately the evolution of the experi-
mentally measured concentrationsin time

• Thesystem can be thought of an almost decentralized controlled system

• The eight regulatory mechanismscan berepresented asPD controllers

In the following two chapters analysis will be performed in order to determine
limits on the parameters such that the characteristic propertiesof the network are pre-
served.
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Chapter 4

Bistability Analysis

In thischapter a brief overview of threedifferent approachesto characterizethemulti -
stabilit y are presented. Themodel analyzed is the EXAP, sinceit is the only onewhich
presents two stable fixed points with the nominal parameters. Althoughthis model
seems to present a bistable property, no global conclusion can be achieved. Never-
thelessthe conclusions achieved allow to determine which are the possible scenarios
that thenetwork may present andwhich are theparameters of thesystem that alter the
bistablestructure moresignificantly.

4.1 Introduction

In general, avariation ontheparameters in adynamical system can modify itsequili b-
ria set, drastically changing the qualitative behavior of the system. This phenomenon,
called bifurcation, can lead to a change of the stabilit y characteristic of a point of in-
terest, hence destroying the usefulnessof the system, in some cases. An interesting
question that arises is to determine the biggest deviation of the nominal parameters
such that thequalitativebehavior of thenetwork ispreserved. Several approacheshave
been developedto answer thesequestions, exploiting different dynamical andstructural
properties.

In the next sections, the monotonicity and the graph of the reaction network are
analyzed for the EXAP model, but no conclusionsare achieved. Therefore, a classical
bifurcation analysis is performed, resulting in the identification of the possible local
behaviorsof themodel with variation of only oneparameter at a time.

4.2 Monotonicity

A real functiony(x) : Re → Re is said to bemonotonic increasing if for every ε > 0

y(x + ε) − y(x) > 0
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and strong monotonic increasing if the inequality is strict. The same definitions can
be made for a monotonic decreasing function, with the appropriate selection of the
inequality sign. The main qualitative property of this kind of functions is that they
preserveorder.

When the function y(x) is not scalar, the symbols “<” and “>” are no longer
naturally defined. Nevertheless, a partial order in a general Banach space(B) can be
defined given that two elementsx1, x2 ∈ B satisfy the relationx1 − x2 ∈ K, whereK
isanonempty, pointed cone.

With this in mind, a dynamical system φ : K × X ⊂ B → X is monotone if and
only if:

x1 ≥ x2 =⇒ φ(t, x1) ≥ φ(t, x2)

That is to say that the order imposed by the selection of the initial conditions is
preserved in the trajectory of the system in a given time t. It can be shown that this
special property can lead to very restricted trajectories of the state and strongconclu-
sions about stabilit y, under some assumptions. For instance, no chaotic or periodic
trajectoriesexist in a monotonesystem (Hirsch and Smith, 2005).

In (Angeli andSontag, 2003a) the extension of the concept of a monotonesystem
with inputsand outputsisdefined, viathe assignation of an order in thespaceof inputs
and outputs. Let u denote the input of thesystem andh(x) represent theoutput, then a
system is input-output monotoneif and only if:

u1 ≥ u2, x1 ≥ x2 =⇒ h(t, x1, u1) ≥ h(t, x2, u2)

It can be shown that the interconnection of two monotone systems under positive
feedback is monotone, thus making the theory suitable for analyzing large scale, de-
centralized systems.

An easy way to determine whether or not a system is monotone is to analyze the
incidence graph of the system. It is obtained as follows (Angeli et al., 2004): for a
system with n states, the graph hasn + 2 nodes (the extra nodesare the input and the
output of the system). An arrow is drawn from a node xj to a node xi ∀i such that
j 6= i, if xj affects directly the rate of change of xi. Also a sign is assigned to this
arrow: + if the effect of xj of positive and− if its negative. The sign of a path is the
product of thesesignsalonga closed trajectory in thegraph.

In (Angeli andSontag, 2003b) it is stated that a system which admitsan incidence
graphismonotonewith respect to someorthantsfor thestates, the input andtheoutput
if and only if its graph does not contain any negative cycles. Moreover, under some
stabilit y and assumptions, two monotone systems can be interconnected and the set
of fixed points can be easily determined and characterized. This conclusions can be
guaranteed in the whole state space, thus obtaining a sound global characterization of
the interconnected system.

In the case of the EXAP, the incidence graph is shown in Figure 4.1, where the
separation of thesystem introduced in Section3.1.2 ispresented.

Unfortunately the model of the EXAP is not monotone-sincethe sign for some of
the paths are negative: the path w1, C8, C8a, w1, for example- and noconclusion on
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Figure4.1: Incidencegraphfor theEXAP

themultistablepropertiesof this system can be madeusing this theory.

4.3 Chemical Reaction Network Theory

TheChemical ReactionNetwork Theory based onthework of Horn, JacksonandFein-
berg (Feinberg, 1979, for example) wasdevelopedto predict thebehavior of a chemical
reaction network based onits reaction diagram. Despitestrong nonlinearity inherent in
the mathematical model of a reaction network, the evolution in time of the concentra-
tion of thereactantsand productsisvery restricted (thetrajectoriesof the concentration
in time can only belong to a subspace called the ’compatibilit y class’ determined by
the ’reaction vectorsof thenetwork’, which represent thedirection in which a concen-
tration isbeingmodified). Moreover, under somestrongassumptionson the incidence
graph of the network, the evaluation of a sole index can determine the way the phase
portrait looks and thus the qualitative trajectories of the concentrations can be deter-
mined. This index iscalled thedeficiency of thenetwork.

A basic assumption for this theory to apply, is a weak reversibilit y property of
the incidencegraph of the network: if there exist a directed path going from node xi

to node xj , there must exist another directed path going from xj to xi, directly or
indirectly through other nodes. The main drawback of this methodology is that this
requirement is too restrictive.

In the case of the EXAP, the weak reversibilit y property is not complied by the
model (seefrom Figure4.1(a) that there existsapath joiningC8 to C8a, but thereisno
path in theoppositedirection). Thusnoconclusioncan be madeusing this theory.

4.4 The EXAP model as a general dynamical system

The fact that the system is not monotone or that the graph is not weakly reversible,
does not mean the system is not globally multistable. It only means that this system
does not have the mentioned properties: exhaustive simulations changing the initial
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concentration show that the only behavior of the system with the nominal parameters
is the convergenceto either of the stable fixed points (data not shown), but no formal
proof has been done in this regard. In the present section the characterization of the
bistabilit y properties of the system will be performed via a classical bifurcation anal-
ysis with the variation of one parameter at a time. This analysis intends to show the
possiblebehaviorsof themodel andto determinethestructural robustnessof the(local)
bistabilit y of thesystem to variation in parameters.

In (Eissing, 2007) a nontraditional bifurcationanalysis isperformed via theMonte
Carlo approach, since the traditional analysis considering the variation of all parame-
tersat atimeisvery demandingin computational terms. Here, aparameter isperturbed
off the nominal value in order to explore the possible behaviors the systems can have.
A structural robustnessindex will be evaluated in termsof keepingthequalitativeprop-
ertiesof the equili briaset: two stable and oneunstablefixed points.

