

UNIVERSIDAD NACIONAL AUTÓNOMA

DE MÉXICO

FACULTAD DE QUÍMICA

ESTUDIO QUÍMICO CUÁNTICO

DE LA ACTIVACIÓN DE LOS ENLACES C-H Y C-F DE CH3F

POR Ru⁺ Y La⁺

T E S I S

PARA OBTENER EL TÍTULO DE

Q U Í M I C A

PRESENTA

ERANDI BERNABÉ PABLO

MÉXICO, D. F.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

AGRADECIMIENTOS

A la Facultad de Química por haberme brindado más de lo necesario para formarme como profesional de la química.

Agradezco al Dr. Fernando Colmenares Landín por su interés, atención y contribución en mi formación en esta área, además de sus acertadas sugerencias en la redacción del trabajo escrito.

Se agradece el apoyo otorgado por la UNAM y CONACyT a través de los proyectos PAPIIT IN-105007 y 52309-F, respectivamente.

A mi madre Ma. Lourdes Pablo González

Por haberme brindado todo lo que una madre le puede dar a un hijo y por su gran calidad humana. Muchas gracias

A mi padre Armando Bernabé González

Espero que estés orgulloso de mi

A mis hermanos

Ire Tikatame, Yuriria y Janikua

Por su gran apoyo y amor

CONTENIDO

RESUMEN	1
Capítulo 1. INTRODUCCIÓN Y OBJETIVOS	2
Capítulo 2. MECÁNICA CUÁNTICA Y QUÍMICA CUÁNTICA	5
2.1 Principios generales	
2.2 Orbitales moleculares	9
2.3 Principio variacional	10
2.4 Aproximación Hartree-Fock	
2.4.1 Ecuaciones Hartree	
2.4.2 Ecuaciones Hartree-Fock	
2.5 Energía de correlación	16
2.6 Teoría de perturbaciones	
Capítulo 3. METODOLOGÍA	23
3.1 Cálculo de las curvas de energía potencial CASSCF-MRMP2	23
3.1.1 Detailes de cálculo	
Capítulo 4. ANTECEDENTES	
4.1 Estudios teóricos y experimentales sobre la activación del enlace C-H y C-F	
Capítulo 5. RESULTADOS	
5.1 Análisis de la activación de los enlaces C-H y C-F por Ru ⁺ y La ⁺	
5.1.1 Aproximación lineal de los reactivos Ru [*] + CH₃F	
5.1.2 Inserción de Ru ⁺ en el enlace C-H para los estados electrónicos pertenecientes al grupo de	simetría C _s 40
5.1.3 Inserción de Ru⁺ en el enlace C-H en el plano CHH, para los estados electrónicos pertenecie grupo C₁	entes al 45
5.1.4 Inserción de Ru ⁺ en el enlace C-F para los estados electrónicos pertenecientes al grupo de s	simetria C,. 49
5.1.5 Análisis de los límites asintóticos Ru-F ⁺ + CH₃	
5.1.6 Abstracción del átomo de F por La [*] para los estados electrónicos pertenecientes al grupo d C _s	e simetría
Capítulo 6. CONCLUSIONES	
BIBLIOGRAFÍA	67

RESUMEN

Se llevaron a cabo cálculos teóricos del tipo CASSCF-MRMP2 para analizar la interacción del fluoruro de metilo con los monocationes Ru⁺ y La⁺. Para cada una de las reacciones se calcularon las curvas de energía potencial correspondientes a los estados electrónicos de menor energía para diferentes modos de aproximación de los fragmentos libres. En particular, se investigó la inserción de los cationes atómicos en el enlace C-H y C-F de la molécula de CH₃F, así como también la reacción que lleva a los productos de abstracción M-F⁺ y CH₃. Los resultados de este estudio están de acuerdo con los datos experimentales: para la reacción de Ru^+ + CH_3F , el canal de reacción más favorable corresponde al de la adición oxidante del enlace C-F en el ion del metal, mientras que para el catión del lantano es el que lleva a los productos de abstracción La-F⁺ + CH₃. De acuerdo con estos resultados, la abstracción del átomo de flúor por el ión La⁺ ocurre a través de una vía sin barrera energética y no a través de algún mecanismo que involucre la formación de intermediarios o especies en estados de transición, como ha sido propuesto en investigaciones previas.

Capítulo 1. INTRODUCCIÓN Y OBJETIVOS

La activación del enlace C-H en compuestos orgánicos por sistemas que contienen metales de transición ha recibido una considerable atención, tanto teórica como experimentalmente, debido principalmente a su relevancia catalítica.¹ Recientemente, el estudio de las reacciones de activación del enlace C-F ha emergido también como un campo atractivo para la investigación, en virtud del potencial de aplicación que a nivel industrial pueden presentar diferentes compuestos fluorados como disolventes, agentes secantes, refrigerantes, agroquímicos, fármacos, así como componentes en la elaboración de dispositivos microelectrónicos, entre otros. Desafortunadamente este tipo de compuestos producen un gran daño al medio ambiente debido, sobre todo, a que su degradación no es sencilla, lo que limita el potencial de aplicación antes mencionado.²⁻⁴

En este sentido, diferentes grupos experimentales han propuesto procedimientos químicos para la degradación de estos compuestos; entre éstos, algunos implican la activación catalítica del enlace C-F por sistemas que contienen átomos de metales de transición.

La reacción de la molécula de fluorometano con átomos o iones de átomos de elementos de transición representa un sistema simple para el estudio, tanto experimental como teórico, de la activación del enlace C-F, así como para estudiar los factores que determinan la competencia entre la activación de los enlaces C-F y C-H.

Recientemente, Bohme y colaboradores⁵ publicaron resultados para la reacción de fluorometano con 46 cationes atómicos, obtenidos mediante la técnica de

1

espectrometría de masas. En este estudio se determinaron los productos para la reacción de CH_3F con los elementos del cuarto periodo, desde K^+ hasta Se^+ , del quinto periodo, desde Rb^+ hasta Te^+ , excluyendo Tc^+ y del sexto periodo, desde Cs^+ hasta Bi^+ . Cabe mencionar que también se han realizado estudios experimentales para las reacciones de cationes atómicos de la serie de los lantánidos con fluoruro de metilo.⁶

De acuerdo con los resultados experimentales obtenidos de estas investigaciones, los tipos de reacción que pueden ocurrir entre los diferentes cationes metálicos y la molécula de fluorometano son los siguientes:

$$M^{+} + CH_{3}F \longrightarrow CH_{3}MF^{+}$$
(1)
$$\rightarrow MF^{+} + CH_{3}$$
(2)
$$\rightarrow MCH_{2}^{+} + HF$$
(3)
$$\rightarrow MCHF^{+} + H_{2}$$
(4)

En particular, para la reacción de fluorometano con Ru⁺ el producto obtenido es el correspondiente a la adición oxidante del enlace C-F en el catión metálico (reacción 1) mientras que para la reacción correspondiente con La⁺, los productos de abstracción (reacción 2).

Con la finalidad de apoyar las investigaciones experimentales antes mencionadas, en el presente proyecto se planteó como objetivo llevar a cabo un estudio teórico de las reacciones de los cationes Ru⁺ y La⁺ con la molécula de fluorometano, con base en la obtención y el análisis de las curvas de energía potencial correspondientes a los estados electrónicos de menor energía asociados con diferentes modos de aproximación de los reactivos; En particular, se analizaron los factores electrónicos que determinan la competencia entre los canales que conducen a la adición oxidante del enlace C-F a los cationes metálicos y aquellos que pueden favorecer la abstracción del átomo de flúor de la molécula fluorada por estos cationes (reacciones 1 y 2, respectivamente).

Capítulo 2. MECÁNICA CUÁNTICA Y QUÍMICA CUÁNTICA

2.1 Principios generales

Entre los objetivos más importantes de la Química Cuántica se encuentran el de explicar y predecir la estructura molecular y la reactividad química a partir de la teoría de la Mecánica Cuántica.

El origen y desarrollo de la Mecánica Cuántica está vinculado al comportamiento dual onda partícula que exhiben los sistemas microscópicos.⁷

Una de las consecuencias más importantes de este comportamiento es el principio de incertidumbre de Heisenberg, el cual establece que es imposible conocer simultáneamente el momento (P) y la posición (x) de una partícula con certidumbre;⁸

$$\Delta x \Delta P \ge \frac{\hbar}{4\pi} \tag{1}$$

La ecuación de Schrödinger es la ecuación fundamental que permite describir el comportamiento de sistemas microscópicos; Para una partícula que se mueve en una dimensión esta ecuación se expresa como:

$$\frac{-h}{i}\frac{\partial\Psi^{2}(x,t)}{\partial t} = \frac{-h^{2}}{2m}\frac{\partial\Psi^{2}(x,t)}{\partial x^{2}} + V(x,t)\Psi(x,t)$$
(2)

Uno de los postulados de la mecánica cuántica establece que para cualquier sistema microscópico de *n* partículas, existe una función de onda Ψ que depende de las coordenadas de las *n* partículas y del tiempo, la cual contiene toda la información

que es posible conocer sobre el sistema. Esta función se obtiene al resolver la ecuación de Schrödinger para dicho sistema.⁹

En muchas aplicaciones de la mecánica cuántica a la química no se utiliza la ecuación de Schrödinger dependiente del tiempo, sino la independiente del tiempo. Esta ecuación se emplea para estudiar sistemas en los que el potencial no depende del tiempo. El cuadrado de las funciones que se obtienen al resolver la ecuación de Schrödinger independiente del tiempo no cambia con el tiempo, por lo que se conocen como estados estacionarios. La ecuación de Schrödinger independiente del tiempo para una partícula que se mueve en una dimensión se formula de la siguiente manera:¹⁰

$$\frac{-\hbar}{2m}\frac{\mathrm{d}\Psi^2(x)}{\mathrm{d}x^2} + V(x)\Psi(x) = E\Psi(x)$$
(3)

De manera simplificada:

$$\hat{\mathbf{H}}\Psi = E\Psi \tag{4}$$

Donde en el operador Hamiltoniano (\hat{H}) se contienen los operadores de la energía cinética y de energía potencial del sistema.¹¹

La función de onda, por sí misma, no tiene significado físico. Sin embargo, de acuerdo con el postulado de Born el cuadrado de la función de onda, Ψ^2 , representa una función de densidad de probabilidad y está relacionado por lo tanto con la probabilidad de encontrar a la partícula en una cierta región del espacio.

