

Vieversdad Nacional Avinta de Medico

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

PROGRAMA DE MAESTRIA Y DOCTORADO EN INGENIERIA

FACULTAD DE QUIMICA

DESARROLLO Y VALIDACIÓN DE UN MODELO DE CELDAS DE COMBUSTIBLE DE ÓXIDO SÓLIDO TUBULARES

TESIS

QUE PARA OPTAR POR EL GRADO DE:

DOCTOR EN INGENIERIA

ING. QUIMICA – INGENIERIA DE PROCESOS P R E S E N T A:

M. en I. LUCERO ANABEL SOLANO ZOMPANSI

TUTOR: Dr. JAIME GONZALO CERVANTES DE GORTARI

2008

Autorizo a la UNAM a difi contenido	e Dirección Gu undir en forme de mi buccaro	to electrónic trabajo Analoci	iblictecas de f co e impreso e recepcional	l 1
ECHA:_	30/ JUNIO	2008		-
······································	Yun you	<u> </u>		-

JURADO ASIGNADO:

Presidente:	Dr. Reynaldo Sandoval González
Secretario:	Dr. Pedro Roquero Tejeda
Vocal:	Dr. Javier Siqueiros Alatorre
1 _{er.} Suplente:	Dr. Fco. Javier Garfias Vásquez
2do. Suplente:	Dr. Jaime G. Cervantes de Gortari

Lugar o lugares donde se realizó la tesis:

El presente trabajo se realizó en el Instituto Mexicano del Petróleo en la coordinación del Proyecto de Investigación de Medio Ambiente y Seguridad (PIMAS) y en el laboratorio de Termofluidos de la Facultad de Ingeniería de la UNAM.

TUTOR DE TESIS: Dr. JAIME GONZALO CERVANTES DE GORTARI

Dedicatorias

A la memoria de Julián Antonio Martínez Uribe

Agradecimientos

Al Consejo Nacional de Ciencia y Tecnología (CONACyT), a la Dirección General de Estudios de Posgrado (DGEP) y al Proyecto PAPIIT IN103106-2; por el financiamiento otorgado durante mi formación académica en el Programa de Doctorado en Ingeniería.

Agradezco profundamente la ayuda proporcionada por:

Dr. Jaime G. Cervantes de Gortari

Por su tolerancia, paciencia y confianza mostrados a lo largo de la realización de la tesis.

Dr. José Bernardo Hernández Morales

Por todos sus consejos y apoyo ofrecidos a lo largo de la tesis.

A los miembros de mi comité tutoral, **Dr. F. Javier Garfias Vázquez** y **Dr. Reynaldo Sandoval González**, por las aportaciones brindadas a lo largo de este trabajo, así como por su apoyo y consejos.

Dr. Javier Siqueiros Alatorre

Por todas las observaciones planteadas en la tesis, además de la confianza que me dio, le agradezco profundamente su ayuda.

Dr. Miguel Angel Rodríguez Toral

Por la ayuda brindada al inicio de la tesis.

Dr. Ricardo Rivero Rodríguez

Por su contribución al planteamiento original de la tesis.

M. en C. Guadalupe Martínez Hernández

Por su apoyo, consejos y confianza.

M. en I. Rolando Ramos Ruiz

Por su apoyo, consejos y confianza.

A cada uno de los miembros del jurado por las observaciones y sugerencias realizadas durante la revisión de mi tesis.

A todas aquellas personas que contribuyeron a la realización de ésta tesis.

Contenido

	Pag
Contenido	IX
Lista de Figuras	XIII
LISTA DE TADIAS	XVII
Nomenciatura	XIX
INTRODUCCIÓN	
Resumen	3
Antecedentes	4
Descripción del problema	7
Objetivos	8
Estrategia de solución	8
Contribuciones de la tesis	9
Estructura de la tesis	9
Capítulo 1. ESTADO DEL ARTE DE LAS CELDAS DE COMBUSTIBLE	
1. 1. SOFC tubulares	13
1. 2. SOFC planas y monolíticas	16
Capítulo 2. GENERALIDADES Y PRINCIPIOS DE OPERACIÓN	
2 1 Celdas de combustible	19
2. 1. 1. Definición y principio de operación	19
Características de los componentes de la celda de	
2. 1. 2. combustible	21
2 1 3 Comparación de la generación de electricidad mediante	22
una turbina de vapor y una celda de combustible	
2. 1. 4. Tipos de celdas de combustibles	24
2. 1. 5. Ventajas y desventajas de las celdas de combustible	26
2. 1. 6. Celdas de combustible de óxido solido (SOFC)	28
2. 1. 7. Tipos de Celdas de combustible de óxido solido (SOFC)	30
2. 1. 8. SOFC TUDUIAr 2. 2. Dia fasiana da Elhidada Caranata sina al (OFD)	31
2. 2. Dinamica de Fluidos Computacional (CFD)	34
2.2.1. Minicipales tecnicas de resolución numerica	30
2. 2. 2. Comparación de las tecnicas de discretización 2. 2. 3. Etapas de la anlicación de un código CED	39 40
	40

2. 3.	Computation of conduction and duct flow heat transfer	41
	2. 3. 1. Estructura del programa Conduct	41
	2. 3. 2. Discretización de la ecuación general	43
	2. 3. 3. Ecuación de conservación sobre el volumen de control	44
	2. 3. 4. Flux de Difusión	4 4
	2. 3. 5. Linearización del término de fuente	45
	2. 3. 6. Ecuación de discretización final	45
Capítul	IO 3. PRINCIPIOS TERMODINÁMICOS	
3. 1.	Energía libre y cambio de entalpía de reacción de una SOFC	49
3. 2.	Efecto de la temperatura y la presión en el potencial	52
	termodinamico reversible	50
	3. 2. 1. Variación del voltaje reversible con la temperatura	52 52
33	5. 2. 2. Valiación del voltaje reversible com la presión Eficiencia de una SOEC	54
0. 0.	Eficiencia termodinámica o ideal de una celda de	54
	3. 3. 1. combustible	54
	3. 3. 2. Eficiencia electroquímica o eficiencia de potencial	54
	3. 3. 3. Eficiencia de la utilización del combustible	54
	3. 3. 4. Eficiencia global o práctica	55
Capítul	IO 4. PLANTEAMIENTO DEL MODELO	
4. 1.	Descripción del modelo	59
4. 2.	Modelo de la región del fluido	62
	4. 2.1. Ecuación de continuidad	63
	4. 2. 2. Balance de momento	64
	4. 2. 3. Balance de energia 4. 2. 4. Balance de materia por componentes	72
	4.2.5. Resumen de las expresiones de la región del fluido	75
4 3	Modelo de la región del sólido	76
. •.	4. 3. 1. Modelo electroquímico	76
	4. 3. 2. Balance de energía para la región III (electrolito)	85
	4. 3. 3. Modelo del campo del potencial eléctrico	89
	4. 3. 4. Resumen de las expresiones de la región del sólido	91
4. 4.	Secuencia de cálculo del modelo	92
4. 5.	Planteamiento general de los casos de estudio	93
	4. 5. 1. Dimensiones físicas de la SOFC	94
4.6	4. 5. 2. Características del combustible y del oxidante	95
4. 0.	Validación del modelo	90
Capítul	Io 5. CASOS DE ESTUDIO	
5. 1.		101
	5, 1, 1, Especificaciones del modelo	101
		107

5. 2. Caso 1A	112
5. 2. 1. Especificaciones del modelo	112
5. 2. 2. Resultados	117
5. 3. Caso 1B	124
5. 3. 1. Especificaciones del modelo	124
5. 3. 2. Resultados	127
5. 4. Caso 2	132
5. 4. 1. Especificaciones del modelo	132
5. 4. 2. Resultados	140
5. 5. Caso 2A	145
5. 5. 1. Especificaciones del modelo	145
5. 5. 2. Resultados	148
5. 6. Caso 2B	152
5. 6. 1. Especificaciones del modelo	152
5. 6. 2. Resultados	155
CONCLUSIONES	161
APÉNDICES	
 Análisis de los artículos de SOFC tubulares 	163
II. Análisis de los artículos para la validación del modelo	189
III. Resultados del caso de estudio 1	211
IV. Resultados del caso de estudio 1A	219
V. Resultados del caso de estudio 1B	235
VI. Resultados del caso de estudio 2	249

V.	Resultados del caso de estudio 16
VI	Resultados del caso de estudio 2

¥ I.		210
VII.	Resultados del caso de estudio 2A	257
VIII.	Resultados del caso de estudio 2B	265

BIBLIOGRAFÍA y REFERENCIAS

xi

275

Lista de Figuras

		Pag
Figura 2. 1	Reacciones que se llevan a cabo en una SOFC	20
Figura 2. 2	Generación de electricidad mediante una celda de combustible	23
Figura 2. 3	Generación de electricidad mediante una turbina de vapor	23
Figura 2. 4	Esquema de una Celda de Combustible de Óxido Sólido (SOFC)	28
Figura 2. 5	Celda de combustible de óxido sólido plana	30
Figura 2. 6	Celda de combustible de óxido sólido monolítica	30
Figura 2.7	Celda de combustible de óxido sólido tubular	31
Figura 2.8	Principio de operación de una SOFC	32
Figura 2. 9	Trayectoria de la corriente en una SOFC tubular	32
Figura 2. 10	SOFC tubular desarrollada por Westinghouse	33
Figura 2. 11	Localización de los puntos para la serie de Taylor	36
Figura 2. 12	Elemento lineal con dos nodos	37
Figura 2. 13	Volumen finito en una dirección	38
Figura 2. 14	Diagrama de flujo del programa CONDUCT	42
Figura 2. 15	Volumen de control típico	44
Figura 4. 1	SOFC tubular dividida en regiones	59
Figura 4. 2	Volumen de control de la SOFC	59
Figura 4. 3	Proceso de cálculo para las SOFC	60
Figura 4. 4	Región I. Espacio en donde fluye el aire	62
Figura 4. 5	Región V. Espacio en donde fluye el combustible	62
Figura 4. 6	Región del flujo totalmente desarrollado	66
Figura 4. 7	Región anular entre el cátodo y el tubo inductor de aire	66
Figura 4.8	Transporte de calor en una SOFC tubular	69
Figura 4. 9	Transporte de materia por componentes	72
Figura 4. 10	Regiones sólidas de la SOFC tubular	76
Figura 4. 11	V vs i mostrando los diferentes tipos de polarizaciones	78
Figura 4. 12	Volumen de control para el electrolito	85
Figura 4. 13	Condiciones de frontera del balance de energía para la región III de la SOFC	86
Figura 4. 14	Circuito eléctrico equivalente de la celda	89
Figura 4. 15	Volúmenes de control de las regiones fluidas de la SOFC	94

Figura 5. 1	1	Condiciones de frontera generales para v_{r_1} para las regiones l y V.	102
Figura 5. 2	2	Condiciones de frontera generales para <i>T</i> , para las regiones I y V.	103
Figura 5. 3	3	Condiciones de frontera generales para y_i , para las regiones I y V.	105
Figura 5. 4	4	Perfil de velocidad axial para ambas regiones. Caso 1	107
Figura 5. 5	5	Perfil de temperatura para ambas regiones. Caso 1	107
Figura 5. 6	6	Perfil de composición del oxígeno para la región l. Caso 1	108
Figura 5. 7	7	Perfil de composición del hidrógeno y del agua para la región V. Caso 1	109
Figura 5. 8	В	Voltaje vs Densidad de corriente. Caso 1	110
Figura 5. 9	9	Validación de resultados con respecto a Tomlins (1999)	110
Figura 5. 1	10	Validación de resultados con respecto a Singhal (1999)	111
Figura 5. 1	11	Perfil de velocidad axial para ambas regiones. Caso 1A	117
Figura 5. 1	12	Perfil de temperatura para ambas regiones. Caso 1A	117
Figura 5. 1	13	Perfil de composición del oxígeno para la región I. Caso 1A	118
Figura 5. 1	14	Perfil de composición del hidrógeno y del agua para la región V. Caso 1A	119
Figura 5. 1	15	<i>V</i> vs <i>i</i> con los datos de la interfase sólido-aire del caso 1A	120
Figura 5. 1	16	Resultados de la región del sólido para el primer juego de datos de la SOFC	121
Figura 5. 1	17	Voltaje vs Densidad de corriente. Caso 1A	122
Figura 5. 1	18	Validación de resultados con respecto a Tomlins (1999)	122
Figura 5. 1	19	Validación de resultados con respecto a Singhal (1999)	123
Figura 5. 2	20	Perfil de velocidad axial para ambas regiones. Caso 1B	127
Figura 5. 2	21	Perfil de temperatura para ambas regiones. Caso 1B	127
Figura 5. 2	22	Perfil de composición del oxígeno para la región l. Caso 1B	128
Figura 5. 2	23	Perfil de composición del hidrógeno y del agua para la región V. Caso 1B	128
Figura 5. 2	24	Resultados de la región del sólido para el primer juego de datos de la SOFC	129
Figura 5. 2	25	Voltaje vs Densidad de corriente. Caso 1B	130
Figura 5. 2	26	Validación de resultados con respecto a Tomlins (1999)	131
Figura 5. 2	27	Validación de resultados con respecto a Singhal (1999)	131

		Pag
Figura 5. 28	Condiciones de frontera generales para v_r , para las regiones l y V.	133
Figura 5, 29	Perfil de velocidad radial para ambas regiones. Caso 2	140
Figura 5. 30	Perfil de velocidad axial para ambas regiones. Caso 2	140
Figura 5. 31	Perfil de temperatura para ambas regiones. Caso 2	141
Figura 5. 32	Perfil de composición del oxígeno para la región I. Caso 2	141
Figura 5. 33	Perfil de composición del hidrógeno y del agua para la región V. Caso 2	142
Figura 5. 34	Voltaje vs Densidad de corriente. Caso 2	143
Figura 5. 35	Validación de resultados con respecto a Tomlins (1999)	144
Figura 5. 36	Validación de resultados con respecto a Singhal (1999)	144
Figura 5. 37	Perfil de temperatura para ambas regiones. Caso 2A	148
Figura 5, 38	Resultados de la región del sólido para el primer juego de datos de la SOFC	149
Figura 5. 39	Voltaje vs Densidad de corriente. Caso 2A	150
Figura 5. 40	Validación de resultados con respecto a Tomlins (1999)	151
Figura 5. 41	Validación de resultados con respecto a Singhal (1999)	151
Figura 5. 42	Perfil de composición del oxígeno para la región I. Caso 2B	155
Figura 5. 43	Perfil de composición del hidrógeno y del agua para la región V. Caso 2B.	156
Figura 5. 44	Resultados de la región del sólido para el primer juego de datos de la SOFC	157
Figura 5. 45	Voltaje vs Densidad de corriente. Casos 2B.	158
Figura 5. 46	Validación de resultados con respecto a Tomlins (1999)	159
Figura 5. 47	Validación de resultados con respecto a Singhal (1999)	159

Lista de Tablas

		Pag
Tabla 1. 1	SOFC Tubular	14
Tabla 2.1	Clasificación de las celdas de combustible	24
Tabla 2. 2	Ventajas de las SOFC sobre otras celdas de combustible	29
Tabla 4. 1	Regiones en las que se divide la SOFC	61
Tabla 4. 2	Propiedades de los electrodos de la SOFC	65
Tabla 4. 3	Cálculo del número de Reynolds para el aire	67
Tabla 4. 4	Cálculo del número de Reynolds para el combustible	67
Tabla 4. 5	Propiedades de los reactivos de la SOFC	68
Tabla 4. 6	Propiedades de los materiales y reactivos de la SOFC	70
Tabla 4. 7	Resistividades de los materiales de SOFC	71
Tabla 4. 8	Propiedades de los reactivos de la SOFC	72
Tabla 4. 9	Datos de los electrodos	82
Tabla 4. 10	Datos de los compuestos	82
Tabla 4. 11	Condiciones de frontera para el electrolito	86
Tabla 4. 12	Conjunto de ecuaciones gobernantes de la SOFC	93
Tabla 4. 13	Dimensiones empleadas en los cálculos	94
Tabla 4. 14	Datos usados en los cálculos de la celda	95
Tabla 4. 15	Datos experimentales para validar los resultados del modelo planteado	97
Tabla 5. 1	Especificación de las ecuaciones del caso 1	101
Tabla 5. 2	Condiciones de frontera para la región I, en el caso 1	105
Tabla 5. 3	Condiciones de frontera para la región V, en el caso 1	106
Tabla 5. 4	Resultados de la región del sólido	109
Tabla 5. 5	Especificación de las ecuaciones del caso 1A	112
Tabla 5. 6	Condiciones de frontera para la región I, en el caso 1A	116
Tabla 5. 7	Condiciones de frontera para la región V, en el caso 1A	116
Tabla 5. 8	Resultados promedio de la SOFC	121
Tabla 5. 9	Especificación de las ecuaciones del caso 1B	124
Tabla 5. 10	Condiciones de frontera para la región I, en el caso 1B	126
Tabla 5. 11	Condiciones de frontera para la región V, en el caso 1B	126
Tabla 5. 12	Resultados promedio de la SOFC	130
Tabla 5. 13	Especificación de las ecuaciones del caso 2	132
Tabla 5. 14	Condiciones de frontera para la región I, en el caso 2	139
Tabla 5. 15	Condiciones de frontera para la región V, en el caso 2	139
Tabla 5, 16	Resultados de la región del sólido	143

	Pag
pecificación de las ecuaciones del caso 2A	145
ndiciones de frontera para la región I, en el caso 2A	147
ndiciones de frontera para la región V, en el caso 2A	147
sultados promedio de la SOFC	150
pecificación de las ecuaciones del caso 2B	152
ndiciones de frontera para la región I, en el caso 2B	154
ndiciones de frontera para la región V, en el caso 2B	154
sultados promedio de la SOFC	158
	pecificación de las ecuaciones del caso 2A ndiciones de frontera para la región I, en el caso 2A ndiciones de frontera para la región V, en el caso 2A sultados promedio de la SOFC pecificación de las ecuaciones del caso 2B ndiciones de frontera para la región I, en el caso 2B ndiciones de frontera para la región V, en el caso 2B sultados promedio de la SOFC

Nomenclatura

A	Área	m²
Ср	Capacidad calorífica a presión constante	J/kg K
D_{ij}	Coeficiente de difusión molecular binaria	m²/s
D_{ik}	Coeficiente de difusión de Knudsen	m²/s
D_h	Diámetro hidráulico	m
$D^{e\!\!/\!\!p}$	Difusividad efectiva	m²/s
Eideal	Fuerza impulsora del potencial de Nernst	V
E ₀	Voltaje máximo reversible o potencial estándar	V
E _{celda}	Voltaje terminal de la celda	V
F	Constante de Faraday (96485.6)	C/mol
G	Energía libre de Gibbs	J/mol
g	Fuerza gravitacional	m/s²
$\boldsymbol{g}_{\boldsymbol{x}\boldsymbol{n}}^{\boldsymbol{u}}$	Energía libre en estado estándar para la reacción	J/mol
Н	Entalpía de reacción	J/mol
Ι	Corriente	A
i	Densidad de corriente	A/m²
ī	Densidad de corriente promedio que atraviesa el electrolito	A/m ²
\bar{i}_0	Densidad de corriente de intercambio	A/m ²
ī	Vector densidad de corriente	A/m ²
İ.a.	Densidad de corriente límite del ánodo	A/m ²
i_{cs}	Densidad de corriente límite del cátodo	A/m ²
ĸ	Permeabilidad del electrodo	m²
k_t^{eff}	Conductividad térmica efectiva	W/m K
k t	Conductividad térmica	W/m K
k _e	Conductividad eléctrica	1/Ωm
L	Longitud de la celda	m
1	Grosor	cm
М	Masa molecular	1/mol
n	Moles de la especie i	mol
\boldsymbol{n}_i^0	Moles iniciales de la especie i	mol
n_i^{tot}	Moles totales de la especie i	mol

Р	Presión total	Pa
ρ_i	Presión parcial de la especie <i>i</i>	atm
R	Radio de la celda de combustible	m
R	Resistencia	Ω
R	Constante Universal de los gases	J/mol K
r	Radio del poro medio	m
S	Entropía	J/mol
S_{v_r}	Termino fuente del balance de momento en dirección	kg/m ² s ²
S_T	Termino fuente del balance de energía	W/m ³
S_{y_i}	Termino fuente del balance de materia por componentes	1/s
Т	Temperatura absoluta	к
t	Tiempo	S
U	Energía interna	J/mol
\vec{v}	Vector de la velocidad del fluido	m/s
v	Componente del vector velocidad	m/s
V	Volumen	m ³
W_{elec}	Trabajo eléctrico	J

Adimensionales

- H₂O Agua
- H₂ Hidrógeno
- O₂ Oxígeno
- N₂ Nitrógeno
- CD Corriente directa
- H⁺ lones de hidrógeno
- O²⁻ lones de oxígeno
- e Electrones
- CH₄ Metano
- CO Monóxido de carbono
- CO₂ Dióxido de carbono
- YSZ Material del electrolito: zirconia dopado con 10%mol de ytria
- LSM Material del electrodo del aire (cátodo) y soporte de la celda
- Ni-YSZ cement Material del ánodo
- r Dirección radial
- z Dirección axial
- θ Dirección angular
- Re Número de Reynolds
- ne Número de e transferidos en la reacción
- *y_i* Composición del componente *i*
- y⁰_i Composición inicial del componente i
- *y*^{*f*} Composición final del componente *i*

Letras griegas

ρ	Densidad	kg/m ³
, µ	Viscosidad	kg/m s
λ.	Conductividad térmica	W/mK
λ	Termino que corresponde al termino de acumulación	
ε	Porosidad	adimensional
ε	Eficiencia	adimensional
δ	Grosor	cm
$ ho^{\scriptscriptstyle e}$	Resistividad eléctrica	Ω cm
Δ	Delta o cambio de alguna propiedad	
η	Polarizaciones o perdidas de voltaje	V
$\eta_{\scriptscriptstyle act}$	Polarizaciones o perdidas por activación	V
$\eta_{\scriptscriptstyle act}^{\scriptscriptstyle total}$	Polarizaciones o perdidas por activación total	V
$\eta_{\scriptscriptstyle conc}$	Polarizaciones o perdidas por concentración	V
$\eta_{\scriptscriptstyle conc}^{\scriptscriptstyle total}$	Polarizaciones o perdidas por concentración total	V
ζ	Tortuosidad	adimensional
σ	Diámetro de colisión	Å
Ω_{ij}	Colisión integral basada en el potencial de Lennard- Jones	adimensional
Е	Constantes de fuerza de Lennard-Jones calculadas a	к
ĸ	partir de datos de viscosidad	
Φ	Campo del potencial eléctrico	V
φ.	Variable dependiente por determinar	
$\Gamma^{oldsymbol{\phi}}$	Variable que corresponde al termino difusivo	
Subindice	ŝ	
r	Componente en dirección radial	

r	Componente en dirección radial
θ	Componente en dirección angular
Z	Componente en dirección axial
int	Interno
out	Externo
f	Fluido
S	Sólido
tot	Totales
act	Activación
conc	Concentración
ohmico	Óhmica
е	Electrolito
а	Ánodo
С	Cátodo
i	Especie química para determinar el coeficiente de difusión molecular binario
j	Especie química para determinar el coeficiente de difusión molecular binario

INTRODUCCIÓN

En esta sección se establecerá el marco de referencia para el estudio de las celdas de combustible, es decir, los antecedentes, la descripción del problema, objetivos, estrategia de solución y las contribuciones de la tesis.

En la última parte, se presenta la estructura general de la tesis y una breve descripción de los temas tratados en cada uno de los capítulos de la misma.

RESUMEN

En este trabajo se propone el planteamiento y análisis de un modelo matemático de las celdas de combustible de óxido sólido tubulares, el cual incluye la ecuación de continuidad, el balance de momentum, el balance de energía, el balance de especies químicas, así como el balance del campo del potencial eléctrico y las perdidas de voltaje. La comparación del modelo desarrollado con respecto a los datos experimentales disponibles en la literatura abierta permite validarlo.

En uno de los casos, se encontró que se tiene una diferencia del 20% con respecto a la predicción del voltaje de la celda y una diferencia del 7% con respecto a la predicción de la densidad de corriente; lo anterior comparando los resultados obtenidos del presente modelo con respecto a los datos experimentales reportados en Singhal (1999).

ANTECEDENTES

Celdas de combustible (CC)

El principio de las celdas de combustible fue descubierto en el año 1839 por Sir William Grove y desarrollado en el año 1894 por el químico alemán Wilhelm Ostwald. Sin embargo, ha sido en las últimas décadas cuando las celdas de combustible han vuelto a ser un tema de interés. En la investigación espacial fueron empleadas para abastecer de energía eléctrica las naves espaciales y los satélites.

Las celdas de combustible superaron con éxito sus primeras pruebas en los Estados Unidos durante el proyecto Géminis y los vuelos tripulados a la Luna (programa Apolo).

Estas pruebas resultaron muy útiles con vistas a desarrollar las múltiples aplicaciones de la transformación directa de la energía sobre la Tierra.

Las celdas de combustible permiten promover una diversidad de energía y una transición hacia fuentes de energía renovables. Así, una variedad de distintos combustibles puede ser usada en éstas, tales como hidrógeno (H₂), metano (CH₄), etano (C₂H₆), alcoholes, gas natural, gas licuado, así como también biomasa o la fracción orgánica recuperada de residuos sólidos. Sin embargo, el combustible más conveniente es el H₂, ya que es el que más energía entrega por unidad de masa (141 MJ/kg). Es por lo que las celdas de combustible han cobrado tanta importancia en el desarrollo e implementación del uso del H₂, por lo que se le ha denominado la "Economía del Hidrógeno".

El H₂ es muy abundante en la naturaleza, y genera calor y luz. Pero como se combina tan espontáneamente con el Oxígeno (O₂) y con otros elementos, no se presenta en estado puro. Debido a esto, los problemas para aislarlo y almacenarlo son muchos.

Hasta hace pocos años, la celda de combustible estaba limitada al uso experimental en laboratorios o en aplicaciones no convencionales como la industria aerospacial, pero recientemente se ha desarrollado un creciente interés en ésta y en sus aplicaciones en la generación de energía estacionaria y en el área automovilística.

Las celdas de combustible han demostrado la posibilidad de ser una alternativa casi ideal para aprovecharse en otras aplicaciones de mayor impacto en la sociedad, debido a su nula ó casi nula cantidad de contaminantes emitidos, su alta eficiencia (sobre todo al aprovechar el calor producido para cogeneración), su modularidad, su baja emisión de ruido. Esta característica casi ideal por ahora se encuentra supeditada al costo aparentemente alto de la tecnología debido principalmente a que algunos componentes son costosos y a la ingeniería detrás de ella.

Lo que hace que el desarrollo de la celda de combustible sea tan importante es:

• La producción de dióxido de carbono y otros gases está llevando al calentamiento global, lo que podría llevar a catastróficas consecuencias.

- La combustión de combustible fósil produce una cantidad de gases tóxicos para la salud. Las celdas de combustible no producen emisiones contaminantes.
- La producción de petróleo será en el futuro cada vez más escasa a nivel mundial, dejando a pocos países ricos en éste bien, como los únicos productores, lo que podría repercutir en el precio de éste.

Las tecnologías alternas de generación de electricidad tales como la solar y eólica se han visto poco favorecidas debido a la falta de desarrollo óptimo que les permita competir en eficiencia con las tecnologías convencionales, además de que generalmente son más caras. Por otra parte, el avance y la modernización de algunas tecnologías convencionales para la generación de potencia como son los ciclos combinados, a pesar de haber alcanzado eficiencias mayores y mejoras en la emisión de contaminantes sólo alargan el proceso y la necesidad de buscar soluciones al problema de la contaminación y de la dependencia sobre combustibles de fuentes no renovables.

Aunque todavía en desarrollo, el uso masivo de celdas de combustible o baterías podría significar en el futuro reducir las emisiones asociadas a la generación de electricidad.

Una celda de combustible opera como una batería. Las celdas de combustible combinan H_2 y O_2 para generar electricidad y calor. El subproducto de este proceso es el agua 100% pura (o vapor de agua dependiendo de la temperatura de operación del dispositivo). Las celdas de combustible aprovechan la naturaleza electroquímica de la reacción de combinación de dichos gases sin combustión convencional, por lo que su eficiencia puede llegar a ser el doble de la correspondiente a un sistema que utilice el ciclo de Carnot, con una eficiencia teórica mayor al 99%, por lo que surge lo que muchos denominan "contaminación cero". La obtención del H₂ en las plantas existentes de celdas de combustible es a partir de gas natural o gas de síntesis (obtenido por gasificación de carbón o de residuos de refinería). El aire proporciona el O₂. La reacción se produce dentro de la celda misma. La producción de agua toma lugar en distintas partes de la celda dependiendo del electrolito utilizado.

El voltaje requerido para las plantas es obtenido por conexión individual de las celdas en serie, formando una pila de celdas. Las pilas de celdas de combustibles son configuradas como bloques para niveles de potencia deseados. La corriente continua saliente es transformada por un convertidor de potencia estático en corriente alterna, para posteriormente interconectarla con la red eléctrica. El rendimiento de las pilas decae muy lentamente en el tiempo. Tienen una vida útil entre 5 a 7 años para estimaciones aceptables de corriente. La frecuencia de reemplazo de pilas depende tanto de los costos de reemplazo como de los precios del combustible.

Las celdas de combustible son una familia de tecnologías que usan diferentes electrolitos y que operan a diferentes temperaturas. Cada miembro de esa familia tiende a ser más apropiada para ciertas aplicaciones. Por ejemplo, las celdas de combustible de membrana de intercambio de protones (PEM) han demostrado ser

apropiadas para su aplicación en autos, mientras que las celdas de combustible de carbonatos fundidos (MCFC) o de óxido sólido (SOFC) parecen ser más apropiadas para uso en generación eléctrica estacionaria.

El aspecto económico también es de gran relevancia, los precios de las celdas de combustible no son altos cuando se los compara con los gastos anuales de electricidad y gas natural, con lo que su compra se amortiza en pocos meses. Con respecto a los costos de mantenimiento, éstos se consideran mínimos o casi nulos.

Dinámica de Fluidos computacional (CFD)

Dada la importancia de la dinámica de fluidos y la imposibilidad de encontrar soluciones analíticas, una nueva rama de la ciencia de la computación y la dinámica de fluidos ha surgido: la CFD (Computational Fluid Dynamics). La CFD es el término técnico que se le da al proceso de simular numéricamente el flujo de fluidos en donde se utilizan métodos numéricos sofisticados actuales para resolver las ecuaciones gobernantes.

La CFD también involucra lo que se conoce como pre- y post-procesamiento numérico. El pre-procesamiento se refiere a los preparativos que se deben realizar antes de calcular las soluciones numéricas de las ecuaciones gobernantes. Estos preparativos incluyen la discretización del dominio o generación de la malla y el cálculo de variables especiales, entre otros. El problema de generar la malla es bastante complejo y existe toda un área de estudio al respecto. El post-procesamiento es el manejo de los números que se obtienen del cálculo de la solución de las ecuaciones gobernantes. El manejo de estos números consiste en transformarlos de tal manera que puedan ser visualizados en el monitor de una computadora y nos den una visión general del comportamiento del fenómeno bajo estudio, a esto en CFD se le llama "visualización científica", que es también una de las áreas de la computación científica que mayor crecimiento ha tenido en las últimas décadas y es muy importante en muchas aplicaciones.

El flujo de fluidos aparece de forma natural en una gran variedad de procesos: respirar, beber, digerir, nadar, fumar, calentar o ventilar un cuarto, extinguir fuego con agua, quemar gasolina en un auto para crear potencia, volar un aeroplano, fundir acero, navegar, hacer burbujas, y en muchos otros fenómenos que se generan en la naturaleza, aparece el flujo e interacción de uno o más fluidos. Esta variedad y la importancia de los fenómenos en los que el flujo de fluidos es el proceso principal, ha provocado que la Dinámica de Fluidos sea una rama de la física esencial para entender el comportamiento de fenómenos naturales y mejorar muchos procesos en la industria.

Las ecuaciones que gobiernan el flujo de fluidos en diferentes condiciones, han sido estudiadas desde hace más de un siglo. Las ecuaciones más generales se conocen como ecuaciones de Navier-Stokes. A pesar de la atención que estas ecuaciones han recibido, hasta nuestros días no ha sido posible encontrar soluciones analíticas exactas, y sólo en casos ideales especiales se tienen algunos resultados. Actualmente, muchos de los estudios sobre flujo de fluidos se realizan usando métodos numéricos. Esto significa que las ecuaciones gobernantes se transforman en ecuaciones equivalentes, las cuales se pueden resolver utilizando técnicas especiales y las soluciones así obtenidas aproximan a las soluciones de las ecuaciones originales. Los métodos numéricos no son exclusivos de la dinámica de fluidos, pues es posible aplicar las mismas técnicas en otras áreas de la ciencia, tales como la dinámica molecular y el procesamiento de imágenes, entre otras. Sin embargo, mucho del desarrollo en las teorías numéricas se debe al deseo de resolver problemas interesantes de dinámica de fluidos, como es el caso de la turbulencia. Hoy en día, debido al desarrollo de las computadoras digitales, se han podido resolver problemas muy complejos que semejan bastante a la vida real, de tal manera que en muchos casos se ha optado por recurrir a la simulación en computadora y sustituir en cierta forma algunos experimentos. Sin embargo, la experimentación siempre será la manera de comprobar resultados analíticos y numéricos.

DESCRIPCIÓN DEL PROBLEMA

Una clasificación genérica de las SOFC considera que son planas y tubulares, las primeras representan mayores problemas de manufactura debido a que se requieren de laminas delgadas y largas, mismas que son sujetas a las altas temperaturas que alcanzan este tipo de celdas, esto ocasiona gran tensión durante su funcionamiento, por lo que uno de los principales problemas a los que se enfrentan es a la ruptura de las partes que la componen.

En lo que se refiere a las celdas de combustibles de tipo planas (o monolíticas), se encontró que es sus modelos son difíciles de validar, y la mayoría de los autores, tan sólo se limitan a comparar sus mismos resultados (casos de estudio) o bien compararlos con los resultados de otros autores.

Por la razón anterior, las más extendidas en su diseño y desarrollo son las tubulares. Este trabajo se enfoca a las SOFC tubulares.

Dentro de la revisión de los trabajos publicados, llevada a cabo para las SOFC se encontró que la gran mayoría de los trabajos adolece de los siguientes puntos:

- La transferencia de calor se toma en cuenta por conducción y convección, y salvo en un sólo caso toma en cuenta la transferencia de calor por radiación.
- El estado de operación transitoria, tan sólo una publicación lo toma en cuenta.

• La forma de validación, en la mayoría de los casos, se lleva a cabo una comparación entre los resultados reportados en diversas publicaciones.

Una vez analizadas las tres áreas no consideradas en las publicaciones, se estableció que en este trabajo de tesis, se tomará como caso de estudio a las SOFC tubulares modelando su comportamiento, es decir, en todos sus parámetros operativos (voltaje, densidad de corriente, temperatura, etc.). Una vez generado el modelo, para tener una sólida sustentación de éste, se validará con datos experimentales los cuales se han reportado en la literatura abierta.

OBJETIVOS

Principal

Desarrollar y validar un modelo matemático para SOFC tubulares que incluya la ecuación de continuidad, el balance de momentum, el balance de energía, el balance de materia por componentes y el balance del campo del potencial eléctrico, así como las perdidas ohmicas, por concentración y por activación.

Complementarios

- Establecer en forma clara y precisa las ecuaciones que gobiernan a las regiones fluidas y a la región sólida de la SOFC, así como sus condiciones de frontera.
- Simplificar y dar solución a las ecuaciones gobernantes de las SOFC tubulares ya sea por métodos aproximados o en forma analítica.
- Generar el análisis de las variables que se encuentran involucradas en las ecuaciones de la SOFC para determinar la combinación de éstas que permita reproducir los resultados reportados en la literatura abierta.
- Realizar la recopilación de artículos experimentales disponibles en la literatura abierta, así como de otras fuentes bibliográficas disponibles.

ESTRATEGIA DE SOLUCIÓN

El trabajo se divide básicamente en tres fases:

Primer fase: Investigación documental tanto de las SOFC como de los métodos para resolver el conjunto de ecuaciones que describen el comportamiento de las SOFC, es decir, métodos numéricos (CFD) y analíticos.

Segunda fase: Desarrollo y solución del modelo matemático de la SOFC tubular.

Tercer fase: Comparación de los resultados del modelo desarrollado con los datos experimentales realizados por diferentes investigadores.

CONTRIBUCIONES DE LA TESIS

Durante el desarrollo del presente trabajo de tesis, se hicieron las siguientes aportaciones:

- Análisis exhaustivo de las ecuaciones gobernantes en una SOFC tubular.
- Simplificación de las cinco ecuaciones gobernantes en la SOFC.
- Solución de las ecuaciones gobernantes en una SOFC tubular, planteando dos casos generales de estudio.
- Generación de la solución del perfil de temperatura y composición de las regiones fluidas en 2D, a partir de las ecuaciones en función de una coordenada de dependencia.
- Generación de un modelo matemático sencillo que permite alcanzar resultados con una razonable aproximación con respecto a los datos experimentales reportados en la literatura abierta, sin la necesidad de hacer una fuerte inversión en un software y hardware para resolver las ecuaciones de las regiones fluidas.

ESTRUCTURA DE LA TESIS

El presente trabajo se realizó en el Instituto Mexicano del Petróleo en la Coordinación del Proyecto de Investigación de Medio Ambiente y Seguridad (PIMAS) y en el Departamento de Termofluidos de la Facultad de ingeniería de la UNAM.

En el capítulo 1, se presentan un análisis del estado del arte de las celdas de combustible, es decir, se hace un estudio de varios artículos clasificándolos de acuerdo al tipo de celda que analizan (planas, monolíticas y tubulares), al final se presenta un cuadro sinóptico que permite analizar con facilidad los artículos revisados de las SOFC tubulares y se hace un breve resumen de las otras dos geometrías de SOFC.

En el capítulo 2, se describe los fundamentos de las celdas de combustible, su definición y principio de operación, componentes de éstas, clasificación general, sus ventajas y desventajas, la clasificación de las celdas de combustible de óxido sólido, así como las ventajas de éstas sobre otras celdas de combustible. En la segunda sección de este capítulo se presentan los aspectos generales de la dinámica de fluidos computacional. En la tercera sección se presenta un panorama general del programa Conduct, mismo que sirve de base para la realización del programa computacional.

En el capítulo 3, se presentan los fundamentos termodinámicos implicados en las celdas de combustibles.

En el capítulo 4, se presenta el planteamiento del modelo matemático que describe a la SOFC, es decir, el modelo de la región del fluido, de la región del sólido, la secuencia de cálculo seguida en el programa desarrollado. El planteamiento general de los casos de estudio, dimensiones de la SOFC, así como características del combustible y oxidante empleados en el programa computacional. Finalmente se presenta un análisis de los artículos que servirán para generar la validación del modelo desarrollado.

En el capítulo 5, se plantean y resuelven los casos de estudio.

Para finalizar se presentan las conclusiones, apéndices, así como las referencias y bibliografía.

CAPÍTULO 1

ESTADO DEL ARTE DE LAS CELDAS DE COMBUSTIBLE

En este capítulo se realiza un análisis del estado del arte de las celdas de combustible, mismo que se presenta un cuadro esquemático mostrando los principales aspectos de cada artículo.

En la primera parte, realiza el análisis de ocho artículos correspondientes a la simulación de SOFC tubulares, reunidos a partir de 1976 hasta el 2003. Se analizan aspectos tales como: el principal objetivo de cada artículo, las suposiciones planteadas a lo largo del mismo, las reacciones que se tomaron en cuenta, el tipo de flujo, el tipo de combustible y oxidante empleados así como sus condiciones termodinámicas, el número de dimensiones consideradas, el tipo de ecuaciones planteadas, la forma de solución, el software empleados, los resultados reportados, la forma de validar el modelo.

En la segunda parte, se presenta un breve análisis del modelado de las SOFC planas (diez artículos) y monolíticas (cinco artículos), reunidos a partir de 1994 hasta el 2003, en el cual se revisan los mismos aspectos de la sección precedente.

En el apéndice I, se presenta el análisis completo de cada artículo correspondiente a las SOFC tubular, anteriormente citado.

1. 1. SOFC TUBULARES

En la tabla 1. 1, se presenta un resumen de los artículos analizados que se refieren a las SOFC tubulares, se muestran aspectos tales como el modelado de ecuaciones, el software usado, resultados, tipo de flujo y la forma en que cada autor realizó la validación del modelo desarrollado.

Se realizó el análisis de siete artículos publicados entre los años de 1976 y el 2003,

Cada autor estableció su propio modelo de ecuaciones y la forma de resolverlas, siendo una constante que todos consideran el balance de materia, energía, la resistencia del electrolito, así como la utilización de los reactivos.

Todos los autores desarrollaron el programa de cómputo con diferentes niveles de complejidad dependiendo de las ecuaciones del modelo establecidas.

Sólo dos autores manejan tanto el régimen estacionario como el transitorio, todos los demás plantean sus expresiones en régimen estacionario.

Los resultados de los autores se centran en reproducir los datos de voltaje vs densidad de corriente algunos reportan resultados como perfil de temperatura y composición para los reactivos y productos de la reacción.

La forma en la que validan sus resultados es a través de datos experimentales (según reportan la mayoría) sin embargo no especifican la fuente de tales datos experimentales, algunos autores se limitan a realizar una comparación entre sus casos de estudio. En este sentido, sólo un artículo deja bien señalado de que fuente son sus datos experimentales.

En el apéndice I, se presenta el análisis completo de los artículos.

abia 1. 1. Si	CHC Lubular				
Autor	Modelo de ecuaciones	Software y Hardware empleados	Resultados (Predicción del modelo)	Tipo de flujo	Validación
Kudo y Obayashi (1976)	El modelo matemático toma en cuenta el cambio de composición del combustible, la corriente de salida, la longitud de la celda, el electrolito y la resistencia del electrodo, es resulto por el método de Runge-Kutta-Gill	Se desarrollo un modelo computacional programado en una super computadora HITAC 5020/F	Perfil de composición del combustible, distribución de densidad de corriente y perfil de potencial en los electrodos.	Regimen estacionario	Comparación entre los casos de estudio (A y B) desarrollados en el mismo artículo.
Hirano, A. et al. (1992)	Balance de masa y calor, reacciones químicas, densidad de corriente local y factor de utilización del combustible y oxidante. Resuelto por una técnica de descompocisión parcial.	Ha sido desarrollado un programa de computación para una SOFC tubular incorporando un proceso de reformación interno.	Distribución de la densidad de corriente, la densidad del gas, y la temperatura de los gases.	Regimen estacionario	Por comparación con un modulo de SOFC tubular desarrollado por Westinghouse Electric Corporation.
Hall, y Colclaser (1999)	El modelo incluye los elementos del flujo de masa, térmicos y electroquímicos, los cuales afectan el voltaje del SOFC	Se desarrollo un programa de computación para una SOFC tubular.	Es descrita la respuesta eléctrica transitorio de la celda para un cambio de carga.	Estado estable y respuesta transitorio.	Fue verificado con datos de otro artículo.
Guo, X. et al. (1999)	El modelo matemático incluye dos desarrollos, uno basado en el flujo mezcla perfecta (CSTM) y el otro en el flujo tapón (PFM).	Se desarrollo un programa de computación para una SOFC tubular	temperatura, composición alimentada, conversión de CH ₄ y corriente generada, corriente de la celda	Estado estable	Los resultados del modelo fueron validados con resultados experimentales

2 H.) ł

14

abla 1. 1. SC	OFC Tubular (cont.)		3		
Autor	Modelo de ecuaciones	sonware y Haroware empleados	(Predicción del modelo)	flujo e	Validaci
	El modelo de ecuaciones es integrado en tres módulos: el primero es un modulo de entrada-salida; el segundo				
Boersma, R et al	calcula los balances de masa y energía de las celdas, quemadores, dos	El modelo de ecuaciones fue	Los factores que determinan las	Estado	de resultados
(2000) (2000)	intercambiadores de calor y verifica el balance de energía total. El tercero calcula los	programado con Mathcad.	dimensiones del sistema de intercambio de calor.	estable	numéricos un m experimen
	balances de energía				-
	usando relaciones semi-				
	empíricas.				Comparaci
) ; +	Un modelo fue desarrollado		Calcula la distribución de corriente, la	Estado	de
Ota, ⊺.; et al.	basada en un objeto-base para simular las caracterís-	programa de cómputo	distribución del nas v	estable y	entre la c
(2003)	ticas transitorios de una	muy completo.	la distribución	transitorio	estándar y celda
			lerriperaura.		microtubo.
	Un modelo numérico				Se consid
	bidimensional para el flujo,				publicados
	transferencia de calor/itilasa y	Se desarrollo un	la distribución de	Eetado	validados
	de designation de la coeración de	programa de cómputo	temperating de la celda	estable	diferentes
(∠UU2)		muy completo.	lendera de la celua.		fuentes.
	una celua y un stach. Se				Es útil
					propósitos
					benchmark

h Ō 5 н .

1. 2. SOFC PLANAS Y MONOLÍTICAS

Debido a que al realizar la búsqueda de modelos desarrollados de SOFC, se encontró que la mayoría de las publicaciones, se referían a modelos para SOFC planas (diez artículos) y monolitos (cinco artículos), se tomo la decisión de que el tema central de esta tesis fuese el desarrollo de un modelo de SOFC tubulares.

Sin embargo se realizo el mismo análisis para este tipo de geometría, llegando a las siguientes conclusiones:

- La mayoría considera estado estable.
- Realizan simplificaciones al modelo electroquímico.
- Consideran la caída de presión despreciable.
- Sólo consideran la componente de la velocidad axial.
- El calor por radiación lo asumen mínimo y no lo consideran.
- Algunos trabajos consideran como combustible al metano, con lo cual incluyen al reformador.
- En este tipo de geometría de celda se simplifican las expresiones que modela a las celdas con lo cual dichos modelos se realizan considerando los tres ejes coordenados del sistema cartesiano.
- En este tipo de geometría es posible simular con relativa facilidad si el flujo de los reactivos es co-flujo o contra-flujo.
- Una característica más es que varios autores se limitaron a realizar sus cálculos fluido- dinámicos por medio de un paquete comercial (Fluent, STAR-CD, Phoenix, etc).
- En cuanto a los resultados de estas publicaciones son prácticamente las mismas que para las tubulares.
- Se presenta de igual forma el problema de la validación de los modelos desarrollados, varios autores refieren su validación a resultados de benchmark, sin embargo no dan más datos de dicha forma de validar.

En la sección de bibliografía y referencias se encuentra el listado de los artículos que se refieren a estas geometrías; debido a que no es el tema central de esta tesis, sólo se presenta el anterior resumen.

CAPÍTULO 2

GENERALIDADES Y PRINCIPIOS DE OPERACIÓN

En este capítulo se presenta los elementos fundamentales de las celdas de combustible, tales como su definición, principio de funcionamiento, clasificación, componentes, entre otros. Así como los fundamentos de la dinámica de fluidos computacional (CFD) y del programa CONDUCT.

En la primera parte se presentan los fundamentos de las celdas de combustible, es decir, su definición, principio de operación, reacciones que se llevan a cabo, características de sus componentes, los tipos de celdas de combustible que existen en la actualidad, así como la clasificación de las SOFC.

En la segunda parte se explica los antecedentes que constituyen la dinámica de fluidos computacional (CFD), las principales técnicas de resolución numérica, la comparación de dichas técnicas de discretización y finalmente las etapas de aplicación a un código de CFD.

En la tercera parte se hace una breve descripción del programa CONDUCT, la forma en la que se realiza la discretización de las ecuaciones, la linearización y discretización del termino fuente, entre otros.

2. 1. CELDAS DE COMBUSTIBLE

2. 1. 1. Definición y principio de operación

Definición

Una celda de combustible es un dispositivo electroquímico que genera electricidad y calor combinando hidrógeno (H₂) y oxígeno (O₂) sin ninguna combustión. El subproducto de este proceso es agua 100% pura. Las celdas de combustible son similares, en funcionamiento, a las baterías que producen corriente directa (CD). Pero a diferencia de éstas, una celda de combustible no se agota, ni se recarga. El voltaje requerido para las plantas es obtenido por conexión individual de las celdas en serie, formando un emparedado de varias capas lo que se denomina pila (o stack). Las celdas de combustibles son configuradas como bloques para niveles de potencia deseados. El rendimiento de las celdas decae muy lentamente en el tiempo. Tienen una vida útil entre 5 y 7 años para estimaciones aceptables de corriente. La corriente continua saliente es transformada por un convertidor de potencia estático en corriente alterna, para posteriormente interconectarla con la red eléctrica.

Principio de operación

El principio de operación de una SOFC es la transformación de la energía de un combustible rico en H₂, en energía eléctrica a través de la disociación de especies químicas (iones) en una reacción electroquímica. La energía eléctrica producida depende de varios parámetros incluyendo la concentración de las especies de reacción. En una celda de combustible, éste y el oxidante se combinan en forma química para producir un trabajo eléctrico, se puede hacer de manera continua si el suministro de componentes se hace en forma constante y a un régimen de flujo estable.

El proceso electroquímico es caracterizado por:

- a) El combustible rico en H₂, fluye hacia el ánodo de la celda.
- b) En la superficie del electrodo (interfase ánodo/electrolito) una cubierta de platino ayuda a que las moléculas de H₂, sean disociadas e ionizadas (H⁺) liberando electrones (e⁻).
- c) lones de H^{*} migran a través del electrolito debido a que la membrana electrolítica permite el paso sólo de los protones hacia el cátodo, en dirección de la interfase cátodo/electrolito.
- d) O₂ que se difunde a través de los poros del cátodo.
- e) O₂ contenido en el oxidante reacciona con los iones de H⁺, produciendo agua (H₂O).
- f) El flujo de e regresa a la interfase cátodo/electrolito en forma de corriente eléctrica, vía un circuito externo. Debido a que los electrones no pueden pasar a través de la membrana electrolítica.

En este tipo de dispositivo el combustible y el oxidante no se ponen juntos, sino que la operación se realiza por intermedio de un electrodo, ya que en general, al juntar un combustible y un oxidante las reacciones no son del tipo isotérmico. Existen dos reacciones que ocurren en electrodos separados.

En este caso en particular se trata de una celda de H₂ y O₂ (figura 2. 1).

Figura 2. 1. Reacciones que se llevan a cabo en una SOFC (Adaptación de Hall and Colclaser (1999))

Las siguientes reacciones ocurren en electrodos separados. Se considerará que durante la operación de la SOFC, el combustible (gas natural) entra a un reformador interno, por lo que las reacciones son las siguientes: Ánodo:

$$H_2 + O^{2-} \rightarrow H_2O + 2e^{-}$$

CO + O²⁻ → CO₂ + 2e⁻

Reacción de reformación metano/vapor: Reacción de sustitución gas-agua: $CH_4 + H_2O \rightarrow CO + 3H_2$ (endotérmica) $CO + H_2O \rightarrow CO_2 + H$ (exotérmica)

Cátodo:

Reacción completa:

 $\frac{1}{2}O_2 + 2e^- \rightarrow O^2$ $H_2 + O_2 + CO \rightarrow H_2O + CO_2$

Estas reacciones son suficientemente rápidas lo que permite que la reacción completa se aproxime al equilibrio. Desviaciones del equilibrio son ignoradas en los cálculos.

Con el objeto de hacer más versátil el funcionamiento de las celdas de combustible, se añaden una serie de equipos auxiliares, que no por ello son menos importantes: sistemas informáticos de gestión y control, condensadores de vapor, sistemas de suministro de gases, ventiladores, etc. Todas estas partes, junto con las descritas anteriormente, forman lo que se llama una planta basada en una celda de combustible.

2. 1. 2. Características de los componentes de la celda de combustible

Electrodos

El ánodo es el electrodo que suministra los electrones al circuito externo, el cátodo es el electrodo que los recibe. En una celda de combustible los electrodos separan el electrolito, el combustible y el oxidante. Estos electrodos están hechos por lo general de materiales porosos de manera de incrementar la superficie de interacción.

Electrolito

El electrolito determina el flujo de iones, la temperatura de operación de la celda y otras características particulares del sistema. El electrolito puede ser ácido o alcalino, en el caso de ser ácido este transporta iones positivos (H⁺) de en caso de ser alcalino los iones transportados son OH⁺. Los electrolitos ácido son más usados. Existen celdas cuyos electrólitos son no acuosos, estas son particularmente apropiadas para celdas que operan con temperaturas mas elevadas.

Reformador

El proceso para enriquecer el combustible empleado en las celdas de combustible es a través de un reformador catalítico, por medio del cual, tanto el combustible (gas natural o CH₄) como el vapor de agua pasan a través de un lecho catalítico (705–870°C), produce un gas rico en H₂ denominado "reformado", mediante una transformación química (oxidación), el rendimiento de esta reacción es mayor cuanto más alta sea la relación Hidrógeno/Carbono (H₂/C) de la materia prima empleada. Las reacciones que se llevan a cabo son las siguientes:

El combustible reacciona con el vapor para producir H₂ y CO

$CH_4 + H_20 \rightarrow CO + 3H_2$

como el CO contamina el catalizador usado en las celdas de combustible, ésta reacción, se sigue con una reacción de sustitución:

$$CO + H_2O \rightarrow CO_2 + H_2$$

por lo que la reacción en general resulta ser:

$CH_4 + 2H_2O \rightarrow 4H_2 + CO_2$

con la formación de pequeñas cantidades de CO₂ y CH₄, así como vapor residual y otros componentes tales como azufre, cloro y derivados de amoniaco que provienen de los contaminantes del combustible. El cual pasa a alimentar las celdas de combustible.

El contenido de monóxido de carbono (CO) que posee el reformado se reduce a niveles aceptables (menores a 50 ppm), mediante una unidad acondicionadora. El lecho catalítico generalmente se compone de níquel soportado en un pellet o anillo cerámico y poroso.

Catalizadores

Este es uno de los puntos más importantes de la celda de combustible pues es el corazón de la misma. En los años iniciales de esta tecnología con celda de baja temperatura; el platino era el más usado. Se necesitaban cerca de 25 mg/cm² de platino en los electrodos, en estos momentos se necesitan alrededor de 0,1 mg/cm² lo cual lleva al costo de kW a un precio competitivo con el resto de las tecnologías convencionales.

Combustible

Se puede usar una interesante variedad de combustibles pero se ha podido determinar que el H₂ en estado gaseoso es el que mas ampliamente puede ser usado. De igual forma es posible usar hidrocarburos sencillos como el CH₄ contenido en el gas natural es, entre los combustibles disponibles, el que posee una relación H₂/C más elevada, ello convierte a este combustible en el idóneo para el funcionamiento de las celdas de combustible. Algunos otros combustibles tales como alcoholes también se pueden emplear.

En aplicaciones automovilísticas, cinco litros de H₂ es suficiente para recorrer 400km y es relativamente barato. Sin embargo, es tan inestable y volátil que, de no aislarse bien, podría ser peligroso. Los depósitos para llevarlo en un coche tienen que ser muy sólidos, lo que los hace demasiado grandes y pesados. En estos momentos se trabaja en depósitos construidos con aluminio y fibra de vidrio, mismos que deberían garantizar la estabilidad del H₂, puesto que este elemento se evapora con gran facilidad a través de las paredes. Además, deben mantenerlo a -253°C, para mantenerlo líquido y almacenar más cantidad.

Oxidante

El aire es el oxidante que se prefiere en las aplicaciones terrestres, en general se muestra al O_2 como oxidante, no es necesario utilizarlo en forma pura, este tipo de O_2 (criogénico) se usa fundamentalmente en los programas espaciales.

2. 1. 3. Comparación de la generación de electricidad mediante una turbina de vapor y una celda de combustible

La generación de electricidad por medio de una celda de combustible es mostrada en la figura 2. 2, se observa la conversión de energía contenida en los combustibles una vez que se lleva a cabo la disociación de los iones y de esta forma a la generación de electricidad, junto con calor aprovechable.

Figura 2. 2. Generación de electricidad mediante una celda de combustible

Comparando la forma tradicional (figura 2. 3) en la cual, se produce electricidad, quemado un combustible para producir vapor en una caldera y de ahí pasa a una turbina de vapor, la cual genera electricidad.

Figura 2. 3. Generación de electricidad mediante una turbina de vapor

Es debido al proceso de combustión que se tiene una degradación de energía, dada la reacción de combustión inicial la cual hace un proceso poco eficiente, además de los gases de combustión expulsados al medio ambiente, por lo que se hace muy atractivo el producir electricidad por medio de una celda de combustible.

Aunque aún en desarrollo, el uso masivo de celdas de combustible podría significar en el futuro reducir las emisiones asociadas a la generación de electricidad.

Su aprovechamiento en otras aplicaciones de mayor impacto en la sociedad, han promovido el desarrollo de sistemas cuyo costo por kW es ya muy cercano al precio ofrecido por tecnologías convencionales.

Esta característica casi ideal por ahora se encuentra supeditada al costo aparentemente alto de la tecnología debido principalmente a que algunos componentes son costosos y a la ingeniería detrás de ella.
Celda de combustible de ácido fosfórico (PAFC)	Celda de combustible de membrana de intercambio de protones (PEM). También llamadas celdas de combustible de polímero sólido	Celda de combustible alcalina (A.FC)	Tipo	abla 2. 1. Clasificación de las c
Ácido fosfórico concentrado. El ion transferido es el protón (H ⁺). La potencia generada es 50 kW – 10 MW.	Membrana polímero conductora de protones (de íones de H ₂). El ion transferido es el protón (H ⁺). La potencia generada es 5 - 250 kW	Solución de hidróxido de potasio diluido. El ion transferido es el hidroxilo (OH'). La potencia generada es 5 - 150 kW	Electrolito	xeidas de combustible
Pueden utilizar metanol, gas natural o gas LP como combustible. Los electrodos (cátodo y ánodo) se componen de grafito fibroso con platino dispersado en su interior, el cual actúa como catalizador. Eficiencia limitada (entre el 40 - 45%). Problemas de corrosión.	Su eficiencia es mayor de 40 - 55%. Comportamiento de la operación muy flexible, densidad de alta potencia. Los electrodos (cátodo y ánodo) son de Pt/C/PTFE y Pt – Ru. Presentan ventajas sustanciales frente a otros tipos de celdas: son de menor tarnaño, más ligeras, de arranque más rápido y con una respuesta más rápida a los cambios de carga. Su baja temperatura de operación requiere de un sistema de eliminación de calor muy eficiente y del uso de catalizadores. Ello conlleva la exigencia de una alta pureza del H ₂ alimentado (por ejemplo, está completamente vedada la presencia de monóxido de carbono) trayendo consigo, por lo tanto, un alto costo de producción.	Alta eficiencia adecuada sólo para el H2 puro y el oxígeno. Vida promedio de operación 15 000 horas.	Características especiales	
Generación de electricidad descentralizada. Potencia y calor combinados.	Vehículos, descentralizada de electricidad (Plantas pequeñas).	Sistemas especiales. Sistemas de defensa Han sido utilizadas por largo tiempo por la NASA en misiones espaciales.	Aplicaciones	

a continuación, en la tabla 2.1.

2. 1. 4. Tipos de celdas de combustibles

Las celdas de combustible pueden dasificarse atendiendo a muy diversos parámetros: temperatura de trabajo, tipo de electrolito, tipo de combustible y de oxidante, etc. El parámetro que ha predominado es el electrolito utilizado, que a su vez condiciona la

temperatura de operación. De acuerdo con este criterio, las celdas de combustible más prometedoras se clasifican como se muestra

Celda de combustible de óxido sólido (SOFC)	Celda de combustible de carbonato fundido (MCFC)	Tipo
Utiliza un material duro cerámico (Bióxido de circonio sólido) en lugar de un electrólito líquido permitiendo que la temperatura de operación sea muy elevada. El ion transferido es el lón Oxido (O ²) Emplean materiales cerámicos porosos recubiertos de membranas de óxido de itrio y circonio como electrolitos (ZrO ₂ / Y ₂ O ₃). La potencia generada es 100-250 kW	Carbonatos de litio y potasio o de litio y sodio, los cuales presentan una elevada conductividad iónica en estado fundido. El ion transferido es el carbonato (CO ₃ ²⁻). La potencia generada es 100 kW – 2 MW.	Electrolito
Se puede utilizar el monóxido de carbono residual como combustible. Las eficiencias de generación de potencia pueden alcanzar un 45 – 65%. El ánodo consiste en una placa compuesta de níquel y óxido de circonio (Ni / ZrO ₂), mientras que el cátodo está formado por un óxido de manganeso y lantano (La MnO ₃). El sistema tolera la llegada hasta el ánodo del combustible sin reformar, por lo que no se requieren catalizadores de reformado de altas prestaciones. Puesto que en este tipo de celdas el electrolito es sólido, se eliminan los problemas derivados de la corrosión asociada al electrolito, a la vez que se dificulta la difusión de los gases de un electrodo a otro. Asimismo, se mejora la estabilidad dimensional del sistema y se evitan inundaciones en los electrodos. En contrapartida, las altas temperaturas en los materiales de la celda.	Se emplean electrodos porosos de níquel u óxido de níquel (ánodo de Ni – Cr sint., Ni – Cu. Cátodo de NiO). Eficiencia limitada (entre el 50 - 60%). En el cátodo, además del oxígeno, se alimenta dióxido de carbono. Este gas se recupera posteriormente en el ánodo, con el inconveniente que esto plantea de cara a la regulación automática del proceso. Por otro lado, el monóxido de carbono producido durante el reformado del combus- tible puede ser alimentado directamente a la celda, donde se comporta como un combus- tible, lo que supone una considerable ventaja.	Características especiales
Generación de electricidad centralizada y descentralizada. Potencia y calor combinados. Una prueba de 100kW está siendo terminada en Europa mientras que dos pequeñas unidades de 25kW se encuentran ya en línea en Japón	Generación de electricidad centra-lizada y descentralizada. Potencia y calor combinados.	Aplicaciones

2 ĥ hurdihle (mat)

25

2. 1. 5. Ventajas y desventajas de las celdas de combustible

Ventajas

Las celdas de combustible ofrecen una serie de ventajas respecto de los sistemas tradicionales de producción de energía. Entre las más importantes podemos señalar:

- Alta eficiencia energética: Las celdas de combustible no son máquinas térmicas, por lo que su rendimiento no está limitado por el ciclo de Carnot, pudiendo acercarse teóricamente al 100%. Sólo las limitaciones en el aprovechamiento de la energía generada y en los materiales empleados en su construcción impiden alcanzar este valor.
- Bajo nivel de contaminación medioambiental: Al estar sustituida la combustión a alta temperatura de combustibles fósiles por una reacción electroquímica catalizada entre el H₂ y el O₂, no existe emisión de gases contaminantes (óxidos de nitrógeno y azufre, hidrocarburos insaturados, etc), con lo que el impacto sobre el medio ambiente es mínimo. Es éste, el aspecto más atractivo de las celdas de combustible.
- Carácter modular: La disponibilidad de las celdas de combustible como módulos independientes supone una ventaja adicional, ya que un cambio de escala en la potencia requerida se consigue fácilmente mediante la interconexión de módulos.
- Flexibilidad de operación: Una celda de combustible puede funcionar a alto rendimiento y sin interrupción en un amplio rango de potencias suministradas. Además, pueden realizarse variaciones rápidas de potencia; por ejemplo, es posible aumentar la potencia de una celda de combustible en un 10% en tan sólo un segundo. En contraste, los sistemas convencionales son muy inflexibles, debiéndose mantener la carga de combustible siempre por encima del 80% para garantizar una correcta operación.
- Admisión de diversos combustibles: Cualquier combustible es apto para ser reformado, con tal de que incluya H₂ en su composición. Han sido empleados con éxito combustibles como el gas natural, el gasóleo o el metanol.
- Funcionamiento silencioso: se ha estimado que el nivel de ruido a 30m de una celda de combustible de tamaño medio es de tan sólo 55 decibelios. Ello sugiere el uso de estos dispositivos para la generación de energía en recintos urbanos.
- Bajo impacto estético: Al no existir tubos de emisión de gases ni torres de refrigeración, el impacto visual de una planta de producción de energía basada en celdas de combustible es mínimo. Se ha llegado incluso a proponer su integración en edificios residenciales.

- Fiabilidad: Los sistemas informáticos de control permiten automatizar el funcionamiento de una celda de combustible, siendo mínima la intervención manual requerida.
- Sencillez de instalación: Las obras de infraestructura son prácticamente innecesarias.
- Recuperación del calor producido. Dado que la reacción de producción de agua, se realiza en forma exotérmica, es posible, recuperar la energía producida en cada celda de combustible.
- El mantenimiento de una eficiencia constante independientemente del tiempo de operación.

En cuanto a las aplicaciones en automóviles, se tienen las siguientes ventajas:

- Se tienen eficiencias de hasta el 60% en comparación con la media del 30% de los motores de combustión interna.
- Los vehículos que utilizan sólo H₂ como combustible para alimentar las celdas se pueden considerar como vehículos con cero emisiones contaminantes.
- La autonomía de los prototipos es bastante aceptable (hasta de 500 km, con un sólo tanque de combustible).
- No requiere de una recarga, sólo se vierte el combustible al tanque como en auto de combustión interna.

Desventajas

- Tecnología emergente: Determinados problemas aún no resueltos afectan al funcionamiento de las celdas de combustible, lo que repercute en su comercialización.
- Alto costo: Al tratarse de una tecnología en desarrollo y al existir todavía una baja demanda de unidades, su precio no puede, hoy en día, competir con el de las tecnologías convencionales. Es de esperar que, conforme la demanda se incremente, los precios se equiparen.
- Sensibilidad hacia los venenos catalíticos: Los electrodos empleados incorporan catalizadores para favorecer el desarrollo de las reacciones electroquímicas. El contacto de estas sustancias con los llamados venenos catalíticos, tales como el monóxido de azufre o los compuestos de azufre, provoca su inactivación irreversible. En la actualidad se trabaja en la sustitución de estos catalizadores por materiales más resistentes.

- El incremento de aditamentos (reformador, baterías, entre otros) aumenta el peso del vehículo.
- La poca disponibilidad de H₂.

2. 1. 6. Celdas de combustible de óxido sólido (SOFC)

Las Celda de Combustible de Óxido Sólido (SOFC), podrían ser usadas en aplicaciones de alta potencia incluyendo estaciones de generación de energía eléctrica a gran escala e industrial. Un sistema SOFC (ver figura 2. 4) utiliza un material duro cerámico en lugar de un electrolito líquido permitiendo que la temperatura de operación alcance los 1000°C, por lo que las posibilidades de recuperación de calor para cogeneración son muy importantes. Se comporta como las celdas de electrolito alcalino. Las eficiencias de generación de potencia pueden alcanzar un 60%. Un tipo de SOFC utiliza un arreglo de tubos de un metro de longitud mientras que otras variaciones incluyen un disco comprimido semejando la parte superior de una lata de sopa. Este tipo de celdas de combustible presenta los menores requerimientos con respecto a la pureza de los combustibles. Sin embargo, presentan restricciones severas a los materiales que deben emplearse debido a la alta temperatura que desarrollan.

Las SOFC están basadas en las propiedades termo-electroquímicas de algunos óxidos en cuya estructura cristalina forma parte básica la presencia de defectos de O₂, lo cual se traduce en unos apreciables valores de conductividad iónica a través del movimiento térmicamente activado de dichas vacantes de O₂.

Figura 2. 4. Esquema de una Celda de Combustible de Óxido Sólido (SOFC) (Adaptación de Singhal and Kendall (2003), p. 198)

Como consecuencia de este mecanismo, la conductividad es lo suficientemente alta para el correcto funcionamiento de una celda a temperaturas que normalmente rebasan los 500°C. Existen diferentes óxidos con conducción iónica por vacantes de O₂. La mayoría de ellos tienen estructura tipo fluorita, aunque ciertos óxidos dobles o triples con estructura tipo perovskita también muestran una alta conductividad.

Las SOFC representan el grupo de dispositivos de generación eléctrica por vía electroquímica con las mayores potencialidades para la instalación de plantas de potencias alta y media, debido a la alta temperatura de funcionamiento y a las elevadas densidades de corriente que pueden desarrollar.

Las tendencias actuales caminan hacia la aplicación de dos tipos de celdas:

- Celdas de alta potencia, 500-1000 kW, estacionarias, trabajando a alta temperatura, en las que el electrolito es YSZ y los electrodos son manganitas compatibles con el zirconio, los ánodos son de Cermet (Ni-YSZ), y la interconexión se lleva a cabo mediante cromitas de lantano modificadas con Magnesio [La(Cr,Mg)O₃]. Estas celdas son utilizables en edificios.
- Celdas de potencia media y baja potencia, 3-10 kW, movibles, trabajando a temperaturas intermedias, con electrolitos de ceria-Gd (Ce 0.9, Gd 0.1, O 1.95) y electrodos de manganitas y de cermets de Ceria-metal (Ni). Estas celdas pueden utilizarse en automoción, como motor auxiliar, y como generadores para ciertas funciones del automóvil. En este tipo de celdas se emplean electrolitos y electrodos más delgados, en forma de lámina gruesa e incluso delgada. La tecnología de lámina delgada permite la fabricación de dispositivos en donde pueden combinarse las mejores propiedades de ambos tipos de electrolitos.

En la tabla 2. 2, se muestran las características de operación de las SOFC sobre otras celdas de combustible.

Característica de operación	Ventajas		
Alta temperatura de operación	Permite el uso directo de hidrocarburos sin un reformador previo. Los gases de resultantes del stack es una fuente de energía usada comúnmente. Ambos como procesos de calentamiento o como la entrada a un ciclo bajo para generación de electricidad.		
Alta densidad de potencia,	Reduce costos de materiales por unidad		
especialmente para diseños planos	de potencia generada.		
Uso de materiales cerámicos en la celda	Los materiales son estables en sus medios locales. Baja velocidad de inter-difusión que conlleva a baja velocidad de corrosión y larga vida. No es necesario un control de los electrolitos líquidos.		
Flexibilidad de combustible	Los sistemas SOFC pueden operar con diferentes combustibles sin extensivo procesamiento de combustible o modificación del diseño de la celda.		

Tabla 2. 2. Ventajas de las SOFC sobre otras celdas de combustible

2. 1. 7. Tipos de celdas de combustible de óxido sólido (SOFC)

En el desarrollo de la configuración de las SOFC, se tienen básicamente tres modelos: Tubular, Plana y Monolítica.

El arreglo de la configuración plana tiene algunas ventajas sobre la configuración tubular. Permite simples conexiones eléctricas en serie entre las celdas, baja perdidas ohmicas (perpendicular recolección de corriente en un stack) y en consecuencia tienen un mejor funcionamiento del stack y alta densidad de potencia. Este diseño plano tiene un bajo costo en los métodos de fabricación.

Pero tiene algunas desventajas en la construcción de stack debido a que presenta dificultades para la fabricación de capas planas y delgadas, y para la obtención adecuada de sellos para gas y de la tensión térmica en las interfaces entre los diferentes materiales deben de estar acomodados para prevenir la degradación mecánica en los componentes de la celda. Una SOFC plana es mostrada en la figura 2. 5.

Figura 2. 5. Celda de combustible de óxido sólido plana (Adaptación de Ahmed, et al. (1991))

En la figura 2. 6, se aprecia una SOFC tipo monolítico, la cual se comporta de igual forma que la plana, varia ligeramente en su estructura.

Figura 2. 6. Celda de combustible de óxido sólido monolítica (Adaptación de LI (2006), p. 484)

La principal ventaja de las SOFC tipo tubular es la larga longitud que puede ser construida. Una representación esquemática de la SOFC tubular es presentada en la figura 2.7.

Figura 2. 7. Celda de combustible de óxido sólido tubular. (Adaptación de Hirano, et al. (1992) y Hall and Colclaser (1999))

Los diseños anteriores varían únicamente en la geometría de la celda. Como cualquier otra celda de combustible las SOFC constan del cátodo, ánodo, electrolito, la interconexión o plato bipolar, y para algunos diseños tubulares el tubo de soporte.

2. 1. 8. SOFC Tubular

Operación de la celda tubular

El tubo de la celda, está cerrado por uno de sus extremos, para la operación de la celda el oxidante (aire u oxígeno) es introducido a través de un tubo central de inyección de alumina ubicado dentro de la celda. El combustible es introducido cerca del extremo cerrado de la celda y fluye en el exterior de la celda (ánodo) desde el extremo cerrado hasta el extremo abierto de la celda y en dirección paralela (co-flujo) al gas oxidante, generando electricidad. En el extremo abierto de la celda el oxígeno reducido del aire sale de ésta y se quema con el combustible parcialmente reducido. Una parte del combustible reducido es recirculado en la corriente del combustible y el restante es consumido para pre-calentar las corrientes de aire o combustible que entran a la celda, como se puede apreciar en la figura 2. 8. Este diseño resulta en una larga trayectoria de corriente alrededor de la circunferencia de la celda hacia el interconector, limitando el funcionamiento.

Flgura 2. 8. Principio de operación de una SOFC (Adaptación de Hirano, et al. (1992))

La energía eléctrica producida depende de varios parámetros incluyendo la concentración de las especies de reacción. Este diseño resulta en una larga trayectoria de corriente alrededor de la circunferencia de la celda hacia el interconector. Como se muestra en la figura 2. 9.

Figura 2. 9. Trayectoria de la comente en una SOFC tubular (Adaptación de Hall and Colclaser (1999))

El diseño tubular que se ha desarrollado por Westinghouse Electric Corporation (ahora Siemens Westinghouse Power Corporation), es el más importante, sigue las técnicas convencionales de la manufactura de la cerámica. Los tubos son manufacturados individualmente y entonces ensamblado en un armazón. Por medio de una conexión mecánica se juntan los tubos. En la figura 2. 10, se aprecia un stack desarrollado por dicha compañía.

Figura 2. 10. SOFC tubular desarrollada por Westinghouse (Adaptación de Sundén and Faghri (2005), p. 87)

Los componentes de la celda tubular se colocan sobre un tubo en forma de delgadas capas. Los diseños actuales de las celdas tubulares han reemplazado el tubo de soporte poroso por un tubo de LaMnO₃ que es a la vez el electrodo del aire (cátodo) y soporte de la celda. Al eliminar el soporte del tubo, la longitud activa de interconexión se incremento a 150 cm para los prototipos comerciales actuales, el diámetro de la celda paso de 1.6 cm a 2.2 cm. El cátodo (2.2 cm diámetro, 2.2 mm grosor cerca de 180 cm de longitud) se fabrica por extrusión y sinterizacion para obtener una porosidad aproximada de 30-35%. El electrolito es de zirconia dopado con 10%mol de ytria (YSZ), es una delgada capa de 40µm de grosor. La técnica para depositar el electrolito sobre el cátodo, es muy costosa y resulta ser una limitante para la fabricación en gran escala de las SOFC tubulares. El ánodo esta fabricado de Ni/YSZ, con un grosor de 100 a 150µm de grosor es depositada sobre el electrolito. El interconector es manufacturado por cromita dopado con lantano, tiene 85µm de grosor, 9 mm de anchura a lo largo del ánodo.

Diseño de SOFC tubulares

Existen dos principales diseños de SOFC tubulares, las microtubulares y las tubulares; se diferencian por el diámetro, es decir, las tubulares miden más de 15mm de diámetro, en tanto que las microtubulares miden menos de 5 mm.

2. 2. DINÁMICA DE FLUIDOS COMPUTACIONAL

La Dinámica de Fluidos Computacional [Computational Fluid Dynamics (CFD)], es el análisis a través de la simulación del comportamiento de los fluidos en movimiento y de sus fenómenos asociados: transferencia de calor, flujos bifásicos, combustión, mezcla, etc. Está constituida por muchas disciplinas diferentes, desde las áreas de la aeronáutica, hidrodinámica, matemáticas, mecánica y ciencias de la computación.

La solución de los problemas de mecánica de fluidos mediante métodos numéricos, requiere de gran escala de cómputo o también denominado supercómputo. La dificultad particular de la CFD es la generación o creación de la solución, donde esta solución generada es usualmente analizada y visualizada.

Las ecuaciones que gobiernan el flujo de fluidos en diferentes condiciones, han sido estudiadas desde hace más de un siglo. Las ecuaciones más generales se conocen como ecuaciones de Navier-Stokes. A pesar de la atención que estas ecuaciones han recibido, hasta nuestros días no ha sido posible encontrar soluciones analíticas exactas, y sólo en casos ideales especiales se tienen algunos resultados. Actualmente, muchos de los estudios sobre flujo de fluidos se realizan usando métodos numéricos. Esto significa que las ecuaciones gobernantes se transforman en ecuaciones equivalentes, las cuales se pueden resolver utilizando técnicas especiales y las soluciones así obtenidas aproximan a las soluciones de las ecuaciones originales.

Los métodos numéricos no son exclusivos de la dinámica de fluidos, pues es posible aplicar las mismas técnicas en otras áreas de la ciencia, tales como la dinámica molecular y el procesamiento de imágenes, entre otras. Sin embargo, mucho del desarrollo en las teorías numéricas se debe al deseo de resolver problemas de dinámica de fluidos, como es el caso de la turbulencia.

Hoy en día, debido al desarrollo de las computadoras digitales, se han podido resolver problemas muy complejos que semejan bastante a la vida real, de tal manera que en muchos casos se ha optado por recurrir a la simulación en computadora y sustituir en cierta forma algunos experimentos. Sin embargo, la experimentación siempre será la manera de comprobar resultados analíticos y numéricos.

Esta modelización puede aportar grandes beneficios en muchos campos de la ingeniería. Entre otros se pueden citar: aerodinámica e hidrodinámica de vehículos y embarcaciones; conducción de fluidos en procesos industriales; combustión y transferencia de calor en calderas e intercambiadores; bombas, ventiladores, compresores y turbinas; procesos de mezcla y separación en la industria química; efectos del viento sobre edificios y estructuras; climatización de vehículos y edificios; ventilación de túneles; propagación de humos en incendios; dispersión de contaminantes y efluentes; refrigeración de equipos eléctricos y electrónicos; flujos en elementos de automoción: motores, amortiguadores, etc.

Su uso permite realizar estudios que, por otros medios son muy costosos o imposibles. En nuevos diseños puede reducir considerablemente el número de ensayos necesarios. Permite la obtención de datos en posiciones inaccesibles para la experimentación y la prueba de nuevas geometrías con costos y tiempos mínimos.

35

Hasta hace poco las técnicas de CFD estaban limitadas a especialistas, aunque en la actualidad, tanto por las mejoras de hardware como de software, ya es posible su utilización industrial. La obtención de resultados adecuados impone una metodología de validación y análisis que requiere un profundo conocimiento de la dinámica de fluidos.

2. 2. 1. Principales técnicas de resolución numérica

Actualmente está generalizado el uso de varias de técnicas de resolución numérica:

Método de diferencias finitas

Su formulación se basa en las ecuaciones diferenciales. Este método se basa en el uso de series de Taylor para construir un conjunto de ecuaciones que describen las derivadas de una variable mediante las diferencias entre los valores de las variables en varios puntos en el espacio o tiempo. Las expansiones en series de Taylor pueden utilizarse para determinar el valor de la variable dependiente mediante el valor de la variable independiente a una distancia pequeña del valor de referencia.

A forma de ejemplificar, la variable dependiente U varia con la variable independiente (la distancia x). Consideraremos los puntos situados a una pequeña distancia h entre el punto central. Estos puntos son situados a (x + h) y (x - h) a lo largo del eje x, entonces la expansión en series de Taylor para la variable U en los dos puntos son:

$$U(x+h) = U(x) + h \frac{dU}{dx} + \frac{1}{2}h^2 \frac{d^2U}{dx^2} + \frac{1}{6}h^3 \frac{d^3U}{dx^3} + \dots$$
(2.1)

У

$$U(\mathbf{x}-\mathbf{h}) = U(\mathbf{x}) - \mathbf{h}\frac{dU}{d\mathbf{x}} + \frac{1}{2}\mathbf{h}^2\frac{d^2U}{d\mathbf{x}^2} - \frac{1}{6}\mathbf{h}^3\frac{d^3U}{d\mathbf{x}^3} + \dots$$
(2.2)

Donde:

h = un pequeño desplazamiento en la dirección x

La derivada de *U* se toma en el punto *x*. Sumando o restando estas dos expresiones, se encuentran nuevas ecuaciones para la primera y segunda derivadas respectivamente en el punto central *x*. Estas derivadas son:

 $\frac{dU}{d\mathbf{x}} = \frac{1}{2h} (U(\mathbf{x} + \mathbf{h}) - U(\mathbf{x} - \mathbf{h})) + O(\mathbf{h}^2)$

$$\frac{d^2U}{dx^2} = \frac{1}{h^2} \left(U(x+h) - 2U(x) + U(x-h) \right) + O(h^2)$$
(2.3)

(2.4)

Donde: $O(h^n) =$ términos de orden n

La distancia *h* debe ser pequeña, por lo que éstos términos son muy pequeños y por lo tanto despreciados. Es importante señalar que la eliminación de tales términos conduce a errores en los cálculos numéricos debido a que la ecuación de las derivadas es truncada.

A partir de la ecuación de la expansión en series de Taylor, la derivada de primer orden puede ser constituida de la siguiente forma:

$$\frac{dU}{dx} = \frac{1}{h} \left(U(x+h) - U(x) \right) + O(h)$$
(2.5)

En forma análoga para la otra derivada de primer orden, se tiene:

$$\frac{dU}{dx} = \frac{1}{h} (U(x) - U(x - h)) + O(h)$$
(2.6)

Estas cuatro expresiones son conocidas como las formulas de diferencias e involucran el cálculo de derivadas usando la diferencia entre los valores de la variable tomada en varios puntos, describen algunas de las derivadas de la variable *U* en algún punto *x* por los valores de la variable en el punto mismo, un punto atrás del mismo y un punto delante de este, como se muestra en la figura 2. 11.

Figura 2. 11. Localización de los puntos para la serie de Taylor

Las formulas de diferencias son clasificadas en dos formas:

- Por la relación geométrica de los puntos
- Por la exactitud de las expresiones

Las ecs. 2.3 y 2.4, son formulas de diferencia central y de segundo orden de exactitud. La ec. 2.5, es una formula de diferencia hacia delante y la ec. 2.6, es una formula de diferencia hacia atrás; ambas expresiones son de primer orden de exactitud.

El dominio puede incluir la dirección del tiempo así como la dirección espacial y una ecuación diferencial parcial que fue validada en el dominio completo, es decir en un

infinito número de puntos, pueden ser trasladados en un número finito de ecuaciones que dan la relación entre las variables en un conjunto finito de puntos del dominio.

Método del elemento finito

Su formulación se basa en las ecuaciones diferenciales. En este método, el dominio de la ecuación diferencial es dividido en un número finito de sub-dominios conocido como elementos. Sobre cada elemento se supone una simple variación de las variables dependientes y esta descripción es usada para construir el esquema de la forma en la que las variables varían sobre el dominio completo. Este método fue desarrollado para resolver problemas de ingeniería estructural, sin embargo, ha sido ampliado en forma general para resolver una extensa variedad de ecuaciones diferenciales parciales.

Las ecuaciones numéricas producidas para cada elemento de datos en puntos conocidos en los elementos y en ninguna parte mas, en consecuencia no hay restricción en como los elementos son conectados mientras las caras de los elementos vecinos son alineados correctamente. Se pretende que las caras entre los elementos deben de tener los mismos nodos para cada uno de los elementos colindantes. Esta flexibilidad de elementos colocados permite un grupo de elementos para modelar una geometría muy compleja.

Para transformar una ecuación diferencial parcial en su análogo numérico por medio del método del elemento finito, se considerará la ilustración de la figura 2. 12, en donde la variable U se supone que varia en forma lineal, entonces se describirá el valor de U en un punto a lo largo de la ilustración como una función de la longitud a lo largo del eje x y los valores de U que son conocidos en el punto final de la ilustración, estas posiciones las cuales son usadas como posiciones de referencia en la ilustración se conocen como los nodos de los elementos.