For doing this, consider the equation( 3.14 on page30) presented below, for read-
abilit y. Recall that the allocation of the eight coordinatesof thefixed points isparame-
terized by only oneof them: w1.

f2 ◦ f1(w1) = w1 (4.1)

where(defined in 3.1.2),

fi(wi) =
1

2

[

−bi(wi) +
√

b2

i (wi) + 4ci(wi)

]

bi(wi) = γ1i − k−1

caiδ(wi)

ci(wi) = γ3iδ(wi) > 0

γ1i =
1

kcaid2i

[kaid1i + kmnikrikcni] > 0

γ3i =
d1i

kaid2i

> 0

d1i = kn(kcni + kmri) > 0

d2i = krikcni + krbi(kmri + kcni) > 0

δ(wi) = kaikmci

wi

kci + kaiwi

≥ 0

Thedefinition of theparameters ispresented in Table3.1 on page24.

Remark 4.1. The solutionsof f2 ◦ f1(w1) = w1, which parameterize the fixed point,
satisfy:

• w1 = 0 is alwaysa solution.
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Thiscan beseen as follows:

fi(0) =
1

2

[

−bi(0) +
√

b2

i (0) + 4ci(0)

]

=
1

2
[−γ1i + γ1i]

fi(0) = 0

Hence, f2 ◦ f1(0) = 0

• In Figure 4.2 can be seen that w1 ≈ max(f2 ◦ f1(w1)) is a solution when the
function f2 ◦ f1(w1) saturates ’ faster’ than the line w1 grows. As can be seen
in Figure 4.2, f2 ◦ f1(w1) has a sigmoidal characteristic and is monotonically
increasing, thus the intersection with the unitary line will be near the ordinated
pair (w1, f2 ◦ f1(w1)) = (f2 ◦ f1(w1 → ∞), f2 ◦ f1(w1 → ∞)).
The maximumof the functionf2 ◦ f1(w1) is obtained by noting:

lim
wi→∞

δ(wi) = kaikmci

1

0 + kai

lim
wi→∞

δ(wi) = kmci

Then

lim
w1→∞

f(w1) =
1

2





kmc1

kca1

− γ11 +

√

(

γ11 −
kmc1

kca1

)2

+ 4γ31kmc1





andin the closed loop, the composition of functions f2 ◦ f1(w1 → ∞) has one
real positive value. With thenominal parameters, f2 ◦ f1(w1 → ∞) ≈ 5161.58,
theactual solution to (4.1).

If no selection of parameters is made, the closed loop function (4.1) can be used
to determine the set of parameters that lead to the existenceof threesolutions. Note
that as theparametersvary theplot of (4.1) in Figure4.2 will deform. Seefor example
Figure 4.3, where only one parameter is varying. In a limit condition, the line and the
sigmoid will be tangent. The tangency point w+

1
, satisfies (Alvarez, 2008):

C1 f2 ◦ f1(w
+

1
) = w+

1
, i.e., the line and the sigmoidal curve has to intersect each

other

C2 Dw1
f2 ◦ f1(w1)|w+

1

= 1, that is to say that beside finding a solution in w+

1
the

curveshave to be tangent in thispoint.

The two conditionsabove, can be used to find all the bifurcation points as a func-
tion of the parameters. Nevertheless, the function (4.1) and Dw1

f2 ◦ f1(w1)|w+

1

= 1

are toocomplicated to be treated analytically and noconclusionregarding bistablebe-
haviour can be made, notwithstanding this equations has been used to give insight to
thestructureof thismodel. Note that finding the restriction of theparameters that lead
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to three fixed points does not guaranteethat two of them will be stable and the other
unstable, but a further analysiscan bemade.

Instead abifurcationanalysis isperformed as follows:

i Compute the linearization of the model, as a function of the parametersand the
fixed point

ii Choose avaluefor the chosen parameter and leave thevalueof therest asnomi-
nal

iii Findall thefixed pointsof the model with this set of parameters

iv Evaluatethelinearizationin thefixed pointsfoundandtheparametersand deter-
mine thestabilit y property of each solution

v Then goto step ii until a desired parameter rangehasbeen explored

Following this procedure, the bifurcation diagrams are obtained. Althoughevery
parameter has an effect on the location of the fixed points, Figures 4.4 to 4.7 show
somerepresentative cases. Special careshould betaken when readingthegraphs since
the w1 axis is logarithmic for w1 > 1 and linear for w1 ∈ [0, 1]. The ’x’ axis is the
relative, absolute error of the value of the parameter respect to the nominal parameter
in percent. In the bifurcation diagrams the red color will represent instabilit y and the
blueone, stabilit y.

Table 4.1 shows the bounds of the parameters that preserve the bistabilit y condi-
tions.

4.5 Conclusions

In thepresent context, only a local characterization of the multistablepropertiesof the
EXAP model could be achieved, since it fails to comply some well -known properties
that help to explain a global behavior, such as monotonicity. Nevertheless, the local
bifurcationanalysisperformed, shows that multiplescenariosare possible, when a pa-
rameter is varied. The key for this procedure to apply is the capabilit y of the system’s
fixed points to be parameterized byw1, because the qualitativebehavior of the system
can be analyzed in a 2D plot. Recall that w1 is the [C3a].

From Figure4.4, it can beseen that alarge enough variationin thepositivedirection
of theparameter k2 can makethe ’ li fe’ fixed point unstable and possibly leading to the
death of the cell .

Figures 4.6 and 4.7 are presented to show that in general threescenarios are pos-
sible: one fixed point with low level of w1, a bistable switch and one fixed point with
high level of w1.

An interestingremark is that in all cases, thenominal parameter is close to a bifur-
cation point. This fact implies that the structural stabilit y is very fragile, since asmall
variation of theparameter can destroy thestructural property of thenetwork. It is inter-
estingthat thestructural bistabilit y ismoresensibleto theparametersthat represent the
zero order reactionsandto themutual activation of caspases(km10,km3,km9,k1,k2,km11).
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Table4.1: Limitson the theparameters to present bistabilit y.
This table is sorted accordingto thetotal percent of allowed variation in theparameter,
such that bistabilit y ispreserved (Superior Bound- Inferior Bound).
* = A negative value of the parameter still l eads to a bistable scenario, thus is not
considered in the ranking.
* * = A variationlarger than 100 000[%] still l eadsto abistablescenario andis ignored
in the ranking.