Esta interpretación impone la condición de normalización:

$$\int_{-\infty}^{\infty} \left| \Psi(x,t) \right|^2 dx = 1$$
(5)

Si esto se cumple, entonces se dice que la función de onda está normalizada.12

Para que la función de onda esté completa, se tienen que incluir las coordenadas de espín.

La teoría cuántica relativista, desarrollada por Pauli, considera que los electrones son fermiones, es decir, partículas con espín semientero $(s=\frac{1}{2})$, y que se describen por funciones de onda antisimétricas.

El principio de exclusión de Pauli establece que la función de onda de un sistema de electrones debe de ser antisimétrica respecto al intercambio de las coordenadas espaciales y de espín de cualesquier par de electrones. Esto implica que la distribución de probabilidad no debe cambiar si se permutan las coordenadas espaciales y de espín de un par electrónico.¹⁰

Una función de onda antisimétrica se puede obtener como un determinante de Slater:

$$\Psi = (n!)^{-1/2} \begin{vmatrix} \varphi_1(1)\alpha(1) & \varphi_2(1)\beta(1) & \cdots & \varphi_n(1)\alpha(1) \\ \varphi_1(2)\alpha(2) & \varphi_2(2)\beta(2) & \cdots & \varphi_n(2)\alpha(2) \\ \cdots & \varphi_1(n)\alpha(n) & \varphi_2(n)\beta(n) & \cdots & \varphi_n(n)\alpha(n) \end{vmatrix}$$
(6)

Para describir el comportamiento electrónico se debe de resolver la ecuación de Schrödinger y extraer de la función de onda las propiedades atómicas y moleculares de interés.

Esta ecuación se puede resolver de manera exacta sólo para el átomo de hidrógeno. Para sistemas con un mayor número de partículas se utilizan aproximaciones que simplifican el tratamiento.¹³

Una primera aproximación al resolver la ecuación de Schrödinger de un sistema molecular consiste en separar la descripción del movimiento de los electrones y de los núcleos mediante la aproximación de Born-Oppenheimer. Esta aproximación está basada en la diferencia de masas y de velocidades que existe entre los núcleos y electrones.

En una segunda etapa, la estrategia que se sigue en diferentes procedimientos utilizados para describir un sistema atómico o molecular, consiste en encontrar soluciones aproximadas para la parte electrónica de la ecuación de Schrödinger y mejorar posteriormente la calidad de las mismas.

Una aproximación para simplificar la solución de la ecuación de Schrödinger consiste en suponer que los electrones de una molécula no interactúan entre sí (aproximación de electrones independientes). Así, el término que incluye la energía potencial de repulsión entre los electrones vale cero. Para el átomo de helio, por ejemplo, la ecuación de Schrödinger dentro de esta aproximación se escribe como:

$$\left[-\frac{\hbar^2}{2m_{e1}}\nabla_{e1}^2 - \frac{\hbar^2}{2m_{e2}}\nabla_{e2}^2 - \frac{kZe^2}{r_1} - \frac{kZe^2}{r_2}\right]\Psi_i^{aprox} = E_i^{aprox}\Psi_i$$
(7)

En la cual se ha cancelado el término de interacción entre los electrones. En esta expresión, el operador \hat{H} no es más que la suma de dos Hamiltonianos tipo hidrogenoides:

$$\hat{H}^{aprox} = \hat{H}^{H(g=2)} + \hat{H}^{H(g=2)}$$
(8)

Las funciones de onda propias de este Hamiltoniano aproximado pueden expresarse como el producto de 2 funciones monoelectrónicas:

$$\Psi^{ei} = |\Psi_1(x_1), \Psi_2(x_2)|$$
(9)

La aproximación de electrones independientes permite escribir configuraciones electrónicas para los átomos y moléculas, las cuales pueden ser utilizadas para construir y calcular mejores funciones de onda para la descripción del sistema en cuestión.

La aproximación orbital, consiste en asociar con cada electrón del sistema de n partículas una función de onda particular, la cual describe sus propiedades dentro de un átomo o molécula.¹¹

2.2 Orbitales moleculares

En la teoría de orbitales moleculares la función de onda para la molécula consiste en un producto antisimetrizado de orbitales.¹⁰

$$\Psi = A\psi \tag{10}$$

Donde

$$\Psi = \phi_1 \phi_2 \dots \phi_n \tag{11}$$

En este producto cada $\varphi_i \alpha$ o $\varphi_i \beta$ representa un espín-orbital y *A* es el operador que asocia un determinante de Slater a este producto de espín orbitales.

La parte espacial de cada uno de los orbitales moleculares se puede expresar como una combinación lineal de orbitales atómicos.

Para la parte espacial;

$$\varphi_1 = \sum_p c_{1p} x_p \tag{12}$$

Donde las funciones x_p son orbitales atómicos. El conjunto de orbitales atómicos $\{x_p\}$ es llamado *conjunto base*.

Entonces, el problema consiste en determinar los coeficientes de la combinación lineal de orbitales atómicos y así obtener la función de onda.

2.3 Principio variacional

En la notación de bracket de Dirac, si $\langle \Psi^* | \Psi \rangle = 1$, se cumple que

$$\langle \Psi^* | \hat{\mathbf{H}} | \Psi \rangle \ge E_0 \tag{13}$$

El método variacional permite evaluar la calidad de la función de onda aproximadas Ψ y mejorarla. De acuerdo con el principio variacional, cuanto mejor sea Ψ menor será la energía.

Así, si Ψ_1 corresponde a un conjunto de valores de los parámetros μ_1 , α_1 , ... y Ψ_2 a otros μ_2 , α_2 , ... y $\langle \Psi_1^* | \hat{\mathbf{H}} | \Psi_1 \rangle \leq \langle \Psi_2^* | \hat{\mathbf{H}} | \Psi_2 \rangle$, entonces se puede afirmar que el resultado obtenido con Ψ_1 es más próximo a E_0 y, por lo tanto Ψ_1 es mejor que Ψ_2 .

Entonces, el mejor conjunto de valores para los parámetros, supuestos independientes entre sí, será aquel que dé el valor mínimo de la energía, afirmación que constituye el fundamento del método variacional, según el cual el mejor conjunto de valores será el que se obtenga de resolver el sistema de ecuaciones:

$$\frac{\partial \langle E \rangle}{\partial \mu} = 0; \ \frac{\partial \langle E \rangle}{\partial \alpha} = 0 \tag{14}$$

El método de variación lineal. Una forma de escoger la parametrización de la función de prueba Ψ consiste en tomar un conjunto de funciones reales fijas, $\{\phi_i\}_N$, y establecer una combinación lineal entre ellas, $\phi_{i\lambda p} = \sum_p c_{1\lambda p} x_p$, de forma que los coeficientes $\{c_{1\lambda p}\}_n$ son los parámetros variacionales.

La representación de \hat{H} en la base $\{x_p\}_N$ será la matriz H, cuyos elementos serán $(\mathbf{H})_{ij} = \mathbf{H}_{ij} = \langle x_i | \hat{\mathbf{H}} | x_j \rangle$ y, puesto que las funciones son reales y $\hat{\mathbf{H}}$ es Hermítico, $\mathbf{H}_{ij} = \mathbf{H}_{ji}$. Si la función de prueba está normalizada, $\mathbf{1} = \langle \Psi | \Psi \rangle = \sum_i \sum_j \mathbf{c}_i \mathbf{c}_j \langle x_i | x_j \rangle = \sum_i \mathbf{c}_i^2 = \mathbf{1}$. Además, $\langle \Psi | \hat{\mathbf{H}} | \Psi \rangle = \sum_i \sum_j \mathbf{c}_i \mathbf{c}_j \mathbf{H}_{ij}$. Para representar una función de onda se requiere una base infinita, por lo que el hecho de utilizar una base finita, por grande que sea, implica la obtención de una solución aproximada. La calidad de la aproximación mejora con el tamaño de la base y la calidad de la misma; sin embargo, al incrementar el número de funciones de base aumenta también el número de parámetros variacionales a ajustar, lo que se traduce en mayores tiempos de cálculo.¹³

Este teorema de variación lineal se aplica en el esquema Hartree-Fock que se discute a continuación y en el tratamiento de la correlación electrónica MCSCF que se menciona en la sección de metodología.

2.4 Aproximación Hartree-Fock

Mediante esta aproximación es posible expresar y calcular la energía y la función de onda para un sistema atómico o molecular en el que los electrones están descritos por espín-orbitales. En lugar de considerar las interacciones instantáneas entre los electrones, dentro de esta aproximación se toma en cuenta el movimiento de cada electrón en el campo promedio que generan los electrones restantes. Esta aproximación constituye el punto de partida de diferentes métodos químico cuánticos.

