Universidad Nacional Autónoma de México

Centro de Geociencias Campus Juriquilla Posgrado en Ciencias de la Tierra

El basamento paleoproterozoico (~1.71–1.68 Ga) Yavapai en el área Mina La Herradura en el NW de Sonora: Sus implicaciones para el desarrollo del arco magmático continental Mesozoico-Cenozoico del NW de México

TESIS

Que para obtener el grado de Maestro en Ciencias de la Tierra (Tectónica y Geología Estructural)

Presenta

Aldo Izaguirre Pompa

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

RESUMEN

Nuevos estudios de cartográfia, geocronología U-Pb en zircones, geoquímica de elementos mayores y traza e isotopía Sm-Nd se realizaron para obtener una detallada caracterización de rocas paleoproterozoicas y mesoproterozoicas que constituyen el basamento en el área Mina La Herradura, localizada a ~100 km al NW de la ciudad de Caborca, Sonora. Las rocas gnéisicas paleoproterozoicas presentan edades U-Pb entre ~1714 y 1683 Ma y valores isotópicos εNd (inicial) entre +1.7 y +0.5 con un rango de edades modelo de T_{DM} = 1.86–1.92 Ga lo que sugiere que las rocas del basamento en el área Mina La Herradura presentan características similares a las de la provincia Yavapai en el SW de Norte América y son similares a otras ocurrencias de este tipo en el NW de Sonora. Las rocas graníticas mesoproterozoicas tienen edades U-Pb entre ~1062 y 1093 Ma y valores εNd (inicial) de -2.3 y -3.1 con un rango de edades modelo de T_{DM} = 1.61–1.81 Ga y se asocian espacialmente a las rocas de la provincia Yavapai.

En este basamento, consolidado desde el Proterozoico, se estableció el arco magmático continental cordillerano Norteamericano. Este evento magmático generó rocas volcánicas y graníticas calcialcalinas de edades U-Pb entre ~176 y 157 Ma (Jurásico Medio-Tardío) en el área Mina La Herradura. Este estudio evidencia que el arco magmático Jurásico no está truncado como lo sugiere el modelo de la megacizalla Mojave-Sonora. Las rocas de arco a ambos lados de la supuesta megacizalla presentes en Sonora y sur de Arizona tienen las mismas edades y características geoquímicas. Sobre el mismo basamento se emplazaron dos pulsos magmáticos más jóvenes con características geoquímicas de subducción similares a las del pulso jurásico; el primero representado con rocas graníticas con edades entre ~76 y 69 Ma (Cretácico Tardío) y el segundo por rocas volcánicas con edades entre ~24 y 23 Ma (Oligoceno).

La deformación dúctil presente en el área Mina La Herradura afecta a rocas paleoproterozoicas, jurásicas y del Cretácico Tardío y queda acotada entre ~76 y 48 Ma, la edad de los granitos cretácicos afectados por la deformación y la edad de mica blanca de neoformación de una roca jurásica milonitizada asociada a la cabalgadura Carina,

respectivamente. Esta deformación se relaciona con la orogenia larámide que es responsable en la región de un magmatismo calcialcalino y de un metamorfismo en facies de esquistos verdes.

Por último, se concluye que el análisis geológico realizado en el área de la Mina La Herradura no apoya el modelo de la hipotética megacizalla Mojave-Sonora debido a los puntos siguientes: 1) la existencia de rocas Yavapai al SW de la traza de la hipotética estructura, (2) la continuidad del arco magmático continental Jurásico cordillerano a través de la misma y (3) la edad laramídica para fábricas dúctiles presentes en la zona a las cuales se había asignado anteriormente una edad Jurásica asociadas a la hipotética megacizalla. Todas estas evidencias geológicas sugieren que la hipótesis sea finalmente descartada y se recomienda que ya no se utilice en ninguna interpretación geológica del NW de México. En cambio se sugiere un modelo optativo que se basa en la continuidad del basamento proterozoico del SW de Estados Unidos hacia México sugiriendo una autoctonía relativa del basamento del NW de Sonora.

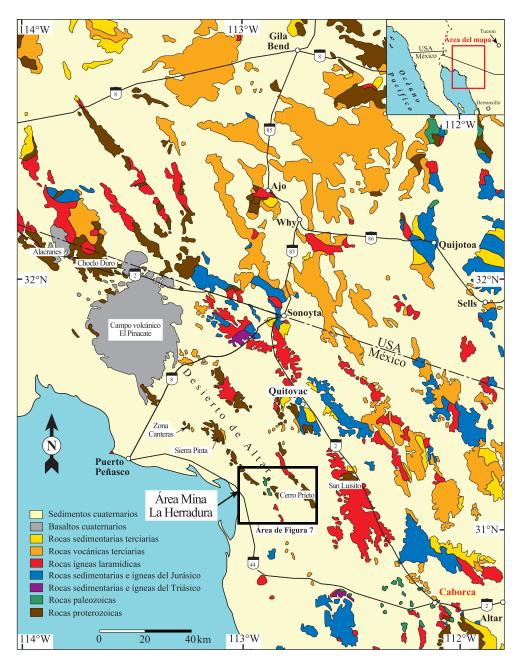
Palabras clave: Proterozoico, Geocronología U-Pb en zircones, Geoquímica, Isótopos Sm-Nd, Mina La Herradura, NW de Sonora, México.

Índice	
1. Introducción y objetivos del estudio	8
2. Antecedentes geológicos en el SW de Norte América	14
2.1. Provincias corticales paleoproterozoicas (~1.8–1.6 Ga) del SW de Laurencia	14
en Estados Unidos	
2.1.1. La provincia Mojave	17
2.1.2. La provincia Yavapai	18
2.1.3. La provincia Mazatzal	20
2.1.4. Magmatismo del Mesoproterozoico (~1.4 y ~1.1 Ga)	20
2.2. Provincias corticales paleoproterozoicas de la margen SW de Laurencia en	21
México	
2.2.1. Magmatismo Mesoproterozoico (~1.4 y ~1.1 Ga) en Sonora	24
2.3. El supercontinente Rodinia y su ruptura posterior para el establecimiento de	26
una margen continental pasiva en el SW de Laurencia	
2.4. Control temporal del arco magmático continental al sur de Arizona y al norte de Sonora	27
2.5. Concepto original de la hipotética megacizalla Mojave-Sonora (MSM)	29
3. Geología del área Mina La Herradura	37
3.1. Introducción al área Mina La Herradura	37
3.2. Trabajos previos en el área de estudio y zonas adyacentes	43
3.3. Unidades proterozoicas	46
3.3.1. Paragneis Cerro Prieto	46
3.3.2. Orto-augen gneis Cerro Prieto-Carina	46
3.3.3. Ortogneis La Herradura	51
3.3.4. Paragneis Sierra Prieta	53
3.3.5. Cuarcita Sierra Prieta	53
3.3.6. Metagranito La Prieta	56
3.3.7. Anortosita Sierra Prieta	58
3.4. Unidades paleozoicas	60
3.4.1. Calizas y cuarcitas La Ventana	60
3.5. Unidades mesozoicas	62
3.5.1. Metariolita Carina	62
3.5.2. Metaandesita El Sahuaro	64
3.5.3. Granito Carina	64
3.5.4. Dacita Cerro Prieto	67
3.5.5. Granito Los Indios	67
3.5.6. Granito Sierrita Blanca	70
3.6. Unidades cenozoicas	71
3.6.1. Andesita basáltica La Herradura	71

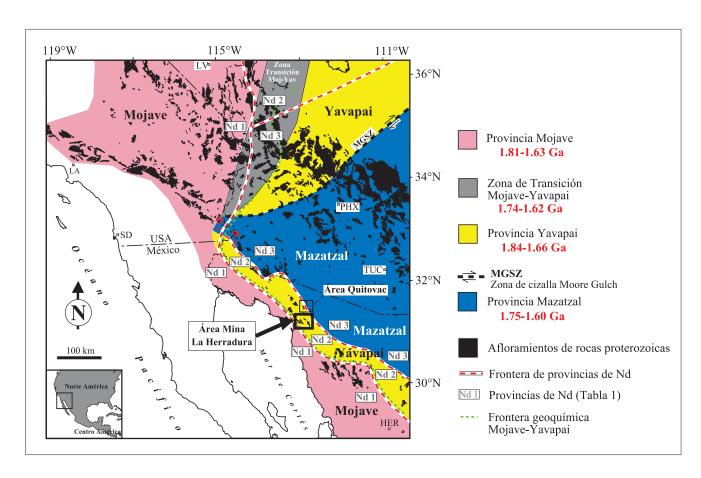
3.6.2. Dacita El Dipolo	71
3.6.3. Depósitos aluviales miocénicos a recientes	74
4. Técnicas analíticas	75
4.1. Separación de zircones	75
4.2. Geocronología U-Pb en zircones	75
4.2.1. Geocronología U-Pb por SHRIMP-RG (Sensitive High Resolution Ion MicroProbe-Reverse Geometry)	75
4.2.2. Geocronología U-Pb por LA-ICP-MS (<i>Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry</i>)	77
4.3. Geocronología ⁴⁰ Ar/ ³⁹ Ar	78
4.4. Muestreo y preparación para análisis geoquímicos de elementos mayores, traza e isótopos radiogénicos	80
4.5. Geoquímica de elementos mayores (XRF)	80
4.6. Geoquímica de elementos traza y tierras raras (INAA)	80
4.7. Isótopos de Sm-Nd en roca total (ID-TIMS)	81
5. Resultados geocronológicos U-Pb y Ar-Ar	82
5.1. Introducción	82
5.2. Muestras paleoproterozoicas (~1.7 Ga)	82
5.2.1. Orto-augen gneis Cerro Prieto-Carina	82
5.2.2. Ortogneis La Herradura	94
5.3. Muestras mesoproterozoicas (~1.1 Ga)	96
5.3.1. Metagranito La Prieta	96
5.4. Muestras jurásicas	99
5.4.1. Metariolita Carina	99
5.4.2. Metaandesita El Sahuaro	102
5.4.3. Granito Carina	102
5.4.4. Dacita Cerro Prieto	106
5.5. Muestras cretácicas	106
5.5.1. Granito Los Indios	106
5.5.2. Granito Sierrita Blanca	107
5.6. Muestras cenozoicas	107
5.6.1. Andesita basáltica La Herradura	107
5.6.2. Dacita El Dipolo	107
5.6.3. Diques andesíticos	109
6. Resultados geoquímicos de elementos mayores, traza y de tierras raras (REE)	111
6.1. Introducción	111
6.2. Datos geoquímicos de las rocas ígneas paleoproterozoicas y mesoproterozoi	cas 111
6.2.1. Elementos mayores	115
6.2.2. Elementos traza y tierras raras (REE)	115

6.3. Datos geoquímicos de las rocas ígneas del Jurásico Medio-Superior, Cretácico	120
Tardío y Oligoceno	
6.3.1. Elementos mayores	120
6.3.2. Elementos traza y tierras raras (REE)	122
7. Resultados isotópicos Sm-Nd en roca total	127
7.1. Datos de rocas ígneas plutónicas paleoproterozoicas y mesoproterozoicas	127
8. Discusión	131
8.1. Las rocas paleoproterozoicas tipo Yavapai del área Mina La Herradura y su importancia para el entendimiento del margen SW de Laurencia	131
8.1.1. Control temporal del magmatismo proterozoico (U-Pb en zircones)	131
8.1.2. Características geoquímicas de las rocas proterozoicas (XRF y INAA)	134
8.1.3. Estudios isótopicos de Sm-Nd en rocas proterozoicas	135
8.2. Magmatismo jurásico de arco continental en el área Mina La Herradura	138
8.3. Correlación geocronológica y geoquímica entre las rocas del Jurásico Medio	136
del área Mina La Herradura y las rocas del arco magmático cordillerano	
Norteamericano en el sur de Arizona y norte de Sonora	
8.3.1. Comparativa temporal a partir de geocronología U-Pb en zircones	141
8.3.2. Geoquímica comparativa de elementos mayores y traza	142
8.4. Magmatismo de subducción durante el periodo larámide y el Oligoceno en el	146
área Mina La Herradura	
8.5. Análisis de la hipotética megacizalla Mojave-Sonora (MSM) en el área Mina	149
La Herradura	
8.5.1. El basamento paleoproterozoico Yavapai presente en el área Mina La Herradura	149
8.5.2. Implicación de la presencia de rocas de arco jurásico en el área	150
Mina La Herradura	
8.5.3. Deformación larámide para rocas del área Mina La Herradura	151
8.5.4. Otros argumentos regionales que no apoyan la existencia de la	153
hipotética megacizalla Mojave-Sonora (MSM)	
9. Conclusiones	155
10. Agradecimientos	158
11. Referencias bibliográficas	160
12. Apéndices	178

Apéndice A: Tablas de recopilación de datos bibliográficos y mapa de ubicación	
de afloramientos	
Apéndice B: Imágenes de catodoluminiscencia de zircones	186


1. Introducción y objetivos del estudio

El presente estudio representa un nuevo aporte a la geología de Sonora y tiene como objetivo caracterizar temporal, geoquímica e isotópicamente las rocas de basamento paleoproterozoico del área Mina La Herradura sobre las cuales se emplazaron las rocas del arco magmático continental al iniciarse la subducción en la margen SW de Norte América en el Mesozoico y que perduró hasta el Mioceno.


El área Mina La Herradura está ubicada en la porción SW del continente norteamericano (Laurencia) en el NW de Sonora (Figura 1), y representa una zona excelente de estudio para comprobar y poder determinar la distribución de las provincias paleoproterozoicas del basamento que sugieren que el basamento presente en Arizona y California continua hacia Sonora adquiriendo un doblez con una orientación estructural NW-SE (Figura 2; Iriondo, 2007; Iriondo y Premo, 2009). A esta nueva propuesta de distribución de basamentos en el NW de México se le ha denominado doblez oroclinal Caborca (*Caborca oroclinal bend*; Iriondo, 2007; Iriondo y Premo, 2009). Esta nueva propuesta permite evaluar las reconstrucciones del supercontinente Rodinia que requieren de un buen entendimiento geológico de cada margen continental implicado en las diferentes conexiones propuestas hasta la fecha (Figura 3).

Estudiando las rocas del área Mina La Herradura, se puede también contribuir al entendimiento del margen continental activo del SW de Norte América que originó rocas ígneas calcialcalinas asociadas a subducción. La presencia de estas rocas de arco continental tiene implicaciones importantes para evaluar algunos conceptos e hipótesis existentes en la geología del NW de México (p.ej., megacizalla Mojave-Sonora). Finalmente, esta zona en el NW de Sonora tiene gran importancia para la prospección minera, ya que en ella existe el cinturón de tipología oro orogénico más importante de México y donde existen minas que en la actualidad están entre las más importantes en producción de oro (p.ej., Mina La Herradura).

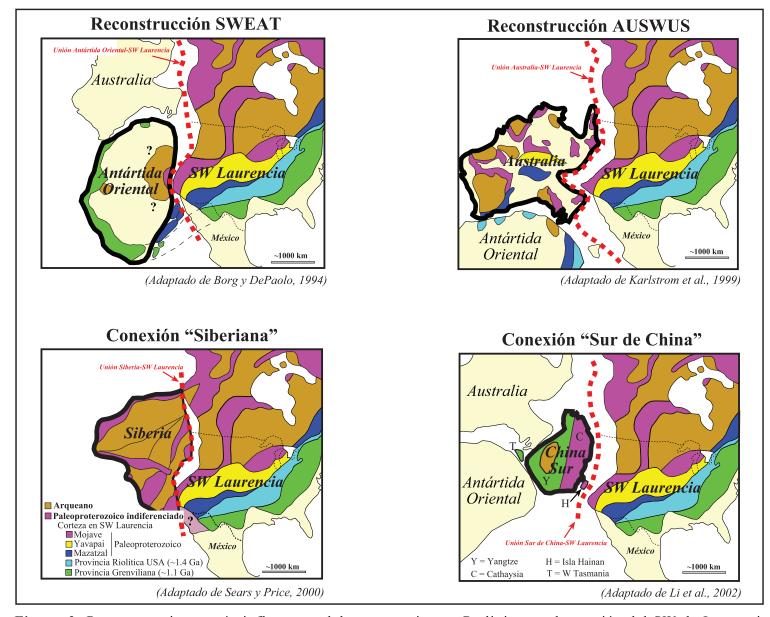

Uno de los objetivos principales de este estudio es entender la relación temporal y estructural de los conjuntos proterozoicos en el NW de México a la luz de los datos generados en esta tesis y en otros trabajos recientes. Nuevas informaciones sobre el

Figura 1. Mapa geológico regional del noroeste de Sonora, México y del SW de Arizona (USA). El recuadro negro indica el área de estudio Mina La Herradura. Para mayor referencia, la ciudad de Caborca está en letras rojas. Figura modificada de Iriondo *et al.* (2005).

Figura 2. Distribución tentativa de las provincias paleoproterozoicas Mojave, Yavapai y Mazatzal en el SW de Laurencia incluyendo los afloramientos del NW de México (Iriondo y Premo, 2009). El rango de edades de cristalización para cada una de las provincias está basado en la recopilación de edades de Iriondo *et al.* (2004). También se presenta, de forma tentativa, la extensión de la traza de fronteras de Nd y de las series geoquímicas al internarse hacia México (Iriondo y Premo, 2009). Las abreviaciones son LA: Los Ángeles, SD: San Diego, LV: Las Vegas, PHX: Phoenix, TUC: Tucson, HER: Hermosillo. Figura modificada de Iriondo y Premo (2009).

Figura 3. Reconstrucciones más influyentes del supercontinente Rodinia para la porción del SW de Laurencia según diferentes autores. Las agrupaciones de provincias están basadas, entre otras características geológicas, en las edades modelo de Nd para las diferentes cortezas continentales. (SWEAT: *United States-East Antártida*; AUSWUS: Australia-Western United States). Figura modificada de Iriondo y Premo (aceptado).

basamento, así como las rocas del arco magmático mesozoico, no coinciden con la hipótesis de la megacizalla Mojave-Sonora (MSM; por sus siglas en inglés). Esta hipótesis sugiere que en el Jurásico Tardío existió una falla lateral izquierda de gran envergadura con orientación NW-SE, y que se extendió desde el desierto de Mojave en California, pasando por el estado de Sonora, hasta culminar en la región del Golfo de México (Silver y Anderson, 1974). Esta falla, supuestamente, acomodó entre ~800 y 1000 km de desplazamiento convirtiendo a las rocas pre-jurásicas de la porción del área Mina La Herradura en alóctonas con respecto a Norte América ya que habrían sido transportadas desde la región del Valle de la Muerte (*Death Valley*) en California. Dos de los argumentos principales esgrimidos por los proponentes de esta megacizalla son: (1) la yuxtaposición aparente de dos bloques de basamento con rocas paleoproterozoicas de diferente edad en Sonora. Estos bloques se denominaron como bloque Caborca (al suroeste de la falla con rocas de edades ~1.7-1.8 Ga) y bloque Norte América (al noroeste de la misma con rocas de edades ~1.6–1.7 Ga); (2) Otro argumento es el truncamiento aparente de afloramientos de rocas volcánicas y plutónicas del arco magmático jurásico (~175–145 Ma) que sugiere que estas rocas jurásicas sólo existen en el bloque Norte América al norte de la traza de la MSM (bloque Norte América) y no en el bloque Caborca al SSW de la misma (Campbell y Anderson, 1998, 2003). También este argumento sugiere que parte de este arco jurásico fue transportado a lo largo de la MSM hacia lo que ahora es la porción central de México (Anderson y Silver, 1978, 1981; Jones et al., 1995).

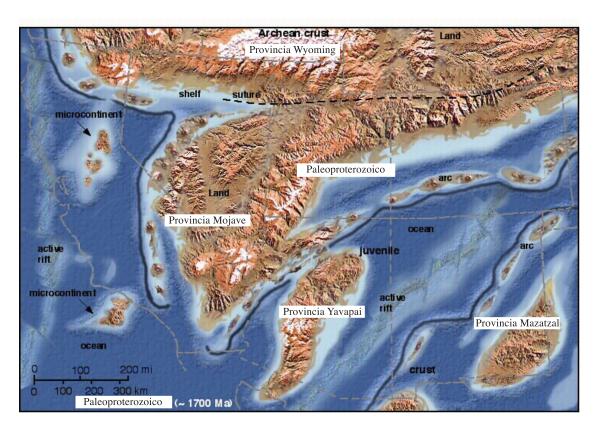
Para iniciar este estudio se concretaron un par de hipótesis para su evaluación con base en los objetivos anteriormente citados. La primera de estas hipótesis sugiere que las rocas ígneas paleoproterozoicas que afloran en el área Mina La Herradura en el NW de Sonora, previamente definidas como pertenecientes al bloque Caborca en el concepto de la hipotética megacizalla Mojave-Sonora (Silver y Anderson, 1974), son rocas con características similares a las de la provincia Yavapai del SW de Norte América, al igual que las rocas de la zona de Quitovac al norte del área de estudio (Iriondo, 2001; Iriondo *et al.*, 2004). La segunda hipótesis sugiere que lo que se ha considerado como bloque Caborca en el área Mina La Herradura es un bloque autóctono o para-autóctono con respecto al

bloque Norte América desde el Paleoproterozoico hasta la actualidad y no un bloque alóctono resultado del desplazamiento lateral izquierdo a lo largo de la MSM que causaría el truncamiento de afloramientos de rocas jurásicas del arco magmático continental (Campbell y Anderson, 2003). Según el presente estudio, en este conjunto de basamentos paleoproterozoicos autóctonos o para-autóctonos (Caborca-Norte América) se estableció el arco magmático continental al iniciarse la subducción al comienzo del Mesozoico y que perduró hasta el Mioceno.

En este trabajo se presenta una cartografía geológica original en el área Mina La Herradura que fue la semilla para poner a prueba las hipótesis mencionadas anteriormente. Esta cartografía se realizó durante un período de 2 meses de trabajo de campo y tenía como objetivo principal reunir información litológica y estructural que, combinada con estudios petrográficos, ayudará a elegir las áreas de muestreo para obtener un contexto geológico adecuado para la realización de estudios analíticos. Las muestras así obtenidas sirvieron para realizar estudios de geocronología U-Pb en zircones para determinar las edades de cristalización de muchas de las unidades en el área. También se empleó geocronología Ar-Ar para fechar las unidades volcánicas más jóvenes pertenecientes al Oligoceno. Así mismo, se realizó un fechamiento de Ar-Ar de moscovita de neoformación asociada a una unidad jurásica milonitizada para determinar la edad de deformación y metamorfismo. Con estas muestras geológicas también se realizaron estudios geoquímicos de elementos mayores y traza en roca total de las unidades fechadas y algunas determinaciones de isotópos de Sm-Nd en roca total de rocas proterozoicas. En conjunto, todos estos estudios de campo y analíticos ayudaron a establecer la petrogénesis de estas rocas y de esa manera proponer la evolución geológica del área Mina La Herradura.

2. Antecedentes geológicos en el SW de Norte América

2.1. Provincias corticales paleoproterozoicas (~1.8–1.6 Ga) del SW de Laurencia en Estados Unidos


Las provincias paleoproterozoicas del SW de Norte América son tres: Mojave, Yavapai y Mazatzal. Estas tres provincias corticales constituyen el basamento de la porción SW de Laurencia; cada provincia se puede definir como un dominio geográfico de dimensiones continentales que está constituido por rocas paleoproterozoicas con características geológicas y con firmas geoquímicas e isotópicas que hacen posible la discriminación entre cada una de ellas (Figura 2; Tabla 1). Geográficamente, entre las provincias, existen límites difusos (suturas) que pueden ser ocasionalmente zonas de transición debido a su edad y a la naturaleza de la formación de las mismas (Figura 2).

Este concepto de provincias ha ayudado a reconstruir la historia de la formación continental de la margen SW de Laurencia. Una de las hipótesis más usadas para explicar su formación sugiere que estas provincias se asemejaban a grandes áreas orogénicas de cinturones de arcos magmáticos de islas y/o subcontinentes, y que por medio de mecanismos tectónicos compresivos y cierre de cuencas oceánicas, sufrieron amalgamación formando así esta parte SW de Laurencia (Figura 4) [Karlstrom *et al.*, 1987; Van Schmus *et al.*, 1993]. Por otra parte, y recientemente, Bickford y Hill (2007) han cuestionado dicha teoría sugiriendo que la historia geológica de estas provincias por medio de amalgamación es insuficiente para explicar evidencias geológicas que indican rifting continental y reemplazamiento de una corteza preexistente en diferentes tiempos del Paleoproterozoico, para esta porción SW de Laurencia.

Finalmente, hayan sido procesos compresivos o extensionales (rifting) y/o reemplazamiento de una corteza preexistente, el SW de Laurencia tuvo que haber sido formado entre los ~1.9 y 1.6 Ga (Figura 2) [Karlstrom *et al.*, 1987; Karlstrom y Bowring, 1988; Karlstrom y Bowring, 1993; Wooden y Miller, 1990]. Se piensa que entre ~1.7 y 1.4 Ga inició la amalgamación del supercontinente Rodinia (Figura 3) que incluye a Laurencia

Tabla 1. Características generales de las rocas ígneas corticales paleoproterozoicas de las provincias del basamento del SW de Estados Unidos.

Características	Provincia Mojave	Zona Transicional	Provincia Yavapai	Provincia Mazatzal
Edad del magmatismo (U-Pb de zircones)			·	
Magmatismo paleoproterozoico				
Granitoides y rocas volcánicas	1809–1635 Ma	1740–1620 Ma	1840–1662 Ma	1751–1625 Ma
Magmatismo mesoproterozoico				
• Rocas plutónicas (granitos)	1430–1335 Ma	1740–1620 Ma	1480–1400 Ma	1440–1420 Ma
 Rocas plutónicas y volcánicas 	1220–1069 Ma	1100 Ma	No disponible	1110–1075 Ma
Tipo de roca plutónica granítica	Monzogranito, sienogranito,	Granodiorita, cuarzomonzonita y	Cuarzodiorita, tonalita, granito y	Granodiorita, granito y diorita
	granodiorita y diorita	granito	granodiorita	
Deformación				
Orogenia	Orogenia Ivanpah (~1.70 Ga)	Orogenia Ivanpah-Yavapai	Orogenia Yavapai (~1.70 Ga)	Orogenia Mazatzal (~1.675–1.625 Ga)
Tipo de deformación	Plegamiento orientado hacia el NE y fuertes foliaciones orientadas NE	Intensa folición orientada hacia el NE	Intensa foliación orientada hacia el NE	Intensa foliación orientada hacia el NE
• Formación de granitos	Granitos pre, sin y postorogénicos	Granitos pre, sin y postorogénicos	Granitos pre, sin y postorogénicos	Granitos pre, sin y postorogénicos
Edades de zircones en metasedimentos	~2.7–1.8 Ga	No disponible	~1.75–1.71 Ga	~1.8–1.65 Ga
Metamorfismo de rocas corticales	Alto grado de anfibolita a granulita	Bajo grado de esquitos verdes	Bajo grado de esquitos verdes	Esquitos verdes
		a mediano grado de anfibolita	a mediano grado de anfibolita	
Geoquímica de granitos paleoproterozoicos				
• Elementos mayores				
 Serie geoquímica 	Calcialcalina alta-ultra potásica	Calcialcalina alta potásica	Calcialcalina	Calcialcalina
• Fe/Mg	Alto	Alto	Bajo	Bajo
 K₂O en granitos pre y sin orogénicos 	Muy alto (> 5 % peso)	Alto	Bajo	Bajo
• Elementos traza y tierras raras REE				
• Rb, Ba, Y, Th y REE	Muy enriquecidos	Enriquecidos	Empobrecidos	Empobrecidos
 Diagrama discriminatorio Nb-Y 	Granitos de intraplaca	Gratitos de intraplaca y de arco volcánico	Granitos de arco volcánico	Granitos de arco volcánico
Isotopos radiogénicos de granitoides paleoproterozoicos				
• Isótopos de Pb				
● U/Pb	Bajo	Alto	Alto	Alto
● Th/U	Alto (> 4)	En promedio (~4)	Bajo (~2)	En promedio (~4)
● Th/Pb	Alto	Un promedio de todas	Bajo	Un promedio de todas
• Isótopos de Nd				
● εNd ~1.75 Ga	(-3 a +1) (-5.5 a -1.4) en Death valley	Alto y variable entre la provincia Mojave y Yavapai	(+3.5 a +4.7) (+0.8 to +3.0) en Grand Canyon	(+5) derivado mayormente de un manto primitivo paleoproterozoico
● Edad Modelo de Nd (T _{DM})	2.3–2.0 Ga arriba de 2.6 Ga en Death valley	Alto y variable entre la provincia Mojave y Yavapai	1.85–1.60 Ga 1.95–1.85 Ga en Grand Canyon	1.8–1.7 Ga
• Provincia Nd	Provincia de Nd 1	Provincia de Nd 1, 2 y 3	Provincia de Nd 2 y 3	Provincia de Nd 3

Figura 4. Dibujo de la distribución tentativa de las provincias paleoproterozoicas Mojave, Yavapai y Mazatzal en el SW de Laurencia a los ~1700 Ma. En la parte superior se incluye la localización del cratón arqueano de la provincia Wyoming. Obsérvese que estas grandes provincias (bloques) están separadas por "*rift* activos". También se observa el momento de colisión entre las provincias Mojave y Yavapai que generó la orogenia Ivanpah o Yavapai (en http://jan.ucc.nau. edu/~rcb7/pcpaleo.html).

como parte central del supercontinente y que tuvo que haberse estabilizado para tiempos mesoproterozoicos de ~1.1 Ga (Li *et al.*, 2008).

En la literatura las rocas del basamento paleoproterozoico del SW de Norte América se han caracterizado, además de usar estudios cartográficos, a partir de estudios geocronológicos U-Pb en zircones para determinar la edad de cristalización de rocas ígneas (plutónicas y volcánicas). También se han realizado estudios geoquímicos de roca total que han permitido determinar su petrogénesis a partir del análisis del comportamiento de los elementos mayores y traza. Igualmente, se ha demostrado la utilidad de los estudios isotópicos, principalmente el uso de la sistemática Pb-Pb y Sm-Nd (p.ej., Wooden y Miller, 1990; Iriondo *et al.*, 2004) para caracterizar petrogenéticamente las rocas paleoproterozoicas del SW de Laurencia.

Como se mencionó anteriormente, las provincias paleoproterozoicas de edades ~1.8 a 1.6 Ma en el SW de Laurencia son tres: Mojave, Yavapai y Mazatzal, y a continuación se presenta una descripción general de estas tres provincias basada en información publicada en estudios de basamento en Estados Unidos y recopilada por Iriondo (2001). Para su fácil inspección y comparación estas características geológicas se resumen en la Tabla 1.

2.1.1. La provincia Mojave

La provincia cortical Mojave, localizada al sur de Nevada y centro-sur de California, es la más distintiva de las tres provincias paleoproterozoicas, ya que se ha propuesto que, por lo menos en parte, se originó a partir de la renovación de una antigua corteza continental preexistente de edad arqueana y/o paleoproterozoica (~2.7–2.0 Ga). Se estima que algunos magmas precursores de rocas ígneas de esta provincia posiblemente asimilaron hasta un ~40% de la corteza preexistente (Wooden y Miller, 1990; Rämö y Calzia, 1998).

Las rocas plutónicas que conforman la provincia Mojave en el SW de Estados Unidos son de composición variable (monzogranitos, sienogranitos, granodioritas y dioritas), con edades de cristalización de ~1635 a 1809 Ma y características petrogenéticas generalmente asociadas a ambientes de "intraplaca" (Wooden y DeWitt, 1991; Bender,

1994). Estas rocas presentan fábricas ortognéisicas y en general un alto grado metamórfico (anfibolita a granulita).

Las rocas de la provincia Mojave fueron deformadas a los ~1.7 Ga, supuestamente por los procesos de amalgamación generados por el proceso orogénico conocido como la orogenia Ivanpah en California (Wooden y Miller, 1990; Wooden y DeWitt, 1991) [Figura 4], también conocida en Arizona como orogenia Yavapai (Karlstrom *et al.*, 1987). Esta orogenia se caracteriza por una fuerte deformación y un metamorfismo de alta temperatura y baja presión, con fábricas estructurales orientadas principalmente NNE (Wooden y Miller, 1990).

Los análisis de elementos mayores y traza de rocas ígneas de la provincia Mojave encontrados en la literatura presentan un alto enriquecimiento en K₂O y muestran relaciones Fe/Mg muy elevadas. También las relaciones de K₂O/Na₂O son siempre mayores a uno. Estas rocas de la provincia Mojave también se encuentran mayormente enriquecidas en elementos de radio iónico grande (LILE) tales como Rb, Ba, Pb, y en otros elementos traza (Y, Th) y sucede lo mismo con las tierras raras (REE). El comportamiento de los elementos usados para generar los diagramas discriminatorios de Pearce *et al.* (1984) [Nb-Y y Rb-(Nb+Y)] indican que las rocas graníticas de esta provincia fueron formadas en un ambiente tectónico de intraplaca (Bender, 1994).

Los datos isotópicos Sm-Nd existentes para rocas ígneas paleoproterozoicas (~1.7 Ga) de la provicia Mojave muestran valores iniciales de épsilon Nd (€Nd) de -3 a +1.0 (tendencias negativas) y puntualmente entre -5 y -1.4 para rocas graníticas en la región de *Death Valley* (Rämö y Calzia, 1998). Así mismo, estas rocas presentan edades modelo (T_{DM}) de ~2.0 a 2.4 Ga que corresponden a un basamento definido como provincia de Nd 1 por Bennett y DePaolo (1987) [Figura 2].

2.1.2. La provincia Yavapai

La provincia paleoproterozoica Yavapai, en sus afloramientos más representativos en la zona suroccidental y centro de Arizona (Figura 2), se compone de rocas plutónicas de composición variable (cuarzodiorita, tonalitas, granitos y granodioritas) y edades de ~1710

a 1750 Ma. A esta provincia se le asocian rocas volcánicas, volcaniclásticas y rocas de piso oceánico tales como lavas almohadilladas, así como flujos de rocas félsicas. Las características petrogenéticas de las rocas ígneas de esta provincia son mayoritariamente "calcialcalinas", es decir, rocas formadas en ambiente de arco volcánico (Figura 2) [Karlstrom *et al.*, 1987; Karlstrom y Bowring, 1988; Duebendorfer *et al.*, 1998].

La provincia Yavapai sufrió una fase de deformación a los ~1.7 Ga, en el evento denominado como orogenia Yavapai (Karlstrom *et al.*, 1987), la cual es contemporánea a la orogenia Ivanpah, ocurrida en la provincia Mojave y que está bien representada en la zona del *Death Valley* en California. El grado metamórfico adquirido por estas rocas es de medio a alto con fábricas estructurales que se encuentran orientadas principalmente en una dirección NNE-SSW.

Otras características de las rocas ígneas presentes en la provincia Yavapai incluyen que la mayoría de las rocas tienen una composición en elementos mayores como K₂O y Na₂O y traza menos enriquecida que la de las rocas de la provincia Mojave, así como una relación Fe/Mg más baja. Las rocas de la provincia Yavapai no muestran un enriquecimiento notable en elementos de radio iónico grande (LILE), como lo son el Rb, Ba, Pb y de otros elementos traza (Y, Th); ni en tierras raras (REE). El comportamiento de los elementos usados para los diagramas discriminatorios de ambiente de formación de granitos de Pearce *et al.* (1984) [Nb-Y y Rb-(Nb+Y)] sugiere que la gran mayoría de las rocas ígneas de la provincia Yavapai fueron formadas en un ambiente de arco volcánico (Bender, 1994).

Los datos isotópicos Sm-Nd de rocas paleoproterozoicas (~1.7 Ga) de la provincia Yavapai, en contraste con los de la provincia Mojave, muestran valores iniciales de €Nd más positivos (+4.7 a +3.5) y edades modelo de T_(DM) ~1.65–1.85 Ga, que son más cercanas a la edad de cristalización de las rocas, y corresponden a rocas de la provincia de Nd 2 (Bennett y DePaolo, 1987). Sin embargo, autores como Wooden y Dewitt (1991) mencionan que para algunas zonas del Yavapai, como las cercanas al Gran Cañón del Colorado en Arizona, los valores de €Nd varían entre +3.0 a +0.8 y con correspondientes edades modelo entre ~1.85 y 1.95 Ga.

2.1.3. La provincia Mazatzal

La provincia paleoproterozoica Mazatzal, con afloramientos más representativos al sureste y centro de Arizona (Figura 2), se distingue por tener rocas plutónicas de varias composiciones (granodiorita, granito y dioritas), y además por contener rocas volcánicas y volcaniclásticas de piso oceánico de trasarco como diques máficos, lavas almohadilladas y turbiditas. Las edades de cristalización de las rocas plutónicas varían entre ~1620 y 1750 Ma y presentan características petrogenéticas "calcialcalinas" indicadoras de ambientes de arco volcánico (Karlstrom *et al.*, 1987; Karlstrom y Bowring, 1988).

Las rocas de la provincia Mazatzal sufrieron metamorfismo y deformación entre ~1.67 y 1.62 Ga durante la orogenia Mazatzal asociada al proceso de amalgamación que formó la parte SW de Laurencia (Karlstrom *et al.*, 1987). El grado metamórfico adquirido por estas rocas es relativamente bajo (esquisto verde) y presenta fábricas estructurales orientadas NNE-SSW.

Los datos isotópicos Sm-Nd de las rocas ígneas paleoproterozoicas (~1.7) de la provincia Mazatzal muestran valores iniciales de €Nd en general muy positivos (+5) que corresponden básicamente a rocas derivadas de un manto primitivo del paleoproterozoico. Las edades modelo de ~1.7 a 1.8 Ga (Figura 2) en conjunto permiten agruparlas para formar la provincia de Nd 3 en el SW de Estados Unidos (Bennett y DePaolo, 1987).

2.1.4. Magmatismo del Mesoproterozoico (~1.4 y ~1.1 Ga)

El magmatismo Mesoproterozoico en el SW de Laurencia se generó en básicamente dos pulsos a ~1.4 y ~1.1 Ga. El pulso magmático mesoproterozoico más antiguo se inició ~200 Ma después del ensamblado de las provincias paleoproterozoicas (Mojave, Yavapai y Mazatzal) que iniciaron la amalgama del supercontinente Rodinia. Anderson (1983) concluye que el magmatismo de ~1.4 Ga es uno de los pulsos magmáticos más importantes presentes en Norte América y además sugiere una formación del mismo en un ambiente anorogénico. Se piensa que después del ensamblado de provincias que generaron el SW de Laurencia en el Paleoproterozoico, la región sufrió un gran número de procesos de extensión cortical intracratónico, básicamente intentos de ruptura continental (rifting), que

generaron un extenso magmatismo de tipo anorogénico, que formó rocas plutónicas principalmente silícicas a los ~1.4 Ga (Mosher, 1998). En la región centro oriental de Laurencia se generó poco magmatismo mesoproterozoico (Mosher, 1998) pero no fue hasta los ~1.1 Ga, que se intensificó, generando rocas plutónicas y volcánicas (p.ej., granitoides, diques y sills de diabasa y anortositas) que se emplazaron en zonas de debilidad como en cuencas sedimentarias intracratónicas (p.ej., el batolito de Pikes Peak, Smith *et al.* 1999; diabasas y basaltos en el Gran Cañón en Arizona, Timmons *et al.*, 2005).

2.2. Provincias corticales paleoproterozoicas de la margen SW de Laurencia en México

Los primeros estudios geocronológicos sobre el basamento paleoproterozoico del NW de México fueron los realizados en Sonora por Damon *et al.* (1961, 1962) utilizando técnicas geocronológicas de K-Ar y Rb-Sr, que sirvieron para proponer que el basamento proterozoico del SW de USA podría extenderse hacia Sonora (p.ej., la zona del Bámuri).

Posteriormente, en la época de los 70's, se hicieron trabajos de cartografía geológica en el basamento ígneo metamórfico proterozoico principalmente en la zona del Bámuri (Longoria *et al.*, 1978; Longoria y González, 1979).

Silver y Anderson (1974) y Anderson y Silver (1978, 1979) realizaron trabajos de cartografía y geocronología de U-Pb en zircones que les permitió identificar rocas del basamento cristalino paleoproterozoico (~1.8–1.6 Ga) y mesoproterozoico (~1.4 y ~1.1 Ga) en el SW de Sonora.

Posteriormente, Iriondo (2001) e Iriondo *et al.* (2004) realizaron un estudio sistemático (cartografía geológica, geocronología, geoquímica e isotopía) del basamento paleoproterozoico en la zona de Quitovac en el NW de Sonora localizada a 40 km al norte del área Mina La Herradura (Figura 1). Este estudio a sido la semilla para estudios posteriores de las provincias del Paleoproterozoico en el NW de México. En esta zona se confirmó la existencia de dos bloques de basamento paleoproterozoico para la región de Quitovac que en la literatura hasta ese entonces se conocían como los bloques Caborca y Norte América. Se concluyó que las rocas presentes en el bloque occidental (bloque

Caborca) corresponden a rocas con características similares a las de la provincia Yavapai en Estados Unidos presentando edades de cristalización de ~1693 a 1777 Ma y valores iniciales de €Nd de +2.6 a +0.6, y con edades modelo correspondientes de T_(DM) de ~1.88 a 2.07 Ga. Por otro lado, las rocas presentes en el bloque oriental (bloque Norte América) corresponden a rocas con características similares a las rocas existentes en la provicia Mazatzal, con edades de cristalización de ~1656 a 1714 Ma y valores de €Nd de +3.4 a +3.9, y con edades modelo de T_(DM) de ~1.74 a 1.80 Ga.

Posteriormente, Valenzuela-Navarro *et al.* (2003) reportaron una edad de 1730 ± 9 Ma para el granito El Crestón, ubicado en los alrededores de la mina de cobre-molibdeno El Crestón en la región de Opodepe (Sonora central). También reportaron un valor de ϵ Nd inicial de ± 3.1 para este granito, considerándolo como basamento paleoproterozoico tipo Yavapai.

Dórame-Navarro *et al.* (2004) y Castiñeiras *et al.* (2004 a, b) señalan que en la región del Rancho el Bámuri y Cerros El Tecolote, ubicada a ~60 km al SSW de Caborca, existen rocas gnéisicas cuyas características sugieren su similitud con las rocas de la provincia paleoproterozoica Mojave. En particular reportan rocas ígneas con edades de cristalización U-Pb en zircones de ~1770 a 1780 Ma y presentan valores iniciales de €Nd de -5.0 a +0.5 calculados a su edad de cristalización.

Anderson y Silver (2005) publicaron una serie de resultados geocronológicos U-Pb en zircones de rocas proterozoicas, que en el pasado sólo se habían dado a conocer como comunicación personal o simplemente fueron reportados en resúmenes de congresos geológicos. Estos fechamientos que se presentan en el Apéndice A corresponden a las zonas de El Bámuri, Cerros El Tecolote, mina de cobre Cananea, San Antonio, Sierra Santa Rosa y Seven Hills. Estas son localidades que en su mayoría pertenecen a rocas asignadas al bloque Caborca definido a partir del modelo de la hipotética megacizalla Mojave-Sonora (MSM).

Nourse *et al.* (2005) realizaron estudios sistemáticos en el basamento paleoproterozoico ígneo en la porción norte del campo volcánico Cuaternario de El Pinacate en Sierra Los Alacranes-Cerros Los Ojos y Sierra Choclo Duro (Figura 1). Estos

estudios sistemáticos, muy similares a los realizados por Iriondo (2001) e Iriondo *et al*. (2004), sugieren la existencia de rocas ígneas plutónicas paleoproterozoicas de basamento fechadas por U-Pb en zircones en ~1696−1725 Ma, con valores de €Nd iniciales en roca total de +2 a +4, y con edades modelo correspondientes T_(DM) de ~1.70 a 1.78 Ma. Además, este estudio evidencia la existencia de un basamento tipo Yavapai en Sierra Los Alacranes (al oeste del mismo estudio), y otro basamento ubicado al este con características tipo Mazatzal en Cerro Los Ojos. Se interpreta que este basamento presenta una extensión clara de la provincia Mazatzal presente en el sur de Arizona.

En la región sur de Caborca y Pitiquito, Farmer *et al.* (2005) realizaron estudios geocronológicos e isotópicos de Sm-Nd en rocas del basamento paleoproterozoico resultando de este estudio edades U-Pb de zircones para el granito Cerro El Rajón de 1699 ± 2 Ma y con un valor isotópico de €Nd en roca total de +0.18. Esta edad es similar a la obtenida previamente por Premo *et al.* (2003) también realizada por U-Pb en zircones de 1703 ± 12 Ma. Así mismo, Farmer *et al.* (2005) también fecharon el gneis del complejo metamórfico Bámori en una edad U-Pb en zircones de 1748 ± 1 Ma y realizaron estudios de Sm-Nd en roca total obteniendo un valor de €Nd de -4.49. Este valor es muy similar al rango de valores que previamente obtuvieron Dórame-Navarro *et al.* (2004) y Castiñeiras *et al.* (2004 a, b) para esta misma unidad.

En el área de Sierrita Prieta, que se localiza al sur de Trincheras, Sonora, Soto-Verdugo (2006) reporta rocas gnéisicas paleoproterozoicas con edades de U-Pb en zircones de \sim 1727 a 1733 Ma y valores iniciales \in Nd en roca total de -1.1 a -0.5 y edades modelo de $T_{(DM)}$ de \sim 2.0 y 2.1 Ga, indicando que estas rocas también tienen firmas similares a las rocas presentes en la provincia paleoproterozoica Mojave.

En la región de Cerros San Luisito, que se localiza a 10 km al oeste del área Mina La Herradura (Figura 1), Gutiérrez-Coronado *et al.* (2008) reportan un basamento gnéisico tipo Yavapai con edades de cristalización U-Pb de zircones de ~1676−1712 Ma y valores iniciales €Nd de +1.13 a +2.87 con edades modelo correspondientes T_(DM) de ~1.76 a 1.91 Ga.

Amato *et al.* (2008, 2009) en el Rancho La Lámina, ubicado al norte de Cucurpe Sonora, reportan granitoides con edades U-Pb de zircones de ~1737 a 1763 Ma con valores iniciales de €Nd de -4.3 a +1.4 y determinan que estas rocas pertenecen al bloque Caborca.

Recientemente, Arvizu *et al.* (2008) realizaron un estudio geocronológico e isotópico en gneises bandeados en Zona Canteras-Puerto Peñasco, ubicada al oeste de Sierra Pinta y que previamente se conocía como Seven Hills (Figura 1). Estos gneises bandeados tienen edades de cristalización U-Pb en zircones de ~1725 a 1764 Ma y con valores iniciales de €Hf de +1.95 a +4.87 y correspondientes edades modelo de T_(DM) de ~1.95 a 2.09 Ga, sugiriendo que estas rocas pertenecen a un basamento tipo Yavapai. H. Arvizu-Gutiérrez (com.per. 2009) también realizó estudios de Sm-Nd de roca total para estas mismas rocas obteniendo valores €Nd de +1.82 a -0.57 con edades modelo correspondientes T_(DM) de ~1.91 a 2.02 Ga, lo cual confirma, combinándolo con estudios geoquímicos, que esas rocas de la Zona Canteras-Puerto Peñasco tienen afinidad con rocas de la provincia paleoproterozoica Yavapai presentes en el NW de Sonora.

2.2.1. Magmatismo Mesoproterozoico (~1.4 y ~1.1 Ga) en Sonora

El magmatismo Mesoproterozoico en Sonora consiste en pulsos graníticos de ~1.4 Ga y granítico-anortosíticos de ~1.1 Ga. Ambos pulsos presentan características petrogenéticas de tipo anorogénico (granitos tipo A) similares a las rocas presentes en la porción SW de Estados Unidos. Aparentemente, y de la misma forma como se presentan en el basamento proterozoico del SW de Estados Unidos, estos pulsos magmáticos sirvieron para la estabilización del orógeno paleoproterozoico formado por la acreción de arcos de islas con características Yavapai y Mazatzal (Iriondo y Premo, 2009).

Hasta la fecha, el pulso granítico mesoproterozoico de \sim 1.4 Ga en Sonora está limitado a unas cuantas localidades. Quizá la más importante se ha reportado en los alrededores de la mina de cobre de Cananea al NE de Sonora. El granito Cananea ha sido fechado por la sistemática U-Pb en zircones en una edad de 1440 \pm 15 Ma por Anderson y Silver (1977). Recientemente, esta ocurrencia del granito Cananea ha sido nuevamente fechada por U-Pb de zircones obteniéndose una edad de 1411 \pm 9 Ma (Noguez-Alcántara,

2008). También, cerca de esa localidad fue fechado el granito Mesteñas por Herrera-López *et al.* (2005) obteniendo una edad U-Pb de zircones de ~1.44 Ga. Otra de las ocurrencias graníticas de este pulso magmático más cercanas al área de estudio, es la reportada por Nourse *et al.* (2005) cerca de Cerros Los Ojos y que se conoce como el granito Choclo Duro con una edad U-Pb en zircones de 1432 ± 6 Ma. Por último, Castiñeiras *et al.* (2005) reportan la existencia de un granitoide de ~1.4 Ga en el km 100 de la carretera federal número 15 entre las ciudades de Santa Ana y Hermosillo, cerca de la población de Benjamín Hill.

Por otra parte, las rocas asociadas al pulso granítico de ~1.1 Ga parecen ser notablemente más abundantes que las de ~1.4 Ga y afloran en localidades diversas de Sonora incluyendo el Rancho Aibó, al sur de Caborca, donde afloran rocas graníticas fechadas por U-Pb en zircones en 1091 ± 54 Ma (Anderson y Silver, 2005) y también fechadas con mayor precisión por Iriondo et al. (2003b) con una edad de 1079 ± 18 Ma y por Farmer et al. (2005) en 1075 ± 1 Ma. Otras ocurrencias de plutonismo granítico de ~ 1.1 Ga en Sonora incluyen los granitos de Campo Bustamante en Quitovac fechados por U-Pb en zircones en edades de ~1112 a 1126 Ma (Iriondo, 2001; Iriondo et al., 2004). También intrusivos de este tipo afloran en la Sierra Prieta, ubicada al NW del área Mina La Herradura con la ocurrencia principal del granito La Prieta con edades U-Pb de zircones de ~1080 a 1086 Ma (Izaguirre-Pompa e Iriondo, 2007). También en la localidad de Sierrita Blanca, justo al norte del área Mina La Herradura, al suroeste del poblado de Sonoyta (Figura 1), existe el granito Murrieta que presenta edades U-Pb de zircones de ~1098 a 1108 Ma (Enríquez-Castillo, 2008; Enríquez-Castillo et al., 2008). En Sierra Los Tanques, cerca de Sonoyta, aflora el granito Los Tanques con una edad U-Pb de zircones de 1081 ± 5 Ma (Iriondo et al., 2008). También existe una roca granítica en el Rancho La Lámina, cerca de Cucurpe, Sonora, denominada como el granito La Escuadra y que tiene una edad U-Pb en zircones de 1076 ± 14 Ma (Amato et al., 2008).

Las rocas anortosíticas de \sim 1.1 Ga afloran en los Cerros El Tecolote (Espinoza *et al.*, 2003) con una edad U-Pb de zircones de 1095 ± 28 Ma. También se presentan rocas anortosíticas en Sierra Prieta fechadas por U-Pb en zircones en una edad de 1075 ± 10 Ma

y que se encuentran intrusionando al granito La Prieta y a la secuencia sedimentaria cuarcítica Sierrita Prieta de ~1.2 Ga (Izaguirre-Pompa e Iriondo, 2007). Así mismo, ocurren rocas anortosíticas en la localidad de Sierrita Blanca donde aflora el granito Murrieta que está intrusionado por anortositas fechadas por U-Pb en zircones en 1065 ± 69 Ma (Enríquez-Castillo, 2008; Enríquez-Castillo *et al.*, 2008). Finalmente, existen otras ocurrencias regionales de anortositas de ~1.1 Ga en Sonora tales como Llano Verde, El Taconazo y La Y Griega (zona costera de Caborca) que son mencionadas por Campillo-Castelo (2008).

2.3. El supercontinente Rodinia y su ruptura posterior para el establecimiento de una margen continental pasiva en el SW de Laurencia

Rodinia es el nombre que se le ha asignado al supercontinente que se generó por la amalgama de fragmentos de corteza proterozoica a través de mecanismos tectónicos, incluyendo el cierre de océanos, desde ~1200 Ma hasta ~900 Ma (Li et al., 2008). Cabe destacar que el continente Laurencia, formado en su parción SW por las provincias paleoproterozoicas Mojave, Yavapai y Mazatzal, aparentemente fungió como una parte central en la construcción de Rodinia (Figura 3). A partir de estudios geológicos, el SW de Laurencia ha sido correlacionado con otros bloques paleoproterozoicos, lo que ha inspirado la creación de varias conexiones continentales. Entre las más populares se encuentran SWEAT (United States-East Antártida) que une al SW de Laurencia con el paleocontinente Antártida Oriental (Borg y DePaolo, 1994; Figura 3). También se ha hecho la conexión continental AUSWUS (Australia-Western United States) que trata de unir el SW de Laurencia con Australia (Karlstrom et al., 1999). Así mismo, la conexión Siberiana también ha tenido relevancia, ya que une al SW de Laurencia con Siberia (Sears y Price, 2000). Finalmente una de las reconstrucciones más recientes es la conexión del SW de Laurencia con China (Li et al., 2002). Como se puede observar, estas reconstrucciones siempre dependen de la porción SW de Laurencia y por esa razón el avance y los nuevos conocimientos geológicos del SW de Laurencia tienen un alto grado de interés.

En la amalgamación del supercontinente Rodinia existieron principios de rifting

durante y al final de su formación, principalmente a los ~1.1 Ga, lo cual se encuentra atestiguado por diversas intrusiones magmáticas como las ocurridas en el SW de Laurencia que preferentemente se emplazaron en las antiguas zonas de sutura existentes entre las provincias paleoproterozoicas Mojave, Yavapai y Mazatzal. Posteriormente a estos sucesos, se estima que la ruptura o separación del gran continente Rodinia se concretó ~750 Ma (Li et al., 2008) en la era neoproterozoica provocando la apertura de océanos y la formación de una margen pasiva durante el Neoproterozoico y Cámbrico en la porción SW de Laurencia (Stewart, 1988, 2005; Poole et al., 2005). Este régimen tectónico pasivo en el SW de Laurencia duró casi toda la era paleozoica. Posteriormente, ~500 Ma después de la fragmentación de Laurencia se estableció una margen activa en esta porción de Laurencia al iniciarse la subducción de la placa oceánica Farallón por debajo de la placa continental Norteamericana a finales del Paleozoico, y de esta forma se establece el arco magmático continental cordillerano.

2.4. Control temporal del arco magmático continental al sur de Arizona y al norte de Sonora

Las rocas del arco magmático continental de Arizona y Sonora se originaron en un margen activo que inició supuestamente en el Pérmico, después de un periodo largo de margen pasivo en el SW de Laurencia. Este margen activo establecido al WSW de Laurencia, como se ha señalado anteriormente, se originó a partir de la subducción con vergencia al este de la placa Farallón por debajo de la placa de Norte América. Estudios geológicos sugieren que este arco magmático continental inició en el Permo-Triásico evidenciado a través de numerosos plutones con un rango de edades entre ~260–207 Ma que existen en los estados de Nevada, Arizona y California (Snow *et al.*, 1991; Bateman, 1992; Burchfield *et al.*, 1992; Miller *et al.*, 1992; Dunne y Saleeby, 1993; Barth *et al.*, 1997). Por otra parte, y recientemente, Arvizu-Gutiérrez (2008) reporta rocas plutónicas con características de arco continental de edad pérmica en Sierra Pinta (~275–258 Ma) en el norte de Sonora.

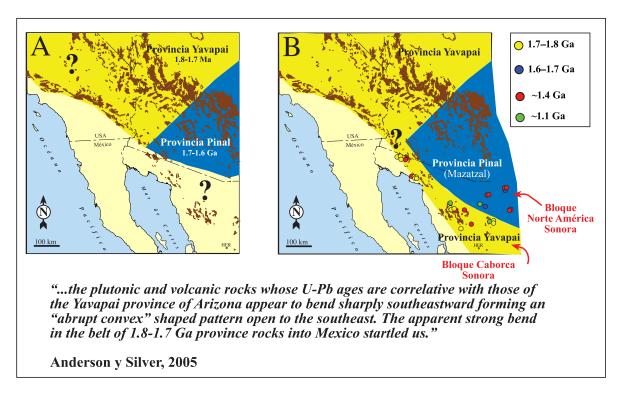
Por otro lado, la actividad en este margen activo se mantuvo durante casi todo el

Mesozoico y parte del Cenozoico con ausencias de magmatismo importantes para el sector W de Sonora, principalmente durante el Cretácico Temprano y por casi todo el Paleógeno. Este margen de subducción terminó en el Mioceno Medio (~12 Ma; Vidal-Solano *et al.*, 2008) con el inicio de un margen transtensional el cual originó la apertura del Golfo de Baja California.

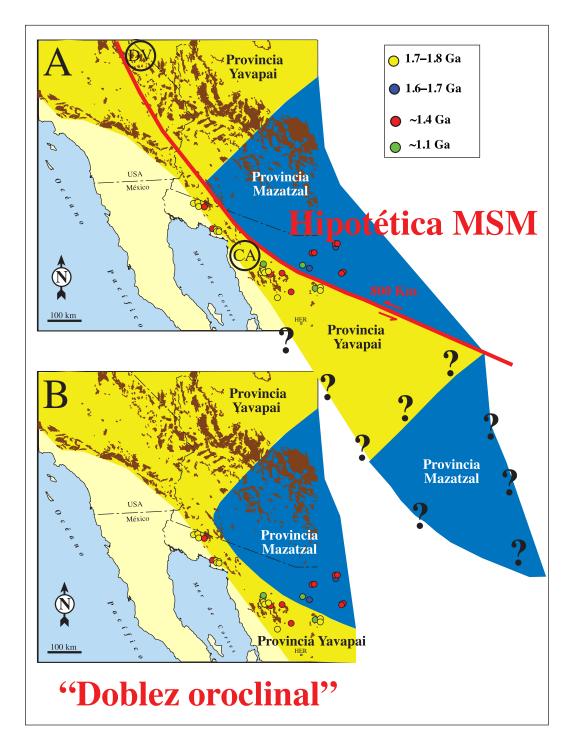
Las rocas jurásicas de arco magmático continental en el suroeste de Arizona han sido estudiadas por medio de trabajos cartográficos, geocronológicos y geoquímicos en zonas como las Montañas Baboquivari (Kitt Peak), en el área del Parque Nacional Organ Pipe en Lukeville, en el área La Arivaca (Wright *et al.*, 1981; Haxel *et al.*, 1984, 2005; Tosdal *et al.*, 1989) y también las zonas de las Montañas Santa Rita, Montañas Pajarito y en el área de Cobre Ridge (Riggs y Busby-Spera, 1990; Riggs *et al.*, 1993). Las rocas estudiadas consisten básicamente en rocas volcánicas y graníticas de composiciones principalmente intermedias a félsicas con firmas geoquímicas de arco volcánico continental y con edades U-Pb en zircones para la suite volcánica de ~180 a 155 Ma y para las rocas graníticas entre ~165 y 153 Ma.

En el área de Quitovac, al NW de Sonora, Iriondo (2001) identificó rocas volcánicas y graníticas jurásicas con características de arco volcánico y obtuvo edades U-Pb en zircones de ~175 a 165 Ma. En el área denominada El Plomo, ubicada ~60 km al ESE de Quitovac, A. Iriondo (com. per.) obtuvo una edad U-Pb en zircones de un granitoide de ~165 Ma que presenta unas características petrológicas similares a las del granito el Chacón en la región de Quitovac. Así mismo, Anderson *et al.* (2005) obtuvieron una edad U-Pb en zircones de ~166 Ma para una roca granítica también de la zona El Plomo. Además, Anderson *et al.* (2005) realizaron un estudio geocronológico regional de rocas jurásicas graníticas y volcánicas del NW de Sonora en el que presentaron otros 13 fechamientos U-Pb en zircones de otras unidades jurásicas ígneas de la región (Apéndice A).

Por último, en el área del Rancho El Bámuri, ubicado ~60 km al SSW de Caborca, P. Castiñeiras (com. per.) encontró rocas porfídicas de composición riolítica con edades U-


Pb en zircones de ~190 Ma (Jurásico Temprano) que intrusionan al basamento paleoproterozoico presente en la región.

2.5. Concepto original de la hipotética megacizalla Mojave-Sonora (MSM)


La influyente hipótesis de la megacizalla Mojave-Sonora (MSM), propuesta por L.T. Silver y T.H. Anderson en los años 70's, propone una solución provisional a una problemática geológica surgida a partir del estudio del basamento proterozoico de Sonora (Figura 5; Anderson y Silver, 2005). En particular, la existencia de dos basamentos paleoproterozoicos diferenciados principalmente por su edad a partir de estudios geocronológicos U-Pb, y en menor medida por las diferencias geológicas observadas en el campo, estimuló a establecer la hipótesis de la MSM (Silver y Anderson, 1974; Anderson y Silver, 1979).

Esta hipótesis propone la existencia de un basamento paleoproterozoico al NE de Sonora que se llamó bloque Norte América y que presenta rocas de edad entre ~1700 y 1600 Ma y al SW el bloque Caborca, con rocas también paleoproterozoicas, pero de edades entre ~1800 y 1700 Ma. Separando ambos basamentos tenemos la hipotética megacizalla Mojave-Sonora de edad Jurásico Tardío con orientación NW-SE y una cinemática lateral izquierda que supuestamente permitió el desplazamiento, a lo largo de 800–1000 km, de rocas pre-jurásicas del basamento y cobertura desde la región del *Death Valley* en California hasta la región de Caborca en el NW de Sonora (Figura 6).

Por inferencia, principalmente por su relación espacial y por el comportamiento isotópico y geoquímico, las rocas del llamado bloque Norte América han sido más recientemente correlacionadas con las de la provincia paleoproterozoica Mazatzal presentes en gran parte del SE y centro de Arizona (Figura 2) [Iriondo *et al.*, 2004; Nourse *et al.*, 2005; Iriondo y Premo, 2009]. Por otro lado, las rocas del bloque Caborca tendrían que corresponder, por lógica espacial y geológica, a rocas presentes en la región del *Death Valley* en California (Iriondo *et al.*, 2004), desde donde fueron supuestamente transportadas según el modelo de la megacizalla. Cabe destacar que estas ideas iniciales de Silver y Anderson (Figura 5), presentadas en Anderson y Silver (2005), no contemplaban el

Figura 5. Mapas del SW de Norte América mostrando la distribución de basamentos proterozoicos (Figura modificada de Iriondo y Premo, 2009). (A) Ideas originales de finales de los años 60 sobre la distribución de basamentos paleoproterozoicos para el SW de USA basados en diferencias de edades U-Pb de cristalización de rocas ígneas (modificado de Anderson y Silver, 2005). (B) Ideas de Anderson y Silver de principios de los años 70 después de realizar estudios geológicos y geocronológicos en Sonora (modificado de Anderson y Silver, 2005). Las manchas cafés representan afloramientos de rocas proterozoicas en el SW de Norte América (modificado de Iriondo *et al.*, 2004). Círculos de colores representan las localidades de muestras fechadas por U-Pb reportadas por Anderson y Silver (1981) y publicadas años después por Anderson y Silver (2005). Ver texto para explicación de la cita de Anderson y Silver en Inglés.

Figura 6. Explicaciones para la propuesta de distribución de basamentos paleoproterozoicos presentada en la Figura 5B. (A) Basamentos truncados a lo largo de una falla lateral izquierda con desplazamientos de hasta 1000 km en el Jurásico Tardío (Anderson y Silver, 1979, 2005). Básicamente, esta es la idea inicial de la **hipotética megacizalla Mojave-Sonora (MSM)**. Círculo negro con abreviación "CA" representa afloramientos de rocas paleozoicas de Caborca correlativas a rocas de la región de *Death Valley* (DV) en California desde donde fueron desplazadas según la hipótesis de la megacizalla Mojave-Sonora. (B) Doblez oroclinal de provincias de basamento Yavapai y Mazatzal resultado de la colisión de arcos volcánicos en tiempos proterozoicos (Iriondo, 2007). Figura modificada de Iriondo y Premo (2009).

concepto de la provincia paleoproterozoica Mojave en el margen SW de Laurencia introducido inicialmente por Wooden y Miller (1990) [Figura 2]. Esta nueva provincia es de importancia singular para entender la distribución de provincias paleoproterozoicas y para evaluar el concepto de la MSM en el noroeste de México, ya que las rocas de la provincia Mojave tienen unas características bien distintivas que permiten diferenciarlas de las de las provincias Yavapai y Mazatzal (Tabla 1; Iriondo *et al.*, 2004).

La hipótesis de la megacizalla Mojave-Sonora, como se presenta recientemente en Anderson y Silver (2005), quedaría claramente definida para su validación geológica, y de la misma manera, la falla así propuesta correspondería sin duda a una falla de categoría megacizalla por su gran envergadura y desplazamiento.

En resumen, la megacizalla Mojave-Sonora es una falla hipotética de movimiento lateral izquierdo, con orientación NW-SE, que se extiende desde el desierto de Mojave en California, pasando por el estado de Sonora y culminando en la región del Golfo de México. La hipótesis propuesta inicialmente por Silver y Anderson (1974) sugiere que la falla acomodó entre 800 y 1000 km de desplazamiento lateral izquierdo y que fue activa durante el Jurásico Tardío. Los argumentos principales esgrimidos por estos autores para justificar desplazamientos de tal magnitud a lo largo de la hipotética megacizalla son básicamente tres:

- 1. La yuxtaposición aparente de dos bloques con basamento paleoproterozoico de edad diferente en Sonora, que por su edad y características se asignarían a las provincias Yavapai (bloque Caborca al suroeste) y Mazatzal (bloque Norte América al noreste) [Figura 5].
- 2. La aparente terminación abrupta (truncamiento) del cinturón de afloramientos de rocas volcánicas y plutónicas de arco continental de edad Jurásico Temprano a Jurásico Tardío (Campbell y Anderson, 1998, 2003) a lo largo de una línea entre los poblados de Sonoyta y Santa Ana, en Sonora. Esta secuencia de afloramientos jurásicos fue correlacionada con secuencias volcánicas del centro de México (Zacatecas, San Luis Potosí; Jones *et al.*, 1995) para estimar los desplazamientos propuestos por la megacizalla.

3. La correlación de la secuencia miogeosinclinal del Neoproterozoico-Paleozoico de Sonora, presente al sur del cinturón de afloramientos de rocas jurásicas, con rocas de edad similar en la región de Death Valley (Montañas Inyo), en California (Stewart, 1998, 2005).

El primer argumento está basado en la distribución de provincias paleoproterozoicas Yavapai y Mazatzal que obtuvieron Silver y Anderson en el NW de México en los años 70 (Figura 5) y reportadas en Anderson y Silver (2005). A estos autores les sorprendió enormemente el doblez hacia el SE que adquirían las provincias al adentrarse hacia México (ver palabras textuales en inglés en la figura 5B). Sin embargo, y a pesar de que era un concepto provocador e interesante, ese doblez brusco nunca fue empleado para explicar dicha distribución de los basamentos que implicaría autoctonía del basamento Yavapai, sino que se prefirió introducir el concepto de desplazamientos a lo largo de una megacizalla jurásica para explicar dicha distribución (Figura 6). Más recientemente, e incluyendo conceptos más modernos sobre la distribución de las provincias paleoproterozoicas del SW de Laurencia (p.ej., la provincia Mojave), Iriondo (2007) e Iriondo y Premo (2009) propusieron, a partir de estudios geocronológicos, geoquímicos e isotópicos (Iriondo et al., 2004; Nourse et al., 2005; entre otros), la existencia de un doblez oroclinal de las provincias paleoproterozoicas que ellos llamaron doblez oroclinal Caborca (The Caborca oroclinal bend; Iriondo, 2007; Iriondo y Premo, 2009) y que queda ilustrado en las figura 2. En estas reconstrucciones es evidente que lo que se llamó bloque Caborca en Sonora (el antiguo concepto Yavapai sin la provincia Mojave) es un bloque compuesto por un basamento con rocas de afinidad Mojave y Yavapai mostrando su inhomogeneidad (Iriondo y Premo, 2009). Este doblez representa, sin lugar a duda, una alternativa interesante a la megacizalla Mojave-Sonora para explicar la distribución de las provincias paleoproterozoicas en el NW de México. Esta supuesta autoctonía de los basamentos proterozoicos de Sonora en el modelo de doblez oroclinal, por sí sola, sugeriría la inexistencia de la megacizalla Mojave-Sonora.

El segundo argumento ha quedado debilitado por la presencia de rocas jurásicas volcánicas de arco continental justo al SW de la megacizalla, en el noroeste y centro de

Sonora, en áreas como Cerro Prieto (Calmus y Sosson, 1995), en Cerro El Sahuaro (Anderson *et al.*, 2005), al NW del campo volcánico El Pinacate (Leveille y Frost, 1984; J. Nourse, com. per.), en el área del Bámuri (P. Castiñeiras, com. per.) y otros lugares de Sonora (T. Lawton, com. per.). La presencia de rocas equivalentes jurásicas de arco continental a ambos lados de la megacizalla no apoyaría los desplazamientos propuestos a lo largo de dicha megacizalla y, por lo tanto, la presencia de rocas similares en la parte centro de México (Zacatecas y San Luis Potosí) simplemente representaría la continuidad del arco jurásico presente en Sonora hacia el sur. Estos argumentos, por si solos, también indicarían la no existencia de la megacizalla Mojave-Sonora.

El tercer argumento esgrimido para proponer desplazamientos a lo largo de la megacizalla es quizá el que más favorece el modelo. La secuencia miogeosinclinal paleozoica aflora extensamente en la región de Caborca y está representada por rocas carbonatadas, cuarcitas ultramaduras y rocas siliciclásticas de grano fino. Los estudios estratigráficos de Stewart (2005) sugieren muchas correlaciones entre las sucesiones de rocas sedimentarias de Caborca y *Death Valley*, pero también existen, como lo admite el autor, diferencias importantes que hacen que la correlación se considere imperfecta. Por otro lado, estudios estratigráficos de la secuencia eugeosinclinal de Sonora por Poole et al. (2004, 2005) y Boucot et al. (2008) proponen que las facies sedimentarias, la fauna y el estilo de deformación presente en las rocas de Sonora son similares a rocas encontradas en Arizona y a las que se encuentran en otros segmentos del orógeno Ouachita-Marathon-Sonora del margen sur de Laurencia en Texas y áreas aledañas. Estos autores concluyen que esta secuencia paleozoica de Sonora es significativamente diferente, a pesar de su correlación temporal, a la que existe en la región de *Death Valley* en California y Nevada, y que por lo tanto no debería de ser empleada para justificar desplazamientos a lo largo de la hipotética megacizalla.

El desplazamiento propuesto a lo largo de la MSM tampoco es apoyado por los datos paleomagnéticos para rocas del bloque Caborca, ya que estos datos no son consistentes con un desplazamiento latitudinal ni con un sistema de deformación lateral izquierdo como propone la megacizalla (Molina-Garza y Geissman, 1999). Más importante

quizá, es que direcciones paleomagnéticas similares se observaron en rocas del arco jurásico del norte de Sonora y como magnetizaciones secundarias al sur de la supuesta traza de la megacizalla.

Por otro lado, Campbell y Anderson (1998, 2003) con base en estudios estructurales realizados en la zona Los Tanques, ubicada al oeste de Sonoyta, propusieron que la deformación existente en rocas supuestamente triásicas y jurásicas, que consiste en ultramilonitas con una foliación general vertical NW-SE y de un espesor de ~1 a 3 km, es un segmento de la hipotética traza de la MSM. También, Caudillo-Sosa *et al.* (1996) propusieron un evento jurásico de transpresión asociado a la MSM que afectó rocas del basamento proterozoico y rocas del arco volcánico jurásico en la zona de Quitovac al SW de Sonoyta. Estos autores argumentaron que granitoides cretácicos no estaban afectados por la zona de deformación transpresiva. Sin embargo, estudios más recientes de Iriondo (2001) e Iriondo *et al.* (2005) sugieren que estos intrusivos en Quitovac, fechados por U-Pb en zircones en ~75 Ma, también fueron afectados por la deformación dúctil presente en las rocas proterozoicas y jurásicas. Estos autores también sugieren que la deformación principal en Quitovac es de edad larámide y no jurásica.

Se debe también destacar, que ~100 km al norte de Quitovac en las Montañas Comobabi y Baboquivari, y no tan lejos en la región de Quitobaquito en Arizona, una deformación con estilo similar a la presente en el NW de Sonora está asociada a metamorfismo regional y plutonismo, que afectó a rocas del Jurásico durante el Cretácico Tardío y Terciario temprano (Haxel *et al.*, 1984). También, ~40 km al sur de Quitovac rocas del Proterozoico cabalgan sobre rocas del arco jurásico en Cerro Prieto-Carina en la porción SE del área Mina La Herradura (Calmus y Sosson, 1995). En conjunto, estos estudios indican que la deformación asociada a la traza de la MSM en la zona de Los Tanques difícilmente es jurásica y que regionalmente predomina la deformación larámide. Específicamente, para el caso propuesto por Campbell y Anderson (1998, 2003) de la zona de cizalla expuesta cerca de Sonoyta en la Sierra Los Tanques, Iriondo *et al.* (2005) proponen que esta deformación se encuentra alineada con una zona de deformación dúctil

que afecta a un granitoide del Cretácico en la Sierra La Toñita, en Quitovac (Iriondo, 2001), lo cual sugiere que la deformación presente en Sierra Los Tanques es de edad laramídica.

Por último, existen trabajos publicados que discuten la hipótesis de la MSM en detalle, haciendo un recuento de gran parte de los aspectos que apoyan y contradicen la hipotética falla (p.ej., Molina-Garza e Iriondo, 2005). También cabría invitar al lector a consultar el volumen número 343 de publicaciones especiales de la Sociedad Geológica de América (GSA por su siglas en inglés) que también trata este tema en detalle (*The Mojave–Sonora megashear hypothesis: Development, Assessment, and Alternatives*).

3. Geología del área Mina La Herradura

3.1. Introducción al área Mina La Herradura

El área Mina la Herradura se ubica en la porción noroeste de Sonora, entre la colindancia de los municipios de Caborca y Puerto Peñasco (Figura 1). En la porción central del área de estudio se encuentra el ejido (poblado) Juan Álvarez y la operación minera Mina La Herradura propiedad de minera PENMONT (asociación de Newmont Gold Company y Peñoles).

En este estudio se realizó una cartografía original que es mostrada en las figuras 7 a 10 empleándose la base topográfica de las cartas digitales vectoriales escala 1:50 000, H12a44 (El Sahuaro), H12a33 (Sierra Pinta) y H12a34 (El Tullido) generadas por INEGI (2003). También, se utilizó como referencia inicial el mapa geológico escala 1:250 000 H12-1 del Servicio Geológico Mexicano (SGM) [2002].

Los motivos por los cuales se escogió el área Mina La Herradura para realizar este estudio son diversos, y a continuación se enumeran algunos de ellos: (1) En primer lugar, se tuvo una primera visita de reconocimiento geológico al área que permitió observar su potencial para realizar un estudio de maestría por existir tanto rocas del basamento paleoproterozoico como rocas de arco volcánico del Mesozoico y Cenozoico en una porción de basamento antiguo que es una de las más occidentales del continente de Norte América; es decir, rocas pertenecientes al verdadero margen SW de Laurencia. Esta característica hace que el área Mina La Herradura sea ideal para poner a prueba las hipótesis planteadas en este estudio. (2) Esta es un área donde no existía cartografía geológica detallada, similar a las que se venían realizando en los alrededores (Iriondo, 2001; Iriondo et al., 2004; Nourse et al., 2005) y además no existía ningún fechamiento que respaldara la existencia de rocas gnéisicas precámbricas y volcánicas jurásicas propuestas en la literatura. (3) También el interés geológico que representa para las compañías mineras debido a que esta zona, es una de las más ricas en oro del tipo orogénico en México y como ejemplo está la mina La Herradura, ubicada en la porción central de esta zona, y que es la mina que tiene mayor producción de oro en México. Por otra parte, a este oro orogénico en

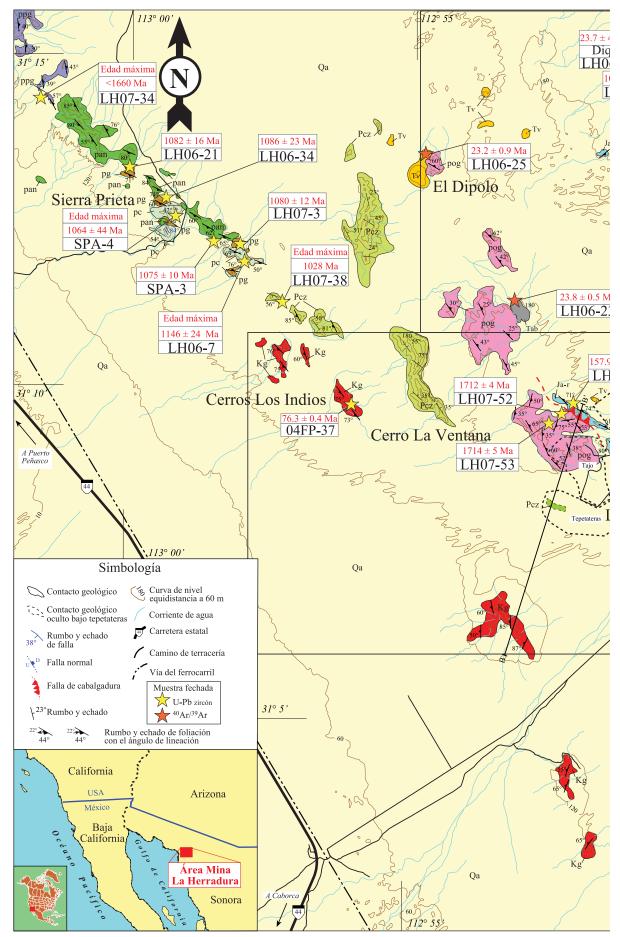
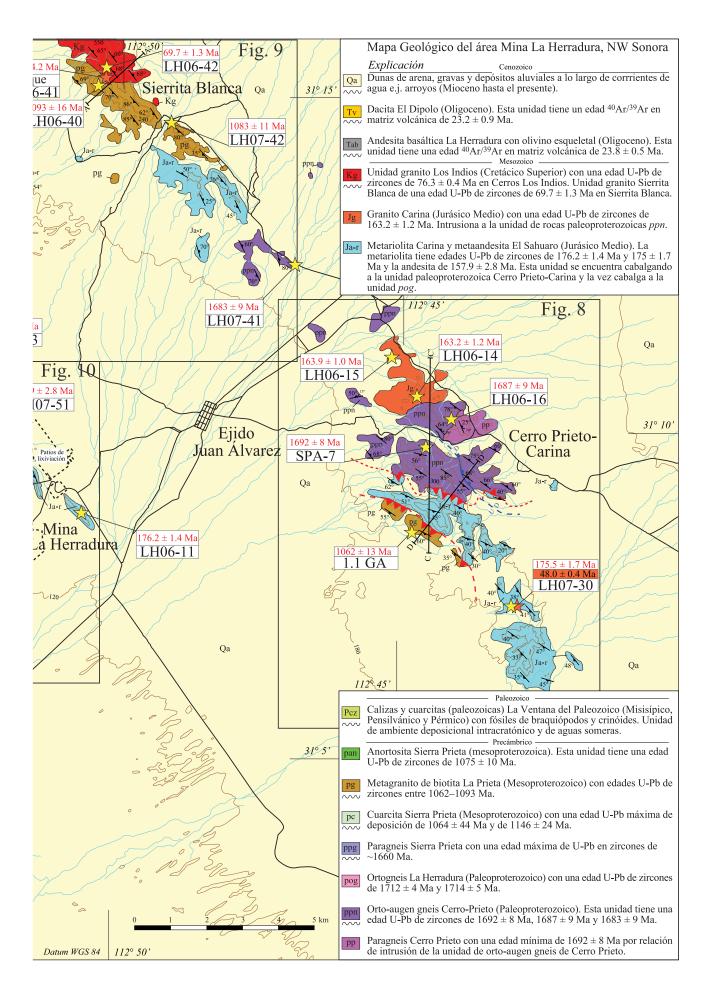



Figura 7. Mapa geológico sintetizado del área Mina La Herradura en el NW de Sonora, México.

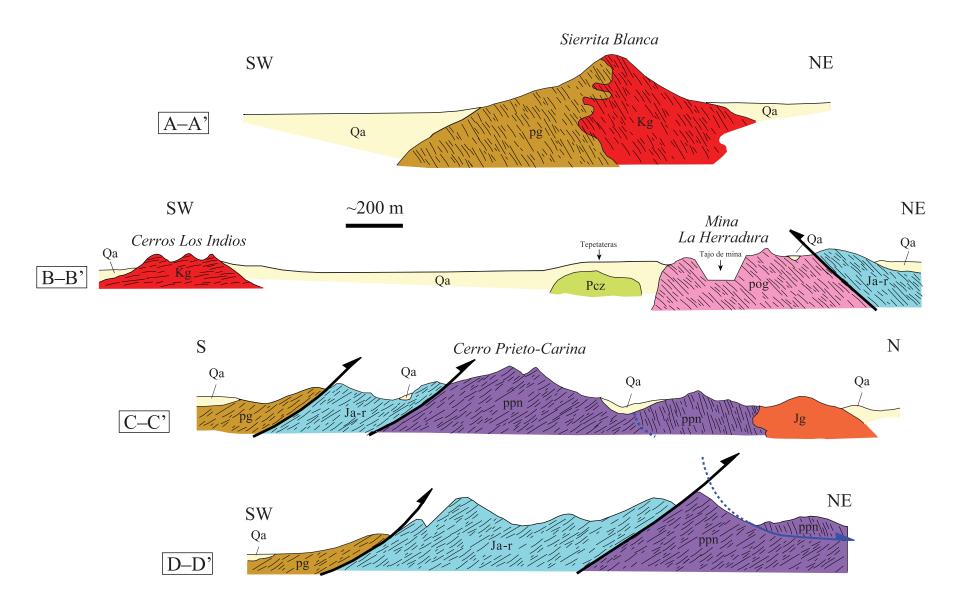


Figura 7 (continuación). Secciones geológicas esquemáticas del área Mina La Herradura.

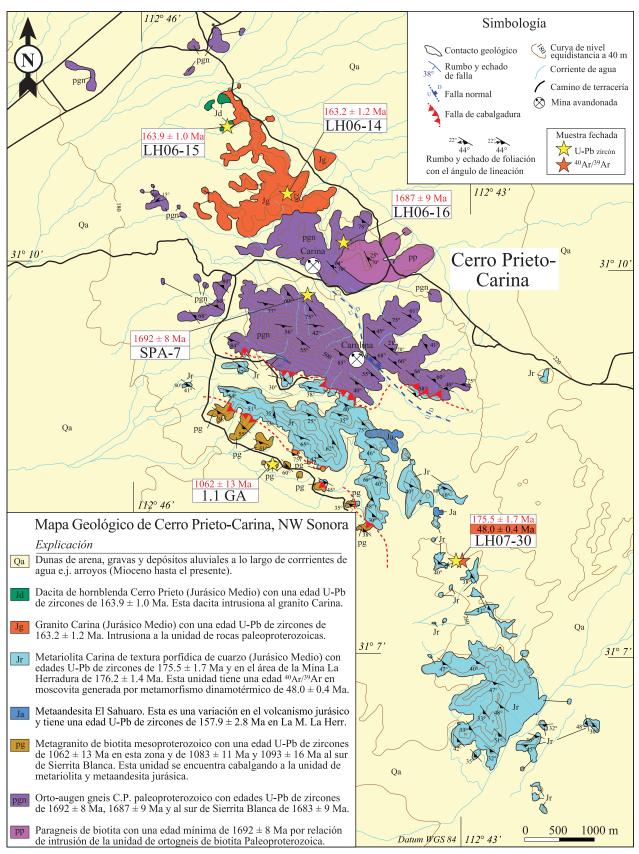


Figura 8. Mapa geológico de la zona Cerro Prieto-Carina, NW de Sonora, México.