Nominal Parameter Inferior Bound[%] Superior Bound[%]
km10 81.9 -64.29 1.79
km3 0.21 -73.81 1.98
km9 507.0 -90.14 1.85
k2 0.00001 -98.70 1.65
k1 0.000058 -99.43 1.65
km11 0.21 -100.00 1.97
km8 464.0 -1.50 181.90
k3 0.0005 -1.50 218.00
k7 0.0173 -1.50 286.90
km12 40.0 -1.65 1145.00
k9 0.0039 -1.53 11430.00
k6 0.0058 -19.54 23880.00
k5 0.0058 -17.24 34110.00
k10 0.0039 -1.50 38330.00
k12 0.001 * 1.87
k8 0.0116 * 1.72
k4 0.0003 * **
k13 0.0116 -1.50 **
k11 0.0005 -1.50 **

When interpreting the diagrams special caution has to be taken. The presented
plots show a bifurcation diagram with the variation of only one parameter at a time.
When morethan oneparameter arevaried at a time, theresulting diagramswould look
very different. Note also that theresultspresented here areonly local and by nomeans
characterize the global behavior of the system, hence other strange attractors might
exist.
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Chapter 5

Robustness Analysis

Introduction

Cellular reactionmechanismsarerobust to noise and parameter uncertainty. A clear ex-
ample is the apoptosisprocesswhich is themechanism the cell uses to decidewhether
it continues living or not. In the present context, it is strongly dependent on the struc-
tureof thepathway itself, and, surprisingly, solely ona coupleof kineticparameters. In
order to determinewhich parametersaremore important, the structured singular value
analysis (SSV) isapplied to the linearization of themodel about the “li fe“ fixed point.

5.1 Introduction to the Structural Singular Value

5.1.1 Robust Stability

Once the structure of a model is attained, the main issue is the right choice of the
parameters that characterizethe reactions in the pathway, so themodel accurately rep-
resents the observed phenomena. Given the variabilit y of parametersamongthe cells,
aset of parameters that preservethedesired behavior isabetter characterization of the
model. In this context, an analysisof the robustnessof the stabilit y anda performance
index of themodel can retrievesuch sets.

In the case of both apoptosis pathways, one approach is to determine which is the
smallest perturbationin aparameter for which thestabilit y of afixed point ispreserved.
Thefixed point consideredwill bethe’ li fe’ steady state. Thedestruction of thestabilit y
of this point will mean the incapabilit y of the cell to maintain itself alive, resulting, -
presumably- in adisease as stated in Chapter 1.

Thetheory iswell established for linear systemsviathe computing of theStructural
Singular Value (SSV) µ of a linear system. In the present case, a perturbation of each
parameter will be consideredwith the aimof identifyingthemost important reactionsin
termsof stabilit y preservation, i.e., the parameters that can have the smallest variation
in order to preserve thestabilit y of the analyzed fixed point.
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The whole theory of the SSV relies uponthe Small Gain Theorem , which states
the necessary and sufficient conditions for a interconnection of n interconnected Lpe

stablesystems to beLpe stable.

Theorem 1. Given the interconnection shown in Figure 5.1 with M(s) ∈ Cpxq ,
M(s) ∈ Lp and γ > 0. The interconnected system is well-posed and internally stable
for all ∆(s) ∈ Lp with

a) ||∆||p ≤ γ−1 if and only if ||M(s)||p < γ

b) ||∆||p < γ−1 if and only if ||M(s)||p ≤ γ

Theproof of theTheorem can befoundin (Khalil , 2001) or (Zhouet al., 1996), for
example.

In Figure 5.1 the perturbationmatrix is represented by the the ∆(s) block and the
system by the M(s) block. Regarding the Theorem above it is possible to know the
maximumLpe of theperturbationsuch that the interconnection preserves the property
of both blocks. For instance, let this maximum norm be ||∆||∞ = β−1, then the
maximum norm such that the interconnection preservesthestabilit y is:

β = ||M ||∞ = sups∈C+
σ(M(s)) (5.1)

Ascan beseen, Theorem 1 isdefined for linear systems so in order to apply it to the
current problem, the linearization of theApoptosismodel has to betaken into account.
In (Dunne, 2008) it is shown that about the ’ li fe’ fixed point, the EXAP, behavior is
almost linear, andagoodestimateof the actual nonlinear robustnesscan beobtained at
least very close to the linearization point. Let this linearization bedenoted by

ẋ = Ax + Bu

y = Cx, (5.2)

and assume the perturbed system isAp = A + Ai, so the transfer function from U(s)
to X(s) can be rewritten as in Figure 5.2, as stated in (Shoemaker andDoyle, 2008).
Via a Linear Fractional Transformation, as shown in Figure (5.3), the interconnection
studied in theSmall Gain Theorem can be achieved.
Oncethis interconnectionisobtained, the transfer functionfrom U(s) to Xi(s) (where
thesubindex i denotesthesignal regardingtheperturbationAi) is:

(

yp

xi

)

=

(

P11 P12

P21 P22

)

︸ ︷︷ ︸

P

(

up

u

)

(5.3)

Regarding Figure5.3-b, theUpper Linear Fractional Transformation of thesystem is:

xi =
(

P22 + P21∆(I − P11∆)−1P12

)

ui (5.4)

Since P22 : U → Xi is a Lp stable map, the only source or instabilit y in (5.4) is
P21∆(I − P11∆)−1P12. The stabilit y of that transfer function is guaranteed by the
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multivariableNyquist stabilit y criterion:

det(I − M∆) 6= 0

whereM ≡ P11. In order to determine the sizeof the maximum perturbation the sys-
temcanendure andmaintainstabilit y, thedefinition of theSSVµ (Skogestad andPostlethwaite,
1996) seemsnatural:

µ−1

∆
(M(s)) ≡ min{kdj|det(I − M∆(s, kdj)) = 0} (5.5)

Themeaning of thesubindex j will become clear in thenext sections.
If the system is stable, the meaning of kdj is the smallest gain that push the closed

loop polesinto theimaginary axis. Incasethesystem werenot stable, thegainkdj isthe
smallest gain that brings the system to stabilit y. In a general context, it is no possible
to havethe actual valueof µ. Instead boundsare computed in order to estimate thesize
of theperturbation(ρ(M) ≤ µ∆(M) ≤ σ(M)). Even tighter boundscan be computed
regardingthe structure of the perturbationand the system itself, when the information
isavailable.

5.1.2 Robust Performance

In general, not only robust stabilit y hasto bemaintained, but also a “good” performance
isdesirabledespite thepresenceof a perturbation. In the context of the case of studya
good performancemeansthat themechanism of Apoptosis is triggered in the expected
way even if an actual parameter is not nominal. In order to establish a meaningful
comparisonamongthe differenceof the nominal response and the perturbed response,
aweight function(We(s)) has to bedesigned such themagnitudeof the error between
the responses is amplified in a representativefrequency interval.
In order to perform the analysis, (Shoemaker andDoyle, 2008) propose the intercon-
nection in Figure 5.4, which can be rewritten in the general scheme shown in Figure
5.3-b with theoutput beingz rather than xi:

+

+
+

−

e z

u∆ y∆

(sI − A)−1

u

x

(sI − A)−1

Ai

xi

We(s)C

C

B

Figure5.4: Performance assessment scheme
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(

yp

z

)

=

(

(sI − A)−1 (sI − A)−1B

WeC(sI − A)−1 0

) (

up

u

)

The closed loop obtained viaUpper Linear Fractional Transformationis:

F = WeC(sI − A)−1∆
(

I − (sI − A)−1∆
)

−1

(sI − A)−1B (5.6)

Define β ≡ ||F ||∞. The performance condition can be formulated as finding the
smallest size of the perturbation such that the weighted norm of the error z is lessor
equal than 1, i.e., findkpi such that:

||∆(s, kij)||∞ =
1

β
(5.7)

Recalli ng kij ∈ ℜ and, both, (5.6) and (5.7), the performance condition can be ex-
pressed as:

||∆(s, kij)||∞||F(s, kij)||∞ ≤ 1

||F(s, kij)||∞ ≤ β (5.8)

Note that the value of kij is the supremum value for which the performanceindex is
achieved with theproviso that the internal stabilit y of the system.