2.4.1 Ecuaciones Hartree

Las ecuaciones de la teoría de campo autoconsistente Hartree están basadas en el hecho de que si las función de onda para una molécula se expresa como el producto de n espín-orbitales, entonces la energía se obtiene como la suma de las

energías monoelectronicas y las interacciones coulombicas entre las nubes electrónicas de todos los pares de electrones *i* y *j*.

$$E = \sum_{i} \epsilon_{i}^{N} + \sum_{i < j} \int \phi_{i}^{2}(1) \frac{1}{r_{12}} \phi_{j}^{2}(2) dv_{1} dv_{2}$$
(15)

La condición de que la energía debe de ser mínima, una aplicación del teorema variacional (13), junto con las condiciones auxiliares

$$\int \phi_i \phi_j dv_i dv_j = \delta_{ij} \tag{16}$$

proporciona las ecuaciones Hartree para los mejores orbitales;

$$\left\{H^{N} + \sum_{j=1}^{N} \left(\int \phi_{j}^{2}(2) \frac{1}{r_{12}} dv_{2}\right)\right\} \phi_{i}(1) = \sum_{j} \epsilon_{ij} \phi_{j}(1)$$
(17)

El Hamiltoniano contiene términos que involucran a las ϕ_i , los cuales se tiene que calcular. Para su solución, se utiliza un método iterativo.

Las ecuaciones Hartree normalmente no se utilizan debido a que estas están basadas en la idea de que la función de onda para la molécula es un producto simple de orbitales monoelectronicos y no es un producto antisimetrizado.¹⁰

2.4.2 Ecuaciones Hartree-Fock¹⁰

Si se considera la función de onda como un producto antisimétrico, la mejor solución del determinante de Slater se obtiene iterativamente. Si se incluye la antisimetría, entonces la energía total del sistema es la suma de las energías monoeletrónicas (la energía que tendría cada electrón en la molécula sin considerar la presencia de los demás electrones), más las integrales coulombicas (la interacción entre las nubes electrónicas) para cada par de electrones, menos las integrales de intercambio para todos los pares electrónicos en la molécula que tienen el mismo espín:

$$E = \sum_{i} \epsilon_{i}^{N} + \sum_{i < j} \int \phi_{i}^{2}(1) \frac{1}{r_{12}} \phi_{j}^{2}(2) dv_{1} dv_{2} - \sum_{i < j}^{\prime} \int \phi_{i}(1) \phi_{j}(1) \frac{1}{r_{12}} \phi_{i}(2) \phi_{j}(2) dv_{1} dv_{2}$$
(18)

Los primeros dos términos se pueden entender a partir de las ideas de la electrostática clásica, pero el término de intercambio es un efecto puramente cuántico que no tiene equivalente a nivel macroscópico, que resulta del principio de Pauli, cuando se pide que la función de onda sea antisimétrica (6).

Usando la notación de Dirac, para moléculas de capa cerrada, la ecuación (18) puede ser escrita

$$E = 2\sum_{k} \epsilon_{k}^{N} + 2\sum_{kl} \left[\langle \phi_{k} \phi_{l} \left| \frac{1}{r} \right| \phi_{k} \phi_{l} \rangle - \frac{1}{2} \langle \phi_{k} \phi_{l} \left| \frac{1}{r} \right| \phi_{l} \phi_{k} \rangle \right]$$
(19)

donde k y l ahora se mueven sobre los espín orbitales de la molécula y están doblemente ocupados.

Para las moléculas de capa cerrada, donde todos los electrones están apareados con otros de espín opuesto, se tiene que:

$$E = 2\sum_{k} \epsilon_{k}^{N} + \sum_{ij} (2J_{ij} - K_{ij})$$
⁽²⁰⁾

donde *i* y *j* son las etiquetas de los orbitales (ver ecuaciones (23) y (24)).

Las ecuaciones resultantes son

$$\left\{H^{N} + \sum_{j=1} \int \phi_{j}^{2}(2) \frac{1}{r} dv_{2}\right\} \phi_{j}(1) - \left\{\sum_{j=1}^{n} \int \phi_{j}(2) \phi_{i}(2) \frac{1}{r_{12}} dv_{2}\right\} \phi_{j}(1) = \epsilon_{i}^{SCF} \phi_{i}(1)$$
(21)

o, en forma simplificada,

$$\left\{H^{N} + \sum_{j} J_{j} - \sum_{j}^{\prime} K_{j}\right\} \phi_{i}(1) = \epsilon_{i}^{SCF} \phi_{i}(1)$$
(22)

donde se usan los operadores de Coulomb y de intercambio, los cuales se definen como

$$I_j \phi_i(1) = \left(\int \phi_j^2(2) \frac{1}{r_{12}} dv_2 \right) \phi_i(1)$$
(23)

$$K_{j}\phi_{i}(1) = \left(\int \phi_{j}(2)\phi_{i}(2)\frac{1}{r_{12}}dv_{2}\right)\phi_{j}(1)$$
(24)

De forma más compacta, estas ecuaciones se pueden escribir de la siguiente manera:

$$H^{SCF}\phi_i(1) = \epsilon_i^{SCF}\phi_i(1)$$
(25)

2.5 Energía de correlación

La energía de correlación se define como la diferencia entre la energía exacta y la energía de un cálculo Hartree-Fock obtenida en el límite en que la base de funciones atómicas es infinita:

$$E_{correlación} = E_{exacta} - E^{SCF}$$

La energía de correlación sólo representa cerca del 1 % de la energía total pero es muy importante para la descripción correcta de las propiedades de las moléculas y de sus reacciones.⁹

De manera alternativa a los métodos basados en el teorema variacional mencionados en la sección 2.3, es posible contemplar los efectos debidos a la correlación electrónica mediante la teoría de perturbaciones. En el presente trabajo se utilizó el esquema MRMP2 (tratamiento perturbativo multireferencial a segundo orden). A continuación se presentan algunos aspectos introductorios de la teoría de perturbaciones.

2.6 Teoría de perturbaciones

La teoría de perturbaciones es útil cuando el problema que se está tratando de resolver es muy semejante a un problema que puede ser resuelto exactamente. En términos matemáticos, esto significa que la solución de cierto problema de orden cero

$$\hat{\mathbf{H}}^{0}\boldsymbol{\Psi}_{m}^{0} = \boldsymbol{E}_{m}^{0}\boldsymbol{\Psi}_{m}^{0} \tag{26}$$

es conocida y se desea resolver un problema

$$\hat{H}\Psi_m = E_m \Psi_m \tag{27}$$

Donde el operador Hamiltoniano es \hat{H}^0 es suficientemente parecido a \hat{H} y por consiguiente E_m y Ψ_m no difieren mucho de E_m^0 y Ψ_m^0 , respectivamente. Así, el Hamiltoniano se puede escribir como

$$\hat{\mathbf{H}} = \hat{\mathbf{H}} + \lambda \hat{\mathbf{H}}^{\prime} \tag{28}$$

Donde el término $\lambda \hat{H}'$ representa la perturbación sobre \hat{H}^0 . La cantidad λ es un multiplicador arbitrario.

Si se supone que Ψ_m y E_m pueden ser desarrolladas en series de potencias de λ . Es decir,

$$\Psi_m = \sum_{n=0}^{\infty} \lambda^n \Psi_m^{(n)}$$
(29 a)

$$E_m = \sum_{n=0}^{\infty} \lambda^n E_m^{(n)}$$
(29 b)

Dentro de esta aproximación, se parte del supuesto de que en la medida en que la perturbación sea pequeña, estas series converjan para el valor de $\lambda=1$ y que el cálculo de unos pocos términos de las mismas permitan aproximar de mejor manera la función de onda y la energía.

El problema ahora es evaluar las correcciones a la energía E_m a primer orden, segundo orden, etc., así como las correspondientes correcciones a la función Ψ_m . Esto es, los coeficientes de las potencias λ correspondientes a las ecuaciones (30). Entonces, $E_m^{(1)}$ es la corrección de primer orden a la energía de orden cero E_m^0 .

Para evaluar estos coeficientes, se sustituyen las ecuaciones (29) en la (28) para obtener:

$$(\hat{\mathbf{H}}^{0} + \lambda \hat{\mathbf{H}}') \left(\Psi_{m}^{0} + \lambda \Psi_{m}^{(1)} + \lambda^{2} \Psi_{m}^{(2)} + \cdots \right)$$

= $(E_{m}^{0} + \lambda E_{m}^{1} + \cdots) \left(\Psi_{m}^{0} + \lambda \Psi_{m}^{(1)} + \lambda^{2} \cdots \right)$ (30)

Agrupando términos de acuerdo con las potencias de λ , resulta

$$\hat{H}^{0} \sum_{n=0}^{\infty} \lambda^{n} \Psi_{m}^{(n)} + \hat{H}' \sum_{n=0}^{\infty} \lambda^{n+1} \Psi_{m}^{(n)} = E_{m}^{0} \Psi_{m}^{0} + \lambda \left(E_{m}^{(1)} \Psi_{m}^{0} + E_{m}^{0} \Psi_{m}^{(1)} \right) + \lambda^{2} (\cdots) + \cdots$$
(31)

Suponiendo que Ψ_m y E_m son funciones continuas de la variable λ , para que se cumpla la ecuación (31) para todos los valores de λ , los coeficientes de cada potencia de λ en ambos lados de la ecuación deben ser iguales, por lo que:

$$\hat{\mathbf{H}}^{0}\boldsymbol{\Psi}_{m}^{0} = E_{m}^{0}\boldsymbol{\Psi}_{m}^{0} \tag{32 a}$$

$$\hat{H}^{0}\Psi_{m}^{(1)} + \hat{H}^{'}\Psi_{m}^{0} = E_{m}^{(1)}\Psi_{m}^{0} + E_{m}^{0}\Psi_{m}^{(1)}$$
(32 b)

y así sucesivamente.