Figura 2. 12. Elemento lineal con dos nodos

La variación lineal es mostrada en la figura 2. 12, sin embargo hay ecuaciones diferenciales parciales de orden superior cuyos términos incluyen segundas derivadas. Las derivadas de orden superior se transforman en derivadas de orden menor por medio de una formulación variacional, en donde, la ecuación diferencial parcial es multiplicada por una función desconocida (v), entonces la ecuación puede ser integrada sobre el dominio de interés (Ω), finalmente los términos que necesiten reducir el orden de sus derivadas son integrados por partes.

Método de volumen finito (MVF)

Su formulación se realiza a partir de las ecuaciones de conservación en su forma integral, cuyas diferencias estriban fundamentalmente en la forma de aproximar las variables de flujo y en el proceso de discretización empleado. Este método es similar al método de diferencias finitas pero algunos implementos son tomados del método del elemento finito. En la práctica este método puede ser visto como una combinación de los otros dos métodos. Este método fue desarrollado para resolver las ecuaciones de transferencia de calor y flujo de fluidos.

Esencialmente las ecuaciones diferenciales parciales gobernantes son convertidas en forma numérica por una transformación basada físicamente de las ecuaciones. Por ejemplo la ecuación de momento puede ser considerada como una serie de fluxes en un volumen del fluido junto con un término de fuente el cual es el gradiente de presión.

La aplicación del MVF a códigos CFD está ampliamente extendida y aceptada, sobre todo en el ámbito de desarrollo de códigos comerciales.

Se tomará como ejemplo la ecuación de difusión dependiente del tiempo:

$$\frac{\partial U}{\partial t} = \frac{\partial^2 U}{\partial x^2} \tag{2.7}$$

El primer paso en el proceso de transformación es la diferencia hacia adelante en tiempo, la cual es usada para transformar el lado izquierdo de la ec. 2.7, igual como se realiza en el método del elemento finito. Entonces se forma un volumen finito en la dirección x. Un volumen finito típico es mostrado en la figura 2. 13, donde el centroide del volumen, punto P, es el punto de referencia, al cual debemos encontrar el análogo numérico de la ecuación diferencial parcial.

El volumen finito unidimensional es centrado en P, este tendrá una cara de frontera a la mitad entre los puntos W y P que es el punto denominado w, y otra cara de frontera entre el punto P y E es decir, el punto e.

La segunda derivada de una variable en P puede ser calculada como la diferencia de la primera derivada de la variable, que es calculada en las caras del volumen, la cual da:

$$\left(\frac{\partial^2 U}{\partial x^2}\right)_P = \frac{\left(\frac{\partial U}{\partial x_e} - \frac{\partial U}{\partial x_w}\right)}{x_e - x_w}$$
(2.8)

El subíndice se refiere a la posición a la cual las cantidades son conocidas o calculadas. En forma similar la primera derivada en las caras del volumen puede ser tomada como la diferenciada en los valores de la variable en los centroides del volumen vecino para dar:

$$\left(\frac{\partial U}{\partial x}\right)_{e} = \frac{u_{E} - u_{P}}{x_{E} - x_{P}}$$
(2.9)

У

$$\left(\frac{\partial U}{\partial x}\right)_{w} = \frac{u_{P} - u_{W}}{x_{P} - x_{W}}$$
(2.10)

Estas expresiones son para las derivadas, pueden ser usadas para producir el análogo numérico de la ec. 2.7 en el punto P. Este análogo puede ser formado usando una versión de las técnicas de los pesos promediados que se usan con la transformación de la diferencia finita, dando ambos un esquema explicito o implícito. La misma técnica puede ser usada para proceder cuando las condiciones de frontera e iniciales se conocen.

2. 2. 2. Comparación de las técnicas de discretización

Características comunes a los tres métodos de discretización

- Producen ecuaciones para los valores de las variables en un número finito de puntos en el dominio bajo consideración.
- Requiere que se establezcan condiciones iniciales para empezar el cálculo del problema dependiente del tiempo.
- Requiere del conocimiento de las condiciones de frontera del problema así que se puede encontrar los valores de las variables en las fronteras.
- Se pueden producir formas implícitas o explicitas. Si se produce una forma implícita entonces, debe ser resuelto un conjunto de ecuaciones simultáneas.

Diferencias entre los métodos

El método de diferencias finitas y el de volumen finito ambos producen ecuaciones numéricas a un punto dado basado en los valores de los puntos vecinos mientras que el método del elemento finito produce ecuaciones para cada elemento independiente de los otros elementos. Esto es sólo cuando las ecuaciones del elemento finito son juntadas y ensambladas en matrices globales de tal forma que la interacción entre los elementos es tomada en cuenta.

El método del elemento finito se encarga de la derivada de las condiciones de frontera cuando las ecuaciones elementales son formadas, entones las valores fijos de las variables deben ser aplicadas a las matrices globales. Esto contrasta con los otros dos métodos los cuales pueden fácilmente aplicar las condiciones de frontera de valores fijos insertando los valores en la solución, pero debe modificar las ecuaciones para tomar en cuenta las condiciones de frontera derivadas.

2. 2. 3. Etapas de la aplicación de un código CFD

La aplicación de un código CFD requiere la consecución de las siguientes etapas generales:

Pre-procesamiento

- 1. Establecimiento de las hipótesis de partida y justificación de las mismas
- 2. Introducción de la geometría de estudio
- 3. Generación de una malla para discretizar las superficies y volúmenes
- 4. Establecimiento de las condiciones de contorno
- 5. Introducción de las propiedades físicas necesarias

Procesamiento

6. Discretización de las ecuaciones que describen los fenómenos físicos y químicos a modelizar (campo fluido, combustión, radiación)

7. Resolución de las ecuaciones discretizadas por métodos numéricos

Post-procesamiento

8. Obtención y visualización de resultados. La solución que se obtiene tras este proceso es el valor de todas las variables en cada nodo de la malla.

Todas las etapas anteriores es posible resolverlas, en la actualidad por medio de programas comerciales.

2. 3. COMPUTATION OF CONDUCTION AND DUCT FLOW HEAT TRANSFER "CONDUCT"

El programa Conduct, desarrollado por Patankar (1988), se encuentra disponible en la red, en éste, el método numérico de solución de las ecuaciones diferenciales parciales (EDP), están empaquetadas en el programa de cómputo, lo cual representa una alternativa rápida y económica a la medición experimental. Para el uso del programa se debe de tener conocimiento tanto del fenómeno físico, como del método numérico de solución.

Las ecuaciones que expresan los diversos balances, pueden ser representados en forma general para la variable ϕ (en coordenadas cilíndricas) por la siguiente ecuación de transporte (ec. 2.10).

$$\frac{\partial(\lambda\phi)}{\partial t} + \left[\frac{\partial(\rho v_{z}\phi)}{\partial z}\right] + \left[\frac{1}{r}\frac{\partial(\phi r\rho v_{r})}{\partial r}\right] - \left[\frac{\partial}{\partial z}\left(\Gamma^{\phi}\frac{\partial\phi}{\partial z}\right)\right] - \left[\frac{1}{r}\frac{\partial}{\partial r}\left(\Gamma^{\phi}r\frac{\partial\phi}{\partial r}\right)\right] = S_{\phi}$$
(2.10)

Donde:

- ϕ = variable dependiente por determinar
- t = tiempo
- z = coordenada axial
- r = coordenada radial
- $\rho = densidad$
- v_z = velocidad en dirección axial
- vr = la velocidad dirección radial
- S_{ϕ} = termino fuente
- $\Gamma^{\dot{\phi}}$ = variable que corresponde al termino difusivo
- λ = termino que corresponde al termino de acumulación

Restricciones de conduct

Resuelve problemas 1D y 2D

Flujo laminar o turbulento

Estado estable e inestable

Problemas tipo conducción de calor es decir, problemas donde la propiedad se transporta por difusión

Sistema de coordenadas

Cartesianas (x, y) axisimétrico (x, r) polar (θ , r)

2. 3. 1. Estructura del programa Conduct

El programa tiene dos partes básicas, la invariante y la ADAPT, en la parte invariante, como su nombre lo indica es la parte la cual no varia en ninguno de los casos de estudio, y tan sólo el usuario se centra en la parte de ADAPT, como se muestra en la

figura 2. 14. La parte de ADAPT, a su vez esta integrada por cuatro subrutinas, mismas que se explican a continuación.

Figura 2. 14. Diagrama de flujo del programa CONDUCT

Subrutinas de la parte invariante

Calcula cantidades geométricas de uso frecuente en el programa READY

- HEART Prepara los coeficientes a_E, a_W, etc.
- SOLVE Resuelve las ecuaciones nodales (algebraicas)
- Define malla de espaciados variables, impresión TOOLS
- VALUES Asigna valores por default

S ...

Subrutinas de la pa	nte adaptativa	
GRID	Define la malla Se uti	lizan solamente una vez
Especifica:		
MODE	Indicador del sistema de coordenadas	= 1 para xy; = 2 para xr; = 3 para θr
L1	Valor de I para la línea del mallado de la frontera derecha	(4 ≤ L1 ≤ NI)
M1	Valor de J para la línea del mallado de la frontera superior (de arriba)	(4 ≤ M1 ≤ NJ)
XU(I)	Valor de X en la cara del volumen de control	l = 2, L1
YV(J)	Valor de Y en la cara del volumen de control	J = 2, M1
R(J) = R(1)		(I, J) para MODE = 2

• • (•)		de control	
R(J) = R(1) sólo MODE ≠ 1	si	Radio r para un punto del mallado	(I, J) para MODE = o 3; = 1 para MODE = 1
XL		Longitud en la dirección X para el dominio de calculo	·
YL		Longitud en la dirección Y para el dominio de calculo	

BEGINDefine valores inicialesDecide y da los valores para cada F(I, J, NF) para cada relevante valor de NFTITLE (NF)Titulo de 18 caracteres para F(I, J, NF)RELAX (NF)Factor de relajación α para F(I, J, NF)NTIMES (NF)Número máximo de repeticiones en SOLVECRIT (NF)Constante para el criterio de convergencia usado en SOLVE

Si los valores default no son aceptables. Llena todos los relevantes arreglos F(I, J, NF) con valores iniciales, usando los valores correctos de frontera si son conocidos.

OUTPUT Imprime la salida una vez cada iteración

Arregla las salidas deseadas. También actualiza las cantidades por cambiar en cada iteración. Es en esta subrutina en donde se puede calcular el número de Nusselt, el factor de fricción, el flujo de calor total, la temperatura media, etc.

KSOLVE (N	IF) Cu res	lando ≠ 0, la ecuación general de d suelta	iscretización es
KPRINT (N	F) Cu	ando ≠ 0. F(I, J, NF) es impresa	
F (I, J, NF)	Va	arios \$`s	
	Define 7	L, Γ, S y condiciones de frontera	
ALAM(I, J)	λ	Capacidad de almacenaje de λ por unidad de volumen	Para I = 2, L2
GAM(LJ)	Г	Coeficiente de difusión	y J = 2, M2
SC(I, J)	$\hat{\mathbf{S}}_{c}(\mathbf{I},\mathbf{J})$	Termino de fuente Sc	Sc = 0 (valor por
SP(I, J)	S _p (I, J)	Coeficiente de fuente Sp S = $s_c + s_p \phi_p$	default) Sp = 0 (valor por default)
KBCI1(J)	Indicador	r para la frontera izquierda	
KBCL1(Ĵ)	Indicador	para la frontera derecha	= 1 para φ _B dado;
KBCJ1(Ì)	Indicado	para la frontera inferior	= 2 para f _c y f _p
KBCM1(I)	Indicado	para la frontera superior	
FLXC(I, J)			fc = 0 (valor por
	Constant	e del flux de frontera	default)
FLXP(I, J)		$J_{B} = f_{c} + f_{p}\phi_{B}$	fp = 0 (valor por default)

2. 3. 2. Discretización de la ecuación general

PHI

La discretización de la ecuación relaciona los valores de F(I, J, NF) en un punto del mallado y los valores de los cuatro puntos del mallado de los puntos vecinos (ver figura 2. 15). El arreglo F(I, J, NF) será usado para almacenar los valores de los diferentes ϕ 's donde I y J denotan la localización del punto del mallado, NF identifica una particular clase de ϕ tal como la temperatura, velocidad, energía cinética turbulenta, etc.

La ecuación es derivada por integración de la ec. 2.10, sobre el volumen de control alrededor de (I, J):

$$\lambda \frac{\partial \phi}{\partial t} = \left[\frac{\partial}{\partial x} \left(\Gamma \frac{\partial \phi}{\partial x} \right) \right] + S_{\phi}$$
(2.11)

2. 3. 3. Ecuación de conservación sobre el volumen de control

Un volumen de control típico es mostrado en la figura 2. 15. La integración de la ec. 2.10 sobre el volumen de control resulta:

Figura 2. 15. Volumen de control típico

$$\lambda_{p}\left(\phi_{P}-\phi_{P}^{0}\right)\left(\frac{\Delta V}{\Delta t}\right)=J_{w}A_{w}-J_{e}A_{e}+J_{s}A_{s}-J_{n}A_{n}+S\Delta V$$
(2.12)

Donde:

J's = fluxes difusivos que atraviesan las caras del volumen de control

S = termino fuente promedio sobre el volumen de control

 Δv = volumen del volumen de control

A's = áreas de las caras del volumen de control.

El superíndice 0 denota el valor conocido en el inicio del paso de tiempo Δt

Para los tres sistemas de coordenadas, las áreas y el volumen de control pueden ser calculados en términos de cantidades geométricas almacenadas en el programa. Así:

 $A_{e} = Aw = ARX(J)$ $A_{n} = RV(J+1)*XCV(I)$ $A_{e} = RV(J)*XCV(I)$ $\Delta V = YCVR(J)*XCV(I)$

Donde se supone que el punto P en la figura 2. 16, corresponde a (I, J).

2. 3. 4. Flux de Difusión

Los fluxes de difusión en las caras del volumen de control e y w se pueden calcular como:

$$J_{e}A_{e} = D_{e}(\phi_{P} - \phi_{E})$$
 (2.13)

$$J_{W}A_{W} = D_{W}(\phi_{W} - \phi_{P})$$
(2.14)

La cantidad D_e es la conductancia de difusión de la unión PE y es calculada del valor especificado de Γ en el punto P y E. Con referencia a las distancias $\delta_{e^{-}}$ y $\delta_{e^{+}}$ mostradas en la figura 2.16, D_e es dada por:

$$D_{e} = A_{e} \left[\left(\frac{\delta_{e}}{\Gamma_{P}} \right) + \left(\frac{\delta_{e^{+}}}{\Gamma_{E}} \right) \right]^{-1}$$
(2.15)

Las definiciones de D en las otras interfaces se construirán en similar manera. Para los fluxes $J_n y J_s$, aplican ecuaciones análogas a las 2. 3 y 2. 4.

2. 3. 5. Linearización del término de fuente

El término de fuente S puede depender de ϕ , por lo que es deseable incluir una dependencia linear (nominal) de S en ϕ . Para este propósito, el término de fuente S se escribe de la siguiente forma:

$$S = S_{C} + S_{P}\phi_{P} \tag{2.16}$$

Donde:

 S_P = coeficiente de ϕ_P

 S_{c} = parte de S que no depende explícitamente de $\phi_{P_{c}}$

Si la linearización no es deseable, simplemente se asienta $S_P = 0$, igualando \overline{S} a S_C . En ningún caso, S_P debe ser una cantidad positiva. Cuando $S \sim \phi$ la relación no es realmente lineal, el desarrollo lineal nominal dado en la ecuación 2.16, implica que $S_C y$ S_P son por ellas mismas funciones de ϕ_P . Son calculados de la corriente estimada de ϕ_P y son actualizadas iterativamente en la forma en que la solución progresa hacia la convergencia.

2. 3. 6. Ecuación de discretización final

La sustitución de las expresiones para las J's y para \tilde{S} en la ec. 2.16, conduce a la forma final de la expresión de discretización. Esta es escrita como:

$$\mathbf{a}_{P}\phi_{P} = \mathbf{a}_{E}\phi_{E} + \mathbf{a}_{W}\phi_{W} + \mathbf{a}_{N}\phi_{N} + \mathbf{a}_{S}\phi_{S} + \mathbf{b}$$
(2.17)

Donde $a_E = D_e$ $a_W = D_W$ $a_N = D_n$ $a_S = D_s$ $b^- = S_C \Delta V + a_P^0 \phi_P^0$ $a_P^0 = \frac{|\lambda_P \Delta V|}{\Delta t}$

$$\mathbf{a}_{\mathsf{P}} = \mathbf{a}_{\mathsf{E}} + \mathbf{a}_{\mathsf{W}} + \mathbf{a}_{\mathsf{N}} + \mathbf{a}_{\mathsf{S}} + \mathbf{a}_{P}^{0} - \mathbf{S}_{\mathsf{P}}\Delta\mathsf{V}$$
(2.18)

Las conductancias de difusión D_e, D_w, D_n y D_s son definidas a lo largo de la ec. 2.15. El coeficiente a_P^0 resulta del término no estable. Si Δ t iguala a un número muy grande, a_P^0 se vuelve despreciable y la ecuación se reduce a una situación de estado estable. En conduct, el valor por default de Δ t es 1e30, el cual es apropiado para problemas de estado estable.

En forma compacta la ec. 2. 17, se escribe como:

$$\mathbf{a}_{\mathbf{P}}\phi_{\mathbf{P}} = \sum \mathbf{a}_{\mathbf{n}\mathbf{b}}\phi_{\mathbf{n}\mathbf{b}} + \mathbf{b}$$
 (2.19)

Donde:

nb = un punto vecino del punto P en el mallado Y la sumatoria es tomada sobre los cuatro vecinos.

CAPÍTULO 3

PRINCIPIOS TERMODINÁMICOS

En este capítulo se realizará una revisión de los principios termodinámicos de las celdas de combustible.

En la primera parte, se revisa el cambio de energía libre y el cambio de entalpía en una SOFC, haciendo un breve recordatorio de los potenciales termodinámicos que involucran las celdas de combustible, para llegar al análisis del trabajo eléctrico generado en la celda.

En la segunda parte, se realiza el análisis del efecto de la presión y temperatura en el potencial termodinámico reversible. Retomando los conceptos analizados en la primera parte.

En la tercera parte, se realiza el análisis de la eficiencia de las SOFC, es decir, se analizan los diversos mecanismos involucrados en las celdas, mismos que afectan su eficiencia, para finalmente establecer una eficiencia o rendimiento global que contempla a las anteriores eficiencias.

49

3. 1. ENERGÍA LIBRE Y CAMBIO DE ENTALPÍA DE REACCIÓN DE UNA SOFC

La energía libre de Gibbs es el potencial termodinámico que representa la energía neta que se debe de transferir para crear un sistema aislado, menos la energía dada por el ambiente, debida a la transferencia de calor espontánea, es decir, la energía libre de Gibas, representa la energía que se debe de transferir para crear un sistema, también representa la energía máxima que se debe de obtener del sistema, es decir, el trabajo potencial del sistema. La energía libre se puede definir como:

$$G = H - TS \tag{3.1}$$

Diferenciado la ecuación 3.1, resulta:

$$dG = dH - d(TS) \tag{3.2}$$

$$dG = d(U + PV) - TdS - SdT$$
(3.3)

$$dG = dU + PdV + VdP - TdS - SdT$$
(3.4)

Donde:

G = energía libre de Gibbs U = energía interna H = entalpía T = temperatura S = entropía P = presión V = volumen

Incluyendo tanto el trabajo mecánico como el trabajo eléctrico en la expresión para dU basados en la primera ley de la termodinámica, se obtiene:

$$dU - TdS - dW \tag{3.5}$$

$$dU = TdS - (pdV + dW_{elec}) \tag{3.6}$$

Sustituyendo la ec. 3.6 en la ec. 3.4, se obtiene:

$$dG = VdP - SdT - dW_{elec} \tag{3.7}$$

Para un proceso a T y P constantes la expresión anterior, se reduce a:

$$dG = - dW_{elec} \tag{3.8}$$

El trabajo eléctrico máximo que un sistema puede realizar en un proceso a temperatura y presión constantes esta dado por el negativo de la energía libre de Gibbs.

El potencial de un sistema para realizar trabajo eléctrico es medido por el voltaje (potencial eléctrico), el trabajo eléctrico realizado por el movimiento de una carga Q medido en coulombs, a través de una diferencia de potencial eléctrico E en volts,

$$W_{elec} = EQ \tag{3.9}$$

Si se supone que la carga es llevada por los electrones

$$Q = nF \tag{3.10}$$

Donde:

n = número de moles de los electrones transferidos

F =constante de Faraday

Sustituyendo en la expresión de la energía de Gibbs, resulta:

$$\Delta G = -\Delta W_{elec} = -nFE \tag{3.11}$$

La energía libre de Gibbs establece la magnitud para el voltaje reversible de una reacción electroquímica. Para una SOFC, resulta:

$$\mathsf{H}_2 + \frac{1}{2}\mathsf{O}_2 \to \mathsf{H}_2\mathsf{O}$$

El cambio en la energía libre de Gibbs es de -237 kJ/mol bajo condiciones de estado estándar para producir agua líquida. El voltaje reversible generado por una celda de combustible bajo condiciones estándar es:

$$E_{0} = -\frac{\Delta g_{ran}^{0}}{nl^{-}} = \frac{-237000 \frac{J}{mol}}{\left(2 \frac{mol \ e^{-}}{mol \ reactivo}\right) \left(96485.6 \frac{C}{mol}\right)} = 1.2282V$$

Otra forma alternativa de calcular E_{0} , es la siguiente:

$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O_{(vap)} \qquad \Delta h_f = -241.83 \text{ kJ/mol}$$

Sustituyendo valores, se obtiene:

$$E_{\circ} = \frac{-\Delta h_f}{2F} = \frac{241.83 \frac{kJ}{mol}}{2\left(96485.6 \frac{C}{mol}\right)} = 1.253 \, lV$$

Donde:

 E_0 = voltaje máximo reversible en estado estándar Δg_{ran}^0 = cambio en la energía libre en estado estándar para la reacción

La cantidad nF es la que relaciona el número de moles de las especies químicas con el voltaje y la corriente. Expresa los electrones transferidos en forma de corriente eléctrica entre especies químicas reaccionantes. En una reacción química existe una correspondencia entre los moles de las especies químicas que están reaccionando y los moles de los electrones transferidos.

3. 2. EFECTO DE LA TEMPERATURA Y LA PRESIÓN EN EL POTENCIAL TERMODINÁMICO REVERSIBLE

3. 2. 1. Variación del voltaje reversible con la temperatura

Retomando la ecuación de la energía libre de Gibbs, tenemos:

$$dG = -SdT + VdP \tag{3.12}$$

la cual se puede expresar como sigue:

$$\left(\frac{dG}{dT}\right)_p = -S \tag{3.13}$$

La expresión 3.13, para reacciones molares, toma la siguiente forma:

$$\left(\frac{d(\Delta g)}{dT}\right)_{P} = -\Delta s \tag{3.14}$$

Por otro lado, la energía libre de Gibbs expresada en términos del voltaje reversible de la celda varia como una función de la temperatura de la siguiente forma:

$$\left(\frac{dE}{dT}\right)_{\mu} = \frac{\Delta s}{nF}$$
(3.15)

Integrando la expresión anterior considerando P como constante, se obtiene la variación del voltaje reversible de la celda:

$$E_T = E_0 + \frac{\Delta s}{nF} \left(T - T_0 \right)$$
(3.16)

3. 2. 2. Variación del voltaje reversible con la presión

Nuevamente retomamos la expresión diferencial de la energía libre de Gibbs (3.12):

$$dG = -SdT + VdP$$

rescribiendo la expresión anterior resulta:

$$\left(\frac{dG}{dP}\right)_T = V \tag{3.17}$$

expresada en términos de cantidades molares, resulta:

$$\left(\frac{d(\Delta g)}{dP}\right)_{T} = \Delta v \tag{3.18}$$

Por otro lado se tiene que la variación de la energía libre de Gibbs esta relacionada con el voltaje reversible de la celda, de la siguiente manera:

$$\Delta g = -nFE \tag{3.19}$$

Por lo que el voltaje reversible de la celda expresado como una función de la presión, resulta:

$$\left(\frac{dE}{dP}\right)_{T} = -\frac{\Delta v}{nF}$$
(3.20)

3. 3. EFICIENCIA DE UNA SOFC

En una celda de combustible intervienen diferentes procesos, por los cuales, su eficiencia se puede escribir en términos de dichos procesos.

3. 3. 1. Eficiencia termodinámica o ideal de una celda de combustible

En un proceso de conversión de energía definimos la eficiencia como la cantidad de energía útil entre la cantidad de energía total.

$$\varepsilon = \frac{energía \ útil}{energía \ total} \tag{3.21}$$

Considerando la reacción química que se lleva a cabo en la SOFC, la eficiencia resulta:

$$\varepsilon = \frac{trabajo}{\Delta h} \tag{3.22}$$

Para una SOFC la cantidad máxima de energía está dada por la energía libre de Gibbs, la eficiencia reversible de la celda se puede escribir de la siguiente forma:

$$\varepsilon_{ter \, mod \, in} = \frac{\Delta g}{\Delta h} \tag{3.23}$$

3. 3. 2. Eficiencia electroquímica o eficiencia de potencial

La eficiencia real de una SOFC es menor que la eficiencia ideal, esto es debido a que se ve afectada por las pérdidas de voltaje. El rendimiento de voltaje de una celda es la razón del voltaje real de operación de la celda (V) al voltaje reversible termodinámico de la celda (E). Es una comparación de la caída en la tensión de operación de la celda respecto al potencial teórico o de Nernst y se emplea para evaluar las perdidas o polarizaciones.

$$\varepsilon_{voltaje} = \frac{V}{E}$$
(3.24)

3. 3. 3. Eficiencia de la utilización del combustible

En esta eficiencia se toma en cuenta el combustible alimentado a la celda que no participa en la reacción electroquímica. Esta eficiencia es la razón del combustible que participa en la reacción para generar corriente eléctrica y el combustible total suministrado a la celda.

$$\varepsilon_{comb} = \frac{\frac{I}{nF}}{v_{comb}}$$
(3.25)

Donde:

I = corriente generada por la celda de combustible

 v_{comb} = flujo de alimentación del combustible a la celda (mol/s).

Las celdas de combustible operan bajo un factor estequiométrico (λ), es decir, se alimenta mas combustible del requerido estequiométricamente para obtener una reacción al 100%, a una determinada carga. Por lo que se puede escribir:

$$\varepsilon_{comb} = \frac{1}{\lambda}$$
 (3.26)

3. 3. 4. Eficiencia global o práctica

Combinando las eficiencias termodinámicas, perdidas por polarizaciones (cinéticas irreversibles) y la eficiencia por utilización del combustible; se expresa una eficiencia práctica:

$$\varepsilon_{real} = \left(\frac{\Delta g}{\Delta h}\right) \left(\frac{V}{E}\right) \left(\frac{1}{\lambda}\right)$$
(3.27)

CAPÍTULO 4

PLANTEAMIENTO DEL MODELO

En este capítulo se realizará el planteamiento general del modelo a desarrollar para determinar los valores de las variables que gobiernan el comportamiento de las SOFC tubulares.

En la primera parte, se plantea la subdivisión del problema en regiones, inicialmente en dos: regiones fluidas y regiones sólidas; posteriormente a su vez se subdividieron en cinco regiones, para tener un estudio mas exacto de cada una de éstas. Se especifica el volumen de control usado a lo largo de los cálculos. Los balances generales que describen a ambas regiones. Se establece el proceso de cálculo global y el programa que será empleado a lo largo del desarrollo de la tesis.

En la segunda parte, se plantea y simplifica el modelo de las regiones fluidas (regiones I y V), obteniendo como resultado al final de esta sección un resumen de las ecuaciones de la región fluida a programar.

En la tercera parte, se plantea y simplifica el modelo de las regiones sólidas. También se presenta el balance de energía del electrolito y el modelo del campo de potencial. Al final de la sección se reporta un resumen de las ecuaciones de la región del sólido a programar.

En la cuarta parte, se plantea la secuencia de cálculo a seguir para determinar los resultados de las variables que gobiernan el comportamiento de las SOFC.

En la quinta parte, se especifican las variables generales de los casos de estudio planteados en el siguiente capítulo, las dimensiones de la SOFC a programar, así como, las características del combustible y oxidante.

En la sexta parte, se presenta un resumen de los artículos que contienen datos experimentales, disponibles en la literatura abierta, tales que permiten realizar la validación de los cálculos.

4. 1. DESCRIPCIÓN DEL MODELO

Debido a la simetría de la celda de combustible tubular, se analizará sólo la mitad de la celda y se supondrá que los fenómenos se llevan a cabo básicamente en los ejes axial y radial del sistema de coordenadas cilíndricas, como se muestra en la figura 4.1.

Dado a que en la parte en donde el aire da la vuelta no se tiene actividad electroquímica, sólo se considerará la parte que esta marcada en verde, es decir, el volumen de control, como se muestra en la figura 4.2.

(Adaptación de Ota, et al. (2003))

A continuación, se especifica el conjunto de ecuaciones que gobiernan a las SOFC, tanto de la parte del fluido como de la parte del sólido. El modelo consiste de cinco principios de conservación:

Masa Momento Energía térmica Especies químicas Carga eléctrica

Para generar el modelo de celdas de combustible se requiere calcular:

- Flujo del fluido: balances de materia, momento, energía y de especies químicas en el medio fluido. Por medio de la solución de las ecuaciones de las regiones fluidas se obtiene la velocidad del flujo, temperatura y concentración de especies.
- Submodelo electroquímico de SOFC en el medio poroso. A través del modelo electroquímico (tomando en cuenta las reacciones químicas del H₂ y O₂) se calcula el voltaje ideal de la celda, las perdidas por activación, pérdidas óhmicas y perdidas por concentración.
- Submodelo de campo de potencial eléctrico en regiones conductoras sólidas para calcular la densidad de corriente local y el voltaje de la celda, así como la generación de calor óhmico.

Por medio del programa CONDUCT, se realizan todos los cálculos transporte de especies y transferencia de calor en los canales de flujo. El modelo de reacciones electroquímicas, así como el campo del potencial en las zonas eléctricamente conductoras y en los electrodos (ánodo y cátodo) se programaron para posteriormente ser incorporados al programa de Conduct y así realizar el proceso iterativo. En la figura 4. 3, se muestra un esquema de las características del modelo de SOFC.

A fin de analizar detalladamente a las celdas de combustible tubulares, las dividiremos en regiones, las cuales se encuentran explicadas en la tabla 4.1.

Tabla 4. 1. Regiones en las que se divide la SOFC

Región	Modelo físico	Tipo de Región	Modelo matemático
1	Espacio donde fluye el aire. El oxidante (aire) es introducido a través de un tubo inductor de aire, al dar la vuelta entra en contacto con el cátodo	Fluida	Balance de materia (Ec. de continuidad) Balance de momentum (Ecs. de Navier - Stokes) Balance de energía Balance de especies químicas
11	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Sólida	Submodelo electroquímico Determinación del voltaje ideal (Ec. de Nernst). Determinación de las pérdidas básicamente por activación (Ec. de Butler - Volmer)
111	<u>Electrolito</u> . El electrolito conduce estos iones (O ²⁻) entre los electrodos (del cátodo hacia el ánodo), manteniendo el balance de carga eléctrica total.		Submodelo del campo de potencial Determinación del calor óhmico y de la densidad de corriente (ley de Ohm).
IV	<u>Ánodo</u> . En el ánodo de la celda, es donde reaccionan los iones O ²⁻ del electrolito, liberando electrones (<i>e</i> ⁻) que serán introducidos al cátodo de la siguiente celda. Al mismo tiempo el H ₂ reacciona con los iones de O ²⁻ del electro- lito, produciendo agua (H ₂ O). Oxidación electroquímica de H ₂ : H ₂ + O ²⁻ → H ₂ O + 2 <i>e</i> ⁻		Submodelo electroquímico Determinación de las pérdidas básicamente por concentración.
v	Espacio donde fluye el H ₂ . El combustible generalmente H ₂ fluye al interior de la celda a través de un tubo que proviene del reactor de reformación hacia el ánodo de la celda.	Fluida	Balance de materia (Ec. de continuidad) Balance de momento (Ecs. de Navier - Stokes) Balance de energía Balance de especies químicas

El flujo de e⁻ se transporta del ánodo de una celda a través del contacto de interconexión y de ahí al interconector para llegar al cátodo de la siguiente celda, en forma de corriente eléctrica (debido a que los e⁻ no pueden pasar a través del electrolito) donde reaccionan con el O₂ del aire y forman de nuevo los iones (O²⁻) que se incorporan al electrolito. Esta sección no se analizará en la presente tesis.

4. 2. MODELO DE LA REGIÓN DEL FLUIDO

Una vez especificadas cada una de las regiones que se tiene en la SOFC, se analizaran por partes, comenzando por las regiones fluidas, es decir, la que corresponde a la región anular entre el tubo inductor de aire y el cátodo (región I). Y la región que corresponde al flujo del combustible (región V).

Región I. Espacio anular entre el tubo inductor de aire y el cátodo

El aire que proporciona el O₂ fluye al interior de la celda a través de un tubo inductor. En la figura 4. 4 se muestra la región I.

Figura. 4. 4. Reglón I. Espaclo en donde fluye el aire (Adaptación de Bird et al, (1982), p. 2-19)

Región V. Espacio anular entre el contenedor de la celda y el ánodo

El combustible generalmente H_2 o CH_4 fluye al interior de la celda a través de un tubo que proviene del reactor de reformación hacia el ánodo de la celda. Para esta región se aproximó la zona cuadrada del contenedor a una circular (figura 4. 5a), es decir, se dejó en forma similar a la región I (tubos concéntricos, figura 4. 5b), con la finalidad de simplificar las expresiones que gobiernan ésta región, ya que en el conducto cuadrado se tienen que tomar en cuenta las tres coordenadas del sistema cartesiano, y éstas acoplarlas al cilindro de la propia SOFC en las condiciones de frontera, ocasionando con esto mayor tiempo de computo dada la complicación de las expresiones en las condiciones de frontera.

Figura 4. 5. Región V. Espacio en donde fluye el combustible
4. 2. 1. Ecuación de continuidad

La ecuación de continuidad, es una formulación de la conservación de materia que se realiza a través de los compuestos que participan en la SOFC. Esta ecuación tan sólo requiere de la continuidad entre las funciones de la densidad y velocidad, sin importar el tipo de flujo. Dicha ecuación no considera el consumo o producción de especies en el volumen de control. Describe la variación de la densidad para un punto fijo, como consecuencia de la variación de la densidad de flujo de materia ρv . Las siguientes expresiones son ecuaciones generales que se emplean en coordenadas cilíndricas, tomadas de Bird, et al. (1982), p. 3-5.

$$(\nabla \cdot \rho \nabla) = 0 \tag{4.1}$$

La divergencia de la densidad de flujo de materia representa la velocidad neta con que varía la densidad del flujo de materia por unidad de volumen. Para un fluido de densidad constante (ρ = cte)

$$\left(\nabla \cdot \vec{v}\right) = 0 \tag{4.2}$$

$$\frac{1}{r}\frac{\partial}{\partial r}(rv_r) + \frac{1}{r}\frac{\partial}{\partial \theta}(v_{\theta}) + \frac{\partial}{\partial z}(v_z) = 0$$
(4.3)

Para el caso de las SOFC, tan sólo se manejaran las coordenadas axial y radial del sistema de coordenadas cilíndrico, por lo que la expresión de continuidad se simplifica como sigue:

$$\frac{1}{r}\frac{\partial}{\partial r}(rv_r) + \frac{\partial}{\partial z}(v_z) = 0$$
(4.4)

4. 2. 2. Balance de momento

Ecuación de balance de momento para un fluido newtoniano y con μ = cte. Expresada en forma compacta:

$$\nabla \cdot (\rho \vec{v}) = -\nabla \vec{p} + \nabla \cdot (\mu \nabla \vec{v}) + +\rho \vec{g} + S_{\phi}$$
(4.5)

Desarrollando la ecuación del balance de momento para cada una de sus componentes, tomadas de Bird, et al. (1982), p. 3-16, se tiene:

Componente de la ecuación en dirección r

$$\rho \frac{\partial v_r}{\partial t} + \rho \left(v_r \frac{\partial v_r}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_r}{\partial \theta} - \frac{v_{\theta}^2}{r} + v_z \frac{\partial v_r}{\partial z} \right) = \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (rv_r) \right) \right] +$$

$$\mu \left[\frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} - \frac{2}{r^2} \frac{\partial^2 v_{\theta}}{\partial \theta^2} + \frac{\partial^2 v_r}{\partial z^2} \right] + \rho g_r + S_{v_r} - \frac{\partial p}{\partial r}$$
(4.6)

Componente de la ecuación en dirección θ

$$\rho \frac{\partial v_{\theta}}{\partial t} + \rho \left(v_r \frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_r v_{\theta}}{r} + v_r \frac{\partial v_{\theta}}{\partial z} \right) = \mu \left[\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} (r v_{\theta}) \right) \right] +$$

$$\mu \left[\frac{1}{r^2} \frac{\partial^2 v_{\theta}}{\partial \theta^2} + \frac{2}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} + \frac{\partial^2 v_{\theta}}{\partial z^2} \right] + \rho g_{\theta} + S_{v_{\theta}} - \frac{1}{r} \frac{\partial p}{\partial \theta}$$

$$(4.7)$$

Componente de la ecuación en dirección z

$$\rho \frac{\partial v_{x}}{\partial t} + \rho \left(v_{r} \frac{\partial v_{x}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{x}}{\partial \theta} + v_{z} \frac{\partial v_{z}}{\partial z} \right) = \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_{z}}{\partial r} \right) \right] + \mu \left[\frac{1}{r^{2}} \frac{\partial^{2} v_{z}}{\partial \theta^{2}} + \frac{\partial^{2} v_{z}}{\partial z^{2}} \right] + \rho g_{z} + S_{v_{z}} - \frac{\partial p}{\partial z}$$

$$(4.8)$$

Las siguientes suposiciones se consideran para simplificar las expresiones anteriores:

Se tomara en cuenta las direcciones axial y radial. Proceso en estado estacionario. La variación de la presión es tan sólo en el eje axial. Con las suposiciones anteriores, las expresiones del balance de momento se reducen a:

Componente de la ecuación en dirección r

$$\rho\left(v_{r}\frac{\partial v_{r}}{\partial r}+v_{z}\frac{\partial v_{r}}{\partial z}\right)=\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial}{\partial r}(rv_{r})\right)+\frac{\partial^{2}v_{r}}{\partial z^{2}}\right]+S_{v_{r}}$$
(4.9)

Termino fuente

La caída de presión en la interfase fluido regiones del cátodo y ánodo poroso se calculan de acuerdo a la ley de Darcy (tomada de Pasaogullari and Wang (2003)):

$$S_{v_r} = -\frac{\mu}{K} v_r \tag{4.10}$$

Sustituyendo la ec. 4.10 en la ec. 4.9, resulta:

$$\rho\left(\nu_{r}\frac{\partial\nu_{r}}{\partial r}+\nu_{z}\frac{\partial\nu_{r}}{\partial z}\right)=\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial}{\partial r}(r\nu_{r})\right)+\frac{\partial^{2}\nu_{r}}{\partial z^{2}}\right]-\frac{\mu}{K}\nu_{r}$$
(4.11)

En la tabla 4. 2, se presentan la propiedad de los electrodos de la SOFC empleados a lo largo de los cálculos.

SOFC/Material	Permeabilidad* (m ²)
Cátodo	1.0x10 ⁻⁷
Ánodo	1.0x10 ⁻⁷
	00

Tabla 4. 2. Propiedades de los electrodos de la SOFC

* Sundén y Faghri. (2005), p. 98.

Componente de la ecuación en dirección z

$$\rho\left(v_{r}\frac{\partial v_{z}}{\partial r}+v_{z}\frac{\partial v_{z}}{\partial z}\right)=-\frac{\partial p}{\partial z}+\mu\left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial v_{z}}{\partial r}\right)+\frac{\partial^{2} v_{z}}{\partial z^{2}}\right]+\rho g_{z} \qquad (4.12)$$

En cuanto a la componente en dirección axial, se tiene la siguiente suposición, tanto para el aire como para el combustible, se considerará que se trata de un flujo laminar, completamente desarrollado, es decir, $v_z(r)$, a continuación se da soporte a tal suposición. En la figura 4. 6, se muestra esquemáticamente dicho perfil de velocidad.

(Adaptación de White (1990), p. 339)

En la tabla 4. 3, se presenta el cálculo del número de Reynolds (Re) para los datos de algunos artículos.

$$Re = \frac{\rho v D_h}{\mu}$$
(4.13)

Donde: v = Velocidad D_h = diámetro hidráulico

Para la región anular (figura 4. 7), el diámetro hidráulico se calcula de la siguiente forma:

Figura 4. 7. Región anular entre el cátodo y el tubo inductor de alre

$$D_{h} = \frac{4A_{transversal}}{perimetro \ mojado} = \frac{4\left[\frac{\pi}{4}\left(D_{int}^{2} - D_{out}^{2}\right)\right]}{\pi\left(D_{int} + D_{out}\right)} = \frac{D_{int}^{2} - D_{out}^{2}}{\left(D_{int} + D_{out}\right)}$$
(4.14)

De la tabla 4. 3, se observa que todos los números de Reynolds, son menores de 2300, por lo que se comprueba que se trata de un flujo laminar. De igual forma se comprueba que se trata de un flujo completamente desarrollado dado que $0.05 \le \text{Re} \le 10$ para todos los casos.

Referencia	Densidad* (Kg/m ³)	Viscosidad [†] (Kg/ms)	Velocidad (m/s)	Diámetro hidráulico (m)	Re	0.05Re
Kudo, T.; Obayashi, H. 1976	0,3972	4,00E-05	0,021 [‡]	0,012	2,33	0,12
Costamagna, P.; Honegger, K. 1998	0,2947	4,80E-05	0,026	0,035	5,64	0,28
Guo, XM.; Kus, H.; Chi-Bun, Ch. 1999	0,3520	4,50E-05	0,015	0,023	2,74	0,14
Boersma, R. J.; Sammes, N. M.; Fee, C. 2000	0,6467	2,70E-05	0,021	0,016	4,47	0,22
Li, PW.; Chyu, M. K. 2003	0,4044	4,10E-05	0,021	0,032	6,53	0,33

Tabla 4. 3. Cálculo del número de Reynolds para el aire

* Se cálculo considerándolo como gas ideal (p=P/RT)

† Se obtuvo el dato de tablas del aire con la temperatura

‡ En el caso de que el artículo no reporte el dato de la velocidad se obtuvo el promedio y es la que se uso en los cálculos

En cuanto a la región del combustible, se realizó un procedimiento análogo, por lo que la tabla 4. 4, se observa que todos los números de Reynolds, son menores de 2300, por lo que se comprueba que se trata de un flujo laminar.

Referencia	Comp. Combust.	ρ (kg/m³)	μ (kg/ms)	Velocidad (m/s)	D _h * (m)	Re	0.05Re
Kudo, T.; Obayashi, H. 1976	0.9H ₂ . 0.1 H ₂ O	0.0259	1.90E-05	25.0653	0.0088	299.37	14.97
Costamagna, P.; Honegger, K. 1998	97%H₂. 3%H₂O	0.0205	2.50E-05	0.0019	0.1040	0.16	0.01
Guo, XM.; Kus, H.; Chl- Bun, Ch. 1999	CH₄ dil N₂	0.1951	3.00E-05	0.0051	0.0080	0.27	0.01
Boersma, R. J.; Sammes, N. M.; Fee, C. 2000	CH₄-H₂O (1:2)	0.2073	3.00E-05	3.3391	0.0037	85.37	4.27
LI, PW.; Chyu, M. K. 2003	98.64%H ₂ . 1.36%H ₂ O	0.0229	2.10E-05	42.2758	0.0081	375.11	18.76

Tabla 4. 4. Cálculo del número de Reynolds para el combustible

Para la dimensión de contenedor de la SOFC se consideró que ocupan el 27% con respecto al tamaño del D_{out} de la SOFC.

Por lo que la componente de la ecuación en dirección z, toma la siguiente forma:

$$\rho\left(\nu_{r}\frac{\partial\nu_{s}}{\partial r}\right) = -\frac{\partial p}{\partial z} + \mu\left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\nu_{s}}{\partial r}\right)\right] + \rho g_{s}$$
(4.15)

En la tabla 4. 5, se presentan las propiedades de los reactivos de la SOFC empleados a lo largo de los cálculos.

Reactivos	Densidad (Kg/m ³)	Viscosidad (Kg/ms)
Aire ⁺	0.399166	3.90648x10 ⁻⁵
Combustible (H ₂)*	0.022634	209.841x10 ⁻⁷

.

Tabla 4, 5, Propiedades de los reactivos de la SOFC

* Propiedades a 873K y 1 atm * Propiedades a 1073K y 1 atm

٩

4. 2. 3. Balance de energía

Para el caso de la SOFC tubular, el transporte de calor se encuentra especificado en la figura 4. 8.

Figura 4. 8. Transporte de calor en una SOFC tubular. (Adaptación de Ota, et al. (2003))

Debido a que en la parte en donde el aire da la vuelta no se tiene actividad electroquímica, tan sólo se considerará la parte que esta marcada en rojo, es decir, el correspondiente al volumen de control.

Ecuación de conservación de energía, para un fluido newtoniano con k_t^{eff} y Cp constantes. Tomada de Bird, et al. (1982), p. 10-11.

$$\nabla \cdot \left(\rho C p \vec{v} T\right) = \nabla \cdot \left(\boldsymbol{k}_{t}^{\text{eff}} \nabla T\right) + S_{\tau}$$
(4.16)

$$\rho C p \frac{\partial T}{\partial t} + \rho C p \left(v_r \frac{\partial T}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial T}{\partial \theta} + v_z \frac{\partial T}{\partial z} \right) = k_t^{eff} \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2} \right] + 2\mu \left\{ \left(\frac{\partial v_r}{\partial r} \right)^2 + \left[\frac{1}{r} \left(\frac{\partial v_{\theta}}{\partial \theta} + v_r \right)^2 + \left(\frac{\partial v_z}{\partial z} \right)^2 \right] \right\} +$$

$$\mu \left\{ \left(\frac{\partial v_{\theta}}{\partial z} + \frac{1}{r} \frac{\partial v_z}{\partial \theta} \right)^2 + \left(\frac{\partial v_z}{\partial r} + \frac{\partial v_r}{\partial z} \right)^2 + \left[\frac{1}{r} \frac{\partial v_r}{\partial \theta} + r \frac{\partial}{\partial r} \left(\frac{v_{\theta}}{r} \right) \right]^2 \right\} + S_T$$
(4.17)

Realizando las simplificaciones de la expresión del balance de energía, considerando los términos viscosos despreciables, que el proceso se encuentra en estado estable y tomando en cuenta tan sólo los ejes axial y radial, la expresión se reduce a la siguiente:

$$\rho C p \left(v_r \frac{\partial T}{\partial r} + v_z \frac{\partial T}{\partial z} \right) = k_1^{\text{eff}} \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{\partial^2 T}{\partial z^2} \right] + S_T$$
(4.18)

Con $k_t^{\text{eff}} = \varepsilon \lambda_f + (1 - \varepsilon) \lambda_s$

(4.19)

Donde:

 k_t^{eff} = conductividad térmica efectiva λ_t = conductividad térmica del fluido λ_s = conductividad térmica del sólido ε = porosidad

En la tabla 4. 6, se muestran las propiedades para determinar la conductividad térmica efectiva.

SOFC/Material	Porosidad [†] (%)	Conductividad térmica* (W/mK)	Cp (KJ/KgK)
Electrolito (YSZ)		2.7	
Cátodo (LSM)	20	11.0	<u> </u>
Ánodo (Ni-YSZ cement)	40	6.0	
Aire		0.075 a 1273K	1.11506 [‡]
Combustible (H ₂)		0.43 a 1273K	15.1214 [§]
+ Dotation is at al (2002)			

Tabla 4. 6. Propiedades de los materiales y reactivos de la SOFC

† Petruzzi, et al (2003).

▲ Iwata et al (2000).

‡ Propiedad obtenida a 873K y 1 atm

§ Propiedades a 1073K y 1 atm

Termino fuente

Para el ánodo:

con

El calor total generado en el ánodo se debe a la resistencia al flujo de la corriente (calor ohmico) y al cambio de entropía de la reacción electroquímica que se lleva a cabo.

$$S_T = i^2 R_a L + \frac{i}{L} \left(\frac{\Delta H_{ron} - \Delta G_{ron}}{2F} \right)$$
(4.20)

$$R_a = \frac{\delta_a \rho_a^*}{A} \tag{4.21}$$

Donde:

i = densidad de corriente *A* = área transversal del ánodo por donde fluye la densidad de corriente δ_a = grosor del ánodo ρ_a^e = resistividad eléctrica del ánodo *R_a* = resistencia del ánodo

L =longitud de la celda

Para oxidación electroquímica: $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$

 Δ H = -246.82 KJ/mol y Δ G = -200.9536 KJ/mol Para el cátodo:

El calor total generado en el cátodo se debe a la resistencia al flujo de la corriente (calor ohmico).

$$S_T = i^2 R_c L \tag{4.22}$$

con

$$R_c = \frac{\delta_c \rho_c^*}{A} \tag{4.23}$$

Donde:

δ_c = grosor del cátodo

 ρ_{a}^{\bullet} = resistividad eléctrica del cátodo

En la tabla 4. 7, se enlistan las propiedades de los materiales de la SOFC.

SOFC/Material	Grosor (cm)	Resistividad eléctrica (Ωcm) ^{††}	
Electrolito (YSZ)	0.004	$0.3685 + 0.002838 \exp\left(\frac{10300}{T}\right)$	
Cátodo (LSM)	0.22	0.0186	
Anodo (Ni-YSZ cement)	0.01	0.0014	

Tabla 4. 7. Resistividades de los materiales de SOFC

^{††} Ahmed, McPheeters, Kumar (1991).

4. 2. 4. Balance de materia por componentes

El transporte de materia por componentes, se encuentra especificado en la figura 4. 9.

Figura 4. 9. Transporte de materia por componentes (Adaptación de Li and Chyu (2003))

Balance de materia expresado en forma compacta (tomado de Bird, et al. (1982), p. 18-5), resulta ser:

$$\nabla \cdot \left(\vec{v}y_{i}\right) = \nabla \cdot \left(D_{i}^{\text{eff}} \nabla y_{i}\right) + S_{y_{i}}$$
(4.24)

Desarrollando la expresión anterior, resulta:

$$\left(\nu_{r}\frac{\partial y_{i}}{\partial r} + \frac{\nu_{\theta}}{r}\frac{\partial y_{i}}{\partial \theta} + \nu_{z}\frac{\partial y_{i}}{\partial z}\right) = D_{i}^{eff} \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial y_{i}}{\partial r}\right) + \frac{1}{r^{2}}\frac{\partial^{2} y_{i}}{\partial \theta^{2}} + \frac{\partial^{2} y_{i}}{\partial z^{2}}\right] + 2\mu \left\{\left(\frac{\partial \nu_{r}}{\partial r}\right)^{2} + \left[\frac{1}{r}\left(\frac{\partial \nu_{\theta}}{\partial \theta} + \nu_{r}\right)^{2} + \left(\frac{\partial \nu_{z}}{\partial z}\right)^{2}\right]\right\} +$$

$$\mu \left\{\left(\frac{\partial \nu_{\theta}}{\partial z} + \frac{1}{r}\frac{\partial \nu_{z}}{\partial \theta}\right)^{2} + \left(\frac{\partial \nu_{z}}{\partial r} + \frac{\partial \nu_{r}}{\partial z}\right)^{2} + \left[\frac{1}{r}\frac{\partial \nu_{r}}{\partial \theta} + r\frac{\partial}{\partial r}\left(\frac{\nu_{\theta}}{\partial r}\right)^{2}\right]\right\} + S_{y_{i}}$$

$$(4.25)$$

La difusividad efectiva de los reactivos, empleadas a lo largo de los cálculos se enlistan en la tabla 4. 8.

Reactivo	Difusividad efectiva* (m²/s)
Aire (O ₂)	2x10 ⁻⁵
Combustible (H ₂) Agua	1x10 ⁻⁴

Tabla 4. 8. Propiedades de los reactivos de la SOFC

Nuevamente despreciando los términos viscosos y tomando en cuenta las componentes en dirección axial y radial, se tiene:

^{*} O'hayre R., et al. (2006), p. 185.

$$\left(v_{r}\frac{\partial y_{i}}{\partial r}+v_{z}\frac{\partial y_{i}}{\partial z}\right)=D_{i}^{\text{eff}}\left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial y_{i}}{\partial r}\right)+\frac{\partial^{2}y_{i}}{\partial z^{2}}\right]+S_{y_{i}}$$
(4.26)

Termino fuente (Flux de especies)

La velocidad de consumo o destrucción de las especies, debido a la reacción electroquímica que se llevan a cabo en la SOFC, se determina a través de la Ley de Faraday.

$$S_{y_t} = \frac{I}{n_e F} \tag{4.27}$$

Donde:

 $S_{v_{i}}$ = Termino fuente de especies (flux de especies)

I = corriente

 n_e = número de electrones (e⁻) transferidos en la reacción

F =Constante de Faraday (9.648456x10⁴ C/mol)

Lo anterior aplicado a una SOFC alimentada con H₂ como combustible y O₂ del aire como oxidante.

Para el caso de la SOFC, los fluxes de especies resultan:

Reducción electroquímica de O2 en el cátodo:

$$\frac{1}{2}O_2 + 2e^- \to O^{2-} \text{ o bien } 2e^- \to O^{2-} - \frac{1}{2}O_2$$

$$S_{O_2} = -\frac{(-0.5)(-I)}{2F} = -\frac{I}{4F}$$
(4.28)

Oxidación electroquímica de H₂ en el ánodo:

 $H_2 + O^{2-} \rightarrow H_2O + 2e^- \text{ o bien} \qquad H_2 + O^{2-} - H_2O \rightarrow 2e^-$

$$S_{H_2} = -\frac{1}{2F}(1) = -\frac{1}{2F}$$

$$S_{H_2O} = -\frac{(-1)I}{2F} = \frac{I}{2F}$$
(4.29)
(4.30)

Utilización del aire y combustible

De acuerdo a los artículos de Singhal (1999) y Tomlins (1999), se tiene una utilización de combustible (89% H_2 + 11% H_2O) del 85%, con 4 y 6 veces estequimétrico para el aire como oxidante, respectivamente, por lo que de acuerdo a la reacción se tiene:

Tomando una base de 100moles de combustible, correspondería 89 moles de H_2 y 11 de H_2O , es decir:

Para la reacción:	H_2	+	$\frac{1}{2}$ O ₂	\rightarrow	H₂O	
	89 75 65		44.5 37 825		89 75 65	(100%) (85%)
	70.00		37.020		75.05	(0570)

Para el combustible

Entrada de la ceida $n_{tot} = 100 moles$ $n_{H_2} = 89 moles$ $y_{H_2}^0 = 0.89$ $n_{H_2O} = 11 moles$ $y_{H_2O}^0 = 0.11$ Salida de la ceida $n_{H_2} = 89 - 75.65 = 13.35 moles$ $y_{H_2}^f = 0.1335$ $n_{H_2O} = 11 + 75.65 = 86.65 moles$ $y_{H_2O}^f = 0.8665$

Para el oxidante

4 veces estequiométrico

De acuerdo a la reacción, se necesitan 37.825 moles de O_2 del aire, sin embargo, se alimentan 4 veces esta cantidad, es decir, 151.3 moles de O_2 , entonces se tiene:

Entrada de la ceida

 $n_{O_2} = 151.3$ moles

que corresponden al 21% del O_2 en el aire, por lo que la cantidad de N_2 que entra a la celda es:

$$n_{N_2} = 569.176 moles$$

$$n_{tot} = 151.3 + 569.176 = 720.47 moles$$

$$y_{O_2}^0 = 0.21$$
y
Salida de la celda
$$n_{O_2} = 151.3 - 37.825 = 113.475 moles$$

$$n_{N_2} = 569.176 moles$$

$$n_{tot} = 113.475 + 569.176 = 682.651 moles$$

$$y_{O_2}^f = 0.17$$
y
$$y_{N_2}^f = 0.83$$

6 veces estequiométrico

Por un procedimiento análogo al anterior, se tienen los siguientes resultados: Entrada de la celda

$n_{O_2} = 226.95$ moles	$y_{o_2}^0 = 0.21$
$n_{N_2} = 853.76 moles$	$y_{N_2}^0 = 0.79$
$n_{tot} = 1080.71$ moles	
Salida de la celda	
$n_{\rm o} = 189.125 moles$	$v_0^f = 0.18$

$$n_{N_2} = 109.125 \text{ motors}$$

 $n_{N_2} = 853.76 \text{ moles}$
 $p_{T_2} = 0.10$
 $y_{T_2} = 0.82$
 $n_{tot} = 1042.885 \text{ moles}$

4. 2. 5. Resumen de las expresiones de la región del fluido

Ecuación de continuidad

$$\frac{1}{r}\frac{\partial}{\partial r}(rv_r) + \frac{\partial}{\partial z}(v_z) = 0$$
(4.4)

Balance de momento

Componente de la ecuación en dirección r

$$\rho\left(v_{r}\frac{\partial v_{r}}{\partial r}+v_{z}\frac{\partial v_{r}}{\partial z}\right)=\mu\left[\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial}{\partial r}(rv_{r})\right)+\frac{\partial^{2}v_{r}}{\partial z^{2}}\right]-\frac{\mu}{K}v_{r} \qquad (4.11)$$

Componente de la ecuación en dirección z

$$\rho\left(v_{r}\frac{\partial v_{z}}{\partial r}\right) = -\frac{\partial p}{\partial z} + \mu\left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial v_{z}}{\partial r}\right)\right] + \rho g_{z} \qquad (4.15)$$

Balance de energía

$$\rho C p \left(v_r \frac{\partial T}{\partial r} + v_z \frac{\partial T}{\partial z} \right) = k_i^{\text{eff}} \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{\partial^2 T}{\partial z^2} \right] + S_T$$
(4.18)

$$k_t^{eff} = \varepsilon \lambda_f + (1 - \varepsilon) \lambda_s \tag{4.19}$$

Termino fuente para el ánodo:

$$S_T = i^2 R_a L + \frac{i}{L} \left(\frac{\Delta H_{ron} - \Delta G_{ron}}{2F} \right)$$
(4.20)

$$R_a = \frac{\delta_a \rho_a^*}{A} \tag{4.21}$$

Termino fuente para el cátodo:

$$S_{\tau} = i^2 R_c L \tag{4.22}$$

$$R_{c} = \frac{\delta_{c} \rho_{c}^{*}}{A}$$
(4.23)

Balance de materia por componentes

$$\left(\mathbf{v}_{r}\frac{\partial y_{i}}{\partial r}+\mathbf{v}_{z}\frac{\partial y_{i}}{\partial z}\right)=D_{i}^{\text{eff}}\left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial y_{i}}{\partial r}\right)+\frac{\partial^{2} y_{i}}{\partial z^{2}}\right]+S_{y_{i}}$$
(4.26)

Termino fuente para el cátodo:

$$S_{o_2} = -\frac{I}{4F}$$
(4.28)

Termino fuente para el ánodo:

$$S_{H_2} = -\frac{I}{2F}$$
(4.29)

$$S_{H_2O} = \frac{I}{2F}$$
 (4.30)

Las condiciones de frontera que aplican a cada ecuación se especificarán en el capítulo 5.

4. 3. MODELO DE LA REGIÓN DEL SÓLIDO

En el modelo de la región del sólido de las celdas de combustible se establecerán las expresiones para determinar el voltaje y la densidad de corriente, es decir, se requiere calcular:

- Submodelo electroquímico de SOFC en el medio poroso. A través de éste modelo (tomando en cuenta las reacciones químicas del H₂ y O₂) se calcula la densidad de corriente local y el voltaje de la celda. Al igual que las perdidas por activación, ohmicas y por concentración.
- Submodelo de campo de potencial eléctrico en regiones conductoras sólidas para calcular la corriente y el voltaje, así como la generación de calor óhmico y las pérdidas óhmicas.

A fin de analizar detalladamente la región sólida de las celdas de combustible tubulares, las dividiremos en regiones (figura 4. 10).

Figura 4. 10. Regiones sólidas de la SOFC tubular

4. 3. 1. Modelo electroquímico

En esta sección se presentan las expresiones generales para realizar el cálculo del modelo electroquímico, de igual forma, se presenta todos los cálculos realizados para el punto inicial de la SOFC, así como la razón por la cual en los cálculos subsecuentes, no se realizarán los correspondientes a la polarización por concentración.

Potencia o voltaje de la celda

El funcionamiento de la celda es generalmente descrito en términos del voltaje terminal de la celda y la densidad de corriente. El voltaje terminal de la celda es la diferencia de voltaje entre el cátodo y el ánodo y está dado por:

$$E_{colds} = V_c - V_a = E_{ldesl} - \eta_{ohmico} - \eta$$
(4.31)

Donde:

 E_{celda} = Voltaje terminal de la celda

Fuerza impulsora del potencial de Nernst (Potencial ideal)

Calculado por la ecuación de Nernst. La reacción final en la SOFC es la oxidación del H₂ para formar H₂O:

$$2H_2 + O_2 \rightarrow 2H_2O \qquad n_e = 2$$

Bajo condiciones de circuito abierto los iones de oxido que cruzan el electrolito generan una diferencia de voltaje entre el cátodo y el ánodo y está relacionado con el cambio de energía libre de Gibbs de reacción, con la siguiente relación:

$$\Delta G = -n_e F E_{ideal} = -2F E_{ideal} \tag{4.32}$$

entonces

s
$$E_{ideal} = -\frac{\Delta G}{n_o F} = E_0 + \frac{RT}{4F} \ln \left(\frac{p_{O_2} p_{H_2}^2}{p_{H_2O}^2} \right)$$
 (4.33)

Donde:

 E_{ideal} = voltaje reversible (potencial de Nernst) E_0 = voltaje máximo reversible o potencial estándar (1.229 V)

Sustituyendo los valores para el cálculo del potencial ideal de la celda (ec. 4.33), resulta:

$$E_{0} = 1.229 \text{ V}$$

$$R = 8.31 \text{ J/mol K}$$

$$T = 1273.15 \text{ K}$$

$$F = 96485.6 \text{ C/mol}$$

$$P = 1 \text{ atm} = 101.33 \text{ kPa}$$

$$p_{O_{2}} = (0.17)(1) = 0.17atm$$

$$p_{H_{2}} = (0.1335)(1) = 0.1335atm$$

$$p_{H_{2}O} = (0.8665)(1) = 0.8665atm$$

$$E_{ideal} = 1.229 + \left[\frac{\left(\frac{8.31 \frac{J}{molK}\right)(1273.15K)}{4\left(96485.6 \frac{C}{mol}\right)}\right] \ln\left[\frac{(0.17)(0.1335)^{2}}{(0.8665)^{2}}\right]$$

$$E_{ideal} = 1.229 - 0.1511$$

$$E_{ideal} = 1.0778 \text{V}$$

Pérdidas de voltaje, sobrevoltajes o efectos de polarización

Al hablar de las pérdidas dentro de una celda generalmente se dice que hay sobrevoltajes o efectos de polarización. La magnitud de cada uno de estos efectos es función de la densidad de corriente (*i*). En la operación real de la SOFC, existen varios efectos irreversibles o polarizaciones que reducen su voltaje terminal. En la figura 4. 11, se muestra el esquema de la densidad de corriente vs voltaje, mostrando los diferentes tipos de polarizaciones. Por lo general, se agrupan en tres clases:

- a) Polarización por activación (η_{act})
- b) Polarización óhmica (η_{ohmico})
- c) Polarización por concentración (η_{conc})

Figura. 4. 11. V vs i mostrando los diferentes tipos de polarizaciones (Adaptación de Sunden and Faghri (2005), p. 231)

a) Cátodo. Polarización por activación o polarización química

Surge por las lentas reacciones electroquímicas que ocurren en la superficie de los electrodos así como de los efectos de adsorción y desorción sobre la superficie y por la transferencia de electrones en la interface electrodo-electrolito. Es el voltaje perdido por la activación necesaria para la transformación de la carga, es decir, para la conversión de moléculas de O₂ a iones de O⁻. Es dominada por la **resistencia del cátodo.**

La relación entre la polarización por activación catódica y la densidad de corriente es usualmente no lineal, excepto a muy bajas densidades de corriente (con lo cual se puede representar por medio de la ecuación de Tafel). Una relación cuantitativa entre la densidad de corriente y la polarización por activación es conocida como la ecuación de Butler-Volmer. La expresión equivalente de la ecuación de Butler -Volmer es:

$$\eta_{act} = \frac{2RT}{n_e F} senh^{-1} \left(\frac{\bar{i}}{2\bar{i}_0}\right)$$
(4.34)

$$\eta_{act} = \frac{2RT}{n_a F} \ln \left[\left(\frac{\bar{i}}{2\bar{i}_0} \right) + \sqrt{\left(\frac{\bar{i}}{2\bar{i}_0} \right)^2 + 1} \right]$$
(4.35)

o bien

Donde:

 \bar{i} = densidad de corriente promedio que atraviesa el electrolito

 \bar{i}_0 = densidad de corriente de intercambio

En Li y Chyu (2003), se encuentran reportados los siguientes valores para \bar{i}_0 $\bar{i}_0 = 5300 \text{ A/m}^2$ para el ánodo $\bar{i}_0 = 2000 \text{ A/m}^2$ para el cátodo

Sustituyendo valores para determinar η_{act} , es decir, en la ec. 4.35, se tiene:

Para el cátodo

$$\eta_{act} = \frac{2(8.31\frac{J}{molK})(873.15K)}{(2)(96485.6\frac{C}{mol})} \ln\left[\left(\frac{3000\frac{A}{m^2}}{2(2000\frac{A}{m^2})}\right) + \sqrt{\left(\frac{3000\frac{A}{m^2}}{2(2000\frac{A}{m^2})}\right)^2 + 1}\right]$$

 $\eta_{act} = 5.2125 x 10^{-2} V$

Para el ánodo

$$\eta_{act} = \frac{2(8.31\frac{J}{molK})(1073.15K)}{(2)(96485.6\frac{C}{mol})} \ln \left[\left(\frac{3000\frac{A}{m^2}}{2(5300\frac{A}{m^2})} \right) + \sqrt{\left(\frac{3000\frac{A}{m^2}}{2(5300\frac{A}{m^2})} \right)^2 + 1} \right]$$

 $\eta_{act} = 2.5821 x 10^{-2} V$

Donde[.]

 $\begin{aligned} \eta_{act}^{total} &= 5.2125 \times 10^{-2} V + 2.5821 \times 10^{-2} V \\ \eta_{act}^{total} &= 0.077946 V \end{aligned}$

b) Electrolito. Resistencia o polarización óhmica

Es la resistencia interna de la celda al movimiento de la carga eléctrica e incluye pérdidas fonicas en el electrolito (resistencia de contacto), así como en los electrodos conductores poresos y en la interfase de los colectores de corriente. En el caso más simple, puede ser calculada por medio de la Ley de Ohm. Describe una relación lineal entre la caída de voltaje y la densidad de corriente. En forma rigurosa, es descrita por medio de las resistividades del material:

$$\eta_{ohmico} = i \left(\rho_{s}^{a} \delta_{s} + \rho_{c}^{a} \delta_{c} + \rho_{a}^{a} \delta_{a} \right)$$
(4.36)

ρ_e^* = resistividad del electrolito	δ_e = Grosor del electrolito
$ ho_a^{e}$ = resistividad del ánodo	δ_a = Grosor del ánodo
$ ho_c^*$ = resistividad del cátodo	δ_c = Grosor del cátodo

Es dominada por la resistencia del electrolito debido a que la resistividad de éste es mucho mayor que la de los electrodos, como se muestra en la tabla 4.7.

En la siguiente sección (4. 3. 2. Balance de energía para la región III (electrolito)) se especificará como se obtiene la temperatura del electrolito.

Sustituyendo valores para determinar η_{ohnico} en la ec. 4.36, se obtiene: $T_{e} = 973.15 \text{K}$ $T_{c} = 873.15 \text{K}$ $T_{c1} = 1073.15 \text{K}$ $i = 0.3 \text{ A/cm}^{2}$ $\eta_{ohnico} = \left\{ 10 \exp\left[10092\left(\frac{1}{973.15} - \frac{1}{1273.15}\right)\right] \Omega_{cm} \right\} (0.004cm) + \left[0.008114 \exp\left(\frac{500}{873.15}\right)\right] \Omega_{cm} (0.22cm) \right\}$ $\eta_{ohnico} = \left\{ 0.00298 \exp\left(\frac{-1392}{1073.15}\right)\right\} \Omega_{cm} (0.01cm)$ $\eta_{ohnico} = \left\{ 0.004cm(115.15\Omega cm) + 0.22cm(1.4385x10^{-2}\Omega cm) + 0.01cm(8.1449x10^{-4}\Omega cm) \right\}$ $\eta_{ohnico} = \left\{ 0.4606 + 3.1648x10^{-3} + 8.1449x10^{-6} \Omega cm^{2} \right\}$

 η_{ohmico} = 0.1391 V

c) Ánodo. Polarización por concentración

Es causada por los gradientes de concentración que se establecen entre los electrolitos y las corrientes de gas, es decir, por la resistencia a la transferencia de masa de reactivos y productos involucrados en la transferencia de carga de reacción. Es dominada por la **resistencia del ánodo.** Suponemos que el gradiente de concentración en la fase gas, sólo existe en los poros de los electrodos.

La difusión a través del material poroso es descrita por la difusión molecular binaria o por la difusión de Knudsen.

Comparando las microestructuras y el grosor del cátodo y del ánodo la polarización por concentración anódica es usualmente mucho menor que la catódica por dos razones:

La difusión binaria del H₂-H₂O es aproximadamente cuatro o cinco veces mayor que la difusividad binaria del O₂-N₂ debido al bajo peso molecular del H₂ comparado con las otras especies. La presión parcial del H₂ en el combustible es mucho mayor que la presión parcial O₂ en el oxidante. La polarización por concentración es de la forma:

Para el ánodo

$$\eta_{conc} = -\frac{RT}{2F} \ln\left(1 - \frac{i}{i_{as}}\right) + \frac{RT}{2F} \ln\left(1 + \frac{p_{H_2}}{p_{H_2O}}\frac{i}{i_{as}}\right)$$
(4.37)

$$\operatorname{con} \quad i_{as} = \frac{2Fp_{H_2} D_a^{eff}}{RT\delta_a} \tag{4.38}$$

Donde:

ias = Densidad de corriente límite del ánodo

 δ_a = grosor del ánodo

 p_{H_2} = presión parcial del hidrógeno

 D_a^{dr} = Difusividad efectiva del componente *i* a través del ánodo

La difusividad efectiva del componente *i* a través del ánodo se obtiene con la siguiente expresión:

$$D_i^{\text{eff}} = \frac{1}{\left(\frac{1}{D_{ij}} + \frac{1}{D_{ik}}\right)} \left(\frac{\varepsilon}{\zeta}\right)$$
(4.39)

Donde:

 ζ = tortuosidad ε = porosidad D_{ij} = difusión molecular binaria D_{ik} = difusión de Knudsen

El coeficiente de difusión molecular binario entre las especies gas i y j en el espacio libre es estimado por la teoría de Chapman-Enskog:

$$D_{ij} = 0.0018583 \left(\frac{1}{\mathcal{M}_{i}} + \frac{1}{\mathcal{M}_{j}} \right)^{1/2} \frac{T^{\frac{3}{2}}}{P \sigma_{ij}^{2} \Omega_{ij}}$$
(4.40)

Donde:

P = presión total (atm)

 σ = diámetro de colisión (Å)

 Ω_{ij} = colisión integral basada en el potencial de Lennard-Jones (adimensional) \mathcal{M} = masa molecular para las especies *i* y *j*

El coeficiente de difusión de Knudsen para la especie gas *i* esta dado por la siguiente expresión:

$$D_{ik} = 97\overline{r}\sqrt{\frac{T}{\mathcal{M}_i}}$$
(4.41)

Donde:

 D_{ik} = coeficiente de difusión de Knudsen

 \bar{r} = radio del poro medio

 M_i = masa molecular para la especie *i*

81

Para el cátodo:

$$\eta_{conc} = -\frac{RT}{4F} \ln\left(1 - \frac{i}{i_{cs}}\right)$$
(4.42)

 $\operatorname{con} \quad i_{cs} = \frac{4Fp_{O_2}D_c^{eff}}{\left(\frac{P-p_{O_2}}{P}\right)RT\delta_c}$ (4.43)

En las tablas 4.9 y 4.10, se enlistan las propiedades de los materiales y reactivos que intervienen en la SOFC para el cálculo de las perdidas por concentración.

Table 4 9 Dates de los electrodos +

	Radio	(8)		
Į	promedio	$\left \frac{1}{r} \right $		
	(m)	(5)		
Ánodo	1.07x10 ⁻⁸	0.156		
Cátodo	2.34x10 ⁻⁵	0.037		

* Ackmann, et. al (2003).

Tabla 4. 10. Datos de los compuestos +

	Mi	$\frac{\varepsilon_{A}}{\kappa}$ (K)	σ (Å)
Aire	28.97	97	3.617
H ₂	2.016	33.3	2.968
N ₂	28.02	91.5	3.681
O ₂	32	113	3.433
H ₂ O	18	356	2.649

*Welty, J, et al. Apéndice K. p.860.

Sustituyendo valores para determinar η_{conc} en las ecs. 4.37 a 4.43, se obtiene:

Para el ánodo

Coeficiente de difusión de Knudsen

$$D_{H_2-H_2O} = 97(1.07x10^{-6})\sqrt{\frac{1073.15}{2.016}} = 2.3946x10^{-3}\frac{m^2}{s}$$

Coeficiente de difusión molecular binario

$$\sigma_{ij} = \frac{\sigma_i + \sigma_j}{2} = \frac{2.968 + 2.649}{2} = 2.8085$$

$$\frac{\varepsilon_{AB}}{\kappa} = \sqrt{\left(\frac{\varepsilon_A}{\kappa}\right)\left(\frac{\varepsilon_B}{\kappa}\right)} = \sqrt{(33.3)(356)} = 108.8797$$

$$T\left(\frac{\kappa}{\varepsilon_{AB}}\right) = 9.85628$$

En Welty J., et al., se encuentra reportado el siguiente valor: $\Omega_{\mu} = 0.7442$

$$D_{ij} = 0.0018583 \left(\frac{1}{18} + \frac{1}{2.016}\right)^{1/2} \frac{(1073.15)^{3/2}}{(1)(2.8085)^2(0.7442)}$$

$$D_{ij} = 8.265613 \frac{m^2}{s}$$

$$D_a^{eff} = \frac{1}{\left(\frac{1}{8.2656}\right)} + \left(\frac{1}{2.39x10^{-3}}\right)^{(0.156)} = 3.7345x10^{-4} \frac{m^2}{s}$$

$$i_{ax} = \frac{2(96485.6 \frac{C}{mol})(3.7345x10^{-4} \frac{m^2}{s})(90.1837x10^{3} Pa)}{(8.31 \frac{J}{molK})(1073.15K)(0.0001m)} = 7.28771x10^{6} \frac{A}{m^2}$$

$$\eta_{conc} = -\frac{\frac{(8.31 \int M(1073.15K)}{molK})(1073.15K)}{2(96485.6 \frac{C}{mol})} \ln \left(1 - \frac{3000 \frac{A}{m^2}}{7.2877 \times 10^6 \frac{A}{m^2}}\right) + 0.04621 V \ln \left(1 + \left(\frac{90.1837 \times 10^3 Pa}{11.1463 \times 10^3 Pa}\right) \left(\frac{3000 \frac{A}{m^2}}{8.077 \times 10^6 \frac{A}{m^2}}\right)\right) \eta_{conc} = 1.1963 \times 10^{-4} V$$

Para el cátodo

Coeficiente de difusión de Knudsen

$$D_{H_2 - H_2 O} = 97(2.34 \times 10^{-6}) \sqrt{\frac{873.15}{32}} = 1.1856 \times 10^{-3} \frac{m^2}{s}$$

Coeficiente de difusión molecular binario

$$\sigma_{ij} = \frac{\sigma_i + \sigma_j}{2} = \frac{3.433 + 3.681}{2} = 3.557$$

$$\frac{\varepsilon_{AB}}{\kappa} = \sqrt{\left(\frac{\varepsilon_A}{\kappa}\right)\left(\frac{\varepsilon_B}{\kappa}\right)} = \sqrt{(113)(91.5)} = 101.6833 \qquad T\left(\frac{\kappa}{\varepsilon_{AB}}\right) = 8.5869$$

En Welty J., et al., se encuentra reportado el siguiente valor: $\Omega_{ij} = 0.7620$

$$T\left(\frac{\kappa}{\varepsilon_{AB}}\right) = 8.5869$$

$$D_{ij} = 0.0018583 \left(\frac{1}{32} + \frac{1}{28.02}\right)^{1/2} \frac{(873.15)^{\frac{3}{2}}}{(1)(3.557)^2 (0.7620)}$$

$$D_{ij} = 1.2866 \frac{m^2}{s}$$

$$D_{c}^{eff} = \frac{1}{\left(\frac{1}{1.2866}\right) + \left(\frac{1}{1.1856x10^{-3}}\right)} (0.037) = 4.3826x10^{-5} \frac{m^{2}}{s}$$

$$i_{cs} = \frac{4(96485.6 \frac{C}{mol})(4.3826x10^{-5} \frac{m^{2}}{s})(21.279x10^{3} Pa)}{(8.31 \frac{J}{molK})(873.15K)(0.0022m) \left(\frac{101.33 - 21.279}{101.33}\right)} = 28.5406x10^{3} \frac{A}{m^{2}}$$

$$\eta_{conc} = -\frac{(8.31 \frac{J}{molK})(873.15K)}{4(96485.6 \frac{C}{mol})} \ln \left(1 - \frac{3000 \frac{A}{m^{2}}}{28.5406x10^{3} \frac{A}{m^{2}}}\right)$$

$$\eta_{conc} = 2.0879x10^{-3} V$$

$$\eta_{conc}^{total} = 1.1963x10^{-4}V + 2.0879x10^{-3}V$$

Por lo que con respecto al potencial ideal ($E_{ideal} = 1.0778$ V) se tiene las siguientes relaciones:

$\eta_{ohmico} = 0.1391 \text{ V}$	representa el 12.90% del voltaje con respecto al ideal
$\eta_{act}^{total} = 0.077946V$	representa el 7.23% del voltaje con respecto al ideal
$\eta_{conc}^{total} = 2.20753 \mathrm{x} 10^{-3} V$	representa el 0.2048% del voltaje con respecto al ideal

Dados los porcentajes anteriores se justifica la cancelación de la polarización por concentración en los cálculos subsecuentes.

 E_{celda} = 1.0778 V - 0.1391 V - 0.077946 V = 0.8607 V

Después del análisis anterior, el voltaje terminal de la celda, está dado por la siguiente expresión:

$$E_{celda} - E_{ideal} - \eta_{ohmico} - \eta_{act}$$
(4.44)

4. 3. 2. Balance de energía para la región III (electrolito)

Para la región del sólido (ver figura 4. 12), sólo se tiene calor por conducción, por lo que la ecuación del balance de energía, es la siguiente:

$$\nabla \cdot \left(\rho C p \vec{v} T\right) = \nabla \cdot \left(k_{\iota} \nabla T\right) + S_{\tau}$$
(4.45)

$$\rho C p \left(v_r \frac{\partial T}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial T}{\partial \theta} + v_z \frac{\partial T}{\partial z} \right) = k_t \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial z^2} \right] + 2\mu \left[\left(\frac{\partial v_{\theta}}{\partial \theta} + v_r \right)^2 + \left(\frac{\partial v_z}{\partial z} \right)^2 \right] + (4.46)$$

 $\mu \left\{ \left(\frac{\partial v_{\theta}}{\partial z} + \frac{1}{r} \frac{\partial v_{z}}{\partial \theta} \right)^{2} + \left(\frac{\partial v_{z}}{\partial r} + \frac{\partial v_{r}}{\partial z} \right)^{2} + \left[\frac{1}{r} \frac{\partial v_{r}}{\partial \theta} + r \frac{\partial}{\partial r} \left(\frac{v_{\theta}}{r} \right) \right]^{2} \right\} + S_{T}$

Después de realizar las simplificaciones necesarias, resulta:

$$0 = k_t \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{\partial^2 T}{\partial z^2} \right] + S_T$$
(4.47)

$$\operatorname{con} \quad S_{\tau} = i^2 R_s L \tag{4.48}$$

Donde:

 k_t = conductividad térmica R_e = resistencia del electrolito

Figura 4. 12. Volumen de control para el electrolito

Suponiendo que el flujo de calor se transfiere sólo en la coordenada radial, la ecuación diferencial, resulta:

$$\frac{d}{dr}\left(r\frac{dT}{dr}\right) = -\frac{S_T}{k_t}r$$
(4.49)

Integrando la ec. 4.48, resulta:

$$\frac{dT}{dr} = -\frac{S_T}{2k_i}r + \frac{C_1}{r}$$
(4.50)

Nuevamente integrando la ec. 4.49, resulta:

$$T(r) = -\frac{S_T}{4k_t}r^2 + C_1 \ln r + C_2$$
(4.51)

Las constantes C_1 y C_2 se determinan a partir de las condiciones de frontera, mismas que se presentan en la figura 4. 13 y en la tabla 4. 11.