5.2 Methodology

In order to determine the set of parameters which maintain the robust stabilit y and
performanceof thesystem, asuitable construction of theperturbation hasto be chosen.
In this case, let one variation of parameter at a time and assume that the perturbation
of each parameter is of the form: kij = kj + kdj , where the subindex i stands for
perturbed parameter; d for thedisturbingterm andj is thedefinesthej−th entry of the
parameter vector. In that case, theperturbed Jacobian is:

Ap = A + Ai(kdj),

where Ai(kdj) is obtained evaluating A(k) in a vector whose j−th entry is kdj and
zero otherwise.

In section5.1.2 hasbeen shown that such aperturbationcan bewritten in the form
of ( 5.3 on page 48). Identifying the perturbation -in this case as ∆ = Ai(kdj)- from
Figure(5.3), thegeneral formulation(5.3) becomes:

(

y∆

xi

)

=

(

(sI − A)−1 (sI − A)−1

(sI − A)−1 (sI − A)−1

) (

u∆

u

)

Thus theStructured Singular Value (5.5) becomes:

µ−1

∆
(M(s)) = min{kdj|det(I − (sI − A)−1Ai(kdj)) = 0}
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By construction, Ai(kdj) is affine in kdj , so thiscondition becomes:

µ−1

∆
(M(s)) = min{kdj|det(I − kdj(sI − A)−1Ai) = 0} (5.9)

Recalli ng that kdj is just ascalar, the actual solutioncan be computed by just solv-
ing:

det(I − kdj(sI − A)−1Ai = 0)

as a function of s. The actual values are computed in Matlab with the code listed in
the Appendix D. Figure (5.5) shows the plot for the structured singular value for the
parameter k8 in the INAP, asan example.

Figure5.5: ||M ||∞||∆||∞ for k8 in INAP

In order to achieverobust performance aweight functionisdefined(Skogestad andPostlethwaite,
1996):

We(s) =
s/M + ω∗

B

s + ω∗

Bα

where |We(iω)|−1 is equal to α in low frequencies and M in high frequencies. The
asymptote crosses 1 at ω∗

B. In this case, the parameters of weight function has been

52



selected to increasethe error in theresonancefrequenciesof the transfer functionfrom
u to z of Figure5.4. With this selection, theweight function becomes:

We(s) = 5000
0.1s + 0.001

s + 0.0001

Recalli ng thedefinition of theperturbation, the performance condition(5.8) becomes:

||kpiAi||∞||kpiWeC(sI − A)−1Ai

(

I − kpi(sI − A)−1AiB
)

||∞ ≤ 1 (5.10)

which can be solved numerically for kji by the optimization of (5.10) assuming it is
a convex property. The code is also available in the Appendix D, and Figure (5.5)
shows the Bode magnitudeplot for the previouscondition onthe limit value for k8 as
an example, in the INAP.

5.3 Results

5.3.1 Extrinsic Apoptosis Pathway

Table5.1 showsthemaximum perturbationallowed per parameter usingtheStructured
Singular Value analysis. The allowed perturbations that keep performance and the
maximal allowed variationcomputed aspkj = |100(kdj/kj)|, wherekj is thenominal
valueof theparameter andkdj is thedisturbance computed bythe analysis. The entries
filled with ’ * ’ arenot present in theJacobian.

5.3.2 Intrinsic Apoptosis Pathway

Table5.2 showsthemaximum perturbationallowed per parameter usingtheStructured
Singular Value analysis in order to maintain both the performance and the stabilit y.
Theparameters that arenot shown, arenot present in the linearization of thesystem.

5.4 Conclusions

The analysispresented here computesthesmallest variation of theparametersthat leads
to thelinerizationabout the’ li fe’ fixed point to preservethestabilit y andaperformance
index. Notwithstanding, the ranking of the reactions shown in Tables 5.1 and 5.2 is
just qualitative, since no real behavior is considered. As an example, consider the
parameter km11 whose variation in order to preserve the stabilit y of the ’ li fe’ fixed
point is8.04[%]; in Chapter 4 it isshown that only avariation of +1.83[%] can destroy
thebistablescenario.

An interestingresult is that in both cases, theparametersthat aremoresensible are
present in the controllers identified in Chapter 3.

53



Table 5.1: Maximal Perturbation that maintain stabilit y and performancein the INAP
(µ−1)
∗ = Thisparameter isnot present in thelinearization. Henceit doesnot have any effect
in either thestabilit y or performance.

Stabilit y Performance
Parameter [%] Parameter [%]

km8 * km8 *
km9 * km9 *
km10 * km10 *
km12 * km12 *
km11 8.040 km11 0.028
km3 8.232 km3 0.028
k7 98.229 k3 1.130
k13 143.129 k11 1.131
k3 3144.100 k7 1.184
k11 3149.500 k13 2.140
k8 8620.700 k8 37.406
k9 25641.000 k1 38.861
k10 25641.000 k4 45.699
k1 27431.000 k5 82.911
k5 49009.000 k6 99.875
k6 71135.500 k2 227.195
k12 100000.000 k10 352.012
k2 159099.700 k9 381.867
k4 958356.400 k12 1367.300

54



Table 5.2: Maximal Perturbation that maintain stabilit y and performancein the INAP
(µ−1)

Performance Stabilit y
Parameter [%] Parameter [%]

k9 4.95E-004 k9 0.54
k27 5.43E-004 k52 0.64
k7 2.96E-003 k27 0.64
k5 4.46E-002 k7 2.07
k17 7.22E-002 k44 3.14
k52 0.15 k46 7.06
k8 0.43 k17 48.61
k46 4.85 k8 206.87
k10 5 k32 722.39
k28 5.48 k16 722.41
k44 7.25 k36 948.05
k56 43.32 k56 2316.3
k58 47.47 k64 2762.49
k36 272.69 k57 2881.6
k3 285.27 k60 2881.6
k64 286.16 k69 2881.6
k53 782.93 k58 2889.21
k16 1299.36 k10 4361.01
k32 1541.36 k3 8620.69
k1 1643.66 k63 13700.01
k63 1824.20 k62 13913.23
k62 2634.55 k5 15124.77
k57 7107.86 k70 17183.75
k60 7107.86 k59 17223.83
k69 7107.86 k53 17241.38
k55 10586.52 k1 25641.03
k54 11597.79 k28 198812.75
k70 12310.79 k67 445158.8
k59 27460.78 k68 445303.21
k66 29656.36 k66 1181494.62
k61 60572.97 k55 4533930.48
k67 86190.46 k54 5447129.05
k68 250201.31 k61 12938952.5
k65 1272955.6 k65 94748295.29
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Chapter 6

Conclusions

In the present work two different apoptosis pathways are presented and dynamically
analyzed. Due to the complexity of the differential equationsarising from the reaction
networks, no structural conclusionscould be achieved. However, the symmetry prop-
erty of theExtrinsicApoptosisPathway model, allowsasimplification of itsdynamical
analysis.