Las ecuaciones (32) representan las perturbaciones de orden cero y primer orden. Dado que se ha postulado que las soluciones de orden cero son susceptibles de conocerse, éstas se pueden utilizar para encontrar las correcciones de primer orden a la energía $E_m^{(1)}$ y a la función de onda $\Psi_m^{(1)}$.

Reordenando la ecuación (32 b) se obtiene

$$\left(\hat{H}^{0} - E_{m}^{0}\right)\Psi_{m}^{(1)} + \hat{H}\Psi_{m}^{0} = E_{m}^{(1)}\Psi_{m}^{0}$$
(33)

Multiplicando el lado izquierdo de la ecuación (33) por Ψ_m^{0*} e integrando, resulta

$$\langle \Psi_{m}^{0} | \hat{H}^{0} - E_{m}^{0} | \Psi_{m}^{(1)} \rangle + \langle \Psi_{m}^{0} | \hat{H}^{'} | \Psi_{m}^{0} \rangle = E_{m}^{(1)}$$
(34)

El primer término de la ecuación (34) es cero debido a que $\mathbf{\hat{H}}^{0}$ es hermitiano y por lo tanto, la corrección de primer orden a la energía es

$$E_m^{(1)} = \langle \Psi_m^0 | \hat{H}' | \Psi_m^0 \rangle \equiv \hat{H}_{mm}$$
(35)

Para obtener $\Psi_m^{(1)}$ se toma en cuenta que la función Ψ_m^1 puede ser escrita como una combinación lineal de las funciones de orden cero Ψ_i^0 . Entonces

$$\Psi_m^{(1)} = \sum_i a_i \Psi_i^0 \tag{36}$$

Donde a_{im} son coeficientes que deben determinarse para poder especificar $\Psi_m^{(1)}$. Sustituyendo la ecuación (36) en la (32 b), multiplicando el lado izquierdo por Ψ_k^{0*} e integrando, se obtiene

$$\langle \Psi_k^0 \left| \hat{H}^0 - E_m^0 \right| \sum_i a_{im} \Psi_i^0 \rangle + \langle \Psi_k^0 \left| \hat{H}^{'} \right| \sum_i a_{im} \Psi_i^0 \rangle = E_m^{(1)} \left(\Psi_k^0 \mid \Psi_m^0 \right)$$
(37)

Para k=m, se tiene la ecuación (35). Para cualquier otra k, el lado derecho de la ecuación (37) se anula, debido a que se pueden considerar las Ψ_k^0 con un conjunto ortonormal. El único término que se anula en el lado izquierdo es $a_{km}\Psi_k^0$ y, por tanto, queda

$$\langle \Psi_k^0 | \alpha_{km} (E_k^0 - E_m^0) | \Psi_k^0 \rangle = - \langle \Psi_k^0 | \hat{\mathbf{H}}' | \Psi_m^0 \rangle$$
(38 a)

0

$$a_{km} = -\frac{\langle \Psi_k^0 | \hat{\mathbf{H}}' | \Psi_m^0 \rangle}{E_k^0 - E_m^0}$$
(38 b)

$$= \frac{\hat{H}_{km}}{E_m^0 - E_k^0} \quad k \neq m$$
 (38 c)

La ecuación (38 c) determina todos los a_{km} , excepto el a_{mm} . Aplicando la condición de normalización (5) y conservando exclusivamente el primer orden en λ , se puede demostrar que $a_{mm} = 0$. Los resultados finales para E_m y Ψ_m corregidos hasta primer orden son

$$E_m = E_m^0 + \lambda \hat{H}_{mm} \tag{39 a}$$

$$\Psi_{m} = \Psi_{m}^{0} + \lambda \sum_{k}^{'} \frac{\hat{\mathbf{H}}_{km}^{'}}{E_{m}^{0} - E_{k}^{0}} \Psi_{k}^{0}$$
(39 b)

Donde la prima sobre la suma de la ecuación (39 b) significa que el término k=m se omite. $\hat{\mathbf{H}}$ se considera pequeña si las integrales $\hat{\mathbf{H}}_{km}$ son notablemente menores que la diferencia de energías $E_m^0 - E_k^0$.

Las correcciones de segundo orden a la energía pueden obtenerse sustituyendo las ecuaciones (39) en la ecuación para la perturbación de segundo orden, para obtener

$$E_m^{(2)} = \sum_{k} \frac{\hat{H}_{km} \hat{H}_{km}}{E_m^0 - E_k^0}$$
(40)

Las correcciones de segundo orden para la función de onda y las de orden mayor para la E_m y la Ψ_m se utilizan en muy raras ocasiones.

Es importante mencionar que esta deducción solo es útil para los casos en los que no hay niveles energéticos degenerados.¹¹

Capítulo 3. METODOLOGÍA

3.1 Cálculo de las curvas de energía potencial CASSCF-MRMP2

Se obtuvieron las curvas de energía potencial a nivel CASSCF-MRMP2 utilizando potenciales efectivos para los estados electrónicos de menor energía asociados con diferentes modos de aproximación de los reactivos.

En lo que respecta a la aproximación de potenciales efectivos que se emplearon en el presente trabajo, se menciona que esta aproximación tiene como fundamento que sólo los electrones de las capas más externas (electrones de valencia) de los átomos y moléculas participan en las interacciones de tipo químico.

Así, dentro de este esquema se sustituyen los electrones de las capas internas por un potencial efectivo, el cual consiste de un operador matemático que actúa sobre los electrones de valencia ejerciendo sobre ellos el mismo efecto que tendrían los electrones del core. Así, para un pseudo-orbital Hartree-Fock

$$\left(-\frac{1}{2}\nabla^2 - \frac{\mathbf{Z}}{\mathbf{r}} + \mathbf{U}^{\mathbf{p}\mathbf{E}} + \mathbf{W}^{\mathbf{p}\mathbf{S}}_{val}\right) X_v = \epsilon_v X_v$$

donde U^{PE} representa al potencial efectivo que sustituye a los electrones de core y W_{val}^{PS} representa las interacciones coulómibicas y de intercambio entre el electrón descrito por el pseudo-obital X_v con el resto de los electrones de valencia.

El potencial efectivo se ajusta de manera que el pseudos-orbital X_{α} y la energía ϵ_{α} reproduzcan el valor de la energía orbital de un cálculo Hartree-Fock que contemple todos los elctrones y el comportanmiento del orbital HF correspondiente en la región de valencia.¹⁴

Una de las utilidades de este tipo de aproximación es la disminución del tiempo de cálculo, eliminando el tratamiento explícito de los electrones de las capas internas. Este tipo de aproximaciones resulta muy útil si se consideran sistemas que contienen muchos electrones.¹⁵

En este tipo de cálculos se contempla la inclusión de la correlación electrónica tanto a nivel variacional como perturbativo.

Como se mencionó en la sección de fundamentos teóricos, la función de onda que describe un estado de sistema se puede escribir como una combinación lineal de un número infinito de determinantes de Slater:

$$\Psi = \sum_{i=1}^{\infty} c_i |\chi|_i$$

Mediante el método CASSCF se hace una selección de esta combinación infinita de determinantes, con base en la definición de un espacio activo, que cosiste en los determinantes que se pueden formar a partir de todos los arreglos posibles de los electrones que ocupan los orbitales que se definen o escogen como orbitales activos,

de acuerdo con la simetría espacial y de espín del sistema. La elección de estos orbitales en la configuración electrónica de referencia es arbitraria y se hace tomando en cuenta la participación de los mismos en la formación y rompimiento de enlaces. Así, la función de onda es construida como una combinación lineal de estos determinantes.

Dentro del esquema CASSCF se lleva a cabo el cálculo a nivel variacional de la energía sobre:

$$\Psi_m = \sum_{k=1}^N c_k \phi_k$$

y la energía se minimiza respecto a los coeficientes de expansión $c_{\rm K}$ y a los coeficientes que determinan los diferentes orbitales.

La función de onda CASSCF da buenas descripciones cualitativas de la estructura electrónica, sin embargo, esta no es suficientemente exacta para una evaluación cuantitativa de las energías relativas. La razón de ello es que la aproximación solo incluye una pequeña fracción de la correlación electrónica.

Como se mencionó en la sección anterior, la teoría de perturbaciones puede ser utilizada para estimar los efectos de la correlación electrónica en los casos en donde la función de onda Hartree-Fock da una buena descripción de la estructura electrónica. En el presente trabajo se consideró la función CASSCF mencionada anteriormente, como referencia para realizar una corrección perturbativa a segundo orden de la energía.¹⁶

3.1.1 Detalles de cálculo

Para la reacción de fluorometano con el ion Ru⁺, se calcularon las curvas de energía potencial para algunos de los estados electrónicos pertenecientes a los grupos C_s y C₁ que se correlacionan con el estado basal cuadruplete Ru⁺ (4d⁷) + CH₃F, y los dos primeros estados excitados, doblete Ru⁺ (4d⁷) + CH₃F y sextuplete Ru⁺ (4d⁶5s¹) + CH₃F, de los reactivos, mientras que para la reacción correspondiente con La⁺ se obtuvieron las curvas de energía potencial para algunos estados electrónicos pertenecientes a la simetría C_s asociados con el estado basal triplete La⁺ (6s¹5d¹) + CH₃F y el primer estado excitado singulete La⁺ (6s²5d⁰) + CH₃F.

Para la aproximación lineal de los reactivos, se optimizó la geometría para diferentes valores de la distancia F-Ru⁺ en el intervalo 1.5 - 6 Å, para un ángulo C-F-Ru constante en 180°.