Figura 4. 13. Condiciones de frontera del balance de energía para la región III de la SOFC

Tabla 4. 11. Condiciones de frontera para el electrolito

		Temperatura
$r = R_3$	$0 \le z \le L$	$T = T_c$
$r = R_4$	$0 \leq z \leq L$	$T = T_a$

Sustituyendo las condiciones de frontera en la expresión resulta:

$$T(r = R_3) = T_c = -\frac{S_T}{4k_1} (R_3)^2 + C_1 \ln R_3 + C_2$$
$$T(r = R_4) = T_a = -\frac{S_T}{4k_1} (R_4)^2 + C_1 \ln R_4 + C_2$$

Multiplicando por -1 la primera ecuación y sumando ambas, se obtiene la constante C_1 :

$$T_{a} - T_{c} = -\frac{S_{T}}{4k_{t}} \Big[(R_{4})^{2} - (R_{3})^{2} \Big] + C_{1} \Big[\ln R_{4} - \ln R_{3} \Big] \qquad \Rightarrow \qquad C_{1} = \frac{(T_{a} - T_{c}) + \frac{S_{T}}{4k_{t}} \Big[(R_{4})^{2} - (R_{3})^{2} \Big]}{\ln \Big(\frac{R_{4}}{R_{3}} \Big)}$$

De la primera ecuación se obtiene el valor de C2:

$$C_{2} = T_{o} + C_{0}(R_{3})^{2} - C_{1} \ln R_{3}$$

$$C_{1} = \frac{(T_{a} - T_{c}) + C_{0} |(R_{4})^{2} - (R_{3})^{2}|}{\ln \left(\frac{R_{4}}{R_{3}}\right)}$$

$$T(r) = -\frac{S_{T}}{4k_{t}}r^{2} + C_{1} \ln r + C_{2}$$

Sustituyendo valores (en la ec. 4.50) para determinar la temperatura del electrolito, se tiene:

$$p_{*}^{*} \approx 10\Omega cm \qquad T_{c} \approx 873.15 \text{K}$$

$$s^{*} = 0.004 cm \qquad T_{a} = 1073.15 \text{K}$$

$$L = 1.5 \text{m} \qquad R_{3} = 10.86 \times 10^{-3} \text{m}$$

$$R_{3} = 3000 \text{ A/m}^{2} \qquad R_{4} = 10.9 \times 10^{-3} \text{m}$$

$$R_{4} = 2.7 \text{ W/mK}$$

$$A_{*}^{t} = \pi \left[(1.09)^{2} - (1.086)^{2} \right] = 2.7344 \times 10^{-2} cm^{2}$$

$$R_{*} = \frac{\rho_{*}^{*} \delta_{*}}{A_{*}^{t}} = \frac{(10)(0.004)}{2.7344 \times 10^{-2}} = 1.4628\Omega$$

$$S_{T} = \left(3000 \frac{A}{m^{2}} \right)^{2} (1.4628\Omega)(1.5m) = 19.7480 \times 10^{6} \frac{A^{2}\Omega}{m^{3}}$$

$$C_{0} = \frac{S_{T}}{4k_{i}} = \frac{19.7480 \times 10^{6}}{4(2.7)} = 1.8285 \times 10^{6} \frac{K}{m^{2}}$$

$$C_{1} = \frac{(1073.15 - 873.15) + 1.8285 \times 10^{6} \left[(10.9 \times 10^{-3})^{2} - (10.86 \times 10^{-3})^{2} \right]}{\ln \left(\frac{R_{4}}{R_{3}} \right)}$$

$$C_{1} = \frac{(1073.15 - 873.15) + 1.8285 \times 10^{6} \left[(10.9 \times 10^{-3})^{2} - (10.86 \times 10^{-3})^{2} \right]}{\ln \left(\frac{10.9 \times 10^{-3}}{10.86 \times 10^{-3}} \right)} = \frac{200 + 1.5915}{\ln (1.0036)}$$

$$C_{1} = \frac{200 + 1.5915}{\ln (1.0036)} \quad \text{entonces:} \quad C_{1} = 54832.833 \text{ K}$$

$$C_{2} = T_{c} + C_{0}(R_{3})^{2} - C_{1} \ln R_{3}$$

$$C_{2} = 873.15 + 1.8285 \times 10^{6} (10.86 \times 10^{-3})^{2} - 54832.833 \ln (10.86 \times 10^{-3})$$

Evaluando la solución de la ecuación diferencial para determinar la temperatura en el centro del electrolito ($r = 10.88 \times 10^{-3}$ m), se tiene:

$$T(r) = -C_0 r^2 + C_1 \ln r + C_2$$

$$T(r = 10.88 \times 10^{-3}) = -1.8285 \times 10^6 (10.88 \times 10^{-3})^2 + 54832.833 \ln(10.88 \times 10^{-3}) + 249079.5566$$

$$T(r - 10.88 \times 10^{-3}) = 973.24334 \text{K}$$

Una forma opcional de determinar la temperatura del electrolito, es considerando que el grosor total de los tres elementos (cátodo, electrolito y ánodo) de la celda es de 2.34 mm. Por lo que es posible simplificar el cálculo de la temperatura del electrolito, realizando el cálculo de la temperatura media aritmética o la media logarítmica, como se muestra a continuación:

Temperatura media aritmética

$$T_e = \left(\frac{T_c + T_a}{2}\right) = \frac{873.15 + 1073.15}{2} = 973.15 \,\mathrm{K}$$
 (4.52)

Temperatura media logarítmica

$$T_{e} = \left(\frac{T_{a} - T_{c}}{\ln\left(\frac{T_{a}}{T_{c}}\right)}\right) = \frac{1073.15 - 873.15}{\ln\left(\frac{1073.15}{873.15}\right)} = 969.71 \text{K}$$
(4.53)

Considerando los resultados anteriores, en los cálculos subsecuentes, a fin de simplificar el modelo, la temperatura del electrolito se obtendrá a partir de la expresión para la temperatura media aritmética (ec. 4.52).

4. 3. 3. Modelo del campo de potencial eléctrico

El balance de carga predice la corriente y el voltaje en las regiones porosas y a lo largo de las regiones conductoras sólidas con resistencia de contacto.

En las SOFC tubulares, se puede suponer que la diferencia de potencial entre los electrodos de la celda es constante en el sentido axial, debido a que la resistencia interna de la conexión metálica es muy baja. De acuerdo a la anterior suposición, la corriente sigue una trayectoria en sentido radial en las SOFC tubulares, por lo que las interconexiones son equipotenciales. Basados en la identificación de segmentos geométricos que se repiten en el sólido (estas unidades elementales se suponen con propiedades uniformes: potencial ideal, densidad de corriente, temperatura, perdidas), estimando las resistencias analíticamente y combinando éstas en serie o paralelo se obtiene el circuito equivalente que representa el flujo de carga en el sólido, acorde con la Ley de Ohm en la celda.

En la figura 4. 14, se muestra el circuito eléctrico para analizar la corriente en la SOFC.

Figura 4. 14. Circuito eléctrico equivalente de la celda (Adaptaclón de Li and Chyu (2003))

La ecuación de Laplace, gobierna la conducción electrónica en materiales sólidos: $\nabla \cdot (k_* \nabla \Phi) = 0$ (4.54)

La densidad de corriente local puede ser expresada en terminos de la Ley de Ohm,

$$\vec{i} = -k_{e} \nabla \Phi \tag{4.55}$$

$$\nabla \cdot \vec{i} = 0 \tag{4.56}$$

Donde:

 \vec{i} = vector densidad de corriente

 k_{e} = conductividad eléctrica

 Φ = campo del potencial eléctrico

El voltaje de la celda puede ser expresado de la siguiente forma:

$$V_c - V_a = E_{ideal} - \eta_{ohmico} - \eta_{act}^{total}$$
(4.57)

Considerando que las perdidas ohmicas se pueden expresar en términos de la ley de Ohm, la expresión anterior, resulta:

$$V_c - V_a = E_{ideal} - IR_e - \eta_{act}^{total}$$
(4.58)

$$I = \frac{E_{ideal} - \eta_{act}^{total} - (V_c - V_a)}{R_e}$$
(4.59)

$$con: \quad R_{e} = \frac{\delta_{e} \rho_{e}^{*}}{A} \tag{4.60}$$

Donde:

I = corriente local que atraviesa del ánodo al cátodo a través del electrolito A = área transversal del ánodo-electrolito-cátodo, por donde fluye la corriente I

4. 3. 4. Resumen de las expresiones de la región del sólido

Potencia o voltaje terminal de la celda

Potencial ideal (Fuerza impulsora del potencial de Nernst)

$$E_{ideal} = E_0 + \frac{RT}{4F} \ln \left(\frac{p_{O_2} p_{H_2}^2}{p_{H_2O}^2} \right)$$
(4.33)

Polarización por activación (η_{act})

La expresión equivalente de la ecuación de Butler - Volmer para el cálculo de la polarización por activación es:

$$\eta_{act} = \frac{2RT}{n_e F} \ln \left[\left(\frac{\bar{i}}{2\bar{i}_0} \right) + \sqrt{\left(\frac{\bar{i}}{2\bar{i}_0} \right)^2 + 1} \right]$$
(4.35)

 $\bar{i}_0 = 2000 \text{ A/m}^2 \text{ para el cátodo}$

 $\bar{i}_0 = 5300 \text{ A/m}^2 \text{ para el ánodo}$

Polarización óhmica (η_{ohmico})

$$\eta_{ohmico} = i \left(\rho_e^* \delta_e + \rho_c^* \delta_c + \rho_a^* \delta_a \right)$$
(4.36)

Voltaje terminal de la celda

$$E_{celda} = E_{ideal} - \eta_{ohmico} - \eta_{oct} \qquad (4.44)$$

Balance de energía para la región III (electrolito)

$$T_e = \left(\frac{T_c + T_a}{2}\right) \tag{4.52}$$

Balance del campo de potencial eléctrico (balance de carga)

$$I = \frac{E_{ideal} - \eta_{act}^{total} - (V_o - V_a)}{R_e}$$
(4.59)

$$R_{e} = \frac{\delta_{e} \rho_{e}^{*}}{A}$$
(4.60)

4. 4. SECUENCIA DE CÁLCULO DEL MODELO

El procedimiento de cálculo general a seguir para determinar todos los valores de las ecuaciones gobernantes de las SOFC se muestra en siguiente diagrama de flujo.

1. Suponer valores iniciales para las propiedades de transporte $(T, P, n_{O_2}^0, n_{H_2}^0, n_{aine}^{tot}, n_{comb}^{tot})$ y la densidad de corriente (*i*).

2. Procedimiento de cálculo para ambas regiones fluidas: El perfil de velocidad, de temperatura y de materia por especie son calculados. Las ecuaciones que gobiernan dichas regiones son resueltas.

3. Procedimiento de cálculo para la región del sólido: El potencial de Nernst y las polarizaciones son calculados; se obtiene la densidad de corriente local.

Los	pasos	2	у	3	son	repetidos	hasta	que	se	alcanza	la
conv	/ergenci	a .	E١ \	/olt	aje de	e la celda (V) o la	densi	dad	de corrier	nte
(<i>i</i>), d	leben se	эг р	ree	esta	ableci	dos.					

4. 5. PLANTEAMIENTO GENERAL DE LOS CASOS DE ESTUDIO

La especificación de modelo consiste en plantear las variables gobernantes de la SOFC tanto para la región del fluido como del sólido, es decir, velocidad, temperatura, composición y campo de potencial eléctrico.

La ecuación de continuidad se tomará como una expresión para simplificar las expresiones del balance de momento, es decir, como una ecuación de consistencia. El balance de campo de potencial eléctrico, se tomará para todos los casos de estudio como función del eje radial, es decir: $\Phi = \Phi(r)$.

En la tabla 4. 12, se presenta un resumen de las ecuaciones gobernantes de la SOFC, así como el conjunto de variables de las cuales dependen cada una de ellas.

Ecuación de Balance		Observació	n
Continuidad	Esta expresión para simplificar como una ecua	se empleará el balance de ción de consiste	en todos los casos momento, es decir, encia.
Momento	$\vec{v} = v_z(z, r)\hat{z} + v$	$r(z,r)\hat{r}$	
axial	$v_z = v_z(z, r)$	$v_z = v_z(z)$	$v_x = v_x(r)$ Para simplificar el modelo del fluido, se supondrá en todos los casos de estudio esta relación para la velocidad axial.
radial	$v_r = v_r(z, r)$	$v_r = v_r(z)$	$v_r = v_r(r)$
Energía	T = T(z, r)	T = T(z)	T-T(r)
Materia por componente	$y_i = y_i(z, r)$	$y_i = y_i(z)$	$y_i = y_i(\mathbf{r})$
Campo de potencial eléctrico	$\boldsymbol{\Phi} = \boldsymbol{\Phi}(\boldsymbol{z}, \boldsymbol{r})$	$\boldsymbol{\Phi} = \boldsymbol{\Phi}(z)$	

Tabla 4. 12. Conjunto de ecuaciones gobernantes de la SOFC.

Se supondrá que los flujos de aire y combustible se comportan como mezclas de gases ideales. En la figura 4. 15, se muestran las regiones fluidas I y V de la SOFC.

Figura 4. 15. Volúmenes de control de las regiones fluidas de la SOFC

4. 5. 1. Dimensiones físicas de la SOFC

Las dimensiones que se aplicaran en el modelo fueron seleccionadas de acuerdo a los artículos con que se realizará la validación, las dimensiones de la SOFC son mostradas en la tabla 4. 13.

Tubo inductor del	aire	
Diámetro externo	mm	12.0
Grosor	mm	1.0
Longitud	mm	1450
Cátodo		
Diámetro externo	mm	21.72
Grosor	mm	2.20
Longitud	mm	1500
Electrolito	_	
Diámetro externo	mm	21.8
Grosor	mm	0.04
Longitud	mm	1500
Anodo	<u> </u>	
Diámetro externo	mm	22.0
Grosor	mm	0.1
Longitud	mm	1500

Tabla 4. 13. Dimensiones empleadas en los cálculos

4. 5. 2. Características del combustible y del oxidante

Las características de los reactivos que se aplicaran en el modelo fueron seleccionadas de acuerdo a los artículos con que se realizará la validación y son mostrados en la tabla 4. 14.

Composición d	e la alim	entación
Comt	oustible	
H ₂	%	89.0
Utilización del H ₂	%	85.0
H₂O	%	11.0
Temperatura inicial	(°C)	800
Presión	Ра	1.013x10 ⁵
Oxi	dante	
O ₂ del aire	%	21
Utilización del O ₂	%	25%
N ₂	%	79
Temperatura inicial	(°C)	600
Presión	Pa	1.013x10 ⁵

Tabla 4. 14. Datos usados en los cálculos de la celda

4. 6. VALIDACIÓN DEL MODELO

En la tabla 4. 15, se presenta un resumen de los artículos que publican datos experimentales, usados para comparar los resultados del modelo propuesto en la tesis.

Se especifica los datos experimentales exactos que se tiene en cada artículo; tales como la temperatura y presión de operación, la composición del combustible, la utilización tanto del combustible como del oxidante. En ambos artículos usados la compañía que manufactura la SOFC tubular es Siemens Westinghouse.

Los datos importantes para nuestro modelo son los de voltaje de la celda vs densidad de corriente, así como las condiciones a las cuales se obtuvieron dichos datos, las características del combustible y oxidante empleados por cada autor. Estas especificaciones servirán de datos para el establecimiento de las dimensiones y condiciones de operación de la celda a modelar, con el fin de reproducir los resultados experimentales de tales artículos.

Es importante hacer notar que son pocos los datos publicados en la literatura abierta para validar los modelos generados y por otro lado, la dificultad que tiene para tener acceso a dichos artículos.

El apéndice II, muestra el análisis completo de los artículos arriba mencionados, así como de algunos otros que publican datos experimentales.

raula +. 13. Datus cypel	HIGH TALES DATA VALUATION LESURATION DE HIGODO	
Autor	Resultados experimentales	Compañía que manufactura la SOFC
Singhal (1999)	 Pag. 41 Fig. 2. Grafica Voltaje (V) vs densidad de corriente (mA/cm²) de una típica SOFC (2.2 cm de diámetro) a diferentes temperaturas (800°C, 900°C y 1000°C) con una composición del combustible de: 89% H₂ + 11% H₂O (85% utilización de combustible) y aire como oxidante (4 estequiométrico). Pag. 45 Fig. 5. Comparación del funcionamiento teórico y real de una SOFC tubular y HPD-SOFC en un stack de volumen básico. Potencia volumétrica/ stack (W/cm³) vs densidad de corriente (mA/cm²). Temperatura de operación 1000°C. Composición del combustible de: 89% H₂ + 11% H₂O (85% utilización de combustible) y aire como oxidante (6 estequiométrico). Pag. 49 Fig. 8. Voltaje final (V), corriente (A) y potencia (kWe dc) generados por una SOFC de 100 kWe (antes de la reconstrucción del stack) Fig. 9. Voltaje final (V), corriente (A) y potencia (kWe dc) generados por una SOFC de 100 kWe (después de la reconstrucción del stack) Fig. 9. Voltaje final (V), corriente (A) y potencia (kWe dc) generados por una SOFC de 100 kWe (después de la reconstrucción del stack) 	Siemens Westinghouse tubular SOFC y un nuevo diseño de celda (Higher power density SOFC)
Tomlins y Jaszar (1999)	 Pag. 371 Fig. 1. Grafica de Voltaje de la celda (V) vs tiempo de operación de la celda (hr) a P = 1 a 5 atm. Densidad de corriente (mA/cm²) tiempo de operación de la celda (hr). Presión de operación (Psig) Fig. 2. Grafica Voltaje de la celda (V) vs densidad de corriente (mA/cm²) a P = 5 atm. T=1000°C, composición del combustible de: 89% H₂ + 11% H₂O (85% utilización de combustible) y aire como oxidante (6 estequiométrico). Fig. 3. Grafica Voltaje de la celda (V) vs densidad de corriente (mA/cm²) a P = 5 atm, T=1000°C, composición del combustible de: 89% H₂ + 11% H₂O (85% utilización de combustible) y aire como oxidante (6 estequiométrico). Fig. 3. Grafica Voltaje de la celda (V) vs densidad de corriente (mA/cm²) a P = 1 atm, T=1000°C, composición del combustible de: 89% H₂ + 11% H₂O (85% utilización de combustible) y aire como oxidante (6 estequiométrico). 	Siemens Westinghouse tubular SOFC, de 22mm de diámetro, 1500 mm de longitud activa condiciones de operación estándar: 1000°C, 85% utilización de H ₂ húmedo como combustible (89% H ₂ con 11% H ₂ O) y 6 veces el aire estequiométrico.

Tabla 4. 15. Datos experimentales para validar los resultados del modelo planteado

97

CAPÍTULO 5

CASOS DE ESTUDIO

En este capítulo se presentara el planteamiento de los casos de estudio desarrollados.

En la primera parte, se plantea el primer caso de estudio y sus variantes, en el cual se considera a la velocidad con una sola de sus componentes, es decir, la velocidad axial como un flujo totalmente desarrollado. La temperatura y la composición se consideran función de las coordenadas axial, radial o ambas dependiendo de caso de estudio en cuestión.

En la segunda parte, se plantea el segundo caso de estudio, en el cual se considera a la velocidad con sus dos componentes, es decir, la velocidad axial y la velocidad radial, y las variantes de este caso. La temperatura y la composición se consideran función de la coordenada axial o radial dependiendo de caso de estudio en cuestión.
5. 1. CASO 1

5. 1. 1. Especificaciones del modelo

La especificación que se describe en la tabla 5. 1, es la que corresponde al caso 1, en el cual se toma en cuenta tanto la parte de convección como la de difusión de los balances de energía y materia por componentes.

Ecuación de Balance	Observación	Solución	
Momento	v = v(r)	Analítica	
axial		/ andraod	
Energía	T = T(r)	Analítica	
Materia por componentes	$y_i = y_i(\mathbf{r})$	Analítica	

Tabla	5.	1.	Especificaciór	ı de	las	ecuaciones	del	caso	1.
,	.	•••	Lopoolliouoloi						

Ecuación de continuidad

Debido a que se especifica un flujo totalmente desarrollado, finalmente resulta:

$$\frac{dv_z}{dz} = 0 \tag{5.1}$$

Balance de momento

Después de realizar las simplificaciones necesarias de acuerdo a las suposiciones del modelo ($v_x = v_x(r)$) que se esta planteando, resulta:

Componente z:
$$0 = -\frac{\partial p}{\partial z} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) \right] + \rho g_z$$
(5.2)

Solución de la ecuación del balance de momento

$$\frac{\partial p}{\partial z} - \rho g_{z} = \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_{z}}{\partial r} \right) \right]$$

Haciendo $P = p - \rho g_x z$

El lado derecho de la ecuación diferencial, resulta:

$$\frac{dP}{dz} = \frac{d}{dz}(p - \rho g_{x}z) = \frac{dp}{dz} - \frac{d}{dz}(\rho g_{z}z) = \frac{dp}{dz} - \rho g_{z}z$$

Rescribiendo la ecuación diferencial, resulta:

$$\frac{dP}{dz} = \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) \right]$$

Haciendo $C_1 = \frac{dP}{dz}$ separando variables e integrando, se tiene: $\int_{0}^{L} C_1 dz = \int_{P_0}^{P_1} dP$

 $C_1 L = P_L - P_0$ entonces $C_1 = \frac{P_L - P_0}{L}$

Evaluando *P* entre sus valores iniciales y finales, se tiene: $P_L = p - \rho g_z L$ y $P_0 = p$ Por lo que el valor de C_1 , se rescribe de la siguiente forma:

$$C_{1} = \frac{P_{L} - P_{0}}{L} = \frac{p - \rho g_{z} L - p}{L} = -\rho g_{z}$$

Retomando la ecuación diferencial inicial, se tiene: $C_I = \mu \left[\frac{1}{r} \frac{d}{dr} \left(r \frac{dv_x}{dr} \right) \right]$,

entonces

$$C_1 \frac{r}{\mu} = \frac{d}{dr} \left(r \frac{dv_x}{dr} \right)$$
(5.3)

Integrando la expresión anterior resulta:

$$C_1 \frac{r^2}{2\mu} + C_2 = r \frac{dv_x}{dr} \implies C_1 \frac{r}{2\mu} + \frac{C_2}{r} = \frac{dv_x}{dr}$$

Integrando nuevamente la expresión anterior resulta:

$$v_{r}(r) = \frac{C_{1}r^{2}}{4\mu} + C_{2}\ln r + C_{3}$$
(5.4)

Γ

Las constantes C_2 y C_3 se determinan a partir de las condiciones de frontera, mismas que se presentan en la figura 5. 1.

Figura 5. 1. Condiciones de frontera generales para v_n para las regiones fluidas I y V.

$$v_{z}(r = R_{1}) = 0 = \frac{C_{1}}{4\mu}(R_{1})^{2} + C_{2}\ln(R_{1}) + C_{3}$$
$$v_{z}(r = R_{2}) = 0 = \frac{C_{1}}{4\mu}(R_{2})^{2} + C_{2}\ln(R_{2}) + C_{3}$$

Multiplicando por -1 la primera ecuación y sumando ambas, se obtiene la constante C_2 :

$$0 = \frac{C_1}{4\mu} \Big[(R_2)^2 - (R_1)^2 \Big] + C_2 \Big[\ln(R_2) - \ln(R_1) \Big] \qquad \text{entonces} \qquad C_2 = -\frac{C_1}{4\mu} \Bigg[\frac{\left(R_2^2 - R_1^2 \right)}{\ln \frac{R_2}{R_1}} \Bigg]$$

De la primera ecuación se obtiene el valor de C_3 :

Balance de energía

Después de realizar las simplificaciones necesarias de acuerdo a las suposiciones del modelo (T = T(r) y $v_r = v_r(r)$), resulta:

$$0 = k_{f}^{\text{eff}} \left[\frac{1}{r} \frac{d}{dr} \left(r \frac{dT}{dr} \right) \right] + S_{T}$$
(5.5)

Solución de la ecuación del balance de energía

$$\frac{d}{dr}\left(r\frac{dT}{dr}\right) = -\frac{S_T}{k_t^{eff}} \qquad \text{haciendo:} \qquad A_0 = -\frac{S_T}{k_t^{eff}} \\ \left[\frac{d}{dr}\left(r\frac{dT}{dr}\right)\right] = A_0 r \qquad (5.6)$$
presión anterior, resulta: $r\frac{dT}{dr} = \frac{A_0}{2}r^2 + A_1$

entonces:

Integrando la expresión anterior, resulta:

Integrando nuevamente la expresión anterior, resulta:

$$T(r) = \left(\frac{A_0}{4}\right)r^2 + A_1 \ln r + A_2$$
 (5.7)

Las constantes A1 y A2, se determinan a partir de las condiciones de frontera del caso de estudio, mismas que se presentan en la figura 5.2.

Figura 5. 2. Condiciones de frontera generales para T, para las regiones I y V.

En r = R₁, se tiene la pared adiabática $\left(\frac{dT}{dr}=0\right)$, por lo que la constante A_1 se obtiene, como sigue:

$$\frac{dT}{dr} = 0 = \frac{A_0}{2}R_1 + \frac{A_1}{R_1}$$
 entonces $A_1 = -\frac{A_0}{2}R_1^2$

sustituyendo el valor de A_{0} , se tiene: $A_1 = \frac{S_T}{2k!^{eff}}R_1^2$

Sin embargo, debido a que en r = R_1 entre $0 \le z \le L$, no se tiene termino fuente, entonces, el valor de la constante $A_1 = 0$.

Evaluando la ecuación diferencial en $r = R_2$, se obtiene la constante A_2 :

$$T(r = R_{2}) = T_{f} = \left(\frac{A_{0}}{4}\right)R_{2}^{2} + A_{2}$$

$$A_{0} = -\frac{S_{T}}{k_{t}^{eff}}$$

$$T(r) = \left(\frac{A_{0}}{4}\right)r^{2} + A_{2}$$
(5.8)

Balance de materia por componentes

Una vez realizadas las simplificaciones necesarias de acuerdo a las suposiciones del modelo ($y_i = y_i(r)$ y $v_s = v_s(r)$), resulta:

$$0 = D_i^{\text{eff}} \left[\frac{1}{r} \frac{d}{dr} \left(r \frac{dy_i}{dr} \right) \right] + S_{y_i}$$
(5.9)

Solución de la ecuación del balance de materia por componentes

 $\frac{d}{dr}\left(r\frac{dy_i}{dr}\right) = C_0 r$

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{dy_i}{dr}\right) = -\frac{S_{y_i}}{D_i^{\text{eff}}} \qquad \text{haciendo:} \qquad C_0 = -\frac{S_{y_i}}{D_i^{\text{eff}}}$$

entonces:

Integrando la expresión anterior, resulta:

$$r\frac{dy_i}{dr} = \frac{C_0}{2}r^2 + C_1$$

(5.10)

Integrando nuevamente la expresión anterior, resulta:

$$y_{i}(r) = \left(\frac{C_{0}}{4}\right)r^{2} + C_{1}\ln r + C_{2}$$
(5.11)

Las constantes C_1 y C_2 , se determinan a partir de las condiciones de frontera del caso de estudio, mismas que se presentan en la figura 5. 3.

Figura 5. 3. Condiciones de frontera generales para y_i, para las regiones I y V.

En r = R₁, se tiene la pared impermeable $\left(\frac{dy_i}{dr} = 0\right)$, por lo que la constante C_I se obtiene, como sigue:

$$\frac{dy_1}{dr} = 0 = \frac{C_0}{2}R_1 + \frac{C_1}{R_1}$$
 entonces $C_1 = -\frac{C_0}{2}R_1^2$

sustituyendo el valor de C_{θ} , se tiene:

$$C_{1} = \frac{S_{y_{1}}}{2D_{1}^{eff}}R_{1}^{2}$$

Sin embargo, debido a que en $r = R_1$ entre $0 \le z \le L$, no se tiene termino fuente, entonces, el valor de la constante $C_1 = 0$.

Evaluando la ecuación diferencial en $r = R_2$, se obtiene la constante C_2 :

$$y_{i}(r = R_{2}) = y_{i}^{f} = \left(\frac{C_{0}}{4}\right)R_{2}^{2} + C_{2}$$

$$C_{2} = y_{i}^{f} - \left(\frac{C_{0}}{4}\right)R_{2}^{2} \qquad C_{0} = -\frac{S_{y_{i}}}{D_{i}^{eff}}$$

$$y_{i}(r) = \left(\frac{C_{0}}{4}\right)r^{2} + C_{2} \qquad (5.12)$$

En las tablas 5. 2 y 5. 3, se muestra un resumen de las condiciones de frontera que aplican a los campos de velocidad, temperatura y especies químicas, tanto para la región I como la V, en el caso 1, mismas que se muestran en las figuras 5. 1, 5. 2 y 5. 3.

		Velocidad (axial)	Temperatura	Especies
En r = R ₁	$0 \le z \le L$	$v_z = 0$	$\frac{dT}{dr} = 0$	$\frac{dy_i}{dr} = 0$
Enr=R ₂	0 ≤ z ≤ L	$v_z = 0$	$T = T_f$	$y_{oxi} = y_f$
En z = 0	$R_1 \leq r \leq R_2$			
En z = L	$R_1 \leq r \leq R_2$			

Tabla 5. 2. Condiciones de frontera para la región I, en el caso 1.

		Velocidad (axial)	Temperatura	Especies
En r = R₅	$0 \le z \le L$	$v_z = 0$	$T = T_0$	y _{hid} = y _f Yagua = y _f
En r = R ₆	0 ≤ z ≤ L	$v_z = 0$	$\frac{dT}{dr} = 0$	$\frac{dy_i}{dr} = 0$
En z = 0	$R_5 \leq r \leq R_8$			
En z = L	$R_5 \leq r \leq R_6$		—	

Tabla 5. 3. Condiciones de frontera para la región V, en el caso 1.

5. 1. 2. Resultados

En las figuras 5. 4, 5. 5, 5. 6 y 5. 7, se muestran los resultados obtenidos con el programa Conduct para el caso 1, de la SOFC. En el apéndice III, se encuentran los resultados numéricos del programa para dicho caso. La densidad de corriente empleada en la construcción de la matriz de resultados del perfil de temperatura y de composición es de 0.15 A/cm².

Figura 5. 4. Perfil de velocidad axial para ambas regiones fluidas. Caso 1.

En la figura 5. 4, se aprecia el perfil de velocidad axial, el comportamiento es análogo en ambas regiones, este perfil predomina el termino cuadrático sobre el logarítmico y el termino independiente, por lo que la figura prácticamente es una parábola.

Figura 5. 5. Perfil de temperatura para ambas regiones fluidas. Caso 1.

La figura 5. 5, muestra el perfil de temperatura para ambas regiones fluidas, este perfil es diferente para ambas regiones, debido tanto al cambio de las propiedades físicas de los fluidos como a los términos fuente que contribuyen en cada región.

Para este perfil, no se aprecia la contribución del término cuadrático dado en la solución de la ecuación del balance de energía.

El perfil en la región I presenta un comportamiento endotérmico, en el cual la temperatura que esta pegada al cátodo es la menor del perfil, en tanto que la temperatura que se encuentra en contacto con el tubo inductor de aire es la mayor. La contribución del termino fuente, diferente en ambas regiones, es evidente para el perfil de la región V, el cual cuenta con la aportación del calor generado por la reacción de formación del agua además del calor ohmico. En este perfil, se tiene la parte de mayor temperatura pegada al ánodo y la parte fría, pegada al tubo inductor de combustible. Por otro lado, se esperaría que la gráfica mostrara un comportamiento muy similar, es decir, una suave parábola, sin embargo, los valores la temperatura fluctúan en el siguiente rango: 1120.997K $\leq T \leq 1121.0$ K.

Figura 5. 6. Perfil de composición del oxígeno para la región fluida I. Caso 1.

En la figura 5. 6, se muestra el perfil de composición del oxígeno para la región l, la diferencia entre ambas gráficas es la utilización del aire que se empleo en los cálculos, con el fin de reproducir las condiciones a las cuales se realizo la parte experimental. En este perfil, no se aprecia la influencia del termino cuadrático de la solución del balance de materia por componentes; muestra un comportamiento prácticamente lineal, el cual coincide con la composición final del oxígeno, dado este comportamiento, no es posible apreciar el consumo de las moléculas de oxígeno que penetran en el cátodo.

Figura 5. 7. Perfil de composición del hidrógeno y del agua para la región V. Caso 1.

En la figura 5.7, se muestra el perfil de composición del hidrógeno y del agua para la región V. En este perfil, no se aprecia la influencia del término cuadrático de la solución del balance de materia por componentes. Se muestra un comportamiento prácticamente lineal, el cual coincide con ambas composiciones finales del hidrógeno y del agua respectivamente, dado este comportamiento, no es posible apreciar el consumo y aparición de las moléculas que penetran (o son liberadas) en el ánodo. En este modelo, se considero a la pared del tubo inductor de combustible como impermeable.

En la tabla 5. 4, se muestra los resultados para la región del sólido, es decir, las regiones II, III y IV. Estos resultados se pueden ver en la sección correspondiente del apéndice III.

Den. de cor. (A/cm²)	η₀hmiaa (V)	ຖ _{activación} (∨)	E _{oekda} (V) E _{ldeal} = 1.07789V 4 veces esteq. O ₂ (y _{ood final} = 0,17)	E _{ceida} (V) E _{ideal} = 1.07946V 6 veces esteq. O ₂ (y _{oxi final} = 0,18)
0.1500	0.0159	0.04981	1.012	1.014
0.1560	0.0165	0.05175	1.010	1.011
0.1623	0.0172	0.05376	1.007	1.009
0.1689	0.0179	0.05584	1.004	1.006
0.1757	0.0186	0.05800	1.001	1.003

Tahla	5	4	Resultados	de	10	región	del	sólido
rabia	э.	4.	Resultatios	ue	ы	region	uei	Solido

En la figura 5. 8, muestra la gráfica de voltaje vs densidad de corriente para el caso 1, es decir, se muestra gráficamente los resultados de la tabla 5.7, muestra los resultados tanto de 4 veces la estequiometría del aire, como la de 6 veces la esteguiometría del aire, siendo ambas rectas paralelas.

Figura 5, 8, Voltaje vs Densidad de corriente. Caso 1

En las figuras 5. 9 y 5. 10, se muestran los resultados obtenidos del caso 1 y su comparación con respecto a los artículos que se emplearán para validarlos. Los resultados, dado el modelo matemático elegido son cualitativos, es decir, la pendiente del perfil es similar, sin embargo, aún es necesario realizar ajustes al modelo para reproducir los resultados experimentales.

Figura 5. 9. Validación de resultados con respecto a Tomlins (1999)

Figura 5. 10. Validación de resultados con respecto a Singhal (1999)

5. 2. 1. Especificaciones del modelo

La especificación que se describe en la tabla 5. 5, es la que corresponde al caso 1A. Se toma en cuenta tanto la parte de convección como la de difusión de los balances de energía y materia por componentes.

Ecuación de Balance	Observación	Solución	
Momento	y = y(r)	Applitica	
axial	$v_z = v_z(r)$	Anantica	
Energía	T = T(z)	Analítica	
Materia por componentes	$y_i = y_i(z)$	Analítica	

Tabla	5.	5.	Especificación	de la:	s ecuaciones d	iei	caso	1A	
1.000100	υ.	Υ.	Copooniodolon						2

Ecuación de continuidad

Debido a que se especifica un flujo totalmente desarrollado, finalmente resulta:

$$\frac{dv_z}{dz} = 0 \tag{5.1}$$

Balance de momento

Después de realizar las simplificaciones necesarias de acuerdo a las suposiciones del modelo que se esta planteando ($v_z = v_z(r)$), resulta:

Componente z:

$$0 = -\frac{\partial p}{\partial z} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) \right] + \rho g_s$$
(5.2)

Solución de la ecuación del balance de momento en dirección axial

El desarrollo de la solución, es planteado en el caso 1, por lo que, sólo se especificará la solución del balance de momento en dirección axial.

$$\begin{bmatrix} C_{3} = -\frac{C_{1}}{4\mu}(R_{1})^{2} - C_{2}\ln(R_{1}) & y \\ v_{x}(r) = \frac{C_{1}}{4\mu}r^{2} + C_{2}\ln r + C_{3} \\ C_{1} = -\rho g_{x} \end{bmatrix} (5.4)$$

Balance de energía

Después de realizar las simplificaciones necesarias, de acuerdo a las suposiciones del modelo (T = T(z) y $v_x = v_z(r)$), resulta:

$$\rho C p \left(v_{z} \frac{dT}{dz} \right) = k_{t}^{eff} \left[\frac{d^{2}T}{dz^{2}} \right] + S_{T}$$
(5.13)

Solución de la ecuación del balance de energía

$$\frac{d^2T}{dz^2} - \frac{\rho C p v_r}{k_t^{\text{eff}}} \frac{dT}{dz} = -\frac{S_T}{k_t^{\text{eff}}} \qquad \text{Ilamando} \qquad A_0 = \frac{\rho C p v_r}{k_t^{\text{eff}}} \qquad \text{y} \qquad A_1 = -\frac{S_T}{k_t^{\text{eff}}}$$

$$\frac{d^2T}{dz^2} - A_0 \frac{dT}{dz} = A_1 \tag{5.14}$$

 $e^{A_0 z}$

Realizando un cambio de variable, se tiene: $u = \frac{dT}{dz}$ derivando: $\frac{du}{dz} = \frac{d^2T}{dz^2}$ Rescribiendo la ecuación anterior:

$$\frac{du}{dz} - A_0 u = A_1 \tag{5.15}$$

El factor integrante de dicha ecuación es:

$$e^{-A_0 z} \frac{du}{dz} - e^{-A_0 z} A_0 u = e^{-A_0 z} A_1 \qquad \text{entonces} \qquad \frac{d}{dz} \left(u e^{-A_0 z} \right) = e^{-A_0 z} A_1$$

Separando variables e integrando, resulta:

$$ue^{-A_0 x} = A_1 \int e^{-A_0 x} dz \qquad \Rightarrow \qquad ue^{-A_0 x} = -\frac{A_1}{A_0} e^{-A_0 x} + A_2$$
Por lo que resulta: $u = -\frac{A_1}{A_0} + A_2 e^{A_0 x}$
pero como $u = \frac{dT}{dz}$, realizando el cambio
de variable, resulta: $\frac{dT}{dz} = -\frac{A_1}{A_0} + A_2 e^{A_0 x}$

Nuevamente separando variables e integrando, resulta:

$$T(z) = -\frac{A_1}{A_0}z + A_2 \int e^{A_0 z} dz \quad \text{entonces} \quad T(z) = -\frac{A_1}{A_0}z + \frac{A_2}{A_0}e^{A_0 z} + A_3$$

$$Como \quad A_0 = \frac{\rho C p v_z}{k_t^{eff}} \quad y \quad A_1 = -\frac{S_T}{k_t^{eff}} \quad \text{entonces:} \quad \frac{A_1}{A_0} = \frac{-\frac{S_T}{k_t^{eff}}}{\frac{\rho C p v_z}{k_t^{eff}}} - \frac{S_T}{\rho C p v_z}$$

Entonces la solución de la ecuación del balance de energía, resulta:

$$T(z) = \frac{S_T}{\rho C p v_z} z + \frac{A_2}{A_0} e^{A_0 z} + A_3$$
(5.16)

Las constantes A_2 y A_3 se determinaran por condiciones de frontera, que se muestran en la figura 5. 2.

$$T(z=0) = T_{o} = \frac{A_{2}}{A_{0}} + A_{3}$$
$$T(z=L) = T_{f} = \frac{S_{T}}{\rho C p v_{r}} L + \frac{A_{2}}{A_{0}} e^{A_{0}L} + A_{3}$$

Multiplicando por -1 la primera ecuación y sumando ambas, se obtiene la constante $\frac{A_2}{A_0}$:

$$T_{r} - T_{o} = \frac{A_{2}}{A_{0}} \left(e^{A_{0}L} - 1 \right) + \frac{S_{T}}{\rho C p v_{z}} L \qquad \text{entonces} \qquad \frac{A_{2}}{A_{0}} = \frac{\left(T_{r} - T_{o} \right) - \frac{S_{T}}{\rho C p v_{z}} L}{\left(e^{A_{0}L} - 1 \right)}$$

Sustituyendo el valor de $\frac{A_2}{A_0}$ en la primera ecuación de las condiciones de frontera, se obtiene el valor de A_3

$$A_{3} = T_{o} - \frac{A_{2}}{A_{0}} \qquad \qquad \frac{A_{2}}{A_{0}} = \frac{\left(T_{f} - T_{o}\right) - \frac{S_{T}}{\rho C p v_{z}}L}{\left(e^{A_{0}L} - 1\right)}$$
$$T(z) = \frac{S_{T}}{\rho C p v_{z}}z + \frac{A_{2}}{A_{0}}e^{A_{0}z} + A_{3}$$
$$A_{0} = \frac{\rho C p v_{z}}{k_{t}^{40}}$$

Balance de materia por componentes

Después de realizar las simplificaciones necesarias de acuerdo a las suposiciones del modelo ($y_i - y_i(z)$ y $v_z = v_x(r)$), la ecuación del balance de materia por componentes, resulta:

$$\left(v_{z}\frac{dy_{i}}{dz}\right) = D_{i}^{\text{eff}}\left(\frac{d^{2}y_{i}}{dz^{2}}\right) + S_{y_{i}}$$
(5.17)

Solución de la ecuación del balance de materia por componentes

$$\frac{d^{2}y_{i}}{dz^{2}} - \frac{v_{z}}{D_{i}^{\text{eff}}} \left(\frac{dy_{i}}{dz}\right) = -\frac{S_{y_{i}}}{D_{i}^{\text{eff}}} \qquad \text{haciendo} \qquad A_{0} = \frac{v_{z}}{D_{i}^{\text{eff}}} \qquad \mathbf{y} \qquad A_{1} = -\frac{S_{y_{i}}}{D_{i}^{\text{eff}}} \\ \frac{d^{2}y_{i}}{dz^{2}} - A_{0} \left(\frac{dy_{i}}{dz}\right) = A_{1} \qquad (5.18)$$
Haciendo el siguiente cambio de variable: $u = \frac{dy_{i}}{dz}$ derivando: $\frac{du}{dz} = \frac{d^{2}y_{i}}{dz^{2}}$
Rescribiendo la ecuación anterior: $\frac{du}{dz} - A_{0}u = A_{1}$ (5.19)
El factor integrante de dicha ecuación es: $e^{-A_{0}z}$
 $e^{-A_{0}z} \frac{du}{dz} - e^{-A_{0}z}A_{0}u = e^{-A_{0}z}A_{1}$ entonces $\frac{d}{dz}(ue^{-A_{0}z}) = e^{-A_{0}z}A_{1}$

Separando variables e integrando, resulta:

$$ue^{-A_0 x} = A_1 \int e^{-A_0 x} dz \qquad \Longrightarrow \qquad ue^{-A_0 x} = -\frac{A_1}{A_0} e^{-A_0 x} + A_2$$

Por lo que resulta: $u = -\frac{A_1}{A_0} + A_2 e^{A_0 x}$ pero como $u = \frac{dy_i}{dz}$, realizando el cambio de variable, resulta: $\frac{dy_i}{dz} = -\frac{A_1}{A_0} + A_2 e^{A_0 x}$

Nuevamente separando variables e integrando, resulta:

$$y_{i}(z) = -\frac{A_{1}}{A_{0}}z + A_{2}\int e^{A_{0}z}dz \quad \text{entonces} \quad y_{i}(z) = -\frac{A_{1}}{A_{0}}z + \frac{A_{2}}{A_{0}}e^{A_{0}z} + A_{3}$$

$$\text{Como } A_{0} = \frac{v_{x}}{D_{i}^{\text{eff}}} \quad \text{y} \quad A_{1} = -\frac{S_{y_{i}}}{D_{i}^{\text{eff}}} \quad \text{entonces:} \quad \frac{A_{1}}{A_{0}} = \frac{-\frac{S_{y_{i}}}{D_{i}^{\text{eff}}}}{\frac{v_{x}}{D_{i}^{\text{eff}}}} = -\frac{S_{y_{i}}}{v_{x}}$$

Entonces la solución de la ecuación del balance de materia por componentes, resulta:

$$y_{i}(z) = \frac{S_{y_{i}}}{v_{x}} z + \frac{A_{2}}{A_{0}} e^{A_{0}z} + A_{3}$$
(5.20)

Las constantes A_2 y A_3 se determinaran por condiciones de frontera, que se muestran en la figura 5. 3.

$$y_{i}(z=0) = y_{i}^{0} = \frac{A_{2}}{A_{0}} + A_{3}$$
$$y_{i}(z=L) = y_{i}^{f} = \frac{S_{y_{i}}}{v_{z}}L + \frac{A_{2}}{A_{0}}e^{A_{0}L} + A_{3}$$

Multiplicando por -1 la primera ecuación y sumando ambas, se obtiene la constante $\frac{A_2}{A_0}$:

$$y_{i}^{f} - y_{i}^{0} = \frac{A_{2}}{A_{0}} \left(e^{A_{0}L} - 1 \right) + \frac{S_{y_{i}}}{v_{z}} L \qquad \text{entonces} \qquad \frac{A_{2}}{A_{0}} = \frac{\left(y_{i}^{f} - y_{i}^{0} \right) - \frac{S_{y_{i}}}{v_{z}} L}{\left(e^{A_{0}L} - 1 \right)}$$

Sustituyendo el valor de $\frac{A_2}{A_0}$ en la primera ecuación de las condiciones de frontera, se obtiene el valor de A_3

En las tablas 5. 6 y 5. 7, se muestra un resumen de las condiciones de frontera que aplican para el caso de estudio 1A, mismas que se muestran en las figuras 5. 1, 5. 2 y 5. 3, del caso de estudio 1.

		Velocidad (axial)	Temperatura	Especies
$Enr = R_1$	$0 \le z \le L$	$v_z = 0$		
$Enr = R_2$	0 ≤ z ≤ L	$v_z = 0$		
En z = 0	$R_1 \leq r \leq R_2$		$T = T_0$	$y_{oxi} = y_0$
En z = L	$R_1 \leq r \leq R_2$		$T = T_f$	$y_{oxt} = y_f$

Tabla 5. 6. Condiciones de frontera para la región I, en el caso 1A.

Tabla 5. 7. Condiciones de frontera para la región V, en el caso 1A.

		Velocidad (axial)	Temperatura	Especies
$Enr = R_5$	$0 \le z \le L$	$v_z = 0$		
Enr=R ₆	0 ≤ z ≤ L	$v_z - 0$		
En z = 0	$R_5 \le r \le R_6$		$T = T_0$	$egin{array}{lll} egin{array}{lll} egin{array}{llll} egin{array}{lllll} egin{array}{llllll} egin{array}{llllll} egin{array}{lllll} egin{array}{lllll} egin{array}{lllll} egin{array}{lllll} egin{array}{lllll} egin{array}{lllll} egin{array}{lllll} egin{array}{lllll} egin{array}{lllll} egin{array}{llll} egin{array}{lllll} egin{array}{lllll} egin{array}{lllll} egin{array}{lllll} egin{array}{llllllllllllllllllllllllllllllllllll$
En z = L	$R_5 \leq r \leq R_6$		$T = T_f$	yhid = y f yagua = yf

5. 2. 2. Resultados

En las figuras 5. 11, 5. 12, 5. 13 y 5. 14, se muestran los resultados obtenidos con el programa Conduct para el caso 1A de la SOFC. En el apéndice IV, se encuentran los resultados numéricos del programa para dicho caso. La densidad de corriente empleada en la construcción de la matriz de resultados del perfil de temperatura y de composición es de 0.15 A/cm².

Figura 5. 11. Perfil de velocidad axial para ambas regiones fluidas. Caso 1A.

En la figura 5. 11, se aprecia el perfil de velocidad axial, el comportamiento es análogo en ambas regiones, prácticamente una parábola. La solución de la ecuación es la misma del caso 1, en la cual, predomina el termino cuadrático sobre el logarítmico y el termino independiente. La diferencia es la cantidad de nodos; para este caso, se realizo con 15 nodos, tanto en dirección axial como radial.

Figura 5. 12. Perfil de temperatura para ambas regiones fluidas. Caso 1A.

La figura 5. 12, muestra el perfil de temperatura para ambas regiones fluidas, este perfil es diferente para ambas regiones, debido tanto al cambio de las propiedades físicas de los fluidos, como a los términos fuente que contribuyen en cada región. En este perfil se tiene la dependencia en el eje axial, sin embargo, dado que esta

en función de la velocidad axial y ésta es función del eje radial, se tiene la variación de la temperatura en ambas coordenadas. El perfil de temperatura, se ve afectado por el cambio de la velocidad axial ($v_z(r)$) con respecto al caso 1A, dando como resultado una matriz de temperaturas, que varían tanto a lo largo del eje axial, como a lo largo del eje radial.

En el perfil en la región I, se observa que es en la zona central de la celda el lugar en el cual se tiene la mayor temperatura, aumentando paulatinamente conforme se acerca a la salida de la celda, para terminar con un aumento brusco de temperatura, dado por la condición de frontera impuesto al perfil. Se presenta un comportamiento endotérmico, en el cual la temperatura que esta pegada al electrodo y al tubo inductor de aire, son las menores del perfil. Para esta región, el perfil muestra la contribución predominante del término exponencial sobre los términos lineal e independiente, dados en la solución de la ecuación del balance de energía.

Para el perfil de la región V, el aumento de temperatura es evidente en el eje axial, en donde a la entrada de la celda se tiene la menor temperatura, aumentando gradualmente conforme se desplaza el fluido hacia la salida. En el perfil de esta región, se aprecia la fuerte contribución del término lineal, sobre los términos exponencial e independiente, dados en la solución de la ecuación del balance de energía.

Figura 5. 13. Perfil de composición del oxígeno para la región fluida I. Caso 1A.

En la figura 5. 13, se muestra el perfil de composición del oxígeno para la región I, la diferencia entre ambas gráficas es la utilización del aire que se empleo en los cálculos. Este perfil, esta en función de la velocidad axial (la cual es función del eje radial). Se observa el predominio del término exponencial sobre el lineal e independiente de la solución del balance de materia por componentes mostrado en la ligera curva del perfil. El perfil muestra que al inicio del volumen de control (sobre el eje axial), se tiene la composición inicial del oxígeno, posteriormente, conforme avanza hacia la salida de la celda, disminuye la composición hasta alcanzar la composición final, como resultado de consumo moléculas de oxígeno que penetran en el cátodo. Sin embargo, no se tiene variación de la composición con respecto al eje radial, concluyendo que para el perfil de composición, el cambio en la velocidad axial ($v_z(r)$) tiene una débil influencia, siendo evidente en los resultados numéricos de programa, en los cuales la variación de la composición, se da únicamente en el eje axial.

Figura 5. 14. Perfil de composición del hidrógeno y del agua para la región V. Caso 1A.

En la figura 5. 14, se muestra el perfil de composición del hidrógeno y del agua para la región V, es evidente el contraste entre ambas graficas, es decir, en tanto que el hidrógeno se consume y exhibe su menor composición al final del volumen de control; debido a las moléculas que penetran en el electrodo; el agua presenta un comportamiento opuesto debido a la aparición de moléculas dada la reacción que se lleva a cabo. En este perfil, se aprecia el dominio del termino exponencial sobre el lineal e independiente, de la solución del balance de materia por componentes, mostrado en la curva del perfil, en donde en el primer nodo, se muestra una disminución fuerte (inverso en el agua) para posteriormente comportarse en forma suave, hasta llegar al final de la celda.

Una vez que se obtuvieron los perfiles de ambas regiones fluidas, se procedió a realizar el análisis de la región del sólido, en la figura 5. 15, se muestra el comportamiento de dichos datos en el programa del sólido. Al comparar las curvas obtenidas tanto del caso anterior, como de los resultados reportados experimentalmente, se distingue la diferencia entre las pendientes con respecto al presente caso, después del análisis de los datos ingresados al programa del sólido, se llego a la conclusión de que se debió a que las temperaturas disminuyen en la interfase sólido-aire, a diferencia de los casos anteriores. Es esta razón, por la cual se realizó una variación de los datos empleados para el aire, es decir, se procedió a emplear los datos del nodo más cercano a la interfase, mismo que presentara el aumento de temperatura, es decir, en lugar de correr el programa del sólido con los datos del nodo 15, se realizaron dichas corridas con los datos del nodo 13.

Figura 5. 15. V vs i con los datos de la interfase sólido-aire del caso 1A.

En la parte superior de los resultados de la figura 5. 16, se muestran los valores de las regiones fluidas con los que se realizaron los cálculos de la región del sólido, Para este caso, se tienen 15 resultados diferentes para la temperatura (T(z)) y para la composición $(y_i(z))$, debido a que se asignaron 15 nodos en la dirección axial, los resultados tanto de temperatura como de composición, que se muestran para el combustible, son los que corresponden a los nodos que se encuentran en la interfase sólido-fluido.

Los valores de voltaje total promedio y densidad de corriente, son lo que se grafican. El valor de densidad de corriente nueva promedio, es el valor que se regresa a iterar, para continuar con los valores que formaran la gráfica, para posteriormente realizar la comparación con respecto a los datos experimentales tanto de Singhal (1999) como de Tomlins (1999). Los datos de los otros resultados del proceso iterativo, se presentan en la sección correspondiente del apéndice IV.

T aire (K)	y aire(-)	T_comb (K)	y_hidr(-)	ÿ_agua(-)
863.0000	0.2100	1050.0000	0.8900	0.1100
869.4157	0.2003	1053.0990	0.7000	0.2993
879.2469	0.1957	1059.2950	8 .6776	0.3225
890.0780	0.1922	1065.4919	0.6516	0.3405
900.9099	0.1891	1071.6890	0.6225	0.3777
911.7413	0.1864	1077.8860	0.5898	0.4104
922.5727	0.1839	1084.0830	0.5531	0.4471
933.4036	0.1816	1090.2800	0.5110	0.4884
944.2341	0.1794	1096 4771	8.4656	0.5346
955.0664	0.1774	1102.6740	0.4137	0.5866
965.8980	0.1754	1108.8710	0.3554	0.6449
976.7282	0.1736	1115.0600	0.2900	0.7103
987.5606	0.1718	1121.2650	0.2167	0.7837
998.3929	0.1701	1127.4620	0.1343	0.8661
1150.0000	0.1700	1150.0000	0.1335	0.8665
***********	***********	****	*********	***
Eid(U)	nohmic(V)	<pre>nact_total(V)</pre>	V_tot(V)	DEN_CORR_NUA(A/cm2)
1.3008	0.8172E-01	0.4001E-01	ī.1791	0.1511
1.2315	0.7795E-01	0.4022E-01	1.1134	0.1512
1.2250	0.7102E-01	0.4064E-01	1.1133	0.1513
1.2181	0.6481E-01	0.4106E-01	1.1122	0.1514
1.2107	0.5925E-01	0.4147E-01	1.1100	0.1516
1.2029	0.5426E-01	0.4189E-01	1.1067	0.1517
1.1942	0.4977E-01	0.4231E-01	1.1022	0.1519
1.1848	0.4572E-01	0.4273E-01	1.0964	0.1520
1.1743	0.4206E-01	0.4314E-01	1.0891	0.1522
1.1625	0.3876E-01	0.4356E-01	1.0801	0.1524
1.1486	0.3577E-01	0.4398E-01	1.0689	0.1526
1.1319	0.3305E-01	0,4440E-01	1.0545	0,1528
1.1102	0.3059E-01	0.4481E-01	1.0348	0.1531
1.0783	0.2835E-01	0.4523E-01	1.0047	0.1533
1.0779	0.1405E-01	0.5029E-01	1.0136	0.1569
*********	*********	****	********	*
Voltaje tota	al promedio=	1.0853 (V)		
Densidad de	corriente=	0.1500 (A/c	m2)	
*******	********		************	,
	nedio- 0.1	524 (A/cm2)		· · · · · · · · · · · · · · · · · · ·

Figura 5. 16. Resultados de la región del sólido para el primer juego de datos de la SOFC

En la tabla 5. 8, se muestran los datos finales promedio, correspondientes al voltaje final de la celda y la densidad de corriente de este caso de estudio, mismos que son empleados para generar las figuras 5. 17, 5. 18 y 5. 19.

Den de eer	E _{celda} (V)			
(A/cm ²)	4 veces esteq. O_2 ($y_{oxt final} = 0,17$)	6 veces esteq. O ₂ (y _{oxi final} = 0,18)		
0.1500	1.0853	1.0863		
0.1524	1.0834	1.0844		
0.1548	1.0815	1.0825		
0.1572	1,0796	1.0806		
0.1596	1.0777	1.0786		

Tabla 5, 8. Resultados promedio de la SOFC

Figura 5. 17. Voltaje vs Densidad de comiente. Caso 1A.

En las figuras 5. 18 y 5. 19, se muestran los resultados obtenidos de los casos 1 y 1A, así como su comparación con respecto a los artículos que se emplearán para validar los resultados. Los resultados del caso 1A, se encuentran por arriba de los resultados del caso 1, dichos resultados siguen siendo cualitativos, es decir, la pendiente es similar en todas las curvas, sin embargo, aún es necesario realizar ajustes al modelo para reproducir los resultados experimentales.

Figura 5. 18. Validación de resultados con respecto a Tomlins (1999)

Figura 5. 19. Validación de resultados con respecto a Singhal (1999)

5. 3. CASO 1B

5. 3. 1. Especificaciones del modelo

La especificación que se describe en la tabla 5. 9, es la que corresponde al caso 1B. En este caso se tomara a la temperatura y composición como función tanto del eje radial, como del eje axial. Se considera la parte de convección, así como la de difusión de los balances de energía y materia por componentes.

Ecuación de Balance	Observación	Solución
Ecuación de Dalance		Doladion
Momento	v = v(r)	Analítica
axial		, and the second
Energía	T-T(z, r)	Numérica
Materia por componentes	$y_i = y_i(z, r)$	Numérica

Tabla 5	9	Especificación de las e	ecuaciones del	caso	1B.
i abia J.	σ.	Lapoonioa do las v	Soudoiones dei	U LUU	

Ecuación de continuidad

Debido a que se especifica un flujo totalmente desarrollado, finalmente resulta:

$$\frac{dv_z}{dz} = 0 \tag{5.1}$$

Balance de momento

Después de realizar las simplificaciones necesarias de acuerdo a las suposiciones del modelo que se esta planteando ($v_x = v_x(r)$), resulta:

Componente z:

$$0 = -\frac{\partial p}{\partial z} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) \right] + \rho g_z$$
(5.2)

Solución de la ecuación del balance de momento en dirección axial

El desarrollo de la solución, es planteado en el caso 1, por lo que, sólo se especificará la solución del balance de momento en dirección axial.

$$C_{3} = -\frac{C_{1}}{4\mu} (R_{1})^{2} - C_{2} \ln(R_{1}) \qquad \mathbf{y} \qquad C_{2} = -\frac{C_{1}}{4\mu} \left[\frac{(R_{2}^{2} - R_{1}^{2})}{\ln \frac{R_{2}}{R_{1}}} \right]$$
$$v_{s}(r) = \frac{C_{1}}{4\mu} r^{2} + C_{2} \ln r + C_{3}$$
$$C_{1} = -\rho g_{s}$$
(5.4)

Balance de energía

Después de realizar las simplificaciones necesarias, de acuerdo a las suposiciones del modelo (T = T(z, r) y $v_x = v_z(r)$), resulta:

$$\rho C p \left(v_{z} \frac{\partial T}{\partial z} \right) = k_{t}^{\text{eff}} \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{\partial^{2} T}{\partial z^{2}} \right] + S_{T}$$
(5.21)

Solución de la ecuación del balance de energía

Dada la complejidad de la expresión, se procederá a obtener su solución numérica a través del programa Conduct. En la figura 5. 2 (del caso de estudio 1), se presentan las condiciones de frontera que aplica para la expresión de la temperatura.

Con la finalidad de ingresar los datos al programa, la expresión toma la siguiente forma:

$$k_t^{eff} \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{\partial^2 T}{\partial z^2} \right] + S_T - \rho C p \left(v_s \frac{\partial T}{\partial z} \right) = 0$$

Los datos ingresados al programa Conduct, son los siguientes:

$$\boldsymbol{\phi} = T \qquad \qquad \boldsymbol{\Gamma} = \boldsymbol{k}_i^{\text{eff}} \qquad \qquad \boldsymbol{S}_c = \boldsymbol{S}_T - \rho \boldsymbol{C} \boldsymbol{p} \left(\boldsymbol{v}_s \frac{\partial T}{\partial z} \right)$$

Balance de materia por componentes

Después de realizar las simplificaciones necesarias de acuerdo a las suposiciones del modelo ($y_i = y_i(z, r)$ y $v_x = v_x(r)$), la ecuación del balance de materia por componentes, resulta:

$$\left(v_{x}\frac{\partial y_{i}}{\partial z}\right) = D_{i}^{eff} \left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial y_{i}}{\partial r}\right) + \frac{\partial^{2} y_{i}}{\partial z^{2}}\right] + S_{y_{i}}$$
(5.22)

Solución de la ecuación del balance de materia por componentes

Dada la complejidad de la expresión, se procederá a obtener su solución numérica a través del programa Conduct. En la figura 5. 3 (del caso de estudio 1), se presentan las condiciones de frontera que aplica para la expresión del balance de materia por componentes.

Con la finalidad de ingresar los datos al programa, la expresión toma la siguiente forma:

$$D_{i}^{\text{eff}}\left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial y_{i}}{\partial r}\right)+\frac{\partial^{2} y_{i}}{\partial z^{2}}\right]+S_{y_{i}}-\left(v_{x}\frac{\partial y_{i}}{\partial z}\right)=0$$

Los datos ingresados al programa Conduct, son los siguientes:

$$\phi = y_i \qquad \Gamma = D_i^{\text{eff}} \qquad S_C = S_{y_i} - \left(v_x \frac{\partial y_i}{\partial z}\right)$$

En las tablas 5. 10 y 5. 11 se muestra un resumen de las condiciones de frontera que aplican para el caso de estudio 1B, mismas que se muestran en las figuras 5. 1, 5. 2 y 5. 3, del caso 1.

		Velocidad (axial)	Temperatura	Especies
Enr=R ₁	0 ≤ z ≤ L	$v_z = 0$	$\frac{dT}{dr} = 0$	$\frac{dy_i}{dr} = 0$
$Enr = R_2$	0 ≤ z ≤ L	$v_z - 0$	$T = T_f$	$y_{oxi} = y_f$
En z = 0	$R_1 \leq r \leq R_2$		$T = T_0$	$y_{occi} = y_{occial}^0$
En z = L	$R_1 \leq r \leq R_2$		$T = T_f$	$y_{oxt} - y_f$

Tabla 5. 10. Condiciones de frontera para la región I, en el caso 1B.

Tabla 5. 11. Condiciones de frontera para la región V, en el caso 1B.

		Velocidad (axial)	Temperatura	Especies
Enr=R₅	0 ≤ z ≤ L	$v_z = 0$	$T = T_0$	y _{hid} = y ₀ Yagua = yo
Enr=R ₆	0 ≤ z ≤ L	$v_z = 0$	$\frac{dT}{dr} = 0$	$\frac{dy_i}{dr} = 0$
En z = 0	$R_5 \leq r \leq R_8$		$T = T_0$	$y_{hid} = y_0$ $y_{agua} = y_0$
En z = L	R₅≲r≤R ₆		$T = T_f$	Yhid = Yf Yagua = Yf

5. 3. 2. Resultados

En las figuras 5. 20, 5. 21, 5. 22 y 5. 23, se muestran los resultados obtenidos con el programa Conduct para el caso 1B de la SOFC. En el apéndice V, se encuentran los resultados numéricos del programa para dicho caso. La densidad de corriente empleada en la construcción de la matriz de resultados del perfil de temperatura y de composición es de 0.15 A/cm².

Figura 5. 20. Perfil de velocidad axial para ambas regiones fluidas. Caso 1B.

En la figura 5. 20, se aprecia el perfil de velocidad axial, el comportamiento es análogo en ambas regiones, en este perfil predomina el termino cuadrático de la solución del balance de momento en dirección axial, sobre los términos lineal e independiente; por lo que la figura prácticamente es una parábola.

Figura 5. 21. Perfil de temperatura para ambas regiones fluidas. Caso 1B.

La figura 5. 21, muestra el perfil de temperatura para ambas regiones fluidas, este perfil es diferente para ambas regiones, debido tanto al cambio de las propiedades físicas de los fluidos, como a los términos fuente que contribuyen en cada región. En este caso la variación del perfil de temperatura es radial y estos conjuntos de valores se repiten a lo largo de la longitud de la celda en ambas regiones. En este perfil se tiene la dependencia en ambas coordenadas.

El perfil en la región I, se observa el salto brusco dado por las condiciones de frontera impuestas, que van de 863K (z = 0) a 1150K (z = L) con respecto al eje axial, con respecto al eje radial no hay cambio prácticamente, por lo que se aprecia un plano en dicho perfil de temperatura para el aire, su variación esta en el siguiente rango 1146 $\leq T \leq$ 1145.82, siendo la temperatura que esta pegada al cátodo es la mayor del perfil.

Este perfil en la región V, tiene un comportamiento mas suave, en dirección axial no es fuerte la variación va de 1050K (z = 0) a 1150K (z = L). En la dirección radial se aprecia el cambio, encontrando la zona de mayor temperatura en la superficie que se encuentra en contacto con el ánodo.

Figura 5. 22. Perfil de composición del oxígeno para la región fluida I. Caso 1B.

En la figura 5. 22, se muestra el perfil de composición del oxígeno para la región l, la diferencia entre ambas gráficas es la utilización del aire que se empleo en los cálculos, con el fin de reproducir las condiciones a las cuales se realizo la parte experimental. Este perfil, esta en función del eje axial y radial, sin embargo no se tiene variación sobre el eje radial y en cuanto al eje axial en z = 0 tiene la composición inicial del oxígeno y para el siguiente nodo ya adopta la composición final y ésta se repite a lo largo de la celda, dado este comportamiento, no es posible apreciar el consumo de oxígeno debido a la reacción en la cual interviene.

Figura 5. 23. Perfil de composición del hidrógeno y del agua para la región fluida V. Caso 1B.

En la figura 5. 23, se muestra el perfil de composición del hidrógeno y del agua para la región V, este perfil esta en función tanto del eje axial como radial, sin embargo la variación para ambos perfiles es en el eje radial básicamente, a lo largo de la celda sólo se ve el cambio impuesto por las condiciones de frontera.

El perfil del agua tiene el comportamiento esperado, en el cual exhibe su mayor composición en la superficie que se encuentra en contacto con el ánodo, debido a la aparición de moléculas dada la reacción que se lleva a cabo.

El hidrógeno presenta la mayor composición en la superficie pegada al electrodo.

En las figuras 5. 24 y 5. 25, se muestran los resultados para el sólido, es decir, las regiones II, III y IV.

1				
T_aire (K)	y_aire(-)	T_comb (K)	y_hidr(-)	y_agua(-)
863.0000	- 0.2100	1121.0000	0.1335	0.0665
1146.0000	0.1700	1121.0000	0.1335	0.8665
1146.0000	0.1700	1121.0000	0.1335	Ø.8665
1146.0000	0.1700	1121.0000	0.1335	0.8665
1146.0000	0.1700	1121.0000	0.1335	0.8665
1146.0000	0.1700	1121.0000	0.1335	0.8665
1146.0000	0.1700	1121.0000	0.1335	0.8665
1146.0000	0.1700	1121.0000	0.1335	0.0665
1146.0000	0.1700	1121.0000	0.1335	0.8665
1146.0000	0.1700	1121.0000	0.1335	0.8665
1146.0000	0.1700	1121.0000	0.1335	0.0665
1146.0000	0.1700	1121.0000	0.1335	0.0665
1146.0000	0.1700	1121.0000	0.1335	0.0665
1146.0000	0.1700	1121.0000	0.1335	0.0665
1150.0000	0.1700	1121.0000	0.1335	0.8665
	*************	***************************************	***********	**
Eid(V)	nohmic(V)	<pre>nact_total(V)</pre>	U_tot(U)	DEN_CORR_NUA(A/cm2)
1.0837	0.5585E-01	0.4087E-01	0.9870	0.1517
1.0779	0.1589E-01	0.4981E-01	1.0122	0,1560
1.0779	0.1589E-01	0.4981E-01	1.0122	0.1560
1,0779	0.1589E-01	0.4981E-01	1.0122	0.1560
1.0779	0.1589E-01	0.4981E-01	1.0122	0.1560
1.0779	0.1589E-01	0.4981E-01	1.0122	0.1560
1.0779	0.1589E-01	0.4901E-01	1.0122	0.1560
1.0779	0.1589E-01	0.4981E-01	1.0122	0.1560
1.0779	0.1589E-01	0.4981E-01	1.0122	0.1560
1.0779	0.1589E-01	0.4981E-01	1.0122	0.1560
1.0779	0.1589E-01	0.4981E-01	1.0122	0.1560
1.0779	0.1589E-01	0. 4 981E-01	1.0122	0.1560
1.0779	0.1589E-01	0.4981E-01	1.0122	0.1560
1.0779	0.1589E- 01	0.4981E-01	1.0122	0.1560
1.0779	0.1565E- 01	0.4994E-01	1.0123	0.1561

Voltaje total promedio≖ 1.0105 <v></v>				
Densidad d o	corriente=	0.1500 (A/c	:m2)	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX				
1_nueva promedio= 0.1558 (A/cm2)				

Figura 5. 24. Resultados de la región del sólido para el primer juego de datos de la SOFC

En la parte superior de los resultados de la figura 5. 24, se muestran los valores de las regiones fluidas con los que se realizaron los cálculos de la región del sólido, Para este caso, se tienen 15 resultados diferentes para la temperatura (T(z, r)) y para la composición $(y_i(z, r))$, debido a que se asignaron 15 nodos en la dirección axial, los resultados tanto de temperatura como de composición, que se muestran para ambos fluidos son los que corresponden a los nodos que se encuentran en la interfase sólido-fluido.

Los valores de voltaje total promedio y densidad de corriente, son lo que se grafican. El valor de densidad de corriente nueva promedio, es el valor que se regresa a iterar, para continuar con los valores que formaran la gráfica, para posteriormente realizar la comparación con respecto a los datos experimentales. En este caso, dadas las características del perfil de temperatura y de composición,

se repiten iteración a iteración los valores de la interfase sólido-fluido, debido a que deben de especificar como condiciones de frontera, por lo que el proceso iterativo, sólo se lleva a cabo en la región del sólido. Los datos de los otros resultados del proceso iterativo, se presentan en la sección correspondiente del apéndice V.

En la tabla 5. 12, se muestran los datos finales promedio, correspondientes al voltaje final de la celda y la densidad de corriente de este caso de estudio, mismos que son empleados para generar las figuras 5. 25, 5. 26 y 5. 27. Estos resultados se pueden ver en la sección correspondiente del apéndice V.

Dan da cor	E _{ceida} (V)			
(A/cm ²)	4 veces esteq. O ₂ (y _{oxi final} = 0,17)	6 veces esteq. O ₂ (y _{od final} = 0,18)		
0.1500	1.0105	1.0120		
0.1558	1.0080	1.0094		
0.1617	1.0054	1.0068		
0.1680	1.0026	1.0041		
0.1744	0.9998	1.0013		

Tabla 5. 12. Resultados promedio de la SOFC

En la figura 5. 25, se muestran los resultados del programa de la región del sólido, ambas rectas son paralelas, siendo mayor la de que se realizo con los datos de la utilización del aire con 6 veces la estequiometría.

Figura 5. 25. Voltaje vs Densidad de corriente. Caso 1B.

En las figuras 5. 26 y 5. 27, se muestran los resultados obtenidos de los casos 1, 1A y 1B, así como su comparación con respecto a los artículos que se emplearán

para validar los resultados. Los resultados del caso 1B, varían muy poco con respecto a los resultados del caso 1, dichos resultados siguen siendo cualitativos, es decir, la pendiente es similar en todas las curvas, sin embargo, aún es necesario realizar ajustes al modelo para reproducir los resultados experimentales.

Figura 5. 26. Validación de resultados con respecto a Tomlins (1999)

Figura 5. 27. Validación de resultados con respecto a Singhal (1999)

5.4.CASO 2

5. 4. 1. Especificaciones del modelo

La especificación que se describe en la tabla 5. 13, es la que corresponde al caso 2. En este caso se toma en cuenta tanto la parte de convección como la de difusión de los balances correspondientes.

Ecuación de Balance	Observación	Solución
Momento axial	$v_z = v_z(r)$	Analítica
radial	$v_r = v_r(r)$	Analítica
Energía	T = T(r)	Analítica
Materia por componentes	$y_i = y_i(r)$	Analítica

Tabla 5. 13. Especificación de las ecuaciones del caso 2.

Ecuación de continuidad

Debido a que se especifica un flujo totalmente desarrollado, finalmente resulta:

$$\frac{1}{r}\frac{d}{dr}(rv_r) = 0 \tag{5.23}$$

Balance de momento

Después de realizar las simplificaciones necesarias de acuerdo a las suposiciones del modelo que se esta planteando ($v_x = v_x(r)$ y $v_r = v_r(r)$), resulta:

Componente r:

$$\rho\left(v_r \frac{dv_r}{dr}\right) = \mu\left[\frac{d}{dr}\left(\frac{1}{r}\frac{d}{dr}(rv_r)\right)\right] - \frac{\mu}{K}v_r$$
(5.24)

Solución de la ecuación del balance de momento en dirección radial

Simplificando la ecuación del componente en r, por medio de la ecuación de continuidad, se tiene:

$$\rho\left(v_r, \frac{dv_r}{dr}\right) = -\frac{\mu}{K}v_r, \text{ entonces}$$

 $\left(\frac{dv_r}{dr}\right) = -\frac{\mu}{K\rho} \tag{5.25}$

Separando variables e integrando, resulta:

$$\int dv_r = -\frac{\mu}{K\rho} \int dr \qquad \text{entonces}$$

$$v_r(r) = -\left(\frac{\mu}{K\rho}\right)r + C \tag{5.26}$$

La constante de integración *C*, se determinará por medio de las condiciones de frontera, mismas que se presentan en la figura 5. 28.

$$v_r(\mathbf{r}=R_2)=v_r^f=-\left(\frac{\mu}{K\rho}\right)R_2+C$$
 $C=v_r^f+\left(\frac{\mu}{K\rho}\right)R_2$

Sustituyendo en la ecuación de la velocidad radial, se tiene:

$$\begin{array}{c}
 Introduction \\
 v_{r}(r) = v_{r}^{f} + \left(\frac{\mu}{K_{f}}\right)(R_{2} - r) \\
 triangle (R_{2} - r) \\
 triangle ($$

Figura 5. 28. Condiciones de frontera generales para v_r, para las regiones I y V.

$$\rho\left(v_r \frac{\partial v_z}{\partial r}\right) = -\frac{\partial p}{\partial z} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r}\right)\right] + \rho g_s$$
(5.28)

Solución de la ecuación del balance de momento en dirección axial

 $\frac{\partial p}{\partial z} - \rho g_z = \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right) \right] - \rho v_r \frac{\partial v_z}{\partial r} \qquad \text{entonces} \qquad \frac{\partial p}{\partial z} - \rho g_z = \frac{\mu}{r} \left[\left(r \frac{\partial^2 v_z}{\partial r^2} \right) + \frac{\partial v_z}{\partial r} \right] - \rho v_r \frac{\partial v_z}{\partial r}$

$$\frac{\partial p}{\partial z} - \rho g_z = \mu \frac{\partial^2 v_z}{\partial r^2} + \frac{\partial v_z}{\partial r} \left(\frac{\mu}{r} - \rho v_r \right)$$
(5.29)

Haciendo $P = p - \rho g_z z$

Componente z:

El lado derecho de la ecuación diferencial, resulta:

$$\frac{dP}{dz} = \frac{d}{dz}(p - \rho g_{x}z) = \frac{dp}{dz} - \frac{d}{dz}(\rho g_{x}z) = \frac{dp}{dz} - \rho g_{x}$$
Haciendo $C_{1} = \frac{dP}{dz}$ separando variables e integrando, se tiene:
$$\int_{0}^{L} C_{1}dz = \int_{P_{0}}^{P_{1}} dP$$
 $C_{1}L = P_{L} - P_{0}$ entonces $C_{1} = \frac{P_{L} - P_{0}}{L}$

Evaluando P entre sus valores iniciales y finales, se tiene:

$$\begin{split} P_L &= p - \rho g_z L \qquad \text{y} \qquad P_0 = p \\ \text{Por lo que el valor de } C_1 \text{, se rescribe de la siguiente forma:} \\ C_1 &= \frac{P_L - P_0}{L} = \frac{p - \rho g_z L - p}{L} = -\rho g_z \end{split}$$

Rescribiendo la ecuación diferencial 5.7, resulta: $C_1 = \mu \frac{\partial^2 v_r}{\partial r^2} + \frac{\partial v_r}{\partial r} \left(\frac{\mu}{r} - \rho v_r \right)$

$$\frac{d^2 v_x}{dr^2} + \left(\frac{1}{r} - \frac{\rho v_r}{\mu}\right) \frac{dv_x}{dr} = \frac{C_1}{\mu}$$
(5.30)

De esta expresión, se realiza la siguiente consideración:

 $115.4734 \le \frac{1}{r} \le 166.6666$ У $373.8783 \le \frac{\rho v_r}{\mu} \le 26.9736 \text{ x} 10^3$ Es decir, el término $\frac{1}{r}$ es 161.84 veces menor que el término $\frac{\rho v_r}{\mu}$, por lo que se considerará despreciable, con el fin de realizar la siguiente simplificación a la ecuación por resolver:

 $\frac{d^2 v_z}{dr^2} - \left(\frac{\rho v_r}{\mu}\right) \frac{dv_z}{dr} = \frac{C_1}{\mu}$ Haciendo $C'_1 = \frac{C_1}{\mu}$ y $C_2 = \left(\frac{\rho v_r}{\mu}\right)$ rescribiendo la ecuación anterior, resulta: $\frac{d^2 v_z}{dr^2} - C_2 \frac{dv_z}{dr} = C_1'$ (5.31)

Haciendo el siguiente cambio de variable: $u = \frac{dv_z}{dr}$ derivando: $\frac{du}{dr} = \frac{d^2v_z}{dr^2}$

Rescribiendo la ecuación anterior:

$$\frac{du}{dr} - C_2 u = C_1' \tag{5.32}$$

El factor integrante de dicha ecuación es: $e^{-C_2 r} \frac{du}{dr} - e^{-C_2 r} C_2 u = e^{-C_2 r} C_1'$ entonces $\frac{d}{dr} (u e^{-C_2 r}) = e^{-C_2 r} C_1'$

Separando variables e integrando, resulta:

$$\left(ue^{-C_2r}\right) = C_1' \int e^{-C_2r} dr$$

$$\left(ue^{-C_{2}r}\right) = -\frac{C_{1}'}{C_{2}}e^{-C_{2}r} + C_{3}$$

pero como $u = \frac{dv_r}{dr}$, realizando el

cambio de variable, resulta: $\frac{dv_{e}}{dr} = -\frac{C_{1}'}{C} + C_{3}e^{c_{2}r}$

Por lo que resulta: $u = -\frac{C_1'}{C_2} + C_3 e^{C_2 r}$

Nuevamente separando variables e integrando, resulta:

Rescribiendo la ecuación, resulta:

$$v_{z}(r) = \frac{g_{z}}{v_{r}}r + \frac{C_{3}}{C_{2}}e^{C_{2}r} + C_{4}$$
(5.33)

Las constantes C₃ y C₄ se determinan a partir de las condiciones de frontera del caso de estudio, mismas que se presentan en la figura 5. 1 del caso de estudio 1.

$$v_{z}(r = R_{1}) = \frac{g_{z}}{v_{r}}R_{1} + \frac{C_{3}}{C_{2}}e^{C_{2}R_{1}} + C_{4} = 0$$
$$v_{z}(r = R_{2}) = \frac{g_{z}}{v_{r}}R_{2} + \frac{C_{3}}{C_{2}}e^{C_{2}R_{2}} + C_{4} = 0$$

$$\frac{g_{r}}{v_{r}}(R_{2}-R_{1})+\frac{C_{3}}{C_{2}}\left(e^{C_{2}R_{2}}-e^{C_{2}R_{1}}\right)=0 \qquad \text{entonces} \qquad \frac{C_{3}}{C_{2}}=-\left(\frac{1}{e^{C_{2}R_{2}}-e^{C_{2}R_{1}}}\right)\frac{g_{r}}{v_{r}}(R_{2}-R_{1})$$

De la primera ecuación se obtiene el valor de C4:

$$C_{4} = -\frac{g_{z}}{v_{r}}R_{1} - \frac{C_{3}}{C_{2}}e^{C_{2}R_{1}} \qquad \frac{C_{3}}{C_{2}} = \left(\frac{1}{e^{C_{2}R_{2}} - e^{C_{2}R_{1}}}\right)\frac{g_{z}}{v_{r}}(R_{1} - R_{2})$$

$$v_{z}(r) = \frac{g_{z}}{v_{r}}r + \frac{C_{3}}{C_{2}}e^{C_{2}r} + C_{4}$$

Balance de energía

Después de realizar las simplificaciones necesarias, de acuerdo a las suposiciones del modelo (T = T(r) y $v_r = v_r(r)$), resulta:

$$\rho C p \left(v_r \frac{dT}{dr} \right) = k_i^{\text{eff}} \left[\frac{1}{r} \frac{d}{dr} \left(r \frac{dT}{dr} \right) \right] + S_T$$
(5.34)

Solución de la ecuación del balance de energía

$$k_t^{\text{eff}}\left(\frac{1}{r}\frac{d}{dr}\left(r\frac{dT}{dr}\right)\right) - \rho C p\left(v_r\frac{dT}{dr}\right) = -S_T \implies \left(\frac{1}{r}\frac{d}{dr}\left(r\frac{dT}{dr}\right)\right) - \left(\frac{\rho C p v_r}{k_t^{\text{eff}}}\right)\frac{dT}{dr} = -\frac{S_T}{k_t^{\text{eff}}}$$

Llamando $A_0 = \frac{\rho C p v_r}{k_i^{eff}}$ y $A_1 = -\frac{S_T}{k_i^{eff}}$, rescribiendo la expresión anterior:

$$\frac{d^2T}{dr^2} + \left(\frac{1}{r} - A_0\right)\frac{dT}{dr} = A_1$$
 (5.36)

Haciendo el siguiente cambio de variable: $u = \frac{dT}{dr}$ derivando: $\frac{du}{dr} = \frac{d^2T}{dr^2}$ Rescribiendo la ecuación anterior:

$$\frac{du}{dr} + \left(\frac{1}{r} - A_0\right)u = A_1 \tag{5.37}$$

El factor integrante de la ecuación es:
$$e^{\int \left(\frac{1}{r}-A_0\right) dr} = e^{\ln r - A_0 r} = re^{-A_0 r}$$

 $re^{-A_0 r} \frac{du}{dr} - \left(\frac{1}{r}-A_0\right) ure^{-A_0 r} = A_1 re^{-A_0 r}$ entonces $\frac{d}{dr} \left(re^{-A_0 r}u\right) = A_1 re^{-A_0 r}$

Separando variables e integrando, resulta:

$$(re^{-A_0 r}u) = A_1 \int re^{-A_0 r} dr \qquad (re^{-A_0 r}u) = A_1 \left[-\frac{re^{-A_0 r}}{A_0} - \frac{1}{A_0^2} e^{-A_0 r} \right] + A_2$$

Despejando *u*, resulta: $u = -\frac{A_1}{A_0} - \frac{A_1}{A_0^2 r} + \frac{A_2}{re^{-A_0 r}}$

Regresando a la variable original, se tiene: $\frac{dT}{dr} = -\frac{A_1}{A_0} - \frac{A_1}{A_0^2} + \frac{A_2}{r} e^{A_0 r}$ Nuevamente, separando variables e integrando, resulta:

$$T(r) = -\frac{A_1}{A_0}r - \frac{A_1}{A_0^2}\ln r + A_2 \int \frac{e^{A_0 r}}{r} dr + A_3$$

Llamando $F(r) = \int \frac{e^{A_0 r}}{r} dr$ y rescribiendo la solución del balance de energía, resulta:

$$T(r) = -\frac{A_1}{A_0}r - \frac{A_1}{A_0^2}\ln r + A_2F(r) + A_3$$
(5.38)

En Abramowitz y Stegun (1972), se encuentran los valores de la función F(r), llamada integral exponencial.

Las constantes A_2 y A_3 , se determinan a partir de las condiciones de frontera del caso de estudio, mismas que se presentan en la figura 5. 2 del caso de estudio 1.

En r = R₁, se tiene la pared adiabática $\left(\frac{dT}{dr}=0\right)$, por lo que la constante A₂ se

obtiene, como sigue:

 $\frac{dT}{dr} = -\frac{A_1}{A_0} - \frac{A_1}{A_0^2 R_1} + \frac{A_2}{R_1} e^{A_0 R_1} = 0 \quad \text{despejando } A_2 \qquad A_2 = \frac{R_1}{e^{A_0 R_1}} \left(\frac{A_1}{A_0} + \frac{A_1}{A_0^2 R_1} \right)$ sustituyendo el valor de $\frac{A_1}{A_0} = \frac{\frac{-S_T}{k_t^{AT}}}{\frac{\rho C p v_t}{k_t^{AT}}} = -\frac{S_T}{\rho C p v_t} \quad \text{en } A_2, \quad \text{resulta:}$ $A_2 = \frac{R_1}{e^{A_0 R_1}} \left(-\frac{S_T}{\rho C p v_t} - \frac{S_T}{\rho C p v_t} \left(\frac{1}{A_0 R_1} \right) \right)$

Sin embargo, debido a que en r = R_1 entre $0 \le z \le L$, no se tiene termino fuente, entonces, el valor de la constante $A_2 = 0$.