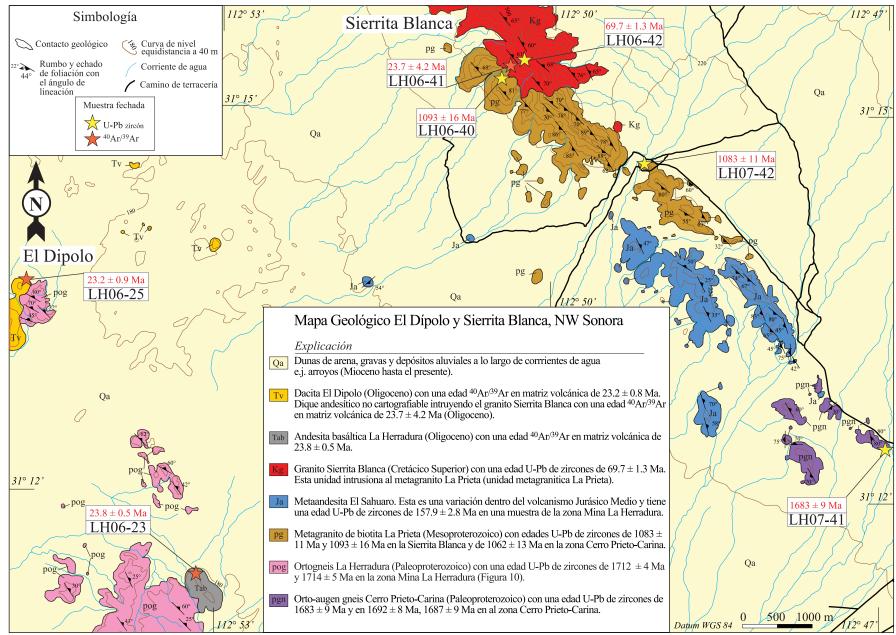


Figura 9. Mapa geológico de la zona El Dipolo y Sierrita Blanca, NW de Sonora, México.

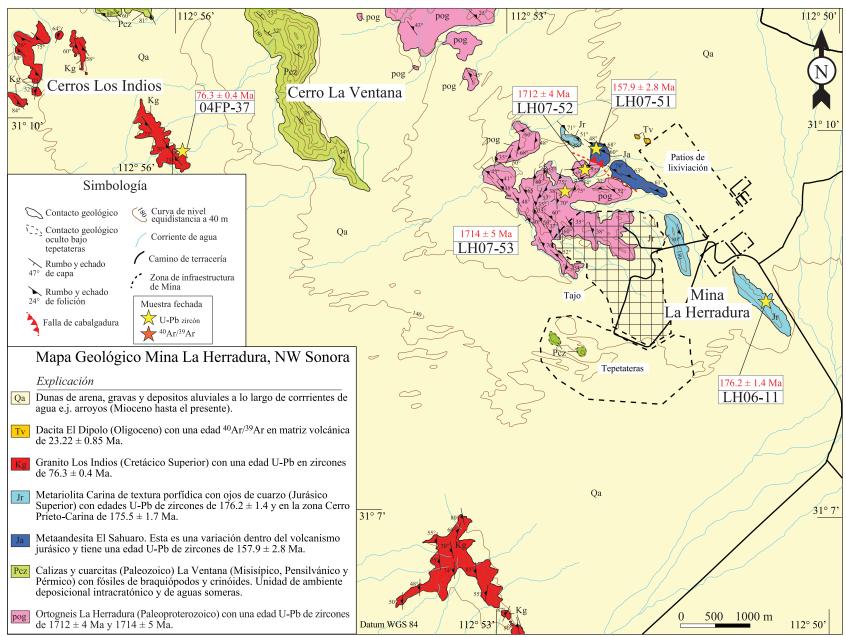


Figura 10. Mapa geológico de la zona Mina La Herradura, NW de Sonora, México.

la región del NW de Sonora se le ha asociado al evento orogénico laramídico (Iriondo y Atkinson, 2000), el cual está presente en esta área de estudio. (4) El fácil acceso a esta zona de estudio fue otro de los atractivos para su elección ya que se contó con todo el apoyo logístico de la compañía minera Peñoles y PENMONT para realizar las labores de cartografía geológica y muestreo de rocas.

En resumen, esta porción del margen SW de Laurencia en Sonora es adecuada para estudiar las rocas del basamento proterozoico y rocas del arco magmático Mesozoico Norteamericano. Este estudio será muy útil para entender la distribución de las provincias paleoproterozoicas en el NW de México, además de ayudar a comprender el cambio de margen pasivo a margen activo en el final del Paleozoico hasta principios del Mesozoico y evaluar las hipótesis que proponen el truncamiento de la margen continental durante el Mesozoico (p.ej., la megacizalla Mojave-Sonora).

3.2. Trabajos previos en el área de estudio y zonas adyacentes

Los primeros estudios realizados en el área Mina La Herradura y sus alrededores son los realizados por Merriam (1972). Este autor publica un mapa de reconocimiento geológico que abarca un cuadrángulo desde la parte norte de la ciudad de Caborca hasta el norte del campo volcánico El Pinacate. En este mapa se incluye el área Mina La Herradura, donde se identifican rocas anortosíticas que son interpretadas como de edad precámbrica; calizas y dolomías, que se les asigna también como precámbricas y anfibolitas precretácicas y rocas graníticas cretácicas.

Posteriormente, Koehnken (1976) realizó un estudio petrográfico muy puntual de las anortositas en dos zonas del NW de Sonora, donde incluye un par de muestras ubicadas dentro del perímetro del área Mina La Herradura, específicamente al norte de Sierra Prieta, realizando una clasificación petrográfica de las mismas.

Calmus y Sosson (1995) realizaron un reconocimiento geológico preliminar de la carta topográfica Estación Sahuaro, en la cual se ubica la mayor parte del área Mina La Herradura. Estos autores propusieron, por correlación geológica, que en la zona de Cerro Prieto existían rocas precámbricas gnéisicas y jurásicas volcánicas y que el contacto entre

ellas era por cabalgadura. Además propusieron una historia geológica similar de estas rocas y estructuras de cabalgaduras con las encontradas al sur de Arizona (p.ej., cabalgadura de Quitobaquito Hills; Haxel *et al.*, 1984).

Iriondo (2001) presenta un detallado estudio de cartografía, petrología, geoquímica, geocronología e isotopía para rocas de Quitovac justo al NE del área Mina La Herradura. Este estudio hace énfasis en el basamento paleoproterozoico con un detallado estudio de unidades geológicas desde el paleoproterozoico hasta el presente. Hay que destacar que existe un enorme parecido geológico de la zona de Quitovac con respecto al área Mina La Herradura ya que se reportan, básicamente, los mismos pulsos magmáticos y la existencia de rocas sedimentarias Paleozoicas. Además, en este trabajo se propone que las rocas de Quitovac han tenido una historia de deformación larámide muy significativa. Estos estudios han sido más recientemente refinados y publicados en Iriondo *et al.* (2004, 2005).

Según el SGM (2002) el área de La Mina La Herradura se encuentra localizada en la zona del Graben de Altar, el cual está delimitado por dos grandes flancos de sierras que se encuentran acotadas por fallas normales en sus bordes.

Poole *et al.* (2004) realizaron un reconocimiento geológico en Cerro La Ventana, al oeste del área Mina La Herradura, donde utilizaron fósiles de conodontos para definir que estas rocas de facies carbonatadas y detríticas son unidades de edad paleozoica (Misisípico Temprano al Pérmico medio).

Nourse *et al.* (2005) realizaron estudios en la porción NW del campo volcánico El Pinacate en Sierra Los Alacranes y Sierra Choclo Duro. De igual forma, estos autores hacen énfasis en el estudio de rocas del basamento paleoproterozoico presentando una cartografía muy detallada de la zona donde se reconocen unidades geológicas similares a las existentes en el área Mina La Herradura.

Molina-Garza e Izaguirre (2006) reportan la edad de ~1075 Ma de las anortositas aflorantes en el área de Sierra Prieta, además de realizar una comparación con otras rocas mesoproterozoicas a nivel continental a través del análisis paleomagnético de las mismas. Estas anortositas se reportan con más detalle en Izaguirre-Pompa e Iriondo (2007) como rocas que intrusionan a una secuencia de cuarcitas de edad mesoproterozoica.

Campillo-Castelo (2008) reporta nuevamente las anortosítas de Sierra Prieta y hace una comparativa geoquímica con otras rocas anortosíticas encontradas en diferentes localidades de Sonora (p.ej., El Tecolote, El Taconazo).

Enríquez-Castillo (2008) y Enríquez-Castillo *et al*. (2008) presentan un estudio en la porción norte de Sierrita Blanca que se localiza aproximadamente 1 km al norte del perímetro del área Mina La Herradura. En estos estudios evidencian el fenómeno de reajuste isotópico (pérdida de plomo) en granitos y anortositas de edad mesoproterozoica (~1.1 Ga) por el efecto termal de cuerpos intrusivos laramídicos.

Más recientemente Arvizu-Gutiérrez (2008) y Arvizu *et al.* (2008) realizan un estudio de la zona Sierra Pinta, al NW de la zona de estudio (Figura 1), donde evidencian la presencia de granitos de dos micas de edad pérmica, paragneises pérmicos e intrusiones de diques laramídicos; además de la ocurrencia de rocas volcánicas terciarias. Estos estudios también presentan la caracterización de rocas paleoproterozoicas (~1.76 Ga) en la Zona Canteras-Puerto Peñasco.

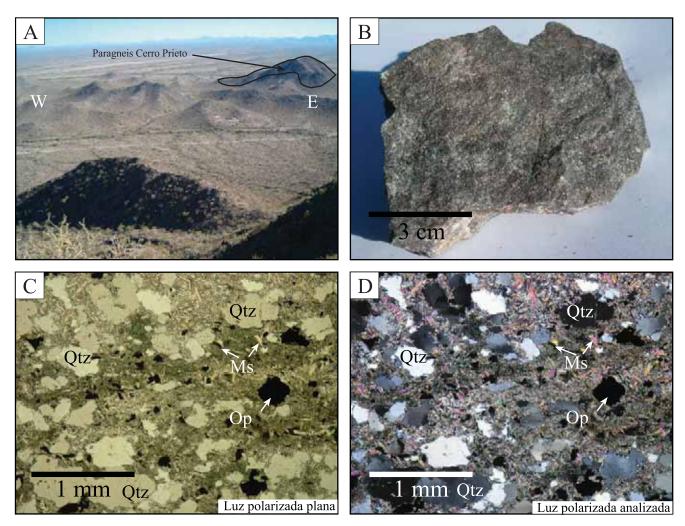
Quintanar-Ruiz (2008) presenta un estudio completo sobre el depósito aurífero La Herradura ubicado en la parte central del área de estudio. En este estudio se presentan edades paleoproterozoicas y jurásicas de las rocas encajonantes de la mineralización que pudo ser fechada entre ~50–60 Ma, sugiriendo una conexión temporal de este evento mineralizador con la orogenia larámide, como previamente lo habían establecido Iriondo y Atkinson (2000) e Iriondo (2001).

Por último, Ornelas-Macías y Verdugo-Noriega (2009) realizaron un estudio, de la zona Cerro Prieto-Carina ubicada dentro del área Mina La Herradura, sobre geología estructural de detalle donde proponen una falla con vergencia SW que hace que cabalguen rocas gnéisicas de edad Precámbrica sobre rocas volcánicas jurásicas. Este estudio también contempla una sección de geología económica donde presentan geoquímica de la mineralización de oro orogénico.

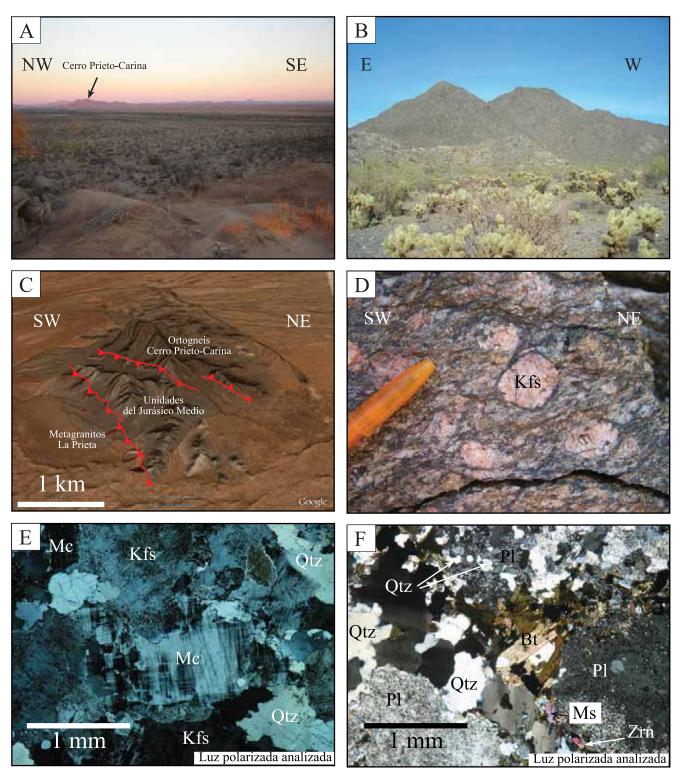
3.3. Unidades proterozoicas

3.3.1. Paragneis Cerro Prieto

Esta unidad de paragneis, posiblemente paleoproterozoica por correlación regional, únicamente aflora al este de Cerro Prieto (Figuras 7 y 8). El paragneis es de color verde oscuro que lo distingue de la unidad de orto-augen gneis Cerro Prieto-Carina (Figura 11A) que lo circunda y que se discutirá a continuación.


Esta unidad tiene una escasa foliación con orientaciones NW-SE y un echado hacia el NE. Este paragneis ha sido cortado por la unidad de orto-augen gneis paleoproterozoico Cerro Prieto-Carina y por consecuencia su edad mínima es la del intrusivo Cerro Prieto-Carina. Este paragneis también está afectado por diques de composición diabásica de colores verde oscuro y de grano fino.

Este paragneis está compuesto esencialmente de una mineralogía de cuarzo, moscovita, epidota y un 2% de minerales opacos bastante diseminados y oxidados. Texturalmente el cuarzo tiene bordes de corrosión y presenta una extinción ondulante. Esta mineralogía está embebida en una matriz fina de moscovita bien enmascarada por el reemplazamiento por clorita y epidota (Figuras 11B–D).


3.3.2. Orto-augen gneis Cerro Prieto-Carina

Esta unidad paleoproterozoica fechada en este estudio y que se constituye de un orto-augen gneis aflora en la zona central de Cerro Prieto-Carina y en los lomeríos bajos del sur de Sierrita Blanca (Figuras 7–9). Estos afloramientos tienen un color verde y gris oscuro (Figuras 12A y B).

La foliación de esta unidad ortognéisica presenta una orientación NW35°SE con echados al SW y al NE. Esta unidad fue afectada por una falla normal de bajo ángulo descrita más adelante dentro del apartado de descriptiva de la unidad metariolítica Carina. Esta falla hace que los echados de las foliaciones cambien a cada lado de la falla (Figura 8). Esta unidad de orto-augen gneis fue cabalgada por la unidad metariolítica Carina y sus indicadores cinemáticos (principalmente pórfidoclastos de feldespato) indican una

Figura 11. Fotografías de la unidad paragnéisica Cerro Prieto (Paleoproterozoico). (A) Afloramiento más elevado de esta unidad que se caracteriza por ser más oscuro que la roca circundante. (B) Muestra de mano donde se logra apreciar el gran contenido de minerales micáceos. (C) Fotomicrografía de una sección delgada donde se observa la gran cantidad de minerales opacos. (D) La misma fotomicrografía donde se observa principalmente cuarzo (con extinción ondulante) y moscovita. MS = moscovita, OP = opacos, Qtz = cuarzo.

Figura 12. Fotografías de la unidad de ortogneis Cerro Prieto-Carina (Paleoproterozoico). (A) Vista de oeste a este del área Cerro Prieto-Carina. (B) Aproximación de Cerro Prieto-Carina. (C) Imagen 3D del navegador *Google Earth* viendo de SE hacia el NW donde se indica la dirección e inclinación de las fallas de cabalgadura. (D) Afloramiento clásico de esta unidad ortognéisica. (E) Fotomicrografía mostrando cuarzo y feldespato. (F) Fotomicrografía donde se observa cuarzo, biotita y moscovita (colores rosados y morados). Bt = biotita, Kfs = feldespato potásico, Mc = microclina, Ms = moscovita, Pl = plagioclasa, Qtz = cuarzo, Zrn = zircón.

vergencia hacia el NE tal como se ilustra en las figuras 7, 12C y 13. Por otra parte, esta misma falla de cabalgadura a sido interpretada geológicamente de tal forma que la unidad riolítica Carina cabalgó a la unidad paleoproterozoica de orto-augen gneis Cerro Prieto-Carina (Ornelas-Macías y Verdugo-Noriega, 2009); sin embargo en el presente estudio no se encontró evidencia para respaldar una vergencia contraria de dicha falla.

Esta unidad de orto-augen gneis también está siendo cortada por diques de composición diabásica con coloraciones verde oscuro y de grano fino, con grosores decimétricos a métricos que presentan orientaciones NE-SW y que también están afectados por la misma foliación NW-SE. Esta unidad gnéisica presenta intrusiones de vetas y vetillas de cuarzo lechoso mineralizado con oro en una dirección preferente NW-SE, principalmente en la zona de minas La Carina y Carolina (Figura 8).

El color del orto-augen gneis en muestra de mano es de gris oscuro a verde oscuro dependiendo de su contenido en biotita. Este orto-augen gneis se compone esencialmente de una mineralogía representativa de feldespato alcalino (ortoclasa y microclina), cuarzo, plagioclasa, biotita y escasa moscovita de alteración. La mineralogía accesoria es de abundantes cristales de apatito, opacos y zircón. Esta unidad se caracteriza por tener pórfidoclastos de feldespato alcalino con una forma lenticular, elíptica-redondeada y prismática subhedral a euhedral, comúnmente con un tamaño de 1.5 cm de diámetro que alcanzan a tener hasta 4 cm de diámetro (Figuras 12D–F).

El protolito de esta unidad es evidentemente ígneo ya que tanto la mineralogía como la textura recuerdan a una fábrica plutónica de composición félsica. Se interpreta que la textura gnéisica de este orto-augen gneis sea posiblemente más antigua que los diques diabásicos que cortan a esta unidad ya que la foliación presente en estos diques no aparenta ser tan penetrativa y por relaciones de campo, estos diques quizá, tengan una edad jurásica ya que no se observan cortando rocas cretácicas.

Por último, es necesario destacar que la muestra LH06-16 (Figura 8) colectada para estudios analíticos no es propiamente un gneis de ojos de feldespato (orto-augen gneis) si no que es una roca con tamaño de grano menor pero con la misma mineralogía y edad que las otras dos muestras (SPA-7 y LH07-41) de esta unidad orto-augen gnéisica. Por otra

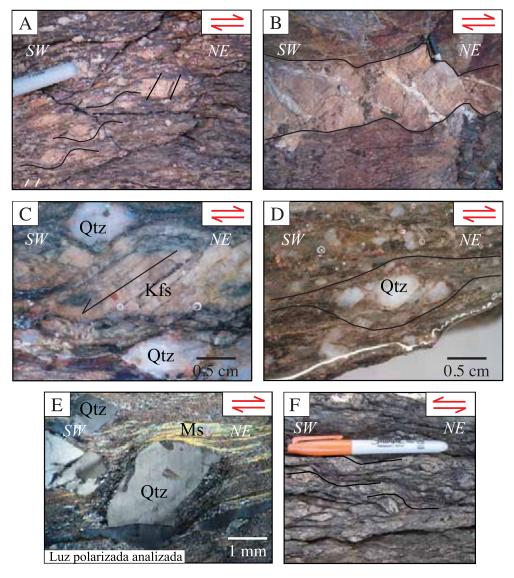
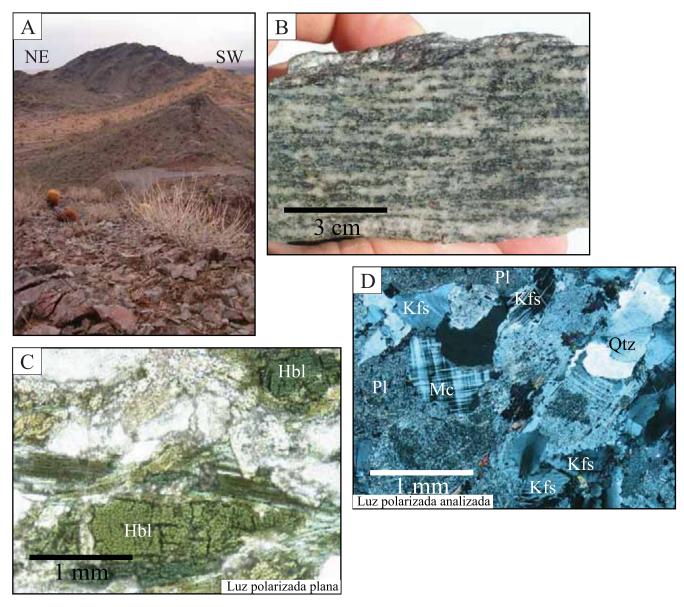


Figura 13. Indicadores cinemáticos macroscópicos y microscópicos en zonas de cizalla dúctil a frágil-dúctil, relacionados a las fallas de cabalgadura en el área Mina La Herradura. Los cinco primeros indicadores cinemáticos (A-E) son de las rocas de Cerro Prieto-Carina y la última (F) es del ortogneis La Herradura. (A) Afloramiento del ortogneis paleoproterozoico milonitizado con megacristales de feldespato alcalino (pórfidoclastos). Los sigmoides (resaltados por líneas) indican una vergencia hacia el NNE. (B) Afloramiento de un dique aplítico de composición félsica cortando al ortogneis Cerro Prieto-Carina. Este dique esta boudinado (en borde negro) y presenta estructuras de extensión escalonadas rellenas de cuarzo (vetillas de cuarzo) compatibles con la vergencia hacia el NNE de la deformación. (C) Detalle de un pórfidoclasto de feldespato alcalino del ortogneis Cerro Prieto-Carina mostrando un fracturamiento en forma de piezas de dominó volcadas (fracturas antitéticas) que indican una vergencia de los desplazamientos hacia el NNE. (D) Detalle de un segundo cristal, ahora de cuarzo (resaltados por líneas) del orto-augen gneis que, de igual manera, indica una vergencia hacia el NNE. (È) Fotomicrografía de luz polarizada analizada de una milonita de la muestra LH07-30 (metariolita jurásica) resultado de la deformación laramídica en la región. Los pórfidoclastos de cuarzo forman colas de moscovita y cuarzo con fábricas S-C. El sentido de desplazamiento indica una vergencia hacia el NNE. (F) Afloramiento del ortogneis La Herradura muy milonitizado con aglomeraciones minerales que forman seudo-porfidoclastos con colas de mineral resultado de la deformación (resaltados por líneas). Estos indicadores sugieren un desplazamiento con vergencia hacia el SW. El marcador tiene una longitud de 13.5 cm. Ms = moscovita, Otz = cuarzo.

parte, esta muestra proviene de un afloramiento que aparenta ser un dique de decenas de metros el cual se considera, para efectos de este estudio, como parte de la unidad ortoaugen gneis.


3.3.3. Ortogneis La Herradura

Esta unidad de ortogneis bandeado paleoproterozoico fechada en este estudio aflora en la porción central del área de estudio en las cercanías de la Mina La Herradura (Figuras 7 y 10). Sus afloramientos se disponen en una orientación NW-SE y tienen un color verde o gris oscuro y que puntualmente adquiere tonalidades café oscuras (Figura 14A).

Esta unidad de ortogneis tiene una fuerte deformación con foliaciones promedio orientadas NW55°SE y con echados hacia el NE (Figura 10). En la porción norte de la zona Mina La Herradura esta unidad fue cabalgada por la metaandesita El Sahuaro en una dirección NW55°SE y con una vergencia hacia el SW establecida a partir de indicadores cinemáticos. Esta unidad también fue cortada por diques de composición diabásica con coloraciones verde oscuro y de grano fino, y con grosores decimétricos con orientaciones NE-SW. Estos diques están afectados por la misma foliación general en dirección NW-SE que presentan las rocas encajonantes. Esta unidad de ortogneis La Herradura tiene frecuentemente intrusiones de vetas y vetillas de cuarzo lechoso similares a los explotados en las minas Carina y Carolina en direcciones NW-SE y NE-SW. De hecho esta unidad gnéisica corresponde a la roca que hospeda la mineralización económica de oro en la Mina La Herradura (Quintanar-Ruiz, 2008) [Figura 10].

El ortogneis La Herradura, visto en sección delgada, se compone de una mineralogía de cuarzo, feldespato alcalino, plagioclasa y en menor proporción de hornblenda y biotita con minerales accesorios de zircón y apatito. Se observa también una escasa moscovita que aparenta un origen secundario como producto de alteración (Figuras 14B–D).

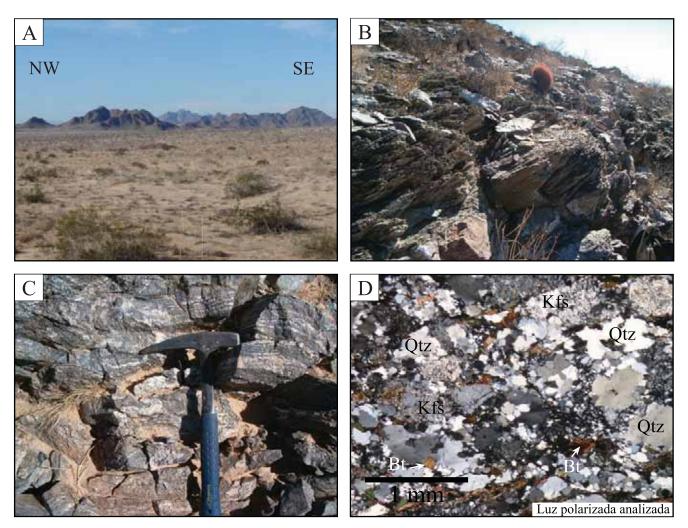
Inicialmente se pensó que el protolito de este ortogneis La Herradura pudiera ser el de una roca sedimentaria, es decir que se trataba de un paragneis, pero debido a la presencia de una mineralogía similar al de una roca plutónica granítica, aunado a la

Figura 14. Fotografías de la unidad ortogneis La Herradura (Paleoproterozoico). (A) Afloramientos representativos vistos del NW hacia el SE. (B) Corte de una muestra de mano del ortogneis bandeado La Herradura apreciandose su bandeado mineral. (C) Fotomicrografía en sección delgada donde se puede observar hornblenda, epidota y clorita. (D) En esta otra fotomicrografía, en luz analizada, se pueden observar cristales frescos de feldespato, cuarzo y cristales de plagioclasa sericitizados. Kfs = feldespato potásico, Hbl = hornblenda, Mc = microclina, Pl = plagioclasa, Qtz = cuarzo.

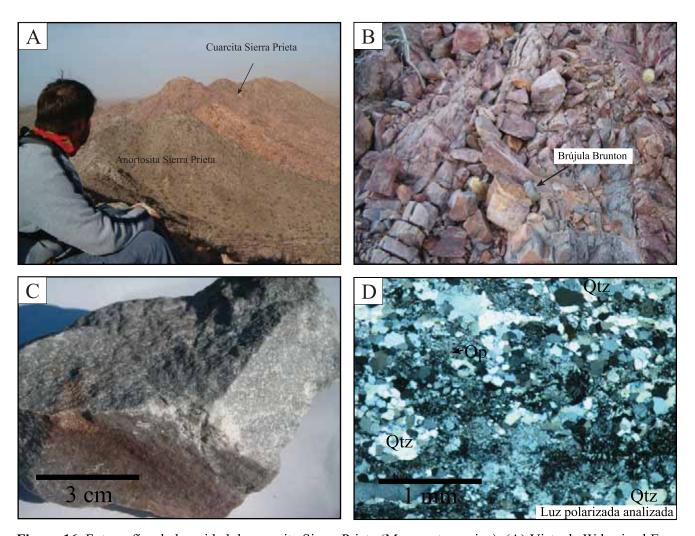
homogeneidad de las edades en los zircones fechados (por discutir más adelante), se concluyó que el protolito del gneis fue granítico.

3.3.4. Paragneis Sierra Prieta

Esta unidad de paragneis paleoproterozoico fechada en este estudio aflora en la porción norte de Sierra Prieta (Figura 7). Sus afloramientos se disponen en una orientación NW-SE y presentan una tonalidad de verde a gris oscuro y en ocasiones de color café oscuro (Figuras 15A y B). Esta unidad presenta una fuerte deformación con foliaciones promedio orientadas NW80°SE y echados hacia el NE. Indicadores cinemáticos presentes en la roca sugieren vergencias de esta unidad hacia el NE.


Este paragneis, visto en sección delgada, se compone de una mineralogía de cuarzo, plagioclasa en sus bandas leucocráticas, y en menor proporción, de biotita en las bandas melanocráticas, como minerales accesorios de zircón y apatito. Se observa también una escasa cantidad de moscovita que aparenta un origen secundario posiblemente asociado a la alteración de los feldespatos (Figuras 15B y D).

El protolito es claramente de una roca sedimentaria detrítica ya que conserva evidencia de una fábrica sedimentaria y posiblemente sea el de una arenisca poco madura con detritos de proveniencia relativamente local.


3.3.5. Cuarcita Sierra Prieta

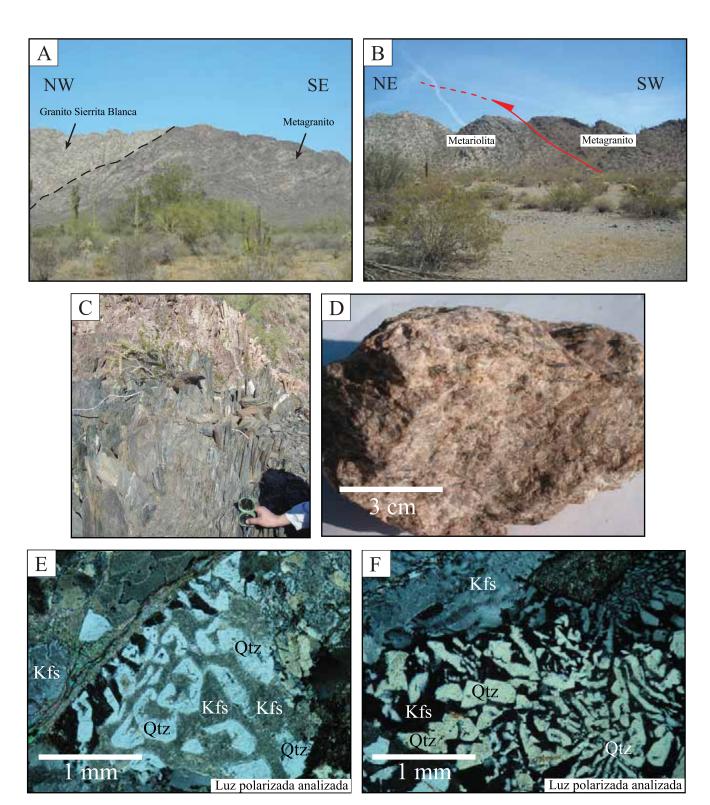
Esta unidad mesoproterozoica fechada en este estudio está compuesta por cuarcitas, cuarcitas con lutitas y micro-conglomerados de granos de cuarzo. Las rocas de esta unidad afloran en la porción centro y sur de Sierra Prieta (Figura 7) y su coloración es principalmente café rojizo (Figuras 16A y B).

Los afloramientos se disponen en una orientación NW-SE y las capas de cuarcita se orientan NW30°SE con echados principalmente hacia el SW (Figura 7). La deformación de esta unidad es de moderada a fuerte con foliaciones que coinciden con la estratificación dispuestas en dirección NW 35°SE y echados principalmente hacia el SW. Existen pliegues isoclinales de dimensiones decimétricas a métricas con ejes paralelos a la foliación,

Figura 15. Fotografías de la unidad paragneis Sierra Prieta (Paleoproterozoico). (A) Vista de W hacia el E de los afloramientos del paragneis. (B) Acercamiento de un afloramiento donde se aprecia claramente la foliación de esta unidad. (C) Detalle del paragneis donde se observan los bandeados más cuarzo-feldespáticos y ferromagnesianos. (D) Fotomicrografía donde se aprecia la abundancia de cuarzo y biotita. Bt = biotita, Kfs = feldespato potásico, Qtz = cuarzo.

Figura 16. Fotografías de la unidad de cuarcita Sierra Prieta (Mesoproterozoico). (A) Vista de W hacia el E en donde se aprecia que esta unidad de cuarcita de color café rojizo es intrusionada por "sills" de las unidades de anortosita y metagranito que se aprecian en color verde oscuro y que presentan orientaciones W-E. (B) Acercamiento de la cuarcita en un nivel más microconglomerático. (C) Muestra de mano de la cuarcita Sierra Prieta. (D) Fotomicrografía en sección delgada de esta cuarcita. Op = opacos, Qtz = cuarzo.

principalmente en el flanco oeste de Sierra Prieta. El espesor de esta unidad metasedimentaria medido en el campo es de ~650 m.


La cuarcita vista en muestra de mano y en sección delgada se compone de cuarzo con extinción ondulante, opacos y de moscovita localizada principalmente a lo largo de los planos de foliación. La textura de esta roca es equigranular con juntas triples y con bordes ondulados (Figuras 16C y D).

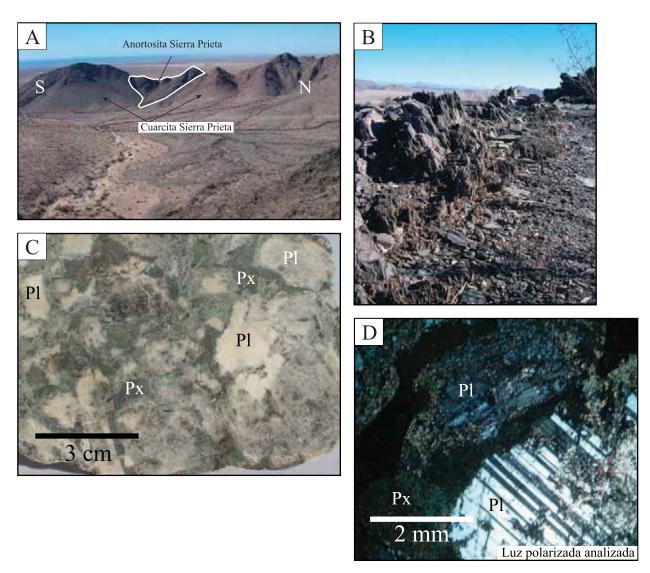
3.3.6. Metagranito La Prieta

Esta unidad mesoproterozoica fechada en este estudio aflora en diversas porciones del área de estudio (Figura 7). Una de estas localidades se encuentra en la porción de Sierra Prieta que, de manera casi contemporánea, se relaciona a los afloramientos de la anortosita Sierra Prieta (Figura 7). Una segunda ocurrencia está en la porción sur de Cerro Prieto-Carina, y por último, se encuentra esta unidad al sur de Sierrita Blanca (Figura 9). En su porción norte esta unidad ya ha sido fechada en ~1.1 Ga por Enríquez-Castillo (2008). La coloración de estos afloramientos son generalmente café oscuro a verde oscuro (Figuras 17A–C).

Esta unidad metagranítica está moderadamente deformada y presenta foliaciones generalmente NW-SE con echados hacia el SW. En la Sierrita Blanca esta unidad fue intrusionada por el granito cretácico Sierrita Blanca (Figura 17A) y en la zona Cerro Prieto-Carina está cabalgando a la unidad metariolítica Carina (Figura 17B) del jurásico Medio en una dirección de NW40°SE con una vergencia estimada por indicadores cinemáticos hacia el NE. Al igual que la unidad anortosítica Sierra Prieta, que se discute a continuación, estos metagranitos intrusionan a la unidad de cuarcita Sierra Prieta como se reporta en Izaguirre-Pompa e Iriondo (2007). En las porciones de Sierrita Blanca y Cerro Prieto esta unidad fue cortada por diques de composición diabásica con coloraciones verde oscuro y de grano fino, con grosores decimétricos a métricos principalmente con orientaciones NE-SW y E-W (Figura 17C).

Los metagranitos La Prieta se componen de una mineralogía de feldespato alcalino, plagioclasa, cuarzo, biotita y moscovita, con minerales accesorios opacos, apatito, fluorita

Figura 17. Fotografías de la unidad metagranítica La Prieta (Mesoproterozoico). (A) Imagen mostrando el contacto intrusivo del granito cretácico Sierrita Blanca con la unidad metagranítica al sur de Sierrita Blanca. (B) Vista de W hacia el E de uno de los afloramientos en el área Cerro Prieto-Carina donde se observa a esta unidad cabalgando a la unidad metariolítica. (C) Dique diabásico que corta a esta unidad en direcciones preferentemente NE-SW. (D) Muestra de mano del metagranito. (E y F) Fotomicrografías en sección delgada de este metagranito observandose la textura micrográfica desarrollada en los feldespatos. Kfs = feldespato potásico, Qtz = cuarzo.


y zircón (Figuras 17C y D). La textura de este granito es equigranular pero cabe destacar que los feldespatos alcalinos, mayormente microclina, presentan una textura micrográfica ya que se observan intercrecimientos de cuarzo en forma cuneiforme (Figuras 17E y F).

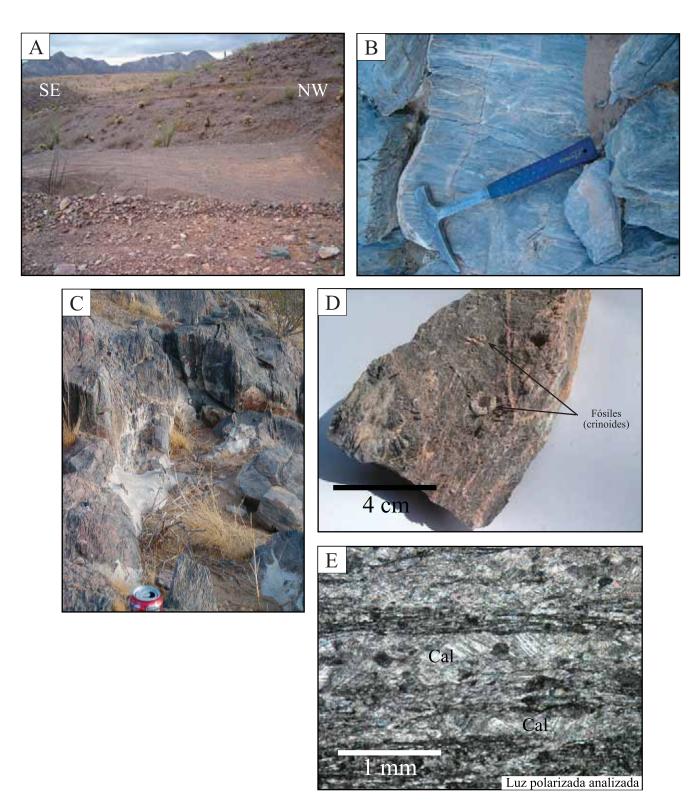
3.3.7. Anortosita Sierra Prieta

Esta unidad mesoproterozoica fechada en este estudio está compuesta por rocas anortosíticas. Sin embargo, el contenido de plagioclasa de estas rocas en diversas zonas disminuye por debajo del 90%, convirtiéndose en noritas y grabro-anortositas. Esta unidad se encuentra exclusivamente en el área de Sierra Prieta (Figura 7) con afloramientos principalmente de color verde oscuro, muy distintivo, que en ocasiones se tornan blancos como resultado de la alteración de las plagioclasas.

La orientación de los afloramientos de esta unidad es NW-SE. Estos conforman una gran extensión en la zona norte de Sierra Prieta que paulatinamente disminuyen en volumen hacia la zona sur (Figura 7). Esta unidad de anortosita intrusiona a la unidad de cuarcitas mesoproterozoicas Sierra Prieta en forma de sills con dimensiones métricas a decimétricas (Figura 18A). La deformación que presenta esta unidad es muy intensa con foliaciones orientadas en promedio NW55°SE con echado predominantemente hacia el NE (Figura 18B).

La anortosita Sierra Prieta se compone de una mineralogía esencialmente de plagioclasa y en menor grado de ferromagnesianos, principalmente piroxeno (Figura 18C y D). Sin embargo, la plagioclasa y los ferromagnesianos presentan un fuerte pseudomorfismo a moscovita, clorita y epidota; además de una albitización de la plagioclasa. A partir de 15 mediciones de los ángulos de extinción en la plagioclasa, utilizando el método de Michel-Lévy, se estiman composiciones de bitownita-anortita. Sin embargo, las plagioclasas aptas para realizar las mediciones son escasas debido a su grado de alteración.

Figura 18. Fotografías de la unidad anortosítica Sierra Prieta (Mesoproterozoico). (A) Esta es una vista observando de E hacia el W en donde se aprecia que la unidad de cuarcita es intusionada por "sills" de anortosítica con orientaciones E-W. (B) Ejemplo donde se observa la intensa foliación de esta unidad anortosítica. (C) Corte de una muestra de mano donde se aprecia la abundancia y el gran tamaño de las plagioclasas en color blanco opaco. (D) Fotomicrografía mostrando un maclado polisintético de la plagioclasa y una alteración sericítica incipiente. Pl = plagioclasa, Px = piroxeno.


3.4. Unidades paleozoicas

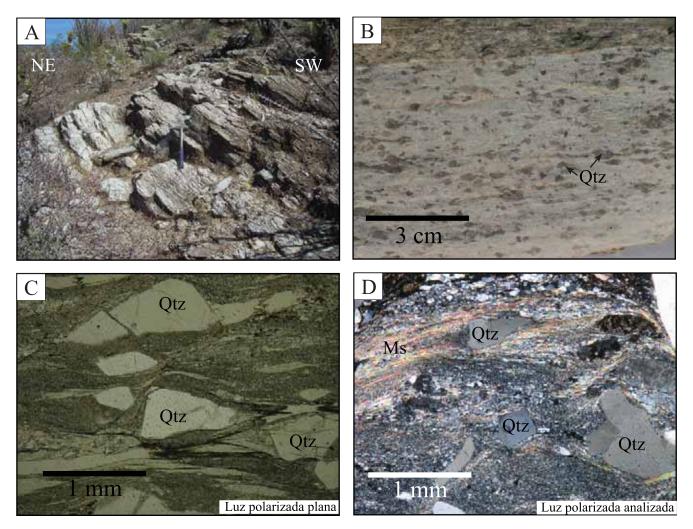
3.4.1. Calizas y cuarcitas La Ventana

Esta unidad paleozoica de calizas, cuarcitas, pedernal y, en menor medida, lutitas aflora en la porción NW del área de estudio, constituyendo el Cerro La Ventana y a un conjunto de seis afloramientos más pequeños que se localizan al norte del mismo (Figuras 7 y 10). El color de los afloramientos es de un gris claro a un gris azulado con algunas coloraciones rojizas a lo largo de sus capas (Figuras 19A y B). La actitud general de las capas de esta unidad es de NW25°–75°SE con echados variables hacia el NE.

La orientación de los afloramientos de calizas y cuarcitas es NW-SE y el espesor observado de esta unidad en el campo es de ~300 m. Este espesor es difícil de precisar ya que esta unidad presenta cambios importantes en la inclinación de sus capas. Esta unidad presenta una deformación con pliegues isoclinales con ejes orientados NW-SE y de dimensiones métricas. La foliación está orientada NW-SE, subparalela a la estratificación con echados verticales y dominantemente hacia el SW, es decir, buzando en sentido contrario a la estratificación (Figura 19C). En las inmediaciones del afloramiento más grande, al norte de Cerro La Ventana, existe un paquete de lutitas y margas con un cizallamiento de hasta 15 metros de espesor y con textura de filitas de grado metamórfico de facies de esquistos verdes.

La roca más abundante en esta unidad es la caliza que presenta una mineralogía de calcita (dominantemente esparita) con fósiles de crinóides y de braquiópodos fuertemente recristalizados y que se le han atribuido una edad paleozoica (Misisípico, Pensilvánico y Pérmico; Poole *et al.*, 2004) [Figuras 19D y E]. Los niveles más detríticos (cuarcitas) están compuestos principalmente de una mineralogía de cuarzo, fragmentos de cuarzo, opacos y moscovita, principalmente ubicada a lo largo de planos de foliación.

Figura 19. Fotografías de la unidad de calizas-cuarcitas La Ventana (Paleozoico). (A) En el horizonte se puede observar el Cerro La Ventana apreciándose tonalidades diferentes representando las facies sedimentarias diferentes. (B) Nivel de calizas en Cerro La Ventana. (C) Afloramiento con planos de foliación bien desarrollados. (D) Fósiles de tallos de crinoides en planta. (E) Fotomicrografía de una sección delgada donde se observa que los niveles de caliza se componen de calcita (esparita). Cal = calcita.


3.5. Unidades mesozoicas

3.5.1. Metariolita Carina

Esta unidad del Jurásico Medio, fechada en este estudio, está constituida de metariolita, aflora en al área Cerro Prieto-Carina y en la zona de las instalaciones de la Mina La Herradura (Figuras 7 y 9). Los afloramientos de esta unidad en Cerro Prieto-Carina son de color blanco con zonas verdes claras mientras que en las instalaciones de la Mina La Herradura los colores de esta metariolita son morados oscuros con tonalidades rosas.

Los afloramientos de esta unidad metariolítica se disponen espacialmente con una dirección preferente NW-SE. En el área Mina La Herradura esta unidad no presenta deformación pero en la zona Cerro Prieto-Carina la metariolita presenta una fuerte deformación con foliaciones orientadas principalmente NW25°-55°SE (Figura 20A) y se encuentra cabalgando a la unidad gnéisica Cerro Prieto-Carina (Figura 7 y 8). Este cabalgamiento, que se estima de edad laramídica, tiene una orientación NW25°SE y presenta una vergencia hacia el NE determinada a partir de indicadores cinemáticos en el afloramiento y en sección delgada (Figura 13). Esta estructura de cabalgadura ha sido cortada bruscamente por una falla normal de bajo ángulo NW65°SE (falla lístrica), de tal forma que divide en dos bloques al ortho-augen gneis Cerro Prieto-Carina y a la metariolita Carina. Uno de estos bloques se encuentra al SW y el otro al NE de la falla (Figura 8). El bloque NE se interpreta que fue el que rotó de forma más intensa, y lo hizo en una dirección antihoraria quedando físicamente el orto-augen gneis Cerro Prieto-Carina sobre las rocas jurásicas que previamente cabalgaron al orto-augen gneis paleoproterozoico. Esta falla normal muy posiblemente sucedió durante un intenso fallamiento originado por el fenómeno tectónico de distensión cortical que dio lugar a la actual morfología conocida como sierras y valles paralelos (basin and range).

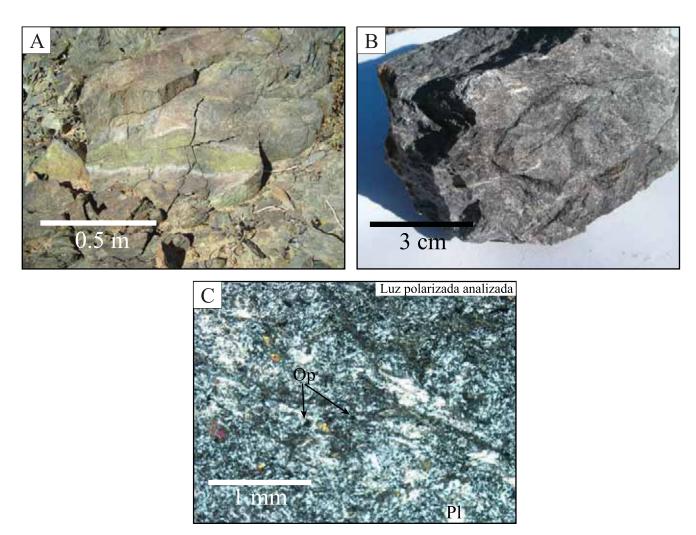
Esta unidad metariolítica se compone de una mineralogía de cuarzo, feldespato alcalino y plagioclasa con planos de foliación con abundante moscovita incluidos en una matriz muy fina de cuarzo y feldespato (Figuras 20B–D). Se presentan minerales

Figura 20. Fotografías de la unidad de metariolítica Carina (Jurásico Medio). (A) Afloramiento de la metariolita Carina en el área de Cerro Prieto-Carina en una zona de cizalla donde se observa una densidad importante de planos de foliación. (B) Corte de muestra de mano donde se observan los ojos de cuarzo embebidos en una matriz más clara y fina. (C) Fotomicrografía donde se observa los granos de cuarzo en una matriz fina orientada. (D) Fotomicrografía en luz analizada observandoce bien los granos de cuarzo con una fina moscovita de neoformación en planos de cizalla (deformación laramídica). Ms = moscovita, Qtz = cuarzo.

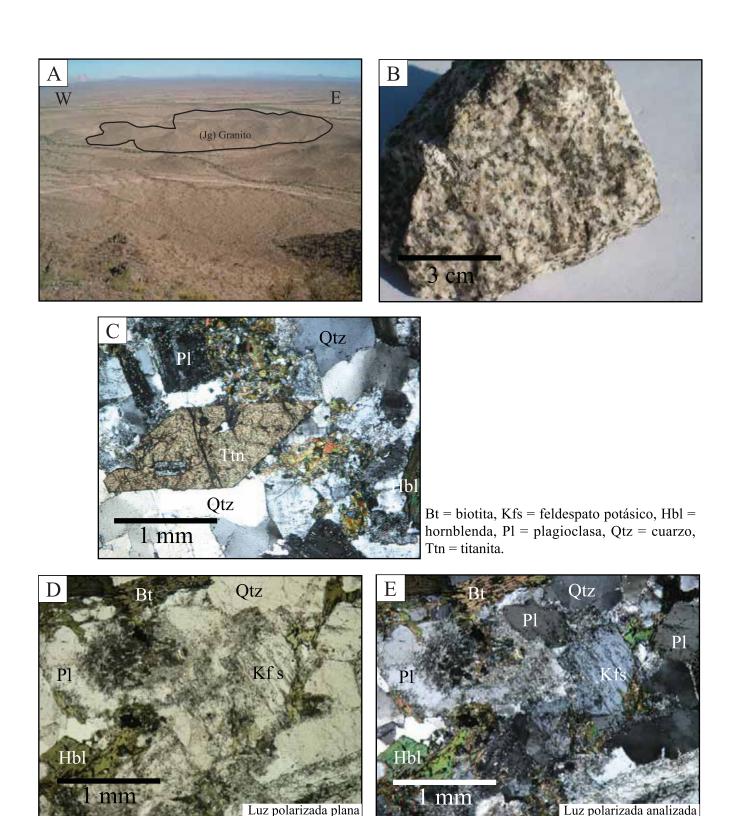
accesorios de apatito y zircón. Esta metariolita tiene una textura porfídica resaltando los ojos de cuarzo de la matriz volcánica.

3.5.2. Metaandesita El Sahuaro

Esta unidad jurásica metaandesítica fechada en este estudio aflora en diversas zonas del área de estudio como en los alrededores de Cerro Prieto-Carina, al sur de Sierrita Blanca y en la zona de la Mina La Herradura (Figura 7). La unidad se caracteriza por tener afloramientos de colores verde y gris oscuro (Figura 21A).


Tanto en la zona Cerro Prieto-Carina como en la zona de la Mina La Herradura, esta unidad presenta una moderada deformación con foliaciones orientadas NW-SE y echados hacia el SW, mientras que al sur de Sierrita Blanca los echados son hacia el NE y SW (Figura 7). Basándose en algunas relaciones de campo, esta andesita aparentemente sobreyace a la unidad metariolítica Carina del Jurásico Medio.

Esta andesita presenta una textura porfídica a glomeroporfídica con una mineralogía de fenocristales de plagioclasa y piroxeno fuertemente alterados a epidota clorita y sericita. Los fenocristales están embebidos en una matriz de plagioclasa fuertemente alterada y reemplazada a sericita, epidota y minerales opacos (Figuras 21B y C). También existen algunos cuarzos accidentales (xenocristales) que presentan bordes de corrosión que indican su inestabilidad por la reabsorción del los mimos.


3.5.3. Granito Carina

Esta unidad granítica del Jurásico medio fechada en este estudio sólo aflora al norte de la zona Cerro Prieto-Carina (Figura 8). Sus afloramientos tienen una morfología de lomeríos bajos de colores café claros y grises claros (Figura 22A). Los afloramientos de esta unidad se disponen espacialmente en una dirección preferente NW-SE. Esta unidad no presenta una deformación visible e intruye claramente a las unidades paleoproterozoicas de paragneis y orto-augen gneis de la zona Cerro Prieto-Carina.

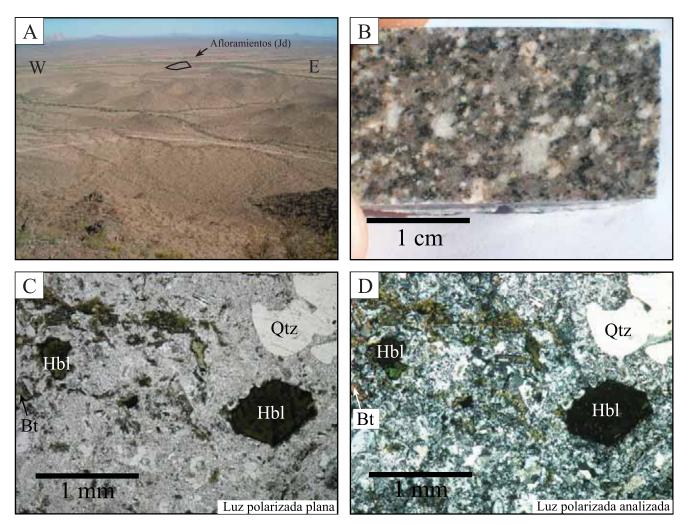
El granito Carina está compuesto por una mineralogía mayor de feldespato alcalino (principalmente microclina), plagioclasa y cuarzo, y una menor de hornblenda, biotita y

Figura 21. Fotografías de la unidad metaandesítica El Sahuaro (Jurásico Medio). (A) Afloramiento de la metaandesita de color verde debido a la presencia de epidota y clorita. (B) Muestra de mano de metaandesita con escasa alteración. (C) Fotomicrografía de la metaandesita observándoce una matriz fina de plagioclasa y algunos ferromagnesianos reemplazados por epidota y clorita. Op = opacos, Pl = plagioclasa.

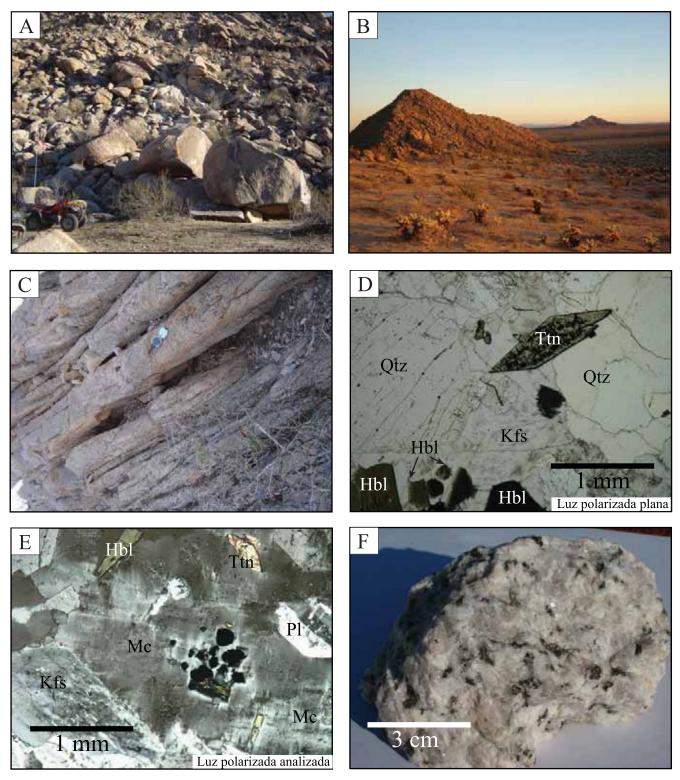
Figura 22. Fotografías de la unidad granito Carina (Jurásico Medio). (A) Vista de S a N de los lomeríos de esta unidad presente al norte de Cerro Prieto-Carina. (B) Muestra de mano donde se aprecia bien la textura equigranular de esta unidad. (C) Fotomicrografía de lámina delgada donde se muestra una trama de cuarzo y ferromagnesianos donde sobresale un fenocristal de titanita con su forma característica romboidal. (D) Fotomicrografía donde se aprecia hornblenda color verde con su forma rómbica. (E) Fotografía anterior pero en luz polarizada analizada observándose una gran cantidad de feldespato y en menor medida de cuarzo.

titanita, y accesoria de apatito y zircón. La textura de este granito es equigranular y con un tamaño de grano medio (Figuras 22B–E).

3.5.4. Dacita Cerro Prieto


Esta unidad del Jurásico Medio fechada en este estudio se constituye de una roca de composición dacítica y aflora solo en la porción norte del área Cerro Prieto-Carina (Figuras 8 y 23A). Los afloramientos presentan una pátina oscura aperlada característica del desierto con un color café-rojizo a gris oscuro. Su morfología es muy distintiva ya que se asemejan a montículos cónicos bien formados. La distribución de estos afloramientos es muy limitada (Figura 23 A) y solo se conoce por la intrusión a la unidad granítica jurásica Carina. Esta roca no presenta una deformación visible en campo.

A nivel de afloramiento se distingue la textura porfídica (Figura 23B) que en sección delgada se observa que se compone de una mineralogía de cuarzo, plagioclasa y hornblenda. Existen abundantes mosaicos de cuarzo sobrecrecidos indicando una silicificación en la roca (Figuras 23C y D). El cuarzo tiene forma de ojos y las plagioclasas son tabulares con tamaños de 1-3 mm de largo.


3.5.5. Granito Los Indios

Esta unidad granítica del Cretácico Tardío fechada en este estudio aflora en Cerros Los Indios localizados en la zona más occidental del área Mina la Herradura (Figuras 7 y 10). Los afloramientos normalmente son de colores blanco a blanco beige (Figuras 24A y B).

Al igual que la mayor parte de los afloramientos de rocas en el área, los afloramientos de este granito se orientan NW-SE; debido al régimen tectónico *basin and range*. Las foliaciones presentan orientadas NW55°SE en promedio. Esta deformación se intensifica a lo largo de zonas de cizalla mayormente observadas en algunos afloramientos en Cerros Los Indios (Figura 24C). En los Cerros Los Indios esta unidad se encuentra cubierta por depósitos de aluvión que no permiten la observación de ningún contacto geológico con unidades más antiguas. Algunos afloramientos esta unidad se encuentran

Figura 23. Fotografías de la unidad dacítica Cerro Prieto (Jurásico Medio). (A) En esta fotografía se indica (flecha negra) el área donde aflora esta unidad. (B) Muestra de mano donde se observan bien los fenocristales de feldespato y los ferromagnesianos embebidos en una matriz de grano fino. (C) Fotomicrografía donde se observan bien cristales de hornblenda. (D) Fotomicrografía de luz analizada observándose bien los cristales de cuarzo con golfos de corrosión. Bt = biotita, Hbl = hornblenda, Qtz = cuarzo.

Figura 24. Fotografías de la unidad granítica Los Indios y Sierrita Blanca (Cretácico Superior). (A) Afloramiento del granito en Cerros Los Indios observándose el intemperismo del tipo "exfoliación esferoidal" y además el color de la roca que es blanco beige. (B) Vista observando de NW a SE de los afloramientos que están más al sur en Cerros Los Indios. (C) Zona de cizalla intensa y foliación en fase sólida muy penetrativa. (D) Rombohedros de titanita en el centro de la imagen y en la parte inferior izquierda minerales coloreados como hornblenda (E) Fotomicrografía donde se observa microclina atrapando ferromagnesianos. (F) Muestra de mano de la unidad Sierrita Blanca donde se aprecia el color blanco de los feldespatos y su grueso tamaño. Kfs = feldespato potásico, Hbl = hornblenda, Mc = microclina, Pl = plagioclasa, Qtz = cuarzo, Ttn = titanita.

cortados por enjambres de diques aplíticos con espesores centimétricos a decimétricos. Estos diques son posiblemente de tipo tardimagmático y están compuestos de feldespato, cuarzo y biotita.

El granito Los Indios es una unidad que tiene una variación mineralógica importante y está constituido por feldespato alcalino, plagioclasa y cuarzo, en menor proporción de biotita, hornblenda y titanita con minerales accesorios de zircón y apatito (Figura 24D). Las texturas de este granito normalmente son equigranulares, de grano fino a medio pero ocasionalmente se encuentran feldespatos alcalinos que pueden llegar a medir hasta 4 cm de largo.

3.5.6. Granito Sierrita Blanca

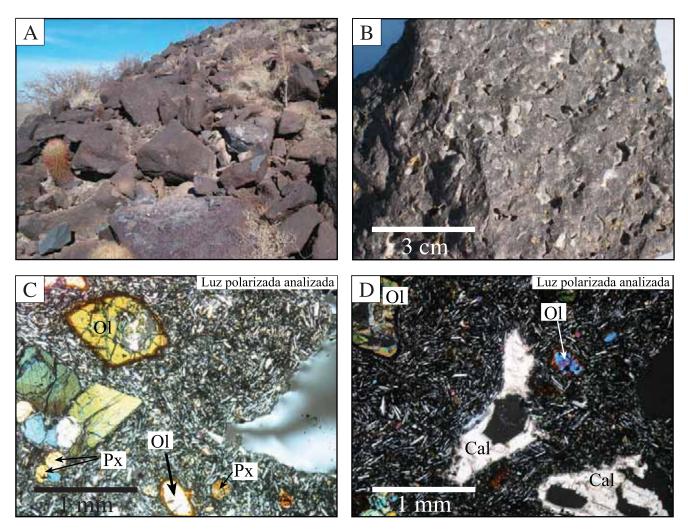
Esta unidad granítica del Cretácico Superior fechada en este estudio aflora en la porción sur de Sierrita Blanca (Figuras 7 y 9). Los afloramientos normalmente son de color blanco y se orientan en una dirección NW-SE y presentan foliación con orientación NW50° SE en promedio. Además, esta unidad es cortada por diques andesíticos oligocénicos de color café oscuro y altamente oxidados con orientaciones NE-SW. Esta unidad granítica Sierrita Blanca corta a la unidad metagranítica Mesoproterozoica La Prieta.

Este granito tiene dos micas y su mineralogía es predominantemente de feldespato, cuarzo, plagioclasa y en menor proporción biotita y moscovita con minerales accesorios como zircón y apatito (Figura 24F). Las texturas son normalmente equigranulares, de grano medio a grueso y en ocasiones con feldespatos alcalinos que comúnmente miden hasta 3 cm de diámetro.

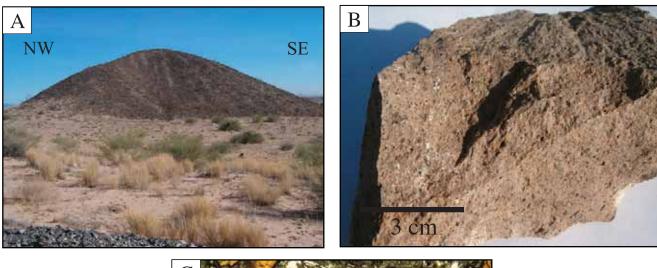
Este granito ha sido fechado en la parte norte de la Sierrita Blanca en una edad U-Pb de zircones de ~70 Ma (Cretácico Tardío) [Enríquez-Castillo, 2008].

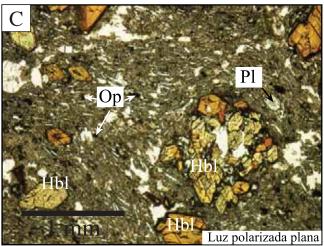
3.6. Unidades cenozoicas

3.6.1. Andesita basáltica La Herradura


Esta unidad de andesita basáltica oligocénica, y fechada en este estudio, aflora 3 km al NW de la Mina La Herradura (Figura 9). Este es un único afloramiento en toda la zona de estudio y espacialmente esta unidad se encuentra orientada en una dirección NW-SE en el flanco oriental de la zona Mina La Herradura y Cerro La Ventana. El afloramiento presenta un color negro a gris aperlado originado por la pátina clásica del desierto (Figura 25A). La roca de esta unidad de andesita basáltica presenta un grado alto de vesiculación con un relleno principalmente de calcita, ya que es efervescente al ácido clorhídrico (HCl) [Figura 25B]. Los minerales de esta roca son esencialmente fenocristales de olivino de color verde con tonalidades cafés, de hasta 1.5 mm de tamaño e incluidos en una matriz oscura principalmente de plagioclasa.

En sección delgada se observa una textura glomeroporfídica, con el olivino iddingsitizado y en mucha menor proporción ortopiroxeno (Figuras 25C y D). La matriz se compone de microlitos de plagioclasa y olivino más ortopiroxeno. También se presentan minerales opacos principalmente diseminados en la matriz.


3.6.2. Dacita El Dipolo


Esta unidad oligocénica fechada en este estudio está constituida por rocas de composición dacítica y aflora en la porción centro-norte del la zona Mina La Herradura (Figuras 8 y 10). Los afloramientos tienen un color café-rojizo a gris oscuro y presentan una morfología muy distintiva ya que se asemejan a montículos cónicos bien formados (Figura 26A).

La distribución entre afloramientos de esta unidad es muy espaciada y prácticamente se encuentran cubiertos por sedimentos aluviales recientes. Sin embargo, esta unidad volcánica intrusiona al ortogneis La Herradura y al granito Sierrita Blanca en forma de diques.

Figura 25. Fotografías de la unidad de andesita basáltica La Herradura (Oligoceno). (A) Este afloramiento es el único encontrado en el área de estudio. (B) Muestra de mano donde se aprecia el color negro de la matriz y su caracter vesicular. (C) Fotomicrografía de lámina delgada donde se observa un agregado de olivino y piroxeno, y además el espacio vacío de una vesícula. (D) Fotomicrografía observándose vesículas rellenas de calcita. Cal = calcita, Ol = olivino, Px = piroxeno.

Figura 26. Fotografías de la unidad dacítica El Dipolo (Oligoceno). (A) Afloramiento representativo de esta unidad donde se observa una forma cónica semejante al de una campana. (B) Muestra de mano de la dacita con un color café oscuro y con textura porfídica. (C) Fotomicrografía de lámina delgada donde se muestran fenocristales de hornblenda y plagioclasa. Además, se observa un agregado de hornblenda incluido en una matriz de grano fino de plagioclasa con carácter vesicular. Op = opacos, Hbl = hornblenda, Pl = plagioclasa.

A nivel de afloramiento, la dacita es de color café y se puede distinguir su textura porfídica (Figura 26B). En sección delgada se observa su textura porfídica y además glomeroporfídica (Figura 26C). La mineralogía es de fenocristales principalmente de hornblenda verde y en mucha menor proporción de plagioclasa. Los fenocristales están embebidos en una matriz de microcristales de la misma mineralogía. También existen minerales opacos bien distribuidos en toda la matriz.

3.6.3. Depósitos aluviales miocénicos a recientes

En esta unidad se engloban los depósitos de coluvión, aluvión y eólicos que son generalmente horizontales y que están compuestos principalmente de gravas, arenas, limos y arcillas. Estos depósitos llenan las cuencas locales formando ocasionalmente grandes acumulaciones en las desembocaduras de los arroyos y en las zonas de cambio de pendiente o simplemente conforman dunas de arena. Estos sedimentos son transportados por corrientes de agua y/o por vientos. Se puede destacar que estos depósitos abarcan aproximadamente el 80% del área de estudio.

4. Técnicas analíticas

4.1. Separación de zircones

El separado de zircones de las muestras de roca datadas en este estudio se realizó utilizando técnicas convencionales empleadas en el Laboratorio de Separación de Minerales del Centro de Geociencias, Campus Juriquilla Querétaro, que forma parte de la Universidad Nacional Autónoma de México (UNAM). Estas técnicas de separado de zircones consisten en: (1) la fragmentación de ~2 kg de muestra con una quebradora de quijadas; (2) el tamizado de la muestra quebrada; (3) el lavado con agua de la fracción tamizada que se obtuvo al pasarla por el tamaño de malla 80 (<0.18 mm); (4) el separado de minerales magnéticos, paramagnéticos y no magnéticos con separador magnético tipo "Frantz"; (5) por último, la decantación de zircones por medio de un embudo de separación mineral usando el líquido pesado ioduro de metileno (MEI) con una densidad de ~3.33 gr/cm³.

4.2. Geocronología U-Pb en zircones

4.2.1. Geocronología U-Pb por SHRIMP-RG (Sensitive High Resolution Ion MicroProbe-Reverse Geometry)

A continuación se describe brevemente la técnica de datación de rocas con la sistemática U-Pb en zircones por medio del SHRIMP-RG. Este instrumento es parte del Laboratorio SUMAC ubicado en el edificio Green Hall de la Universidad de Stanford, San Francisco, California, USA (http://shrimprg.stanford.edu/). La técnica para datar rocas por medio de la instrumentación SHRIMP-RG en zircones ha sido documentada previamente en DeGraaff-Surpless *et al.* (2002), Nourse *et al.* (2005) y Weber *et al.* (2006).

Los zircones separados de las diferentes unidades geológicas fueron montados, junto con un estándar de edad conocida (zircón estándar R33), en una cinta adhesiva de doble cara colocada en un objeto plano para que posteriormente por medio de un molde cilíndrico (~2.5 cm de diámetro) fueran atrapados en resina epóxica para hacer una probeta.

La probeta de resina se desbastó con papel de lija (malla 1500–3000) hasta exponer una superficie lo más cercana posible a la mitad ecuatorial de los zircones. Posteriormente, se pulió la probeta con abrasivos de diamante en emulsión de 6 y 1 µm, para obtener un pulido óptimo de los zircones. Se tomaron fotos de luz transmitida y reflejada de la probeta entera y con un mayor detalle a los zircones de cada muestra montada. Las fotos ayudaron en el proceso de selección de los puntos de análisis. Además, recubriendo la probeta con una delgada capa de oro se tomaron imágenes con un microscopio electrónico de barrido con detector de cátodoluminicencia (imágenes SEM-CL) para observar el zoneado relacionado a los cambios de composición química de los zircones detectando posibles problemáticas como recrecimientos o herencias que cambiarían el sentido de la interpretación de los datos analíticos. Estos estudios de microscopía electrónica también se realizaron en el Laboratorio SUMAC utilizando un instrumento JEOL 5600. Finalmente, y antes de introducir la probeta al SHRIMP-RG, se lavó con HCl (1N) y con agua destilada para limpiarla del posible plomo común en su superficie y nuevamente se recubrió de una capa de oro para obtener una máxima conductividad al momento de incidir el haz de iones de oxígeno del instrumento SHRIMP-RG.

Los análisis de U-Th-Pb se hicieron en 10-15 zircones que fueron seleccionados para cada muestra a partir de las imágenes de microscopio y catodoluminiscencia. El SHRIMP-RG opera con un haz de iones primario de oxígeno de ~2-4 nA, excavando un área de ~25-30 μm de diámetro (ajustable dependiendo del tamaño del zircón) y con una profundidad de ~1-2 μm. El instrumento cuenta con un detector sencillo de una sensibilidad de detección de 5-30 cuentas por segundo (cps) por ppm de Pb. Los datos generados son el resultado de 5-6 ciclos de contabilización por parte del detector. De forma secuencial se miden nueve picos que indican la proporción isotópica del zircón analizado: 90 Zr, 16 O, 204 Pb, 204 Pb, background), 206 Pb 207 Pb, 238 U, 248 Th 16 O, y 254 U 16 O. Las relaciones de 206 Pb/ 238 U se normalizan con los análisis del zircón estándar R33 que tiene una edad U-Pb concordante de 418.9 ± 0.4 Ma (2σ) [Black *et al.*, 2004] obtenida utilizando la técnica de dilución isotópica y espectrometría de masas por ionización térmica (ID-TIMS). Para obtener un control analítico de las relaciones de Pb/U, el estándar de zircón (R33) es

analizado después de analizar 4 o 5 zircones desconocidos. Las concentraciones de uranio se monitorean por medio del análisis del zircón estándar CZ3 con ~550 ppm de U o el zircón estándar MAD con un contenido de uranio de ~4200 ppm. Los datos se reducen y se grafican usando los programas computacionales Squid e Isoplot/Ex, respectivamente (Ludwig, 2001, 2003).

4.2.2. Geocronología U-Pb por LA-ICP-MS (*Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry*)

Para realizar estudios geocronológicos de U-Pb por medio de la técnica LA-ICP-MS, el Centro de Geociencias de la UNAM dispone en su Laboratorio de Espectrometría de Masas de un láser de excímeros de 193 nm (ArF) de la marca "Resonetics" acoplado a un ICP-MS "Thermo X-Series" quadrupolo (Solari *et al.*, 2009).

La ablación láser se realiza en cristales de zircón montados en una probeta de resina idéntica a la usada para la técnica SHRIMP-RG, pero con la única excepción de que no es necesario el recubrimiento con una película de oro para realizar los análisis. La ablación se desarrolla en una celda con una atmósfera de He donde se incide el láser con una repetición a 5 Hz y una energía de ~160 mJ provocando la nebulización de un área del zircón (*spot* o punto de análisis) de 34 μm de diámetro y de aproximadamente 25 μm de profundidad. Este material nebulizado en He es transportado hacia el ICP-MS mediante un flujo de Ar y N₂. Una vez en el ICP-MS se obtienen las mediciones de las relaciones isotópicas para cada análisis puntual realizado. Para cada experimento, o grupo de zircones desconocidos, se analizó primero dos veces el vidrio sintético NIST para usarlo en la calibración del detector y en el cálculo de las concentraciones elementales. Posteriormente se hicieron 5 análisis del zircón estándar "Plesovice" (PL) que tiene una edad U-Pb concordante de 337.13 ± 0.37 Ma (2σ) obtenida mediante la técnica ID-TIMS reportada en Sláma *et al.* (2008). Posteriormente se analizaron los zircones de edad desconocida alternando 5 zircones de edad desconocida con uno del zircón estándar PL de forma cíclica.

Los datos se redujeron tomando en cuenta la señal de los zircones estándar y desechando los primeros segundos en el conteo de cada análisis. Solo se tomaron en cuenta

~25 segundos del tiempo total del análisis los cuales corresponden a la mejor señal obtenida del experimento. Las relaciones isotópicas fueron tratadas algebraicamente con las técnicas propuestas por Andersen (2002) para reducir el exceso de Pb común para cada zircón. La precisión de las relaciones isotópicas medidas de ²⁰⁷Pb/²⁰⁶Pb y ²⁰⁶Pb/²³⁸U son típicamente de ~1.5-5.0% (1σ) de error estándar. Las réplicas del zircón estándar PL durante el experimento o sesión tienen una reproducibilidad del 1.07% (n = 14) en las relaciones ²⁰⁷Pb/²⁰⁶Pb, y de 0.99% (n = 14) en las relaciones medidas de ²⁰⁶Pb/²³⁸U y de 1.52% en la proporción ²⁰⁸Pb/²³²Th reportadas todas ellas a 1σ de error. Finalmente, las edades se calcularon con una hoja de cálculo Excel interna del Laboratorio de Espectrometría de Masas del Centro de Geociencias. Los datos fueron graficados usando el programa Isoplot/Ex (Ludwig, 2003).

4.3. Geocronología 40Ar/39Ar

Para realizar los fechamientos de Ar-Ar se procedió inicialmente al separado mineral de matriz volcánica debido a su fácil y rápido separado y de un concentrado de moscovita. Se utilizaron las técnicas usadas en el Laboratorio de Separación de Minerales del Centro de Geociencias. Las técnica de separado de matriz y de concentrado de moscovita se hace en una serie de pasos que incluyen: (1) la fragmentación de la muestra con una quebradora de quijadas; (2) el tamizado de la muestra quebrada; (3) el lavado con agua de la fracción seleccionada [esta será la que más convenga según el interés geológico o las características de la roca, usualmente a la malla 60-80 (0.25–0.18 mm)]; (4) se somete a un baño de ultrasonidos con agua y HCl al 10%, con un posterior lavado con agua; (5) separado de minerales magnéticos, paramagnéticos y no magnéticos con separador magnético tipo Frantz, hasta dejar una matriz o concentrado de moscovita limpio. Posteriormente, y como última instancia, se emplean pinzas de precisión para limpiar por completo la matriz y el concentrado de moscovita, o utilizar técnicas alternativas (i.e. líquidos pesados); (6) finalmente el separado de matriz o concentrado de moscovita es lavado en orden con ácido clorhídrico, acetona, alcohol etílico y agua destilada, para evitar

impurezas no deseadas como carbonatos, sales y vestigios de materia orgánica que pudieran entorpecer los análisis espectrométricos.

Cantidades de ~200 mg de matriz volcánica y de 10-50 mg de concentrado de moscovita, así como las muestras monitor, fueron empacadas en capsulitas de cobre y selladas bajo vacío en tubos de cuarzo. Estos tubos de cuarzo se introdujeron en un contenedor cilíndrico de aluminio para su irradiación durante 8 horas en la parte central del reactor nuclear Modelo TRIGA-GSTR del U.S. Geological Survey de Denver, Colorado, (USA). Las muestras irradiadas permanecieron en reposo, "enfriándose", radiactivamente hablando, durante tres semanas antes de poder acceder a estas para su estudio espectrométrico.

El mineral monitor empleado en el paquete de irradiación fue el sanidino de la Toba Fish Canyon (FCT-3) con una edad de \sim 27.79 Ma (Kunk *et al.*, 1985; Cebula *et al.*, 1986) relativa al estándar de hornblenda MMhb-1 de 519.4 \pm 2.5 Ma (Alexander *et al.*, 1978; Dalrymple *et al.*, 1981). El tipo de contenedor de irradiación, la geometría de las muestras desconocidas y los monitores, son similares a las descritas por Snee *et al.* (1988).

Las muestras fueron analizadas en el laboratorio de Termocronología Ar-Ar del U.S. Geological Survey en Reston, Virginia, USA. Las muestras de matriz volcánica y moscovita se fecharon utilizando la técnica ⁴⁰Ar/³⁹Ar de calentamiento gradual con horno de tántalo de doble vacío y se utilizó un espectrómetro de masas tipo VG Isotopes, Modelo 1200 acoplado a un multiplicador de electrones. Los gases extraídos por el calentamiento de las muestras geológicas son purificados para obtener, única y exclusivamente, el gas argón para introducirlo en el espectrómetro y medir los picos de sus diferentes masas (i.e, ⁴⁰Ar, ³⁹Ar, ³⁸Ar, ³⁷Ar y ³⁶Ar). Detalles adicionales de las técnicas analíticas, que van más allá de las metas de este estudio, pueden encontrarse en Kunk *et al.* (2001) y en Iriondo *et al.* (2003a).

Los datos isotópicos de argón, obtenidos de las muestras analizadas, fueron reducidos utilizando una versión parcialmente modificada del programa de reducción de datos Ar-Ar* (Haugerud y Kunk, 1988) que contempla las constantes de desintegración o decaimiento isotópico propuestas por Steiger y Jäger (1977).

4.4. Muestreo y preparación para análisis geoquímicos de elementos mayores, traza e isótopos radiogénicos

Las muestras estudiadas fueron inicialmente preparadas en el campo en fragmentos de 5 cm en promedio para facilitar su molienda en el laboratorio y evitar posibles contaminaciones. La cantidad recolectada de muestra limpia en fragmentos (2-3 kg) se depositó en bolsas de plástico de cédula resistente para su transporte seguro. En el Laboratorio de Pulverización de Muestras del Centro de Geociencias, Campus Juriquilla Querétaro, UNAM, se preparó la gravilla a ~0.5 cm de diámetro usando un mortero de acero quirúrgico. Posteriormente, se realizó un cuarteo obteniendo ~200 g para su pulverización y otra cantidad equivalente para el limpiado del contenedor de la máquina de pulverizado (tipo "shatter box"). Una vez pulverizada la muestra se aseguró que el polvo tuviera una malla (>200) adecuada para los análisis de laboratorio y se colocó en tres recipientes de ~50 g para los diferentes estudios.

4.5. Geoquímica de elementos mayores (XRF)

Para la obtención de las concentraciones de elementos mayores en % en peso, una porción de cada muestra (~50 g) de los polvos de roca total preparados se calentó a ~1000° C con el propósito de obtener la pérdida por ignición (LOI, por sus siglas en inglés). Cada muestra se analizó por medio de Fluorecencia de Rayos "X" (XRF) utilizando un espectrómetro secuencial de rayos "X" de marca SIEMENS SRS 3000 en el Laboratorio Universitario de Geoquímica Isotópica (LUGIS), perteneciente al los Institutos de Geofísica y de Geología de la Universidad Nacional Autónoma de México en Ciudad de México. La técnica analítica XRF está detallada en Lozano y Bernal (2005).

4.6. Geoquímica de elementos traza y tierras raras (INAA)

Las concentraciones de elementos traza en partes por millón (ppm), exceptuando al Au que se expresa en partes por billón (ppb), se obtuvieron analizando otra porción de los polvos utilizando la técnica de Analítica Instrumental de Activación Neutrónica (INAA) descrita en mayor detalle en Budahn y Wandless (1996). Inicialmente, las muestras se

someten a la irradiación de neutrones generados por el reactor nuclear Modelo TRIGA-GSTR, ubicado en el U.S. Geological Survey en Denver Colorado, USA, por un tiempo de 8 horas con un flujo de neutrones de 2.5 x 10¹² n/cm²/segundo. Para permitir el decaimiento radiactivo se dejan reposar las muestras y el estándar unos 6-8 días. Posteriormente, las muestras y el estándar se analizan de 90 a 120 minutos con dos potentes detectores de germanio (uno de alta energía coaxial y otro de baja energía plana) acoplados a un sistema detector multicanal. Se debe tener la precaución de distanciar de forma homogénea el detector entre muestras y estándar al momento de analizar. Después de otros 7 a 8 días, las muestras y el estándar son medidos nuevamente durante 120-150 minutos. Finalmente, 65 días después de la irradiación, nuevamente y de igual forma, se analizan las muestras y el estándar por un tiempo entre 240 a 300 minutos con cada detector de germanio. Los datos espectrales recolectados por los detectores se procesan con el programa computacional comercial modificado SAMPO (Routti, 1969). Este programa utiliza el espectro analizado de las muestras (cpm/peso) y lo compara con el estándar (cpm/µg) para generar una concentración elemental para cada muestra. Este procedimiento, de forma secuencial, permite analizar hasta 33 elementos traza y tierras raras.

4.7. Isótopos de Sm-Nd en roca total (ID-TIMS)

Para realizar las determinaciones isotópicas de Sm-Nd se envió una fracción pulverizada de roca, de aproximadamente ~50 g, al Laboratorio Universitario de Geoquímica Isotópica (LUGIS). En el LUGIS se utilizó la técnica ID-TIMS para cada muestra y se usó un espectrómetro Finnigan MAT 262 equipado con nueve colectores Faraday. Se utilizó el estándar monitor "La Jolla". La preparación de las muestras y los detalles en la realización de los análisis se encuentran reportados en Schaaf *et al.* (2005) y en la página de internet (http://www.geologia.unam.mx/geoq/lugis/isot-pesados.html).

5. Resultados geocronológicos U-Pb y Ar-Ar

5.1. Introducción

En este apartado se presentan los resultados geocronológicos obtenidos que incluyen 10 fechamientos U-Pb en zircones hechos con la técnica SHRIMP-RG (*Sensitive High Resolution Ion Microprobe-Reverse Geometry*) y 5 con la técnica LA-ICP-MS (*Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry*). Además se presentan 4 fechamientos por la técnica ⁴⁰Ar/³⁹Ar para unidades principalmente volcánicas. La Tabla 2 presenta un resumen de las edades obtenidas para las unidades diferentes fechadas en el área Mina La Herradura.

La descriptiva de los datos geocronológicos se presenta en orden cronológico desde el Paleoproterozoico hasta el Oligoceno. Los datos se presentan en las Tablas 3–7 y se grafican en las Figuras 27–36. También se anexan imágenes de catodoluminiscencia de los zircones fechados en el Apéndice B. Las edades U-Pb medias ponderadas y las edades de intersección en la concordia se calcularon con el programa computacional Isoplot 3.00 de Ludwig (2003).