It is shown that a particular set of reactions can lead to a proportional derivative
controlli ng action. A subsequent analysis of the topology of the studied networks,
leads to the identification of a decentralized controller scheme. Regarding the impact
thevariation of each parameter exerts in thebistabilit y, robustnessand performanceof
thenetwork, themost important reactionsareidentified. The analysisof themultistable
propertiesof the Extrinsic ApoptosisPathway shows that monostable and bistable be-
haviors are possible. When only one fixed point is stable, the switch from ’ li fe’ to
’death’ is not possible. In fact, this monostable scenario can be easily reached by
varying some parameters only by two percent, showing that the structural property of
bistabilit y is not robust. It is important to remark that the conclusions obtained from
thebistabilit y analysisare local andstrange attractorsmight exist.

The robustnessof the stabilit y and performancefor both apoptosis pathways was
analyzed usingtheStructural Singular Value. Thisallowed to identify themost sensible
parametersin thereaction network. A comparisonamongthethree analysisperformed
ispresented in Figure6.1.

It is remarkable that the parameterskm10 and km9 do not play any role in neither
the robust stabilit y analysisnor in the robust performance analysis, but they are oneof
themost important in thebifurcationanalysis. In general, the resultsobtained with the
robust stabilit y analysis are bigger than those obtained with the bifurcation analysis.
Thereason for this is that the linearization is studied in the case of the former analysis
and only local conclusionscan beobtained.
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Figure 6.1: Comparison amongthe different analyses. When a bar is not present in a
parameter, the variation in this parameter can be arbitrarily large and noeffect will be
observed ontheproperty under consideration.



Appendix A

Reducing the Matrix Bandwith

Most of the contentspresent in this sectionaretakenfrom(Diestel, 2000) and(Marti et al.,
2001), wherea novel algorithm, based ontabusearch, for reducingthe bandwidth of a
matrix ispresented andcompared with the leadingalgorithms.

A graph is a apair G = (V, E) of sets satisfiying E ⊂ [V ]2, where [V ]n denotes
thepower set of V upton-tupelsof elements. The elementsof V are called thevertices
of the graph G, the elements of E are its edges. |G| denotes the order of G (number
of vertices) and ||G||, the number of edges. Two vertices u, v are adjacent if uv is an
edgeof G.

Let f(v) bethe label of vertex v ∈ V , where each vertex, hasadifferent label. The
bandwidth of a vertex v, B(f(v)), is the maximum of the differences between f(v)
andthe labelsof itsadjacent vertices:

Bf (v) = max{|f(v) − f(u)|∀u ∈ N(v)}

where |f(v) − f(u)| denotesthe absolutevalueof f(v) − f(u) andN(v) is the set of
verticesadjacent to v. Thebandwidth of a graphG with respect to a labelingf is

Bf (G) = max{Bf(v)∀v ∈ V }.

Let B(G) be the minimum Bf (G) over all possible labelings f . The bandwidth re-
duction problem consists of findinga labelingf that minimizesBf (G). Let lij 6= 0 if
ij ∈ E andL = {lij} be the incidencematrix. Regarding this definitions, the band-
with reduction problem consists of findinga permutation of the rows and the columns
that keeps all the non-zero elements of L in a band that is as close as possible to the
main diagonal.

Several algorithmsfor solvingthebandwidth problemhasbeen developedsincethe
late1960’s (see(Marti et al., 2001)). Being themost important:

1969 ReverseCuthill -McKeeprocedure

1976 GPS

2001 Tabusearch based algorithms
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A complete and detailed explanation of the algorithms is not presented here and
the result of an assessment can be foundin (Marti et al., 2001). Despite the reverse
Cuthill -McKeeprocedure is not the best of the methods listed, its full i mplementation
in MATLAB makes it inmediately available.

60



Appendix B

Intrinsic Apoptosis Pathway
Model

Bir12 =
Casp3* XIAPCasp9 * k18+Casp3 * XIAPp2frag * k20-
Bir12 * Smac* k43+Bir12Smac * k44-Bir12 * k63;

Bir12Casp3 =
Bir12 * Casp3* k15-Bir12Casp3 * k16+Casp3 * XIAPCasp3 * k19+
Casp3* XIAPp2fragCasp3 * k21+Casp3 * XIAPCasp9Casp3 * k22-
Bir12Casp3 * Smac* k47+Bir12Smac * Casp3* k48-Bir12Casp3 * k67;

Bir12Smac =
Casp3* XIAP2Smac* k23+Bir12 * Smac* k43-Bir12Smac * k44+
Bir12Casp3 * Smac* k47-Bir12Smac * Casp3* k48-Bir12Smac * k65;

Bir3R =
Casp3* XIAP* k17+Casp3 * XIAPCasp3 * k19-Bir3R * Casp9* k31+
Bir3RCasp9 * k32+Bir3Rp2frag * k33-Bir3R * Smac* k45+
Bir3RSmac * k46-Bir3R * k64;

Bir3RCasp9 =
Casp3* XIAPCasp9 * k18+Casp3 * XIAPCasp9Casp3 * k22-
Bir3RCasp9 * Casp3* k26+Bir3R * Casp9* k31-Bir3RCasp9 * k32-
Bir3RCasp9 * Smac* k49+Bir3RSmac * Casp9* k50-Bir3RCasp9 * k68;

Bir3RSmac =
Casp3* XIAP2Smac* k23+Bir3R * Smac* k45-Bir3RSmac * k46+
Bir3RCasp9 * Smac* k49-Bir3RSmac * Casp9* k50-Bir3RSmac * k66;

Bir3Rp2frag =
Casp3* XIAPp2frag * k20+Casp3 * XIAPp2fragCasp3 * k21+
Bir3RCasp9 * Casp3* k26-Bir3Rp2frag * k33-Bir3Rp2frag * k69;