Evaluando la ecuación diferencial en $r = R_2$, se obtiene la constante A_3 :

$$T(r = R_2) = -\frac{A_1}{A_0}R_2 - \frac{A_1}{A_0^2}\ln R_2 + A_3 = T_f$$

despejando A3:, se tiene:
Balance de materia por componentes

Después de realizar las simplificaciones necesarias de acuerdo a las suposiciones del modelo ($y_i - y_i(r)$ y $v_r = v_r(r)$), la ecuación del balance de materia por componentes, resulta:

$$\left(\mathbf{v}_{r} \frac{dy_{i}}{dr}\right) = D_{i}^{\text{eff}}\left(\frac{1}{r} \frac{d}{dr}\left(r \frac{dy_{i}}{dr}\right)\right) + S_{y_{i}}$$
(5.40)

Solución de la ecuación del balance de materia por componentes

$$D_{i}^{\text{eff}}\left(\frac{1}{r}\frac{d}{dr}\left(r\frac{dy_{i}}{dr}\right)\right) - \left(v_{r}\frac{dy_{i}}{dr}\right) = -S_{y_{i}} \implies \left(\frac{1}{r}\frac{d}{dr}\left(r\frac{dy_{i}}{dr}\right)\right) - \left(\frac{v_{r}}{D_{i}^{\text{eff}}}\frac{dy_{i}}{dr}\right) = -\frac{S_{y_{i}}}{D_{i}^{\text{eff}}}$$

$$\left(\frac{1}{r}\left(r\frac{d^{2}y_{i}}{dr^{2}} + \frac{dy_{i}}{dr}\right)\right) - \left(\frac{v_{r}}{D_{i}^{\text{eff}}}\frac{dy_{i}}{dr}\right) = -\frac{S_{y_{i}}}{D_{i}^{\text{eff}}} \implies \left(\frac{d^{2}y_{i}}{dr^{2}} + \frac{1}{r}\frac{dy_{i}}{dr}\right) - \left(\frac{v_{r}}{D_{i}^{\text{eff}}}\frac{dy_{i}}{dr}\right) = -\frac{S_{y_{i}}}{D_{i}^{\text{eff}}}$$

$$\frac{d^{2}y_{i}}{dr^{2}} + \left(\frac{1}{r} - \frac{v_{r}}{D_{i}^{\text{eff}}}\right)\frac{dy_{i}}{dr} = -\frac{S_{y_{i}}}{D_{i}^{\text{eff}}} \qquad (5.41)$$

Considerando que $115.4734 \le \frac{1}{r} \le 166.6666$ y $1.829x10^3 < \frac{v_r}{D_i^{qf}} \le 132x10^3$, el término $\frac{1}{r}$ es mucho menor que el término $\frac{v_r}{D_i^{qf}}$, por lo que se considerará despreciable, con el fin de realizar la siguiente simplificación a la ecuación por resolver:

$$\frac{d^2 y_i}{dr^2} - \left(\frac{v_r}{D_i^{\text{eff}}}\right) \frac{dy_i}{dr} = -\frac{S_{y_i}}{D_i^{\text{eff}}}$$
(5.42)

Llamando $A_0 = \frac{v_r}{D_t^{ell}}$ y $A_1 = -\frac{S_{v_r}}{D_t^{ell}}$, rescribiendo la expresión anterior:

$$\frac{d^2 y_i}{dr^2} - A_0 \frac{dy_i}{dr} = A_1$$
 (5.43)

Haciendo el siguiente cambio de variable: $u = \frac{dy_i}{dr}$ derivando: $\frac{du}{dr} = \frac{d^2y_i}{dr^2}$ Rescribiendo la ecuación anterior: $\frac{du}{dr} - A_0 u = A_1$ El factor integrante de la ecuación es: $e^{-A_0 r}$ $e^{-A_0 r}$ $e^{-A_0 r}$ $\frac{du}{dr} - A_0 u = A_1$

Separando variables e integrando, resulta:

$$(ue^{-A_0 r}) = A_1 \int e^{-A_0 r} dr$$
 $(ue^{-A_0 r}) = -\frac{A_1}{A_0} e^{-A_0 r} + A_2$

Por lo que resulta: $u = -\frac{A_1}{A_2} + A_2 e^{A_2 r}$ pero como $u = \frac{dy_1}{dr}$, realizando el cambio de $\frac{dy_i}{dr} = -\frac{A_1}{A_2} + A_2 e^{A_0 r}$ variable, resulta:

Nuevamente separando variables e integrando, resulta:

$$y_{1}(r) = -\frac{A_{1}}{A_{0}}r + \frac{A_{2}}{A_{0}}e^{A_{0}r} + A_{3}$$
(5.44)

Las constantes A2 y A3, se determinan a partir de las condiciones de frontera del caso de estudio, mismas que se presentan en la figura 5. 3 del caso de estudio 1. En r = R₁, se tiene la pared Impermeable $\left(\frac{dy_i}{dr}=0\right)$, por lo que la constante A_2 se

obtiene, como sigue:

 $\frac{dy_i}{dr} = -\frac{A_1}{A_0} + A_2 e^{A_0 R_1} = 0$ entonces, $A_2 = \frac{A_1}{A_0} e^{-A_0 R_1}$ considerando que $\frac{A_1}{A_0} = \frac{\frac{-S_{y_i}}{D_i^{off}}}{\frac{v_r}{1-\sigma^{off}}} = -\frac{S_{y_i}}{v_r}$, sustituyendo dicho valor en A_2 se tiene: $A_2 = \frac{A_1}{A_2} e^{-A_0 R_1} = -\frac{S_{y_1}}{y_2} e^{-A_0 R_1}$

Sin embargo, debido a que en $r = R_1$ entre $0 \le z \le L$, no se tiene termino fuente, entonces, el valor de la constante $A_2 = 0$.

Evaluando la ecuación diferencial en $r = R_2$, se obtiene la constante A_3 : $y_i(r = R_2) = -\frac{A_1}{A_2}R_2 + A_3 = y_i^f$ entonces: $A_3 = y_i^f + \frac{A_1}{A_2}R_2$

Sustituyendo el valor de A3 en la solución de la ecuación diferencial, resulta:

$$y_{i}(r) = \left(\frac{S_{y_{i}}}{v_{r}}\right)r + y_{i}^{f} - \left(\frac{S_{y_{i}}}{v_{r}}\right)R_{2}$$

simplificando la expresión anterior, resulta:

$$y_{t}(r) = y_{t}^{f} + \left(\frac{S_{y_{t}}}{v_{r}}\right)(r - R_{2})$$
(5.45)

En las tablas 5, 14 y 5, 15, se muestra un resumen de las condiciones de frontera que aplican para el caso de estudio 2, mismas que se muestran en las figuras 5.1, 5. 2, 5. 3 y 5. 28.

		Velocidad (axial)	Velocidad (radial)	Temperatura	Especies
En r = R ₁	0 ≤ z ≤ L	$v_z = 0$		$\frac{dT}{dr} = 0$	$\frac{dy_i}{dr} = 0$
$Enr = R_2$	$0 \le z \le L$	$v_z = 0$	$v_r = v_r^f$	$T = T_f$	y oxi = y f
En z = 0	$R_1 \leq r \leq R_2$				
En z = L	$R_1 \leq r \leq R_2$				

Tabla 5, 14. Condiciones de frontera para la región I, en el caso 2.

Tabla 5. 15. Condiciones de frontera para la región V, en el caso 2.

		Velocidad (axial)	Velocidad (radial)	Temperatura	Especies
Enr=R₅	0 ≤ z ≤ L	$v_z = 0$		$T = T_f$	Yhid ⁼⁼ Yf Yagua ^{=−} Yf
En r = R ₆	0 ≤ z ≤ L	$v_z = 0$	$v_r = v_r^f$	$\frac{dT}{dr} = 0$	$\frac{dy_i}{dr} = 0$
En z = 0	$R_5 \leq r \leq R_6$				
En z = L	$R_5 \le r \le R_6$				

5. 4. 2. Resultados

En las figuras 5. 29, 5. 30, 5. 31, 5. 32 y 5. 33, se muestran los resultados obtenidos con el programa Conduct para el caso 2 de la SOFC. En el apéndice VI, se encuentran los resultados numéricos del programa para dicho caso. La densidad de corriente empleada en la construcción de la matriz de resultados del perfil de temperatura y de composición es de 0.15 A/cm².

Figura 5. 29. Perfil de velocidad radial para ambas regiones fluidas. Caso 2.

En la figura 5. 29, se muestra el perfil de velocidad radial, el comportamiento lineal, dado en la solución de la ecuación de la velocidad radial es análogo en ambas regiones. Para el perfil de la región I (aire) se tiene que la menor velocidad radial se encuentra pegada al cátodo, en contraste para el perfil del combustible, la mayor velocidad radial se tiene pegada al ánodo.

Figura 5. 30. Perfil de velocidad axlal para ambas regiones fluidas. Caso 2.

En la figura 5. 30, se aprecia el perfil de velocidad axial, el comportamiento es análogo en ambas regiones, este perfil esta en función tanto de la diferencia de radios como de la velocidad radial correspondiente, por lo que, como resultado de

dicha relación, las gráficas obtenidas presentan un máximo, para decaer posteriormente.

Figura 5. 31. Perfil de temperatura para ambas regiones fluidas. Caso 2.

La figura 5, 31, muestra el perfil de temperatura para las regiones fluidas, el perfil es diferente para ambas regiones, debido tanto al cambio de las propiedades físicas de los fluidos como a los términos fuente que contribuyen en cada región. Este perfil de temperatura, tiene la dependencia en la coordenada radial, sin embargo, dado que esta en función de la velocidad radial y ésta es función de la coordenada radial, se tiene la variación de la temperatura únicamente en dicha coordenada.

En el perfil en la región I, se tiene un máximo para posteriormente decaer, y nuevamente aumentar en el último nodo, sin embargo, la diferencia de temperatura a lo largo de la región I (2.66mm), es de 0.527K.

Para el perfil de la región V, se tiene un comportamiento prácticamente constante, es decir. la variación de temperatura a lo largo del radio para la región V (3.9685mm), es de centésimas, aunque es ligeramente mayor en la zona que esta en contacto con el tubo inductor.

Figura 5. 32. Perfil de composición del oxígeno para la región fluida I, Caso 2.

En la figura 5. 32, se muestra el perfil de composición del oxígeno para la región l, la diferencia entre ambas gráficas es la utilización del aire que se empleo en los cálculos, con el fin de reproducir las condiciones a las cuales se realizo la parte experimental. Este perfil esta en función de la inversa de la velocidad radial, así como de la diferencia de los radios, sin embargo, este término es pequeño comparado con la composición final, por lo que este comportamiento de la solución del balance de materia por componentes esta enfatizado en las gráficas obtenidas; el cual muestra un comportamiento prácticamente lineal, que coincide con la composición final del oxígeno, dado este comportamiento, no es posible apreciar el consumo de las moléculas que penetran en el cátodo.

Figura 5. 33. Perfil de composición del hidrógeno y del agua para la región fluida V. Caso 2.

En la figura 5. 33, se muestra el perfil de composición del hidrógeno y del agua para la región V, es evidente el contraste entre ambas graficas, es decir, en tanto que el hidrógeno se consume y exhibe su menor composición en la interfase con el ánodo, debido a las moléculas que penetran en el electrodo; el agua presenta un comportamiento opuesto debido a la aparición de moléculas dada la reacción que se lleva a cabo. Este perfil esta en función de la inversa de la velocidad radial, así como de la diferencia de los radios, sin embargo, este término es pequeño comparado con la composición final, por lo que este comportamiento de la solución del balance de materia por componentes, esta enfatizado en las gráficas obtenidas, el cual muestra un comportamiento prácticamente lineal que coincide con ambas composiciones finales del hidrógeno y del agua. Dado este comportamiento, no es posible apreciar el consumo y aparición de las moléculas que penetran (o son liberadas) en el ánodo.

En la tabla 5. 16, se muestran los resultados para el sólido, es decir, las regiones II, III y IV. En la sección correspondiente del apéndice VI, se muestran los resultados del programa que realiza los cálculos de la región del sólido.

Den. de cor. (A/cm²)	η _{ohmioa} (V)	າ _{ໂສດຕະໃນສຸດເດິກ} (V)	E _{ceida} (V) E _{ideal} = 1.07789V 4 veces esteq. O ₂ (y _{oxi final} = 0,17)	E _{celda} (V) E _{ideal} = 1.07946V 6 veces esteq. O ₂ (y _{oxi final} = 0,18)
0.1500	0.0124	0.05333	1.012	1.0137
0.1578	0.0131	0.05601	1.009	1.0104
0.1661	0.0137	0.05882	1.005	1.0069
0.1748	0.0145	0.06176	1.002	1.0033
0.1839	0.0152	0.06483	0.9979	0.9994

Tabla 5, 16. Resultados de la región del sólido

En la figura 5. 34, se muestra el comportamiento del voltaje vs densidad de corriente, es decir, los resultados en forma gráfica de la tabla 5.16, para el sólido (regiones II, III y IV).

Figura 5, 34, Voltaje vs Densidad de corriente. Caso 2.

En las figuras 5. 35 y 5. 36, se muestran los resultados obtenidos del caso 2 y su comparación con respecto a los artículos que se emplearán para validarlos. Los resultados, dado el modelo matemático elegido son cualitativos, es decir, el perfil tiene una pendiente similar, sin embargo, aún es necesario realizar ajustes al modelo para reproducir con mejor exactitud los resultados experimentales.

Figura 5. 35. Validación de resultados con respecto a Tomlins (1999)

Figura 5. 36. Validación de resultados con respecto a Singhal (1999)

5. 5. CASO 2A

5. 5. 1. Especificaciones del modelo

La especificación que se describe en la tabla 5. 17, es la que corresponde al caso 2A. Este caso, es una variación del caso 2. En este caso se toma en cuenta tanto la parte de convección como la de difusión de los balances correspondientes.

Ecuación de Balance	Observación	Solución
Momento axial	$v_z = v_z(r)$	Analítica
radial	$v_r = v_r(r)$	Analítica
Energía	T = T(z)	Analítica
Materia por componentes	$y_i = y_i(r)$	Analítica

Tehla 5	17	Especificación	de la	as ecuaciones	del	caso	2A
i abia J.	11.	Especificación		13 COURCIONES	uor	0430	டு.

Ecuación de continuidad

Debido a que se especifica un flujo totalmente desarrollado, finalmente resulta:

$$\frac{1}{r}\frac{d}{dr}(rv_r) = 0 \tag{5.23}$$

Balance de momento

Después de realizar las simplificaciones necesarias de acuerdo a las suposiciones del modelo que se esta planteando ($v_z = v_z(r)$ y $v_r = v_r(r)$), resulta:

Componente r:

$$\rho\left(v_{r}\frac{dv_{r}}{dr}\right) = \mu\left[\frac{d}{dr}\left(\frac{1}{r}\frac{d}{dr}(rv_{r})\right)\right] - \frac{\mu}{K}v_{r}$$
(5.24)

Solución de la ecuación del balance de momento en dirección radial

El desarrollo de la solución, es planteado en el caso 2, por lo que, en esta ocasión, tan sólo se especificará la solución del balance de momento en dirección radial.

$$v_r(r) = v_r^f + \left(\frac{\mu}{K\rho}\right)(R_2 - r)$$
(5.27)

Componente z:

$$\rho\left(v_{r}\frac{\partial v_{z}}{\partial r}\right) = -\frac{\partial p}{\partial z} + \mu\left[\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial v_{z}}{\partial r}\right)\right] + \rho g_{z}$$
(5.28)

Solución de la ecuación del balance de momento en dirección axial

El desarrollo de la solución, es planteado en el caso 2, por lo que, sólo se especificará la solución del balance de momento en dirección axial.

$$C_{4} = -\frac{g_{x}}{v_{r}}R_{1} - \frac{C_{3}}{C_{2}}e^{C_{2}R_{1}} \qquad \frac{C_{3}}{C_{2}} = \left(\frac{1}{e^{C_{2}R_{1}} - e^{C_{2}R_{1}}}\right)\frac{g_{x}}{v_{r}}(R_{1} - R_{2})$$

$$v_{x}(r) = \frac{g_{x}}{v_{r}}r + \frac{C_{3}}{C_{2}}e^{C_{2}r} + C_{4}$$
(5.33)

Balance de energía

Después de realizar las simplificaciones necesarias, de acuerdo a las suposiciones del modelo (T = T(z) y $v_x = v_x(r)$), resulta:

$$\rho C p \left(v_s \frac{dT}{dz} \right) = k_t^{\text{eff}} \left[\frac{d^2 T}{dz^2} \right] + S_T$$
(5.13)

Solución de la ecuación del balance de energía

El desarrollo de la solución, es planteado en el caso 1A, por lo que, sólo se especificará la solución del balance de energía.

Balance de materia por componentes

Después de realizar las simplificaciones necesarias de acuerdo a las suposiciones del modelo ($y_i = y_i(r)$ y $v_r = v_r(r)$), la ecuación del balance de materia por componentes, resulta:

$$\left(v_r \frac{dy_i}{dr}\right) = D_i^{eff} \left(\frac{1}{r} \frac{d}{dr} \left(r \frac{dy_i}{dr}\right)\right) + S_{y_i}$$
(5.40)

Solución de la ecuación del balance de materia por componentes

El desarrollo de la solución, es planteado en el caso 2, por lo que, sólo se especificará la solución del balance de materia por componentes.

$$y_{i}(r) = y_{i}^{f} + \left(\frac{S_{y_{i}}}{v_{r}}\right)(r - R_{2})$$
(5.45)

En las tablas 5. 18 y 5. 19 se muestra un resumen de las condiciones de frontera que aplican para el caso de estudio 2, mismas que se muestran en las figuras 5. 1, 5. 2, 5. 3 y 5. 28.

		Velocidad (axial)	Velocidad (radial)	Temperatura	Especies
En r = R ₁	$0 \le z \le L$	$v_z = 0$			$\frac{dy_i}{dr} = 0$
Enr=R ₂	0≤z≤L	$v_z = 0$	$v_r = v_r^f$		$y_{oxt} = y_f$
En z = 0	$R_1 \leq r \leq R_2$			$T-T_{\theta}$	
Enz=L	$R_1 \leq r \leq R_2$			$T - T_f$	

Tabla 5. 18. Condiciones de frontera para la región I, en el caso 2A.

Tabla 5. 19. Condiciones de frontera para la región V, en el caso 2A.

		Velocidad (axial)	Velocidad (radial)	Temperatura	Especies
En r = R₅	0 ≤ z ≤ L	$v_z = 0$			y _{hid} = y _f y _{agua} = y _f
En r = R ₆	0 ≤ z ≤ L	$v_z = 0$	$v_r = v_r^f$		$\frac{dy_i}{dr} = 0$
En z = 0	$R_5 \leq r \leq R_6$			$T = T_{\theta}$	—
Enz=L	$R_5 \leq r \leq R_6$			$T = T_f$	

Debido a que el presente caso (2A) y el caso 2, tan sólo varían en el balance de 5. 5. 2. Resultados energía, las gráficas de los resultados de los perfiles de velocidad radial, velocidad axial, composición del oxígeno, composición del hidrógeno y del agua; se encuentran en las figuras 5. 29, 5. 30, 5. 32 y 5. 33, respectivamente para el caso 2. En el apéndice VI, se encuentran los resultados numéricos del programa

En la figura 5. 37, se muestran gráficamente, los resultados obtenidos con el programa para el caso 2A de la SOFC. En el apéndice VII, se encuentran los

resultados numéricos del programa para dicho caso. La densidad de corriente empleada en la construcción de la matriz de resultados

del perfil de temperatura es de 0.15 A/cm².

Figura 5, 37. Perfil de temperatura para ambas regiones fluidas. Caso 2A.

La figura 5. 37, muestra el perfil de temperatura para ambas regiones fluidas, nuevamente este perfil es diferente, debido tanto al cambio de las propiedades físicas de los fluidos, como a los términos fuente que contribuyen en cada región. En este perfil se tiene la dependencia en el eje axial, sin embargo, dado que esta en función de la velocidad axial y ésta es función del eje radial, se tiene la

variación de la temperatura en ambas coordenadas. En el perfil en la región I, se observa que es en la zona central de la celda el lugar en el cual se tiene la mayor temperatura, para decaer tanto en dirección radial como en la dirección axial, nuevamente se presenta un comportamiento endotérmico, en el cual la temperatura que esta pegada al electrodo y al tubo

inductor de aire, son las menores del perfil. Para el perfil de la región V, el aumento de temperatura es evidente en el eje axial, en donde a la entrada de la celda se tiene la menor temperatura, aumentando gradualmente conforme se desplaza el fluido hacia la salida. En tanto que en eje radial se presenta la mayor temperatura en la superficie que esta pegada al ánodo.

En las figuras 5. 38, 5. 39, 5. 40 y 5. 41, se muestran los resultados para el sólido, es decir, las regiones II, III y IV.

T aire (K)	v aire(-)	T_comb (N)	y_hidr(-)	y_agua(-)
063.0000	~~0.1800	1050.0000	Ĩ 0. 1335	- Ø. 8665
954.8937	0,1800	1059.0000	0.1335	0.0665
1138.6010	0.1800	1075.0000	8.1335	0.8665
1322.4690	0.1900	1090.0000	0.1335	0.8665
1506.2560	0.1800	1103.0000	0.1335	0.8665
1690.0439	0.1800	1115.0000	Ø.1335	0.8665
1973.0320	0.1800	1125.0000	0.1335	0.8665
2057.6189	0.1800	1134.0000	0.1335	0.8665
2241 4970	0.1800	1141.0000	0.1335	0.8665
2425.1941	0.1000	1145.0000	0.1335	0.8665
2608 9810	0.1800	1149.0000	0.1335	0.8665
2792.7041	0.1000	1151.0000	0.1335	0.0665
2972 3989	0.1900	1152.0000	0.1335	0.0665
2896.4629	0.1800	1151.0000	0.1335	0.8665
1150.0000	0.1900	1150.0000	0.1335	0.8665
**********	********		*****	**
Eid(V)	nohmic(V)	nact_total(V)	> V_tot(V)	DEN_CORR_NVA <a cm2="">
1.0795	0.8172E-01	0.4001E-01	0.9577	0.1511
1.0795	0.4799E-01	0.4302E-01	0,9884	0.1519
1.0795	0.1957E-01	0.4902E-01	1.0109	0.1549
1.0795	0.9530E-02	0.5501E-01	1.0149	0.1604
1.0795	0.5407E-02	0.6097E-01	1.0131	0.1693
1.0795	0.3471E-02	0.6692E-01	1.0091	0.1824
1.0795	0.2476E-02	0.7285E-01	1.0041	0.1997
1.0795	0.1919E-02	0.7076E-01	0.9980	0.2209
1.0795	0.1589E-02	0.0465E-01	0.9932	0.2449
1.0795	0.1303E-02	0.9051E-01	0.9876	0.2705
1.0795	0.1246E-02	0.9636E-01	0.9019	0.2966
1.0795	0.1153E02	0.1022E+00	0.9761	0.3220
1.0795	0.1000E-02	0.1079E+00	0.9705	0.3455
1.0795	0.1113E-02	0.1055E+00	0.9729	0.3357
1.0795	0.1405E-01	0.5029E-01	1.0151	0.1569
***********	*****	********	******) M
Voltaje tot	al promodio=	Ø.9930 (I	J)	
Densidad de	corriente.	0.1500 (A/	/cm2)	
***********	**********	*************	******	KH
i_nueva_pro	omedio= 0.	<u>2242 (A/cm2)</u>		

Figura 5. 38. Resultados de la región del sólido para el primer Juego de datos de la SOFC

En la parte superior de los resultados de la figura 5. 38, se muestran los valores de las regiones fluidas con los que se realizaron los cálculos de la región del sólido, Para este caso, se tienen 15 resultados diferentes para la temperatura (T(z)) y para la composición $(y_i(r))$, debido a que se asignaron 15 nodos en la dirección axial, los resultados tanto de temperatura como de composición, que se muestran para el combustible, son los que corresponden a los nodos que se encuentran en la interfase sólido-fluido.

Los valores de voltaje total promedio y densidad de corriente, son lo que se grafican. El valor de densidad de corriente nueva promedio, es el valor que se regresa a iterar, para continuar con los valores que formaran la gráfica, para posteriormente realizar la comparación con respecto a los datos experimentales. Los datos de los otros resultados del proceso iterativo, se presentan en la sección correspondiente del apéndice VII.

En la tabla 5. 20, se muestran los datos finales promedio, correspondientes al voltaje final de la celda y la densidad de corriente de este caso de estudio, mismos que son empleados para generar las figuras 5. 39, 5. 40 y 5. 41.

Los datos del voltaje de la celda en el último renglón de la tabla 5. 15, se obtuvieron considerando el valor absoluto del nodo 7 al 14, debido a que el cálculo reporta voltajes negativos, esto a su vez se debe a que la temperatura del aire en

esos mismos nodos se eleva mucho, dado el cambio de densidad de corriente usada para realizar los cálculos. En el apéndice VII, se pueden corroborar dichas cifras.

rable 5. zv. Resultados promedio de la Gor O					
Den. de cor. (A/cm ²)	E _{celda} (V)				
	4 veces esteq. O ₂	6 veces esteq. O ₂			
	$(y_{oxi final} = 0, 17)$	$(y_{\text{oxi final}} = 0, 18)$			
0.1500	0.9914	0.9930			
0.2242	0.8979	0.8994			
0.5064	0.6541	0.6540			

Tabla 5. 20. Resultados promedio de la SOFC

En la figura 5. 39, se muestra el comportamiento del voltaje vs densidad de corriente, es decir, los resultados gráficos de la tabla 5.20 para el sólido (regiones II, III y IV).

Figura 5. 39. Voltaje vs Densidad de corriente. Caso 2A.

En las figuras 5. 40 y 5. 41, se muestran los resultados obtenidos de los casos 2, 2A y su comparación con respecto a los artículos que se emplearán para validar. Los resultados, dado el modelo matemático elegido siguen siendo cualitativos, es decir, el perfil tiene una pendiente similar, observándose la corrección con la implementación del cambio de la dependencia de la temperatura, es decir, T = T(z). Sin embargo, aún es necesario realizar ajustes al modelo para reproducir los resultados experimentales, tanto para los resultados experimentales de Singhal (1999) como los de Tomlins (1999).

Figura 5. 40. Validación de resultados con respecto a Tomlins (1999)

Figura 5. 41. Validación de resultados con respecto a Singhal (1999)

5. 6. CASO 2B

5. 6. 1. Especificaciones del modelo

La especificación que se describe en la tabla 5. 21, es la que corresponde al caso 2B. Este caso, es una variación de los casos 2 y 2A. En este caso se toma en cuenta tanto la parte de convección como la de difusión de los balances correspondientes.

Ecuación de Balance	Observación	Solución	
Momento	v = v(r)	Analítica	
axial	$r_z - r_z(r)$	7 diamica	
radial	$v_r = v_r(r)$	Analítica	
Energía	T = T(z)	Analítica	
Materia por componentes	$y_i = y_i(z)$	Analítica	

Tabla 5. 21. Especificación de las ecuaciones del caso 2B

Ecuación de continuidad

Debido a que se especifica un flujo totalmente desarrollado, finalmente resulta:

$$\frac{1}{r}\frac{d}{dr}(rv_r) = 0 \tag{5.23}$$

Balance de momento

Después de realizar las simplificaciones necesarias de acuerdo a las suposiciones del modelo que se esta planteando ($v_z = v_z(r)$ y $v_r = v_r(r)$), resulta:

Componente r:

$$\rho\left(v_r \frac{dv_r}{dr}\right) = \mu\left[\frac{d}{dr}\left(\frac{1}{r}\frac{d}{dr}(rv_r)\right)\right] - \frac{\mu}{K}v_r$$
(5.24)

Solución de la ecuación del balance de momento en dirección radial

El desarrollo de la solución, es planteado en el caso 2, por lo que, sólo se especificará la solución del balance de momento en dirección radial.

$$v_r(r) = v_r^f + \left(\frac{\mu}{K\rho}\right)(R_2 - r)$$
(5.27)

Componente z:

$$\rho\left(v_r \frac{\partial v_z}{\partial r}\right) = -\frac{\partial p}{\partial z} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r}\right)\right] + \rho g_z$$
(5.28)

Solución de la ecuación del balance de momento en dirección axial

El desarrollo de la solución, es planteado en el caso 2, por lo que, en esta ocasión, tan sólo se especificará la solución del balance de momento en dirección axial.

$$C_{4} = -\frac{g_{z}}{v_{r}}R_{1} - \frac{C_{3}}{C_{2}}e^{C_{z}R_{1}} \qquad \frac{C_{3}}{C_{2}} = \left(\frac{1}{e^{C_{z}R_{2}} - e^{C_{2}R_{1}}}\right)\frac{g_{z}}{v_{r}}(R_{1} - R_{2})$$

$$v_{z}(r) = \frac{g_{z}}{v_{r}}r + \frac{C_{3}}{C_{2}}e^{C_{2}r} + C_{4}$$
(5.33)

Balance de energía

Después de realizar las simplificaciones necesarias, de acuerdo a las suposiciones del modelo (T = T(z) y $v_x = v_x(r)$), resulta:

$$\rho C p \left(v_{r} \frac{dT}{dz} \right) = k_{t}^{eff} \left[\frac{d^{2}T}{dz^{2}} \right] + S_{T}$$
(5.13)

Solución de la ecuación del balance de energía

El proceso para la obtención de la solución del balance de energía, se realizó en el caso 1A, por lo que sólo se especifica dicha solución.

Balance de materia por componentes

Después de realizar las simplificaciones necesarias de acuerdo a las suposiciones del modelo $(y_i - y_i(z) \ y \ v_x = v_x(r))$, la ecuación del balance de materia por componentes, resulta:

$$\left(v_{s}\frac{dy_{i}}{dz}\right) = D_{i}^{eff}\left(\frac{d^{2}y_{i}}{dz^{2}}\right) + S_{y_{i}}$$
(5.17)

Solución de la ecuación del balance de materia por componentes

El desarrollo de la solución, es planteado en el caso 1A, por lo que, en esta ocasión, tan sólo se especificará la solución del balance de materia por componentes.

En las tablas 5. 22 y 5. 23, se muestra un resumen de las condiciones de frontera que aplican para el caso de estudio 2B mismas que se muestran en las figuras 5. 1, 5. 2, 5. 3 y 5. 28.

		Velocidad (axial)	Velocidad (radial)	Temperatura	Especies
$Enr = R_1$	$0 \le z \le L$	$v_z = 0$			
$Enr = R_2$	0 ≤ z ≤ L	$v_z = 0$	$v_r = v_r^f$	—	
En z = 0	$R_1 \leq r \leq R_2$			$T = T_{\theta}$	y _{oxi} — yo
Enz=L	$R_1 \leq r \leq R_2$			$T = T_f$	$y_{oxi} = y_f$

Tabla 5. 22. Condiciones de frontera para la región I, en el caso 2B.

Tabla 5. 23. Condiciones de frontera para la región V, en el caso 2B.

		Velocidad (axial)	Velocidad (radial)	Temperatura	Especies
$Enr = R_5$	0 ≤ z ≤ L	$v_z = 0$			
$Enr = R_6$	0 ≤ z ≤ L	$v_z = 0$	$v_r = v_r^f$		
En z = 0	$R_5 \leq r \leq R_6$			$T - T_{\theta}$	$y_{hid} = y_0$ $y_{agua} = y_0$
En z = L	$R_5 \le r \le R_6$			$T - T_f$	$\begin{vmatrix} y_{hid} = y_f \\ y_{agua} = y_f \end{vmatrix}$

5. 6. 2. Resultados

Los resultados y gráficas de los perfiles de velocidad radial (figura 5. 29) y velocidad axial (figura 5. 30), se encuentran en la sección de resultados del caso 2. El perfil de temperatura (figura 5. 37), es el mismo del caso 2A.

En las figuras 5. 42 y 5. 43, se muestran los resultados obtenidos con el programa Conduct para el caso 2B de la SOFC. En el apéndice VIII, se encuentran los resultados numéricos del programa para el presente caso.

La densidad de corriente empleada en la construcción de la matriz de resultados del perfil de temperatura es de 0.15A/cm².

Figura 5. 42. Perfil de composición del oxígeno para la región fluida I. Caso 2B.

En la figura 5. 42, se muestra el perfil de composición del oxígeno para la región I, la diferencia entre ambas gráficas es la utilización del aire que se empleo en los cálculos, con el fin de reproducir las condiciones a las cuales se realizo la parte experimental. Este perfil esta en función de la inversa de la velocidad axial, así como de la razón de las exponenciales, sin embargo, este término es pequeño comparado con la composición final, por lo que este comportamiento de la solución del balance de materia por componentes está enfatizado en las gráficas obtenidas. La parte del perfil que se encuentra al inicio de la celda, es la que muestra la composición inicial del oxígeno, en tanto que la que esta al final de la celda, es la que presenta la menor composición, como resultado de consumo moléculas de oxígeno que penetran en el cátodo.

Figura 5, 43. Perfil de composición del hidrógeno y del agua para la región fluida V. Caso 2B.

En la figura 5. 43, se muestra el perfil de composición del hidrógeno y del agua para la región V, es evidente el contraste entre ambas graficas, es decir, en tanto que el hidrógeno se consume y exhibe su menor composición al final de la celda, debido a las moléculas que penetran en el electrodo; el agua presenta un comportamiento opuesto debido a la aparición de moléculas dada la reacción que se lleva a cabo. Para el agua, en la parte inicial de la celda, es la que muestra la composición menor, en tanto que la que esta al final de la celda, es la que presenta la mayor composición, como resultado de la aparición de moléculas de agua que abandonan el electrodo.

En las figuras 5. 44, 5. 45, 5. 46 y 5. 47, se muestran los resultados para el sólido, es decir, las regiones II, III y IV.

T_aire (N)	y_airo(-)	T_comb (X)	y_hidr(-)	y_agua(-)
863.0000	0.2100	1050.0000	0.8900	0.1100
954.8937	0.2059	1053.8450	0.7855	0.2143
1138.6810	0.2040	1061.5360	0.7142	0.2855
1322.4690	0.2025	1069.2271	0.6510	0.3480
1586 2568	R 2012	1026 9189	0.5944	0_4054
1690 0439	0 2000	1084 6190	0 5405	0.4592
1873 8320	0 1990	1092 1020	0 4893	0.5105
2007 6109	A 1940	1000 0050	G 4402	A.5596
2241 4020	0.1971	1107 6976	0 3978	0 6070
0405 4044	0.1771	11107.0070	0.3/60	0 6530
2123.1711	0.1702	1113.3000	0.3307	0.0000
4000.7010	0.1734	1163.0730	0.3044	0.0777
2792.7041	0.1746	1130.7660	0.4507	19.77L3 0.7020
2972.3989	0.1939	1130.4570	0.2101	0.7037
2896.4629	0.1932	1146.1530	0.1744	0.0256
1150.0000	0.1800	1150.0000	0.1335	0.8665
************	************		******	exe
Eid(U)	nohmic(V)	nact_total(U)	V_tot(V)	DEN_CORR_NUA(A/cm2)
1.3008	0.0172E-01	0.4001E-01	1.1791	0.1511
1.2569	0.4925E-01	0.4296E-01	1.1647	0.1519
1.2357	0.2067E-01	0.4886E-01	1.1662	0.1546
1.2196	0.1021E-01	0.5476E-01	1.1547	0.1596
1.2060	0.5786E-02	0.6066E-01	1.1396	8.1679
1.1938	A.3691E-02	0.6655E-01	1.1236	0.1800
1.1824	0.2605E-02	0.7245E-01	1.1074	0.1965
1 1 2 1 5	Ø 1997F-Ø2	0.2835E-01	1.0911	0.2169
1 1606	0 16367 02	0 9425E-01	1 0242	A 2486
1 1492	0 14108-02	0 00155-01	1 0501	9 2664
1 1 204	0.19696_02	0 9605E-01	1 0411	A 293A
1 1964	0.1406E-06 0.1469E_09	0 10195+00	1 0232	a 1191
1 11201	0.1104E-04 0.1003E_03	0.10370.00	1 0044	0 3430
1.1134	0.1073E 02	0.10//LT00	A 0070	n 33C4
1.0707	0.1115E-02	0.10346400	0.7744	0.3331 0 1000
1.0795	0.14052-01	0.5027E-01	1.0121	0.1901
	************		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-
Voltaje tot	tal promodio=	1.0890 (V	<i>)</i>	
Densidad de	corriente=	0.1500 (A/	CN37	
***********	1999 96 96 96 96 96 96 96 96 96 96 96 96	****	****	
j i_nuova pro	onedia- 0.	2222 (A/cm2)		

Figura 5. 44. Resultados de la región del sólido para el primer juego de datos de la SOFC

En la parte superior de los resultados de la figura 5. 44, se muestran los valores de las regiones fluidas con los que se realizaron los cálculos de la región del sólido, Para este caso, se tienen 15 resultados diferentes para la temperatura (T(z)) y para la composición $(y_i(z))$, debido a que se asignaron 15 nodos en la dirección axial, los resultados tanto de temperatura como de composición, que se muestran para el combustible, son los que corresponden a los nodos que se encuentran en la interfase sólido-fluido.

Los valores de voltaje total promedio y densidad de corriente, son lo que se grafican. El valor de densidad de corriente nueva promedio, es el valor que se regresa a iterar, para continuar con los valores que formaran la gráfica, para posteriormente realizar la comparación con respecto a los datos experimentales. Los datos de los otros resultados del proceso iterativo, se presentan en la sección correspondiente del apéndice VIII.

En la tabla 5. 24, se muestran los datos finales promedio, correspondientes al voltaje final de la celda y la densidad de corriente de este caso de estudio, mismos que son empleados para generar las figuras 5. 45, 5. 46 y 5. 47.

Los datos del voltaje de la celda en el último renglón de la tabla 5. 24, se obtuvieron considerando el valor absoluto del nodo 8 al 14, debido a que el cálculo reporta voltajes negativos, esto a su vez se debe a que la temperatura del aire en esos mismos nodos se eleva mucho, dado el cambio de densidad de corriente

usada para realizar los cálculos. En el apéndice VIII, se pueden corroborar dichas cifras.

Den de cor	E _{gelda} (V)			
(Δ/cm^2)	4 veces esteq. O ₂	6 veces esteq. O ₂		
(-// Gill)	(y _{oxi final} = 0,17)	(y _{oxi finai} ≖ 0,18)		
0.1500	1.0885	1.0890		
0.2222	0.9989	0.9994		
0.4922	0.6357	0.6356		

Tabla 5. 24. Resultados promedio de la SOFC

En la figura 5. 45, se muestra el comportamiento del voltaje vs densidad de corriente, es decir, los resultados gráficos de la tabla 5. 24 para el sólido (regiones II, III y IV).

Figura 5. 45. Voltaje vs Densidad de corriente. Casos 2B.

En las figuras 5. 46 y 5. 47, se muestran los resultados obtenidos de los casos 2, 2A, 2B y su comparación con respecto a los artículos que se emplearán para validarlos. Los resultados, dado el modelo matemático elegido siguen siendo cualitativos, es decir, el perfil tiene una pendiente similar, sin embargo, el cambio en la dependencia de la composición origino que se alejaran los resultados de los experimentales, quedando prácticamente paralela al caso 2A, por lo que es necesario seguir realizando ajustes al modelo para reproducir mejor los resultados experimentales.

Figura 5. 46. Validación de resultados con respecto a Tomlins (1999)

Figura 5. 47. Validación de resultados con respecto a Singhal (1999)

Conclusiones

El desarrollo del modelo matemático para SOFC tubulares que considera la ecuación de continuidad, el balance de momentum, el balance de energía, el balance de materia por componentes y el balance del campo del potencial eléctrico, así como las pérdidas ohmicas, por concentración y por activación, resulto ser complejo, por lo que se recurrió a una serie de simplificaciones de las ecuaciones anteriormente mencionadas, basadas en el análisis de la física del problema real.

Una vez realizadas las simplificaciones se logro establecer en forma precisa las ecuaciones que gobiernan a las regiones fluidas y a la región sólida de la SOFC, así como sus condiciones de frontera. Logrando con esto un modelo sencillo (1D), cuya solución resulto posible tanto en forma analítica como numérica.

El análisis de las variables de temperatura y composición y su dependencia tanto de las coordenadas axial o radial, así como de la velocidad (axial o radial) permitió determinar una combinación de variables, mismas que generaron un efecto de análisis 2D para los campos de temperatura y composición, que a su vez tuvieron influencia directa en el análisis de la región del sólido.

Tomando en cuenta todas las simplificaciones del modelo, la aproximación alcanzada con respecto a los datos experimentales, resulta ser:

De rápida solución, debido a que una vez programadas las soluciones de las ecuaciones diferenciales, el tiempo de cómputo es pequeño, para obtener los resultados.

De fácil obtención, ya que las mismas soluciones de los balances de las ecuaciones gobernantes es posible programarlos en una hoja de cálculo y obtener resultados, sin necesidad de tener un conocimiento de la programación en fortran u otro lenguaje computacional.

De económica aproximación, pues no es necesario adquirir un programa computacional para la solución de las regiones fluidas, que de cualquier forma, es necesario programar las expresiones de la región del sólido, junto con la inversión del costoso paquete de CFD. Por otro lado, el generar la solución de las ecuaciones gobernantes de la SOFC permitió tener un mejor conocimiento de los fenómenos que están involucrados en las celdas y así decidir la forma de resolver éstas expresiones, es decir, por algún método numérico o en forma analítica.

Debido a la importancia del tema, a futuro, queda continuar con el modelado de las SOFC mejorando el presente modelo, eliminando simplificaciones y buscando la solución de las expresiones en forma numérica.

Otra línea de investigación sería la parte de los resultados experimentales de las regiones fluidas, de ésta forma sería más fácil la comparación de los resultados del programa computacional y al mismo tiempo se tendría un control de las condiciones en las cuales se lleva a cabo la parte experimental, para incorporarlas al programa de cómputo.

APÉNDICE I

ANÁLISIS DE LOS ARTÍCULOS DE SOFC TUBULARES

Kudo y Obayashi (1976)

1. Objetivo del artículo

Resolver un conjunto de ecuaciones diferenciales para demostrar que en una SOFC de tipo cilíndrica la longitud de la celda es el factor más importante en la distribución uniforme de densidad de corriente en la celda.

2. Suposiciones

La distribución radial de la densidad de corriente J es asumida no axial en el transporte de iones en el electrolito.

Supone despreciable la polarización de activación

3. Reacciones que se toman en cuenta

 $H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$

4. Tipo de flujo

No se especifica si es contra flujo, flujo cruzado o co-flujo.

5. Flujo y tipo de combustible y oxidante (T y P de los mismos)

El combustible usado es una mezcla de H2 gaseoso y vapor de agua.

La composición del gas de entrada es $\lambda_0(H_2O)$, $1-\lambda_0(H_2)$. Donde λ es la fracción de vapor de agua en el gas combustible, la cual corresponde al nivel de consumo de H₂. En la tabla 1, se muestran los datos de este artículo.

Datos de proceso	Unidad	Dimensión
Densidad de corriente	A/cm ²	0.1 - 0.2
promedio		
Temperatura (aire y	°C	750
combustible)		
Densidad de potencia	mW/cm ²	220

Tabla 1. Datos usados en los cálculos de la celda y resultados del modelo

6. Celda y/o stack

Se empleo un modelo de SOFC tipo cilíndrica de stack de 2cm de longitud y 10 celdas conectadas en serie usando $Ce_{1-x}Gd_xO_{2-x/2}$ en el electrolito y LaCoO₃ en el cátodo.

En las tablas 2 y 3, se muestran los datos usados para realizar los cálculos del presente artículo.

Datos Geométricos	Unidad	Dimensión
Longitud de la celda	cm	2, 5, 10 y 20
Radio de la película del Ánodo	cm	0.5
Resistividad del ánodo	Ωcm*	3.6x10⁵
Espesor de la película del ánodo	cm	1x10 ⁻³
Resistividad del electrolito	Ωcm ⁺	20
Espesor del electrolito (Ce _{1-x} Gd _x O _{2-x/2})	cm	0.05
Espesor de la película del cátodo (LaCoO ₃)	cm	0.01
Resistividad del Cátodo	Ωcm [*]	1x10 ⁻³
Modelo stack conectado en serie	Unidad celda	10
Composición del combustible (entrada)		
H ₂		0.90
H ₂ O (vapor)		0.10
Composición del combustible (salida)		
H ₂		0.05
H ₂ O (vapor)		0.95

_ .. _ _ . ساسات مترام مترجح والرا

Resistividad de metal nickel

* Resistividad de fluorita-tipo Ce1-xGdxO2-x/2 solución sólida a 750°C

* Resistividad de perovskite- tipo LaCoO₃ o La_{1-x} Sr_xCoO₃ conductor electrónico a 750°C

Tabla 3. Datos usados en el cálculo del funcionamiento de la celda para el modelo

Datos de resultado	Unidad	Dimensión
Resistencia Interna Stack set-up		
20 cm x 1 celda	Ωcm	17.0
10 cm x 2 celdas	Ωcm	4.52
5 cm x 4 celdas	Ωcm	1.92
2 cm x 10 celdas	Ωcm	1.11
Máxima densidad de potencia Stack set-up		
20 cm x 1 celda	W/cm ²	1.6 x 10 ⁻²
10 cm x 2 celdas	W/cm ²	5.5 x 10 ⁻²
5 cm x 4 celdas	W/cm ²	1.25 x 10 ⁻¹
2 cm x 10 celdas	W/cm ²	2.17 x 10 ⁻¹

7. Ecuaciones planteadas en los modelos (balances de M, E, momentum) La distribución radial de la densidad de corriente J

La caída de potencial ΔV

Conservación de corriente en la dirección axial

La caída de potencial en los electrodos

Ecuación de difusión

8. Tipo de ecuaciones de los modelos (algebraicas, diferenciales, integrales, etc.) El modelo matemático es un conjunto de ecuaciones diferenciales

9. Modo de solución

El conjunto de ecuaciones diferenciales fueron resueltas por el método de Runge Kutta Gill (prueba y error)

10. Secuencia de cálculo

A. Establecer constantes

B. Leer datos de entrada (inicial y final nivel de consumo de combustible, densidad de corriente promedio y otros)

- C. Calcular algunas variables
- D. Establecer condiciones iniciales
- E. Resolver la ecuación diferencial por el método de Runge Kutta Gil
- F. Se satisfacen las condiciones de frontera?

SI

- F.1. Calcular el funcionamiento de la celda
- F.2. Imprimir resultados
- F.3. Concluyeron los datos?

SI

F.3.1. concluye el programa

NO

- F.3.2. retorna a leer datos (B)
- NO
 - F.4. se exceden las pruebas?

SI

F.4.1. Abandonar y retornar al paso F.3.

NO

F.4.2. Asentar nuevas condiciones iniciales y retornar al paso E

11. Software y hardware empleados

Se resolvió la ecuación diferencial de difusión usando una supercomputadora HITAC 5020/F

12. Resultados

Los resultados del modelo se presentan en forma gráfica

- Perfil de consumo de combustible, la distribución de densidad de corriente vs la distancia de la terminal del cátodo en la dirección axial de la celda.
- Efecto de la dirección del flujo del gas en el consumo de combustible y la densidad de corriente (perfil de consumo de combustible, la distribución de densidad de corriente vs la distancia de la terminal del ánodo en la dirección axial de la celda)
- Efecto de la dirección del flujo del gas en los potenciales del electrodo (perfiles de potencial del electrodo vs distancia de la terminal del ánodo)
- Efecto de la resistencia relativa del electrodo y la composición del combustible en la distribución de densidad de corriente (densidad de corriente vs distancia de la terminal del cátodo)
- Funcionamiento de corriente-voltaje de varias celdas de diferentes longitudes (Voltaje terminal vs densidad de corriente promedio).

• Efecto de la longitud de la celda en la máxima densidad de potencia y la resistencia interna (máxima densidad de potencia, resistencia interna vs longitud de la celda)

13. Modo de validación del modelo

Una comparación entre los dos casos llamados A (el gas combustible es alimentado del final de la terminal del cátodo) y B (la dirección del flujo del gas es reversible y el gas combustible es alimentado del final de la terminal del ánodo), estos casos son representados por la forma para la integración constante de la ecuación de difusión.

14. Conclusiones principales

La longitud de la celda es el más importante factor en la distribución uniforme de densidad de corriente en la celda.

15. Análisis crítico del artículo

Los resultados no se validan con un modelo de stack real, tan solo se realiza la comparación de los dos casos que se analizan, no se especifica si el flujo de la alimentación es en contra flujo, flujo cruzado o co-flujo.

Hirano, et al. (1992)

1. Objetivo del artículo

Este artículo reporta el desarrollo de un programa computacional no isotérmico para una SOFC tubular, que toma en cuenta 3D, incorporando un proceso de reformación interno.

2. Suposiciones

Los cálculos con respecto a la distribución de corriente son llevadas a cabo en dos dimensiones asumiendo una temperatura unidimensional.

La distribución de temperatura se asume es en una dimensión a lo largo del eje z de la celda tubular.

Transferencia de calor por radiación es eliminada.

3. Reacciones que se toman en cuenta

Ánodo:	$CO + O^{2-} \rightarrow CO_2 + 2e^{-}$
	$H_2 + O^{2-} \rightarrow H_2O + 2e^{-}$
Cátodo:	$O_2 + 4 e^- \rightarrow 20^{2-}$
Reacción de reformación:	$CH_4 + H_2O \rightarrow CO + 3H_2$
Reacción de sustitución gas-agua:	$CO + H_2O \rightarrow CO_2 + H_2$

Estas reacciones son suficientemente rápidas par permitir que la reacción completa se aproxime al equilibrio. Desviaciones del equilibrio son ignoradas en los cálculos.

<u>4. Tipo de flujo</u>

No se especifica

5. Flujo y tipo de combustible y oxidante (T y P de los mismos)

El cálculo para este nuevo sistema SOFC esta basado en la operación a presión atmosférica. La celda tubular usada en este cálculo es 300 mm de longitud. En las tablas 4 y 5, se presentan algunos datos usados en los cálculos de la celda en el presente artículo.

Composición del		Dimensión			
combustible	onidad	Caso 1 y 2	Caso 3	Caso 4	
H ₂	% mol	55.7	94.9	94.1	
H ₂ O	% mol	27.6	0.5	1.3	
CO OO	% mol	10.8	4.1	3.3	
CO ₂	% mol	5.8	0.0	0.0	
CH₄	% mol	0.0	0.5	1.3	
Temperatura	°C	800	900	800	

Tabla 4 Datos usados en los cálculos de la celda y resultados del mode	atos usados en los cálculos de la celda y resultados del	modelo
--	--	--------

Espesor	Unidad	Dimensión
Soporte del tubo	μm	1500
Cátodo	μm	700
Electrolito	μm	40
Ánodo	μm	100
Alumina (dentro)	mm	4
Tubo (afuera)	mm	6
Soporte (dentro)	mm	10
Tubo (fuera)	mm	13
Resistividad		
YSZ electrolito	Ωcm	10
Cátodo	Ωcm	0.001
Ánodo	Ωcm	0.013

Tabla 5. Datos usados en los cálculos de la celda y resultados del modelo

6. Celda y/o stack

Sistema de SOFC convencional y sistema de reciclado de alta velocidad tipo tubo soportado por el mismo.

7. Ecuaciones planteadas en los modelos (balances de M, E, momentum)

El voltaje de circuito abierto esta dado por la ecuación de Nernst

La caída de voltaje en el cátodo y ánodo debido a la impedancia de la transferencia de masa esta dada por aproximaciones lineales

El potencial entre los contactos de la celda

Transferencia de calor en el interplano de las capas que conforman la celda.

La cantidad de calor que fluye dentro del mallado por conducción de calor esta dado por la ecuación de conducción de calor.

La entalpía del combustible que fluye dentro del ánodo por segundo

Transferencia de calor por radiación

Calor generado por la celda

Factor de utilización del combustible y oxidante

Densidad de corriente

8. Tipo de ecuaciones de los modelos (algebraicas, diferenciales, integrales, etc.) Se establecieron un conjunto de ecuaciones diferenciales y algebraicas.

9. Modo de solución

La solución es numérica, empleando una técnica de decoplamiento parcial de las ecuaciones diferenciales, la cual consiste en resolver las ecuaciones diferenciales de primer orden para una variable, entonces dicho resultado se sustituye dentro de otra ecuación.

Un modulo es para fijar las temperaturas y el otro para fijar la distribución de corriente.

10. Secuencia de cálculo

La densidad de corriente y la velocidad de flujo molar son definidos antes de empezar los cálculos.

La temperatura es fijada y los cálculos comienzan

La distribución de densidad de corriente puede evaluarse sujeta a la temperatura del gas y al diseño de la celda,

La densidad de corriente es calculada usando la ecuación correspondiente, mientras el modulo del cálculo de corriente esta siendo ejecutado,

Se evalúa la temperatura y la presión parcial de los gases.

Después la temperatura del gas y el coeficiente de transferencia de calor son estimados, los cálculos de la transferencia de calor entre el mallado de la celda, la celda y el gas en un pequeño intervalo de tiempo. Este intervalo es deliberadamente escogido de modo que la temperatura del gas no varié. La distribución de corriente y de temperatura son calculados alternativamente, cuando el cálculo se aproxima a la solución, el intervalo de tiempo se debe de acortar aproximadamente a cero.

11. Software y hardware empleados

Se desarrollo el software y no se especifica el hardware.

12. Resultados

Los resultados son gráficos.

- Temperatura de la celda (temperatura vs eje z de la celda)
- Temperatura del combustible, temperatura del aire entre la celda y el tubo de aluminio, temperatura del tubo de aluminio y temperatura del aire dentro del tubo de aluminio (temperatura vs eje z de la celda)
- Distribución de especies químicas de parte del ánodo las escalas se trazaron para H₂, vapor de agua, CO, CO₂ y para el CH₄ (% de fracción mol vs eje z de la celda)
- Distribución de densidad de corriente cargado para una celda convencional (distribución de densidad de corriente vs radio de la celda vs eje z de la celda).
- Temperatura de la celda (temperatura de la celda vs eje z de la celda)
- Temperatura del combustible, temperatura del aire entre la celda y el tubo de alumina, (Temperatura vs eje z de la celda)

El programa permite estimar la distribución de la densidad de corriente de salida, la densidad del gas y la distribución de temperatura de los gases, la fracción mol de los gases.

En la tabla 6, se presentan algunos resultados de los cálculos del modelo

Detes de resultada	JinJded.	Dimensión			
	Unduatu.	Caso 1	Caso 2	Caso 3	Caso 4
Utilización del combustible por ciclo	%	80	80	10	10
Utilización del combustible Total	%	80	80	95	95
Utilización de oxígeno	%	25	25	100	100
Fracción mol de oxígeno	%	21	21	100	100
Densidad de corriente	mA/cm	185	370	185	926
Voltaje de salida	V	0.715	0.606	1.010	0.811
Densidad de potencia de salida	mW/cm	132	224	186	750
DC de la salida de la celda	%	49.3	41.8	82.7	66.4
SOFT potencia usada para soporte del equipo	%	0	0	10	2
Vapor excedente de la turbina a la salida	%	10.3	12.5	0	0
Eficiencia total en AC a la salida	%	54.7	50.1	65.4	58.0

Tabla 6. Datos usados en los cálculos de la ceida y resultados del modelo

13. Modo de validación del modelo

Los resultados calculados son validados comparándolos con datos medidos con un modulo de prueba de 3 kW, realizado por Westinghouse Electric Corporazónn.

14. Conclusiones principales

El sistemas convencionales de SOFC que emplean aire como sistema tradicional de enfriamiento se demostró que el limite superior de enfriamiento es una de las mas importantes factores que restringen la potencia de salida, lo cual sugiere que no solo las celdas sino el sistema competo de SOFC es necesario modificarlo.

15. Análisis crítico del artículo

La cantidad de modelos revisados muestran un buen procedimiento de validación, debido a que se comparan resultados numéricos con los resultados de una celda desarrollada por una compañía, por otro lado el modelo matemático es fácil de resolver, quizá el modelo debe incluir aspectos como 3D y el efecto de transferencia de calor por radiación.

Hall y Colclaser (1999)

1. Objetivo del artículo

En este trabajo se desarrolla un modelo transitorio para una SOFC tubular, el modelo incluye el modelado electroquímico y térmico así como el flujo de masa que afectan la salida de electricidad de la SOFC.

2. Suposiciones

No son especificadas.

3. Reacciones que se toman en cuenta

Reacciones electroquímicas Aire en el electrodo (cátodo) Combustible en el electrodo (ánodo)

 $\begin{array}{c} O_2 + 4e^- \rightarrow 20^- \\ H_2 + 0^- \rightarrow H_2O + 2e^- \\ CO + 0^- \rightarrow CO_2 + 2e^- \\ H_2 + CO + O_2 \rightarrow H_2O + CO_2 \end{array}$

Reacción total de la celda

4. Tipo de flujo

El combustible entra por la parte exterior de la celda, en el final, El aire y el combustible ambos fluyen a lo largo de la celda en la misma dirección desde el final de la celda hasta el otro extremo abierto.

5. Flujo y tipo de combustible y oxidante (T y P de los mismos)

En la tabla 7, se presentan los datos empleados en los cálculos del presente modelo.

Composición del combustible	Unidad	Dimensión
H ₂	%	89
H ₂ O	%	11
Utilización del combustible		0.85
Exceso de aire (veces estequiométrico)		4
Flujo de gas a la entrada		
H ₂	moles/sec	<u>5.83x10⁻⁴</u>
H₂O	moles/sec	7.21 x10 ⁻⁵
O ₂	moles/sec	1.08x10 ⁻³
N ₂	moles/sec	4.06x10 ⁻³
Temperatura máxima de la celda	K	1169
Temperatura minima de la celda	ĸ	1059
Utilización del combustible		0.595
Exceso de flujo de aire (veces estequiométrico)		6.21
Condiciones finales		
Temperatura máxima de la celda	К	1347
Temperatura minima de la celda	K	1144
Utilización del combustible		0.85
Flujo de aire en exceso (veces estequiométrico)		4.35

abla 7. Datos usados en los cálculos de la celda y resultados del modelo

6. Celda y/o stack

La SOFC consiste de dos electrodos porosos cerámicos separados por un denso electrolito cerámico.

7. Ecuaciones planteadas en los modelos (balances de M, E, momentum)

Modelado electroquímico Voltaie Terminal

Modelo térmico

Balance de energía en cada nodo

Temperatura en función del tiempo

8. Tipo de ecuaciones de los modelos (algebraicas, diferenciales, integrales, etc.) El modelo establece una serie de ecuaciones diferenciales para cada nodo.

9. Modo de solución

Las ecuaciones fueron resueltas usando un circuito eléctrico análogo y el método de diferencias finitas descrito por Clausing [31]. El modelo también puede ser usado para determinar puntos de operación en estado estable, corriendo el programa de la simulación transitorio hasta que la simulación decaiga a niveles por debajo de una cantidad especificada.

10. Secuencia de cálculo

- 1. Leer datos de entrada (Electroquímica, simulación)
- 2. Leer temperaturas iniciales
- 3. Calcular propiedades y resistencias de materiales iniciales
- 4. Calcular datos electroquímicos (flujos, corrientes, voltajes potencia eléctrica, fuente de calor)
- 5. Calcular la nueva temperatura
- 6. Calcular las propiedades y resistencias de los nuevos materiales
- 7. ¿Se alcanzo el criterio de salida?

Si, terminar No retornar al paso 4

11. Software y hardware empleados

Se desarrollo el software y no se especifica el hardware

12. Resultados

Los resultados del modelo electroquímico son comparados con datos de prueba presentados en conference proceedings. La tabla 7 muestra los datos de condiciones geométricas, de proceso y operación para este modelo, en las cuales se muestra la gráfica del voltaje terminal vs densidad de corriente de la celda para los datos de prueba y la simulación. Otra figura muestra el incremento de los pasos en la densidad de corriente. Las siguientes figuras muestran la respuesta eléctrica transciete de la celda para el cambio en la carga de corriente, y la figura final muestra el efecto del cambio de carga con la temperatura máxima y mínima.
13. Modo de validación del modelo

El modelo electroquímico fue verificado usando datos de prueba de S. C. Singhal "Advances in Tubular Solid Oxide Fuel Cell Tecnology", Proceedings of the Fourth International Symposium on Solid Oxide Fuel Cells, Pennington, NJ: The electrochemical Society, Inc., Proceedings Vol. 95-1, 1995. pp 195-207

La diferencia entre el modelo electroquímico y los datos de prueba fueron siempre menores del 5%.

14. Conclusiones principales

El mismo programa proporciona los resultados tanto para estado estable como para flujo transitorio.

15. Análisis crítico del artículo

Este es un pequeño modelo que describe muy rápido la solución de la ecuación del voltaje terminal de la celda (diferencia entre el cátodo y el ánodo) y una ecuación diferencial que describe el balance de energía. Tan sólo presenta cuatro figuras de resultados.

Guo, et al. (1999)

1. Objetivo del artículo

En este artículo se desarrollan dos modelos matemáticos, uno basado en el flujo perfectamente mezclado (CSTM) y el otro en el flujo pistón (PFM) usados para describir las reacciones de metano a etano y eteno en una SOFC.

Un modelo experimental fue presentado y con este dispositivo fue analizada la cogeneración de etano y etileno y energía eléctrica en la SOFC, un ion (O⁻) que conduce la membrana separa el O₂ del combustible. El O₂ es reducido a O⁻ en el cátodo y transferido a través de la membrana al ánodo, en el cual las especies de O₂ activo reaccionan con CH₄ para formar C₂H₄ y C₂H₆ durante la reacción electrones son descargados en el ánodo que retornan al cátodo vía un circuito eléctrico.

2. Suposiciones

Los dos modelos están basados en las siguientes suposiciones:

Perfecto mezclado en las cámaras anódicas y catódicas para el CSTM y flujo tapón, presión constante, isotérmicas, estado estable de operación, resistencia a la transferencia de masa despreciable, comportamiento de gas ideal.

3. Reacciones que se toman en cuenta

La combinación oxidativa del metano catalizado por 1 wt% Sr/La₂O₃-Bi₂O₃-Ag-YSZ es usado como un modelo de reacción:

 $CH_4 + O_2 \rightarrow C_2(C_2H_4, C_2H_6) + H_2O$

Metano e hidrocarbonos C_2 pueden reaccionar con O_2 (oxidante) adicional para formar CO_2 y H_2O lo cual es termodinámicamente favorecido sobre la reacción anterior:

 $\begin{array}{l} \mathsf{CH}_4 + \mathsf{O}_2 \rightarrow \mathsf{CO}_2 + \mathsf{H}_2\mathsf{O}.\\ \mathsf{C}_2(\mathsf{C}_2\mathsf{H}_4, \, \mathsf{C}_2\mathsf{H}_6) + \mathsf{O}_2 \rightarrow \mathsf{CO}_2 + \mathsf{H}_2\mathsf{O}. \end{array}$

<u>4. Tipo de flujo</u>

Aire fue alimentado co-corriente con la celda tipo tubo.

5. Flujo y tipo de combustible y oxidante (T y P de los mismos)

La tabla 8, muestra los datos de condiciones geométricas, de proceso y operación para este modelo.

Experimental set-up	Unidad	Dimensión
Diámetro interno	mm	22
Membrana de oxido sólido	mm	11
Espesor	mm	1
Longitud de la capa	mm	50
Velocidad de flujo	ml/s	1.67
Aire	ml/s	3.34
Presión	kPa	101.3

Tabla 8. Datos usados en los cálculos de la ceida y resultados del modelo

6. Celda y/o stack

Se construyo un aparato experimental para examinar la cogeneración del etano y etileno y la energía eléctrica en una SOFC. La celda de combustible fue de tipo tubo, fue construida de un tubo de cuarzo de 22 mm de ID encerrada por una membrana tubular de oxido sólido de 11 mm de OD, 1 mm de grosor y 50 mm de longitud. La membrana de oxido sólido consiste en tres capas de:

8% mol de yttria estabilizada con circonio (YSZ). Electrodo de Ag. 1% wt de catalizador de Sr/La₂O₃-Bi₂O₃.

7. Ecuaciones planteadas en los modelos (balances de M, E, momentum)

El conjunto de ecuaciones representadas están basadas en las suposiciones de las ecuaciones de CSTM para el flujo bien mezclado en ambos lados de la cubierta del tubo de la SOFC, de igual forma se establecieron las ecuaciones PFM para el reactor tipo tapón.

<u>8. Tipo de ecuaciones de los modelos (algebraicas, diferenciales, integrales, etc.)</u> Para el caso del CSTM las ecuaciones son no lineales.

El modelo de ecuaciones PFM resultaron ecuaciones algebraico-diferenciales de primer orden.

9. Modo de solución

La solución numérica de las ecuaciones para el caso del CSTM (no lineales) incluye una modificación del método de Newton-Raphson.

El modelo de ecuaciones PFM fueron resueltas por el método de formulas de diferenciación de Petzold-Gear's (este método resuelve un conjunto de ecuaciones algebraicas diferenciales de primer orden, [34]) una vez que las ecuaciones son transformadas.

10. Secuencia de cálculo

No se especifica

11. Software y hardware empleados

El software fue desarrollado y no se especifica el hardware.

12. Resultados

Para describir el funcionamiento de las SOFC, se analizo la influencia de las condiciones de operación tales como la carga externa, temperatura, composición de alimentación, conversión de CH₄ y corriente generada. Los resultados de la simulación y de los experimentos fueron comparados considerando la selectividad del C₂. Las predicciones del modelo concuerdan con los resultados experimentales.

13. Modo de validación del modelo

Los resultados obtenidos con los modelos matemáticos, fueron comparados con los resultados derivados de la manufactura de un dispositivo tipo SOFC. El funcionamiento de la SOFC fue evaluado por la investigación del efecto de las condiciones de reacción y el grado de retromezclado.

14. Conclusiones principales

Los dos modelos desarrollados describen el comportamiento de las SOFC, los resultados de la simulación y de la celda experimental fueron satisfactorios en especial para los resultados del CSTM.

15. Análisis crítico del artículo

Este es un modelo experimental y teórico para representar las SOFC, es una nueva forma para usar un combustible en una SOFC, la predicción de ambos modelos (CSTM y PFM) y los resultados experimentales son congruentes. Quizá podríamos preguntarnos ¿qué sucedería si se compararan los resultados entre una típica SOFC y los dispositivos manufacturados en este artículo?.

Boersma, et al. (2000)

1. Objetivo del artículo

En este estudio un sistema de SOFC es examinado, incluyendo factores que determinan la dimensión del sistema de intercambio de calor.

Un sistema de SOFC tubular integrado con una chimenea, el cual depende de la convección libre para pasar aire y gas a través del sistema de chimenea, se muestra que el uso de convección libre para la generación de potencia es posible.

2. Suposiciones

La corriente de la celda fue tratada como variable dependiente.

Se ignora el efecto del calor por radiación

Los gases de proceso remueven todo el calor del proceso, es decir, es una operación adiabática.

3. Reacciones que se toman en cuenta

No se especifican

<u>4. Tipo de fluio</u> No se especifica.

5. Flujo y tipo de combustible y oxidante (T y P de los mismos)

La tabla 9, muestra los datos de condiciones geométricas, de proceso y operación para este modelo.

Tabla 9. Datos usados en los calculos de la celda y resultad		4010
Parámetros geométricos	Unidad	Dimensión
Espesor del electrolito (8YSZ)	μm	20
Temperatura del combustible a la entrada	ĸ	248-298
Temperatura del aire a la entrada	К	248-298
Utilización del combustible		0.7
Voltaje de la celda	V	0.6-0.85
longitud del intercambiador de calor de doble pared	m	0.2-2
longitud del intercambiador de calor de simple	m	0.2-2
pared		
Diámetro interno del tubo que suple de combustible	mm	16-120
Número de celdas		60-154
Longitud de la celda	mm	100-200
Vacío para el flujo del aire en la sección	mm	0.005-0.02
ascendente y descendente		
Vacío para el flujo de aire en la sección	mm	0.005-0.02
descendente		
Espesor de la pared de los tubos		1

Tabla 9. Datos usados en los cálculos de la celda y resultados del modelo

6. Celda y/o stack

El sistema es un arreglo de SOFC tubular motado en una base metálica, un asiento cerámico asegura el tubo a la base del plato, y asegura que el flujo de combustible solo pase a través la parte interna del tubo. Aire pasa alrededor de la parte externa del tubo y provee el oxígeno. Al final de los tubos se consume la mezcla de combustible con el aire aumentando la temperatura sobre 1000°C.

7. Ecuaciones planteadas en los modelos (balances de M, E, momentum) No se especifican

8. Tipo de ecuaciones de los modelos (algebraicas, diferenciales, integrales, etc.) No se especifican

9. Modo de solución

Las ecuaciones del modelo son integradas en un marco de cálculo que consiste de tres principales módulos programados en un archivo de Mathcad: el primero es un modulo de entrada-salida, el segundo cálcula el balance de energía y masa de la celda, un quemador y dos intercambiadores de calor juntos y verifica el balance de energía total. En el tercer módulo los coeficientes de transferencia de calor y los respectivos balances de energía son calculados usando relaciones semi-empíricas.

<u>10. Secuencia de cálculo</u> No se especifican

11. Software y hardware empleados

El software se desarrolla en un artículo previo y el hardware no se especifica.

12. Resultados

Este artículo desarrolla un fuerte trabajo experimental, muestra las gráficas de muchos efectos para las variaciones en el intercambiador de calor, temperatura, temperatura ambiental y escalamiento.

13. Modo de validación del modelo

Se realiza la comparación entre el modelo matemático desarrollado previamente y el dispositivo experimental mostrado en este artículo.

14. Conclusiones principales

El dispositivo descrito en el artículo puede transferir calor por medio de convección libre y transferir aire y gases gastados a través del sistema, mientras se obtienen las temperaturas del proceso requeridos para la operación del SOFC. El sistema descrito requiere una longitud total de 5m incluyendo la chimenea, el sistema por él mismo es 1.7 m de longitud.

15. Análisis crítico del artículo

El modelo matemático solo es brevemente explicado y aclara que este esta descrito en la referencia [35]. Tal vez si el conjunto de ecuaciones apareciese en el artículo, estaría muy completo el trabajo, debido a que mostraría ambas partes en éste.

Ota, et al. (2003)]

1. Objetivo del artículo

En este trabajo se presenta un modelo de simulación para SOFC, desarrollado por un método de objeto-base (cada componente del modelo es modularizado como un objeto con explicita interface).

2. Suposiciones

Las resistividades siguen la ecuación de Arrhenius.

Condición de equilibrio en la fase gaseosa

El gradiente de concentración en la fase gaseosa existe sólo en los poros de los electrodos

El calor por radiación es asumido entre la entrada del tubo aire y la celda

Flujo laminar completamente desarrollado a temperatura constante

La dependencia de al temperatura de la conductividad térmica no fue considerada

3. Reacciones que se toman en cuenta

No son especificadas

<u>4. Tipo de flujo</u>

Co-flujo

5. Flujo y tipo de combustible y oxidante (T y P de los mismos)

Las tablas 10, 11, 12 y 13, muestran los datos de condiciones geométricas, de proceso y operación para este modelo.

(abia 10. Datos usados en los calculos de la ceida y resultados del modelo					
Propiedades Físicas del gas	Unidad	Dimensión			
Conductividad térmica del combustible	W/m K	0.46			
Conductividad térmica del oxidante	W/m K	0.071			
Calor específico molar					
H ₂	J/mol K	31			
H ₂ O	J/mol K	43			
Q ₂	J/mol K	35			
N ₂	J/mol K	33			
Condiciones de operación para el estado estable					
Temperatura	K	1123			
Presión	kPa	100			
Composición del combustible					
H ₂	%	97			
H ₂ O	%	3			
Composición del oxidante (Aire)					
O ₂	%	21			
N ₂	%	79			
Utilización del combustible		0.80			
Utilización del aire		0.25			

Tabla 10. Datos usados en los cálculos de la celda y resultados del modelo

Dimensión de la celda	Ceida standard	Celda Micro-tubo
Longitud efectiva de la celda	150 cm	25 cm
Diámetro externo de la celda	22 mm	2.4 mm
Espesor del cátodo	2 mm	130 µm
Espesor del ánodo	100 µm	50 μm
Espesor del electrolito	40 µm	20 µm
Diámetro del tubo de alimentación del aire	12 mm	1.4 mm
Espesor del tubo de alimentación del aire	2 mm	0.1 mm
Espesor del interconector	40 µm	70 μm

Tabla 11. Datos usados en los cálculos de la celda y resultados del modelo

Tabla 12. Datos usados en los cálculos de la celda y resultados del modelo

Datos de res	ultado	Ánodo (Ni-YSZ)	Electrolito (YSZ)	Cátodo (LSM)	Interconector (LSCr)	Tubo de alimentación del aire (Al ₂ O ₃)
Resistividad a 1073 K	Ωcm	8.14x10 ⁻⁴	45	0.014	3	
Energía de activación para la resistividad	kJ/mol	11.6	-76.2	-5.0	0.12	
Densidad	g/cm ³	6.87	5.90	6.57		3.95
Calor específico molar	J/mol K	52	73	100		120
Conductividad térmica	W/m K	4	4	4		10.4

6. Celda y/o stack

Se considero una configuración de celda tubular la cual esta formada por Electrolito: $Zr_{0.84}Y_{0.16}O_{2-\delta}$ (YSZ) Ánodo: Ni-YSZ cement Cátodo: La_{0.81}Sr_{0.09}MnO_{3-\delta} (LSM) Interconector: La_{0.9}Sr_{0.1}CrO_{3-\delta} (LSCr) Ni fue usada para el contacto eléctrico entre las celdas.

7. Ecuaciones planteadas en los modelos (balances de M. E. momentum)

Fuerza electromotriz (ecuación de Nernst)

El voltaje de la celda

Pseudo potencial del electrodo

Densidad de corriente

Intercambio anódico de densidad de corriente

Coeficiente de difusión molecular binaria

Coeficiente de difusión de Knudsen

Ecuación del balance de entalpía

Flux de calor por convección

Velocidad de de flujo molar de las especies

Calor neto por conducción

Entalpía neta ganada debida a la transferencia de masa del espacio poroso de los electrodos

Generación de calor por el cambio de entropía a través de las reacciones del electrodo

Calor neto ganado por radiación

Tabla [•]	13. Datos	usados en	los cálc	ulos de l	la celda y	resultados del modelo

	Unidađ	Celda standard	Celda Micro-tubo
Gas a la entrada			- · · · · · · · · · · · · · · · · · · ·
Flujo molar del combustible	mol/s	2.4x10 ⁻³	3.2x10 ⁻⁴
Flujo molar del oxidante	mol/s	1.5x10 ⁻²	2.0x10 ⁻³
Temperatura del oxidante a la entrada	к	1123	1123
Temperatura oxidante a la salida	к	1040	1098
Condiciones iniciales			
Utilización del combustible		0.46	0.21
Utilization del aire		0.17	0.08
Densidad de corriente	mA cm ²	208	722
Potencia	W	303	19
Condición final	<u> </u>		
Utilización del combustible		0.80	0.80
Utilización del aire		0.30	0.30
Densidad de corriente	mAcm ²	358	2.750
Potencia	W	371	52

<u>8. Tipo de ecuaciones de los modelos (algebraicas, diferenciales, integrales, etc.)</u> Algebraico-diferenciales

9. Modo de solución

Proceso iterativo hasta alcanzar la convergencia (tiempo = 0)

10. Secuencia de cálculo

Entrada de condiciones de operación

Simulación del estado estable

Calcular las distribuciones de corriente (Modelo del circuito equivalente) Iteración Calcular las distribuciones de temperatura (Modelo Térmico) Cambio de carga (t = 0)

Simulación transitoria

Calcular las distribuciones de corriente (Modelo de circuito equivalente) Iteración Calcular las distribuciones de temperatura (Modelo térmico)

Aumento del tiempo [t = t + $\Delta t(s)$]

 $t = T_{final}?$

Si, finaliza No, retornar a la simulación transitoria

11. Software y hardware empleados

El software es desarrollado a lo largo del artículo, en tanto que el hardware no se hace ninguna mención.

12. Resultados

Con este modelo es posible calcular la corriente, la concentración del gas y la distribución de temperatura en estado estable y condiciones de operación transitoria. La respuesta transitoria tanto eléctrica como de temperatura a los cambios de carga fue simulada para dos tipos de celdas: una estándar tubular y una celda micro-tubo

13. Modo de validación del modelo

La validación del modelo fue realizada por medio de la comparación de los resultados entre ambos tipos de celdas, tanto en estado estable como transitorio.

14. Conclusiones principales

Se desarrollo un modelo en un objeto-base, para simular las características del estado transitorio de una SOFC tubular. Los resultados de la simulación del estado estable muestran que la gradiente de temperatura en la celda micro-tubo es seis veces mayor que la celda estándar. La simulación del estado transitorio muestra que la respuesta es muy rápida al cambio de la carga en la celda mico tubo, por lo que ésta celda es la que tiene un mayor potencial para aplicarse a la transportación.

15. Análisis crítico del artículo

Este es un modelo muy completo, en el cual las supocisiones están bien establecidas, sin embargo no se lleva a cabo la validación del modelo con datos experimentales.

Li y Chyu (2003)

1. Objetivo del artículo

En este artículo se analizaron y modelaron el calor y las especies de transporte del proceso en una SOFC tubular que opera en un stack. El modelo considera 2D (direcciones axial y radial) modelo numérico para el flujo, transferencia de masa/calor y funcionamiento químico y electroquímico.

La simulación numérica fue realizada para tres diferentes SOFC tubular con flujo de combustible controlable.

2. Suposiciones

Se supone un área cuadrada encerrando la SOFC tubular, entonces el dominio de una SOFC tubular es visto como uno bidimensional axial simétrico.

Supone que el calor y las especies químicas no tienen intercambio entre una celda y sus vecinas al estar la SOFC en un stack.

Para reducir los costos computacionales se realizo la aproximación de un área cuadrada en la SOFC tubular, el dominio es visto como un axial simétrico bidimensional.

El aislamiento de la transferencia de calor y masa en las fronteras permanece sin cambiar aun través de esta aproximación.

Se supone aislamiento en los extremos de la celda

Se supone que no existe corriente periférica en el cátodo o el ánodo, al menos que se encuentren en contacto con el conductor de níquel por donde la corriente fluye hacia la celda o fuera de la celda.

Los potenciales de los conectores de níquel se suponen uniformes debido a sus conductividades eléctricas.

Debido a que la diferencia de potencial entre los dos conectores de níquel es el voltaje Terminal, el potencial del conector que esta en contacto con el ánodo se supondrá cero, de esta forma el potencial del cátodo será el voltaje Terminal de la celda.

Se asigna velocidad cero a la ecuación de energía para el sólido, por lo que la expresión se reduce a la ecuación de conducción de calor para los componentes sólidos.

La generación de calor se introduce dentro de los términos de fuente de la ecuación de balance de energía.

3. Reacciones que se toman en cuenta

Reformación:	$CH_4 + H_2O \rightarrow CO + 3H_2$	
Sustitución:	$CO + H_2O \rightarrow CO_2 + H_2$	(se supone siempre en equilibrio)
Oxidación electroquímic	a: H₂ + 1/2O₂ → H₂O	(controlada cinéticamente)

<u>4. Tipo de flujo</u>

En este artículo se evita la aproximación del flujo laminar completamente desarrollado y de los números de Nusselt (temperatura constante) y Sherwood (concentración constante) en la de la pared. En su lugar se trabaja con una solución del campo completo de las ecuaciones gobernantes para la transferencia de calor y masa en el dominio de la SOFC.

El tipo de flujo es contraflujo al inicio, aunque al salir el aire se convierte en co-flujo con la corriente de combustible.

5. Flujo y tipo de combustible y oxidante (T y P de los mismos)

La tabla 14 muestra los datos de condiciones geométricas, de proceso y operación para este modelo.

Propiedades físicas del gas	Unidad	Dimensión
Conductividad térmica		<u> </u>
Cátodo	W/m K	6.0
Electrolito	W/m K	2.7
Ánodo	W/m K	11.0
Soporte del tubo	W/m K	1.1
Tubo induce el aire	W/m K	1.1
Resistividad ionica o eléctrica		
Cátodo	Ωcm	0.008114 exp(500/T)*
Electrolito	Ωcm	10.0exp[10092(1.0/T- 1.0/1273.15)]
Ánodo	Ωcm	0.00298exp(-1392/T)

Tabla 14. Datos usados en los cálculos de la celda y resultados del modelo

* T en [K]

6. Celda y/o stack

En un stack tubular SOFC muchas celdas tubulares son montadas en un contenedor en un soporte.

7. Ecuaciones planteadas en los modelos (balances de M, E, momentum)

Fuerza electromotriz

Relación termodinámica de la reacción electroquímica

Velocidad de transferencia ion/carga a través del electrolito

Polarización por activación

Resistencia iónica de la capa del electrolito

Aplicación de la ley de Kirchhoff de la corriente (para el cátodo y ánodo)

Transferencia de calor por conducción (ley de Joule)

Velocidad de calor inducida por la polarización de activación

Generación de calor

Variación del número de moles de todas las especies en la sección de interés del canal de combustible de la entrada y salida

Constantes de equilibrio de la reacción

Fluxes de masa de CO, CO₂, CH₄, H₂O en la interfase ánodo/combustible Flux de masa de O₂ en la interfase cátodo/aire a través del electrolito Calor liberado debido a las reacciones de sustitución y reformación

8. Tipo de ecuaciones de los modelos (algebraicas, diferenciales, integrales, etc.) El modelo de ecuaciones planteadas son algebraicas y diferenciales

9. Modo de solución

Las ecuaciones son discretizadas por el uso de la aproximación de volumen finito y el algoritmo SIMPLE fue adoptado para tratar los campos acoplados de velocidad y presión.

<u>10. Secuencia de cálculo</u>

El proceso computacional es iterativo.

Primer paso

Temperatura local, la presión, fracción másica de las especies son usadas en el análisis del circuito de red para obtener el voltaje terminal de la celda, la corriente local que atraviesa el electrolito y con ello los fluxes de transferencia de las especies y las velocidades de calor.

Segundo paso

La temperatura local, presión y fracción másica de las especies son obtenidos a través de la solución de las ecuaciones que gobiernan bajo las nuevas condiciones de frontera internas determinadas por la velocidad de calor y el flux de las especies

Los dos pasos iterativos interactúan hasta que la convergencia es obtenida.

11. Software y hardware empleados

El software se desarrolla a lo largo del artículo y en cuanto al hardware no se menciona.

12, Resultados

Gráfica de Voltaje (V_{cell}) vs densidad de corriente (mA/cm²). La presión de operación de la celda probada por Hagiwara et al. y Hirano et al. es 1.013×10^5 Pa y por Tomlins y Jaezar es 5.065×10^5 Pa.

Voltaje (Voel) y potencia (W) vs presión de operación (atm) a una densidad de corriente de 300mA/cm².

Distribución de temperatura del tubo de la celda (°C) vs longitud (x(m)) a una densidad de corriente de 185 mA/cm².

Distribución de temperatura del tubo de la celda (°C) vs longitud (x(m)) bajo diferentes densidades de corriente.

Campos de flujo y temperatura: vectores velocidad del aire cerca de la salida del tubo de inducción de aire, r(m) vs x(m); vectores velocidad en el combustible, r(m) vs x(m); campo de temperatura, r(m) vs x(m). A una densidad de corriente de 185 mA/cm².

Fracción molar de especies: O_2 en flujo de aire, r(m) vs x(m), H₂ en flujo de combustible, r(m) vs x(m), H₂O en flujo de combustible, r(m) vs x(m), CO en flujo de combustible r(m) vs x(m), CO₂ en flujo de combustible, r(m) vs x(m). A una densidad de corriente de 185 mA/cm².

Flujo molar de especies en el canal de combustible, flujo de especies (mol/seg) vs x(m). A una densidad de corriente de 185 mA/cm².

13. Modo de validación del modelo

La simulación numérica fue realizada para tres diferentes SOFC tubular con flujo de combustible controlable. Los resultados de operación para las tres diferentes SOFC son reportados en diferentes fuentes.

14. Conclusiones principales

La simulación se realizo con tres diferentes SOFC tubulares de las cuales se tienen resultados experimentales publicados por diferentes investigadores.

El modelo predice el voltaje de la celda y posteriormente los compara con datos experimentales con una desviación menor del 7.4%. Los resultados de la temperatura también fueron de acuerdo con los datos experimentales.