5.2. Muestras paleoproterozoicas (~1.7 Ga)

5.2.1. Orto-augen gneis Cerro Prieto-Carina

La muestra *SPA-7*, perteneciente a la unidad de orto-augen gneis Cerro Prieto-Carina, fue recolectada en la zona Cerro Prieto-Carina (Figura 8). De esta muestra se obtuvo una gran cantidad de zircones en el proceso de separación mineral. De estos sólo una porción de 15 zircones fue fechada por el método U-Pb por la técnica SHRIMP-RG (Tabla 3). Todos estos granos de zircón muestran una gran homogeneidad sin presentar evidencia de herencia. Los datos U-Pb de zircones se graficaron en el diagrama de concordia tipo Wetherill (Figura 27A) [concordia normal], mostrando que 14 zircones son concordantes (elipses, cuadros y barras en color negro) [Figura 27B]. Uno de los análisis no fue empleado para el cálculo estadístico de la edad debido a que se encuentra fuera de la

Tabla 2. Resumen petrográfico y geocronológico de las muestras del área Mina La Herradura, NW Sonora, México.

Muestra	Localización (UTM)*	Tipo de roca	Mineralogía	Minerales	Tipo de edad	Edad Erro		Mineral fechado
	Este Norte			Accesorios		Ma Ma	MSWD**	
Zona Cerre	o Prieto-Carina							
SPA-7	334022 3448969	Orto-augen gneis	Pl±Kfs±Qtz±Bt	Ms±Ap±Zrn	$^{207}Pb/^{206}Pb$ Promedio	$1692~\pm~8$	1.16	Zircón
LH06-16	334548 3449695	Ortogneis	$Kfs\pm Qtz\pm Pl\pm Bt$	Ap±Zrn	$^{207}Pb/^{206}Pb$ Promedio	$1687~\pm~9$	1.15	Zircón
LH07-41	330217 3453967	Orto-augen gneis	$Kfs\pm Qtz\pm Pl\pm Bt$	Ap±Zrn	$^{207}Pb/^{206}Pb$ Promedio	$1683~\pm~9$	0.50	Zircón
1.1 GA	333575 3446536	Metagranito	$Kfs\pm Qz\pm Pl\pm Bt$	Ms±Op±Ap±Zrn	$^{207}Pb/^{206}Pb$ Promedio	$1062\ \pm\ 13$	0.42	Zircón
LH07-30	336020 3445075	Metariolita	$Qtz\pm Kfs\pm Pl\pm Ms$	Ap±Zrn	$^{206}Pb/^{238}U$ Promedio	175.5 ± 1.7	0.92	Zircón
					Edad media Ar-Ar	$48.0\ \pm\ 0.4$	0.75	Moscovita
LH06-14	333813 3450379	Granito	$Pl\pm Qtz\pm Kfs\pm Hbl\pm Bt$	$Ttn\pm Ap\pm Zrn$	²⁰⁶ Pb/ ²³⁸ U Promedio	163.2 ± 1.2	0.74	Zircón
LH06-15	332952 3451395	Dacita	Pl±Qz±Hbl	Ap±Zrn	$^{206}Pb/^{238}U$ Promedio	163.9 ± 1.0	2.6	Zircón
Zona El Di	ipolo y Sierrita Blanca							
LH06-40	325008 3458751	Metagranito	Qtz±Pl±Bt	Ms±Ap±Zrn	$^{207}Pb/^{206}Pb$ Promedio	$1093 ~\pm~ 16$	1.09	Zircón
LH07-42	326765 3457969	Metagranito	$Kfs\pm Qz\pm Pl\pm Bt$	Ms±Op±Ap±Zrn	$^{207}Pb/^{206}Pb$ Promedio	$1083\ \pm\ 11$	0.84	Zircón
LH06-42	325113 3459145	Granito	$Qtz\pm Kfs\pm Pl\pm Bt$	$Ms\pm Ap\pm Zrn$	$^{206}Pb/^{238}U$ Promedio	69.7 ± 1.3	1.40	Zircón
LH06-41	325007 3458983	Andesita (dique)	Pl±Qtz	Op	Isocrona Ar-Ar	$23.7\ \pm\ 4.2$	0.03	Matriz volcánica
Zona Mina	ı La Herradura							
LH07-53	321305 3448619	Ortogneis	Pl±Kfs±Qtz±Hbl±Bt	Ap±Zrn	$^{207}\text{Pb}/^{206}\text{Pb}$ Promedio	1714 ± 5	0.49	Zircón
LH07-52	321595 3449000	Ortogneis	Pl±Kfs±Qtz±Hbl±Bt	Ap±Zrn	$^{207}Pb/^{206}Pb$ Promedio	1712 ± 4	0.94	Zircón
LH06-11	324111 3447218	Riolita	Qtz±Kfs±Pl	Op±Zrn	206 Pb/ 238 U Promedio	176.2 ± 1.4	3.00	Zircón
LH07-51	321825 3449192	Metaandesita	Pl±Px	Op±Zrn	206 Pb/ 238 U Promedio	157.9 ± 2.8	2.9	Zircón
04FP-37	315847 3449165	Granito	Kfs±Pl±Qtz±Hbl	Ttn±Ap±Zrn	206 Pb/ 238 U Promedio	$76.3~\pm~0.4$	1.73	Zircón
LH06-25	317766 3456271	Dacita	Pl±Hbl	Op±Ap±Zrn	Isocrona Ar-Ar	23.2 ± 0.9	0.57	Matriz vocánica
LH06-23	320231 3452086	Andesita basáltica	Pl±Ol±Opx	Op	Isocrona Ar-Ar	$23.8~\pm~0.5$	0.21	Matriz volcánica

^{*} Datum WGS-84.

^{**}MSWD: Mean Squared Weigthed Deviate (desviación media cuadrática ponderada).

Abreviaciones de los minerales: Ap = apatito, Bt = biotita, Cal = calcita, Hbl = hornblenda, Kfs = feldespato potásico, Ms = moscovita, Ol = olivino,

Op = opaco, Opx = ortopiroxeno, Pl = plagioclasa, Qtz = cuarzo, Ttn = titanita, Zrn = zircón. Errores en las edades U-Pb reportadas a 2-sigma. Errores en las edades Ar-Ar reportados a 1-sigma.

Tabla 3. Datos analíticos de U-Th-Pb de SHRIMP-RG y LA-ICP-MS de zircones de rocas paleoproterozoicas del área Mina La Herradura, NW Sonora, México.

	Communication	²⁰⁶ Pb	T.	TL	TL/II	207	ror ²⁰⁷ Pb/		²⁰⁶ Pb/			ora, México	²⁰⁷ Pb/ ²⁰⁶ Pb	
Nombre	Comentarios		U	Th	Th/U	207	225	error	238U**	erroi		% discor.#		error
<u>el análisis</u> écnica SHI		Común (%)	(ppm)	(ppm)		²⁰⁰ Pb** (%	5) 0	(%)	U	(%)	correl.	uiscoi.	Edad (Ma)	(Ma)
fuestra <u>SI</u>		<u>meis</u> (Cerro I	Prieto, Sono	ora)	Probeta 2	Alex-22 (April 06,)							
				,				. 10	0.2040	. 17	0.000		1670	. 44
PA7-6 PA7-5	Borde Borde	0.02 0.08	189 126	71 33	0.39 0.27	0.1025 ± 0.7 0.1025 ± 0.9			0.2940 0.2953		0.909 0.882	1 0	1670 1671	
PA7-7	Borde	0.06	178	69	0.40	0.1026 ± 0.9			0.2908		0.866	2	1672	
SPA7- 1 SPA7- 9	Núcleo Núcleo	0.11 0.71	290 145	228 58	0.81 0.42	0.1030 ± 0.7 0.1033 ± 2.0			0.2877 0.2931		0.919 0.637	3 2	1679 1685	
PA7-3	Núcleo	0.08	165	36	0.23	0.1033 ± 0.8			0.3057		0.889	-2	1685	
PA7-14	Borde	0.05	220	87	0.41	0.1036 ± 0.7			0.2971		0.914	1	1690	
PA7- 11 PA7- 4	Borde Borde	0.13 0.05	118 174	27 67	0.24	0.1037 ± 1.3 0.1039 ± 0.7			0.2769 0.3008		0.792 0.908	7 0	1692 1695	
PA7-15	Núcleo	0.06	425	435	1.06	0.1041 ± 0.6	3.86	± 1.7	0.2691		0.928	11	1698	
PA7-12 PA7-8	Borde	0.02	222	63	0.29	0.1045 ± 0.7			0.2966		0.909	2	1705	
PA7-13	Borde Borde	0.04 0.05	180 116	63 75	0.36 0.67	0.1048 ± 0.8 0.1051 ± 1.1			0.2935 0.2832		0.904 0.855	3 7	1711 1716	
SPA7-10	Borde	0.03	218	83	0.39	0.1052 ± 0.8	4.23	± 1.8	0.2914	± 1.6	0.901	4	1718	± 14
PA7-2	Borde	0.11	238	78	0.34	0.1052 ± 0.7	4.43	± 1.7	0.3054		0.923	0	1718	
TM WGS	84: 334022, 3448969								Edad 207Pb	/200Pb me	dia ponder		1692 SWD = 1.16; 2-	
												(n – 14, M	SWD - 1.10, 2-	sigma)
fuestra <u>LH</u>	H06-16 Ortogneis	(Cerro Prieto,	, Sonora)	Prob	eta Aldo-	l (Febrero 07)								
H16-8	Borde	0.85	1883	386	0.21	0.0919 ± 1.7		± 2.0	0.1199		0.500	101	1466	
.H16- 3 .H16- 2	Borde Borde	0.17 0.24	1275 1142	112 188	0.09 0.17	0.0975 ± 0.7 0.0987 ± 0.6			0.1616 0.1734		0.834 0.842	63 55	1576 1600	
H16-1	Borde	0.06	1521	226	0.17	0.0988 ± 0.4			0.1676		0.918	60	1601	
H16-6	Núcleo	0.05	511	151	0.31	0.1014 ± 0.5	3.23	± 1.2	0.2306	± 1.0	0.898	23	1651	
.H16- 4 .H16- 9	Núcleo Núcleo	0.05 2.24	374 150	148 38	0.41 0.26	0.1018 ± 0.8 0.1026 ± 4.0			0.2841 0.2373		0.790 0.304	3 22	1657 1672	
H16-12	Núcleo	0.13	144	47	0.34	0.1027 ± 0.9	4.18	± 1.5	0.2950	± 1.2	0.818	0	1673	± 16
.H16- 10 .H16- 14	Núcleo	0.02	238	110	0.48	0.1028 ± 0.7			0.2857		0.860	3	1675 1685	
.H16- 5	Borde Núcleo	0.00	530 193	37 49	0.07 0.26	0.1033 ± 0.4 0.1034 ± 0.7			0.2868 0.3014		0.919 0.850	4 -1	1686	
H16-13	Borde/Núcleo	0.00	143	56	0.40	0.1042 ± 0.8	4.23	± 1.5	0.2947	± 1.2	0.828	2	1699	± 15
H16- 15 H16- 11	Núcleo	0.11 0.06	102 154	28 58	0.29 0.39	0.1045 ± 1.2 0.1046 ± 0.9			0.3052 0.2948		0.751	-1 2	1705 1707	
H16-7	Núcleo Núcleo	0.00	190	62	0.39	0.1046 ± 0.9 0.1046 ± 0.8			0.2948		0.812 0.837	8	1707	
									Edad ²⁰⁷ Pb	²⁰⁶ Pb me	lia ponder	ada =	1687	± 9
JTM WGS 8	84: 334548, 3449695											(n = 10; M	SWD = 1.15; 2-	sigma)
Muestra <u>Li</u>	.H07-41 Ortoauge	n gneis (Sur S	Sierrita Blai	nca, Sono	ora)	Probeta Aldo-2 (.	Agosto 07)							
.0741 -9	Núcleo	0.11	124	19	0.16	0.1024 ± 1.0	4.34	± 18	0.3071	± 15	0.833	-3	1668	± 19
.0741- 2	Núcleo	0.06	245	257	1.09	0.1028 ± 0.8	4.22	± 1.6	0.2976		0.869	0	1675	± 15
.0741- 1 .0741- 10	Borde	0.03	237	22	0.10	0.1028 ± 1.1			0.2813		0.783	5	1675	
.0741-7	Núcleo Núcleo	0.05 0.03	413 255	162 26	0.41 0.11	0.1028 ± 0.7 0.1029 ± 0.7			0.2824 0.3034		0.881 0.904	5 -2	1676 1677	
.0741-4	Borde	0.06	179	37	0.21	0.1032 ± 1.7	4.24	± 2.2	0.2982	± 1.5	0.648	0	1683	± 32
.0741 -6 .0741 -3	Núcleo Núcleo	0.02 0.03	794 321	52 118	0.07 0.38	0.1034 ± 0.4 0.1039 ± 0.7			0.2706 0.2886		0.950 0.888	9 4	1685 1695	
.0741-8	Núcleo	0.00	98	36	0.38	0.1039 ± 0.7 0.1041 ± 1.0			0.2880					
.0741-5	Borde						4.40			± 1./	0.850	0	1698	
		0.00	277	35	0.13	0.1051 ± 1.5	4.40	± 2.1	0.3035	± 1.4	0.681	0	1716	
TM WGS 8	84: 330217-3453967	0.00		35	0.13		4.40	± 2.1	0.3035 Edad ²⁰⁷ Pb.	± 1.4	0.681	0 nda =	1716 1683	± 9
	84: 330217, 3453967	0.00		35	0.13		4.40	± 2.1		± 1.4	0.681	0 nda =	1716	± 9
écnica LA-	-ICP-MS		277			0.1051 ± 1.5		± 2.1		± 1.4	0.681	0 nda =	1716 1683	± 9
'écnica LA- fuestra <u>Li</u>	-ICP-MS -H07-53 Ortogneis	: (Zona Mina	277 La Herradi	ura, Sono	ora) .	0.1051 ± 1.5	Septiembre 08)		Edad ²⁰⁷ Pb	± 1.4 Pb med	0.681 lia pondera	0 nda = (n = 10; N	1716 1683 1SWD = 0.50; 2	± 9 -sigma)
Sécnica LA Muestra <u>Li</u> LH53- 38	-ICP-MS -H07-53 Ortogneis Núcleo	: (Zona Mina N.M.	277 La Herradu 186	ura, Sona 124	ora) .	0.1051 ± 1.5 Probeta Aldo-4 (2) 0.1016 ± 1.1	Septiembre 08) 4.15	± 1.8	Edad ²⁰⁷ Pb.	± 1.4 2006 Pb med ± 1.5	0.681 lia pondera 0.810	0 ada = (n = 10; N	1716 1683 1SWD = 0.50; 2	± 9 -sigma) ± 19
Cécnica LA- <i>Auestra</i> <u>Li</u> LH53-38 LH53-32 LH53-37	-ICP-MS -H07-53 Ortogneis	: (Zona Mina	277 La Herradu 186 302 210	ura, Sono	0.59 0.52 0.45	0.1051 ± 1.5 Probeta Aldo-4 (\$\frac{1}{2}\$ 0.1016 ± 1.1 0.1019 ± 2.0 0.1024 ± 0.9	Septiembre 08) 4.15 3.92 4.33	± 1.8 ± 3.2 ± 1.7	0.2961 0.2789 0.3070	± 1.4 ± 1.5 ± 1.6 ± 1.5	0.681 0.810 0.820 0.850	0 ada = (n = 10; M	1716 1683 1SWD = 0.50; 2 1654 1658 1668	± 9 -sigma) ± 19 ± 37 ± 16
H53-38 H53-32 H53-37 H53-31	-ICP-MS H07-53 Ortogneis Núcleo Núcleo Núcleo Núcleo	N.M. N.M. N.M. N.M. N.M.	277 La Herrada 186 302 210 295	124 176 106 166	0.59 0.52 0.45 0.50	0.1051 ± 1.5 Probeta Aldo-4 (\$\frac{3}{2}\$ 0.1016 ± 1.1 0.1019 ± 2.0 0.1024 ± 0.9 0.1026 ± 0.7	Septiembre 08) 4.15 3.92 4.33 3.96	± 1.8 ± 3.2 ± 1.7 ± 1.3	0.2961 0.2789 0.3070 0.2802	± 1.4 2006 Pb med ± 1.5 ± 1.6 ± 1.5 ± 1.1	0.681 0.810 0.820 0.850 0.850	0 ada = (n = 10; N -1 5 -3 5	1716 1683 ISWD = 0.50; 2 1654 1658 1668 1672	± 9 -sigma) ± 19 ± 37 ± 16 ± 13
Fécnica LA- fuestra Li H53-38 H53-32 H53-37 H53-31 H53-39	-ICP-MS Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo	N.M. N.M. N.M. N.M. N.M. N.M.	277 La Herrada 186 302 210 295 182	124 176 106 166 95	0.59 0.52 0.45 0.50 0.46	0.1051 ± 1.5 Probeta Aldo-4 (3 0.1016 ± 1.1 0.1019 ± 2.0 0.1024 ± 0.9 0.1026 ± 0.7 0.1027 ± 1.2	Septiembre 08) 4.15 3.92 4.33 3.96 4.15	± 1.8 ± 3.2 ± 1.7 ± 1.3 ± 1.8	0.2961 0.2789 0.3070 0.2802 0.2931	± 1.4 ± 1.5 ± 1.6 ± 1.5 ± 1.1 ± 1.4	0.681 0.810 0.820 0.850 0.850 0.760	0 nda = (n = 10; N	1716 1683 ISWD = 0.50; 2 1654 1658 1668 1672 1674	± 9 -sigma) ± 19 ± 37 ± 16 ± 13 ± 21
H53-38 H53-32 H53-37 H53-31 H53-39 H53-14 H53-74	Núcleo Borde Núcleo	: (Zona Mina N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.	277 La Herrada 186 302 210 295 182 216 185	124 176 106 166 95 128 99	0.59 0.52 0.45 0.50 0.46 0.53 0.48	0.1051 ± 1.5 Probeta Aldo-4 (2 0.1016 ± 1.1 0.1019 ± 2.0 0.1024 ± 0.9 0.1027 ± 1.2 0.1028 ± 1.6 0.1029 ± 1.3	4.15 3.92 4.33 3.96 4.15 4.23	± 1.8 ± 3.2 ± 1.7 ± 1.3 ± 1.8 ± 2.7 ± 1.9	0.2961 0.2789 0.3070 0.2802 0.2931 0.2983 0.2992	± 1.4 ± 1.5 ± 1.6 ± 1.1 ± 1.4 ± 1.4 ± 1.4	0.681 lia ponder: 0.810 0.820 0.850 0.850 0.760 0.880 0.760	0 nda = (n = 10; M -1 5 -3 5 1 0 -1	1716 1683 1SWD = 0.50; 2 1654 1658 1668 1672 1674 1676 1677	± 9 -sigma) ± 19 ± 37 ± 16 ± 13 ± 21 ± 29 ± 23
écnica LA- fuestra <u>Li</u> H53-38 H53-32 H53-37 H53-31 H53-39 H53-14 H53-74 H53-74	Núcleo	: (Zona Mina N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M	277 La Herradu 186 302 210 295 182 216 185 174	124 176 106 166 95 128 99	0.59 0.52 0.45 0.50 0.46 0.53 0.48 0.61	0.1051 ± 1.5 Probeta Aldo-4 (3 0.1016 ± 1.1 0.1019 ± 2.0 0.1024 ± 0.9 0.1026 ± 0.7 0.1027 ± 1.2 0.1029 ± 1.3 0.1030 ± 3.0	Septiembre 08) 4.15 3.92 4.33 3.96 4.15 4.23 4.24 4.28	\pm 1.8 \pm 3.2 \pm 1.7 \pm 1.3 \pm 2.7 \pm 1.9 \pm 3.3	0.2961 0.2789 0.3070 0.2802 0.2931 0.2983 0.2992	± 1.4 ± 1.5 ± 1.6 ± 1.5 ± 1.1 ± 1.4 ± 1.4 ± 1.4	0.681 0.810 0.820 0.850 0.850 0.760 0.880 0.760	0 nda = (n = 10; N -1 5 -3 5 1 0 -1 -1	1716 1683 ISWD = 0.50; 2 1654 1658 1668 1672 1674 1676 1677	± 9 -sigma) ± 19 ± 37 ± 16 ± 13 ± 21 ± 29 ± 23 ± 55
écnica LA- fuestra Li H53-38 H53-32 H53-37 H53-31 H53-39 H53-14 H53-74 H53-88 H53-26	Núcleo	(Zona Mina N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M	277 La Herradu 186 302 210 295 182 216 185 174 146	124 176 106 166 95 128 99 119	0.59 0.52 0.45 0.50 0.46 0.53 0.48 0.61 0.45	0.1051 ± 1.5 Probeta Aldo-4 (\$\frac{4}{3}\$ 0.1016 ± 1.1 0.1019 ± 2.0 0.1024 ± 0.9 0.1027 ± 1.2 0.1029 ± 1.3 0.1030 ± 3.0 0.1032 ± 0.9	Septiembre 08) 4.15 3.92 4.33 3.96 4.15 4.23 4.24 4.28	± 1.8 ± 3.2 ± 1.7 ± 1.3 ± 1.8 ± 2.7 ± 1.9 ± 3.3 ± 1.5	0.2961 0.2789 0.3070 0.2802 0.2931 0.2983 0.2992 0.3016	± 1.4 ± 1.5 ± 1.6 ± 1.5 ± 1.1 ± 1.4 ± 1.4 ± 1.4 ± 1.4 ± 1.5 ± 1.1	0.681 0.810 0.820 0.850 0.850 0.760 0.880 0.760 0.430 0.430	0 ada = (n = 10; N -1 5 -3 5 1 0 -1 -1	1716 1683 1SWD = 0.50; 2 1654 1658 1668 1672 1674 1676 1677 1679	± 9 -sigma) ± 19 ± 37 ± 16 ± 13 ± 21 ± 29 ± 23 ± 55 ± 15
écnica LA- fuestra Li H53-38 H53-32 H53-31 H53-31 H53-39 H53-14 H53-74 H53-74 H53-88 H53-26	Núcleo	(Zona Mina N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M	277 La Herradu 186 302 210 295 182 216 185 174 146 207 218	124 176 106 166 95 128 99 119 74 123 135	0.59 0.52 0.45 0.50 0.46 0.53 0.48 0.61 0.45 0.53 0.55	0.1051 ± 1.5 Probeta Aldo-4 (3 0.1016 ± 1.1 0.1019 ± 2.0 0.1024 ± 0.9 0.1028 ± 1.6 0.1029 ± 1.3 0.1032 ± 0.9 0.1037 ± 2.9 0.1037 ± 2.9	4.15 3.92 4.33 3.96 4.15 4.23 4.24 4.28 4.20 4.29		0.2961 0.2789 0.3070 0.2802 0.2931 0.2983 0.2993 0.3016 0.2951 0.2951 0.3060	± 1.4 ± 1.5 ± 1.6 ± 1.5 ± 1.1 ± 1.4 ± 1.4 ± 1.2 ± 1.4 ± 1.9	0.681 0.810 0.820 0.850 0.760 0.880 0.760 0.430 0.420 0.440 0.790	0 nda = (n = 10; N -1 5 -3 5 1 0 -1 -1 1 0 -2	1716 1683 ISWD = 0.50; 2 1654 1658 1668 1672 1674 1676 1679 1682 1690	± 9 -sigma) ± 19 ± 37 ± 16 ± 13 ± 21 ± 29 ± 23 ± 55 ± 55 ± 53 ± 26
écnica LA- H53-38 H53-32 H53-37 H53-31 H53-39 H53-74 H53-74 H53-74 H53-88 H53-26 H53-86	Núcleo Borde/Núcleo Borde/Núcleo Borde	(Zona Mina N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M.	277 La Herradu 186 302 210 295 182 216 185 174 146 207 218 122	124 176 106 166 95 128 99 119 74 123 135 56	0.59 0.52 0.45 0.50 0.46 0.53 0.48 0.61 0.45 0.55 0.41	0.1051 ± 1.5 Probeta Aldo-4 (\$\frac{3}{4}\$) 0.1016 ± 1.1 0.1019 ± 2.0 0.1024 ± 0.9 0.1026 ± 0.7 0.1027 ± 1.2 0.1030 ± 3.0 0.1030 ± 3.0 0.1032 ± 0.9 0.1037 ± 2.9 0.1039 ± 1.5 0.1039 ± 1.5 0.1039 ± 3.5	4.15 3.92 4.33 3.96 4.15 4.23 4.24 4.28 4.20 4.29 4.38	\pm 1.8 \pm 3.2 \pm 1.7 \pm 1.8 \pm 2.7 \pm 1.9 \pm 3.3 \pm 1.5 \pm 3.2 \pm 3.3 \pm 1.5 \pm 3.2 \pm 3.3 \pm 3.5 \pm 3.7 \pm 3.8 \pm 3.8 \pm 3.9 \pm 3.0 \pm 4.0 \pm 3.0 \pm 3.0 \pm 4.0 \pm 3.0 \pm 4.0 \pm 5.0 \pm 5	0.2961 0.2789 0.3070 0.2802 0.2931 0.2993 0.2992 0.3016 0.2951 0.2999 0.3060 0.3136	± 1.4 ± 1.5 ± 1.6 ± 1.5 ± 1.1 ± 1.4 ± 1.4 ± 1.4 ± 1.4 ± 1.5	0.681 0.810 0.820 0.850 0.850 0.760 0.880 0.760 0.430 0.820 0.440 0.790	0 rda = (n = 10; N -1 5 -3 5 1 0 -1 -1 -1 -2 -4	1716 1683 1SWD = 0.50; 2 1654 1658 1668 1672 1674 1676 1677 1679 1682 1690	± 9 -sigma) ± 19 ± 37 ± 16 ± 13 ± 21 ± 29 ± 23 ± 55 ± 15 ± 15 ± 26 ± 55
H53-38 H53-32 H53-37 H53-31 H53-31 H53-39 H53-14 H53-74 H53-86 H53-85 H53-85 H53-85 H53-85 H53-85 H53-85 H53-85 H53-85	Núcleo Borde Núcleo Borde/Núcleo Borde Borde	(Zona Mina N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M	186 3002 210 295 182 216 185 174 146 207 218 122 152	124 176 106 166 95 128 99 119 74 123 135 56	0.59 0.52 0.45 0.50 0.46 0.53 0.48 0.61 0.45 0.53 0.45 0.49	Probeta Aldo-4 (2) 0.1016 ± 1.1 0.1019 ± 2.0 0.1024 ± 0.9 0.1026 ± 0.7 0.1027 ± 1.2 0.1028 ± 1.6 0.1029 ± 1.3 0.1030 ± 3.0 0.1032 ± 0.9 0.1037 ± 2.9 0.1039 ± 1.5 0.1039 ± 3.0 0.1039 ± 3.0	Septiembre 08) 4.15 3.92 4.33 3.96 4.15 4.23 4.24 4.28 4.20 4.29 4.38 4.49		0.2961 0.2789 0.3070 0.2802 0.2931 0.2983 0.2992 0.3016 0.2951 0.2951 0.3060 0.3136	± 1.4 ± 1.5 ± 1.6 ± 1.5 ± 1.4 ± 1.4 ± 1.4 ± 1.4 ± 1.4 ± 1.5 ± 1.1 ± 1.3	0.681 0.810 0.820 0.850 0.760 0.430 0.430 0.440 0.790 0.450	0 rda = (n = 10; N -1 5 -3 5 1 0 -1 -1 1 2 -4 2	1716 1683 ISWD = 0.50; 2 1654 1658 1668 1672 1674 1676 1677 1679 1682 1690 1694	± 9 + 19 + 37 + 16 + 13 + 21 + 29 + 55 + 15 + 53 + 26 + 55 + 17
6cnica LA- fuestra Li H53-38 H53-32 H53-37 H53-31 H53-39 H53-14 H53-39 H53-14 H53-88 H53-26 H53-85 H53-19 H53-81	Núcleo Borde Núcleo Borde/Núcleo Borde Borde Borde Borde	(Zona Mina N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.	277 La Herrada 186 302 210 295 182 216 185 174 146 207 218 122 152 169 118	124 176 106 166 95 128 99 119 74 123 135 56 71 116 50	0.59 0.52 0.45 0.50 0.46 0.53 0.48 0.61 0.45 0.55 0.41 0.41 0.61	0.1051 ± 1.5 Probeta Aldo-4 (3 0.1016 ± 1.1 0.1019 ± 2.0 0.1024 ± 0.9 0.1026 ± 0.7 0.1027 ± 1.2 0.1038 ± 1.6 0.1039 ± 1.3 0.1030 ± 3.0 0.1037 ± 2.9 0.1037 ± 2.9 0.1039 ± 1.3 0.1039 ± 0.9 0.1040 ± 1.4 0.1040 ± 1.4	4.15 3.92 4.33 3.96 4.15 4.24 4.28 4.20 4.29 4.38 4.49 4.22 4.31		0.2961 0.2789 0.3070 0.2892 0.2931 0.2983 0.3016 0.2991 0.3060 0.2999 0.3060 0.3136 0.2948 0.3044	± 1.4 ± 1.5 ± 1.6 ± 1.1 ± 1.4 ± 1.4 ± 1.4 ± 1.4 ± 1.4 ± 1.5 ± 1.1 ± 1.4 ± 1.5 ± 1.1 ± 1.6	0.681 0.810 0.820 0.850 0.760 0.880 0.760 0.430 0.820 0.440 0.790 0.450 0.450 0.810 0.750	0 tda = (n = 10; N -1 5 -3 5 1 0 -1 -1 1 0 -2 -4 2 0 -3	1716 1683 1SWD = 0.50; 2 1654 1658 1668 1672 1674 1677 1679 1682 1690 1694 1694	± 9 ± 19 ± 37 ± 16 ± 13 ± 21 ± 25 ± 15 ± 15 ± 15 ± 15 ± 26 ± 55 ± 17 ± 25
Fécnica LA- fuestra Li H53-38 H53-32 H53-32 H53-31 H53-39 H53-14 H53-74 H53-88 H53-42 H53-85 H53-42 H53-85 H53-42 H53-89 H53-81 H53-81	Núcleo Borde/Núcleo Borde	(Zona Mina N.M. N.M.	277 186 302 210 295 182 216 185 174 146 207 218 122 152 169 118 157	124 176 106 166 95 128 99 119 74 123 135 56 71 116 50	0.59 0.52 0.45 0.50 0.46 0.53 0.48 0.61 0.45 0.53 0.45 0.41 0.41	Probeta Aldo-4 (2) 0.1016 ± 1.1 0.1019 ± 2.0 0.1024 ± 0.7 0.1027 ± 1.2 0.1028 ± 1.6 0.1029 ± 1.3 0.1030 ± 3.0 0.1032 ± 0.9 0.1037 ± 2.9 0.1039 ± 1.5 0.1039 ± 3.0 0.1039 ± 0.9 0.1040 ± 1.4 0.1040 ± 1.4	Septiembre 08) 4.15 3.92 4.33 3.96 4.15 4.23 4.24 4.29 4.38 4.49 4.22 4.31 4.46 4.23	\pm 1.8 \pm 3.2 \pm 1.7 \pm 1.8 \pm 2.7 \pm 1.9 \pm 3.3 \pm 1.5 \pm 3.2 \pm 2.4 \pm 3.3 \pm 1.6 \pm 1.5 \pm 2.8	0.2961 0.2789 0.3070 0.2802 0.2931 0.2983 0.2995 0.3016 0.2951 0.3060 0.3136 0.2948 0.3004 0.3004	± 1.4 ± 1.5 ± 1.6 ± 1.5 ± 1.1 ± 1.4 ± 1.5 ± 1.1 ± 1.4 ± 1.5 ± 1.1 ± 1.4 ± 1.5 ± 1.1 ± 1.4 ± 1.5 ± 1.1 ± 1.1 ± 1.1	0.681 0.810 0.820 0.850 0.850 0.760 0.880 0.760 0.430 0.440 0.790 0.450 0.810 0.740 0.750	0 tda = (n = 10; N -1 5 -3 5 1 0 -1 -1 1 0 -2 -4 2 0 -3 2	1716 1683 ISWD = 0.50; 2 1654 1658 1668 1672 1674 1676 1677 1679 1682 1690 1694 1696 1696	± 9 -sigma) ± 19 ± 37 ± 16 ± 13 ± 21 ± 29 ± 55 ± 15 ± 53 ± 55 ± 17 ± 19 ± 25 ± 42
fection LA- fuestra Li H53-38 H53-32 H53-37 H53-37 H53-39 H53-74 H53-74 H53-74 H53-88 H53-26 H53-85 H53-42 H53-86 H53-81 H53-41 H53-118	Núcleo Borde/Núcleo Borde	N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M.	277 186 302 210 295 182 216 185 174 146 207 218 122 152 169 118 157 381	124 176 106 166 95 128 99 119 74 123 135 56 71 116 50 72 247	0.59 0.52 0.45 0.50 0.46 0.53 0.48 0.61 0.45 0.55 0.41 0.61 0.38 0.41	0.1051 ± 1.5 Probeta Aldo-4 (\$\frac{3}{2}\) 0.1016 ± 1.1 0.1019 ± 2.0 0.1024 ± 0.9 0.1026 ± 0.7 0.1027 ± 1.2 0.1028 ± 1.3 0.1030 ± 3.0 0.1032 ± 0.9 0.1037 ± 2.9 0.1039 ± 1.5 0.1039 ± 0.5 0.1039 ± 0.9 0.1040 ± 1.4 0.1041 ± 2.3 0.1041 ± 2.3	4.15 3.92 4.33 3.96 4.15 4.23 4.24 4.28 4.20 4.29 4.31 4.49 4.22 4.31 4.46 4.23	$\begin{array}{c} \pm \ 1.8 \\ \pm \ 3.2 \\ \pm \ 1.7 \\ \pm \ 1.8 \\ \pm \ 2.7 \\ \pm \ 1.9 \\ \pm \ 3.2 \\ \pm \ 3.2 \\ \pm \ 1.5 \\ \pm \ 3.2 \\ \pm \ 2.4 \\ \pm \ 2.1 \\ \pm \ 2.1 \\ \pm \ 2.1 \\ \pm \ 2.1 \end{array}$	0.2961 0.2789 0.3070 0.2802 0.2931 0.2995 0.3016 0.2951 0.2999 0.3060 0.3136 0.2948 0.3044 0.3108	± 1.4 ± 1.5 ± 1.6 ± 1.5 ± 1.4 ± 1.4 ± 1.4 ± 1.4 ± 1.5 ± 1.1 ± 1.6 ± 1.5 ± 1.1 ± 1.5 ± 1.5	0.681 0.810 0.820 0.850 0.760 0.880 0.760 0.430 0.820 0.440 0.790 0.450 0.810 0.740 0.750 0.530	0 rda = (n = 10; N -1 5 -3 5 1 0 -1 -1 1 0 -2 -4 2 0 -3 2 2	1716 1683 1SWD = 0.50; 2 1654 1658 1668 1672 1674 1676 1677 1679 1682 1690 1694 1696 1696 1696	± 9 -sigma) ± 19 ± 37 ± 16 ± 13 ± 21 ± 29 ± 23 ± 55 ± 15 ± 53 ± 16 ± 17 ± 19 ± 25 ± 24 ± 24
Cécnica LA- fuestra Li H53-38 H53-37 H53-37 H53-31 H53-31 H53-31 H53-74 H53-85 H53-26 H53-85 H53-85 H53-40 H53-118 H53-41 H53-43 H53-48 H53-48 H53-48 H53-49 H53-48 H53-49 H53-49 H53-49 H53-49 H53-49 H53-49 H53-49 H53-49	Núcleo Borde/Núcleo Borde	(Zona Mina N.M. N.M.	277 186 302 210 295 182 216 185 174 146 207 218 122 169 118 157 381 154 221	124 176 106 166 95 128 99 119 74 123 135 56 71 116 50	0.59 0.52 0.45 0.50 0.46 0.53 0.48 0.61 0.45 0.53 0.45 0.41 0.41	Probeta Aldo-4 (3) 0.1016 ± 1.1 0.1019 ± 2.0 0.1024 ± 0.9 0.1026 ± 0.7 0.1027 ± 1.2 0.1028 ± 1.6 0.1029 ± 1.3 0.1030 ± 3.0 0.1032 ± 0.9 0.1037 ± 2.9 0.1039 ± 1.5 0.1039 ± 3.0 0.1040 ± 1.4 0.1041 ± 2.3 0.1041 ± 1.4 0.1042 ± 0.8	Septiembre 08) 4.15 3.92 4.33 3.96 4.15 4.23 4.24 4.28 4.20 4.29 4.38 4.49 4.22 4.31 4.46 4.23 4.22 4.35 4.22	$\begin{array}{c} \pm \ 1.8 \\ \pm \ 3.2 \\ \pm \ 1.7 \\ \pm \ 1.8 \\ \pm \ 2.7 \\ \pm \ 1.5 \\ \pm \ 3.2 \\ \pm \ 1.5 \\ \pm \ 3.2 \\ \pm \ 2.1 \\ \pm \ 2.1 \\ \pm \ 2.1 \\ \pm \ 2.1 \\ \pm \ 1.6 \end{array}$	0.2961 0.2789 0.3070 0.2802 0.2931 0.2983 0.2995 0.3016 0.2951 0.2995 0.3060 0.3136 0.2948 0.3004 0.3108 0.2951 0.2938 0.3004	± 1.4 2006Pb med ± 1.5 ± 1.6 ± 1.5 ± 1.1 ± 1.4 ± 1.4 ± 1.4 ± 1.9 ± 1.3 ± 1.1 ± 1.5 ± 1.4 ± 1.9 ± 1.5 ± 1.1 ± 1.5 ± 1.1 ± 1.6	0.681 0.810 0.820 0.850 0.850 0.760 0.880 0.760 0.430 0.440 0.790 0.450 0.810 0.740 0.750	0 tda = (n = 10; N -1	1716 1683 ISWD = 0.50; 2 1654 1658 1668 1672 1674 1676 1677 1679 1682 1690 1694 1694 1696 1696 1697 1698 1699 1701	± 19 ± 19 ± 17 ± 18 ± 19 ± 19 ± 18 ± 19 ± 19 ± 19 ± 19 ± 19 ± 21 ± 29 ± 23 ± 55 ± 15 ± 15 ± 53 ± 25 ± 25 ± 25 ± 25 ± 25 ± 25 ± 27 ± 21 ± 24 ± 24 ± 24 ± 24 ± 24 ± 24 ± 24 ± 24
H53-38 H53-38 H53-32 H53-37 H53-31 H53-39 H53-14 H53-74 H53-85 H53-26 H53-85 H53-86 H53-19 H53-48 H53-40 H53-48 H53-49 H53-49 H53-49 H53-49	Núcleo Sorde/Núcleo Borde	N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M.	277 186 302 210 295 182 216 185 174 146 207 218 122 152 169 118 157 381 154 221 207	124 176 106 106 106 95 128 99 119 74 123 135 56 71 116 50 72 247 73 117	0.59 0.52 0.45 0.50 0.46 0.53 0.48 0.61 0.45 0.53 0.41 0.41 0.61 0.61 0.58 0.42 0.58	0.1051 ± 1.5 Probeta Aldo-4 (3) 0.1016 ± 1.1 0.1019 ± 2.0 0.1024 ± 0.9 0.1026 ± 0.7 0.1027 ± 1.2 0.1030 ± 3.0 0.1030 ± 3.0 0.1032 ± 0.9 0.1037 ± 2.9 0.1039 ± 1.3 0.1039 ± 1.3 0.1039 ± 1.3 0.1040 ± 1.4 0.1041 ± 2.3 0.1041 ± 1.4 0.1042 ± 0.9 0.1042 ± 0.8	4.15 3.92 4.33 3.96 4.15 4.23 4.24 4.28 4.29 4.31 4.49 4.22 4.31 4.46 4.23 4.22 4.34	$\begin{array}{c} \pm \ 1.8 \\ \pm \ 3.2 \\ \pm \ 1.7 \\ \pm \ 1.3 \\ \pm \ 1.8 \\ \pm \ 1.7 \\ \pm \ 1.3 \\ \pm \ 1.8 \\ \pm \ 2.7 \\ \pm \ 2.1 \\ \pm \ 2.4 \\ \pm \ 2.1 \\ \pm \ 2.1 \\ \pm \ 2.1 \\ \pm \ 1.5 \\$	0.2961 0.2789 0.3070 0.2802 0.2931 0.2992 0.3016 0.2951 0.2999 0.3136 0.2948 0.3044 0.3108 0.2951 0.2933 0.2933	± 1.4 200Fb med ± 1.5 ± 1.6 ± 1.6 ± 1.1 ± 1.4 ± 1.4 ± 1.5 ± 1.1 ± 1.4 ± 1.5 ± 1.1 ± 1.4 ± 1.5 ± 1.3 ± 1.3 ± 1.6 ± 1.1 ± 1.6 ± 1.1 ± 1.6 ± 1.1 ± 1.6 ± 1.1 ± 1.6	0.681 0.810 0.820 0.850 0.760 0.850 0.760 0.430 0.820 0.440 0.790 0.450 0.750 0.750 0.750 0.750 0.700 0.880	0 tda = (n = 10; N -1 5 -3 5 1 0 -1 -1 1 0 -2 -4 2 0 -3 2 2 0 3 5	1716 1683 1SWD = 0.50; 2 1654 1658 1668 1672 1674 1676 1677 1679 1682 1690 1694 1694 1696 1697 1698 1699 1701 1701	± 9 ± 19 ± 37 ± 16 ± 17 ± 18 ± 19 ± 17 ± 18 ± 18 ± 19 ± 19 ± 19 ± 21 ± 23 ± 53 ± 26 ± 55 ± 17 ± 19 ± 25 ± 24 ± 24 ± 17 ± 14 ± 21
Cécnica LA- fuestra Li H53-38 H53-37 H53-37 H53-31 H53-39 H53-14 H53-78 H53-78 H53-78 H53-78 H53-86 H53-86 H53-82 H53-82 H53-84 H53-82 H53-84 H53-84 H53-84 H53-84 H53-84 H53-84 H53-84 H53-84 H53-84 H53-84 H53-84 H53-84	Núcleo Borde Núcleo Borde	(Zona Mina N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.	277 186 302 210 295 182 216 207 218 129 152 169 118 157 381 154 221 207 222	124 176 106 166 95 128 99 119 74 123 135 56 71 116 50 72 24 77 71 119	0.59 0.52 0.45 0.50 0.46 0.53 0.48 0.61 0.45 0.53 0.55 0.41 0.41 0.41 0.58 0.41 0.42 0.47	0.1051 ± 1.5 Probeta Aldo-4 (3) 0.1016 ± 1.1 0.1019 ± 2.0 0.1024 ± 0.9 0.1026 ± 0.7 0.1027 ± 1.2 0.1028 ± 1.6 0.1029 ± 1.3 0.1030 ± 3.0 0.1032 ± 0.9 0.1037 ± 2.9 0.1039 ± 1.5 0.1039 ± 3.0 0.1039 ± 0.9 0.1040 ± 1.4 0.1041 ± 1.4 0.1041 ± 2.3 0.1041 ± 1.4 0.1042 ± 0.9 0.1042 ± 0.8 0.1043 ± 1.3 0.1043 ± 1.3	Septiembre 08) 4.15 3.92 4.33 3.96 4.15 4.23 4.24 4.28 4.20 4.29 4.38 4.49 4.22 4.31 4.46 4.23 4.22 4.35 4.24 4.29 4.38 4.29 4.38 4.49 4.20 4.39 4.38 4.49 4.20 4.31 4.46 4.23 4.20 4.31 4.46 4.23 4.20 4.31 4.40 4.20 4.33	$\begin{array}{c} \pm \ 1.8 \\ \pm \ 3.2 \\ \pm \ 1.7 \\ \pm \ 1.3 \\ \pm \ \pm \ 2.7 \\ \pm \ 1.3 \\ \pm \ \pm \ 2.7 \\ \pm \ 3.3 \\ \pm \ 1.5 \\ \pm \ 3.2 \\ \pm \ 2.4 \\ \pm \ 2.4 \\ \pm \ 2.4 \\ \pm \ 2.1 \\ \pm \ 2.8 \\ \pm \ 2.1 \\ \pm$	0.2961 0.2789 0.3070 0.2802 0.2931 0.2983 0.2983 0.2995 0.3066 0.2951 0.3066 0.2948 0.3004 0.3136 0.2951 0.2933 0.2933 0.2933 0.2933 0.2933 0.2933 0.2933	± 1.4 ± 1.5 ± 1.6 ± 1.5 ± 1.6 ± 1.1 ± 1.4 ± 1.4 ± 1.4 ± 1.4 ± 1.4 ± 1.2 ± 1.4 ± 1.4 ± 1.4 ± 1.5 ± 1.4 ± 1.5 ± 1.4 ± 1.5 ± 1.4 ± 1.5 ± 1.4 ± 1.4 ± 1.5 ± 1.1 ± 1.5 ± 1.1 ± 1.5	0.681 0.810 0.820 0.850 0.760 0.880 0.760 0.430 0.820 0.440 0.790 0.450 0.530 0.750 0.530 0.750 0.750 0.750 0.750 0.780	0 tda = (n = 10; N -1	1716 1683 ISWD = 0.50; 2 1654 1658 1668 1672 1674 1676 1677 1679 1682 1690 1694 1696 1696 1697 1698 1699 1701 1701	± 9 ± 19 ± 17 ± 19 ± 17 ± 18 ± 19 ± 18 ± 19 ± 19 ± 21 ± 21 ± 22 ± 23 ± 55 ± 53 ± 17 ± 25 ± 25 ± 27 ± 27 ± 28 ± 29 ± 29 ± 20 ±
H53-38 H53-32 H53-32 H53-31 H53-31 H53-31 H53-34 H53-74 H53-74 H53-74 H53-85 H53-86 H53-86 H53-89 H53-84 H5	Núcleo Sorde/Núcleo Borde	N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M.	277 186 302 210 295 182 216 185 174 146 207 218 122 152 169 118 157 381 154 221 207	124 176 106 106 106 95 128 99 119 74 123 135 56 71 116 50 72 247 73 117	0.59 0.52 0.45 0.50 0.46 0.53 0.48 0.61 0.45 0.53 0.41 0.41 0.61 0.61 0.58 0.42 0.58	Probeta Aldo-4 (3 0.1016 ± 1.1 0.1019 ± 2.0 0.1024 ± 0.9 0.1026 ± 0.7 0.1027 ± 1.2 0.1028 ± 1.6 0.1032 ± 3.0 0.1030 ± 3.0 0.1032 ± 0.9 0.1037 ± 2.9 0.1039 ± 1.3 0.1039 ± 1.3 0.1040 ± 1.4 0.1041 ± 2.4 0.1042 ± 0.9 0.1042 ± 0.9 0.1042 ± 0.9 0.1043 ± 1.3 0.1043 ± 1.3 0.1043 ± 1.2 0.1043 ± 1.2 0.1043 ± 1.2 0.1043 ± 1.2 0.1043 ± 1.2 0.1043 ± 1.2 0.1043 ± 1.2	Septiembre 08) 4.15 3.92 4.33 3.96 4.15 4.23 4.24 4.28 4.20 4.29 4.38 4.49 4.22 4.31 4.46 4.23 4.22 4.35 4.24 4.38 4.49 4.22 4.31 4.46 4.34	$\begin{array}{c} \pm \ 1.8 \\ \pm \ 3.2 \\ \pm \ 1.7 \\ \pm \ 1.3 \\ \pm \ 2.7 \\ \pm \ 1.8 \\ \pm \ 2.7 \\ \pm \ 1.5 \\ \pm \ 2.3 \\ \pm \ 1.5 \\ \pm \ 2.4 \\ \pm \ 2.1 \\$	0.2961 0.2789 0.3070 0.2802 0.2931 0.2983 0.3016 0.2951 0.3060 0.3166 0.2951 0.3004 0.3004 0.3004 0.303 0.2993 0.303 0.2993 0.303 0.2933 0.2933 0.2933 0.2933 0.2933 0.2933 0.2933 0.2933 0.2933 0.3049 0.3104 0.3049 0.3049	± 1.5 ± 1.6 ± 1.5 ± 1.6 ± 1.1 ± 1.4 ± 1.5 ± 1.6 ± 1.5 ± 1.4 ± 1.4 ± 1.5 ± 1.4 ± 1.5 ± 1.4 ± 1.5	0.681 0.810 0.820 0.850 0.760 0.850 0.760 0.430 0.820 0.440 0.790 0.450 0.750 0.750 0.750 0.750 0.700 0.880	0 tda = (n = 10; N -1 5 -3 5 1 0 -1 -1 1 0 -2 -4 2 0 -3 2 2 0 3 5	1716 1683 1SWD = 0.50; 2 1654 1658 1668 1672 1674 1676 1677 1682 1690 1694 1694 1696 1697 1698 1699 1701 1701 1701 1701	± ± 9 ± ± 19 ± ± 37 ± ± 13 ± ± 13 ± ± 21 ± ± 23 ± ± 55 ± ± 55 ± ± 55 ± ± 55 ± ± 17 ± ± 19 ± ± 24 ± ± 24 ± ± 24 ± ± 25 ±
Técnica LA- Muestra Li H53-38 H53-37 H53-37 H53-31 H53-39 H53-14 H53-74 H53-86 H53-86 H53-86 H53-42 H53-86 H53-42 H53-86 H53-118 H53-118 H53-118 H53-118 H53-3-41 H53-3-41 H53-3-41 H53-3-43 H53-3-41 H53-3-41	Núcleo Borde/Núcleo Borde Núcleo Borde Borde Núcleo Borde Borde Núcleo Borde Núcleo Borde Núcleo Borde Borde Núcleo Borde Borde Núcleo Borde/Núcleo Borde/Núcleo Borde Núcleo Núcleo	(Zona Mina N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.	277 186 302 210 295 182 216 217 185 174 146 207 218 122 152 169 118 157 381 154 221 207 217 381 154 221 207 215 217 381	124 176 106 166 166 169 128 123 135 56 71 116 50 72 247 73 117 91 111 111 89 85	0.59 0.59 0.52 0.45 0.50 0.40 0.45 0.41 0.41 0.61 0.48 0.41 0.61 0.49 0.41 0.40	Probeta Aldo-4 (3) 0.1016 ± 1.1 0.1019 ± 2.0 0.1024 ± 0.9 0.1026 ± 0.7 0.1027 ± 1.2 0.1028 ± 1.6 0.1029 ± 1.3 0.1030 ± 3.0 0.1032 ± 0.9 0.1037 ± 2.9 0.1039 ± 1.3 0.1039 ± 3.0 0.1039 ± 3.0 0.1040 ± 1.4 0.1041 ± 2.3 0.1041 ± 1.4 0.1041 ± 2.3 0.1043 ± 1.3 0.1043 ± 1.2 0.1043 ± 1.2 0.1043 ± 1.2 0.1043 ± 1.2 0.1043 ± 1.2 0.1043 ± 1.3	Septiembre 08) 4.15 3.92 4.33 3.96 4.15 4.23 4.24 4.28 4.20 4.29 4.38 4.49 4.22 4.31 4.46 4.23 4.22 4.09 4.38 4.44 4.23 4.21 4.39 4.39 4.38 4.44	$\begin{array}{c} \pm \ 1.8 \\ \pm \ 3.2 \\ \pm \ 1.7 \\ \pm \ 1.8 \\ \pm \ 2.7 \\ \pm \ 1.3 \\ \pm \ 1.5 \\ \pm \ 2.4 \\ \pm \ 2.1 \\ \pm \ 2.4 \\ \pm \ 2.4 \\ \pm \ 2.1 \\ \pm \ 2.4 \\ \pm \ 2.1 \\$	0.2961 0.2789 0.3070 0.2802 0.2931 0.2983 0.2992 0.3016 0.2951 0.2951 0.3060 0.3136 0.2948 0.3004 0.3040 0.2952 0.2933 0.2934 0.2934 0.2934 0.2935 0.2936 0.2935 0.	± 1.4 ± 1.5 ± 1.6 ± 1.1 ± 1.1 ± 1.4 ± 1.4 ± 1.4 ± 1.4 ± 1.4 ± 1.5 ± 1.5 ± 1.6 ± 1.5 ± 1.1 ± 1.4 ± 1.4 ± 1.2 ± 1.4 ± 1.2 ± 1.4 ± 1.5 ± 1.4 ± 1.5 ± 1.1 ± 1.5 ± 1.1 ± 1.5 ± 1.1 ± 1.1 ± 1.5 ± 1.1 ± 1.5 ± 1.1 ± 1.5 ± 1.1 ± 1.5 ± 1.1 ± 1.5 ± 1.1 ± 1.5 ± 1.1 ± 1.5 ± 1.1 ± 1.5 ± 1.1 ± 1.5 ± 1.1 ± 1.5 ± 1.1 ± 1.5 ± 1.1 ± 1.5 ± 1.1 ± 1.5 ± 1.1 ± 1.5 ± 1.1 ± 1.5 ± 1.1 ± 1.5 ± 1.1 ± 1.5 ± 1.1	0.681 0.810 0.820 0.850 0.760 0.880 0.760 0.430 0.820 0.440 0.790 0.450 0.530 0.750 0.700 0.880 0.750	0 tda = (n = 10; N -1	1716 1683 ISWD = 0.50; 2 1654 1658 1668 1672 1674 1676 1677 1679 1682 1690 1694 1696 1696 1697 1698 1699 1701 1701 1701 1701 1701	± 9 ± 19 ± 19 ± 19 37 ± 16 16 ± 13 37 ± 16 ± 21 ± 22 ± 55 ± 15 53 ± 26 ± 55 ± 17 ± 19 ± 19 ± 24 ± 24 ± 24 ± 24 ± 24 ± 24
JTM WGS 8 Fécnica LA- Muestra Li H53-38 H53-32 H53-37 H53-39 H53-14 H53-39 H53-14 H53-38 H53-34 H53-38 H53-42 H53-85 H53-42 H53-85 H53-42 H53-85 H53-42 H53-81 H53-86 H53-11 H53-86	Núcleo Borde/Núcleo Borde Borde Borde Borde Borde Borde Borde Borde Borde Núcleo Borde/Núcleo Núcleo Borde Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo	(Zona Mina N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.	277 186 302 210 295 182 216 185 174 146 207 218 152 152 159 118 157 381 154 221 178 207 222 178 160	124 176 106 166 99 128 99 74 123 56 71 116 50 72 247 73 117 91 111 89	0.59 0.52 0.45 0.53 0.46 0.41 0.41 0.41 0.41 0.41 0.41 0.45 0.44 0.47 0.47 0.47 0.44 0.47 0.47 0.47	Probeta Aldo-4 (3 0.1016 ± 1.1 0.1019 ± 2.0 0.1024 ± 0.9 0.1026 ± 0.7 0.1027 ± 1.2 0.1028 ± 1.6 0.1032 ± 3.0 0.1030 ± 3.0 0.1032 ± 0.9 0.1037 ± 2.9 0.1039 ± 1.3 0.1039 ± 1.3 0.1040 ± 1.4 0.1041 ± 2.4 0.1042 ± 0.9 0.1042 ± 0.9 0.1042 ± 0.9 0.1043 ± 1.3 0.1043 ± 1.3 0.1043 ± 1.2 0.1043 ± 1.2 0.1043 ± 1.2 0.1043 ± 1.2 0.1043 ± 1.2 0.1043 ± 1.2 0.1043 ± 1.2	Septiembre 08) 4.15 3.92 4.33 3.96 4.15 4.23 4.24 4.28 4.20 4.29 4.38 4.49 4.22 4.31 4.46 4.23 4.22 4.35 4.22 4.39 4.38 4.44	$\begin{array}{c} \pm \ 1.8 \\ \pm \ 3.2 \\ \pm \ 1.7 \\ \pm \ 1.3 \\ \pm \ 1.8 \\ \pm \ 2.7 \\ \pm \ 1.5 \\ \pm \ 2.4 \\ \pm \ 1.5 \\ \pm \ 2.4 \\ \pm \ 1.5 \\ \pm \ 2.1 \\ \pm \ 1.5 \\$	0.2961 0.2789 0.3070 0.2802 0.2931 0.2983 0.3016 0.2951 0.3060 0.3166 0.2951 0.3004 0.3004 0.3004 0.303 0.2993 0.303 0.2993 0.303 0.2933 0.2933 0.2933 0.2933 0.2933 0.2933 0.2933 0.2933 0.2933 0.3049 0.3104 0.3049 0.3049	± 1.4 ± 1.5 ± 1.5 ± 1.5 ± 1.1 ± 1.4 ± 1.5 ± 1.1 ± 1.4 ± 1.5 ± 1.4 ± 1.5 ± 1.4 ± 1.5 ± 1.4 ± 1.5 ± 1.4 ± 1.5 ± 1.4 ± 1.5 ± 1.4 ± 1.5 ± 1.4 ± 1.5 ± 1.4 ± 1.5 ± 1.4 ± 1.5 ± 1.4 ± 1.5 ± 1.1 ± 1.6 ± 1.1 ± 1.6 ± 1.1 ± 1.6 ± 1.1 ± 1.1 ± 1.6 ± 1.1 ± 1.1 ± 1.1 ± 1.1 ± 1.1 ± 1.1 ± 1.1 ± 1.1 ± 1.1 ± 1.1	0.681 0.810 0.820 0.850 0.760 0.880 0.750	0 tda = (n = 10; M -1 5 -3 5 1 0 -1 -1 1 0 -2 -4 2 0 3 2 2 2 0 3 5 -1 -2 -1	1716 1683 1SWD = 0.50; 2 1654 1658 1668 1672 1674 1676 1677 1682 1690 1694 1694 1696 1697 1698 1699 1701 1701 1701 1701	± 9 ± 19 ± 19 ± 17 ± 16 ± 13 ± 16 ± 13 ± 21 ± 23 ± 25 ± 15 ± 17 ± 19 ± 25 ± 17 ± 19 ± 25 ± 17 ± 19 ± 25 ± 17 ± 19 ± 25 ± 26 ± 24

Continua en la siguiente página

Tabla 3. Continuación.

Nombre	Comentarios	²⁰⁶ Pb	U	Th	Th/U	²⁰⁷ Pb/	error	²⁰⁷ Pb/	error	²⁰⁶ Pb/	error	error	%	$^{207}{\rm Pb}/^{206}{\rm Pb}$	erro
del análisis	Núcleo/Borde	Común (%)	(ppm)	(ppm)		²⁰⁶ Pb**	(%)	²³⁵ U**	(%)	²³⁸ U**	(%)	correl.	discor#.	Edad (Ma)	(Ma
LH53-115	Núcleo	N.M.	153	99	0.58	0.1044	± 1.1	4.45	± 1.5	0.3095 ±	: 1.1	0.690	-2	1703	± 20
LH53-55	Núcleo	N.M.	137	62	0.40	0.1044	± 1.1	4.56 :	± 2.1	0.3168 ±	1.8	0.840	-4	1704	± 21
LH53- 87	Borde/Núcleo	N.M.	129	64	0.44	0.1046	± 2.9	4.40 :	± 3.2	0.3054 ±	1.3	0.420	-1	1707	± 54
LH53-64	Borde	N.M.	135	66	0.44	0.1047	± 1.0	4.53 :	± 1.7	0.3137 ±	1.4	0.820	-3	1709	± 18
LH53-50	Núcleo	N.M.	194	103	0.47	0.1048	± 1.0	4.37	± 1.7	0.3027 ±	1.4	0.810	0	1710	± 18
LH53- 21	Núcleo	N.M.	131	55	0.37	0.1048	± 0.9	4.45 :	± 1.3	0.3076 ±	0.9	0.710	-1	1711	± 17
LH53-27	Núcleo	N.M.	151	62	0.37	0.1048	± 0.8	4.44 :	± 1.4	0.3075 ±	1.2	0.810	-1	1711	± 15
LH53-81	Núcleo	N.M.	173	115	0.59	0.1048	± 1.6	4.27 :	± 1.9	0.2957 ±	1.1	0.580	2	1711	± 29
LH53-111	Borde/Núcleo	N.M.	117	54	0.41	0.1048	± 3.1	4.41 :	± 3.3	0.3052 ±	1.3	0.400	0	1711	± 56
LH53-22	Núcleo	N.M.	188	84	0.40	0.1049	± 0.8	4.25 :	± 1.7	0.2942 ±	1.5	0.870	3	1712	± 15
LH53-28	Borde	N.M.	110	45	0.36	0.1048	± 1.0	4.36 :	± 1.4	0.3016 ±	1.0	0.690	1	1712	± 18
LH53-110	Núcleo	N.M.	157	106	0.60	0.1049	± 2.9	4.46 :	± 3.4	0.3084 ±	1.8	0.510	-1	1713	± 54
LH53-15	Núcleo	N.M.	221	142	0.57	0.1050	± 1.0	4.35 :	± 1.3	0.3007 ±	0.9	0.670	1	1714	± 18
LH53-44	Borde/Núcleo	N.M.	239	143	0.53	0.1050	± 1.1	4.47 :	± 2.2	0.3089 ±	1.9	0.860	-1	1714	± 20
LH53- 54	Borde	N.M.	232	119	0.46	0.1050	± 1.1	4.49 :		0.3103 ±		0.850	-2	1714	± 20
LH53-8	Núcleo	N.M.	324	220	0.60	0.1050	± 0.8	4.36 :	± 1.6	0.3013 ±	1.4	0.880	1	1715	± 13
LH53-25	Borde	N.M.	179	83	0.41	0.1050	± 0.7	4.30 :	± 1.6	0.2972 ±	1.4	0.890	2	1715	± 13
LH53- 56	Núcleo	N.M.	176	98	0.49	0.1052	± 1.0	4.51 :	± 2.1	0.3107 ±	1.8	0.860	-2	1717	± 19
LH53-62	Núcleo	N.M.	145	62	0.38	0.1052	± 0.9	4.49 :	± 1.4	0.3094 ±	1.1	0.750	-1	1717	± 17
LH53-76	Núcleo	N.M.	114	59	0.46	0.1052	± 1.4	4.61 :	± 1.9	0.3182 ±	1.3	0.660	-4	1717	± 26
LH53-58	Borde	N.M.	134	57	0.38	0.1053	± 1.2	4.50 :	± 2.0	0.3097 ±	1.6	0.820	-1	1719	± 21
LH53-70	Borde	N.M.	156	88	0.50	0.1053	± 1.0	4.50 :	± 1.6	0.3102 ±	1.3	0.800	-1	1720	± 18
LH53-84	Borde	N.M.	166	84	0.45	0.1054	± 1.9	4.36 :	± 2.3	0.3003 ±	1.2	0.540	2	1721	± 35
LH53-16	Núcleo	N.M.	201	125	0.55	0.1054	± 1.0	4.38 :	± 1.6	0.3013 ±	1.3	0.800	1	1722	± 18
LH53-61	Borde	N.M.	159	74	0.41	0.1055	± 1.2	4.50 :	± 1.7	0.3094 ±	1.2	0.710	-1	1722	± 23
LH53-78	Borde	N.M.	56	24	0.38	0.1055	± 2.0	4.55 :	± 2.4	0.3129 ±	1.3	0.540	-2	1722	± 37
LH53-114	Borde	N.M.	157	70	0.40	0.1054	± 1.0	4.30 =	± 1.4	0.2956 ±	1.0	0.700	3	1722	± 19
LH53-73	Borde	N.M.	138	62	0.40	0.1056	± 1.4	4.30 :	± 1.9	0.2957 ±	1.3	0.700	3	1724	± 25
LH53- 51	Borde	N.M.	136	60	0.39	0.1056	± 1.2	4.55 :	± 2.0	0.3127 ±	1.6	0.800	-2	1725	± 21
LH53-66	Núcleo	N.M.	197	103	0.46	0.1057	± 1.1	4.42 :	± 1.9	0.3030 ±	1.5	0.810	1	1727	± 20
LH53-13	Borde	N.M.	158	84	0.47	0.1058	± 0.9	4.38 :		0.3003 ±	0.6	0.560	2	1728	± 16
LH53-18	Borde/Núcleo	N.M.	163	66	0.36	0.1058		4.37			1.4	0.820	2		± 17
LH53-12	Borde/Núcleo	N.M.	168	77	0.41	0.1058	± 0.9	4.63	± 1.5	0.3170 ±	1.2	0.800	-3	1729	± 16
LH53-116	Borde	N.M.	128	68	0.47	0.1059	± 1.2	4.47	± 1.8	0.3061 ±	1.4	0.760	0	1729	± 22
LH53-30	Núcleo	N.M.	159	77	0.43	0.1059	± 0.9	4.44 :		0.3041 ±	1.0	0.740	1	1730	± 16
LH53-79	Borde/Núcleo	N.M.	165	76	0.41	0.1059		4.39		0.3007 ±		0.630	2		± 33
LH53-6	Núcleo	N.M.	359	254	0.63	0.1060	± 0.7	4.41 :		0.3017 ±		0.840	2		± 11
LH53-7	Borde	N.M.	342	189	0.49	0.1061	± 0.7	4.53 :		0.3101 ±		0.820	0		± 11
LH53-24	Núcleo	N.M.	486	364	0.67	0.1061		4.22 =		0.2882 ±		0.820	6		± 27
LH53-33	Borde/Núcleo	N.M.	133	60	0.40	0.1061		4.56		0.3116 ±		0.720	-1		± 22
LH53-80	Núcleo	N.M.	556	231	0.37	0.1061		4.21 :		0.2882 ±		0.740	6		± 25
LH53- 52	Borde/Núcleo	N.M.	154	65	0.38	0.1062		4.61		0.3149 ±		0.780	-2		± 23
LH53-10	Borde	N.M.	237	116	0.44	0.1063		4.32		0.2949 ±		0.760	4		± 14
LH53-49	Borde	N.M.	176	88	0.44	0.1064	± 1.2	4.44 :	± 1.8	0.3030 ±		0.770	2	1738	± 21
LH53-60	Borde	N.M.	230	120	0.46	0.1078	± 0.8	4.38	± 1.3	0.2947 ±	1.0	0.790	6	1763	± 14
										Edad 207Pb/20	Pb medi	a pondera	ıda =	1714	± 5

UTM WGS 84: 321305, 3448619

(n = 64; MSWD = 0.49; 2-sigma)

Muestra	LH07-52 Ortogneis	(Zona Mina	La Herradi	ura, Sono	ora)	Probeta Aldo-4 (Septie	mbre 08)				
LH52-91	Núcleo	N.M.	259	139	0.46	0.0953 ± 1.9	3.51 ± 3.0	0.2669 ± 1.5	0.742	1	1534 ± 34
LH52-99	Núcleo	N.M.	552	325	0.69	0.0967 ± 2.0	3.59 ± 2.8	0.2691 ± 1.1	0.708	2	1562 ± 37
LH52-72	Núcleo	N.M.	264	143	0.69	0.0981 ± 1.4	3.51 ± 2.5	0.2591 ± 1.2	0.874	7	1589 ± 26
LH52-14	Núcleo	N.M.	570	332	0.52	0.0991 ± 0.6	3.95 ± 1.2	0.2896 ± 0.9	0.675	-2	1606 ± 10
LH52-52	Núcleo	N.M.	448	386	0.28	0.0993 ± 1.6	3.94 ± 3.2	0.2880 ± 1.8	0.712	-1	1610 ± 30
LH52-86	Núcleo	N.M.	347	197	0.48	0.0997 ± 1.0	3.81 ± 2.3	0.2772 ± 2.1	0.924	3	1619 ± 19
LH52-8	Núcleo	N.M.	817	467	0.51	0.1000 ± 0.5	3.81 ± 1.1	0.2762 ± 0.8	0.620	3	1624 ± 9
LH52-15	Núcleo	N.M.	439	395	0.80	0.1017 ± 0.8	4.09 ± 1.7	0.2919 ± 1.4	0.700	0	1656 ± 13
LH52-6	Borde	N.M.	257	146	0.50	0.1019 ± 0.7	4.12 ± 1.4	0.2935 ± 0.9	0.572	0	1659 ± 12
LH52-39	Núcleo	N.M.	543	53	0.46	0.1022 ± 1.2	3.64 ± 2.1	0.2585 ± 1.0	0.676	12	1664 ± 22
LH52-74	Núcleo	N.M.	600	533	0.50	0.1022 ± 0.6	4.26 ± 1.5	0.3024 ± 1.3	0.854	-2	1664 ± 12
LH52-34	Núcleo	N.M.	304	213	0.61	0.1023 ± 1.5	4.04 ± 2.5	0.2862 ± 1.2	0.817	3	1666 ± 26
LH52-81	Núcleo	N.M.	162	86	0.59	0.1024 ± 0.6	4.02 ± 1.4	0.2845 ± 1.2	0.828	3	1667 ± 12
LH52-103	1140100	N.M.	151	83	0.62	0.1027 ± 0.8	4.10 ± 1.7	0.2896 ± 1.3	0.747	2	1673 ± 14
LH52-70	Núcleo	N.M.	457	367	0.47	0.1030 ± 0.8	4.19 ± 1.7	0.2952 ± 1.2	0.728	1	1679 ± 14
LH52-42	Borde/Núcleo	N.M.	261	63	0.37	0.1031 ± 1.5	3.96 ± 3.5	0.2786 ± 3.2	0.927	6	1681 ± 28
LH52-60	Núcleo	N.M.	218	69	0.45	0.1035 ± 0.9	4.22 ± 1.9	0.2955 ± 1.5	0.768	1	1687 ± 16
LH52-25	Núcleo	N.M.	514	49	0.79	0.1036 ± 0.9	4.42 ± 1.9	0.3093 ± 1.5	0.781	-3	1690 ± 15
LH52-87	Núcleo	N.M.	474	334	0.51	0.1036 ± 0.6	4.38 ± 1.4	0.3065 ± 1.2	0.837	-2	1690 ± 12
LH52-67	Núcleo	N.M.	508	442	0.55	0.1037 ± 1.3	4.13 ± 2.2	0.2890 ± 1.0	0.644	3	1691 ± 24
LH52-28	Núcleo	N.M.	537	375	0.42	0.1037 ± 1.0	4.14 ± 2.2	0.2895 ± 1.9	0.876	3	1692 ± 16
LH52-43	Núcleo	N.M.	506	246	0.43	0.1039 ± 1.3	4.22 ± 2.9	0.2946 ± 1.8	0.851	2	1695 ± 24
LH52-61	Núcleo	N.M.	519	50	0.71	0.1040 ± 2.0	3.98 ± 3.7	0.2775 ± 1.9	0.830	7	1697 ± 37
LH52-21	Núcleo	N.M.	320	194	0.69	0.1041 ± 0.9	4.44 ± 1.9	0.3092 ± 1.5	0.686	-2	1698 ± 15
LH52-13	Núcleo	N.M.	597	419	0.62	0.1044 ± 0.8	4.34 ± 1.8	0.3014 ± 1.6	0.858	0	1703 ± 13
LH52-68	Núcleo	N.M.	565	57	0.68	0.1044 ± 0.6	4.21 ± 1.3	0.2923 ± 1.0	0.757	3	1704 ± 11
LH52-75	Núcleo	N.M.	454	43	0.63	0.1044 ± 0.7	4.40 ± 1.5	0.3057 ± 1.3	0.885	-1	1704 ± 12
LH52-79	Núcleo	N.M.	431	329	0.87	0.1044 ± 0.9	4.06 ± 2.1	0.2820 ± 1.9	0.923	6	1704 ± 17
LH52-80	Borde	N.M.	2656	2600	0.68	0.1045 ± 0.6	4.20 ± 1.4	0.2916 ± 1.1	0.787	3	1705 ± 12
LH52-26	Núcleo	N.M.	2238	1109	0.62	0.1045 ± 0.9	4.41 ± 1.9	0.3060 ± 1.5	0.799	-1	1706 ± 15
LH52-85	Núcleo	N.M.	563	581	0.52	0.1045 ± 0.8	4.66 ± 1.8	0.3232 ± 1.7	0.930	-5	1706 ± 15
LH52-100	1146160	N.M.	399	207	0.51	0.1045 ± 0.9	4.27 ± 2.0	0.2966 ± 1.6	0.825	2	1706 ± 16
LH52-18	Núcleo	N.M.	532	61	0.53	0.1046 ± 0.7	4.68 ± 1.6	0.3242 ± 1.1	0.555	-6	1707 ± 13
LH52-20	Núcleo	N.M.	2239	1792	0.54	0.1048 ± 0.8	4.35 ± 1.8	0.3008 ± 1.4	0.623	1	1711 ± 14
LH52-58 LH52-10	Núcleo	N.M.	319	204	0.77	0.1048 ± 0.8	4.35 ± 1.7	0.3007 ± 1.4	0.807	1	1711 ± 14
	Núcleo	N.M.	467	365	0.69	0.1049 ± 0.6	4.44 ± 1.3	0.3074 ± 1.1	0.748	-1	1712 ± 10
LH52-88	Borde/Núcleo	N.M.	472	346	0.49	0.1050 ± 0.8	4.77 ± 1.8	0.3294 ± 1.5	0.827	-7	1713 ± 15

Continua en la siguiente página

Tabla 3. Continuación.

Nombre	Comentarios	²⁰⁶ Pb	U	Th	Th/U	²⁰⁷ Pb/	error	²⁰⁷ Pb/	error	²⁰⁶ Pb/	error	error	%	²⁰⁷ Pb/ ²⁰⁶ Pb	error
del análisis	Núcleo/Borde	Común (%)	(ppm)	(ppm)		²⁰⁶ Pb**	(%)	²³⁵ U**	(%)	²³⁸ U**	(%)	correl.	discor#.	Edad (Ma)	(Ma)
LH52-90	Núcleo	N.M.	565	59	0.55	0.1049	± 0.8	4.57 ±	± 1.7	0.3161 ±	1.6	0.928	-3	1713	± 14
LH52-9	Núcleo	N.M.	658	685	0.92	0.1050	± 0.7	4.25 ±	± 1.5	0.2934 ±	1.3	0.799	3	1715	± 11
LH52-62	Núcleo	N.M.	313	202	0.48	0.1051	± 0.7	4.58 ±	± 1.3	0.3159 ±	0.7	0.555	-3	1715	± 14
LH52-84	Núcleo	N.M.	579	447	0.51	0.1050	± 1.7	4.33 ±	± 2.7	0.2988 ±	1.3	0.800	2	1715	± 32
LH52-100	Núcleo	N.M.	389	212	0.60	0.1051	± 0.8	4.41 ±	± 1.9	0.3045 ±	1.7	0.885	0	1716	± 15
LH52-97	Borde/Núcleo	N.M.	531	52	0.65	0.1052	± 0.8	4.35 ±	± 1.9	0.2997 ±	1.6	0.860	2	1717	± 15
LH52-63	Núcleo	N.M.	212	97	0.66	0.1052	± 0.7	4.43 ±	± 1.4	0.3056 ±	1.0	0.719	0	1718	± 12
LH52-73	Núcleo	N.M.	364	270	0.92	0.1053	± 0.6	4.32 ±	± 1.4	0.2976 ±	1.2	0.862	2	1720	± 11
LH52-76	Núcleo	N.M.	385	332	0.65	0.1054	± 0.6	4.30 ±	± 1.4	0.2963 ±	1.2	0.867	3	1720	± 11
LH52-92	Núcleo	N.M.	842	828	0.93	0.1053	± 0.7	4.52 ±	± 1.5	0.3112 ±	1.4	0.922	-2	1720	± 12
LH52-27	Núcleo	N.M.	570	506	0.95	0.1055	± 0.7	4.33 ±	± 1.3	0.2977 ±	0.9	0.639	3	1723	± 12
LH52-66	Núcleo	N.M.	261	128	0.77	0.1056	± 0.8	4.48 ±	± 1.5	0.3076 ±	0.9	0.609	0	1725	± 14
LH52-22	Núcleo	N.M.	461	360	0.82	0.1057	± 0.8	4.22 ±	± 1.8	0.2898 ±	1.4	0.650	5	1726	± 14
LH52-54	Núcleo	N.M.	555	55	0.57	0.1058	± 0.9	4.47 ±	± 1.9	0.3067 ±	1.3	0.691	0	1728	± 17
LH52-78	Núcleo	N.M.	251	154	0.48	0.1058	± 0.7	4.70 ±	± 1.6	0.3220 ±	1.4	0.836	-4	1728	± 13
LH52-49	Núcleo	N.M.	634	306	0.68	0.1060	± 0.8	4.55 ±	± 1.7	0.3118 ±	1.2	0.719	-1	1731	± 15
LH52-50	Núcleo	N.M.	1264	819	0.59	0.1061	± 0.8	4.37 ±	± 1.6	0.2988 ±	1.0	0.622	3	1733	± 15
LH52-48	Núcleo	N.M.	253	104	0.48	0.1062	± 0.9	4.40 ±	± 1.8	0.3004 ±	1.3	0.728	2	1735	± 16
LH52-104	Núcleo	N.M.	442	41	1.29	0.1062	± 1.3	4.30 ±	± 2.9	0.2937 ±	2.6	0.896	5	1735	± 23
LH52-38	Núcleo	N.M.	565	390	0.43	0.1063	± 0.8	4.78 ±	± 1.7	0.3261 ±	1.5	0.860	-5	1736	± 14
LH52-55	Borde	N.M.	388	210	0.41	0.1064	± 0.9	4.59 ±	± 2.1	0.3130 ±	1.8	0.844	-1	1738	± 17
LH52-56	Núcleo	N.M.	539	411	0.69	0.1065	± 0.8	4.29 ±	± 1.7	0.2922 ±	1.2	0.739	5	1740	± 14
LH52-57	Borde	N.M.	378	252	0.44	0.1065	± 0.7	4.76 ±	± 1.6	0.3243 ±	1.2	0.750	-4	1741	± 13
LH52-33	Núcleo	N.M.	2735	2772	0.58	0.1066	± 0.9	4.59 ±	± 1.7	0.3122 ±	1.1	0.656	-1	1742	± 16
LH52-45	Núcleo	N.M.	462	394	0.47	0.1066	± 0.6	4.61 ±	± 1.4	0.3134 ±	1.1	0.781	-1	1742	± 11
LH52-64	Núcleo	N.M.	475	367	0.79	0.1067	± 0.7	4.25 ±	± 1.5	0.2888 ±	1.1	0.748	7	1743	± 12
LH52-51	Borde	N.M.	648	340	0.57	0.1068	± 0.9	4.52 ±	± 1.6	0.3068 ±	0.9	0.571	1	1746	± 15
LH52-36	Núcleo	N.M.	467	390	0.75	0.1071	± 0.6	4.46 ±	± 1.3	0.3022 ±	1.0	0.777	3	1751	± 11
LH52- 32	Borde	N.M.	558	54	0.74	0.1076	± 0.9	4.43 ±	± 1.6	0.2985 ±		0.565	5	1760	± 16
										Edad ²⁰⁷ Pb/ ²⁰	⁶ Pb medi	a pondera	ıda =	1712	± 4
UTM WGS 84:	321595, 3449000												(n = 44; N	1SWD = 0.94, 2	-sigma)

^{**} SHRIMP-RG = Relaciones isotópicas corregidas por Pb inicial usando la cantidad de ²⁰⁴Pb y los valores iniciales terrestres promedios correspondientes de Stacey y Kramers (1975).

^{**} LA-ICP-MS = Relaciones isotópicas corregidas por Pb inicial usando los valores iniciales promedios correspondientes de Stacey y Kramers (1975) aplicando el método de Andersen (2002). Todos los errores de las relaciones isótopicas y edades, para cada análisis, se presentan a 1 sigma. Las edades promedio ponderadas ²⁰⁷Pb, ²⁰⁰⁸Pb, reportadas a 2-sigma, se obtubieron haciendo el diagrama weighted average con el programa computacional Isoplot (Ludwig , 2003), empleando solo las edades que se encuentran en negritas en esta tabla.

^{*}El porcentaje de discordancia fue obtenido con la ecuación (100*[(edad ²⁰⁷Pb/²⁰⁸Pb)/(edad ²⁰⁶Pb/²³⁸U)]-1) propuesta en Ludwig (2001). Los valores positivos son para las discordancias normales; valores negativos para las discordancias inversas.

MSWD: Mean Squared Weigthed Deviate (desviación media cuadrática ponderada).

N.M.: No medido

 Tabla 4. Datos analíticos de U-Th-Pb de SHRIMP-RG y LA-ICP-MS de zircones de rocas mesoproterozoicas del área Mina La Herradura, NW de Sonora, México.