Las curvas de energía potencial para los estados electrónicos asociados con la inserción del ion metálico en los enlaces C-F y C-H de la molécula de fluorometano, se construyeron a partir de cálculos de optimización de la geometría para diferentes

valores de los ángulos F-M⁺-H y H-Ru⁺-C, respectivamente (cada 10° entre 0° y 180°).

Figura A. Representación esquemática de los diferentes modos de aproximación entre los fragmentos libres; I) aproximación lineal del catión Ru⁺ al átomo F de CH_3F , II) inserción del catión Ru⁺ en el enlace C-H para los estados electrónicos investigados correspondientes al grupo de simetría C_s, II) inserción de Ru⁺ en el enlace C-H para estados electrónicos correspondientes al grupo de simetría C₁, en el plano C, H ,H , IV) inserción de M⁺ en el enlace C-F, para estados electrónicos correspondientes al grupo de simetría C_s.

Para los mínimos energéticos correspondientes a los productos de inserción del catión en el enlace C-F y de abstracción del átomo F, se realizaron cálculos de optimización global de la geometría.

3.2 Pseudopotenciales y bases utilizadas

La dimensión del espacio activo se mantuvo constante a lo largo de cada una de las curvas de energía potencial. En todos los casos se incluyeron los orbitales s y d del catión M⁺. Para los estados que emergen de la inserción del catión en el enlace C-F, el espacio activo incluyó también las funciones tipo p del átomo de flúor, mientras que para los estados electrónicos que surgen de la inserción del catión del metal en el enlace C-H se incluyeron las funciones tipo s del hidrógeno y del carbono (además de una función p del átomo de flúor).

Así, para los estados cuadruplete y doblete asociados con la reacción de Ru⁺ + CH₃F los cálculos CASSCF-MRMP2 fueron realizados tomando en cuenta un espacio activo de 17 electrones en 10 orbitales mientras que para el estado sextuplete se consideró un espacio activo de 15 electrones y 10 orbitales. Asimismo, para la reacción del La⁺ + CH₃F, para los cálculos CASSCF-MRMP2 se contempló un espacio activo de 16 electrones y 10 orbitales para los dos canales de reacción estudiados.

Para cada uno de los átomos se utilizaron potenciales relativistas efectivos promedios (AREP, por sus siglas en inglés) y bases tipo Gaussianas. Para el ión Ru⁺ se utilizó la base Gaussianas triple ζ , para las capas 4d y 5s publicada por LaJonh et al.¹⁷ Para describir las capas 5d y 6s del ion La⁺ se empleó la base publicada por Ross et al.¹⁷ Para los átomos de carbono y flúor se describieron las capas 2s y 2p de valencia mediante las bases Gaussianas triple ζ desarrolladas por Pacios y colaboradores.^{18,19} El átomo de hidrógeno fue descrito con el conjunto base estándar 6-31++G.²⁰⁻²³

Todos los cálculos se realizaron utilizando el programa para el cálculo de propiedades atómicas y moleculares GAMESS.²⁴

Capítulo 4. ANTECEDENTES

4.1 Estudios teóricos y experimentales sobre la activación del enlace C-H y C-F

La interacción de compuestos orgánicos fluorados con sistemas que contienen átomos de transición ha sido investigada experimentalmente y teóricamente por diferentes grupos de investigación.^{1, 2, 5, 6, 25-27}

Un primer ejemplo que proporciona información importante en lo que respecta a los factores electrónicos que favorecen la activación del enlace C-H lo constituye el trabajo publicado por Bosques y colaboradores²; estos autores presentan los resultados obtenidos mediante cálculos de funcionales de la densidad, sobre la reactividad de los enlaces aril-H y aril-F con complejos que contienen Os y Rh. Estos dos sistemas son ejemplos experimentales de reacciones en donde predomina la activación del enlace C-H sobre la activación del enlace C-F. Los cálculos llevados a cabo por estos autores revelan que para los dos sistemas los canales que conducen a la adición oxidante del enlace C-F son energéticamente favorables. Pese a lo anterior, la barrera energética entre los reactivos y los productos asociada con cada uno de estos canales es considerablemente mayor que la correspondiente a la adición oxidante del enlace C-H. Estos resultados sugieren que le preferencia hacia la activación del enlace C-H en estas reacciones tiene un origen de tipo cinético.

Las reacciones de átomos e iones metálicos con fluorometano representan sistemas relativamente simples que permiten analizar los factores que determinan la competencia entre los canales que conducen a la activación de los enlaces C-H y C-F, la eliminación de H₂ y HF y la abstracción del átomo de flúor de la molécula fluorada por el centro metálico.

Dentro de esta línea de investigación, F. Colmenares y H. Torrens¹ realizaron un estudio teórico sobre la interacción entre el Pt y la molécula de fluorometano; de acuerdo con los resultados obtenidos de ese estudio, la inserción del átomo del metal en el enlace C-H de la molécula de CH_3F es energéticamente favorable y conduce a una elongación importante de la distancia C-H de la molécula de fluorometano (*Figura B, l*). Es interesante mencionar que el producto de la adición oxidante del enlace C-F sobre el átomo de Pt también es estable (*Figura B, l*) y que el factor que determina que la inserción del Pt se lleve a cabo en el enlace C-H y no en el enlace C-F es la diferencia en la altura de las barreras energéticas de los canales que conducen a la activación de estos enlaces.

II)

Figura B. Curvas de energía potencial obtenidas a nivel CASSCF para los estados electrónicos de menor energía asociados con la inserción de Pt I) en el enlace C-H y II) en el enlace C-F.¹
A nivel experimental, Schwarz y colaboradores²⁵ estudiaron mediante espectrometría de masas, las reacciones en fase gas de algunos monocationes de la serie de los lantánidos (desde La⁺ hasta Lu⁺) con diversos hidrocarburos fluorados. El principal patrón de reacción observado en todos los casos fue la activación del enlace C-F para formar el producto de abstracción del átomo de flúor LnF⁺ y los radicales orgánicos correspondientes.

El mecanismo a través del cual procede esta reacción aún no ha sido bien establecido. En ese trabajo estos autores proponen un mecanismo de reacción llamado "tipo arpón", mediante el cual se sugiere la formación del intermediario $[Ln \cdots F \cdots CH_3]^*$ y un estado de transición del tipo $[Ln^{2+} \cdots F^- \cdots CH_3]$.

Con el fin de conocer más detalladamente el mecanismo propuesto anteriormente, Zhang *et al.*²⁶ estudiaron a nivel teórico aplicando la teoría de funcionales de la densidad la reacción del monocatión de lantano con fluorometano.

De acuerdo con ese estudio, el mecanismo de abstracción del átomo de flúor por La^+ consiste en la coordinación de la molécula CH_3F a La^+ (*Figura C, I*) seguida por la transferencia de un electrón de La^+ hacia el flúor (*Figura C, II*), lo que conlleva la ruptura homolítica del enlace C-F para formar la especie insertada (*Figura C, III*), la cual es resultado de una atracción de tipo electrostática entre los productos LaF^+ y el radical CH_3F (*Figura C, II*).

Figura C. Geometrías optimizadas para los puntos estacionarios de la curva de energía potencial de [La, C, H₃, F]⁺.²⁶

Por otro lado, del estudio del mecanismo de reacción de diversos cationes lantánidos Ln^+ (Ln=Ce, Pr, Yb) con compuestos orgánicos fluorados, realizado por Zhang y colaboradores²⁷, se desprende que la trayectoria más favorable para la abstracción del átomo de flúor por el catión procede a través de un mecanismo similar al propuesto para la reacción La^+ + CH₃F.

Como se mencionó en la sección de introducción del presente trabajo, Bohme y colaboradores⁵ reportaron recientemente los resultados obtenidos mediante espectrometría de masas para las reacciones de 46 cationes atómicos con la molécula de fluorometano.

En ese estudio se encontró que, en particular, la reacción Ru^+ + CH_3F da como producto la especie CH_3RuF^+ , mientras que La^+ + CH_3F forman las especies LaF^+ + CH_3F .

De acuerdo con estos autores, los estados excitados de los iones metálicos pueden tener una participación importante, debido fundamentalmente a las condiciones experimentales a las que se llevaron las determinaciones de los productos formados a partir de estas reacciones.

Adicionalmente a lo publicado por Zhang *et al.*²⁶ y conociendo los resultados experimentales obtenidos por Bohme y colaboradores⁵, Yong-Cheng Wang *et al.*⁶ realizaron un estudio a nivel teórico de la reacción $La^+ + CH_3F$ aplicando la teoría de funcionales de la densidad y el método de coordenada intrínseca de reacción. Los

resultados obtenidos conducen a ligeras modificación del mecanismo propuesto por Zhang para esta reacción.

En este último trabajo se propone la existencia de dos posibles mecanismos. En el primero de ellos se forman intermediarios de reacción, entre los que se encuentra el producto de la reacción de inserción del La⁺ en el enlace C-F, el cual es mucho más estable que los productos detectados experimentalmente (*Figura D, II y Figura E*). En el segundo mecanismo, el cual parece no estar justificado, se propone la formación de especies de transición (*Figura D, I*).

Figura D. Mecanismos de reacción propuestos para La⁺ + CH₃F. 6

Figura E. Diagrama de la coordenada de reacción para el mecanismo II.⁶

Capítulo 5. RESULTADOS

5.1 Análisis de la activación de los enlaces C-H y C-F por Ru⁺ y La⁺

Como se mencionó en la sección de metodología, para la reacción $Ru^+ + CH_3F$ se calcularon las curvas de energía potencial a nivel CASSCF-MRMP2, asociadas con los estados de menor energía de los reactivos para la aproximación lineal de los fragmentos libres a lo largo del eje C-F-Ru y para la inserción del catión Ru^+ en los enlaces C-F y C-H de la molécula de fluorometano. Asimismo, para la reacción de lantano con el compuesto fluorado se estudiaron los canales de reacción que conducen a los productos de abstracción $CH_3 + La-F^+$. En la Figura 1 se muestran de forma esquemática las reacciones estudiadas:

Figura 1. Representación esquemática de a) Reacción de inserción de Ru⁺ en el enlace C-F de CH₃F, b) Reacción de abstracción del átomo de F del CH₃F por La⁺.