Casp3 =
Casp9* Procasp3 * k5+Casp9P * Procasp3 * k7+Casp3 * Procasp3 * k8-
Casp3* XIAP* k9+XIAPCasp3 * k10-Casp3 * XIAPCasp9 * k11+
XIAPCasp9Casp3 * k12-Casp3 * XIAPp2frag * k13+XIAPp2fragCasp3 * k14-
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Bir12 * Casp3 * k15+Bir12Casp3 * k16+Smacˆ2 * XIAPCasp3 * k39-
Casp3* XIAP2Smac* k40+Smacˆ2 * XIAPCasp9Casp3 * k41-
Casp3* Casp9P* XIAP2Smac* k42+Bir12Casp3 * Smac* k47-
Bir12Smac * Casp3* k48-Casp3 * k55;

Casp9 =
-Casp3 * Casp9* k6-Casp9 * XIAP* k27+XIAPCasp9 * k28-
Casp9* XIAPCasp3 * k29+XIAPCasp9Casp3 * k30-Bir3R * Casp9* k31+
Bir3RCasp9 * k32+Smacˆ2 * XIAPCasp9 * k37-Casp9 * XIAP2Smac* k38+
Bir3RCasp9 * Smac* k49-Bir3RSmac * Casp9* k50-Casp9 * k54+u1;

Casp9P =
Casp3* Casp9* k6+Casp3 * XIAPCasp9Casp3 * k24+
Casp3* XIAPCasp9 * k25+Bir3RCasp9 * Casp3* k26+
Smacˆ2 * XIAPCasp9Casp3 * k41-Casp3 * Casp9P* XIAP2Smac* k42-
Casp9P* k53;

Procasp3 =
-Procasp3 * k1+k2-Casp9 * Procasp3 * k5-Casp9P * Procasp3 * k7-
Casp3* Procasp3 * k8;

Smac =
-2 * Smacˆ2 * XIAP* k35+2 * XIAP2Smac* k36-2 * Smacˆ2 * XIAPCasp9 * k37
+2* Casp9* XIAP2Smac* k38-2 * Smacˆ2 * XIAPCasp3 * k39+2 * Casp3* XIAP2Smac* k40
-2 * Smacˆ2 * XIAPCasp9Casp3 * k41+2 * Casp3* Casp9P* XIAP2Smac* k42
-Bir12 * Smac* k43+Bir12Smac * k44-Bir3R * Smac* k45+Bir3RSmac * k46
-Bir12Casp3 * Smac* k47+Bir12Smac * Casp3* k48-Bir3RCasp9 * Smac* k49
+Bir3RSmac * Casp9* k50-2 * Smacˆ2 * XIAPp2frag * k51
+2* XIAPp2frag2Smac * k52-Smac * k70+u2;

XIAP =
-XIAP * k3+k4-Casp3 * XIAP* k9+XIAPCasp3 * k10-Casp3 * XIAP* k17-
Casp9* XIAP* k27+XIAPCasp9 * k28+XIAPp2frag * k34-
Smacˆ2 * XIAP* k35+XIAP2Smac * k36;

XIAP2Smac =
-Casp3 * XIAP2Smac* k23+Smacˆ2 * XIAP* k35-XIAP2Smac * k36+
Smacˆ2 * XIAPCasp9 * k37-Casp9 * XIAP2Smac* k38+
Smacˆ2 * XIAPCasp3 * k39-Casp3 * XIAP2Smac* k40+
Smacˆ2 * XIAPCasp9Casp3 * k41-Casp3 * Casp9P* XIAP2Smac* k42-XIAP2Smac * k62;

XIAPCasp3 =
Casp3* XIAP* k9-XIAPCasp3 * k10-Casp3 * XIAPCasp3 * k19-Casp9 * XIAPCasp3 * k29+
XIAPCasp9Casp3 * k30-Smacˆ2 * XIAPCasp3 * k39+Casp3 * XIAP2Smac* k40-XIAPCasp3 * k56;

XIAPCasp9 =
-Casp3 * XIAPCasp9 * k11+XIAPCasp9Casp3 * k12-Casp3 * XIAPCasp9 * k18-
Casp3* XIAPCasp9 * k25+Casp9 * XIAP* k27-XIAPCasp9 * k28-
Smacˆ2 * XIAPCasp9 * k37+Casp9 * XIAP2Smac* k38-XIAPCasp9 * k58;

XIAPCasp9Casp3 =
Casp3* XIAPCasp9 * k11-XIAPCasp9Casp3 * k12-Casp3 * XIAPCasp9Casp3 * k22-
Casp3* XIAPCasp9Casp3 * k24+Casp9 * XIAPCasp3 * k29-XIAPCasp9Casp3 * k30-
Smacˆ2 * XIAPCasp9Casp3 * k41+Casp3 * Casp9P* XIAP2Smac* k42-XIAPCasp9Casp3 * k57;

XIAPp2frag =
-Casp3 * XIAPp2frag * k13+XIAPp2fragCasp3 * k14-Casp3 * XIAPp2frag * k20+
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Casp3* XIAPCasp9 * k25-XIAPp2frag * k34-Smacˆ2 * XIAPp2frag * k51+
XIAPp2frag2Smac * k52-XIAPp2frag * k59;

XIAPp2frag2Smac =
Smacˆ2 * XIAPp2frag * k51-XIAPp2frag2Smac * k52-XIAPp2frag2Smac * k61;

XIAPp2fragCasp3 =
Casp3* XIAPp2frag * k13-XIAPp2fragCasp3 * k14-
Casp3* XIAPp2fragCasp3 * k21+Casp3 * XIAPCasp9Casp3 * k24-
XIAPp2fragCasp3 * k60]
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Appendix C

PD controller in the INAP

ThisAppendix shows theproof of (3.5) in Section3.2.1.

Claim C.1. The regulators of P1 and P2 (Section 3.2.1)are proportional derivative
controllers.

Proof. The main plot of the proof is algebraic substitution in the differential equation
correspondingto Caspase3 and 9. This ismotivated bythebiological fact theinhibitor
of caspasesactsover the activated version of the casapases. That isto say control signal
will be present in the differential equation of the activated version of the both Caspase
3 and 9.
Caspase 9 Thevariation in the concentration of Caspase 9 is:

˙[C9a] = − (k6[C3a] + k29[XIAPC3a] + k54) [C9a] +

+uR1−P2
+ uR3−P2

+ u1 (C.1)

where

uR1−P2
≡ − (k31Bir3R + k50[Bir3RSmac]) [C9a] +

+k32[Bir3RC9a] + k49[Bir3RC9a][Smac]

uR3−P2
≡ − (k27[XIAP ] + k38[XIAP2Smac]) [C9a] +

+k28[XIAPC9a] + k37[Smac]2[XIAPC9a]

uR3b−P2
≡ (k11 − k22)[C3a][XIAPC9a] − k12[XIAPC9aC3a]

uP1−P1
≡ −[C3a] (k24[XIAPC9aC3a] + k25[XIAPC9a] + k26[Bir3RC9a]) −

−k41[Smac]2[XIAPC9aC3a] + k42[C3a][C9a][XIAP2Smac]
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from the interconnection of systems (seeFigure3.9):

uR1−P2
= −P∂Kk26

k68
{[Bir3RC9a]} +

+[C3a] (k18[XIAPC9a] + k22[XIAPC9aC3a])

uR3−P2
= −P∂Kk25

k58
{[XIAPC9a]} −

−[C3a] ((k18 + k11)[XIAPC9a] + k12[XIAPC9aC3a]) (C.2)

uR3b−P2
= −P∂Kk24

k57,30
{[XIAPC9aC3a]} +

+k29[C9a][XIAPC3a] −

−k41[XIAPC9aC3a][Smac]2 + k42[C3a][C9a][XIAP2Smac]

uP1−P1
= −P∂k53

{[C9P ]} + k6[C3a][C9a]

where

P∂Kkb

ka
{γ} = P∂ka

{γ} + kb[C3a]γ

P∂ka
{γ} = γ̇ + kaγ (C.3)