Nombre	Comentarios	²⁰⁶ Pb	U	Th	Th/U	²⁰⁷ Pb/ error	²⁰⁷ Pb/	error	²⁰⁶ Pb/	error	error	%	²⁰⁷ Pb/ ²⁰⁶ Pb	erro
del análisis	Núcleo/Borde	Común (%)	(ppm)	(ppm)		²⁰⁶ Pb** (%)	²³⁵ U**	(%)	²³⁸ U**	(%)	correl.	discor. #	Edad (Ma)	(Ma
écnica SHRIMI														
luestra LH06-4	Metagranita	<u>(Sierrita</u>	Blanca, S	Sonora)	Prob	eta Aldo-3 (Agosto 07)								
0540.5														
.0640- 6 .0640- 8	Núcleo	0.16 0.13	946 196	522 99	0.57 0.52	0.0736 ± 0.7	1.22 ± 1.66 ±		0.1206	± 1.3 ± 1.4	0.882 0.711	40 5	1029 1030	± 14 ± 29
.0640-3	Borde Borde/Núcleo	0.13	211	53	0.32	0.0736 ± 1.4 0.0743 ± 2.0	1.00 ±		0.1640 0.1272	± 1.4 ± 1.5	0.602	36		± 40
.0640-11	Borde	0.10	168	65	0.40	0.0754 ± 1.3	1.75 ±			± 1.5	0.757	7	1079	
.0640-5	Borde/Núcleo	0.10	151	65	0.45	0.0757 ± 1.3	1.81 ±		0.1729		0.774	6	1088	
.0640-4	Núcleo	0.03	225	118	0.54	0.0758 ± 0.9	1.93 ±	± 1.7	0.1846	± 1.4	0.842	0	1091	± 18
.0640-9	Borde/Núcleo	0.07	109	40	0.39	0.0761 ± 1.5	1.90 ±		0.1810		0.726	2	1098	
.0640-10	Núcleo	0.11	183	99	0.56	0.0763 ± 1.2	1.91 ±		0.1821		0.776	2	1102	
.0640- 12 .0640- 7	Borde	0.00	167	73	0.45	0.0764 ± 1.0	2.01 ±		0.1909		0.821	-2	1104 1112	
.0640-1	Núcleo Borde	0.00 0.12	126 175	53 96	0.43 0.57	0.0767 ± 1.5 0.0777 ± 1.4	1.93 ± 2.00 ±		0.1825 0.1863		0.709 0.728	3	1112	
	Borde	0.12	175	70	0.57	0.0777 ± 1.4	2.00 -	2.0		/ ²⁰⁶ Pb media			1093	
TM WGS 84: 32	25008. 3458751										. postacou		ISWD = 1.09, 2	
												(,		
Iuestra <u>LH07-4</u>	Metagranita	<u>(Sierrita</u>	Blanca, I	Sonora)	Prob	eta Aldo-3 (Agosto 07)								
-42-6	Borde	0.07	163	59	0.37	0.0734 ± 1.1	1.84 ±	± 1.3	0.1818	± 0.7	0.526	-5	1025	± 23
-42-7	Borde	0.31	202	86	0.44	0.0740 ± 1.6	1.84 ±		0.1801		0.376	-2	1042	
-42-1	Núcleo	0.08	168	72	0.44	0.0745 ± 1.4	1.87 ±		0.1822		0.376	-2	1056	
-42-10	Núcleo	0.07	388	212	0.56	0.0746 ± 0.8	1.93 ±		0.1875		0.571	-4	1059	
-42-5	Núcleo	0.14	211	77	0.38	0.0750 ± 1.2	1.87 ±	± 1.3	0.1807	± 0.6	0.463	0	1069	
-42 -3	Borde	0.04	409	170	0.43	0.0752 ± 0.7	1.71 ±		0.1646		0.579	9		± 15
-42 -8	Borde	0.03	198	80	0.42	0.0755 ± 1.1	1.91 ±		0.1835	± 0.6	0.500	0		± 22
-42 -14 -42 -11	Borde	0.00	208	83	0.41	0.0756 ± 0.9	1.87 ±			± 0.6 ± 0.7	0.552	2		± 19
-42 -9	Borde/Núcleo Núcleo	0.13 0.05	151 193	50 81	0.34 0.43	0.0757 ± 1.3 0.0759 ± 1.0	1.92 ±			± 0.7 ± 0.6	0.495 0.544	0 1	1086 1092	
-42-13	Borde	0.07	223	95	0.44	0.0760 ± 1.0	1.85 ±			± 0.6	0.512	5	1096	
-42-4	Núcleo	0.03	313	180	0.60	0.0762 ± 0.8	1.89 ±		0.1799		0.545	3	1100	
-42- 2	Núcleo	0.03	200	79	0.41	0.0764 ± 1.0	1.89 ±	± 1.2	0.1791	± 0.6	0.517	4	1105	\pm 20
42 12	Borde	0.25	210	81	0.40	0.0767 ± 1.3	1.93 ±	± 14	0.1824	± 0.6	0.442	3	1112	± 26
-42-1 2	Borde	0.25	210	01	0.40	0.0707 ± 1.5	1.75 =							
		0.23	210	61	0.40	0.0707 ± 1.3	1.95			/ ²⁰⁶ Pb media		da =	1083 ISWD = 0.84; 2	± 11
'-42- 12 JTM WGS 84: 32 Fécnica LA-ICP-	26765, 3457969	0.23	210	01	0.40	0.0707 ± 1.3	1,93 2					da =	1083	± 11
JTM WGS 84: 32	26765, 3457969	(Sierrita Bl	l			Aldo-3 (Agosto 07)	1.73					da =	1083	± 11
JTM WGS 84: 32 Cécnica LA-ICP- Auestra <u>1.1 Ga</u>	26765, 3457969 -MS** <u>Metagranito</u>	(Sierrita Bl	anca, Son	nora)	Probeta	Aldo-3 (Agosto 07)			Edad ²⁰⁷ Pb	/ ²⁰⁶ Pb media	a pondera	nda = (n = 13; M	1083 ISWD = 0.84; 2	± 11 2-sigma)
JTM WGS 84: 32	26765, 3457969 -MS**		l				1.78 ± 1.88 ±	± 1.43		/ ²⁰⁶ Pb media ± 0.8		da =	1083 ISWD = 0.84; 2	± 11 2-sigma ± 23
JTM WGS 84: 32 Cécnica LA-ICP - <i>Juestra <u>1.1 Ga</u></i> 1GA- 43	26765, 3457969 -MS** Metagranito Núcleo	(Sierrita Bl	anca, Son 401	nora) 145	Probeta	Aldo-3 (Agosto 07) 0.0724 ± 1.2	1.78 ±	± 1.43 ± 4.67	Edad ²⁰⁷ Pb	± 0.8 ± 3.9	o 0.550	nda = (n = 13; M	1083 ISWD = 0.84; 2	± 11 2-sigma ± 23 ± 49
OFFICE OF STATE OF ST	26765, 3457969 -MS** Metagranito Núcleo Borde Núcleo Borde	(Sierrita Bl N.M. N.M. N.M. N.M.	401 269 411 2628	145 173 39 1910	0.48 0.40 0.57 0.21	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0732 ± 3.6 0.0732 ± 3.0	1.78 ± 1.88 ± 1.85 ± 1.46 ±	± 1.43 ± 4.67 ± 6.28 ± 3.83	0.1781 0.1869 0.1833 0.1450	± 0.8 ± 3.9 ± 5.1 ± 1.7	0.550 0.830 0.820 0.630	-6 -8 -6 17	1083 ISWD = 0.84; 2 997 1013 1019 1019	± 11 2-sigma ± 23 ± 49 ± 67 ± 59
TTM WGS 84: 32 Fécnica LA-ICP- fuestra I.1 Ga IGA-43 IGA-31 IGA-31 IGA-50 IGA-38	26765, 3457969 -MS** Metagranito Núcleo Borde Núcleo Borde Borde Borde	(Sierrita Bl N.M. N.M. N.M. N.M. N.M.	401 269 411 2628 178	145 173 39 1910 79	0.48 0.40 0.57 0.21 0.40	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0732 ± 3.6 0.0732 ± 3.0 0.0733 ± 1.6	1.78 ± 1.88 ± 1.85 ± 1.46 ± 1.83 ±	± 1.43 ± 4.67 ± 6.28 ± 3.83 ± 2.26	0.1781 0.1869 0.1833 0.1450 0.1813	± 0.8 ± 3.9 ± 5.1 ± 1.7 ± 1.6	0.550 0.830 0.820 0.630 0.720	-6 -8 -6 17 -5	1083 ISWD = 0.84; 2 997 1013 1019 1019 1022	± 11 2-sigma ± 23 ± 49 ± 67 ± 59 ± 30
TM WGS 84: 32 écnica LA-ICP- <i>fuestra 1.1 Ga</i> IGA-43 IGA-31 IGA-31 IGA-50 IGA-38 IGA-42	26765, 3457969 -MS** Metagranito Núcleo Borde Núcleo Borde Borde Núcleo	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M.	401 269 411 2628 178 226	145 173 39 1910 79 104	0.48 0.40 0.57 0.21 0.40 0.42	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0732 ± 3.6 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4	1.78 ± 1.88 ± 1.85 ± 1.46 ± 1.83 ± 1.14 ±	± 1.43 ± 4.67 ± 6.28 ± 3.83 ± 2.26 ± 1.99	0.1781 0.1869 0.1833 0.1450 0.1813 0.1125	± 0.8 ± 3.9 ± 5.1 ± 1.7 ± 1.6 ± 1.4	0.550 0.830 0.820 0.630 0.720 0.700	-6 -8 -6 17 -5 49	1083 (SWD = 0.84; 2 997 1013 1019 1019 1022 1025	± 11 2-sigma ± 23 ± 49 ± 67 ± 59 ± 30 ± 27
rTM WGS 84: 32 écnica LA-ICP- fuestra 1.1 Ga IGA-43 IGA-33 IGA-31 IGA-50 IGA-38 IGA-42 IGA-12	26765, 3457969 -MS** Metagranito Núcleo Borde Núcleo Borde Borde Núcleo Núcleo Núcleo	N.M. N.M. N.M. N.M. N.M. N.M. N.M.	401 269 411 2628 178 226 145	145 173 39 1910 79 104 58	0.48 0.40 0.57 0.21 0.40 0.42	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0732 ± 3.0 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4 0.0735 ± 1.6	1.78 ± 1.88 ± 1.85 ± 1.46 ± 1.83 ± 1.14 ± 1.81 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 3.83 ± 2.26 ± 1.99 ± 1.97	0.1781 0.1869 0.1833 0.1450 0.1813 0.1125	± 0.8 ± 3.9 ± 5.1 ± 1.7 ± 1.6 ± 1.4 ± 1.2	0.550 0.830 0.820 0.630 0.720 0.700	-6 -8 -6 17 -5 49 -3	1083 (SWD = 0.84; 2 997 1013 1019 1019 1022 1025 1029	± 11 2-sigma ± 23 ± 49 ± 67 ± 59 ± 30 ± 27 ± 30
rTM WGS 84: 32 écnica LA-ICP- fuestra 1.1 Ga 1GA-43 1GA-31 1GA-31 1GA-50 1GA-38 1GA-42 1GA-12 1GA-14	26765, 3457969 -MS** Metagranito Núcleo Borde Núcleo Borde Núcleo Núcleo Núcleo	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M	401 269 411 2628 178 226 145 317	145 173 39 1910 79 104 58 120	0.48 0.40 0.57 0.21 0.40 0.42 0.34	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0732 ± 3.6 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4 0.0735 ± 1.6 0.0737 ± 1.6	1.78 ± 1.85 ± 1.85 ± 1.46 ± 1.83 ± 1.14 ± 1.81 ± 1.86 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 3.83 ± 2.26 ± 1.99 ± 1.97 ± 2.64	0.1781 0.1869 0.1833 0.1450 0.1813 0.1125 0.1786 0.1827	± 0.8 ± 3.9 ± 5.1 ± 1.7 ± 1.6 ± 1.4 ± 1.2 ± 2.1	0.550 0.830 0.820 0.630 0.700 0.610 0.810	eda = (n = 13; M -6 -8 -6 17 -5 49 -3 -5	1083 ISWD = 0.84; 2 997 1013 1019 1022 1025 1029 1033	± 11 2-sigma ± 23 ± 49 ± 67 ± 59 ± 30 ± 27 ± 30 ± 31
frm WGS 84: 32 fecnica LA-ICP- fuestra 1.1 Ga 1GA-43 1GA-31 1GA-50 1GA-38 1GA-42 1GA-12 1GA-14 1GA-9	26765, 3457969 -MS** Metagranito Núcleo Borde Borde Borde Borde Núcleo Núcleo Núcleo Núcleo	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M	401 269 411 2628 178 226 145 317 801	145 173 39 1910 79 104 58 120 513	0.48 0.40 0.57 0.21 0.40 0.42 0.34 0.38 0.51	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0732 ± 3.6 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4 0.0735 ± 1.6 0.0737 ± 1.6	1.78 ± 1.88 ± 1.85 ± 1.46 ± 1.83 ± 1.14 ± 1.81 ± 1.86 ± 1.83 ± 1.86 ± 1.83 ± 1.86 ± 1.83 ± 1.86 ± 1.86 ± 1.83 ± 1.86 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 3.83 ± 2.26 ± 1.99 ± 1.97 ± 2.64 ± 2.50	0.1781 0.1869 0.1833 0.1450 0.1813 0.1125 0.1786 0.1827 0.1800	± 0.8 ± 3.9 ± 5.1 ± 1.7 ± 1.6 ± 1.4 ± 2.1 ± 2.2	0.550 0.830 0.820 0.630 0.720 0.700 0.610 0.810 0.870	-6 -8 -6 17 -5 49 -3 -5 -3	1083 ISWD = 0.84; 2 997 1013 1019 1019 1022 1025 1029 1033 1035	± 11 ± 23 ± 49 ± 67 ± 59 ± 30 ± 27 ± 30 ± 31 ± 24
écnica LA-ICP- fuestra L.1 Ga 1GA-43 1GA-31 1GA-50 1GA-36 1GA-42 1GA-12 1GA-14 1GA-9 1GA-40	26765, 3457969 -MS** Metagranito Núcleo Borde Núcleo Borde Núcleo Núcleo Núcleo	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M	401 269 411 2628 178 226 145 317	145 173 39 1910 79 104 58 120	0.48 0.40 0.57 0.21 0.40 0.42 0.34	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0732 ± 3.6 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4 0.0735 ± 1.6 0.0737 ± 1.6	1.78 ± 1.85 ± 1.85 ± 1.46 ± 1.83 ± 1.14 ± 1.81 ± 1.86 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 3.83 ± 2.26 ± 1.97 ± 2.64 ± 2.50 ± 3.25	0.1781 0.1869 0.1833 0.1450 0.1813 0.11125 0.1786 0.1827 0.1800 0.1645	± 0.8 ± 3.9 ± 5.1 ± 1.7 ± 1.6 ± 1.4 ± 2.1 ± 2.2	0.550 0.830 0.820 0.630 0.700 0.610 0.810	eda = (n = 13; M -6 -8 -6 17 -5 49 -3 -5	1083 ISWD = 0.84; 2 997 1013 1019 1022 1025 1029 1033	± 11 2-sigma ± 23 ± 49 ± 67 ± 59 ± 30 ± 27 ± 30 ± 24 ± 41
écnica LA-ICP- fuestra 1.1 Ga 1GA-43 1GA-31 1GA-36 1GA-36 1GA-42 1GA-12 1GA-14 1GA-9 1GA-40 1GA-40 1GA-15	MS** Metagranito Núcleo Borde Núcleo Borde Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde Núcleo	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M.	401 269 411 2626 178 226 145 317 801 159 189 172	145 173 39 1910 79 104 58 120 513 71 82 89	0.48 0.40 0.57 0.21 0.40 0.42 0.34 0.38 0.51 0.32 0.54	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0732 ± 3.6 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4 0.0737 ± 1.6 0.0738 ± 1.2 0.0740 ± 2.2 0.0740 ± 2.2 0.0740 ± 2.2	1.78 ± 1.88 ± 1.85 ± 1.46 ± 1.83 ± 1.46 ± 1.81 ± 1.81 ± 1.86 ± 1.82 ± 1.82 ± 1.83 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 3.83 ± 2.26 ± 1.99 ± 1.97 ± 2.64 ± 2.50 ± 3.25 ± 4.46 ± 1.95	0.1781 0.1869 0.1833 0.1450 0.1813 0.1125 0.1786 0.1827 0.1800 0.1645 0.1790	± 0.8 ± 3.9 ± 5.1 ± 1.7 ± 1.6 ± 1.4 ± 1.2 ± 2.1 ± 2.2 ± 1.6 ± 1.4 ± 1.2	0.550 0.830 0.820 0.630 0.720 0.610 0.810 0.870 0.740 0.870 0.870	-6 -8 -6 17 -5 49 -3 6 -1 -1	1083 ISWD = 0.84; 2 997 1013 1019 1019 1022 1025 1029 1033 1035 1041 1043	± 11 2-sigma ± 23 ± 49 ± 67 ± 30 ± 27 ± 31 ± 24 ± 41 ± 44 ± 30
écnica LA-ICP- fuestra 1.1 Ga 1GA-43 1GA-33 1GA-31 1GA-50 1GA-14 1GA-14 1GA-9 1GA-14 1GA-9 1GA-16 1GA-15 1GA-15	Metagranito Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Núcleo Núcleo	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M.	401 269 411 2628 178 226 145 317 801 159 189 172 480	145 173 39 1910 79 104 58 120 513 71 82 89	0.48 0.40 0.57 0.21 0.40 0.42 0.34 0.38 0.51 0.32 0.54 0.42	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0732 ± 3.6 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4 0.0735 ± 1.6 0.0737 ± 1.6 0.0738 ± 1.2 0.0740 ± 2.2 0.0740 ± 2.2 0.0743 ± 1.5 0.0745 ± 2.8	1.78 ± 1.88 ± 1.85 ± 1.46 ± 1.83 ± 1.14 ± 1.86 ± 1.83 ± 1.83 ± 1.82 ± 1.83 ± 1.82 ± 1.83 ± 1.90 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 3.83 ± 2.26 ± 1.99 ± 1.97 ± 2.64 ± 2.50 ± 3.25 ± 4.95 ± 1.95 ± 5.81	0.1781 0.1869 0.1833 0.1450 0.1813 0.1125 0.1786 0.1827 0.1782 0.1782 0.1782	± 0.8 ± 3.9 ± 5.1 ± 1.7 ± 1.4 ± 1.2 ± 2.1 ± 2.1 ± 2.1 ± 3.9 ± 5.1 ± 1.4 ± 1.2 ± 2.1 ± 2.1 ± 2.1 ± 2.1 ± 3.9	0.550 0.830 0.820 0.630 0.720 0.700 0.610 0.870 0.740 0.610 0.880	-6 -8 -6 17 -5 -3 -6 -1 -1 -4	997 1013 1019 1019 1022 1025 1029 1033 1035 1041 1043 1049	± 11 2-sigma ± 23 ± 49 ± 67 ± 30 ± 27 ± 31 ± 24 ± 44 ± 44 ± 59
tm wgs 84: 32 fenica LA-ICP-fuestra L1 Ga 1GA-43 IGA-31 IGA-50 IGA-38 IGA-42 IGA-12 IGA-14 IGA-9 IGA-16 IGA-16 IGA-16 IGA-16 IGA-18 IGA-88 IGA-88 IGA-88 IGA-88 IGA-88 IGA-88 IGA-88 IGA-88	Metagranito Núcleo Borde Núcleo Borde Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo Borde	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M.	401 269 411 2628 178 226 145 317 801 159 189 172 480 908	145 173 39 1910 79 104 58 120 513 71 82 89 106 549	0.48 0.40 0.57 0.21 0.40 0.42 0.34 0.51 0.32 0.54 0.42	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0732 ± 3.6 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4 0.0735 ± 1.6 0.0737 ± 1.6 0.0738 ± 1.2 0.0740 ± 2.2 0.0740 ± 2.2 0.0743 ± 1.5 0.0745 ± 2.8 0.0746 ± 3.2	1.78 ± 1.88 ± 1.85 ± 1.46 ± 1.83 ± 1.14 ± 1.81 ± 1.68 ± 1.83 ± 1.19 ± 1.83 ± 1.90 ± 1.82 ± 1.83 ± 1.90 ± 1.82 ± 1.83 ± 1.82 ± 1.83 ± 1.82 ± 1.83 ± 1.82 ± 1.83 ± 1.82 ± 1.83 ± 1.82 ± 1.83 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 3.83 ± 2.26 ± 1.99 ± 1.97 ± 2.64 ± 2.50 ± 3.25 ± 4.46 ± 1.95 ± 5.81 ± 5.93	0.1781 0.1869 0.1833 0.1450 0.1813 0.1125 0.1786 0.1822 0.1790 0.1856 0.1766	± 0.8 ± 3.9 ± 5.1 ± 1.7 ± 1.7 ± 1.4 ± 1.2 ± 2.2 ± 1.4 ± 2.1 ± 2.1 ± 2.2 ± 1.4 ± 2.1 ± 2.5 ± 3.9 ± 5.1 ± 5.1	0.550 0.830 0.630 0.720 0.610 0.810 0.740 0.870 0.610 0.870 0.610 0.850	-6 -8 -6 17 -5 49 -3 -6 -1 -1 -1 -1 1	997 1013 1019 1019 1022 1025 1029 1033 1035 1041 1043 1049 1054	± 11 2-sigma ± 23 ± 49 ± 67 ± 30 ± 31 ± 24 ± 41 ± 41 ± 51 ± 58
cenica LA-ICP- fuestra L.1 Ga IGA-43 IGA-33 IGA-31 IGA-50 IGA-12 IGA-12 IGA-12 IGA-16 IGA-16 IGA-16 IGA-15 IGA-18 IGA-18 IGA-18	Metagranito Núcleo Borde Borde Borde Borde Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde Borde Borde Borde Borde Borde	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M	401 269 411 2628 178 226 145 317 801 159 189 172 480 908 1726	145 173 39 1910 79 104 58 120 513 71 82 89 106 549 178	0.48 0.40 0.57 0.21 0.42 0.34 0.38 0.51 0.32 0.54 0.42 0.38 0.28	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0732 ± 3.6 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4 0.0735 ± 1.6 0.0737 ± 1.6 0.0738 ± 1.2 0.0740 ± 2.2 0.0740 ± 2.2 0.0743 ± 1.5 0.0745 ± 2.8 0.0746 ± 3.2 0.0746 ± 3.3	1.78 ± 1.88 ± 1.85 ± 1.46 ± 1.83 ± 1.14 ± 1.86 ± 1.83 ± 1.86 ± 1.82 ± 1.82 ± 1.82 ± 1.83 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 3.83 ± 2.26 ± 1.99 ± 1.97 ± 2.64 ± 2.50 ± 3.25 ± 4.46 ± 1.95 ± 5.81 ± 5.93 ± 5.76	0.1781 0.1869 0.1833 0.1450 0.1813 0.1125 0.1786 0.1827 0.1780 0.1856 0.1790 0.1856 0.1767	± 0.8 ± 3.9 ± 5.1 ± 1.7 ± 1.4 ± 1.2 ± 2.2 ± 1.6 ± 3.9 ± 1.2 ± 1.4 ± 1.2 ± 2.2 ± 1.6 ± 3.9 ± 5.1 ± 1.7 ± 4.4 ± 4.7	0.550 0.830 0.830 0.630 0.720 0.700 0.610 0.870 0.870 0.610 0.870 0.610 0.880 0.850	-6 -8 -6 17 -5 49 -3 -5 -3 6 -1 -1 -4 1 -2	1083 ISWD = 0.84; 2 997 1013 1019 1022 1025 1029 1033 1041 1043 1049 1054 1057	± 11 sigma ± 23 ± 49 ± 67 ± 59 ± 30 ± 31 ± 24 ± 41 ± 44 ± 51 ± 58 ± 61
tm wgs 84: 32 senica La-ICP- fuestra 1.1 Ga IGA-43 IGA-33 IGA-31 IGA-50 IGA-14 IGA-14 IGA-9 IGA-40 IGA-16 IGA-15 IGA-18 IGA-25 IGA-7	Metagranito Núcleo Borde Núcleo Borde Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde Borde Núcleo Borde Núcleo Borde Núcleo	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M	401 269 411 2628 178 226 145 317 801 159 189 172 480 908 1726 628	145 173 39 1910 79 104 58 120 513 71 82 89 106 549 178 76	0.48 0.40 0.57 0.21 0.40 0.42 0.38 0.51 0.32 0.54 0.42 0.38 0.28 0.39	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0730 ± 3.6 0.0732 ± 3.0 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4 0.0735 ± 1.6 0.0738 ± 1.2 0.0740 ± 2.2 0.0740 ± 2.2 0.0746 ± 3.2 0.0746 ± 3.2 0.0746 ± 3.3 0.0747 ± 1.3	1.78 ± 1.88 ± 1.85 ± 1.46 ± 1.83 ± 1.14 ± 1.81 ± 1.83 ± 1.83 ± 1.82 ± 1.83 ± 1.82 ± 1.83 ± 1.80 ± 1.82 ± 1.88 ± 1.81 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 3.83 ± 2.26 ± 1.99 ± 1.97 ± 2.64 ± 2.50 ± 3.25 ± 4.46 ± 1.95 ± 5.81 ± 5.93 ± 5.73 ± 5.93 ± 2.31	0.1781 0.1869 0.1833 0.1450 0.1813 0.1125 0.1786 0.1800 0.1645 0.1782 0.1790 0.1856 0.1767 0.1855	± 0.8 ± 3.9 ± 5.1 ± 1.6 ± 1.4 ± 1.2 ± 2.1 ± 2.1 ± 2.1 ± 2.5 ± 1.6 ± 3.9 ± 5.1 ± 5.1 ± 1.6 ± 1.4 ± 1.6 ± 1.4 ± 1.6 ± 1.6 ± 1.4 ± 1.6 ± 1.7 ± 1.6 ± 1.7 ± 1.6 ± 1.6 ± 1.7 ± 1.6 ± 1.6	0.550 0.830 0.820 0.630 0.720 0.610 0.870 0.740 0.870 0.610 0.880 0.850 0.810	da = (n = 13; M -6 -8 -6 -8 -6 17 -5 49 -3 -5 -3 -6 -1 -1 -1 -2 1	997 1013 1019 1019 1022 1025 1029 1033 1035 1041 1043 1049 1054 1057	± 11 ± 23 ± 49 ± 67 ± 59 ± 30 ± 27 ± 30 ± ± 41 ± 44 ± 30 ± ± 58 ± 61 ± 25
fenica LA-ICP- fuestra L.1 Ga IGA-43 IGA-31 IGA-31 IGA-36 IGA-31 IGA-36 IGA-12 IGA-12 IGA-14 IGA-16 IGA-16 IGA-16 IGA-17 IGA-18 IGA-28 IGA-18 IGA-21 IGA-31	Metagranito Núcleo Borde Núcleo Borde Núcleo Núcleo Núcleo Núcleo Núcleo Borde Borde Borde Borde Borde Borde	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M	401 2628 178 2628 178 226 145 317 801 159 189 172 480 908 1726 628 503	145 173 39 1910 79 104 58 120 513 71 82 89 106 549 178 76 201	0.48 0.40 0.57 0.21 0.40 0.42 0.34 0.31 0.51 0.54 0.42 0.38 0.54 0.42 0.38 0.42 0.40 0.40 0.40 0.41	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0732 ± 3.6 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4 0.0735 ± 1.6 0.0737 ± 1.6 0.0740 ± 2.2 0.0740 ± 2.2 0.0740 ± 2.2 0.0745 ± 2.8 0.0746 ± 3.3 0.0747 ± 1.3 0.0747 ± 1.3	1.78 ± 1.88 ± 1.85 ± 1.46 ± 1.83 ± 1.14 ± 1.81 ± 1.68 ± 1.83 ± 1.90 ± 1.83 ± 1.83 ± 1.83 ± 1.83 ± 1.81 ± 1.85 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 3.83 ± 2.26 ± 1.99 ± 1.97 ± 2.50 ± 3.25 ± 4.46 ± 1.95 ± 5.81 ± 5.93 ± 5.76 ± 2.31 ± 6.19	0.1781 0.1869 0.1833 0.1450 0.1813 0.1125 0.1786 0.1822 0.1790 0.1855 0.1790 0.1855 0.1790	± 0.8 ± 3.9 ± 5.1 ± 1.7 ± 1.7 ± 1.4 ± 1.2 ± 2.2 ± 1.6 ± 3.9 ± 1.2 ± 5.1 ± 5.0 ± 4.7 ± 1.5 ± 5.1	0.550 0.830 0.820 0.630 0.720 0.700 0.610 0.870 0.610 0.850 0.810 0.850 0.810	-6 -8 -6 17 -5 49 -3 6 -1 -1 -2 1 -2 1 -2	997 1013 1019 1019 1022 1025 1029 1033 1035 1041 1043 1049 1057 1057	± 11 ± 23 ± 49 ± 67 ± 59 ± 30 ± 31 ± 24 ± 41 ± 51 ± 58 ± 61 ± 58 ± 64
ETM WGS 84: 32 écnica LA-ICP-fuestra L.1 Ga 1GA-43 1GA-31 1GA-50 1GA-50 1GA-14 1GA-9 1GA-16 1GA-16 1GA-18 1GA-18 1GA-28 1GA-18 1GA-25 1GA-7 1GA-32 1GA-32 1GA-39 1GA-39	Metagranito Núcleo Borde Núcleo Borde Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde Borde Núcleo Borde Núcleo Borde Núcleo	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M	401 269 411 2628 178 226 145 317 801 159 189 172 480 908 1726 628	145 173 39 1910 79 104 58 120 513 71 82 89 106 549 178 76	0.48 0.40 0.57 0.21 0.40 0.42 0.38 0.51 0.32 0.54 0.42 0.38 0.28 0.39	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0730 ± 3.6 0.0732 ± 3.0 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4 0.0735 ± 1.6 0.0738 ± 1.2 0.0740 ± 2.2 0.0740 ± 2.2 0.0746 ± 3.2 0.0746 ± 3.2 0.0746 ± 3.3 0.0747 ± 1.3	1.78 ± 1.88 ± 1.85 ± 1.46 ± 1.83 ± 1.14 ± 1.81 ± 1.83 ± 1.83 ± 1.82 ± 1.83 ± 1.82 ± 1.83 ± 1.80 ± 1.82 ± 1.88 ± 1.81 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 3.83 ± 2.26 ± 1.99 ± 2.64 ± 2.50 ± 3.25 ± 4.46 ± 1.95 ± 3.25 ± 4.46 ± 1.95 ± 5.93 ± 5.76 ± 2.31 ± 6.19 ± 6.19 ± 6.19 ± 6.29 ± 6.29	0.1781 0.1869 0.1833 0.1450 0.1813 0.1125 0.1786 0.1827 0.1806 0.1605 0.1767 0.1825 0.1790 0.1856 0.1767 0.1825	± 0.8 ± 3.9 ± 5.1 ± 1.7 ± 1.7 ± 1.4 ± 1.2 ± 2.2 ± 1.6 ± 3.9 ± 1.2 ± 5.1 ± 5.0 ± 4.7 ± 1.5 ± 5.1	0.550 0.830 0.820 0.630 0.720 0.610 0.870 0.740 0.870 0.610 0.880 0.850 0.810	da = (n = 13; M -6 -8 -6 -8 -6 17 -5 49 -3 -5 -3 -6 -1 -1 -1 -2 1	997 1013 1019 1019 1022 1025 1029 1033 1041 1043 1049 1054 1057 1059 1059	± 11 ± 23 ± 49 ± 67 ± 59 ± 30 ± 27 ± 30 ± 41 ± 44 ± 30 ± 51 ± 58 ± 58 ± 61 ± 25
tm wgs 84: 32 senica LA-ICP- luestra L.1 Ga IGA-43 IGA-33 IGA-31 IGA-50 IGA-14 IGA-12 IGA-14 IGA-9 IGA-40 IGA-16 IGA-16 IGA-16 IGA-18 IGA-28 IGA-28 IGA-18 IGA-29 IGA-39 IGA-39 IGA-39 IGA-39 IGA-8	Metagranito Núcleo Borde Borde Núcleo Borde Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo Borde Borde Borde Borde Borde Borde Borde Borde	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M	401 269 411 2628 178 226 317 801 159 172 480 908 1726 628 503	145 173 39 1910 79 104 58 120 513 71 82 89 106 549 178 76 2011	0.48 0.40 0.57 0.21 0.40 0.42 0.38 0.51 0.32 0.54 0.42 0.38 0.54 0.42 0.38 0.57 0.47 0.49	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0732 ± 3.6 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4 0.0735 ± 1.6 0.0737 ± 1.6 0.0738 ± 1.2 0.0740 ± 2.2 0.0740 ± 2.2 0.0743 ± 1.5 0.0745 ± 2.8 0.0746 ± 3.3 0.0747 ± 1.3 0.0747 ± 3.5 0.0747 ± 3.5	1.78 ± 1.88 ± 1.85 ± 1.46 ± 1.83 ± 1.14 ± 1.86 ± 1.83 ± 1.86 ± 1.82 ± 1.83 ± 1.81 ± 1.87 ± 1.87 ± 1.88 ± 1.81 ± 1.87 ± 1.88 ± 1.81 ± 1.87 ± 1.81 ± 1.87 ± 1.81 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 3.83 ± 2.26 ± 1.97 ± 2.64 ± 2.50 ± 3.25 ± 4.46 ± 1.95 ± 5.81 ± 5.93 ± 5.76 ± 2.31 ± 6.19 ± 6.19	0.1781 0.1869 0.1833 0.1450 0.1813 0.1125 0.1786 0.1827 0.1806 0.1605 0.1767 0.1825 0.1790 0.1856 0.1767 0.1825	± 0.8 ± 3.9 ± 5.1 ± 1.6 ± 1.4 ± 1.2 ± 2.1 ± 2.2 ± 2.1 ± 2.5 ± 1.6 ± 1.4 ± 2.1 ± 2.1 ± 2.1 ± 2.1 ± 2.1 ± 2.1 ± 1.6 ± 5.1 ± 6.1 ±	0.550 0.830 0.820 0.630 0.720 0.610 0.870 0.740 0.870 0.611 0.880 0.850 0.850	da = (n = 13; M -6 -8 -6 -8 -6 17 -5 49 -3 -5 -3 -6 -1 -1 -4 1 -2 1 -2 2	997 1013 1019 1019 1022 1025 1029 1033 1035 1041 1043 1049 1054 1057 1057 1059 1059	± 11 ± 23 ± 49 ± 67 ± 59 ± 30 ± 27 ± 34 ± 41 ± 44 ± 41 ± 51 ± 58 ± 61 ± 25 ± 59 ± 27 ± 30 ± 24 ± 49 ± 49 ± 49 ± 30 ± 31 ± 49 ± 49 ± 30 ± 31 ± 49 ± 49 ± 30 ± 30 ± 49 ± 40 ± 59 ± 59
ETM WGS 84: 32 écnica LA-ICP-fuestra L.1 Ga 1GA-43 1GA-33 1GA-31 1GA-50 1GA-14 1GA-19 1GA-16 1GA-16 1GA-16 1GA-18 1GA-18 1GA-28 1GA-18 1GA-25 1GA-7 1GA-32 1GA-33 1GA-31 1GA-13 1GA-51 1GA-51	Metagranito Núcleo Borde Núcleo Borde Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.	401 269 411 2628 178 801 159 189 189 189 172 480 908 503 7176 628 503 5137 166 458 518	145 173 39 1910 79 104 58 120 513 71 82 89 106 549 178 76 2011 57 111 46 50	Probeta 0.48 0.40 0.57 0.21 0.40 0.38 0.51 0.32 0.54 0.42 0.38 0.28 0.39 0.57 0.41 0.52 0.46 0.45	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0730 ± 2.6 0.0732 ± 3.6 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4 0.0735 ± 1.6 0.0737 ± 1.6 0.0738 ± 1.2 0.0740 ± 2.2 0.0740 ± 2.2 0.0746 ± 3.2 0.0746 ± 3.2 0.0746 ± 3.3 0.0747 ± 1.3 0.0747 ± 1.3 0.0747 ± 1.3	1.78 ± 1.88 ± 1.85 ± 1.46 ± 1.83 ± 1.14 ± 1.86 ± 1.83 ± 1.14 ± 1.86 ± 1.82 ± 1.83 ± 1.81 ± 1.56 ± 1.85 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 3.83 ± 1.99 ± 1.97 ± 2.50 ± 1.95 ± 3.25 ± 5.81 ± 5.93 ± 5.76 ± 1.87 ± 6.19 ± 1.87 ± 6.19 ± 1.87	0.1781 0.1869 0.1833 0.1450 0.1827 0.1800 0.1645 0.1782 0.1796 0.1767 0.1825 0.1759 0.1820 0.1759 0.1820 0.1511 0.1820	± 0.8 ± 3.9 ± 5.1 ± 1.6 ± 1.2 ± 2.1 ± 2.1 ± 2.1 ± 5.1 ± 5.0 ± 1.9 ± 5.1 ± 5.0 ± 1.9 ± 5.1 ± 1.3 ± 6.1 ± 2.5 ± 1.0	0.550 0.830 0.820 0.630 0.720 0.70 0.610 0.810 0.870 0.640 0.870 0.850 0.850 0.840 0.820	-6 -8 -6 -1 -1 -4 1 -2 1 -2 2 17 -5 -1	997 1013 1019 1019 1022 1025 1029 1033 1035 1041 1043 1049 1054 1057 1059 1059 1060 1063 1067	± 11 ± 23 ± 49 ± 67 ± 30 ± 27 ± 30 ± 21 ± 41 ± 44 ± 51 ± 58 ± 62 ± 64 ± 25 ± 64 ± 25 ± 64 ± 25 ± 49 ± 41 ± 49 ± 49 ± 40 ± 40
fm wgs 84: 32 fenica LA-ICP- fuestra L1 Ga IGA-43 IGA-33 IGA-31 IGA-36 IGA-38 IGA-31 IGA-12 IGA-14 IGA-16 IGA-16 IGA-16 IGA-16 IGA-18 IGA-28 IGA-18 IGA-29 IGA-18 IGA-31 IGA-32 IGA-32 IGA-39 IGA-31 IGA-31 IGA-31 IGA-31 IGA-31 IGA-31 IGA-31 IGA-31 IGA-31	Metagranito Núcleo Borde Núcleo Borde Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo Borde	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.	401 2628 411 2628 178 226 145 317 801 159 908 172 480 908 503 127 628 503 127 648 518	145 173 39 1910 79 104 58 120 513 71 82 89 106 549 178 201 57 111 46 50 33	0.48 0.49 0.57 0.21 0.34 0.32 0.54 0.42 0.39 0.28 0.39 0.40 0.41 0.41 0.41 0.41 0.41 0.41 0.42	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0730 ± 2.6 0.0732 ± 3.6 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4 0.0735 ± 1.6 0.0737 ± 1.6 0.0738 ± 1.2 0.0740 ± 2.2 0.0740 ± 2.2 0.0743 ± 1.5 0.0746 ± 3.2 0.0746 ± 3.3 0.0747 ± 1.3 0.0747 ± 1.3 0.0747 ± 1.3 0.0748 ± 1.5 0.0750 ± 1.2 0.0750 ± 1.2	1.78 ± 1.88 ± 1.85 ± 1.46 ± 1.83 ± 1.14 ± 1.81 ± 1.86 ± 1.83 ± 1.82 ± 1.83 ± 1.82 ± 1.83 ± 1.87 ± 1.81 ± 1.87 ± 1.81 ± 1.86 ± 1.85 ± 1.88 ± 1.86 ± 1.85 ± 1.88 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 3.83 ± 2.26 ± 1.99 ± 2.50 ± 4.46 ± 1.95 ± 5.81 ± 5.53 ± 5.76 ± 1.95 ± 6.19 ± 1.81 ± 1.95 ± 1.95	0.1781 0.1869 0.1833 0.1450 0.1813 0.1125 0.1786 0.1827 0.1800 0.1645 0.1790 0.1856 0.1767 0.1825 0.1759 0.1820 0.1751 0.1859 0.1858	± 0.8 ± 3.9 ± 5.1 ± 1.6 ± 1.4 ± 2.1 ± 2.1 ± 2.1 ± 2.1 ± 2.1 ± 2.1 ± 2.1 ± 3.9 ± 1.6 ± 3.9 ± 1.6 ±	0.550 0.830 0.820 0.630 0.720 0.700 0.610 0.870 0.740 0.870 0.880 0.850 0.840 0.820 0.680 0.820 0.6980 0.850	-6 -8 -6 17 -5 49 -3 -5 -1 -1 -2 2 17 -5 -1 2	997 1013 1019 1019 1022 1025 1029 1033 1035 1041 1043 1049 1054 1057 1059 1059 1059 1060 1063 1067	± 11 2-sigma ± 23 ± 49 ± 67 ± 59 ± 30 ± 24 ± 41 ± 41 ± 51 ± 58 ± 61 ± 25 ± 64 ± 25 ± 30 ± 27 ± 26 ± 26 ± 26 ± 26 ± 27 ± 28 ± 28 ± 48 ± 48 ± 48 ± 48 ± 48 ± 48 ± 48 ± 4
ETM WGS 84: 32 centra LA-ICP-fuestra L1 Ga GA-43 GA-33 GA-31 GA-51 GA-42 GA-12 GA-14 GA-9 IGA-16 GA-15 GA-28 IGA-18 GA-25 GA-7 GA-39 GA-8 GA-13 GA-31 GA-51 GA-13 GA-51 GA-13 GA-6	Metagranito Núcleo Borde Borde Borde Borde Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo Borde Núcleo Núcleo Borde Núcleo	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.	401 269 411 226 417 226 317 826 317 89 908 480 908 628 503 127 166 628 518 338 518 518	145 173 39 1910 79 104 58 120 513 71 82 89 106 549 178 76 201 157 111 46 50 33 54	Probeta 0.48 0.49 0.57 0.21 0.40 0.42 0.34 0.51 0.32 0.54 0.42 0.38 0.51 0.42 0.48 0.49 0.40 0.40 0.40 0.46 0.45 0.40 0.46 0.40 0.60	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0732 ± 3.6 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4 0.0735 ± 1.6 0.0737 ± 1.6 0.0738 ± 1.2 0.0740 ± 2.2 0.0740 ± 2.2 0.0746 ± 3.3 0.0746 ± 3.3 0.0747 ± 1.3 0.0747 ± 1.3 0.0747 ± 1.3 0.0746 ± 1.4 0.0747 ± 1.3 0.0748 ± 1.5 0.0750 ± 1.2 0.0750 ± 1.2 0.0752 ± 1.5 0.0753 ± 1.2	1.78 ± 1.88 ± 1.85 ± 1.86 ± 1.83 ± 1.14 ± 1.86 ± 1.83 ± 1.90 ± 1.82 ± 1.81 ± 1.86 ± 1.82 ± 1.83 ± 1.90 ± 1.88 ± 1.85 ± 1.85 ± 1.85 ± 1.85 ± 1.85 ± 1.85 ± 1.85 ± 1.79 ± 1.88 ± 1.89 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 1.83 ± 1.99 ± 1.97 ± 1.97 ± 1.97 ± 2.64 ± 2.50 ± 1.95 ± 3.25 ± 4.46 ± 1.95 ± 5.81 ± 5.81 ± 5.81 ± 5.81 ± 6.19 ± 1.87 ± 2.89 ± 1.87 ± 1.87	0.1781 0.1869 0.1833 0.1450 0.1813 0.1125 0.1786 0.1827 0.1800 0.1645 0.1790 0.1856 0.1790 0.1856 0.1759 0.1820 0.1759 0.1820 0.1759 0.1820 0.1759 0.1820 0.1759 0.1820 0.1759 0.1820 0.1759 0.1821 0.1759 0.1820 0.1759 0.	± 0.8 ± 3.9 ± 5.1 ± 1.6 ± 1.4 ± 1.2 ± 2.1 ± 2.1 ± 5.1 ± 5.1 ± 1.6 ± 1.4 ± 1.2 ± 1.2 ± 1.6 ± 3.9 ± 1.2 ± 5.1 ± 5.1 ± 1.3 ± 6.1 ± 1.3 ± 6.1 ± 1.3 ± 6.1 ± 1.3 ± 6.1 ± 1.3 ± 6.1 ± 1.3	0.550 0.830 0.830 0.830 0.630 0.720 0.700 0.610 0.870 0.740 0.870 0.810 0.880 0.850 0.820 0.820 0.820 0.820 0.850 0.850	da = (n = 13; M -6 -8 -6 -8 -6 -7 -5 -9 -3 -5 -3 -6 -1 -1 -4 1 -2 1 -2 2 17 -5 -1 2 5	997 1013 1019 1019 1022 1025 1029 1033 1041 1049 1054 1057 1059 1059 1060 1063 1067 1073	± 11 2-sigma ± 23 ± 49 ± 59 ± 30 ± 27 ± 30 ± 24 ± 41 ± 41 ± 58 ± 58 ± 64 ± 25 ± 64 ± 25 ± 25 ± 25 ± 30 ± 27 = 30 ± 59 = 30 = 27 = 27 = 30 = 27 = 30 = 27 = 30 = 27 = 2
écnica LA-ICP- fuestra L.1 Ga 1GA-43 1GA-33 1GA-31 1GA-50 1GA-12 1GA-14 1GA-9 1GA-14 1GA-9 1GA-16 1GA-16 1GA-16 1GA-15 1GA-28 1GA-18 1GA-25 1GA-7 1GA-32 1GA-32 1GA-33 1GA-33	Metagranito Núcleo Borde Núcleo Borde Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo Borde Núcleo Núcleo Borde Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M	401 269 411 226 418 226 418 317 801 1159 189 172 480 908 503 172 668 458 503 518 518 518 518 518 518 518	145 173 39 1910 79 104 58 120 513 71 82 89 106 549 178 76 201 111 46 50 33 54 62	0.48 0.40 0.57 0.40 0.57 0.40 0.32 0.51 0.32 0.54 0.42 0.38 0.28 0.28 0.29 0.41 0.52 0.46 0.40 0.40 0.30 0.32 0.57 0.41 0.40 0.40 0.40 0.34 0.32 0.32 0.32 0.32 0.34 0.34 0.34 0.34 0.35 0.34 0.35 0.35 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0732 ± 3.6 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4 0.0735 ± 1.6 0.0737 ± 1.6 0.0738 ± 1.2 0.0740 ± 2.2 0.0740 ± 2.2 0.0746 ± 3.2 0.0746 ± 3.3 0.0747 ± 1.3 0.0747 ± 1.3 0.0747 ± 1.3 0.0747 ± 1.3 0.0748 ± 1.5 0.0750 ± 1.2 0.0750 ± 1.2 0.0752 ± 1.5 0.0753 ± 1.2 0.0753 ± 1.2 0.0753 ± 1.2 0.0753 ± 1.2 0.0753 ± 1.2 0.0753 ± 1.2	1.78 ± 1.88 ± 1.85 ± 1.46 ± 1.83 ± 1.14 ± 1.86 ± 1.83 ± 1.82 ± 1.82 ± 1.82 ± 1.85 ± 1.85 ± 1.87 ± 1.85 ± 1.85 ± 1.85 ± 1.85 ± 1.85 ± 1.85 ± 1.85 ± 1.70 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 3.83 ± 2.26 ± 1.99 ± 2.64 ± 2.50 ± 3.25 ± 4.46 ± 2.50 ± 5.76 ± 5.78 ± 6.19 ± 2.61 ± 6.19 ± 2.81 ± 6.19 ± 1.87 ± 1.87	0.1781 0.1869 0.1833 0.1450 0.1813 0.1126 0.1827 0.1800 0.1645 0.1782 0.1790 0.1856 0.1767 0.1825 0.1759 0.1820 0.1759 0.1820 0.1759 0.1820 0.1759 0.1820 0.1759 0.1820 0.1759 0.1820 0.1759 0.1820 0.1759 0.1820 0.1759 0.1820 0.1759 0.1820 0.1759 0.1820 0.1759 0.1820 0.1759 0.1811	± 0.8 ± 3.9 ± 5.1 ± 1.6 ± 1.4 ± 1.2 ± 2.1 ± 2.1 ± 2.1 ± 2.1 ± 2.1 ± 1.6 ± 3.9 ± 1.2 ± 1.6 ± 3.9 ± 1.2 ± 1.6 ± 1.4 ± 1.2 ± 1.6 ± 1.4 ± 1.5 ± 1.6 ± 1.7 ± 1.7 ± 1.6 ± 1.7 ± 1.6 ± 1.7 ±	0.550 0.830 0.830 0.820 0.630 0.720 0.701 0.810 0.870 0.870 0.880 0.880 0.880 0.890 0.890 0.660 0.660 0.650 0.750	-6 -8 -6 -1 -1 -4 -1 -2 -2 -1 -2 -5 -1 -1 -2 -5 -1 -1 -1 -2 -5 -1 -1 -1 -2 -5 -1 -1 -1 -5 -1 -1 -1 -5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	997 1013 1019 1019 1022 1025 1029 1033 1035 1041 1043 1049 1054 1057 1059 1059 1060 1063 1067 1073	± 11 2-sigma ± 23 ± 49 ± 59 ± 30 ± 31 ± 41 ± 44 ± 44 ± 58 ± 61 ± 25 ± 26 ± 25 ± 30 ± 41 ± 42 ± 41 ± 42 ± 43 ± 4
fenica LA-ICP- fuestra L.1 Ga IGA-43 IGA-43 IGA-31 IGA-50 IGA-31 IGA-61 IGA-12 IGA-12 IGA-14 IGA-16 IGA-16 IGA-16 IGA-16 IGA-17 IGA-18 IGA-18 IGA-18 IGA-18 IGA-19 IGA-32 IGA-31 IGA-51 IGA-6 IGA-31 IGA-6 IGA-30 IGA-24	Metagranito Núcleo Borde Núcleo Borde Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde Borde Núcleo Borde Borde Borde Borde Borde Borde Borde Borde Núcleo	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.	401 2628 411 2628 178 226 145 317 801 159 189 172 480 908 1726 628 503 127 64 458 518 518 518 518	145 173 39 1910 79 104 58 120 513 71 82 89 106 549 178 76 201 57 111 46 50 33 54 61	Probeta 0.48 0.49 0.57 0.21 0.30 0.40 0.40 0.40 0.38 0.51 0.54 0.42 0.39 0.57 0.41 0.41 0.41 0.41 0.40 0.60 0.60 0.60 0.36 0.39	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0732 ± 3.6 0.0732 ± 3.0 0.0733 ± 1.6 0.0733 ± 1.4 0.0735 ± 1.6 0.0737 ± 1.6 0.0738 ± 1.2 0.0740 ± 2.2 0.0740 ± 2.2 0.0743 ± 1.5 0.0746 ± 3.2 0.0746 ± 3.3 0.0747 ± 1.3 0.0747 ± 1.3 0.0748 ± 1.5 0.0750 ± 1.2 0.0753 ± 1.5 0.0753 ± 1.5 0.0753 ± 1.5 0.0753 ± 1.5 0.0753 ± 1.2 0.0753 ± 3.5 0.0753 ± 3.5 0.0753 ± 3.5	1.78 ± 1.88 ± 1.85 ± 1.46 ± 1.83 ± 1.14 ± 1.81 ± 1.83 ± 1.83 ± 1.83 ± 1.90 ± 1.82 ± 1.83 ± 1.90 ± 1.82 ± 1.88 ± 1.81 ± 1.56 ± 1.95 ± 1.88 ± 1.79 ± 1.88 ± 1.79 ± 1.88 ± 1.79 ± 1.79 ± 1.70 ± 1.94 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 3.83 ± 2.26 ± 1.99 ± 2.54 ± 2.50 ± 1.95 ± 2.54 ± 2.50 ± 1.95 ± 2.54 ± 1.95 ± 1.95 ± 1.95 ± 1.97 ± 2.89 ± 1.87 ± 2.89 ± 1.87 ± 2.89 ± 1.95 ± 1.95 ± 1.95 ± 1.95 ± 2.81 ± 2.81 ± 2.81 ± 2.81 ± 2.81 ± 5.81 ± 6.19 ± 1.87 ± 1.87 ± 1.87 ± 1.90 ± 1.87 ± 1.90 ± 1.87 ± 1.90 ± 1.87 ± 1.90 ± 1.87 ± 1.90 ± 1.90	0.1781 0.1869 0.1833 0.1450 0.1813 0.1125 0.1786 0.1827 0.1800 0.1645 0.1790 0.1855 0.1799 0.1820 0.1756 0.1511 0.1889 0.1818 0.1780 0.1722 0.1640	± 0.8 ± 3.9 ± 5.1 ± 1.6 ± 1.4 ± 2.1 ± 2.1 ± 2.1 ± 2.1 ± 2.1 ± 2.1 ± 2.1 ± 2.1 ± 3.9 ± 1.2 ± 1.6 ± 3.9 ± 1.2 ± 1.4 ± 1.2 ± 1.3 ± 1.3 ± 1.3 ± 4.4 ± 1.3 ± 4.4 ± 4.5 ± 1.4 ± 2.1 ± 1.6 ± 1.7 ± 1.6 ± 1.7 ± 1.6 ±	0.550 0.830 0.820 0.630 0.720 0.700 0.810 0.870 0.740 0.870 0.880 0.850 0.840 0.820 0.680 0.980 0.650 0.750 0.650	-6 -8 -6 17 -5 -3 6 -1 -1 -2 2 17 -5 -1 10 -2 5 10 -2	997 1013 1019 1019 1022 1025 1029 1033 1035 1041 1043 1049 1054 1057 1059 1059 1059 1060 1063 1067 1073 1077	± 11 ± 23 ± 49 ± 30 ± 31 ± 41 ± 44 ± 41 ± 51 ± 58 ± 62 ± 25 ± 30 ± ± 27 ± 30 ± 51 ± 58 ± 64 ± 25 ± 64 ± 64 ± 64 ± 65 ± 66 ± 66 ± 66 ± 66 ± 66 ± 66 ± 66 ± 66 ± 66 ± 66 ± 66
FTM WGS 84: 32 Fenica LA-ICP- fuestra L.I Ga IGA-43 IGA-33 IGA-31 IGA-50 IGA-14 IGA-14 IGA-16 IGA-16 IGA-16 IGA-18 IGA-28 IGA-18 IGA-28 IGA-18 IGA-28 IGA-39 IGA-39 IGA-39 IGA-30 IGA-31 IGA-41 IGA-4	Metagranito Núcleo Borde Borde Núcleo Borde Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Sorde Núcleo Borde Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.	401 269 411 226 411 226 3178 801 1159 189 908 480 908 503 3127 166 628 518 338 518 338 522 146 284 468	145 173 39 1910 79 104 58 120 513 71 82 89 106 549 178 76 201 157 111 46 50 33 54 62 117 48	0.48 0.40 0.57 0.40 0.40 0.42 0.34 0.31 0.32 0.54 0.38 0.28 0.39 0.57 0.41 0.52 0.40 0.42 0.38 0.39 0.57	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0732 ± 3.6 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4 0.0735 ± 1.6 0.0738 ± 1.2 0.0740 ± 2.2 0.0740 ± 2.2 0.0746 ± 3.3 0.0746 ± 3.3 0.0747 ± 1.3 0.0747 ± 1.3 0.0747 ± 1.3 0.0748 ± 1.5 0.0750 ± 1.2 0.0753 ± 1.5 0.0754 ± 1.3 0.0748 ± 1.5 0.0754 ± 1.3 0.0748 ± 1.5 0.0754 ± 1.3 0.0754 ± 1.3 0.0754 ± 1.3 0.0754 ± 1.3 0.0754 ± 1.5 0.0755 ± 1.5 0.0753 ± 1.2 0.0753 ± 1.2 0.0753 ± 3.5 0.0754 ± 3.3 0.0754 ± 3.3 0.0754 ± 3.3 0.0753 ± 1.1	1.78 ± 1.85 ± 1.46 ± 1.83 ± 1.85 ± 1.84 ± 1.86 ± 1.83 ± 1.86 ± 1.82 ± 1.83 ± 1.81 ± 1.56 ± 1.87 ± 1.87 ± 1.87 ± 1.87 ± 1.87 ± 1.87 ± 1.88 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 3.83 ± 2.26 ± 1.99 ± 2.64 ± 1.95 ± 2.50 ± 3.25 ± 4.46 ± 5.93 ± 5.93 ± 1.87 ± 6.19 ± 1.57 ± 1.57 ± 1.50 ± 1.57 ± 1.57	0.1781 0.1869 0.1833 0.1450 0.1813 0.1125 0.1786 0.1827 0.1806 0.1767 0.1805 0.1759 0.1825 0.1759 0.1818 0.1780	± 0.8 ± 3.9 ± 5.1 ± 1.6 ± 1.4 ± 1.2 ± 2.1 ± 2.1 ± 5.1 ± 5.1 ± 5.1 ± 5.2 ± 1.3 ± 5.2 ± 4.7 ± 1.3 ± 5.2 ± 4.7 ± 1.3 ± 5.2 ± 4.8 ± 1.3 ± 5.2 ± 4.8 ± 1.3 ± 5.2 ± 4.8 ± 1.3 ± 5.2 ± 4.8 ± 1.3 ± 5.2 ± 4.8 ± 1.3 ± 5.2 ± 4.8 ± 1.3	0.550 0.830 0.830 0.820 0.630 0.720 0.700 0.610 0.810 0.870 0.610 0.880 0.850	da = (n = 13; M -6 -8 -6 -8 -6 17 -5 49 -3 -5 -3 -6 -1 -1 -4 1 -2 1 -2 2 17 -5 -1 2 5 10 -2 1	997 1013 1019 1022 1025 1029 1033 1035 1041 1043 1049 1054 1057 1059 1059 1060 1063 1067 1073 1077 1077 1078	± 11 2-sigma ± 23 ± 49 ± 67 ± 59 ± 30 ± 31 ± 44 ± 41 ± 44 ± 45 ± 58 ± 64 ± 25 ± 64 ± 26 ± 25 ± 65 ± 24 ± 23 ± 65 ± 1 ± 21
écnica LA-ICP- fuestra 1.1 Ga IGA-43 IGA-33 IGA-31 IGA-50 IGA-14 IGA-14 IGA-16 IGA-16 IGA-16 IGA-18 IGA-18 IGA-17 IGA-25 IGA-31 IGA-32 IGA-31 IGA-31 IGA-37 IGA-30 IGA-31 IGA-37 IGA-37 IGA-36 IGA-37 IGA-44 IGA-44 IGA-47	Metagranito Núcleo Borde Núcleo Borde Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo Sorde Núcleo Núcleo Sorde Núcleo Sorde Núcleo Borde Núcleo Borde Núcleo Borde Borde Núcleo Borde Núcleo Borde Núcleo Borde Núcleo	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.	401 269 411 2628 178 226 145 317 801 159 189 172 480 908 1726 628 503 127 166 458 338 522 146 284 468	145 173 39 1910 58 120 513 71 82 89 106 549 178 201 57 111 46 50 33 54 117 48	0.48 0.48 0.40 0.57 0.21 0.40 0.42 0.38 0.51 0.42 0.54 0.42 0.38 0.28 0.39 0.57 0.41 0.52 0.46 0.40 0.60 0.39 0.35 0.39 0.35 0.40 0.30 0.30 0.30 0.30 0.30 0.30 0.30	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0730 ± 2.6 0.0732 ± 3.0 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4 0.0735 ± 1.6 0.0738 ± 1.2 0.0740 ± 2.2 0.0740 ± 2.2 0.0746 ± 3.2 0.0746 ± 3.3 0.0747 ± 1.3 0.0747 ± 1.3 0.0747 ± 1.3 0.0748 ± 1.5 0.0750 ± 1.2 0.0753 ± 1.2 0.0753 ± 1.2 0.0753 ± 1.2 0.0753 ± 1.2 0.0753 ± 1.2 0.0753 ± 1.2 0.0753 ± 1.2 0.0753 ± 3.5 0.0754 ± 3.3 0.0753 ± 1.1 0.0754 ± 3.3	1.78 ± 1.88 ± 1.85 ± 1.46 ± 1.83 ± 1.14 ± 1.81 ± 1.86 ± 1.83 ± 1.82 ± 1.82 ± 1.87 ± 1.85 ± 1.87 ± 1.81 ± 1.87 ± 1.81 ± 1.87 ± 1.88 ± 1.87 ± 1.81 ± 1.87 ± 1.88 ± 1.87 ± 1.88 ± 1.88 ± 1.87 ± 1.88 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 3.83 ± 2.26 ± 1.99 ± 2.64 ± 2.50 ± 4.46 ± 1.95 ± 4.46 ± 1.95 ± 5.81 ± 5.93 ± 5.93 ± 1.95 ± 6.19 ± 1.87 ± 1.87 ± 1.87 ± 1.97 ± 1.90 ± 1.87 ± 1.97 ± 1.97	0.1781 0.1869 0.1833 0.1450 0.1813 0.1125 0.1786 0.1827 0.1800 0.1645 0.1782 0.1797 0.1820 0.1757 0.1820 0.1759 0.1820 0.1756 0.1759 0.1820 0.1756 0.1759 0.1820 0.1756 0.1759 0.1820 0.1756 0.1759 0.1820 0.1756 0.1759 0.1820 0.1756 0.1759 0.1818	± 0.8 ± 3.9 ± 5.1 ± 1.6 ± 1.4 ± 1.2 ± 2.1 ± 2.1 ± 5.0 ± 5.1 ± 5.0 ± 1.9 ± 5.1 ± 1.3 ± 1.0 ± 1.2 ± 2.1 ± 5.1 ± 5.1 ± 5.1 ± 5.1 ± 5.1 ± 1.3 ± 1.4 ± 1.5 ± 1.6 ± 1.6 ± 1.6 ± 1.7 ± 1.6 ± 1.7 ± 1.6 ± 1.7 ± 1.6 ± 1.7 ± 1.6 ± 1.6 ± 1.7 ± 1.6 ± 1.7 ± 1.6 ± 1.6 ± 1.7 ± 1.6 ± 1.6 ± 1.6 ± 1.7 ± 1.6 ± 1.7 ± 1.6 ± 1.7 ± 1.6 ± 1.7 ± 1.6 ± 1.9 ± 1.1 ± 1.0 ± 1.1 ±	0.550 0.830 0.820 0.630 0.720 0.720 0.740 0.810 0.870 0.610 0.870 0.880 0.850 0.850 0.840 0.820 0.660 0.650 0.650 0.650 0.830 0.830	-6 -8 -6 -17 -5 -49 -3 -5 -3 -6 -1 -1 -2 -2 -1 -1 -2 -1 -3 -3 -5 -1 -1 -1 -2 -1 -3 -5 -1 -1 -1 -2 -1 -3 -5 -1 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	997 1013 1019 1019 1019 1022 1025 1029 1033 1035 1041 1043 1049 1057 1057 1059 1059 1060 1063 1067 1077 1078 1078	± 11 2-sigma ± 23 ± 49 ± 67 ± 59 ± 27 ± 30 ± 24 ± 41 ± 44 ± 43 ± 51 ± 25 ± 26 ± 26 ± 26 ± 26 ± 26 ± 26 ± 26 ± 26
FTM WGS 84: 32 Fecnica LA-ICP- fuestra L1 Ga IGA-43 IGA-33 IGA-31 IGA-36 IGA-12 IGA-12 IGA-14 IGA-16 IGA-16 IGA-16 IGA-16 IGA-16 IGA-17 IGA-18 IGA-28 IGA-18 IGA-28 IGA-39 IGA-39 IGA-39 IGA-39 IGA-39 IGA-30 IGA-30 IGA-30 IGA-30 IGA-40 IGA-40 IGA-41 IGA-41 IGA-41 IGA-41 IGA-42 IGA-40	Metagranito Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde Núcleo	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.	401 269 411 178 2262 178 2263 1178 226 145 317 189 172 480 91726 628 518 3127 166 628 513 338 512 145 503 127 166 628 127 166 167 168 178 178 178 178 178 178 178 178 178 17	145 173 39 1910 79 104 58 120 513 71 82 89 106 549 76 201 57 111 46 50 33 54 62 117 48 80	Probeta 0.48 0.40 0.57 0.40 0.57 0.40 0.42 0.34 0.38 0.28 0.39 0.57 0.41 0.41 0.41 0.45 0.46 0.45 0.46 0.40 0.60 0.36 0.38	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0732 ± 3.6 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4 0.0735 ± 1.6 0.0737 ± 1.6 0.0738 ± 1.2 0.0740 ± 2.2 0.0740 ± 2.2 0.0743 ± 1.5 0.0746 ± 3.3 0.0747 ± 1.3 0.0747 ± 1.3 0.0748 ± 1.5 0.0746 ± 1.4 0.0747 ± 1.3 0.0748 ± 1.5 0.0752 ± 1.5 0.0752 ± 1.5 0.0753 ± 1.2 0.0753 ± 1.2 0.0753 ± 1.2 0.0753 ± 1.2 0.0753 ± 1.2 0.0753 ± 1.1 0.0754 ± 2.8	1.78 ± 1.88 ± 1.85 ± 1.86 ± 1.83 ± 1.14 ± 1.86 ± 1.83 ± 1.90 ± 1.82 ± 1.83 ± 1.90 ± 1.82 ± 1.83 ± 1.90 ± 1.85 ± 1.85 ± 1.85 ± 1.95 ± 1.88 ± 1.85 ± 1.95 ± 1.88 ± 1.85 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 2.26 ± 1.99 ± 1.97 ± 2.64 ± 2.50 ± 3.25 ± 4.46 ± 5.81 ± 5.83 ± 5.81 ± 5.83 ± 5.81 ± 1.95 ± 1.87 ± 6.19 ± 6.19	0.1781 0.1869 0.1833 0.1450 0.1813 0.1150 0.1816 0.1827 0.1800 0.1645 0.1790 0.1856 0.1759 0.1820 0.1756 0.1511 0.1889 0.1818 0.1780 0.1722 0.1640 0.1765 0.1799 0.1757	± 0.8 ± 3.9 ± 5.1 ± 1.7 ± 1.6 ± 1.2 ± 2.1 ± 2.2 ± 1.6 ± 3.9 ± 5.1 ± 1.2 ± 1.2 ± 1.2 ± 1.2 ± 1.2 ± 1.3 ± 4.7 ± 1.3 ± 4.7 ± 1.3 ± 5.1 ± 1.3 ± 5.1 ± 1.3 ± 5.1 ± 1.3 ± 5.1 ± 1.3 ± 5.1 ± 1.3 ± 5.2 ± 1.0 ± 5.2 ± 1.0 ± 5.2 ± 1.0 ± 5.2 ± 1.0 ± 5.2	0.550 0.830 0.820 0.630 0.720 0.610 0.870 0.740 0.870 0.610 0.880 0.820 0.680 0.980 0.980 0.600 0.600 0.750 0.810 0.750 0.850 0.660 0.750 0.810 0.760 0.810 0.850	da = (n = 13; M -6 -8 -6 -8 -6 -7 -5 -9 -3 -5 -3 -6 -1 -4 -1 -2 -2 -2 -7 -5 -1 -2 -1 -2 -1 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	997 1013 1019 1022 1025 1029 1033 1041 1049 1054 1057 1059 1060 1063 1067 1073 1077 1078 1078 1078 1079	± 11 ± 23 ± 49 ± 67 ± 59 ± 27 ± 30 ± 24 ± 44 ± 30 ± 24 ± 58 ± 61 ± 25 ± 64 ± 25 ± 64 ± 26 ± 27 ± 49 ± 59 ± 27 ± 30 ± 24 ± 59 ± 26 ± 27 ± 30 ± 27 ± 49 ± 49 ± 49 ± 49 ± 49 ± 49 ± 49 ± 30 ± 24 ± 49 ± 49 ± 49 ± 49 ± 49 ± 49 ± 49 ± 40 ± 50 ± 50
FTM WGS 84: 32 Fenica LA-ICP- fuestra L.1 Ga IGA-43 IGA-33 IGA-31 IGA-38 IGA-42 IGA-14 IGA-12 IGA-14 IGA-16 IGA-16 IGA-16 IGA-18 IGA-18 IGA-28 IGA-18 IGA-31 IGA-31 IGA-31 IGA-31 IGA-31 IGA-31 IGA-31 IGA-32 IGA-31 IGA-3	Metagranito Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Núcleo Núcleo Núcleo Núcleo Borde Núcleo Núcleo Borde Núcleo Núcleo Núcleo Núcleo Núcleo Borde Núcleo Borde Núcleo Núcleo Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde Núcleo	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.	401 269 411 226 411 226 178 226 145 317 801 159 189 172 480 908 503 127 166 458 533 187 127 166 458 184 468 184 673 184	145 173 39 1910 79 104 58 120 513 71 82 89 106 549 178 76 2011 57 111 46 50 33 54 62 117 48 80 209 710	0.48 0.49 0.40 0.57 0.40 0.42 0.34 0.38 0.51 0.40 0.42 0.38 0.57 0.41 0.52 0.46 0.40 0.39 0.57 0.41 0.52 0.46 0.40 0.39 0.39 0.39 0.39 0.39	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0730 ± 2.6 0.0732 ± 3.0 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4 0.0735 ± 1.6 0.0738 ± 1.2 0.0740 ± 2.2 0.0740 ± 2.2 0.0746 ± 3.2 0.0746 ± 3.3 0.0747 ± 1.3 0.0747 ± 1.3 0.0747 ± 1.3 0.0748 ± 1.5 0.0750 ± 1.2 0.0753 ± 1.2 0.0753 ± 1.2 0.0753 ± 1.2 0.0753 ± 1.2 0.0753 ± 1.2 0.0753 ± 1.2 0.0753 ± 1.2 0.0753 ± 3.5 0.0754 ± 3.3 0.0753 ± 1.1 0.0754 ± 3.3	1.78 ± 1.88 ± 1.85 ± 1.46 ± 1.83 ± 1.14 ± 1.86 ± 1.82 ± 1.83 ± 1.14 ± 1.86 ± 1.82 ± 1.83 ± 1.90 ± 1.82 ± 1.87 ± 1.97 ± 1.81 ± 1.56 ± 1.95 ± 1.88 ± 1.85 ± 1.89 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 3.83 ± 2.26 ± 1.99 ± 2.64 ± 2.50 ± 3.25 ± 4.46 ± 5.93 ± 5.93 ± 5.93 ± 6.19 ± 1.87 ± 6.19 ± 1.57 ± 1.90 ± 1.90	0.1781 0.1869 0.1833 0.1450 0.1813 0.1125 0.1786 0.1827 0.1800 0.1645 0.1767 0.1825 0.1759 0.1826 0.1759 0.1820 0.1750 0.1511 0.1889 0.1782 0.1790 0.1818 0.1782 0.1790 0.1818 0.1782 0.1790 0.1818 0.1782 0.1790 0.1818 0.1782 0.1790 0.1818 0.1782 0.1790 0.1818 0.1780 0.1780 0.1780 0.1787	± 0.8 ± 3.9 ± 5.1 ± 1.6 ± 1.4 ± 1.2 ± 2.1 ± 2.1 ± 5.0 ± 5.0 ± 1.3 ± 6.1 ± 1.3 ± 6.1 ± 1.3 ± 6.1 ± 1.3 ± 5.2 ± 4.6 ± 1.3 ± 5.2 ± 4.6 ± 1.3 ± 5.2 ± 4.6 ± 1.3 ± 5.2 ± 4.6 ± 1.3 ± 5.2 ± 4.6 ± 1.3 ± 5.2 ± 4.6 ± 1.3 ± 5.2 ± 4.6 ± 1.3 ± 5.2 ± 4.6 ± 1.3 ± 5.2 ± 4.6 ± 1.3 ± 5.2 ± 4.6 ± 1.3 ± 5.2 ± 4.6 ± 1.3 ± 5.2 ± 4.6 ± 1.3 ± 5.2 ± 4.6 ± 1.6	0.550 0.830 0.830 0.820 0.630 0.720 0.700 0.610 0.810 0.870 0.610 0.880 0.850 0.850 0.850 0.850 0.850 0.850 0.80 0.8	-6 -8 -6 -17 -5 -49 -11 -2 -2 -17 -5 -1 -1 -2 -1 -3 -3 -5 -1 -1 -1 -2 -1 -3 -5 -1 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	997 1013 1019 1019 1022 1025 1029 1033 1035 1041 1043 1049 1054 1057 1059 1059 1060 1063 1067 1073 1077 1078 1078 1078 1079 1080 1081	± 11 2-sigma ± 23 ± 49 ± 67 53 ± 30 ± 31 ± 24 ± 43 ± 44 ± 51 ± 58 ± 64 ± 25 ± 64 ± 27 ± 26 ± 26 ± 26 ± 26 ± 27 ± 26 ± 27 ± 27 ± 27 ± 27 ± 27 ± 27 ± 27 ± 27
FTM WGS 84: 32 Fenica LA-ICP- fuestra 1.1 Ga 1GA-43 1GA-33 1GA-31 1GA-36 1GA-16 1GA-12 1GA-14 1GA-9 1GA-16 1GA-15 1GA-16 1GA-15 1GA-20 1GA-32 1GA-33 1GA-37 1GA-6 1GA-37 1GA-6 1GA-37 1GA-6 1GA-37 1GA-6 1GA-37 1GA-6 1GA-44 1GA-24 1GA-24 1GA-24 1GA-20 1GA-20 1GA-20 1GA-36	Metagranito Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde Núcleo	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.	401 269 411 178 2262 178 2263 1178 226 145 317 189 172 480 91726 628 518 3127 166 628 513 338 512 145 503 127 166 628 127 166 167 168 178 178 178 178 178 178 178 178 178 17	145 173 39 1910 79 104 58 120 513 71 82 89 106 549 76 201 57 111 46 50 33 54 62 117 48 80	Probeta 0.48 0.40 0.57 0.40 0.57 0.40 0.42 0.34 0.38 0.28 0.39 0.57 0.41 0.41 0.41 0.45 0.46 0.45 0.46 0.40 0.60 0.36 0.38	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0732 ± 3.6 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4 0.0735 ± 1.6 0.0736 ± 1.2 0.0740 ± 2.2 0.0740 ± 2.2 0.0746 ± 3.2 0.0746 ± 3.3 0.0747 ± 1.3 0.0747 ± 1.3 0.0748 ± 1.5 0.0750 ± 1.2 0.0750 ± 1.2 0.0753 ± 1.1 0.0754 ± 2.8	1.78 ± 1.88 ± 1.85 ± 1.86 ± 1.83 ± 1.14 ± 1.86 ± 1.83 ± 1.90 ± 1.82 ± 1.83 ± 1.90 ± 1.82 ± 1.83 ± 1.90 ± 1.85 ± 1.85 ± 1.85 ± 1.95 ± 1.88 ± 1.85 ± 1.95 ± 1.88 ± 1.85 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 1.99 ± 2.26 ± 1.99 ± 2.64 ± 2.50 ± 1.95 ± 4.46 ± 1.95 ± 5.81 ± 6.19 ± 1.87 ± 1.87 ± 1.87 ± 1.87 ± 1.87 ± 1.87 ± 1.87 ± 1.90 ± 1.87 ± 1.90 ± 1.87 ± 1.87 ± 1.90 ± 1.87 ± 1.90 ± 1.87 ± 1.90 ± 1.87 ± 1.90 ± 1.90	0.1781 0.1869 0.1833 0.1450 0.1813 0.1150 0.1816 0.1827 0.1800 0.1645 0.1790 0.1856 0.1759 0.1820 0.1756 0.1511 0.1889 0.1818 0.1780 0.1722 0.1640 0.1765 0.1799 0.1757	± 0.8 ± 3.9 ± 5.1 ± 1.6 ± 1.4 ± 2.1 ± 2.1 ± 2.1 ± 2.1 ± 2.5 ± 1.6 ± 3.9 ± 1.2 ± 1.6 ± 3.9 ± 1.2 ± 1.6 ± 1.4 ± 2.1 ± 2.1 ± 2.1 ± 1.6 ± 1.4 ± 1.2 ± 1.6 ± 1.4 ± 1.2 ± 1.6 ± 1.2 ± 1.6 ± 1.2 ± 1.6 ± 1.7 ± 1.6 ± 1.7 ± 1.6 ± 1.2 ± 1.6 ± 1.6 ± 1.7 ± 1.6 ± 1.7 ± 1.7 ± 1.7 ± 1.7 ± 1.7 ± 1.8 ±	0.550 0.830 0.820 0.630 0.720 0.610 0.870 0.740 0.870 0.610 0.880 0.820 0.680 0.980 0.980 0.600 0.600 0.750 0.810 0.750 0.850 0.660 0.750 0.810 0.760 0.810 0.850	da = (n = 13; M -6 -8 -6 -8 -6 -7 -5 -9 -3 -5 -3 -6 -1 -4 -1 -2 -2 -2 -7 -5 -1 -2 -1 -2 -1 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	997 1013 1019 1022 1025 1029 1033 1041 1049 1054 1057 1059 1060 1063 1067 1073 1077 1078 1078 1078 1079	± 11 2-sigma ± 23 ± 49 ± 67 ± 59 ± 30 ± 31 ± 44 ± 30 ± 24 ± 58 ± 61 ± 25 ± 64 ± 26 ± 26 ± 26 ± 26 ± 27 ± 23 ± 21 ± 21 ± 21 ± 57 ± 21 ± 57 ± 31 - 21 - 21 - 23 - 24 - 24 - 25 - 26 - 26 - 26 - 27 - 28 - 28 - 28 - 28 - 28 - 28 - 28 - 28
FTM WGS 84: 32 Fenica LA-ICP- fuestra L.I Ga IGA-43 IGA-33 IGA-31 IGA-38 IGA-42 IGA-14 IGA-16 IGA-16 IGA-16 IGA-16 IGA-18 IGA-18 IGA-28 IGA-7 IGA-32 IGA-7 IGA-32 IGA-7 IGA-31 IGA-6 IGA-7 IGA-	Metagranito Núcleo Borde Núcleo Borde Núcleo Núcleo Núcleo Núcleo Núcleo Núcleo Sorde Núcleo Sorde Núcleo Sorde Núcleo Borde Núcleo Borde Sorde Sorde Sorde Sorde Borde Borde Borde Borde Borde Borde Borde Súcleo Borde Borde Súcleo Sorde Borde Borde Borde Borde Borde Borde Borde Borde Súcleo Núcleo Núcleo Núcleo Sorde	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.	401 269 411 226 178 226 183 317 801 159 189 172 480 908 503 172 166 458 503 512 127 166 458 518 518 518 518 518 518 518 518 518 5	145 173 39 1910 79 104 58 120 513 71 82 89 176 201 178 76 201 111 46 50 33 54 49 20 178 80 20 20 179 189 190 190 190 190 190 190 190 190 190 19	0.48 0.40 0.57 0.40 0.57 0.32 0.54 0.32 0.54 0.45 0.45 0.40 0.45 0.40 0.45 0.40 0.45 0.40 0.45 0.40 0.45 0.40 0.45 0.40 0.45 0.40 0.40	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0730 ± 2.6 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4 0.0735 ± 1.6 0.0737 ± 1.6 0.0736 ± 1.2 0.0740 ± 2.2 0.0740 ± 2.2 0.0746 ± 3.2 0.0746 ± 3.3 0.0747 ± 1.3 0.0747 ± 1.3 0.0748 ± 1.5 0.0750 ± 1.2 0.0750 ± 1.2 0.0751 ± 1.2 0.0752 ± 1.5 0.0753 ± 1.1 0.0754 ± 3.1 0.0754 ± 3.1 0.0754 ± 3.1 0.0754 ± 3.1 0.0754 ± 3.1 0.0754 ± 3.1 0.0754 ± 3.1 0.0754 ± 3.1 0.0754 ± 3.1 0.0755 ± 1.6 0.0756 ± 0.9 0.0760 ± 1.3 0.0756 ± 0.9	1.78 ± 1.88 ± 1.85 ± 1.46 ± 1.83 ± 1.14 ± 1.86 ± 1.83 ± 1.82 ± 1.82 ± 1.82 ± 1.85 ± 1.90 ± 1.82 ± 1.85 ± 1.95 ± 1.95 ± 1.95 ± 1.95 ± 1.88 ± 1.85 ± 1.95 ± 1.96 ± 1.96 ± 1.96 ± 1.96 ± 1.96 ± 1.96 ± 1.96 ± 1.96 ± 1.96 ± 1.88 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 1.99 ± 2.26 ± 1.99 ± 2.64 ± 2.50 ± 3.25 ± 4.46 ± 2.50 ± 5.76 ± 1.95 ± 5.78 ± 6.19 ± 1.87 ± 1.95 ± 1.95	0.1781 0.1869 0.1833 0.1450 0.1813 0.1125 0.1786 0.1827 0.1800 0.1645 0.1759 0.1820 0.1756 0.1511 0.1889 0.1780 0.1781 0.1865	± 0.8 ± 3.9 ± 5.1 ± 1.6 ± 1.2 ± 2.1 ± 2.1 ± 2.1 ± 5.1 ± 1.6 ± 1.4 ± 1.2 ± 1.6 ± 3.9 ± 5.1 ± 5.0 ± 1.2 ± 5.1 ± 5.0 ± 1.3 ± 6.1 ± 2.5 ± 2.1 ± 1.3 ± 6.1 ± 1.3 ± 1.3 ± 1.3 ± 1.3 ± 1.3 ± 1.3 ± 1.3 ± 1.3 ± 1.3 ± 1.3 ± 1.3 ± 1.6 ± 1.3 ± 1.8 ± 1.6 ± 1.3 ± 1.8 ± 1.6 ± 1.3 ± 1.8	0.550 0.830 0.830 0.820 0.630 0.720 0.701 0.810 0.870 0.610 0.870 0.880 0.880 0.880 0.880 0.880 0.850 0.660 0.650 0.750 0.760 0.740 0.740 0.810	-6 -8 -6 -1 -7 -5 -49 -3 -5 -3 -6 -1 -1 -2 -2 -1 -2 -5 -1 -1 -1 -2 -5 -1 -1 -1 -2 -5 -1 -1 -1 -2 -5 -1 -1 -1 -2 -5 -1 -1 -1 -2 -5 -1 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	997 1013 1019 1019 1019 1022 1025 1029 1033 1035 1041 1043 1049 1057 1059 1059 1060 1063 1067 1077 1078 1078 1079 1080 1081 1083 1095 1081	± 11 ± 23 ± 49 ± 59 ± 30 ± 31 ± 44 ± 51 ± 24 ± 30 ± 31 ± 44 ± 51 ± 24 ± 58 ± 30 ± 27 ± 30 ± 27 ± 30 ± 27 ± 30 ± 27 ± 30 ± 27 ± 30 ± 27 ± 30 ± 28 ± 30 ± 28 ± 30 ± 28 ± 30 ± 30 ± 30 ± 30 ± 30 ± 30 ± 30 ± 30 ± 40 ± 58 ± 58 ± 25 ± 30 ± 25 ± 30 ± 30 ± 30 ± 30 ± 30 ± 30 ± 40 ± 58 ± 58 ± 25 ± 25 ± 26 ± 25 ± 26 ± 27 ± 26 ± 27 ± 26 ± 27 ± 27 ± 27 ± 28 ± 28
écnica LA-ICP- fuestra L.1 Ga IGA-43 IGA-33 IGA-33 IGA-31 IGA-36 IGA-14 IGA-12 IGA-14 IGA-16 IGA-16 IGA-15 IGA-18 IGA-18 IGA-21 IGA-18 IGA-32 IGA-37 IGA-39 IGA-30 IGA-31	Metagranito Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Borde Borde Núcleo Borde Núcleo Borde	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.	401 2628 178 226 141 2628 226 145 317 801 159 908 1726 628 503 127 166 458 518 338 522 244 468 468 468 468 468 468 468 468 468 4	145 173 39 1910 79 104 58 120 513 71 82 89 106 549 178 6 201 57 111 46 50 33 54 62 117 48 80 209 710 43 55 110 43 55 110 44 55 1110 45 1110 45 1110 45 1110 1110	Probeta 0.48 0.40 0.57 0.40 0.57 0.40 0.42 0.34 0.38 0.51 0.32 0.54 0.42 0.38 0.39 0.57 0.41 0.41 0.45 0.46 0.45 0.40 0.40 0.40 0.40 0.40 0.40 0.40	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0732 ± 3.6 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4 0.0735 ± 1.6 0.0734 ± 1.4 0.0735 ± 1.6 0.0738 ± 1.2 0.0740 ± 2.2 0.0740 ± 2.2 0.0743 ± 1.5 0.0746 ± 3.3 0.0747 ± 1.3 0.0747 ± 1.3 0.0748 ± 1.5 0.0752 ± 1.5 0.0754 ± 1.4 0.0747 ± 1.3 0.0752 ± 1.5 0.0754 ± 3.3 0.0754 ± 3.3 0.0753 ± 1.1 0.0753 ± 3.5 0.0754 ± 3.3 0.0753 ± 1.1 0.0753 ± 3.5 0.0754 ± 2.8 0.0754 ± 2.8 0.0754 ± 2.8 0.0755 ± 1.6 0.0755 ± 1.6 0.0755 ± 1.6 0.0755 ± 1.6 0.0756 ± 0.9 0.0760 ± 1.3 0.0764 ± 1.3 0.0764 ± 1.3 0.0764 ± 1.0 0.0756 ± 0.9 0.0760 ± 1.3 0.0764 ± 1.0 0.0776 ± 2.8	1.78 ± 1.88 ± 1.85 ± 1.86 ± 1.83 ± 1.86 ± 1.83 ± 1.86 ± 1.82 ± 1.82 ± 1.82 ± 1.82 ± 1.83 ± 1.90 ± 1.82 ± 1.83 ± 1.90 ± 1.88 ± 1.85 ± 1.95 ± 1.88 ± 1.85 ± 1.95 ± 1.88 ± 1.85 ± 1.95 ± 1.88 ± 1.85 ± 1.88 ± 1.85 ± 1.88 ± 1.85 ± 1.88 ± 1.85 ± 1.88 ± 1.85 ± 1.88 ± 1.85 ± 1.88 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 2.26 ± 1.99 ± 1.99 ± 1.99 ± 2.54 ± 2.50 ± 3.25 ± 5.81 ± 5.83 ± 5.76 ± 2.31 ± 1.87 ± 6.19 ± 1.87 ± 6.19 ± 1.87 ± 6.19 ± 1.87 ± 1.77 ± 6.30 ± 1.77 ± 6.30 ± 1.77 ± 2.54 ± 1.77 ± 1.72 ± 1.73 ± 1.77 ± 1.72 ± 1.73 ± 1.77 ± 4.73 ± 4.73 ± 4.73	0.1781 0.1869 0.1833 0.1450 0.1813 0.1185 0.1786 0.1827 0.1800 0.1645 0.1792 0.1856 0.1759 0.1820 0.1756 0.1510 0.1818 0.1780 0.1722 0.1640 0.1765 0.1799 0.1825 0.1799 0.1752 0.1825 0.1799 0.1752 0.1825 0.1771 0.1825 0.1794 0.1752	± 0.8 ± 3.9 ± 5.1 ± 1.6 ± 1.2 ± 2.1 ± 2.1 ± 2.1 ± 5.0 ± 4.7 ± 1.6 ± 1.2 ± 1.3 ± 5.1 ± 5.1	0.550 0.830 0.820 0.630 0.720 0.700 0.610 0.810 0.870 0.740 0.870 0.610 0.810 0.850 0.630 0.820 0.680 0.9850 0.660 0.5750 0.810 0.750 0.810 0.750 0.810 0.750 0.810 0.750 0.810 0.750 0.810 0.750 0.810 0.750 0.810 0.750 0.810 0.760 0.810 0.760 0.810 0.850 0.680 0.850 0.690 0.810 0.850 0.690 0.810 0.850 0.850 0.850 0.800	da = (n = 13; M -6 -8 -6 -8 -6 -7 -5 -9 -3 -5 -3 -6 -1 -1 -4 1 -2 1 -2 1 7 -5 -1 2 5 10 -2 1 3 0 4 4 5 10 4	997 1013 1019 1022 1025 1029 1033 1035 1041 1043 1057 1059 1059 1060 1063 1067 1073 1077 1078 1078 1078 1078 1078 1079 1080 1081 1083 1095 1105	± 11 ± 23 ± 49 ± 67 ± 59 ± 30 ± 41 ± 41 ± 44 ± 41 ± 43 ± 51 ± 51 ± 25 ± 64 ± 25 ± 64 ± 25 ± 25 ± 21 ± 51 ± 51 ± 51 ± 25 ± 21 ± 25 ± 21 ± 25 ± 21 ± 25 ± 21 ± 25 ± 21 ± 25
TTM WGS 84: 32 'écnica LA-ICP- <i>fuestra</i> 1.1 Ga 1GA-43 1GA-33 1GA-31	Metagranito Núcleo Borde Núcleo Borde Núcleo Borde Núcleo Núcleo Núcleo Núcleo Borde Núcleo Núcleo Borde Núcleo Núcleo Borde Núcleo Núcleo Núcleo Núcleo Borde Núcleo Núcleo Borde Núcleo Borde Núcleo Núcleo Borde Núcleo Borde Borde Núcleo Borde Borde Núcleo Borde Núcleo Borde Núcleo Núcleo	(Sierrita Bl N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.	401 269 411 226 178 226 183 317 801 159 189 172 480 908 503 172 166 458 503 512 127 166 458 518 518 518 518 518 518 518 518 518 5	145 173 39 1910 79 104 58 120 513 71 82 89 176 201 178 76 201 111 46 50 33 54 49 20 178 80 20 20 179 189 190 190 190 190 190 190 190 190 190 19	0.48 0.40 0.57 0.40 0.57 0.32 0.54 0.32 0.54 0.45 0.45 0.40 0.45 0.40 0.45 0.40 0.45 0.40 0.45 0.40 0.45 0.40 0.45 0.40 0.45 0.40 0.40	Aldo-3 (Agosto 07) 0.0724 ± 1.2 0.0730 ± 2.6 0.0730 ± 2.6 0.0732 ± 3.0 0.0733 ± 1.6 0.0734 ± 1.4 0.0735 ± 1.6 0.0737 ± 1.6 0.0736 ± 1.2 0.0740 ± 2.2 0.0740 ± 2.2 0.0746 ± 3.2 0.0746 ± 3.3 0.0747 ± 1.3 0.0747 ± 1.3 0.0748 ± 1.5 0.0750 ± 1.2 0.0750 ± 1.2 0.0751 ± 1.2 0.0752 ± 1.5 0.0753 ± 1.1 0.0754 ± 3.1 0.0754 ± 3.1 0.0754 ± 3.1 0.0754 ± 3.1 0.0754 ± 3.1 0.0754 ± 3.1 0.0754 ± 3.1 0.0754 ± 3.1 0.0754 ± 3.1 0.0755 ± 1.6 0.0756 ± 0.9 0.0760 ± 1.3 0.0756 ± 0.9	1.78 ± 1.88 ± 1.85 ± 1.46 ± 1.83 ± 1.14 ± 1.86 ± 1.83 ± 1.82 ± 1.82 ± 1.82 ± 1.85 ± 1.90 ± 1.82 ± 1.85 ± 1.95 ± 1.95 ± 1.95 ± 1.95 ± 1.88 ± 1.85 ± 1.95 ± 1.96 ± 1.96 ± 1.96 ± 1.96 ± 1.96 ± 1.96 ± 1.96 ± 1.96 ± 1.96 ± 1.88 ± 1.	± 1.43 ± 4.67 ± 6.28 ± 2.26 ± 1.99 ± 1.99 ± 1.99 ± 2.54 ± 2.50 ± 3.25 ± 5.81 ± 5.83 ± 5.76 ± 2.31 ± 1.87 ± 6.19 ± 1.87 ± 6.19 ± 1.87 ± 6.19 ± 1.87 ± 1.77 ± 6.30 ± 1.77 ± 6.30 ± 1.77 ± 2.54 ± 1.77 ± 1.72 ± 1.73 ± 1.77 ± 1.72 ± 1.73 ± 1.77 ± 4.73 ± 4.73 ± 4.73	0.1781 0.1869 0.1833 0.1450 0.1813 0.1125 0.1786 0.1827 0.1800 0.1645 0.1759 0.1820 0.1756 0.1511 0.1889 0.1780 0.1781 0.1865	± 0.8 ± 3.9 ± 5.1 ± 1.6 ± 1.4 ± 1.2 ± 2.1 ± 2.1 ± 5.1 ± 5.1 ± 1.6 ± 1.4 ± 1.2 ± 1.6 ± 3.9 ± 1.2 ± 1.6 ± 3.9 ± 1.3 ± 5.1 ± 5.1 ± 5.0 ± 1.3 ± 6.1 ± 1.3 ± 5.2 ± 1.6 ± 1.3 ± 3.8 ± 3.8 ± 3.8 ± 3.8 ± 5.1	0.550 0.830 0.830 0.820 0.630 0.720 0.700 0.810 0.810 0.870 0.610 0.810 0.850 0.850 0.850 0.850 0.660 0.550 0.750 0.830 0.810 0.810 0.850 0.660 0.650 0.750 0.810 0.810 0.850 0.850 0.850 0.850 0.850 0.850 0.850 0.850 0.850	da = (n = 13; M -6 -8 -6 -8 -6 17 -5 49 -3 -5 -3 -6 -1 -1 -2 1 -2 2 17 -5 -1 2 5 10 -2 1 3 3 0 48 5 10 4 13	997 1013 1019 1019 1019 1022 1025 1029 1033 1035 1041 1043 1049 1057 1059 1059 1060 1063 1067 1077 1078 1078 1079 1080 1081 1083 1095 1081	± 11 ± 23 ± 49 ± 67 50 ± 30 ± 27 30 ± 41 ± 44 ± 41 ± 44 ± 43 ± 51 ± 24 ± 25 ± 61 ± 25 ± 64 ± 25 ± 25 ± 21 ± 21 ± 51 ± 25 ± 21 ± 25 ± 21 ± 51 ± 51 ± 51 ± 51 ± 51 ± 51 ± 51 ± 5

^{**} SHRIMP-RG = Relaciones isotópicas corregidas por Pb inicial usando la cantidad de 204Pb y los valores iniciales terrestres promedios correspondientes de Stacey y Kramers (1975).