5.1.1 Aproximación lineal de los reactivos Ru⁺ + CH₃F

Para la reacción entre el catión Ru⁺ y la molécula de fluorometano se calcularon, en una primera etapa, las curvas de energía potencial que se correlacionan con los tres estados de menor energía de los reactivos para la aproximación lineal del catión al átomo de flúor a lo largo del eje C-F-Ru (*Figura A, I*). Estas curvas se muestran en la Figura 2.

La distancia máxima entre Ru⁺ y F para la cual se calculó la energía fue 6 Å. En este punto aún no existe ningún tipo de interacción entre los reactivos por lo que las distancias de enlace presentes en la molécula CH_3F se encuentran en su valor de equilibrio (*Tabla 1*).

Tabla 1. Distancias de equilibrio (Å) de los enlaces presentes en la molécula $CH_3F.$

Enlace	Distancia
C-H	1.07
C-F	1.42

Figura 2. Curvas de energía potencial CASSCF-MRMP2 para la aproximación lineal del catión Ru^+ a la molécula CH_3F .

La energía del estado cuadruplete a esta distancia representa la energía de los fragmentos libres en su estado basal y es la energía de referencia para graficar los valores de la energía obtenidos para todos los canales de reacción estudiados.

Como se observa en la gráfica anterior, la disminución gradual de la distancia entre el ion Ru⁺ y el átomo de flúor de CH₃F a partir de 6 Å, conduce a la estabilización del sistema CH₃FRu⁺, a una distancia Ru-F de 2 Å. En el caso del estado cuadruplete y sextuplete, el mínimo energético se encuentra por debajo de la energía correspondiente a los fragmentos libres en su estado basal. El estado doblete presenta un mínimo energético por encima de la energía de los reactivos en su estado basal.

En la *Tabla 2* se muestran los valores de la energía y algunas distancias encontrados para los mínimos que presentan las curvas que se muestran en la Figura 2. De acuerdo con los resultados aquí presentados, el mínimo energético total para este modo de aproximación pertenece a la curva con multiplicidad cuadruplete.

Tabla 2. Energías MRMP2 (kcal/mol) y algunos parámetros geométricos (Å) en los mínimos energéticos para los estados tres estados de menor energía correspondientes a la aproximación lineal del ion Ru^{\dagger} al átomo de flúor de CH_3F .

Estado	Mínimo	Distancia					
LStado	energético [—]	C-F	C-Ru	F-Ru	C-H		
⁴ A '	-24.75	1.47	4.47	3	1.07		
⁶ A'	-15.86	1.58	3.58	2	1.07		
² A'	4.14	1.54	3.54	2	1.07		

Con base en los valores anteriores, la aproximación lineal de los reactivos no es importante desde el punto de vista de la activación del enlace C-F y C-H, ya que no se obtuvieron cambios significativos para los valores de las distancias correspondientes a estos enlaces en los mínimos energéticos. 5.1.2 Inserción de Ru⁺ en el enlace C-H para los estados electrónicos pertenecientes al grupo de simetría C_s

Como una segunda aproximación al estudio de la interacción entre Ru⁺ y CH₃F, se consideró el proceso de inserción del monocatión de rutenio al enlace C-H de la molécula fluorada. En la Figura 3 se muestran las curvas de energía potencial para este modo de aproximación. Dentro de este estudio se analiza el comportamiento de los estados electrónicos del grupo de simetría C_s del sistema CH₃F + Ru⁺ que se correlacionan con el estado basal ⁴A'y los dos primeros estados excitados de los fragmentos separados, ⁶A' y ²A'.

Como se aprecia en esta figura, los canales de reacción no son energéticamente favorables, ya que presentan barreras energéticas considerables y los mínimos energéticos totales que corresponden a una elongación importante del enlace C-H se encuentran por encima de los reactivos en su estado basal. Es interesante mencionar que en el segundo mínimo energético que exhibe la curva de potencial correspondiente al estado doblete se detecta una elongación importante de la distancia C-F y no de la distancia C-H (se hace notar que este punto se localizó también sobre la curva de energía potencial para la inserción del catión en el enlace C-F de la molécula de fluorometano que se discute posteriormente).

No obstante, es interesante mencionar que para los tres canales de reacción estudiados existe un mínimo energético parcial que aparece cuando el ángulo C-Ru-H tiene un valor aproximado de 20°. Los valores energéticos para estos mínimos se presentan en la *Tabla 3*.

Estos mínimos no son interesantes desde el punto de vista de activación de los enlaces C-F y C-H de CH₃F debido a que no se observan cambios importantes en las distancias de ambos enlaces la molécula fluorada.

Tabla 3. Energías CASSCF-MRMP2 (kcal/mol) para los estados electrónicos pertenecientes al grupo de simetría C_s involucrados en la inserción del Ru^+ en el enlace C-H de CH₃F.

Estado Mínimo energético Barrera Mínimo energético

	parcial	energética	total	
⁴ A'	-25.3	17.8	6.5	
⁶ A'	-18.4	51.6	30.2	
² A'	1.3	25.3	23.3	

Ángulo C-Ru-H (grados)

Figura 3. Curvas de energía potencial CASSCF-MRMP2 para los estados electrónicos de menor energía correspondientes al grupo de simetría C_s para la inserción de Ru⁺ en el enlace C-H.

Una característica importante que se desprende del análisis de la figura anterior es que cuando se incrementa al valor del ángulo C-Ru-H a partir de este mínimo, aparece una barrera energética que en todos los casos tiene un valor mayor a la energía del estado basal de los reactivos.

En la *Tabla 4* se presentan los valores de las distancias de enlace obtenidas en los puntos más relevantes de las curvas de energía potencial para esta aproximación.

Tabla 4. Distancias calculadas (Å), correspondientes a los estados electrónicos con simetría C_s para la inserción de Ru^+ en el enlace C-H de CH_3F .

	Mínim	o energ	ético		Barrera			Mínimo energético		
	parcial			energética				total		
				Di	Distancia					
Estado	C-H	C-F	Ru-F	C-H	C-F	Ru-F	C-H	C-F	Ru-F	

⁴ A'	1.07	1.5	2.1	1.60	1.5	2.3	2.07	1.5	2.3
⁶ A'	1.10	1.5	2.1	1.74	1.4	2.3	3.66	1.5	2.4
²A '	1.08	1.5	2.3	1.09	1.5	2.3	1.54	1.5	2.3

Es importante resaltar que los mínimos energéticos totales detectados para la especie CH₃RuH⁺ se encuentran por encima de la energía de los reactivos en el estado basal, por lo que el proceso de inserción del catión en el enlace C-H para producir una elongación importante de la distancia de este enlace tendría un costo energético alto.

5.1.3 Inserción de Ru⁺ en el enlace C-H en el plano CHH, para los estados electrónicos pertenecientes al grupo C_1 .

En la Figura 4 se presentan las curvas de energía potencial para la inserción del Ru⁺ en el enlace C-H correspondientes a los estados electrónicos pertenecientes al grupo C_1 . Estos canales de reacción también conducen al sistema hacia una ligera estabilización energética al inicio de la aproximación de los reactivos. No obstante, es importante mencionar que no se detecta una elongación significativa de la distancia C-H en estos mínimos energéticos.

Las curvas obtenidas para los estados pertenecientes a este grupo puntual son semejantes a las correspondientes al grupo de simetría C_s en lo que se refiere a la

barrera energética para el canal correspondiente al estado basal y el primer estado excitado, ya que ésta se encuentra también para un valor del ángulo C-Ru-H de 50° (*Figura 3*). Sin embargo, los valores energéticos de las barreras son mayores para los estados correspondientes a este grupo de simetría C_1 (*Tabla 5*).

Figura 4. Curvas de energía potencial CASSCF-MRMP2 para los estados electrónicos de menor energía correspondiente al grupo C_1 para la inserción de Ru⁺ en el enlace C-H en el plano CHH.

En la *Tabla 5* se presenta el valor numérico de los mínimos energéticos parciales, las barreras energéticas y de los mínimos totales mencionados anteriormente.

Tabla 5. Energías MRMP2 (kcal/mol) para los estados electrónicos de simetría C_1 involucrados en la inserción del Ru⁺ en el enlace C-H de CH₃F.

Estado	Mínimo energético	Barrera	Mínimo
	parcial	energética	energético total
⁴ A'	4.09	16.2	15.7
⁶ A'	13.0	71.7	36.2
² A'	33.9	34.6	19.0

En la *Tabla 6* se presentan los valores de las distancias de enlace obtenidas en los puntos más relevantes de las curvas de energía potencial para esta aproximación.

Tabla 6. Distancias calculadas (Å), correspondientes a los estados electrónicos pertenecientes al grupo C_1 para la inserción de Ru^+ en el enlace C-H de CH_3F .