15. Análisis crítico del artículo

Este es un muy claro modelo y sus suposiciones también están bien establecidas. La forma de validación es muy eficiente ya que los autores consideran resultados publicados y validados de diversas fuentes.

APÉNDICE II

ANÁLISIS DE LOS ARTÍCULOS PARA LA VALIDACIÓN DEL MODELO

Singhal (2000)

1. Objetivo del artículo

Revisar los materiales y métodos de fabricación usados para las diferentes componentes de las celdas y discutir el funcionamiento de las mismas, usando estos materiales.

Discutir los materiales y estudiar el procesamiento bajo investigación para reducir los costos de la celda.

Resumir los sistemas de generación de potencia recientemente construidos que emplean el estado del arte de las SOFC.

También se describe un nuevo diseño de SOFC tubulares que combina otro diseño de empaques y se describe el electrodo del aire achatado con costillas integradas.

3. Reacciones que se toman en cuenta

La reacción de reducción de oxígeno: $O_2 + 2e^- \rightarrow O^{2^-}$ La reacción de oxidación electroquímica $H_2 + O^{-2} \rightarrow H_2O + 2e^-$

5. Flujo y tipo de combustible y oxidante (T y P de los mismos)

Composición de la alimentación				
Combustible				
H_2	%	89		
Utilización del H ₂	%	85.0		
H₂O	%	11		
CH₄	%	0		
CO	%	0		
CO2	%	0		
Temperatura	(°C)	800, 900 y 1000		
Oxic	dante			
O ₂ del aire	%	21		
Utilización del O2	4	veces		
estequiométrico				
N ₂	%	79		

Tabla 1. Datos usados en el prototipo comercial de la celda

6. Celda y/o stack

abla 2. Dimensiones empleadas en los calculos				
Tubo inductor del aire				
Diámetro externo	mm	12		
Grosor	mm	1		
Longitud	mm	1450		
Cátodo				
Diámetro externo	mm	21.72		
Grosor	mm	2.20		
Longitud	mm	1500		
Electrolito				
Diámetro externo	mm	21.8		
Grosor	mm	0.04		
Longitud	mm	1500		
Anodo				
Diámetro externo	mm	22		
Grosor	mm	0.1		
Longitud	mm	1500		

7-1-1- 0 DI . . .

12. Resultados

Pag. 309.

Fig. 3. Grafica del voltaje (V) vs densidad de corriente (mA/cm²) de una típica celda de 2.2 cm de diámetro, 150 cm de longitud activa de la celda a 800, 900 y 1000°C con una composición del combustible de: 89% H2 + 11% H2O (85% utilización de combustible) y aire como oxidante (4 estequiométrico).

Pag. 310.

Fig. 4. Grafica del efecto de la presión en la potencia de la celda a 1000°C, potencia de la celda (W) vs densidad de corriente (mA/cm²), a 1, 3, 4, 10 y 15 atm. Con una composición del combustible de: 89% H2 + 11% H2O (85% utilización de combustible) y aire como oxidante (6 estequiométrico).

Pag. 311

Fig. 6. Grafica de la comparación del funcionamiento teórico y real para la SOFC tubular y la HPD-SOFC en un volumen de stack básico. Potencia volumétrica/stack (W/cm³) vs densidad de corriente (mA/cm²). Con una composición del combustible de: 89% H2 + 11% H2O (85% utilización de combustible) y aire como oxidante (6 estequiométrico), con la temperatura de operación de 1000°C

14. Conclusiones principales

Se confirmo el funcionamiento de las SOFC tanto a presión atmosférica como a varias presiones. Las eficiencias de generación eléctrica están sobre el 70% son posibles en ciclos combinados de potencia como son SOFC-turbina de gas.

15. Análisis crítico del artículo

Se trata de un artículo que esta mas encaminado al tipo de materiales que se emplean en la construcción de las SOFC, así como a probar un nuevo diseño de éstas, de igual forma, hace énfasis en el nuevo diseño, De igual forma hacen la prueba con diferentes tipos de contaminantes tanto en el aire como en el combustible (presencia de humedad en el aire, SO2, NH3, Agua de mar, HCl, H2S).

Singhal (1999)

1. Objetivo del artículo

Revisa el funcionamiento de las SOFC que son fabricados usando electrodos del aire tipo tubos y revisa los estudios para reducir costos de la celda.

Se describe un nuevo diseño para los electrodos del aire achatado con las costillas integradas.

Se analiza la operación de 25 kW y 100 kW de sistemas de generación de potencia construidos usando las celdas anteriormente descritas.

5. Flujo y tipo de combustible y oxidante (T y P de los mismos)

Composición de la alimentación			
Comb	ustible		
H ₂	%	89	
Utilización del H ₂	%	85.0	
H ₂ O	%	11	
CH ₄	%	0	
CO	%	0	
CO ₂	%	0	
Temperatura	(°C)	800, 900	
·		y 1000	
Oxic	lante		
O ₂ del aire	%	21	
Utilización del O2	4	veces	
estequiométrico			
N ₂	%	79	

Tabla 3. Datos usados en el prototipo comercial de la celda

6. Celda y/o stack

Tabla 4. Dimensiones empleadas en los cálculos						
Tubo inductor del aire						
Diámetro externo	mm	12				
Grosor	mm	1				
Longitud	mm	1450				
Cátodo						
Diámetro externo	mm	21.72				
Grosor	mm	2.20				
Longitud	mm	1500				
Electrolito						
Diámetro externo	mm	21.8				
Grosor	mm	0.04				
Longitud	mm	1500				
Ánodo						
Diámetro externo	mm	22				
Grosor	mm	0.1				
Longitud	mm	1500				
Frontera del combustible						
Diámetro externo	mm	24.87				
Grosor	mm					
Longitud	mm	1500				

12. Resultados

Pag. 41

Fig. 2. Grafica Voltaje (V) vs densidad de corriente (mA/cm²) de una típica SOFC (2.2 cm de diámetro) a diferentes temperaturas (800°C, 900°C y 1000°C) con una composición del combustible de: 89% H2 + 11% H2O (85% utilización de combustible) y aire como oxidante (4 estequiométrico).

Pag. 45

Fig. 5. Comparación del funcionamiento teórico y real de una SOFC tubular y HPD-SOFC en un stack de volumen básico. Potencia volumétrica/ stack (W/cm³) vs densidad de corriente (mA/cm²). Temperatura de operación 1000°C. Composición del combustible de: 89% H2 + 11% H2O (85% utilización de combustible) y aire como oxidante (6 estequiométrico).

Pag. 49

Fig. 8. Voltaje final (V), corriente (A) y potencia (kWe dc) generados por una SOFC de 100 kWe (antes de la reconstrucción del stack)

Fig. 9. Voltaje final (V), corriente (A) y potencia (kWe dc) generados por una SOFC de 100 kWe (después de la reconstrucción del stack)

14. Conclusiones principales

Se confirmo la operación exitosa de dos sistemas de generación de potencia (25 kW y 100 kW) construidos usando las celdas tubulares de Siemens Westinghouse. Se logro la reducción de los costos con el uso de materiales menos costosos, así como la fabricación de las celdas por un método diferente al que se venía empleando.

15. Análisis crítico del artículo

Se trata de un artículo experimental que compara básicamente el funcionamiento de los dos tipos de SOFC y la forma de bajar los costos de manufactura a través de otro tipo de método de fabricación.

Hall y Colclaser (1999)

1. Objetivo del artículo

Se describe el desarrollo de un modelo computacional para la simularon de la operación transitorio de una SOFC tubular. El modelo incluye los flujos de masa, electroquímico y térmico que afectan la potencia eléctrica de la SOFC. La parte electroquímica y térmica del modelo fueron desarrolladas y verificadas separadamente antes de que fueran combinadas al modelo transitorio.

2. Suposiciones

Durante la operación de la celda, la variación predominante en la temperatura de la celda ocurre a lo largo de la longitud de la celda tubular.

Conducción axial en los sólidos es despreciada debido a la trayectoria de conducción longitudinal y a las reducidas áreas.

3. Reacciones que se toman en cuenta

Electrodo del aire (cátodo): $O_2 + 4e^- \rightarrow 20^-$ Electrodo del combustible (ánodo): $H_2 + 0^{=} \rightarrow H_2O + 2e^{-}$ $CO + O^{-} \rightarrow CO_2 + 2e^{-}$ Reacción de la celda total $H_2 + CO + O_2 \rightarrow CO_2 + H_2O$

Tabla 5. Datos usados en los cálculos de la celda Composición de la alimentación Combustible % H_2 89 Utilización del H₂ % 85 H₂O % 11 CH₄ % 0 0 CO % % 0 CO₂ 950 Temperatura (°C) Oxidante O₂ del aire % 21 Utilización del O₂ 4 veces (exceso de aire) estequiométrico N_2 % 79

5. Flujo y tipo de combustible y oxidante (T y P de los mismos)

Ecuaciones planteadas en los modelos (balances de M, E, momentum)

Para el modelo electroquímico, se plantea el voltaje Terminal, el modelo incluve el potencial de Nernst, la resistencia eléctrica de la celda, las polarizaciones por concentración y activación.

Para el modelo térmico, el balance de energía a cada nodo. Incluye la transferencia de calor por conducción, convección y radiación, así como las fuentes de calor debido a la reacción exotérmica entre el combustible y el hidrogeno. El modelo también incluye la variación de las propiedades del material con la temperatura.

8. Tipo de ecuaciones de los modelos (algebraicas, diferenciales, integrales, etc.) El tipo de expresiones establecidas son diferenciales para el balance de energía.

9. Modo de solución

Las diferentes ecuaciones fueron resueltas usando la analogía de un circuito eléctrico y el método de diferencias finitas descrito por Clausing.

10. Secuencia de cálculo

La parte electroquímica del modelo requiere la temperatura, la cual es calculada con la parte térmica y posteriormente se calcula la parte eléctrica y las fuentes de calor.

11. Software y hardware empleados

El programa se desarrolla con las expresiones especificadas para la parte térmica y electroquímica.

En cuanto al hardware no se especifica.

<u>12. Resultados</u>

Pag. 751

Fig. 4. Datos de prueba a T = 1223K. Voltaje Terminal V_T (V) vs densidad de corriente (A/cm²), J

Pag. 752

Fig. 6. Incremento del paso en la densidad de corriente de la celda. Densidad de corriente (A/cm²) vs tiempo (s)

Fig. 7. Respuesta eléctrica tranciente (voltaje terminal) de la celda durante el cambio de carga. Voltaje Terminal (V) vs tiempo(s).

Pag. 753

Fig. 8. Temperatura de la celda durante el cambio de la carga. Temperatura de la celda (K) vs tiempo (s). Efecto del cambio de carga con la temperatura máxima y mínima de la celda.

13. Modo de validación del modelo

El modelo electroquímico fue verificado usando los datos de Singhal 1995. También se valido el voltaje Terminal vs densidad de corriente de la celda a T=1223K, con respecto a datos experimentales.

14. Conclusiones principales

Los resultados del modelo térmico transitorio indica que la transferencia de calor por radiación entre la celda y el tubo de alimentación del aire fue significante para el enfriamiento de la celda. El modelo también puede ser usado para determinar puntos de operación en estado estable, corriendo el programa de la simulación transitorio hasta que la simulación decaiga a niveles por debajo de una cantidad especificada.

El modelo sirve como punto de partida para continuar estudiando el estado transciende de las SOFC considerando que serán usadas en la industria automovilística en donde se requiere conocer como se comportan bajo estas condiciones las celdas dadas las condiciones en las que operan los autos.

15. Análisis crítico del artículo

En este trabajo se desarrolla un pequeño modelo transitorio para una SOFC tubular, el modelo incluye el modelado electroquímico y térmico que afectan la salida de electricidad de la SOFC, es decir, el modelo describe la solución de la ecuación del voltaje terminal de la celda (diferencia entre el cátodo y el ánodo) y una ecuación diferencial que describe el balance de energía.

Una observación mas es que el autor no especifica las dimensiones de la celda empleada en su modelo.

Hagiwara, et al. (1999)

1. Objetivo del artículo

Se presenta la operación de un stack compuesto por cuatro SOFCs que fueron retiradas de un stack de 576 celdas de 25 kW de un sistema de cogeneración después de 13000 hr de operación en febrero de 1997. Las cuatro celdas fueron seleccionadas de una combinación de tipos de cátodo e interconectores para determinar el efecto de cada material en la vida de la celda. Posteriormente estas celdas fueron probadas en 1998 por 7000 hr a condiciones nominales de 1000°C, 85% utilización de combustible y 17% de utilización de oxidante. Continuando su operación a T=1050°C por 2000hr observándose una degradación menor del 1% por 1000 hr de operación. Periódicamente la operación de la celda fue interrumpida brevemente en tanto la celda fue operada en un rango de valores de densidades de corriente, de utilización de combustible, de utilización de aire; para obtener las curvas de funcionamiento básico V-J.

Composición de la alimentación							
Comb	ustible						
H ₂	H ₂ % 89.0						
Utilización del H ₂	%	85.0					
H ₂ O	%	11.0					
CH₄	%	0					
CO	%	0					
CO2	%	0					
Temperatura	(°C)	1000					
Oxic	lante						
O ₂ del aire	%	21					
Utilización del O ₂ 17%							
_	(6	veces					
	estequ	estequiometrico)					
N ₂	%	79					

Tabla 6. Datos usados en el prototipo comercial de la celda

5. Flujo y tipo de combustible y oxidante (T y P de los mismos)

6. Celda y/o stack

Tubo inductor del aire		
Diámetro externo	mm	7
Grosor	mm	1
Longitud	mm	485
Cátodo		
Diámetro externo	mm	15.72
Grosor	mm	2.20
Longitud	mm	500
Electrolito		
Diámetro externo	mm	15.8
Grosor	mm	0.04
Longitud	mm	500
Anodo		
Diámetro externo	mm	16
Grosor	mm	0.1
Longitud	mm	500
Frontera del combusti	ble	
Diámetro externo	mm	18.10
Grosor	mm	
Longitud	mm	500

Tabla 7. Dimensiones empleadas en los cálculos

12. Resultados

Pag. 367

Fig. 1. Grafica de Voltaje (mV) vs tiempo de operación de la celda (hr) a T = 1000°C

Fig. 2. Grafica Voltaje vs densidad de corriente (mA/cm2), bajo condiciones estandar medidas después de 2900 hr a 1000°C. Composición del combustible de: 89% H2 + 11% H2O (85% utilización de combustible) y aire como oxidante (6 estequiométrico).

14. Conclusiones principales

Los dos pares de celdas de diferentes composición del cátodo (nuevo material y material anterior) fueron probadas por 20000 hr de operación (13194 hr generando 25 kW y 6922 hr en la prueba actual) Las celdas fueron operadas a condiciones estándar (1000°C, 6.0 estequimetria del aire y 85% utilización del combustible). La degradación de las celdas a 1000°C con el nuevo material en el cátodo es muy baja, comparada con las celdas con el material anterior, incrementándose dicha degradación a 1050°C para todas las celdas.

15. Análisis crítico del artículo

Se trata de un artículo experimental el cual compara dos tipos de materiales para el cátodo, uno que ya había sido empleado en stacks anteriores y uno nuevo. Se realizo la prueba para la cuale se monitorio cada 30 s, durante la duración de la misma usando una computadora de interface. Los datos incluidos fueron el flujo de combustible, oxidante, temperatura (monitoriada al final del tubo cerrado y en la mitad de la longitud de las mismas), voltaje y corriente. Sin embargo éstos datos no fueron reportados en los resultados.

Tomlins y Jaszar (1999)

1. Objetivo del artículo

Los objetivos del estudio fueron medir el funcionamiento de la celda como una función de la presión para verificar la solidez del electrodo del combustible y para medir el funcionamiento de la celda en una prueba de 2000 hr. Siemens Westinghouse fue la compañía que manufacturo la SOFC tubular.

5. Flujo y tipo de combustible y oxidante (T y P de los mismos)

Composición de la alimentación						
Combustible						
H ₂	%	89.0				
Utilización del H2	%	85.0				
H ₂ O	%	11				
CH₄	%	0				
СО	%	0				
CO2	%	0				
Temperatura	(°C)	1000				
Oxidan	ite					
O ₂ del aire % 21						
Utilización del O2	6 v	eces				
estequiométrico						
N ₂	%	79				

Tabla 8. Datos usados en el prototipo comercial de la celda

6. Ceida y/o stack

Tabla 9. Dimensiones empleadas en los cálculos

Tube inductor del aire					
TUDO INDUCTOR CAL AIRE					
Diámetro externo	mm	12			
Grosor	mm	1			
Longitud	mm	1450			
Cátodo					
Diámetro externo	mm	21.72			
Grosor	mm	2.20			
Longitud	mm	1500			
Electrolito					
Diámetro externo	mm	21.8			
Grosor	mm	0.04			
Longitud	mm	1500			
Anodo					
Diámetro externo	mm	22			
Grosor	mm	0.1			
Longitud	mm	1500			
Frontera del combustible					
Diámetro externo	mm	24.87			
Grosor	mm				
Longitud	mm	1500			

12. Resultados

Pag. 371

Fig. 1. Grafica de Voltaje de la celda (V) vs tiempo de operación de la celda (hr) a P = 1 a 5 atm. Densidad de corriente (mA/cm²) tiempo de operación de la celda (hr). Presión de operación (Psig)

Fig. 2. Grafica Voltaje de la celda (V) vs densidad de corriente (mA/cm²) a P = 5 atm, T=1000°C, composición del combustible de: 89% H2 + 11% H2O (85% utilización de combustible) y aire como oxidante (6 estequiométrico).

Pag. 372

Fig. 3. Grafica Voltaje de la celda (V) vs densidad de corriente (mA/cm2) a P = 1 atm, T=1000°C, composición del combustible de: 89% H2 + 11% H2O (85% utilización de combustible) y aire como oxidante (6 estequiométrico).

14. Conclusiones principales

Se probo una SOFC tubular de 22mm de diámetro y 1500 mm de longitud en el que fue probado un electrodo para un total de 4498 hr de las cuales 1388 hr a 1 atm y 3112 hr a 3 a 5 atm, el voltaje de la celda no mostró signos de degradación después de tiempo total de prueba incluyendo el tiempo a presión alta. El funcionamiento de la celda fue aceptable.

15. Análisis crítico del artículo

Se trata de un artículo que analiza el funcionamiento de la SOFC con la variación del electrodo del combustible manufacturado por medio del proceso húmedo seguido de sinterización, lo cual representa un importante reducción en el costo de manufactura. Obteniéndose resultados aceptables de operación.

Hirano, et al. (1992)

1. Objetivo del artículo

El artículo describe una nueva SOFC tipo tubular. Al mismo tiempo se desarrolla un programa computacional no isotérmico que incorpora un proceso de reformador interno. El programa desarrollado estima la distribución de densidad de corriente de salida, la densidad del gas y la distribución de temperatura de los gases.

2. Suposiciones

Se supuso una aproximación a una línea de transmisión se uso en la suposición de que la dirección de la corriente del ánodo es perpendicular al contacto de la celda de níquel.

El corte del mallado para estimar las temperaturas es realizado unidimensionalmente a lo largo del eje z de la celda tubular.

Las reacciones se llevan a cabo suficientemente rápidas como para permitir que la reacción total se aproxime al equilibrio. Las desviaciones del equilibrio son despreciadas.

Los cálculos de la distribución de corriente se realizaron en dos dimensiones asumiendo una temperatura unidimensional.

No toma en cuenta la transferencia de calor por radiación

3. Reacciones que se toman en cuenta

Electrodo del combustible (ánodo): $H_2 + O^{2-} \rightarrow H_2O + 2e^ CO + O^{2-} \rightarrow CO_2 + 2e^-$ Electrodo del aire (cátodo): $O_2 + 4e^- \rightarrow 2O^{2-}$ Reacción de reformación $CH_4 + H_2O \rightarrow CO + 3H_2$ Reacción de sustitución del gas-agua $CO + H_2O \rightarrow CO_2 + H_2$

5. Flujo y tipo de combustible y oxidante (T y P de los mismos)

Tabla 10. Datos usados en los cálculos de la celda					
Composición de la	alimentad	nóic			
Combustible					
Caso 1	y 2	_			
$i = 185 \text{ mA/cm}^2 \text{ y} i$	= 370 mA	/cm ²			
H ₂	%	55.70			
Utilización del H ₂	%	80.0			
H ₂ O	%	27.6			
CHA	%	0			
<u>CO</u>	%	10.80			
<u> </u>	96	5.80			
Temperatura	(°C)	800			
Caso 3 i	= 185 mA	/cm ²			
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	94 9			
Litilización del H.	/0 %	95			
	70 96	05			
	70 04	0.5			
	70				
<u> </u>	70	4.1			
	70 (°C)	0.0			
		900 (cm ²			
	= 920 mA				
H ₂	<u>%</u>	94.1			
Utilización del H2	%	95			
H ₂ O	%	1.3			
CH₄	%	1.3			
	%	3.3			
CO ₂	%	0.0			
Temperatura	(°C)	800			
Oxidante					
Caso 1:	i = 185 m	A/cm ²			
O ₂ del aire	%	21			
Utilización del O2	%	25			
N ₂	%	79			
Temperatura	(°C)	600			
Caso 2:	i = 370 m	A/cm ²			
O ₂ del aire (oxidante)	%	21			
Utilización del O ₂	%	25			
N ₂	%	79			
Temperatura	(°C)	400			
Caso 3	i = 185  m	A/cm ²			
O ₂ del aire (oxidante)	%	100 (98)			
	%	100 (80)			
No.	- %	0			
$\frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}{2} \frac{1}$					
O del aire (ovidante)		100 (98)			
	70 0/.	100 (90)			
	70				
IN ₂	<u>%</u>				

# 6. Celda y/o stack

abla 11. Dimensiones empleadas en los calculos						
Tubo inductor del aire						
Diámetro externo	mm	6				
Grosor	mm	1				
Longitud	mm	290				
Tubo de soporte						
Diámetro externo	mm	13				
Grosor	mm	1.5				
Longitud	mm	300				
Cátodo						
Diámetro externo	mm	14.40				
Grosor	mm	0.70				
Longitud	mm	300				
Electrolito						
Diámetro externo	mm	14.48				
Grosor	mm	0.04				
Longitud	mm	300				
Ánodo						
Diámetro externo	mm	14.68				
Grosor	mm	0.1				
Longitud	mm	300				
Frontera del combustible						
Diámetro externo	mm	16.61				
Grosor	mm					
Longitud	mm	300				

Table 44. Dimensiones empleades en los célculos

7. Ecuaciones planteadas en los modelos (balances de M, E, momentum) Balance de materia y reacciones químicas Densidad de corriente local Conducción de calor Calor generado por la celda Factores de utilización del combustible y oxidante

8. Tipo de ecuaciones de los modelos (algebraicas, diferenciales, integrales, etc.) Las expresiones establecidas son algebraicas.

# 9. Modo de solución

Emplean una técnica de decoplamiento parcial de las ecuaciones diferenciales, la cual consiste en resolver las ecuaciones diferenciales de primer orden para una variable, entonces sustituyen dentro de otra ecuación dicho resultado.

2

# 10. Secuencia de cálculo

Se calcula la distribución de densidad de corriente sujeta a la temperatura del gas y de la celda. Se calcula la densidad de corriente bajo una temperatura fija preestablecida, es decir, el modulo del calculo de la corriente se ejecuta.

Comienza el cálculo de la temperatura sujeto a la distribución de densidad de corriente fija.

Una vez que se fijan tanto la densidad de corriente como la temperatura de la celda, se evalúan las temperaturas y las presiones parciales de los gases, la temperatura del gas y el coeficiente de transferencia de calor.

El cálculo concluye cuando la temperatura del gas no varían materialmente de una iteración a otra.

# 11. Software y hardware empleados

El software se desarrolla a lo largo del artículo, en cuanto al hardware, no se especifica.

# 12. Resultados

Pag. 2748. Figura 5.

a) Temperatura de la celda (K) vs eje Z de la celda (mm). Ilustra la medición de la temperatura de un modulo de 3 kW de Westinghouse.

b) Temperatura del combustible, Temperatura del aire entre la celda y el tubo de alumina, temperatura del tubo de alumina, temperatura del aire dentro del tubo de alumina vs eje Z de la celda (mm).

c) Distribución de especies químicas de la parte del ánodo. A la izquierda: el H₂, H₂O_{vap}, CO y CO₂. A la derecha: CH₄ vs eje Z de la celda (mm)

d) Grafica tridimensional de distribución de densidad de corriente de 185 mA/cm² carga de una celda convencional. Eje Z (mm) vs eje  $R_0 \theta$  (mm) vs densidad de corriente (mA/cm²)

# Pag. 2749. Figura 6.

a) Temperatura de la celda (K) vs eje Z (mm).

b) Temperatura del combustible, Temperatura del aire entre la celda y el tubo de alumina, temperatura del tubo de alumina, temperatura del aire dentro del tubo de alumina vs eje Z (mm).

# Figura 7.

a) Temperatura del combustible en el ánodo (K) vs eje Z (mm).

b) Distribución del CH₄ y CO₂ en el ánodo (K) vs eje Z (mm).

Pag. 2750. Figura 8.

a) Temperatura de la celda (K) vs eje Z (mm).

b) Temperatura del combustible en el ánodo, (K) vs eje Z (mm)

c) Distribución de especies químicas del ánodo (% fracc. mol) vs eje Z (mm). A la izquierda: el H₂, H₂O_{vap}. A la derecha: CH₄ y CO₂.

d) Grafica tridimensional de distribución de densidad de corriente de 926 mA/cm². Eje Z (mm) vs eje R₀  $\theta$  (mm) vs densidad de corriente (mA/cm²)

#### 13. Modo de validación del modelo

Los resultados calculados son validados comparándolos con datos medidos con un modulo de prueba de 3 kW, realizado por Westinghouse Electric Corporation.

# 14. Conclusiones principales

La potencia disponible de la SOFC tiene como límite el aire que se emplea como sistema de enfriamiento, para mejorar lo que implicaría el cambio del sistema completo y no solo de la SOFC. Se sugiere realizar cambios para mejorar la densidad de corriente de salida. Ippommatsu et al., presentaron un sistema de recirculación del combustible, el cual fue probado en un modulo 1 kW por la Industria Mitsubishi Heavy y Dengenkaihatsu logrando buenos resultados.

# 15. Análisis crítico del artículo

La cantidad de modelos revisados muestran un buen procedimiento de validación, debido a que se comparan resultados numéricos con los resultados de una celda desarrollada por una compañía, por otro lado el modelo matemático es fácil de resolver, quizá el modelo debe incluir aspectos como 3D y el efecto de transferencia de calor por radiación.

	الم ندام 3 م ال 1	Dimensión				
Datos de sanda	Unicac	Caso 1	Caso 2	Caso 3	Caso 4	
Voltage de salida	V	0.715	0.606	1.010	0.811	
Densidad de potencia de salida	mW/cm	132	224	186	750	
DC de salida de la celda	%	49.3	41.8	82.7	66.4	
Potencia de la SOFT usada para soportar el equipo	%	0	0	10	2	
Salida del vapor de la turbina	%	10.3	12.5	0	0	
Eficiencia total de salida en AC	%	54.7	50.1	65.4	58.0	

Tabla 12	. Datos	usados er	n el cálcul	o del	funcionamiento	de la	a celda y	y resultados	para el	modelo

# **APÉNDICE III**

# **RESULTADOS DEL CASO DE ESTUDIO 1**

# <u>Región I</u>

Perfil de velocidad axial:  $v_z = v_z(r)$ 

	******		L. AXIAL <m< th=""><th>/3) <del>*****</del></th><th>i<del>N</del></th></m<>	/3) <del>*****</del>	i <del>N</del>
I =	1	2	3	4	5
15 14	0.000E+00 1.248E-02	0.000E+00 1.248E-02	0.000E+00 1.248E-02	0.000E+00 1.248E-02	0.000E+00 1.248E-02
13 12	3.472E-02 5.327E-02 6.805E-02	3.472E-02 5.327E-02 6.805E-02	3.472E-02 5.327E-02 6.805E-02	3.472E-02 5.327E-02 6.805E-02	3.472E-02 5.327E-02 6.805E-02
10 9	7.896E-02 8.592E-02	7.896E-02 8.592E-02	7.896E-02 8.592E-02	7.096E-02 8.592E-02	7.896E-02 8.592E-02
8 7 6	8.881E-02 8.754E-02 8.198E-02	8.881E-02 8.754E-02 8.198E-02	8.881E-02 8.754E-02 8.198E-02	8.754E-02 8.198E-02	0.001E-02 0.754E-02 0.198E-02
5 4	7.199E-02 5.744E-02	7.199E-02 5.744E-02	7.199E-02 5.744E-02	7.199E-02 5.744E-02 2.016E-02	7.199E-02 5.744E-02 3.916E-02
3 2 1	1.398E-02 0.000E+00	1.398E-02 0.000E+00	1.398E-02 0.000E+00	1.398E-02 0.000E+00	1.398E-02 0.000E+00

Perfil de temperatura: T = T(r)Considerando una pared adiabática.

190					
		*****	P AIRE T(K)	******	
I =	1	2	3	4	5
J					4 444000.00
15	1.14600E+03	1.14600E+03	1.14600E+03	1.14600£+03	1.146002+03
14	1.14603E+03	1.14603E+03	1.14603E+03	1.14603E+03	1.14603E+03
17	1.14607E+03	1.14607E+03	1.14607E+03	1.14607E+03	1.14607E+03
12	1 14612E+03	1 14612E+03	1.14612E+Ø3	1.14612E+03	1.14612E+03
11	1 14617E+03	1 14617E+03	1.14617E+03	1.14617E+03	1.14617E+03
10	1 146995-03	1 146995+03	1 146228+03	1 14622E+03	1.14622E+03
10	1 1469627.03	1 146266+03	1 146268+03	1 14626F+03	1.14626E+03
ž	1.140406703	1 146202.03	1 146305-03	1 146305+03	1 14630E+03
U U	1.146306+03	1.140306703	1.140302.03	4 446366.03	1 14635E+03
7	1.14635E+03	1.14635E+03	1.146351+03	1.140356+03	1 146 205 02
6	1.14639E+03	1.14639E+03	1.14639E+03	1.14637E+03	1.146376703
5	1.14643E+03	1.14643E+03	1.14643E+03	1.14643E+03	1.14643E+0J
4	1.14647E+03	1.14647E+03	1.14647E+03	1.14647E+Ø3	1.14647E+0J
- Î	1 14650E+03	1.14650E+03	1.14650E+03	1.14650E+03	1.14650E+03
5	1 14654E+03	1.14654E+03	1.14654E+03	1.14654E+03	1.14654E+03
1	1 14656E+03	1 14656E+03	1 14656E+Ø3	1.14656E+03	1.14656E+03
-	T T.T.TOTOT. OT	T'TTOTOT.OO	T . T 10000 .00		
Perfil de composición:  $y_i = y_i(r)$ 

Resultados de la composición para la relación de 4 veces la estequiometría del aire. Considerando una pared impermeable.

	*****	HHHCOM	POSICION O	2 *****	<del>******</del>	
I -	1	2	Э	4	5	
1Š	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01	
14	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01	
13	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1,700E-01	
12	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01	
11	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01	
10	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01	
9	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01	
8	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01	
7	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01	
6	1,700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01	
5	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01	
4	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01	
3	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01	
2	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01	
1	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01	

Resultados de la composición para la relación de 6 veces la estequiometría del aire. Considerando una pared impermeable.

	****	*** COI	MPOSICION C	)2 <del>жини</del>	<del>*****</del>	
I = J	1	2	3	4	5	
1Š	1.800E-01	1.000E-01	1.800E-01	1.800E-01	1.800E-01	
14	1.800E-01	1.800E-01	1.800E-01	1.800E-01	1.800E-01	
13	1.800E-01	1.800E-01	1.800E-01	1.800E-01	1.800E-01	
12	1.800E-01	1.800E-01	1.800E-01	1.800E~01	1.800E-01	
11	1.800E-01	1.800E-01	1.800E-01	1.900E-01	1.800E-01	
10	1.800E-01	1.800E-01	1.800E-01	1.000E-01	1.800E-01	
9	1.800E-01	1.800E-01	1.800E-01	1.800E-01	1.800E-01	
8	1.000E-01	1.000E-01	1.800E-01	1.800E-01	1.800E-01	
7	1.800E-01	1.800E-01	1.800E~01	1.800E-01	1.800E-01	
6	1.800E-01	1.800E-01	1.800E-01	1.800E-01	1.800E-01	
5	1.000E-01	1.800E-01	1.800E-01	1.800E-01	1.800E-01	
4	1.800E-01	1.800E-01	1.800E-01	1.000E-01	1.800E-01	
3	1.800E-01	1.800E-01	1.800E-01	1.800E-01	1.800E-01	
2	1.800E-01	1.800E-01	1.800E-01	1.800E-01	1.800E-01	
1	1.000E-01	1.800E-01	1.800E-01	1.800E-01	1.800E-01	

**Región V** Perfil de velocidad axial:  $v_z = v_z(r)$ 

	***	<del>жинин</del> UEI		/s) <del>****</del>	<del>XXXXXX</del>	
Į-	1	2	Э	4	5	
15 15	0.000E+00	0-000E+00	9.909E+00	0.000E+00	0.000E+00	
14	2.952E-03	2.952E-03	2.952E-03	2.952E-03	2.952E-03	
13	0.205E-03	8.205E-03	8.205E-03	0.205E-03	8.205E-03	
12	1.257E-02	1.257E-02	1.257E-02	1.257E-02	1.257E-02	
11	1.604E-02	1.604E-02	1.604E-02	1.604E-02	1.604E-02	
10	1.859E-02	1.859E-02	1.859E-02	1.859E-02	1.859E-02	
9	2.020E-02	2.020E-02	2.020E-02	2.020E-02	2.020E-02	
8	2.085E-02	2.085E-02	2.085E-02	2.085E-02	2.0855-02	
?	2.052E-02	2.052E-02	2.052E-02	2.052E-02	2.052E-02	
6	1.918E-02	1.910E-02	1.918E-02	1.918E-02	1.9188-02	
5	1.682E-02	1.682E-02	1.682E-02	1.68ZE-02	1.6828-02	
4	1.3398-02	1.337E-02	1.337E~02	1.337E~02	1.3376-04	
<u>ງ</u>	8.88885-03	0.000E-03 0.000E-03	0.00UTUU 0.00UTUU0	0.000C-03 3 947E-03	3 9498-03	
1	J.247E-03	0.000E+00	0.000E+00	0.000E+00	0.000E+00	

Perfil de temperatura: T = T(r)Considerando una pared adiabática.

		<del>******</del>	TCOMB T(K)	*****	
Ī≖	1	2	Э	4	5
J L	4 4000000.00	4 4900000.403	4 4000000.000	4 4000070-00	1 1200070+03
12	1.1209976+03	1.1207775703	1.1207776-03	1.1207776-03	1.120///1.03
14	1.120997E+03	1.120797E+03	1.120997E+03	1.120997E+03	1.120997E+03
13	1 1209975+03	1.120997E+03	1.120997E+03	1.120997E+03	1.120997E+03
12	1 1000000.00	1 1209986+03	1 1209988+03	1 1209988+03	1 120998E+03
11	1.1207706.03	4 4 200000 .03	4 4000000.000	4 4000000-000	4 4300000-032
11	1.120998E+03	1.1207706-03	1.1207702-03	1,1207705-03	1.1207702-03
10	1.120998E+03	1.120998E+03	1.120998E+03	1.120998E+03	1.120998E+03
9	1 120998E+03	1.120998E+03	1.120998E+03	1.120998E+03	1.120998E+03
ġ.	1 1209998+03	1.120999E+03	1 120999E+03	1.120999E+03	1.120999E+03
ž	1 1209995+03	1 120999E+03	1 120999F+03	1 120999E+03	1.120999E+03
è	1 1000000.000	1 1209995+03	1 12000000+03	1 12000017+013	1 1209998+03
, c	1.1207776-03	1.160///1.03	1.1407776.03	4 4000000.00	1 1000000.00
5	1.120999E+03	1.1209994 +03	1.1207772+03	1.1207778-03	1.1207778-03
4	1.121000E+03	1.121000E+03	1.121000E+03	1.121000E+03	1.121000E+03
3	1.121000E+03	1.121000E+03	1.121000E+03	1.121000E+03	1.121000E+03
2	1 121000E+03	1.121000E+03	1.121000E+03	1.121000E+03	1.121000E+03
4	1 1010000-003	1 1210005+03	1 191000E+03	1 121000 - +03	1 121000F+03
1	T'TCTAAAAC_AA?	T.TUT000703	T'TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	T'TUTOOOT'00	TITOTOOOT.OG

#### Perfil de composición del hidrógeno: $y_i = y_i(r)$ Considerando una pared impermeable.

	****	*** <u>COI</u>	POSICION H	2 ****	<del></del>
1 = J	1	2	3	4	5
15 14	1.335E-01	1.335E-01	1.335E-01	1.335E-01	1.335E-01
13	1.335E-01	1.335E-01	1.335E-01	1.335E-01	1.335E-01
12 11	1.335E-01 1.335E-01	1.335E-01 1.335E-01	1.335E-01 1.335E-01	1.335E-01 1.335E-01	1.335E-01 1.335E-01
10 9	1.335E-01 1.335E-01	1.335E-01 1.335E-01	1.335E-01 1.335E-01	1.335E-01 1.335E-01	1.335E-01 1.335E-01
ĝ	1.335E-01	1.335E-01	1.335E-01	1.335E-01	1.335E-01
é	1.335E-01	1.335E-01	1.335E-01	1.335E-01	1.335E-01
4	1.335E-01 1.335E-01	1.335E-01 1.335E-01	1.335E-01 1.335E-01	1.335E-01 1.335E-01	1.335E-01 1.335E-01
3 2	1.335E-01 1.335E-01	1.335E-01 1.335E-01	1.335E-01 1.335E-01	1.335E-01 1.335E-01	1.335E-01 1.335E-01
1	1.335E-01	1.335E-01	1.335E-01	1.335E-01	1.335E-01

Perfil de composición del agua:  $y_i = y_i(r)$ Considerando una pared impermeable.

	****	*** COI	IPOSICION H	20 <del>жини</del>	**
I=	1	2	Э	4	5
15	8.665F-01	8.665E-01	8-665E-01	8-665E-01	8-665E-01
14	8.665E-01	8.665E-01	8.665E-01	8.665E-01	8.665E-01
13	8.665E-01	8.665E-01	8.665E-01	8.665E-01	8.665E-01
12	8.665E-01	8.665E-01	8.665E-01	8.665E-01	8.665E-01
11	8.665E-01	8.665E-01	8.665E~01	8.665E-01	8.665E-01
10	8.665E-01	0.665E-01	0.665E-01	0.665E-01	0.665E-01
9	8.665E-01	8.665E- <b>0</b> 1	8.665E-01	8.665E-01	8.665E-01
8	8.665E-01	8.665E-01	8.665E-01	0.665E-01	0.665E-01
?	8.665E-01	8.665E-01	8.665E-01	8.665E-01	8.665E-01
6	0.665E-01	8.665E-01	8.665E-01	8.665E-01	8.665E-01
- 5	8.665E-01	8.665E-01	8.665E-01	8.665E-01	8.665E-01
4	8.665E-01	8.665E-01	8.665E-01	8.665E-01	8.665E-01
3	8.665E-01	8.665E-01	8.665E-01	8.6651-01	8.665E-01
- 2	U.665E-01	8.665E-01	8.665E-01	8.665E-01	8.665E-01
1	8.665E-01	8.665E-01	8.665E-01	8.665E-01	8.665E-01

## Resultados de la región del sólido (Regiones II, III y IV)

# Resultados considerando 4 veces la estequiometría del oxígeno

T_aire < 1146.000 1146.000 1146.000 1146.000 1146.000 1146.000	K) y_aire(-) 0 0.1700 0 0.1700 0 0.1700 0 0.1700 0 0.1700 0 0.1700	T_comb ( 1120.99 1120.99 1120.99 1120.99 1120.99 1120.99	K>         y_hidr(-)           69         0.1335           69         0.1335           69         0.1335           69         0.1335           69         0.1335           69         0.1335           69         0.1335           69         0.1335           69         0.1335	y_agua(-) Ø.8665 Ø.8665 Ø.8665 Ø.8665 Ø.8665
Eid(U)= 1.07	<b>7898</b>		ከርኳ ሮስወወረስ /~~? ነ	DEN CORR MUQ(Q/cm2)
nonm1C(V)	nact_cotal(V)	0_00000	DEN_CONNEN/ CINZ /	
0.0159	0.4981E-01	0.1012E+01	0.1500	0.1560
nohmic(V)	nact_total(V)	V_tot(V)	DEN_CORR(A/cm2)	DEN_CORR_NUA(A/cm2)
0.0165	0.5175E-01	0.1010E+01	0.1560	0.1623
nnhmic(V)	<pre>nact_total(U)</pre>	U_tot(V)	DEN_CORR(A/cm2)	DEN_CORR_NUA(A/cm2)
0.0172	Ø.5376E-01	0.1007E+01	0.1623	0.1689
nohmic(V)	nact_total(V)	V_tot(V)	DEN_CORR(A/cm2)	DEN_CORR_NVA(A/cm2)
0.0179	0.5584E-01	0.1004E+01	0.1689	0.1757
nohmic(V)	nact_total(V)	V_tot(V)	DEN_CORR(A/cm2)	DEN_CORR_NUA(A/cm2)
0.0186	0.5800E-01	0.1001E+01	0.1757	0.1828

### Resultados considerando 6 veces la estequiometría del oxígeno

T_aire (K)	y_aire()	T_comb (K)	y_hidr(-)	y_agua(~)
1146.0000	0.1800	1120.9969	0.1335	Ø.8665
1146.0000	0.1800	1120.9969	0.1335	Ø.8665
1146.0000	0.1800	1120.9969	0.1335	Ø.8665
1146.0000	0.1800	1120.9969	0.1335	Ø.8665
1146.0000	0.1800	1120.9969	0.1335	Ø.8665
1146.0000	0.1800	1120.9969	0.1335	0.8665
1146.0000	0.1800	1120.9969	0.1335	0.8665
***********	***********	**************	**********	<del>N X</del>

Eid(V)- 1.07	79465			
nohmic(U)	nact_total(V)	V_tot(V)	DEN_CORR(A/cm2)	DEN_CORR_NVA(A/cm2)
0.0159	0,4981E-01	0.1014E+01	0.1500	0,1560
nohmic(V)	<pre>* nact_total(U)</pre>	V_tot(V)	DEN_CORR(A/cm2)	DEN_CORR_NUA(A/cm2)
0.0165	0.5175E-01	0.1011E+01	0.1560	0.1623
nohmic(V)	<pre>mact_total(V)</pre>	V_tot <v></v>	DEN_CORR <a cm2=""></a>	DEN_CORR_NUA(A/cm2)
0.0172	0.5376E-01	0.1009E+01	0.1623	0.1689
nohmic(V)	<pre>mact_total(U)</pre>	V_tot(V)	DEN_CORR(A/cm2)	DEN_CORR_NUA(A/cm2)
0.0179	0.5584E-01	0.1006E+01	0.1689	0.1757
nohmic(V)	<pre>mact_total(U)</pre>	V_tot(V)	DEN_CORR(A/cm2)	DEN_CORR_NUA(A/cm2)
0.0186	0.5800E-01	0.1003E+01	0.1757	0.1828

# **APÉNDICE IV**

# **RESULTADOS DEL CASO DE ESTUDIO 1A**

# <u>Región I</u>

Perfil de velocidad axial:  $v_z - v_z(r)$ 

Este perfil, es el mismo que el presentado en el caso 1, para la región correspondiente, en el apéndice III.

		******	• UEL.	AXIAL 02	m/s) *	*****	
<b>I</b> =	1	2	3	4	5	6	7
J 154 122 110 9 8 7 6 5 4 3 2 1	$\begin{array}{c} 1.239 E-02\\ 1.248 E-02\\ 3.472 E-02\\ 5.327 E-02\\ 6.805 E-02\\ 7.696 E-02\\ 8.592 E-02\\ 8.592 E-02\\ 8.881 E-02\\ 8.754 E-02\\ 9.754 E-02\\ 7.199 E-02\\ 5.744 E-02\\ 3.816 E-02\\ 1.398 E-02\\ 1.398 E-02\\ 1.388 E-02\\ \end{array}$	$\begin{array}{c} 1.238E-02\\ 1.248E-02\\ 3.472E-02\\ 5.327E-02\\ 6.805E-02\\ 7.896E-02\\ 8.592E-02\\ 8.592E-02\\ 8.592E-02\\ 8.754E-02\\ 8.754E-02\\ 8.794E-02\\ 5.744E-02\\ 3.816E-02\\ 1.398E-02\\ 1.388E-02\\ \end{array}$	$\begin{array}{c} 1.230E-02\\ 1.240E-02\\ 3.472E-02\\ 5.327E-02\\ 6.005E-02\\ 7.896E-02\\ 8.592E-02\\ 8.881E-02\\ 9.754E-02\\ 8.198E-02\\ 7.199E-02\\ 5.744E-02\\ 3.816E-02\\ 1.398E-02\\ 1.388E-02\\ 1.388E-02\\ \end{array}$	$\begin{array}{c} 1.238E-02\\ 1.248E-02\\ 3.472E-02\\ 5.327E-02\\ 6.805E-02\\ 7.896E-02\\ 8.991E-02\\ 8.981E-02\\ 8.754E-02\\ 8.198E-02\\ 7.199E-02\\ 5.744E-02\\ 3.816E-02\\ 1.398E-02\\ 1.388E-02\\ \end{array}$	$\begin{array}{c} 1.238E-02\\ 1.248E-02\\ 3.472E-02\\ 5.327E-02\\ 6.805E-02\\ 7.896E-02\\ 8.592E-02\\ 8.881E-02\\ 8.754E-02\\ 8.754E-02\\ 8.198E-02\\ 7.199E-02\\ 5.744E-02\\ 3.816E-02\\ 1.398E-02\\ 1.388E-02\\ \end{array}$	$\begin{array}{c} 1.238E-02\\ 1.248E-02\\ 3.472E-02\\ 5.327E-02\\ 6.805E-02\\ 7.896E-02\\ 8.592E-02\\ 8.901E-02\\ 8.91E-02\\ 8.198E-02\\ 7.199E-02\\ 5.744E-02\\ 3.816E-02\\ 1.398E-02\\ 1.388E-02\\ \end{array}$	$\begin{array}{c} 1.230E-02\\ 1.248E-02\\ 3.472E-02\\ 5.327E-02\\ 6.905E-02\\ 7.896E-02\\ 8.592E-02\\ 8.801E-02\\ 8.754E-02\\ 8.754E-02\\ 9.198E-02\\ 7.199E-02\\ 5.744E-02\\ 3.816E-02\\ 1.398E-02\\ 1.388E-02\\ \end{array}$
I -	8	9	10	11	12	13	14
J 154 121 10 9 0 7 6 5 4 3 2 1	$\begin{array}{c} 1.238E-02\\ 1.248E-02\\ 3.472E-02\\ 5.327E-02\\ 6.005E-02\\ 7.096E-02\\ 0.592E-02\\ 0.592E-02\\ 0.754E-02\\ 0.199E-02\\ 7.199E-02\\ 5.744E-02\\ 3.816E-02\\ 1.398E-02\\ 1.398E-02\\ 1.300E-02\\ \end{array}$	$\begin{array}{c} 1.238E-02\\ 1.248E-02\\ 3.472E-02\\ 5.327E-02\\ 6.805E-02\\ 7.096E-02\\ 0.592E-02\\ 8.901E-02\\ 8.901E-02\\ 8.754E-02\\ 8.754E-02\\ 7.199E-02\\ 5.744E-02\\ 5.744E-02\\ 3.016E-02\\ 1.390E-02\\ 1.308E-02\\ \end{array}$	$\begin{array}{c} 1.230E-02\\ 1.248E-02\\ 3.472E-02\\ 5.327E-02\\ 6.805E-02\\ 7.896E-02\\ 0.592E-02\\ 8.601E-02\\ 0.754E-02\\ 0.754E-02\\ 0.754E-02\\ 7.199E-02\\ 5.744E-02\\ 3.816E-02\\ 1.390E-02\\ 1.300E-02\\ \end{array}$	$\begin{array}{c} 1.238E-02\\ 1.248E-02\\ 3.472E-02\\ 5.327E-02\\ 6.805E-02\\ 7.896E-02\\ 9.696E-02\\ 0.996E-02\\ 0.891E-02\\ 0.991E-02\\ 0.199E-02\\ 7.199E-02\\ 5.744E-02\\ 3.816E-02\\ 1.390E-02\\ 1.300E-02\\ \end{array}$	$\begin{array}{c} 1.238E-02\\ 1.248E-02\\ 3.472E-02\\ 5.327E-02\\ 6.805E-02\\ 7.896E-02\\ 0.592E-02\\ 0.592E-02\\ 0.592E-02\\ 0.754E-02\\ 0.198E-02\\ 7.199E-02\\ 5.744E-02\\ 3.816E-02\\ 1.398E-02\\ 1.398E-02\\ 1.308E-02\\ \end{array}$	$\begin{array}{c} 1.238E-02\\ 1.248E-02\\ 3.472E-02\\ 5.327E-02\\ 6.005E-02\\ 7.096E-02\\ 0.592E-02\\ 0.592E-02\\ 0.754E-02\\ 0.754E-02\\ 7.199E-02\\ 7.199E-02\\ 5.744E-02\\ 3.016E-02\\ 1.390E-02\\ 1.390E-02\\ 1.390E-02\\ \end{array}$	$\begin{array}{c} 1.238 E - 02\\ 1.248 E - 02\\ 3.472 E - 02\\ 5.327 E - 02\\ 6.805 E - 02\\ 7.896 E - 02\\ 7.896 E - 02\\ 8.592 E - 02\\ 8.881 E - 02\\ 8.754 E - 02\\ 8.754 E - 02\\ 7.199 E - 02\\ 7.199 E - 02\\ 5.744 E - 02\\ 3.816 E - 02\\ 1.390 E - 02\\ 1.300 E - 02\\ \end{array}$
I- J5432110987654321	15 1.238E-02 1.248E-02 3.472E-02 5.327E-02 6.805E-02 7.896E-02 8.592E-02 8.592E-02 8.801E-02 8.754E-02 8.198E-02 7.199E-02 5.744E-02 3.816E-02 1.398E-02 1.388E-02						

		******	* <u>TE</u>	MP. AIRE T	(Ж) ₩	*****	
I -	1	2	3	4	5	6	7
J 15 113 112 111 10 8 7 6 5 4 3 2 1	8,630E+02 8,630E+02 8,630E+02 8,630E+02 8,630E+02 8,630E+02 8,630E+02 8,630E+02 8,630E+02 8,630E+02 8,630E+02 8,630E+02 8,630E+02 8,630E+02 0,630E+02 0,630E+02	6.582E+02 8.583E+02 6.694E+02 6.704E+02 8.712E+02 8.716E+02 8.719E+02 8.719E+02 8.717E+02 8.717E+02 8.713E+02 8.707E+02 8.707E+02 8.689E+02 8.609E+02 8.599E+02	8.486E+02 8.490E+02 8.792E+02 8.852E+02 8.876E+02 8.894E+02 8.896E+02 8.896E+02 8.895E+02 8.890E+02 8.860E+02 8.860E+02 8.860E+02 8.860E+02 8.860E+02 8.530E+02	$\begin{array}{c} 8.391E+02\\ 8.397E+02\\ 8.901E+02\\ 8.999E+02\\ 9.039E+02\\ 9.059E+02\\ 9.059E+02\\ 9.069E+02\\ 9.073E+02\\ 9.073E+02\\ 9.071E+02\\ 9.047E+02\\ 9.047E+02\\ 9.013E+02\\ 8.481E+02\\ 8.481E+02\\ 8.476E+02\\ \end{array}$	8.295E+02 9.009E+02 9.147E+02 9.203E+02 9.231E+02 9.245E+02 9.250E+02 9.250E+02 9.248E+02 9.237E+02 9.214E+02 9.214E+02 9.166E+02 9.45E+02 8.415E+02	8.199E+02 8.210E+02 9.117E+02 9.295E+02 9.367E+02 9.403E+02 9.421E+02 9.427E+02 9.427E+02 9.425E+02 9.425E+02 9.381E+02 9.381E+02 9.319E+02 9.319E+02 0.362E+02 0.362E+02 0.353E+02	8.103E+02 8.117E+02 9.226E+02 9.530E+02 9.574E+02 9.574E+02 9.605E+02 9.605E+02 9.601E+02 9.584E+02 9.548E+02 9.548E+02 9.282E+02 0.303E+02 0.292E+02
I -	8	9	10	11	12	13	14
J 15 12 12 11 10 9 8 7 6 5 4 9 2 1	8.007E+02 8.024E+02 9.334E+02 9.590E+02 9.694E+02 9.746E+02 9.772E+02 9.78E+02 9.778E+02 9.758E+02 9.715E+02 9.625E+02 9.625E+02 9.400E+02 8.243E+02 8.230E+02	7.912E+02 7.931E+02 9.442E+02 9.730E+02 9.958E+02 9.958E+02 9.959E+02 9.959E+02 9.959E+02 9.954E+02 9.951E+02 9.882E+02 9.778E+02 9.519E+02 8.169E+02	7.816E+02 7.837E+02 9.551E+02 9.865E+02 1.002E+03 1.012E+03 1.014E+03 1.014E+03 1.010E+03 1.010E+03 1.005E+03 9.931E+02 9.637E+02 8.107E+02	$\begin{array}{c} 7.720E+02\\ 7.744E+02\\ 9.659E+02\\ 1.003E+03\\ 1.019E+03\\ 1.026E+03\\ 1.030E+03\\ 1.031E+03\\ 1.031E+03\\ 1.028E+03\\ 1.022E+03\\ 1.022E+03\\ 1.022E+03\\ 1.022E+03\\ 1.028E+03\\ 7.756E+02\\ 8.065E+02\\ 8.046E+02\\ \end{array}$	7.624E+02 7.651E+02 9.767E+02 1.010E+03 1.035E+03 1.043E+03 1.047E+03 1.049E+03 1.048E+03 1.048E+03 1.038E+03 1.024E+03 7.874E+02 8.006E+02 7.984E+02	7.528E+02 7.558E+02 9.876E+02 1.033E+03 1.051E+03 1.065E+03 1.065E+03 1.065E+03 1.065E+03 1.065E+03 1.035E+03 1.039E+03 7.993E+02 7.946E+02 7.923E+02	2.433E+02 7.464E+02 9.984E+02 1.048E+03 1.060E+03 1.085E+03 1.085E+03 1.084E+03 1.080E+03 1.080E+03 1.072E+03 1.054E+03 1.011E+03 7.887E+02 7.861E+02
I = I = I = I = I = I = I = I = I = I =	15 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03						

Perfil de composición:  $y_i = y_i(z)$ Resultados de la composición para la relación de 4 veces la estequiometría del aire.

		******	COMI	1P08ICION 02 ******		<del>XXXXX</del>	
I≖	1	2	3	4	5	6	7
J 154321 19987654321	$\begin{array}{c} 2.100 E-01\\	$\begin{array}{c} 2.003 E - 01 & 1\\ 1\\ 2.003 E - 01 & 1\\ 1\\ 1\\ 2.003 E - 01 & 1\\ 1\\ 1\\ 2.003 E - 01 & 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $	. 957E-01 . 957E-01	$\begin{array}{c} 1.922E-01\\ \end{array}$	$\begin{array}{c} 1.891E-01\\ 1.89$	$\begin{array}{c} 1.864E-01\\ 1.864E-01\\ 1.964E-01\\ 1.964E-01\\ 1.864E-01\\ 1.86$	1.839E-01 1.839E-01 1.839E-01 1.039E-01 1.839E-01 1.839E-01 1.839E-01 1.839E-01 1.839E-01 1.839E-01 1.839E-01 1.839E-01 1.839E-01 1.839E-01
Ĩ≖	8	9	10	11	12	13	14
11112 11112 110987654321	$\begin{array}{c} 1.816E-01\\ 1.81$	$\begin{array}{c} 1.794E-01 \\		$\begin{array}{c} 1.754E-01\\ 1.75$	1.736E-01 1.736E-01 1.736E-01 1.736E-01 1.736E-01 1.736E-01 1.736E-01 1.736E-01 1.736E-01 1.736E-01 1.736E-01 1.736E-01 1.736E-01 1.736E-01 1.736E-01 1.736E-01	1.718E-01 1.718E-01 1.718E-01 1.718E-01 1.718E-01 1.718E-01 1.718E-01 1.718E-01 1.718E-01 1.718E-01 1.718E-01 1.718E-01 1.718E-01 1.718E-01 1.718E-01 1.718E-01	$\begin{array}{c} 1.701 \ E-01\\ 1.701 \ E$
I = I = I = I = I = I = I = I = I = I =	15 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01						

ĩ 1.700E-01

Perfil de composición:  $y_i = y_i(z)$ Resultados de la composición para la relación de 6 veces la estequiometría del aire.

		******	• COM	POSICION O	2 *	*****	
Ī=	1	2	3	4	5	6	7
J5432110987654321	$\begin{array}{c} 2.100E-01\\ 0.00E-01\\ 0.00E-00\\ 0.00E-0$	$\begin{array}{c} 2.027E-01\\ 2.02$	1.993E-01 1.993E-01 1.993E-01 1.993E-01 1.993E-01 1.993E-01 1.993E-01 1.993E-01 1.993E-01 1.993E-01 1.993E-01 1.993E-01 1.993E-01 1.993E-01 1.993E-01	$\begin{array}{c} 1.966E-01\\ 1.96$	$\begin{array}{c} 1.943E-01\\ 1.944E-01\\ 1.944E-01\\ 1.944E-01\\ 1.944E-01\\ 1.944E-01\\ 1.94$	$\begin{array}{c} 1.923E-01\\ 1.9222E-01\\ 1.9222E-01\\ 1.9222E-01\\ 1.9222E-01\\ 1.9222E-01\\$	$\begin{array}{c} 1.904E-01\\ 1.90$
I =	8	9	10	11	12	13	14
11132 11132 1119 87654 321	1.887E-01 1.887E-01 1.887E-01 1.887E-01 1.887E-01 1.887E-01 1.887E-01 1.887E-01 1.887E-01 1.887E-01 1.887E-01 1.687E-01 1.687E-01 1.887E-01	$\begin{array}{c} 1.871E-01\\ 1.87$	1.055E-01 1.855E-01 1.055E-01 1.055E-01 1.055E-01 1.055E-01 1.055E-01 1.055E-01 1.055E-01 1.055E-01 1.055E-01 1.055E-01 1.055E-01 1.055E-01	$\begin{array}{c} 1.841E-01\\ 1.84$	1.827E-01 1.827E-01 1.827E-01 1.827E-01 1.827E-01 1.827E-01 1.827E-01 1.827E-01 1.827E-01 1.827E-01 1.827E-01 1.827E-01 1.827E-01 1.827E-01 1.827E-01	1.013E-01 1.813E-01 1.813E-01 1.813E-01 1.013E-01 1.813E-01 1.813E-01 1.813E-01 1.813E-01 1.013E-01 1.013E-01 1.813E-01 1.813E-01 1.013E-01 1.013E-01 1.013E-01	1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01
I = I = I = I = I = I = I = I = I = I =	15 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01						

2 1 1.800E-01 1.800E-01

### Región V

Perfil de velocidad axial:  $v_z = v_z(r)$ Este perfil, es el mismo que el presentado en el caso 1, para la región correspondiente, en el apéndice III.

		*****	•UEL (	AXIAL COMB	(m∕s ₩	*****	
<b>I</b> =	1	2	Э	4	5	6	7
J 15 11 12 11 10 9 8 7 6 5 4 3 2 1	0.000E+00 2.952E-03 1.257E-02 1.604E-02 1.659E-02 2.020E-02 2.005E-02 2.052E-02 1.918E-02 1.682E-02 1.339E-02 8.880E-03 3.247E-03 0.000E+00	0.000E+00 2.952E-03 8.205E-03 1.257E-02 1.604E-02 1.859E-02 2.020E-02 2.085E-02 2.052E-02 1.918E-02 1.682E-02 1.339E-02 8.880E-03 3.247E-03 0.000E+00	$\begin{array}{c} 0.000E+00\\ 2.952E-03\\ 0.205E-03\\ 1.257E-02\\ 1.604E-02\\ 1.859E-02\\ 2.020E-02\\ 2.085E-02\\ 2.085E-02\\ 1.918E-02\\ 1.918E-02\\ 1.339E-02\\ 1.339E-02\\ 8.880E-03\\ 3.247E-03\\ 0.000E+00 \end{array}$	0.000E+00 2.952E-03 8.205E-03 1.257E-02 1.604E-02 1.859E-02 2.020E-02 2.065E-02 2.052E-02 1.918E-02 1.682E-02 1.339E-02 8.880E-03 3.247E-03 0.000E+00	0.000E+00 2.952E-03 8.205E-03 1.257E-02 1.604E-02 1.859E-02 2.020E-02 2.085E-02 2.052E-02 1.918E-02 1.662E-02 1.339E-02 8.880E-03 3.247E-03 0.000E+00	0.000E+00 2.952E-03 1.257E-02 1.604E-02 1.059E-02 2.020E-02 2.065E-02 2.052E-02 1.918E-02 1.339E-02 1.339E-02 8.880E-03 3.247E-03 0.000E+00	0.000E+00 2.952E-03 1.257E-02 1.604E-02 1.859E-02 2.020E-02 2.085E-02 2.085E-02 2.052E-02 1.918E-02 1.602E-02 1.339E-02 8.880E-03 3.247E-03 0.000E+00
I =	8	9	10	11	12	13	14
$\begin{matrix} J \\ 15 \\ 14 \\ 112 \\ 110 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \end{matrix}$	0.000E+00 2.952E-03 8.205E-03 1.257E-02 1.604E-02 1.859E-02 2.085E-02 2.085E-02 1.918E-02 1.682E-02 1.339E-02 8.880E-03 3.247E-03 0.000E+00	0.000E+00 2.952E-03 8.205E-03 1.257E-02 1.604E-02 1.859E-02 2.020E-02 2.085E-02 2.052E-02 1.918E-02 1.602E-02 1.339E-02 8.880E-03 3.247E-03 0.000E+00	0.000E+00 2.952E-03 8.205E-03 1.257E-02 1.604E-02 1.859E-02 2.020E-02 2.052E-02 1.918E-02 1.682E-02 1.339E-02 8.880E-03 3.247E-03 0.000E+00	0.000E+00 2.952E-03 8.205E-03 1.257E-02 1.604E-02 1.859E-02 2.020E-02 2.085E-02 2.052E-02 1.918E-02 1.602E-02 1.339E-02 0.800E-03 3.247E-03 0.000E+00	0.000E+00 2.952E-03 8.205E-03 1.257E-02 1.604E-02 1.857E-02 2.020E-02 2.085E-02 2.085E-02 1.918E-02 1.682E-02 1.339E-02 8.880E-03 3.247E-03 0.000E+00	$\begin{array}{c} 0.000 \pm +00\\ 2.952 \pm -03\\ 0.205 \pm -03\\ 1.257 \pm -02\\ 1.604 \pm -02\\ 1.859 \pm -02\\ 2.020 \pm -02\\ 2.085 \pm -02\\ 2.085 \pm -02\\ 2.085 \pm -02\\ 1.918 \pm -02\\ 1.682 \pm -02\\ 1.339 \pm -02\\ 0.800 \pm -03\\ 3.247 \pm -03\\ 0.000 \pm +00\\ \end{array}$	0.000E+00 2.952E-03 8.205E-03 1.257E-02 1.604E-02 1.859E-02 2.020E-02 2.085E-02 2.085E-02 1.910E-02 1.682E-02 1.339E-02 8.880E-03 3.247E-03 0.000E+00
$I^{+}_{J}$ $I_{J}$	15 0.000E+00 2.952E-03 1.257E-02 1.604E-02 1.659E-02 2.020E-02 2.085E-02 2.085E-02 2.085E-02 1.918E-02 1.682E-02 1.682E-02 1.682E-02 3.247E-03 0.000E+00						

		******	F1	COMB T(K)	<del>*</del>	****	
Į=	1	2	3	4	5	6	7
J543211090765432	1.050E+03 1.050E+03 1.050E+03 1.050E+03 1.050E+03 1.050E+03 1.050E+03 1.050E+03 1.050E+03 1.050E+03 1.050E+03 1.050E+03 1.050E+03 1.050E+03 1.050E+03	$\begin{array}{c} 1.053E+03\\ 1.053E+03\\ 1.054E+03\\ 1.053E+03\\ 1.053E+03\\ \end{array}$	1.059E+03 1.059E+03 1.061E+03 1.061E+03 1.061E+03 1.062E+03 1.062E+03 1.062E+03 1.062E+03 1.062E+03 1.061E+03 1.061E+03 1.061E+03 1.059E+03	$\begin{array}{c} 1.065E+03\\ 1.065E+03\\ 1.069E+03\\ 1.0668E+03\\ 1.0$	1.071E+03 1.071E+03 1.076E+03 1.076E+03 1.077E+03 1.077E+03 1.077E+03 1.077E+03 1.077E+03 1.077E+03 1.077E+03 1.077E+03 1.077E+03 1.076E+03 1.076E+03 1.072E+03	1.077E+03 1.077E+03 1.083E+03 1.084E+03 1.084E+03 1.085E+03 1.085E+03 1.085E+03 1.085E+03 1.085E+03 1.085E+03 1.084E+03 1.084E+03 1.083E+03 1.078E+03	1.003E+03 1.083E+03 1.090E+03 1.091E+03 1.092E+03 1.092E+03 1.092E+03 1.092E+03 1.092E+03 1.092E+03 1.092E+03 1.092E+03 1.092E+03 1.092E+03 1.092E+03 1.090E+03 1.084E+03
1	1.050E+03	1.053E+03	1.059E+03	1.0651+03	1.0726+03	1.070E*03	14
$I^{=}$ J5 154 122 110 876 54 321	8 1.089E+03 1.090E+03 1.097E+03 1.100E+03 1.100E+03 1.100E+03 1.100E+03 1.100E+03 1.100E+03 1.100E+03 1.100E+03 1.099E+03 1.091E+03 1.090E+03	7 1.095E+03 1.096E+03 1.105E+03 1.107E+03 1.108E+03 1.108E+03 1.108E+03 1.108E+03 1.108E+03 1.107E+03 1.107E+03 1.105E+03 1.097E+03 1.096E+03	10 1.101E+03 1.102E+03 1.112E+03 1.115E+03 1.115E+03 1.115E+03 1.115E+03 1.115E+03 1.115E+03 1.115E+03 1.115E+03 1.112E+03 1.112E+03 1.103E+03 1.103E+03	11 1.107E+03 1.108E+03 1.119E+03 1.122E+03 1.123E+03 1.123E+03 1.123E+03 1.123E+03 1.123E+03 1.123E+03 1.122E+03 1.122E+03 1.120E+03 1.109E+03	1.113E+03 1.114E+03 1.127E+03 1.127E+03 1.131E+03 1.131E+03 1.131E+03 1.131E+03 1.131E+03 1.131E+03 1.131E+03 1.131E+03 1.129E+03 1.127E+03 1.115E+03	1.119E+03 1.120E+03 1.134E+03 1.137E+03 1.138E+03 1.138E+03 1.139E+03 1.139E+03 1.139E+03 1.139E+03 1.138E+03 1.138E+03 1.134E+03 1.134E+03 1.121E+03	1.125E+03 1.126E+03 1.141E+03 1.144E+03 1.145E+03 1.146E+03 1.146E+03 1.146E+03 1.146E+03 1.146E+03 1.146E+03 1.146E+03 1.142E+03 1.142E+03 1.128E+03 1.127E+03
I - J 15 143 121 10 87 65 432 1	15 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+05 1.150E+05 1.150E+05 1.150E+05 1.150E+05 1.150E+05 1.150E+						

		*****	+ <u></u> CO	POSICION	H2 ++	****	
I =	1	2	Э	4	5	6	7
$\begin{array}{c} \mathbf{J} \\ \mathbf{J} \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ \mathbf$	8.900E-01 8.900E-01 8.900E-01 8.900E-01 8.900E-01 8.900E-01 8.900E-01 8.900E-01 8.900E-01 8.900E-01 8.900E-01 8.900E-01 8.900E-01 8.900E-01 8.900E-01 8.900E-01	$\begin{array}{c} 7.008 E-01\\	$\begin{array}{c} 6.776E-01\\ 0.776E-01\\ 0.77$	$\begin{array}{c} 6.516E-01\\ 6.51$	$\begin{array}{c} 6.225E-01\\ 6.22$	5.898E-01 5.898E-01 5.898E-01 5.898E-01 5.998E-01 5.998E-01 5.998E-01 5.898E-01 5.898E-01 5.898E-01 5.898E-01 5.898E-01 5.898E-01 5.898E-01 5.898E-01 5.898E-01	5.531E-01 5.531E-01 5.531E-01 5.531E-01 5.531E-01 5.531E-01 5.531E-01 5.531E-01 5.531E-01 5.531E-01 5.531E-01 5.531E-01 5.531E-01 5.531E-01 5.531E-01 5.531E-01
I =	8	9	10	11	12	13	14
154132 1143 1110 87654 321	5.118E-01 5.118E-01 5.118E-01 5.118E-01 5.118E-01 5.118E-01 5.118E-01 5.118E-01 5.118E-01 5.118E-01 5.118E-01 5.118E-01 5.118E-01 5.118E-01 5.118E-01	$\begin{array}{c} 4.656E-01\\ 4.65$	4.137E-01 4.137E-01 4.137E-01 4.137E-01 4.137E-01 4.137E-01 4.137E-01 4.137E-01 4.137E-01 4.137E-01 4.137E-01 4.137E-01 4.137E-01 4.137E-01 4.137E-01	$\begin{array}{c} 3.554E-01\\ 3.55$	$\begin{array}{c} 2.900E-01\\ 2.90$	2.167E-01 2.167E-01 2.167E-01 2.167E-01 2.167E-01 2.167E-01 2.167E-01 2.167E-01 2.167E-01 2.167E-01 2.167E-01 2.167E-01 2.167E-01 2.167E-01 2.167E-01	$\begin{array}{c} 1.343E-01\\ 1.34$
$I_{J}^{u}$ 154 154 110 9 0 7 6 5 4 3 2 1	15 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01						

		жинин	• <u>CO</u>	MPOSICION	H2O ++	MMXXX	
Į=	1	2	3	4	5	6	7
J5432110987654321	1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01	2.993E-01 2.993E-01 2.993E-01 2.993E-01 2.993E-01 2.993E-01 2.993E-01 2.993E-01 2.993E-01 2.993E-01 2.993E-01 2.993E-01 2.993E-01 2.993E-01 2.993E-01	$\begin{array}{c} 3.225E-01\\ 3.25$	3.485E-01 3.485E-01 3.485E-01 3.485E-01 3.485E-01 3.485E-01 3.485E-01 3.485E-01 3.485E-01 3.485E-01 3.485E-01 3.485E-01 3.485E-01 3.485E-01 3.485E-01 3.485E-01 3.485E-01	3.777E-01 3.777E-01 3.777E-01 3.777E-01 3.777E-01 3.777E-01 3.777E-01 3.777E-01 3.777E-01 3.777E-01 3.777E-01 3.777E-01 3.777E-01 3.777E-01 3.777E-01 3.777E-01 3.777E-01	$\begin{array}{c} 4.104E-01\\ 1.04E-01\\ $	$\begin{array}{c} 4.471E-01\\ 4.47$
I ==	8	9	10	11	12	13	14
J5432110987654321	$\begin{array}{c} 4.884E-01\\ 4.804E-01\\ 4.804E-01\\ 4.804E-01\\ 4.804E-01\\ 4.804E-01\\ 4.804E-01\\ 4.804E-01\\ 4.804E-01\\ 4.804E-01\\ 4.884E-01\\ 4.884E-01\\ 4.884E-01\\ 4.884E-01\\ 4.884E-01\\ 4.884E-01\\ 4.884E-01\\ 4.884E-01\\ 4.884E-01\\ \end{array}$	5.346E-01 5.346E-01 5.346E-01 5.346E-01 5.346E-01 5.346E-01 5.346E-01 5.346E-01 5.346E-01 5.346E-01 5.346E-01 5.346E-01 5.346E-01 5.346E-01 5.346E-01 5.346E-01 5.346E-01	5.866E-01 5.866E-01 5.866E-01 5.866E-01 5.866E-01 5.866E-01 5.866E-01 5.866E-01 5.866E-01 5.866E-01 5.866E-01 5.866E-01 5.866E-01 5.866E-01 5.866E-01	$\begin{array}{c} 6.449E-01\\ 6.44$	7.103E-01 7.103E-01 7.103E-01 7.103E-01 7.103E-01 7.103E-01 7.103E-01 7.103E-01 7.103E-01 7.103E-01 7.103E-01 7.103E-01 7.103E-01 7.103E-01 7.103E-01	7.837E-01 7.837E-01 7.837E-01 7.837E-01 7.837E-01 7.837E-01 7.837E-01 7.837E-01 7.837E-01 7.837E-01 7.837E-01 7.837E-01 7.837E-01 7.837E-01	$\begin{array}{c} 8.661E-01\\ 0.661E-01\\ 8.661E-01\\ 9.661E-01\\ 9.661E-01\\ 8.661E-01\\ 8.661E-01\\ 8.661E-01\\ 8.661E-01\\ 8.661E-01\\ 8.661E-01\\ 8.661E-01\\ 9.661E-01\\ 8.661E-01\\ 8.661E-01\\ 8.661E-01\\ 8.661E-01\\ 8.661E-01\\ 8.661E-01\\ 8.661E-01\\ 8.661E-01\\ 0.661E-01\\ 0.66$
IJ 15432110987654321	15 8.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01						