Todos los errores de las relaciones isótopicas y edades, para cada análisis, se presentan a 1 sigma. Las edades promedio ponderadas ²⁰⁷Pb, ²⁰⁰⁹Pb, reportadas a 2-sigma, se obtubieron haciendo el diagrama weighted average con el programa computacional Isoplot (Ludwig , 2003), empleando solo las edades que se encuentran en negritas en esta tabla.

MSWD: Mean Squared Weigthed Deviate (desviación media cuadrática ponderada).

N.M.: No medido

^{**} LA-ICP-MS = Relaciones isotópicas corregidas por Pb inicial usando los valores iniciales promedios correspondientes de Stacey y Kramers (1975) aplicando el método de Andersen (2002).

^{*}El porcentaje de discordancia fue obtenido con la ecuación (100*[[edad ²⁰⁷Pb/⁵⁰⁶Pb)/[edad ²³⁶Pb/²³⁸U)]-1) propuesta en Ludwig (2001). Los valores positivos son para las discordancias normales; valores negativos para las discordancias inversas.

Tabla 5. Datos analíticos de U-Th-Pb de SHRIMP-RG y LA-ICP-MS de zircones de rocas mesozoicas del área Mina La Herradura, NW de Sonora, México.

del anál Técnica s Muestra 611-5 611-6 611-10 611-12 611-1 611-7 611-12 611-3 611-4 UTM WC	isis Núc SHRIMP-R <i>LH06-11</i>		-0.15 0.24 -0.26 0.22 -0.04 0.35 -0.14 0.10	352 580 480 323 968 397	229 324 260 191	0.67 0.58 0.56	206Pb‡ (%) Probeta Aldo-3 (A 37.29 ± 0.8		(%) ²³⁸ U	** (%)	Edad (Ma)	(Ma
Muestra 611-5 611-6 611-10 611-8 611-2 611-9 611-11 611-7 611-12 611-3 611-4 UTM WG		Metariolita Núcleo Borde Núcleo Núcleo Borde Borde Borde Núcleo Núcleo Núcleo	-0.15 0.24 -0.26 0.22 -0.04 0.35 -0.14	352 580 480 323 968	229 324 260 191	0.67 0.58	37.29 ± 0.8					_
Muestra 511-5 511-6 511-10 511-8 511-2 511-1 511-7 511-12 511-3 511-4 UTM WO		Metariolita Núcleo Borde Núcleo Núcleo Borde Borde Borde Núcleo Núcleo Núcleo	-0.15 0.24 -0.26 0.22 -0.04 0.35 -0.14	352 580 480 323 968	229 324 260 191	0.67 0.58	37.29 ± 0.8					
511-5 511-6 511-10 511-8 511-2 511-1 511-9 511-11 511-7 511-12 511-3	LIVETI	Núcleo Borde Núcleo Núcleo Borde Borde Núcleo Núcleo	-0.15 0.24 -0.26 0.22 -0.04 0.35 -0.14	352 580 480 323 968	229 324 260 191	0.67 0.58	37.29 ± 0.8					
511-6 511-10 511-8 511-2 511-1 511-9 511-11 511-7 511-12 511-3 511-4		Borde Núcleo Núcleo Borde Borde Núcleo Núcleo Núcleo	0.24 -0.26 0.22 -0.04 0.35 -0.14	580 480 323 968	324 260 191	0.58		0.0402				
511-10 511-8 511-2 511-1 511-9 511-11 511-7 511-12 511-3 511-4		Núcleo Núcleo Borde Borde Núcleo Núcleo Núcleo	-0.26 0.22 -0.04 0.35 -0.14	480 323 968	260 191			$0.0483 \pm$	2.9 0.026	59 ± 0.0002	170.9	± 1.4
511-8 511-2 511-1 511-9 511-11 511-7 511-12 511-3 511-4		Núcleo Borde Borde Núcleo Núcleo Núcleo	0.22 -0.04 0.35 -0.14	323 968	191	0.56	36.26 ± 0.6	$0.0515 \pm$	2.0 0.02	75 ± 0.0002	175.0 ±	± 1.1
511-2 511-1 511-9 511-11 511-7 511-12 511-3 511-4		Borde Borde Núcleo Núcleo Núcleo	-0.04 0.35 -0.14	968			36.31 ± 0.7	$0.0475 \pm$	2.3 0.02	76 ± 0.0002	175.6 =	⊧ 1.2
511-1 511-9 511-11 511-7 511-12 511-3 511-4		Borde Núcleo Núcleo Núcleo	0.35 -0.14			0.61	36.09 ± 0.8	$0.0513 \pm$	2.8 0.02	76 ± 0.0002	175.8 =	₺ 1.5
511-9 511- 11 511- 7 511- 12 511- 3 511- 4		Núcleo Núcleo Núcleo	-0.14	397	596	0.64	36.18 ± 0.5	$0.0493 \pm$		77 ± 0.0001	175.8 ±	
511- 11 511- 7 511- 12 511- 3 511- 4 UTM WO		Núcleo Núcleo			168	0.44	36.00 ± 0.7	$0.0524 \pm$		77 ± 0.0002	176.0 =	
511- 7 511- 12 511- 3 511- 4 UTM WO		Núcleo	0.10	437	158	0.37	36.16 ± 0.7	0.0485 ±		77 ± 0.0002	176.1 =	
511- 12 511- 3 511- 4 UTM WO				158	57	0.37	35.95 ± 1.2	0.0504 ±		78 ± 0.0003	176.7	
511 -3 511 -4 UTM WO		Nucleo	0.16	592	235	0.41	35.78 ± 0.6	0.0509 ±		79 ± 0.0002	177.4 ±	
511- 4 UTM WO		Nidalaa	0.17	234	85	0.38	35.71 ± 0.9	0.0510 ±		30 ± 0.0003	177.7 ±	
JTM WO		Núcleo Núcleo	0.06 -2.46	469 237	154 127	0.34	35.20 ± 0.7 35.72 ± 1.5	0.0502 ± 0.0301 ±		34 ± 0.0002 37 ± 0.0006	180.5 ± 182.3 ±	
		Nucleo	-2.40	231	127	0.55	33.72 ± 1.3					
	~~ ~							Edad 200 Pb	²³⁸ U media pond		176.2	
Augstra	3S 84: 3241	11, 3447218								(n = 12; N	MSWD = 3.0; 2-sign	na)
	LH07-30	Metariolita	ı (Cerro	Prieto-Car	ina, Sono	ra)	Probeta Aldo-2 (A	gosto 07)				
								,		_		
L0730-8		Borde	0.47	471	265	0.58	36.87 ± 1.5	0.0533 ±		70 ± 0.0004	171.7 ±	
_0730 -3		Borde	0.11	678	246	0.38	36.29 ± 1.4	$0.0505 \pm$		75 ± 0.0004	175.0	
L0730-1	В	orde/Núcleo	0.46	597	189	0.33	36.08 ± 1.4	0.0532 ±		76 ± 0.0004	175.4 =	
L0730- 2		Núcleo	0.10	786	437	0.57	35.94 ± 1.4	0.0504 ±		78 ± 0.0004	176.7	
L0730- 5	N	úcleo/Borde	0.00	783	569	0.75	35.95 ± 1.4	0.0496 ±		78 ± 0.0004	176.8 =	
L0730- 6		Núcleo	-0.24	335	199	0.61	36.00 ± 1.6	0.0477 ±		78 ± 0.0005	177.0 ±	
L0730- 7		Núcleo	0.23	474	276	0.60	35.79 ± 1.5	0.0515 ±		79 ± 0.0004	177.2 ±	
L0730 -4 L0730 -9		Núcleo Borde	-0.07	625	505 367	0.84	35.46 ± 1.5 35.33 ± 1.4	0.0491 ± 0.0500 ±		32 ± 0.0004 33 ± 0.0004	179.4 ± 179.9 ±	
20730-9		Borde	0.04	867	307	0.44	33.33 ± 1.4		²³⁸ U media pond			
ITM W/	20 04. 2260	00 2445075						Edad Pb	U media pond		175.5 ±	
JIM WC	GS 84: 33602	20, 3445075								(n = 9; M	SWD = 0.92, 2-sign	na)
Muestra	<u>LH06-14</u>	<u>Granito</u>	(Cerro Prie	eto-Carina,	Sonora)	Pr	obeta Aldo-1 (Febr	rero 07)				
LH14-4		Núcleo	0.36	224	218	1.01	39.70 ± 1.5	0.0521 ±	3.8 0.02:	51 ± 0.0004	159.8 ±	± 2.4
.H14-12		Núcleo	-0.22	351	166	0.49	39.51 ± 1.4	0.0475 ±		54 ± 0.0004	161.5	
LH14-1		Borde	0.31	479	355	0.77	39.29 ± 1.2	0.0517 ±		54 ± 0.0003	161.5 =	
LH14-9		Borde	-0.01	774	1095	1.46	39.33 ± 1.1	$0.0492 \pm$	2.1 0.025	54 ± 0.0003	161.9 =	± 1.8
LH14-10		Borde	0.31	535	350	0.68	39.00 ± 1.2	$0.0518 \pm$	2.4 0.025	56 ± 0.0003	162.7	± 2.0
LH14 -6		Borde	0.01	675	454	0.69	38.97 ± 1.2	$0.0494 \pm$	2.2 0.025	57 ± 0.0003	163.3	⊧ 1.9
LH14- 11		Borde	-0.12	326	157	0.50	38.91 ± 1.3	$0.0484 \pm$	3.2 0.025	57 ± 0.0004	163.8 ±	≥ 2.2
LH14-7		Borde	0.23	409	221	0.56	38.74 ± 1.3	$0.0512 \pm$	2.9 0.02:	58 ± 0.0003	163.9	£ 2.1
LH14-2		Borde	0.19	430	238	0.57	38.55 ± 1.3	$0.0509 \pm$	2.8 0.025	59 ± 0.0003	164.8 ±	≥ 2.1
LH14-5		Borde	0.09	358	217	0.63	38.48 ± 1.3	$0.0501 \pm$		60 ± 0.0003	165.2	
LH14-3		Borde	0.46	411	188	0.47	38.13 ± 1.3	$0.0530 \pm$		51 ± 0.0003	166.1	
LH14-8		Borde	0.19	556	198	0.37	35.94 ± 1.2	0.0511 ±		78 ± 0.0003	176.6 ±	± 2.1
								Edad ²⁰⁶ Pb	^{/238} U media pond		163.2 ±	
UTM WO	GS 84: 3338	13, 3450379								(n = 11; N)	ISWD = 0.74, 2-sign	ma)
Muestra	<u>04-FP-37</u>	<u>Granito</u>	(Cerro Pr	rieto-Carin	a, Sonora) I	Probeta Alex-10 (Fe	ebrero 07)				
FP37- 2		Núcleo	0.31	625	107	0.18	86.42 ± 0.8	0.0500 ±	2.5 0.01	15 ± 0.0001	73.9 ±	+ 0.6
FP37-3		Núcleo	0.17	724	116	0.16	85.79 ± 0.9	0.0300 ±		16 ± 0.0001	74.6 ±	
FP37-4		Núcleo	0.17	660	106	0.16	83.79 ± 0.9 84.58 ± 0.9	0.0488 ± 0.0503 ±		18 ± 0.0001	75.5 ±	
FP37-8		Núcleo	-0.04	1347	377	0.29	84.21 ± 0.6	0.0303 ±		19 ± 0.0001	76.1	
FP37-1		Núcleo	0.35	654	147	0.23	83.73 ± 0.8	0.0503 ±		19 ± 0.0001	76.3	
FP37-7		Núcleo	0.42	571	101	0.18	83.63 ± 0.8	0.0508 ±		19 ± 0.0001	76.3 ±	
FP37-9		Núcleo	0.15	809	193	0.25	83.05 ± 0.7	0.0388 ±		20 ± 0.0001	77.0 ±	
FP37-6		Núcleo	0.34	1111	313	0.29	82.86 ± 0.9	0.0502 ±		20 ± 0.0001	77.1	
FP37-10		Núcleo	0.39	608	108	0.18	82.73 ± 0.9	0.0506 ±		20 ± 0.0001	77.2 ±	
FP37- 5		Borde	0.16	1079	284	0.27	81.51 ± 0.6	0.0489 ±		22 ± 0.0001	78.5 ±	± 0.5
								Edad ²⁰⁶ Pb	²³⁸ U media pond	erada =	76.3 ±	⊨ 0.4
	GS 84: 3158									(n = 8; M	ISWD = 1.73, 2-sign	ma)
	LA-ICP-MS		(0,		a .		I . Icono					
Muestra	<u>LH06-15</u>	<u>Dacita</u>	(Cerro Priet	o-Carina, l	Sonora)	Pro	beta ICGEO-1 (Die	ciembre (18)				
LH15- 10		Núcleo	N.M.	946	950	0.89	40.39 ± 2.3	0.0513 ±	1.3 0.024	48 ± 2.2617	158 ±	± 4
LH15-8		Núcleo	N.M.	1615	1050	0.58	39.86 ± 2.4	0.0491 ±		51 ± 2.3515	160 =	
LH15- 26		Núcleo	N.M.	766	71	0.71	39.62 ± 0.7	0.0493 ±		52 ± 0.6735	161 ±	
LH15 -30		Núcleo	N.M.	1926	1542	0.85	39.65 ± 0.8	0.0501 ±		52 ± 0.8327	161 ±	
LH15 -37		Núcleo	N.M.	2287	2461	0.98	39.59 ± 1.6	0.0515 ±		53 ± 1.6231	161 ±	
LH15- 24		Borde	N.M.	1938	1850	0.76	39.23 ± 0.8	$0.0497 \pm$		55 ± 0.8239	162 ±	
LH15- 25		Núcleo	N.M.	516	423	1.07	39.31 ± 0.9	$0.0503 \pm$		54 ± 0.9041	162 ±	
LH15- 34		Núcleo	N.M.	1776	1708	0.80	39.32 ± 1.7	$0.0504 \pm$	2.0 0.025	54 ± 1.6516	162 =	± 3
LH15-9	N	úcleo/borde	N.M.	818	727	0.79	39.03 ± 2.1	0.0499 ±	1.5 0.025	56 ± 2.1468	163 ±	± 3

Continua en la siguiente página

Tabla 5. Continuación.

Nombre	Comentarios	Común	U	Th	Th/U	²³⁸ U/ error	²⁰⁷ Pb/ error	²⁰⁶ Pb/ error	²⁰⁶ Pb/ ²³⁸ U** error
del análisis	Núcleo/Borde	²⁰⁶ Pb (%)	(ppm)	(ppm)		²⁰⁶ Pb‡ (%)	²⁰⁶ Pb‡ (%)	²³⁸ U** (%)	Edad (Ma) (Ma)
LH15-16	Núcleo	N.M.	1993	1840	0.41	39.17 ± 2.7	0.0483 ± 1.6	0.0255 ± 2.6635	163 ± 4
LH15-18	Núcleo/borde	N.M.	1408	652	0.64	39.03 ± 2.8	0.0532 ± 1.9	0.0256 ± 2.8103	163 ± 5
LH15-19	Núcleo	N.M.	1014	96	0.48	38.97 ± 0.9	0.0510 ± 2.0	0.0257 ± 0.9353	163 ± 2
LH15-20	Núcleo	N.M.	2196	1571	1.55	38.96 ± 1.1	0.0516 ± 1.9	0.0257 ± 1.0908	163 ± 2
LH15-40	Núcleo/borde	N.M.	808	77	0.94	39.02 ± 2.0	0.0534 ± 6.1	0.0256 ± 2.0289	163 ± 3
LH15-15	Núcleo	N.M.	2805	2295	0.82	38.76 ± 2.5	0.0510 ± 1.4	0.0258 ± 2.5194	164 ± 4
LH15-31	Núcleo	N.M.	1064	614	0.55	38.82 ± 0.9	0.0575 ± 2.3	0.0258 ± 0.8929	164 ± 1
LH15-22	Núcleo	N.M.	1813	3161	0.73	38.69 ± 0.8	0.0527 ± 2.1	0.0259 ± 0.8124	165 ± 1
LH15-39	Núcleo	N.M.	3158	2830	0.74	38.55 ± 1.8	0.0534 ± 2.0	0.0259 ± 1.8504	165 ± 3
LH15-12	Núcleo	N.M.	868	80	1.14	38.33 ± 2.5	0.0504 ± 1.4	0.0261 ± 2.4914	166 ± 4
LH15-21	Núcleo	N.M.	1437	771	0.85	38.36 ± 0.8	0.0494 ± 1.6	0.0261 ± 0.8055	166 ± 1
LH15-28	Núcleo	N.M.	2459	2948	0.60	38.21 ± 0.8	0.0505 ± 2.0	0.0262 ± 0.7642	167 ± 1
LH15-33	Núcleo	N.M.	776	74	0.49	38.04 ± 2.3	0.0871 ± 7.0	0.0263 ± 2.3203	167 ± 4
LH15-13	Núcleo	N.M.	2236	2868	1.02	37.91 ± 2.3	0.0501 ± 1.4	0.0264 ± 2.3124	168 ± 4
LH15-32	Núcleo	N.M.	1794	1215	0.96	37.88 ± 1.2	0.0516 ± 2.1	0.0264 ± 1.2121	168 ± 2
LH15-36	Núcleo	N.M.	1452	892	1.15	37.82 ± 1.8	0.0658 ± 2.9	0.0264 ± 1.7776	168 ± 3
LH15-38	Núcleo	N.M.	1296	710	1.20	37.57 ± 2.0	0.0506 ± 2.3	0.0266 ± 2.0285	169 ± 3
LH15-6	Núcleo	N.M.	3191	2241	0.62	37.51 ± 2.4	0.0493 ± 1.3	0.0267 ± 2.3631	170 ± 4
LH15-27	Núcleo	N.M.	1716	1472	0.51	37.08 ± 2.7	0.0597 ± 3.0	0.0270 ± 2.6696	172 ± 5
LH15-7	Núcleo/borde	N.M.	2143	1364	0.57	36.60 ± 2.3	0.0545 ± 1.4	0.0273 ± 2.2694	174 ± 4
LH15-14	Núcleo/borde	N.M.	1953	2251	0.73	36.11 ± 2.5	0.0487 ± 1.4	0.0277 ± 2.4919	176 ± 4
							Edad 206Pb/238U med	lia ponderada =	163.9 ± 1.0

UTM WGS 84: 332952, 3451395

(n = 30; MSWD = 2.6; 2-sigma)

‡Relaciones isotópicas no corregidas.

Todos los errores de las relaciones isótopicas y edades, para cada análisis, se presentan a 1 sigma. Las edades promedio ponderadas ²⁰⁶Pb/²³⁸U, resportadas a 2-sigma, se obtubieron haciendo el diagrama weighted average con el programa computacional Isoplot (Ludwig, 2003), empleando solo las edades que se encuentran en negritas en esta tabla.

MSWD: Mean Squared Weigthed Deviate (desviación media cuadrática ponderada).

N.M.: No medido

^{**}SHRIMP-RG = Relaciones isotópicas corregidas por Pb inicial usando la cantidad de ²⁰⁷Pb y los valores iniciales terrestres promedios correspondientes de Stacey y Kramers (1975).

^{**}LA-ICP-MS = Relaciones isotópicas corregidas por Pb inicial usando los valores iniciales promedios correspondientes de Stacey y Kramers (1975), aplicando el método de Andersen (2002).

Tabla 6. Datos analíticos de U-Th-Pb de SHRIMP-RG y LA-ICP-MS de zircones de cristalización y heredados (> 1000 Ma) de rocas mesozoicas del área Mina La Herradura, NW de Sonora, México.

Nombre	Comentarios	²⁰⁶ Pb	U	Th	Th/U	²³⁸ U/	error	²⁰⁷ Pb/	error	²⁰⁶ Pb/	error	²⁰⁷ Pb/	error	²⁰⁷ Pb/	error	²⁰⁶ Pb/	error	error	(%)	²⁰⁷ Pb/ ²⁰⁶ Pb	error	²⁰⁶ Pb/ ²³⁸ U^	error
del análisis	Núcleo/Borde	Común (%)	(ppm)	(ppm)		²⁰⁶ Pb‡	(%)	²⁰⁶ Pb‡	(%)	²³⁸ U^	(%)	²⁰⁶ Pb**	(%)	²³⁵ U**	(%)	²³⁸ U**	(%)	correl.	discor."	Edad (Ma)	(Ma)	Edad (Ma)	(Ma)
Técnica SHRI							(/		()		(1.1)		(**)		(**)		(***)				(.,/		
Muestra LH		o (Sierrita	Blanca, Se	nnora)	Prohet	a Aldo-1 (E	inero (17)																
		_ ,				,																	
LH42-10	Borde	6.31	2480	292	0.12	89.42 ±		0.0974 =			± 0.0002	0.0569			± 29.5	0.0106		0.048					± 1.5
LH42-9 LH42-1	Borde	0.08	1050	290	0.29	92.80 ±		0.0480 =			± 0.0001	0.0468 :			± 3.3	0.0108		0.356					± 0.8
LH42-7	Núcleo	0.33	590	153 474	0.27	92.20 ±		0.0500 ± 0.0473 ±		0.0108 :		0.0454 :			± 9.5	0.0108		0.146					± 0.9 ± 0.8
LH42-7 LH42-6	Borde Borde	-0.01 0.00	1308 1065	390	0.37	90.92 ± 90.88 ±		0.0473 =			± 0.0001	0.0473 : 0.0457 :			± 2.4 ± 3.8	0.0110 0.0110		0.469 0.310					± 0.8 ± 0.8
LH42-12			2482	842	0.35					0.0110 :													
LH42-8	Borde Borde	0.03 0.34	2802	395	0.33	88.34 ± 87.30 ±		0.0477 ± 0.0502 ±		0.0113	± 0.0001	0.0469 : 0.0476 :			± 2.0 ± 2.7	0.0113 0.0114		0.536 0.385					± 0.8 ± 0.8
LH42-11	Borde	1.13	941	326	0.15	63.60 ±		0.0569			± 0.0001 ± 0.0002	0.0476 :			± 2.7 ± 2.4	0.0114		0.383					± 0.8 ± 1.1
LH42-3	Núcleo	0.47	267	94	0.36	6.14 ±		0.0369 =			± 0.0002 ± 0.0019	0.0337			± 1.5	0.1628		0.749	10	1069	± 20	99.4	± 1.1
LH42-4	Núcleo	0.47	494	44	0.30	3.63 ±		0.1025 =			± 0.0019 ± 0.0032	0.1025			± 1.3	0.1028		0.749	6	1670			
LH42-2	Núcleo	0.54	125	93	0.09	3.41 ±		0.1023 =			± 0.0032 ± 0.0041	0.1023			± 1.5 ± 1.6	0.2738		0.798	4	1719			
1.1142-2	Nucleo	0.34	123	93	0.77	3.41 =	1.3	0.1039 =	E 0.9	0.2913	± 0.0041	0.1055	± 1.0	4.23	± 1.0	0.2926	± 1.3			ia ponderada =		(0.7	± 1.3
																		Euau II	" C ineu	ia poliuci aua -			
UTM WGS 84	: 325113, 3459145																				(n = 5; N	ISWD = 1.4; 2-	sigma)
Técnica LA-IO	CD MS**																						
		1 /7	16: 7			\ D	1 . 411	1 1/0 ::	1 00)														
Muestra <u>LH</u>	<u> Metaar</u>	<u>ndesita</u> (Zo	na Mina L	.a Herrad	ura, Sono	ora) Pi	robeta Ald	lo-1 (Septier	mbre (18)														
LH51- 16	Núcleo	N.M.	624	1664	1.40	59.77 ±	- 1 1	0.0510 =	+ 13	N.D.	N.D.	0.0510	+ 1 3	0.12	± 1.7	0.0167	+ 11	0.650				107	+ 1
LH51- 31	Borde	N.M.	566	48	1.15	59.70 ±		0.0507 =		N.D.	N.D.	0.0507			± 8.5	0.0168		0.120				107	
LH51- 38	Borde	N.M.	501	42	0.93	49.07 ±		0.0496 =		N.D.	N.D.	0.0496			± 7.2	0.0204		0.270					± 3
LH51-40	Borde	N.M.	1874	1965	2.39	44.43 ±		0.0544		N.D.	N.D.	0.0544			± 7.3	0.0225		0.170					± 2
LH51- 35	Borde	N.M.	618	308	1.17	41.32 ±		0.0500 =		N.D.	N.D.	0.0500			± 7.2	0.0242		0.180					± 2
LH51-8	Núcleo	N.M.	164	153	1.27	41.03 ±		0.0510 =		N.D.	N.D.	0.0510			± 3.3	0.0244		0.440					± 2
LH51- 25	Borde	N.M.	371	34	0.94	40.82 ±		0.0413 =		N.D.	N.D.	0.0413			± 9.5	0.0245		0.100					± 2
LH51- 18	Borde	N.M.	4888	7681	0.72	40.68 ±		0.0519 =		N.D.	N.D.	0.0519			± 3.0	0.0246		0.400				157	
LH51-30	Borde	N.M.	221	19	1.54	40.68 ±		0.0521 =		N.D.	N.D.	0.0521		0.18		0.0246		0.160				157	
LH51-7	Borde	N.M.	389	33	0.92	40.34 ±		0.0497 =		N.D.	N.D.	0.0497			± 5.3	0.0248		0.380				158	
LH51-9	Borde	N.M.	539	555	1.10	40.39 ±		0.0522 =		N.D.	N.D.	0.0522			± 4.9	0.0248		0.390				158	
LH51-32	Borde	N.M.	345	597	1.09	39.83 ±		0.0492 =		N.D.	N.D.	0.0492			± 8.9	0.0251		0.270				160	
LH51-10	Borde	N.M.	516	736	1.10	38.60 ±		0.0475 =		N.D.	N.D.	0.0475			± 5.0	0.0259		0.280				165	
LH51- 14	Borde	N.M.	872	467	2.37	38.60 ±		0.0527 =		N.D.	N.D.	0.0527			± 5.4	0.0259		0.320					± 3
LH51- 26	Borde	N.M.	421	408	0.89	30.78 ±		0.0627 =		N.D.	N.D.	0.0627			± 9.5	0.0325		0.340				206	
LH51-12	Borde	N.M.	291	361	0.48	30.03 ±		0.0626		N.D.	N.D.	0.0626			± 6.4	0.0323		0.790					± 10
LH51- 13	Borde	N.M.	375	33	0.43	4.52 ±		0.0020 =		N.D.	N.D.	0.0020			± 4.7	0.0333		0.730	22	1574	± 35	211	_ 10
LH51- 33	Núcleo	N.M.	4293	5563	0.44	4.82 ±		0.0997 =		N.D.	N.D.	0.0997			± 9.9	0.2075		0.490	33	1618			
LH51-20	Núcleo	N.M.	388	314	1.49	3.42 ±		0.1004		N.D.	N.D.	0.1004		4.04		0.2923		0.490	-1		± 137		
LH51- 39	Núcleo	N.M.	652	346	0.53	4.57 ±		0.1004 =		N.D.	N.D.	0.1004			± 9.2	0.2923		0.520	30	1660			
LH51- 34	Borde	N.M.	1120	1380	0.33	4.07 ±		0.1020 =		N.D.	N.D.	0.1020			± 9.2 ± 8.2	0.2460		0.550	20	1707			
LH51- 37	Núcleo	N.M.	700	919	0.13	3.16 ±		0.1046 =		N.D.	N.D.	0.1046			± 7.1	0.2460		0.330	-4	1707			
LH51- 27	Borde	N.M.	321	341	0.47	3.32 ±		0.1047 =		N.D.	N.D.	0.1047			± 7.1 ± 8.6	0.3100		0.270	3	1745			
LH51-22	Borde	N.M.	58	97	0.43	3.32 ≡ 3.16 ±		0.1083		N.D.	N.D. N.D.	0.1068			± 8.6 ± 1.6	0.3013		0.120	0		± 134 ± 25		
	Dorde	14.141.	50	21	0.44	5.10 =	- V. /	0.1003 =	- 1.J	N.D.	N.D.	0.1003	- 1.4	4.73	± 1.0	0.5107	± U.7			ia ponderada =		157.0	. 20
																		Euau Pt	, U mea	_			± 2.8
UTM WGS 84	: 321825, 3449192																				(n = 10; N	ISWD = 2.9; 2-9	sigma)

[‡] Relaciones atómicas no corregidas.

[^] Relaciones isotópicas corregidas de Pb inicial usando los valores de 207Pb.

^{*}SHRIMP-RG = Relaciones isotópicas corregidas por Pb inicial usando la cantidad de 264 Pb y los valores iniciales terrestres promedios correspondientes de Stacey y Kramers (1975).

^{**}LA-ICP-MS = Relaciones isotópicas corregidas por Pb inicial usando los valores iniciales promedios correspondientes de Stacey y Kramers (1975), aplicando el método de Andersen (2002).

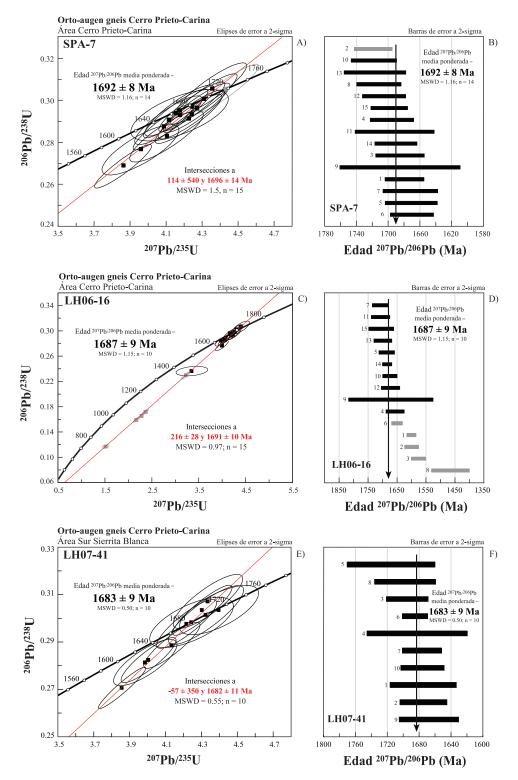
Todos los errores de las relaciones isótopicas y edades, para cada análisis, se presentan a 1 sigma. Las edades promedio ponderadas 206Pb/238U, reportadas a 2-sigma, se obtubieron haciendo el diagrama weighted average con el programa computacional Isoplot (Ludwig , 2003), empleando solo las edades que se encuentran en negritas en esta tabla.

^{*}El porcentaje de discordancia fue obtenido con la ecuación (100*[(edad ³⁰Pb/⁵⁰Pb)/(edad ³⁰Pb/⁵⁰Pb/⁵⁰Pb)/(edad ³⁰Pb/⁵⁰Pb/⁵⁰Pb)/(edad ³⁰Pb/⁵⁰Pb/⁵⁰Pb)/(edad ³⁰Pb/⁵⁰Pb/

MSWD: Mean Squared Weigthed Deviate (desviación media cuadrática ponderada).

N.M.: No medido y N.D.: No disponible.

 $\textbf{Tabla 7. Datos} \ ^{40}\text{Ar} \beta ^{9}\text{Ar de calentamiento gradual por horno de las muestras cenozoicas del área Mina La Herradura, NW de Sonora.}$


Paso	Temp.	% ³⁹ Ar	Radiogénico	³⁹ Ar _k	40Ar*/	K/Ca	K/Cl	Edad F	Error
	°C	del total	Producido (%)	(Moles)	$^{39}Ar_k$	Aparente	Aparente	Aparente (Ma) ((Ma)
LH07-30	<u>Meta</u>	riolita Carina	concentrado m	oscovita J	= 0.004328	± 0.50% pes	o = 22.2 mg	#157KD48	
A	600	0.7	39.8	0.0082	6.007	2.22	82	46.30 ± 0).77
В	700	3.2	81.6	0.0387	4.721	3.68	594	36.49 ± 0	
C	750	4.3	91.1	0.0517	4.718	1.44	1146	36.46 ± 0	
D	800	6.1	92.4	0.0742	5.026	0.84	1240	38.82 ± 0	
E F	825 850	4.5 4.4	95.0 97.3	0.0546 0.0535	5.261 5.522	1.02 4.82	1464 1732	40.62 ± 0 42.61 ± 0	
G	875	4.5	97.3 97.7	0.0533	5.778	12.46	1783	42.61 ± 0 44.56 ± 0	
Н	900	5.0	97.5	0.0611	5.983	17.04	3280	46.12 ± 0	
I	925	6.3	97.9	0.0761	6.162	23.49	5323	47.48 ± 0	
J	950	7.3	98.2	0.0882	6.220	29.85	9705	47.92 ± 0	
K	1000	14.3	98.5	0.1737	6.304	46.87	22427	48.56 ± 0	
L	1050	18.9	98.5	0.2290	6.362	54.18	10776	49.00 ± 0	
M N	1100 1150	9.6 5.0	97.0 91.5	0.1161 0.0608	6.313 6.276	29.52 15.79	3222 916	48.63 ± 0 48.35 ± 0	
O	1200	2.0	73.3	0.0008	6.749	5.65	51	51.94 ± 0	
P	1250	2.2	84.2	0.0261	8.412	5.47	186	64.51 ± 0	
Q	1450	1.5	82.4	0.0179	11.257	3.22	162	85.82 ± 0	
R	1650	0.2	69.5	0.0026	32.827	0.72	48	239.66 ± 2	2.91
Gas total			94.9	1.2112	6.163	26.44	7189	47.49	
UTM WG	iS 84: 336	020, 3445075							
LH06-23	Ande	sita basáltica	La Herradura	matriz volcár	nica $J = 0$	0.004372 ± 0.50	0% $peso = 2$	42.6 mg #142KD48	
A	600	0.3	6.2	0.0083	1.071	1.06	22	8.43 ± 1	32
В	700	11.7	39.1	0.2919	2.374	2.26	31	18.63 ± 0	
Č	750	6.8	64.0	0.1697	3.160	1.20	38	24.75 ± 1	
D	800	7.9	72.8	0.1981	3.154	0.66	59	24.71 ± 0	
E	850	8.3	83.0	0.2066	3.158	0.56	121	24.74 ± 0	
F	900	9.2	88.8	0.2295	3.123	0.62	227	24.46 ± 0	
G	950	9.4	91.1	0.2362	3.069	0.74	346	24.04 ± 0	
H I	1000 1050	9.0 7.4	92.0 91.3	0.2250	3.063 3.021	0.67 0.50	368 324	24.00 ± 0 23.67 ± 0	
J	1100	7.4	91.3 84.7	0.1853 0.1751	2.996	0.30	283	23.48 ± 0	
K	1150	6.4	74.7	0.1589	3.046	0.37	241	23.86 ± 0	
L	1200	4.1	71.4	0.1019	2.961	0.20	138	23.21 ± 0	
M	1250	3.0	68.7	0.0753	2.976	0.08	140	23.32 ± 0	0.07
171			73.0	0.1509	3.030	0.10	166	23.74 ± 0	
N	1450	6.0							
N O	1650	3.2	63.2	0.0805	3.113	0.11	156	24.39 ± 0	
N					3.113 3.516	0.11 0.24	156 84	$\begin{array}{ccc} 24.39 & \pm & 0 \\ 27.52 & \pm & 0 \end{array}$	
N O P Gas total	1650 1650	3.2 0.3	63.2 23.7 75.5	0.0805					
N O P Gas total	1650 1650	3.2	63.2 23.7 75.5	0.0805 0.0079	3.516	0.24	84	27.52 ± 0	
N O P Gas total UTM WG	1650 1650 88 84: 320	3.2 0.3	63.2 23.7 75.5	0.0805 0.0079 2.5009	3.516	0.24	84 192	27.52 ± 0	
N O P Gas total UTM WG	1650 1650 3S 84: 320 <u>Dacit</u>	3.2 0.3 231, 3452086 a El Dipolo	63.2 23.7 75.5 matriz volcánica	0.0805 0.0079 2.5009 $J = 0.004$	3.516 2.989 367 ± 0.50%	0.24 0.74 $6 peso = 242$	84 192 2.1 mg #14	27.52 ± 0 23.42 $44KD48$).95
N O P Gas total UTM WG LH06-25	1650 1650 88 84: 320 <u>Dacit</u> 700	3.2 0.3 231, 3452086 22.1	63.2 23.7 75.5 matriz volcánica 6.2	0.0805 0.0079 2.5009 $J = 0.004$ 0.5532	3.516 2.989 $367 \pm 0.50\%$ 2.311	0.24 0.74 % peso = 242 1.68	84 192 2.1 mg #14 32	27.52 ± 0 23.42 $44KD48$ 18.11 ± 0).95
N O P Gas total UTM WG LH06-25 A B	1650 1650 68 84: 320 Dacit 700 750	3.2 0.3 231, 3452086 24 El Dipolo 22.1 10.6	63.2 23.7 75.5 matriz volcánica 6.2 22.2	0.0805 0.0079 2.5009 a $J = 0.004$ 0.5532 0.2642	3.516 2.989 367 ± 0.509 2.311 2.755	0.24 0.74 % peso = 242 1.68 2.48	84 192 2.1 mg #14 32 55	27.52 ± 0 23.42 $44KD48$ 18.11 ± 0 21.57 ± 0).76).73
N O P Gas total UTM WG LH06-25 A B C	1650 1650 88 84: 320 Dacit 700 750 800	3.2 0.3 231, 3452086 22.1 10.6 10.9	63.2 23.7 75.5 matriz volcánics 6.2 22.2 25.3	0.0805 0.0079 2.5009 a J = 0.004. 0.5532 0.2642 0.2726	3.516 2.989 367 ± 0.509 2.311 2.755 2.877	0.24 0.74 % peso = 242 1.68 2.48 1.64	84 192 2.1 mg #14 32 55 55	27.52 ± 0 23.42 $14KD48$ 18.11 ± 0 21.57 ± 0 22.53 ± 0).76).73).45
N O P Gas total UTM WG LH06-25 A B C D	1650 1650 88 84: 320 Dacit 700 750 800 850	3.2 0.3 231, 3452086 22.1 10.6 10.9 9.8	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1	0.0805 0.0079 2.5009 a J = 0.004. 0.5532 0.2642 0.2726 0.2437	3.516 2.989 367 ± 0.509 2.311 2.755 2.877 3.057	0.24 0.74 0.74 0.76 peso = 242 1.68 2.48 1.64 1.16	84 192 2.1 mg #14 32 55 55 54	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.93 ± 0).76).73).45).75
N O P Gas total UTM WG LH06-25 A B C	1650 1650 88 84: 320 Dacit 700 750 800	3.2 0.3 231, 3452086 22.1 10.6 10.9	63.2 23.7 75.5 matriz volcánics 6.2 22.2 25.3	0.0805 0.0079 2.5009 a J = 0.004. 0.5532 0.2642 0.2726	3.516 2.989 367 ± 0.509 2.311 2.755 2.877	0.24 0.74 % peso = 242 1.68 2.48 1.64	84 192 2.1 mg #14 32 55 55	27.52 ± 0 23.42 $14KD48$ 18.11 ± 0 21.57 ± 0 22.53 ± 0).76).73).45).75).21
N O P Gas total UTM WG LH06-25 A B C D E	1650 1650 68 84: 320 Dacit 700 750 800 850 900	3.2 0.3 231, 3452086 22.1 10.6 10.9 9.8 10.9	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6	0.0805 0.0079 2.5009 a J = 0.004. 0.5532 0.2642 0.2726 0.2437 0.2721	3.516 2.989 367 ± 0.50% 2.311 2.755 2.877 3.057 2.97	0.24 0.74 % peso = 242 1.68 2.48 1.64 1.16 0.71	84 192 2.1 mg #14 32 55 55 54 55	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.93 ± 0 23.25 ± 0).76).73).45).75).21).32
N O P Gas total UTM WG LH06-25 A B C D E F	1650 1650 88 84: 320 Dacit 700 750 800 850 900 950	3.2 0.3 231, 3452086 22.1 10.6 10.9 9.8 10.9 11.5	63.2 23.7 75.5 matriz volcánics 6.2 22.2 25.3 27.1 27.6 26.0	0.0805 0.0079 2.5009 2.5009 0.5532 0.2642 0.2726 0.2437 0.2721 0.2867	3.516 2.989 367 ± 0.50% 2.311 2.755 2.877 3.057 2.97 2.985	0.24 0.74 6 peso = 242 1.68 2.48 1.64 1.16 0.71 0.57	84 192 2.1 mg #1.4 32 55 55 54 55 52	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.93 ± 0 23.25 ± 0 23.36 ± 0	0.76 0.73 0.45 0.75 0.21 0.32
N O P Gas total UTM WG LH06-25 A B C D E F G	1650 1650 88 84: 320 Dacit 700 750 800 850 900 950 1000	3.2 0.3 231, 3452086 a El Dipolo 22.1 10.6 10.9 9.8 10.9 11.5 10.1	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2	0.0805 0.0079 2.5009 2.5009 0.5532 0.2642 0.2726 0.2437 0.2721 0.2867	3.516 2.989 367 ± 0.509 2.311 2.755 2.877 3.057 2.97 2.985 2.712	0.24 0.74 6 peso = 242 1.68 2.48 1.64 1.16 0.71 0.57 0.53	84 192 2.1 mg #1.4 32 55 55 55 54 55 52 47	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.93 ± 0 23.25 ± 0 23.36 ± 0 21.24 ± 0	0.76 0.73 0.45 0.75 0.21 0.32 0.63
N O P Gas total UTM WG LH06-25 A B C D E F G H	1650 1650 1650 88 84: 320 Dacit 700 750 800 850 900 950 1000 1050	3.2 0.3 231, 3452086 22.1 10.6 10.9 9.8 10.9 11.5 10.1 6.4	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2 15.3	0.0805 0.0079 2.5009 2.5009 0.5532 0.2642 0.2726 0.2437 0.2721 0.2867 0.2534	3.516 2.989 367 ± 0.509 2.311 2.755 2.877 3.057 2.97 2.985 2.712 2.979	0.24 0.74 6 peso = 242 1.68 2.48 1.64 1.16 0.71 0.57 0.53 0.52	84 192 2.1 mg #14 32 55 55 54 55 52 47 39	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.93 ± 0 23.25 ± 0 23.36 ± 0 21.24 ± 0 23.32 ± 0	0.76 0.73 0.45 0.75 0.21 0.32 0.63 0.65
N O P Gas total UTM WG LH06-25 A B C D E F G H I	1650 1650 1650 88 84: 320 700 750 800 850 900 950 1000 1050 1100	3.2 0.3 231, 3452086 a El Dipolo 22.1 10.6 10.9 9.8 10.9 11.5 10.1 6.4 3.1	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2 15.3 7.1	0.0805 0.0079 2.5009 1	3.516 2.989 367 ± 0.50% 2.311 2.755 2.877 3.057 2.97 2.985 2.712 2.979 2.411	0.24 0.74 6 peso = 242 1.68 2.48 1.64 1.16 0.71 0.57 0.53 0.52 0.49	84 192 2.1 mg #14 32 55 55 54 55 52 47 39 28	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.93 ± 0 23.25 ± 0 23.36 ± 0 21.24 ± 0 23.32 ± 0 18.90 ± 1 18.30 ± 3 20.66 ± 1	0.95 0.76 0.73 0.45 0.21 0.32 0.65 1.56 3.81 1.69
N O P Gas total UTM WG LH06-25 A B C D E F G H I J K L	1650 1650 1650 168 84: 320	3.2 0.3 231, 3452086 22.1 10.6 10.9 9.8 10.9 11.5 10.1 6.4 3.1 1.8	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2 15.3 7.1 3.3 2.7 2.3	0.0805 0.0079 2.5009 1	3.516 2.989 367 ± 0.50% 2.311 2.755 2.877 3.057 2.97 2.985 2.712 2.979 2.411 2.335 2.637 2.533	0.24 0.74 6 peso = 242 1.68 2.48 1.64 1.16 0.71 0.57 0.53 0.52 0.49 0.40 0.23 0.20	84 192 2.1 mg #14 32 55 55 54 55 52 47 39 28 16 9 11	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.93 ± 0 23.25 ± 0 23.36 ± 0 21.24 ± 0 23.32 ± 0 18.90 ± 1 18.30 ± 3 20.66 ± 1 19.84 ± 5	0.95 0.76 0.73 0.45 0.75 0.21 0.63 0.65 1.56 3.81 1.69 5.48
N O P Gas total UTM WG LH06-25 A B C D E F G H I J K L M	1650 1650 1650 168 84: 320	3.2 0.3 2231, 3452086 22.1 10.6 10.9 9.8 10.9 11.5 10.1 6.4 3.1 1.8 1.2 0.4	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2 15.3 7.1 3.3 2.7 2.3 3.9	0.0805 0.0079 2.5009 1	3.516 2.989 367 ± 0.50% 2.311 2.755 2.877 3.057 2.97 2.985 2.712 2.979 2.411 2.335 2.637 2.533 5.241	0.24 0.74 6 peso = 242 1.68 2.48 1.64 1.16 0.71 0.57 0.53 0.52 0.49 0.40 0.23 0.20 0.22	84 192 2.1 mg #14 32 55 55 54 55 52 47 39 28 16 9 11 10	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.93 ± 0 23.25 ± 0 23.36 ± 0 21.24 ± 0 23.32 ± 0 18.90 ± 1 18.30 ± 3 20.66 ± 1 19.84 ± 5 40.83 ± 0	0.76 0.73 0.45 0.75 0.21 0.63 0.65 1.56 3.81 1.69 5.48
N O P Gas total UTM WG LH06-25 A B C D E F G H I J K L	1650 1650 1650 168 84: 320	3.2 0.3 231, 3452086 22.1 10.6 10.9 9.8 10.9 11.5 10.1 6.4 3.1 1.8	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2 15.3 7.1 3.3 2.7 2.3	0.0805 0.0079 2.5009 1	3.516 2.989 367 ± 0.50% 2.311 2.755 2.877 3.057 2.97 2.985 2.712 2.979 2.411 2.335 2.637 2.533	0.24 0.74 6 peso = 242 1.68 2.48 1.64 1.16 0.71 0.57 0.53 0.52 0.49 0.40 0.23 0.20	84 192 2.1 mg #14 32 55 55 54 55 52 47 39 28 16 9 11	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.93 ± 0 23.25 ± 0 23.36 ± 0 21.24 ± 0 23.32 ± 0 18.90 ± 1 18.30 ± 3 20.66 ± 1 19.84 ± 5	0.76 0.73 0.45 0.75 0.21 0.63 0.65 1.56 3.81 1.69 5.48
N O P Gas total UTM WG LH06-25 A B C D E F G H I J K L M N	1650 1650 1650 168 84: 320	3.2 0.3 2231, 3452086 22.1 10.6 10.9 9.8 10.9 11.5 10.1 6.4 3.1 1.8 1.2 0.4	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2 15.3 7.1 3.3 2.7 2.3 3.9 4.2	0.0805 0.0079 2.5009 1	3.516 2.989 367 ± 0.50% 2.311 2.755 2.877 2.97 2.985 2.712 2.979 2.411 2.335 2.637 2.533 5.241 5.596	0.24 0.74 0.74 1.68 2.48 1.64 1.16 0.71 0.57 0.53 0.52 0.49 0.40 0.23 0.20 0.22	84 192 2.1 mg #14 32 55 55 54 55 52 47 39 28 16 9 11 10 11	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.93 ± 0 23.25 ± 0 23.36 ± 0 21.24 ± 0 23.32 ± 0 18.90 ± 1 18.30 ± 3 20.66 ± 1 19.84 ± 5 40.83 ± 0 43.56 ± 3	0.76 0.73 0.45 0.75 0.21 0.63 0.65 1.56 3.81 1.69 5.48
N O P Gas total UTM WG LH06-25 A B C D E F G H I J K L M N N Gas total	1650 1650 1650 168 84: 320	3.2 0.3 231, 3452086 22.1 10.6 10.9 9.8 10.9 11.5 10.1 6.4 3.1 1.8 1.2 0.4 1.0	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2 15.3 7.1 3.3 2.7 2.3 3.9 4.2	0.0805 0.0079 2.5009 1	3.516 2.989 367 ± 0.50% 2.311 2.755 2.877 3.057 2.97 2.985 2.712 2.979 2.411 2.335 2.637 2.533 5.241	0.24 0.74 6 peso = 242 1.68 2.48 1.64 1.16 0.71 0.57 0.53 0.52 0.49 0.40 0.23 0.20 0.22	84 192 2.1 mg #14 32 55 55 54 55 52 47 39 28 16 9 11 10	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.93 ± 0 23.25 ± 0 23.36 ± 0 21.24 ± 0 23.32 ± 0 18.90 ± 1 18.30 ± 3 20.66 ± 1 19.84 ± 5 40.83 ± 0	0.76 0.73 0.45 0.75 0.21 0.63 0.65 1.56 3.81 1.69 5.48
N O P Gas total UTM WG LH06-25 A B C D E F G H I J K L M N N Gas total	1650 1650 1650 168 84: 320	3.2 0.3 2231, 3452086 22.1 10.6 10.9 9.8 10.9 11.5 10.1 6.4 3.1 1.8 1.2 0.4	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2 15.3 7.1 3.3 2.7 2.3 3.9 4.2	0.0805 0.0079 2.5009 1	3.516 2.989 367 ± 0.50% 2.311 2.755 2.877 2.97 2.985 2.712 2.979 2.411 2.335 2.637 2.533 5.241 5.596	0.24 0.74 0.74 1.68 2.48 1.64 1.16 0.71 0.57 0.53 0.52 0.49 0.40 0.23 0.20 0.22	84 192 2.1 mg #14 32 55 55 54 55 52 47 39 28 16 9 11 10 11	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.93 ± 0 23.25 ± 0 23.36 ± 0 21.24 ± 0 23.32 ± 0 18.90 ± 1 18.30 ± 3 20.66 ± 1 19.84 ± 5 40.83 ± 0 43.56 ± 3	0.76 0.73 0.45 0.75 0.21 0.63 0.65 1.56 3.81 1.69 5.48
N O P Gas total UTM WG LH06-25 A B C D E F G H I J K L M N Gas total UTM WG	1650 1650 1650 168 84: 320	3.2 0.3 231, 3452086 22.1 10.6 10.9 9.8 10.9 11.5 10.1 6.4 3.1 1.8 1.2 0.4 1.0 0.1	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2 15.3 7.1 3.3 2.7 2.3 3.9 4.2	0.0805 0.0079 2.5009 1	3.516 2.989 367 ± 0.50% 2.311 2.755 2.877 2.97 2.985 2.712 2.979 2.411 2.335 2.637 2.533 5.241 5.596 2.767	0.24 0.74 0.74 1.68 2.48 1.64 1.16 0.71 0.57 0.53 0.52 0.49 0.40 0.23 0.20 0.22	84 192 2.1 mg #14 32 55 55 54 55 52 47 39 28 16 9 11 10 11 45	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.93 ± 0 23.25 ± 0 23.36 ± 0 21.24 ± 0 23.32 ± 0 18.90 ± 1 18.30 ± 3 20.66 ± 1 19.84 ± 5 40.83 ± 0 43.56 ± 3	0.95 0.76 0.73 0.45 0.75 0.21 0.63 0.65 1.56 0.88 1.56 0.98 8.84
N O P Gas total UTM WG LH06-25 A B C D E F G H I J K L M N Gas total	1650 1650 1650 168 84: 320 700 750 800 850 900 950 1000 1050 1100 1250 1450 1650	3.2 0.3 231, 3452086 22.1 10.6 10.9 9.8 10.9 11.5 10.1 6.4 3.1 1.8 1.2 0.4 1.0 0.1	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2 15.3 7.1 3.3 2.7 2.3 3.9 4.2	0.0805 0.0079 2.5009 1	3.516 2.989 367 ± 0.509 2.311 2.755 2.877 3.057 2.985 2.712 2.979 2.411 2.335 2.637 2.533 5.241 5.596 2.767	0.24 0.74 0.74 6 peso = 242 1.68 2.48 1.64 1.16 0.71 0.57 0.53 0.52 0.49 0.40 0.23 0.20 0.22 0.20 1.18	84 192 2.1 mg #14 32 55 54 55 52 47 39 28 16 9 11 10 11 45	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.93 ± 0 23.25 ± 0 23.36 ± 0 21.24 ± 0 23.32 ± 0 18.90 ± 1 18.30 ± 3 20.66 ± 1 19.84 ± 5 40.83 ± 0 43.56 ± 3 21.67	0.95 0.76 0.73 0.45 0.75 0.03 0.065 0.56 3.81 0.98 3.84
N O P Gas total UTM WG LH06-25 A B C D E F G H I J K L M N Gas total UTM WG	1650 1650 1650 168 84: 320	3.2 0.3 231, 3452086 22.1 10.6 10.9 9.8 10.9 11.5 10.1 6.4 3.1 1.8 1.2 0.4 1.0 0.1	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2 15.3 7.1 3.3 2.7 2.3 3.9 4.2	0.0805 0.0079 2.5009 1	3.516 2.989 367 ± 0.50% 2.311 2.755 2.877 2.97 2.985 2.712 2.979 2.411 2.335 2.637 2.533 5.241 5.596 2.767	0.24 0.74 0.74 1.68 2.48 1.64 1.16 0.71 0.57 0.53 0.52 0.49 0.40 0.23 0.20 0.22 0.20	84 192 2.1 mg #14 32 55 55 54 55 52 47 39 28 16 9 11 10 11 45	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.93 ± 0 23.25 ± 0 23.36 ± 0 21.24 ± 0 23.32 ± 0 18.90 ± 1 18.30 ± 3 20.66 ± 1 19.84 ± 5 40.83 ± 0 43.56 ± 3	0.95 0.76 0.73 0.45 0.75 0.63 0.65 1.56 3.81 1.69 5.48 8.3.84
N O P Gas total UTM WG LH06-25 A B C D E F G H I J K L M N Gas total UTM WG	1650 1650 1650 168 84: 320	3.2 0.3 231, 3452086 22.1 10.6 10.9 9.8 10.9 11.5 10.1 6.4 3.1 1.8 1.2 0.4 1.0 0.1	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2 15.3 7.1 3.3 2.7 2.3 3.9 4.2 18.5	0.0805 0.0079 2.5009 1	3.516 2.989 $367 \pm 0.50\%$ 2.311 2.755 2.877 3.057 2.985 2.712 2.979 2.411 2.335 2.637 2.533 5.241 5.596 2.767	0.24 0.74 0.74 0.74 0.74 0.74 0.68 0.68 0.71 0.57 0.53 0.52 0.49 0.40 0.23 0.20 0.22 0.20 0.118 0.004625 ± 0.56 0.31	84 192 2.1 mg #14 32 55 55 54 55 52 47 39 28 16 9 11 10 11 45 peso = 2.	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.36 ± 0 23.25 ± 0 23.36 ± 0 21.24 ± 0 23.32 ± 0 18.90 ± 1 18.30 ± 3 20.66 ± 1 19.84 ± 5 40.83 ± 0 43.56 ± 3 21.67 58.3 mg #148KD48	0.95 0.76 0.73 0.45 0.75 0.63 0.65 1.56 3.81 1.69 5.48 0.98 3.84
N O P Gas total UTM WG LH06-25 A B C D E F G H I J K L M N Gas total UTM WG LH06-41 A B C D	1650 1650 1650 168 84: 320	3.2 0.3 231, 3452086 22.1 10.6 10.9 9.8 10.9 11.5 10.1 6.4 3.1 1.8 1.2 0.4 1.0 0.1	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2 15.3 7.1 3.3 2.7 2.3 3.9 4.2 18.5	0.0805 0.0079 2.5009 1	3.516 2.989 367 ± 0.502 2.311 2.755 2.877 3.057 2.97 2.985 2.712 2.97 2.411 2.335 2.637 2.533 5.241 5.596 2.767 dica $J = 0$ 2.194 2.147	0.24 0.74 0.74 0.74 0.74 0.74 0.68 0.68 0.71 0.57 0.53 0.52 0.49 0.40 0.23 0.20 0.22 0.20 0.118 0.004625 ± 0.56 0.31 0.37 0.40 0.33	84 192 2.1 mg #14 32 55 55 54 55 52 47 39 28 16 9 11 10 11 45 peso = 2.	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.39 ± 0 23.25 ± 0 23.36 ± 0 21.24 ± 0 23.32 ± 0 18.90 ± 1 18.30 ± 3 20.66 ± 1 19.84 ± 5 40.83 ± 0 43.56 ± 3 21.67 58.3 mg #148KD48	0.95 0.76 0.73 0.45 0.75 0.21 0.32 0.63 0.65 0.56 3.81 0.98 3.84
N O P Gas total UTM WG LH06-25 A B C D E F G H I J K L M N Gas total UTM WG	1650 1650 1650 168 84: 320	3.2 0.3 231, 3452086 22.1 10.6 10.9 9.8 10.9 9.8 10.1 6.4 3.1 1.8 1.2 0.4 1.0 0.1	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2 15.3 7.1 3.3 2.7 2.3 3.9 4.2 18.5	0.0805 0.0079 2.5009 1	3.516 2.989 367 ± 0.502 2.311 2.755 2.877 3.057 2.97 2.985 2.712 2.97 2.411 2.335 2.637 2.533 5.241 5.596 2.767 dica $J = 0$ 2.194 2.147 3.035 2.052 2.052 2.1969	0.24 0.74 0.74 6 peso = 242 1.68 2.48 1.64 1.16 0.71 0.57 0.53 0.52 0.49 0.40 0.23 0.20 0.22 0.20 1.18 0.004625 ± 0.56 0.31 0.37 0.40 0.33 0.35	84 192 2.1 mg #1.4 32 55 55 54 55 52 47 39 28 16 9 11 10 11 45 17 58 73 64 338	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.36 ± 0 23.36 ± 0 21.24 ± 0 23.32 ± 0 18.90 ± 1 18.30 ± 3 20.66 ± 1 19.84 ± 5 40.83 ± 0 43.56 ± 3 21.67 58.3 mg #148KD48 18.22 ± 1 17.82 ± 5 25.14 ± 2 17.04 ± 2 16.36 ± 5	0.95 0.76 0.73 0.45 0.75 0.21 0.63 0.65 6.88 1.69 6.48 0.98 3.84
N O P Gas total UTM WG LH06-25 A B C D E F G H I J K L M N Gas total UTM WG LH06-41 A B C D E F G H I J F C D E F G H I J K L M N N C G B C D E F G H I J F C D E F G H I J F C D E F G H I J F F G H I J F F G H I J F F G H I J F F G H I J F F G H I J F F G G H I J F F G G H I J F F G G H I J F F G G H I J F F G G D E F F G G H I J F F G G D E F F F G G D E F F F G G D E F F F G G D E F F F G G D E F F G G D E F F G G D E F F G G D E F F G G D E F F G G D E F F G G D E F F G G G D E F F G G G D E F F G G G D E F F G G G G G G G G G G G G G G G G G	1650 1650 1650 168 84: 320 700 750 800 850 900 950 1000 1050 1150 1200 1250 1450 1650 1650 1650	3.2 0.3 231, 3452086 22.1 10.6 10.9 9.8 10.9 11.5 10.1 6.4 3.1 1.8 1.2 0.4 1.0 0.1	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2 15.3 7.1 3.3 2.7 2.3 3.9 4.2 18.5	0.0805 0.0079 2.5009 1	3.516 2.989 367 ± 0.502 2.311 2.755 2.877 2.985 2.771 2.985 2.712 2.979 2.411 2.335 2.637 2.533 5.241 5.596 2.767 2.194 2.143 3.035 2.052 3.052 3.052 3.052 3.052 3.052 3.052 3.052 3.052 3.052 3.052 3.052 3.052 3.052 3.052	0.24 0.74 0.74 0.74 0.74 1.68 2.48 1.64 1.16 0.71 0.57 0.53 0.52 0.49 0.40 0.23 0.20 0.22 0.20 1.18 0.004625 ± 0.56 0.31 0.37 0.40 0.33 0.35 0.11	84 192 2.1 mg #14 32 55 54 55 54 73 9 11 10 11 45 17 58 73 64 338 141	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.39 ± 0 23.25 ± 0 23.36 ± 0 21.24 ± 0 23.32 ± 0 18.90 ± 1 18.30 ± 3 20.66 ± 1 19.84 ± 5 40.83 ± 0 43.56 ± 3 21.67 58.3 mg #148KD48 18.22 ± 1 17.82 ± 5 25.14 ± 2 17.04 ± 2 16.36 ± 5 23.62 ± 0	0.95 0.76 0.73 0.45 0.75 0.32 0.65 0.56 0.81 0.69 0.88 0.88 0.74 0.35 0.59 0.88 0.74 0.35 0.59 0.59 0.79
N O P Gas total UTM WG LH06-25 A B C D E F G H I J K L M N Gas total UTM WG LH06-41 A B C D E F G G H G G G H G G G G G G G G G G G G	1650 1650 1650 168 84: 320	3.2 0.3 231, 3452086 a EI Dipola 22.1 10.6 10.9 9.8 10.9 9.8 10.1 6.4 3.1 1.8 1.2 0.4 1.0 0.1 766, 3456271 1.0 1.9 2.7 4.2 3.1	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2 15.3 7.1 3.3 2.7 2.3 3.9 4.2 18.5	0.0805 0.0079 2.5009 1 J = 0.004. 0.5532 0.2642 0.2726 0.2437 0.2534 0.0457 0.02534 0.0457 0.0299 0.0102 0.0247 0.0033 2.4974 0.0142 0.0254 0.0374 0.0374 0.0382 0.0419	3.516 2.989 $367 \pm 0.50\%$ 2.311 2.755 2.877 3.057 2.97 2.985 2.712 2.979 2.411 2.335 2.637 2.533 5.241 5.596 2.767 2.194 2.147 3.035 2.052 1.969 2.849 1.355	0.24 0.74 0.74 0.74 0.74 0.74 0.8	84 192 2.1 mg #14 32 55 55 54 55 52 47 39 28 16 9 11 10 11 45 peso = 2. 17 58 73 64 338 141 98	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.36 ± 0 23.25 ± 0 23.36 ± 0 21.24 ± 0 23.32 ± 0 18.90 ± 1 18.30 ± 3 20.66 ± 1 19.84 ± 5 40.83 ± 0 43.56 ± 3 21.67 58.3 mg #I48KD48	0.95 0.76 0.73 0.45 0.21 0.32 0.65 1.56 3.81 1.69 5.48 0.98 3.84 1.74 5.35 2.59 2.86 0.79 7.05
N O P Gas total UTM WG LH06-25 A B C D E F G H I J K L M N Gas total UTM WG LH06-41 A B C D E F G H H H H H H H H H H H H H H H H H H	1650 1650 1650 168 84: 320	3.2 0.3 231, 3452086 22.1 10.6 10.9 9.8 10.9 11.5 10.1 6.4 3.1 1.8 1.2 0.4 1.0 0.1 766, 3456271 2.7 2.7 2.7 2.7 4.2 3.0 3.1 3.1	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2 15.3 7.1 3.3 2.7 2.3 3.9 4.2 18.5 Sierrita Blanca 2.4 9.2 23.0 14.2 27.5 27.1 10.6 20.4	0.0805 0.0079 2.5009 1	3.516 2.989 367 ± 0.509 2.311 2.755 2.877 3.057 2.985 2.712 2.979 2.411 2.335 2.637 2.533 5.241 5.596 2.767 3.035 2.144 2.147 3.035 2.052 2.849 2.849 2.849 2.849 2.849 2.849 2.849 2.849 2.849 2.849 2.849 2.849	0.24 0.74 0.74 0.74 0.74 0.74 0.8 2.48 1.64 1.16 0.71 0.57 0.53 0.52 0.49 0.40 0.23 0.20 0.22 0.20 1.18 0.004625 ± 0.50 0.31 0.37 0.40 0.33 0.35 0.11 0.04 0.07	84 192 2.1 mg #14 32 55 54 55 54 73 9 11 10 11 45 17 58 73 64 338 141 98 217	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.25 ± 0 23.36 ± 0 21.24 ± 0 23.32 ± 0 18.90 ± 1 18.30 ± 3 20.66 ± 1 19.84 ± 5 40.83 ± 0 43.56 ± 3 21.67 58.3 mg #I48KD48 18.22 ± 1 17.82 ± 5 25.14 ± 2 17.04 ± 2 16.36 ± 5 23.62 ± 0 11.27 ± 7 11.06 ± 3	0.76 0.73 0.45 0.75 0.21 0.32 0.63 0.65 1.56 1.56 1.69 5.48 0.98 3.84
N O P Gas total UTM WG LH06-25 A B C D E F G H I J K L M N Gas total UTM WG LH06-41 A B C D E F G H I I I I I I I I I I I I I I I I I I	1650 1650 1650 168 84: 320 700 750 800 850 900 950 1000 1050 1150 1200 1250 1450 1650 1650 88 84: 317 700 750 800 850 950 1000 1000 1000 1000 1000 1000 100	3.2 0.3 231, 3452086 22.1 10.6 10.9 9.8 10.9 11.5 10.1 6.4 3.1 1.8 1.2 0.4 1.0 0.1 1.7 766, 3456271 2.7 2.7 4.2 3.0 3.1 3.4 4.1	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2 15.3 7.1 3.3 2.7 2.3 3.9 4.2 18.5 Sierrita Blanca 2.4 9.2 23.0 14.2 27.5 27.1 10.6 20.4 68.7	0.0805 0.0079 2.5009 1	3.516 2.989 367 ± 0.502 2.311 2.755 2.877 2.985 2.772 2.985 2.772 2.985 2.712 2.979 2.411 2.335 2.637 2.533 5.241 5.596 2.767 dica $J = 0$ 2.194 2.147 3.035 2.052 1.949 2.849 1.355 1.329 2.756	0.24 0.74 0.74 6 peso = 242 1.68 2.48 1.64 1.16 0.71 0.57 0.53 0.52 0.49 0.40 0.23 0.20 0.22 0.20 1.18 0.004625 ± 0.56 0.31 0.37 0.40 0.33 0.35 0.11 0.04 0.07 0.43	84 192 2.1 mg #14 32 55 54 55 52 47 39 28 16 9 11 10 11 45 26 peso = 2. 17 58 73 64 338 141 98 217 467	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.39 ± 0 23.25 ± 0 23.36 ± 0 21.24 ± 0 23.32 ± 0 18.90 ± 1 18.30 ± 3 20.66 ± 1 19.84 ± 5 40.83 ± 0 43.56 ± 3 21.67 58.3 mg #148KD48 18.22 ± 1 17.82 ± 5 25.14 ± 2 17.04 ± 2 16.36 ± 5 23.62 ± 0 11.27 ± 7 11.06 ± 3 22.85 ± 0	0.76 0.73 0.45 0.75 0.21 0.32 1.63 0.65 1.56 3.81 1.69 5.48 8 1.74 5.35 2.59 0.79 0.79
N O P Gas total UTM WG LH06-25 A B C D E F G H I J K L M N Gas total UTM WG LH06-41 A B C D E F G H I J J K L J J K L J J K L J J K L J J J J	1650 1650 1650 168 84: 320	3.2 0.3 231, 3452086 a EI Dipola 22.1 10.6 10.9 9.8 10.9 11.5 10.1 6.4 3.1 1.8 1.2 0.4 1.0 0.1 766, 3456271 1.0 1.9 2.7 4.2 3.0 3.1 3.1 4.2 4.3 1.9 9.8 1.0 9.8 1.0 9.8 1.0 9.8 1.0 9.8 1.0 9.8 1.0 9.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2 15.3 7.1 3.3 2.7 2.3 3.9 4.2 18.5 Sierrita Blanca 2.4 9.2 23.0 14.2 27.5 27.1 10.6 20.4 68.7 74.2	0.0805 0.0079 2.5009 1	3.516 2.989 2.989 2.311 2.755 2.877 3.057 2.97 2.985 2.712 2.979 2.411 2.335 2.5241 2.533 5.241 5.596 2.767 2.194 2.147 3.035 2.052 1.969 2.849 2.147 3.035 2.052 2.194 2.147 3.035 2.052	0.24 0.74 0.74 0.74 0.74 0.74 0.74 0.68 0.68 0.71 0.57 0.53 0.52 0.49 0.40 0.23 0.20 0.22 0.20 0.118 0.004625 ± 0.56 0.31 0.37 0.40 0.33 0.35 0.11 0.04 0.07 0.43 0.47	84 192 2.1 mg #14 32 55 55 54 55 52 47 39 28 16 9 11 10 11 45 peso = 2. 17 58 73 64 338 141 98 217 467 356	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.36 ± 0 23.36 ± 0 23.36 ± 0 23.36 ± 0 21.24 ± 0 23.32 ± 0 18.90 ± 1 19.84 ± 5 40.83 ± 0 43.56 ± 3 21.67 58.3 mg #148KD48 18.22 ± 1 17.82 ± 5 25.14 ± 2 17.04 ± 2 16.36 ± 5 23.62 ± 0 11.27 ± 7 11.06 ± 3 22.85 ± 0 24.71 ± 0	0.76 0.73 0.75 0.75 0.21 0.32 0.63 1.56 1.56 1.58 1.74 1.35 1.59 1.88 1.74 1.35 1.59 1.69 1.79 1.69 1.79 1.69 1.79
N O P Gas total UTM WG LH06-25 A B C D E F G H I J K L M N Gas total UTM WG LH06-41 A B C D E F G H I J K L M N	1650 1650 1650 168 84: 320	3.2 0.3 231, 3452086 22.1 10.6 10.9 9.8 10.9 11.5 10.1 6.4 3.1 1.8 1.2 0.4 1.0 0.1 766, 3456271 2.7 2.7 2.7 2.7 2.7 4.2 3.0 3.1 3.4 4.1 3.2	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2 15.3 7.1 3.3 2.7 2.3 3.9 4.2 18.5 Sierrita Blanca 2.4 9.2 23.0 14.2 27.5 27.1 10.6 68.7 74.2 74.2	0.0805 0.0079 2.5009 1	3.516 2.989 367 ± 0.509 2.311 2.755 2.877 3.057 2.997 2.985 2.712 2.979 2.411 2.335 2.637 2.533 5.241 5.596 2.767 3.035 2.637 2.144 2.147 3.035 2.052 2.979 2.849 2.132 2.849 2.756 2.976 2.984 2.993	0.24 0.74 0.74 0.74 0.74 0.74 0.8 2.48 1.64 1.16 0.71 0.57 0.53 0.52 0.49 0.40 0.23 0.20 0.22 0.20 1.18 0.004625 ± 0.56 0.31 0.37 0.40 0.33 0.35 0.11 0.04 0.07 0.43 0.47 0.59	84 192 2.1 mg #14 32 55 54 55 52 47 39 28 16 9 11 10 11 45 peso = 2. 17 58 73 64 338 141 98 217 467 356 314	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.25 ± 0 23.36 ± 0 21.24 ± 0 23.32 ± 0 18.90 ± 1 18.30 ± 3 20.66 ± 1 19.84 ± 5 40.83 ± 0 43.56 ± 3 21.67 58.3 mg #148KD48 18.22 ± 1 17.82 ± 5 25.14 ± 2 17.04 ± 2 16.36 ± 5 23.62 ± 0 11.27 ± 7 11.06 ± 3 22.85 ± 0 24.71 ± 0 24.80 ± 1	0.95 0.76 0.73 0.45 0.75 0.63 0.63 1.56 0.81 1.69 0.98 0.83 0.84 0.98
N O P Gas total UTM WG LH06-25 A B C D E F G H I J K L M N Gas total UTM WG LH06-41 A B C D E F G H I J K L M N L M N L L M N L L L M N L L L L L	1650 1650 1650 168 84: 320 700 750 800 850 900 950 1000 1050 1150 1200 1250 1450 1650 88 84: 317 Dique 850 950 1000 1050 1150 1150 1150 1150 115	3.2 0.3 231, 3452086 22.1 10.6 10.9 9.8 10.9 11.5 10.1 6.4 3.1 1.8 1.2 0.4 1.0 0.1 1.7 66, 3456271 2.7 2.7 4.2 3.0 3.1 3.1 3.1 4.1 4.1 3.1 3.1 3.1 3.1 4.1 4.1 5.1 5.1 5.1 5.1 6.1 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2 15.3 7.1 3.3 2.7 2.3 3.9 4.2 18.5 Sierrita Blanca 2.4 9.2 23.0 14.2 27.5 27.1 10.6 20.4 68.7 74.2 72.1 68.7	0.0805 0.0079 2.5009 1	3.516 2.989 367 ± 0.502 2.311 2.755 2.877 2.985 2.772 2.985 2.772 2.985 2.712 2.979 2.411 2.335 2.637 2.533 5.241 5.596 2.767 3.035 2.194 2.141 3.035	0.24 0.74 0.74 0.74 0.74 1.68 2.48 1.64 1.16 0.71 0.57 0.53 0.52 0.49 0.40 0.23 0.20 0.22 0.20 1.18 0.004625 ± 0.56 0.31 0.37 0.40 0.33 0.35 0.11 0.04 0.07 0.43 0.47 0.59 0.77	84 192 2.1 mg #14 32 55 54 55 54 73 28 16 9 11 10 11 45 17 58 73 64 338 141 98 217 467 356 314 297	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.39 ± 0 23.25 ± 0 23.36 ± 0 21.24 ± 0 23.32 ± 0 18.90 ± 1 18.30 ± 3 20.66 ± 1 19.84 ± 5 40.83 ± 0 43.56 ± 3 21.67 58.3 mg #148KD48 18.22 ± 1 17.82 ± 5 25.14 ± 2 16.36 ± 5 23.62 ± 0 11.27 ± 7 11.06 ± 3 22.85 ± 0 24.71 ± 0 24.80 ± 1 23.34 ± 0	0.95 0.76 0.73 0.45 0.75 0.63 0.65 0.56 0.56 0.98 0.84 0.98 0.84 0.84 0.84 0.85 0.86
N O P Gas total UTM WG LH06-25 A B C D E F G H I J K L M N Gas total UTM WG LH06-41 A B C D E F G H I J K L M N	1650 1650 1650 168 84: 320	3.2 0.3 231, 3452086 22.1 10.6 10.9 9.8 10.9 11.5 10.1 6.4 3.1 1.8 1.2 0.4 1.0 0.1 766, 3456271 2.7 2.7 2.7 2.7 2.7 4.2 3.0 3.1 3.4 4.1 3.2	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2 15.3 7.1 3.3 2.7 2.3 3.9 4.2 18.5 Sierrita Blanca 2.4 9.2 23.0 14.2 27.5 27.1 10.6 68.7 74.2 74.2	0.0805 0.0079 2.5009 1	3.516 2.989 367 ± 0.509 2.311 2.755 2.877 3.057 2.997 2.985 2.712 2.979 2.411 2.335 2.637 2.533 5.241 5.596 2.767 3.035 2.637 2.144 2.147 3.035 2.052 2.979 2.849 2.132 2.849 2.756 2.976 2.984 2.993	0.24 0.74 0.74 0.74 0.74 0.74 0.8 2.48 1.64 1.16 0.71 0.57 0.53 0.52 0.49 0.40 0.23 0.20 0.22 0.20 1.18 0.004625 ± 0.56 0.31 0.37 0.40 0.33 0.35 0.11 0.04 0.07 0.43 0.47 0.59	84 192 2.1 mg #14 32 55 54 55 52 47 39 28 16 9 11 10 11 45 peso = 2. 17 58 73 64 338 141 98 217 467 356 314	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.25 ± 0 23.36 ± 0 21.24 ± 0 23.32 ± 0 18.90 ± 1 18.30 ± 3 20.66 ± 1 19.84 ± 5 40.83 ± 0 43.56 ± 3 21.67 58.3 mg #148KD48 18.22 ± 1 17.82 ± 5 25.14 ± 2 17.04 ± 2 16.36 ± 5 23.62 ± 0 11.27 ± 7 11.06 ± 3 22.85 ± 0 24.71 ± 0 24.80 ± 1	0.76 0.73 0.45 0.75 0.63 0.63 1.56 1.56 1.56 1.58 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74
N O P Gas total UTM WG LH06-25 A B C D E F G H I J K L M N Gas total UTM WG LH06-41 A B C D E F G H I J K L M N N Gas total UTM WG LH06-41 A B C D E F G H I J K L M N N C D E F G H I J K L M N N C D E F G H I J K L M N N C D E F G H I J K L M N N C D E F G H I J K L M N N C D E F G H I J K L M N N C D E F G H I J K L M N N C D E F G H I J K L M N N C D E F G H I J K L M N N C D E E F G H I J K L M N N C D E E F G H I J K L M M N C D D E E F G H I J K L M M M D E D E E F G H I J K L M M M M M M M M M M M M M M M M M M	1650 1650 1650 168 84: 320	3.2 0.3 231, 3452086 22.1 10.6 10.9 9.8 10.9 9.8 10.9 11.5 10.1 6.4 3.1 1.8 1.2 0.4 1.0 0.1 766, 3456271 e andestrico S 1.0 1.9 2.7 4.2 3.0 3.1 3.4 4.1 3.1 3.4 4.1 3.1 3.1 3.4 4.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2 15.3 7.1 3.3 2.7 2.3 3.9 4.2 18.5 Sierrita Blanca 2.4 9.2 23.0 14.2 27.5 27.1 10.6 20.4 68.7 74.2 72.1 68.7 74.2 72.1 64.8 52.8	0.0805 0.0079 2.5009 1	3.516 2.989 2.311 2.755 2.877 3.057 2.97 2.985 2.712 2.979 2.411 2.335 2.637 2.533 5.241 5.596 2.767 2.194 2.147 3.035 2.052 1.969 2.149 2.147 3.035 2.052 1.969 2.849 2.841 2.993 2.815 2.993 2.815 2.993 2.815 2.993 2.815 2.993	0.24 0.74 0.74 0.74 0.74 0.74 0.74 0.89 0.99	84 192 2.1 mg #14 32 55 55 54 55 52 47 39 28 16 9 11 10 11 45 peso = 2. 17 58 73 64 338 141 98 217 467 356 314 297 152	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.39 ± 0 23.25 ± 0 23.36 ± 0 21.24 ± 0 23.32 ± 0 18.90 ± 1 18.30 ± 3 20.66 ± 1 19.84 ± 5 40.83 ± 0 43.56 ± 3 21.67 58.3 mg #148KD48 18.22 ± 1 17.82 ± 5 25.14 ± 2 17.04 ± 2 16.36 ± 5 23.62 ± 0 11.27 ± 7 11.06 ± 3 22.85 ± 0 24.71 ± 0 24.80 ± 1 23.34 ± 0 22.56 ± 2 25.62 ± 0 24.71 ± 0 24.80 ± 1 23.34 ± 0 22.56 ± 2	0.76 0.73 0.45 0.21 0.32 0.63 0.56 0.38 0.56 0.38 0.56 0.38 0.56 0.38 0.56 0.38 0.56 0.38 0.38 0.38 0.39 0.39 0.39 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.4
N O P Gas total UTM WG LH06-25 A B C D E F G H I J K L M N Gas total UTM WG LH06-41 A B C D E F G H I J K L M N N Gas total UTM WG LH06-41 A B C D E F G H I J K L M N N C D E F G H I J N N C D E F G H I J K L M N N N	1650 1650 1650 1650 1650 1650 1650 1750 1750 1850 1950 1000 1050 1150 1200 1250 1450 1650 1650 1650 1650 1650 1650	3.2 0.3 231, 3452086 22.1 10.6 10.9 9.8 10.9 11.5 10.1 6.4 3.1 1.8 1.2 0.4 1.0 0.1 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	63.2 23.7 75.5 matriz volcánica 6.2 22.2 25.3 27.1 27.6 26.0 20.2 15.3 7.1 3.3 2.7 2.3 3.9 4.2 18.5 Sierrita Blanca 2.4 9.2 23.0 14.2 27.5 27.1 10.6 68.7 74.2 74.2 74.2 74.2 74.2 74.2 74.2 74	0.0805 0.0079 2.5009 2.5009 1	3.516 2.989 367 ± 0.509 2.311 2.755 2.877 3.057 2.97 2.985 2.712 2.979 2.411 2.335 2.637 2.533 5.241 5.596 2.767 2.147	0.24 0.74 0.74 0.74 0.74 0.74 0.74 0.76 0.8 0.9 0.9	84 192 2.1 mg #14 32 55 54 55 52 47 39 28 16 9 11 10 11 45 26 27 467 336 314 297 152 134	27.52 ± 0 23.42 18.11 ± 0 21.57 ± 0 22.53 ± 0 23.25 ± 0 23.36 ± 0 21.24 ± 0 23.32 ± 0 18.90 ± 1 18.30 ± 3 20.66 ± 1 19.84 ± 5 40.83 ± 0 43.56 ± 3 21.67 58.3 mg #148KD48 18.22 ± 1 17.82 ± 5 25.14 ± 2 17.04 ± 2 16.36 ± 5 23.62 ± 0 11.27 ± 7 11.06 ± 3 22.85 ± 0 24.71 ± 0 24.80 ± 1 23.34 ± 0 22.56 ± 2 24.62 ± 0 24.62 ± 0 24.62 ± 0 24.62 ± 0 24.62 ± 0 24.62 ± 0 24.62 ± 0 24.62 ± 0 24.62 ± 0 24.62 ± 0 24.62 ± 0	0.76 0.73 0.45 0.21 0.32 0.63 0.56 0.38 0.56 0.38 0.56 0.38 0.56 0.38 0.56 0.38 0.56 0.38 0.38 0.38 0.39 0.39 0.39 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.4

Edades calculadas asumiendo un valor inicial de 40 Ar 36 Ar = 295.5.