	Mínimo energético				Barrera			Mínimo energético		
		parcial			parcial energética			total		
			Distancia							
Estado	C-H	C-F	Ru-F	C-H	C-F	Ru-F	C-H	C-F	Ru-F	
⁴ A'	1.08	1.4	4.1	1.06	1.4	2.9	2.31	1.4	1.7	
⁶ A'	1.08	1.4	4.1	1.78	1.4	3.1	3.49	1.4	2.6	
² A'	1.12	1.4	3.1	1.32	1.4	2.9	2.67	1.5	2.1	

Una característica común a todas las curvas obtenidas para este modo de aproximación, es que las energías calculadas para el proceso de inserción del catión Ru⁺ en el enlace C-H se encuentran por encima de la energía de los reactivos en su estado basal, por lo que estos canales de reacción no son interesantes desde el punto de vista de activación del enlace C-H.

Los resultados obtenidos para este tipo de inserción son congruentes con el hecho de que no se han detectado experimentalmente los productos de la adición oxidante del enlace C-H en el centro metálico para esta reacción.

5.1.4 Inserción de Ru⁺ en el enlace C-F para los estados electrónicos pertenecientes al grupo de simetría C_s .

En la Figura 5 se presentan las curvas de energía potencial que se correlacionan con los tres estados electrónicos de menor energía de los reactivos pertenecientes al grupo de simetría C_s para la inserción del catión Ru^+ en el enlace C-F de la molécula de fluorometano.

Con el fin de obtener la energía que corresponde a los reactivos en cada estado investigado, se realizó un cálculo de un punto simple a una mayor distancia de separación de los reactivos. Para este cálculo, la distancia entre el catión Ru⁺ y el átomo de flúor se mantuvo fija en 7.06 Å, 5.57 Å y 5.54 Å para los estados ⁴A', ⁶A' y ²A', respectivamente. En lo que respecta a las curvas de energía potencial calculadas para la adición oxidante del enlace C-F de CH₃F en el catión del metal Ru⁺, se observa que la reacción procede a través del canal con multiplicidad cuadruplete. Para este canal de reacción se encuentra un mínimo energético total que se alcanza después de vencer una barrera energética. Para este mínimo se tiene una elongación importante de la distancia C-F que está asociada con la adición oxidante de este enlace en el catión.

Es interesante mencionar que el canal de reacción que se correlaciona con estado excitado sextuplete de los fragmentos libres también conduce a un producto estable. Esto último puede ser relevante si se considera que a las condiciones experimentales a las que se ha investigado esta reacción podría existir una participación importante de estados excitados.⁵ La optimización de la geometría global para el producto de inserción asociado con el estado sextuplete conduce a la obtención de un valor para la energía semejante al estado basal ⁴A'.

Ángulo C-Ru-F (grados)

Figura 5. Curvas de energía potencial CASSCF-MRMP2 para los estados electrónicos de menor energía correspondientes al grupo de siemtría C_s para la inserción del Ru⁺ en el enlace C-F.

Por otro lado, las energías calculadas para la curva de energía potencial correspondiente al estado doblete se encuentran siempre por encima de la energía de los reactivos en el estado basal, por lo que este canal no representa una trayectoria energéticamente viable para la activación del enlace C-F.

En la *Tabla 7* se muestran los valores energéticos para algunos de los puntos más relevantes de las curvas de energía potencial para esta reacción. Es importante mencionar que en los mínimos que ocurren a 20° (mínimos parciales) no se obtiene una elongación significativa en la distancia C-F (*Tabla 8*).

Tabla 7. Energías MRMP2 (kcal/mol) correspondientes a los estados electrónicos pertenecientes al grupo de simetría C_s para la inserción de Ru^+ en el enlace C-F de CH_3F , en los puntos de mayor interés de las curvas de energía potencial mostradas en la Figura 5.

	Ángul	Mínimo	Barrera	Mínimo
Estad	Ο	energético	energétic	energético
	C-Ru-			

0	F	parcial	a	total	
⁴ A'	120°	-24.6	14.4	-29.1	
⁶ A '	120°	-19.9	10.1	-27.2	
² A′	120°	2.1	31.7	-6.1	

Por otro lado, la barrera energética correspondiente a cada uno de estos canales tiene valores por encima de la energía de los reactivos en su estado basal (*Tabla 7*). En el caso del estado cuadruplete y sextuplete, estas barreras energéticas son accesibles, a diferencia de lo observado para el estado de menor multiplicidad cuya barrera es de 31.7 kcal/mol.

En la *Tabla 8* se presentan los valores de las distancias de enlace obtenidas en los puntos más relevantes de las curvas de energía potencial para esta aproximación.

Tabla 8. Distancias calculadas (Å), correspondientes a los estados electrónicos pertenecientes al grupo de simetría C_s para la inserción de Ru⁺ en el enlace C-F de CH₃F, en los puntos de mayor interés de las curvas de energía potencial mostradas en la Figura 5.

Mínimo energético	Barrera	Mínimo energético
Parcial	energética	total
	Distancia	

C-H	C-F	Ru-F	C-H	C-F	Ru-F	C-H	C-F	Ru-F
1.07	1.5	2.2	1.07	1.9	1.9	1.10	3.2	1.8
1.06	1.5	2.1	1.07	1.9	2.0	1.08	3.6	1.8
1.07	1.5	2.1	1.07	2.4	1.8	1.10	3.3	1.8
	С-Н 1.07 1.06 1.07	C-HC-F1.071.51.061.51.071.5	C-HC-FRu-F1.071.52.21.061.52.11.071.52.1	C-HC-FRu-FC-H1.071.52.21.071.061.52.11.071.071.52.11.07	C-HC-FRu-FC-HC-F1.071.52.21.071.91.061.52.11.071.91.071.52.11.072.4	C-HC-FRu-FC-HC-FRu-F1.071.52.21.071.91.91.061.52.11.071.92.01.071.52.11.072.41.8	C-HC-FRu-FC-HC-FRu-FC-H1.071.52.21.071.91.91.101.061.52.11.071.92.01.081.071.52.11.072.41.81.10	C-HC-FRu-FC-HC-FRu-FC-HC-F1.071.52.21.071.91.91.103.21.061.52.11.071.92.01.083.61.071.52.11.072.41.81.103.3

En la *Tabla 9* se muestran los valores de las energías y de algunos de los parámetros geométricos correspondientes a la optimización global de la geometría del producto de la adición oxidante del enlace C-F en el catión Ru⁺. Así, los resultados obtenidos del presente estudio indican que la adición oxidante del enlace C-F de la molécula de fluorometano en el catión Ru⁺ es energéticamente favorable para los canales cuadruplete y sextuplete que se correlacionan con el estado basal y el primer estado excitado de los reactivos, respectivamente.

Tabla 9. Energías MRMP2 (kcal/mol), ángulos (°) y distancias de enlace (Å) obtenidas en la optimización global de la geometría para el producto de inserción del ión Ru^+ en el enlace C-F de CH_3F .

		Ángulo		Distancia	
Estado	Energía	C-Ru-F	C-F	Ru-C	Ru-F

⁴ A'	-29.3	114.8	3.2	1.9	1.8
⁶ A'	-29.3	138.5	3.6	1.9	1.8
² A'	-6.6	123.5	3.3	1.9	1.8

En la Figura 6 se muestra esquemáticamente el proceso de adición oxidante del enlace C-F en el catión Ru⁺. Es importante mencionar que sólo se representa la distribución espacial de los átomos del sistema estudiado para los puntos más relevantes del canal de reacción correspondiente al estado cuadruplete.

Figura 6. Representación esquemática del canal de reacción para Ru $^+$ + CH $_3$ F.

5.1.5 Análisis de los límites asintóticos Ru-F⁺ + CH₃

Se ha determinado experimentalmente que la reacción de fluorometano con otros iones atómicos diferentes al Ru⁺ conduce a la formación de los productos de abstracción MF⁺ + CH₃ (éste es el caso de la reacción entre la molécula fluorada y el ión La⁺ que se discute en la siguiente sección).⁵

Con la finalidad de explorar la razón por la cual estos productos no son detectados experimentalmente para la reacción Ru^+ + CH_3F , se calculó la energía para el límite asintótico correspondiente al estado cuadruplete de menor energía de los productos de abstracción RuF^+ + CH_3 .

El valor de la distancia entre los átomos del fragmento catiónico RuF⁺ obtenido en este límite es de 1.96 Å. La energía obtenida para los productos de la reacción de abstracción se encuentra 47.4 kcal/mol por encima de la energía de los fragmentos

libres en su estado basal; Esta diferencia energética permite explicar por qué los productos correspondientes a la abstracción del átomo de flúor por el catión del metal no son detectados experimentalmente.⁵

Así, de acuerdo con el estudio realizado los únicos canales energéticamente favorables para la reacción Ru^+ + CH_3F son los correspondientes a la adición oxidante del enlace C-F de la molécula fluorada en el catión Ru^+ . Estos resultados están de acuerdo con las determinaciones experimentales realizadas para esta reacción.⁵

5.1.6 Abstracción del átomo de F por La⁺ para los estados electrónicos pertenecientes al grupo de simetría C_s

En la Figura 7 se presentan las curvas de energía potencial para la inserción del ion La⁺ en el enlace C-F asociadas con los estados electrónicos de menor energía que corresponden al estado basal triplete y al primer estado excitado singulete de los reactivos.

Se observa que dentro de la primera etapa de acercamiento del catión al enlace C-F (para el ángulo C-La-F igual a 10°), el sistema sufre una estabilización importante, cuyo mínimo energético global se localiza a -175 kcal/mol de la energía de los fragmentos libres en su estado basal.

Una característica que se desprende del análisis de esta figura es que el mínimo energético se alcanza sin pasar por una barrera energética. En la *Tabla 10* se muestran las distancias entre los átomos del sistema obtenidas en este punto, cuyos valores corresponden a las especies $CH_3 + LaF^+$.

Figura 7. Curvas de energía potencial CASSCF-MRMP2 para los estados electrónicos de menor energía pertenecientes al grupo de simetría C_s para la inserción de La⁺ en el enlace C-F.