#### Resultados de la región del sólido (Reglones II, III y IV)

#### Resultados considerando 4 veces la estequiometría del oxígeno



		THE ST I AT A AND I	حمد معاد میں دادی ہے جو دالے د	
T_aire (K)	y_aire()	T_comb (IC)	y_hidr(-)	yagua(-)
863.0000	0.2100	1050.0000	0.8900	0.1100
868 8479	0.2003	1053-0250	0.7009	0.2993
979 1476	0 1957	1059 0950	0 6776	<b>A</b> 3225
000 2204	B 4022	10CE 19ER	0 2012	0.3400
868.2371	0.1724	1002.1720	0.0310	0.3103
846.3322	0.1871	1071.1750	0.6225	0.3///
<b>900.4</b> 314	0.1864	1077.2260	0,5890	0.4104
918.5273	0.1039	1083.2760	0.5531	0.4471
928 6226	0 1916	1009 3260	0.5118	0.4884
020.040	0.1010	4005 3720	0.0110	0 0 40
938.7175	0-1774	1073.3700	0.4030	0.0370
948.8143	0.1774	1101.4260	0.4137	0.5866
958.9113	0.1754	1107.4760	0.3554	0.6449
969 8050	0 1236	1113 5260	Ø 29 <b>0</b> 0	0 7103
070 4040	0.1130	1110 5768	0 2167	0 7037
979.1017	0.1710	1117-3700	0.2107	0.7037
989.1900	0,1701	1125.6270	0.1J4J	0.8661
1150.0000	0.1700	1150.0800	0.1335	0.8665
			*****	*
ETACUL	nabais(U)	and total(U)	II tot(II)	DEN CORR MUD(0/cm2)
Elu(0)		a Mart Olarvy	5-10-10/	
1.3008	0.8433E-01	U.4125E-U1	1.1753	0.1560
1.2315	0.8064E-01	0.4145E-01	1.1095	0.1560
1 2250	0 7382F-01	Ø 4196F-01	1 1097	0.1561
1 9101	0 C7C0E_01	0 4096 F-01	1 1002	0 1563
1.2101	0.07000-01	0.14401-01	1.1002	0.1303
1.2107	0.6214E-01	0.4267E-01	1.1057	0.1564
1.2020	0.5715E-01	0.4307E-01	1.1026	0.1565
1.1942	Ø.5263E~Ø1	0_4348E-01	1_0981	Ø.1567
1 1040	0 A0EAE04	A 4300E_04	1 0024	0 1000
1-1040	0.40046-01	U. 1300E-01	1.0723	0.1307
1.1743	0.448JE-01	0.442BE-01	1.0052	0.1570
1.1625	0.4146E-01	0.4469E-01	1.0763	0.1572
1 1486	A 38397-A1	0 4589F~01	1 9651	0 1574
4 4 3 4 0	0 35/05 04	0.10072 01 0.4FF07 01	1 0000	A 4896
1.1317	0.3560E-01	0.45501-01	1.0508	0.12/0
1.1102	0,3306E- <b>0</b> 1	0.4590E~01	1.0313	0.1570
1.0783	0.3073E-01	0.4631E-01	1.0012	0.1581
1 0000	0 1450E-01	0 51958-01	1 9116	0 1619
1.0/1/	DILIGE DI	OIJIUJE DI		0.1017
				•
– Voltaje tota	al promodio=	1.0815 (V)		
Densidad de	corriente-	0.1548 (A/c)	m2)	
MANAGE MANAGEMENT NAME				
		,		
i_nueva prom	nedio= 0.1	57Z (H/Cm2)		
_ 1_nueva prom	nedio = 0.1	572 (H/cm2)		
_ i_nueva prom	nedio = _ 0.1	572 (H/cm2)		
_ i_nueva prom	nedio= U.1	572 (H/Cm2)		
_ 1_nueva prom	nedio= 0.1	T_comb_(K)	y_hidr(-)	y_agua(-)
_ 1_nueva prom 	nedio= 0.1 y_aire(-) 0.2100	T_comb (K) 1058.0000	y_hidr(-) 0.8900	y_agua(-) 0.1100
	nedio= 0.1 y_aire(-) 0.2100 0.2003	T_comb (K) 1058.0000 1052.9071	y_hidr(-) 8.8900 8.7008	y_agua<-> 0.1100 0.2993
_ 1_nueva prom T_aire (N) 863.0000 867.8597 877.5789	y_aire(-) 9.2100 0.2003 0.1957	T_comb (K) 1058.0000 1052.9071 1052.9671	y_hidr(-) 0.8900 0.7008 0.6726	y_agua(-) 0.1100 0.2993 8 3225
	y_aire(-) 9.2100 0.2003 0.1957 0.1957	T_comb (K) 1058.0000 1052.9071 1058.0620	y_hidr(-) 0.8900 0.7008 0.6776 0.644	y_agua(-) Ø.1100 Ø.2293 Ø.3225 Ø.2405
	v_aire(-) 9.2100 9.2003 0.1957 0.1922	T_comb (K) 1058.9000 1052.9071 1058.9620 1064.9370	y_hidr(-) 0.8900 0.7008 0.6776 0.6516	y_agua(-) 0.1100 0.2993 0.3225 0.3485
	wedio = 0.1 9_aire(-) 0.2100 0.2003 0.1957 0.1922 0.1921	T_comb (K) 1058.9000 1052.9071 1058.9620 1064.9370 1070.9110	y_hidr(-) 0.8900 0.7000 0.6516 0.6516 0.6225	y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777
1_nueva pror 863.0000 867.8597 877.5789 897.2980 897.2980 997.8179 906.7374	nedio = 0.1 9.2100 0.2003 0.1957 0.1957 0.1922 0.1991 0.1864	T_comb (K) 1058.9000 1052.9971 1058.9620 1064.9370 1070.9110 1076.8060	y_hidr(-) 0.8900 0.7008 0.6776 0.6516 0.6225 0.5898	y_agua<-> 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104
1_nueva prom 863.0000 067.0597 877.5789 897.2980 097.0179 906.7374 916.4568	nedio = 0.1 9_aire(-) 0.2100 0.2003 0.1957 0.1922 0.1991 0.1064 0.1839	T_comb (K) 1058.0000 1052.9071 1058.9620 1064.9370 1070.9110 1076.8060 1082.8600	y_hidr(-) 8.8900 0.7008 0.6776 0.6516 0.6225 0.5898 0.531	y_agua(-) 0.1100 0.2993 8.3225 0.3485 0.3777 0.4104 9.4471
1_nueva prom 863.00000 867.0597 877.5789 897.2980 897.6179 906.7374 916.4568 924.4753	<pre>hedio = 0.1 y_aire(-) 0.2100 0.2003 0.1957 0.1922 0.1991 0.1864 0.1839 0.1816</pre>	T_comb (K) 1058.0000 1052.9071 1058.9620 1064.9370 1076.9110 1076.8060 1082.8600 1082.8600	y_hidr(-) 0.8900 0.7000 0.6776 0.6516 0.6225 0.5878 0.5531 0.5531	y_agua(-) 0.1100 0.2293 0.3225 0.3485 0.3777 0.4104 0.4471 0.4421
1_nueva prom 863.0000 067.0597 877.5789 897.2980 097.0179 906.7374 916.4568 926.1757	hedio = 0.1 y_aire(-) 0.2100 0.2003 0.1957 0.1922 0.1991 0.1864 0.1839 0.1816	T_comb (K) 1058.9000 1052.9071 1058.9620 1064.9370 1070.9110 1076.8060 1082.8600 1088.8350	y_hidr(-) 0.8900 0.7000 0.6776 0.6516 0.6225 0.5890 0.5531 0.5518	y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884
1_nueva prom 863.0000 867.8597 877.5789 897.2980 997.0179 906.7374 916.4568 926.1757 935.0940	<pre>hedio = 0.1 y_aire(-) 0.2100 0.2003 0.1957 0.1922 0.1891 0.1864 0.1839 0.1816 0.1794</pre>	T_comb (K) 1058.0000 1052.9071 1058.9620 1064.9370 1070.9110 1076.0060 1082.8600 1088.0350 1094.8101	y_hidr(-) 0.8900 0.6776 0.6516 0.6225 0.5898 0.5531 0.5118 0.4656	y_agua(-) Ø.1100 Ø.2993 Ø.3225 Ø.3485 Ø.3777 Ø.4104 Ø.4471 Ø.4884 Ø.5346
1_nueva prom 863.0000 867.0597 877.5789 897.2980 997.0179 906.7374 916.4568 926.1757 935.0940 945.6144	nedio - U.1 <u>y_aire(-)</u> 0.2100 0.2003 0.1957 0.1922 0.1991 0.1864 0.1839 0.1816 0.1794 0.1774	T_comb (K) 1058.9000 1052.9971 1058.9620 1064.9370 1070.9110 1076.0060 1082.8600 1088.8350 1094.8101 1100.7841	y_hidr(-) 0.8900 0.7000 0.6776 0.6516 0.6225 0.5890 0.5531 0.5118 0.4656 0.44137	y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5346 0.5866
1_nueva prom 863.0000 067.8597 877.5789 897.2980 097.0179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350	<pre>hedio = 0.1 y_aire(-) 0.2100 0.2003 0.1957 0.1922 0.1991 0.1839 0.1816 0.1839 0.1816 0.1794 0.1774 0.1754</pre>	T_comb (K) 1058.9000 1052.9071 1058.9620 1064.9370 1070.9110 1076.8060 1082.8600 1082.8600 1084.8350 1094.8101 1100.7841 1106.7590	y_hidr(-) 0.8900 0.7008 0.6776 0.6516 0.6225 0.5890 0.5531 0.5118 0.4656 0.4137 0.3554	y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5346 0.5866 0.6449
1_nueva prom 863.0000 867.8597 877.5789 897.2980 897.2980 897.2980 997.6179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.22	nedio = 0.1 9.2100 0.2003 0.1957 0.1957 0.1922 0.1991 0.1864 0.1839 0.1816 0.1794 0.1774 0.1774 0.1254 0.1254	T_comb (K) 1058.9000 1052.9071 1058.9620 1064.9370 1070.9110 1076.8060 1082.8600 1098.8350 1098.8350 1098.8350 1098.8350 1098.7341 1106.7590 1112 7330	y_hidr(-) 0.8900 0.7000 0.6776 0.6516 0.6225 0.5890 0.5531 0.5118 0.4656 0.4137 0.3554 0.2554	y_agua<-> 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5866 0.6449 0.7103
1_nueva prom 863.0000 067.0597 877.5789 897.2980 097.0179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.0522	hedio = 0.1 y_aire(-) 0.2100 0.2003 0.1957 0.1922 0.1991 0.1864 0.1839 0.1816 0.1794 0.1774 0.1754 0.1736 0.1736	T_comb (K) 1058.9000 1052.9071 1058.9620 1064.9370 1076.9110 1076.8060 1082.8600 1082.8600 1084.8101 1109.7841 1106.7590 1112.7330	y_hidr(-) 0.8900 0.7000 0.6776 0.6516 0.6225 0.5890 0.5531 0.5118 0.4656 0.4137 0.3554 0.3554 0.2900	y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5346 0.5366 0.6449 0.7103 0.7103 0.7103
1_nueva prom 863.0000 067.0597 877.5789 897.2980 097.0179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.0522 974.7727	<pre>hedio = 0.1 y_aire(-) 0.2100 0.2003 0.1957 0.1922 0.1091 0.1064 0.1839 0.1816 0.1794 0.1774 0.1774 0.1736 0.1718</pre>	T_comb (K) 1058.0000 1052.9071 1058.9620 1064.9370 1076.9060 1082.8600 1082.8600 1088.8350 1094.8101 1100.7841 1106.7590 1112.7330 1118.7000	y_hidr(-) 0.8900 0.7000 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4656 0.4137 0.3554 0.3554 0.2200 0.2167	y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5346 0.5366 0.6449 0.7837
1_nueva pror 863.0000 867.0597 877.5789 897.2980 997.6179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.0522 974.7727 984.4932	nedio - U.1 <u>y_aire(-)</u> 0.2100 0.2003 0.1957 0.1922 0.1991 0.1864 0.1839 0.1816 0.1794 0.1774 0.1754 0.1736 0.1718 0.1701	T_comb (K) 1058.9000 1052.9971 1058.9620 1064.9370 1070.9110 1076.0060 1082.8600 1082.8600 1084.8101 1108.7841 1106.7590 1112.7330 1118.7080 1124.6830	y_hidr(-) 0.8900 0.7000 0.6276 0.6516 0.6225 0.5890 0.5531 0.5118 0.4656 0.4137 0.3554 0.2960 0.2167 0.1343	y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5346 0.5366 0.6449 0.7103 0.7037 0.8661
1_nueva pror 863.0000 067.0597 877.5789 897.2980 097.0179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.0522 974.7727 984.4932 1150.0000	<pre>hedio = 0.1 y_aire(-) 0.2100 0.2003 0.1957 0.1922 0.1991 0.1839 0.1816 0.1839 0.1816 0.1794 0.1774 0.1774 0.1776 0.1718 0.1700</pre>	T_comb (K) 1058.9000 1052.9071 1058.9620 1064.9370 1070.9110 1076.8060 1082.8600 1082.8600 1084.8101 1109.7841 1100.7590 1112.7330 1118.7080 1124.6830 1150.0000	y_hidr(-) 0.8900 0.7000 0.6776 0.6516 0.6225 0.5890 0.5531 0.5118 0.4656 0.4137 0.3554 0.3554 0.2900 0.2167 0.1343 0.1335	y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5346 0.5366 0.6449 0.7103 0.7837 0.8661 0.8665
1_nueva pror 863.0000 867.0000 867.0597 877.5789 897.2980 997.6179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.6522 974.7727 984.4932 1150.0000	y_aire(-)       0.2100       0.2003       0.1957       0.1957       0.1957       0.1957       0.1957       0.1957       0.1957       0.1974       0.1774       0.1774       0.1774       0.1736       0.1701       0.1700	T_comb (K) 1058.0000 1052.9071 1058.9620 1064.9370 1070.9110 1076.8060 1082.8600 1082.8600 1098.8350 1098.8350 1098.8350 1094.8101 1100.7841 1106.7590 1112.7330 1118.7080 1124.6830 1150.0000	y_hidr(-) 0.8900 0.7000 0.6776 0.6516 0.6225 0.5890 0.5531 0.5118 0.4656 0.4137 0.3554 0.2900 0.2167 0.1343 0.1355	y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5866 0.6449 0.7103 0.703 0.8661 0.8661 0.0665
1_nueva prom 863.0000 067.0597 877.5789 897.2980 097.0179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.0522 974.7727 984.4932 1150.0000	<pre>hedio = 0.1 y_aire(-) 0.2100 0.2003 0.1957 0.1922 0.1991 0.1864 0.1839 0.1816 0.1794 0.1774 0.1754 0.1736 0.1718 0.1700 0.1700</pre>	T_comb (K) 1058.9000 1052.9071 1058.9620 1064.9370 1076.9110 1076.8060 1082.8600 1082.8600 1084.8101 1106.7590 1112.7330 1118.7080 1124.6830 1150.0009	y_hidr(-) 0.8900 0.7000 0.6776 0.6516 0.6225 0.5890 0.5531 0.5118 0.4656 0.4656 0.3554 0.2900 0.2167 0.1343 0.1343 0.1335	y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5346 0.5366 0.6449 0.7103 0.7037 0.8661 0.0665 HT DEN CORP NU0(0/cm ² )
1_nueva prom 863.0000 067.8597 877.5789 897.2980 097.0179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.0522 974.7727 984.4932 1150.0000	nedio - U.1 <u>y_aire(-)</u> 0.2100 0.2003 0.1957 0.1922 0.1991 0.1864 0.1839 0.1816 0.1794 0.1774 0.1774 0.1774 0.1736 0.1736 0.1718 0.1709 0.1709	T_comb (K) 1058.9000 1052.9071 1058.9620 1064.9370 1076.8060 1082.8600 1082.8600 1088.8350 1094.8101 1108.7841 1108.7890 1112.7330 1118.7080 1124.6830 1150.0009 **********************************	<pre>y_hidr(-) 0.89900 0.7000 0.6776 0.6516 0.6225 0.5890 0.5531 0.5118 0.4656 0.4137 0.3554 0.2167 0.1343 0.1335 ************* U_tot(U) ************************************</pre>	y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5346 0.5366 0.6449 0.7103 0.7103 0.7937 0.8661 0.0665 H DEN_CORR_NUA(A/cm2)
1_nueva pror 863.0000 867.0597 877.5789 897.2980 997.6179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.0522 974.7727 984.4932 1150.0000 Eid(U) 1.3009	nedio = 0.1 9_aire(-) 0.2003 0.1957 0.1922 0.1991 0.1064 0.1839 0.1816 0.1794 0.1794 0.1774 0.1754 0.1736 0.1718 0.1700 0.1700	T_comb (K) 1058.9000 1052.9971 1058.9620 1064.9370 1070.9110 1076.0060 1082.8600 1082.8600 1084.8101 1108.7841 1106.7590 1112.7330 1112.7330 1118.7080 1124.6830 1150.0000 ********************************	y_hidr(-) 0.8900 0.7000 0.6776 0.6516 0.6225 0.5890 0.5531 0.5118 0.4656 0.4137 0.3554 0.2900 0.2167 0.1343 0.1335 ************	y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5346 0.5366 0.6449 0.7103 0.7037 0.8661 0.0665 ** DEN_CORR_NUA(A/cm2) 0.1504
1_nueva prom 863.0000 067.0597 877.5789 897.2980 097.0179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.0522 974.7727 984.4932 1150.0000 Eid(U) 1.3000 1.2315	nedio = 0.1 y_aire(-) 0.2100 0.2003 0.1957 0.1922 0.1991 0.1864 0.1839 0.1816 0.1794 0.1774 0.1774 0.1776 0.1718 0.1700 0.1700 0.1700 0.1700	T_comb (K) 1058.9000 1052.9071 1058.9620 1064.9370 1076.9110 1076.8060 1082.8600 1082.8600 1084.8101 1108.7841 1108.7841 1108.7890 1112.7330 1118.7080 1124.6830 1150.0009 **********************************	<pre>y_hidr(-) 0.8900 0.7000 0.6776 0.6516 0.6225 0.5890 0.5531 0.5118 0.4656 0.4137 0.3554 0.2900 0.2167 0.1343 0.1335 **************** U_tot(U) 1.1733 1.1075</pre>	y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5346 0.5346 0.5866 0.6449 0.7103 0.7837 0.8661 0.9665 M DEN_CORR_NUA(A/cm2) 0.1584 0.1584
1_nueva pror 863.0000 867.08597 877.5789 897.2980 997.6179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.6522 974.7727 984.4932 1150.0000 Eid(U) 1.3008 1.2315 1.2250	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T_comb (K) 1058.9000 1052.9071 1058.9620 1064.9370 1070.9110 1076.8060 1092.8600 1098.8350 1098.8350 1098.8350 1098.7341 1106.7590 1112.7330 1118.7080 1124.6830 1150.0000 ********************************	<pre>y_hidr(-) 0.8900 0.7000 0.6776 0.6516 0.6225 0.5890 0.5531 0.5118 0.4656 0.4137 0.3554 0.2167 0.1343 0.1335 ************* U_tot(U) 1.1733 1.1073</pre>	y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5866 0.6449 0.7103 0.7837 0.8661 0.9665 H DEN_CORR_NUA(A/cm2) 0.1584 0.1584 0.1584
1_nueva pror 863.0000 067.0597 877.5789 897.2980 097.0179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.0522 974.7727 984.4932 1150.0000 Eid(U) 1.30000 1.2315 1.2250 1 2101	nedio = 0.1 y_aire(-) 0.2100 0.2003 0.1957 0.1957 0.1922 0.1991 0.1864 0.1839 0.1816 0.1794 0.1774 0.1754 0.1774 0.1754 0.1778 0.178 0.1700 mohmic(U) 0.8564E-01 0.914F-01 0.7524E-01 0.914F-01	T_comb (K) 1058.9000 1052.9071 1058.9620 1064.9370 1070.9110 1076.8060 1082.8600 1082.8600 1084.8101 1100.7890 1112.7330 1118.7080 1124.6830 1150.0009 **********************************	<pre>y_hidr(-) 0.8900 0.7000 0.6776 0.6516 0.6225 0.5890 0.5531 0.5118 0.4656 0.4137 0.3554 0.2900 0.2167 0.1343 0.1335 ******************* U_tot(U) 1.1733 1.1075 1.1075 1.1061</pre>	y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5346 0.5866 0.6449 0.7103 0.7837 0.8661 0.9665 ₩ DEN_CORR_NUA(A/cm2) 0.1584 0.1584 0.1586 0.1586 0.1586 0.1586
1_nueva prom 863.0000 867.0597 877.5789 877.5789 897.2980 897.2980 897.2980 897.2980 897.2980 997.5789 996.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.0522 974.7727 984.4932 1150.0000 Eid(U) 1.3000 1.2315 1.2250 1.2101 1 2107	nedio = 0.1 9_aire(-) 0.2100 0.2003 0.1957 0.1922 0.1991 0.1864 0.1839 0.1816 0.1794 0.1774 0.1774 0.1774 0.1774 0.1778 0.1718 0.1791 0.1700 .1700 .1700 .1700 0.1760 0.1724 0.1700	T_comb (K) 1058.9000 1052.9071 1058.9620 1064.9370 1076.9110 1076.8060 1082.8600 1098.8350 1094.8101 1108.7390 1112.7330 1112.7330 1118.7080 1124.6030 1150.0009 **********************************	<pre>y_hidr(-) 0.8990 0.7000 0.6776 0.6516 0.6225 0.5870 0.5531 0.5118 0.4656 0.4137 0.3554 0.2167 0.1343 0.1335 ************** U_tot(U) 1.1733 1.1073 1.1073 1.1073</pre>	y_agua(-) Ø.1100 Ø.2993 Ø.3225 Ø.3485 Ø.3777 Ø.4104 Ø.4471 Ø.4884 Ø.5346 Ø.5866 Ø.6449 Ø.7103 Ø.7937 Ø.8661 Ø.0665 ₩ DEN_CORR_NUA(A/cm2) Ø.1584 Ø.1584 Ø.1587 Ø.1587 Ø.1587
1_nueva prom 863.0000 867.0597 877.5789 897.2980 997.6179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.0522 974.7727 984.4932 1150.0000 1.2315 1.2250 1.2107 1.2107	nedio = 0.1 9_aire(-) 0.2100 0.2003 0.1957 0.1922 0.1991 0.1864 0.1839 0.1816 0.1794 0.1774 0.1774 0.1774 0.1736 0.1718 0.1781 0.1780 0.1780 0.1790 0.1790 0.1790 0.1790 0.1790 0.1796 0.1790 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796 0.1796	T_comb (K) 1058.9000 1052.9971 1058.9620 1064.9370 1076.9110 1076.9060 1082.8600 1082.8600 1082.8600 1084.8101 1106.7590 1112.7330 1112.7330 1112.7330 1124.6830 1150.0000 ********************************	<pre>y_hidr(-) 0.8990 0.7008 0.6776 0.6516 0.6225 0.5898 0.5531 0.5118 0.5118 0.4656 0.4137 0.3554 0.2900 0.2167 0.1343 0.1335 U_tot(U) 1.1733 1.1075 1.1073 1.1061 1.1037 1.1061</pre>	y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5866 0.6449 0.7103 0.7037 0.8661 0.0665 M DEN_CORR_NUA(A/cm2) 0.1584 0.1584 0.1586 0.1588 0.1588
1_nueva prom 863.0000 067.0597 877.5789 897.2980 097.0179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.0522 974.7727 984.4932 1150.0000 Eid(U) 1.3000 1.2315 1.2250 1.2101 1.2107 1.2020	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T_comb (K) 1058.0000 1052.9071 1058.9620 1064.9370 1076.9110 1076.8060 1082.8600 1082.8600 1084.8101 1100.7841 1100.7841 1100.7841 1100.7841 1106.7590 1112.7330 1118.7080 1124.6830 1150.0000 ********************************	<pre>y_hidr(-) 0.89900 0.7000 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4656 0.4137 0.3554 0.2167 0.1343 0.1335 ************** U_tot(U) 1.1733 1.1075 1.1073 1.1005 1.1005</pre>	<pre>y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5346 0.6449 0.7103 0.7837 0.8661 0.0665 ** DEN_CORR_NUA(A/cm2) 0.1584 0.1584 0.1587 0.1588 0.1589</pre>
1_nueva prom 863.0000 867.0597 877.5789 897.2980 997.8179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.6522 974.7727 984.4932 1150.0000 Eid(U) 1.3000 1.2315 1.2250 1.2107 1.2028 1.1942	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T_comb (K) 1058.9000 1052.9071 1058.9620 1064.9370 1070.9110 1076.8060 1082.8600 1082.8600 1098.8350 1098.8350 1098.8350 1098.8350 1097.941 1100.7941 1100.7941 112.7330 1118.7080 1124.6830 1124.6830 1150.0000 ********************************	<pre>y_hidr(-) 0.8990 0.7000 0.6776 0.6516 0.6225 0.5890 0.5531 0.5118 0.4656 0.4137 0.3554 0.2900 0.2167 0.1343 0.1335 *************** U_tot(U) 1.1733 1.1073 1.1073 1.1095 1.0961</pre>	<pre>y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5866 0.6449 0.7103 0.7837 0.8661 0.9665 W DEN_CORR_NUA(A/cm2) 0.1584 0.1584 0.1588 0.1588 0.1589 0.1589 0.1591</pre>
1_nueva prom 863.0000 867.0597 877.5789 897.5789 897.6179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.0522 974.7727 984.4932 1150.0009 Eid(U) 1.3000 1.2315 1.2250 1.2107 1.2020 1.2107 1.2020 1.1942 1.1848	nedio = 0.1 y_aire(-) 0.2100 0.2003 0.1957 0.1957 0.1991 0.1064 0.1839 0.1016 0.1794 0.1794 0.1774 0.1774 0.1774 0.1776 0.1736 0.1718 0.1700 mohmic(U) 0.8564E-01 0.8564E-01 0.5914E-01 0.5914E-01 0.5902E-01 0.5002E-01	T_comb (K) 1058.9000 1052.9071 1058.9620 1064.9370 1070.9110 1076.0060 1082.8600 1082.8600 1082.8600 1084.8101 1100.7841 1100.7841 1100.7841 1106.7590 1112.7330 1112.7330 1118.7080 1124.6830 1150.0009 **********************************	<pre>y_hidr(-) 0.8900 0.7000 0.6776 0.6516 0.6225 0.5890 0.5531 0.5118 0.4656 0.4137 0.3554 0.2900 0.2167 0.1343 0.1335 ***********************************</pre>	<pre>y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5346 0.5346 0.6449 0.7103 0.7837 0.8661 0.9665 ** DEN_CORR_NUA(A/cm2) 0.1584 0.1584 0.1589 0.1599 0.1591 0.1593</pre>
1_nueva prom 863.0000 867.0000 867.0597 877.5789 897.2980 897.2980 997.6179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.6522 974.7727 984.4932 1150.0000 Eid(U) 1.3000 1.2315 1.2250 1.2107 1.2070 1.2070 1.2020 1.1942 1.1848 1.1243	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T_comb (K) 1058.9000 1052.9071 1058.9620 1064.9370 1070.9110 1076.8060 1092.8600 1098.9350 1098.9350 1098.9350 1094.8101 1100.7841 1100.7841 1100.7841 112.7330 1112.7330 1112.7330 1112.7330 1112.7330 1112.7330 1118.7080 1124.6630 1150.0009 **********************************	<pre>y_hidr(-) 0.89900 0.70000 0.6776 0.6516 0.6225 0.5890 0.5531 0.5118 0.4656 0.4137 0.3554 0.2167 0.1343 0.2167 0.1343 0.1335 xxxxxxxxxxxxxxxxx U_tot(U) 1.1733 1.1073 1.1073 1.1095 1.09961 1.09961 1.09961 1.09961 1.09961</pre>	y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5866 0.6449 0.7837 0.8661 0.9665 W DEN_CORR_NUA(A/cm2) 0.1584 0.1584 0.1587 0.1588 0.1589 0.1591 0.1593 0.1594
1_nueva prom 863.0000 867.0597 877.5789 897.2980 997.6179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.0522 974.7727 984.4932 1150.0000 1.2315 1.2250 1.2107 1.2020 1.1942 1.1648 1.1743	hedio = 0.1 y_aire(-) 0.2100 0.2003 0.1957 0.1922 0.1991 0.1064 0.1839 0.1816 0.1794 0.1794 0.1794 0.1774 0.1794 0.1736 0.1718 0.1700 mohmic(U) 0.9564E-01 0.6914E-01 0.5962E-01 0.5002E-01 0.5002E-01 0.4200E-01	T_comb (K) 1058.9000 1052.9971 1058.9620 1064.9370 1070.9110 1076.0060 1082.8600 1082.8600 1082.8600 1084.8101 1100.7841 1106.7590 1112.7330 1112.7330 1118.7080 1124.6830 1150.0000 ********************************	<pre>y_hidr(-) 0.8900 0.7000 0.6776 0.6516 0.6225 0.5890 0.5531 0.5118 0.4656 0.4137 0.3554 0.2900 0.2167 0.1343 0.1335 1.1073 1.1073 1.1073 1.1005 1.1009 1.1009 1.00903 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032</pre>	<pre>y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5866 0.6449 0.7103 0.7037 0.8661 0.0665 ** DEN_CORR_NUA(A/cm2) 0.1584 0.1584 0.1587 0.1588 0.1589 0.1599 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.159</pre>
1_nueva prom 863.0000 867.0597 877.5789 877.5789 897.2980 897.2980 897.2980 897.2980 897.274 916.4568 926.1757 935.0940 945.6144 955.3350 965.0522 974.7727 984.4932 1150.0000 1.2000 1.2000 1.2101 1.2020 1.2107 1.2020 1.1942 1.1648 1.1743 1.1625	nedio = 0.1 9_aire(-) 0.2100 0.2003 0.1957 0.1957 0.1991 0.1864 0.1839 0.1816 0.1774 0.1774 0.1774 0.1774 0.1774 0.1778 0.1718 0.1798 0.1718 0.1798 0.1718 0.1798 0.1718 0.1799 0.1718 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798	T_comb (K) 1058.9000 1052.9071 1058.9620 1064.9370 1076.8060 1082.8600 1082.8600 1098.8350 1094.8101 1108.7390 1112.7330 1118.7080 1112.7330 1118.7080 1124.6030 1150.0009 **********************************	<pre>y_hidr(-) 0.89900 0.70000 0.6776 0.6516 0.6225 0.5890 0.5531 0.5118 0.4656 0.4137 0.3554 0.2167 0.1343 0.23554 0.2167 0.1343 0.1335 ***********************************</pre>	<pre>y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5346 0.5346 0.6449 0.7837 0.8661 0.0665 0.1584 0.1584 0.1584 0.1587 0.1588 0.1589 0.1593 0.1593 0.1594 0.1594 0.1596</pre>
1_nueva prom 863.0000 867.0597 877.5789 897.2980 997.6179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.6522 974.7727 984.4932 1150.0000 1.2315 1.2250 1.2101 1.2107 1.2020 1.1942 1.1648 1.1743 1.1625 1.1486	nedio       0.11         9.2108       0.2003         0.1957       0.1957         0.1991       0.1964         0.1064       0.1839         0.1816       0.1794         0.1774       0.1754         0.1736       0.1736         0.1736       0.1736         0.1736       0.1791         0.1724       0.1736         0.1724       0.1724         0.1724       0.1724         0.1724       0.1726         0.1724       0.1726         0.1724       0.1726         0.1724       0.1726         0.1724       0.1726         0.1724       0.1726         0.1724       0.1726         0.1724       0.1726         0.1724       0.1726         0.1724       0.1726         0.1724       0.1726         0.1724       0.1726         0.1724       0.1726         0.1724       0.1726         0.50524E-01       0.5065E-01         0.5002E-01       0.4620E-01         0.4209E-01       0.3979E-01	T_comb (K) 1058.9000 1052.9071 1058.9620 1064.9370 1070.9110 1076.0060 1082.8600 1082.8600 1084.8101 1100.7941 1100.7941 1100.7941 1100.7941 1100.7941 1124.6930 1124.6930 1124.6930 1124.6930 1124.6930 1124.6930 1124.6930 1124.6930 1124.6930 1124.6930 1124.6930 1124.6930 1124.6930 1124.6930 1124.6930 1124.6930 1124.6930 1124.6930 1124.6930 1124.6930 1124.6930 1124.6930 11495E-01 0.4205E-01 0.4405E-01 0.4405E-01 0.4405E-01 0.4524E-01 0.4564E-01	<pre>y_hidr(-) 0.8990 0.7000 0.6776 0.6516 0.6225 0.5890 0.5531 0.5118 0.4137 0.3554 0.4137 0.3554 0.4137 0.3554 0.4137 0.1343 0.1335 ***********************************</pre>	<pre>y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5866 0.6449 0.7103 8.7837 0.8661 0.9665 DEN_CORR_NUA(A/cm2) 0.1584 0.1584 0.1586 0.1587 0.1588 0.1589 0.1599 0.1593 0.1594 0.1594 0.1594 0.1596 0.1596 0.1596 0.1598</pre>
1_nueva prom 863.0000 067.0597 877.5789 897.2980 097.0179 906.7374 916.4568 926.1757 935.0940 945.6144 945.6144 955.3350 965.0522 974.7727 984.4932 1150.0000 1.2315 1.2250 1.2107 1.2020 1.2107 1.2020 1.1942 1.1648 1.1743 1.1625 1.1486 1.1319	nedio = 0.1 y_aire(-) 0.2100 0.2003 0.1957 0.1957 0.1991 0.1064 0.1839 0.1016 0.1794 0.1794 0.1774 0.1754 0.1736 0.1718 0.1700 .1700 .1700 .1700 .1700 .0.1700 .0.1545 0.1736 0.1718 0.1700 .0.1700 .0.1545 0.1700 .0.1545 0.1700 .0.1524E-01 0.6363E-01 0.5865E-01 0.5802E-01 0.4289E-01 0.3979E-01 0.3696E-01	T_comb (K) 1058.9000 1052.9071 1058.9620 1064.9370 1070.9110 1076.9660 1082.8600 1082.8600 1082.8600 1082.8600 1084.8101 1100.7841 1100.7841 1100.7841 1106.7590 1112.7330 1112.7330 1118.7080 1124.6830 1150.0009 **********************************	<pre>y_hidr(-) 0.89900 0.7000 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4656 0.4137 0.3554 0.2167 0.1343 0.1335 *************** U_tot(U) 1.1733 1.1075 1.1073 1.1095 1.10993 1.0903 1.0932 1.0632 1.0632 1.0632 1.0632</pre>	<pre>y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5346 0.6449 0.7103 0.7837 0.8661 0.0665 ** DEN_CORR_NUA(A/cm2) 0.1584 0.1584 0.1584 0.1587 0.1587 0.1588 0.1589 0.1599 0.1593 0.1594 0.1596 0.1596 0.1596 0.1598 0.1596 0.1598</pre>
1_nueva prom 863.0000 867.08597 877.5789 897.2980 997.6179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.0522 974.7727 984.4932 1150.0000 1.2315 1.2250 1.2107 1.2107 1.2107 1.2028 1.1942 1.1648 1.1319 1.1319 1.1102	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T_comb (K) 1058.9000 1052.9071 1058.9620 1064.9370 1070.9110 1076.8060 1082.8600 1098.8350 1098.8350 1098.8350 1098.8350 1098.8350 1098.8350 1098.8350 1098.8350 1098.8350 1098.8350 1098.8350 1098.8350 1098.8350 1098.8350 1098.8350 1098.8350 1098.8350 1112.7330 1118.7080 1124.6830 1124.6830 1150.0000 ********************************	<pre>y_hidr(-) 0.8900 0.7000 0.6776 0.6516 0.6225 0.5890 0.5531 0.5118 0.4656 0.4137 0.3554 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.1335 ***********************************</pre>	<pre>y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5866 0.6449 0.7103 0.7837 0.8661 0.9665 </pre>
1_nueva prom 863.0000 867.0597 877.5789 897.2980 997.6179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.0522 974.7727 984.4932 1150.0000 Eid(U) 1.3000 1.2315 1.2250 1.2107 1.2020 1.1942 1.1648 1.1743 1.1625 1.1486 1.1319 1.1102	hedio = 0.1 y_aire(-) 0.2100 0.2003 0.1957 0.1957 0.1922 0.1991 0.1064 0.1839 0.1816 0.1794 0.1794 0.1794 0.1774 0.1754 0.1736 0.1718 0.1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .1700 .17	T_comb (K) 1058.9000 1052.9971 1058.9620 1064.9370 1070.9110 1076.0060 1082.8600 1082.8600 1082.8600 1082.8600 1084.8101 1100.7841 1100.7841 1106.7590 1112.7330 1112.7330 1112.7330 1112.7330 1112.7330 1124.6830 1124.6830 1150.0000 ********************************	y_hidr(-) 0,8900 0.7000 0.6776 0.6516 0.6225 0.5890 0.5531 0.5118 0.4656 0.4137 0.3554 0.2900 0.2167 0.1343 0.1335 1.1073 1.1073 1.1073 1.1073 1.1061 1.1039 1.10951 1.0951 1.0951 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0743 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.0744 1.	<pre>y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5866 0.6449 0.7103 0.7037 0.8661 0.0665 ** DEN_CORR_NUA(A/cm2) 0.1584 0.1584 0.1584 0.1589 0.1589 0.1599 0.1591 0.1594 0.1594 0.1594 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.159</pre>
1_nueva prom 863.0000 867.0000 867.0000 867.0597 877.5789 897.2980 997.6179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.0522 974.7727 984.4932 1150.0000 Eid(U) 1.3000 1.2315 1.2250 1.2107 1.2107 1.2070 1.2107 1.2020 1.1942 1.1648 1.1743 1.1625 1.1486 1.1319 1.1102 1.0783	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T_comb (K) 1058.9000 1052.9071 1058.9620 1064.9370 1070.9110 1076.8060 1082.8600 1098.9350 1098.9350 1098.9350 1094.8101 1100.7841 1100.7841 1100.7841 1108.7890 1112.7330 1118.7080 1112.7330 1118.7080 1124.6030 1150.0009 **********************************	<pre>y_hidr(-) 0.89900 0.70000 0.6776 0.6516 0.6225 0.5890 0.5531 0.5118 0.4656 0.4137 0.3554 0.2900 0.2167 0.1343 0.1335 ***********************************</pre>	<pre>y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5346 0.5866 0.6449 0.7837 0.8661 0.0665 0.1584 0.1584 0.1584 0.1588 0.1588 0.1589 0.1599 0.1599 0.1594 0.1599 0.1599 0.1599 0.1596 0.1596 0.1596 0.1596 0.1600 0.1602 0.1604</pre>
1_nueva prom 863.0000 867.0597 877.5789 897.2980 997.6179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.0522 974.7727 984.4932 1150.0000 1.2315 1.2250 1.2107 1.2020 1.1942 1.1948 1.1743 1.1625 1.1486 1.1319 1.1102 1.0779	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T_comb (K) 1058.9000 1052.9971 1058.9620 1064.9370 1076.9110 1076.9110 1076.0060 1082.8600 1082.8600 1084.8101 1106.7841 1106.7841 1106.7841 1106.7840 1112.7330 1112.7330 1112.7330 1124.6830 1124.6830 1150.0000 ********************************	<pre>y_hidr(-) 0,8900 0.7008 0.6776 0.6516 0.6225 0.5899 0.5531 0.5118 0.4656 0.4137 0.3554 0.2167 0.1343 0.1335 </pre>	<pre>y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5866 0.6449 0.7103 8.7837 0.8661 0.9665 M DEN_CORR_NUA(A/cm2) 0.1584 0.1584 0.1584 0.1588 0.1589 0.1589 0.1591 0.1594 0.1594 0.1594 0.1599 0.1599 0.1599 0.1599 0.1599 0.1599 0.1599 0.1599 0.1599 0.1599 0.1599 0.1602 0.1604 0.1644</pre>
1_nueva prom 863.0000 667.0597 877.5789 877.5789 897.2980 897.8179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.0522 974.7727 984.4932 1150.0000 1.2305 1.2250 1.2101 1.2020 1.2107 1.2020 1.1942 1.1648 1.1743 1.1625 1.1486 1.1319 1.1102 1.0763 1.0779	nedio = 0.1 9.2100 0.2003 0.1957 0.1922 0.1991 0.1864 0.1839 0.1816 0.1774 0.1774 0.1774 0.1774 0.1774 0.1774 0.1778 0.1778 0.1736 0.1718 0.1791 0.1769 0.1778 0.1778 0.1778 0.1778 0.1778 0.1778 0.1778 0.1778 0.1778 0.1778 0.1778 0.1778 0.1778 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.1792 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.1788 0.1788 0.1788 0.1788 0.1788 0.1788 0.1788 0.1788 0.1788 0.1788 0.1788 0.1788	T_comb (K) 1058.9000 1052.9071 1058.9620 1064.9370 1076.8060 1082.8600 1082.8600 1092.8600 1092.8600 1094.8101 1100.7841 1100.7841 1100.7841 1100.7841 112.7330 1112.7330 1112.7330 1112.7330 1118.7080 1124.6830 1150.0009 **********************************	<pre>y_hidr(-) 0.89900 0.70000 0.6776 0.6516 0.6225 0.5890 0.5531 0.5118 0.4656 0.4137 0.3554 0.2167 0.1343 0.23554 0.2167 0.1343 0.1335 ***********************************</pre>	<pre>y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4884 0.5346 0.5346 0.5346 0.6449 0.7837 0.8661 0.0665 0.1584 0.1584 0.1584 0.1588 0.1587 0.1588 0.1589 0.1599 0.1599 0.1599 0.1599 0.1599 0.1599 0.1600 0.1604 0.1604 0.1604</pre>
1_nueva prom 863.0000 867.0597 877.5789 897.2980 997.8179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.6522 974.7727 984.4932 1150.0000 1.2315 1.2250 1.2107 1.2028 1.1942 1.1848 1.1743 1.1625 1.486 1.1319 1.1102 1.0779 Wn Itale test	hedio = 0.1 9_aire(-) 0.2100 0.2003 0.1957 0.1922 0.1991 0.1064 0.1839 0.1816 0.1774 0.1774 0.1774 0.1774 0.1774 0.1774 0.1774 0.1774 0.1774 0.1774 0.1774 0.1774 0.1774 0.1774 0.1774 0.1774 0.1774 0.1774 0.1774 0.1774 0.1774 0.178 0.1795 0.1795 0.1795 0.1795 0.1796 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795 0.1795	T_comb (K) 1058.9000 1052.9071 1058.9620 1064.9370 1076.9110 1076.0060 1082.8600 1082.8600 1082.8600 1098.8350 1098.8350 1098.8350 1098.8350 1097.941 1100.7841 1100.7841 1100.7841 112.7330 1118.7080 1124.6830 1124.6830 1124.6830 1124.6830 1124.72-01 0.4207E-01 0.4207E-01 0.4207E-01 0.426E-01 0.426E-01 0.4405E-01 0.4405E-01 0.4405E-01 0.4564E-01 0.4604E-01 0.4604E-01 0.4604E-01 0.4603E-01 0.4603E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5262E-01 0.5562E-01 0.5562E-01 0.5562E-01 0.5562E-01 0.5562E-01 0.5562E-01 0.5562E-01 0.5562E-01 0.5562E-01 0.5562E-0	<pre>y_hidr(-) 0.8900 0.7000 0.6776 0.6516 0.6225 0.5890 0.5531 0.5118 0.4137 0.3554 0.2900 0.2167 0.1343 0.1335 ***********************************</pre>	<pre>y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5866 0.6449 0.7103 0.8661 0.8665 0.8661 0.8665 0.1584 0.1584 0.1584 0.1588 0.1588 0.1589 0.1599 0.1599 0.1594 0.1594 0.1594 0.1594 0.1594 0.1594 0.1596 0.1599 0.1594 0.1596 0.1599 0.1594 0.1596 0.1599 0.1600 0.1602 0.1604 0.1644</pre>
1_nueva prom 863.0000 867.0597 877.5789 897.2980 897.6179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.0522 974.7727 984.4932 1150.0009 Eid(U) 1.3000 1.2315 1.2250 1.2107 1.2020 1.2107 1.2020 1.1742 1.1648 1.1743 1.1625 1.1486 1.1319 1.1102 1.0779 Homestand data	nedio       0.13         y_aire(-)       0.2003         0.2003       0.1957         0.1957       0.1957         0.1957       0.1957         0.1957       0.1957         0.1957       0.1957         0.1957       0.1922         0.1991       0.1664         0.1991       0.1664         0.1794       0.1774         0.1754       0.1736         0.1769       0.1788         0.1700       0.1760         wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww	T_comb (K) 1058.0000 1052.9071 1058.9620 1064.9370 1076.9060 1082.8600 1082.8600 1082.8600 1094.8101 1106.7590 1112.7338 1118.7080 1124.6830 1150.0000 ********************************	<pre>y_hidr(-) 0.89900 0.7000 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4656 0.4137 0.3554 0.2167 0.1343 0.1335 ***********************************</pre>	<pre>y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5346 0.6449 0.7837 0.8661 0.0665 ** DEN_CORR_NUA(A/cm2) 0.1584 0.1584 0.1584 0.1587 0.1587 0.1588 0.1589 0.1599 0.1599 0.1599 0.1599 0.1599 0.1599 0.1599 0.1599 0.1599 0.1599 0.1599 0.1599 0.1600 0.1604 0.1644</pre>
1_nueva prom 863.0000 867.08597 877.5789 897.2980 897.2980 897.2980 997.6179 906.7374 916.4568 926.1757 935.0940 945.6144 955.3350 965.0522 974.7727 984.4932 1150.0000 1.2915 1.2250 1.2107 1.2070 1.2070 1.2020 1.1942 1.1648 1.1319 1.1625 1.1486 1.1319 1.1022 1.0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .0779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .00779 .0077	ned1o =       0.13         9.2108       0.2003         0.1957       0.1957         0.1957       0.1957         0.1957       0.1957         0.1957       0.1957         0.1957       0.1957         0.1957       0.1922         0.1957       0.1922         0.1957       0.1922         0.1957       0.1922         0.1916       0.1924         0.1916       0.1774         0.1774       0.1774         0.1736       0.1736         0.1736       0.1736         0.1736       0.1736         0.1736       0.1736         0.1736       0.1736         0.1736       0.1736         0.1701       0.3564E-01         0.5914E-01       0.5965E-01         0.5412E-01       0.5092E-01         0.5676E-01       0.3676E-01         0.3676E-01       0.3676E-01         0.3676E-01       0.347E-01         0.347E-01       0.1472E-01         0.1472E-01       0.1472E-01         0.1472E-01       0.1472E-01	T_comb (K) 1058.9000 1052.9071 1058.9620 1064.9370 1070.9110 1076.0060 1082.8600 1098.8350 1098.8350 1098.8350 1098.8350 1098.8350 1098.8350 1097.941 1100.7841 1100.7841 1100.7841 1100.7841 112.7330 1118.7080 1124.6030 1124.6030 1150.0009 **********************************	<pre>y_hidr(-) 0.8900 0.7000 0.6776 0.6516 0.6225 0.5690 0.5531 0.5118 0.4656 0.4137 0.3554 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 1.1073 1.1073 1.1073 1.1073 1.1073 1.1095 1.0961 1.0903 1.0852 1.0489 1.0294 0.9994 1.0106 ***********************************</pre>	<pre>y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5346 0.6449 0.703 0.703 0.703 0.6661 0.9665 0.1584 0.1584 0.1584 0.1588 0.1588 0.1589 0.1599 0.1593 0.1593 0.1594 0.1596 0.1596 0.1596 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1598 0.1</pre>

i_nueva promedio- 0.1596 (A/cm2)

230

T aire (K)	u = aire(-)	T comb (K)	v hidr(-)	u_agua(-)	
863 0000	0.2100	1050.0000	0.6900	0.1100	
867.6686	0.2003	1852.9490	0.2009	0.2993	
877 0055	Å 1957	1058.8470	0.6276	0.3225	
886 3423	Ø 1922	1864.7448	0.6516	0.3405	
895 6881	0 1691	1929 6429	ñ.6225	0.3772	
905 0172	0 1864	1026-5400	0.5090	0.4104	
014 2544	A 1439	1092 4170	0.5531	0.4471	
922 6910	0 1816	1000.3350	Ñ.511Â	0.4884	
923 0201	0 1794	1094 2330	9 4656	9.5346	
942 3654	0 1924	1100 1300	0 41 77	0.5866	
951 7036	0 1754	1106 0200	0 1554	8.6449	
0(1 0304	A 1736	1111 9260	0 2900	0 2103	
079 3760	0 1710	1117 0240	0 2162	0 2832	
070.3700 070 74EA	0.1701	1123 2289	0 1343	0.8661	
1100 0000	0.17996	1150 0000	0 1335	9 9665	
T120'0000	0,1(00	1130.0000	0,1333		
Fiddle	nobate(II)	pact total(	)    tot(  )	DEN CORR NUACA	(cm2)
1 2080	0 06958-01	A 4749E-01	1 1714	A 1608	Crai /
1 2210	0 03358-01	A 4260 F-01	1 1055	0 1609	
1 9950	0.03332 01	0 4307F-01	1 1053	0.1610	
1 2404	0.70076 01	8 434CE-01	1 1040	0 1611	
1 2101	0 CE1EE-01	0 4395E-01	1 1017	6 1612	
4 3020	0.00100-01	0 44245-01	1 0984	0 1614	
1 1947	0.00100.01	0 44638-01	1 0940	0.1615	
1 1040	0 E1CAT_04	A 45025-01	1 0683	0 1612	
1.1040	0.3131E 01 0.4770E_04	0 4540E-01	1 24911	0 1618	
1 1696	0.4777E-01 0.4427E-01	0.15102 01	1 60222	Ø 1620	
1 1406	7,44376-01 0 44946-04	0.33(76-0) 0.46105-01	1 9612	A 1622	
1.1.100	0,714715-01	0.46575-01	1 0420	0 1624	
1 1100	0.30306~01	0.400/E-01	1 0225	Ñ 1626	
1.1102	0.3570£°01	0.70702-01 0.70702-01	0 9976	0 1620	
1.0703	0.3335E~01 0.4065.04	0.7/JOC-01	1 00004	0.1620	
1.0779	0.1473E-01	10-20rc6.0	1.00/0	Ø.1007	
	al nunnadi	1 0777 //	1)		
001C010 COL	al promedio-	L 1000 (0	(cm2)		
pensiaad de	COLLTQUICS_	0.1370 (N/	UNG /		
************					
4		600 (0/mm?)			
T.nueva pro	MBU10 - 9.1	060 (N/GN6/			

Resultados considerando 6 veces la estequiometría del oxígeno.

T - Jun (1/)	n atma(-)	T comb (K)	u hide(~)	u agua(~)	
863 8888	y_a110	า้ตรีด คลคล์	้ดี ดิจิดดิ์	<b>9</b> 1100	
868 4157	0 2027	1053 0990	0.2008	0.2993	
879 2469	0 1001	1059 2950	0 6776	0.3225	
890 8780	0 1966	1065-4919	<b>0.6516</b>	0.3485	
900 9099	0 1947	1021 6890	0.6225	0.3777	
911 7413	0 1923	1077 8860	0 5898	<b>R.4104</b>	
977 5777	0 1904	1084 0939	0.5531	0.4471	
977 4076	Ø 1892	1090.2800	0.5118	0.4884	
944 2341	ñ 1924	1096.4771	0.4656	0.5346	
955 8664	0 1955	1102 6740	Ø. 4137	0.5866	
965 9988	0.1841	1108-8210	0.3554	0.6449	
976 7282	0 1922	1115.0680	0.2988	0.7103	
987 6686	0 1813	1121.2650	0.2162	0.2832	
998 7929	A. 1889	1127.4628	0.1343	0.0661	
1150 0000	0 1900	1150.0000	A 1335	0.8665	
********		************		**	
Eid(U)	nohmic(V)	<pre>nact_total(V)</pre>	V_tot(V)	DEN_CORR_HVA	(A/cm2)
1.3000	0.8172E-01	0.4001E-01	1.1791	0.1511	
1.2319	0.7795E-01	0.4022E-01	1.1137	0.1512	
1.2255	0.7102E-01	0 <b>.4064</b> E-01	1.1138	0.1513	
1.2107	0.6401E-01	Q.4106E-01	1.1129	0.1514	
1.2115	0.5925E-01	0.4147E-01	1.1108	0.1516	
1.2037	0.5426E-01	0.4189E-01	1.1075	0.1517	
1.1952	0.4977E-01	0.4231E-01	1.1031	0.1519	
1.1859	0,4572E-01	0.4273E-01	1.8974	0,1520	
1.1755	0.4206E-01	0.4314E-01	1.0903	0.1522	
1.1637	0.3076E-01	0.4356E~01	1.0014	0.1524	
1.1500	0.3577E~01	0.4390E-01	1.0702	0.1526	
1.1333	0.3305E-01	0.4440E-01	1.8559	0.1529	
1.1117	0.3059E-01	0 <b>.44</b> 81E- <b>0</b> 1	1.0363	0.1531	
1.0790	0.2835E-01	0.4523E- <b>0</b> 1	1.0063	0.1533	
1.0795	0.1405E-01	0.5 <b>029E-0</b> 1	1.0151	0.1569	
******	***********	*******		*	
Voltaje tot	al promodio=	1.0863 (U)	0.5		
Densidad de	corriente-	0.1500 (A/c	m2)		
************	************	<del></del>	********	- PE - PE -	

_ i_nueva promedio= _ 0.1524 (A/cm2)

T_aire (R)	y_aire(-)	T_comb (X)	y_hidr(-)	y_agua(-)
863.9000 868.2333	0.2100	1050.0000 1051 0620	0.8900 0 7000	0.1100 0.2993
070.6995	0.1993	1059.1860	0.6776	0.3225
889.1658 899.6329	0.1966 0.1943	1065.3110	0.6516 0.6225	0.3405 0.3777
910.0994	0.1923	1077.5590	0.5890	0.4104
920.5659			0.5531	0.4471 0.4004
941.4975	0.1871	1095.9320	0.4656	0.5346
951.9650	0.1055		0.4137	0.5866
972.89 <b>70</b>	0.1841	1114.3051	0.2900	0.7103
983.3646	0.1013	1120.4290	0.2167	
993.8321 1150.0000	0.1800	1126.5530	0.1343 0.1335	0.8665
EIACUS	pobmic(U)	Dect total(U)	II tot(II)	HH DEN CORR NUA(A/cm2)
1.3000	0.0302E-01	0.4063E-01	1.1772	0.1536
1.2319	0.7929E-01 0.7241E-01	0.4084E-01 0.41255-01	1.1118	0.1536 0.1537
1.2187	0.6624E-01	0.4166E-01	1.1108	0.1539
1.2115	0.6060E-01	0.4207E-01	1.1007	0.1540
1.2037	0.55676-01 0.5110E-01	0.4209E-01	1.1055	0.1543
1.1859	0.4711E-01	0.4331E-01	1.0955	0.1545
1.1755	0.4342E-01 0.4008E-01	0.43725-01 0.4413E-01	1.0883	0.1546 0.1548
1.1500	0.3705E-01	0.4454E-01	1.0684	0.1550
1.1333	0.3430E-01 0.3190E-01	0.4495E~01 0.4536F→01	1.0541 1.0346	0.1552 0.1555
1.0790	0.2951E-01	0.4577E-01	1.0045	0.1557
1.0795	0.1427E-01	0.5107E-01 *******	1.0141 *********	0.1594 *
Voltaje tota	1 promodio=	1.0844 (U)	0.	
Densidad de <del>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</del>	corriente = 	<b>0.1</b> 524 (8/c) <del>Жилинининин</del>	n2 <i>)</i> <del>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX</del>	***
i nueva prom	wdio= 0.1	548 (A/cm2)		
I_aire (K)	y_aire(-)	T_comb (K)	y_hidr(-)	y_agua(-) 0 1100
868.0479	0.2027	1053.0250	0.7008	0.2993
878.1436	0.1993	1059.0750	0.6776	0.3225
898.3355	0.1965	1071.1750	0.6225	0.3777
908.4314	0.1923	1077.2260	0.5898	0.4104
918.5273	0.1904 0.1887	1083.2760	0.5531	0.4471
930.7175	0.1071	1095.3760	0.4656	0.5346
948.8143 958 9113	0.1855 0 1841	1101-4260 1107-4760	0.4137 0.3554	0.5866 0.6449
969.0050	0.1827	1113.5260	0.2900	0.7103
979 <b>.10</b> 19 989 1988	0.1813	1119 5960	14 7167	
101 . <b>T</b> 100	A 1800	1125 6270	0 1343	0.7837 0.8661
1150.0000	0.1800 0.1800	1125.6270 1150.0000	0.1343 0.1335	0.7837 0.8661 0.8665
1150.0000 ********** Eid(V)	0.1800 0.1800 ***********************************	1125.6270 1150.0000 nact_total(V)	0.1343 0.1335 0.1335 V_tot(V)	0.7837 0.8661 0.8665 ** DEN_CORR_NUA <a cm2<="" td=""></a>
1150.0000 	0.1000 0.1800 nuhmic(V) 0.8433E-01 0.8433E-01	1125.6270 1150.0000 nact_total(V) 0.4125E-01	0.1343 0.1335 WHENEXEXXXXXXX U_tot(V) 1.1753	0.7837 0.8661 0.8665 ** DEN_CORR_NUA <a cm2<br="">0.1560 0.1560</a>
1150.0000 	0.1000 0.1800 nuhmic(V) 0.0433E-01 0.8064E-01 0.7382E-01	1125.6270 1150.0000 nact_total(V) 0.4125E-01 0.4145E-01 0.4186E-01	0.1343 0.1335 U_tot(U) 1.1753 1.1098	0.7837 0.8661 0.8665 ** DEN_CORR_NUA <a cm2<br="">0.1560 0.1560 0.1561</a>
1150.0000	0.1000 0.1800 nohmic(V) 0.0433E-01 0.0064E-01 0.7302E-01 0.6760E-01	1125.6270 1150.0000 nact_total(V) 0.4125E-01 0.4145E-01 0.4186E-01 0.4226E-01	0.1343 0.1335 U_tot(V) 1.1753 1.1098 1.1098 1.1098	0.7837 0.8661 0.8665 ** DEN_CORR_NUA <a cm2<br="">0.1560 0.1560 0.1561 0.1563</a>
1150.0000 Eid(U) 1.3000 1.2319 1.2255 1.2187 1.2115 1.2037	0.1800 0.1800 nohmic(V) 0.8433E-01 0.8464E-01 0.8064E-01 0.7362E-01 0.6768E-01 0.6214E-01 0.5215E-01	1125.6270 1150.0000 nact_total(V) 0.4125E-01 0.4145E-01 0.4146E-01 0.426E-01 0.4226E-01 0.4226F-01 0.4267E-01 0.4307E-01	0.1343 0.1335 U_tot(V) 1.1753 1.1098 1.1088 1.1067 1.1035	0.7837 0.8661 0.8665 ** DEN_CORR_NUA <a cm2<br="">0.1560 0.1560 0.1561 0.1563 0.1564 0.1564 0.1565</a>
1150.0000 Eid(U) 1.3000 1.2319 1.2255 1.2167 1.2115 1.2037 1.1952	0.1000 0.1800 nohmic(V) 0.0433E-01 0.8064E-01 0.7382E-01 0.6768E-01 0.6214E-01 0.5215E-01 0.5263E-01	1125.6270 1150.0000 nact_total(V) 0.4125E-01 0.4125E-01 0.4145E-01 0.4226E-01 0.4226E-01 0.4267E-01 0.4307E-01 0.4340E-01	0.1343 0.1335 U_tot(V) 1.1753 1.1098 1.1098 1.1088 1.1088 1.1035 1.0991	0.7837 0.8661 0.8665 ★★ DEN_CORR_NUA <a cm2<br="">0.1560 0.1560 0.1561 0.1563 0.1564 0.1565 0.1565 0.1565 0.1567</a>
1150.0000 **************** Eid <u> 1.3000 1.2319 1.2255 1.2187 1.2115 1.2037 1.1952 1.1859 1.1859 1.1955</u>	0.1000 0.1800 0.4800 0.0433E-01 0.0064E-01 0.7302E-01 0.6760E-01 0.6214E-01 0.5215E-01 0.5263E-01 0.4854E-01 0.4854E-01	1125.6270 1150.0000 mact_total(V) 0.4125E-01 0.4145E-01 0.4186E-01 0.4226E-01 0.4267E-01 0.4267E-01 0.4307E-01 0.4369E-01 0.4389E-01 0.4428F-01	0.1343 0.1335 U_tot(U) 1.1753 1.1090 1.1090 1.1008 1.1008 1.1008 1.1005 1.1035 1.0991 1.0934 1.0864	0.7837 0.0661 0.8665 ** DEN_CORR_NUA <a cm2<br="">0.1560 0.1560 0.1563 0.1563 0.1564 0.1565 0.1567 0.1569 0.1569 0.1570</a>
1150.0000 ************ 1.3000 1.2319 1.2255 1.2187 1.2115 1.2037 1.1952 1.1952 1.1859 1.1755 1.155 1.1637	0.1000 0.1800 0.4800 0.0433E-01 0.0433E-01 0.7302E-01 0.6760E-01 0.6214E-01 0.5715E-01 0.5263E-01 0.4854E-01 0.4493E-01	1125.6270 1150.0000 mact_total(V) 0.4125E-01 0.4145E-01 0.4145E-01 0.4226E-01 0.4226F-01 0.4267E-01 0.4307E-01 0.4308E-01 0.4308E-01 0.4428E-01 0.4428E-01 0.4428E-01	0.1343 0.1335 U_tot(U) 1.1753 1.1090 1.1090 1.1098 1.1008 1.1008 1.1005 1.1035 1.0991 1.0934 1.0864 1.0275	0.7837 0.8661 0.8665 ** DEN_CORR_NUA <a cm2<br="">0.1560 0.1560 0.1561 0.1563 0.1564 0.1565 0.1567 0.1569 0.1569 0.1570 0.1570 0.1570</a>
1150.0000 ********** Eid(U) 1.3000 1.2319 1.2255 1.2187 1.215 1.2037 1.1952 1.1859 1.1755 1.1637 1.1500 1 1333	0.1000 0.1800 0.1800 0.0433E-01 0.0064E-01 0.7302E-01 0.6760E-01 0.6214E-01 0.5215E-01 0.5263E-01 0.4403E-01 0.4403E-01 0.3039E-01 0.3550E-01	1125.6270 1150.0000 mact_total(V) 0.4125E-01 0.4145E-01 0.4145E-01 0.4267E-01 0.4267E-01 0.4307E-01 0.4308E-01 0.4308E-01 0.4308E-01 0.4469E-01 0.4509F-01 0.4550F-01	0.11343 0.1335 0.1335 0.10763 1.1753 1.1096 1.1096 1.1088 1.1067 1.1035 1.0991 1.0934 1.0864 1.0775 1.0665 1.0655 1.06522	0.7837 0.8661 0.8665 ** DEN_CORR_NUA <a cm2<br="">0.1560 0.1561 0.1563 0.1563 0.1564 0.1565 0.1565 0.1567 0.1576 0.1570 0.1574 0.1574 0.1574 0.1574</a>
1150.0000 HEID(U) 1.3000 1.2319 1.2255 1.2187 1.2115 1.2037 1.1952 1.1859 1.1859 1.1755 1.1637 1.1500 1.1333 1.1117	0.1000 0.1800 0.1800 0.0433E-01 0.0064E-01 0.7302E-01 0.6760E-01 0.6214E-01 0.5715E-01 0.5263E-01 0.4854E-01 0.4483E-01 0.4146E-01 0.3560E-01 0.3306E-01	1125.6270 1150.0000 mact_total(V) 0.4125E-01 0.4145E-01 0.4186E-01 0.4226E-01 0.4267E-01 0.4307E-01 0.4308E-01 0.4308E-01 0.4469E-01 0.4550E-01 0.4550E-01 0.4590E-01	0.1343 0.1335 U_tot(V) 1.1753 1.1098 1.1098 1.1088 1.1067 1.1095 1.0991 1.0934 1.0864 1.0775 1.0665 1.06522 1.0522 1.0328	0.7837 0.8661 0.8665 ** DEN_CORR_NUA <a cm2<br="">0.1560 0.1561 0.1563 0.1564 0.1564 0.1565 0.1565 0.1567 0.1570 0.1572 0.1574 0.1576 0.1576 0.1576 0.1576</a>
1150.0000 Eid(U) 1.3000 1.2319 1.2255 1.2187 1.2115 1.2037 1.1952 1.1952 1.1859 1.1755 1.1637 1.1500 1.1333 1.1117 1.0798 1.0798 1.0798	0.1000 0.1800 0.1800 0.0433E-01 0.0064E-01 0.7302E-01 0.6760E-01 0.6214E-01 0.5715E-01 0.5263E-01 0.44854E-01 0.4485E-01 0.4146E-01 0.3560E-01 0.3073E-01 0.3073E-01	1125.6270 1150.0000 mact_total(V) 0.4125E-01 0.4145E-01 0.4186E-01 0.4267E-01 0.4307E-01 0.4348E-01 0.4368E-01 0.4368E-01 0.4469E-01 0.4598E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4539E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.4559E-01 0.455	0.1343 0.1335 0.1335 0.1335 0.1335 0.135 1.1098 1.1098 1.1088 1.1088 1.1067 1.1035 1.0991 1.0934 1.0934 1.0864 1.00775 1.0665 1.0665 1.0522 1.0328 1.0028 1.0028	0.7837 0.8661 0.8665 ** DEN_CORR_NUA <a cm2<br="">0.1560 0.1561 0.1563 0.1564 0.1565 0.1565 0.1567 0.1567 0.1570 0.1570 0.1574 0.1576 0.1576 0.1576 0.1581 0.1581 0.1619</a>
1150.0000 Eid(U) 1.3000 1.2319 1.2255 1.2167 1.2115 1.2037 1.1952 1.1859 1.1755 1.1637 1.1500 1.1333 1.1117 1.0798 1.0795	0.1000 0.1800 0.1800 0.0433E-01 0.0064E-01 0.6760E-01 0.6760E-01 0.5715E-01 0.5263E-01 0.4854E-01 0.4854E-01 0.4403E-01 0.3039E-01 0.3306E-01 0.3073E-01	1125.6270 1150.0000 nact_total(V) 0.4125E-01 0.4125E-01 0.4126E-01 0.4226E-01 0.4226E-01 0.4267E-01 0.4307E-01 0.4308E-01 0.4308E-01 0.4469E-01 0.4590E-01 0.4550E-01 0.4550E-01	0.1343 0.1335 U_tot(V) 1.1753 1.1098 1.1098 1.1088 1.1088 1.1088 1.1035 1.0991 1.0934 1.0864 1.0775 1.0665 1.0522 1.0328 1.0328 1.0028 1.0131	0.7837 0.8661 0.8665 ** DEN_CORR_NUA <a cm2<br="">0.1560 0.1560 0.1564 0.1564 0.1565 0.1567 0.1567 0.1569 0.1570 0.1570 0.1574 0.1576 0.1576 0.1578 0.1578 0.1581 0.1619 *</a>
1150.0000 HILL CONTRACT OF CO	0.1000 0.1800 0.1800 0.0433E-01 0.0433E-01 0.7302E-01 0.6760E-01 0.6214E-01 0.5215E-01 0.5263E-01 0.4854E-01 0.4146E-01 0.3039E-01 0.3006E-01 0.3073E-01 0.1450E-01 0.1450E-01	1125.6270 1150.0000 mact_total(V) 0.4125E-01 0.4125E-01 0.4125E-01 0.4126E-01 0.4226E-01 0.4267E-01 0.4368E-01 0.4368E-01 0.4428E-01 0.4459E-01 0.4550E-01 0.4550E-01 0.4550E-01 0.4550E-01 0.5185E-01 0.5185E-01	0.1343 0.1343 0.1335 U_tot(U) 1.1753 1.1098 1.1098 1.1088 1.1088 1.1067 1.0991 1.0934 1.0934 1.0934 1.0934 1.0934 1.0864 1.0775 1.0665 1.06522 1.0328 1.0328 1.0328 1.0131	0.7837 0.8661 0.8665 ** DEN_CORR_NUA <a cm2<br="">0.1560 0.1561 0.1563 0.1564 0.1565 0.1565 0.1567 0.1569 0.1570 0.1570 0.1572 0.1574 0.1576 0.1576 0.1578 0.1578 0.1591 0.1619 *</a>

_ i_nueva promedio=___0.1572 (A/cm2)

Iaire (K) 863.0000	y_aire(-) 0.2100	T_comb (K) 1959.0000	y_hidr(-) 0.8900	y_agua(-) 0.1100
867.8597	0.2027	1052.9871	0.7008	0.2993
877.5789	0.1993	1058.9620	0.6776	0.3225
887.2980	0.1766 0 1943	1070 9110 1070 9110	0.6225	0.3777
906.7374	0.1923	1076.8860	0.5898	0.4104
916.4568	0.1904	1002.8600	0.5531	0.4471
926.1757	0.1887	1008.8350	0.5118	0.4884
935.8940	0.1071	1094.0101	0.4656	0.5346 0.5046
945.6144 orc 2250	0.1855 0.1041	1100.7841	0.4137 0.3554	0.3000 0.6449
965 0599	0.1827	1112.7330	<b>8.2900</b>	0.7103
974.7727	0.1013	1118.7000	0.2167	0.7937
984.4932	0.1800	1124.6830	0.1343	0.0661
1150.0000	0.1800	1150.0000	0.1335	0.8665
Б44СИХ	pohmic(II)	nact total(  )	U tot(U)	DEN CORR NUA(A/cm2)
1.3008	0.8564E-01	0.4187E-01	1.1733	0.1584
1.2319	0.8199E-01	0.4207E-01	1.1078	0.1584
1.2255	0.7524E-01	0.4247E-01	1.1078	0.1586
1.2187	0.6914E~01	0.4206E-01 0.4206E-01	1.1057	0.1507 0.1600
1.2115	0,6363E-01 0 5065E-01	0.4366F-01 0.4366F-01	1 1014	A.1589
1 1952	0.5003E-01 0.5412E-01	0.4405E-01	1.0970	0.1591
1.1859	0.5002E-01	0.4445E-01	1.0914	0.1593
1.1755	0.4628E-01	0.4485E-01	1.0843	0.1594
1.1637	0.4289E-01	0.4524E-01	1.0756	
1.1500	0.3979E-01	0.4564E-01 0.4604E.01	1.0045	10.1370 A 1600
1.1333	0.3676E-01 0.3437E-01	0.4604E°01 0.4644F-01	1 0303	ñ.1602
1 0798	0.3201E-01	0.4683E-01	1.0010	0.1604
1.0795	0.1472E-01	0.5262E-01	1.0121	0.1644
**********	*****	****	*********	*
Voltaje tot	al promedio=	1.0806 (V)	-95	
Densidad de	COPPIENTS=	0.1572 (H/C)	116 / <del>Main Marka a sa </del>	**
i nugua weg	medio= Ø1	596 (Azem2)		
T_HOAAA bro	HOULD OF A			
•	•			
r		T 1 (V)		
T_aire (K)	y_aire(-)	1_comb (K) 1050 <b>0000</b>	y_hidr(-) 0 8900	y_agua(-) 0.1100
T_aire (K) 863.0000 862.6686	y_aire(-) 0.2100 0.2027	T_comb (K) 1050 <b>.0000</b> 1052 <b>.9490</b>	y_h1dr(-) 0.8900 0.7008	y_agua<-> 0,1100 0,2993
T_aire (K) 863.0000 867.6686 877.0055	y_aire(-) 0.2100 0.2027 0.1993	I_comb (K) 1050. <b>0000</b> 1052.9490 1058.8470	y_hidr(-) 0.8900 0.7008 0.6776	y_agua(-) 0,1100 0.2993 0.3225
T_aire (K) 863.0000 867.6686 877.0055 886.3423	y_aire(-) 0.2100 0.2027 0.1993 0.1966	I_comb (K) 1050.0000 1052.9490 1058.8470 1064.7440	y_hidr(-) 0.8900 0.7008 0.6776 0.6516	y_agua(-) 0,1100 0.2993 0.3225 0.3485
T_aire (K) 863.0000 867.6686 877.0055 886.3423 895.6001	y_aire(-) 0.2100 0.2027 0.1993 0.1966 0.1943	I_comb (K) 1050.0000 1052.9490 1058.8470 1064.7440 1070.6429	y_h1dr(-) 0,8900 0.7008 0.6776 0.6516 0.6225	y_agua(-) 0,1100 0.2993 0.3225 0.3485 0.3777 0.4104
T_aire (K) 863.0000 867.6686 877.0055 886.3423 895.6001 905.0172	y_aire(-) 0.2100 0.2027 0.1993 0.1966 0.1943 0.1923	T_comb (K) 1050.0000 1052.9490 1058.8470 1064.7440 1070.6420 1076.5400	y_hidr(-) 0,8900 0.7008 0.6776 0.6516 0.6225 0.5898 0.5898	y_agua(-) 0,1100 0,2993 0,3225 0,3485 0,3485 0,3777 0,4104 0,4171
I_aire (K) 863.00000 867.6686 877.0055 886.3423 895.6801 905.0172 914.3544 923.4910	y_aire(-) 0.2100 0.2027 0.1993 0.1966 0.1943 0.1923 0.1904 0.1982	I_comb (K) 1050.0000 1052.9490 1058.9470 1064.7440 1070.6420 1076.5400 1082.4370 1082.3350	y_h1dr<-> 9.8900 0.7000 0.6776 0.6516 0.6225 0.5090 0.5531 0.5531	y_agua(-) 0,1100 0,2993 0,3225 0,3485 0,3485 0,3777 0,4104 0,4471 0,4884
I_aire (K) 863.00000 867.6686 877.0055 886.3423 895.6001 905.0172 914.3544 923.6910 933.0221	y_aire(-) 0.2100 0.2027 0.1993 0.19966 0.1943 0.1923 0.1904 0.1907 0.1871	I_comb (K) 1050.0000 1052.9490 1058.8470 1064.7440 1070.6420 1076.5400 1082.4370 1088.3350 1094.2330	y_h1dr<-> 0.8900 0.7008 0.6776 0.6516 0.6225 0.525 0.5090 0.5531 0.5118 0.4656	y_agua(-) 0,1100 0,2993 0,3225 0,3485 0,3485 0,3485 0,3485 0,3485 0,3485 0,3464 0,4104 0,4884 0,5346
I_aire (K) 863.00000 867.6686 877.0055 886.3423 895.6001 905.0172 914.3544 923.6910 933.0271 942.3654	y_aire(-) 0.2100 0.2027 0.1993 0.1943 0.1943 0.1923 0.1904 0.1871 0.1871 0.1855	I_comb (K) 1050.0000 1052.9490 1058.8470 1064.7440 1070.6420 1076.5400 1088.3350 1094.2330 1100.1300	y_h1dr<-> 0.8900 0.7008 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4656 0.4137	y_agua(-) 0,1100 0,2993 0,3225 0,3485 0,3485 0,3485 0,3485 0,3485 0,3485 0,3485 0,346 0,5346 0,5866
I_aire (K) 863.00000 867.6686 877.0055 886.3423 895.6001 905.0172 914.3544 923.6910 933.0271 942.3654 951.7036	y_aire(-) 0.2100 0.2027 0.1993 0.1943 0.1943 0.1920 0.1904 0.1807 0.1871 0.1855 0.1841	I_comb (K) 1050.0000 1052.9490 1058.8470 1064.7440 1070.6420 1076.5400 1088.3350 1094.2330 1094.2330 1100.1300 1106.0280	y_h1dr<-> 0.8900 0.7008 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4656 0.4137 0.3554	y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5866 0.6449
T_aire (K) 863.00000 867.6686 877.0055 886.3423 895.6001 905.0172 914.3544 923.6910 933.0271 942.3654 951.7036 961.0386	y_aire(-) 0.2100 0.2027 0.1993 0.1966 0.1943 0.1920 0.1904 0.1807 0.1871 0.1855 0.1841 0.1827	I_comb (K) 1050.0000 1052.9490 1058.8470 1064.7440 1076.5400 1076.5400 1088.3350 1094.2330 1094.2330 1106.1300 1106.0280 1111_9260	y_h1dr<-> 0.8900 0.7008 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4656 0.4137 0.3554 0.2900	y_agua (-) 0.1100 0.2993 0.3225 0.3485 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5346 0.5866 0.6449 0.7103
I_aire (K) 863.00000 867.6686 877.0055 886.3423 895.6801 905.0172 914.3544 923.6910 933.0271 942.3654 951.7036 961.0386 970.3768	y_aire(-) 0.2100 0.2027 0.1993 0.1966 0.1943 0.1920 0.1904 0.1807 0.1871 0.1855 0.1841 0.1827 0.1813 0.1813	I_comb (K) 1050.0000 1052.9490 1058.8470 1064.7440 1070.6429 1076.5400 1088.3350 1094.2330 1094.2330 1100.1300 1106.0280 1111.9260 1117.0240	y_h1dr(-) 0.8900 0.7008 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4656 0.4137 0.3554 0.2900 0.2167	y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5866 0.6449 0.7103 0.71037 0.9661
I_aire (K) 863.00000 867.6686 877.0055 886.3423 895.6001 905.0172 914.3544 923.6910 933.0271 942.3654 951.7036 961.0386 970.3768 977.7150	y_aire(-) 0.2100 0.2027 0.1993 0.1966 0.1943 0.1920 0.1904 0.1807 0.1871 0.1855 0.1841 0.1827 0.1813 0.1800 0.1800	I_comb (K) 1050.0000 1052.9490 1058.8470 1064.7440 1070.6429 1076.5440 1088.3350 1094.2330 1094.2330 1100.1300 1106.0280 1111.9260 1117.0240 1123.7209 1156.0000	y_h1dr(-) 0.8900 0.7008 0.6776 0.6516 0.6225 0.5090 0.5531 0.55118 0.4656 0.4137 0.3554 0.2900 0.2167 0.1343 0.1335	$y_agua \langle - \rangle$ 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5866 0.6449 0.7103 0.7837 0.8661 0.8665
I_aire (K) 863.00000 867.6686 877.0055 886.3423 895.6001 905.0172 914.3544 923.6910 933.0271 942.3654 951.7036 961.0386 970.3760 979.7150 1150.0000	y_aire(-) 0.2100 0.2027 0.1993 0.1966 0.1943 0.1923 0.1904 0.1807 0.1871 0.1855 0.1841 0.1827 0.1813 0.1800 0.1800 0.1800	I_comb (K) 1050.0000 1052.9490 1058.0470 1064.7440 1070.6429 1076.5440 1002.4370 1088.3350 1094.2330 1100.1300 1106.0280 1111.9260 1117.0240 11123.7209 1150.0090	y_h1dr(-) 0.8900 0.7008 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4656 0.4137 0.3554 0.2900 0.2167 0.1343 0.1335	y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5866 0.6449 0.7103 0.7037 0.8661 0.8665
T_aire (K) 863.00000 867.6686 877.0055 886.3423 895.6001 905.0172 914.3544 923.6910 933.0271 942.3654 951.7036 961.0386 970.3760 979.7150 1150.0000 ***************	y_aire(-) 0.2100 0.2027 0.1993 0.1966 0.1943 0.1920 0.1904 0.1904 0.1871 0.1871 0.1855 0.1841 0.1855 0.1841 0.1827 0.1813 0.1800 (***********************************	I_comb (K) 1050.0000 1052.9490 1058.0470 1064.7440 1070.6420 1076.5400 1082.4370 1088.3350 1094.2330 1100.1300 1106.0280 1117.8240 1117.8240 1117.8240 1117.8240 11150.0000 ********************************	<pre>y_hidr(-) 0.8900 0.7008 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4656 0.4137 0.3554 0.2900 0.2167 0.1343 0.1335 ***********************************</pre>	y_agua(-) 0,1100 0,2993 0,3225 0,3485 0,3777 0,4104 0,4471 0,4884 0,5346 0,5866 0,5866 0,6449 0,7103 0,7837 0,8661 0,8665
T_aire (K) 863.00000 867.6686 877.0055 886.3423 895.6001 905.0172 914.3544 923.6910 933.0271 942.3654 951.7036 961.0386 979.3760 979.7150 1150.0000 ********************************	$y_aire(-) \\ 0.2100 \\ 0.2027 \\ 0.1993 \\ 0.1966 \\ 0.1943 \\ 0.1920 \\ 0.1920 \\ 0.1904 \\ 0.1904 \\ 0.1871 \\ 0.1871 \\ 0.1871 \\ 0.1855 \\ 0.1841 \\ 0.1827 \\ 0.1813 \\ 0.1800 \\ 0.1800 \\ 0.1800 \\ 0.1800 \\ 0.1800 \\ 0.8695 \underline{E} - \underline{0}1 \\ 0.895 \underline{E} - \underline{0}1 \\ 0.$	I_comb (K) 1050.0000 1052.9490 1058.0470 1064.7440 1070.6420 1076.5400 1092.4370 1088.3350 1094.2330 1100.1300 1106.0280 1111.9260 1111.9260 1117.0240 1123.7209 1150.0000 ********************************	<pre>y_h1dr&lt;-&gt; 0.8900 0.7000 0.6776 0.6516 0.5531 0.518 0.4656 0.4137 0.3554 0.4137 0.3554 0.2167 0.1343 0.1335 ***********************************</pre>	y_agua(-) 0,1100 0,2993 0,3225 0,3485 0,3777 0,4104 0,4471 0,4884 0,5346 0,5366 0,6449 0,7103 0,7837 0,8661 0,8665 **** DEN_CORR_NUA(A/cm2) 0,1608
I_aire (K) 863.0000 867.6686 877.0055 886.3423 895.6001 905.0172 914.3544 923.6910 933.0271 942.3654 951.7036 961.0386 970.3760 979.7150 1150.0000 ********************************	y_aire(-) 0.2100 0.2027 0.1993 0.1966 0.1943 0.1920 0.1904 0.1904 0.1871 0.1871 0.1855 0.1841 0.1855 0.1841 0.1827 0.1813 0.1800 0.1800 (***********************************	I_comb (K) 1050.0000 1052.9490 1058.0470 1064.7440 1070.6420 1076.5400 1092.4370 1088.3350 1094.2330 1100.1300 1106.0280 1111.9260 1111.9260 1117.0240 1123.7209 1150.0000 ********************************	<pre>y_h1dr&lt;-&gt; 0.8900 0.7000 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4656 0.4137 0.3554 0.4137 0.3554 0.4137 0.3554 0.2167 0.1343 0.1335 ***********************************</pre>	y_agua(-) 0,1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4884 0.5346 0.5346 0.5366 0.6449 0.7103 0.7837 0.8665 **** DEN_CORR_NUA(A/cm2) 0.1609 0.1609
I_aire (K) 863.00000 867.6686 877.0055 886.3423 895.6001 905.0172 914.3544 923.6910 933.0271 942.3654 951.7036 961.0386 970.3768 979.7150 1158.0000 *********************************	y_aire(-) 0.2100 0.2027 0.1993 0.1993 0.1943 0.1923 0.1904 0.1904 0.1871 0.1855 0.1841 0.1827 0.1813 0.1800 0.1800 (***********************************	I_comb (K) 1050.0000 1052.9490 1058.0470 1064.7440 1070.6420 1076.5400 1088.3350 1094.2330 1100.1300 1110.280 1111.9260 1111.9260 1117.0240 1123.7209 1150.0000 ********************************	<pre>y_h1dr&lt;-&gt; 0.8900 0.7008 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4656 0.4137 0.3554 0.4137 0.3554 0.2900 0.2167 0.1343 0.1335 ***********************************</pre>	y_agua(-) 0,1100 0,2993 0,3225 0,3485 0,3777 0,4104 0,4884 0,5346 0,5346 0,5346 0,5346 0,5366 0,6449 0,7103 0,7837 0,8661 0,8665 **** DEN_CORR_NVA(A/cm2) 0,1608 0,1610 0,1611
I_aire (K) 863.00000 867.6686 877.0055 886.3423 895.6001 905.0172 914.3544 923.6910 933.0271 942.3654 951.7036 961.0386 970.3768 970.3768 977.7150 1158.0000 *********************************	$y_aire(-)$ 9.2100 0.2027 0.1993 0.1943 0.1943 0.1904 0.1907 0.1871 0.1855 0.1841 0.1855 0.1841 0.1827 0.1813 0.1800 ( $xx + x + x + x + x + x + x + x + x + x $	I_comb (K) 1050.0000 1052.9490 1058.0470 1064.7440 1070.6420 1076.5400 1082.4370 1082.4370 1094.2330 1190.1300 1106.0280 1111.9260 1117.0240 1117.0240 1117.0240 1123.7209 1150.0000 ********************************	<pre>y_hidr&lt;-&gt; 0.8900 0.7008 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4656 0.4137 0.3554 0.2900 0.2167 0.1343 0.1343 0.1335 ***********************************</pre>	y_agua(-) 0,1100 0,2993 0,3225 0,3485 0,3777 0,4104 0,4471 0,4884 0,5346 0,5346 0,5346 0,5346 0,5346 0,5366 0,6449 0,7103 0,7837 0,8661 0,8665 **** DEN_CORR_NVA(A/cm2) 0,1608 0,1610 0,1611 0,1612
I_aire (K) 863.00000 867.6686 877.0055 886.3423 995.6001 905.0172 914.3544 923.6910 933.0271 942.3654 951.7036 961.0386 970.3760 979.7150 1150.0000 ********************************	y_aire(-) 0.2100 0.2027 0.1993 0.1943 0.1943 0.1904 0.1871 0.1871 0.1855 0.1841 0.1855 0.1841 0.1827 0.1813 0.1800 0.1800 0.1800 0.1800 0.1800 0.18335E-01 0.8335E-01 0.7667E-01 0.7063E-01 0.6515E+01 0.6018E-01	I_comb (K) 1050.0000 1052.9490 1058.0470 1064.7440 1070.6420 1076.5400 1088.3350 1094.2330 1094.2330 1094.2330 1100.1300 1106.0280 1117.0240 1117.0240 1117.0240 1117.0240 1123.7209 1150.0000 ********************************	<pre>y_hidr&lt;-&gt; 0.8900 0.7008 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4137 0.3554 0.4137 0.3554 0.4137 0.3554 0.2900 0.2167 0.1343 0.1335 ***********************************</pre>	y_agua(-) 0,1100 0,2993 0,3225 0,3485 0,3777 0,4104 0,4471 0,4884 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5346 0,5449 0,7637 0,8665 0,1608 0,1607 0,1612 0,1614
Iaire (K) 863.00000 867.6686 877.0055 886.3423 995.6001 905.0172 914.3544 923.6910 933.0271 942.3654 951.7036 961.0386 970.3760 979.7150 1150.0000 ********************************	$y_aire(-)$ 9.2100 0.2027 0.1993 0.1966 0.1943 0.1904 0.1907 0.1807 0.1875 0.1871 0.1855 0.1841 0.1827 0.1813 0.1800 0.1800 0.1800 (***********************************	I_comb (K) 1050.0000 1052.9490 1058.8470 1064.7440 1070.6420 1076.5400 1092.4370 1094.2330 1094.2330 1100.1300 1106.0280 1111.9260 1117.0240 1112.7209 1150.0000 ********************************	<pre>y_hidr&lt;-&gt; 0.8900 0.7008 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4137 0.3554 0.2900 0.2167 0.1343 0.1335 ***********************************</pre>	y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5346 0.5366 0.6449 0.7103 0.7837 0.8665 **** DEN_CORR_NUA(A/cm2) 0.1608 0.1609 0.1611 0.1614 0.1614 0.1615
Iaire (K) 863.00000 867.6686 877.0055 886.3423 995.6001 905.0172 914.3544 923.6910 933.0271 942.3654 951.7036 961.0386 970.3760 979.7150 1150.0000 ********************************	$y_aire(-)$ 9.2100 0.2027 0.1993 0.1993 0.1943 0.1904 0.1907 0.1875 0.1871 0.1855 0.1841 0.1827 0.1813 0.1800 0.1800 0.1800 (***********************************	I_comb (K) 1050.0000 1052.9490 1058.8470 1064.7440 1070.6420 1076.5400 1092.4370 1094.2330 1094.2330 1100.1300 1106.0280 1111.9260 1117.0240 1117.0240 1123.7209 1150.0000 ********************************	<pre>y_hidr&lt;-&gt; 0.8900 0.7008 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4137 0.3554 0.2900 0.2167 0.1343 0.1335 ***********************************</pre>	<pre>y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5346 0.5346 0.5866 0.6449 0.703 0.7837 0.8661 0.8665 **** DEN_CORR_NUA(A/cm2) 0.1608 0.1609 0.1614 0.1614 0.1614 0.1615 0.1617 0.4617</pre>
I aire (K) 863.00000 867.6686 877.0055 886.3423 995.6001 905.0172 914.3544 923.6910 933.0271 942.3654 951.7036 961.0386 970.3768 979.7150 1150.0000 ********************************	y_aire(-) 0.2100 0.2027 0.1993 0.1993 0.1943 0.1943 0.1904 0.1807 0.1875 0.1871 0.1855 0.1841 0.1827 0.1813 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1	I_comb (K) 1050.0000 1052.9490 1058.8470 1064.7440 1076.5400 1076.5400 1076.5400 1094.2330 1094.2330 1100.1300 1106.0280 1117.0240 1117.0240 1123.7209 1150.0000 ********************************	<pre>y_hidr&lt;-&gt; 0.8900 0.7008 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4656 0.4137 0.3554 0.2900 0.2167 0.1343 0.1335 ***********************************</pre>	y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5346 0.5866 0.6449 0.7103 0.7837 0.8665 **** DEN_CORR_NUA(A/cm2) 0.1609 0.1610 0.1611 0.1611 0.1614 0.1615 0.1617 0.1618 0.1618 0.1618 0.1618
T_aire (K) 863.00000 867.6686 877.0055 886.3423 895.6001 905.0172 914.3544 923.6910 933.0271 942.3654 951.7036 961.0386 970.3768 979.7150 1150.0000 ********************************	y_aire(-) 0.2100 0.2027 0.1993 0.1966 0.1920 0.1904 0.1907 0.1807 0.1875 0.1841 0.1855 0.1841 0.1827 0.1813 0.1800 0.1800 (***********************************	I_comb (K) 1050.0000 1052.9490 1058.8470 1064.7440 1076.5400 1076.5400 1076.5400 1074.2330 1094.2330 1094.2330 1106.0280 1117.0240 1117.0240 1123.7209 1150.0000 ********************************	<pre>y_hidr&lt;-&gt; 0.8900 0.7008 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4656 0.4137 0.3554 0.2900 0.2167 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1343 0.1446 1.1059 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949 1.00949</pre>	y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5346 0.5866 0.6449 0.7103 0.7837 0.8661 0.7837 0.8665 **** DEN_CORR_NUA(A/cm2) 0.1608 0.1609 0.1610 0.1611 0.1615 0.1615 0.1617 0.1618 0.1620
I _ aire (K) 863.0000 867.6686 877.0055 886.3423 895.6001 905.0172 914.3544 923.6910 933.0271 942.3654 951.7036 961.0386 979.3760 1150.0000 ********************************	y_aire(-) 0.2100 0.2027 0.1993 0.1996 0.1943 0.1920 0.1904 0.1907 0.1871 0.1871 0.1855 0.1841 0.1855 0.1841 0.1800 0.1800 (***********************************	I_comb (K) 1050.0000 1052.9490 1058.0470 1064.7440 1070.6420 1076.5400 1094.2330 1094.2330 1100.1300 1106.0280 1111.9260 1111.9260 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 0.4249E-01 0.4268E-01 0.4305E-01 0.4305E-01 0.4305E-01 0.4463E-01 0.4463E-01 0.4502E-01 0.4502E-01 0.4502E-01 0.4502E-01 0.4502E-01 0.4502E-01 0.4657E-01 0.4657E-01 0.4657E-01	<pre>y_h1dr&lt;-&gt; 0.8900 0.7000 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4656 0.4137 0.3554 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.2167 0.1343 0.1343 0.1343 0.1025 1.0020 1.0025 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0020 1.0000000000</pre>	y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5866 0.6449 0.7103 0.7837 0.8661 0.8665 **** DEN_CORR_NUA(A/cm2) 0.1608 0.1609 0.1611 0.1611 0.1612 0.1614 0.1617 0.1617 0.1617 0.1618 0.1624
Iaire (K) 863.0000 867.6686 877.0055 886.3423 895.6001 905.0172 914.3544 923.6910 933.0271 942.3654 951.7036 961.0386 970.3768 979.7150 1150.0000 ********************************	$y_aire(-)$ 0.2100 0.2027 0.1993 0.19943 0.1920 0.1920 0.1904 0.1904 0.1871 0.1871 0.1871 0.1871 0.1871 0.1871 0.1871 0.1871 0.1871 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800	I_comb (K) 1050.0000 1052.9490 1058.0470 1064.7440 1070.6420 1076.5400 1092.4370 1088.3350 1094.2330 1109.1300 1106.0280 1111.9260 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1117.0240 1110.4269E-01 0.4269E-01 0.4592E-01 0.4657E-01 0.4657E-01 0.4657E-01 0.4657E-01	<pre>y_hidr&lt;-&gt; 0.8900 0.7000 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4656 0.4137 0.3554 0.4137 0.3554 0.2900 0.2167 0.1343 0.1335 ***********************************</pre>	$y_agua(-)$ 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4711 0.4884 0.5346 0.5366 0.6449 0.7103 0.7837 0.8661 0.8665 **** DEN_CORR_NUA(A/cm2) 0.1608 0.1609 0.1611 0.1611 0.1612 0.1612 0.1614 0.1617 0.1617 0.1618 0.1620 0.1624 0.1624 0.1626
Iaire (K) 863.0000 867.6686 877.0055 886.3423 895.6001 905.0172 914.3544 923.6910 933.0271 942.3654 951.7036 961.0386 970.3760 979.3760 979.7150 1150.0000 ********************************	$y_aire(-)$ 9.2100 0.2027 0.1993 0.19966 0.1943 0.1920 0.1904 0.1907 0.1871 0.1855 0.1841 0.1855 0.1841 0.1827 0.1813 0.1800 0.1800 (***********************************	I_comb (K) 1050.0000 1052.9490 1058.0470 1064.7440 1070.6420 1076.5400 1092.4370 1088.3350 1094.2330 1100.1300 1106.0280 1111.9260 1111.9260 1117.0240 1123.7209 1150.0000 ********************************	<pre>y_hidr&lt;-&gt; 0.8900 0.7000 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4656 0.4137 0.3554 0.4137 0.3554 0.2900 0.2167 0.1343 0.1335 ***********************************</pre>	$y_agua(-)$ 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4884 0.5346 0.5366 0.6449 0.7103 0.7837 0.8661 0.8665 **** DEN_CORR_NUA(A/cm2) 0.1608 0.1609 0.1611 0.1611 0.1612 0.1614 0.1615 0.1617 0.1618 0.1620 0.1624 0.1626 0.1626 0.1629
I_aire (K) 863.0000 867.6686 877.0055 886.3423 895.6001 905.0172 914.3544 923.6910 933.0271 942.3654 951.7036 979.3768 979.3768 979.7150 1158.0000 *********************************	$y_aire(-)$ 9.2100 0.2027 0.1993 0.1993 0.19943 0.1920 0.1943 0.1920 0.1871 0.1855 0.1841 0.1827 0.1813 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.3335E-01 0.3335E-01 0.3335E-01 0.3335E-01 0.3335E-01 0.1495E-01 0.1495E-01	I_comb (K) 1050.0000 1052.9490 1058.0470 1064.7440 1070.6420 1076.5400 1088.3350 1094.2330 1100.1300 1106.0280 1111.9260 1117.0240 11123.7209 1150.0000 ********************************	<pre>y_hidr&lt;-&gt; 0.8900 0.7008 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4656 0.4137 0.3554 0.4137 0.3554 0.4137 0.3554 0.2900 0.2167 0.1343 0.1335 ***********************************</pre>	$y_agua(-)$ 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4471 0.4884 0.5346 0.5346 0.5366 0.6449 0.7103 0.7837 0.8661 0.8665 <b>****</b> DEN_CORR_NVA(A/cm2) 0.1608 0.1609 0.1611 0.1612 0.1612 0.1612 0.1614 0.1615 0.1617 0.1618 0.1620 0.1620 0.1626 0.1629 0.1629 0.1669
I_aire (K) 863.00000 867.6686 877.0055 886.3423 895.6001 905.0172 914.3544 923.6910 905.0172 914.3544 923.6910 979.3654 951.7036 961.0386 970.3768 979.7150 1158.0000 *********************************	y_aire(-) 0.2100 0.2027 0.1993 0.1993 0.1943 0.1920 0.1943 0.1904 0.1807 0.1871 0.1855 0.1841 0.1827 0.1813 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.3335E-011 0.335E-011 0.335E-011 0.335E-011 0.335E-011 0.335E-011 0.335E-011 0.335E-011 0.335E-011 0.335E-011 0.3556 0.3556 0.3556 0.3556 0.3556 0.3556 0.3	I_comb (K) 1050.0000 1052.9490 1058.0470 1064.7440 1070.6420 1076.5400 1088.3350 1094.2330 1100.1300 1106.0280 1111.9260 1111.9260 1117.0240 1123.7209 1150.0000 ********************************	<pre>y_hidr&lt;-&gt; 0.8900 0.7008 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4656 0.4137 0.3554 0.2900 0.2167 0.1343 0.1335 V_tot(V) 1.1714 1.1059 1.1058 1.1046 1.1046 1.1025 1.0993 1.0823 1.0823 1.0825 1.0625 1.0625 1.0404 1.0290 0.9991 1.0111</pre>	<pre>y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3485 0.3777 0.4104 0.4884 0.5346 0.5346 0.5866 0.6449 0.7103 0.7837 0.8661 0.8665 **** DEN_CORR_NVA(A/cm2) 0.1608 0.1609 0.1610 0.1611 0.1612 0.1612 0.1614 0.1615 0.1617 0.1618 0.1620 0.1622 0.1624 0.1626 0.1628 0.1629</pre>
I_aire (K) 863.00000 867.6686 877.0055 886.3423 895.6001 905.0172 914.3544 923.6910 903.0271 942.3654 951.7036 961.0386 970.3768 970.3768 977.7150 1150.0000 ********************************	y_aire(-) 0.2100 0.2027 0.1993 0.1993 0.1943 0.1943 0.1904 0.1871 0.1855 0.1841 0.1855 0.1841 0.1855 0.1841 0.1827 0.1813 0.1800 (***********************************	I_comb (K) 1050.0000 1052.9490 1058.0470 1064.7440 1070.6420 1076.5400 1080.350 1094.2330 1094.2330 1100.1300 1106.0280 1111.9260 1117.0240 1117.0240 1117.0240 1123.7209 1150.0000 ********************************	<pre>y_hidr&lt;-&gt; 0.8900 0.7008 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4656 0.4137 0.3554 0.2900 0.2167 0.1343 0.1335 ***********************************</pre>	<pre>y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4884 0.5346 0.5346 0.5866 0.6449 0.7103 0.7837 0.8661 0.8665 **** DEN_CORR_NVA(A/cm2) 0.1608 0.1609 0.1610 0.1612 0.1612 0.1614 0.1615 0.1617 0.1618 0.1620 0.1622 0.1624 0.1628 0.1628 0.1628</pre>
I_aire (K) 863.00000 867.6686 877.0055 886.3423 895.6001 905.0172 914.3544 923.6910 933.0271 942.3654 951.7036 961.0386 970.3768 979.7150 1150.0000 ********************************	y_aire(-) 0.2100 0.2027 0.1993 0.1993 0.1943 0.1923 0.1904 0.1907 0.1871 0.1855 0.1841 0.1855 0.1841 0.1827 0.1813 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1900 0.1	I_comb (K) 1050.0000 1052.9490 1058.0470 1064.7440 1070.6420 1076.5400 1082.4370 1088.350 1094.2330 1094.2330 1190.1300 1106.0280 1117.0240 1117.0240 1117.0240 1123.7209 1150.0000 ********************************	<pre>y_hidr&lt;-&gt; 0.8900 0.7008 0.6776 0.6516 0.6225 0.5090 0.5531 0.5118 0.4137 0.3554 0.2900 0.2167 0.1343 0.1343 0.1335 ***********************************</pre>	<pre>y_agua(-) 0.1100 0.2993 0.3225 0.3485 0.3777 0.4104 0.4884 0.5346 0.5346 0.5346 0.5366 0.6449 0.7103 0.7837 0.8661 0.8665 **** DEN_CORR_NUA(A/cm2) 0.1608 0.1609 0.1610 0.1612 0.1612 0.1614 0.1615 0.1617 0.1617 0.1618 0.1620 0.1622 0.1624 0.1628 0.1628 0.1669 ***</pre>

_ i_nueva promedio= _ 0.1620 <A/cm2>

# **APÉNDICE V**

# **RESULTADOS DEL CASO DE ESTUDIO 1B**

**Región I** Perfil de velocidad axial:  $v_z = v_z(r)$ Este perfil, es el mismo que el presentado en el caso 1 y 1A, para la región correspondiente, en los apéndices III y IV.