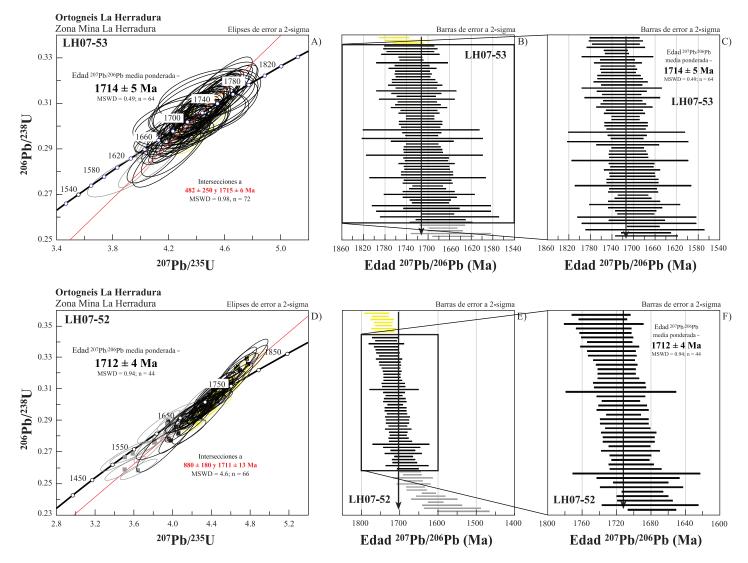
Las estimaciones de precisión en la edad son al nivel 1-sigma.

Las edades de los pasos individuales no incluyen error en el parametro de irradiación J.

No se calcula error para la edad de gas total.

Figura 27. Datos U-Pb de zircones obtenidos por la técnica SHRIMP-RG de las muestras del orto-augen gneis de la zona de Cerro Prieto-Carina. (A) Gráfico de concordia tipo Wetherill con todos los datos de la muestra SPA-7. (B) Gráfico de edad ²⁰⁷Pb/²⁰⁶Pb media ponderada de la muestra SPA-7. (C) Gráfico de concordia de la muestra LH06-16. (D) Gráfico de edad media ponderada de la muestra LH06-16. (E) Gráfico de concordia con los datos de la muestra LH07-41. (F) Gráfico de edad media ponderada de la muestra LH07-41. En negro, análisis concordantes utilizados para calcular la edad media ponderada, y en gris, los análisis excluidos para la obtención de la edad media ponderada y que posiblemente indican pérdida de plomo y/o herencia.

media calculada (elipse, cuadro y barra en color gris). La agrupación de análisis concordantes se usó para obtener una edad ²⁰⁷Pb/²⁰⁶Pb media ponderada de 1692 ± 8 Ma (2-sigma; MSWD = 1.16, n = 14) que interpretamos como la edad de cristalización del protolito plutónico félsico de esta roca gnéisica. El MSWD (*Mean Square of Weighted Deviates*) es un indicador del grado de ajuste estadístico de la regresión de los datos experimentales que generan incertidumbre, y sirve para expresar la cantidad de dispersión de los análisis, en este caso de datos de zircones. Comúnmente los valores aceptables de MSWD son los <2.5, e indican un ajuste aceptable de los datos. El total de los análisis permitió generar una línea de discordia con intersecciones a 1696 ± 14 Ma (intersección superior) y a 144 ± 540 Ma (intersección inferior). La edad de intersección inferior pudiera interpretarse como pérdida de Pb radiogénico en algunos de los zircones de esta muestra. La edad de intersección superior 1696 ± 14 Ma corresponde con la edad media ponderada calculada para esta muestra.


De una segunda muestra de la unidad de orto-augen gneis <u>LH06-16</u>, perteneciente a la zona Cerro Prieto-Carina (Figura 8), se obtuvieron cantidades de zircón del orden de cientos a miles de granos en su proceso de separado. De esta población se seleccionaron y analizaron 15 zircones utilizando la técnica SHRIMP-RG (Tabla 3) y los datos se graficaron en el diagrama de concordia tipo Wetherill (Figura 27C). El resultado fue que 10 de estos análisis son relativamente concordantes (datos en color negro) y 5 son muy discordantes (datos en color gris). De los primeros 10 análisis concordantes se obtuvo una edad $^{207}\text{Pb}/^{206}\text{Pb}$ (media ponderada) de 1687 ± 9 Ma (2-sigma; MSWD = 1.15, n = 10) [Figura 27D]. Se interpreta que esta edad promedio es la edad de cristalización del protolito ígneo de esta roca gnéisica. Los datos de los 15 análisis generaron una línea de discordia con intersecciones a 1691 ± 10 Ma y a 216 ± 28 Ma. La edad de intersección inferior indica el proceso geológico al que se le puede atribuir la notable pérdida de Pb que afecta mayormente a los 5 cristales de zircón descartados para calcular la edad media ponderada. Dicho proceso pudiera estar relacionado a la intrusión del granito Carina del Jurásico Medio que se encuentra relativamente cerca del lugar donde se recolectó la muestra paleoproterozoica LH06-16 (Figura 8).

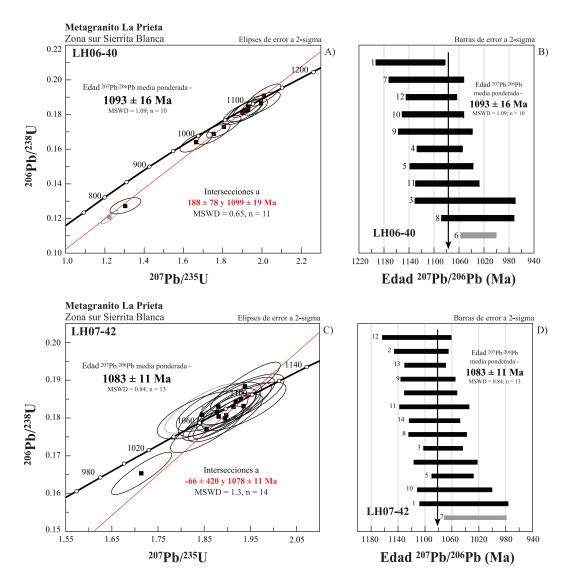
Una tercera muestra de orto-augen gneis, *LH07-41*, que se colectó en uno de los afloramientos que se extienden al sur de Sierrita Blanca (Figura 9), contiene gran cantidad de zircones de color amarillo translúcido. Una porción de 10 cristales se fechó por la técnica SHRIMP-RG (Tabla 3), y una vez graficados en el diagrama de concordia Wetherill (Figura 27E), se aprecia que todo el grupo resulta relativamente concordante obteniéndose una edad 207 Pb/ 206 Pb (media ponderada) de 1683 ± 9 Ma (2-sigma; MSWD = 0.5, n = 10) [Figura 27F]. Con la escasa discordancia que presentan los datos se obtuvo una línea de discordia con una intersección superior de 1682 ± 9 Ma, edad casi idéntica a la edad media ponderada calculada, y una edad de intersección inferior a -57 \pm 350 Ma. Tanto la edad promedio como la edad de intersección superior indican el tiempo geológico en el que se formó el protolito granítico de este orto-augen gneis.

Cabe aclarar que las tres edades obtenidas para esta unidad son indistinguibles dentro del error analítico.

5.2.2. Ortogneis La Herradura

La muestra *LH07-53* se colectó en la zona norte de las instalaciones de la Mina La Herradura (Figura 10). De esta muestra de ortogneis se obtuvieron miles de zircones con colores rosados translúcidos. Se analizó un grupo de 95 zircones utilizando la técnica LA-ICP-MS (Tabla 3), de los cuales se descartaron 23 por presentar una mala señal analítica posiblemente debido a fluctuaciones en la instrumentación durante el análisis o por haber realizado una mezcla considerable de dominios en los zircones al momento del análisis. Tampoco se puede descartar que estos análisis representen mezcla de zircón con inclusiones de otros minerales (principalmente apatitos). Los mejores 72 análisis se graficaron en un diagrama de concordia tipo Wetherill (Figura 28A) apreciándose una agrupación de 64 zircones relativamente concordantes (datos en negro). Los otros 8 zircones son discordantes (datos en gris y amarillo) y se descartaron para calcular la edad media ponderada. La edad ²⁰⁷Pb/²⁰⁶Pb (media ponderada) de estos 64 datos concordantes es de 1714 ± 5 Ma (2-sigma; MSWD = 0.49, n = 64) [Figuras 28B y 28C]. Se interpreta que esta es la edad de cristalización del protolito ígneo plutónico del ortogneis La Herradura.

Figura 28. Datos U-Pb de zircones obtenidos por la técnica LA-ICP-MS de las muestras del ortogneis paleoproterozoico La Herradura en la zona Mina La Herradura. (A) Gráfico de concordia tipo Wetherill con todos los datos de la muestra LH07-53. (B y C) Gráficos de edad ²⁰⁷Pb/²⁰⁶Pb media ponderada de la muestra LH07-53. (D) Gráfico de concordia con todos los datos de la muestra LH07-52. (E y F) Gráficos de la edad ²⁰⁷Pb/²⁰⁶Pb media ponderada de la muestra LH07-52. En negro, análisis concordantes utilizados para calcular la edad media ponderada, y en amarillo, los análisis de zircones con algún grado de herencia; y en gris, los análisis de zircones con pérdida de plomo.


Dentro del grupo de los 8 datos discordantes, 3 de ellos presentan las edades más antiguas (datos en amarillo), y posiblemente sean el resultado de mezcla de sectores heredados y sobrecrecimientos magmáticos de los zircones. Mientras que los últimos 5 análisis (datos en gris), y más jóvenes, presentan una pérdida evidente de plomo. Los datos de los 72 zircones generan una línea de discordia con una intersección superior a 1714 ± 9 Ma y con una intersección inferior a 482 ± 250 Ma.

De una segunda muestra del ortogneis La Herradura (*LH07-52*) [Figura 40] se obtuvo gran cantidad de zircones, y de estos se fechó un total de 85 granos con la técnica LA-ICP-MS. De estos análisis se descartó un total de 19 análisis por las mismas razones expuestas para la muestra anterior de ortogneis. En el gráfico de concordia, de los 66 zircones restantes (Figura 28C), se observa que 44 de estos presentan comportamiento concordante y 22 de ellos son discordantes. Con los zircones concordantes se obtuvo una edad ²⁰⁷Pb/²⁰⁶Pb (media ponderada) de 1712 ± 4 Ma (2-sigma; MSWD = 0.94, n = 44) [Figuras 28E y 28F] que se interpreta como la edad de cristalización del protolito de esta muestra de ortogneis. Los 8 datos representados por elipses y barras en color amarillo son datos de zircones que tienen algún grado de herencia haciéndolos más viejos que los zircones asociados a la cristalización. Las elipses y barras en color gris representan zircones que han sufrido algún grado de pérdida de Pb. Cabe agregar que la edad de intersección superior de 1711 ± 13 Ma concuerda con la edad promedio y por ende con el evento de cristalización.

5.3. Muestras mesoproterozoicas (~1.1 Ga)

5.3.1. Metagranito La Prieta

De la muestra de la unidad metagranítica La Prieta $\underline{LH06-40}$, recolectada en la porción sur de Sierrita Blanca (Figura 9), se realizaron 11 análisis de zircón por la técnica SHRIMP-RG (Tabla 4). Estos datos se graficaron en el diagrama de concordia tipo Wetherill (Figuras 29A y 29B) obteniéndose que 10 análisis son concordantes y permiten obtener una edad 207 Pb/ 206 Pb (media ponderada) de 1093 ± 16 Ma (2-sigma; MSWD =

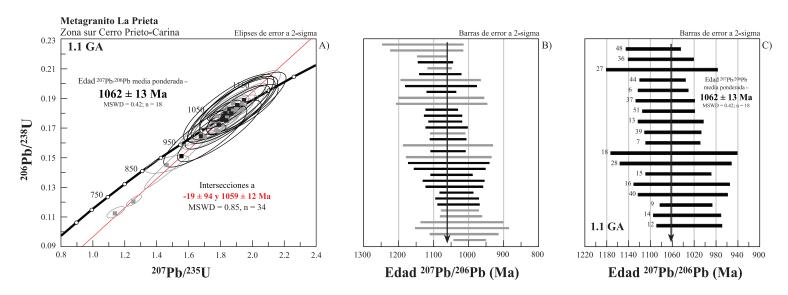
Figura 29. Datos U-Pb de zircones obtenidos por la técnica SHRIMP-RG de la unidad Mesoproterozoica metagranítica La Prieta al sur de Sierrita Blanca. (A) Gráfico de concordia tipo Wetherill con todos los datos de la muestra LH06-40. (B) Gráfico de edad ²⁰⁷Pb/²⁰⁶Pb media ponderada de la muestra LH06-40. (C) Gráfico de concordia de la muestra LH07-42. (D) Gráfico de edad media ponderada de la muestra LH07-42. En negro, análisis concordantes utilizados para calcular la edad media ponderada, y en gris, los análisis excluidos para la obtención de la edad debido a que los zircones presentan una considerable pérdida de plomo.

0.94, n = 44). Esta edad se interpreta como la edad del protolito granítico. En este gráfico, los 10 granos más concordantes se pueden observar en color negro (Figura 29A), y el único grano que se descartó para el cálculo de la edad media, por su discordancia, se representa en color gris. El total de los datos (n = 11) genera una línea de discordia que corta a la línea de concordia generando edades de intersección superior de 1099 ± 99 Ma e inferior de 188 ± 78 Ma. La edad de intersección inferior pudiera interpretarse como la edad del evento que generó la pérdida de plomo de los zircones más discordantes y concuerda bien, dentro de los límites de error, con a la edad del granito Sierrita Blanca del Cretácico Superior que aflora muy cerca de esta muestra de metagranito La Prieta (Figura 9).

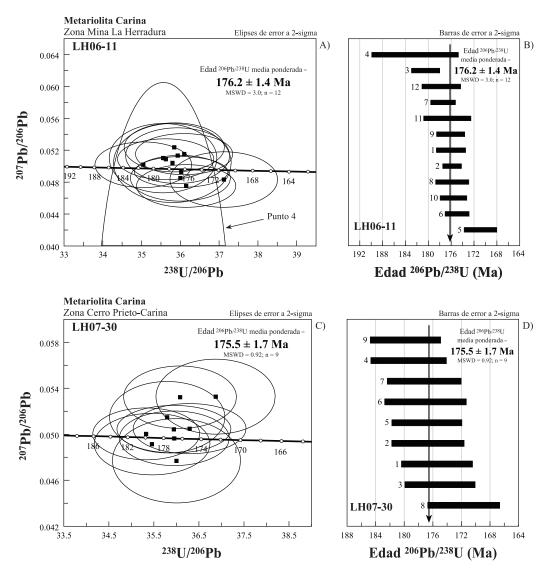
Se hicieron 14 análisis U-Pb de zircones de la muestra *LH07-42*, recolectada también en la porción sur de Sierrita Blanca (Figura 9). Estos datos se graficaron en un diagrama de concordia tipo Wetherill (Figuras 29C y D), observándose una agrupación importante de 13 análisis concordantes que permiten obtener la edad 207 Pb/ 206 Pb (media ponderada) de 1083 ± 11 Ma (2-sigma; MSWD = 0.84, n = 13). Esta edad se interpreta como la edad de cristalización de esta muestra metagranítica. Solo un análisis presenta una discordancia considerable por lo que se descartó para calcular la edad media (elipse y barra en color gris). Se generó una línea de discordia con el total de los datos y se obtuvieron edades de intersección superior e inferior a 1078 ± 11 Ma y -66 ± 420 Ma, respectivamente. A pesar de que la edad de intersección inferior no tiene un aparente significado geológico para la región, si queda claro que algunos zircones de la muestra han sufrido modificación como resultado del efecto de calor y/o fluidos generados por la intrusión del cuerpo plutónico laramídico de Sierrita Blanca.

Finalmente, de esta unidad metagranítica se obtuvo un fechamiento adicional de una roca ubicada al sur de la zona de Cerro Prieto-Carina (muestra *1.1 GA*) [Figura 8]. En un inicio se anticipaba que esta muestra tenía una edad mesoproterozoica debido a las características petrológicas, y a que de forma inusual, en el separado de zircones se obtuvo el mineral fluorita, que anteriormente se había obtenido en la muestra mesoproterozoica LH07-42. De esta muestra *1.1 GA* se hicieron 40 análisis U-Pb utilizando la técnica LA-ICP-MS (Tabla 4), y de los cuales se descartaron 4 debido a su discordancia y/o gran

porcentaje de error. De los 36 análisis restantes se hizo un diagrama de concordia tipo Wetherill (Figura 30A) para elegir los 18 análisis más concordantes y de menor error en la edad para obtener la edad 207 Pb/ 206 Pb (media ponderada) de 1062 ± 13 Ma (2-sigma; MSWD = 0.42, n = 18) [Figuras 30B y 30C]. Se interpreta que esta edad media ponderada representa la edad de cristalización del protolito del metagranito. De los 36 datos se obtuvo una edad de intersección superior de 1059 ± 12 Ma, y de intersección inferior de -19 ± 94 Ma.


5.4. Muestras jurásicas

5.4.1. Metariolita Carina

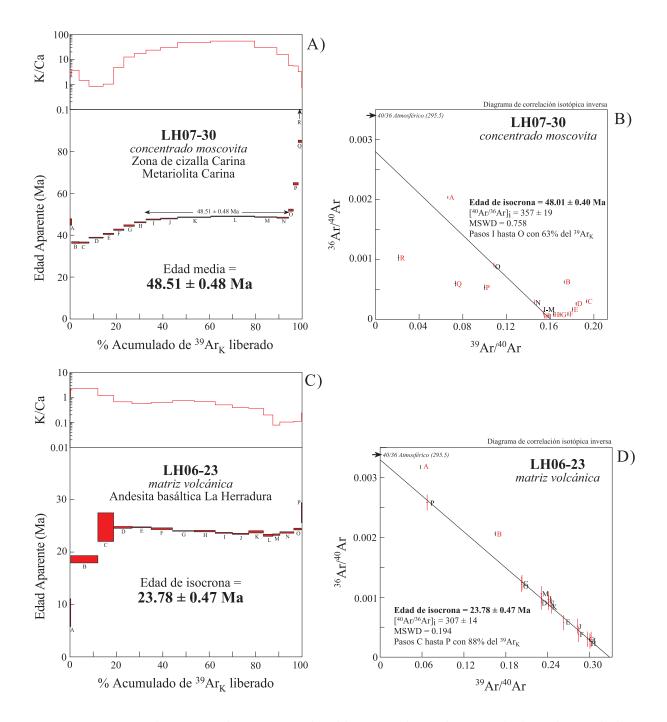

De la muestra *LH06-11*, que pertenece a la unidad metariolítica Carina, y ubicada en la zona de la Mina La Herradura (Figura 10), se hicieron 12 análisis U-Pb de zircones por la técnica SHRIMP-RG (Tabla 5). Estos datos de U-Pb se graficaron en un diagrama de concordia tipo Tera-Wasserburg (concordia inversa), que usualmente se utiliza en rocas que tienen edades de zircones <1000 Ma (Figura 31A). Se observa que todos los análisis son relativamente concordantes por lo que todos ellos se usaron para obtener la edad 206 Pb/ 238 U media ponderada de 176.2 ± 1.4 Ma (2-sigma; MSWD = 3.00, n = 12) [Figura 31B]. Esta edad (media ponderada) se interpreta como la edad de cristalización de esta roca volcánica riolítica.

De la muestra *LH07-30*, que fue recolectada en la zona Cerro Prieto-Carina y que pertenece a la unidad metariolítica (Figura 8), se realizaron 9 análisis de zircón por la técnica SHRIMP-RG (Tabla 5), y se graficaron en un diagrama de concordia inversa (Figura 31C). Todos los datos son concordantes y permiten calcular una edad 206 Pb/ 238 U (media pondera) de 175.5 ± 1.7 Ma (2-sigma; MSWD = 0.92, n = 9) [Figura 31D] que se interpreta como la edad de cristalización de la riolita. Cabe aclarar que las dos edades son indistinguibles dentro del error reportado para cada una de ellas.

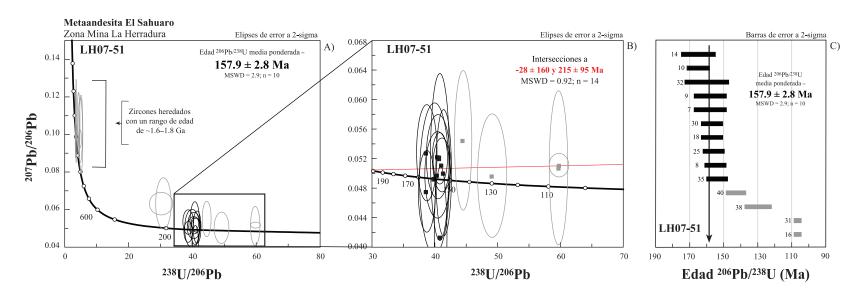
La misma muestra de la zona Cerro Prieto-Carina también se fechó por la técnica ⁴⁰Ar/³⁹Ar por el método de calentamiento gradual por pasos. Se utilizó un concentrado de

Figura 30. Datos U-Pb de zircones obtenidos por la técnica LA-ICP-MS de la muestra de la unidad Mesoproterozoica metagranítica La Prieta al sur de la zona Cerro Prieto-Carina. (A) Gráfico de concordia tipo Wetherill con todos los datos de la muestra 1.1 GA. (B y C) Gráficos de la edad ²⁰⁷Pb/²⁰⁶Pb media ponderada de esta muestra. En negro, análisis concordantes utilizados para calcular la edad media ponderada, y en gris, los análisis de zircones con un alto error y/o discordantes con algún grado de herencia y/o pérdida de plomo descartados para el cálculo de la edad media.

Figura 31. Datos U-Pb de zircones obtenidos por la técnica SHRIMP-RG de la unidad metariolítica Carina del Jurásico Medio. (A) Gráfico de concordia tipo Tera-Wasserburg con todos los datos de las muestra LH06-11. (B) Gráfico de la edad ²⁰⁶Pb/²³⁸U media ponderada de la muestra LH06-11. (C) Gráfico de concordia de la muestra LH07-30. (D) Gráfico de edad media ponderada de la muestra LH07-30.


moscovita de neoformación de una zona de cizalla asociada a la cabalgadura de esta unidad jurásica metariolítica sobre la unidad paleoproterozoica de orto-augen gneis (cabalgadura Carina). El espectro de Ar-Ar del concentrado de moscovita tiene un comportamiento escalonado que impide el cálculo de una edad "plateau" o meseta (Figura 32). La edad de isócrona, mostrada en el diagrama de correlación isotópica inversa, es de 48.01 ± 0.40 Ma (40 Ar/ 36 Ar = 357 ± 19 ; MSWD = 0.758; con 63 % del gas total). Sin embargo la edad media calculada de 48.51 ± 0.48 Ma es la que se interpreta como la edad mínima posible de la génesis de la moscovita y, por ende, del proceso metamórfico que generó este mineral.

5.4.2. Metaandesita El Sahuaro


Los zircones de la muestra *LH07-51* de metaandesita El Sahuaro, recolectada cerca de la Mina La Herradura (Figura 10), fueron analizados por la técnica LA-ICP-MS y los resultados se muestran en la Tabla 6. Se realizaron 29 análisis U-Pb de los cuales se eliminaron 5 por problemas de discordancia, quizá asociados al muestreo de diferentes dominios de edad en los cristales de zircón, o debido a inclusiones de otros minerales (apatito). De los 24 análisis restantes, se observa en el gráfico Tera-Wasserburg (Figura 33A) que 10 de estos zircones tienen algún grado de herencia y/o son zircones heredados (Figura B13 con imágenes de catodoluminiscencia del Apéndice B). Cuatro zircones presentan algún grado de pérdida de plomo. De los 10 zircones concordantes se obtuvo la edad ²⁰⁶Pb/²³⁸U (media ponderada) de 157.9 ± 2.8 Ma (2-sigma; MSWD = 2.9, n = 10) [Figuras 33B y 33C]. Esta edad se interpreta como la edad de cristalización de la unidad andesítica El Sahuaro. Con el total de los datos se obtuvo una línea de discordia con una intersección superior a 215 ± 95 Ma y una intersección inferior a -28 ± 160 Ma.

5.4.3. Granito Carina

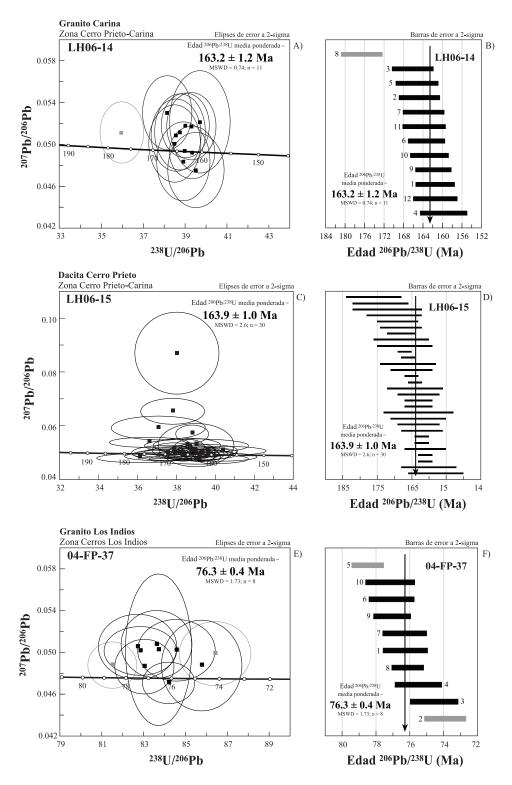

Zircones de la muestra *LH06-14*, que pertenece a la unidad granítica Carina, fueron analizados por la técnica SHRIMP-RG. Los datos U-Pb obtenidos se presentan en la Tabla 5 y se graficaron en el diagrama de concordia Tera-Wasserburg (Figura 34A). De los 12 análisis realizados, 11 son concordantes y apropiados (elipses y barras en color negro) para

Figura 32. Datos de geocronología Ar-Ar obtenidos por calentamiento gradual por horno de las muestras del Cenozoico del área Mina La Herradura. (A) Espectro de Ar-Ar de moscovita de la muestra LH07-30 localizada en la zona Cerro Prieto-Carina y correspondiente a la zona de cizalla Carina y (B) su diagrama de correlación inversa con la edad de isocrona, su valor 40 Ar/ 36 Ar inicial y el MSWD. (C) Espectro de Ar-Ar de matriz volcánica de la muestra LH06-23 localizada al norte de la zona Mina La Herradura, y (D) su diagrama de correlación inversa con la edad de isocrona.

Figura 33. Datos U-Pb de zircones obtenidos por la técnica LA-ICP-MS. (A) Gráfico de concordia tipo Tera-Wasserburg con todos los datos de la muestra LH07-51 de la unidad metaandesítica El Sahuaro del Jurásico Medio. El rango de edad de los zircones heredados corresponde a edades ²⁰⁷Pb/²⁰⁶Pb. (B) Detalle de los datos sin los zircones heredados de esta muestra. C) Gráfico de la edad ²⁰⁶Pb/²³⁸U media ponderada de la muestra LH07-51. En negro, análisis concordantes utilizados para calcular la edad media ponderada, y en gris, los análisis de zircones discordantes con algún grado de herencia y/o pérdida de plomo.

Figura 34. Datos U-Pb de zircones obtenidos por la técnica SHRIMP-RG y LA-ICP-MS. (A) Gráfico de concordia tipo Tera-Wasserburg con todos los datos de la muestra LH06-14 de la unidad del Granito Carina del Jurásico Medio. (B) Gráfico de edad ²⁰⁶Pb/²³⁸U media ponderada de la muestra LH06-14. (C) Gráfico de concordia de la muestra LH06-15 de la unidad dacítica Cerro Prieto del Jurásico Medio. (D) Gráfico de edad media ponderada de la muestra LH06-15. (E) Gráfico de concordia con los datos de la muestra 04-FP-37. (F) Gráfico de edad media ponderada de la muestra 04-FP-37. En negro, análisis concordantes utilizados para calcular la edad media ponderada, y en gris, los análisis de zircones discordantes con algún grado de herencia y/o pérdida de plomo.

obtener una edad 206 Pb/ 238 U (media ponderada) de 163.2 ± 1.2 Ma (2-sigma; MSWD = 0.74, n = 11) [Figura 34B]. Uno de los análisis (elipse y barra en color gris) presenta algún grado de herencia por lo que es descartado del cálculo estadístico. Esta edad media la interpretamos como la edad de cristalización del granito Carina.

5.4.4. Dacita Cerro Prieto

Zircones de la muestra *LH06-15*, que pertenece a la unidad dacítica Cerro Prieto (Figura 8), fueron analizados por la técnica LA-ICP-MS. Los datos U-Pb obtenidos para esta muestra se presentan en la Tabla 5 y se grafican en el diagrama de concordia Tera-Wasserburg (Figura 34B) apreciándose que todos los análisis (n = 30) son relativamente concordantes y apropiados para obtener una edad 206 Pb/ 238 U (media ponderada) de $^{163.9}$ ± $^{1.0}$ Ma (2-sigma; MSWD = $^{2.6}$, n = 30) [Figura 34C]. Esta edad media la interpretamos como la edad de cristalización de esta muestra de dacita.

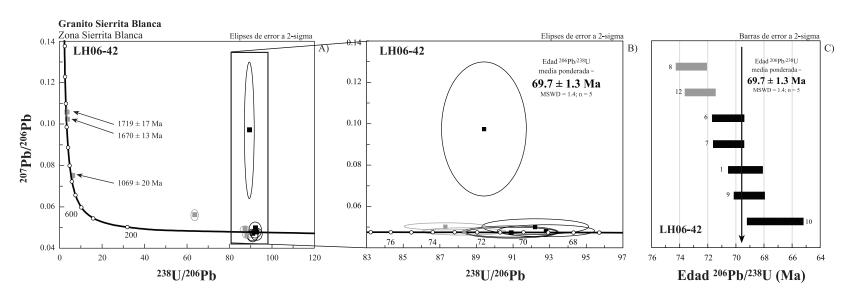
5.5. Muestras cretácicas

5.5.1. Granito Los Indios

Del granito Los Indios se analizó la muestra *Q4-FP-37* que es un granito con hornblenda ubicado en Cerros Los Indios (Figura 10). Se realizaron 10 análisis de zircones por la técnica SHRIMP-RG (Tabla 5) que se graficaron en un diagrama de concordia inversa (Figura 34E). Dos análisis se descartaron por ser discordantes (análisis en color gris), mientras que 8 análisis se utilizaron para obtener la edad ²⁰⁶Pb/²³⁸U (media ponderada) de 76.3 ± 0.4 Ma (2-sigma; MSWD = 1.73, n = 8) [Figura 34F]. Esta edad media se interpreta como la edad a la que sucedió la cristalización del granito. De los análisis que se descartaron, el más antiguo, el número 5 (Tabla 5), aparenta ser un zircón con algún grado de herencia, mientras que el análisis más joven, el número 2, podría explicarse como un análisis con pérdida de plomo sobresaliente.

5.5.2. Granito Sierrita Blanca

La muestra <u>LH06-42</u> es un granito de dos micas que conforma la gran mayoría de los afloramientos de la Sierrita Blanca (Figura 9). De esta muestra se hicieron 11 análisis SHRIMP-RG que se presentan en la Tabla 6 y se grafican en el diagrama Tera-Wasserburg (Figura 35A). En este gráfico se observa que 4 de estos zircones son heredados y de edad proterozoica (\sim 1.7 Ga y \sim 1.1 Ga) mientras que los siete restantes cristalizaron cuando se originó la roca (Figura 35B). De los 7 análisis, dos se descartaron para la obtención de la edad 206 Pb/ 238 U (media ponderada) que es de 69.7 ± 1.3 Ma (2-sigma; MSWD = 1.4, n = 5) [Figura 35C]. Se interpreta que esta edad es la edad de cristalización del granito Sierrita Blanca. Además esta edad obtenida es exactamente igual a la reportada por Enríquez-Castillo (2008) para una muestra granítica recolectada en la porción norte de la Sierrita Blanca.


5.6. Muestras cenozoicas

5.6.1. Andesita basáltica La Herradura

La muestra de andesita basáltica <u>LH06-23</u> se recolectó en el único afloramiento encontrado de esta unidad localizado al norte de la zona Mina La Herradura (Figura 10). Esta muestra se analizó por la técnica Ar-Ar en matriz volcánica, compuesta principalmente por plagioclasa, por el método de calentamiento gradual por pasos (Tabla 7). El espectro de Ar-Ar de la matriz volcánica tiene un comportamiento no muy homogéneo que impide el cálculo de una edad "plateau" o meseta (Figura 32C). La edad de isócrona, mostrada en el diagrama de correlación isotópica inversa de 23.78 ± 0.47 Ma (40 Ar/ 36 Ar = 307 ± 14 ; MSWD = 0.194; con 88 % del gas total) [Figura 32D] es interpretada como la edad de cristalización y emplazamiento de esta roca volcánica.

5.6.2. Dacita El Dipolo

De la muestra de dacita *LH06-25*, que fue recolectada en el afloramiento más representativo de la zona El Dipolo (Figura 9), se obtuvo un separado de matriz volcánica y

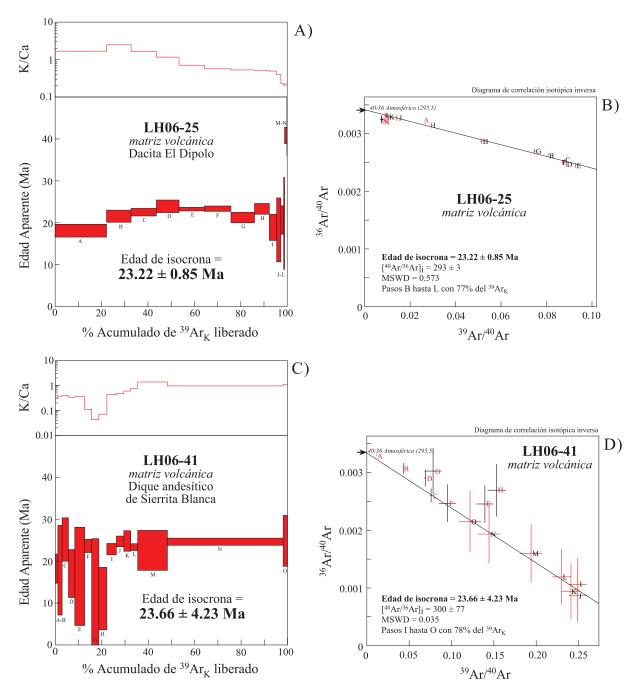


Figura 35. Datos U-Pb de zircones obtenidos por la técnica SHRIMP-RG para la unidad granítica Sierrita Blanca del Cretácico Superior. (A) Gráfico de concordia tipo Tera-Wasserburg con todos los datos de la muestra LH06-42. (B) Acercamiento a los datos sin herencias de esta muestra. (C) Gráfico de la edad ²⁰⁶Pb/²³⁸U media ponderada. En negro, análisis concordantes utilizados para calcular la edad media ponderada, y en gris, los análisis de zircones discordantes y/o heredados.

se analizó por el método Ar-Ar por calentamiento gradual por pasos. Se obtuvo un espectro de Ar-Ar de la matriz volcánica con un comportamiento no muy homogéneo que impide el cálculo de una edad meseta (Figura 36A). La edad de isócrona, mostrada en el diagrama de correlación isotópica inversa de 23.22 ± 0.85 Ma (40 Ar/ 36 Ar = 293 ± 3 ; MSWD = 0.573; con 77 % del gas total) [Figura 36B] se interpreta como la edad de cristalización y emplazamiento de esta roca dacítica.

5.6.3. Diques andesíticos

La muestra de dique andesítico *LH06-41* fue recolectada al sur de la Sierrita Blanca (Figura 9) en un grupo de diques orientados principalmente NE-SW formando una zona con mucha oxidación. Se obtuvo un separado de matriz volcánica (principalmente plagioclasa) y se analizó por el método Ar-Ar de calentamiento gradual por pasos. Se obtuvo un espectro de Ar-Ar de la matriz volcánica con un comportamiento no homogéneo que impide el cálculo de una edad meseta (Figura 36C). La edad de isócrona mostrada en el diagrama de correlación isotópica inversa es de 23.66 ± 4.23 Ma (40 Ar/ 36 Ar = 300 ± 77 ; MSWD = 0.035; con 78 % del gas total) [Figura 36D] y se interpreta como la edad de cristalización y emplazamiento de estos diques andesíticos en Sierrita Blanca. Esto indica que la dacita El Dipolo, la andesita basáltica La Herradura y los diques andesíticos pertenecen esencialmente al mismo evento magmático.

Figura 36. Datos de geocronología Ar-Ar obtenidos por calentamiento gradual por horno de las muestras del Oligoceno del área Mina La Herradura. (A) Espectro de Ar-Ar de matriz volcánica de la muestra de dacita LH06-25 localizada en la zona El Dipolo, y (B) su diagrama de correlación inversa con la edad de isocrona, su valor ⁴⁰Ar/³⁶Ar inicial y el MSWD. (C) Espectro de Ar-Ar de matriz volcánica de la muestra de andesita LH06-41 localizada en la Sierrita Blanca, y (D) su diagrama de correlación inversa con la edad de isocrona.

6. Resultados geoquímicos de elementos mayores, traza y de tierras raras (REE)

6.1. Introducción

Este estudio geoquímico de rocas del área Mina La Herradura está basado en la determinación en roca total de elementos mayores, traza y tierras raras (REE) por diferentes técnicas analíticas.

Los datos de elementos mayores se usaron en base anhidra, tal como lo recomienda la *International Union of Geological Sciences* (IUGS). De esta forma también se realizaron los cálculos de la norma CIPW y los parámetros petroquímicos tales como el índice de diferenciación (Id) = [Qz + Or + Ab + Ne + Kal + Le] (minerales normativos) y el valor del número de magnesio (#Mg) = molar [100*MgO/MgO+FeOtotal] (Tabla 8 y 9). Para realizar estos cálculos, y graficar los resultados, se utilizaron los programas desarrollados en la Universidad Paul Cézanne Aix-Marseille II de Francia y el programa comercial para gráficos geoquímicos IGPET 2005, respectivamente.

6.2. Datos geoquímicos de las rocas ígneas paleoproterozoicas y mesoproterozoicas

Los datos de elementos mayores, traza y tierras raras de las rocas del Paleoproterozoico y Mesoproterozoico se graficaron en una serie de diagramas discriminantes donde, a título comparativo, se incluyeron los datos geoquímicos determinados para rocas de la misma edad de las provincias del basamento Yavapai y Mazatzal del área de Quitovac en el NW de Sonora (Iriondo, 2001; Iriondo *et al.*, 2004).

Para facilitar la lectura de esta sección descriptiva se informa al lector que el grupo que engloban las muestras SPA-7, LH06-16 y LH07-41, corresponden a la unidad de orto-augen gneis Cerro Prieto-Carina del Paleoproterozoico (triángulos amarillos en los gráficos). Mientras que las muestras LH06-40 y LH07-42 corresponden a la unidad metagranítica La Prieta del Mesoproterozoico (cuadros rojos en los gráficos).

14. 1.10 1		Rocas paled	Kocas paleoproterozoicas		Rocas mesoproterozoicas	terozoicas	Rocas inrasicas	cas		Rocas cretácicas		Rocas oligocénicas	nicas	
9.10 0.15 0.84 0.45 1.45 4.48 0.45 1.49 1.49 0.24 0.49 0.49 0.71 0.71 0.71 0.72 <th< th=""><th>Muestra</th><th></th><th>LH07-41</th><th>LH06-16</th><th>LH06-40</th><th>LH07-42</th><th>LH06-14</th><th>LH06-11</th><th>LH07-30</th><th>04FP-37</th><th>LH06-42</th><th>LH06-23</th><th>LH06-41</th><th>LH06-25</th></th<>	Muestra		LH07-41	LH06-16	LH06-40	LH07-42	LH06-14	LH06-11	LH07-30	04FP-37	LH06-42	LH06-23	LH06-41	LH06-25
14 4 66 2 2 2 2 2 2 2 2	SiO ₂		67.10	71.63	68.05	73.96	64.75	71.63	74.48	67.7	72.41	54.6	55.1	64.1
4. 13.0 14.0 15.0 1	TiO ₂	1.41	0.73	0.29	0.78	0.34	0.51	0.27	0.21	0.53	0.21	1.00	0.54	0.65
1 1 1 1 1 1 1 1 1 1	Al_2O_3	15.20	14.69	14.41	14.07	12.70	16.40	13.99	12.77	15.8	14.99	15.2	14.1	15.7
47 619	Fe_2O_3T	9.11	4.66	2.55	5.38	2.43	4.28	2.49	1.82	3.16	1.45	69.7	4.84	4.57
1. 1. 1. 1. 1. 1. 1. 1.	MnO	0.19	0.08	0.04	0.09	0.04	0.07	90.0	90.0	0.05	0.02	0.11	80.0	90.0
1.50 1.50	MgO	2.00	1.13	0.51	1.05	0.35	1.71	0.59	0.36	1.08	0.37	66.9	5.06	2.83
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	CaO	3.24	2.08	1.65	1.79	0.80	4.02	1.46	1.78	3.46	1.83	7.37	6.61	4.71
1.00 1.00	Na ₂ O	2.60	3.16	4.01	2.68	2.79	4.17	3.72	1.84	3.77	4.47	2.87	2.78	3.72
13.0 1.0	K20	3.73	5.03	3.89	5.15	5.77	2.69	4.25	4.49	3.35	3.77	2.30	1.82	2.43
130 058 044 056 059 047 047 045 046	P_2O_5	0.52	0.32	0.11	0.19	0.07	0.20	0.09	0.05	0.17	90.0	0.37	0.14	0.28
10, 10, 10, 11, 11, 11, 11, 11, 11, 11,	LOI	1.30	0.58	0.44	96.0	0.59	0.77	7:0	2.45	99.0	99.0	1.57	8.41	1.75
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,														
8K* 1107 1108 1108 1104 1106 1106 1106 1106 1106 1106 1107 1107 1107 1108 1107 1108 1108 1106	Total	98.40	99.55	99.53	100.18	99.82	99.56	99.26	100.30	99.73	100.23	100.06	99.44	100.77
17.05 2.00 2.8.1 2.0.1 2.9.2 2.0.2	A/CNK*	1.07	1.02	1.04	1.06	1.03	96.0	1.04	1.15	86.0	1.02	N.N.	N.N.	N.N.
17.05 2.06 28.25 25.31 32.59 17.68 28.84 4.31 23.00 27.10 165 22.66 2.98 23.19 30.64 34.29 17.68 28.84 4.31 23.00 22.32 23.32 24.60 22.66 2.69 23.19 30.64 34.29 15.68 31.94 15.90 32.21 37.88 22.66 2.69 23.19 30.64 34.29 18.30 18.30 15.90 32.21 37.88 22.66 2.69 24.31 22.81 23.75 35.68 31.94 15.90 32.21 37.89 24.60 22.66 2.69 24.21 22.81 23.75 35.68 31.94 31.1 6.00 22.21 27.21 23.6 2.99 0.55 1.48 0.65 0.57 0.44 31.1 6.00 0.44 0.40 23.6 0.93 0.55 1.48 0.65 0.57 0.44 0.40 0.44 0.40 23.8 0.94 0.55 1.48 0.65 0.57 0.44 0.40 0.44 0.40 24.8 0.95 0.94 0.94 0.96 0.94 0.95 0.95 0.95 25.1 0.91 0.95 0.95 0.94 0.95 0.95 0.95 0.95 25.1 0.92 0.95 0.95 0.95 0.95 0.95 0.95 0.95 25.1 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 25.1 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 25.2 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 25.3 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 25.3 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 25.3 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 25.3 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 25.3 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 25.4 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 25.5 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 25.5 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 25.5 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 25.5 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 25.5 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 25.5 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 25.5 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 25.5 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 2	Mg*	33.84	36.05	31.62	31.30	24.97	48.21	35.58	31.66	44.32	37.28	66.05	58.97	58.97
1706 22.06 28.25 28.31 32.59 1768 A.21 28.40 27.10 1.65 22.66 29.98 23.19 30.64 34.29 16.65 25.44 27.04 19.95 22.32 1.88 22.66 29.98 23.19 30.64 34.29 16.65 25.44 27.04 19.95 22.32 1.88 13.38 8.22 7.63 7.81 3.60 18.3 3.21 37.88 24.06 15.34 7.93 4.22 8.89 3.88 8.95 4.44 3.11 6.09 2.20 1.81 1.86 0.93 0.51 1.07 0.49 0.83 0.40 1.01 0.49 1.04 2.76 1.39 0.55 1.48 0.65 0.97 0.37 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49														
1,00 2,00 2,00 2,00 2,00 2,00 1,00 2,66 2,69 3,43 3,64 34,29 16,08 25,44 42,21 1,00 1,00 2,00 1,00 <t< td=""><td></td><td>17.05</td><td>20.00</td><td>20.00</td><td>25.31</td><td>33.50</td><td>17.00</td><td>Norma CI</td><td>7W</td><td>00.00</td><td>01.20</td><td>371</td><td>13.11</td><td>01 01</td></t<>		17.05	20.00	20.00	25.31	33.50	17.00	Norma CI	7W	00.00	01.20	371	13.11	01 01
2.6.6 2.5.7.5 3.4.4 2.2.8.3 2.3.7.5 3.5.6.6 3.1.9.6 3.2.9.6 3.7.8.9 3.7.8.9 3.4.4.9 3.7.8.9 3.7.8.9 3.7.8.9 3.7.8.9 3.7.8.9 3.7.8.9 3.7.8.9 3.8.8 3.8.6 3.1.9.6 1.0.3 3.7.8.9 3.7.9 3.7.9 3.7.9 3.7.9 3.7.9 3.7.9	ž č	20:71	22.00	23.19	30.64	34.79	90.71	25.44	27.04	19.05	27.33	13.81	10.11	14.52
13.8 8.52 7.65 7.81 3.60 18.31 6.81 8.62 16.30 8.77 2.1.2 15.34 7.93 4.22 8.59 3.58 8.95 4.44 3.11 6.09 2.30 2.35 1.041 15.34 7.93 0.55 1.48 0.65 0.97 0.53 0.40 0.101 0.40 0.12 1.28 0.78 0.25 0.45 0.17 0.47 0.21 0.14 0.40 0.14 0.88 1.28 0.78 0.25 0.45 0.17 0.47 0.21 0.14 0.04 0.14 0.88 1.29 0.51 0.98 0.83 1.26 0.57 0.47 0.21 0.14 0.04 0.04 0.14 0.88 1.20 0.99 0.53 0.90 0.94 0.94 0.95 0.95 0.95 1.21 0.91 0.95 0.95 0.94 0.95 0.95 0.95 0.95 1.22 0.90 0.95 0.94 0.95 0.95 0.95 0.95 0.95 1.24 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 1.25 0.90 0.90 0.90 0.90 0.95 0.95 0.95 0.95 1.25 0.90 0.90 0.90 0.90 0.90 0.95 0.95 0.95 1.25 0.90 0.90 0.90 0.90 0.90 0.90 0.95 0.95 1.25 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 1.25 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 1.25 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 1.25 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 1.25 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 1.25 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 1.20 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 1.20 0.90 0.	A P	22.66	26.92	34.24	22.83	23.75	35.68	31.96	15.90	32.21	37.88	24 60	25.79	31.70
1534 793 422 859 358 895 444 311 609 250 2352 23	An	13 38	8 52	7.63	7.81	3.60	18 31	6.81	698	16 30	77.8	22.12	22.55	19.05
1534 793 422 8.59 3.58 895 4.44 3.11 609 2.50 23.52 186 0.93 0.51 1.07 0.49 0.86 0.50 0.37 0.63 0.29 1.03 1.70 0.49 0.65 0.57 0.44 0.14 0.04 0.04 0.19 0.19 0.19 0.09 1.03 0.10 0.14 0.04 0.14	<u>.</u> <u>.</u> <u>.</u>			2			0.58					10.41	10.13	2.33
1.86 0.93 0.51 1.07 0.49 0.86 0.50 0.37 0.63 0.29 1.03 2.76 1.39 0.55 1.48 0.65 0.97 0.53 0.40 1.01 0.40 1.92 1.28 0.78 0.26 0.45 0.17 0.47 0.21 0.40 0.14 0.40 0.14 0.88 1.28 0.78 0.26 0.47 0.21 0.40 0.04 0.04 0.14 0.88 1.18 0.98 0.83 0.96 0.95 0.97 0.94 0.04 0.04 0.04 0.04 0.08 1.28 0.98 0.82 0.97 0.29 0.97 0.97 0.04	Hyp	15.34	7.93	4.22	8.59	3.58	8.95	4.4	3.11	60.9	2.50	23.52	15.06	10.99
2.76 1.39 0.55 1.48 0.65 0.97 0.53 0.40 1.01 0.40 1.92 1.28 0.78 0.26 0.45 0.17 0.47 0.21 0.14 0.40 0.14 0.88 1.28 0.78 0.26 0.45 0.17 0.47 0.21 0.14 0.40 0.14 0.88 1.21 0.98 0.83 1.26 0.57 8.69 99.73 99.64 0.97 0.99 6.13 9.16 99.68 99.73 86.70 99.64 99.77 99.99 6.11 5.53 1.99 2.97 5.00 86.90 4.09 4.48 1.29 6.99 141.00 197.00 120.00 241.00 299.00 85.40 120.00 14.00 87.00 113.89 141.00 87.00 110.00 110.00 110.00 110.00 111.00 110.00 111.00 110.00 111.00 110.00 110.00 114.00 <td>Mt</td> <td>1.86</td> <td>0.93</td> <td>0.51</td> <td>1.07</td> <td>0.49</td> <td>98.0</td> <td>0.50</td> <td>0.37</td> <td>0.63</td> <td>0.29</td> <td>1.03</td> <td>1.05</td> <td>0.92</td>	Mt	1.86	0.93	0.51	1.07	0.49	98.0	0.50	0.37	0.63	0.29	1.03	1.05	0.92
128 0.78 0.26 0.45 0.17 0.47 0.21 0.14 0.40 0.14 0.88 2.18 0.98 0.83 1.26 0.57 0.81 1.84 0.04 0.14 0.88 al 99.16 99.58 99.54 99.68 99.54 99.68 99.73 99.64 99.77 99.95 6.236 79.00 85.68 78.78 90.63 69.41 86.37 85.25 75.16 87.30 40.07 6.11 5.33 1.99 2.97 5.00 3.86 4.09 4.48 1.29 5.00 144.00 197.00 120.00 2.97 5.00 85.00 14.00 76.16 87.00 85.00 10.99 1920.00 136.00 136.00 2.90 85.00 14.60 11.30 87.00 17.00 11.00 17.00 11.00 17.00 11.00 17.00 11.00 17.00 18.00 18.00 18.00 17.00 <td>llm</td> <td>2.76</td> <td>1.39</td> <td>0.55</td> <td>1.48</td> <td>0.65</td> <td>0.97</td> <td>0.53</td> <td>0.40</td> <td>1.01</td> <td>0.40</td> <td>1.92</td> <td>1.12</td> <td>1.26</td>	llm	2.76	1.39	0.55	1.48	0.65	0.97	0.53	0.40	1.01	0.40	1.92	1.12	1.26
218 998 0.83 1.26 0.57 0.81 1.84 0.04 0.37 al 99.16 99.58 99.54 99.68 99.54 99.68 99.73 99.64 99.77 99.95 al 99.16 99.68 99.54 99.68 99.54 86.37 85.25 75.16 87.30 40.07 6.11 5.53 1.99 2.97 5.00 85.40 120 4.48 1.29 9.95 141.00 130.00 120.00 29.70 5.00 85.20 13.89 141.00 5.09 192.00 130.00 130.00 130.00 130.00 130.00 144.00 144.00 144.00 144.00 144.00 144.00 144.00 144.00 144.00 145.00 145.00 145.00 145.00 145.00 144.00 144.00 144.00 144.00 144.00 144.00 144.00 144.00 144.00 144.00 144.00 144.00 144.00 144.00	Αp	1.28	0.78	0.26	0.45	0.17	0.47	0.21	0.14	0.40	0.14	0.88	0.36	99.0
al 99.16 99.53 99.64 99.68 99.54 99.68 99.73 99.64 99.77 99.95 al 62.36 79.00 85.68 78.78 90.63 69.41 86.37 85.25 75.16 87.30 40.07 6.11 5.53 1.99 2.97 5.00 3.86 3.30 4.09 4.48 1.29 0.99 6.11 5.53 1.99 2.97 5.00 3.86 3.30 4.09 4.48 1.29 0.99 6.11 5.53 1.99 2.97 5.00 3.86 3.30 4.09 4.48 1.29 0.99 144.0 19.50 136.00 130.00 135.00 135.00 13.89 141.00 5.09 2.39 1.30 1.09 1.10 1.00 1.10 2.39 2.39 2.99 2.35 1.30 1.20 0.99 4.01 0.99 1.10 1.00 1.10 2.39 2.39 2.39 2.49 </td <td>Cor</td> <td>2.18</td> <td>0.98</td> <td>0.83</td> <td>1.26</td> <td>0.57</td> <td></td> <td>0.81</td> <td>1.84</td> <td>0.04</td> <td>0.37</td> <td></td> <td></td> <td></td>	Cor	2.18	0.98	0.83	1.26	0.57		0.81	1.84	0.04	0.37			
62.36 79.00 85.68 78.78 90.63 69.41 86.37 85.25 75.16 87.30 40.07 6.11 5.53 1.99 2.97 5.00 3.86 3.30 4.48 1.29 0.99 141.00 197.00 120.00 241.00 299.00 85.40 120.00 146.00 113.89 141.00 56.00 1920.00 1360.00 120.00 619.00 862.00 135.00 14.48 1.29 0.99 1920.00 1360.00 120.00 619.00 862.00 135.00 14.48 1.10 56.00 1920.00 1360.00 120.00 135.00 150.00 140.00 160.0 150.00 150.00 160.0 17.00 <	Fotal	99.16	99.53	89.66	99.44	89.66	99.54	89.66	99.73	99.64	77.66	99.95	99.42	99.52
6.11 5.53 1.90 2.97 5.00 3.86 3.30 4.48 1.29 4.09 6.11 5.53 1.90 2.97 5.00 3.86 3.30 4.48 1.29 0.99 141.00 197.00 120.00 241.00 299.00 85.40 120.00 146.00 113.89 141.00 56.00 1920.00 1360.00 1360.00 135.00 182.00 769.16 874.00 820.00 1920.00 1360.00 1360.00 135.00 15.90 10.65 11.10 11.00 2.72 3.91 1.84 6.54 11.10 2.39 2.99 2.35 2.69 2.90 1.70 1.55 2.17 0.65 1.96 3.82 0.64 0.71 0.79 0.87 1.70 2.72 1.82.00 182.00 182.00 182.00 182.00 182.00 182.00 182.00 1.70 1.70 1.70 1.70 1.70 1.70	2	25	90	0/ 20	7	5,00	17 05	20,70	26.20	71 31	00	000	91.04	2
6.11 5.53 1.99 2.97 5.00 3.86 3.30 4.09 4.48 1.29 0.99 141.00 197.00 120.00 241.00 299.00 85.40 120.00 146.00 113.89 141.00 56.00 1920.00 1360.00 1360.00 135.00 820.00 769.16 874.00 820.00 144.0 19.50 147.0 21.20 38.70 9.37 13.00 15.90 11.10 11.00 2.72 3.91 1.84 6.54 11.10 2.39 2.35 2.69 2.90 1.70 1.55 2.17 0.65 1.96 3.82 0.64 0.71 0.79 0.87 1.29 0.75 2.72 3.91 1.84 6.54 11.10 2.39 2.99 2.35 2.69 2.90 1.70 3.80 3.60 18.20 4.780 4.700 2.80 16.00 4.90.44 4.00 8.80 651.00 <td>2</td> <td>05.30</td> <td>00.67</td> <td>00:00</td> <td>10.70</td> <td>50.02</td> <td>14:00</td> <td>Flementos to</td> <td>62.00</td> <td>01.67</td> <td>06.10</td> <td>10.0</td> <td>C1.74</td> <td>04:37</td>	2	05.30	00.67	00:00	10.70	50.02	14:00	Flementos to	62.00	01.67	06.10	10.0	C1.74	04:37
141.00 197.00 120.00 241.00 299.00 85.40 120.00 146.00 113.89 141.00 56.00 1920.00 1360.00 1130.00 120.00 619.00 862.00 135.00 769.16 874.00 820.00 144.0 19.50 14.70 21.20 38.70 9.37 13.00 15.90 10.65 11.10 11.00 2.72 3.91 1.84 6.54 11.10 2.39 2.35 2.69 2.90 17.0 1.55 2.17 0.65 1.96 3.82 0.64 0.71 0.79 0.87 1.10 11.00 5.72 1.82 0.65 1.90 4.780 4.780 4.700 2.88 1.20 1.20 1.70	Cs	6.11	5.53	1.99	2.97	5.00	3.86	3.30	4.09	4.48	1.29	66.0	4.14	2.42
1920.00 1360.00 1130.00 1220.00 619.00 862.00 1350.00 769.16 874.00 820.00 14.40 19.50 14.70 21.20 38.70 9.37 13.00 15.90 10.65 11.10 11.00 2.72 3.91 1.84 6.54 11.10 2.39 2.35 2.69 2.90 17.0 11.00 1.55 2.17 0.65 1.96 3.82 0.64 0.71 0.79 0.87 1.29 1.70 651.00 182.00 94.90 47.80 447.00 268.00 11.00 490.04 490.00 1.70 651.00 651.00 182.00 372.00 172.00 12.00 7.79 404.00 264.00 14.90 6.73 5.47 10.00 10.80 4.29 3.81 1.99 4.01 6.13 2.13 11.70 2.57 11.40 4.48 7.95 4.38 3.13 3.04 2.08	Rb	141.00	197.00	120.00	241.00	299.00	85.40	120.00	146.00	113.89	141.00	26.00	39.10	55.90
14.40 19.50 14.70 21.20 38.70 9.37 13.00 15.90 10.65 11.10 11.00 2.72 3.91 1.84 6.54 11.10 2.39 2.35 2.69 2.90 17.0 1.55 2.17 0.65 1.96 3.82 0.64 0.71 0.79 0.87 1.29 1.70 51.00 3.80 1.82 0.64 0.71 0.79 0.87 1.29 1.70 651.00 182.00 94.90 47.80 447.00 268.00 116.00 499.04 404.00 588.00 651.00 5.3 5.4 10.00 10.80 4.29 3.96 3.81 1.99 4.01 6.13 2.21 2.62 0.61 10.10 3.19 0.90 2.03 1.89 0.23 0.07 0.49 2.13 1.17 2.57 11.40 4.48 7.95 4.38 3.13 3.04 2.08 0.20	Ba	1920.00	1360.00	1130.00	1220.00	619.00	862.00	1350.00	820.00	769.16	874.00	820.00	515.00	769.00
2.72 3.91 1.84 6.54 11.10 2.39 2.35 2.69 2.30 2.90 1.70 1.55 2.17 0.65 1.96 3.82 0.64 0.71 0.79 0.87 1.29 1.70 31.80 3.60 182.00 44.90 47.80 447.00 268.00 116.00 499.04 404.00 588.00 651.00 218.00 45.90 47.00 172.00 154.00 12.79 140.00 264.00 14.00 6.73 5.47 10.00 10.80 4.29 3.81 1.99 4.01 6.13 2.21 2.62 0.61 10.10 3.19 0.90 2.03 1.89 0.23 0.07 0.49 2.13.0 11.70 2.57 11.40 4.48 7.95 4.38 3.13 3.04 2.08 2.08 2.68.0 11.40 1.35 3.69 2.88 6.21 2.36 1.53 6.15 2.11 <t< td=""><td>Th</td><td>14.40</td><td>19.50</td><td>14.70</td><td>21.20</td><td>38.70</td><td>9.37</td><td>13.00</td><td>15.90</td><td>10.65</td><td>11.10</td><td>11.00</td><td>4.11</td><td>8.57</td></t<>	Th	14.40	19.50	14.70	21.20	38.70	9.37	13.00	15.90	10.65	11.10	11.00	4.11	8.57
1.55 2.17 0.65 1.96 3.82 0.64 0.71 0.79 0.87 1.29 0.75 378.00 306.00 182.00 94.90 47.80 447.00 268.00 116.00 499.04 404.00 588.00 651.00 278.00 218.00 405.00 372.00 172.00 154.00 72.79 140.00 264.00 14.90 6.73 5.47 10.00 10.80 4.29 3.96 3.81 1.99 4.01 6.13 2.21 2.62 0.61 10.10 3.19 0.90 2.03 1.89 0.23 0.07 0.49 21.30 11.70 2.57 11.40 4.48 7.95 4.38 3.13 3.04 2.08 20.80 26.80 11.40 1.35 3.69 2.88 6.21 2.36 1.53 6.15 2.11 2.98.00	D	2.72	3.91	1.84	6.54	11.10	2.39	2.99	2.35	2.69	2.90	1.70	1.00	1.84
378.00 306.00 182.00 94.90 47.80 447.00 268.00 116.00 499.04 404.00 588.00 651.00 278.00 218.00 405.00 372.00 172.00 154.00 72.79 140.00 264.00 14.90 6.73 5.47 10.00 10.80 4.29 3.96 3.81 1.99 4.01 6.13 2.21 2.62 0.61 10.10 3.19 0.90 2.03 1.89 0.23 0.07 0.49 21.30 11.70 2.57 11.40 4.48 7.95 4.38 3.13 3.04 2.08 20.80 26.80 11.40 1.35 3.69 2.88 6.21 2.36 1.53 6.15 2.11 2.98.00	Ta	1.55	2.17	0.65	1.96	3.82	0.64	0.71	0.79	0.87	1.29	0.75	0.26	0.62
651.00 278.00 218.00 405.00 372.00 172.00 154.00 72.79 140.00 264.00 264.00 14.00 6.73 5.47 10.00 10.80 4.29 3.96 3.81 1.99 4.01 6.13 6.13 2.21 2.62 0.61 10.10 3.19 0.90 2.03 1.89 0.23 0.07 0.49 21.30 11.70 2.57 11.40 4.48 7.95 4.38 3.13 3.04 2.08 20.80 2.680 11.40 1.35 3.69 2.88 6.21 2.36 1.53 6.15 2.11 2.98.00	Sr	378.00	306.00	182.00	94.90	47.80	447.00	268.00	116.00	499.04	404.00	588.00	296.00	897.00
1490 673 547 1000 1080 429 396 381 199 401 6.13 221 2.62 0.61 10.10 3.19 0.90 2.03 189 0.23 0.07 0.49 2130 11.70 2.57 11.40 4.48 7.95 4.38 3.13 3.04 2.08 20.80 2680 11.40 1.35 3.69 2.88 6.21 2.36 1.53 6.15 2.11 2.98,00	Zr	651.00	278.00	218.00	405.00	372.00	172.00	154.00	142.00	72.79	140.00	264.00	137.00	242.00
2.21 2.62 0.61 10.10 3.19 0.90 2.03 1.89 0.23 0.07 0.49 21.30 11.70 2.57 11.40 4.48 7.95 4.38 3.13 3.04 2.08 20.80 26.80 11.40 1.35 3.69 2.88 6.21 2.36 1.53 6.15 2.11 2.98.00	H;	14.90	6.73	5.47	10.00	10.80	4.29	3.96	3.81	1.99	4.01	6.13	3.39	5.63
26.80 11.40 1.35 3.69 2.88 6.21 2.36 1.53 6.15 2.11 2.98,00	≱ .	2.21	2.62	0.61	10.10	3.19	0.90	2.03	1.89	0.23	0.07	0.49	1.16	0.85
26.80 11.40 1.55 5.99 2.88 6.21 2.50 1.55 6.15 2.11 2.98.00	သို့	21.30	11.70	2.57	11.40	4.48	7.95	4.38	3.13	3.04	2.08	20.80	14.90	9.43
00 00 00 00 00 00 00 00 00 00 00 00 00	ن ڌ	26.80	11.40	1.35	3.69	2.88	6.21	2.36	1.53	6.15	2.11	298.00	339.00	74.30

Tabla 8. Continuación.

Tabla 6. C	mulitude ron.												
	Rocas paleoproterozoicas				oterozoicas	Rocas jurás	icas		Rocas cretácicas		Rocas oligocé	nicas	
Muestra	SPA-7	LH07-41	LH06-16	LH06-40	LH07-42	LH06-14	LH06-11	LH07-30	04FP-37	LH06-42	LH06-23	LH06-41	LH06-25
Ni	19.50	9.22	2.19	9.18	4.60	6.11	0.89	2.15	4.02	2.10	167.00	138.00	37.40
Zn	152.00	69.30	47.90	82.90	55.00	49.90	41.50	26.60	62.82	39.70	76.40	51.20	69.10
As	2.40	0.62	0.52	0.24	0.75	1.81	9.75	24.80	0.33	0.36	0.64	0.82	1.29
Sb	0.70	0.18	0.14	0.50	0.17	0.51	1.24	23.40	N.A.	0.07	0.11	0.37	0.17
Au	2.69	1.64	0.64	1.47	0.14	0.03	1.24	0.35	N.A.	0.32	0.89	0.30	1.43
Ba/Ta	1239	627	1744	622	162	1339	1901	1034	880	678	1093	1988	1246
Zr/Y	N.A	N.A	N.A	N.A	N.A	N.A	N.A	N.A	8	N.A	N.A	N.A	N.A

El total de Fe se representa como Fe₂O₃T y el LOI = Pérdida por Ignición. Los valores de elementos mayores estan dados en % en peso y los elementos traza en ppm exceptuando el Au = ppb

A/CNK* = (Al₂O₃/CaO+Na₂O+K₂O)Molar

 $Mg^* = (100*MgO/MgO+FeOT)Molar$

Id = Qz+Or+Ab+Ne+Kal+Le (Minerales normativos)

Los elementos mayores fueron analizados por medio de un instrumento de XRF, mientras que los elementos traza fueron analizados por INAA, exceptuando la muestra 04FP-37 que fue analizada completamente por ICP-MS.

Otros elementos del la muestra 04FP-37 incluyen, Li = 52.82, Be = 2.29, B = 11.44, P = 654, V = 47.27, Cu = 9.55, Ga = 20.64, Y = 9.04, Nb = 10.7, Mo = 0.62, Sn = 1.46, Tl = 0.73 y Pb = 20.16

N.N. = No es necesario. N.A. = No analizado

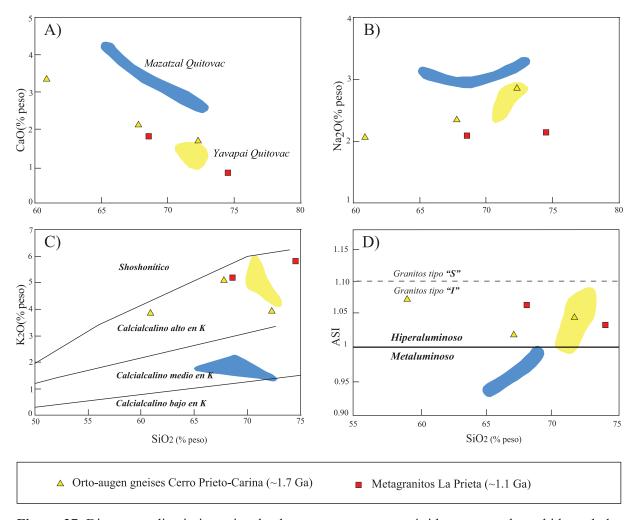
Tabla 9. Elementos de tierras raras (REE) de rocas del área Mina La Herradura NW Sonora, México.

	Rocas paleop	roterozoicas		Rocas mesoportero	zoicas	Rocas jurásio	eas		Rocas cretácicas		Rocas oligocén	icas	
Muestra	SPA-7	LH07-41	LH06-16	LH06-40	LH07-42	LH06-14	LH06-11	LH07-30	04FP-37*	LH06-42	LH06-23	LH06-41	LH06-25
La	90.90	71.60	30.80	64.60	94.80	31.70	35.00	37.90	24.17	24.60	50.20	17.80	41.50
Ce	193.00	146.00	59.60	133.00	194.00	54.10	59.60	67.90	48.85	45.50	92.80	36.90	74.60
Nd	91.20	65.70	25.00	59.90	75.70	20.70	19.50	23.00	20.93	18.60	39.80	18.50	31.70
Sm	16.50	12.00	4.81	12.80	14.20	3.72	3.46	3.87	3.60	3.96	6.92	3.75	5.98
Eu	3.65	2.41	0.80	2.51	1.04	0.87	0.71	0.59	0.98	0.70	1.71	0.94	1.38
Gd	13.20	9.81	5.14	12.20	12.40	3.38	2.96	3.92	2.68	3.05	6.65	2.94	4.56
Tb	1.88	1.36	0.72	1.89	1.84	0.45	0.46	0.53	0.37	0.45	0.84	0.44	0.64
Но	2.19	1.63	0.82	2.55	2.60	0.63	0.69	0.77	0.30	0.56	1.11	0.53	0.73
Tm	0.89	0.61	0.26	0.97	1.15	0.28	0.31	0.33	N.A.	0.23	0.43	0.21	0.29
Yb	5.42	3.90	1.59	6.00	7.08	1.70	2.04	2.12	0.73	1.46	2.54	1.30	1.83
Lu	0.76	0.56	0.22	0.88	1.03	0.26	0.30	0.34	0.11	0.22	0.36	0.20	0.26
Total REE	419.59	315.57	129.76	297.30	405.84	117.79	125.02	141.27	102.72	99.32	203.36	83.50	163.47
(La/Yb) _N	12.03	13.17	13.89	7.72	9.60	13.38	12.31	12.82	23.75	12.09	14.18	9.82	16.27
Eu/Eu*	0.756	0.679	0.489	0.614	0.240	0.749	0.676	0.462	0.965	0.614	0.771	0.869	0.808
Sr/Yb	70	78	114	16	7	263	131	55	686	277	231	458	490
Zr/Yb	120	71	137	68	53	101	75	67	100	96	104	105	132
La/Yb	17	18	19	11	13	19	17	18	33	17	20	14	23

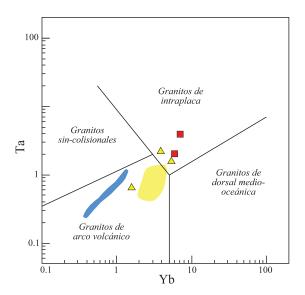
Los cálculos con REE normalizadas (N) fueron hechos con valores de normalización a condrita de Sun y McDonough (1989).

REE en ppm. $Eu/Eu^* = Eu_N/(Sm_N*Gd_N)^{1/2}$

N.A.= No analizado.


^{*}Otros elementos de la muestra 04FP-37 incluyen, Dy =1.68, Pr = 5.78 y Er = 0.80.

6.2.1. Elementos mayores


Los datos de elementos mayores de las muestras de orto-augen gneis Cerro Prieto-Carina y de metagranito La Prieta se graficaron en cuatro diagramas discriminantes (Figura 37). En primer lugar, el diagrama tipo Harker de CaO% contra SiO₂% (sílice) [Figura 37A] que sugiere que las muestras del orto-augen gneis y el metagranito presentan un grado de enriquecimiento por debajo del 2% en CaO comparables con las muestras del campo del Yavapai de Quitovac que también presenta valores por de bajo del 2% y muy diferentes de las rocas del campo conformado por muestras con características Mazatzal. Las muestras del área Mina La Herradura presentan diferentes valores de sílice con respecto a las muestras de Quitovac lo cual se puede deber a problemas en la analítica y/o que los polvos analizados posiblemente correspondieran a zonas menos ricas en sílice. Por otro lado, el diagrama tipo Harker de Na₂O% contra sílice (Figura 37B) revela que las muestras contienen menos del 3% de Na₂O, comportamiento equivalente a las muestras que conforman el campo de Yavapai para rocas de Quitovac. Además, una de las muestras (LH06-16) cae en el campo del Yavapai de Quitovac. En el diagrama K₂O% contra sílice (Figura 37C), con los discriminantes de Peccerillo y Taylor (1976), estas rocas del área Mina La Herradura son calcialcalinas altas en potasio al igual que las rocas tipo Yavapai en Quitovac. Por último, el diagrama de índice de saturación en alúmina (ASI contra SiO₂; Figura 37D) sugiere que tanto las muestras del orto-augen gneis Cerro Prieto-Carina como las del metagranito La Prieta presentan afinidades hiperaluminosas y además son granitos tipo "I" (I = de origen ígneo), mismas características que se observan en las rocas paleoproterozoicas con afinidad Yavapai en Quitovac.

6.2.2. Elementos traza y tierras raras (REE)

Los datos de elementos traza y tierras raras del orto-augen gneis Cerro Prieto-Carina y del metagranito La Prieta se graficaron en diferentes diagramas discriminatorios. Por ejemplo, el diagrama de Ta vs. Yb (Pearce *et al.*, 1984) [Figura 38] discrimina que, tanto la unidad del orto-augen gneis como los metagranitos, tienen una firma de granitos de

Figura 37. Diagramas discriminatorios de elementos mayores, en óxido porcentual y anhidros, de las rocas orto-augen gneísicas del Paleoproterozoico (triángulos amarillos) y metagraníticas La Prieta del Mesoproterozoico (cuadros rojos) del área Mina La Herradura. Estos datos se comparan con los campos que generan los datos de rocas gnéisicas paleoproterozoicas reportadas para la provincia Yavapai (campo en amarillo) y la provincia Mazatzal (campo en azul) en el área de Quitovac, NW de Sonora (análisis reportados en Iriondo, 2001). (A) Diagrama tipo Harker de CaO% vs. SiO_2 %. (B) Diagrama tipo Harker de Na₂O% vs. SiO_2 %. (C) Diagrama K_2O % vs. SiO_2 % de Peccerillo y Taylor (1976). (D) Diagrama ASI vs. SiO_2 % (ASI = índice de saturación en alúmina = Al_2O_3 / $CaO+Na_2O+K_2O$ molar). La línea punteada es el límite entre granitos tipo "S" y granitos tipo "I" reportado para rocas del cinturón plegado Lachlan de Australia (Chappel y White, 1992) [Granitos tipo "I" = Granito de fundido ígneo; granito tipo "S" = Granito de fundido sedimentario].

Figura 38. Diagrama discriminatorio de ambientes tectónicos para la formación de granitos basado en las variaciones elementales de Ta vs. Yb propuesto por Pearce *et al.* (1984). Datos de los orto-augen gneises del Paleoproterozoico (triángulos amarillos) y de las rocas metagraníticas La Prieta del Mesoproterozoico (cuadros rojos) del área Mina La Herradura. Estos datos se comparan con los campos que generan los datos de las rocas gnéisicas paleoproterozoicas reportadas para la provincia Yavapai en Quitovac (campo en amarillo) y la provincia Mazatzal (campo en azul) del área de Quitovac NW de Sonora (Iriondo, 2001).

intraplaca, con la excepción de la muestra LH06-16 del orto-augen gneis, que cae en el campo de formación de granitos en ambiente de arco volcánico.

La figura 39 presenta los datos de las REE normalizadas con valores de condrita de Sun y McDonough (1989). El patrón de REE del orto-augen gneis paleoproterozoico (Figura 39A) tiene una anomalía negativa en europio en las tres muestras con valores de Eu/Eu*= 0.48-0.75, que son muy similares a los patrones generados por las rocas de afinidad Yavapai de Quitovac con valores de Eu/Eu*= 0.40-0.59 y además distintiva de la anomalía positiva generada por el campo de rocas de tipo Mazatzal de Quitovac (Iriondo, 2001; Iriondo *et al.*, 2004). Además, la sumatoria de las tierras raras (ΣREE) del orto-augen gneis es de 130-316 ppm, revelando un grado de enriquecimiento alto, que es muy similar a la ΣREE para rocas tipo Yavapai en Quitovac (122-188 ppm). Estos valores contrastan notablemente con los valores más empobrecidos de entre 23-97 ppm obtenidos para rocas de tipo Mazatzal en Quitovac. El cociente normalizado de las REE [La/Yb]_N del orto-augen gneis Paleoproterozoico corresponde a 12.0-13.9 y se asemeja al que presentan las rocas tipo Yavapai en Quitovac ([La/Yb]_N = 4.2-12.0). En contraste, las rocas de afinidad Mazatzal de Quitovac tienen valores muy elevados de este cociente normalizado entre 10.2 y 49.0.

Los patrones de REE de las muestras del metagranito mesoproterozoico La Prieta (Figura 39B) se observan igualmente enriquecidos (Σ REE de 297-406 ppm), comparativamente con los que presentan las rocas graníticas mesoproterozoicas (~1.1 Ga) estudiadas en el área de Quitovac (Iriondo, 2001; Iriondo *et al.*, 2004). Las muestras del metagranito La Prieta presentan fuertes anomalías negativas de Eu/Eu* = 0.24-0.61 y un enriquecimiento de tierras raras ligeras LREE (*Light Rare Earth Elements*) con respecto a las tierras raras pesadas HREE (*Heavy Rare Earth Elements*). Además, el cociente normalizado de [La/Yb]_N = 7.7-9.6 de estas rocas metagraníticas es muy similar a los de los granitos de Quitovac de la misma edad con valores de [La/Yb]_N = 6.4-15.3.

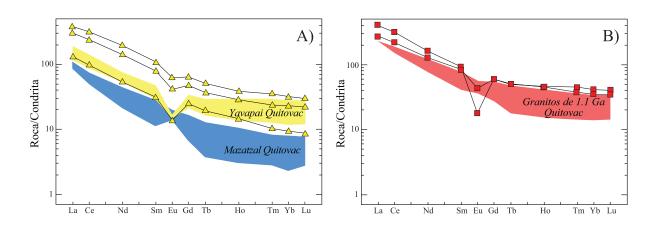
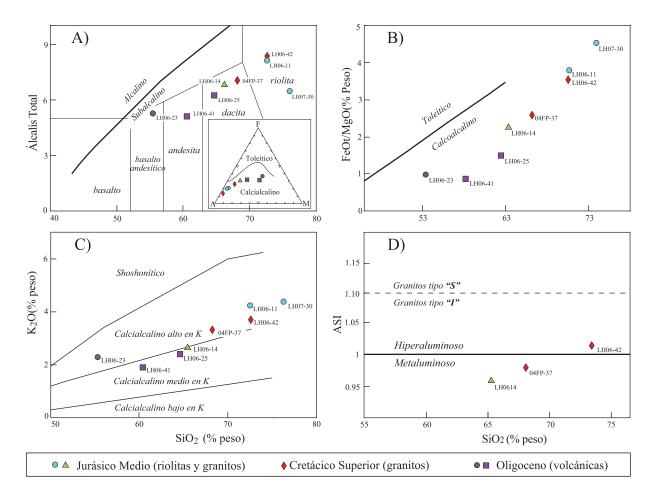


Figura 39. Diagramas de tierras raras (REE) normalizados con valores de condrita reportados por Sun y McDonough (1989). (A) Datos para la unidad de orto-augen gneis paleoproterozoico de Cerro Prieto-Carina (triángulos amarillos) con los campos que generan los datos de las rocas gnéisicas paleoproterozoicas reportadas para la provincia Yavapai (campo en amarillo) y para la provincia Mazatzal (campo en azul) en la zona de Quitovac (Iriondo, 2001). (B) Datos del metagranito mesoproterozoico La Prieta (cuadros rojos) y el campo que genera los datos de las muestras graníticas mesoproterozoicas en el área de Quitovac (Iriondo, 2001).


6.3. Datos geoquímicos de las rocas ígneas del Jurásico Medio-Superior, Cretácico Tardío y Oligoceno

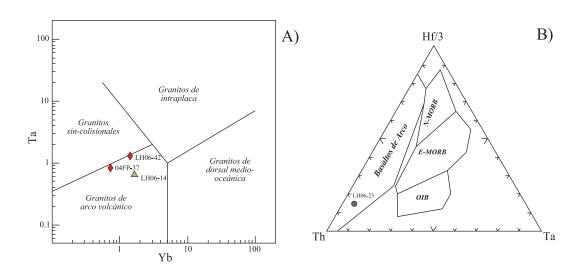
6.3.1. Elementos mayores

Los datos que a continuación se describen pertenecen a las rocas fanerozoicas del área Mina La Herradura. En particular corresponden a datos de rocas del Jurásico Medio (metariolita Carina y granito Carina), Cretácico Tardío (granitos Los Indios y Sierrita Blanca) y Oligoceno (andesita basáltica La Herradura, dacita El Dipolo y diques andesíticos de la Sierrita Blanca).

A modo de comparación, tanto las rocas volcánicas como plutónicas de las diferentes edades, se graficaron en los diferentes diagramas discriminatorios. En los gráficos de álcalis vs. sílice (TAS; Le Bas *et al.*, 1986) y el ternario de álcalis-FeO-Mg (AFM) mostrados en la figura 40A se aprecia que las rocas metariolíticas jurásicas (LH06-11 y LH07-30) grafican en el campo de rocas riolíticas mientras que el granito jurásico (LH06-14) lo hace en el campo de las dacitas (dacita = granodiorita; según Wilson, 1989). El granito 04-FP-37 del Cretácico Tardío de Cerros Los Indios grafica en el campo de la dacita (dacita = granodiorita). El granito de dos micas LH06-42 de Sierrita Blanca grafica en el campo de la riolita (riolita = granito). Los datos de las rocas del Oligoceno se agrupan en los campos de andesita basáltica (LH06-23), andesita (LH06-41) y dacita (LH06-25). Cabe destacar que todos los datos geoquímicos de las rocas fanerozoicas caen en el campo de rocas subalcalinas por debajo de la línea de Irvine y Baragar (1971) [Figura 40A]. En el diagrama AFM se aprecia que todos los datos caen en el campo de rocas calcialcalinas (Figura 40A).

El diagrama de FeO_{total}/MgO versus sílice de Miyashiro y Shido (1974), que discrimina entre rocas toleíticas y calcialcalinas (Figura 40B), muestra que todos los datos, dominantemente, caen en el campo de rocas calcialcalinas. En el caso del diagrama K₂O% contra sílice, con los discriminantes de Peccerillo y Taylor (1976), se aprecia también que todos los datos de las rocas fanerozoicas analizadas tiene una afinidad calcialcalina y no

Figura 40. Datos de elementos mayores en óxido porcentual y anhidros de las rocas volcánicas y graníticas Jurásico Medio, graníticas del Cretácico Superior y volcánicas del Oligoceno del área Mina La Herradura. (A) Diagrama TAS (álcalis total vs. $SiO_2\%$) propuesto por Le Bas *et al.* (1986). La línea divisora del campo álcalino y del sub-álcalino a partir de Irvine y Baragar (1971); (álcalis total = $(Na_2O+K_2O)\%$ peso) incluyendo a modo de comparación las rocas plutónicas del estudio. Se presenta en el recuadro inferior el diagrama AFM (A = Álcalis, F = FeOtotal y M = MgO). (B) Diagrama (FeOt/MgO)% peso vs. $SiO_2\%$ de Miyashiro y Shido (1974). (C) Diagrama K_2O vs. SiO_2 de Peccerillo y Taylor (1976). (D) Diagrama ASI vs. $SiO_2\%$ (ASI = índice de saturación en alumina = $Al_2O_3/CaO+Na_2O+K_2O$ molar). En línea punteada muestra el límite entre granitos tipo "S" y granitos tipo "I" reportado para rocas del cinturón plegado Lachlan de Australia (Chappel y White, 1992) [Granitos tipo "I" = Granito de fundido ígneo; granito tipo "S" = Granito de fundido sedimentario].


toleítica (Figura 40C) y se agrupan en un dominio de características de medio a alto potasio.