Es importante mencionar que los productos de abstracción se estabilizan a través de los dos canales investigados.

Dado que ambos productos tienen un electrón desapareado y en virtud de la distancia de separación de los fragmentos libres, los estados triplete y singulete del sistema completo pueden tener la misma energía.

Tabla 10. Distancias obtenidas (Å) correspondientes a los productos de abstracción del átomo de flúor, cuando el ángulo C-La-F tiene un valor de 10°.

Con el fin de estudiar la estabilidad del producto de la reacción de adición oxidante del enlace C-F en el catión La^+ (producto estable en la reacción correspondiente con Ru^+), se realizó un cálculo de optimización global de la geometría de la especie

 CH_3LaF^+ para ambos estados. Los resultados obtenidos en este punto se presentan en la *Tabla 11*.

Asimismo, en la *Tabla 12* se presentan los valores de las distancias correspondientes al producto de inserción.

A partir de los mínimos energéticos encontrados para el producto de adición oxidante se estudió el proceso de disminución del ángulo C-La-F hasta llegar a los productos de abstracción; de este modo se determinó la barrera energética que separa a los productos de abstracción del halógeno por La⁺ y los correspondientes a la adición oxidante del enlace C-F en el monocatión (*Tabla 11*).

Tabla 11. Energías MRMP2 (kcal/mol) para los estados electrónicos involucrados en la inserción del La⁺ en el enlace C-F.

		Barrera		Ángulo
			Mínimo energético	
Es	tado	energética		C-La-F
		-		
3	A'	103	-102.8	162
1	Δ'	22	-239.4	117
	/ \		233.1	±1/

Como se observa de la Figura 7, para el estado basal ³A' el paso de los productos de abstracción a los generados por la adición oxidante representa un proceso con un alto costo energético. Por otro lado, el producto de inserción con multiplicidad singulete se estabiliza de manera considerable por debajo de la energía de los productos de abstracción.

Tabla 12. Distancias obtenidas (Å) para CH_3F en el producto de inserción de La^+ en el enlace C-F.

Distancia							
Estado	C-H	C-F	La-C	La-F			
³ A '	1.08	4.3	2.8	1.5			
¹ A '	1.08	2.8	2.3	1.5			

Así, de acuerdo con los resultados que se desprenden del presente trabajo la reacción a partir de los reactivos en su estado basal La^+ + CH_3F no procede hacia los productos de abstracción.

Asimismo, la reacción no procede hacia el estado singulete correspondiente a la inserción a partir del estado triplete de los reactivos debido a la diferencia en la multiplicidad de espín.

Como se mencionó en la sección de antecedentes teóricos y experimentales, la reacción de La⁺ con CH_3F fue estudiada a nivel teórico por Yong-Cheng Wang y colaboradores⁶, utilizando la teoría de funcionales de la densidad y aplicando el método de coordenada intrínseca de reacción. Estos autores plantean dos tipos de mecanismos, uno en el cual los productos se obtienen a partir del mínimo de inserción, el cual es mucho más estable que los productos de abstracción y sugieren un mecanismo alternativo que no pasa por este mínimo y que consiste en la formación de estados de transición.

De acuerdo con el presente trabajo, el canal de reacción que conduce a los productos de abstracción del átomo de flúor por el catión La⁺ a partir de los reactivos en su estado basal es energéticamente favorable. Este resultado está de acuerdo con las determinaciones experimentales publicadas para esta reacción.⁵

Cabe mencionar que con base en los resultados obtenidos en el presente trabajo, no se puede descartar la posibilidad de que la reacción del catión de lantano con fluorometano a partir del estado singulete excitado de menor energía de los reactivos $La^+ + CH_3F$ proceda hasta el producto de inserción. No obstante este producto no ha sido detectado experimentalmente.

En la Figura 10 se muestra esquemáticamente el proceso de abstracción del átomo de flúor de la molécula de fluorometano por La⁺. También se muestran algunos

parámetros geométricos para la barrera energética. Sólo se representa la distribución espacial de los átomos del sistema estudiado para los puntos más relevantes del canal de reacción correspondiente al estado triplete.

Figura 10. Representación esquemática del canal de reacción para La⁺ + CH_3F .

Capítulo 6. CONCLUSIONES

Para las reacciones M^+ + CH_3F (M=Ru, La), se calcularon las curvas de energía potencial para los estados de menor energía asociados con diferentes modos de aproximación de los reactivos.

La adición oxidante del enlace C-F de CH_3F al ion Ru^+ es favorable a partir del estado ⁴A' que emerge de los reactivos en su estado basal. Sin embargo, el producto CH_3RuF^+ podría obtenerse también a partir del canal de reacción para el primer estado excitado del sistema ⁶A'.

El proceso de inserción del Ru⁺ en el enlace C-H conduce a la obtención de productos inestables para todos los estados investigados.

La energía de las especies $CH_3 + RuF^+$ se encuentra 47.4 kcal/mol por encima de la energía de los reactivos en su estado basal. Esto explica el hecho de que Ru^+ no lleve a cabo la reacción de abstracción del átomo de flúor, pese a que este catión activa el enlace C-F.

De acuerdo con el estudio realizado, la reacción del ion La^+ con fluorometano a partir del estado basal de los reactivos conduce a los productos de abstracción CH_3 + La- F^+ . La abstracción del átomo de flúor de la molécula CH_3F por La^+ ocurre a través del estado basal triplete sin barrera energética.

Cabe mencionar que con base en los resultados obtenidos en el presente trabajo, no se puede descartar la posibilidad de que la reacción del catión de lantano con fluorometano a partir del estado singulete excitado de menor energía de los reactivos La⁺ + CH₃F proceda hasta el producto de inserción. No obstante este producto no ha sido detectado experimentalmente.

Los resultados obtenidos están de acuerdo con los resultados experimentales tanto para la reacción de adición oxidante del enlace C-F de CH_3F en Ru^+ como para la abstracción del átomo de flúor de CH_3F por La^+ .

BIBLIOGRAFÍA

(1) Colmenares, F.; Torrens, H. J. Phys. Chem. A 2005, 109, 10587 y referencias.

(2) Bosque, R.; Clot, E.; Fantacci, S.; Maseras, F.; Einsenstein, O.; Perutz, R. N.; Renkema, K.B.; Caulton, K.G. *J. Am. Chem. Soc.* **1998**, *120*, 12634.

(3) Su, M.; Chu, S. J. Am. Chem, Soc. 1997, 119, 10178.

- (4) Gérard, H.; Davidson, E. R.; Eisenstein, O. Mol. Phys. 2002, 100, No. 4, 533.
- (5) Zhao, X.; Koyanagi, G. K.; Bohme, D.K. J. Phys. Chem. A. 2006, 110, 10607.
- (6) Wang, Y.; Liu, Z.; Geng, Z.; Yang, X.; Gao, L.; Chen, X. *J. Mol. Struct.: THEOCHEM* **2006**, *765* 27.
- (7) Chang, R. *Chemistry*. 5^a ed. McGraw-Hill, Inc. EUA, **1994**.

(8) Casabó, J. *Estructura atómica y enlace químico.* Editorial Reverté, S. A. Barcelona, España, **2002**.

(9) Eriksson, L. A. *Computational Quantum Chemistry: Applications to radical cations, polymerization reactions, polymers and charge transfer system.* Suecia: Acta Universitatis Upsaliensis 373. **1992**.

(10) Richards, W. D. *Ab initio molecular orbital calculations for chemistry*. 2^a ed.
Oxford University Press. New York, **1985**.

(11) Hanna, M. W. *Quantum Mechanics in Chemistry.* 3^a ed. The Benjamin/Cummings Publishing Company, Inc. California, EUA, **1981**.

(12) Levine, I. N. *Química Cuántica*. 5^a ed. Pearson Educación, S. A. Madrid, España,
2001.
(13) Andrés, J.; Bertrán, J. *Química teórica y computacional.* Publicacions de la Universitat Jaume I, D. L. **2000**.

(14) Christiansen, P. A.; Lee, Y. S.; Pitzer, K. S. J. Chem. Phys. 1979, 71, 4445.

(15) Roos, B. O. Acc. Chem. Res. 1999, 32, 137.

(16) Colmenares, F. "Estudio teórico sobre la interacción de moléculas diatomicas con sistemas modelo que contienen átomos de transición", Tesis de Doctorado. Facultad de Química, UNAM, **2001**.

(17) LaJonh, L. A.; Christiansen, P.A.; Ross, R. B.; Atashroo, T.; Ermler, W. C. *J. Chem. Phys.* **1987**, *87*, 2812.

(18) Pacios, L. F.; Gómez, P. C. Int. J. Quantum Chem. 1994, 49, 817.

(19) Pacios, L. F.; Christiansen, P. A. J. Chem. Phys. 1985, 82, 2664.

(20) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257.

(21) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta. 1973, 28, 213.

(22) Clark, T.; Chandrasekhar, J.; Schleyer, P. V. R. J. Comput. Chem. 1983, 4, 294.

(23) Esta información fue obtenida de "Extensible Computational Chemistry Environment Basis Set Database, Version 02/25/04, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory, which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, WA 99352, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multiprogram laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC06-76RLO 1830." (24) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. *J. Comput. Chem.* **1993**, *14*, 1347.

- (25) Cornehl, H. H.; Hornung, G.; Schwarz, H. J. Am. Chem. Soc. 1996, 118, 9960.
- (26) Zhang, D.; Zhang, C.; Liu, C. J. Organomet. Chem. 2001, 640, 121.
- (27) Zhang, D.; Liu, C.; Bi, S. J. Phys. Chem. 2002, 106, 4153.