Substituting the last four equations in (C.1),

˙[C9a] = −k54[C9a] − P∂k53
{[C9P ]} − P∂k58

{[XIAPC9a]} −

−P∂k57,30
{[XIAPC9aC3a]} − P∂k68

{[Bir3RC9a]} +

+u1 (C.4)

Caspase 3
For the activated version of Caspase 3:

˙[C3a] = (k5[C9a] + k7[C9P ] + k8[C3a]) [C3] − k55[C3a] +

+k41[XIAPC9aC3a][Smac]2 − k42[C3a][C9a][XIAP2Smac]

+uR2−P2
+ uR4−P2

+ uR2b−P2
+ uR3b−P2

(C.5)

where

uR2−P2
≡ − (k15[Bir12] + k48[Bir12Smac]) [C3a] +

+ (k16 + k47[Smac]) [Bir12C3a]

uR4−P2
≡ − (k9[XIAP ] + k40[XIAP2Smac]) [C3a] +

+
(

k10 + k39[Smac]2
)

[XIAPC3a]

uR2b−P2
≡ −k13[XIAPp2fragC3a] + k14[XIAPp2fragC3a]

uR3b−P2
≡ −k11[XIAPC9a][C3a] + k12[XIAPC9aC3a]
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from theother systems

uR2−P2
= −P∂k67

{[Bir12C3a]} + [C3a] (k19[XIAPC3a]

+k21[XIAPp2fragC3a] + k22[XIAPC9aC3a])

uR4−P2
= −P∂Kk19

k56
{[XIAPC3a]} − k29[C9a][XIAPC3a] +

+k30[XIAPC9aC3a]

uR2b−P2
= −P∂Kk21

k60
{[XIAPp2fragC3a]} + k24[C3a][XIAPC9aC3a]

uR3b−P2
= −P∂k57

{[XIAPC9aC3a]} − (k22 + k24)[C3a][XIAPC9aC3a] +

+k29[C9a][XIAPC3a] − k30[XIAPC9aC3a] +

+k42[C3a][C9a][XIAP2Smac]− k41[XIAPC9aC3a][Smac]2

substituting the last four equations in (C.5),

˙[C3a] = (k5[C9a] + k7[C9P ] + k8[C3a]) [C3] − k55[C3a]

−P∂k56
{[XIAPC3a]} − P∂k57

{[XIAPC9aC3a]}

−P∂k60
{[XIAPp2fragC3a]} − P∂k67

{[Bir12C3a]} (C.6)

Note that in (C.4 and C.6) four different PD controllers are present,i.e., there are
four mechanisms to regulate each oneof the activated versionsof the caspasesinvolved.
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Appendix D

SSV code

This sectioncontains thescriptsused in thepresent work.

D.1 Model linearization
file ./Eissing04/Robust/LinearizeModel.m

%This function construct the Jacobian
%of Eissings04 model with different
%options: symbolical, evaluating
%parameters to zero, numerical
%substitution, and others.

%’a’ is the variable which
%is to be preserved in the bock.
%if no input is %applied then
%every parameter is
%to be preserved.

%Input b stands for the steady state
%to evaluate the Jacobian

%if c = ’numeric’ then parameters are
%evaluated in the nominal value

function A = LinearizeModel(a,b,c)

%Detecting if there has been an input
%to the function
if nargin == 0

a = 0;
b = 0;
c = 0;

elseif nargin == 1
b = 0;
c = 0;

elseif nargin == 2
c = 0;
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end

i f iscell(a)
q = ’y’;

else
q = ’n’;
if a ˜= 0

a = {a};
q = ’y’;

end
end

na = size(a);
na = na (1,2);

%Parameters definition
syms k1 k2 k3 k4 k5 k6 k7 k8 k9
k10 k11 k12 k13 km3 km8 km9 km10 km11 km12
p = [k1 k2 k3 k4 k5 k6 k7 k8 k9
k10 k11 k12 k13 km3 km8 km9 km10 km11 km12];
np = size(p);
np = np(1,2);
pn = [5.8e-05 1.0e-05 0.0005 0.0003 0.0058
0.0058 0.0173 0.0116 0.0039 0.0039
0.0005 0.001 0.0116 0.21 464 507 81.9 0.21 40];
dimension = 8; %Dimension of the state space

%States definition
syms c8 c8a c3 c3a IAP c3aIAP CARP c8aCARP
x = [c8 c8a c3 c3a IAP c3aIAP CARP c8aCARP];

%Reactions definitions
v1 = k1 * c8a * c3;
v2 = k2 * c3a * c8;
v3 = k3 * c3a * IAP-km3 * c3aIAP;
v4 = k4 * c3a * IAP;
v5 = k5 * c8a;
v6 = k6 * c3a;
v7 = k7 * c3aIAP;
v8 = k8 * IAP - km8;
v9 = k9 * c8-km9;
v10 = k10 * c3-km10;
v11 = k11 * c8a * CARP-km11* c8aCARP;
v12 = k12 * CARP-km12;
v13 = k13 * c8aCARP;

%Differential states system
c8p = -v2-v9;
c8ap = v2-v5-v11;
c3p = -v1-v10;
c3ap = v1-v3-v6;
IAPp = -v3-v4-v8;
c3aIAPp = v3-v7;
CARPp = -v11-v12;
c8aCARPp = v11-v13;
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%Computing Jacobian
A = Jacobian([c8p c8ap c3p c3ap IAPp c3aIAPp CARPp c8aCARPp],
[c8 c8a c3 c3a IAP c3aIAP CARP c8aCARP]);

switch q
case ’n’

fprintf(’ No parameter set to zero.\n’)
case ’y’