El diagrama de índice de saturación en alúmina (ASI) contra sílice indica que los granitos LH06-14 (Jurásico) y 04-FP-37 (Cretácico) son metaluminosos (Figura 40D). Por otro lado, el granito de dos micas LH06-42 es hiperaluminoso. Sin embargo, los tres son granitos tipo "I" (de origen ígneo) según el límite propuesto para rocas ígneas del cinturón plegado Lachlan de Australia (Chappell y White, 1992).

6.3.2. Elementos traza y tierras raras (REE)

El diagrama binario Ta vs. Yb (Pearce *et al.*, 1984) que discrimina los diferentes ambientes tectónicos de formación de granitos muestra que tanto el granito jurásico como los granitos cretácicos caen en el campo de los granitos de arco volcánico (Figura 41A). Por otro lado, el diagrama ternario de Hf/3-Th-Ta (Wood, 1980), que permite la discriminación de ambientes tectónicos de formación de basaltos, indica que la andesita basáltica La Herradura grafica en el campo de los basaltos emplazados en un ambiente de arco volcánico (Figura 41B).

Los valores de elementos traza y tierras raras de la metariolita y del granito, ambos del Jurásico Medio, se graficaron en diagramas de espectro multielemental y de REE (Figuras 42A y B). En estas figuras se observan los patrones típicos de magmas formados en un ambiente de arco volcánico continental dado que existe un enriquecimiento de elementos LILE (*Large Ion Lithophile Elements* = Elementos Litófilos de Radio Iónico Grande) con respecto a los elementos HSFE (*High Field Strength Elements* = Elementos de Alto Potencial Iónico), y de LREE con respecto a las HREE. En el diagrama multielemental se observan varias anomalías negativas importantes para las diferentes litologías como la de Ta, Sr, P, y Ti que, aunado a las elevadas relaciones de Ba/Ta>1000, Zr/Yb> 60 (Tablas 8 y 9), también sugieren que estas rocas se formaron en un ambiente tectónico de subducción de tipo arco continental. En el diagrama de tierras raras se destaca que los patrones para las diferentes litologías tienen poca pendiente con valores de cociente normalizados de [La/Yb]_N = 12.3-13.3, e incluso las tierras raras pesadas forman un patrón

Figura 41. Diagramas discriminatorios de ambientes tectónicos de formación de granitos basado en variaciones elementales para las rocas graníticas del Jurásico Medio y Cretácico Superior del área Mina La Herradura y para ambientes de formación de basaltos para la andesita basáltica LH06-23. (A) Diagrama Ta vs. Yb propuesto por Pearce *et al.* (1984). Elementos presentados en partes por millón y graficados en escala logarítmica. (B) Hf/3-Th-Ta de Wood (1980) para rocas volcánicas máficas-intermedias, N-MORB (basaltos de dorsales medio oceánicas normales), E-MORB (basaltos de dorsales medio oceánicas empobrecidos), OIB (basaltos de islas oceánicas).

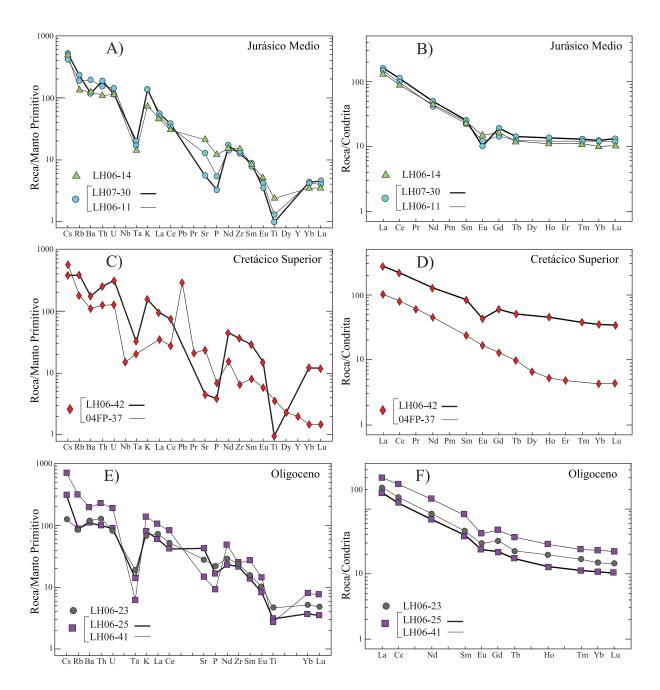


Figura 42. Diagramas de elementos traza y de tierras raras (REE) medidos en partes por millón para rocas del área Mina La Herradura. Elementos traza normalizados con valores de manto primitivo y REE normalizados con valores de condrita, reportados por Sun y McDonough (1989) y gráficados en escala logarítmica. (A) Diagrama de multielementos traza de las rocas riolíticas y graníticas del Jurásico Medio. (B) Diagrama de REE de las rocas riolíticas y graníticas del Jurásico Medio. (C) Diagrama de multielementos traza de las rocas graníticas del Cretácico Superior. (D) Diagrama de REE de las rocas graníticas del Cretácico Superior. (F) Diagrama de REE de las rocas volcánicas del Oligoceno. (F) Diagrama de REE de las rocas volcánicas del Oligoceno.

prácticamente plano. Así mismo, las tres muestras jurásicas tienen una anomalía negativa destacada de europio con valores Eu/Eu* = 0.462-0.749.

Los datos de elementos traza y tierras raras de las rocas cretácicas de las unidades graníticas de Los Indios y de Sierrita Blanca también se graficaron en el diagrama de espectro multielemental y de REE (Figuras 42C y D). En estas figuras también se observan los patrones distintivos de magmas formados en un ambiente de arco volcánico continental debido a que existe un enriquecimiento de elementos LILE con respecto a los HSFE y de los LREE con respecto a los HREE. En el diagrama multielemental se observan varias anomalías negativas importantes como la del Nb, Ta, Sr, P, y Ti. Las relaciones elementales elevadas de Ba/Ta>600, Zr/Yb>90, Zr/Y = 8, aunado a las anomalías negativas de Nb-Ta y positivas de Pb y Sr para estas rocas cretácicas (Tabla 8 y 9), también sugieren que se formaron en un ambiente de subducción de tipo arco continental. Los patrones de tierras raras tienen poca pendiente con valores de cociente normalizado de [La/Yb]_N = 12.1-23.8, además de presentar una anomalía negativa acentuada de europio Eu/Eu* = 0.614-0.965 para la muestra LH06-42 (granito Sierrita Blanca).

Los datos de elementos traza y tierras raras de las rocas del Oligoceno se graficaron en los diagramas de espectro multielemental y de REE (Figuras 42E y F). En estas figuras se observan los patrones propios de magmas formados en un ambiente de arco volcánico continental debido a que también se observa un enriquecimiento general de las tres muestras y de elementos LILE con respecto a los HSFE y de los LREE con respecto a los HREE. En el diagrama multielemental se aprecian anomalías negativas importantes de Ta, Sr, P y Ti, que, en conjunto con las relaciones elementales elevados de Ba/Ta>1000 y Zr/Yb>100 (Tablas 8 y 9), indicarían que estas rocas se formaron en un ambiente tectónico de subducción en un arco continental. Los patrones de REE son muy parecidos en las tres muestras con valores de cociente normalizado de [La/Yb]_N = 14.2-16.3, apreciándose una débil anomalía negativa de europio Eu/Eu* = 0.771-0.869 para las tres muestras.

La muestra (LH06-25), de la unidad de dacita El Dipolo, presenta una afinidad con rocas adakíticas (parámetros en negritas en este párrafo), según los parámetros propuestos para rocas de composición similar estudiadas por Drummond y Defant (1990). Estos

autores sugieren que este tipo de rocas se forman en ambientes de arco magmático y que en muchas ocasiones son producto de la fusión directa de una placa oceánica en subducción metasomatizada en facies de anfibolita y granate. Las evidencias de que esta roca dacítica sea o tenga relación con los procesos de formación de rocas adakíticas son las concentraciones y relaciones elementales de Sr/Yb = 490 (> 500), Yb = 1.83 ppm (< 1.9 ppm), La/Yb = 22.67 (> 9), $Al_2O_3 = 15.7\%$ (> 15%), MgO = 2.83% (< 3%) y un elevado número de magnesio $Mg^* = 58.97$.

7. Resultados isotópicos Sm-Nd en roca total

7.1. Datos de rocas ígneas plutónicas paleoproterozoicas y mesoproterozoicas

Se analizaron 5 muestras plutónicas proterozoicas de roca total a través de la sistemática isotópica de Sm-Nd en roca total y los resultados se presentan en la Tabla 10. Los análisis corresponden a tres muestras paleoproterozoicas (~1.7) del orto-augen gneis Cerro Prieto-Carina y dos mesoproterozoicas (~1.1 Ga) del metagranito La Prieta. Estos datos Sm-Nd se graficaron en el diagrama de evolución de Nd que grafica €Nd vs. edad de la roca (en este caso obtenida con zircones) con el propósito de determinar el origen de los magmas formadores de las rocas (Figura 43). Es decir, si los magmas surgen de una fuente mantélica, una fuente cortical o una mezcla entre las dos. Además de los datos de las rocas del área Mina La Herradura, y para efectos comparativos, se agregaron los campos que generan los datos Sm-Nd de las rocas paleoproterozoicas (Yavapai y Mazatzal) del área de Quitovac (Iriondo et al., 2004). También se muestran los campos generados por los datos Sm-Nd de las rocas de la provincia Yavapai y Mazatzal de Sierra los Alacranes y Cerros Los Ojos publicados por Nourse et al. (2005), también los datos del Yavapai (~1.7 Ga) del área de San Luisito reportados por Gutiérrez-Coronado et al. (2008) y los datos tipo Yavapai de la Zona Canteras-Puerto Peñasco ubicada al NW de Sonora (H. Arvizu, com.per.). También se incluyen los campos que generan las rocas de la provincia Mojave de la región del Bámuri reportadas por Dórame-Navarro et al. (2004) y Castiñeiras et al. (2004 a, b) y los datos de rocas de la Sierrita Prieta en Sonora central (Soto-Verdugo, 2006).

En el gráfico de evolución de Nd (Figura 43) se aprecia que las rocas paleoproterozoicas del área Mina La Herradura caen en el campo generado por las rocas de la provincia Yavapai según diferentes estudios en el NW de Sonora. Los valores de €Nd (inicial) de las rocas paleoproterozoicas del área Mina La Herradura tienen un rango entre +1.7 a +0.5 (Tabla 10) y sugieren que la fuente que originó estas rocas es principalmente mantélica con algún grado de aporte cortical. Las edades modelo obtenidas para estas rocas paleoproterozoicas oscilan entre T_(DM) ~1.86 y 1.92 Ga y corresponden a edades muy

Tabla 10. Datos de Sm-Nd medidos y calculados de las muestras paleoproterozoicas y mesoproterozoicas del área Mina La Herradura NW Sonora, México.

Muestra	Localización (UTM)* Este Norte	Tipo de roca	Edad Error Ma Ma	Sm^ ppm	Nd^ ppm	¹⁴⁷ Sm/ ¹⁴⁴ Nd‡	¹⁴³ Nd/ ¹⁴⁴ Nd‡ error	¹⁴³ Nd/ ¹⁴⁴ Nd§	Épsilon Nd εNd(0)	Épsilon Nd εNd(t)	Edad Modelo** T _{DM} Ma
Orto-augen	gneis Paleoproterozoico Cerro Prieto-Carina										
SPA-7	334022 3448969	Orto-augen gneis	$1692~\pm~8$	15	82	0.107591	0.511672 ± 17	0.510476	-18.80	+0.52	1915
LH06-16	334548 3449695	Orto-augen gneis	$1687\ \pm\ 9$	4	19	0.119587	0.511866 ± 18	0.510537	-15.02	+1.70	1852
LH07-41	330217 3453967	Orto-augen gneis	1683 ± 9	12	68	0.106599	0.511700 ± 20	0.510515	-18.26	+1.28	1862
Metagranito	o Mesoproterozoico La Prieta										
LH06-40	325008 3458751	Metagranito	$1093\ \pm\ 16$	12	60	0.122442	0.511905 ± 16	0.511029	-14.26	-3.91	1846
LH07-42	326765 3457969	Metagranito	1083 ± 11	14	82	0.102012	0.511841 ± 20	0.511111	-15.51	-2.30	1614

^{*} Datum WGS-84.

^(^) El grado de incertidumbre (1-sigma) en las concentraciones de Sm y Nd es de \pm 3.2% y \pm 2.7%, respectivamente.

^(‡) Las relaciones isotópicas están corregidas por medió del uso del estándar La Jolla. Se midió 190 veces la relación ¹⁴³Nd/¹⁴⁴Nd del estándar La Jolla y se obtuvo un promedio de 0.511869 ± 24 para esta relación isotópica.

^(§) La relación isotópica ¹⁴³Nd/¹⁴⁴Nd inicial fue corregida contemplando los valores de la edad de cristalización de la roca y usando la técnica U-Pb en zircones. Se usó la constante de decaimiento de 6.54 x 10⁻¹²/años (Begemann *et al.*, 2001).

^(**) Las edades modelo T_{DM} fueron calculadas usando las ecuaciones descritas por DePaolo, 1981.

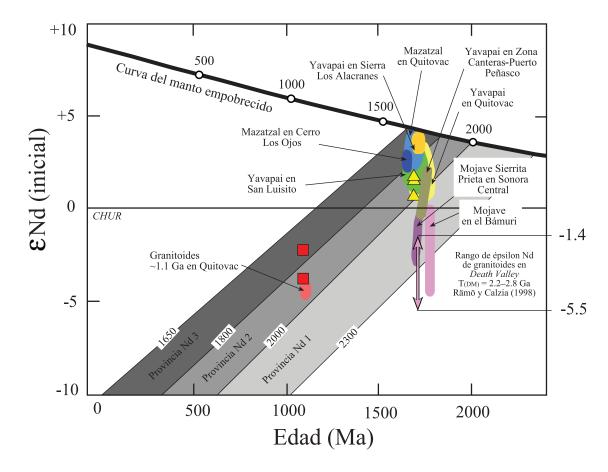


Figura 43. Diagrama de evolución de neodimio. Curva del manto empobrecido de Bennett y DePaolo (1987). Datos Sm-Nd en roca total de la unidad paleoproterozoica de orto-augen gneis Cerro Prieto-Carina (triángulos en color amarillo) y datos de la unidad mesoproterozoica La Prieta (cuadros en color rojo). A forma de comparación se adicionaron los campos que generan los datos de la provincia Yavapai (color amarillo) y los de la provincia Mazatzal (color azul) en la zona Quitovac, publicados por Iriondo (2001). Se añadió el campo del Yavapai en el área de San Luisito (color verde) publicado por Gutiérrez-Coronado et al. (2008) así como los de Sierra Los Alacranes y Cerro Los Ojos (Nourse et al., 2005), también se agregó el campo de las rocas tipo Yavapai de la región de Zona Canteras-Puerto Peñasco (H. Arvizu, com.per.). Por otra parte, también se adicionó el campo generado por las rocas de tipo Mojave en la región del Bámuri (Dórame-Navarro et al., 2004; Castiñeiras et al., 2004 a, b) y el campo generado para rocas en Sierrita Prieta en Sonora Central (Soto-Verdugo, 2006). Así mismo, se agregó el campo generado por los datos Sm-Nd en roca total de rocas mesoproterozoicas de Quitovac (color rojo) publicados por Iriondo (2001), Iriondo et al. (2004). También el rango de valores donde caen los granitoides del la zona del Death Valley y que es característico de la provincia Mojave o Provicia de Nd 1 (Rämö y Calzia, 1998). CHUR: Chondritic Uniform Reservoir.

cercanas a la cristalización (rango de edades U-Pb) de estas rocas obtenidas mediante estudios de U-Pb en zircones.

A forma de comparación, en la Figura 43, se agregó el área donde grafican los granitos típicos de la provincia Mojave de la zona del *Death Valley* (Rämö y Calzia, 1998). Se observa que las muestras del área Mina La Herradura no tienen las mismas características isotópicas y grafican muy lejos del campo que generan los datos Sm-Nd de esas rocas.

Las rocas de la unidad granítica mesoproterozoica (\sim 1.1 Ga) La Prieta tienen valores de \in Nd (inicial) de -2.3 y -3.1 y correspondientes edades modelo $T_{(DM)}$ de \sim 1.61 y 1.81 Ga, respectivamente (Tabla 10 y Figura 43). El rango de valores de \in Nd de estas muestras mesoproterozoicas sugieren que la fuente de fusión que dio lugar a estos magmas fue principalmente de composición cortical. Por otra parte, estos granitos caen sobre los campos de las provincias de Nd 2 y 3, sugiriendo una afinidad con esos dominios corticales.

8. Discusión

8.1. Las rocas paleoproterozoicas tipo Yavapai del área Mina La Herradura y su importancia para el entendimiento del margen SW de Laurencia

Los datos analíticos de geocronología U-Pb, geoquímica de elementos mayores y traza e isotopía Sm-Nd, sugieren que las unidades ortognéisicas La Herradura y Cerro Prieto-Carina (Figura 7) son de edad paleoproterozoica. Estas rocas tienen características similares a las rocas de la provincia paleoproterozoica Yavapai presentes en el SW de Laurencia (Figura 2). Estos resultados también sugieren una afinidad de estas rocas con las rocas de basamento tipo Yavapai presentes en el NW de Sonora como las de la zona de Quitovac (Iriondo *et al.*, 2004), Sierra Los Alacranes (Nourse *et al.*, 2005), Zona Canteras-Puerto Peñasco (Arvizu-Gutiérrez, 2008), Cerros San Luisito (Gutierrez-Coronado *et al.*, 2008) y otras localidades del centro de Sonora como El Crestón de Opodepe (Valenzuela-Navarro *et al.*, 2003) y el Rancho La Lámina (Amato *et al.*, 2008). A continuación se analizarán las características mencionadas, en los resultados geocronológicos, geoquímicos e isotópicos por separado.

8.1.1. Control temporal del magmatismo proterozoico (U-Pb en zircones)

Los resultados geocronológicos obtenidos de rocas de basamento en el área Mina La Herradura (Figura 7) corresponden a dos muestras de la unidad ortognéisica La Herradura con edades U-Pb en zircones de 1714 ± 5 Ma y de 1712 ± 4 Ma (Figura 27), así como de tres muestras del orto-augen gneis Cerro Prieto-Carina con edades U-Pb en zircones de 1692 ± 8 Ma, 1687 ± 9 Ma y de 1682 ± 9 Ma (Figura 28). Estas edades corresponden al Paleoproterozoico (Tabla 2) y son correlacionables con las edades de las rocas del basamento en Quitovac, Sierra Los Alacranes-Cerro Los Ojos, Zona Canteras-Puerto Peñasco, Cerros San Luisito y el Rancho La Lámina. Sin embargo, estas rocas del área Mina la Herradura son ligeramente más jóvenes que la mayoría de las rocas del basamento mencionadas y que otras del NW de Sonora tal como se aprecia en el

histograma de la figura 44 A, donde se grafican todas las edades U-Pb de zircones de rocas paleoproterozoicas existentes para la región (Tabla A1; Figura A1).

La edad relativamente más joven (~1.71–1.68 Ga) del pulso magmático que generó las rocas paleoproterozoicas del área Mina La Herradura, sugiere que los magmas asociados a este pulso fueron encajonados en rocas paleoproterozoicas pre-existentes en la región (p.ej., las rocas del basamento de Quitovac). Por su parte, y como lo discutiremos más adelante en la discusión de la geoquímica, el diagrama de discriminación tectonomagmática Ta vs. Yb (Figura 38) sugiere que dos de las tres muestras estudiadas del orto-augen gneis Cerro Prieto-Carina presentan una afinidad con granitos formados en un ambiente tectónico de intraplaca. Así mismo, y de manera lógica, nosotros proponemos que las rocas del basamento presentes en Quitovac fueron, debido a su cercanía, las más factibles para fungir como roca encajonante.

Por otro lado, y como se mencionó en el apartado de resultados, en el área Mina La Herradura se fecharon rocas graníticas y anortosíticas mesoproterozoicas (~1.1 Ga: unidad La Prieta con edades de 1062 ± 13 Ma y 1093 ± 16 Ma y las rocas al NW del área en Sierra Prieta con edades de ~1075 y 1086 Ma; Figura 7; Tabla 2). Estas rocas se correlacionan en edad con el granito Bustamante ubicado en la región de Quitovac (Iriondo, 2001; Iriondo *et al.*, 2004) y con el granito Murrieta y las anortositas que afloran en la parte norte de Sierrita Blanca (Figura 1; Enríquez-Castillo, 2008). También se observa que las rocas mesoproterozoicas del área Mina La Herradura son más jóvenes que otras ocurrencias de la región (Figura 44 B) e intrusionan en una fase tardía del magmatismo de ~1.1 Ma presente en el NW de Sonora.

Iriondo (2007) e Iriondo y Premo (2009) sugieren, a manera de hipótesis, que la agrupación de rocas paleoproterozoicas con características Yavapai en Sonora, y que mantienen una dirección estructural predominantemente NW-SE (Figura 2), han podido actuar como una zona de debilidad cortical estructural (zona de sutura) desde el Paleoproterozoico que pudo haber condicionado notablemente los eventos geológicos subsecuentes presentes en Sonora. Un ejemplo de esto sería el alineamiento en dirección NW-SE que presentan los granitos y anortositas mesoproterozoicas (~1.1 Ga) como las que

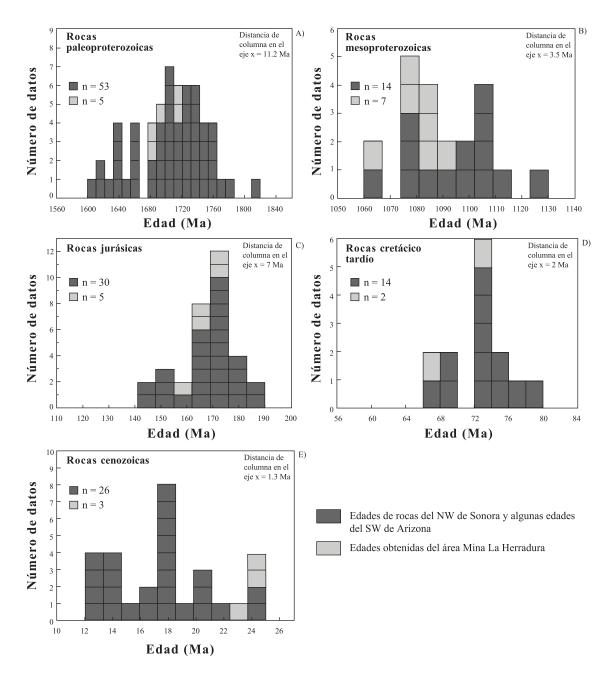


Figura 44. Histogramas de edades de cristalización recopiladas de rocas ígneas del NW de Sonora y algunos datos del SW de Arizona (barras en gris oscuro), además los datos geocronológicos obtenidos del área Mina La Herradura (barras en gris claro) [Datos listados en Tabla 2 y Tablas A1-A5 para rocas del Apéndice A]. (A) Datos de rocas gnéisicas paleoproterozoicas; (B) datos de rocas graníticas y anortosíticas mesoproterozoicas; (C) datos de rocas graníticas y volcánicas jurásicas; (D) datos de rocas principalmente graníticas del Cretácico Superior; y (E) datos de rocas volcánicas del Oligoceno-Mioceno.

tenemos en el área Mina La Herradura (Iriondo y Premo, 2009). Además, otros eventos como la orientación preferencial NW-SE del rifting que ocasionó la ruptura del supercontinente Rodinia pudo haber estado controlado por esta debilidad cortical. La preferencia para el emplazamiento del magmatismo fanerozoico, la formación de zonas de despegue de cabalgaduras laramídicas (Iriondo *et al.*, 2005) o incluso la canalización de los fluidos metamórficos que formaron yacimientos minerales principalmente de oro orogénico (Iriondo y Atkinson, 2000; Quintanar-Ruíz, 2008) son algunos de los fenómenos geológicos que también pudieran haber estado controlados por esta zona de debilidad (Iriondo y Premo, 2009).

8.1.2. Características geoquímicas de las rocas proterozoicas (XRF y INAA)

La geoquímica de elementos mayores realizada en las muestras paleoproterozoicas del orto-augen gneis Cerro Prieto-Carina (SPA-7, LH06-16 y LH07-41) muestra un enriquecimiento que se puede observar en los diagramas tipo Harker [(% peso de CaO, Na₂O, K₂O) vs. SiO₂] y en el de índice de saturación en alúmina (Figura 37). Dicho enriquecimiento es similar al que presentan las rocas tipo Yavapai de Quitovac; esto es más evidente en el diagrama de K₂O vs. SiO₂, en donde se observa que tanto los datos de las rocas del área Mina La Herradura como los de Quitovac se ubican en el campo de las rocas calcialcalinas altas en potasio. Igualmente, grafican en el campo de rocas hiperaluminosas dentro del diagrama de índice de saturación de alúmina (Figura 37D).

Cabe destacar que las muestras del metagranito mesoproterozoico La Prieta (LH06-40 y LH07-42) se ubican cerca del campo generado por las rocas con características de tipo Yavapai (Figura 37), lo que sugiere una fuente posible de fusión a partir de rocas de esta provincia. Por otra parte, se observa un enriquecimiento de los óxidos de Ca, Na y K que permite sugerir que tanto el orto-augen gneis Cerro Prieto-Carina como el metagranito mesoproterozoico La Prieta manifiestan una afinidad con las rocas del basamento tipo Yavapai de Quitovac (Figura 37).

Los datos de tierras raras, tanto del orto-augen gneis Cerro Prieto-Carina como del metagranito La Prieta, sugieren una alta afinidad de estas rocas con las rocas tipo Yavapai

de Quitovac ya que presentan espectros que indican enriquecimientos y anomalías comparables (Figura 39). Dentro de estas similitudes, destacan el enriquecimiento de LREE con respecto a HREE, la sumatoria de REE [área Mina La Herradura (130-316 ppm) = Quitovac (122-188 ppm)] y la anomalía negativa de europio tanto en las rocas paleoproterozoicas como en las mesoproterozoicas. Cabe destacar que la muestra LH06-16, que tiene un nivel de enriquecimiento igual que rocas asociadas a la provincia Yavapai en Quitovac, es la única que presenta una firma de arco volcánico (Figura 38). Esto sugiere que a pesar de que los magmas paleoproterozoicos del área Mina La Herradura presentan características de intraplaca, existieron en la región pulsos magmáticos con características tectonomagmáticas de formación en un ambiente de arco volcánico.

8.1.3. Estudios isotópicos de Sm-Nd en rocas proterozoicas

Los isótopos de Sm-Nd en roca total obtenidos para las muestras del orto-augen gneis paleoproterozoico Cerro Prieto-Carina tienen un rango de valores de €Nd de +1.7 a +0.5 (Tabla 10) calculados al tiempo de cristalización de la roca (Tabla 2). Esto sugiere que la fuente de fusión que originó estas rocas graníticas es principalmente mantélica con un pequeño grado de aporte cortical. Estas rocas también presentan un rango de edades modelo T_(DM) de ~1.86 a 1.92 Ga. El conjunto de estos datos graficados en el diagrama de evolución de neodimio (Figura 43) sugiere que estas rocas tienen una afinidad con las rocas de la provincia Yavapai como las presentes en la región de Quitovac, Sierra Los Alacranes, Zona Canteras-Puerto-Peñasco y Cerros San Luisito (Iriondo *et al.*, 2004; Nourse *et al.*, 2005; Gutiérrez-Coronado *et al.*, 2008; H. Arvizu, com. per.). De forma similar a los datos geoquímicos, también sugieren que la fuente de generación de estos magmas graníticos mesoproterozoicos fuera una corteza continental con características similares a las de rocas paleoproterozoicas presentes en la provincia Yavapai.

Esta nueva ocurrencia de rocas paleoproterozoicas con características Yavapai en el área Mina La Herradura también aporta una pieza fundamental y disminuye la incertidumbre sobre la distribución de las provincias del basamento paleoproterozoico en el NW de Sonora (Figura 2). También otros estudios, Iriondo *et al.* (2004), Iriondo (2007) e

Iriondo y Premo (2009) postulan, a partir de estudios geocronológicos, geoquímicos e isotópicos en rocas proterozoicas del NW de Sonora, la hipótesis de la existencia de un doblez oroclinal de edad paleoproterozoica ("Caborca oroclinal bend") que dobla hacia el SE las provincias corticales al adentrarse hacia México (Figura 2). Este doblez simboliza una solución alterna a la megacizalla Mojave-Sonora para explicar la distribución de rocas de basamento en Sonora, y representa una solución más conciliadora con los estudios geológicos modernos que se han desarrollado en esta porción del NW de México. Por último, este doblez oroclinal Caborca sugiere una autoctonía del basamento presente en el WSW de Sonora (bloque Caborca) con respecto al basamento presente en el NE de Sonora y al sur de Arizona (bloque Norte América), lo cual es congruente con nuestros estudios en el área Mina La Herradura.

Esta nueva distribución de provincias paleoproterozoicas en la margen SW de Laurencia (Figura 2) permite evaluar las reconstrucciones del supercontinente Rodinia (Li *et al.*, 2008) que requieren del entendimiento geológico de cada margen continental implicado en las diferentes conexiones propuestas (Figura 3). Cabe aclarar que la propuesta del doblez oroclinal Caborca pone en evidencia la idoneidad de la plantilla geológica del basamento paleoproterozoico del SW de Laurencia utilizada en estas reconstrucciones de Rodinia (Figura 3).

8.2. Magmatismo jurásico de arco continental en el área Mina La Herradura

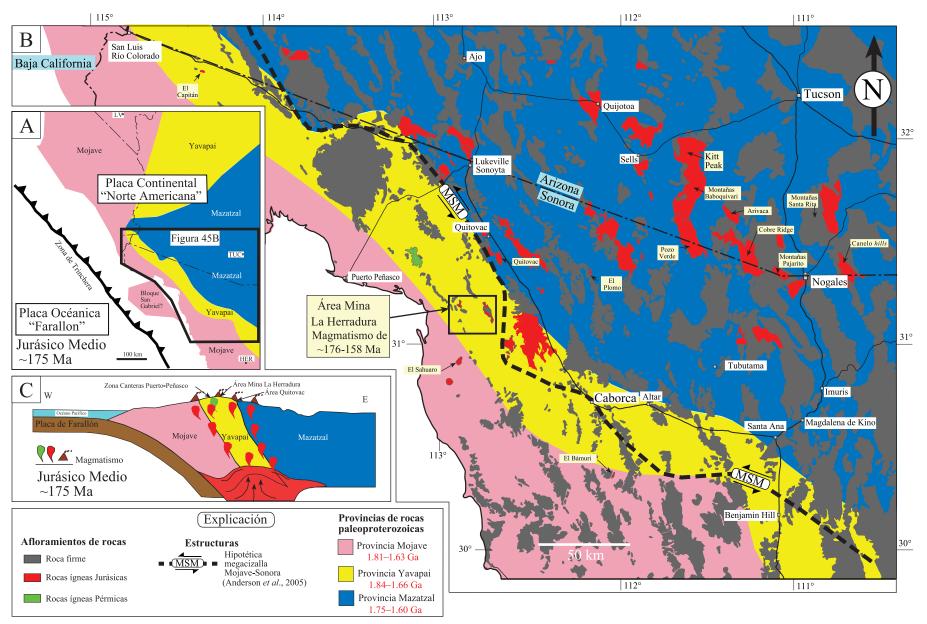
En el área Mina La Herradura, se cartografiaron varias ocurrencias de rocas volcánicas y graníticas jurásicas (Figura 7). Estas se fecharon por la técnica U-Pb en zircones y sus características geoquímicas señalan que son rocas formadas en un ambiente de arco magmático continental asociado a subducción. Se definieron diferentes unidades incluyendo la metariolita Carina con edades U-Pb en zircones de 176.2 ± 1.4 Ma y 175.5 ± 1.7 Ma, la unidad granítica Carina con una edad de 163.2 ± 1.2 Ma, la dacítica Cerro Prieto (163.2 ± 1.0 Ma) y por último la unidad metaandesítica El Sahuaro (157.9 ± 2.8 Ma) [Figuras 7–10; Tabla 2]. Estas edades sugieren la existencia de una actividad magmática desde el Jurásico Medio hasta el Jurásico Tardío en el área Mina La Herradura. Cabe

destacar que estas rocas jurásicas intrusionaron, entre otras, a las rocas de basamento paleoproterozoico tipo Yavapai presentes en el área Mina La Herradura.

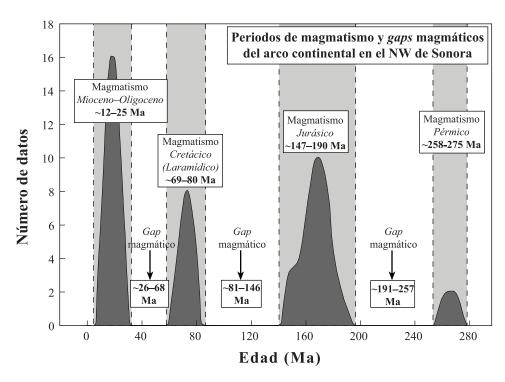
La geoquímica de estas rocas jurásicas (metariolita Carina y granito Carina) muestra una afinidad de arco volcánico. En primer lugar en el diagrama AFM se aprecia que todos los datos caen en el campo de rocas calcialcalinas (Figura 40A). En segundo lugar, se aprecia que en el diagrama K₂O% vs. sílice, con los discriminantes de Peccerillo y Taylor (1976) [Figura 40C], los datos de estas rocas jurásicas caen en el campo de rocas calcialcalinas de medio a alto en potasio. Por otro lado, el índice de saturación en alúmina (ASI) contra sílice indica que el granito Carina es metaluminoso (Figura 40D) y se discrimina en el diagrama de Ta vs. Yb como un intrusivo granítico formado en ambiente de arco volcánico (Figura 41A).

Los espectros multielementales de trazas y de REE de estas rocas ígneas del Jurásico Medio (Figuras 42A y B) son típicos de magmas formados en un ambiente de arco volcánico continental dado que existe un enriquecimiento considerable de elementos LILE con respecto a los elementos HSFE y de LREE con respecto a las HREE. En los diagramas multielementos se observan anomalías negativas de Eu, Ta, Sr, P y Ti, que, aunado a las elevadas relaciones de Ba/Ta y Zr/Yb (Tablas 8 y 9), sugieren que estas rocas se formaron en un ambiente tectónico de arco continental asociado a subducción.

Por otro lado, Arvizu-Gutiérrez (2008) presenta la ocurrencia de rocas graníticas pérmicas (~275–258 Ma; Guadalupense) en Sierra Pinta, a 30 km al noroeste del área Mina La Herradura (Figura 1), las cuales interpreta como rocas asociadas al inicio del establecimiento del arco magmático continental cordillerano norteamericano y, de esta forma, indica su inicio en el Paleozoico tardío y no en el Triásico como se pensaba inicialmente (Barth *et al.*, 1997; Barth y Wooden, 2006).


Por otra parte, y como ya se mencionó anteriormente, se piensa que el basamento paleoproterozoico tipo Yavapai del área Mina La Herradura, en el cual se emplazaron estas rocas del Jurásico Medio y Tardío (~176–157 Ma) o incluso las del Pérmico (~275–258 Ma), posiblemente sirvió como una zona de debilidad cortical estructural permitiendo la canalización de estos magmas (Iriondo, 2007; Iriondo y Premo, 2009). De esta manera, los

magmas incipientes del arco magmático continental pudieron emplazarse con mayor facilidad a lo largo de esta zona de debilidad (Figura 45). Esto se ilustra de forma esquemática en la figura 45 y se muestra el posible marco tectónico del arco magmático cordillerano para el Jurásico Medio mostrándose el emplazamiento de magmas a través de los basamentos proterozoicos ya formados del margen SW de Laurencia sugiriendo una autoctonía forzosa para estas rocas proterozoicas por lo menos para esta porción del margen continental.


Posteriormente, en el NW de Sonora se emplazaron más rocas ígneas como resultado de pulsos magmáticos con características calcialcalinas asociadas a subducción para formar el arco magmático continental en periodos o rangos de magmatismo desde el Pérmico hasta el Mioceno, así como de periodos de ausencia del mismo (Figura 46).

8.3. Correlación geocronológica y geoquímica entre las rocas del Jurásico Medio del área Mina La Herradura y las rocas del arco magmático cordillerano Norteamericano en el sur de Arizona y norte de Sonora

La correlación geocronológica y geoquímica de las rocas del Jurásico Medio del área Mina La Herradura (unidad metariolítica Carina y la unidad del granito Carina) con los datos existentes publicados en la literatura, y en algunos casos inéditos, de las rocas del arco magmático jurásico cordillerano Norteamericano en el sur de Arizona y norte de Sonora (Tablas A2 y A3; Figura A1), permite sugerir que los magmas precursores de todas estas rocas jurásicas se emplazaron a través de un basamento proterozoico de características corticales similares. Cabe destacar que el área Mina La Herradura se encuentra en el bloque Caborca, al sur de la hipotética megacizalla Mojave-Sonora (MSM), y que los datos de rocas de arco magmático Norteamericano corresponden mayoritariamente a localidades del bloque Norte América, al norte de la supuesta megacizalla (Figura 45). También cabe destacar que existen otras localidades de rocas jurásicas en Sonora y Arizona (Tabla A3) de las cuales no se dispone de geoquímica para realizar una comparación con las unidades del área Mina La Herradura. En otros casos existen rocas volcánicas y graníticas de las cuales se dispone de estudios geoquímicos, pero

Figura 45. Dibujos que muestran el emplazamiento y localizacion de afloramientos de rocas ígneas del margen activo Norteamericano (Pérmico y Jurásico) en el SW de Laurencia y la distribución de provincias paleoproterozoicas con base en el conocimiento actual, tomadas de Iriondo *et al.* (2004) y Iriondo y Premo (2009). A) Mapa general de la distribución de las provincias paleoproterozoicas del SW de Laurencia. B) Mapa con los afloramientos jurásicos del SW de Arizona y NW de Sonora, y también el magmatismo pérmico. C) Sección esquemática del magmatismo del arco Norteamericano ocurrido en el SW de Laurencia en el Jurásico.

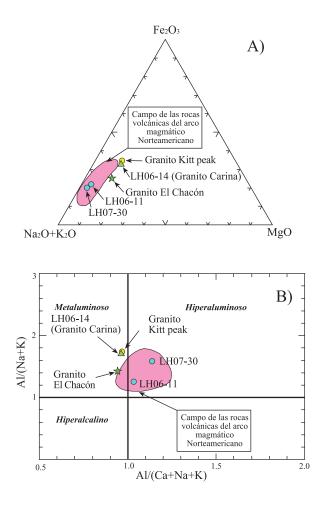
Figura 46. Periodos de magmatismo y ausencias de magmatismo (*gaps* magmáticos) de arco continental ligados al arco magmatico Norteamericano en el NW de Sonora México. Construido a partir de los datos listados en Tabla 2 y Tablas A1-A5 del Apéndice A.

que carecen de una edad radiométrica o bien pertenecen a rocas del Jurásico Tardío con características tectonomagmáticas alcalinas muy diferentes que se asocian a magmatismo formado en un ambiente de extensión cortical (Haxel *et al.*, 2005; Bassett y Busby, 2005).

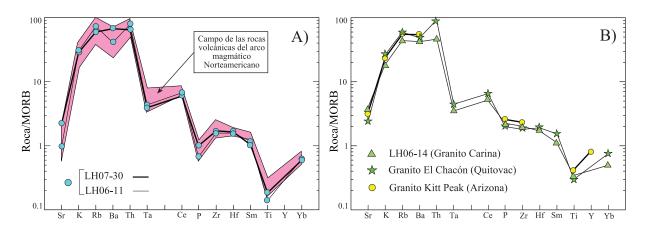
8.3.1. Comparativa temporal a partir de geocronología U-Pb en zircones

La comparativa geocronológica de las unidades de rocas del Jurásico Medio del área Mina La Herradura a partir de geocronología U-Pb en zircones es viable ya que las edades de la unidad de metariolita Carina de ~175–176 Ma, se asemejan claramente con las edades publicadas para las rocas volcánicas del arco magmático Norteamericano (Figura 44C). Ejemplos de estas rocas volcánicas jurásicas en Sonora, ubicadas al NE de la supuesta megacizalla, se encuentran en la región de Quitovac, donde riolitas con "ojos" de cuarzo fueron fechadas en una edad U-Pb en zircones de 176 ± 2 Ma (Iriondo, 2001) [Tablas A2 y A3]. También hay ocurrencias cerca del poblado El Plomo donde aflora la riolita El Plomo con una edad U-Pb de zircones de ~166–173 Ma (Abbott y Smith, 1998) y en la región del Bámuri donde se encuentran riolíticas del mismo aspecto, descritas anteriormente, con una edad U-Pb en zircones de ~190 Ma (P. Castiñeiras, com. per.). Esta última ocurrencia estaría ubicada al SW de la supuesta megacizalla (bloque Caborca).

En el sur de Arizona se reportan rocas riolíticas similares que forman parte de la Formación Ali Molina en las Montañas Baboquivari y que presentan edades U-Pb en zircones de 170 ± 3 Ma (Haxel *et al.*, 2005). Estos mismos autores, en esta localidad, reportan edades de ~170–175 Ma en otras rocas riolíticas constituidas por el Grupo Topawa (Tabla A2). En Sierra Santa Rita, Riggs *et al.* (1993) reportan una edad de ~175 Ma para rocas riolíticas (Tablas A2 y A3; Figura A1) y en Sierra La Arivaca, Tosdal *et al.* (1989) reportan rocas riólíticas con una edad de ~190 Ma. Todas estas ocurrencias de rocas volcánicas jurásicas en Arizona se encuentran al NE de la supuesta megacizalla Mojave-Sonora y se depositan sobre el basamento del bloque Norte América de acuerdo con la hipótesis de la megacizalla.


La unidad granítica Carina, con una edad U-Pb en zircones de 163.2 ± 1.2 Ma y la unidad dacítica Cerro Prieto de 163.2 ± 1.0 Ma (Tabla 2 y Figura 8) son correlacionables en

edad con las ocurrencias graníticas jurásicas presentes en el NW de Sonora, y correspondientes al bloque Norte América, como el granito El Chacón (Quitovac) que tiene una edad U-Pb en zircones de 166.0 ± 0.3 Ma (Iriondo, 2001). Así mismo lo es el granito El Plomo que tiene una edad de ~165–166 Ma (Anderson *et al.* 2005; A. Iriondo, com. per.) y es comparable con las unidades granito Carina y dacita Cerro Prieto. Igualmente, el granito gnéisico El Capitán, que se ubica al norte del campo volcánico El Pinacate, tiene una edad de ~164 Ma (Anderson *et al.*, 2005) [Tablas A2 y A3; Figura A1]. De la misma manera, la unidad granítica Carina se correlaciona con granitos del Jurásico Medio del SW de Arizona como el granito Kitt Peak (Montañas Baboquivari), el cual tiene una edad U-Pb en zircones de 165 ± 2 Ma (Haxel *et al.*, 2005).


De esta manera, se aprecia la existencia de rocas jurásicas volcánicas y plutónicas de la misma edad a ambos lados de la hipotética megacizalla Mojave-Sonora.

8.3.2. Geoquímica comparativa de elementos mayores y traza

Los datos geoquímicos de elementos mayores y traza de las rocas jurásicas del área Mina La Herradura, así como los datos bibliográficos de 2 muestras graníticas y 15 muestras jurásicas volcánicas (riolíticas y pórfidos riolíticos; Tabla A2) de rocas del arco magmático cordillerano Norteamericano, se graficaron en diagramas discriminatorios que discutiremos a continuación (Figuras 47 y 48). En esta recopilación de datos bibliográficos se encuentran rocas volcánicas de las siguientes localidades del sur de Arizona y norte de Sonora que se presentan en el mapa de la figura A1: siete muestras del Grupo Topawa y dos muestras de la Formación Ali Molina ambas ubicadas en las Montañas Baboquivari (Haxel *et al.*, 2005), una muestra de la región Sierra La Arivaca (Haxel *et al.*, 1984), otra muestra de la región de Sierra Santa Rita (Haxel *et al.*, 1984), dos muestras de riolita de la región del Bámuri ubicada en Sonora (A. Iriondo com. escrita), una muestra de riolita porfidica de la zona de Quitovac (A. Iriondo, com. escrita) y la riolita El Plomo (Abbott y Smith, 1998; Haxel *et al.*, 2005). A excepción de la muestra volcánica del Bámuri, todas las demás ocurrencias pertenecen al bloque Norte América según la hipótesis de la megacizalla. Por último, las muestras graníticas corresponden al granito El Chacón en el área de Quitovac

Figura 47. Diagramas de elementos mayores de rocas volcánicas y plutónicas del Jurásico Medio del área Mina La Herradura y de rocas del Jurásico Medio pertenecientes al arco magmático cordillerano Nortamericano del sur de Arizona y norte de Sonora. (A) Diagrama AFM. (B) Diagrama de índice de saturación en alúmina (Maniar-Piccoli, 1989).

Figura 48. Diagramas de multielementos normalizados con valores de *Mid Ocean Ridge Basalt* = *Basaltos de Dorsal Medio Oceánica* (MORB) reportados por Pearce (1983). (A) Datos de las muestras de la unidad riolítica Carina y del campo que genera la suite de rocas del Jurásico Medio pertenecientes al arco magamático cordillerano Norteamericano. (B) Datos de la muestra LH06-14 de la unidad granítica Carina del Jurásico Medio en comparativa con el granito El Chacón de Quitovac y el granito Kitt Peak (Arizona), ambos del Jurásico Medio.

(A. Iriondo, com. escrita) y al granito Kitt Peak en las Montañas Baboquivari (Tosdal *et al.* 1989), ambas fechadas en edades del Jurásico Medio (Iriondo, 2001; Haxel *et al.*, 2005) y pertenecientes también al bloque Norte América.

En el diagrama AFM, las muestras de metariolitas del área Mina La Herradura (LH07-30 y LH06-11) caen en el campo formado por la agrupación de rocas del arco magmático cordillerano Norteamericano (Figura 47A), mientras que el granito Carina (LH06-14) grafica adyacente a las muestras de los granitos Kitt Peak y El Chacón.

En el diagrama de índice de saturación en alúmina de Maniar-Piccoli (1989) [Figura 47B] se observa que las rocas riolíticas del área Mina La Herradura caen mayoritariamente en el campo hiperaluminoso y encima del campo generado por la agrupación de las rocas del arco magmático jurásico Norteamericano del sur de Arizona y norte de Sonora. Por otro lado, el granito Carina grafica nuevamente junto con las muestras de los granitos Kitt Peak y El Chacón. Cabe destacar que en la literatura se describe una gran similitud mineralógica de los granitos Kitt Peak y El Chacón con respecto al granito Carina (feldespatos-cuarzo-hornblenda-titanita), además de tener la misma edad del Jurásico Medio.

Para la comparación de elementos traza se utilizó un diagrama de multielementos (Figura 48A) debido a que la cantidad de elementos traza disponible en las referencias bibliográficas era muy limitado (Tabla A2 y Figura A1). Los datos de elementos traza de la metariolita Carina grafican sobre el campo generado por las rocas volcánicas del arco magmático cordillerano Norteamericano e indican niveles de enriquecimiento semejantes para estos elementos; además coinciden las anomalías negativas importantes para el Sr, Ta, P y Ti, lo cual pudiera indicar que los magmas generadores de estas rocas jurásicas se formaron a partir de la fusión de una corteza con características similares.

El diagrama multielementos de la figura 48B muestra un gran parecido entre patrones y niveles de enriquecimiento para las rocas graníticas del Jurásico Medio. El granito Carina presenta las mismas anomalías mostradas por las muestras de los granitos Kitt Peak y El Chacón. Así mismo, estos patrones normalizados de elementos traza de las rocas del área Mina La Herradura, y los generados por las rocas del arco magmático cordillerano Norteamericano, principalmente por las anomalías en Ta, P, Zr y Ti, sugieren

que los magmas precursores de estas rocas graníticas han tenido unas condiciones para su formación muy similares y posiblemente estén asociadas a un proceso de subducción en un ambiente de arco continental tal como se muestra en la figura 45.

En resumen, se encuentran rocas jurásicas volcánicas y graníticas con un comportamiento geoquímico similar a ambos lados de la hipotética megacizalla Mojave-Sonora.

8.4. Magmatismo de subducción durante el periodo larámide y el Oligoceno en el área Mina La Herradura

Posterior al pulso magmático jurásico en, el área Mina La Herradura, ocurrió una nueva fase de magmatismo durante el Cretácico Tardío-Terciario inferior (pulso magmático larámide; Figura 46). Se cartografiaron dos unidades graníticas del Cretácico Superior, una que corresponde a la unidad Los Indios (Figura 7), con una edad U-Pb en zircones de 76.3 \pm 0.4 Ma (Tabla 5 y Figura 34), y la otra unidad es el granito Sierrita Blanca de una edad U-Pb en zircones de 69.7 \pm 1.3 Ma (Tabla 6 y Figura 35). Cabe destacar que existe una diferencia significativa de edad entre estas dos unidades graníticas. Además estos granitos presentan una diferencia mineralógica ya que el granito Sierrita Blanca se caracteriza por tener una mineralogía de 2 micas (biotita-moscovita), mientras que el granito Los Indios contiene biotita y proporciones significativas de hornblenda y titanita (Tabla 2).

Por otra parte, la unidad granítica Sierrita Blanca (Figura 9) también fue fechada en su porción norte por Enríquez-Castillo (2008) obteniendo edades U-Pb en zircones de 72.6 \pm 1.2 Ma y de 69.7 \pm 1.0 Ma (Tabla A4). Además, las unidades laramídicas del área Mina La Herradura son correlacionables con otras ocurrencias presentes en el NW de Sonora (Figura 44D). Las ocurrencias de rocas graníticas laramídicas en Quitovac fueron fechadas por U-Pb por técnica TIMS en zircones en edades de 79.4 \pm 1.3 Ga y 76.1 \pm 3.7 Ma (Iriondo, 2001). Cabe destacar que las características mineralógicas de estas muestras graníticas son en algunos casos similares a las de las unidades graníticas de Sierrita Blanca y Los Indios. Las ocurrencias de granitos laramídicos en el área Mina La Herradura también se asemejan temporalmente a las rocas reportadas por Arvizu-Gutiérrez (2008) en

Sierra Pinta, al NW de la zona de estudio (Figura 1), ya que este autor presenta edades U-Pb de zircones de 67.0 ± 1.3 Ma y 68.3 ± 0.7 Ma para pegmatitas graníticas y monzogranitos, respectivamente. Otra ocurrencia al norte del área Mina La Herradura con rocas graníticas de edad larámide es la región Sierra Los Alacranes-Cerro Los Ojos (Figura 1) donde Nourse *et al.* (2005) obtienen edades U-Pb en zircones entre \sim 79–76 Ma. Finalmente, y más alejados de la zona de estudio, se encuentran los granitos Pitiquito y Cerro La Proveedora, en las cercanías de Caborca (Figura 1), que han sido fechados recientemente por U-Pb en zircones en \sim 74 Ma (Jacques-Ayala *et al.*, 2008).

La geoquímica de elementos mayores de las rocas laramídicas del área Mina La Herradura permite discriminar, según el diagrama de índice de saturación en alúmina (ASI) contra sílice, el granito 04-FP-37 (unidad Los Indios) como metaluminoso a diferencia del granito de dos micas LH06-42 que es hiperaluminoso (Figura 40D). Los datos de elementos traza y tierras raras sugieren que estas rocas se formaron en un ambiente de arco volcánico debido a que al graficar los datos geoquímicos en el diagrama de Ta vs. Yb, estos caen en el campo de formación de granitos de arco volcánico (Figura 41A). También estos granitos presentan una firma de rocas de arco volcánico en los diagramas de espectro multielemental y de REE (Figuras 42C y D) observándose los patrones distintivos de enriquecimiento de los elementos LILE con respecto a los HSFE y de los LREE con respecto a los HREE. Lo mismo sugiere el diagrama multielemental (Figuras 42C y D) donde se observan varias anomalías negativas importantes en Nb, Ta, Sr, P y Ti. Las relaciones elementales elevadas de Ba/Ta>600, Zr/Yb>90 y Zr/Y = 8, aunado a las anomalías negativas de Nb-Ta y positivas de Pb y Sr para estas rocas laramídicas (Tablas 8 y 9; Figuras 42C y D) también apoyarían la idea de que estas rocas graníticas se formaron por subducción en un arco continental.

El magmatismo oligocénico del área Mina La Herradura ocurre en intrusiones masivas y flujos volcánicos que cubren el basamento paleoproterozoico, las rocas jurásicas y las graníticas laramídicas; pero también ocurren como afloramientos aislados localizados principalmente al norte del área de estudio (Figura 9). Este magmatismo consiste en rocas volcánicas de composición andesítica basáltica, andesítica y dacítica. Las edades obtenidas

por medio de la técnica 40 Ar/ 39 Ar en matriz volcánica son de 23.8 ± 0.6 Ma, 23.6 ± 4.2 Ma y 23.2 ± 0.8 Ma, respectivamente a la composición mencionada (Tabla 7; Figuras 32 y 36). Este magmatismo oligocénico es comparable en edad con las ocurrencias volcánicas encontradas regionalmente, y más específicamente, con las que existen en el área al norte de Caborca donde afloran rocas andesíticas de contenido alto en potasio con edades de ~24–17 Ma (Izaguirre-Pompa, 2006; Tabla A5 y Figura 44E). También este pulso magmático oligocénico presenta afinidades que sugieren que estas rocas se originaron en un ambiente tectónico de arco volcánico durante la subducción de la placa Farallón. Este magmatismo es predecesor de otras ocurrencias más jóvenes en la región como las presentes en el área de Quitovac donde se encuentra la Caldera El Pilar formada por rocas volcánicas de ~18–17 Ma (Iriondo et al., 1996; Iriondo, 2001) [Tabla A5]. En la porción norte de Sierrita Blanca (Figura 1) aflora una roca andesítica con una edad de 17.32 ± 0.10 Ma y que, por su cercanía con la Caldera El Pilar, es muy probable que su origen esté asociado a la misma (Enríquez-Castillo, 2008). Otras rocas más jóvenes que las representadas por el magmatismo presente en Quitovac son las reportadas por Vidal-Solano et al. (2008) del evento pre-Pinacate que tienen edades entre ~20–12 Ma (Tabla A5). Estas rocas son interpretadas por estos autores como las últimas expresiones volcánicas asociadas a subducción presentes en el NW de Sonora.

La geoquímica de las rocas oligocénicas en el área Mina La Herradura indica que estas presentan características calcialcalinas con un contenido de medio a alto en potasio (Figura 40A). Los diagramas de multielementos (Figura 42) sugieren un enriquecimiento general de las tres muestras volcánicas en elementos LILE con respecto a los HSFE y de los LREE con respecto a los HREE. En el diagrama multielemental se aprecian anomalías negativas importantes de Sr, Ta, P y Ti, que en conjunto con las relaciones elementales elevadas de Ba/Ta>1000 y Zr/Yb>100 (Tablas 8 y 9) sugieren que se formaron por subducción en un ambiente de arco continental.

Por último, cabe destacar que la roca de composición dacítica (LH06-25) del área Mina La Herradura (Figuras 7 y 10) es muy rica en hornblenda y presenta características adakíticas, ya que tiene las proporciones elementales propuestas para este tipo de rocas por

Drummond y Defant (1990) [Sr/Yb = 490, Yb = 1.83 ppm, La/Yb = 22.67, Al₂O₃ = 15.7%, MgO = 2.83% y un elevado número de magnesio Mg* = 58.97].

Con estos pulsos de magmatismo larámide y Oligoceno, presentes en el área Mina La Herradura, se ve que el NW de Sonora ha tenido numerosas manifestaciones magmáticas asociadas a subducción desde el Pérmico hasta básicamente el Mioceno (Figura 46) y que este arco continental se estableció en un basamento posiblemente consolidado desde tiempos paleoproterozoicos (Figura 45).

8.5. Análisis de la hipotética megacizalla Mojave-Sonora (MSM) en el área Mina La Herradura

8.5.1. El basamento paleoproterozoico Yavapai presente en el área Mina La Herradura

Entre los argumentos que permitieron a Silver y Anderson proponer la hipotética megacizalla en el NW de Sonora se encuentran las edades del basamento paleoproterozoico. Según sus estudios iniciales de geocronología U-Pb en zircones de rocas del basamento, y en menor medida de sus estudios de campo, estos autores propusieron la existencia de una yuxtaposición de dos bloques de basamento con rocas paleoproterozoicas de diferente edad en Sonora (Silver y Anderson, 1974; Anderson y Silver, 1979, 2005). Estos bloques se denominaron bloque Caborca (al suroeste de la falla con rocas de edades ~1.7–1.8 Ga) y bloque Norte América (al noreste de la misma con rocas de edades ~1.6–1.7 Ga). Este argumento, basado únicamente en la diferencia de edades entre rocas del basamento paleoproterozoico, fue evaluado por Iriondo et al. (2004) en la zona de Quitovac realizando numerosos fechamientos U-Pb en zircones de rocas graníticas. Los resultados de esos fechamientos, combinados con edades U-Pb preexistentes en Sonora, sugieren que existe un solapamiento de edades en el rango entre ~1.71–1.65 Ga (Iriondo et al., 2004) entre las rocas del basamento a ambos lados de la supuesta megacizalla. De este solapamiento, inmediatamente, se deduce que una hipótesis como la de la megacizalla, empleando como única herramienta la geocronología U-Pb en zircones para proponer

distintos basamentos es inviable. Así mismo, las edades de ~1.71–1.68 Ga de las rocas del basamento paleoproterozoico del área Mina La Herradura fortalece las ideas presentadas por Iriondo *et al.* (2004) de que no se puede saber a que bloque o provincia paleoproterozoica una roca pertenece basándonos única y exclusivamente en su edad. Estos autores sugieren la realización de estudios geoquímicos e isotópicos que, combinados con los fechamientos U-Pb, permiten la clasificación de estas rocas en provincias corticales (Tabla 1).

Indirectamente, una de las implicaciones de la existencia de la megacizalla Mojave-Sonora (MSM) es que las rocas del basamento del bloque Caborca, tal como se plantea en la hipótesis, deberían tener características geológicas similares a las de las rocas de la provincia Mojave como las presentes en la región del *Death Valley* en California. Como vimos anteriormente, las rocas del basamento paleoproterozoico del área Mina La Herradura presentan características geoquímicas e isotópicas similares a las de rocas de la provincia Yavapai, y muy diferentes a las de la provincia Mojave (Figura 43). En conjunto, estas rocas del NW de Sonora permiten proponer una distribución de las provincias paleoproterozoicas como la propuesta por Iriondo y Premo (2009; Figura 2) que representa una alternativa a la hipótesis de la megacizalla para explicar la distribución de basamentos de Sonora y su supuesta autoctonía. Como mencionábamos anteriormente, en el NW de Sonora se propone la existencia de un basamento consolidado desde tiempos proterozoicos.

8.5.2. Implicación de la presencia de rocas de arco jurásico en el área Mina La Herradura

Otro de los argumentos esgrimidos por los autores de la hipotética megacizalla Mojave-Sonora está basado en ideas que sugieren el truncamiento de parte del arco magmático cordillerano Norteamericano del Jurásico para la porción NW de Sonora. Este truncamiento de afloramientos de rocas volcánicas y plutónicas de edades ~175–145 Ma sugiere que estas rocas solo existen en el bloque Norte América, al norte de la traza de la megacizalla, y no en el bloque Caborca al SSW de la misma (Campbell y Anderson, 1998, 2003). Este argumento presenta problemas ya que se omiten estudios geológicos previos

que evidencian ocurrencias de rocas ígneas jurásicas al SSW de la traza de la supuesta megacizalla (Leveille y Frost, 1984; Calmus y Sosson, 1995; Iriondo, 2001) y otros más actuales que, por medio de geocronología U-Pb en zircones, han evidenciado la presencia de rocas ígneas de edad jurásica en el bloque Caborca (~164–153 Ma; Anderson *et al.* 2005; P. Castiñeiras, com. per.; T. Lawton, com. per.; J. Nourse, com. per.).

El presente trabajo en el área Mina La Herradura sugiere que el truncamiento del arco jurásico es improbable con base a que en esta área, perteneciente a lo que se ha llama bloque Caborca, se han encontrado ocurrencias de rocas volcánicas (~176 Ma) y graníticas (~163 Ma) con características geoquímicas de arco magmático continental. Además estas rocas presentan semejanzas en edad y geoquímica con las rocas del norte de Sonora y sur de Arizona pertenecientes a lo que se ha llamado el bloque Norte América según la hipótesis de la megacizalla (Figuras 47 y 48). También se han encontrado otras ocurrencias de rocas del Jurásico Medio-Tardío en Sonora en la porción correspondiente al bloque Caborca, en la región de El Capitán al NW del campo volcánico El Pinacate (Leveille y Frost, 1984; Anderson *et al.*, 2005; Figura 45); rocas graníticas en la zona Sierra los Alacranes-Cerros Los Ojos (J. Nourse, com. per.); riolitas con "ojos" de cuarzo en el área del Bámuri (P. Castiñeiras, com. per.); granodioritas en el Cerro El Sahuaro (Anderson *et al.*, 2005) y otros lugares de Sonora (T. Lawton, com. per.).

De esta forma, se sugiere que el arco magmático continental jurásico en Sonora no está truncado y que rocas volcánicas y graníticas a ambos lados de lo que se ha denominado la megacizalla Mojave-Sonora tienen la misma edad y comportamiento geoquímico. Por otro lado, las rocas del arco magmático Nazas, ubicadas en la porción central de México, supuestamente desplazadas a lo largo de la megacizalla desde Sonora, simplemente representarían la continuidad hacia el sur del arco jurásico continental presente en Sonora.

8.5.3. Deformación larámide para rocas del área Mina La Herradura

En el presente estudio del área Mina La Herradura corroboramos los estudios realizados en Quitovac que sugieren que la deformación presente en la región es de edad

laramídica y no jurásica. Los argumentos señalados son dos: 1) esta deformación afecta en definitiva a los mismos granitos laramídicos de las unidades Los Indios y Sierrita Blanca (Figuras 7, 10 y 24C) con la presencia de foliación penetrativa definida por minerales orientados preferentemente en dirección ~NW55°SE; 2) el fechamiento obtenido en el presente estudio mediante la técnica ⁴⁰Ar/³⁹Ar en mica blanca de neoformación en una zona de cizalla dúctil a dúctil-frágil asociada a la cabalgadura Carina en la zona de Cerro Prieto-Carina (Figuras 13 y 20). Esta edad de ~48 Ma sugiere que para el Eoceno Medio la deformación laramídica ya había cesado en la zona (Figuras 8 y 32). En conjunto, esta edad mínima obtenida para la cabalgadura Carina y la edad de los granitos laramídicos afectados por la deformación permite acotar el rango de la deformación entre ~48–76 Ma para el área Mina La Herradura. Cabe aclarar que esta deformación dúctil asociada a la orogenia larámide, tal como se esperaría, no afectó a las rocas oligocénicas del área Mina La Herradura.

La deformación laramídica de las rocas del área Mina La Herradura se puede correlacionar con deformación equivalente presente en otras zonas del NW de Sonora y SW Arizona. Un ejemplo de esta deformación sería el área de Quitovac donde se presentan numerosas fallas de cabalgadura (Iriondo *et al.*, 2005). También la deformación recientemente propuesta para granitos del Cretácico Superior encontrada por Enríquez-Castillo (2008) al norte de Sierrita Blanca, que es la continuidad de la encontrada por nosotros al sur de esta sierra (Figura 7). En las afueras del poblado de Altar (Figura 1) también se encuentran rocas sedimentarias jurásicas y cretácicas con deformación con estas características y edad (Jacques-Ayala y De Jong, 1996). Ejemplos en Arizona de esta deformación laramídica serían las fallas de cabalgadura de Quitobaquito Hills y las de las Montañas Baboquivari (Haxel *et al.*, 1984).

En lo que respecta al grado metamórfico de las rocas del área Mina La Herradura se puede decir que las rocas proterozoicas de esta región presentan texturas gnéisicas bien desarrolladas y que frecuentemente presentan asociaciones mineralógicas (moscovita-clorita-epidota y en menor grado anfiboles) típicas de grado metamórfico de esquisto verde a anfibolita. Por otra parte, es probable que estas rocas gnéisicas proterozoicas hayan sido

generadas durante pulsos de deformación y metamorfismo proterozoico pero no cabe duda de que han sufrido deformación durante la orogenia larámide. Las rocas jurásicas (volcánicas y graníticas) y cretácicas deformadas presentes en el área Mina La Herradura en ningún caso presentan asociaciones mineralógicas de grados metamórficos superiores a facies de esquistos verdes.

8.5.4. Otros argumentos regionales que no apoyan la existencia de la hipotética megacizalla Mojave-Sonora (MSM)

Por otra parte, existen otros estudios que cuestionan y/o ponen en duda la existencia de la hipotética megacizalla Mojave-Sonora y que han sido citados en el apartado introductorio. Por ejemplo, los datos paleomagnéticos no son consistentes con un desplazamiento latitudinal de rocas de lo que se conoce como bloque Caborca con respecto a las presentes en el bloque Norte América tal como lo propone la hipotética megacizalla (Molina-Garza y Geissman, 1999). También, las rocas sedimentarias de cuenca intracratónica del Mesoproterozoico (p.ej., Sierra Prieta; Izaguirre-Pompa e Iriondo, 2007), correlacionables con las rocas del centro y norte de Arizona, no apoyarían el modelo de los desplazamientos propuestos a lo largo de la MSM. El argumento de la correlación de rocas paleozoicas de plataforma y cuarcitas del *Death Valley* con ocurrencias en los alrededores de la ciudad de Caborca y otras zonas de Sonora (Stewart, 1998, 2005) también es cuestionable, ya que nuevos estudios en estas rocas en variadas regiones del NW de Sonora, por ejemplo los realizados en el área Mina La Herradura (Poole et al., 2004, 2005), en la zona El Antimonio (Buitrón-Sánchez et al., 2007) y en el Rancho Placeritos, al norte de Hermosillo (Boucot et al., 2008), proponen una correlación bioestratigráfica más congruente de estas rocas con rocas presentes en Arizona y Texas.

En resumen, los estudios realizados en rocas del área Mina La Herradura, presentados en este trabajo, no apoyan el concepto de la hipotética megacizalla Mojave-Sonora. Este hecho, aunado a la gran cantidad de evidencia geológica acumulada en los últimos años para el NW de Sonora, sugiere que la hipótesis sea finalmente descartada. Hay que recordar que la hipótesis de la megacizalla es bien clara con respecto a las

características morfológicas y temporales de la supuesta falla (su traza geográfica, cantidad de desplazamiento y edad; Anderson y Silver, 2005). Los conceptos más fundamentales de la misma son incorrectos como se evidencia en este trabajo. Por lo tanto, se recomienda que esta hipótesis ya no se utilice en ninguna interpretación geológica en la región y que se pase a una nueva fase en la que se generen nuevas ideas y modelos para explicar la geología del NW de México.

9. Conclusiones

Con base en el análisis de los datos geocronológicos de U-Pb en zircones, geoquímica de elementos mayores y traza e isotopía Sm-Nd en roca total se ha determinado que las rocas de basamento paleoproterozoico (~1.71–1.68 Ga) del área Mina La Herradura, constituidas por las unidades ortognéisicas La Herradura y Cerro Prieto-Carina, presentan características similares a las de las rocas de la provincia paleoproterozoica Yavapai en el SW de Norte América y son similares a otras ocurrencias de este tipo en el NW de Sonora, incluyendo las presentes en Quitovac, Sierra Los Alacranes, Zona Canteras-Puerto Peñasco, Cerros San Luisito, El Crestón de Opodepe y el Rancho La Lámina. Cabe destacar que según la hipotética megacizalla Mojave-Sonora todas estas ocurrencias de rocas paleoproterozoicas pertenecen al bloque Caborca y deberían tener características similares a las rocas presentes en la provincia Mojave (p.ej., rocas de *Death Valley* en California). En el área Mina La Herradura también afloran rocas graníticas y anortosíticas mesoproterozoicas (~1.1 Ga) que se consideran asociadas espacialmente al basamento de la provincia Yavapai en el NW de Sonora y que sus ocurrencias se alinean a lo largo de esta provincia cortical en una dirección NW-SE.

Esta nueva ocurrencia de rocas de basamento paleoproterozoico en el área Mina La Herradura representa una contribución importante para enriquecer la base de datos geológicos que permite establecer alternativas para explicar la distribución de las provincias paleoproterozoicas del NW de México (p.ej., el doblez oroclinal Caborca). Esta distribución de provincias, que contempla este doblez oroclinal, proporcionan una nueva plantilla geológica para el margen SW de Laurencia para poder evaluar las diferentes reconstrucciones paleogeográficas propuestas para este sector del supercontinente Rodinia.

En el área Mina La Herradura existen rocas volcánicas y graníticas jurásicas (~176—157 Ma) calcialcalinas asociadas a subducción de la placa Farallón y formadoras del arco magmático continental cordillerano de Norte América. Estas rocas jurásicas intrusionaron, entre otras, a las rocas autóctonas de basamento paleoproterozoico tipo Yavapai presentes en el área Mina La Herradura. La presencia de estas rocas jurásicas al SW de la supuesta megacizalla Mojave-Sonora evidencia que no existe truncamiento del arco magmático

continental jurásico en Sonora como lo sugiere la hipótesis de la megacizalla. Es más, este estudio no solo sugiere que el arco en Sonora no está truncado, si no que las rocas volcánicas y graníticas jurásicas a ambos lados de lo que se ha denominado la megacizalla Mojave-Sonora tienen la misma edad y el mismo comportamiento geoquímico. Finalmente, es importante destacar que las rocas del arco magmático jurásico Nazas, ubicadas en la porción central de México, supuestamente desplazadas a lo largo de la megacizalla desde Sonora, simplemente representarían la continuidad hacia el sur del arco jurásico continental cordillerano presente en Sonora.

Posteriormente, y después de un periodo sin magmatismo (gap) de ~80 Ma, en el área Mina La Herradura se emplazaron rocas graníticas calcialcalinas de arco continental durante el Cretácico Tardío (~76–70 Ma). Después de otra pausa en el magmatismo que duró ~45 Ma, otro nuevo pulso magmático, de características geoquímicas similares al de los pulsos mesozoicos, y de edad oligocénica (~24–23 Ma), ocurrió con manifestaciones lávicas como última expresión magmática en el área Mina La Herradura. Este estudio contribuye a conocer, de forma más precisa, los pulsos magmáticos asociados a subducción (también sus ausencias o "gaps") presentes en el NW de Sonora desde el Pérmico, pasando por el Jurásico, Cretácico Tardio y Oligoceno, hasta el Mioceno.

Con base en la edad obtenida por Ar-Ar de una mica blanca de neoformación en una roca jurásica volcánica con deformación dúctil asociada a la cabalgadura Carina, además de la evidente deformación laramídica presente en los granitos del Cretácico Superior (76–70 Ma), se ha determinado que la deformación dúctil en facies de esquistos verdes existente en rocas del área Mina La Herradura está asociada a la orogenia larámide y acotada, tentativamente, entre ~76–48 Ma. Esta deformación no es jurásica como se especulaba anteriormente según el modelo de la megacizalla Mojave-Sonora.

Por último, se concluye que el análisis geológico de la hipotética megacizalla Mojave-Sonora en el área Mina La Herradura, presentado en este trabajo, no apoya el concepto de esta controversial pero influyente idea. Este hecho, aunado a la gran cantidad de evidencia geológica acumulada en los últimos años contraria a la megacizalla para el NW de Sonora, sugiere que la hipótesis sea finalmente descartada. Hay que recordar que la

hipótesis es bien clara con respecto a las características morfológicas y temporales de la supuesta falla (su traza geográfica, cantidad de desplazamiento y edad) y se ve que los conceptos más fundamentales de la misma son incorrectos como se evidencia en este trabajo en el área Mina La Herradura. Por lo tanto, se recomienda que esta hipótesis ya no se utilice en ninguna interpretación geológica en la región. Es importante que se pase a una nueva fase de investigación en la que se generen ideas y modelos nuevos para explicar la geología del NW de México y que, a su vez, permita avanzar en las interpretaciones tectónicas sobre la evolución del SW de Norte América.

10. Agradecimientos

Agradezco a **Alexander Iriondo** por sus buenas enseñanzas y por el gran apoyo y confianza que me ha brindado siempre, pero sobre todo por ser un amigo tanto en lo académico como en lo personal.

Quiero agradecer al **CONACyT** por la ayuda económica brindada a partir de una beca para realizar mis estudios de maestría. Gracias también a los proyectos **PAPIIT- UNAM** (IN-113906) y **CONACyT** (CB52163) por aportar parte del financiamiento de las campañas de campo y de los estudios analíticos que permitieron realizar este trabajo.

Agradezco a **Servicios Industriales Peñoles**, **Minera Penmont** y a **Grupo Peñoles** por facilitarme los aspectos logísticos para realizar el trabajo de campo en la zona de la Mina La Herradura. En especial agradezco a Intendencia de Geología en Mina y a los geólogos y personal de exploración.

Agradezco a **Dan Miggins** por haberme dado la posibilidad de trabajar y asistirme en los laboratorios del **U.S. Geological Survey** en Denver, Colorado. También agradecerle por su ayuda en las mediciones isotópicas SHRIMP-RG en la Universidad de Stanford en San Francisco, California.

Estoy agradecido al personal que dirige el Laboratorio SUMAC, que alberga la instrumentación SHRIMP-RG en Stanford University, al asistirme en el proceso de análisis de las muestras fechadas por U-Pb en zircones (Joe Wooden, Brad Ito, Bettina Wiegand, Frank Mazdab y Ariel Strickland).

Agradezco a **Luigi Solari** por su ayuda en el Laboratorio de Ablación Láser del CGEO donde se realizaron parte de los análisis U-Pb en zircones, además por su ayuda en la reducción de los datos.

Se agradece a **Michael Kunk** y a sus técnicos de laboratorio por haber permitido el uso de la instrumentación para realizar los estudios geocronológicos de Ar-Ar de las muestras de este trabajo en el Laboratorio de Termocronología de Argón del **U.S. Geological Survey** en Reston, Virginia.

Agradezco a **Jim Budahn** por haberme mostrado la técnica de INAA en los laboratorios del **U.S. Geological Survey** en Denver, Colorado, y la vez por analizar los

elementos trazas de las diferentes muestras en el mismo laboratorio.

Muchas gracias a Rufino Lozano-Santa Cruz (LUGIS) por los análisis de elementos mayores; y a María del Sol Hernández-Bernal, Teodoro Hernández Treviño, Juan Morales Contreras, Peter Schaaf y Gabriela Solís Pichardo (LUGIS) por realizar los análisis isotópicos de Sm-Nd de este trabajo. Se agradece a Ofelia Pérez Arvizu del Centro de Geociencias de la Universidad Nacional Autónoma de México por haber realizado con rapidez, y con todo gusto, las muestras faltantes de analizar por elementos traza.

Gracias a **Juan Tomás Vásquez-Ramírez** (CGEO) por la preparación de láminas delgadas para la petrografía, y también a **Manuel Albarán-Murillo** (CGEO) en el trabajo y asistencia en la molienda y pulverización de las muestras.

Agradezco los comentarios aportados por los miembros del comité evaluador, ya que este trabajo de tesis se ha beneficiado notablemente de sus sugerencias, muchas gracias a: Roberto Molina Garza, Arturo Gómez Tuena, Luigi Solari, Fernando Ortega Gutiérrez, Lucas Ochoa Landín y Thierry Calmus. También se agradece a Francisco Paz Moreno (UNISON) por sus comentarios en el desarrollo de este trabajo.

Quiero expresar mi agradecimiento a todo el personal académico del posgrado y de la administración del Centro de Geociencias por su disponibilidad y por la ayuda brindada durante mis estudios de posgrado. En particular, quiero agradecer a **Marta Pereda** y **Armando Ramírez**.

Mil gracias también a todos mis compañeros y colegas de trabajo incluyendo a **Mónica Enríquez Castillo** y **Harim Arvizu Gutiérrez**, y todos los estudiantes del CGEO con los que he compartido desde el 2006 buenos y no tan buenos momentos. En especial, agradezco a **Montserrat Hernández Ramírez** por su paciencia y amistad.

11. Referencias bibliográficas

- Abbott, P.L., Smith, T.E., 1989, Sonora, Mexico, source for the Eocene Poway conglomerate of southern California: Geology, 17, 329–332.
- Alexander, E.C., Jr., Mickelson, G.M., Lanphere, M.A., 1978, Mmhb-1: A new ⁴⁰Ar/³⁹Ar dating standard, *en* Zartman, R.E., ed., Short papers of the fourth international conference, geochronology, cosmochronology, and isotope geology: U.S. Geological Survey Open-File Report, 78-701, 6–8.
- Amato, F., Lawton, T.F., Leggett, W., Mauel, D., González-León, C., Heizler, M., Farmer, G.L., 2008, Caborcan Proterozoic basement in the rancho La Lamina region, Sonora, Mexico: U-Pb ages, Nd isotopic composition, ⁴⁰Ar/³⁹Ar thermochronology, and clast provenance indicate pre-early Jurassic arrival and Laramide exhumation: Geological Society of America, Cordilleran Section Meeting, Abstracts with Programs, 40(1), 48.
- Amato, F., Lawton, T.F., Mauel, D., Leggett, W., González-León, C., Farmer, G.L., Wooden, J., 2008, Testing the Mojave-Sonora megashear hypothesis: Evidence from Paleoproterozoic igneous rocks and deformed Mesozoic strata in Sonora, Mexico: Geology, 37(1), 75–78.
- Andersen, T., 2002, Correction of common lead in U-Pb analyses that do not report ²⁰⁴Pb: Chemical Geology, 192, 59–79.
- Anderson, J.L., 1983, Proterozoic anorogenic granite plutonism of North America, *en* Medaris, L.G., Mickelson, D.M., Byers, C.W., Shanks. W.C., eds., Proterozoic Geology: Geological Society of America Memoir, 161, 133–154.
- Anderson, T.H., Silver, L.T., 1977, U-Pb isotope ages of granitic plutons near Cananea, Sonora: Economic Geology, 72, 827–836.
- Anderson, T.H., Silver, L.T., 1978, The nature and extent of Precambrian rocks in Sonora, Mexico, *en* Roldán-Quintana, J., Salas, G.A., eds., Resúmenes, Primer Simposio sobre la Geología y Potencial Minero en el Estado de Sonora, Hermosillo, Instituto de Geología, UNAM, 9–10.

- Anderson, T.H., Silver L.T., 1979, The role of the Mojave-Sonora megashear in the tectonic evolution of northern Sonora, *en* Anderson, T.H., Roldán-Quintana, J., eds., Geology of northern Sonora, University of Pittsburgh y Universidad Nacional Autónoma de México, Instituto de Geología, Geological Society of America Annual Meeting, Hermosillo, Sonora, Guidebook, 27, 59–68.
- Anderson, T.H., Silver, L.T., 1981, An overview of Precambrian rocks in Sonora: Revista del Instituto de Geología, UNAM, 5, 131–139.
- Anderson, T.H., Silver L.T., 2005, The Mojave-Sonora megashear—Field and analytical studies leading to the conception and evolution of the hypothesis, *en* Anderson, T.H., Nourse, J.A., McKee, J.W., Steiner, M.B., eds., The Mojave-Sonora Megashear Hypothesis: Development, Assessment, and Alternatives: Geological Society of America Special Paper 393, 1–50.
- Arvizu-Gutiérrez, H.E., 2008, El basamento paleoproterozoico Yavapai-Mazatzal en los alrededores de la Sierra Pinta, NW de Sonora: Su importancia para el entendimiento del magmatismo Pérmico y el inicio del margen continental activo del SW de Norte América: Tesis de Licenciatura, Universidad Autónoma de Nuevo León, Linares, Nuevo León, México, 181 p.
- Arvizu, H.E., Iriondo, A., Chávez-Cabello, G., Kamenov, G.D., Foster, D.A., Lozano-Santa Cruz, R., Solís-Pichardo, G., 2008, Paleoproterozoic (~1.76-1.73 Ga) Banded Gneisses from the Zona Canteras-Puerto Peñasco Area: A New Ocurrence of Yavapai-Mazatzal(?)-Type Rocks in NW Sonora, Mexico: Geological Society of America, 2008 Joint Meeting, Abstract with Programs, 145, 144 p.
- Barth, A.P., Wooden, J.L., 2006, Timing of magmatism following initial convergence at a passive margin, southwestern U.S. Cordillera, and ages of lower crustal magma sources: The Journal of Geology, 114, 231–245.
- Barth, A.P., Tosdal, R.M., Wooden, J.L., Howard, K.A., 1997, Triassic plutonism in Southern California southward younging of arc initiation along a truncated continental margin: Tectonics, 6, 290–304.

- Bassett, K.N., Busby, C.J. 2005, Tectonic setting of the Glance conglomerate along the Sawmill Canyon fault zone, southern Arizona: A sequence analysis of an intra-arc strike-slip basin, *en* Anderson, T.H., Nourse, J.A., McKee, J.W., Steiner, M.B., eds., The Mojave-Sonora Megashear Hypothesis: Development, Assessment, and Alternatives: Geological Society of America Special Paper 393, 377–400.
- Bateman, P.C., 1992, Plutonism in the central part of the Sierra Nevada batholith, California: U.S. Geological Survey Professional Paper 1483, 186 p.
- Begemann, F., Ludwig, K.R., Lugmair, G.W., Min, K., Nyquist, L.E., Patchett, P.J., Renne, P.R., Shih, C.Y., Villa, I.M., Walker, R.J., 2001, Call for an improved set of decay constants for geochronological use: Geochimica et Cosmochimica Acta, 65, 111–121.
- Bender, E.E., 1994, Petrology of Early Proterozoic granitoids from the southwestern United States: implications for genesis and tectonics of the Mojave crustal Province: Tesis Doctoral, University of Southern California, Los Angeles USA, 332 p.
- Bennett, V.C., DePaolo, D.J., 1987, Proterozoic crustal history of the western United States as determined by neodymium isotopic mapping: Geological Society of America Bulletin, 99, 674–685.
- Bickford, M.E., Hill, B.M., 2007, Does the arc accretion model adequately explain the Paleoproterozoic evolution of southern Laurentia?: An expanded interpretation: Geology, 35(2), 167–170.
- Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundil, R., Campbell, I.H., Korsch, R.J., Williams, I.S., Foudoulis, C., 2004, Improved ²⁰⁶Pb/²³⁸U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards: Chemical Geology, 205, 115–140.
- Borg, S.G., DePaolo, D.J., 1994, Laurentia, Australia, and Antarctica as a Late Proterozoic supercontinent: Constraints from isotopic mapping: Geology, 22, 307–310.
- Boucot, A.J., Poole, F.G., Amaya-Martínez, R., Harris A.G., Sandberg, C.A., Page, W.R., 2008, Devonian brachiopods of southwesternmost Laurentia: Biogeographic

- affinities and tectonic significance, *en* Blodgett, R.B., Stanley, G.D., Jr., eds., The terrane puzzle: New perspectives on paleontology and stratigraphy from the North American Cordillera: Geological Society of America Special Paper 442, 77–97.
- Budahn, J.R., Wandless, G.A., 1996, Instrumental neutron activation by abbreviated count: U.S. Geological Survey, Open-File Report, 02-223-Y, 9 p.
- Buitrón-Sánchez, B.E., Almazán-Vázquez, E., Vachard, D., 2007, Middle Permian crinoids (Echinodermata, Crinoidea) from Cerros Los Monos, Caborca, Sonora, Mexico and paleogeographic considerations: Revista Mexicana de Ciencias Geológicas, 24(3), 344–353.
- Burchfield, B.C., Cowan, D.S., Davis, G.A., 1992, Tectonic overview of the Cordilleran orogen in the western United States, *en* Burchfiel, B.C., Lipman, P.W., Zoback, M.L., eds., The Cordilleran orogen: conterminous U.S. (Geology of North America), Boulder, Colorado, Geological Society of America, G-3, 407–479.
- Calmus, T., Sosson, M., 1995, Southwestern extension of the Papago terrane into the Altar Desert region, northwestern Sonora, and its implications, *en* Jacques-Ayala, C., González-León, C. M., Roldán-Quintana, J., eds., Studies on the Mesozoic of Sonora and Adjacent Areas: Boulder, Colorado, Geological Society of America Special Paper 301, 99–109.
- Campbell, P.A., Anderson, T.H., 1998, Structure and kinematics along a Jurassic Plate Boundary Transform, the Mojave-Sonora Megashear, *en* Clark, K.F., ed., Gold Deposits of northern Sonora, Mexico: Society of Economic Geologists, Guidebook Series, 30, 177–186.
- Campbell, P.A., Anderson, T.H., 2003, Structure and kinematics along a segment of the Mojave-Sonora megashear: A strike-slip fault that truncates the Jurassic continental magmatic arc of southwestern North America: Tectonics, 22(6), 1–21.
- Campillo-Castelo, J.A., 2008, Caracterización petrológica, mineralógica y geoquímica de las rocas anortosíticas del bloque Caborca, Sonora, México: Tesis de Licenciatura, Universidad de Sonora, Hermosillo, México, 84 p.