		*****	* UEL.	AXIAL 02<	n/s) **	*****	
Į -	1	2	3	4	5	6	7
$\begin{array}{c} \mathbf{J} \\ 15 \\ 14 \\ 12 \\ 11 \\ 10 \\ 9 \\ 07 \\ 65 \\ 4 \\ 32 \\ 1 \end{array}$	0.000E+00 1.240E-02 3.472E-02 5.327E-02 6.805E-02 7.896E-02 0.572E-02 0.754E-02 0.199E-02 5.744E-02 3.016E-02 1.398E-02 0.000E+00	0.000E+00 1.248E-02 3.472E-02 5.327E-02 6.804E-02 7.896E-02 8.591E-02 8.591E-02 8.754E-02 8.198E-02 3.817E-02 1.399E-02 0.000E+00	0.000E+00 1.240E-02 3.472E-02 5.327E-02 6.804E-02 7.896E-02 0.591E-02 0.881E-02 8.754E-02 8.754E-02 8.198E-02 7.199E-02 5.744E-02 3.617E-02 1.399E-02 0.000E+00	0.000E+00 1.248E-02 3.472E-02 5.327E-02 6.804E-02 7.896E-02 8.591E-02 8.754E-02 8.754E-02 8.198E-02 7.199E-02 5.744E-02 3.817E-02 1.399E-02 0.000E+00	$\begin{array}{c} 0.000E+00\\ 1.240E-02\\ 3.472E-02\\ 5.327E-02\\ 6.004E-02\\ 7.896E-02\\ 0.591E-02\\ 0.801E-02\\ 8.754E-02\\ 8.754E-02\\ 8.754E-02\\ 7.199E-02\\ 5.744E-02\\ 3.817E-02\\ 1.399E-02\\ 0.000E+00\\ \end{array}$	0.000E+00 1.248E-02 3.472E-02 5.327E-02 6.004E-02 7.096E-02 8.591E-02 8.591E-02 8.754E-02 8.198E-02 8.198E-02 5.744E-02 3.817E-02 1.399E-02 0.000E+00	$\begin{array}{c} 0.000E+00\\ 1.248E-02\\ 3.472E-02\\ 5.327E-02\\ 6.004E-02\\ 7.896E-02\\ 8.951E-02\\ 8.81E-02\\ 8.754E-02\\ 8.754E-02\\ 8.754E-02\\ 9.198E-02\\ 7.199E-02\\ 5.744E-02\\ 3.017E-02\\ 1.399E-02\\ 0.000E+00\\ \end{array}$
I =	8	9	10	11	12	13	14
11432110987654321	$\begin{array}{c} 0.000E+00\\ 1.240E-02\\ 3.472E-02\\ 5.327E-02\\ 6.804E-02\\ 7.896E-02\\ 8.591E-02\\ 8.591E-02\\ 8.754E-02\\ 8.754E-02\\ 8.190E-02\\ 7.199E-02\\ 5.744E-02\\ 3.817E-02\\ 3.817E-02\\ 1.399E-02\\ 0.000E+00\\ \end{array}$	0.000E+00 1.248E-02 3.472E-02 5.327E-02 6.804E-02 7.096E-02 8.591E-02 8.591E-02 8.754E-02 8.198E-02 7.199E-02 5.744E-02 5.744E-02 5.744E-02 3.817E-02 1.399E-02 0.000E+00	$\begin{array}{c} 0.000E+00\\ 1.248E-02\\ 3.472E-02\\ 5.327E-02\\ 6.804E-02\\ 7.896E-02\\ 8.591E-02\\ 8.591E-02\\ 8.881E-02\\ 8.754E-02\\ 8.754E-02\\ 7.199E-02\\ 7.199E-02\\ 5.744E-02\\ 3.817E-02\\ 1.399E-02\\ 0.000E+00 \end{array}$	$\begin{array}{c} 0.000E+00\\ 1.248E-02\\ 3.472E-02\\ 5.327E-02\\ 6.804E-02\\ 7.896E-02\\ 8.591E-02\\ 8.601E-02\\ 8.754E-02\\ 8.198E-02\\ 7.199E-02\\ 5.744E-02\\ 3.817E-02\\ 1.399E-02\\ 0.000E+00 \end{array}$	$\begin{array}{c} 0.000E+00\\ 1.248E-02\\ 3.472E-02\\ 5.327E-02\\ 6.904E-02\\ 7.896E-02\\ 0.591E-02\\ 8.881E-02\\ 8.754E-02\\ 8.754E-02\\ 8.198E-02\\ 7.199E-02\\ 5.744E-02\\ 3.817E-02\\ 1.399E-02\\ 0.000E+00 \end{array}$	$\begin{array}{c} 0.000E+00\\ 1.248E-02\\ 3.472E-02\\ 5.327E-02\\ 6.804E-02\\ 7.896E-02\\ 8.591E-02\\ 8.981E-02\\ 8.754E-02\\ 8.754E-02\\ 8.198E-02\\ 7.199E-02\\ 5.744E-02\\ 3.017E-02\\ 1.399E-02\\ 0.000E+00 \end{array}$	$\begin{array}{c} 0.000E+00\\ 1.240E-02\\ 3.471E-02\\ 5.326E-02\\ 6.003E-02\\ 0.590E-02\\ 0.590E-02\\ 8.880E-02\\ 8.753E-02\\ 8.753E-02\\ 8.196E-02\\ 7.198E-02\\ 5.743E+02\\ 3.816E-02\\ 1.399E-02\\ 0.000E+00\\ \end{array}$
$I = 15 \\ 15 \\ 114 \\ 112 \\ 110 \\ 98 \\ 76 \\ 54 \\ 32 \\ 1$	$\begin{array}{c} 15\\ 0.000E+00\\ 1.248E-02\\ 3.472E-02\\ 5.327E-02\\ 6.804E-02\\ 7.096E-02\\ 0.591E-02\\ 0.591E-02\\ 0.801E-02\\ 0.801E-02\\ 0.754E-02\\ 0.198E-02\\ 7.199E-02\\ 5.744E-02\\ 3.017E-02\\ 1.399E-02\\ 1.399E-02\\ 0.000E+00\end{array}$						

## Perfil de temperatura: T = T(z, r)Considerando una pared adiabática.

		******	•TEI	1P AIRE TO	K) ++	HHMMM	
Į =	1	2	Э	4	5	6	7
J 154 114 121 110 876 54 32	8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02	$\begin{array}{c} 1.146E+03\\ 1.14$	$\begin{array}{c} 1.146E+03\\ 1.14$	$\begin{array}{c} 1.146E+03\\ 1.14$	$\begin{array}{c} 1.146E+03\\ 1.14$	$\begin{array}{c} 1.146E+03\\ 1.14$	$\begin{array}{c} 1.146 \pm +03\\ 1.146 \pm +03$
1	0.630E+02	1.146E+03	1.146E+03	1.146E+03	1.146E+03	1.146E+03	1.146E+03
$ \begin{array}{c} \mathbf{I} = \\ \mathbf{J} \\ 15 \\ 143 \\ 121 \\ 121 \\ 109 \\ 6 \\ 543 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ 21 \\ $	$\begin{array}{c} 8\\ 1.146 \pm +03\\ \end{array}$	$\begin{array}{r} 9\\ 1.146\pm 03\\ 1$	$10 \\ 1.146E+03 \\$	$11 \\ 1.146E+03 \\$	12 1.146E+03	$13 \\ 1.146E+03 \\$	$14 \\ 1.146E+03 \\$
I = J = J = J = J = J = J = J = J = J =	15 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03						

Perfil de composición:  $y_i = y_i(z, r)$ Resultados de la composición para la relación de 4 veces la estequiometría del aire. Considerando una pared impermeable.

		******	CO	MPOSICION	02 **	*****	
I -	1	2	3	4	5	6	7
J 15 11 12 11 10 9 8 7 6 5 4 3 2 1	2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01	1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01	1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01	1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01	1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01	1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01	1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01
<b>I</b> =	8	9	10	11	12	13	14
J54112110987654321	1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01	1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01	1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01	$\begin{array}{c} 1.700E-01\\ 1.70$	1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01	$\begin{array}{c} 1.700E-01\\ 1.70$	1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01
I = I = I = I = I = I = I = I = I = I =	15 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01						

Perfil de composición:  $y_i = y_i(z, r)$ Resultados de la composición para la relación de 6 veces la estequiometría del aire. Considerando una pared impermeable.

		******	+ <u>COI</u>	POSICION	02 **	<del>14, 34, 34, 14, 14,</del>	
I≖ -ĭ	1	2	Э	4	5	6	7
J54 122 124 122 124 122 124 122 122 122 12	$\begin{array}{c} 2.100E-01\\ 2.100E-01\end{array}$	1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01	1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.900E-01 1.900E-01	1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01	1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01	$\begin{array}{c} 1.800E-01\\ 1.80$	$\begin{array}{c} 1.800E-01\\ 1.80$
I≖ J	6	9	10	11	12	13	14
$154 \\ 143 \\ 1121 \\ 198 \\ 654 \\ 321 \\ 198 \\ 109 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100$	1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01	1.800E-01 1.900E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01	$\begin{array}{c} 1.600E-01\\ 1.900E-01\\ 1.900E-01\\ 1.900E-01\\ 1.800E-01\\ 1.80$	$\begin{array}{c} 1.800E-01\\ 1.80$	$\begin{array}{c} 1.800E-01\\ 1.80$	1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01	$\begin{array}{c} 1.800E-01\\ 1.900E-01\\ 1.900E-01\\ 1.900E-01\\ 1.900E-01\\ 1.900E-01\\ 1.800E-01\\ 1.80$
I= J 15 14 13 12 11 10 9 87 6 5 4 32 1	15 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01						

## Región V

Perfil de velocidad axial:  $v_z = v_z(r)$ Este perfil, es el mismo que el presentado en el caso 1 y 1A, para la región correspondiente, en los apéndices III y IV.

1		****	• VEL A	XIAL COMB	(m/s 😕	<del>€×₽₩₩</del>	
I =	1	2	3	4	5	6	7
J 154 12 11 10 9 7 6 5 4 3 2 1	0.000E+00 2.952E-03 8.205E-03 1.257E-02 1.604E-02 1.859E-02 2.020E-02 2.052E-02 1.918E-02 1.682E-02 1.339E-02 1.339E-03 3.247E-03 0.000E+00	0.000E+00 2.952E-03 1.257E-02 1.604E-02 1.659E-02 2.020E-02 2.052E-02 2.052E-02 1.682E-02 1.682E-02 1.682E-02 1.682E-02 1.339E-03 3.247E-03 0.000E+00	0.000E+00 2.952E-03 1.257E-02 1.604E-02 1.859E-02 2.020E-02 2.085E-02 2.052E-02 1.910E-02 1.682E-02 1.339E-02 8.060E-03 3.247E-03 0.000E+00	$\begin{array}{c} 0.000E+00\\ 2.952E-03\\ 0.205E-02\\ 1.604E-02\\ 1.859E-02\\ 2.020E-02\\ 2.085E-02\\ 2.085E-02\\ 2.085E-02\\ 2.052E-02\\ 1.910E-02\\ 1.682E-02\\ 1.339E-02\\ 8.880E-03\\ 3.247E-03\\ 0.000E+00 \end{array}$	$\begin{array}{c} 0.000E+00\\ 2.952E-03\\ 0.205E-03\\ 1.257E-02\\ 1.604E-02\\ 1.859E-02\\ 2.020E-02\\ 2.085E-02\\ 2.085E-02\\ 2.085E-02\\ 1.918E-02\\ 1.682E-02\\ 1.339E-02\\ 0.800E-03\\ 3.247E-03\\ 0.000E+00\\ \end{array}$	$\begin{array}{c} 0.000E+00\\ 2.952E-03\\ 8.205E-03\\ 1.257E-02\\ 1.604E-02\\ 1.859E-02\\ 2.020E-02\\ 2.085E-02\\ 2.085E-02\\ 2.085E-02\\ 1.910E-02\\ 1.682E-02\\ 1.339E-02\\ 8.800E-03\\ 3.247E-03\\ 0.000E+00 \end{array}$	0.000E+00 2.952E-03 8.205E-03 1.257E-02 1.604E-02 1.859E-02 2.020E-02 2.085E-02 2.085E-02 1.918E-02 1.682E-02 1.339E-02 8.800E-03 3.247E-03 0.000E+00
<b>]</b> =	8	9	10	11	12	13	14
J 15 15 12 11 10 9 8 7 6 5 4 9 2 1	0.000E+00 2.952E-03 8.205E-03 1.257E-02 1.604E-02 1.859E-02 2.020E-02 2.085E-02 2.052E-02 1.918E-02 1.602E-02 1.339E-02 8.000E-03 3.247E-03 0.000E+00	$\begin{array}{c} 0.000E+00\\ 2.952E-03\\ 3.205E-03\\ 1.257E-02\\ 1.604E-02\\ 1.859E-02\\ 2.020E-02\\ 2.085E-02\\ 2.085E-02\\ 1.910E-02\\ 1.910E-02\\ 1.339E-02\\ 8.880E-03\\ 3.247E-03\\ 0.000E+00 \end{array}$	$\begin{array}{c} 0.000E+00\\ 2.952E-03\\ 8.205E-03\\ 1.257E-02\\ 1.604E-02\\ 1.859E-02\\ 2.020E-02\\ 2.085E-02\\ 2.052E-02\\ 1.910E-02\\ 1.602E-02\\ 1.339E-02\\ 8.800E-03\\ 3.247E-03\\ 0.000E+00 \end{array}$	$\begin{array}{c} 0.000E+00\\ 2.952E-03\\ 0.205E-03\\ 1.257E-02\\ 1.604E-02\\ 1.859E-02\\ 2.020E-02\\ 2.085E-02\\ 2.052E-02\\ 1.918E-02\\ 1.682E-02\\ 1.339E-02\\ 8.880E-03\\ 3.247E-03\\ 0.000E+00 \end{array}$	$\begin{array}{c} 0.000E+00\\ 2.952E-03\\ 0.205E-03\\ 1.257E-02\\ 1.604E-02\\ 1.859E-02\\ 2.020E-02\\ 2.085E-02\\ 2.052E-02\\ 1.918E-02\\ 1.682E-02\\ 1.339E-02\\ 0.880E-03\\ 3.247E-03\\ 0.000E+00 \end{array}$	0.000E+00 2.952E-03 8.205E-03 1.257E-02 1.604E-02 1.059E-02 2.085E-02 2.085E-02 2.085E-02 1.918E-02 1.682E-02 1.339E-02 0.880E-03 3.247E-03 0.000E+00	$\begin{array}{c} 0.000E+00\\ 2.952E-03\\ 8.205E-03\\ 1.257E-02\\ 1.604E-02\\ 1.659E-02\\ 2.020E-02\\ 2.005E-02\\ 2.085E-02\\ 2.052E-02\\ 1.910E-02\\ 1.682E-02\\ 1.339E-02\\ 8.880E-03\\ 3.247E-03\\ 0.000E+00 \end{array}$
I=	15						
J 154 132 110 98 76 54 32 1	0.000E+00 2.952E-03 0.205E-03 1.257E-02 1.604E-02 2.020E-02 2.085E-02 2.085E-02 2.085E-02 1.918E-02 1.682E-02 1.339E-02 8.880E-03 3.247E-03 0.000E+00						

## Perfil de temperatura: T = T(z, r)Considerando una pared adiabática.

		*****	• T	COMB T(K)	#	****	
Į-	1	2	3	4	5	6	7
J 154 113 110 9 8 7 6 5 4 3 2	1.015E+03 1.050E+03 1.050E+03 1.050E+03 1.050E+03 1.050E+03 1.050E+03 1.050E+03 1.050E+03 1.050E+03 1.050E+03 1.050E+03 1.050E+03 1.050E+03 1.050E+03	4.479E+01 7.979E+01 2.396E+02 3.944E+02 5.396E+02 6.716E+02 7.874E+02 8.853E+02 9.640E+02 1.024E+03 1.090E+03 1.102E+03 1.106E+03	4.476E+01 7.976E+01 2.395E+02 3.942E+02 5.394E+02 6.714E+02 7.873E+02 8.851E+02 9.639E+02 1.023E+03 1.065E+03 1.090E+03 1.102E+03 1.105E+03	4.476E+01 7.976E+01 2.395E+02 3.942E+02 5.394E+02 6.714E+02 7.873E+02 0.851E+02 9.639E+03 1.065E+03 1.090E+03 1.102E+03 1.105E+03	4.476E+01 7.976E+01 2.395E+02 3.942E+02 5.394E+02 6.714E+02 7.873E+02 8.851E+02 9.639E+03 1.065E+03 1.090E+03 1.102E+03 1.105E+03	4.476E+01 7.976E+01 2.395E+02 3.942E+02 5.394E+02 5.394E+02 7.873E+02 8.051E+02 9.639E+03 1.065E+03 1.092E+03 1.102E+03 1.105E+03	4.476E+01 7.976E+01 2.395E+02 3.942E+02 5.394E+02 6.714E+02 7.873E+02 8.851E+02 9.639E+02 1.023E+03 1.065E+03 1.092E+03 1.102E+03 1.105E+03
1	1.121E+03	1.121E+03	1.121E+03	1.121E+03	1.121E+03	1.121E+03	1.121E+03
1- J 114 113 112 110 9 8 7 6 5 4 3 2 1	8 4.476E+01 7.976E+01 2.395E+02 3.942E+02 5.394E+02 6.714E+02 7.873E+02 9.639E+02 1.023E+03 1.065E+03 1.090E+03 1.102E+03 1.105E+03 1.121E+03	Y 4.476E+01 7.976E+01 2.395E+02 3.942E+02 5.394E+02 6.714E+02 7.073E+02 8.851E+02 9.639E+02 1.023E+03 1.065E+03 1.090E+03 1.105E+03 1.121E+03	10 4.476E+01 7.976E+01 2.395E+02 3.942E+02 5.394E+02 6.714E+02 7.873E+02 8.851E+02 9.639E+02 1.023E+03 1.065E+03 1.090E+03 1.105E+03 1.121E+03	11 4.476E+01 7.976E+01 2.395E+02 3.942E+02 5.394E+02 6.714E+02 7.873E+02 8.851E+02 9.639E+02 1.023E+03 1.065E+03 1.090E+03 1.105E+03 1.121E+03	12 4.476E+01 7.976E+01 2.395E+02 3.942E+02 5.394E+02 6.714E+02 7.873E+02 0.639E+02 1.023E+03 1.065E+03 1.02E+03 1.105E+03 1.121E+03	13 4.476E+01 7.976E+01 2.395E+02 3.942E+02 5.394E+02 6.714E+02 7.873E+02 8.851E+02 9.639E+02 1.023E+03 1.065E+03 1.105E+03 1.105E+03 1.121E+03	14 4.481E+01 7.901E+01 2.396E+02 3.944E+02 5.396E+02 6.716E+02 7.875E+02 8.854E+02 9.642E+02 1.024E+03 1.065E+03 1.102E+03 1.106E+03 1.121E+03
$I \stackrel{\alpha}{=} \\ J 5 \\ 114 \\ 113 \\ 112 \\ 110 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1$	15 1.115E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.121E+03						

## Perfil de composición del hidrógeno: $y_i = y_i(z, r)$ Considerando una pared impermeable.

		*****	•C(	OMPOSICION	H2 **	<del></del>	
<b>I</b> =	1	2	3	4	5	6	7
J 15 11 11 11 10 8 7 6 5 4 3 2 1	8.798E-01 8.900E-01 8.900E-01 8.900E-01 8.900E-01 8.900E-01 8.900E-01 8.900E-01 8.900E-01 8.900E-01 8.900E-01 8.900E-01 8.900E-01 8.900E-01 8.900E-01 8.900E-01 1.335E-01	$\begin{array}{c} 1.778E-04\\ 1.034E-02\\ 3.103E-02\\ 5.107E-02\\ 5.987E-02\\ 8.695E-02\\ 1.020E-01\\ 1.146E-01\\ 1.248E-01\\ 1.326E-01\\ 1.379E-01\\ 1.412E-01\\ 1.428E-01\\ 1.432E-01\\ 1.335E-01\\ \end{array}$	9.589E-05 1.026E-02 3.080E-02 6.936E-02 8.633E-02 1.012E-01 1.138E-01 1.316E-01 1.316E-01 1.369E-01 1.402E-01 1.417E-01 1.421E-01 1.335E-01	9.587E-05 1.026E-02 3.080E-02 6.936E-02 8.633E-02 1.012E-01 1.138E-01 1.316E-01 1.367E-01 1.369E-01 1.402E-01 1.417E-01 1.421E-01 1.335E-01	9.587E-05 1.026E-02 3.080E-02 6.936E-02 8.633E-02 1.012E-01 1.138E-01 1.239E-01 1.316E-01 1.369E-01 1.369E-01 1.402E-01 1.417E-01 1.421E-01 1.335E-01	9.587E-05 1.026E-02 3.080E-02 6.936E-02 0.633E-02 1.012E-01 1.130E-01 1.237E-01 1.316E-01 1.369E-01 1.402E-01 1.417E-01 1.421E-01 1.335E-01	9.586E-05 1.026E-02 3.000E-02 5.069E-02 6.936E-02 8.633E-02 1.012E-01 1.138E-01 1.239E-01 1.316E-01 1.369E-01 1.402E-01 1.417E-01 1.421E-01 1.335E-01
I =	8	9	10	11	12	13	14
J 154 112 112 110 9 8 7 6 5 4 3 2 1	9.506E-05 1.026E-02 3.080E-02 5.069E-02 6.936E-02 8.633E-02 1.012E-01 1.138E-01 1.316E-01 1.316E-01 1.369E-01 1.402E-01 1.417E-01 1.421E-01 1.335E-01	9.586E-05 1.026E-02 3.080E-02 5.069E-02 6.936E-02 8.633E-02 1.012E-01 1.138E-01 1.316E-01 1.316E-01 1.369E-01 1.402E-01 1.417E-01 1.421E-01 1.335E-01	9.587E-05 1.026E-02 3.080E-02 5.069E-02 6.936E-02 8.633E-02 1.012E-01 1.138E-01 1.239E-01 1.316E-01 1.369E-01 1.402E-01 1.417E-01 1.421E-01 1.335E-01	9.587E-05 1.026E-02 3.080E-02 5.069E-02 6.936E-02 8.633E-02 1.012E-01 1.138E-01 1.239E-01 1.316E-01 1.369E-01 1.402E-01 1.417E-01 1.421E-01 1.335E-01	9.587E-05 1.026E-02 3.080E-02 5.069E-02 6.936E-02 8.633E-02 1.012E-01 1.39E-01 1.39E-01 1.316E-01 1.369E-01 1.402E-01 1.417E-01 1.421E-01 1.335E-01	9.587E-05 1.026E-02 3.000E-02 5.069E-02 6.936E-02 8.633E-02 1.012E-01 1.39E-01 1.239E-01 1.316E-01 1.369E-01 1.402E-01 1.417E-01 1.421E-01 1.335E-01	9.965E-05 1.026E-02 3.081E-02 5.070E-02 6.938E-02 8.635E-02 1.012E-01 1.138E-01 1.240E-01 1.316E-01 1.369E-01 1.402E-01 1.417E-01 1.421E-01 1.335E-01
I = J = J = J = J = J = J = J = J = J =	15 1.233E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01						

## Perfil de composición del agua: $y_i = y_i(z, r)$ Considerando una pared impermeable.

		*****	+ <u>COI</u>	IPOSICION	120 <del>×</del>	*****	
<b>I</b> =	1	2	3	4	5	6	7
J 154 1113 1110 876 54 32	1.008E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01	$\begin{array}{c} - \\ 6.106E-02 \\ 6.222E-02 \\ 1.660E-01 \\ 3.075E-01 \\ 4.206E-01 \\ 5.237E-01 \\ 6.141E-01 \\ 6.904E-01 \\ 7.518E-01 \\ 7.518E-01 \\ 8.305E-01 \\ 8.595E-01 \\ 8.595E-01 \\ 8.620E-01 \\ \end{array}$	$\begin{array}{c} 6.111E-02\\ 6.227E-02\\ 1.870E-01\\ 3.078E-01\\ 4.211E-01\\ 6.146E-01\\ 6.910E-01\\ 7.525E-01\\ 7.990E-01\\ 8.313E-01\\ 8.509E-01\\ 8.509E-01\\ 8.604E-01\\ 8.629E-01\\ \end{array}$	$\begin{array}{c} 6.111E-02\\ 6.227E-02\\ 1.870E-01\\ 3.078E-01\\ 4.211E-01\\ 6.146E-01\\ 6.910E-01\\ 7.525E-01\\ 7.990E-01\\ 8.313E-01\\ 8.509E-01\\ 8.604E-01\\ 8.629E-01\\ \end{array}$	$\begin{array}{c} 6.111E-02\\ 6.227E-02\\ 1.870E-01\\ 3.070E-01\\ 4.211E-01\\ 6.146E-01\\ 6.910E-01\\ 7.525E-01\\ 7.990E-01\\ 8.509E-01\\ 8.509E-01\\ 8.604E-01\\ 8.629E-01\\ 8.629E-01\\ \end{array}$	$\begin{array}{c} 6.111E-02\\ 6.227E-02\\ 1.070E-01\\ 3.078E-01\\ 4.211E-01\\ 5.241E-01\\ 6.146E-01\\ 6.910E-01\\ 7.525E-01\\ 7.990E-01\\ 8.313E-01\\ 8.509E-01\\ 8.604E-01\\ 8.629E-01\\ 9.629E-01\\ \end{array}$	$\begin{array}{c} 6.111E-02\\ 6.227E-02\\ 1.870E-01\\ 3.078E-01\\ 4.211E-01\\ 5.241E-01\\ 6.146E-01\\ 6.910E-01\\ 7.525E-01\\ 7.990E-01\\ 8.313E-01\\ 8.509E-01\\ 8.604E-01\\ 8.629E-01\\ 8.629E-01\\ 8.629E-01\\ \end{array}$
1	8.665E-01	8.665E-01	0.665E-01	8.6652-01	8.665E-01	8.665E-01	8.002E-01
I J 154132 114 113 111 98 76 54 32 1	6.111E-02 6.227E-02 1.870E-01 3.078E-01 4.211E-01 5.241E-01 6.146E-01 6.910E-01 7.525E-01 7.525E-01 7.990E-01 8.313E-01 8.604E-01 8.665E-01	7 6.111E-02 6.227E-02 1.870E-01 3.078E-01 4.211E-01 5.241E-01 6.910E-01 6.910E-01 7.525E-01 7.990E-01 8.509E-01 8.604E-01 8.665E-01	10 6.111E-02 6.227E-02 1.870E-01 3.078E-01 4.211E-01 6.241E-01 6.910E-01 6.910E-01 7.525E-01 7.525E-01 7.990E-01 8.313E-01 8.604E-01 8.629E-01 8.665E-01	$\begin{array}{c} 11\\ 6.111E-02\\ 6.227E-02\\ 1.870E-01\\ 3.078E-01\\ 4.211E-01\\ 5.241E-01\\ 6.146E-01\\ 6.910E-01\\ 7.525E-01\\ 7.525E-01\\ 7.990E-01\\ 8.509E-01\\ 8.604E-01\\ 8.665E-01\\ 8.665E-01\end{array}$	12 6.111E-02 6.227E-02 1.070E-01 3.070E-01 4.211E-01 6.146E-01 6.146E-01 6.910E-01 7.525E-01 7.990E-01 8.313E-01 8.604E-01 8.629E-01 8.665E-01	6.111E-02 6.227E-02 1.870E-01 3.078E-01 4.211E-01 5.241E-01 6.146E-01 6.910E-01 7.525E-01 7.990E-01 8.313E-01 8.509E-01 8.604E-01 8.629E-01 8.665E-01	$\begin{array}{c} 1.3\\ 6.114E-02\\ 6.230E-02\\ 1.671E-01\\ 3.079E-01\\ 4.212E-01\\ 5.243E-01\\ 6.911E-01\\ 7.526E-01\\ 7.992E-01\\ 0.315E-01\\ 8.511E-01\\ 8.605E-01\\ 8.665E-01\\ 8.665E-01\\ \end{array}$
I = J 154 112 110 87 65 43 21	15 8.653E-01 9.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01 9.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01						

## Resultados de la región del sólido (Regiónes II, III y IV)

#### Resultados considerando 4 veces la estequiometría del oxígeno

1_a1re (K)	y_aire(-)	T_comb (K)	y_hidr(-) 0 1335	y_agua(-) 0 8665
4446 00000	0.2100	1121.0000	0 1335	0.8665
1116 0000	0.1700	1121 0000	0 1335	0.8665
1146 0000	0 1700	1121.0000	0.1335	0.8665
1146 0000	0 1700	1121 0000	0.1335	0.8665
1146 0000	0 1700	1121 0000	0.1335	<b>9.8665</b>
1146 0000	A 1700	1121 0000	0.1335	0.8665
1146 0000	0 1700	1121 0000	<b>N</b> .1335	0.8665
1146 0000	0 1700	1121-0000	0.1335	0.8665
1146 0000	<b>0</b> 1700	1121.0000	0.1335	0.8665
1146.0000	0.1200	1121.0000	0.1335	0.8665
1146.0000	0.1700	1121.0000	0.1335	0.8665
1146.0000	0.1700	1121.0000	0.1335	0.8665
1146.0000	0.1700	1121.0000	0.1335	0.8665
1150.0000	0.1700	1121.0000	0.1335	0.8665
***********	*******	**************	************	•••
Eid(U)	nohmic(V)	nact_total(U)	V_tot(V)	DEN_CORR_NUA(A/cm2)
1.0937	0.5585E-01	0.4087E-01	0.9870	0.1517
1.0779	0.1509E-01	0.4981E-01	1.0122	0.1560
1.0779	0.1589E-01	0.4981E-01	1.0122	0.1560
1.0779	0.1589E-01	0.4981E-01	1.0122	0.1560
1.0779	Ø.1589E-01	0.4981E-01	1.0122	0.1560
1.0779	0.1589E-01	0.4981E-01	1.0122	0.1560
1.0779	0.1589E-01	0.4981E-01	1.0122	0.1560
1.0779	0.1589E-01	0.4981E-01	1.0122	0.1560
1.0779	0.1589E-01	0.4981E-01	1.0122	0.1560
1.0779	0.1589E-01	0.4981E-01	1.0122	0.1560
1.0779	0.1589E-01	0.4981E-01	1.0122	0.1560
1.0779	0.1589E-01	0.4981E-01	1.0122	0.1560
1.0779	0.1589E-01	0.4981 <u>E</u> -01	1.0122	9.1560
1_9779	Ø. 1589E-01	0.4981E-01	1.0122	0.1560
				- · · ·
1.0779	0.1565E-01	0.4994E-01	1.0123	0.1561
1.0779 ********	0.1565E-01	0.4994E-01	1.0123	0.1561 *
1.0779 ********** Voltaje tota	0.1565E-01	0.4994E-01 ************************************	1.0123	0.1561 *
1.0779 ********** Voltaje tota Densidad de	0.1565E-01 	0.4994E-01 ************************************	1.0123 ************************************	0.1561 *
1.0779 ************ Voltaje tota Densidad de	0.1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().1565E-01 ().156	0.4994E-01 ************************************	1.0123 ************************************	0.1561 * **
1.0779 ************ Uoltaje tota Densidad de	0.1565E-01 	0.4994E-01 	1.0123 ************************************	0.1561 * **
1.0779 ************* Voltaje tota Densidad de ************* i_nueva prom	0.1565E-01 	0.4994E-01 1.0105 (V) 0.1500 (A/c) 558 (A/cm2)	1.0123 ************************************	0.1561 *
1.0779 ************* Uoltaje tota Densidad de ************ i_nueva prom	0.1565E-01 () 1565E-01 () promedio= corriente= () promedio= corriente= () promedio= corriente= () promedio= () promedio	0.4994E-01 1.0105 (U) 0.1500 (A/c) 558 (A/cm2) *********	1.0123 ************************************	0.1561 * **
1.0779 ************* Uoltaje tota Densidad de ************ i_nueva prom	0.1565E-01 	0.4994E-01 1.0105 (U) 0.1500 (A/c) 558 (A/cm2)	1.0123 ************************************	0.1561 * **
1.0779 ************** Voltaje tota Densidad de ************ i_nueva prom ************	0.1565E-01 () () () () () () () () () ()	0.4994E-01 1.0105 (V) 0.1500 (A/cm 558 (A/cm2) ************************************	1.0123 ************************************	0.1561 ** *** DEN_CORR_NUA(A/cm2)
1.0779 ************** Voltaje tota Densidad de ************ i_nueva prom ************ Eid(V) 1.0937	0.1565E-01 () () () () () () () () () ()	0.4994E-01 1.0105 (U) 0.1500 (A/cm 558 (A/cm2) ************************************	1.0123 ************************************	0.1561 * *** DEN_CORR_NUA(A/cm2) 0.1575
1.0779 ***********************************	0.1565E-01 () () () () () () () () () ()	0.4994E-01 	1.0123 ************************************	0.1561 * * DEN_CORR_NUA(A/cm2) 0.1575 0.1620
1.0779 ******************** Uoltaje tota Densidad de ************** i_nueva prom ************* Eid(U) 1.0837 1.0779 1.0779	0.1565E-01 	0.4994E-01 1.0105 (U) 0.1500 (A/cm 558 (A/cm2) ************************************	1.0123 ************************************	0.1561 * * DEN_CORR_NUA(A/cm2) 0.1575 0.1620 0.1620
1.0779 ****************** Uoltaje tota Densidad de ************** i_nueva prom ************* Eid(U) 1.0837 1.0779 1.0779 1.0779	0.1565E-01 	0.4994E-01 1.0105 (U) 0.1500 (A/cm 558 (A/cm2) ************************************	1.0123 ************************************	0.1561 * DEN_CORR_NUA(A/cm2) 0.1575 0.1620 0.1620 0.1620
1.0779 ***********************************	0.1565E-01 	0.4994E-01 1.0105 (U) 0.1500 (A/cm 558 (A/cm2) ************************************	1.0123 ************************************	0.1561 * DEN_CORR_NUA(A/cm2) 0.1575 0.1620 0.1620 0.1620 0.1620
1.0779 ***********************************	0.1565E-01 0.1565E-01 0.1565E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01	0.4994E-01 1.0105 (U) 0.1500 (A/cm 558 (A/cm2) ************************************	1.0123 ************************************	0.1561 * DEN_CORR_NUA(A/cm2) 0.1575 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620
1.0779 ***********************************	0.1565E-01 0.1565E-01 0.1565E-01 0.0716nte= 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01	0.4994E-01 1.0105 (U) 0.1500 (A/cm 558 (A/cm2) ************************************	1.0123 ************************************	0.1561 * DEN_CORR_NUA(A/cm2) 0.1575 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620
1.0779 ***********************************	0.1565E-01 0.1565E-01 0.1565E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650	0.4994E-01 1.0105 (U) 0.1500 (A/cm 558 (A/cm2) ************************************	1.0123 ************************************	0.1561 * DEN_CORR_NUA(A/cm2) 0.1575 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620
1.0779 ***********************************	0.1565E-01 0.1565E-01 0.1565E-01 0.000 0.000 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.16	0.4994E-01 	1.0123 ************************************	0.1561 * DEN_CORR_NUA(A/cm2) 0.1575 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620
1.0779 ***********************************	0.1565E-01 0.1565E-01 0.1565E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650	0.4994E-01 	1.0123 ************************************	0.1561 * DEN_CORR_NUA(A/cm2) 0.1575 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620
1.0779 ***********************************	0.1565E-01 	0.4994E-01 	1.0123 ************************************	0.1561 * DEN_CORR_NUA(A/cm2) 0.1575 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620
1.0779 ***********************************	0.1565E-01 	0.4994E-01 	1.0123 ************************************	0.1561 * DEN_CORR_NUA(A/cm2) 0.1575 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620
1.0779 ***********************************	0.1565E-01 	0.4994E-01 1.0105 (U) 0.1500 (A/cm 558 (A/cm2) ************************************	1.0123 ************************************	0.1561 * DEN_CORR_NUA(A/cm2) 0.1575 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620
1.0779 ***********************************	0.1565E-01 	0.4994E-01 1.0105 (U) 0.1500 (A/cm 558 (A/cm2) ************************************	1.0123 ************************************	0.1561 * DEN_CORR_NUA(A/cm2) 0.1575 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620
1.0779 ***********************************	0.1565E-01 	0.4994E-01 1.0105 (U) 0.1500 (A/cm 558 (A/cm2) ************************************	1.0123 ************************************	0.1561 DEN_CORR_NUA(A/cm2) 0.1575 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620
1.0779 ***********************************	0.1565E-01 	0.4994E-01 1.0105 (U) 0.1500 (A/cm 558 (A/cm2) ************************************	1.0123 ************************************	0.1561 * DEN_CORR_NUA(A/cm2) 0.1575 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.162
1.0779 ***********************************	0.1565E-01 	0.4994E-01 1.0105 (U) 0.1500 (A/cm ² ) 558 (A/cm ² ) ************************************	1.0123 ************************************	0.1561
1.0779 ***********************************	0.1565E-01 	0.4994E-01 1.0105 (U) 0.1500 (A/cm ² ) 558 (A/cm ² ) ************************************	1.0123 m2) m2) v.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	0.1561 * DEN_CORR_NUA(A/cm2) 0.1575 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1621 *

i_nueva promedio = 0.161? (A/cm2)

мининининики жи	*************			•••
E1d(V)	nohmic(V)	nact_total(U)	V_tot(V)	DEN_CORR_NUA(A/cm2)
1.0837	0.6023E01	0.4397E-01	0.9795	0.1636
1.0779	0.1713E-01	0.5357E-01	1.0072	0.1683
1.0229	0.1713E-01	0.5357E-01	1.0072	0.1683
1 0779	0.1213E-01	0.5352E-01	1.0072	0.1603
1 0770	0 17136-01	0 5357F-01	1 0072	0.1683
1 07770	A 1713E-01	0 53576-01	1 0072	0 1693
1.0///	0.17136-01	0.33372 01	1 0072	0.1003
1.0777	0.17135-01	0.0307E-01	1.0076	0.1003
1 0779	0.1713E-01	0.53576-01	1.0072	U.100J 0.4400
1.0779	0.1713E-01	0.5357E-01	1.0072	0.1683
1.0779	0.1713E-01	0.5357E-01	1.0072	0.1603
1.0779	0.1713E-01	0.5357E-01	1.0072	0.1603
1.0779	0.1713E-01	0.5357E-01	1.0072	0.1683
1.0779	0.1713E-01	0.5357E-01	1.0072	0.1683
1.0229	0.1713E-01	0.5357E-01	1.0072	0.1683
1 0779	Ø 1687F-01	0.5371E-01	1_0023	0.1684
			**********	t
Ilaltata tat	al succeeding	1 00E4 (II)		
	ar promouto-	R 1617 (0/7	×	
Densiaaa ae	COPPIENTS=	0.1617 (H/CMZ		
*****	****************	****		•••
1_nueva pro	medio= 0.16	680 (A/cm2)		
***********	**************	<del> </del>	<del>(***********</del> ***	<del>(X</del>
Eid(V)	nohmic(V)	nact_total(V)	V_tot(V)	DEN_CORR_NVA(A/cm2)
1.0837	0.6254E-01	Ø.4560E-01	0.9756	0.1698
1 0779	0 1779F-01	0 5555F-01	1.0046	0-1747
1 0000	0 1779E_01	A 55555-01	1 0046	0 1242
1 0000	0.1777E DI	0.33332 01 0 CECEE_04	1 0040	0 1747
1.0777	0.17775-01	0.5333E-01	1 0040	0.4040
1 . 0779	0.1779E-01	0.5555E-01	1.0040	U.1747
1.0779	0.1779E-01	0.5555E-01	1.0046	0.1747
1.0779	0.1779E-01	0.5555E-01	1.0046	0.1747
1.0779	0.1779E-01	0.5555E-01	1.0046	0.1747
1.0779	0.1779E-01	0.5555E-01	1.0046	0.1747
1 0779	0.1779E-01	0.5555E-01	1.0046	0.1747
1 0779	0 1779E-01	0 55556-01	1 0046	0 1242
1 0770	0.1770°-01	0.5555E 01	1 0046	0 1 7 4 7
1 0777	0.1777E-01 0.4000E-04	0.53336-01 0.55336-01	1 0010	0.1777
1.0779	0.17775-01	0.22225-01	1.0040	0.1(1)
1.0779	0.1779E-01	0.5555E-01	1.0046	0.1747
1.0779	0.1752E-01	0.5569E-01	1.0047	0.1748
**********	*****************	<del>(************************************</del>	********	6
Voltaje tot	al promedio=	1.0026 (V)		
Densidad de	corriente≖	0.1680 (A/cm2	2)	
*******	***********	*************************	*********	•*
-	mediam 0.15	AA (0/cm2)		
I_HUEVA pro	MOUTO 6*11			
**********	****	<b></b>		
EIGCOS	nohmic(V)	nact_total(0)	V_TOT(V)	DEW_COKK_WORCH/CW21
1.0837	0.6494E-01	U.4728E-U1	0.9715	0.1764
1.0779	0.1847E-01	0.5760E-01	1.0018	0.1815
1.0779	0.1847E-01	0.5760E-01	1.0018	0.1815
1.0229	0.1847E-01	0.5760E-01	1.0018	0.1815
1 0779	0 1847E-01	0 5260F-01	1_0018	Ø_1815
1 0779	0 1947F-01	0 5760E-01	1 0018	0 1815
4 0770	0 10/0E_01	0 5760E-01	1 0010	0 1915
1.0117	0.101/6-01	0.5700E-01	4 0010	0.1013 0.404E
1.0//7	0.18476-01	0.57602-01	1.0010	0.1010
1.0779	0.1847E-01	0.5760E-01	1.0010	0.1015
1.0779	0.1847E-01	0.5760E-01	1.0018	0.1815
1.0779	0.1847E-01	0.5760E-01	1.0018	0.1815
1.0779	0.1847E-01	0.5760E-01	1.0018	0.1815
1.0779	0.1847E-01	0.5760E-01	1.0018	0.1815
1 0779	0.1847E-01	0.5760E-01	1.0018	0.1815
1 0779	0 1820F-01	0 5774F-01	1.0020	A_1816
T.UILL	O'TOGOU OT	U.JIIIL UL		4
		0 0000 ZUN		-
_ Norrais for	al prometio	0.7770 (U) 0.4044 (A)	15	
Densidad de	corriente-	0.1799 (H/cm/	()	
AND A REPORT OF A DATA OF A DATA OF A		***************	<del></del>	

i_nueva promedio= 0.1011 (A/cm2)

## Resultados considerando 6 veces la estequiometría del oxígeno.

$\begin{array}{l} \mathbf{I}_{a} \mathbf{i} \mathbf{r} \mathbf{e}  (\mathbf{K}) \\ 0 6 3 \cdot 0 0 0 0 \\ 1146 \cdot 0 0 0 0 \\ 1146 \cdot 0 0 0 0 \\ 1146 \cdot 0 0 0 \\ 1150 \cdot 0 0 0 \\ 1150 \cdot 0 0 0 \\ \end{array}$	$y_aire \langle - \rangle$ 0.2100 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800	T_comb (K) 1121.0000 1121.0000 1121.0000 1121.0000 1121.0000 1121.0000 1121.0000 1121.0000 1121.0000 1121.0000 1121.0000 1121.0000 1121.0000	<pre>y_hidr(-) 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335</pre>	y_agua<-> 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665
Eid(U) 1.0037 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795	nohmic(U) 0.5585E-01 0.1589E-01 0.1589E-01 0.1589E-01 0.1589E-01 0.1589E-01 0.1589E-01 0.1589E-01 0.1589E-01 0.1589E-01 0.1589E-01 0.1589E-01 0.1589E-01 0.1589E-01 0.1589E-01	nact_total(V) 0.4087E-01 0.4981E-01 0.4981E-01 0.4981E-01 0.4981E-01 0.4981E-01 0.4981E-01 0.4981E-01 0.4981E-01 0.4981E-01 0.4981E-01 0.4981E-01 0.4981E-01 0.4981E-01 0.4981E-01 0.4981E-01 0.4981E-01	U_tot(U) 0.9870 1.0138 1.0138 1.0138 1.0138 1.0138 1.0138 1.0138 1.0138 1.0138 1.0138 1.0138 1.0138 1.0138 1.0138 1.0138 1.0138 1.0138 1.0139	DEN_CORR_NUA(A/cm2) 0.1517 0.1560 0.1560 0.1560 0.1560 0.1560 0.1560 0.1560 0.1560 0.1560 0.1560 0.1560 0.1560 0.1560 0.1560 0.1560 0.1560 0.1560
Voltaje tota Densidad de ***********************************	HARREN AND AND AND AND AND AND AND AND AND AN	1.0120 (U) 0.1500 (A/cu ************************************	**************************************	• ••
Eid(U) 1.0837 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795	nohmic(V) 0.5800E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01 0.1650E-01	nact_total(U) 0.4240E-01 0.5166E-01 0.5166E-01 0.5166E-01 0.5166E-01 0.5166E-01 0.5166E-01 0.5166E-01 0.5166E-01 0.5166E-01 0.5166E-01 0.5166E-01 0.5166E-01 0.5166E-01 0.5166E-01	V_tot(V) 0.9833 1.0113 1.0113 1.0113 1.0113 1.0113 1.0113 1.0113 1.0113 1.0113 1.0113 1.0113 1.0113 1.0113 1.0113 1.0113 1.0114	DEN_CORR_NUA(A/cm2) 0.1575 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1620 0.1621
Voltaje tota Densidad de *******	l promedio <i>=</i> corriente= <del>(*************</del>	1.0094 (U) 0.1558 (A/c 	m2) ************************************	***

1_nueva promedio= 0.1617 (A/cm2)