%Find which index of the parameter vector are to be kept
k = 1;
q = 0;
if na > 1

for j = 1:na
for i =1:np

d = sym(cell2mat(a(1,j)));
if d == p(1,i)

keep(k) = i;
k = k+1;

end
end

end
elseif na == 1

for i =1:np
d = sym(cell2mat(a));
if d == p(1,i)

keep(k) = i;
end

end
end

try
keep;

catch
q = 1;

end

switch q
case 0

k = 1;
i = 1;
%Loop that sets the unwanted parameters to zero
while (i <= np)

if i == keep(1,k)
fprintf(’Do not errase. %i\n’,i)
if k < na

k = k+1;
end

else
%fprintf(’Errase. %i\n’,i)
A = subs(A,p(1,i),0);

end
i = i +1;

end
case 1

fprintf(’No such parameter.\n’)
end

end
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%Evaluate the parameters and the states in the
%nominal value in order to have a numeric matrix
if size(b) == [1 dimension]

for i = 1:dimension
A = subs(A,x(1,i),b(1,i));

end
fprintf(’ Evaluating the Jacobian in the

requested state.\n’)
A = vpa(A,3);

else
fprintf(’ Neither state nor parameter evaluation.\n’)

end

%Evaluate the parameters in the nominal value.
if c == ’numeric’

fprintf(’ Evaluating the parameters in
the nominal value.\n’)

for i = 1:np
A = subs(A,p(1,i),pn(1,i));

end
A = A;

end

D.2 Computing the SSV
file ./Eissing04/Robust/MuiII .m Function call: (MuiII(sys.a,FP))

function Miu = Main(A,FP)
clc
close all

for i = 1:19
try

Miu(i,:) = body(A,FP,i);
catch

fprintf(’ Error in Body.@ %i\n’,i)
%Mui(i,:) = [0,0];

end
end
clc

function m = body(A,FP,i)
syms p k
tol = 0.98;
q = {’k1’ ’k2’ ’k3’ ’k4’ ’k5’ ’k6’ ’k7’ ’k8’ ’k9’
’k10’ ’k11’ ’k12’ ’k13’ ’km3’ ’km8’ ’km9’ ’km10’ ’km11’ ’km12’};
pn = [5.8e-05 1.0e-05 0.0005 0.0003 0.0058 0.0058
0.0173 0.0116 0.0039 0.0039 0.0005 0.001 0.0116 0.21 464 507 81.9 0.21 40];

G = inv(p * eye * (8)-A);
Delta = subs(LinearizeModel(q(1,i),FP(1,:)),q(1,i),pn(1,i));

MDelta = k * G* Delta;

[num den] = numden(solve(det(eye(8) - MDelta),k));
num = sym2poly(num);
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den = sym2poly(den);
[ mag phase omega] = bode(tf(num,den),{1e-20 100000});
[k j] = min(mag);

%Corrects the sign of the perturrbation
if and(phase(j) < 360, phase(j) > 180)

k = k;
else

k = -k;
end

% %%%Miu plot
% figure(’Name’, strcat(’Parameter_’,
int2str(i), ’ RS’) ,’Position’,[0 500 1050 500]);
% bodemag(tf(k * den,num));
% grid;

%%% Robust Performance
syms y
We = 50000* (0.1 * p + 0.001)/(p + 0.0001);
C = [0 0 0 1 0 0 0 0];
B = [0 1 0 0 0 0 0 0]’;
fprintf(’ Now computing the

maximal allowed pertubation in order
to maintain a performance index...\n’)
%Norm of the perturbation
Beta = vpa(1/(y * norm(Delta,inf)),1);

%Transfer function from u(initial condition of C8a) to z (weighted error)
Cl = simplify(We * C * G * y * Delta * inv(eye(8) - G * y * Delta) * G * B);
[num den] = numden(1/Beta * Cl);

% Search for a convex property algorithm
LB = 0.000000005;
pitch = 3;
UB = LB + pitch;
Me = (LB + UB) / 2;

while pitch > 0.000000001
PropLB = maximal(num, den, LB);
PropUB = maximal(num, den, UB);

if and(PropLB < tol, PropUB > tol)
pitch = 0.1 * pitch;
LB = Me - pitch;
UB = Me + pitch;
Mean = (LB + UB) / 2;

elseif and(PropUB < tol, PropLB < tol)
LB = UB;
UB = UB + pitch;
Me = (LB + UB) / 2;

elseif and(PropLB > tol, PropUB > tol)
LB = LB - pitch;
UB = LB;
Me = (LB + UB) / 2;

end
end
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%%% Mui Plot for robust performance
% num = sym2poly(subs(num,’y’,Me));
% den = sym2poly(subs(den,’y’,Me));
% figure(’Name’, strcat(’Parameter_’, int2str(i), ’ RP’),
’Position’,[0 500 1050 500]);
% bodemag(tf(num, den));
% grid

m=[k 100 * k/pn(1,i) Me 100 * Me/(pn(1,i))]

%Computes the singular structured singular value
function r = maximal(num,den,j)
syms y
num = sym2poly(subs(num,’y’,j));
den = sym2poly(subs(den,’y’,j));
[mag phase omega] = bode(tf(num,den));
r = max(mag);

D.3 Variation of parameters to determine the stability
bounds

file ./Eissing04/Robust/DeltaII .m function call: DeltaII(FP)

%This function determine the maximal variation
%in a parameter while preserving stability in
%the pertrubing system.

%Regarding the perturbed model, it varies one
%parameter perturbation at a time in order to
%compute the eigenvalues and determine the stability.

%The algoritm which searches the maximum allowed
%perturbation is incremental (SLOW!)

%This values can be used to determine bounds.

function Bound = DeltaII(SS)
for j = 1:19

Bound(1,j) = Ciclic(SS,j,1);
Bound(2,j) = Ciclic(SS,j,0);

end

function bound = Ciclic(SS,j,sign)

%Parameter definition and nominal values
p = {’k1’ ’k2’ ’k3’ ’k4’ ’k5’ ’k6’ ’k7’ ’k8’
’k9’ ’k10’ ’k11’ ’k12’ ’k13’ ’km3’
’km8’ ’km9’ ’km10’ ’km11’ ’km12’};
pn = [5.8e-05 1.0e-05 0.0005 0.0003 0.0058
0.0058 0.0173 0.0116 0.0039 0.0039
0.0005 0.001 0.0116 0.21 464 507
81.9 0.21 40];
delta = 0;
i = 0;
if sign == 0
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sign = -1;
end

A = LinearizeModel(0,SS,’numeric’);
stable = isstable(A);
clc

%Delta matrix of perturbation
Cosa = subs(LinearizeModel(p(1,j),SS),p(1,j),pn(1,j));
pitch = sign * pn(1,j) / 100;

[U S V] = svd (Cosa,’econ’);
U = U(:,1);
S = S(1,1);
V = V(:,1);

W1 = U;
W2 = S* V’;

%Perturbing the original system
Cl = A + U* delta * S* V’;

fprintf(’Determining largest
allowable perturbation
before instability.\n’);
if S ˜= 0

while stable == 1
i = i + 1;

delta = delta + pitch;
Cl = A + W1* delta * W2;
stable = isstable(Cl);
if i > 1000000

stable = 0;
delta = 0;

end
end

else
delta = 0;

end

bound = pn(1,j) + delta;

function stable = isstable(A)
%Parameter definition
stable = 1;

r = eig(A);
t = size(r);
t = t(1,1);

for i=1:t
if r(i,1) > 0 %Positive EigenValue!

eig(A)
stable = 0;

end
end
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