- Castiñeiras, P., Iriondo, A., Dórame-Navarro, M., Premo, W.R., Kunk, M.J., 2004a, Metamorphic evolution of the Bamuri Complex (Sonora, NW Mexico): New insights from field and petrographic data, *en* Frías-Camacho, V.M., Silva-Corona, J.J., Orozco-Esquivel, M.T., eds., IV Reunión Nacional de Ciencias de La Tierra, Juriquilla, Querétaro, México, Libro de Resúmenes, 49 p.
- Castiñeiras, P., Iriondo, A., Wooden, J.L., Dórame-Navarro, M., Premo, W.R., 2004b,
 Detrital zircón U-Pb SHRIMP geochronology of Proterozoic quartzites from the
 Bamuri Complex, NW Sonora, Mexico: Evidence for a Mojave connection, *en*Frías-Camacho, V.M., Silva-Corona, J.J., Orozco-Esquivel, M.T., eds., IV Reunión
 Nacional de Ciencias de La Tierra, Juriquilla, Querétaro, México, Libro de
 Resúmenes, 215 p.
- Castiñeiras, P., Herrera-Urbina, S., Paz-Moreno, F.A., Iriondo, A., 2005, SP89: A potential Mexican zircon standard for U-Pb geochronology using ion and laser probe techniques: Actas INAGEQ, 11(1), 99 p.
- Caudillo-Sosa, G., Oviedo-Lucero, L.F., Rodríguez-Castañeda, J.L., 1996, Falla Quitovac–Resultado de un evento de transpresión del "Mojave-Sonora megashear", noroeste de Sonora, México: Revista Mexicana de Ciencias Geológicas, 13(2), 140–151.
- Cebula, G.T., Kunk, M.J., Mehnert, H.H., Naeser, C.W., Obradovich, J.D., Sutter, J.F., 1986, The Fish Canyon Tuff: A potential standard for the ⁴⁰Ar/³⁹Ar and fission track dating methods: Terra Cognita, 6(2), 139–140.
- Chappell, B.W., White, A.J., 1992, I and S-types granites in the Lachlan Fold Belt: Transactions of the Royal Society of Edinburgh: Earth Sciences, 83, 1–26.
- Dalrymple, G.B., Alexander, E.C., Lanphere, M.A., Kraker, G.P., 1981, Irradiation of samples for ⁴⁰Ar/³⁹Ar dating using the Geological Survey TRIGA reactor: U.S. Geological Survey Professional Paper 1176, 55 p.
- Damon, P.E., Livingston, D.E., Giletti, B.J., 1961, Extension of the older Precambrian of the southwest into Sonora, Mexico: Geological Society of America, Abstracts with Programs, 68, 158–159.

- Damon, P.E., Livingston, D.E., Mauger, R.L., Giletti, B.J., Pantoja-Alor, J., 1962, Edad del Precámbrico "Anterior" y de otras rocas del Zócalo de la región de Caborca-Altar de la parte noroccidental del Estado de Sonora: Boletín del Instituto de Geología, UNAM, 64, 11–44.
- DeGraaff-Surpless, K., Wooden, J.L., McWilliams, M.O., 2002, Detrital zircon provenance analysis of the Great Valley Group, California: Evolution of an arc-forearc system: Geological Society of America Bulletin, 114, 1564–1580.
- DePaolo, D.J., 1981, Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic: Nature, 291, 193–196.
- Dórame-Navarro, M., Iriondo, A., Castiñeiras, P., Premo, W.R., 2004, Cartografía y geocronología del basamento Proterozoico metamórfico en los Cerros Tecolote, NW de Sonora, *en* Frías-Camacho, V.M., Silva-Corona, J.J., Orozco-Esquivel, M.T., eds., IV Reunión Nacional de Ciencias de La Tierra, Juriquilla, Querétaro, México, Libro de Resúmenes, 59 p.
- Drummond, M.S., Defant, M.J., 1990, A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons: Journal of Geophysical Research, 95(13), 503–21.
- Duebendorfer, E.M., Nyman, M.W., Chamberlain, K.R., Jones, C.S., 1998, Proterozoic rocks within the Mojave-Yavapai boundary zone, Nothwestern Arizona:
 Comparison of metamorphic and structural evolution across a major lithospheric (?) structure, *en* Duebendorfer, E.M., ed., Geologic excursions in northern and central Arizona; Field Trip Guidebook, Geological Society of America Rocky Mountain Section Meeting, Flagstaff, Arizona, USA, 127–148.
- Dunne, G.C., Saleeby, J.B., 1993, Kern plateau shear zone, southern Sierra Nevada–New data concerning age and northward continuation: Geological Society of America, Abstracts with Programs, 25(5), 33.
- Enríquez-Castillo, M.A., 2008, Termocronología U-Pb y ⁴⁰Ar-³⁹Ar de intrusivos de la Sierrita Blanca, NW Sonora: Ejemplo de interacción termal entre magmas graníticos y las rocas encajonantes del basamento metaígneo Mesoproterozoico:

- Tesis de Licenciatura, Universidad Autónoma de Nuevo León, Linares, Nuevo León, México, 74 p.
- Enríquez-Castillo, M.A., Iriondo, A., Chávez-Cabello, G., 2008, A Laramide Pb-loss event recorded in zircons from the Murrieta Mesoproterozoic (~1.1 Ga) Granite in Sierrita Blanca, NW Sonora, Mexico: Geological Society of America, Joint Meeting, Abstract with Programs, 145, 144 p.
- Espinoza, I., Iriondo, A., Premo, W.R., Paz, F., Valencia, M., 2003, Geochemistry and SHRIMP U-Pb zircon geochronology of anorthositic rocks at Sierra El Tecolote in the Caborca block, northwestern Sonora, Mexico: Geological Society of America Cordilleran Section Abstracts with Programs, 35(4), 84 p.
- Farmer, G.L., Bowring, S.A., Espinoza-Maldonado, I.G., Fedo, C., Wooden. J.L., 2005, Paleoproterozoic Mojave province in northwestern Mexico? Isotopic and U-Pb zircon geochronologic studies of Precambrian and Cambrian crystalline and sedimentary rocks, Caborca, Sonora, *en* Anderson, T.H., Nourse, J.A., McKee, J.W., Steiner, M.B., eds., The Mojave-Sonora megashear hypothesis: Development, Assessment, and Alternatives: Geological Society of America Special Paper 393, 183–198.
- Gutíerrez-Coronado, A., Iriondo, A. Rodríguez-Castañeda, J.L., Wooden, J.L., Budahn, J.R., Lozano-Santa Cruz, R., Hernández-Treviño, T., 2008, Paleoproterozoic gneisses of the San Luisito Hills in NW Sonora: Extending the Mexican Yavapai province of SW Laurencia: Geological Society of America, Joint Meeting, Abstract with Programs, 145, 144 p.
- Haugerud, R.A., Kunk, M.J., 1988, Ar-Ar*, a computer program for reduction of ⁴⁰Ar/³⁹Ar data: U.S. Geological Survey, Open-File Report, 88-261, 68 p.
- Haxel, G.B., Tosdal, R.M., May, D.J., Wright, J.E., 1984, Late Cretaceous and early
 Tertiary orogenesis in south-central Arizona: Thrust faulting, regional
 metamorphism, and granitic plutonism: Geological Society of America Bulletin, 95, 631–653.

- Haxel, G.B., Wright, J.E., Riggs, N.R., Tosdal, R.M., May, D.J., 2005, Middle Jurassic
 Topawa Group, Baboquivari Mountains, south-central Arizona: Volcanic and
 sedimentary record of deep basins within the Jurassic magmatic arc, *en* Anderson,
 T.H., Nourse, J.A., McKee, J.W., Steiner, M.B., eds., The Mojave-Sonora
 megashear hypothesis: Development, Assessment, and Alternatives: Geological
 Society of America, Special Paper 393, 329–357.
- Herrera-López, P., Iriondo, A., Rodríguez-Castañeda, J.L., 2005, Preliminary time constraints and geochemistry of the Proterozoic basement from Sierra Los Ajos and Cerros Las Mesteñas, NE Sonora, Mexico: GEOS, Unión Geofísica Mexicana, A.C., Resúmenes y Programa, 25(1), 87–88.
- Instituto Nacional de Estadística, Geografía e Informática (INEGI), 2003, Cartas digitales vectoriales escala 1:50 000, H12a44 y H12a34, del Instituto Nacional de Estadística y Geografía (INEGI).
- Iriondo, A., 2001, Proterozoic basements and their laramide juxtaposition in NW Sonora, Mexico: Tectonic constraints on the SW margin of Laurentia: Tesis Doctoral, University of Colorado at Boulder, Boulder Colorado, 222 p.
- Iriondo, A., 2007, Precambrian geology in NW Mexico: New ideas for the distribution of Paleoproterozoic crustal provinces in SW Laurentia: Ores and Orogenesis, Program with Abstracts, Arizona Geological Society Ores and Orogenesis Symposium, Tucson, Arizona, September 24-30, 94 p.
- Iriondo, A., Atkinson, W.W., Jr., 2000, Orogenic gold mineralization along the proposed trace of the Mojave-Sonora megashear: Evidence for the Laramide Orogeny in NW Sonora, Mexico: Geological Society of America, Abstracts with Programs, 32, 393 p.
- Iriondo, A., Premo, W.R., 2009, Las rocas cristalinas del Proterozoico de Sonora y su importancia para la reconstrucción del margen continental SW de Laurencia: La pieza mexicana del rompecabezas para el supercontinente Rodinia, *en* Calmus, T., ed., La geología de Sonora, Publicaciones Especiales, Instituto de Geología, Universidad Nacional Autónoma de México, aceptado.

- Iriondo, A., Atkinson, W.W., Jr., Martínez-Torres, L.M., 1996, El Pilar Caldera: an example of Early Miocene calc-alkaline magmatism in the Quitovac area, northwestern Sonora, Mexico: Geological Society of America, Abstracts with Programs, 28, 441–442.
- Iriondo, A., Kunk, M.J., Winick, J.A., Consejo de Recursos Minerales, 2003a, ⁴⁰Ar/³⁹Ar dating studies of minerals and rocks in various areas in Mexico: USGS/CRM Scientific Collaboration (Part I): U.S. Geological Survey Open File Report, OF-03-020, 79 p.
- Iriondo, A., Miggins, D., Premo, W.R., 2003b, The Aibo-type (~1.1 Ga) granitic magmatism in NW Sonora, Mexico: Failed continental rifting of Rodinia?:
 Geological Society of America Cordilleran Section, Abstracts with Programs, 35(4), 84 p.
- Iriondo, A., Premo, W.R., Martínez-Torres, L.M., Budahn, J.R., Atkinson, Jr., W.W., Siems, D.F., Guarás-González, B., 2004, Isotopic, geochemical and temporal characterization of Precambrian basement rocks in the Quitovac region, northwestern Sonora, Mexico: Its implications for the tectonic reconstruction of southwestern North America: Geological Society of America Bulletin, 116(1/2), 154–170.
- Iriondo, A., Martínez-Torres, L.M., Kunk, M.J., Atkinson, W.W., Jr., Premo, W.R., McIntosh W.C., 2005, Northward Laramide thrusting in the Quitovac region, northwestern Sonora, Mexico: Implications for the juxtaposition of Paleoproterozoic basement blocks and the Mojave-Sonora megashear hypothesis, *en* Anderson, T.H., Nourse, J.A., McKee, J.W., Steiner, M.B., eds., The Mojave-Sonora megashear hypothesis: Development, assessment, and alternatives: Geological Society of America Special Paper 393, 631–669.
- Iriondo, A., Kamenov, G.D., Foster, D.A., 2008, The Sierra Los Tanques ~1.1 Ga Granite in NW Sonora: Another example of Mesoproterozoic plutonism along the Mexican Yavapai province: Geological Society of America, 2008 Joint meeting, Abstract with Programs, 145, 144 p.

- Irvine, T.N., Baragar, W.R., 1971, A guide to the chemical classification of common volcanic rocks: Canadian Journal of Earth Sciences, 8, 523–548.
- Izaguirre-Pompa, A., 2006, Estudio petrológico y geocronológico del volcanismo orogénico intermedio-ácido de edad Oligo-Mioceno del Norte de Caborca, Sonora, México: Tesis de Licenciatura, Universidad de Sonora, Hermosillo, Sonora, México, 84 p.
- Izaguirre-Pompa, A., Iriondo, A., 2007, Mesoproterozoic (~1.2 Ga) quartzite and intruding anorthosite (~1.08 Ga) from Sierra Prieta, NW Sonora: Mexican additions to the Precambrian history of SW Laurencia: Ores and Orogenesis, Program with Abstracts, Arizona Geological Society Ores and Orogenesis Symposium, Tucson, Arizona, September 24-30, 147 p.
- Jacques-Ayala, C., De Jong, K.A., 1996, Extension of the Orocopia Schist belt into northwestern Sonora, Mexico: A working hypothesis, Geological Society of America Abstracts with Programs, 28(5), 78 p.
- Jacques-Ayala, C., Barth, A.P., Jacobson, C.E., Roldán-Quintana, J., 2008, Tectonically trasported Laramide granitoids in the Caborca area, *en* Valencia-Moreno, M., Vega-Granillo, E.L., eds., Primer congreso sobre la evolución geológica y ecológica del Noroeste de México, Hermosillo, Sonora, México, 141 p.
- Jones, N.W., McKee, J.W., Anderson, T.H., Silver, L.T., 1995, Jurassic volcanic rocks in northeastern Mexico: A possible remnant of a Cordilleran magmatic arc, *en* Jacques-Ayala, C., González-León, C.M., Roldán-Quintana, J., eds., Studies on the Mesozoic of Sonora and adjacent areas: Geological Society of America Special Paper 301, 179–190.
- Karlstrom, K.E., Bowring, S.A., 1988, Early Proterozoic assembly of tectonostratigraphic terranes in southwestern North America: Journal of Geology, 96, 561–576.
- Karlstrom, K.E., Bowring, S.A., 1993, Proterozoic orogenic history of Arizona, en Van Schmus, W.R., otros 24, eds., 1993. Transcontinental Proterozoic provinces, en Reed, J.C., Jr., Bickford, M.E., Houston, R.S., Link, P.K., Rankin, D.W., Sims,

- P.K., Van Schmus, W.R., eds., Precambrian: Conterminous U.S.: Geological Society of America, The Geology of North America C-2, 188–211.
- Karlstrom, K.E., Bowring, S.A., Conway, C.M., 1987, Tectonic significance of an Early Proterozoic two-province boundary in central Arizona: Geological Society of American Bulletin, 9, 529–538.
- Karlstrom, K.E., Harlan, S.S., Williams, M.L., McLelland, J., Geissman, J.W., Åhäll, K.I., 1999, Refining Rodinia: Geologic evidence for the Australia-Western U.S.
 connection in the Proterozoic: GSA Today, 9(10), 1–7.
- Koehnken, P.J., 1976, Petrology of anorthosites from two localities in northwestern Sonora, Mexico: Tesis de Maestría, University of Southern California, Los Angeles, USA, 97 p.
- Kunk, M.J., Sutter, J.F., Naeser, C.W., 1985, High-precision ⁴⁰Ar/³⁹Ar ages of sanidine, biotite, hornblende, and plagioclase from the Fish Canyon Tuff, San Juan Volcanic Field south-central Colorado: Geological Society of America, Abstract with Programs, 17, 636 p.
- Kunk, M.J., Winick, J.A., Stanley, J.O., 2001, ⁴⁰Ar/³⁹Ar age-spectrum and laser fusion data for volcanic rocks in west central Colorado: U.S. Geological Survey, Open-File Report 01-472, 94 p.
- Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., 1986, A chemical classification of volcanic rocks based on the total alkali-silica diagram: Journal of Petrology, 27, 745–750.
- Leveille, G., Frost, E.G., 1984, Deformed upper Paleozoic-lower Mesozoic cratonic strata, El Capitan, Sonora, Mexico: Geological Society of America Annual Meeting, Reno Nevada, Abstract with Programs, 575 p.
- Li, Z.X., Li, X., Zhou, H., Kinny, P.D., 2002, Grenvillian continental collision in South China: New SHRIMP U–Pb zircon results and implications for the configuration of Rodinia: Geology, 30, 163–166.
- Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S.,

- Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., Vernikovsky, V., 2008, Assembly, configuration, and break-up history of Rodinia: a synthesis: Precambrian Research, 160, 179–210.
- Longoria, J.F., González, M.A., 1979, Estudios estratigráficos-estructurales en el Precámbrico de Sonora: Geología de los Cerros Gamuza y El Arpa: Boletín del Departamento de Geología, Universidad de Sonora, Hermosillo, Sonora, México, 2 (2), 106–149.
- Longoria, J.F., González, M.A., Mendoza, J.J., Pérez, V.A., 1978, Consideraciones estructurales del cuadrángulo Pitiquito-La Primavera, NW de Sonora: Boletín del Departamento de Geología, Universidad de Sonora, Hermosillo, Sonora, México, 1 (1), 61–67.
- Lozano, R., Bernal, J.P., 2005, Characterization of a new set of eight geochemical reference materials for XRF major and trace element analysis: Revista Mexicana de Ciencias Geológicas, 22(3), 329–344.
- Ludwig, K.R., 2001, SQUID 1.02, A user's manual: Berkeley Geochronology Center Special Publication, 2, 19 p.
- Ludwig, K.R., 2003, ISOPLOT; A geochronological toolkit for Microsoft Excel, Version 3.00: Berkeley Geochronology Center Special Publication, 4, 70 p.
- Maniar, P.D., Piccolli, P.M., 1989, Tectonic discrimination of granitoids: Geological Society of America Bulletin, 101, 635–643.
- Marvin, R.F., Naeser, C.W., Mehnert, H.H., 1978, Tabulation of radiometric ages—including unpublished K-Ar and fission track ages for rocks in southeastern Arizona and southwestern New Mexico, *en* Callender, J.F., Wilt, J.C., Clemons, R.E., eds., Land of Cochise: New Mexico, Geological Society Field Conference, 29 Guidebook, 243–252.
- Merriam, R., 1972, Reconnaissance Geologic Map of the Sonoyta Quadrangle, Northwest Sonora, Mexico: Geological Society of America Bulletin, 83, 3533–3536.

- Miller, C.F., Wooden, J.L., Gerber, M.E., 1992, Plutonism at a tectonically evolving continent margin, Mesozoic granitoids of the eastern Mojave Desert, California, USA: 29th International Geological Congress, Abstracts, 29, 519.
- Miyashiro, A., Shido, F., 1974. Tholeiitic and calc-alkaline series in relation to the behaviours of titanium, vanadium, chromium, and nickel: American Journal of Science, 275, 165–277.
- Molina-Garza, R.S., Geissman, J.W., 1999, Paleomagnetic data from the Caborca terrane, Mexico: Implications for the Cordilleran tectonics and the Mojave-Sonora megashear hypothesis: Tectonics, 18, 293–325.
- Molina-Garza, R.S., Iriondo, A., 2005, La megacizalla Mojave-Sonora: la hipótesis, la controversia y el estado actual de conocimiento del problema, *en* Alaniz-Álvarez, S.A., Nieto-Samaniego, A.F., eds., Volumen Centenario SGM—Grandes Fronteras Tectónicas de México: Boletín de la Sociedad Geológica Mexicana, 57(1), 1–26.
- Molina-Garza, R.S., Izaguirre, A., 2006, Paleomagnetismo y geocronología de anortositas c.a. 1.1 Ga en NW Sonora y el Grenville mexicano: Geos, 26(1), 189 p.
- Mosher, S., 1998, Tectonic evolution of the southern Laurentian Grenville orogenic belt: Geological Society of America Bulletin, 110(11), 1357–1375.
- Noguez-Alcántara, B., 2008, Reconstrucción del modelo genético y evolución tectónica del yacimiento tipo pórfido cuprífero Milpillas, distrito de Cananea, Sonora, México: Tesis Doctoral, Universidad Nacional Autónoma de México, ERNO, Hermosillo, Sonora, México, 390 p.
- Nourse, J.A., Premo, W.R., Iriondo, A., Stahl, E.R., 2005, Contrasting Proterozoic basement complexes near the truncated margin of Laurentia, northwestern Sonora Arizona international border region, *en* Anderson, T.H., Nourse, J.A., McKee, J.W, Steiner, M.B., eds., The Mojave-Sonora megashear hypothesis: Development, Assessment, and Alternatives: Boulder, Colorado, Geological Society of America Special Paper 393, 123–182.

- Ornelas-Macías, A., Verdugo-Noriega, G., 2009, Caracterización geológica estructural y de mineralización en el área Karina, municipio de Caborca, Sonora, México: Tesis de Licenciatura, Universidad de Sonora, Hermosillo, Sonora, México, 110 p.
- Pearce, J.A., 1983, Role of the sub-continental lithosphere in magma genesis at active continental margins, *en* Hawkesworth C.J., Norry M.J., eds., Continental basalts and mantle xenoliths, Shiva, Nantwich, 230–249.
- Pearce, J.A., Harris, N.B., Tindle, A.G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks: Journal of Petrology, 25, 956–983.
- Peccerillo, A., Taylor, S.R., 1976, Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey: Contributions to Mineralogy and Petrology, 58, 63–81.
- Poole, F.G., Sandberg, C.A., Amaya-Martínez, R., 2004, Bioestratigraphy and paleotectonic setting of Paleozoic rocks north of Estacion Sahuaro, northwestern Sonora, Mexico: Geological Society of America, Abstracts with Programs, 36(5), 99 p.
- Poole, F.G., Perry, W.J., Jr., Madrid, R.J., Amaya-Martínez, R., 2005, Tectonic synthesis of the Ouachita–Marathon–Sonora orogenic margin of southern Laurentia: Stratigraphic and structural implications for timing of deformational events and plate-tectonic model, *en* Anderson, T.H., Nourse, J.A., McKee, J.W., Steiner, M.B., eds., The Mojave-Sonora megashear hypothesis: Development, assessment, and alternatives: Geological Society of America Special Paper 393, 543–596.
- Premo, W.R., Iriondo, A., Nourse, J.A., 2003, U-Pb zircon geochronology of Paleoproterozoic basement in northwestern Sonora, Mexico: Evidence for affinity to SW US provinces: Geological Society of America Cordilleran Section, Abstracts with Programs, 35(4), 67 p.
- Quintanar-Ruíz, F.J., 2008, La Herradura ore deposit: An orogenic gold deposit in northwestern Mexico: Tesis de Maestria, Universidad de Arizona, Tucson, Arizona, USA, 97 p.
- Rämö, O.T., Calzia, J.P., 1998, Nd isotopic composition of cratonic rocks in the southern

- Death Valley region: evidence for a substantial Archean source component in Mojavia: Geology, 26(10), 891–894.
- Riggs, N.R., Busby-Spera, C.J., 1990, Evolution of a multi-vent volcanic complex within a subsiding arc graben depression: Mount Wrightson Formation, Arizona: Geological Society of America Bulletin, 102, 1114–1135.
- Riggs, N.R., Mattinson, J.M., Busby, C.J., 1993, Correlation of Jurassic eolian strata between the magmatic arc and the Colorado Plateau: New U-Pb geochronologic data from southern Arizona: Geological Society of America Bulletin, 105, 1231–1246.
- Routti, J.T., 1969, SAMPO, a Fortran IV program for computer analysis of gamma spectra from Ge (Li) detectors, and for other spectra with peaks: Lawrence Radiation Laboratory, UC Berkeley UCRL-19452, 1–34.
- Schaaf, P., Stimac, J., Siebe, C., Macías, J.L., 2005. Geochemical evidence for mantle origin and crustal processes in volcanic rocks from Popocatépetl and surrounding monogenetic volcanoes, central Mexico: Journal of Petrology, 46(6), 1243–1282.
- Sears, J.W., Price, R.A., 2000, New look at the Siberian connection: No SWEAT: Geology, 28, 423–426.
- Servicio Geológico Mexicano (SGM), 2002, Carta geológica escala 1:250 000, H12-1, Puerto Peñasco.
- Silver, L.T., Anderson, T.H., 1974, Possible left-lateral early to middle Mesozoic disruption of the southwestern North American Craton margin: Geological Society of America, Abstracts with Programs, 6(7), 955–956.
- Sláma, J. Kosler, J., Condon D.J., Crowley, J.L., Gerdes A., Hanchar, J.M., Horstwood M.S., Morris G.A, Nasdala, L., Norberg, N., Schaltegger U., Schoene B., Tubrett M.N., Whitehouse M.J., 2008, Plesovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalisis: Chemical Geology, 249, 1–35.
- Smith, D.R., Noblett, J., Wobus, R.A., Unruh, D., Douglass, J., Beane, R., Davis, C., Goldman, S., Kay, G., Gustavson, B., Saltoun, B., Stewart, J., 1999, Petrology and geochemistry of late-stage intrusions of the A-type, mid-Proterozoic Pikes Peak

- batholith (Central Colorado, USA): Implications for petrogenetic models: Precambrian Research, 98, 271–305.
- Snee, L.W., Sutter, J.F., Kelly, W.C., 1988, Thermochronology of economic mineral deposits: Dating the stages of mineralization at Panasqueira, Portugal, by high precision ⁴⁰Ar/³⁹Ar age spectrum techniques on muscovite: Economic Geology, 83, 335–354.
- Snow, J.K., Asmeron, Y., Lux, D.R., 1991, Permian-Triassic plutonism and tectonics, Death Valley region, California and Nevada: Geology, 19, 629–632.
- Solari, L.A., Gómez-Tuena, A., Bernal, J.P., Pérez-Arvizu, O., Tanner, M., 2009, U-Pb zircon geochronology with an integrated LA-ICPMS microanalytical workstation: achievements in precision and accuracy: Geostandards and Geoanalytical Research, en prensa.
- Soto-Verdugo, L.C., 2006, El zócalo ígneo-metamórfico Sierrita Prieta, Sonora Norte Central, México: Características petrográficas, geoquímicas y geocronológicas: Tesis de Licenciatura, Universidad de Sonora, Hermosillo, México, 113 p.
- Stacey, J.S., Kramers, J.D., 1975, Approximation of terrestrial Lead isotope evolution by a two-stage model: Earth and Planetary Science Letters, 26, 207–221.
- Steiger, R.H., Jäger, E., 1977, Subcommission on geochronology: Convention on the use of decay constants in geo and cosmo chronology: Earth and Planetary Science Letters, 36, 359–363.
- Stewart, J.H., 1988, Latest Proterozoic and Paleozoic southern margin of North America and the accretion of Mexico: Geology, 16, 186–189.
- Stewart, J.H., 2005, Evidence for the Mojave-Sonora megashear—Systematic left–lateral offset of Neoproterozoic to Lower Jurassic strata and facies, western United States and northwestern Mexico, *en* Anderson, T.H., Nourse, J.A., McKee, J.W., Steiner, M.B., eds., The Mojave-Sonora megashear hypothesis: Development, assessment, and alternatives: Geological Society of America Special Paper 393, 209–231.
- Sun, S.S., McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, *en* Saunders A.D. Norry, M.J., eds., Magmatism in the ocean basins: Geological Society of London Special

- Publications, 42, 313–345.
- Timmons, J.M., Karlstrom, K.E., Heizler, M.T., Bowring, S.A., Gehrels, G.E., Crossey, L.J., 2005, Tectonic inferences from the ca. 1255–1100 Ma Unkar Group and Nankoweap Formation, Grand Canyon: Intracratonic deformation and basin formation during protracted Grenville orogenesis: Geological Society of America Bulletin, 117(11), 1573–1595.
- Tosdal, R.M., Haxel, G.B., Wright, J.E., 1989, Jurassic geology of the Sonoran Desert region, southern Arizona, southeastern California, and northernmost Sonora:
 Construction of a continental-margin magmatic arc, *en* Jenney, J.P., Reynolds, S.J., eds., Geologic evolution of Arizona: Tucson, Arizona Geological Society Digest, 17, 397–434.
- Valenzuela-Navarro, L.C., Valencia-Moreno, M., Iriondo, A., Premo, W.R., 2003, The El Creston Granite: A new confirmed Paleoproterozoic locality in the Opodepe area, north-central Sonora, Mexico: Geological Society of America Abstracts with Programs, 32(4), 83.
- Van Schmus, W.R., Bickford, M.E., Condie K.C., 1993, Early Proterozoic crustal evolution, *en* Reed, J.C., Jr., Bickford, M.E., Houston, R.S., Link, P.K., Rankin, D.W., Sims, P.K., Van Schmus, W.R., eds., Precambrian: Conterminous U.S.: Geological Society of America, The Geology of North America C-2, 270–281.
- Vidal-Solano, J.R., Demant, A., Paz-Moreno, F.A., Lapierre, H., Ortega-Rivera, M.A., Lee, J.K., 2008, Insights into the tectonomagmatic evolution of NW Mexico:

 Geochronology and geochemistry of the Miocene volcanic rocks from the Pinacate area, Sonora: Geological Society of America Bulletin, 120, 691–708.
- Weber, B., Schaaf, P., Valencia, V.A., Iriondo, A., Ortega-Gutiérrez, F., 2006, Provenance ages of late Paleozoic sandstones (Santa Rosa Formation) from the Maya block, SE Mexico. Implications on the tectonic evolution of western Pangea: Revista Mexicana de Ciencias Geológicas, 23(3), 262–276.
- Wilson, M., 1989, Igneous petrogenesis: Unwin Iman, London, 450 p.

- Wood, D.A., 1980, The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province: Earth Planetary Sciences Letters, 50, 11–30.
- Wooden, J.L., DeWitt, E., 1991, Pb isotopic evidence for the boundary between the Early Proterozoic Mojave and Central Arizona crustal provinces in western Arizona, *en* Karlstrom, K.E., ed., Proterozoic Geology and Ore Deposits of Arizona, Arizona Geological Society Digest, 19, 27–50.
- Wooden, J.L., Miller, D.M., 1990, Chronologic and isotopic framework for Early Proterozoic crustal evolution in the Eastern Mojave Desert region, SE California: Journal of Geophysical Research, 95, 20,133–20,146.
- Wright, J.E., Haxel, G.B., May, E.J., 1981, Early Jurassic uranium-lead isotopic ages for Mesozoic supracrustal sequences, Baboquivari Mountains, southern Arizona:

 Geological Society of America, Abstracts with Programs, 13, 113 p.

12. Apéndices

Apéndice A: Tablas de recopilación de datos bibliográficos y mapa de ubicación de afloramientos

Tablas de recopilación de datos geocronológicos, geoquímicos e isotópicos A1–A5 y la figura A1 que muestra algunas de las localidades mencionadas en Sonora y Arizona.

		Edad U-Pb en zircones Ma	Épsilon Nd	Edad Modelo
Muestra y/o localidad	Roca		eNd	T _(DM) Ga
Región de Quitovac (Irio	ndo, 2001)			
CAG-13	Granito	1112 ± 100	-4.0	1.77
CAG-2	Granito	1126 ± 40	-1.4	1.72
NA-5	Gneis	1656 ± 4	+2.3	1.80
CA-15	Gneis	1693 ± 8	-1.2	1.95
CA-14	Gneis	1699 ± 16	+2.2	1.89
NA-7	Gneis	1703 ± 8	+3.4	1.76
NA-8	Gneis	1704 ± 6	+3.6	1.75
CA-20	Gneis	1708 ± 5	+0.8	1.98
NA-3	Gneis	1714 ± 10	+3.9	1.74
CA-19	Gneis	1718 ± 160	+1.2	1.98
CA-18	Gneis	1718 ± 8	+1.7	1.90
CA-11	Gneis	1740 ± 30	+1.4	2.00
CA-16	Gneis	1747 ± 30	+1.3	1.99
CA-1	Gneis	1747 ± 8	+2.6	1.88
CA-4	Gneis	1748 ± 66	+0.6	2.07
CA-12	Gneis	1763 ± 12	+3.4	1.82
CA-17	Gneis	1777 ± 19	+1.9	1.95
Rancho Aibó (Iriondo et				
*	Granito	1079 ± 18	-4.5	1.84
Aibó			-4.3	1.04
Zona el Tecolote (Espino		, , , , , , , , , , , , , , , , , , ,		
Tec-3	Anortosita	1095 ± 28	n.d.	n.d.
El Crestón (Valenzuela-N	Javarro et al., 2003)			
Cretón	Granito	1730 ± 9	+3.1	n.d.
El Rajón (Premo et al., 2		*		
•	Gneis	1703 ± 12	n.d.	n.d.
Rajón			n.u.	
El Bámuri (Dórame-Nav				n.d.
Bámuri	Gneises	~1770 - 1780	+0.5 a -5.0	n.d.
Diversas zonas (Andersor	y Silver et al., 2005)			
(5) Rancho Aibó	Granito	1091 ± 54		
(18) Santa Margarita	Granito	1104 ± 21		
(18) Santa Margarita	Granito	1104 ± 21		
(27) El Pozito	Granito	1206 ± 50		
(27) Pozito	Granito	1206 ± 50		
(32) Pulpito	Granito	1406 ± 29		
(9) Carretera # 15	Granito	1416 ± 12		
(7) Cerro Colorado	Cuarzomonzonita	1425 ± 11		
(22) Cananea	Granito	1427 ± 100		
(29) Cananea	Granito porfídico	1435 ± 15		
(30) Cuquiarachic	Granodiorita	1436 ± 9		
(31) Cuquiarachic	Cuarzomonzonita	1437 ± 13		
(6) Granito 4	Granito	1437 ± 13		
(33) Valdeza	Cuarzomonzonita	1437 ± 11 1437 ± 5		
(8) Sierrita Blanca	Cuarzomonzonita	1437 ± 3 1438 ± 45		
(12) Carretera # 2 (21) Seven Hills	Gneis	~1545		
	Gneis	1595 ± 30		
(10) Andrade	Gneis	~1600		
(26) Cerro Prieto Shared	Cuarzodiorita	~1612		
(13) Sierra El Viejo	Augen-gneis	~1618		
(2) Bámori	Pegmatita	1622 ± 24		
(21) Seven Hills	pegmatita	1641 ± 17		
(17) San Antonio	Gneis	1643 ± 10		
(20) Seven Hills	Gneises	1655 ± 11		
(15) Tecolote	Pegmatita	1656 ± 14		
(11) Carretera # 2	Gneis	~1665		
(25) Mababi	Metariolita	1686 ± 15		
(23) San Luis	Gneis	1698 ± 15		
(16) San Antonio	Granito	1702 ± 10		
(19) Seven Hills	Augen-gneises	1709 ± 11		
(1) Bámori	Gneis	1725 ± 250		
(24) Las Guijas	Granito	1742 ± 16		
(14) Tecolote	Gneis	1753 ± 18		
4) Bámori	Riodacita	1758 ± 78		
(34) Bámori	pegmatita	1814 ± 62		
` '		as et al., 2005; Iriondo et al., co	om ner)	
			-0.85	1.01
SP89	Gneis	1401 ± 17	-0.85	1.81
Sierra Los Alacranes-Cer	ros Los Ojos (Nourse et	al., 2005)		
PZ-23B	Granito	1432 ± 6	+0.1	1.74
CD-12 #19	Augen gneis	1639 ± 15	+1.8	1.78
CD-3#4	Gneis granítico	1642 ± 19	+3.1	1.78
CP-17-99	Gneis granítico	1646 ± 10	+2.0	1.77
MINA LA JOYA #1-98	Gneis monzogranítico	1696 ± 11	+3.7	1.70
ALACRANES #5	Gneis granodiorítico	1722 ± 19	+3.9	1.71

Continúa en la siguiente página

Tabla	A1.	Continua	ación

		Edad U-Pb de zircones Ma	Épsilon Nd	Edad Modelo	
Muestra y/o localidad	Roca		eNd	T _(DM) Ga	
Sierrita Prieta (Soto-Ver	dugo, 2006)				
SP-79	Ortogneis	1727 ± 6	-0.5 a -1.3	2.00 a 2.13	
SP-51 A	Orto-augen gneis	1732 ± 8	-0.5 a -1.1	2.00 a 2.11	
SP-53	Orto-augen gneis	1733 ± 7	-0.5 a -1.2	2.00 a 2.12	
San Luisito (Gutiérrez-Co	oronado et al., 2008; Irie	ondo, com. per.)			
SLAG-7	Gneis	1685 ± 6	+1.0	1.91	
SLAG-201	Gneis	1689 ± 5	+2.3	1.79	
SLAG-45	Gneis	1712 ± 32	+2.9	1.76	
Rancho La Lámina (Am	ato et al., 2008)				
Rancho La Lámina	Granito	1076 ± 14	-1.7	n.d.	
Rancho La Lámina	Granito	1737 n.d.	-4.3	n.d.	
Rancho La Lámina	Granito	1738 n.d.	+1.4	n.d.	
Rancho La Lámina	Granito	1763 n.d.	+0.5	n.d.	
Sierrita Blanca (Enríquez	-Castillo, 2008)				
Poncho	Anortosita	1065 ± 69	n.d.	n.d.	
SB07-6	Granito	1098 ± 19	n.d.	n.d.	
SB07-2	Granito	1106 ± 14	n.d.	n.d.	
SB07-4	Granito	1108 ± 18	n.d.	n.d.	
Sierra Los Tanques (Irio	ndo et al., 2008; Iriondo	, com. Per.)			
ΓAN-07-1	Granito	1081 ± 5	-2.7	1.74	
Zona Canteras Puerto Pe	ñasco (Arvizu-Gutiérre	z, 2008)			
PIN-07-25	Gneis	1725 ± 3	n.d.	n.d.	
PIN-07-32	Gneis	1764 ± 3	n.d.	n.d.	
En este estudio					
Cerro Prieto-Carina					
1.1 GA	Metagranito	1062 ± 13	n.d.	n.d.	
LH07-42	Metagranito	1083 ± 11	-2.3	1.61	
LH06-40	Metagranito	1093 ± 16	-3.9	1.85	
LH07-41	Orto-augen gneis	1683 ± 9	+1.2	1.86	
LH06-16	Ortogneis	1687 ± 9	+1.7	1.85	
SPA-7	Orto-augen gneis	1692 ± 8	+0.5	1.92	
LH07-52	Ortogneis	1712 ± 4	n.d.	n.d.	
LH07-53	Ortogneis	1714 ± 5	n.d.	n.d.	
Sierra Prieta					
SPA-3	Anortosita	1075 ± 10	-3.3	1.95	
LH07-3	Metagranito	1080 ± 12	-4.0	1.9	
LH07-21	Metagranito	1082 ± 16	n.d.	n.d.	
LH06-34	Metagranito	1086 ± 23	-4.3	1.9	

No disponible: n.d.

Tabla A2. Geocronología U-Pb en zircones y elementos mayores, trazas y REE de las rocas del arco magmático Jurásico Medio Norteamericano en Arizona y Sonora.

	Granitos	0-24	Riolitas	D. (014	D	M								DI	A *	Courte D'te
Muestra	Bavoquivari Kitt Pook I, a	El Chacón II, b	Región del BAM1 III, b		Quitovac ROP II, b	Bavoquivari I	AMF I, c	CTPW I, c	CTPW I, c	GTPW I, c	CTPW I, c	CTPW I, c	GTPW I, c	GTPW I, c	Plomo IV, c	Arivaca ARV V, d	Santa Rita STA VI, d
Edad U-Pb zircones	165 ± 2 Ma	166.0 ± 0.3 Ma	~190 Ma	~190 Ma	176 ± 2 Ma	170 ± 3 Ma	170 ± 3 Ma					~175-170 Ma					~175 ma
	64.17	67.86	~190 Ma 72.84	73.33	70.04	72.14	73.96		70.13		70.90	72.90	73.58	76.87	~100-173 Wia	76.22	72.19
SiO ₂		0.45	0.31	0.28	0.37			66.81 0.54		70.43		0.34				0.24	0.17
TiO ₂	0.62 16.83	15.53	14.55	13.85	14.77	0.32 14.25	0.36	16.95	0.46	0.41 15.22	0.36	14.82	0.39 14.53	0.12 12.29			
Al ₂ O ₃	4.90	3.27	14.55	1.93	2.50	2.61	14.13	3.95	15.14 3.47	2.95	15.15 2.47	2.55	14.53	2.24		13.23 2.12	15.12 1.47
Fe ₂ O ₃ T							2.05										
MnO	0.11	0.08	0.05	0.06	0.08	0.15	0.02	0.10	0.08	0.06	0.07	0.05	0.02	0.11		0.04	0.21
MgO	1.80	1.54	0.41	0.63	1.18	0.67	0.37	1.12	0.47	0.71	0.76	0.32	0.36	0.34		0.40	0.10
CaO No. O	4.25	3.26	0.99	1.51 3.78	2.39 4.05	0.96	0.46	3.22	0.50	0.85	1.55	0.18	0.33	0.79		0.17 2.03	0.42
Na ₂ O	3.57 3.54	3.74	4.73	4.55	4.03	3.76	5.07	3.75 3.38	4.01	4.33	3.51 5.12	3.55	5.31	4.67			2.62
K ₂ O		4.09	4.14			5.05	3.53		5.61	4.94		5.20	3.69	2.52		5.51 0.05	7.66
P_2O_5	0.22	0.18	0.10	0.08	0.13	0.10	0.05	0.17	0.13	0.09	0.10	0.08	0.05	0.05		0.05	0.02
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00		100.00	100.00
Na ₂ O+K ₂ O	1.01	0.91	1.14	0.83	0.90	0.74	1.44	1.11	0.71	0.88	0.69	0.68	1.44	1.85		0.37	0.34
Rb	110.00	118.00	93.20	151.00	102.00	Elementos tra	aza y REE	106.00	232.00	195.00	189.00	118.00	143.00	75.00	165.00		
Sr	380.00	287.00	166.00	217.00	291.00			400.00	140.00	140.00	240.00	120.00	82.00	69.00	141.00		
Cs	300.00	2.31	0.73	1.92	4.51			100.00	110.00	110.00	210.00	120.00	02.00	03.00	3.82		
Ba	1100.00	990.00	912.00	844.00	1530.00			1200.00	1400.00	1300.00	1200.00	1200.00	1100.00	460.00	876.00		
Th	1100.00	19.10	19.70	20.10	9.78			1200.00	1400.00	1500.00	1200.00	1200.00	1100.00	400.00	070.00		
U		3.28	6.78	8.17	1.99												
La	60.00	31.10	36.50	33.40	30.10			57.00	32.00	29.00	38.00	25.00	42.00	36.00			
Ce	00.00	64.90	68.10	61.80	53.10			130.00	52.00	27.00	30.00	25.00	12.00	50.00			
Nd		26.20	23.50	21.80	20.50			150.00									
Sm		5.06	4.50	4.20	3.49												
Eu		1.00	0.69	0.61	0.78												
Gd		4.80	3.80	3.39	3.12												
Tb		0.66	0.55	0.51	0.42												
Но		0.95	0.82	0.80	0.62												
Tm		0.40	0.40	0.38	0.30												
Yb		2.52	2.45	2.38	1.81												
Lu		0.37	0.38	0.38	0.29												
Zr	210.00	165.00	124.00	112.00	183.00	230.00	130.00	210.00	180.00	240.00	220.00	180.00	290.00	240.00	126.80	130.00	200.00
Hf	210.00	4.60	3.79	3.44	4.76	230.00	150.00	210.00	100.00	240.00	220.00	100.00	250.00	240.00	120.00	150.00	200.00
Ta		0.79	1.28	1.28	0.59												
W		0.15	1.72	2.12	1.07												
Sc Cr		6.37 9.39	4.46 1.49	4.00 2.86	5.64 16.20										4.56		
Co		5.52	3.21	2.85	4.19										400.00		
Ni		5.53	6.67	2.81	6.53										6.56		
Zn		31.50	29.20	29.10	33.20										60.70		
As Sb		1.20 0.43	0.59 0.78	1.66 0.88	21.00 1.12												
Ga		0.75	0.70	0.00	12			15.00	16.00	15.00	14.00	10.00	15.00				
Nb															13.00		
V Y	24.00							30.00	26.00	24.00	26.00	26.00	44.00		30.20 28.00		
Y Ti	3710.00	2710.00	1857.00	1662.00	2199.00	2179.00	1465.00	3270.00	2744.00	2436.00	2182.00	2010.00	2362.00		28.00 1354.00	1465.00	1028.00
p	1338.00	1081.00	619.00	492.00	807.00	303.00	305.00	1029.00	793.00	548.00	606.00	487.00	303.00		239.00	305.00	121.00

Referencias para la geocronología, I: Haxel et al. (2005), II: Iriondo (2001), III: Iriondo (com. per.), IV: Abbott y Smith (1989), V: Tosdal et al. (1989), VI: Riggs et al. (1993).

Referencias para la geoquímica, a: Tosdal et al. (1989), b: com. escrita Iriondo (2008), c: Haxel et al. (2005), d: Haxel et al. (1984).

Los espacios vacios: no medido. Los óxidos mayores están recalculados a 100%. Abreviaturas: RQP: Rhyolite Quartz Porphyry, AMF: Formación Ali Molina, GTPW: Grupo Topawa, ARV: Arivaca, STA: Santa Rita.

Tabla A3. Resumen geocronológico de rocas ígneas del arco magmático Jurásico Medio Norteamericano del NW de Sonora y algunas localidades del SW de Arizona.

Localidad y/o muestra	Roca	Edad U-Pb en zircones M
NW Sonora		
Región de Quitovac (Iriondo,	, 2001)	
El Chacón	Granito	166.0 ± 0.3
JQP-W	Riolita porfidica	176 ± 2
Varias Localidades (Anderso	•	
Libertad	Riolita	~125
Seri #2	Metariolita	~123
San Moises	Granito	~141
El Sahuaro	Cuarzomonzonita	~153
Silla <i>Sheared</i>	Riolita porfídica	~160
El Capitán	Gneis	~164
Rancho Sebaco	Monzonita	~164
Canon Las Planchas #6	Riolita	~165
Plomo	Riolita porfídica	~165 ~166
Gabino	Cuarzomonzonita	~100 ~170
Gaoino Puerto Mababi	Cuarzomonzonita	~170 ~173
Copercuin	Riolita	~173 ~174
El Tunel	Pórfido de cuarzo	~174 ~174
Cubabi	Riolita	~174 ~176
Sonora	Riolita	~176
		7-180
Región del Bámuri (Castiñeir	* *	400
BAM-3	Riolita	~190
SW Arizona		
Canelo Hills (Marvin et al., 1	978)	
Canelo*	Flujo de ceniza	147 ± 6
Canelo**	Flujo de ceniza	149 ± 11
SW Arizona (Santa Rita Mou	ntains. Cobre Ridge v Paiar	rito) [Riggs et al., 1993]
Jmw11	Volacánica	170 – 175
PM-1	Toba	170 ± 5
CRT-1	Toba	170 ± 3
CRT-25	Toba	171 ± 4
Imw6	Intrusivo hipabisal	176.0 ± 0.4
Jmw24	Volcánica	183 ± 2
Jmw1	Dacita	184 ± 9
Bavoquivari Mountains (Hax		
Kitt Peak	Granodiorita	165 ± 2
Ali Molina	Riolita	170 ± 3
Topawa <i>group</i>	Riolita	170 ± 3 174 ± 2
*En este estudio		
-		
Área Mina La Herradura	Moto	157.0 + 2.0
Área Mina La Herradura LH07-51	Metaandesita	157.9 ± 2.8
Área Mina La Herradura LH07-51 LH06-14	Granito	$163.2 ~\pm~ 1.2$
Área Mina La Herradura LH07-51 LH06-14 LH06-15	Granito Dacita	$163.2 \pm 1.2 \\ 163.9 \pm 1.0$
*En este estudio Área Mina La Herradura LH07-51 LH06-14 LH06-15 LH07-30 LH06-11	Granito	$163.2 ~\pm~ 1.2$

^{*} K-Ar (biotita), **Rb-Sr (roca total)

Localidad y/o muestra Roca y/o mineral Edades U-Pb en zircones Ma Región de Quitovac (Iriondo, 2001) SA-3 Diorita 76.1 ± 3.7 KZ-3 Granito 79.4 ± 1.3 KZ-4 Granito ~80 Sierra Los Alacranes-Cerros Los Ojos (Nourse et al., 2005) TJA # 21 Cuarzodiorita 72.8 ± 1.8 CD-16-99 Cuarzodiorita 73.4 ± 3.3 Caborca y Pitiquito (Jacques-Ayala et al., 2008) Granito Proveedora Granito ~74 Granito Pitiquito Granito ~74 Sierrita Blanca (Enríquez-Castillo, 2008) SB07-5 Cuarzodiorita 72.6 ± 1.2 SB07-3 Cuarzodiorita 69.7 ± 1.0 SB07-5B Pegmatita/moscovita ~61* Sierra Pinta (Arvizu-Gutiérrez, 2008)
SA-3 Diorita 76.1 ± 3.7 KZ-3 Granito 79.4 ± 1.3 KZ-4 Granito ~80 Sierra Los Alacranes-Cerros Los Ojos (Nourse et al., 2005) TJA # 21 Cuarzodiorita 72.8 ± 1.8 CD-16-99 Cuarzodiorita 73.4 ± 3.3 Caborca y Pitiquito (Jacques-Ayala et al., 2008) Granito Proveedora Granito ~74 Granito Pitiquito Granito ~74 Sierrita Blanca (Enríquez-Castillo, 2008) SB07-5 Cuarzodiorita 72.6 ± 1.2 SB07-3 Cuarzodiorita 69.7 ± 1.0 SB07-5B Pegmatita/moscovita ~61* Sierra Pinta (Arvizu-Gutiérrez, 2008)
KZ-3 Granito 79.4 ± 1.3 KZ-4 Granito ~80 Sierra Los Alacranes-Cerros Los Ojos (Nourse et al., 2005) TJA # 21 Cuarzodiorita 72.8 ± 1.8 CD-16-99 Cuarzodiorita 73.4 ± 3.3 Caborca y Pitiquito (Jacques-Ayala et al., 2008) Granito Proveedora Granito ~74 Granito Pitiquito Granito ~74 Sierrita Blanca (Enríquez-Castillo, 2008) SB07-5 Cuarzodiorita 72.6 ± 1.2 SB07-3 Cuarzodiorita 69.7 ± 1.0 SB07-5B Pegmatita/moscovita ~61* Sierra Pinta (Arvizu-Gutiérrez, 2008)
KZ-4 Granito ~80 Sierra Los Alacranes-Cerros Los Ojos (Nourse et al., 2005) TJA # 21 Cuarzodiorita 72.8 ± 1.8 CD-16-99 Cuarzodiorita 73.4 ± 3.3 Caborca y Pitiquito (Jacques-Ayala et al., 2008) Granito Proveedora Granito —74 Granito Pitiquito Granito —74 Sierrita Blanca (Enríquez-Castillo, 2008) SB07-5 Cuarzodiorita 72.6 ± 1.2 SB07-3 Cuarzodiorita 69.7 ± 1.0 SB07-5B Pegmatita/moscovita ~61* Sierra Pinta (Arvizu-Gutiérrez, 2008)
Sierra Los Alacranes-Cerros Los Ojos (Nourse et al., 2005) TJA # 21 Cuarzodiorita 72.8 ± 1.8 CD-16-99 Cuarzodiorita 73.4 ± 3.3 Caborca y Pitiquito (Jacques-Ayala et al., 2008) Granito Proveedora Granito ~74 Granito Pitiquito Granito ~74 Sierrita Blanca (Enríquez-Castillo, 2008) SB07-5 Cuarzodiorita 72.6 ± 1.2 SB07-3 Cuarzodiorita 69.7 ± 1.0 SB07-5B Pegmatita/moscovita ~61* Sierra Pinta (Arvizu-Gutiérrez, 2008)
TJA # 21 Cuarzodiorita 72.8 ± 1.8 CD-16-99 Cuarzodiorita 73.4 ± 3.3 Caborca y Pitiquito (Jacques-Ayala et al., 2008) Granito Proveedora Granito Oranito ~74 Granito Pitiquito Granito ~74 Sierrita Blanca (Enríquez-Castillo, 2008) SB07-5 Cuarzodiorita 72.6 ± 1.2 2008 SB07-3 Cuarzodiorita 69.7 ± 1.0 2007 SB07-5B Pegmatita/moscovita ~61* Sierra Pinta (Arvizu-Gutiérrez, 2008)
CD-16-99 Cuarzodiorita 73.4 ± 3.3 Caborca y Pitiquito (Jacques-Ayala et al., 2008) Granito Proveedora Granito ~74 Granito Pitiquito Granito ~74 Sierrita Blanca (Enríquez-Castillo, 2008) SB07-5 Cuarzodiorita 72.6 ± 1.2 SB07-3 Cuarzodiorita 69.7 ± 1.0 SB07-5B Pegmatita/moscovita ~61* Sierra Pinta (Arvizu-Gutiérrez, 2008)
Caborca y Pitiquito (Jacques-Ayala et al., 2008) Granito Proveedora Granito ~74 Granito Pitiquito Granito ~74 Sierrita Blanca (Enríquez-Castillo, 2008) SB07-5 Cuarzodiorita 72.6 ± 1.2 SB07-3 Cuarzodiorita 69.7 ± 1.0 SB07-5B Pegmatita/moscovita ~61* Sierra Pinta (Arvizu-Gutiérrez, 2008)
Granito Proveedora Granito ~74 Granito Pitiquito Granito ~74 Sierrita Blanca (Enríquez-Castillo, 2008) SB07-5 Cuarzodiorita 72.6 ± 1.2 SB07-3 Cuarzodiorita 69.7 ± 1.0 SB07-5B Pegmatita/moscovita ~61* Sierra Pinta (Arvizu-Gutiérrez, 2008)
Granito Pitiquito Granito ~74 Sierrita Blanca (Enríquez-Castillo, 2008) SB07-5 Cuarzodiorita 72.6 ± 1.2 SB07-3 Cuarzodiorita 69.7 ± 1.0 SB07-5B Pegmatita/moscovita ~61* Sierra Pinta (Arvizu-Gutiérrez, 2008)
Sierrita Blanca (Enríquez-Castillo, 2008) SB07-5 Cuarzodiorita 72.6 ± 1.2 SB07-3 Cuarzodiorita 69.7 ± 1.0 SB07-5B Pegmatita/moscovita ~61* Sierra Pinta (Arvizu-Gutiérrez, 2008)
SB07-5 Cuarzodiorita 72.6 ± 1.2 SB07-3 Cuarzodiorita 69.7 ± 1.0 SB07-5B Pegmatita/moscovita ~61* Sierra Pinta (Arvizu-Gutiérrez, 2008)
SB07-3 Cuarzodiorita 69.7 ± 1.0 SB07-5B Pegmatita/moscovita ~61* Sierra Pinta (Arvizu-Gutiérrez, 2008)
SB07-5B Pegmatita/moscovita ~61* Sierra Pinta (Arvizu-Gutiérrez, 2008)
Sierra Pinta (Arvizu-Gutiérrez, 2008)
PIN-07-6 Granito 67.0 ± 1.3
PIN-07-14 Monzogranito 68.3 ± 0.7
*En este estudio
Zona Mina La Herradura
LH06-42 69.7 ± 1.3

 69.7 ± 1.3 76.3 ± 0.4

⁰⁴FP-37
* Geocronología ⁴⁰Ar/³⁹Ar

Región de Quitova	c, flujos volcánicos de "Caldera El Pilar" (Iriondo, 2001)	
Basalto	Biotita	17.46 ± 0.04
Andesita	Roca total	16.96 ± 0.16
	Hornblenda	17.37 ± 0.10
	Biotita	17.72 ± 0.07
Ignimbrita	Sanidino	~18
	Biotita	18.03 ± 0.04
Norte de Caborca	(Izaguirre-Pompa, 2006; Izaguirre et al., sin publicar)	
CA03-11	Toba de pómez/sanidino	16.70 ± 0.20
CA03-8	Basalto/matriz volcánica	17.40 ± 0.30
CA99-1	Plagioclasa	20.86 ± 1.24
	Andesita/matriz volcánica	21.92 ± 0.08
CA03-13	Andesita/matriz volcánica	24.10 ± 0.50
CA03-01	Andesita/matriz volcánica	24.34 ± 0.09
Pinacate: evento F	Prepinacate (Vidal-Solano et al., 2008)	
JR99-83	Dacita/plagioclasa	12.04 ± 1.37
JR98-20	Dacita/plagioclasa	13.53 ± 1.24
JR98-23	Riolita/roca total	$14.23 \hspace{0.2cm} \pm \hspace{0.2cm} 0.15$
PO3-27	Obsidiana/obsidiana	15.30 ± 0.16
JR98-21	Basalto/Plagioclasa	$19.00 \hspace{0.2cm} \pm \hspace{0.2cm} 0.86$
91-30	Basalto/Plagioclasa	20.07 ± 2.17

Basalto/Plagioclasa

Obsidiana/obsidiana Obsidiana/obsidiana

Riolita/roca total Riolita/Obsidiana

Riolita/Obsidiana

Plagioclasa

Matriz volcánica

Dacita/matriz volcánica

Andesita/matriz volcánica

Basalto/matriz volcánica

Tabla A5. Resumen geocronológico de rocas volcánicas Oligo-Miocénicas del NW de Sonora.

Roca y/o mineral

Localidad y/o muestra

JR97-23

PO3-22

PO2-8

SB07-1

LH06-25

LH06-41

LH06-23

<u>*En este estudio</u> Zona Mina La Herradura

Sierrita Blanca (Enríquez-Castillo, 2008)

Edades 40 Ar/39 Ar Ma

 $\begin{array}{cccc} 20.64 & \pm & 1.70 \\ 14.15 & \pm & 1.15 \end{array}$

 $\begin{array}{cccc} 14.27 & \pm & 0.87 \\ 12.05 & \pm & 0.07 \end{array}$

 $12.10 \hspace{0.2cm} \pm \hspace{0.2cm} 0.10$

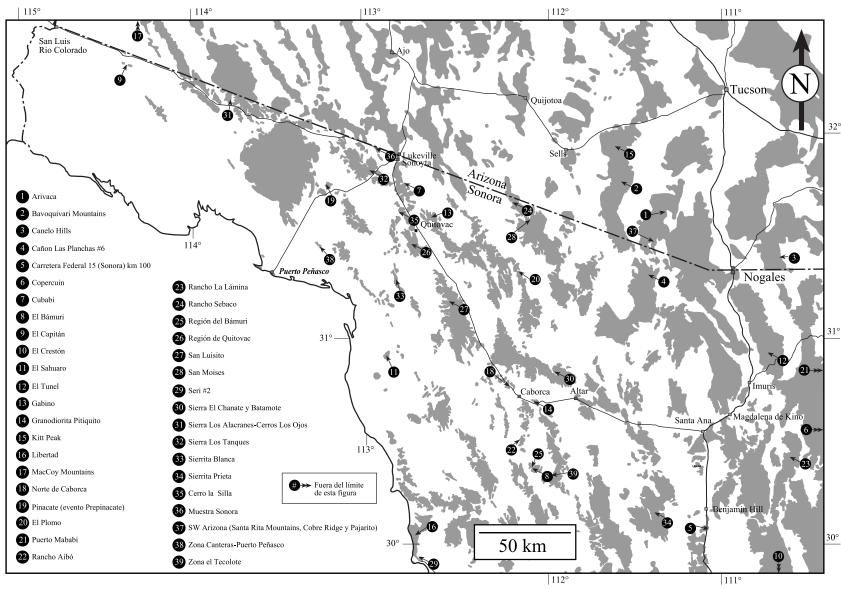
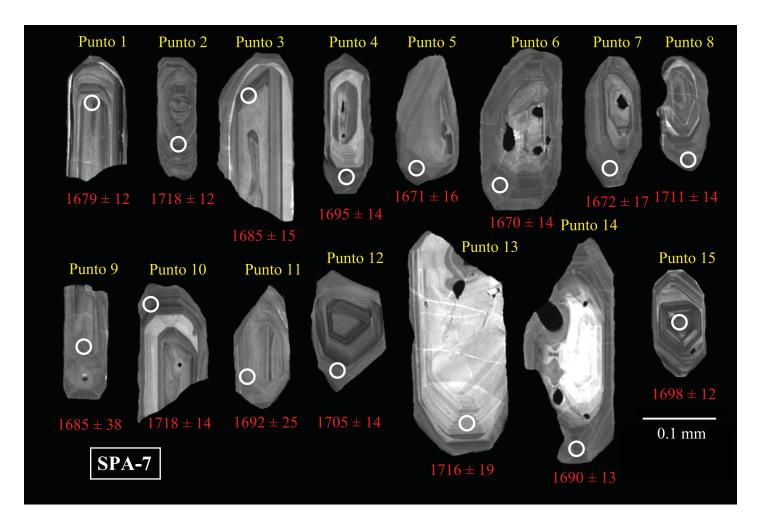
 12.16 ± 0.07

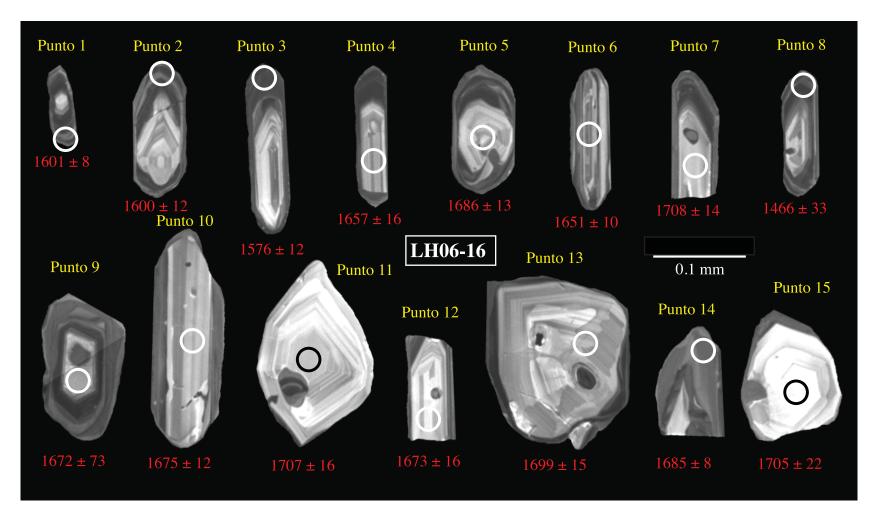
 $17.32 \ \pm \ 0.10$

 18.29 ± 1.28

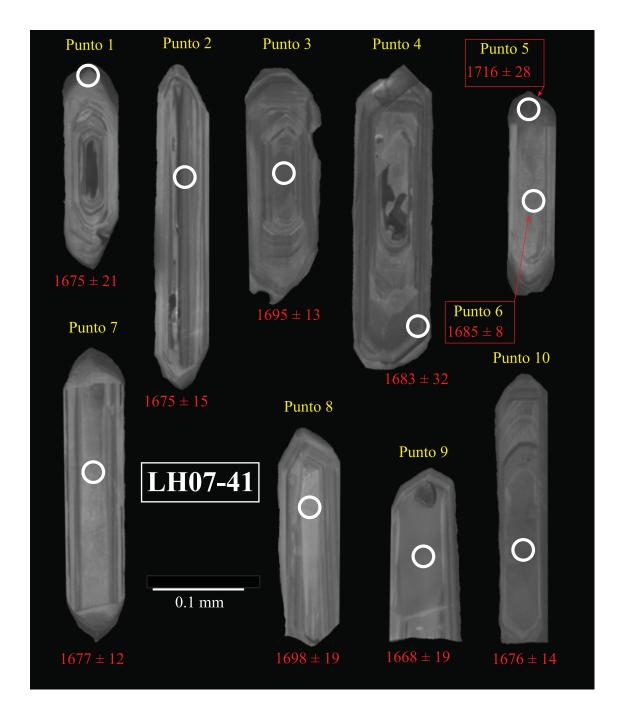
 $23.2 \ \pm \ 0.8$

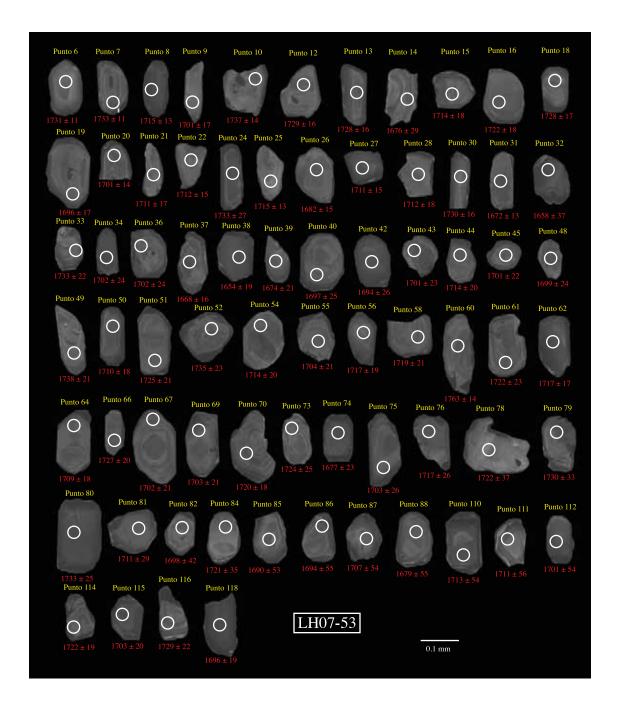
 $23.6 \ \pm \ 4.2$

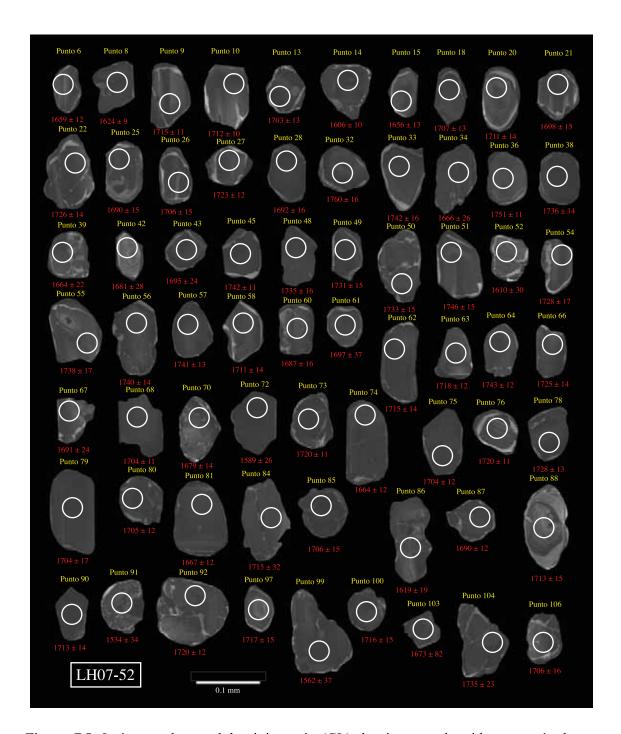



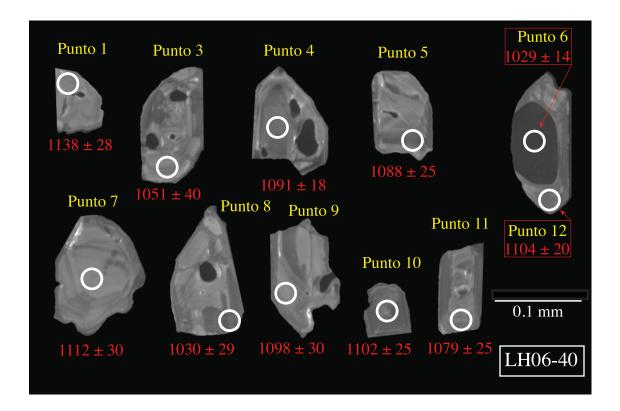

Figura A1. Mapa regional donde se ubican algunas de las localidades del SW de Arizona y NW de Sonora discutidas en el texto.

Apéndice B: Imágenes de catodoluminiscencia de zircones


Se presentan imágenes de catodoluminiscencia de los zircones fechados para cada muestra. Se presenta el lugar de muestreo, el número del punto y su edad en Ma (1-sigma) además del número del punto analizado y la edad para cada uno. Todas las imágenes fueron tomadas con un SEM con detector de catodoluminiscencia y solo para una muestra (LH06-15) se empleó un microscopio óptico con detector de catodoluminiscencia.


Figura B1. Imágenes de catodoluminiscencia (CL) de zircones obtenidas a través de un microscopio electrónico de barrido (SEM). Los círculos indican los puntos de análisis de los cuales se obtuvieron los datos U-Th-Pb. Estos zircones pertenecen a la muestra SPA-7 de la unidad de orto-augen gneis Cerro Prieto-Carina, localizada en la zona de Cerro Prieto-Carina. La edad 207 Pb/ 206 Pb media ponderada para esta roca es de 1692 ± 8 Ma (MSWD = $^{1.16}$; 2-sigma). Edades individuales en zircón están reportadas en Ma (1-sigma).


Figura B2. Imágenes de catodoluminiscencia (CL) de zircones obtenidas a través de un microscopio electrónico de barrido (SEM). Los círculos indican los puntos de análisis de los cuales se obtuvieron los datos U-Th-Pb. Estos zircones pertenecen a la muestra LH06-16 de la unidad de orto-augen gneis Cerro Prieto-Carina, localizada en la zona de Cerro Prieto-Carina. La edad ²⁰⁷Pb/²⁰⁶Pb media ponderada para esta roca es de 1687 ± 9 Ma (MSWD = 1.15; 2-sigma). Edades individuales en zircón están reportadas en Ma (1-sigma).


Figura B3. Imágenes de catodoluminiscencia (CL) de zircones obtenidas a través de un microscopio electrónico de barrido (SEM). Los círculos indican los puntos de análisis de los cuales se obtuvieron los datos U-Th-Pb. Estos zircones pertenecen a la muestra LH07-41 de la unidad de orto-augen gneis Cerro Prieto-Carina, localizada en la zona Cerro Prieto-Carina. La edad 207 Pb/ 206 Pb media ponderada de esta roca es de $^{1683} \pm 9$ Ma (MSWD = $^{0.50}$; 2-sigma). Edades individuales en zircón están reportadas en Ma (1-sigma).

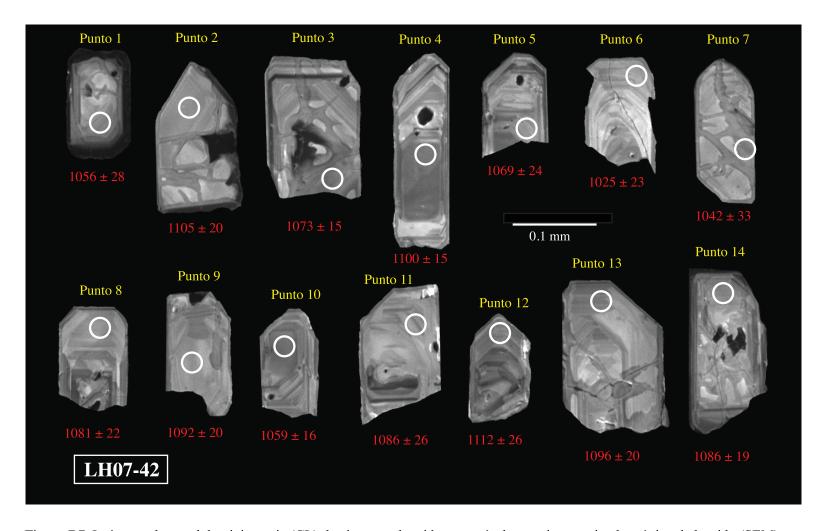

Figura B4. Imágenes de catodoluminiscencia (CL) de zircones obtenidas a través de un microscopio electrónico de barrido (SEM). Los círculos indican los puntos de análisis de los cuales se obtuvieron los datos U-Th-Pb. Estos zircones pertenecen a la muestra LH07-53 de la unidad de ortogneis La Herradura, localizada en la zona La Herradura. La edad 207 Pb/ 206 Pb media ponderada de esta roca es de 1714 ± 5 Ma (MSWD = 0.49; 2-sigma). Edades individuales en zircón están reportadas en Ma (1-sigma).

Figura B5. Imágenes de catodoluminiscencia (CL) de zircones obtenidas a través de un microscopio electrónico de barrido (SEM). Los círculos indican los puntos de análisis de los cuales se obtuvieron los datos U-Th-Pb. Estos zircones pertenecen a la muestra LH07-52 de la unidad de ortogneis La Herradura, localizada en la zona La Herradura. La edad 207 Pb/ 206 Pb media ponderada para esta roca es de 1712 ± 4 Ma (MSWD = 0.94; 2-sigma). Edades individuales en zircón están reportadas en Ma (1-sigma).

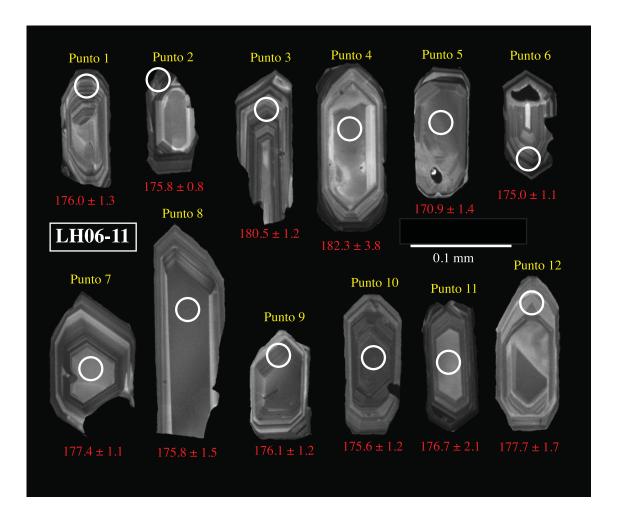

Figura B6. Imágenes de catodoluminiscencia (CL) de zircones obtenidas a través de un microscopio electrónico de barrido (SEM). Los círculos indican los puntos de análisis de los cuales se obtuvieron los datos U-Th-Pb. Estos zircones pertenecen a la muestra LH06-40 de la unidad metagranítica La Prieta, localizada al sur de Sierrita Blanca. La edad 207 Pb/ 206 Pb media ponderada de esta roca es de 1093 ± 16 Ma (MSWD = 1.09; 2-sigma). Edades individuales de zircón están reportadas en Ma (1-sigma).

Figura B7. Imágenes de catodoluminiscencia (CL) de zircones obtenidas a través de un microscopio electrónico de barrido (SEM). Los círculos indican los puntos de análisis de los cuales se obtuvieron los datos U-Th-Pb. Estos zircones pertenecen a la muestra LH07-42 de la unidad metagranítica La Prieta, localizada al Sur de Sierrita Blanca. La edad 207 Pb/ 206 Pb media ponderada para esta roca es de 1083 ± 11 Ma (MSWD = 0.84; 2-sigma). Edades individuales en zircón están reportadas en Ma (1-sigma).

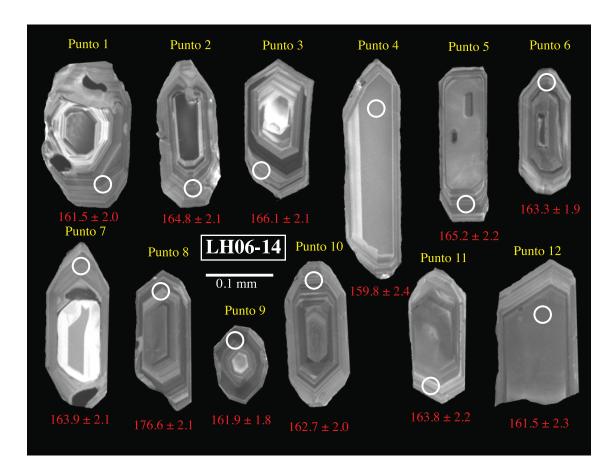
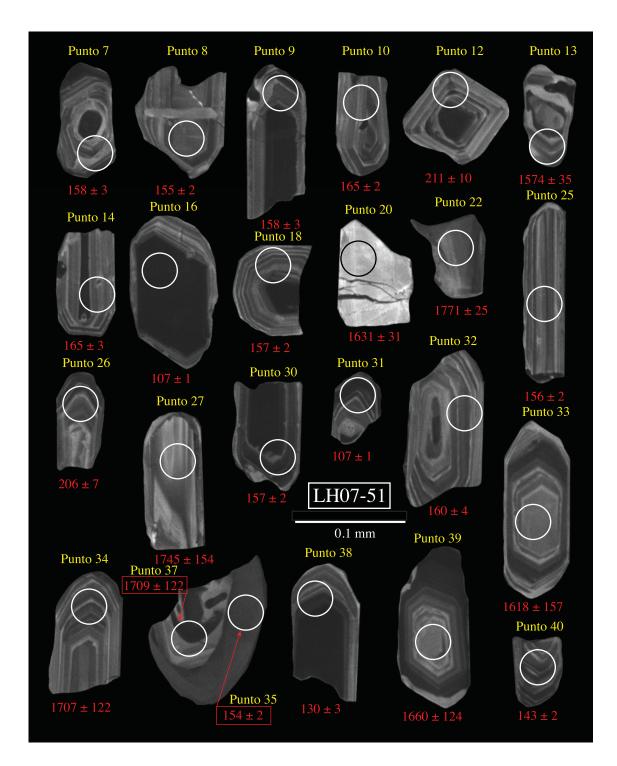

Figura B8. Imágenes de catodoluminiscencia (CL) de zircones obtenidas a través de un microscopio electrónico de barrido (SEM). Los círculos indican los puntos de análisis de los cuales se obtuvieron los datos U-Th-Pb. Estos zircones pertenecen a la muestra 1.1 GA de la unidad metagranítica La Prieta, localizada al sur de la zona Cerro Prieto-Carina. La edad 207 Pb/ 206 Pb media ponderada para esta roca es de 1062 ± 13 Ma (MSWD = 0.42; 2-sigma). Edades individuales en zircón están reportadas en Ma (1-sigma).

Figura B9. Imágenes de catodoluminiscencia (CL) de zircones obtenidas a través de un microscopio electrónico de barrido (SEM). Los círculos indican los puntos de análisis de los cuales se obtuvieron los datos U-Th-Pb. Estos zircones pertenecen a la muestra LH06-11 de la unidad metariolítica Carina, localizada en la zona Mina La Herradura. La edad 206 Pb/ 238 U media ponderada para esta roca es de 176.2 ± 1.4 Ma (MSWD = 3.0; 2-sigma). Edades individuales en zircón están reportadas en Ma (1-sigma).


Figura B10. Imágenes de catodoluminiscencia (CL) de zircones obtenidas a través de un microscopio electrónico de barrido (SEM). Los círculos indican los puntos de análisis de lo cuales se obtuvieron los datos U-Th-Pb. Estos zircones pertenecen a la muestra LH07-30 de la unidad metariolítica Carina, localizada en la zona de Cerro Prieto-Carina. La edad 206 Pb/ 238 U media ponderada para esta roca es de 175.5 \pm 1.7 Ma (MSWD = 0.92; 2-sigma). Edades individuales en zircón están reportadas en Ma (1-sigma).

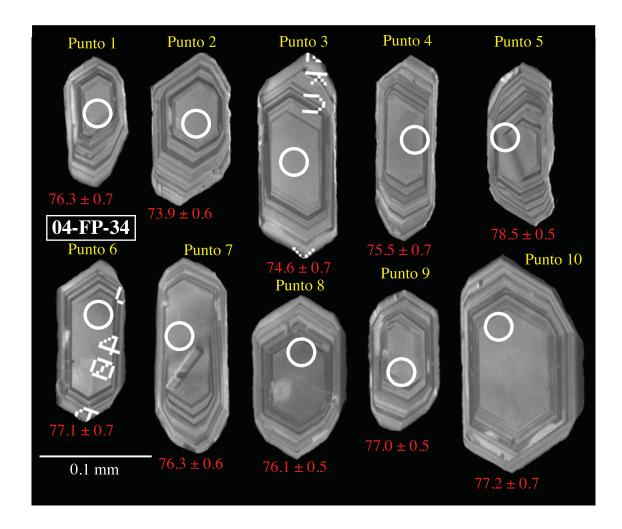

Figura B11. Imágenes de catodoluminiscencia (CL) de zircones obtenidas a través de un microscopio electrónico de barrido (SEM). Los círculos indican los puntos de análisis de los cuales se obtuvieron los datos U-Th-Pb. Estos zircones pertenecen a la muestra LH06-14 de la unidad granítica Carina, localizada en la zona de Cerro Prieto-Carina. La edad 206 Pb/ 238 U media ponderada para esta roca es de $163.2 \pm 1.2\,$ Ma (MSWD = 0.74; 2-sigma). Edades individuales en zircón están reportadas en Ma (1-sigma).

Figura B12. Imágenes de catodoluminiscencia (CL) de zircones obtenidas a través de un microscopio óptico con detector de catodoluminiscencia. Los círculos indican los puntos de análisis de los cuales se obtuvieron los datos U-Th-Pb. Estos zircones pertenecen a la muestra LH06-15 de la unidad dacítica Cerro Prieto, localizada en Cerro Prieto-Carina. La edad 206 Pb/ 238 U media ponderada para esta roca es de 163.9 ± 1.0 Ma (MSWD = 2.6; 2-sigma). Edades individuales de zircón están reportadas en Ma (1-sigma).

Figura B13. Imágenes de catodoluminiscencia (CL) de zircones obtenidas a través de un microscopio electrónico de barrido (SEM). Los círculos indican los puntos de análisis de los cuales se obtuvieron los datos U-Th-Pb. Estos zircones pertenecen a la muestra LH07-51 de la unidad andesítica El Sahuaro, localizada en la zona Mina La Herradura. La edad 206 Pb/ 238 U media ponderada para esta roca es de 157.9 \pm 2.8 Ma (MSWD = 2.9; 2-sigma). Edades individuales en zircón están reportadas en Ma (1-sigma). Las edades individuales Proterozoicas son edades 207 Pb/ 206 Pb.

Figura B14. Imágenes de catodoluminiscencia (CL) de zircones obtenidas a través de un microscopio electrónico de barrido (SEM). Los círculos indican los puntos de análisis de los cuales se obtuvieron los datos U-Th-Pb. Estos zircones pertenecen a la muestra 04-FP-34 de la unidad granítica Los Indios, localizada en Cerros Los Indios. La edad 206 Pb/ 238 U media ponderada para esta roca es de 76.3 ± 0.4 Ma (MSWD = 1.73; 2-sigma). Edades individuales en zircón están reportadas en Ma (1-sigma)

Figura B15. Imágenes de cátodoluminiscencia (CL) de zircones obtenidas a través de un microscopio electrónico de barrido (SEM). Los círculos indican los puntos de análisis de los cuales se obtuvieron los datos U-Th-Pb. Estos zircones pertenecen a la muestra LH06-42 de la unidad granítica Sierrita Blanca, localizada al sur de Sierrita Blanca. La edad 206 Pb/ 238 U media ponderada para esta roca es de 69.7 \pm 1.3 Ma (MSWD = 1.4; 2-sigma). Edades individuales de zircón están reportadas en Ma (1-sigma). Las edades individuales Proterozoicas son edades 207 Pb/ 206 Pb.