********	******	• <del>• • • • • • • • • • • • • • • • • • </del>		<del>6 16</del>
Eid(V)	nohmic(V)	nact_total(U)	V_tot(V)	DEN_CORR_NUA(A/cm2)
1.0837	0.6023E-01	0.4397E-01	0.9795	0.1636
1.0795	0.1713E-01	0.5357E-01	1.0088	0.1683
1.0795	0.1713E-01	0.5357E-01	1.0088	0.1683
1.0795	0.1713E-01	0.5357E-01	1.0080	0.1683
1.0795	0.1713E-01	0.5357E-01	1.0088	0.1683
1.0795	0.1713E-01	0.5357E-01	1,0008	0.1683
1.0795	0.1713E-01	0.5357E-01	1.0000	0.1683
1.0795	0.1713E-01	0.5357E-01	1.0088	0.1683
1.0795	0.1713E-01	0.5357E-01	1.0088	0.1603
1.0795	0.1713E-01	0.5357E-01	1.0000	0.1683
1.0795	0.1713E-01	0.5357E-01 0.5257E-04	1.0000	0.1003
1.0795	0.17136-01	0.5357E-01 0.5357E-01	1.0000	0.100J 0.100J
1.0775	0.1713E-01 0.1913E-01	0.3337E-01 0.5357E-04	1 0000	0.1003 0.1003
1.0773	0.1713E"DI 0.1607E_04	0.JJJ/E 01 0.E394E_04	1 0000	0.1005
1.0773	0.100/C_01	0.33/12-01	T.UUU7	Ø.1004
Holtsia tat	al nwomedioe	1 0069 (0)		<b>n</b>
Dencided de	convigotor	0 1617 (0/cm ⁴	21	
wwwwwwwwwww	. COLLIQUES -		<u> -                                   </u>	
~~~~				
i nueus pro	madia 016	5800 (Azem?)		
TTuresa bie	110010 ···· 0.10			
******	**************	(**********	(X
E1d(V)	nohmic(V)	nact_total(V)	V_tot(V)	DEN_CORR_NVA(A/cm2)
1.0837	0.6254E-01	0.4560E-01	0.9756	0.1698
1.0795	0.1779E-01	0.5555E-01	1.0061	0.1747
1.0795	0.1779E-01	0.5555E-01	1.0061	0.1747
1.0795	0.1779E-01	0.5555E-01	1.0061	0.1747
1.0795	0.1779E-01	0.5555E-01	1.0061	0.1747
1.0795	0.1779E-01	0.5555E-01	1.0061	0.1747
1.0795	0.1779E-01	0.5555E-01	1.0061	0.1747
1.0795	0.1779E-01	0.5555E-01	1.0061	0.1747
1.0795	0.1779E-01	0.5555E-01	1.0061	0.1747
1.0795	0.1779E-01	0.5555E-01	1.0061	0.1747
1.0795	0.1779E-01	0.5555E-01	1.0061	0.1747
1.0795	0.1779E-01 0.1779E-01	0.5555E-01 0 FFFFF 04	1.0061	0.1747 0.1747
1.0775	0.1779E-01 0.1990E 04	0.0000E-01 0.55555.04	1 0001	0.1/3/
1.0775 4 0000	0.1777E-01 0.19090-01	0.55338~01 0.33338~01	1 0001	0.1737
1.0775	0.17526-01	0.3307E-01	T.0003	U.1710
Ilaltaio tot	al succedian	1 0041 705		-
Dessided de	ai prometio-	0 1690 (0/cm ³	27	
Densingn ne	COLLTONCO-		6 / 6 M M M M M M M M M	e 14
i nueua neo	mediae 017	244 (A/cm2)		
T_ugeog bio	WELLO OIII	COMMENSATION COMMENSATION	*******	8
Eid(U)	nohmic(U)	nact total(U)	U tot(U)	DEN CORR NUA(A/cm2)
1.0832	0.6494E-01	0-4728E-01	ñ.9715	0.1764
1.0295	0.1847E-01	0.5760E-01	1.0034	0.1815
1.0795	0.1847E-01	0.5760E-01	1.0034	0.1015
1.0795	0.1947E-01	0.5760E-01	1.0034	0.1015
1.0795	0.1847E-01	0.5760E-01	1.0034	0.1815
1.0795	0.1847E-01	0.5760E-01	1,0034	0.1815
1.0795	0.1847E-01	0.5760E-01	1.0034	0.1915
1.0795	0.1847E-01	0.5760E-01	1.0034	0.1815
1.0795	0.1847E-01	0.5760E-01	1.0034	0.1815
1.0795	0.1847E-01	0.5760E-01	1.0034	0.1815
1.0795	0.1947E-01	0.5760E-01	1.0034	0.1815
1.0795	0.1047E-01	0.5760E-01	1.0034	0.1815
1.0795	0.1847E-01	0.5760E-01	1.0034	0.1815
1.0795	0.1847E-01	0.5760E-01	1.0034	0.1815
1.0795	0.1820E-01	0.5774E-01	1.0035	0.1816
***********	*************		<u> </u>	He contraction of the contractio
Voltaje tot	al promedio=	1.0013 (0)	• •	
Densidad de	corriente=	И.1744 (А/см)	27	
**********	***************		***********	AA

i_nueva promedio= 0.1811 (A/cm2)

APÉNDICE VI

RESULTADOS DEL CASO DE ESTUDIO 2

<u>Región I</u> Perfil de velocidad radial: $v_r - v_r(r)$

	WHEXE UEL.RADIAL O2(m/s)			/s) ***	3636363636368	
I =	1	2	Э	4	5	
15	9.100E-01	9.100E-01	9.100E-01	9.100E-01	9.100E-01	
14	1.010E+00	1.010E+00	1.010E+00	1.010E+00	1.010E+00	
13	1.210E+00	1.210E+00	1.210E+00	1.210E+00	1.210E+00	
12	1.411E+00	1.411E+00	1.411E+00	1.411E+00	1.411E+00	
11	1.611E+00	1.611E+00	1.611E+00	1.611E+00	1.611E+00	
10	1.811E+00	1.811E+00	1.811E+00	1.011E+00	1.011E+00	
Ĩĝ	2.011E+00	2.011E+00	2.011E+00	2.011E+00	2.011E+00	
8	2.212E+00	2.212E+00	2.212E+00	2.212E+00	2.212E+00	
7	2.412E+00	2.412E+00	2.412E+00	2.412E+00	2,412E+00	
Ġ.	2.612E+00	2.612E+00	2.612E+00	2.612E+00	2.612E+00	
5	2.812E+00	2.812E+00	2.812E+00	2.812E+00	2.812E+00	
4	3.013E+00	3.013E+00	3.013E+00	3.013E+00	3.013E+00	
3	3.213E+00	3.213E+00	3.213E+00	3.213E+00	3.213E+00	
Ž	3.413E+00	3.413E+00	3.413E+00	3.413E+00	3.413E+00	
ī	3.513E+00	3.513E+00	3.513E+00	3.513E+00	3.513E+00	

Perfil de velocidad axial: $v_z = v_z(r)$

	******	VEL.A	(IAL 02 (m/	/3) **	(X-X-X
I_≓	1	2	3	4	5
J	o 0005.00	a	A AAAE.00	0 000T.00	a acar.aa
15	0.0006+00	0.0002+00	0.0005+00	0.0000-000	0.0000.000
14	2.291E-02	2.291E-02	2.291E-02	2.291E-02	2.291E-02
11	1 759E-02	1.759E-02	1.759E-02	1.759E-02	1.759E-02
12	1 378	1 378F-92	1.329E-02	1_378E-02	1.378E-02
11	1 0025-02	1 0075-02	1 0025-02	1 0925-02	1 0925-02
11	1.0746-04	1.074E 04	1.0760 04	1.0/2L 00	0 (000 00
10	8.687E-03	8.687E-03	8.6872-03	8.687E-0J	0.007E-03
9	6.902E-03	6.902E-03	6.902E-03	6.902E-03	6.902E-03
8	5.440E-03	5.440E-03	5.440E-03	5.440E-03	5.440E-03
ž	4.221E-03	4-221E-03	4.221E-03	4.221E-03	4.221E-03
Ġ	3 189F-03	3 189F-03	3 189E-03	3.189E-03	3.189E-03
ř	9 10/E 03	5 504E_03	2 2045-02	2 2046-02	2 3045-03
ວ	2.304E-03	2.JUTE UJ	4.JUTL DJ	4.5046 00	4 FOAT 03
4	1.536E-03	1.536E-03	1.536E-03	1.536E-03	1.5362-03
3	8.643E-04	8.643E-04	0.643E-04	8.643E-04	8.643E-04
2	2.712E-04	2.712E-04	2.712E-04	2.712E-04	2.712E-04
ī	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00

Perfil de temperatura: T = T(r)Considerando una pared adiabática.

	******	**TEMP AIRE T(K) *****		XXX	
1 -	1	2	Э	4	5
15	1 285F+03	1-285E+03	1-285E+03	1.285E+03	1.285E+03
14	1.284E+03	1.284E+03	1.284E+03	1.284E+03	1.204E+03
រៃវិ	1.284E+03	1.284E+Ø3	1.284E+03	1.284E+03	1.284E+03
īž	1.284E+03	1.284E+03	1.284E+03	1.284E+03	1.284E+03
īī	1.283E+03	1.283E+03	1.283E+03	1.283E+03	1.283E+03
iô	1.283E+03	1.283E+03	1.283E+03	1.283E+03	1.203E+03
9	1.283E+03	1.283E+03	1.283E+03	1.283E+03	1.283E+03
ē	1.203E+03	1.203E+03	1.283E+03	1.283E+03	1.203E+03
7	1.283E+03	1.283E+03	1.283E+03	1.283E+03	1.283E+03
6	1.203E+03	1.283E+03	1.283E+03	1.203E+03	1.283E+03
5	1.283E+03	1.283E+03	1.283E+03	1.283E+03	1.283E+03
4	1.283E+03	1.283E+03	1.283E+03	1.283E+03	1.203E+03
3	1.283E+03	1.283E+03	1.283E+03	1.283E+03	1.283E+03
2	1.203E+03	1.283E+03	1.283E+03	1.283E+03	1.283E+03
1	1.283E+03	1.283E+03	1.283E+03	1.203E+03	1.283E+03

Perfil de composición: $y_i = y_i(r)$

Resultados de la composición para la relación de 4 veces la estequiometría del aire. Considerando una pared impermeable.

	COMPOSICION 02		02 ***	*****	
Ĩ =	1	2	3	4	5
ป 15	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01
14	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01
13	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01
12	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01
11	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1,700E-01
10	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01
9	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01
8	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01
7	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01
6	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01
5	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01
4	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01
3	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01
2	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01
1	1.700E-01	1.700E-01	1.700E-01	1.700E-01	1.700E-01

Resultados de la composición para la relación de 6 veces la estequiometría del aire. Considerando una pared impermeable.

	COMPOSICION 02			02 ***	миниян	
Į≖	1	2	3	4	5	
15	1.800E-01	1.800E-01	1.800E-01	1.800E-01	1.800E-01	
14	1.800E-01	1.800E-01	1.800E-01	1.800E-01	1.800E-01	
13	1.800E-01	1.800E-01	1.800E-01	1.800E-01	1.800E-01	
12	1_800E-01	1.800E-01	1.800E-01	1.800E-01	1.800E-01	
11	1.800E-01	1.900E-01	1.000E-01	1.000E-01	1.800E-01	
10	1_B00E-01	1.800E-01	1.800E-01	1.800E-01	1.800E-01	
- <u>-</u>	1.000E-01	1.800E-01	1.800E-01	1.800E-01	1.800E-01	
Ā	1.800E-01	1_800E-01	1.800E-01	1.800E-01	1.900E-01	
7	1_800E-01	1.000E-01	1.800E-01	1.800E-01	1.800F-01	
6	1_800F-01	1.800E-01	1.800E-01	1.800E-01	1.800E-01	
Š	1 AAAE-AI	1 800E-01	1.800E-01	1.800E-01	1.800E-01	
4	1 8005-01	1 800F-01	1.800E-01	1 800E-01	1.800E-01	
จิ	1 BOOF-01	1 800F-01	1 800F-01	1_800E-01	1.AAAE-AI	
2	1 900F-01	1 800F-01	1 800F-01	1.800E-01	1 800E-01	
ī	1.800E-01	1.000E-01	1.000E-01	1.800E-01	1.800E-01	

<u>Región V</u> Perfil de velocidad radial: $v_r = v_r(r)$

siuciua	u laulai. v_r	$-v_r(r)$			
	******	VEL RA	JEL RADIAL H2(m/s)		
T =	1	2	3	4	5
Ĵ	-	-	0	-	_
15	3.210E+00	3.210E+00	3.210E+00	3.210E+00	3.210E+00
14	4.625E+00	4.625E+00	4.625E+00	4.625E+00	4.625E+00
13	7.455E+00	7.455E+00	7.455E+00	7.455E+00	7.455E+00
12	1.029E+01	1.029E+01	1.029E+01	1.029E+01	1.029E+01
11	1.312E+01	1.312E+01	1.312E+01	1.312E+01	1.312E+01
10	1.595E+01	1.595E+01	1.595E+01	1.595E+01	1.595E+01
9	1.878E+01	1.878E+01	1.878E+01	1.878E+01	1.878E+01
0	2.161E+01	2.161E+01	2.161E+01	2.161E+01	2.161E+01
7	2.444E+01	2.444E+01	2.444E+01	2.444E+01	2.444E+01
6	2.727E+01	2.727E+01	2.727E+01	2.727E+01	2.727E+01
5	3.010E+01	3.010E+01	3.010E+01	3.010E+01	3.010E+01
4	3.293E+01	3.293E+01	3.293E+Ø1	3.293E+01	3.293E+01
3	3.576E+01	3.576E+01	3.576E+01	3.576E+01	3.576E+01
2	3.859E+01	3.859E+01	3.859E+01	3.859E+01	3.859E+01
1	4.000E+01	4.000E+01	4.000E+01	4.000E+01	4.000E+01

Perfil de velocidad axial: $v_z = v_z(r)$ *****

	******	VEL. (VEL. AXIAL H2(m/s)		*****	
I =	1	2	Э	4	5	
J L	0 000T.00	0 0001-00	0 0005-00	A 000E-00	0 0005+00	
12	0.000C-00	0.0005-00	0.0000.000	0.0002-00	0.0006.00	
14	7,464E-03	7.464E-03	7.464E-03	7.464E-03	7.464E-03	
13	4.260E-03	4.260E-03	4.260E-03	4.260E-03	4.260E-03	
12	2.819E-03	2.819E-03	2.819E-03	2.819E-03	2.819E-03	
11	2.000E-03	2.000E-03	2.000E-03	2.000E-03	2.000E-03	
10	1.472E-03	1.472E-03	1.472E-03	1.472E-03	1.472E-03	
9	1.103E-03	1.103E-03	1.103E-03	1.103E-03	1.103E-03	
8	8.309E-04	8.309E-04	8.309E-04	8.309E-04	8.309E-04	
7	6.216E-04	6.216E-04	6.216E-04	6.216E-04	6.216E-04	
6	4.558E-04	4.558E-04	4.558E-04	4.558E-04	4.550E-04	
5	3.212E-04	3.212E-04	3.212E- 0 4	3.212E-04	3.212E-04	
4	2.097E-04	2.097E-04	2.097E-04	2.097E-04	2.097E-04	
3	1.159E-04	1.159E-04	1.159E-04	1.159E-04	1.159E-04	
2	3.579E-05	3.579E-05	3.579E-05	3.579E-05	3.579E-05	
1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	

Perfil de temperatura: T = T(r)Considerando una pared adiabática.

	******	TEM	P COMB TCK) ***	****
I_=	1	2	3	4	5
- J 15	1. 050E+0 3	1.050E+03	1.050E+03	1.050E+03	1.050E+03
14	1.050E+03	1.050E+03	1.050E+03	1.050E+03	1.050E+03
13	1.050E+03	1.050E+03	1.050E+03	1.050E+03	1.050E+03
12	1.050E+03	1.050E+03	1.050E+03	1.050E+03	1.050E+03
11	1.050E+03	1.050E+03	1.050E+03	1.050E+03	1.050E+03
10	1.050E+03	1.050E+03	1.050E+03	1.050E+03	1.050E+03
9	1.050E+03	1.050E+03	1.050E+03	1.050E+03	1.050E+03
8	1.050E+03	1.050E+03	1.050E+03	1.050E+03	1.050E+03
7	1.050E+03	1.050E+03	1.050E+03	1.050E+03	1.050E+03
6	1.050E+03	1.050E+03	1.050E+03	1,050E+03	1.050E+03
5	1.050E+03	1.050E+03	1.050E+03	1.050E+03	1.050E+03
4	1.050E+03	1.050E+03	1.050E+03	1.050E+03	1.050E+03
3	1.050E+03	1.050E+03	1.050E+03	1.050E+03	1.050E+03
2	1.050E+03	1.050E+03	1.050E+03	1.050E+03	1.050E+03
1	1.050E+03	1.050E+03	1.050E+03	1.050E+03	1.050E+03

Perfil de composición del hidrógeno: $y_i = y_i(r)$ Considerando una pared impermeable.

	***	*** COI	POSICION H	2 ****	**
Į=	1	2	3	4	5
15	1_3356-01	1.335E-01	1.335E-01	1.335E- 0 1	1.335E-01
14	1.335E-01	1.335E-01	1.335E-01	1.335E-01	1.335E-01
13	1.335E-01	1.335E-01	1.335E-01	1.335E-01	1.335E-01
12	1.335E-01	1.335E-01	1.335E-01	1.335E-01	1.335E-01
11	1.335E-01	1.335E-01	1.335E-01	1.335E-01	1.335E-01
10	1.335E-01	1.335E-01	1.335E-01	1.335E-01	1.335E-01
9	1.335E-01	1.335E-01	1.335E-01	1.335E-01	1.335E-01
8	1.335E-01	1.335E-01	1.335E-01	1.335E-01	1.335E-01
7	1.335E-01	1.335E-01	1.335E-01	1.335E-01	1.335E-01
6	1.335E-01	1.335E-01	1.335E-01	1.335E-01	1.335E-01
5	1.335E-01	1.335E-01	1.335E-01	1.335E-01	1.335E-01
4	1.335E-01	1.335E-01	1.335E-01	1.335E-01	1.335E-01
3	1.335E-01	1.335E-01	1.335E-01	1.335E-01	1.335E-01
2	1.335E-01	1.335E-01	1.335E-01	1.335E-01	1.335E-01
1	1.335E-01	1.335E-01	1.335E-01	1.335E-01	1.335E-01

Perfil de composición del agua: $y_i = y_i(r)$ Considerando una pared impermeable.

	36 14 14	HHH COI	1POSICION H	20 нижи	H H
1 =	1	2	3	4	5
15	8.665E-01	8.665E-Ø1	8.665E-01	8.665E-01	8.665E-01
14	8.665E-01	8.665E-01	8.665E-01	8.665E-01	0.665E-01
13	8.665E-01	8.665E-01	8.665E-01	8.665E-01	8.665E-01
12	8.665E-01	8.665E-01	8.665E-01	8.665E-01	8.665E-01
11	8.665E-01	8.665E-01	8.665E-01	8.665E-01	8.665E-01
10	8.665E-01	8.665E-01	8.665E-01	0.665E-01	8.665E-01
~ <u>9</u>	8.665E-01	8.665E-01	8.665E-01	8.665E-01	8.665E-01
B	8.665E-01	8.665E-01	8.665E-01	8.665E-01	8.665E-01
2	8.665E-01	8.665E-01	8.665E-01	8.665E-01	8.665E-01
Ġ	8.665E-01	8.665E-01	8.665E-01	0.665E-01	8.665E-01
5	8.665E-01	8.665E-01	8.665E-01	8.665E-Ø1	8.665E-01
4	0.665E-01	8.665E- 0 1	0.665E-01	8.665E-01	8.665E-01
3	8.665E-01	8.665E-01	8.665E-01	8.665E-01	8.665E-01
Ž	8.665E-01	0.665E-01	8.665E-01	8.665E-01	8.665E-01
ī	8.665E-01	8.665E-01	8.665E-01	8.665E-01	8.665E-01
Resultados de la región del sólido (Regiónes II, III y IV)

Resultados considerando 4 veces la estequiometría del oxígeno

i i

1

T_aire 1284.60 1284.60 1284.60 1284.60 1284.60 1284.60	(K) y_aire(- 00 0.1700 00 0.1700 00 0.1700 00 0.1700 00 0.1700 ×××××××××××××××××××××××××××××××××××	> T_comb 1050.0 1050.0 1050.0 1050.0 1050.0 1050.0	<pre>(K) y_hidr(-:) 000 0.1335 000 0.1335 000 0.1335 000 0.1335 000 0.1335 000 0.1335</pre>	> y_agua(-> 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665
Eid(V)= 1.07	7898			
nohmic(V)	, 	V_tot(V)	DEN_CORR(A/cm2)	DEN_CORR_NVA(A/cm2)
0.0124	0.5333E-01	0.1012E+01	0.1500	0.1578
nohmic(V)	• nact_total(V)	V_tot(V)	DEN_CORR(A/cm2)	DEN_CORR_NVA(A/cm2)
0.0131	0.5601E-01	0.1009E+01	0.1578	0.1661
nohmic(V)	• nact_total(V)	U_tot(V)	DEN_CORR(A/cm2)	DEN_CORR_NUA(A/cm2)
0.0137	0.5882E-01	0.1005E+01	0.1661	0.1748
nohmic(V)	• nact_total(V)	V_tot(V)	DEN_CORR(A/cm2)	DEN_CORR_NVA(A/cm2)
0.0145	0.6176E-01	0.1002E+01	0.1748	0.1839
nohmic(V)	nact_total(U)	V_tot(V)	DEN_CORR(A/cm2)	DEN_CORR_NVA(A/cm2)
0.0152	0.6483E-01	0.9979E+00	0.1839	0.1935

Resultados considerando 6 veces la estequiometría del oxígeno

				_
T aire (K)	y_aire(-)	T_comb (K)	y_hidr(-)	y_agua(-)
1284.6000	- 0.1800	1050.0000	0.1335	0.8665
1284.6000	0.1800	1050.0000	0.1335	0.8665
1284.6000	0.1800	1050.0000	0.1335	0.8665
1284 6000	0.1800	1850.0000	0.1335	0.8665
1284_6000	0.1800	1050.0000	0.1335	0.8665
*********	********	*******	************	

Eid(V)= 1.0	79465			<u></u>
nohmic(V)		V_tot(V)	DEN_CORR(A/cm2)	DEN_CORR_NUA<a <="" b="">cm2>
0.0124	0.5333E-01	0.1014E+01	0.1500	0.1578
nohmic(V)	<pre>mact_total(V)</pre>	V_tot(V)	DEN_CORR(A/cm2)	DEN_CORR_NVA(A/cm2)
0.0131	0.5601E-01	0.1010E+01	0.1578	0.1661
nohmic(V)	<pre>mact_total(V)</pre>	V_tot(V)	DEN_CORR(A/cm2)	DEN_CORR_NVA(A/cm2)
0.0137	0.5882E-01	0.1007E+01	0.1661	0.1748
nohmic(V)	<pre>mact_total(V)</pre>	V_tot(V)	DEN_CORR(A/cm2)	DENCORR_NVA(A/cm2)
0.0145	0.6176E-01	0.1003E+01	0.1740	0.1839
nohmic(V)	<pre>mact_total(V)</pre>	V_tot(V)	DEN_CORR(A/cm2)	DEN_CORR_NVA <a cm2="">
0.0152	0.6483E-01	0.9994E+00	0.1839	0.1935

APÉNDICE VII

RESULTADOS DEL CASO DE ESTUDIO 2A

Región I

Los perfiles de velocidad radial ($v_r = v_r(r)$) y de velocidad axial ($v_z = v_z(r)$), son los mismos que los presentados en el caso 2, por lo que para su revisión, ver la sección correspondiente, en el apéndice VI.

Perfil de temperatura. T = T(z)

		XNN	**** 	TEMP AIRE	T (K)	*****	
I =	1	2	Э	4	5	6	7
J 15 113 112 111 9 8 7 6 5 4 3 2 1	8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02 8.630E+02	9.549E+02 2.627E+03 2.766E+03 2.870E+03 3.012E+03 3.063E+03 3.104E+03 3.139E+03 3.160E+03 3.193E+03 3.215E+03 3.234E+03 3.234E+03 3.232E+03	1.139E+03 5.923E+03 6.282E+03 6.740E+03 6.093E+03 7.015E+03 7.114E+03 7.196E+03 7.265E+03 7.324E+03 7.375E+03 7.420E+03 7.488E+03	1.322E+03 8.874E+03 9.373E+03 9.728E+03 1.019E+04 1.035E+04 1.058E+04 1.058E+04 1.067E+04 1.067E+04 1.081E+04 1.081E+04 1.091E+04 1.091E+04	1.506E+03 1.143E+04 1.199E+04 1.239E+04 1.267E+04 1.305E+04 1.305E+04 1.318E+04 1.318E+04 1.337E+04 1.337E+04 1.344E+04 1.350E+04 1.356E+04 1.360E+04 1.360E+04	1.690E+03 1.353E+04 1.409E+04 1.447E+04 1.473E+04 1.507E+04 1.507E+04 1.527E+04 1.535E+04 1.535E+04 1.541E+04 1.546E+04 1.550E+04 1.552E+04 1.552E+04	1.874E+03 1.512E+04 1.562E+04 1.615E+04 1.630E+04 1.640E+04 1.648E+04 1.655E+04 1.655E+04 1.663E+04 1.663E+04 1.669E+04 1.669E+04 1.670E+04
I =	8	9	10	11	12	13	14
J 154 112 111 10 9 8 7 6 5 4 3 2 1	2.058E+03 1.612E+04 1.650E+04 1.673E+04 1.697E+04 1.701E+04 1.705E+04 1.709E+04 1.709E+04 1.710E+04 1.711E+04 1.712E+04 1.712E+04 1.712E+04	2.241E+03 1.645E+04 1.668E+04 1.679E+04 1.684E+04 1.686E+04 1.687E+04 1.685E+04 1.685E+04 1.685E+04 1.682E+04 1.682E+04 1.680E+04 1.677E+04	2.425E+03 1.601E+04 1.608E+04 1.607E+04 1.599E+04 1.599E+04 1.594E+04 1.589E+04 1.580E+04 1.572E+04 1.572E+04 1.568E+04 1.565E+04	2.609E+03 1.460E+04 1.449E+04 1.449E+04 1.438E+04 1.428E+04 1.419E+04 1.411E+04 1.397E+04 1.397E+04 1.397E+04 1.386E+04 1.386E+04 1.376E+04	2.793E+03 1.236E+04 1.216E+04 1.197E+04 1.183E+04 1.159E+04 1.159E+04 1.150E+04 1.134E+04 1.134E+04 1.128E+04 1.122E+04 1.117E+04 1.114E+04 1.110E+04	2.972E+03 8.801E+03 8.660E+03 8.479E+03 8.212E+03 8.212E+03 8.027E+03 7.955E+03 7.893E+03 7.893E+03 7.791E+03 7.750E+03 7.712E+03 7.712E+03	$\begin{array}{c} 2.896E+03\\ 4.093E+03\\ 3.975E+03\\ 3.804E+03\\ 3.812E+03\\ 3.755E+03\\ 3.755E+03\\ 3.670E+03\\ 3.637E+03\\ 3.637E+03\\ 3.566E+03\\ 3.566E+03\\ 3.564E+03\\ 3.548E+03\\ 3.520E+03\\ 3.520E+03\\ 3.520E+03\\ \end{array}$
I = I = I = I = I = I = I = I = I = I =	15 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03 1.150E+03			·			

Los perfiles de composición ($y_i = y_i(r)$) son los mismos del apéndice VI, para la sección apropiada, por lo que se omiten en esta sección.

Región V

Los perfiles de velocidad radial ($v_r = v_r(r)$) y de velocidad axial ($v_z = v_z(r)$), son los mismos que los presentados en el caso 2, por lo que para su revisión, ver la sección correspondiente, en el apéndice VI.

Perfil de temperatura: T = T(z)

		****	K MN	TEMP COMB	[(K)	*****	
Ĩ	1	2	Э	4	5	6	7
J 15	1.050E+03	1.057E+03	1.071E+03	1.084E+03	1.096E+03	1.107E+03	1.117E+03
14	1.050E+03	1.0562+03	1.069E+03	1.081E+03	1.0721+03	1.1026+03	1.11ZE+03
13	1.050E+03	1.0578+03	1.071E+03	1.0851+03	1.0771+03	1.1082+03	1.1176+03
12	1.0502+03	1.0502+03	1.073E+03	1.0861+03	1.0771+03	1.1102+03	1.1202103
11	1.0501+03	1.0502+03	1.073E+03	1.087E+03	1.1002+03	1.11111-03	1.1212+03
10	1,0502+03	1.0502+03	1.0742+03	1.0886+03	1 1016-03	1.1126-03	1.1226-03
X	1.0508+03	1.0586+03	1.074E+03	1.0672+03	1.1026+03	1.1136-03	1 1236703
8 C	1.0506+03	1.0376703	1.0742-03	1.0072703	1.1046703	1 1136-03	1 1246-03
7	1.0502+03	1.0571403	1.0732703	1.0076703	1.1022703	1.1146703	1 12475-03
þ	1.0501+05	1.0572+03	1.0752+03	1.0071-03	1.1036703	1.1146703	1.1275703
5	1.0501+03	1.0576+03	1.0751.+03	1.0705+03	1.1036703	1.1146-03	1.1296703
4	1,0504403	1.0571703	1.0756+03	1.0701-03	1.1036703	1.1136703	1.1235403
3	1.0506+03	1.0571+03	1.075E+03	1.0702+03	1,1036+03	1.1156+03	1.1256+03
2	1.050E+03	1.0572+03	1.0752+03	1.070E+03	1.1036+03	1.1156+03	1.1256+03
1	1.0208+03	1.0576+03	1.075E+03	1.070E+03	1,103E+03	1.1156+03	1.1256+03
I = J	8	9	10	11	12	13	14
15	1.126E+03	1.133E+03	1.139E+03	1.144E+03	1.148E+03	1.150E+03	1.150E+03
14	1.120E+03	1.128E+03	1.135E+03	1.140E+03	1.145E+03	1.148E+03	1.150E+03
13	1.126E+03	1.134E+03	1.140E+03	1.145E+Ø3	1.148E+03	1.150E+03	1.150E+03
12	1.129E+03	1.136E+03	1.142E+03	1.146E+03	1.149E+03	1.151E+03	1.151E+03
ĨĨ	1.130E+03	1.137E+03	1.143E+03	1.147E+03	1.150E+03	1.151E+03	1.151E+03
10	1.131E+03	1.138E+03	1.144E+03	1.149E+03	1.150E+03	1.151E+03	1.151E+03
~ <u>9</u>	1.132E+03	1.139E+03	1.144E+03	1.148E+03	1.151E+03	1.152E+03	1.151E+03
B	1.132E+03	1.139E+03	1.145E+03	1.149E+03	1.151E+03	1.152E+03	1.151E+03
7	1.132E+03	1.139E+03	1.145E+03	1.149E+03	1.151E+03	1.152E+03	1.151E+03
6	1.133E+03	1.140E+03	1.145E+03	1.149E+03	1.151E+03	1.152E+03	1.151E+03
5	1.133E+03	1.140E+03	1.145E+03	1.149E+03	1.151E+03	1.152E+03	1.151E+03
4	1.133E+03	1.140E+03	1.145E+03	1.149E+03	1.151E+03	1.152E+03	1.151E+03
3	1.133E+Ø3	1.140E+03	1.146E+03	1.149E+03	1.151E+03	1.152E+03	1.151E+03
2	1.133E+03	1.140E+03	1.145E+03	1.149E+03	1.152E+03	1.152E+03	1.152E+03
1	1.134E+03	1.141E+03	1.145E+03	1.149E+03	1.151E+03	1.152E+03	1.151E+03
I =	15						
10	1 1505-07						
12	1.1506-03						
14	1.1508+03						
13	1.1306-03						
12	1.1200-03						
10	1 1 COE+03						
10	1 1000-03						
7	1 1000-00						
9	1 1202-03						
6	1 1202-03						
Ĕ	1 1505+03						
Å	1 1508+03						
2	1 1508+03						
ž	1 1506+03						
ĩ	1.150E+03						

Los perfiles de composición ($y_i = y_i(r)$) son los mismos del apéndice VI, para la sección apropiada, por lo que se omiten en esta sección.

Resultados de la región del sólido (Regiónes II, III y IV)

Resultados considerando 4 veces la estequiometría del oxígeno

I_aire (N)	y_aire(-)	T_comb (K)	y_hidr(-)	y_agua(~)
863.0000 954 8937	0.1700	1050.0000	0.1335	0.0605 0.0665
1138.6810	0.1700	1075.0000	0.1335	0.0665
1322.4698	0.1700		0.1335	0.8665
1506.2560	17.1.71040 11.1.71040	1103.0000 1115 0000	8.1335 8 1335	0.0000 0.8665
1873.8320	0.1700	1125.0000	0.1335	0.8665
2057.6189	0.1700	1134.0000	0.1335	0.0665
2241.4070	0.1700	1141.0000	0.1335	0.0665
2425.1741 2600 9010	0.1700 0.1700	1145.0000 1149.0000	A .1335	0.0003 A.8665
2792.7041	0.1700	1151.0000	0.1335	0.0665
2972.3989	0.1700	1152.0000	0.1335	0.8665
2896.4629	0.1700	1151.0000	8 1335	0.8665 0.8665
**************	0.1 <i>10</i> 0 Ниннининнин		**************************************	
Eid(U)	nohmic(V)	nact_total(V)) V_tot(V)	DEN_CORR_NUA(A/cm2)
1.0779	0.8172E-01	9.4001E-01 0.4303V-01	Ø.9562 9 0020	U.1511 A 1C10
1 0779	0.47776-01 0.1957F-01	0.4902E-01 0.4902E-01	1.0093	9.1517 9.1549
1.0779	0.9530E-02	0.5501E-01	1.0133	0.1604
1.0779	0.5407E-02	0.6097E-01	1.0115	0.1693
1.0779	0.3471E-02 0.2476E-02	0.6692E-01 0 770EE-01	1.0075	0.1824 0.1997
1.0777	0.1919E-02	0.7876E-01	0.9972	8.2209
1.0779	0.1509E-02	0.8465E-01	0,9917	8.2449
1.0779	0.1303E-02	0.90516-01	0.9860	0.2705
1.0779	0.1246E-02	0.9636E-01 0.1022E+00	0.9803 0.9746	0.2766 0.3220
1 0779	0.1153E-02	0.1022E+00	Ø.9689	8.3455
1.0779	0.1113E-02	0.1055E+00	0.9713	0.3357
1.0779	0.1405E-01	0.5029E-01	1.0136	0.1569
HARABABANA tot	REPRESENCES	0 0014 //	(калининини н	•
Densidad de	corriente=	0.1500 (A/	(cm2)	
***********	***********	**************	****	
i pueut over	fi = of hem	2242 (Q/mm2)		
TTUCCOS hLo				
T aire (K)	u aire(-)	T comb (K)	u hide(-)	v agua(-)
I_aire (K) 863.0000	y_aire(-) 0.1700	T_comb (K) 1050.0000	y_hidr(-) 0.1335	y…agua(−) Ø. <u>8665</u>
I_aire (K) 863.00009 1068.2930	y_aire(-) 0.1700 0.1700	T_comb (K) 1050.0000 1068.0000	y_hidr(-) 0.1335 0.1335 0.1335	y_agua(-) 0.8665 0.8665 0.4665
I_aire (K) 863.00000 1068.2930 1478.88000 1498.4620	y_aire(-) 0.1700 0.1700 0.1700 0.1700 0.1700	T_conb (K) 1050.0000 1068.0000 1100.0000 1104.0000	y_hidr<-> 0.1335 0.1335 0.1335 0.1335 0.1335	yagua () 0.8665 0.8665 0.8665 0.8665 0.8665
I_aire (K) 063.0000 1068.2930 1478.0000 1809.4670 2300.0530	y_a1r0(-) 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700	T_comb (K) 1050.0000 1068.0000 1100.0000 1124.0000 1124.0000	y_hldr(-) 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335	yagua () Ø.8665 Ø.8665 Ø.8665 Ø.8665 Ø.8665 Ø.8665
I_nire (K) 063.0000 1068.2930 1478.0000 1809.4670 2300.0530 2310.6399	y_a1r0(-) 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700	T_comb (K) 1050.0000 1068.0000 1100.0000 1124.0000 1148.0000 1164.0000	y_h1dr(-) 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335	yagua () Ø.8665 Ø.8665 Ø.8665 Ø.8665 Ø.8665 Ø.8665 Ø.8665
I_nire (K) 063.0000 1068.2930 1478.0000 1899.4670 2300.0530 2710.6399 3121.2271 2534	y_a1r0(-) 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700	T_comb (K) 1050.0000 1068.0000 1100.0000 1124.0000 1148.0000 1164.0009 1169.0009	y_h1dr(-) 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335	y_agua(-) Ø.8665 Ø.8665 Ø.8665 Ø.8665 Ø.8665 Ø.8665 Ø.8665 Ø.8665
I_nire (K) 863.0000 1068.2930 1478.6800 1889.4670 2300.0530 2710.6399 3121.2271 3531.8130 3942.3999	y_aire(-) 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700	T_comb (K) 1050.0000 1068.0000 1100.0000 1124.0000 1124.0000 1148.0000 1160.0000 1180.0000 1180.0000 1180.0000	y_hidr(-) 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335	y_agua(-) Ø.8665 Ø.8665 Ø.8665 Ø.8665 Ø.8665 Ø.8665 Ø.8665 Ø.8665 Ø.8665 Ø.8665
I_nire (K) 863.0000 1068.2930 1478.0800 1899.4670 2300.0530 2710.6399 3121.2271 3531.8130 3942.3999	y_aire(-) 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700	I_comb (K) 1050.0000 1068.0000 1100.0000 1124.0000 1124.0000 1164.0000 1164.0000 1180.0000 1180.0000 1192.0000 1192.0000	y_hidr(-) 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335	y_agua () Ø.8665 Ø.8665 Ø.8665 Ø.8665 Ø.8665 Ø.8665 Ø.8665 Ø.8665 Ø.8665 Ø.8665
I_nire (K) 063.0000 1068.2930 1478.0000 1809.4670 2300.0530 2710.6399 3121.2271 3531.8130 3942.3999 4352.9050 4763.5698	y_airs(-) 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700	T_comb (K) 1050.0000 1068.0000 1108.0000 1124.0000 1124.0000 1164.0000 1188.0000 1188.0000 1188.0000 1192.0000 1192.0000	y_h1dr(-) 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335	y_agua(-) 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665
I_nire (K) 063.0000 1068.2930 1478.0000 1478.0000 1809.4670 2300.0530 2710.639 3121.2271 3531.8130 3942.3995 4352.9050 4763.5698 5174.0020	y_aire(-) 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700	T_comb (K) 1050.0000 1068.0000 1008.0000 1124.0000 1124.0000 1124.0000 1184.0000 1184.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000	y_h1dr(-) 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335	y_agua(-) 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665
I_aire (K) 063.00000 1068.2930 1478.0000 1478.0000 1809.4670 2300.0530 2710.6399 3121.2271 3531.8130 3942.3999 4352.9050 4763.5698 5174.0020 5574.7569	y_aire(-) 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700	T_comb (K) 1050.0000 1068.0000 1100.0000 1124.0000 1124.0000 1164.0000 1188.0000 1188.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1184.0000	y_h1dr(-) 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335	y_agua () 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665
I_aire (K) 063.00000 1068.2930 1478.0000 1478.0000 2300.0530 2710.6399 3121.2271 3531.8130 3942.39990 4365.9050 4763.5698 5174.0020 5574.7569 5361.3569	y_a1re(-) 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700	T_comb (K) 1050.0000 1068.0000 1100.0000 1124.0000 1124.0000 1164.0000 1188.0000 1188.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1184.0000 1184.0000 1160.0000	y_h1dr(-) 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335	yagua(-) 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665
I_aire (K) 063.0000 1068.2930 1478.0000 1478.0000 1989.4670 2300.0530 2710.6399 3121.2271 3531.8130 3942.3999 4352.9050 4763.5698 5174.0020 5574.7569 5361.3569 1150.0000 HILLING	y_aire(-) 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700 0.1700	T_comb (K) 1059.0000 1068.0000 1109.0000 1124.0000 1124.0000 1148.0000 1164.0000 1188.0000 1192.0000 1192.0000 1192.0000 1196.0000 1196.0000 1159.0000 1159.0000	y_h1dr(-) 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335	<pre>y_agua(-) 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665</pre>
I_aire (K) 063.0000 1068.2930 1478.0000 1909.4670 2300.0530 2710.6399 3121.2271 3531.8130 3942.3999 4352.9950 4763.5698 5174.0020 5574.7568 5361.3569 1150.0000 Eid(U) 1.6779	y_a1re(-) 0.1700	T_comb (K) 1050.0000 1068.0000 1100.0000 1124.0000 1124.0000 1148.0000 1164.0000 1188.0000 1192.0000 1192.0000 1192.0000 1192.0000 1196.0000 1196.0000 1150.0000 1000 0.0000 1150.00000 1150.00000 1150.00000 1150	<pre>y_h1dr(-) 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335</pre>	y_agua(-) 0.8665 0.8655 0.8556 0.8556 0.8556 0.8556 0.8556 0.8556 0.8556 0.8556 0.8556 0.8556 0.8556 0.8556 0.8556 0.8556 0.8556 0.8556 0.8556 0.855655 0.855655 0.855655 0.855655 0.855655 0.855655 0.855655 0.855655 0.8556555 0.8556555 0.85565555555555555555555555555555555555
I_aire (K) 063.00000 1068.2930 1478.0000 1899.4670 2300.0530 2710.6399 3121.2271 3531.8130 3942.3999 4352.9050 4763.5698 5174.0020 5574.7568 5361.3569 1150.0000 HELDON	y_a1re(-) 0.1700 0.121E+00 0.4043E-01	I_comb (K) 1050.0000 1068.0000 1100.0000 1124.0000 1124.0000 1148.0000 1180.0000 1180.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1184.0000 1160.0000 1160.0000 1160.0000 0.5673E-01 0.5673E-01	y_hidr(-) 0.1335 0.135 0.155 0.155 0.155 0.155 0.155 0.155 0.15	y_agua(-) 0.8665 0.865 0.865 0.865 0.865 0.865 0.865 0.865 0.865 0.865 0.865 0.86
I_nire (K) 863.0000 1068.2930 1478.0800 1478.0800 1899.4670 2300.0530 2710.6399 3121.2271 3531.8130 3942.3999 4352.9950 4352.9970 4352.99500 4352.99500 4352.99500 4352.995	y_aire(-) 0.1700 0.120000000000	I_comb (K) 1050.0000 1068.0000 1100.0000 1124.0000 1124.0000 1124.0000 1164.0000 1180.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1196.0000 1180.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1180.00000 1180.00000 1180.0000 1180.0000 1180.0000 1180.000	<pre>y_hidr(-) 0.1335 0.1345 0</pre>	y_agua(-) 0.8665 0.8259 0.2259 0.2259 0.2259 0.82505 0.85
I_aire (K) 863.0000 1068.2930 1478.0800 1899.4670 2300.0530 2710.6399 3121.2271 3531.8130 3942.3999 4352.9850 4763.5698 5174.0020 5574.7568 5361.3569 1150.6000 Eid(U) 1.6779 1.0779 1.0779 1.0779 1.0779	y_aire(-) 0.1700 0.1221E+00 0.4025-00 0.2025-00 0.2025-00 0.2025-00 0.1700 0.1220 0.000 0.1220 0.000 0.0000000000	T_comb (K) 1050.0000 1068.0000 1100.0000 1124.0000 1124.0000 1124.0000 1180.0000 1180.0000 1192.0000 0.00000 0.0000 0.00000 0.0000 0.00000 0.00000 0.000	<pre>y_hidr(-) 0.1335 0.136 0.136 0.136 0.137 0.1335 0.1345 0.9689 0.9689 0.9490 0.9490</pre>	y_agua(-) 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.2259 0.2259 0.2259 0.2259 0.2259 0.2259 0.3792
I_nire (K) 863.0000 1068.2930 1478.0800 1899.4670 2300.0530 2710.6399 3121.2271 3531.8130 3942.3999 4352.9050 4763.5698 5174.0020 5574.7568 5361.3569 1150.6000 Eid(U) 1.0779 1.0779 1.0779 1.0779 1.0779	y_aire(-) 0.1700 0.121E+00 0.4048E-01 0.6247E-02 0.252E-02 0.1765E-02	T_comb (K) 1050.0000 1068.0000 1100.0000 1100.0000 1124.0000 1124.0000 1180.0000 1180.0000 1192.0000 0.00000 0.0000 0.0000 0.00000 0.000	<pre>y_hidr(-) 0.1335 0.2320 0.9689 0.9490 0.94000 0.940000000000</pre>	y_agua(-) 0.8665 0.865 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.86
I_nire (K) 063.0000 1068.2930 1476.0000 1476.0000 2300.0530 2710.6399 3121.2271 3531.6130 3942.3999 4352.9050 4763.5698 5174.0020 5574.7568 5361.3569 1150.0000 Eid(U) 1.0779 1.0779 1.0779 1.0779 1.0779 1.0779 1.0779 1.0779 1.0779 1.0779 1.0779 1.0779 1.0779 1.0779 1.0779 1.0779	y_aire(-) 0.1700 0.1221E+00 0.3620E-02 0.3620E-02 0.1557E-02 0.1557E-02	T_comb (K) 1050.0000 1068.0000 1100.0000 1124.0000 1124.0000 1124.0000 1164.0000 1180.0000 1192.0000 0.512-01 0.1457E+00 0.145	<pre>y_hidr(-) 0.1335 0.0000000000000000000000000000000000</pre>	y_agua(-) 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.2259 0.2259 0.22594 0.22594 0.2506 0.3792 0.4673 0.5485 0.5585 0.58585 0.58585 0.58585 0.58585 0.58585 0.58
I_nire (K) 063.0000 1068.2930 1478.0000 1478.0000 1809.4670 2300.0530 2710.6399 3121.2271 3531.8130 3942.3999 4352.9050 4763.5698 5174.0020 5574.7568 5361.3569 1150.0000 Eid(U) 1.0779	y_a1re(-) 0.1700 0.1221E+000 0.1705E-02 0.1755E-02 0.1557E-02 0.1451E-02 0.1451E-02	T_comb (K) 1050.0000 1068.0000 1068.0000 1104.0000 1124.0000 1124.0000 1124.0000 1184.0000 1192.0000 0.1651E-01 0.1651E+00 00	y_hidr(-) 0.1335 0.1325 0.1325 0.2422 0.9669 0.9203 0.9223 0.9723 0.9724	y_agua(-) 0.8665 0.8655 0.8655 0.8655 0.8655 0.8655 0.8655 0.8655 0.8655 0.8655 0.8655 0.
I_aire (K) 063.0000 1068.2930 1478.0000 1478.0000 2300.0530 2710.639 3121.2271 3531.8130 3942.39950 4763.5698 5124.0020 5574.7568 5361.3569 1150.0000 Eid(U) 1.0779 1	y_a1re(-) 0.170000000000	T_comb (K) 1050.0000 1068.0000 1068.0000 1100.0000 1124.0000 1124.0000 1124.0000 1188.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1150.0000 1150.0000 1150.0000 1155.0000 0.1000 0.00000 0.0000 0.00000 0.00000 0.00000 0.000000 0.000000	y_h1dr(-) 0.1335 0.1345 0.0545 0.05450	y_agua(-) 0.8665 0.865
I_aire (K) 063.00000 1068.2930 1478.0000 1478.0000 2300.0530 2710.6399 3121.2271 3531.8130 3942.39990 4763.5698 5174.0020 5574.7568 5361.3569 1150.0000 Eid(U) 1.0779	y_a1re(-) 0.1700 0.1552 0.000 0.1552 0.000 0.1552 0.000 0.1552 0.0000 0.1552 0.0000 0.1552 0.0000000000000000000000000000000000	T_comb (K) 1050.0000 1068.0000 1068.0000 1124.0000 1124.0000 1124.0000 1124.0000 1188.0000 1192.0000 0.12572-01 0.6051E-01 0.12572+00 0.1651E+00 0.2031E+00 0.221E+00 0.221E+00 0.2209E+00	y_h1dr(-) 0.1335 0.0000000000000000000000000000000000	y_agua(-) 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.2259 0.2294 0.2259 0.2294 0.3296 0.3792 0.4673 0.5485 0.6132 0.6990 0.7259
I_aire (K) 863.00000 1068.2930 1478.08000 1478.08000 1478.08000 2300.0530 2710.6399 3121.2271 3531.8130 3942.3999 4352.9950 4763.5698 5174.0020 5574.7568 5361.3569 1150.0000 Eid(U) 1.0779	y_aire(-) 0.1700 0.1720 0.1700 0.1252E-02 0.1451E-02 0.1352E-02 0.1312E-02 0.1312E-02 0.1312E-02 0.1312E-02 0.1312E-02 0.1312E-02 0.1312E-02 0.1312E-02	I_comb (K) 1050.0000 1068.0000 1160.0000 1124.0000 1124.0000 1124.0000 1124.0000 1180.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1192.0000 1196.0000 1196.0000 1180.0000 1180.0000 1180.0000 1180.0000 1180.0000 1180.0000 1180.0000 1180.0000 1180.0000 1180.0000 1180.0000 1180.0000 1180.0000 1180.0000 1180.0000 1180.0000 0.1841E+00 0.1841E+00 0.2031E+00 0.2297E+00 0.25	y_hidr(-) 0.1335 0.135 0.155 0.155	y_agua(-) 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.2259 0.2294 0.2259 0.2294 0.2259 0.3007 0.3792 0.4673 0.5485 0.6132 0.6132 0.623 0.623 0.7259 0.7259 0.7259 0.7461 0.7461
I_aire (K) 863.0000 1068.2930 1478.0800 1478.0800 2300.0530 2710.6399 3121.2271 3531.8130 3942.3999 4352.9950 4763.5698 5174.0020 5574.7568 5361.3569 1150.0000 HERRIGHT BORNON Eid(U) 1.0779 1.077	y_aire(-) 0.1700 0.1221E+00 0.052E-02 0.155E-02 0.135E-02 0.135E-02 0.135E-02 0.136E-02	T_comb (K) 1050.0000 1068.0000 1168.0000 1124.0000 1124.0000 1124.0000 1124.0000 1160.0000 1192.0000 0.1651E-01 0.1651E+00 0.1651E+00 0.2231E+00 0.2231E+00 0.2297E+00 0.2597	<pre>y_hidr(-) 0.1335 0.1345 0.9689 0.9480 0.9203 0.8724 0.85740 0.85740 0.857740 0.85760 0.85760000</pre>	y_agua(-) 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.2259 0.2294 0.2294 0.2259 0.2294 0.2596 0.3792 0.4673 0.5485 0.6132 0.623 0.623 0.623 0.7259 0.7559 0.755
I_aire (K) 863.0000 1068.2930 1478.0800 1809.4670 2300.0530 2710.6399 3121.2271 3531.8130 3942.3999 4352.9950 4763.5698 5174.0020 5574.7568 5361.3569 1150.0000 HILLION Eid(U) 1.0779	y_aire(-) 0.1700 0.1221E+00 0.1557E-02 0.1355E-02 0.136E-02 0.1316E-	T_comb (K) 1050.0000 1068.0000 1160.0000 1124.0000 1124.0000 1124.0000 1124.0000 1180.0000 1180.0000 1192.0000 0.1691E-01 0.1691E-01 0.1691E+00 0.1691E+00 0.267E	<pre>y_hidr(-) 0.1335 0.136 0.9689 0.9480 0.9703 0.8734 0.8357 0.8367 0.</pre>	y_agua(-) 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.2259 0.2294 0.2294 0.2294 0.2294 0.2294 0.2506 0.3792 0.4673 0.3792 0.4673 0.5485 0.6132 0.6132 0.623 0.623 0.7259 0.7461 0.7529 0.2345
I_aire (K) 863.0000 1068.2930 1478.0800 1899.4670 2300.0530 2710.6399 3121.2271 3531.8130 3942.3999 4352.9850 4763.5698 5174.0020 5574.7568 5361.3569 1150.6000 Eid(U) 1.6779	y_aire(-) 0.1700 0.1221E+00 0.452E-02 0.1557E-02 0.132E-02 0.136E-02 0.131E-02 0.131E-02 0.131E-02 0.131E-02 0.131E-02 0.131E-02 0.131E-02 0.200-01 0.1200 0.1300 0.1	T_comb (K) 1050.0000 1068.0000 1100.0000 1100.0000 1124.0000 1124.0000 1124.0000 1180.0000 1180.0000 1192.0000 0.1267E-01 0.267E+00 0.2597E+00 0.2597E+00 0.2679E+00 0.2678E+00 0.2678E+00 0.2678E+00 0.2678E+00 0.2678E+00 0.2678E+00 0.2678E+00 0.2678E+00 0.2678E+00 0.2678E+00 0.2678E+00 0.2678E+00 0.2678E+00 0.2678E+00 0.2678E+00 0.2678E+00 0.2678E+00 0.2	<pre>y_hidr(-) 0.1335 0.136 0.9490 0.9489 0.9490 0.9703 0.8734 0.8979 0.8837 0.88887 0.9831 0.88887 0.9831 0.88887 0.9831 0.88887 0.9831 0.88887 0.9831 0.88887 0.9831 0.88887 0.9831 0.88887 0.9831 0.88887 0.9831 0.88887 0.9831 0.88887 0.9831 0.88887 0.9831 0.88887 0.9831 0.88887 0.9831 0.88887 0.9831 0.88887 0.988100000000</pre>	y_agua(-) 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.2259 0.2294 0.2294 0.2294 0.2294 0.2294 0.2294 0.2294 0.2294 0.2259 0.3792 0.4673 0.5485 0.6132 0.6623 0.6990 0.7259 0.7259 0.7259 0.2345 ****
I_aire (K) 863.0000 1068.2930 1478.0800 1809.4670 2300.0530 2710.6399 3121.2271 3531.8130 3942.3999 4352.9050 4763.5698 5174.0020 5574.7568 5361.3569 1150.6000 Eid(U) 1.0779	y_aire(-) 0.1700 0.1552E-02 0.1316E-02	T_comb (K) 1050.0000 1068.0000 1100.0000 1100.0000 1124.0000 1124.0000 1124.0000 1192.0000 0.1267E-01 0.1267E+00 0.1267E+00 0.2207E+00 0.2207E+00 0.2775E-01 0.279E+00 0.2679	<pre>y_hidr(-) 0.1335 0.136 0.9489 0.9489 0.9490 0.9490 0.9344 0.8357 0.8357 0.8357 0.8357 0.8357 0.9490 0.9490 0.9490 0.9344 0.835700000000000000000</pre>	y_agua(-) 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.2259 0.2294 0.2294 0.2294 0.2294 0.2294 0.2294 0.2294 0.2294 0.2294 0.2294 0.2294 0.2294 0.2294 0.2294 0.2259 0.2294 0.2294 0.2294 0.2294 0.2259 0.2294 0.2595 0.4673 0.5485 0.6132 0.6623 0.623 0.623 0.7259 0.2345 ****
I_aire (K) 863.0000 1068.2930 1478.0800 1289.4670 2300.0530 2710.6399 3121.2271 3531.8130 3942.3999 4352.9050 4763.5698 5174.0020 5574.7568 5361.3569 1150.6000 Eid(U) 1.0779	y_aire(-) 0.1700 0.1221E+00 0.48E-01 0.1557E-02 0.1352E-02 0.132E-02 0.131E-02 0.1	T_comb (K) 1050.0000 1068.0000 1068.0000 1100.0000 1124.0000 1124.0000 1124.0000 1124.0000 1192.0000 0.1267E+00 0.1267E+00 0.1267E+00 0.1267E+00 0.12597E+00 0.221E+00 0.2279E+00 0.2279E+00 0.2679E+00 0.2679E+00 0.2679E+00 0.2679E+00 0.2679E+00 0.2679E+00 0.2679E+00 0.2679E+00 0.2679E+00 0.2679E+00 0.2679E+00 0.2679E+00 0.2679E+00 0.2679E+00 0.2679E+00 0.2679E+00 0.2679E+00 0.2679E+00 0.2242 0.2	y_hidr(-) 0.1335 0.9490 0.9837 0.9831 0.9831 0.9831 0.9831 0.9831 0.9831 0.9831 0.9831 0.9831 0.9831 0.9831 0.9831 0.9831 0.9831 0.9831 0.9831 0.9831 0.9831 0.9831 0.9851 0.	y_agua(-) 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.2259 0.224 0.259 0.2259 0.2259 0.224 0.259 0.2259 0.224 0.259 0.224 0.259 0.224 0.259 0.2245 0.2259 0.2245 0.2259 0.2245 0.2245 0.2245 0.2259 0.2245 0.225

_ 1_nueva_promedia= _ 0.5064 (A/cm2)

1 aire (K)	y_airo(~)	T_comb (X)	y_hidr(-)	y_agua(-)	
863.0000	0.1700	1050.0000	0.1335	0.8665	
1910.3400	0.1700	1136.0000	0.1335	0.8665	
4005 0439	0.1700	1264.0000	0.1335	0.8665	
6099.7380	0.1200	1392.0000	0.1335	0.8665	
8194 4346	0.1200	1504.0000	0.1335	0.8665	
10289 1299	Ñ. 1200	1552.0000	0.1335	0.8665	
12383 8381	ñ 1700	1616.9000	A .1335	0.8665	
14478 5195	8 1200	1616.0000	0 1335	Ø.8665	
16573 2207	0 1700	1632 0000	ñ 1335	A .8665	
18667 0100	0 1700	1594 0000	ด้าววรั	0.8665	
10007.7177	0.1700	1536 0000	0 1995	0.8665	
20706. ACD0	A 1700	1456 0000	ด้าววรั	0.8665	
22030,3007	A 1700	1369 0000	0 1995	0.8665	
44070.7107 9944A 5909	A 1700	1216 0000	0.1335	8 8665	
4450 0000	0.1700	110.0000	0 1335	0.0000	
1130.0000	0.1700	1130.0000	NNAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	0.000J	
TLICUN	a tada 2015	and total/		"" """""""""""""""""""""""""""""""""""	~ m 2)
	000016(07	A 1909E-00		0 E102	C P14 /
1.0777	0.4/576400	0.1203E*00 0.31017.00	0.0017 0.0017	0.5106	
1.0779	0.7796E-02 0.2110E-02	0.41507.00	0.0010	1 5955	
1.0779	0.31128-02	0.41501-00	0.0070	1.5233	
1.0779	0.27165-04	0.61072400	0,4041	1.7034	
1.0777	0.20745-02	0.8061E+00	0.4007	1.0317	
1.0779	0.28581-02	0.99886+00	0.0762	1.0570	
1.0779	0.20511-02	0.1192E+01	-0.1171	1.8713	
1.0779	0.2846E-02	0.1383E+01	-0.3079	1.8770	
1.0779	0.2844E-02	U.1574E+01	-0.4993	1.8841	
1.0779	0.2842E-02	0.1763E+01	-0.6882	1.8876	
1.0779	0.2840E-02	0.1952E+01	-0.8771	1.8902	
1.0779	0.2839E-02	0.2140E+61	-1,0646	1.8921	
1.0779	0.2838E-02	0.2322E+01	-1.2468	1.0936	
1.0779	0.2839E-02	0.2204E+01	-1.1297	1.8926	
1.0779	0.4743E-01	0.1504E+00	0.0000	0.5296	
*********	************	*****	*******	#	
Voltaje to	tal promedio-	0.6541 ((1)		
Densidad de	e corriente=	0,5064 (A/	/cm2)		
*****	********	***	*********		

i_nueva promedio= 1.5868 (A/cm2)

Resultados considerando 6 veces la estequiometría del oxígeno

I_aire (K) 863.0000 954.0937 1138.6010 1322.4690 1506.2560 1690.0439 1873.0320 2057.6189 2241.4070 2425.1941 2608.9810 2792.7941 2972.3909 2896.4629	y_aire(-) 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800 0.1800	T_comb (K) 1050.0000 1059.0000 1075.0000 1090.0000 1103.0000 1115.0000 1125.0000 1134.0000 1145.0000 1145.0000 1145.0000 1151.0000 1151.0000	h1dr(-) 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335 0.1335	y_agua(-> 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665 0.8665
1150.0000	0.1900	1150.0000	0.1335	Ø.8665
Eid(V) 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795 1.0795	nohmic (V) 0.8172E-01 0.4799E-01 0.1957E-01 0.5538E-02 0.5407E-02 0.3471E-02 0.3471E-02 0.1919E-02 0.1919E-02 0.1938E-02 0.1246E-02 0.1153E-02 0.1143E-02 0.1143E-02	nact_total(V) 0.4001E-01 0.4302E-01 0.5501E-01 0.5501E-01 0.5501E-01 0.7876E-01 0.7876E-01 0.9636E-01 0.9636E-01 0.1022E+00 0.1079E+00 0.5629E-01	U_tot(U) 0.9577 0.9884 1.0109 1.0149 1.0149 1.0041 0.9908 0.9932 0.9819 0.9819 0.9761 0.9705 0.9725 0.9725 0.9725	DEN_CORR_NVA(A/cm2) 0.1511 0.1519 0.1549 0.1684 0.1693 0.1824 0.1997 0.2209 0.2449 0.2209 0.2449 0.2705 0.2966 0.3220 0.3455 0.3357 0.1569
Voltaje tot Densidad de	al promedio= corriente=	0.9930 (U 0.1500 (A/	() (cm2)	
i_nueva_pro	medic= 0.:	**************************************	************	**

i_nueva promedio* 1.5068 (A/cm2)

APÉNDICE VIII

RESULTADOS DEL CASO DE ESTUDIO 2B

Región I

Los perfiles de velocidad radial ($v_r = v_r(r)$) y velocidad axial ($v_z = v_z(r)$) son los presentados en el apéndice VI para el caso 2. El perfil de temperatura. (T = T(z)), es el mismo que el presentado en el caso 2A, por lo que para su revisión, ver la sección correspondiente, en el apéndice VII.

Perfil de composición: $y_i = y_i(z)$

Resultados de la composición para la relación de 4 veces la estequiometría del aire.

		***	нни 	COMPOSICI	ON 02	*******	
I =	1	2	3	4	5	6	7
1541321110987654321	2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01	$\begin{array}{c} 2.045 \ E-01\\ 2.045 \ E$	$\begin{array}{c} 2.020E-01\\ 2.02$	$\begin{array}{c} 2.000E-01\\ 2.00$	1.983E-01 1.983E-01 1.983E-01 1.983E-01 1.983E-01 1.983E-01 1.983E-01 1.983E-01 1.983E-01 1.983E-01 1.983E-01 1.983E-01 1.983E-01 1.983E-01 1.983E-01 1.983E-01	1.967E-01 1.967E-01 1.967E-01 1.967E-01 1.967E-01 1.967E-01 1.967E-01 1.967E-01 1.967E-01 1.967E-01 1.967E-01 1.967E-01 1.967E-01 1.967E-01 1.967E-01	1.953E-01 1.953E-01 1.953E-01 1.953E-01 1.953E-01 1.953E-01 1.953E-01 1.953E-01 1.953E-01 1.953E-01 1.953E-01 1.953E-01 1.953E-01 1.953E-01 1.953E-01 1.953E-01
I == .⊺	θ	9	10	11	12	13	14
15 114 112 110 8 7 6 5 4 3 2 1	$\begin{array}{c} 1.940E-01\\ 1.94$	$\begin{array}{c} 1.928E-01\\ 1.92$	$\begin{array}{c} 1.917E-01\\ 1.91$	$\begin{array}{c} 1.906 E-01\\	$\begin{array}{c} 1.895E-01\\ 1.89$	$\begin{array}{c} 1.005E-01\\ 1.00$	1.875E-01 1.875E-01 1.875E-01 1.875E-01 1.875E-01 1.875E-01 1.875E-01 1.875E-01 1.875E-01 1.875E-01 1.875E-01 1.875E-01 1.875E-01 1.875E-01 1.875E-01 1.875E-01
I= J54 1112 1109 876 5432 1	15 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01 1.700E-01						

Perfil de composición: $y_i = y_i(z)$ Resultados de la composición para la relación de 6 veces la estequiometría del aire.

		***	****	COMPOSICI	ON 02	******	
[=	1	2	3	4	5	6	?
J 15 113 112 111 10 9 8 7 6 5 4 3 2 1	2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01 2.100E-01	$\begin{array}{c} 2.059E-01\\ 2.05$	$\begin{array}{c} 2.040E-01\\ 0.040E-01\\ 0.04$	$\begin{array}{c} 2.025E-01\\ 2.02$	$\begin{array}{c} 2.012E-01\\ 0.012E-01\\ 0.01$	$\begin{array}{c} 2.000E-01\\ 2.00$	1.990E-01 1.990E-01 1.990E-01 1.990E-01 1.990E-01 1.990E-01 1.990E-01 1.990E-01 1.990E-01 1.990E-01 1.990E-01 1.990E-01 1.990E-01 1.990E-01 1.990E-01
I =	8	9	10	11	12	13	14
15432110907654321	1.980E-01 1.980E-01 1.980E-01 1.980E-01 1.980E-01 1.980E-01 1.980E-01 1.980E-01 1.980E-01 1.980E-01 1.980E-01 1.980E-01 1.980E-01 1.980E-01 1.980E-01	1.971E-01 1.971E-01 1.971E-01 1.971E-01 1.971E-01 1.971E-01 1.971E-01 1.971E-01 1.971E-01 1.971E-01 1.971E-01 1.971E-01 1.971E-01 1.971E-01 1.971E-01	1.962E-01 1.962E-01 1.962E-01 1.962E-01 1.962E-01 1.962E-01 1.962E-01 1.962E-01 1.962E-01 1.962E-01 1.962E-01 1.962E-01 1.962E-01 1.962E-01 1.962E-01	$\begin{array}{c} 1.954E-01\\ 1.95$	$\begin{array}{c} 1.946E-01\\ 1.94$	1.939E-01 1.939E-01 1.939E-01 1.939E-01 1.939E-01 1.939E-01 1.939E-01 1.939E-01 1.939E-01 1.939E-01 1.939E-01 1.939E-01 1.939E-01 1.939E-01 1.939E-01 1.939E-01	$\begin{array}{c} 1.932E-01\\ 1.93$
I = 1511110987654321	15 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01 1.800E-01						

Región V

987654321

1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01 1.335E-01

1.335E-01 1.335E-01 1.335E-01 1.335E-01

Los perfiles de velocidad radial ($v_r = v_r(r)$) y velocidad axial ($v_z = v_z(r)$) son los presentados en el apéndice VI para el caso 2. El perfil de temperatura. (T = T(z)), es el mismo que el presentado en el caso 2A, por lo que para su revisión, ver la sección correspondiente, en el apéndice VII.

Perfil de composición del hidrógeno: $y_i = y_i(z)$

		****	ння 	COMPOSICI	ON H2	******	
I =	1	2	Э	4	5	6	7
J 15 14	8.900E-01 8.900E-01	7.855E-01 2.855E-01	7.142E-01 7.142E-01	6.517E-01 6.517E-01	5.944E-01 5.944E-01	5.405E-01 5.405E-01	4.093E-01 4.093E-01
13 12	8.900E-01 8.900E-01	7.855E-01 7.855E-01	7.142E-01 7.142E-01	6.517E-01 6.517E-01	5.944E-01 5.944E-01	5.405E-01 5.405E-01	4.893E-01 4.893E-01
11 10	0.900E-01 0.900E-01	7.855E-01 7.855E-01	7.142E-01 7.142E-01	6.517E-01 6.517E-01	5.944E-01 5.944E-01	5.405E-01 5.405E-01	4.893E-01 4.893E-01
9 8 7	8.900E-01 8.900E-01 9.900E-01	7.855E-01 7.855E-01 7.855E-01	7.142E-01 7.142E-01 7.142E-01	6.517E-01 6.517E-01	5.944E-01 5.944E-01 5.944E-01	5.405E-01 5.405E-01 5.405E-01	4.893E-01 4.893E-01 4.893E-01
6 5	8.900E-01 8.900E-01	7.855E-01 7.855E-01	7.142E-01 7.142E-01	6.517E-01 6.517E-01	5.944E-01 5.944E-01	5.405E-01 5.405E-01	4.893E-01 4.893E-01
4 3	8.900E-01 8.900E-01	7.855E-01 7.855E-01	7.142E-01 7.142E-01	6.517E-01 6.517E-01	5.944E-01 5.944E-01	5.405E-01 5.405E-01	4.893E-01 4.893E-01
2 1	8.900E-01 8.900E-01	7.855E-01 7.855E-01	7.142E-01 7.142E-01	6.518E-01	5.944E-01 5.944E-01	5.405E-01 5.405E-01	4.893E-01 4.893E-01
I == J	θ	9	10	11	12	13	14
15 14	4.402E-01 4.402E-01	3.928E-01 3.928E-01	3.469E-01 3.469E-01	3.022E-01 3.022E-01	2.587E-01 2.587E-01	2.161E-01 2.161E-01	1.744E-01 1.744E-01
13 12 11	4.402E-01 4.402E-01 4.402E-01	3.928E-01 3.928E-01	3.469E-01 3.469E-01	3.022E-01 3.022E-01 3.022E-01	2.587E-01 2.587E-01	2.161E-01 2.161E-01	1.744E-01 1.744E-01 1.744E-01
10 9	4.402E-01 4.402E-01	3.928E-01 3.928E-01	3.469E-01 3.469E-01	3.022E-01 3.022E-01	2.587E-01 2.587E-01	2.161E-01 2.161E-01	1.744E-01 1.744E-01
8 7	4.402E-01 4.402E-01	3.928E-01 3.928E-01	3.469E-01 3.469E-01	3,022E-01 3.022E-01	2.587E-01 2.587E-01	2.161E-01 2.161E-01	1.744E-01 1.744E-01 1.744E-01
5 4	4.402E-01 4.402E-01 4.402E-01	3.928E-01 3.928E-01	3.469E-01 3.469E-01	3.022E-01 3.022E-01	2.587E-01 2.587E-01	2.161E-01 2.161E-01	1.744E-01 1.744E-01
3 2	4.402E-01 4.402E-01	3.928E-01 3.928E-01	3.469E-01 3.469E-01	3.022E-01 3.022E-01	2.587E-01 2.587E-01	2.161E-01 2.161E-01	1.744E-01 1.744E-01
1 I=	4.402E-01 15	3.928E-01	3.467E-01	3.022E-01	2.587E-01	2.161E-01	1.744E-01
Ĵ 15	1.335E-01						
14 13	1.335E-01 1.335E-01						
12 11 10	1.335E-01 1.335E-01 1.335E-01						

		******		COMPOSICION H20		*****	
Ī.=	1	2	Э.	4	5	6	7
J 15 114 12 111 10 9 8 7 6 5 4 3 2 1	1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01 1.100E-01	$\begin{array}{c} 2.145E-01\\ 2.14$	$\begin{array}{c} 2.858E-01\\ 2.85$	3.483E-01 3.483E-01 3.483E-01 3.483E-01 3.483E-01 3.483E-01 3.483E-01 3.483E-01 3.483E-01 3.483E-01 3.483E-01 3.483E-01 3.483E-01 3.483E-01 3.483E-01 3.483E-01 3.483E-01	$\begin{array}{c} 4.056E-01\\ 1.056E-01\\ 1.05$	$\begin{array}{c} 4.595E-01\\ 4.59$	$\begin{array}{c} 5.107E-01\\ 5.10$
- T=	9	9	10	11	12	13	14
J 154 1113 1110 9 8 7 6 5 4 3 2 1	5.598E-01 5.598E-01 5.598E-01 5.598E-01 5.598E-01 5.598E-01 5.598E-01 5.598E-01 5.598E-01 5.598E-01 5.598E-01 5.598E-01 5.598E-01 5.598E-01 5.598E-01 5.598E-01 5.598E-01	$\begin{array}{c} 6.072E-01\\ 6.070E-01\\ \end{array}$	$\begin{array}{c} 6.531E-01\\ 6.530E-01\\ \end{array}$	6.978E-01 6.978E-01 6.978E-01 6.978E-01 6.978E-01 6.978E-01 6.978E-01 6.978E-01 6.978E-01 6.978E-01 6.978E-01 6.978E-01 6.978E-01 6.978E-01 6.978E-01 6.978E-01 6.9778-01	7.413E-01 7.413E-01 7.413E-01 7.413E-01 7.413E-01 7.413E-01 7.413E-01 7.413E-01 7.413E-01 7.413E-01 7.413E-01 7.413E-01 7.413E-01 7.413E-01 7.413E-01 7.413E-01	$\begin{array}{c} 7.039E-01\\ 7.039E-01\\ 7.839E-01\\ 7.839E-01\\ 7.839E-01\\ 7.039E-01\\ 7.039E-01\\ 7.039E-01\\ 7.039E-01\\ 7.839E-01\\ \end{array}$	$\begin{array}{c} 8.256E-01\\ 8.25$
I = 1541132110987654321	15 8.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01 8.665E-01						

Resultados de la región del sólido (Regiónes II, III y IV)

Resultados considerando 4 veces la estequiometría del oxígeno

T aire (K)	v airo(-)	T_comb (X)	y_hidr(-)	y_agua(~)		
863.0000	0.2100	1050.0000	°0.8900	0.1100		
1852.4340	0.2045	1053.0450	0.7056	0.2130		
3831.3020	0.2020	1061.5360	0.7143	0.2649		
5818.1689	0.2000	1069.2271	0.6519	0.3473		
7789 0371	Ø.1983	1076.9189	0.5945	0.4047		
9767 9043	0.1967	1084.6180	0.5406	0.4586		
11746 7695	A.1953	1092.3020	0.4894	0.5099		
13725 6396	0 1940	1099.9950	0.4403	0.5591		
15784 5898	A 1928	1102.6870	N.3929	0.6066		
17683 3809	A 1917	1115 3888	0.3469	0.6526		
19662 2305	A 1986	1123-0730	0.3023	0.6974		
91640 3203	0 1895	1130 2660	0.2587	0.2411		
270 40.5605	0 1095	1138 4590	0 2161	0.7839		
23367.0002 99405 7905	0 1075	1146 1530	9 1744	0 8252		
4460.0000	0 1790	1150 0000	0 1775	8 8665		
1130.0000						
Etacut		nact total(0)	B tot(D)	DEN CORR NUACAZem2	25	
4 2000	0 2601 G+00	A 1176F+00	0 9151	0 4959		
1.3000	0 0420E-02	0.20595+00	1 0415	0.6263		
4 9965	0 31936-02	0 3827F+00	0 8497	1 3949		
1 9104	0.31232 02 0.90505_09	A 55955+00	0 6574	1 6985		
1 20057	0.2050E-02 0.9004E_09	0.3373E-00	0.0511	1 2633		
1 1024	0.2001E 02 0.9904E_09	0.13022.00	0 2227	1 7963		
1 1000	0.2707E-02	0.1000C+00	0 0995	1 8122		
1 1040	0.27736-02 0.99207.09	0.10/0C.01	-0.0073	1 9929		
1 1601	0.2707E-02 0.9926E_09	0.14425+01	-0 2050	1 8282		
1 1401	0.2700E 02 0.2700E02	0.1113E.01	-0 4777	1 8324		
1 1 1 7 1	0.4703E-02 0.9929E-09	0.1020E*01 0.1020E*01	_0.2737	1 0354		
1,1377	0.4704E-04 0.1740E-02	0.1777E-01	-0.00IO	1 9377		
1.1257	0.2760E-02	0.1773ETUL 0.914(17.01	-0.0000	1 0307		
1.1120	0.2/375-02	0.21405401	-1.0JJJ7	1 0304		
1.0777	0.2750E-04	0.409466701	-0.7476	0 C140		
1.0779	0.4610E-01	0.1470E+00	0.0040	0.0140		
*************				*		
Voltaje tot	at promedio=	• 0.6357 (U	·····			
Densidad de	corrientë"	10.4722 (A/	(CMZ)			

_ i_nueva_promedio= 1.5279 (A/cm2)

Resultados considerando 6 veces la estequiometría del oxígeno.

I aire (K)	v aire(-)	T_comb (K)	y_hidr(-)	y_agua(-)		
863.0800	0.2100	1050.0000	0.8900	0.1100		
954.8937	0.2059	1053.8450	0.7855	0.2143		
1138.6810	0.2040	1061.5360	0.7142	0.2855		
1322 4690	9.2925	1069.2271	0.6518	A.3480		
1506 2560	0 2012	1026 9189	0.5944	0.4054		
1690 0439	A 2 AAA	1094 6100	0.5405	0.4592		
1972 9220	A 199A	1092 3028	0 4097	0.5105		
2057 6189	A 1980	1099 9950	A 4402	Ø 5596		
2221 4920	0 1971	1107 6970	R 3928	0 6020		
2431.3070 2436 1041	0 1062	1115 3900	0 2469	0 6530		
2723.1771 9280 0018	0 1954	1193 0730	0.3022	0.0330 0.6977		
2000.7010	B 10/C	1120 2660	0.3000	0 7413		
2772.7 0% 1 9099 3000	0.1730	1130.7000	0.2307	0 2039		
2772.J707 9006 AC90	0.1737	1146 1538	0.1744	0.7037 0.8256		
4450 0000	0 1000	1178.1330	0.1735	0.0230		
1120-0000	0.1000	T120.0000	0.1333	0.0003		
TJJ/IIS		seet total/UN	U tot(U)	DEN CORR MIG(0/cm2)		
£10(07	0.04997-04	0 4001 E_01	4 4 701	0 1511		
1.3000	0.01/2E ⁻⁰¹	0.1001E-01 0.400(T_0)	1 1647	0.1311		
1.4567	0.47232-01	0.4470E-01 0.400CE_01	1 1662	0 1546		
1.2357	0.20575-01	0.4000E-01	1.1004	0.1370		
1.2176	0.1021E-01	0.54/06-01	1.1347	0.1370		
1.2050	0.57868-02	0.60662-01	1.1370	0.1077		
1.1930	0. J691E-02	0.66556-01	1.1230	0.1000		
1.1824	0.26058-02	0.7245E-01	1.1074	0.1765		
1.1715	0.1997E-02	0.7835E-01	1.0911	0.2167		
1.1606	U.1636E-02	0.8425E-01	1.0747	0.2406		
1.1497	0.1410E-02	0.9015E-01	1.0501	0.2664		
1.1384	0.1262E-02	0.9605E-01	1.0411	0.2730		
1.1264	Ø.1162E-02	0.1019E+00	1.0233	0.3193		
1.1134	0.1093E-02	0.1077E+00	1.0046	0.3430		
1.0987	0.1115E-02	0.1054E+00	0.9922	0.3351		
1.0795	0.1405E-01	0.5029E-01	1.0151	0.1569		
**************	***************		*********	191		
Voltaje tot	al promedio-	_1.0890 (V)			
Densidad de	o corriente≖	0.15 0 0 (A/	cm2)			

i_nueva promedio= 0.2222 (A/cm2)

ļ			T		
	1_aire (K) 863.0000	$9_{0.2100}$	1050.0000	0.0900	0.1100
	1064.6470	0.2059	1053.8450	0.7855 0.7143	0.2142 0.2854
	1071.2350	0.2025	1069.2271	0.6518	0.3478
	2274.5291	0.2012	1076.9189	0.5944 0.5406	0.4052 0.4591
	3081.1169	0.1990	1092.3020	0.4893	0.5103
	3484.4169		1099.9950	0.4402 0 3928	0.5595 0.669
	4290.9990	0.1962	1115.3800	0.3469	0.6529
	4694.2900	0.1954	1123.0730	0.3022	0-6976 0-7412
	5491.0791	0.1939	1138.4590	0.2161	0.7839
	5282.0991	0.1932	1146.1530	0.1744 0 1335	0.8257
,	1120.0000	.1005 Наниния Наниния	*********		
	Eid(U) 1 3008	nohmic(V) 0.12106+00	nact_total(V) 0.5824E-01	U_tot(U) 1.1216	DEN_CORK_NUH(H/cm2) 0.2239
	1.2569	0.4340E-01	0.6751E-01	1.1460	0.2270
	1.2357	0.9923E-02 0 4022E-02	0.8607E-01 0 1046F+00	1.1397	0.2447 0.2874
	1.2061	0.2410E-02	0.1232E+00	1.0004	0.3560
	1.1938	0.1842E-02	0.1417E+00 0.1603E+00	1.0503	0.4403 0.5209
	1.1715	0.1465E-02	0.1709E+00	0.9911	0.5007
	1.1606	0.1396E-02 0.1354E-02	0.1974E+00 0.2160E+00	0.9618 0 9324	0.6416 0.6814
	1.1384	0.1327E-02	0.2345E+00	0.9025	0.7112
;	1.1264	0.1309E-02 0.1206E-02	0.2531E+00 0.2719E+00	Ø.8720 Ø.8409	0.7336 g 2502
1	1.0987	0.1302E-02	6,2618E+00	0.0356	0.7424
	1.0795	0.2081E-01	0.7314E-01	0.9855	0.2324
	Voltaje tot	al promedio=	0.9994 (U)	>	
	Densidad de	corriente=	0.2222 (A/a	:m2) Haxaaxaanaa	***
-	i_nueva_pro	medio- 0.4	4922 (A/cm2)		
	$T_aire(K)$	y_aire()	T_comb (K)	y_hidr(-)	y_agua(-) 0 1100
	1852.4340	0.2059	1053.8450	0.7856	0.2138
	3831.3020	0.2040	1061.5360	0.7143 0.519	0.2849
	7789.0371	0.2012	1076.9189	0.5945	0.4047
	9767.9043	0.2000	1084.6100	0.5406 0.4094	0.4586 8 5899
	13725.6396	0.1980	1099.9950	0.4403	0.5591
	15704.5098	0.1971	1107.6870	0.3929 0.3469	0.6066 0.6526
	19662.2305	0.1954	1123.0730	0.3023	0.6974
	21640.3203	Ø.1946	1130.7660	0.2587 0.2161	0.7411 0 7039
	22405.7305	0.1932	1146.1530	0.1744	0.8252
	1150.0000	0.1800	1150.0000	0.1335	0.8665
1	Eid(V)	nohmic(V)	<pre>nact_total(U)</pre>	V_tot(V)	DEN_CORR_NUA(A/cm2)
,	1,3008 1,2570	0.2601E+00 0.9438E-02	0.2059E+00	0.7151 1.0416	0.6263
	1.2350	0.3123E-02	0.3827E+00	0.0500	1.3949
	1.2197	0.2858E-02 0.2804E-02	0.7362E+00	0.6574 0.4671	1.7633
	1.1939	0.2784E-02	0.9130E+00	0.2782	1.7963
	1.1825	0.2769E-02	0.1266E+01	-0.0977	1.8222
				-0 2053	1 8282
	1.1607	0.2766E-02	0.1443E+01	_0 4990	1 0224
	1.1607 1.1497 1.1384	0.2766E-02 0.2763E-02 0.2762E-02	0.1443E+01 0.1620E+01 0.1797E+01	-0.4730 -0.6611	1.0324 1.0354
	1.1607 1.1497 1.1384 1.1264	0.2766E-02 0.2763E-02 0.2762E-02 0.2760E-02	0.1443E+01 0.1620E+01 0.1797E+01 0.17973E+01	-0.4730 -0.6611 -0.0498	1.0324 1.0354 1.8377
	1.1607 1.1497 1.1384 1.1264 1.1134 1.1134	0.2766E-02 0.2763E-02 0.2762E-02 0.2760E-02 0.2759E-02 0.2759E-02 0.2760E-02	0.1443E+01 0.1620E+01 0.1797E+01 0.1973E+01 0.2146E+01 0.2042E+01	-0.4730 -0.6611 -0.8498 -1.0351 -0.9464	1.0324 1.0354 1.8377 1.0394 1.0394
	1.1607 1.1497 1.1384 1.1264 1.1134 1.0987 1.0795	0.2766E-02 0.2763E-02 0.2763E-02 0.2760E-02 0.2759E-02 0.2759E-02 0.2760E-02 0.4610E-01	0.1443E+01 0.1620E+01 0.1797E+01 0.2146E+01 0.2146E+01 0.2042E+01 0.1470E+00	-0.4730 -0.6611 -0.8498 -1.0351 -0.9464 0.8863	1.0324 1.0354 1.0354 1.0394 1.0394 1.0304 0.5140
	1.1607 1.1497 1.1394 1.1264 1.1134 1.0987 1.0795	0.2766E-02 0.2763E-02 0.2763E-02 0.2760E-02 0.2759E-02 0.2760E-02 0.2760E-02 0.4610E-01	0.1443E+01 0.1620E+01 0.1797E+01 0.2146E+01 0.2042E+01 0.1470E+00 0.1470E+00	-0.4730 -0.6611 -0.64198 -1.0351 -0.9464 0.8863	1.0324 1.0354 1.8377 1.0394 1.8304 0.5148
	1.1607 1.1497 1.1384 1.1264 1.1134 1.0987 1.0795 ************************************	0.2766E-02 0.2763E-02 0.2762E-02 0.2759E-02 0.2759E-02 0.2759E-02 0.2760E-02 0.4610E-01	0.1443E+01 0.1620E+01 0.1797E+01 0.1973E+01 0.2146E+01 0.2042E+01 0.1470E+00 0.6356 (U) 0.4922 (A/c	-0.4730 -0.6611 -0.6418 -1.0351 -0.9464 0.8863 	1.0324 1.0354 1.0354 1.0394 1.0394 0.5140 ₩

_ 1_nueva_promedio= _ 1.5279 (A/cm2)

273

Referencias y Bibliografía

Referencias

- Achenbach, E., "Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack", Journal of Power Sources, ISSN: 0378-7753, Vol. 49, No. 1-3, Apr 1994, pp. 333-348.
- Abel, J.; Kornyshev, A. A.; Lehnert, W., "Correlated resistor network study of porous solid oxide fuel cell anodes", Journal of the Electrochemical Society, ISSN: 0013-4651, Vol. 144, No. 12, Dec 1997, pp. 4253-4259.
- Abudula, A.; Ihara, M.; Komiyama, H.; Yamada, K., "Oxidation mechanism and effective anode thickness of SOFC for dry methane fuel", Solid State Ionics, ISSN: 0167-2738, Vol. 86-88, No. pt 2, Jul 1996, pp. 1203-1209.
- 4. Ackmann, T.; de Haart, L. G. J.; Lehnert, W.; Stolten, D., "Modeling of Mass and Heat Transport in Planar Substrate Type SOFCs", Journal of The Electrochemical Society, ISSN: 0013-4651, Vol. 150, No. 6, 2003, pp. A783-A789.
- 5. Aguiar, P.; Chadwick, D.; Kershenbaum, L., "Modelling of an indirect internal reforming solid oxide fuel cell", Chemical Engineering Science, ISSN: 0009-2509, Vol. 57, 2002, pp. 1665-1677.
- Aguiar, P.; Lapeña-Rey, N.; Chadwick, D.; Kershenbaum, L., "Improving catalyst structures and reactor configurations for autothermal reaction systems: application to solid oxide fuel cell", Chemical Engineering Science, ISSN: 0009-2509, Vol. 56, No. 2, 2001, pp. 651-658.
- Ahmed, S.; McPheeters, C.; Kumar, R., "Thermal-hydraulic model of a monolithic solid oxide fuel cell", Journal of the Electrochemical Society, ISSN: 0013-4651, Vol. 138, No. 9, Sep 1991, pp. 2712-2718.
- 8. Arriagada, J.; Olausson, P.; Selimovic, A., "Artificial neural network simulator for SOFC performance prediction", Journal of Power Sources, ISSN: 0378-7753, Vol. 112, No. 1, Oct 2002, pp. 54-60.
- Balko, E. N., "Heat rejection and thermal efficiency in model hydrogen-halogen fuel cell systems", Journal of Applied Electrochemistry, ISSN: 0021-891X, Vol. 11, No. 1, Jan 1981, pp. 91-102.
- 10. Beale, S. B.; Lin, Y.; Zhubrin, S. V.; Dong, W., "Computer methods for performance prediction in fuel cells", Journal of Power Sources, ISSN: 0378-7753, Vol. 118, No. 1-2, May 2003, pp. 79-85.
- 11. Bedringås, K. W.; Ertesvåg, I. S.; Byggstøyl, S. and. Magnussen, B. F, "Exergy analysis of solid-oxide fuel-cell (SOFC) systems", Energy, ISSN: 0360-5442, Vol. 22, No. 4, 1997, pp. 403-412.

- Boersma, R. J.; Sammes, N. M.; Fee, C., "Integrated fuel cell system with tubular solid oxide fuel cells", Journal of Power Sources, ISSN: 0378-7753, Vol. 86, No. 1-2, Mar 2000, pp. 369-375.
- 13. Campanari, S.; Macchi, E., "Thermodynamic analysis of advanced power cycles based upon solid oxide fuel cells, gas turbines and rankine bottoming cycles", American Society of Mechanical Engineers (Paper), ISSN: 0402-1215, No. GT, 98-GT-585, 1998, 12p.
- Chan, S. H.; Ho, H. K.; Tian, Y., "Modelling for part-load operation of solid oxide fuel cell-gas turbine hybrid power plant", Journal of Power Sources, ISSN: 0378-7753, Vol. 114, No. 2, Mar 2003, pp. 213-227.
- 15. Chan, S. H.; Ho, H. K.; Tian, Y., "Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant", Journal of Power Sources, ISSN: 0378-7753, Vol. 109, No. 1, Jun 2002, pp. 111-120.
- Chan, S. H.; Ho, H. K.; Tian, Y., "Multi-level modeling of SOFC-gas turbine hybrid system", International Journal of Hydrogen Energy, Vol. 28, No. 8, Aug 2003, pp. 889-900.
- Chan, S. H.; Low, C. F.; Ding, O. L., "Energy and exergy analysis of simple solid-oxide fuel-cell power systems", Journal of Power Sources, ISSN: 0378-7753, Vol. 103, No. 2, Jan 2002, pp. 188-200.
- Choi, Y.; Stenger, H. G., 'Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen'', Journal of Power Sources, ISSN: 0378-7753, Vol. 124, No. 2, 2003, pp. 432-439.
- 19. Chour, K.-W.; Chen, J.; Xu, R., "Metal-organic vapor deposition of YSZ electrolyte layers for solid oxide fuel cell applications", Thin Solid Films, ISSN: 0040-6090, Vol. 304, No. 1-2, Jul 1997, pp. 106-112.
- 20. Costamagna, P.; Costa, P.; Antonucci, V., "Micro-modelling of solid oxide fuel cell electrodes", Electrochimica Acta, ISSN: 0013-4686, Vol. 43, No. 3-4, 1998, pp. 375-394.
- 21. Costamagna, P.; Honegger, K., "Modeling of solid oxide heat exchanger integrated stacks and simulation at high fuel utilization", Journal of the Electrochemical Society, ISSN: 0013-4651, Vol. 145, No. 11, Nov 1998, pp. 3995-4007.
- 22. Coutelieris, F. A.; Douvartzides, S.; Tsiakaras, P., "The importance of the fuel choice on the efficiency of a solid oxide fuel cell system", Journal of Power Sources, ISSN: 0378-7753, Vol. 123, No. 2, Sep 2003, pp. 200-205.
- 23. Debenedetti, P. G.; Vayenas, C. G., "Steady-state analysis of high temperature fuel cells", Chemical Engineering Science, ISSN: 0009-2509, Vol. 38, No. 11, 1983, pp. 1817-1829.
- Dunbar, W. R.; Gaggioli, R. A., "Computer simulation of solid electrolyte fuel cells", Journal of Energy Resources Technology, Transactions of the ASME, ISSN: 0195-0738, Vol. 112, No. 2, Jun, 1990, pp. 114-123.
- 25. Ferguson, J. R.; Fiard, J. M.; Herbin, R., "Dynamic modeling of single tubular SOFC sombining heat/mass transfer and electrochemical reaction effects", Journal of Power Sources, ISSN: 0378-7753, Vol. 142, 2005, pp 211-222.
- 26. Ferguson, J. R.; Fiard, J. M.; Herbin, R., "Three-dimensional numerical simulation for various geometries of solid oxide fuel cells", Journal of Power Sources, ISSN: 0378-7753, Vol. 58, No. 2, Feb 1996, pp 109-122.

- 27. Finnerty, C.; Tompsett, G. A.; Kendall, K.; Ormerod, R. M., "SOFC system with integrated catalytic fuel processing", Journal of Power Sources, ISSN: 0378-7753, Vol. 86, No. 1-2, Mar 2000, pp. 459-463.
- Gorte, R. J.; Park, S.; Vohs, J. M.; Wang, C., "Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell", Advanced Materials, ISSN: 0935-9648, Vol. 12, No. 19, Oct 2000, pp. 1465-1469.
- 29. Guo, X.-M.; Kus, H.; Chi-Bun, Ch., "Simulation of a solid oxide fuel cell for oxidative coupling of methane", Catalysis Today, ISSN: 0920-5861, Vol. 50, No. 1, 1999, pp. 109-116.
- 30. Hall, D. J.; Colclaser, R. G., "Transient modeling and simulation of a tubular solid oxide fuel cell", IEEE Transactions on Energy Conversion, ISSN: 0885-8969, Vol. 14, No. 3, 1999, pp. 749-753.
- 31. Haynes, C.; Wepfer, W. J., "Enhancing the Performance Evaluation and Process Design of a Commercial-Grade Solid Oxide Fuel Cell via Exergy Concepts". Journal of Energy Resources Technology, ISSN: 0195-0738, Vol. 124, No. 2, 2002, pp. 95-104.
- 32. Hagiwara, A.; Michibata, H.; Kimura, A.; Jaszcar, M.P.; Tomlins, G.W.; Veyo, S.E. "Tubular Solid Oxide Fuel Cell Life Tests". Proceedings of the Third International Fuel Cell Conference, D2-4, 1999, pp 365-368.
- 33. Hilpert, K.; Das, D.; Miller, M.; Peck, D.H.; Weiss, R., "Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes", Journal of the Electrochemical Society, ISSN: 0013-4651, Vol. 143, No. 11, Nov 1996, pp. 3642-3647.
- 34. Hirano, A.; M. Suzuki, M.; Ippommatsu, M., "Evaluation of a New Solid Oxide Fuel Cell System by Non-isothermal Modeling", Journal of the Electrochemical Society, ISSN: 0013-4651, Vol. 139, No. 10, Oct 1992, pp. 2744-2751.
- 35. Inui, Y.; Yanagisawa, S.; Ishida, T., "Proposal of high performance SOFC combined power generation system with carbon dioxide recovery", Energy Conversion and Management, ISSN: 0196-8904, Vol. 44, 2003, pp. 597-609.
- 36. Ishida, M.; Yamamoto, M.; Chuang, Ch., "Graphic exergy analysis of fuel-cell systems based on energy-utilization diagrams", ECOS '92 International Symposium, ISBN: 0-7918-0631-6, 1992, pp. 293-298.
- 37. Iwata, M.; Hikosaka, T.; Morita, M.; Iwanari, T.; Ito, K.; Onda, K.; Esaki, Y.; Sasaki, Y.; Nagata, S., "Performance analysis of planar-type unit SOFC considering current and temperature distributions", Solid State Ionics, ISSN: 0167-2738, Vol. 132, 2000, pp. 297-308.
- 38. Karoliussen, H.; Nisancioglu, K.; Solheim, A., "Use of effective conductivities and unit cell-based supraelements in the numerical simulation of solid oxide fuel cell stacks", Journal of Applied Electrochemistry, ISSN: 0021-891X, Vol. 28, No. 3, Mar 1998, pp. 283-288.
- 39. Kawada, T.; Sakai, N.; Yokokawa, H.; Dokiya, M.; Mori, M.; Iwata, T., "Structure and polarization characteristics of solid oxide fuel cell anodes", Solid State Ionics, ISSN: 0167-2738, Vol. 40-41, No. Pt1, Aug 1990, pp. 402-406.
- 40. Kee, R. J.; Korada, P.; Walters, K.; Pavol, M., "A generalized model of the flow distribution in channel networks of planar fuel cells", Journal of Power Sources, ISSN: 0378-7753, Vol. 109, No. 1, Jun 2002, pp. 148-159.

- Kenjo, T.; Osawa, S.; Fujikawa, K., "High-temperature air cathodes containing ion conductive oxides", Journal of the Electrochemical Society, ISSN: 0013-4651, Vol. 138, No. 2, Feb 1991, pp. 349-355.
- 42. Khandkar, A.; Hartvigsen, J.; Elangovan, S., "A techno-economic model for SOFC power systems", Solid State Ionics, ISSN: 0167-2738, Vol. 135, No. 1-4, Nov 2000, pp. 325-330.
- 43. Kiratzis, N.; Stoukides, M., "Synthesis of hydrogen cyanide in a solid electrolyte fuel cell", Journal of the Electrochemical Society, ISSN: 0013-4651, Vol. 134, No. 8, Aug 1987, pp 1925-1929.
- 44. Kudo, T.; Obayashi, H., "Performance of cylinder type high temperature solid electrolyte fuel cell", Energy Conversion, ISSN: 0013-7480, Vol. 15, No. 3-4, 1976, pp. 121-125.
- 45. Larrain, D.; Van Herle, J.; Marechal, F.; Favrat, D., "Thermal modeling of a small anode supported solid oxide fuel cell", Journal of Power Sources, ISSN: 0378-7753, Vol. 118, No. 1-2, May 2003, pp. 367-374.
- 46 Lehnert, W.; Meusinger, J.; Thom, F., "Modelling of gas transport phenomena in SOFC anodes", Journal of Power Sources, ISSN: 0378-7753, Vol. 87, No. 1, 2000, pp. 57-63.
- 47. Li, P.-W.; Chyu, M. K., "Simulation of the chemical/electrochemical reactions and heat/mass transfer for a tubular SOFC in a stack", Journal of Power Sources, ISSN: 0378-7753, Vol. 124, No. 2, 2003, pp. 487-498
- 48. Lin, Z.; Stevenson, J. W.; Khaleel, M. A., "The effect of interconnect rib size on the fuel cell concentration polarization in planar SOFCs", Journal of Power Sources, ISSN: 0378-7753, Vol. 117, No. 1-2, May 2003, pp. 92-97.
- 49. Majumdar, S.; Claar, T.; Flandermeyer, B., "Stress and fracture behavior of monolithic fuel cell tapes", Journal of the American Ceramic Society, ISSN: 0002-7820, Vol. 69, No. 8, Aug 1986, pp. 628-633.
- 50. Monanteras, Nectarios C.; Frangopoulos, Christos A., "Towards synthesis optimization of a fuel-cell based plant", Energy Conversion and Management, ISSN: 0196-8904, Vol. 40, No. 15, Oct 1999, pp. 1733-1742.
- 51. Murray, A. P., "Steam-fuel oil reformer kinetic computer model", (Westinghouse Electric Corp. Research & Development Cent, Pittsburgh, PA, USA), Proceedings of the Power Sources Symposium, 1984, pp 585-602, ISSN: 0079-4457
- 52. Murthy, S.; Fedorov, A. G., "Radiation heat transfer analysis of the monolith type solid oxide fuel cell", Journal of Power Sources, ISSN: 0378-7753, Vol. 124, No. 2, 2003, pp. 453-458.
- 53. Murygin, I. V.; Chebotin, V. N. "Phenomenological theory of current-producing processes at the solid oxide electrolyte/gas electrode interface. steady-state polarization of fuel-cell electrodes", Soviet Electrochemistry (English Translation of Elektro-Khimiia), ISSN: 0038-5387, Vol. 15, No. 11, Nov 1979, pp 1421-1425.
- 54. Nakagawa, N.; Kuroda, Ch.; Ishida, M., "New equivalent circuit for Pt/YSZ of a solid oxide electrolyte fuel cell. Relation between the model parameters and the interface characteristics", Solid State Ionics, ISSN: 0167-2738, Vol. 40-41, No. Pt1, Aug 1990, pp. 411-414.

- 55. Namie, S.; Shiozaki, K.; Nomura, M.; Kawagoe, Y.; Kumakura, T., "Combined cycle of solid oxide fuel cell and turbines with the aim of separating CO2 gas", The American Society of Mechanical Engineers, Reprinted From Proceedings of the ASME/JSME. Thermal Engineering. Editors: L.S. Fletcher and T. Aihara. Book No. H0933D-1995. 1995, p 425-430.
- 56. Neophytides, S. G., "The reversed flow operation of a crossflow solid oxide fuel cell monolith", Chemical Engineering Science, ISSN: 0009-2509, Vol. 54, No. 20, 1999, pp. 4603-4613.
- 57. Neophytides, S. G.; Tripakis, A., "The transient operation of a solid oxide fuel cell monolith under forced periodic reversal of the flow", Canadian Journal of Chemical Engineering, ISSN: 0008-4034, Vol. 74, No. 5, Oct 1996, pp. 719-728.
- 58. Ota, T.; Koyama, M.; Wen, Ch.; Yamada, K.; Takahashi, H., "Object-based modeling of SOFC system: Dynamic behavior of micro-tube SOFC", Journal of Power Sources, ISSN: 0378-7753, Vol. 118, No. 1-2, May 2003, pp. 430-439.
- 59. P. F. van den Oosterkamp; A. A. Goorse; L. J. M. J. Blomen, "Review of an energy analysis of a fuel cell systems", Journal of Power Sources, ISSN: 0378-7753, Vol. 41, 1993, pp. 239-252.
- 60. Padulles, J.; Ault, G. W.; McDonald, J. R., "An integrated SOFC plant dynamic model for power systems simulation", Journal of Power Sources, ISSN: 0378-7753, Vol. 86, No. 1-2, Mar 2000, pp. 495-500.
- 61. Palsson, J.; Selimovic, A.; Sjunnesson, L., "Combined solid oxide fuel cell and gas turbine systems for efficient power and heat generation", Journal of Power Sources, ISSN: 0378-7753, Vol. 86, No. 1-2, Mar, 2000, pp. 442-448.
- 62. Park, Ch. S.; Thuesen, G. J., "An economic evaluation of the fuel cell compared to the combustion turbine for peak power applications", American Society of Mechanical Engineers (Paper), 1975, pp 200-204.
- 63. Patankar, S. V., "Recent Developments in Computational Heat Transfer", Journal of Heat Transfer, Vol. 110, 1988, pp 1037-1045.
- 64. Petruzzi, L.; Cocchi, S.; Fineschi, F., "A global thermo-electrochemical model for SOFC systems design and engineering", Journal of Power Sources, ISSN: 0378-7753, Vol. 118, No. 1-2, May 2003, pp. 96-107.
- 65. Primdahl, S.; Mogensen, M., "Gas conversion impedance: A test geometry effect in characterization of solid oxide fuel cell anodes", Journal of the Electrochemical Society, ISSN: 0013-4651, Vol. 145, No. 7, Jul 1998, pp. 2431-2438.
- 66. Recknagle, K. P.; Williford, R. E.; Chick, L. A.; Rector, D. R.; Khaleel, M. A., "Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks", Journal of Power Sources, ISSN: 0378-7753, Vol. 113, No. 1, Jan 2003, pp. 109-114.
- Riensche, E.; Achenbach, E.; Froning, D.; Haines, M. R.; Heidug, W. K.; Lokurlu, A.; von Andrian, S., "Clean combined-cycle SOFC power plant - cell modelling and process analysis", Journal of Power Sources, ISSN: 0378-7753, Vol. 86, No. 1-2, Mar 2000, pp. 404-410.
- 68. Riess, I.; Godickemeier, M.; Gauckler, L. J., "Characterization of solid oxide fuel cells based on solid electrolytes or mixed ionic electronic conductors", Solid State Ionics, ISSN: 0167-2738, Vol. 90, No. 1-4, Sep 1996, pp. 91-104.

- 69. Rivero, R., "Las Celdas de Combustible y sus Perspectivas de Aplicación en Procesos de Refinación de Petróleo". Revista del IMIQ, ISSN: 0188-7319, Año XXXVIII, Vol. 10-11, Noviembre-Diciembre 1997, pp. 18-26.
- 70. Rokni, M., "Introduction of a fuel cell into a combined cycle: a competitive choice for future cogeneration" American Society of Mechanical Engineers, International Gas Turbine Institute (Publication) IGTI, ISBN: 0-7918-0685-5, Vol. 8, 1993, pp 255-261
- 71. Roos, M.; Batawi, E.; Harnisch, U.; Hocker, Th., "Efficient simulation of fuel cell stacks with the volume averaging method", Journal of Power Sources, ISSN: 0378-7753, Vol. 118, No. 1-2, May 2003, pp. 86-95.
- 72. Rosen, M. A., "Comparison based on energy and exergy analyses of the potential cogeneration efficiencies for fuel cells and other electricity generation devices", International Journal of Hydrogen Energy, ISSN: 0360-3199, Vol. 15, No. 4, 1990, pp. 267-274,.
- 73. Sawata, A.; Tsuneyoshi, K.; Mizusaki, J.; Tagawa, H., "Oxygen chemical potential profile in a solid oxide fuel cell and simulation of electrochemical performance", Solid State Ionics, ISSN: 0167-2738, Vol. 40-41, No. Pt1, Aug 1990, pp. 415-420.
- 74. Schoonman, J.; Dekker, J. P.; Broers, J. W.; Kiwiet, N. J., "Electrochemical vapor deposition of stabilized zirconia and interconnection materials for solid oxide fuel cells", Solid State Ionics, ISSN: 0167-2738, Vol. 46, No. 3-4, Jul 1991, pp. 299-308.
- 75. Selimovic, A.; Palsson, J., "Networked solid oxide fuel cell stacks combined with a gas turbine cycle", Journal of Power Sources, ISSN: 0378-7753, Vol. 106, No. 1-2, Apr 2002, pp. 76-82.
- 76. Setoguchi, T.; Okamoto, K.; Eguchi, K.; Arai, H., "Effects of anode material and fuel on anodic reaction of solid oxide fuel cells", Journal of the Electrochemical Society, ISSN: 0013-4651, Vol. 139, No. 10, Oct 1992, pp. 2875-2880.
- 77. Singhal, S.C., "Advances in solid oxide fuel cell technology", Solid State Ionics, Vol. 135, 2000, pp. 305-313.
- 78. Singhal, S.C., "Progress in tubular solid oxide fuel cell technology", Electrochemical Society Proceedings. Vol. 99-19, pp. 39-51.
- 79. Steele, B. C. H., "Survey of materials selection for ceramic fuel cells. II. Cathodes and anodes", Solid State Ionics, ISSN: 0167-2738, Vol. 86-88, No. pt 2, Jul 1996, pp. 1223-1234.
- Steele, B. C. H.; Middleton, P. H.; Rudkin, R. A., "Material science aspects of SOFC technology with special reference to anode development", Solid State Ionics, ISSN: 0167-2738, Vol. 40-41, No. Pt1, Aug 1990, pp. 388-393.
- 81. Stiller Christop, Bjørn Thorud, Steinar Seljebø, Mathisen Oistein Mathisen, Håvard Karoliussen, Olav Bolland., "Finite-volume modeling and hybrid-cicle performance of planar and tubular solid oxide fuel cells", Journal of Power Sources, ISSN: 0378-7753, Vol. 141, 2005, pp 227-240.
- 82. Svensson, A. M.; Sunde, S.; Nisancioglu, K., "A mathematical model of the porous SOFC cathode", Solid State Ionics, ISSN: 0167-2738, Vol. 86-88, No. pt 2, Jul 1996, pp. 1211-1216.
- 83. Tanasescu, S.; Berger, D.; Neiner, D.; Totir, N. D., "Thermodynamic characterisation of some doped lanthanum chromites used as interconnects in

SOFC", Solid State Ionics, ISSN: 0167-2738, Vol. 157, No. 1-4, Feb 2003, pp. 365-370.

- 84. Tanner, C. W.; Fung, K. Z.; Virkar, A. V., "The effect of porous composite electrode structure on solid oxide fuel cell performance. I. Theoretical analysis", Journal of the Electrochemical Society, ISSN: 0013-4651, Vol. 144, No. 1, Jan 1997, pp. 21-30.
- 85. Tanner, C. W.; Virkar, A. V., "A simple model for interconnect design of planar solid oxide fuel cells", Journal of Power Sources, ISSN: 0378-7753, Vol. 113, No. 1, Jan 2003, pp. 44-56.
- 86. Todd, B.; Young, J. B., "Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling", Journal of Power Sources, ISSN: 0378-7753, Vol. 110, No. 1, Jul 2002, pp. 186-200.
- 87. Tomlins, G.W.; Jaszcar, M.P., "Elevated pressure testing of the Siemens Westinghouse tubular Solid Oxide Fuel Cell". Proceedings of the Third International Fuel Cell Conference, D2-5, 1999, pp 369-372.
- 88. Van Herle, J.; Maréchal, F.; Leuenberger, S.; Favrat, D., "Energy balance model of a SOFC cogenerator operated with biogas", Journal of Power Sources, ISSN: 0378-7753, Vol. 118, No. 1-2, May 2003, pp. 375-383.
- 89 Virkar, A. V., "Theoretical analysis of solid oxide fuel cells with two-layer, composite electrolytes. Electrolyte stability", Journal of the Electrochemical Society, ISSN: 0013-4651, Vol. 138, No. 5, May 1991, pp. 1481-1487.
- 90. Virkar, A. V.; Chen, J.; Tanner, C. W.; Kim, J.-W., "The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells", Solid State Ionics, ISSN: 0167-2738, Vol. 131, No. 1, Jun 2000, pp. 189-198.
- 91. Vollmar, H.-E.; Maier, C.-U.; Noelscher, C.; Merklein, T.; Poppinger, M., "Innovative concepts for the coproduction of electricity and syngas with solid oxide fuel cells", Journal of Power Sources, ISSN: 0378-7753, Vol. 86, No. 1-2, Mar 2000, pp. 90-97.
- 92. Walters, K. M.; Dean, A. M.; Zhu, H.; Kee, R. J., "Homogeneous kinetics and equilibrium predictions of coking propensity in the anode channels of direct oxidation solid-oxide fuel cells using dry natural gas", Journal of Power Sources, ISSN: 0378-7753, Vol. 123, No. 2, Sep 2003, pp. 182-189.
- 93. Wepfer, W. J.; Woolsey, M. H., "High-temperature fuel cells for power generation", Energy Conversion and Management, ISSN: 0196-8904, Vol. 25, No. 4, 1985, pp. 477-486.
- 94.X. Xue, J. Tang, N. Sammes, Y. Du., "Dynamic modeling of single tubular SOFC combining heat/mass transfer and electrochemical reaction effects", Journal of Power Sources, ISSN: 0378-7753, Vol. 142, 2005, pp 211-222.
- 95. Yakabe, H.; Hishinuma, M.; Uratani, M.; Matsuzaki, Y.; Yasuda, I., "Evaluation and modeling of performance of anode-supported solid oxide fuel cell", Journal of Power Sources, ISSN: 0378-7753, Vol. 86, No. 1-2, Mar 2000, pp. 423-431.
- 96. Yakabe, H; Yasuda, I., "Model Analysis of the Expansion Behavior of LaCrO3 Interconector under Solid Oxide Fuel Cell Operaton", Journal of the Electrochemical Society, ISSN: 0013-4651, Vol. 150, No. 1, May 2003, pp. A35-A45.

- 97. Yamamoto, O., "Solid oxide fuel cells: fundamental aspects and prospects", Electrochimica Acta, ISSN: 0013-4686, Vol. 45, No. 15-16, 2000, pp. 2423-2435.
- 98. Yasuda, I. and Hishinuma, M., "Electrochemical properties of doped lanthanum chromites as interconnectors for solid oxide fuel cells", Journal of the Electrochemical Society, ISSN: 0013-4651, Vol. 143, No. 5, May 1996, pp. 1583-1590.
- 99. Yoshida, T.; Tsunoda, A.; Koide, H.; Hoshina, T., "Flow pattern and electrical conductance on a planar solid oxide fuel cell", Journal of Chemical Engineering of Japan, ISSN: 0021-9592, Vol. 30, No. 4, Aug 1997, pp. 677-682.
- 100. Yuang, J.; Rokni, M.; Sundén, B., "Three-dimensional computational analysis of gas and heat transport phenomena in ducts relevant for anodesupported solid oxide fuel cells", International Journal of Heat and Mass Transfer, ISSN: 0017-931, Vol. 46, 2003, pp. 809-821.
- 101. Zhu, H.; Kee, R. J., "A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies", Journal of Power Sources, ISSN: 0378-7753, Vol. 117, No. 1-2, May 2003, pp. 61-74.

Bibliografía

- 102. Abramowitz, Milton; Stegun, Irene A., "Handbook of Mathematical Functions with formulas, graphs and mathematical tables". Ed. Dover. 9^a edición, 1972.
- 103. Bird, R. Byron; Stewart, Warren E.; Lightfoot, Edwin N., "Fenómenos de Transporte". REVERTÉ, España, 1982.
- 104. Chapman, Stephen J., "Fortran 90/95 for Scientists and Engineers". Mc Graw Hill, 2a edición. Singapore, 2004.
- 105. Li, Xianguo. "Principles of Fuel Cells". Taylor & Francis. Great Britain, 2006.
- 106. Marcus, Daniel A., "Ecuaciones Diferenciales", Singapore, 2^a reipresión, CECSA, México, 1996.
- 107. O'hayre, Ryan P.; Cha, Suk-Won; Colella, Whitney; Prinz, Fritz B., "Fuel Cell Fundamentals". John Wiley & Sons, Inc., United States of America, 2006.
- 108. Patankar, Suhas V., "Numerical Heat Transfer and Fluid Flow". Hemisphere Publishing Corporation, Roman, 1980.
- 109. Patankar, Suhas V., "Computation of Conduction and Duct flow heat transfer". s/e, 1988.
- 110. Resnick, Robert; Halliday, David; Krane, Kenneth S., "Física Volumen 2". Cuarta edición en español, CECSA, México, 2004.
- 111. Sánchez Martínez David Tomas, "Aportación al análisis de plias de combustible de óxido sólido (SOFC) para integración en sistemas híbridos plia de combustible-turbina de gas". Departamento de Ingeniería Energética y Mecánica de Fluidos. Escuela Técnica Superior de Ingenieros. Universidad de Sevilla. Tesis Doctoral, España, 2005.
- 112. Shaw C. T. "Using Computational Fluid Dynamics". Prentice Hall, New York, 1992.

- 113. Singhal, Subhash C. and Kendall, Kevin. "High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications". Elsevier, Great Britain, 2003.
- 114. Sundén, B.; Faghri, M., "Transport Phenomena in Fuel Cells". WITPRESS, Great Britain, 2005.
- 115. Supramaniam Srinivasan. "Fuel Cells From Fundamentals to Applications". Springer., United States of America, 2006.
- 116. Villaseñor Franco Edgar., "Las celdas de combustible: inicio de la era del hidrógeno estudio técnico introductorio y perspectivas de desarrollo de las celdas de combustible en México". Tesis Maestría (Maestría en Ingeniería (Energética))-UNAM, Facultad de Ingeniería. México, 2000.
- 117. Welty, James R.; Wicks, Charles E. y Wilson, Robert E., "Fundamentos de Transferencia de Momento, Calor y Masa". Cuarta reimpresión. Limusa. México, 1991.

3